

A CHILTON PUBLICATION

New RADIO MATERIALS COMPANY Factory and Research Center

This new factory, office and research center in Chicago will enable RMC to expand its service to the growing electronic industry. The modern facility incorporates extensive manufacturing space to provide the fastest shipments of RMC DISCAPS with up to the minute research laboratories where technicians are engaged in capacitor development and improvement.

The combination of this new facility with RMC's modern plant in Attica, Indiana, enables Radio Materials Company, now, more than ever, to better serve your ceramic capacitor requirements efficiently and economically.

Circle I on Inquiry Card

BERNARD F. OSBAHR, Editor ROBERT E. McKENNA, Publisher

tries. The total 1960 industry product comes to approximately \$10.75 billion composed of: military and government equipment at \$5 billion, consumer goods (retail) \$3.1 billion. commercial and industrial electronic equipment \$1.75 billion, with nearly another billion dollars for replacement parts. In this issue we have prepared a very

This has been another record busi-

ness year for the electronic indus-

comprehensive statistical roundup of the industry that starts on page 124. This information, coupled with that on the "Electronic Industries Totals" pages contained in each month's issue, is aimed at keeping interested readers abreast of all vital marketing information as it becomes available. Along these lines, also in this issue, we should like to call your special attention to the survey article by Jerome Kraus discussing the U.S. Electron Tube and Semiconductor Market for 1961-1965. It starts on page 214.

The current business slow-down, a new president-elect, and our troubled gold position constitute major factors of uncertainty in predicting business conditions for 1961. In checking, we find that most business executives expect 1961 to be about the same in the overall as 1960. Prices, profits and costs are expected to remain at about the same levels. Of course, some industry segments such as semiconductors, microwaves, microminiaturization, and molecular electronics will forge ahead at greater rates than others.

Last month we noted that 1961 would be a record year for conventions, meetings and shows. The total number of days for these activities exceeds the total number of working days in the year. This month we have attempted to illustrate this graphically on our front cover. We have also indicated those which we consider to be prime regional events. It is hoped that through collaboration and cooperation of the interested groups and societies many of the smaller meetings can be tied onto one of the main regional events. The Institute of Aeronautical Sciences and the American Rocket Society have already taken the

initiative in this direction and have combined forces for their 1961 West Coast Summer meeting.

In 1960 our editorial staff study program met with considerable success. We list here the subjects that were covered: "Human Factors - Newest Engineering Discipline" (February); "New Roles for the Electron Gun" (March); "The Challenge of Space" (April); "Searching for New Electronic Markets" (July); "Electronics and the Future of Agriculture" (August); "Unconventional Power Converters" (Sept.); "Summary of Microwave Electron Devices" (November); and "MINUTEMAN, Catalyst for Reliability" (December). For those interested, a limited number of reprints for each of these studies are still available. The series of articles on Radio Frequency Interference appearing in March, April, May, June, July, September, October and December issues also received a very high reader acceptance. During 1961 we intend to continue with both these programs. We are in the editorial planning stages now and would welcome any additional reader suggestions for new topic coverage.

During 1960, as well as in past years. we produced four issues with special themes. In March there was the annual IRE Show and Convention issue: in June we had our technical All-Reference and Directory issue; August was the annual WESCON show and convention issue; with November providing the 9th Microwave Issue. In 1961 we shall continue with this grouping. We also have no plans to change the frequency of publication of ELECTRONIC INDUSTRIES. Our aim will be to keep EI as the prime technical monthly center for engineers engaged in the design, research, development, manufacture and operation of electronic equipment.

We take this opportunity to thank our readers for their past interest and support. Your continued cooperation promises to make this, our nineteenth consecutive year of publishing, better than ever before. From all EI staff members, a very happy new electronic year to all!

Electronic

Industries

-1960-61

MRT E. MAKENNA, PAS ARD F. OSBAH

10.1

EL BEDART

BALTON

DRIAL SALES MANA Reduiptie (31)--Side & C

ACCEPT w York (17)-160 Ees

GERALD S. M MENARD DO

Chicege (1)-300 N. Michigan Ave. CLO!

Cleveland (15)-130 Kath Bide SHELTY A. MaMILLA

Las Angeles (57)-118 S. . WELLY O

n Federalisco (2)-1355 Merchart St.

JOHN W BANGSI ...

die (4) - Mandam Mile , Bapres

Moren HAROLS E. MOTT

London, E. W. (1)-47/88 J MAX & H

1 40 ILTON PHILADELPHIA"

ELECTRONIC INDUSTRIES

Vol. 20, No. 1

January, 1961

MONTHLY NEWS ROUND-UP

Redarscope: What's Aheed for the Electronic Industries	4
As We Go To Press	7
Electronic Shorts	8
Coming Events	11
Electronic Industries' News Briefs	19
TOTALS: Late Marketing Statistics	21
Snapshots Of the Elactronic Industries	22
International News	24
Next Month in Electronic industries	75
Weshington News Letter	207

Editorial: ELECTRONIC INDUSTRIES, 1960-61	1
Design of Automatic Test EquipmentJ. E. Toffer	76
Designing for Low Level InputsD. B. Schneider	81
Using Jacobians for Frequency-Selective Networks	
Dr. W. W. Happ & T. R. Nisbet	86
What's New	90
One Solution to Servomechanism Hunting	92
Level Gauges in the Liquid Helium-Liquid Oxygen Range Dr. H. B. Sachse	96
Designing a Lightweight Vibration Transducer (Part 1) T. D. Smith & H. R. Spence	100
1961 Coming Events Calendar	107
1960-1961 Statistics of the Electronic Industries	124
International Electronic Sources	185
Electronic Operations	197
Developing an Oscillator for 450-470 MCN. Goscharoff	198
Professional Opportunities	213
Electron Tubes and Semiconductors—What's Ahead?J. Krous	214

NEW PRODUCTS & TECH DATA

New	Products				 	 • •	 	 	 		 		 	 104
New	Tech Date	a for	Engine	ers.	 	 	 	 		• •	 	 	 	 138

DEPARTMENTS

Tele-Tips	41	Cues for Breadcasters	204
Letters	52	Industry News	209
Books	62	Personals	222
Systems-Wise	197	News of Mfrs. Representatives	224

Highlights

of this issue

Automatic Test Equipment

page 76

There is a great interest in automatic test equipment for complex systems. Some of the problems involved in designing flexible, highspeed, full automatic checkout systems for use by unskilled personnel are described and discussed here.

Designing for Low Level Inputs

page 81

The problems of low level input instrumentation have mushroomed with the missile era. Not only is the new terminology defined in this article but also positive suggestions are offered to eliminate systems engineering problems involved.

Using Jacobians for Frequency-Selective Networks page 86 This article is an experiment. Instead of presenting a short discussion for those familiar with Jacobians, and a long table of results for those who are not, the entire article contains only one simple network—so simple that results can be verified intuitively.

One Solution to Servomechanism Hunting

page 92

Usually a servomotor drives a potentiometer so that the input voltage exactly matches the feedback voltage. With precision wire-bound pots this is not always possible because of the voltage difference between windings. Precision carbon film pots seem to be the answer.

Level Gauges in the Liquid Helium-Liquid Oxygen Ranae

page 96

With more emphasis being placed on the operational status of missiles and space vehicles, the problem of simplifying fuel level sensing for field use magnifies. The high sensitivity thermistor is a leading contender for the detector.

Designing a Lightweight Vibration Transducer page 100 Special transducers must be developed to handle dynamic measurements of electronic hardware under vibrational environments. These devices should be "throw-aways" which can be left in the equipment after the measurements are made. Size and weight are also critical since they affect the data.

Development of an Oscillator for 450-470 MC page 198 The design and development of a stable, reliable crystal oscillator is a problem made a little harder by new FCC regulations for mobile communications. Here is an engineer's thinking behind the design and development of an oscillator for use under rugged conditions.

Electron Tubes and Semiconductors—What's Ahead page 214 Electronic tubes and semiconductor devices are parts of much larger equipments or systems. The demand for them depends on many diverse elements including consumer taste and U. S. defense and foreign policy. In this dynamic industry, a forecast cannot be an extension of past performance alone, but must also consider the impact of new developments. This forecast is based on such an analysis.

ELECTRONIC INDUSTRIES . January 1961

Vibration Transducer

Low Level Inputs

Crystal Oscillator

RADARSCOPE

INFRA-RED WINDOW

The largest germanium infra-red window ever cast. 15 in: in diameter and half-inch thick, is checked by optical technician at Hughes Aircraft Company. The window will be used in detection systems for missile guidance and space surveillance.

RUSSIANS' SOLID-STATE RESEARCH has been accelerated so spectacularly that within 5 to 10 years the Soviets may be publishing more material on the field than the U. S. This is a conclusion of the Government's Office of Technical Services, Business & Defense Services Administration. Most prominent feature of the Soviet's work is reportedly their excellent theoretical research.

THE MILITARY DEPARTMENTS have agreed to forecast their requirements for 13 categories of electronic components on a 5-year basis. The first 5-year forecasts will be released next July. It will cover three types of batteries: 7 capacitors; 7 resistors; all transformers and reactors; 5 electrical indicating instruments; 3 relays; 3 quartz crystals and filters; 4 receiving tubes; 13 power, transmitting special-purpose tubes; 4 semiconductor diode rectifiers and related devices; 2 transistors and all types of connectors and servos.

FAA IS EXPERIMENTING with "forward scatter" to provide communications on the air routes over the North Atlantic. Present h-f communications are frequently interrupted by sunspots, auroral blackouts and selective fading. The FAA hopes that "forward scatter" will provide reliable communications 98% of the time. HAVE THE SOVIETS developed a synthetic transistor? Rumor out of Moscow is that Nobel Prize Chemist N. N. Semenov has developed a synthetic transistor made of polyacrylonitrile that has parameters similar to germanium transistor.

COMPUTER INDUSTRY is taking a definite form, which may or may not mean more dollars for the electronic end. The trend was first noted a year ago when the Government announced plans to pool their computers so that more Government Depts. could use them. The trend seems to be finding favor with private industry, as well. Plans are for tying both large and small firms to centralized electronic data processing centers which will have on hand a wide variety of computing equipment to handle any particular application. Two segments of the industry are involved, working somewhat independently The computer people are manufacturing sophisticated, high-powered computers for these centers. and the communications people are concentrating on setting up data transmission links. At this point, while the number of small general-purpose computers is increasing, the increase is at a decreasing rate, while the number of large high-powered computers is increasing at an increasing rate. The small computer field seems to be turning more towards specialized equipment, tailored to meet specific needs in industry.

COCKPIT DISPLAY

Capt. Pete Nagurney, chief pilot of ITT Labs, checks his position over the New York metropolitan area on the new VORTAC Pictorial Display developed by ITT. The pilot sees exactly where he is during every moment of Hight by following the intersection of two moving red lines.

Analyzing current developments and trends throughout the electronic industries that will shape tomorrow's research, manufacturing and operation

SMALL BUSINESS has been awarded 8,121 prime Government contracts valued at \$342,526,468 during the period July through October, 1960. This represents an increase of \$81.5 million in contracts over the same period last year.

THE MICROWAVE SPECTRUM, is of interest to scientists in many fields outside of electronics. Biophysicists are finding that they can better study living matter in microwave radiation fields. Microwave spectroscopy is being looked to as one of the most important tools for studying matter in solid and gaseous states. At the same time physicists are studying the interaction between microwaves and gas-discharge plasma, because microwaves penetrating through ionized gas permit determination of the electron density, temperature and rift velocity in the plasma. In other applications microwaves are allowing extreme accuracy in measurements, such as measuring the distance to satellites orbiting around the earth.

"TOUCH" SYSTEM for pilot communications proposed by research psychologists at the Human Engineering Laboratory of the Rome Air Development Center, would change frequencies of voice into mechanical vibrations. Pilot would feel the vibrations through a plate in contact with his body. Project is still in research stage.

NOT EVERYONE is disenchanted with "value analysis," contrary to some recent reports. Cost reduction proposals during a recent two-week value engineering seminar at the California Branch of Librascope Div., General Precision, Inc., had an (estimated) saving of \$50,000 on the POLARIS program alone. Librascope is a major supplier of POLARIS fire control electronic subsystems.

MAGNETOSPHERIC WAVEGUIDES, magneto-ionic ducts extending from the ionosphere in the northern hemisphere to the ionosphere of the southern hemisphere could guide high frequency transmission between the hemispheres, according to Prof. Thomas Gold, director of Cornell's Space Center. Signals entering these ducts—over 10,000 miles long—leave with practically the same strength. NSF supported the study.

FERRO-ELECTRIC MATERIALS are being studied for use in microwave devices by Caswell Electronics Corp. and the Univ. of Michigan Research Institute. Initial studies aim at developing rapid phase shifters.

MISSILE BLOOM effect is being studied by Radiation Inc., Orlando, Fla. Missile bloom is a whitish glow surrounding missiles at an altitude of about 120 km. It has a rapid growth that persists for many seconds and has a diameter of several miles. THE IMPORT-EXPORT HASSLE is being further snarled by the Government's attempts to resolve the dollar crisis. Many Government people feel that pressure should be brought to bear on manufacturers who have moved their manufacturing operations overseas—this would include a sizeable number of electronic firms. But another school says that the profits that will ultimately flow back to the U. S. will more than overbalance the temporary outflow of dollars.

SUBTLE "BUY AMERICA" PROGRAM is being met with an equally devious effort to conceal the fact that equipments are of foreign manufacture. Where previously firms were content to leave the question of origin dangling, large numbers are now hold enough to claim that they are personally manufacturing items completely manufactured overseas. Federal Trade Commission is pushing action against a number of these firms vigorously.

WE SEE A TREND developing which will give engineers a bigger share in management decisions especially in matters concerning depreciation policies and methods. Financial and accounting people do most of the work in this area now, hut they are calling on engineers more and more to make decisions which hinge on the effects of technological change. The engineers—to be of real help—will also have to learn more about the accountant's trade.

INDUSTRIAL RESEARCH AND DEVELOPMENT totalled approximately \$10 billion in 1960. The aircraft industry accounted for approximately 33% of the money expended, and electrical equipment and communications 25%.

CHECKING TIROS CAMERA

Alignment of the wide-angle television camera on the Tiros II weather satellite is checked by Sidney Sternberg, chief engineer of the RCA Astro-Electronics Division and engineer Ralph Jordan at the RCA Space Canter, Princeton, New Jersey.

CERAMICS FOR TRANSISTOR CIRCUITS

.14

HYPERCON® CAPACITORS

- Ultra-high capacitance
- Low voltage
- Miniature size
- Low Cost

Designed for use in semi-conductor and other low-voltage circuits, these new Hypercon Disc Ceramic Capacitors offer capacitance values formerly associated only with electrolytic capacitors. Yet they are only a fraction of the size of comparable electrolytics . . . and sold at only a fraction of the cost!

Hypercons have excellent stability, exhibiting no loss in capacitance when operating above room temperature. Their triple-purpose resin coating serves as insulation as well as protection against moisture and mechanical damage.

Hypercons are in mass production now, available for prompt delivery. For detailed specifications, write for Engineering Data Sbeet 6141A to Technical Literature Section, Sprague Electric Company, 233 Marsball Street, North Adams, Massachusetts.

3 VO	LTS D-C	12 VOLTS D-C					
μF	Diameter in Inches	μF	Diameter in Inches				
.1	.225	.047	.275				
.22	.275	.1	.400				
.47	.400	.22	.595				
1.0	.595	.47					
2.2	.840						

SPRAGUE COMPONENTS:

CAPACITORS + RESISTORS + MAGNETIC COMPONENTS + TRANSISTORS + INTERFERENCE FILTERS + PULSE-FORMING NETWORKS + PIEZOELECTRIC CERAMICS HIGH TEMPERATURE MAGNET WIRE + CERAMIC-BASE PRINTED NETWORKS + PACKAGED COMPONENT ASSEMBLIES + FUNCTIONAL DIGITAL CIRCUITS

ELECTRONIC INDUSTRIES · January 1961

As We Go To Press...

Plotter Draws Weather Map in Three Minutes

The U. S. Weather Bureau has in operation an electronic computer - plotter that mechanically draws a complete weather map of the Northern Hemisphere in less than three minutes. Unit, the Weather Plotter, reads information from magnetic tape and presents this information to a digital-toanalog converter.

Converter instructs the "mechanical hand" of the plotter to automatically draw isobars on a 30 x 30 in. map of the Northern Hemisphere. Unit was developed and produced by Electronic Associates, Inc., Long Branch, N. J.

OLD TUBES STILL WORK

42-year old radio set built by Wastern Electric Co. for the Signal Corp still works. Inspecting set are (L to R): R. A. Heising, original set designer; Major Gen. R. T. Nelson, and W. H. Doherty, Mngr., Patents Licensing, Western Electric Company.

New Telemetry System

A new data multiplexing system, SS-FM. uses single sideband subcarriers on an FM carrier. It permits transmission of approx. 45,-000 cycles of data at an accuracy of 5% in the same r-f bandwidth now used by an FM-FM system with a capacity of 4,000 cycles of data. Up to 30 db improvement in signal-to-noise ratio is realizable.

System was developed at NASA's George C. Marshall Space Flight Center, Huntsville, Ala. for the Saturn program. They were assisted in the hardware development phase by Motorola, Collins Radio, and Lenkurt Electric. System was developed to provide transmission capacity for vibration and other wideband data required by the rocket designer.

Slide Rule Locates Orbiting Satellite

The Air Research and Development Command's Rome Air Development Center has a new type slide rule which quickly locates a satellite moving around the earth. The computing device pinpoints the satellite's path and determines geographical areas visible from the satellite. It also gives the frequency and times it will pass over any particular points on the ground.

Simulator also can be worked backwards to give the launch conditions (time and place, necessary to achieve a satellite's journey. Planning Research Corp., Los Angeles, built the device called the Satellite Trajectory Simulator.

IRE Officers for '61— Berkner is President

Lloyd V. Berkner, Pres., Associated Universities, Inc., has been elected President for 1961 of the Institute of Radio Engineers. Vice Presidents are: (Overseas) Franz Ollendorff, Research Professor at the Technion-Israel Institute of Technology, Haifa, Israel, and (North America) J. F. Byrne, Manager, Riverside Research Lab., Motorola, Inc., Riverside, Caliú.

Directors (1961-1963) are: E. F. Carter, Stanford Research Institute, Menlo Park, Calif.; and L. C. Van Atta, Hughes Aircraft Co., Culver City, Calif.

Regional Directors (1961-1962): A. B. Giordano (Region 2), Polytechnic Institute of Brooklyn; A. B. Bereskin (Region 4) University of Cincinnati; M. W. Bullock (region 6) Continental Electronics Manufacturing Co., Texas; and B. R. Tupper (Region 8) British Columbia Telephone Co., Vancouver, Canada.

TV Award

The Institute of Radio Engineers has awarded the Vladimir K. Zworykin Television Prize to Dr. Peter C. Goldmark, President and Director of Research, CBS Laboratories, Stamford, Conn.

He was cited for, "Important contributions to the development and utilization of electronic television in military reconnaissance and in medical education."

ATLAS GUIDANCE

SAC guidance craws for the ATLAS Radiocommand guidance system stand-by at an operational Atlas launching site. Maintenance panel is on the left-guidance control officer at guidance controle, right.

Update Conelrad

The U. S. Air Force, the FCC, The Associated Press, and United Press International will integrate the entire facilities of the two major wire services for use as an alert system in event of a national emergency. Under the new system, virtually every radio station in the nation can be notified of enemy attack in 3 to 8 minutes. The old system took up to 1 hour. One man can trigger the alert.

ASW Electronics Needs Major Breakthrough

The Military Marketing Data Committee (EIA) says that the electronic market within the Navy's antisubmarine warfare program is relatively small and is likely to remain so unless there is a major scientific development in the field. Right now the market is about \$185 million of a total \$240 million alloted by the Navy for the ASW program. By 1965 they predict \$325 million for electronics out of a total \$400 million.

New developments are needed in the areas of long-range detection and classification of submarine and simplified, inexpensive ASW equipment. Marketing opportunities in this area will be concentrated in improved sensors and data processing systems, and command and decision-making equipment.

> More News on Page 8

.

ELECTRONIC INDUSTRIES . January 1961

Electronic

SHORTS

▶ An Educational Electronics Division has been formed through consolidation of the educational sales groups of Thompson-Ramo-Wooldridge's subsidiary, Magnetic Recording Industries and the companies' Dage Television Div. The new division will be responsible for marketing a wide range of commercial electronic products for use in schools. The products will include CCTV systems, language laboratories, teaching machines, recording systems, electronic classrooms, and other educational services. The division headquarters is at 126 Fifth Avenue, New York City.

• Up-to-date information on Government-supported technical It & D work can now be obtained regularly from the Small Business Administration. Abstracts of R & D reports covering principal industrial categories will be provided to interested small manufacturers upon request. These manufacturers will select from an SBA check-list the categories for which they desire technical information. The abstracts in these categories will then be imagled to them automatically as they are issued.

▶ A new high-resolution receiving antenna whose narrow beam sweeps rapidly and continuously by purely electronic control of phasing has been designed and tested by the Antenna Research Section, Radio Systems Div. of the Boulder Laboratories, NBS. There are no mechanically-moved parts in the antenna array. The array consists of seven 5-element Yagis, optimized for a maximum front-to-back ratio of 30 db. Dolph-Chebyshev current distribution is used to limit side lobes to below -20 db. The system, operating at 41 MC, swings a 5.8 beam in azimuth through a 42 sector each 1/20 second.

D The FAA has ordered United States airlines to install flight recorders on all jet-powered planes by next May. The regulation went into effect November 1, but if airlines encounter installation or procurement difficulties, extensions will be granted up to May 1st. The units, connected to certain key instruments, record on tape such factors as air speed, and other performance data. Units are enclosed in a small cabinet impervious to fire, impact and water damage.

▶ A Repetitively Pulsed Plasma Accelerator (REPPAC 1) has been fired continuously for $18\frac{1}{12}$ hrs. at GE's Missile and Space Vehicle Dept., Phila. There were nearly 4,000,000 individual firings at the rate of 3,000/min. Each firing produced about 1/10 oz. thrust. The program aims to prove feasibility of using pulsed plasma acceleration for space vehicle attitude control.

▶ A Burroughs Corp. B100, electronic check sorter, has been installed in the National Savings and Trust Co., District of Columbia. The sorter uses MICR—Magnetic Ink Character Recognition. Sorter is the first unit of a complete electronic system the bank plans to install during the next year.

Westinghouse Electric Corp.'s new Astracon light amplifier tube has photographed the faint tracks produced when cosmic rays penetrate a solid crystal. The Astracon takes incoming photons and uses them to release electrons from a light-sensitive input surface. Electrons are accelerated and guided successively onto a series of thin films. At each film, an incident electron ejects five or six more electrons which move to the next film. In a 4-stage tube, they emit about 10,000 photons for each original photon.

▶ "Long-range missiles with computer memory units sealed in their nose cones could be the 'homing pigeons' of future nuclear wars," says Dr. Leonard S. Sheingold, Sylvania Electric Products, Inc. The system could be one way of transferring large volumes of information over ranges of up to thousands of miles—connecting high-data-rate computer facilities at several points on the globe—after conventional communications channels are destroyed.

> Gulton Industries, Metuchen, N. J., has designed a new, rechargeable nickel-cadmium battery with a true hermetic seal for highly reliable, long-life outer space performance. The 5-amp. cell can absorb a charge current of 1 amp indefinitely. It can operate for at least 20,000 duty cycles over a period of many years.

As We Go To Press (cont.)

Ground Traffic Radar

New Airport Surface Detection Equipment (ASDE) radar, in operation at the Washington National Airport, sweeps the field every second to give a detailed picture of ground traffic, moving or still. Use of instrument landing systems and Airport Surveillance Radars have speeded up airport traffic so much that clearing of runways is becoming increasingly important.

HEART STOPS, IT CALLS DOC

Units that stimulate a patient's faltering heart and broadcast an alarm to the doctor are demonstrated by inventor. Morris Tischler(R) to Edwin H. Seim, Mngr., Westinghouse Electric's X-ray & Industrial Electronics Div.

New Doppler Antennas To Be Tried By FAA

Better radio signals may result from tests of a new type of antenna to be conducted by the FAA at its National Aviation Facilities Experimental Center at Atlantic City.

Feature of the new antennas, being developed by Dorne & Margolin. Inc., Westbury, L. I., under a \$124.497 R&D contract. is their size, making it possible to put 100 of them in the usual Doppler installation instead of the present 50. This increase in number of antennas produces a better signal with less "shadowing" effect between antennas, according to FAA engineers. Size of the antenna has been reduced through the use of a cylindrical vertical form instead of the loop antenna now in use with the Doppler.

A new type of signal distributor will also be tested in connection with the antennas.

HUGHES LINE OF K_u-Band BWO's

Hughes Ku-band backward-wave oscillators are all permanent-magnet tubes with the compact, lightweight Hughes design that has proved so reliable. They are ideally suited for use in microwave signal and sweep generators, panoramic receivers, spectrum analyzers, frequency scan and navigational radars and countermeasures equipment. They feature low spurious output and narrow spectrum width. They are designed to give you thousands of hours of trouble-free life.

The new 326H, shown here, is of particular interest. It is specifically designed for use in test equipment and other strictly commercial instrumentation—and priced for that market. It is a small, streamlined tube with excellent operating characteristics.

All the tubes shown here are production products. Hughes will ship to meet your immediate requirements. For prices and full particulars, write today to Hughes Microwave Tube Division, 11105 Anza Avenue, Los Angeles 45, California.

THE 326H For commercial applications. Minimum output: 10 mw over 12.4 to 18 kmc band with power rising to 65 mw in the center of the band. Like all Hughes BWO's, the Hughes 326H requires no external cooling. All electrodes are isolated from each other and from the case.

THE 315N Minimum average power: 50 mw. Frequency range: 15.8-17.2 kmc. Total weight of tube and magnet: 11.5 lbs.

THE 317H Min, avg. power: 60 mw. Frequency range: 13.5-15.5 kmc, Total wt., tube and magnet: 10 lbs.

THE 316M Full band. Minimum average power: 10-60 mw, Frequency range: 12.4-18.0 kmc, Total weight of tube and magnet: 11.5 lbs.

THE 318M Min. avg. power: 30 mw. Frequency range: 17.5-19.5 kmc. Total wt., tube and magnet: 10 lbs.

ELECTRONIC INDUSTRIES January 1961

Circle 3 on Inquiry Card

MACH 5... MACH ID..

and Beyond

STEVENS <u>Certified</u> THERMOSTATS

Up where the "wild blue perioder" between later that you can a short to periode on precise, reliable second at control. And that's the pattern domain of forthermon star. They are compact and lightweight with stand high G's... are orienty will able over the datemperature with gs. For Styven Thermo. Is product of creative engineering ... coupled the programs to the industry. If seem to you dimension, take use series of Stevens thermore fort

STEMCO

STEVENS manufacturing company

THERMOSTATS

2° to 6°F Differential Standard 1° to 4°F Differential Special *Maximum spread of 6°F

including differential and tolerance

Type MX also

Wif is all ways between maximum or and attitudes clear Coming

Events in the electronic industry

"CALL FOR PAPERS"

- 17th Annual Society of Plastics Engineers, Inc., Tech. Meeting, Jan. 24-27, Shoreham Hotel, Wash., D. C. Deadline date for papers: Aug. 1, 1961.
- American Mathematical Soc., Feb. 22, 1961, Yeshiva Univ., N. Y. Deadline date: Jan. 10, 1961; Aug., 1961, Stillwater, Okla. Deadline date: Jan. 10, 1961; Nov. 17-18, Milwaukee, Wis. Deadline date: Jan. 10, 1961. Contact: Mrs. Robert Drew-Bear, Head, Special Project Dept., AMS, 190 Hope St., Providence 6, R. I.
- Symp. on Materials and Electron Device Processing, Apr. 5-7, 1961, Benjamin Franklin Hotel, Phila., Pa. Submit title and 200-word abstract to Dr. D. E. Koontz, Bell Tel. Labs., Murray Hill, N. J., no later than Jan. 2, 1961. Manuscripts by Feb. 15, 1961.
- Radio Tech. Commission for Marine Services Meeting, Apr. 5-7, Sheraton Palace Hotel. San Francisco, Calif. Deadline date for papers: Mar. 15, 1961. Forward to: G. R. McLeod, Exec. Sec'y, RTCM, c/o FCC, Wash., 25, D. C.

- 8th Annual Society of Tech. Writers and Publishers Convention. Apr 13-14, Mark Hopkins Hotel, San Francisco, Calif. Deadline date for papers: Feb. 1, 1961. Forward to: G. F. Estill, Gen'l Chairman, Maintenance Regulations Mgr., United Air Lines, Intn'l Airport, San Francisco, Calif.
- 9th National Conf. on Electromagnetic Relays, Apr. 25-27, Oklahoma State Univ., Student Union Bldg., Stillwater, Okla. Deadline for all papers: Mar. 1, 1961. Forward to: Prof. Charles F. Cameron, School of Electrical Engineering.
- Spring Conf. for 1961, Chicago Prof. Group on Broadcast and TV receivers of the IRE, June 15-16, O'Hare Inn, DesPlaines, Ill. Deadline for papers: Submit 3 copies of following by Feb. 15, 1961—50 to 100 word summaries including title of paper, author's name, position, title, company affiliation. Forward to: Neil Frihart, Motorola, Inc., 4545 W. Augusta Blvd., Chicago 51, Ill. Limit papers to 2500 words (20 min. presentation).
- American Society for Testing Materials Annual Meeting, ASTM, June

25-30, 1961, Chalfonte-Haddon Hall, Atlantic City, N. J. Deadline for papers is January, 1961. Contact Society Hdgs., 1916 Race St., Phila. 3, Pa.

- 1961 Western Electronic Show and Convention, Aug. 22-25, Cow Palace, San Francisco, Calif. Deadline date for papers: 100-200 word abstracts, 500-1000 word detailed summaries by May 1, 1961. Forward to: E. W. Herold. c/o WESCON's Northern Calif. Office, 701 Welch Road, Palo Alto. Calif.
- International Symp. on the Transmission and Processing of Info., Sept. 6-8, 1961, M.I.T., Cambridge, Mass. Receipt of 500-1000 word Abstracts . . . Jan. 1, 1961. Receipt of full length papers . . Apr. 1, 1961. Submit to: Peter Elias, Research Lab of Electronics, M.I.T., Cambridge 39. Mass.
- 10th Annual Instrumentation Conf., Nov. 2-3, Louisiana Polytechnic Instit., Dept. of Mech. Eng'g, Louisiana Tech. Student Center, Rushton, Louisiana. Deadline date for papers: June 1, 1961. Forward to: Dr. Virgil Orr.

(See page 107 for "Coming Events")

Radarscope (Continued)

"SALES UP. PROFITS DOWN"—This refrain is being repeated monotonously as companies check in with the year-end totals. Expect the profits squeeze to be countered by stepped-up research activities to bring out new products, and increased capital expenditures to improve operating efficiencies.

THE 9 MAJOR TV MANUFACTURERS have consented to a Federal Trade Commission order demanding that the buyers of TV sets be fully informed as to the material going into the cabinet. The art of simulating wood in metal and plastics has become so refined that customers are easily misled by appearance.

FCC IS CONCERNED about the frequent turnover of broadcast stations, wondering openly whether station owners are not simply engaged in trafficking in broadcast properties. The Commission feels that the disruption in operating continuity could be causing programming deteriorations incompatible with broadcasting in the public interest. The Commission records show that for the past three calendar years an average of 555 applications were filed for changes in ownership of stations; approximately 83% for AM stations. 9% for FM stations and 7% for TV stations. More than half of the applications involved stations that had been held by the owners for less than 3 years. COINCIDENCE added a plus to the recent Discoverer 17 shot. The Air Force's bio-medical and nuclear radiation satellite was launched shortly after a gigantic solar storm occurred. Satellite was exposed to intense radiation for over 50 hrs. Lockheed scientists hope to learn more about the flux, particle type, and energy of the flare itself as a result. Biological specimens did not receive a lethal doseencouraging news for astronauts.

FIGURES POINT to a smaller increase in private industry expenditures for R & D this year compared to 1959 but a healthy rise is still expected. National Science Foundation reports \$9.4 billion for 1959 (up 15% over 1958); but only an 8% rise in '60 over '59 for a total of about \$10 billion. Electrical-electronic and aircraft industries get a good share of these funds. Over half (57%) of R & D funds came from the Gov't.

COBOL. a Common Business Oriented (computer) language has been used successfully to interchange programs between data processing systems of different manufacturers. Information was exchanged between Remington Rand's UNIVAC 11 at its Phila. Engineering Center, and RCA's 501 Systems Center at Cherry Hill, N. J. COBOL is a programming system that uses simple English words instead of a complicated machine code, to instruct a computer.

Circle 4 on Inquiry Card

new <u>Mmesa</u>* transistors...

450-mw free-air dissipation in one-tenth the volume —of a TO-18 package

*Trademark of Texas Instruments Incorporated

TI 450/451 silicon transistors give you more power per package volume than any other silicon transistor

Electrical characteristics @ 25°C ambient										
Symbol	Parameter	Test Conditions	Туре	Min	Max	Units				
ton	Turn-On Time	$I_{B1} = 3 \text{ ma}, I_{B2} = 1 \text{ ma}$ $V_{CC} = 3 \text{ v}, R_1 = 270 \Omega$			40	nsec				
ton	Turn-Off Time	P. W. 2 400 nsec, less than 2% duty cycle			75	nsec				
V _{CE} (sal)	Collector-Emitter Saturation Voltage	I _C = 10 ma, I _B = 1 ma (Pulse Test)			0.6					
hFE	DC Forward Current Transfer Ratio	$V_{CE} = 1 v_i I_C = 10 \text{ ma}$	TI 450 TI 451	20 40	60 120					

ELECTRONIC INDUSTRIES . January 1961

SEMICONDUCTOR-COMPONENTS DIVISION

Circle 5 on Inquiry Card

INSTRUMENTS

13

YOU CAN GET SPRAGUE* MADT[®]TRANSISTORS AT SENSIBLE PRICES

Sprague Germanium Micro-Alloy Diffused-Base Transistors, well-known for their rugged vhf performance, are now *priced below other transistors* with comparable electrical characteristics. In many areas, this permits designers to improve circuit techniques without necessarily increasing costs. Expanded production facilities enable us to *ship quantity orders on short notice*. Add to this their *ultra-fast switching time*, and you have three good reasons why Sprague MADT[®] Transistors have achieved their high level of acceptance.

With Sprague Transistors, circuits in vhf amplifiers and oscillators can now operate with collector currents as high as 50 ma... with power dissipation up to 50 mw... with collector to base voltages to 15 v. They have been application tested through the entire military electronics vhf spectrum.

The application table may well suggest the use of one or more Micro-Alloy Diffused-Base Transistor types in your latest circuit designs.

For complete engineering data on the types in which

• • •

*Sprague micro-alloy, micro-alloy diffused-base, and surface barrier transistors are fully licensed under Philco patents. All Sprague and Philco transistors baving the same type numbers are manufactured to the same specifications and are fully interchangeable.

MICRO	SISTOR APPLICATIONS
Туре	Application
2N499	Amplifier, to 100 mcs
2N501	Ultra High Speed Switch (Storage Temperature, 85 C)
2N501A	Ultra High Speed Switch (Storage Temperature, 100 C)
2N504	High Gain IF Amplifler
2N588	Oscillator, Amplifier, to 50 ma

you are interested, write Technical Literature Section, Sprague Electric Co., 233 Marshall St., North Adams, Massachusetts.

You can get off-the-shelf delivery at factory prices on pilot quantities up to 999 pieces from your local Sprague Industrial Distributor.

SPRAGUE COMPONENTS:

CAPACITORS - RESISTORS - MAGNETIC COMPONENTS - THANSISTORS - INTERFERENCE FILTERS - PULSE NETWORKS HIGH TEMPERATURE MAGNET WIRE - CERAMIC-BASE PRINTED NETWORKS - PACKAGED COMPONENT ASSEMBLIES

As We Go To Press (cont.)

Demand For High-Pay Execs Drops—But Pay Goes Up

Demand for higher-paid execs is less than it was earlier this year, but the opportunities that do exist will pay more. This from a survey by Executive Manpower Corp., 444 Madison Ave., N. Y. 22, N. Y. They surveyed 133 large companies averaging annual sales of \$113 million.

Survey showed an average of 2.2 job openings per company paying from \$10,000 to \$75,000. A March survey showed an average of 2.5 jobs per company. A survey last year showed 3.5 jobs per company.

Sales execs were most wanted (28.5%). Manufacturing/production execs were in second place (21.9%) and general managementadministrative execs third (16.1%). Engineering exec need drooped to fourth (14.7% from 22.5% last year). Marketing/advertising, and financial execs were tied for fifth place.

The jobs will pay more. 30.8% of the positions will pay \$20,000 a year, or more, compared to 15.5% in this category six months ago. 9.6% will pay \$30,000 or more compared to 4.6% last time. The majority of the jobs would be replacements rather than new positions.

How will these execs be paid? The most popular method is salary plus bonus followed by straight salary, salary plus merit raise, salary plus stock options, salary plus deferred payment and salary plus commission.

About a third of the executives recruited by these companies last year came from outside the company. This was a slight drop from the figure reported in the last survey. More of the firms (59.6% compared to 48.7%) reported that they had management development programs.

New York R&D Guidebook

Copies of "Directory of Industrial Research Laboratories in New York State" are available from the New York State Dept. of Commerce, 112 State St., Albany 7, N. Y. The publication lists more than 1,000 commercial and private research and testing labs, their research fields, names of their executives, and the number of scientists and engineers they employ.

FCC Denies Allocation For "MOBOT" Control

The FCC has denied a petition by Hughes Aircraft Co., requesting an allocation of 100 MC of microwave space in the 13,000—35,000 MC band for the exclusive use of radio - controlled robot devices (MOBOTs) operating in places dangerous to, or unlivable for, humans—such as those characterized by nuclear radiation, poisonous atmosphere, extreme pressure, vacuums, and extremes of heat and cold.

Present Mobots are controlled by cable. Hughes contends that radio would provide more mobility. FCC says it will entertain an application for such operation on an experimental basis to see if there is need for such allocation.

Research On Fuel Cells

The Thomas A. Edison Research Lab., West Orange, N. J., and Standard Oil's R & D Div., Chicago, have launched a joint research program on fuel cells. The fuel cell is a method of electrochemically oxidizing a fuel and converting it directly to electrical energy. (See "Electronic Industries Looks at Unconventional Power Converters," Sept., 1960, pp. 101-116.)

The Edison Lab. specializes in electrochemistry, electrolytes, cell reactions, electrodes construction and activation, and electro-chemical cell construction. Standard Oil researchers will contribute their knowledge of catalysis, combustion oxidation, and hydrocarbon or petroleum fuel characteristics. The project aims at finding a practical and economical way to oxidize hydrocarbon, alcohol, or hydrogen as fuel for the cell. Several cells have been built but none have been practical enough to use a cheap fuel.

Shakedown In Component Business Started—Quill

"A shakedown in the electronic components business is no longer coming, it is here right now," says Joseph S. Quill, Manager of Advanced Marketing, for GE's Advanced Product Planning Operation, Schenectady.

Last year the highly competitive electronic industry in the U. S. had total factory sales of \$9.2 billion (consumer equipment, replacement components, industrial-military products). EIA estimates an increase of 9% to \$10 billion in 1960.

£

MEASURE LOW PRESSURES

This device, a photomultiplier ion gauge, can measure pressures to less than one-thousandth of one-billionth atmosphere at the earth's surface. Westinghouse physicists, Lange, Riemersma, and Fox developed it under the AEC's Project Sherwood.

Learning Gap Is Most Critical Area—Dr. Ramo

"Increasing the nation's brain power is more urgent for our national position and for the welfare of civilization than space conquest," says Dr. Simon Ramo, Exec. Vice Pres. of Thompson Ramo Wooldridge, Inc. He spoke before the Illinois Teachers' Institute in Chicago.

"Improving human brain power by education and extending man's intellect by electronics will buy us more benefits in social as well as scientific advances than concentration on any other field," he said. He predicted that the science of extending man's intellect by electronics (he called it "intellectronics") will become the nation's greatest industry within a decade.

He cited many advances in fundamental electronic techniques as examples: Electronic computers, automatic language translators, learning machines, and machines for the automatic examination and sorting of documents.

Engineers Decertify Union

Engineers at the Sperry Gyroscope Co. have voted to decertify the Engineers Association, IUE-AFL-CIO, as bargaining agent. The NLRB tally of ballots was: 1724 voted "no union"; 1509 voted "yes." More than 90% of those eligible voted.

More News on Page 19

ELECTRONIC INDUSTRIES . January 1961

DIGITAL MODUL

... building block or plug-in card

Which package fits into your design? Packaged either way, Delco Radio Digital Modules meet or exceed all MIL-E-5272D (ASG) environmental requirements. Continuing life tests on these computer circuits now exceed four and one-half million transistor hours without a failure. The modules perform all the standard

logic functions and come in many basic types and variations. Delco modules in the transistorized building block package are ideally suited for airborne guidance and control because of their extreme ruggedness, compactness and reliability. All miniature building block modules employ three dimensional welded wiring techniques and are vacuum encapsulated in epoxy resin. Delco Radio can offer you off-the-shelf digital circuits packaged as building blocks or plug-in cards, or can supply circuits to meet your specific needs. Our Sales Department will be happy to send you complete engineering data. Just write or call. Physicists and electronics engineers: Join Delco Radio's search for new and better products through Solid State Physics.

PIONEERING ELECTRONIC PRODUCTS THROUGH SOLID STATE PHYSICS

ELCO ADIO

16

Circle 7 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

In PRECISION POTENTIOMETERS

if it's news, expect it first from IRC

Now-a commercial version of the popular square trimmer at 40% cost saving

Now available, a commercial version of the popular square trimmer at a 40% saving in price and at no sacrifice in quality.

Circuitrim Type 100—Ideal for circuit board mounting. M^* diameter x M^* thick, screwdriver slot in top for setting. 1 watt at 60°C. 10 to 50K ohms ±10%. 320° rotation. Also available, the popular subminiature square trimmer

STOCKED BY AUTHORIZED IRC MAJOR INDUSTRIAL DISTRIBUTORS

design. Circuitrim Type 200—Superior stability under extreme conditions. 12° square case interchanges directly with established designs. Teflon-coated leads or printedcircuit pins. 1.5 watts at 60°C. 10 to 50K ohms $\pm 5\%$. Lead-screw actuation, 24:1 adjustment ratio. Write for Bulletins AE-19 and AE-20. International

Write for Bulletins AE-19 and AE-20. International Resistance Co., 401 N. Broad St., Philadelphia 8, Pa.

Leading supplier to manufacturers of electronic equipment

ELECTRONIC INDUSTRIES . January 1961

Circle 8 on Inquiry Card

12,000 Volt Transformer-Class "T"-Grade "5"

Filament Transformer "HV Hi Pot" Rated.

C-A-C

18

HI - V TRANSFORMERS

by C-A-C

C-A-C can now build High Voltage Components rated up to 40,000 volts. New, modern test equipment has been installed. Corona measurements in accord with MIL-T-27A specifications. This addition to C-A-C's broad scope of activities in the magnetic component field will allow you to depend on C-A-C as a new source for High Voltage Transformers and Reactors.

C-A-C welcomes your inquiries on components requiring high levels of voltage output or designs such as the filament transformer shown, wherein the isolation of high voltage potentials is a factor.

COMMUNICATION ACCESSORIES COMPANY

Lee's Summit Missouri Phone Kansas City LAclede 4-3500

318

Circle 9 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

News

t

Briefs

EAST

GENERAL INSTRUMENT CORP. has acquired a 30% ownership in Materials Research Corp., Yonkers, N. Y.

THE NATIONAL ASSOC. OF INDUSTRIAL PLANTS, INC. (NAIP), a new, non-proit, membership-type Trade Organisation, has been formed to aid contractors and subcontractors under DOD regulations.

AUTONETICS, Div. of North American Aviation, Inc., has opened a new Integrated Industrial Products Facility at 3400 East 70th St., N. Y., N. Y.

SYLVANIA ELECTRONICS SYSTEMS, Div. of Sylvania Electric Products, Inc., is constructing a new Applied Research Laboratory Facility and new Headquarters Building on a 55-arre site, adjacent to present facilities in Waltham, Mass.

CORNING GLASS WORKS will hulld a 190,000 mj. ft. plant at Danville. Va., early in 1961, for manufacturing a wide range of specially glasses under operation of the Company's Technical Products Div.

BRIGGS ASSOCIATES, INC., Norristown, Pa., and VANGUARD AIR and MARINE ('ORP., Paoli, Pa., have agreed on a plan of nerger to be submitted to their respective stockholders. Vanguard recently merged with Northeast Metals Industries, Phila., Pa.

SERVO DEVELOPMENT CORP., Hicksville, L. L. N. Y., has moved into a new 20,000 mt, ft. building at 2 Willie Court, to increase both development and production facilities.

THE SPRAGUE ELECTRIC CO., North Adams, Masso., has acquired Vec Trol Engineering. Irc., Stamford, Conn.

TENSOLITE INSULATED WIRE CO., INU:a Michtron Div., Water Street, Peekakill, N. Y., has opened a new facility devoted to the production of cable, cable assemblies and harnesses.

DI PONT CO., Engineering Dept., will build a plant at Buffalo, N. Y., early in 1961 for manufacture of "Telslar" PVF film. The plant will be operated as a unit of the company's Verkes Research Lab.

AIRTRONICS, INC., subsidiary of Scovili Manufacturing Co., Waterbury, Conn., is doubling its facilities with the construction of a new \$1 million plant in the suburban Washington, D. C., area. The 62,000 sq. ft. plant will open in March, 1661.

YORK RESEARCH CORPORATION, Stamford, Conn., has acquired Kip Electronics Corporation, also of Stamford.

TELETRAY ELECTRONIC SYSTEMS. INC., of Silver Spring, Md., and AUDIO-DYNAMICS, of Washington, D. C., have agreed to merge through an exchange of stock. Operation of the two corporations will be united under one roof at the Audio-Dynamics plant at 5462 Third St., N.W., Wash., D. C.

LORAL ELECTRONICS CORP., New York, has opened new plant and research quarters adjacent to the company's Headquarters Building. An 80,000 sq. fc., two-story structure, it will accommodate Loral's increased staff and accelerated range of research, engineering and production activities.

SONOBOND CORP., subsidiary of Aeroprojects, Inc., has established a new salesdemonstration headquarters at 202 East Market, West Chester, Pa.

ELECTRONIC INDUSTRIES . January 1941

Capsule summaries of important happenings in affairs of equipment and component manufacturers

AMP INCORPORATED, Harrisburg, Pa., was presented the "Growth Company of the Year" award for 1960 by the National Aanociation of Investment Clubs. Composed of 5.523 investment clubs and over 76,000 investors, the association cited AMP as an "outstanding example of American free enterprise as shown by its asles and earning growth, excellence of products, outstanding management, public and employee relations.

MIDWEST

PANSTEEL METALLURGICAL CORP., North Chicago, Ill., has consolidated its former Muskogee (Oklahoma) Div., Chemical Div., and Metala-Fabrication Div. into one operating division known as the Chemical and Metallurgical Div.

COLLINS RADIO CO., Cedar Rapids, Iowa, hus formed the Communication and Data Process Div. to provide Electronic Data Processing Services to Industry. The Division will integrate, research, products, experience and systems management capabilities of all Collins Divisions and subbidiaries.

PLO-TRONICS, INC., has expanded its Electronic Controls Div. by moving into new facilities at 712 W. Ontrrio St., Minneapolis, where automatic controls for material handling systems has been developed.

MINIATURE INSTRUMENTS and NA-TIONAL CONNECTOR CORP are the first two firms to begin construction activity at the 90-acre Science Industry Park, Minneapolie, Minn.

ZENITH RADIO CORP. will acquire from the Milwaukee Road (Milwaukee, St. Paul Railroad Co.) a plot of 28 arrew on Chicago's West Side, extending one half mile from Austin Ave. to Narragansett.

GEMEX PRECISION METALS, INC., a new company created by Techno Fund, Inc., of Columbus. Ohio. Techno, in purchasing Gemex from the Vanderbilt Tire & Rubber Co., has committed \$1 million in the new company.

THE BENDIX CORPORATION has contracted to purchase the assets of the Micrometrical Manufacturing Company. Ann Arbir, Mich., a producer of electronic-mechanical units for use in metal-working, paper and plantic fields. Micrometrical will continue operation as a subsidiary of Bendix, with its land and building utilized under a long-term lease.

REA MAGNET WIRE CO., INC., subsidiary of Aluminum Company of America, will occupy (bt. 26,000 sq. ft. Laboratory near Ft. Wayne, Ind., in Sept. 1961. It will house labs, pilot plant, and various supporting facilities.

CONTROL DATA CORP., Minneapolis, Minn., has established a new electronic research laboratory at 5710 W. 36th St., St. Louis Park, to investigate the digital electronics equipment field.

HURLETRON, INC., Delaware, Md., has been formed through a merger combining the ansets, personnel, and engineering facilities of Electric Eye Equipment Co., Danville, III., with those of Whenton Engineering Corp. of Whenton, III.

RCA's ELECTRON TUBE DIV., Indianapolia, Ind., has produced its 500,000,000 receivingtype electron tube. From less than 100 employees producing nine types of tubes the plant has grown to more than 1,500 turning out 80 tube types. WEST

CHANCE VOUGHT CORP., Dallan, Tex., in the new corporate name of Chance Vought Aircraft, Inc.

LAND-AIB, INC., Stepper Motors Div., Gardena, Calif., has acquired Automation Controls Corp., relay manufacturer.

CIRCUITDYNE CORPORATION, 421 S. Pasadena Ave., Pasadena, Calif., has been newly formed to control several Pasadenabased subsidiaries engaged in special purpose designing, manufacturing and assembling of electronic equipment.

VARIAN ASSOCIATES and EASTERN IN-DUSTRIES, INC., Palo Alto, Calif., have arrived at a preliminary basis for the merger of Eastern into Varian.

CHALCO ENGINEERING CORP., Gardena, Calif., has established its new subsidiary, Systems Services, Inc., which will specialize in systems installation and management focused on engineered installations of ground support equipment for missile and space prosrama.

DRESSER ELECTRONICS, SIE Division, is the new name for Southwestern Industrial Electronics Co., Houston, Tex., while DRESSER ELECTRONICS, HST Division replaces the name of the Hermetic Seal Transformer Co., Garland, Tex. The change in names to reflect Divisions rather than companies provides Dresser Industries with a more unified identification.

NARMCO INDUSTRIES, INC., wholly owned aubaidiary of Telecomputing Corp., has purchased Electro Instrumenta Inc.'s 11-acre, 43,-000 sq. ft. Research Facility in the San Diego, Calif., Research Park.' It is adjacent to Narmco's R&D Division.

CONSOLIDATED ELECTRODYNAMICS CORP., subsidiary of Bell & Howell Co., has acquired the Nuclear Division of American Electronics, Inc., of Culver City, Calif.

GENERAL ELECTRIC CO.'s Electronica plant, 601 California Ave. in Palo Alto, Calif., in cunstructing a new 8,000 sq. ft. single-story addition to the present plant. Four air-comditioned areas will also be constructed for development and production of complex microwave devices.

BENDIX-PACIFIC DIV. of the Bendix Corp. has broken ground for the first-stage development of its new multi-million-dollar Electronics Center, on an 80-acre site in the northern San Fernando Valley, Calif. While the first building will be used primarily for electronic production, an adjacent building will house the Division's mear tenting facilities.

BIRTCHER CORP.'s Industrial Division has moved to a new, modern brick atructure of 15,000 mc, ft. located at 745 South Monterey Pass Road, Monterey Park, Calif. Housed in the new plant are both manufacturing and sale facilities.

LINDE COMPANY, Div. of Union Carbide Corp. has opened a new warehouse at 7 South Linden Ave., South San Francisco, Calif., to supply rare games and special rare gam miztures to industry in the far West area.

PRECISION POTENTIOMETER MANU-PACTURER'S ASSOC., a new professional organization, has been formed to establish standards for the Precision Potentiometer Industry. DAVID C. MENEELY, manager of Beckman's Helipot Div., has been elected President. PHILCO ANNOUNCES A COMPLETELY NEW FAMILY OF PNP SILICON TRANSISTORS WITH HIGH VOLTAGE ... HIGH BETA IN TO-18 PACKAGE

Produced by the Exclusive New Philco Strip Alloying Process

	MAX.	RATINGS	CHARACTERISTICS									
TYPE NO.	Vcso	Pniss	I _{CBO} (10v) MAX.	h _{re} (8 MIN.	v, 1ma) MAX.	f _T (8v, 1ma) MIN.						
2N858	40v	150 mw	0.1 <i>µ</i> a	15	75	5 mc						
2N858	40v	150	0.1	30	120	8						
2N880	25v	150	0.1	15	45	8.5						
2N861	25v	150	0.1	30	100	7.5						
2N882	15v	150	0.1	20	60	8						
2N863	15v	150	0.1	40	120	10						
2N884	Bv	150	D.1 (ev)	25	125	16						
2N865	10v	150	0.1	100	350	24						

Completely new to the industry, these Philco Silicon Precision Alloy Transistors meet a widespread need for medium frequency, high voltage, high beta silicon transistors for both switching and amplifying applications. An exclusive new production technique ... strip alloying ... permits accurate measurement of the diode voltage rating and beta of every transistor during the manufacturing process. Never before has such close control in production been possible.

The new SPAT family offers low saturation voltage and high emitter base diode voltage rating. For complete information, write Dept. E1161.

Immediately available in quantities 1-999 from your Philco Industrial Semiconductor Distributor *Trademark Philos Corp. for Silicon Presiden Alley Transiste

Circle 10 on Inquiry Card

Facts and Figures Round-Up January 1961

OTALS ELECTRONIC INDUSTRIES

Berlinkere enteklig

GOVERNMENT ELECTRONIC CONTRACT AWARDS

This list classifies and gives the value of e ed clinent selected from controcts awarded in communent agencies in November, 1960.

Amplifiers	679,865
Amplifiers, control	317,606
Amplifiers, synchro signal	101,325
Amplifiers, TW	55,000
Antennos	343,748
Batteries dry	346,160
Batteries, storage	138,225
Bridges. impedance	129,032
Cable assemblies	389,990
Cable, special purpose	48,750
Cable, telephone	25 400
Calibrators, radiac	103 000
Codes Assemblies	32 188
Communications sustants	4 140 289
Computers flight director	440.000
Controls electronic	1.836.754
Controls pagel	159.576
Correlators, video	66.801
Coupler, antenna	297.248
Detectors, radiac	144,557
Diode, semiconductor	67,003
Direction finders, radio	33,310
Distribution systems, radar data	705,000
Equalization systems	53,755
Filterst band pass	29,300
Flash units, electronic	35,094
Flight control systems, automatic	1,399,093
Fluxmeters	29,160
Fuel cells	36,974
Generators, thermal noise	35,263
Generators, VOR	50,177
Gyroscopes	160,309
Flandsets	97,089
Monutine automs equipment	DE 457
Medsuring systems	73,737
Motors Cold strength	44 854
Meters, microwave	45 600
Maters volt	89.886
Maters watt	33,913
Microphones	201.167
Motors, serve	258.120
Multicouplers, antenna	472.960
Multiplexers	566.343
Oscillators	58.659
Oscilloscopes	2,391,803
Power supplies	365,535
Programming sets	374,133
Radar equipment	9,694,358
Radar, doppler	710,764
Radio sets	1,502,119
Reactors, saturable	27,445
Receivers, Ioran	384.200
Receivers, radio	32,264
Receivers, SSB	69,012
Recorders-reproducers	534,543
Relays	25.924

ELECTRONIC INDUSTRIES . January 1961

Resistors, variable	27.334	Test equipment	4.234,162
Resolvers	61,206	Transceivers	481,992
Signal generators	121,057	Transformers	47,128
Strobotacs	61,620	Transistors	142,586
Switchboards	75,489	Translators, frequency	33,538
Switches, r-f	32,733	Transmitters, marker beacon	153,734
Synchros	117,900	l'ansmitters, radio	2,222,847
Synthesizers, frequency	54,174	Transmitters, synchro	101,950
Tabulation & plotting systems		Tubes, electron	3.247,463
digital	98,545	Tubes, Elystron	482,714
Tape, magnetic	33.250	Vocuum tube voltmeters	66,331
Telemetry equipment	913,956	Waveguide	51,060
Telephane equipment	326.990	Wire electronic	60,586

Test an

COMPONENTS & COMPANIES

Electronic components manufacturing in the United States is now a \$3 billion annual business—almost three times the output of a decade ago-the Business and Defense Services Administration, U.S. Department of Commerce, reported.

In its first major study of the electronic components industries—"Electronic Components, Production and Related Data. 1952-59," BDSA's Electronics Division says that more than 40% of the total output of these industries is new for military end-use—for the manufacture of military electronic equipment or for maintenance purposes.

Most electronic component producers are small, a relatively few firms accounting for most of the total output. About 75% of the total output is produced in 7 states.

In 1959 almost 60% of the total value of shipments originated in 16 metropolitan areas located in 11 states.

Private industry is continuelly increasing its spending for research. In the next decade it is believed that private industry will quad-uple its spending far research— from the current \$4.5 billion to a stagger-

from the current \$4.5 billion to a stagger-ing \$16.5 billion by 1969. During the same period, over-all notional spending for re-search will rise from \$60 to \$200 billion. At the turn of the century in the United States, only 7% of the total manufacturing work force was in the non-production cate-gory — scientists, engineers and highly gary — scientists, engineers and nignry trained technicians—while today the per-centage is 24%. The major portion of this gain was made in the part decade. —Arthur D. Little, Inc.

TRACKING TURNTABLE

Revolving table presents a 3-D display of lights for air traffic control, missile tracking, and ASW. Device, developed by ITT, presents pinpoints of light on a translucent, whirling screen under direction of a computer. Lights visible from all sides.

NEW SLANT ON SPACE

Nearly 9,000 tiny radar antennas on the skyward side of this structure enable ESAR (electronically steerable array radar) to focus its "eye" simultaneously on space vehicles and aircraft at lower altitudes. Bendix built the device for ADC and ARPA. SILICON WHISKERS

ó

In view magnified 10 times, silicon whisker easily slips through the eye of a standard needle. Scientists at Picatinny Arsenal are growing them for use in their research work as strain gages for detecting weaknesses in such parts as a landing gear.

Snapshots of the Electronic

TRAILBLAZER

Six-stage research rocket fired by NASA from Wallop: Island serves as a reentry vehicle for M.I.T.'s Lincoln Lab radar and optical equipment. Research program is sponsored by Advanced Research Projects Agency.

HOT SPOT

Ceramic-quartz reflector is being used to fuse a tungsten carbide coating to a stainless steel rectifier shaft. Units, developed by Plastic Weld Co., Seattle, Wash., can sustain temperatures to over 3500"F controlled to within plus or minus 25 degrees.

Industries

LUNAR CAPSULE

(Left) Final shape of the 300-1b. lunar capsule being built by the Ford Motor Co's Aeronutronic Div. for NASA is shown in this artist's rendering. The bulbous capsule and its retrorocket are shown attached to the parent spacecraft which will carry it to moon's vicinity.

FOR DICTATION

International Business Machines Corp.'s new dictation devices use magnetic belts which can be used over and over. Belts hold over 14 minutes of dictation and have an automatic erasure feature. Tape can also be mailed, stored or filed. All products in the line—a dictating unit, a transcriber, and a combination unit are transistorized.

ZEUS COVERALL

Spherical radome. 110 ft. dia. built by Goodyear Aircraft Corp., houses R & D model of Zeus acquisition radar at White Sands Missile Range, N, M. Dome contains world's largest lens for focusing radio frequency energy. Lens is first large scale application of Luneberg lens concept.

CLOSE LOOK

Electron probe microanalyzer, at Jones & Laughlin Steel Corp., Pittsourgh. Pa., can determine the exact composition of a mimute segment of steel (an area 1/250th of the thickness of a razor blade). It can detect small chemical changes from one grain of steel to another.

EI's International News

"Let U. N. Operate Space Communications"—Skinner

James M. Skinner, President, Philco Corp. says a system should be adopted by which international space communications would be provided and operated by the United Nations. Speaking before the Peninsula Manufacturers Assoc, he said that, "such international control would represent a major step toward global peace and understanding."

Messages of all kinds—voice, telegraph, teletype, even television would be brought together in each country through the local communications service to some point—say, the Nation's capital. At that point, all messages are relayed by satellites to a central receiving point in some other country there to be distributed through the local service of that particular nation.

He noted that American space communications leadership is usually linked to military purposes and that it would be a major asset in the court of world opinion if we could demonstrate not only our peaceful motives, but also use our developments to provide a service which would be useful to everyone.

Buy U. S. Computers

Electricite de France, Saint Ouen. France, has bought an RW-300 Digital Computer system from Compagnie Europeenne d'Automatisme Electronique (CAE). CAE, a joint venture of Thompson Ramo Wooldridge, Inc., and two French electronic firms, makes and sells RW-300 computer systems in the European Common Market.

The RW-300 is a digital control computer for use in closed-loop control of full-scale manufacturing processes. Electricite de France will use the system for automatic control of a high-power steam generating plant. Over 600 process variables will be recorded and monitored. The computer will also calculate theoretical and actual performance values and control the plant operation.

British Electronic "Brain" To Read, Write, and Talk

London-Dr. W. K. Taylor of the University of London is building an electronic "brain" which will be able to see, to read, to write, and even to talk. The "talk" will be in the form of squeaks of varying pitch.

The new "brain" will use 4,000 cells (compared to man's 10,000 million) and an eye of 100 photoelectric cells./ It will be able to do much more than respond to simple geometrical shapes and alphabetical symbols. The machine will have built into it a selector which can decide which problems are important and which are not.

Primarily a research tool, it will be used to learn more about how the human brain works, including how to train the human brain better and how to detect the onset of (and avoid) a mental breakdown.

Sound Code Used in British Reading Machine For Blind

London—A woman, blind from birth, has just "read" a novel from cover to cover—not through her fingertips but through her ears. She did it with a new British electronic instrument, the Optophone, which converts printed letters into musical sounds. The pitch varies with the shape of the letters. Reading speed can reach 46 words per minute.

The machine uses photoelectric cells. The cells convert the printed words into sounds. The Roman alphabet has only six basic sounds but by learning the Optophone's chords and permutations the sounds can be interpeted as words. The cells are triggered by a point of light which traverses each line at a controlled speed.

A similar type of machine is being developed by Battelle Memorial Institute, Columbus, Ohio. Battelle's machine uses 11 separate sound channels with frequencies from 400 to 4000 CPS. (See Human Factors--Newest Engineering Discipline, ELECTRONIC INDUSTRIES, pp. 93-94, Feb. 1960.)

AIR

COMMITTEE Working Party 53, an Air Standar diz ation Committee of personnel from the USAF, the Royal Canadian AF, and the United Kingdom's Royal AF, visit Sperry Microwave Electronics Ca. in Clearwater, Fla. Group is evaluating facilities for Air Navigation and Air - to - Surface Directing Equipment.

Jap Electronic Exports Up 75% in First Half of 1960

Government statistics show that Japan's shipments of electronic products to the U. S. are going up. Shipments in the second quarter of 1960 alone were higher by \$1,000,000 than in all of 1958. This represents a 75% rise for the first half of 1961. Japanese TV receivers are now being sold in the New York area and should spread to the rest of the country before Christmas.

Martin Sheridan, Dir. of Public Relations, Admiral Corp., in commenting on these figures (before the Electronics-Electrical Commodities Group of the Purchasing Agenta Assoc. of Chicago) urged American manufacturers to publicize the fact that the Japanese products do not carry Underwriter Laboratories' approval.

Italian Semiconductor Firm To Service Common Market

Turin-International Rectifier Corp. El Segundo, Calif., and Piemontese Sviluppo Industriale S.P.A. (Pied mont Industrial Development Co.) have combined forces to launch a multi-million-dollar semiconductor manufacturing facility. It will be located near Turin, Italy and will build semiconductor devices for the European Common Market. A complete range of semiconductor rectitiers and automotive diodes is planned.

International Rectifier will provide scientists and technicians to supervise the installation and operation of the manufacturing plant. Production is scheduled to begin in April 1961 with full production scheduled for the summer of 1961.

New French Subsidiary

Paris—The Garrett Corp., Los Angeles, has formed a new French subsidiary, Breguet-Garrett, S. A. Coowners are: Maison Breguet (a French industrial firm), Westland Aircraft, Ltd., and Garrett International, S. A., Geneva. The new firm will manufacture air conditioning systems designed by Garrett with applications for the new jet aircraft being developed in France.

Nine Countries Represented At Oak Ridge Lab's School

Thirty-seven scientists and engineers from nine countries (including the U. S.) are training at Oak Ridge National Laboratory in specialized courses on reactor technology. Sessions, sponsored by AEC, are on Nuclear Reactor Operations Supervision and Nuclear Reactor Hazards Evaluation. Each course covers a year of work.

Purpose of the first course is to prepare an engineer or scientist to superintend the safe operation of a research or power reactor. Emphasis is on experience in reactor operation. Instruction is given in the scientific and engineering principles of a nuclear reactor and its associated machinery. The second course develops ability in evaluating possible hazards associated with all aspects of reactor operation.

Students come from Finland, India, Indonesia, Japan, New Zealand, Pakistan, Philippines, Viet Nam and the U. S., including Puerto Rico.

TUNIS INTERNATIONAL FAIR

Tunisian President, Habib Bourguiba (foreground left), visits Dow Corning Corporation's section at the Eighth Tunis International Fair. Demonstration is on silicone parting agents. U. S. Ambassador Walter M. Walmsley, Jr., is back of the Tunisian President.

Lay Caribbean Cable

Puerto Rico — American Telephone and Telegraph Co. is planning another link in their oceanic telephone system—a deep-sea cable in the Caribbean. The cable would be between Puerto Rico and Antigua via the islands of Virgin Gorda, Dog, and St. Kitts.

The Puerto Rico-Antigua system would be a single coaxial cable equipped for two-way transmission. It would have a capacity of 84 voice circuits and connect with the cable placed in service (this year) between the U. S. and Puerto Rico.

Underwater TV Checks Fish

Scotland—A Marconi-Siebe, Gorman underwater TV camera will be used for research into fish and hydraulic problems on Scottish locks. The camera will inspect fish screens which guard turbine intakes and prevent amolt (young salmon) from being awept into the turbines. The job was previously done by divers. The camera will also be used to study fish behavior in the fish passes and to inspect the tunnels linking dams and power stations.

ELECTRONIC INDUSTRIES . January 1961

TAILORED TO TAILORED TO TRANSISTORS

GESC AL!

GOOD-ALL 601PE CAPACITORS are wafer thin to "fit like a disc". Capacitance is highly stable with temp. Equal in all respects to high quality Good-All tubulars. Available in 50 volt ratings only, they are competitive in price with ceramic discs in the range of .1 mfd and above. The case is moisture resisting Epoxy. Type 601PE is capable of being produced to H1-REL. specifications on a "special project basis".

SPECIFICATIONS

Insplates Resistance Greater than 75,000 megolims when measured at 100 volts D.C. at 25.C. for a hearmam of 2 minutes. Capacity Telerance – Standard tolerance $\approx 20\% \pm 0.0\% \pm 0.0\%$ Winding Construction – Extended foil: non-inductive MYLAR Detectric

Lood Variations – Formed or straight leads. Displation Factor – Less than 1, at 1,000 cycles per second

Destactive Strangth – 103 volts D.C. for 1 to 5 seconds through a minimum current limiting resistance of 100 ohms are volt. Tomperature Range - May to oprated at full rated voltage BS C. Derate to 300, when operating at 125 C.

Write for detailed literature

GOOD-ALL ELECTRIC MFG. CO. Ogaliala Nebr

10

10

CAPACITORS

Circle 11 on Inquiry Card

WAVEGUIDE FILTERS

The filters shown here are a few representative samples of the units designed and produced at Waveline. Fixed tuned or tunable designs, both standard or custom designed are available covering the frequency range of 2400 to 40000 Mc/sec. Filter assemblies can be supplied in either silver-plated brass or Invar, and in aluminum. For aluminum assemblies, Waveline has gained an enviable reputation for leadership in the field of aluminum flux-dip brazing and has produced in quantity many complex aluminum filter designs such as the nine-cavity unit shown at the right.

If you have a waveguide filter problem, we would welcome your inquiry on designing a prototype or producing an established design. Inquiries should include as much information as possible concerning the response characteristics desired.

A four page Waveguide Filter brochure describing some standard designs in detail is available on request.

As We Go To Press (cont.)

New Yarn Inspector Uses Photoelectrics

Developed by Lindly & Company, Inc., Mineola, N. Y., a new series 1000 Ultra Yarn Inspector automatically detects, counts, and indicates imperfections in yarns and fibers in process in textile mills. Fully transistorized, it uses a sensitive photoelectric system that "watches" the strands of yarn as they speed across an inspection bar. Defects measuring a fraction of a thousandth of an inch can be detected. An auxiliary unit available with the inspector automatically corrects the operation of the device to ensure its functioning properly at all times.

Memory Switch Stores Multiple Digit Numbers

An electric "memory" switch, stores multiple-digit numbers using principles of the ordinary combination lock. It consists of sets of switch indexes and wafers coaxially arranged with tumbler-type couplings between them. The number of indexes depends upon the number of digits to be stored. The number of positions on each index wafer d pends on the switches' function. Developed at MIT's Instrumentation Lab. by Paul D. Shannon, the device-the n-Digit Decade Switch -is a possible method of simplifying automatic control of electrical currents used in testing gyroscopes used in inertial guidance systems for missiles and space vehicles. Because of its flexibility, the switch could be used to simplify a variety of automatic control systems by reducing the number of switches and dials needed.

Piezoelectric Unit For Ignition Systems

Clevite Corp.'s Cleveland Graphite Bronze Div. has developed a new source of electricity for ignition systems, "Spark Pump," so-called because it produces a spark each time pressure is applied to it.

The new device contains two ceramic parts that convert a single short motion into a 20,000-volt charge. It performs a job now requiring a magneto, points, coil, and condenser.

A Spark Pump switch, and a spark plug now constitute a complete ignition system for a small motor.

(Continued on page 28)

INSIDE 1,000 ERUPTING VOLCANOS!

These are the conditions faced in placing closed-circuit TV cameras within 10 feet of the cluster of eight rocket engines used to power the SATURN space vehicle. The severe heat and vibration generated during a static firing called for a Vidicon having the highest sensitivity characteristics while being of the most rugged construction.

Mente and an en

GEC'S 7226A-Ruggedized Vidicon was found capable of meeting these extreme requirements . . . successfully. The engineers and technicians were able to monitor and film the exhaust characteristics in meant static firings of the National Aeronautics and Space Administration SATURN vehicle because of the dependable performance of four 7226A VIDICONS: manufactured by General Electrodynamics. The 7226A GEC Vidicon meets military environmental conditions for shack and vibrations MIL-E-5272A; illumination, 1,000 fl-e; temperature, 71

If you have a project requiring difficult applications for Visicons, Scan Conversion Image Conversion, or Display Tubes, contact General Electrodynamics Corporation .

where inhe research begins.

ELECTRONIC INDUSTRIES . January 1961

Circle 13 on Inquiry Card

Puzzled about how to pack reliability and producibility into a high density module? Take a clue from Engineered Electronics Co., Litton Industries, Sippican Corp., and Space Technology Labs (I to r above). Weld it! These companies and many other leaders have already discovered that Weldmatic precision electronic welding equipment makes component packaging a pleasure. Why don't you see for yourself?

WELDMATIC DIVISION / UNITEK 950 Royal Oaks Drive, Monrovis, California

As We Go To Press (cont.)

Spark Pump is the first device using a piezoelectric element to create a spark twice as powerful as that produced by an ordinary magneto and condenser. It produces a constant high voltage at all engine speeds, eliminating complex starting mechanisms.

IBM Introduces "1418" Character Reader

IBM's solid-state 1418 Optical Character Reader reads data printed in widely-used type styles on paper or card documents, at the rate of 480 characters per second or as many as 400 documents a minute. The printed data is automatically translated into machine language for direct input to an IBM 1401 computer. The 1418 reads numbers printed ten characters to the inch in a standard IBM type by 407, 408 or 409 accounting machines, the 1403 printer, or an electric typewriter. It can also read numbers in the elongated 407 type style, seven characters to the inch. In addition, the 1418 can be equipped for markreading-in which vertical markings made with ordinary pencil or dark inks represent specific information determined by the format of the document.

New Flight Trainer

UDOFTT (Universal Digital Operational Flight Trainer, Tool) has been developed by the Data Systems Operations of Sylvania Electric Products, Inc., Needham, Mass., a subsidiary of Gen. Tel. & Elec. Corp.

It uses initial logical design studies made at the Moore School of Elec. Eng'g, Univ. of Pa., under a \$2 million contract with the U.S. Navy.

It operates at a rate of more than 200,000 operations sec., the computer system can respond instantly to commands of a student pilot within a simulated cockpit or an instructor at an external control panel. During a simulated fl ght, more than 50 emergency conditions can be introduced.

UDOFTT can extract information or calculations already made and make new ones in 5 one-millionths of a sec. It can also simulate the operation of a tank, helicopter, nuclear sub., hydrofoil craft or space vehicle.

General Instrument Semiconductor

NEW 10-WATT ZENERS...

Emely low Dynamic Impedance Superior Case Design Up to 175° C Operation Diffused Junction Type 100% Scope Tested

Outstanding Quality—New line of superior quality 10-watt zener diodes provides dependable uniformity of electrical characteristics...completes the family of General Instrument zeners. Unique case design, which employs thermal matching of silicon and package, enables units to withstand rapid temperature cycling and thermal shock. Low junction operating temperature means high reliability and long life. Conservatively rated diodes show extreme stability under life tests at maximum parameters.

New Diodes Available for Immediate Delivery in Types 1N1808; 1N2044 through 1N2049; and 1N1351 through 1N1362. Voltage ranges from 7.5 to 30 volts (higher upon request).

	New	10-Wa	tt Zen		3.5-1	watt S	tud Mo	unt	T-W	att A.	inf Les	h d	Na - W	att A	cial Le	ad
REPRESENTATIVE GROUP	Type	Zener Veltage	Tesi Cur 55 C	Max Oyn Imp	Type	Zener Voltage	Test Cor 25 C	Max Dyn Imp	Type	Zener Verlage	100 Cu	Max Der Img	Trate	Zener Voltage	Test Jan 25 I	Mas Bei
OF SUPERIOR				- Annier				finu?				2071			- 11	07-1
					101.58	1.5-41							140.00			
ZENERS LOR																
ZENIERS FUR																
VOUD POST EVACTAC										6275						
TUUR NOST EXACTING																
CIDCULT DE CHIDE MENTS																
UNGOUT ACCOMENDENTS																
TIANG I OF STAND																
TO MAILS TO MAIL																
statistic statistics for the strength																

CONTACT GENERAL INSTRUMENT for full technical information on the complete line of sense diades, and for applications assistance on all your semiconductor needs

IN CANADA: General Instrument-F. W. Sickles of Canada Ltd., P.O. Box 408, 151 S. Weber Street, Waterloo, Ontario, Canada. Sherwood 4-8101.

Circle 15 on Inquiry Card

when the occasion calls for MOVING... call United Van Lines

Whether you're moving bulky electronic devices or priceless works of art, you'll find it safer, easier, more convenient via United's modern "Safe-Guard" service.

From nation-wide exhibit tours to "tight-schedule" deliveries of office equipment. United gears its service to your requirements. Spacious. specially-designed vans take tough-to-handle shipments in stride ...including the loading of large units-in one piece-without costly dismantling. And because crating is not needed on most "Safe-Guard" shipments, there's an extra saving in time and expense.

For "Pre-Planned", straight through service in exclusive Sanitized^e vans, call your United Agent today. He's listed under "MOVERS" in the Yellow Pages.

30

All 5 MIL Tantalum Foil Capacitor Sizes From OHMINE

MEET MIL-C-3965B - ALL VALUES IN STOCK

Plain and Etched

Whether you need *immediate delivery* from stock on prototypes, or production quantities of tantalum foil capacitors, Ohmite can handle your requirements.

Tan-O-Mite[®] Series TF foil capacitors now include all five MIL sizes in both plain and etched types, polar and nonpolar units, insulated and uninsulated cases—all in ratings to 150 VDC. Capacitance values for plain foil units range to 400 mfds; etched foil units, 580 mfds.

Write for Specification Bulletin 152G which lists 200 stock values, including all MIL values, and shows a handy scale for conversion between "equivalent series resistance," "power factor," and "dissipation factor."

Rheostats Power Resistors Precision Resistors Variable Transformers Tantalum Capacitors Tap Switches Relays R.F. Chokes Germanium Diodes Micromodules

.

OHMITE MANUFACTURING COMPANY 3662 Howard Street, Skokie, Illinois

ELECTRONIC INDUSTRIES . January 1961

Circle 17 on Inquiry Card

SIDEWINDER STRIKES ... AND KILLS!

THANKS TO A FAIRCHILD ACCELEROMETER

When the pilot of this McDonnell F3H actuates the firing key, long slender heat-seeking U. S. Navy Sidewinders streak from their wing racks — track down and demolish even the most devious enemy.

A compact fire control computer — designed and produced by Hazeltine Corporation for the U. S. Navy — is located in the F3H fuselage after the cockpit, An important component in this computer is a FAIRCHILD TA-100 ACCELEROMETER.

Specifically designed for applications that require measurement of missile or aircraft maneuvering accelerations, the TA-100 is oriented in the F3H to sense accelerations in a plane normal (perpendicular) to the major axis of Sidewinders in their racks, Excessive G's in this plane — caused by intricate, highspeed air tactics — could divert Sidewinder from finding its target. When this condition exists, the TA-100 accelerometer causes a warning light to flash on the pilot's instrument panel advises him to correct aircraft performance before firing. curve celerations from 0 to $\pm 1/4$ G to 0 to ± 50 G. A pendulous device, it consists of a mass supported on a torsion type spring and a precision potentiometer whose wiper is actuated by the mass. Electrical output is directly proportional to linear acceleration. Oil-filled, the damping factor is held within close tolerances through -55° to $+100^{\circ}$ C. Overall accuracy — including linearity, hysteresis and repeatability is better than 1%.

Fairchild TA-100 Accelerometer

(Type 940) is only 21/2" x 111/14"

x 15/2", measures sustained ac

GYROS PRESSURE TRANSDUCERS POTENTIOMETERS ACCELEROMETERS

As We Go To Press (cont.)

Nike Centers Now Tied to SAGE Net

The Army has completed a network of electronic centers designed to coordinate air defenses of key industrial and population centers in this country. The Missile Master Centers are in Washington, Balti-

Gen. George H. Docker (C), U. S. Army Chief of Staff, inspects Missile Master Control conter near Pittsburgh, Pa. Rodney Gauss, section chief at Martin Co., Orlanda, Fla. (designer of the system), explains its operation. This is the 7th installation to be activated this year. Looking on (L to R): Maj, M. D. Salter, Maj, H. T. Taylor, Col. J. C. Parker, and Maj, G. H. Hoddinatte.

more, Seattle, Boston, New York, Buffalo, Detroit, Pittsburgh, Philadelphia, Chicago, and Los Angeles.

Missile Master is basically a communications and fire coordination system linking all Nike missile batteries defending a given geographic area. By tying into SAGE centers the Nike defenses are linked to the all North American Air Defense Command (NORAD) network. The Martin Co., Orlando, Florida is prime contractor for the centers.

New BDSA Aid Named

Robert E. Dailey, assistant to the vice president and general manager of the Telecommunications Division of the Stromberg-Carlson Company, Rochester, New York, today was named assistant to the director of the Communications Industries Division, Business and Defense Services Administration, U. S. Department of Commerce.

Mr. Dailey comes to BDSA on loan from Stromberg-Carlson under an arrangement by which executive personnel from industry take temporary assignments — usually 6 months — without compensation from the Government. The service also qualifies him for membership in the National Defense Executive Reserve which would staff the operation of a production agency in case of national emergency.

Circle 18 on Inquiry Card

SILICON MICRO-ELECTRONIC COMPONENTS

New! Micro Mesa Silicon Diodes

ULTRA FAST LOW CAPACITANCE

	1.0	Forward	Braskdown	-	Inverse		
PSI TYPE	Epity.	e 1 VDC (mA)	(volta)	(III)	55°C (#4)	188°C (mt)	Recov.**
PD301 PD302 PD303 PD304 PD305	1 95906 1 95907 1 95908 1 95914	10 10 10 10 10	50 50 50 50 100		.025 (-20V) .1 (-20V) .1 (-30V) .1 (-40V) .025 (-20V) .2 (-40V)	50 (-20V) 10 (-20V)* 10 (-30V)* 10 (-40V)* 50 (-20V)	1
PD 306 PD 307 PD 309 PD 309 PD 310	1 N905 1 N904 1 N903 1 N903	10 10 10 10	50 50 50 100	-	5.0 (-75V) .025 (-20V) .1 (-20V) .1 (-30V) .1 (-40V) .025 (-20V)	50 (-20V) 10 (-20V)* 10 (-30V)* 10 (-40V)* 50 (-20V)	1
PD311	FD100	10	75 @ 5+0	2	1 (-50V)	110 (-50V)	2

General Purpose Computer Micro-Diodes

EIA EQUIV	T	-	BV (vill) TBL at	l, (mA)	L. (%) -WV & BFC	ła (#1)	1. (m) 	1.041 0.000	Ten:	(S) Res
5726	1025-551		50	5	1	Contraction of the	25	ALC: NOT THE	Interio	HONK
10208	1000	- 1	30	116	ARL	3.00-40	4.5	30-0	and the second second	BOD K
15000		FB-162	10000	30	1.2/201	1000	B	A CONTRACT OF	100 mm 100	100K
100208		70-346	100.0	100	1354 (58)	21-21-2	B	ALC: NOT THE OWNER OF	And in case of the	1084
0.000	diam's	20902	6 M St.	100		38-8	5	10 - 44	and in case of the	ALC: NO.
1/467		Ph. Status	1000	21	ALC: NO.	A25 62 80	10200	5 (6) = 40 (D)	00000000	States of States
1036		FB-101	10.00	5.5	1004	100000000		and the state	A PARTY OF	1004
	in the second	Sec. 1	1000	3.00	40.0	1 6 - 8	ALC: A SUCK	38-8	A Party of the local division of the local d	and the second second
- Hurry		1000	100	100	01018-02	30-3	010000000	IN COMPANY	3 mm	Sec. 1
3252		12.10	8-48	1000	Contraction of the	1.123	P. S	1-1-5 Ref 1	and the second	Sec. 3
10000	Concession in which the	- Land Car	5-65	85-68	and the second second	Contraction of the	States and	R. Lawrence	 Report 	Concelling of the
10000	Sec. 1	COLUMN STATE	Sec.		CONTRACTOR OF		Contract (A Annual	S-+
allers.	2.00	-		1000		COLUMN TWO IS NOT	and the second second		and the second	
12985	Parameter .	10-101		E-162			7. 100	and the second	Contraction of the local division of the loc	1.1.K
Taxa .	and the second	105222	111	100	-	Contraction (Contraction (Contraction))	C- CAL		State of Lord	-
10000	15-16-1	BLOCK P		1000	1 Carlos	and a state	Contraction (50-50	GEOMANN	a series and
LAND		22540	1000	1000	Page 1993	671 G -175	1-35-5		100258	SCORE.
1000		20.100	100	100	100.000		Section States		Statement of Street of Str	Constant of the
12500		PD-100	1000	1000		10-10	1000	10000	Contraction of the	Contraction of the
1/1643	Intel	110	-			10-00	St Kin	15 @ -100	3+1	244
1. © 15 2. Jahr typin MATIMU Massimu Pauk pau Typin Massimu	0°C. Di taposity si 98 Illa taposity si 98	-LOV - 2 -LOV - 2 -LOV - 2 - - - - - - - - - - - - -	ef SS*C to + 1 International Contractions Frankings	C. 50°C. 1017 cycla. 1016 S-1950		THYSICA THYSICA THINNING THINNING THINNING THINNING THINNING THINNING	L CHAR MALED - Mon	COLOR COL COLOR COL CITE FILS Set Status La set Status La	TICE:	

Silicon Pico-Transistors

•TYPE	BVERG	Iran	Viso	hes (min)	her 20mc
PMT 011	30V	104a (20V)	4V	15 (150mA, 10V)	3.1
PMT 012	30V	10#a (20V)	4V	30 (150mA, 10V)	3.5
PMT 013	60V	1#a (30V)	5V	20 (150mA, 10V)	2
PMT 014	60V	1#a (30V)	5V	40 (150mA, 10V)	2.5
PMT 019	40V	1#a (10V)	5V	30 (SmA, 5V)	25

*Available in both Micro and Pico configurations. Type numbers above indicate Pico configuration. For Micro configuration add 100 to type number... Thus, Pico transistor PMT 011 is designated PMT 111 in Micro version...

LOOK INSIDE FOR LATEST INFORMATION AND SPECIFICATIONS ON PSI SILICON DIODES, ZENERS AND RECTIFIERS
ADVANCED SILICON MESA TRANSISTORS FOR ADVANCED CIRCUIT DESIGN

BRAND NEW! 2N1837

COMPARE THESE OUTSTANDING DIFFERENCES!

		MAXI	MUM R	ATINGS	
Parameter	294667	2911837	Unit	Test Candition	5 Improvement
Voon Vono Vono Vono Power Dissipation	40. 60. 5. 2.0	M. M. L 10	Volta Volta Volta Watta	R _{ef} = 100 I ₀₀₀ = 100 pA I ₁₀₀ = 200 pA 25°C Case Temp	25% Higher 23% Higher 60% Higher
Dissipation	0.6	0.5	Watts	25°C Ambient Temp V ₂₀ = 30V, <u>T</u> = 25°C	- SOSE Decrease
Vec(SAT) Vec(SAT)	100 1.3 1.5	1.3	Volts Volts	V _{ce} = 30V, T = 150°C I ₆ = 150mA, I ₆ = 15mA I ₆ = 150mA, I ₆ = 15mA	47% Decrease
hec hto	40-120 2.5 min	40-130 7.0 min		$V_{ee} = 10V, I_e = 150mA$ $V_{ee} = 10V, I_e = 50mA$ I = 70 mc	280% increase
Cob	35.	18.	**	$V_{ce} = 10V, t_e = 0$ t = 140 ks	48% Decrease

Only half the collector to emitter voltage drop... nearly three times the small signal beta...half the collector capacitance ...half the leakage current!

PSI is also in large volume production of many standard switching transistors including 2N696, 2N697, 2N699, 2N1420 and 2N706.

High Speed Switch Types-2N1409-2N1410

Typical switching speed of 52 nanosec turn on time and 130 nanosec turn-off ... saturation resistance of only 5 ohms and power ratings of 2.8 watts (25 C case temp.) For use in low current logic or high current core-driver circuitry.

High Versatility Types-2N1335 thru 2N1341

The higher power dissipation, faster rise time and lower collector capacitance of the 2N1337, for example, makes this transistor an unusually fine performer in advanced video amplifier circuits.

These 2.8 watt, 120 volt VHF transistors are well suited to IF and DC amplifiers. RF power amplifiers and oscillators and to high voltage switching applications.

Communication Types-2N1505-2N1506

This series of silicon mesa transistors provides high power output at Very High Frequencies. Typical power outputs are one-half watt at 200 mc with 3 db gain or one watt at 70 mc with 12 db power gain operating from 28V source.

A power output of 2.5 watts at 250 mc. may be obtained by using these transistors with a High-Q Varicap[®] frequency multiplier.

"VARICAP" is the registered trade-mark of silicon voltage-variable capacitors manufactured by Pacific Semiconductors, Inc.

AVAILABLE NOW! PT530-5 watt 30 mc Power Amplifier PT901-High Frequency High Power Transistor

Silicon General Purpose Diodes

5	EA			Maximum Lowers I		1	Therein a farmer		EIA	Marine Vites	Farmers Contact O	at Maximum Inv	DC Operating	-
6	-	9110	Heren	2.			H	Contra la	NUMBER	O STC (value)	(10)		0.1070	01
į	10-004		10	Mg-Mi	-				17464A	158 150	300	J 013	31 0 125 31 0 125	30
0	INCIA							20	ACOMUL	200	100	J 6175	26 175 36 175	1
	SACAR .	(i)	10			300	7		1MAE2A	70	100	3	No 10 20 0	
8				300-00		-	30		10062A	20	100	1 6 2 5 6 2	No 25	20
	INCA						70			200	100	.825 @ 175	5 @ 175 5 @ 175	-
	-	10			1	-	70		- 11466	150	300	A25 @ 125	5 0 125 5 0 125	20
	Shinks.						-		114637A	70 76	186			2
	iness .		14	200 - Dr		and the second	- 10		INUSA	30	100 40		18 25 18 25	
	ARCENT.		10	A15 6 - 34	5	200	10 10		+ JAR T	-	1	1	- Martin	
	1846	- 66	L. H	.139 til - 384	30	125	-	6 miles	1000				100	2

Zener Diodes 500 mW Power Dissipation

Also available at 750 mW in Configuration "B".

EIA	Zon (Break) Voltage ((n=n) 5 mA	Meximu Cu	m Inverse ment	At	Masimum Dynamic Resistence	
NUMBER	E, Min, E, Mas.		16 @ 25°C (JA)	₩ @ 100°C (µÅ)	Voltage (v)	(elama) 1	
1/1702	2.0	3.2	75	100	-1	60	
10703	3.0	3.9	50	100	-1	55	
11704	3.7	4.5	5	100	-1	45	
11705	4.3	5.4	5	100	-1.5	35	
11705	5.2	5.4	5	100	-15	20	
11707	6.2	8.0	5	50	-3.5	10	

1. Measured at 10 mA DC Zener current with 1 mA RMS signal superposed. Also Available 1N708-1N723 covering 5.6v to 24v Zener Voltages.

PSI		Zenar @ 290 AA	Veltage @ 25°C	Mazim	At	
NUMBER	Equiv.	Er Min, (V)	Er Max. (V)	378 64 (Au)	6 (A4)	Voltage (V)
PS6313	1N1313	7.5	10	.5	5	6.8
P\$6314	181314		12	.5	5	8.2
PSK315	181315	11	14.5	5	5	10.0
PSAIL6	101316	13.5	18	5	5	12.0
P\$6317	101317	17	21	5	5	15.0
PS6318	1N1318	20	27	.1	10	18.0

LOW VOLTAGE PRECISION REGULATOR DIODES

PSI NUMBER	E. =5% @ 25°C @ 20 mA (Volta)	Max. Dynamic Impedince (s 20 mA (ohma) (1)	Mar. Rev. Currenti @ 25°C	Typical Temperature Coefficient mv/°C
PS1171	1.50	9	20 @ 0.5V	-3.5
PS1172	1.60	12	20 @ 0.5V	-3.5
PS1173	1.80	18	20 @ 0.5V	-3.5
PSI174	2.20	12	20@1.0V	-4.8
PS1175	2.40	18	20 @ 1.0V	-4.8
PS1176	2.70	27	20 @ 1.0V	-4.8
PS1177	3.00	18	20 @ 1.0V	-6.4

For 2% Types specify PS1171A - PS1177A

1 Measured with 1 mA RMS superposed on 20 mA D C.

DIMENSION NOTE Regulator diodes maximum diameter 405", maximum length .53". Also available 1421 thru 1426 extending

regulating voltage to 5.2 volts.

Voltage Reference Diodes

EIA	NEFE	(min)	TAGE	Han. Voltage design from	Hen Den	
NUMBER	His.	Au	Max.	-Serie in + 19970	(
102705	6.46	6.80	7.34	±0.000		
1112708	12.92	11.00	14.55	militar .		
182767	11.38	31.00	21.42	61.15		
1112708	25.34	27.29	21.55	10.3M		
1102700	2.3	31.00	35.70	±8.250	200	
1912770			C.M	40.300	120	

NEW! Military Types Zener Diodes (MIL-E-1/12

1 "A" versions = 5". Zener Voltage Tolerance. 2. E, measured at Test Gurrent 1, = 20mA All of the above types can be supplied in = 10". Tolerance of center Zener Voltage Value (Omit suffix "A" for these units.)

Silicon Diffusion Computer Diodes

70

70

70

70

70

28

200 M

200

200

200

28

es

258)

The Broadest Line in the Industry...

Choose from military approved, low capacitance, high conductance, low leakage, high voltage types with assurance of unsurpassed reliability.

Fast Recovery Types

CA		-	Oarro	nd (PAL)	Character of	Summery of
HUMBER		0 + 14 mil	3"6	-		
1000-	100		\$ (734)	10.000		0.8
100053	160	10	1 (Min) 20 (Min)	28 (18v) 188 (18v)	LOUE	45
10000	130	100				
INCOM	280	10	.026 (10v) 1 (100)	5 (10v) 15 (10v)	SOR	-63
	-					1000
<u>Marian</u>	100	10	1000	H GEN	100 1 100	
INNEZA	100	1.1.1.1.1.1	3 (000) 28 (30v)	100 (000)	Read St.	
IMEALA	200	340	.A25 (19k)	B (10v)	102-126	41
-	1 Maria	1000	1.000	Hand	1000	10000
10000		10	1004	ne		
A COL		I III	6000	STORY .		
AND	1967 196		5.000			m
1.0702	102.00 1000		5 cilin	20 (20)	1004	CALCULAR DE LA CALCUL
1000			1.000	20 000	2001	State State
10794		10	S (IBs)	20 (50)	E DA	8.25
1.0200			8 000	20 6(20)		- 23
ICO		100	5 (10)	10 (00)	NOK	85
LINE	130	20	3 (100)	30 (1.000)	ALC: N	65
NO.	130	HO	8 (100,0	30 (100)	2001	(1)
1970	130	50	5 (2004)	31 (100)	Ent	11
	L.		0.000	20.0000	BB	u
l			10.7			- 43
1 and a			5 (195-1			
1			N (12-2)			DI DI
				T COMPANY		
11000		14.5	5.000	B (0)	1.1.1	1
1000	120	6. P. 1	5 (180x)	(100 R	100	-
	210	Gibrer NGA	30 (2004)	Los (Jacky		
111625	-	46137	1.000	1 31 (R))	-	Ine
10020	States and	4013	1000	34 (199)	94C	10.00
1/627	100	1015	1 (760	28 (75)	Sec. 1	Inn
1/4/28	- 150	1915	LOUNT	Statistics.	80MB	100
10429	200	401.01	1000	10 (110-4)	4000	81. N
-Sigilaria	DC wwhing	Inverse voltage	-	All and a local division of the	State and the	27-3 2
	D Child	100.5.1/100.0	-	S.L. (Den inte		LILLAR (The

Fast Switching Low Capacitance Types

-	MIN. MAT.	101. 200.	MAXIMUM GUMUN	INEVERSE INE (m)	REVER	ALTERNATION	AT.	-
an.	-	- Li van		1010	No. of Concession, Name	No.	Taken a	Sign
1000	100040-000	STATE OF TAXABLE	1.5 (19)	I DOM	STATE OF TAXABLE	ALC: NO	ACCR 94	COLUMN ST
1. All 1.	ALC: NO SHOP	Second Second	STATISTICS.	CONTRACTOR OF THE OWNER.	COLUMN TWO IS NOT	NOT A LOCAL	COLUMN TWO IS NOT	Service Service
10002	120.00	10. La	1999		1000	COARD D		COM.
ALC: N	10	(11) (1)	H-SI	-		1.10	- 10	40
-	ţ.	in a sy van Ny	da — rada Ram = 10	and a state	- magina		T	

PSI

Very High Voltage Silicon R

- Many values...1,000 to 30,000 Extremely rugged Volts
- No voltage derating over en. Wire-in leads...easy to mount
 - -55 C to 150 C
- - Non metallic "cold" case
- tire temperature range of Use in printed circuit board applications

ELA TYPE	Pask Aprenso Velkaso	Mantan Rectile	d Correct	MAX Real	MAX DC Feel	Diseasing)		
NUMBER	(vela)			(velas)	80	L	-	
2811750	3000	200		710		3	375	
1011728	2000	-	100	10000	6			
1811732			100	3480		10		
101723	2000	300	78	2340		14	JI	
101730		380			0.003	10		
102202		100	75	2000	18	1.0	5	
102303		300		(100	2	1.		
1002304		70	8	-	H	14	3	
112208	2000	20	-	7000		2.8	3	
· Basister	or Industion	Lond .		S IN S A P	CONTRACTOR	-	No. of Lot, No.	

PIV 10,4 @ 25"C, 300,4 @ 100"E.

	MAXIN		INGS		8.	ECTRICAL	CHARA	CTERISTI	CB
PSI TYPE NO.	Recurrent Post Inv. Voltage at 18PG	Rites Voltage at 198°C	Avg. F Curr (m	ent la A)	Min. E. al 105 at 25°C	Mar. E/ at 200 mA at 25°C	Max. Ros Pack Iv	la (m) arrent . Voltago	Max. Avg. Inverse Correst at 100°C
		((Ville)			(14)
12400	30		480	190	75	1.5			300
P\$410	109	. 70	400	190	130	1.5		50	580
P\$415	159	105	000	150	180	1.5	5		300
P\$420	200	140	400	150	240	1.5		50	500
P\$425	250 -	175	400	150	285	1.5	8		500
P\$430	300	218	400	150	340	1.5	5	50	580
PS435	350	245	400	150	400	1.5	15	75	500
P\$440	405	200	600	150	450	1.5	15	75	909
P\$450	500	350	808	150	580	1.5	15	75	909
P5460	600	420	400	150	675	1.5	15	75	380

	Recurrent Pusk Inverse Voltage (Volta) © 100°C	PINS	Are	ervard	Min. E.	Min. 17	Max	L. (100)	Max. Ave.
PSI TVPE NO.		verse Voltage sitage (3 100°C Volta) (Volta) 100°C	Current In (mA)1		0 100 "s	. 1.WE/	B Robervert Pask Inv. Voltage		Inverse Current
			@ M'C	@ 188°C	((INNA)	6 B.C	6 INTC	(ML)
P \$005	50	35	250	140	75	109	10	75	100
PS010	100	70	250	140	130	100	10	75	100
PS015	150	105	250	140	180	100	10	75	180
P 9020	200	140	250	140	240	100	10	75	180
PS025	250	175	250	140	285	100	10	75	100
P \$030	300	210	250	140	340	100	30	100	180
P \$035	350	245	250	140	400	100	30	100	100

450

100

100

100

30

30

30

100

100

100

100

100

1400

250 140 580 420 250 140 675

250

tes Losd

400

PS040

PS050

PS06)

200

350

2 Average over one cycle for half wave resistive or choke input circuit with rectifier operating at full reled correct and maximum RWS input.

140

NEW! High Voltage-High Current Cartridge Rec 1,500 to 20,000 Volts @ 200 to 500 mA

EIA TYPE NUMBER	-	Absolu H. W 75
Сір Турня	Length Inches	Peak Inverse Voltage Volts
1911.09	ille.	aller .
101330	20	36(3)
191341	674	4800
151142	dir N	4800
IN3143	41%	6000
IN1143A	45%	6000
IN1144	6%	1200
191105	41%	7200
IN1146	65%	8000
IN1147	6%	12000
IN1148	6%	14000
IN1149	6%	16000
Storage and	Operating 1	emperature

ELA TYPE NUMBER	Pask and Centinanas Invense DC Valtaco - M*C to 178*C (Vdb)	E
1 113052	12,000	-
1113053	14,000	
1113064	16,000	1
1 113055	18,000	
1/13056	20,000	
1113057	22,000	
1113058	24,000	
1113030	26,000	
1113000	28,000	1
1 N3061	30,000	

Silicon Subminiat Rectifiers

MEDIUM POWER - Military

	MAXIM	UM RAT	INGS	ELECTRICAL CHA			
EIA TYPE NUMBER	Penk Env. Voltage (V)	Maximum Avg. Rectified Corvent (mA) ¹		Minimum Saturation Voltage © 100°C	Maxim Rever Currer @ PIV :		
			@ 180°C		@ 25'C	6	
AF 1 1645	225	400	150	275	0.2		
AF1N646	300	400	150	360	0.2		
AF1N647	4011	400	150	480	0.2		
AF 18648	500	400	150	600	0.2		
AF18649	600	400	150	720	0.2		

Maximum Storage and Operating Temperature Range - 65'

MII-E-1/1143 (USAF)

1. Resistive or Inductive Load

Rectifiers

bsolute Max. Rtgs N.W.Res. Load at 1% C.Ambient		Electrical Characteristics at 25 C Ambient			
eak erse tage sits	Max. Rectified DC Output Current mA	DC Volt Drop at Rated DC Current	Reverse DC Current al Rated PIV		
600	65	27.0	.025		
600	65	18.0	.025		
800	60	J6 0	025		
800	50	24 0	025		
000	50	45.0	025		
000	65	30 0	.025		
200	50	54.0	025		
200	60	36.0	025		
000	45	60 0	025		
000	45	60.0	025		
000	50	52 0	.025		
000	45	60.0	025		

TING 1 25 1 8"0 100°C 8.450 70 100 50 9.900 75 100 50 11,300 80 100 50 12,700 85 100 50 14,150 90 100 50 15,500 95 100 50 17,000 100 100 50 18,350 105 100 50 19.756 120 100 50

100

50

21,150 - 56°C to 178°C.

125

ture

у Турев

alimum everse erent IV ("A)	Max. Avg. Voitage Drep @ Lo -400 mA	
6 1001	• 28°C (V)	
15	1.0	
15	1.0	
20	1.0	
20	1.0	
25	1.0	

65°C to 150°C

PSI High-Q Varican

VARICAP TYPE NUMBER	Casesitance* (4, 4 VDC SOMC (Auf)	Quality Factor Min. (Q) 6: 4VDC SOMC	Maz. Working Voltano (VDC)	Minimum Saturation Voltage (100 AADC (VDC)	Maximum Inverse Current (AADC)	Capacitance Change (Ratio)
PC-112-10	10	50	80	90	0.5**	
PC-113-22	22	50	80	90	0.5**	2VDC to 80VDC,
PC-114-47	47	50	Ap	90	0.500	4.0 to 1 Min.
PC-115-10	10	100	100	110	0 59	
PC-116-22	22	100	100	110	0.51	from
PC-117-47	47	100	100	110	0.51	2VDC to 100VDC. 5.2 to 1 Min.
PC-122-47	47	75	100	110	0.51	
PC-132-10	10	50	25	30	0.51	
PC-133-22	22	50	25	30	0.51	IVDC to 25VDC.
PC-134-47	47	50	25	30	0.51	3.0 to 1 Min.
PC-135-10	10	150	50	60	0.54	
PC-136-22	22	125	50	60	0.54	IVDC to 50 VDC.
PC-137-47	47	100	50	60	0.54	4.0 to 1 Min.

*All capacitance values are = 2055 All values at 25°C

Measured & SOVDC Thesured & 75VDC Thesured & IOVDC #Measured & 30VDC "VARICAP" is the registered trade-mark of silicon voltage-variable capecitors manufactured by Province Semiconductory, Inc.

NEW!

MICRO-MINIATURE BRIDGE RECTIFIERS PS2411 thru PS2419

MICRO-MINIATURE HIGH VOLTAGE RECTIFIERS PS2422 thru PS2430

Please Note: All specifications and information contained herein are current as of

November 15, 1960

This catalog contains only highlights of the complete PSI line of semiconductor devices. For current information on PSI, save this and other inserts which appear periodically in leading electronic publications.

Pacific Semiconductors, Inc.

A SUBSIDIARY OF THOMPSON RAMO WOOLDRIDGE, INC. GENERAL SALES OFFICE: 12955 Chadron Avenue, Hawthorne, California

REGIONAL AND DISTRICT SALES OFFICES

NEW YORK-870 Broadway, Newark 4, New Jersey Mumboldt 4-5616 • TWX: NK 1010	,
Boston-471 Washington Street, Wellesley 81, Mass. CEdar 5-0171)
Syracuse-4453 E. Genesce Street, DeWitt, New York Glbson 6-4600	
PENNSYLVANIA-320 Huntingdon Pike, Rockledge, Philadelphia 11, Pa. • Pilgrim 2-8089 TWX: Rockledge PA 1064	
Battimore 1811 North Rolling Road, Baltimore 7, Maryland • Windsor 4-3622	
ILLINOIS-6957 West North Avenue, Oak Park, Illineis Village 8-9750 • TWX: OKP 1547	1

Detroit-1204 North Woodward Avenue, Royal Oak, Michigan • Lincoln 8-4722 St. Paul-2664 Caltier, St. Paul 17, Minnesota • Midway 6-2471

Dellas-P.O. 6067, Dallas, Texas . RIverside 7-1258

CALIFORNIA-8271 Melrose Avanue, Los Angeles 46, Calif. • OLive 3-7850

San Diego- 5022 Field, San Diego, California • BRowning 6-2261

inels Pale Alto-701 Welch Road-Suite 305, Palo Alto, Calif. DAvenport 1-2240

DISTRIBUTORS IN MAJOR ELECTRONIC CENTERS COAST-TO-COAST

RELIABILITY Comes in All Sizes

Here's reliability so big you can barely see it. A needle and red thread almost concealed among thousands of silicon diodes demonstrate the super-miniaturization of PSI Micro-Diodes. These are the smallest known semiconductor devices, with reliability equal to or greater than conventional diodes.

At Pacific Semiconductors, Inc. reliability comes in all sizes – in a broad product line ranging from tiny Micro-Diodes and Pico-Transistors to large 30,000-volt cartridge rectifiers.

But size is only part of the story. At PSI, reliability begins at the conceptual stage of a device. It is as essential as the ability to manufacture in large production quantities. Reliability is as basic as original thinking.

A SUBSIDIARY OF THOMPSON RAMO WOOLDRIDGE, INC. CORPORATE HEADQUARTERS: 14520 South Aviation Boulevard, Lawndale, California General Sales Offices: 12955 Chadron Avenue, Hawthorne, California

Tele-Tips

END OF THE YEAR AGAIN, and time to go through the old file of bits and pieces that somehow never get into print. And these are the things we learned:

Space travelers are likely to suffer from kidney stones. Weightlessness will mean little opportunity for exercise, producing a wasting of muscles and loss of calcium in the bones. The calcium will wind up in the kidney system as stones.

Space travelers will need only 90 minutes sleep nightly.

Physicists predicted that the pressure of sunlight on the orbiting Echo balloon would force it towards the Earth—and they were right. The balloon is being pushed towards Earth at the rate of $3\frac{1}{2}$ miles a day.

Lockheed designed tape recorder for missiles that records 1,200,000 bits per minute and reads back 18 times as fast as recorded. The recorder will log data during those periods when radio contact with the missile is lost.

Can you raise vegetables under the low atmospheric pressure found on the Moon? Teenage scientists in 47 states and 3 foreign countries are attacking the problem by growing experimental "Moon Gardens." Republic Aviation Corp. has a handbook on the subject that has already been requested by about 1500 persons.

Technicians will be needed to make space ship or satellite repairs. They will require extensive training, probably with an earthbound model of the unit they will work on later in space.

ON THE SUBJECT OF COMPUT-ERS: In all the whole of history up to 1945, the calculating devices available increased man's abilities by a factor of about 100. In the few short years since 1945, the speed of calculation has been increased by a factor of about 250,-000, through the development of electronic computers.

(Continued on page 47)

DRS

Circle 21 on Inquiry Card

A GIANT RADIO HIGHWAY IS PERFECTED FOR TELEPHONY

A radio relay system operating at 6 billion cycles per second and able to transmit 11,000 voices on a single beam of microwaves—several times as many as any previous system—has been developed at Bell Laboratories. Utilizing the assigned frequency band with unprecedented efficiency, this new, heavy-traffic system was made possible by the development and application of new technology by Bell Laboratories engineers and scientists.

For example, they arranged for the waves in adjacent channels to be polarized 90 degrees apart, thus cutting down interference between channels and permitting the transmission of many more telephone conversations in the same frequency space. They developed ferrite isolators to suppress interfering wave reflections in the waveguide circuits; and a new traveling wave tube that has ten times the power handling capacity of previous amplifiers and provides uniform and almost distortionless amplification of FM signals. They devised and applied a new high-speed diode switching system which instantly switches service to a protection channel when trouble threatens.

To transmit and receive the waves, the engineers applied their invention, the horn-reflector antenna. Elsewhere, this versatile antenna type is brilliantly aiding space communication research in the reception of radio signals from satellites. For radio relay, a single horn-reflector antenna can efficiently handle both polarizations of the 6000 megacycle waves of the new system; at the same time it can handle 4000 and 11,000 megacycle waves used for existing radio relay systems. Thus it enables all three systems to share economically the same radio towers and routes.

Produced by the Bell System's manufacturing unit, Western Electric, the new system is now in operation between Denver and Salt Lake City, and will gradually be extended from coast to coast. This new advance in radio technology is another example of how Bell Telephone Laboratories works to improve your Bell communication services.

BELL TELEPHONE LABORATORIES

World center of communications research and development

42

Go Ahead, TRIM SQUARE

Trimmers shown actual size

SIZE PERFORMANCE RELIABILITY ECONOMY

SIZE

THE MODEL 50 3/8" square, 3/16" high, and weighing 1 gram, the Model 50 is available in standard resistances of 50 ohms to 20K ohms.

PERFORMANCE

Stack 'em... up to 35 Model 50 trimmers in one cubic inch. Adjust 'em, 25 turns for full electrical travel... take your choice of side or top adjustment, slotted fillister head screw, Allen hex socket, or slotted headless screw flush mounted. Dissipates 1 watt – Model 50 and 2 watts – Model 60. Dual wiper provides double assurance of positive contact under all conditions. High resolution, typically 0.061% for the 50K ohms model. Resistance tolerance, $\pm 5\%$, temperature range, -55 to $+150^{\circ}$ C.

with

SPECTROL

Trimming

Potentiometers

THE MODEL 60

1/2" square, 3/16" high, and weighing 2 grams, the Model 60 is available in standard resistances of 50 ohms to 50K ohms.

RELIABILITY

At no extra cost, Spectrol trimmer potentiometers meet or exceed all applicable military specifications for altitude, fungus resistance, salt spray, sand and dust, humidity, temperature cycling, shock and vibration. Guaranteed load life, 1000 hours minimum.

ECONOMY

Prices in 1-9 quantities: Model 50-\$7.50 each, Model 60-\$6.50 each. Spectrol trimmers are ready now for immediate delivery from your local distributor. For complete technical information, call your Spectrol representative or write Dept. 44.

1704 South Del Mar Ave. • San Gabriel, California ATientic 7-9761 • CUmberland 3-5141 1250 Shames Drive • Westbury, Long Island, N. Y. EDgewood 3-5850

ELECTRONIC INDUSTRIES . Jonuery 1961

Circle 22 on Inquiry Card

43

28

THE RECORDING THAT WASN'T

... It's happened to lots of magnetic tape users

Text Of Conceptual Con

General Market Sciences and a second science of a second science of the second science o

Maybe you've been one of these unfortunates . . . who've spent thousands of dollars . . . plus many man hours . . . to record valuable information on magnetic tapes . . only to find the data useless from accidental distortion or erasure.

Unexpected exposure to an unpredicted magnetic field, and presto!-your valuable data is filled with irritating odd noises. Distortions may result in virtual data erasure.

Unprepared tape users never realize the danger of loss until it's too late.

Such losses have become increasingly common from damaging magnetic fields during transportation or storage. These fields may be produced by airplane radar or generating equipment or other power accessories. Also by generators, power lines, power supplies, motors, transformers, welding machines, magnetic tables on surface grinders, magnetic chucks, degaussers, solenoids, etc.

Since 1956, many military and commercial tape users successfully avoid such unpleasant surprises. Their solution is shipping and storing valuable tapes in sturdy NETIC Tape Data Preservers.

Data remains clear, distinct and distortion-free in NETIC Preservers. Original recorded fidelity is permanently maintained.

Don't take chances with your valuable magnetic tapes. Keep them permanently clear and distinct for every year of their useful life in dependable NETIC Preservers. Can be supplied in virtually any size and shape to your requirement. Write for further details today.

For complete, distortion-free protection of valuable tapes during transportation or storage. Single or multiple containers available in many convenient sizes or shapes.

MAGNETIC SHIELD DIVISION PERFECTION MICA CO.

Circle 23 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

NOW

In the Model CM-100, Mincom's latest instrumentation recorder/reproducer, the series elements

MIN

before data storage have been reduced to recorder and mixer only, one step from the antenna.

IS P

With the CM-100's 1-megacycle response and constant phase equalization at all speeds, an original

IF signal of 5.0 megacycles thus can be heterodyned so that the carrier swing and its sidebands

fall within the Mincom CM-100's frequency range - in FM, FM/FM modulation, PCM and PCM/FM.

... and actually doing it at defense facilities as you read this page.

5.0-mc IF carrier haterodyned down to 750 kc. Random-spaced pulses, 20 μs on-20 μs off-type information. Sweep rate: 50 μs cm.

... WHERE RESEARCH IS THE KEY TO TOMORROW

MINCOM DIVISION MINNESOTA MINING AND MANUFACTURING COMPANY 2049 SOUTH BARRINGTON AVENUE, LOS ANGELES 25, CALIFORNIA - 425 13th STREET N.W., WASHINGTON 4, D.C.

ELECTRONIC INDUSTRIES . January 1961

Circle 24 on Inquiry Card

A Toast to Environmental Testing

The Deutsch hermetic receptacle has withstood every kind of trial and tribulation we could think of, and will soon be toasted from Cape Canaveral to Edwards as the only connector giving true hermetic sealing against extreme environmental conditions. The secret of this leak-proof performance is the unique compression glass insert molded into the connector shell as one solid piece with contacts fused right in. And we can guarantee sealed reliability because Deutsch handles every step of production under quality control procedures that have set new standards in the industry. For more information on the connector with the full glass insert, contact your Deutschman today or write for Data File A-1.

DEUTSCH

Electronic Components Division · Municipal Airport · Banning, California

ELECTRONIC INDUSTRIES . January 1961

Tele-Tips

(Continued from page 41)

An IBM 650 data processing system has been put to work in a law library, locating information for barristers. The EDP system provides in minutes facts that would have taken many hours to find by conventional methods.

The Coast And Geodetic Survey Dept. is using a computer to spot the origin of earthquakes. Approximately 1500 earthquakes are now located annually. The survey hopes to double that number within a few years.

Russian-English Translator has been developed by IBM for the Air Force that turns out 35 words per second. The machine has some shortcomings—it translates only on a word-for-word basis—but a sophisticated word analyzer is on the drawing boards that will break down sentence structure. It should be ready early this year.

AND THESE SHORT SHOTS: National Bureau of Standards has a new camera that takes pictures so small it can produce the entire bible page-by-page on an area smaller than Lincoln's head on a penny.

Some medical people believe that microminiaturized circuits could be introduced into the human body by swallowing and telemeter physiological data directly to the physician. The original of this idea came out a few years ago, developed by Rockefeller Foundation.

Signal Corps Patent Advisor Harry E. Thomason, of Washington, D. C., built himself a solar heating system for his 3 bedroom home. The system cost \$2500 and last winter he paid only \$4.65 in fuel bills.

Engineer Lloyd F. Knight, of Servo Corp., has built an automatic baseball umpire that calls balls and strikes. His system uses three TV cameras, one at each side of the batter and a third directly overhead.

Important facts to know about laminated plastics

A few Taylor composite laminates (left to right): copper-clad section; sandwiched copper component; Taylorite vulcanized fibre-clad part; laminated tube, copper inserts.

Composite Laminates Open Up New Design Opportunities

While the great variety of commercially available laminated plastics satisfy most electrical and mechanical requirements, there are applications that can benefit from the combination of properties provided by composite laminates. Recent advances in bonding techniques have made it possible to bond virtually any compatible material with a laminate. These can be supplied as clad or as sandwiched materials. And they can be molded into many shapes to fit design requirements. Taylor is presently supplying to order the following composite laminates:

- Copper and laminated plastics. Clad for printed circuits and formed shapes. Sandwiched for special applications.
- Taylorite® vulcanized fibre-clad leminates. These combine the high strength of laminated plastics with the superior hot-arc-resistance of vulcanized fibre. They are being used in both high and low-voltage switchgear applications. Also in applications where the high impact strength of vulcanized fibre may be advantageous.
- Rubber-elad laminates. Almost any type of natural or synthetic rubber may be used as the cladding material. These laminates are widely used for condenser tops in wet condensers to protect the laminate against highly alkaline electrolytes. They also have application in any part where sealing or chemical resistance is needed.
- Asbestos-clad laminates. For applications where high heat- and arc-resistance are required.
- Laminate-clad lead. Lead sheets sandwiched between Grade XX pa- LAMINATED PLASTICS

per-base laminates have been used for X-ray shields. The laminate provides strength and contributes to the high shielding properties of the lead.

- Aluminum-clad laminates. These have been used extensively for engraving stock. They also offer possibilities as printed-circuit material and as plate holders for X-ray machines.
- Beryllium copper-clad laminates. Beryllium copper is nonmagnetic and a good conductor—properties that give these laminates possibilities in many applications.
- Stainless steel-clad laminates. Applications where nonmagnetic properties are required. Also in certain corrosive environments where the resistance of stainless steel to attack is an asset.
- Magnesium-clad laminates. These laminates have been produced in 108-in.-long sheets for usc as screens for X-ray operators. Weight was a factor.

Our design and production engineers are constantly developing new materials, new applications, and new procedures for fabricating laminated plastics. Our experience is yours for the asking. And if you have a problem requiring assistance or more information on composite laminates, write us. Also ask for your copy of Taylor's new guide to simplified selection of laminated plastics. Taylor Fibre Co., Norristown 53, Pa.

ELECTRONIC INDUSTRIES · January 1961

NEW FROM Highest reliability Highest quality

NEW 170A MILITARIZED SCOPE-TO 30 MC!

IGOB MILITARIZED 15 MC SCOPE!

Vertical, time axis plug-ins provide unique

9 106A Flag-in (Time-Axis) furnished with the Ap-160B and 170A Oscillosoppes (as pletured), provides standard fipput connections, including trigger input, Z-axis, single-eweep arming input.

W MAA Dual Trace Amplifier plug-in (vertical) plus maximum sensitivity to 20 mv/em, permits viewing of two phenomena simultamously, offers differential input for common mode rejection, meets environmental requirements of MIL-F-16400C. Electronic chopping permits better utilisation of aweep speeds, axtends simultaneous viewing of 2 signals to lower frequencies without flicker. he 1574 8250.00

\$400C Display Scanner (Time-Axis plug-in) provides output to deplicate, on an X-Y records, any repetitive waveform appearing on CRT time. Resolution with permanent, large-scale records is higher than either accept CRT or photograph, and you can observe the scope traces while records are made. Unit converts high good signals be observed for a stranged to here Y output within the handwidth of conventional recorders. - Ap-160C, \$200.08.

(#) 166D Superp Delay Generator (Time-Axis plugin) delays the main sweep of the 160B and 170A Scopes for detailed examination of a complex signal or pulse train. In addition, it offers a unique mixed sweep feature to show an expanded asgment of a delayed waveform while still retaining a presentation of earlier portions of the waveform. Delay time 1 game to 10 sec. Delaying sweep 18 ranges. Delayed length 0 to 10 cm. Delay functions: trigger main sweep, ann main sweep, mixed sweep. -Ap-166D, 8325.40.

OSCILLOSCOPES

Meets military specifications Conventional controls for simple operation Uniquely versatile dual plug-ins providing:

- 1. X-Y records of repetitive waveforms (\$ 166C Display Scanner Plug-in)
- 2. New sweep delay convenience (\$ 166D Sweep Delay Generator Plug-in)
- 3. Widely versatile input capabilities
 - (9 162A Dual Trace Amplifier Plug-in)

These are the scopes you have been waiting for! Built to exacting military specifications, they offer instantly expandable measurement capability when you need it. It's easy ! Just add a moderately priced plug-in unit !

Both (160B and 170A employ the same vertical and time-axis plug-ins providing the widest range of application with minimum plug-ins and minimum investment. Details of these plug-ins are given on the opposite page.

New 6 160B and 170A follow MIL-E-16400C for shock, vibration, humidity and temperature. Important features include high stability tubetransistor circuits, regulated dc filament voltages and premium components throughout. Power transistors in efficient heat sinks insure cool operation; etched circuits on translucent epoxy glass simplify circuit tracing and servicing. Simple, conventional controls speed set-up time and actual measuring. Improved preset triggering insures optimum operation for almost all conditions with just one adjustment—even on signals down to 2 mm deflection. Both \bigoplus 160B and 170A give you big, bright presentation on a 5" CRT, with a clear, steady trace free from bloom or halo.

A push-button beam finder automatically locates off-screen beam or trace (especially useful for operation by inexperienced personnel). And to increase general-purpose usefulness: 24 calibrated sweep times, 0.1 μ sec/cm to 5 sec/cm, \pm 3% accuracy. Vernier extending slowest sweep to 15 sec/cm. Seven-range magnifier increasing fastest sweep to 0.02 μ sec/cm. Horizontal sensitivity 0.1 v/cm to 10 v/cm. Vernier extending minimum sensitivity to 25 v/cm. \Rightarrow 160B, \$1,850.00; \Rightarrow 170A, \$2,150.00.

versatility for the @ 160B and 170A scopes!

SPECIFICATIONS- @ 1008 and 178A with @ 166A Plug-in

VERTICAL		SWEEP BENERATOR	A DECEMBER OF
Bandwidth:	6 1608, 15 MC	Internal Sweep:	24 ranges, 0.1 µssc/cm to 5 sec/cm, ± 3%. Vernier extends slowest sweep to 16 sec/cm
Valtage Galibrators	9 calibrated ranges ± 3%, 0.2 mv to 100 v peak to peak	Magnification:	7 calibrated renges, X3, X2, X3, X38, X38, X39 and X108. Increases fastiant mmorp to 0.02 absc/cm
Current Calibrator	5 ma peak to peak ± 3%	Triggering	Internal, power line a vertical input signal 12 mm or more vertical defautions en-
HORIZONTAL	CONTRACTOR AND		curvet (va v peak to peak or more)
Bandwidths	dc to 1 MC	Trigger Points	Positive or negative going voltage. Trigger
Sensibility	7 ranges 0.1 v/cm to 19 v/cm. Vernier extends		-30 to +30 volts
	minimum sensitivity to 15 v/cm	PRICE	@ 1608, \$1,950.00 (cabinet or rack mount)
Impirt Impedance:	1 megohim shunled by 30 pf		1704, \$2,150.00 (cabinet or rack mount)
	Dete subject to change without	et actica. Prices f. a. b.	factory.
			and the second sec
HEV	VLETT-PACKARD COMP	ANY	HEWLETT-PACKARD S.A.
10670 P	age UNIN KGED PERS AND, CERTOFIES	. U.S.A.	Ruo du Vieux Billard Poz, 1 General, Switzerland
Cable II	Dimonot Dimonot	8 7000	Cable "MENDACKEA!" Tel Die 1000 18 42 18

Salbo representatives in all principal areas

Widest Choice of Glass Sealing Alloys for Semi-Conductors

You use different glasses for different semi-conductor applications. So to get the most perfect match of glass-sealing alloy, choose from the broad line offered by Superior. Quantities as small as 50 ft. in any size and analysis may be ordered and in precision-cut short lengths. All allows are cold drawn to close tolerances in seamless or WELDRAWN¹ form. Sizes from .012 to %-in. OD. In addition to the standard alloys listed in the following, many special allovs are available to order. For complete details, write for Data Memo No. 15, Superior Tube Co., 2502 Germantown Ave., Norristown, Pennsylvania.

50

Kovar.² Excellent for hard glasses. Oxide fuses into glass. Provides vacuum-tight joint. Coef. thermal expansion 50.3/53.7 (30-450°C). See note.

Sylvania #4.³ Well matched for certain soft glasses. Used for internal seals, Coef. thermal expansion $85 (25-300^{\circ}C)$. See note.

#52 Alloy. Popular for sensitive magnetic use and for thermostatic work. Coef. thermal expansion 95 (20-400°C). See note.

#42 Alloy. A nickel-iron alloy practical for sealing to soft glass. Coef. thermal ex-, pansion 53 (20-400°C). See note.

AISI Type MT-1010. A low carbon steel with good bending and flaring qualities.

OFHC Copper. May be used with either hard or soft glasses. Coef. thermal expansion 165 (25-300°C). See note.

AISI Type 446. Stainless steel suitable for soft glasses. Highest heat resistance of chromium frons.

AISI Type 430. Less chromium than 448. Easier to work. Appropriate for soft glass seals.

AlSI Type 430 Ti. Same properties as Type 430. Stabilized with titanium to improve weldability. Suitable for soft glasses.

- A Superior trademark registered United States and Canada.
- 'Kovar Alloy Tubing is stocked and sold through the Stupakoff Division of The Carborundum Company, Latrobe, Pa. The name "Kovar" in a registered trademark of the Westinghouse Electric Corporation (No. 337, 562).

²T.M. Reg. U.S. Pat. Off., Sylvania Electric Products, Inc. Note: Expressed in in./in./*F (x 10-⁷).

NORRISTOWN, PA.

Johnson & Hoffman Mfg. Corp., Mineola, N. Y .- an affiliated company making precision metal stampings and deep-drawn parts.

Now...12-Nanosecond Total Switching Time with CBS MADT* Transistors

Total switching time for typical CBS 2N501 and 2N501A transistors in this circuit is less than 12 nanoseconds. The basic circuit can readily be cascaded to form fast-switching ON and OFF stages for computers. Since the transistors have a high gain-bandwidth product at only -3 collector volts, the size and cost of your power supply can be substantially reduced.

The economical CBS 2N501 and 2N501A also offer a wide choice of design possibilities in other fast-switching circuits. Consult the table for high switching rates permitted in the variety of circuits shown.

Order engineering samples for your prototype design. Call or write for technical data and delivery information, today, from your local sales office or Manufacturer's Warehousing Distributor.

Wide Choice of Fast Switching Circuits With CBS 2N501 and 2N501A

Logic Circuits	Switching Rate
Special non-saturating	140 mc
Emitter follower coupled	140 mc
Base gating	140 mc
Transformer coupled pulse	140 mc
Diode transistor logic (DTL)	
Resistor capacitor transistor logic (RCTL))
Direct coupled transistor logic (DCTL)	
Resistor transistor logic (RTL)	1 mc
Pulse Generators & Shaping Circuits	
Blocking oscillators	10 тс
Regenerative amplifiers	10 mc
Schmidt trigger circuits	10 mc
Monostable multivibrators	5 mc
High Current Pulse Amplifierst	
Line drivers	10 mc
Core drivers	10 mc
Read-write amplifiers	10 mc
†Switching current, 35 ma.	

*Micro Alloy Diffused-base Transistor, trade-mark, Philco Corp

Circle 29 on Inquiry Card

More Reliable Products through Advanced Engineering

CBS ELECTRONICS, Semiconductor Operations, Lowell, Mass. • A Division of Columbia Broadcasting System, Inc. Semiconductors • tubes • audio components • microelectronics Sales Offices: Lowell, Mass., 900 Chelmsford St., GLenview 2-8961 •

Sales Offices: Lowell, Mass., 900 Chelmsford St., GLenview 2-8961 • Newark, N. J., 231 Johnson Ave., TAlbert 4-2450 • Meirose Park, Ill., 1990 N. Mannheim Rd., EStebrook 9-2100 • Los Angeles, Calif., 2120 S. Garfield Ave., RAymond 3-9081 • Minneapolis, Minn., The Heimann Co., 1711 Hawthorne Ave., FEderal 2-5457 • Washington, D. C., 1735 Desales St., N.W., EMerson 2-9300 • Dayton, Ohio, 39 North Torrence St., CLearwater 2-1972 • Toronto, Ont., Canadian General Electric Co., Ltd., LEnnos 4-6311.

TRANSFORMERS . REACTORS . FILTERS . JACKS AND PLUGS . JACK PANELS

52

Circle 30 on Inquiry Card

Letters

to the Editor

"You Missed Us-"

Editor, ELECTRONIC INDUSTRIES:

We feel that there has been an omission in your November, 1960 issue on Page 157. Under the Products and Manufacturers section, Fairchild Aircraft and Missiles Division is not included.

At present, this Division of the Fairchild Engine and Airplane Corporation holds three (3) antenna contracts; (1) 60 Ft. Diameter Parabolic Dish for the "Pincushion" Radar System, (2) 12 Ft. x 15 Ft. Elliptical Parabolic Dish for the AN/SPS-30 Radar System and, (3) 15 Ft. Diameter Folding Parabolic Dish for a Solar Power System.

This information is called to your attention in the interest of editorial accuracy.

Claude S. Huber Chief Project Engineer-Special Projects Fairchild Aircraft and Missiles

Division Hagerstown 10, Md.

"Thanks"—From ESMA

Editor, ELECTRONIC INDUSTRIES:

The Board of Directors and I, plus present members of ESMA, would like to thank you for your very wonderful editorial in the November issue of ELECTRONIC INDUSTRIES.

Cooperation such as yours has certainly helped to get our organization off the ground. At the present rate applications are coming in, we should number several hundred by the IRE.

Your knowledge of the industry and its problem impressed all of us. This present period has been a busy one trying to organize committees, etc. We have not made too many public moves due to our lack of membership strength. By IRE time we have high hopes that we will then be in a position to start accomplishing things for the benefit of our industry. Again thank you for your con-

sideration and help. C. G. Barker

C. G. Barker President

Electronics Sales Managers Association Port Washington, L. I. New York

Designing Rotary Joints

Editor, ELECTRONIC INDUSTRIES:

Would you please send me a reprint of the article "Designing Rotary Waveguide Joints," by Conway A. Balt, Jr. which appeared in the (Continued on page 54)

ELECTRONIC INDUSTRIES . January 1961

NEW! DIRECT READING FREQUENCY METER

a full octave and beyond 3.95 to 11.0 KMc

DELIVERY FROM STOCK

Meet the newest member of the FXR "family" of direct reading frequency meters. This coaxial type, Model No. N414A, has a range from 3.95 KMc to 11.0 KMc and by use of FXR Series 601 coax to waveguide adapters converts to waveguide setups. The unit covers "a full octave and beyond" with an absolute accuracy of 0.1% throughout its range, It is a perfect companion for the FXR Models No. C772 and X772 signal sources.

This newest direct reading frequency meter augments FXR's existing line, recognized as the largest in the industry. Direct reading, reaction type units are available for use up to 39.5 KMc while micrometer types extend FXR's coverage up to 220 KMc.

Write or call now for data sheets on Model No. N414A and other units in the integrated FXR family of precision frequency meters.

and the second se	(KMic)	(%)	Asserts.	1794 11-1 1/U	1788 UE-(1/0	UF.C
		cor	XIAL TYPE	15		
NATOA	1 1.00- 4.00	0.10	3000	1 13/4" Coox	Type N)	\$495
N414A	3.95-11.0	0.10	500 to 1500	(NFC-	Type (i)	405
		WAV		PES		
THATOR	1 3 93. 5 85	0.08	8000	49	149A	1 250
*C4108	5.85- 8.20	0.08	8000	50	344	1 180
•W4108	7.05-10.00	0.08	8000	51	51	16
*X4108	8.20-12.40	0.08	8000	52	39	150
¥410A	12.40-18.00	0.10	4500	91	419	210
K410A	18.00-26.50	0.10	4000	53	425	230
(2) U410A	26.50-39.50	0.10	3000	96	381	250
C402A	5.85- 8.20	0.03	8000	50	344	1275
X402A • With trees	8.20-12.40 Imission coupling DELLY	n,03 probe. VERY	BOOO FROM	52 STOC	39 K	1275
X402A • With tran	8.20-12.40 Imission coupling DELIY	n,03 prebe. VERY	BOOD	STOC	K 39	1275
x402A With trans s.00	8.20-12.40 Imission coupling DELI	n,03 probe. VERY	BOOD FROM	stoc	. К	127:
X402A * With trans adding) 5.00 0.00	8.20-12.40 Imission coupling DELIY	n,03 prebe. VERY	BOOD FROM	stoc	К	1275
x402A * With trans s.00 0.00 0.00	8.20-12.40 Imission coupling DELIY	n,03 probe. VERY	FROM	stoc Inc.	39 39	127:
X402A • With trans ading) 5.00 0.00 0.00 0.00 0.00	B.20-12.40	n,03 probe. VERY	BOOD FROM X R, a • Develo	stoc Inc.	39 K	1275
X402A With trans 5.00 0.00 0.00 0.00 0.00	8.20-12.40 Imission coupling DELI	n.03 probe. VERY	BOOD FROM XR, ia • Develo	sz stoc Inc.	39 K Manufact	1275
	N410A N410A N410A N410A 9H410B 9C410B 9X410B 9X410B	N410A 1.00- 4.00 N410A 3.95- 5.83 ************************************	COA N410A 1.00-4.00 0.10 N414A 3.95-11.0 0.10 WAV4	COAXIAL TYPI N410A 1.00-4.00 0.10 3000 N414A 3.95-11.0 0.10 300 to 1300 WAVEGUIDE TYI WAVEGUIDE TYI *H410B 3.95-5.85 0.08 8000 *C410B 5.85-8.20 0.08 8000 *C410B 7.05-10.00 0.08 8000 *C410B 7.05-10.00 0.08 8000 *C410B 7.05-10.00 0.08 8000 *K410A 12.40-18.00 0.10 4500 X410A 12.40-3.50 0.10 4000 Y410A 12.40-3.90 0.10 3000 CO2A 3.83-8.20 0.03 8000	COAXIAL TYPES N410A 1.00-4.00 0.10 3000 (1/a*Cost) N410A 3.95-11.0 0.10 3000 (1/a*Cost) WA14A 3.95-11.0 0.10 3000 (1/a*Cost) WAVEGUIDE TYPES WAVEGUIDE TYPES *H410B 3.95-5.85 0.08 8000 49 *C410B 5.85-8.20 0.08 8000 50 *W410B 7.05-10.00 0.08 8000 50 *W410B 7.05-10.00 0.08 8000 52 Y410A 12.40-18.00 0.10 4500 91 K410A 18.00-26.50 0.10 4000 53 U410A 24.50-39.50 0.10 2000 94 CO2A 3.53 - 8.20 0.03 8000 50	COAXIAL TYPES N410A 1.00: 4.00 0.10 3000 (½° Coar Type N) N414A 3.95:11.0 0.10 3000 (½° Coar Type N) WA14A 3.95:11.0 0.10 3000 (½° Coar Type N) WAVEGUIDE TYPES ************************************

NEW! 10-AMPERE RFI AV

Dunco FC-215 Weight 3 oz. Size %" x 1-1/32" x 1%" high.

> ALL-WELDED INTERNAL CONSTRUCTION!

for missile and aircraft uses

Conservatively rated for 10 ampere DC operation, these solidly built little DPDT units fill a long standing need for dependable heavy duty power relay service under temperature, vibration and shock extremes.

Constructed throughout to meet or surpass MIL-R-575C and MIL-R-25018 requirements. No internal soldered joints. Withstand 30G vibration to 2000 cycles and 50G shock. Standard coils rated 26.5 Volts DC nominal with 400 ohms coil resistance. Other coils available. Designed for 125° C. operation

Header terminals are 0.2" gridspaced and can be furnished with hook, long or short wire lead terminals.

STRUTHERS-DUNN, Inc., Pitman, N. J.

Member, National Association of Relay Manufacturers

Sales Engineering effices in: Attanta - Boston - Belfalo - Charlotte - Chicago - Cincinnati - Cleveland - Dalles - Deyton - Detroit Kansas City - Les Angeles - Montroal - New Orleans - New York - Pittsburgh - St. Lauis - San Francisco - Seatte

Letters

to the Editor

(Continued from page 52)

November, 1960 issue of ELECTRONIC INDUSTRIES.

I am not on your mailing list, but a few of my colleagues are, so occasionally, I have the opportunity of reading your magazine. Even though many of the articles do not pertain to my field, I have found them quite interesting and hope that you will continue to publish such fine articles in the future.

Earl DeJonge Microwave Design Engineer The Bendix Corporation Bendix Mishawaka Division Mishawaka, Ind.

"The Company Library—"

Editor, ELECTRONIC INDUSTRIES:

"The Company Library — White Elephant or Work Horse?" is an excellent article that should be in the hands of all companies planning a library as well as in the hands of all managers and supervisors who do have libraries. I shall call attention to it to local Special Library Association members.

(Mrs.) Marjorie M. Ford Technical Librarian Minneapolis-Honeywell Regulator Company, Military Products Group Ordnance Division 1724 South Mountain Avenue Duarte, Calif.

The "Savannah" Simulator

Editor. ELECTRONIC INDUSTRIES:

I have just noted the picture of the N. S. Savannah Simulator (built by Westinghouse), in the November issue.

This picture was taken back in July 1959 when the Simulator was first installed. Considerable work has been done since then, in modifying to make the unit more exact.

The caption with the picture is incorrect—insofar as Borg-Warner is concerned. The instructor's desk was constructed on the job and is made up of Emcor assemblies.

At present writing, training of Savannah crews is about complete.

All work of installation was done by field personnel from Westinghouse, E. Pittsburgh and Baltimore Engineer & Service under my supervision. Design engineers were C. H. Culbertson, N. E. Bush and D. D. Blewitt of Power Control & Communications, Dept. E., Pittsburgh. Paul A. Broemer

Lynchburg, Va. (Continued on page 60)

this .01% dvm is different!

Because...it has a unique self-adjusting stepping-switch drive which eliminates thyratrons, provides smooth, quiet, troublefree operation for longer life...it introduces Range Hold operation that restricts "stepping" when repeated readings on only one decade range are to be made...it comes as a space-saving half-rack module 8" square for portable use and side-by-side rack installation with a Beckman/Berkeley Printer, converters, etc., or as a full rack width model 5¼" high...it combines a fistful of other important features with recognized Beckman/ Berkeley experience. Write for Technical Bulletin 4011.

- automatic polarity
- automatic ranging
- · print out
- . \$995

The 4011 full width rack model (214" high)

Specifications • Linearity: .01% of full scale • Range, from 0.001v to 999.9v dc • Fully automatic operation • Ratiometer function provided with existing internal circuitry • 4 digit in-line, in-plane display, and binary-coded output • Variable sensitivity control • Oven-regulated Zener power supply • Self-contained standard cell for accurate calibration

> Berkeley Division Richmond, California

ELECTRONIC INDUSTRIES . January 1961

T28

Beckman

First commercially priced silicon rectifier

More in use than any similarly rated unit

One of the first silicon rectifiers In volume production

TARZIAN M-500 Silicon Rectifier

The Sarkes Tarzian M-500 silicon rectifier is rated at 500 milliamperes dc, with a peak inverse voltage rating of 400 volts. This was the first commercially priced silicon rectifier, and more M-500's are now in use than any similarly rated unit.

The Tarzian M-500 is a cartridge type rectifier with end ferrules that snap quickly and easily into standard clips. The M-500 is made by a special Tarzian process that provides optimum forward to reverse ratios and long, useful life.

For additional information, practical application assistance, and prices on the M-500, write Sarkes Tarzian, Inc., Semiconductor Division, Bloomington, Indiana

DC amps (100° C)	Peak Inv. Voltage	Tarzian Type	Max. RMS Volts	Max. Recurrent Peak Amperes (100° C)	Max. Surge Amps 4MS	JEDEC No.
0.5	400	M-500	280	5	30	1N1084

Other voltage and current ratings also available in this style.

SARKES TARZIAN, INC.

World's Leading Manufacturers of TV and FM Tuners • Closed Circuit TV Systems • Broedcast Equipment • Air Trimmers • FM Radios • Magnetic Recording Tape • Semiconductor Devices SEMICONDUCTOR DIVISION • BLOOMINGTON, INDIANA In Canada: 700 Weston Rd., Toronto 8 • Export: Ad Auriema, Inc., New York

54

ELECTRONIC INDUSTRIES ' January 1961

SILICON NEWS from Dow Corning

The Untouchables

Single Crystal Silicon... the "Pinnacle of Purity"

Dow Corning single crystal silicon is produced by vacuum zone refining hyper-pure polycrystalline rod. Result: The purest silicon produced! Typically, impurity content is only 0.15 part per billion of boron for crystals that are consistently above 1000-ohms centimeter resistivity. Boron content is even lower for crystals of 2000-ohms centimeter and above ... available on a selective basis.

This highest purity P-type silicon is the result of a completely integrated processing facility that starts with the production of trichlorosilane and ends with the crystals heat-sealed in airtight polyethylene envelopes. Purity and quality control dominate every step — in producing the basic chemicals . . . in growing polycrystalline rod . . . in vacuum zone refining . . . in product evaluation and in packaging.

Purity pays off... in rectifiers and diodes having higher peak inverse voltage ratings — in maximum utilization because of uniform lateral and radial profiles over the entire length of the rod. With Dow Corning single crystal rod, you're assured of maximum yield and minimum waste per rod. Rod diameter variation is controlled to less than 1.4 mm (0.055 inches) simplifying mechanical preparation for either the diffusion or alloying process.

Hyper-pure silicon for every need is now available from Dow Corning. If you grow your own crystals from polycrystalline chunk using the Czochralski method . . . if you zone refine polycrystalline rod . . . if you need 1000-ohm centimeter or better resistivity in single crystal P-type — Dow Corning should be on your preferred source list.

Each Dow Corning single crystal rod is checked for resistivity over its entire length. Resistivity and lifetime profiles. like those shown below, are supplied with each crystal.

Write for "Hyper-Pure Silicon for Semiconductor Devices." Address Dept. 3413. HYPER-PURE SILICON DIVISION Address: HEMLOCK, MICHIGAN

NEW YORK WASHINGTON, D.C.

Dow Corning CORPORATION

ATLANTA BOSTON CHICADO CLEVELAND DALLAS

ELECTRONIC INDUSTRIES . January 1961

Circle 35 on Inquiry Card

Model 737A shown with Model 732A Converter Plug-In

- Measure period to 0.1 microsecond
- Measure time interval 0.1 microsecond to 10' seconds

CMC, first with solid state reliability, announces the transistorized Model 737A frequency-period meter.

Here, combined in one compact package weighing a scant 53 pounds, are the functions of a high speed counter, frequency meter, and period meter. Sensibly priced at \$2400, the Model 737A mates an all solid state counter with a plug-in vacuum tube heterodyne converter.

Only 14" high, 17" wide, and 13" deep, CMC's new Model 737A requires a mere 125 watts of power which in itself reduces operating temperatures and contributes to long trouble-free life. And except for the vacuum tubes, the new unit is unconditionally guaranteed for two years.

NEW TECHNICAL BULLETIN TELLS ALL

58

Your nearby CMC engineering representative will be happy to provide you with full technical, sales, and delivery information and arrange a demonstration et your convenience. For a free copy of our new technical bulletin, please address Dept. 44,

THREE PLUG-INS AVAILABLE

1. 10 mc to 100 mc frequency converter; 2. 100 mc to 220 mc frequency converter; 3. Solid state 0.1 microsecond to 10⁷ second time interval section.

Converter plug-ins \$250 each. Time interval plug-in \$300.

FEATURES AND ADVANTAGES * Decade count down time base, frequency divider circuits never need adjustment. * Automatic decimal point. * Nixie readout available as standard option. * Stability, 2 parts in 10⁷ standard, 5 parts in 10⁸ special. * Accuracy, ±1 count \pm_0 oscillator stability. * Sensitivity, 0.25 v rms. * Standardize against WWV. * Remote programming without special regard to cable length, type of cable, or impedance matching. * Printer output to drive digital recording equipment, punches, inline readout and other data handling gear, \$80 extra.

ELECTRONIC INDUSTRIES . January 1961

SPECIFY ARNOLD IRON POWDER CORES COMPLETE RANGE OF SIZES AND SHAPES FOR YOUR DESIGNS

Arnold offers you the widest range of shapes and sizes of iron powder cores on the market.

In addition to toroids, bobbin cores and cup cores—typical groups of which are illustrated below—Arnold also produces plain, sleeve and hollow cores, threaded cores and insert cores, etc., to suit your designs. Many standard sizes are carried in warehouse stock for prompt shipment, from prototype lots to production guantities. Facilities for special cores are available to order.

The net result is extra advantage and assurance for you. No matter what shapes or sizes of iron powder cores your designs require, you can get them from a single source of supply—with undivided responsibility and a single standard of known quality. And Arnold's superior facilities for manufacture and test assure you of dependably uniform cores, not only in magnetic properties but also in high mechanical strength and dimensional accuracy. • For more information on Arnold iron powder cores, write for a copy of our new 36-page Bulletin PC-109A. The Arnold Engineering Company, Main Office and Plant, Marengo, Illinois. ADDRESS DEPT. E-1

BRANCH OFFICES and REPRESENTATIVES in PRINCIPAL CITIES - Find them FAST in the YELLOW PAGES

ELECTRONIC INDUSTRIES . January 1961

Letters

to the Editor

(Continued from page 54)

For Technical Secretaries

Editor, ELECTRONIC INDUSTRIES:

Why not print an article or series of articles for technical secretaries? Many hours of unnecessary labor might be eliminated if we secretaries had a "manual" of terms, correctly spelled and abbreviated. Since I must do a great deal of work from rough copy, I must spend time deciphering crude script and erasing that which was not correctly interpreted. Of course I have become familiar with some terms, but there are always a few which are new (and sometimes not always clear to the author of the report)! Definitions, in laymen's language, would also be Though not scientifically helpful. inclined, I am interested in what is going on about me.

My boss gave me the report on duplicating papers ("How To Duplicate Technical Papers") to read. It is a timesaver to him, then, as well as myself, that I become better acquainted with various office machines. Would not a simple article such as I have mentioned also be welcome for the same reason? Thank you for listening!

Sylvia N. Berman

Group Secretary Massachusetts Institute of Technology **Department** of Aeronautical Engineering Instrumentation Laboratory Cambridge 39, Mass. Editorial Note :--- Anybody have such a manual

Electronics and Agriculture

Editor. ELECTRONIC INDUSTRIES:

Dr. T. E. Hienton, of ARS, USDA. recently gave us a reprint from the August issue of ELECTRONIC INDUS-TRIES, titled "Electronics And The Future Of Agriculture."

As the trade association for approximately 1,000 rural electric cooperatives which serve most of the farm areas of the United States, we think this article would be of value to the systems.

Are reprints of the article available?

We'd appreciate hearing from you

James Sherwood Assistant Manager Power Use Section

National Rural Electric **Cooperative Association** 2000 Florida Avenue N. W. Washington 9, D. C.

Circle 38 on Inquiry Card

ta:

NUMBER 10-RELIABILITY SERIES

At Last-High Reliability in Carbon-Film Potentiometers!

Bourns Trimpot® carbon-film potentiometers now offer you twice the stability of any carbon unit heretofore available... at temperatures as high as <u>150°C</u>. Now, for the first time, you can incorporate high-resistance, infinite-resolution potentiom

eters in your circuit without sacrificing reliability. The reason: Resiston^{*}, a remarkable new carbon element that virtually eliminates the problems normally caused by extremes of temperature and humidity.

Thanks to this exclusive Bourss development, Trimpot carbon units can operate at temperatures up to $\underline{150}$ C—with resistance shift only half that of ordinary carbon elements. In addition, they far exceed the requirements of Mil-Specs for humidity and MIL-R-94B.

Trimpot Resiston units are available from factory and distributor stocks with three terminal types...three mounting styles

and standard resistances ranging from 20K to 1 Meg. Resiston elements are available in most Bourns configurations. Write for the new Trimpot summary brochure and list of stocking distributors and representatives.

Exclusive manufacturers of Trimpote, Trimite and E-Z-Trime. Pioneers in transducers for position, pressure and acceleration.

THE POWER BEHIND THE TUBES!

NWL HIGH FREQUENCY FILAMENT TRANSFORMERS

Here is the latest addition to the well-known family of NWL custom-built transformers. Illustrated is a special high frequency, high reactance filament transformer with an output of 11.5 volts at 700 amps, 400 cycles, single phase. The unit is hermetically sealed for shock-proof and high humidity operation.

Each NWL unit is thoroughly tested and must meet all customer requirements before shipment. We shall be pleased to quote you according to your individual requirements.

SAY: NO-TEL-FER NOTHELFER WINDING LABORATORIES, INC., P. O. Bex 455, Bept. El-1, Treaten, M. J. (Specialists in center-beliefing)

Circle 40 on Inquiry Card

62

Books

The Theory and Design of Inductance Coils 2nd Ed.

By V. G. Welsby, Published 1960 by John Wiley & Sons, Inc., 440 Fourth Ave., New York 16. 232 pages, Price \$6.00.

This 2nd edition is in line with modern practice. The main purpose of the book is to explain the underlying design principles of all types of inductors in a way readily understood by those mainly interested in practical results rather than to give an exhaustive mathematical treatment. Resulting from the development of microwave radio and of h-f techniques during recent years, much interest has been created in the principles of electromagnetic wave propagation. This aspect is referred to, and it is shown how a picture derived from electromagnetic field theory simplifies the understanding of inductors.

Electronic Maintainability, Vol. III

Edited by F. L. Ankenbrandt. Published 1960 by Engineering Publishers, Div. of A. C. Book Co., Inc., P. O. Bos 2, Elizabeth, N. J. 312 pages, Price \$10.00.

Maintainability has a direct bearing on the usefulness of any product, whether it be complex electronic gear in a satellite or guided missile, a huge electrical generator, or milady's hair dryer. This book, based on the third EIA conference on maintainability of electronic equipment, contains an authoritative discussion of the developments which have been changing maintainability from the vaguely practiced art of yesterday to the rigorous science of today and tomorrow.

Many aspects of modern maintainability are discussed in depth. The subject matter ranges from the maintenance problems of space flight to the determination of adequate working space for electronic technicians. The contributors are among the foremost workers in the field.

Inertial Guidance

By Charles S. Diaper. Walter Wrigley and John Hovarka, Published 1960 by Pergamon Prass. 122 E. 55th St., New York 22, 130 pages. Price \$6.50.

This book is a descriptive treatise on the physical principles and engineering methods underlying the navigation and control of vehicles solely by means of signals from sensors that depend only on the inertial properties of matter for their operation. The starting points are conventional navigation and Newtonian physics, and the development proceeds from an examination of traditional navigation in terms of physics, through a discussion of past uses of inertia in navigation, to the interpretation of the operations of navigation in terms of control theory, the ultimate inertial guidance system being regarded as a feedback system which operates

ELECTRONIC INDUSTRIES . January 1961

New Frequency Meter and Discriminator

REQUENCY METER

TYPE 1142-4

I FREDUCTOR' SAFER

3c to

5 Mc.

... Simple, Direct Frequency Measurements ... Simplifies Recording of Drift and Stability ... A Highly Linear Pulse-Count Discriminator for Measurements of FM Deviation and Incidental FM.

FREOUENCY METER

 Logarithmic meter maintains constant accuracy, even at one-tenth of full scale.

0

- Calibrated interpolator . . . effectively expands meter scale by a factor of 10... permits readings to 3 significant figures from any of the 15 preset references on each range.
- · Higher frequency measurements can be made by heterodyne techniques. This method also permits drift measure* ments up to one part in 10°, or better, when using stable frequency standards.

Readings independent of input waveform. Sensitivity: 20 mV rms from 20c to 150 kc, rising to 200 mv at 3c and 1.5 Mc.

Built-in calibration.

Type 1142-A **Frequency Meter and** Discriminator ... \$495 DISCRIMINATOR Output: 15v, full scale, on all ranges

- Low Noise: Residual fm more than 100 db below full output
- Linearity: Same as output current accuracy statement

RECORDER OUTPUTS

 Adjustable output provides current proportional to input frequency up to 5 ma to drive recorders.

Interpolator output for high-impedance recorders provides voltage proportional to frequency deviation from preset references.

LOS ANGELES

Los Angeles HOllywood 9-6201

Write For Complete Information

CHICAGO Abington most 4-7419 HA Circle 41 on Inquiry Card

GENERAL RADIO COMPANY WEST CONCORD, MASSACHUSETTS PHILADELPHIA WASHINGTON, D.C. Silver Spring JUniper 5-1088

SAN FRANCISCO Los Altos WHitecliff 8-8233

al Instru In Electronics

> IN CANADA CHerry 6-2171

NEW YORK, WOrk 4-2722 NEW JERSEY, Ridgofield, Willingy 3-3140 Oak Park Village 8-9400

In planning the new control room for their famous Stage 6, Paramount Television specified only the best equipment manufactured. Included in this choice. naturally, were Conrac videomonitors. Why Conrac? "Because of their unfailing ability to display all the information just as it is, without distortion, and do it dependably day after day after day," is the way John Silva put it. Whether you're building a new facility or expanding your present operation, it will pay you, too, to select Conrac - the finest in video monitoring equipment.

"For our new control room, CONRAC MONITORS were the natural choice..."

EVERY CONRAC MONITOR FROM 8" THROUGH 27" BROADCAST

OR UTILITY includes these

important features:

- ★ Video response flat to 10 megacycles
- + DC restorer with "In-Out" switch * Provision for operation from external
- sync with selector switch
- ★ Video line terminating resistor and switch

GENERAL ELECTRIC

VISUAL ELECTRONICS

AMPEX and

Conrac Monitors Are Distributed by - RCA

Makers of Fine Fleetwood Home Television Systems

Dept. K. Glendora, California

64

TELEPHONE: COVINA, CALIFORNIA, EDGEWOOD 5-0541

Books

(Continued from page 62)

in 3-dimensional space in the gravitational field as its sole environment. The writing is directed at graduatelevel engineering scientists who are not necessarily specialists in any of the relevant fields mentioned above.

The problems discussed include the most recent ballistic missile guidance, where classification permits, or the use of gyros in geometrical stabilization is given a unique treatment.

The book is tutorial, with the emphasis on the growth of engineering ideas in the field and the relationships of these concepts. It does not attempt to set up categories of systems except in a broad and general manner and it does not break inertial guidance efforts up into categories of activity. Rather, the underlying similarities and differences of various engineering approaches are discussed.

Management Control Systems

Edited by Danold G. Malcolm and Allen J. Ruwe, Published 1960 by John Wiley & Sons, Inc., 440 Fourth Are., New York 16, 375 pages. Price §2.25.

Consolidating expert testimony on management controls by some thirty experienced individuals in all areas of management, the editors and contributors have constructed a case where "designed" controls to produce better results in management controls systems and management patterns now and for the long range future. Within this thesis the problem of designing adequate control is given careful consideration, especially in relation to the fact that the design of systems is currently at best the systematic process rather than one where analytical evaluation is possible.

Great attention of course is given to computers and their role in this problem. Contributors to this symposium describe and weigh the advantages of using computer applications to simulate company activities so as to create a management-laboratory where the effects of policy and procedures can be tested and evaluated prior to their adoption.

This book is actually the proceed-ings of a symposium held at the System Development Corp., Santa Monica, Calif., July 29-31, 1959.

Frequency-Power Formulas

By Paul Penfield, Jr. Published 1960 by The Technology Press. Massochuserts Institute of Technology and John Wiley & Sons, Inc., 440 Fourth Ave., New York 16, 168 pages. Price \$4.00.

This book is the first systematical and general treatment of frequencypower formulas.

The book centers on the formulas announced in 1956 by J. M. Manley and H. E. Rowe of the Bell Telephone Laboratories, and asks, "What systems obey the Manley-Rowe formulas

Circle 43 on Inquiry Card -

Mercury-wetted contact relays, steel-enclosed and ready for me Clare reliability in operation, combined with new ease of application ar test records of over 10 billion operations, without maintenance or chan cases, they're sturdy, magnetically shielded, easily replaceable.

Choose either the standard Clare HG relay, or the HGS—super-fast an ience and increased component-density with these Clare Relay mod

Now you can mount CLARE BILLION-OPERATION RELAYS on your own printed circuit board

Typical Clare mercury-wetted relay steel-enclosed modules for circuit-board mounting, From top: HGSM Relay Module, HGM Relay Module, HGPM Relay Module, Epoxy molded Relay Modules are also available. ng on your own ansembly line, give you milling. Clare HG and HGS relays have characteristics. In these new modular

ser-sensitive. You'll gain extra conven-

C.P.CLARE & CO.

MicroMatche RF Load Resistors provide the virtually reflectionless terminations needed for accurate RF power measurement. They serve many useful purposes as nonradiating RF power absorbers, particularly in lieu of antenna systems during the measurement and alignment phase of transmitter operation.

Other useful functions are in conjunction with feed-through wattmeters to form excellent absorption type wattmeters, and as a load for side-band elimination filters or high power directional couplers.

SPECIF	ICATIONS	RF LOAD RESISTORS			
MODEL NO.	PREQUENCY EANGE	RF POWER DISSIPATION (watts)	EF CONNECTOR		
601	0-3000	5	N, C or BNC		
603	0-3000	20	N, C or BNC		
633	0-3000	50	N, C or HN		
634	0-3000 150	150	N, C or HN		
635	0-3000	200	N, C or HN		
636	0-3000	600	N, C or HN		
638	0-2000	6000	31/4" flange		

Many other special models have been designed and manufactured to meet your particular space and input connection requirements.

rmation on RF Loads, Directional Cauplers, Tuners, and RF Wattmaters, write:

Circle 44 on Inquiry Card

185 N. MAIN STREET, BRISTOL, CONN. SUBSIDIARY OF

Books

(Continued from page 64)

and how can these formulas be extended?" The answer is that the formulas are obeyed by any system with an energy-state function, and in particular by distributed systems that obey Hamilton's principle. The book also describes three other types of frequency-power formulas that have equal theoretical standing with the Manley-Rowe type of formulas. although they have fewer practical uses.

Vacuum Technology Transactions, 6th Vol.

Edited by C. Robert Meissner, Published 1960 by Pergamon Press, Inc., 122 E. 55th St., New York 22, 872 pages, Price \$17.50.

This volume contains the authoritative proceedings of the 6th National Symposium sponsored by the American Vacuum Society, and as such is the only completely up-to-date review of progress in this field.

Treatises in particle accelerators, chemistry, electronics, human food refinements, metallergy, physics of structures, studies of surfaces and materials and in thermodynamics are included as well as engineering accomplishments. Instrumentation of systems, the active fields of thin film research, and new methods of vacuum pumping are presented.

Books Received

General Electric Transistor Manual, 5th Ed., including Tunnel Diodes

Published 1960 by General Electric Ca., Semi-conductor Products Dept., Syrocuse, N. Y. 329 pages, spiral bound. Price \$1.00.

Repairing Transistor Radios

By S. Libes. Published by John F. Rider. Publisher. Inc., 116 W. 14th St., New York 11, 168 pages, paper bound. Price \$3.50.

Tubes and Circuits

By George J. Christ. Published 1960 by Gerns-back Library, Inc., 154 W. 14th St., New York 11, 192 pages, paper bound. Price \$3.45.

Using and Understanding Probes

By Rudolph F. Graf. Published 1960 by Howard W. Sams & Co., Inc., 1720 E. 38th St., In-dianapolis 6, Ind. 190 pages, paper bound. Price \$3.95.

Proceedings of the National Electronics Conference, Vol. XVI.

Published 1960 by National Electronics Conference Inc., 228 N. LaSalle St., Chicogo, III. About 900 pages. Price \$6.00.

Selection and Application of Semiconductor Devices, ARINC Spec. No. 409

Published 1960 by Aeronautical Radio, Inc., 1700 K St., N.W., Washington 6, D. C. 49 pages. paper bound, Price \$1.00. (Continued on page 70)

ELECTRONIC INDUSTRIES . January 1961

66

SOME VERY IMPORTANT ODDS ... AND ENDS

What odds will you accept that your circuitry connections perform with absolute reliability, every time you need them? Chances are you demand odds approaching 100 percent in your favor—you cannot afford a compromise with precision in the thousands of terminals in your equipment.

AMP INCORPORATED has a single task: to make wire terminations so reliable that the odds on failure at the end of your wires are zero.

AMP makes wire terminations—15,000 solderless, snowflake-different kinds of them for any circuit connection anywhere in the world, backed by 1800 patents issued or pending in the U.S.A. and 18 other countries. It makes the tools to apply its terminals to any size, shape or kind of wire. It makes these products in the U.S., and in Great Britain. France, Holland, West Germany, Italy, Australia, and Japan, for distribution anywhere, to any industry.

For the unabridged AMP story, write for our Selectalog and Autolog catalogs.

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA

AMP products and engineering assistance are available through subsidiary companies in: Australia • Canada • England • France • Melland • Italy • Japan • Mesice • West Garmony

ELECTRONIC INDUSTRIES . January 1961

THIS IS A BETTER LATCHING RELAY

Better? Yes, in several ways. Bifurcated Contacts, for example, give improved reliability, especially in dry circuits. Contacts will not open during vibrations of 30Gs, 55 to 2500 cps. A special method of sealing cover to base eliminates flux contamination of the contacts. And there are more. Here is Potter & Brumfield's newest member of a distinguished family of micro-miniature relays: the FL Series.

Expressly designed for printed circuit applications, this DPDT, 3 amperes ((a) 30V DC) latching relay lies parallel to the mounting surface. Its height, when mounted, is only .485°, thus circuit boards may be stacked closer. Mounting can usually be accomplished without studs or brackets, simplifying installation.

The FL will remain firmly latched in either armature position without applied power, a significant advantage where power is limited and long relay "on" times are required. This relay may be operated by:

Pulsing each coil alternately (observing coil polarity), or
Connecting the coils in series and operating from a

reversing (polarized) source. Write for complete information or call your nearest P&B representative.

NHY

FL SERIES SPECIFICATIONS

Sheck: 100 Gs for 11 milliseconds. No contact openings,

Vibration: .195", no contact openings. 10 to 55 cps. 30 Gs from 55 to 2500 cps.

Pull-let: 150 milliwatts maximum (standard) at 25° C. 80 milliwatts maximum (special) at 25° C.

Operate Time: 3 milliseconds maximum at nominal voltage at 25° C.

Transfer Time: 0.5 millisecond maximum at nominal voltage at 25° C.

Temperature Ranges =65° C to +125° C. Ierminals: Plug-in pins.

Dimensions: L 1.100° Max. — W. 925″ Max. H. .485° Max. Hermetically sealed only.

the the

(Letching)

Other P48 micro-miniature relays include conventional and latching models in crystal cases with a wide range of terminals and mountings. All are made in a near-surgically clean production area under the exacting requirements of our Intensified Control and Reliability program.

SL 11 DB (Latching)

PAS STANDARD RELAYS ARE AVAILABLE AT YOUR LOCAL ELECTRONIC PARTS DISTRIBUTOR

IN CANADA: POTTER&BRUMFIELD CANADA LTD., GUELPH, ONTARIO

for switches quick

make a quick switch to Centralab

The switch you need is available *fast* from CENTRALAB. From the simplest general purpose units to the most highly specialized, you get speedy service on samples, quotations, and production.

In fact, on a wide variety of standard switches you can get immediate local delivery, in industrial quantities, at factory prices — from your near-by CENTRALAB distributor.

Write today for CENTRALAB's unique Switch Visualizer (which simulates actual switch operation). Used in conjunction with our detailed layout sheet, it simplifies and speeds up switch design—for you, and for us. We'll also send along a copy of Catalog 42-405, listing detailed electrical and mechanical specifications on all CENTRALAB switches and including a complete listing of all standard types available for immediate delivery.

> The Electronics Division of Globe-Union Inc. 938 E. Keefe Avenue • Milwaukee 1, Wisconsin Centralab Canada Ltd. • Ajax, Ontario

Circle 47 on Inquiry Card

Gives you accurate, continuously variable voltage outputs

0 to 10 v RMS, 1000 cps 0 to 10 v $\stackrel{PEAK}{to}_{to}$, 1000 cps 0 to 10 v $\stackrel{PEAK}{to}_{PEAK}$, 1000 cps 0 to 10 v DC Especially useful for checking accuracy

of laboratory voltmeters and oscillographs

Ballantine's Model 420 Calibrator has proven to be an extremely useful instrument for quickly checking the calibration accuracy of voltmeters and oscillographs.

Its long term stability is such that you can rely on it for better than $\frac{1}{4}$ % when using it with a calibration chart, and $\frac{1}{2}$ % without the chart. Accuracy checks can be made with it in less than a minute. This will help you to reduce materially the out-of-service time for voltmeters that otherwise might have to be sent to a central calibration department.

Price: \$365

BALLANTINE MODEL 420-AC-DC CALIBRATOR

SPECIFICATIONS

Internal Impedance of Outputs: 2 to 20 ohms over range 0 to 10 v, 1000 cps output; less than 5000 ohms on dc output.

Distortion and Hum: Less than 0.25%.

Setting Resolution: Approaches 0.01% above 10 mv. Power Supply: 115 v, 50-60 cps, 35 watts; 230 v, 50-60 cps on request.

Dimensions: 6" h, 63/4" w, 107/8" d.

Write for brochure giving many more details

CHECK WITH BALLANTINE FIRST FOR LABORATORY AC VACUUM FUBE VOLTMETERS, REGARDLESS OF YOUR REQUIREMENTS FOR AMPLITUDE, PREQUENCY, OR WAYEFORM, WE WAYE A LABEE LINE, WITH ADDITIONS EACH YEAR, ALSO AC/OC AND DC AC INVERTERS, CALIBRATOR, CALIBRATED WIDE BAND AT AMPLIFER, DIRECT-READING EARACITANCE MEETER, OTHER ACCESSORIES.

Circle 48 on Inquiry Card

Books

(Continued from page 66)

GOVERNMENTAL PUBLICATIONS

Orders for these reports should be addressed to Office of Technical Services, U. S. Department of Commerce. Washington 25, D. C. Make check or money order payable to "OTS, Dept. of Commerce." Prepayment is required. Use complete title and PB number for each report ordered.

A Versatile Printed Circuit Switch for Application in Laboratory and in Production.

By W. H. Hoffman, Jr. 27 pages. PB161458. Price \$1.00.

Junction Transistor Measurements and Practical Standards

By B. Reich. 20 pages. PB161469. Price 756.

Theoretical and Experimental Research in Thermoelectricity. 163 pages. P8161468, Price \$3.00.

Human Engineering Bibliography 1957-1958.

235 pages. PB161125. Price \$5.00.

Human Engineering in the Navy 1959 By P. G. Cheatham. 14 pages. PB161428, Price 504.

A Method for Performing Human Engineering Analysis of Weapon Systems.

By A. Shapero, 71 pages, PB161660. Price \$2.00.

Status of Electronic Microminiaturization

By M. J. Doctor. 28 pages. PB161674. Price 754.

A Simplified Electronic Tracking Apparatus (SETA)

By P. Gain and P. M. Fitts, 17 pages. PB161550 Price 50g.

Thermoelectricity Abstracts. This is the third in the series. 120 pages. PB161301. Price \$2.50.

Symposium on Superconductive Techniques for Computing Systems 418 pages. PB161763. Price \$4.50.

Fundamentals of Ultrasonic Welding (Phase I)

By J. B. Jones, c. al. 99 pages. PB161677. Price \$2.50.

Research and Development Leading to the Establishment of Ultrasonic Test Standards for Aircraft Materials.

By G. L. Cross, et al. 147 pages. PB161753. Price \$2.75.

Transistorized Four-Segment Commutator for a Direct-Current Machine.

Ry F. L. Schwartz, 47 pages, PB161721, Price \$1.25.

Tung-Sol transistors meet tight specs of FLITE-TRONICS miniature airborne power supply

Flite-Tronics' miniaturized PC-8 airborne power supply is fast becoming standard equipment aboard many commercial, private and military aircraft. More and more aircraft designers, seeking means of eliminating the costly maintenance problems associated with dynamotors, are replacing them with these all-transistorized Flite-Tronics units. Moreover, the PC-8 provides large-scale reductions in weight and volume over rotary gear while sharply curtailing power drain losses.

Heart of these bantamweight power supplies is Tung-Sol 2N459 germanium power transistor. Tung-Sol made an all-out effort to meet the exceedingly difficult specifications laid down by Flite-Tronics for their high reliability equipment. This is how Flite-Tronics reported the results: "The ability of Tung-Sol transistors to meet the required performance levels is largely responsible for the success of the PC-8. We have had no equipment failures whatsoever from these transistors."

If you need the space-saving, power-saving features of semiconductors, or if your design calls for tubes, you can be assured of premium performance when you specify Tung-Sol. And Tung-Sol makes both to a single standard of unexcelled quality. While your equipment is in the planning stage contact Tung-Sol application engineers. They will gladly assess your circuitry and give you an impartial recommendation for the component complement that most efficiently answers your design needs. Tung-Sol Electric Inc., Newark 4, N. J. TWX:NK193

Technical information available through Atlanta, Ga.; Columbus, Ohio; Culver City, Calif.; Dallas, Texas; Denver, Colo.; Detroit, Mich.; Irvington, N. J.; Melrose Park, Ill.; Newark, N. J.; Philadelphia, Pa.; Seattle, Wash. In Canada: Abbey Electronics, Toronto, Ontario.

NOW FROM BORG, MAKER OF FAMOUS MICROPOTS, COMES AN IMPORTANT BREAKTHROUGH IN THE FIELD OF MINIATURIZED PRECISION POTENTIOMETERS

A new concept in the field of miniature precision potentiometers Borg 2100 Series Micropots! Only 1/8" diameter, these new Micropots are wirewound, multiturn and linear. Housings are aluminum for maximum heat dissipation and are completely sealed against sand, dust and moisture. Permanent concentricity is assured. Terminals are gold plated for perfect solderability and are color coded to identify function! Available in ten and three-turn models, the 2100 Series can be ganged up to three units. Standard resistance ranges of from 25 to 120,000 ohms for ten-turn models, and from 10 to 40,000 ohms for three-turn models are available. Other resistances on special order. Let us send you complete information on new Borg 2100 Series Micropots today!

3.TURN

SIZE

BORG EQUIPMENT DIVISION Amphenol-Borg Electronics Corporation JANESVILLE, WISCONSIN Phone PLeesant 4-6616

Write for complete engineering data . . . ask for Catalog Sheets BED-A160 and BED-A161

Mechanical Rotationten turn: $3600^{\circ} + 5^{\circ} - 0^{\circ *}$; three turn: $1080^{\circ} + 5^{\circ} - 0^{\circ *}$ Electrical Rotationten turn: $3600^{\circ} + 5^{\circ} - 0^{\circ *}$; three turn: $1080^{\circ} + 5^{\circ} - 0^{\circ *}$ Total Resistance Rangeten turn:25 to 120,000 ohms**; three turn:10 to 40,000 ohms**Standard Linearityten turn: $\pm 0.5\%$ Temperature Range -55° C to 125°C

These tolerances are identical.
Tolerances: ten-turn - 25 to 50 ohms ± 10%; 100 to 120,000 ohms ± 3%; 120,000 ohms ± 5%.
three-turn - 10 to 30 ohms ± 10%; 100 to 40,000 ohms ± 3%.

Circle 50 on Inquiry Card

2012/0

.

Reliability in volume...

Clevite's rectifices find binad use as general purpose diodes in computers and as rectifiers in magnetic amplifiers dc to dc converters and power supplies.

They are particularly useful in airborne applicationwhere switching of equipment may generate high voltage transients in the line which would burn out redurary diodes. Designeit for maximum reliability. Clevite rectitiers provide high dissipation = 600 mw = high voltage up to 600 v = high temperature = up to 150 ma at 150 C.

Where fast switching is not required, these rectifiers offer definite advantages in size, costs and superior overload protection. They are available in military typiconforming to MIL E 1 1143 (USAF)

Send for bulletin 8217-38

DIFFUSED SILICON RECTIFIERS

CLEVITE

CLEVITE TRANSISTOR

• THE S-PLANE AS AN AID TO FILTER DESIGN

The complex frequency plane, or as it is known, the S-plane, plays an important role in modern circuit theory and related fields. It is the aim of this paper to illustrate the usefulness of the S-plane in the design of single and double-tuned filters.

NOMOGRAPH FOR POTENTIOMETER LOADING

Most nomographs for potentiometer loading assume that a known voltage is applied to a potentiometer. This paper describes the increasingly important case when a known current is used. The nomograph gives the numerical value of the loading error so that the output can be corrected.

CONSIDERATIONS IN DESIGNING TWO MILLIMETER WAVE COMPONENTS

Lack of a self-excited coherent source of millimeter power has led to the design of crystal harmonic generators. Sufficient signal has been obtained for the construction and calibration of impedance meters, mode converters, detectors, attenuators, tuners, phase shifters, etc. Novel design and construction techniques are described.

• SILICON PHOTO CELLS FOR LOW LIGHT APPLICATIONS

Analyzing the characteristics of silicon photocells in low-light sensing applications such as perforated tape and punched card data reading systems. The practicability of these devices in installations where mechanical sensing is now used is demonstrated.

Plus all our other regular departments

Our regular editorial departments are designed to provide readers with an up-to-the-minute summary of world wide important electronic events. Don't miss Radarscope, As We Go To Press, Electronic Shorts, Coming Events, El Totals, Snapshots of the Electronic Industries, El International, News, Briefs, Tele-Tips, Books, Representatives News, International Electronic Sources, Personals, etc.

COMING SOON-

• THE 1961 ANNUAL ALL-REFERENCE ISSUE

The fourth consecutive annual edition containing year-round technical reference information for electronic engineers. The editorial staff is already at work compiling and selecting data for this issue. Suggestions from user-readers for new topics and compilations to be included will be given careful consideration. THERE is great interest in automatic test equipment for guided missiles, aircraft, and other complex electronic and electromechanical systems—particularly in military applications.

Here we will discuss some of the problems involved in designing a versatile, high-speed, fully automatic missile checkout system to be used in the field by unskilled personnel. The problems treated are by no means confined to missiles only; they are inherent in the concept of automatic testing, and they are encountered in any project of similar scope.

This work is based on studies performed by a group of test equipment designers at Hughes Aircraft Co. It does not represent an existing system, although many of the circuits and sub-systems were built and tested. In some cases, an indication is given of the degree of complexity or amount of hardware required for a given application.

The decision as to whether a given system of test equipment should be manually operated, semi-automatic, or fully automatic involves many technical, economic, or military factors. This article considers only the most challenging (and most interesting, alternative; namely, complete automation together with other required capabilities listed below.

Brief Description of Concept

Here are the design objectives to be met:

1. The testing is to be performed at a moderately high rate of speed, approximately five tests per second.

2. The testing is to be fully automatic requiring no decisions or actions on the part of the operator. (A possible exception occurs if the missile, or other device being tested, requires some mechanical or electrical adjustments. In this case, the equipment must stop and wait while the adjustments are performed by the operator.)

3. Test results are to be displayed in Go-No-Go and Low-Go-High form and also as a decimal number giving the actual value of the measurement. A permanent record is to be printed or punched showing the results of each test.

4. All quantities to be measured are transduced into time, frequency, or voltage. Scaling circuits and analog-to digital converters (ADC's) convert the information into three binary coded decimal (BCD) digits appearing on twelve wires.

5. The system must be able to measure doubleended or "floating" voltages.

6. The system must be able to perform the arithmetic operations of comparison, addition, and subtraction.

7. The testing is to be "random access." This means that the order of testing or the tests to be performed may be changed by merely changing the program. The following information, in particular, is to be furnished by the program (rather than being permanently "built into" the equipment):

a. The two test points at which a measurement is to be performed.

b. The high and low acceptance limits of three BCD digits each.

c. The type of measurement to be performed, and the proper scale factors.

Some Typical Problems in the

Design of

By JEROME E. TOFFLER

Member of Tech. Staff Hughes Aircraft Co. P. O. Box 90902, Airport Sta. Los Angeles 45. Calif.

d. The stimuli which are to be supplied for the test being performed.

e. The number of the test.

Proposed Hardware

Below is a listing of methods of meeting the above requirements.

These are also indicated in the block diagram of Fig. 1.

1. The program is in the form of standard, eight hole, punched mylar tape. A high speed, photoelectric tape reader reads the information for a test into shift registers. A test begins when the required information has arrived in the registers.

2. Selection of test points is performed by a $10 \times 10 \times 6$ crossbar switch. This device is similar to those used in modern telephone exchanges, and is described in Ref. 1. The 600 possible contacts on the crossbar switch are allotted as follows: 400 for selection of the test point on the high or "hot" side and 200 for selection of the test point on the common or reference side.

3. Selection of stimuli (mechanical, electrical, microwave, hydraulic, etc.) is performed by 128 electromechanical relays. The equipment must be able to apply or remove any number of these stimuli at any time and in any order called out by the program.

4. Two ADC's are used: one for time and frequency, and one for voltage. All voltages are scaled to the range of 0 to 1 volt before entering the voltage ADC.

5. For reasons of accuracy, flexibility, and speed, digital components and techniques are used throughout. In particular, a digital arithmetic unit is used for addition, subtraction, and comparison.

ELECTRONIC INDUSTRIES - January 1961

Presently there is a great interest in automatic test equipment for complex systems. Some of the problems involved in the design of flexible, high-speed, fully automatic checkout systems for use by unskilled personnel are described and discussed here.

Automatic Test Equipment

Perhaps the best way to understand and appreciate the design considerations is to analyze some of the commands which must be included in the program for each test. The following assignments are made for holes (binary bits) on a frame of the tape:

1. High acceptance limit—12 bit BCD, representing three decimal digits, plus one bit for sign (plus or minus).

2. Low acceptance limit—same number of bits as for high acceptance limit.

3. Measurement scale—3 bits. This information determines the scale factors which must be applied to voltage, resistance, time, and frequency to bring them within ranges where they can be accurately measured. It also indicates location of the decimal point in test results. There are eight scale factors which can be selected: 1, 10, 100, \ldots 10,000,000.

4. Test point selection—12 bits. Four bits are used to select the horizontal coordinate on the crossbar switch, four more to select the vertical coordinate,

ELECTRONIC INDUSTRIES . January 1961

Automatic Testers (Continued)

and four to select the proper levels on the switch for the high and low test points.

5. Measurement type — 4 bits. This determines which type of measurement is to be made. The types are as follows:

a. dc voltage	b. ohms (dc resistance)
c. dc voltage (floating)	d. time
e. ac peak voltage	f. frequency
g. ac RMS voltage	

Provision is also made for two types of "special" measurements using external equipment, and two spares.

7. Stimuli control—8 bits. Seven bits are used to select one out of the 128 Stimulus Control relays; and one bit is used to determine whether the stimulus is to be applied or removed.

8. ADC select—one bit. This bit determines whether the desired test result is to be on the 12 wires from the Voltage ADC or the 12 from the Time ADC (counter.)

9. Time delay—8 bits. This allows for a preset delay of 0 to 25.5 sec. in increments of 0.1 sec. for required timing functions.

10. Arithmetic and comparison operations — approximately 12 bits, depending on various alternative methods which are available. This subject is discussed below in more detail.

11. Number of the test being performed-12 bit BCD representing three decimal digits.

Major Problem Areas

The so-called major problems to be considered fall into three general categories:

1. Problems in which the solutions are apparent but which add enormously to overall system complexity;

2. Problems which require special equipment not available on today's market, leading to costly and timeconsuming development programs;

3. Problems whose solutions are blocked by the state of the art or by more fundamental limitations, such as the laws of physics. Examples are given below:

Problem 1-Encoding & Decoding

This type of problem, which is an example of the first category listed above, occurs in selection of the Stimuli Control relays. Seven bits of information are used to select any of 128 (2^7) relays. One other bit determines whether the relay is to be energized or deenergized. A solution (although not necessarily the optimum one) can be readily determined. However, it will be found that the number of components required (transistor or diode gates, inverting amplifiers, power amplifiers, flip-flops, etc.) comes as an unpleasant surprise to most engineers, particularly those who are working on a limited budget. One solution involved 314 packaged circuits at an average cost of \$30 each.

Similar problems occur in selecting the desired test points selecting the proper scale factors, and in general, any case in which n bits are used to control 2^n distinct conditions.

Other encoding-decoding problems occur because all data which is displayed or printed must be in decimal form, while the tape commands and arithmetic operations are based on a BCD code. Furthermore, many types of measuring equipment provide decimal readout, or use a different code or different voltage levels than those required. These cases all require some form of "conversion" equipment to insure that the signals are of the proper form and magnitude in various portions of the equipment.

Problem 2-Modification of Parts

A good example of this problem is the counter required for time and frequency measurements, and precise timing operations. A number of excellent counters are available which have the necessary capabilities. However, they are controlled by manually operated rotary switches on the front panel. For the present application, the counter must be controlled remotely with binary information.

A remotely controlled counter is not being built commercially simply because there is insufficient demand for it. This means that a standard counter must be purchased, "torn apart," and provided with the necessary relays which will perform the functions normally performed by the front panel switches. These modifications can be a tedious, time-consuming task for both electrical and mechanical designers.

Problem 3-Original Development

Some of the instruments involved are so unique in function that it is easier to design from "scratch" than to attempt to modify existing commercial equipment. An example is the ohmmeter circuitry.

The ohmmeter is required to measure 4 ranges of resistance with full scale values of 10 ohms, 1000 ohms, 100,000 ohms, and 10 megohms. To operate compatibly with the Voltage ADC, the ohmmeter must deliver a voltage proportional to resistance with a maximum value of 1.0 v. and an accuracy of 1% in any of the above ranges. This problem can be solved by using a dc "analog computing type" feedback amplifier. By including the unknown resistance as part of the feedback loop, the overall amplifier gain is made exactly proportional to the value of this resistance. Hence, if an accurately known voltage is applied to the amplifier input, the output is proportional to the resistance value. Other examples of special circuitry are discussed below in connection with transients.

Problem 4-Transients

Transient problems are closely related to the desired operating speed of the equipment. Two typical examples will be given.

Example 1. A dc voltage has a 60 CPS ac voltage superimposed on it. It is desired to measure the average dc value. However, only 50 msec. can be allowed for the voltage to reach "steady state." It is seen that a basic conflict exists here. If adequate filtering is provided for the 60 CPS, there is difficulty in reaching the dc steady state, since filtering implies delay. Insufficient filtering means that the dc value will fluctuate and cause erroneous readings. The problem can be relieved somewhat by using special filters, perhaps requiring isolating amplifiers between sections. Properly designed filters can provide the optimum rise time of the dc voltage for a given attenuation of the ac voltage.

Example 2. Same conditions as above, except that this time it is desired to measure the ac voltage, rather than the dc. The obvious solution is to use an ordinary RC coupling network. This creates a serious problem however, due to the transient introduced by the dc step function. It is generally known that a transient of this nature will decay to 1% of its initial value in 5 RC time constants. In the present case, this might not be long enough. If the dc voltage is 100 v. and the superimposed ac is 1 v. at least 10 time constants are required to reduce the dc transient to a suitably low value. Attempting to solve the problem by reducing the size of the RC time constant causes undesirable attenuation of the ac signal. Again, special filters may be required.

An additional problem introduced by filters is the energy storage due to charges on capacitors and fluxlinkages in inductors. This energy must be removed between successive measurements which use the same filter. Special "reset" circuitry may be required to insure zero initial conditions at the start of each measurement.

For cases in which high operating speed is the most important requirement, the use of "strain gage" techniques should be considered. In this system, the filters or the coupling networks are permanently connected to the pins at which it is desired to make measurements. Hence, the desired voltages are always present, waiting to be read. Although it neatly solves the transients problem, this method causes other dif-

					. 🔺	REPR	INT						
of	this	article	can b	e obta	ined	l by w	ritin	g o	n cor	npany	letter	rhead	d ti
					Т	he Ed	litor						
EI	ECT	RONIC		USTR	ES.	Ches	tnut	G	56th	Sts.	Phila.	39.	Pa

ficulties. For example, if it is necessary to measure ac voltage and later measure dc resistance at the same pin, two connections to the pin are required, since dc resistance cannot be measured through the coupling capacitor.

Problem 5-Double-ended Measurements To be completely flexible, the test equipment should be capable of making double ended measurements, particularly of dc voltage. As an example, suppose that two wires are 99 and 101 volts above ground, respectively; and it is desired to measure the difference between them. This requires a differential amplifier with an allowable common mode voltage of at least 100 v., and an overall gain of $\frac{1}{2}$ or less (assuming all voltages are to be converted to the range of 0-1 v.). Suppose that another measurement involves a differential voltage of 50 v. In this case, the overall amplifier gain must be 1/50 or less. Unfortunately, the gain of a stabilized differential amplifier cannot be easily and precisely changed, as in the single-ended case; and scale changing becomes a

Automatic Testers (Continued)

serious problem. Furthermore, the requirement for high common mode voltage immediately disqualifies many existing differential amplifiers, particularly those using transistors.

Other possible solutions include:

1. a chopper to "chop" between the two lines, thus converting the dc to ac which can be passed through a capacitor to block the common mode voltage;

2. a single-ended amplifier attached to each line and their output subtracted;

3. a differential amplifier with a fixed gain to convert the differential voltage to single-ended, with scale changing performed elsewhere. Unfortunately, these solutions all present difficulties, such as transients, scale changing, matching of amplifiers, or insufficient output range. The problems are most severe when the desired differential signal is either very small or very large compared to the common mode voltage.

It is hardly necessary to point out that measurement of double-ended signals increases the required number of test points, and makes test point selection more complicated.

Problem 6-Timing & Sequencing

Proper timing is probably the most obvious and fundamental requirement in automatic checkout equipment. A few examples of timing functions are listed below.

1. If instructions are read off a tape into storage registers, nothing must happen until the instructions have filled the registers, at which time a "start" signal must initiate the test.

2. The desired test points must be selected, and the proper stimuli must be applied or removed at the start of a test. If these operations are performed with relays or other electromechanical devices, it is necessary to wait for the pull-in or drop-out time. Also, it may be necessary to allow time for the stimuli to take effect (example: build-up of hydraulic pressure, rolling or tilting motions, etc.)

3. Time must be allowed for transients to decay. This problem was discussed above.

4. Time must be allowed for the comparison circuits to decide whether the measurement is a "pass" or a "fail."

5. Time must be allowed for the output devices to print or punch the test results.

6. Time must be allowed for "reset" in preparation for the next test.

All of these functions, and many more, must be carried out by means of "preset" or "internal" timing signals. Preset timing signals are derived from the punched tape directly, or from fixed timers. Fixed timers include devices such as delay lines, monostable multivibrators, counters, or time delay relays, all of which provide an accurate, known delay interval.

For example, a 50 msec timer could be used to delay the operation of the Voltage ADC until transients had decayed, provided all circuits are designed so that transients will decay within this period.

Internal timing signals are derived from devices

Automatic Testers (Concluded)

which have the capability of indicating the end of their cycle. Examples: A crossbar switch has auxiliary contacts which can be used to indicate the selection of a cross-point. The Voltage ADC puts out a pulse when its analog-to digital conversion has been completed. The "pass" or "fail" signals activate the display devices. In all these cases, the delay is not fixed, but is determined by the time required to complete a certain event.

Problem 7—Arithmetic Operations

The arithmetic, or evaluation, subsystem performs the tasks of tolerance comparison, addition, and subtraction. The problems involved are essentially the same as in digital computer design, a few of which are listed below:

1. Selecting a suitable code (decimal, pure binary, BCD, etc.) and arithmetic system compatible with the code.

2. Providing storage registers for high and low tolerances, test values, numbers to be added or subtracted, sums and differences. Three storage registers of 12 bits each are used for this purpose.

3. Accounting for the sign (plus or minus) of all quantities involved.

4. Providing proper timing and reset signals.

5. Checking of decimal points to distinguish, for example, between 43.7 volts and 0.437 volts.

Since a decimal readout is required, and since the items of hardware selected use the 8-4-2-1 BCD code, it appears almost mandatory to perform arithmetic operations with this code. Any other alternative involves costly, complex conversion equipment.

REFERENCE PACES

The pages in this section are perforated for easy re moval and retention as valuable reference material. SOMETHING NEW HAS BEEN ADDED An extra-wide margin is now provided to permit them to be punched with a standard three-holepunch without obliterating any of the text. They can be filed in standard three-hole netebooks or folders

Performing addition and subtraction using the 8-4-2-1 code creates problems regarding the propagation and utilization of "carries," also the problem of obtaining a "nines complement" for subtraction, since this code is not self-complementing. These topics, as well as many other aspects of decimal addition and subtraction, are covered in Ref. 2, which considers both serial and parallel operation and mixed serialparallel systems.

Problem 8-Reliability

Generally speaking, electronic test equipment is built out of exactly the same types of hardware and circuitry as the systems being tested. Consequently, it is subject to the same maladies, even though in many cases its operating environment may be less severe.

Stated in simplified terms, the failure rate of any system is equal to the sum of the failure rates of its component parts. This means that a complex auto-

matic system can have a high failure rate (poor reliability) just because it contains a very large number of parts.

However, this disadvantage is offset by the fact that many techniques which have been developed to improve reliability of digital computers are directly applicable to digital test equipment. The following are examples:

1. Self-test routines can be included in the program to detect and isolate a malfunction very quickly.

2. Special codes can be used to detect and correct simple errors in data transmission.

3. Equipment can be duplicated or operations can be repeated, with a comparison of results.

4. Redundancies, or "forbidden combinations," can be used to indicate an error. For example, in the 8-4-2-1 code, the combinations 1010, 1011, 1100, 1101, 1110, and 1111 should not occur in normal operation.

Methods of obtaining error-free computer operation are discussed in greater detail in Ref. 3, which includes the above techniques, as well as others.

Conclusions

The above material is intended to illustrate some of the practical problems which are encountered at the "working level" of system design and circuit design. It is not intended to discourage future effort. Fortunately, in any particular system of test equipment, many of the problems discussed will not occur for the very simple reason that certain capabilities are not required. On the other hand, other features might be needed (particularly in future programs), which have not been considered here, such as:

1. All switching to be performed by solid state devices:

2. Program to be stored on a high speed magnetic drum instead of tape;

3. Diagnostic sub-routines to be included in the program to help isolate a malfunction in case a test "fails."

It is clear that a thorough investigation into capabilities which are actually needed is the most important step in the practical design of automatic test equipment (and one that is often neglected!). After the requirements have been determined, consideration can be given to additional desirable features which may be classed as "luxuries." However, as with all luxuries, they must be sacrificed if the price proves to be too high in dollars, time, or manpower.

Recent studies (Ref. 4) indicate that high speed, automatic, digital test equipment can make important contributions to the reliability of complex weapons systems. It is certain that future requirements will place ever-increasing emphasis on the words above which are underlined, and new and better solutions will be found for some of the "typical" problems.

References

1. "Crossbar Switch Applications," by Kurt Enslein. Electrical Manufacturing, April, 1958. Pages 86 thru 95. Arithmetic Operations in Digital Computers, by R. K. rds. D. Van Nostrand Co., Inc., Princeton, N. J., 1955,

2. Arun Richards. Chapter 8. 3. Logical Design of Digital Computers, by Montgomery Phister, Jr. John Wiley and Sons, Inc. New York, N. Y., 1958. Chapter 10.

"Field Testing Reliability into A Complex Weapon Sys-tem," by Robert A. Kirkman. Missile Design and Development, December, 1959. Pages 20 thru 23.

A REPRINT of this article can be obtained by writing on company letterhead to The Editor ELECTRONIC INDUSTRIES Chestnut & Soth Sts., Phila. 39, Pa

> The problems of low level input instrumentation have mushroomed with the missile era. Not only is the new terminology defined in this article but also positive suggestions are offered to eliminate the systems engineering problems involved.

For Systems Engineering ...

Designing for Low Level Inputs

By D. B. SCHNEIDER

Neff Instrument Corp. 1088 East Hamilton Rd. Duarte, California

I N any input instrumentation system, common mode voltages are always present. To prevent ground loops and to obtain the most accurate data without degradation of system accuracy due to the presence of common mode voltages, at least one of the following three criteria must be met.

- a. Provide an ungrounded source.
- b. Provide an ungrounded load.
- c. Provide an isolated amplifier.

In practice, a floating source may sometimes be provided by insulating the transducer from ground and using a floating power supply. In many cases, such as thermocouples, floating the source is impossible. Again in practice, a floating load may be provided, such as a galvanometer, but in any multi-channel telemetry or digital data system, the load ultimately reaches a common instrument ground. In the case of a grounded source and a grounded load, an isolated amplifier provides the only known method toward accurate data acquisition.

Common Mode Signals

Fig. 1 depicts a series of grounded transducers using differential amplifiers into a data system.

Assuming a copper-constantan thermocouple and a steel frame, secondary copper-iron and iron-constantan thermocouples are actually formed which generate unwanted voltages. These spurious voltages appear as common mode signals to the amplifiers. If amplifiers are used whose input and output signal lines are common, Fig. 1, ground loops are formed through the data system (see arrows). Thus, input data provided

ELECTRONIC INDUSTRIES · January 1961

to the data system is a signal equal to t_1 plus an error proportional to the difference temperature between t_1 and t_2 and not at true representation of the signal developed by the copper constantan thermocouple. This error can easily be larger than the actual signal. If an isolated amplifier is used, ground loops are broken and true temperature data is acquired.

Another example of a mandatory requirement for isolated amplifiers is in the case of strain gages using a common power supply, Fig. 2.

It is readily apparent that two arms of each bridge are parallel with the same arms of every other bridge through the amplifiers. If these are active arms, each

Fig. 1: Some grounded transducers using differential amplifiers into a data system.

Fig. 2: Strain gages using a common power supply also require isolated amplifiers.

Fig. 3: When a current path is connected between any two different ground potentials, ground loop currents will flow.

DATA

Low Level Inputs (Continued)

bridge will have an effect on every other bridge in the system. If these arms are used for temperature compensation and calibration, a similar result occurs. The only way in which these bridges can be electrically separated is to use either individual, isolated. power supplies or isolated amplifiers, or both.

Usually, ac common mode voltages are caused by large amounts of current being pumped into the ground from power sources, thereby resulting in different ground potentials. As soon as a current path is connected between any two different ground potentials, Fig. 3, ground loop currents flow.

As mentioned above, it is easy to cope with dc ground loop currents by conductive isolation. But for ac common mode, large amounts of common mode voltage and circulating current can be found and the cure becomes increasingly difficult. For example, a common mode voltage of 1 volt can be induced into 100 ft. of input signal lines by less than 10 kw of 115 volt, 60 CPS power parallel to and 1 ft. from the signal lines.

In many installations hundreds of feet of signal lines are placed in the same tunnel with many times 10 kw of 60 CPS power. Thus, several volts of common mode signal can easily result.

The usual attempt to minimize the common mode voltage is to install a large bus bar to connect grounds. In many cases, a decrease in common mode voltage has not been obtained after bus bar installation. Common mode voltages of 1 volt due to ground currents are frequently found in both ground and airborne installations; usually at the power frequencies of 60 CPS and 400 CPS, respectively. In several known cases, common mode voltages up to 5 volts have been measured. Thus it becomes imperative that we find a way to break the conductive flow of ground loop currents and reject these common mode voltages.

So far, we have discussed some of the most common causes and effects of common mode signals and have mentioned that the solution to our problem lies in the application of an isolated amplifier. Just what is an isolated amplifier? Fig. 4 shows the input section of an isolated amplifier.

Isolated Amplifier

In truth, the isolation of an amplifier is entirely dependent upon the input circuit. Therefore, the tmost care must be used in design and layout of this important section. The heart of the input circuit is the transformer. The transformer prevents conductive flow of the input signal to any other succeeding circuit.

REFERENCE PAGES

The pages in this section are perforated for easy removal and retention as valuable reference material. SOMETHING NEW HAS BEEN ADDED An extra-wide margin is now provided so as to permit

them to be punched with a standard three-hole-punch without obliterating any of the tear. They can then be filed in standard three-hole notebooks or folders

DEFINITIONS

Differential Amplifier—an amplifier whose input leads are related to circuit ground and responds to differential signals.

Isolated Amplifier—a differential amplifier whose input signal lines are conductively isolated from the output signal lines and chassis ground. An isolated amplifier is a differential amplifier. The reverse is never true.

Common Mode Rejection—the ability of an amplifier to reject a signal, common to both its input signal lines.

Common Mode Voltage—that amount of voltage common to both input lines. Usually, a maximum voltage is specified which may be applied without breaking down insulation between the input circuit and ground.

Common Mode Resistance—resistance between input signal lines and output signal lines or circuit ground. In an isolated amplifier, this is its insulation resistance. Common mode voltage and common mode resistance have no connection with the Common Mode Rejection.

Normal Mode Voltage—actual signal voltage developed by a transducer or the difference voltage between input signal lines.

Instrument Ground—any point on earth, aircraft or missile chosen as a reference.

Guard Shield—a shield which surrounds the input circuit of an amplifier.

Ground Loop—a path through which current may flow from any starting point through a system and back to the original starting point.

Extreme measures are taken to properly shield the primary of the transformer from the secondary to achieve ac isolation and rejection.

The function of these shields are as follows:

The #1 shield in Fig. 4 prevents the modulation of common mode signals by the input chopper. If common mode signals are modulated at the chopper frequency, the amplifier cannot distinguish any difference between the modulated common mode signal and the modulated normal mode signal, therefore both are amplified as signal.

Shield #2 prevents the flow of common mode currents in input signal lines so that line resistance will not produce a common mode to normal mode conversion.

Shield #3 prevents pickup in the secondary due to capacitive coupling of any common mode potential on shield #2.

Any common mode voltage produced between shield #3 and "guard shield" as shown in Fig. 4, does not produce a current flow, and therefore does not produce a voltage on input signal lines by common mode to normal mode conversion.

The ac common mode rejection figure of an amplifier actually is derived, nearly in its entirety, from the measures taken in design and shielding of the input circuit. In theory, an input transformer can be built which will produce an infinite amount of common mode rejection at any frequency. Practically, this design is limited by cost, size and weight.

Differential Amplifier

At this point, a word should be said regarding direct coupled differential amplifier approach and input signal line unbalance. In any practical installation, it is impossible to achieve perfect input signal line balance. These line unbalances can amount to several hundred ohms.

Fig. 5 shows a direct coupled differential amplifier. These amplifiers can achieve ac common mode rejection as high as 200,000 to 1 as long as the input lines remain perfectly balanced. Let us assume, however, an input impedance from either side to ground of 100,000 ohms with a 100 ohm unbalance in the input lines. Assuming a common mode rejection of 10³ for the amplifier with balanced lines, the 100 ohm line unbalance decreases the common mode rejection to 1000 to 1 at ac as well as dc. The reason is that on one line, the common mode signal is attenuated by 0.1% while not attenuated on the other line. This difference in attenuation allows the conversion of 0.1% of the common mode signal as normal mode signal. Thus one can say that in a straight forward differential amplifier, the common mode rejection capability of the amplifier is largely a function of the line balance.

Will an isolated amplifier solve all our common mode problems? No, not necessarily.

In Fig. 6, a guard shield has been brought out from the amplifier to a point just downstream from the reference couple. Some amount of distributed line capacitance will be present between input lines and the common mode generator. In this case, we have an RC filter with a 60 CPS path as shown by arrows which will cause ground loop currents to flow through the line resistances. If the RC networks are not identical in each line as is the case shown in Fig. 6. a common mode voltage drop will occur across these unequal resistances and will produce a normal mode signal from the common mode signal. No matter how good the amplifier, a common mode to normal mode conversion will occur and the system installation will be no better than the conditions imposed by the unbalanced line conditions.

"Do's and Don'ts"

Fig. 7 illustrates some of the "do's" and "don'ts"

Fig. 4: Amplifier isolation is entirely dependent on input circuit.

ELECTRONIC INDUSTRIES · January 1961

for input instrumentation system installations.

Fig. 7a shows transducers with input signal lines totally shielded. The guard shield is grounded at the transducer, the power supply and to the transducer case.

This installation is the ultimate insofar as elimination of stray pickup and common mode to normal mode conversion is concerned. The common mode rejection of this installation can approach the capability of the amplifier.

Fig. 7b illustrates an installation which is usually satisfactory and can achieve a common mode rejection better than 250,000 to 1. This setup can be used since the line resistances in thermocouples are usually very low.

Fig. 7c is an example of an installation in which it is impossible to expect better than 10,000:1 common mode rejection. In this instance, the distributed capacity between input lines and ground will be in excess of 1000 $\mu\mu$ f which will deteriorate installation common mode rejection even with the ultimate in isolated amplifiers.

Fig. 7d is an example of the "don't." In this case, by grounding the shield at the amplifier, little, if any installation common mode rejection can be achieved no matter how good the amplifier. System accuracy is anybody's guess since the guard shield degrades the input circuit instead of minimizing common mode pickup. No matter what else is done in installation the guard shield should be connected to the input lines if it is not used as in Fig. 7a.

Rules

From these examples, some rules naturally follow for obtaining the best possible installation accuracy using isolated amplifiers.

1. Always connect the guard shield to the source of common mode voltage, if possible. If not, connect

Fig. 6: When RC networks are not identical in each line, a common mode voltage drop occurs across these unequal resistances and produces a normal mode signal, no matter how good the amplifier may be.

Low Level Inputs (Continued)

the guard shield to the input lines as close as possible to the transducer.

2. Ground the guard shield and the transducer case to the low side of the power supply.

3. Never leave the shield floating. Never ground the shield at the amplifier.

4. Always use well shielded, tightly twisted pair for input cable.

From the previous discussion, it is apparent that the utmost care and thought must be given to input system installation techniques to achieve the ultimate in data acquisition accuracy.

Test Procedures

Directly related to the general problems of low level input instrumentation systems, are amplifier checkout and evaluation procedures. Since the amplifier

bears such an important relationship to the problems associated with common mode, the following test setups and procedures are strongly recommended for isolated amplifier test and evaluation.

If a large number of amplifiers are to be tested, the construction of a test box is suggested. All grounds in the test box should common at one spot and then tie to the chassis. Pick up of 60 CPS fields are assured if no thought is given to proper grounding and erroneous readings are the result. This particularly

Fig. 8: Setup to be used for input and output impedance measurements.

applies to ac common mode rejection and noise tests. In the following test set-ups, the divider networks shown are used for several reasons.

They allow the use of a signal source voltage equal to the amplifier output voltage such that the two voltages can be bucked. This, in turn enables the use of the meter as a null indicator. With the signal source voltage bucked against the amplifier output voltage, any variations in the signal source varies both the signal and amplifier output voltage. The meter thus measures only errors due to the amplifier.

Input Impedance

Refer to Fig 8 for the input impedance measurement set-up.

- 1. Adjust amplifier zero.
- 2. Set the signal source voltage equal to full scale amplifier output voltage.
- 3. Adjust amplifier gain control for meter null.
- 4. Insert R until 0.1% of amplifier full scale output appears on meter.
- 5. Input resistance approximately equal to 1000 R.

Output Impedance

Measurement for impedance output uses the same set-up as for input impedance.

- 1. Adjust amplifier zero.
- 2. Set the signal source voltage equal to full scale amplifier output voltage.
- 3. Adjust amplifier gain control for meter null.
- 4. Apply a 1000 ohm load to the amplifier output.
- 5. Output impedance approximately equal to

$$1000 \ \frac{\Delta E_{out}}{E_{out}}$$

Linearity

Measurement for linearity again uses the same setup as for input impedance.

- 1. Adjust amplifier zero.
- 2. Set the signal source voltage equal to full scale amplifier output voltage.

84

Fig. 10: Test setup for amplifier noise.

3. Adjust amplifier gain control' for meter null.

SCOPE

- 4. Vary the input signal from zero to full scale and record meter output displacement error.
- 5. Linearity equal to

GUARD

SHIELD

DC Common Mode Rejection

For testing dc common mode rejection, a dc voltage source and switch is placed between amplifier input and output lines, Fig. 9.

- 1. Short input lines to guard shield.
- 2. Connect meter to output.
- 3. Inject dc common mode signal as shown and measure output voltage change.
- 4. DC common mode rejection equal to

Fig. 11: In the measurement of high gain stability use this setup.

AC Common Mode Rejection

AC common mode rejection uses the same test set-up as for dc common mode rejection. Replace dc common mode voltage with an ac common mode generator. Replace meter on the output with a scope.

- 1. Short input lines to guard shield.
- 2. Inject ac common mode signal.
- 3. AC common mode rejection equal to

$$\frac{E_{CH} \times \text{Gain}}{\Delta E_{AC \text{ out}}}$$

Noise

The test for amplifier noise referred to the input uses Fig. 10.

ELECTRONIC INDUSTRIES . January 1961

- 1. Short input lines to guard shield and to amplifier output.
- 2. Connect scope to the output and read noise.
- 3. Noise referred to input equals

Gain Stability

In the measurement of gain stability use the set-up outlined in Fig. 11. Both zero drift and gain stability are obtained on the stripchart recorder. It is difficult to differentiate the two parameters in any test set-up. Therefore, a number of manufacturers combine the gain stability and zero drift specification.

- 1. Adjust amplifier zero.
- 2. Adjust signal source voltage equal to full scale amplifier output voltage.
- 3. Adjust amplifier gain control for null on the stripchart.
- 4. Monitor stripchart.

Zero Drift

Use the set-up in Fig. 12 for zero drift measurement.

- 1. Adjust amplifier zero.
- 2. Short input lines to guard shield and to amplifier output.
- 3. Monitor stripchart.

Frequency Response

The set-up in Fig. 13 is used for frequency response measurement.

- 1. Adjust amplifier zero.
- 2. Set signal source voltage at convenient level within linear output range of amplifier.
- 3. Adjust amplifier gain control for identical reading on meter at output of amplifier.
- 4. Observe meter reading and repeat steps 2, 3 and 4 at the next highest frequency.

Note: In this test, the meter is switched back and forth to take all readings on the same meter scale. By taking all readings on the same scale, meter inaccuracies due to changing scale are eliminated.

Fig. 13: Setup to be used for the measurement of frequency response.

85

This article is an experiment. Instead of presenting a short discussion for those familiar with Jacobians, and a long table of results for those who are not, the entire article contains only one simple network—so simple that results can be verified intuitively.

Using Jacobians for

Fig. 1: The first R-C network z-parameters are the open-circuit type.

TWO R-C combinations in cascade have been selected for network analysis. The objective is to write the Jacobians of each of the component networks; then, calculate the Jacobians of the combined network; and, finally, demonstrate the usefulness of operations concerning their frequency dependence.

Since all the z-parameters of the first network, Fig. 1, are of the open-circuit type $(i_1, i_2 \text{ independent variables, arrows into the flow graph), they can very easily$

be written from inspection. For example, z_{12} is $\frac{\partial e_1}{\partial i_2}$ and at constant i_1 , the effect on e_1 of a variation in i_2 is represented by $e_1 = i_2 \cdot R$, so $z_{12} = R$. Letting the Jacobian z = 1, the Jacobians of the network can be written.^{1.2} Since the Jacobians can be multiplied throughout by any quantity, a multiplier of sCcan be selected in order to make the expressions easier to handle. These steps are shown in Table 1.

In the same way, Jacobians of the second network, Fig. 2, are calculated, Table 2.

Note that the calculation can be checked by verifying the uniqueness condition ab + gh = yz. The operator s is used for $j\omega$. As a general rule, Jacobians should be written to include the product CR, since this represents a time constant z which has a very practical meaning.

By placing the networks of Figs. 1 and 2 in series, the network of Fig. 3 is formed.

Table 1 z - Parameters From Jacobian **Jacobians** Jacobians Inspection Ratios (With $\mathbf{z} = \mathbf{1}$) (With $\mathbf{z} = sC$) C $\int_{i_2} = (1/sC) + R$ $\mathbf{a} = R$ a = sCR= g z Z11 = $\overline{\partial i_2} |_{i_1} = R$ Fig. 2: The Jacobians for this particular network are calculated in Table 2. - b/z $\mathbf{b} = -R$ \$tt = $\frac{\partial i_2}{\partial i_1} \Big|_{i_2} = R$ 1 + sCR $\mathbf{g} = 1 + sCR$ 221 = $z_{22} = \frac{\partial r_2}{\partial i_2} \Big|_{i_1} = R$ $\mathbf{h} = R$ = h/zh = *CRy = R/sC $\mathbf{y} = \mathbf{R}$ A REPRINT $\Delta^{e} = z_{11} \cdot z_{22} - z_{12} \cdot z_{21}$ $\mathbf{z} = \mathbf{x}$ = v z 7 = 1of this article can be obtained by writing on company letterhead to $= \left(\frac{1}{R} + R\right) R - R^2 = R/sC$ The Editor ELECTRONIC INDUSTRIES Chestnut & 56th Sts., Phila 39, Pa. (Check: In the last column, ab + gh = yz.)

T. R. Nisbet

Dr. W. W. Happ

By THOMAS R. NISBET Electronic Research Engineer and DR. WILLIAM W. HAPP Staff Scientist Solid State Electronics Lockheed Missile and Space Div. Palo Alto, California

Frequency - Selective Networks

Note that the same values of R and C are used in each network; this is done to simplify the evaluation and to highlight the Jacobian technique rather than the algebra.

As indicated in the formulas previously developed for the Jacobians of cascaded networks,⁴ the required starting condition is -a' = b''; and to meet this condition, each of the Jacobians as evaluated in the last column of Table 1 must be divided by sCR.

In Table 3 are shown the Jacobians of the two individual networks, in form suitable for cascading (-a' = b''), and the calculated values of the Jacobians of the combined network are shown on the right.

Examples and verifications of the calculations follow:

$$g = g^{*}g^{''} + y^{*}z^{''} = (1 + 1/sCR) (1 + sCR) + (1/sC) sC$$

= 3 + sCR + 1/sCR

 $\mathbf{z} = \mathbf{z}'\mathbf{g}'' + \mathbf{h}'\mathbf{z}'' = (1/R) (1 + sCR) + (1) sC = 1/R + 2sC$ Verify calculations from uniqueness condition $\mathbf{ab} + \mathbf{gh} = \mathbf{yz}$ Verify from inspection of Fig. 3, $z_{11} = 1/sC + R \parallel (R + 1/sC)$

which simplifies to $\left[1 + 3sCR + (sCR)^{\dagger}\right]/sC (1 + 2sCR).$

The same result is obtained from $z_{11} = \mathbf{g}/\mathbf{z}$

From the Jacobians of the composite network. Table 3, any desired parameters or transfer functions

z – Parameters From Inspection	Jacobians (With $z = 1$)	Jacobians (With $\mathbf{z} = \mathbf{e}C$)
$z_{11} = (1/sC) + R$	$\mathbf{a} = 1/\kappa C$	a = 1
$z_{12} = 1/sC$	$\mathbf{b} = -1/sC$	b = -1
$z_{11} = 1/sC$	$\mathbf{g} = (1/sC) + R$	g = 1 + sCR
$z_{12} = 1/sC$	h = 1/sC	h = 1
	$\mathbf{y} = \mathbf{R}/\mathbf{s}\mathbf{C}$	$\mathbf{y} = R$
$\Delta^s = R/sC$	z = 1	$\mathbf{z} = sC$

Table 2

Fig. 3: The networks of Figs. 1 and 2, in series. form this circuit. The Jacobians for this composite circuit are shown in Table 3.

can readily be calculated. These uses have been covered in earlier articles.^{1, 2, 3}

Frequency Dependency

A Jacobian by itself has no specific amplitude. Nevertheless, its frequency response can be plotted usefully. This is because, using log-log paper, Jacobian ratios become the difference between two curves, and this "difference curve" has a slope that is independent of the component curves, as illustrated in Fig. 4.

For convenience, the frequency is regarded as s, although the number of cycles per second is, of course, $s/2\pi$. The slope of the curve of a quantity such as sC or sCR is obviously 1 decade per decade (or, in more familiar terms, 20 db/decade or 6 db/octave). A number can be written against each curve to represent its slope in db/decade. In subtracting two curves to find

Table 3

First Network (Fig. 1)	Second Network (Fig. 2)	Combined Network (Fig. 3)
$a^{\dagger} = 1$ $b^{\dagger} = -1$ g' = 1 + 1/sCR h' = 1 y' = 1/sC z' = 1/R	$\mathbf{a}^{"} = 1$ $\mathbf{b}^{"} = -1$ $\mathbf{g}^{"} = 1 + sCR$ $\mathbf{h}^{"} = 1$ $\mathbf{y}^{"} = R$ $\mathbf{z}^{"} = sC$	a = 1 b = -1 g = 3 + aCR + $1/aCR$ h = 2 y = R + $2/aC$ z = $1/R$ + $2sC$

ELECTRONIC INDUSTRIES · January 1961

Fig. 4: The Jacobian ratios, the difference between two curves, have a slope which is independent of the component curves.

Jacobians (Continued)

.

the curve of a ratio of two Jacobians, all that need be done is to subtract the numbers representing the slopes, Fig. 4.

The Jacobians as evaluated for the composite network need not be retained exactly but may be multiplied by any quantity, whether frequency-dependent or not. This manipulation can be performed with the object of simplifying the expressions and getting them as far as possible into terms of s and z.

Assessing the frequency dependence of a quan-

* LOG-LOG PLOT OF JACOBIANS VS. FREQUENCY, WITH SLOPES SHOWN IN db/DECADE

ELECTRONIC INDUSTRIES . January 1961

FREQUENCY (LOG SCALE)

Fig. 7 (left): Subtracting curve z from a of Table 4 gives the frequency response.

Fig. 8 (right): Waveform of the output voltage.

tity $y = 2R + sCR^2$ is done quite simply; the amplitude y at s = 0 is obviously 2R, and at $s \to \infty$ it becomes sCR^2 with the curve finally attaining a 20 db/ decade slope. The intersection of the asymptotes occurs at the solution of y = 2R and $y = sCR^2$, i.e., at $s = 2/\tau$. This gives the "frequency break point" in the asymptotic approximation of the curve, see y, Table 4.

A quantity with a term in s^2 has a 40 db/decade slope at $s \rightarrow \infty$. An example arises in the quantity $g = 1 + 3s_{\tau} + s^2\tau^2$. Beginning at s = 0, the curve has zero slope, and the asymptote is simply g = 1. If $3s_{\tau}$ is the dominant component, the slope of the center portion of the asymptote will be the same as for $g = 3s_{\tau}$; that is to say, the intersection of the asymptotes will occur at $3s_{\tau} = 1$ or $s = 1/3\tau$, and the equation of the inclined asymptote will be $g = 3s_{\tau}$. When $s^2\tau^2$ is the dominant component, the equation of the limiting asymptote will be $g = s^2\tau^2$. The intersection of these two asymptotes will occur when $3s_{\tau} = s^2\tau^2$ or $s = 3/\tau$. These details are shown in Fig. 5 and are repeated for g in Table 4.

The Jacobians of the composite network, Table 3, can be simplified by multiplying throughout by sCR and by writing $\tau = CR$. They are then as given in Table 4, where their individual frequency dependence is also shown.

The transfer function which is conventionally written as g_{21} or $e_2(s)/e_1(s)$ may be expressed as the Jacobian ratio $(e_2, i_2)/(e_1, i_2)$ or a/g. Its frequency dependence may be found by subtracting the curve g in Table 4 from that of a, with the result shown in Fig. 6.

Portions of a curve, such as that of g in Table 4, can be associated at a glance with the relative portions of the equation if the latter are arranged in ascending terms of s. Fig. 5 shows these portions individually, and it is clear that to find the height of the asymptotic structure for a/g, it is necessary only to consider the frequency corresponding to $s = 1/3\tau$, where the ordinate value for g is 1 and $a = s\tau$, as in Table 4. The height of a/g is therefore 0.33, Fig. 6.

The flat top of Fig. 6 is in fact neither an asymptote nor a tangent of the true curve of g_{11} . It serves a useful purpose, however, in locating the rest of the structure on the vertical axis, and in portraying the general shape of the curve of g_{11} . The maximum height of the true curve can be found by equating the first derivative to zero, and in this case it arises at $s = 1/\tau$ and $g_{11} = 0.2$ (instead of 0.33 as in Fig. 6).

ELECTRONIC INDUSTRIES . January 1961

Transient Response

Suppose that it is required to assess the transient response of output voltage to a step of input current. First, the function $\partial e_2/\partial i_1 \mid i_2 = (e_2, i_2) / (\hat{i}_1, \hat{i}_2) = \mathbf{a}/\mathbf{z}$ is examined. Subtracting curve z from curve a of Table 4 gives the frequency response, Fig. 7.

From the formulas in Table 4,

$$\frac{a}{z} = \frac{s \tau}{sC + 2s^2 \tau C} = \frac{R}{1 + (2CR) s}$$

The transfer function required is therefore

$$\frac{c_2(s)}{i_1(s)} = \frac{R}{1 + (2CR) s}$$

and if a step of current ΔI_1 is applied, then $\Delta I_1/s$ can be substituted for $i_1(s)$ and the output voltage becomes

$$e_{2}\left(s\right) = \left(\frac{\Delta I_{1}}{s}\right) \frac{R}{1 + (2CR) s} = \Delta I_{1} R \left[\frac{1}{s \left(1 + [2CR] s\right)}\right].$$

Taking the inverse Laplace transform,

$$e_3(t) = \frac{\Delta I_1}{2C} \left[1 - e^{-iCRt} \right]$$

The waveform of the output voltage is therefore as shown in Fig. 8.

It is of interest that, in spite of the fact that there is a series capacitor in the circuit, Fig 3, there is a response at zero frequency (or a steady-state amplitude in the pulse waveform). This is because a current generator has been specified by using I_4 as the independent variable.

Synthesis of networks to give a specific frequency response is made easier by the use of Jacobians, since the complexity of the calculation is reduced by treating the Jacobians individually. In many areas where Jacobian analysis can be applied, this technique offers a substantial bonus in the form of extended capability.

References

- W. W. Happ, "Dynamic Characteristics of Four-Terminal Networks," IRE Convention Record, PGCT, 1954.
- T. R. Nisbet and W. W. Happ, "Jacoblans—A New Computational Tool for Converting Transistor Parameters," *Biostronic Industries*, Nov. 1968.
- T. R. Nisbet and W. W. Happ, "Asymptotes Solve Transistor Design Problems," Electronic Industrics, Aug. 1959.
- T. R. Nisbet and W. W. Happ, "Compound 2-Ports Systematized," C. P. 60-1127, AIEE Pacific General Conference, San Diego, 1960.

Monitor Systems, Inc., engineers (L to R), S. G. Billings, L. A. Meeks, and R. J. Margraff, check company's high-speed, automatic monitor system (HAM). It will be used to improve reliability, accuracy, and economy of GE's Hanford nuclear control system.

A^N ultra reliable 120 point High-Speed Automatic Monitor (HAM) System with a scanning rate of up to 5,000 inputs a sec. (200 usec/point) which incorporates self-checking features has been developed by Monitor Systems Inc., Fort Washington, Penna. The monitor is designed for GE's Hanford Atomic Products Operation. It can monitor, at high speeds, thousands of temperatures with such high reliability that no more than a single false temperature alarm and or a single failure to alarm is anticipated per year. This is achieved by having circuits built into the monitor to detect irrational input and prevent generation of false alarms.

Purpose of the new monitor sys-

New monitor system will be used at General Electric's Hanford Atomic Products Operation (below). Plant makes plutonium, an artificial and radioactive metallic element, a basic ingredient for the atomic bomb. Close control of the process is an absolute necessity.

What's New

High-Speed Automatic Monitor System

tem is to demonstrate the complete practicability of high speed solidstate serial scanning systems for on-line process instrumentation of nuclear reactors. Reliability was a prime consideration. False alarms are prevented by self-checking every 0.8 sec. Logic of the checking channels has been extended to provide automatic localization of failures.

A worst-case design policy was adopted in designing and building the system. Circuitry is designed to provide reliable operation despite combined changes in transistor and diode characteristics and transistor, capacitor, and power supply drifts. All components are considerably derated.

Reliability was established by an acceptance test of unprecedented severity. Continuous operation for 1,250 hours was required with not more than a single high temp false alarm or more than two false alarms of other types. In other words, only one or two false alarms (depending on the type) were permitted in a total of 22,500,000 readings. System is expandable to 3,-600 inputs.

(Right) Block diagram of HAM system. Reliability is in the order of 50 million component unit hrs. Unit was shipped Dec. 2.

90

THIS instrumentation measures the resonant frequency of reeds before they are assembled as parts of a resonant reed relay. The reeds are strips of special steel, with one end fixed in a zinc cast slug. Different types have approx. $\frac{5}{8}$ to $\frac{1}{2}$ in. free reed length, with corresponding resonant frequencies from 160 CPS to 300 CPS.

Vibrating Reed Modulates R-F

The reed is held by hand in the test jig, Fig. 1. A Pick-up Plate is mounted close to the free end of the reed. Capacity between pick-up plate and vibrating reed varies periodically. This varying capacity is used to amplitudemodulate an r-f carrier.

R-f frequency of approximately 500 KC is produced by a simple, multivibrator type Oscillator. Frequency stability, wave shape, and amplitude of r-f are not critical.

Oscillator output is fed into the following circuit through a capacity in the order of 1/2 mmfd. This tiny capacitor is made up simply by winding two turns of the bare wire, serving as one connection, around the end of plastic insulated wire of the other connection (See Fig. 1). To avoid additional stray from wires, this capacitive joint is located in the hole through the wall shielding the oscillator from the other circuit. For efficient modulation, it is further necessary to keep ground capacity of the wiring from pick-up plate to grid of Cathode Follower as small as possible.

pick - up plate

The audio frequency achieved by demodulating the resulting signal represents the mechanical vibration of the reed. This a-f is amplified and finally shaped to a square wave. The duration of periods of this square wave is measured by an electronic counter.

ELECTRONIC INDUSTRIES . January 1961

Resonant Reed Frequency Measurement

By KLAUS H. JAENSCH nior Electronic Engineer Stromberg Carlson Co. Rochester, N. Y.

Reed Flipped

For actuating the reed, Push-Button (Fig. 2) is pressed. Capacitor C_1 is normally charged to + 48v through surge limiting resistor R₁. By operating S_1 of push-button, C_1 now discharges through "Flipping Coil" located in the test jig (Fig. 1). The magnetic field of the coil generated by the discharging current causes the free end of reed to flip momentarily. This flipping is followed by a damped oscillation of the reed at its resonant frequency (Fig. 3A). On a reed with Q = 300, amplitude of vibration is down to 20% after 154 periods. and to 10% after 220 periods.

Frequency Measurement

Normally, the counter is held inoperative with "Inhibit Reset" line grounded through the relay contact (Fig. 2). Contact S_2 of push-button operates the relay, which in turn unblocks the counter. But operation of the relay is delayed due to the time constant of C_2 and R_2 . The latter is adjusted to pick out the part of damped wave train for (Continued on page 195)

Fig. 2: Counter is held inoperative with "Inhibit Reset" line grounded through relay contact.

Fig. 3: With Q of 300, amplitude is down 20% after 154 periods.

Fig. 1: Precision carbon potentiometer will help to eliminate servo hunting.

> By HERBERT ADISE President Computer Instruments Corp. Hempstead, L. I., N. Y.

SERVO positioned potentiometers are widely used in all types of analog computers, similators, and the like, throughout the fields of industrial instrumentation and control, as well as military flight guidance and fire control.

Typically, the potentiometer is driven by a servomotor through a gear train. The motor is driven by an amplifier which receives and compares two signals—an input voltage from some external source and a feedback voltage from the potentiometer, as shown in Fig. 2.

Ideally, the motor drives the potentiometer in such a manner that at all times the input voltage is exactly matched by the feedback voltage. In effect, this servomechanism performs the basic function of causing the position of the potentiometer shaft or any other shaft geared to the motor to follow an input signal. If the input voltage is the result of a shaft position, such as from another potentiometer, this servomechanism, in effect, slaves an output shaft to an input shaft.

Despite careful design, it is not an unusual experience for the engineer to find that his breadboard servo system has a tendency to jitter or oscillate with low amplitude about the null position. The servo seems to be hunting for a true null. By decreasing the amplifier gain or introducing friction into the system, this hunting may be eliminated, but at the obvious expense of increased system error and reduction of high frequency response.

Servo Hunting

Why does a servo hunt? The mathematically inclined might answer that the characteristic equation of the system has roots that do not have negative real parts. This implies that the system is adequately described by linear differential equations with constant coefficients; i.e., that the hunting is caused by

One Solution to

parameters that are independent of input amplitude.

Powerful analytical and graphical techniques exist for determining the response of a servo which can be considered linear^{1, 2, 3}. These are mainly concerned with the frequency characteristics of the open loop transfer function. They lead not only to stability criteria but also to a full description of system response.

In cases where non-linear effects are present, the question of stability in response to small amplitude input signals can be settled by a frequency analysis based on the assumption of linearity for incremental values close to reference points of interest².

There are, of course, certain non-linear effects that cannot be meaningfully treated in this manner. For example, the effect of the dead band encountered in a relay servo. However, an analytic expression has been developed for this type of servo. It allows the frequency and amplitude of oscillations to be predicted on the basis of the transfer function of the linear portion of the loop and the characteristics of the dead band.

In summary, the literature of servomechanisms is rich in analytical and graphical methods for settling questions of stability and describing performance characteristics for all types of systems, from the most simple to the most sophisticated.

The use of analytical methods for servo design

A REPRINT of this article can be obtained by writing on company letterhead to The Editor ELECTRONIC INDUSTRIES, Chestnut & 56th Sta., Phila. 39, Pa. Usually a servomotor drives a potentiometer so that the input voltage exactly matches the feedback voltage. With precision wire-wound pots this is not always possible because of the voltage difference between windings. Precision carbon film pots seem to be the answer in many cases.

Servomechanism Hunting

presupposes a full knowledge of the characteristics of all components that are under consideration for use in the servo loop. Here, again, the literature^{4, 5}—and the catalog information of the component manufacturers—is generally most helpful. However, there are certain difficulties that can arise in connection with the use of particular components that are not often discussed. This article is mainly concerned with one such difficulty that can arise in connection with the use of precision potentiometers as the pick-off or follow-up element in a servo.

Instability

Most causes of hunting, whether linear or nonlinear, are the result of time lags which result, essentially, in regenerative feedback around the closed loop. On the other hand, static instability can result from the limited resolution of the pick-off element. From the mathematical point of view, this is a trivial case of instability. But, nevertheless it can limit the allowable gain in the servo loop and prevent the realization of design objectives which could otherwise be obtained. The following example may serve to illustrate this point.

A simple viscous damped servo in which the followup element is a 1-turn, 2-inch diameter potentiometer is shown in Fig. 2. The parameters of this servo are assumed to be as follows:

Fig. 2: Typical servo loop diagram shows the leed-back path.

 $J_{\pm} = 0.0125 \text{ slug-ft}^2$

- $F_0 = 0.5$ ft-lb per radian/sec.
- $E_{ef} = 115$ volts
- T = 0.028 ft-lb
- $E_s = 100$ volts
- N = 100/1

where:

- J_{\bullet} = Servo moment of inertia referred to output shaft
- F_{\bullet} = Servo friction referred to output shaft
- E_{cf} = Rated voltage of motor control field winding
- T = Torque at motor shaft with full voltage supplied to control field
- E_p = Excitation voltage supplied to follow-up potentiometer
- N = Speed ratio between motor and output shift

It is further assumed that the desired response requires a damping ratio of

$$c = 0.2$$

Then the natural frequency of the servo is

$$\omega_n = \frac{F_*}{2cJ_*} = \frac{0.5}{(2) (0.25) (0.0125)} = 80.6 \text{ radians sec}$$
(1)

and the required torque referred to the output shaft is

$$K_{\bullet} = \omega^{\circ} J_{\bullet} = 80.5 \text{ ft-lbs/radian} \qquad (2)$$

But the torque can be described in terms of torque

Fig. 3: Wire-wound pot has a 0.05v difference between turns.

ELECTRONIC INDUSTRIES . January 1961

93

Servo Hunting (Continued)

per volt output of the servo motor, the voltage gradient of the potentiometer and the gain of the amplifier as:

$$K_{\bullet} = 80.5 = \frac{TNE_{0}G}{E_{c}/2\pi}$$
 (3)

Substituting the assumed values into Eq. 3 and solving for G yields,

G = 206

It is now in order to consider the maximum null position error that can arise as a result of the finite resolution of the follow-up potentiometer. Assuming that a wire-wound potentiometer of 2 in. diameter case size is used and that the resistance of the potentiometer can be 10k or more, a reasonable value of resolution would be 0.05%. To a first approximation, this would imply a potentiometer mandrel having 2000 turns of wire. Actually, such a potentiometer would have a slightly better resolution because of the interpolation provided by the shorting of turns as the slider advances over the winding. However, for a resolution on the order of magnitude of 0.05% this effect is not very significant. Thus, for the purpose of testing stability it is satisfactory to consider the slider as the arm of a switch which can be connected in turn to each of the turns of the winding. This is shown in Fig. 3.

Winding Voltage Differences

Referring to the figure, it can be seen that there is a potential difference of 0.05 v between adjacent turns of the winding. This corresponds to 100 v/2000 turns. For purposes of discussion, the potentials existing on two particular adjacent turns are assumed to be 3.025 v and 2.975 v respectively. It is further assumed that a command input of 3.000 v is applied to the servo. Under this condition, the potentiometer

SERVO ACCURACY - SINE INPUT ±100 +80 VOLTAGE CARBON FILM ±60 PEAK ±40 WIRE WOUND ±20 1.0 10 FREQUENCY C.P.S.

Fig. 4: Servo accuracy increases with carbon potentiometers.

cannot drive to a position where the error input to the servo amplifier is reduced to zero. Specifically, the slider can drive to the turn which is at 3.025 v or to the turn which is at 2.975 v. In either case, a null voltage of 0.025 v will appear at the servo amplifier input.

The question of stability then, depends on whether a 0.025 v input to the servo amplifier is sufficient to start the servo motor. For, if it is, then the servo will wire hop back and forth between the two windings for as long as the input remains at 3.000 v. Even if sustained oscillations of this type can be tolerated from a system point of view, they will seriously diminish the life of the potentiometer.

The required gain of the amplifier was previously found to be 206. Thus, with 0.025 v appearing at the servo amplifier input, $206 \times 0.025 = 5.15$ v will be supplied to the control field of the servo motor. Typically, between 3 and 4 volts will start a servo motor having a 115 v control winding under no load conditions. For this type of servo under discussion. the torque developed by the 5.15 v will be sufficient to start the motor and the load and thus under unfavorable input conditions sustained oscillations will occur.

Carbon Film Pots

On the other hand, if a carbon film potentiometer. such as the one shown in Fig. 1, of the same diameter is used in this servo, this difficulty does not arise. The carbon film potentiometer presents a continuous surface to the wiper rather than a series of turns. Thus, the effect which limits the resolution of wire-wound potentiometers is entirely absent in the case of the carbon film units. Instead, much smaller effects of bearing play and wiper bounce, present in both types of potentiometers, determine the resolution of carbon film potentiometers. The result is that the resolution of a carbon film potentiometer is better than that of a wire-wound potentiometer of the same size by a factor of about 50.

The 2-inch diameter carbon film potentiometer, then, would have a resolution on the order of 0.001%. In the servo under consideration, the voltage error would be 0.0005 v. Thus, the maximum null input voltage to the servo motor control field under the most unfavorable condition would be 0.0005 \times 206 = 0.1030 y which would not start the motor even under no-load conditions.

The tremendous improvement in servo system resolution resulting from the use of carbon film potentiometers allows marked increase in system gain without loss of system stability. In addition, because of the smooth surface presented by the resistance element to the wiper, carbon film potentiometers do not suffer from wiper bounce problems at higher operating speeds. The servo accuracy and response curves shown in Figs. 4 and 5 demonstrate the improvements achieved in a typical servo multiplier when the wire-wound potentiometer was replaced by a carbon film unit. Notice that, equipped with a carbon film potentiometer, the servo can operate at twice its former speed and with but a fraction of its former error.

In addition to elimination of the hunting problem,

ELECTRONIC INDUSTRIES . January 1961

Fig. 5: Servo response curves show one advantage of carbon pots.

the use of carbon film potentiometers results in numerous other advantages.

The carbon film resistance element is much more reliable than the wire resistance winding. The film is several times thicker and about 100 times as wide as typical resistance wire. The slider, as it moves, contacts only a small fraction of the width of the element. The integrity of the element does not depend upon the integrity of the portion subjected to wear. Sudden unpredictable failure of the elementtypical of the wire winding-is ruled out.

The carbon film resistance element has a longer service life than the wire resistance winding. The smoothness of the path that it offers to the wiper minimizes wear. In addition, there is no hot spot problem as there is in a wire winding, where constriction of the winding at the point where it is traversed by the wiper causes local heating with a consequent shortening of life. As the carbon film element wears, a warning of impending failure is given since the potentiometer begins to exhibit local output voltage irregularities and, ultimately, local opens. However, even when this occurs, the useful life of the potentiometer is not at an end. Relocating the wiper path restores the potentiometer output to its original quality.

The carbon film resistance has much better shelf life characteristics than the wire resistance winding which may develop an opened output or shorted turns due to corrosive products.

The carbon film resistance element is non-inductive. Moreover, the problem of capacitance between the winding and the core which reduces the ac accuracy of wire-wound potentiometers is not present.

Wire is traditionally associated with precision resistance applications because it has a low temperature coefficient of resistance. However, in most potentiometer applications, linearity or conformance is the parameter of interest rather than absolute resistance. Thus, in these applications, arguments in favor of the carbon film potentiometer are overpowering.

The solution of the hunting problem through the use of carbon film potentiometers, then, turns out to be a most happy one, since it is accompanied by improvements in system performance, life, and reliability.

References

References 1. "Control Engineer's Handbook," J. C. Truxal, editor, *McGraw-Hill*, 1959. 2. "Servomechanisms and Regulating System Design," Chest-nut & Mayer, Wiley; Vol. 1, 1951, Vol. 2, 1956. 3. "Design of Position and Velocity Servos for Multiplying and Function Generation," E. O. Gilbert, *IRE Transactions on Electronic Computers*, September, 1959. 4. "Control System Components," J. E. Gibson & Tuteur, *McGraw-Hill*, 1958. 5. "Picking a Potentiometer. Film or Wisswond". U. 19 5. "Picking a Potentiometer, Film or Wirewound," H. H. Adise, Electronic Design. November 11, 1959.

Thin-Route Microwave

Microwave manufacturers are divided into two basic groups. One group develops high-density equipment (say 120 to 720 channels) and the other produces thin-route equipment for use in conjunction with high density equipment and for application where lower channel capacity is sufficient. Thin-route systems are used, for example, as extensions of high-density systems or as an auxiliary facility paralleling a high-density system.

Principal manufacturers of thinroute equipment are Budelman Electronics Corp., 375 Fairfield Ave., Stamford Conn., and Farinon Electric Co., 416 D St., Redwood City, Calif.

Budelman makes equipment for both the 960 and 2000 MC bands. The 960 equipment can also be adapted for the 450 MC band. A terminal (Budelman's type 14BW equipment) consists of a transmitter and receiver-a pair of each when full standby is required. For repeater operation, two terminals are connected back-to-back. The transfer of modulation from receiver to repeater transmitter is at the subcarrier frequency.

Conventional telephone carrier equipment is used for deriving individual voice channels. Either SSB, suppressed carrier, or Budelman double sideband AM carrier equipment may be used. Coded tone signals for telegraphy, teleprinter, control or data transmission may be applied via telegraph carriers to the baseband below the telephone carriers or into one of the telephone channels. Transmitter frequency stability is better than $\pm 0.0005\%$ (anticipating further tightening of FCC standards).

Type 148W Terminal, 960 MC, with Type 1088 Power Amplifier and R-F Duplexer. Type 1498. Receiver and transmitter each occupy 101/2 inches.

ELECTRONIC INDUSTRIES . January 1961

With more and more emphasis being placed on the operational status of missiles and space vehicles, the problem of simplifying fuel level sensing for field use magnifies. The high sensitivity of the thermistor makes it a leading contender for the detector.

Level Gauges in the Liquid

TWO factors make thermistors attractive as sensing elements in the liquid helium—liquid oxygen temperature range. First, their high sensitivity increases nearly proportionally to $1/T^2$; second, their resistivity increases with decreasing temperature. The latter eliminates the need of corrections for lead resistance and offers the possibility of remote measurement and control, even over a large distance.

While the resistance of a platinum, or other metal, resistance thermometer drops in liquid hydrogen $(\sim 20^{\circ}\text{K})$ to less than 0.5% of its initial value at 0°C (273.50°K) —even lower in liquid helium (4.2°K) thermistors possess resistance values of 5 to 5000 K ohms in this range. Their temperature sensitivity increases from approximately $30\%/^{\circ}\text{K}$ in liquid hydrogen to approximately $100\%/^{\circ}\text{K}$ at a temperature slightly above the boiling point of liquid helium.

This steep increase of resistance with decreasing temperature at first presented a great problem. even at moderately low temperatures.^{1, 2}

Table 1

Heat Capacity of Midget Disk Thermistors

Heat Capacity In mw sec./degree	Temperature Increase Produced by 1 mw sec. Energy Input Under Adiabatic Conditions (No heat exchange with the environment.)
0.092	10,9
0,180	5.6
0.293	3.4
0.390	2.6
0.585	1.7
0.836	1.2
1.090	0.92
1.380	0.72
1.800	0.56
2.18	0.46
2.68	0.37
11.2	0.09
	Heat Capacity In mw sec./degree 0.092 0.180 0.293 0.390 0.585 0.836 1.090 1.380 1.800 2.18 2.68 11.2

The corresponding heat capacities for standard disk themistors can be obtained by multiplication with factor 10. A systematic decrease of the energy gap in semiconducting materials, with an increasing reduction of their resistance versus temperature dependence to realistic values, at low temperatures brought the resistivity back again into practical acceptable levels of the order of 30 to 10,000 ohm \cdot centimeter for liquid oxygen (90°K) and 3000 to 50,000 ohm \cdot centimeter in liquid hydrogen.^{3. 4. 6}

With a favorable geometric shape (disk) at 8° K resistance values of the order of 100 megohm could be obtained.⁵ More recently, the resistance at this temperature could be decreased approximately by a factor 50, thus shifting the low temperature frontier for thermistors another few degrees toward liquid helium. More details on this development will be reported separately.

Low Temperature Level Gauges

An important application of thermistors in general, but especially for low temperature units, is in liquid level gages. Here the thermistor is self-heated by an electrical input to a temperature above its environment. Normally, a temperature increment of more than 10° is desirable to produce a large electrical signal by the transition from vapor to liquid. This implies a certain heat input into the system liquidvapor, which, in cryogenic applications, should be kept to a minimum to avoid extensive evaporation losses of the valuable liquid phase.

Therefore, the heat input to the thermistor should be kept as small as possible. Two factors are very favorable to accomplish this goal:

(a) The enormous temperature coefficient in the liquid hydrogen-liquid helium range permits reduction of this temperature difference to a few degrees, and

(b) the specific heat necessary to raise the temperature $1^{\circ}K$ for one mass unit of thermistor material (its specific heat) drops drastically at temperatures below $150^{\circ}K$.

According to Debye, the specific heat of solids changes with the cube of the absolute temperature according to the relation $c_p = A \left(\frac{T}{a}\right)^3$ where, Θ By DR. H. B. SACHSE Research Director Keystone Carbon Co. St. Mary's, Pa. A REPRINT of this article can be obtained by writing on company letterhead to The Editor ELECTRONIC INDUSTRIES Chestnut & 56th Sts., Phila. 39, Pa.

Helium–Liquid Oxygen Range

stands for a characteristic temperature (Debye temperature) which is specific for each solid body and T is the absolute temperature at which the specific heat is measured.

The constant A has a universal character, almost independent of the type of material. For practical application, it was necessary to find the temperature dependence of the specific heat for the low temperature thermistors used in liquid gauges.

Table 1 shows in an impressive manner the very drastic drop of the heat capacity of small disk thermistors with a mass of approximately 20 mg.

The figures of Table 1 give the mw sec./temperature increase relationship for adiabatic heating, e.g., in a diluted gas or in vacuum. At liquid hydrogen temperature (20°K) , the temperature increase/mw in one second would be 2.6°K, at 5°K (near liquid helium) even 10°K. The corresponding resistance changes would be approximately 80% at 20°K or several thousand per cent at 5°K, depending upon the constant *B* defined by the relation

$$B = \log \frac{R_1}{R_1} \left(\frac{T_1 T_2}{T_2 - T_1} \right) 2.303$$

Dissipation Constant

In liquefied gases, conditions are far away from being adiabatic. The dissipation constant will partially be determined by their exaporation heats which are listed in Table 3.

The formation of gas bubbles on the surface of the thermistors somewhat obscures, and decreases, the true dissipation constant. Therefore, it cannot be expected that the measured values follow truly the trend of the evaporation heats.

Some data have been determined in liquid hydrogen, nitrogen and oxygen for thermistors of the surface area 10^{-5} m².

The large spread of the dissipation constant in Table 2 is not surprising, since it is influenced by the degree at which the thermistor is covered with gas bubbles. The large increase of the dissipation constant with the electrical input is probably also caused by this effect. Normally the wattage dissipation under equilibrium conditions should be proportional to the produced temperature difference between the self-heated thermistor and its environment resulting in a nearly constant wattage/temperature ratio increase. In nonboiling liquids and other media, this condition is approximately fulfilled.

High inputs apparently do not only promote bubble formation on the interface between thermistors and bath, but also bubble migration to the surface level of the liquid. Thus the temperature difference between thermistor and liquid bath is reduced.

Coated Thermistors

One might expect a decrease of the dissipation constant for thermistors, silicone-coated to protect them mechanically and to insulate them electrically. This coating is approximately 0.005 in. thick. It is surprising that no decrease of the dissipation constant was observed with coated thermistors. At first, this led to belief that the dissipation is mainly determined by the heat conduction through the lead wires, which, submerged in the liquid, will also generate gas bubbles. However, in a transparent Dewar-container, bubble formation was always observed only at the thermistor disk when submerged in the liquid gas. Bubble formation was more active at uncoated thermistors even if no electrical input was applied. Some

Table 2

Dissipation Constant

Electrical Input In Milliwatt	Dissi H ₂	Dissipation Constant in Mi H ₂ N ₂			Milli	liwatt/°K in O:		
0.1	1.4		1		5	0.7	-	1
1.0	2.0	2.8*	2	_	7	2		4
10.0	4.5	11*		_	14	5	-	15
100.0	35.0	69°	18	-	30	26	-	75

 $^{\bullet}$ Found with long probes surrounded by sleeve acting like a chimney.

Thermistors (Continued)

exploratory experiments and estimations may help to clear this question.

The heat conduction through the silver leads. 0.007 in. diameter, would dissipate 0.100 mw K if the ends of the 2 in. leads were connected to a heat sink with the temperature of the bath. For all practical purposes this was accomplished by submerging the thermistor with its leads $\frac{1}{2}$ to 1 in. below the liquid level. No distinct trend to higher dissipation constants was found if the submersion depth was varied from $\frac{1}{4}$ to 1 in.

Increasing the heat capacity of the sink by submerging the major part of the test clamp into the liquid also did not affect the dissipation constant, at least not in LOX.

These facts lead to the conclusion that the dissipation of the thermistor in a liquid bath is still determined mainly by the heat exchange between thermistor and the bath. With this in mind, it must be assumed that the heat resistance of the coating is negligible.

This is also confirmed by two other facts:

(a) The time constant of cooling the units in the liquid bath for coated units was found to be smaller than for uncoated units. In this case also, a small decrease of the dissipation constant was observed. An explanation of this apparently paradoxical effect is given in the last paragraph.

(b) Finally, it might be worthwhile to mention that the observed dissipation constant is rather independent on time. If the electrical input is applied for different time intervals, thermal equilibrium is reached within ten seconds, whether the unit is coated or not.

Heat Transfer Coefficients

The dissipation constant of the thermistor is mainly determined by the heat transfer coefficient between its surface and the surrounding liquid. No explicit data are available for the transfer coefficient in liquid helium, hydrogen, deuterium, nitrogen and oxygen.

However, certain conclusions can be drawn from data for other liquids such as water. The heat transfer coefficient z for nonboiling water is 2.1×10^6 , for boiling water 8.4 to 25×10^6 mw seconds/m² hour °K. These figures not only illustrate clearly the large increase in the heat dissipation when boiling is induced by heavy input, but also explain the possible spread in the dissipation constant due to fluctuations in the boiling process (retarded bubble formation).

The following considerations aim at an estimate of the transfer coefficients in various liquid gases. They should only be used to estimate ratios of dissipation constants.

The heat transfer coefficient is determined by the following properties of the liquid: density; specific heat; heat conductivity; viscosity and, for the boiling condition, its evaporation heat.

Table 3 compiles data on liquefied gases, as far as available.

Table 3

Properties of Liquefied Gases Which Determine Their "Cooling Capacity" At Their Boiling Points Under Normal Pressure

		Het	Hz	Da	N2.	02	H_O
Density g/ml	ō	0.121	0.076	0.164	0.81	1.16	1.958
Specific Heat Capacity Watt sec./g °K	e,	4.2	10	6.2	1.98	1.65	1.006
Heat Conductivity Watt/cm °K	N	. OCO3	0.0012	0.0013	0.0014	0.00172	0.007
Viscosity in Micropoise	η	30	144	296	1580	1900	2810
Evaporation Heat Watt sec./gr.	L	21	452	312	196	212	2260
	-	_	_		_		_

It was mentioned before that heat dissipation from a thermistor in liquefied gas will be related to its evaporation heat. However, before evaporation can take place, the necessary energy to produce the transition from liquid to gas (formation of bubbles) must be transferred from the thermistor to the liquid. For this process the heat transfer coefficient has to be known in each case. Assuming nearly turbulent conditions in the liquid, the heat transfer coefficient zcan be approximated by

$$\alpha = \text{constant} \cdot \left(\frac{1}{\eta}\right)^{2/3} \cdot \delta^{3/4} \cdot \left(\frac{c_p}{\lambda}\right)^{1/3}$$

with $r_n =$ dynamic viscosity, $\delta =$ density, $c_n =$ specific heat and λ = heat conductivity of the liquid. The constant is determined by the geometrical shape and size of the thermistor and the container in which it is measured, since the latter determines the degree of turbulence produced by the spontaneous boiling of the liquid. For practical applications with a given design the same constant is valid and the behavior in various a liquids is characterized by the ratio which determines also the dissipation constant. A few values α of -have been calculated and are listed in the constant following table:

		Tab	le 4			
Liquid	He	H ₂	D ₂	Nz	0,	H _t O
a constant	1.27	0.45	0,21	0.42	0.54	0.21

ELECTRONIC INDUSTRIES . January 1961

Based on the measured dissipation constant in liquid hydrogen, Table 2, for liquid He¹ a value approximately three times higher can be expected. In other words, the thermistor should be sensitive enough to "feel" the difference between liquid and gas.

Grassmann and Karagounis⁷ have measured the heat dissipation of 20 g Pt-wires in several liquefied gases. In liquid He¹ they found a heat dissipation of 200 watts/meter² for 0.1^o temperature difference between wire and liquid, 5 \times 10⁴ watts/meter² for 1⁹. With these data one would obtain for a midget disk thermistor of ~ 10⁻⁵ meter² surface dissipation constants of 20 or 500 mw K which are much higher than estimated. The corresponding values for H₂ and O₂ would be 25 and 40 mw/"K, respectively, with 1"K temperature difference, in reasonable agreement with the data in Table 2 and considering the fact that the geometry of the heated objects was rather different.

Time Constant

Till now only stationary conditions were discussed. For practical applications, the response time of the thermistor, when dipped in the liquefied gas is of great interest. Starting from ambient, the time constant is 2 to 3 seconds (for 63% of the final resistance value in the liquid), cooling from LOX to liquid nitrogen it is 0.6 ± 0.3 seconds. This value includes the manual transfer time from one liquid to the other which also explains the relatively large spread.

In former publications the point was stressed that the formation of gas bubbles makes the time constant always too high compared to the theoretical value given by the heat capacity of the thermistor and the heat transfer coefficient.

It can be shown that the time constant "ambient to LOX" drops 20 to 25 % if the thermistor is coated. In this case, spontaneous bubble formation is very much retarded up to an input threshold of 10 to 20 mw.

Acknowledgment

The author wishes to thank Mr. D. B. Chelton, Cryogenic Engineering Laboratory, National Bureau of Standards, Boulder, Colo., for his critical discussion and Mr. G. A. Mahoney for his assistance in the measurements.

References

1. Sachse, H B., "Low Resistance Thermistors As Ultra-Cold Thermometers," Electronic Industrics, Jan. 1957, pp. 55, 142. 143, 146, 117.

Sachae, H. B., "Temperature Measurements Near Absolute Zero," Electronic Industries, Sept. 1957, pp. 58-9, 106-8, 112.
 Sachse, H. B., "Design Data for Ultra Low Temperature Thermistors," Electronic Design, April 30, 1958, pp. 30-33.

Sachse, H. B., "Thernistors As Sensing Elements for Low Temperatures," Bulletin de l'Institut International du Froid, Annexe 1958, pp. 145-154.

5. Sachse, H. B., and Vollmer, G. W., "Thermistor Sensing Elements for -445°F," Electronic Industrics, Feb. 1959, pp. 67-68

Sachse, H. B., "Thermistors, 10-600"K," Electronic Indus-trice, Oct. 1959, pp. 81-83.
 Crassman, P., Karagounis, A., Proc. of Fifth Intl. Conf. on Lot Temperature Physics and Chemistry, 1958, pp. 41-45.

TV SYSTEM for **PENTAGON**

LARGE TV system, equivalent A to a complete broadcast station video system, has been engineered and installed in the Joint War Board, Emergency Action and Conference Rooms at the Pentagon by Foto-Video Electronics, Inc., 36 Commerce Rd., Cedar Grove, N. J.

It is for observing world-wide events and news as it happens. It gives military hdqts. the means of viewing the programs of 4 TV networks, Weathervision terminal information, messages of Communications Room teleprinter machines, video tape information, and a special system for Joint War Board surveillance.

By manipulating any of 72 push button switches on a high-speed video-audio electronic Switcher Console, a Joint War Board action officer may present instantly any one of 9 complete programs to any one of 8 different sets of video

Three 72-inch panels form the nerve center of the Pentagon Video Audio System. System gives the military news as it happens.

picture monitors or 12 sq. ft. projection wall screens, and loudspeakers in the several strategic Joint War Board rooms.

International news arriving over a national or international teletype circuit, can be seen on the same

system. Secret information arriving over long network lines or radio channels leased from the American Telegraph and Telephone Co. or other world-wide communications nets may be presented as (Continued on page 195)

ELECTRONIC INDUSTRIES . January 1961

Special transducers must be developed to handle dynamic measurements of electronic hardware under vibrational environments. These devices should be "throw-aways" which can be left in the equipment after the measurements are made. Size and weight are also critical since they affect the data. Here is the procedure followed in the development of a satisfactory, lightweight transducer for this application.

Part One of Two Parts

Designing a Lightweight Vibration Transducer

By THOMAS D. SMITH and HARRY R. SPENCE Members of the Technical Staff Space Technolagy Laboratories, Inc. P. O. Box 95001 Los Angeles 45, Colif.

T. D. Smith

H. R. Spence

TO examine the dynamics of missile electronic hardware under various vibrational environments, dynamic measurements within assembled electronic packages are essential. These measurements are made using an accelerometer as the monitoring device. Depending on the size and complexity of the equipment, the number of positions to be monitored varies from 10 to 20. Since the tendency of airborne electronics is toward miniaturization, the weight, size and shape of the accelerometer become major considerations. In some applications, the weight of the accelerometer assumes an appreciable part of the weight of the component under examination, thus invalidating the test data. Moreover, size and shape may occasionally prohibit measurements in congested areas. For convenience, the accelerometer should be amenable to a quick, simple method of attachment. This would eliminate the time-consuming process of preparing the package for testing, and decrease the possibility of improper bonding between the accelerometer and the equipment under test, which could result in erroneous data. Once the data is acquired, the accelerometer should remain in the equipment, eliminating the time and expense involved in disassembly and reassembly of the equipment.

Accelerometers presently available are too expensive for use as a "throw-away" item. Also, size and weight prohibit their use in examining the dynamics of small components.

A special transducer must be developed to satisfy the unusual requirements of these dynamic measurements. Expendability, weight, dimensional size, sensitivity, and frequency response must be considered. Here is a program that led to such a device.

The First Approach

The first approach was to use the reaction of a weight on pressure-sensitive paint during vibration. The electrical resistance of the paint may be varied by subjecting it to a varying pressure. It was hoped that the variation in resistance could be used to indicate vibrational acceleration. Since a high pressure per unit area was desired and a small size required.

Fig. 2: Charges produced on a piezoelectric crystal by a bending force.

ELECTRONIC INDUSTRIES . January 1961

100

* Patent application filed.

Mallory metal (0.6 lb/in.3) was selected for the mass from which various sizes of disks were made. The disks varied from 1/8 to 1/4 in. in dia., and 1/8 to 1/4 in. in thickness. The paint was applied to the surface of a conducting plate which was used as one of the electrical terminals; the Mallory disks which acted as the second terminal were attached to the paint. (Fig. 1.) During static checks, the resistance change for different pressures was easily measured. Excited by an MBC-10E vibration table, this assembly was subjected to a vibration of 10 g's. Unfortunately, output sensitivity was too low, i.e., $\Delta R/R$ was negligible. To improve this ratio, the logical solution appeared to be an increase in the weight of the metal disk: however, an addition in weight would conflict with the lightweight specification (the greatest weight of the original assortment of disks exceeded 3 gm), so larger disks were not tried.

Many crystal configurations have been tried and discarded for improved sensitivity and linearity. One configuration is the simple bender or cantilever crystal. Since a linearity between various g levels of 10% was considered satisfactory and a sensitivity of 4 mv/g wanted, the cantilever method was examined. Simplicity in fabrication and economy were considerations here. A ± 2 -db variation in the frequency response in the 30 to 2000 cps range was regarded as tolerable.

 ΔQ_t ; thus, the force exerted on the test charge by q_s will also become small, ΔF . Therefore:

$$\lim_{\Delta Q_4 \to 0} \frac{\Delta F}{\Delta Q_4} = \frac{dF}{dQ_4} = \frac{kq_2}{r^2} = E \cdot$$
(3)

Work is defined as the product of the force and the distance a body is moved during the application of this force (the direction of movement and force are the same). Thus:

10

$$= Fr$$
 (4)

where W represents the work; F is the force applied; and r is the distance. In an electric field produced by a point charge, as a test charge Q_t is moved radially with respect to the charge producing the field, the force upon Q_t varies. It is, therefore, necessary to consider the summation of the increments of work done on this test charge:

$$dW = F \, dr = E \, Q_t \, dr = \frac{kq_2 \, Q_t \, dr}{r^2} \, . \tag{5}$$

In (5) dW represents the incremental amount of work accomplished in moving the test charge an incremental distance dr. Therefore:

$$W^{*} = k q_{1} Q_{0} \int_{T^{*}}^{T_{2}} \frac{1}{r^{2}} dr$$
 (6)

Piezoelectric Theory

A brief discussion of the relationship between charges and resulting voltages due to the piezoelectric effect is perhaps necessary. Coulomb's law states that the force of attraction or repulsion exerted on one charged body by another is proportional to the product of their charges and inversely proportional to the square of their separation. Therefore, the force of attraction between two unlike charged bodies is:

$$F = k \frac{q_1 q_2}{r^4} \tag{1}$$

where F is the force between the charged bodies, q_i and q_i are the charges on the bodies, r is the distance between these bodies, and k is a proportionality constant. The electric field intensity at a point due to an electric field is defined as the force per unit charge on a positive charge when placed at the point in question. If q_i of Eq. 1 is a unit test charge Q_i , and E represents the electric field intensity, then:

$$E = \frac{F}{Q_4} = \frac{kq_2}{r^3} \tag{2}$$

To ensure that the test charge Q_t does not disturb the electric field produced by q_t , let Q_t become very small,

ELECTRONIC INDUSTRIES · January 1961

where W is the total work necessary to move Q_t between the points r_1 and r_2 , these points being on a common radial line to the charge q_2 producing the electric field. The potential difference between two points in an electric field is the work per unit charge necessary to carry a positive charge from the point of lower potential to that of higher potential. From (6) and the above definition we have:

$$V = \frac{W}{Q_1} = kq_1 \int_{r_1}^{r_2} \frac{1}{r^2} dr = kq_1 \left(\frac{1}{r_2} - \frac{1}{r_1}\right) \cdot$$
(7)

or, for any given electric field produced by a point charge, the voltage difference between two points will be proportional to the charge producing the electric field. Thus:

$$V = k_1 q \tag{8}$$

where V is the potential difference, q is the charge producing the electric field, and k_1 is a proportionality constant. It can be shown that in the special case of two flat, parallel charged plates, the electric field intensity is uniform between the plates, and the resulting voltage remains proportional to the charge producing this field.³

Since in a piezoelectric material a variation in strain

101

Transducers (Continued)

produces a proportional charge, it follows that the voltage produced by the charge will also be proportional to the strain, or:

$$\operatorname{strain} = k_{q} q = k_{s} \mathbf{1} \tag{9}$$

where k_z and k_z are the proportionality constants, qand V are the resulting charge and voltage produced. Because of the relationship in (9), the main concern will be devoted to the strain developed in the crystal during bending. If Fig. 2 is the cross section of a piezoelectric crystal, a bending force normal to the surface of the crystal will produce charges on the surfaces which result in a voltage differential between the surfaces.

A Piezoelectric Crystal Tried

In trying to get greater sensitivity, the paint was replaced by a piezoelectric material. Piezoelectricity is an electric polarization or charge produced by a mechanical strain on certain types of crystal. This polarization or charge is proportional to the strain, and changes sign with it. Because of its high sensitivity, Rochelle salt was considered as the generating element. It was eliminated because of its low melting

Fig. 5: Transducer assembly.

point $(55^{\circ}C)$. Also, the response of this material has an affinity for noise. Quartz crystal was considered, but the sensitivity was too low.

Although it is in the electrostriction category, barium titanate was tried. When an electric field is applied to a dielectric, a mechanical deformation will result which is proportional to the square of the applied field.¹ If barium titanate is polarized with a dc field of approx. 30 kv/cm, the dc field may then be removed, and a remanent polarization will be maintained by the crystal. The polarized element will then react similarly to the piezoelectric material—a variation in strain will produce a charge substantially proportional to the strain.²

Various sizes of barium titanate disks (in the dia. range of the Mallory disks) were used. The titanate disks were attached to a plate, which was used as one of the terminals, with conductive cement. The Mallory disks were attached to the top of the titanate, and a second terminal brought out in a manner similar to the application with the pressure-sensitive paint. The output with a varying pressure was observed on an oscilloscope. As before, when subjected to a 10-g vibration excitation, the weight of the Mallory disk was not enough to produce a satisfactory output from the barium titanate crystal. Apparently a different approach was necessary.

The Cantilever Beam Construction

In studying the cantilever beam construction, barium titanate was again used as the active element. Not only does barium titanate provide a large output compared to other types of crystals but, due to its polycrystalline structure, it may also be shaped in complicated forms and sizes. This would be impossible, or at least difficult, to attain with single crystals. For the first attempt, a crystal (conveniently obtained from a standard phonograph cartridge) was mounted in a phenolic housing. This crystal, was made of two parts separated by a thin metal strip and polarized in opposite directions. See Fig. 3. This is commonly referred to as a bi-morph construction. Two terminals were secured to the crystal with a conducting silver cement. Assume that the polarization of the crystal is such that under a tensional strain, the charge developed is positive and under a compressional strain the developed charge is negative. During bending in a downward direction (see Fig. 4) the top half is in tension and the lower half is in compression. The generated charges on both halves due to bending are additive. If this were not the case (i.e., if the halves were polarized in the same direction), the generated charges would tend to cancel each other.

To ensure that the mechanical resonance frequency remained well beyond the desired operational frequency range of this device, which was 30 to 2000 CPS, calculations were made to determine the max. length of the crystal which was allowed to protrude from the mounted or fixed end. The calculated length permitted the lowest mechanical resonance to occur in the proximity of 3000 CPS. If this had not been done, the frequency response curve would have been unsatisfactory as mechanical resonance was approached. The crystal was cemented in a phenolic block, allowing this correct length to extend from the fixed end. (See Fig. 5.) A number of these assemblies was constructed and tested. (Fig. 6e.) In testing, amplitude data were recorded at predetermined g levels. The input g level was varied only after sufficient data had been obtained over each frequency range. Although electrical output was approx 2.5 mv/g input and frequency response was unsatisfactory, the results were encouraging. Fig. 7 shows the frequency response indicating that a variation of 10 db resulted. A perfectly flat frequency response is not required; however, for data evaluation the response curve should remain within ± 2 db of the normalized value over the operating frequency range. The normalizing frequency is simply that frequency at which the reference output sensitivity is determined. Here, the normalizing frequency was chosen in the proximity of either 30 CPS or 1000 CPS, depending on the shape of the curve. Due to the noise level usually encountered in and around electronic equipment, it is virtually impossible to distinguish between noise and signal response at excitation inputs less than 0.5 g if the 4 mv/g sensitivity is not maintained. An acceptable result of this design was the less than

Fig. 6: Transducers.

10% linearity deviation obtained as the g level was varied.

Improving Sensitivity & Frequency Response In trying to increase sensitivity and improve frequency response, a new crystal configuration was sought. Barium titanate was still used, but the shape was changed from rectangular to triangular. (See Figs. 6c and 6d.) This design evolved from this line of reasoning. In the first crystal, the strain at the mounted end is greater than that at the free end due to its equally distributed weight. Therefore, the charge developed per unit area varies. But the surface of the crystal must remain at equipotential values due to the conducting silver film on the surface, so the voltage tends to remain at a lower average than that which would be caused by the infinitesimal area of greatest strain. Now, if at all points on the crystal an equal charge was generated, the voltage for each infinitesimal area would be equal. Consequently, a max average would occur on the crystal surface during flexure. The mechanics of bending indicate that a cantilevered beam with a concentrated weight at the end will tend to produce strains throughout the beam which are more nearly equal if the beam approaches a hyperbolic shape. For ease of fabrication, a triangular configuration was used to indicate feasibility. One objection was the decrease in the mechanical resonance frequency as the concentrated weight at the end of the crystal was increased. Therefore, the weight could not be made as large as required. A weight was not used with the rectangular crystal to

Fig. 8: Response of triangular-shaped transducer configuration.

Fig. 7: Freq. response of transducer (see Fig. 6e).

increase the strain for a given input level because the stiffness was less than that of the triangular shape, causing a greater rate of decrease in the mechanical resonant frequency as the weight was increased.

Results from this configuration which demonstrated a sensitivity of 3.9 mv/g (see Fig. 8) were satisfactory. Because of the shape, these crystals were handmade. This factor was held accountable for extremely low repeatability of performance among the transducers. The crystals were also very fragile and quite easily broken even before use. To improve mechanical strength, a change from barium titanate to lead zirconium was tried. This did not, however, achieve the anticipated results.

The primary emphasis was placed on obtaining an existing crystal element rather than on a crystal development program. Reverting to the previously tried rectangular configuration (Fig. 6e), an attempt was made, through a dimensional reduction, to eliminate any isolation or detrimental effects that may have been caused by the original transducer housing. This resulted in a very small unit weighing approx 0.35 gm and measuring 0.156 x 0.141 x 0.704 in. (See Fig. 6b.) Weight was reduced twofold. This was a great advantage, because it permitted use of the unit in small areas. A variation was made in how the terminals were attached to the crystals. Instead of using a conducting cement, the leads were soldered to the crystals. This eliminated resistance variation between the conducting surface and the terminal leads.

(Continued Next Month)

103

Products ... for the Electronic Industries

POWER SUPPLY

Model PI 12-2 scaled power supply can operate continuously at full power without forced air cooling or external heat dissipation. It is for applications requiring high power output, close regulation and resistance to environ-

ments such as those in missile ground support equipment. It delivers 2 a at 12 v. in still air to 40° C and can be operated at higher amb. with forced air cooling. Regulation is 0.05% for 0 to full load changes and 0.02% for ± 10% line variations. Ripple is less than 1 mv RMS. Overshoot does not exceed 1% and recovery is less than 50 #sec. An overload circuit limits current in the event of a short circuit. Input is 105-125 vac, 50-440 CPs, single phase. Mid-Eastern Electronics, Inc., 32 Commerce St., Springfield. N. J.

Circle 229 on Inquiry Card

SNAP SWITCH

New Snap Switch is designed to solve space limitation problems and offer increased flexibility in engineering tolerances. Total plunger travel is 1/2 in., of which a full 3/8 in. is overtravel. Both SPDT and SPST versions of the switch are available with a snap-in bezel for front mounting or threaded bushing for back mounting. It has heavy duty construction and coin silver contacts. All termina-

tions are located at one end. Options available in plunger length and color and in bezel finish. UL approved for 10 a, 125 vac; or 5 a, 250 vac. The Ucinite Co., Div. of United-Carr Fastener Corp., Newtonville 60, Mass.

Circle 230 on Inquiry Card

TRANSDUCER EQUALIZER

New transducer equalizer to receive and observe in real time, and to accurately record analog data otherwise masked and destroyed by the limitations of the measuring system. It directly analyzes and accurately records

high-speed changes in pressure, acceleration, temp. and duminosity. Input impedance, 200,000 ohms shuriad by 20 $\mu\mu f$; input signal, nom ± 5 v. at gain of 1; output impedance, less than 1000 ohms; output signal, ± 15 v. max.; output load, max., 10,000 ohms resistive, 100 µµf; gain, 1, 2, 5, 10; output noise level, 20 mv. RMS; signal delay, 0.3 #sec; pulse response, sufficient to equalize pulses with rise times as short as 0.5 #sec. Data Instru-ments Div., Telecomputing Corp., 12838 Saticoy St., No. Hollywood, Calif.

Circle 231 on Inquiry Card

VARIABLE TRANSFORMER

Portable, variable transformer, the VT8G, features an overvoltage-no-overvoltage selection switch. User can limit the max. output of the transformer to the line voltage (120 v.) or to the overvoltage rating (140 v.). The face carries 2 sets of voltage calibrations in 2 different colors to match the output indications on the selection switch. The VT8G is rated at 7.5 a and incorporates a circuit breaker for

protection. It is housed in grey crackel finish case and has a natural aluminum and black control panel. Underwriters Laboratories, approved. Ohmite Mfg. Co., 3627 Howard St., Skokie, Ill.

Circle 232 on Inquiry Card

BAND PASS FILTERS

Expansion of the BPM line. These are miniaturized Band Pass Filters. New units pass frequencies of 440, 500, 600, 3000, 4000, and 5000 CPS. For low level operation, attenuation is 35 db per octave. Filters are metal

cased and hermetically sealed to MIL-T-27A and MIL-T-18327A. Units are MIL type FR4RX22AF. Straight pin terminals are provided for printed or standard circuits. Units have 2:1 gain. Attenuation is approx. 2 db ±3% from center frequency. Input 10,000 ohms, output to grid, tapped for 10,000 ohms to provide for tran-sistor circuits. For tube circuits continuity is on grid side, for transistor use continuity is on input side. Dimensions: % x % x 1%. Weight: 1 oz. United Transformer Corp., 150 Varick St., N. Y. 13, N. Y.

Circle 233 on Inquiry Card

GENERATOR-DETECTOR

Model 800-R generator-detector is a combination of a variable power supply and a sensitive microvolt-meter. The generator provides 6 output ranges to match loads from 1 ohm to 100 kilohms. Output is continuously variable from 0 to 1 w into a matched load. Isolation and guarding make it applicable to high accuracy bridge measurements. The detector consists of a modulator type

calibrated dc microvoltmeter, with ranges from 0.2 µv per dial to 1,000 v full scale. Electro Scientific Industries (formerly: Electro Measurements, Inc.), 7524 S. W. Macadam. Portland. Ore.

Circle 234 on Inquiry Card

Products ... for the Electronic Industries

SQUARE TRIMMERS

Two new trimming potentiometers in square configuration, Models 50 and 60, %" and 1/2" square respectively. A feature is humidity proof construction in accordance with MIL-STD-202A, Method 104, Condition A

and MIL-E-5272C, Procedure I. Model 50 is available from 50 to 20K ohms and Model 60 from 50 to 50K ohms. Model 50, weighs 1 gm, is rated at 1 w at 50°C and Model 60, weighs 2 gm, rated at 2 w at 40°C. The 25 turn units meet all applicable military specifications for altitude, fungus, salt spray, humidity, sand and dust, temperature cycling, shock and vibration. Spectrol Electronics Corp., 1704 S. Del Mar Ave., San Gabriel, Calif.

Circle 235 on Inquiry Card

STAGING SWITCH

The EDC 2-184 Solid State Staging Switch is a Solid State "relay" designed for channel switching to increase the capacity of telemetering systems. Characteristics: Input power, 28 vdc, 70 ma, four double throw signal poles, two double throw monitoring and indicating poles; complete isolation between all poles, power and actuating circuits; uses all

DIODE SWITCH

A single diode switch for K-band applications, this silicon device is capable of switching greater power than 0.2 w at speeds of several musec. Total modulation voltage needed is 1.0 v. peak. The on-off ratio is 20 db with

an insertion loss of 2 db. Although designed for K-band, other bands are available with very little change in specs except size. (21/2 x 1-3/4 x 7/a in. for K-band unit). If a greater onoff ratio is required, these units can be cascaded in series. A dual unit is available with the same dimensions which had an on-off ratio of 40 db with an insertion loss of only 4 db. The Bendix Corp., York Div., York. Pa.

Circle 236 on Inquiry Card

ANGULAR DIVIDER

Angular Divider tests (out of the system) those inertial components which rely upon gimbals for precise concentric separation. The component under test is indexed with better than 20 sec.-of-arc absolute accuracy and 10 sec.-of-arc repeatability. Mechanical distortion forces negligible. With this instrument, electrical error and nulls are measured. It is also

Hermetically sealed IN429 silicon zener reference elements provide voltage stability of $\pm 1\%$ or better from -55° C to $+100^{\circ}$ C. The IN429 has a 6.2 v operating voltage, making it suitable for precision instrumenta-

tion, computer and other data processing equipment where precise low voltage regulation is required. Diodes may be used in series for higher reference levels. Rated at 200 mw power dissipation' at 25°C, it has a max. dynamic impedance of 20 ohms at 7.5 ma, and a power derating fac-tor of 1 mw/°C. Units measure 0.330 x 0.230 in. (dia) max. International Rectifier Corp., 1521 E. Grand Ave., El Segundo, Calif.

Circle 237 on Inquiry Card

PANCAKE RESOLVER

New pancake resolver has a functional accuracy of 10 sec. of arc. Resolver, which has a repeatability of 2-sec., is of integral bearing design, permitting direct gimbal mounting. Either the primary or secondary member can be rotated, with the other member fixed. It is suited for use in stable platforms of inertial guidance systems. Units available in beryllium

silicon transistors, and qualified for ballistic missile environment. The 2-184 can be provided with any number of isolated signal or power poles. Electro Development Corp., 3939 University Way, Seattle 5, Wash.

Circle 238 on Inquiry Card

used to simulate the output signals from a gyroscopic system. Specs: Size, 12 in. dia. x 5% in. high. Range, 360°. Direct reading in deg., min., and sec. Theta Instrument Corp., 520 Victor St., Saddle Brook, N. J.

Circle 239 on Inquiry Card

housings for operation in systems experiencing a wide range of temp. Aluminum housings can also be supplied. Components Marketing Div. of Reeves Instrument Corp., Garden City, N. Y.

Circle 240 on Inquiry Card

POTENTIOMETERS

Series of ½ in. dia. linear motion potentiometers for servo control systems and instrumentation transducers. The series, Types 3239 and 3209 meet MIL environmental specs. They offer independent linearities of

 $\pm 0.5\%$ or better, and are available with element resistances ranging from 1K to 20K ohms. Type 3239 has a shaft stroke length of 1.587 in., and Type 3209, a shaft stroke length of 0.600 in. Potentiometers withstand as much as 1000v RMS without dielectric failure. Structural feature permits coaxial mounting to meet design configurations such as are found in pneumatic and hydraulic systems. Markite Corp., 155 Waverly Place, New York 14, N. Y.

Circle 241 on Inquiry Card

R-F POWER METERS

Additions to line of low power r-f Power Meters. Masuring from 0.2 to 700 MC, they include Model PM-4, 150 and 600 mw full scale, Model PM-5, 500 and 1500 mw full scale and Model PM-6, 1.5-6 w full scale. They are absorption-type consisting of an aircooled, coaxial load resistor and a calibrated voltmeter. They are for use as field or lab. test instruments, are completely shielded and non-radiating,

TRIMMER RESISTORS

New 42-turn ½ in. square trimmer resistor (Series 170) and a new 25turn rectangular trimmer resistor (Series 180) added to metal-ceramic GeraTrols line. Both units have infinite resolution, complete resistance

range from 100 ohms thru 1 megohm and stability under all environmental conditions. Series 170 has 42 turns continuous rotation, 150°C high operating temp, power rating of 1 w at 50°C derated lineally to zero load at 150°C and high temp construction. Series 180 has 25 turns with slip clutch at end of rotation, 200°C high operating temp, power rating of 1 w at 125°C derated lineally to zero load at 200°C and high temp construction. CTS Corporation, Elkhart, Indiana.

Circle 243 on Inquiry Card

MICROWAVE AMPLIFIERS

New K -band solenoid-focused traveling-wave amplifiers power output rating is 1 w min.; however, the tubes have shown test capabilities up to 6 w output in the center of the frequency band. The standard freq. range is 12 to 18 KMC with a min. small signal gain of 30 db. The small signal gain variation over the band is less than 8 db. Metal-ceramic construction is used. Encapsulated tube

SERVO AMPLIFIER

The 60 CPS solid state servo amplifier, Model 122, is a 20 w 60 CPS general purpose servo amplifier for use with both dc and ac input signals. A 100 mv input will cause 115 v., 60 CPS output to rated load. The unit is self

protecting from overload due to excessive input signal. Input impedance is over 300 k for signal input and is 25 k for tach input. Output impedance is less than 100 ohms. Noise output is negligible and the waveform shows less than 10% harmonic distortion. Gain, zeroing, output, level and tach controls are provided, plus an additional control to adjust an internal damping network for dc signals. K-F Products, Inc., 3100 E. 43rd Ave., Denver 16, Colo.

Circle 245 on Inquiry Card

COMPUTER DELAY LINES

Modular type electromagnetic delay lines which may be gauged for printed circuit board applications. Specified as Series DL-251, units are constructed on non-nutrient, flame retarding, plastic materials. Impedances range from approx. 300 to 600 ohms with delay times of 0.1 to 0.8 μ sec. Dimensionally the units are 0.625 in. wide and run from 2 to 4 in. in length. Delay time to rise time

permitting transmitter testing and adjustment without interference. No correction curve is necessary to cover the freq. range. Accuracy is $\pm 5\%$. Electro Impulse Laboratory, Inc., 208 River St., Red Bank, N. J.

Circle 242 on Inquiry Card

weighs 1-34 lbs. and is 1-36 in. in dia. and 14-34 in. long, including input and output waveguides. Tube is designated the M2405-A. Microwave Electronics Corp., 4061 Transport St., Palo Alto, Calif.

Circle 244 on Inquiry Card

ratios of up to 10:1 available depending upon unit impedance and size. The operating temp. range is -55° C to $+105^{\circ}$ C. IMC Magnetics Corp., Gray & Kuhn Div., 570 Main St., Westbury, L. I. N. Y.

Circle 246 on Inquiry Card
A CHILTON PUBLICATION

ELECTRONIC INDUSTRIES'

1961 Coming Events Calendar

Portraying important electronic events for the year ahead

A listing of meetings, conferences, shows, etc., occurring during the year 1961 that are of special interest to electronic engineers.

The events are listed chronologically and by the area-

East, Midwest, and West-in which they occur.

ONLY the opening day of each meeting is marked on the calendar.

East

M

2

9 8

30

S

1

15

22 23

JANUARY

Midwest

_	-	-

T	W	T	F	5	S	M	Γ
3	4	5	6	7	1	2	
10	11	12	13	14	8	9	Ī
17	18	19	20	21	15	16	I
24	25	26	27	28	22	2 23	ſ
31					29	30	I

EAST

- Jan. 5: Annual Business Mtg., Veteran Wire-less Assoc., Inc. (VWOA), 117 Liberty St., N. Y. C.
- Jan. 8: 3rd Mech. Working Conf.—Bar and Shaped Products, Metallurgical Soc. of AIME, Penn-Sheraton Hotel, Pittsburgh, Pa.
- Jan. 8-11: Southern Regional Mtg., Nat'l Assoc of Electrical Distributors Palm of Electrical Distributors, Palm Assoc. Beach Biltmore, Palm Beach, Fla.
- Jan. 8-12: Nat'l Retail Merchants Assoc., Annual Conv., 50th Anniv. Observation, Hotel Statler, N. Y.
- Jan. 9-11: 7th Nat'l Symp. on Reliability & Quality Control, IRE, ASQC, AIEE, EIA, Bellevue-Stratford Hotel, Phila., Pa.
- jan. 12-13: Conf. on Reliability of Semiconductor Devices, Dir. of Defense Res. G Eng'g (working group on Semiconductor Devices — Advisory Group on Electron Tubes), Western Union Audit., N. Y. C.
- Jan. 19: Space Simulators Mtg., IES (N. Y. Metropolitan Chapter), Busto's Restaurant, N. Y. C.
- Jan. 23-25: 29th Annual Mtg., IAS, Hotel Astor, N. Y. C.
- Jan. 24-27: Mtg. American Mathematical Soc., Washington, D. C.

S	M	T	W	T	F	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

Jan. 24-27: 17th Annual Tech. Conf. & Tech. Mtg., Soc. of Plastics Engineers, Inc., Shoreham Hotel, Washington, D. C. Jan. 29-7eb. 3: Winter Gen'l Meeting, AIEE, Hotel Statler, N. Y.

MIDWEST

- Jan. 8-12: Symp. on Thermoelectric Energy Conversion, IRE, ANS, AIEE, AIME, et al, Statler Hilton Hotel, Dallas, Tex.
- Jan. 13-15: Annual Conv., Nat'l Appliance-Radio TV Dealers Assoc., Palmer House, Chicago, III.
- Jan. 17-19: Instrument-Automation Conf. & Exh., ISA, Sheraton-Jefferson Hotel & Kiel Municipal Audit., St. Louis, Mo.
- Jan. 23-26: Plant Maintenance & Eng'g Show & Conf., Int'l Amphitheatre, Chicago, III
- Jan. 23-26: 14th Annual Symp. on Modern Methods of Analytical Chemistry, Louisiana State Univ., Baton Rouge 3, La
- Jan. 30-Feb. 3: Committee Week, ASTM; Netherlands Hilton Hotel, Cincinnati, Ohio
- Jan. 31-Feb. 2: Cleveland Electronics Conf., Cleveland Eng'g Soc., IRE, AIEE, ISA, Cleveland Physics Soc., Case Institute of Tech., Western Reserve Univ., Cleveland Eng' & Scientific Center, Cleveland, Ohio.

ABBREVIATIONS USED IN THIS CALENDAR

- ACM-Association for Computing Machinery
- ACS-American Ceramics Society
- AFOSR-Air Force Office of Scientific Research
- AIChE—American Institute of Chemical Engineers
- AIEE-American Institute of Electrical Engineers AIME-American Institute of Mining
- Metallurgical. & Petroleum Engineers
- -American Institute of Physics AIP-AMA—American Management Association AMS—American Mathematical Society
- APS-American Physical Society ARRL-American Radio Relay League

- ANS-American Nuclear Society ARS-American Rocket Society ASA-American Standards Association
- ASM-American Society for Metals
- ASME-American Society for Mechanical Engineers
- ASQC-American Society for Quality Control
- ASTM-American Society for Testing Materials
- AWS—American Welding Society EIA—Electronic Industries Association (formerly RETMA)
- ERA-Electronic Representatives Association
- IAS—Institute of Aeronautical Sciences
- IES-Institute of Environmental Sciences
- IRE--Institute of Radio Engineers ISA—Instrument Society of America
- NAB-National Association of
- Broadcasters
- NARM-National Association of Relay Manufacturers
- NBS-National Bureau of Standards ONR-Office of Naval Research
- SMPTE-Society of Motion Picture S TV
- Engineers SPE-Society of Plastics Engineers WEMA-Western Electronic Manufacturers Association

108

The smooth, easy insertion and extraction action, the self-wiping, self cleaning features and the double-sided, flexing action of both mating contact members make Micro-Ribbons the first miniature connectors to provide reduction in size with added reliability.

A CINCH MINIATURE BLUE RIBBON

CONNECTORS Bodies are molded of an improved Diallyl-Phthalate with extremely high impact strength and excellent dielectric features. (type MDG per MIL-M-14E) Contacts are plated 0002 silver plated plus .00003 gold. Shells are brass cadmium plated plus either clear

chromate or yellow chromate per QQ-P-416 Type 2 Class 2.

 DIMENSIONS

 14 Contacts
 24 Contacts
 36 Contacts
 50 Contacts

 BOTH
 1.417
 1.842
 2.152 mpr.
 2.852

 TYPES
 1.417
 1.842
 2.152 mpr.
 2.857
 2.947

 Contacts
 50 Contacts
 50 Contacts
 3.200 mLF/
 2.947
 2.947

 Contacts
 C
 .910 mE/r
 1.335 mE/r
 2.485 mE/r
 2.400 mE/r

 Contacts
 C
 .910 mE/r
 1.335 mE/r
 1.943 mpr.
 1.800 mL/r

 Contacts
 C
 .910 mE/r
 1.600 max
 1.730 max
 1.800 mAx
 1.825 mAx

 CMASSIS
 Som max
 .473 mAx
 .448 mAx
 .766 mAx
 .766 mAx

 TYPE ONLY
 G
 .220 mAx
 .473 mAx
 .473 mAx
 .468 mAx
 .766 mAx

CABLE-TO-CHASSIS MOUNTING TYPES

The compact housings are equipped with sturdy spring type latches on the receptacies which are guided and held by cut-auts in the play flonges.

Receptacle shalls have fleating hushings allowing a float of .020 in each direction.

ADD MAX

CABLE TO CHASSIS TYPE

Centrally located plants at Chicago, Illinois; Shelbyville, Indiana; City of Industry, California; St. Louis, Missouri.

RACK AND PANEL CODE NOS.

ONTACT	S PLUG		SOCKET	
14	57-10140		57-20140	
24	57-10240		57-20240	
36	57 10360		57-20360	
50	57-10500		57-20500	
	CABLE TO CHASSIS	CODE	NOS.	

PLUG WITH CAP SOCKET WITH LOCK 57-3014# 57-40140 57-30240 57-40240 57-30360 57-40360 57-30500 57-40500

NOTE: Above code nes, have shells cadmium plated plus clear chromate. For cadmium plus yellow chromate Add -1 to the nes shown.

36

50

Manufactured by agreement with Amphanel-Borg Electronics Corporation

CONTACTS

CONTACTS

CONTACTS

REAL PROPERTY.

SO CONTACTS BACK A

BACK AND PANEL TYPES

BE BERNER COMPANY

1026 South Haman Ave., Chicago 24, Illinois Division of United-Carr Fastener Corporation, Basson, Mass.

Metrisite...is the only device available today provides a near-perfect combination of that ideal transducer characteristics. The unusual properties of this remarkable new motion-sensing development are: extreme resolution... easily measures one ten-millionth of an inch; minute operating force...absolute minimum bearing friction; negligible reactive force... a fraction of a milligram; true linearity...a proven accuracy of 1/10%; high electrical output...up to 100 volts without amplification; wide range of shapes and sizes... from sub-miniature on up; exceptional ruggedness...can meet military shock and vibration tests. Now, many of the obstacles that have plagued

control technology can be eliminated. Write for Metrisite details.

CLEVELAND 14,

cle 54 on Inquiry Ca

COMING EVENTS CALENDAR

FEBRUARY

East

S	M	T	W	T	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	-			

EAST

- Feb. 1-4: Meeting, American Physical Soc., N. Y. C.
- Feb. 1-4: Annual Meeting, American Inst of Physics, Hotel New Yorker, New York, N.Y
- Feb. 15-17: Int'l Solid State Circuits Conf., IRE, AIEE, Univ of Penna, Univ of Penna and Sheraton Hotel, Phila, Pa
- Feb. 16: Mechanical Impedance Testing Mtg., IES (N. Y. Metro, Chpt), Busto's Restaurant, New York, N. Y.
- Feb. 22: American Mathematical Soc. Mtg., Yeshiva Univ, New York, N.
- Feb. 25: Annual Dinner Cruise, Veteran

Midwest

S	M	T	W	T	F	S		
			1	2	3	4		
5	6	7	8	9	10	11		
12	13	14	15	16	17	18		
19	20	21	22	23	24	25		
26	27	28						

Wireless Operator's Assoc, Inc.; Edison Hotel, New York, N. Y. Feb. 26-28: NAMM Southeast Regional Cont., Nat'l Assoc. of Music Merchants,

Inc., Hotel Denkler Plaza, Atlanta, Ca.

MIDWEST

Feb. 1-2: 7th Annual Midwest Welding Conf., III. Inst. of Tech., Technology Cen-ter, Chicago, III.

WEST

Feb. 1-3: 1961 Winter MIL-E-CON-Military Electronics Conv., IRE, PGME (Los Angeles

West

S	M	T	W	T	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28				

Sect.), Biltmore Hotel, Los Angeles, Calif. Feb. 1-3: Solid Propellant Rocket Conf. ARS, The Hotel Utah, Sait Lake City, Utah Feb. 1-4: 2nd Annual Conv. ERA, Ambassador Hotel Les Ansola Colif. Feb. Hotel, Los Angeles, Calif.

- Hotel, Los Angeles, Calif. Feb. 9-11: Winter Mtg., Nat'l Soc. of Prof Engrs., Hotel Hilton, Denver, Colo. Feb. 22: Reliability Symp., ASQC (Los An-geles Sect.), Univ. of Calif. & Statler Hotel, Los Angeles, Calif. Feb. 22-24: Pacific Coast Show, Material Mandling Inst., Cow Palace, San Francisco, Calif.

Calif

Feb. 26-Mar. 1: Pacific Electronic Trade Show, Western Distributor Segment of the Industry, Great Western Exh. Ctr., Los Angeles, Calif.

East

		_		_		_
S	M	Τ	W	T	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

EAST

- Mar. 8: Data Processing Show & Conf., American Management Assoc., Statler Hil-
- ton Hotel, New York, N. Y. Mar. 8-10: 11th Annual Conf. on Instru-mentation for the Iron & Steel Industry, ISA, Roosevelt Hotel, Pittsburgh, Pa.
- Mar. 9-10: Symp. on Eng. Aspects of Mag-netohydrodynamics, IRE (PCNS), AIEE, IAS, Univ. of Penna., Phila., Pa.
- Mar. 15: Committee & Section Mts., EIA, Statler Hilton Hotel, Washington, D. C.
- Mar. 16: Div. Exec. Comm. Mts., EIA, Stat-ler Hilton Hotel, Washington, D C
- Mar. 20-23: IRE Int'I Conv., IRE, Coliseum Waldorf Astoria Hotel, New York, N. Y

ELECTRONIC INDUSTRIES . Jonuary 1961

S M T W T F S 2 3 4 1 5 6 7 8 0 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 21 26 29 30 31 27 28

MIDWEST

- Mar. 1: Machine Design Conf., Cleveland Engig Soc., Machine Des. Div., Cleveland Engig & Scientific Center, Cleveland, Ohio. Mar. 1-2: Annual Tech. Symp. Soc. of Vac-uum Coaters, Conrad Hilton Hotel, Chi-

- Cago, Ull.
 Mar. 9-10: Nat'l Flight Propulsion Mgt. (Classified), Cleveland, Ohio.
 Mar. 15-16: ASTME Plastics Tooling Seminar, ASME, SPE, Statler-Hilton Hotel, Detroit Adult
- HAP, ASME, SZE, Statterstrikter Hole, Dettroit, Mich.
 Mar. 21-23: 23rd Annual American Power Conf., Ill. Inst. of Tech., ASME, Hotel Sherman, Chicago, Ill.
 Mar. 24-25: ARRL Mich. State Conv., ARRL, Mich.
- Wanona Hotel, Bay City, Mich.

Mar. 27-31: 3rd Symp. on Temp.—its Measurement and Control in Science & Industry, ISA, AIP, NBS, Veterans Mem-orial Hall & Deshler Hilton Hotel, Columbus, Ohio.

WEST

- Mar. 12-16: Aviation Conf., ASME, Statler Hilton Hotel, Los Angeles, Calif.
- Hilton Hotel, Los Angeles, Calif. Mar. 13-15: Testing Conf., ARS, Biltmore Ho-tel, Los Angeles, Calif.
- Mar. 19-21: Northwest Reg. Conf., Nat'l Assoc. of Music Merchants, Hotel Benson. Portland, Ore.
- Mar. 20-24: 12th Western Metal Congress & Expos., ASM, Pan-Pacific Audit., Los An-geles, Calif

S M

5 6 7 8 9 10

12

19 20 21 22 23 24

26 27 28 29 30 31

13 14 15 16 17

T

West								
r	W	1						

1

T F S

2 3 4

11

18

25

		_	-
м	id		ct

MARCH

_	_	_	_	-
	-	-		

with the Tektronix Type 585 Oscilloscope

Highly adaptable, the Type 585 fits most precisionmeasurement applications in the dc-to-100 mc range —when used with a Type 80 Plug-In Unit and P80 Probe. The three-way combination features:

- 1...slow sweeps as well as fast sweeps and versatile main sweep triggering facilities compatible with the bandwidth capabilities for general-purpose laboratory work;
- 2...3.5 nsec risetime, 0.1 v/cm sensitivity, 10 nsec/cm sweeptimefor high-speed pulse analysis;
- 3... two modes of calibrated sweep delay: either Conventional (when the delayed sweep is started at the end of the delay period by the delayed trigger) or Triggered (when the delayed sweep is started after the delay period by the signal under observation) for a wide variety of specialized applications.

For example, the delayed-sweep enables you to observe the start of the horizontal sweep from 1 microsecond to 10 seconds after receipt of a triggering signal... to make precise incremental measurements along a complex waveform ... to obtain high magnification of a selected portion of an undelayed sweep—with jitter-free magnification up to 10,000 times.

Further, the exact portion of the display on the delaying sweep that will appear on the faster main sweep is positively identified by trace brightening, and the Single-Sweep feature facilitates photographic recording of most one-shot phenomena.

Designed for interchangeable preamplifiers, the Type 585 will also accept the present 16 "letter-series" plug-in units without loss of bandwidth or basic sensitivity of the plug-in -when used with the Type 81 Adapter.

112

Tektronix, Inc.

P. O. Box 500 . Bequerton, Oregon

- Determine accurate time-difference measurements between pulse-in and pulse-out through an emplifring system.
- Select any individual line of a television composite signal.
- Snow time displacement, wars shape, and amplitude of individual channels in a televisioning system.

TYPE 585, without plug-in unit .				\$1675
Type 80 Plug-In Preamplifier				50
P80 Probe				100
Type 81 Plug-In Adapter				125
Prices f.o.b. factor	y			

Note: Both the Type 80 Plug-In Preamplifier and P80 Probe are necessary for dc-to-100 mc operation. The Adapter allows insertion of Tektronix "letter-series" plug-in units.

Call your Field Engineer for a demonstration of the versatile Type 585 in your own delayed-sweep application.

Phone Mitchell 4-0161 • TWX-BEAV 311 • Cable: TEKTRONIX TEKTRONIX FIELD OFFICES: Ally oversum N. Ver. + Anama Ca. + Baltimore (Towson, Md) + Botton (Lewington, Mass.) + Buffaio, N.Y. + Ch.cogo (Park R.dge, III.) + C Commo Care. - Definite Transmission, Md, + Kansa Care, Francesco, Kan, + Lewing, Texas, + Indianapolis, Ind. + Kansa City (Masson, Kan, +

TEKTRONIK FIELD OFFICES: A Development of the solution of the

In Europe please write Tektronic Inc., Victoria A.e., St. Sampsons, Guernsey C.I., for the address of the Tektronic Representative in your country.

COMING EVENTS CALENDAR

APRIL

East

S	M	T	W	T	F	S
						1
2	3	4	5	6	7	8
	10	11	12	13	14	15
16	17	18	19	20	21	22
30	24	25	26	27	28	29

Apr. 4-6: Int'l Symp. an Electromagnetics & Fluid Dynamics of Gaseous Plasma, Poly-technic Inst. of Bklyn, Auditorium of Eng'g Soc. Bldg., 33 W. 39th St., New York, N. Y.

EAST

- Apr. 5-7: Annual Conv., Inst. of Environ-mental Sciences, Hotel Sheraton-Park, Washington, D. C.
- Apr. 5-7: Symp. on Materials & Electron Device Processing, ASTM Committee F-1 on Materials for Electron Tubes & Semi-conductor Devices, Franklin Inst., Phila.,
- Apr. 6-7: Management Eng'g Conf., ASME, SAM, Statler Hilton Hotel, New York, N. Y.
- Apr. 8-9: ARRL Southeastern Div. Conv., American Radio Relay League, Cherry Plaza Hotel, Orlando, Fla.
- Apr. 10-12: 44th Nat'l Open Hearth Steel Conf. & Blast Furnace. Coke Oven, and Raw Material Conf., AIME, Sheraton Hotel, Phila., Pa.
- Apr. 10-19: Annual Assembly of Int'l Inst. of Welding, AWS, Sheraton-Atlantic Hotel, New York, N. Y.
- Apr. 11-13: Conf. on Ultra-purification of Semiconductor Materials, AFRD, ARGDC, USAF, New England Mutual Hall, Boston, Mass
- Apr. 12-14: Int'l Symp. on Agglomeration, AIME, Sheraton Hotel, Phila, Pa.
- Apr. 17-21: Annual Mtg. & Welding Expos., AWS, Hotel Commodore & Coliseum, New York, N. Y.

East

S

S M W T F T S 1 2 3 F 6 8 10 9 11 12 13 14 15 16 18 19 20 21 22 17 23 24 27 28 25 26 29

pr. 17-21: The Business Equip. Expos., Office Equip. Mfrs., New York Coliseum, Apr. New York, N. Y

Apr. 23-26: Metals Eng'g Conf., ASME, Penn Sheraton Hotel, Pittsburgh, Pa.

Apr. 23-27: Annual Mtg., Scientic Apparatus Matem Amor. The Greenbrier, White Makers Assoc, The Greenbrier, Sulphur Sprgs, W. Va.

Apr. 24-27: Mtg., American Physical Soc., Washington, D. C.

Apr. 26-28: Detonation & Deflagration Phenomena Conf., ARS, Palm Beach Bilt-more, Palm Beach, Fla.

MIDWEST

- Apr. 4-6: 10th Annual Mtg. & Conf., Nat'l Microfilm Assoc., Sherman Hotel, Chicago, 111
- Apr. 5-7: SE District Mtg., AIEE, Jung Hotel, New Orleans, La.
- Apr. 7-9: ARRL Delta Div. Conv., ARRL, Read House, Chattanooga, Tenn.
- Apr. 11-13: 33rd Annual Conv., Petroleum Elec. Supply Assoc. & Petroleum Industrial Elec. Assoc., Moody Center, Calveston, Tex
- Apr. 12-14: Symp. on Information & Deci-sion Processes, Purdue Univ., Lafayette, Ind
- Apr. 16-18: NAMM Southwest Reg. Conf., Nat'l Assoc. of Music Merchants, Inc., Shamrock-Hilton Hotel, Houston, Tex.
- Apr. 17-19: 7th Nat'l ISA Symp. on Instra-mental Methods of Analysis, Shamrock-Hilton Hotel, Houston, Tex.

MAY

- May 4-7: Conv., American Women in Radio & Television, Inc.: Statler Hilton, Hotel **5** Television, Inc.; Statler Hilton Hotel, Washington, D. C.
- May 7-11: 39th Annual Conv. & Broadcast Eng'g Conf., NAB; Shoreham & Sheraton Park Hotels, Washington, D. C.
- May 9-11: Eastern States Show, Material Handling Inst.; Convention Hall, Phila., Pa.
- May 9-11: Power Sources Symp., U. S. Army (Sig. RGD Labs), Shelburne Hotel, At-lantic City, N. J.
- May 11-13: Meeting, American Radium Soc., Colorado Springs, Colo.

May 15-17: Microwave Theory & Tech.

Nat'l Symp., IRE (PGMTT), Sheraton Park Hotel, Washington, D. C.

- May 17-19: North Eastern District Mtg., AIEE, Statler Hotel, Hartford, Conn.
- May 18: Tour of Environmental Facilities, IES (N. Y. Metro Chptr), Bklyn Navy Yard, Bklyn, N. Y.
- May 22-26: Annual Conf., Soc. Photo. Scientists & Engrs, Arlington Hotel, Binghamton, N.-Y.
- May 23-25: Symp. on large Capacity Mem-ory Techniques for Computing Systems, ONR (Information Systems Br), Dept. of Interior Auditorium, Washington, D. C.
- May 31-June 2: Free, Control Symp., U. S. Army (Sig. R&D Lebs), Shelburne Hotel, Atlantic City, N. J.

S	M	T	W	T	F	S
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29

Midwest

Apr. 19-21: Great Lakes District Mtg., AIEE, Minneapolis, Minn.

- Apr. 19-21: SWIRECO-S.W. IRE Reg. Conf. & Elec. Show, IRE (Region 6), Dallas, Tex.
- Apr. 25-27: 9th Nat'l Conf. on Electromag-netic Relays, NARL, Student Union Bldg., Oklahoma State Univ., Stillwater, Okla.
- Apr. 25-27: Tech. Conf. on High-temp Mate-rials, AIME, Carter Hotel, Cleveland, Ohio
- Apr. 29-May 3: 53rd Annual Conf., Nat'l Assoc. of Electrical Distributors, Cobo Hall, Detroit, Mich.
- Apr. 30-May 4: Spring Mtg., Electrochemical Soc., Inc., Claypool Hotel, Indianapolis, Ind.,
- Apr. 30-May 4: 7th Nat'l Aero-Space Instru-mentation Symp., ISA, Adolphus Hotel, Dallas Tex.

WEST

- Apr. 5-7: Lifting Reentry Vehicles, Structure, Materials & Design Conf., ARS, El Mirador Hotel, Palm Sprgs., Calif.
- Apr. 5-7: Mtg., Radio Tech. Comm. for Marine Services, Sheraton-Palace Hotel, San Francisco, Calif.
- Apr. 13-14: 8th Annual STWP Conv., Soc. of Tech. Writers & Publishers, Mark Hopkins Hotel, San Francisco, Calif.
- Apr., 18-20: Symp. on Chemical Reactions in the Lower and Upper Atmosphere, Stanford Res. Inst., San Francisco, Calif.
- Apr. 22: Mtg., American Mathematical Soc., Stanford, Calif.
- Apr. 26-28: 7th Region Tech. Conf. & Trade Show, IRE (Region 7), Westward Ho Hotel, Phoenix, Ariz.

ELECTRONIC INDUSTRIES . January 1961

	_	_	-	_		
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

MTWTFS

EAST

At Burnell & Co., our engineers devote a big part of their thinking to shrinking-reducing the size (and cost) of components to the least common denominator consistent with high performance standards. From this staff have come such components as:

The Kernel ATE Adjustoroid®---This variable toroid contains an actual complete toroid with all the excellent characteristics of the non-adjustable type. Valuable in oscillators, discriminators, variable tuned circuits, etc.

MLP and MHP MICROID & Filters - Microminature counterparts of the popular Burnell TCL and TCH low pass and high pass filters, they range from .5 kc to 100 kc with a standard impedance of 10k ohms. Cascading the MLP with the MHP produces excellent response band pass characteristics.

"Cheerio" Toroids - Subminiature high Q coils in a range of frequencies that make them ideal for transistorized equipment.

Crystal Filters-Advanced engineering techniques enable Burnell to offer at nominal cost, high selectivity, high attenuation crystal filters covering the extraordinary range of 1 kc to 30 mcs with considerable latitude in impedance.

Pulse networks, interference filters, active networks and magnetic amplifiers are among the newer additions to our product line.

Write for latest catalog.

Burnell & Co., Inc., has a number of positions available for engineers capable of thinking big and shrinking small. Inquiries are invited.

If you haven't already done so -- send for your free membership in the Space Shrinkers Club.

PIONEERS IN micror TOROIDS, FILTERS AND RELATED NETWORKS

EASTERN DIVISION ID PELMAM PANEWA PELMAM, N. PFIHAM

Mid. In Canada by Edo (C

FREQUENCY

Circle 56 on Inquiry Card

COMING EVENTS CALENDAR

MAY (Continued)

Midwest

S	M	T	W	T	F	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

- May 7-8: 5th Midwest Symp on Circuit The-ery, IRE (PGCT), Allerton Park & Urbana Campus of Univ. of III., Urbana, III.
- May 7-11: 42nd Int'l Conf. & Office Expos., Nat'l Office Management Assoc, Sheraton-Jefferson Hotel & Kiel Auditorium, St. Louis, Mo
- May 8-10: 4th Nat'l ISA Power Instrumenta-tion Symp., LaSalle Hotel, Chicago, III.
- May 8-10: Nat'l Aeronautical Electronics Conf., IRE (PCANE) Dayton Sect , Miami & Dayton Biltmore Hotels, Dayton, Ohio
- May 10-12: Pulp & Paper Instrumentation Symp., ISA, Northland Hotel, Green Bay, Wis
- May 12: Meeting (Exec. Comm. & Nat'l Board of Governors), ERA, Hilton Hotel, Chicago, III.
- May 22-24: Electronic Parts Distributors Show, Electronic Industry Show Corp., Conrad Hilton Hotel, Chicago, III.
- May 22-24: 5th Nat'l Symp. on Global Com-munications (GLOBECOM V), IRE (PCCS) AIEE, Sherman Hotel, Chicago, III.
- May 22-24: Nat'l Telemetering Conf., IAS. IRE, AIEE, ARS, ISA, Sheraton-Towers Hotel, Chicago, III.
- May 22-25: Design Eng'g Show & Conf., ASME, Cobo Hall, Detroit, Mich.
- May 24-26: 37th Annual Conf., EIA, Pick-Congress Hotel, Chicago, III.

West

S	M	T	W	T	F	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

May 2-4: Electronic Components Conf., IRE (PCCP), AIEE, EIA, WEMA, Jack Tar Hotel, San Francisco, Calif

- May 6-10: Mtg., The Electrochemical Soc., Inc., Statler Hotel, Los Angeles, Calif
- May 9-11: Western Joint Computer Conf., IRE (PGEC), AIEE, ACM, Ambassador Hotel, Los Angeles, Calif.
- May 26-29: Southwestern Div. Conf., The American Radio Relay League, Westward Ho Hotel, Phoenix, Ariz.

ELECTRONIC INDUSTRIES . January 1961

East W T F S S M T 1 2 3 5 8 9 10 4 6 7 12 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

JUNE

		vv est										
1	S	M	T	W	T	F	S					
1					1	2	3					
1	4	5	6	7	8	9	10					
1	11	12	13	14	15	16	17					
	18	19	20	21	22	23	24					
1	25	26	27	28	29	30						

Francisco, Calif.

der, Colo.

PGA-Audio

trol)

niques

PGE-Education

Electronics PGIT-Information Theory

PGB-Broadcast

PGI-Instrumentation

June 11-14: 28th Annual Conv., Electrical

June 12-15: Int'l Conf. on the Physics of Electronic & Atomic Collisions. AFOSR/ SRYP. Univ. of Colo., Univ. of Colo., Boul-

June 20-23: 10th Annual Conv. & Trade Show, Nat'l Community TV Assoc., Inc., Jack Tar Hotel, San Francisco, Calif.

June 28:30: Joint Automatic Control Conf., IRE, AIEE, ASME, ISA, AIChe: Univ. of Colorado, Boulder, Colo.

IRE PROFESSIONAL GROUPS

PGND-Nuclear Science PGVC-Vehicular Communications PGRQC-Reliability & Quality Control PGBTR-Broadcast & TV Receivers

PGTRC-Space Electronics & Telemetry (Formerly Telemetry & Remote Con-

PGANE-Aeronautical & Navigational

PGEM—Engineering Management PGIE—Industrial Electronics PGED-Electron Devices PGEC-Electronic Computers PGMTT-Microwave Theory & Tech-

PGME—Medical Electronics PGCS—Communications Systems PGUE—Ultrasonics Engineering PGCP—Component Parts PGPT-Production Techniques PGAC—Automatic Control PGME—Military Electronics

PGAP—Antennas & Propagation PGCT—Circuit Theory PGNS—Nuclear Science

Apparatus Serv. Assoc. (formerly Nat'l In-dustrial Serv. Assoc.), Jack Tar Hotel, San

SAZ. .

- EAST
- June 1: Meeting, Bus. Management Inst. (Eastern Sect), American Univ., Washing-ton, D. C. June 11-15: Annual Summer Mtg., ASME, Statler Hilton Hotel, Los Angeles, Calif.
- June 4-8: Nat'l Mtg., American Nuclear Society, Pittsburgh, Pa.
- June 5-6: 5th Nat'l Conf. on Product Eng'g & Production, IRE (PGPEP), Phila, Pa
- June 8-10: Annual Mtg., Gen'l Business, Mfg Chemists' Assoc, Inc., Greenbrier, White Sulphur Sprgs., W. Va.
- ISA, APCA, Hotel Commodore, New York, N.Y. June 12: Air Pollution Instrumentation Symp.,
- June 12-16: 9th Annual Tech. Writers' Inst., Rensselaer Polytechnic Inst., Troy,
- June 18-23: 48th Annual Conv., American Electroplaters Soc., Statler Hilton Hotel,
- Boston Mass. June 18-23: Summer Gen'l Mtg., AIEE, Stat-
- ler Hall, Ithaca, N. Y
- June 26-28: 5th Nat'l Conv. on Military Electronics, IRE (PCME), Shoreham Hotel, Washington, D. C.

Midwest

S	M	T	W	T	F	S
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	

MIDWEST

- June 13-16: 3rd Biennial Int'l Gas Chromatography Symp. Mich. State Univ , Kellogg Center, E. Lansing, Mich.
- June 14-16: Meeting, ASME Applied Me-chanics Div., Illinois Inst. of Tech., Tech-nology Center, Chicago, III.

WEST

June 7-9: Semi-Annual Mtg., ARS, Statler-Hilton Hotel, Los Angeles, Calif.

June 10-17: Conv., American Soc. of Medical Technologists. Olympic Hotel, Seattle, Wash

A REPRINT of this article can be obtained by writing on company letterhead to The Editor

PGEWS—Engineering Writing & Speech PGEWS—Engineering Writing & Speech PGHF—Human Factors in Electronics PGRFI—Radio Frequency Interference

ELECTRONIC INDUSTRIES Chestnut & 56th Sts., Phila. 39, Pa.

- Peak surge currents up to 250 amps
- Conservative ratings assure extra margin of safety
- Variety of Mermetically-sealed package styles
- Military types available

For your copy of the new Motorola silicon rectifier catalog, write for Data Sheet #DS 1002-1. Please address inquiries to MOTOROLA SEMICONDUCTOR PRODUCTS INC., Technical Information Department, 5005 E. McDowell Road, Phoenix, Arizona. Motorola now offers an extensive line of medium-current diffused-junction silicon rectifiers which exhibit the same high-quality performance that has made Motorola zener diodes a standard for the industry. In order to insure this same standard in its silicon rectifiers, Motorola has established comprehensive quality assurance programs to guarantee stable operation and continued reliability for each Motorola rectifier – even under rugged military-type environmental conditions. With reliability as the primary goal, these rectifiers incorporate the same advanced silicon processing techniques which have made possible so many new silicon diode developments at Motorola.

MOTOROLA Semiconductor Products Inc.

A SUBSIDIARY OF MOTOROLA. INC. 5005 EAST MCDOWELL ROAD . PHOENIX, ARIZONA

Circle 55 on Inquiry Card

COMING EVENTS CALENDAR

S	M	T	W	T	F	S
						1
2	1	4	5	6	7	8
9	13	11	12	13	14	15
13	17	18	19	20	21	10.00
23	24	25	26	27	28	29

July 16-22: 4th Int'l Conf. on Medical Electronics & 14th Conf. on Elect. Tech. in Medicine & Biology, IRE (PCME), IFME, JECMB, Waldorf Astoria Hotel, New York, N.Y.

July 16-20: Nat'l: Music Industry Conv. & Trade Show. Nat'l Assoc. of Music Merchants, Inc., Palmer House, Chicago, III. July 22-25: Mtg. Conv. & Exh., Nat'l Audio-Visual Assoc, Morrison Hotel, Chicago, I'l.

- July 3-8: Annual Mtg., Nat'l Soc of Prof Engrs., Olympic Hotel, Seattle, Wash
- July 10-14: 4th Annual Inst., in Tech. & Industrial Communications, Colorado State Univ. Campus, Ft. Collins, Colo
- July 31-Aug. 4: Differential Equations in Non-Linear Mechanics, AFOSR/Aeronautical Sciences Directorate & RIAS, Air Force Academy, Colo.

East

S	M	T	W	T	F	S
		1	2	3	4	5
6	7	8	9	10	.11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
14	28	29	30	31		

Midwest

S	M	T	W	I.	F	S
	-	1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22		24	25	26
	28	29	30	31		

West

S	M	T	W	T	F	S
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	2.5
20	21		23	24	25	26
27		29	30	31		

- Aug. 21-23: Int'l Hypersonics Conf., ARS, Mass. Inst. of Tech. Cambridge, Mass.
- Aug. 21-24: Photo Conductivity Conf., Cornell Univ, Committee on Conf., Willard Straight Hall, Ithaca, N.Y.
- Aug. 27-30: Eastern Region Mtg., Nat'l Assoc. of Electrical Distributors, Saranac Inn, Saranac, N. Y.

Aug.	2	3-25:	Biennial	Gas	Dynamics	Symp.,
AR	S,	North	western	Univ ,	Evanston,	111

Aug. 27-Sept. 1: 6th Int'l Conf. of Coordination Chemistry, AFOSR/Chemical Sciences Directorate & American Chemical Soc (Inorganic Chemistry Sect), Wayne State Univ., Detroit, Mich. Aug. 19-24: Naval Aviation Mtg., IAS, Navy. San Diego, Calif.

Aug. 22-25: WESCON, Western Electronic Show & Conv., WEMA, IRE (L. A. & S. F. Sect.), San Francisco, Calif

Aug. 23-25: Pacific General Mtg., AIEE, Salt Lake City, Utah.

Aug. 28-Sept. 1: Int'l Heat Transfer Conf., IAS, Bouider, Colo

_		-
	-	-
~		
	~	с.

S	M	T	W	T	F	S
					1	2
3	4	5		7	8	9
10	11	12	13		15	16
17	18	19		21	22	23
24	25	26	100	28	29	30

Sept. 6-8: Annual Mtg. (Joint), Assoc. of the U. S. Army, Army Aviation Assoc. of America, Sheraton-Park Hotel, Washington, D. C.

Sept. 6-8: Int'l Symp. on Transmission & Processing of Information, IRE (PGIT), Mass. Inst. of Tech., Cambridge, Mass

ELECTRONIC INDUSTRIES . January 1961

Midwest & West

S	Μ	T	W	T	F	S
					1	2
3	.4	5		7	8	9
10	16	12		14	15	14
17	18	19	20	21	22	23
24	9 L)	26	27	28	29	30

Sept. 6-8: Joint Nuclear Instrumentation Symp., ISA, AIEE, IRE, North Carolina State College, Raleigh, N. C.

Sept. 14-15: Eng'g Management Conf., ASME, Roosevelt Hotel, New York, N Y Scat. 15-17: ABPL N. Y. State Con-

Sept. 15-17: ARRL N. Y. State Conv., ARRL, Hotel Niagara, Niagara Falls, N. Y. Sept. 20-21: Industrial Electronics Symp., IRE (PGIE), AIEE, Boston, Mass Sept. 27-30: Materials & Equip.—White Wares Dirs., ACS, Bedford Springs Hotel, Bedford, Pa

Sept. 13-15: Annual Mtg., Human Factors Soc., Ohio State Univ., Batteile Memorial Inst., North American Aviation, Inc., Ohio State Univ., Columbus, Ohio

Sept. 25-28: Nat'l Fall Meeting. American Welding Soc., Hote! Adclphus, Dallas, Tex

Sept. 6-8: Annual Mtg., ACM, Statler Hilton Hotel, Los Angeles, Calif.

Sept. 6-8: Nat'l Symp. on Space Electronics & Telemetry, IRE (PCSET), Albuquerque, N M

Sept. 11-15: Fall Instrument-Automation Conf. & Exh., & 16th Annual Mtg., ISA, Sports Arena, Los Angeles, Calif.

Sept. 16-20: Western Region Conv., Nat'l Assoc. of Electrical Distributors, Jack Tar Hotel, San Francisco, Calif

147

You can place the utmost confidence in Dale precision resistors even when today's new and unprecedented standards of "missile reliability" are the goals towards which you are designing.

Under any and all conditions, Dale resistors retain their stability because it has been "firmly infixed" by Dale design and methods of manufacture . . . methods which have now reached new levels of achievement as part of Dale's super-high reliability development program.

SPECIAL PROBLEMS? Let us help you with your requirements for special resistance products. We make modifications of standard products, resistor networks, matched pairs, etc. Send us your specs.

PROMPT DELIVERY. Whether your need is for a short "test run" or a large production release, Dale offers prompt service, direct from the factory and through a widespread network of distributors.

Write for Bulletins R-23, R-25 and R-30 with handy cross-reference file cards

DALE ELECTRONICS. INC. 1304 28th Ave., Columbus, Nebraska, U.S.A.

WIRE WOUND . PRECISION . POWER Designed for advanced electronic circuits where space is at a premium. Three configurations: Type RS with axial leads and in most ratings and resistances shown; Type RLS with radial leads; Type **RSE** for clip mounting.

- Rated at 1/2, 1, 2, 21/2, 3, 5, 7, 10 watts Resistance range from .05 ohm to 175K .
- ohms, depending on type Tolerance 0.05%, 0.1%, 0.25%, 0.5%, .
- 1%, 3% Temperature coefficient within 0.00002/ ٠
- degree C. Operating temperature range from -55° C. to 275° C. ٠
- ٠
- Smallest in size, ranging from 5/64" by 5/16" to 3/8" by 1-25/32". Ten choices .
- Completely protected, impervious to moisture and salt spray · Complete welded construction from ter-
- minal to terminal
- Silicone sealed, offering high dielectric strength and maximum resistance to abrasion
- Meet functional requirements of MIL-R-26C ٠

DALE

Circle 58 on Inquiry Card

COMING EVENTS CALENDAR

OCTOBER

Oct. 2-4: 7th Nat'l Communications Symp.,

Oct. 2-6: 7th Part Commence IRE (PCCS), Utica, N. Y. Oct. 2-6: 90th Semiannual Conv., Soc of Motion Picture & TV Engrs, Lake Placid Club, Lake Placid, N. Y.

- Oct. 5-7: Meeting, Refractories Div., ACS, Bedford, Pa
- Oct. 9-10: Meeting, Basic Science Div , ACS
- Soc. Hotel Van Curier, Schenectady, N.Y. Oct. 9-11: Nat'l Fall Conf. & Expo., Nat'l Office Management Assoc, Bellevue-Stratford Hotel, Phila., Pa
- Oct. 9-13: ARS Space Flight Report to the Nation, ARS, Coliseum, New York, N.Y. Oct. 11-13: Meeting, Class Div, ACS, Bed-ford Springs Hotel, Bedford, Pa
- Oct. 18-21: Meeting, Structural Clay Prod Div, ACS, Mellon Inst. & Webster Park Hotel, Pittsburgh, Pa.

Oct. 19-21: Fall Mtg., Nat'l Soc of Prof Engrs, Roanoke Hotel, Roanoke, Va

- Oct. 23-25: East Coast Conf. on Aero & Navigational Electronics, IRE (PGANE).
- Lord Baltimore Hotel, Baltimore, Md. Oct. 30-Nov. 1: Radio Fall Mtg., EIA, IRE, Hotel Syracuse, Syracuse, N. Y

MIDWEST

Oct. 1-5: Mtg., The Electrochemical Soc., Inc., Statler Hotel, Detroit, Mich.

- Oct. 8-10: Meeting, Int'l Municipal Signal Assoc., Netherland Hilton Hotel, Cincin-nati, Ohio
- Oct. 9-11: Nat'l Electronics Conf. (NEC), IRE, AIEE, EIA, SMPTE, Chicago, III Oct. 10-12: 12th Nat'l Conf. on Standards, ASA, Rice Hotel, Houston, Tex
- Oct. 15-20: Fall General Mtg., AIEE, Detroit,
- Mich
- Oct., 23-26: Fall Mtg., The Metallurgical Soc. of AIME, Pick-Fort Shelby Hotel, Detroit Mich

NOVEMBER

East

S	M	T	W	T	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30		

Midwest

S	M	T	W	T	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30		

Nov. 14-16: Northeast Res. & Eng. Mtg. (NEREM), IRE (Region 1), Boston, Mass. Nov. 20-21: 1961 Electron Devices Mtg., IRE PCED), Shoreham Hotel, Washington,

EAST

- DC Non 26-Dec. 1: Winter Annual Mtg., ASME,
- Nov. 20-Dec. 1: Winter Annual Mrg., ASME, Statler Hilton Hotel, New York, N. Y.
 Nov. 27-Dec. 1: 28th Expos. of the Chemical Industries, Coliseum, New York, N. Y.
 Nov. 30-Dec. 2: Conf.—Tech. Progress in Communication Wire & Cables Symp., U. C. Amaria (Str. Dec) Laboration (Str. Dec) Laboration U. S. Army (Sig. RGD Labs), Berkeley-Carteret Hotel, Asbury Park, N. J.

MIDWEST

- Nov. 6-9: Atom Fair, Atomic Industrial Forum, Conrad Hilton Hotel, Chicago, III. ANS,
- Nov. 7-10: Packaging Machinery Mfgs. Inst. Show of 1961, Cobo Hall, Detroit, Mich. Nov. 7-10: Winter Mtg., American Nuclear
- Soc., Chicago, III. Nov. 14-16: MAECON (Mid-America Elec.
- Nov. 17-18: MAECON (Mile-America Elec., Conf.), IRE (Kansas City Sect.), Kansas City, Mo.
 Nov. 17-18: Mooting, American Mathematical Soc., Milwaukee, Wis.
 Nov. 30-Dec. 1: Conf., Prof. Group on Ve-biculae Communications IRE Hotel Lots.
- hicular Communications, IRE, Hotel Leamington, Minneapolis, Minn

Check ELECTRONIC INDUSTRIES' monthly **Coming Events Page for announcements of** new events or changes in date or location of previously announced events.

ELECTRONIC INDUSTRIES . January 1961

Oct. 24-26: 1961 Mich. Industrial Electronics Expos., Electronic Representatives, Inc., De-troit Artillery Armory, Detroit, Mich.

WEST Oct. 25-28: Mtg., Electronics Div., ACS, Jack Tar Hotel, San Francisco, Calif

Highlights of 1962

- Feb. 13-15: Tutorial Inst. in Industrial Writing Improve-ment, American Industrial Writing Inst.; Hotel Statler-Hilton, Los Angeles, Calif.
- Mar. 26-29: IRE International Convention; Coliseum & Waldorf-Astoria Hotel, New York, N. Y.
- Apr. 18-20: 5th Annual Industrial Mutual Aid & Disaster Control Seminar, Nat'l Inst. for Disaster Mobilization; Shamrock-Hilton Hotel, Houston, Tex.
- Apr. 20-22: 76th Annual Conv., Illinois Soc. of Professional Engre.; Peoria, Ill.
- April 30-May 9: Hanover Int'l Fair; Hanover, West Germany.
- May 8-10: Electronic Components Conf., IRE, AIEE, EIA, WEMA: Washington, D. C.
- May 14-16: NAECON, IRE; Dayton, Ohio.
- May 23-25: National Telemetering Conf., IRE, AIEE, IAS, ARS, ISA; Sheraton Park Hotel, Washington, D. C.
- June 27-29: Conf. on Standards Electronic Measurements, IRE, NBS, AIEE; NBS Boul-
- der Labs, Boulder, Colo. Aug. 21-24: WESCON, IRE, WEMA; Los Angeles, Calif.
- Sept. 8-10: Chicago High Fidelity & Home Entertainment Show; Palmer House, Chicago, III.
- Oct. 1-3: 8th National Communications Symp., IRE; Utica. N. Y.
- Oct. 9-11: National Electronics Conf., IRE, AIEE, EIA. SMPTE; Chicago, Ill.
- Oct. 18-19: Electron Devices Meeting, IRE; Shoreham Hotel, Washington, D. C.
- Nov. 13-15: NEREM, Northeast Res. & Eng. Mtg., IRE; Boston, Mass.
- Dec. 4-7: Eastern Joint Computer Conf., IRE, AIEE, ACM; Bellevue-Stratford Hotel. Phila., Penna.

Oct. 23-27: Detroit Metal Show (43rd Nat'l Metal Congress & Expos.³, ASM, Cobo Hall, Detroit, Mich.

Immediate Local Deliveries for small runs, production emergencies or design needs . . . from over 30 strategically located parts distributors . . . At factory prices in lots up to 1000 of a value.

Would you buy fixed resistors just because they're the easiest to solder?

Of course you wouldn't!

But when you add the highest degree of "solderability" of any resistors on the market to top-notch reliability in other physical and electrical characteristics — well, that's something else. Like a lot of other cost-conscious producers, you'll then be using Stackpole Coldite 70+ Resistors1

Stackpole Coldite 70+ "solderability" saves time and money in your production. It assures perfect connections that eliminate a lot of possibilities for costly field service later on.

Coldite 70+ performance fully matches the "solderability" of the leads. They're designed to meet or excel MIL-R-11 in every respect. And they're tops in load life, humidity and moisture tests!

Electronic Components Div.-STACKPOLE CARBON CO., St. Marys, Pa.

CERAMAGO FERRITE CORES VARIABLE COMPOSITION RESISTORS SLIDE & SNAP SWITCHES CERAMAGNETB CERAMIC MAGNETS FIXED COMPOSITION CAPACITORS BRUSHES FOR ALL ROTATING ELECTRICAL EQUIPMENT ELECTRICAL CONTACTS GRAPHITE BEARINGS, SEAL RINGS, ANODES HUNDREDS OF RELATED CARBON & GRAPHITE PROLUCTS.

DECEMBER

East

S	M	T	W	T	F	5
			1	2		
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24 31	25	26	27	28	29	30

EAST

- Dec. 3-7: Eastern Joint Computer Conf., IRE (PCEC), AIEE, ACM, Sheraton-Park Hotel, Washington, D. C.
- Dec. 6-8: 65th Annual Congress of American Industry, NAM, Waldorf Astoria, New York, N. Y.

Dec. 6-8: 19th Electric Furnace Conf. AIME, Penn-Sheraton Hotel, Pittsburgh, Pa

Dec. 18: Wright Bros. Lecture, IAS, Wash-ington, D. C.

COMING EVENTS CALENDAR

Foreign Events

- Jan. 8-11: 59th Annual Conv., The Canadian Ceramic Soc., Chantecler Hotel, Ste. Adele, Ouebec, Canada
- Jan. 16-21: 45th Physical Soc. Exh. of Scientific Instruments & Apparatus, The Physical Soc., Royal Horticultural Soc. Halls Westminster, London, S.W.1, England
- Feb. 17-21: 4th Int'I Exh. of Electronic Com-ponents (Components, Valves, Semiconduc-tors, Electronic Accessories), Parc des Expositions, Porte de Versailles, France
- Feb. 20-25: Int'l Conv. on Semiconductor De-vices, French Radio-Engrs. Assoc., French Nat'l Electronic Industries Assoc, Paris, France
- Mar. 9-14: 3rd Int'l Audio Hi-Fi and Stereo Exh., Federation Nationale des Industries Electroniques, & Syndicat des Industries Electroniques de Reproduction et d'Enregistrement, Palais d'Orsay, Paris, France
- Mar. 21-25: Electrical Engra. Enhib., Earl's Court, London, S.W. 5, England Apr. 20-May 4: Engineering, Marine, Weld-ing, 6: Nuclear Energy Exh., Olympia, Lon-don, W. 14, England
- Apr. 23-27: 63rd Annual Mtg., The American Ceramic Soc., Royal York Hotel, Toronto, Canada
- May 8-12: 89th Semi-Annual Conv., Soc. of Motion Picture & TV Engrs, King Edward Hotel, Toronto, Canada May 10-12: Production Engra Conf. & Shew, ASME, Royal York Hotel, Toronto, Canada

May 19-June 4: British Trade Fair, Sokolnicki Park, Moscow, USSR

- May 30-June 2: Electronic Components Show, rand Hall, Olympia, London, W. 14 England
- June 6-8: ISA Summer Instrument-Automation Conf. and Exhibit, Queen Elizabeth Hall & Royal York Hotel, Toronto, Ont. Canada
- June 12-17: Conf. on Components & Materials used in Electronic Eng'g, Inst. of Electrical Engrs. (Brit.), Central Hall, Westminster, London, England
- June 22-24: Meeting, American Physical Soc., Mexico City, Mex.
- July 7-29: Russian Trade Fair, Earl's Court, London, England Aug. 1-12: Sydney Trade Fair, Sydney,
- Australia
- Sept. 4.9: 5th Int'l Conf. on Ionization Phenomena in Gasses, Technische Hoch-schule Karlsruhe, Munich, Germany
- Sept. 28-Oct. 1: Symp. on Radioactive Metrology, Nat'l Physical Lab. Advisory Comm on Radioactive Standards & Sub-Comm. on Measurements and Standards of Radioac-tivity of the U. S. Nat'l Res. Council, Oxford, United Kingdom
- Oct. 3-12: British Electronic Computer Exhib.,
- Olympia, London, England Oct. 4-6: IRE Canadian Conv., IRE (Region 8), Automotive Bldg., Exhib. Park, Toronto. Canada
- Nov. 8-10: Conf. on Non-Destructive Testing
- in Electrical Eng's, Institution of Electrical Engrs (Brit.), London, England Nov. 13-18: 9th Factory Equip. Exhib., Earl's Court, London, England

Chilton's M-A-P points the way to DYNAMIC MARKETING in the decisive sixties

Alert marketing might have saved the 300 or so companies that went out of business this week.

A worth-while product-made right, and offered at a fair price—is not enough to assure success.

Something else is needed. A sure hand that guides your product from maker to user . . . through the most efficient channels.

There is no single answer . . . no sweeping generality. Marketing becomes scientific only when you yourself apply the necessary forces to your

Electronic Industries • Department Store Economist • The Iron Age . Hardware Age - The Spectator . Motor Age · Automative Industries · Boot and Shoe Recorder · Commercial Car Journal + Distribution Age - Butane-Propane News - Marine Products - Aircraft & Missiles - Hardware Warld - Ontical Journal and Review of Optometry -Jewelers' Circular Keystone • Food Engineering • Gas • Product Design & Development . Chilton Book Division . **Chilton Research Services**

product, your company and your market.

Chilton's Marketing Assistance Program

(M-A-P) is almost certain to be of help to you. The very facts, figures and insight into your mar-

ket that you need may cost you nothing. And they

may be readily available-if not, M-A-P can help

covered by Chilton's 18 outstanding business magazines is outlined in this new booklet. Write

you obtain them fast and at reasonable cost. Detailed information on each of the markets HIGH SPEED SILICON COMPUTER DIODES with uniformly typical recovery time of 2 millimicroseconds were first made available in commercial quantities one year ago by Microwave Associates.

Today, Microwave Associates silicon mesa switching diodes are setting the computer industry standard. Extremely low reverse leakage (even at elevated temperatures), excellent forward characteristics, and superb reliability under severe mechanical and environmental conditions make these diodes suitable for a very wide range of applications. Major users have called these diodes excellent "universal switching diodes."

Production quantities are now replacing germanium and silicon computer diodes of both standard and newer types. They are priced competitively for large volume orders and delivery is off-the-shelf.

Faster, more sophisticated diodes for tomorrow's computers are on the way from Microwave Associates. Our leadership in this field is the result of years of experience with silicon semiconductor devices which operate at tomorrow's speeds. This experience, added to your own, will accelerate your computer progress.

Circle 60 on Inquiry Card

ELECTRONIC SPECTRUM

Immediate Delivery!

ELECTRONIC INDUSTRIES' Exclusive

1960 ELECTRONIC SPECTRUM CHART

ORDER YOURS TODAY

- All latest revisions and up-dated specs
- 30 x 22 inches in size
- Printed to show service and frequency area in six colors with—
- Expensive lacquer proof ink that will not run. Allows you to varnish or shellac chart to prolong its life.
- Orders filled and mailed same day.
- Suitable for framing and wall mount or.
- Under glass desk-top reference.

Order Yours Today. Over 5,000 copies already purchased!

Prices:

Individual copies mailed in tubes	 \$1.00	each
I to 25 copies	1.00	per copy
26 to 100 copies	 0.75	per copy
More than 100 copies	 0.50	DEF CODY

Please make remittances payable to Electronic Industries and mail to Reader Service Department, Electronic Industries, Chestaut & Both Streetz, Philadolphie 39, Pennsylvania.

Looking Ahead...

El editors assess the present and future for the four key segments of the electronic industries. Included is a statistical summary of 1960 and predictions for the amount of business to be done in 1961.

SEMICONDUCTORS

The semiconductor segment of the electronic industry continues to grow. With techniques in germanium and silicon well established, there will be fewer "breakthroughs." Progress will be moderate but steady. Characteristics-in frequency and power ranges--will be extended slowly.

Improvement will be mostly in production and engineering areas. Look for more automated production techniques. Why? Competition is one reason—the relative stable state-of-the-art another. Another reason is that semiconductor devices in many cases are now more sophisticated than the equipment or circuits they are used in. Semiconductor makers will have a breather while other technologies catch up.

Foreign competition in this field is also causing manufacturers to take a hard look at their production techniques. There is little likelihood the U. S. Government will step in to help American makers, despite recent publicity. Many feel that with a little work, the American product could snow the Jap product under, both in price and quality.

With lower prices all but inevitable, look for many new applications for semiconductors. One example from many: an entire new market could be established in the automobile industry. Transistorized auto ignition systems are on the drawing board.

With competition real, look for relatively few new companies entering the semiconductor field. A new company will need heavy investments in technical and sales staff to capture any important share of the market. Most probable development: large companies contemplating using large numbers of semiconductor devices in their product starting their own semiconductor facilities. Epitaxial deposition techniques in both germanium and silicon devices will be widely used. Process offers much better control of quality and higher yields. Silicon devices will get a bigger share of the market. Cost reduction and better qualities are promised.

The search for new materials continues. Compounds of materials in Groups III and V of the periodic table offers promise. Problem here is that a systematic theoretical approach is difficult. An empirical approach is generally necessary and progress comes in the form of "breakthroughs."

Mixed feelings are reported on the value of organic semiconductors. Much must be done before a definite role—if any—can be assigned these materials. Not much promise for 1961.

Computer market, long heralded as the major potential market for semiconductors, is finally opening up. Not only computers but all kinds of data processing systems, process control systems, etc., are expected to start moving. This and a steadily increasing military electronic procurement—will open up a whole new market for silicon devices; place more emphasis on switching speeds, high temperature operation, and reliability.

Just some of the new materials being studied are silicon carbide —for extremely high temperature operation—gallium phosphide, niobium pentoxide. Silicon carbide transistors for operation above 650°F have been announced and will probably reach the market late in 1961.

Tunnel diode is still the best hope for high frequency operation. And, despite recent bad publicity, gallium arsenide still looks like the best material. Difficulties probably stem from going ahead too fast—producing devices before technology was well estab-

lished. An industry source indicates that reliable Ga As tunnel diodes will probably be on the market this year. Recent price cuts in basic material will spur development.

Original timetables in molecular electronics, solid state circuitry, etc., have been revised. Despite appearance of some devices recently, improvements are needed before widespread use develops. Some problems: A wider range of device functions must be designed; techniques must be improved for better control of parameters to improve vield and lower cost. It will be interesting to see which firms become the major producers to this field; i.e., will components manufacturers jump in to save dwindling component sales (if the situation ever reaches that stage) or will equipment manufacturers look at it as a logical extension of equipment building?

Problems of thermoelectric application remain the same. No one is quite willing to say that their material is the optimum for TE purposes though many say they have the present best. Several cooling and power devices have been produced-expect more in 1961. Biggest market is still the military. A good high temperature material has yet to be found although several very promising avenues are being explored. Experimental approach here is also empirical. Big problem is measurement and standards.

Other areas of semiconductor technology — thermistors, piezoelectric devices, cryosars, photoconductive devices, Hall effect device, masers. lasers, parametric amplifiers, solar cells, etc., will follow a steady growth pattern. Problems here are often in associated equipment, such as heat sinks, collectors, mounting techniques, cryogenic coolers, etc.

(Continued on page 127)

DELCO'S 2N174 PROVED IN

and Minuteman and Talos and Atlas and Jupiter and Thor and Titan and Bomarc and Zeus and Pershing and hundreds of other military and industrial applications.

For Delco Radio's highly versatile family of 2N174 power transistors meet or exceed the most rigid electrical and extreme environmental requirements.

Over the past five years since Delco first designed its 2N174, no transistor has undergone a more intensive testing program both in the laboratory and in use, in applications from mockups for commercial use to missiles for the military. And today, as always, no Delco 2N174 leaves our laboratories without passing at least a dozen electrical tests and as many environmental tests before and after aging.

This 200 per cent testing, combined with five years of refinements in the manufacturing process, enables us to mass produce these highly reliable PNP germanium transistors with consistent uniformity. And we can supply them to you quickly in any quantity at a low price.

Chicago, Illinois \$750 West Stet Street POrtsmouth 7-3509

For complete information or applications assistance on the Military and Industrial 2N174's or other application-proved Delco transistors, just write or call our nearest sales office.

Newark, New Jersey 1180 Reymond Blvd. Mitchell 2-6165 Santa Monica, California 726 Santa Monica Bivd. UPton 0-8807 Detroit, Michigan 57 Harper Avenue TRinity 3-6560

Division of General Motors · Kokomo, Indiana

ELECTRONIC INDUSTRIES . January 1961

Circle 63 on Inquiry Card

125

Amperex

VHF P·A·D·T High-Gain Transistors **ARE BETTER**...for AM/FM, mobile communications, car radio, and instrumentation!

Maximum Uniformity and Interchangeability

here's why

By combining the best qualities of both the alloy and the diffusion approaches to transistor construction – and by means of special "self-jigging" techniques – the Amperex Post Alloy Diffusion Process achieves maximum yield and uniformity, virtually eliminating the need for "selection". From drawing-board to final quality control checkpoint. the PADT process rigidly maintains the specifications of each transistor you require, not only to provide hitherto unattainable uniformity, but also maximum interchangeability with competitive types – plus... **2** High Beta The revolutionary PADT process provides a guaranteed minimum beta of 40...an average of 150 ...with resultant high power gain! Therefore, PADT transistors can now guarantee...

Maximum Design Freedom for Engineers The unprecedented characteristics of PADT transistors provide easier temperature stabilization, lower bias circuit loss, higher dissipation reserve, superior K factor, high alpha cut-off frequencies and safe, extremely conservative collector voltage ratings.

7 NEW	P-A-D-T	PNP	TYPES	specifically	designed	for s	specific	applicatio	ns – and now	
in mass	production	n at th	e new	Amperex sen	niconducto	r pla	int in SI:	atersville,	Rhode Island	

APPLICATION	TYPE NO	FUNCTION	FEATURES
[PADT-23	RF amplifier in 6 or 12 volt car radio applications from .5 to 1.5 mc, or in portable broadcast receivers.	Low leakage and high current gain minimizes AGC current re- quirements. Improved noise figure. High base-to-emitter voltage rating minimizes danger of breakdown.
CAR RADIO	PADT-24	IF amplifier (455 or 262.5 kc), or in mobile communication receivers; at 6 or 12 volts.	Low collector-to-base capacitance; plus extremely small collector cut-off current, Minimum Beta of 40 to facilitate the design of AGC circuits.
. [PADT-27	Mixer, oscillator or converter, 455 or 262.5 kc; at 6 or 12 volts.	Low mixer noise averaging only 3 db at 1 mc. Low leakage, less than 50 μa at 60°C.
1	PADT-25	High frequency IF amplifier in mobile communication and airborne receivers.	Unusually high output resistance for Improved receiver selectivity. Less than 50 µa leakage at 60°C Improves AGC operation.
MOBILE	PAOT-26	RF or IF amplifler, or mixer, in receivers operating up to 100 mc.	Typical power gain greater than 14 db at 100 mc, with a noise figure less than 9 db. High base-to-emitter breakdown voltage for extreme safety.
CATIONS	PADT-28	RF amplifier for service in the 175 mc region.	Typical gain of 14 db at 200 mc. Noise figure, 5.8 db. Maximum frequency of oscillation, 700 mc. Extremely low base resistance.
	PADT-31	Mixer, oscillator, or frequency multi- plier at frequencies up to 60 mc.	High output resistance (30,000 ohms typical at 10.7 mc). Power gain - more than 14 db at 60 mc. Conversion gain 20 db min.

In stock at the following Amperex distributors and others:

ADLETA COMPANY DALLAS 1, TEXAS FORT WORTH, TEXAS BRILL SEMICONDUCTOR CORP.

OAKLAND 6, CALIF. ELMAR ELECTRONICS INC. OAKLAND 7, CALIF.

INTERSTATE RADIO & SUPPLY DENVER 4, COLORADO MILO ELECTRONICS

NEW YORK. N. Y.

NEWARK ELECTRONICS CORP. CHICAGO, ILL. RADIO SNACK CORP. BOSTON, MASS. STAMFORD, CONN. W. HARTFORD, CONN. NEW MAVEN IQ, CONN. ROME ELECTRONICS ROME, N. Y. R. Y. WEATHERFORD COMPANY GLENDALE J. CALIF. THUROW ELECTRONICS, INC. COCOA, FLA. JACKSONVILLE, FLA. MIAMI, FLA. PENSACOLA, FLA. TAMPA, FLA.

WITH COMPETITIVE CAR RADIO BRANDS Stage Parameter Ampleter Parameter Transistor Brand X Stage Parameter Stage Stage

P.A.D.T TRANSISTORS COMPARISON TESTED

 Calculated on the basis of t_{math}. We want t_m ⊂ 200 meV on the balancing quadrant t_{math} and t_{math} end t_m.
 Calculated value basis on a subscreen secondary was proter and a mover fail of 1 of 1 are shown.
 Balad on t_{math} A 20 Calculate and a state of 1 are decading failed with a 1 mm. C. (19):

Coming soon! New PADT Switching, UHF and Power types!

AMPEREX ELECTRONIC CORPORATION 230 DUFFY AVENUE, HICKSVILLE, L. 1., NEW YORK to Catade: Engres Electronic Tuber & Components, 116 Vacenthed Area, Terrotto 12, Dec.

Circle 64 on Inquiry Card

TEST EQUIPMENT

The incorporation of digital readout devices on test equipment is growing. While digital readouts are already being used on frequency meters and voltmeters, look for applications on many other types of test equipment. In the past year, at least one company has added digital readouts to an oscilloscope.

Digital readouts permit nontechnical people to use the equipment. Generally, digital readout equipment has attachments available for automatically punching cards that can be used later to tell how the product shows up under tests. These punched cards are also useful for accounting purposes and for production records.

A few manufacturers are making test equipment which is entirely solid-state. While many of the test equipment manufacturers used some semi-conductors in their equipment, none until recently used full solid-state in their equipment. With a new generation of semiconductors appearing, look for many more types of test equipment to become fully solid-state.

With the anticipated microwave boom, microwave test equipment manufacturers will probably have their best years in the very near future. This new boom can be attributed to the FCC allocating bands of frequencies for private use. All types of microwave test equipment will be in demand.

Test equipment, especially the more complex units, are becoming **more modular in construction**. The benefits include ease of maintainability and repair. In the larger pieces of test equipment if a component or section should fail, a module can be borrowed from another unit without having to physically move the whole unit.

Along the modular line, many pieces of test equipment, such as scopes and meters, have a basic section and modular plug-in units which adapt the equipment to many needs. This is of benefit to the purchaser. Instead of a large outlay of money to buy test equipment for projected needs, the purchaser may buy a basic unit and as his needs grow, buy various plug-in modules for the unit. This also keeps his equipment from becoming obsolete.

Work is being done toward applying fibre optics to scope faces, to achieve higher resolution, elimination of parallax and halation and much better photography of the scope presentations. However, the cost of a scope tube with a fibre optic face will be quite expensive.

One trend today is to design electronic systems that automatically test and locate their own troubles. For some of the complex systems and units being used today, this is a necessity to decrease down time. While test equipment will still be used as an integral part of the systems, the test equipment manufacturers will have to think in terms a little different than most of them do today. Instead of just designing individual pieces of test equipment, many of them will have to swing over to the systems type concepts. They will quite likely be used as a service team. In these large systems, their engineers will be called in to help design the self-testing features of the equipment and then supply the test equipment required.

We may see some breakthroughs on **panel-type meters** in the future. For higher accuracy, digital type readouts are being used in place of meters. Meters by their inherent nature of operation, generally electromechanical operation, have limited accuracies. As meter manufacturers know, meters do not maintain the same accuracy across the whole scale. The best accuracy is usually obtained from mid-scale to full-scale deflection.

Automated test equipment and testing systems are drawing a great deal of interest and research. There is a need for test equipment that will automatically check-out complete systems, and also equipment ranging all the way down to a few stage radio receiver. There are already universal-type test stations for testing components. The equipment is programmed by means of a specially prepared tape. With automation the keynote today, automatic testing should grow by leaps and bounds provided cost does not become exorbitant.

Non-destructive testing is an area that is growing. Ultrasonics is one of the newer tools that are being applied to this area. With ultrasonics, flaws can be detected in most solids quite rapidly. As an example, railroads have been using these to rapidly test miles and miles of rails on their tracks for flaws.

We have heard complaints from purchasers of test equipment about need for standardizing specification for various types of test equipment. Complaints are often heard regarding oscilloscopes. When potential purchasers start to dig into specifications of the various oscilloscope manufacturers, they felt that they had no real way of comparing one company's scope with another, except by bench comparison. We suspect in the near future an industry committee will be set up to overcome some of these obstacles. As we mentioned, this is also true of several other areas of test equipment.

Semiconductor test equipment demands will be rising rapidly. With consumer items swinging from tubes to transistors, the various repair agencies and technicians will require semiconductor test equipment. Up to now they have managed to squeeze by without this equipment. However, this is not going to last much longer.

Semiconductor production test equipment is a highly specialized segment of semiconductor test equipment. At present, most manufacturers have designed their own or incorporated some of the equipment that is already available. However, these manufacturers have tight security on what they are using and how they are using it for the production of semiconductors. Most companies have their own pet methods and are not talking about them. In fact, in many cases the production test equipment is classified even higher than Government security classifications.

(Continued on page 128)

MICROWAVE

The microwave field is riding the crest of a wave. Principal impetus is coming from the steppedup military activity in the microwave region. but there has been also a very significant increase in sales to private firms. Most of the obstacles to expansion of microwave services — tied up in appeals to the FCC—have been removed during the past year and an explosive growth of the industry is expected during 1961.

Activity continues to be centered around the New York area and small establishments employing less than 500 workers contribute the bulk of total output.

The major research effort in the microwave field is aimed at new amplyifying techniques that will provide lower noise figures. Solid state devices are showing considerable promise.

The principal areas being investigated are in parametric amplifiers, masers and variations on the traveling wave techniques.

Where formerly it was believed that maser action could be achieved only in extremely low temperatures, approaching absolute, it is now known that maser action can be obtained at temperatures as high as 60°K. This range can be quite easily obtained with small scale liquefiers using compressed gas, and small closed-circuit liquefiers.

A maser amplifier has been used in X-band radio astronomy where it effected an improvement in sensitivity of more than 12 times. In another application a maser added to an X-band radar produced an effective overall temperature of 65°K.

The field of parametric amplifiers is looking to the development of new diodes. The upper frequency limit for parametric amplifiers is now about 10 KMC.

A ferrite variable inductor-type traveling wave amplifier has been proposed which could incorporate its own isolator. But the pump power required would be extremely large — on the order of kilowatts.

With traveling wave tubes, it has been widely thought that beam noise cannot be reduced below about 6 db in S-band. But recent research aimed at reducing the noise in the beams, suggests that perhaps noise figures at S-band of 1 db are now possible.

Just recently a new type of miniature parametric amplifier has been introduced which uses a helix as a slow wave structure. Designed for satellite communication systems in telemetry and radar, the new device is said to permit increased bandwidth, fewer diodes in the transmission line, miniaturized circuits and more stable performance. The amplifier has an insertion loss of aproximately 30 db between the input and output of the helix before application of the pump signal.

The new "Cretatron" travelingwave amplifier, which gains results from beating two r-f waves of unchanging amplitude but unlike phase velocities, has been operated in the 2 to 4 kmc band at pulse levels up to 1300 w. The interaction length is 3 in.

It is expected that self-contained liquid helium liquefiers occupying about a 1 ft cube will soon be available, and these should give a decided push to the whole low temperature field, and the general field of superconductivity and cryogenics as well.

It can be expected that masers will soon be built that will not require magnets. The so-called zero field masers will utilize crystals having assymetrical structures.

Strip-transmission line. after the initial burst of enthusiasm, has found a small, but secure place in the industry. It has been found to be well suited for use in complete microwave circuits, particularly in components having coaxial connectors at the ports. It has also found some acceptance in many types of filters, where requirements are not too rigid.

It seems assured that strip line, because it offers significant economies, lightness and compactness, will find application in a substantial number of assemblies. But waveguide and coaxial line will continue to be the most widely used.

COMPONENTS

Let's look at what is in the wind, component-wise, for the immediate future—1961. Are components giving way to micro-circuitry?

Basically, there are three steps, currently known, which lead to the ultimate in miniaturization. They are (1) packaging, (2) smaller components, and (3) micro-miniature components and packaging. This last step is the so-called **molecular electronics** and **microcircuitry.** Quite obviously, as the packages get smaller, they become more expensive.

It is still highly debatable whether components will give way to micro-circuitry. They will definitely do so in some areas, but it is highly unlikely to occur in all areas. In the long run, economics will be the determining factor.

We are presently at the second step—**miniaturization**. New smaller transistors were the first components available. Now the other devices are striving to achieve the same degree of smallness.

For the immediate general needs of the electronic industries, miniaturization using the present resistors will continue to fill the bill.

But those parts of our industry which are further advanced—missile guidance and control, computers, etc.—will be putting more and more pressure on the resistor manufacturers for smaller, more reliable units.

The component makers have come up with the miniature metal film resistor—available with or without leads. The leadless style, terminated with an intermediate range solder, is provided for insertion directly into a printed or etched circuit board and can be completely immersed in solder.

Very few of the major manufacturers have the miniature metal film resistors available in production quantities. Some small companies have developed them and sell them locally in small quantities. Most of the major equipment manufacturers have research programs in which they have developed similar units, but these are used mainly to check the feasibility of their design concepts.

(Continued on page 132)

A MAJOR CAUSE OF FAILURE ELIMINATED BY BUILDING A TRANSISTOR INSIDE ITS OWN SHELL

While the whole industry has sought answers. Furchild buil followed a research and development course of its own. We can now reveal a unique colution

Called PLANAR STRUCTURE this Fairchild answer use a possibility autam — in rd. passion on the original of silenon oxide — not new in theory, but new in the way it is done. Fairchild oxidezes the surface first. Then the transition in children in **during the oxide**. An article for the surface first of the oxide of the result performance is uncludinged by these use, government or even exposure to foreign matter.

Planar is the answer for syltem reliability where thousands of transistors must all be operative at an instant for tast, simple circuits triplets packed in minimum pace – for circfully matched pairs, triplets or quads that must stay exactly in balance – and bar eakage reduction by a factor of one-hundred. And planar is the answer even for sitkpler circuit requirements where hubbars are under has a value.

These advantages apply to planar diodes,too. Of course, Faircheld planar silicon transistors and diodes are available in production quantities. A new 12 place brochure explains the process and results more fully tany we find you in only.

fair child

LEAVE SAVE TO + WOULD PARE - LEAVE ALCO + + CONDUCT

the most powerful

Westinghouse 30-amp silicon "rock-top" power transistors

New 30-amp ratings, the industry's highest! These latest Westinghouse Silicon Power Transistors are especially designed for those applications where you need more transistor power, extra long-life and extra stability under all operating conditions. Your choice of nine devices in this new family—each rated at 30 amps.—for greater flexibility of circuit design in high-power applications. Other Westinghouse high-performance features include: • Exclusive "rocktop" ecramic construction for greater reliability •Voltage ratings to 200 volts • Double-ended case design • Low saturation resistance • 250 watts power dissipation.

Circle 66 on Inquiry Card

transistors you can buy...

Production quantities of the type 115 family are now available. Westinghouse also offers the 2N1015 and 2N1016 series of Silicon Transistors, ideal as companion drivers. Military and industrial applications include: power supplies/regulators/amplifiers/high-power switching/inverters.

For more information call your nearest Westinghouse representative or semiconductor distributor. Or write: Westinghouse Electric Corp., Semiconductor Dept., Youngwood, Pa. sc.1012

For immediate "off-the-shelf" delivery, order from these Westinghouse Distributors:

EASTERN

EASTERN ACK SEMICONDUCTOR, INC. Birmingham 5, Ala /FA 2-0588 CAMERADIO Philsburgh, Pa /EX 1-4000 CRAMER ELECTRONICS, INC. Boston, Mass./CO 7-4700 ELECTRONIC WHOLESALERS, INC. Melbourne, Florida/PA 3-1441 GENERAL RADIO SUPPLY CO. Camden, N.J./WO 4-8560 GENESEE RADIO PARTS CO. Buffalo, N.Y./DE 9661 Buffato, N.T./UE 3001 RANN-ELLERT ELECTRONICS, INC. Baltimore, Md./TU 9-4242 MILGRAY ELECTRONICS New York, N.Y./RE 2-4400 RADIO & ELECTRONIC PARTS CORP. Cleveland, Ohus/UT 1-6060 SCHWEBER ELECTRONICS Long Island, N.Y./PI 6-6520

MIDWESTERM

ELECTRONIC COMPONENTS FOR INDUSTRY CO. St. Louis, Mo /WO 2-9917 INTER-STATE RADIO & SUPPLY CO. Denver 4, Colo./TA 5-8257 LENERT CO. Houston, Tetas/CA 4-2663 LEHERT CO. Moustan, Teas/CA 4-2653 RADIO DISTRIBUTING CO. Iadianapolis, Ind./ME 7-5571 SEMICONDUCTOR SPECIALISTS, INC. Chicago, III./MA 2-8860 S. STERLING CO. Detroit, Mich./RR 3-2900 UNITED RADIO, INC. Cincinnati, Ohio/MA 1-6530 UNIDER SALE ELECTRONICS SUPPLY Dalles, Texes/TA 4-3001

WESTERN

WESTERN ELMAR ELECTRONICS Oakland, Calif./TE 4-3311 HAMILTON ELECTRO SALES Los Angeles, Calif./DR 2-9154 NEWARK ELECTRONICS CO. Inglewood Calif./OR 4-8440

1960-61 Electronic Industry Statistics

1961 ELECTRONIC MARKETS (EST.)

CONSUMER	GOODS	(Retail)	••	 		3,100,000,000
MILITARY &	GOVER	IMENT .		 		5,000,000,000
INDUSTRIAL				 	••	1,750,000,000
REPLACEMEN	T PART			 		700,000,000

10,750,000,000

SEMICONDUCTOR SALES-1960

SERVICE

During 1960 the ennual retail bill for servicing of home electronic

178,000,000 replacement receiving tubes.	\$ 330,000,000
7,400,000 replacement picture tubes (includes rebuilds)	280,000,000
Antennes, components, parts, instruments.	730,000,000
Lobor	1,400,000
Total condition bill	17 848 808 800

PHONOGRAPH SALES-1960

	Factory Sales	Factory Sales \$	Туре	Factory Sales (units)	Rotail Sales (units)
Transistors Rectifiers/Diodes	111,500,000	270,500,000	Monaural	961,000 2,950,000	894,000 2,790,000

VITAL TELEVISION STATISTICS 1946-1960

	Teta Man	i TV Sets afactured	Receivin Used in N and for Re	ng Tubes ew TV Sets splacements	Tel Pictur Manu	ai TV • Tubes factured	Total AM-FM-TV Receiving Sets	TV Stations on the Air	Total TV Sets in Use in U. S.	At Close of
1948 1947 7948 1948 1948 1959 1953 1954 1955 1955 1955 1955 1955 1955 1955	Rumber 19,008 289,089 1,000,000 2,000,000 2,000,000 6,000,000 6,000,000 7,880,000 7,880,000 7,880,000 6,000,000 6,000,000 6,280,000 6,280,000 6,280,000	Pertal I Value 5.000.000 00.000.000 00.000.000 000.000.	Rumber 348.000 8.869.600 22.209.600 87.669.600 26.869.600 26.869.600 216.500.600 216.500.600 216.500.600 216.500.600 210.500.600 210.500.600 175.600.600 175.600.600	Patal Value 6 000,000 14 000,000 03,000,000 140,000,000 270,000,000 270,000,000 270,000,000 270,000,000 270,000,000 270,000,000 271,000,000 277,000,000 277,000,000 219,000,000	Rismahar 20, 000 200, 000 1, 800, 000 2, 800, 000 8, 000, 000 6, 000, 000 6, 000, 000 10, 800, 000 11, 800, 000 12, 800, 000 13, 800, 800 14, 800, 800 15, 800, 800	Retail Value \$ 1,000,000 15,000,000 77,000,000 210,000,000 200,000,000 200,000,000 200,000,000 200,000,000 200,000,000 200,000,000 200,000,000 200,000,000 200,000,000 200,000,000 200,000,000 200,000 200,000,000 200,000	14,010,000 17,200,000 17,000,000 13,000,000 10,100,000 10,100,000 10,100,000 10,000,00	8 20 44 187 187 187 188 187 487 487 487 491 819 879 864 800	2.000 2.000 1.000.000 10.000.000 21.000.000 21.000.000 22.000.000 22.000.000 22.000.000	7948 7947 7947 7948 7949 7948 7948 7948

U. S. PRODUCTION OF RADIO SETS-1922 TO 1960

	Total Padio Sota Manufactured		Total Receiving Tubes Manufactured		Automobile Sets Manufactured		Auto Sola In Uso	Homas with Pladla Sets	Total Padio Sata In Use In U. S.	
1822 1823 1824 1826 1827 1826 1827 1828 1827 1838 1838 1838 1838 1838 1838 1838 1838 1838 1838 1838 1849 1841 1843 1846 1847 1846 1847 1846 1847 1846 1847 1846 1847 1846 1847 1846 1847 1846 1847 1846 1847 1846 1847 1846 1847 1846 1847 1848 1846 1847 1848	Number 100,000 560,000 2,000,000 1,550,000 1,550,000 3,251,000 4,252,000 3,251,000 4,252,000 3,251,000 4,252,000 3,000,000 3,000,000 3,000,000 4,000,000 10,000,000 11,000,000 4,000,000 11,000,000 11,000,000 11,000,000	Rechil Value 8 6, 000, 000 100, 000, 000 100, 000, 000 100, 000, 0	Naminar 1,000,000 4,800,000 12,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 20,000,000 20,000,000 20,000,000 20,000,000 21,000,000 20,000	Refail Value 9. 0.000,000 12. 080,000 13. 080,000 14. 080,000 15. 080,000 110,250,000 110,250,000 110,250,000 110,250,000 111,200,000 00,000,000 00,000,000 01,000,000 01,000,000 01,000,000 02,000,000 02,000,000 02,000,000 02,000,000 02,000,000 02,000,000 02,000,000 02,000,000 02,000,000 02,000,000 04,000,000 04,000,000 04,000,000 05,000,000 05,000,000 05,000,000 04,000,000 05,000,000 05,000,000 06,000,000 00,00	Rumber 34,000 108,000 108,000 145,000 145,000 145,000 1,255,880 0,000 1,756,000 1,756,000 1,756,000 1,756,000 1,756,000 3,250,000 4,180,000 4,180,000 4,800,000 4,800,000 4,800,000 5,000,000 5,000,000 5,000,000 5,000,000	Retail Value Retail Value	Number 1000, 6000 2011, 6001 0011, 0011 2.001, 0001 2.001, 0001 2.001, 0001 2.001, 000 2.001, 000 0.001, 000 0.000, 000,	Rumber 248,004 1,000,000 3,600,000 6,000,000 7,500,000 9,000,000 112,042,200 114,000,000 112,042,200 21,4454,000 22,500,000 22,500,000 23,500,000 25,500,000 25,500,000	Number 600,000 1,100,000 4,000,000 4,000,000 5,700,000 7,000,000 10,000 10,000	

SHIPMENTS OF ELECTRONIC COMPONENTS OF U.S. MANUFACTURERS

	QUANTITY			VALUE		
	lst QUARTER	2nd QUARTER	TOTAL	lat QUARTER	2nd QUARTER	TOTAI.
POWER AND SPECIAL PURPOSE TUBES High vacuum tubes Diodes. External anode, except diodes,	3,211.3 928 120	3,218 958 110	6,429-3 1,886 230	62 5 14 4 1 4	64 8 15 2 1 3	127 3 29 6 2 7
100 w or less. External anode, except diodes over 100 w Internal anode, except diodes. Gas and vapor tubes. Diodes. Thyratrons, ignitrons. Gas switching devices ² . Klystrons. Reffex klystrons (1 w and under). Other, cw and pulsed (over 1 w). Magnetrons. Forward wave devices. Backward wave devices. Light sensing tubes. Light sensing tubes. Storage tubes. Other ² .	225 72 511 634 199 373 62 45 42 3 23 23 23 2 1 0 8 281 86 1_4 1,210	$\begin{array}{c} 204\\ 102\\ 542\\ 661\\ 154\\ 419\\ 58\\ 28.5\\ 25\\ 3.5\\ 21\\ 2\\ 0.5\\ 251\\ 84\\ 1\\ 1,211\end{array}$	$\begin{array}{r} 429\\ 174\\ 1,053\\ 1,295\\ 353\\ 822\\ 120\\ 73\\ 5\\ 67\\ 6\\ 5\\ 44\\ 4\\ 1\\ 1\\ 3\\ 542\\ 170\\ 2\\ 4\\ 2,421\end{array}$	3 7 5 5 3 8 7 1 1 1 3 6 2 4 12 7 5 4 7 3 10 9 4 1 3 5 2 0 4 9	3 5 6 6 8 7 3 0 9 4 2 3 12 7 4 5 11 3 4 8 5 3 1 2 3 7 4 0 2 6 2 6 5 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
RECEIVING TUBES. Subminiature. Miniature. Miniature reliable All other types. Other (metal, coramic, lock-in, etc.)	106.962 1,988 78.189 3,922 74.267 2,963	100,198 1,954 73,033 4,259 68,774 3,034	207,160 3,942 151,222 8,181 143,041 6,047	95 2 6 9 61 2 6 9 21 5 4 1	13 1 6 6 57 4 7 6 20 0 3 0	108.3 135 1186 145 415 7_1
TELEVISION PICTURE TUBES	3.070	2,203	5,273	61 9	66 0	127_9
SEMICONDUCTOR DEVICES Diodes, rectifiers and related devices Germanium diodes and rectifiers 0-30 ma. 31-100 ms. Over 100 ms. Silicon diodes and rectifiers. 0-30 ms. 31-100 ms. 31-100 ms. 551 ms-3 a. Over 3 a-35 a. Over 3 a-35 a. Zener diodes. Mirrowave diodes. Infra-red and other semiconductor photo	63,507 32,847 13,435 8,344 3,642 1,449 16,417 1,074 4,156 6,039 3,635 1,380 133 1,379 282	$\begin{array}{c} 75.959\\ 46.338\\ 24.661\\ 14.109\\ 8.866\\ 1.596\\ 19.467\\ 3.291\\ 3.524\\ 6.703\\ 4.151\\ 1.664\\ 1.36\\ 1.458\\ 298 \end{array}$	139.466 79,185 38.096 22.543 12.508 3,045 35.884 4,365 7,680 12.742 7,786 3,044 269 2.837 580	129 0 48 6 8 1 4 7 2 0 1 4 30 2 2 5 9 1 8 4 5 3 2 8 2 1 6 1 1 2	$\begin{array}{c} 134 & 7 \\ 57 & 4 \\ 13 & 7 \\ 5 & 2 \\ 1 & 3 \\ 32 & 4 \\ 5 & 0 \\ 7 & 0 \\ 3 & 4 \\ 2 & 2 \\ 6 & 4 \\ 1 & 3 \end{array}$	$\begin{array}{c} 263 & 7 \\ 106 & 0 \\ 21 & 8 \\ 11 & 9 \\ 7 & 2 \\ 2 & 7 \\ 62 & 6 \\ 7 & 4 \\ 16 & 1 \\ 17 & 7 \\ 10 & 8 \\ 6 & 2 \\ 4 & 3 \\ 12 & 5 \\ 2 & 5 \end{array}$
cells, except solar cells. Other*. Transistors. Cermanium. 0-125 mw. 126-999 mw. 1 w and over. Silicon.	65 1,269 30,660 28,603 13,214 12,199 3,190 2,057	44 405 29.621 27.591 10.840 13.445 3.306 2,030	$\begin{array}{c} 1,677\\ 60,281\\ 56,194\\ 24,954\\ 25,644\\ 6,496\\ 4,087\end{array}$	0 6 2 4 80 4 55 4 24 1 22 6 8 4 25 0	0 7 2 8 77 3 51 2 20 1 21 7 9 4 26 1	1 3 5 2 157 7 106 6 41 5 44 3 17 8 51 1
CAPACITORS Paper dielectric Metal rase Non-metal rase Film dielectric Metal case Non-metal case Metallised paper or film dielectric Electrolytic Aluminum Tantalum Mica, glass, and vitreous enamel	$\begin{array}{c} 328, 585\\ 65, 950\\ 13, 353\\ 52, 597\\ 16, 888\\ 751\\ 16, 137\\ 3, 215\\ 28, 143\\ 23, 137\\ 5, 006 \end{array}$	313,188 59,183 14,495 44,688 18,195 872 17,323 3,137 28,665 22,873 5,792	641,773 125,133 27,848 97,285 35,083 1,623 33,400 6,352 56,808 46,010 10,798	$\begin{array}{c} 65 & 5 \\ 19 & 0 \\ 14 & 0 \\ 5 & 0 \\ 4 & 1 \\ 1 & 0 \\ 3 & 1 \\ 1 & 5 \\ 21 & 7 \\ 12 & 1 \\ 9 & 6 \end{array}$	64 5 17 6 13 7 3 9 5 0 1 1 3 9 1 6 22 8 11 9 11 0	$\begin{array}{c} 130 & 0\\ 36 & 6\\ 27 & 7\\ 8 & 9\\ 9 & 1\\ 2 & 1\\ 7 & 0\\ 3 & 1\\ 44 & 5\\ 24 & 0\\ 20 & 6\end{array}$
dislectric, fixed Ceramic, dielectric, fixed Temperature compensating General purpose Variable (mica, ceramic, glass, and	36,503 164,768 50,851 113,917	31,356 158,478 46,613 111,865	67,859 323,246 97,464 225,782	5 8 7 4 2 5 4 9	5 3 6 6 2 1 4 5	11_1 14_0 4_6 9_4
	13,118	14,174	27,292	6.0	5.7	11.7
COMPLEX COMPONENTS	10,093	9,452	19,545	5 2	5.5	10 7

(Continued on page 136)

MORE MEGAWATT CYCLES PER DOLLAR*

The Shockley 4-layer diode offers you a fast, simple method for generating voltages up to 200 volts and pulse currents from 2 amps to 100 amps. Turn on time-just 0.1 μ s.

This reliable, solid state device gives you simplicity along with small size, light weight, drastically reduced power consumption and high speed.

These unique advantages make the Shockley 4-layer diode an ideal device for pulse generators, pulse amplifiers, pulse modulators, squib firing detonator circuits, for triggering thyratrons, magnetrons, traveling wave tubes...

Shockley 4-layer diodes have been proved in many, many industrial and critical military applications. If you have a circuit problem involving the fast switching of high power, the advantages and capabilities of the Shockley 4-layer diode could help you solve it. Call your Shockley representative or write for application information.

• Even the smallest Shockley 4-layer diode will handle 2 ampere pulses. (The unit price for 500 Type D diodes is \$4.)

UNIT OF CLEVITE TRANSISTOR

STANFORD INDUSTRIAL PARK PALO ALTO, CALIFORNIA

ELECTRONIC INDUSTRIES . January 1961

Circle 68 on Inquiry Card

SHIPMENTS OF ELECTRONIC COMPONENTS OF U.S. MANUFACTURERS

(Continued from page 134)

	QUAN	TITY		VA	LUE	
	lst QUARTER	2nd QUARTER	TOTAL	QUARTER	2nd QUARTER	TOTAL
CONNECTORS. Coaxial (r-f). Cylindrical Multiple contact (rack and panel). Printed circuit. Other.	27,612 5,281 7,196 4,711 2,644 7,780	23,751 6,011 7,042 5,138 2,134 3,426	51,363 11,292 14,238 9,849 4,778 11,206	43 1 4 7 17 1 9 1 3 9 8 3	43 4 5 3 16 1 10 9 3 4 7 8	86 5 10 0 33 2 20 0 7 3 16 1
QUARTZ CRYSTALS Hermetically sealed, glass or metal cases Clip-mounted—plated Less than 2 mc/s. 2 mc/s through 12 mc/s. Over 12 mc/s. Pressure and wire mounted. Unnealed, plastic case.	1,646 1,633 1,353 1,353 204 566 583 280 13	1,520 1,506 1,225 1,225 213 551 461 281 14	3,166 3,139 2,578 417 1,117 1,044 561 27	4.8 4.7 2.7 0.5 1.1 1.1 2.0 0.1	5 3 5 2 2 9 3 0 6 0 4 1 1 2 3 0 1	10_1 9_9 5_6 5_7 1_1 1_5 2_2 4_3 0_2
RELAYS (FOR ELECTRONIC APPLICATIONS)	10.377	9.480	19.857	48.8	48.7	97.5
Electromagnetic, except coaxial and stepping switches. Sealed	8.202 1,657	7.973 1,399	16,175 3,056	39 6 17 2	39_3 17_3	78.9 34.5
Over 100 mw actuating power Unsealed. Through 100 mw actuating power	313 1,344 3.277 360	267 1,132 3.394 427	580 2,476 6,671 787	36 136 119 13	3 5 13 8 12 0 0 3	7.1 27.4 23.9 1.6
Uver 100 mw actuating power. Telephone types Scaled. Unsealed. Other ²	2,917 3,268 341 2,927	2,967 3,180 330 2,850	5,884 6.448 671 5,777	10 6 10 5 2 6 7 9	10 8 10 0 2 5 7.5	21.4 20.5 5.1 15.4
RESISTORS	2,173	1,307	3,082	9 2	W.1	10,0
Fixed composition Fixed, deposited carbon and boro carbon Insulated and uninsulated. Hermetically sealed Fixed, metal film. Fixed, wire-wound. Non-precision (fixed and adjustable). Precision, unsealed.	332,771 421,819 28,976 27,512 1,464 6,496 25,860 20,676 2,737	497,700 391,235 30,641 28,607 2,034 7,419 20,928 16,645 2,730	1,000,531 813,054 119,617 56,119 3,498 13,915 46,788 37,321 5,467	01 2 11.8 5.6 4.7 0.9 1.9 8.0 4.2 1.8	00 7 11 1 5 9 4 7 1 2 2 4 7 6 3.8 1 9	121.9 22.9 17.0 94 21 43 156 80 3.7
Precision, sealed Variable, non-wire wound. Non-precision ^a . Precision ^a	2,447 31,171 31,041	1,553 29,235 29,129	4,000 60,406 60,170	2 0 12 3 10 3	1.9 11.9 9.9	3.9 34.2 20.2
Variable, wire-wound. Non-precision Precision and semi-precision Single turn Multi-turn (linears). Petilinears of the iddaest	4,901 3,949 952 276 161	5,022 4,056 966 278 173	8,005 1,918 554 334	16.7 3.8 12.9 6.5 3.6	16.9 3.9 13.0 6.7 .34	33 6 7.7 25 9 13 2 7 0
Other (attenuators, varisters, thermisters, etc.)	515	515	1,030	2.8	29	5.7
TRANSFORMERS AND REACTORS Pulse types. Toroidal types. Other transformers and reactors. Under 2 os 2 os. to 20 km	10,294 432 650 9,212 812	8,409 516 887 7,006 960	18.703 948 1,537 16,218 1,772	46.4 2.3 4.3 39.8 4.0	48.5 2.6 5.7 40.2 4.8	94.9 4.9 10.0 80.0 8.8
Over 30 lbs.	8,311	5,947 99	14,258	30 0	29.0 6.3	59 U 12 1

¹Estimated total industry shipments including intra-plant and inter-plant transfers.

¹Includes TR, ATR, Pre-TR, discharge, spark gaps, noise sources, and other switching devices.

^a Includes radiation detection tubes; beam deflection tubes; decade counters, electronic switches; orbital beam tubes; and vacuum capacitors, switches and gauges; excludes X-ray tubes.

⁴ An insignificant quantity and value of shipments of TV picture tubes for military applications are combined with non-military shipments to avoid disclosure of proprietary information.
⁹ Includes diodes and rectifiers made from materials other than silicon and germanium, tunnel diodes, controlled rectifiers, solar cells, and other special semiconductor devices which must be combined to avoid disclosure of proprietary information.

"Includes packaged component assemblies (PEC's, PAC's, cou-

plates, etc.), modules assembled from purchased components, and modules manufactured from components which were fabricated "uring the manufacturing process.

⁷Includes coaxial, stepping switches, thermal, motor driven, and other relays.

* Includes composition (film), moulded carbon, and metal film. *Includes deposited carbon, conductive plastic, and metal film.

¹⁹ A small quantity (and value) of shipments for non-military applications are combined with military shipments to prevent dis-closure of proprietary information.

Source: The quarterly Joint Survey of Preduction Capabilities for Electronic Parts conducted by the Electronics Production Re-sources Agency of the Department of Defense, and the Electronics Division, BDSA.

.

New Broadband Klystrons 140 MEGACYCLES - (1db) BANDWIDTH AT L-BAND 10 MEGAWATTS - PEAK POWER OUTPUT

New additions to the Litton Industries Broadband Klystron family extend broadband performance to even higher power levels as shown in the typical performance curves to the right. These tubes, like all those produced by Litton Industries, are conservatively designed and rated; and rigorously processed to provide many thousands of hours of reliable operation. Using Litton developed broadbanding techniques, it is now possible to achieve wide bandwith. high peak and average rf power output and linear phase shift versus frequency characteristics simultaneously. This latter feature enables the radar equipment designer to utilize pulse compression techniques to attain improved system performance.

Litton Klystrons providing these outstanding performance characteristics can be supplied in both the L and S-bands at peak rf power levels ranging from 2 to 20 megawatts. Typical of the performance obtained with Litton Klystrons is that of the L-3035, a 2.2 megawatt L-band Klystron. whose average operating life in field service is approaching 3,000 hours. Some of these tubes are continuing to provide excellent service after having operated for more than 17,000 hours.

Should you require high power broadband amplifier tubes to satisfy your system requirements, please write to us at Litton Industries, Electron Tube Division, 960 Industrial Road, San Carlos, California. Our telephone number is LYtell 1-8411.

TON INDUSTRIES **Tube Division** DISPLAY

N D

"Capability that can change your planning"

New Tech Data

Medical Electronics

Information on their new B-30ATP **Bio-pack from the Medical Electronics** and Bionics group, Litton Systems, Inc., 5500 Canoga Ave., Woodland Hills, Calif. New unit is the first in a series of miniaturized instruments for medical electronics application and is a self-contained package incorporating a subminiature transistorized differential amplifier and a companion FM transmitter.

Circle 160 on Inquiry Card

Timing Motors

Description of the new Series MD-83 Direct-Current Timing Motor. The new motor is a permanent magnet type employing commutator and brushes of improved construction. Folder gives construction features and operating advantages of the new Haydon Timing Motor. Dimensional data drawings and complete information on ratings and availability of components are also included. Haydon Div., Gen-eral Time Corp., 245 East Elm St.,

Torrington, Conn. Circle 161 on Inquiry Card

Connectors

A 4-page bulletin on electrical connectors, receptacles, switches and lighting products. Included in Bulletin B81 are illustrations, specs and sug-gested applications for standard and custom - built electrical connectors. Also featured are general descriptions of lighting products, including lamps, sockets and connectors, information on pushbutton switches in 2, 4 and 6 button and toggle-switch styles, and cable vulcanizers, both stationary and portable types. Joy Mfg. Co., Elec-trical Products Div., 1201 Macklind Ave., St. Louis 10, Mo. Circle 162 en Inquiry Card

Solid State Switching

Brochure discusses "Resonant Transfer" technique for generating or detecting pulses in time division solid state switching. It discusses the advantages of time division switching, compares it to space division and electro-mechanical switching, and presents a comprehensive explanation of its function, operation and mainte-nance. North Electric Company, Galion, Ohio.

Circle 163 on Inquiry Card

Transistors

Specifications sheet on PNP Alloy junction transistors covers types 2N1118, 2N1118A and 2N1119. It detypes scribes the electrical and physical characteristics of these transistors and lists min. and max. ratings of the parameters. Sperry Semiconduc-tor Div., Sperry Rand Corp., Norwalk, Conn.

Circle 164 on Inquiry Card

Thermal Analog Tube

THERMION Technical Report 7-8-9, 4-pages brochure describes Thermion's value in determining thermal reliability for vacuum tubes. Tube Equiva-lence Chart included. Rescon Electronics Corp., 151 Bear Hill Rd., Waltham, Mass.

Circle 165 on Inquiry Card

Display Devices

Brochure compares electro-mechanical characteristics of industrial cathode ray tubes and recording storage tubes. Entitled "Display Devices," it details 65 industrial CR tube types and 7 single and dual-gun, recording storage tube types. A chart lista types offered by all manufacturers in numerical order, indicating the physi-cal and electrical characteristics, typical applications and operating conditions of each. Raytheon Co., Industrial Components Div., 55 Chapel St., Newton 58, Mass.

Circle 166 on Inquiry Card

Focus Coil

Advance Technical Bulletin gives dimensional drawing, electrical data tables, and description of new Type F40 dynamic focus coil which pro-vides sharp overall focusing for 1½" neck dia flat faced large angle CR tubes used in high resolution applications such as 1000 line TV, radar, and advanced photo displays. Syntronic Instruments, Inc., 100 Industrial Rd., Syntronic Addison, Ill.

Circle 167 on Inquiry Card

Cable Ties

Nylon cable ties and straps for securing and identifying wiring bundles are described in a new 4-page bulletin, TR 3. It shows applications, lists the complete line, and gives installation instructions. The Thomas & Betts Co., 36 Butler St., Elizabeth, N. J.

Circle 168 on Inquiry Card

Potentiometers

A 2-color, 6-page brochure outlines A 2-color, opage brochure outlines precision wire wound potentiometers and turns counting dials. It contains complete tech specs and dimensioned mounting diagrams. Spectrol Elec-tronics Corp., 1704 South Del Mar Ave., San Gabriel, Calif. Circle 169 on Inquiry Card

Filters

Reference data sheet (folio 14) from Sangamo Electric Co., Spring-field, Ill., ties down the meanings of the terms, Transducer Loss and Inser-tion Loss. These are power loss mea-surements of interest in filter work. The article includes circuit diagrams and necessary math. Circle 170 on Inquiry Card

Phosphorescent Molecules

for Engineers

New 16-page bibliography of phosphorescent compounds lists over 200 compounds as a guide to identifying solutions through their phosphores-cent properties. Bibliography lists the compound, its excitation and emission wavelengths, wavelength mean lifetime, concentration, solvent, excitation source, temp., and information refer-ence source. Also Bulletin 2334, which describes the Aminco-Keirs Spectrophosphorimeter in detail. American Instrument Co., Inc., 8030 Georgia Ave., Silver Spring, Md. Circle 171 on Inquiry Card

Transistor Manual

The 5th edition of GE's Transistor Manual (\$1.00). New edition contains 4 new chapters and is expanded to 339 pages. New chapters include tunnel diode theory and switching cir-cuits, tunnel diode amplifiers, feed-back and servo amplifiers and test circuits. Chapters on silicon controlled rectifiers, power supplies, transistor specs and rectifier specs are expanded and revised. Transistor specs chapter contains a current listing of American JEDEC-registered transistor types with specs and interchangeability īnformation. Semiconductor Products Dept., General Electric Co., Kelly Bldg., Liverpool, N. Y.

Circle 172 on Inquiry Card

Channel Shifters

Audio channel shifters and storers for use primarily with double or single-sideband radio systems are described in bulletins from Westrex described in bulletins from Westrex Communications Equipment Dept., 540 W. 58th St., New York 19, N. Y. The Type 56 multiplexes two 3-kc voice channels, one occupying 250-3000 CPS and the 2nd heterodyned upward to 3250 to 60000 CPS. Composite trans-mitted signal is received normally and mitted signal is received normally and receiver audio output is fed to a Type 526 restorer which separates and re-stores both channels to intelligible form. Complete descriptions, including apecs included.

Circle 173 on Inquiry Card

Angle Indicator

Tech data sheet, C02721027, from Tech data sneet, C02721027, from Kearfott Div., General Precision, Inc., Little Falls, N. J., describes a precise Angle Indicator which provides ac-curate numerical indication of the angular position of any mechanical device to which remote two-speed dual device to which remote two-speed dual transmitters can be coupled. Some specs (Single-speed and 2-speed in order): Accuracy, ± 6 min. ± 15 sec; Repeatability, 1.2 min.-12 sec.; Reso lution, 6 sec. (direct); Power, 116 v., 400 CPS, 1-phase, 30 va.

Circle 174 on Inquiry Card

ELECTRON TUBE NEWSfrom SYLVANIA

3 <u>new Gold Brand types</u> expand industry's widest line of 26.5V SUBMINIATURE TUBES

Sylvania Gold Brand 26.5 Volt Subminiature Tubes afford dramatic opportunities for improved design of compact, reliable communications, telemetering and guidance equipment using a 26.5 volt energy source. Now, the Sylvania premium subminiature tube line includes 3 new types *featuring*: New Rugged-Design 26.5V Heater • High Uniformity, Stability • Shock Resistance to 750g • Thermal Resistance to 220°C • Intense Radiation Resistance and offering: Compact Equipment Design • Significant Circuit Economies • Improved Equipment Reliability.

At the heart of each Gold Brand Tube is a remarkable advance in 26.5 volt heater design. This new Sylvania design makes practicable quantity-produced heaters with low heater-power requirements and high mechanical strength. The heater base is a heavy support rod (mandrel) coated with a high-temperature insulator. Extremely fine heater-wire is wound over the base, and the entire assembly recoated to form an efficient folded coil heater. In addition to utilizing the new heater design for 26.5 volt *heater* operation, five Gold Brand subminiature types operate with a B-supply of 26.5 volts, making them ideally suited for hybrid designs.

Sylvania 26.5 volt subminiature tubes simplify circuitry and reduce or eliminate components ordinarily required for the conversion of the "natural" supply voltage. Series string and associated problems can be eliminated. Too, inherent tube resiliency to plate and screen voltage surges eliminates the need for compensating circuits. Result: enhanced equipment reliability, significant cost reductions.

New, Improved Specifications assure uniform, reliable, high-performance tubes capable of withstanding impact acceleration tests of 750g, fatigue tests of 2.5g and ambient bulb temperatures of 220°C. All Sylvania Gold Brand Subminiature Tubes are rigidly disciplined by tighter controls on lot variables, improved AQLs and increased test requirements. As an example, plate current and Gm must meet an AQL of 0.4%. Life tests for 100, 500 and 1000 hours provide a quantitative determination of end-points such as shorts, heater current, plate current, Gm, insulation resistance, interface impedance. Further, Gold Brand subminiature types are capable of withstanding radiation dose rates (fast neutrons) of $10^{12}NV$ and accumulated radiation of $10^{16}NVT$.

Specify Sylvania Gold Brand Subminiature Tubes. Other Gold Brand types that can be designed with the Sylvania 26.5 volt heater include prototypes: 5719, 5899, 5977, 6205 and 6206. Learn more about the advantages of Sylvania subminiature types for your critical design from your Sylvania Sales Engineer.

For data on specific types, write for the FREE 84-page Gold Brand 26.5 Volt Subminiature Tubes Booklet to Electronic Tubes Division, Sylvania Electric Products Inc., Dept. M, 1100 Main Street, Buffalo 9, N.Y.

SYLVANIA-7887. Medium-mu double triode; 26.5V, 90mA heater with 100V Eb; designed for oscillator, amplifier and low-power servo circuits. SYLVANIA-7888. High Gm, medium-mu triode; 26.5V, 45mA heater with 100V Eb; designed for use as a UHF oscillator as well as lowfrequency oscillator and amplifier applications. SYLVANIA-7889. Highmu double triode; 26.5V, 45mA heater with 100V Eb; intended for low level audio circuits.

CHARACTERISTICS	7887*	7888	7889*	UNITS
Heater Voltage	26.5	26.5	26.5	v
Heater Current	90	45	45	mA
Plate Voltage	100	100	100	Vdc
Cathode Resistor	220	150	1500	Ohms
Plate Resistance	4000	-	-	Ohms
Transconductance	5000	5800	1800	Amhos
Amplification Factor	20	27	70	-
Plate Current	8.5	8.5	0.6	mAdc
Grid Voltage				
Ib = 100 "Adc Max.	-9	-7	-	Vdc
Ib = 50 "Adc Max.	-	-	-2.8	Vdc

*Each Section

Typical test results for the Sylvania 26.5 volt heater compare very favorably with a 6.3 volt heater of known high reliability. Testing for both types was performed at 120% of rated heater voltage.

Heater Wire wound on insulated mandrel

Sketch shows enlarged view of new Sylvania 26.5V heater.

NEW YORK • WORLD CENTER FOR RADIO-ELECTRONICS • 1961

AND IRE SHOW

Visitors from all over the world will converge on the Coliseum, March 20-23, for IRE's big Show and International Convention. Join the more than 65,000 radio-electronics engineers who will attend! On the Coliseum's gigantic floors you'll see the latest gigantic floors you'll see the latest groduction items, systems, instruments and components in radioelectronics; in radar; in complex air traffic control; in space communica-

gates from the world of radio-electronics, and choose from amongst scores of papers to be read by experts in their field. Like the IRE show, the convention is both a summing-up and a look into the future!

Registration: IRE members \$1.00—non-members \$3.00 No one under 18 years of age will be admitted, Remember the occasion, the time, the place:

INTERNATIONAL CONVENTION and IRE SHOW • WALDORF-ASTORIA HOTEL • COLISEUM • NEW YORK CITY

MARCH 20-23 1981 The Institute of Radio Engineers 1 East 79th St., New York 21, N. Y.

New Tech Data

Systems Engineering

Application notes describe how to assemble systems for precision measurement of pressures, forces, and temperatures, and determination of ratios, summations, integrals, mass flow rates, and center-of-gravity are contained in a 44-page Systems Engineer's Handbook. Includes specifications of compatible FM system building-block components. Wiancko Engineering Co., 255 N. Halstead, Pasadena, Calif.

Circle 175 on Inquiry Card

Microwave Measurements

Application Note #5, "Microwave Antenna Pattern Measurements with the BA-7 Video Crystal Receiver", from Weinschell Engineering, 10503 Metropolitan Ave.. Kensington, Md., It describes simple antenna pattern measuring instrumentation based on this model Video Crystal Receiver. It is easier to operate and of equal or broader frequency coverage than instruments based upon either barretter or heterodyne receivers.

Circle 176 on Inquiry Card

Constant Current Supply

Spec sheets from Quan-Teck Laboratories, Inc., Po. Box 187,60 Parsippany Blvd., Boonton, N. J. describe their Model 151B Constant Current Supply. It features constant, highly regulated current output from 0.05 to 500 ma; max. open circuit voltage variable from 2 to 20 v; transistorized circuitry; current and open circuit voltage indicated on meter; capable of external ac modulation, and excellant stability.

Circle 177 on Inquiry Card

Tunnel Diode Applications

Four-page application bulletin (# 2106) deals with the charcteristics and applications of tunnel diodes. It discussed the significant characteristics of tunnel diodes and their application in amplifiers, oscillator, and high speed switches. Methds of obtaining parameters are described and several basic circuit designs are presented. Sperry Semiconductor Div., Sperry Rand Corp., Norwalk, Conn.

Circle 178 on Inquiry Card

Instruments

Thirty-page catalog from Ideal-Aerosmith Div., Royal Industries, Inc., 3913 Evans Ave., Cheyenne, Wyoming, describes the Company's line of barometers, and rate and motion tables. Included are operating principles, design principles, specifications, etc.

Circle 179 on Inquiry Card

Power Switches

Power class vacuum switches (high voltage interrupter devices) use a vacuum as a dielectric. These switches are described in a brochure from Jennings Radio Manufacturing Corp.. Vacuum Electronic Components, 970 McLaughlin Ave., P. O. Box 1278, San Jose 8, Calif. Advantages include: reduction in size and weight, rapid recovery of very high dielectric strength on current interruption so that only ½ cycle or less of arcing occurs, positive current interruption, nonflammable, nontoxic, nonexplosive, visible but enclosed and sealed contacts and arc, etc. Information includes graphs, tables, etc. for preliminary design.

Circle 180 on Inquiry Card

Ceramic Magnet

Bulletin F-600 from D. M. Steward Mfg. Co., Chattanooga, Tenn., (singlepage) describes their new high intrinsic coercive force ceramic magnet. The material is specifically for making stacks for periodically focused traveling wave tubes. F-600 ceramics have a coercive force, Hc, of 2650 Oersteds, an intrinsic coercive force, iH., of 3550 Oersteds, and a residual induction, Br, of 2750 gausses. Temp. coefficient of residual induction is $-0.18\%/^{4}C$.

Circle 181 on Inquiry Card

Insulation Chart

A quick informational reference on high-temperature insulation materials for electrical, electronic, avionic, and nuclear applications from Mycalex Corp. of America, 125 Clifton Blvd, N. J. It details the commonly-used plastic and ceramic insulating material. It also lists fahrenheit temp. limits for 88 materials and a table of thermal expansion coefficients of 57 insert metals and insulating materials.

Circle 182 on Inquiry Card

Powder Core Manual

New edition of its standard Powder Core Manual from Magnetics, Inc. Butler, Penna. It includes practical and tech data on applications of moly-permalloy powder cores. The 43-page manual (PC-203-R) has been arranged to aid filter designers in selecting cores for inductors throughout the audio and low frequency ranges. Dimension data on the company's line is included. Also tables and curves covering temp., inductance dc winding resistance, and other electrical characteristics.

Circle 183 on Inquiry Card

for Engineers

Travel Switch

This 2-page data sheet covers adjustable differential travel switch, 10BS210, which has a 0.0025 in. min. differential travel adjustable to 0.007 in. Sheet includes dimension drawing, operation diagrams, and electrical and operating characteristics. Micro Switch Div., Minneapolis-Honeywell Regulator Co., Freeport, Ill.

Circle 184 on Inquiry Card

Silicon Diodes

A new line of silicon Micro Mesa Diodes with reverse recovery as fast as 2 nanosec. and 2 picofarad capacitance described in brochure from Pacific Semiconductors, Inc., 12955 Chadron Ave., Hawthorne, Calif. Eleven types, including electrical equivalents of EIA types 1N904 through 1N916, make up the line. Brochure has curves, characteristics, and ratings.

Circle 185 on Inquiry Card

Variable Resistors

Catalog sheet describes line of Model 7 linear motion variable resistors. It describes the 6 basic types and 60 models. Both wirewound and composition types are covered with printed circuit and Teflon leads. Centralab, The Electronics Div. of Globe-Union, Inc., 900 East Keefe Ave., Milwaukee 1. Wisconsin.

Circle 186 on Inquiry Card

Computer Diodes

Information available from Hughes Aircraft Co., Semiconductor Div., 500 Superior Ave., Newport Beach, Calif., on their new gold-bonded silicon diode which has a guaranteed recovery time of half a nanosec. It can switch and recover so fast its actual storage time cannot be measured on the finest laboratory traveling wave oscilloscope—the guarantee is only to accommodate the measuring limits of standard sampling scopes. Typical capacitance for the total diode is 0.7 picofarads. Rectification efficiency is 25% at 13.5 KMC.

Circle 187 on Inquiry Card

Microwave Filters

Latest issue of "PRD Reports", Vol. 7, No. 1, is entitled "Microwave Filters." The 12-page paper discusses the present state-of-the-art of microwave filter design. Various techniques for designing filter are described and their advantages and limitations are considered. A bibliography is included. PRD Electronocs, Inc., 202 Tillary St., Brooklyn, N. Y.

Circle 188 on Inquiry Card
NEW DESIGN DATA ON MAGNETIC AMPLIFIERS

-latest ARNOLD folder enables you to design and build a unit to your exact needs.

Armed with the data in this folder, you can create an optimum design for a 12-watt magnetic amplifier... get the closest possible control over its design and construction ... for control of servo motors, regulated power supplies, etc.

You build the amplifier around its basic component — the saturable reactor. Twenty-four ARNOLD saturable reactors are described in the folder. There's full information as to what associated components are necessary, and how to use the components in a proper magnetic amplifier circuit.

In buying just the saturable reactor, you get far more latitude than in buying a whole black box. And you won't have to prepare comprehensive specs., or depend on an outside source for the complicated designs.

Write for new Arnold Catalog. It's yours for the asking.

TIMES DATACABLE A COMPLETE SERIES OF DATA-0 PROCESSING AND TRANSMISSION CARLE Tensor Detectible in the first full line of engineered cable to most every deta-system requirement, and includes -× Miniature no. coaxial cables. Low mutual capacitance twisted and multi-pair eables. Miniature for estamation of ohn system cables. Solon 9. · Ministure low-capacitance miniature for argumetron 95 ohm system cables. U/L approved Tellen * insulated backpanel wire. Wide-band matched Impedance coaxial cables. Large multi-coaductor cables incomparison of all incorporating any dr all of the above types. batacable is the result of Times' years of experience in cable applica-tion and design engineering for the computer industry. Select the cable for your application from the many "standard" Datacables, or let our engineers assist you in developing or adopting a cable to your special requirements. • DuPosi TIMES WIRE & CABLE DIVISION The International Silver Company WALLINGFORD, CONNECTICAL AND Clip This Coupon To Your Calling Card or Letterhead ----Please rush FREE literature on: Coaxial Cables

Data Transmission Cables

Multi-Conductors & Hook-up Wire

📄 For Info. Only 👘 📋 Have Rep. Call

New Tech Data

Anechoic Chamber

Brochure describes the simplest box type anechoic chamber as well as the transverse baffle type, aperture type, and the latest longitudinal ture type, and the latest longitudinal baffle type, with details of construc-tion with illustrations of each type of chamber built by the Company to meet requirements of frequency range, working conditions, etc. Typi-cal specs are incluced. Emerson & Cuming, Inc., Canton, Mass. Circle 189 on luquiry Card

Fasteners

Catalog No. 960, a 64-page design manual, focuses attention on reduced dimension, lightweight types of selflocking fasteners. It provides the de-sign engineer with a package of nut shapes useful in the assembly of units for avionic and electronic end use. Special emphasis is placed on clinch types including a new floating type of blind fastener and 2 new right angle bracket nuts for panel and cover assemblies. Instructions on "how to in-stall" are presented; tools and production methods illustrated. Elastic Stop Nut Corp. of America, 2330 Vauxhall Rd., Union, N. J. Circle 190 on Inquiry Card

High Vacuum Line

New short-form catalog describes the high vacuum equipment line of the company's vacuum tube products division. Included are descriptions of gauge tubes and controls and ion pumps. Hughes Aircraft Co., Vacuum Tube Products Div., Marketing Dept., 2020 Short St., Oceanside, Calif. Circle 191 on Inquiry Card

High Voltage Capacitor

Booklet ED-T101 describes a new glass cased high voltage capacitor series called Ercon "Glasscon" Type Type AG. For high voltage dc use, 600 to 60,000, these capacitors are hermeti-cally sealed in heavy walled glass (or ceramic) tube. Operational factors covered include temp. range, ripple voltage, dielectric strength, power factor, insulation resistance and ca-pacitance change. Rating and selection charts included. Efcon, Inc., Patterson Place, Roosevelt Field, Garden City, L. I., N. Y.

Circle 192 on Inquiry Card

Facilities

New 12-page, 2-color brochure de-scribes facilities of Monitor Systems, Inc., a subsidiary of Epsco, Inc., Dept. S, Ft. Washington Industrial Park, Ft. Washington, Pa., for engineering and production of advanced systems for high speed process monitoring, pro-duction testing, and automatic checkout

Circle 193 on Inquiry Card

144

Voltage Comparators

Two-color, 6-page bulletin on NLS Series 50 transistorized voltage com-parators used for critical go/no-go applications. Bulletin describes the Model 50 voltage comparator and the Model 51 voltage comparison amplifier. Uses of voltage comparators are discussed and applications listed. A problem and solution section shows how to design complete go/no-go testing systems and how to select the correct voltage comparator or com-parison amplifier for numerous applications. Features are covered as well as detailed tech. information. specs and operation information. Non-Linear Systems, Inc., Del Mar, Calif. Circle 194 on Inquiry Card

Temperature Chambers

Four-page folder describes 1 to 10 Four-page folder describes 1 to a ft." units designed for lab and job shop where temps, from -150 to $+300^{\circ}$ F are required. Space saving, low cost mechanical units are pictured, along with accessories and special controls. Also: A new 12-page tech. article on sub-zeroing and its benefit to gear and pinion production. Cincinnati Sub-Zero Products, 3930 Reading Rd., Cincinnati 29, Ohio. Circle 195 on Inquiry Card

Relays

Engineering bulletin covers Series subminiature relay. The new relay, is designed to meet severe enlay, is designed to meet severe en-vironmental requirements of present-day prototype missiles. Bulletin in-cludes features, applications, specs, mounting styles, type designation and detail data. Filtors, Inc., Port Wash-ington, N. Y. Circle 196 on Inquiry Card

Electromagnets

Technical brochure on laboratory electromagnets from Varian Associates, Instrument Div., 611 Hansen Way, Palo Alto, Calif. Included are Way, Paio Alto, Calif. Included are documented tech. specs and graphic illustrations showing performance. A special section, with dozens of illus-trative magnetic field homogeneity plots, describes obtainable perform-ance with numerous pole cap con-figurations on Varian Electromagnets. The pole cap section concludes with a discussion of pole cap selection for particular performance characteristics.

Circle 197 on Inquiry Card

DC Blowers

Two-page bulletin 540 describes VAX-3-BD vaneaxial dc blowers that produce 65 cfm at 1.6 in. H₂O, weigh 1 lb., and are 3 in. in diameter. Globe Industries, Inc., 1784 Stanley Ave., Dayton 4, Ohio. Circle 198 on Inquiry Card

for Engineers

Transistor Amplifier

Harco Laboratories, Inc., New Haven, Conn., offers Bulletin 204, which illustrates and describes their new high gain, low power drain, plugin type transistor amplifer for thermocouple null device application in environmental temps from -10° F to +175°F. Features, performance data. and specs provided.

Circle 199 on Inquiry Card

Coaxial Filters

A 4-page illustrated brochure of coaxial microwave filters describes ganged or individually tuned coaxial resonant cavity devices which operate over 2.1 to 5.9 KMC. A description elaborates on techniques used for miniaturization, frequency stability, diplexing and mixing functions as well as special system requirements. Series of standard coaxial bandpass filters are described with tech. data. Other multisection filters are illus-trated. Waveline Inc., Caldwell, N. J. Circle 200 on Inquiry Card

Video Amplifier

A 4-page application note, "Video Amplifiers Using the 2N741 Mesa Transistor," describes design of highquality video amplifier circuits. The 2-color note includes circuit sche-The matics, performance curves, and amplifier. Eleven illustrations supple-ment the text. Technical Information Center, Motorola Semiconductor Products Inc., 5005 E. McDowell Rd., Phoenix, Ariz.

Circle 201 on Inquiry Card

Multiple Connectors

Illustrated 6-page folder describes a complete line of pin-and-socket type multiple connectors. Folder details electrical and mechanical characteristics of the pin-and-socket connector line (called AMPin-cert). It also lists features of the 5 types of contacts available in the AMPin-cert line, and the features of the connector shells and inserts. A list of AMPin-cert connector accessories available is also given. Two of the 6 pages describe AMP solderless techniques. AMP Inc., Harrisburg, Pa. Circle 202 on Inquiry Card

Servo Motors

Technical data sheet on Type E 131A, size 15, precision hi-temp, low interia servo motor. It meets military environmental specs. Included are torque curves, outline drawing. schematic, illustration of motor and me-chanical, physical and electrical performance characteristics. John Oster Mfg. Co., Avionic Div., Racine, Wis. Circle 203 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

Circle 72 on Inquiry Card

... for the Electronic Industries

HYBRID JUNCTION TEES

Series of matched and unmatched Hybrid Junction Tees (also known as E/H or Magic Tees) consist of a section of waveguide upon which a series and shunt waveguide arm are mounted at the exact midpoint. Matched

tees are equipped with appropriate iris or ramp matching devices. Design and fabrication techniques result in excellent reduction of vswr values relatively wide bandwidths. Also isolation between the shunt and series arm is greater than 35 db over the applicable freq. range. Units are constructed of silver brazed brass which is silver plated and finished in instrument grey enamel and all arms are provided with standard waveguide cover flange connectors. Waveline Inc., Caldwell, N. J.

Circle 217 on Inquiry Card

POWER DIVIDER

A 6-way resistive power divider consists of 7 symmetrical arms (1 input, 6 output) spaced radially about a hub. Resistive networks within the arms provide impedance matching up to 3000 MC. Unit is electrically symmetrical, and any arm or arms can be used as inputs, the remaining arms for outputs. Dividers are normally furnished with all female connectors in either the N, BNC, TNC, C, or HN series but can be supplied with any combination of male and female con-

nectors. They have an input and output VSWR of 1.2, and impedance of 50 ohms, a power rating of 2 w, and meet MIL-E-5272. Microlab, 570 West Mt. Pleasant Ave., Livingston, N. J.

Circle 218 on Inquiry Card

PRECISION SWITCHES

Silicone boot provides flexible seal between case and operating pin and with a permanent seal between base and cover of switch case, the 2HL260 series of precision switches gives long, reliable service under adverse en-

vironmental conditions. It is listed by Underwriters' Labs., Inc. for singlepole, double-throw operation at 2 hp 250 vac, 1 hp 125 vac, 20 a 125 vac. Basic switch is 11/16 in. wide, 1-15/16 in. long, 13/16 in. high and has 2 mounting holes on 1-in. centers. Series also includes leaf, roller-leaf, and hinged-lever actuator styles. Switches can be furnished with solder-lug, screw-type, or snap-on terminals. UNIMAX Switch Div., The W. L. Maxson Corp., Ives Rd., Wallingford, Conn.

Circle 219 on Inquiry Card

XY RECORDER

New Model HR-93 XY Recorder has an electric pen lift mechanism allowing point plotting, family curve tracing and rapid non-recording pen indexing. The pen lifter can be operated with the hand held manual control box or can be tied into test circuitry for automatic operation. A load - operate switch automatically picks up the pen and indexes it away from the chart area so that the graph paper may be loaded easily with no trace appearing on the chart. After

loading, the pen is held so that no trace appears when indexing back to the original position. Accuracy is $\lambda_2 \ll$ with $7 \lambda_2'$ in /sec. pen speed on both axes. Houston Instrument Corp., P. O. Box 22234, Houston 27, Texas.

Circle 220 on Inquiry Card

CARBON POTENTIOMETER

New Resiston^a carbon Trimpot^a potentiometer provides reliability at operating conditions up to 150°C. Model 3051, features a high temp. carbon deposited on an inert and moisture proof ceramic base. It is completely

sealed against humidity, exceeding requirements of MIL-STD-202A, Method 106. The total resistance shift is less than 5% and insulation resistance is 100 megohms min. Specs: Resistance range, 20K to 1 Meg; End settings, 1.0% max. voltage ratio; Power rating, 0.25 w at 50°C; Resolution, infinite; Operating temp., -65 to +150°C; Mechanical life, over 200 cycles; Size, 1.25 x 0.32 x 0.19 in.; Weight, approx. 0.1 oz. Bourns, Inc., 6135 Magnolia Ave., Riverside, Calif.

Circle 221 on Inquiry Card

MULTI-RATIO GEAR BOX

Universal Multi-Ratio Gear Box, a developmental speed reducer and increaser, with 10 basic ratios (5 reductions and 5 increases), eliminates the need for a number of single ratio units. Standardized mounting dimensions insure quick, accurate assembly with all hangers, breadboard plates and development components. No tools or critical adjustments are necessary when changing ratios—the box is simply placed in the correct position for the ratio desired. They

are in $\frac{1}{16}$, $\frac{3}{16}$ and $\frac{1}{16}$ in. shaft sizes, with ball or oil-less bearings. Assemblies have less than 30 min. backlash through the entire gear train. PIC Design Corp., 477 Atlantic Ave., E. Rockaway, L. I., N. Y.

Circle 222 on Inquiry Card

TWO GREAT NEW RECTIFIERS from **PSI...**

MICRO-RECTIFIERS UP TO 10.000 PIV IN A .075 CUBIC INCH PACKAGE!

Туре	PIV	RMS In	I@@25°C	l _o @100°C
PS2422	2000	1400	50	25
	NINE TYPE	S PS2422 TH	RU PS2430	
PS2430	10000	7000	50	25

No voltage derating to 150°C

Reliability ≥ conventional size

1/5th size of comparable units

Easy mount – printed circuits

SUPER FUSE RECTIFIERS

5AMP @ 1500V thru .2AMP @ 20.000V PIV!

Туре	PIV	RMS In	I.@25°C	I.@100°C	Power
PS1441	1500	1050	500	250	2.8
	TWE	NTY TYPES P	S1441 THRU	1460	
PS1460	20,000	14,000	200	100	8.6

No voltage derating to 175°C

Shatter-proof body

Optional wiring terminals

Excellent moisture integrity

ALL WELDED CONSTRUCTION EXCEEDS MIL-S-19500B REQUIREMENTS IMMEDIATE DELIVERY ALL TYPES

The above types are examples of the broad line of PSI Special Assemblies. This line features 1N1730-1N1734, 1N2382-1N2385, 1N430, 1N430A and many Bridges, Rectifiers and Regulators in Micro and conventional sizes.

For further information phone, wire or write any PSI sales office or authorized distributor. Ask for new 24-page "PSI Special Assemblies Brochure".

12955 CHADRON AVENUE, HAWTHORNE, CALIFORNIA Facilities in Hawthorne, Culver City and Lawndale, California

VACUUM TUBE VOLTMETER

ē.

Vacuum Tube Voltmeter, Model 850, features Superior Voltage Measuring capabilities, plus resistance ranges to 1000 Megohms; 5 v full scale range on dc; Useful in low voltage transistor circuits; Meter is

connected in cathode circuit of 12AU7 for stability; Long full view scales, Scales 7" long at top arc; Electrical protection of meter against burnout; Frequency Range-from 15 CPS to 3 MC; Separate scale for peak-to-peak readings; Single Unit Probe — with built-in switch for AC/DC/OHMS; 11 Megohm input resistance on all dc voltage ranges Ac impedance is min. 0.83 megohm. The Triplett Electrical Instrument Co., Blufton, Ohio.

Circle 223 on Inquiry Card

LIGHT IMAGE INTENSIFIER

New high vacuum tube — type WX-4047—intensifies light radiation. It produces an image of reduced size whose brightness is increased by a factor of 2500 (min.) for actinic blue input radiation, by 1,000 for input radiation at a color temp. of 2870°K. It uses a short-persistence P15 phosphor. Brightness decays to 10% in 2.0 #sec. Input resolution is 75 line pairs/in. and its threshold for imaging is approx. 10 [‡] foot-candles. Max. ratings are 30 kv (anode screen to

photocathode) and a 1 ma peak pulse anode screen current. Weight is $6\frac{1}{3}$ lb. Max. dia is 8-11/16 in. Length is $15\frac{3}{4}$ in. Westinghouse Electronic Tube Div., P. O. Box 284. Elmira, N. Y.

Circle 224 on Inquiry Card

Sub-panel mounted, miniaturized digital readout is mounted 13/16 in. behind a lucite viewing screen. Readout rear-projects the digit onto the viewing screen. The Series 120000 digital readout for use with digital

computers, control equipment, instruments, aircraft equipment, production and inventory controls, and other electronic or electrical test equipment. Size of the character displayed is % in. high. The light source comes from subminiature lamps. No. 327, 328 or 330. Voltage is from 6 v. to 28 v. Dimensions are 3½ x 1 x 1 5/16 in. Weight, 3½ oz. Industrial Electronic Engineers, Inc., 5528 Vineland Ave., N. Hollywood, Calif.

Circle 225 on Inquiry Card

BAND PASS FILTERS

Series of miniaturized, tuneable and rugged band pass filters. Available at center freq. from 100 to 4000 mc in dual or triple section units and with either type BNC, TNC, N or C connectors. Specs: Insertion loss 1.0 db max. and vSWR 1.10 max. at the center freq.; band pass ripple \pm 0.5 db, power handling 100 w cw, impedance 50 ohms, nom. tuning range \pm 5% times the center freq. and the bandwidth at the 3 db points is from 1 to 5% depending on the center freq. Skirt selectivity for the dual

section is 25 db min. at $1.25F^{\circ}$ and 35 db min. at the sec. harmonic and for the triple section is 35 db min. at $125F^{\circ}$ and 55 db min. at the sec. harmonic. Maury & Associates, 10373 Mills Ave., Montclair, Calif.

Circle 226 on Inquiry Card

PC TEST JACK

Short, printed circuit test jack for closer back-to-back mounting of printed circuit boards. The new unit can be mounted closer because the length of the contact sleeve below the printed circuit board has been re-

duced. It includes a small diameter nylon insulator (in 9 standard colors), a beryllium-copper, springpin contact, and a silver and goldplated contact sleeve for ease in soldering. Constructed to military material specs, the units are easily mounted by inserting them into predrilled circuit board holes and connected by dip-soldering. Raytheon Co., Industrial Components Div., 55 Chapel St., Newton 58, Mass.

Circle 227 on Inquiry Card

SLIDING PISTON

A new type of variable trimmer capacitor with a sliding piston for use with cam driven mechanisms for fine tuning action and long life. Trimmers available in capacitance values from 0.6 to 90 pf in glass or quartz dielectric, in standard, differential, split stator, open or sealed construction. Other features: Stability-quartz and invar construction has zero temp. coefficient. Low loss and low inductance for high freq. use. No derating up to 125°C for glass dielectric (150°C for quartz). Shock and

vibration resistant. Gold plating over special alloy for r-f conductivity and freedom from silver migration. High Q dissipation factor. JFD Electronics Corp., 6101 16th Ave., Brooklyn 4, N. Y.

Circle 228 on Inquiry Card

Is This New Printed Circuit Process For You?

Have you heard about the remarkable new "scribe 'n' peel" technique for making printed circuit layouts? One of the first major companies to adopt this new method reports saving \$27,000 on a single project involving 300 precision printed circuits.

"Scribe 'n' peel" is quite simple, actually. With the conventional method, you lay out your printed circuit by putting ink or drafting tape on a surface. With "scribe 'n' peel", you scribe your design into the surface of a specially coated STABILENE® Film with a sharp steel instrument. After a few simple processing steps, you've got a complete negative master!

In addition to impressive savings, the "scribe 'n' peel" technique allows much more flexibility than is possible with the old ink and tape methods. The scribing tools, which make it

a cinch to execute uniform circuit paths, will enable your least experienced draftsmen to produce work almost impossible to tell apart from the work of your most highly skilled veterans. And your best men will be giving you the same top-quality work as they do now...only faster and more easily. Various mechanical advantages are enjoyed with "scribe 'n' peel", too. For one thing, it's the only practical method which allows the preparation of double-sided boards where perfect register is essential. For another, it makes possible ready duplication of sections of the printed circuit master without the slightest risk of damage to the original.

This new "scribe 'n' peel" technique may or may not be for you...but the advantages it presents are so significant that we'd like to offer you a practical means of finding out. We've put together a complete "scribe 'n' peel" Evaluation Kit with everything you'll need to test this new technique, including easy-to-follow instructions. Using the kit, you'll be able to render an actual printed circuit master and see first hand what "scribe 'n' peel" can mean to you in terms of increased accuracy, flexibility, speed and savings.

We're charging only \$5 to cover materials and handling...a modest investment which can reap tremendous dividends in terms of up-dating your printed circuit techniques. Simply fill out the coupon below and a K&E representative will deliver it promptly to your door. (see coupon below).

STABILENE "Scribe 'N' Peel" Evaluation Kit#

- 1. 3 sheets Stabilene Scribe Coat
- #R 132H 81/2" x 11" 2. Scribe Points
- 3. Scribe Point Holder
- 4. Touch Up Crayon
- 5. 6 sheets Stabilene Photo Sensi-
- tized Peel Coat #597H 81/2"
- 6. Photographic Developer Directions under label
- 7. Reversal Solution Component
- 8. Reversal Solution Component
- 9. 4 Cloth pads for etching
- 10. Etching Solution 11. Instruction Sheet

*This kit contains basic scribing tools to acquaint you with the technique. If you decide to adopt the "scribe'n' peel" method, K&E has a full range of topquality, precision instruments specially designed for this type of work. They are fully described in the literature which comes with your Evaluation Kit.

Constitute on Constitute on the second second second the second second second second second second the second second second second second second the second second second second second second second second the second seco

EVALUATION

IN Total of the Scribe of

HOS HEUFFELALSSER CO

Gentlemen:

Name & Title:.

Company & Address:

K#M

KEUFFEL & ESSER CO. NEW YORK + HOBOKEN, N. J. + DETROIT - CHICAGO MILWAUKEE - ST. LOUIS + DAILAS + DENVER SAN FRANCISCO + LOS ANGELES - SEATLE - MONTREAL

ELECTRONIC INDUSTRIES . January 1961

Please write direct to the above advertiser

KEUFFEL & ESSER CO., Dept. El-1, Hebeken, N. J.

Please send me a STABILENE EVALUATION KIT and bill me later.

JENNINGS VACUUM RELAYS

RA4B

REGE

what would you look for in the ideal relay ?

MIN

High insulation resistance Very low contact resistance Minimum size Permanently clean contacts

High voltage and current ratings

And where will you find a relay that embodies all these desirable characteristics? Examine the ratings achieved by these typical Jennings vacuum relays and see how well they meet the requirements of many specialized applications.

HIGH	Rated operating voltage dc or 60 cycle.	25 kv 15 kv
VOLTAGE	Peak test coltage	35 kv 25 amps 9 amps
	Interrupting rating-dc res. loads (not to exceed 5 a or 10 kv)	20 kw
MINIMUM	Re7A (2PDT) Rated operating voltage dc or 60 cycle - 16 mc	5 kv 2.5 kv
SIZE	Peak test voltage dc or 60 cycle Continuous rms current dc or 60 cycle. 16 mc	7.5 kv 8 amps 3 amps
	Interrupting rating—dc res. loads (not to exceed 4 a or 5 kv) Overall length	5 kw 1¾ inch
HIGH CURRENT	RA4B (4PDT) Rated operating voltage	300 v 40 amps 28 vdc-20 amps 50 G
	Vibration	30 G from 10 to 2000 cps 26.5 vdc

Jennings vacuum relays are unequalled for solving difficult problems of antenna switching, pulse forming networks, or similar rf and dc circuits where reliability is of utmost importance.

JENNINGS RADIO MANUFACTURING CORPORATION 970 McLAUGHLIN AVE., P. O. BOX 1278 SAN JOSE 8, CALIF.

Gennings

New Products

FEED-THRU CONNECTOR

For use with Printed Circuit Boards or Plyo-Duct (flat multi conductor cabling), feed-thru connector, series FTD 1500, employing a tri-frucated contact which can withstand and exceed vibration requirements of

MIL-E-5272. Presently available in 15 contacts on 0.100 in. centers for a nom. card opening of 0.062 in., and employing glass filled Diallyl Phthalate as a Dielectric. Methode Mfg. Corp., 7447 W. Wilson Ave., Chicago 31, Ill.

Circle 261 on Inquiry Card

UNIVERSAL COUNTER-TIMER

All transistor, dc to 20 MC, Universal Counter-Timer, Model 728A, provides increased reliability, reduced power consumption, size and weight. Unit is direct reading. Heterodyning techniques are not used. Power consumption is 50 w, weight is 27 lbs. Size is 7 x 17 x 12 in. It consists of 3 input channels, a special decade count-down time base which eliminates the need for divider adjustment, and a series of plug-in transistorized decade counting units. Output information from each DCU will operate digital printers, punches, inline readouts and other data processing equipment. Measurement ranges are dc to 20 MC (freq.); 0.1 µsec to 10' sec. (time in-

terval); 0.1 #sec (period). Accuracy is ± 1 count \pm oscillator stability. Sensitivity is 0.25 v. BMS; input im-pedance is 25 k ohms/v. Computer-Measurements Co., 12970 Bradley Ave., Sylmar, Calif.

Circle 262 on Inquiry Card

... by turning FIRST to BUSS for fuses of unquestioned high quality

By relying on BUSS as your source for fuses, you can quickly and easily find the type and size fuse you need. The complete BUSS line of fuses includes: dual-element "slow-blowing", single-element "quick-acting" and signal or visual indicating types . . . in sizes from 1/500 amp. up — plus a companion line of fuse clips, blocks and holders.

BUSS fuses are made to protect — not to blow needlessly

When you specify BUSS fuses users of your equipment receive maximum protection against damage due to electrical faults. And just as important, users are safeguarded against irritating, useless shutdowns caused by faulty fuses blowing needlessly.

A component part that operates as intended helps to maintain the reputation of your equipment for quality and service. That's why it pays to rely on dependable BUSS fuses.

If you should have a special problem in electrical protection ... the world's largest fuse research laboratory and its staff of engineers are at your service — backed by over 46 years of experience. Whenever possible, the fuse selected will be available in local wholesalers' stocks, so that your device can be easily serviced.

For more information on BUSS and Fusetron small dimension fuses and fuseholders . . . Write for bulletin SFB.

BUSSMANN MFG. DIVISION, McGraw-Edison Co. University at Jefferson, St. Louis 7, Mo.

BUSS fuses are, made to protect not to blow, needlessly BUSS makes a complete line of fuses for home, farm, commercial, electricatic, electrical, automotive and industrial use *

ELECTRONIC INDUSTRIES . January 1961

151

1.01

IERC TRANSISTOR HEAT DISSIPATOR

accepts .305 to .335 variations in TO-5 cases!

IERC's exclusive design features maximum thermal contact with transistor case for efficient transfer of heat to the dissipator and heat sink. Attaching methods suitable for printed circuit boards, chassis and heat sinks provide thermal benefits and retention in extreme shock and vibration environments.

Installation is a smooth, tension fit—eliminating the possibility of "snap-fit" impact injuries to the transistor!

Simplified installation for effective heat dissipation with IERC Transistor Heat Dissipators are illustrated: 1. Parts available in rivet or screw attaching types. 2. Single or multiple mounting on heat sink angle. 3. Back-to-back mounting.

Detailed information, performance graphs, etc. are available in latest IERC Technical Bulletin. Write for a copy today!

Foreign Manufacturers: Europelec, Paris, France. Garrard Mlg. & Eng. Co., Ltd., Swindon, England.

New Products

ACCELEROMETER

Model AA-1220, has a resonant frequency of 125 KC, providing a useful freq. range to 25 KC. It can be used to measure acceleration levels up to 15,000 g. Design minimizes dc shift in both axes. Transverse response is

less than 3%. Specs: Acceleration range: 2 to 500 g (10 ms pulse); 500 to 2,000 g (1 ms pulse); 2,000 to 15,000 g (0.25 ms pulse). Frequency Range (into 100 megohm load): 10 CPS to 25 KC. Sensitivity (min. with 4 ft. cable): 0.3 mv (RMS)/g(RMS). Capacitance (min. with 4 ft. cable): 750 $\mu\mu$ f. Transverse acceleration: 7,500 g max. Transverse Response: 3% max. Linearity: $\pm 2\%$. Operating temp: -65° to $\pm 250^{\circ}$ F, less than $\pm 10\%$ change in sensitivity from room amb. Seismic system: Bender. Standard calibration: 20 to 10,000 CPS, resonant freq. and capacitance with cable. Gulton Industries, Inc., 212 Durham Ave., Metuchen, N. J.

Circle 263 on Inquiry Card

FILAMENTS-BOATS

New line of tungsten, tantalum and molybdenum filaments and boats in a variety of sizes and shapes. For use in high vacuum as an evaporation source, they are processed to maintain a high standard of purity and accuracy. All parts are stress relieved. Primary uses include: elec-

tronic component processing, coating of optics, precision instrumentation manufacturing, and vacuum metalizing in basic research labs. Electronics Div., Allen-Jones, Inc., 1345 Gaylord Ave., Long Beach, Calif. Circle 264 on Inquiry Card

Circle 77 on Inquiry Card

Now Eimac's 2C39A gives you more ruggedness than any other competitive tube. *Plus* a higher maximum temperature rating of 250°... and less dielectric loss at higher frequencies for increased efficiency, power output. *And all at no increase in cost!* Get the only ceramic tube built to 2C39A specifications. Get it only from Eimac...world leader in power

tubes, microwave tubes, amplifier klystrons. Contact your local Eimac representative for quantity price quotations. Eitel-McCullough, Inc., San Carlos, California.

PIONEERING

94 Series

A new concept in reliability—crimp Poke Home Contacts*—was pioneered and actively developed by Amphenol Connector Division. Removable contacts that are crimped outside of the body of the connector, inspected and then inserted for assembly are available in six connector lines. In Rack & Panel connectors, for example, "Poke Home" economy and reliability are

offered in miniature Min Rac 17, aircraft 94 and missile 93 series.

In almost every application area there is an Amphenol connector with Poke Home contacts. Catalog data is available for your use.

AMPHENOL CONNECTOR DIVISION 1830 S. 54TH AVE. • CHICAGO 50, ILLINOIS Amphenol-Borg Electronics Corporation

U.S. PATENT 2,410,018

RECEIVER-TRANSMITTER

New 12,000 MC microwave receivertransmitter. The r-f equipment, Model MR-40, provides broad-band communications for very high speed data transfer and transmission of conventional telephone and teletypewriter mes-

sages. It can carry data at 62,000 characters/sec. when used with Motorola's new data transmission multiplex system. It can also handle voice, facsimile and teleprinter transmissions and control and monitor functions with 600 or more multiplexed channels. It provides 100 mw power output. Basic components are 2 reflex klystrons, one in the receiver-one in the transmitter. Each has a life expectancy of 20,000 hrs. continuous operation. It can be used with both directly aimed dish antennas and tower-mounted passive reflector configurations. Motorola Communications Div., 4501 West Augusta Blvd., Chicago 51, Ill.

Circle 265 on Inquiry Card

MOBILE RADIO FILTER

New 455 kc Mobile Radio I-f Filter, Model F-124. Designed for mobile radio equipment, it is a low-cost unit of rugged construction and reduced size. Specs on the new filter are: Center frequency, 455 kc ± 1 kc; Insertion loss, 23 db (max.); Band-

width, at 6 db, 10.5 KC, at 60 db, 31 KC; Max. ripple, 0.5 db within the pass band; Dimensions, 3-¼ x 1-1/16 x 1-3/16 in.; Connections are coaxial cables. ESC Electronics Corp., 534 Bergen Blvd., Palisades Park, N. J. Circle 266 en Inquiry Card

LEAD WIRE

/ /0

OUTSIDE DIAMETERS

A	Gauge	Max. Fin. O.D.
	#22	0.167"
ł	#20	0.174"
1	#18	0.183"

This ⁱnew, UL Inspected and Labeled Wire is especially designed for use as Anode Connectors, Fly-Back Transformer Leads and similar applications in TV Receivers, and other electronic circuits carrying high voltages.

INSPECTED

Code HYANODE combines high dielectric strength with maximum flexibility and minimum outside diameter. It is available with No. 22 Ga. through No. 18 Ga. Stranded Tinned Copper Conductors. Outer jackets of extruded plastic compounds are rated at 80°C, 90°C or 105°C. Standard Color is Red—other colors available.

Quotations based on your quantity requirements furnished promptly. Samples available on request.

LENZ ELECTRIC MANUFACTURING CO.

1751 No. Western Ave. In Business Since 1904 Chicago 47, Ill.

Circle 74 on Inquiry Card

156

Circle 81 on Inquiry Card

and ALL <u>NEW</u>

Completely covers the frequency range from 4.0 to 40.0 KMC/S with only one probe carriage.

The new PRD 230 Universal Probe Carriage represents a major achievement in accurate standing wave and impedance measurements. Here is a precision instrument which features bold, rugged styling with laboratory accuracy. The position of the probe holder can be quickly determined to 0.01 mm.

A complete series of Waveguide and Coaxial Slotted Lines are available for snap-in convenience and low VSWR performance. Unusual features include a scale calibrated directly in dial revolutions and self-contained slope adjustment of the U, K, and A band Slotted Lines.

PROBE CARRIAGE: Accepts both PRD 250-A Broadband probe for 4.0 to 12.4 KMC/S and PRD 253 Fixed Tuned Probe for 12.4 to 40 KMC/S.

VSWR: PRD 231 Waveguide Slotted Lines have a maximum residual VSWR of 1.01.

VERNIER RESOLUTION: 0.01 mm.

PROBE TRAVEL: 6 cm.

PRD 231* SERIES SLOTTED LINES

PRD Type	Frequency Range (kmc/s)	Transmission Line Size (inches)	Length (inches)	Coupling Type
N231	4.0-10.0	%" Coaxial	9-1/4	
X231	8.20-12.4	1 x 1/2	9	UG-39/U
U231	12.4-18.0	.702 x .391	9	UG 419 U
K231	18.0-26.5	.500 x .250	9	UG-425/U
K231-F1	18.0-26.5	.500 x .250	9	UG-595/U
A231	26.5-40.0	.360 = .220	9	UG-381/U
A231-F1	26.5 40.0	.360 x .220	9	UG-599/U
A231 A231-F1	26.5-40.0 26.5-40.0	.360 x 220	9	UG-3

"Available in WR waveguide sizes on special order.

"Normally supplied with Type "N" male and female adapters (PRD 367 and 368).

Adapter for Type "C" male and female (PRD 3354 and 3355). Adapter for "TNC" male and female (PRD 3395 and 3396). Adapter for "HN" components (PRD 3368 and 3369).

We have many interesting openings for engineers... contact Mr. John R. Zabka.

202 Tillary Street, Brooklyn 1, New York, ULster 2-6800 1608 Centinela Avenue, inglewood, Calif., ORagan 8-6922

THIS FREE READER SERVICE CARD USE

Keep up to date-get the facts about the new products and equipment as they hit the market. ELECTRONIC INDUSTRIES' advertisers will be alad to send you complete literature giving specifications and data relating to those products advertised in this issue. To help you, the new product items, new literature and advertisements in this issue are numbered consecutively, from the front to the back of the book. The extra cards are for the use of your associates with whom you share your copy of ELECTRONIC INDUSTRIES.

Today For Quick In-
formation On New
Products Described
in This Issue, No
Postage Needed.

Circle the item number, fill in your name, title, com pany; detach and mail.

						_				_				-		-	-		_
						B	U S POST	I N	ES	S S MECES	R	E P	LY	N UNI	M A	TATES			
								POS	TA	GE	WIL	L BE	PA	DB	Y				
						ELE	CT	RO	NIC	: 10	IDI	IST	RIF	s					
						ine	Com	puter	Cen	Ter									
						P. O.	Box	8221											
						Phila	delpi	hia 4	, Per	insyl	vania							-	
YOU		ME .										TITLE.					JA	N. 1	961
FIRM																			
FIRM	ADD	RESS																	
CITY	OR	TOW	N								ZONE				. STA	TE			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
141	142	143	144	140	140	147	148	149	150	131	152	153	124	133	120	157	158	159	160
101	102	103	104	100	100	107	108	107	1/0	101	1/2	1/3	1/4	1/3	1/0	1//	1/8	1/9	0.81
201	102	103	104	100	100	107	100	109	210	141	192	193	194	193	190	197	178	199	200
201	202	203	204	203	200	207	200	207	220	271	212	213	214	213	210	217	218	219	220
221	242	223	244	223	220	247	220	249	230	231	232	233	234	233	230	23/	238	239	240
241	242	243	244	243	240	247	240	247	230	231	232	233	234	233	230	23/	236	239	200
201	283	203	284	203	284	287	288	207	200	201	202	2/3	204	2/3	204	207	2/8	2/9	200
201	302	303	304	203	304	307	308	300	210	271	212	273	214	273	214	217	276	277	300
121	322	323	324	325	324	327	128	320	330	221	333	313	334	313	310	31/	310	319	340
341	342	343	344	345	346	347	348	340	350	351	352	353	354	355	354	357	158	350	340
Paster	rd and	id 8 -	make -	nin. A	fine als			d in the	4 49-1	aibian	iles -	Anterne	0.04	333	341	342	343	364	345
Ple	ase	sen	d me	fur	the	r inf	orm	atio		the	ite	ms l	ha	ve ci	ircle	ed a	bov		300

FIRST CLASS PERMIT NO. 36 PHILA., PA.

ALPHABETICAL LIST

CIRCLE THE NUMBERS OPPOSITE THE NAMES OF THE

٨

- 80 ADC Incorporated-Plugs, jacks, patch cords & jack panels Aerovox Corporation-Solid tantalum ca-90
- pacitors 122 Alford Manufacturing Company-Line
- stretchers 82 Allied Control Company, Inc -- 2 Amp
- relay Alpha Metais Inc. -- Flux-filled solder 88
- 130
- American Electrical Heater Company-Electric soldering irons 67
- American Time Products Inc. Fre-quency standards and fork oscillator quency
- AMP Incorporated-Wire terminations 45 64
- Amperez Electronic Corporation-Trans-
- Amphenol Connector Division Amphenol-Borg Electronics Corp. -- Connectors with Poke Home contacts 78
- 100 Andrew Corporation-Fixed station an-
- 37 Arnold Engineering Company - Iron powder core
- 70 Arnold Magnetics Corp .-- Magnetic amplifie
- Associated Research Inc .-- High potential 146 testing equipment
- Avast Electronics Corp. Electronic component distribution 127

- 48 Ballantine Laboratories Inc.-Calibrator 33 Beckman Berkeley Division - Digital
- voltmeter Beckman Instruments/Helipot Division-Potentiometer catalog 114
- 124 Bendix Corporation Tube Division -Microwave tube
- Bendix Corporation M.C. Jones Elec-tronic Co., Inc.-RF load resistors 44
- Bendix Corporation Pioneer-Central Divi-144 sion-Sonic energy cleaning
- Bork Equipment Division-Ministurized precision potentiometers 50
- Bourns Inc. Trimpot Division-Carbon-film trimmer potentiometers 89
- Braun Tool & Instrument Company Inc. --Beryllium copper component clips 140
- Bruno-New York Industries Corp.- "Pig-Tailoring" machine 151
- Brush Instruments Division of Clevite Corp. -Motion-sensing transducer
- Surnell & Co., Inc .- Toroids, filters 56
- Bussmann Mfg. Division, McGraw-Edison Co.-Fuses & fuseholders 76

C

CBS Electronics, Semiconductor Opera-tions-Switching with CBS MADT 29 trapaintora

ou	R NA	ME .										TITLE.					JAP	1. 1	961
IRM	2.00				***!*	****	*****		*****										
RM	ADD	RESS	-ixe								*****				*****				
TY	OR	TOW	N								ZONE			****	. STA	TE	*****		
1	2	3		5	ð	7	8	9	10	11	12	13	14	15	16	17	18	19	20
11	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
9	42	43	44	45	46	- 47	48	49	50	51	52	53	54	55	56	57	58	59	60
1	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
8.1	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
11	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
2.1	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
11	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
51	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
11	182	183	184	185	186	187	188	189.	190	191	192	193	194	195	196	197	198	199	200
1	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
3.1	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
п.	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
51	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
31	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
1 (302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
15	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
1.1	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
ates	at sol	1.8 m	eche a	nly. A	feer th	-	own le	ttorhea	d dese	ribing	item a	vonted.			361	362	363	364	365
10	-		4 mm m	. S	the	. :		-		44.	140	me I	has	-	incla	d a	have		

- R
- Centralab, The Electronics Div. of Globe-Union Inc.—Switch visualizer, switch layout sheet & catalog 188
 - Chemplast Inc.-TEFLON spaghetti tub-
 - Cinch Manufacturing Company-Minia-53 ture connectors 9
 - Communication Accessories Company-Transformers high voltage 43
 - Clare Company, C. P .- Mercury-wetted relay 51
 - Clevite Transistor Products Semicon-ductor devices 62
 - Clevite Transistor Products Diffused silicon rectifiers 36
 - Computer Measurements Company -Transistorized frequency-period meter 42 Conrac, Inc .- Video monitors
 - Control Switch Division Controls Co. of America-Interlock lighted pushbutton switch
 - 85 Corning Electronic Components Corning Glass Works-Tin exide film remutors
 - Custom Components Inc.-Microwave ab-sorber 152

D

- fiale Electronics Inc. Resistors wire 58 wound. precision
- Daven Co., The-Wire wound resistor networks 105 7
 - Delco Radio-Digital modules
- Delco Radio-Power transistors Design Tool Co.-Automatic production machine 63 128
- Deutsch Company-Hermetic connectors 25
- 134 Dialight Corporation-Pilot lights 35 Dow Corning Corporation-Single crystal
 - ailicon Dumont Laboraturies, Allen B.-Cathode
- 83 ray display tubes

R

- EICO-EICO Electronic Catalog
- Eitel-McCullough, Inc .- Ceramic tube
- Elgin Advance-Crystal-can-size hermeti-cally sealed relays
- 95 ESC Electronics Corp. -- Miniature trans-ponder delay line

F

- Fairebild Controls Corp -Fire control accelerometer
- Fairchild Semiconductor Corp.-Planar structure silicon transitors 65
 - Fluke Mfg. Co., Inc., John-Differential DC voltmeter
 - Freed Transformer Co., Inc.-Constant voltage transformers, magnetic ampli-
- FXR, Inc .- Direct reading frequency n at er

G

- General Electrodynamics Corp. -- Vidi-cons, stam conversion, image conver-sion, or display tubes 12
- General Instrument Corp., Semiconductor Division-Zener diodes 15
- 142 General Products Corp. - Solid-block terminal boards
- General Radio Company Frequency meter and discriminator 41
 - Good-All Electric Mfg. Co.-Capacitors Globe Industries Inc.--8" diameter van-axial blowers
 - Graphic Systems-Visual control board
- Grayhill Inc.-Switches test clips, test jacks & binding posts 94 89 Gremar Mfg. Co., Inc.-- RF connectors
- G-V Controls Inc .-- Thermal relay 155

1R

Hewlett-Packard Company-Oscillos with vertical time axes, plug ins 27 Oscillose apes

72 160

153

69

115

18

11

101

154

- 81
- No. Gers

54

THIS ISS S F

ADVERTISERS FROM WHOM YOU DESIRE FURTHER INFORMATION

- Hill Electronice, Inc.-Electronic filters Howard Industries, Inc.-Fractional H.P.
- Hughes Alreraft Company Microwave Tube Division-Backward-wave cacil-. aton

Employment—Use the handy card below to get more information on the engineering positions described in the "Professional Opportunities" Section which begins on page 213 of ths issue.

JAN. 1961 Postcard valid 8 weeks only. After that use own letterhead describing item wanted.

PROFESSIONAL ENGINEERING OPPORTUNITIES

Please send me further information on the engineering position I have circled below.

501	506	511	516	521
502	507	512	517	522
503	508	513	518	523
504	509	514	519	524
505	510	515	520	525

I Ideal Industries, Inc .-- Custom wire strip-Ders

International Electronic Research Corp. -- Transistor heat dissipator

PROFESSIONAL ENGINEERING

OPPORTUNITIES

from

Circle number of company on card at right om whom you desire further information.

General Electric Electronics Laboratory General Electric Missile & Space Vehicle Department

- Illinois Condenser Company-Electrolytic capacitors
- .
- Instructional Resistance Co. Square trimmer potentiometers Institute of Radio Engineers, The-1961 Instructional Convention and IRE
- Show

- Jennings Radio Mfg. Corp.-Vacuum re-
- Jettron Products Inc .- Magnetron con-JFD Electronics Corp.-Trimmer capac-
- Johnson Co., E. F.-Variable capacitor
- Jones Div., Howard B., Cinch Mfg. Co.--Plugs & sockets

к

- Kay Electric Company-Audio, Video, VHF sweeping oscillator
- Knights Company. The Crystal-con-trolled transistorized oscillator

L

Lel Inc .-- Microwave-mixer preamplifier Lenz Electric Mfg. Co.-High voltage lead wire

м

- Magnetic Shield Division Perfection Mica Co.-Shielded tape data contain-ers.
- Marconi Instruments - FM deviation mete
- Microwave Associates Inc.-Silicon com-puter diores
- Minnesota Mining & Mfg. Co., Mincom Division-Instrumentation recorder/re-producer

N

- Newman Corp., M. M .- Miniature sol-dering iron
- Nothelfer Winding Laboratories, Inc.,-High frequency nlament transformers

TITLE YOUR NAME HOME ADDRESS ZONE STATE CITY or TOWN JAN. 1961 **Subscription Order** I wish a new complimentary subscription to ELECTRONIC INDUSTRIES Company Name: Position Name: Company Address: City: Zone State Specific Products Manufactured YOUR NAME JAN. 1961 TITLE FIRM ADDRESS CITY OR TOWN..... ZONE..... STATE Q AR AQ. 203 204 2.50 251 252 253 254 257 258 283 284 285 302 303 304 305 306 309 310 311 342 343 344 345 346 348 349 350 351 352 353 354 357 358 Pasteard valid 8 weaks only. After that use own letterhead describing item ented. 361 362 363 364

Please send me further information on the items I have circled above.

- 0
- 17 Ohmite Mig. Co .- Tantalum foil capacitors

P

- Pacific Semiconductors, Inc. Silicon transistors 19
- Pacific Semiconductore, Inc.-Silicon di-odes & rectifiers 20
- 73 Pacific Semiconductors, Inc.-Micro-rec-tifiers & fuse ellp rectifiers
- 98 Panoramic Radio Products, Inc.- Spec-trum analyser
- 119 power supply
- Phileo Corp., Lansdale Division-Strip alloyed silicon transistors 10
- PIC Design Corp. Subsidiary of Benrus Watch Company, Inc.—Gears, shafts & other parts & components

- Plastic Capacitors, Inc.-High voltage 136 125
- Polarad Electronics-Polarad Electronica 126
- 46 Potter & Brumfield-Latching relay
- Power Designs Inc .- DC power supply 117
- Powertron Ultrasonics Corp.-Ultrasonic cleaning equipment 141
- PRD Electronics, Inc.-Universal probe carriage slotted lines 81

0

Quan-Tech Laboratories - Transistorized 139 power supplies

R

- 1 Radio Materials Company-Ceramic disc capacitors
- Reeves-Hoffman-Precision crystal cecil-lator

S

- International des Composants Salon Salon International Symp Electronique — International Symp sium on Semiconductor Devices Sarkes Tarzian, Inc.—Silicon rectifier
- Scientific-Atlanta, Inc. Antenna pat-tern recorders
- Sealectro Corporation-TEFLON terminale
- Sekonic Inc .- Meters for all requiremonte
- Bockley Transistor Unit of Clevite Transistor—4-layer diode SIFCO Metachemical, Inc. Selective plating equipment
- Spectrol Electronics Corp. Trimming potentiometers
- portune electric Company-Disc ceramic capacitors Sprague Electric Company-Germanium Micro-Alloy diffuned-base transistors
- Stackpole Carbon Co .-- Fixed remistors
- Stanpat Co.-Electronic printed circuit
- Stevens Manufacturing Co., Inc .-- Ther-
- Stewart Engineering Corp. Backward wave oscillator Struthers-Dun, Inc .- 10 ampere relay
- Superior Tube-Glass sealing alloys for semiconductors
- Syntronic Instruments, Inc.-Deflection yoke coils

T

- Taylor Fibre Co .- Laminated plastics
- Tektronix, Inc.-Oscilloscopes
- Texas Instruments-Silicon transistors
- Times Wire & Cable-Data processing and transmission cable Tinsley Laboratories, Inc.-Corning glass
- filters Trak Microwave Corp.-Microwave oscil-lator cavities
- Transistron Electronic Corp. Silicon rectifier selection guide Tung-Soi Electric Inc. Germanium puwer transistore

U

16 United Van Lines - Industrial surface transportation

v

Victoreen-Electron tube

w

- Weldmatic Division/Unitek Electronic welding equipment Waveline Inc.-Waveguide filters Weckmeer Company, The-NYLON cable
- clips
- Westinghouse Electric Corp., Semicon-ductor Dept.-Power transistors White Industrial Division, S. S.-Indus-trial air abrasive units

MODEL VC5G

NEW JED MARC SEALCAP MODEL MC608 1.0-60 PF

INCREASE IN RANGE

NO INCREASE IN SIZE!

Now you can cut precious inches and ounces from your assemblies with space-saving, weight-saving MAX-C Sealcaps.

300

The surprising increase in range of the Max C trimmer capacitor is obtained by embedding the electrode band in the glass cylinder. This design provides the thin dielectric required for a large capacitance range while retaining the ruggedness and mechanical strength of a heavy wall glass tube.

Included in the Max C design is the Sealcap construction which provides the additional stability safeguard of a completely sealed interior. tubular trimmers: Working voltage of 1000 VDC, Insulation Resistance of 10⁶ megohms, Q of 500 at 1MC, operating temperature range of -55°C to +125°C, and high stability. It meets or exceeds the applicable performance and environmental requirements of Mil-C-14409A.

The Max C retains all the advantages of glass

MINIATURE TRIMMER SEALCAP®

Escape from the design limitations of conventional trimmers by specifying JFD MAX-C Sealcaps for your current and projected circuitry. Write today for the complete catalog describing MAX-C Sealcaps and other JFD precision electronic components. Other JFD components are...

FOR PANEL MOUNTS AND PRINTED CIRCUIT MOUNTING

	MINIAT	URE PA	NEL MOUN	T MAX-C SEAL	CAP SERIES	SEAL CAP	MINIATURE
	Model	-	Max. (99)	Distance Beyond Panel	Maximum Diumster	TRIMMER CAPACITORS GLASS OR QUARTZ DIRLECTRIC DISTRIBUTED CONSTANT DRIAY LIMES	TRIMMER CAPACITORS
	MC401 MC403	1.0	14.0 28.0	29/64° 11/16°	8/16" 3/16"	PILTERS LC TUNERS	METALIZED INDUCTORS
	MC404 MC406 MC409	1.0 1.0 1.0	42.0 48.0 90.0	29/32" 1 8/32" 1 3/4"	8/16" 8/16" 8/16"	Detailed data shoets on any of these con J.F.D. line are yours for the asking. Ou for consultation on your perticular applic	sponsing selected from the estensive r engineering staff is at your service atom.
-	-				Pion	sers in electronics since 1929	
	Г		J	FD ELE	CTR	ONICS CORPO	RATION
-					6101 Sixte	enth Avenue, Brooklyn 4, New York	
•		ш	WES 7311 Van Nu	TERN REGIONAL DIVIS	ION 6, California	JFD CANADA LTD 51 McCormack Street, Toronto, Onterio, Canada	JFD INTERNATIONAL 15 Moore Street, New York, N.Y.
5	1.40	TUR	Str. C.	DERES AN	同時用品	the stand of the second	The sector House of

New Products

VARIABLE ATTENUATORS

Two new digital readout precision variable attenuators cover X and C Band. Operating over the full waveguide frequency range, they feature a digital counter that reads directly in decibels and tenths of decibels. No

interpolations are needed. Figures can be read at a glance. Units are constructed with a moveable "lossy dielectric" ridge that provides 0 to 60 db attenuation with flat freq. response. Ridge is driven by a springloaded precision cam and the digital counter is geared directly to the cam shaft, insuring freedom from backlash. The max. calibration error is $\pm 2\%$ or 0.2 db. whichever is greater to 50 db; $\pm 3\%$ from 50 to 60 db. Max. attenuation is approx. 65 db. Model 780 covers 8.2 to 12.4 KMC; Model 783, covers 3.95 to 5.8 KMC. Both have max. vsws of 1.2. Narda Microwave Corp., 118-160 Herricks Rd., Mineola, L. I., N. Y. Circle 267 on Inquiry Card

DC POWER SUPPLY

Regulated dc power supply rated at 0-36 v. and 0-20 a. Model CR-36-20, is regulated to 0.01% and requires 7 in. of panel height. Electrical features include ± 0.01% load regulation. 0.003 v. peak-to-peak ripple, 40 #sec recovery time from a full load step, 5 parts

per 10,000 per 24-hr. day stability, and electronic current-limiting. The finish is 2-tone gray enamel. Meters are standard equipment. Weight is approximately 70 lbs. NJE Corp., 20 Boright Ave., Kenilworth, N. J. Circle 268 on Inquiry Card

Circle 149 on Inquiry Card

ELECTRONIC INDUSTRIES . Jenuary 1961

142

DU MONT CHARACTER DISPLAY TUBES...

DU MONT CHARACTER DISPLAY TUBES ARE USED IN SUCH APPLICATIONS AS:

- Target display and identification
- · Air traffic control
- Reproduction of info from coded magnetic tape
- Harbor traffic control
- · and many others

Write for complete technical details Industrial Tubes Sales

DU MONT

enhance any system requiring versatility of rapidly formed characters for readout. A unique Du Mont CRT gun design enables alpha-numeric characters to be formed electrostatically in any size from %" to over 1", and positioned electromagnetically anywhere on the screen — on any size screen from 5" to 19". Other background information, such as a separate radar display for target tracking, can be shown simultaneously through time sharing devices.

Du Mont tubes short-cut expensive system maintenance problems by permitting replacement of the *display* portion of a system *alone* – eliminating the necessity of replacing expensive integrated tube and character generator. For versatility, clarity and economy – look to Du Mont for character readout.

Available now at attractive prices!

ALLEN B. DU MONT LABORATORIES, Clifton, N. J.

Circle 83 on Inquiry Card

DIVISIONS OF

High selectivity, attenuation and precision matching of . . .

These two highly stable, precision-matched Hill Electronic filters permit fast, exceptionally accurate measurement of inter-modulation distortion in communications systems. A band elimination filter places a narrow, deep notch in the white noise being passed through the equipment under test. Distortion generated in the notch is then isolated for measurement by the narrow band filter.

The high degree of selectivity and attenuation of these filters, and the excellent alignment of one within the other are demonstrated in the actual operational curves shown above. Used together, these filters provide 80 db attenuation from 6 to 252 kc.

This is a typical example of Hill's creative engineering that develops outstanding solutions to customers' specific problems involving LC and crystal control filters as well as precision frequency sources and other crystal devices.

> WRITE FOR BULLETINS 34800/900 They contain details and specifications concerning the filters described above.

HILL ELECTRONICS, INC.

MECHANICSBURG, PENNSYLVANIA

RESISTOR COMPOSITIONS

New line of resistor compositions offer varied resistance values. Compositions are in 3 resistance values (500, 3,500, 10,000 ohms/sq./mil thick film) which can be blended to obtain intermediate values. Applied to cer-

amic dielectric bases by ordinary dip. brush, or stencil screen techniques, the composition is then fired in a normal atmosphere to obtain a durable surface. Temp. coefficient, ±350 ppm°C from -55°C to +125°C; voltage coefficient, less than 0.02%/v. neg.; humidity exposure, ±1% change after 250 hrs. @ 95% relative humidity (unprotected film); overload. $\pm 0.5\%$ change with standard short time overload; temp cycling, $\pm 1\%$ change after (5 cyclings from -55°C to ± 125 °C); load life, $\pm 2\%$ change after 1000 hrs. at 70 °C at full load. E. I. Du Pont de Nemours & Co., Public Relations Dept., Wilmington, Del.

Circle 269 on Inquiry Card

TOGGLE SWITCH

New Universal swivel type toggle switch, the T203, can be actuated by applying a force on the toggle in any direction. Features include: A toggle throw of 20" in any direction, moisture proof construction, 25,000 operations minimum at rated load, anodized

toggle and casing. Also features adapter suitable for engraving. Ratings are 2-circuit at 10 a resistive and 5 a inductive or 3 a lamp, 28 vdc. Control Switch Div., Controls Company of America, Folcroft, Pa. Circle 270 on Inquiry Card

Circle 84 on Inquiry Card

COMPUTERS AND OTHER ELECTRONIC INSTRUMENTS demand resistors which give predictable performance

in a small space and high ambient temperatures. This is a good description of Corning tin oxide film resistors, which are now competitive in price with other makes.

Tin oxide and glass are among the most stable materials. They are also low in cost.

Couple these materials with exacting methods of manufacture, as we have done, and you have low-cost resistors meeting the pinching specifications required for computers and similar devices.

You have resistors with excellent reactive properties. With a shelf life of 0.1 to 0.2% per year. With noise levels lower than 0.1 microvolt per volt. And with typical values like these:

	- 12 -					ANT NOT		-	
							1		
TYPE	DESCRIPTION	CORNING MODEL	WATTAGE	RES	(ohms)	тс	LOAD LIFE	OVERLOAD	MOISTURE RESISTANCE
NF	Glass ENCAP- SULATED MIL-R-10509C, Char. B	NF60 NF65	1/8 1/4	100 100	100K 348K	150ppm/°C. -55 +150⁼C.	0.3%	0.03%	0.2% (Char. B)
N EPOXY	MIL-R-10509C, Char. B	N60 N65 N70	1/8 1/4 1/2	10 10 10	133K 499K 1Meg	150ppm/°C. -55 +105⁼C.	0.5%	0.03%	0.5% (Char. B.)
N	MIL-R-10509B, Char. X	N12 N20 N25 N30	1/4 1/2 1 2	100 10 10 30	133K 500K 1.5Meg 4.12Meg	150ppm/°C. -55 +105⁼C.	0.35%	0.1%	0.15% (Char. X)
С	Lowest cost film resistor; silicone insulation MIL-R-11C	C20 C32 C42	¹ / ₂ 1 2	51 51 10	150K 470K 1.4Meg	150ppm/°C. -55 +125⁼C.	1.5%	0.2%	0.3%
		Note: Noise	level for all n	nodels	s less than (D.1 uv/v of applied s	ignal.		
PERCENT RATED LOAD			NEPOXV 120	140		For quantities of I distributor service For data sheets on or C resistors, wri 46 High St., Brac CORNING CORNING	ess than f d by Eric Corning te CORN ford. Pa ELECTI a GLASS V	000, contact ti e Distributor Type NF, N, N ING GLASS RONIC COI VORKS, BRADI	he nearest Division. 4-EPOXY WORKS, WORKS, MPONENTS FORD, PA.

Circle 85 on Inquiry Card

Circle 116 on Inquiry Card

City

Simte.

AMPLIFIER KLYSTRON

Lightweight, air-cooled and compact, new VA 834B amplifier klystron gives one kw of Cw power tunable from 4.4 to 5.0 KMC. For transportable systems, air cooling and permanent magnet focusing of the power

amplifier tube allows savings weight. Heat exchangers, magnet power supplies and their control cir-Operating procuits eliminated. cedures are simplified by elimination of focusing and coupling adjustments. It is suited to tropospheric forward scatter communications and radar transmitters. Max. weight, including magnet, is 60 lbs. Max. dimen-sions are 12 x 13 x 15 ½ in. The tube tunes over a range of 600 MC. Synchronously tuned at 4.4 KMC, a gain of 57 db is obtained. Tuned for wideband use, a bandwidth of 12 MC is obtained. Tube Div., Varian Assoc., 611 Hansen Way, Palo Alto. Calif. Circle 259 on Inquiry Card

TRAY LOADER

Model TL-1 tray loader automatically takes empty specially designed trays or racks from a magazine, hoper feeds them with previously straightened components, and stacks the loaded trays into another portable magazine for transfer to coating, baking or other processing operations. Each tray holds 20 to 50 components

and each magazine holds 40 trays, making it possible to handle 800 to 2,000 components as a complete unit, depending upon the size of the component. Conforming Matrix Corp., 474 Toledo Factories Bldg., Toledo 2, Ohio.

Circle 260 on Inquiry Cerd

ELECTRONIC INDUSTRIES . Jenuary 1961

166

When dependability counts! In Les Angeles, Calif.: 2343 Septensk Ave.

In Chicago, III.: ALPHALOT Corp., 2250 S. Lamber St. Other ALPHA products : Core and Solid Wire Soldens * Fluxes * High Pusity Metals

Circle 88 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

ater St. Jersey City 4, N. J.

MOST COMPLETE LINE!

Gremar makes more series of RF connectors and Gremar makes more series of RF connectors and components than are available from any other source. and then some! Gremar exclusives include Ked Line miniature RF connectors for use with MIL-type sub-miniature coaxial cables; power dividers; impedance transformers ... and others.

MOST COMPLETE STOCKS!

Gremar always has more than 750,000 assembled RF connectors of more than 2000 types on the shelf ... plus over 8,000,000 component parts always ready for speedy assembly of standard connectors or quick adaptation to your special requirements.

MOST COMPLETE SERVICE!

Because Gremar connectronics * concentrates engineering, production and

quality control on RF connectors and components only, you can depend on Gremar to solve your design, delivery and reliability problems quickest. Try us and see. Address your inquiry to:

e literature

Circle 89 on Inquiry Card

CAPACIBILITY*

FOR MINIMUM SIZE ... MAXIMUM RELIABILITY

SOLID TANTALUM CAPACITORS

AEROTAN TECHNICAL FACTS

Aerotan capacitors are applicable in DC blocking, AC coupling, bypass and filtering, integration, storage phasing and timing applications.

Manufactured in uninsulated case styles (ST12) and insulated cases (ST13).

Designed for continuous operation over temperature range of -80° C to $+125^{\circ}$ C in voltage ratings shown below:

Rated Vallage	+65°C	+85°C	+ 125°C		
e voc	é VDC	6 VDC	4 VDC		
10 VDC	10 VDC	10 VDC	2 ADC		
15 VDC	15 VDC	13 VDC	10 VDC		
20 VDC	20 VDC	17 VDC	13 VDC		
35 VDC	35 VDC	28 VDC	20 VDC		

No compromise is necessary here—now, you can assure maximum reliability without bulk by specifying Aerovox Aerotan solid tantalum capacitors.

Aerotan capacitors are housed in hermetically sealed metal cases and feature a semiconductor electrolyte assuring a completely dry assembly with absolute freedom form corrosion or leakage.

For all those space- and weight-saving needs where only the best in reliability will do—specify Aerovox Aerotan, and be sure.

Write for complete technical information

CAPACI-BILITY

An Aerovox characteristic. Capability to design, develop, and manufacture capacitors to best meet customers' requirements.

TRAVELING WAVE TUBE

Type 55340 Traveling Wave Tube is guaranteed for a min. life of 6000 hrs. It is a broad band amplifier from 3800 to 4200 MC. It is suited for unattended microwave stations. It can deliver a saturated power output of 8w. Low level gain at 4200 MC, with

the output power at 100 mw, is better than 37 db. With the output power at 3 w, gain is better than 35 db. Noise figure is less than 30 db. The wave propagating structure is of the helical type. Electron beam focusing is with a permanent, uniform field magnet. The mount couples to standard rectangular waveguide WR 229. Tube is free air, convection cooled. It operates at 1100 v, which simplifies power supply problems. Amperex Electronic Corp., Microwave Tube Dept., 230 Duffy Ave., Hicksville, L. I., N. Y. Circle 271 on Inquiry Card

MINIATURE BLOWER

A new miniature dc blower, smaller in diameter than a 50¢ piece, is designed to move 10 cfm of air against 0.3 in. H₋O back-pressure. This tube axial blower is $1-\frac{1}{16}$ in. in diameter by 2- $\frac{3}{16}$ in. long and operates on 27 vdc. Lower voltages may be used with

different motor windings. Unit weighs 3.5 oz. Unit is typically used for spot cooling of critical components in a circuit. Globe Industries, Inc., 1784 Stanley Ave., Dayton 4, Ohio. Circle 272 on Inquiry Card

Circle 90 on Inquiry Card

4-STATION INTERLOCK LIGHTED PUSHBUTTON SWITCH

Always One Station Committed. Can Not Commit 2 Stations Simultaneously. Front Panel Lamp Replacement.

This new Control Switch concept in multi-station interlocking switches features a unique "CHEAT-PROOF" design. One station is always committed. It is impossible to tease the system into an "all stations up" position. Actuating any of the four lighted pushbuttons causes the previously depressed button to return to normal at the exact point the system is committed to an alternate station. A lockout system makes it impossible to commit two stations simultaneously.

The Pushbuttons are individually illuminated with standard MS 25237 type lamps which are easily replaced from the front. Buttons are available in six colors and can be engraved.

The new Control Switch Interlock has been designed to permit various other station combinations. All units are engineered to withstand unusually high shock and vibration conditions. CHARACTERISTICS

Station Circuit D.P.D.T. Electrical Ratings 5 amps @ 125-250 VAC 5 amps Res. @ 30 VDC 2.5 amps Ind. @ 30 VDC Switches per MS 25085-1 Lamps (not furnished) MS 25237 Type Weight 9 oz. max. Size 9 oz. max. panel surface $3^3/4^{''} x \ 2^{''}$ depth behind panel 11^{0}_{10}

ELECTROSNAP . HETHERINGTON

CONTROLS COMPANY OF AMERICA 1408 Deimar Drive + Polcroft, Pennsylvania TELEPHONE Ludiew 3-2100 - TWX SHRN-H-502

Manufacturers of a lull line of switches, centrols and indicators for all military and commercial applications. All standard units stocked for immediate delivery by leading electronic parts Distributors.

Circle 91 on Inquiry Card

Another "impossible" job done by the Airbrasive"...

... Micromodule circuits)

abrading - cutting - deburring - stripping - drilling - cleaning - scribing

Key to fabrication in RCA Basic Micromodule Laboratory...The Airbrasive cuts and adjusts micro-miniaturized components

S. S. White's Industrial Airbrasive is the key to rapid construction of Micromodules by the new RCA Basic Micromodule Laboratory.

Faster and more reliable and flexible than photo-etching methods, the Airbrasive forms circuits and adjusts resistors and capacitors by abrading away controlled portions of deposited conducting surfaces and terminations.

Every day the Airbrasive is solving problems that once appeared impossible. Its precise stream of superfine abrasive particles, gaspropelled at supersonic speeds, quickly slices or abrades a wide variety of hard brittle materials...fragile crystals, ceramics, thin films, tungsten... and others. No shock, no heat damage. There is no contact between the tool and the work.

Note this too. The Airbrasive is not expensive... for under approximately \$1.000 you can set up your own unit.

Send us samples of your "impossible" jobs and we will test them for you at no cost. SEND FOR BULLETIN 6006 ... complete information.

S. S. White Industrial Division Dept. 19A, 10 East 40th Street, New York 16, N. Y.

MULTIPLIER

New dual electronic multiplier, Model 3735, offers single quadrant multiplication and squaring with accuracies of 0.01%. Four quadrant multiplication accuracy is 0.05% full scale. Units available in 2, 4 or 6

channels. Compatible with all analog computers, it can also be used our analog data and process control systems. Features include built-in division and square-root operation. Specs are: (Input) 4 independent voltages. X_{i} , Y_{i} , X_{τ} and Y_{i} in the range of ± 100 v. (Output) 2 independent products, $-0.01X_1Y_1$ and $-0.01X_1Y_2$, in the range of $\pm 100 \text{ v}$ at 10 ma max. load current. (Drift) less than 100 my over 8 hrs. (Noise) less than 100 mv, peak. (Phase shift) less than 1° at 100 CPS. Zeroerror, with one variable = 0 and other ranging over ±100 v, max. error in product is 40 mv. Donner Scientific Co., a subsidiary of Systron-Donner Corp., 888 Galindo St., Concord, Calif.

Circle 273 on Inquiry Card

ELECTROLYTIC CAPACITORS

Miniaturized tubular electronic capacitors, Type BMT, in plastic cases, are dependable and have long life. Ranges available for all transistor applications. Dia., 3/16 in. up to % in. Capacity, 1 mfd to 2,000 mfd.. Voltage, 3 v. to 50 v., inclusive. The

capacitors have an operating range of -30° to +65°C. The units have low impedence at +30°C and low leakage throughout the entire temp. range. Illinois Condenser Co., 1616 N. Throop St., Chicago 22, Ill. Circle 274 on Inquiry Card

New Products

SEQUENCE RELAY

Relay provides thousands of different control sequences. Similar to the Dunco 219 Frame general purpose industrial control relay and 1-3% in. higher, the new Frame 211 sequence type features a double cam movement

on each step. The cam rotates half a step when coil is energized and completes the step when deenergized. Make before break between 2 ST contacts results when one is adjusted to "make" when energized and the other adjusted to "break" when the coil is deenergized. Double-pole, single or double-throw contact types available. 8-tooth ratchets are standard-6-tooth ratchets available. Contacts are rated 5 a at 115 vac and 5 a at 24 vdc or 0.5 a at 115 vdc. They will carry 150% of rated loads. Max. amb. is 40°C and the relays have a life of 10 million operations, no load. Struthers-Dunn, Pitman, N. J.

Circle 275 on Inquiry Card

PHOTOELECTRIC RELAY

A rugged transistorized photoelectric relay, developed for industrial application, has a sturdy NEMA 12 enclosure to prevent dirt and vapors from entering the unit. A plug-in transistor circuitry utilizes Schmitt trigger to detect small changes in light level which operates a sealed

double pole- double throw relay. A silicon power supply is used. Operation is to 125°F. An encapsulator silicon solar cell is supplied with 8° of cable. Design Engineers Inc., 224 N. Desplaines St., Chicago 6, Ill. Circle 276 on Inquiry Card

Write for complete information on AMCI Line Stretchers

Circle 122 on Inquiry Card

now...analyze both SSB & AM transmitters & receivers faster, with uniform sensitivity over entire 100 cps-40 mc range AT MINIMUM COST

GREATER PREQUENCY RANGE New Optional REC-1

Range Converter extends SSB-3a 2 mc-40 mc range

down to 100 cps . . . speeds distortion analysis of receiver AF and IF autputs, transmitter bass band.

erator frequencies, eoch selectable from 100 cps-10

kc • Resettable to 3 significant digits • Accuracy

± 1% • Output Levels: each adjustable from 2 to

4 volts into matched 600 chm load • Output DB Meter • Spurious, hum, etc., less than —60 db. • 100 db precision attenuation in 1 db steps.

FASTER-NEW TUNING HEAD FEATURES RAPID "SIGNAL

ALL THESE NEW FEATURES PLUS A SENSITIVE SPECTRUM ANALYZER

Panaramic's Model SB-12aS Panalyzor. Pre-set sweep

widths of 150, 500, 2000, 10,000 and 30,000 cps with

widths of 150, 500, 2000, 10,000 and 30,000 cps with automatic optimum resolution for fast, easy opera-tion. Continuously variable sweep width up to 100 kc for additional flexibility. 60 db dynamic range, 60 cps hum sidebands measurable to -60 db. High

order sweep stability thru AFC network. Precisely calibrated lin & log amplitude cales. Standard 5"

CRT with camera mount besel. Two auxiliary outputs for chart recorder or large screen CRT.

2 gen

NEW 2-TONE AF GENERATOR MODEL TTG-2

SEARCH" PLUS PRECISE FINE TUNING.

Panoramic adds important NEW design features to the time-proven Model SSB-3! Now, in one convenient, compact package, you get the comprehensive unit you need to set up, adjust, monitor and trouble shoot SSB and AM transmitters and receivers.

TWO TONE TEST

Fixed sweep width 2000 cps. Full scale log sideband tones 1.5 kc and 2.1 kc from carrier (not thown). Odd order 1. M. distor-tion products down 37 db.

HUM TEST

174

Indication of one sideband in above photo increased 20 db. Sweep width set to 150 cpr reveals hum sidebands down 53 db and 40 db.

"See Panoramic Analyzer No. 3 describing testing techniques, etc., for single sidebands. A copy is yours for the asking.

MONITORING SYSTEM

Model 1000-7 Servo-valve Monitoring System consists of 3 pressure transducers mounted on a thin manifold block which fits between the servo-valve being monitored and the hydraulic system manifold. A 3000

psi differential transducer gives constant readout of pressure difference between the 2 control ports of the servo-valve. A 3000 and a 300 psig transducer gives constant indications at the supply and return ports. Accuracy is the same as for the series SP2 pressure transducers. Typical specs.: Non-linearity and hysteresis combined, less than 0.25% of full scale; thermal zero and sensitivity drift each less than 0.015% of full scale/"F from -65"F to +275"F: combined errors from all sources less than 0.5% of full scale. Standard Controls, Inc., 1130 Poplar Place, Seattle 44, Wash.

Circle 277 on Inquiry Card

VOLTAGE REGULATOR TUBES

Two new glow discharge type voltage regulator tubes, Types VX62 and VX64 are enclosed in standard T-3 glass envelopes. Tubes provide a miniature and inexpensive means of regulating at 95 and 150 v. respectively with current ranges from 100 µa to 50 ma. A typical application is the regulation of the screen voltage

of a pentode whic's employs high plate voltage. Operation is from -55° to 75°C with min. life over 1000 hrs at recommended operating current. The Victoreen Instrument Co., 5806 Hough Ave., Cleveland 3, Ohio.

Circle 278 on Inquiry Card

Circle 98 on Inquiry Card

Write, wire, phone RIGHT NOW for technical bulletin and mices on the new SSB-Ja, Send for our new CATALOG DI-GEST and east to be part on our regular mailing list for The FANORAMIC ANALYZER featuring application data. PANORAMIC RADIO

PRODUCTS, INC. 540 Se. Fullos Ave., Mount Verson, N. Y. Phone: OWens 9-4400 TWX: MT-V-NY-5229 Cables: Ponoramic, Mount Vernon N. Y. State

why compromise

your specifications to use a "stock item" meter when SEKONIC can give you exactly what you need at "stock item" economy prices?

It costs you nothing to get the facts about Sekonic's "Made-to-your-order" meter facilities... and the economies involved can be substantial.

Sekonic Meters are now being purchased by major meter users (names upon request) who require large quantities on tight delivery schedules. From simple A-C amperages and D-C voltages to complex. acceleration-proof radiation counters. Sekonic's experience in the fulfillment of specific meter requirements may be of considerable help to you.

Unique component and assembly quality control procedures assure you of an unsurpassed in-use reliability.

Specifications with your delivery requirements will receive immediate attention.

Write for your FREE copy of "Sekonic Meters ... A Story of Precision."

175

EDGE CONNECTOR

For printed circuit card applications in which frequent jumpering is necessary, or where many circuitry changes must be made, a 1-piece edge connector accommodates easy-to-insert, easy-to-remove taper pins. The

AMP Taper-in will mount all .070-.055 PC cards. The receptacles will receive AMP's "Series 53" taper pin line, including both pre-insulated and formed types. Connector permits 500 insertions and removals of the printed circuit card without damage to the foil pads, and without critical wear on the gold plating on the contacts. It has 22 contact positions, with contacts commoned for multiple-wire use. Contacts are of phosphor bronze, gold over nickel. Block is ester alkyd, glass-filled. Length: 4.281, with a .156 center-to-center spacing laterally between contacts. AMP Inc., Harrisburg. Pa.

Circle 282 on Inquiry Card

POWER SUPPLY

Model 520A power supply. a compact 25 adc power supply is continuously variable (with no range switching) from 0 to 36 v. at any current from 0 to 25 a. A front panel current limit control permits a continuous adjustment of the max. output current, providing max, protection for any load device. Regulation for line and load combined is less than 0.5% of max. output. Ripple is less than 1%, and there is no voltage overshoot on

AMPLIFIER

New transistorized voltage comparison amplifier for critical go/nogo applications. Model 51 provides a precise, fast and reliable way to determine if an input voltage or series of input voltages is within preset

limits. It uses colored bulbs for visual indication and relays to operate external warning and control devices. Both indications occur within 90 msec after applying the voltage. It can also be used as a resistance comparator. The 51 has a sensitivity in excess of 500 µv and a voltage range of ± 50 v (up to 100 v as long as limit-to-input differential does not exceed 25 v). The 51 is a component of the NLS Model 50, which has internal, manual limit setting. The Model 50 is limited to uses where limits do not have to be changed more than once every several min. Non-Linear Systems, Inc., Del Mar, Calif.

Circle 284 on Inquiry Card

INDICATOR LIGHTS

Ultra-miniature indicator lights, Data Cap Series No. 250, offer two new features: a clear lamp cartridge without a legend, and a lens cap with a colored cylindrical lens on which a legend may be hot-stamped. Should the cartridge burn out it may be quickly replaced. Cap and cartridge are assembled with Lampholder No. 7538 to make the complete unit. Lamp cartridge plugs into the base. and the lens cap screws onto the bushing. Lens is spring mounted and

RESISTANCE BRIDGE

Militarized precision Resistance Bridge, ZM-40 () MPM, is self contained. It is for measuring resistors or for other similar resistance measurements. It can be used as a limit bridge to compare resistors against

an internal or external standard, and indicate on a calibrated meter the deviation in percent, or it can be used as a null balance bridge to match pairs of resistors. It will operate on 115 v $\pm 10\%$ with a line frequency anywhere from 50 to 420 CPS. Power drain is approx. 25 w. Unit will measure from 1 ohm to 2 megohms with accuracy better than 0.25%. It will operate from -50°C to +65°C in 100% humidity environments. It meets MIL-T-945 for shock and vibration, and MIL-E-5272 for sand, dust, and rain. American Electronic Laboratories, Inc., 121 N. Seventh St., Phila. 6, Pa.

Circle 286 on Inquiry Card

DRIVE AMPLIFIER

Model 910 is a transistorized amplifier to drive dc torque motors. It will deliver 2 adc differential current into a 2-terminal Torquer. Input into the amplifier can be either dc or 400 cps depending on the type selected. Gain is 200 mv per 1 adc output current. Current feedback has been incorporated to minimize the effects of torquer inductance on servo response. Higher power and higher gain amplifiers available. Unit op-

turn-on or turn-off. The line input is 105-125 vac, 60 CPS. Size is 7 x 16% x 19 in. Other features: Remote programming and sensing. Harrison Laboratories, Inc., 45 Industrial Rd., Berkeley Heights, N. J.

Circle 283 on Inquiry Card

rotatable. Lens is 0.425 in. in dia. and accommodates up to 3 digits, symbols or letters. Seven lens colors available. Size is approx. 1% in length and % in dia. Dialight Corp., 60 Stewart Ave., Brooklyn 37, N. Y. Circle 285 on Inquiry Card

erates from standard 28 vdc power and uses 400 CPS for reference. Operating temp -55°C to 71°C. Meets MIL-E-5272 environmentals. Control Technology Co., Inc., 1186 Broadway, N. Y. 1, N. Y.

Circle 287 on Inquiry Card

Products ... for the Electronic Industries

FREQUENCY DOUBLER

Freq. doubler sets for low cost signal generation to 40 KMC. Models 938A and 940A, operate on harmonic generation principle and may be driven by klystrons, sweep oscillators or signal generators. Model 938A

supplies power from 18 to 26.5 KMC when driven by a 9 to 13.25 KMC source: Model 940A from 26.5 to 40 KMC when driven by a 13.25 to 20 KMC source. Both contain a power monitor and a 100 db attenuator for accurate power setting. Output power is 0.5 to 1 mw when driven by the -hp- 626A or 628A signal generators. Input is 10 mw (design center) and 200 mw (max.) Output monitor accuracy is ± 1 db to ± 2 db. Output attenuator accuracy is +2% of reading or 0.2 db, whichever greater. Attenuator range is 100 db. Hewlett-Packard Co., 1501 Page Mill Rd., Palo Alto, Calif.

Circle 288 on Inquiry Card

SEMICONDUCTOR TESTER

Model TT8-100, semiconductor tester for evaluating and inspecting, transistors, zener diodes, rectifiers, and tunnel diodes. It features a current limited source to prevent damage to any semiconductor under test. Scope calibration voltages are 5 v for vertical and 80 v for horizontal. It will test transistors for breakdown voltage; gain, over dynamic range; voltage and current saturation characteristics; and leakage current. Zener diodes tested for breakdown voltage; dynamic impedance, at any current: drift against temp. or current. Rec-

tifiers tested for leakage and forward current characteristics up to 1 a. Tunnel diode tested for characteristics of tunneling current; valley current and forward voltage. PRL, Inc., Rahway, New Jersey. Circle 289 on Inquiry Card

LATCHING RELAY

Dual-coil, micro-miniature latching relay having its smallest dimension perpendicular to the plane of its mounting surface. The relay, the FL, lies flat on a printed circuit board, its max, height is 0.485 in. Coils can be

supplied with up to 10,000 ohms resistance per coil at +25 °C. DPDT bifurcated, gold-flashed silver-magnesium-nickel contacts are rated at 3 resistive. Relays withstand 100 gs a at 30 vdc or 2 a at 115 v. 60 CPS shock, 400 gs linear acceleration and vibration of 0.195 in. excursion from 10 to 55 CPS and 30 gs from 55 to 2500 CPS with no contact openings in either armature position. Operates on a 3 msec. pulse at nom. voltage @ +25°C. It meets MIL-R-25018, MIL-R-5757C, and ABMA - PD - R - 187. Potter & Brumfield, Div., American Machine & Foundry Co., Princeton, Ind.

Circle 290 on Inquiry Card

ANGLE INDICATOR

The (CO2721027) high - accuracy precise angle indicator provides numerical indication of the angular position of any mechanical device to which remote 2-speed (25:1) dual transmitters can be coupled. Using double-speed transmission reduces errors inherent in synchros by a factor of 25. Instrument can be supplied having dual-sensor speed ratios from 18:1 to 75:1. A remote control feature enables unit to be operated as either a 2-speed or single-speed device. Specs (Single-speed and 2speed): Accuracy: ± 6 mi; ± 15 sec.

Repeatability: ±1.2 min.; 12 sec. Size: $9 \cdot \frac{1}{2} \times 5\frac{1}{4} \times 13$ in. Slewing Speed: 180° in 9 sec. Power: 115 v., 400 CPS, 1 Φ , 30 va. Weight: $9 \cdot \frac{1}{2}$ lbs. Kearfott Div., General Precision Inc., 1150 McBride Ave., Little Falls, N. J. Circle 291 on Inquiry Card

VOLTMETER

New laboratory standard voltmeter for measurement of voltages or calibration of ac voltmeters from 10 MC to 1000 MC at voltages of 0.5 v. to 300 v. Model 390 NBS A-T features stability of less than 1% deviation

from NBS calibration for at least one year. It consists of an adjustable waveguide below - cutoff attenuator feeding a UHF vacuum thermocouple. Dc output from thermocouple is measured on an external millivoltmeter. The unknown signal is connected to the input electrode, and the micrometer setting is adjusted to produce a standard reading on the millivoltmeter. The voltage is then obtained from the calibration chart which shows the input voltage for all settings of the micrometer at the frequency of measurement. Ballantine Labs, Inc., Boonton, N. J.

Circle 292 on Inquiry Card

MODULAR AMPLIFIERS

Type VA-P-101, a plug-in video distribution amplifier is for systems requiring a simple 1 input, 1 output unity gain unit. Eight amplifiers plug into a shelf 8% in. high which mounts in a standard relay rack. Filament and bias voltage is provided by the shelf and the only other power which must be supplied is 117 vac and reg-ulated 28.5 vdc. The amplifiers may be used individually, or any number of units up to 8 may be "multed" together so as to provide a max. of 8 outputs from 1 input. Specs: Nom. input level, 1 v. Bandwidth is a flat

 \pm 2% to at least 8.0 MC. 60 CPS sq. wv. tilt is 1% max. Differential gain at 1 v. out is 0.7% max. Differential phase at 1 v. out is 0.35° max. Approx. B+ drain is 50 ma. The Daven Co., Livingston, N. J.

Circle 293 on Inquiry Card

MICROWAVE FILTER

Four-channel filter, Model 1201, with built-in video detectors covers a wide input dynamic range. Each channel has a bandpass of 2600 to 3200 MC at a max. input vswr of 2:1. Video detector in each channel has a

tangential sensitivity of -40 dbm (min.). Dynamic range is obtained with two Type 1N833 silicon diode detectors in parallel, one operated at full sensitivity and the other through a 14.5 db coupler. Dimensions (excluding connectors) are 6.15 in. dia.. and 0.7 in. thick. R S Electronucs Corp., 435 Portage Ave., Palo Alto, Calif.

Circle 247 on Inquiry Card

LF PANORAMIC RECEIVER

New low frequency panoramic field intensity receiver continuously monitors LF radiation from 0.05 KC to 100 KC, operates unattended, and automatically produces panoramic photographic records. Designated the AN URM-126, applications include precision measurement, display and recording of the intensities of noise and both modulated and unmodulated cw

signals. It meets specification MIL-E-16400. It receives and defines signals separated by only 15 cps. Motorola Inc., Military Electronics Div., 8201 E. McDowell Rd., Scottsdale, Arizona.

Circle 248 on Inquiry Card

PACKAGED CAPACITORS

Two new capacitors packaged for automatic insertion or automatic cutting and forming of the leads. Style 309 available in 5 to 663 pf and Style 310 available in 14-1130 pf are lac-

quer-enamel coated, axial lead, tubular ceramic dielectric, capacitors available in both temp compensating or general purpose ceramic dielectric bodies. Packaging available is "Reel Pak," or "Ribbon Pak." Both are suitable for automatic insertion or automatic cutting and forming of the leads. Electronics Div., Erie Resistor Corp., 645 W. 12th St., Erie. Pa.

Circle 249 on Inquiry Card

New fixed tuned Model RSSB-59-1A

Single-Sideband Receiver for AM

broadcast. Applications include off-

the-air relay broadcasts, monitoring

in difficult reception areas and Conel-

rad. Minimum selective fading distor-

tion, improved signal-to-noise and re-

duced adjacent channel interference

are advantages over conventional AM

reception. Completely transistorized,

SSB RECEIVER

MICROWAVE ABSORBERS

New and tougher TYPE T thin, flexible absorber has high electrical performance. It is available for the usual radar frequencies as well as for special frequencies. The metal foil

back of the absorber is covared with a rubberized cloth, meeting MIL-C-20696. Improved physical characteristics are: (1) about 30% lighter than before; (2) greater temp range: -70° to 270°F, (wider ranges on special order); (3) greater physical integrity and easier handling. Standard TYPE T is also available. Mc-Millan Industrial Corp., Ipswich, Mass.

Circle 251 on Inquiry Card

MAGNET SYSTEMS

Line of versatile laboratory magnet systems. These flexible general purpose magnet assemblies are for a variety of applications. Individually adjustable and replaceable poles and pole faces allow max. variation of the magnetic field configuration. Coupled with the continuously variable output power supply, these MHD magnet systems provide a flexible basic re-

Model RSSB-59-1A permits upper or lower sideband reception and operates on 110 vac or automatic emergency dc supply. Kahn Research Laboratories, Inc., 81 S. Bergen Pl., Freeport, L. I., N. Y.

Circle 250 on Inquiry Card

search tool. Copper-wound coils are insulated with class B materials and are calculated for continuous duty without additional cooling. MHD Research. Inc., 1571 Placentia Ave., Newport Beach, Calif.

Circle 252 on Inquiry Card

Wire Wound Resistor Networks Hold Ratio Accuracy of ±.003% at room temperature and

 \pm .005% from +15°C to +65°C. In A.C. computer networks. a capacity match of 0.01 mmf is possible with a shielded network. Resistor networks may also be compensated to balance phase shift in other parts of the system.

IF YOU HAVE A RESISTOR NETWORK PROBLEM, WRITE TO

Teday, More Than Ever, The Baven @ Stands Fer Bependabilit

Circle 105 on Inquiry Card

Circle 106 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

THESE RUGGED JOHNSON VARIABLES WITHSTAND TERRIFIC VIBRATION and SHOCK!

Parts can't break loose ... capacity can't fluctuate!

Set your frequency... these tough Johnson "L" variables will hold it—even under severe conditions of shock and vibration! Designed to provide outstanding strength, rigidity and operating stability —rotor bearings and stator sup-

port rods are actually soldered directly to the heavy 3/16" thick steatite ceramic end frames. Parts can't break loose...capacity can't fluctuate!

Specially designed split-sleeve tension bearing and silver-plated beryllium copper contact provide constant torque and smooth capacity variation. Plating is heavy nickel—plate spacing .020°, .060° and .080° spacing as well as special platings, shaft lengths and terminal locations in production quantities.

A complete variable capacitor line . . . from tiny sub-miniatures to large heavy duty types!

From the tiny Type "U" sub-miniature, which requires less than 0.2 sq. in. for chassis or panel mounting—to the rugged heavy-duty "C" and "D" types ... the Johnson variable capacitor line is designed for more capacity in less space—offers you one of the widest standard capacitor lines in the industry! For detailed specifications on all Johnson variable capacitors, write for your free copy of our newest components catalog, described below.

Products ... for the Electronic Industries

STRAIN GAGE TRANSDUCER

Strain gage transducer, Model P318, is a micro-miniature, flushdiaphragm absolute pressure transducer featuring high frequency response. It is smaller than a dime. weighs 0.5 gms. Dimensions: 0.59 in.

dia., 0.050 in. thick. Ranges are 0-10 psī to 0-100 psi, available in absolute gage or differential. Excitation is 15 v. Output is 5 mv, full scale open circuit. The combined error due to non-linearity and hysteresis is less than $\pm 1.0\%$ of full scale. Amb. temp. limits are -65 to +150°F. Statham Instruments, Inc., 12401 W. Olympic Blvd., Los Angeles, Calif.

Circle 253 on Inquiry Card

DISPLAY ASSEMBLY

Solid state display assembly, Model 2060 is for decimal display of a binary coded decimal parallel signal. It accepts up to 24 bits of parallel BCD information and converts signal to a 60-line decimal display using Burroughs-type Nixie tubes. Assembly is 31/2 in. high, rack-mounted for visual display of parameter numbers using up to 6 decimal digits, derived from any of these 4-bit codes: Binary code decimal (1-2-4-8); decade counter code (1-2-2-4) or (1-2-4-2); gray code (cyclic code); binary complement coded decimal; binary 2 out 5 code; binary (1-2-4-7). Binary input may be either static or parallel pulses. Storage capability, conveniently re-

trieved through a multi-pin connector, is provided in the converting circuitry. Primary application is for displaying time where 17-bit time codes are used. Hermes Electronics Co., 75 Cambridge Pkwy.. Cambridge 42. Mass.

Circle 254 on Inquiry Card

TRANSISTOR TEST SET

Transistor test set Model TTS-100, for precision measurements of dc characteristics of power transistors. Leakage currents, dc gain, trans-conductance, input impedance, power conductance, saturation voltage and saturation resistance are measured.

Punch-through voltage is determined without damaging the transistor. Separate connections provided for measuring voltage at the terminals to eliminate errors in measuring saturation voltage. A heat sink base with adapters is an accessory. Command Systems, Inc., 1135 Stanford Ave., Los Angeles 59, Calif.

Circle 255 on Inquiry Card

WATER-COOLER TRIODE

A general - purpose, water - cooled triode for 400 kw continuous output as a Class C amplifier or as an oscillator up to 30 MC. The ML-7560 delivers 2.5 megawatts in a pulsed r-f amplifier and can switch 14 megawatts in a pulse modulator at relatively long pulse duration with high duty factors. Anode incorporates an integral water jacket and can dissipate 175 kw. Low-inductance and high-dissipation r-f terminals are provided by a sturdy coaxial grid and cathode mounting structures. Cathode is a self - supporting, stress - free, thoriated-tungsten filament. Ceramic cylinders insulate the envelope. Max.

ratings are 20 kvdc plate voltage and 600 kw plate input up to 30 MC, although useful power output can be obtained up to 100 MC at reduced plate voltage and plate input. The Machlett Laboratories, Inc., 1063 Hope St., Springdale, Conn., U.S.A. Circle 256 on Inquiry Card

FOR FUEL CELLS

Porous shapes in alumina or magnesia ceramics for experimental use in fuel cell research. These sections of membrane material may be modified, within reasonable limits, to the specifications of the researcher. They can

be fabricated in very thin flat sections. Consideration must be given to the mechanical strength required for the end use. Discs and plates up to 5 in. in max. dia. are practical. Larger sizes may be had. Ceramics are involved in research in both high pressure and low pressure fuel cells. American Lava Corp., Steatite Div. Lab., Chattanooga 5, Tenn.

Circle 257 on Inquiry Card

DIFFERENTIAL PREAMPLIFIER

Ac coupled differential preamplifier with fixed gains of 10x, 100x, and 1000x. Noise level of less than 10 µv peak to peak over a max. bandwidth in excess of 60k. Common mode rejection of more than 100 db for measurements in strong interference. Input filter reduces TV pulse interference. Input impedance 10 megohms each grid to ground; low grid current for min. source loading. High frequency filter has nominal steps of 60KC, 10KC, 1KC, 250 and 50 cycles; low frequency is variable in increments of 0.01, 0.1, 1, 10, and 100 cycles. Cascode input with frame grid triodes; single interstage coup-

ling time constant has reset button. Low impedance push pull cathode follower output may be set to ground dc level. Provision for the introduction of time marker signals. Argonaut Assoc., Inc., P.O.B. 273. Beaverton, Oregon.

Circle 258 on Inquiry Card

DIGITAL VOLTMETERS

A new line of digital voltmeters designated the 200 series. It includes ac. dc, ratio and ohms measuring modules which may be utilized in any combination. Provision has also been

made to allow addition of dc preamplifier, digital printer or paper tape punch. Basic Model 231 specifications are ±0.02% stability, sampling rate 0 to 30/sec., range 0.0001 to 1100.0 v., resolution to 0.1 millivolt auto ranging and polarity, 1 megohm input impedance. Systron-Donner Corp., 950 Galindo St., Concord, Calif.

Circle 294 on Inquiry Card

SUBMINIATURE RELAY

New, subminiature relay, Series V, is designed to meet the severe environmental requirements of presentday prototype missiles. The V relay header has improved bounce characteristics which increase contact life and reliability, and enhance relay performance under severe vibration and shock. There is no increase in relay motor size because the new relay mo-

tor has greatly increased efficiency. V-series relays are available with or without arc-inhibiting circuits and with either ac or dc relay motors. Filtors, Inc., 30 Sagamore Hill Dr., Port Washington, L. I., N. Y. Circle 295 on Inquiry Card

TRANSISTOR TRANSFORMERS

Addition of 5 new micro miniature transistor transformers to line. Units have primary impedance ratings from 4,000 ohms C. T. through 25,000 ohms C. T. and secondary impedences of 150

ohms through 1500 ohms C. T. Operating level is approx. 22 dbm with frequency response of 200 to 15,000 CPS. Items are in hermetically sealed construction with high compression glass terminals, or in epoxy molded construction or in open frame construction with channel mounting. Microtran Co., Inc., 145 E. Mineola Ave., Valley Stream, N. Y.

Circle 296 on Inquiry Card

WELDING HEAD

Model 1038 is a new, precision Welding Head which can perform single, series or parallel welds for electronic components assembly; joining fine wire, ribbon and foils; and for applications requiring a controllable fastening technique without the use of an interconnecting or bonding material. Ball-race vertical action of the dual upper electrodes permits exact placement of the welds with no

electrode wiping action. It features 500 watt-sec power rating; foot-pedal actuation; precisely controllable electrode pressure and automatic firing. Unitek Corp., 950 Royal Oaks Dr., Monrovia, Calif.

Circle 297 on Inquiry Card

SWITCHING TRANSISTOR

New general purpose switching transistor, similar to the type 2N697, exhibits substantially better performance characteristics. The new type 2N1837 has nearly half the collector

to emitter voltage drop of the 2N697. Additionally, the 2N1837 has nearly three times the small signal beta, half the collector capacitance and half the leakage current. All other characteristics are equal to or better than the 2N697. Pacific Semiconductors, Inc., 12955 Chadron Ave., Hawthorne, Calif.

Circle 298 on Inquiry Card

PHOTOCOPIER

New compact photocopier will copy large-size documents. Model 114 will copy original documents up to 15 in. wide by any length — engineering drawings, accountants' work sheets, statistical data, reports, and artists' drawings. in sharp black-on-bone white, frequently better than the originals. Machine will make sharp. permanent copies of anything typed.

printed, duplicated, photographed, written or drawn, in any color, any ink, pencil or crayon. It makes copies under normal office lighting conditions. A. B. Dick Co., 5700 W. Touhy Ave., Chicago 48, Ill.

Circle 299 on Inquiry Card

forward look in backward waves

expectancy of 500 hours, Stew int BWDs characteristically last nuch longer. Their cost, spread iver their fife spen, usually werages lass than a deflar an

Circle 112 on Inquiry Card 187

New Tech Data

Pressure Transmitter

New 4-page specification, S 230-1, outlines features, specs and ordering information on new Bellows Differential Pressure Transmitter. This instrument combines economical, con-venient pneumatic transmission with a dry type bellows meter body. It can be used in any flow or open or closed tank liquid level application to transmit readings from a field location. It is available with a concentric scale for local indication at point of measure-ment or as a non-indicator. Minnea-polis-Honeywell Regulator Co., Indus-trial Div., Wayne & Windrim Aves., Philadelphia 44, Pa. Circle 204 on Inquiry Card

Tube Cataloa

New, 25-page, condensed tube catalog from Amperex Electronics Corp., 230 Duffy Ave., Hicksville, L. I., N. Y. It contains descriptions and basic specs on the full line of Amperex Tubes, consisting of: cold cathode trigger tubes, entertainment and audio tubes, ignitrons, indicator tubes, kly-strons, magnetrons, noise diodes, power tubes, photomultiplier tubes, "Premium Quality" (PQ) tubes, radiation counter tubes, rectifier diodes, subminiature tubes, thyratrons (hydrogen, mercury vapor and inert gas types), traveling wave tubes, UHF special purpose tubes, and voltage reference and regulator tubes. Circle 205 on Inquiry Card

Diallyl Phthalate Resin

A descriptive booklet (26 pages) of the properties, uses, and molding re-quirements of compounds based on Dapon diallyl phthalate resins. It provides a guide to the capabilities and application techniques of these materials. Resins are used as mold-ing materials for electrical and electronic applications in the missiles and rockets field. They are noted for di-mensional stability, insulation resist-ance, and retention of electrical properties in extremely severe environ-ments. Included are 13 tables giving performance data including physical and electrical properties, chemical and fungus resistance, and flame proofing. A section deals with the effect of mineral and synthetic fillers on molded properties. Another section deals with material handling, molds. molding temps and pressures, curing time, and tests for cure. A typical properties chart for molding com-pounds is included. Dapon Dept., Food Machinery & Chemical Corp., 161 E 42nd St., New York 17, N. Y. Circle 206 on Inquiry Card

Magnetic Shields

Data Sheet 153 describes how multicellular magnetic shields permit more accurate low level signal source data evaluation. Magnetic Shield Div., Per-fection Mica Co., 1322 N. Elston Ave., Chicago 23, Ill.

Circle 207 on Inquiry Card

for Engineers

Subminiature Switch ⁹

Two-page data sheet (#180) fea-tures the highly sensitive 11SM401 subminiature switch for use where close control sensitivity or response is mandatory. Switch features a 0.001 in differential travel. Includes mounting dimensions, operating characteristics, and electrical rating. Micro Switch. Freeport, Ill.

Circle 208 on Inquiry Card

Dip Brazing

Aluminum dip-brazing facilities brochure available from John Gombos Co., Inc., Webro Rd., Clifton, N. J Aluminum dip-brazing is a process that allows perfect joining of aluminum to form homogeneous parts. It offers a strength of weld equal to or better than the parent metal. Com-plished and distortion is at a min-imum. Brochure is called, "Simplified Fabrication of Complex Components with Aluminum Dip-Brazing.

Circle 209 on Inquiry Card

Transducers

New 8-page folder describes facilities, capabilities and transducer products of Lockheed Electronics Co. Individual sheets present specs, performance characteristics, and circuitry on the line of strain gages and multipliers, load cells, force washers, high sensitivity washers and position trans ducers. Lockheed Electronics Co., Avi-onics & Industrial Products Div., 6201 East Randolph St., Los Angeles 22, Calif.

Circle 210 on Inquiry Card

Oscilloscope Units

Colorful 32-page booklet gives de-tailed presentation of all 16 pres-ently-available "A-to-Z" plug-in units. The booklet includes complete specs and performance characteristics with waveform patterns and other illustrative material for various measure-ment applications. Tektronix, Inc., P. O. Box 500, Beaverton, Ore. Circle 211 on Inquiry Card

Oscillograph

Four-page bulletin, 5125, containing photos and specs describes the operaphotos and specs describes the opera-tion of a new, low-cost, portable re-cording oscillograph developed by the Electro Mechanical Instrument Div., Consolidated Electrodynamics Corp., 360 Sierra Madre Villa, Pasadena, Calif. The unit (5-124) weighs 40 lbs. Circle 212 on Inquiry Card

Control Design

Six ways to simplify control design are shown in bulletin NB-660 from Servo Corporation of America, 111 New South Rd., Hicksville, L. I., N. Y. It illustrates various Servoscope (R) analyzer models used for fast problem solving in servo system design, de-bugging, production, teaching, and testing. Included is a section on the new Servoflight (R) autopilot analyzer.

Circle 213 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

Just One Squeeze with IDEAL's New "Custom Stripmaster" Removes Teflon^{*} and Other Hard-to-Strip Insulations

To help prevent wire nicking and insulation damage, these new IDEAL "Custom Stripmasters" are precision drilled on watchmaker's equipment.

With Ideal's new Custom Stripmasters, a light squeeze on the handles strips any wire completely clean and bare up to a full $\frac{7}{2}$ inch.

To help prevent nicking and scraping of wires, the Custom Stripmaster's matched sets of blades are precision drilled on watchmaker's equipment to the exact wire sizes. Counterbored blades ride on cut insulation to prevent scratching of stripped wire. Jaws grip wire firmly to prevent insulation damage. 3 models available. Wire sizes from No. 10 to 30.

183

Flexibility and Refinement

APR-20 rectangular antenna pattern recorder

...The reason most antenna pattern recorders come from

It's the little things that make the difference. Little things, refinements, "extras," and top-notch workmanship all add up to preference for S-A instrumentation.

Things Like Plug-In Balancing Potentiometers

Series P plug-in pen balancing potentiometers

Series P potentiometers are used in both rectangular and polar coordinate pattern recorders. By interchanging potentiometers together with the appropriate pen function amplifier, different responses—linear, square-root, and logarithmic—are obtained. Interchanging these new self-aligning potentiometers can be accomplished in less than thirty seconds. Stocking spare units cuts downtime. Of dust and dirt proof construction, Series P plug-in balancing potentiometers are offered with exchange pricing.

Crystal Bolometer Amplifiers...

Circle 113 on Inquiry Card

DC Amplifiers

DCA-21 amplifier for dc input signals

Scientific-Atlanta's DCA-21 amplifier lets APR 20/30 recorders accept dc input signals. A narrow band amplifier preceded by an electromagnetic chopper, the sensitive DCA-21 has a linear dynamic range of 80 db. The unit is directly interchangeable with Series CBA-20 Crystal-Bolometer amplifiers.

Recorder Pen Programmers

Up to five different pen writing codes can be selected by adding the Model **RPP-1** Recorder Pen Programmer to an APR 20/30 installation. Compact, lightweight, and rack mounted, the programmer provides solid line, dot, dash, dash-dot, and space-dot-dot codes at an adjustable code rate of 30 to 90 cycles per minute. Modification C. Chart Compression ...

Modification C, which must be ordered at the time of recorder purchase, provides both standard and compressed cycle charts from a single APR 20 Rectangular pattern recorder. Standard chart cycle is 20 inches, compressed 8 inches. Compressed recordings are conveniently sized to fit standard $8\frac{1}{2} \times 11$ notebooks and reports.

Chart Paper, Recording Pens, Ink, and Accessories...

Scientific-Atlanta offers its customers one-day service by stocking, for immediate delivery, a wide variety of chart paper, recording pens. and other recording necessities.

But above all, it's the engineering philosophy of a company run by antenna engineers for antenna engineers.

Call your nearby S-A engineering representative for more information on S-A pattern recorders and accessories. For complete technical information, please write to Box 44.

High gain, low noise crystal-bolometer antenna

Sensitive, narrow-band Crystal-Bolometer amplifiers are miniaturized units designed for use as preamplifiers in S-A polar and rectangular pattern recorders. Five models, CBA-21 through CBA-25 are available. Features include bolometer burnout protection, low noise figure, triaxial signal ground return, up to 108 db gain, 80 db linear dynamic range, adjustable bandwidth (CBA-23), high rejection (CBA-24), variable center frequency (CBA-25).

2162 Piedmont Road, N.E. + Atlanta 9, Georgia TRinity 5-7291 International

Electronic Sources

Up-to-the-minute abstracts of articles appearing in the leading foreign electronic engineering journals

CIRCUITS

Pulse I'M Discriminators, V. L. Rytchka. "Radiotek" No. 10, 1960. 9 pp. Operation principles and basic relationships are analyzed for an FM discriminator of a pulse counter type. The advantages of several parameters type. The advantages of several parameters of this circuit is proved over parameters of ordinary discriminators. Shortcomings and limitations of this circuit are pointed out. Various applications of the circuit are sug-gested. (U.S.R.)

Replacement of a Cascade of n Unequal Asym-metric Four-Terminal Networks with Equal Iterative Impedances by One Four-terminal Network, W., Herzog, "Nach. Z." Oct. 1960. 3 pp. Any number of unequal and asym-metrical four-terminal networks connected in a cascade, in which all of the networks have the same iterative impedance are replaced by the same iterative impedance, are replaced by a single four-terminal network for which the impedance matrix is given. (Germany.)

Electromechanical Four Poles as Coupling Filters, E. Trzeba, "Hochfreq." June 1960. 8 pp. The advantages of an electromechanical S pp. The advantages of an electromechanical filter as compared to the limitations of lumped element filters are pointed out. An electro-mechanical analogy is developed that enables the treatment of mechanical four poles ac-cording to bandpass filter theory. From six-enders of the second s pole equations of the electromechanical transducers the four pole equivalent circuits are de rived that correspond to the presentation of the mechanical conductor. Using the com-bination of input transformer, mechanical connection, and output transformer, the desired parameters of the filter can be determined according to line filter theory. (Germany.)

Isolation of Output of a Palse Generator, I. D., Pugsley and B. M. Johnstone, "Proc. AIRE." July 1960. 3 pp. Shielded r-f coupling to an isolated probe permits pulse atimulation of biological tissue without coupling to the pick up electrodes. Pulses of amplitude up to 50 v. and durations between 10 usec and 100 msec are available (Austenlin). are available. (Australia.)

Circuit Analysis of Feedback Transistor Am-plifiers, A. E. Ferguson. "Proc. AIRE." Feb 1960. 1 pp. Methods of analyzing transistor feedback amplifiers are examined. (Australia.)

Symmetrical Operation of Push-Pull Vacuum-Tube Oscillator Circuits, N. I. Stein, "Radio-tek" No. 10. 1960, 2 pp. In this article, the operation of tubes in an oscillator is analyzed when they are arranged in a push-pull man-ner. The mutual influence of the tubes on each other is established as a result of changes in the driving voltages. The influence of vari-num factors which cause asymmetrical opera-tion in each of the two sections of the push-pull network are analyzed. Formulae are given for alculations of the oscillator power output, and power losses in the tubes in the asymmetrical case, and recommendations are offered to compensate for asymmetry. (U.S.S.R.)

Oscillator Circuits with Variable Parameters, E.-G. Wonchni. "Hochfreg." June 1960. 5 pp. Starting with Hill's or Mathieus' equation and

using already known results, simple approxi-mations are developed for the range of lock in and the decrease in damping. This is done for sinusoidal changes in the capacitance and later for sinusoidal changes in the damping. The same results are obtained using intultive physical concepts of energy and phase rela-tionabins. An observation of occurrences in the tionships. An observation of occurrences in the second lock-in region lead to the conclusion that harmonics are responsible for lock in and decreased damping in the lock-in regions of higher order. Through a known analogy the same consideration can be applied directly to mechanical systems. Germany.

Synthesis of Circuits with Operation Described by Time Beolean Penctions. "Avto, i Tel." Oct. 1960. 4 pp. The synthesis methods for circuits which can be described by means of a special class of Boolean functions are con-sidered. (U.S.S.R.)

A Simple Design Technique for High Perform-ance Transistor AC Amplifiers, D. G. W. Mace and R. N. Blunt. "El. & Comm." Sept. 1960. 3 pp. A design technique for ac amplifiern which is deemed to have considerable merit. (Canada.)

Practical Translator Circuita. A. Petitclerc. "el. & auto." Sept. 1960. 2 pp. Four simple circuita are introduced. They use semicon-ductors, namely diodes, translators and Zener diodes. They are a 9-v. stabilized power sup-ply. a 50 Hz oscillator with RC phaseshift icrcuit. a similar oscillator for 1,000 Hz. and an electronic flasher based on a 2-transistor multivibrator. (France.)

Printed Circuits Containing Resistors, Part 1, P. A. B. Toombe. "Brit. C&E." Sept. 1960. 5 pp. There is a demand for the provision of components as well as wiring in printed cir-cuits. Vacuum deposition offers a means of producing both resistors and wiring. Gercuits. manium and germanium/metal alloy films were investinged as possible resistance materials. In inventaged an possible remains materials. In the first part of this article, an account is given of the methods of production of these films. The second part, to be published next month, deals with their texting and protection. (England.)

COMMUNICATIONS

Certain Properties of Communication Systems with Fading, E. L. Bloch, A. A. Kharkevitch. "Radiotek" No. 9, 1960. 7 pp. The authors discuss aspects of general properties of communication systems which are affected by the fading type of a multiplying type of distor-tion. They compare these systems with those which have the usual additive distortions. An evaluation of the system carrying capacity for these systems and an analysis of the questions of application of corrective codes are also presented. (U.S.S.R.)

A Transisterized Channel Converter for Carrier Frequency Telephony Systems, Η. Binde, et al. "Nach. Ζ." Oct. 1960. 5 pp. In the introduction the advantages of transistors

REGULARLY REVIEWED

AUSTRALIA

AWA Tech. Res. AWA Technical Review Proc. AIRE. Proceedings of the Institution of Radio Engineers

CANADA

Can. Elec. Eng. Canadian Electronics Engl-El. & Comm. Electronics and Communications

ENGLAND

ATE J. ATE Journal BBC Mone. BBC Engineering Monographs Brit. C.&E. British Communications & Elec-Electropic Technology E1 Tech.

El, Tech. Miccinosic Technology GEC J. Ceneral Electrical Ce. Journal J. BIRE. Journal of the British Institution of Marino Engineers. Ricetrical Engineers. Tech. Comm. Technical Communications

FRANCE

Bull. Fr. El Bulletin de la Societe Fran-caise des Electriciens Cab. & Trans. Cables & Transmission Comp. Rend. Complex Rendus Hebdomadaires Long. Hens. Longtes Arnus Probossian des Neame Electrique El, et Auto. Electronique et Automatisme Res. Tech. Error Technique Telonde. Telonde Toute R. Toute in Radie Vide. Le Vide

GERMANY

AEG Prog. AEG Progress Arc. El Uber, Archiv der Elektrischen Ubertragung El Rund. Electronische Rundschau

Freq. Frequents Nochfreq. Bocchfrequents-technik und Electro-akustik Ζ. Nach Nechrichtentechnische Zeitschrift

rt. Regelungstechnik Rundfank, Rundfunktechnische Mitteilungen Vak. Tech. Vakuum-Technik

POLAND

Prace ITR. Prace Instytutu Tele-I Radiotech-

nicznegu Roz. Elek. Rozprawy Electrotechnizne

USSE

Avie. 162. Aviomatika i Telemakhanika Radiote. Radiotekholka Radiotek. Radiotekholka i Elektranika Iz. Acad. Bulletin of Academy of Sciences UNNIL. Avto, i Tel. Automatika i Telemakhanika

Photocopies of all foreign articles are available at 75 cents per page, remitted with order. Unless otherwise indicated, articles appear in language native to country of origin,

• A reprint of this section, "Interna-tional Electronic Sources" is available without charge.

Requests for the above should be sent, on company letterhead, to:

Electronic Sources Editor ELECTRONIC INDUSTRIES Chestnut & 56th Sts. Philadelphia 39, Pa.

International ELECTRONIC SOURCES-

in relation to valves are discussed, low power consumption, miniaturization and increased reliability. (Germany.)

The Application of Printed Circuit Techniques to Microwave Systems. K. Foster and A. C. Briwn. Brit. C&E." Aug. 1960. 6 pp. (England)

Training of Personnel for Telecommunication Engineering, D. C. Bhattacharji, "J. ITE." April 1960. 12 pp. (India, in English.)

Analysis and Design of a Moving-Coll Microphone, D. L. Subrahmanyam and K. D. Pavate "J. 1TE." April 1960. 7 pp. (India, in English.)

Palse Length Telemetering, A. O. Davies. TATE J." Jan.-July 1960, 10 pp. The elements of a single indication system and its operating principles are first considered followed by a description of the transmitting and receiving equipments and their performance. Similar treatment for multiple indication systems follows and the article concludes with a reference to initiating equipment and applications other than the normal one of indication of varying quantities. (England)

A Telephone Dictation Recorder System, S. Halmer. "ATE J." Jan.July 1960 12 pp. After briefly reviewing the basic requirements of a dictation recorder system and alternative methods of operation, the article then specificully described the A.T.E. system. After considernation of its integration with automatic telephone systems, details are given of its design, facilities and operation (England.)

Continuous Signal Discrimination, A. A. Kharkevich. "Radiotek" No. 10, 1960. 3 pp. The author discusses the possibility of representing signab, which are continuous at the final time interval, by one or more numbers and the optimal selection of such number for best recognition of signals by comparison to a given set of possible functions. This possible technique resulted in connection with developments of recognition devices, intended to recognize continuous contours. (U.S.S.R.)

I. H.F. Telemetry and Control Links, J. Pierson "Prit. C&E." Oct. 1960. 4 pp. In many industrial problems the use of line communication for control and data transmission is not economic and is prone to failure during periods of operational emergency, for instance during bad weather. The author describes in this article the requirements for a u.h.f. telemetry link, and the way in which it has been used in such diverse applications as television outside broadcasting, horse racing, and gas works deta transmission. (England.)

Design Fundamentals of Super-High Frequency Discrete Signal Automation Systems, M. S. Neiman "Radiotek" No. 10, 1960. 8 pp. This article deals with the fundamental design principles of AM, FM, PM, and mixed discrete signal systems. In particular, possible methods are briefly discussed, which permit to perform basic logic operations, and methods of amplifying information carrying radio pulses. In addition, certain general aspects are discussed of design and application of high-speed discrete signal automatic systems. ULSS.R.

A Method of Reducing Distortion in FM Klystron Transmitters, A. F. Evers, et al. "Brit, UELE" Aug. 1960. 4 pp. Current methods of modulation in microwave links are reviewed, and a technique is described which offers considerable in:provement in cost and conformity to recommended standards. "England."

New Tape Tennion Stabilising Method for Recerders, E. Vollmer and W. Rank. "EL Rund." Oct 1960. B pp. After discussing the requirement of constant tape tension in high-quality recorders and the methods so far employed to stabilize tension, the author describes a new method he has developed to control the tape tension by light where the light output is influenced by the tension. (Germany.) Overshoot Elimination in Carrier System Antomatic Gain Regulations, G. Tamburelli. "Alta Freq." Aug. 1960. 22 pp. The conditions to be achieved for overshoot elimination in carrier system automatic gain regulators are determined. The cases of one, two and three time constants are examined and a theorem is given for the case of n time constants. The ideal characteristics of the automatic gain regulator are finally discussed. (Italy.)

Optical Masor Action in Ruby. T. H. Maiman. "Brit. C&E." Sept. 1960. 2 pp. The successful operation of microwave masors in the past few years has a stimulated considerable current interest in extending the basic maser principles to the generation of much higher frequencies. (England.)

Constructive Tolerances of Submarine Cables with Submerged Repeaters, R. Monelli and E. Occhini. "Alta Freq." Aug. 1960. 40 pp. A statistical theory is outlined for calculating the constructive tolerances of a people of coaxial cable lengths to be used as amplification sections for a multichannel telephone cable with submerged repeaters. (Italy.)

A Unit Trunk Automatic Exchange, J. A. Scowcroft and L. F. Knott. "ATE J." Jan-July 1960. 12 pp. This article describes an automatic trunk switching centre designed specifically to meet the needs of telephone networks employing radio, carrier or physical circuits. (England.)

A 75 cm Ecceiver for Radio Astronomy and Some Observational Remaits, C. L. Seegar, et al. "Phil. Tech" #11, 1960. 17 pp. (Netherlands. in English.)

COMPUTERS

Design Problems of Machine Classifying Elementa According to Signs Unknown Beforehand, E. M. Braverman. "Avto, i Tel." Oct. 1960. 12 pp. A number of general conditions where the problem can be solved by machines with stimulation (i.e. machines which get some indditional information from the operator; is pointed out. It is shown that sometimes machines without stimulation can be used for the same purpose. (U.S.S.R.)

The Design of a Special Purpose Digital Computer, D. Halton. "ATE J." 38 pp. Jan.July 1960. The equipment considered is a real time computer, designed to operate within timing limits imposed by an external system. The computer is a parallel, binary machine, using a single-address ordering system. (England.)

Test Circuits for Evaluation of Computer Amplifiers, A., Kley. "El. Rund." Oct. 1960. 2 pp. This paper describes a number of test circuits permitting to check without further accessories, the static and dynamic accuracies and the zero deviation of computer amplifiers. "Germany.)

The Choice of a Universal Logic Element, N. L. Carison. "El. & Comm." Sept. 1960. 4 pp. The verformance requirements of a static awitching system designed to fulfill the needs of Canadian industry are presented in the fullowing article. (Canada.)

Transistorized Analog Digital Converter for High Keying, K. Grieder. "El. Rund." Oct. 1960. 2 pp. An analog-digital converter for keying frequency of maximum 40 kc/s is described. :Germany.)

The Application of Computers in the Chemical Industry, Part II, Th. Ankel. "rt." Sept. 1960. 5 pp. (Germany.)

CONTROLS

Stability Analysis of Elystron Automatic Phase Control Circuit. L. A. Birger. "Radiotek" No. 10, 1660. 7 pp. Spurious feedback in automatic phase control systems of klystrons is analyzed. This feedback is one of the causes of self-oscillations in the system. Criteria are determined for balancing branches of the phase detector, to provide stable operation. (U.S.S.R.)

Regulating Behavior and Controllability of Typical Controlled Planta. P. Profos. "rt" Oct. 1960. 6 pp. In this contribution the author discusses generally a few properties and relationships describing the regulating behavior in servo-mechanisms and automatic process controls. (Germany.)

Automatic Control of a Filament-colling Machine with the Aid of Preset Counters, F Einramhof and P. Havas. "Phil. Tech." 210, 1960. 7 pp. (Netherlands, in English.)

Speed Centrol for Drives, W. Echner. "rt." Sept. 1960. 7 pp. In this contribution, first of all, the speed (slip)-torque characteristics are shown for the most common shunt motorand drives, followed by a discussion on starting, braking and transitory conditions for dc motors and non-synchronous motors. (Germans.)

A Digital Centrol Loop Obtaining a Great Number of Closely Sitepsed Prequescies. Part 1 C. E. Nourney. "rt." Oct. 1960. 4 pp Part I deals with the operating principle, the lay-out of the control loop and the qualitative smalysis of working conditions. A theoretical study of the problem will be given in Part II which will be published shortly. (Germany.)

Optimum Performance of Two-Step Action Controllers with Perdback, W. Bottcher. "rt." Oct. 1960. B pp. The improved control by means of delayed ur delayed reset feedback is explained by examples with an analog computer. (Germany.)

A Contribution to Regulation by Impulses, B. Neumann. "rt." Oct. 1960. 5 pp. A 3-step action relay system with delayed feedback and equipped with an impulse emitter for integral control, can be considered, by introducing certain simplifications, as a linear proportionalplus-integral controller. (Germany.)

Automatic Control of a Machine Saw, M Seurot: "el. & auto." July 1960. 2 pp. This paper shows how the problem has been solved by a transistorized unit. (France.)

Industrial Applications of Solid State Thyratrens, R. Dablon. "el. & auto." July 1960 5 pp. Principal characteristics and circuit design considerations are presented for the semiconductor thryatron. Several examples of industrial applications are given. (France.)

Automatic Control of Nuclear Power Stations, J. E. Westerlint. "el. & auto." July 1960 6 pp. This introductory paper describes sum marily some of the proven industrial solutions (France.)

The n-Fold Control of Single-Loop Systems with m-Fold Compling, R. Starkermann. "Irt" Aug. 1960. 5 pp. Formula are given for a linearized system of n controlled variables with n controllers. After baving duly determined the individual frequency responses of each transfer number, these formula result in the composite frequency responses of the dissected system. (Germany.)

A Contribution to the Theory of Multiple-loop Control Systems, C. Kessler. "rt." Aug. 1960, 6 pp. The author describes a method of calculating multiple-loop systems by the cumulative use of the known slising rules for

LARGEST LINE OF MILLIMETER WAVE LENGTH BWO Bendix^{*} BWO tubes for higher frequency transmission. These Backward-Wave Oscillator Tubes-exclusive with Bendix-generate microwave energy over the largest continuous frequency range. Ideal for advanced multichannel telephone and television systems, microwave spectroscopy, high definition short range radar, highly directive communications, and many other applications needing low power, voltage-tuned millimeter wave length radio frequency energy. Write today for complete information.

ELECTRICAL DATA

Frequency Range	
Anode Voltage	1000-4000 volts
Power Output Up to 20	mw average (depending on frequency)
Beam Current	10 MA
Magnetic Field	
Heater Voltage	6.3 =10%

Output Flange Special adapter to RG-98/U (50-75 KMC)
Maximum Diameter 0.625*
Length
Mounting Position Any
Weight
"Without magnet (tube only). Magnets are available.

Red Bank Division

International ELECTRONIC SOURCES-

single-loop control systems. By stepwise structural transformation multiple-loop systems can be converted into single-loop control systems of the same kind. (Germany.)

The Characteristic of a Centrol Loop with Insufficiently Filtered Controlled Variable, A. Macura. "rt." Aug. 1960. 4 pp. In a control loop with saturating elements the correction will generally be less accurate if the controlled variable has a periodic component. This article deals with the mathematical treatment of such control loops and ways are shown how the influence of the periodic component can be kept amall. (Germany.)

Control of Serve Drive by Means of One Nell-Indicator, V. D. Vershinin. "Avto. i Tel." Oct. 1960. 6 pp. A circuit for summation of securate and approximate control signal with the help of which it is possible to control a serve drive and to check the strictness of automatic following realized by means of one null-indicator is considered. (U.S.S.R.)

Vector Calculation of a Class of Control Systems, S. M. Levin and L. G. Manusevich, "Avto. i Tel." Oct. 1960. 10 pp. A method of investigation of class of control systems is considered. The method is based on plotting vector diagrams and on determining reflection of parameter space on the gain-phase characteristic plane. (U.S.S.R.)

Stability of a Control System for Allerons with Turbulent Distarbances, P. S. Landa and S. P. Strekov. "Avto. I Tel." Oct. 1960. 13 pp. With the help of electronic analog computer there are found stability regions of an aircraft wing in the case when the control system for an aileron has nonlinear elementa. It is shown that existence of a gap in the control circuit in a certain parameter area results in hard oscillations in the system. (U.S.S.C.)

GENERAL

Probability Density of the Duration of Overshoots in Fluctuating Functions, W. 1. Tikhonov, L. N. Amiantov. "Radiotek." No. 9, 1860. Three methods for the calculations of the probability density of the overshoot durations in normal stationary fluctuations are briefly analyzed, and some experimental data are presented. The applicability scope of each of the three methods is determined by using each method to obtain the probability density and then by comparing these theoretical results with experimentally obtained results. (U.S.S.R.)

Nuclear Magnetic Resonance, D. J. Kruon. "Phil. Tech." #10, 1960. 14 pp. A concise exposition is given of the theory of nuclear magnetic resonance and of the specific absorption it causes of electromagnetic waves (usually measured at metre wavelengths) by atomic nuclei (especially hydrogen nuclei) placed in a magnetic field. (Netherlands, in English.)

A Transister Cardiotachemeter for Continuous Measurements on Working Persens, G. A. Harten and A. K. Koroncai. "Phil. Tech." ± 10 , 1960. 5 pp. In the apparatus described the individual heart beats are converted into electrical pulses by arranging for a beam of light transmitted through the lobe of the ear to fall on a phototransistor. Each pulse causes a miniature transistorized transmitter to transmit a note of 3000 c.s. on a carrier of 10-15 Mefa. Together with aerial and Ni-Cd batteries, this part of the equipment weighs about 3 lbs and is carried on the back. (Netherlands, in Englib.)

Data Processing in the Chemical Industry, Part I. J. Hengstenberg and Th. Ankel. "rt." Oct. 1860. 6 pp. In this article a survey is carried out of the various fields of application of data processing in the chemical industry. A critical study of the use of data loggers and special purpose computers on the factory floor is followed, supported by selected examples, of a discussion relating to the most important tasks of centralized data processing. (Germany.)

Theoretical and Design Aspects of Magnetic Reproducing Heads, O. V. Poritzky. "Radiotek" No. 9, 1960. 4 pp. An approximated theoretical analysis is presented for reproduction of magnetic recordings by toroidal heads, taking into account the ultimate core reluctance of the heads. An expression is derived which approximately defines the magnetic flux distribution within the reproducing head. Experimental procedure is described and theoretical results are compared to experimental results. (U.S.S.R.)

The Number of Tarna of the Root Locus Curve, O. Follinger. "rt." Sept. 1960. 4 pp. In this article a formula is derived for the number of encirclements of the Nyquist plot around the -1 point in the complex plane of the open loog gain. (Germany.)

Electronics in Electrophysiology, Mollie E. Holman. "Proc. AIRE." July 1960. 3 pp. A brief introductory review is given of the use of electronics in the study of nerve and muscle cells. (Australia.)

The Philesophy of Simulated Flight Training, J. Vivian. "Brit, C&E." Sept. 1960. 5 pp. This article attempts to survey the background of flight simulation as a vital tool of airline pilot training, showing how it enables the operators to meet the requirement for setting and maintaining the highest standards, thus replacing aircraft flight training as a more effective means of demonstrating many phases of flight and so competing successfully nn economical grounds with the use of aircraft drawn frem the reveue fleet. 'England.'

An Airborne Teleprinter System, J. H. Court. "Brit. C&&E." Sept. 1960. 3 pp. It has now become apparent that with the ever increasing traffic on the world's air routes, some method of relief of the congestion of hg and vhf radio communication channels must be found. In particular the North Atlantic requires the must urgent attention. (England.)

Phase Shift By the ATR Tubes in Balanced Duplexers. B. E. Rubinstein. "Radiotek" No. 10, 1960. 3 pp. The phase shift, which may be caused in the channel of a balanced duplexer by dual ATR tubes, is calculated. It is shown that the spread of parameters of resonant elements, which comprise the ATR's, can lead to a considerable increase in the duplexer losses in the receiving operating conditions. (U.S.S.R.)

Experimental Exploration of the Noise-Peak Durations. A. I. Velitchkin, V. D. Ponomareva. "Radiotek" No. 10, 1960. 6 pp. The probability density for the duration of peaks and the time intervals between the peaks of normal and Raleigh noise has been determined for various levels. On the basis of these results, it has been possible to conclude that the presently known approximate methods for the analysis of noise-peak duration, give satisfactory results only at high levels and for short peaks. In other cases, it becomes necessary to use experimental results. (U.S.S.R.)

Electronic Stimulators, G. Edsall. "Proc. AIRE." July 1960. 3 pp. The circuits and performance of electrical, photic and auditory stimulators are outlined. (Australia.)

New Microwave Amplifying Techniques-Applications and Developmenta, A.P.C. Thiele, "Brit. C&E." Oct. 1960. R pp. In the search for microwave amplifying techniques with lower noise figures, a number of solid-state devices have been developed in recent years. In this article the author surveys the progress made, and attempts some predictions about the future development and application of these amplifiers. (England.) Simulators for Missiles and Space Vehicles, D. E. Cronin. "Brit. CdEL"/ 4 pp. Analog computers have been famillar and essential tools in the design of homing guided missiles and aircraft control systems for many years. However, in studying the guidance and control of missiles having long times of flight, the limitations of analog methods begin to make themselves felt. In doming with the positional accuracy of ballistic missiles, satellites and space vehicles, it may be necessary to forsake purely analog methods; yet general-purpuse digital computers are not necessarily the ideal answer. The digital differential analyzer provides a suitable compromise in many cases between the conflicting requirements for high accuracy, real-time computation and adequate bandwidth. (England.)

Stability of Poly-Harmonic Operating Conditions in Self-Oscillating Systems With Many Tanks, G. M. Utkin. "Radiotek" No. 10, 1960. 3 pp. At the present time, operating conditions of oscillator systems with two degrees of freedom have been studied in the case of simultaneous oscillations. In this work, oscillation stability has been studied for simultaneous oscillations in systems with many degrees of freedom, such as: oscillator with several tanks, traveling wave tube with feedback loop and others. (U.S.S.R)

Extension of a Theorem for Normal Passive Electric Bipoles and Standy Condition, I. Lunelli, "Alta Freq." Aug. 1960, 12 pp. a theorem demonstrated by R. M. Cohn (1950) is expounded covering the case of a normal passive bipole containing an internal passive network with n degrees of freedom, pursuant the reciprocity theorem. (Italy.)

Two Problems in the Theory of Reliability for Electronic Equipment, D. G. Polyak. "Radiotek!" No. 10, 1960. 5 pp. Formulae are obtained for independent and series connected elements, which enable one to determine the quantity of reserve elements. Reliability and the cust of a system are factors which determine the optimum selection of the reserve element distribution throughout a system. (U.S.S.R.)

Application of a Particular Mathematical Form of Inverse Fourier Transform to an Analysis of Transient Behavior of Linear Systems. It A. Krastchenko. "Radiotek" No. 10, 1960. A mathematical form of the inverse Fourier transforms is offered in the form of a series. This form of the Fourier transform permits the establishment of a simple grapho-analytic method of producing transient processes in linear systems. An illustrative example is given at the end of this article. (U.S.S.R.)

Recent Medico-Electronics Instruments, P. Pablo, "el. & auto." Sept. 1960. 3 pp. Aniong recent electronic developments for use in medical research, one can cite a microminiature amplifier, fully transistorized, an electronic picthysmograph for blood volume measurement, and finally the electronic neuron simulator, which allows the design of complex nervous systems. These three developments are fully described and methods of utilization are outlined. (France.)

The Fruits and Foundations of Solid-State Research, D. Polder. "Phil. Tech." 2011, 1960. 6 pp. Principal contents of the address delivered by the author upon his inauzuration as extra-mural professor at Delfit. The author takes the work done an germanium to illustrate the enormous development of solid-state research. (Netherlands, in English.)

Minimum Description of Pattern by Coded Program Sweeping, V. A. Garmash. "Radiutek" No. 10, 1960. 4 pp. Aspects of minimum description of patterns are considered for automatic recognition. To minimize descriptive information required, it is proposed to use coded program sweeping of patterns. Elements of this technique are analyzed on the basis of the significance of the preceding element

A 32-page digest of the industry's most complete lines of single-turn and multi-turn precision pots!

With new sections on A-C ... Non-linear ... Liquidfilled ... and Helitrim® trimming potentiometers. As well as turns-counting dials and delay lines!

Complete technical data, including environmental specs and outline drawings, is at your fingertips. And it's all arranged in a fastreading format that makes pot picking easier.

Just ask for it.

Beckman Helipot

POTS : MOTORS : METERS Helipot Division of Beckman Instruments, Inc. Fullerton, California

Q 1001 0.1.1. 01101

Circle 114 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

Sources

A method to determine the sequence of the most informative element-cells is presented. (U.S.S.R.)

Estimate of Maximum Deviation from Known Trajectory, E. A. Barbashin. "Avto. i Tel." Oct. 1960. 11 pp. The technique given in a previous paper is used to estimate maximum deviation of the motion from the motion along deviation of the motion from the motion along the known trajectory. The way of selecting control functions and control vectors is pro-posed to decrease this deviation. The case of infinite time period is considered. The con-nection of the studied problem with the prob-lem of disturbance accumulation is indicated. lem of dis (U.S.S.R.)

Survey and Classification of Multiplying De-vices, A. A. Maslov. "Avto. 1 Tel." Oct. 1960. 19 pp. The paper deals with systematization of various principles of designing multiplying devices in regard to the perspective of their further development in the direction of in-creasing their accuracy and high-speed. The of the device in question are considered. (U.S.S.R.) of

Study of Weak Surface Effect on Remagnetization of Ferre-Magnetic Plate, M. G. Vitkov. 'Avto. i Tel." Oct. 1960. 8 pp. The paper deals with quantitative study of remagnetiza-tion of thin enough plane coils with rectangu-lar hysteresis loop. (U.S.S.R.)

Automatization of a Cloud Chamber, F. Juster. "el. & auto." Sept. 1960. 5 pp. The possibil-ities of a classical Wilson chamber can be considerably enlarged through the addition of electronic control circuits. France. various

INDUSTRIAL ELECTRONICS

Electronics in the Automobile Industry, M. Cuiot. "el. & auto." July 1960. 3 pp. The use of semiconductors leads to worthwhile improvements in the field of electronic ignition. Numerous other applications are possible, as for example purely electronic RPM-meters and automatic speed regulators. (France

X-Ray Inspection of Hot Steel Billets Daring Rolling, W. J. Oosterkamp, et al. "Phil. Tech." #10, 1960. 5 pp. (Netherlands, in English.)

MATERIALS

Ferrite Pilters With Variable Tuning, B. M. Beskorovainy, et al. "Radiotel" No. 9, 1960. 7 pp. Tuned RC and LC filters presently used in spectrum analyzers have many: shortcom-ings, among which are limitations in the low-frequency audio reases. Multi-section filters using ferrites with high permeability. intern using territes with nigh permeability, whose reversible permeability depends very closely and rigidly on the magnetizing voltage, have considerably improved low-frequency audio response of spectrum analysers. In this article, tunable filters are considered with ferrite core inductors. Tuning is accomplished by changing the magnetizing current. Temperature compensation of ferrite filters is pre-sented. Data are given for a ferrite filter spectrum analyzer. (U.S.S.R.)

A Measuring Facility for the Determination of A Measuring Facility for the Determination of the Permeability Tensor and the Dienectric Constant of Perrites at 3000 Mc, W. Novak, "Hochfreq," June 1060. 9 pp. A new measur-ing facility is described that is used to deter-mine the properties of ferrites. The theoretical basis is given to establish the meaning of the permeability tensor of premagnetised ferrites, and methods for its measurement are disand methods for its measurement are dia-

International ELECTRONIC SOURCES-

cused. The design of a new text facility for circularly polarised resonators is described. The measured bandwidth and center frequency of loaded and unloaded resonators are presented. (Germany.)

Standard Electronic Parts Specifications, L. F. Bennett. "Brit. C&E" Aug. 1960. 8 pp. This article deals with the use and advantages of standard specifications for electronic parts and materials. Their value to both user and manufacturer are briefly discussed. The aims and intent of the new high reliability specifications are included. (England.)

Zone Refining, E. F. G. Herington. "Endeavor" Oct. 1960. 6 pp. Zone refining is a process in which a rod of impure material is purified by heating it an as to cause a molten some to pass along its length. It was originally developed for preparing germanium for transistors. Subsequently the technique, which has in certain applications marked advantages over both distillation and chromatography for the production of a virtually pure material, has been applied to a wide variety of subvtances. This article describes the theory of zone refining, the apparatus used, and some of its supplications. (England.)

A Method of Growing Dislocation-Free Germanium Crystals, B. Okkerse. "Phil. Tech." #11, 1980. 6 pp. Dislocation-free germanium crystals can be produced by the pulling method of the diameter of the crystal grown from the seed in initially reduced to 1 or 2 mm. This diameter is maintained over a length of about 20 mm, after which it is gradually raised to the desired value. "Netherlands, in English."

The Separation of Silicon in Vacuo by Thermal Decomposition of Silicon-Tetraiodide on a Hot Filament, H. Kern. "Vak. Tech." Sept. 1960. 7 pp. The speed of separation of silicon in vacuo by thermal decomposition of silicontetra-iodide has been measured. The measurements were carried out in an evacuated and wealed-off vessel, wherein 4 electrically heated tungsten wires were mounted. (Germany.)

New Developments in Permanent Magnets, J. L. Salpeter. "Proc. AIRE." Feb. 1960. 7 pp. The theory of magnetic domains provides an explanation of the magnetic properties of Ticonal and points the way to further Improvements. (Australia.)

MEASURE & TESTING

Pulse Shifting in Magnetic Recorders, Y. P. Drobyshev. "Radiotek" No. 9, 1960. 3 pp. A method is described for pulse shifting in magnetic recorders to record high-frequency signals on magnetic tape. Several arrangements in the time relation between the shift pulse and the magnetic pulse are shown to produce varying sensitivities as illustrated in the hysteresis loop produced by the shifted pulse. In each case, the residual induction is proportional to the amplitude of the pulse, provided the shifting and signal pulses are synchronised. The result is that the frequency of the magnetizing current need not be several times the frequency of the signal, as is the ease with other magnetizing methods, where the lossen become too great in the high frequency range. (U.S.R.)

Synopsis and Comparison of Known Methods for the Detection of Periodic Pulses in the Presence of Noise, D. Haussig. "Hochfree," June 1960. 9 pp. It is abown that almost all the methods now used to improve the S/N ratio in radar set work on the same principle. A comparison signal is introduced that is coherent to the useful signal but incoherent to the noise. Theoretical and practical investigations abow that methods derived from the ideal integrator are superior to those that employ the short time trans correlation function. "Germany."

Optimum Band for Spectrum Analyzers, N. I.

Uryev, "Radiotek" No. 10, 1960. 5 pp. Simple formulae are presented which allow to perform preliminary design of an analyser. These formulae establish the relationship and dependence among the basic parameters of the analyser: the rapidity of the analysis, the static and the dynamic pass bands. (U.S.S.R.)

An Automatic Particle Counter and Simer. H. A. Dell, st al. "Phil. Tech." 29, 1960., 15 pp. The problems involved in the automatic counting and sizing of particles are outlined in an introductory section to this article. Various possible scanning systems are described, together with various methods to avoid or allow for the effects of multiple or lumped counts. (Netherlands, in English.)

Transistorized Counter Using Lewis Cycle, P. Balaskovic. "el. & auto." Sept. 1960. 4 pp. The design of a decade counter and of the associated display circuitry can be simplified through the use of multistable circuits. (France.)

Measurement of Arterial Bload Pressure. J. R. Goding. "Proc. AIRE." July 1960. 2 pp. Arterial blood flow is described in terms of electrical snalogue. It may be measured by a small transducer consisting of a moving territe core which varies the coupling between two coils. (Australia.)

Transisterised Industrial Detector, P. Sirven, "el. A auto." July 1960. 3 pp. Three examples, particularly interesting for industrial users are presented. They are an electronic timer, s temperature regulator and s photoelectric detector. (France.)

Automatic Measurement of Rpeed of Visual Referse. "ei. & auto." July 1960. 8 pp. This article describes a measuring equipment using two industrial television cameras. Briefly, li records eye orientation and the speed with which this orientation varies as a function of external stimuli. It is based on the method of corneal reflection. (France.)

The Quantitative Measurement of Molecular Beams of Small Intensities by Partial Neutralization of the Electron Space Charge is a Diede, II. Fuchs. "Vak. Tech." Sept. 1960. 5 pp. In order to measure quantitatively impulse-modulated molecular beams a space charge diode by Kingdon was used which proved to be suitable as a general detector for molecular beams. (Germany.)

A Survey of Wave Analyzers and Distortion-Pactor Meters, R. Brown. "Brit, C&E." Oct. 1960. 6 pp. Most of the wave analyzers and distortion-factor meters made in this country have been designed for use at audio frequencies. There are, however, several instruments available which have been designed for use at line carrier frequencies. There is one instrument which has been designed for use in the h.g. range, and one instrument which has been designed for use in the vhf range. (England.)

A Continuous Recording Method for Determining the Vertical Gradient of the Refractive Index in the Free Atmosphere, H. P. Barthelt and A. Rombach. "Nach. Z." Oct. 1960. 8 pp. The verticle gradient of the refractive index has been examined by means of a continuous recording of meteorological data at a measuring station along a radio path 250 km long. (Germany.)

The Lower Cut-off Frequency of a Stabilised Amplifier Stage with a Transistor or a Pentede. W. Steimle. "Nuch. Z." Oct. 1960. 2 pp. The loci curve of the mutual conductance in a transistor amplifier stage in grounded emitter circuit with an RC network in the emitter line is explained and the lower cut-off frequency is calculated. (Germany.)

Radiation Detectors and Their Physical Fandamentals, F. H. Rinn. "El. Rund." Oct. 1960. 4 pp. The paper deals essentially with the design and mode of operation of ionization chambers and counter tubms. (Germany.) Oscillorcopic Display of Counter Twbe Characteristics, H., Schmidt and H. Schmidt. "El. Rund." Oct. 1960. 1 pp. A circuit permitting observation of the characteristic of a counter tube on the cathode-ray oscilloscope (CRO) serven in described. [Germany.]

Methods and Applications of Extreme-Value and Extreme-Location Selection. H. Kaltonecker. "I" Sept. 1960. 5 pp. In a plants it is nerumary to Benaure a variable in various places at the same time. If it is a question of automation the highest and the lowest measured values and the location of measuring are of particular interest. In this article the author discusses the problems involved in the selection of such extreme values and the principal methods applied. (Germany.)

Electronic Mothods for the Interformometric Measure of Langths, G. Ruffino. "Alta Freq." Aug. 1960. 23 pp. After a short mention of the general laws and proceedings of interferometry, the photoelectronic transducer is described, transforming the illumination of an interforence pattern into an electrical signal. The description of the proceeding for length measurement using photoelectronal interformmetric method adding optical paths is then siven. (Illar).

Problem of Must Rational Choice of Photoelectric Fluxameter Circuit, I. G. Gutovsky. "Avto. i Tel." Oct. 1960. 9 pp. The theory of photoelectric fluxmeter-integrating amplifiers with photoelectrooptic amplification is given. Photoelectric fluxmeters of different types are compared. It is shown that the highest integration accuracy and high-speedare obtained in the derivative negative feedback photoelectric fluxmeter with the least time constants in the loop. (U.S.B.R.)

Semicanductor Strain Gauge, W. P. Mason. "el. & auto." Sept. 1960. B pp. In the course of a study of the transistor effect, conducted to provide a better understanding of the proverties of semiconductors, physicists have measured the piezoresistive effect tin elements like silicium and germanium. To their surprise, the piezoresistive effect turned out to be su large that it has permitted the design of highly sensitive devices for strain smasurenent. These new devices of an ideal strain gauge. (France.)

RADAR. NAVIGATION

Altitude Telemetry in Canjunction with Air Traffic Control, D. G. Terrington. "Brit. CAE." Sept. 1960. 6 pp. It is troe that radio altimeters are available for specific functions such an accurate height indication above ground on final approach to land and when navigating over mountainous terrain, but they are not in general use for navigation. (England.)

Prospects and Limitations in the Use of Low Frequencies in Active Bonar, G. Pasicazu. "Alta Freq." Aug. 1960. 14 pp. The author examines the laws of variation of the different factors determining the range of a sonar. These laws are introduced in the sonar equation obtained in another report by the author and the rangew for frequencies between 2 and 30 kHz are calculated. (Italy.)

Telecontrol of Spatial Vahicles. M. Libovitz. "el. & auto." Sept. 1960. 6 pp. Space navigation will soon be a practical problem. Right now, proven practical solutions exist for the telecontrol of missiles and satellites. Guidance may be initial, median, terminal, or a combination of these types. Also, radar may be combined with inertial guidance to provide better overall performance. (France.)

EXTRA COPIES

A limited number of copies of the follow. ing articles from back issues of El are available, free of charge. For copies write: Reader Service Dept., Electronic Industries, 56th & Chestnut Sts., Philadelphia 39, Pa.

JANUARY ING ISSUE

- Spectrum Analyzer Supplies Permanent Record" Applying Transistor "T. Parameters" Thermal Characteristics of Silicon Diodes" (Part 1 & 11) Printed Diode and Resistor Matrices" (Part 1 & 11) The Case for DC Restoration" Transistor P.A Amplifier" The Importance of International Standards"

FEBRUARY ING ISSUE

- General Purpose Digital Computing Systems" "TPR" Recording Nomographs Simplify Electron Tube Design" (Part 1 81) Designing Input Trigger Circuits" "Do kw Transmitter Has New Design Ideas" The R & D Personnel Administrator

MARCH ING ISSUE

APRIL IMA ISSUE

- "How Coriols Works . . . When Watching Missile Remember" "RC Filter Networks in Missile Control" "Applying Microwaves to Space Problems" "Thermistors . . . Key to Bio-Medical Measuring in Space"

- in Space" "Selecting and Using Bonded Wire Strain
- Gages RFI in Gages" RFI in Satellite Communications Systems" The Challenge of Space . . What We Have and What We Need"

JUST

PUBLISHED!

FREE, COMPLETE

"Molecular Electronics" "Controlling Alternator Frequency" Accurate Tracking for Radiotheodalites" "The AC Potentiameter—New Circuit Component" "Build a "Suitcase" Studio"

- "The Sarch for New Electronic Mortes: "The Sinistor . A New Samiconductor De e" "New Uses for Fluggete Principle" Determining Transistor Power Dissipation "Engineer's Notebook #5. Conversion "Chart"
 - Chart" System Analysis, Using Digital Computers' Build a WWY Time Signal Receiver "The 50th State . . What is It's Electronic Future?" Where Are We Gaing with Semiconductors and Molecular Electronics?"

SEPTEMBER ING ISSUE

AUGUST INA ISSUE

MAY ING ISSUE

JUNE IND ISSUE

JULY 1960 ISSUE

"Introduction to Boolean Algebra "Selecting Coaxial Cable"

The cost of the Albyd"
 "A Dauble Coil Relay With One Working Gap"
 "Heat Sints for Power transistor."
 "Current Stabilizer Hos Wide Dynamic Range"
 "Radar Tester Needs Wide Band AFC
 "Pradicting the Antenna's Role in RFI
 "Page from an Engineer's Notebook: No. 52-Rectification of Narrow Band Noise"
 "Ultrasonic Welder Design Considerations

"Colculating Bandwidths for Matching Networks" "How to Analyze Control Systems with Time "The Transistor Guard . . . A Solid State Circuit

Breaker' 'Compactrons . . New Series of Multifunction Tubes'

Tubes" "Determining Cathode Warm-Up Time" "Analysis of RFI in Transmission Lines and Filters" "Searching for New Electronic Markets" "Design tor a Transistorized Closed Court TV Camera" "How to Write Instruction Manuals"

- SEPTEMBER 1960 ISSUE "Conversion of Binary of Analog Codes" "Mapping Small Magnetic Fields" "Transistor Circuits . . Driving the Beam Switching Tubes" "Engineer's Notebook 255 "For Computer Design . . Storing with The Films" "Controlling RFI Susceptibility in Receivers "Spectrum Analysis of Time Division Steren" "How to . . . Duplicate Technical Papers"

OCTOBER 1940 ISSUE

NOVEMBER 1960 ISSUE

NOVEMBER 1960 ISSUE "Fature Trends in Microwave Beam Tubes" "Determining Temperature Rise of Coasial Lines" "Braiding Detectric Constanti" "Finding Reder Pattern Equations with a Com-puter" "Designing Rotary Waveguide Joints" "Build Antenna Test Parabolas—Fast" "Mate Your Own Waveguide Bends"

Eastern Research Center

Robertshaw-Fulton has opened an Eastern Research Center on a 20acre site in King of Prussia, Penna., 20 mi. from Philadelphia.

The \$600,000 one-story structure has 18,000 square feet, providing laboratory, shop, office, library and receiving facilities.

Eastern Research employs about 50 persons, active in chemistry, physics, electronics, mechanics, control systems, gas technology, air-conditioning, product design, and the model shop.

IT'S ELGIN ADVANCE'S ABILITY TO BUILD A RELIABLE QUALITY RELAY LIKE THE SENSITIVE MQ SERIES.

THE MQ SERIES CRYSTAL-CAN-SIZE HERMETICALLY SEALED RELAY IS AVAILABLE IN THREE SENSITIVITIES TO MEET VARYING MILITARY AND INDUSTRIAL REQUIREMENTS. THESE CURRENT-OPERATED RELAYS COME WITH PLUG-IN PINS FOR PRINTED CIRCUIT USE, SOLDER HOOKS AND 3-INCH LEADS AND A VARIETY OF MOUNTING ARRANGEMENTS. ALL **CONNECTIONS ARE SPACED ON 0.2** INCH GRID.

SPEC	MQA	MQB	MQC
Pull-in Power (@ 25°C)	250 MW	100 MW	50 MW
Contect Rating (Res @ 28VDC or 115VAC)	2 amps	1 amp	1 amp
Operating and Release Times	5 MS ea	6 MS ea	7 MS ea
Shock	50G	35G	206
Shock Contact Arrany Temperature Dimensions: 0 0.396 in. ti Weight: 0.6 o:	_50G gement: 0 Range:6 1.875 in. 1.k t.	356 PDT 5°C to + h x 0.800	206 -125°C) in. w x

LLGIN AUVANGE 2435 N. Naomi St., Burbank, California

Circle 115 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

BROADEST LINE IN THE INDUSTRY

High Voltage Types

electronic corporation

Albion St., Wakefield, Mass

Circle 120 on Inquiry Card

Test Methods

Transitron

Fundamental Rectifier Circuits

Т

Contents: - Selection Chart

Write today:

***** * *****

IN EVERY FIELD THERE IS ONE FOREMOST NAME IN SONIC ENERGY, THAT NAME IS BENDIX

THE QUESTION IS: CAN YOU AFFORD TO BE <u>without</u> sonic Energy cleaning?

Some people shy away from Sonic Energy Cleaning (without investigating it) because they feel they may not be able to allord it.

Truth is—if Sonic Energy can be applied to your cleaning problem effectively—you can't afford to be utihout it. In most Sonic Energy Cleaning installations, the savings realized the first year more than pay for the original cost—to say nothing of the additional advantages of fewer rejects and improved product performance.

As the pioneer and foremost authority on Sonic Energy, Bendix¹⁰ has *proced* these facts over and over. That's why today we can put so much experience to work on your problems.

One example of our ability to serve industry is our Sonic Energy Applications Laboratory. It is unequalled for facilities and practical production experience to provide the most efficient answer for cleaning applications that can use Sonic Energy to advantage.

To such professional capabilities, add the most complete and versatile line of Sonic Energy Cleaning systems, and you have the full reason why so many companies with a cleaning problem come to Bendix for the answer.

> FREE! REPORT ON SONIC ENERGY CLEANING NOW AVAILABLE

Explains the principles and warkings of the process in detail. Describes and analyzes typical result. Outlines five-step plan that will help you determine feasibility of Sonic Energy Cleaning for you. To get your copy

write: PIONEER-CENTRAL DIVISION, THE BENDIX CORPORATION, 2727 HICKORY GROVE ROAD, DAVENPORT, IOWA.

Russians "Sterilized" Moon Rocket

An article from a Soviet magazine translated by the U. S. Dept. of Commerce, Office of Technical Services, says that the Russians were careful not to transport earthly microbes, which could contaminate the moon, when they made their moon shot in Sept. 1959. They hope "in the more α r less near future" to determine whether there is some simple form of life now on the moon's surface or just under the surface.

The article, "The First Flight to the Moon OTS 60-31,250," (available from the Dept. of Commerce, Washington 25, D. C., for 50ϕ) says they also landed three pennants on the moon. The author did not say how the pennants were packaged to prevent damage.

One object of the shot was to determine whether the moon has a magnetic field and to measure the intensity of radiation. No magnetic field was determined nor were there radiation belts. Measurements of currents created by particles of ionized gas were made. There were regions between the earth and the moon where the concentration of ionized particles is less than 100 particles per cubic centimeter. These currents increased upon approaching within about 10,000 kilometers of the moon.

New Electronics Division

The J. C. Carter Co., 671 West 17th St., Costa Mesa, Calif., has formed a new electronics division. The division will market a line of instruments for precise measurement and control of magnetic fields. Products include current regulated power supplies ranging from 1 to 15 kw for generating magnetic fields and test instrumentation for magnetic fields ranging from low fields found in geophysical applications to very high intensity fields found in modern physics labs.

Cleaning Super-Clean

For "White Room" cleanliness, even dust-removal becomes a major project. The old dust-rag gives way to super-efficient chemically impregnated mops that not only remove dust but also lay down a film of bacteriakilling chemicals.

"Sani-Dust," manufactured by Talb Industries, Phila., Pa., is one that not only fulfills these functions but claims to cut cleaning time by one-third.

Magnetres Input Connector Cat. 9850

Fits Miniature Magnetrons zuch as L-3028B. Beryilium copper heater and cathode contacts assure dependable contact. Sillcone cup fits snugly over magnetron input end. Leads insulated with silicone.

Call or write for bulletins on special sockets, magnetron and other connectors

Circle 125 on Inquiry Card ----

SPERRY **Tunnel Diodes**

for engineering test or application

> Any quantities available for immediate delivery from any Avnet affice.

> > Call your Avnet Applications Engineer

For dependable service

and immediate delivery" ΑΥΝΕΤ

AVNET+70 State St., Westbury, N. Y.-ED 3-5800 AVNET+45 Winn St., Burlington, Mass. — BR 2-3060. AVNET+4180 Keltering Blod, Dayton 39, Ohio-AK 8-1458 AVNET+2728 M. Mannheim Rd., Meirose Park, III.-GL S-8160

Circle 127 on Inquiry Card - Circle 126 on Inquiry Card

Pentagon TV

(Continued from page 99) it arrives. Any data received can be recorded on video tape.

One output circuit feeds a wallmounted 27-in. picture monitorloudspeaker unit in the Emergency Action Room for off-the-air TV and Weathervision information. Another feeds two TV-type visual projectors for portrayal on the 12 sq. ft. wall screens, which also have associated loudspeakers. Another supplies a mobile twin 27 in. monitor assembly as a backup circuit

High Definition V-515 Camera in the joint War Board Room

for the projectors. Two video-audio electronic-switcher outputs feed 2 other mobile twin-monitor assemblies in the Conference Room. Each consists of 27-in. monitors with integrated audio amplifiers and loudspeakers. A spare output provides for checking all incoming programs over a separate 17-in. monitor and loudspeaker. A miniature transistorized camera with electronic viewfinder for live pickup will be used in the lecture and map rooms.

Two high-definition V-515 Vidicon cameras, with 600-line resolution are suspended above the teleprinter machines continuously scanning incoming teleprinter copy. Outputs are connected through individual Control Units and Switcher to any of the monitorloudspeaker units.

Reed Frequency

(Continued from page 91) indication, which gives the most correct result (Fig. 3B).

For higher accuracy, the counter is set to measure ten periods. With the prototype, readings are reproducible within one tenth of a percent of frequency.

RUTO FORMER. Model UF2R, with optional handy hopper feed attachment, automatically cuts and forms pig-tails (leads of resistors, capacitors, etc.) up to 5000 par hour. This versa-tile machine will cast and shape any concerballe lead form on any component body with castial leads. Mandles short-run iction economically. Pays for itself quickly in time saved nd quality of work.

ECONOMY BENDER, Model ECB, cuts and bends all leads automatically to any length up to 5000 pm hour. Can be resel in minutes. Prepares leads of diodes and resistors for fast assembly in printed circuits or conventional wiring. Adjustable card feed chute permits rapid loading. Stellite tipped cutters assure trouble-free performance.

TRANSISTOR STRAIGHTENER, Nodels AL3S, straightens the long leads of transistors automatically all more than 1000 per hour, and ejects them from the machine. Leads are not rolled, twisted, or electrically atlected in any way TRANSISTOR NOTCHER-CUTTER, Model AL3NS, straightens non-status with endowed events and a status of the properties of the properties of the properties of the properties are shaped to fit or snap procisely into the proper holes of the printed circuit.

WRITE FOR DETAILED SPECIFICATION SHEETS TODAY.

196

Advanced design

.. I N

HELIPOLE

The ANDREW Type 902 HELIPOLE* is the first basically new 30.50 mc fixed station antenna to appear on the 2-way radio scene in the past 12 years. Type 902 employs a new design concept that combines improved performance with mechanical convenience. It is the result of an extensive ANDREW development program.

HELIPOLE CONSTRUCTION

The foreshortened radiator employs a bifilar helical element which is encased in Fiberglass for strength, durability and corrosion resistance. One helix is grounded, providing a static drain path. The other is fed. Ground rods employ single helix conductors which also are embedded in Fiberglass. Size reduction is shown by comparing the 57 inch radiator of Type 902 with 101 inches of a conventional antenna at 30 mc. Ground rods are also shortened by a proportionate amount.

Lightweight and strong – with a maximum total weight of 13 pounds, Type 902 is designed to withstand 30 psf load with $\frac{1}{2}$ inch of radial ice. The focal point of this mechanical strength is found in an aluminum casting to which ground rods and radiator are bolted with stainless steel hardware. Direct mounting is provided for members from 1^{3}_{4} to 2^{1}_{2} inches in diameter. VSWR of this unity gain antenna is less than 1.5.

Economically priced ANDREW Type 902 is the best performing, corrosion resistant high wind load antenna on the market.

Write or call your ANDREW sales engineer for complete information or request Bulletin 8467.

ABOVE ALL AN ANDREW ANTENNA...

Circle 100 on Inquiry Card

UNIPOLES HIGH GAIN CORNER REFLECTOR

YAGI

P.O. BOX 807 CHICAGO 42. ILLINOIS

Besten * New York * Washington * Los Angeles * Toronte

HELLEN

ELECTRONIC OPERATIONS

The Systems Engineering Section of ELECTRONIC INDUSTRIES

JANUARY 1961

SYSTEMS—WISE

P The National Aeronautics and Space Administration is planning a new lab facility to simulate outer space and atmospheric reentry. It will be part of NASA's new \$18 million Goddard Space Flight Center at Greenbelt. Md. Design of the lab is being handled by Propulsion Test Facilities Div., MB Electronics, New Haven, Conn.

Construction contracts for the world's longest microwave beam system have been awarded to Western Union Telegraph Co., New York. The coast-to-coast net will be completed late in 1961. It will provide a broad band to be leased to the U.S.A.F. as well as a capacity for more than 50,000.000 miles of telegraph channels for Western Union's wire and data processing systems, facsimile, etc.

An IBM 704 Computer is being used at the Standard Oil Co. (Indiana) refinery in Whiting, Indiana. The unit is being used to keep a 140,000 barrel/day distillation unit operating at peak efficiency. Operating controls. based on computer figures, are now handled manually, but next year this operation will also be taken over by the computer. The distillation unit separates crude oil into 10 different streams supplying 6,000,000 gallons of products.

An automatic telecommunications system links headquarters of Safeway Stores, Inc., with field offices on the west coast and with retail distribution centers from Arizona to British Columbia. The net consists of over 2,000 mi. of leased circuits. System, developed by Kleinschmidt Div., Smith-Corona Marchant, is used for inventory control.

▶ The General Electric Co.'s new "Discom" communications system enables pilots and airplane crews to see messages on their instrument panels. The system, designed by GE's Communication Prod. Dept., Lynchburg, Va., is for use where voice conversations might be indistinguishable because of poor signals or high noise conditions. It will be tested by the Air Force.

MISSILE TRACKING SYSTEM

Battery of precision antennas inside cluster of white radomes at Cape Canaveral, Fla., enables Air Force to track missiles with an accuracy of a few feet at hundreds of miles. System is the Azusa Mark II, developed by Convair Div. of General Dynamics Corp.

ELECTRONIC INDUSTRIES . Jonuary 1961

Cubic Corp., San Diego, Calif., under contract to the Army Map Service, Corps of Engineers, has designed and built an electronic system called Geodetic SECOR (SEquential Collation of Range). It accurately pinpoints targets on the earth's various land-masses and provides global and space-vehicle navigation with more precise facts on the earth's shape and gravitational field.

NEW LASER SYSTEM

Raytheon Co.'s new optical system achieves laser action with less than 1/10 the power input formerly required. Ruby rod (center) and pencil-shaped flash tube (below) are positioned on focus lines of elliptical reflector. Nearly all light reaches ruby.

▶ A large-scale data acquisition and processing system built to handle high-speed test data at the Allegany Ballistics Lab near Cumberland. Md., has successfully completed acceptance tests. The Lab is one of the development centers for the two-stage submarine-launched Polaris missile. The system, built by Minneapolis-Honeywell Regulator Co., can sample 10,000 items of data per sec. in making 167 simultaneous measurements of variables.

"Construction of North America's largest radar defense system, BMEWS, is essentially on schedule," says D. Brainerd Holmes, Manager of the project for the RCA Missile and Surface Radar Div. The system will consist of radar bases at Clear, Alaska; Thule, Greenland; and in the United Kingdom.

▶ Space Electronics Corp., Glendale, Calif., has a contract, \$116,000, from the Air Force to conduct studies and experiments in sub-surface propagation of electromagnetic waves. The company has an experimental station buried deep in the desert. They will develop propagation theory, deriving mathematical expressions for the fields of a system where receiver and source are imbedded in the earth's crust.

• The Gulf States Utilities Co. is installing a solid-state Bailey 750 information system at the Sabine Power Station in Orange County, Texas. The system, built by Bailey Meter Co., 1050 Ivanhoe Rd., Cleveland, continuously scans, linearizes, ranges and digitizes all inputs and stores the digital values on a magnetic drum. Logging and alarm functions are included.

Fig. 1: Oscillator uses series-resonant overtone crystal. Fig. 2 (above): Basic oscillator circuit is shown minus crystal.

Developing an Oscillator

THE demand for mobile radio communications has resulted in intensive use of all three of the land mobile frequency bands. (25-54, 144-174, 450-470 MC.)

Motorola recently introduced a new unit for operation on these channels. The equipment is new electrically and mechanically. Included in the features is a very stable series - resonant overtone crystal oscillator in the transmitter.

The three major goals in the oscillator development project were:

- a. To design a very stable crystal control oscillator for the 450-470 MC transmitter used in mobile communication.
- b. To reduce the crystal drive level to 2 mw or less in order to improve life and reliability of the crystal.
- c. To design a circuit, which will have warp frequency = 60 parts per million, without degrading the stability and reliability of the oscillator.

Which Oscillator?

The initial decision, before proceeding with the circuit design, involved selection of either the series-resonant or parallel-resonant mode of crystal operation in the oscillator.

Parallel-Resonant crystal oscillators are used primariy with fundamental-mode crystals at frequencies below 20 MC. Series-Resonant crystal oscillators are most widely used for overtone operation and for higher frequencies. For maximum frequency stability it is generally preferable to operate a crystal unit at its series-resonant frequency.

System design dictated a multiplication factor of 24 from oscillator to final. In order to cover the 450-470 MC range, the oscillator had to operate from 18.7 to 19.6 MC. These frequencies are just on the border where series-resonant mode is more practical than parallel-resonant mode of crystal operation.

The frequency of a crystal varies inversely as to its thickness. For very high frequencies, the crystal would have to be very thin and might easily be broken. The frequency at which a crystal becomes too thin to be practical or durable will vary with the crystal material and the type of cut that is used. The practical limit for quartz crystals vibrating on a fundamental mode is approximately 15 MC; however, it is possible to grind a quartz plate to operate as high as 20 MC.

To meet FCC specifications, $\pm.0005\%$ frequency stability was considered to be a primary objective. Because of better crystal producibility (yield), frequency of operation (18-20 MC), and maximum oscillator stability, a seriesresonant overtone crystal oscillator was chosen. Besides being more economical, overtone crystals also have a higher Q than fundamental crystals. The schematic diagram of the oscillator appears on Fig. 1.

The Basic Circuit

Selection of the basic oscillator configuration was next. It was decided to use the electron-coupled, grounded plate, Colpitts Oscillator It is versatile, easy to operate, adaptable to a wide range of frequencies and it has somewhat better frequency stability than the Hartley Oscillator.

In this type of circuit, the screen grid serves as the anode. The r-f path to the capacitor C_2 (Fig. 2) in the tank circuit is completed through the screen-grid capacitor C_4 . The plate of the tube serves only as an output electrode. Since the screen-grid capacitor blocks the dc voltage and passes the high-freThe design and development of a stable, reliable crystal oscillator is a problem made a little harder by new FCC regulations for mobile communications. Here is an engineer's thinking behind the design and development of an oscillator for use under rugged conditions.

By NICK GONCHAROFF

Communications & Industrial Electronics Div. Motorola, Inc. 4501 W. Augusta Blvd. Chicago \$1, III.

for 450-470 MC

quency alternating voltage, the screen grid is in effect grounded for the r-f voltages. The plate is thus shielded from the oscillatory section of the tube, thereby minimizing the plate load impedance variations from reacting on the oscillator.

Since the screen grid is constructed of mesh or fine wire, some of the electrons drawn to it will pass through. As the plate is maintained at a higher potential than the screen grid, these electrons will be drawn to the plate. The frequency of the ac component of the plate current is therefore the same as the oscillator frequency. Thus energy is delivered to the output load through an electron stream. Because the coupling medium is an electron stream, the circuit is called an electron-coupled oscillator.

Fig. 3: Equivalent electrical circuit of a guartz crystal in a holder.

ELECTRONIC INDUSTRIES · January 1961

In Fig. 2, the cathode, control grid, and screen, along with the tank circuit, act as a conventional triode Colpitts Oscillator in which the screen acts as a plate for the oscillator. The screen r-f bypass capacitor, C_4 , isolates the triode section from the plate of the tube and supplies feedback across C_2 , the ac cathode load.

The tank circuit is C_1-C_2-L . The inductance of L is varied by means of a powdered iron slug to cover 18-20 MC range. The r-f choke, L_1 , provides a dc return path to the cathode for the anode current, while providing a high r-f impedance.

Most of the electrons leaving the cathode reach the plate which is at a higher potential than the screen grid. The ac component of the plate current is coupled to the load by capacitor C, while R_1 blocks this same ac (r-f) current from the B+ supply.

Because the grounded-plate configuration furnishes no voltage gain, oscillation can occur only if a step-up transformer is inserted between the cathode and the grid. Tank T fulfills this requirement. It acts as auto-transformer; also it becomes a selective network for the third mechanical overtone of

(fr-f'r) = CHANGE OF SERIES RESO-NANT FREQUENCY DUE TO SERIES INDUCTANCE.

Fig. 4: Effect of adding series inductance.

the crystal, when the crystal is added in the circuit of Fig. 2. The tuning range of the tank T is from 18 to 20 MC. By varying the capacitance of C_1 and/or C_2 the voltage across the tank circuit may be divided to produce the voltage drop required across C_1 for proper grid excitation.

During part of each cycle of alternating current in the oscillator the grid is driven positive. To prevent the tube from drawing an excessive amount of plate current during this portion of the cycle, practically all oscillator circuits employ grid-leak bias.

Any alternating voltage across the grid capacitor will vary the grid oscillation voltage. In order to limit the voltage across the grid to a minimum, the value of the capacitor should be as large as practical. The maximum value of capacitance is, however, limited by the time constant desired. The time constant should be small enough in relation to the period of the oscillating frequency, so that the bias voltage cannot attain a value high enough to stop oscillations. The grid-bias requirements for the particular tube used will determine the value of the grid resistor. Therefore, in order to

(f' - I) = CHANGE OF SERIES RESO-NANT FREQUENCY DUE TO SERIES CAPACITANCE

Fig. 5: Effect of adding series capacitance.

Crystal Oscillator (Continued)

reduce the time constant, it becomes necessary to use a smaller value of grid capacitance.

Increasing the plate voltage of an electron-coupled oscillator will cause the frequency of oscillation to change. Increasing the screengrid voltage of an electron-coupled oscillator will also cause the frequency of oscillation to change, but in an opposite direction to that caused by a plate voltage increase. If the voltage on the screen grid is obtained from a variable voltage divider, the screen grid voltage can be adjusted so that these two actions balance each other. The frequency of oscillation will then be practically independent of variations in the supply voltages.

After the tank circuit was built, which covered the necessary range (18-20 MC), and after the plate resistor R₁, and the screen resistor R₂ were adjusted for the best operation and the necessary ac output at the plate of the tube, the crystal was placed in the feed-back loop of the basic oscillator circuit shown on Fig. 2.

There are four possibilities of incorporating a crystal frequency control element in the basic oscillator circuit shown in Fig. 2: One between the tank circuit and the ground, the second between the tube cathode and the tank circuit, the third between screen and ground in series with C4, the fourth in series with the tank and in positions of X. Y or Z as shown on Fig. 2.

The first possibility was chosen, since it offered several important advantages:

1. One side of crystal is grounded.

2. Distributed capacitance is minimized.

3. Improved oscillator stability. 4. Crystal drive level easily measured with VTVM.

5. Equipment servicing simplified.

6. Crystal fabrication tolerance easily checked.

Since the standard Motorola crystals, fabricated by the assembly line method, were planned to be used in this oscillator, it was necessary to consider their make tolerances. The specifications call ±.0018% make tolerance for (tolerance on nominal frequency), which is the same as ± 18 parts per million. In other words, the crystal which is marked 20 MC can actually be as much, as 18 ppm below or above 20 MC. However, FCC regulation calls for not more than ± 5 ppm variation from the assigned frequency in 450-470 MC frequency range.

Some way had to be found to adjust the frequency without changing the characteristics of the oscillator. For this reason, a variable reactance was necessary for adjusting the crystal circuit to the exact operating frequency. In addition to the crystal make-tolerance, there is a tolerance for the long term frequency stability (crystal aging), which calls for an additional ± 30 ppm.

Thus the total possible variation

according to the present specifications, is ± 48 ppm. Because of this requirement, a choke and variable capacitor were added in the oscillator feedback loop, in series with the crystal, to provide for warping the crystal =:60 ppm across the entire 450-470 MC operational range of the equipment.

At this time, it is appropriate to mention a few words about the equivalent electrical circuit of a crystal. The crystal resonator is coupled to the electrical network by means of metal films on the quartz (Fig. 3a), which act as electrodes for applying potential gradients (electric fields) to the crystal. As the crystal must vibrate to produce oscillations, it must be connected to its supporting wires only at nodal points around the edge of the resonator plate.

As the vibration of the crystal will induce electrical charges on the two metal films, it is thus possible to consider the crystal and its mountings as an electrical resonant circuit such as shown in Fig. 3b. In this circuit, the capacitor C is analogous to the elastic compliance of the crystal, the inductor L is analogous to its mass inertia, and the resistor R represents the resistance offered to the vibration by its internal friction and other losses. The capacitor C. represents the capacitance formed by the two metal electrode films separated by the crystal as the dielectric, plus the stray capacitances of the holder assembly.

The reactances of L and C will be almost numerically equal to each other at the resonant frequency of the crystal. Since the crystal forms a low impedance circuit element, with a low impedance phase angle, maximum current will flow through the circuit at its resonant frequency, thus causing the magnitude of the crystal's vibrations to be maximum at this

ELECTRONIC INDUSTRIES . January 1961

frequency. When the crystal vibrates at its resonant frequency, the voltage drop across it will be almost minimum and will also be of the same value of frequency as the mechanical vibration.

The equivalent inductance of a crystal is very large in comparison with that of a practical wire inductor for any given frequency, and the capacitance and resistance of the equivalent series arm are correspondingly small.

Because of this high L/R ratio, the Q of a crystal circuit is many times greater than can be obtained from an electric circuit. Greater frequency stability and frequency selectivity are obtained because of the high Q and high L/C ratio of the series resonant circuit CLR, Fig. 3b.

One limitation which has been ascribed to crystal control is its inflexibility for those applications requiring a small frequency adjustment about a nominal value, and it is not always realized that controlled adjustment over a narrow band about the nominal frequency is practicable without seriously degrading the frequency stability of the oscillator. The change is accomplished with the aid of added reactance in series for circuits in which the crystal oscillates at series resonance and in parallel with the crystal for circuits in which the crystal oscillates at a frequency approaching anti-resonance. Considering the case where the crystal element employed in series resonance, the addition of series inductance or series capacitance will cause a change of oscillation frequency, as shown in Figs. 4 and 5. The amount of frequency swing possible with these arrangements is a function of the type of quartz element, mounting. and drive circuit.

The resulting circuit (Fig. 1) had frequency stability of better than $\pm .0001\%$ with $\pm 20\%$ change in B+ and filament voltages across the entire warp range. This is shown in Fig. 6.

Besides the specifications for aging of the crystal and nominal frequency there are specifications for R and C_o of the crystal. Maximum R for overtone crystals in the range of 15-55 MC is 40 ohms. Maximum C_o of the crystal is 7 $\mu\mu$ F. The majority of the crystals used in the oscillator circuit shown on Fig. 1 had C_o between 5-6 $\mu\mu$ F. Capacitance of the holder was around 1 $\mu\mu$ F. Therefore, on the average, the capacitance of the crystal and holder was approximately 7 $\mu\mu$ F. To neutralize this capacitance, it was necessary to employ the choke which was connected across the crystal. Thus the crystal was able to operate exactly on, or very near, the seriesresonant frequency and was able to provide a better frequency stability.

Crystal Drive Level

The same Motorola specifications, which are compatible with military specifications for CR-32/U, call for 2 and 1 mw level of drive for frequencies between 10-25 MC and 25-55 MC respectively. Therefore, when frequency of the crystal is checked in the CI (crystal impedance) meter, the drive

A REPRINT of this article can be obtained by writing on company letterhead to The Editor ELECTRONIC INDUSTRIES Chestnut & 56th Sts., Phila, 39, Pa.

level has to be adjusted to 2 mw for frequencies between 10-25 MC and to 1 mw for frequencies between 25 and 55 MC. In order for the crystal to function properly and have a long working life, the crystal should be driven in the oscillator circuit with the drive level not more than 1 or 2 mw. If the crystal is driven harder than 1 or 2 mw, it will often degrade oscillator frequency stability vs. potentials and temperature.

As mentioned above, one of the advantages of this oscillator is the fact that one electrode of the crystal is grounded. This arrangement enables us to measure the voltage across the crystal when the crystal is vibrating at its series resonant frequency. It can be accomplished by connecting a VTVM across the crystal and varying the warping capacitor C₅ (Fig. 1) while observing a dip in the voltmeter reading, which occurs on the seriesresonant frequency of the crystal. Knowing the resistance of the crystal, we can calculate power dissipated in the crystal using the formula:

 $\mathsf{W}^+ = \frac{E^2}{R}$

When the crystal with its warping components L₈ and C₅ was inserted into the feedback loop of the basic oscillator circuit, the power dissipation in the crystal was more than 10 mw. To reduce level to 1 mw, it was necessary to add R_4 (220 ohms) in the cathode circuit and R₅ (8200 ohms) across the tank circuit. Besides reducing drive level on the crystal, R₅ also reduced the Q of the tank circuit, which in turn minimized frequency change due to changes in tank circuit elements with temperature changes.

After the addition of R₄ and R₅, the oscillator circuit was doublechecked for free run, operating frequency range, warp frequency, ac output and frequency stability. When working on the development of a new oscillator circuit, it is advisable to measure every individual component separately and to check all tolerances of the component before placing it into the circuit. During the work on the warp and on the stability of this oscillator, it was noticed that the two different chokes which had 4uH and 3.85uH inductance respectively, acted in the circuit very differently. Not until the distributed capacitance of each choke was measured, was it known why they acted so differently. The distributed capacitance of the 4µH choke in this case was 4µµf, while the distributed capacitance of the 3.85µH choke was less than lunf.

Temperature Compensation

If one had to compensate an oscillator circuit which operated on one particular frequency and did not have any warping components. there would be no problem. But in this case it was required to compensate an oscillator circuit which covered the range from 18 to 20 MC; in addition it had the warp frequency of \pm 60 ppm. Therefore, there was a necessity to check the compensation for at least three points (f, the resonant frequency of the crystal unit; f,+60ppm; $f_r - 60$ ppm) at 18 MC and at least three points at 20 MC. Besides,

ELECTRONIC INDUSTRIES - January 1961

Soldering is EASIER FASTER BETTER with American Beauty Soldering Tools

American Beauty electric soldering irons are the highest quality made. The finest engineering, best materials and on-the-job experience since 1894 is yours with every American Beauty. There is a right model, correct tip size

Automatic devices for controlling tip temperatures while iron is at rest prevents overheating of iron, eliminates frequent retinning of tip, while maintaining any desired tempera-ture. Available with perforated steel guard to protect user's hand.

Crystal Oscillator

this information was needed for several oscillator circuits, to insure the repeatability and reliability of the oscillator performance

Motorola has used oversized crystals for years to provide a better frequency stability. Because of a mass production, there are specifications and make-tolerances for the temperature turning point of the crystals, also tolerances for the oven's temperature. Specifications for the crystals are +85±10°C. Because of this, the crystals are being built with the temperature turning points varying anywhere between 75°C and 95°C. The ovens for the crystals are being built with the temperature setting anywhere between 80°C and 90°C.

It happened that an 85°C oven at room temperature could become an 83°C oven at -30°C or an 87°C oven at +80°C ambient. If this oven has a low turning point crystal or a high turning point crystal, the oven, together with the crystal can contribute to the frequency instability as much as ± 2 ppm across the range of the temperature between -30°C and +80°C. Add to those two ppm, the contribution of the circuitry and pretty soon you'll have ± 5 ppm. which is the limit set by F.C.C. In view of this situation, the compensation of the oscillator circuit becomes more important than ever before and also more difficult.

After it was realized that each different combination of the oven and the crystal had its own curve for frequency vs. temperature, the temperature curves were plotted for each combination used in development of the oscillator circuit. This step helped to determine how much instability is contributed by the oscillator circuit alone. After this procedure, it was possible to accurately compensate the circuit over the total warping range.

Frequency Stability

It was mentioned previously in this article, that the primary objective during the development of this oscillator circuit was the frequency stability. It was found that the frequency stability goes hand in hand with the drive level

Circle 131 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

of the crystal, operating point of the tube, the amount of warp and location of the crystal in the circuit. In the described oscillator circuit, the frequency stability vs. $\pm 20\%$ variation of B+ and filament voltages did not vary more than .0001% across the total warping range of ± 60 ppm.

Frequency stability vs. temperature for any setting of warp does not vary more than $\pm 0.0002\%$ for temperature range between -30° C and $+85^{\circ}$ C.

Sibliography:

1. Buchanan, J. P., "Handbook of Plezoelectric Crystals for Radio Equipment Designers."

2. Vigoreaux, J. E. P., and Booth, C. F., "Quartz Vibrators and Their Application."

3. Edson, W. A., "Vacuum-Tube Oscillators."

4. Slurzberg, M., and Osterheid, W., "Essentials of Radio."

5. Schure, A., "Crystal Oscillators." 6. Van Valkenburgh, "Basic Electrunics."

7. Edelstein, H., "Selection and Application of Quartz Crystals," Electronic Industries and Tele-Tech, p. 56, Nov. 1956.

 Gruen, H. E., "How to Design Colpitts Crystal Oscillator," *Electronics*, V. 30, No. 1, pp. 146-150, Jan. 1957.

The Next Step—A Girls' Engineering School

Students at most coeducational engineering schools are predominately male, but there are many attractive careers for women in the fields of engineering, science, and architecture. The big problem, it seems, is that most engineering schools offer very little collegiate life for women—except in the classroom and laboratory.

Rensselaer Polytechnic Institute (Troy, N. Y.) hopes to correct the situation with its new joint program with Russell Sage College (also at Troy). Russell Sage is a liberal arts school for girls. Essentially the program is this: RPI will admit girls to their engineering schools, but the girls will live at Sage. They can thus get their engineering degrees and at the same time enjoy the extracurricular life at both schools.

Since 1945, Rensselaer has conferred only 69 degrees on young women, but there are 9 girls in undergraduate classes now — an indication of growing interest. Each year the school has had to turn away about 100 female applicants because of the lack of facilities. No maximum limit has been established for the number of new students. They will be admitted in open competition with male applicants.

ELECTRONIC INDUSTRIES . January 1961

PUBU-SERVICE - PARIS

IN PARIS PORTE DE VERSAILLES from 17th to 21st February, 1961

INTERNATIONAL EXHIBITION OF ELECTRONIC COMPONENTS

the greatest world meeting in the field of electronics.

FÉDÉRATION NATIONALE DES INDUSTRIES ÉLECTRONIQUES 23, rue de Lübeck, Paris 16° - PAS. 01-16

INTERNATIONAL SYMPOSIUM SEMI CONDUCTOR

DEVICES

sponsored by the

FÉDÉRATION NATIONALE DES INDUSTRIES ÉLECTRONIQUES

and organized by the Société Française des Electroniciens et des Radio-Electriciens

UNESCO BUILDING - PARIS 125, AVENUE DE SUFFREN FROM 20TH TO 25 TH FEBRUARY, 1961

Circle 132 on Inquiry Card

For the finest in **teflon' spaghetti tubing...** specify **chemfluor**"

Chemplast's Tefion spaghetti tubing is specially manufactured to meet the slip-on insulation needs of today's electronics industry. Chemplast tubing provides greater reliability, by virtue of its exceptional dielectric properties, resistance to high temperatures, flexibility and toughness, uniform color, and 100% inspection. With Chemplast spaghetti tubing you aet all these advantagess

• CERTIFIED QUALITY

Closely controlled dimensions, stress-relieved for dimensional stability . . , meets the requirements of AMS-3653A, MIL-1-22129.

• WIDE RANGE OF SIZES:

Class	Size Runge	Typical Wall Thickness (AWG #22)
Lightweight	AWG 28 - 0	0.006"
Thin-wall	AWG 30 - 0	0.010"
Standard	AWG 24 - 0	0.012"

Available in eleven standard colors.

PROMPT DELIVERY of all stock sizes.

• CHEMPLAST EXPERIENCE AND SERVICE

For years a foremost producer of lefton products, Chemplast employs its experience and know-how in the manufacture of spaghetti tubing.

Chemplast also supplies tape, sheets, rods, tubes, and machined components of "Tefton". Write today for a prompt quotation.

CUES

for Broadcasters

A Gates FM 5-B Modification

NORMAN E. WOODS, Ch. Eng.

WUST & WJMD, Washington, D. C.

There exists in the Gates FM 5-B transmitter, a potentially dangerous hazard, because the HV shorting switch does not ground, but goes to R-612, which is a 10 ohm, 20 watt resistor. Should you apply HV, this resistor will probably "open" due to the 5000 v. at several amps. which exceeds the power rating considerably. Also, there is a good chance the filter will remain charged-up after the next attempt to apply HV, especially if the air interlock is open, thus the tubes cannot bleed off the voltage. The PA Plate meter may go out too, but what happened to me, was that S-603 arced across also.

The switch can be repaired easily, by moving over to the unused section of the 3-pole switch, all the associated jumper and connections to R-612. It was a job to take the switch out to discover the easy way to make the repair.

While you are changing the resistor, increase the power to at least 25 watts. This transmitter operates at about 1.5 a., which is more than 20 watts by the formula. I = sq. root of P (20 over R (10 ohms). The result of this formula is about 1.4 a., which is less than actually applied.

If you have not had this experience, use a gimmick that is standard practice on higher-priced transmitters. Take a piece of braid, and connect it to the screw near the shorting switch, and run the other end directly to the disc. To be sure of good contact, drill a hole in the edge of the disc to either pass or be threaded for a #6 screw. Align the disc with the braid connected so it is near the frame, and to prevent accidental contact with the HV terminal which contacts the disc. Apparently, Gates was afraid to use a braid. thinking it might contact. or that the resistor was sufficient.

Teletype Static Eliminator

I. A. ELLIOTT, Tech. Director

KATL, Miles City, Montana

For years we have had trouble at KATL with staticelectricity building up a charge on the paper in our news room teletypes. Often, when this happens in the period between sign-off and sign-on there is a paper "jam" that has caused the ribbon to break and printer to be full of paper scraps and needing a complete cleaning. Of course, the most major problem is a complete lack of news until the machine can be put back in service.

The anti-static devices supplied by the wire service did not work.

We, until recently, found a chain of paper clips—or Christmas tinsel—hung in a loop across the glass

for Broadcasters

door so it dragged on the paper just above the type bars was the only solution. The disadvantage to this method of static control is that a small bit of tinsel or a paper clip dropping into the machine can cause a failure.

We have now installed a loop of chain such as is sold in hardware or electrical stores for pull-chain, or bath tub plug, use. The type with the large balls is most effective as the balls roll easily with the paper. All that is needed for a Model 15 teletype is 14 inches of chain and two $\frac{1}{8}$ to $\frac{3}{16}$ -in. cable clamps (General Cement #H502-F). Unscrew the two large thumbscrews at the top of the glass door. Put cable clamps under each nut, on the inside of the glass, with the ends of the chain under the clamps. Adjust length so that the bottom of the loop touches the paper at the third line above the copy being printed. Tighten clamps and cut off excess chain. Your static troubles will be over and the finished job looks far better than the chain of paper-clips seen in so many news rooms.

▶ Dr. A. M. Levine, vice-pres. of ITT's Missile & Space Systems Div., sees earth satellites as the means of solving the tremendous existing need for radio networks to span large bodies of water over which reliable communication is virtually impossible. He gave his views at a joint meeting of the Canadian Aeronautical Institute and the U. S. Institute of the Aeronautical Sciences.

An emergency communication system for stranded motorists has been introduced by Radiation, Inc., Orlando, Fla. System consists of a central receiving site and strategically placed highway call stations. Power is obtained from batteries recharged by solar cells. Transmitter is FM, 1 w, and gives reliable communications up to 18-miles.

> Two Varian Associates VA 842 klystrons will power the transmitter for the DOD lonospheric Research Facility, the world's largest and most powerful radar. Radar antenna will include a 1000 ft. dia. reflector being accoped out of a natural limestone bowl in Puerto Rico. Cambridge Research Labs directs the project.

Stromberg-Carlson, San Diego, has developed an electronic reading and printing system for transmitting mail. System is being tried out by the Post Office Dept. between Wash. D. C. and Chicago. Scanner sends the image via TV-type communications lines. Printer uses Haloid Xerox, Inc., xerographic printing process. Intelex Corp. is systems manager.

▶ Goodyear Aircraft Corp. has been selected to develop a radar unit that will eliminate, or minimize, the possibility of ship collisions at sea. The project, for the Maritime Administration will use a computer to plot the projected courses of up to 10 ships simultaneously. It will sound an alarm when collision distances are indicated.

▶ The Greyhound Bus Co. has a new fully-automatic telecommunications system designed by Smith-Corona Marchant which links all terminals in the Central-Southwestern Region. There are 46 stations and 3 master control stations linked by over 4200 mi. of leased wire circuits.

ELECTRONIC INDUSTRIES . January 1961

Circle 134 on Inquiry Card

Older Workers Getting Jobs More Easily—NAM

Workers in the 45 to 65 age bracket are finding jobs more easily today than they did several years ago says the National Association of Manufacturers. In a special report on "Employment of Mature Workers," the NAM said spot surveys have shown that the number of older workers employed have increased strikingly faster than the number of older workers available.

The report cites several reasons for this changing situation. One is that employers are realizing that the older worker has valuable knowledge and judgment gained through experience. Another is that machinery is now doing jobs that required muscle power—and older men can easily operate the machinery.

Pension plans have long been a stumbling block to hiring older workers. But, with increasing Social Security benefits and a more realistic approach to the regulations governing these plans, this deterrent is being overcome. Companies have also found that including older workers in pension plans is not as costly as they thought. Group life insurance costs, for example, were found to average only a cent an hour more for a 50-yearold worker than for a 30-year-old worker, and the lower accident rate for older workers reflects favorably in the charges for workmen's compensation insurance.

The report is available from the National Association of Manufacturers, 2 E. 48th St., New York 17, N. Y.

Established Research Grants

American Machine & Foundry Co.'s R & D Div., 261 Madison Ave., New York 16, N. Y., has established four \$2,500 research grants-in-aid for graduate students and junior professors. Work will be in mechanical, electrical, and chemical engineering or in related research areas.

Grantees will be invited at company expense, to present their findings at seminars of AMF Research and Development Div. senior scientists. Recipients will be free to publish and use project information as they wish, and grants involve no patent agreement or promise of future AMF employment.

ELECTRONIC INDUSTRIES . January 1961

206

WASHINGTON

News Letter

NEW ADMINISTRATION VIEWS-Recommendations on improving functioning of Federal regulatory agencies, including the FCC, has been presented by former Harvard Law School Dean James M. Landis to President-elect Kennedy. Mr. Landis proposed that the next administration strengthen its control over the agencies in terms of appointments of commission members and chairmen. It should also move toward more coordinated administration policies, particularly procedural revisions within existing statutes, than has been done in the past. Mr. Landis, who served as chairman of the Securities & Exchange Commission and Civil Aeronautics Board during the Roosevelt Administration, was appointed by the new President, shortly after his election, to survey the defects and problems of the regulatory agencies. He was named by President-elect Kennedy because of his wide experience in the Federal Regulatory field.

NO SWEEPING OVERHAUL—The Landis report to the President-elect, submitted in mid-December, did not favor a wholesale revamping of the regulatory commissions or the scrapping of the regulatory commission concept. Dean Landis did stress, however, that appointment of commissioners and key staff personnel should be made with treatment "substantially similar to the matter of judicial selection." Every effort should be made for lifetime service of such appointees. He felt that one of the major deficiencies in the work of these agencies has been "their lack of creative thinking." Another key problem is in the agencies' opinion-writing sections where the commissioners are too often relieved of the responsibility of determining their own top-level decisions.

REGULATORY DELAYS—The Landis report to the President-elect pointed up as key problems in Federal regulation the delays in commission decisions —a complaint particularly applicable to the FCC. Changes in budgetary thinking on commission appropriations by Congress to ensure adequacy of staff would aid this situation, together with the delegation of decision-writing to a single member of a commission and a program of making more examiners' decisions final. A current difficulty, in Dean Landis' opinion. is also the "too casual attitude toward the admission of evidence." His report emphasized the increasing costs of litigation in prosecution of cases before commissions.

SPACE POLICYPLANNING — Impetus to policy planning coordination by government agencies for space telecommunications should be given by Congress, the Senate Committee on Aeronautical & Space Sciences staff, headed by Vice President-

ELECTRONIC INDUSTRIES · January 1961

elect Lyndon Johnson has urged. Congress, in its current session, is anticipated to give concentrated consideration to the problem of frequency allocation related to the space communications program and the responsibilities of the various government agencies engaged in this field. The report indicated that Congress will take a long, hard look at what direction the United States is going and will push for a program that will put the nation in the forefront of space communications. The Senate committee staff report stressed the need for the U. S. to formulate a unified policy position concerning frequency allocations prior to the 1963 Extraordinary Radio Administrative Conference of the International Telecommunications Union.

REVIEW GOVERNMENT SPECTRUM NEEDS — The Office of Civil & Defense Mobilization will review all requests of government agencies for frequencies of conventional use above 1000 megacycles. The OCDM advised that this program was instituted to ensure that the space communications problem is not complicated further and to avoid making ultimate space frequency problems more difficult. The OCDM action is in direct contrast to that of the FCC in the civilian-use frequency field. It provides for greatly broadened licensing of private point-topoint microwave systems. The OCDM plan was presented to the Interdepartment Radio Advisory Committee, which is the clearing house for government frequency requirements.

National Press Building ROLAND C. DAVIES Washington 4

ATOMIC FREQUENCY STANDARDS - National Bureau of Standards is conducting developmental research on the precise measurement of frequency. Radio communications, satellite tracking, long-range rocket control and astronomical observations will require future timing accuracies of one part in a billion or better. Atomic Frequency Standards. which, potentially, are three orders of magnitude more precise for time-interval determinations than the rotation of the earth, are necessary in meeting the ever-increasing need for even greater accuracy. Recently, comparisons were made between two dissimilar cesium-beam atomic frequency standards constructed at the NBS Boulder Labs. The devices were tested independently, the pertinent parameters measured, and frequency comparisons subsequently made. Results of the experiments demonstrate that beam devices of rather modest length (55 cm between the oscillating fields for the shorter machine) can have precisions of ± 2 parts in 10^{12} for measurement periods of one to a few hours. Frequency difference between machines is 1.0×10^{-11} .

TRANSISTORIZED POWER SUPPLIES

Model 170 M Modular unit for plugging into existing systems

Model 170 T Terminal Strip unit sim plicity of hook-up and small size lends itself to use in banks of units

VOLTS

ally

POWER SUPPLY

HODEL 170-B

Precision, transistorized, low-cost power supplies by Quan-Tech-as you need them. A model to satisfy every type of mounting requirement, or for bench use.

MAJOR SPECIFICATIONS

Dutput Voltage: Adjustable from 10-32 volts, dc Output Current: Model 170-0.25 amp. Model 171-0.50 amp. Regulation: < 3 millivolts, line or load. Ripple: 250 microvolts, rms. Electronic overload and short-circuit protection.

> PRICE: 170 Series: \$ 98.00 171 Series: \$123.00

Write for complete technical details.

Give Engineers Credit as Prime Movers-Weber

The engineer is "the prime mover in modern civilization" and should receive "credit" for creating the "modern setting of society," says Dr. Ernest Weber, President of Polytechnic Institute, Brooklyn. And, "If we really want to assure recognition of the individual engineer at all levels by increased social, political, and community responsibility, we must do it through broader education."

Without compromising on the basic need for scientific engineering education at undergraduate and graduate levels, he continued, "we must devote at least one-quarter of the engineering student's bachelor's program to an intensive, integrated program that gives the evolution of mankind in broad strokes."

Dr. Weber gave his views before the AIEE's Fall General Meeting in Chicago where he was awarded the Society's Medal in Electrical Engineering Education.

Dr. Weber wondered why "the technologist has taken so little active part in government, and why so little credit-if any-goes to the engineer who creates this modern setting of society." He felt that "this has been the fault partly of the engineering profession itself because they are generally preoccupied with their profession. and partly the fault of engineering education for sacrificing the so-called humanities to the seemingly more important technological studies.

S4.4 Million Solid State Research At U. of Pa.

The Advanced Research Projects Agency (ARPA) and the Univer-sity of Pennsylvania, Phila., Pa., have announced a \$4.4 million research program in experimental and theoretical solid state physics, structural chemistry, inorganic chemistry, ceramics and all phases of metallurgy. The program will include: electrical engineering of solid state devices, studies in chemical engineering involving metals separation processes, high temperature kinetics, and corrosion.

The solid-state research will be concerned with thermal conductivity, ferromagnetism, ferroelectrics, inperfections, transport processes, magnetic phenomena in dilute alloys, photo-chemical processes, magnetic resonance, optical processes in the far ultraviolet, X-rays, internal friction, and many-particle theory.

Circle 139 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

208

TIME-SAVING GUIDE FOR... SPECIFYING DEFLECTION YOKES

Helps speed your project. Eliminates confusion in choosing the right yoke. Engineers have saved countless

hours, many dollars and numerous headaches by using this simple Guide Sheet For Specifying Deflection Yokes.

Offered as a public service to engineers by SYNTRONIC INSTRU-MENTS, INC., YOKE SPECIAL-ISTS, the only firm devoted primarily to deflection yoke manufacture; therefore preeminently qualified to help you specify the correct yoke for your application. Complete line for every military and special purpose—in production quantities or custom designed to your specific requirement.

Phone our nearest rep. today for your Time-Saving Guide Sheet.

New York Aren: Jules J. Bressler Co. Phone: N.Y. OXford 5-0255; N.J. UNion 4-9577

Philadelphia Area: Massey Associates Phone: MOhawk 4-4200

Washington-Beltimore Area: Messey Associates Phone: GRanite 4-2071

Indianapolis: Joe Murphy Phone: Victor 6-0359 Los Angeles: Ash M. Wood Co. Phone: CUmberland 3-1201 Ne obligation. We are glad to help you.

Circle 137 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

Industry News

John M. O'Malley—named Superintendent of Manufacturing of Clarostat Mfg. Co., Inc., Dover, N. H.

Herbert Lawrence, Jr. — appointed to handle nationwide sales of The Victoreen Instrument Co's Nuclear Spectrometry Products.

Paul Lebenbaum, Jr. — appointed Manager of the Palo Alto, Calif., plant of ITT's Components Div.

Dr. William E. Glenn, Research Physicist at G. E.'s Schenectady, N. Y., Research Laboratory—selected as Georgia Tech's "Outstanding Young Alumnus of the Year" for 1960. He received the third annual George W. McCarty-ANAK Award. Dr. Glenn is the inventor of thermoplastic recording, G. E.'s new recording technique.

Dr. W. E. Glenn

F. L. Ankenbrandt

F. L. Ankenbrandt — appointed to new position of Manager, Product Assurance, RCA Defense Electronic Products, N. Y., N. Y.

William E. McKenna and Crosby M. Kelly-appointed new Vice Presidents of Litton Industries, Beverly Hills, Calif.

Maj. Gen. Raymond C. Maude, USAF (Ret.)—appointed Director of Field Operations for Philco Corp.'s Government and Industrial Group, Phila., Pa.

Captain William I. Bull (USN, Ret.) — appointed Assistant to the President for Semiconductor Operations at Hoffman Electronics Corp., Los Angeles, Calif.

N. J. MacDonald, President of The Thomas & Betts Company, Inc., Elizabeth, N. J., has been presented the Medal for Cooperation and Purse for 1960. J. F. Lincoln, Chairman of the Board of the Lincoln Electric Company, Cleveland, Ohio, and Everett Morse, President of Simplex Wire and Cable Co., Cambridge, Mass., each received a Manufacturers Medal and Purse for 1960. Awards were presented under the James H. McGraw Award for Electrical Men.

EW Miniature MICROWAVE OSCILLATOR CAVITIES

now available

TRAK Electronics Company, Wilton, Connecticut, announces the formation of TRAK MICROWAVE CORPORATION to increase its developmental facilities for triode cavities in r-f signal generation from 500 Mc upwards. Present low, medium and high power cavities are available for application in grid pulse, plate pulse, and CW service.

TRAK expanded its Microwave Cavity line, which started in 1949, by adding the following 7 NEW miniature Cavities in 1960:

TRAK	Type	9127-L	At 1090 Mc, tunsable ±25 Mc. available from 900—1200 Mc.
TRAK	Type	2958	At 925 Mc, tuneable ± 50 Mc, available from 500—2200 Mc.
TRAK	Туре	2958	At 1.5 KMc, tuneable \pm 50 Mc. available from 500—2200 Mc.
TRAK	Type	9127-SL	At 2 KMc, tuneable ± 100 Mc, available from 800—7000 Mc.
TRAK	Type	9127-\$	Available in 3 segments of S-Band: 2700—3000 Mc, 3000—3300 Mc, 3300—3600 Mc.
TRAK	Туре	C-3136	Tuneable 2700-3400 Mc.
TRAK	Туре	9127-C	Tuneable 5400-5900 Mc.

ALSO, OSCILLATORS ENGINEERED to your specifications!

We invite you to write for new TRAK MICROWAVE CAVITY BULLETIN.

Cevity escillator ENGINEERS WANTED Recemes levited

TRAK MICROWAVE CORPORATION Subsidiary of TRAK Electronics Company TRAK Electronics Company

Circle 138 on Inquiry Card

precision tooled beryllium copper

for: Transistor, Capacitor, Diode, Fuse and Component applications.

B T I electronic clips are now stocked for prompt shipment in a complete range of standard sizes and designs. The use of beryllium copper and associated alloys insures positive spring contact pressure with exceedingly high electrical and thermal conductivity.

Write today for the new series of **B** T I bulletins showing standard sizes with specifications.

210

B T I also offers standard grounding strips and ring contacts for all electronic requirements. Write for Bulletin #E-106.

BRAUN TOOL & INSTRUMENT COMPANY, INC. 144 Fifth Ave., Hawthorne, N. J.

Circle 140 on Inquiry Card

Industry News

Harry R. Gillespie—appointed Assistant General Manager for the Trimpot Div. of Bourns, Inc., Riverside, Calif.

Roberl C. Berman — promoted to new position of Manufacturing Service Manager for Raytheon Co.'s Industrial Components Div., Newton, Mass.

Richard M. Johnson — appointed Sales Manager, Markite Corp., New York, N. Y.

Clarence H. Hopper — appointed president of CBS Electronics, Div. of the Columbia Broadcasting System, Danvers, Mass.

C. H. Hopper

H. M. Schiff

Hans M. Schiff, veteran electronics and aeronautical executive — joins Packard Bell Electronics, Los Angeles, as Vice President and General Manager of the Technical Products Div.

Genrik Sirvis — named Plant Manager, Bendix Computer Div., The Bendix Corp., Los Angeles, Calif.

George P. Whitbread—appointed to new position of Product Manager, Insulating Materials, and Robert Poet appointed General Sales Manager at Telecomputing Corp.'s Narmco Industries Materials Div., Costa Mesa, Calif.

Richard A. Fletcher — appointed Corporate Planner - Market Research at Lockheed Electronics Co. in Plainfield, N. J.

Dr. Kenneth M. Merz-joins International Resistance Co., Phila., Pa., as Manager of Ceramic Research.

Richard J. Sparnon—appointed Advertising and Sales Promotion Manager for the Electronic Tube Div., Allen B. Du Mont Laboratories, Div.'s of Fairchild Camera and Instrument Corp., Clifton, N. J.

Elwood E. Parrish-appointed Director International Marketing, Keuffel & Esser Co., Hoboken, N. J.

300% FASTER ULTRASONIC CLEANING*

WITH THE NEW SELF TUNING AUTOSONIC BY POWERTRON

Powertron Autosonics are the only cleaners that continuously tune themselves electronically to give you peak cleaning efficiency. Regardless of load changes, liquid level, liquid temperature, or operator inattention, you get top cleaning performance hour after hour with no controls other than a single switch

The Powertron self tuning feature-is available in a complete line of Autosonic tank units, consoles, cabinet models, immersible transducers, and vapor degreasers that...

ELIMINATE OPERATOR TRAINING AND MONITORING IMPROVE QUALITY REDUCE REJECTS CUT LABOR AND SOLVENT COSTS

Case histories on file show up to 900% faster cleaning consistently and savings as high as \$3,000 a month in labor costs under ideal conditions.

Send for Powertron's free booklet 60-1, "How to Clean Ultrasonically with Self Tuning."

POWERTRON ULTRASONICS CORPORATION DEPT. EI-1 • PATTERSON PL., ROOSEVELT FIELD GARDEN CITY, L.I., N.Y. • Ploneer 1-3220 Circle 141 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

George Voigt—named to newly created post of Director of Government Relations for Military Products, Zenith Radio Corp. and its whollyowned subsidiaries.

William H. Brown, Development Engineer-designated as East coast Technical Liaison Representative, Horkey-Moore Associates, a division of Houston Fearless Corporation.

J. Sanford Doughty—appointed Assistant to the President-Communications, Amphenol-Borg Electronics Corp., Broadview, Illinois. His responsibility will be in the areas of External and Internal Communications including Corporate Advertising and Public Relations.

J. S. Doughty

R. Clark

Robinson Clark—appointed Controller, Stromberg-Carlson Div., General Dynamics Corp., Rochester, N. Y.

Hardy G. Ross — named General Purchasing Agent, Western Electric Co., Inc., N. Y., N. Y., succeeding Gus F. Raymond, who retired.

J. F. "Ted" Miller—named Eastern Area Account Executive Manager, Hoyt Stout—appointed Regional Sales Manager in West Virginia, and W. R. Corwin—named Zone Sales Manager in Northern New England covering New Jersey, Delaware and Southeastern Pennsylvania, Motorola Communications and Electronics, Inc.

George M. Russell-named Eastern Regional Manager and Washington Representative, Elgin Micronics, a Div. of the Elgin National Watch Co., Elgin, Illinois.

James F. Orr, Jr.—joins Servo Corp. of America, Hicksville, L. I., N. Y., as Manager of Product Sales. He will be in charge of Servo System Test Equipment and Industrial control Systems Sales.

George F. Lewis, Vice President and Assistant Secretary—appointed General Manager of the Manufacturing Div., Varo Mfg. Co., Inc., Garland, Texas.

ELECTRONIC INDUSTRIES - January 1961

SOLID BACKS save cost of insulating strip, resist moisture and breakage.

"MOLDED-IN" CONDUCTORS assure greater capacity, can't work loose; eliminate separate saddle plates.

THICK, HIGH BARRIERS

afford greater insulation, reduce breakage, increase creepage by 12%. Gen-Pro boards have greater amperage capacity, are mechanically and electrically interchangeable with other boards. Also available with molding compound PER MIL-14E. Competitively priced. Immediate delivery. Series 440 Illustrated

WRITE TODAY for bulletin illustrating types in stack with specifications and list of lugs available.

GENERAL PRODUCTS CORPORATION Over 25 Years of Quality Molding UNION SPRINGS, NEW YORK TWX No. 169 Circle 142 on Inquiry Card

-REPAIR PRINTED CIRCUITS

Fast way to plate sliding contacts of printed circuits with occurate thicknesses of gold or rhodium.

Reinforce hot-dipped solder.

• Plate tabs for wear resistance.

• Correct prototype circuit lines.

• Gold-plate flexible circuits.

Write for Descriptive Brochurs.

SIFCO METACHEMICAL, Inc.

935 East 63rd Street . Cleveland 3, Ohis

A Subsidiary of The Steel Improvement & Forge Co.

PLATING

QUICK, LOW COST SALVAGE and PRODUCTION

- Repair breaks in continuity.
- Repair defective electroplating.
 Build-up circuit contact area
- flush with plastic surface.

No Disassembly. No Rewiring. Precision-plate selected areas rapidly without dismantling components. Dalic Process accurately controls thickness of deposits. No immersion tanks. Mobile equipment takes plating to the job.

ANARIANI DEVELOPMENT CO., INC., PIDDINGTON B. ASSOCIATES LTD. 153 Emst 24th Shoed 3219 Emst Feerbill Mid. New York 10, ILT. Pasudonn, California NYDRITE CHEMICAL CO. 605 South 12th Street Mitweekee 4, Wis.

D & S AVIATION CO., LTD. 671 Lourantidos Blvd. Pant Visu, Montreal, Quebes

Circle 143 on Inquiry Card

Opportunities at Hughes in

nicrowave research and development

Modern electronic systems demand a broad range of technical competence. The Hughes Microwave Laboratory has unusually extensive capabilities in the antenna, microwave component, and radome fields. Its activities are co-ordinated in a balanced program of fundamental research, development, design and production engineering.

ANTENNA RESEARCH – Included in current studies are: electronic scanning, its information transfer functions, and its relationship to system performance; surface waves and conformal surface antennas potentially useful on nose cones or low silhouette applications; and the theoretical aspects of transmission through small radomes.

ELECTRONICS RESEARCH—These investigations are concerned with basic phenomena such as amplification, harmonic generation, limiting and switching with ferromagnetic and dielectric materials, and superconduction in thin films at microwave frequencies.

MATERIALS RESEARCH – In the fields of Solid State Chemistry and Physics, studies are directed toward the synthesis and characterization of organic and inorganic compounds, new polymer systems; structural and electronic ceramics; and ferroelectric, ferrimagnetic and paramagnetic materials for electronic applications.

MICROWAVE ENGINEERING – the products of research are converted into advanced components, processes, and techniques for ultimate system application. Novel antennas, radomes, filters, and ferrite devices are being developed for the entire microwave and UHF spectra. New materials and processes are exploited for the production of ferrites and garnets, silicone plastics, ablative materials, high-temperature insulating and encapsulating materials, and electroluminescent panels. Research and engineering ideas are rapidly embodied in concrete forms through the facilities provided by a versatile design staff and a well-equipped shop.

Openings exist in each of the above areas. These positions offer excellent opportunities for qualified personnel in the fields of Physics, Chemistry and Engineering (Electrical-Microwave-Mechanical).

Please write: Mr. R. A. Martin, Supervisor, Scientific Employment HUGHES AEROSPACE ENGINEERING DIVISION, Culver City 6, California

the West's leader in advanced electronics

HUGHES AIRCRAFT COMPANY AEROSPACE ENGINEERING DIVISION

Please write direct to the above advertiser

- A. X-Band Reciprocal Ferrite Phase Shifter Experimental Electronic Scanner
- B. Close up of Hughes Ferrite Amplifie
- C. Apparatus for X-Raying Single Xtal Ferrites and Garnets

PROFESSIONAL OPPORTUNITIES

Reporting late developments affecting the employment picture in the Electronic Industries

Design Engineers · Development Engineers · Administrative Engineers . **Engineering Writers** Physicists • Mathematicians • Electronic Instructors • Field Engineers **Production Engineers**

Starting Salaries Up

Starting salaries of engineering graduates-reported by the Univ. of Michigan, Ann Arbor, Mich .--are averaging \$524 (bachelors) compared to \$508 last year. Masters' starting salaries rose from \$598 to \$655.

Demand for engineering grads represented 33% of the Universities' total-a drop of about 4% from the 1958-59 figure. Areas of greatest demand were in electrical and mechanical engineering and in the natural sciences.

TRANSISTOR QUALITY

Army Signal Supply Agency admits Sylvania into its quality assurance program for 'con-Brig. Gen. sistent high quality production. C. S. Hays inspects manufacture of high speed germanium switching transistors.

New Solar Test Facility

GE's Missile and Space Vehicle Dept. is planning to build a new solar test facility near Phoenix, Arizona. It will feature a large movable section that can be rolled away to expose equipment to the sun. Initially, solar collectors as large as 21 ft. in dia. may be housed in the movable section. The facility will be able to test the largest solar powered static generating systems now built for space applications. First equipment to be tested is a thermionic conversion system.

Weather was the main reason for selecting the site. There is an average of 210 clear days there compared to 94 days or less for the Philadelphia area (home of the MSVD).

ELECTRONIC INDUSTRIES . Jenuary 1961

Recruiting at Conventions Becomina a Real Problem

The average cost for recruiting an engineer or scientist in 76 firms doing business with the Federal Government is now \$1,022. This was brought out by a survey made by the Manpower Utilization Subcommittee of the House Committee on Post Office and Civil Service. The average cost for firms whose business is primarily commercial is \$751.

The recruiting problem is accented at trade shows and technical conventions where job hunters (often disgruntled employees) and manpower-hungry companies come face to face. The problem is two sided: Companies are becoming wary of sending key men to conventions because they may be "pirated" away, and other companies are spending so much time in recruiting activities that the main purposes of these conventions are being subverted. One company even gave their employees an expense-paid vacation during a recent major convention-but at a vacation resort far from the convention.

The directors of the shows recognize the problem and try to discourage recruiting, but they are generally unsuccessful, primarily because they have no control over (Continued on page 221)

TE Research Extended

Battelle Memorial Institute, 505 King Ave., Columbus 1, Ohio, has extended its materials and techniques research on thermoelectriccooling devices for two years. Continuing support for the program is assured.

Principal objective will continue to be the preparation of new compounds and the investigation of their resistivity, thermal conductivity, and thermoelectric power. Battelle's Switzerland facility (Geneva) is studying lattice thermal conductivity. Although the program is aimed at materials development, some device research of a basic nature is being conducted.

Battelle's scientists have found one compound that shows promise but it is still too early to say whether it is competitive with presently available TE materials. They have also developed techniques for screening and improving compounds and alloys which reduces the experimental work needed to predict the figure of merit

FOR MORE INFORMATION . on positions described in this section fill suf the convenient inquiry card. page 159.

VISUAL AID

Visual production system at Collins Radio Co.'s Cedar Rapids, lowa, plant projects assembly instructions on photo in the stereo-type viewer.

Electronic tubes and semiconductor devices are parts of much larger equipments or systems. The demand for them depends on many diverse elements including consumer taste and U. S. defense and foreign policy. In this dynamic industry, a forecast cannot be an extension of past performance alone, but must also consider the impact of new developments. This forecast is based on such an analysis.

By JEROME KRAUS

Manager of Systems Engineering ITT Laboratories Nutley, New Jersey

tween tube and semiconductor sales

tends to be independent of cyclic

variations. Table 2 is the predicted tube and semiconductor market

based on 3% and 5% annual rise

applied to the entire market be-

comes somewhat unsettled when

applied to these segments of the market: Receiving Tubes; Power

and Special Purpose Tubes; TV

Picture Tubes; Transistors; and

varied between 0.75 and 0.90 for

Receiving tubes (Table 1) have

Semiconductor Diodes.

in GNP over the next 5 years. This neat linear predicting tool

Electron Tubes and

S EMICONDUCTORS have developed into a \$377,000,000 (1959) a year market item and will probably reach \$500,000,000 in 1960. The 1959 tube market was \$775 million.¹ Together they represent a market of over \$1.1 billion.

This 1961-1965 forecast will use statistical projections modified by other economic and technical knowledge.

THE STATISTICAL FORECAST

Data from the Electronic Industries Association and the Business and Defense Services Administration of the Dept. of Commerce is reproduced in Table 1.

No reasonably high correlation can be found between either tube and semiconductor sales and the Gross National Product, but the combined sales of both, exhibit a rather interesting characteristic. From 1954-59, the ratio of tube plus semiconductor sales to GNP increased at an almost linear rate (see Fig. 1 and Table 1) and the trend line has a coefficient of correlation greater than 0.75. By projecting the trend line Y = 1.61 + .08(x) to 1965, the relationship be-

Table 1: 1950-1959 Statistics

Receiving Tubes Receiving Tubes 5 millions Special Semi-Tubes + Semi Power + Speci Purpose Tubes Semi. Diodes -Rectifiers 5 millions $GNP \times 10^{-3}$ × 10-3 Picture Tuhes 5 millions GNP × 10-Semi. Diodes $GNP \times 10^{-3}$ Transistors Transistors \$ millions Tubes + S 5 millions millions Seml. \$ million GNP 5 billions Tubes \$ millio GNP Vear (a) (b) (b) (b) (b) (b) (**c**) (b) (h) 0.88 0.79 0.75 284.6 329.0 210.7 1950 443 250 1.56 473 604 1.44 1951 261 259 347.0 585 .01 . 05 170.7 1952 19 2 17 .06 .05 .07 .18 1953 365.4 26 304 5 9 21 17 .01 0.83 234.9 708 206.1 209.0 1954 363.1 682 26 276 1.95 .02 0.76 152 760 740 753 40 113 13 37 27 76 2.05 0.90 148 1955 397.5 800 358 .03 419.2 853 374 0.89 196.2 161 1956 .09 442.5 1957 925 172 384 70 102 2.09 16 0.87 .23 183.2 185 .25 1958 914 688 226 342 113 113 2.07 .26 0.78 163.5 214 1959 479.5 1,152 775 377 369 222 155 2.50 .46 0.77 183.8

(a) 1950-1958, National Industrial Conference Board, Economic Almanac 1966. 1959, U. S. Dept. of Commerce, Survey of Current Business.

(b) Electronic Industries Association.

(c) BDSA, U. S. Dept. of Commerce.

Semiconductors-What's Ahead?

the past decade but preliminary information for 1960 indicates a fall considerably below that level. The added growth in semiconductors resulted in part from growth in areas noncompetitive with receiving tubes and in part from the opening up of new entertainment markets.

The transistor market has risen most precipitously. A continuation of the trend would result in a billion dollar market by 1965 (see Fig. 2).

Semiconductor diodes have also had an increasing market since 1954, but not as great as that of semiconductors.

The picture tube market, which has fluctuated widely, declined in terms of percentage of GNP in every year from 1953-1958. In 1959 it increased slightly.

The power and special purpose tube market has shown a steady increase since 1955.

A technique which seems worthwhile is to project current trends of the 5 types of components and to compare the totals with the

A REPRINT of this article can be obtained by writing on company letterhead to The Editor ELECTRONIC INDUSTRIES Chestnut & 56th Sts., Phila. 39, Pa.

1

trend Y = 1.61 + .08(x) for the over-all market. The sum should equal Y = 1.61 + .08(x).

For transistors, it is possible to use the ratios to GNP for 1958, 1959 and estimated 1960 to project a straight line out to 1965. See Fig. 2.

Picture tube sales, the most erratic, have bottomed out at a ratio of about 0.37. Because of their erratic behavior in the past, the projection for 1961-1965 has been Y = 0.37 in Fig. 2. A moderate increase in semiconductor diode and special purpose ratios based on linear trends can be calculated from 1956-1959 sales.

Receiving tubes have started a decided slump if preliminary 1960 data is substantiated.² A rapidly rising transistor market indicates a falling receiving tube trend if the initial assumption that the total equals the sum of the individual components is correct. But with the projected curves, the residual receiving tube sales would fall to zero at 1962 and be negative in 1963-65. It seems logical to reapportion the first 4 components to make room for receiving tubes. The most likely component which can offer room is transistors. It is tempting to "break" the rise in transistor sales at some point and project sales from that point to 1965 with zero slope. If the break is at the end of 1961, 0.25 will remain for receiving tubes, a very sharp fall off in 2 years from a level of 0.77 in 1959. Breaking the rise at the end of 1960 would leave receiving tubes with a 0.47 ratio in 1960, perhaps closer to reality. If the break point were mid-1960, a 0.57 ratio would remain for receiving tubes.

Fig. 3, a revised statistical forecast, attempts to resolve some of the problems raised by Fig. 2. The trend of tube plus semiconductor sales is retained as a basis for the revision but the distribution by types is altered. Transistor sales are held constant at 0.65, about the level of mid-1960 on the Y = 0.20x -1.34 curve of Fig. 2, to permit receiving tubes to have residual values of 0.45 to 0.37 in 1961-65. Power and special purpose tubes, semiconductor diodes and picture tubes were assumed to have the same trends as in Fig. 2. The total of the 5 curves in Fig. 3 is equivalent to the total curve of tubes plus semiconductors/GNP x 10^{-3} .

The statistical forecast could have been developed in many ways. Nonlinear trends might have been used and one of the parameters other than transistors could be used to leave room for receiving tubes. A case may be built for permitting

Tubes and Semiconductors (Continued)

the transistor curve to rise steadily and to build receiving tube volume out of declining diode and power and special purpose tube sale. There seems to be no real basis for the latter course, however, and Fig. 3 represents as reasonable a forecast as can be made without investigating technical and economic factors considered in the next two sections.

TECHNICAL FACTORS

Receiving Tubes

Some trends in receiving tube design include: Smaller, lighter tubes; Lower power consumption; Greater ability to withstand high amb heat and high amb radiation.

For smaller, lighter designs, several schemes have been used. The RCA Nuvistor³ and the GE TIMM⁴ (Thermionic Integrated Micro-Module), for examples, use the tube enclosure as a mechanical support for the electrodes or other elements. Another scheme includes more than one tube unit within an envelope, a trend recently dramatized by GE's Compactron.⁵

The Nuvistor type will probably develop rapidly and further size reductions result. The micromodule will develop more slowly because of lack of flexibility and inexperience of designers. The Nuvistor, TIMM and Compactron all use much less power than conventional tubes and the TIMM can operate at very high amb temp.

Another tube technique appears promising for reducing size. The cold-cathode (magnesium oxide) tube developed by the Signal Corps and Tung-Sol requires only keepalive electrode power.⁶ Small heat dissipation makes possible smaller size and weight. This type of tube is competitive with transistors in low power dissipation.

A fourth new development (Westinghouse⁷ and others) uses a semiconductor cathode rather than a semiconductor - coated cathode. This should result in a simpler tube type—no heater is required and a pin-point source of electrons is achieved.

The largest advances in production units may be achieved by the refined production methods of the Nuvistor and the cold cathode type tubes. The thermionic micromodule will probably find more limited application.

Transistors

Smaller size, higher temp and radiation resistance are also objectives of transistor design.⁸ A much greater effort, however, is devoted to achieving higher frequency performance. The Micro Alloy Diffused Base transistor (Philco) and the epitaxial transistor (Bell Laboratories⁹) promise to make the transistor amplifier and oscillator useful in the UHF region. Commercially available designs are still limited to about 200 MC.

So far, the epitaxial transistor seems to be the best design possible for extensive use in the microwave region although commercial results have not yet been announced. It seems unlikely that in the 1961-65 period the transistor can capture a significant percentage of the microwave tube market as it has the receiving tube market, but other semiconductor devices (tunnel diode) may do so.

New materials such as silicon carbide and gallium arsenide may make higher temp performance beyond the 160°-200°C range of silicon possible. More difficult will be to protect transistors from radiation damage except by shielding. The tunnel diode may be used in high temp and radiation applications rather than the transistor.

Semiconductor Diodes

Crystal diodes have shown a steady growth since their introduction. The Esaki Diode¹⁰ promises extensive application in high-speed switching.¹¹ Other tunnel emission

TABLE 2

Gross National Product, 1960-1965 in Billions of 1959 Dollars

	3% Annual Growth	5% Annual Growth
1960	494	504
1961	509	529
1962	524	555
1963	540	582
1964	556	611
1965	573	641

devices will evolve and may preempt the high-speed switching field. Whether they will compete as amplifiers and oscillators with existing devices cannot be foreseen.

Certainly in the microwave region the tunnel diode which is op erable at higher temps and radiation levels than transistors may limit further transistor development. As the market for control equipment grows, there should be an increasing use of solid state rectifying devices. Silicon-controlled rectifiers are replacing older devices in many applications.

Picture Tubes

Thinner picture tubes approaching 180° are in sight. Work on picture tubes in the next 5 years will also be directed to low power small dia tubes for portable sets. The color tube will also be improved.

Power and Special Purpose Tubes

Power and special purpose tubes. as classified by the BDSA, Dept. of Commerce, include: High Vacuum Tubes; Gas and Vapor Tubes; Klystrons; Magnetrons; Forward and Backward Wave Tubes; Duplexers; UHF Planar Tubes; Cathode Ray Tubes (excluding TV picture tubes); and Miscellaneous Tubes.

Using ceramics to replace glass envelopes in high¹² vacuum tubes has increased operating temps to over 400°C. Transistors are unlikely to replace this variety of tube—power requirements are high and transistors (silicon) cannot operate at junction temps substantially above 200°C.

Gas and vapor tubes include thyratrons, ignitrons and mercury pool tubes. Cold cathode regulator tubes operating in high temp environments are increasingly important in missile and space work.¹³ Hydrogen thyratrons are used in high power pulsed radars. Development of improved models is continuing and an early objective is the production of a 100 megawatt peak tube. Gas-filled thermionic converters are also being studied for space vehicles use.

Cathode ray and storage tube development will capitalize on growing medical electronics and data

1

processing markets.^{14, 15} Electron optic devices are evolving rapidly and we may see substantial improvements in vidicons, image orthicons, and photomultipliers shortly.

Improved microwave tubes (klystrons, magnetrons, TWT's, etc.) will provide higher power, lower noise, higher frequency operation and greater bandwidth. Electrostatic focussing techniques will be more widely used. New, extremely high power magnetrons and klystrons will meet needs of new communications and radar equipments.

Other Devices

The most significant long-run factor affecting the tube and transistor market is the slowly evolving field sometimes called molecular electronics.

The DOD has had a number of contractors, Westinghouse among them, working on circuit integration using molecular electronic techniques. Even though circuit integration may not be as complete as its proponents hope for, multifunction components will undoubtedly develop greatly within the next decade and profoundly influence the further development of tubes, transistors and other electronic components. These devices will capture an important share of the electronic component market by 1970 but they will not be significant in the early 1960's.¹⁶

ECONOMIC FACTORS

General economic factors affecting all industry in the 1961-1965 period are: Population growth: Defense and space expenditures; and Technological change.

Population Growth

The growth in population, particularly the great increase in the 18 to 24 year old group—that group born during the high birthrate years of the early 1940's—will increase demand for consumer goods.

Space and Defense

Expenditures for defense and space exploration will increase. An increasing percentage of the defense dollar will be for electronics. Space exploration expenditures will rise rapidly. We stand on the threshold of commercial exploitation of space. Communications and TV satellites are feasible now and strong efforts of communications manufacturers to move into the satellite field in the 1961-65 period are anticipated.

Technological Change

The increasing rate of technological change is another factor to be considered. The transistor reached a sales level of \$5 million¹⁷/year within 6 years of its announcement, but we may expect new devices and equipment to reach substantial sales levels within much shorter periods.

The three most substantial markets-consumer, military, and industrial - all have elements of strength and weakness. Radio, TV and phonographs are the bulk of the consumer electronics market. Forecasters have long predicted a break in the TV and home radio market. This break has not occurred, nor is it likely to occur. The TV market, particularly, has been thought to be saturated for some time. The popularity of the second set was difficult to predict. just as the interest in a lightweight portable is difficult to pre-

Tubes and Semiconductors

TABLE 3

Predicted U. S. Tube and Semiconductor Markets, 1961-1965

(Continued)

dict now. The three technical factors influencing the TV market: greater portability, thinner picture tubes and color.

The color market has been disappointing, but improved and lower-priced receivers and more color programs should improve TV picture tube sales somewhat. Better batteries and further miniaturization may extend the portable TV market. Thinner picture tubes may make wall TV mounting possible. Such a TV tube (from expansion of present techniques or from use of electroluminescent elements or fiber optics) will provide a new market for receiving tubes and transistors. A large percentage of TV sets are over five years old, so the tube replacement market should continue to be strong over the next decade. Significant breakthroughs in color or thinness of tube would encourage many owners to replace rather than repair old sets. Consumer radio market also seems to be saturated, but portables and auto radios will stabilize this market.

Not only do existing consumer markets present strength for the next five years, but electronics will undoubtedly expand into fields as yet untapped. We may expect increasing use of electronics, for example, in the automobile and home lighting markets. Coupled with a growing population, it is difficult to perceive how consumer electronics can do anything but expand at a rapid rate.

Expenditures for space exploration and the military will increase considerably over the next 5 years. Much of the increase will be for research, development, test and evaluation where the percentage of dollars assigned to electronics is high. A \$3 billion annual increase in defense and space expenditures may result in a \$1 billion increase in electronic expenditures and a \$125 million annual increase for tubes and semiconductors. A \$6 billion increase will probably increase annual tubes plus semiconductor sales by \$250 million.

	Based on	GNP × 10-3	- Trend
	million		
	0% GNP Rise	3% GNP Rise	5% GNP Rise
1961 1962	1,190 1,230	1,265	1,320 1,430
1963 1964 1965	1,270 1,310 1,350	1,430 1,520 1,610	1,540 1,670 1,800

Industrial electronics, promising for many years, may at last become significant. Greater strides will be made in medical electronics, automation and data handling. The future of the computer, both allpurpose and specialized, is very promising with a host of applications in banking, merchandising and processing just over the horizon. One of the most promising areas for exploitation is modern communications systems.

THE REVISED FORECAST

We can now re-evaluate the forecast of Fig. 3. Transistors are unlikely to retain their level at 0.65 for four reasons: (1) A shake out in price, now under way, will reduce the unit price making total dollar volume more difficult to maintain, barring fairly elastic demand schedules. (2) Demand schedules may prove to be somewhat inelastic. The MADT and epitaxial transistors give some hope of opening up the microwave market, but large scale sales in any but the receiving tube market cannot be anticipated. (3) Continuous improvements can be expected in competitive devices. The new tubes may be more competitive in size and power consumption. Tunnel diode and other semiconductor devices (including molecular electronics) will compete with transistors not only for sales but also for technical talent and financing. (4) The impact of foreign competition has not yet been fully felt. Competition within the U.S. may be limited, but it cannot be destroyed. Foreign markets will become increasingly more difficult to pene-

TABLE 4 Estimated Value of Sales 1961-1965

	Trans- istors	Semi- conductor Diodes	Other Semi. Devices	Receiving Tubes	Picture Tubes	Power and Special Pur- pose Tubes
1961						
0% GNP Inc.	\$312	\$221	\$5	\$240	\$178	\$298
3%	331	235	5	255	187	316
5%	344	244	5	265	196	328
1962						
0% GNP Inc.	293	269	15	240	182	322
3%	319	294	17	262	199	351
5%	338	311	18	277	211	372
1963						
0% GNP Inc.	240	374	43	250	187	346
304	270	422	49	281	211	389
5%	291	454	52	302	227	418
1964						
0% GNP Inc.	240	432	91	259	192	370
30%	278	500	106	301	222	428
5%	305	550	116	330	244	470
1965						
0% GNP Inc.	216	480	153	211	197	394
301	258	573	183	252	235	470
50%	289	641	205	282	263	525

Tubes + Semiconductors

MK – 3 CTP vehicle on mount for antenna pattern measurement.

Unique electronic components successfully flight tested on ICBM re-entry vehicle control systems.

A Diversity of Current Projects

Continuing an outstanding record of achievements that includes the first recovery of a space whicle from orbit, and the first flight demonstration of effective space vehicle stabilization control and navigation, MSVD electronics engineers are currently working in such areas ma:

Quick-launching Support Systems • Inertial Navigation Equipment • High Density Packaging • Stabilization Controls • Space-toground Communications Systems • Orbit Ejection Controls • Instrumentation for Nose Cones • Space Power Supplies • Satellite Telemetry Tracking & Command • Digital Computers • Circuit Design for Space Application • Electronic Navigation Techniques

ELECTRONICS ENGINEERS

AT GENERAL ELECTRIC YOU CAN APPLY YOUR COMMAND OF ELECTRONICS TO THE NATION'S MOST ADVANCED SPACE PROBLEMS

> Today, engineers with TV and radio experience are working on missile and space vehicle payload problems at GE's Missile & Space Vehicle Department...others are applying their knowledge of radar to space communications...men with aircraft navigation experience are concentrating on advanced guidance and control systems for interplanetary space vehicles... In fact, engineers with experience in practically every area of electronics have transferred their technical knowledge directly to space problems.

Whether or not you've had specific experience in space electronics, you may be able to go right to work

at MSVD on some of the most sophisticated and technologically exciting projects in the entire space field – from ICBM re-entry vehicles to operational space craft.

The work here is at the very edge of the state of the art, transforming the latest research discoveries into workable engineering solutions. You'll be concerned with new advances in

plasma physics. thermoelectric phenomena, telemetry... with radical new requirements in micro-miniaturization, space to weight reductions, performance efficiency... with an entirely new order of reliability specifications to assure Analytical Studies in satellite orbit control and space navigation.

systems' operation in space for a year or longer.

Excellent positions are currently open in four major areas at MSVD: Navigation and Control Engineering • Instrumentation and Communications Engineering • Ground Support Engineering • Advanced Systems

Engineering • Advanced Systems Engineering

These positions will place you on the ground floor of the move of a large segment of the Department to the new Space Technology Center-located at Valley Forge Park, just 17 miles from Philadelphia.

Inquiries are invited from electronics engineers who are technically advanced in their own discipline, and are deeply interested in the related fields of space vehicle development. Write informally, or forward your resume to: D. G. Curley, Div. 24-MM.

SPACE

Tubes and Semiconductors (Concluded)

trate as other countries expand production.

From the above, the transistor curve of Fig. 3 is too optimistic. The price shakeout and more severe competition from tubes is reflected in the 1961-1962 decline of Fig. 4. while the growing importance of "other semiconductor devices" and "Semiconductor Diodes" signals the 1964-65 decline.

Semiconductor Diodes

Semiconductor diode sales in Fig. 3 showed a steady increase from 1961 through 1965. Because of the increasing importance of this component, at least in computer technology, expect a more rapid rate of rise in 1961 and 62. The Esaki diode may limit transistors in the high speed computer field and possibly elsewhere.

Special Purpose Tubes

In Fig. 4, power and special purpose tubes have been plotted using the same trend as Fig. 3. Continuing markets for high frequency high-power generators and amplifiers and extension of microwave techniques to higher frequencies indicate a continuing market. R-f power tubes using ceramic construction seem capable of outperforming any other device on the horizon. Use of these in space vehicles and communication systems should increase greatly during 1961-65. Storage and display tubes also will grow in importance as more sophisticated attempts are made to solve data handling problems.

Receiving Tubes

Receiving tubes in Fig. 3 were the only category which showed a marked down turn. In Fig. 4, however, receiving tubes are steady during 1961, rise slightly in 1962 and 1963 and decline in 1964 and 1965. This relatively optimistic forecast for receiving tubes in spite of great competition from transistors reflects the following: (1) Receiving tube technology has seriously challenged transistors with new concepts which may provide lower cost circuits with reduced weight and power penalties. (2) High orders of reliability are achievable with the newer tubes. (3) During 1964 and 1965, the receiving tube market will decline as newer semiconductor devices, including molecular electronic modules become more prominent. The TIMM concept will not be able to stem the trend toward "grown" circuita.

Picture tubes are shown increasing at a slow rate in Fig. 4, whereas they were steady in Fig. 3. This more optimistic view of picture tubes is based on: (1) Greater number of new households

DO YOU HAVE YOUR COPY? **REPRINTS:** 26 to 100 cepies 75¢ " More than 100 copies..... 50¢ ** Write to: **ELECTRONIC INDUSTRIES, Reader Service Dept.** 56th & Chestnut Sts., Philadelphia 39, Pa.

(18-24 year old group) requiring new TV sets; (2) The growth of color TV; (3) A broader portable market; and (4) Obsolescence of old models.

The over-all curve of Fig. 4 is a summary of the 5 factors discussed above and the catchall "other Semiconductor devices" which includes integrated semiconductor circuits. Table 4 is a tabulation of the yearly market in 1959 dollars assuming 0, 3 and 5% cumulative increases in GNP.

References

1. Electronic Industries Association, 1960 Fact Book.

2. Market Research. Blectronscs, 33-(32): 24, August 5, 1960, and earlier issues.

3. Steckler, L., "Nuvistor, New Kind of Vacuum Tube," Radio Electronics, 30:-40-1, June, 1959.

4. "Thermionic Integrated Micro-modules," *Blectronice*, \$2:80, May 15, 1959. 5. "New Tube Concept Simplifies C cultry," Electronics, 33 (28) : 70-73, July Cir.

Major Advance in Tubes—The Cold Cathode Principle," Electrical Engineer-ing, 78: 407-8, April, 1959.
 "New Source of Electrons for Elec-tronic Tubes," Westinghouse Engineer, 19: 189-90, November, 1959.

E. Electron Tube Information Council, Tubes and Transistors, a Comparative Study, (1960).

9. "Many New Type Semiconductors Studied," Electronic News, June 20, 1960. D.

p. 32. 10. Esaki, L., "New Phenomenon in Narrow GE P-N Junctions," *Physical Re-*view, 109:603-604, January, 1958.

11. Holonyak, N., and Lesk, I. A., "Gal-lum Arsenide Tunnel Diodes," Proceed-sage of the IRE, 48(8): 1405-1409, August. 1860.

12. Meacham, D. D., "High Vacuum Power Tubes," *Blactronics*, 33(18): 60-64, April 29, 1960.

April 29, 1960.
13. Steiner, H. C., "Gas-Filled Tubes," Electronics, 33(18): 65-69. April 29, 1960.
14. Kramer, A. S., "Storage, Counting and Phototubes," Electronics, 33(18): ×6-50, April 29, 1960.
15. VonArdenne, M., "Evolution of the Cathode Ray Tube Over Three Decades." Wireless World, 56: 28-32, January, 1960.

16. North, H. Q. "Where Are We Go-ing with Semiconductors and Molecular Electronics," Electronic Industries, 19(8): 76-77, August, 1960.

EIA Fact Book, 1960, ibid. 17.

• The views and opinions expressed in this article are those of the author only and are not necessarily those of ITT Laboratories.

New Microwave Division

A new division for the development and manufacture of electronic systems and subsystem has been established by Watkins - Johnson Co., Palo Alto, Calif. Initial work will be with low noise microwave amplifiers, reconnaissance systems, electronic countermeasures systems, microwave satellite communications systems and special test equipment used in microwave tube production and testing. Joseph G. Rubeson, formerly with Sylvania's Mountain View operations, will head the new division.

ELECTRONIC INDUSTRIES . Jenuary 1961

(Continued from page 213) activities outside of the direct convention area. One approach to the problem is a "Career Center" like those operated by Careers, Inc.

At these centers, an engineer or scientist fills out a registration form which includes his education, experience, and interests, but not his name or company affiliation. The information is supplied to companies registered with the center. Those companies interested in the man send an interview invitation to him. This protects the jobseeker and saves time and effort for the company. Since the center is removed from the convention area, it helps to keep recruitment on the floor to a minimum.

The career center at WESCON this year drew 5,000 visitors. Fifteen hundred of these registered for job interviews with the 24 companies that paid to maintain recruiting staffs at the center.

Reliability & Quality Control Symp.—Jan. 9

How well engineered design, and production with strict controls of manpower, materials, methods, and machines is related to the functions of today's industrial and governmental operations will be discussed in the forthcoming Seventh National Symposium on Reliability and Quality Control, Bellevue-Stratford Hotel, Phila., Pa., on January 9, 10, 11, 1961.

The symposium is jointly sponsored by the American Society for Quality Control (ASQC), The Institute of Radio Engineers, Inc. (IRE), American Institute of Electrical Engineers (AIEE), and Electronic Industries Association (EIA).

The program includes many outstanding and nationally known representatives of industry, government and the military services. such as, Clifford M. Ryerson, Sr. Product Assurance Administrator, R. C. A.; H. L. Hoffman, President, Hoffman Electronics Corp.; Col. W. Scandrett, Office Chief R & D, U. S. Army; Maj. Gen. L. I. Davis, USAF, Commander, Patrick Air Force Base; and Capt. R. E. Foster, U. S. Navy, Bureau of Ships. who will present the latest and up to date information on such topics as System Reliability, Statistical Techniques, Accelerated Testing, Cost Considerations, Design Techniques, Reliability Prediction and Testing, Reliability Education and Management.

ELECTRONIC INDUSTRIES . January 1961

Engineers, Scientists

Opportunities to Work on All Aspects of Modern Microelectronics at General Electric

JOIN A NEW GROUP NOW BEING FORMED AT GE'S ELECTRONICS LABORATORY This expanding effort will concentrate on creating an entirely new order of integrated circuits using the latest advances in solid state technology, and will be responsible for the entire span of activity from research and development to pilot plant operation.

Emphasis will be on microminiature thin film circuits and their packaging. A strong development program in electro luminescence – photoconductor, integrated semiconductor,

delay and memory devices is now being expanded.

Responsible Staff Positions are available at BS, MS, PhD levels for Electrical Engineers, Electronic Engineers, Mechanical Engineers, Chemical Engineers, Chemists, Physical Chemists, Physicists in...

 RESEARCH, DEVELOPMENT AND DESIGN . . . in thin film integrated circuits, incorporating resistive, capacitive, conductive, magnetic, photo-conductive, electroluminescent and semiconductive elements.

... in new and unique materials suitable for these elements.

... in processing techniques involving vapor, electrolytic and pyrolytic depositions; electron beam decomposition and machining; circuit interconnections; sub-strate technology; hermetic sealing and protective coatings.

IN EVALUATING AND TESTING ... passive and active components of all types.

■ IN DESIGN OF ELECTRONIC CIRCUITS... both digital and analog types for microelectronics.

 IN DEVELOPMENT OF EQUIPMENT ... for processing including automation, controls and monitors.

IN PILOT PLANT ENGINEERING ... operations in all areas pertaining to pilot production of integrated electronic circuits.

For more information, call Robert F. Mason collect at GRanite 6-4411, Ext. 3239 or write briefly to: Mr. R. F. Mason, Dept. 24-ML

ELECTRONICS LABORATORY

Electronics Park, Syracuse, New York

Circle 502 on "Opportunities" Inquiry Card

221

Headquarters for HIGH POTENTIAL Testing

INSULATION BREAKDOWN DIELECTRIC STRENGTH

Every over-potential test need from the generator to the appliance motor . . . is met by a HYPOT^a

150 KV Testing Mobile HYPOT

Non-destructive testing of power cobles, generators, and insulators with AC or DC test potentials to 150 KV New DC Mobile HYPOT* is easier to handle, cuts costs. Write for bulletin "Mobile HYPOT*"

Bench HYPOT " Models available with AC or

DC test potentials from 5 to 30 KV Widely used for insula-

tion testing of cables, distribution

tion equipment and heavy duty

30 KV Testing

Model 5500 Typeral Mobile HYPOT* provides 0 to 120 ks dt cat 5 ma More compact and easier to use than easier to use than sets Lower in cast, too

10 KV Testing Portable HYPOT Jr.*

The advanced over potential tester that enables anyone to make high potential breakdown tests. Separate lights indicate excess leakage current and in sulation breakdown. Available with test voltages from 1500 v a c to 10000 = a c.

INSULATION Materials

motors

Model 4501 Materials Tester

New materials testing AC HYPOT# meets ASIM dielectric strength test requirements. Features automatic rate of test voltage rise, transparent test cage that is safety interlocked and complete line of plug in materials testing likulues. Write for new bulletin "MYPOT# Insulation Tester."

VIBROTEST R measures FIVE MILLION Megs

Direct reading a c operated megohimmeter for resistance megohims. Drift free, stable and accurate on all ranges.

VIBROTEST® Model 2570 has six megohin railiges 1.50, 10-500, 100-5000, 1.000-50,000, 10.000 500.000 and 100,000-5,000.000 megohins. Write for bulletin

3787 W. Beiment Ave., Chicago 18, Illinois Circle 146 on Inquiry Card Dr. Remo Pellin—joins Motorola's Semiconductor Products Div. as Product Manager, Semiconductor Materials, Phoenix, Arizona.

John F. Hinchey, Electrical Engineer-appointed Director of Quality Control, Pacific Semiconductors, Inc., Lawndale, California.

Dr. Vincent R. Learned—appointed Manager, Electronic Tube Div., Sperry Gyroscope Co., Great Neck, N. Y. Thomas D. Sege becomes Chief Engineer.

Roland P. Andelson—appointed Assistant Manager in charge of Hughes Aircraft Co.'s Ground Systems Group Activities in Washington, D. C.

Dr. Lawton M. Hartman—appointed Associate Director of Research-Operations, Philco Corporation, Philadelphia, Pa.

Dr. L. M. Hartman

M. Spector

Morris Spector-named Electronics Staff Manager, Thompson Ramo Wooldridge International Div., Canoga Park, California.

Joseph T. Cimorelli — appointed Manager, Engineering, Receiving Tube Operations; Kenneth G. Bucklin—appointed to the newly created position of Manager, New Products Engineering, RCA Electron Tube Div., Harrison, N. J.

Irwin Klugler—joins Computer Systems, Information Technology Div. of Lockheed Electronics Company, Metuchen, N. J., as a Senior Mathematician in the Mathematical Analysis Dept.

James V. Crawford—promoted to Assistant Manager of the Los Angeles Div., Dr. John Mason—promoted to Chief Engineer; Richard W. Winslow —named Chief of Preliminary Design; at Garrett Corp.'s AiResearch Manufacturing Co., Los Angeles, California.

Louis Kahn — appointed Manager, Application Engineering, Aerovox Corp., New Bedford, Massachusetts.

TINSLEY DELIVERS

CORNING GLASS FILTERS

IN 3-5 DAYS

Wherever you are in the United States you can get standard thickness Corning Glass color filters in 3-5 days from Tinsley Laboratories. Fast delivery, too, on special sizes and thicknesses, custom ground and pitch-polished in our laboratories. You can depend upon Tinsley and on the Corning filters we finish and supply. They are particularly useful in colorimetric work and other applications in which specific regions of the radiant spectrum must be isolated. Send for a free copy of our price list.

.

²⁵²⁶ Grove Street - Berkeley 4. California Circle 147 on Inquiry Card

222

Personals

Dr. Paul E. Ritt—named Director of Research, Robert S. Butts—becomes Technical Adviser to the Excourse Vice President and General Manager, William C. Purple, Jr. named Vice President of Engineering and Manufacturing, Melpar, Inc., subsidiary of Westinghouse Air Brake Co., Falls Church, Va.

Dr. Charles L. Register-named to new post of General Manager, Research Labs., R. V. D. Campbellpromoted to Director of Research, Staff Technical Director, Burroughs Corp., Paoli, Pa.

Dr. Ralph P. Ruth-appointed Senior Scientist, Hoffman Science Center, Santa Barbara, Calif.

Niles P. Gowell-appointed Engineering Manager, Industrial Components Div., Raytheon Co., Waltham, Mass.

N. P. Gowell

M. J. Bock

Marvin J. Bock-named Chief Engineer, Kearfott Div., General Precision, Inc., Van Nuys, Calif.

Dr. Seymour Stein and Dr. James E. Storer-appointed Senior Scientists, Sylvania's Applied Research Laboratory, Waltham, Mass.

Dr. Victor Hicka—joins Remington Rand Univac Military Dept., St. Paul, Minn., as Staff Scientist.

John Basarab, Jr.—new Supervisory Engineer, Shipboard Electronics Dept., Lockheed Electronics Co., Plainfield, N. J.

Dr. E. Robert Britton-named Director of Military Engineering, Airtronics International Corp., Ft. Lauderdale, Fla.

Samuel J. Davy—appointed Director of Engineering, National Co., Inc., Malden, Mass.

J. Pieter deVries—appointed Manager of Astrodynamics for the Space Sciences Laboratories of General Electric's Missile and Space Vehicle Dept., Phila., Pa.

ELECTRONIC INDUSTRIES . January 1961

THERE IS NO CEILING ON IDEAS

• Advanced hydrogen systems being developed by The Garrett Corporation solve the problem of keeping men alive and equipment operating for long periods of time in future satellites and space capsules.

Engincers at The Garrett Corporation's AiResearch Manufacturing Divisions are dealing with challenging problems in fast-moving fields.

Diversification of effort and vigorous leadership have made Garrett the world's largest manufacturer of aircraft components and systems and a leader in specialized missile and spacecraft systems.

Excellent positions are available for qualified men with M.S., Ph.D. and Sc.D. degrees for work in these areas:

- Environmental Control Systems Pioneer, leading developer and supplier
 of air conditioning and pressurization systems for commercial and military
 aircraft, and life support systems for satellites and space vehicles.
- Aircraft Flight and Electronic Systems Largest supplier of airborne centralized flight data systems; also working with other electronic controls and instruments including missile and submarine applications.
- Missile Systems Largest supplier of accessory power units, AiResearch is also working with hydraulic, hot gas and hydrogen systems for missiles, liquid and gas cryogenic valves and controls for ground support.
- Gas Turbine Engines World's largest producer of small gas turbine engines, with more than 9000 delivered in the 30-850 hp class. Studies include industrial and nuclear applications.

Immediate openings exist for MANUFACTURING ENGINEERS

to work with product design engineers on all aspects of production including forming, machining, assembly, material processing, operating standards and manufacturing feasibility of products in the above fields.

GARRETT

Send resume to: Mr. G. D. Bradley

CORPORATION

AiResearch Manufacturing Divisions

Los Angeles 45, California · Phoenix, Arizona

News of Mirs"

TRIES.

ton, N. J.

Co., Chicago, Ill.

tana, Idaho and Alaska.

markets.

REPRESENTATIVES WANTED

gon; (4) Northern California;

Electronic Representatives."

FREED TRANSFORMER CO., INC. 1726 WeirBeid St., Breeklyn (Ridgewood) 27, N.Y. Circle 150 on Inquiry Card

ELECTRONIC INDUSTRIES . January 1961

.

ELECTRONIC INDUSTRIES Advertisers – January 1961

This index is published as a convenience. No liability is assumed for errors or omissions.

*	6	
ADC Incorporated Aerovas Corporation Airord Manufacturing Company Allied Control Company, Inc. Allied Control Company, Inc. Allied Redio Alpha Metals, Inc. American Electrical Hoster Company American Time Products, Inc. AMP Incorporated Amptene Deorg Electronics Corporation Angheno Deorg Electronics Corporation Andrew Corporation Andrew Corporation Andrew Corporation Analex Corporation Anal	Garrett Corporation, The General Electric Company Electronic Tube Div. Missile & Space Vehicle Dept. General Electrodynamics Corporation General Instrument Corporation General Motors, Deice Radie Div. General Radio Company Gibbe Industries, Inc. Good-All Electric Mg. Co. Graphic Systems Graphic Instrument Grement Menufacturing Company, Inc. G-V Controls, Inc.	223 Pacific Samiconductors, Inc. 107, Insert fallowing pg. 221 Panoramic Rodio Products 174 219 Philico Corporation, Lansdele Div. 189 229 Philco Corporation, Lansdele Div. 100 219 Philco Corporation, Lansdele Div. 173 219 Pairte Capacifiers, Inc. 173 210 Palared Electronics Insert following pg. 211 Paterad Electronics Insert following pg. 215 Pawer Designs, Inc. 164 216 PRW Posigns, Inc. 164 217 Pawer Designs, Inc. 164 218 PRW Provertronics, Inc. 154 219 PRD Electronics, Inc. 154
		Oyan-Tech Laboratories 208
Saliantine Laboratories, Inc. Beckman Instruments, Berkeley Div. Beckman Instruments, Heilipot Div. Bell Telephone Laboratories Bendis Corporation, Electron Tube Div. Inc., M. C. Bendis Corporation, Jones Electronics Co., Inc., M. C. Bendis Corporation, Pioneer-Central Div. I Borg Equipment Div., Amphenol-Borg	Hewiett-Packard Company Hill Electronics, Inc. Howard Induitries Hughes Alcraft Company Englosering Div. Microwave Tube Div.	144 147 R 212 Redio Corporation of America Back Cover Redio Materials CompanyInside Front Cover Resves-Moffmen, Div. of Dynemics Corp. of America 202
Bourns, Inc., Trimpot Div.	1	
Braun Tool & Instrument Company, Inc. 2 Bruno-New York Industries Corp. 2 Brush Instruments Div. of Clevite Corp. 1 Burnell & Company, Inc. 1 Bursmann Mfg. Div., McGraw-Edison Co. 1	ideal Industrias, Inc. IERC, International Electronic Research Corporation Illinois Condenser Company Industrial Electronic Engineers, Inc. International Resistance Company Institute of Redio Engineers, The	183 S 152 Solon Internetional des Composants 164 Salectroniques S 164 Salectro Carporation, Inc. 184 Salectro Carporation 4
c		Sekonic, Inc. Shockley Transistor Unit of Clevite Transistor 135
CBS Semiconductors	1. J.	Spectral Electronics Corporation 43
Inc. Chemplast, Inc. 2 Chilton Book Division Cinch Menufacturing Company Ciare & Company, C. P. Clavite Transistor Products Inself following pg. Communication Accessories Co.	Jennings Radio Manufacturing Corp. Jettran Products, Inc. JFD Electronics Corporation Johnson Company, E. F. Jones Div., Howard B., Clach Mfg. Co.	150 Stackpole Carbon Company 120 172 Stanpar Company 120 181 Strens Manufacturing Company 100 183 Struthera-Dunn, Inc. 54 Suparior Tube Company 50 Sylvania Electric Products, Inc. 50 Sylvania Electric Products, Inc. 100
Conrec, Inc. Centrel Switch Div Costrols Company	ĸ	Syntronic Instruments, me.
of America Corning Electronic Components, Corning Glass Works Custom Components, Inc.	Kay Electric Company Keuffel & Esser Company Knights Company, The James	162 149 206 T
D	L	Taylor Fibre Company 41 Tektroniz, Inc. 112 Texes Instruments Incorporated 12, 13 Times Wire & Ceble Div., The Int'l. Silver Company 44
Dale Electronics, Inc. I Daven Company, The Design Tool Company Deutsch Company, The Dialight Corporation 2 Dow Corring Corporation 2	Lei, Inc Lenz Electric Manufecturing Company Litton Industries, Electron Tube Div. 5 5 7	173 Transfer Laboratories, Inc. 155 Transfrom Electronic Corporation 191 137 Transfrom Electronic Corporation 191 Tung-Sol Electric, Inc. 71
Fairchild	ы	
	Magnetic Shield Div., Perfection Mice Co. Marconi Instruments Microwave Associates, Inc., Semiconductor	44 172 United Van Lines 30 Unitek Corp., Weldmatic Div. 28
E	Minnesota Mining and Manufacturing Co.,	122
EICO, Electronic Instrument Co., Inc. Eitel-McCullough, Inc. Eigin Advance Relays, Eigin National	Mincom Div. Motorole Semiconductor Products. Inc	45 116 V
ESC Electronics Corp.	71 N	Victoreen 40
	Newman Corporation, M. M. Notholfer Winding Laboratories, Inc.	179 62 W
Fairchild Costrols Corporation	12	Wareline lor
Fairchild Semiconductor Corporation Flute Mfg. Co., Inc., John Freed Transformer Company, Inc. FXR, Inc.	53 Ohmite Manufecturing Company	Wetherster Compony, The 17 Westinghouse Electric Corp., Semiconductor Dept. 130, 131 31 White Industrial Div., S. S. 170
ELECTRONIC INDUSTRIES . Januar	y 1961 For produ	ct information, use inquiry card 225

NEW CMA-415 PERMEABLE DIELECTRIC MAINTAINS THERMAL STABILITY TO

Custom Components' new microwave absorber is ideal for advanced system applications. High attenuation... easily molded or machined to specific tolerances... prompt service and deliverics to match your needs.

CUSTOM COMPONENTS, P.O. Box 248, Caldwell, N.J. INC. CApital 6-3404

Circle 152 on Inquiry Card

News of Mirs' Representatives

RCA's Food and Beverage Equipment Section has named the following seven appointees and their area of responsibility: William F. O'Brien, Summit, N. J., covering metropoli-tan N. Y. and northern N. J.; David Pollock Co., Ft. Lauderdale, Fla., covering North and South Carolina, Georgia and Florida; Leonard Schwarz, Hartford, Conn., covering the New England states; Otis Whitehead, Dallas, Tex., covering Louisiana, Oklahoma, Arkansas, New Mexico and Texas; American Bottlers Equipment, Baltimore, Md., covering Baltimore, Md.-Virginia, Maryland, District of Columbia, eastern Pennsylvania and southern New Jersey; Banbury Equipment Co., Pittsburgh, Pa., covering western Pennsylvania, eastern Ohio, West Virginia and Buf-falo, N. Y.; Mark Powers Co., Birmingham, Ala., covering Tennessee, Mississippi and Alabama.

Five new regional sales representatives appointed by Hughes Aircraft Co.'s Vacuum Tube Products Div., Culver City, Calif., are: Ecklund Electronic Sales Co., Ft. Worth, Tex., in Texas and Louisiana; Dunbar Mid-States Co., Coffeyville, Kan., covering Kansas, Arkansas, Iowa, Nebraska, North and South Dakota, Missouri and Oklahoma; R. G. Sidnell and Co., Cleveland, Ohio, covering Ohio and western Pa.; J. L. Pierce Co., Detroit, Mich., covering Michigan; Automation Sales Co., Rockland, Mass., covering Massachusetts, Connecticut, Maine, New Hampshire and Vermont.

Southwestern Engineering and Equipment Co., Dallas, Tex. — appointed sales representative for systems components by Systems Div. of Beckman Instruments, Inc., Anaheim, Calif., covering Texas, New Mexico, Oklahoma and Louisiana.

Syd Wimpie Associates, Mamaroneck, N. Y.—appointed sales representative for precision potentiometers and panel instruments in metropolitan N. Y., Long Island and New Jersey by the Electronics Div. of DeJur-Amsco Corp., Long Island City, N. Y.

R. F. Products Div. of Amphenol-Borg Electronics Corp., Danbury, Conn.—appoints the following firms to handle its radio frequency products: Atcheson and Adams, Greensboro, N. C.; Eichorn and Melchior, Inc., San Carlos, Calif; Hollingsworth and Still, Atlanta, Ga.; R. E. Mc-Clendon Co., Albuquerque, N. M.; Jack F. McKinney Sales Co., Dallas, Tex.; Premmco, Inc., Los Angelea, Calif.; Don Smith Sales Co., Seattle, Wash.; W. Ben Wimberly Co., Clearwater, Fla.

The most precise, sturdiest thermal relay ever built... best for missile applications

... from the leader in thermal relay design!

Now, for missile environments and for all applications where greater precision is necessary, G-V Controls offers the revolutionary new PT Thermal Relay—the most precise thermal relay ever built!

And the PT's sturdiness is unequalled in thermal relays. It withstands missile vibration and shock far better than any other thermal relay.

SPECIFICATIONS

Time Delay: 3 to 60 seconds (Factory Set) Setting Telerance: $\pm 5\%$ ($\pm \frac{1}{4}$ sec. min.) Temperature Compensation: Within $\pm 5\%$ over -65° C. to $+125^{\circ}$ C. range ($\pm \frac{1}{4}$ sec. min.) Heater Veltages: 6.3 to 115 v. for delays up to 12 sec.;

6.3 to 230 v. for longer delays. Pewer Input: 4 watts. Rated for continuous energization at 125°C.

Centacts: SPST, normally open or normally closed. Rated 2 amps. resistive at 115 v. AC or 28 v. CC.

G-V CONTROLS

Write for Product Data Bulletin #PD-1015

Insulation Resistance: 1,000 megohms Dielectric Strength, 1000 y. PMS at see level

Dielectric Strength: 1000 v. RMS at sea level. 500 v. RMS at 70,000 ft.

Vibration: Operating or non-operating, 20 g up to 2000 cps Sheck: Operating or non-operating, 50 g for 11 milliseconds

Unidirectional Acceleration: 10 g in any direction changes delay by less than 5%, 50 g by less than 10% with proper orientation. Weight: 2 to 2% ounces.

Livingston, New Jersey

ESPECIALLY ABLE and

RCA Semiconductor Products Field Engineers...specialists in their field ... are glad to work with you on your design and application projects.

RCA Semiconductor Products Field Engineers are on immediate call to provide you with comprehensive and authoritative design and application information in the field of semiconductor devices and materials. Each RCA Field Engineer works closely with RCA Applications Engineers located in separate laboratories devoted to solving problems in semi-conductor devices, micromodules, and ferrites for entertainment, computer, industrial and military applications. A thoroughly schooled and experienced electronics engineer, your RCA Field Engineer can usually help you work out the answer to many prob-

lems on the spot. When an especially complex design applications problem arises, he has available the full resources of a laboratory staffed with specialists.

So if you need assistance with a new design, or aid in ironing out the "kinks" in a developmental stage In ironing out the Kinks in a developmental stage designed around RCA semiconductor products or materials, simply call the RCA Field Office nearest you. Your local RCA Semiconductor Products Field Engineer is *ready*, willing, and *especially able* to provide help where help is needed.

RADIO CORPORATION OF AMERICA Semiconductor & Materials Division

Somerville, New Jersey

RCA FIELD OFFICES

- 744 Broad St., Newark, N. J., HU 5-3900
 731 James St., Room 402, Syracuse 3, N. Y., GR 4-5591
 64 "A" St. Needham Heights 94, Mass, HI 4-7200
 714 New Center Bldg., Detroit 2, Mich., TR 5-5600
 Suite LIS4, Merchandise Mart Plaza Chicago 54, Ill., WH 4-2700
 P.O. Bau 8406, St. Louis Park Branch, Minneapolis, Minn., FE
- 9-1249
- 9-1249 6355 E. Washington Blvd. Los Angeles, Calif., RA 3-B361 6355 E. Washington Burlingame, Calif., OX 7-1620 Calmar, Burlding, 1520 Edgewater Dr., Suite I, Orlando, Fla., GA 4-4768 7905 Empire Freeway, Dallas 7, Texas, FL 7-B167 224 N. Wilkinson St. Davton Ohio, BA 6-2366 1725 'K'' St. N.W. Washington, D. C., FE 7-8500

