A CHILTON PUBLICATION

1961 Coming Electronic Events Calendar

New

RADIO MATERIALS COMPANY

Factory and Research Center

This new factory, office and research center in Chicago will enable RMC to expand its service to the growing electronic industry. The modern facility incorporates extensive manufacturing space to provide the fastest shipments of RMC DISCAPS with up to the minute research laboratories where technicians are engaged in capacitor development and improvement.

The combination of this new facility with RMC's modern plant in Attica, Indiana, enables Radio Matérials Company, now, more than ever, to better serve your ceramic capacitor requirements efficiently and economically.

ELECTRONIC INDUSTRIES

ROBERTE. McKENNA, Publisher
BERNARDF.OSBAHR.EDitor

THIS has been another record bus1ness year for the electronic industries. The total 1960 industry product comes to approximately $\$ 10.75$ billion composed of: military and government equipment at $\$ 5$ billion, consumer goods (retail) $\$ 3.1$ billion. commercial and industrial electronic equipment $\$ 1.75$ billion, with nearly another billion dollars for replacement parts.

In this issue we have prepared a very cumprehensive statistical roundup of the industry that starts on page 124. This information. coupled with that on the "Electronic Industries Totals" pages contained in each month's issue, is aimed at keeping interested readers abreast of all vital marketing information as it becomes available. Along these lines, also in this issue, we should like to call your special attention to the survey article by Jerome Kraus discussing the U. S. Electron Tube and Semiconductor Market for 1961-1965. It starts on page 214.

The current business slow-down. a new president-elect, and our troubled gold position constitute major factors of uncertainty in predicting business conditions for 1961. In checking, we find that most business executives expect 1961 to be about the same in the overall as 1960. Prices, profits and costs are expected to remain at about the same levels. Of course, some industry segments such as semiconducturs, microwaves, microminiaturization, and molecular electronics will forge ahead at greater rates than others.

Last month we noted that 1961 would be a record year for conventions, meetings and shows. The total number of days for these activities exceeds the total number of working days in the year. This month we have attempted to illustrate this graphically on our front cover. We have also indicated those which we consider to be prime regional events. It is hoped that through collaboration and cooperation of the interested groups and societies many of the smaller meetings can be tied onto one of the main regional events. The Institute of Aeronautical Sciences and the American Rocket Society have already taken the
initiative in this direction and hase combined furces for their 1961 West Coast Summer meeting.

In 1960 our editorial staff study program met with considerable success. We list here the subjects that were covered: "Human Factors - Newest Engineering Discipline" (February) : "New Roles for the Electron Gun" (March): "The Challenge of Space" (April); "Searching fur New Electronic Markets" (July): "Electronics and the Future of Agriculture" (August): "Unconventional Power Converters" (Sept.) ; "Summary of Microwave Electron Devices" (November); and "MINUTEMAN, Catalyst for Reliability" (December). For those interested, a limited number of reprints for each of these studies are still available. The series of articles on Radio Frequency Interference appearing in March, April, May. June, July, September, Octuber and December issues also received a very high reader acceptance. During 1961 we intend to continue with both these programs. We are in the editorial planning stages now and would welcome any additional reader suggestions for new topic coverage.

During 1960, as well as in past years. we produced four issues with special themes. In March there was the annual IRE Show and Convention issue; in June we had our technical All-Reference and Directory issue; August was the annual WESCON show and convention issue; with November providing the 9th Microwave Issue. In 1961 we shall continue with this grouping. We also have no plans to change the frequency of publication of Electronic Industries. Our aim will be to keep EI as the prime tech nical monthly center for engineers engaged in the design, research, development, manufacture and operation of electronic equipment.

We take this opportunity to thank our readers for their past interest and support. Your continued cooperation promises to make this. our nineteenth consecutive year of publishing, better than ever before. From all El staff members, a very happy new electronic year to all!

ELECTRONIC INDUSTRIES

Vol. 20, No. 1
January, 1961

MONTHLY NEWS ROUND.UP

Radarscope: What's Ahead for the Electroaic Iadustries. 4
As We Go To Press. 7
Electrenic Sinerts 8
Coming Events 11
Eloctronic Indusfries' Mows Driofs. 19
TOTALS: Lafo Marteting Sfafistics 21
Snapshots . . . Of the Eloefronic Iadustries 22
Iaternafleael Nows 24
Noxt Month In Electronic indastries. 75
Weshiagten Nows Letter. 207
Editorial: ELECTRONIC INDUSTRIES, 1960-61 1
Design of Automatic Test Equipment. 76
Designing for Low Level Inputs D. E. Schneider 81
Using Jacobians for Frequency-Selective Nełworks
Dr. W. W. Mapp \& T. R. Nisbet 86
What's New. 90
One Solution to Servomechenism Huating 92
Level Gauges in the Liquid Helium-Liquid Oxygen Range
Dr. H. B. Saclse 96
Designing a Lightweight Vibration Transducer (Part 11
T. D. Smith \& H. R. Spence 100
1961 Coming Events Calendar 107
1960-1961 Stafistics of the Electronic Industries. 124
International Electronic Sources 185
Electronic Operations 197
Developing an Oscillator for 450-470 MC. N. Goncheroff 199
Professional Opportunities 213
Electron Tubes and Semiconductors-What's Ahead? ...J. Kraus 214
NEW PRODUCTS \& TECH DATA
New Products 104
Now Tech Dafa for Engineers 138
DEPARTMENTS
Telo-Tips 41
Cuos for Broadeastors. 204
Lettors 52
62 Persenals 202
Systoms-Wise 197

Highlights

of this issue

Automatic Test Equipment

page 76
There is a great interest in automatic test equipment for complex systems. Some of the problems involved in designing flexible, highspeed, full automatic checkout systems for use by unskilled personnol are described and discussed here.

Designing for Low Level Inputs

page 81
The problems of low leval input instrumentation have mushroomed with the missile era. Not only is the new terminology defined in this article but also positive suggestions are offered to eliminate systoms engineering problems involved.

Using Jacobians for Frequency-Selective Networks page 86 This article is an experiment. Instead of presenting a short discussion for those familiar with Jacobians, and a long table of results for those who are not, the entire article contains only one simple network-so simple that results can be verified intuitively.

One Solution to Servomechanism Hunting
page 92
Usually a servomotor drives a potentiometer so that the input voltage exactly matches the feedback voltage. With precision wire-bound pots this is not always possible because of the voltage difference between windings. Precision carbon film pots seem to be the answer.

Level Gauges in the Liquid Helium-Liquid Oxygen Range
page 96
With more emphasis being placed on the operational status of missiles and space vehicles, the problem of simplifying fuel level sensing for field use magnifies. The high sensitivity thermistor is a leading contender for the detector.

Designing a Lightweight Vibration Transducer
page 100
Special transducers must be developed to handle dynamic measurements of electronic hardware under vibrational environments. These devices should be "throw-aways" which can be left in the equipment after the measurements are made. Size and weight are also critical since they affect the data.

Development of an Oscillator for 450-470 MC
page 198
The design and development of a stable, reliable crystal oscillator is a problem made a little harder by now FCC regulations for mobile communications. Here is an engineer's thinking behind the design and development of an oscillator for use under rugged conditions.

Electron Tubes and Semiconductors-What's Ahead
page 214 Electronic tubes and samiconductor devices are parts of much largor equipments or systems. The demand for them depends on many diverse elements including consumer taste and U. S. defense and foroign policy. In this dynomic industry, a forecast cannot be an extonsion of past performance alone, but must also consider the impact of new developments. This forecast is based on such on analysis.

RADARSCOPE

INFRA-RED WINDOW

The largest germanium infra-red mindow ever cast. 15 in. in dianiefer and half-inch thick, is checked by opfiral rechnician at Hughes Aircraft Company. The wondow will be used in detection systems for missile guidance and space surveillance

RISSIANS SOIID-STATE RESEARCH has been accelerated so spectacularly that within 5 to 10 years the Suviets may be publishing more material on the field than the U. S. This is a conclusion of the Government's Office of Technical Services. Business \& Defense Services Administration. Most prominent feature of the Soviet's work is reportedly their excellent theoretical research.

THE MIIITARY DEPARTMENTS have agreed to forecast their requirements for $1: 3$ categories of electronic components on a 5 -year basis. The first i)-ytar forecasts will be released next July. It will cover three types of batteries: 7 capacitors: 7 resisturs; all transfurmers and reactors; 5 electrical indicating instruments; 3 relays; 3 quartz crystals and filters; 4 receiving tubes; 13 power, transmitting special-purpose tubes: 4 semiconductor diode rectifiers and related devices; 2 transistors and all types of connectors and servos.

FAA IS EXPERIMENTING with "forward scatter" to provide communications on the air routes over the North Atlatic. Present h-f cummunications are frequently interrupted by sunspots, auroral blackouts and selective fading. The FAA hopes that "forward scatter" will provide reliable communications $\mathbf{9 8 \%}$ of the time.

HAVE THE SOVIETS developed a synthetic transistur: Rumor out of Moscow is that Nubel Prize (hemist N. N. Semenov has developed a synthetic transistor made of polyacrylonitrile that has parameters similar to germanium transistor.

COMPLTER INDL'STRY is taking a definite form. which may or may not mean more dullars fur the electronic end. The trend was first noted a, year ago when the Government announced plans to poul their computers so that more Government Depts. could use them. The trend seems to be finding favor with private industry, as well. Plans are for tying both large and small firms to centralized electronic data processing centers which will have on hand a wide variety of computing equipment to handle any particular application. Two segments of the industry are involved, working somewhat independentls. The computer people are manufacturing sophisticated, high-powered computers for these centers. and the communications people are concentrating on setting up data transmission links. At this point. while the number of small general-purpose computers is increasing, the increase is at a decreasing rate, while the number of large high-powered computers is increasing at an increasing rate. The small computer field seems to be turning more tuwards specialized equipment. tailored to meet spectific needs in industry.

COCKPIT DISPLAY

Capt. Pete Nagurney. chief pilot of ITT Labs, checks his position over the New York metropalitan area on the new VORTAC Pictorial Display developed by ITT. The pilot sees exactly where he is during every moment of flaght by following the intersection of two moving red lines.

SMALI. BISINESS has been awarded 8,121 prime (iovernment conlracts valued at $\$ 342,526,468$ during the period July through October, 1960. This represents an increase of $\$ 81.5$ million in contracts "wer the same perind last year.

THE: MICROWAVE SPECTRUM. is of mterest to scientists in many fields outside of electronics. Bio-: physicists are finding that they can better study living matter in microwave radiation fields. Microware spectroscopy is being looked to as one of the most important tools for studying matter in solid and gaseous states. At the same time physicists are studying the interaction between microwaves and gas-discharge plasma, because microwaves penetrating through ionized gas permit determination of the electron density, temperature and rift velocity in the plasma. In other applications microwaves are allowing extreme accuracy in measurements. such as measuring the distance in satellites ofthiting around the parth.
"TOLCH" SYSTEM for pilot communications proposed by research psychologists at the Human Engineering Laboratory of the Rome Air Develnpment Center. would change frequencies of voice into mechanical vibrations. Pilot would feel the vibrations through s plate in contact with his bucly. Project is still in research stage.

NOT EVERYONE is disenchanted with "value anal!sis," contrary to some recent reports. Cost reduction proposals during a recent two-week value engineering seminar at the California Branch of l.ibruscope I)iv., General Precision, Inc.. had an (estimated) saving of $\$ 50,000$ on the POI,ARIS program alone. Librascope is a major supplier of [OI.ARIS fire control clectronic subsistems.

MACNETOSPHERIC WAVEGUIDES, magneto-ionic ducts extending from the ionosphere in the northcin hemisphere to the innosphere of the southern hemisphere could guide high frequency transmission between the hemispheres, according to Prof. Thomas (iold. director of Cornell's Space Center. Signals entering these ducts-over 10.000 miles long-leave with practically the same strength. NSF supported the stude.

FERRO-EI.ECTRIC MATERIALS are being studied for use in microwave devices by Caswell Electronics Corp. and the Univ. of Michigan Research Institute. Initial studies aim at developing rapid phase shifters.

MISSII.E BIOOM effect is being studied by Radiation Inc.. Orlando, Fla. Missile bloom is a whitish slow survounding missiles at an altitude of about 120 km . It has a rapid growth that persists for many seconds and has a diameter of several miles.

THE IMPORT-EXPORT HASSIE is being further snarled by the Government's attempts to resolve the dollur crisis. Many Government people feel that pressure should be brought to bear on manufacturers who have moved their manufacturing operations overseas-this would include a sizeable number of electronic firms. But another school says that the profits that will ultimately flow back to the I. S. will more than werbalance the temporary nutflow of dollars.

SUBTLE "BUY AMERICA" IJROGRAM is being met with an equally devious effort to conceal the fact that equipments are of foreign manufacture. Where previnusly firms were content to leave the question of origin dangling. large numbers are now hold enough to claim that they are personally manufacturing items completely manufactured overseas. Federal Trade Commission is pushing action against a number of these firms vigninusly.

WE SEE A TREND develnping which will give engineers it bigger share in management decisionspspecially in matters concerning depreciation poli--its and methods. Financial and accounting people do most of the work in this area now, hut they are c'alling on engineers more and more to make decisions which hinge on the effects of technological change. The engineers--tn be of real help-will also have to learn more about the accountant's trade.

INDCSTRIAI. RESEARCH AND DEVELOPMENT intalled approximately $\mathbf{8 1 0}$ billion in 1960. The aircraft industry accounted for approximately 33% of the money expended. and electrical equipment and rummunicatinns 25%.

CHECKING TIROS CAMERA

Alignment of the wide-angle television camera on the Tivos if weather satellite is checked by Sidney Sternberg, chief engineer of the RCA Astro-Electronics Division and engineer Ralph Jordan at the RCA Space Center, Princeton, New Jersey.

CERAMICS FOR TRANSISTOR CIRCUITS

HYPERCON* CAPACITORS

```
|| Ultra-hlgh empacitance
|| Low voltage
| Miniature slze
|| Low Cost
```

Designed for use in semi-conductor and other low-voltage circuits, these new Hypercon Disc Ceramic Capacitors offer capacitance values formerly associated only with electrolytic capacitors. Yet they are only a fraction of the size of comparable electrolytics . . . and sold at only a fraction of the cost!

Hypercons have excellent stability, exhibiting no loss in capacitance when operating above room temperature. Their triple-purpose resin coating serves as insulation as well as protection against moisture and mechanical damage.

3 VOLTS D-C		12 VOLTS D-C	
μ F	Dimacier in Inekes	μ F	Dinantur in Inches
.1	.225	.047	.275
.22	.275	.1	.400
.47	.400	.22	.595
1.0	.595	.47	.840
2.2	.840		

Hypercons are in mass prodwction now, available for promps delivery. For detailed specifications, write for Engineering Data Sbeet 6141 A to Tecbnical Liserature Section, Sprague Electric Company, 233 Marsball Street, Nortb Adams, Massachusetts.

PPRAOUE COMOONENTS
CAPACITORS - RESISTORS - MAGMETIC COMPONENTS - TRANSISTORS - IMTERFERENCE FILTERS - FULSE-FORMIMG WETWORKS - PIEZOELECTME CERAMICS MIEH TEMPERATURE MAGMET WIRE - CERAMIC-GASE PRIMTED WETWORKS - PACKACED COMPONENT ASSEMRLIES - FUMCTIOMAL DIOITAL CIRCUITS

As We Go To Press

Plotter Draws Weather Map in Three Minutes

The U. S. Weather Bureau has in operation an electronic computer - plotter that mechanically draws a complete weather map of the Northern Hemisphere in less than three minutes. Unit, the Weather Plotter, reads information from magnetic tape and presents this information to a digital-toanalog converter.
Converter instructs the "mechanical hand" of the plotter to automatically draw isobars on a 30 x 30 in. map of the Northern Hemisphere. Unit was developed and produced by Electronic Associates. Inc., Long Branch, N. J.

OLD TUBES STILL WORK

42-year old radio set built by Westorn Elec. tric Co. for the Signal Corp still morks. In. specting set are (L to R): R. A. Heising. original set designer; Major Cen. R. T. Nelson, and W. H. Doherty. Mnge.. Patents Licensing. Western Electric Company.

New Telemełry Sysłem

A new data multiplexing system. SS-FM. uses single sideband subcarriers on an FM carrier. It permits transmission of approx. 45,000 cycles of data at an accuracy of 5% in the same r-f bandwidth now used by an FM-FM system with a capacity of 4,000 cycles of data. Up to 30 db improvement in signal-to-noise ratio is realizable.

System was developed at NASA's George C. Marshall Space Flight Center, Huntsville, Ala. for the Saturn program. They were assisted in the hardware development phase by Motorola, Collins Radio, and Lenkurt Electric. System was developed to provide transmission capacity for vibration and other wideband data required by the rocket designer.

Slide Rule Locates Orbiting Satellite

The Air Research and Development Command's Rome Air Development Center has a new type slide rule which quickly locates a satellite moving around the earth. The computing device pinpoints the satellite's path and determines geographical areas visible from the satellite. It also gives the frequency and times it will pass over any particular points on the ground.

Simulator also can be worked backwards to give the launch conditions (time and place, necessary to achieve a satellite's journey. Planning Research Corp., Los Angeles, built the device called the Satellite Trajectory Simulator.

IRE Officers for '61Berkner is President

Lloyd V. Berkner, Pres., Associated Universities, Inc., has been elected President for 1961 of the Institute of Radio Engineers. Vice Presidents are: (Overseas) Franz Ollendorff, Research Professor at the Technion-Israel Institute of Technology, Haifa, Israel, and (North America) J. F. Byrne, Manager, Riverside Research Lab., Motorola, Inc., Riverside, Calii.

Directors (1961-1963) are: E. F. Carter, Stanford Research Institute, Menlo Park. Calif.; and L. C. Van Atta, Hughes Aircraft Co., Culver City, Calif.

Regional Directors (1961-1962): A. B. Giordano (Region 2), Polytechnic Institute of Brooklyn; A. B. Bereskin (Region 4) University of Cincinnati; M. W. Bullock (region 6) Continental Electronics Manufacturing Co., Texas: and B. R. Tupper (Region 8) British Columbia Telephone Co., Vancouver. Canada.

TV Award

The Institute of Radio Engineers has awarded the Vladimir K. Zworykin Television Prize to Dr. Peter C. Goldmark, President and Director of Research, CBS Laboratories, Stamford. Conn.

He was cited for. "Important contributions to the development and utilization of electronic television in military reconnaissance and in medical education."

SAC guidance craws for the ATLAS Radiocommand suidance system stand-by at an operational Aplas launching site. Mainfenance panel is on the left-guidance control officer af guidance comale, right.

Update Conelrad

The U. S. Air Force, the FCC, The Associated Press, and United Press International will integrate the entire facilities of the two major wire services for use as an alert system in event of a national emergency. Under the new system, virtually every radio station in the nation can be notified of enemy attack in 3 to 8 minutes. The old system took up to 1 hour. One man can trigger the alert.

ASW Electronics Needs Major Breakthrough

The Military Marketing Data Committee (EIA) says that the electronic market within the Navy's antisubmarine warfare program is relatively small and is likely to remain so unless there is a major scientific development in the field. Right now the market is about $\$ 185$ million of a total $\$ 240$ million alloted by the Navy for the ASW program. By 1965 they predict $\$ 325$ million for electronics out of a total $\$ 400$ million.

New developments are needed in the areas of long-range detection and classification of submarine and simplified, inexpensive ASW equipment. Marketing opportunities in this area will be concentrated in improved sensors and data processing systems, and command and decision-making equip̣ment.

Mors Mews
 on Page 8

Electronic

SHORTS

- An Educational Electronics Division has been formed through consolidation of the educational sales groups of Thompson-Ramo-Wooldridge's subsidiary, Magnetic Recording Industries and the companies' Dage Television Div. The new division will be responsible for marketing a wile range of commercial electronic products for use in schonls. The products will include CCTV systems, language laboratories, teaching machines, recording systems, electronic classrooms, and other educational services. The division headquarters is at 126 Fifth Avenue, New York City.
- Up-to-date information on Government-supported technical If \& I) work can now be obtained regularly from the Small Business Administration. Abstracts of $R \&$ II reports covering principal industrial categories will be provided to interested small manufacturers upon request. These manufacturcrs will select from an SBA check-list the categories for which they desire technical information. The abstracts in these categories will then be inapled to them automatically as they are issued.
- A new high-resolution receiving antenna whose narrow bean sweeps rapidly and continuously by purely electronic control of phasing has been designed and tested hy the Antenna Research Section, Radio Systems Div. of the Boulder Laboratories, NBS. There are no mechanically-moved parts in the antenna array. The array consists of seven b-element Yagis, optimized for a maximum front-to-back ratio of 30 db . Dolph-Chebyshev current distribution is used to limit side lohes to below -20 db . The system. operating at 41 Mc , swing: a 5.8 beam in azimuth through a 4: sectur each 120 second.

D The FAA has ordered United States airlines in install flight recorders on all jet-powered planes by mext May. The regulation went into effect November 1, but if airlines encounter installation or procurement difficullies, extensions will be granted up to May Ist. The units, connected to certain key instruments, record on tape auch factors as air speed, and other performance data. Units are enclosed in a small cabinet impervious to fire, impact and water damage.

- A Repetitively Pulsed Plasma Accelerator (REPPAC 1) has been fired continuously for $181 / 2 \mathrm{hrs}$. at GE's Missile and Space Vehicle Dept.. I'hila There were nearly $4,000,000$ individual firings at the rate of $3,000 / \mathrm{min}$. Each firing produced about $1 / 10$ oz. thrust. The program aime to prove feasibility of using pulsed plasma acceleration for space vehicle attitude control.
- A Burroughs Corp. B100, electronic check sorter, has been installed in the National Savings and Trust Co., District of Columbia. The sorter uses MICR-Magnetic Ink Character Recognition. Sorter is the first unit of a compiete electronic system the bank plans to install during the next year.

Westinghouse Electric ('orp.'s new Astracon light amplifier tuhe has photographed the faint tracks produced when cosmic rays penetrate a solid crystal. The Astracon takes incoming photons and uses them to release electrons from a light-sensitive input surface. Electrons are accelerated and zuided successively onto a series of thin films. At each film. an incident electron ejects five or six more electrons which move to the next film. In a 4 -stage tube, they emit about 10.000 photons for each original photon.
" "Long-range missiles with computer memory units sealed in their nose cones could be the 'homing pigeons' of future nuclear wars," says Dr. Leonard S. Sheingold, Sylvania Electric Products, Inc. The system could be one way of transferring large volumes of information over ranges of up to thousands of miles-connectin: high-data-rate computer facilities at several points on the globe-after conventional communications channels are destroyed.

- Gulton Industries. Metuchen, N. J.. has designed a new. rechargeable nickel-cadmium battery with a true hermetic seal for highly reliable, long-life outer space performance. The $\mathbf{5}$-amp. cell can absorb a charge current of 1 amp indefinitely. It can operate for at least 20,000 duty cycles over a period of many :ears.

Ground Traffic Radar

New Airport Surface Detection Equipment (ASDE) radar, in (1p)eration at the Washington 수tional Airport, sweeps the fielos every second to give a detailed picture of ground traffic, moving or still. U'se of instrument landing systems and Airport Surveillance Radars have speeded up airport traftic so much that clearing of runwatys is becoming increasinglo imprirtant.

HEART STOPS, IT CALLS DOC

Units that stimulate a patient's faltering heart and broadcast an alarm to the doctor are demonstrated by inventor. Morris TischlerIRI to Edwin H. Seim. Mngr., Westiaghouse Electric's X-tay 8 Industrial Electronics Div.

New Doppler Antennas To Be Tried By FAA

Better radio signals mity result from tests of a new type of antenna to be conducted by the FAA at its National Aviation Facilities Experimental Center at Atlantic City.

Feature of the new antemas, leing developed by Dorne Margolin. Inc.. Westbury, L. I., under a $\$ 124.497$ R\&D contract, is their si\%, making it possible to put 100 uf them in the usual Doppler installation instead of the present 50 . This increase in number of antennas produces a better signal with les.s "shadowing" effect between antennas, according to FAA engineers. Size of the antenna has been reduced through the use of a cylindrical vertical form instead of the loop antenna now in use with the 1)oppler.

A new type of signal distributor will also be tested in connection with the antennas.

Hughes Ku-band backward-wave oscillators are all permanent-magnet tubes with the compact, lightweight Hughes design that has proved so reliable. They are ideally suited for use in microwave signal
 LINE OF K_{H} BAND BW's and sweep generators, panoramic receivers. spectrum analyzers, frequency scan and navigational radars and countermeasures equipment. They feature low spurious output and narrow spectrum width. They are designed to give you thousands of hours of trouble-free life.
The new 326H, shown here, is of particular interest. It is specifically designed for use in test equipment and other strictly commercial instrumentation-and priced for that market. It is a small, streamlined tube with excellent operating characteristics.
All the tubes shown here are production products. Hughes will ship to meet your immediate requirements. For prices and full particulars, write today to Hughes Microwave Tube Division, 11105 Anza Avenue, Los Angeles 45, California.

CREATINA A NEW WONLD WITM ELECTMONICS
HUGHES
Huanes ancern onmpany MICROWAVE TUBE DIVISION

THE 326H For commercial applications. Minimum output: 10 mw over 12.4 to 18 kmc band with power rising to 65 mw in the center of the band. Like all Hughes BWO's, the Hughes 326 H requires no external cooling. All electrodes are isolated from each other and from the case.

THE 315W Minimum average power: 50 mw . Frequency range: 15.2-17.2 kme. Total welght of tube and magnet: 11.5 lbs .

TME 317M Min. avg. power: 60 mw . Frequency range: $13.5-16.5 \mathrm{kmc}$. Total whi, tube and magnet: 10 lbs

TME 316M Full band. Minimum average power: $10-60 \mathrm{mw}$. Frequency range: $12.4-18.0 \mathrm{kme}$. Total weight of tube and magnet: 11.5 lbs .

TME 318M MIn. avg. power: 30 mm . Frequency range: $17.5-10.5 \mathrm{kmc}$ Total wt., tube and magnet: 10 lbs .

8
2° to $\sigma^{\circ} F$ Differential Standard
${ }^{\prime}$ to $4^{\circ} F$ Differential Special
"Maximum spread of $\sigma^{\circ} \mathrm{F}$
including differential and tolerance

C

Coming

"CALL FOR PAPERS"

17th Annual Society of Plastics Engineers, Inc., Teeh. Meeting, Jan. 24-27, Shoreham Hotel, Wash., D. C. Deadline date for papers: Aug. 1, 1961.

American Mathematical Soc., Feb. 22, 1961, Yeshiva Univ., N. Y. Deadline date: Jan. 10, 1961; Aug.. 1961, Stillwater. Okla. Deadline date: Jan. 10, 1961; Nov. 17-18, Milwaukee. Wis. Deadline date: Jan. 10, 1961. Contact: Mrs. Robert Drew-Bear, Head, Special Project Dept., AMS 190 Hope St., Providence 6, R. I.
Syinp. on Materials and Electron De. vice Processing, Apr. 5-7, 1961, Benjamin Franklin Hotel, Phila., Pa. Submit title and 200 -word abstract to Dr. D. E. Koontz, Bell Tel. Labs., Murray Hill, N. J., no later than Jan. 2, 1961. Manuscripts by Feb. 15, 1961.
Radio Tech. Commission for Marine Services Meeting, Apr. 5-7, Sheraton Palace Hotel. San Francisco, Calif. Deadline date for papers: Mar. 15, 1961. Forward to: G. R. McLeod, Exec. Sec'y, RTCM, c/o FCC, Wash., 25, D. C.

8th Annual Society of Tech. Writers and Publishers Convention. Apr 1314, Mark Hopkins Hotel, San Francisco, Calif. Deadline date for papers: Feb. 1, 1961. Forward to: G. F. Estill, Gen'l Chairman, Maintenance Regulations Mgr., United Air Lines, Intn'l Airport, San Francisco, Calif.
9th National Conf. on Electromagnetic Relays, Apr. 25-27, Oklahoma State U'niv, Student Union Bldg.. Stillwater, Okla. Deadline for all papers: Mar. 1, 1961. Forward to: Prof. Charles F. Cameron, School of Electrical Engineering.
Spring Conf. for 1961, Chicago Prof. Group on Broadcast and TV receivers of the IRE, June 15-16. O'Hare Inn. DesPlaines, Ill. Deadine for papers: Submit 3 copies of following by Feb. 15, 1961-50 to 100 word summaries including title of paper, author's name, position, title, company affiliation. Forward to: Neil Frihart, Motorola, Inc., 4545 W. Augusta Blvd., Chicago 51, Ill. Limit papers to 2500 words (20 min . presentation).
American Society for Tesling Materials Annual Meeting. ASTM. June

25-30, 1961, Chalfonte-Haddon Hall, Atlantic City, N. J. Deadline for papers is January. 1961. Contact Society Hdqs., 1916 Race St., Phila. 3, Pa.
1961 Weatern Electronic Show and Convention, Aug. 22-25, Cow Palace, San Franciseo, Calif. Deadline date for papers: 100-200 word abstracts, 500-1000 word detailed summaries by May 1, 1961. Forward to: E. W. Herold. c/o WESCON's Northern Calif. Office, 701 Welch Road, Palo Alto, Calif.
International Symp. on the Tranumission and Processing of Info., Sept. 6-8, 1961, M.I.T.. Cambridge, Mass. Receipt of $500-1000$ word Abstracts

Jan. 1, 1961. Receipt of full length papers ... Apr. 1, 1961. Submit to: Peter Elias, Research Lab of Electronics, M.I.T., Cambridge 39. Masa.

10th Annual Instramentation Conf., Nov. 2-3, Louisinaa Polytechnic Instit., Dept. of Mech. Eng'g, Louisiana Tech. Student Center, Rushton, Louisiana. Deadline date for papers: June 1, 1961. Forward to: Dr. Virgil Orr.
(See page 107 for "Coming Events")

Radarscope (Continued)

"SALES UP. PROFITS DOWN"-This refrain is being repeated monotonously as companies check in with the year-end totals. Expect the profits squeeze to be countered by stepped-up research activities to bring out new products, and increased capital expenditures to improve operating efficiencies.

THE 9 MAJOR TV MANUFACTURERS have consented to a Federal Trade Commission order demanding that the buyers of TV sets be fully informed as to the material going into the cabinet. The art of simulating wood in metal and plastics has become so refined that customers are easily misled by appearance.

FCC IS CONCERNED about the frequent turnover of broadcast stations, wondering openly whether station owners are not simply engaged in trafficking in broadcast properties. The Commission feels that the disruption in operating continuity could be causing programming deteriorations incompatible with broadcasting in the public interest. The Commission records show that for the past three calendar years an average of 555 applications were filed for changes in ownership of stations; approximately 83% for AM stations, $\mathbf{9 \%}$ for FM stations and 7% for TV stations. More than half of the applications involved stations that had been held by the owners for less than 3 years.

COINCIDENCE added a plus to the recent Discoverer 17 shot. The Air Force's bio-medical and nuclear radiation satellite was launched shortly after a gigantic solar storm occurred. Satellite was exposed to intense radiation for over 50 hrs . Lockheed scientists hope to learn more about the flux, particle type, and energy of the flare itself as a result. Biological specimens did not receive \& lethal doseencouraging news for astronauts.

FIGURES POINT to a smaller increase in private industry expenditures for R \& D this year compared to 1959 but a healthy rise is still expected. National Science Foundation reports $\$ 9.4$ billion for 1959 (up 15% over 1958): but only an 8% rise in ' 60 over '59 for a total of about $\$ 10$ billion. Electrical-electronic and aircraft industries get a good share of these funds. Over half (57%) of $R \& D$ funds came from the Gov't.

COBOL, a Common Business Oriented (computer) language has been used successfully to interchange programs between data processing systems of different manufacturers. Information was exchanged between Remington Rand's UNIVAC 11 at its Phila. Engineering Center, and RCA's 501 Systems Center at Cherry Hill, N. J. COBOL is a programming system that uses simple English words instead of a complicated machine code. to instruct a computer.

new MMesa* transistors...

450-mw free-uir dissipution in one-tenth the volume

T1 450/451

silicon transistors give you more

 power per package volume than any other silicon transistorUse these TI second generation transistors to complement your second generation high-speed computers.
Check the outstanding adrantages of the Tl 450 and Tl 451 . . .

1/ $1 / 10$ the volume of a TO-18 package
450-mw free air dissipation © $25^{\circ} \mathrm{C}$
hermetically-sealed-in reliability
backed by a full year's warranty
electrically the same as 2 N 706 A and 2 N 753
 1/5 the weight of a TO- 18 package - only 0.07 gms heat sinking simplified by electrically isolated case

Eloctrieal charactoristios (a $25^{\circ} \mathrm{C}$ amiviont						
Symboi	Parameter	Test Conditions	Type	Min	Max	Units
Ion	Turn-On Time	$1_{\mathrm{B} 1}=3 \mathrm{ma} 1_{\mathrm{B} 2}=1 \mathrm{ma}$			40	nsec
1011	Turnoth Time	P. W. ≥ 400 nsec, less than 2% duty cycle	-		75	nsec
VCE (sal)	Collector-Emitter Saturation Vollage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{ma,} \mathrm{I}_{(\mathrm{g}}^{\mathrm{g}} \mathrm{~g}=1 \mathrm{ma}$			06	\checkmark
$\mathrm{hfe}^{\text {e }}$	DC Forward Current Transter Ratio	$v_{\text {ce }}=1 \mathrm{~V}_{1} \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}$	$\begin{aligned} & \text { T1450 } \\ & \text { T } 451 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{gathered} 60 \\ 120 \end{gathered}$	

Specify if for all your silicon Iransistor requirementssmall signal - switching - medium power - power

SEMICONDUCTOR-COMPONENTS DIVISION

TEXAS ${ }^{\circ}$
 LIMITED

YOU CAN GET SPRAGUE* MADT® TRANSISTORS AT SENSIBLE PRICES

Sprague Germanium Micro-Alloy Diffused-Base Transistors, well-known for their rugged vhf performance, are now priced below other transistors with com. parable electrical characteristics. In many areas, this permits designers to improve circuit techniques without necessarily increasing costs. Expanded production facilities enable us to ship quantity orders on short notice. Add to this their whisa-fast switcting sime, and you have three good reasons why Sprague MADT ${ }^{\text {® }}$ Transistors have achieved their high level of acceptance.

With Sprague Transistors, circuits in vhf amplifiers and oscillators can now operate with collector currents as high as $50 \mathrm{ma} .$. . with power dissipation up to 50 mw ... with collector to base voltages to 15 v . They have been application tested through the entire military electronics vhf spectrum.

The application table may well suggest the use of one or more Micro-Alloy Diffused-Base Transistor types in your latest circuit designs.

For complete engineering data on the types in which
*Spragne micro-alloy, micro-alloy diffused-base, and surface barrier transistors are fully. licensed ander Pbilco patents. All Sprague and Pbilco transistors baving the same type numbers are manufactured to the same specifications and are fully interchangeable.

MICRO-ALLOY DIFFUSED-BASE TRANSISTOR APPLCATIONS	
Type	Application
2N499	Amplifier, to 100 mcs
2N5O1	Ulira High Speed Swilch (Storage Temperature, 85 C)
2N501A	Ulira Migh Speed Switch (Storage Temperature, 100 C)
2N504	High Gain If Amplifer
2N588	Oscillator, Ampliffer, to 50 mcs

you are interested, write Technical Literature Section, Sprague Electric Co., 233 Marshall St., North Adams, Massachusetts.

You can get off-she-shelf delivery at factory prices on pilot quantities up to 999 pieces from your local Sprague Industrial Distributor.

- ARAOUE COMPONENTE:

CAPACTORS - RESETORE - MAONETIC COMPONENTS * THANSISTORS * MTERPERENCE PILTERE * NULEE MCTWORKE MIGN TEMPERATUNE MABNET WIRE * CERAMIC-EASE MENTEO WETWORKS * PACKAOED COMAOMENT ASSEMBLIES

Demand For High-Pay Execs Drops-But Pay Goes Up

Demand for higher-paid execs is less than it was earlier this year, but the opportunities that do exist will pay more. This from a survey by Executive Manpower Corp., 444 Madison Ave., N. Y. 22, N. Y. They surveyed 133 large companies averaging annual sales of $\$ 113$ million.

Survey showed an average of 2.2 job openings per company payir.g from $\$ 10,000$ to $\$ 75,000$. A March survey showed an average of 2.5 jobs per company. A survey last year showed 3.5 jobs per company.

Sales execs were most wanted $(\mathbf{2 8 . 5} \%)$. Manufacturing/production execs were in second place (21.9%) and general managementadministrative execs third ($\mathbf{1 6 . 1 \%}$). Engineering exec need drooped to fourth $(14.7 \%$ from 22.5% last year). Marketing/advertising, and financial execs were tied for fiftl place.

The jobs will pay more. $\mathbf{3 0 . 8 \%}$ of the positions will pay $\$ 20,000$ a year, or more, compared to 15.5% in this category six months ago. 9.6° c will pay $\$ 30,000$ or more compared to 4.6% last time. The majority of the jobs would be replacements rather than new positions.

How will these execs be paid? The most popular method is salary plus bonus followed by straight salary, salary plus merit raise, salary plus stock options, salary plus deferred payment and salary plus commission.

About a third of the executives recruited by these companies last year came from outside the company. This was a slight drop from the figure reported in the last survey. More of the firms (59.6% compared to 48.7%) reported that they had management development programs.

New York RED Guidebook

Copies of "Directory of Industrial Research Laboratories in New York State" are available from the New York State Dept. of Commerce, 112 State St., Albany 7, N. Y. The publication lists more than 1,000 commercial and private research and testing labs, their research fields, names of their executives, and the number of scientists and engineers they employ.

FCC Denies Allocation For "MOBOT" Control

The FCC has denied a petition by Hughes Aircraft Co., requesting all allocation of 100 MC of microwave space in the $13,000-35,000$ MC band for the exclusive use of radio - controlled robot devices (MOBOTs) operating in places dangerous to, or unlivable for, hu-mans-such as those characterized by nuclear radiation, poisonous atmosphere, extreme pressure, vacuums, and extremes of heat and cold.

Present Mobots are controlled by cable. Hughes contends that radio would provide more mobility. FCC says it will entertain an application for such operation on an experimental basis to see if there is need for such allocation.

Research On Fuel Cells

The Thomas A. Edison Research Lab., West Orange, N. J., and Standard Oil's R \& D Div., Chicago, have launched a joint research program on fuel cells. The fuel cell is a method of electrochemically oxidizing a fuel and converting it directly to electrical energy. (See "Electronic Industries Looks at Unconventional Power Converters," Sept., 1960, pp. 101-116.)

The Edison Lab. specializes in electrochemistry, electrolytes, cell reactions, electrodes constructionand activation, and electro-chemical cell construction. Standard Oil researchers will contribute their knowledge of catalysis, combustion oxidation, and hydrocarbon or petroleum fuel characteristics. The project aims at finding a practical and economical way to oxidize hydrocarbon, alcohol, or hydrogen as fuel for the cell.' Several cells have been built but none have been practical enough to use a cheap fuel.

Shakedown In Component Business Started-Quill

"A shakedown in the electronic components business is no longer coming, it is here right now." says Joseph S. Quill, Manager of Advanced Marketing, for GE's Advanced Product Planning Operation, Schenectady.

Last year the highly competitive electronic industry in the U. S. had total factory sales of $\$ 9.2$ billion (consumer equipment, replacement components, indus-trial-military products). EIA estimates an increase of 9% to $\$ 10$ billion in 1960.

MEASURE LOW PRESSURES

This device. a photomultiplier ion gauge, ean measore pressures to less than one-thousandith of one-billionth atmosphere at the earth's surface. Westinghouse physicists, Lange, Riemersma, and for developed it under the AEC's Project Sherwood.

Learning Gap Is Most Critical Area-Dr. Ramo

"Increasing the nation's brain power is more urgent for our national position and for the welfare of civilization than space conquest." says Dr. Simon Ramo, Exec. Vice Pres. of Thompson Ramo Wooldridge, Inc. He spoke before the Illinois Teachers' Institute in Chicago.
"Improving human brain power by education and extending man's intellect by electronics will buy us more benefits in social as well as scientific advances than concentration on any other field," he said. He predicted that the science of extending man's intellect by electronics (he called it "intellectronics") will become the nation's greatest industry within a decade.

He cited many advances in fundamental electronic techniques as examples: Electronic computers, automatic language translators, learning machines, and machines for the automatic examination and sorting of documents.

Engineers Decertify Union

Engineers at the Sperry Gyroscope Co. have voted to decertify the Engineers Association, IUE-AFL-CIO, as bargaining agent. The NLRB tally of ballots was: 1724 voted "no union"; 1509 voted "yes." More than 90% of those eligible voted.

More Nows on Pege 19

DIGITAL
 building block or plug-in card

 MODULESWhich package fits into your design? Packaged either way, Delco Radio Digital Modules meet or exceed all MIL-E-5272D (ASG) environmental requirements. Continuing life tests on these computer circuits now exceed four and one-half million transistor hours without a failure. The modules perform all the standard logic functions and come in many basic types and variations. Delco modules in the transistorized building block package are ideally suited for airborne guidance and control because of their extreme ruggedness, compactness and reliability. All miniature building block modules employ three dimensional welded wiring techniques and are vacuum encapsulated in epoxy resin. Delcó Radio can offer you off-the-shelf digital circuits packaged as building blocks or plug-in cards, or can supply circuits to meet your specific needs. Our Sales Department will be happy to send you complete engineering data. Just write or call. Physicists and electronics engineers: Join Delco Radio's search for new and better products through Solid State Physics.

PIONEERING ELECTRONIC PRODUCTS THROUGH SOLID STATE PHYSICS

Division of General Motors * Kokomo, Indiana

Now-a commercial version of the popular square trimmer at 40% cost saving

Now available, a commercial version of the popular square trimmer at a 40% saving in price and at no sacrifice in quality.
Circuitrim Type $100-$ Ideal for circuit board mounting. 1_{2}^{*} diameter $\dot{x}^{\top} / 2^{\prime \prime}$ thick, screwdriver slot in top for setting. 1 watt at $60^{\circ} \mathrm{C}$. 10 to 50 K ohms $\pm 10 \% .320^{\circ}$ rotation.
Also available, the popular subminiature square trimmer
design. Circuitrim Type 200-Superior stability under extreme conditions. $1 / 2^{2}$ square case interchanges directly with eatablished uecigns. Teflon-coated leads or printedcircuit pins. 1.5 watts at $60^{\circ} \mathrm{C}$. 10 to 50 K ohms $\pm 5 \%$. Lead-screw actuation, 24:1 adjustment ratio.
Write for Bulletins AE-19 and AE-20. International Resistance Co., 401 N. Broad St., Philadelphia 8, Pa.

C-A.C can now build High Voltage Components rated up to 40,000 volts. New, modern test equipment has been installed. Corona measurements in accord with MIL-T-27A specifications. This addition to C.A.C's broad scope of activities in the magnetic component field will allow you to depend on C-A-C as a new source for High Voltage Trans-

CA-C welcomes your inquiries on components requiring high levels of voltage output or designs such as the filament transformer shown, wherein the isolation of high voltage potentials is a factor.
Filament Transformer "HV Mi Pot" Rated.
12.000 Volt Transformer-Class " T "-Grade " 5 "

formers and Reactors.

$\underset{\text { TRANSFORMERS }}{\sim}$

by C-A-C

COMMUNICATION AGCESSORIES
COMPANY
Phone Kansas City LAcledo $4 \mathbf{3 5 0 0}$

News

Briefs

EAST

general instrument corp, han ac. quired a 30: ownerhip in Moteriala Resareh Curp., Yonkers, N. Y.
THE NATIONAL ASBOC. OF INDUSTRIAL PLANTS. INC. (NAIP). new. non-protit. membership-type Trade Organization, hus been furmet uo aid cuntractors and subeuntractorx under DOD resulatlons.
AUTONETICS, Div. of Nurth American Aviation. Inc.. has upened new Interrated Industrial Pruducta Fiacility at 3400 East 70th St.. N. Y.. N. Y.
BYI.VANIA ELECTRONICS BYSTEMS. Div. of Sylvania Filectric Products. Inc.. in conmtructing a new Applied Research Laborahory Fiecility and new Headıuartere Bullding un a 5s-arre nite, adjacent to present facilitien in Waltham, Meso.

CORNING GLASB WORES will build 4 1 tov, (004) mil. ft. Blant at Danville. Va., early in 1961, for manufacturing a wide range of minecimlty alannes under operation of the Combeny'n Terhnical Products Div.

BRIGGS ASSOCIATES. INC. Norrincown P'm.. and VANGCARD AIR and MARINE (OXP.. P'euli, l'a.. have egreed un a plan of merker tu be mubmited to their respertive ntorkholdens. Vanguard recently merged with Nurthomant Metalu Induatries, Phila., Pa.

RERVO DEVELOPMENT CORP.。Hicknville. I.. I., N. Y., hee moved intu new 20.000 not. ft. building at 2 Willis Court, to increare mot. It. butiding at a develuspent and production facilitiem.

THE RPRAGIE ELRCTRIC CO. NuTh Adama. Munn., hae acquired Vee Trol Fingineprine. If c.. Stumford, Conn.

TRNS(HIITE INEULATED WIRE CO. INC.' Michtrion Div., Water Street, Peekekill. N. Y.. has unened a new facility devored (1) the sirintuction of eable, cable annemblies and harnerien:

IOU PONT CO.. Finzineerine Dent., will build - plant at isuffalo. N. Y., perly in 1 snit for mwnufacture of "Telalar" PVF film. The plant will be operated as unit of the company'n Yerked Rexearch Lab.

AIRTRONICE. INC:.. Mubvidiary of Servill Manufacturing Co.. Waterbury. Conn.. i doubling itn facilities with the cunntruction of a new $\$ 1$ million plant in the muhurban Washo inktun, D. C., area. The 62.000 m . ft. plant will open in March, 1861.
YORK REBEARCR CORPORATION, Stamford. Conn., has acquired Kip Eilectronica Curpuration, alno of Stamford.

TELETRAY ELECTRONIC SYBTEMS. INC, of Silver Spring. Md., and AUDIO-DYNAMIC8, of Washinktun, D. C., have agreed to merse through in exchange of atock. Operation of the iwo cormorations will be united under one rove at the Audio-Dynamica plant at 6462 Third St., N.W., Wash., D. C.

LORAL ELECTRONICS CORP., New York, han opened new plant and research uuarters adjacent tw the company's Headquartern Building. An $80,010 \mathrm{sq}$. fl ., iwo-story structure it will secommudate Loral's increased ntafl and arcelerated pange of research, engineering and produrtion metivitíes.

SONOBOND CORP. subaidiary of Aero projects, Inc., has established a new salewprojects, Inc., has established
demonatration headquarters at 202 Eiast Mardemonatration headqua

Capsule summaries of important happenings in affairs of equipment and component manufacturers

AMP INCORPORATED, Harrisburg, Pa was presented the "Growth Cumpany of the Year" award fur 1960 by the National Aanuciatiun of Inveatment Clubs. Cumposed of 5.632 investment clube and over 76,000 inventors. the aasuciation cited AMP as an "outuranding example of American Iree enterprise ar shown by tio sales and carning krowth. excellence of producta, outatanding management, public and employee relation.

MIDWEST

PANSTEEL METALLURGICAL CORP., Nurth Chicago. Ill., hae mnnolidated ith furmer Muakugee (Oklahoma) Div., Chemical Div., and Metale-Fabrication Div. Into one operating division known as the Chemical and Metalluraical Div.

COI.LINB RADIO CO.. Cedar Rapide. Iowa hnn formed the Communieation and Data Procens Div. tu provide Electronic Data Proce exaine Servicea to Induatry. The Diviaion will integrate, remeareh, products, experience and wyntemn manarement capabllities of all Collins Divisionn and subaidiaries.

PLO-TRONIC'B, INC., has expendert its Electrunic Controln Div. by moving intu new facilitien at 712 W. Ontr rio St., Minneapmlin, where autumatic controls for material handling myitema hae been developed.

MINIATERE INBTRUMENTB and NATIONAL CONNECTOR CORP are the first (w/u firms to berin ernatruction activity at the s(1)-arere Selence Industry Park. Minneapolin. Minn.

ZENITA RADIO CORP. will mequire from the Milwauker Road IMilwaukee, St. Paul Railruad Cu.l a plot of 28 arres on Chicamo West Side, extending one half mile from Auntin Ave. to Narraganset

GEMEX PRECISION METALS, INC.. n new omipany created by Techno Fund, Inc., of columbur. Ohio. Techno. in purchaning Ciemex from the Vanderbilt Tire \& Rubber
Cil.. hma committed 11 million in the new Cil.. ham
empany.

THE BENDIX CORPORATION han contracteal Lu, purchare the anmeta of the Miemmetrical Manufacturina Company. Ann Arbir. Mieh.. a producer of electronic-mechanieal unity for une in metal-workink, paper and Jlantir fieldn. Mircometrical will continue op-
eration an abaidiary of Bendix, with ite eration an mubaidiary of Bendix, with ita land
leare.

REA MAGNET WIRE CO.. INC., nubmidiary if Aluminum Company of America, will occupy its 26,000 nu. ft. Laburatory near Ft. Wayne. Ind., in Sept. 1861 . It will houne
labs. nilut plant. and various supportine facilitien.

CONTROL DATA CORP., Minneapolis. Minn., has entabliahed a new electronic renearch laburatory at 5710 W . 36 th St.. St. Iouis Park, to inveatigate the digital electrunies equipment feld.

HI'RLETRON, INC., Delaware, Md., ham been formed through a merger comblining the ansets, personnel, and engineering facilities of Electric Eye Equifoment Co., Danville, III., with thuee of Whertun Engineering Corp. of Wheaton, III.

RCA' ELECTRON TUBE DIV. Indianapolis. Ind., hae produced its $500,000.000$ receivingtype electron tube. From lea than 100 em . ployees producing nine types of tubes the plant has Erown tw more than 1,800 turning out 80 tube types.

WEST

CHANCE VOUGRT CORP.. Dallan. Tex., is the new corporate name of Chance Vought Aireraft, Ine

LAND-APR, INC., Stepper Motors Div., Gardena. Calif., has acquired Automation Contruls Corp., relay manufacturer.

CIRCUITDYNE CORPORATION, 4218. Pasadena Ave., Pasadena. Calif., has been newly formed to control several Pasedenabased subaidiaries ensaged in apecial purpuee designing, manufacturing and assembline of electronic equipment.
VARIAN ASBOCIATES and EABTERN IN. DUBTRIRS. INC.. Palo Alw. Calif., bave arrived at a preliminary basis for the merser of Eantern into Varian.
CHALCO ENGINEERING CORP.. Gardena. Calif., has established its new subsidiary. Syntems Services, Inc., which will apecialize in aystema installation and management fueused on ensineered installations of eround support equipment for misile and opace proerama.

DREBSER ELECTRONICS, SIE Division, is the new name for Suuthwestern Industria Electronics Co., Houstun. Tex., while DRE8sER ELECTRONICB, HST Division replaces the nsme of the Hermetic Seal Tranaformer Co. Garland. Tex. The change in mamne to refiec Drisions rather than companies provide freation.

NARMCO INDI'8TRIES, INC., wholly uwned subaidiary of Telecomputing Corp.. has purchased Electro Instruments Inc.'n 11 -aere, 48, 000 m . ft . Research Facllity in the San Diego Calif. Research Park.' It is adjacent to Narmeo's ReD Diviaiun.

CONSOLIDATED ELECTRODYNAMICS CORP.. subainiary of Bell \& Howell Co., has corp.. subs:तin'y of Bell Howell Co., has Electronics, Inc., of Culver City, Calif.

GENERAL ELECTRIC CO.'s Electronice plant. 601 Californis Ave. in Palo Alto, Callf., in cunatructing a new 8,000 sq. ft . single-story addition u, the present plant. Four airconditioned erean will also be constructed for develupment and production of complez miero wave devices.

BENDIX-PACIFIC DIV. of the Bendix Corp. han broken ground for the first-slage development of its new multi-milliondollar Electronice Center, on an 80 -acre aite in the northern San Fernando Valley. Callif. While the first buildink will be used primarily for electronic production, an adjacent building wil house the Division's mian testing facilities.

BIRTCHER CORP.' Industrial Division hae moved to a new, modern brick atructure of $15.000 \mathrm{mg} . \mathrm{ft}$. lueated at 745 South Monterey Pans Road, Monterey Park, Calif. Housed in the new plant are both manufacturine and sales facilities.

LINDE COMPANY, Div. of Union Carbide Corp. has opened a new warehouse at 7 South Linden Ave., South San Francisco, Calif., to aupply rare gace and special rare yan miztures to induatry in the far Weat arne

> PRECIBION POTENTIOMETER MANU. PACTURER'S A880C. a nee profeasional organiation. has been formed to establich standards for the Precision Potentiometer Induatry. DAVID C. MeNEELY, manarer of Beckman's Helipot Div., hes been elected Preaident.

PHILCO ANNOUNCES

A COMPLETELY NEW FAMILY OF
PNP SILICON TRANSISTORS
WITH HIGH VOLTAGE... HIGH BETA IN TO-18 PACKAGE

Produced by the Exclusive New Philco Strip Alloying Process

TYPE MO.	max. RATIMES		CHARACTERISTICS		
	$V_{\text {eao }}$	Paise	$\operatorname{lano}(10 y)$ max.	$h_{0 \cdot}(8 \mathrm{r}, 1 \mathrm{ma})$ min. max.	$P_{T}(8 v, 1 m a)$ $\min .$
2N858	40v	150 mm	0.1 \%	1575	5 mc
2M858	40v	150	0.1	$30 \quad 120$	8
$2 \mathrm{Na80}$	25v	150	0.1	1545	8.5
2N861	25v	150	0.1	$30 \quad 100$	7.5
2 2482	15y	150	0.1	20 B0	8
2×888	15v	150	0.1	$40 \quad 120$	10
2 N 884	Br	150	0.1 (00)	$25 \quad 125$	18
2 24885	10 V	150	0.1	100850	24

Completely new to the industry, these Philco Silicon Precision Alloy Transistors meet a widespread need for medium frequency, high voltage, high beta silicon transistors for both switching and amplifying applications. An exclusive new production technique strip alloying . . . permits accurate measurement of the diode voltage rating and beta of every transistor during the manufacturing process. Never before has such close control in production been possible.

The new SPAT family offers low saturation voltage and high emitter base diode voltage rating. For complete information, write Dept. EI161.

Facts and Figures Round-Up January 1961

ELECTRONIC
 INDUSTRIES
 TOTALS

GOVERMMENT ELECTRONIC CONTRACT AWARDS

Amplifiers
Amplifiers, control
Amplifiers. synchro signal
Amplifiors, IW
Antennes
Bameries diy.
Battorios storage
Bridges impodance
Cable assomblies
Cable, special purpose
Cable, tolephone
Calibrators. radiec
Cavisy assomblies
Codor, rransponder
Communications systoms
Computors. flight director
Controls, electronic
Controls, panal..
Correlators, video
Couplor, antonna
Dotectors, radiae
Diode, semiconductor
Direction finders, radie
Distribution syctoms, radar dala
Equalization sytomi
Filtorep band pass ...
Flash units, electronic Flight control systoms, automatic
Flight cont
Flurmotors
Fual colls
Generatort, thermal noise
Generators, VOR
Gyroscoper
679.865
317.606
101.325

101,325
55,000
343,748
346,16官
138,225
129.632
129.632
389.996
48.750
118.003
25.600

102,999
32.108
4.140 .289
40.000
1.836.754

159,576
66.801

297,248
144,557
67.003
33.310

205,000
53,753
29.300
35.094
1.399.093
29.160

36,974
35.263
50.177

166,309
Handsols
47,084
Intercommunications equipment
Measuring syatoms
Motors
Motors, fiold strength
Metors, microwave
Motors, volt
Motors, watt
Microphones
Motors. serve
Multicouplors. antenna
Multiplerars
Oscillators
Oscilloscopes
Powor supplies
Programming sots
Radar equipment Radar, dopplor Radia sots
Reactors, saturable
Receivers. laran
Receivers. radio
Recoivers, SS8
Recorderi-roproducors
Reloys

Resistors. variable
27,334
Resolvers
Signal generators
61,206
Strobotacs
Switchboords
Switches, P.f
Synchros
Synthesizers, frequency
Tabulation \& plotting systoms.
digital
61.206

Tape, magnetic
Tolometry equipment
Telophone equipment

Test equipmen
Transceivers
Transformers
Transformer
Transistors
.234.162
481,992
47,128
142,586
33.538
153.734

2,222.847
Transmitters, marter bascon
Transmittors, radio
101.950
3.247 .463

Pronsmittors, synchro
Tubes, eloction
Tubes, Alystron
Vacuum tube voltmoters
Woveguide
Wire aloctronic

482,714
66,331
51.060

60,586

COMPONENTS Q COMPANIES

Electronic components monufocturing in the Unitod States is now $0 \$ 3$ billion annual business-almost three times the output of a decade ago-the Businass and Dofonse Services Administration. U.S. Department of Commerce. reported.

In its first major study of the electronic compononts industries-"Eloctronic Components, Production ond Related Dato. 195259." BDSA's Electronics Division sops that more than 40% of the total output of these industries is now for military ond-use-for the manufacture of military electronic -quipment or for maintenence purpeses.

Most electronic componont producers are small, e relativoly fow firms accounting, for most of the total output. About 75% of the total output is produced in 7 states.

In 1959 elmast 60% of the lotal value of shipments originated in 16 metropoliton areas locelad in 11 slotes.

Private industry is continuelly increasing its sponding for research. In the nest decade it is bolioved that private industry will quadeuple its spending for researehfrom the current $\$ 1.5$ billion to a atoggering $\$ 16.5$ billion by 1969. During the same periad, over-all notional spending for 10 search will rise from $\$ 60$ to $\$ 200$ billion.
At the turn of the century in the United States. only 7% of the total manufacturing wort fores was in the non-production cote. gory - scientists, engineors and highly trained techniciens-while todoy the per. centoge is 24%. The major portion of this gain was made in the past decode.
-Arthur D. Lifilo, Ine.

TRACKING TURNTABLE
Revolving table presents a 3-D display of lights for air traffic control, missile tracking, and ASW. Device, developed by ITT, presents pinpoints of light on a translucent, whirling screen under direction of a computer. Lights visible from all sides.

NEW SLANT ON SPACE
Nearly 9,000 tiny radar antennas on the skyward side of this structure enable ESAR (electronically steerable array radar) to focus its "eye" simultaneously on space vehicles and aircraft at lower altitudes. Bendix built the device for ADC and ARPA.
, SILICON WHISKERS
In view magnified 10 times, silicon whisker easily slips through the eye of a standard needle. Scientists at Picatinny Arsenal are growing them for use in their research work as strain gages for detecting weaknesses in such parts as a landing gear.

Snapshots of the Electronic

Hot spot
Ceramic-quartz reflector is being used to fuse a pungsten carbide coating to a stainless steel rectifier shaft. Units. developed by Plastic Weld Co. Seattle. Wash., can sustain temperafures to over $3500^{\circ} \mathrm{F}$ controlled to within plus or minus 25 dearees.

Industries

LUNAR CAPSULE

ILeft) Final shape of the 300.1 b . lunar capsule being built by the Ford Motor Co.s Aeronutronic Div. for NASA is shown in this artists rendering. The bulbous capsule and its retrorocket are shown atlached to the parent spacecraft which will carpy it to moon's vicinity.

FOR DICTATION

International Business Machines Corp.'s new dictation devices use magnetic belts which can be used over and over. Belis hold over 14 minutes of dictation and have an automatic erasure feafure. Tape can also be mailed, sfored or filed. All products in the line-d dictating unit, a manscriber, and a combiaation unit are pransistorized.

ZEUS COVERALL

Spherical radome. 110 ft . dia. built by Coodyear Aircraft Corp., houses R 8 D model of Zeus acquisition radar at White Sands Missile Range, N. M. Dome contains world's largest lens for focusing radio frequency energy. Lens is first large seale application of Lunebers lens concept.

Close LOOX
Electron probe microanalyzer, at jones 6 Laughlin Steel Corp. Pittsourgh. Pa., can determine the exact composition of a minute segment of steel lan area $1 / 250$ th of the thickness of a razor bladel. It can detect small chemical changes 1 lom one grain of steel to another.

El's International News

"Let U. N. Operale Space Communications"-Skinner

Jame: M. Skinner, President, I'hilco Corp. says a system should be adopted by which international space communications would be provided and operated by the United Nations. Speaking hefore the Peninsula Manufacturers Assoc., he said that, "such international control would represent a majur step toward global peace and understanding."

Messages of all kinds-voice, telekraph, teletype, even televisionwould be brought together in each country through the local communications service to some point-say, the Nation's capital. At that point. all messages are relayed by satellites (1) a central receiving point in some ,ther country there to be distributed throurh the local service of that particular nation.
He noted that American apace communications leadership is usually linked to military purposes and that it would be a major asset in the court of world opinion if we could demontrate not only our peaceful motives. but also use uur developments to proville a service which would lie areful to everyone.

Buy U. S. Computers

Filectricite de France, Saint Ouen. France, has bought an RW-300 Digital Computer system from Compagnie F:uropeenne d'Automatisme Electronifue (CAE). CAE, a joint venture of Thompson Ramo Wooldridge, Inc., and twon French electronic firms, makes and sells RW- 300 computer systems in the Fiuropean Common Market.

The RW-300 is a digital control computer for use in closed-loop control of full-scale manufacturing processes. F:lectricite de France will use the -ystem for automatic control of a high-power steam generating plant. wer 6ill process variables will be recorded and monitored. The computer will al:o calculate theoretical and actual performance values and control the plant operation.

British Electronic "Brain" To Read, Write, and Talk

L.ondon-Dr. W. K. Taylor of the University of London is building an electronic "brain" which will be able to see, to read, to write, and even to talk. The "talk" will be in the form of squeaks of varying pitch.
The new "brain" will use 4,000 cells (compared to man's 10,000 million) and an eve of 100 photvelectric cells. It will be able to do much more thad respond to simple geometrical shapf: and alphabetical symbols. The machine will have built into it a selector which can decide which problems are important and which are not.
Primarily a research tool, it will be used to learn more about how the human brain works, including how to train the human brain better and how to detect the onset of lathl acoid :a mental breakdown.

Sound Code Used in British Reading Machine For Blind

Londun-A woman, blind from birth. has just "read" a novel from cover to cover-not through her fingertips but through her ears. She did it with a new British electronic instrument. the Optophone, which converts printed letters into musical sounds. The pitch varies with the shape of the letters. Reading speed can reach $4 i$ words per minute.

The machine uses photoelectric cells. The cells convert the printed wurds into sounds. The Roman alphabet has only six basic sounds but by learning the Optophone's chords and permutations the sounds can be interpeted as words. The cells are trigsered by a point of light which traverses each line at a controlled speed.

A similar type of machine is being developed by Battelle Memorial Institute, Columbus, Ohio. Battelle's machine uses 11 separate sound channels with frequencies from 400 to 4000 CPS. ISee Human FactorsNewest Engineering Discipline. FI.ECTRONIC INDUSTRIES. pp. Y3-94, Feb. 1960.)

AIR

 COMMITTEEWorking Party 53, an Air Standardization Committee of personnel from the USAF, the Royal Canadian AF, and the United Kingdom's Royal AF, visit Sperry Microwave Electronies Co in Clearwater, Fla. Group is evaluating facilities for Air Navigation and Air - 10 - Surface Directing Equipment.

Jap Electronic Exports Up 75\% in First Half of 1960

Government statistics show that Japan's shipments of electronic products to the U.S. are going up. Shipments in the second quarter of 1960 alone were higher by $\$ 1,000,000$ than in all of 1958. This represents a 35 rio rise for the first half of 1961. Japanese TV receivers are now being suld in the New York area and should spread to the rest of the countiy before Christmas.

Martin Sheridan, Dir. of Publie Relations, Admiral Corp., in commenting on these figures (hefore the Electronics-Electrical Commodities Group of the Purchasing Agenta Assoc. of Chicago) urged American manufacturers to publicize the fact that the Japanese products do nos carry U'nderwriter Laboratories' approval.

Ifalian Semiconductor Firm To Service Common Market

Turin-International Rectifer Corp. El Segundo, Calif., and Piemontese Sviluppo Industriale S.P.A. (Pied mont Industrial Development Co.) have combined forces to launch -multi-million-dollar semiconductor manufacturing facility. It will be located near Turin, Italy and will build semiconductor devices for the European Common Market A com. plete range of semiconductor rectifiers and automotive diodes is plan. ned.
International Rectifier will provide scientists and technicians to supervise the installation and operation of the manufacturing plant. Production is scheduled to begin in April 1961 with full production scheduled for the summer of 1961.

New French Subsidiary

Paris-The Garrett Corp, Los Angeles, has formed a new French subsidiary. Breguet-Garrett, S. A. Coowners are: Maison Breguet (E French industrial firm), Westland Aircraft, Ltd., and Garrett International, S. A., Geneva. The new firm will manufacture air conditioning systems designed by Garrett with applications for the new jet aircraft being developed in France.

Nine Countries Represented At Oak Ridge Lab's School

Thirty-seven scientists and engineers from nine countries (including the U. S.) are training at Oak Ridge National Laboratory in specialized courses on reactor technology. Sessions, sponsored by AEC, are on Nuclear Reactor Operations Supervision and Nuclear Reactor Hazards

Evaluation. Each course covers a year of work.

Purpose of the first course is to prepare an engineer or scientist to superintend the safe operation of a research or power reactor. Emphasis is on experience in reactor operation. Instruction is given in the scientific and engineering principles of a nuclear reactor and its associated muchinery. The second course develops ability in evaluating possible hazards associated with all aspects of reactor operation.

Students come from Finland, India, Indonesia, Japan, New Zealand, Pakistan, Philippines, Viet Nam and the U. S.. including Puerto Rico.

TUNIS INTERNATIONAL FAIR

Tunisian President, Habib Bourguiba Iforeground Keft), visirs Dow Corning Corporafion's section at the Eighth Tunis Internafional Fair. Demonstration is on silicone parting agents. U. S. Ambassador Walter N. Walmsley. Ir., is back of the Tunisian President

Lay Caribbean Cable

Puerto Rico - American Telephone and Telegraph Co. is planning another link in their oceanic telephone system-a deep-sea cable in the Caribbean. The cable would be between Puerto Rico and Antigua via the islands of Virgin Gorda, Dog, and St. Kitts.

The Puerto Rico-Antigua system would he a single coaxial cable equipled for two-way transmission. It would have a capacity of $8 \frac{1}{6}$ vice circuits and connect with the cable placerl in service (this year) between the I^{\prime}. S. and Puerto Rico.

Underwater TV Checks Fish

Scotland-A Marconi-Siebe, Gorman underwater TV camera will be used for research into fish and hydraulic problems on Scottish locks. The camera will inspect fish screens which guard turbine intakes and prevent amolt (young salmon) from being awept into the turbines. The job was previously done by divers. The camera will also be used to study Ish behavior in the fish passes and to inspect the tunnels linking dams and power stations.

GOOD-ALL 601PE CAPACITORS are wafer thin to "fit like a disc". Capacitance is highly stable with temp. Equal in all respects to high quality Good-All tubulars. Available in 50 volt ratings only, they are competitive in price with ceramic discs in the range of .1 mfd and above. The case is moisture resisting Epoxy. Type ti01YE is capable of beink produced to Hl-REL. specifications on a "special project basis".

SPELIFIGATIOMS

GOOD-ALL ELECTRIC MFG. CO. Oyallala Nibs

WAVEGUIDE FILTERS

The filters shown hete are a few representative samples of the units designed and produced at Waveline. Fixed túned or funable designs, both standard or custom designed are available covering the frequency range of 2400 to 40000 $\mathrm{Mc} / \mathrm{sec}$. Filter assemblies can be supplied in either silver-plated brass or Invar, and in aluminum. For aluminum assemblies, Waveline has gained an enviable reputation for leadership in the field of aluminum flux-dip brazing and has produced in quantity many complex aluminum filter designs such as the nine-cavity unit shown at the right.

If you have a waveguide filter problem, we would welcome your inquiry on designing a prototype or producing an established design. Inquiries should in-

WhivLINE
 INC.
 CALDWELL, NEW JERSEY

As We Go To Press (cont.)

New Yarn Inspector Uses Photoelectrics

Developed by Lindly \& Company, Inc., Mineola, N. Y., a new series 1000 Ultra Yarn Inspector automatically detects, counts, and indicates imperfections in yarns and fibers in process in textile mills. Fully transistorized, it uses a sensitive photoelectric system that "watches" the strands of yarn as they speed across an inspection bar. Defects measuring a fraction of a thousandth of an inch can be detected. An auxiliary unit available with the inspector automatically corrects the operation of the device to ensure its functioning properly at all times.

Memory Switch Stores Multiple Digit Numbers

An electric "memory" switch. stores multiple-digit numbers using principles of the ordinary combination lock. It consists of sets of switch indexes and wafers coaxially arranged with tumbler-type couplings between them. The number of indexes depends upon the number of digits to be stored. The number of positions on each index wafer d pends on the switches' function. Developed at MIT's Instrumentation Lab. by Paul D. Shannon, the device-the n-Digit Decade Switch -is a possible method of simplifying automatic control of electrical currents used in testing gyroscopes used in inertial guidance systems for missiles and space vehicles. Because of its flexibility, the switch could be used to simplify a variety of automatic control systems by reducing the number of switches and dials needed.

Piezoelectric Unit For Ignition Systems

Clevite Corp.'s Cleveland Graphite Bronze Div. has developed a new source of electricity for ignition systems, "Spark Pump," so-called because it produces a spark each time pressure is applied to it.

The new device contains two ceramic parts that convert a single short motion into a 20,000 -volt charge. It performs a job now requiring a magneto, points, coil, and condenser.

A Spark Pump switch, and a spark plug now constitute a complete ignition system for a small motor.
(Continued on page 28)

URN

INSIDE

1,000 ERUPTING VOLCANOS!

These are the conditions faced in placing closed-circuit TV cameras within 10 feet of the cluster of eight rocket engines used to power the SATURN spece vehicle. The severe heat and vibration generated during a static firing called for a Vidicon having the highest sensitivity characteristics while being of the most niged construction.

GEC'S 7226 A - Ruggedized Vidicon was found apable of meeting these extreme requirements . . . successfully: The engineers and technicians were able to monitor and film the exhaust characteriatics in meant atatic firings of the National Aeronautics and Space Administrationes sarurh velicle because of the depenidable performance of four 7225A VIDICONS amufoctured ty cenont Electrodynamics The 7226A GEC Vidicon meets military
tions MIL-E-5272A; illumination, 1,
If you have a project requiring diffeulk appleations for yidichas, scan comversion? Image Conversion, or Display Tubeg enplact Ceneral Electrodyamian Corpotatigh:

As We Go To Press (cont.)

Spark Pump is the first device using a piezoelectric element (1) crate a spark twice as powerful as that produced by an ordinary magneto and condenser. It produces a constant high voltage all all engine speeds, eliminating complex starting mechanisms.

IBM Introduces "1418" Character Reader

IRMs solid-state 1418 Optical (hatacter Reader reads dat: printed in widely-used type style. on paper or card documents, at the tate of 480 characters per serond or as many as 400 documents : minitue. The printed data is alltumatically translated into machine language for direct input to an 18.M 1401 computer. The 1118 roads numbers printed ten characters to the inch in a standard 1RM type by 407,408 or 409 alc counting machines, the $110: 3$ printer, or an electric typewritur. It can also read numbers in the elongated 407 type style, sevell wharacters to the inch. In addition, the 1418 can be equipped for matik-reading-in which vertical matkings made with ordinary pencil or dark inks represent speritic information determined by the formall of the document.

New Flight Trainer

LDOFTT (Universal Digital () (rational Flight Trainer, Tool) has been developed by the Data Systems Operations of Sylvania Ellectric Products, Inc., Needham. Mass., a subsidiary of Gen. Tel. \& Hlec. Corp.

It uses initial logical design studies made at the Moore sichool of Elec Eng'g, Univ. of Pa under a Q : 2 million contract with the C'.S. Navy.

It uperates at a rate of more thanl $\because(1) .000$ operations sec., the computer sysitem can respond instamtly (1) commands of a student pilot within a simulated cockpit or an instructor at an external control panel. During a simulated flst, more than 50 emergency conditions can be introduced.

UDOFTT can extract information or calculations already mad and make new ones in 5 one-millionths of a sec. It can also simulate the operation of a tank, heliconter. nuclear sub., hydrofoil craft of space vehicle.

LEW 10-WATT ZENERS

ely low Dynamic Impedance Superior Case Design
Up to 175° C Operation Diffused Junction Type 100\% Scope Tested

Outstanding Qualify-New line of superior quality 10 -watt zener diodes provides dependable uniformity of electrical characteristics... completea the family of General Instrument zeners. Unique case design, which employs thermal matching of silicon and package, enables units to withstand rapid temperature cycling and thermal shock. Luw junction operating temperature
means high reliability and long life. Conservatively rated diodes show extreme stability under life tests at maximum pa. rameters.
New Diodes Available for Immediete Delivory in Types 1N1808; 1N2044 through 1N204!) and 1 N1:351 through 1N1362. Volt. age rankes from 7.5 to 30 volts (higher upon request).

GENERAL INGTRIMENT GENERAL TRANSISTOR
TRANSISTORS, DIODES, RECTIFIERS

IM CAMADR: Seneral Instrument-F. W. Siekles ol Canada Ltd., P.O. Box 400, 15t S. Weber Street, Waterleo, Ontario, Canada. Shorwood 4.8101.

Por Business or "Ireasure"

when the occasion calls for MOVING... call United Van Lines

Whether you're moving bulky electronic devices or priceless works of art, you'll find it safer, easier, more convenient via United's modern "Safe-Guard" service.
From nation-wide exhibit tours to "tight-schedule" deliveries of office equipment. United gears its service to your requirements. Spacious. specially designed vans take tough-to-handle shipments in stride....including the
loading of large units-in one piece-without costly dismantling. And because crating is not needed on most "Safe-Guard" shipments, there's an extra saving in time and expense.
For "Pre-Planned", straight-through service in exclusive Sanitized * vans, call your United Agent today. He's listed under "moters" in the Yellow Pages.

NEW TAMDEM WMEEL $A!I$ ISNMENT Provides valuable unct ne 1- ween Provides valuable unct ri: If ween wheel boxea. more ti, atir band

NEW EXTRA.WIDE SIDE DOORS A full 72 inches, permit easy.
ooe-piece loading of large items.

NEW REMOVACLE
DOCK HIOH FLOOR
Eliminates hoisting. provides 254 sq- ft . of c
ing space

FOR YOUR FREE COPY OF URITEA'S "SAFD-TildIII" MOVING BROCHURE. WRITE:

United Van Lines

INTERNATIONAL HEADQUARTERS, ST. LOUIS 17, MISSOURI
MOVING WITH CARE EVERYWHERE*

All 5 MIL Tantalum Foil Capacitor Sizes From DHIMITA

MEET M1L-C-3965B - ALLVALUES IN STOCK

Plain and Etched

Whether you need immediate delivery from stock on prototypes, or production quantities of tantalum foil capacitors. Ohmite can handle your requirements.

Tan-O-Mite ${ }^{\star}$ Series TF foil capacitors now include all five MIL sizes in both plain and etched types, polar and nonpolar units, insulated and uninsulated cases-all in ratings to 150 VDC. Capacitance values for plain foil units range to 400 mfds ; etched foil units, 580 mfds .

Write for Specification Bulletin 152G which lists 200 stock values, including all MIL values, and shows a handy scale for conversion between "equivalent series resistance," "power factor," and "dissipation factor."

OHMITE MANUFACTURING COMPANY
3662 Howard Street, Skokie, Illinola

SIDEWINDER STRIKES...AND KILLS!

THANKS TO A FAIRCHILD ACCELEROMETER

When the pilot of this McDonnell F3H actuates the firing key, long slender heat-seeking U. S. Navy Sidewinders streak from their wing racks - track down and demolish even the most devious enemy.
A compact fire control computer - designed and produced by Hazeltine Corporation for the U. S. Navy - is located in the F3H fuselage after the cockpit. An important component in this computer is a FAIRCHILD TA-100 ACCELEROMETER.

Specifically designed for applications that require measurement of missile or aircraft maneuvering accelerations, the TA-100 is oriented in the F3H to sense accelerations in a plane normal (perpendicular) to the major axis of Sidewinders in their racks. Excessive G's in this plane - caused by intricate, highspeed air tactics - could divert Sidewinder from finding its target. When this condition exists. the TA- 100 accelerometer causes a warning light to flash on the pilot's instrument panel advises him to correct aircraft performance before firing.

Fairchild TA-100 Accelerometer (Type 940) is only $2^{1 / h^{\prime \prime}} \times 1^{1} 1 / 0^{\prime \prime}$ $x \quad 1 \mathrm{~K}_{2}{ }^{\text {an }}$, measures sustained accelerations from 0 to $\pm 1 / 4$ G 100 to $\pm 50 \mathrm{G}$. A pendulous device, it consists of a mass supported on a torsion type spring and a precision potentiometer whose wiper is actuated by the mass. Electrical output is directly proportional to linear acceleration. Dil-filled, the damping factor is held within close tolerances through -55° to $+100^{\circ} \mathrm{C}$. Overall iccuracy - including linearity. hysteresis and repeatability is better than 1\%.

As We Go To Press (cont.)

Nike Centers Now Tied to SAGE Net

The Army has completed a network of electronic centers designed to coordinate air defenses of key industrial and population centers in this country. The Missile Master Centers are in Washington, Balti-

Cen. George M. Decker (C), U. S. Army Chief of Staff, inspects Missile Mester Control cen. per mear Pirtsburgh. Pe. Rodney Cayss, sec. tion chief af Martin Co., Orlanda, Fla. Idesigner of the system), explains its opersition This is the 7th installation to be activated phis year. Looking on (L. to R): Maj. M. D Salter. Maj. H. T. Taylor, Col. J. C. Parter. and Maj. C. H. Hoddinatte
more, Seattle, Boston, New York, Buffalo, Detroit, Pittsburgh, Phila. delphia, Chicago, and Los Angeles.

Missile Master is basically a communications and fire coordinhtion system linking all Nike missile butteries defending a given geographic area. By tying into SAGE centers the Nike defenses are linked to the all North American Air Defense Command (NORAD) network. The Martin Co., Orlando, Florida is prime contractor for the centers.

New BDSA Aid Named

Robert E. Dailey, assistant to the vice president and general manager of the Telecommunications Division of the Stromberg-Carlson Company, Rochester, New York, today was named assistant to the director of the Communications Industries Division, Business and Defense Services Administration. U. S. Department of Commerce.

Mr. Dailey comes to BDSA on luan from Stromberg-Carlson under an arrangement by which executive personnel from industry take temporary assignments - usually 6 months - without compensation from the Government. The service also qualifies him for membership in the National Defense Executive Reserve which would stafi the operation of a production agency in case of national emergency.

New！Micro Mesa Silicon Diodes

ULTAA FAET LOW CAPACITAMCE

$\begin{aligned} & \text { Psi } \\ & \text { TVPE } \end{aligned}$	Equiv．	Farnantciveninde（min）		Ceovic （ 00	Invise Corres		
					5	$\begin{aligned} & 1 / 0^{\circ} \mathrm{C} \\ & \hline 1 \end{aligned}$	
	1005 10007 10000 10016	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 50 \\ 80 \\ 50 \\ \$ 0 \\ 100 \end{array}$			$\begin{aligned} & 50\}=200 \\ & 50=200 \\ & 10\}=300 \\ & 10\}=-200 \\ & 50\} \end{aligned}$	
		$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 50 \\ 50 \\ 50 \\ 50 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \frac{2}{2} \\ & \frac{2}{2} \\ & \frac{2}{2} \end{aligned}$		$\begin{aligned} & 50\{-200 \\ & 10=-200 \\ & 10 \\ & 10=-200 * \\ & 50 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$
P0311	F0100	10	75 e 5me	2	${ }_{3} 1$（ -500 ）	100 （－500）	2

Silicon Pico－Transistors

－TYPE	BVan	1．an	V．8n		h．i． 200 mc ）
PMT 011	30 V	10 ma 120 V ，	4 V	$15.150 \mathrm{~mA}, 10 \mathrm{~V})$	31
PMT 012	30 V	10ma i20V）	4 V	$30,150 \mathrm{~mA} .10 \mathrm{~V}$ ）	35
PMT 013	60V	Iua（30V），	5 V	$20.150 \mathrm{~mA}, 10 \mathrm{~V})$	2
PMT 014	60V	INa（30V）	5 V	$40,150 \mathrm{~mA}, 10 \mathrm{~V}$ ）	25
PMT 019	40 V	Ima 10 V	SV	$30(5 \mathrm{~mA}, 5 \mathrm{~V})$	25

Total Dissidation $25^{\circ} \mathrm{C} \cdot 100 \mathrm{mw}$
Avarlable in both Micro and Pico configurations Type numbers above indicate Pico configuration for Miciocon－ higuration add 100 to type number Thus，Pico transistor PMI 011 is designated PMI 111 in Micro version．
l．（）た IN．゙lいだ FOR LATEST INFORMATION AND SPECIFICATIONS

BRAND NEW! 2N1837
...outperforms 2N697!
COMPARE THESE OUTSTANDING DIFFERENCES!

High Versatility Types-2N1335 thru 2N1341

The higher power dissipation. faster rise time and lower collector capacitance of the 2N1337. for example, makes this transistor an unusually fine performer in advanced video amplifier circuits.

These 2.8 watt. 120 volt VHF transistors are well suited to IF and I)C amplifiers. RF power amplifiers and oscillators and to high voltage switching applications.

Communication Types-2N1505-2N1506

This series of silicon mesa transistors provides high power output at Very High Frequencies. Typical power outputs are one-half watt at 200 mc with 3 db gain or one watt at 70 mc with 12 dh power gain operating from 28 V source.
A power output of 2.5 watts at 250 mc . may be obtained by using these transistors with a High-Q Varicap) ${ }^{\text {R }}$ frequency multiplier.
"VARICAP" is the registered trade-mark of silicon voltage-variable capacilors manufaclured by Pacific Semiconductors, Inc.

Silicon General Purpose Diodes

Zener Diodes 500 mW

Power Dissipation

Also available at 750 mW in Configuration " 8 ".

$\begin{aligned} & \text { TVA } \\ & \text { MUMBER } \end{aligned}$			Mecinan Inverse		At Invene Volneme (v) (v)	
	E, Min. (v)	Es Max (v)		$\begin{aligned} & \omega \in 100^{\circ} \mathrm{c} \\ & \text { (na) } \end{aligned}$		
19702	20	32	75	100	-1	60
10700	30	3.9	50	100	-1	55
20700	3.7	4.5	5	100	-1	45
16TCS	1.3	5.4	5	100	-1.5	35
10705	52	6.9	5	100	-15	20
117707	6.2	80	5	50	-3.5	10

1. Measured at 10 mA DC Zener current with 1 mA RMS signal superposed.

Also Available 1N708-1N723 covering $5.6 v$ to $24 v$ Zener Voltages.

$\begin{gathered} \text { PSI } \\ \text { TYPE } \\ \text { NUMER } \end{gathered}$	Dect. seuv.			Manimen InverseCurent		
		\&. Mina. (v)	E. Mans (v)		$\text { is } 100^{\circ} \mathrm{C}$	
Pess313	101313	15	10	. 5	5	6.8
PES314	1×1314	9	12	5	5	8.2
Pexpl15	101315	11	16.5	5	5	10.0
$p e s i 16$	1017316	13.5	18.	5	5	120
PEST11	1.01317	17	21	5	5	15.0
PSEJIS	1W1318	20	21	. 1	10	18.0

LOW VOLTAGE PRECISION REGULATOR DIODES

MuNI PE:	(Volta)			
PSIIII	1.50	9	203050	-3.5
PSIII2	1.60	12	20.60 .5 V	-3.5
PSIT73	150	18	20.60 .5 V	-35
PSIII ${ }^{\text {d }}$	2.20	12	200.00	-48
PSIITS	2.40	18	20.3100	-4.8
PSIIIT	2.70	27	20, 3^{100}	-48
Psily	3.00	18	2001.08	-87
For 2\% Types specity PS1111A - PS1117A 1 Measured with 1 mA RMS superposed on 20 mADC				
DIMENSION NOTE Regulator diodes maximum diameter 405^{*}. maximum length .53				
Also available 1421 thru 1428 extending regulating voltage to 5.2 volts.				

Voltage Reference Diodes

NEW: Military Types Zener Diodes (MIL-E-1/12

Silicon Diffusion Computer Diodes

The Broadest Line in the Industry
Chorse from military approved, low capacitance, high conductance, low leakage, high voltage. topes with assurance of unsurpassed reliability.

eme	D rune
80	10
	7
3	20
950	73
	T
200 45	10
$\begin{aligned} & 30 \\ & i 5 \end{aligned}$	70
	3

Fast Recovery Types

Fast Switching Low Capacitance Types

$\frac{5 A}{512}$								
	5		48			D28	[15	48
	0					518	58	478
16ect	$\underline{8}$	4	8 ma		Wex	86	48	418.
16097	18	-	1 \%	$\underline{\square}$!	45	18.	4

Very High Voltage Silicon R

Many values... 1,000 to 30,000 - Extremely rugged Volts

- Non metallic "cold" case
- No voltage derating over en- - Wire in leads...easy to mount tire temperature range of - Use in printed circuit board -55 C to 150 C applications

	\pm			\min			
		0 ± 0	0 Wm			1	-
2ups	mom	0	m	30	-	s	m
1 1978	0	0	m	\square	\checkmark	2	$\underline{1}$
ampr	0	2	5	30	\cdot	2	sin
mame	m	5	n	20	I	10	3 m
mase	0	0	\square	0	\square	4	3
Hex	0	10	π	20		18	5
	0	\pm	\ldots	0	2	ω	3
18	0	π	8	-	π	18	3
10	± 0	0	$\underline{1}$	20	0	20	3
					m		

MAXIMUM RATIMES
Esernical cmanctenistics

			Ansfares		Mn En	$\begin{aligned} & \text { mesp } \\ & \text { ane } \\ & \text { nge } \\ & \text { Nis } \end{aligned}$	Man 15 (n) Beemert Rand Inv. Vimen © 8.5		
PSAS	5	2	\cdots	15	T	15	8	-	2
PSALC	100	0	40	150	130	15	8	0	\ldots
PSH15	150	16	0	150	100	15	5	0	5
PS4a	200	10	0	150	20	15	5	0	50
Fes	20	185	\cdots	150	205	15	8	-	5
Pase	500	210	0	150	30	15	5	0	
FAE	300	245	0	150	40	15	15	π	200
PSMO	40	20	ω	150	450	1.5	15	5	90
Psas	50	830	\cdots	150	50	15	15	5	0
FHe	0	48	40	150	575	15	15	E	3

maxamum matimos
Bectuical cunnorimitics

$\begin{gathered} \text { Ps } \\ \text { TVFE } \\ \text { WO. } \end{gathered}$	 Prek Inverse Vellape (Vatu) - $16{ }^{\circ} \mathrm{C}$	Ram Vollage 8 100% (V+Cu)	An. Firward Cuareme lo (mi)			$\begin{aligned} & \text { Man If } \\ & \text { inge } \\ & \text { (ma) } \end{aligned}$				
							$\ln (\operatorname{an})$ nt nut 0 - Ime			
Ps00s	59	35	280	10		73	100	10	N	100
PS010	100	0	20	140	130	100	10	78	100	
PS015	150	165	20	100	100	100	10	75	100	
PS020	200	140	20	10	20	100	10	7	100	
P5025	250	173	20	10	20	100	10	5	100	
PS030	300	210	20	100	30	100	3	100	10	
P5035	350	245	20	140	40	100	0	100	100	
Psomo	400	290	20	10	450	10	30	100	100	
Psose	500	350	250	10	50	100	3	100	100	
- Stal	400	483	29	10	575	100	3	100	100	

1. Revistive ar Inductive lase.

$\begin{aligned} & \text { EIA } \\ & \text { TYPE } \end{aligned}$		Abwin H w 75		
Fues Clip Typest	Leryih lahes	Peal Inverse Voltant Voles		
1N11.19		\cdots		
InIIsu	2.	socis:		
191141	41.	4803		
161193	L2x	4800		
[N]143	45:9	6000		
\|N1	13A	4\%.4.	cxom	
\|N		st	$61 / 4$	1200
(m)10s	4.4.	1200		
[N1146	6.15	8000		
\|N1	4]	6%	12000	
INIT148	614	14000		
IN1149	6\%/4	16000		
Storage and	ceraling	eratur		

Silicon Subminiat Rectifiers

MEDIUM POWER - Military

E1A TVPE muman	maxmum natiwes			EECTACN CHAI		
	Pav. Voltage (v)	Av. Reetives Corten (mA)'		Minimum Sehuration Vataye$10{ }^{\circ} \mathrm{C}$		
		- $8^{\circ} \mathrm{C}$	중 150\%		- $8^{\circ} \mathrm{C}$	
Af INEAS	225	400	150	275	0.2	
AFINEA6	300	100	150	350	0.2	
AFIMSAT	401	400	150	460	0.2	
Af Imeas	500	400	150	600	0.2	
Af Imseg	60	400	150	720	0.2	

MII-E-1/1143 (USAF)

1. Resistive or Imedective Load

Masimem Sienge amd Operating Temperature Raņe - 65°

२ectifiers

bsolute Mas. Rtgs 4. W Res, Lond al 39 C Ambient		Electerical Characteristica at al C Ambient	
rak mase tage 1ts	Mas. Retifind DC Output Current $m A$	Firnard DC Volt Drap at Raled OC Cucrent Volts	Reverse DC Current al Raled PIV mA
80	65	210	025
00	65	180	025
80	60	160	025
300	50	240	025
00	50	150	925
000	65	300	025
200	50	54.0	025
200	60	360	025
000	45	600	025
000	45	60.0	075
000	50	520	025
000	45	600	025

ture Range -56 C 10150 C

PSI, High-Q Varicap

YARICAP TVPE NUMIE					Mavinen Inverse Current (mADC)	Capacitance Chanye (Ratio)
PC-112-10	10	50	0	0	0.500	from 2VDC to FOVOC, 4.0 to 1 min .
-C.113-22	22	50	0	50	0.500	
PC.114-47	47	50	80	50	0.50	
PC-115-10	10	100	100	110	05	from 2VDC to 100VDC, 5.2 to 1 Min.
PC-116-22	22	100	100	110	$0.5 \dagger$	
F-117-47	47	100	100	110	0.54	
C-122-47	41	75	100	110	$0.5+$	
PC-132-10	10	50	25	30	0.58	IVDC to 2SVDC. 30 to 1 Min.
FC-133-22	22	50	25	30	0.58	
PC-134.47	47	50	25	30	0.55	
P. $135 \cdot 10$	10	150	50	60	0.54	IVDC to 50 VDC. 4.0 to 1 Min.
PC.13\%-22	22	125	50	∞	0.54	
「C-137-47	47	100	50	60	0.56	

 "VARICAP" is the reastared trace-math of sulicon voltage-variabio capecitors menuloctured

		Avertese Heancer cyrent (m / b)	
		\% 5	190
1,450	70	100	50
9,900	73	100	50
11,300	80	100	50
12,000	es	100	50
14,150	90	100	50
15,500	95	100	50
17.000	100	100	50
18.350	105	100	50
18.750	120	100	50
21.150	125	100	50

$-5^{\circ} \mathrm{C}$ ๓ $\boldsymbol{1 7 8 c}$.

ture

HARACTEAISTIC

	Max Avg. Voltage Ore 10 $=400 \mathrm{ma}$
(6) 100\%	
15	1.0
15	1.0
20	1.0
20	1.0
25	1.0

$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
ctifiers

Pacific Semiconductors, Inc.
 GENERAL SALES OFFICE: 12955 Chadron Avenue, Hawthorne, California

REGIONAL AND DISTRICT SALES OFFICES

NIW YORK-870 Broadway, Nowark 4; Now Jersoy Mumboldt 4.5616. Nowx: NiK 1010
Doston-471 Washington Street, Wellesley 81, Mass. -
Syracuse- 4453 E. Genesee Street. DeWitt, New York Gltion 6-480
PE NNSYIVANIA - 320 Hunlingdon Pike, Rocklodge Fhilodolphis 11, Pa. 10° Pligrim 2-8089 TWX: Aockledge PA 106
Battimero- 1811 North Rolling Road, Baltimore 7, Maryland - WIndsor 4-3622
ILLINOIS-6957 Woat North Avanue, Oak Park, Illinols

Dallas-P.O. 6067, Dallas, Tezas - Riverside 7-1258
Detrolf-1204 North Woodward Avenue, Royal Oak Michigan - LIncoln 8-4722
St. Paul-2664 Caltier, St. Paul 17. Minnesota Midway 6-2471
CALISORNIA-8271 Molrose Avanue, Lon Angeles 46, Calff. - OLive $3-7850$
San Diego-5022 Field, San Diego, California BRowning 6-2261
Pale Alto-701 Weleh Road-Suite 305, Palo Alto, Calif. DAvenport 1-2240

RELIABILITY
 Comes in All Sizes

Here's reliability so big you can barely see it. A needle and red thread almost conceated among thousands of silicon diodes demonstrate the super-miniaturization of PSI Micro-liodes. These are the smallest known semiconductor devices, with reliahilit! equal to or greater than conventional diodes.

At Pacific Semiconductors, Ine, reliability comes in all si\%es-in a broad product line ranging from tin! Micro-Diodes and Pico-Transistors to large :30,0W1-volt cartridge rectifiers.
But size is only part of the story. At PSI. reliability begins at the conceptual stage of a rlevice. It is as essential as the ability to manufacture in large production quantities. Keliability is as basic as original thinking.

Pacific Semiconductors, Inc.
 A SUBSIDIARY OF THOMPSON RAMO WOOLDRIDGE, INC.

CORPORATE HEADQUARTERS: 14520 South Aviation Boulevard, Lawndale, California
General Sales Offices: 12955 Chadron Avenue. Hawthorne, California

Tele-Tips

END OF THE YEAR AGAIN, and time to go through the old file of bits and pieces that somehow never get into print. And these are the things we learned:

Space travelers are likely to suffer from kidney stones. Weightlessness will mean little opportunity for exercise, producing a wasting of muscles and loss of calcium in the bones. The calcium will wind up in the kidney system as stones.

Space travelers will need only 90 minutes sleep nightly.

Physicists predicted that the pressure of sunlight on the orbiting Echo balloon would force it towards the Earth-and they were right. The balloon is being pushed towards Earth at the rate of $31 / 2$ miles a day.

Lockheed designed tape recorder for missiles that records $\mathbf{1 , 2 0 0 , 0 0 0}$ bits per minute and reads back 18 times as fast as recorded. The recorder will log data during those periods when radio contact with the missile is lost.

Can you raise vegetables under the low atmospheric pressure found on the Moon? Teenage scientists in 47 states and 3 fureign countries are attacking the problem by grow. ing experimental "Moon Gardens." Republic Aviation Corp. has a handbook on the subject that has already been requested by about 1500 persons.

Technicians will be needed to make space ship or satellite repairs. They will require extensive training, probably with an earthbound model of the unit they will work on later in space.

ON THE SUBJECT OF COMPUT. ERS: In all the whole of history up to 1945, the calculating devices available increased man's abilities by a factor of about 100 . In the few short years since 1945, the speed of calculation has been increased by a factor of about 250.000 , through the development of electronic computers.
(Continued on page 47)

TEFLON TERMINALS

British Brench: Seolectro Corporation Hershom Factory Estale, Iyon lood, Welton-on-Thames, Surrey, Englond.

A GIANT RADIO HIGHWAY IS PERFECTED FOR TELEPHONY

A radio relay system operating at 6 billion cycles per second and able to transmit 11,000 voices on a single beam of microwaves-several times as many as any previous system - has been developed at Bell Laboratories. Utilizing the assigned frequency band with unprecedented efficiency, this new, heavy-traffic system was made possible by the development and application of new technology by Bell Laboratories engineers and scientists.

For example, they arranged for the waves in adjacent channels to be polarized 90 degrees apart, thus cutting down interference between channels and permitting the transmission of many more telephone conversations in the same frequency space. They developed ferrite isolators to suppress interfering wave reflections in the waveguide circuits; and a new traveling wave tube that has ten times the power handling capacity of previous amplifiers and provides uniform and almost distortionless amplification of FM signals. They devised and applied a new high-speed diode switching system which instantly switches service to a protection channel when trouble threatens.

To transmit and receive the waves, the engineers applied their invention, the horn-reflector antenna. Elsewhere, this versatile antenna type is brilliantly aiding space communication research in the reception of radio signals from satellites. For radio relay, a single horn-reflector antenna can efficiently handle both polarizations of the 6000 megacycle waves of the new system; at the same time it can handle 4000 and 11,000 megacycle waves used for existing radio relay systems. Thus it enables all three systems to share economically the same radio towers and routes.

Produced by the Bell System's manufacturing unit, Western Electric, the new system is now in operation between Denver and Salt Lake City, and will gradually be extended from coast to coast. This new advance in radio technology is another example of how Rell Telephone Laboratories works to improve your Bell communication services.

BELL TELEPHONE LABORATORIES
world center of communications research and development

Trlmmers

SIZE

THE MODEL 50 $3 / 80$ square, $3 / 10^{0}$ high, and welghing 1 gram, the Model so is avalicote if standerd masist. saces of 50 enme to 20 K anms.

THE MODEL 60 1/2 squar. 3/10 hist, ind maighing 2 srams, the Model 60 is avallicole in standerd resistances of 50 ohms to 50 on onme.

- PERFORMANCE

Stack 'em... up to 35 Model 50 trimmers in one cubic inch. Adjust em, 25 turns for full electrical travel... take your choice of side or top adjustment, slotted fillister head screw, Allen hex socket, or slotted headless screw flush mounted. Dissipates 1 watt-Model 50 and 2 watts - Model 60. Dual wiper provides double assurance of positive contact under all conditions. High resolution, typically $\mathbf{0 . 0 6 1 \%}$ for the 50 K ohms model. Resistance tolerance, $\pm 5 \%$, temperature range, -55 to $+150^{\circ} \mathrm{C}$.

RELIABILITY

At no extra cost, Spectrol trimmer potentiometers meet or exceed all applicable military specifications for altitude, fungus resistance, salt spray, sand and dust, humidity, temperature cycling, shock and vibration. Guaranteed load life. 1000 hours minimum.

ECONOMY

Prices in 1-9 quantitics: Model 50-\$7.50 each, Model 60-\$6.50 each. Spectrol trimmers are ready now for immediate delivery from your local distributor. For complete technical informition, call your Spectrol representative or write Dept. 44.

SPECTROL
 ELECTRONICS CORPORATION

1704 South Del Mar Ave. - San Gabriel, California 23 ATlontic 7.9761 - CUmberiand 3.5141
1250 Shames Drive - Westbury, Long Island. N. Y. EDgewood 3-5850

NOW

In the Model CM-100, Mincom's latest instrumentation recorder/reproducer, the series elements
THE MIINCOM CM-100
before data storage have been reduced to recorder and mixer only, one step from the antenna. IS PERFORMING
With the CM-100's 1-megacycle response and constant phase equalization at all speeds, an original

IF signal of 5.0 megacycles thus can be heterodyned so that the carrier swing and its sidebands
PREDETECTION RECORDING
fall within the Mincom CM-100's frequency range - in FM, FM/FM modulation, PCM and PCM/FM.
...and actually doing it at defonse facllifles as you read thls page.

MINCOM oivision Minnisota Mining and Manuracturima companr 2049 SOUTH BARRINGTON AVENUE, LOS ANGELES 25, CALIFORNIA - 425 13ih STREET N. W., WASHINGTON 4. D.C.

A Toast to Environmental Testing

The Deutech hermetio reoeptaole
has withetood every kind of trial and tribulation we oould think of, and will soon bo toasted from Cape Canaveral to EVdwards as the only conneotor giving true hermetio sealing againgt extreme environmental oonditione. The seoret of this leak-proof performanoe is the unique compresaion glese insert molded into the oonneotor shell as one eolid pieot with contacts fused right in. And wo can guarantee sealod reliability because Deutsch handlee every atep of production under quality control prooedures that have set now standerde in the industry. For more information on the oonneotor with the full glass insert, contaot your Deuteohman today or write for Data File A-1.

Electronic Components Division. Municipal Airport - Banning, California

Tele-Tips

(Continued from page 41)

An IBM 650 data processing system has been put to work in a law library, locating information for barristers. The EDP system provides in minutes facts that would have taken many hours to find by conventional methods.

The Coast And Geodetic Survey Dept. is using a computer to spot the origin of earthquakes. Approximately 1500 earthquakes are now located annually. The survey hopes to double that number within a few years.

Russian-English Translatur has been developed by IBM for the Air Force that turns out 35 words per second. The machine has some shortcomings-it translates only on a word-for-word basis-but a sophisticated word analyzer is on the drawing boards that will break down sentence structure. It should be ready early this year.

AND THESE SHORT SHOTS: National Bureau of Standards has a new camera that takes pictures so small it can produce the entire bible page-by-page on an area smaller than Lincoln's head on a penny.

Sume medical people believe that microminiaturized circuits could be introduced into the human body by swallowing and telemeter physiological data directly to the physician. The original of this idea came out a few years ago, developed by Rockefeller Foundation.

Signal Corps Patent Advisor Harry E. Thomason, of Washington, D. C., built himself a solar heating system for his 3 bedroom home. The system cost $\$ 2500$ and last winter he paid only $\$ 4.65$ in fuel bills.

Engineer Lloyd F. Knight, of Servo Corp., has built an automatic baseball umpire that calls balls and strikes. His system uses three TV cameras, one at each side of the batter and a third directly overhead.

Important facts to know about laminated plastics

A few Taylor composite laminates (left to right): copper-clad section: sandwiched copper component: Taylorite vulcanized fibre-clad part: laminated tubc. copper inserts.

Composite Laminates Dpen Up New Design Opportunities

While the great variety of commercially available laminated plastics satisfy most electrical and mechanical requirements, there are applicalions that can benefit from the combination of properties provided by composite laminates. Recen: advances in bonding techniques have made it possible to bond virtually any compatible material with a laminate. These can be supplied as clad or as sandwiched materials. And they can be molded into many shapes to fit design requirements. Taylor is presently supplying to order the following composite laminates:

- Copper and Iaminated plastics. Clad for printedcircuits and formed shapes. Sandwiched for special applications.
- Taylorlso vulcanized Abre-clad leminatos. These combine the high strength of laminated plastics with the superior hot-are-resistance of vulcanized fibre. They are being used in both high and low-voltage switchgear applications. Also in applications where the high impact strength of vulcanized fibre may be advantageous.
- Rubber-ciod laminates. Almost any type of natural or synthetic rubber may be used as the cladding material. These laminates are widely used for condenser tops in wet condensers to protect the laminate against highly alkaline electrolytes. They also have application in any part where sealing or chemical resistance is needed.
- Asbespos-elad laminapos. For applications where high heat- and arc-resistance are required.
- Laminate-clad load. Lead sheets sandwiched between Grade XX pa-
per-base laminates have been used for X-ray shields. The laminate provides strength and contributes to the high shielding properties of the lead.
- Aluminum-ciad laminafes. These have been used extensively for engraving stock. They also offer possibilities as printed-circuit material and as plate holders for X-ray machines.
- Borylllum copper-clad laminatos. Beryllium copper is nonmagnetic and a good conductor-properties that give these laminates possibilities in many applications.
- Spalnloss spoel-elad laminapes. Applications where nonmagnetic properties are required. Also in certain corrosive environments where the resistance of stainless steel to attack is an asset.
- Magnesium-clad laminatos. These laminates have been produced in 108 -in.-long sheets for usc as screens for X-ray operators. Weight was a factor.
Our design and production engineers are constantly developing new materials, new applications, and new procedures for fabricating laminated plastics. Our experience is yours for the asking. And if you have a problem requiring assistance or more information on composite laminates, write us. Also ask for your copy of Taylor's new guide to simplified selection of laminated plastics. Taylor Fibre Co., Norristown 53. Pa.

NEW FROM

Vertical, time axis plug-ins provide unique

© 1684 Plug-ln (Thime-Axis) furrithed with the - tp 100 B and 170 A Oecllowepee (un pletarci). providoe

- Jina Dual Trace Am-
 pliter plus-is (vertieal) pive meximum analitifo to of $\mathrm{tw} / \mathrm{em}$, permite viewing of two pronomena stmolte pousty ofters diferential ilput for common mode revor ght ment of MII-zictooc. eviretronte eloppling permita. bettor utllisutios of aweep apedis, atemde mimultaneoces plowing of 2 dirnile to lower frequmeles without fieker.
htp-122. 895.00

O10SC Display Begner (Time-Axice plegia) pro-

- IUGD Sueep Delay Gemerator (TimeAxio plugtin) delart the main awnop of the 100 B and 170 A Goope for deteriot eximinition of a copplex rignal or pole trate In coilition, it ofter a unloue mired amp fee taro to phou tail expanded wement of a diced wive. form oflig still rumining a premtation of cerriee por-

OSCILLOSCOPES

Meets military specifications Conventional controls for simple operation Uniquely versatile dual plug-ins providing:

\author{

1. X-Y records of repetitive waveforms
 (6 166C Display Scanner Plug-in)
 2. New sweep delay convenience 14 166D Sweep Delay Generator Plug-in)
 3. Widely versatile input capabilities (. 162A Dual Trace Amplifier Plug-in)
}

These are the scopes you have been waiting for! Built to exacting military specifications, they offer instantly expandable measurement capabilitywhen you need it. It's easy ! Just add a moderately priced plug-in unit!

Both 160B and 170A employ the same vertical and time-axis plug-ins providing the widest range of application with minimum plug-ins and minimum investment. Details of these plug-ins are given on the opposite page.

New 160B and 170A follow MIL-E-16400C for shock, vibration, humidity and temperature. Important features include high stability tubetransistor circuits, regulated dc filament voltages and premium components throughout. Power transistors in efficient heat sinks insure cool operation; etched circuits on translucent epoxy glass simplify circuit tracing and servicing.

Simple, conventional controls speed set-up time and actual measuring. Improved preset triggering insures optimum operation for almost all conditions with just one adjustment-even on signals down to 2 mm deflection. Both 160B and 170A give you big, bright presentation on a $5^{\prime \prime}$ CRT, with a clear, steady trace free from bloom or halo.

A push-button beam finder automatically locates off-screen beam or trace (especially useful for operation by inexperienced personnel). And to increase general-purpose usefulness: 24 calibrated sweep times, $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$, \pm 3% accuracy. Vernier extending slowest sweep to $15 \mathrm{sec} / \mathrm{cm}$. Seven-range magnifier increasing fastest sweep to $0.02 \mu \mathrm{sec} / \mathrm{cm}$. Horizontal sensitivity $0.1 \mathrm{v} / \mathrm{cm}$ to $10 \mathrm{v} / \mathrm{cm}$. Vernier extending minimum sensitivity to $25 \mathrm{v} / \mathrm{cm}$. 160B, $\$ 1,850.00$; 170A, 82,150.00.

versatility for the 160B and 170A scopes!

vermen

HEWLETT-PACKARD COMPANY
10570 Pumb LIM Rood Cabl "HEWPMC5"

Prio Alis, Crimerile, U.8.A.
Dramport 8.7000

HEWLETT-PACKARD S.A.

Widest Choice of Glass Sealing Alloys

 for Semi-Conductors

You use different glasses for different semi-conductor applications. So to get the most perfect match of glass-sealing alloy, choose from the broad line offered by Superior. Quantities as small as 50 ft . in any size and analysis may be ordered and in precision-cut short lengths. All alloys are cold drawn to close tolerances in seamless or Weldrawn' form. Sizes from.012 to $\%$ in. OD. In addition to the standard alloys listed in the following, many special alloys are available to order. For complete details, write for Data Memo No. 15, Superior Tube Co., 250: Germantown Ave., Norristown, Pennsylvania.

Kovar. ${ }^{2}$ Excellent for hard glasses. Oxide fuses into glass. Provides vacuum-tight joint. Coef. thermal expansion 50.3/53.7 ($30-450^{\circ} \mathrm{C}$). See note.

Sylvania \#4.3 Well matched for certain soft glasses. Used for internal seals. Coef. thermal expansion $85\left(25-300^{\circ} \mathrm{C}\right)$. See note.
\#52 Alloy. Popular for sensitive magnetic use and for thermostatic work. Coef. therınal expansion $95\left(20-400^{\circ} \mathrm{C}\right)$. See note.
\#42 Alloy. A nickcl-iron alloy practical for sealing to soft glass. Coef. thermal expansion $53\left(20-400^{\circ} \mathrm{C}\right)$. See note.

${ }^{\text {I }}$ A Superior trademark registered United States and Canada.
'Kovar Alloy Tubing is stocked and sold through the Stupakof Division of The Carborundum Company. Latrobe, Pa. The name "Kovar" is a regirtered trademark of the Wentinghouse Electric Corporation (No. 337.962)
${ }^{\prime}$ T.M. Reg U.S. Paf. Of., Sulvania Electric Products, Inc. Nofe. Expreased in in. /in. $/{ }^{\circ} \mathrm{F}$ (x 10-').

Johnson \& Hoffman MIfg. Corp., Mineola, N. Y.-an affliated company making precision metal stampings and deep-drawn parts.

Now...12-Nanosecond Total Switching Time with CBS MADT* Transistors

Total switching time for typical CBS 2N501 and 2N501A transistors in this circuit is less than 12 nanoseconds. The basic circuit can readily be cascaded to form fast-switching ON and OFF stages for computers. Since the transistors have a high gain-bandwidth product at only -3 collector volts, the size and cost of your power supply can be substantially reduced.

The economical CBS 2N501 and 2N501A also offer a wide choice of design possibilities in other fast-switching circuits. Consult the table for high switching rates permitted in the variety of circuits shown.

Order engineering samples for your prototype design. Call or write for technical data and delivery information, today, from your local sales office or Manufacturers Warehousing Distributor.

Wide Choice of Fast Switching Circuits With CBS 2N501 and 2N501A

More Reliable Products through Adoanced Engineering

CB8 ELECTRONIC8, semiconductor Operations, Lowell, Mass. - A Division of Columbla Broadcasting System, Inc. Semiconductors - tubes - audio components - microelectronics salen Onices: Lowell, Mass., 900 Chelmsford St., GLenview 2-8961• Newark, N. J., 231 Johnson Ave., TAlbert 4-2450 - Melrose Park, Ill., 1990 N. Mannheim Rd., EStebrook 9-2100 - Los Angeles, Calif., 2120 S. Garfield Ave., RAymond 3-9081 - Minneapolis, Minn., The Heimann Co., 1711 Hawthome Ave., FEderal 2-5457 - Washingion, D. C., 1735 Deaskea St., N.W., EMerson 2.9300 - Dayton, Ohio, 39 Nort Torrence St., CLearwater 2-1972 - Trsonto. Ont., Canadian General Electric Co., Lid., LEnnox 4-6311.

For completeness of line, for quality and dependability, for availability from stock you'll like... ADC JACKS-First choice of the country's foremost manufacturers of communication equipment, unique one piece frame provides maximum strength .. . ADC JACK PANELS-One of the most complete assortments of jack panels available for use wherever audio signals are switched and distributed .. . ADC PLUGS AND PATCH CORDS-Standard in the communication industry! . . . ADC TERMINAL BLOCKS molded to your specifications; six popular sizes in stock.

25th Shniversary 9 Sear
ADC INCORPORATED
2038 -1 JTH AVENUE SOUTH - MINNEAPOLIS 7, MINNLDOOTA pacipic arancen Norch Hollywood, California
TRANSFORMERE - REACTORS - FILTENE JACKS AND PLUGS • JACK PANELE

Letters

EO the
Editor

"You Missed Us-"

Editor, Electronic Industries:
We feel that there has been an umission in your November, 1960 issue on Page 157. Under the Products and Manufacturers section, Fairchild Aircraft and Missiles Division is not included.

At present, this Division of the Fairchild Engine and Airplane Corporation holds three (3) antenna contracts: (1) 60 Ft. Diameter Parabolic Dish for the "Pincushion" Radar System, (2) 12 Ft. x 15 Ft. Elliptical Parabolic Dish for the AN/SPS 30 Radar System and, (3) 15 Ft . Diameter Folding Parabolic Dish for a Solar Power System.

This information is called to your attention in the interest of editorial accuracy.

Claude S. Huber
Chief Project Engineer Special Projects
Fairchild Aircraft and Missiles
Division
Hagerstown 10, Md.

"Thanks"—From ESMA

Editor, Electronic Industries:
The Buard of Directors and I, plus present members of ESMA, would like to thank you for your very wonderful editorial in the November issue of Electronic Industries.

Cooperation such as yours has certainly helped to get our organization off the ground. At the present rate applications are coming in, we should number several hundred by the IRE.

Your knowledge of the industry and its problem impressed all of us. This present period has been a busy one trying to organize committees, etc. We have not made too many public moves due to our lack of membership strength. By IRE time we have high hopes that we will then be in a position to start accomplishing things for the benefit of our industry

Again thank you for your consideration and help.
C. G. Barker

President
Electronics Sales Manager:
Association
Port Washington, L. I.
New York

Designing Rotary Joints

Editor, Electronic Industries:
Would you please send me a reprint of the article "Designing Rotary Waveguide Joints," by Conway A. Balt, Jr. which appeared in the (Continued on page 54)

NEW! Inkentunic IRMHRMN VITR

a full octave and beyond 3.95 to 11.0 KMc

DELIVERY FROM STOCK

Meet the newest member of the FXR "family" of direct reading frequency meters. This coaxial type, Model No. N414A, has a range from 3.95 KMc to 11.0 KMc and by use of FXR Series 601 coax to waveguide adapters converts to waveguide setups. The unit covers "a full octave and beyond" with an absolute accuracy of 0.1% throughout its range. It is a perfect companion for the FXR Models No. C772 and X772 signal sources.

This newest direct reading frequency meter augments FXR's existing line, recognized as the largest in the industry. Direct reading, reaction type units are available for use up to 39.5 KMc while micrometer types extend FXR's coverage up to 220 KMc.

Write or call now for data sheets on Model No. N4i4A and other units in the infegroted FXR fomily of precision frequency meters.

FXR "FAMILY" OF DIRECT READING REACTION TYPE FREQUENCY METERS

EXR M.M. TYPES (Micrometer Reading)

0410x	33.50	\$325.00
malox	50.75	300.00
E410X	60.90	500.00
P412A	90.140	750.00
G412A	140.220	750.00

DELIVERY FROM STOCK

Hiply		$\begin{array}{\|c\|} \hline \text { Ahsivel } \\ \text { (\%) } \\ \hline \end{array}$	Apgan.			
COAXIAL TYPES						
NAIOA	1.00. 4.00	0.10	3000	$13 / 0^{\circ} \mathrm{Coser}$	Pyop N)	\$493.00
N4IAA	3.05-11.0	0.10	500015	14.eeon	lomil	45.00
WAVEOUIDE TYPES						
- 44108	3.95. 3.85	0.08	8000	49	149A	250.00
- Calor	5.85. 8.20	0.08	8000	50	344	180.00
-W4108	7.05-10.00	0.08	8000	51	51	165.00
- $\times 4108$	8.20-12.40	0.08	8000	52	39	150.00
Y4IOA	12.40.18.00	0.10	4500	91	419	210.00
K410A	18.00-26.50	0.10	4000	53	425	230.00
U410A	26.50.39.50	0.10	3000	96	381	250.00
Cs02A	5.85. 8.20	0.03	8000	50	344	1273.00
X 402 A	8.20-12.40	0.03	8000	52	39	1275.00

* Will trommisaion coupline probo.

DELIVERY FROM STOCK

$\left(F_{1_{n}}\right)$ iNTING

Desiga - Development - Manufacrure
$25-26$ 50 Mh STREET - RA. 1.9000

WOODSIDE 77, N. Y. | RA. |
| :--- |
| TWX, NY 1.9000 |
| 1458 |

PRECISION MICROWAVE ERUIPMENT - MIEN-POWER PULSE MODULATORS - MIRH-VOLTAEE POWEA SUPPLIES - ELECTRONIC TEST EQUIPMENT

for missile and aircraft uses

Conservatively rated for 10 ampere DC operation, these solidly built little DPDT units fill a lagg standing need for dependable heavy duty power relay service under temperature, vibration and shock extremes.

Constructed throughout to meet or surpass MIL-R-S7SC and MIL. R-25018 requirements. No internal
soldered joints. Withstand 30G vibration to 2000 cycles and 50G shock. Standard coils rated 26.5 Volts DC nominal with 400 ohms coil resistance. Other coils available. Designed for $125^{\circ} \mathrm{C}$. operation

Header terminals are $0.2^{\prime \prime}$ grid. spaced and can be furnished with hook, long or short wire lead terminals.

World 'e largest selection of relay types
STRUTHERS-DUNN, Inc., Fimen, M. d.
Member, National Associacion of Relay Manufacturers

[^0]
Letters
 to the Editor

(Continued from page 52)
November, 1960 issue of Electronic Industries.
I am not on your mailing list, but a few of my colleagues are, so occasionally, I have the opportunity of reading your magazine. Even though many of the articles do not pertain to my field, I have found them quite interesting and hope that you will continue to publish such fine articles in the future.

Earl DeJonge
Microwave Design Engineer The Bendix Corporation
Bendix Mishawaka Division
Mishawaka, Ind.

"The Company Library-"
 "

Editor, Electronic Industries:
"The Company Library - White Elephant or Work Horse?" is an excellent article that should be in the hands of all companies planning a library as well as in the hands of all managers and supervisors who do have libraries. I shall call attention to it to local Special Library Association members.
(Mrs.) Marjorie M. Ford
Technical Librarian
Minneapolis-Honeywell Regulator
Company, Military Products Group Ordnance Division
1724 South Mountain Avenue
Duarte, Calif.

The "Savannah" Simulafor

Editor, Electronic Industries:
I have just noted the picture of the N. S. Savannah Simulator (built by Westinghouse), in the November issue.
This picture was taken back in July 1959 when the Simulator was first installed. Considerable work has been done since then, in modifying to make the unit more exact.
The caption with the picture is in-correct-insofar as Borg-Warner is concerned. The instructor's desk was constructed on the job and is made up of Emcor assemblies.

At present writing, training of Savannah crews is about complete.
All work of installation was done by field personnel from Westinghouse, E. Pittsburgh and Baltimore Engineer \& Service under my supervision. Design engineers were C. H. Culbertson, N. E. Bush and D. D. Blewitt of Power Control \& Communications, Dept. E., Pittsburgh.

Paul A. Broemer
Lynchburg, Va.
(Continued on page 60)

this.01\% dvm is different!

Because... it has a unique self-adjusting stepping-switch drive which eliminates thyratrons, provides smooth, quiet, troublefree operation for longer life... it introduces Range Hold operation that restricts "stepping" when repeated readings on only one decade range are to be made... it comes as a space-saving half-rack module $8^{\prime \prime}$ square for portable use and side-by-side rack installation with a Beckman/Berkeley Printer, converters, etc., or as a full rack width model $5^{1 / 4 "}$ high... it combines a fistful of other important features with recognized Beckman Berkeley experience. Write for Technical Bulletin 4011.

- automatic polarity
- automatic ranging
- print out
. \$995

Specifications

- Linearity: $.01 \%$ of full scale - Range, from 0.001 v to 999.9 v oc - Fully automatic operation
- Ratiometer function provided with existing internal circuitry o 4 digit in-line, in-plane display, and circuitry of digit in-line, in-plane display, and - Oven-regulated Zener power supply - Self-contained standard cell for accurate calibration

One of the first sillicon rectiflers
In volume production

TARZIAN M-500 Sllicon Rectifier

The Sarkes Tarzian M-500 silicon rectifier is rated at 500 milliamperes dc, with a peak inverse voltage rating of 400 volts. This was the first commercially priced silicon rectifier, and more M-500's are now in use than any similarly rated unit.
The Tarzian M-500 is a cartridge type rectifier with end ferrules that snap quickly and easily into standard clips. The M-500 is made by a special Tarzian process that provides optimum forward to reverse ratios and long, useful life.
For additional information, practical application assistance, and prices on the M-500, write Sarkes Tarzian, Inc., Semiconductor Division, Bloomington, Indiana

DC amps $\left(100^{\circ} \mathrm{C}\right)$	Peak Inv. Voltage	Tarzian Type	Max. RMS Volts	Max. Recurrent Peani Amperes $\left(100^{\circ} \mathrm{C}\right)$	Max. Suroe Amps 4MS	JEDEC No.
0.5	400	M-500	280	5	30	IN1004

Other voltage and current ratings also avallable in this style.

SARKES TARZIAN, INC.

 Equipment - Air Trimmers - FM Radios o Magnotic Recording Tapo • Semicenductor Devicess SEMICONDUCTOR DIVIBION - DLOOMINOTON, INDIANA In Cenade: 700 Weston Rd., Toronto P - Export: Ad Aurlome, Inc., Now York

The Untouchables

Single Crystal Silicon... the "Pinnacle of Purity"

Dow Corning single crystal silicon is produced by vacuum zone refining hyper-pure polycrystalline rod. Result: The purest silicon produced! Typically, impurity content is only 0.15 part per billion of boron for crystals that are consistently above 1000 ohms centimeter resist. ivity. Boron content is even lower for crystals of 2000 -ohms centimeter and above . . . available on a selective basis.

This highpst purity P-type silicon is the result of a completely integrated processing facil. ity that starts with the production of trichlorosilane and ends with the crystals heat-sealed in airtight polyethylene envelopes. Purity and quality control dominate every step - in producing the basic chemicals . . . in growing polycrystalline rod . . . in vacuum zone refining . . . in product evaluation and in packaging.
Purily pays off . . . in rectifiers and diodes having higher peak inverse voltage ratings - in maximum utilization because of uniform lateral and radial profiles over the entire length of the rod. With Dow Corning single crystal rod, you're assured of maximum sield and minimum waste per rod. Rod diameter variation is controlled to less than $1.4 \mathrm{~mm}(0.055$ inches) simplifying merhanical preparation for either the diflusion or alloying process.
Hyper-pure silicon for every need is now available from Dow Corning. If you grow your own crystals from polycrystalline chunk using the Czochralski method ... if you zone refine polycrystalline rod . . . if you need 1000 ohm centimeter or better resistivity in single crystal P-type - Dow Corning should be on your preferred source list.
Each Dow Corning single crystal rod is checked for resistivity over its entire length. Resistivity and lifetime profiles. like those shown below, are supplied with each crystal.

HYPER-PURE SILICON DIVISION
Addrese:
HEMLOCK, MICHIGAN

Model 737A shown with Model 732A Converter Plug-In

Measure frequency dc to 220 mc
 \longrightarrow Measure period to 0.1 microsecond
 \longrightarrow Measure time interval 0.1 microsecond to 10^{7} seconds
 \longrightarrow Count dc to 10 mc

CWC, first with solid state reliability, announces the transistorized Model 737A frequency-period meter.

Here, combined in one compact package weighing a scant 53 pounds, are the functions of a high speed counter, frequency meter, and period meter. Sensibly priced at $\$ 2400$, the Model 737A mates an all solid state counter with a plug-in vacuum tube heterodyne converter.
Only $14^{\prime \prime}$ high, $17^{\prime \prime}$ wide, and $13^{\prime \prime}$ deep, CMC's new Model 737A requires a mere 125 watts of power which in itself reduces operating temperatures and contributes to long trouble-free life. And except for the vacuum tubes, the new unit is unconditionally guaranteed for two years.

NEW TECHNICAL BULLETIN TELLS ALL

Your nearby CMC engincering representetive will be happy to provide you with full technical, sales, and delivery Information and aprange a demonstration et your convenience. For efree copy of our now technical bulletin, please address Dept. 4 .

THREE PLUG-INB AVAILABLE

1. 10 mc to 100 mc frequency converter; 2.100 mc to 220 mc frequency converter; 3 . Solid state 0.1 microsecond to 10^{7} second time interval section.
Converter plug-ins $\$ 250$ each. Time interval plug-in $\$ 300$. FEATURES AND ADVANTAGES * Decade count down time base, frequency divider circuits never need adjustment. * Automatic decimal point. * Nixie readout available as standard option. * Stability, 2 parts in 10^{7} standard, 5 parts in 10^{8} special. * Accuracy, ± 1 count \pm, oscillator stability. * Sensitivity, 0.25 v rms. * Standardize against WWV. * Remote programming without special regard to cable length, type of cable, or impedance matching. * Printer output to drive digital recording equipment, punches, inline readous and other data handling gear, $\mathbf{\$ 8 0}$ extra.

Computer Measurements Co.

A Division of Pecilic moustries 12970 Bradiey Avenue, Syimar, Califomia Phone: EMpire 7-2161

SPECIFY ARNOLD IROM POWDER CORES ... COMPLETE RANGE OF SIZES AND SHAPES FOR YOUR DESIGNS

Amold offers you the widest range of shapes and sizes of iron powder cores on the market.
In addition to toroids, bobbin cores and cup cores-typical groups of which are illustrated below-Arnold also produces plain, sleeve and hollow cores, threaded cores and insert cores, etc., to suit your designs. Many standard sizes are carried in warehouse stock for prompr shipment, from prororype lors to production quantities. Facilities for
special cores are available to order.
The net resule is extra advantage and assurance for you. No matter what shapes or sizes of iron powder cores your designs require, you can ger them from a single source of supply-with undivided responsibility and a single standard of known quality. And Arnold's superior facilities for manufac. ture and test assure you of dependably uniform cores, not only in magnetic properties but also in high mechanical
strength and dimensional accuracy.

- For more information on Arnold iron powder cores, write for a copy of our new 36-page Bulletin PC-109A. The Arnold Engineering Company, Main Office and Plant, Marengo, Illinois adoness deft. $\mathbf{\text { mh}}$

ABABCD

anNCM OFAces end remesertatives in menciphi Cries - Fid hem FAST in to yellow paces ane

Letters
 to the Editor

(Continued from page 54)

For Technical Secretaries

Editor, Electronic Industries:
Why not print an article or series of articles for technical secretaries? Many hours of unnecessary labor might be eliminated if we secretaries had n "manual" of terms, correctly spelled and abbreviated. Since I must do a great deal of work from rough copy, I must spend time deciphering crude script and erasing that which was not correctly interpreted. Of course I have become familiar with some terms, but there are always a few which are new (and sometimes not always clear to the author of the report)! Definitions, in laymen's language, would also be helpful. Though not scientifically inclined, 1 am interested in what is going on about me.
My boss gave me the report on duplicating papers' ("How To Duplicate Technical Papers") to read. It is a timesaver to him, then, as well as myself, that I become better acquainted with various office machines.
Would not a simple article such as I have mentioned also be welcome for the same reason?

Thank you for listening!
Sylvia N. Berman $!$ Group Secretary
Massachusetts Institute of
Technology
Department of Aeronautical
Engineering
Instrumentation Laboratory
Cambridge 39, Mass.
FAltorial Note:-Anybody have such a manusl?

Electronics and Agriculture

Editor, Electronic Industries:
Dr. T. E. Hienton, of ARS, USDA. recently gave us a reprint from the August issue of Electronic IndusTRIEs, titled "Electronics And The Future Of Agriculture."

As the trade association for approximately 1,000 rural electric cooperatives which serve most of the farm arras of the United States, we think this article would be of value to the systems.

Are reprints of the article available?

We'd appreciate hearing from you
James Sherwood
Assistant Manager
Power Use Section
National Rural Electric
Cooperative Association
2000 Florida Avenue
N. W. Washington 9, D. C.

At Last-High Reliability in Carbon- Film Potentiometers!

Bourns Trimpot* carbon-film potentiometers now offer you twice the stability of any carbon unit heretofore available... at temperatures as high as $150^{\circ} \mathrm{C}$. Now, for the first time, you can incorporate high resistance, infinite resolution potentiom eters in your circuit without sacrificing reliability. The reason: Resiston ${ }^{\circ}$, a remarkable new carbon element that virtually eliminates the problems normally caused by extremes of temperature and humidity.
Thanks to this exclusive Bouris development, Trimpot carbon units can operate at temperatures
up to 150 C - with resistance shift only half that of ordinary carbon elements. In addition, they far exceed the requirements of Mil.Specs for humidity and MIL-R 94 B .

Trimpot Resiston units are available from factory and distributor stocks with three terminal types ... three mounting styles \ldots and standard resistances ranging from 20K to 1 Meg. Resiston elements are available in most Bourns configurations. Write tor the new Trimpol summary brochure and list of stocking distributors and representatives.

Exclusive manufacturerz of Trimpote. Trimite and E.2.Trim.. Pioneers in transducers for position, pressure and acceleration.

THE POWER BEHIND THE TUBES!

NWL HIGH FREOUENCY FILAMENT TRANSFORMERS

Here is the latest addition to the well-known family of NWL custom-built transformers. Illustrated is a special high frequency, high reactance filament transformer with an output of 11.5 volts at $700 \mathrm{amps}, 400$ cycles, single phase.

The unit is hermetically sealed for shock-proof and high humidity operation. Each NWL unit is thoroughly tested and must meet all customer requirements before shipment. We shall be pleased to quote you according to your individual requirements.

Books

The Theory and Design of Inductonce Coils 2nd Ed.
By V. G, Welsby. Published 1960 by John Willey
G Sons, Inc., 40 fourth Are., New York 16. 232 poges. Price 86.00 .
This 2nd edition is in line with modern practice. The main purpose of the book is to explain the underlying design principles of all types of inductors in a way readily understood by those mainly interested in practical results rather than to give an exhaustive mathematical treatment. Resulting from the development of microwave radio and of $h-f$ techniques during recent years, much interest has been created in the principles of electromagnetic wave propagation. This aspect is referred to, and it is shown how a picture derived from electromagnetic field theory simplifies the understanding of inductors.

Electranic Maintainability. Vol. III

Edifed by F. L. Ankenbrondt. Putlished 1950 er Engineering Publishers. Div, of A. C, Boô
Co.. Inc. P. O. Bos 2. Elizaborh, N., 312 Co.. Inc. ${ }^{\text {P. }}$ P. O. Bo
poges. Price $\$ 10.00$.
Maintainability has a direct bearing on the usefulness of any product. whether it be complex electronic gear in a satellite or guided missile, a huge electrical generator, or milady's hair dryer. This book, based on the third EIA conference on maintainability of electronic equipment, contains an authoritative discussion of the developments which have been changing maintainability from the vaguely practiced art of yesterday to the rigorous science of today and tomorrow.

Many aspects of modern maintainability are discussed in depth. The subject matter ranges from the maintenance problems of space flight to the determination of adequate working space for electronic technicians. The contributors are among the foremost workers in the field.

Inertial Guidance

By Charles S. Diaper. Woller Wrigley and John Hovorka. Published 1960 by Porgomon Press 86.50 .

This book is a descriptive treatise on the physical principles and engineering methods underlying the navigation and control of vehicles solely by means of signals from sensors that depend only on the inertial properties of matter for their operation. The wtarting points are conventional navigation and Newtonian physics, and the development proceedo from an examination of traditional navigation in terms of physics, through a discussion of past uses of inertia in navigation, to the interpretation of the operations of navigation in terms of control theory, the ultimate inertial guidance system being regarded as n feedback system which operates

New Frequency Meter and Discriminator

3c to 1.5 Mc ,
 Direct Reading, -0.2\% Accuracy

... Simple, Direct Frequency Measurements

... Simplifies Recording of Drift and Stability

A Highly Linear Pulse-Count Discriminator for Measurements of FM Deviation and Incidental FM.

FREQUENCY METER

- Logarithmic moter maintains constant accuracy, even at one-tenth of full scale.
- Calibrated interpolator . . . effectively expands meter scale by a factor of 10 ... permits readings to 3 significant figures fro n any of the 15 preset references on each range.
- Higher frequency measurements can be made by hetero. dyne techniques. This method also permits drift measure* ments up to one part in 100, or better, when using stable frequency standards.
- Readings independent of input waveform. Sensitivity: 20 mv rms from $20 c$ to 150 kc . rising to 200 mv at 3 c and 1.5 Mc .
- Built-in calibration.

DISCRIMINATOR

- Output: 15v, full scale, on all ranges
- Low Nolse: Residual fm more than 100 db below full output
- Linearity: Same as output current accuracy statement

RECORDER OUTPUTS

- Adjustable output provides current proportional to input frequency up to 5 ma to drive recorders.
- Interpolator output for high-Impedance recorders provides voltage proportional to frequency deviation from preset references.

Type 1142-A
Frequency Meter and Discriminator...
$\$ 495$

Output Current:
$\pm 0.05 \%$ of range setting $+0.05 \%$ of measured frequency, below 15 kc ; $\pm 0.1 \%$ of range setting $+0.1 \%$ of measured frequency above 15 kc

R A C Y

Additional Meter Error:
Direct reading, $\pm 1 \%$ above 10% of full scale. Interpolating, $\pm 0.1 \%$ of range switch setting.

Write For Complete Information
GENERAL RADIO COMPANY
WEST CONCORD. MASSACHUSETTS

MEW HERSY, Bdocheld. WHimer 3.3140
cicaco Och Perk vileat l-D.800

 Circle 41 on Inquiny Card

In planning the new control room for their famous Stage 6, Paramount Television specified only the best equipment manufactured. Included in this choice, naturally, were Conrac video monitors. Why Conrac? "Because of their unfailing ability to display all the information just as it is, without distortion, and do it dependably day after day after day," is the way John Silva put it. Whether you're building a new facility or expanding your present operation, it will pay you, too, to select Conrac - the finest in video monitoring equipment.

EVERY CONRAC MONITOR FROM 8^{n} THROUGH 27" BROADCAST OR UTILITY includes these

 important features:\star Video response flat to 10 megacycles
\star DC restorer - with "In-Out" switch

- Provision for operation from external sync - with selector switch
\star Video line terminating resistor and switch

Conrac Monitors Are Distributed by - ran general electric AMPEX and visual electronics
> "For our new control room, CONRAC MONITORS were the natural choice..."

Makers of Fine Fleetwood Home Television Systems
Dept. K. Glendora, California

Mercury-wetted contact relays, steel-enclosed and ready for m Clare reliability in operation, combined with new ease of application ar test records of over 10 billion operations, without maintenance or char cases, they're sturdy, magnetically shielded, easily replaceable.

Choose either the standard Clare HG relay, or the HGS-super-fast ap ience and increased component-density with these Clare Relay mod

Now you can n CLARE

BILLION-OPERATION RELAYS

on your own printed

 circuit board1. on your own esembly line, give you maling, Clare HG and HGS relays have characteristics. In these new modular

C.P.CLARE \& CO.

TO 6000 WATTS AND 3000 MCS .

Abstract

Micurl) arch RF Load Resistors provide the virtually reflectionless terminations needed for accurate RF power measurement. They serve many useful purposes as nonradiating RF power aboorbers, particularly in lieu of antenna systems during the measurement and alignment phase of transmitter operation. Other useful functions are in conjunction with feed-through wattmeters to form excellent absorption-type wattmeters, and as a load for side-band elimination filters or high power directional couplers.

smearicanows		af LOAD EESSTOAS	
moola No.	FREOUENGY RANOA	$\begin{aligned} & \text { Pi powtan } \\ & \text { Dissipafion } \\ & \text { (maits) } \end{aligned}$	RF CONMECTOES
601 603 635 634 635 636 638	- 3000 - 3000 - 3000 0.500 0.3000 - 3000 $0-2000$	$\begin{array}{r} 5 \\ 20 \\ 50 \\ 150 \\ 200 \\ 600 \\ 6000 \end{array}$	M, C or PaNC N, Cor anc M, C © MN N, C or MN N, C © MN $N, C \in \min$ $31 /{ }^{\prime \prime}$ 用

Many other special models have been designed and manufactured to meet your particular space and input connection requirements.

M. C. JONES ELECTRONICS CO., INC.

IES N. MAN STAEE, EmSTOL CONN.
sussiduar of

Books

(Continued from page 64)
and how can these formulas be extended?" The answer is that the formulas are obeyed by any system with an energy-state function, and in particular by distributed systems that obey Hamilton's principle. The book also describes three other types of frequency - power formulas that have equal theoretical standing with the Manley-Rowe type of formulas, although they have fewer practical uses.

Vacuum Technology Tronsoctions,

6th Vol.

Edited by C. Robert Meissnor. Published 1960 by Pergamon Press, Inc.. 122 E. S5th St.. New York 22. 872 poges. Price 817.50.
This volume contains the authorita. tive proceedings of the 6th National Symposium sponsored by the American Vacuum Society, and as such is the only completely up-to-date review of progress in this field.

Treatises in particle accelerators. chemistry, electronics, human food refinements, metallergy, physics of structures, studies of surfaces and materials and in thermodynamics are included as well us engineering accomplishments. Instrumentation of systems, the active fields of thin film research, and new methods of vacuum pumping are presented.

Books Received

General Electric Transistor Manual, 5th Ed., including Tunnel Diodes
Published 1960 by Generol $\begin{gathered}\text { Eloctric } \\ \text { conductor Po.. Somi } \\ \text { Dnges. spiral bound. Price }\end{gathered}$ Spoc.00. N. Y. 329
Repairing Transistor Radios
By S. Libes. Published by John F. Rider. Pub
lisher Ine. 116 W lisher inc.. 116 W. Woges. paper bound. Price 83.50 .

Tubes and Circuits

Br George J. Christ. Published 1960 by Gerns. bock Librory. Inc.. 154 W. Isth St.. Now Yort 11. 192 poges. poper bound. Price 83.45.

Using and Understanding Probes

By Rudoloh F. Grof. Published 1960 by Howard W. Soms 6 Co.. Inc..̈ 1720 E. 38 ph St., In dionopolis 6. Ind. 190 pages. paper bound
price 83.95.

Procesdings of the Notional Elec. tronics Conference, Vol. XVI.
Published isho by Notional Elacironics Conference 900 inc.. 220 N. LoSalle Sp.. Chicogo. III. About 900 poges. Price 86.00 .

Selection and Application of Semiconductor Devices, ARINC Spec.

No. 409

Published reso by Aeronoutical Rodio. Inc., 1700 K St.. N.W. Woshington 6, D.C. A Doges. poper bound. Price 81.00 .
(Continued on page 70)

SOME VERY IMPORTANT ODDS... AND ENDS

What odds will you accept that your circuitry connections perform with absolute reliability, every time you need them? Chances are you demand odds approaching 100 percent in your favor-you cannot afford a compromise with precision in the thousands of terminals in your equipment.

> AMP INCORPORATED has a single task: to make wire terminations so reliable that the odds on failure at the end of your wires are zero.

AMP makes wire terminations- 15,000 solderless, snowflake-different kinds of themfor any circuit connection anywhere in the world, backed by 1800 patents issued or pending in the U.S.A. and 18 other countries. It makes the tools to apply its terminals to any size, shape or kind of wire. It makes these products in the U.S., and in Great Britain. France, Holland, West Germany, Italy, Australia, and Japan, for distribution anywhere, to any industry.

For the unabridged AMP story, write for our Selectalog and Autolog catalogs.

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNBYLVANIA

Abstract

Better? Yes, in several ways. Bifurcated Contacts, for example, give improved reliability, especially in dry circuits. Contacts will not open during vibrations of 30Gs, 55 to 2500 cps . A special method of sealing cover to base eliminates flux contamination of the contacts. And there are more. Here is Potter a Brumfield's newest member of a distinguished family of micro-miniature relays: the FLSerles.

Expressly designed for printed circuit applications, this DPDT, 3 amperes ((130 V DC) latching relay lies parallel to the mounting surface. Its height, when mounted, is only . 485°, thus circuit boards may be stacked closer. Mounting can usually be accomplished without studs or brackets. simplifying installation.
The FL will remain firmly latched in either armature position without applied power, a significant advantage where power is limited and long relay "on" times are required. This relay may be operated by:

1. Pulsing each coil alternately (odserving coil polarity), or
2. Connecting the coils in series and operating from a reversing (polarized) source.
Write for complete information or call your nearest PAB representative.

FL SERIES SPECIPICATIONS
Shect: 100 Gs for 11 milliseconds. No comeri openings.
Vibretien : 195^{*}, no contact openings. 10 to 55 cps 30 Gi from 55 to 2500 cps
Pill.in: 150 milliwam moximum (atandard) al $25^{\circ} \mathrm{C} .0$ milliwats manimum (spacial) al $25^{\circ} \mathrm{C}$.
Operale Fime: 3 milliseconds mozimum iff nominal valtage af $25^{\circ} \mathrm{C}$.
Trensfor Time: 0.5 millisecond masimus al nominal vothage at $25^{\circ} \mathrm{C}$.
Tempercture Renger $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Ifeminalas Plug-in pins
Dimensionar L $1.100^{\circ} \mathrm{Max}-\mathrm{W} .925^{\circ}$ max H. . 485° Man. Mermetically moled anly.

SC 11 D

SL 11 D8
(Latching)

Other P88 miero-miniature relays include conventional and latehing models in crystal cases with a wide range of terminals and mountings. All are made in a near-surgically clean production araa under the exacting requirements of our Intensified Control and Rellability program.

PAE GTANOARO RELAVE ARE AVAILABLE AT YOUR LOCAL ELECTRONIC PARTE DIETRIBUTOR

for switches quick

make a quick switch to Centralab

The switch you need is available fast from Centralab. From the simplest general purpose units to the most highly specialized, you get speedy service on samples, quotations, and production.

In fact, on a wide variety of standard switches you can get immediate local delivery, in industrial quantities, at factory prices - from your near-by Centralab distributor.

Write today for Centralab's unique Switch Visualizer (which simulates actual switch operation). Used in conjunction with our detailed layout sheet, it simplifies and speeds up switch design-for you, and for us. We'll also send along a copy of Catalog 42-405, listing detailed electrical and mechanical specifications on all Centralab switches and including a complete listing of all standard types available for immediate delivery.
\longleftarrow Circle 46 on Inquiry Card
The Electronics Division of Globe-Union Inc. 938 E. Keefe Avenue - Milwaukee 1, Wisconsin Centralab Canada Ltd. • Ajax, Ontario

Gives you accurate, continuously variable voltage outputs
0 to $10 \mathrm{VRMS}, 1000 \mathrm{cps}$
0 to 10 V Re大ak
fahk, 1000 cps 0 to 10 VDC E.posantry for checking accuracy
of laboratory volimeters and oscillographs

Ballantine's Model 420 Calibrator has proven to be an extremely useful instrument for quickly checking the calibration accuracy of voltmeters and oscillographs.
lts long term stability is such that you can rely on it for better than $1 / 4 \%$ when using it with a calibration chart, and $1 / 2 \%$ without the chart. Accuracy checks can be made with it in less than a minute. This will help you to reduce materially the out-of-service time for voltmeters that otherwise might have to be sent to a central calibration department.

BALLANTINE MODEL 420-AC-DC CALIBRATOR

SPECIFICATIONS

Internal Impedance of Outputs: 2 to 20 ohms over range 0 to $10 \mathrm{v}, 1000 \mathrm{cps}$ output; less than 5000 ohms on dc output.
Distortion and Hum: Less than 0.25%.
Seting Resolution: Approaches 0.01% above 10 mv .
Power Supply: $115 \mathrm{v}, 50-60 \mathrm{cps}, 35$ watts ; $230 \mathrm{v}, 50-60 \mathrm{cps}$ on request.
Dimensions: $6^{\prime \prime} \mathrm{h}, 63 / s^{\prime \prime}$ w, 107/8" d.
Write for brochure giving many more details

Boenton, Now Jersey

Books

(Continued from page 66)

GOVERNMENTAL PUBLICATIONS

Orders for these reports should be addressed to Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C. Make check or money order payable to "OTS, Dept. of Commerce." Prepayment is required. Use complete title and PB number for each report ordered.

A Versatile Printed Circuit Switch for Application in Laboratory and in Production.
By W. H. Hofman, Jr. 27 pages. PB16ra58. Price 81.00.

Junction Tronsisfor Measurements and Practical Standords
By B. Reich. 20 oages. PB161469. Price 75e
Thearetical and Experimental
Research in Thermoelectricity.
163 poges. P8161468. Price 83.00 .
Human Engineering Bibliography 1957-1958.
235 poges. PB161125 Plice 85.00.
Human Engineering in the Novy 1959
By P. G. Cheatham. 14 pages. P816142e. Price 50 .
A Method for Performing Human
Engineering Analysis of Weapon
Sysfems.
By A. Shopero. Il pages. P8161660. Price 82.00 .
Status of Electronic
Microminiofurization
By M. J. Doctor. 28 poges. PB161674. Price 75e.
A Simplified Electronic Trocking
Apparatus (SETA)
By P. Gain and P. M. Fifts. 17 pages. P8161550 Price 50 .
Thermoelectricity Absfracts.
This is the third in the series. 120 Doges. P816130\%.
Price $\$ 2.50$.
Symposium on Superconductive Techniques for Computing Systems 418 poges. PB161763. Price s4.50.
Fundamentels of Ultrasonic Welding (Phase I)
${ }^{B y}$ S2.50. B. Jones, wot. We pagas. PB161677. Price
Research and Development Leading to the Estoblishment of Ultrasonic Test Standards for Aircroft

Materials.

Dy G. L. Cross. of al. 147 pages. P8161753. Price $\$ 2.75$.
Transisforized Four-Segment Commufotor for a Direct-Current Machine.
ay F. L. Schwortz. 47 pages. P816172t. Price 8!.25

Tung-Sol transistors meet tight specs of FIITE-TROIII'S' miniature airborne power supply

Flite-Tronics ${ }^{\circ}$ miniaturized PC - 8 airborne power supply is fast becoming standard equipment aboard many commercial, private and military aircraft. More and more aircraft designers, seek-

- ing means of eliminating the costly maintenance problems associated with dynamotors. are replacing them with these all-transistorized FliteTronics units. Moreover, the PC-8 provides - large-scale reductions in weight and volume over rotary gear while sharply curtailing power drain losses.

Heart of these bantamweight power supplics is Tung-Sol 2N459 germanium power transistor. Tung-Sol made an all-out effort to meet the exceedingly difficult specifications laid down by Flite-Tronics for their high reliability equipment. This is how Flite-Tronics reported the results: "The ability of Tung-Sol transistors to meet the required performance levels is largely responsible for the success of the PC-8. We have
had no equipment failures whatsoever from these transistors."
If you need the space-saving, power-saving features of semiconductors, or if your design calls for tubes, you can be assured of premium performance when you specify Tung-Sol. And Tung-Sol makes both to a single standard of unexcelled quality. While your equipment is in the planning stage contact Tung-Sol application engineers. They will gladly assess your circuitry and give you an impartial recommendation for the component complement that most efficiently answers your design needs. Tung-Sol Electric Inc., Newark 4. N. J. TWX:NK193

Technical information available through Atlanta, Ga.: Columbus, Ohio: Culver City, Calif: Dallas, Texas; Denver, Colo.: Detroit, Mich: Irvington, N. J.; Melrose Park, Ill.; Newark, N. J.; Philadelphia, Pa.; Seatte, Wash. In Canada: Abbey Electronics, Toronto, Ontario.

NOW

FROM BORG,

 MAKER OF
FAMOUS

 MICROPOTS, COMES AN IMPORTANT BREAKTHROUGH IN THE FIELD OF MINIATURIZED
PRECISION

 POTENTIOMETRRSWrite for complefe engineering data... ask for Cotalog Sheets BED-A160 and BED-A161

Mechanical Rotationten-turn: 3600 $-5-0^{\circ}$; three-turn: $1080^{\circ}+5^{\circ}-0^{\circ}$. Electrical Rotationten-turn: $3600^{\circ} \div 5^{\circ}-0^{\circ}$; three turn: $1080^{\circ}+5^{\circ}-0^{\circ}$ Total Resistance Rangeten-turn: 25 to 120,000 ohms**; three-turn: 10 to 40,000 ohms ${ }^{* *}$
\qquad
\qquad
Temperature Range

* Tolerances: ten-turn - 25 to 50 ohms $\pm 10 \% ; 100$ to 120,000 ohms $\pm 3 \%: 120,000$ ohms $\pm 5 \%$. three-turn - 10 to 30 uhms $\pm 10 \%$; 100 to 40,000 ohms $\pm 3 \%$.

Reliability in volume...

RHEVITTE
TRANSISTOR
WALTHAM, MASSACHUSETTS
 diodes in eampulies .ond as ecetifiers in misgnefic -mplofire: the lo de converters and pawer supplees.

 fiersperavite higli disipp.ifiun 600 miw hoiglo vilt.ase
 of 150 C .

Where tast switiching is not required. these iectifiers ofter definite advantaye's in size, costs and superiul aveiloard piofection Thoy are avalable in multerep igde contor ming to MIL-: I 1143 (USAF)

DIFFUSED SILICON RECTIFIERS

- THE S-PLANE AS AN AID TO FILTER DESIGN

The complex frequency plane, or as it is known, the S-plane, plays an important role in modern circuit theory and related fields. It is the aim of this papor to illustrate the usefulness of the S-plane in the design of single and double-tuned filters.

- NOMOGRAPH FOR POTENTIOMETER LOADING

Most nomographs for potentiometer loading assume that a known voltage is applied to a potentiometer. This paper describes the increasingly important case when a known current is used. The nomograph gives the numerical value of the loading error so that the output can be corrected.

- CONSIDERATIONS IN DESIGNING TWO MILLIMETER WAVE COMPONENTS

Lack of a self-excited coherent source of millimeter power has led to the design of erystal harmonic generators. Sufficient signal has been obtained for the construction and calibration of impedance meters, mode converters, detectors, attenuators, tuners, phase shifters, etc. Novel design and construction tech. niques are described.

- SILICON PHOTO CELLS FOR LOW LIGHT APPLICATIONS

Analyzing the characteristics of silicon photocells in low-light sensing applications such as perforated tape and punched card data reading systems. The practicability of these devices in installations where mechonical sensing is now used is demonstrated.

Plus all our other regular departments

Our regular editorial departments are designed to provide readers with on up-to-the-minute sum. mary of world wide important electronic events. Don't miss Radarscope, As We Go To Press, Elec-
tronic Shorts, Coming Events, El Totals, Snapshots of the Electronic Industries, El International, News. Briefs, Tele-Tips. Books, Representatives News. International Electronic Sources, Personals, etc.

COMING SOON-

- THE 1961 ANNUAL ALL-REFERENCE ISSUE

The fourth consecutive annual edition containing yea-round technical reference information for electronic engineers. The editorial staff is already at work compiling and selecting data for this issue. Suggestions from user-readers for new topics and compilations to be included will be given careful consideration.

THERE is great interest in automatic test equipment for guided missiles, aircraft, and other complex electronic and electromechanical systems-parlicularly in military applications.
Here we will discuss some of the problems involved in designing a versatile, high-speed, fully automatic missile checkout system to be used in the field by unskilled personnel. The problems treated are by no means confined to missiles only; they are inherent in the concept of automatic testing, and they are encountered in any project of similar scope.

This work is based on studies performed by a group of test equipment designers at Hughes Aircraft Co. It does not represent an existing system, although many of the circuits and sub-systems were built and tested. In some cases, an indication is given of the degree of complexity or amount of hardware required $\mathrm{f}(\mathrm{r}$ a given application.
The decision as to whether a given system of test equipment should be manually operated, semi-automatic, or fully automatic involves many technical, economic, or military factors. This article considers only the most challenging (and most interesting, alternative; namely, complete automation together with other required capabilities listed below.

Briet Description of Concept

Here are the design objectives to be met:

1. The testing is to be performed at a moderately high rate of speed, approximately five tests per second.
2. The testing is to be fully automatic requiring no decisions or actions on the part of the operator. (A possible exception occurs if the missile, or other device being tested, requires some mechanical or electrical adjustments. In this case, the equipment must stop and wait while the adjustments are performed by the operator.)
3. Test results are to be displayed in Go-No-Go and Low-Go-High form and also as a decimal number giving the actual value of the measurement. A permanent record is to be printed or punched showing the results of each test.
4. All quantities to be measured are transduced into time, frequency, or voltage. Scaling circuits and analog-to digital converters (ADC's) convert the information into three binary coded decimal (BCD) digits appearing on twelve wires.
5. The system must be able to measure doubleended or "floating" voltages.
6. The system must be able to perform the arithmetic operations of comparison, addition, and subtraction.
7. The testing is to be "random access." This means that the order of testing or the tests to be performed may be changed by merely changing the program. The following information, in particular, is to be furnished by the program (rather than being permanently "built into" the equipment) :
a. The two test points at which a measurement is to be performed.
b. The high and low acceptance limits of three BCD digits each.
c. The type of measurement to be performed, and the proper scale factors.

Some Typical Problems in the Design of

By JEROME E. TOFFLER

Momber of Tech Stoff
Hughes Aireralt Co. p. O. Bon 90902, Airport Sta. Los Angeles 45, Colif.
d. The stimuli which are to be supplied for the test being performed.
e. The number of the test.

Proposed Hardware
Below is a listing of methods of meeting the above requirements.
These are also indicated in the block diagram of Fig. 1.

1. The program is in the form of standard, eight hole, punched mylar tape. A high speed, photoelectric tape reader reads the information for a test into shift registers. A test begins when the required information has arrived in the registers.
2. Selection of test points is performed by a 10×10 $x \in$ crossbar switch. This device is similar to those used in modern telephose raxchanges, and is described in Ref. 1. The 600 possible contacts on the crossbar switch are allotted as follows: 400 for selection of the test point on the high or "hot" side and 200 for selection of the test point on the common or reference side.
3. Selection of stimuli (mechanical, electrical, microwave, hydraulic, etc.) is performed by 128 electromechanical relays. The equipment must be able to apply or remove any number of these stimuli at any time and in any order called out by the program.
4. Two ADC's are used: one for time and frequency, and one for voltage. All voltages are scaled to the range of 0 to 1 volt before entering the voltage ADC.
5. For reasons of accuracy, flexibility, and speed, digital components and techniques are used throughout. In particular, a digital arithmetic unit is used for addition, subtraction, and comparison.

Presently there is a great interest in automatic test equipment for complex sysfems. Some of the problems involved in the design of flexible, high-speed, fully automatic checkout systems for use by unskilled personnel are described and diskussed here.

Automatic Test Equipment

Perhaps the best way to understand and appreciate the design considerations is to analyze some of the commands which must be included in the program for each test. The following assignments are made for holes (binary bits) on a frame of the tape:

1. High acceptance limit- $\mathbf{1 2}$ bit BCD, representing three decimal digits, plus one bit for sign (plus or minus).
2. Low acceptance limit-same number of bits as for high acceptance limit.
3. Measurement scale-3 bits. This information determines the scale factors which must be applied to voltage, resistance, time, and frequency to bring them within ranges where they can be accurately measured. It also indicates location of the decimal point in test results. There are eight scale factors which can be selected: $1,10,100, \ldots 10,000,000$.
4. Test point selection-12 bits. Four bits are used to select the horizontal coordinate on the crossbar switch, four more to select the vertical coordinate,

Automatic Testers (Continued)

and four to select the proper levels on the switch for the high and low test points.
5. Measurement type - 4 bits. This determines which type of measurement is to be made. The types are as follows:
a. de voltage
c. de voltage (fluating)
b. ohms (dc resistance)
e. ac peak voltage
s. ac RMS voltage

Provision is also made for two types of "special" measurements using external equipment, and two spares.
7. Stimuli control-8 bits. Seven bits are used to select one out of the 128 Stimulus Control relays; and one bit is used to determine whether the stimulus is to be applied or removed.
8. ADC select-one bit. This bit determines whether the desired test result is to be on the 12 wires from the Voltage ADC or the 12 from the Time ADC (counter.)
9. Time delay- 8 bits. This allows for a preset delay of 0 to 25.5 sec . in increments of 0.1 sec . for required timing functions.
10. Arithmetic and comparison operations - approximately 12 bits, depending on various alternative methods which are available. This subject is discussed below in more detail.
11. Number of the test being performed-12 bit $B C D$ representing three decimal digits.

Major Problem Areas
The so-called major problems to be considered fall into three general categories:

1. Problems in which the solutions are apparent but which add enormously to overall system complexity;
2. Problems which require special equipment not available on today's market, leading to costly and timeconsuming development programs:
3. Problems whose solutions are blocked by the state of the art or by more fundamental limitations, such as the laws of physics. Examples are given below:

Problem 1-Encoding \& Decoding

This type of problem, which is an example of the first category listed above, occurs in selection of the Stimuli Control relays. Seven bits of information are used to select any of 128 (2°) reiays. One other bit determines whether the relay is to be energized or deenergized. A solution (although not necessarily the optimum one) can be readily determined. However, it will be found that the number of components required (transistor or diode gates, inverting amplifiers, power amplifers, flip-flops, etc.) comes as an unpleasant surprise to most engineers, particularly those who are working on a limited budget. One solution involved 314 packaged circuits at an average cost of $\$ 30$ each.

Similar problems occur in selecting the desired test points selecting the proper scale factors, and in
general, any case in which u bits are used to control 2" distinct conditions.

Other encoding-decoding problems occur because all data which is displayed or printed must be in decimal form, while the tape commands and arithmetic operations are based on a BCD code. Furthermore, many types of measuring equipment provide decimal readout, or use a different code or different voltage levels than those required. These cases all require some form of "conversion" equipment to insure that the signals are of the proper form and magnitude in various portions of the equipment.

Problem 2-Modification of Parts

A good example of this problem is the counter required for time and frequency measurements, and precise timing operations. A number of excellent counters are available which have the necessary capabilities. However, they are controlled by manually: uperated rotary switches on the front panel. For the present application, the counter must be controlled remotely with binary information.

A remotely controlled counter is not being built - commercially simply because there is insufficient demand for $i t$. This means that a standard counter must be purchased, "torn apart," and provided with the necessary relays which will perform the functions normally performed by the front panel switches. These modifications can be a tedious, time-consuming task for both electrical and mechanical designers.

Problem 3-Original Development

Some of the instruments involved are so unique in function that it is easier to design from "scratch" than to attempt to modify existing commercial equipment. An example is the ohmmeter circuitry.

The ohmmeter is required to measure 4 ranges of resistance with full scale values of 10 ohms, 1000 ohms, 100,000 ohms, and 10 megohms. To operate compatibly with the Voltage ADC, the ohmmeter must deliver a voltage proportional to resistance with a maximum value of 1.0 v . and an accuracy of 1% in any of the above ranges. This problem can be solved by using a dc "analog computing type" feedback amplifier. By including the unknown resistance as part of the feedback loop, the overall amplifier gain is made exactly proportional to the value of this resistance. Hence, if an accurately known voltage is applied to the amplifier input, the output is proportional to the resistance value. Other examples of special circuitry are discussed below in connection with transients.

Problem 4-Transients

Transient problems are closely related to the desired operating speed of the equipment. Two typical examples will be given.
Example 1. A dc voltage has a 60 CPS ac voltage superimposed on it. It is desired to measure the average dc value. However, only 50 msec . can be allowed for the voltage to reach "steady state." It is seen that a basic conflict exists here. If adequate filtering is provided for the 60 CPS , there is difficulty in reaching the de steady state, since filtering implies delay. Insufficient filtering means that the dc value will fluc-
tuate and cause erroneous readings. The problem can be relieved somewhat by using special filters, perhaps requiring isolating amplifiers between sections. Properly designed filters can provide the optimum rise time of the dc voltage for a given attenuation of the ac voltage.
Example 2. Same conditions as above, except that this time it is desired to measure the ac voltage, rather than the dc. The obvious solution is to use an ordinary RC coupling network. This creates a serious problem however, due to the transient introduced by the dc step function. It is generally known that a transient of this nature will decay to 1 ro of its initial value in 5 RC time constants. In the present case, this might not be long enough. If the dc voltage is 100 v . and the superimposed ac is 1 v . at least 10 time constants are required to reduce the dc transient to a suitably low value. Attempting to solve the problem by reducing the size of the RC time constant causes undesirable attenuation of the ac signal. Again, special filters may be required.

An additional problem introduced by filters is the energy storage due to charges on capacitors and fluxlinkages in inductors. This energy must be removed between successive measurements which use the same filter. Special "reset" circuitry may be required to insure zero initial conditions at the start of each measurement.
For cases in which high uperating speed is the most important requirement, the use of "strain gage" techniques should be considered. In this system, the filters or the coupling networks are permanently connected to the pins at which it is desired to make measurements. Hence, the desired voltages are always present. waiting to be read. Although it neatly solves the transients problem, this method causes other dif-

A REPRINT

of this article can be obrained by writing on company letterhead to
The Editor
electronic industries. Chestnut G 56 th Sis, Phila 39, Pa.
ficulties. For example, if it is necessary to measure ac voltage and later measure dc resistance at the same pin. two connections to the pin are required, since dc resistance cannot be measured through the coupling capacitor.

Problem 5-Double-ended Measurements To be completely flexible, the test equipment should be capable of making double ended measurements, particularly of dc voltage. As an example, suppose that two wires are 99 and 101 volts above ground, respectively; and it is desired to measure the difference between them. This requires a differential amplifier with an allowable common mode voltage of at least 100 v ., and an overall gain of $1 / 2$ or less (assuming all voltages are to be converted to the range of $0-1 \mathrm{v}$.). Suppose that another measurement involves a differential voltage of 50 v . In this case, the overall amplifier gain must be $1 / 50$ or less. Unfortunately, the gain of a stabilized differential amplifier cannot be easily and precisely changed, as in the single-ended case; and scale changing becomes a

Automatic Testers (Continued)

serious problem. Furthermore, the requirement for high common mode voltage immediately disqualifies many existing differential amplifiers, particularly those using transistors.

Other possible solutions include:

1. a chopper to "chop" between the two lines, thus converting the dc to ac which can be passed through a capacitor to block the common mode voltage:
2. a single-ended amplifier attached to each line and their output subtracted;
3. a differential amplifier with a fixed gain to convert the differential voltage to single-ended, with scale changing performed elsewhere. Unfortunately, these solutions all present difficulties, such as transients, scale changing, matching of amplifiers, or insufficient output range. The problems are most severe when the desired differential signal is either very small or very large compared to the common mode voltage.

It is hardly necessary to point out that measurement of double-ended signals increases the required number of test points, and makes test point selection more complicated.

Problem 6-Timing \& Sequencing

Proper timing is probably the most obvious and fundamental requirement in automatic checkout equipment. A few examples of timing fuactions are listed below.

1. If instructions are read off a tape into storage registers, nothing must happen until the instructions have filled the registers, at which time a "start" signal must initiate the test.
2. The desired test points must be selected, and the proper stimuli must be applied or removed at the start of a test. If these operations are performed with relays or other electromechanical devices, it is necessary to wait for the pull-in or drop-out time. Also, it may be necessary to allow time for the stimuli to take effect (example: build-up of hydraulic pressure, rolling or tilting motions, etc.)
3. Time must be allowed for transients to decay. This problem was discussed above.
4. Time must be allowed for the comparison circuits to decide whether the measurement is a "pass" or a "fail."
5. Time must be allowed for the output devices to print or punch the test results.
6. Time must be allowed for "reset" in preparation for the next test.
All of these functions, and many more, must be carried out by means of "preset" or "internal" timing signals. Preset timing signals are derived from the punched tape directly, or from fixed timers. Fixed timers include devices such as delay lines, monostable multivibrators, counters, or time delay relays, all of which provide an accurate, known delay interval.

For example, a 50 msec timer could be used to delay the operation of the Voltage ADC until transients had decayed, provided all circuits are designed so that transients will decay within this period.
Internal timing signals are derived from devices

Automatic Testers (Concluded)

which have the capability of indicating the end of their cycle. Examples: A crossbar switch has auxiliary contacts which can be used to indicate the selection of a cross-point. The Voltage ADC puts out is

- pulse when its analog-to digital conversion has been completed. The "pass" or "fail" signals activate the display devices. In all these cases, the delay is not fixed, out is determined by the time required to complete a certain event.

Problem 7-Arithmetic Operations

The arithmetic, or evaluation, subsystem performs the tasks of tolerance comparison, addition, and subtraction. The problems involved are essentially the same as in digital computer design, a few of which are listed below:

1. Selecting a suitable code (decimal, pure binary, BCD, etc.) and arithmetic system compatible with the code.
2. Providing storage registers for high and low tolerances, test values, numbers to be added or subtracted, sums and differences. Three storage registers of 12 bits each are used for this purpose.
3. Accounting for the sign (plus or minus) of all quantities involved.
4. Providing proper timing and reset signals.
5. Checking of decimal points to distinguish, for example, between 43.7 volts and 0.437 volts.

Since a decimal readout is required, and since the items of hardware selected use the 8-4-2-1 BCD code, it appears almost mandatory to perform arithmetic operations with this code. Any other alternative involves costly, complex conversion equipment.

```
                    REFERENCE PACES
The pages in this section are pertcrated for easy re. moval and refenfion as valuable peference material. SOMETHINC NEW HAS BEEN ADDED An entra wide margin is now provided to permit them to be punched with a standard thice-hole punch without obliperating any of the texp. They can be filed in standard three hole netcboiaks or folders
```

Performing addition and subtraction using the 8-4-2-1 code creates problems regarding the propagation and utilization of "carries," also the problem of obtaini: g a "nines complement" for subtraction, since this code is not self-complementing. These topics, as well as many other aspects of decimal addition and subtraction, are covered in Ref. 2, which considers both serial and parallel operation and mixed serialparallel systems.

> Problem 8-Reliability

Generally speaking, electronic test equipment is built out of exactly the same types of hardware and circuitry as the systems being tested. Consequently, it is subject to the same maladies, even though in many cases its operating environment may be less severe.

Stated in simplified terms, the failure rate of any s.ystem is equal to the sum of the failure rates of its component parts. This means that a complex auto-
matic system can have a high failure rate (poor reliability) just because it contains a very large number of parts.
However, this disadvantage is offset by the fact that many techniques which have been developed to improve reliability of digital computers are directly applicable to digital test equipment. The following are examples:

1. Self-test routines can be included in the program to detect and isolate a malfunction very quickly.
2. Special codes can be used to detect and correct simple errors in data transmission.
3. Equipment can be duplicated or operations can be repeated, with a comparison of results.
4. Redundancies, or "forbidden combinations," can be used to indicate an error. For example, in the 8-4-2-1 code, the combinations $1010,1011,1100,1101$, 1110, and 1111 should not occur in normal operation.
Methods of obtaining error-free computer operation are discussed in greater detail in Ref. 3, which includes the above techniques, as well as others.

Conclusions
The above material is intended to illustrate some of the practical problems which are encountered at the "working level" of system design and circuit design. It is not intended to discourage future effort. Fortunately, in any particular system of test equipment, many of the problems discussed will not occur for the very simple reason that certain capabilities are not required. On the other hand, other features might be needed (particularly in future programs), which have not been considered here, such as:

1. All switching to be performed by solid state devices;
2. Program to be stored on a high speed magnetic drum instead of tape:
3. Diagnostic sub-routines to be included in the program to help isolate a malfunction in case a test "fails."
It is clear that a thorough investigation into capabilities which are actually needed is the most important step in the practical design of automatic test equipment (and one that is often neglected!). After the requirements have been determined, consideration can be given to additional desirable features which may be classed as "luxuries." However, as with all luxuries, they must be sacrificed if the price proves to be too high in dollars, time, or manpower.
Recent studies (Ref. 4) indicate that high speed. aufomatic, digital test equipment can make important contributions to the reliability of complex weapons systems. It is certain that future requirements will place ever-increasing emphasis on the words above which are underlined, and new and better solutions will be found for some of the "typical" problems.

References

1. "Crossbar Switch Applicatlons," by Kurt Einslein. Electrical Manufacturing, Aprll, 1958. Pages 86 thru 95.
2. Arthmetic Operations in Digltal Computers. by R. K. Richards. D. Van Nostrand Co., Inc., Princeton, N. J., i955, Rhapter 8.
3. Logical Design of Digital Computers, hy Montgomery Phister, Jr. John Wiler and Sons, Inc. New York, N. Y, 1958. Phister, 10.
Chapter 10.
4. "Flield Testing Rellabllity Into A Complex Weapon Sysiom," by Robert A. Kirkman. Mianile Dcalgn and Developmenl, lucember, 1959. Pages 20 thru 23

The problems of low level input instrumentation have mushroomed with the missile era. Not only is the new terminology defined in this article but also positive suggestions are offered to eliminate the systems engineering problems involved.

For Systems Engineering...

Designing for Low Level Inputs

By D. B. SCHNEIDER

Neff Insfrument Corp.
1088 East Homilton Rd.
Duarta. California

IN any input instrumentation system, common mode voltages are always present. To prevent ground loops and to obtain the most accurate data without degradation of system accuracy due to the presence of common mode voltages, at least one of the following three criteria must be met.
a. Provide an ungrounded source.
b. Provide an ungrounded load.
c. Provide an isolated amplifier.

In practice, a floating source may sometimes be provided by insulating the transducer from ground and using a floating power supply. In many cases. such as thermocouples, floating the source is impossible. Again in practice, a floating load may be provided, such as a galvanometer, but in any multi-channel telemetry or digital data system, the load ultimately reaches a common instrument ground. In the case of a grounded source and a grounded load, an isolated amplifier provides the only known method toward accurate data acquisition.

Common Mode Signals
Fig. 1 depicts a series of grounded transducers using differential amplifiers into a data system.

Assuming a copper-canstantan thermocouple and a steel frame, secondary copper-iron and iron-constantan thermocouples are actually formed which generate unwanted voltages. These spurious voltages appear as common mode signals to the amplifiers. If amplifiers are used whose input and output signal lines are common, Fig. 1. ground loops are formed through the data system (see arrows). Thus, input data provided
to the data system is a signal equal to t_{1} plus an error proportional to the difference temperature between t_{1} and t_{2} and not at true representation of the signal developed by the copper constantan thermocouple. This error can easily be larger than the actual signal. If an isolated amplifier is used, ground loops are broken and true temperature data is acquired.

Another example of a mandatory requirement for isolated amplifiers is in the case of strain gages using a common power supply, Fig. 2.

It is readily apparent that two arms of each bridge are parallel with the same arms of every other bridge through the amplifiers. If these are active arms, each

Fig. I: Some grounded transducers using differential amplifiers into a data system.

Fig. 2: Strain gages using acommon power supply also require isolated amplifiers.

Fig. 3: When a current path is connected between any two different ground porentials, ground loop currents will flow.

Low Level Inputs (Continued)

bridge will have an effect on every other bridge in the system. If these arms are used for temperature compensation and calibration, a similar result occurs. The only way in which these bridges can be electrically separated is to use either individual, isolated. power supplies or isolated amplifiers, or both.

Usually, ac common mode voltages are caused by large amounts of current being pumped into the ground from power sources, thereby resulting in different ground potentials. As soon as a current path is connected between any two different ground potentials, Fig. 3. ground loop currents flow.

As mentioned tbove, it is easy to cope with dc ground loop currents by conductive isolation. But for ac common mode, large amounts of common mode voltage and circulating current can be found and the cure becomes increasingly difficult. For example, a common mode voltage of 1 volt can be induced into 100 ft . of input signal lines by less than 10 kw of 115 volt, 60 CPS power parallel to and 1 ft . from the signal lines.

In many installations hundreds of feet of signal lines are placed in the same tunnel with many times 10 kw of 60 cPS power. Thus. seieral volts of common mode signal can easily result.

The usual attempt to minimize the common mode voltage is to install a larget bus bar to connect grounds. In many cases, a decrease in common mode voltage has not been obtained after bus bar installation. Common mode voltages of 1 volt due to ground currents are frequently found in both ground and airborne installations: usually at the power frequencies of 60 cPS and 400 cPs, respectively. In several known cases. common mode voltages up to 5 volts have been measured. Thus it becomes imperative that we find a way to break the conductive flow of ground loop currents. and reject these common mode voltages.

So far, we have discussed some of the most common causes and effects of common mode signals and have mentioned that the solution to our problem lies in the application of an isolated amplifier. Just what is an isolated amplifier? Fig. 4 shows the input section of an isolated amplifier.

Isolated Amplifier

In truth, the isolation of an amplifier is entirely dependent upon the input circuit. Therefore, the imost care must be used in design and layout of this important section. The heart of the input circuit is the transformer. The transformer prevents conductive flow of the input signal to any other succeeding circuit.

REFERENCE PACES

The pages in this section are Derforated for easy removal and retention as valuable reference material. SOMETHINC NEW HAS BEEN ADDED
An extra-wide margin is now provided so as to permit them to be punched with a standard three-hole-punch withoat obliterating any of the tcar. They can then be filced in standard threc hole notcbooks or folders

DEFINITIONS

Differential Amplifier-an amplifier whose input leads are related to circuit ground and responds to differential signals.
Isolated Amplifier-a differential amplifier whose input signal lines are conductively isolated from the output signal lines and chassis ground. An isolated amplifier is a differential amplifier. The reverse is never true.
Common Mode Rejection-the ability of an amplifier to reject a signal, common to both its input signal lines.
Common Mode Voltage-that amount of voltage common to both input lines. Usually, a maximum voltage is specified which may be applied without breaking down insulation between the input circuit and ground.
Common Mode Resistance-resistance between input signal lines and output signal lines or circuit ground. In an isolated amplifier, this is its insulation resistance. Common mode voltage and common mode resistance have no connection with the Common Mode Rejection.
Normal Mode Poltage-actual signal voltage developed by a transducer or the difference voltage between input signal lines.
Instrument Ground-any point on earth, aircraft or missile chosen as a reference.
Guard Shield-a shield which surrounds the input circuit of an amplifier.
Ground Loop-a path through which current may flow from any starting point through a system and back to the original starting point.

Extreme measures are taken to properly shield the primary of the transformer from the secondary to achieve ac isolation and rejection.
The function of these shields are as follows:
The \#1 shield in Fig. 4 prevents the modulation of common mode signals by the input chopper. If common mode signals are modulated at the chopper frequency, the amplifier cannot distinguish any difference between the modulated common mode signal and the modulated normal mode signal, therefore both are amplified as signal.

Shield \#2 prevents the flow of common mode currents in input signal lines so that line resistance will not produce a common mode to normal mode conversion.

Shield \#3 prevents pickup in the secondary due to capacitive coupling of any common mode potential on shield \#2.

Any common mode voltage produced between shield \#3 and "guard shield" as shown in Fig. 4, does not produce a current flow, and therefore does nuc produce a voltage on input signal lines by common mode to normal mode conversion.

The ac common mode rejection figure of an amplifier actually is derived, nearly in its entirety, from the measures taken in design and shielding of the input circuit.

In theory, an input transformer can be built which will produce an infinite amount of common mode rejection at any frequency. Practically, this design is limited by cost, size and weight.

Differential Amplifier

At this puint, a word should be said regarding direct coupled differential amplifier approach and input signal line unbalance. In any practical installation, it is impossible to achieve perfect input signal line balance. These line unbalances can amount to several hundred ohms.

Fig. 5 shows a direct coupled differential amplifier. These amplifiers can achieve ac common mode rejection as high as 200,000 to 1 as long as the input lines remain perfectly balanced. Let us assume, however, an input impedance from either side to ground of 100,000 ohms with a 100 ohm unbalance in the input lines. Assuming a common mode rejection of 10^{3} for the amplifier with balanced lines, the 100 ohm line unbalance decreases the common mode rejection to 1000 to 1 at ac as well as dc. The reason is that on one line, the common mode signal is attenuated by 0.1% while not attenuated on the other line. This difference in attenuation allows the conversion of 0.1% of the common mode signal as normal mode signal. Thus one can say that in a straight forward differential amplifier, the common mode rejection capability of the amplifier is largely a function of the line balance.

Will an isolated amplifier solve all our common mode problems? No, not necessarily.

In Fig. 6, a guard shield has been brought out from the amplifier to a point just downstream from the reference couple. Snme amount of distributed line capacitance will be present between input lines and the common mode generator. In this case, we have an RC filter with a 60 CPS path as shown by arrows which will cause ground loop currents to flow through the line resistances. If the RC networks are not identical in each line as is the case shown in Fig. 6. a common mode voltage drop will occur across these unequal resistances and will produce a normal mode signal from the common mode signal. No matter how good the amplifier, a common mode to normal mode conversion will occur and the system installation will be no better than the conditions imposed by the unbalanced line conditions.
"Do's and Don'ts"
Fig. 7 illustrates some of the "do's" and "don'ts"

Fig. 4: Amplifier isolation is entirely dependent on inpul circuit.

for input instrumentation system installations.
Fig. 7a shows transducers with input signal lines totally shielded. The guard shield is grounded at the transducer, the power supply and to the transducer case.

This installation is the ultimate insofar as elimination of stray pickup and common mode to normal mode conversion is concerned. The common mode rejection of this installation can approach the capability of the amplifier.

Fig. 7b illustrates an installation which is usually satisfactory and can achieve a common mode rejection better than 250,000 to 1 . This setup can be used since the line resistances in thermocouples are usually very low.

Fig. 5: Common mode reiection ratios of direct coupled differ. ential amplifiers depend on input balance.

Fig. 7 c is an example of an installation in which it is impossible to expect better than $10,000: 1$ common mode rejection. In this instance, the distributed capacity between input lines and ground will be in excess of $1000 \mu \mu \mathrm{f}$ which will deteriorate installation common mode rejection even with the ultimate in isolated amplifiers.

Fig. 7d is an example of the "don't." In this case, by grounding the shield at the amplifier, little, if any installation common mode rejection can be achieved no matter how good the amplifier. System accuracy is anybody's guess since the guard shield degrades the input circuit instead of minimizing common mode pickup. No matter what else is done in installation the guard shield should be connected to the input lines if it is not used as in Fig. 7a.

Rules

From these examples, some rules naturally follow for obtaining the best possible installation accuracy using isolated amplifiers.

1. Always connect the guard shield to the source of common mode voltage, if possible. If not. connect

Fig. 6: When RC networks are not identical in each line, a common mode voltage drop occurs across these unequal resistances and produces a normal mode signal, no matter how good the amplifier may be.

Low Level Inputs (Continued)

the guard shield to the input lines as close as possible to the transducer.
2. Ground the guard shield and the transducer case to the low side of the power supply.
3. Never leave the shield floating. Never ground the shield at the amplifier.
4. Always use well shielded, tightly twisted pair for input cable.
From the previous discussion, it is apparent that the utmost care and thought must be given to input system installation techniques to achieve the ultimate in data acquisition accuracy.

Tesf Procedures

Directly related to the general problems of low level input instrumentation systems, are amplifier checkout and evaluation procedures. Since the amplifier

PREFERRED

Fig. 7a: Transducers with their input sisnal fines totally shielded.

SATISFACTORY

bears such an important relationship to the problems associated with common mode, the following test setups and procedures are strongly recommended for isolated amplifier test and evaluation.

If a large number of amplifiers are to be tested, the construction of a test box is suggested. All giounds in the test box should common at one spot and then tie to the chassis. Pick up of 60 cPs fields are assured if no thought is given to proper grounding and erroneous readings are the result. This particularly

Fig. 8: Sefup to be used for input and output impedance measurements.
applies to ac common mode rejection and noise tests. In the following test set-ups, the divider networks shown are used for several reasons.

They allow the use of a signal source voltage equal to the amplifier output voltage such that the two voltages can be bucked. This, in turn enables the use of the meter as a null indicator. With the signal source voltage bucked against the amplifier output voltage, any variations in the signal source varies both the signal and amplifier output voltage. The meter thus measures only errors due to the amplifier.

Input Impedance
Refer to Fig 8 for the input impedance measurement set-up.

1. Adjust amplifier zero.
2. Set the signal source voltage equal to full scale amplifier output voltage.
3. Adjust amplifier gain control for meter null.
4. Insert R until 0.1% of amplifier full scale output appears on meter.
5. Input resistance approximately equal to 1000 R .

Output Impedance
Measurement for impedance output uses the same set-up as for input impedance.

1. Adjust amplifier zero.
2. Set the signal source voltage equal to full scale amplifier output voltage.
3. Adjust amplifier gain control for meter null.
4. Apply a 1000 ohm load to the amplifier output.
5. Output impedance approximately equal to

$$
1000 \frac{\Delta E_{\text {out }}}{E_{\text {out }}}
$$

Lineority

Measurement for linearity again uses the same setup as for input impedance.

1. Adjust amplifier zero.
2. Set the signal source voltage equal to full scale amplifier output voltage.

Fig. 9: Selup to be used for ac and de common mode rejec. tion.

Fig. 10: Test sepup for amplifier noise.
3. Adjust amplifier gain control' for meter null.
4. Vary the input signal from zero to full scale and record meter output displacement error.
5. Linearity equal to

$$
=\frac{\text { displacement error }}{2}
$$

DC Common Mode Rejection

For testing dc common mode rejection, a dc voltage source and switch is placed between amplifier input and output lines. Fig. 9.

1. Short input lines to guard shield.
2. Connect meter to output.
3. Inject dc common mode signal as shown and measure output voltage change.
4. DC common mode rejection equal to

$$
\frac{E_{C M} \times G_{\text {ain }}}{\Delta E_{\text {out }}}
$$

Fig 11: In the measurament of high gain stability use this setup.

AC Common Mode Rejection

AC common mode rejection uses the same test set-up as for dc common mode rejection. Replace dc common mode voltage with an ac common mode generator. Replace meter on the output with a scope.

1. Short input lines to guard shield.
2. Inject ac common mode signal.
3. AC common mode rejection equal to

$$
\frac{E_{C M}^{\prime} \times \text { Gain }}{\Delta E_{A C \text { out }}^{\prime}}
$$

The test for amplifier noise referred to the input uses Fig. 10.

1. Short input lines to guard shield and to amplifier output.
2. Connect scope to the output and read noise.
3. Noise referred to input equals

$$
\frac{E_{\text {soteo }}}{\text { gain }}
$$

Gain Stability

In the measurement of gain stability use the set-up outlined in Fig. 11. Both zero drift and gain stability are obtained on the stripchart recorder. It is difficult to differentiate the two parameters in any test set-up. Therefore, a number of manufacturers combine the gain stability and zero drift specification.

1. Adjust amplifier zero.
2. Adjust signal source voltage equal to full scale amplifier output voltage.
3. Adjust amplifier gain control for null on the stripchart.
4. Monitor stripchart.

Fig. 12: In the mea. surement of zero drift, this sefup is used.

Zero Driff
Use the set-up in Fig. 12 for zero drift measurement.

1. Adjust amplifier zero.
2. Short input lines to guard shield and to amplifier output.
3. Monitor stripchart.

Frequency Response
The set-up in Fig. 13 is used for frequency response measurement.

1. Adjust amplifier zero.
2. Set signal source voltage at convenient level within linear output range of amplifier.
3. Adjust amplifier gain control for identical reading on meter at output of amplifier.
4. Observe meter reading and repeat steps 2, 3 and 4 at the next highest frequency.
Note: In this test, the meter is switched back and forth to take all readings on the same meter scale. By taking all readings on the same scale. meter inaccuracies due to changing scale are eliminated.

Fig. 13: Sefup to be used for the measurement of frequency response.

This article is an experiment. Instead of presenting a short discussion for those familiar with Jacobians, and a long table of results for those who are not, the entire article contains only one simple network-so simple that results can be verified intuitively.

Using Jacobians for

Fig. 1: The first R-C network 2-parameters are the open-circuit type.

TWO R-C combinations in cascade have been selected for network analysis. The objective is to write the Jacobians of each of the component networks; then, calculate the Jacobians of the combined network; and, finally, demonstrate the usefulness of operations concerning their frequency dependence.

Since all the 2 -parameters of the first network, Fig. 1 , are of the open-circuit type (i_{1}, i_{2} independent variables, arrows into the flow graph), they can very easily
be written from inspection. For example, z_{12} is $\left.\frac{\partial i_{1}}{\partial i_{2}}\right|_{1_{1}}$; and at constant i_{1}, the effect on e_{1} of a variation in i_{2} is represented by $e_{1}=i_{2} . R$, so $z_{12}=R$. Letting the Jacobian $\mathbf{z}=1$, the Jacobians of the network can be written. ${ }^{1.2}$ Since the Jacobians can be multiplied throughout by any quantity, a multiplie: of ${ }_{8} C$ can be selected in order to make the expressions easier to handle. These steps are shown in Table 1.

In the same way, Jacobians of the second network. Fig. 2, are calculated, Table 2.

Note that the calculation can be checked by verifying the uniqueness condition $\mathbf{a b}+\mathbf{g h}=\mathbf{y z}$. The operator s is used for $j \omega$. As a general rule, Jacobians should be written to include the product $C R$, since this' represents a time constant = which has a very practical meaning.

By placing the networks of Figs. 1 and 2 in series, the network of Fig. 3 is formed.

Fis. 2: The lacobians for this particular network are calculated in Table 2.

A REPRINT

of this article can be obtained by writing on company letterhead to

The Editor
ELECTRONIC INDUSTRIES
Chestnut 6 56th Sts., Phila. 39, Pa.

Table 1

z - Parameters From Inspection	Jacobian Ratios	Jacobians (With $\mathbf{z}=1$)	Jacobians (With $\mathbf{z}={ }_{8}{ }^{\circ}$
$z_{u}=\left.\frac{\partial r_{1}}{\partial i_{1}}\right\|_{i_{2}}=\left(1 N^{\prime}\right)+R$	$=\mathrm{g} / \mathrm{z}$	$\mathrm{a}=\mathrm{R}$	$a=8(\cdot R$
$z_{1 t}=\left.\frac{\partial r_{1}}{\partial i_{3}}\right\|_{i_{1}}=R$	$=-\mathbf{b} / \mathbf{z}$	$\mathbf{b}=-R$	$\mathbf{b}=-x / R$
$i_{21}=\left.\frac{\partial i_{2}}{\partial i_{1}}\right\|_{i_{2}}=R$	$=\mathbf{E}$	$g=\frac{1+w \cdot R}{s C}$	$\mathbf{g}=1+s{ }^{\prime} \boldsymbol{H}$
$z_{z t}=\left.\frac{\partial r_{2}}{\partial i_{2}}\right\|_{i_{1}}=R$	$=\mathbf{h} / \mathbf{z}$	$\mathbf{h}=\boldsymbol{R}$	$h=w C R$
$\Delta^{*}=z_{11} \cdot z_{21}-z_{12} \cdot z_{21}$	$=y / z$	$\begin{aligned} & y=R / N C \\ & z=1 \end{aligned}$	$\begin{aligned} & y=R \\ & z={ }_{k} V \end{aligned}$
$=\left(\frac{1}{C}+R\right) R-R^{2}=R / s C$			

Cherk: In the last column, $\mathbf{a b}+\mathbf{g h}=\mathbf{y z}$.

T. R. Nisbei

Dr. W. W. Happ

By THOMAS R. NISBET
Electronic Research Engineer
and DR. WILLIAM W. HAPP
Stoff Scientist
Solid Stote Electronics
Lockhead Missile and Spoce Div.
Pelo Alto. Colifornia

Frequency-Selective Networks

Note that the same values of R and C are used in each network; this is done to simplify the evaluation and to highlight the Jacobian technique rather than the algebra.
As indicated in the formulas previously developed for the Jacobians of cascaded networks, ${ }^{4}$ the required starting condition is $-a^{\circ}=b^{\prime \prime}$; and to meet this condition, each of the Jacobians as evaluated in the last column of Table 1 must be divided by $8 C R$.
In Table 3 are shown the Jacobians of the two individual networks, in form suitable for cascading ($-\mathbf{a}^{\prime}=\mathbf{b}^{\prime \prime}$), and the calculated values of the Jacobian; of the combined network are shown on the right.
Examples and verifications of the calculations follow:
$=3+{ }_{B}(\cdot R+1 / B C R$
$\mathbf{z}=\mathbf{z}^{\prime} \mathbf{g}^{\prime \prime}+\mathbf{h}^{\prime} \mathbf{z}^{\prime \prime}=\left(\mathbf{1} / \boldsymbol{R}_{)}\left(1+{ }_{8} C R\right)+(1) s^{\prime} C=1 / R+2 s C\right.$

Verify calculations from uniquences condition $\mathbf{a b}+\mathbf{g h}=\mathbf{y z}$ Verify from inspection of Fig. $3, z_{11}=1 / 8 C+R \|(R+1 / 8 C)$
which simplifics to $\left[1+3_{8} C R+(8 C R)^{9}\right] / 8 C(1+2 x C R)$.
The same result is obtained from $z_{\| 1}=\mathbf{g} / \mathbf{z}$
From the Jacobians of the composite network. Table 3, any desired parameters or transfer functions

Fig. 3: The networks of Figs. 1 and 2, in series. form this circuit. The lacobians for this composite circuit are shown in Table 3.
can readily be calculated. These uses have been covered in earlier articles. ${ }^{1.2 .3}$

Frequency Dependency

A Jacobian by itself has no specific amplitude. Nevertheless, its frequency response can be plotted usefully. This is because, using log-log paper, Jacobian ratios become the difference between two curves, and this "difference curve" has a slope that is independent of the component curves, as illustrated in Fig. 4.

For convenience, the frequency is regarded as 8 , although the number of cycles per second is, of course, $8 / 2 \pi$. The slope of the curve of a quantity such as $s C$ or ${ }^{3} C R$ is obviously 1 decade per decade (or, in more familiar terms, $20 \mathrm{db} /$ decade or $6 \mathrm{db} /$ octave). A number can be written against each curve to represent its slope in db /decade. In subtracting two curves to find

Table 2

z- l'arameters From Inspection	Jucobians (With $\mathrm{z}=1$)	Jacobiuns (With $\mathbf{z}={ }_{8} \mathrm{C}$)
$\begin{aligned} & z_{11}=(1 / 8 C)+R \\ & z_{12}=1 / 8 C \\ & z_{11}=1 / s C \\ & z_{12}=1 / s C \\ & \Delta^{\prime}=R / 8 C \end{aligned}$	$\begin{aligned} & \mathbf{a}=1 / \times(\\ & \mathbf{b}=-1 / \times C \\ & \mathbf{E}=(1 / * C)+R \\ & \mathbf{h}=1 / 8 C \\ & \mathbf{y}=R^{\prime} / * C \\ & z=1 \end{aligned}$	$\begin{aligned} & \mathbf{a}=1 \\ & \mathbf{b}=-1 \\ & \mathbf{g}=1+a \cdot R \\ & \mathbf{h}=1 \\ & \mathbf{y}=R \\ & \mathbf{z}=\Delta r \end{aligned}$

Table 3

First Network (Fig. 1)	Siccond Network (Fig. 2)	Combined Network (Fig. 3)
$\begin{aligned} \mathbf{a}^{\prime} & =1 \\ \mathbf{b}^{\prime} & =-1 \\ \mathbf{g}^{\prime} & =1+1^{\prime} s C R \\ \mathbf{h}^{\prime} & =1 \\ \mathbf{y}^{\prime} & =1^{\prime} \mathbf{s} C \\ \mathbf{z}^{\prime} & =1^{\prime} R \end{aligned}$	$\begin{aligned} \mathbf{a}^{\prime \prime} & =1 \\ \mathbf{b}^{\prime \prime} & =-1 \\ \mathbf{E}^{\prime \prime} & =1+{ }_{8} C R \\ \mathbf{h}^{\prime \prime} & =1 \\ \mathbf{y}^{\prime \prime} & =R \\ \mathbf{z}^{\prime \prime} & ={ }_{l} C \end{aligned}$	$\begin{aligned} & \mathbf{a}=1 \\ & \mathbf{b}=-1 \\ & \mathbf{g}=3+s C R+1 / s C R \\ & \mathbf{h}=2 \\ & \mathbf{y}=R+2 / s C \\ & z=1 / R+2 \times C \end{aligned}$

Fig. 4: The Jacobian ratios, the difference befween two curves, have a slope which is independent of the component curves.

Jacobians (Continued)

the curve of a ratio of two Jacobians, all that need be done is to subtract the nurbbers representing the slopes, Fig. 4.

The Jacobians as evaluated for the composite network need not be retained exactly but may be multi-
plied by any quantity, whether frequency-dependent or not. This manipulation can be performed with the object of simplifying the expressions and getting them as far as possible into terms of s and :.

Assessing the frequency dependence of a quan-

Table 4

JACOBIAN AND FORMULA	ASYMPTOTES*
$\underline{\sim}$	
$-\underset{\sim}{b}=s t$	
$\underline{\sim}=1+3 s \tau+s^{2} \tau^{2}$	
$\underset{\sim}{n}=25 \pi$	
$y=2 R+5 \tau R$	
$z=s C+2 s^{2} \tau C$	

* LOG-LOG PLOT OF JACOBIANS VS. FREQUENCY, WITH SLOPES SHOWN IN db/DECADE

Fig. 5: Plot of individual portions of the curve for g in Table 4.

REFERENCE PACES

The peges in this section are perforated for easy removal and retention as valuable reforence material.

SOMETHING NEW HAS EEEN ADDED
An extra-wide margin is now provided to permit them to be ounched with a standard Phree-holepunch without oblirerating any of the text. They can be filed in standard three-hole notebooks or folders.

Fig 6: Flat top of curve, neither asymptotic or tangent of the true curve of ga serves a useful purpose in locating the rest of the vertical axis structure, and portraying the general shape of the curve.

FREQUENCY (LOG SCALE)

Fig. 7 (left): Subtracting cuive g from a of Table 4 gives the Prequency response.

Fig. 8 (right 1: Waveform of the output voltage.
tity $y=2 R+{ }_{8} C R^{2}$ is done quite simply; the amplitude y at $s=0$ is obviously $2 R$, and at $s \rightarrow \infty$ it becomes ${ }_{8} C R^{2}$ with the curve finally attaining a 20 db / decade slope. The intersection of the asymptotes occurs at the solution of $\mathrm{y}=2 R$ and $\mathrm{y}=\mathrm{sCR}$, i.e., at $a=2 / \tau$. This gives the "frequency break point" in the asymptotic approximation of the curve, see y, l'able 4.
A quantity with a term in a^{2} has a $10 \mathrm{db} /$ decade slope at $s \rightarrow \infty$. An example arises in the quantity $g=1+38:+s^{2} \tau^{2}$. Beginning at $s=0$, the curve has zero slope, and the asymptote is simply $\mathrm{g}=1$. If 38τ is the dominant component, the slope of the center portion of the asymptote will be the same as for $\mathbf{g}=3 s \tau$; that is to say, the intersection of the asymptotes will occur at $38 \tau=1$ or $s=1 / 3$ r, and the equation of the inclined asymptote will be $R=38$. When $s^{2} \tau^{2}$ is the dominant component, the equation of the limiting asymptote will be $\mathbf{g}=8^{2} \tau^{2}$. The intersection of these two asymptotes will occur when $38 \tau=8^{2} \tau^{2}$ or $s=3 / \tau$. These details are shown in Fig. 5 and are repeated for g in Table 4.

The Jacobians of the composite network, Table 3, can be simplified by multiplying throughout by ${ }^{3} C R$ and by writing $s=C R$. They are then as given in Table 4, where their individual frequency dependence is also shown.
The transfer function which is conventionally written as g_{21} or $e_{2}(8) / e_{1}(8)$ may be expressed as the Jacobian ratio ($\left.e_{2}, i_{2}\right) /\left(e_{1}, i_{2}\right)$ or a / g. Its frequency dependence may be found by subtracting the curve g in Table 4 from that of a, with the result shown in Fig. 6.

Portions of a curve, such as that of g in Table 4, can be associated at a glance with the relative portions of the equation if the latter are arranged in ascending terms of s. Fig. 5 shows these portions individually, and it is clear that to find the height of the asymptotic structure for \mathbf{a} / g, it is necessary only to consider the frequency corresponding to $s=1 / 3 \tau$, where the ordinate value for g is 1 and $a=8 \%$, as in Table 4. The height of a / g is therefore 0.33 , Fig. 6.
The flat top of Fig. 6 is in fact neither an asymptote nor a tangent of the true curve of g_{11}. It serves a useful purpose, however, in locating the rest of the structure on the vertical axis, and in portraying the general shape of the curve of g_{11}. The maximum height of the true curve can be found by equating the first derivative to 2ero, and in this case it arises at $8=1 / \tau$ and $g_{11}=0.2$ (instead of 0.33 as in Fig. 6).

Transient Response

Suppose that it is required to assess the transient response of output voltage to a step of input current. First, the function $\partial e_{2} / \partial i_{1} \mid i_{2}=\left(e_{2}, i_{3}\right) /\left(i_{1}, i_{2}\right)=a / \mathrm{z}$ is examined. Subtracting curve z from curve a of Table 4 gives the frequency response, Fig. 7.

From the formulas in Table 4,

$$
\frac{a}{z}=\frac{s t}{s C+2 s^{2} \tau C}=\frac{R}{1+(2 C R) s} .
$$

The transfer function required is therefore

$$
\frac{r_{g}(8)}{i_{1}(8)}=\frac{R}{1+(2 C R)_{8}}
$$

and if a step of current ΔI_{1} is applied, then $\Delta I_{1} / \mathrm{s}$ can be substituted for $i_{1}(s)$ and the output voltage becomes
$e_{2}(s)=\left(\frac{\Delta I_{1}}{s}\right) \frac{R}{1+(2 C R)^{2}}=\Delta I_{1} R\left[\frac{1}{s\left(1+[2 C R]^{2}\right)}\right]$.
Taking the inverse Laplace transform,

$$
e_{3}(t)=\frac{\Delta I_{1}}{2 C}\left[1-e^{-a C R i}\right]
$$

The waveform of the output voltage is therefore as shown in Fig. 8.

It is of interest that, in spite of the fact that there is a series capacitor in the circuit, Fig 3, there is a response at zero frequency (or a steady-state amplitude in the pulse waveform). This is because a current generator has been specified by using I_{4} as the independent variable.

Synthesis of networks to give a specific frequency response is made easier by the use of Jacobians, since the complexity of the calculation is reduced by treating the Jacobians individually. In many areas where Jacobian analysis can be applied, this technique offers a substantial bonus in the form of extended capability.

Referances

1. W. W, Happ, "Dynamic Characteristics of Four-Terminal Networks," /RE Convention Record, PQCT, 1954.
2. T. R. Nisbet and W. W. Happ. "Jacoblans-A Now Computational Tool for Converting Translator Parameters" "Blectronio Induetries, Nov. 1958.
3. T. R.Nisbet and W. W. Happ "Asymptotes Solve Transistor Design Problems," ELectronic Industries, Aug. 1959.
4. T. R. Nisbet and W, W. Happ, "Compound 2-Ports Systematized," C. P. 60-1127, AIEE Pacific General Conference, San Dlego, 1960 .

Monitor Systems. Inc., engineers (L to R1, S. C. Billings. L. A. Meeks, and R. J. Margraff, check company's high-speed, automatic monitor system (HAM). It will be used to improve reliability. accuracy, and economy of CE's Manford nuclear control system

A^{N}N ultra reliable 120 point HighSpeed Automatic Monitor (HAM) System with a scanning rate of up to 5,000 inputs a sec. (200 usec point) which incorporates self-checking features has been developed by Monitor Systems Inc., Fort Washington, Penna. The monitor is designed for GE's Hanford Atomic Products Operation. It can monitor, at high speeds, thousands of temperatures with such high reliability that no more than a single false temperature alarm and/or a single failure to alarm is anticipated per year. This is achieved by having circuits built into the monitor to detect irrational input and prevent generation of false alarms.

Purpose of the new monitor sys-

What's New

High-Speed Automatic

Monitor System

tem is to demonstrate the complete practicability of high speed solidstate serial scanning systems for on-line process instrumentation of nuclear reactors. Reliability was a prime consideration. False alarms are prevented by self-checking every 0.8 sec . Logic of the checking channels has been extended to provide automatic localization of failures.

A worst-case design policy was adopted in designing and building the system. Circuitry is designed to provide reliable operation despite combined changes in transis-
tor and diode characteristics and transistor, capacitor, and power supply drifts. All components are considerably derated.

Reliability was established by an acceptance test of unprecedented severity. Continuous operation for 1,250 hours was required with not more than a single high temp false alarm or more than two false alarms of other types. In other words, only one or two false alarms (depending on the type) were permitted in a total of $22,500,000$ readings. System is expandable to 3,600 inputs.
(Right) Block diagram of HAM system. Reliability is in the order of 50 mil . lion component unit hrs. Unit was shipped Dec. 2.

New monitor system will be used at Ceneral Electric's Hanford Atomic Products Operation Ibelow). Plant makes platonium, an artificial and radioactive metallic element, a basic ingredient for the atomic bomb. Close control of the process is an absolute necessity.

Resonant Reed Frequency Measurement

By KLAUS H. JAENSCH
Sonior Electronic Engineer
Stromberg. Carlson Co.
Rochoster, N. Y.

Fig. I: Varying ca. pacity between reed and pick-up plate modulates r -f carrier.

THIS instrumentation measures the resonant frequency of reeds before they are assembled as parts of a resonant reed relay. The reeds are strips of special steel, with one end fixed in a zinc cast slug. Different types have approx. $5 / 8$ to $1 / 2$ in. free reed length, with corresponding resonant frequencies from 160 CPS to 300 CPS.

Vibrating Reed Modulates R-F

The reed is held by hand in the lest jig, Fig. 1. A Pick-up Plate is mounted close to the free end of the reed. Capacity between pick-up plate and vibrating reed varies periodically. This varying capacity is used to amplitudemodulate an r-f carrier.
R-f frequency of approximately 500 KC is produced by a simple, multivibrator type Oscillator. Frequency stability, wave shape. and amplitude of r-f are not critical.

Oscillator output is fed into the following circuit through a capacity in the order of $1 / 2 \mathrm{mmfd}$. This tiny capacitor is made up simply by winding two turns of the bare wire, serving as one connection, around the end of plastic insulated wire of the other connection (See Fig. 1). To avoid additional stray from wires, this capacitive joint is located in the hole through the wall shielding the oscillator from the other circuit. For efficient modulation, it is further necessary to keep ground capacity of the wiring from pick-up plate to grid of Cathode Follower as small as possible.

The audio frequency achieved by demodulating the resulting signal represents the mechanical vibration of the reed. This a-f is amplified and finally shaped to a square wave. The duration of periods of this square wave is measured by an electronic counter.

Roed Hipped

For actuating the reed, PushButton (Fig. 2) is pressed. Capacitor C_{1} is normally charged to $+48 v$ through surge limiting resistor $\mathrm{R}_{\mathbf{1}}$. By operating S_{1} of push-button, C_{1} now discharges through "Flipping Coil" located in the test jig (Fig. 1). The magnetic field of the coil generated by the discharging current causes the free end of reed to flip momentarily. This flipping is followed by a damped oscillation of the reed at its resonant frequency (Fig. 3A). On a reed with $Q=300$, amplitude of vibration is down to 20% after 154 periods. and to 10 co after 220 periods.

Frequency Moasurement

Normally, the counter is held inoperative with "Inhibit Reset" line grounded through the relay contact (Fig. 2). Contact S_{2} of push-button operates the relay, which in turn unblocks the counter. But operation of the relay is delayed due to the time constant of C_{2} and R_{2}. The latter is adjusted to pick out the part of damped wave train for
(Continued on page 195)
Fig. 2: Counter is held inoperative with "In. hibir Reset" line grounded through relay contact.
Fig. 3: With Q of 300. amplitude is down 20% after 154 periods.

ELECTRONIC INDUSTRIES • January 1961

Fig. I: Precision carbon

SERVO positioned potentiometers are widely used in all types of analog computers, similators, and the like, throughout the fields of industrial instrumentation and control, as well as military flight guidance and fire control.

Typically, the potentiometer is driven by a servomotor through a gear train. The motor is driven by an amplifier which receives and compares two signals-an input voltage from some external source and a feedback voltage from the potentiometer, as shown in Fig. 2.

Ideally, the motor drives the potentiometer in such a manner that at all times the input voltage is exactly matched by the feedback voltage. In effect, this servomechanism performs the basic function of causing the position of the potentiometer shaft or any other shaft geared to the motor to follow an input signal. If the input voltage is the result of a shaft position, such as from another potentiometer, this servomechanism, in effect, slaves an output shaft to an input shaft.

Despite careful design, it is not an unusual experience for the engineer to find that his breadboard servo system has a tendency to jitter or oscillate with low amplitude about the null position. The servo seems to be hunting for a true null. By decreasing the amplifier gain or introducing friction into the system, this hunting may be eliminated, but at the obvious expense of increased system error and reduction of high frequency response.

Servo Hunting

Why dues a servo hunt? The mathematically inclined might answer that the characteristic equation of the system has roots that do not have negative real parts. This implies that the system is adequately described by linear differential equations with constant coefficients; i.e., that the hunting is caused by

One Solution to

parameters that are independent of input amplitude.
Powerful analytical and graphical techniques exist for determining the response of a servo which can be considered linear ${ }^{1.2 .3}$. These are mainly concerned with the frequency characteristics of the open loop transfer function. They lead not only to stability criteria but also to a full description of system response.
In cases where non-linear effects are present, the question of stability in response to small amplitude input signals can be settled by a frequency analysis based on the assumption of linearity for incremental values close to reference points of interest ${ }^{2}$.

There are, of course, certain non-linear effects that cannot be meaningfully treated in this manner. For example, the effect of the dead band encountered in a relay servo. However, an analytic expression has been developed for this type of servo. It allows the frequency and amplitude of oscillations to be predicted on the basis of the transfer function of the linear portion of the loop and the characteristics of the dead band.

In summary, the literature of servomechanisms is rich in analytical and graphical methods for settling questions of stability and describing performance characteristics for all types of systems, from the most simple to the most sophisticated.

The use of analytical methods for servo design

A REPRINT
of this article can be obtained by writing on company letfertead to The Editor
electronic industries, Chestnut 856 th Sts., Phila. 39, Pa.

Usually a servomotor drives a potentiometer so that the input voltage exactly matches the feedback voltage. With precision wire-wound pots this is not olways possible because of the voltage difference befween windings. Precision carbon film pots seem to be the answer in many cases.

Servomechanism
 Hunting

presupposes Ω full knowledge of the characteristics of all components that are under consideration for use in the servo loop. Here, again, the literature ${ }^{4,5}$-and the catalog information of the component manufac-turers-is generally most helpful. However, there are certain difficulties that can arise in connection with the use of particular components that are not often discussed. This article is mainly concerned with one such difficulty that can arise in connection with the use of precision potentiometers as the pick-off or follow-up element in a servo.

Instability

Most causes of hunting, whether linear or nonlinear, are the result of time lags which result, essentially, in regenerative feedback around the closed loop. On the other hand, static instability can result from the limited resolution of the pick-off element. From the mathematical point of view, this is a trivial case of instability. But, nevertheless it can limit the allowable gain in the servo loop and prevent the realization of design objectives which could otherwise be obtained. The following example may serve to illustrate this point.

A simple viscous damped servo in which the followup element is a 1 -turn, 2 -inch diameter potentiometer is shown in Fig. 2. The parameters of this servo are assumed to be as follows:

Fig. 2: Typical servo loop diagram shows the leed-back path.
$J_{*}=0.0125$ slug- ft^{2}
$F_{0}=0.5$ ft-lb per radian,'sec.
$E_{c f}=115$ volts
$T=0.028 \mathrm{ft}-\mathrm{lb}$
$E_{3}=100$ volts
$N=100 / 1$
wherv:
$J_{0}=$ Servo moment of incretia referred to output shaft
$F_{0}=$ Servo friction referred to output shaft
$E_{c \rho}=$ Rated voltage of motor control field winding
$T=$ Torque at motor shaft with full voltage supplied to control field
$E_{D}=$ Excitation voltage supplied to follow-up potentiometer
$N=$ Spered ratio betwicen motor and output sha ft_{t}
It is further assumed that the desired response requires a damping ratio of

$$
c=0.25
$$

Then the natural frequency of the servo is

$$
\begin{equation*}
\omega_{n}=\frac{F_{a}}{2 c J_{0}}=\frac{0.5}{(2)(0.25)(0.0125)}=80.6 \text { radians s.c } \tag{1}
\end{equation*}
$$

and the required torque referred to the output shaft is

$$
\begin{equation*}
\kappa_{0}=\omega^{2} \ldots J_{0}=80.5 \mathrm{ft}-1 \mathrm{l} \mathrm{~s} / \mathrm{radian} \tag{2}
\end{equation*}
$$

But the torque can be described in terms of torque

Fig. 3: Wire-wound por has a 0.05 v difference between furns.

Servo Hunting (Continued)

per volt output of the servo motor, the voltage gradient of the potentiometer and the gain of the amplifier as:

$$
\begin{equation*}
\kappa_{0}=80.5=\frac{T N E_{\gamma} G}{E_{c \gamma} 2 \pi} \tag{3}
\end{equation*}
$$

Substituting the assumed values into Eq. 3 and solving for G yields,

$$
r_{i}=206
$$

It is now in order to consider the maximum null position error that can arise as a result of the finite resolution of the follow-up potentiometer. Assuming that a wire-wound potentiometer of 2 in . diameter case size is used and that the resistance of the potentiometer can be 10 k or more, a reasonable value of resolution would be 0.05%. To a first approximation, this would imply a putentiometer mandrel having 2000 turns of wire. Actually, such a potentiometer would have a slightly better resolution because of the interpolation provided by the shorting of turns as the slider advances over the winding. However, for a resolution on the order of magnitude of 0.05% this effect is not very significant. Thus, for the purpose of testing stability it is satisfactory to consider the slider as the arm of a switch which can be connected in turn to each of the turns of the winding. This is shown in Fig. 3.

Winding Voltage Differences

Referring to the figure, it can be seen that there is a potential difference of 0.05 v between adjacent turns of the winding. This corresponds to $100 \mathrm{v} / 2000$ turns. For purposes of discussion, the potentials existing on two particular adjacent turns are assumed to be 3.025 v and 2.975 v respectively. It is further assumed that a command input of 3.000 v is applied to the servo. Under this condition, the potentiometer

Fig 4: Servo accuracy increases with carbon potentiometers.

(annot drive to a position where the error input to the servo amplifier is reduced to zero. Specifically. the slider can drive to the turn which is at 3.025 v or to the turn which is at 2.975 v . In either case, a null voltage of 0.025 v will appear at the servo amplifier input.

The question of stability then, depends on whether a 0.025 v input to the servo amplifier is sufficient to start the servo motor. For, if it is, then the servo will wire hop back and forth between the two windings for as long as the input remains at 3.000 v . Even if sustained oscillations of this type can be tolerated from a system point of view, they will seriously diminish the life of the potentiometer.

The required gain of the amplifier was previously found to be 206. Thus, $\{$ with 0.025 v appearing at the servo amplifier input, $206 \times 0.025=5.15 \mathrm{v}$ will be supplied to the control field of the servo motor. Typically, between 3 and 4 volts will start a servo motor having a 115 v control winding under no load conditions. For this type of servo under discussion. the torque developed by the 5.15 v will be sufficient to start the motor and the load and thus under unfavorable input conditions sustained oscillations will occur.

Carbon Film Pots

On the other hand, if a carbon film potentiometer. such as the one shown in Fig. 1, of the same diameter is used in this servo, this difficulty does not arise. The carbon film potentiometer presents a continuous surface to the wiper rather than a series of turns. Thus, the effect which limits the resolution of wire-wound potentiometers is entirely absent in the case of the carbon film units. Instead, much smaller effects of bearing play and wiper bounce, present in both types of potentiometers, determine the resolution of carbon film potentiometers. The result is that the resolution of a carbon film potentiometer is better than that of a wire-wound potentiometer of the same size by a factor of about 50 .

The 2 -inch diameter carbon film potentiometer, then, would have a resolution on the order of 0.001%. In the servo under consideration, the voltage error would be 0.0005 v . Thus, the maximum null input voltage to the servo motor control field under the most unfavorable condition would be $0.0005 \times 206=$ 0.1030 v which would not start the motor even under no-load conditions.

The tremendous improvement in servo system resolution resulting from the use of carbon film potentiometers allows marked increase in system gain without loss of system stability. In addition, because of the smooth surface presented by the resistance element to the wiper, carbon film putentiometers do not suffer from wiper bounce problems at higher operating speeds. The servo accuracy and response curves shown in Figs. 4 and 5 demonstrate the improvements achieved in a typical servo multiplier when the wire-wound potentiometer was replaced by a carbon film unit. Notice that, equipped with a carbon film potentiometer, the servo can operate at twice its former speed and with but a fraction of its former error.

In addition to elimination of the hunting problem,

Fig. 5: Servo response curves show one advantage of carbon pots.
the use of carbon film potentiometers results in numerous other advantages.
The carbon film resistance element is much more reliable than the wire resistance winding. The film is several times thicker and about 100 times as wide as typical resistance wire. The slider, as it moves, contacts only a small fraction of the width of the element. The integrity of the element does not depend upon the integrity of the portion subjected to wear. Sudden unpredictable failure of the elementtypical of the wire winding-is ruled out.

The carbon film resistance element has a longer service life than the wire resistance winding. The smoothness of the path that it offers to the wiper minimizes wear. In addition, there is no hot spot problem as there is in a wire winding, where con-
striction of the winding at the point where it is traversed by the wiper causes local heating with a consequent shortening of life. As the carbon film element wears, a warning of impending failure is given since the potentiometer begins to exhibit local output voltage irregularities and, ultimately, local opens. However. even when this occurs, the useful life of the potentiometer is not at an end. Relocating the wiper path restores the potentiometer output to its original quality.
The carbon film resistance has much better shelf life characteristics than the wire resistance winding which may develop an opened output or shorted turns due to corrosive products.

The carbon film resistance element is non-inductive. Moreover, the problem of capacitance between the winding and the core which reduces the ac accuracy of wire-wound potentiometers is not present.

Wire is traditionally associated with precision resistance applications because it has a low temperature coefficient of resistance. However, in most potentiometer applications, linearity or conformance is the parameter of interest rather than absolute resistance. Thus, in these applications, arguments in favor of the carbon film potentiometer are overpowering.

The solution of the hunting problem through the use of carbon film potentiometers, then, turns out to be a most happy one, since it is accompanied by improvements in system performance, life, and reliability.

References

1. "Control Englneer's Handbook." J. C. Truxal, editor, McGrau-HAhl, 1959.
2. "Servomechanisms and Resulating System Design," Chestnut M, Mayer, Wiley; Vol. 1, 1951, Vol. 2, 1955.
"Deaikn of Póstition and Volocity' Servos for Multiplying and Function Generatlon." E. O. Gllbert, IRE Tranactions on
Elcctrunct Computers, September, 1969. J. E. Glbson \& Tuteur. McUraw-Hul, 1958 . Potentiometer, Film or Wirewound," H. II Adise, Electronic Design. Novernber 11, 1959.

Thin-Route Microwave

Microwave manufacturers are divided into two basic groups. One group develops high-density equipment (say 120 to 720 channels) and the other produces thin-route equipment for use in conjunction with high density equipment and for application where lower channel capacity is sufficient. Thin-route systems are used, for example, as extensions of high-density systems or as an auxiliary facility paralleling a high-density system.

Principal manufacturers of thinroute equipment are Budelman Electronics Corp., 375 Fairfield Ave., Stamford Conn., and Farinon Elec. tric Co., 416 D St., Redwood City, Calif.

Budelman makes equipment for both the 960 and 2000 MC bands. The 960 equipment can also be adapted for the 450 mc band. A terminal (Budelman's type 14BW equipment) consists of a transmit-
ter and receiver-a pair of each when full standby is required. For repeater operation. two terminals are connected back-to-back. The transfer of modulation from receiver to repeater transmitter is at the subcarrier frequency.

Conventional telephone carrier equipment is used for deriving individual voice channels. Either SSB, suppressed carrier, or Budelman double sideband AM carrier equipment may be used. Coded tone signals for telegraphy, teleprinter, control or data transmission may be applied via telegraph carriers to the baseband below the telephone carriers or into one of the telephone channels. Transmitter frequency stability is better than $\pm \mathbf{0 . 0 0 0 5} \%$ (anticipating further tightening of FCC standards).
Type 148W Terminal. 960 MC, with Type 108B Power Amplifier and R-F Duplexer. Type 1498. Receiver and tramsmitter each occupy $101 / 2$ inches.

Level Gauges in the Liquid

TWO factors make thermistors attractive as sensing elements in the liquid helium-liquid oxygen temperature range. First, their high sensitivity increases nearly proportionally to $1 / T^{2}$; second, their resistivity increases with decreasing temperature. The latter eliminates the need of corrections for lead resistance and offers the possibility of remote measurement and control, even over a large distance.

While the resistance of a platinum, or other metal, resistance thermometer drops in liquid hydrogen $\left(\sim 20^{\circ} \mathrm{K}\right)$ to less than 0.5% of its initial value at $0^{\circ} \mathrm{C}$ $\left(273.50^{\circ} \mathrm{K}\right)$-even lower in liquid helium ($4.2^{\circ} \mathrm{K}$) thermistors possess resistance values of 5 to 5000 K ohms in this range. Their temperature sensitivity increases from approximately $30 \% /{ }^{\circ} \mathrm{K}$ in liquid hydrogen to approximately $1000 \% /{ }^{\circ} \mathrm{K}$ at a temperature slightly above the boiling point of liquid helium.

This steep increase of resistance with decreasing temperature at first presented a great problem. even at moderately low temperatures. 1 :

Table 1
Heat Capacity of Midget Disk Thermistors
Temperature Increase Produced by 1 mw sec.

$\begin{aligned} & \text { Absolute } \\ & \text { Temperature } \end{aligned}$	Heat Capacity mw sec./degree	Energy Input Under Adiabatic Condilions (No heat exchange with the environment.)
5	0.092	10.9
10	0.180	5.6
15	0.293	3.4
20	0.390	2.8
30	0.585	1.7
40	0.836	1.2
50	1.090	0.92
60	1.380	0.72
70	1.800	0.56
80 90	2.18 2.68	0.46 0.37
293	11.2	0.09

The corresponding heat capacitles for standard disk themistors can be obtained by multiplication with factor 10 .

A systematic decrease of the energy gap in semiconducting materials, with an increasing reduction of their resistance versus temperature dependence to realistic values, at low temperatures brought the resistivity back again into practical acceptable levels of the order of 30 to 10,000 ohm - centimeter for liquid oxygen $\left(90^{\circ} \mathrm{K}\right)$ and 3000 to $50,000 \mathrm{ohm}$ - centimeter in liquid hydrogen. ${ }^{3,4.6}$

With a favorable geometric shape (disk) at $8^{\circ} \mathrm{K}$ resistance values of the order of 100 megohm could be obtained. ${ }^{\text {. }}$ More recently, the resistance at this temperature could be decreased approximately by d factor 50 , thus shifting the low temperature frontier for thermistors another few degrees toward liquid helium. More details on this development will be reported separately.

Low Temperoture Level Gauges

An important application of thermistors in general, but especially for low temperature units, is in liquid level gages. Here the thermistor is self-heated by an electrical input to a temperature above its environment. Normally, a temperature increment of more than 10° is desirable to produce a large electrical signal by the transition from vapor to liquid. This implies a certain heat input into the system liquidvapor, which, in cryogenic applications, should be kept to a minimum to avoid extensive evaporation losses of the valuable liquid phase.

Therefore, the heat input to the thermistor should be kept as small as possible. Two factors are very favorable to accomplish this goal:
(a) The enormous temperature coefficient in the liquid hydrogen-liquid helium range permits reduction of this temperature difference to a few degrees, and
(b) the specific heat necessary to raise the temperature $1^{\circ} \mathrm{K}$ for one mass unit of thermistor material (its specific heat) drops drastically at temperatures below $150^{\circ} \mathrm{K}$.

According to Debye, the specific heat of solids changes with the cube of the absolute temperature according to the relation $c_{p}=A\left(\frac{T}{\theta}\right)^{2}$ where, θ

Researeh Director
Reystone Carbon Co.
St. Maryis Pa.

Helium-Liquid Oxygen Range

stands for a characteristic temperature (Debye temperature) which is specific for each solid body and T is the absolute temperature at which the specific heat is measured.

The constant A has a universal character, almost independent of the type of material For practical application, it was necessary to find the temperature dependence of the specific heat for the low temperature thermistors used in liquid gauges.

Table 1 shows in an impressive manner the very drastic drop of the heat capacity of small disk thermistors with a mass of approximately 20 mg .

The figures of Table 1 give the mw sec./temperature increase relationship for adiabatic heating, e.g., in a diluted gas or in vacuum. At liquid hydrogen temperature $\left(20^{\circ} \mathrm{K}\right)$, the temperature increase/mw in one second would be $2.6^{\circ} \mathrm{K}$, at $5^{\circ} \mathrm{K}$ (near liquid helium) even $10^{\circ} \mathrm{K}$. The corresponding resistance changes would be approximately 80% at $20^{\circ} \mathrm{K}$ or several thousand per cent at $5^{\circ} \mathrm{K}$, depending upon the constant B defined by the relation

$$
B=\log \frac{R_{1}}{R_{2}}\left(\frac{T_{1} T_{2}}{T_{2}-T_{1}}\right)^{2.303}
$$

Dissipation Constant

In liquefied gases, conditions are far away from being adiabatic. The dissipation constant will partially be determined by their exaporation heats which are listed in Table 3.
The formation of gas bubbles on the surface of the thermistors somewhat obscures, and decreases, the true dissipation constant. Therefore, it cannot be expected that the measured values follow truly the trend of the evaporation heats.

Some data have been determined in liquid hydrogen, nitrogen and oxygen for thermistors of the surface area $10^{-8} \mathrm{~m}^{2}$.

The large spread of the dissipation constant in Table 2 is not surprising, since it is influenced by the degree at which the thermistor is covered with gas bubbles. The large increase of the dissipation constant with the electrical input is probably also caused by this effect.

Normally the wattage dissipation under equilibrium conditions should be proportional to the produced temperature difference between the self-heated thermistor and its environment resulting in a nearly constant wattage/temperature ratio increase. In nonboiling liquids and other media, this condition is approximately fulfilled.

High inputs apparently do not only promote bubble formation on the interface between thermistors and bath, but also bubble migration to the surface level of the liquid. Thus the temperature difference between thermistor and liquid bath is reduced.

Cafied Thermisfors

One might expect a decrease of the dissipation constant for thermistors, silicone-coated to protect them mechanically and to insulate them electrically. This coating is approximately 0.005 in . thick. It is surprising that no decrease of the dissipation constant was observed with coated thermistors. At first, this led to belief that the dissipation is mainly determined by the heat conduction through the lead wires, which, submerged in the liquid, will also generate gas bubbles. However, in a transparent Dewar-container, bubble formation was always observed only at the thermistor disk when submerged in the liquid gas. Bubble formation was more active at uncoated thermistors even if no electrical input was applied. Some

Table 2

Dissipotion Constant

Electrical Input In Milliwatt	Dissipation Constant in Milliwatt/ $/{ }^{\circ} \mathbf{K}$ in H_{8} N_{3} 0.			
0.1	1.4		1-5	0.7-1
1.0	2.0	$2.8{ }^{\circ}$	2-7	2-4
10.0	4.5	11°	1-14	5-15
100.0	35.0	69*	18-30	26-75

- Found with long probes surrounded by sleeve acting like a chimney.

Thermistors (Continued)

exploratory experiments and estimations may help to clear this question.

The heat conduction through the silver leads. 0.007 in. diameter, would dissipate $0.100 \mathrm{mw} /{ }^{/ 2} \mathrm{~K}$ if the ends of the 2 in . leads were connected to a heat sink with the temperature of the bath. For all practical purposes this was accomplished by submerging the thermistor with its leads ${ }^{3}+101 \mathrm{in}$. below the liquid level. No distinct trend to higher dissipation constants was found if the submersion depth was varied from $1 / 4$ to 1 in .

Ipcreasing the heat capacity of the sink by submerging the major part of the test clamp into the liquid also did not affect the dissipation constant, at least not in LOX.

These facts lead to the conclusion that the dissipation of the thermistor in a liquid bath is still determined mainly by the heat exchange between thermistor and the bath. With this in mind, it must be assumed that the heat resistance of the coating is negligible.

This is also confirmed by two other facts:
(a) The time constant of cooling the units in the liquid bath for coated units was found to be smaller than for uncoated units. In this case also, a small decrease of the dissipation constant was observed. An explanation of this apparently paradoxical effect is given in the last paragraph.
(b) Finally, it might be worthwhile to mention that the observed dissipation constant is rather independent on time. If the electrical input is applied for different time intervals, thermal equilibrium is reached within ten seconds, whether the unit is coated or not.

Heaf Transfer Coefficients

The dissipation constant of the thermistor is mainly determined by the heat transfer coefficient between its surface and the surrounding liquid. No explicit data are available for the transfer coefficient in liquid helium, hydrogen, deuterium, nitrogen and oxygen.

However, certain conclusions can be drawn from data for other liquids such as water. The heat transfer coefficient \times for nonboiling water is 2.1×10^{6}, for boiling water 8.4 to $25 \times 10^{6} \mathrm{mw}$ seconds $/ \mathrm{m}^{2}$ hour ${ }^{\circ} \mathrm{K}$. These figures not only illustrate clearly the large increase in the heat dissipation when boiling is induced by heavy input, but also explain the possible spread in the dissipation constant due to fluctuations in the boiling process (retarded bubble formation).

The following considerations aim at an estimate of the transfer coefficients in various liquid gases. They should only be used to estimate ratios of dissipation constants.

The heat transfer coefficient is determined by the following properties of the liquid: density; specific heat; heat conductivity; viscosity and, for the boiling condition. its evaporation heat.

Table 3 compiles data on liquefied gases, as far as a vailable.

Table 3
Properties of Liquefied Geses Which Dafermine Their "Cooling Capacity" At Their Solling Polmis Under Mormal Pressure

		He ${ }^{1}$	H_{2}	D.	\mathbf{N}_{2}	O_{3}	$\mathrm{H}_{2} \mathbf{O}$
Density g mil	ก	0.121	0.076	0.164	0.81	1.16	11.958
Specific Heat Capacity Watt sec. $/ g^{\circ} \mathrm{K}$		4.2	10	6.2	1.98	1.65	1.006
Heat Conductivity Watt/cm ${ }^{1} K$	λ	. 0 C03	0.0012	0.0013	0.0014	0.00172	0.007
Viscosity in Micropoise	η	30	144	296	1580	1900	2810
Evaporation Heat Watt sec./gr.	L	21	452	312	196	212	2260

It was mentioned before that heat dissipation from a thermistor in liquefied gas will be related to its evaporation heat. However, before evaporation can take place, the necessary energy to produce the transition from liquid to gas (formation of bubbles) must be transferred from the thermistor to the liquid. For this process the heat transfer coefficient has to be known in each case. Assuming nearly turbulent conditions in the liquid, the heat transfer coefficient, can be approximated by

$$
a=\text { const:tnt } \cdot\left(\frac{1}{\eta}\right)^{23} \cdot a^{3 / 4} \cdot\left(\frac{c_{p}}{\lambda}\right)^{1 / 3}
$$

with $r_{1}=$ dynamic viscosity, $z=$ density, $c_{p}=$ specific heat and $\lambda=$ heat conductivity of the liquid. The constant is determined by the geometrical shape and size of the thermistor and the container in which it is measured, since the latter determines the degree of turbulence produced by the spontaneous boiling of the liquid. For practical applications with a given design the same constant is valid and the behavior in various liquids is characterized by the ratio $\frac{\alpha}{\text { constant }}$ which determines also the dissipation constant. A few values of $\frac{\alpha}{\text { constant }}$ have been calculated and are listed in the following table:

Table 4

Liquid	He'	H_{2}	D	\mathbf{N}_{2}	0.	$\mathrm{H}_{2} \mathbf{O}$
a	1.27	0.45	0.21	0.42	0.54	0.21
constant						

reference paces

The pages in this section are perforated for cesy removal and retention as valuable reference material.

SOMETHINC NEW HAS BEEN ADDED
An extra-wide margin is now provided to parmit them to be punched with atandard three-holo. punch without obliterating any of the text. Thay can be filed in sfandard three-hole motebooks or folders.

Based on the measured dissipation constant in liquid hydrogen, Table 2, for liquid $\mathrm{He}^{\mathbf{l}}$ a value approximately three times higher can be expected. In other words, the thermistor should be sensitive enough to "feel" the difference between liquid and gas.

Grassmann and Karagounis ${ }^{7}$ have measured the heat dissipation of $20 \mu \mathrm{Pt}$-wires in several liquefied gases. In liquid $\mathrm{He}^{\boldsymbol{t}}$ they found a heat dissipation of 200 watts/meter ${ }^{2}$ for 0.1^{2} temperature difference between wire and liquid, 5×10^{4} watts $/$ meter 2 for 1°. With these data one would obtain for a midget disk thermistor of $-10^{\text {5 }}$ meter- surface dissipation constants: of 20 or $500 \mathrm{mw}{ }^{2} \mathrm{~K}$ which are much higher than estimated. The corresponding values for H_{2} and O_{2} would be 25 and $40 \mathrm{mw} /{ }^{\circ} \mathrm{K}$, respectively, with $1^{10} \mathrm{~K}$ temperature difference, in reasonable agreement with the data in Table 2 and considering the fact that the geometry of the heated objects was rather different.

Time Constont

Till now only stationary conditions were discussed. For practical applications, the response time of the thermistor, when dipped in the liquefied gas is of great interest. Starting from ambient, the time constant is 2 to 3 seconds (for 63% of the final resistance value in the liquid), cooling from LOX to liquid nitrogen it is 0.6 ± 0.3 seconds. This value includes the manual transfer time from une liquid to the other which also explains the relatively large spread.

In former publications the point was stressed that the formation of gas bubbles makes the time constant always too high compared to the theoretical value given by the heat capacity of the thermistor and the heat transfer coefficient.

It can be shown that the time constant "ambient to LOX" drops 20 to 25% if the thermistor is coated. In this case, spontaneous bubble formation is very much retarded up to an input threshold of 10 to 20 mw .

Acknowledgment

The author wishes to thank Mr. I). B. Chelton, Cryogenic Engineering Laboratory, National Bureau of Standards, Boulder, Colo., for his critical discussion and Mr. G. A. Mahoney for his assistance in the measurements.

References

1. Sachne, H B "Low Realstance Thermistors As Ultra-Cold Thermometers," Électronic Industrics, Jan. 195i., pp. 55,142 143, 146, 117,
2. Sache. H. B3, "Temperature Measurements Near Abs:olute Zero." Elecironic Industries, Sept. 1957, pp. 58-9, 106-8, 112.
3. Sachse.. H. B., "Dorign Data for Ultra Low Temperature Thermistors!,- Elecironic Lesign, April 30, 1958, pp. 30-33.
4. Sachse, H. B. Thernilators As Sensing Elements for Low Temperatures," Bulleriil de l'lustitut Intemational du Froid, Annexe 1958.' Dp. 145-154.
5. Sachse H. B, and Vollmer, G. WV. Thermistor Sensing Elements for $-4 \mathbf{H}^{\circ}{ }^{\circ}$,", Electronic Iudistrics, Feb. 1999, Dp. 6--68.
6. Sachse, H. B., "Thermistors, $10-600^{\circ} \mathrm{K}$." Electronic Industrich, Oct. 1959, pp. $81-83$.
7. Grassman, P., Karagounls, A., Proc. of Fifth Inel Conf on Loic Trmprrafiue I'huairs and Chemintry, 1408, pp. 41-4

TV SYSTEM for PENTAGON

ALARGE TV system, equivalent to a complete broadcast station video system, has been engineered and installed in the Joint War Board, Emergency Action and Conference Rooms at the Pentagon by Foto-Video Electronics, Inc., 36 Commerce Rd., Cedar Grove, N. J.

It is for observing world-wide events and news as it happens. It gives military hdqts. the means of viewing the programs of 4 TV networks, Weathervision terminal information, messuges of Communications Rnom teleprinter machines, video tape information, and a special system for Joint War Board surveillance.

By manipulating any of 72 push button switches on a high-speed video-audio electronic Switcher Console, a Joint War Buard action officer may present instantly any one of 9 complete programs to any one of 8 different sets of video

Thice 72-inch panels form the nerve center of the Pentagon Video Audio System. System gives the military news as it happens.
picture monitors or 12 sq. ft. projection wall screens, and loudspeakers in the several strategic Joint War Board rooms.

International news arriving over a national or international teletype circuit, can be seen on the same

system. Secret information arriving over long network lines or radio channels leased from the American Telegraph and Telephone Co: or other world-wide communications nets may be presented as
(Continued on page 195)

Special transducers must be developed to handle dynamic measurements of electronic hardware under vibrational environments. These devices should be "throw-aways" which can be left in the equipment ofter the measurements are made. Size and weight are also critical since they affect the data.

Here is the procedure followed in the development of a satisfactory, lightweight transducer for this application.

Part One of Two Parts

Designing a Lightweight Vibration Transducer

By THOMAS D. SMITH and HARRY R. SPENCE Members of the Technical Staff Space Technology Laborotories. Ine. P. O. Bor 95001

Los Angeles 45, Colif.

T. D. Smith

H. R. Spence

Fig. 1: Application using a weight on pressure - sensitive paint during vibrafon.

TO examine the dynamics of missile electronic hardware under various vibrational environments, dynamic measurements within assembled electronic packages are essential. These measurements are made using an accelerometer as the monitoring device. Depending on the size and complexity of the equipment, the number of positions to be monitored varies from 10 to 20. Since the tendency of airborne electronics is toward miniaturization, the weight, size and shape of the accelerometer become major considerations. In some applications, the weight of the accelerometer assumes an appreciable part of the weight of the component under examination, thus invalidating the test data. Moreover, size and shape may occasionally prohibit measurements in congested areas. For convenience, the accelerometer should be amenable to a quick. simple method of attachment. This would eliminate the time-consuming process of preparing the package for testing, and decrease the possibility of improper bonding between the accelerometer and the equipment under test, which could result in erroneous data. Once the data is acquired. the accelerometer should remain in the equipment, eliminating the time and expense involved in disassembly and reassembly of the equipment.

Accelerometers presently available are too expensive for use as a "throw-away" item. Also, size and weight prohibit their use in examining the dynamics of small components.

A special transducer must be developed to satisfy the unusual requirements of these dynamic measurements. Expendability, weight, dimensional size, sensitivity, and frequency response must be considered. Here is a program that led to such a device.

The First Approoch

The first approach was to use the reaction of n weight on pressure-sensitive paint during vibration. The electrical resistance of the paint may be varied by subjecting it to a varying pressure. It was hoped that the variation in resistance could be used to indicate vibrational acceleration. Since a high pressure per unit area was desired and a small size required.

Fig 2: Charges produced on a piezoelectric crystal by a bending force.

(SILVER FILM)

Mallory metal ($0.6 \mathrm{lb} / \mathrm{in}^{3}{ }^{3}$) was selected for the mass from which various sizes of disks were made. The disks varied from $1 / 8$ to $1 / 4 \mathrm{in}$. in dia., and is to $1 / 4 \mathrm{in}$. in thickness. The paint was applied to the surface of a conducting plate which was used as one of the electrical terminals; the Mallory disks which acted as the second terminal were attached to the paint. (Fig. 1.) During static checks, the resistance change for different pressures was easily measured. Excited by an MBC-10E vibration table, this assembly was subjected to a vibration of 10 g 's. Unfortunately, output sensitivity was too low, i.e., $\lrcorner R / R$ was negligible. To improve this ratio, the logical solution appeared to be an increase in the weight of the metal disk: however, an addition in weight would conflict with the lightweight specification (the greatest weight of the original assortment of disks exceeded 3 gm), so larger disks were not tried.

Many crystal configurations have been tried and discarded for improved sensitivity and linearity. One configuration is the simple bender or cantilever crystal. Since a linearity between various $\&$ levels of 10% was considered satisfactory and a sensitivity of 4 mv / g wanted, the cantilever method was examined. Simplicity in fabrication and economy were considerations here. $A \pm 2-\mathrm{db}$ variation in the frequency response in the 30 to 2000 cps range was regarded as tolerable.
$\Delta Q_{1} ;$ thus, the force exerted on the test charge by q_{2} will also become small, $\Delta \boldsymbol{F}$. Therefore:

$$
\begin{equation*}
\operatorname{Limit}_{\Delta Q_{1} \rightarrow 0} \frac{\Delta F}{\Delta Q_{1}}=\frac{d F}{d Q_{1}}=\frac{k q_{2}}{r^{2}}=E . \tag{3}
\end{equation*}
$$

Work is defined as the product of the force and the distance a body is moved during the application of this force (the direction of movement and force are the same). Thus:

$$
\begin{equation*}
\boldsymbol{W}^{-F}=F r \tag{t}
\end{equation*}
$$

where W ' represents the work; F is the force applied: and r is the distance. In an electric field produced by a point charge, as a test charge Q_{i} is moved radially with respect to the charge producing the field, the force upon Q_{1} varies. It is, therefore, necessary to consider the summation of the increments of work done on this test charge:

$$
\begin{equation*}
d W^{\prime}=F d r=E Q_{1} d r=\frac{k q_{2} Q_{1} d r}{r^{3}} \tag{5}
\end{equation*}
$$

In (5) $d W$ represents the incremental amount of work accomplished in moving the test charge an incremental distance $d r$. Therefore:

$$
\begin{equation*}
U^{-}=l_{i} \eta_{1} Q_{1} \int_{r}^{r_{2}} \frac{1}{r^{2}} d r \tag{6}
\end{equation*}
$$

Piezoelectric Theory

A brief discussion of the relationship between charges and resulting voltages due to the piezoelectric effect is perhaps necessary. Coulomb's law states that the force of attraction or repulsion exerted on one charged body by another is proportional to the product of their charges and inversely proportional to the square of their separation. Therefore, the force of attraction between two unlike charged bodies is:

$$
\begin{equation*}
F=k \frac{q_{1} q_{2}}{r^{4}} \tag{1}
\end{equation*}
$$

where F is the force between the charged bodies, q_{t} and q_{s} are the charges on the bodies, r is the distance between these bodies, and k is a proportionality constant. The electric field intensity at a point due to an electric field is defined as the force per unit charge on a positive charge when placed at the point in question. If q_{1} of Eq. 1 is a unit test charge Q_{1}, and E represents the electric field intensity. then:

$$
\begin{equation*}
E=\frac{F}{Q_{1}}=\frac{k q_{z}}{r^{2}} \tag{2}
\end{equation*}
$$

To ensure that the test charge Q_{i} does not disturb the electric field produced by q_{8}, let Q_{1} become very small,
where W is the total work necessary to move Q, between the points r_{1} and r_{g}, these points being on a common radial line to the charge q_{2} producing the electric field. The potential difference between two points in an electric field is the work per unit charge necessary to carry a positive charge from the point of lower potential to that of higher potential. From (6) and the above definition we have:

$$
\begin{equation*}
V=\frac{W}{Q_{1}}=k g_{i} \int_{r_{1}}^{r_{2}} \frac{1}{r^{2}} d r=k q_{1}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right) \tag{7}
\end{equation*}
$$

or, for any given electric field produced by a point charge, the voltage difference between two points will be proportional to the charge producing the electric field. Thus:

$$
\begin{equation*}
V=k_{1} q \tag{8}
\end{equation*}
$$

where V is the potential difference, q is the charge producing the electric field, and k_{1} is a proportionality constant. It can be shown that in the special case of two flat, parallel charged plates, the electric field intensity is uniform between the plates, and the resulting voltage remains proportional to the charge producing this field.s

Since in a piezoelectric material a variation in strain

Transducers (Continued)

produces a proportional charge, it follows that the voltage produced by the charge will also be proportional to the strain, or:

$$
\begin{equation*}
\operatorname{strain}=A q=1.1 V \tag{9}
\end{equation*}
$$

where k_{2} and k_{s} are the proportionality constants, q and V^{\prime} are the resulting charge and voltage produced. Because of the relationship in (9), the main concern will be devoted to the strain developed in the crystal during bending. If Fig. 2 is the cross section of a piezoelectric crystal. a bending force normal to the surface of the crystal will produce charges on the surfaces which result in a voltage differential between the surfaces.

A Piezoelectric Crystal Tried

In trying to get greater sensitivity, the paint was replaced by a piezoelectric material. Piezoelectricity is an electric polarization or charge produced by a mechanical strain on certain types of crystal. This polarization or charge is proportional to the strain, and changes sign with it. Because of its high sensitivity, Rochelle salt was considered as the generating element. It was eliminated because of its low melting

Fig. 5: Transducer assembly.
puint ($55^{\circ} \mathrm{C}$). Also, the response of this material has an affinity for noise. Quartz crystal was considered. but the sensitivity was too low.

Although it is in the electrostriction category. barium titanate was tried. When an electric field is applied to a dielectric, a mechanical deformation will result which is proportional to the square of the applied field. ${ }^{1}$ If barium titanate is polarized with a dc field of approx. $30 \mathrm{kv} / \mathrm{cm}$, the dc field may then be removed, and a remanent polarization will be maintained by the crystal. The polarized element will then react similarly to the piezoelectric material-a variation in strain will produce a charge substantially proportional to the strain.?
Various sizes of barium titanate disks (in the dia. range of the Mallory disks) were used. The titanate disks were attached to a plate, which was used as one of the terminals, with conductive cement. The Mallory disks were attached to the top of the titanate, and a second terminal brought out in a manner similar to the application with the pressure-sensitive paint. The output with a varying pressure was observed on an oscilloscope. As before, when subjected to a $\mathbf{1 0 - g}$
vibration excitation, the weight of the Mallory disk was not enough to produce a satisfactory output from the barium titanate crystal. Apparently π different approach was necessary.

The Cantilever Beam Construction

In studying the cantilever beam construction. barium titanate was again used as the active element. Not only does barium titanate provide a large output compared to other types of crystals but, due to its polycrystalline structure, it may also be shaped in complicated forms and sizes. This would be impossible, or at least difficult, to attain with single crystals. For the first attempt, a crystal (conveniently obtained from a standard phonograph cartridge) was mounted in a phenolic housing. This crystal, was made of two parts separated by a thin metal strip and polarized in opposite directions. See Fig. 3. This is commonly referred to as a bi-morph construction. Two terminals were secured to the crystal with a conducting silver cement. Assume that the polarization of the crystal is such that. under a tensional strain, the charge developed is positive and under a compressional strain the developed charge is negative. During bending in a downward direction (see Fig. 4) the top half is in tension and the lower half is in compression. The generated charges on both halves due to bending are additive. If this were not the case (i.e., if the halves were polarized in the same direction), the generated charges would tend to cancel each other.

To ensure that the mechanical resonance frequency remained well beyond the desired operational frequency range of this device, which was 30 to 2000 CPS. calculations were made to determine the max. length of the crystal which was allowed to protrude from the mounted or fixed end. The calculated length permitted the lowest mechanical resonance to occur in the proximity of 3000 CPS . If this had not been done, the frequency response curve would have been unsatisfactory as mechanical resonance was approached. The crystal was cemented in a phenolic block, allowing this correct length to extend from the fixed end. (See Fig. 5.) A number of these assemblies was constructed and tested. (Fig. 6e.) In testing. amplitude data were recorded at predetermined g levels. The input g level was varied only after sufficient data had been obtained over each frequency range. Although electrical output was approx 2.5 mv / g input and frequency response was unsatisfactory, the results were encouraging. Fig. 7 shows the frequency response indicating that a variation of 10 db resulted. A perfectly flat frequency response is not required; however, for data evaluation the response curve should remain within $\pm 2 \mathrm{db}$ of the normalized value over the operating frequency range. The normalizing frequency is simply that frequency at which the reference output sensitivity is determined. Here, the normalizing frequency was chosen in the proximity of either 30 CPS or 1000 CPS , depending on the shape of the curve. Due to the noise level usually encountered in and around electronic equipment, it is virtually impossible to distinguish between noise and signal response at excitation inputs less than 0.5 g if the $4 \mathrm{mv} / \mathrm{g}$ sensitivity is not maintained. An acceptable result of this design was the less than

Fig. 6: Transducers.
10% linearity deviation obtained as the g level was varied.

Improving Sensitivity \& Frequency Response

In trying to increase sensitivity and improve frequency response, a new crystal configuration was sought. Barium titanate was still used, but the shape was changed from rectangular to triangular. (See Figs. 6c and 6d.) This design evolved from this line of reasoning. In the first crystal, the strain at the mounted end is greater than that at the free end due to its equally distributed weight. Therefore, the charge developed per unit area varies. But the surface of the crystal must remain at equipotential values due to the conducting silver film on the surface, so the voltage tends to remain at a lower average than that which would be caused by the infinitesimal area of greatest strain. Now, if at all points on the crystal an equal charge was generated, the voltage for each infinitesimal area would be equal. Consequently, a max average would occur on the crystal surface during flexure. The mechanics of bending indicate that a cantilevered beam with a concentrated weight at the end will tend to produce strains throughout the beam which are more nearly equal if the beam approaches a hyperbolic shape. For ease of fabrication, a triangular configuration was used to indicate feasibility. One objection was the decrease in the mechanical resonance frequency as the concentrated weight at the end of the crystal was increased. Therefore, the weight could not be made as large as required. A weight was not used with the rectangular crystal to

Fig. 8: Response of eriangular-shaped transducer configuration.

Fig. 7: Freq. respense of transducer (see Fig Ge).
increase the strain for a given input level because the stiffness was less than that of the triangular shape, causing a greater rate of decrease in the mechanical resonant frequency as the weight was increased.

Results from this configuration which demonstrated a sensitivity of $3.9 \mathrm{mv} / \mathrm{g}$ (see Fig. 8) were satisfactory. Because of the shape, these crystals were handmade. This factor was held accountable for extremely low repeatability of performance among the transducers. The crystals were also very fragile and quite easily broken even before use. To improve mechanical strength, a change from barium titanate to lead zirconium was tried. This did not, however, achieve the anticipated results.

The primary emphasis was placed on obtaining an existing crystal element rather than on a crystal development program. Reverting to the previously tried rectangular configuration (Fig. 6e), an attempt was made, through a dimensional reduction, to eliminate any isolation or detrimental effects that may have been caused by the original transducer housing. This resulted in a very small unit weighing approx 0.35 gm and measuring $0.156 \times 0.141 \times 0.704 \mathrm{in}$. (See Fig. 6 b .) Weight was reduced twofold. This was a great advantage, because it permitted use of the unit in small areas. A variation was made in how the terminals were attached to the crystals. Instead of using a conducting cement, the leads were soldered to the crystals. This eliminated resistance variation between the conducting surface and the terminal leads.
(Continued Next Month)
Fig. 9: Response of transducer (see Fig. 6b).

New
 Products for the Electronic Industries

POWER SUPPLY

Model PI 12-2 sealed power supply can operate continuously at full power without forced air cooling or external heat dissipation. It is for applications requiring high power output, close regulation and resistance to environ-

ments such as those in missile ground support equipment. It delivers 2 a at 12 v . in still air to $40^{\circ} \mathrm{C}$ and can be operated at higher amb. with forced air cooling. Regulation is 0.05% for 0 to full load changes and 0.02% for $\pm 10 \%$ line variations. Ripple is less than 1 mv rms. Overshoot does not exceed 1% and recovery is less than 50 $\mu \mathrm{sec}$. An overload circuit limits current in the event of a short circuit. Input is $105-125$ vac, $50-440$ CPS, single phase. Mid-Eastern Electronics, Inc., 32 Commerce St., Springfield. N. J.

Circle 229 on Inquiry Card

SNAP SWITCH

New Snap Switch is designed to solve space limitation problems and offer increased flexibility in engineering tolerances. Total plunger travel is $1 / 8 \mathrm{in}$., of which a full $\%$ in. is overtravel. Both SPDT and SPST versions of the switch are available with a snap-in bezel for front mounting or threaded bushing for back mounting. It has heavy duty construction and coin silver contacts. All termina-

tions are located at one end. Options available in plunger length and color and in bezel finish. UL approved for $10 \mathrm{a}, 125 \mathrm{vac}$; or $5 \mathrm{a}, 250 \mathrm{vac}$. The Ucinite Co., Div. of United-Carr Fastener Corp., Newtonville 60, Mass.

Circle 230 on Inquiry Card

TRANSDUCER EQUALIZER

New transducer equalizer to receive and observe in real time, and to accurately record analog data otherwise masked and destroyed by the limitations of the measuring system. It directly analyzes and accurately records

high-speed changes in pressure, acceleration, temp. and aluminosity. Input impedance, 200,000 ohms shuri ${ }^{\circ} d$ by $20 \mu \mu \mathrm{f}$; input signal, nom $\pm \mathrm{S}$ v. at gain of 1 ; output impedance, less than 1000 ohms; output signal, $\pm 15 \mathrm{v}$. max.; output load, max., 10,000 ohms resistive, $100 \mu \mu \mathrm{f}$; gain, 1, 2, 5, 10; output noise level, 20 mv . RMS; signal delay, $0.3 \mu \mathrm{sec}$; pulse response, sufficient to equalize pulses with rise times as short as $0.5 \mu \mathrm{sec}$. Data Instruments Div., Telecomputing Corp., 12838 Saticoy St., No. Hollywood, Calif.

Circle 231 on Inquiry Card

VARIABLE TRANSFORMER

Portable, variable transformer, the VT8G, features an overvoltage-noovervoltage selection switch. User can limit the max. output of the transformer to the line voltage (120 v .) or to the overvoltage rating (140 v .) The face carries 2 sets of voltage calibrations in 2 different colors to match the output indications on the selection switch. The VT8G is rated at 7.5 a and incorporates a circuit breaker for

protection. It is housed in grey crackel finish case and has a natural aluminum and black control panel. Underwriters Laboratories, approved. Ohmite Mfg. Co., 3627 Howard St., Skokie, IIl.

Circle 232 on Inquiry Card

BAND PASS FILTERS

Expansion of the BPM line. These are miniaturized Band Pass Filters. New units pass frequencies of 440 , $500,600,3000,4000$, and 5000 CPs. For low level operation, attenuation is 35 db per octave. Filters are metal

cased and hermetically sealed to MIL-T-27A and MIL-T-18327A. Units are MIL type FR4RX22AF. Straight pin terminals are provided for printed or standard circuits. Units have 2:1 gain. Attenuation is approx. 2 db $\pm 3 \%$ from center írequency. Input 10,000 ohms, output to grid, tapped for 10,000 ohms to provide for transistor circuits. For tube circuits continuity is on grid side, for transistor use continuity is on input side. Di mensions: $\% \times \% \times 1 \%$. Weight: 1 oz. United Transformer Corp., 150 Varick St., N. Y. 13, N. Y.

Circle 233 on Inquiry Card

GEMERATOR-DETECTOR

Model 800-R generator-detector is a combination of a variable power supply and a sensitive microvoltmeter. The generator provides 6 output ranges to match loads from 1 ohm to 100 kilohms. Output is continuously variable from 0 to 1 w into a matched load. Isolation and guarding make it applicable to high accuracy bridge measurements. The letector consists of a modulator type

calibrated de microvoltmeter, with ranges from $0.2 \mu \mathrm{v}$ per dial to 1,000 v full scale. Electro Scientific Industries (formerly: Electro Measurements, Inc.), 7524 S. W. Macadam, Portland, Ore.

Circle 234 on Inquiry Card

New ... for the Electronic Industries

SQUARE TRIMMERS

Two new trimming potentiometers in square configuration, Models 50 and $60,8 / 8^{\prime \prime}$ and $4 / /^{\prime \prime}$ square respectively. A feature is humidity proof construction in accordance with MIL-STD-202A, Method 104, Condition A

and MIL-E-5272C, Procedure I. Model 50 is available from 50 to 20 K ohms and Model 60 from 50 to 50 K ohms. Model 50, weighs 1 gm , is rated at 1 w at $50^{\circ} \mathrm{C}$ and Model 60 , weighs 2 gm , rated at 2 w at $40^{\circ} \mathrm{C}$. The 25 turn units meet all applicable military specifications for altitude, fungus, salt spray, humidity, sand and dust, temperature cycling, shock and vibration. Spectrol Electronics Corp., 1704 S. Del Mar Ave., San Gabriel, Calif.

Circle 235 on Inquiry Card

STAGING SWITCH

The EDC 2-184 Solid State Staging Switch is a Solid State "relay" designed for channel switching to increase the capacity of telemetering systems. Characteristics: Input power, 28 vdc, 70 ma , four double throw signal poles, two double throw monitoring and indicating poles; complete isolation between all poles, power and actuating circuits; uses all

silicon transistors, and qualified for ballistic missile environment. The 2-184 can be provided with any number of isolated signal or power poles. Electro Development Corp., 3939 University Way, Seattle 5, Wash.

Circle 238 on Inquiry Card

DIODE SWITCH

A single diode switch for K-band applications, this silicon device is capable of switching greater power than 0.2 w at speeds of several musec. Total modulation voltage needed is 1.0 v. peak. The on-off ratio is 20 db with

an insertion loss of 2 db . Although designed for K-band, other bands are available with very little change in specs except size. ($21 / 2 \times 1.3 ; \times 8 ;$ in. for K-band unit). If a greater onof ratio is required, these units can be cascaded in series. A dual unit is available with the same dimensions which had an on-off ratio of 40 db with an insertion loss of only 4 db . The Bendix Corp., York Div., York. Pa .

Circle 236 on Inquiry Card

ANGULAR DIVIDER

Angular Divider tests fout of the system) those inertial components which rely upon gimbals for precise concentric separation. The component under test is indexed with better than 20 sec.-of-arc absolute accuracy and 10 sec.-of-arc repeatability. Mechanical distortion forces negligible. With this instrument, electrical error and nulls are measured. It is also

used to simulate the output signals from a gyroscopic system. Specs: Size, 12 in. dia. $x 5 \%$ in. high. Range, 360°. Direct reading in deg., min., and sec. Theta Instrument Corp., 520 Victor St., Saddle Brook, N. J.

Circle 239 on Inquiry Card

ZENER REFERENCE

Hermetically sealed IN429 silicon zener reference elements provide voltage stability of $\pm 1 \%$ or better from $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The IN 429 has a 6.2 v operating voltage, making it suitable for precision instrumenta-

tion, computer and other data processing equipment where precise low voltage resulation is required. Diodes may be used in series for higher reference levels. Rated at 200 mw power dissipation' at $25^{\circ} \mathrm{C}$, it has a max. dynamic impedance of 20 ohms at 7.5 ma , and a power derating factor of $1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. Units measure $\mathbf{0 . 3 3 0}$ $x 0.230$ in. (dia) max. International Rectifier Corp., 1521 E. Grand Ave., El Segundo, Ca!if.

Circle 237 on Inquiry Card

PANCAKE RESOLVER

New pancake resolver has a functional accuracy of 10 sec . of arc. Resolver, which has a repeatability of 2-sec., is of integral bearing design, permitting direct gimbal mounting. Either the primary or secondary member can be rotated, with the other member fixed. It is suited for use in stable platforms of inertial guidance systems. Units available in beryllium

housings for operation in systems experiencing a wide range of temp. Aluminum housings can also be supplied. Components Marketing Div. of Reeves Instrument Corp., Garden City, N. Y.

Circle 240 on Inquiry Card

New

POTENTIOMETERS

Series of $1 / 2 \mathrm{in}$. dia. linear motion putentiometers for servo control systems and instrumentation trans ducers. The series, Types 3239 and 3209 meet MIL environmental specs. They offer independent linearities of

TRIMMER RESISTORS

New 42-turn $1 / 2$ in. square trimmer resistor (Series 170) and a new 25 turn rectangular trimmer resistor (Series 180) added to metal-ceramic CeraTrols line. Both units have infinite resolution, complete resistance

range from 100 ohms thru 1 megohm and stability under all environmental conditions. Series 170 has 42 turns continuous rotation, $150^{\circ} \mathrm{C}$ high operating temp, power rating of 1 w at $50^{\circ} \mathrm{C}$ derated lineally to zero load at $150^{\circ} \mathrm{C}$ and high temp construction. Series 180 has 25 turns with slip clutch at end of rotation, $200^{\circ} \mathrm{C}$ high operating temp, power rating of 1 w at $125^{\circ} \mathrm{C}$ derated lineally to zero load at $200^{\circ} \mathrm{C}$ and high temp construction. CTS Corporation, Elkhart, Indiana

Circle 243 on Inquiry Card

MICROWAVE AMPLIFIERS

New K -band solenoid-focused trav. eling-wave amplifiers power output rating is 1 w min.; however, the tubes have shown test capabilities up to f w output in the center of the frequency band. The standard freq. range is 12 to 18 kMC with a min. small signal gain of 30 db . The small signal gain variation over the band is less than 8 db . Metal-ceramic construction is used. Encapsulated tube

SERVO AMPLIFIER

The 60 cPS solid state servo amplifier, Model 12%, is a 20 w 60 CPs general purpose servo amplifier for use with both dc and ac input signals. A 100 mv input will cause 115 v., 60 CPS output to rated load. The unit is self

protecting from overload due to excessive input signal. Input impedance is over 300 k for signal input and is 25 k for tach input. Output impedance is less than 100 ohms. Noise output is negligible and the waveform shows less than 10 '; harmonic distortion. Gain, zeroing, output, level and tach controls are provided, plus an additional control to adjust an internal damping network for dc signals. K-F Products, Inc., 3100 E. 43 rd Ave., Denver 16, Colo.

Circle 245 on Inquiry Card

COMPUTER DELAY LINES

Modular type electromagnetic delay lines which may be gauged for printed circuit board applications. Specified as Series DL-251, units are constructed on non-nutrient, flame retarding, plastic materials. Impedances range from approx. 300 to 600 ohms with delay times of 0.1 to 0.8 usec. Dimensionally the units are 0.625 in . wide and run from 2 to t in. in length. Delay time to rise time

ratios of up to $10: 1$ available depending upon unit impedance and size. The operating temp. range is $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. IMC Magnetics Corp., Gray \& Kuhn Div., 570 Main St., Westbury, L. I. N. Y.

Circle 246 on Inquiry Card
A CHILTON PUBLICATION

ELECTRONIC INDUSTRIES'

1961 Coming Events Calendar

Portraying important electronic events for the year ahead

A listing of meetings, conferences, shows, etc., occurring during the year 1961 that are of special interest to electronic engineers. The events are listed chronologically and by the area-

East, Midwest, and West-in which they occur. ONLY the opening day of each meeting is marked on the calendor.

JANUARY

East

S	M	T	W	T	F	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

EAST

Jan. 5: Anaual Business Mrs., Veteran Wireless Assoc, Inc. (WWOA), 117 Liberty St., N. Y. C
Jan. 8: 3rd Mech. Working Conf.-Bar and Shaped Products, Metallurgical Soc. of AIME, Penn-Sheraton Hotel, Pittsburgh, Pa Jan. 8-11: Southern Recional Mtz. Nat^{\prime} I Assoc. of Electrical Distributors, Palm Beach Biltmore, Palm Beach, Fla.
Jan. 8-12: Nat'l Retail Merchants Assec. Anmual Conv. 50th Anniv. Observation. Hotel Statler, N. Y.
Jan. 9-11: 7th Nat'I Symap. on Reliability 8 Quality Control, IRE, ASOC, AIEE, EIA, Bellevue-Stratford Horel, Phila. Pa.
jan. 12-13: Conf. on Relisbility of Semiconductor Deviess, Dir. of Defense Res. G Eng's (working group on Semiconductor Devices - Advisory Group on Electron Tubes), Western Union Audit, N. Y, C.
Jan. 19: Space Simulatore Mig., IES (N. Y. Metropolitan Chapter), Busto's Restaurant. N. Y. C.

Jan. 23-25: 29th Anaual Mrg., IAS, Hotel Astor, N. Y. C.
Jan. 24-27: Mis. American Mathematical Soc., Washington, D. C.

Midwest

S	M	T	\mathbf{W}	\mathbf{T}	F	\mathbf{S}
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

lan. 24-27: 17th Annual Tech. Conf. 8 Tech. Mre., Soc. of Plastics Engineers, Inc., Shoreham Hotel, Washington, D. C.
Jan. 29-Feb. 3: Wintor Gen'l Mesting. AIEE, Hotel Statler, N. Y.

MIDWEST

Jan. D-12: Symp. on Thermoelectric Eners Conversion, IRE, ANS, AIEE, AIME, et al, Statler Hilton Hotel, Dallas, Tex.
Jan. 13-15: Annual Conv., Nat'! ApplianceRadio TV Dealers Assoc. Palmer House, Chicago, III.
Ian. 17-19: Instrument-Actomation Conf. 6 Exh., ISA, Sheraton-jefferson Hotel G Kiel Municipal Audit., St. Louis, Mo.
|an. 23-26: Plant Mainfenance 8 Eng's Show \& Conf., Int'I Amphitheatre, Chicago, III Jan. 23.26: 14th Aanyal Symp. on Modern Methods of Amalytieal Chemistry, Louisiana State Univ., Baton Rouge 3, La.
an. 30-Feb. 3: Committes Week, ASTM Netherlands Hilton Hotel. Cincinnati. Ohio 1an. 31-Fet. 2: Cleveland Electronics Conf., Cleveland Eng's Soc, IRE, AIEE, ISA Cleveland Physics Soc., Case Institute of Tech. Western Reserve Univ., Cleveland Eng' G Scientific Center, Cleveland, Ohia

ABBREVIATIONS USED IN THIS CALENDAR Machinery
ACS-American Ceramies Society AROSR-A ir Force Office of Scientific Research
AlChE-American Institute of Chemical Engineers
AIEE-Americon Institute of Electrical Engineers
AIME-American Institute of Mining Mecallurgical. \& Petroleum Engineers AIP-American Institute of Physics AMA-Americon Manogement Association AMS-American Mathematical Society APS-American Physical Society ARRL-American Radio Relay Leaque ANS-Americon Nucleor Society ARS-American Rocket Society ASA-American Standards Association ASM-American Society for Metals ASME-American Society for Mechanical Engineers
ASQC-American Socioty for Quality Control
ASTM-Amarican Society for Testing Materiols
AWS-American Wolding Society ElA-Electronic Industries Associotion (formerly RETMA)
ERA-Electronic Representatives Association
IAS-Institute of Aeronoutical Sciences IES-Institute of Environmental Sciences IRE-Institute of Radio Engineers ISA-Instrument Society of Americo NA:-National Association of Broodcasters
NARM-National Association of Relay Manufocturers
NBS-National Bureau of Standards ONR-Office of Noval Research
SMPTE-Sociefy of Motion Picfure S TV Engineers
SPE--Society of Plostics Engineers
WEMA-Western Electronic Manufacturers Association

The smooth, easy insertion and extraction action, the self-wiping, self cleaning features and the double-sided, flexing action of both mating contact members make Micro-Ribbons the first miniature connectors to provide reduction in size with odded reliability.

${ }^{*} \mathrm{CINCH}$

MINIATURE BLUE RIBBON

CONNECTORS

Bodies are molded of an improved
Diallyl-Phthalate with extremely high impact strength and excellent dielectric fealures. (lype MDG per MIL-M-14E) Confacts are plated 0002 silver plated plus .00003 gold. Shells are brass cadmium plated plus either clear chromate or yellow chromate per QQ-p. 416 Type 2 Class 2.

14 CONTACTS

 lyou latines on ino receplodes whlah ere guided and held

Leceplacie ahells hove leceting buchings allewing ant of 020 in cach cirection.

24 CONTACTS

cabie to chassis iype
Centrally lecated plants at Chicago,
lllinois; Shelbyville, Indiena:
Ciry of Industry, California;
St. Louis, Missourl.

Cinch Manufacturing Company

1026 Souph Momen Ave., Chicege 24. Illinols

Division of Unired-Cart Fostenar Corparation, Besten, Mass.
rack and panel code nos.
CONTACIS

14	57.10140	57.20140
24	57.10240	57.20240
36	57.10360	57.20360
50	57.10500	57.20500

CABLE-TO-CHASSIS CODE NOS

PLUG WITH CAP SOCKET WITH LOCK	
57.30140	57.40140
57.30240	57.40240
57.30360	57.40360
57.30500	57.40500

NOTE: Abeve code nes. have shelis cadmium plated plus clear ehromete. for cadmuen dus gollow ciromete Add - It the net shown.

Metrisite... is the only device available today that provides a near-perfect combination of ideal transducer characteristics. The unusual properties of this remarkable new motion-sensing development are: extreme resolution...

easily measures one ten-millionth of an inch; minute operating force ... absolute minimum bearing friction; negligible reactive force... a fraction of a milligram; true linearity. . . a proven accuracy of $1 / 10 \%$; high electrical output... up to 100 volts without amplifica. tion; wide range of shapes and sizes ... from sub-miniature on up; exceptional ruggedness ...can meet military shock and vibration tests. Now, many of the obstacles that have plagued control technology can be eliminated. Write for Metrisite details.

INSTRUMENTS

COMING EVENTS CALENDAR

FEBRUARY

East

S	\mathbf{M}	T	\mathbf{W}	T	F	\mathbf{S}
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28				

EAST

Feb. 1-4: Meeting. American Physical Soc N. Y. C.

Feb. 1.4: Annual Meeting. American Inst of Physics, Hotel New Yorker, New York N. Y.

Feb. 15-17: Int'I Solid Spare Cirevits Conf., IRE AIEE, Univ of Penna, Univ of Penna and Sheraton Hotel, Phila, Pa
Feb. 16: Mechanical Impedance Testing Mrg., IES (N Y. Merro. ChDt). Busto's Restaurant, New York. N Y
Feb. 22: American Mathematical Soc. Mig. Yeshiva Univ. New York, N Y
Feb. 25: Annual Dinner Cruise, Veteran

Midwest

S	\mathbf{M}	\mathbf{T}	\mathbf{W}	\mathbf{T}	\mathbf{F}	\mathbf{S}
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28				

Wireless Operator's Assoc. Inc: Edison Hotel, New York, N. Y
Feb. 26.28: NAMM Southeast Regional Cont., Natil Assoc of Music Merchants, Inc, Hotel Denkler Plaza, Atlanta, Ca.

MIDWEST

Feb. 1.2: 7hh Annual Midwest Welding Conf., III Inst. of Tech, Technology Center, Chicago, III

WEST

Feb. 1-3: $1 \% 1$ Winter MIL-E.CON-Military Electronics Conv., IRE, PCME (Los Angeles

West

S	\mathbf{M}	T	\mathbf{W}	T	\mathbf{F}	\mathbf{S}
				1	2	3

Sect 1. Biltmore Hotel, Los Angeles, Calif Fob. 1-3: Solid Propellant Rocket Comf. ARS, The Hotel Utah, Sali Lake City, Utah Feb. 1.4: 2nd Annual Conv. ERA, Ambassador Hotel, Los Angeles. Calif
Feb. 9-11: Winfer Mie. Natl Soc. of Prof Engrs. Hotel Hilton, Denver, Colo.
Feb. 22: Reliability Symp., ASOC (Los Angeles Sect). Univ. of Calif G Statier Hotel, Los Angeles, Calif
Feb. 22-24: Pacific Coast Show, Material Handling Inst., Cow Palace, San Francisce, Calif.
Feb. 26-Mar. 1: Pacific Electronic Trade Show, Western Distributor Segment of the Industry. Great Western Exh Ctr., Los Angetes, Calif.

MARCH

East

S	M	T	\mathbf{W}	T	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

EAST

Mar. 8: Data Processing Show 6 Conf., American Management Assoc, Statler Hil. ton Hotel, New York, N. Y
Mar. 8-10: 11th Annual Conf. on Instry. mentation for the Iron 8 Steel Industry. ISA, Roosevelt Hotel, Pittsburgh. Pa.
Mar. 9.10: Symp. on Ens. Aspecis of Masnetohydrodynamics, IRE (PCNS). AIEE, IAS. Univ of Penna, Phila., Pa.
Mar. 15: Committee 8 Section Mts., EIA, Statler Hilton Hotel, Washington, D. C.
Mar. 16: Div. Exec. Comm. Me, ElA, Statler Hilton Hotel, Washington, D C
Mar. 20-23: IRE Inf'I Cony., IRE, Coliseum G Waldorf Astoria Hotel. New York, N Y

Midwest

S	M	T	\mathbf{W}	\mathbf{T}	F	5
				1	2	3
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

MIDWEST

Mar. 1: Machine Design Conf., Clevelano Eng's Soc.. Machine Des. Div., Cleveland Eng g of Scientific Center, Cleveland, Ohio Mar. 1.2: Annual Tech. Symp., Soc of Vacuum Coaters, Conrad Hilton Hotel, Chicago, III.
Mar. 9.10: Nat'I Flight Propulsion Mgt. (Classified), Cleveland, Ohio.
Mar. 15-16: ASTME Plasties Tooling Seminar, ASME, SPE, Statler-Hilton Hotel, Detroit, Mich.
Map. 21.23: 23nd Annual American Power Conf., III. Inst. of Tech. ASME, Hotel Sherman, Chicago, III
Mar. 24-25: ARRL Mich. Stato Conv., ARRL Wanona Hotel, Bay City, Mich.

West

S	M	T	W	T	F	5
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

Mar. 27-31: 3rd Symp. on Temp.-its Measurement and Control in Science \mathcal{E} Industry, ISA, AIP, NBS, Veterans Memorial Hall G Deshler Hilton Hotel. Columbus, Ohio.

WEST

Mar. 12-16: Aviation Conf., ASME, Statler Hilton Hotel, Los Angeles. Calif.
Mar. 13-15: Testing Conf., ARS, Biltmore Hotel, Los Angeles, Calif.
Mar. 19-21: Northwest Reg. Conf, Nat'l Assoc. of Music Merchants, Hotel Benson. Portland. Ore.
Mar. 20-24: 12th Western Metal Congress 8 Exper., ASM, Pan-Pacific Audit., Los An. geles. Calif

Llexible sweep delay DC-TO-100 MC RANGE

with the Tektronix Type 585 Oscilloscope

Highly adaptable, the Type 585 fits most precisionmeasurement applications in the dc-to-100 mc range -when used with a Type 80 Plug-In Unit and P80 Probe. The three-way combination features:
I... slow sweeps as well as fast sweeps and rersatile main sweep triggering facilities compatible with the bandwidth capabilitiesfor general-purpose laboratory work:
$2 . .3 .5 \mathrm{nsec}$ risetime. $0.1 \mathrm{v} / \mathrm{cm}$ sensitivity, $10 \mathrm{nsec} / \mathrm{cm}$ sweeptimefor high-speed pulse analysis:
3... two modes of calibrated sweep delay : either Conventional (when the delayed sweep is started at the end of the delay period by the delayed trigger) or Triggered (when the delayed sweep is started after the delay period by the signal under observation) for a wide variety of specialized applications.
For example, the delayed-sweep enables you to observe the start of the horizontal sweep from 1 microsecond to 10 seconds after receipt of a triggering signal ... to make precise incremental measurements along a complex waveform . . . to obtain high magnification of a selected portion of an undelayed sweep-with jitter-free magnification up to 10,000 times.
Further, the exact portion of the display on the delaying sweep that will appear on the faster main sweep is positively identified by trace brightening. and the Single-Sweep feature facilitates photographic recording of most one-shot phenomena.

TYPICAL DELAYAD SWEAP APPLICATIONS

- Dieplas separcos channelo of a PTM Byctario, wath eflocse of timo fitter removed, iotermintug pule amplitude and shepe under conditione of modulation,
- Momaure pulec-lo-puleo imtorvele and amoruat of joitar en computior signals or any train of pulsee.
- Determina accuralo time-oliference meanuramente botween pulso-in and sulce out through en amplbfyny eyatem.
- Solect any individuad llno of a televialon comperino algnel.
- Snow thine dieplecemunh riaw chripe, nene amplaudo of Inctividual channolo in a felemetering aystems

TEKTRONIX PLUG-IN FEATURE further enhances the versatility of the oscilloscope
Designed for interchangeable preamplifiers, the Type 585 will also accept the present 16 "letter-series" plug-in units without loss of bandwidth or basic sensitivity of the plug-in - when used with the Type 81 Adaplet.

Tektronix, Inc.

P. O. Bor 500 - Beaverton, Oregon

Phone Mlichell 4.0161 - TWX-BEAV 311 - Cable: YEKTRONIX

TYPE 585, without plug-in unit $\$ 1875$
Type 80 Plug-In Preamplifier 50
P80 Probe 100
Type 81 Plug-In Adapter 125 Prices f.o.b. factory
Note: Both the Type 80 Plug-In Preamplifier and P80 Probe are necessary for dc-to-100 me operation. The Adapter allows insertion of Tektronix "letter-series" plug-in units.

Call your Field Engineer for a demonstration of the versatile Type 585 in your own delayed-sweep application.

[^1]

APRIL

East													
								\mathbf{M}	\mathbf{T}	\mathbf{W}	\mathbf{T}	\mathbf{F}	\mathbf{S}
2	3	4	5	6	7	8							
	10	11	12	13	14	15							
16	17	18	19	20	21	22							
23	24	25	26	27	28	29							

EAST

Apr. 4-6: Iari' Symp. an Eloctromagnetics 8 Fluid Dyasmic: of Gasecus Plasma, Polytechnic Inst. of Bklyn. Auditorium of Eng's Soc. Bldg. 33 W 3ith St. New York. N. Y.

Apr. 5-7: Anaual Conv. Inst. of Environmental Sciences, Hotel Sheraton-Park, Washington, D. C.
Apr. 5.7: Symon an Maperials 8 Elociron Device Processing. ASTM Committee F.I on Materials for Electron Tubes G Semiconductor Devices, Franklin Inst., Phila. Pa.
Apr. 6-7: Management Eng's Conf., ASME, SAM. Statler Hilton Hotel, New York. N. Y.

Apr. 8-9: ARRL Southeastern Div. Conv. American Radio Relay League. Cherry Plaza Hotel, Orlando, Fla
Apr. 10-12: 44th Nat'l Open Mearth Steel Conf. 6 Blast Furasce. Coke Oven, and Raw Material Conf., AIME, Sheraton Hotel. Phila., Pa.
Apr. 10-19: Annual Assembly of Int'l Inst. of Wolding, AWS, Sheraton-Atlantic Hotel, New York. N. Y.
App. 11-13: Cowf. on Ulera-purification of Somiconductor Materials, AFRD. ARGDC. USAF, New England Mutual Hall, Boston. Mass
Apr. 12-14: Int'I Symp. on Azglomeration, AIME, Sheraton Hotel, Phila, Pa.
Apr. 17-21: Annual Mis. 8 Wolding Expos., AWS, Hotel Commodore E Coliseum. New York, N. Y.

Midwest

S	M	T	\mathbf{W}	T	\mathbf{F}	\mathbf{S}
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29

App. 17-21: The Business Equip. Expes. Office Equip. Mfrs. New York Coliseum New York, N. Y.
Apr. 23-26: Metals Eng's Conf. ASME, Penn Sheraton Hotel, Pittsburgh, Pa.
Apr. 23-27: Annual Miz. Sciantic Apparatus Maters Assec., The Creenbrier, White Sulphur Sprgs, W. Va.
Apr. 24.27: Mre., American Physical Soc., Washington, D. C.
Apr. 26-28: Deronation 8 Daflagration Phenomena Conf., ARS, Palm Beach Biltmore, Palm Beach, Fla.

MIDWEST

Apr. 4-6: 101h Annual Mis. 6 Comf., Nat'I Mierofilm Assoc. Sherman Hotel. Chicago, III.

Apr. 5.7: SE District Mre. AIEE, Jung Hotel New Orleans, La
Apr. 7-9: ARRL Dalts Div. Conv., ARRL, Reai House, Chatfanooga, Tenn.
Apr. 11-13: 33rd Annsal Conv., Petroleum Elec. Supply Assoc. G Petroleum Industrial Elec. Assoc, Moody Center, Calveston Tex.
Apr. 12:14: Symp. on Information 8 Decision Processes, Purdue Univ, Lafayette, Ind.
Apr. 16.18: NAMM Southwest Rog. Conf. Nat'l Assoc. of Music Merchants. Inc. Shamnock-Hilton Hotel, Houston, Tex
App. 17-19: Tih Nat'I ISA Syman. on lastremental Methods of Aashsis. ShamrockHilton Hotel, Houston, Tex.

Midwost

S	M	T	W	T	F	S
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29

Apr. 19-21: Great Lakes District Mre., AIEE, Minneapolis, Minn.
Apr. 19-21: SWIRECO-S.W. IRE Reg, Conf, 8 Eloc. Show, IRE (Region 6), Dallas, Tex Apr. 25-27: Yth Nat'I Conf. Electromagmetic Reloys, NARL, Student Union Bldg., Oklahoma Siate Univ., Stillwater, Okla.
Apr. 26-27: Tech. Conf. on Mifh-femp Marsriats, AIME, Carter Hotel. Cleveland, Ohio
Apr. 29-May 3: 53rd Anasal Conf., Nat! Assoc. of Electrical Distributors, Cobo Hall. Detroit, Mich.
App. 30-May 4: Sprias Mry, Electrochemical Soc., Inc., Claypool Hotel, Indianapolis, Ind. Apr. 30-May 4: 7tif Mart' Aero-Spece Instrumentation Symp., ISA, Adolphus Hotel, Dallas Tex

WEST

Apr. 5-7: Lifting Reentry Vehicles, Strueture, Maferisls 6 Design Cowf., ARS, El Mirador Hotel, Palm Sprgs, Calif.
Apr. 5-7: Mig., Radio Tect. Comm. Ior Marine Serrices, Sheraton-Palace Hotel, San Francisco, Calif.
Apr. 13-14: 8th Amasal STWP Conv.. Soc. of Tech. Writers \& Publighers, Mark Hopkins Hotel, San Francisco, Calif.
Apr., 18-20: Symp. on Clomical Resctions in the Lewer and Upper Atmeesphere, Stanford Res Inst., San Francisco, Calif.
Apr. 22: Mige, American Mathematical Soc. Stanford, Calif.
Apr. 26-25: 7th Region Toeh. Conf. 6 Trado Show, IRE (Region 7), Westward Ho Hotel. Phoenix. Ariz

MAY

East

S	M	T	W	T	F	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

> EAST
> May 4-7: Conv. Ameriean Women in Radio 6 Telavision, Inc.; Statler Hilton Hotel, Washington, D.C.
> May 7-11: 39th Anmal Cown. \& Broudess Eng's Conf., NAB; Shoreham o Sheraton Park Hotels, Washington, D. C.
> May 9-11: Eastarn Stares Show, Marerial Handling Inst: Corvention Hall, Phila., Pa.
> May 9-11: Power Sources Symp., U. S. Army (Sig. RGD Labs). Shelbume Hotel, Af. lantic City, N. J.
> May 11-13: Meeriag. American Radium Soc. Colorado Springs, Colo.
> May 15.17: Microwave Theory 8 Tech.

Nat'I Symp, IRE (PCMTT). Sheraton Park Hotel, Washington. D. C.
May 17-19: North Eastorn District Mes., AIEE, Statler Hotel, Hartford, Conn.
May 18: Tour of Environmental Facilities, IES (N. Y. Metro Chptr), Bklyn Noy Yard, Bklyn, N. Y.
May 22-26: Annual Conf., Soc. Photo. Scientists E Engrs, Arlington Hotel, Binghamton, N. Y.

May 23-25: Symp. on large Capeciry Men. ory Tochniques for Computing Syetome. ONR (Information Systems Br), Dept. of Interior Auditorium, Washington, D. C.
May 31-June 2: Frea. Control Symp., U. S. Army (Sig. RED Labs). Shelbume Hotel, Atlantic City, N. J.

At Burnell \& Co., our engineers devote a big part of their thinking to shrinking-reducing the size (and cost) of components to the least common denominator consistent with high performance standards. From this staff have come such components as:

The Kernel ATE Adjustoroid ${ }^{-}$ This variable toroid contains an actual complete toroid with all the excellent characteristics of the non-adjustable type. Valuable in oscillators, discriminators, variable tuned circuits, etc.

MLP and MHP MICROID Filters - Microminature counterparts of the popular Burnell TCL and TCH low pass and high pass filters, they range from .6 kc to 100 kc with a standard impedance of 10 k ohms. Cascading the MLP with the Mup produces excellent re-
sponse band pass characteristics.
"Cheerio" Toroids - Subminiature high \mathbf{Q} coils in a range of frequencies that make them ideal for transistorized equipment.

Crystal Filters-Advanced engineering techniques enable Burnell to offer at nominal cost, high selectivity, high attenuation crystal filters covering the extraordinary range of 1 ke to 30 mcs with considerable latitude in impedance.

Pulse networks, interference filters, active networks and magnetic amplifiers are among the newer additions to our product line.

Write for latest catalog.
Burnell \& Co., Inc., has a number of positions available for engineers capable of thinking big and shrinking small. Inquiries are invited.

If you haven't already done so - sead for your froe membership in tho Space Siminters Club.

PIONEERS IN microminnaturization OF TOROIDS, FILTERS AND RELATED NETWORKS

MAY (Continued)

Midwest

S	M	T	W	T	F	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

May 7-8: 5th Midwest Symp on Circuir The. ory, IRE (PCCT). Allerton Park G Uitana Campus of Univ. of III., Ubana. III.
May 7-11: 42nd Int'I Conf. 8 Office Expos. Nat'I Office Management Assoc, SheratonJefferson Hotel G Kiel Auditorium, St. Laus, Mo.
May 8-10; 4th Nat' ISA Power Instrumentafion Symp., LaSalle Hotel, Chicago, III.
May 8-10: Naf'l Aeronautical Electronics Conf., IRE (PCANE) Dayton Sect. Miami G Dayton Biltmore Hotels, Dayton, Ohio
May 10-12: Pulp 6 Paper Instrumentation Symp., ISA, Northland Hotel, Green Bay. Wis.
May 12: Meeting (Exec. Comm. 8 Nat'। Daurd of Covernorsi, ERA, Hilton Hotel, Chicago, III.
May 22-24: Eleceronic Parts Distributors Show, Electronic Industry Show Cord. Conrad Hilton Hotel. Chicago, III.
May 22-24: 5th Nat'I Symp. on Clobal Com. municafions (CLOAECOM V), IRE (PCCS) AIEE, Sherman Hotel, Chicago. III
May 22-24: Naf'I Tolemetering Conf., IAS. IRE, AIEE, ARS, ISA. Sheraton-Towers Hotel, Chicago, III.
May 22-25: Design Eng's Show \& Coal., ASME, Cobo Hall, Detroir, Mich.
May 24-26: 37tl Annual Conk., EIA, PickCongress Hotel. Chicago, III.

West

S	M	T	\mathbf{W}	\mathbf{T}	\mathbf{F}	\mathbf{S}
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

May 2-4: Electronic Components Conf., IRE (PCCP), AIEE, EIA, WEMA, lack Tar Hotel. San Francisco, Calif.
May 6-10: Mig., The Electrochemical Soc., Inc., Statler Hotel, Los Angeles, Calif
May 9-11: Western Joint Computer Conf., IRE (PCEC), AIEE, ACM, Ambassador Hotel, Los Angeles, Calif.
May 26-29: Southwestorn Div. Conf., The American Radio Relay League, Westward Ho Hotel, Phoenıx, Ariz.

JUNE

East

S	M	T	\mathbf{W}	T	F	S
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	

EAST

June 1: Meeting, Bus. Management Inst. (Eastern Sect). American Univ, Washington, D. C.
June 4-8: Nat'I Mrg., American Nuclear Society, Pirtsburgh, Pa.
June 5-6: 5th Nat'I Conf. an Product Eng's 6 Production, IRE (PCPEP), Phila, Pa.
Iune 8-10: Annual Mig., Con'I Dusiness, Mfg Chemists Assoc., Inc., Greenbrier, White Sulphur Sprgs., W. Va.
June 12: Air Pollution Instrumentation Symp-, ISA APCA, Hotel Commodore, New York, N. Y.

Iune 12-16: 9th Anaual Toch. Writers' Inas.. Rensselaer Polytechnic Inst., Troy. N. Y.

June 18.23: 48th Annual Conv., American Electroplaters Soc, Statler Hilton Hotel, Boston, Mass.
June 18-23: Summer Cen'I Mig. AIEE, Stat. ler Hall, Ithaca, N. Y.
June 26-28: 5th Nar'l Conv, on Military Electronies, IRE (PCME). Shoreham Hotel, Washington. D. C.

Midwest

S	M	T	W	T	F	S
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	

MIDWEST

Juna 13-16: 3rd Bionnial Iat'I Gas ChromaPography Symp., Mich State Univ, Kellogg Center, E. Lansing, Mich
June 14-16: Meating. ASME Applied Mechanies Div., Illinois Inst. of Tech. Technology Center, Chicago, III.

WEST

June 7-9: Somi-Annual Mig., ARS, Statler Hilron Hotel, Los Angeles, Calif.
June 10-17: Conv., American Soc. of Medieal Technologists. Olympic Hotel, Seattle. Wash

West

S	M	T	W	T	F	S
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	

June 11.14: 28th Annual Conv.. Electrical Apparatus Serv. Assoc. (formerly Nat'l Industrial Serv Assoc), Jack Tar Horel, San Francisco, Calif.
June 11-15: Annual Summen Mig.. ASME, Siatler Hilton Hotel, Los Angeles, Calif.
June 12-15: Int'I Conf. on the Physics of Electronic \& Aromic Collisions. AFOSR/ SRYP. Univ of Colo, Univ. of Colo., Boulder, Colo
Iune 20.23: 10th Annual Conv. \& Trade Show, Nat'l Community TV Assoc, Inc., Jack Tar Hotel, San Francisco, Calif.
June 28.30: Joint Automatic Control Conf., IRE, AIEE, ASME, ISA, AIChe Univ of Co'srado. Boulder. Colo

IRE PROFESSIONAL GROUPS

PGA-Audio
PGB-Broadcast
PGAP-Antennas \& Propogation
PGCT-Circuit Theory
PGNS_Nuclear Science
PGVC-Vehicular Communications
PGRQC-Reliability \& Quality Control
PGBTR-Broadcast \& TV Receivers
PGI-Instrumentation
PGTRC-Space Electrcnics \& Telemetry (Formerly Telemetry \& Remote Control)
PGANE-Aeronautical \& Navigational Electronics
PGIT-Information Theory
PGEM-Engineering Management
PGIE-Industrial Electronics
PGED-Electron Devices
PGEC-Electronic Computers
PGMTT-Microwove Theory \& Tech. niques
PGME-Medical Electronics
PGCS-Communications Systems
PGUE-Ultrasonice Enginearing
PGCP-Component Parts
PGPT-Producion Techniques
PGAC-Automatic Control
PGME-Militory Electronics
PGE-Education
PGEWS-Engineering Writing \& Speach PGHR-Human Factors in Electronics PGRFI-Radio Frequency Interference

A REPRINT

of this article can be obtained by writing on company lefterbead to

The Editer

ELECTRONIC INDUSTRIES
Chestnut 8 56th Sts., Phila. 39, Pa.

now available from MOTOROLA

- Peak surge currents up to 250 amps
- Conservative ratings assure extra margin of safety
* Variety of termetically-sealed package styles
- Military types available

For your copy of the new Motorola silicon rectifier cataiog, write for Data Sheet \#DS 1002-1. Please address inquiries to MOTOROLA SEMICONDUCTOR PRODUCTS INC., Technical Information Department, 5005 E. McDowell Road, Phoenix, Arizona.

Motorola now offers an extensive line of medium-current diffused-junction silicon rectifiers which exhibit the same high-quality performance that has made Motorola zener diodes a standard for the industry. In order to insure this same standard in its silicon rectifiers, Motorola has established comprehensive quality assurance programs to guarantee stable operation and continued reliability for each Motorola rectifier - even under rugged military-type environmental conditions. With reliability as the primary goal, these rectifiers incorporate the same advanced silicon processing techniques which have made possible so many new silicon diode developments at Motorola.

MOTOROLA

Semiconductor Producte Ine.

A SUESIDIARY OF MOTONOLA, INE:
5005 EAST MCDOWEL ROAD • PHOENXX, ARIZONA

S	\mathbf{M}	\mathbf{T}	\mathbf{W}	T	\mathbf{F}	\mathbf{S}
2		4	5	6	7	8
9		11	12	13	14	15
	17	18	19	20	21	
${ }^{23} 30$	24	25	26	27	28	29

July 16.22: 4th Inf'I Conf, on Medical Electronics 8 14th Conf. on Elect. Tech. in Medicine 6 biology, IRE (PCME), IFME JECMB, Waldorf Astoria Hotel, New York. N Y
|uly 16.20: Naf'l: Music Industry Cons. 8 Trade Show. Nat'l Assoc. of Music Merchanis, Inc. Palmer House Chicago, III.

July 22-25: Mig. Conv. 8 Exh., Nat'l AudioVisual Assoc. Morrison Hotel, Chicago. Ill

July 3-8: Annual Mig., Nat'l Soc of Prof Engrs., Olympic Hotel. Seattle, Wash
July 10-14: 4th Annual Insp.. in Teeh. 8 Industrial Communications, Co orado Siate Univ. Campus, Fp. Collins, Colo
July 31-Aus. 4: Difforential Equations in NonLinear Mechanics. AFOSR/Aeronautical Sciences Directorate G RIAS, Air Force Academy. Colo

East

S	M	T	W	T	F	S
			1	2	3	4
5						
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20		22	23	24	25	26
	28	29	30	31		

Aug. 21-23: Inf'I Mypersonics Conf., ARS Mass. Inst. of Tech, Cambridge, Mass

Aug. 21-24: Photo Conductivity Conf., Cornell Univ. Committee on Conf. Willard Straight Hall, lthaca, N Y
Aug. 27-30: Eastern Region Mig., Nat'l Assoc. of Electrica! Distributors. Saranac Inn, Saranac, N Y

Midwest

S	M	I	W	I	F	S
			1	2	3	4
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22		24	25	26
	28	29	30	31		

Aug. 23-25: Biennial Gas Dynamies Symp. ARS, Northwestern Univ, Evansion, III

Aug. 27-Sept. 1: 6th Int'I Conf. of Coordinapion Chemistry. AFOSR/Chemical Sciences Directorate E American Chemical Soc IInorganie Chemistry Sect). Wayne Siate Univ. Detroif, Mich.

West

S	M	T	W	T	F	S
			1	2	3	4
6	7	8	9	10	11	12
13	14	15	16	17	18	
20	21			24	25	26
27		29	30	31		

Aug. 19.24: Naval Aviation Mig-, IAS, Navy San Diego, Calif
Aug. 22-25: WESCON, Western Eectronic Show G Conv, WEMA, IRE IL A \& S F Sect). San Francisco, Calif
Aug. 23-25: Pacific General Mrg., AIEE, Salt Lake City, Uitah
Aug. 28-Sepp. I: Inf'l Heap Tiansfer Conf., IAS, Bouder, Colo

East

S	M	T	\mathbf{W}	\mathbf{T}	\mathbf{F}	\mathbf{S}			
								1	2
3	4	5		7	8	9			
10	11	12	13			16			
17	18	19		21	22	23			
24	25	26		28	29	30			

Sept. 6-8: Annual Mrg. (Joint). Assoc. of the U. S. Army. Army Aviation Assoc. of America, Sheraton. Park Hotel, Washing. ton. D C.
Sepp. 6-8: Int'I Symp. on Pransmission 6 Processing of Information, IRE (PCIT). Mass. Inst. of Tech. Cambridge, Mass

Midwest \& West

S	M	T	W	T	F	S
3	4	5		7	8	9
10		12		14	15	
17	18	19	20	21	22	23
24		26	27	28	29	30

Sept. 6-8: Joint Nuclear İnstrumantation Symp., ISA, AIEE, IRE, North Carolina Spate College, Raleigh, N. C
Sept. 14-15: Ene's Management Conf. ASME. Roosevelf Hotel, New York, N Y Sept. 15-17: ARRL N. Y. State Conv. ARRL, Hotel Niagara, Niagara Falls, N Y
Sept. 20-21: Industrial Electronics Symp. IRE (PCIE), AIEE, Boston, Mass

Sept. 27-30: Marerials 6 Equip.-White Wares Divs., ACS, Bedford Springs Hote Eedford. Pa

Sepl. 13-15: Annual Mig., Human Factors Soc.. Ohio State Univ, Battelle Memorial Inst. North American Aviation, Inc. Ohio Siate Univ. Columbus, Ohio
Sept. 25-28: Naf'l Fall Meeting. American Welding Soc. Hotel Adclphus. Callas. Tex

Sept. 6-8: Annual Mig., ACM, Siatler Hilton Hotel, Los Angeles, Calif.
Sept. 6-8: Nat'l Symp. on Space Electronica 6 Telemetry, IRE (PCSET), Albuquerque. N M
Sept. 11-15: Fall Instrument.Automation Conf. \& Exh., \& 16 th Annual Mig., ISA. Sports Arena, Los Angeles. Calif
Sept. 16-20: Western Region Conv.. Nat'| Assoc of Electrical Distributors, Jack Tar Hotel, San Francisco. Calif

You can place the utmost confidence in Dale precision resistors even when today's new and unprecedented standards of "missile reliability" are the goals towards which you are designing.
Under any and all conditions, Dale resistors retain their stability because it has been "firmly infixed" by Dale design and methods of manufacture . . . methods which have now reached new levels of achievement as part of Dale's super-high reliability development program.
SPECIAL PROBLEMS? Let us help you with your requirements for special resistance products. We make modifications of standard products, resistor networks, matched pairs, etc. Send us your specs.
PROMPT DELIVERY. Whether your need is for a short "test run" or a large production release, Dale offers prompt service, direct from the factory and through a widespread network of distributors.

Write for Bulletins R-23, R-25 and R-30 with handy cross-reference file cards

DALE ELECTRONICS, INC.
130420 ith Ave., Colmenes, Merrisho, U.S.S.
A subsidiary of HATHAWAY INSTRUMENTS, INC.
ance TYPE RS RESISTORS
WIRE WOUND - PRECISION - POWER Designed for advanced electronic circuits where space is at a premium. Three configurations: Type RS with axial leads and in most ratings and resistances shown: Type RLS with radial leads; Type RSE for clip mounting.

- Rated at $1 / 2,1,2,21 / 2,3,5,7,10$ watts
- Resistance range from .05 ohm to 175 K ohms, depending on type
- Tolerance $0.05 \%, 0.1 \%, 0.25 \%, 0.5 \%$, 1\%. 3\%
- Temperature coefficient within 0.00002 / degree C.
- Operating temperature range from -55° C. to $275^{\circ} \mathrm{C}$.
- Smallest in size, ranging from $5 / 64^{\prime \prime}$ by $5 / 16^{\prime \prime}$ to $3 / 8^{\prime \prime}$ by $1.25 / 32^{\prime \prime}$. Ten choices
- Completely protected, impervious to moisture and salt spray
- Complete welded construction from terminal to terminal
- Silicone sealed, offering high dielectric strength and maximum resistance to abrasion
- Meet functional requirements of MIL-R-26C

EAST

Oct. 2-4: 7th Nat'I Communications Symp., IRE (PCCS), Ulica, N Y
Oct. 2-6: 90ih Semiannual Conv. Soc of Motion Picture G TV Engrs, Lake Placid Club. Lake Placid, N Y
Ocl. 5.7: Meeting Refractories Div, ACS, Bedford. Pa
Oce. 9-10: Meeting, Basic Science Div, ACS Soc. Hote Van Curler. Schenectady, N Y Oct. 9.11: Naf'l Fall Conf. 8 Expos., Nat Office Management Assoc, Bellevue Siratford Hotel, Phila., Pa
Oct 9-13: ARS Space Flight Report to the Nation, ARS. Coliseum, New York, N Y.
Oct. 11-13: Meeting, Class Div, ACS, Bed. ford Springs Hotel, Bedford, Pa
Oct. 18-21: Meeting, Siructural Clay Prod Div, ACS, Mellon Inst. G Webster Park Hotel, Pitisburgh, Pa .
Oct. 19-21: Fall Mig. Nat'I Soc of Prof Engrs, Roanoke Hotel, Roanoke, Va
Oet. 23-25: East Const Conf. on Aero 6 Navigational Electronics. IRE (PCANE) Lord Baltimore Hotel Baltimore, Md
Oct. 30-Nov. 1: Radie Fall Mig., EIA, IRE Hotel Syracuse, Syracuse. N. Y

MIDWEST

Oct. 1-5: Mts. The Electrochemical Soc Inc, Statler Hotel. Detroit, Mich.

S	M	T	W	T	F	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

Oct. 8-10: Meeting, Int'I Municipal Signal Assoc.. Netherland Hilton Hotel. Cincin. nati. Ohhio
Oct. 9-11: Nat'I Electronics Conf. (NEC). IRE, AIEE, EIA, SMPTE, Chicago, III
Oct. 10-12: 12th Nat'I Conf. on Standards. ASA. Rice Hotel, Houston. Tex
Oct. 15-20: Fall Ceneral Mig., AlEE, Detroit. Mich
Ocl., 23-26: Fall Mrg., The Metallurgical Soc. of AIME, Pick-Fort Shelby Hotel, Detroit, Mich.
Oct. 23-27: Defroir Metal Show 143rd Nat'I Metal Congress 8 Expos.i, ASM, Cobo Hall, Detroit, Mich.

NOVEMBER

East

S	M	T	W	I	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30		

Midwest

S	M	T	W	T	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30		

EAST

Now. 14-16: Noptheast Res. 8 Eng. Mig. (NEREM), IRE (Region 1), Boston, Mass. Now, 20-21: 1961 Electron Devices Mig. IRE PCEDI. Shoreham Hotel, Washington, D. C.

Nor. 26-Dec. 1: Winter Annual Mig., ASME, Siatler Hilton Hotel. New York, N' Y. Noy. 27-Dec. 1: 28th Expes, of the Chemical Industries, Coliseum, New York, N Y
Nor. 30-Dec. 2: Conf.-Tech. Progress in Communication - Wire of Cables Symp.a U S. Army (Sig RGD Labs), Berkeley. Carteret Hotel, Asbury Park, N. 1

MIDWEST

Nov. 6-9: Afom Fair, Aromic Industrial Forum, ANS, Conrad Hilton Hotel, Chicago, III. Nov. 7-10: Packaging Machinery Mfgs. Inst. Show of 1961, Cobo Hall, Detroit. Mich. Nor. 7-10: Wiater MIg., American Nuclear Soc. Chicago, III.
Nov. 14. 16: MAECON (Mid-Americs Elec. Conf.), IRE (Kansas City Sect.), Kansas City, Mo
Now. 17-18: Meoting. American Mathematical Soc. Milwaukee. Wis
Nor, 30-Dec. 1: Conf, Prof. Growp on Vohicular Communieations, IRE, Hotel Leamington, Minneapolis, Minn

> Check ELECTRONIC INDUSTRIES' monthly Coming Events Page for announcements of new events or changes in date or location of previously announced events.

Oct. 24-26: 1961 Mich. Industrial Electronics Expos., Electronic Representatives, Inc. Deproit Artillery Armory. Detroit, Mich

WEST

Oct. 25-28: Mig., Electronics Div. ACS, lack Tar Hotel, San Francisco, Calif

Highlights of 1962

Feb. 13-15: Tutorial Inat. in Industrial Writing Improvement, American Industrial Writing Inst.; Hotel StatlerHilton, Los Angeles, Calif.
Mar. 26-29: IRE International Convention; Coliseum \& Wal-dorf-Astoria Hotel, New York, N. Y.

Apr. 18-20: 5th Annual Indus. trial Mutaal Aid \& Disaster Control Seminar, Nat'l Inst. for Disaster Mobilization; Shamrock-Hilton Hotel, Houston, Tex.
Apr. 20-22: 76th Annual Conv, lllinois Soc. of Professional Engra.; Peoria, Ill.
April 30-May 9: Hanover Int'l Fair: Hanover, West Germany.
May 8-10: Electronic Components Conf., IRE, AIEE, EIA, WEMA; Washington, D.C.
May 14-16: NAECON, IRE; Dayton, Ohio.
May 23-25: National Telemetering Conf., IRE, AIEE, IAS, ARS, ISA; Sheraton Paris Hotel, Washington, D. C.
June 27-29: Conf. on Standards \% Electronic Measurements, IRE, NBS, AIEE; NBS Boulder Labs, Boulder, Colo.
Aug. 21-24: WESCON, IRE, WEMA; Los Angeles, Calif.
Sept. 8-10: Chicago High Fidelity Home Entertainment Show ; Palmer House, Chicago, III.

Oct. 1-8: 8th National Commanications Bymp., IRE; Utica, N. Y.

Oct. 8-11: National Electronica Conf., IRE, AIEE, BIA, SMPTE; Chicago, Ill.
Oct. 18-19: Eleetron Devices Meeting. IRE; Shoreham Hotel, Washington, D. C.
Nov. 18-15: NEREM, Northeast Res. Eng. Mtg., IRE; Boston, Mass.
Dec. 4-7: Eastern Joint Computer Conf., IRE, AIEE, ACM; Bellevue-Stratford Hotel, Phila., Penna.

Immediate Local Deliveries

for small runs, production emergencies or design needs. from over 30 strategically located parts distributors . . . At factory prices in lots up to 1000 of a value.

Would you buy fixed resistors just because they're the easiest to solder?

Of course you wouldn't!

But when you add the highest degree of "solderability" of any resistors on the market to top-notch reliability in other physical and electrical characteristics - well, that's something else, Like a lot of other cost-conscious producers, you'll then be using Stackpole Coldite $70+$ Resistors I

Stackpole Coldite 70+ "solderability" saves time and money in your production. It assures perfect connections that eliminate a lot of possibilities for costly field service later on.

Coldite $70+$ performance fully matches the "solderability" of the leads. They're designed to meet or excel MIL-R-11 in every respect. And they're tops in load life, humidity and moisture tests!

Electronic Components Div.-STACKPOLE CARBON CO., St. Marys, Pa.

(0)

CERAMAGO FERRITE CORES - VARIABLE COMPOSITION RESISTORS SLIOE SNAP SWITCHES FOR CERAMAGNETB CERAMICMAGNETS APM FIXED COMPOSITION CAPACITORS GRAPHITE EEARINGS. SEAL RINGS ANODES GRAPHITE PROCUCTS. HREDED OF RELAIED CARBON

DECEMBER

East

S	M	T	W	T	F	S
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

EAST

Dec. 3.7: Eastern Joint Computer Conf., IRE (PCEC), AIEE, ACM, Sheraton-Park Hotel, Washington, D. C.
Dec. 6-8: 65th Annual Congresa of American Industry, NAM, Waldorf Astoria. New York, N. Y.

Dec. 6-8: 19th Electric Furnace Conf. AIME Penn-Sheraton Hotel, Pittsburgh. Pa

Dec. 18: Wright Ires. Lecture, IAS. Washington. D. C

Foreign Events

Ian. 8-11: 59th Annual Conv.. The Canad ar Ceramic Soc., Chantecler Hotel, Ste. Adele, Quebec, Canada
Jan. 16-21: 45th Physical Soc. Exh. of Scientific Instruments 6 Apparatus, The Physical Soc., Royal Horriculpural Sos Halis Westminster, London, S.W I. England
Feb. 17.21: 4th Infil Exh of Electronic Com. ponents (Components. Valves, SemiconducPors, Electronic Accessories). Parc des Expositions, Porte de Versailles, France
Feb. 20-25: Inf'I Conv, on Somiconductor Devices. French Radio-Engrs. Assoc., French Nat'l Electronic Industries Assoc. Paris. France
Mar, 9.14: 3rd Iaril Audio Mi. Fi and Steree Exh., Federation Nationale des Industries Electroniques, G Syndicat des Industries Electroniques de Reproduction et d'Enreg'strement, Palais d'Orsay, Paris, France
Mar. 21-25: Electrical Engrs. Enhib.. Earl's Court, London, SW. 5. England
Apr. 20-May 4: Engineering. Marine. Welding. 6 Nuclear Energy Exh., Olympia, London. W. 14, England
Apr. 23-27; 63rd Annual Mpe. The American Ceramic Soc., Royal York Hotel, Toronto. Canada
May 8-12: 89th Semi-Annual Conv., Soc of Motion Picture GTV Engrs. King Edward Hotel. Toronto, Canada
May 10-12: Production Eng's Conf. 6 Shom. ASME. Royal York Hotel. Toronto, Canada May 19-June 4: British Trade Fair, Sokolnickı Park, Moscow, USSR

May 30-June 2: Electronic Components Show, Srand Hal. Olympia, London. W. 14 England
June 6.8: ISA Summer Instrument-Aufomation Conf. and Exhibit, Queen Elizabeth Hall \& Royal York Hotel, Toronts. Ont Canada
June 12-17: Conf. on Components 6 Mate. rials used in Electronic Engig. lust of Electrical Engrs (Brit). Central Hall. Westminster, London, England
June 22-24: Meeting, American Physica! Soc Mexico City, Mex
Iuly 7.29: Russian Trade Fair, Eal's Court. London. England
Aug. 1-12: Sydney Trade Fair, Sydney, Australia
Sept. 4.9: 5th Inf'I Conf. on Ionization Phenomena in Casses, Technische Hochschule Karlspuhe. Munich, Cermany
Sept. 2B-Oct. 1: Symp. on Radiozetive Metrology, Nat'l Physical Lab. Advisory Comm on Radicactive Standards \& Sub-Comm on Méeasurements and Standards of Radioacfivity of the U. S Naill Res. Council. Oxford. United Kingdom
Oct. 3-12: Eritish Electronic Computer Exhib. Olympia, London, England
Oct. 4.6: IRE Canadian Conv., IRE (Region 8). Automotive Bldg, Exhib. Park, Toronto. Canada
New. 8-10: Conf. on Non-Destructive Testing in Eloctrical Entig. Instifution of Electrical Engrs (Brit.), London, England
Now. 13-18: 9th Factory Equip. Exhib., Earl's Court, London, England

Chilton's M-A-P points the way to DYNAMIC MARKETING in the decisive sixties

Alert marketing might have saved the 300 or so companies that went out of business this week.

A worth-while product-made right, and offered at a fair price-is not enough to assure success.

Something else is needed. A sure hand that guides your product from maker to user . . . through the most efficient channels.

There is no single answer . . no sweeping generality. Marketing becomes scipntific only when you yourself apply the necessary forces to your
product, your company and your market.
Chilton's Marketing Assistance Program (M-A-P) is almost certain to be of help to you. The very facts, figures and insight into your market that you need may cost you nothing. And they may be readily available-if not, M-A-P can help you obtain them fast and at reasonable cost.

Detailed information on each of the markets covered by Chilton's 18 outstanding business magazines is outlined in this new booklet. Write for a copy of "A Guide to Chilton's M-A-P."

Electronic Industries - Department Store Economist - The Iron Age - Marduare Age - The Spectator - Motor Age - Autamotive Industries - Bool and Shoe Recorder - Com. mercial Car Journal - Distribution Age - Butane-Propane News - Marine Producls - Aircrafi \& Missiles - Hardware World - Optical lournal and Revien of Optometry kewelers' Circular-Kerstone - Food Engineering - Gas Product Design 8 Developmeal - Chilton Boak Division Chillon Research Services

Chilton

COMPANY
Chestnut and 56th Streets - Philadelphia 39, Pa.

[15P

HIGH SPEED SILICON COMPUTER DIODES with uniformly typical recovery time of 2 millimicro. seconds were first made available in commercial quantities one year ago by Microwave Associates.

Today, Microwave Associates silicon mesa switching diodes are setting the computer industry standard. Extremely low reverse leakage (even at elevated temperatures), excellent forward characteristics, and superb reliability under severe mechanical and environmental conditions make these diodes suitable for a very wide range of applications. Major users have called these diodes excellent "universal switching diodes."

Production quantities are now replacing germanium and silicon computer diodes of both standard and newer types. They are priced competitively for large volume orders and delivery is off-the-shelf.

Faster, more sophisticated diodes for tomorrow's computers are on the way from Microwave Associates. Our leadership in this field is the result of years of experience with silicon semiconductor devices which operate at tomorrow's speeds. This experience, added to your own, will accelerate your computer progress.

Immediate Delivery! ELECTRONIC INDUSTRIES'

Exclusive

1960 ELECTRONIC SPECTRUM CHART

ORDER YOURS TODAY

- All latest revisions ond up-dated spoct
- $30 \approx 22$ inches in size
- Printed to show service ond frequency aroe in six colors with-
- Expensive locquar proof ink that will not run. Allows you to vernizh or shelloc chort to prolong its lifio.
- Orders filled and mailed same day.
- Suitable for traming and wall mount or.
- Under glass desk-top reference.

Order Yours Today.
 Over 5,000 copies already purchased!

Prices:
Individual eopies mailod in tubes
1 to 25 copies
$\$ 1.00$ each
to 25 eopias
1.00 per copy

26 to 100 cepies 0.75 par eepy

Mere than 100 copies 0.50 par copy

Hease mote remittanean payable to Electronia Indeatices and moll to Reador Sorviee Dopartment, Electronic Industion Chathent a scth Stroet Mhilodelphia 39, Ponmostranic.

Looking Ahead...

El editors assess the present and future for the four key segments of the electronic industries. Included is a statistical summary of 1960 and predictions for the amount of business to be done in 1961.

SEMICONDUCTORS

The semiconductor segment of the electronic industry continues to grow. With techniques in germanium and silicon well established, there will be fewer "breakthroughs." Progress will be moderate but steady. Characteristicsin frequency and power rangeswill be extended slowly.

Improvement will be mostly in production and engineering areas. Look for more automated production techniques. Why? Competition is one reason-the relative stable state-of-the-art another. Another reason is that semiconductor devices in many cases are now more sophisticated than the equipment or circuits they are used in. Semiconductor makers will have a breather while other technologies catch up.

Foreign competition in this field is also causing manufacturers to take a hard look at their production techniques. There is little likelihood the U. S. Government will step in to help American makers, despite recent publicity. Many feel that with a little work, the American product could snow the Jap product under, both in price and quality.

With lower prices all but inevitable, look for many new applications for semiconductors. One example from many: an entire new market could be established in the automobile industry. Transistorized auto ignition systems are on the drawing board.

With competition real, look for relatively few new companies entering the semiconductor field. A new company will need heavy inrestments in technical and sales staff to capture any important share of the market. Most probable development: large companies contemplating using large numbers of semiconductor devices in their product starting their own semiconductor facilities.

Epitaxial deposition techniques in both germanium and silicon devices will be widely used. Process offers much better control of quality and higher yields. Silicon devices will get a bigger share of the market. Cost reduction and better qualities are promised.

The search for new materials continues. Compounds of materials in Groups III and V of the periodic table offers promise. Problem here is that a systematic theoretical approach is difficult. An empirical approach is generally necessary and progress comes in the form of "breakthroughs."

Mixed feelings are reported on the value of organic semiconductors. Much must be done before a definite role-if any-can be assigned these materials. Not much promise for 1961.

Computer market, long heralded as the major potential market for semiconductors, is finally opening up. Not only computers but all kinds of data processing systems, process control systems, etc., are expected to start moving. Thisand a steadily increasing military electronic procurement-will open up a whole new market for silicon devices: place more emphasis un switching speeds, high temperature operation, and reliability.

Just some of the new materials being studied are silicon carbide -for extremely high temperature operation-gallium phosphide, niobium pentoxide. Silicon carbide transistors for operation above $650^{\circ} \mathrm{F}$ have been announced and will probably reach the market late in 1961.

Tunnel diode is still the best hope for high frequency operation. And, despite recent bad publicity, gallium arsenide still looks like the best material. Difficulties probably stem from going ahead too fast-producing devices be-
fore technology was well estab-
lished. An industry source indicates that reliable Ga As tunnel diodes will probably be on the market this year. Recent price cuts in basic material will spur development.

Original timetables in molecular electronics, solid state circuitry, etc., have been revised. Despite appearance of some devices recently, improvements are needed before widespread use develops. Some problems: A wider range of device functions must be designed; techniques must be improved for better control of parameters to improve yield and lower cost. It will be interesting to see which firms become the major producers to this field; i.e., will components manufacturers jump in to save dwindling component sales (if the situation ever reaches that stage) or will equipment manufacturers look at it as a logical extension of equipment building?

Problems of thermoelectric application remain the same. No one is quite willing to say that their material is the optimum for TE purposes though many say they have the present best. Several cooling and power devices have been produced-expect more in 1961. Biggest market is still the military. A good high temperature material has yet to be found although several very promising avenues are being explored. Experimental approach here is also empirical. Big problem is measurement and standards.

Other areas of semiconductor technology - thermistors, piezo. electric devices, cryosars, photoconductive devices, Hall effect device, masers. lasers, parametric amplifiers, solar cells, etc., will follow a steady growth pattern. Problems here are often in associated equipment, such as heat sinks, collectors, mounting techniques, cryogenic coolers, etc.
(Continued on page 127)

... and Minuteman and Talos and Atlas and Jupiter and Thor and Titan and Bomarc and Zeus and Pershing and hundreds of other military and industrial applications.

For Delco Radio's highly versatile family if pNI74 power transistors meet or exceed the most rigid electrical and extreme environmental requirements.

Over the past five years since Delco first designed its 2N174, no transistor has undercone a more intensive testing program both in the laboratory and in use. in applications from mockups for commercial use to missiles for the military. And loday, as always, no Delco 2NI74 leaves our laboratories without passing at lust a dozen electrical tests and as many environmental lests before and after aging.

This 200 per cent lesting, combined with five years of refinements in the manulacturing process, enables us to mass produce these highly reliable PNP germanium transistors with coasistent uniformity. And we can supply them to you quickly in any quantity at a low price. For complete information or applications assistance on the Military and Industrial 2N174's or other application-proved Deico transistors. just write or call our nearest sales dfice.

Nowark, Now Jorsoy
1100 Roymond Blvd.
Mitchall 2-618s

Santa Monlea, Callfornia
Tat Santa Monica Burd.
UPion 0-8807

Chicago, illinole 5700 Woxt 81 ol 8 treet POrtemeuth 7-8509

Detrolt, Michigan 57 Harper Avenue TRinity 3.6500

here's why

 Amperex VHF P•A•D•T High-Gain Transistors ARE BETTER ., forAM/FM, mobile communications, car radio, and instrumentation!

1 Maximum Uniformity and Interchangeability

By combining the best qualities of both the alloy and the diffusion approaches to transistor construction - and by means of special "self-jigging" techniques - the Amperex Post Alloy Diffusion Process achieves maximum yield and uniformity, virtually eliminating the need for "selection". From drawing-board to final quality control checkpoint. the PADT process rigidly maintains the specifications of each transistor you require, not only to provide hitherto unattainable uniformity, but also maximum interchangeability with competitive types - plus..

2 High Bela The revolutionary PADT procees provides a guaranteed minimum beta of 40 . . an average of 150 .. with resultant high power gain! Therefore, PADT transistors can now guarantee..

Maximum Design Freedom for Engineers The unprecedented characteristics of PADT transistors provide easier temperature stabilization, lower bias circuit loss, higher dissipation reserve, superior K factor, high alpha cut-off frequencies and safe, extremely conservative collector voltage ratinge.

7 NEW P•A•D•T PNP TYPES specifically designed for specilic applications - and now in mass production at the new Amperex semiconductor plant in Slatersville, Rhode Island

APPIICAIIGN	TYPE NO	F UNC YION	FIATUNIS
CAR RADIO	PADT-23	RF amplifier in 6 or 12 volt car radio applications from -5 to 1.5 mc , or in portable broadcast recelvers.	Low leakage and high current gain minimizes AGC curront mqulrements. Improved nolse ligure. High base-to-emitter voltage rating minimizes danger of breakdown.
	PADT. 24	IF amplifier (455 or 262.5 kc), or in mobile communication recelvers; at 6 or 12 volts.	Low collector-to-base capacitance; plus extremely small collectot cut-off current. Minimum Bete of 40 to facilitate the design of AGC circults.
	PADT-27	Mixer, oscillator or converter, 455 or 262.5 kc; at 6 or 12 volts.	Low mixer noise averaging only 3 db at 1 mc . Low leakage, less than $50 \mu \mathrm{at}$ at $60^{\circ} \mathrm{C}$.
MOBILE COMMUNI. CATIONS	PADT-25	High frequency IF ampllfier in moblle communication and alrborne receivers.	Unusually high output resistance for improved recelver selectivity. Less than 50 a leakage at $60^{\circ} \mathrm{C}$ Improves AGC operation.
	PAOT-26	RF or IF amplifier, or mixer, in recelvers operating up to 100 mc .	Typical power eain greater than 14 db at 100 mc , with nolse flgure less than 9 db . High base-to-emitter breakdown voltage for extreme safety.
	PADT-28	RF amplifier for sarvice in the 175 mc region.	Typical gain of 14 db at 200 mc . Noise figure, 5.8 db . Maximum frequency of oscillation, 700 mc . Extremely low base resistance.
	PADT. 31	Mizer, oscillator, or frequency multiplier at frequencles up to 60 mc .	High output resistance $(30,000$ ohms typlcal at 10.7 mc$)$. Power cain - more than 14 db at 60 mc . Conversion saln 20 db min . at 27 mc.

In stock at the following Amperex distributors and others:
adLETA COMPANY
DALLAS 1, TEXAS
FORT WORTH, TEXAS
BRILL SEMICOMDUCTOR CORP OAKLAND 6, CALIF.
ELMAR ELECTRONICS IMC. OAKLAND 7, CALIF.
ImTERSTATE RADIO \& SUPPLY DENVER 4, COLORADO
MILO ELECTRONICS
NEW YORK. N. Y.
MEWARK ELECTROMICS CONP. CHICAGO, IIL.

RADIO SHACR CORP.
BOSTON, MASS.
STAMFORD, CONN. W. HARTFORD, CONN. NEW MAVEN 10, CONN.
ROME ELECTRONICS
ROME, N. Y.
a. V. WEATMERFORD COMPANY

GLEMDALE 1, CALIF.
THUROW ELECTRONICS. INC.
COCOA, FLA.
JACKSONVILLE, FLA.
MIAMI, FUA.
ORLANDO, FLA
PENSACOLA, FLA.
TAMPA, FLA.
P.A.D.T TRANSISTORS COMPARISON-TESTED WITH COMPETITIVE CAR RADIO BRANDS

opplicotlons astistance
Goneiviner compiote circuita
AMPEREX ELECTRONIC CORPORATION
230 DUFFY AVENUE, HICKSVILLE, L. I., NEW YORK

Cirche 64 ea Iequiry Cand

TEST EQUIPMENT

The incorporation of digital readout devices on test equipment is growing. While digital readouts are already being used on frequency meters and voltmeters, look for applications on many other types of test equipment. In the past year, at least one company has added digital readouts to an oscilloscope.

Digital readouts permit nontechnical people to use the equipment. Generally. digital readout equipment has attachments available for automatically punching cards that can be used later to tell how the product shows up under tests. These punched cards are also useful for accounting purposes and for production records.

A few manufacturers are making test equipment which is entirely solid-state. While many of the test equipment manufacturers used some semi-conductors in their equipment, none until recently used full solid-state in their equipment. With a new generation of semiconductors appearing, look for many more types of test equipment to become fully solid-state.

With the anticipated microwave boom. microwave test equipment manufacturers will probably have their best years in the very near future. This new boom can be attributed to the FCC allocating bands of frequencies for private use. All types of microwave test equipment will be in demand.

Test equipment, especially the more complex units, are becoming more modular in construction. The benefits include ease of maintainability and repair. In the larger pieces of test equipment if a component or section should fail, a module can be borrowed from another unit without having to physically move the whole unit.

Along the modular line, many pieces of test equipment, such as scopes and meters, have a basic section and modular plug-in units which adapt the equipment to many needs. This is of benefit to the purchaser. Instead of a large outlay of money to buy test equipment for projected needs, the purchaser may buy a basic unit and
as his needs grow, buy various plug-in modules for the unit. This also keeps his equipment from becoming obsolete.

Work is being done toward applying fibre optics to scope faces, to achieve higher resolution, elimination of parallax and halation and much better photography of the scope presentations. However, the cost of a scope tube with a fibre optic face will be quite expensive.

One trend today is to design electronic systems that automatically test and locate their own troubles. For some of the complex systems and units being used today, this is a necessity to decrease down time. While test equipment will still be used as an integral part of the systems, the test equipment manufacturers will have to think in terms a little different than most of them do today. Instead of just designing individual pieces of test equip. ment. many of them will have to swing over to the systems type concepts. They will quite likely be used as a service team. In these large systems, their engineers will be called in to help design the self-testing features of the equipment and then supply the test equipment required.

We may see some breakthroughs on panel-type meters in the future. For higher accuracy, digital type readouts are being used in place of meters. Meters by their inherent nature of operation, generally electromechanical operation, have limited accuracies. As meter manufacturers know, meters do not maintain the same accuracy across the whole scale. The best accuracy is usually obtained from mid-scale to full-scale deflection.

Automated test equipment and testing systems are drawing a great deal of interest and research. There is a need for test equipment that will automatically check-out complete systems, and also equipment ranging all the way down to a few stage radio receiver. There are already univer-sal-type test stations for testing components. The equipment is
programmed by means of a specially prepared tape. With automation the keynote today, automatic testing should grow by leaps and bounds provided cost does not become exorbitant.

Non-destructive testing is an area that is growing. Ultrasonics is one of the newer tools that are being applied to this area. With ultrasonics, flaws can be detected in most solids quite rapidly. As an example, railroads have been using these to rapidly test miles and miles of rails on their tracks for flaws.

We have heard complaints from purchasers of test equipment about need for standardizing specification for various types of test equipment. Complaints are often heard regarding oscilloscopes. When potential purchasers start to dig into specifications of the various oscilloscope manufacturers, they felt that they had no real way of comparing one company's scope with another, except by bench comparison. We suspect in the near future an industry committee will be set up to overcome some of these obstacles. As we mentioned, this is also true of several other areas of test equipment.

Semiconductor test equipment demands will be rising rapidly. With consumer items swinging from tubes to transistors, the various repair agencies and technicians will require semiconductor test equipment. Up to now they have managed to squeeze by without this equipment. However, this is not going to last much longer.

Semiconductor production test equipment is a highly specialized segment of semiconductor test equipment. At present, most manufacturers have designed their own or incorporated some of the equipment that is already available. However, these manufacturers have tight security on what they are using and how they are using it for the production of semiconductors. Most companies have their own pet methods and are not talking about them. In fact, in many cases the production test equipment is classified even higher than Government security classifications.
(Continued on page 128)

MICROWAVE

The microwave field is riding the crest of a wave. Principal impetus is coming from the stepped. up military activity in the microwave region. but there has been also a very significant increase in sales to private firms. Most of the obstacles to expansion of microwave services - tied up in appeals to the FCC-have been removed during the past year and an explosive growth of the industry is expected during 1961.

Activity continues to be centered around the New York area and small establishments employing less than 500 workers contribute the bulk of total output.

The major research effort in the microwave field is aimed at new amplyifying techniques that will provide lower noise figures. Solid state devices are showing considerable promise.

The principal areas being investigated are in parametric amplifiers, masers and variations on the traveling wave techniques.

Where formerly it was believed that maser action could be achieved only in extremely low temperatures, approaching absolute, it is now known that maser action can be obtained at temperatures as high as $60^{\circ} \mathrm{K}$. This range can be quite easily obtained with small scale liquefiers using compressed gas, and small closed-circuit liquefiers.

A maser amplifier has been used in X-band radio astronomy where it effected an improvement in sensitivity of more than 12 times. In another application a maser added to an X-band radar produced an effective overall temperature of $65^{\circ} \mathrm{K}$.

The field of parametric amplifiers is looking to the development of new diodes. The upper frequency limit for parametric amplifiers is now about 10 KMC .

A ferrite variable inductor-type traveling wave amplifier has been proposed which could incorporate its own isolator. But the pump power required would be extremely large - on the order of kilowatts.

With traveling wave tubes, it has been widely thought that beam noise cannot be reduced below
about 6 db in S-band. But recent research aimed at reducing the noise in the beams, suggests that perhaps noise figures at S-band of 1 db are now possible.

Just recently a new type of miniature parametric amplifier has been introduced which uses a helix as a slow wave structure. Designed for satellite communication systems in telemetry and radar, the new device is said to permit increased bandwidth, fewer diodes in the transmission line, miniaturized circuits and more stable performance. The amplifier has an insertion loss of aproximately 30 db between the input and output of the helix before application of the pump signal.

The new "Cretatron" traveling. wave amplifier, which gains results from beating two r-f waves of unchanging amplitude but unlike phase velocities, has been operated in the 2 to 4 kmc band at pulse levels up to 1300 w . The interaction length is 3 in .

It is expected that self-contained liquid helium liquefiers occupying about a 1 ft cube will soon be available, and these should give a decided push to the whole low temperature field, and the general field of superconductivity and cryogenics as well.

It can be expected that masers will soon be built that will not require magnets. The so-called zero field masers will utilize crystals having assymetrical structures.

Strip-transmission line, after the initial burst of enthusiasm, has found a small, but secure place in the industry. It has been found to be well suited for use in complete microwave circuits, particularly in components having coaxial connectors at the ports. It has also found some acceptance in many types of filters, where requirements are not too rigid.

It seems assured that strip line, because it offers significant economies, lightness and compactness, will find application in a substantial number of assemblies. But waveguide and coaxial line will continue to be the most widely used.

COMPONENTS

Let's look at what is in the wind, component-wise, for the immediate future-1961. Are components giving way to micro-circuitry?

Basically, there are three steps, currently known, which lead to the ultimate in miniaturization. They are (1) packaging, (2) smaller components, and (3) micro-miniature components and packaging. This last step is the so-called molecular electronics and micro. circuitry. Quite obviously, as the packages get smaller, they become more expensive.

It is still highly debatable whether components will give way to micro-circuitry. They will definitely do so in some areas, but it is highly unlikely to occur in all areas. In the long run, economics will be the determining factor.

We are presently at the second step-miniaturization. New smaller transistors were the first components available. Now the other devices are striving to achieve the same degree of smallness.

For the immediate general needs of the electronic industries, miniaturization using the present resistors will continue to fill the bill.

But those parts of our industry which are further advanced-missile guidance and control, computers, etc.-will be putting more and more pressure on the resistor manufacturers for smaller, more reliable units.

The component makers have come up with the miniature metal film resistor-available with or without leads. The leadless style, terminated with an intermediate range solder, is provided for insertion directly into a printed or etched circuit board and can be completely immersed in solder.

Very few of the major manufacturers have the miniature metal film resistors available in production quantities. Some small companies have developed them and sell them locally in small quantities. Most of the major equipment manufacturers have research programs in which they have developed similar units, but these are used mainly to check the feasibility of their design concepts.
(Continued on page 182)

A MAJOR CAUSE OF FAILURE ELIMINATED BY BUILDING A TRANSISTOR INSIDE ITS OWN SHELL

.ifor F

\qquad
 thin we 1 it y yeu it oty

the most powerful

Westinghouse 30-amp silicon "rock-top" power transistors

New $30-\mathrm{amp}$ ratings, the industry's hlghest! These latest Westinghouse Silicon Power Transistors are especiallydesigned for those applications where you need more transistor power, extra long-life and extra stability under all operating conditions. Your choice of nine devices in this new family-each rated at 30 amps. - for greater flexibility of circuit design in high-power applications. Other Westinghouse high-performance features include: - Exclusive "rocktop" ceramic construction for greater reliability -Voltage ratings to 200 volts - Double-ended case design - Low saturation resistance 250 watts power dissipation.

Production quantities of the type 115 family are now available. Westinghouse also offers the 2N1015 and 2N1016 series of Silicon Transistors, ideal as companion drivers. Military and industrial applications include: power supplies/regulators/ampli-fiers/high-power switching/inverters.
For more information call your nearest Westinghouse representative or semiconductor distributor. Or write: Westinghouse Electric Corp., Semiconductor Dept., Young. wood, Pa. SC-1012
You can be sure . . . If it's Westinghouse

For Immedrato "oft-the-sheff" dellivery,
order from these Westinchouse Distributers:
CASTERM
ACK SEMICONDUCTOR. IMC
CAMERADIO Brmingham 5, Ala. FFA $2-0508$ CAME CRAMER ELECTROMICS, INC
LECTPONIC MMOLESALEDS ELETKONIC WOLESALERS, INC. 3 Molbourne. Florida/PA 3.141 GENERAL RADIO SUPPLY CO.

Camden. N. $1 /$ /WO 4-8560 gemesee radio parts co. milgrar electaonics
HODIO \& EIECT MOW YORL, M.Y./RE 2-4400
RADIO \& ELECTMONIC PARTS COAP.
Clevaland Ohua/UT I-6060
SCWWEBE ELECTRONICS
Long Islend, M.Y./PI 6-6520

mowestrex

ELECTRONIC COMPONEMTS FOR
INDUSTAY CO. SI. Louls. Mo /wo 2.9911 INTER-STAIE RADIO 8 SUPPLY CO.
LENERT CO. Mouston. Telas/CA 4.2653 RADIO DISTAIBUTING CO
seanicompuctolianapolis. Ind./ME 7.557 SEMICONDUCTOR SPECIALISTS. INC S STEPIMO CO Detroit Mieh/PO 2 2000 UMITED RADIQ IMC.
UNITED RADIO, INC. Cincinnati, Ohio/mA 1 mhoLESALE ELECTRONICS SUPPLY Dallas, Texas/TA 4.3001

westren

ELMAR ELECTRONICS
MAMILTOM Oahland, Cavit./TE 4.3311
HAMILTON ELECTRO SALES

mewarn electronics co Inglowood Calie/OR 4-8440

1960-61 Electronic Industry Statistics

1961 ELECTRONIC MARKETS (EST.)

COMSUMER GOODS (Retall)
3,100,000,000
MILITARY \& GOVERMMENT
5,000,000,000
IMDUSTEIAR . 1,750,000,00e
REPLACEMENT PARTS
\qquad
$10.750,000,000$

SEMICONDUCTOR SALES-1960

	Factory Sales		Factory Sales s
	Transistors	$111,500,000$	
Rectifions/Diodes	$180,000.000$		$177,300,000$

SERVICE

During 1960 the onnual retail bill for sorvieing of home electranis appliances was os follows:
72,000,000 replacemeat reselvieg tabes. \& $330,000,000$ 1,400,000 replocement plefore twes (liselvies rebeilidi) $230,000,090$
 teherses, ceeppeent, purf, liestruments.

Tenel servisime Cll
$\mathbf{5 2 , 9 4 0 , 0 0 0 , 0 0 0}$

PHONOGRAPH SALES- 1960
Type
Monaurel
Sioroe

Rotail Sales (units)
961.000

2,950,000
894,000
2.700,000

VITAL TELEVISION STATISTICS 1946-1960

	Tean TV Sate		Recelving Tubes Uned in New TV Sets and for Roplesemente		Total TV Pcture Tives Mandheturea			TV Stations	Telal TV Sets in U. in U.	
	Mumber	Amall Vave	Numbe	Arean valuo	Mumber	Reall Value				
1908	10.000	1 5.00.090	30.000	B Bren	20.000	81.000 .00	14.010 .008	${ }^{8}$	1	190
1201	1.000,000	.amem	2.2000	N0.0000		N:mem		4		1097
1 mem	8.000.00	.a.m	\%7. ${ }^{1}$	11.000	1.m.0.00	210.00.00	17,000,m	10		140
100	1.000.000	2.00 .000	28.00	37.000	0.000.000		\%,10.00	107		10
189	C.000.000	2.10.0.000	10.00.00	270.00 .0	-60000	0,000	10.100,	10	10, 7	101
102	1.00.000	2.m0000		\%	1.c.in	20.0.000	16.7.0.0	12	21.	12
120	7.0.000	1.27000	\%18.	m.en	1000		2.10.	18		14
1208	7.000.000	1.209.000.000	20.4000	107.00.00	11,	m,	\%,	${ }_{80} 18$		$1 \times$
100	7.00.000	1.2770000000000000	2.0		11, 0 , 0	318.	81.	41		10
108	-60.00		17.0000	37,000.00	10.7.0.0.0	290.0n.m	2,0m.	118		
18	3.2.00	102.00.000	120.000			ㅍ.3.0.000	11.00 .0	17		10
100	3.20.000	1,000.000.000			0.000,000		\%.mem	4	8.	10

U. S. PRODUCTION OF RADIO SETS—1922 TO 1960

	Tebal Pato setu Mansfactures				Ainemenve give					
	Number	neman valua	mumam	nutall Valse	Numbem	Retall Velve	Number	Number	Number	
1102	100,0000	85.0200	1.00000					200.009	400,	180
102	1.000.000	10.00.000	12.00.m	20.000				120
103	2,000,000	119,00,000	8.m.en	40.00,000	.					10
108	1,700,000	200.000.000	9.00.00					3.70,	10
1027	1,300,000		11,200000				+6.7......			102
118	3,2m,	com	0.3	110						1 me
1020	1.48.me	000		17.20.000		81.00000				120
131	3,40,000	23, mimicul	\%.0.00	115.	10,000	${ }^{3}$	10	12,04., ${ }^{\text {a }}$		190
1982	3,000,000	100.00.00		4.7000	14,200	7,15,000	2nion	10, 0 ,		10
18	3,000,000	10,500,000			74,000	27,			2,0.000	103
189	4,04,000	214.00			70,		1.20.00	21,43, 0 ,	88.00	
1093	8.c3.00	60,12.40	n,		1.120.00	4090				10
190	1,24,000	470.0.0.0	8,000,00		1,412,000	0.150.000		21, 0000000		100
193	8,00.700		01.0.00		1,700.000	7.00.000	-10.00	26,050, 0	81.	1.7
1.	\%00.00	211.8	T.m.00	18	, 00.00	2.000.000				180
10	11, 0.00	40, 00.000	115.00,000	11600	1.20,00		7.mion			1
101	13.000.000	40.000	12.	43.00.000	2,000,000	10,000,000	0.mid	2. 70.000		101
${ }^{192}$	4,400,000	101000.00	17.		300.00	12.80.600	.m.m			142
190										14
109	200.000	20.03.000		20.00.000			(1)	34,409,		14
190	17.000.000	10.000	10.0000		1,200,000	72,000,000				19
198	10.0.000	00.00.000	2imemem	2 mmom	3.100.000	\%mom	11.0niom	37.000,		197
190	10,000,000	000000	10.00000	.	3,000,000	20.00.000	M, ¢0,	42.		19
1	18.0.000	21,00	, mem			24.0	17.00,000			
129		00,000:000	200.000.000	\% 0.00	2,70, 000	\%	23.amine	48.600		1
14	13,400,000	301,000,000	410.000.000	10.0n.m00	4.000,000	24.000.000	2.mine		12.	10
125		40.0n	cis	20.000.000	4,300,000	20.000,000	28, mom	0	127	14
150	4,000,000	Himem	40.00000000	10.00.00		20,000,000	82.minim			1 m
187	18,800,000	10,00.00	410	00.0.000	5,500,000	,		5,400,000	10.40,000	15
120	12, 0100000		20.mem	7	2,070,000	18,000,000	41,01000	38.030.00		190
100	16,020,000		01000	100,000.00	8,400,000	100,000,000	aicomion	10,200,000	170.0000	190

OUR NEW HOME, DOUSLING OUR FORMER CAPACITY
Match 8 Mastim
ELECTRONICS

FREQUENCY STANDARDS

AND FORK OSCILLATOR UNITS
PRECISION FORK OSCILLATOR UNITS
Our instruments, 40 to 30,000 eycles, are uned extensively by industry ond on governmont projects whore onduring aceuracy and maximum durability are required. Your inquiries an roleted producls are invitod.

PRECISION FREQUENCY STANOARDS

TYPE 2003

Size $13 / /^{\circ}$ dia. $x \mathbf{~}^{13 / 2^{\prime \prime}} \boldsymbol{H}$. Wght. 8 oz. Frequencies: 200 to $\mathbf{4 0 0 0}$ cycles Accuracies:-
Type 2003 ($\pm .02 \%$ at -65° to $85^{\circ} \mathrm{C}$)
Type R2003 ($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$) Type W2003 ($\pm .005 \%$ at -65° to $85^{\circ} \mathrm{C}$) Double triode and 5 pigtail parts required. Input, Tube heater voltage and B voltage Output, approx. 5V into $\mathbf{2 0 0 , 0 0 0}$ ohms

TYPE 2005A

Size $8^{\circ} x 8^{\circ} x 7 \%^{\circ}$ High
Weight, is lbs.
Frequencies:
50 to 400 cycles (Specify)
Accuracy:
$\pm .001 \%$ from 20° to $30^{\circ} \mathrm{C}$
Output, 10 Watts at 115 V
Input, 115 V . (50 to 400 cy .)

TYPE 2007.6

TRANSISTORIZED, Silicon Type
Size $11 / 2^{n}$ dia. x 3 $3 / a^{\prime \prime} H$. Wght. 7 ozs.
Frequencies: 360 to 1000 cycles Accuracies:
2007-6 ($\pm .02 \%$ at -50° to $+85^{\circ} \mathrm{C}$
R2007-6 ($\pm .002 \%$ at $+15^{\circ}$ to $+35^{\circ} \mathrm{C}$
W2007-6 ($\pm .005 \%$ at -65° to $+85^{\circ} \mathrm{C}$
Input: 10 to 30 Volts, D. C., at 6 ma.
Output: Multitap, 75 to 100,000 ohms

TYPE 2121A
Size
$8 \%{ }^{\prime \prime} \times 19^{\prime \prime}$ panel
Weight, 25 lbs.
Output: 115V
60 cycles, 10 Watt
Accuracy:
$\pm .001 \% 20^{\circ}$ to $30^{\circ} \mathrm{C}$
Input,
115 V (50 to 400 cy .)

TYPE 2001-2

Frequencies: 200 to 3000 cycles
Accuracy: $\pm .001 \%$ at 20° to $30^{\circ} \mathrm{C}$
Output: 5V. at 250,000 ohms
Input: Heater voltage, 6.3-12-28
B voltage, $\mathbf{1 0 0}$ to 300 V ., at $\boldsymbol{5}$ to $\mathbf{1 0} \mathrm{ma}$.
ACCESSORY UNITS FOR 2001.2

L-For low frequencies multi-vibrator type, 40-200 cy.
D-For low frequencies counter type, 40-200 cy.
H -For high freqs, ap to 30 KC .
M-Power Amplifer, $2 W$ outpot.
P-Power supply.

TYPE 211IC

Size, with cover $10^{\prime \prime} \times 17^{\circ \prime} x 9^{\prime \prime} \mathrm{H}$.
Panel model
$10^{\circ} \times 19^{\circ} \times 8 \%^{*} \mathrm{H}$.
Weight, 25 lbs.
Frequencies: 50 to 1000 cy .
Accuracy:
($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$)
Output: $115 \mathrm{~V}, 75 \mathrm{~W}$.
Input: $116 \mathrm{~V}, 50$ to 75 cy .
WHEN AEQUESTIME IMPOMMIICN, RLEASE SRECITY TTPE MUMDER
Amcriatu Tinnc Products

$$
11 \text { miditidic }
$$

	QUANTITY		TOTAL	VALUE		TOTAI.
	$\stackrel{\text { 18t }}{\text { QUARTER }}$	$\begin{aligned} & \text { 2nd } \\ & \text { QUARTER } \end{aligned}$		$\begin{gathered} \text { lat } \\ \text { QUARTER } \end{gathered}$	$\begin{aligned} & \text { 2nd } \\ & \text { QUARTER } \end{aligned}$	
POWER AND SPECIAL PURPOSE TUBES	3,211.3	3,218	6,429 3	625	618	1273
High vacuum tubea	928	,958	1,886	144	152	246
Diodes. .	1211	110	230	14	13	27
External anode, except diodes, 100 w or leas.	22.5	204	429	37	35	72
External anode. except diodes over 100 w	72	102	429 174	55	35 66	121
Internal anode except diodes	511	542	1,0.53	38	38	76
Gar and vapor tubes	634	641	1.295	71	73	144
Diodes .	199	151	- 353	11	09	20
Thyratrons, ignitrons,	373	4.19	822	36	41	77
Gas switching devicus ${ }^{2}$	62	58	120	21	23	47
Reflex klystrons (1 w and under)	42	${ }_{25}^{28} 5$	${ }_{67} 5$	127	127	25
Other, ew and pulsed (over 1 w).	3	${ }^{25} 5$	65	5 18	42 85	96 158
Magnetrons.	23	21	44	109	113	222
Forward wave devices.	21	2	41	41	$+8$	89
Backward wave devices	08	05	13	13	07	20
Light sensing tubes.	2*1	251	$5 \ddagger 2$	35	40	75
Light emitting tubes	86	84	170	20	26	46
Storage tubes. Other	1.1	1	24	16	12	28
Other ${ }^{\text {d }}$	1,210	1,211	2, 421	49	53	102
RECEIVING TUBES	106 . 062	100.198	207. 110	952	131	108.3
Subminiature.	1.988	1.954	3, 942	69	66	135
Miniature... . . ${ }^{\text {a }}$ Military	78.189	73,033	151.222	612	574	1186
Military reliable	3.922	4.259	8.181	$6!$	76	145
Alf other types......	74.267	68,774	183.041	215	200	$+15$
Other (metal, caramic, lock-in, etc.)	2.963	3,034	6,047	41	30	71
TELEVISION PICTURE TUBES.	3.070	2.203	5,273	619	136	1279
SFMICONDUCTOR DEVICES.....	63.507	75.959	139.466	1290	1347	26.3 .7
Diodes, rectifiers and related devices	32.847	46.338	79.185	486	57	1060
Germanium diodes and rectificrs. .	13.435	24.661	38.096	81	137	218
$0-30 \mathrm{ma}$..	8.344	14.199	22.543	$+7$	72	119
$31-100 \mathrm{~ms} .$. Over 100 ms	3.642	8.865	12.508	20	52	72
	1,449	1,596	3,045	14	13	27
Silicon diodes and rectifiers $0-30 \mathrm{ma}$.	16,417	19.367	35,884	302	324	626
31-100 ma	1.074	3.291	4,365	25	50	74
Y $101-550 \mathrm{~ms}$	4.156	3.524	7.680	91	70	161
$551 \mathrm{ma}-3$ a	3.635	4.151	7.786	53	55	108
Over 3a-35a	1,380	1,664	3.044	28	34	62
Over 35 a	13.3	136	. 269	21	22	43
Zrner diodes.	1.379	1.458	2.837	61	64	125
Mirrowave diodes	282	298	580	12	13	25
Infra-red and other semiconductor phote cells, except solar cells	6.5	44		06	07	13
Other ${ }^{\text {a }}$.	1.269	505	1.677	24	28	52
Transistors...	30.660	29.621	60.281	80	77.3	1.57
Germanium.	28.603	27.591	56.194	554	512	10i 6
0-125 mw.. $126-999 \mathrm{mw}$	13,214	10.840	24.954	241	201	415
126-999 mw 1 m and over	12.199	13.445	25.644	226	217	143
1mand over	3,190	3.306	6,496	84	94	178
Silicon	2.057	2,030	4,087	250	261	511
CAPACITORS .	328,585	313,188	641,773	65 5	645	1300
Paper dielectric	65,950	59,183	125,133	19.0	176	366
Metal rase. . .	13,353	14,495	27,848	$1+0$	137	277
Non-metal case	52,597	44,688	97,285	5.0	39	89
Film dielectric.	16.888	18.195	35,083	4.1	50	91
Netal case. .	751	${ }^{17} 872$	1,623	10	11	21
	16,137	17,323	33,460	3.1	39	70
Metsilized paper or film dielectric	38.215	3.137	6,352	15	1.6	31 45
Aluminum.	23.137	28,005 22.873	60.801 46.010	21.	228 118	445 240
Tantalum. .	5,006	5,792	10,798	9.6	110	206
Mica, glas, and vitreous enamel dielectric, fixed.	36, 803	31.356	67,859	58	53	111
Ceramic, dieleotric, fixed	164,768	158,178	323,246	7.4	6.6	14.0
Temperature compensating	50,851	46,613	97,464	25	21	4.6
General purpoes......................	113,917	111,865	225,782	4.9	4.5	0.4
Variable (mica, coramic, glass, and air dielectric)	13,118	14.174	27,292	6.0	5.7	117
COMPLEX COMPONENTGe..............	10,093	9,452	19.545	52	5.5	107

(Continued on page 186)

MORE MEGAWATT CYCLES PER DOLLAR*

The Shockley 4-layer diode offers you a fast, simple method for generating voltages up to 200 volts and pulse currents from 2 amps to 100 amps. Turn on time-just $0.1 \mu 8$.

This reliable, solid state device gives you simplicity along with small size, light weight, drastically reduced power consumption and high speed.

These unique advantages make the Shockley 4-layer diode an ideal device for pulse generators, pulse amplifiers, pulse modulators, squib firing
detonator circuits, for triggering thyratrons, magnetrons, traveling wave tubes...

Shockley 4-layer diodes have been proved in many, many industrial and critical military applications. If you have a circuit problem involving the fast switching of high power, the advantages and capabilities of the Shockley 4 -layer diode could help you solve it. Call your Shockley representative or write for application information.
-Even the amalleat Shockley 4-layer diode will handle 2 ampere pulses. (The unit price for 500 Type D diodes is \$4.)

STANFORD INDUSTRIAL PARK PALO ALTO, CALIFORNIA
(Continked from page 134)

QUANTITY

Ist	2nd
QUARTER	QUARTER

CONNECTORS.
Coaxial (r - f)
Cylindrical
Cylndrical .
Printed circuit
Other.
QUARTZ CRYSTALS
Fermetically sealed glass or metal cases
Clip-mounted-plated
Clip-mounted-plated
Lees than $2 \mathrm{mc} / \mathrm{s}$.
$2 \mathrm{mc} / \mathrm{s}$ through $12 \mathrm{mc} / \mathrm{s}$
Over $12 \mathrm{mc} / \mathrm{s}$.
Pressure and wire mounted
Unmealod, plastic case
RELAYS (FOR ELECTRONIC
APPLICATIONS)....................
Electromagnetic. except
stepping ewitchee.

Sealed.

Through 100 mw actuating power
Over 100 mw actuating power.
Unsealed
Through 100 mw actuating power
Over 100 mm artuating power
Talnphone types.
Scaled.
Unsealed

RESISTORS.
Fixed composition.
Fized, deposited carbon and boro carbon Insulated and uninsulated.
Hermetically sealed
Fixed, metal film.
Fixed, wire-wound Non-precision (fixed and adjustable) Precision, unsealed. Precision, sealed
Variable, non-wire wound
Non-precision ${ }^{\text { }}$
Precision ${ }^{\text {. }}$
Variable, wire-vound
Non-precision
Precision and semi-precision
Single turn
Multi-turn (linears)
Rectilinear and toroidal wound
Other (attenustors, varisters, thermisters, cte.).

TRANSFORMERS AND REACTORS
Pulse types.
Toroidal typer
Other transformers and reactors.
Under 2 os.
2 oz. to 30 lbs.
Over 30 lbs.
27.612
27
5
7
1
2
7
1
1
1
1
27,612
5,281
7,196
4,711
2,644
7,780
1,646
1,633
1,353
1,353
201
566
583
280
13

10,377
8.202
1,657
1,313
3,344
3.277
2,917
3,268
341
2,927
2,175

532
532
ฟาณ
23.751
6,011
7.042
5.138
2.134
3.428
1,520
1,506
1,225
1,225
213
551
461
281
14

0,480
7.973
$\begin{array}{r}1.39 \\ \hline 2\end{array}$
3
399
267
3.394
2,967
3,180
330

2,850
1,507

497,760	1.030,631
391,235	813,054
30,641	119,617
28,607	58,119
2,034	3,498
7,419	13,915
20,928	46,788
16,645	37,321
2,730	5,467
1,553	4,000
29,235	60,406
29,129	60,170
108	226
5,022	
4,056	8,005
968	1,918
278	551
173	334
515	1,030
13,280	26,828
8,409	18.703
516	948
887	1,537
7,006	16,218
960	1,772
5,947	14.258
99	188

51,363
11,292
14,238
9,849
4,778
11,206
3,166
3,139
2.578
2.578
417
1.117
1.044
561
27

19,857
16,1
16
3,056
580
2,476
6,671
b 787
$\mathbf{5}, 884$
6.448
6.448
671

5,777
3,682

VALUE
let

QUARTER | 2nd |
| :--- |
| QUARTER |

TOTAL

TOTAL

431	43.4	865
47	83	100
171	161	332
91	109	200
39	3.4	7.3
83	78	161

4	8
4	7
2	7
2	7
0	5
1	1
1	1
2	0
0	1

101
9.9
9.9
5.6
5.7
$\begin{array}{ll}5 & 7 \\ 1.1 \\ 15\end{array}$
12
23
43
13
0
0

488
487
97.5
78.9
$\begin{array}{rrr}396 & 393 & 78 . \\ 172 & 173 & 34 \\ 36 & 35 & 7 .\end{array}$
36
136
116
136
119
1.3
106
105
26

120
128
03
108
$18 \quad 1.6$
$\begin{array}{ll}108 & 214 \\ 105 & 205\end{array}$
2.6
7.9

25
7.5

- 18

61.2	60.7	121.9
11.8	11.1	22.9
5.6	5.9	17.0
4.7	4.7	9.4
0.9	12	2.1
1.9	2.1	4.3
8.0	7.6	15.6
4.2	3.8	8.0
1.8	1.9	3.7
2.0	1.9	3.9
123	11.9	342
10.3	8.9	20.2
20	2.0	4.0
16.7	16.8	33.6
3.8	3.9	7.7
12.9	13.0	25.9
6.5	6.7	13.2
3.6	3.4	7.0
2.8	2.9	5.7
4.9	4.8	9.7
46.4	48.5	9.9
2.3	2.6	4.9
4.3	5.7	10.0
39.8	40.2	80.0
40	4.8	8.8
300	29.0	59.0
5.8	6.3	12.1

plates, etc.). modules aesombled from purchesed components, and modules manufectured from componente which were fabricated "urling the menufecturing procese.

Includes cosrial, atopping ewitchen, thermal, motor driven, and other relaya.

- Includee componition (hlm), moulded carbon, and metal Alm.
- Include depoalted carbon, conductive platic, and metal alm.

10 A small quantity (and value) of shipmenes for non-military applications are comblned with military Ehipments to prevent dis. closure of proprletery information.

Source: The quarterly Joint Burvey of Production Capabilities for Electronic Parta conducted by the Electronlcs Production Resources Apency of the Department of Defense, and the Electronice Divialon, BD8A.

New Broadband Klystrons

140 MEGACYCLES -(1db) BANDWIDTH AT L-BAND 10 MEGAWATTS - PEAK POWER OUTPUT

New additions to the Litton Industries Broadband Klystron family extend broadband performance to even higher power levels as shown in the typical performance curves to the right. These tubes, like all those produced by Litton Industries, are conservatively designed and rated; and rigorously processed to provide many thousands of hours of reliable operation. Using Litton developed broadbanding techniques, it is now possible to achieve wide bandwith, high peak and average rf power output and linear phase shift versus frequency characteristics simultaneously. This latter feature enables the radar equipment designer to utilize pulse compression techniques to attain improved system performance.

Litton Klystrons providing these outstanding performance characteristics can be supplied in both the L and S-bands at peak rf power levels ranging from 2 to 20 megawatts. Typical of the performance obtained with Litton Klystrons is that of the L-3035, a 2.2 megawatt L-band Klystron, whose average operating life in field service is approaching 3,000 hours. Some of these tubes are continuing to provide excellent service after having operated for more than 17,000 hours.

Should you require high power broadband amplifier tubes to satisfy your system requirements, please write to us at Litton Industries, Electron Tube Division, 960 Industrial Road, San Carlos, California. Our telephone number is LYtell 1-8411.

"Capability that

New Tech Data

Medical Electronics

Information on their new B-30ATP Bio-pack from the Medical Electronics and Bionics group, Litton Systems, Inc., 5500 Canoga Ave., Woodland Hills, Calif. New unit is the first in a series of miniaturized instruments for medical electronics application and is a self-contained package incorporating a ubbminiature transistorized differential amplifier and a companion FM transmitter.

Circle 160 on Inquiny Card

Timing Mofors

Description of the new Series MU. 83 Direct-Current Timing Motor. The new motor is a permanent magnet type employing commutator and brushes of improved construction. Folder gives construction features and operating advantages of the new Haydon Timing Motor. Dimensional data drawings and complete information on ratings and availability of components are also included. Haydon Div., General Time Corp., 245 East Elm St., Torrington, Conn.

Circle 161 on Inguiny Card

Connectors

A 4-page bulletin on electrical connectors, receptacles, switches and lighting products. Included in Bulletin B81 are illustrations, specs and suggested applications for standard and custom - built electrical connectors. Also featured are general descriptions of lighting products, including lamps, sockets and connectors, information on pushbutton switches in 2,4 and 6 button and toggle-switch styles, and cable vulcanizers, both stationary and portable types. Joy Mfg. Co., Electrical Products Div., 1201 Macklind Ave., St. Louis 10, Mo.

Circle 162 on Inquiry Card

Solid State Switching

Brochure discusses "Resonant Transfer" technique for generating or detecting pulses in time division solid state switching. It discusses the edvantages of time division switching, compares it to space division and electro-mechanical awirching, and presents a comprehensive explanation of its function, operation and maintenance. North Electric Company, Galion, Ohio.

Circle 163 on Inguing Card

Transisfors

Specifications sheet on PNP Alloy junction transistors covers types 2N1118, 2N1118A and $2 N 1119$. It describes the electrical and physical characteristics of these transistors and lists min. and max. ratings of the parameters. Sperry Semiconductor Div., Sperry Rand Corp., Norwalk, Conn.

Circle 164 on Iogairy Cad

Thermal Analog Tube

THERMION Technical Report 7-8-y, 4-pages brochure describes Thermion's value in determining thermal reliability for vacuum tubes. Tube Equiva. lence Chart included. Rescon Elec tronics Corp., 151 Bear Hill Rd. Waltham, Mass.

Circle 165 on Inquiry Card

Display Devices

Brochure compares electro-mechanical characteristics of industrial cathode ray tubes and recording storage tubes. Entitled "Display Devices," it details 65 industrial CR tube types and 7 single and dual-gun, recording storage tube types. A chart lists types offered by all manufacturers in numerical order, indicating the physical and electrical characteristics, typical applications and operating conditions of each. Raytheon Co., Industrial Components Div., 55 Chapel St., Newton 58, Mase.

$$
\text { Circle } 166 \text { on Iequiry Card }
$$

Fecus Coil

Advance Technical Bulletin gives dimensional drawing, electrical data tables, and description of new Type F40 dynamic focus coil which provides sharp overall focusing for $1 \%{ }^{\circ}$ neck dia flat faced large angle CR tubes used in high resolution applica. tions such as 1000 line TV, radar, and advanced photo displays. Syntronic Instruments, Inc., 100 Industrial Rd., Addison, ILl

Circle 167 on Inquing Card

Cable Ties

Nylon cable ties and straps for securing and identifying wiring bundles are described in a new 4-page bulletin, TR 3. It shows applications, lists the complete line, and gives installation instructions. The Thomas \& Betts Co. S6 Butler St., Elizabeth, N. J.

Circle 168 on Inguiry Card

Pofenfiomefers

A 2-color, 6-page brochure outlines precision wire wound potentiometers and turns counting dials. It contains complete tech specs and dimensioned mounting diagrams. Spectrol Electronics Corp., 1704 South Del Mar Ave., San Gabriel, Calif.

Circle 169 on Inquiry Card

Filters

Reference data sheet (folio 14) from Sangamo Electric Co., Springfield, Ill., ties down the meanings of the terms, Transducer Loss and Insertion Loss. These are power loss measurements of interest in filter work. The article includes circuit diagrams and necessary math.

Circle 170 oa Inguin Cord

Phosphorescent Molecules

New 16-page bibliography of phosphorescent compounds lists over 200 compounds as a guide to identifying solutions through their phosphorescent properties. Bibliography lists the compound, its excitation and emission wavelengths, wavelength mean lifetime, concentration, solvent, excitation source, temp., and information reference source. Also Bulletin 2334, which describes the Aminco-Keirs Spectrophosphorimeter in detail. American Instrument Co., Inc., 8030 Georgia A ve., Silver Spring, Md.

Circle 171 on Inquing Card

Transistor Manual

The 5th edition of GE's Transistor Manual ($\$ 1.00$). New edition contains 4 new chapters and is expanded to 339 pages. New chapters include tunnel diode theory and switching circuits, tunnel diode amplifiers, feedback and servo amplifiers and test circuits. Chapters on silicon controlled rectifiers, power supplies, transistor specs and rectifier specs are expanded and revised. Transistor specs chapter contains a current listing of American JEDEC-registered transistor types with specs and interchangeability information. Semiconductor Products Dept., General Electric Co., Kelly Bldg., Liverpool, N. Y.

Circle 172 on Inguing Card

Channel Shiffers

Audio channel shifters and restorers for use primarily with double or single-sideband radio systoms are described in bulletins from Westrez Communications Equipment Dept., 540 W. 58th St., New York 19, N. Y. The Type 86 multiplexen two 3 -ke voice channels, one occupying 250-3000 CPS and the 2nd heterodyned upward to 3250 to 6000 CPS. Composite transmitted signal is received normally and receiver audio output is fed to a Type 526 restorer which separates and restores both channels to intelligible form. Complete descriptions, including specs included.

Circle 173 on Inguing Card

Angle Indicafor

Tech data sheet, C02721027, from Kearfott Div., General Precision, Inc., Little Falls, N. J., describes a precise Angle Indicator which provides accurate numerical indication of the angular position of any mechanical device to which remote two-speed dual transmitters can be coupled. Some specs (Single-speed and 2-speed in order): Accuracy, $\pm 6 \mathrm{~min} . - \pm 15 \mathrm{sec} ;$ Repeatability, 1.2 min .- 12 sec.; Resolution, 6 sec. (direct); Power, 116 v., 400 CPS, $]$-phase, 30 va.

Circle 174 en Inquiry Card

ELECTRON TUBE NEWS ...from SYLVANIA

3 new Gold Brand types expand industry's widest line of 26.5V SUBMINIATURE TUBES

Sylvania Gold Brand 26.5 Volt Subminiature Tubes afford dramatic opportunities for improved design of compact, reliable communications, telemetering and guidance equipment using a 26.5 volt energy source. Now, the Sylvania premium subminiature tube line includes 3 new types featuring: New Rugged-Design 26.5V Heater - High Uniformity. Stability - Shock Resistance to 750 g - Thermal Resistance to $220^{\circ} \mathrm{C} \bullet$ Intense Radiation Resistance and offering: Compact Equipment Design - Significant Circuit Economies - Improved Equipment Reliability.
At the heart of each Gold Brand Tube is a remarkable advance in 26.5 volt heater design. This new Sylvania design makes practicable quantity-produced heaters with low heater-power requirements and high mechanical strength. The heater base is a heavy
support rod (mandrel) coated with a high-temperature insulator Extremely fine heater-wire is wound over the base, and the entire assembly recoated to form an efficient folded coil heater. In addition to utilizing the new heater design for 26.5 volt heater operation. five Gold Brand subminiature types operate with a B-supply of 26.5 volts, making them ideally suited for hybrid designs.

Sylvania 26.5 volt subminiature tubes simplify circuitry and reduce or eliminate components ordinarily required for the conversion of the "natural" supply voltage. Series string and associated problems can be eliminated. Too, inherent tube resiliency to plate and screen voltage surges eliminates the need for compensating circuits. Result : enhanced equipment reliability, significant cost reductions.

New, Improved Specifications assure uniform, reliable, high-performance tubes capable of withstanding impact acceleration tests of 750 g , fatigue tests of 2.5 g and ambient bulb temperatures of $220^{\circ} \mathrm{C}$. All Sylvania Gold Brand Subminiature Tubes are rigidly disciplined by tighter controls on lot variables, improved AOLs and increased test requirements. As an example, plate current and Gm must meet an AQL of $\mathbf{0 . 4 \%}$. Life tests for 100 , 500 and 1000 hours provide a quantitative determination of end-points such as shorts, heater current, plate current, Gm , insulation resistance, interface impedance. Further, Gold Brand subminiature types are capable of withstand-
ing radiation dose rates (fast neutrons) of $10^{12} \mathrm{NV}$ and accumulated radiation of $10^{16} \mathrm{NVT}$.
Specify Sylvania Gold Brand Subminiature Tubes. Other Gold Brand types that can be designed with the Sylvania 26.5 volt heater include prototypes: 5719, 5899, 5977, 6205 and 6206. Learn more about the advantages of Sylvania subminiature types for your critical desien from your Sylvania Sales Engineer.
For data on specific types, write for the FREE 84-page Gold Brand 26.5 Volt Subminiature Tubes Booklet to Electronic Tubes Division, Sylvania Electric Products Inc., Dept. M, 1100 Main Street, Buffalo 9, N. Y.

SYLVAMLA-7est. Medium-mu couble triode; 26.5V. 90 mA heater with 100 VEb ; designed for oscillator, ampli. fier and low-power servo circuits.

SYLVANIA-7ees. High Gm, medium-mu triode: $26.5 \mathrm{~V}, 45 \mathrm{~mA}$ heoter with 100 V Eb; designed for use as a UMF oscilliator as well as lowfrequency oscillator and emplifiar applications.

CNARACTERISTICS	78070	7808	$780{ }^{\circ}$	UNITE
Heater Voltaga	26.5	26.5	26.5	V
Heater Current	90	45	45	mA
Plate Voltage	100	100	100	Vdc
Cathode Resistop	220	150	1500	Onms
Plate Reaistance	4000	-	-	Ohms
Transconductance	5000	5800	1800	ambos
Amplification Fector	20	27	70	-
Plate Current	8.5	8.5	0.8	mAde
$\begin{aligned} & \text { Grid Voltage } \\ & \text { Ib }=\mathbf{1 0 0} \text { adde Max. } \\ & \text { Ib }=50 \text { madc Max. } \end{aligned}$	-9	-7	-2.8	Voc Vde

- Esch Section

Typical test results for the Sylvania 26.5 volt heater compare very favorably with a 6.3 volt heater of known high reliability. Testing for both types was performed at 120% of rated heater voltage.

Meater Wire wound on insulated mandrel

Sketch shows enlarged view of new Sylvania 26.5 V heater.
SyLTMIS

NEW YORK • WORLD CENTER FOR RADIO-ELECTRONICS • 1961

world will converge on the Coliseum, March 20-23, for IRE's big Show and International Convention. Join the more than 65,000 radio-electronics engineers who will attend! \square On the Coliseum's 4 gigantic floors you'll see the latest production items, systems, instruments and components in radioelectronics; in radar; in complex air traffic control; in space communica-
 tions - in any and every
 and choose from amongst scores of papers to be read by experts in their field. Like the IRE show, the convention is both a summing-up and a look into the future!
Registration: IRE members $\$ 1.00$-non-members $\$ 3.00$ No one under 18 years of age will be admitted, Remember the occasion, the time, the place:

INTERNATIONAL CONVENTION and IRE SHOW • WALDORF-ASTORIA HOTEL • COLISEUM • NEW YORK CITY MARCF 2O-23 1981 The Institute of Radio Engineers 1 East 79th St., New York 21, N. Y.

New Tech Data

Systems Engineering

Application notes describe how to assemble systems for precision measurement of pressures, forces, and temperatures, and determination of ratios, summations, integrals, mass flow rates, and center-of-gravity are contained in a 44-page Systems Engineer's Handbook. Includes specifications of compatible FM system building-block components. Wiancko Fingineering Co., 255 N. Halstead, l'asadena, Calif.

Circle 175 on Inquiry Card

Mierowave Measurements

Application Note \#5, "Microwave Antenna Pattern Measurements with the BA- 7 Video Crystal Receiver" from Weinschell Engineering, 10503 Metropolitan Ave.. Kensington, Md. It describes simple antenna pattern measuring instrumentation based on this model Video Crystal Receiver It is easier to operate and of equal or broader frequency coverage than instruments based upon either barretter or heterodyne receivers.

Circle 176 on Inquiry Card

Constant Current Supply

Spec sheets from Quan-Teck Laboratories, Inc. Po. Box 187,60 Parsippany Blvd., Boonton, N. J. describe their Model 151B Constant Current Supply. It features constant, highly regulated current output from 0.05 to 500 ma ; max. open circuit voltage variable from 2 to 20 v ; transistorized circuitry; current and open circuit voltage indicated on meter; capable of external ac modulation and excellant stability.

Circle 177 on Inquiry Card

Tunnel Diode Applications

Four-page application bulletin (\# 2106) deals with the charcteristics and applications of tunnel diodes. It discussed the significant characteristics of tunnel diodes and their application in amplifiers, oscillator, and high speed switches. Methds of obtaining parameters are described and several basic circuit designs are presented. Sperry Semiconductor Div., Sperry Rand Corp., Norwalk, Conn.

Circle 178 on Inquiry Card

Instruments

Thirty-page catalog from IdealAerosmith Div., Royal Industries, Inc., 3913 Evans Ave., Cheyenne, Wyoming, describes the Company's line of barometers, and rate and motion tables. Included are operating principles, design principles, specifications, etc.

Circle 179 on Inquiry Card

Power Switches

Power class vacuum switches (high voltage interrupter devices) use a vacuum as a dielectric. These switches are described in a brochure from Jennings Radio Manufacturing Corp.. Vacuum Electronic Components, 970 McLaughlin Ave., P. O. Box 1278, San Jose 8, Calif. Advantages include: reduction in size and weight, rapid recovery of very high dielectric strength on current interruption so that only $1 / 2$ cycle or less of arcing occurs, positive current interruption, nonflammable, nontoxic, nonexplosive, visible but enclosed and sealed contacts and arc, etc. Information includes graphs, tables, etc, for preliminary design.

Circle 180 on Inquiry Card

Ceramic Magnef

Bulletin F-600 from D. M. Steward Mfg. Co., Chattanooga, Tenn., (singlepage) describes their new high intrinsic coercive force ceramic magnet. The material is specifically for making stacks for periodically focused traveling wave tubes. F- 600 ceramics have a coercive force. Hc, of 2650 Oersteds, an intrinsic coercive force, iHr, of 3550 Oersteds, and a residual induction, Br, of 2750 gausses. Temp. coefficient of residual induction is coefficient
$-0.18 \% / 1 " C$.

Circle 181 on Inquiry Card

Insulation Chart

A quick informational reference on high-temperature insulation materials for electrical, electronic, avionic, and nuclear applications from Mycalex Corp. of America, 125 Clifton Blvd, N. J. It details the com-monly-used plastic and ceramic insulating material. It also lists fahrenheit temp. limits for 88 materials and a table of thermal expansion coefficients of 57 insert metals and insulating materials.

Circle 182 on Inquiry Card

Powder Core Manual

New edition of its standard Powder Core Manual from Magnetics, Inc. Butler, Penna. It includes practical and tech data on applications of moly-permalloy powder cores. The 43-page manual (PC-203-R) has been arranged to aid filter designers in selecting cores for inductors throughout the audio and low frequency ranges. Dimension data on the company's line is included. Also tables and curves covering temp., inductance dc winding resistance, and other electrical characteristics.

Circle 183 on Inquiry Card

Travel Switch

This 2-page data sheet covers adjustable differential travel switch, 10BS210, which has a $0.0025 \mathrm{in} . \mathrm{min}$. differential travel adjustable to 0.007 in. Sheet includes dimension drawing, operation diagrams, and electrical and operating characteristics. Micro Switch Div., Minneapolis-Honeywell Regulator Co., Freeport, Ill.

Circle 184 on Inquiry Card

Silicon Diodes

A new line of silicon Micro Mesa Diodes with reverse recovery us fast as 2 nanosec. and 2 picofarad capac itance described in brochure from Pacific Semiconductors, Inc., 12955 Chadron Ave., Hawthorne, Calif. Eleven types, including electrical equivalents of EIA types 1 N904 through 1N916, make up the line. Brochure has curves, characteristics, and ratings.

Circle 185 on Inquiry Card

Variable Resisfors

Catalog sheet describes line of Model 7 linear motion variable resistors. It descrlbes the 6 basic types and 60 models. Both wirewound and composition types are covered with printed circuit and Teflon leads. Centralab, The Electronics Div. of GlobeUnion, Inc., 900 East Keefe Ave., Milwaukee 1, Wisconsin.

Circle 186 on Inquiry Card

Computer Diodes

Information available from Hughes Aircraft Co., Semiconductor Div. 500 Superior Ave., Newport Beach, Calif., on their new gold-bonded silicon diode which has a guaranteed recovery time of half a nanosec. It can switch and recover so fast its actual storage time cannot be measured on the finest laboratory traveling wave oscilloscope-the guarantee is only to accommodate the measuring limits of standard sampling scopes. Typical capacitance for the total diode is 0.7 picofarads. Rectification efficiency is 25% at 13.5 KMC . Circle 187 on Inquiry Card

Microwave Filfers

Latest issue of "PRD Reports", Vol. 7, No. 1, is entitled "Microwave Filters." The 12-page paper discusses the present state-of-the-art of microwave filter design. Various techniques for designing filter are described and their advantages and limitations are considered. A bibliography is included. PRD Electronocs, Inc., 202 Tillary St., Brooklyn, N. Y.

Circle 188 on Inquiry Card

NEW DESIGN DATA ON MAGNETIC AMPLIFIERS

-latest ARNOLD folder enables you to design and build a unit to your exact needs.

Armed with the data in this folder, you can create an optimum design for a 12 -watt magnetic amplifier . . . get the closeat possible control over its design and construction ... for control of servo motors, regulated power supplies, etc.
You build the amplifier around its hasic component - the saturable reactor. Twenty-four ARNOLD saturable reactors are described in the folder. There's full information as to what associated components are necessary, and how to use the components in a proper magnetic amplifier circuit.
In buying just the saturable reactor, you get far more latitude than in buying a whole black box. And you won't have to prepare comprehensive specs., or depend on an outside source for the complicated designs.
Write for new Arnold Catalog. It's yours for the asking.
ARNOLD MAONETICS CORP. 6050 W. Jefferson Blvd., Los Angeles 16, Calif.

VErmont 7.5313
Circle 70 on Inquiny Card

New Tech Data

for Engineers

Anechoic Chamber

Brochure describes the simplest box type anechoic chamber as well as the transverse baffle type, aperture type, and the latest longitudinal baffle type, with details of construction with illustrations of each type of chamber built by the Company to meet requirements of frequency range, working conditions, etc. Typical specs are incluced. Emerson \& Cuming, Inc., Cantod, Mass.

Circle 189 on Inquiry Card

Fasteners

Catalog No. 966, a 64-page design manual, focuses attention on reduced dimension, lightweight types of selflocking fasteners. It provides the design engineer with a package of nut shapes useful in the assembly of units for avionic and electronic end use. Special emphasis is placed on clinch types including a new floating type of blind fastener and 2 new right angle bracket nuts for panel and cover assemblies. Instructions on "how to install" are presented; tools and production methods illustrated. Elastic Stop Nut Corp. of America, 2330 Vauxhall Rd., Union, N. J.

Circle 190 on Inquiry Card

High Vacuum Line

New short-form catalog describes the high vacuum equipment line of the company's vacuum tube products division. Included are descriptions of gauge tubes and controls and ion pumps. Hughes Aircraft Co., Vacuum Tube Products Div., Marketing Dept., 2020 Short St., Oceanside, Calif.

Circle 191 on Inquiry Card

High Velfage Capacifor

Booklet ED-T101 describes a new glass cased high voltage capacitor series called Eficon "Glasscon" Type AG. For high voltage dc use, 600 to 60,000 , these capacitors are hermetically sealed in heavy walled glass (or ceramic) tube. Operational factors covered include temp. range, ripple voltage, dielectric strength, power factor, insulation resistance and capacitance change. Rating and selection charts included. Efcon, Inc., Patterson Place, Roosevelt Field, Garden City, L. I.. N. Y

Circle 192 on Inquiry Card

Facilities

New 12-page, 2-color brochure describes facilities of Monitor Systems, Inc., a subsidiary of Epsco, Inc., Dept. 8, Ft. Washington Industrial Park, Ft. Washington, Pa., for engineering and production of advanced systems for high speed process monitoring, production testing, and automatic checkout.

Circle 199 on Inquiry Card

Volfage Comparators

Two-color, 6-page bulletin on NLS Series 50 transistorized voltage comparators used for critical go/no-go applications. Bulletin describes the Model 50 voltage comparator and the Model 51 voltage comparison amplifier. Uses of voltage comparators are discussed and applications listed. A problem and solution section shows how to design complete go/no-go testing systems and how to select the correct voltage comparator or comparison amplifier for numerous applications. Features are covered as well as detailed tech. information, specs and operation information. NonLinear Systems, Inc., Del Mar, Calif. Circle 194 on Inquiry Card

Temperafure Chambers

Four-page folder describes 1 to 10 ft. units designed for lab and job shop where temps. from -150 to $+300^{\circ} \mathrm{F}$ are required. Space saving, low cost mechanical units are pictured, along with accessories and special controls. Also: A new 12 -page tech. article on sub-zeroing and its benefit to gear and pinion production. Cincinnati Sub-Zero Products, 3930 Reading Rd., Cincinnati 29, Ohio.

Circle 195 on Inquing Card

Relays

Engineering bulletin covers Series " V " subminiature relay. The new relay, is designed to meet severe environmental requirements of presentday prototype missiles. Bulletin includes features, applications, specs, mounting styles, type designation and detail data. Filtors, Inc., Port Washington, N. Y.

Circle 196 on Inquiry Card

Electromagnets

Technical brochure on laboratory electromagnets from Varian Associates, Instrument Div., 611 Hansen Way, Palo Alto, Calif.' Included are documented tech. specs and graphic illustrations showing performance. A special section, with dozens of illustrative magnetic field homogeneity plots, describes obtainable perform ance with numerous pole cap configurations on Varian Electromagnets. The pole cap section concludes with a discussion of pole cap selection fo: particular performance characteristics.

Circle 197 on Inquiny Card

DC Blowers

Two-page bulletin 540 describes VAX-3-BD vaneaxial de blowers that produce 65 cfm at $1.6 \mathrm{in} . \mathrm{H}_{2} \mathrm{O}$, weigh 1 lb ., and are 3 in . in diameter. Globe Industries, Inc., 1784 Stanley Ave., Dayton 4, Ohio.

Circle 198 on Inquiry Card

Transistor Amplifier

Harco Laboratories, lnc., New Haven, Conn., offers Bulletin 204, which illustrates and describes their new high gain, low power drain, plugin type transistor amplifer for thermocouple null device application in environmental temps from $-10^{\circ} \mathrm{F}$ to $+175^{\circ} \mathrm{F}$. Features, performance data. and specs provided.

Circle 199 on Inquiry Card

Coaxial Filfers

A 4-page illustrated brochure of coaxial microwave filters describes ganged or individually tuned coaxial resonant cavity devices which operate over 2.1 to 5.9 KMC. A description elaborates on techniques used for miniaturization, frequency stability, diplexing and mixing functions at well as special system requirements. Series of standard coaxial bandpass filters are described with tech. data. Other multisection filters are illustrated. Waveline Inc., Caldwell, N. J. Circle 200 on Inquiry Card

Video Amplifier

A 4-page application note, "Video Amplifiers Using the 2N741 Mesa Transistor," describes design of highquality video amplifier circuits. The 2-color note includes circuit schematics, performance curves, and photographs of a completed $10-\mathrm{mc}$ amplifier. Eleven illustrations supplement the text. Technical Information Center, Motorola Semiconductor Products Inc., 5005 E. McDowell Rd., Phoenix, Ariz.

$$
\text { Circle } 201 \text { on Inquiry Card }
$$

Multiple Connectors

Illustrated 6 -page folder describes a complete line of pin-and-socket type multiple connectors. Folder details electrical and mechanical characteristics of the pin-and-socket connector line (called AMPin-cert). It also lists features of the 5 types of contacts available in the AMPin-cert line, and the features of the connector shells and inserts. A list of AMPin-cert connector accessories available is also given. Two of the 6 pages describe AMP solderless techniques. AMP Inc., Harrisburg, Pa.

Circle 202 on Inquiry Card

Servo Motors

Technical data sheet on Type E 131A, size 15, precision hi-temp, low interia servo motor. It meets military environmental specs. Included are torque curves, outline drawing. schematic, illustration of motor and mechanical, physical and electrical performance characteristics. John Oster Mfg. Co., Avionic Div., Racine, Wis.

Circle 203 on Inquiry Card

New
 Products for the Electronic Industries

hYBRID JUNCTION TEES

Series of matched and unmatched Hybrid Junction Tees (also known as E/H or Magic Tees) consist of a section of waveguide upon which a series and shunt waveguide arm are mounted at the exact midpoint. Matched

tees are equipped with appropriate iris or ramp matching devices. Design and fabrication techniques result in excellent reduction of vswr values relatively wide bandwidths. Also isolation between the shunt and series arm is greater than 35 db over the applicable freq. range. Units are constructed of silver brazed brass which is silver plated and finished in instrument grey enamel and all arms are provided with standard waveguide cover flange connectors. Waveline Inc., Caldwell, N. J.

Circle 217 on Inquiry Card

POWER DIVIDER

A 6-way resistive power divider consists of 7 symmetrical arms 11 input, 6 output) spaced radially about a hub. Resistive networks within the arms provide impedance matching up to $\mathbf{3 0 0 0}$ MC. Unit is electrically symmetrical, and any arm or arms can be used as inputs, the remaining arms for outputs. Dividers are normally furnished with all female connectors in either the N, BNC, TNC, C, or HN series but can be supplied with any combination of male and female con-

nectors. They have an input and output vSWR of 1.2 , and impedance of 50 ohms, a power rating of 2 w , and meet MIL-E-5272. Microlab, 570 West Mt. Pleasant Ave., Livingston, N. J.

Circle 218 on Inquiry Card

PRECISION SWITCHES

Silicone boot provides flexible seal between case and operating pin and with a permanent seal between base and cover of switch case, the 2HL260 series of precision switches gives long, reliable service under adverse en-

vironmental conditions. It is listed by Underwriters' Labs., Inc. for singlepole, double-throw operation at 2 hp 250 vac, 1 hp 125 vac, 20 a 125 vac. Basic switch is $11 / 16$ in. wide, 1-15/16 in. long, $13 / 16 \mathrm{in}$. high and has 2 mounting holes on 1 -in. centers. Series also includes leaf, roller-leaf, and hinged-lever actuator styles. Switches can be furnished with solder-lug, screw-type, or snap-on terminals. UNIMAX Switch Div., The W. L. Maxson Corp., Ives Rd., Wallingford, Conn.

Circle 219 on Inquiry Card

XY RECORDER

New Model HR-93 XY Recorder has an electric pen lift mechanism allowing point plotting, family curve tracing and rapid non-recording pen indexing. The pen lifter can be operated with the hand held manual control box or can be tied into test circuitry for automatic operation. A load-operate switch automatically picks up the pen and indexes it away from the chart area so that the graph paper may be loaded easily with no trace appearing on the chart. After

loading, the pen is held so that no trace appears when indexing back to the original position. Accuracy is $1 / 2 \%$ with $71 / 2 \mathrm{in} / \mathrm{sec}$. pen speed on both axes. Houston Instrument Corp., P. O. Box 22234, Houston 27, Texas. Circle 220 on Inquiry Card

CARBON POTENTIOMETER

New Resiston ${ }^{\text {n }}$ carbon Trimpot ${ }^{\text { }}$ potentiometer provides reliability at operating conditions up to $150^{\circ} \mathrm{C}$. Model 3051, features a high temp. carbon deposited on an inert and moisture proof ceramic base. It is completely

sealed against humidity, exceeding requirements of MIL-STD-202A, Method 106. The total resistance shift is less than 5% and insulation resistance is 100 megohms min . Specs: Resistance range, 20 K to 1 Meg; End settings, 1.0% max. voltage ratio; Power rating, 0.25 w at $50^{\circ} \mathrm{C}$; Resolution, infinite; Operating temp., -65 to $+150^{\circ} \mathrm{C}$; Mechanical life, over 200 cycles; Size, $1.25 \times 0.32 \times 0.19 \mathrm{in}$; Weight, approx. 0.1 oz. Bourns, Inc., 6135 Mag nolia Ave., Riverside, Calif.

Circle 221 on Inquiry Card

MULTI-RATIO GEAR BOX

Universal Multi-Ratio Gear Box, a developmental speed reducer and increaser, with 10 basic ratios (5 reductions and 5 increases), eliminates the need for a number of single ratio units. Standardized mounting dimensions insure quick, accurate assembly with all hangers, breadboard plates and development components. No tools or critical adjustments are necessary when changing ratios-the box is simply placed in the correct position for the ratio desired. They

are in $1 / 3,3 / 16$ and $1 / 6 \mathrm{in}$. shaft sizes, with ball or oil-less bearings. Assemblies have less than 30 min . backlash through the entire gear train. PIC Design Corp., 477 Atlantic Ave., E. Rockaway, L. I., N. Y.

Circle 222 on Inquiry Card

TWO GREAT NEW

RECTIFIERS from PSI...

MICRO-RECTIFIERS

UP TO 10,000 PIV IN A . 075 CUBIC INCH PACKAGE!

Type	PIV	RMS In	$1 . @ 25^{\circ} \mathrm{C}$	$1 . @ 100^{\circ} \mathrm{C}$
PS2422	2000	1400	50	25
NINE TYPES PS2422 THRU PS2430				
PS2430	10000	7000	50	25

- No voltage derating to $150^{\circ} \mathrm{C}$ - Reliability \geq conventional size
- $1 / 5$ th size of comparable units - Easy mount - printed circuits

SUPER

. 5 AMP @ 1500V thru . 2 AMP@ 20,000V PIV!

Type	PIV	RMS In	$1 . @ 25^{\circ} \mathrm{C}$	I.@ $100^{\circ} \mathrm{C}$	Power
PS 1441	1500	1050	500	250	2.8
TWENTY TYPES PS1441 THRU 1460					
PS1460	20,000	14,000	200	100	8.6

- No voltage derating to $175^{\circ} \mathrm{C}$
- Optional wiring terminals
- Shatter-proof body
- Excellent moisture integrity

- ALL WELDED CONSTRUCTION
 - EXCEEDS MIL-S-19500B REQUIREMENTS - IMMEDIATE DELIVERY ALL TYPES

The above types are examples of the broad line of PSI Special Assemblies. This line features 1N1730-1N1734, 1N2382-1N2385, 1N430, 1N430A and many Bridges, Rectifiers and Regulators in Micro and conventional sizes.
For further information phone, wire or write any PSI sales office or authorized distributor. Ask for new 24 -page "PSI Special Assemblies Brochure". Facilities in Hawthorne, Culver City and Lawndale, Californie

New

VACUUM TUBE VOLTMETER

Vacuum Tube Voltmeter, Model 850, features Superior Voltage Measuring capabilities, plus resistance ranges to 1000 Megohms; $5 \mathbf{v}$ full scale range on de; Useful in low voltage transistor circuits; Meter is

connected in cathode circuit of 12AU7 for stability; Long full view scales, Scales $7^{\prime \prime}$ long at top arc; Electrical protection of meter against burnout; Frequency Range-from 15 CPS to 3 Mc; Separate scale for peak-to-peak readings: Single Unit Probe - with built-in switch for AC/DC/OHMS; 11 Megohm input resistance on all dc voltage ranges $A c$ impedance is min . 1.83 megohm. The Triplett Electrical Instrument Co., Bluffton, Ohio.

Circle 223 on Inquiry Card

LIGHT IMAGE INTENSIFIER

New high vacuum tube - type WX-4047-intensifies light radiation. It produces an image of reduced size whose brightness is increased by a factor of 2500 (min .) for actinic blue input radiation, by 1,000 for input radiation at a color temp. of $2870^{\circ} \mathrm{K}$. It uses a short-persistence P15 phosphor. Brightness decays to 10% in $2.0 \mu \mathrm{sec}$. Input resolution is 75 line pairs/in. and its threshold for imaging is approx. 10 : foot-candles. Max. ratings are 30 kv (anode screen to

photocathode) and a 1 ma peak pulse anode screen current. Weight is $61 / 3$ lb. Max. dia is $8.11 / 16 \mathrm{in}$. Length is 15% in. Westinghouse Electronic Tube Div., P. O. Box 284. Elmira. N. Y.

Circle 224 on Inquiry Card

DIGITAL READOUT

Sub-panel mounted, miniaturized digital readout is mounted $13 / 16 \mathrm{in}$. behind a lucite viewing screen. Readout rear-projects the digit onto the , viewing screen. The Series 120000 digital readout for use with digital

computers, control equipment, instruments, aircraft equipment, production and inventory controls, and other electronic or electrical test equipment. Size of the character displayed is $5 / \mathrm{in}$. high. The light source comes from subminiature lamps. No. 327, 328 or 330 . Voltage is from 6 v . to 28 v. Dimensions are $31 / 8 \times 1 \times 15 / 16$ in. Weight, 3% oz. Industrial Electronic Engineers, Inc., 5528 Vineland Ave., N. Hollywood, Calif.

Circle 225 on Inquiry Card

BAND PASS FILTERS

Series of miniaturized, tuneable and rugged band pass filters. Available at center freq. from 100 to 4000 MC in dual or triple section units and with either type BNC, TNC, N or C connectors. Specs: Insertion loss 1.0 db max. and VSWR 1.10 max. at the center freq.; band pass ripple ± 0.5 db , power handling 100 w cW , impedance 50 ohms, nom. tuning range $\pm 5 \%$ times the center freq. and the bandwidth at the 3 db points is from 1 to 5% depending on the center freq. Skirt selectivity for the dual

section is $25 \mathrm{db} \min$. at $1.25 \mathrm{~F}^{\circ}$ and 35 db min. at the sec. harmonic and for the triple section is 35 db min . at $125 \mathrm{~F}^{\circ}$ and $55 \mathrm{db} \min$. at the sec. harmonic. Maury A Associates, 10373 Mills Ave., Montclair, Calif.

Circle 226 on Inguiry Card

PC TEST JACK

Short, printed circuit test jack for closer back-to-back mounting of printed circuit boards. The new unit can be mounted closer because the length of the contact sleeve below the printed circuit board has been re-

duced. It includes a small diameter nylon insulator (in 9 atandard colors), a beryllium-copper, springpin contact, and silver and goldplated contact sleeve for ease in soldering. Constructed to military material specs, the units are easily mounted by inserting them into predrilled circuit board holes and connected by dip-soldering. Raytheon Co., Industrial Components Div, 55 Chapel St., Newton 58, Mass.

Circle 227 on Inquiry Card

SLIDING PISTON

A new type of variable trimmer capacitor with a sliding piston for use with cam driven mechanisms for fine tuning action and long life. Trimmers available in capacitance values from 0.6 to 90 pf in glass or quartz dielectric, in standard, differential, split stator, open or sealed construction. Other features: Stabilityquartz and invar construction has zero temp. coefficient. Low loss and low inductance for high freq. use. No derating up to $125^{\circ} \mathrm{C}$ for glass dielectric $\left(150^{\circ} \mathrm{C}\right.$ for quartz). Shock and

vibration resistant. Gold plating over special alloy for r-f conductivity and freedom from silver migration. High Q dissipation factor. JFD Electronics Corp., 6101 16th Ave., Brooklyn 4, N. Y.

Circle 228 on Inquiry Card

Is This New Printed Circuit Process For You?

Have you heard about the remarkable new "scribe ' n ' peel" technique for making printed circuit layouts? One of the first major companies to adopt this new method reports saving $\$ 27,000$ on a single project involving 300 precision printed circuits.
"Scribe ' n ' peel" is quite simple, actually. With the conventional method, you lay out your printed circuit by putting ink or drafting tape on a surface. With "scribe ' n ' peel", you scribe your design into the surface of a specially coated STABILENE ${ }^{\text {® }}$ Film with a sharp steel instrument. After a few simple processing steps, you've got a complete negative master!
In addition to impressive savings, the "scribe ' n ' peel" technique allows much more flexibility than is possible with the old ink and tape methods. The scribing tools, which make it a cinch to execute uniform circuit paths, will enable your least experienced draftsmen to produce work almost impossible to tell apart from the work of your most highly skilled veterans. And your best men will be giving you the same top-quality work as they do now .. . only faster and more easily.

Various mechanical advantages are enjoyed with "scribe ' n ' peel", too. For one thing, it's the only practical method which allows the preparation of double-sided boards where perfect register is essential. For another, it makes possible ready duplication of sections of the printed circuit master without the slightest risk of damage to the original.
This new "scribe ' n ' peel" technique may or may not be for you . . . but the advantages it presents are so significant that we'd like to offer you a practical means of finding out. We've put together a complete "scribe ' n ' peel" Evaluation Kit with everything you'll need to test this new technique, including easy-to-follow instructions. Using the kit, you'll be able to render an actual printed circuit master and see first hand what "scribe ' n ' peel" can mean to you in terms of increased accuracy, flexibility, speed and savings.
We're charging only $\$ 5$ to cover materials and handling ... a modest investment which can reap tremendous dividends in terms of up-dating your printed circuit techniques. Simply fill out the coupon below and a $K \& E$ representative will deliver it promptly to your door. (see coupon below).

STABLENE "Scribe 'N' Poal" Evaluation Kit"

1. 3 sheets Stabilene Scribe Coat \#R $132 \mathrm{H} \cdot 81 / 2^{\prime \prime} \times 11^{\prime \prime}$	6. Photographic Developer • Directions under label
2. Scribe Points	7. Reversal Solution - Component
3. Scribe Point Holder	
4. Touch Up Crayon	
5.6 sheets Stabilene Photo Sensitized Peel Coat \#597H • 81/2" $\times 11^{\prime \prime}$	9.4 Cloth pads for etching 10. Etching Solution 11. Instruction Sheet

sheets Stabilene Scribe Coat $81 / 2^{" 1} \times 11^{\prime}$
2. Scribe Points
3. Scribe Point Holder
5.6 sheets Stabilene Photo Sensitized Peel Coat \#597H - 81/2" $\times 11^{\prime \prime}$
6. Photographic Developet•Di-
7. Reversal Solution - Componest
8. Reversal Solution ${ }^{\circ}$ Component
9. 4 Cloth pads for etching
10. Etching Solution
11. Instruction Sheet
*This kit contains basic scribing tools to acquaint you with the rechnique. If you decide to adopt the "scribe ' a ' peel" method, K\&E has a full range of topquality, precision instruments specially designed for this type of work. They are designed for this type of work. They are
fully described in the literature which fully described in the literature
comes with your Evaluation KiL

EVALUATION KIT

KEUFFEL R ESSER CO.
NEW YORK - HOBOREN, N. J. - DETROIT • CHICAGO MIIWAUKEE - ST. LOUIS • DALLAS - DENVER SAN FRANCISCO - LOS ANGELES•SEATTLE - MONTREAL

KEUFFEL ESBER CO., Dopn.•틴, Mobeken, M. J .

Gentlemen:

Please send me a STABILENE EVALUATION KIT and bill me later.
Name \& Title:
Company \& Address:

JENNINGS VACUUM RELAYS

RASE

REEB

RB7A

what would you look for in the ideal relay?

\longrightarrow \longrightarrow \longrightarrow
 High insulation resistance
 Very low contact resistance Minimum size
 Permanently clean contacts High voltage and current ratings

And where will you find a relay that embodies all these desirable characteristics? Examine the ratings achieved by these typical Jennings vacuum relays and see how well they meet the requirements of many specialized applications.

HIGH VOLTAGE

MINIMUM

REBE (8PDT) 0 (60	
Rated operating voltage dc or 60 cycle.	25 kv
Peak test coltage . . 16 mc	$15 \text { kv }$ $35 \mathrm{kv}$
Continuous rms current dc or 60 cycle.	25 amps
comm	9 amps
Interrupting rating-dc res. loads (not to exceed 5 a or 10 kv).	20 kw
Re7A (2PDT)	
Rated operating voltage dc or 60 cycle.	$\begin{array}{r} 5 \mathrm{kv} \\ 2.5 \mathrm{kv} \end{array}$
Peak test voltage dc or 60 cycle .	7.5 kv
Continuous rms current dc or 60 cycle	8 amps
16 mc	3 mmps
Interrupting rating-dc res. loads (not to exceed 4 a or 5 kv).	5 kw
Overall length. . . .	136 inch
RASE (APDT)	
Rated operating voltage .	300 v
Continuous rms current	40 amps
Interrupting rating (25,000 ops).	$28 \mathrm{vdc}-20 \mathrm{amps}$
Shock	50 G
Vibration	30 G fr
	10 to 2000 cps 26.5 vdc

Jennings vacuum relays are unequalled for solving difficult problems of antenna switching, pulse forming networks, or similar rf and dc circuits where reliability is of utmost importance.

JENNINGS RADIO MANUFACTURING CORPORATION 970 MCLAUGHLIN AVE, P. O. BOX 1278 SAN JOSE 8, CALIF.

New

Products

FEED-THRU CONNECTOR

For use with Printed Circuit Boards or Plyo-Duct (flat multi conductor cabling), feed-thru connector, series FTD 1500, employing a trifrucated contact which can withstand and exceed vibration requirements of

MIL-E-5272. Presently available in 15 contacts on 0.100 in . centers for a nom. card opening of 0.062 in ., and employing glass filled Diallyl Phthalate as a Dielectric. Methode Mfg. Corp., 7447 W. Wilson Ave., Chicago 31, Ill.

Circle 261 on Inquiry Card

UNIVERSAL COUNTER-TIMER

All trensistor, de to 20 Mc, I/niversal Counter-Timer, Model 728A, provides increased reliability, reduced power consumption, size and weight. Unit is direct reading. Heterodyning techniques are not used. Power consumption is 50 w . weight is 27 lbs . Size is $7 \times 17 \times 12$ in. It consists of 3 input channels, a special decade count-down time base which eliminates the need for divider adjustment, and a series of plug-in transistorized decade counting units. Output information from each DCU will operate digital printers, punches, inline readouts and other data processing equipment. Measurement ranges are de to 20 MC (freq.) ; $0.1 \mu \mathrm{sec}$ to $10^{7} \mathrm{sec}$. (time in-

terval) ; $0.1 \mu \mathrm{sec}$ (period). Accuracy is ± 1 count \pm oscillator stability. Sensitivity is 0.25 v . BMS; input im pedance is 25 ks ohms $/ \mathrm{v}$. ComputerMeasurements Co., 12970 Bradley Ave., Sylmar, Calif.

Circle 262 on Inquiry Card

... by turning FIRST to BUSS for fuses of unquestioned high quality

By relying on BUSS as your source for fuses, you can quickly and easily find the type and size fuse you need. The complete BUSS line of fuses includes: dual-element "slow-blowing", single-element "quick-acting" and signal or visual indicating types . . . in sizes from $1 / 500 \mathrm{amp}$. up - plus a companion line of fuse clips, blocks and holders.

BUSS fuses are made io profect - not to blow needlessly

When you specify BUSS fuses users of your equipment receive maximum protection against dam-
age due to electrical faults. And just as important, users are safeguarded against irritating, useless shutdowns caused by faulty fuses blowing needlessly.

A component part that operates as intended helps to maintain the reputation of your equipment for quality and service. That's why it pays to rely on dependable BUSS fuses.

If you should have a special problem in electrical protection . . . the world's largest fuse research
laboratory and its staff of engineers are at your service - backed by over 46 years of experience. Whenever possible, the fuse selected will be available in local wholesalers' stocks, so that your device can be easily serviced.

For more information on BUSS and Fusetron small dimension fuses and fuseholders . . . Write for bulletin SFB.

BUSSMANN MFO. DIVISION.
McGraw-Edison Co.
Universily af Jefferson, St. Lovis 7, Mo.
181

BUSS fuses are, made to protect not to blow, needlessly BUSS mokes a complete line of fuses fo: tiome, farnt, commiercial. eleationic, electrisul, aulomotive and industion use

IERC TRANSISTOR HEAT DISSIPATOR

actual size

accepts 305 to .335 variations in T0-5 cases!

Simplified installation for effective heat dissipation with IERC Transistor Heat Dissipators are illustrated: 1. Parts available in rivet or screw attaching types. 2. Single or multiple mounting on heat sink angle. 3. Back-to-back mounting.

Delailed information, performance graphs, etc. are available in latest IERC Technical Bulletin. Write for a copy today!

INTERNATIONAL ELECTRONIC RESEARCH CORPORATION 135 West Magnolia Boulevard, Burbank, California

Fereign Manufacturers: Europelec, Paris, France, Garrard Mg. a Eng. Co., Ltd., Swindon, England.

New

Products

ACCELEROMETER

Model AA-1220, has a resonant fre quency of 125 kc , providing a useful freq. range to 25 kc . It can be used to measure acceleration levels up to $15,000 \mathrm{~g}$. Design minimizes de shift in both axes. Transverse response is

less than 3\%. Specs: Acceleration range: 2 to 500 R (10 ms pulse); 500 to $2,000 \mathrm{~L}(1 \mathrm{~ms}$ pulse): 2,000 to $15,000 \mathrm{~g}$ (0.25 ms pulse). Frequency Range (into 100 megohm load): 10 CPS to 25 kc . Sensitivity (min. with 4 ft . cable) : 0.3 mv (RMS)/g(RMS). Capacitance (min. with 4 ft . cable) : $750 \mu \mu \mathrm{f}$. Transverse acceleration: $7,500 \mathrm{~g}$ max. Transverse Response: 3% max. Linearity: $\pm 2 \%$. Operating temp.: -65° to $+250^{\circ} \mathrm{F}$, less than $\pm 10 \%$ change in sensitivity from room amb. Seismic system: Bender. Standard calibration: 20 to 10,000 cPs, resonant freq. and capacitance with cable. Gulton Industries, Inc. 212 Durham Ave., Metuchen, N. J.

Circle 263 on Inquiry Card

FILAMENTS-BOATS

New line of tungsten, tantalum and molybdenum filaments and boats in a variety of sizes and shapes. For use in high vacuum as an evaporation source, they are processed to maintain a high standard of purity and accuracy. All parts are stress relieved. Primary uses include: elec-

tronic component processing, coating of optics, precision instrumentation manufacturing, and vacuum metalizing in basic research labs. Electron ics Div., Allen-Jones, Inc., 1345 Gaylord Ave., Long Beach, Calif. Circle 264 on Inquiry Card

Now Eimac's 2C39A gives you more ruggedness than any other competitive tube. Plus a higher maximum temperature rating of $250^{\circ} \ldots$ and less dielectric loss at higher frequencies for increased efficiency, power output. And all at no increase in cost! Get the only ceramic tube built to 2C39A specifications. Get it only from Eimac... world leader in power tubes, microwave tubes, amplifier klystrons. Contact your local Eimac representative for quantity price quotations. Eitel-McCullough, Inc., San Carlos, California.

PIONEERING

A new concept in reliability-crimp Poke Home Contacts*-was pioneered and actively developed by Amphenol Connector Division. Removable contacts that are crimped outside of the body of the connector, inspected and then inserted for assembly are available in six connector lines. In Rack \& Panel connectors, for example, "Poke Home" economy and reliability are
offered in miniature Min Rac 17, aircraft 94 and missile 93 series.

In almost every application area there is an Amphenol connector with Poke Home contacts. Catalog data is available for your use.

New

Products

RECEIVER-TRANSMITTER

New $12,000 \mathrm{Mc}$ microwave receivertransmitter. The r-f equipment, Model MR-40, provides broad-band communications for very high speed data transfer and transmission of conventional telephone and teletypewriter mes.

sages. It can carry data at 62,000 characters/sec. When used with Motorola's new data transmission multiplex system. It can also handle voice, facsimile and teleprinter transmissions and control and monitor functions with 600 or more multiplexed channels. It provides 100 mw power output. Basic components are 2 reflex klystrons, one in the receiver-one in the transmitter. Each has a life expectancy of $20,000 \mathrm{hrs}$. continuous operation. It can be used with both directly aimed dish antennas and tower-mounted passive reflector configurations. Motorola Communications Div., 4501 West Augusta Blvd., Chicago 51, III.

Circle 265 on Inquiry Card

MOBILE RADIO FILTER

New 455 ke Mobile Radio I-f Filter, Model F-124. Designed for mobile radio equipment, it is a low-cost unit of rugged construction and reduced size. Specs on the new filter are: Center frequency, $455 \mathrm{KC} \pm 1 \mathrm{KC}$; Insertion loss, 23 db (max.) ; Band-

width, at $6 \mathrm{db}, 10.5 \mathrm{kc}$, at $60 \mathrm{db}, 31$ кc; Max. ripple, 0.5 db within the pass band; Dimensions, 3-1/6 $\times 1-1 / 16$ x 1-3/16 in.; Connections are coaxial cables. ESC Electronics Corp., 534 Bergen Blvd., Palisades Park, N. J. Circle 266 on Inquiry Card
 Wire is especially designed for use as Anode Connectors, Fly-8ack Transformer Leads and similar applicafions in TV Receivers, and other electronic circuits carrying high volf-- ges.

Code HYANODE combines high dielectric strength with maximum flexibility and minimum outside diameter. If is available with No. 22 Ga. through No. 18 Ga. Stranded Tinned Copper Conductors. Outer jackets of extruded plastic compounds are rated at $80^{\circ} \mathrm{C}, 90^{\circ} \mathrm{C}$ or $105^{\circ} \mathrm{C}$. Standard Color is Red-other colors available.

Quotations based on your quantity requirements
furnished promplly. Samples available on requesf.

LENZ ELECTRIC MANUFACTURING CO.
1751 No. Westera Ave.
Chicago 47, III.
Ia Buplosss Slinee 1904

156
Circle 81 on Inquiry Card

and ALL NEW

Completely covers the frequency range from 4.0 to 40.0 KMC/S with only one probe carriage.

The new PRD 230 Universal Probe Carriage represents a major achievement in accurate standing wave and impedance measurements. Here is a precision instrument which features bold. rugged styling with laboratory accuracy. The position of the probe holder can be quickly determined to 0.01 mm .

A complete series of Waveguide and Coaxial Slotted Lines are available for snap-in convenience and low VSWR performance. Unusual features include a scale calibrated directly in dial revolu. tions and self-contained slope adjustment of the U, K, and A band Slotted Lines.

PROBE CARRIAGE: Accepts both PRD 250-A Broad. band probe for 4.0 to $12.4 \mathrm{KMC} / \mathrm{S}$ and PRD 253 Fixed Tuned Probe for 12.4 to 40 KMC S.

VSWR: PRD 231 Waveguide Slotted Lines have a maximum residual VSWR of 1.01.

VERNIER RESOLUTION: 0.01 mm .
PROBE TRAVEL: 6 cm .

PRD 231* SERIES SLOTTED LINES

$\begin{aligned} & \text { PRD } \\ & \text { Trge } \end{aligned}$	Fraquene) Renge (tume/s)	Tramsmisslen tine Size (Iaches)	Length (Inchos)	Coupling Type
N231	4.0-10.0	\%" Coaxial	9-1/4	**
$\times 231$	8.20-12.4	$1 \times 1 / 2$	9	UG-39/U
U231	12.4-18.0	. $702 \times .391$	9	UG 419 U
K231	18.0-26.5	. $500 \times .250$	9	UG-425/U
K231-F1	18.0-26.5	. $500 \times .250$	9	UG-595/U
A231	26.5-40.0	. 360 - 220	9	UG.381/U
A231-F1	26.5-40.0	. 360×220	9	UG-599/U

"Available in WR waveguide sizes on special order.
*"Normally supplied with Type "N" male and temale adapters (PRO 367 and 368).
Adapter for Type "C" male and female (PRD 3354 and 3355). Adapter for "TNC" male and female (PRD 3395 and 3396). Adapter for "HN" components (PRD 3368 and 3369).

We have many inferesting openings for engineers...
sonfoct Mr. John R. Zabta.

risPRD

GET THE

USE THIS FREE READER SERVICE CARD

Keep up to date-get the facts about the new products and equipment as they hit the market. ELECTRONIC INDUSTRIES' advertisers will be glad to send you complete literature giving specifications and data relating to those products advertised in this issue. To help you, the new product items, new literature and advertisements in this issue are numbered consecutively, from the front to the back of the book. The extra cards are for the use of your associates with whom you share your copy of ELECTRONIC INDUSTRIES.

BUSINESS REPLY MAIL mo postuge stanp netessary if maliey in united states

POSTAGE WILL BE PAID BY

 ELECTRONIC INDUSTRIESThe Computer Center
P. O. Box 8221

Philadelphia 4, Pennsylvania
\qquad
\square

ALPHABETICAL LISTING OF
 CIRCLE THE NUMEERS OPPOSITE THE NAMES OF THE

A

3in ADC lacorporated-Plogo, jacks, patch curde © jack pevele
90 Aerovox Corporation-Solid tantalum capecitors
22 Alford Mamufacturiag Company-Line stretchers
82 Allited Coatrol Company, Ine-2 Amp relay
88 Alpha Merais Iac. - Flux-filiod solder wabers
130 American Electical Heater CompanyElectric soldering trons
67 American Mme Producti Inc. - Pre quency standarde and fork vecillator

45 AMP Incorporated-Wire verminations
64 Amperez Electronic Corporation-Tranafatore
78 Ampheaol Connector Dirlaion Amphead Borg Electroaia Corp. - Conaecwr
with Poke Home conelaci
100 Andrew Corporation-Fized slation anteana
Arnold Eagineeriag Company - Irun powder coren
70 Araid Magnetics Corp.-Magnetic am. plifers

146 Assuciated Researeb Iac.-High potentia: tertine equipment
127 Avart Electroales Corp. - Electronic compunent distribution

48 Ballantine Laburaturies Inc.-Calibrator
33 Beckman Berkeley Division - Digital voirmeter
116 Beckman Inatramenta/Helipot DivialonPoteatiometer ceralo
124 Beplis Corporation Tube Division Microwave tubes
44 Beadix Curporation M.C. Jonses Electronic Cu., Inc.-RF lued resistore
144 Bendix Corporation Pioneer-Central Divi-sion-Sonic earry cleaning
80 Bork Equipment Diviaion-Miniaturized precision poteatiometers
89 Bogras Iac. Trimpot Diviaion-Carbunam trimmer Dotemesometer
140 Braun Tool e Intramen Company Inc -Beryllium copper compunent clips
131 Bruao-New York Industrie Corp-"Pig Tailoriag" machiae
64 Brash Inatrameate Divialos of Clevile Corp.-Motion-sensiag transjucer
56 Surnall Co., Inc.-Toroids, fitern
76 Busmana Mpe Diviaion, MeGraw-Ediaun Co.-Funen 2 fuseholders

C
29 CBS Electronice, Semiconductor Opera. tions-Switchiag with CBS MADI transiators

YOUR NAME
TITLE
JAN. 1961
FIRM
FIRM ADDRESS
City on TOWN. ZONE \qquad

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177
181	182	183	184	185	186	187	188	189.	190	191	192	193	194	195	196	197
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317
321	32 ?	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337
341	342	343	34:	345	346	347	348	349	350	351	352	353	354	355	356	357
 36136236 Please send me further information on the items I have circled abo																

POSTAGE WILL BE PAID BY ELECTRONIC INDUSTRIES

The Computer Center
P. O. Boz 822

Philedelphic 4. Pennsylvanie
47 Centralab, The Electronica Div. of CalobeLniun Inc.-Switch visualizer. switeh layout sheet \& cataluy
181 Chemplat Iac.-TEFLON apaghect tub-

B8 Circh Manufacturins Company-Minia. ture esanectora

- Communication Accessorics CompanyTraneformers high vuitage
43 Clare Compeny, C. P.-Mercury-a.etted relay
Clevite Tranalator Producte - Semicoaductur devices
Clevite Tranalator Producta - Difluaed allicon ractifier
Computer Meagurementa Companar Transiotorised irequency-period meter
Conrec, Inc.-Video monitore
91 Control Switch Division Contrula Cu. of America-Interlock lishted puabution switch
85 Cormins Electroaic Components Coraing Glase Wurke-Tin exide 1 lm imwhers
152 CumLom Components Inc.-Microwave abeurber

88 Ciale Electronice Iac. - Resistore wire wound. precision wire Daven Ca . The-Wire wound replelop networke
7 Delco Radio-Diglta! modules
63 Delco Redio-Power tranaiszors
128 Design Tool Co.-Autimatic production machlae
Deurach Company-Hermetle coanectore Dialisht Corporation-Pilot liehtio
Dow Curalas Corporation-Siagle eryelal allicon
53 Dumont Laboratiories, Allen B.-Cathode ray display zulen

E
153 EICO-EICO Electronic Catalog
69 Fitel-MeCullough, Inc.-Ceramic wbe
115 Elgin Advance-Cirystal-can-aixe hermetically sealed relaye
01 ESC Electroaica Corp.- 3 Siniature eranaponder delay line

15 Fairebild Controls Corp-Fire contrul accelerometer
65 Fatrehild Semleomductor CorD-Plamer atructure allicon tranairtore
72 Muke Mis. Co., Inc., John-Difterenual DC voltencier
160 Freed Tramaformer Co., Ime-Conslapt oleage kramformen, nugnetie ampli日ers
81 FXR. lac.-Direct readiag Preavency

6

18 General Electrodyamales Curp. - Vidi. cons, ran conversion fonage conversion, or diaplay tubee
45 General Inetrument Corp., Semiconductor Division-2ener diodea
142 Geseral Products Corp - Solid-black cerminal buards
41 General Radio Company - Frequeacy meter and discrimiastor
11 Gond-All Electric Mis. Co.-Capacilore
101 Globe Industria Inc.-80 diamelar vaneaxial blowers
154 Graphic Syaterne-Visual control buard
94 Graybill Inc-Switches evt clipa, tont jacks binding pasts
89 Gremar Mre. Ca. Ine.-RF conaectise
185 G-V Controla Inc.-Therwal relay

8

27 Hewletr-Packerd Company-Oncillosespee with vertical thme ase. pluy ing

ADVERTISERS IN THIS ISSUE

ADVERTISERS FROM WHOM YOU DESIRE FURTHER INFORMATION

54 Hill Electroaice, Ine. - Dectronle altert
87 Howard Iadastries, Iac.- Frectional R.P motor
a Hughes Alreraft Company Mierowave Tube Division-Backward-wave ceclllators

111 Ideal Industries, Inc.-Custom wire atrippers
77 International Electronic Reseaph Corp. - Iramalator heat disaipatu

PROFESSIONAL ENGINEERING OPPORTUNITIES

Circie number of compeny on card at right from whom you deelre further information.

608 (ieneral Electric Electronios Latroratory
501 General Electric Misolle Space Vehleis Departmeat

148 Ulinole Condenaer Company-Electrolytie

 capacilors118 Indertial Electronic Engrame, Ine. lo-line digical readore Intarnational linillame Co.-Square kimmer polatiomeleri The 108 Iniernational Conventiun and IRE Iotermational Cubveatua and IRE Show

75 Jenalngs Radio Mif. Cord.-Vecuum NJereron Producte lac.-Magachore coanecton:
JFD Electronica Corp.-Trimmer eapacilor
107 Jobnson Co.。E F. - Veriable eapacitor
109 Jones Div.. Howerd B., Clach MPE. Cu.-Pluge ackets

K
16) Kay Electrie Company-Audio. Video, Hof eweeplag cecillator
115 Kaighta Compasy, The-Crretal-con-
L
96 Le. Iac.-Micriwave-mizer preamplifor 74 Lenz Electric Ms Co.-Hish voltage lead wise

M

28 Mignetic Shield Diviaion Perfection Mica Co. - Shielded tape data contaiaern
$121 \underset{\substack{\text { Marconi } \\ \text { meter }}}{\text { Inatrumenta - FM deviation }}$ meter
50 Mierowave Arsociates Inc.-8tlleot computer dioriee
24 Minaemnta Maing Meg. Co., Mibcum producer linsrumeatation recordep/re producer
65 Muzorola Semiconductor Produce IneSilicua Rectifere

N

106 Newman Corp., M. M.-Minlature soldering iron
40 Nothelfer Windtac Laboratories. Inc.High frequerey nilameal branoformers

Employment-Use the handy card below to get more information on the engineering positions described in the "Professional Opportunities" Section which begins on page 213 of ths issue.

Posteard valid I weeks only. After that use awn letterhead describing item wanted.
JAN. 1961

PROFESSIONAL ENGINEERING OPPORTUNITIES

Please send me further information on the engineering position I have circled below.

$\mathbf{5 0 1}$	506	511	516	521
502	507	512	517	522
503	508	513	518	523
504	509	514	519	524
505	510	515	520	525

YOUR NAME
TITLE

HOME ADDRESS

CITY or TOWN
ZONE \qquad

NEW subscription orider

I wish a new complimentary subscription to ELECTRONIC INDUSTRIES Y Yos No

Company Name:
Name:........... Position
Company Address:
City:
Zone
State
Specific Producłs Manufacłured

YOUR NAME TITLE.

JAN. 1961
FIRM
FIRM ADDRESS
CITY OR TOWN. ZONE. STATE.

	22	3		25												37	38	99	
	42	43					48				52	53				57		59	
		63					68							75					
	82	83	84	8	86	87	E8	89	90	91	92	93	94	95	96			99	100
101	102	103	4	105	06	107	08	109	110	111	112	113	1	115	116	117	8	119	
	122	123	12	25	126	127	28	129	130	13	132	133	13	135	13	137	13	139	
141	142	143	14	45	146	4	148	14	150	15	152	153	15	155	156	157	15	59	
161	162	163	164	65	166	167	168	16	70	17	172	173	17	175	176	177	78	79	8
181	182	183	184	85	18	87	188	189	190	19	192	193	19	195	196	197	19	199	200
201	202	203	20	205	206	207	208	20	210	211	212	21	21	215	216	217	21	219	220
221	222	223	22	225	2	22	228	22	230	23	232	233	23	235		237		239	240
41	242	24	2	245	24	247	248	24	250	25	252						258	259	
	26	2		265	266	67	68	269	270	27	272	27	27	275	276		278		
81	282	283	28	285	2	28	A		290	291	292	293	294	295	29	29	29	20	
301	302	303	30	305	306	307	308	309	10	311	312	313	31	315		31	318	319	
321	32	32	324	325	32	327	328	32	35	331	332	33	3		-	7	338	339	
	3	3	344	3	3	34	348	34	350	351	352	353	354	355	356	357	358	359	360
asitard valid It weeks anfy. After that we own letterheed destribing itom wented. 361362363364365																			

Please send me further information on the items I have circled above.

17 Ohmite Mig. Co.-Tantalum foil capac. fore

P

18 Pacibe Semiconductore, Iac. - Silleun Branuiator
20 Peelife Semieonductors. Inc.-Silicon di-

T3 Paeific Semiconductors, Inc.-Miero-rec tifiers ef fue cllp rectifier
98 Panoramie Radio Products, Iac.- Spectrum analseer
111) Philbrick Rewarches, Ime.. Georse A. Univeraal atabilized amplifiers und power supply
10 Phileo Corp.i Lanedele Division-Strid alloyed aflicon snangiators
97 PIC Desien Corp. Subsidiary of Benrus Wateb Company. Inc.-Gears, ahafts atber parta components

BUSINESS REPLY MAIL mo postage stanp necessary if malte in united states

POSTAGE WILL BE PAID EY ELECTRONIC INDUSTRIES

The Computer Center
P. O. Bor 8221

Philadelphia 4. Penasylvania

FIRST CLASS
PERMIT NO, 36 PHILA., PA.

BUSINESS REPLY MAIL

 mo postage stanp mecessary if manted in united statesPOSTAGE WILL BE PAID BY ELECTRONIC INDUSTRIES

CNESTMUT A SCH STS.
PHILADELPAIA 19. PA.
Chilton Company

Plestic Capacitors, Inc.-High voltage cabscitora
Polarad Electronice-
Polarad Electronica-
Putter A Brumiald-Latehing relay Puwer Designs Inc.-DC power supply carriage slotted lines

139 latur

5

182 Salun Intcrnational des Componanta Electroninue - International Sympo sium on Semiconductor Device

16 Inited Van Líae - Industrial surface

\mathbf{V}

Quan-Tech Laboratorien - Tramalstorised power supplies

R

Radio Materials Company-Ceramie dine capacitore

Serkea Tarzian, Inc.-Silicon rectifier
Scientific-Atlanta, Inc. - Amtenam patlern recorders
Sealectro Corporation-TEFLON termimals
Sekunic Ine.-Mcters for all requirement
Shoekleg Tramalator Uait of Clevite Transiator-4-lager diode
SIFCO Metarhemical. Inc. - Seloctive platine equipment
Spectrol Electronien Corp. - Trimming potentiometer
Sprague Electric Company-Dise ceramic capacitors
Sprasue Electric Company-Germanlum Miero-Alloy diffosed-base smasistors
Sackpole Carbot Ca-pired renistore
SLanpat Co.-Electroaic pristed circuit A symbols
Stevens Manufacturias Co., Iac.-TherBuntata
Stewart Engineeriag Corp. - Backward weve onellator
Struhers-Dun, Inc.- 10 ampere relag
Superior Tube-Giaes seallag alloys for ermiconductors
Syatrunic lnatrumenth, Inc.-Deffection
solke evila

T

Taylor Fibre Co.-Laminated piastie Tektroaix, Iac.-Onellloscopen
Texa Inatruments-Bilicon transistur
Time Wire Cable-Data procesoins
and tranembeson eable
Tinaley Laboracories, Ime.-Corning Elaos Hitare
Trak Mierowave Corp.-Mierowave oscil. lator cavitie
Tramaiatron Electromie Corp. - Sllicon
rectifier selection eulde rectifier selection Euldo
Tung-Sol Electrie Ise. - Germasium
puwer tramsiators

U

Victoreen-Electron tube
POSTAGE WILL BE PAID BY ELECTRONIC INDUSTRIES

The Computer Center

JFD max-MAX-C Sealcaps.

The surprising increase in range of the Max C trimmer capacitor is obtained by embedding the electrode band in the glass cylinder. This design provides the thin dielectric required for a large capacitance range while retaining the ruggedness and mechanical strength of a heavy wall glass tube.

Included in the Max C design is the Sealcap construction which provides the additional stability safeguard of a completely sealed interior.
miniature panil mount max-e stalcap sirils

Meder	Mn.	Max. (W $^{\text {) }}$	Ditetence Beyend Penel	Maximum Diameley
mecel	1.0	14.0	29/60"	8/10"
meces	1.0	28.0	11/10"	3/16*
meces	1.0	42.8	29/320	1/10
meces	1.0	ω	$18 / 8{ }^{18}$	8/10"
mecos	1.0	no	$18 /{ }^{\circ}$	$3 / 16^{\prime \prime}$

MINIATURE TRIMMER SEALCAP ${ }^{\circledR}$

6101 Sixfeenth Avenue, Irooklyn 4, New York

Our high volume production, especially developed for this new BMT line, enables us to offer these small, rugged, dependable, quality electrolytic capacitors priced to fill the needs of low cost, economic designing.
Ideal for transistor applications ... size ranges diameters $3 / 16^{\prime \prime}$ up to $5 / \mathrm{m}^{\prime \prime}$; capacity 1 mfd . to 2,000 mfd.; 3 volts to 50 volts; operating temperature range from - $30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. Units have low impedance at $-30^{\circ} \mathrm{C}$ and low leakage throughout the entire temperature range.

TVPE BMT
in Plastic cases (Esteal size)
Wrhe fer incheleet lelerneiloh
evel Mlestrated fiporaturat.

COMDENSER COMPANY

1616 N. Throop Streat Chicage 22, Illinois Telephone: EVorglade 4-1300
enperi 13 Bisereth Mow Tore Now Telt

Circle 148 on Inquin Card

kAY Ligna-Sweep ${ }^{\circ}$ moderSKV

ALL EECTRONIC-AUDIO, VIDEO, VIF SWEEPING OSCLLLTOR COVERS W-I-D-E RANGE 200 CPS TO 220 MC.

A wide range of variable center frequeney and sweep width: a choice of logarithmic or linear sweep voltages; a wide range of linear sweeps and high AGC'D output level of both audio and RF swept frequency signals are charactoristics which make the SKV a veraatile, general purpose alignment inatrament. Add fixed eryotal-controlled palsetype markers and fixed narrow.band. "super-atable" sweeps for the repetitive applications that require apecific focus. Designed for ease of operation based on atability. readability. and arcurary.

FEATURES

From 10 me down to 1 ke in ane olde vides sweep.
Highly nable, anerow-band videe frequeney weope (I ke on varisble bende, 200 epp owerem (
Lomerlithole oweep for low-end arpmalos. Lisear imepya 0.2 epa io so epti linear uract looked to lise freguenes.
Andie eveng- 800 ept to 80,000 epa. fued, anrron-band videe frequeney sweeps for repeltitive eparatiom.
Findenental frequeney, 10 metel 220 me. (Widhe to 30 me plan.)

Conilnuaady varlable eonter Irear. Direct. readima dind 10 kg to 32 n mo
 ohme. ACCd it ± 0.8 dh aver videat weep.
Priee: 1895.00 P.O.B. Factory. 81425.00 F.A.S. Now Yoot Imeleder varlable and udle band
(Fixed Irequeney bands to eustomer speet. Ged frequeneles; add $\$ 17.00$ per liand. Lumited number of polise-type frequeney markers st $\$ 17.00$ eack.)
Write for Complate Catalog Intormation, Dopl. El-i

HRY ELEGTRTE COMPPRRM

MARE AVENUE
Mn: shook, M. d.
CAPITAL $6-4000$

New

Products

Variaile attenuators

Two new digital readout precision variable attenuators cover X and C Band. Operating over the full waveguide frequency range, they feature a digital counter that reads directly in decibels and tenths of decibels. No

interpolations are needed. Pigures can be read at n glance. Units are constructed with moveable "lossy dielectric" ridge that provides 0 to 60 db attenuation with flat freq. response. Ridge is driven by a springloaded precision cam and the digital counter is geared directly to the cam shaft, insuring freedom from backlash. The max. calibration error is $\pm 2 \%$ or 0.2 db . whichever is greater to 50 db ; $\pm 3 \%$ from 50 to in db . Max. attenuation is approx. 65) db . Model 780 covers 8.2 to 12.4 кме; Model 783, covers 3.95 to 5.8 кMC. Both have max. vswr of 1.2. Narda Microwave Corp., 118-160 Herricks Rd., Mineola, L. I., N. Y.

Circle 267 on Inquiry Card

DC POWER SUPPLY

Regulated de power supply rated at $0-36 \mathrm{v}$. and $0-20 \mathrm{a}$. Model CR-36-20, is regulated to 0.01% and requires i in. of panel height. Electrical features include $\pm \mathbf{0 . 0 1 \%}$ load regulation. 0.003 v. peak-to-peak ripple, 40 usec recovery time from a full load step, 5 parts

per 10,000 per 24-hr. day stability, and electronic current-limiting. The finish is 2-tone gray enamel. Meters are standard equipment. Weight is approximately 70 lbs. NJE Corp., 20 Boright Ave., Kenilworth, N. J. Circle 268 on Inquiry Card

dU MONT CHARACTER DISPLAY TUBES ARE USED IW SUCH APPLICATIONS AS:

- Target display and identification
- Air traffic control
- Reproduction of info from coded magnetic tape
- Harbor traffic control
- and many others

Write for complete technical details Industrial Tubes Sales
enhance any system requiring versatility of rapidly formed characters for readout. A unique Du Mont CRT gun design enables alpha-numeric characters to be formed electrostatically in any size from *" to over $1^{\prime \prime}$, and positioned electromagnetically anywhere on the screen - on any size screen from $5^{\prime \prime}$ to $19^{\prime \prime}$. Other background information, such as a separate radar display for target tracking, can be shown simultaneously through time sharing devices.

Du Mont tubes short-cut expensive system maintenance problems by permitting replacement of the display portion of a system alone - eliminating the necessity of replacing expensive integrated tube and character generator. For versatility, clarity and economy look to Du Mont for character readout.

Available now at attractive prices!

ouMont

ALLEN B. DU MOMT LABORATORIES, Cliftom, M.J.

High selectivity, attenuation and precision matching of . . .

NEW HILL FILTERS ASSURE FAST, PRECCISE MEASUREMENT OF INTER-MODULLTION DISTORTION

A ctual operotional curves, obtained from point-to-point readings, from Hill 34900 and 34800 fithers developed to fulfill customers' specific requirements.

These two highly stable, precision-matched Hill Electronic filters permit fast, exceptionally accurate measurement of inter-modulation distortion in communications systems. A band elimination filter places a narrow, deep notch in the white noise being passed through the equipment under test. Distortion generated in the notch is then isolated for measurement by the narrow band filter.
The high degree of selectivity and attenuation of these filters, and the excellent alignment of one within the other are demonstrated in the actual operational curves shown above. Used together, these filters provide 80 db attenuation from 6 to 252 kc .
This is a typical example of Hill's creative engineering that develops outstanding solutions to customers' specific problems involving LC and crystal control filters as well as precision frequency sources and other crystal devices.

WRITE FOR BULLETINS 34800/900
They contain datails and specificetions concerning the fitters described above.

HILL ELECTRONICS, INC.

MECHANICSBURG, PENNSYIVANIA

New

Products

RESISTOR COMPOSITIONS

New line of resistor compositions offer varied resistance values. Compositions are in 3 resistance values: (500, 3,500, 10,000 ohms/sq./mil thick film) which can be blended to obtain intermediate values. Applied to cer-

amic dielectric bases by ordinary dip, brush, or stencil screen techniques, the composition is then fired in a normal atmosphere to obtain a durable surface. Temp. coefficient, ± 350 $\mathrm{ppm}{ }^{\circ} \mathrm{C}$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; voltage coefficient, less than $0.02 \% / \mathrm{s}$. neg.; humidity exposure, $\pm 1 \%$ change after 250 hrs. @ 95\% relative humidity (unprotected film); overload, $\pm 0.5 \%$ change with standard short time overload; temp cycling. $\pm 1 \%$ change after (5 cyclings from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) ; load life, $\pm 2 \%$ change after 1000 hrs . at $70^{\circ} \mathrm{C}$ at full load. E. I. Du Pont de Nemours \& Co.. Public Relations Dept., Wilmington. Del.

Circle 269 on Inquiry Card

TOGGLE SWITCH

New Universal swivel type tuggle switch, the T203, can be actuated by applying a force on the toggle in any direction. Features include: A toggle throw of 20° in any direction, moisture proof construction, 25,000 operations minimum at rated load, anodized

toggle and casing. Also feature: adapter suitable for engraving. Ratings are 2 -circuit at 10 a resistive and 5 a inductive or 3 a lamp, 28 vdc. Control Switch Div., Controls Company of America, Folcroft, Pa.

Circle 270 on Inquiry Card

COMPUTERS AND OTHER ELECTRONIC INSTRUMENTS
 demand resistors which give predictable performance

 in a small space and high ambient temperatures. This is a good description of Corning tin oxide film resistors, which are now competitive in price with other makes.Tin oxide and glass are among the most stable materials. They are also low in cost.

Couple these materials with exacting methods of manufacture. as we have done. and you have low-cost resistors meeting the pinching specifica-
tions required for computers and similar devices.
You have resistors with excellent reactive properties. With a shelf life of 0.1 to 0.2% per year. With noise levels lower than 0.1 microvolt per volt. And with typical values like these:

Repetitive symbols . . . in fact any drafting, blueprint or specification defail items . . . can be applied in seconds, rather than drawn in hours. If your engineers or draftsmen haven't yel discovered the speed and economy of STANPAT, they are wasting valuable hours . . . and valuable meney.
STANPAT fri-acefate sheets are quickly and easily adhered to your tracings without special equipment. Reproductions are crisp and clean . . . Won't dry ouf, come off or wrinkle. Mail the coupon foday and see for yourself.

Circle 116 on Inquiry Card

New
 Products

AMPLIFIER KLYSTRON

Lightweight, air-cooled and compact, new VA 834 B amplifier klystron gives one $k w$ of Cw power tunable from 4.4 to 5.0 KMC . For transportable systems, air cooling and perma. nent magnet focusing of the power

amplitier tube allows savings in weight. Heat exchangers, magnet power supplies and their control circuits eliminated. Operating procedures are simplified by elimination of focusing and coupling adjustments. It is suited to trupospheric forward scatter communications and radar transmitters. Max. weight, including magnet, is 60 lbs. Max. dimensions are $12 \times 13 \times 151 / 2 \mathrm{in}$. The tube tunes over a range of 600 Mc . Synchronuusly tuned at 4.4 kmc , gain of 57 db is obtained. Tuned for wideband use, a bandwidth of 12 MC is obtained. Tube Div., Varian Assoc., 611 Hansen Way, Palo Alto. Calif. Circle 259 on Inquiry Card

TRAY LOADER

Model Tl.-1 tray loader autumaticully takes empty specially designed trays or racks from a magazine, hoper feeds them with previously straightened components, and stacks the loaded trays into another portable maguzine for transfer to coating, baking or uther processing operations. Each tray holds 20 to 50 components

and each magazine holds 40 trays, making it possible to handle 800 to 2,000 components as a complete unit, depending upon the size of the component. Conforming Matrix Corp., 474 Toledo Factories Bldg., Toledo 2, Ohio.

Circle 260 on Inquiry Cord

Circle 87 on Inquiry Card

NEW solder development!

ALPHA fiux-filled weshors open a whole mew fiold of automatic eoldoring opportuaities!
Unique devien insurea maximum surface.to-surface contact on clowe-fitting parta, complete peripheral fuxing. Produced through - mpecial ALPHA procem, they provide. for the first time, completely new moldering opportunities.
ALPHA makes a wide range of flus-filled and solid preforms Reseust Information baday!
Whee dependebility cesesta!
In Len Anolon, Colim:
203 Sactrone Avo.
alpha
armage, ill:
alpullor com, zeso 8. Lumber Se.
Orber ALPHA produces:
Conn and Solid Wire Soldan • Flixes • Hish Purity Metals

MOST COMPLETE LINEI

Gremar makes more series of RF connectors and components than are available from any other source. n and then some! Gremar exclusives include Red Lime miniature RF connectors for use with MIL-type sub-miniature coaxial cables; power dividers: impedance transformers . and others.

MOST COMPLETE STOCKSI

Gremar always has more than $\mathbf{7 5 0 , 0 0 0}$ assembled RF connectors of more than 2000 types on the shelf ... plus over $8,000,000$ component parts always ready for speedy assembly of standard connectors or quick adaptation to your special requirements.

MOBT COMPLETE SERVICEI

Because Gremar connectronics * concentrates engineering, production and quality control on RF connecto and components only, you can depend on Gremar to solve your design, delivery and reliability problems quickest. Try us and see. Address your inquiry to:

descriptive literature available on requeat

MANUFACTURING COMPANY, INC. RELIABILITY THROUGH QUALITY CONTROL Dopl. E. Watofiold, Morl., CRystal ation

AEROVOX CAPACIBILITY
 FOR MINIMUM SIZE MAXIMUM RELIABILITY．
 曰ミFワワワワ SOLID TANTALUM CAPACITORS

AEROTAN TECHMCAL FACTS

Aerotan capacitors are applicable in DC blocking．AC coupling．bypass and filter． ing．integration．storage phasing and timing applications．
Manufactured in uninsulated case styles（ST12）and insulated cases （ST13）．

Designed for continuous operation over temperature range of $-80^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ in voltage ratings shown below：

Reted Volnge	$+65^{\circ} \mathrm{C}$	$+83^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
－VOC	－vDe	－voc	－VDC
10 VDC	10 VDC	10 voc	1 VDC
is VDC	is Voc	13 vor	10 VDC
70 VDC	20 VOC	17 VOC	is VDC
as VDC	39 VOC	21 voc	30 VDC

No compromise is necessary here－now． you can assure maximum reliability without bulk by specitying Aerovox Aerotan solid tantalum capacitors．

Aerotan capacitors are housed in hermetically sealed metal cases and feature a semiconductor electrolyte assuring a completely dry assembly with absolute freedom form corrosion or leakage．
For all those space－and weight－saving needs where only the best in reliability will do－specify Aerovox Aerotan， and be sure．

Write for complefe echnical information
－capaci－ailitr
An Aerovor characterisfic Capability to design， develop．and manutacture capacitors to bert meet customers＇requrrements．

AEROVOX CORPORATION

NEW BEDFORD，MASS．

New

Products

traveling wave tube

Type 55340 Traveling Wiave Tube is guaranteed for a min ．life of 6000 hrs．It is a broad band amplifier from 3800 to 4200 mc ．It is suited for un－ attended microwave stations．It can deliver a saturated power output of 8 w ．Low level gain at 4200 mc ，with

the output power at 100 mw ，is better than 37 db ．With the output power at $3 \mathbf{w}$ ，gain is better than 35 db ．Noise figure is less than $: 31 \mathrm{db}$ ．The wave propagating structure is of the heli－ cal type．Electron beam focusing is with a permanent，uniform field mag－ net．The mount couples to standard rectangular waveguide WR 229．Tube is free air，convection cooled．It oper－ ates at 1100 v ，which simplifies power supply problems．Amperex Electronic Corp．，Microwave Tube Dept．， 230 Duffy Ave．，Hicksville，L．I．，N．Y． Circle 271 on Inquiry Card

MINIATURE BLOWER

A new miniature dc blower，smaller in diameter than a 50 piece，is de－ signed to move 10 cfm of air against 0.3 in ．H O back－pressure．This tube axial blower is $1-1 / 6 \mathrm{in}$ ．in diameter by $2-1 / 4$ in．long and operates on 27 vdc．Lower voltages may be used with

different motor windings．Unit weighs 3.5 oz ．Unit is typically used for spot cooling of critical components in a circuit．Globe Industries，Inc．， 1784 Stanley Ave．，Dayton 4，Ohio．

Circle 272 on Inquiry Card

This new Control Switch concept in multi-station interlocking switches features a unique "CHEAT-PROOF" design. One station is always committed. It is impossible to tease the system into an "all stations up" position. Actuating any of the four lighted pushbuttons causes the previously depressed button to return to normal at the exact point the system is committed to an alternate station. A lockout system makes it impossible to commit two stations simultaneously.
The Pushbuttons are individually illuminated with standard MS 25237 type lamps which are easily replaced from the front. Buttons are available in six colors and can be engraved.

The new Control Switch Interlock has been designed to permit various other station combinations. All units are engineered to withstand unusually high shock and vibration conditions.

Circle 91 on Inquiry Card

CHARACTERISTICS

Station Circuit
Electrical Ratings

Lamps (not furnished)
Weight
Size
D.P.D.T.

5 amps @ 125-250 VAC 5 amps Res. @ 30 VDC 2.5 amps Ind. @ 30 VDC Switches per MS 25085-1

MS 25237 Type
9 0z. max. panel surface $33 / 4^{\prime \prime} \times 2^{\prime \prime}$ depth behind panel 1 13/10"

ELECTROSNAP. HETMERINGTON - O M - 4 8VNTJCTM

DIVIBION

CONTROLS COMPANY OF AMERICA 1408 Dalmar Drive. Folerote, Ponnayivania TELEPMONE LUELEW a-a100 - TwX smmw-H-soz

Manulacturens of a lull line of switches, centrols and indicators los all military and commorciel applications. All stenderd units stocked for immediate delivery by hading olectronic parts Distributors.

Another "impossible" job done by the Airbrasive...

$\square=-2$
 -
 .. Micromodule circuits

abrading - cutting - deburring - stripping - drilling - cleaning - scribing

> Key to fabrication in RCA Basic Micromodule Laboratory...The Airbrasive cuts and adjusts micro-miniaturized components
S. S. White's Industrial Airbrasive is the key to rapid construction of Micromodules by the new RCA Basic Micromodule Laboratory.
Faster and more reliable and flexible than photo-etching methods. the Airbrasive forms circuits and adjusts resistors and capacitors by abrading away controlled portions of deposited conducting surfaces and terminations.

Every day the Airbrasive is solving problems that once appeared impossible. Its precise stream of superfine abrasive particles, gaspropelled at supersonic speeds, quickly slices or abrades a wide variety of hard brittle materials... fragile crystals, ceramics, thin films, tungsten ... and others. No shock. no heat damage. There is no contact between the tool and the work.

Note this too. The Airbrasive is not expensive ... for under approximately $\$ 1.000$ you can set up your own unit.

Send us samples of your "impossible" jobs and we will lest them for you at no cost.

SEND FOR BULLETIN 6006
...complete information.

New

 Products
MULTIPLIER

New dual electronic multiplier, Model 3785, ofers single quadrant multiplication and squaring with accuracies of 0.01%. Four quadrant multiplication accuracy is 0.05% full scale. Units available in 2.4 or 6

channels. Compatible with all analos computers, it can also be used onk analog data and process control sys tems. Features include built-in division and square-root operation Specs. are: (Input) 1 independent voltages. X., $Y_{i}, X_{\text {t }}$ and Y_{3} in the range of $\pm 100 \mathrm{v}$. (Output) 2 inde. pendent products, $-0.01 X, Y$. and $-0.01 \mathrm{X}_{3} \mathrm{Y}_{\mathrm{s}}$, in the range of $\pm 100 \mathrm{v}$ at 10 ma max. load current. (Drift) less than 100 mv over 8 hrs . (Noise) less than 100 mv , peak. (Phase shift) less than 1° at 100 cps Zero error, with one variable $=0$ and other ranging over $\pm 100 \mathrm{v}$, max. er ror in product is 40 mv . Donner Scientific Co., a subsidiary of Sy:-tron-Donner Corp., 888 Galindo St. Concord, Calif.

Circle 273 on Inquiry Card

ELECTROLYTIC CAPACITORS

Miniaturized tubular electronic ca. pacitors, Type BMT, in plastic cases are dependable and have long life. Ranges available for all transistor applications. Dia., $3 / 16$ in. up to 8 in. Capacity, 1 mid to $2,000 \mathrm{mfd}$. Voltage. 8 v . to 50 v ., inclusive. The

capacitors have an operating range of -30° to $+65^{\circ} \mathrm{C}$. The units have low impedence at $+30^{\circ} \mathrm{C}$ and low leakage throughout the entire temp. range. Illinois Condenser Co., 1616 N. Throop St., Chicago 22, Ill.

Circle 274 on Inquiry Card

For modern airborne equipment, where space and weight are critical, ESC has created a new Miniature Transponder Dolay tine - Model $52-44 \ldots$ which embodies the most advanced techniques of weight and space reduction. It measures just 6 cubic inches tota!!
Specifications - Model 52-44, Lumped Constant Delay Line:
Impedance - 470 ohms
Delay Time $-20.3 \pm .1$
Rise Time - 6 (max.)
Temperature Coetticient-
Attenuation - 4 db Size $-1^{\prime \prime} \times 2^{\prime \prime} \times 3^{\prime \prime}$ Weight-6 ounces Tapped as required
65 ppm or better over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ WRITE TODAY FOW COMPLITE TECMNICAL DATA.
axceptional employment opportunities tor engineers experienced
$\ldots \ldots .1$ in computer components ...ercolient orofit-sharing plen.

CORP.

534 Bergen Blval., Palisades Path, M. J.
Distributed constant dolay lines - Lumped-constant delay lines - Variable delay networks - Continuousty variable delay lines. Stepp variable delay lines. Video transformers - Fitrers of all types. Pulse-forming natworks - Miniature plus-in ancapsulated circuit assomblies.

I am to play an important part in all future Grayhill promotion of Miniature Electrical and Electronic components . . . in ads . . . in trade shows . . . in catalogs and literature. My prime concern and duty is to keep you posted on important new developments and products . . . and pertinent facts you may have overlooked about the broad line of Grayhill miniature push button and tap switches, test clips. lest jacks, binding posts, push-posts, coil forms, transisior sockets, diode holders, etc., . . . every component designed to a need and produced to deliver the utmost in reliability. Let's get together on your component requirements . . . standard or special.

I will send you a copy of our

Phone: Fleetweod 41040 543 Hillgreve Aveaue, LeGrange, Illinels
"PIONEERS IN MINIATURIZATION*

111 CEDAR LANE ENGLEWOOD, NEW JERSEY Circle 121 on Inquiry Card

AMC

LIME

 STRETCHERSCONSTANT IMPEDANCE

$\mathbf{Z}_{\mathrm{o}}=50$ ohms

- Rated al 0.5 kw rw at 1000 me except as limited by connectors; constant impedance with low SWR.
- Rugged and dependable; electrically active portions are enclosed in and protected by an external case.
- Intended for long service; sliding contacts are made between solid coin silver tubes and solid sterling-silver fingers.
- Provided with a locking device and with positive stops at both ends of the line-stretcher travel.

TYPE 3701B: $8^{\prime \prime}$ extension $\}$ available with connectors to $7 / \mathrm{m}^{\text {" }}$ EIA
Type 3702B: $14^{* \prime}$ extension $\}$ line, and Types N, HN or LC line.
Write for
complete informarion on AMCl
Line Stretchers

New

Products

SEQUENCE RELAY

Relay provides thousands of different control sequences. Similar to the Dunco 219 Frame general purpose industrial control relay and $1-1 / 8 \mathrm{in}$. higher, the new Frame 211 sequence type features a double cam movement

on each step. The cam rotates hall a step when coil is energized and completes the step when deenergized. Make before break between 2 ST contacts results when one is adjusted (1) "make" when energized and the other adjusted to "break" when the coil i: deenergized. Double-pole, single or double-throw contact types available 8 -tooth ratchets are standard-i-tooth ratchets available. Contacts are rated 5 a at 115 vac and 5 a at 24 vdc ur 0.5 a at 115 vdc. They will carry 150% of rated loads. Max. amb. is $40^{\circ} \mathrm{C}$ and the relays have a life of 11 million operations, no load. StruthersDunn, Pitman, N. J.

$$
\text { Circle } 275 \text { on Inquiry Card }
$$

PHOTOELECTRIC RELAY

A rugged transistorized phutvelec. tric relay, developed for industrial application, has a sturdy NEMA 12 enclosure to prevent dirt and vapurs from entering the unit. A plug-in transistor circuitry utilizes Schmitt trigger to detect small changes in light level which uperates a sealed

double pole- double throw relay. A silicon power supply is used. Operation is to $125^{\circ} \mathrm{F}$. An encapsulator silicon solar cell is supplied with 8^{\prime} of cable. Design Engineers Inc., 224 N. Desplaines St., Chicago 6, Ill. Circle 276 on Inquiry Card

MIXER-PREAMPLIFIERS
for Sbort Pulse,
High Resolution SYSTEMS ENGINEERING

The LEL MMX-s matched microwave. mixer preamplifier, available from stock, provides design engineers with a high quality X-band receiver tuning head. Wider baadwidths can be realized with the MMX-s than with previously used circuitry.
feuluring:
Noise Figure
Overall Bandwidth
 100me within 3db Minimum Frequenc cy Range roorac within 3 db Minimum Frequency Range 150 v at $45 \mathrm{ma}, 6.3 \mathrm{v}$ \& 0.6 amp Gain Isdb Microwave to IF Send for comprebemsice Microunato, IF, RF Amplifior Catalos.
EL_m AKRON STREET, COPIAQUE, N.Y.

Circle 96 on Inguiry Card

Circle 97 on Inguing Cand

SENSITIVE 2 ANP RELAY
*15 9102000 eps vibration
OPERATINO CONDITIONE:
AVERAOE PULL-IN POWER:
SPDT 25 milliwatts at $25^{\circ} \mathrm{C}$
DPDT 40 milliwats at $25^{\circ} \mathrm{C}$ CONTACT RATINEA:
Non-inductive - 2 amperes at 29 volts d-c or I ampere al 115 volis a-c
Low level contacts are available on request VIBRATION:
5.55 cps at 0.12 inch double amplitude $55-2000 \mathrm{cps}$ at a constant 15 g

- 20 g available on request амоск:
50 g operational
TERMINALE:
0.2 inch grid spaced шніонт:
1.1 ounce maximum

Write for Bulletin JSH $\$ 62$
(8) AM4 30 © © (Q)

ALLIED COMTROL COMPAMY, HNC.
a EAST EMD AVENUE, MEW YORK A1, M. V.
Circle 82 on Inquiry Card

now...analyze both SSB \& AM transmitters a receivers faster, with uniform sensitivity over entire $100 \mathrm{cps}-40 \mathrm{mc}$ range

 AT MINIMUM COST

Panoramic addi impartanl NEW design foatures to the time-preven Model SSB-3! Now, in one convenient, compact package, you got tho comprehensive unit you noed to set up, odjust, monitor and trouble shoot SSB and AM transmitters and reccivars.

TWO TONE TEST
Fizod 1000p width 2000 cPD. Full acale lop sidebond tones is kc and 2he te from carrier (no tion products down 37 db

HUM TESTM
Indication of one sidebond in abore photo increosed 20 do. hum sidebonds down 53 db ond 00 db .

- Sen Ponoramic Anolyzor No 3
deicribing festing fechniques, elc. for single siddebands. A copy is vours for the osking.

new - improved
 PANORAMIC SSEBE
 SPECTRUM
 ANALYZER

creatia meputwer bame Now Opfional REC-I Range Convertor extends SSB-3a $2 \mathrm{me}-40 \mathrm{mc}$ range down to 100 eps ... speeds distortion analysis of receiver AF and IF outputs. Iransmittor boss band.
new 2-TONE AF generator model TTG-2 2 genarator frequencies, eoch selectable from 100 eps-10 te - Resettable to 3 significont digits - Accuracy: $\pm 1 \%$ - Output Levels: each adjustable from 2 to 4 volts into matchod 600 ohm lood - Output DB Meter - Spurious, hum, otc., loss than - 60 db . 100 db precition aftonuation in 1 db staps.

FASTER-MIW TUNIME HEAD PLATURES RAPID "SIGNAL SEARCW" PLUS PRECISE FWE TUNIMG.

ALL THESE NEW FEATURES . . . PLUS

 A SENSITIVE SPECTRUM ANALYZERPonoramic's Model SB-I2oS Panalyzor. Pie.sel swoep widths of 150,500, 2000, 10.000 and $30,000 \mathrm{eps}$ with automatic optimum resolution for fast. eory operation. Continuously variable smeop width up to 100 te for additional fexibility. 60 db dynamic range. 60 cps hum sidebands measurable to -60 db. High ordor sweep stability thru AFC notwort. Precisoly calibrated lin \& log amplitude scales. Standard $5^{\prime \prime}$ CRT with comera mount bezel. Two auxiliory outputs for chart eecorder or large sereen CRT.
imternal calimating circuitay To RF signal sources simulate two.tone tare and check infomal distortion and hum of analyepr. Contor frequency marter with erternal AM provisions for sweep width ealibrations.

New

Products

MONITORING SYSTEM

Model 1000-7 Servo-valve Monitoring System consists of 3 preasure transducers mounted on a thin manifold block which fits between the servo-valve being monitored and the hydraulic system manifold. A 3000

psi differential transducer gives constant readout of pressure difference between the 2 control ports of the servo-valve. A 3000 and a 300 psig transducer gives constant indications at the supply and return ports. Accuracy is the same as for the series SP2 pressure transducers. Typical specs.: Non-linearity and hysteresis combined, less than 0.25% of full scale; thermal zero and sensitivity drift each less than 0.015% of full scale $/{ }^{\circ} \mathrm{F}$ from $-65^{\circ} \mathrm{F}$ to $+275^{\circ} \mathrm{F}$; combined errors from all sources less than 0.5% of full scale. Standard Controls, Inc., 1130 Poplar Plare. Seattle 44, Wash.

Circle 277 an Inquiry Card

VOLTAGE REGULATOR TUBES

Two new glow discharge type voltage regulator tubes, Types VX62 and VX64 are enclosed in standard T-3 glass envelopes. Tubes provide a miniature and inexpensive means of regulating at 95 and 150 v . respec. tively with current ranges from 100 ma to 50 ma . A typical application is the regulation of the screen voltage

of a pentode whics employs high plate voltage. Operation is from -55° to $75^{\circ} \mathrm{C}$ with min. life over 1000 hrs at recommended operating current. The Victoreen Instrument Co., 5806 Hough Ave., Cleveland 3, Ohio.

Circle 278 on Inquiry Card

WRITE FOR BLRTMER DITAMS. SACIMCATIONS ANDO MICES 3PSGUP \& 0 M PAMM 5711 Morthwant Mighway

NEW 3" BLOWERS ©.e. er d.e.

Globe's new $3^{7 \prime}$ diameter VaX-3 vaneaxial blowers combine the ultimate in low weight and small size with high performance at high back pressures.

VAX-3FC. Designed for 100 cfm . (43 $3.5^{\circ} \mathrm{H}, \mathrm{O}$ back pressure, unit operates on 115 or 200 v.a.c., 400 cycle, 3 -phase. Variable speed high altitude units available. Length is $23 /{ }^{\prime \prime}$; weight is 1402 . Servo clamp mounting. Designed for MIL specs.
VAX-3.BD. Designed for 80 cfm , (6) $1.2^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ back pressure. unit operates on 28 v.d.c., but other versions may be wound for up to 115 v.d.c. operation. Length is 3 K/"; weight is 1602. Servo clamp mounting. Designed for MIL specs.
VAX-3-\&N. Same performance as BD version. 115 v.s.c., 60 cycles. Can operate on d.c. also. $3 \%_{0}{ }^{\text {" }}$ long.

Request Bulletin VAX-3 from Globe Industries. Inc., 1784 Stanley Avenue. Dayton 4, Ohio.

why compromise

your specifications to use a "stock item" meter when SEKONIC can give you exactly what you need at "stock item" economy prices?

It costs you nothing to get the facts about Sekonic's "Made-to-your-order" meter facilities . . . and the economies involved can be substantial.

Sckonic Meters are now being purchased by major meter users (names upon request) who require large quantities on tight delivery schedules. From simple A-C amperages and D-C voltages to complex. acceleration-proof radiation counters. Sekonic's experience in the fulfillment of specific meter requirements may be of considerable help to you.

Unique component and assembly quality control procedures assure you of an unsurpassed in-use reliability.

Specifications with your delivery requirements will receive immediate attention.

Write for your FREE copy of "Sekonic Meters . . . A Story of Precision.'

\$SEKONIC INC. 130 West 42 Street. New York 36. N.Y. Circle 102 on Inquiry Card

New

EDGE CONNECTOR

For printed circuit card applications in which frequent jumpering is necessary, or where many circuitry changes must be made, a 1-piece edge connector accommodates easy-to-insert, easy-to-remove taper pins. The

Houtwa

A.MP Taper-in will mount all .070 -$.05)^{-i}$ PC cards. The receptacles will receive AMP's "Series 53 " taper pin line, including both pre-insulated and formed types. Connector permits 500 insertions and removals of the printed circuit card without damage to the foil pads, and without critical wear on the gold plating on the contacts. It has 22 contact positions, with contacts commoned for multiple-wire use. Contacts are of phosphor bronze, gold over nickel. Block is ester alkyd, glass-filled. Length: 4.281, with a .156 center-to-center spacing laterally between contacts. AMP Inc.. Harrisburg. Pa

Circle 282 on Inquiry Card

POWER SUPPLY
Model 520A power supply. a compact 25 adc power supply is continuously variable (with no range switching) from 0 to 36 v . at any current from 0 to 25 a. A front panel current limit control permits a continuous adjustment of the max. output current. providing max. protection for any load device. Regulation for line and load combined is less than 0.5% of max. output. Ripple is less than 1%. and there is no voltage overshoot on

turn-on or turn-off. The line input is $105-125$ vac, 60 cPs . Size is $7 \times 16 \%$ x 19 in . Other features: Remote programming and sensing. Harrison Laboratories, Inc., 45 Industrial Rd. Berkeley Heights, N. J.

Circle 283 on Inguiry Card

AMPLIFIER

New transistorized voltage comparison amplifier for critical go/nogo applications. Model 51 provides a precise, fast and reliable way to determine if an input voltage or series of input voltages is within preset

limits. It uses colored bulbs for visual indication and relays to operate external warning and control devices. Both indications occur within 90 msec after applying the voltage. It can also be used as a resistance comparator. The 51 has a sensitivity in excess of $500 \mu \mathrm{v}$ and a voltage range of $\pm 50 \mathrm{v}$ (up to 100 v as long as limit-to-input differential does not exceed 25 v). The 51 is a component of the NLS Model 50, which has internal, manual limit setting. The Model 50 is limited to uses where limits do not have to be changed more than once every several min. NonLinear Systems, Inc., Del Mar, Calif.

Circle 284 on Inquiny Card

INDICATOR LIGHTS

Ultra-miniature indicator lights, Data Cap Series No. 250, offer two new features: a clear lamp cartridge without a legend, and a lens cap with a colored cylindrical lens on which a legend may be hot-stamped. Should the cartridge burf out it may be quickly replaced. Cap and cartridge are assembled with Lampholder No. 7538 to make the complete unit. Lamp cartridge plugs into the base. and the lens cap screws onto the bushing. Lens is spring mounted and

rotatable. Lens is 0.425 in . in dia. and accommodates up to 3 digits, symbols or letters. Seven lens colors available. Size is approx. 1\%/8 in length and \% in dia. Dialight Corp., 60 Stewart Ave., Brooklyn 37, N. Y. Circle 285 on Inquiry Card

RESISTANCE BRIDGE

Militarized precision Resistance Bridge, ZM-40 () MPM, is self contained. It is for measuring resistors or for other similar resistance mea. surements. It can be used as a limit bridge to compare resistors against

an internal or external standard, and indicate on a calibrated meter the deviation in percent, or it can be used as a null balance bridge to match pairs of resistors. It will operate on $115 \mathrm{v} \pm 10 \%$ with a line frequency anywhere from 50 to 420 cps. Power drain is approx. 25 w . Unit will measure from 1 ohm to 2 megohms with accuracy better than 0.25%. It will operate from $-50^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ in 100% humidity environments. It meets MIL-T-945 for shock and vibration, and MIL-E-5272 for sand, dust, and rain. American Electronic Laboratories, Inc., 121 N. Seventh St., Phila. 6, Pa.

Circle 286 on inquiry Card

DRIVE AMPLIFIER

Model 910 is a transistorized amplifier to drive de torque motors. It will deliver 2 adc differential current into a 2-terminal Torquer. Input into the amplifier can be either de or 400 cps depending on the type selected. Gain is 200 mv per 1 adc out put current. Current feedback has been incorporated to minimize the effects of torquer inductance on servo response. Higher power and higher gain amplifiers available. Unit op-

erates from standard 28 vdc power and uses 400 cPs for reference. Operating temp $-55^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$. Meets MIL-E-5272 environmentals. Control Technology Co., Inc., 1186 Broadway, N. Y. 1, N. Y.

Circla 287 on Inquiry Card

New

Products

FREQUENCY DOUBLER

Freq. doubler sets for low cost signal generation to 40 kmc . Models 938 A and 940 A , uperate on harmonic generation principle and m ay be driven by klystrons, sweep oscillators or signal generators. Model 938A

supplies power from 18 to 26.5 kMC when driven by a 9 to 13.25 kMC source: Model 940 A from 26.5 to 40 кMC when driven by a 13.25 to 20 kMC source. Both contain a power monitor and a 100 db attenuator for accurate power setting. Output power is 0.5 to 1 mw when driven by the -hp- 626A or 628A signal generators. Input is 10 mw (design center) and 200 mw (inax.) Output monitor accuracy is $\pm 1 \mathrm{db}$ to $\pm 2 \mathrm{db}$. Output attenuator accuracy is $+2 \%$ of read. ing or 0.2 db , whichever greater. Attenuator range is 100 db . HewlettPackard Co., 1501 Page Mill Rd., Palo Alto, Calif.

Circle 288 on Inquiry Card

SEMICONDUCTOR TESTER

Model TT8-100, semiconductor tester for evaluating and inspecting, transistors, zener diodes, rectifiers, and tunnel diodes. It features a current limited source to prevent damage to any semiconductor under test. Scope calibration voltages are 5 v for vertical and $80 \vee$ for horizontal. It will test transistors for breakdown voltage; gain, over dynamic range; voltage and current saturation characteristics; and leakage current. Zener diodes tested for breakdown voltage; dynamic impedance, at any current: drift against temp. or current. Rec-

tifiers tested for leakage and forward current characteristics up to 1 a. Tunnel diode tested for characteristics of tunneling current; valley current and forward voltage. PRL, Inc., Rahway, New Jersey.

Circle 289 on Inquiry Card

LATCHING RELAY

Dual-coil, micro-miniature latching relay having its smallest dimension perpendicular to the plane of its mounting surface. The relay, the FL, lies fiat on a printed circuit board, its max. height is 0.485 in . Coils can be

supplied with up to 10,000 ohms resistance per coil at $+25^{\circ} \mathrm{C}$. DPDT bifurcated, gold-flashed silver-mag-nesium-nickel contacts are rated at 3 resistive. Relays withstand 100 gs a at 30 vdc or 2 a at 115 v. 60 CPS shock, 400 gs linear acceleration and vibration of 0.195 in . excursion from 10 to 55 CPS and 30 gs from 55 to 2500 CPS with no contact openings in either armature position. Operates on a 3 msec. pulse at nom. voltage @ $+25^{\circ} \mathrm{C}$. It meets MIL-R-25018, MIL-R-5757C, and ABMA-PD-R-187. Potter \& Brumfield, Div., American Machine \& Foundry Co., Princeton, Ind.

Circle 290 on Inquiry Card

ANGLE INDICATOR

The (CO2721027) high-accuracy precise angle indicator provides numerical indication of the angular position of any mechanical device to which remote 2 -speed ($25: 1$) dual transmitters can be coupled. Using double-speed transmission reduces errors inherent in synchros by a factor of 25. Instrument can be supplied having dual-sensor speed ratios from 18:1 to 75:1. A remote control fea. ture enables unit to be operated as either a 2 -speed or single-speed device. Specs (Single-speed and 2 . speed): Accuracy: $\pm 6 \mathrm{mi} ; \pm 15 \mathrm{sec}$.

Repeatability: $\pm 1.2 \mathrm{~min}$; 12 sec. Size: $9-1 / 2 \times 5 \% \times 13 \mathrm{in}$. Slewing Speed: 180° in 9 sec. Power: 115 . $400 \mathrm{CPs}, 1 \Phi, 30$ va. Weight: $9-1 / 2 \mathrm{lbs}$. Kearfott Div., General Precision Inc., 1150 McBride Ave., Little Falls, N. J. Circle 291 on Iaquiny Card

VOLTMETER

New laboratory standard voltmeter for measurement of voltages or calibration of ac voltmeters from 10 mC to 1000 MC at voltages of 0.5 v . to 300 v. Model 390 NBS A-T features stability of less than 1% deviation

from NBS calibration for at least one year. It consists of an adjustable waveguide below-cutoff attenuator feeding a UHF vacuum thermocouple. Dc output from thermocouple is measured on an external millivoltmeter. The unknown signal is connected to the input electrode, and the micrometer setting is adjusted to produce a standard reading on the millivoltmeter. The voltage is then obtained from the calibration chart which shows the input voltage for all settings of the micrometer at the frequency of measurement. Ballantine Labs, Inc., Boonton, N. J.

Circle 292 on Inguing Card

MODULAR AMPLIFIERS

Type VA-P-101, a plug-in video distribution amplifier is for systems requiring a simple 1 input, 1 output unity gain unit. Eight amplifiers plug into a shelf 8% in. high which mounts in a standard relay rack. Filament and bias vo!tage is provided by the shelf and the only other power which must be supplied is 117 vac and regulated 28.5 vdc. The amplifiers may be used individually, or any number of units up to 8 may be "multed" together so as to provide a max. of 8 outputs from 1 input. Specs: Nom. input level, 1 v. Bandwidth is a flat

$\pm 2 \%$ to at least 8.0 Mc .60 cPs sq . wv. tilt is 1% max. Differential gain at 1 v. out is 0.7% max. Differential phase at 1 v . out is 0.35° max. Approx. $\mathrm{B}+$ drain is 50 ma . The Daven Co., Livingston, N. J.

Circle 293 on Inquiry Card

New
 Producis for the Electronic Industries

MICROWAVE FILTER

Four-channel filter, Model 1:201 with built-in video detectors covers a wide input dynamic range. Each channel has a bandpass of 2600 to 3200 MC at a max. input V8Wr of $2: 1$. l'iden detector in each channel has a

tangential sensitivity of -40 dum (min.). Dynamic range is obtained with two Typu 1 N833 silicon diode detectors in parallel, one operated at full sensitivity and the other through m 14.5 db coupler. Dimensions (ex-(-luding connectors) are 6.15 in . dia. and 0.7 in. thick. $\mathbf{R} \quad \mathbf{S}$ Electronu's Corp., $4: 35$ Portage Ave., Paln Alto. Calif.

Circle 247 on Inquiry Card

LF PANORAMIC RECEIVER

New low frequency panoramic field intensity receiver continuously monitors LF radiation from 0.05 Kc to 100 hic, operates unattended, and automat icully produces panoramic photographic records. Designated the AN l/RM-126, applications include pre cision measurement, display and recording of the intensities of noise and both modulated and unmodulated cw

signals. It meets specification MIL E-16itou. It receives and defines signals weparated by only 15 cps. Moturula Inc., Military Electronics Div., 8201 E. McDowell Rd., Scottsdale, A rizona.

Circle 248 on Inquiny Card

PACKAGED CAPACITORS

Two new capacitors packaged for automatic insertion or automatic cutting and forming of the leads. Style 309 available in 5 to 663 pf and Style 310 available in $14-1130$ pf are lac-

quer-enamel coated, axial lead, tubular ceramic dielectric, capacitors available in both temp compensating or general purpose ceramic dielectric bodies. Packaging available is "Reel Pak," or "Ribbon Pak." Both are suitable for automatic insertion or automatic cutting and forming of the leads. Electronies Div., Erie Reaistor Corp.. 645 W. 12th St., Erie. Pa .

Circle 249 on Inquiry Card

SSB RECEIVER

New fixed tuned Model RSSB-59-1 A Single-Sideband Receiver for AM broadcast. Applications include off-the-air relay broadcasts, monitoring in difficult reception areas and Conelrad Minimum selective fading distortion, improved signal-to-noise and reduced adjacent channel interference are advantages over conventional AM reception. Completely transistorized,

Model RSSB-59-1A permits upper or lower sideband reception and operates on 110 vac or automatic emergency de supply. Kahn Research Laboratories, Inc., 81 S. Bergen Pl., Freeport, L. 1., N. Y.

Circle 250 on Inquiry Card

MICROWAVE ABSORBERS

New and tougher TYPE T thin. fiexible absorber has high electrical performance. It is available for the usual radar frequencies as well as for special irequencies. The metal foll

back of the absorber is covered with a rubberized eloth, meeting MILC. 20696 . Improved physical characteristics are: (1) about 30% lighter than before: (2) greater temp range: -70° to $270^{\circ} \mathrm{F}$, (wider ranges on special order): (3) greater physical integrity and easier handling. Standard TYPE T is also available. Me. Millan Industrial Corp., Ipswich, Mass.

Circle 251 on Inquiry Card

MAGNET SYSTEMS

Line of versatile laboratory magriel systems. These flexible general purpose magnet assemblies are for a variety of applications. Individually adjustable and replaceable poles and pole faces allow max. variation of the magnetic field configuration. Coupled with the continuously variable output power supply, these MHD magnet systems provide a flexible basic re-

search tool. Copper-wound coils are insulated with class B materials and are calculated for continuous duty without additional cooling. MHD Research. Inc., 1571 Placentia Ave., Newport Beach, Calif.

Circle 252 on Inquiry Card

Wire Wound

 Resistor Networks Hold Ratio Accuracy of $\pm .003 \%$ at room temperature and $\pm .005 \%$ from $+15^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. In A.C. computer networks. a capacity match of 0.01 mmt is possible with a shielded network. Resistor networks may also be compensated to balance phase shift in other parts of the system.If you have a nesistor metwonk modem, waite to:

тие DA VEN co.

LIVIMESTON, MEW HERSEY
Today, Wert Then fer, The eaves (0) Stases For Dependability

Circle 105 on Inquiry Card

The Best Miniature Soldering Iron In The World

Precision

MINIATURE SOLDERING IRON
$110-115$ volts No Transformer Weighs 1 ounce $61 / 2$ inches long

$$
61
$$

J

New ...for the Electronic Industries

STRAIN GAGE TRANSDUCER

Strain gage transducer, Model P318, is a micro-miniature, flushdiaphragm absolute pressure transducer featuring high frequency response. It is smaller than a dime. weighs 0.5 gms . Dimensions: 0.59 in .

dia., 0.050 in . thick. Ranges are $0-10$ psi to $\mathbf{0 - 1 0 0} \mathbf{~ p s i}$, available in absolute sage or differential. Excitation is 15 v. Output is 5 mv , full scale open circuit. The combined error due to non-linearity and hysteresis is less than $\pm 1.0 \%$ of full scale. Amb. temp. limits are -65 to $+150^{\circ} \mathrm{F}$. Statham Instruments, Inc., 12401 W. Olympic Blvd., Los Angeles, Calif.

Circle 253 on Inquiry Card

DISPLAY ASSEMBLY

Solid state display assembly, Model 2060 is for decimal display of a binary coded decimal parallel signal. It accepts up to 24 bits of parallel BCD information and converts signal to a 60 -line decimal display using Burroughs-type Nixie tubes. Assembly is $31 / 2 \mathrm{in}$. high, rack-mounted for visual display of parameter numbers using up to 6 decimal digits, derived from any of these 4 -bit codes: Binary code decimal (1-2-4-8) ; decade counter code (1-2-2-4) or (1-2-4-2) ; gray code (cyclic code): binary complement coded decimal: binary 2 out 5 code; binary (1-2-4-7). Binary input may be either static or parallel pulses. Storage capability, conveniently re-

trieved through a multi-pin connector, is provided in the converting circuitry. Primary application is for displaying time where 17 -bit time codes are used. Hermes Electronics Co., 75 Cambridge Pkwy.. Cambridge 42, Mass.

Circle 254 on Inquiry Card

TRANSISTOR TEST SET

Transistor test set Model TTS-100, for precision measureinents of dc characteristics of power transistors. Leakage currents, de gain, transconductance, input impedance, power conductance, saturation voltage and saturation resistance are measured.

Punch-through voltage is determined without damaging the transistor. Separate connections provided for measuring voltage at the terminals to eliminate errors in measuring saturation voltage. A heat sink base with adapters is an accessory. Command Systems, Inc., 1135 Stanford Ave., Los Angeles 59, Calif.

Circle 255 on Inquiry Card

WATER-COOLER TRIODE

A general-purpose, water-cooled triode for 400 kw continuous output as a Class \mathbf{C} amplifier or as an oscillator up to 30 Mc . The ML-7560 delivers 2.5 megawatts in a pulsed r-f amplifier and can switch 14 megawatts in a pulse modulator at relatively long pulse duration with high duty factors. Anode incorporates an integral water jacket and can dissipate 175 kw . Low-inductance and high-dissipation r-f terminals are provided by a sturdy coaxial grid and cathode mounting structures. Cathode is a self-supporting, stress-free, thoriated-tungsten filament. Ceramic cylinders insulate the envelope. Max.

ratings are 20 kvdc plate voltage and 600 kw plate input up to 30 Mc , although useful power output can be obtained up to 100 Mc at reduced plate voltage and plate input. The Machlett Laboratories. Inc., 1063 Hope St., Springdale, Conn., U.S.A.

Circle 256 on Inquiry Card

FOR FUEL CELLS

Porous shapes in alumina or masnesia ceramics for experimental use in fuel cell research. These sections of membrane material may be modified, within reasonable limits, to the specifications of the researcher. They can

be fabricated in very thin flat sections. Consideration must be given to the mechanical strength required for the end use. Discs and plates up to 5 in. in max. dia. are practical. Larger sizes may be had. Ceramics are involved in research in both high pressure and low pressure fuel cells. American Lava Corp., Steatite lliv. Lab., Chattanooga 5, Tenn.

Circle 257 on Inquiry Card

DIFFERENTIAL PREAMPLIFIER

Ac coupled differential preamplifier with fixed gains of $10 x, 100 x$, and 1000x. Noise level of less than 10 μv peak to peak over a max. bandwidth in excess of 60 k . Common mode rejection of more than 100 db for measurements in strong interference. Input filter reduces TV pulse interference. Input impedance 10 megohms each grid to ground; low grid current for min. source loading. High frequency filter has nominal steps of $60 \mathrm{Kc}, 10 \mathrm{Kc}, 1 \mathrm{Kc}, 250$ and 50 cycles; low frequency is variable in increments of $0.01,0.1,1,10$, and 100 cycles. Cascode input with frame grid triodes; single interstage coup-

ling time constant has reset button. Low impedance push pull cathode follower output may be set to ground dc level. Provision for the introduction of time marker signals. Argonaut Assoc., Inc., P.O.B. 273, Beaverton, Oregon.

Circle 258 on Inquiry Card

New

DIGITAL VOLTMETERS

A new line of digital voltmeters designated the 200 series. It includes acc, dc, ratio and ohms measuring modules which may be utilized in any rombination. Provision has also been

made to allow addition of dc preamHlifier, digital printer or paper tape punch. Basic Model 231 specifications แe $\pm 0.02 \%$ stability, sampling rate " tu : :11/sec., range 0.0001 to 1100.0 v ., resolution to 0.1 millivolt auto rangilg and polarity, 1 megohm input impedance. Systron-Donner Corp., 950 (ialindo St., Concord, Calif.

Circle 294 on Inquiny Card

SUBMINIATURE RELAY

New. subminiature relay, Series V', is designed to meet the severe environmental requirements of presentday prototype missiles. The V relay header has improved bounce characteristics which increase contact life and reliability, and enhance relay performance under severe vibration and shock. There is no increase in relay motor size because the new relay mo-

tor hat greatly increased efficiency. V-series relays are available with or without arc-inhibiting circuits and with either ac or de relay motors. Filtors, Inc., 30 Sagamore Hill Dr., Purt Washington, L. I., N. Y.

Circle 295 on Inquiry Card

TRANSISTOR TRANSFORMERS

Addition of 5 new micro miniature transistor transformers to line. Units have primary impedance ratings from $\mathbf{4 , 0 0 0}$ ohms C. T. through $\mathbf{2 5 , 0 0 0}$ ohms C. T. and secondary impedences of 150

ohms through 1500 ohms C. T. Operating level is approx. 22 dbm with frequency respunse of 200 to 15,000 CPS. Items are in hermetically sealed construction with high compression glass terminals, or in epoxy molded construction or in open frame construction with channel mounting Microtran Co., Inc., 145 E. Mineola Ave., Valley Stream, N. Y.

Circle 296 on Inquiry Card

WELDING HEAD

Model 1038 is a new, precision Welding Head which can perform single, series or parallel welds for electronic components assembly; joining fine wire, ribbon and foils; and for applications requiring a controllable fastening technique without the use of an interconnecting or bonding material. Ball-race vertical action of the dual upper electrodes permits exact placement of the welds with no

electrode wiping action. It features 500 watt-sec power rating; foot-pedal actuation; precisely controllable electrode pressure and automatic firing. Unitek Corp., 950 Royal Oaks Dr., Monrovia, Calif

Circle 297 on Inquiry Card

SWITCHING TRANSISTOR

New general purpose switching transistor, similar to the type 2N697, exhibits substantially better performance characteristics. The new type 2N1837 has nearly hall the collector

to emitter voltage drop of the 2 N 697 . Additionally, the 2N1837 has nearly three times the small signal beta, half the collector capacitance and half the leakage current. All other characteristics are equal to or better than the 2N697. Pacific Semiconductors, Inc.. 12955 Chadron Ave., Hawthcrne. Calif.

Circle 298 on Inquiry Card

PHOTOCOPIER

New compact photocopier will copy large-size documents. Model 114 will copy original documents up to 15 in. wide by any length - engineering drawings, accountants' work sheets, statistical data, reports, and artists' drawings. in sharp black-on-bone white, frequently better than the originals. Machine will make sharp. permanent copies of anything typed.

printed, duplicated, photographed, written or drawn, in any color, any ink, pencil or crayon. It makes copies under normal offlce lighting conditions. A. B. Dick Co., 5700 W. Touhy Ave., Chicago 48, Ill.

Circle 299 on Inquiry Card

forward look in
 backward waves

Circle 112 on Inquiry Card

New Tech Data

Pressure Trensmitter

New 4-page specification, S 230-1, outlines features, specs and ordering information on new Bellows Differential Pressure Transmitter. This instrument combines economical, convenient pneumatic transmission with a dry type bellows meter body. It can be used in any flow or open or closed tank liquid level application to transmit readings from a field location. It is available with a concentric scale for local indication at point of measurement or as a non-indicator. Minnea-polis-Honeywell Regulator Co., Industrial Div., Wayne \& Windrim Aves. Philadelphia 44, Pa.

Circle 204 on Inauiry Card

Tube Cafalog

New, 25-page, condensed tube catalog from Amperex Electronics Corp., 230 Duffy Ave., Hicksville, L. I., N. Y. It contains descriptions and basic specs on the full line of Amperex Tubes, consisting of: cold cathode trigger tubes, entertainment and audio tubes, ignitrons, indicator tubes, klystrons, magnetrons, noise diodes, power tubes, photomultiplier tubes, "Premium Quality" (PQ) tubes, radiation counter tubes, rectifier diodes, subminiature tubes, thyratrons (hydrogen, mercury vapor and inert gas types), traveling wave tubes, UHF special purpose tubes, and voltage reference and regulator tubes.

Circle 205 on Inquiry Card

Diallyl Phthalate Resin

A descriptive booklet (26 pages) of the properties, uses, and molding requirements of compounds hased on Dapon diallyl phthalate resins. It provides a guide to the capabilities and application techniques of these materials. Resins are used as molding materials for electrical and electronic applications in the missiles and rockets field. They are noted for dimensional stability, insulation resistance, and retention of electrical properties in extremely severe environments. Included are 13 tables giving performance data including physical and electrical properties, chemical and fungus resistance, and flame proofing. A section deals with the effect of mineral and synthetic fillers on molded properties. Another section deals with material handling, molds. molding temps and pressures, curing time, and tests for cure. A typical properties chart for molding compounds is included. Dapon Dept., Food Machinery \& Chemical Corp., 161 F. 42nd St., New York 17, N. Y.

Circle 206 on Inquiry Card

Magnefic Shields

Data Sheet 153 describes how multicellular magnetic shields permit more accurate low level signal source data evaluation. Magnetic Shield Div., Perfection Mica Co., 1322 N. Elston Ave., Chicago 23, Ill.

Circle 207 on Inquiry Card

Subminiature Switch)

Two-page data sheet (\#180) features the highly sensitive 11SM401 subminiature switch for use where close control sensitivity or response is mandatory. Switch features a 0.001 in differential travel. Includes mounting dimensions, operating characteristics, and electrical rating. Micro Switch. Freeport, Ill.

Circle 208 on Inguing Card
Dip Brazing
Aluminum dip-brazing facilities brochure available Irom John Gombos Co., Inc., Webro Rd., Clifton, N. J Aluminum dip-brazing is a process that allows perfect joining of alu. minum to form homogeneous parts. It offers a strength of weld equal to or better than the parent metal. Cons plete penetration of joints is accom plished and distortion is at a min imum. Brochure is called, "Simplified Fabrication of Complex Components with Aluminum Dip-Brazing."

Circle 209 on Inquiry Card

Transducers

New 8-page folder describes facilities, capabilities and transducer prod. ucts of Lockheed Electronics Co. In dividual sheets present specs, perfol mance characteristics, and circuitry on the line of strain gages and multipliers, load cells, force washers, high sensitivity washers and position trans. ducers. Lockheed Electronics Co.. A vionics \& Industrial Products Div., 6201 East Randolph St., Los Angeles :2.! Calif.

Circle 210 on Inquiry Card

Oscilloscope Units

Colorful 32 -page booklet gives detailed presentation of all 16 pre: ently-available "A-to-Z" plup-in unitThe booklet includes complete spec: and performance characteristics with waveform patterns and other illustrative material for various measure ment applications. Tektronix, Inc., P. O. Box 500, Beaverton, Ore.

Circle 211 on Inquiry Card

Oscillograph

Four-page bulletin, 5125, containing photos and specs describes the opeta. tion of a new, low-cost, portable re. cording oscillograph developed by the Electro Mechanical Instrument Div.. Consolidated Electrodynamics Corp 360 Sierra Madre Villa, Pasadena, Calif. The unit (5-124) weighs 40 lbs. Circle 212 on Inquiry Card

Confrol Design

Six ways to simplify control design are shown in bulletin NB-680 from Servo Corporation of America, 111 New South Rd., Hicksville, L. I., N. Y. It illustrates various Servoscope (R) analyzer models used for fast problem solving in servo system design, debugging, production, teaching, and testing. Included is a section on the new Servoflight (R) autopilot analyzer.

Circle 213 on Inquiry Card

Circle 109 on Inquiry Card

free

 send for the
ALIIED

 1961 ELECTROMIC SUPPLY CATALOG578 PAGES • MOST COMNETM

BUY AT FACTORY PRICES

 wonlds larees stocks...smanazing ins.- Semicenducter - Speclat-puppose Tubes
- Connecters
- Relays
- Tese Equlpment, Meters
- Iransformers - Swluches, timers
- Knight-Ki In Instramemts in Low-Cosp KH Form
- Etocironic Paris for Ivery Industrial Meed

ONE ORDER TO ALLRD FHLS THE WHOLE BIL
Have the warld's largeat atocke of elertronic equipment at your command. No noed to deal mith luundreds of mopazate ficctorion-ons order to ua fills the whole bill. You get eame day ahip: ment. You buy as foctory prices. Writs today for the raze 1961 alluse Catalog- your one eource slectronic aupph gulde.
your depandable
rounce 101
evectronic Iupply

ALLIED RADIO
100 N. Weskern Aven, Dope. IB-Al Chleage 20, III.

FREE
AIAIOG

Just One Squeeze with IDEAL's

New "Custom Stripmaster" Removes Teflon* and Other Hard-to-Strip Insulations

To help prevent wire nicking and insulation damage, these new IDEAL "Custom Stripmasters" are procision drilled on watchmaker's equipment.

With Ideal's new Custom Stripmasters. a light squeeze on the handles strips any wire completely clean and bare up to a full $7 /$ inch 2.

To help prevent nicking and scraping of wires, the Custom Stripmaster's matched sets of blades are precision drilled on watchmaker's equipment to the exact wire sizes. Counterbored blades ride on cut insulation to prevent scratching of stripped wire. Jaws grip wire firmly to prevent insulation damage. 3 models available. Wire sizes from No. 10 to 30.

Things Like Plug. In Balancing Potentiometers...

Series P plug-in pen balancing potentiometers
Series \mathbf{P} potentiometers are used in both rectangular and polar coordinate pattern recorders. By interchanging potentiometers together with the appropriate pen function amplifier, different responses - linear, square-root, and log-arithmic-are obtained. Interchanging these new self-aligning potentiometers can be accomplished in less than thirty seconds. Stocking spare units cuts downtime. Of dust and dirt proof construction, Series P plug-in balancing potentiometers are offered with exchange pricing.

DC Amplifiers...

Scientific-Atlanta's DCA-21 amplifier lets APR 20/30 recorders accept dc input signals. A narrow band amplifier preceded by an electromagnetic chopper, the sensitive DCA-21 has a linear dynamic range of 80 db . The unit is directly interchangeable with Series CBA-20 Crystal-Bolometer amplifiers.

Recorder Pen Programmers...

Up to five different pen writing codes can be selected by adding the Model RPP-1 Recorder Pen Programmer to an APR 20/30 installation. Compact, lightweight. and rack mounted, the programmer provides solid line, dot, dash, dash-dot, and space-dot-dot codes at an adjustable code rate of 30 to 90 cycles per minute.

APR-20 rectangular entenna pattern recorder

The reason most antenna pattern recorders come from

It's the little things that make the difference. Little things, refinements, "extras," and top-notch workmanship all add up to preference for S-A instrumentation.

Modification C, Chart Compression ...

Modification C, which must be ordered at the time of recorder purchase, provides both standard and compressed cycle charts from a single APR 20 Rectangular pattern recorder. Standard chart cycle is 20 inches, compressed 8 . inches. Compressed recordings are conveniently sized to fit standard $81 / 2 \times 11$ notebooks and reports.

Chart Paper, Recording Pans, Ink, and Accessories...

Scientific-Atlanta offers its customers one-day service by stocking, for immediate delivery, a wide variety of chart paper, recording pens. and other recording necessities.

But above all, it's the engineering philosophy of a company run by anlenna engineers for antenna engineers.

Call your nearby S-A engineering representative for more information on S-A pattern recorders and accessories. For complete technical information, please write to Box 44.

Crystal Bolometer Amplifiers...

High gain, low noise
crystal-bolometer
crystel-bolometer
antenna

Sensitive, narrow-band Crystal-Bolometer amplifiers are miniaturized units designed for use as preamplifiers in S.A polar and rectangular pattern recorders. Five models. CBA-21 through CBA-25 are available. Features include bolometer burnout protection, low noise figure, triaxial signal ground return, up to 108 db gain, 80 db linear dynamic range, adjustable bandwidth (CBA-23), high rejection (CBA-24), variable center frequency (CBA-25).

2162 Piedmont Road, N.E. - Atlanta 9, Georgia TRinity 5-7291

Electronic sources

Up-to-the-minute abstracts of articles appearing in the leading foreign electronic engineering journals

circuits

Pulse VM Diaeriminator, V. I.. Rytehkn "Radiotek" No. 10, 1960. 9 pD. Operution principles and basic relationahips are analyzeld for an FM discriminator of a pulne counter type. The advantazee of several parameters of this eireuit is proved over parametera of ordinary diseriminators. Shortcomingn and ordimary diona of this circuit are pointed out. Various applications of the circuit are suggested. IU.S.S.R.I

Replarement af - Caseade of n Unequal Aaymmetric Foar-Terminal Networks with Equal Iterative Impedances by One Four-terminal Network. W. Herzoe- "Nach. Z." Oct. 1961. 3 pp. Any number of unequal and anymmetrical four-terminal networks connected in a cascade, in which all of the networks have the same iterative impedance, io replaced bs a ninale four-terminal network for which the impedance mairix is given. IGermany.)

Electromechanical Foar Polea an Coupling Fllters. E. Traeba. "Hochireq." June 1960. * pr. The advantagea of an electromechanical filter as enmpared to the limitations of lumper element Atters are puinted out. An electro mechanical analogy is developed that enables the treatment of mechanical four pules according in bandpasa fiter theory. From sixnole equations of the electromechanical tranno ducers the four pole equivalent circuits are deducers the four pole equivalent circuits are deived that correspond to the presentation of the mechanical eonductor. Usine the combination of input tranaformer, mechanical connection, and output tranaformer, the dexired arameters of the fiter can be determin

Isolation of Ontpat uf a Pulse Generator, I. D. Pugsley and B. M. Johnatone "Proc. AlRE." July 1960, 8 pD. Shielded p-f coupline to m inolated probe permits pulse atimulation of biological tisase without coupling to the piek up electrodes. Pulsee of amplitude up to 50 v . and durations between 10 usee and 100 maec are available. (Auatralia.)

Cirewit Analyale of Peedbark Tranaiator Amplifiers, A. E. Ferguson. "Proc. AlRE." Feb. 1960. I pp. Methods of analyzing transistor ferdback amplifiera are examined. I Auntralia.)

Symmetrical Operation of Peah-Pall Vacaam Tabe Oseillator Cireuite. N. 1. Stein. "Radiotek" No. 10. 1960, 2 pp . In this article, the operation of tubes in an oncillator is analyzed when they arp arranged in push-pull manner. The mutual influence of the tubes on each other is ertablished as a reault of chances in the driving voltages. The influence of variuus facturs which eause asymmetrical opera. tion in each of the two sections uf the pushpull network are analyzed. Formulae are given for caleulations of the oscillator power output. and power losses in the tubes in the anym. metrical case, and recommendations are offered to compenate for asymmetry. (llS.S.R.)

Onellater Circuita with Variable Parametera, E.-G. Waschni. "Hochfreq." June 1960. E pp. Starting with Hill's or Mathieus' equation and
asing already known resulta, aimple approximationn are developed for the range of lock in and the decreane in dampine. This la done for cinumuidal changes in the capacitance and later for ainuaoidal changem in the damping. The anme rexules are obtained using intuitive nhyxical concepts of energy and phase rela. lionahiss. An observatiun of occurrences in the second loek-in rexion lead to the conclusion that harmunice are responaible for loek in and decreaned damping in the lock-in regions if hisher order. Through anown analogy he same consideration can be applied directly to mechanical syatema. IGermany.)

Synthesla of Cireuits with Operation Deseribeal b Time Beolean Fanctions. "Avto. i Tel." Oct. 1960. A DP. The synthesin methods for circuita which can be dereribed by meana of anpecial clans of Buolean functions are considered. (U.S.S.R.)

A simple Deaim Techniave for High Performance Transistor AC Ampllifers, D. G. W. Mace and R. N. Blunt. "El. Comm." Sept. 1960 : DP . A desirn technique for ac amplifiera which in deemed 21 have considerable merit. Canada. 1

Practieal Tranalator Cirevita, A. Petitclere. "el. \& auto." Sept. 1960. 2 DD. Four simple ircuits are introduced. They use semieon. ductorn, namely diodea, tranaistors and Zener dinden. They are a 9-v. stabilized power eupply. a 80 Hz oscillator with RC phaseahift circuit. a similar ascillator for 1.000 Hz , and an elertronic flanher baned on a 2-tranaistor multivibrator. IFrance,

Printed Cireaite Contalning Reslotors. Pari 1, P. A. B. Toumbe. "Brit. CAE." Sept. 1960. 5 DD. There in demand for the provision of components as well es wiring in printed circuita. Vacuum depoation offers a meana of producing both resiators and wiring. Germanium and germanium/metal allos fima were invenitaged an posaible resistance materiala. In the Arut part of this article. an account fa given of the methorla of production of there films. The second part, to is. published next month. deals with their texting and protertion. (England.)

COMMUNICATIONS

Certain Propertiea of Communication Syotems wh Fading. E. L. Bloch, A. A. Kharkevitch. "Radiotek" No. 9. 1960. 7 Dp. The authors discuss aspects of general properties of communication syatems which are affeeted by the fading type of a multiplying type of diswortion. They compare these aystems with those which have the unual additive diatortions. An evaluation of the rystem carryine capacity for these syatems and an analyais of the queations of applicmition of corrective corleo are also prenented. IU.S.S.R.I

A Tranalatorized Channel Converter for Carrier Frequency Telephony हुgetems, H. Hinde, et al. "Nach Z." Oct. 1960 E pp. In Hinde, et al. "Nach. Z." Oct. 1960 - 8 pp . In
the introduction the advantager of tranaistors

REGULARLY REVIEWED

AUSTRALIA

aWA TEK. Reo. AWA Teldural Reriew Poc. AIRE. Proceedinge of the Institution of Radio Pinglurers

CAMADA

Can. Elies. Ens Csamdian Electroant EnglEl. ineririzn. Comm. Bilectronica and Communieation

ENGLAND

ate J. ATE Journal
BBC Mono. BBC Engineering Mooograplas Brit. C.\&E. British Commileations \& Elecirmile
El. Tech. Eectroose Techoolong
GEC J. Veneral Electieal Ca. Joumal
of Inilio Engioeem
Proe BiEE Proeenting af Intitution of
Bilertrieal Enslineero
Tech. Comm. Tectinteal Communt attons

FAMCE

ull. Fr. EI Bulletin do la societe Fran-
cab. Tram. Cables Transmission
como. Rend. Comptes Resdus Hebdomaialres ties siegurs
Onde. L'Onde Electilope
E1. It Auto. Electrondque et Autnmalisme
kep, Trem. Eerue Techalque
Toute i. Toute la Radto
vide. Le vide

GERMANY

AEG Pros. ato Protrean
Are. EI Uber. Archily der Eleterisaben liber EI Rundil. Eleetroalsche Rundechan
Frea. Frequers
Hochires. Hochifrequens-Lechall und Eleciro
Mabh. 2. Nochrichteatecholisebe Zeitselifift
Nach. Re. Nochrichteatechalsebe Zeitselirifl
t. Recelungrtechall

Vat. Teen. Valuou-Tectin

POLAND

Prace ITR. Prace Inatytutu Tele-I Radiotech-
Roz. Elek. Dozpraws Electrotechnizne

USSR
Avte. i Tel. Aitomatite I Telemathanitia
Radio Itarlio Radiotet. Ren
Radietet. Redilutetholta
Rad E Elet: Rustlotelthalta 1 Eletuanila
Is. Acal. Bulletion of Academy of Belences

- Phutocopies of all foreten articles are available at 75 centa per page. remitted with onder. Unleas other. alae indicated. ortieles appear in langage mative to coantry of origin.
- A reprint of this ecetion, "Interns. tional Electronic Sourees" is available without charge.

Requeats for the above should be sent, on company letterhead, to:

Electronic Sourcen Editor
ELECTRONIC INDUSTIRIES
Chestnut $\$ 86 \mathrm{th}$ Sta
Philadelphia 89. Pa.

International ELECTRONIC SOURCES

in relation to valves are discunsed. low power consumption, miniaturization and increased reliability. 'Germany.)

The Applteation of Printed Círeatt Techalane 1. Microwave Sgatem. K . Fonter and A. C. Mruwil "Brit. CAE." Aus 19606 DD - Einkland I

Training of Petoonmel for Telecomemanication Fingineering. D. C. Bhathacharji. "J. ITE." April 1960. 12 DD. (India. in Eneliah

Analyuis and Design of - Moviag-Coll Mice Dione, D. L. Subrahmanyam and K. D. Pavate $\because \mathrm{J} . \operatorname{ITE} \cdot{ }^{\circ}$ April 1960 7 pD. IIndia. in - nglish. 1

Palse Lenth Telemeterimg. A O. Davies ATE. J.': Jan. July 1960, 10 pp. The elemente of a single indication system and its operating principles are first considered followed by deacription of the transmitting and receiving equipments and their performance. Similar tiestment for multiple indication syatems fol I.,ws and the article concludes with a reference tu initiating equipment and applications other then the normal one of indication of varyine quantuties (England)

A Telephone Dietation Recorder gyatem, 8 Kulmer. "ATE J." Jan July $1960 \quad 12$ pp After briefly reviewing the basic reguiremente of a dictation recorder syutem and alternative niethods of operation. the article then apecta. rully deseribed the A.T.E. system. After conaideration of its integration with automatic telephone systems. details are siven of Ita draign. Pacilities and operation IFngland.)

Contommonar Birnal Diecrimiantion. A A. Knarkrvich. "Radiotek" No. 10, 1960. 8 pD. The author dincuises the poeslblity of representing oirnalu. which are continuous at the final time interval. by tine or more numbers and the op timal selection of such number for best recos nition of signala by comparison to a given set of punsible functions. This pasaible technigue reuulted in cunnection with developments of reiognition devices. intended to recosnize continuulim contoum. (U.S.S.R.I

I H.F. Telemetry and Control Limke. J Pierun "Prit. CaE." Oct 1960. \& DD. In many ins 11 ? 2 ial problems the use of line communica tuon f (on control and data tranamiasion is not evonmic and is prone to fallure during periods of uperational emergency, fur instance during lisul weather. The author deacribea in this article the requirements for a u.h.f. telemetry link, and the way in which it has been used it, such divence applications un television outwide bruadeasting. horse racing. and gas worke dute tranemission. IEngland.I

Desiga Fundamentale of 8uper-High Irequenes Dincrete Sirnal Automation Syatems. M. S Neiman "Radiotek" No. 10, 1860. E pp. This article deals with the fundamental design principles of AM, FM, PM. and mixed liscrete aignal aystems. In particular, possible methods are liriefly discuseed, which permit to perform basir lugic operations, and methods of amplifyink information earrying rudio pulses. If tyink information earrying radiu pulses. In uf duign and applieation of high-speed dis. eret. -iknal automatic systems. US.S.R.,

A Methed of Reducing Distortion in ITM Kly iron Iramatitera, A. F. Eivers, et al. "Brit C'\& E." Aug. 1960. 4 DD. Current methods of mudulation in microwave links ar reviewed and a technique is described which uffers can siderable iniprovement in cost and cunfurmity to revommended standards. Fingland

New Tape Temsion Stabilizing Methed for Recorders. E. Vollmer and W. Rank. "El. Rund." O. -1 1:00. Y pp. After discusains the requirement of conatant tape tension in highapuelity recurders and the methods on fiu employed iv stabilize tension, the authur leseribes a new tensiun liy light where the light output is in. fluenced by the teasion. Germany,

Ovoraheet EHmination in Capriter Syeter Artomatle Gain Rejelatiems, G. Tamburelli. "Alta Freq." Aus. 1980.22 pp . The conditions to be achleved for overaboot elimination in carrier syiem automatie gain regulators are determined. The case of one, iwo and three time onatante are examined and n theorem to siven for the cap of a time conatame. The ideal ebaracteriatice of the automatic gain regulator are fially thocumed. (ltaly.)

Uptieal Meger Aetlon in Ruby. T. H. Maiman Brit. CEE. Sepl 1960. 2 pp. The buce. ul operation of mierowave menern in the past few years lime atimulated considerable current interest in extending the basic maser principles to the generation of much bigher \®uencies. (England.)

Constractive Tolerameen of Bubmarine Cable blit Subsarged Repeaters, K . Monelli and E Ocehini. "Alta Freq." Aus. 1960. 40 pD. A tatistical theory is outlined for caleulating the conatruetive tolerances of a people of coaxial cable lengths to be used as amplification sec. tions for a multichannel telephone cable with ubmerged repeaters. (litaly.)

A Uait Trunk Automatic Exchange, J. A. Scoweroft and L. F. Krott. "ATE J." Jan. uly 1860. 12 pp. This article describes on automatic trualz awitching centre desisned peeifically to meet the seede networke emploring redio, carrier or physical eircuite. (Easland.)

A 75 en Recelver for Redio Aatronomg and Sone Obeprational Reanles, C. L. Seegar, el a) "Phil Tech" \#11. 1960. 17 DD (Netherlende in Eneltah.

 COMPUTERS

Deaign Pioblems of Machine Claselfying Eletente Accorling to Bigns Unknown Before. hand, E. M. Braverman, "Avto. I Tel." Oet 1960. 12 DD. A mumber of Eeneral conditiono where the problem can be solved by machines with stimulation (i.e. machines which set ome idditional information from the operator, is pointed out. It is shown that someimes machine without stimulation cas be used for the same purpose. (U.S.S.R.)

The Desien of a 8pecial Purpene Disital Come suter, D. Halton. "ATE J." 88 pp. Jan-July 1960. The equipmept considered is a real time computer, deaigned to operate within iming lamite Impoeed by an external syatem The computer in parallel, binary machine. using England.

Teat Circuits for Evaluation of Compater A molifiers, A. Kley. "El. Rund." Oet. 1960. 2 DD. This paper describes a number of test circuita permitting to check withoul further ccessuries, the static and dynamic accuracies and the zeru deviation of computer amplifiers. (iermany.)

The thoice of a Universal Laeic Element, N. 1. Carlson. "El. Comm." Seph 1960 DD. The verformance requirements of a nevern of Canadian induatry are presented in the fulluwing article. (Cansda.)

Tranalotorized Analoz Digital Converter for High Keying. K. Grieder. "El. Rund." Oct. 1960. 2 DD An enalog-digital converter for keying frequeney of maximum $40 \mathrm{ke} / \mathrm{s}$ i dencribed. Germany.)

The Application of Compaters in the Chemical Induatry. Part II, Th. Ankel. "rt." Sept. 1560. B pp. (Germany.)

COMTROLS

Stability Amalyaio of Bytron Automatic Phese Contral Cireetis A. Birger. "Radiotek" No. 10. 1060. 7 pD. Spurious qeedback in atomatic phase control agetams of klyatron is analgzed. This feedbeck is one of the cause of eelf-oscillations in the system. Criterls are determined for balancing branches of the phane detector, to provide stable operation. (U.B.S.K

Reralatiae Behaviop and Controllablitity of Typleal Coniralled Plante. P. Profon. "rt Oct. 1960. 6 pp . In this contribution the author diseusses cenerally a few propertie and relationships deseribing the regulatine behavior in eervo-mechaniams and outomatic proceas controls. (Germany.)

Automatic Control of aitement-celling Ma chise with the Aid of Presot Comatern, F Einramhof and P. Havas. "Phil. Teeb." \$10 1960. 7 Dp. (Netherlande, in English.

8peed Control for Driven, W, Dehner, "rs." Sept. 1960.7 pp . In this contribution. firet of all. the apeed (alip)-torque characteriatic are shown for the most common shunt motor and drives, followed by a discumalon on ctart ing. braking and transitory conditiona for de motorx and non-synchronous motors. (Cer mans. 1

A Digital Control Loop Oblainiag area Namber of Closely stepsed Prequemelee. Par 1 C. If Nourney. "rt." Oct. 1960. \& PD Part 1 deals with the operating principle, the layout of the control loop and the qualitative analysis of working conditions. A theoretical study of the problem will be given In Part 11 which will be published shortly. (Germang.

Optimut Performanes of Two-8tep Aetion Controllers with Peedback, W. Botteher. "rt-" Oct. 1960. Tp. The improved control bs meana of delayed ur delayed reaet feedback in explained by examples with an analog com puter. 'Germany.)

Contribusion to Regulation lig Impulace B. Neumann. "rt." Oct. 1960. E pD. A s-aten action relay aystem with delayed feedback ani equipped with an impulae emitcer for integre control. can be conaidered, by introducing certain simplifcations, as a linear proportiona plum-intogra) controller. (Germang.)

Automatic Control of Maching Baw . M Seurot "el. \& auto." July 1960. $2 \mu \mathrm{D}$. Thin paper shuws how the problem has been anlvel by a Pransinturized unit. (France.)

Indastrial Applicationa of Bolld Blate Thyra trene. R. Dablun. "el. \& atw." July 1060 5 pp Principal characteristics and elreuit de sign considerations are presented for the semi cunductor thryatron. Several exemples of industrial applications are siven. (France.)

Aatomatic Control of Neclear Power Stationa J. E. Westerlint. "el. auto." July 1960 6 pp . Thi introductory paper deseribet mumt marily nome of the proven induatrial nolutions - France.

The n-F'old Contrel of Singlo-Leep Syateme with m-Fold Coupling, R. Starkermann. "rt." Aus. 1960 δ DD. Formule are given for a linearized aystem of a controlled varlables with n controllera. After having duly determined the individual frequency responsee of each tranafer number. these formula reault in the compresite frequency rapones of the dinsected syatem. IGermany.)

A Contribution to the Theery of Meltiple-loop Contral Sgstema, C. Kesaler. "rt." Aug. 1960 6 pp. The author deseribes a method of cal. culatine multiple-loop aystems by the cumula tive use of the known alaing rales for

0.1

LARGEST LINE OF MILLIMETER WAVE LENGTH BWO Bendix* bwo

 tubes for higher frequency transmission. These Backward-Wave Oscillator Tubes-exclusive with Bendix-generate microwave energy over the largest continuous frequency range. Ideal for advanced multichannel telephone and television systems, microwave spectroscopy, high definition short range radar, highly directive communications, and many other applications needing low power, voltage-tuned millimeter wave length radio frequency energy. Write today for complete information.

Meximum Diemeter Length... Mounting Position. .
Woight
Without magnet (tube only). Magnets are available.

International ELECTRONIC SOURCES

single-loop control aystems. By stepwise structural trannformation multiple-loop systems can be converted into single-loop contrul systems of the same kind. Germany.

The Characteriatic of Control Loop with Inmuficiently Filtered Contralled Variable, A. Mucura. "rt." Aus. 1960. \& DD. In a control houp with saturating elements the correction will senerally be leas accurate if the controlled variable has a periodic component. This article deale with the mathematical treatment of such control loope and ways are shown how the influence of the periodic ermmonent can be kept amall. (Germany.)

Contral of Serve Drive by Meana of One NallIndicator, V. D. Vershinin. "Avto. i Tel." Oct. 1960. 6 pp . A circuit for nummation of nccurute and approximate control signal with the help of which it is possible to cuntrol a eervo drive and to check the etrictness of wutumatic folluwing realized by meann of one null-indicator is considered. IL.S.S.R.)

Herter Calemfation of a Clece of Control Syetemn, S. M. Levin and L. G. Manusevich. "Avto. i Tel." Oct. 1960. 10 pD. A method of investigation of clase of control aystems is cunsilered. The method in bamed on plotting vertor diaprama and on determining refection of finrameter apace on the aain-phane charac. eristic plane. IU.S.S.R.)

Stability of a Contral Syntem for Ailerena with Tarbulent Dintarbances, P. S. Landa and With Tarbulent Diatarbances, P. S. Landa and pD. With the help of electronic analog compluter there are found stability regions of an nuter there are found stability regions of an aircraft wing in the case when the contrul ystem for an aileron ban nonlinear elements. It is shown that existence of amp in the control circuit in a certain parameter ares renult
IU.3.S.R.)

GENERAL
Probability Density of the Duration of (overshoots in Fluctuating Fanctions. V, I. Tiko hunow, I. N. Amiantov. "Radiotek." No. 9 .
14600 . Three methods for the calculations of 1460. Three methods for the calculations of the probability density of the overxhont durations in normal stationary fluctuations are briefly analyzed, and some experimental data are prexented. The applicability acope of each of the three methods is determined by usins: each method to obtain the probability density and then by comparing these thenretical resulta with experimentally obtained results. II.S.S.R.

Nurlear Marnetic Remonance. D. J Krimn "Phil. Tech." \$10, 1960. 14 pp. A eroncise expowition is given of the theury of nuclear magnetic resonance and of the aperific absorption it causes of electromarnetic waver usually measured at metre wavelengths, by atomic nurlei serpecially bydmaen nuclei, placel in a magnetic field. INetherlanda. in Einglish.

A Tranaistor Cardiotachometer for Continuoua Meanurementa on Working Persons. G. A Harten and A. K Koroneai. "Phil. Tech." $=10,1960$. 5 pD . In the apmaratus described the individual heart beats are converted intu electrical pulsea by arranging fur a heam of light iranamitted through the lobe of the eur tu fall on a phototranaistor. Fach pulse caumea a miniature transiatorized transmitter to transmit a note of 3000 e.s. on a earrier of $10-15$ Mrfa. Tugether with aerial and Ni-Cd bat eries, this part of the efuipment wipishs about a Iba and is carried on the hack. Netherlands. in Finglish.

Data Processine in the Chemiral Induatry Part I. J. Hengrienbera and Th. Ankel. "rt." Oct. 1960. 6 pp . In this article a_{o} survey is carried out of the varions fields uf application
of data processing in the chemicul industry.

A critical study of the use of data logsers and special purpuse computers on the factory foor is followed, supported by selected examples. of a discusuion relating to the most importan tasks of centrulized data processing. I (jer many.)

Theoretical and Design Aspecta of Marnetic Reprodecing Heade, O. V. Poritzky. "Redio rek" No. 9. 1960. \& pp. An approximated theoretical analysis is presented fur reproduc tion of masnetic recurdinge by toroidal heads taking into account the ultimate core reluc tance of the heads. An expression is derived which approximately defines the magnetic fux distribution within the reproducing head. Ex nerimental procedure is described and theoreti cal reaults are compared to experimental re sulte. (U.S.S.R.)

The Namber of Tarna of the Reat Loras Curve. O. Follinger. "rt." Sept 1960. \& pp. In thie artiele formula is derived for the numbe of encirclements of the Nyquiat plot around the -1 point in the complex plane of the "pen loop Eain. (Germany.)

Electronica in Elertrophyaiology, Mollie E. Holman. "Pruc. AIRE." July 1960. \& pp. A brief introductory review is given of the une of electronics in the study of nerve and muscle cells. Australia.

The Philesophy of Siaulated Flight Training. J. Vivian. "Brit. CEE." Sept. 1960. \& DP Thin article attempte to survey the backeround if fight simulation es a vital tool uf airline pilot training. showing how it enables the uperators to meet the refluirement fur setting and maintaining the highest atandards. thua replecing aircraft flight training an mor effective mann of demonstrating many phasea of fisht and so competing succesafully nn economical grounds with the use of aircraf drawn from the revenue feet. England.

An Airborne Teleprinter Syotem, J. H. Court "Brit. C\&\&E." Sept. 1960. 3 py. It has now hecome apparent that with the ever increasing truffic on the world'n air routex, wome methor of relief of the congestion of hr and vhr radio communication channels must be found. In furticular the North Atlantic requires the munt urgent attention. IEngland.

Phase Shift By the ATR Tuben in Balaneed Duplezers. B. E. Ruhinstein. "Radintel" Nn 10. 1960. 3 pp . The phase ahift, which ma be caused in the channel of a balunced duplexer by dual ATR tuben, is calculated. It is showin that the adread of parameters of rexionant ele ments, which comprise the ATR's. can lead $t 0$ a cunsiderable increase in the duplexe lonsen in the receiving operating conditiona (U.S.S.R.)

Experimental Exploration of the Noise-Peak Daratione, A. I. Velitchkin, V. D. Ponomareva "Radiotek" No. 10, 1960. 6 pp . The probabil "Radiotek" No. 10, 1960. 6 Pp. The probabilo
ity denaity for the duration of peaks and the ity density for the duration of peaks and the
time intervals between the peaks of normal time intervals between the peaks of normal and Raleigh noive has been determined for
various levels. On the basin of thenc results. various levels. On the basis of thenc reaults it has been poasible to conclude that the prexently known approximate methods for the analyais of noise-peak durution, give ratisfac-
tury results only at high leveln and fur ahort wry results only at high leveln and fur ahort
peaks. In other cases. it becomes neceavary to use experimental rexults. IU.S.S.R.I

Elertranie Stimalators, G. Eidsall. "Proc AIRE." July 1960. \& pp. The cireuita and performance of electrical, photic and auditory stimulatore are outlined. IAuxtralin.

New Micpowave Amplifying Terhnigzes-Ap plications and Developments, A.P.C. Thiele "Brit. CeE." Oct. 1964. \& pp. In the search for microwave amplifying techniguex with lower noise fikures, a number of solid-siat devices have been developed in recent years. In this article the author surveys the progres made, and attempts mome predictions about the future development and apulication of there amplifiers. IEngland. I

Simalatora for Minaile and Space Vehiclen, D. E. Crunin. "Mrit. CEE."/ DP. Anslog computere have been famillar end earential tooln in the design of homing guided mixailes and aircraft control rystems for many senr. However, in atudyis ge guidance and conlmil of missiles heving long times of night. the limitations of analog methoda begin 20 mahe themselves felt. In dealing with the positionul accuracy of ballistic miagiles. atelliter and apace vehicles, it may be necesary to fursuke purely analos methods: yet senersi-purinse dixital computers are not necesararily the ineal anawer. The digital differential analyzer providea a suitable comnromise in many caxes between the cunficting requirements fur high accuracy, real-time computation and areillate. bandwidth. England.

Stability of Poly-Rarmanie Operatine C'onditions in Self-Oscillating 8yateran With Many Tanla, G. M. Utkin. "Radiotek" No. 10, 1 !nitl. 3 Dp. At the present time, operatine cunciof freedom have been atudled in the case of simultaneous oscillations. In this work, ixcillation arability has been ntudied for simultaneoll oscillations in systema with many degreen of freedom, such as: oncillater with several tanks, traveling wave sube with feedlinch, oscillatore with delay lines in the feedliack lisup and othern. (U.S.S.R)

Extenaion of a Theorem for Normal Pasive Electric Hipolen and steady Condition. 1. Lunelli. "Alta Frea." Aug. 1960. 12 p!. theorem demunstrated by R. M. Cohn $11!15111$ is expounded covering the easp of nurniul passive bipole containing an internal phswiur. netwurk with n degrees of freedom. pursuant the reciprucity theorem. Italy.I

Twa Probleme in the Theors of Rellability for Electronic Eqaipment, D. G. Polyak. "Radiulek" No. 11. '960. 5 PD. Formulae mre whtained for independent and series ennnectorit lements. Which enable one to determine th opuantity of reserve elements. Reliability unil the cust of a asktem are factors which determine the ontimum selection of the rexerve element distribution throughout aystem. U.S.S.R.

Application of a Particalar Mathematical Farm of Inverne Fourier Tranaform to an Analyaia of Trancient Rehavior of Linear Syateme. It A. Kravtchenku. "Radiotek" No. 10. 1:tri" A mathematical form of the inverse Fourter transforms is uffered in the form of a kerios Thin furm of the Fourier transform nermitthe establishment of a ample erapho-anulytic method of producing transient proresso- in linear systemn. An illustrative examile. in
given at the end of this article. (U,S.S.R.,

Recent Medico-Electronics Instraments. P. Pablo. "el. \& autu." Sept. 1960. 8 pp. Anurg recent elertronic develupments for use in mestical remearch, one can cite a microminiature mplifier. fully transistorized, an electronio piethymmorranh for blood volume measurement. and finally the electrunic neuron aimulatir. which allows the desian of complex nervius, ystems. These three developmente are fully leacribel and methenls of utilization are cout. lined. 'France.)

The Fruits and Foundations of solid-sitate Reaearch. I). Polder. "Phil. Tech." \$111, 1!:4il. fipr. Principal cuntente of the addrews Iclivered by the author upon his inauzurntion akes the work done "! eermanium (1) illusrate the enormoun development of solillostate reseatch. I Neiherlands, in English.

Minimam Description of Pattern by Coded Program Swepping. V. A. Garmagh. "Radiotek" No. 10, 11960. A pp. Aspects of minimum lexcription of patterna are considered for auamatic recornition. To minimize descrintire infurmation reluired. It in proposed to use oded prorram nurepink of Daterna. Element of this technique are analysed on the bania
of the significance of the Dreceding element

A 32-page digest of the industry's most complete lines of single-turn and multi-turn precision pots!

With new sections on A-C
Non-linear . . . Liquidfilled...and Helitrim trimming potentiometers. As well as turns-counting dials and delay lines!

Complete technical data, including environmental specs and outline drawings, is at your fingertips. And it's all arranged in a fastreading format that makes pot picking easier.
Just ask for it.
Beckmani/Helipot
POTS : MOTORS: METERS
Hellipot Diviston of
Beckeman Instrumenta, Inc.
Fullerton, California

- 1081 e.1.I. 81101

Circle 114 on Inquiry Card

Sources

A method to determine the sersuence of the moet informative element-cells is presented. (U.8.8.R.)

Ratimate of Marimen Doviation Prom Known Trajoctery, E. A. Barbabhín. "Avto. I Tel." Oet. 1960. 11 pp . The technique siven in $£$ previlous paper is used to eatimate maximum deviation of the motion from the motion alons the known trajectory. The way of selecting control functions and control vectors proo posed to decrease this deviation. The ease of infinite time period is considered. The connection of the studied problem with the problem of disturbance aceumulation is indicated. (U.S.S.R.)

Surver and Clamiliration of Multiplyiag De vires. A. A. Meslov. "Avto. I Tel." Oet. 1960 10 pp . The paper deals with ayratematization of various principles of designing multiplying devicen in regard to the perspective of thelr further development in the direction of inereasing their aceuraey and high-speed. The ways of Increasing aceuracy and birh-apeed of the device in guestion are considered. (U.S.S.R.)

Study of Weak 8urface Effeet on Remametian tion of Ferre-Magnetle Plate, M. G. Vitkov "Avto. I Tel." Oct. 1080. \& pp. The paper deals with quantitative atudy of remagnetization of thin enough plane coils with rectangular hystereis loop. (U.S.S.R.)

Antomatization of a Clond Chamber. F. Juater. "el. auto." Sept. 1960. B pp. The posoibil itles of a classical Wilson chamber oan be conaiderably enlarged throush the addition of varlous electronic control circuitn. iFrance.

industaial Electronics

Electranles In the Aatomobile Indastry, M Cuiot. "el. ato." July 1960. 3 pp. The use of nemiconductors leads to worthwhile improvements in the held of electronic ienition. Numeroun other epplications are poselble, as for example purely electronic RPM-meters and outomatic apeed regulators. (Prance.)

X-Ray Inapection of Hot Stos! Billets Darine Rolling. W. J. Oosterkamp, it al. "Phil Tech." \&ill. 1960. 5 DP. 'Netherlandw. in English. 1

MATERIALS

Ferrite Pilters With Variable Tuning. B M Heskomvainy, et al. "Radiotek" No. D. 1960 7 pp. Tuned RC and LC Alters preently used in epectrum analgzers have mang ahortcomings, mons which are limitations in the low-irequency audio ranges. Mulel-section filters uning ferrites with high permeability. whose reveraible permeability depends very closely and risidly on the magnetising voluage. have considerably improved low-irequency audio reaponne of apectrum analyzers. In thin article. tunable fiters are considered with fer rite cure inductors. Tuning is aceomplished by changing the magnetizing current. Tempers ture compenastion of ferrite filters is premented. Data are given for a ferrite flter spectrum analyzer. (U.8.8.R.)

A Monaring Pacility for the Determination of the Permeability Tencor and the Dlenectrie Cematant of Perritee at 1000 Mc. W. Novak. "Hochireq." June 1060. 9 pp. A new measuring fecility is deseribed that $\{$ used to determine the properties of ferrites. The theoretical basis is elven to eatablish the meenine of the permeablity tensor of premagnetised ferrites. and methods for lit measurement are dis: amplifiers
in one supremely versatile manifold!

POWER SUPPLY - MODEL R-300

As a power source for the K7-A10, we recommend this 300 ma regulated power supply, because its exceptional regulation and sub-millivolt noise allow it to serve also as a high accuracy reference voltage. Due to its ultraconservative ratings, the R-300 will allow the K7-A10 to operate indefinitoly, even under full load conditions (350 ma). Price,

- Avallable from slock
- Military equivalentsa available
- Technical data availeble on request

285 Columbus Avenus, Boston 16 . Mass: mmonwealth 6-S375, TwX: ©S1032. FAX:
Representatives in principal citios Tel CHelsea 3-5200. Cable termradio Circle 119 on Inquiry Card

International ELECTRONIC SOURCES

cussed. The desif: of a new tent facility for circularly polarised resnnatorn is deseribed. The messured bandwidth and center irequency of loaded and unloaded rewonators are pre eented. I Gepmany.I

Standand Eloctruale Parta Speeifcationa, I. F. Bennett. "Brit. C\&E" Aug. 1960. 8 DD. This article deals with the use and advantagea of standard apecifications for electronic part and materials. Thelr value to both user and manu facturer are briefly discussed. The aima and intent of the oew hish reliability upecifica. tions are included. (Eagland.)

Zone Refnime. E. F. G. Heriagton. "Eadeavor" Oct. 1960. Sp. Zone refining in a process in which rod of impure material is purified by heating it on es to raupe amolten sone to pas alons its length. It wan originally developed for preparing Eermanium for tranaistora. Subeequently the techaique, which bes in certaia applications marked advantagea uver both diatillation and chromatography for the production of a virtually pure material, has been applied to a wide variety of subveances. This article deseribes the theory of wone refining. the apparatus uxed. and some of its applications (England.)

A Methed of Growing Dlabocation-F'ree GepEanium Crystals, is. Okkerse. "Phil. Tech." \#11. 1960. 6 DP. Dislocation-free germanium errstals can be produced by the pulling method of the diameter of the ergatal grown from the seed is initially reduced to 1 or 2 mm . This diameter is mairtained uver a length of about 20 mm , after which it is gradually rained to the desired value. INptherlanda, in English. 1

The Separation of Silicen In Vacue by Thermal Decompositlon of sillicon-Tetraiedide on a Hot Pllament. H. Kern. "Vak. Tech." Sept. Hot Pliament. H. Kern. "Vak. Teeh." Sept.
1950 . i pp. The mpeed of separation of ailicon in vacuo by thermal decomposition of silicon. in vacuo by thermal decomposition of silicon-tetra-indide has been meanured. The maasarementa were carried out in an evacuated and mealed-off veasel, wherein electrically beated
sungaten wires were mounted. Germany.)

New Developments In Permanent Magnets. J I. Salpeter. "Proc. AIRE." Feb. 1960. 7 DP The theory of marnetic domains provides an explanation of the magnetic properties of Ticonal and pointa the way to further fu: provements. (Australia.)

MEASURE \& TESTING

Pulse Shifting in Marmetle Recorders. Y. P Drubywhev, "Radiotek" No. 9, 1960. B pp. A method is described for pulse shifting in mag. netie recorders to recond high-frequeney aignals on magnetic tape. Several arrangementa in the time relation between the shift pulse and the magnetic pulae are shown to produce varying sensitivitiee as illustrated in the hystereais loop produced by the ahifted pulse In each case, the rasidual induction to proportional to the amplitude of the pulse, provided the shifting and sisnal puleer are aynchronised. The result is that the irequency of the magnetizing current meed not be several times the frequeney of the aignal, as the the pape with other magnetizing methods. where the lossen become too great in the high frequeney range. IU.S.S.R.)

Bynopais and Comparison of Enown Methoda for the Detertion of Periodic Pubee in the Presence of Nolse, D. Haussig- "Hochireq." June 1960. DD. It is shown that almost all the methods now used to improve the S / \mathbf{N} ratio in radar set work on the same prin. ciple. A emmparison sienal is introduced that is coherent to the useful signal but incoherent to the noise. Theoretical and practical Investi. gations show that methods derived from the ideal intesrator are superior to those that employ the short time eren correlation fune(ion. Germany.)
Optimam Band for 8pectran Analysers, N. I.

Uryev. "Radiotek" Na. 10. 1060. 5 pp. Simple formulse are presented which allow to perform preliminary deaign of on analyser. These formulae eatablisb the relationahip and iopendeace among the basic parametere of the pendeace amons the basic parameters of the atatle and the dynamic pan bands. IU.8.8.R.I

Am Artomatio: Particle Comiter and Bisar, B. A. Dell, or al. "Phil. Tech." \#19. 1960. 15 pp. The problems involved in the automatie counting and sising of particlen are outlined in an introductory section to this article. Varioun possible seanning syotems are doseribed, tozether with various methods to evoid or allow for the effects of multiple o lumped counts. (Netherlende, in Encliah.)

Tranniatorlsed Counter Using Lowls Cycla, P. Ralaakovic. "el. A auto." Sept. 1960 . DP. The design of a decade counter and of the associated diaplay circultry ean be sfmplitac through the use of multintable cirevita. (Prance.)

Meanarement of Arterial Bload Preanare. J. R Goding. "Proe. AIRE." July 1960. 2 pD. Arterial blood frow ba deseribed in terma of Alectrical analozue. It may be measured by a small transducer conaiating of a moving ter. rite enre which varies the coupling between iwo coils. (Australis.)

Tranaistorised Iedeatrial Detoetor, P Birven "el. A auto." July 1960. \& np. Three ex. amples. particularly interesting for industrial unerm are presented. They aro an electroale timer, temperature regulator and photo eleetric detector. (France.)

Automatie Meamarement of Bpeed of Viasal Refiries. "el. auto." July 1960. 8 Dp. This article describen a meanuring enuipment uning two indurtrial television eameram. Briefly. It records ege orientation and the speed with which this orientation variea as a function of external stimuli. It in based on the mothod uf corneal reffection. iFrance.)

The Qeantitative Measurement of Molecular Beams of 8mall Intenaitie by Partial Nentral Ization of the Blectron 8paes Charge im Diode, [I. Fucha. "Vak. Tech." Sept. 1960 5 pp . In order to measure quantitatively im pulse-modulated moleeular beame a apace charre diode by Kinedon was used which proved to be suitable ma general detector for molecular beame. (Germany.)

A Surves of Wave Amalyser and Distortiono Pactor Metera, R. Bmwn. "Brit. CeF." Oet. 1960. pp. Most of the wave analysers and distortion-factor meters made in this country have been designed for ure at audin fre ilueneies. There are, however, several instro ments available which have been designed 80 une at line carrier irequencies. There fo one inatrument which has been dealened for use in the he. range, and one inatrument whieh ha. been deaing
(England.)

A Contiaseen Recording Method for Determin. Ing the Vertical Gradient of the Refractive Indes in the Pree Atmesphere, H. P. Barthel and A. Rowbach. "Nach. 2." Oct. 1860. \& pD. The verticle eradient of the refractive index has been examined by means of a continuous recording of meteorological date at a measuring station alone a radio path 250 km long. (Germany.)

The Lower Cut-on Preanency of Btabllised Amplifler Blage with Tramajator or - Pentede. W. Steimle "Nech. Z." Oet. 1980. 2 pp. The loel curve of the mutual conductance in a transistor amplifier stage in a grounded emiter circuit with an RC network in the emitter line is explained and the lower cut-oft frequeney is calculated. (Germeng.)

Radiation Detectort and Their Phyelcal Pundamental. F. H. Rinn. "EL. Rund." Oet. 1960 4 pp. The paper deals eseentially with the design and mode of operation of forifation chambers and counter tubee. (Germeas.)

Decillosrapie Diaplay of Counter Tube Charac. cerlatice. H. Sehmidt and H. 8chmide. "E1. Rund." Oct. 1960. 1 Dp. A cireule permiteinc abeervation of the charecteriatic of a counter ube on the eathode-ray acilloseope ICROI serven is deceribed. iGormang.)

Methods and Applications of Extrese-Value and Estreme.Leration selection. F. Kalo tenecker. "rt." Sept. 1080. I pp. In anme plance it is navoresy to meaure a variable in various places at the same time. If it fa aueation of automation the hirhert and the lowest meanured valuea and the loation uf measuring are of particular interent In this article the author diseusecs the problemin Inolved in the selection of ouch extreme values and the principal methode applied. IGermany. 1

Eleetronir Mothedi for the Interfermometrie Meagnre of langih, G. Rumbo. "Alta Preo." Aus. 1960. 28 DP. After a short mention of the ceneral lawa and procoedlags of inter ferometry. the photoelectronie tranaducer deseribed, traneformins the illumiantion of m interfereace pattern into an clectricel olgmal The description of the procseding for longth meanurement using photoelectroaic iaterfer... metric method adding optical pathe is then riven. Itraly. I

Problem of Mret Rational Cheles of Photoeleetric Pleasmeter Cireuit I. G. Gutovshy: "Avio. I Tel." Oet. 1960. 9 pp. The theury of photoelectric Auxmeter-Interrating amplifiers with photoelectrooptic amplification in given. Photoelectrie fluxmeters of difierent types arp compared. It showe that the highest integration sceuraey and bigh-aperal arr oblained in the derivative aepative foedback phutoelectric fuxmeter with the leant back photoelectric nuxmeter (U.8.8.R.)

Semienaductor gerala Gange, W. I. Muson. "el. A auto." Sept. 1960 IDD. In the counce of a utudy of the transistor effect, conducted to provide a better understanding of the profserties of memiconductors, physicists have measured the piesoresiative effect in clomentx like silicium and rermanium. To their surprise, the plezorealative effect turned out to be murge that it har permitted the design of highly sensitive device for atrais menurs ment. Theme now devies orbibit practically all the desirable characteriatics of an ideal atrain sauge. (France.)

RADAR, MAVIGATION

Altitade Tolemetry fa Conjanctio with Aip Trafle Control, D. G. Terrington. "Mrit. Céc." Sept. 1960. pD. It is troe that radio altimeters are available for specific functiuns auch a accurate beight Iadication abuve sround un final approsel to land and when navigating over mountainous terrain, but they
are not in general use for mavigation. IEncland.)

Prospects and Limications In the Use of Low Frequencien In Active Sonar, G. Paciemza. Alta Freq." Aug 1960. 14 Dp . The author examines the laws of variation of the different factor determining the range of a conar. These lawi are fatroduced in the somar equation obtained in another report by the author and the ranew for frequeselen between 2 and 80 kHx are calculated. (Italy.)

Telecontrel of Bpatial Vehielen. M. Lubovite. "el. A auto." Sepl. 1980. 6 pp. 8pace gavication will soon be a practical problem. Rishe now, proven practical solutions exit for the celecontrol of misailes and eatellites. Guidance may be initial. median, corminal, or a combination of theme types. Also, redar may be cumbined with Inertial cuidance to provide better overall performanee. (France.)

EXTRA COPIES

A limited number of copies of the follow. ing articlen from back issues of EI are ovaileble, free of cherge. Fer copies withe: Reodor Service Dept-, Electronic Industries, 56th Chostnut Sts.. Philadalphic 39, Pa,
dANUARY IMO ISSUE
Spectrum Analzer Supplies Permanent Record" Applying Transistor 'ri Poramaters'" Diodes' (Patt' I II) and Resistor Matrices (Part 1811
The Case for DC Restoration
ransisfor P.A Amplifier
The Importance of Infernationa siandards
REARUART INA ISSUE
'General Purpose Digital Computing Svatoms'
"Nomographs Simplily Eectron Tube Design" (Port 1 B II)
Designing Inout Trigger Circuits"
The RW Tranamitter Hos Now Design Ideas"

MARCM IN ISSUE
Moleculor Eiectronica
Conirolling Afernator Frequencr
Accurato Iracking for Modiotheodolites*
The AC Potentiometor-Now Circuit Component

APRIL INO ISSUE

How Coriolis Work
When Watching
Missile Remember'
RC Filter Networts in Missile Control
"Applying Microwaves to Spoce Problems"

- Thermistors. . . Key to sio-Medical Measuring
in Spoce ${ }^{\circ}$
Selecting and Using Sonded Wire Strain
RFI in Satellite Communications Sustems The Challenge of Space ... What We Have and What We Need"

JUST PUBLISHED!

FREE, COMPLETE

BROADEST LIME IN THE INDUSTRY
Contents: - Selection Chart

- Fundamental Rectifier Circuits
- High Voltage Types
- Test Methods Write today:
Transitron
olectronic corporation
Alblon Bt., Wakefield, Mase.
Cincle 120 on Inquiry Cand

MAY ISE ISSUE

Encopsulating With Altyd"
Encopsulo Coil Reloy With A Double Coil Reloy With One Current Stabilizer Hos Wide Dynamic
Predicting the Anfenno's Role in RFI
Page from an Engineer's Notebook: Ns 52Roctification of Narrow Band Noise:
Ultrasonic Welder Design Cons derotions

JUNE INO ISSUE
Introduction to Boolean Algebra Selecting Coaxial Cable

JULY IMO ISSUE
"Colculating Dandwidths for Marching Nelworks" "How to Anolve Control Svitems with Pime "The Fronsistor Guard . . . A Sold Sta'e Cireul Breaker:
Compoctrons . . . Nam Series of Mulfifunction Tubes"
Determining Cothode Warm.Up imel and 'Analysis
Searching for
Design for a Transisforized Closed C.
Comero."
-How to Write Instruction Monuals

AUGUST ITM ISSUE
The Search for Now Electronic Mariets
The Binistor..A New Semiconduetor De .
"New Uses for Flurgate Principle
Determining Transistor Power Dissipotion
Chort"
Svstem Analrsis Using Digital Compueers
-Tuild O WWV Time Signal Receiver!
The Soth State
Future? ${ }^{-0}$
Where Are We Going with Semiconductors and Molecular Electronici?"

SEPTEMEE IWO ISSUE

"Conversion of Binory of Analog Codes
Transistor Circuits . . Driving the Bern. Transistor Circuits
-Enaineer's Notebook \$5s..... Amplifier C.
rents \& Stabilization Factors" Bnay gin
"Enginear's Notebook Wh Risetime Nomographs
"Ror Computer Design...Storina won in n
"Controlling RFI Susceptibility in Recevers Spec'pum Analysis of Time Division Sterec "How to... Buplicate Teehnical PoDe's?

OCTOBER I960 ISSUE
"Measuring Refurn Loss Accuratoly"
"Displaying Tunnel Diode Curves"
"With bouble Bolonced Design
cuit Has Cleon Output

- Popior Otric Amplificationines Or "Porametric Amplification by Junct
"Caleulate Impedance by Inspection
'A New Field.Effoet Device... Tre A'conon Assessing Mainfoinability"
'Build n Transistor Frequener Mete'

NOVEMBE IMO ISSUE

"Future Trends In Microwove Beam Tubes"
"Doformining Tomperafure Nise of Coanlal Lines" "Doslaning Mechanical Modulator"
"Flading Dielectric Constanfs"
"Finding Redar Pattern Equotions with Com putor
"Designine Rotary Wevequide dolnfe".
"Mate Your Orn Weveguide Sends"

Easfern Research Center

Robertshaw-Fulton has opened an Eastern Research Center on a 20 acre site in King of Prussia, Penna., 20 mi . from Philadelphie.

The $\$ 600,000$ one-story structure has 18,000 square feet, providing laboratory, shop, office, library and receiving Pacilities.

Eastern Research employs about 50 persons, aetive in chemistry, physics, electronics, mechanics, control systems, ana technology, air-conditioning, product design, and the model shop.

what is Reliablerelayability? it's Elgim advance's ability to EUILD A RELIABLE QUALITY RELAY LIKE TME SENSITIVE MA SERIES.
THE MO SERIES CRYSTAL-CAN-SIZE HERMETICALLY SEALED RELAY IS available in three sensitivities to meet varying military and IndUSTRIAL REQUIREMENTS. THESE CURRENT.OPERATED RELAYS COME WITH PLUG-IN PINS FOR PRINTED CIRCUIT USE, SOLDER HOOKS AND 3-INCH LEADS AND A VARIETY OF MOUNTING ARRANGEMENTS. ALL CONNECTIONS ARE SPACED ON 0.2 IMCH GRID.

[^2]
* $\star \star \star \star$ * $\star \star \star \star$

IN EVERY FIELD THERE IS ONE FOREMOST NAME IN SONIC
ENERGY. THAT NAME IS BENDIX

THE QUESTION IS: CAN YOU AFFORD TO BE WITHOUT SONIC ENERGY CLEANING?

Some people shy away from Sonic Energy Cleaning (without investigating it) because they feel they may not be able to atliord it.

Truth is-if Sonic Energy can be applied to vour cleaning problem effec-tively-you can't afford to be weithout it. In nust 'Sonic Energy Cleaning installations, the sairngs realized the first year more thum pay for the original cost-to say nothing of the additional advantages of fewer rejects and improved product performance.

Av the pioneer and foremost authority un Sunic Energy, Bendix: has prozed these facts over and over. That's why today we can put so much experience to work on your problems.

One example of our ability to serve industry is our Sonic Energy Applicadions Laboratory. It is unequalled for facilities and practical production exprrience to provide the most eflicient athwer for cleaning applications that can use Sonic Energy (1) adrantage.

To such professional capabilities, add the must complete and versatile line of Sonic Energy Cleaning sistems, and you have the full reason why so many companies with a cleaning problem come to Hendix for the answer.

FREEI REPORT ON

SOMIC ENERGY CLEANING
NOW AVAILABLE

Expleins the principles and workings of the procest in detall. Dencribes and analyzen typical rewlos. Outlines Ave-step plan that will holp you delermine feasibility of Sonic Energy Cleaning for you. To get your copy -rite: PIONEER-CENTRAL DIVISION, THE BENDIX CORPORATION, 2727 HICKORY GROVE ROAD, DAVENPORT, IOWA.

SOWIC EMEREY CLEANING
Circle 144 on Inquiry Card

Russions "Słerilized" Moon Rocket

An article from a Soviet magazine translated by the U. S. Dept. of Commerce, Office of Technical Services, says that the Russians were careful not to transport earthly microbes, which could contaminate the moon, when they made their moon shot in Sept. 1959. They hope "in the more or less near future" to determine whether there is some simple form of life now on the moon's surface or just under the surface.

The article, "The First Flight to the Moon OTS 60-31,250," (available from the Dept. of Commerce, Washington 25, D. C., for 50\$) says they also landed three pennants on the moon. The author did not say how the pennants were packaged to prevent damage.

One object of the shot was to determine whether the moon has a magnetic field and to measure the intensity of radiation. No magnetic field was determined nor were there radiation belts. Measurements of currents created by particles of ionized gas were made. There were regions between the earth and the moon where the concentration of ionized particles is less than 100 particles per cubic centimeter. These currents increased upon approaching within about 10,000 kilometers of the moon.

New Electronics Division

The J. C. Carter Co., 671 West 17th St., Costa Mesa, Calif., has formed a new electronics division. The division will market a line of instruments for precise measurement and control of magnetic fields. Products include current regulated power supplies ranging from 1 to 15 kw for generating magnetic fields and test instrumentation for magnetic fields ranging from low fields found in geophysical applications to very high intensity fields found in modern physics labs.

Cleaning Super-Clean

For "White Room" cleanliness, even dust-removal becomes a major project. The old dust-rag gives way to super-efficient chemically impregnated mops that not only remove dust but also lay down a film of bacteriakilling chemicals.
"Sani-Dust," manufactured by Talb Industries, Phila., Pa., is one that not only fulfills these functions but claims to cut cleaning time by one-third.

Spocify JETTRON
sporily JETTRON tor all types ol magnotron connec. or commercial -quipment. com. plete facilities for the design and production of "specials" and other precision components including sockets and cable assemblies.

Magnotran Icyut Cemmetion Ext. censFits 4J52A and similar Mentical to Cat. gooo-C In addition has 75 mll thich silicene insulated cables for higher potentill applications. Made with 4700 maf built-In cepecitor.

Call or write for bulletins on special sockets, masnetron and ofher connectors

JETTRON PRODUCTS • INC

56 Route 10, Hanover, New Jersey
Telephones: TUcker 7-0571-0572

Salos Engincers in Duthal:. Cures

Circle 145 on Ingelry Cord

SPERRY Tunnel Diodes

for engineering test or application

Any quontities uvarileble
for immedialedelisery
fiom any Avnet alfise.

Call your Avnet Applications Engineer

For dependable service

and immediate delivery" AVNET
*AVNET•70 State St, westbury, M. Y-E0 3.5800
AvWEIT 4 Win St. Burlingion, Mass - BR 2.3060

Circle 127 on Inquiry Cand
\longleftarrow Circle 126 on Inquiry Card

Pentagon TV

(Continued from page 99)
it arrives. Any data received can be recorded on video tape.

One output circuit feeds a wallmounted 27 -in. picture monitorloudspeaker unit in the Emergency Action Room for off-the-air TV and Weathervision information. Another feeds two TV-type visual projectors for portrayal on the 12 sq. ft . wall screens, which also have associated loudspeakers. Another supplies a mobile twin 27 in . monitor assembly as a backup circuit

High Definition V-515 Camera in the loint War Board Room.
for the projectors. Two video-audio electronic-switcher outputs feed 2 other mobile twin-monitor assemblies in the Conference Room. Each consists of $27-\mathrm{in}$. monitors with integrated audio amplifiers and loudspeakers. A spare output provides for checking all incoming programs over a separate $17-\mathrm{in}$. monitor and loudspeaker. A miniature transistorized camera with electronic viewfinder for live pickup will be used in the lecture and map rooms.

Two high-definition V-515 Vidicon cameras, with 600 -line resolution are suspended above the teleprinter machines continuously scanning incoming teleprinter copy. Outputs are connected through individual Control Units and Switcher to any of the monitorloudspeaker units.

Reed Frequency

(Continued from page 91)

indication, which gives the most correct result (Fig. 3B).

For higher accuracy, the counter is set to measure ten periods. With the prototype, readings are reproducible within one tenth of a percent of frequency.

morofomert. Ment UFZul, will aptiond mandy hopper feed aftuchment, automatically cuts and forms pis tuils (leads of ressiors capacitors, etc.) up to 5000 phour This vers:of resstors. capaciors, eic.) aij componemt boty ofi! coarial leads Handies short-run production ecomomically. Pers for ithelf quickly in time saved

Ecomont kenosk mase cci, cuts and bende all leads automatically to any length uo to 5000 mer hour. Can be resel in minutes Prepares leads of dooden and ressitors for fast card feed chute permits rapid loasing Stellite tipped culters essure trouble free periormance

naugstoi stenicmince, modets ALSE, straightens the long leats of transistors automatically al more than 1000 per hour, and ejects them from the machme leads are not rolled, misted, or electrically affected in any way
 notches and cuts leads oulomatically at ware than 1000 per hour, and eqects them from the machine leads are shaped to fin or saap procisely inlo the proper holes of the printed circuit

Circla 128 on Inaving Card

HELIPOLE

The Andrew Type 902 Helipole is the first basjcally new 30.50 mc fixed station antenna to appear on the 2 -way radio scene in the past 12 years. Type 902 employs a new design concept that combines improved performance with mechanical convenience. It is the result of an extensive Andrew development program.

HELIPOLE CONBTRUCTION

The foreshortened radiator employs a bifilar helical element which is encased in Fiberglass for strength, durability and corrosion resistance. One helix is grounded, providing a static drain path. The other is fed. Ground rods employ single helix conductors which also are embedded in Fiberglass. Size reduction is shown by comparing the 57 inch radiator of Type 902 with 101 inches of a conventional antenna at 30 mc . Ground rods are also shortened by a proportionate amount.

Lightweight and strong - with a maximum total weight of 13 pounds, Type 902 is designed to withstand 30 psf load with $1 / 2$ inch of radial ice. The focal point of this mechanical strength is found in an aluminum casting to which ground rods and radiator are bolted with stainless steel hardware. Direct mounting is provided for members from $13 / 4$ to $21 / 2$ inches in diameter. VSWR of this unity gain antenna is less than 1.5.

Economically priced Andrew Type 902 is the best performing, corrosion resistant high wind load antenna on the market.

Write or call your Andrew sales engineer for complete information or request Bulletin 8467.

ELECTRONIC OPERATIONS

SYSTEMS-WISE . . .

- The National Aeronautics and Space Administration in planning a new lab facility to simalate outer apace and atmospheric reentry. It will be part of NASA's new 818 million Goddard Space Flight Center at Greembelt. Md. Design of the lab is being hendled by Propalsion Teat Facilities Div., MB Electronies. New Haven, Conn.
- Construction contracts for the world's longest microwave beam system have been awarded to Western Union Telegraph Co., New York. The cosst-to-coast net will be completed late in 1961. It will provide a broad band to be leased to the U.S.A.F. as well as a capacity for more than $\mathbf{5 0 , 0 0 0 . 0 0 0}$ miles of telegraph channels for Western Union's wire and data procersing systems, facsimile, etc.
- An IBM 704 Computer is being used at the Standard Oil Co. (Indiana) refinery in Whiting. Indiana. The unit is being used to keep a 140,000 barrel/day diatillation unit operating at peak efficiency. Operating controls. based on computer Ggures, are now handled manually, but next year this operation will also be taken over by the computer. The diatillation unit separates crude oil into 10 different streams supplying $6,000,000$ sallons of products.
- An automatic telecommunications system links headquarters of Safeway Stores, Inc., with field offices on the west coast and with retail distribution centers from Arizona to British Columbia. The net consists of over $2,000 \mathrm{mi}$. of leased circuits. System, developed by Kleinschmidt Div., Smith-Corona Marchant, is used for inventory control.
- The General Electric Co.'n new "Discom" communications aystem enables pilota and airplane crews to see messages on their instrument panela. The aystem, designed by GE's Communication Prod. Depto, Lymehberg. Va., is for use where voice conversations might be indig. tinguishable because of poor aigaals or high noise conditions. It will be tested by the Air Force.

MISSILE TRACKING SYSTEM

Battery of precision antennas inside cluster of white radomes at Cape Canaveral, Fla., enables Air Force to track missiles with an accuracy of a few feet at hundreds of miles. System is the Azuse Mark II, developed by Convair Div. of Ceneral Dynamics Corp.

Cubic Corp., San Diezo, Calif., under contract to the Army Map Service, Corps of Engineers, has desizned and built an electronic system called Geodetic SECOR (SEquential COllation of Range). It aceurately pinpoints targetn on the earth's various land-masses and provides global and space-vehicle navigation with more precise farts on the earth's shape and gravitational Geld.

- A large-scale data acquisition and processing system built to handle high-speed test data at the Allegrany Ballistica Lab near Cumberland, Md., has successfully completed acceptance tests. The Lab is one of the development centers for the two-stage ubmarine-launched Polaris missile. The system, built by Minneapolis-Honey. well Regulator Co., can ample 10,000 items of data per sec. in making 167 simultaneous measurements of variables.

DConstruction of North America's largeat radar defense mystem, BMEWS, is essentially on schedule," ass D. Brainerd Holmes, Manger of the project for the RCA Miasile and Surface Radar Dir. The aratem will conaist of radar basee at Clear, Alaska: Thale. Greenland; and in the United Kingdom.

- Space Electronics Corp., Glendale, Calif., has a contract, $\$ 116,000$, from the Air Force to conduct studies and experiments in sub-surface propagation of olectromagnetic waves. The company has an experimental station buried deep in the desert. They will develop propagation theory. deriving mathematical expressions for the fields of a system where receiver and source are imbedded in the earth'a crust.
- The Gulf States Utilities Co. is installing a solid-state Bailey 750 information aystem at the Sabine Power Station in Orange County, Tesas. The system, built by Bailey Meter Co., 1050 Ivanhoe Rd., Cleveland, continuously scans, linearizes, ranges and digitizes all inputs and stores the digital values on a magnetic drum. Logging and alarm functions are included.

Fig. 1: Oscillator user series-resonant overtone crystal.
Fig. 2 (above): Basic oscillator circuir is shown minus crystal.

Developing an Oscillator

THE demand for mobile radio communications has resulted in intensive use of all three of the land mobile frequency bands. (2554, 144-174, 450-470 MC.)

Motorola recently introduced a new unit for operation on these channels. The equipment is new electrically and mechanically. Included in the features is a very stable series - resonant overtone crystal oscillator in the transmitter.

The three major guals in the oscillator development project were :
a. To design a very stable crystal control oscillator for the 450 470 MC transmitter used in mubile communication.
b. To reduce the crystal drive level to 2 mw or less in order to improve life and reliability of the crystal.
c. To design a circuit, which will have warp frequency -60 parts per million, without degrading the stability and reliability of the oscillator.

Which Oscillotor?

The initial decision, before proceeding with the circuit design, involved selection of either the series-resonant or parallel-resonant
mode of crystal operation in the oscillator.

Parallel-Resonant crystal oscillators are used primariy with funda-mental-mode crystals at frequencies below 20 mc . Series-Resonant crystal oscillators are most widely used for overtone operation and for higher frequencies. For maximum frequency stability it is generally: preferable to operate a crystal unit at its series-resonant frequency.

System design dictated a multiplication factor of 24 from oscillator to final. In order to cover the 450-470 MC range, the oscillator had to operate from 18.7 to 19.6 mC . These frequencies are just on the border where series-resonant mode is more practical than paral-lel-resonant mode of crystal operation.

The frequency of a crystal varies inversely as to its thickness. For very high frequencies, the crystal would have to be very thin and might easily be broken. The frequency at which a crystal becomes too thin to be practical or durable will vary with the crystal material and the type of cut that is used. The practical limit for quartz crystals vibrating on a fundamental mode is approximately 15 MC ; however, it is possible to grind a
quartz plate to operate as high as 20 Mc .
To meet FCC specifications, $\pm .0005 \%$ frequency stability was considered to be a primary objective. Because of better crystal producibility (yield), frequency of operation ($18-20 \mathrm{mC}$, and maximum oscillator stability, a seriesresonant overtone crystal oscillator was chosen. Besides being more economical, overtone crystals also have a higher \mathbf{Q} than fundamental crystals. The schematic diagram of the oscillator appears on Fig. 1.

The Basic Circuit

Selection of the basic oscillator configuration was next. It was decided to use the electron-coupled. arounded plate, Colpitts Oscillator It is versatile, easy to operate. adaptable to a wide range of frequencies and it has somewhat better frequency stability than the Hartley Oscillator.

In this type of circuit, the screen grid serves as the anode. The r-f path to the capacitor C_{2} (Fig. 2) in the tank circuit is completed through the screen-grid capacitor C_{4}. The plate of the tube serves only as an output electrode. Since the screen-grid capacitor blocks the dc voltage and passes the high-fre-

The design and development of a stable, reliable crystal oscillator is a problem made a little harder by new FCC regulations for mobile communications. Here is an engineer's thinking behind the design and development of an oscillator for use under rugged conditions.

By NICK GONCHAROFF
Communications \& Industrial Electronics Div. Motorole, Ine. 4501 W. Auguate Blvd. Chicago 51, III.

for 450-470 MC

quency alternating voltage, the screen grid is in effect grounded for the r-f voltages. The plate is thus shielded from the oscillatory section of the tube, thereby minimizing the plate load impedance variations from reacting on the oscillator.

Since the screen grid is constructed of mesh or fine wire. some of the electrons drawn to it will pass through. As the plate is maintained at a higher potential than the screen grid, these electrons will be drawn to the plate. The frequency of the ac component of the plate current is therefore the same as the oscillator frequency. Thus energy is delivered to the output load through an electron stream. Because the coupling medium is an electron stream, the circuit is called an electron-coupled oscillator.

Fig. 3: Equivalent electrical circuit of a quartz enystal in a holder.

In Fig. 2, the cathode. control grid, and screen, along with the tank circuit, act as a conventional triode Colpitts Oscillator in which the screen acts as a plate for the oscillator. The screen r-f bypass capacitor. C_{4}, isolates the triode section from the plate of the tube and supplies feedback across C_{2}, the ac cathode load.

The tank circuit is $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{L}$. The inductance of L is varied by means of a powdered iron slug to cover 18-20 mc range. The r-f choke, L_{1}, provides a de return path to the cathode for the anode current, while providing a high r-f impedance.

Most of the electrons leaving the cathode reach the plate which is at a higher potential than the screen grid. The ac component of the plate current is coupled to the load by capacitor C, while R_{1} blocks this same ac (r-f) current from the B+ supply.

Because the grounded-plate configuration furnishes no voltage gain, oscillation can occur only if a step-up transformer is inserted between the cathode and the grid. Tank T fulfills this requirement. It acts as auto-transformer: also it becomes a selective network for the third mechanical overtone of

Fig. 4: Effect of adding series inductance.
the crystal, when the crystal is added in the circuit of Fig. 2. The tuning range of the tank T is from 18 to 20 mc . By varying the capacitance of C_{1} and/or C_{2} the voltage across the tank circuit may be divided to produce the voltage drop required across C_{1} for proper grid excitation.
During part of each cycle of alternating current in the oscillator the grid is driven positive. To prevent the tube from drawing an excessive amount of plate current during this portion of the cycle, practically all oscillator circuits employ grid-leak bias.

Any alternating voltage across the grid capacitor will vary the grid oscillation voltage. In order to limit the voltage across the grid to a minimum, the value of the capacitor should be as large as practical. The maximum value of capacitance is, however, limited by the time constant desired. The time constant should be amall enough in relation to the period of the oscillating frequency, so that the bias voltage cannot attain a value high enough to stop oscillations. The grid-bias requirements for the particular tube used will determine the value of the grid resistor. Therefore, in order to

($f_{r}^{\prime}-f_{r}$) = CHANGE OF SERIES RESONANT FREQUENCY DUE TO SERIES CAPACITANCE
Fig. 5: Effect of adding series capacitance.

Crystal Oscillator (Continued)

reduce the time constant, it becomes necessary to use a smaller value of grid capacitance.

Increasing the plate voltage of an electron-coupled oscillatorwill cause the frequency of oscillation to change. Increasing the screengrid voltage of an electron-coupled oscillator will also cause the frequency of oscillation to change, but in an opposite direction to that caused by a plate voltage increase. If the voltage on the screen grid is obtained from a variable voltage divider, the screen grid voltage can be adjusted so that these two actions balance each other. The frequency of oscillation will then be practically independent of variations in the supply voltages.

After the tank circuit was built, which covered the necessary range ($18-20 \mathrm{MC}$), and after the plate resistor R_{1}, and the screen resistor R_{2} were adjusted for the best operation and the necessary ac output at the plate of the tube, the crystal was placed in the feed-back loop of the basic oscillator circuit shown on Fig. 2.

There are four possibilities of incorporating a crystal frequency control element in the basic oscil-
lator circuit shown in Fig. 2: One between the tank circuit and the ground, the secrind between the tube cathode and the tank circuit, the third between screen and ground in series with C_{4}, the fourth in series with the tank and in positions of X, Y or Z as shown on Fig. 2.

The first possibility was chosen, since it offered several important advantages:

1. One side of crystal is grounded.
2. Distributed capacitance is minimized.
3. Improved oscillator stability.
4. Crystal drive level easily measured with VTVM.
5. Equipment servicing simplified.
6. Crystal fabrication tolerance easily checked.

Since the standard Motorola crystals, fabricated by the assembly line method, were planned to be used in this oscillator, it was necessary to consider their make tolerances. The specifications call for $\pm .0018 \%$ make tolerance (tolerance on nominal frequency), which is the same as ± 18 parts per million. In other words, the crystal which is marked 20 mc can actually be as much, as 18 ppm below or above $\mathbf{2 0}$ mc. However, FCC regulation calls for not more than ± 5 ppm variation from the assigned frequency in $450-470 \mathrm{MC}$ frequency range.

Some way had to be found to adjust the frequency without changing the characteristics of the oscillator. For this reason, a variable reactance was necessary for adjusting the crystal circuit to the exact operating frequency. In addition to the crystal make-tolerance, there is a tolerance for the long term frequency stability (crystal aging), which calls for an additional $\pm 30 \mathrm{ppm}$.

Thus the total possible variation
according to the present specifications, is $\pm 48 \mathrm{ppm}$. Because of this requirement, a choke and variable capacitor were added in the oscillator feedvack loop, in series with the crystal, to provite for warping the crystal $\pm 60 \mu \mathrm{pm}$ across the entire $450-470 \mathrm{MC}$ operational range of the equipment.

At this time, it is appropriate to mention a few words about the equivalent electrical circuit of a crystal. The crystal resonator is coupled to the electrical network by means of metal films on the quartz (Fig. 3a), which act as electrodes for applying potential gradients (electric fields) to the crystal. As the crystal must vibrate to produce oscillations, it must be connected to its supporting wires only at nodal points around the edge of the resonator plate.

As the vibration of the crystal will induce electrical charges on the two metal films, it is thus possible to consider the crystal and its mountings as an electrical resonant circuit such as shown in Fig. 3b. In this circuit, the capacitor C is analogous to the elastic compliance of the crystal, the inductor L is analogous to its mass inertia, and the resistor R represents the resistance offered to the vibration by its internal friction and other losses. The capacitor C_{6} represents the capacitance formed by the two metal electrode films separated by the crystal as the dielectric, plus the stray capacitances of the holder assembly.

The reactances of L and C will be almost numerically equal to each other at the resonant frequency of the crystal. Since the crystal forms a low impedance circuit element, with a low impedance phase angle, maximum current will flow through the circuit at its resonant frequency, thus causing the magnitude of the crystal's vibrations to be maximum at this

Fig. 6: Crystal oscil. lator stability over the total warp range vs. $8+$ and filament volt. age.
frequency. When the crystal vibrates at its resonant frequency, the voltage drop across it will be almost minimum and will also be of the same value of frequency as the mechanical vibration.

The equivalent inductance of a crystal is very large in comparison with that of a practical wire inductor for any given frequency. and the capacitance and resistance of the equivalent series arm are correspondingly small.

Because of this high L / R ratio, the Q of a crystal circuit is many times greater than can be obtained from an electric circuit. Greater frequency stability and frequency selectivity are obtained because of the high \mathbf{Q} and high L / C ratio of the series resonant circuit CLR, Fig. 3b.

One limitation which has been ascribed to crystal control is its inflexibility for those applications requiring a small frequency adjustment about a nominal value, and it is not always realized that controlled adjustment over a narrow band about the nominal frequency is practicable without seriously degrading the frequency stability of the oscillator. The change is accomplished with the aid of added reactance in series for circuits in which the crystal oscillates at series resonance and in parallel with the crystal. for circuits in which the crystal oscillates at a frequency approaching anti-resonance. Considering the case where the crystal element employed in series resonance, the addition of series inductance or series capacitance will cause a change of oscillation frequency, as shown in Figs. 4 and 5 . The amount of frequency swing possible with these arrangements is a function of the type of quartz element, mounting, and drive circuit.

The resulting circuit (Fig. 1) had frequency stability of better than $\pm .0001 \%$ with $\pm 20 \%$ change in B+ and filament voltages across the entire warp range. This is shown in Fig. 6.

Besides the specifications for aging of the crystal and nominal frequency there are specifications for R and C_{0} of the crystal. Maximum \mathbf{R} for overtone crystals in the range of $15-55 \mathrm{MC}$ is 40 ohms. Maximum C_{6} of the crystal is 7 $\mu \mu \mathrm{F}$. The majority of the crystals
used in the oscillator circuit shown on Fig. 1 had C_{0} between $5-6 \mu \mu \mathrm{~F}$. Capacitance of the holder was around $1 \mu \mu \mathrm{~F}$. Therefore, on the average, the capacitance of the crystal and holder was approximately $7 \mu \mu \mathrm{~F}$. To neutralize this capacitance, it was necessary to employ the choke which was connected across the crystal. Thus the crystal was able to operate exactly on, or very near, the seriesresonant frequency and was able to provide a better frequency stability.

Crystal Drive Level

The same Motorola specifications, which are compatible with military specifications for CR$32 / \mathrm{U}$, call for 2 and 1 mw level of drive for frequencies between 10 25 MC and $25-55 \mathrm{MC}$ respectively. Therefore, when frequency of the crystal is checked in the Cl (crystal impedance) meter, the drive

A REPRINT of this article can be obtained by writing on company letterhead to The Editor
ELECTRONIC INDUSTRIES Chestaut of 56th Sts., Phila, 39, Pa.
level has to be adjusted to 2 mw for frequencies between 10-25 MC and to 1 mm for frequencies between 25 and 55 Mc . In order for the crystal to function properly and have a long working life, the crystal should be driven in the oscillator circuit with the drive level not more than 1 or 2 mw . If the crystal is driven harder than 1 or 2 mw , it will often degrade oscillator frequency stability vs. potentials and temperature.

As mentioned above, one of the advantages of this oscillator is the fact that one electrode of the crystal is grounded. This arrangement enables us to measure the voltage across the crystal when the crystal is vibrating at its series resonant frequency. It can be accomplished by connecting a VTVM across the crystal and varying the warping capacitor C_{5} (Fig. 1) while observing a dip in the voltmeter reading. which occurs on the seriesresonant frequency of the crystal. Knowing the resistance of the crystal, we can calculate power dis-
sipated in the crystal using the formula:

$$
W^{\prime}=\frac{E^{\prime 2}}{R}
$$

When the crystal with its warping components L_{3} and C_{5} was inserted into the feedback loop of the basic oscillator circuit, the power dissipation in the crystal was more than 10 mw . To reduce level to 1 mw , it was necessary to add R_{4} (220 ohms) in the cathode circuit and R_{5} (8200 ohms) across the tank circuit. Besides reducing drive level on the crystal, R_{5} also reduced the \mathbf{Q} of the tank circuit, which in turn minimized frequency change due to changes in tank circuit elements with temperature changes.

After the addition of R_{4} and R_{5}, the oscillator circuit was doublechecked for free run, operating frequency range, warp frequency, ac output and frequency stability. When working on the development of a new oscillator circuit, it is advisable to measure every individual component separately and to check all tolerances of the component before placing it into the circuit. During the work on the warp and on the stability of this oscillator, it was noticed that the two different chokes which had $4 \mu \mathrm{H}$ and $3.85 \mu \mathrm{H}$ inductance respectively, acted in the circuit very differently. Not until the distributed capacitance of each choke was measured, was it known why they acted so differently. The distributed capacitance of the $4 \mu \mathrm{H}$ choke in this case was $4 \mu \mu \mathrm{f}$, while the distributed capacitance of the $3.85 \mu \mathrm{H}$ choke was less than lumf.

Temperoture Compensotion

If one had to compensate an oscillator circuit which operated on one particular frequency and did not have any warping components. there would be no problem. But in this case it was required to compensate an oscillator circuit which covered the range from 18 to 20 MC; in addition it had the warp frequency of $\pm 60 \mathrm{ppm}$. Therefore, there was a necessity to check the compensation for at least three points (f_{r}, the resonant frequency of the crystal unit; $\mathbf{f}_{\mathrm{r}}+60 \mathrm{ppm}$; $\left.\mathrm{f}_{\mathrm{p}}-60 \mathrm{ppm}\right)$ at 18 MC and at least three points at 20 MC. Besides,

 with Slmerican Beauty Soldering ToolsAmerican Beauty electric soldering irons are the higbest quality made. The fineat engineering, best materials and on-the-job experience since 1894 is yours with every American Beauty. There is a right model, correct tip size and proper watt input to do any aoldering job easier, faster and better TEMPERATURE REGULATING STANDS Automatic devicea for controlling tip temperatures while iron is at restprevente overheating of iron, eliminates frequent retinning of tip, while maintaining any deaired temperature. Available with perforated ateel guard to protect user's hand.

> AMERICAN ELECTRICAL. HEATER COMPANY F-mmerge
DETROIT 2, MICHIGAN

Circle 130 on Inquiny Card

Crystal Oscillator

this information was needed for several oscillator circuits, to insure the repeatability and reliability of the oscillator performance.

Motorola has used oversized crystals for years to provide a better frequency stability. Because of a mass production, there are specifications and make-tolerances for the temperature turning point of the crystals, also tolerances for the oven's temperature. Specifications for the crystals are $+85 \pm 10^{\circ} \mathrm{C}$. Because of this, the crystals are being built with the temperature turning points varying anywhere between $75^{\circ} \mathrm{C}$ and $95^{\circ} \mathrm{C}$. The ovens for the crystals are being built with the temperature setting anywhere between $80^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$.
It happened that an $85^{\circ} \mathrm{C}$ oven at room temperature could become an $83^{\circ} \mathrm{C}$ oven at $-30^{\circ} \mathrm{C}$ or an $87^{\circ} \mathrm{C}$ oven at $+80^{\circ} \mathrm{C}$ ambient. If this oven has a low turning point crystal or a high turning point crystal, the oven, together with the crystal can contribute to the frequency instability as much as $\pm 2 \mathrm{ppm}$ across the range of the temperature between $-30^{\circ} \mathrm{C}$ and $+80^{\circ} \mathrm{C}$. Add to those two ppm, the contribution of the circuitry and pretty soon you'll have $\pm 5 \mathrm{ppm}$, which is the limit set by F.C.C. In view of this situation, the compensation of the oscillator circuit becomes more important than ever before and also more difficult.

After it was realized that each different combination of the oven and the crystal had its own curve for frequency vs. temperature, the temperature curves were plotted for each combination used in development of the oscillator circuit. This step helped to determine how much instability is contributed by the oscillator circuit alone. After this procedure, it was possible to accurately compensate the circuit over the total warping range.

Frequency Stability
It was mentioned previously in this article, that the primary objective during the development of this oscillator circuit was the frequency stability. It was found that the frequency stability goes hand in hand with the drive level
of the crystal, operating puint of the tube, the amount of warp and location of the crystal in the circuit. In the described oscillator circuit, the frequency stability vs. $\pm 20 \%$ variation of $B+$ and filament voltages did not vary more than $.0001 \%$ across the total warping range of $\pm 60 \mathrm{ppm}$.

Frequency stability vs. temperature for any setting of warp does not vary more than $\pm 0.0002 \%$ for temperature range between $-30^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$.

Bibllegraphy:

Huchanan, J. P., "Handbook of Plezoelectric Crystals for Radio Equipment LeNianers.
2. Vigortaux. J. E. F., and Bnoth, C. F.. "Quartz Vibrators and Their Applica: tlon."
B. Edson, W. A. "Vacuum-Tube Os. cllators."
Fismentlals of Ri, M, and Optorheld, W. Famentlals of Radic."
5. Schure, A.. "Crystal Onclliators.
frunics," Van Valkenburgh, "Baslc Filece trunics.
i. Edelsteln. H., "Splection and Application of Quartz Crystals," Electronic Industries and Tele-Tech, ip. 56, Nov. 1956.
8. Gruen, H E "How to Design ("1.). piltes Crystal Oscilator." Electronics. : The Next Step_A Girls'
Engineering School

Students at most coeducational engineering schools are predominately male, but there are many attractive careers for women in the fields of engineering, science, and architecture. The big problem, it seems, is that most engineering schools offer very little collegiate life for women-except in the classroom and laboratory.

Rensselaer Polytechnic Institute (Troy, N. Y.) hopes to correct the situation with its new joint program with Russell Sage College (also at Troy). Russell Sage is a liberal arts school for girls. Essentially the program is this: RPI will admit girls to their engineering schools, but the girls will live at Sage. They can thus get their engineering degrees and at the same time enjoy the extracurricular life at both schools.

Since 1945, Rensselaer has conferred only 69 degrees on young women, but there are 9 girls in undergraduate classes now - an indication of growing interest. Each year the school has had to turn away about 100 female applicants because of the lack of facilities. No maximum limit has been established for the number of new students. They will be admitted in open competition with male applicants.

the greatest world meeting in the field of electronics.

FÉdération nationale des industries électronioues
23. rue de Lübeck, Paris 16 - PAS. 01-16

UNESCO BUILDING - PARIS
125, AVENUE DE SUFFREN FROM 2отн то 玉s тн FEBRUARY, 1981

For the finest in teflon' spaghetti tubing... specify chemfluor"

Chemplast's Tefion spaghetti lubing is specially manufactured to meat the slip-on insulation needs of today's electionics indusiry. Chemplast tubing provides grealer reliability, by virtue of its enceptional dielectric properties, resistance to high temperatures, fexibility and loughness, uniform color, and 100% inspaction. With Chemplest spaghetti lubing you gel all these advanlagess

- CERTIfied cuality

Closely controlled dimensions, stress-relieved for dimensional stability . . . meets the requirements of AMS. 3653A, MIL-1-22129.

- WIDE RANGE OF SIZES:

Clası	$\begin{gathered} \text { Size } \\ \text { Range } \end{gathered}$	Trpleal Wall Thiclines: (AWG \#22)
Lightwaight	AWG 28-0	$0.006^{\prime \prime}$
Thin-wall	AWG 30.0	$0.010^{\prime \prime}$
Standard	AWG 24.0	$0.012^{\prime \prime}$

Available in eleven slandard colors.

- PROMPT DELIVERY of all stock sizes.
- CHEMPLAST EXPERIENCE AND SERVICE

For years - foremost producer of fofion products, Chemplast employs its experience and know-how in the monufacture of spaghetti tubing.

Chemplast aiso supplies tape, sheots, rods, tubes, and machined components of "Tefon". Write todoy for a prompl quotation.
-DuPont's tFE Fluerocarbon Resin.
HU 5-4850

* Chemplasf's registered Trademark.

CHINODLSUTME.
CENTRAL AVE., EAST NEWARK, N. J.

CUES

for Broadcasters

A Gafes FM 5-8 Modification
 NORMAN E. WOODS, Ch. Eng.

WUST \& WJMD, Washington, D. C.
There exists in the Gates FM 5-B transmitter, a potentially dangerous hazard, because the HV shorting switch does not ground, but goes to R-612, which is a 10 ohm, 20 watt resistor. Should you apply HV, this resistor will probably "open" due to the 5000 v . at several amps. which exceeds the power rating considerably. Also, there is a good chance the filter will remain charged-up after the next attempt to apply HV, especially if the air interlock is open, thus the tubes cannot bleed off the voltage. The PA Plate meter may go out too, but what happened to me, was that S-603 arced across also.
The switch can be repaired easily, by moving over to the unused section of the 3 -pole switch, all the associated jumper and connections to R-612. It was a job to take the switch out to discover the easy way to make the repair.

While you are changing the resistor, increase the power to at least 25 watts. This transmitter operates at about 1.5 a., which is more than 20 watts by the formula. I $=$ sq. root of P (20 over \mathbf{R} (10 ohms). The result of this formula is about 1.4 a ., which is less than actually applied.
If you have not had this experience, use a gimmick that is standard practice on higher-priced transmitters. Take a piece of braid. and connect it to the screw near the shorting switch, and run the other end directly to the disc. To be sure of good contact, drill a hole in the edge of the disc to either pass or be threaded for a \#6 screw. Align the disc with the braid connected so it is near the frame, and to prevent accidental contact with the HV terminal which contacts the disc. Apparently, Gates was afraid to use a braid. thinking it might contact. or that the resistor was sufficient.

Telełype Stafic Eliminałor

I. A. ELLIOTT, Tech. Director

KATL, Miles City, Montana
For years we have had trouble at KATL with staticelectricity building up a charge on the paper in our news room teletypes. Often, when this happens in the period between sign-off and sign-on there is a paper "jam" that has caused the ribbon to break and printer to be full of paper scraps and needing a complete cleaning. Of course, the most major problem is a complete lack of news until the machine can be put back in service.

The anti-static devices supplied by the wire service did not work.

We, until recently, found a chain of paper clips-or Christmas tinsel-hung in a loop across the glass

CUES
 for Broadcasters

door so it dragged on the paper just above the type bars was the only solution. The disadvantage to this method of static control is that a amall bit of tinsel or a paper clip dropping into the machine can cause a failure.

We have now installed a loop of chain such as is sold in hardware or electrical stores for pull-chain, or bath tub plug, use. The type with the large balls is most effective as the balls roll easily with the paper. All that is needed for a Model 15 teletype is 14 inches of chain and two $1 / 8$ to $3 / 16$-in. cable clamps (General Cement \#H502-F). Unscrew the two large thumbscrews at the top of the glass door. Put cable clamps under each nut, on the inside of the glass, with the ends of the chain under the clamps. Adjust length so that the bottom of the loop touches the paper at the third line above the copy being printed. Tighten clamps and cut off excess chain. Your static troubles will be over and the finished job looks far better than the chain of paper-clips seen in so many news rooms.

- Dr. A. M. Levine, vice-pres. of ITT' Minsile \& Space Systems Dir., sees earth eatellites an the meame of colving the tremendous existing need for radio networks to span large bodies of water over which reliable communication is virtually impossible. He gave his views at a joint meeting of the Canadian Aeronautical Inatitute and the U. S. Institute of the Aeronautical 8ciences.
- An emergency communication system for stranded motorists has been introduced by Radiation, Inc., Orlando, Fla. System consists of a central receiving site and strategically placed highway call stations. Power is obtained from batteries recharged by solar cells. Tranamitter ia FM, $1 \mathbf{w}$, and gives reliable communications up to $\mathbf{1 8}$-miles.
- Two Varian Associates VA 842 klystrons will power the transmitter for the DOD Ionospheric Research Facility, the world's largest and most powerful radar. Radar antenna will include a 1000 ft . dia. reflector being acooped out of a natural limeatone bowl in Puerto Rico. Cambridge Research Labs directs the project.

Stromberg-Carlson, San Diego, has developed an electronic reading and printing system for tranamitting mail. System is being tried out by the Post Office Dopt. between Wash. D. C. and Chicago. Scanner senda the image via TV-type communications lines. Printer uaes Haloid Xerox, Inc., xerographic printing process. Intelex Corp. is systems manager.

- Goodyear Aircraft Corp. han been selected to develop a radar unit that will eliminate, or minimize, the possibility of ship collisions at sea. The projoct, for the Maritime Administration will use a compater to plot the projected courses of up to 10 ships vimaltaneously. It will sound an alarm when collision diatances are indieated.
- The Greyhound Bus Co. has a new fully-automatic telecommunications system designed by Smith-Corona Marchant which links all terminals in the Central-Southwestern Region. There are 46 stations and 3 master control stations linked by over 4200 mi . of leased wire circuits.

JKTO-23 Transistorized Oscillator
 100 KC

 Crystal-Gontrolled
AVAILABLE NOW

A precision 100 KC plug-in signal source, cutrenily in volume production Incorporates a new, ulira-stable, 100 KC glass-sealed ciystal design, and all-silicon solid state devices Temperature controller incorporates precise long-lifed, glass. sealed Edison-type thermostat Meets applicable mil specs including ahock and vibration over a 5 to 2000 sysle range

SPECIFICATIONS
STABILITY CLASS: 5×10^{-2} Day
FREQUENCY: 100 kC (0 Men liequencies available)
OUTPUT: One volt into 5000 o hms
POWER 28 voll DC (Other voliages avalable) Huillin Zener rolasce isculator
VIBRATION: $5 \mathrm{G}^{\prime}$ - 5 ta yove cycles - less than one part pet million
ALTITUDE-HUMIDITY: A voilable sealed of unseciled TEMPERATURE RANGE: From $-55^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$ DIMENSIONS: lis', $1 \%^{\prime}$, 41/2 H Weight: 014 Ounces

For information, write stating requirements
THE JAMES KNIGHTS COMPANY Sandwich, Illinois

Circle 135 on Inquiry Card

Older Workers Getting Jobs More Easily -N AM
Workers in the 45 to 65 age bracket are finding jobs more easily today than they did several years ago says the National Association of Manufacturers. In a special report on "Employment of Mature Workers," the NAM said spot surveys have shown that the number of older workers employed have increased strikingly faster than the number of older workers available.

The report cites several reasons for this changing situation. One is that employers are realizing that the older worker has valuable knowledge and judgment gained through experience. Another is that machinery is now doing jobs that required muscle power-and older men can easily operate the machinery.

Pension plans have long been a stumbling block to hiring older workers. But, with increasing Social Security benefits and a more realistic approach to the regulations governing these plans, this deterrent is being overcome. Companies have also found that including older workers in pension plans is not as costly as they thought. Group life insurance costs, for example, were found to average only a cent an hour more for a 50 -yearold worker than for a 30 -year-old worker, and the lower accident rate for older workers reflects favorably in the charges for workmen's compensation insurance.

The report is available from the National Association of Manufacturers, 2 E. 48th St., New York 17. N. Y.

Established Research Grants

American Machine \& Foundry Co.'s R \& D Div., 261 Madison Ave., New York 16, N. Y., has established four $\$ 2,500$ research grants-in-aid for graduate students and junior professors. Work will be in mechanical, electrical, and chemical engineering or in related research areas.

Grantees will be invited at company expense, to present their findings at seminars of AMF Research and Development Div. senior scientists. Recipients will be free to publish and use project information as they wish, and grants involve no patent agreement or promise of future AMF employment.

WASHINGTON
 News Letter

NEW ADMINISTRATION VIEWS-Recommendations on improving functioning of Federal regulatory agencies, including the FCC, has been presented by former Harvard Law School Dean James M. Landis to President-elect Kennedy. Mr. Landis proposed that the next administration strengthen its control over the agencies in terms of appointments of commission members and chairmen. It should also move toward more coordinated administration policies, particularly procedural revisions within existing statutes, than has been done in the past. Mr. Landis, who served as chairman of the Securities \& Exchange Commission and Civil Aeronautics Board during the Roosevelt Administration, was appointed by the new President, shortly after his election, to survey the defects and problems of the regulatory agencies. He was named by President-elect Kennedy because of his wide experience in the Federal Regulatory field.

NO SWEEPING OVERHAUL-The Landis report to the President-elect, submitted in mid-December, did not favor a wholesale revamping of the regulatury commissions or the scrapping of the regulatory commission concept. Dean Landis did stress, however, that appointment of commissioners and key staff personnel should be made with treatment "substantially similar to the matter of judicial selection." Every effort should be made for lifetime service of such appointees. He felt that one of the major deficiencies in the work of these agencies has been "their lack of creative thinking." Another key problem is in the agencies' opinion-writing sections where the commissioners are too often relieved of the responsibility of determining their own top-level decisions.

REGULATORY DELAYS-The Landis report to the President-elect pointed up as key problems in Federal regulation the delays in commission decisions -a complaint particularly applicable to the FCC. Changes in budgetary thinking on commission appropriations by Congress to ensure adequacy of staff would aid this situation, together with the delegation of decision-writing to a single member of a commission and a program of making more examiners' decisions final. A current difficulty, in Dean Landis' opinion. is also the "too casual attitude toward the admission of evidence." His report emphasized the increasing costs of litigation in prosecution of cases before commissions.

SPACE POLICYPLANNING - Impetus to policy planning coordination by government agencies for space telecommunications should be given by Congress, the Senate Committee on Aeronautical \& Space Sciences staff, headed by Vice President-
elect Lyndon Johnson has urged. Congress, in its current session, is anticipated to give concentrated consideration to the problem of frequency allocation related to the space communications program and the responsibilities of the various government agencies engaged in this field. The report indicated that Congress will take a long, hard look at what direction the United States is going and will push for a program that will put the nation in the forefront of space communications. The Senate committee staff report stressed the need for the U.S. to formulate a unified policy position concerning frequency allocations prior to the 1963 Extraordinary Radio Administrative Conference of the International Telecommunications Union.

REVIEW GOVERNMENT SPECTRUM NEEDS The Office of Civil \& Defense Mobilization will review all requests of government agencies for frequencies of conventional use above 1000 megacycles. The OCDM advised that this program was instituted to ensure that the space communications problem is not complicated further and to avoid making ultimate space frequency problems more difficult. The OCDM action is in direct contrast to that of the FCC in the civilian-use frequency field. It provides for greatly broadened licensing of private point-topoint microwave systems. The OCDM plan was presented to the Interdepartment Radio Advisory Committee, which is the clearing house for government frequency requirements.
National Press Building
ROLAND C. DAVIES Washington 4

ATOMIC FREQUENCY STANDARDS - National Bureau of Standards is conducting developmental research on the precise measurement of frequency. Radio communications, satellite tracking, long-range rocket control and astronomical observations will require future timing accuracies of one part in a billion or better. Atomic Frequency Standards. which. potentially, are three orders of magnitude more precise for time-interval determinations than the rotation of the earth, are necessary in meeting the ever-increasing need for even greater accuracy. Recently, comparisons were made between two dissimilar cesium-beam atomic frequency standards constructed at the NBS Boulder Labs. The devices were tested independently, the pertinent parameters measured, and frequency comparisons subsequently made. Results of the experiments demonstrate that beam devices of rather modest length (55 cm between the oscillating fields for the shorter machine) can have precisions of ± 2 parts in 10^{12} for measurement periods of one to a few hours. Frequency difference between machines is 1.0×10^{-11}.

TRANSISTORIZED POWER SUPPLIES

Model $170 \cdot$ B Bench unit $-3^{-} \times 4^{\prime \prime}$ a $5^{\prime \prime}$ size permits several units on bench in space normally occupied by one.

P

 recision, transistorized, low-cost power supplies by Quan-Tech-as you need them. A model to satisfy every type of mounting requirement, or for bench use.
MAJOR SPECIFICATIONS

Output Voltage: Adjustable from $10-32$ volts. dc Output Current: Model 170-0.25 amp.

Model 171-0.50 amp.
Regulation: <3 millivolts, line or load
Ripple: < 250 microvolts, rms.
Electronic overload and short-circuit protection.
PRICE: 170 Series: $\$ 98.00$
171 Series: $\$ 123.00$
Write for complete technical details.
plicily of trominal Strip unit sim plicily of hook-up and small size lends itself to use in banks of units

Give Engineers Credit as Prime Movers-Weber

The engineer is "the prime mover in modern civilization" and should receive "credit" for creating the "modern setting of society," says Dr. Ernest Weber, President of Polytechnic Institute, Brooklyn. And, "If we really want to assure recognition of the individual engineer at all levels by increased social, political, and community responsibility, we must do it through broader education."

Without compromising on the basic need for scientific engineering education at undergraduate and graduate levels, he continued, "we must devote at least one-quarter of the engineering student's bachelor's program to an intensive, integrated program that gives the evolution of mankind in broad strokes."

Dr. Weber gave his views before the AIEE's Fall General Meeting in Chicago where he what awarded the Society's Medal in Electrical Engineering Education.

Dr. Weber wondered why "the technologist has taken so little active part in government, and why so little credit-if any-goes to the engineer who creates this modern setting of society." He felt that "this has been the fault partly of the engineering profession itself because they are generally preoccupied with their profession. and partly the fault of engineering education for sacrificing the so-called humanities to the seemingly more important technological studies.

S4.4 Million Solid State Research At U. of Pa.

The Advanced Research Projects Agency (ARPA) and the University of Pennsylvania, Phila., Pa., have announced a $\$ 4.4$ million research program in experimental and theoretical solid state physics, structural chemistry, inorganic chemistry, ceramics and all phases of metallurgy. The program will include: electrical engineering of solid state devices, studies in chemical engineering involving metals separation processes, high temperature kinetics, and corrosion.

The solid-state research will be concerned with thermal conductivity, ferromagnetism, ferroelectrics, inperfections, transport processes, magnetic phenomena in dilute alloys, photo-chemical processes, magnetic resonance, optical processes in the far ultraviolet, X-rays, internal friction, and many-particle theory.

TIME-SAVING GUIDE FOR SPECIFYING DEFLECTION

Helps speed yor project. Eliminates confusion in choosing the right yoke.

Engineers have saved countless hours, many dollars and numerous headaches by using this simple Guide Sheet For Specifying Deflection Yokes.

Offered as a public service to engineers by SYNTRONIC INSTRUMENTS, INC., YOKE SPECIAL. ISTS, the only firm devoted primarily to deflection yoke manufacture; therefore preeminently qualified to help you specify the correct yoke for your application. Complete line for every military and special purpose-in production quantities or custom designed to your specific requirement.

Phone our nearest rep. today for your Time-Saving Guide Sheet.
Now York Aren: Jules J. Bressler Co.
Phone: N.Y. OXford 5-0255;
N.J. UNion 4.9577

Philadolphia Area: Massey Associates Phone: MOhawk 4-4200
Washington-Baltumere Area:
Mossey Associates
Phone: GRanite 4-2071
Indlanapolis: Joe Murphy Phone: Victor 6.0359
Les Angoles: Ash M. Wood Co. Phone: CUmberland 3.1201
Me obllgation. We are glad to help you.
svntronic

Cincle 137 en Inquiny Cand

Industry
 News

John M. O'Malley-named Superintendent of Manufacturing of Clarostat Mfg. Co., Inc., Dover, N. H.

Herbert Lawrence, Jr. - appointed to handle nationwide sales of The Victoreen Instrument Co.'s Nuclear Spectrometry Products.

Paul Lebenbaum, Jr. - appointed Manager of the Palo Alto, Calif., plant of ITT's Components Div.

Dr. William E. Glenn, Research Physicist at G. E.'s Schenectady, N. Y., Research Laboratory-selected as Georgia Tech's "Outstanding Young Alumnus of the Year" for 1960. He received the third annual George \mathbf{W}. McCarty-ANAK Award. Dr. Glenn is the inventor of thermoplastic recording, G. E.'s new recording technique.

Dr. W. E. Clenn

F. L. Ankenbrandt
F. L. Ankembrandt - appointed to new position of Manager, Product Assurance, RCA Deiense Electronic Products, N. Y., N. Y.

William E. McKeana and Crosby M. Kelly-appointed new Vice Presidents of Litton Industries, Beverly Hills, Calif.

Maj. Gen. Raymoad C. Maude, USAF (Ret.) appointed Director of Field Operations for Philco Corp.'s Government and Industrial Group, Phila., Pa.

Captain William I. Bull (USN, Ret.) - appointed Assistant to the President for Semiconductor Operations at Hoffman Electronics Corp., Los Angeles, Calif.
N. J. MacDonald, Preaident of The Thomas \& Betts Company, Inc., Elizabeth, N. J., has been presented the Medal for Cooperation and Purse for 1960. J. F. Lineoln, Chairman of the Board of the Lincoln Electric Company, Cloveland, Ohio, and Everett Morse, President of Simplex Wire and Cable Co., Cambridge, Mass., each received a Manufacturers Medal and Purse for 1960. Awards were presented under the James H. McGraw Award for Electrical Men.

NEW Miniature MICROWAVE OSCILLATOR CAVITIES

now available

TRAK Electronics Company, Wilton. Connecticut, announces the formation of TRAK MICROWAVE CORPORATION to increase its developmental facilities for triode cavities in r-f signal generation from 500 Mc upwards. Present low. medium and high power cavities are available for application in grid pulse. plate pulse, and CW service.
TRAK expanded its Microwave Cavity line, which started in 1949, by adding the following 7 NEW miniature Cavities in 1960:

TRAK Type 91274
TRAK Type 2958
At 1090 Mc , tuneable ± 25 me. available liom $900-1200$ me.

TRAK Typo 2s5s
All.5 KMc, funeable $\pm 50 \mathrm{Mc}$. available from $500-2200 \mathrm{mc}$.
TRAK Type 8127.SL A1 2 KMc , Runeable +100 Me available from $800-7000 \mathrm{Mc}$.

TRAK Iype 9127
Available in 3 seqments of $3000-3300 \mathrm{Mc}, 3300-3600 \mathrm{Mc}$
TRMK Typ C.3138 Tunabbe $2700-3600 \mathrm{Mc}$.
TRAK Type 9127-C Tuneable $5800-5900$ Mc.
ALSO, OSCILLATORS ENGINEERED to your specifications!

We invite you to write for nem TRAK MICROWAVE CAVITY BULLETIN.

Covit acellleter
CNGINREAS WANTED
Renem is frotho
TRAK MICROWAVE CORPORATION
TRAK
Microwive
Subsidiary of TRAK Electronics Comoany mese Emelldes Avase Tremper flow
Clrelo 138 om Inquiry Card

for: Transisfor, Capacifor, Diode, Fuse and

 Component applications.B T I electronic clips are now stocked for prompt shipment in a complete range of standard sizes and designs. The use of beryllium cop per and associated alloys insures positive spring contact pressure with exceedingly high electrical and thermal conductivity.

Write today for the new series of B T bulletins showing standard sizes with specifications.

B TI also offers standard
 groundink strips and ring contacts for all electronic requiremens.

Write for Bulletin \#E-10.
Braun Tool \& Instrument COMPANY, INC.
ist Fifth Avo., Hawthorne. N. J.

Circle 140 on Inquiry Card

Industry
 News

Harry IR. Gillespie-appointed As. sistant General Manager for the Trim pot Div. of Bourns, Inc., Riverside Calif.

Roberl C. Berman - promoted to new position of Manufacturing Service Manager for Raytheon Co.'s Industrial Components Div., Newton Mass.

Richard M. Johnson - appointed Sales Manager, Markite Corp., New York, N. Y.

Clarence H. Hopper - appointed president of CBS Electronics, Div. of the Columbia Broadcasting System, Danvers, Mass.

C. H. Hopzer

H. M. Schiff

Hans M. Schiff, veteran electronics and aeronautical executive - joins Packard Bell Electronics, Los Angeles, as Vice President and General Manager of the Technical Products Div.

Genrik Sirvis - named Plant Manager, Bendix Computer Div., The Bendix Corp., Los Angeles, Calif.

George I'. Whitbread-appointed to new position of Product Manager, In sulating Materials, and Robert Poet appointed General Sales Manager at Telecomputing Corp.'s Narmco Industries Materials Div., Costa Mesa, Calif.

Richard A. Fletcher - appointed Corporate Planner - Market Research at Lockheed Electronics Co. in Plainfield, N. J.

Dr. Kenneth M. Merz-joins Inter. national Resistance Co., Phila., Pa. as Manager of Ceramic Research.

Richard J. Sparnon-appointed Advertising and Sales Promotion Manager for the Electronic Tube Divo, Allen B. Du Mont Laboratories, Div.'s of Fairchild Camera and Instrument Corp., Clifton, N. J.

Elvood E. Parrish-appointed Director International Marketing, Keutfel \& Esser Co., Hoboken, N. J.

Industry
 News

George Voigt-named to newly created post of Director of Government Relations for Military Products, Zenith Radio Corp. and its whollyowned subsidiaries.

William H. Brown, Development Engineer-designated as East coast Technical Liaison Representative, Horkey-Moore Associates, a division of Houston Fearless Corporation.
J. Sanford Doughty-appointed Assistant to the President-Communications, Amphenol-Borg Electronics Corp., Broadview, Illinois. His responsibility will be in the areas of External and Internal Communica. tions including Corporate Advertising and Public Relations.

J. S. Doughly

R. Clark

Robinson Clark-appointed Controller, Stromberg-Carlson Div., General Dynamics Corp., Rochester, N. Y.

Hardy G. Rosa - named General Purchasing Agent, Western Electric Co., Inc, N. Y., N. Y., succeeding Gus F. Raymond, who retired.
J. F. "Ted" Miller—named Eastern Area Account Executive Manager, Hoyt Stout-appointed Regional Sales Manager in West Virginia, and W. R. Corwin-named Zone Sales Manager in Northern New England covering New Jersey, Delaware and Southeastern Pennsylvania, Motorola Communications and Electronics, Inc.

George M. Russell-named Eastern Regional Manager and Washington Representative, Elgin Micronics, a Div. of the Elgin National Watch Co., Elgin, Illinois.

James F. Orr, Jr.-joins Servo Corp. of America, Hicksville, L. I., N. Y., as Manager of Product Sales. He will be in charge of Servo System Test Equipment and Industrial control Systems Sales.

George F. Lewis, Vice President and Assistant Secretary-appointed General Manager of the Manufacturing Div., Varo Mfg. Co., Inc., Garland, Texas.

WAITE PODAY for bulletin illustrating types in slock with specifications and lisl of lugs available.

GENERAEPRODUETE GORPORATION UNION SPRINGS, NEW YORK

TWX No. 169 Circle 142 on Inquiry Card

QUICK, LOW COST SALVAGE and PRODUCTION

- Repair breaks in continuity.
- Repair defective electroplating.
- Build-up circuil contact area fush with plastic surface.
No Disassembly. No Rewiring. Precision-plate selected areas sapidly without dismanating componenos. Dalic Process accurately controls thickness of deposiss. No immersion ranks. Mobile equipment takes plating to the job.
- Reinforce hof-dipped solder.
- Plate tabs for wear resistance.
- Correct prototype circuir lines.
- Gold-plate flexible circuils.

Writo far DaseripHivo Erochurs.
 SIFCO metachemical, Inc.

935 Eact 63rd Stroet• Cloveland 3, Ohle
A subsidiary of
The Steal Improvement in Porge Ce.

AOENTS

[^3]
microwave research and development

Modern electronic systems demand a broad range of technical competence. The Hughes Microwave Laboratory has unusually extensive capabilities in the antenna, microwave component. and radome fields. Its activities are co-ordinated in a balanced program of fundamental research, development. design and production engineering.
Antenna Research - Included in current studies are: electronic scanning, its information transfer functions, and its relationship to system performance; surface waves and conformal surface antennas potentially useful on nose cones or low silhouette applications; and the theoretical aspects of transmission through small radomes.
Electronics Research - These investigations are concerned with basic phenomena such as amplification, harmonic generation, limiting and switching with ferromagnetic and dielectric materials, and superconduction in thin films at microwave frequencies.
Materials Research - In the fields of Solid State Chemistry and Physics, studies are directed toward the synthesis and characterization of organic and inorganic compounds, new polymer systems; structural and electronic ceramics; and ferroelectric, ferrimagnetic and paramagnetic materials for electronic applications.
Microwave Engineering - the products of research are converted into advanced components. processes, and techniques for ultimate system application. Novel antennas, radomes, filters, and ferrite devices are being developed for the entire microwave and UHF spectra. New materials and processes are exploited for the production of ferrites and garnets, silicone plastics, ablative materials. high-temperature insulating and encapsulating materials, and electroluminescent panels. Research and engineering ideas are rapidly embodied in concrete forms through the facilities provided by a versatile design staff and a well-equipped shop.
Openings exist in each of the above areas. These positions offer excellent opportunities for qualified personnel in the fields of Physics, Chemistry and Engineering (Electrical-Microwave-Mechanical).

Please urite: Mr. R. A. Martin, Supercisor, Scientific Employment HUGHES AEROSPACE ENGINEERING DIVISION, Culver City 6, California

HUGHES

the West's leader in adcanced electronics

HUGMES AIRCRAFT COMPANY

AEROBPACE ENGINEERING DIVIBION

Please write direct to the above advertiset

C.

A X-Band Reciprocal Ferrite Phase Shifie: Experimental Electronic Scanner
B. Close up of Hughes Ferite Amplifier
C Apparalus for X - Roying Singin Xiul Ferites and Gurnels

PROFESSIONAL OPPORTUNITIES

Reporting late developments offesting the employment piclure in the Eloctronic Industries

Design Engineers - Development Engineers - Administrative Engineors - Engineering Writers Physicists - Mathematicians - Electronic Instructors - Field Engineers . Production Engineers

Starting Salaries Up

Starting salaries of engineering graduates-reported by the Univ. of Michigan, Ann Arbor, Mich.are averaging $\$ 524$ (bachelors) compared to $\$ 508$ last year. Masters' starting salaries rose from $\$ 598$ to $\$ 655$.

Demand for engineering grads represented 33% of the Universities' total-a drop of about 4% from the 1958-59 figure. Areas of greatest demand were in electrical and mechanical engineering and in the natural sciences.

TRANSISTOR QUALITY

Army Signal Supply Agency admits Sylvania into its quality assurance program for "consistent high quality production." Brig. Cen. C. S. Hays inspects manufacture of high speed sermanium switching transistors

New Solar Test Facillity

GE's Missile and Space Vehicle Dept. is planning to build a new solar test facility near Phoenix, Arizona. It will feature a large movable section that can be rolled away to expose equipment to the sun. Initially, solar collectors as large as 21 ft . in dia. may be housed in the movable section. The facility will be able to test the largest solar powered static generating systems now built for space applications. First equipment to be tested is a thermionic conversion system.

Weather was the main reason for selecting the site. There is an average of 210 clear days there compared to 94 days or less for the Philadelphia area (home of the MSVD).

Recruiting af Conventions Becoming a Real Problem

The average cost for recruiting an engineer or scientist in 76 firms doing business with the Federal Government is now $\$ 1,022$. This was brought out by a survey made by the Manpower Utilization Subcommittee of the House Committee on Post Office and Civil Service. The average cost for firms whose business is primarily commercial is $\$ 751$.
The recruiting problem is accented at trade shows and technical conventions where job hunters (often disgruntled employees) and manpower-hungry companies come face to face. The problem is two sided: Companies are becoming wary of sending key men to conventions because they may be "pirated" away, and other companies are spending so much time in recruiting activities that the main purposes of these conventions are being subverted. One company even gave their employees an ex-pense-paid vacation during a recent major convention-but at a vacation resort far from the convention.
The directors of the shows recognize the problem and try to discourage recruiting, but they are generally unsuccessful, primarily because they have no control over
(Continued on page 221)

TE Research Exfended

Battelle Memorial Institute, 505 King Ave., Columbus 1, Ohio, has extended its materials and techniques research on thermoelectriccooling devices for two years. Continuing support for the program is assured.

Principal objective will continue to be the preparation of new compounds and the investigation of their resistivity, thermal conductivity, and thermoelectric power. Battelle's Switzerland facility (Geneva) is studying lattice thermal conductivity. Although the program is aimed at materials development, some device research of a basic nature is being conducted.

Battelle's scientists have found one compound that shows promise but it is still too early to say whether it is competitive with presently available TE materials. They have also developed techniques for acreening and improving compounds and alloys which reduces the experimental work needed to predict the figure of merit.

> FOR MORE INFORMATION .i. on posifions doseribod In phis section ill un the conveniont ingalry eard. page is9.

Electronic tubes and semiconductor devices are parts of much larger equipments or systems. The demand for them depends on many diverse elements including consumer taste and U.S. defense and foreign policy.

In this dynamic industry, a forecast cannot be an extension of past performance alone, but must also consider the impact of new developments.

This forecast is based on such an analysis.

By JEROME KRAUS
Monager of Systoms Enginearing
ITT Laborafories
Nufloy, Now Jersey

Electron Tubes and

SEMICONDUCTORS have developed into a $\$ 377,000,000$ (1959) a year market item and will probably reach $\$ 500,000,000$ in 1960 The 1959 tube market was $\$ 775$ million. ${ }^{1}$ Together they represent a market of over $\$ 1.1$ billion.
This 1961-1965 forecast will use statistical projections modified by other economic and technical knowledge.

THE STATISTICAL FORECAST

Data from the Electronic Industries Association and the Business and Defense Services Administra-
tion of the Dept. of Commerce is reproduced in Table 1.

No reasonably high correlation can be found between either tube and semiconductor sales and the Gross National Product, but the combined sales of both, exhibit a rather interesting characteristic. From 1954-59, the ratio of tube plus semiconductor sales to GNP increased at an almost linear rate (see Fig. 1 and Table 1) and the trend line has a coefficient of correlation greater than 0.75 . By projecting the trend line $Y=1.61+$ $.08(x)$ to 1965 , the relationship be-
tween tube and semiconductor sales tends to be independent of cyclic variations. Table 2 is the predicted tube and semiconductor market based on 3% and 5% annual rise in GNP over the next 5 years.
This neat linear predicting tool applied to the entire market becomes somewhat unsettled when applied to these segments of the market: Receiving Tubes; Power and Special Purpose Tubes; TV Picture Tubes; Transistors; and Semiconductor Diodes.
Receiving tubes (Table 1) have varied between 0.75 and 0.90 for

Table 1: 1950-1959 Statistics

[^4]

Fig. I (left): Tiend of tube dus semiconductor sales, 1950-1965.
Fig. 2 labovel: Linear trend projections.

Semiconductors-What's Ahead?

the past decade but preliminary information for 1960 indicates a fall considerably below that level. The added growth in semiconductors resulted in part from growth in areas noncompetitive with receiving tubes and in part from the opening up of new entertainment markets.

The transistor market has risen most precipitously. A continuation of the trend would result in a billion dollar market by 1965 (see Fig. 2).

Semiconductor diodes have also had an increasing market since 1954, but not as great as that of semiconductors.

The picture tube market, which has fluctuated widely, declined in terms of percentage of GNP in every year from 1953-1958. In 1959 it increased slightly.

The power and special purpose tube market has shown a steady increase since 1955.

A technique which seems worthwhile is to project current trends of the 5 types of components and to compare the totals with the

```
    A REPRINT
of this article can be obtained by
writing on company letterhead to
    The Editor
    ELECTRONIC INDUSTRIES
Chesinut G 56th Sis., Phila. 39, Pa.
```

trend $Y=1.61+.08(x)$ for the over-all market. The sum should equal $Y=1.61+.08(\mathrm{x})$.
For transistors, it is possible to use the ratios to GNP for 1958, 1959 and estimated 1960 to project a straight line out to 1965. See Fig. 2.

Picture tube sales, the most erratic, have bottomed out at a ratio of about 0.37 . Because of their erratic behavior in the past, the projection for 1961-1965 has been $\mathbf{Y}=0.37$ in Fig. 2. A moderate increase in semiconductor diode and special purpose ratios based on linear trends can be calculated from 1956-1959 sales.

Receiving tubes have started a decided slump if preliminary 1960 data is substantiated. ${ }^{2}$ A rapidly rising transistor market indicates a falling receiving tube trend if the initial assumption that the total equals the sum of the individual components is correct. But with the projected curves, the residual receiving tube sales would fall to zero at 1962 and be negative in 1963-65. It seems logical to reapportion the first 4 components to make room for receiving tubes. The most likely component which can offer room is transistors. It is tempting to "break" the rise in transistor sales at some point and project sales from that point to

1965 with zero slope. If the break is at the end of 1961, 0.25 will remain for receiving tubes, a very sharp fall off in 2 years from a level of 0.77 in 1959. Breaking the rise at the end of 1960 would leave receiving tubes with a 0.47 ratio in 1960. perhaps closer to reality. If the break point were mid-1960, a 0.57 ratio would remain for receiving tubes.

Fig. 3, a revised statistical forecast, attempts to resolve some of the problems raised by Fig. 2. The trend of tube plus semiconductor sales is retained as a basis for the revision but the distribution by types is altered. Transistor sales are held constant at 0.65 , about the level of mid- 1960 on the $Y=0.20$ x-1.34 curve of Fig. 2, to permit receiving tubes to have residual values of 0.45 to 0.37 in 1961-65. Power and special purpose tubes, semiconductor diodes and picture tubes were assumed to have the same trends as in Fig. 2. The total of the 5 curves in Fig. 3 is equivalent to the total curve of tubes plus semiconductors/GNP $\times 10^{-3}$.

The statistical forecast could have been developed in many ways. Nonlinear trends might have been used and one of the parameters other than transistors could be used to leave room for receiving tubes. A case may be built for permitting

Tubes and Semiconductors (Continued)

the transistor curve to rise steadily and to build receiving tube volume out of declining diode and power and special purpose tube sale. There seems to be no real basis for the latter course, however, and Fig. 3 represents as reasonable a forecast as can be made without investigating technical and economic factors considered in the next two sections.

TECHNICAL FACTORS

Receiving Tubes

Some trends in receiving tube design include: Smaller, lighter tubes; Lower power consumption; Greater ability to withstand high amb heat and high amb radiation.

For smaller, lighter designs, several schemes have been used. The RCA Nuvistor ${ }^{3}$ and the GE TIMM ${ }^{4}$ (Thermionic Integrated MicroModule), for examples, use the tube enclosure as a mechanical support for the electrodes or other elements. Another scheme includes more than one tube unit within an envelope, a trend recently dramatized by GE's Compactron. ${ }^{\text {s }}$
The Nuvistor type will probably develop rapidly and further size reductions result. The micromodule will develop more slowly because of lack of flexibility and inexperience of designers. The Nuvistor. TIMM and Compactron all use much less power than conventional tubes and the TIMM can operate at very high amb temp.

Another tube technique appears promising for reducing size. The cold-cathode (magnesium oxide) tube developed by the Signal Corps and Tung-Sol requires only keepalive electrode power. ${ }^{6}$ Small heat dissipation makes possible smaller size and weight. This type of tube is competitive with transistors in low power dissipation.

A fourth new development (Westinghouse ${ }^{7}$ and others) uses a semiconductor cathode rather than a semiconductor-coated cathode. This should result in a simpler tube type-no heater is required and a pin-point source of electrons is achieved.

The largest advances in production units may be achieved by the
refined production methods of the Nuvistor and the cold cathode type tubes. The thermionic micromodule will probably find more limited application.

Transisfors

Smaller size, higher temp and radiation resistance are also objectives of transistor design. ${ }^{8}$ A much greater effort, however, is devoted to achieving higher frequency performance. The Micro Alloy Diffused Base transistor (Philco) and the epitaxial transistor (Bell Laboratories ${ }^{\text {) }}$ promise to make the transistor amplifier and oscillator useful in the UHF region. Commercially available designs are still limited to about 200 MC .

So far, the epitaxial transistor seems to be the best design possible for extensive use in the microwave region although commercial results have not yet been announced. It seems unlikely that in the 1961-65 period the transistor can capture a significant percentage of the microwave tube market as it has the receiving tube market, but other semiconductor devices (tunnel diode) may do so.

New materials such as silicon carbide and gallium arsenide may make higher temp performance beyond the $160^{\circ}-200^{\circ} \mathrm{C}$ range of silicon possible. More difficult will be to protect transistors from radiation damage except by shielding. The tunnel diode may be used in high temp and radiation applications rather than the transistor.

Semiconductor Diodes
Crystal diodes have shown a steady growth since their introduction. The Esaki Diode ${ }^{10}$ promises extensive application in high-speed switching. ${ }^{11}$ Other tunnel emission

TABLE 2

Gress Naflenal Product. 1960-1965 In Billions of 1959 Dellers

	3% Annual Growth	5\% Annual Growth
1960	594	504
1981	509	528
1982	524	555
1963	540	588
1984	556	611
1965	573	641

devices will evolve and may preempt the high-speed switching field. Whether they will compete as amplifiers and oscillators with existing devices cannot be foreseen.
Certainly in the microwave region the tunnel diode which is op erable at higher temps and radiation levels than transistors may limit further transistor development. As the market for control equipment grows, there should be an increasing use of solid state rectifying devices. Silicon-controlled rectifiers are replacing older devices in many applications.

Picture Tubes

Thinner picture tubes approaching 180° are in sight. Work on picture tubes in the next 5 years will also be directed to low power small dia tubes for portable sets. The color tube will also be improved.

Power and Special Purpose Tubes

Power and special purpose tubes. as classified by the BDSA, Dept. of Commerce, include: High Vacuum Tubes; Gas and Vapor Tubes: Klystrons: Magnetrons; Forward and Backward Wave Tubes; Duplexers; UHF Planar Tubes; Cathode Ray Tubes (excluding TV picture tubes); and Miscellaneous Tubes.

Using ceramics to replace glass envelopes in high ${ }^{12}$ vacuum tubes has increased operating temps to over $400^{\circ} \mathrm{C}$. Transistors are unlikely to replace this variety of tube-power requirements are high and transistors (silicon) cannot operate at junction temps substantially above $200^{\circ} \mathrm{C}$.

Gas and vapor tubes include thyratrons. ignitrons and mercury pool tubes. Cold cathode regulator tubes operating in high temp environments are increasingly important in missile and space work. ${ }^{1: 3}$ Hydrogen thyratrons are used in high power pulsed radars. Development of improved models is continuing and an early objective is the production of a 100 megawatt peak tube. Gas-filled thermionic converters are also being studied for space vehicles use.

Cathode ray and storage tube development will capitalize on growing medical electronics and data

processing markets. ${ }^{14}$. 15 Electron optic devices are evolving rapidly and we may see substantial improvements in vidicons, image orthicons, and photomultipliers shortly.
Improved microwave tubes (klystrons, magnetrons, TWT's, etc.) will provide higher power, lower noise, higher frequency operation and greater bandwidth. Electrostatic focussing techniques will be more widely used. New, extremely high power magnetrons and klystrons will meet needs of new communications and radar equipments.

Other Devices

The most significant long-run factor affecting the tube and transistor market is the slowly evolving field sometimes called molecular electronics.

The DOD has had a number of contractors, Westinghouse among them, working on circuit integration using molecular electronic techniques. Even though circuit integration may not be as complete as its proponents hope for, multifunction components will undoubtedly develop greatly within the next decade and profoundly influ-
ence the further development of tubes, transistors and other electronic components. These devices will capture an important share of the electronic component market by 1970 but they will not be significant in the early 1960's. ${ }^{16}$

ECONOMIC FACTORS

General economic factors affecting all industry in the 1961-1965 period are: Population growth: Defense and space expenditures: and Technological change.

Population Growth

The growth in population, particularly the great increase in the 18 to 24 year old group-that group born during the high birthrate years of the early 1940 's-will increase demand for consumer goods.

Space and Defense

Expenditures for defense and space exploration will increase. An increasing percentage of the defense dollar will be for electronics. Space exploration expenditures will rise rapidly. We stand on the threshold of commercial exploita-
tion of space. Communications and TV satellites are feasible now and strong efforts of communications manufacturers to move into the satellite field in the 1961-65 period are anticipated.

Technological Change

The increasing rate of technological change is another factor to be considered. The transistor reached a sales level of $\$ 5 \mathrm{mil}$ lion ${ }^{17} /$ year within 6 years of its announcement, but we may expect new devices and equipment to reach substantial sales levels within much shorter periods.

The three most substantial mar-kets-consumer, military, and industrial - all have elements of strength and weakness. Radio, TV and phonographs are the bulk of the consumer electronics market. Forecasters have long predicted a break in the TV and home radio market. This break has not occurred, nor is it likely to occur. The TV market, particularly, has been thought to be saturated for some time. The popularity of the second set was difficult to predict, just as the interest in a lightweight portable is difficult to pre-

Tubes and Semiconductors

(Continued)

dict now. The three technical factors influencing the TV market: greater portability, thinner picture tubes and color.
The color market has been disappointing, but improved and lower-priced receivers and more color programs should improve TV picture tube sales somewhat. Better batteries and further miniaturization may extend the portable TV market. Thinner picture tubes may make wall TV mounting possible. Such a TV tube (from expansion of present techniques or from use of electroluminescent elements or fiber optics) will provide a new market for receiving tubes and transistors. A large percentage of TV sets are over five years old, so the tube replacement market should contince to be strong over the next decade. Significant breakthroughs in color or thinness of tube would encourage many owners to replace rather than repair old sets. Consumer radio market also seems to be saturated, but portables and auto radios will stabilize this market.

Not only do existing consumer markets present strength for the next five years, but electronics will undoubtedly expand into fields as yet untapped. We may expect increasing use of electronics, for example, in the automobile and home lighting markets. Coupled with a growing population, it is difficult to perceive how consumer electrunics can do anything but expand at a rapid rate.

Expenditures for space exploration and the military will increase considerably over the next 5 years Much of the increase will be for research, development, test and evaluation where the percentage of dollars assigned to electronics is high. A $\$ 3$ billion annual increase in defense and space expenditures may result in a $\$ 1$ billion increase in electronic expenditures and a $\$ 125$ million annual increase for tubes and semiconductors. A \$6 billion increase will probably increase annual tubes plus semiconductor sales by $\$ 250$ million.

TABLE 3
Predicted U. S. Tube and Semiconductor Markets, 1961-1965

(millions of 1959 dollars)

	O\% GNP Rise	3\% GNP Rise	5\% GNP Rise
1961	1,190	1,265	1,320
1962	1,230	1,345	1,430
1963	1,270	1,430	1,540
1964	1,310	1,520	1,670
1965	1,350	1,610	1,800

Industrial electronics, promising for many years, may at last become significant. Greater strides will be made in medical electronics, automation and data handling. The future of the computer, both allpurpose and specialized. is very promising with a host of applications in banking, merchandising and processing just over the horizon. One of the most promising areas for exploitation is modern communications systems.

THE REVISED FORECAST

We can now re-evaluate the forecast of Fig. 3. Transistors are unlikely to retain their level at 0.65 for four reasons: (1) A shake out in price, now under way, will reduce the unit price making total dollar volume more difficult to maintain, barring fairly elastic de-
mand schedules. (2) Demand schedules may prove to be somewhat inelastic. The MADT and epitaxial transistors give some hope of opening up the microwave market, but large scale sales in any but the receiving tube market cannot be anticipated. (3) rontinuous improvements can be expected in competitive devices. The new tubes may be more competitive in size and power consumption. Tunnel diode and other semiconductor devices (including molecular electronics) will compete with transistors not only for sales but also for technical talent and firancing. (4) The impact of foreign competition has not yet been fully felt. Competition within the U. S. may be limited, but it cannot be destroyed. Foreign markets will become increasingly more difficult to pene-

TABLE 4
Estimated Value of Sales 1961-1965

	Transistors	Semiconductor Diodes	Other Semi. Devices	Receiving Tubes	Picture Tubes	Power and Special Pur. pose Tubes
1961						
0\% GNP Inc.	$\$ 312$	8221	55	$\$ 240$	5178	5298
3%	331	235	5	255	187	316
5\%	344	244	5	265	198	328
1962						
0\% GNP Inc.	293	268	15	240	182	322.
3%	318	294	17	282	189	351
5\%	338	311	18	27	211	372
1963						
0\% GNP Inc.	240	374	43	250	187	346
3%	270	422	49	281	211	389
5\%	291	454	52	302	227	418
1964						
0\% GNP Inc.	240	432	91	259	192	370
3%	278	500	108	301	222	428
5\%	305	550	116	330	244	470
1965 218 153 211 309						
0\% GNP Inc.	216	480	153	211	197	394
3\%	258	573	183	252	235	470
5\%	288	641	205	289	263	825

AT GENERAL ELECTRIC
' AT GENERAL ELECTRIC EXP OF ELECTRONICS TO
THE NATION'S MOST ADVANCED SPACE PROBLEMS

Today. engineers with TV and radio experience are working on missile and space vehicle payload problems al GE's Missile \& Space Vehicle Department... others are applying their knowledge of radar to space communications... men with aircraft navigation experience are concentrating on advanced guidance and control systems for interplanetary space vehicles... In fact, engincers with experience in practically every area of electronics have transferred their technical knowledge directly to space problems.

Whether or not you've had specific experience in space electronics. you may be able to go right to work at MSVD on some of the most sophisticated and technologically exciting projects in the entire space field-from ICBM re-entry vehicles to operational space craft.

The work here is at the very edge of the state of the art, transforming the latest research discoveries into workable engineering solutions. You'll be concerned with new advances in plasma physics, thermoelectric phenomena, telemetry... with radical new requirements in micro-miniaturization, space to weight reductions, performance efficiency ... with an entirely new order of reliability specifications to assure
systems' operation in space for a year or longer.
Excellent positions are currently open in four major areas at MSVD: Navigation and Control Engineering - Instrumentation and Communications Engineering • Ground Support Engineering - Advanced Systems Engineering

These positions will place you on the ground floor of the move of a large segment of the Department to the new Space Technology Center-located at Valley Forge Park, just 17 miles from Philadelphia.
Inquiries are invited from electronics engineers who are technically advanced in their own discipline, and are deeply interested in the related fields of space vehicle development. Write informally, or forward your resume to: D. G. Curley, Div. 24-MM.

MISSILE \& SPACE VEHICLE DEPARTMENT GENERAL ELECTRIC

3198 Chestnut Street, Philadelphia 4, Pennsylvania

Tubes and Semiconductors (Concluded)

trate as other countries expand production.

From the above, the transistor curve of Fig. 3 is too optimistic. The price shakeout and more severe competition from tubes is reflected in the 1961-1962 decline of Fig. 4. while the growing importance of "other semiconductor devices" and "Semiconductor Diodes" signals the 1964-65 decline.

Semiconductor Diodes

Semiconductor diode sales in Fig. 3 showed a steady increase from 1961 through 1965. Because of the increasing importance of this component, at least in computer technology, expect a more rapid rate of rise in 1961 and 62 The Esaki diode may limit transistors in the high speed computer field and possibly elsewhere.

Special Purpose Tubes

In Fig. 4, power and special purpose tubes have been plotted using the same trend as Fig. 3. Continuing markets for high frequency high-power generators and amplifiers and extension of microwave techniques to higher frequencies indicate a continuing market. R-f power tubes using ceramic construction seem capable of outperforming any other device on the horizon. Use of these in space vehicles and communication systems
should increase greatly during 1961-65. Storage and display tubes also will grow in importance as more sophisticated attempts are made to solve data handling problems.

Receiving Tubes

Receiving tubes in Fig. 3 were the only category which showed a marked down turn. In Fig. 4, however, receiving tubes are steady during 1961, rise slightly in 1962 and 1963 and decline in 1964 and 1965. This relatively optimistic forecast for receiving tubes in spite of great competition from transistors reflects the following: (1) Receiving tube technology has seriously challenged transistors with new concepts which may provide lower cost circuits with reduced weight and power penalties. (2) High orders of reliability are achievable with the newer tubes. (3) During 1964 and 1965 , the receiving tube market will decline as newer semiconductor devices, including molecular electronic modules become more prominent. The TIMM concept will not be able to stem the trend toward "grown" circuits.

Picture tubes are shown increasing at a slow rate in Fig. 4, whereas they were steady in Fig. 3. This more optimistic view of picture tubes is based on: (1) Greater number of new households

DO YOU HAVE YOUR COPY?

REPRINTS:
1960 Iransistor Iaterchengeability Chart...................... 50 .
25 or more
30 $\quad=$
Electrenic Hardware Chent si.00 ${ }^{\text {* }}$
26 to 100 sepies 75 ${ }^{\text {" }}$
Mere than 100 coples............ . 50 ${ }^{\text {" }}$
Tedey's Electranic Engleeer 50. ${ }^{\text {* }}$
Write to:
ELECTRONIC INDUSTRIES, Reader Service Dept.
56 th \& Chestnut Sts., Philadelphia 39, Pa.

(18-24 year old group) requiring new TV sets; (2) The growth of color TV: (3) A broader portable market; and (4) Obsolescence of old models.

The over-all curve of Fig. 4 is a summary of the 5 factors discussed above and the catchall "other Semiconductor devices" which includes integrated semiconductor circuits. Table 4 is a tabulation of the yearly market in 1959 dollars assuming 0,3 and 5% cumulative increases in GNP.

References

. Electronlc Indugtriea Association, 1960 Fact Book.
2. Market Research. Electronacs, 33. (32) : 24, August B_{1} 1960, and earlier issues.
3. Steckler, L. "Nuvistor, New Kind of Vacuum Tube," Radio Electronics, 30 : 40-1, June, 1959.
4. "Thermionic Integrated MIcro. modules," Electrontce, $82: 80$, Mey 15, 1959 5. "New Tube Concept Simplines Cir culiry." Electromios, 33 (28): 70-73, July 8 . 1960.
6. "Major Advance in Tubes-The Cold Cachode Principle," Electrical Eingineering. i8: 407-8, April 1959.
7. "New Source of Electrons for Elec ironic Tubes," Westimghouse Engineer 19: 189-90, November, 1959.
B. Electron Tube Information Council Tubes and Tramsiotors, a Comparative Study, (1960).
9. "Many New Type semiconductor Studled," Electronic Nowo, June 20, 1960 p. 32 .
10. Esakl. "New Phenomenon in Narrow GE P-N'Junctions," Phyaical Re viero, 109:603-604. January, 1958.
11. Holonyak, N., and Lesk, 1, A., "Galllum Arsenjde Tunnel Diodes," Proceed siges of the IRE, $48(8)$: 1405-1409. Auguat 1960.

12 Meacham, D. D.: "High Vacuum Power Tubes" Eloctrowics, $33(18): 60-64$, Aprll 29. 1960
13. Steiner, H. C., "Gess-Filled Tubes," Electrontcs, 33 (18): 65-69. April 29, 1960 14. Kramer. A. S., "Storase, Counting and Phototubes," Eléctrowios, $33(18): \times 6$ -
y0, April 89.1960 .
15. VonArdenne, M." "Dvolution of the Cathode Ray Tube Over Three Decades. Wircless World, 66: 28-32, January, 1960 16. North, H. Q., "Where Are We GoIng with Semiconductors and Molecula Electronlcs," Electronic Industries, $19(8)$ 76.77, August, 1960

> 17. EIA Pact Book, 1960, ibid.

- The views and opinions expreseed in this article sre those of the author only and are not necessarlly those of ITT Laboratorles.

New Microwave Division

A new division for the development and manufacture of electronic systems and subsystem has been established by Watkins - Johnson Co., Palo Alto, Calif. Initial work will be with low noise microwave amplifiers, reconnaissance systems, electronic countermeasures systems, microwave satellite communications systems and special test equipment used in microwave tube production and testing. Joseph G. Rubeson, formerly with Sylvania's Mountain View operations, will head the new division.
(Continued from page 218) activities outside of the direct convention area. One approach to the problem is a "Career Center" like those operated by Careers, Inc.

At these centers, an engineer or scientist fills out a registration form which includes his education. experience, and interests, but not his name or company affiliation. The information is supplied to companies registered with the center. Those companies interested in the man send an interview invitation to him. This protects the jobseeker and saves time and effort for the company. Since the center is removed from the convention area, it helps to keep recruitment on the floor to a minimum.

The career center at WESCON this year drew 5,000 visitors. Fifteen hundred of these registered for job interviews with the 24 companies that paid to maintain recruiting staffs at the center.

Reliability \& Quality Control Symp.-Jan. 9

How well engineered design, and production with strict controls of manpower, materials, methods, and machines is related to the functions of today's industrial and governmental operations will be discussed in the forthcoming Seventh National Symposium on Reliability and Quality Control, BellevueStratford Hotel, Phila., Pa., on January 9, 10, 11, 1961.

The symposium is jointly sponsored by the American Society for Quality Control (ASQC), The Institute of Radio Engineers, Inc. (IRE), American Institute of Electrical Engineers (AIEE), and Electronic Industries Association (EIA).
The program includes many outstanding and nationally known representatives of industry, government and the military services, such as. Clifford M. Ryerson, Sr. Product Assurance Administrator, R. C. A.; H. L. Hoffman, President, Hoffman Electronics Corp.; Col. W. Scandrett, Office Chief R \& D, U. S. Army: Maj. Gen. L. I Davis, USAF, Commander, Patrick Air Force Base; and Capt. R. E. Foster, U. S. Navy, Bureau of Ships. who will present the latest and up to date infermation on such topics as System Reliability, Statistical Techniques, Accelerated Testing, Cost Considerations, Design Techniques, Reliability Prediction and Testing, Reliability Education and Management.

Engineers, Scientists

Opportunities

 to Work on All Aspects of Modern Microelectronics at General Electric> JOIN A
> NEW GROUP
> NOW BEING FORMED AT GE'S ELECTRONICS LABORATORY

This expanding effort will concentrate on creating an entirely new order of integrated circuits using the latest advances in solid state technology, and will be responsible for the cuntire span of activity from research and development to pilot plant operation.

Emphasis will be on microminiature thin film circuits and their packaging. A strong development program in electro luminescence - photocmiductor, integrated semiconductor, delay and memory devices is now being enpanded.

Responsible Staff Positions are available at BS, MS, PhD levels for Electrical Eugineers, Electronic Engineers, Mechanical Enginecrs, Chemical Engineers, Chemists, Physical Chemists, Physicists in...

- RESEARCH. DEVELOPMENT AND dESIGN . . . in thin film integrated circuits, incorporating resistive, capacitive, conductive, magnetic, photo-conductive, electroluminescent and semiconductive elements.
... in new and unique materials suitable for these elements.
...in processing techniques involving vapor, electrolytic and pyrolytic depositions; electron beam decomposition and machining; circuit interconnections; sub-strate technology: hermetic sealing and protective coatings.
- in evaluating and testing ... passive and active components of all types.
- IN DESIGN OF ELECTRONIC CIRCUITS . . . both digital and analog types for microelectronics.
- In development of equipment ... for processing including auto. mation, controls and monitors.
- in pilot plant engineering ... operations in all areas pertaining to pilot production of integrated electronic circuits.

For morc information,
call Robert F. Mason collect at GRanite 6-4411, Ext. 3239
or uritc bricfly to: Mr. R. F. Mason, Dept. 24-ML
ELECTRON!CS LABORATORY GENERAL GG ELEGTRIG

Elcetronics Park, Syracuse, New York

Headquarters for HIGH POTENTIAL Testing
 INSULATION BREAKDOWN DIELECTRIC STRENGTH

Every over potential test need from the generator to the appliance motor . . . is met by o HYPOT*

Model 5500 Typical Mobile HYPOT* provides 0 po 120 hyde als 0 to 120 hv de cal 3 mo More compact and easier 'o use than equivainat ase test sels lower in coss,
too
10 KV Testing Portable HYPOT Jr. The advanced over polential tester, that enables anyone to mate high potential breakidown tesls Separate lights indicate eacess leatage current and in -wh rest voltoges fiom 1500 . or to 10000 Oc

150 KV Testing Mobile HYPOT* Non destructive lesting of power cobles generators, and insulators with AC or DC test potensials to 150 KV New DC Mobile HYPOT' is easiet 10 handle, cuts casts Write for
bulletin Mobile HYPOT ${ }^{\text {... }}$ 30 KV Testing Bench HYPOT* Models available with $A C$ or DC eest potentials from S to 30 KV Widely used too insula. pion resting of cables, distibu. fion equipment and heavy duly mosors.

Model
4501
Materials
Tester

New materials testing AC HYPOT* meets ASIM di electric strength test requirements Features nutomatic fale of test voltage ise. "ansparent lest caye that is sately unterloched and complete line of plug in moterials testing fintures Write for new bulletin. HYPOI a Insulation lester

VIBROTEST ${ }^{\text {¹ }}$ measures FIVE MILIION Megs

Direct reading a c operated meyohmmeter tor resislance mewsturement to five mallion meyolims Dulf biee, stable
ond accurate on all anyes.

VIBROTEST * Mordel 2570 has Si: megohm ennges 150.10 $500.100 .5000 \quad 100050.000$ 10000500.000 and 100.000 5,000000 megolums Wite tor

Write for Buffatims

Associated Resentch. Arcorostadrar

379 W. Eotmeat Av.. Chieepe 10. Inlocis Circle 146 on Inquiry Card

Personals

Dr. Remo Pellin-joins Motorola's Semiconductor Products Div. as Product Manager, Semiconductor Materials, Phoenix, Arizona.

John F. Hinchey, Electrical Engi-neer-appointed Director of Quality Control, Pacific Semiconductors, Inc., Lawndale, California.

Dr. Vincent R. L.earned-appointed Manager, Electronic Tube Div., Sperry Gyroscope Co., Great Neck, N. Y. Thomas D. Sege becomes Chief Engineer.

Roland P. Andelson-appointed Assistant Manager in charge of Hughes Aircraft Co.'s Ground Systems Group Activities in Washington, D. C.

Dr. Lawton M. Hartman-appointed Associate Director of Research-Operations, Philco Corporation, Philadelphia, Pa.

Dr. L. M. Hartman

M. Spector

Morris Spector--named Electronics Staff Manager, Thompson Ramo Wooldridge International Div., Canoga Park, Californis.

Joseph T. Cimorelli - appointed Manager, Engineering, Receiving Tube Operations; Kenneth G. Bucklin-appointed to the newly created position of Manager, New Products Engineering, RCA Electron Tube Div., Harrison, N. J.

Irwin Klugler-joins Computer Systems, Information Technology Div. of Lockheed Electronics Company, Metuchen, N. J., as a Senior Mathematician in the Mathematical Analysis Dept.

James V. Crawford-promoted to Assistant Manager of the Los Angeles Div., Dr. John Mason-promoted to Chief Engineer; Richard W. Winslow -named Chief of Preliminary Design; at Garrett Corp.'s AiResearch Manufacturing Co., Los Angeles, California.

Louis Kahn - appointed Manager, Application Engineering, Aerovox Corp., New Bedford, Massachusetts.

tinsley delivers

CORNING GLASS FILTERS

IN 3.5 DAYS

Wherever you are in the United States you can get standard thick. ness Corning Glass color filters in 3.5 days from Tinsley Laboratories. Fast delivery, too, on special sizes and thicknesses. custom ground and pitch-polished in our laboratories. You can depend upon Tinsley and on the Corning filters we finish and supply. They are particularly useful in colorimetric work and other applications in which specific regions of the radiant spectrum must be isolated. Send for a free copy ol our price list.

2526 Grove Streat - Berkeley 4. California Cirele 147 on Inquiry Card

Personals

Dr. Paul E. Ritt-named Director of Research, Robert S. Butts-becomes Technical Adviser to the Executive Vice President and General Manager, William C. Purple, Jr.named Vice President of Engineering and Manufacturing, Melpar, Inc., subsidiary of Westinghouse Air Brake Co., Falls Church, Va.

Dr. Charlen L. Register-named to new post of General Manager, Research Labs., R. V. D. Campbellpromoted to Director of Research, Staff Technical Director, Burroughs Corp., Paoli, Pa.

Dr. Ralph P. Ruth-appointed Senior Scientist. Hoffman Science Center, Santa Barbara, Calif.

Niles P. Gowell-appointed Engineering Manager, Industrial Components Div., Raytheon Co., Waltham, Mass.

N. P. Cowell

M. 1. Bock

Marvin J. Bock-named Chief Engineer, Kearfott Div., General Precision, Inc., Van Nuys, Calif.

Dr. Seymour Stein and Dr. Jamea E. Storer-appointed Senior Scientist.s, Sylvania's Applied Research laboratory, Waltham, Mass.

Ir. Victor Hicke-joins Remington Kand Univac Military Dept., St. Paul, Minn., as Staff Scientist.

John Basarab, Jr.-new Supervisory Engineer, Shipboard Electronics Dept., Lockheed Electronics Co., Plainfield, N. J.

Dr. E. Robert Britton-named Director of Military Engineering, Airtronics International Corp., Ft. Lauderdale, Fla.

Samuel J. Davy-appointed Director of Engineering, National Co., Inc., Malden, Mass.
J. Pieter deVries-appointed Manager of Astrodynamics for the Space Sciences Laboratories of General Electric's Missile and Space Vehicle Dept., Phila., Pa.

- Advanced hydrogen systems being developed by The Garrett Corporation solve the problem of keeping men alive and equipment operating for long periods of time in future satellites and space capsules.

Engineers al The Garrelt Corporation's AiResearch Manufacturing Divisions are dealing with challenging problems in fast-moving fields.
Diversification of effort and vigorous leadership have made Garrett the world's largest manufacturer of aircraft components and systems and a leader in specialized missile and spacecraft systems.

Excellent positions are available for qualified men with M.S., Ph.D. and Sc.D. degrees for work in these areas:

- Environmental Control Systems - Pioneer, leading developer and supplier of air conditioning and pressurization systems for commercial and military aircraft, and life support systems for satellites and space vehicles.
- Aircraft Flight and Electronic Systems-Largest supplier of airborne centralized Aight data systems; also working with other electronic controls and instruments including missile and submarine applications.
- Missile Systems - Largest supplier of accessory power units, AiResearch is also working with hydraulic, hot gas and hydrogen systems for missiles. liquid and gas cryogenic valves and controls for ground support.
- Gas Turbine Engines - World's largest producer of small gas turbine engines, with more than 9000 delivered in the $30-850 \mathrm{hp}$ class. Studies include industrial and nuclear applications.

Immediate openings exist for MANUFACTURING ENGINEERS

to work with product design engineers on all aspects of production including forming, machining, assembly, material processing, operating standards and manufacturing reasibility of products in the above fields.

Send resume to: Mr. G. D. Bradley
CORPORRATHON
AiResearch Manufacturing Divisions

Give your Products
MORE RELIABILITY and
BETKER PERFORMANCE with

In sfock for immediate dellivery

MAGNETIC AMPLIFIERS

- Mermetically seoled To MIL Spocifications
- No Tubes
- Direct Operation Iram Line Vollage
- Fast Rosponso
- Long Life Trouble Free Operation
- Phose Reversible Ouraur 5 Power Goin 2×100

$$
\begin{array}{ll}
\text { Pransistor } & \text { Mag. Amp } \\
\text { Preamp. } & \text { MAF-5 } \\
\text { MAT-1 } & \text { Wi. } 18 \text { oz }
\end{array}
$$

PARTIAL LISTINE ONLY
WRITE FOR FUATMEA IMFOAMATIOM OM TMEEE -e ier uem er bpecial deeioms

if2s Welredd St.. Brophlya Inugameedl 27, M.Y.
Circle 150 on Inaping Cod

News of Mirs"

 Representatives
REPRESENTATIVES WANTED

Electronic Connector Manufacturer seeks sales representatives in (1) North and South Dakota; (2) Montana, Idaho; (3) Washington, Oregon: (4) Northern California; (5) Southwestern United States. Manufacturer is located in the Midwest. Box 1-1, Editor, Electronic Indrstries.

Rubert L. Ringer and Tyler Mac Donald will be speakers at the こnd Annual Electronic Representatives Association Convention, Feb. 1-4, 1961, A mbassador Hotel, Los Angeles, Calif. Theme is "Planned Growth by Electronic Representatives."

Thomas H. Closs Co., Towsun, Md. -franchised as sales engineering representative for Du Mont ocsilloscopes, oscilloscope record cameras and other scientific instruments and accessories in the northern counties of Maryland, including Baltimore, by the Industrial Electronics Dir.. Allen B. Du Mont Labs, Divs. of Fairchild Camera and Instrument Corp., Clifton, N. J.

ITT's Distributor Products Div., L.odi, N. J.. has named the following if manufacturers representative or ganizations in 20 key market areas Anderson Sales Co., Boston, Mass. The Arthur H. Baier Co., Cleveland, Ohio; E. L. Berman Co., Belmont Calif.; Cartwright \& Bean, Memphis, Tenn.; Stan Cluphf \& Associates, Denver, Colo.; W. Henry Cordray Sales Co.; Bala Cynwyd, Pa.: Delta Sales, Inc., Indianapolis, Ind; William J. Doyle Co.: Chicago, Ill.; R. W. Farris Co., Inc. Kansas City Mo.; Clark R. Gibb Co., Minneapolis, Minn.; Carl Hower \& Co., Scottsdale, Ariz.: Johnson Associates of Florida, Casselberry, Fla.; Harry Levinson Co., Seattle, Wash.; William Ferguson Co.. Syracuse, N. Y.; Lowery Associates Co.. Wynnewood, Pa.; J. W. Marsh Co., Los Angeles, Calif; Massey Associates, Riverside, Md.; Maynard Sales Co., Dallas, Tex.; C. L. Pugh Co., Columbus, Ohio; James L. Semple Associates. Rochester, N. Y.; Samuel N. Stroum Co., Seattle, Wash.; S. A. Shaw Co., Inc.: Yonkers, N. Y.; Jack M. Thorpe. Detroit, Mich.; and the John G. Twist Co., Chicago, 111 .

Allied International Corp., Chicago, III.-appointed sales representative for the Burton Mfg. Co., Santa Monica. Calif., in all international foreign markets.

James J. Backer Con Seattle, Wash. -appointed sales representative for Columbus Electronics Corp., Yonkers, N. Y., in Washington, Oregon, Montana, Idaho and Alaska.

WITH THE REVOLUTIONARY PRODUCTION AID TOOLI

"'PIG-TAILORING" - mevoluhenary mem meshanical prosese for Minger madustion el lower sesla. Resiosi PREPARATIOM ont Assemely of Reabtors, Copachort, Olades and all alher arial beed componcali for termimal coands, minted CLBCUITS and MIMIAFUNIZED ASSEMBLIES.
mo.iaitorino eliminater: - Diegonal sumom - Lemp nere pliors - Oporaler indgment - e0\% eporacer training time. Brokon compononts Brotion loeds . Shorn circuits from eliapimgs ES\% eheasis handling . Excessive leod tovinoss - Mophererd ascembly mothess.
ig.lalloring provides: . Uniterm compeneat posillen . Unilorm marting anposure minieworiantion spocing conirol -. "g" leods ior roimsul ond beed lemper Bried er time/rate enalygie Closer cent central - Invalueble leber secvien - Immodiate cesl meovery.

Pays for itself in 2 woeks

Write for illustratod book to Depf. El-1

Circle 151 on Inguiry Card

ELECTRONIC INDUSTRIES Advertisers - January 1961

This index is published as a convenience. No liability is assumed for errors or omissions.

ADC Incorporated
Aarovan Corporation
Allord Manulocturing Company
Allied Control Compeny. Inc.
Allised Redio
Alphe Motals. Inc.
American Electrical Heotee Company
American Time Products, Inc.
Amperer Electronle Corporation Amphenol-Lorg Electrenics Corporation Andrew Corporotion
The Arnold Englinearing Company
Armold Megnefics Cerporation Assoclated Roseorch, Incorporeled Avnat Electronics Corporation

C
CAS Semiconductors
Coniralab, Electronics Div. of Globe-Union. Chomplast, Ine.
Chitton Sool Oivision
Cinch Monufacturing Company
Clovite Tranalator Product
inserf following on
Computer Mo Accomarios Co.
Compoc, Inc
Control switch Dlv. Controls Compon
of Americe
Ging Electronic Componenls, Cornine
lass Worts
Custom Componontu, Inc

D
Daie Electronics, Inc. Doven Compony, The Design Tool Company Doutich Compony, The plallght Corporation
Dow Corning Corporation
DuMont Laborotories, Allen B., Div, of
Fairchild

E
EICO, Electronic Instrument Co. Inc. 226
Eifol-McCullough, Inc.
Watch Company Elgin National ESC Electronics Cor

52 198 172 173 193 167 202 133 67 126 154 196 59 143 272 195

Gerrett Corporation, The General Electric Compony Electronle Tube Div. Missile \& Space Vohiclo Dept. General Electrodynamice Corporation
General Instrument Corporation
General Motors, Delco Radio Div.
General Producti Corporation
General Radio Compan
Globe induatries. Inc.
ood Anl Enecric Mig. Co
Graphill, Inc.
Gremor Monulocturine Company, Ine
G.V Controls, Inc.

171
167
mide Dac: Cover

H
acific Semiconductors, Inc, Incer following pQ 32 anoromic Rodio Products hilbrich Researches, Inc., George A
hiles Corporation, Lensdale Clv.
IC Deslon Corp.
lastle Copections Ine I7 203
polared Electronics Inserl following gg.
otter of lrumfiold
ower Dosiom, Inc
Powertron UHrasonica Corporotion $\quad 21$ PRD Electronles. Inc.
φ
Ouen-Tech Leborotorles
208

Ideal Industries. Inc. IERC. International Electronic Research Corporotion Illinois Condemer Compony Industrial Electronic Engineors. Inc. Internafional Reshtance Compony Instifute of Redio Engineers, The	183 152 162 166 17 141
J	
Jennings Rodie Monufacturing Corp Jettron Products, Ine. JFD Electronles Corporotion Johnson Company. E. F. Jones Div. Howerd E: Cinch Mig. Co	150 192 161 179 183
K	
Kay Electric Company Kouftal Ewer Compony Knights Company, The James	162 149 206

Hewiett-Pecterd Company	48,
Hill Electronics, Inc.	
Howerd Industrles	
Hughes Alrcreft Company	167
Engineering Div.	

8. 14

Howertronics, Inc. ...
Hughes Alrcreft Company
Mierowave Tube Dle

ERC. International Electronic Research Corporotion
Industrial Electronic Engineors. Ine niernational Reshtance Compony Knights Company. The James
el, Inc. titton Industries, Electren Tube Div

M
Magnefic Shiald Div., Porfection Mise Co Morconi Instruments.
Microwave Associates, Inc., Semiconductor Div. .. Minnesota Mining end Monufocturing Co., Moforole Somicenductor Products. Inc.

N

Newmen Carporetlon, M. M Nothelfor Winding Leborafories, Inc179
62

Fairchlld Controls Corporation
rairchild Somiconductor Corperaflon
Flute Mig. Co., Inc., Jomn
Freed Transformer Compeny, Ine
FXR, Ine.

NEW CMA-415

 PERMEABLE DIELECTRIC MAINTAINS THERMAL STABLIITY TO

Custom Components' new micronave absorber is ideal for adranced system applications. High attenuation... easily molded or machined to specific tolerances... prompt service and delivcrics to match your needs.

CUSTOM COMPONENTS,

P.O. Box 248, Calduell, N.J. inc.

CApital 6-3404

Circle 152 on Inquiry Card

News of Mirs'

 RepresentativesRCA's Food and Beverage Equipment Section has named the following seven appointees and their area of responsibility: William F. O'Brien, Summit, N. J., covering metropoli\tan N. Y. and northern N. J.: David Pollock Co., Ft. Lauderdale, Fla., covering North and South Carolina, Georgia and Florida; Leonard Schwarz, Hartford, Conn., covering the New England states; Otis Whitehead. Dallas, Tex., covering Louisiana, Oklahoma, Arkansas, New Mexico and Texas: American Bottlers Equipment. Baltimore, Md., covering Baltimore. Md.-Virginia, Maryland, District of Columbia, eastern Pennsylvania and southern New Jersey; Banbury Equipment Co., Pittsburgh, Pa., covering western Pennsylvania, eastern Ohio, West Virginia and Buffalo, N. Y.i Mark Powers Co., Birmingham, Ala., covering Tennessee, Mississippi and Alabama.

Five new regional sales representatives appointed by Hughes Aircraft Co.'s Vacuum Tube Products Div., Culver City, Calif., are: Fcklund Electronic Sales Co., Ft. Worth, Tex., in Texas and Louisiana; Dunbar MidStates Co., Coffeyville, Kan., covering Kansas, Arkansas, Iowa, Nebraska, North and South Dakota, Missouri and Oklahoma; R. G. Sidnell and Co., Cleveland, Ohio, covering Ohio and western Pa.; J. L. Pierce Co., Detroit, Mich., covering Michigan; Automation Sales Co., Rockland, Mass., covering Massachusetts, Connecticut, Maine, New Hampshire and Vermont.

Southwestern Engineering and Equipment Co., Dallas, Tex. - appointed sales representative for systems components by Systems Div. of Beckman Instruments, Inc., Anaheim, Calif., covering Texas, New Mexico, Oklahoma and Louisiana.

Syd Wimpie Associates, Mamaroneck. N. Y.-appointed sales representative for precision potentiometers and panel instruments in metropolitan N. Y., Long Island and New Jersey by the Electronics Div. of DeJur-Amsco Corp., Long Island City, N. Y.
R. F. Products Div. of AmphenolBorg Electronics Corp., Danbury, Conn.-appoints the following firms to handle its radio frequency products: Atcheson and Adams, Greensboro, N. C.; Eichorn and Melchior, Inc., San Carlos, Calif; Hollingsworth and Still, Atlanta, Ga.; R. E. McClendon Co.. Albuquerque, N. M.; Jack F. McKinney Sales Co., Dallas, Tex.; Premmeo, Inc., Los Angeles, Calif.; Don Smith Sales Co., Seattle, Wash.; W. Ben Wimberly Co., Clearwater, Fla.

Circle 153 on Inquiry Card
How To Get Things Done Better And Faster

BOARDMASTER YISUNL CONTROL

* Gives Craphic Pielure - Saves Time, Saves Monay, Preveats Errers
* Simple to operato-Type or Write on Cards, Snap in Crooves
* Ideal for Production, Traffic, Invenfory. Scheduling, Solos, Etc.
* Made of Metal. Compact and Alfesctive. Over 500,000 in Use.

Han are 84930
wibl sard
FREE
24.PAGE BOOKLET NO. Z-20

Without Obligation

Write for Your Cepy Tedey GRAPHIC SYSTEMS

Vecervilio. Morth Cerollina
Circle 154 on Inquiry Card
from the leader in thermal relay design!

Now, for missile environments and for all applications where greater precision is necessary, G.V Controls offers the revolutionary new PT Thermal Relay-the most precise thermal relay ever built!

And the PT's sturdiness is unequalled in thermal relays. It withstands missile vibration and shock far better than any other thermal relay.

SPECIFICATIONS

Pime Delay: 3 to 60 seconds (factory Set)
Setting Tolerance: $\pm 5 \%$ ($\pm 1 / 4$ sec. min.)
Temperature Compensation: Within $\pm 5 \%$ over $-65^{\circ} \mathrm{C}$. $10+125^{\circ} \mathrm{C}$. range ($\pm 1 / 4 \mathrm{sec}$ min.)
Heater Voltages: 6.3 to 115 v . for delays up to 12 sec ;; 6.3 to 230 v . for longer delays.

Power Input: 4 watts. Rated for continuous energization at $125^{\circ} \mathrm{C}$.
Contacts: SPST. normally open or normally closed. Rated 2 amps. resistive at $115 \mathrm{v} . \mathrm{AC}$ or 28 v . CC.

Insulation Resistance: 1,000 megohms
Dielectric Streagth: 1000 v. RMS at sea level. 500 v. RMS at $70,000 \mathrm{ft}$.
Vibration: Operating or non-pperating, 20 es to 2000 cps Sheck: Operating or non-operating, 50 for 11 milliseconds
Unidirectional Accelaration: 10 g in any direction changes delay by less than 5\%, 50 \& by less than 10% with proper orientation.
Weight: 2 to $21 / 2$ ounces.
Writo for Product Data Bulletin WPD-1015

READY...WILLING

and ESPECIALLY ABLE

RCA Semiconductor Products Field Engineers...specialists in their field ...are glad to work with you on your design and application projects.

RCA Semiconductor Products Field Engineers are on immediate call to provide you with comprehensive and authoritative design and application information in the field of semiconductor devices and materials. Each RCA Field Engineer works closely with RCA Applications Engineers located in separate laboratories devoted to solving problems in semiconductor devices, micromodules, and ferrites for entertainment. computer, industrial and military applications. A thoroughly schooled and experienced electronics engineer, your RCA Field Engineer can usually help you work out the answer to many prob-
lems on the spot. When an especially complex design applications problem arises, he has available the full resources of a laboratory staffed with specialists.

So if you need assistance with a new design, or aid in ironing out the "kinks" in a developmental stage designed around RCA semiconductor products or materials, simply call the RCA Field Office nearest you. Your local RCA Semiconductor Products Field Engineer is ready, willing, and especially able to provide help where help is needed.

RCA FIELD OFFICES

Semiconductor \& Materlals Divislun

Somerville, New dersey

- 731 Jomes St. Newark. N. J. HU ${ }^{5.3900}$. Syracuse ${ }^{5.3} \mathrm{~N}$. Y. GR 402 .5591
- 714 New Center Bldg. Detroit 2. Mich. TR 5.5600 - Suite IIS4, Merchandise Mart Plara. Chicago 54 , III., WH 4.2900 - PO. Bar 840%, St. Lovis Part Dranch, Minneopolis. Minn.. FE
9.1249
-.6355
- 6355 E Washington Blud. Los Angeles Calif. RA 3.8361
- 1838 El Camina Real, Burlingame Calif. OX 7.1620
- Calmar Building. $1520^{\text {Edgewater Dr., Suite I. Orlando Fla., }}$

GA 4.4768

- 7905 Empire Freeway. Dallas 7. Tezas, FL 7.8167
- 1725 "K" St. N.W Washingion. D. C.. FE 7.0500
\square

[^0]:

[^1]:

[^2]: | SPEC MOA MOB MOC |
 | :---: | :---: |
 | PuIl. |

 | Pull-in Power |
 | :--- |
 | (Q $25^{\circ} \mathrm{C}$) 250 Mw 100 MW 50 MW |

 Contact Rating
 Res © 28VDC
 or 115 VVAC) 2 amps 1 amp 1 amp
 operating and
 Release Times 5 MS en 6 MS ea 7 MS ea Shock
 Contect Arrangement: OPOT
 Tomperature Rance: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 Dimensions: $0.875 \mathrm{im} . \mathrm{h} x 0.800 \mathrm{in} . \mathrm{wx}$ 0.396 in. thk

 Woight: 0.6 or.
 Life (at rated losd): 100,000 operations minimum

 ## ELGIN ADVANCE

 2435 M. Neoml st., Burbeak, California

[^3]: 131 fere 20 ch sheme 15 loit 10 . 19 . 3219 toe fomill Fuislem, Coliferme
 womit ormicn co cos seath 18is sind miraete 4 Wra.

 DIS AVATIOM CO_{5} ITR. 671 Isuratides Mivi.

[^4]: (a) 1950-1958, National Industrial Conference Board, Economic Almanac 1960. 1959, U. S. Dept. of Commerce, Survey of Current Busifces.
 (b) Electronic Industries Association.
 (e) BDSA, U. S. Dept of Commerce.

