ELEGTIONTG NDUSTRIES A CHILTONPUBLICATIO/N.

November

1960

FMerwirile reqovenilz

can't upset

RMC "JF" DISCAPS

Type JF DISCAPS exhibit a characteristic frequency stability that is superior to similar capacitors. These DISCAPS show a capacity change of only $\pm 7.5^{\circ}$ c over the range between $+10^{\circ}$ and $+85^{\circ} \mathrm{C}$. Manufactured in capacities between 150 MMF and $10,000 \mathrm{MMF}$, Type JF DISCAPS are rated at 1000 V.D.C. Write on your letterhead for information on these and other quality RMC DISCAPS.

Circle 1 on Inquiry Card

ELECTRONIC INDUSTRIES

ROBERT E. McKENNA, Publisher

-

BERNARD F. OSBAHR, Editor

Best Wishes to ESMA

In earlier editorials we pointed to the fact that the gross national product of the electronic industries was more than 50% military, and that there was considerable erosion of consumer product dollar volume due to foreign imports. If the electronic industries are to remain strong, grow, and stabilize it seems logical that they must also expand into hitherto unexplored realms. New electronic markets must be located and developed!

We are happy to report that something positive along these lines is now under way. At the WESCON show in August a new association called ESMA, of the Electronic Sales Managers Association, was formed. A first, very successful, meeting was held during the National Electronics Conference last month in Chicago. At this meeting a printed statement of the Association's purpose was distributed. This states:

The purpose for which this association is formed and the projects to be carried on and promoted by it are as follows
a. To sponsor the improvement of marketing techniques, communications and policies in the electronics industry
b. To provide for the mutual exchange of electronic marketing and sales management information.
c. To promote, by creative sales management the growth of electronics through the maximum utilization of our expanding electronic technology
d. To advance the science and stature of the electronics sales manakement profession
e. To promote, encourage and sponsor projects and programs which will attract and develop high calibre technical salcs management personnel.
f. To promote fellowship and couperation among sales managers and other groups and atssoriations within the electronics industry.

Membership in the organization is on an individual basis with dues being $\$ 50.00$ per year for the first member of each firm and $\$ 25.00$ for each additional member. To date there are 42 full memberships and approximately 50 applications, with more coming in each day The next all-member meeting will be held in New York City during the time of
the National IRE Show, and the next executive committee meeting will be held during the forthcoming NEREM Conference in Boston this month. Present officers of the new association are: C. G. (Spec) Barker, Filtors Inc., President; Ward Brody, Consolidated Electrodynamics, Vice President; Jack Bisby, Airborne Instrument Laboratories, Secretary-Treasurer. Members of the Executive Committee include: Robert A. Bailey, International Resistance Corp.; Arthur B. Williams, Engineered Electronics Corp.; and Morton Scheraga, Analab International Corp.
The first objective will be to canvass every member and interested party to obtain a list of primary problems confronting each person's organization. These will be reviewed and consolidated to establish those of utmost overall importance on which the Association will concentrate. There are still three vacancies for committee chairmen who are later also to become members of the Executive Committee. Sub-Committees now being formed include By-Laws, Financial, Show Policy, Programs and Membership.

We extend our very best wishes for the success of ESMA. We believe that the discussions and activities of such a group can go a long way toward establishing new markets for electronic products in other industries. We are also favorably inclined to the individual membership plan. Many of today's electronic companies were formed by electronic engineers. Individual memberships will enable many of today's similarly ambitious engineers to obtain a prior exposure to modern marketing techniques, problems, and competition. This is in turn will tend to assure a greater percentage of "successes" in the new enterprises which our industry needs . . . regardless of whether new companies are formed or if established companies re-orient their productive efforts.

ROBERT E. McKENNA, Publisher BERNARD F. OSBAHR, Editor

CREIGHTON M. MARCOTT Managing Editor RICHARD G. STRANIX JOHN E. HICKEY, Jr. Associate Editors CHRISTOPHER CELENT Assistant Editor DR. ALBERT F. MURRAY Contributing Editor ROLAND C. DAVIES Washington News MARIE T. McBRIDE Directory Editor ELMER KETTERER Art Editor
M GOOD IDA M. GOOD
Editorial Secretary MAE E. MOYER Readers' Service

EDITORIAL CORRESPONDENTS
Washington-1093 National Press Bidg. GEORGE BAKER NEIL R REGEIMBAL DAVID R. HEINLY
BUSINESS DEPARTMENT
ELMER CALTON Circulation Manager DONALD J. MORAN Marketing Manager GORDON HERNDON Production Manager
REGIONAL SALES MANAGERS
Philadelphia (39)-56th \& Chestnut Sts. SHerwood 8-2000 JOSEPH DRUCKER
Now York (17)-100 East 42nd St.
OXford 7-3400
GERALD B. PELISSIER
Metropolitan N. Y. MENARD DOSWELL III New England
Chicago (1)-360 N. Michigan Ave. GEORGE H. FELT
Cleveland (15)-930 Keith Bidg.
SUperior 1-2860 SHELBY A. McMILLION
Los Angeles (57)-198 S. Alvarado St. B. WESLEY OLSON

San Francisco
(3)-1355 Market St.

UNderhill 1-973. DON MAY
Atlanta (3)-911 William-Oliver Bidq.
JAckson 3.674:
JOHN W. SANGSTON
Dallas (6)-Meadows Bldg., Expressway Merson 8.47
HAROLD E. MOTT
London, S. W. (1)-67/68 Jermyn St St. James ${ }^{\text {i }}$ MAX F. HOLSINGER

JOHN H. KOFRON Chilton Research Director

$$
\begin{aligned}
& \text { G. C. BUZBY, President } \\
& \text { Vice Presidents: P. M. Fahrendorf, } \\
& \text { Leonard V. Rowlonds, George T. } \\
& \text { Hook, Robert E. McKenna; Treasurer, } \\
& \text { Willam H. Vallar. Directors. Maurice } \\
& \text { E. Cox, Frank P. Tighe, Everit B. Ter- } \\
& \text { hume, Jr.: Russell. W. Case. Jr., } \\
& \text { Charles A. S. Heinle, John H. K. Kofn, } \\
& \text { George E. Cameron, Woshington } \\
& \text { member of the Editorial Board, Paul } \\
& \text { Wooton. } \\
& \text { Comptrolier, Staniey Appleby. }
\end{aligned}
$$

Cable Address-"CHILTON PHILADELPHIA"
ELECTRONIC INDUSTRIES, November, 1960. Vol. 19, No. 11. A monthly publication of Chilton Company. Executive, Editorial \& Advertising offices at Chestnut \& 56 th Sts, Phila. 39, Pa. Accepted as controlled circulation publication at Phila., Pa. \$1 a copy; Directory issue (June) $\$ 5.00$ a copy. Subscription. rates U. S. and U. S. Posses-
 $\$ 18.00 ; 2$ yrs. $\$ 30.00$. All other countries Yr. Company. Title Reg. U S S Pat Of by Chilton tion or reprinting prohibited except by written authorization.

ELECTRONIC INDUSTRIES

Vol. 19, No. 11

November, 1960

MONTHLY NEWS ROUND.UP

Radarseope: What's Ahead for the Elechranic Industries....
As We Ga Ta Press. 7
Electranic Sharts . 8
Coming Events .. 19
TOTALS: Late Marketing Statistics 23
Electranic Industries News Briefs............................... 24
Snapshots . . . of the Electronic Indus:ries.................. 26
International News 30
Next Manth in Electranic Industries.......................... . . . 69
Washington News Letter. 248

Editorial: Best Wishes to ESMA..
Future Trends In Microwave Beam Tubes..........W. A. Edson 70
Determining Temperature Rise of Coaxial Lines......D. J. Lagan 78
Designing a Mechanical Modulator.......................J. Habra 82
Finding Dielectric Constants............................... C. Gray 86
Finding Radar Pattern Equations With a Computer
N. D. Diamantides 89

What's New. .. 92
Designing Rotary Waveguide Joints...................C. A. Balt, Jr. 94
Build Antenna Test Parabolas_Fast......................S. Isaacson 98
1960 Microwave Electron Device Chart............................ 135
1960 Directory of Microwave Manufacturers..................... 151
International Electronic Sources...................................... . . . 207
Electronic Operations.. 239
Make Your Own Waveguide Bends......................... L. Bunn 241
Professional Opportunities ... 255
The Company Library—White Elephant or Work Horse?
H. S. Sharp 256

NEW PRODUCTS \& TECH DATA

New Tech Data for Engineers. 102

DEPARTMENTS

Tele-Tips	36	Systems-Wise 239
Letters	40	Cues for Broadcasters........ 244
Books	50	Industry News 260
Persanals	60	News of Mirs. Representatives 266

Highlights

of this issue

Future Trends in Microwave Beam Tubes

page 70
The relevant technology of microwave beam tubes has been refined to the point where manufacture is highly competitive. However hazardous predictions may be, there is a need for information on which to base future plans.

Determining Temperature Rise of Coaxial Lines

page 78
Manufacturers frequently give data for only one center conductor temperature and one ambient temperature. It is often difficult to extrapolate temperature data for other power levels and other ambient temperatures. Here is a method which simulates electrical loss without applying microwave energy. It produces a maximum amount of data with a minimum expense in time and also a minimum expense in money.

At Microwave Frequencies ... Determining Dielectric Constants

page 86
New dielectric materials for microwave and antenna use create a need for fast, accurate determining of dielectric constants and dissipation factors. Most commercial dielectrometers are too expensive for occasional laboratory use. This method uses existing equipment.

Finding Radar Pattern Equations With a Computer

page 89
The expression for the far field antenna pattern on a horizontal plane does not lend itself to convenient analytical manipulation. Also, it is inexact if applied to the pattern of an antenna enclosed within a radome. Approximations are sought which facilitate computation and design. These have acceptable accuracy and analytical convenience.

Make Your Own Waveguide Bends

page 241
Costs can be sharply reduced on custom waveguide installations by bending and twisting your own waveguide. With the simple bender described here, relatively unskilled persons can make these bends and twists.

1961 Microwave Power Tube Chart

page 135
The most comprehensive listing of microwave tubes in the industry. this chart provides technical specifications on magnetrons, klytrons, traveling wave tubes, backward wave tubes, and planar triodes available commercially.

Designing Rotary Waveguide Joints

page 94
The theory of probe type transitions for radar antennas between rectangular waveguide and coaxial line is summarized. The design of rotary joints using these transitions is discussed. A rotary joint design with low VSWR for the 8.8 to 10.4 KMC range is presented.

Build Antenna Test Parabolas-Fast
page 98
Building antenna test parabolas often takes weeks of engineering time. Here is a new tool-the Para-Shaper-which can do the job quickly. economically and with the same accuracy as conventional methods.

RADARSCOPE

NEW AIR TRAFFIC CONTROL SYSTEM
"Volscan" system of air tratfic control, being developed at Axco's Electronics G Ordnance Div., makes it possible for 120 aircraft to takeoff and land each hour. Here operator at one of the "Volscan"" consoles is setting in initial data for an aircraft's approach.

JAPANESE EXPORTS of electronic products to the United States in the first six months of 1960 totalled $\$ 38.7$ million, compared with $\$ 22.1$ million during the same period last year, reports the Electronics Div., Business and Defense Services Administration, U, S. Dept. of Commerce. The April-June quarter this year. the export total- 22.8 million-was 1 million in excess of shipments to the U. S. for the entire year of $i 958$. The 1959 exports were $\$ 75.6$ million. Radio receivers are accounting for 77% of all Japanese exports in electronic products to the U. S.

DON'T LEAN ON THE GOVERNMENT for help in supporting research and development," warns Lt. Gen. Arthur G. Trudeau, U. S. Army's Chief of Research and Development. "The expenditures from military R\&D will remain at the current annual figure of $\$ 5$ billion," he said. But more companies "must face the facts of a cold-war world and perceive that some reasonable percentage of gross sales or profits must be flatly earmarked for the exclusive use of basic and supporting research. There is too much effort devoted in some industries to merely selling today's hardware." "The current lead-time," said Gen. Trudeau, "from conception of a new weapon until its delivery is 7 to 8 years here in the U.S. Russia does a comparable job in 5 years."

SCIENTISTS AND SCIENCE TEACHERS have been invited by the National Science Foundation to submit proposals for the development of prototypes of new laboratory equipment for use in the Nation's schools and colleges. NSF is at 1951 Constitution Ave. N.W., Washington $25, \mathrm{D}$. C.

SHIPMEN'IS OF RADIO receivers and radio phonographs in 1959 reached a new high for the decade, totaling more than 16 million units and a value of almost $\$ 424$ million.

GRADUATE ENIROLILMENTS have been rising steadily in recent years. It will be interesting to see whether the increasing demands for engineers will affect this trend.

IN'TER-LANGUAGE CONVERSATIONS from continent to continent will be possible within the next 20 years, predicts Dr. Edwin G. Schneider of Sylvania Electronic Products, Inc. "Automatic translation of transoceanic conversations," he says, "will be performed through advanced communications and data processing devices." Among the other possibilities for the future he sees 2 -way wireless telephone calls by pedestrians using 2 -way pocket radios the size of a package of cigarettes; and transmission of still photographs through the telephone system at moderate cost.

READING PRINTED DATA

IBM engineer inspects a reading station in the company's new 1418 optical character reader. By exclusive scanning method the 1418 reads typewritten or printed numbers recorded in ordinary ink. The information is fed directly into the storage of an IBM computer
for processing at electronic speeds.

ONE OF INDUSTRY'S keenest competitors for personnel is the Wright Air Development Div. of ARDC, Wright-Patterson Air Force Base, Ohio. The Development Div. has established more than 450 new professional positions for physicists, metallurgists, aeronautical, ceramic, electrical, electronic, instrumentation, and mechanical engineers at all degree levels, and with or without experience.
"INERTIAL GUIDANCE for merchant vessels should soon become a practical reality," says Frederick Stevens, Vice-President and Manager of Electronic Systems \& Equipment Dept. of Nortronics, Div. of Northrup Corp. Stevens points out that there is no significant difference between navigational problems of airborne vehicles and seaborne vessels. There is a great need for increased precision in maritime navigation and inertial guidance seems to fit all requirements. "Star tracking" telescopes of the Astroinertial system contract pre-selected stars and compare observed star lines with precomputed star lines on the ship's path. When differences exist, the system can give steering commands to correct for these disparities.

RADAR AUGMENTER developed by Lockheed Electronics may mark the end of the drone plane as Air Force targets. The device, which is placed inside a small rocket, magnifies the rocket's "electronic size" many times, making it appear as large as a plane on the radarscope. The target rockets in which the radar augmenters are mounted flies at supersonic speeds, equal to the current speeds of jet fighters and bombers. The augmenters consist of 2 antennas, one antenna receiving the signals sent out by the fighter plane and the second antenna to bounce it back to the fighter plane radarscope. In between is the amplifier which increases the signal. Without the augmenter, the radar cannot pick up the target.
U. S. ELECTRONIC FIRMS dealing abroad are finding increasing difficulty competing with local manufacturers. One of the pet subterfuges now employed is the specification "written around" foreign equipment. The way the specifications are written automatically excludes most American equipment. In Scandinavia, for instance, safety standards for equipment operating from electric power lines automatically exclude U. S. receivers, phonographs, and other electronic equipment. It is becoming so important that the U. S. be a party to international agreements, that the U. S. industry officials are urging that the U. S. Government underwrites the expenses of delegates attending these functions. What brought this to a head is the forthcoming meeting of the International Electro-Technical Commission in New Delhi, India. The traveling expenses for the delegates are so high that no small group of firms in the industries can foot the bill.

MANNED AIRCRAFT will account for about half of next year's $\$ 13$ billion budget for aerospace projects, predicts Dr. Herbert F. York, Director of the Office of Defense Research and Engineering.

NEW PERMANENT MAGNET material, an iso-thermally-treated alnico of higher cobalt content, developed by Thomas \& Skinner, Inc., Indianapolis, is said to represent a 30% improvement over present high coercive alnicos. The new product has coercive strength in excess of 1300 oersteds and energy levels above 4 million gauss-oersteds. The new material will allow smaller magnetron tubes and BWO tubes and opens the way for smaller diameter electric motors.

AN EXTRA BILLION DOLLARS annually will have to be spent over and above the presently allotted billion and a half, according to Courtney Johnson, Ass't Army Secretary for Logistics, in order to obtain U. S. arms and equipment. He points out a little more than 2% of the $\$ 2$ billion spent last year went for equipment produced in the arsenals.

EXPERIMENTAL FUEL CELL that converts unpurified air and ordinary hydrogen gas directly into electric power has been developed by Ionics, Inc. Keys to the process are: 1 . Combination of fuel electrode and Ionics, and membrane similar to those used in water desalting plants. 2. Platinum-coated electrode. 3. Bromine-bromide acid solution in cell to facilitate utilization to produce power.

AUTOMATED STEEL MILL

Working simulation of a GE-312 computer-controlled hot strip mill was demonstrated in the General Electric exhibit at the 1960 Iron G Steel Exposition in Cleveland. Operator actually rolls his own steel strip in this "island of automation."

HYREL ${ }^{\otimes}$ FB DEPOSITED CARBON RESISTORS

are hermetically sealed in ceramic jackets against moisture and vapor. .. safely protected against mechanical abuse. The Hyrel FB series is intended for applications in military, commercial and telephone equipment wherelong life under high humidity, small size, and stability of electrical characteristics are important.

WRITE FOR ENGINEERING BULLETIN 7010B SPRAGUE ELECTRIC COMPANY

233 marshall street - north adams, mass.

As We Go To Press

"LOOKING INTO THE MATTER"

Joan Shave "eyes" some of the 60 ultra-thin wires on "spinning wheel" used in making grids for RCA new nuvistor-RCA-6CW4.

ATET Plans To Launch Its Own Space Satellite

AT\&T plans to put the first station of a satellite relay system into space within a year to enable experimental transmission of telephone calls. television, data transmission and other types of commilinication between the U. S., the U. K. and continental Europe.

The company is now prepared to contract for the launching of the necessary satellites and to proceed with the construction of transmission and receiving stations on the ground. AT\&T's Long Lines Depart. siated in an application to the FCC.
The project would be financed and the facilities operated by AT\&T, in coordination with telephone administrations abroad-a similar practice for many years in handing overseas communications, by cable and radio.

In the development of this project. the company expects to work closely with NASA.

AT\&T also asked the FCC for rule changes which would allow the company to proceed, following satisfactory tests, with the initial stages of commercial service.
"We are planning a system that would make use of solar-powered satellites orbiting at an altitude of aboat 2200 miles," Henry T. Killingsworth. AT\&T vice president in charge of Long Lines, said.
"Electronic amplifiers aboard the space stations would catch signals

Army Courier Satellite Relays 1st Space Photo

The U. S. Army COURIER communication satellite has produced another scientific and practical first for the U. S.-the active radio relay" of "space-photos" from a ground station through the satellite and back.

The photograph was sent from the Army Signal Corps ground station at Ft. Monmouth, N. J., to the Army satellite and retransmitted back to earth virtually unchanged in quality.

The electronic relay of photographs, from the time they are inserted into a facsimile machine (which scans photographs and transmits them as electrical pictures) at the ground station, to the time a Polaroid type print is taken from the companion machine on the return, takes five minutes.

Army Signal engineers at the U. S. Army Signal R\&D Laboratory, Ft. Monmouth, developers of both the COURIER and the facsimile system, said the process does not involve a passive relay, that is, "bouncing" the photograph off the surface of the bird. The spacephoto is actively relayed through the electronic equipment in the satellite in a manner similar to radio-photos on the ground, except that it travels hundreds of miles through space to the satellite and back.
from earth. immediately boost and relay them on to ground stations in the United States, The United Kingdom and western Europe."

The proposed spheres would be four feet in diameter and weigh about 175 pounds. About 60 per cent of the surface would be covered by glass-coated solar cells.

Optical Maser Transmits Light Pulses Over 25 mi.

An optical maser (or "laser") has been used in preliminary experiments in long distance communications by scientists at Bell Telephone Labs. The device transmitted pulses of light between Murray Hill, N. J., and Holmdel, N. J., a distance of about twentyfive miles.

The device generates a beam of "coherent" light-light in which there is a definite phase relationship from point to point in all parts of the beam. The property

FLIGHT SIMULATOR

Viewing new 3 -axis Flight Simulator at Lockheed's Missile and Space Div. in Sunnydale are: (L) Leo K. Yoskowitz, Simulation Laboratory Staff Head; and (R) Roy I. Niewald, Manager, Dynamics Analysis and Simulation Dept.

The photographs are sent out from the Army ground station, received by COURIER, and then retransmitted back to the ground station, all during one pass while the satellite is in working range.

The successful result establishes the definite groundwork for satellite storage and relay of all types of facsimile messages - photographs, letters, maps, charts-between properly equipped ground stations throughout the world.
of coherence in radio waves makes it possible to control, direct and modulate them, so it may be possible to use coherent light in the same way.
(Continued on page 234)
PARAMETRIC UPCONVERTER

Production model of CE's new parametric up-converter is checked out by Dr. Harry Peppiatt. An incoming signal of 400 MC is converted up to $10,000 \mathrm{MC}$, and then down to an intermediate frequency, with low noise gain.

More News on Page 8

Electronic

SHORTS

- Lockheed Aircraft Corp. engineers have developed a new TV system to spy out trouble aboard rockets on their 18,000 -mile-an-hour flights. This system will allow engineers on the ground to see design errors and be better prepared to make corrections.
- An unmanned plane (drone) and a matching spy system (AN/USD-5) designed for field army level permit surveys of enemy territory, relaying photographic, radar, and infrared data to a field commander, day or night, under all weather conditions. The drone is pre-programmed for its flight and mission. After flight it parachutes into a selected open area.
- ONR has received a survey report on the status of digital computers, here and abroad. Isaac L. Auerbach, head of the International Federation of Information Processing Societies, under contract to the Navy, has revealed that China's rapid development of computer technology and automatic control has astounded the Russians. In Western Europe, 31 countries and institutes have developed 64 computer models.
- NASA will negotiate with Grumman Aircraft Engineering Corp. on a $\$ 23$-million contract (not including the experiments) to develop a $11 / 2$-ton, eight-sided Orbiting Astronomical Observatory (OAO). Astronomers will use telescopes in the OAO space platform to study cosmic phenomena.. X-rays, ultraviolet and infrared rays . . . obscured to ground observatories by the earth's atmosphere.
- Infrared Traffitrol Detector, designed for in-minutes installation and easy mobility copes with changing traffic patterns. Introduced by the Heiland Div. of Minneapolis-Honeywell Regulator Co., it offers wide flexibility to traffic engineers and law enforcement officials in studying and controlling traffic.
- New concept in detection of unannounced satellites utilizes high altitude (20 miles) balloon-borne optical systems for all-sky surveillance. Under development by Electro-Optical Systems, Inc., for the Air Force Geophysics Research Directorate (AFRCL) the device is essentially a bal-loon-borne telescope with a telemetering link to the ground. It is immune to electronic countermeasures and provides 360 -degree hemispherical coverage.
- ARDC has awarded GE a $\$ 392,000$ contract to cover applied research on information processing, evaluation and decision-making in complex operational situations. Interest will focus on Threat Evaluations and Action (TEAS), Combat Operations Control (COC) Systems and work performed by GE's Military Planning Operations (TEMPO) at Santa Barbara, Calif.
- FAA's Bureau of R\&D, upon recommendation of FAA's National Aviation Facilities Experimental Center, Atlantic City, N. J., has adopted the British Royal Aircraft Establishment (RAE) Visual Glide Indicator Landing Lights as a national standard for use at U. S, airports.

AEC has awarded General Instrument Corp. a contract for initial research leading to a first-of-its-kind Thermoelectric Generator, as part of its SNAP (Systems For Nuclear Auxiliary Power) Program. Generator will be designed to produce electricity directly from heat of fission products produced in nuclear reactors.

A new photoemissive material translates light into electrical signals permitting "electronic eyes" to operate for long periods at high temperatures (140 hours at $120^{\circ} \mathrm{C}$). Material was developed by Westinghouse's Electronic Tube Div, for BuShips as part of DOD's long-range supporting research program.

A new Thermoelectric Generator, without moving parts, developed by the Minnesota Mining \& Mfg. Co., is used in a gas-fired wall heater, converting heat energy into the electrical energy required to operate a fan circulating warm air throughout a room. The generator draws its heat energy directly from the heater's combustion chamber.

"ONTOS" MOBILE TANK

Equipped with four "eyes" (TV cameras) and: almost "human" (electro-mechanical arm) ONTOS was developed for the Navy for use in studying ocean depths as great as 20,000 feet. It is "shore-controlled" through a silverplated cable, five miles long. It was designed and produced at the Worcester, Mass. Electrical Cable Works of U. S. Steel and Wire Div. for a Scripps Institute of Oceanography Project.

Lack Of Inventor's Recognition Decried

At the formal opening of the U. S. Patent Offices Electrical Exhibit, Dr. D. L. Jaffe, President of Polarad Electronics Corp., referred to statistics showing that the rate of U. S. inventions per capita were quite mediocre, when compared to other leading industrial nations of the free world. A relatively low number of books is being produced per capita, he said, as opposed to a higher concentration of television sets and stations.

Dr. Jaffe stated that most great inventions were made by single individuals, rather than by large industrial research teams. Increased recognition for the individual and possibly even "eccentric" inventor were recommended as a step in the right direction.

Exports To Cuba Under Stringent Control

The Depart. of Commerce has taken action to ban shipments of most commodities to Cuba.

With the exception of unsubsidized foodstuffs, medicinals, and certain medical supplies, all other exports to Cuba, including unpublished technical data, will not be approved.

Consequently, most general licenses covering shipments to Cuba are revoked, except for those covering such shipments as plane or ship stores, baggage and personal effects, intransit shipments of foreign- origin goods, and certain types of gifts.

New HUGHES ${ }^{\text {nanosecond diodes switch } 50 \text { times }}$ faster than standard germanium diodes. faster response fastel recovory wuth giventer accuracy, you can solve ;wut problem with

HUGHES

ABCDUT D.V.S.T's

12: Do you know the important differences be tween DVSTs (Direct View Storage Tubes) and conventional CRTs (Cathode Ray Tubes)?
A: The obvious answer concerns construction differences in the DVST (flood gun, various front-end meshes, etc.). But, more important is the new range of applications available to DVST users. These new applications result from DVST's high brightness, controllable persistence, storage capability, inte grating properties - and the human factors compatibility which accompanies all of these advantages.

II: Are all DVSTs alike?

I: Where storage time and brightness characteristics are concerned, most DVSTs are fundamentally similar. Significant differences exist, however, in other important criteria
IP: What criteria should you look for in a DVST?
A: It depends, of course, on your particular application - but there are at least three important qualities you should check:

1. Half-tone rendition: When operating in the storage mode, DVSTs differ greatly in their ability to produce enough half-tones for photographic-quality detail.
2. Resolution: This important factor (together with half-tone rendition) is a measure of a DVST's ability to display a detailed, accurate picture. As a function of writing gun spot size, proper resolution depends on advanced developments in the field of high-performance electron guns.
3. Uniformity of writing, storage and erasure: DVSTs must present displays free from unwanted highlights-displays which will erase evenly and completely. Most important in influencing this capability is collimation (ability to arrange flood electrons in paraliel array and then to strike the target assembly at a 90° angle).

18: What does Hughes offer in the DVST line?
I: Everything you could ask for. (Warning! This is the commercial):

1. Outstanding half-ione rendition with DVSTs which store up to 7 shades of gray. (More than any competitive DVST!) They produce detail unmatched by any other storage tube.
2. Higher resolution resulting from advancements in electron gun design perfected by the famed Hughes Research Laboratories.
3. Exact collimation for uniformity of writing and erasure through the use of an advanced. Hughesdeveloped electronic lens system. This system features a precision machined metal lens integrated with the target assembly.
4. Brightness and storage time - more than competitive with any other DVST on the market today. 5. World's most complete line of DVSTs. Sizes: $3^{\prime \prime}$ $4^{\prime \prime}, 5^{\prime \prime}, 7^{\prime \prime}, 10^{\prime \prime}, 21^{\prime \prime}$; electrostatic or electromag netic deflection. Available with 1, 2 or 3 write guns.
[^0][^1]
Now for the first time - a single source of supply for CONTOUR* cable, connectors and custom engineered inter-connection and harness systems $\begin{gathered}\text { Hughes offers a complete } \\ \text { line of contin uous and }\end{gathered}$

 etched CONTOUR cable and connector components - off-the-shelf and custom engineered. They are designed to meet the most rigid performance requirements. Their use offers marked advantages over conventional methods in fabricating all types of wiring harnesses, interconnecting cables, moving joint connectors, and relay rack drawer connections. For technical assistance in the application of these components to your interionncting and wiring problems: for literature, price or delivery information, write, teletype (TWX INGL 4117) or call collect: HUGHES Industrial Systems Division, P.O. Box 90904, International Alrport Station, Los Angeles 45, Califorma. For export information, write: HUGHES International,
HUGHES

PRECISION
 INSTRUMENT PARTS and ASSOCIATED COMPONENTS

Gears-Shafts-Collars-Couplings-Differentials-Speed Reducers, etc. Over 12,000 Items-For Immediate Delivery!

A completely integrated system of STOCK precision parts and components-engineered for maximum flexibility of use-in all design, research and military development applications.

PRECISION BREADBOARD DEVELOPMENT KITS

40 Different Types Available - from stock! 1/8" $-3 / 16^{\prime \prime}-1 / 4^{\prime \prime}$ Shaft Sizes

Complete, low cost, general purpose kits of laboratory precision instrument parts and components, designed by practical engineers for all mechanical, electro-mechanical breadboards, prototype, test fixture and servo control system applications.

Specialized Kits of Spur Gears, Speed Reducers, Differentials and Couplings also available.

Detailed information and parts list available, upon request.

FREE PIIG same MASTER CATALOG \#21

Lists over 12,000 STOCK instrument, tool and electronic parts and components, with complete specifications, drawings and prices...PLUS, new PIC Technical Data Sheets.

Includes full information on all PIC Development Kits.

DICCDESIGN CORP.
 Subsidiary or BENRUS WATCH COMPANY, Inc.

NOW MINIATURE DISC CATHODES HAVE FAST WARMUP TOO

The vital difference between the miniature (. 090 in. OD shank) dise cathode you see above and the one you have been using is the triangular hole in the ceramic. The cathode shank touches the ceramic at only three points. Actually there is 60% less contact area than with round hole ceramics. So heat doesn't escape as fast. The cathode warms up faster. The TV picture comes on quicker.

Superior introduced the triangular hole . 490 -in.-dia. ceramics for miniature disc cathodes just a year ago.

Now this feature is being offered in miniature disc cathodes with . 365-in.-dia. ceramics, too.
The triangular hole grips the cathode shank firmly and locks it in place. Embosses above and below the ceramic prevent both rotation and longitudinal movement. A shadow groove in the ceramic is standard to protect against sublimation lcakage.
Write for dimensional drawings and samples. Superior Tube Company, 2502 Germantown Ave., Norristown, Pa.

NORRISTOWN, PA.

As We Go To Press

(Continued)

Scientists Say Too Many Intn'l Organizations

Prof. H. S. W. Massey of Britain refused to join a proposed International Academy of Astronautics at the llth Congress of the International Astronautical Federation (IAF), in Stockholm, Sweden. where more than 600 Western and Communist bloc scientists had convened, recently, He contended research was suffering because scientists were trotting from one international conference to another. The Russians, too, refused to join indicating there were already enough international bodies for cooperation in solving the problems of exploring outer space. They also refused to join a second international or-ganization-an Institute of Space Law-feeling that this problem should be a function of the U.N. As for the new Academy, Prof. L. I. Swlov, President of the IAF, indicated that cooperation could be carried on through the Committee on Space Research set up by the International Council of Scientific Unions with its headquarters in Paris.

COMMUNICATIONS CENTRAL

New 12-state Automatic Communications System at the Miami, Fla. hdqts. of the Mackle Company-General Development Corp. Private line teletypewriter net puts headquarters and nine development sites in direct contact with offices in the Eastern section of the nation.

New 'Length' Standard

A wavelength of light replaces the standard meter bar as the new standard of length. The action was taken by the 11th General Conference on Weights and Measures meeting in Paris. Dr. Allen V. Astin, National Bureau of Standards, headed the American delegation to the conference.
The new definition of the meter is $1,650,763.73$ wavelengths of the orange-red line of krypton 86.

10 Million Refund To DOD on Missile Master

The Martin Company of Baltimore, awarded a $\$ 95$ million contract in 1955, to design, develop, manufacture and put into operation Missile Master Systems, will refund $\$ 10$ million to the Army. Savings in manufacture and the difference between actual and estimated costs account for this refund. The Missile Master, now being installed throughout the U. S., is a computing machine designed to coordinate the launching of air defense missiles and aircraft in event of an enemy attack.

Component Shipments Continue 1959 Increase

Shipments of electronic components by U. S. manufacturers reached another all-time high during the first quarter 1960, the Electronics Div., BDSA, U. S. Depart. of Commerce, has reported.
Output of electron tubes, semiconductor devices, and other major electronic components during the first 3 munths of 1960 increased 8% over the preceding six-month rate and more than 20% above the first half 1959 rate. The increase was not general. Shipments of quartz crystals, transformers, and transistors were up sharply, whereas output of TV picture tubes, which is generally subject to seasonal declines during the first quarter. and power and special purpose tubes declined slightly during the first quarter 1960.

Electronic Banking

Depositor's bank statements are now being prepared electronically by the First National Bank of Sim Jose (Calif.). Center of the system is a Burroughs " 220 " Data Processing System. Check and deposit information is recorded on punched paper tapes which, along with stop payment and other information on punched cards, are transformed into magnetic tape. The information is stored in memory cores. New tapes are made daily including a statement tape which records each individual transaction in a depositors account during a month's time. The tape is used by the computer in conjunction with 5000 different instructions to print the depositor's statement.

Examining Futuronics Exposition Floor Plans are: (l to r), E. C. Towl, President of Crumman Aircraft Engineering Corp., E. H. Swanson, President of Instrument For Industry, Inc., and J. J. Dempsey, President of the Long Island Electronics Mfg's Council, which sponsors the Exposition. Mr. Dempsey is also General Manager of the Mechatrol Div, of Servomechanisms, Inc. and Vice President of the Parent Company.

L. I. Futuronics Show Slated Nov. 30-Dec. 2

The Third Futuronics Exposition. sponsored by the Long Island Electronics Manufacturers Council (composed of $6 \overline{3}$ member companies representing most of the areats three-quarter-billion dollar electronic industry). will be held from Nov. 30) to Dec. 2 at the Roosevelt Raceway Exhibit IIall in Westbury, N. Y. Theme for the technical meetings will be "Forecasts in Electronics" with different sessions covering, "Systems Concepts," "Component Developments," and "U. S. Government Needs." ('hairman of the show committee is Franklin Meyer, President of Tempo Instriment, Inc. Joseph Margolin of Dorne \& Margolin, Inc., is chairman of the technical paper committee. Over 100 companies will exhibit during the three-day show.

FLOATING POWER STATION

YFP-10, a converted dry cargo ship, now supplies power to the first BMEWS Installation. A lagoon, formed by earth-filled caissons, completely surrounds the YFP-10 to protect it from violent seas and 7.ft. tides. Burns and Roe, Inc., N. Y. has been awarded an RCA contract to operate and maintain the station.

More News on Page 24

PULSE-FORMING NETWORKS

MEGAWATTS

... and everything in between!

\square Whenitcomesto pulsecapacitors and pulse-forming networks, many complexities in parameters and design factors must be considered. These specialized units must be designed and manufactured by a specialized organization. And because Sprague maintains a highlytechnical special engineering section devoted exclusively to pulse capacitors and networks, it has been, from the very beginning, a major supplier of these complex units for radar equipment (ground, marine, aircraft, missile), tube testing, and similar pulse circuit applications.

\square
This special engineering section performs four important functions: One group designs custom units in accordance with required parameters. Another group builds pulse capacitors and networks to these precise specifications. In another area, a group of speciallytrained field engineers provides application assistance wherever needed. And yet another independent group

works tou'ard the future developing new materials, new design concepts, and new techniques for manufacture. \square This concentration on pulse capacitors and pulseforming networks has enabled Sprague to introduce product improvements such as heliarc sealing of cases, rugged alumina bushing assemblies, Fabmika ${ }^{\text {® }}$ dielectric, and improved hermetic sealing of closures.
\square Save time and money by working with Sprague from the start. Application engineering services are available to you without obligation.
——Write for Engineering Bulletin No. 10,001 to Technical Literature Section, Sprague Electric Co., 233 Marshall Street, North Adams, Massachusetts.

STRMICD

RANK FIRST IN
PRECISION TEMPERATURE CONTROL

In today's military and commercial projects, you can't afford to overlook any one of these important areas: Reliability, Size, Availability, Economy.

And because Stevens is in production now on the largest number of different types and styles of bimetal thermostats, all these advantages are yours automatically when you specify Stemco thermostats.

1 st in Reliability. Proven designs, latest production techniques, most stringent inspection procedures.

1st in Size. Stemco thermostats score in compactness and lightness without sacrificing performance.

1 st in Availability. Tooling for most types is in existence. Flexibility of design cuts lead time on other types.

1 st in Economy. Mass production of many standard Stemco types with hundreds of terminal arrangements and mounting brackets cuts your costs.
*Refer to Guide 400 O for U.L. and C.S.A. approved ratings.
A. 891 A

TYPE A* semi-enclosed. Bimetal disc type snap action thermostats; give fast response to temperature changes. Can be made to open on rise or close on rise. Single-throw with double make and break contacts. Operation from -20 to $300^{\circ} \mathrm{F}$. Lower or higher temperatures on special order. Average non-inductive rating $13.3 \mathrm{amps}, 120 \mathrm{VAC} ; 4 \mathrm{amps}, 230 \mathrm{VAC}$
and 28 VDC Various and 28 VDC. Various mountings and terminals available. Bulletin 3000 .

TYPE A hermetically sealed. Electrically similar to semi-enclosed Type A. Various mountings, including brackets, available. Bulletin 3000 .

TYPE MX hermetically sealed. Snap acting bimetal disc type units to open on temperature rise. 2 to $6^{\circ} \mathrm{F}$ differentials as standard. 1 to $4^{\circ} \mathrm{F}$ differentials availab!e on special order. Depending on duty cycle, normal rating 3 amps, 115 VAC and 28 VDC for 250,000 cycles. Various terminals, mountings and brackets available. Bulletin 6100 .

TYPE MX semi-enclosed. Construction and rating similar to MX hernetically sealed type. Bulletin 6100.

TYPE M hermetically sealed. Bimetal disc type, snap act ing thermostats. Also available in semi-enclosed. Operation from -20 to $300^{\circ} \mathrm{F}$. Lower and higher temperatures available on special orcier. Depending on application, rated non-inductive $10 \mathrm{amps}, 120 \mathrm{VAC} ; 3$ amps, 28 VDC. Various terminals, wire leads and brackets avaiiable. Bulletin 6000 .

TYPE C hermetically sealed. Also semi-enclosed styles. Small, positive acting with electrically independent bimetal strip for operation from -10 to $300^{\circ} \mathrm{F}$. Rated at approximately 3 amps , depending on application. Hermetically sealed type can be furnished as double thermostat "alarm" type. Various terminals and mountings. Bulletin 5000 .

THERMOSTATS

Oct. 31-Nov. 1-2: 13th Annual Conf. on Electrical Techniques in Medicine and Biology, IRE, AIEE, ISA. PGBME and Joint Exec. Committee in Medicine \& Biology; Sher-aton-Park Hotel, Washington, D. C.
Oct. 31-Nor. 1-2: Radio Fall Deeting. IRE, EIA; Syracuse Hotel. Syracuse, N. Y.
Nov. 1-2: Ith Annual Conf. on Aeronautical Material Reliability, Rureau of Weapons Industry Advisory Roard on Reliability \& Operation Design Requirements: Shoreham Hotel, Washington, D. (
Nov. 1-3: Central States Show, The Material Handling Institute, Inc.; Kentucky Fail \& Exposition ("Onter, Louisville, Ky.
Nov. 1-4: Business Equip. Expos., OLMI: Memorial Sports Arena. Los Angeles, Calif.
Nov. 3-1: 9th Annual Instramentation Conf., School of Eng'g, Louisiana Polytechnic Inst.; Campus, Ruston, La.
Nov. 4-5: Communications Symp., IRE; Queen Elizabeth Hotel, Montreal, Canada
Nov. 7-11: Education \& Nuclear lin-ergy-Region Symp.; Argentina
Nov. 8-9: Symp. on Space Instrumentation, IRE, Wash., D. C.
Nov. 9-11: 2nd Industry Computer Application Conf., AIEE; Chase Hotel, St. Louis, Mo.
Nov. 11-12: Aircraft \& Missile Div. Conf., American Soc. for Quality Control: Lord Baltimore Hotel, Baltimore, Md.
Nov. 13-18: 2nd Eng'g Materials \& Design Exhib.; Earls Court, London, England
Nos. 14-15: Fall Conf., Nat'l Issor. of Broadeasters; Statler-llilton Hotel, Washington, D. C.
Nov. 14-16: Meeting, Nat'l l'aperboard Assoc.; Waldorf-Astoria Hotel, New York, N. Y.
Nov. 14-17: 6th Annual Conf. on Magnetism \& Magnetic Materials: AIEE, AIP, ONR, IRE, PGM'TT. AIME; New Yorker Hotel, New York, N. Y.
Nov. 14-18: Symp. on Nuclear Ship I'ropulsion (Safety), Int'l Atomic Fnergy Agency; Taurmina, Sicily, ltaly
Nov. 14-18: Western Tool Show and Semi-annual Conv., ASTE; Menorial Sports Arena, Los Angeles, Calif.
Nov, 14-18: Annual Meeting, Nat'l Electrical Mfrs. Assoc.; Traymore Hotel, Atlantic City, N. J.

'CALL FOR PAPERS'

1961 Nat'l Symp. of Prof. (iroup on Microwave Theory and Techniques, lleE, May 15-17, 1961, Sheraton Park Hotel, Wash., 1. (O. Original papers in all fields of Microwave Research, Development and Application. 500 -word summaries by Dec. 12, 1960, to: Gustave Shapiro. Chairman, Tech. Prog. Comm., Eng's Electronios Sec., Nat'l Bureau of Standards, Wash. 25, D. C.
The Electrochemical society, Inc. Apr. 30, May 1-1, 1961, Claypool Hotel, Indianapolis, Ind.; Abstracts, not to exceed 75 words in length. Submit in triplicate to Society IIlqs. not later than Jan. 2, 1961. Indicate Symp. and author's name. Send complete manuscripts to Mgt. Editor of Journal, same address.
1961 Winter Cons. on Military Electronies, IRE, Fell. 1-3, 1961; Los Angeles, Calif. 100-word abstracts, 500-word summaries. Submit to: 1)r. J. Myers, Hoffman Electronics ('orp., Military Products Div., 3717 s. Grand Ave., Los Angeles 7, Calif. by 15 Nov., 1960 for perusal of Tech. P'rog. Comm.
American Socicty for Testing Materials Annual Meeting, ASTM, June 25-30, 1961, Chalfonte-Haddon Hall, Atlantic City, N. J. Deadline for papers is January, 1961. Contact Society Hqs., 1916 liace St., Phila. 3, Pa.
39th Annual Conv. of Nat'l Assoc. of Broadeasters \& Broadcast Engineering Conf., May 7-11, 1961, Shoreham \& Sheraton Park Hotels, Wash., D. C. Deadline for submission of topics for engineering papers is 15 Dec. 1960. Contact A. Prose Walker, Mgr. of Engineering, NAB, 1771 N St. N. W. Wash., D. C. for more info.

American Mathematical Soc., Jan. 2427, 1961, Wash., D. C. Deadline date for scientific papers and exhibits: Iec. 9, 1960; Feb. 22, 1961, Yeshiva U'niv., N .Y. Deadline date: Jan. 10, 1961; Aug., 1961, Stillwater, Okla. Deadline date: Jan. 10, 1961; Nov. 17-18. Milwankee, Wisc. Deadline date: Jan. 10, 1961. Contact: Mrs. Robert Drew-Bear, Head, Special Project Dept., AMS, 190 Hope St., Providence, 6, R. I.
Annual Soc. of Vacuum Coaters Tech. Symp., Mar 1-2, 1961, Conrad Hilton Hotel, Chicago, Ill. Papers deadline: Jan. 1, 1961. Contact: Thomas J. LaBounty, Midwest Tech. Services, 5512 South Lyman, Downers Grove, 111.
(Contimucd on page 20)

Nov. 15: Electronic Parts \& Equip. Mirs. Mecting, EP, EMI; Chicago, Ill.
Nov. 15-16: Symp. on Eng'g Applications of Probability \& Random Function Theory, IRE, PGIT; Purdue Univ., Lafayette, lnd.
Nov. 15-16: 12th Annual MAECON Conv. (Exhibits), IRE; Hotel Muehlebach, Kansas City, Mo.
Nov. 15-16: 4th Annual Conf., PG on Product Eng'g \& Production, IRE. PGPT NEREM, PGPEP; Sheraton Plaza \& Commonwealth Armory, Boston, Mass.
Nov. 15-17: Northeast Electronics Research \& Eng'g Meeting (NEREM), IRE (Region 1;) Commonwealth Armory \& SheratonPlaza Hotel, Boston, Mass.
Nov. 18: Reg. 'Tech. Conf., Soc. of Plastics Engineers, Inc.: Essex House, Newark, N. J.
Nov. 20-21: Conf. on Electro-Optical \& Radiation Devices, PGED, AIEE; Stanford Research Institute, Menlo Park, Calif.
Nov. 20-22: Fall Meeting, Fluid Controls Inst., Inc.; Drake Hotel, Chicago, Ill.
Nov. 21: Monthly Meeting, Purchasing Agents of the Radio, TV and Electronics Industry; Gov. Clinton Hotel, New York, N. Y
Nov. 21-22: F'all Conv., Nat’l Assoc. of Broadcasters; Edgewater Beach Hotel, Chicago, Ill.
Nov. 21-23: Annual Meeting, Div. of Fluid Dynamics, American Physical Soc.; Baltimore, Md.
Nov. 21-25: 2nd Industrial Photographic \& Television Exhib.; Royal Albert Hall, London, England
Nov. 24-25: Meeting of the American Physical Soc., APS; C'hicago, Ill.
Nov. 27-IDec. 2: Annual Meeting, ASME; Statler-Hilton Hotel, New York, N. Y.
Nov. 28-29: Fall Conf., Nat'l Assoc. of Broadcasters; Biltmore Hotel, New York, N. Y.
Nov. 28-Dec. 2: 24th Nat'l Expos. of Power \& Mechanical Eng'g, ASME; New York Coliseum, New York, N. Y.

Nov. 30-Dec. 2: 18th Electric Furnace Conf., AIME; Morrison Hotel, Chicago, Ill.
Nov. 30-1)ec. 2: Symp. on Steels in Reactor I'ressure Circuits, Iron \& Steel Inst.; London, England
Nov. 30-Dec. 2: 3rd Annual Futuronics Expos., L. I. Electronics Mfrs. Council: Roosevelt Raceway Exhibit Hall, Westbury, L. I., N. Y.

OTHERS MAY HAVE PROMISED IT . . . STILL OTHERS MIGHT HAVE HINTED THEY'RE ON THE VERGE OF GETTING IT. . . BUT ONLY FAIRCHILD HAS IT!...THE INDUSTRY'S FIRST 3S-G

Abstract

The Fairchild 3S-G combines the best overall characteristics of both strain gauge and pot-type transducers, has none of their inadequacies. It has a semiconductor strain-gauge sensor. It possesses extraordinary accuracy and environmental capabilities. It produces a 5 -volt d-c output signal that eliminates the need for impedance-matching or signal amplification. In its utter simplicity (only two mechanically-functioning parts) it is extremely reliable. It also incorporates a resistive calibration device. The Fairchild $\mathbf{3 S}$-G is responsive to both static and high-frequency dynamic pressures. It is fully compatible with existing military ground telemetry and industrial systems. It is competitively priced, measures all media and is insensitive to case distortions.

The Fairchild 3 S-G is only $3^{\prime \prime}$ long, $11 / \mathrm{s}^{\prime \prime}$ diam., and weighs only 5 ounces. It meets and exceeds MIL-E-5272B. Pressure ranges from 0-100 to $0-10,000$ psig full scale now available, below 100 psig will be available soon. Better than $\pm 0.1 \%$ linearity and 0.1% hysteresis over temperature range of -65 to $+250^{\circ} \mathrm{F}$. Both zero and full range sensitivity change less than 0.5% over any $100^{\circ} \mathrm{F}$ excursion within the rated temp. range. It has infinite resolution.

Fairchild components . . . built and tested beyond the specs for Reliability in Performance.
$\sqrt{\square} / / / R C / / / / \angle L D \begin{aligned} & \text { CONTROLS } \\ & \text { CORPORATION }\end{aligned}$
225 Pork Ave., Hicksville, L. I., N. Y. - 6111 E. Washingtan Blvd, Las Angeles, Cal. A Subsidiary of Falrchild Camera and Instrument Corporation

frw lon will you keep buying obsolete counters

when CMC counters with solid state reliability cost so little more?

Announcing the CMC 728A

a Solid state 20 mC universal counter-timer

Introduction of the CMC 728A marks another frequency step-up from the company that brought you the first transistorized universal counter-timers. CMC, the leader in truly advanced counting, timing, and frequency measuring equipment offers $100 \mathrm{kc}, 250 \mathrm{kc}, 1 \mathrm{mc}$, 10 mc and now 20 mc all solid state instrumentation.

	Most Popular 10 me Vacuum Tube Counter	CMC Solid State 10 mc Counter
Base Price	\$2,300	\$2,750
Printer Output	75	n / c
Time Interval Section	175	n / c
Total	\$2,550	\$2,750
Weight	118 lbs .	27 lbs.
Size	$211 / \mathrm{s}^{\prime \prime} \mathrm{H} \times 20^{\prime \prime} \mathrm{W} \times 231 / 2^{\prime \prime} \mathrm{D}$	$7^{\prime \prime} \mathrm{H} \times 17^{\prime \prime} \mathrm{W} \times 13^{\prime \prime} \mathrm{D}$
Power Requirements	600 watts	46 watts
Accuracy	± 1 count \pm crystal stability	± 1 count \pm crystal stability
Remote Programming	not available	Standard option
Warranty	1 year	2 years
Time Interval Measurements	$1 \mu \mathrm{sec}$ to $10^{7} \mathrm{sec}$ in $1 \mu \mathrm{sec}$ incremerts	$0.1 \mu \mathrm{sec}$ to $10^{7} \mathrm{sec}$ in $0.1 \mu \mathrm{sec}$ increments
Period Measurement	0 cps to 10 kc	0 cps to 3 mc
Gate Times	$\begin{aligned} & 0.001,0.01,0.1 \\ & 1.0 \& 10 \mathrm{sec} \end{aligned}$	0.000001 to 10 sec in decade steps
Time Base	10 to 1 multivibrator type	decade dividers no adjustment

Can You Afford To Settle For Less? If you are considering any counter, will your engineering judgement and sense of real economy dictate purchase of old fashioned equipment? Stop and look at the merits of solid state counters. Did you know that the reliability of all CMC solid state counters is backed with a 2 year warranty double the guarantee of tube counters? Did you know CMC's solid state 10 mc universal counter timer only costs $\$ 200$ more than comparable vacuum tube counters? That's the beginning. Compare the rest of these specifications.

Compare the 20 mc Solid State Universal Counter-

 Timer-We'd like to. but frankly, there aren't any comparable vacuum tube counters. This might lead the discerning engineer to think that at 10 mc , vacuum tubes are driven "hard", right to their capacity. And he'd be right.More Information - For complete technical information on high reliability solid state counting instrumentation, call your nearby CMC engineering representative, offices in 33 cities throughout the U.S. and Canada, or write directly to Dept. 44.

Computer
Measurements Co.
12970 Bradley Avenue, Syimar, California Phone: EMpire 7-2161

PHILOO Offers the Industry's Broadest Line of Switching Transistors

PHILCO
SNITCHING TRANSISTORS

Each Designed to Meet Your Specific Requirements

Suitching eircuit designers are constantly faced with the problem of finding the transistor that best meets their specific requirements . . . in speed, power and electrical

NEW! Transistor Guide

 for Switching Circuit DesignersTo help you find the right transistor for your switching requirements, this brand new guide will be a valuable aid. It contains a complete selector chart, covering 42 different Philco switching transistors .. descriptions of matjor types . . their important parancters . . helpful application information. A copy of this 8 -pare guide, plus a mice schedule, is yours for the asking. Write Dept. EIII60. characteristics. You will tind precisely the transistor you need in the Philco line. . . For it is the broadest line of switching transistors in the entire industry. Intike other manufacturers who offer limited lines of gemoral-purpose switching transistors, Phileo proluces transistors that are specially designed to meet specilic applications. Precise control of all parameters, marle possible by Philco's exclusive Precision-Etch* process, permits extremely fight specifications with absolute miformity. Don't settle for a transistor that is "almost right" when you can get one that is precisely right from Philco . . at the same price!
"-rathemark Philto corp.

GOVERNMENT ELECTRONIC CONTRACT AWARDS

This list classifies and gives the value of electranic equipment selected from contracts awarded by government ogencies in September. 1960.

Amplifiers	94,176
Amplifiers, intercom	74,317
Analyzers, circuit	60,582
Anodes, cathodic protection	63,401
Antennas	688,601
Battery assemblies	2,382,626
Batteries, dry	230,772
Batteries, storage	325,080
Bridges, dc	39,550
Cable	47,167
Cable assemblies	122,295
Cable, telephone	421,992
Cameras, recording	51,840
Channel selectors	41,870
ommunications equid	375,5

Camputers
Computers, digital
Control system, flight
Converters
Correlators, video radar
Couplers, antenna
Diodes, semiconductor
Electronic equipment, general
Gyroscopes
Infrared equipment
Meters, volt
Microscope, electron
Mounts, erystal
Organs, electronic
Power supplies
Printers, page
Radars
Radiosondes
Radomes
Readers, film
Receivers
83.195

117,096
332,999
234,005
69,105
136,253
245,000
236,955
667,912
284,488
111,859
29,840
30,019
52,776
80,000
158,117
$1,158,117$
$6,675,717$
145, 160
26,674
40,197
100,000
Recorders
Sets, telephone
Simulators, radar signal
Standards, frequency
Systems, data handling
Systems, surveillance, drones
Systems, telemetry
Systems, wave analysis
Tape, electronic
Test equipment
Test sets, radar
Transducers
Transmitters
Transponders
Tubes, electron
Tubes, klystron
Tubes, thyratron
Tubes, traveling wave
Tuning units, r-f
Waveguide components
Wire

179,240
33,247
541,498
1,146,476
78,000
8,486,025
61,061
63,100
31,102
50,909
160,000
99,225
49.400

31,486
149,054
31,350
53,677
30,000
40,543
44,888
50,400

UNDERGRADUATE ENGINEERING

 ENROLLMENTFall Enrollment | Percentage |
| :---: |
| change from |
| previous year |

1959	242,992	-5.4
1958	256,779	-4.5
1957	268,761	+7.0
1956	251,121	+13.4
1955	221,448	+14.3
1954	193,692	+12.8
1953	171,725	+10.0
1952	156,080	+6.9
1951	145,997	-9.7
1950	161,592	-20.0
1949	201,927	-

_-"Engineering Enrollments \& Degrees 1959," U.S. Dept. of Health. Education, and Wellore.

estimates of U. S. RAW MAGNETIC TAPE SALES

The following tabulation shows the median average of 22 "completed" questionnaires. Many more "partially completed" questionnaires were received but discarded. Several other questionnaires were eliminated because they rephrased previously published trade articles and as such did not necessarily reflect the individual company's estimate.
Estimates of 1959 sales volume at manufacturers' selling prices fluctuated from a

Tape
Type
Audio
Video $\quad 1,850,000 \quad 5 \%$
Computer
Instrument
low of $\$ 18$ million to a high of $\$ 50$ million. Manufacturers' estimates were far more optimistic than users' estimates but both groups indicate at least a doubling of sales by 1965.
Video tape sales estimates were supplied by several firms not active in video tape manufacture, distribution or use. For this reason, the video tape estimates may be suspected.

Percent	Growth	
1960	1965	1970
120%	190%	240%
130%	300%	500%
133%	200%	290%
128%	200%	300%
Copitol	Records	Distribut?

ESTIMATED ELECTRONIC COMPONENT SHIPMENTS—FIRST QUARTER OF 1960

Category	Quantity (in thousands of units)			Value (in millions of dollars)		
	Total	Military	Nonmilitary	Total	Military	Nonmilitary
Capacitors	328,585	35,601	292,984	65.5	20.3	45.2
Complex Components ${ }^{\text {a }}$	10,093	138	9,955	5.2	2.7	2.5
Connectors.	27,612	17,012	10,600	43.1	28.4	14.7
Quartz Crystals	1,646	629	1,017	4.8	1.4	3.4
Relays (electronic applications)	10,377	3,212	7,165	48.8	22.5	26.3
Resistors.	532,771	59,892	472,879	61.2	27.6	33.6
Power and Special Purpose Tubes	3,211.3	745.2	2,466.1	62.5	40.2	22.3
Receiving Tubes	106,962	6,570	100,392	95.2	14.6	80.6
TV Picture Tubes	3,070	10-18	3,070	61.9		61.9
Semiconductor Devices	63,507	19,648	43,859	129.0	63.4	65.6
Transformers \& Reactors	10,294	1,684	8,610	46.4	19.9	26.5

from components which were fabricated during the manufacturing process.

SEMICONDUCTOR SILICON

Hyper-pure silicon from Dow Corning Corp., Midiand, Mich., is used for diodes, transistors, solar cells, etc. These are $5 / 8$ and 1 in dia, rods. Navan Products, Inc., El Segundo, Cal. makes the wheel.

SEMICONDUCTOR DICER

Diamond cutting "wheel" for dicing semiconductor matcrials concentrates on the cutting ring not the core. It uses special solid arbor.

RADIATION DETECTOR
Hughes Aircraft Co.'s radiation detectors will measure radiation penetrating simulated space cabins in future spaceshots.

Snapshots

ARMY BOTTLENECK SMASHED

RCA's Data Processing System is credited with "smashing" critical bottleneck in the flow of Ordnance Vehicular spare parts. Col. D. W. Hiester, program Coordinator for the Army Ordnance Tank and Automotive Command, points out shipping destination to operator Theresa Uriarte at computer console.

PROBE VAN ALLEN BELT
NERV (nuclear emulsion recovery vehicle) used by NASA to research Van Allen Radiation Belt is checked out by CE's MSVD, Phila.

NEW SOLAR CELL
New solar cell developed by U.S. Army's Signal R \& D Labs, Ft. Monmouth, will work even under intense atomic radiation.

BLUE SCOUT JUNIOR
Heat shields fall clear of final stage in Air Force's 609A 4-stage rocket. Ford Mo tor's Aeronutronic Div. is system engineer

MAYAN ART?
Cherri Vallance of Electro Etch Circuits, Inc., Los Angeles. displays large printed circuit board marutactured by the company.

of the Electronic Industries

THREE DISHES
Secretaries, Janet Pulichine and Judy Rooney, are sitting in a 40 -ft parabolic "dish" antenna at International Telephone and Telegraph

HIGH STRENGTH FORMICA

save more with parts that do more

THERMOSETTING MOLDED PLASTIC PARTS

Save on Sub-assembly. Here's how: by combining several properties and functions, one Formica molded part frequently replaces two or three made of ordinary materials. And by molding laminated and macerated plastic materials together, with one or more metal inserts, the Formica part becomes a component that's far more useful than conventional parts.
Save on Material. Formica's unique strength/weight ratio helps you improve product performance and save on direct material costs, too. It's strong as steel, has excellent impact and flexural strength, plus good electrical insulating and corrosion resisting properties.

It's lighter in weight and costs about the same per pound, so you can buy several Formica molded parts for less than one comparable metal part.
Save on Replacement, too, because lighter weight means reduced wear, longer part life. And remember, molding uniformity eliminates costly machining.
Get complete information on how Formica molded parts are tailor-made to give you exactly the right formulation of properties, functions, size, shape and finish. Use coupon below to request your free copy of bulletin 909.

FORMICA HIGH IMPACT THERMOSETTING PLASTIC PARTS COMPRESSION AND TRANSFER MOLDED

PROPERTIES	RANGE
Izod impact, ft. lbs. per in of notch	0.65 to 12.0
Dielectric strength, Is" perpendicular, short time, vpm	210 to 750
Flexural strength, flatwise, psi	8,000 to 25,000
Compressive strength, psi	18,000 to 35,000
Moisture absorption, 2" diameter disc (ASTM D570-57), percent	0.15 to 2.2
Chemical resistance	Resistant to mild solutions of acids and alkalies
Finishes	Sanded to mirror-smooth

BASIC FORMS-Laminated, macerated or laminatedmacerated parts, compression or transfer molded, of paper, glass, canvas and asbestos cloth fillers, impregnated with phenolic, melamine, silicone, D.A.P. and epoxy resins.

APPLICATIONS-For electrical, mechanical and chemical applications in a wide range of industries including textiles, aviation, missiles, electrical/electronic, appliances, automotive, chemical, machinery, materials handling and many others.

BUILD-UP FOR SAVINGS-Formica molds laminated and macerated forms with metal tube insert to produce another do-more, save-more part. This light bulb frosting nozzle features chemical and moisture resistant properties for superior acid-carrying performance. Combining nut, thread and metal tube insert into one unit saves costly assembly and machining time.

FORMICA CORPORATION

4536 M Spring Grove Avenue
Cincinnati 32 , Ohio
\square Send free copy of Molded Products Bulletin 909.

NAME

COMPANY \qquad TITLE

ADDRESS

CITY \qquad ZONE \qquad STATE

El's International News

EUROPE

\$2,500,000 Loan For Syrian Microwave

Damascus-The Syrian region of the United Arab Republic is getting a loan from the Development Loan Fund for long-distance telephone and telegraph system with capacity for future expansion. Loan was made to the I'osts, Telegraphs, and Telephones Administration of the Syrian Region, Hidjaz St., Damascus. All procurement under the loan will be from the
U. S. U. S.

A microwave system will link 8 stations with terminals at Damascus, Aleppo, and Latakia. Radio equipment will have an ultimate capacity for 600 telephone channels, but the initial installation will be about 120 channels at the Damascus and Aleppo terminals.

Equipment will include: microwave multiplex and supervisory equipment; towers, antennas; waveguide; and power plant; installation material; text equipment; and spares; and engineering and installation services. Supplier will be responsible for supervision of equipment installation-The PTT staff is doing the engineering with assistance from equipment suppliers.

New French Subsidiary

Servance (Haute-Saône)-Two French firms and Robertshaw-Fulton Controls Co., Richnond Va., have formed a new subsidiary to manufacture automatic controls for home appliances in France. The new company will be known as Rebertshaw-Madec, S. A. Two French firms are Madec and Mater. Headquarters will be at Servance.

Dutch Subsidiary Formed

Stanford, Conn. - Branson Instruments, Inc. manufacturers of ultrasonic cleaning and test equipment
have formed a wholly-owned subsidiary in the Netherlands-Branson Europa N. V. Initially components and complete units will be imported from the U. S., but as dependable European sources are located, they will be used.
General Manager of the new subsidiary is R. P. Ruffles. The company will occupy space at Industrieweg 14, Loosdrecht (about a half-hour's drive from Amsterdam).

Pool Resources

Waltham, Mass.- Raytheon Co., pime contractor in the U. S. for the Hawk surface to air missile, has approved formation of the Societe Europeanne de Teleguidage (SETEL). The company was formed to coordinate industrial resoures in Europe for producing Hawk.

The five companies are: ThomsonHouston, France; Finmeccanica, Italy; Telefunken. West Germany; Atelier's de Construction Electrique de Charleroi, Belgium; and Philips, Netherlands. SETEL will acquire certain patent and "know-how" rights from Raytheon. Hawk is now operational in the U. S.

Call For Bids

Washington-A $\$ 15: 5,000$ project in Denmark is open to hids by U. S. Firms. Project calls for supply of radio and carrier equipment. Bid deadline is Dec. 29. Contact: For suarest Telegrafforualtming, Borgmester Jensens Alleia, Copenhagenor: Bureau of Foreign Commerce, U. S. Dept. of Comm., Washington 25, D. C.

Test European Market

Berkeley Heights, N. J.-Nytronics, Inc. is testing the marketability in several European locations of commercial components for television, communications and other electronic (Continued on page 32)

PACKAGESORTING SYSTEM

Mail order execs from West Germany and Holland tour compu-ter-linked packagesorting conveyor system installed by Speaker Sortation System, Inc. R. L. Speaker, President of the firm (hand on tray) demonstrates system.

SOUTH AMERICA

Set up Export Division

Syosset, L. I.-U. S. Transistor Corp. has set up a foreign sales dept. under P. Williams. Electronic Manufacturors Export Co., Plainview, L. I. has been appointed Latin American sales representative for the Co.'s TO-101 transistor kit.

Form Mexican Corporation

Norwalk, Conn. - Burndy Corp. and Ingeneria Electrica Industrial, S. A. have formed a jointly owned Mexican Corp., Burndy I. E. I. de Mexico, S. A. The agreement provides for licensed manufacture and sale of Burndy electrical connectors throughout Mexico and Latin America. Enrique M. Gonzales, Dir. Gen. of I. E. I. will be Dir. (ien. of Burndy I. E. I. Burndy appointed directors are: Eric E. DeMarsh; George M. Szabad; and Stanley M. Loomis.

RECEIVES AWARD

William P. Lear, Lear, Inc., (cntr) receives "Great Silver Medal" of Paris from Gen. Martial Valin of the Superior Council of National and Air Defense (L). Jullen Tardlieu Ores. of French Municipal Council presented award for Mr. Lear's contribution to aircraft safety (an autopilot used on the Caravelle airliner).

FAR EAST

Australian Plant Starts Production

Finsbury, Australia-Production has begun at Texas Instruments' Incorporated Australian subsidiary, Australmac Limited. The plant, at Finsbury, is producing metal strip for Australia's electronics and telephone cable industry. Later, production will be diversified to include other solid and clad metal mill products.

New Jap Licensee

Tokyo-Tokyo Electro Acoustic Co. (TEAC) has been licensed by American Concertone, Inc. to manufacture most models of their commercial tape recorder line for sale and use in Japan. Licensing agreement is for three years.

ELECTROLUMINESCENTPHOTOCONDUCTIVE

A phenomenon made practical... by SYLVANIA

EL-PC CONVERTER converts binary information to decimal form. The output of the CONVERTER can be used as the input to the TRANSLATOR shown below. EL-PC matrices for decimal-to-binary conversion are also available from Sylvania.

EL. "READOUT" DEVICE is composed of strips of electroluminescent lamps, insulated from each other and separately terminated. By selective excitation of the "strips," alpha-numeric symbols are produced for readout purposes.

EL-PC "TRANSLATOR" makes practicable use of the luminous properties of EL phosphors on panel " A " and of photoconductive elements on panel "C." Mask "B" enables selective excitation of the electroluminescent phosphors on readout panel "D."

Physical dimensions of EL-PC panels are shown here in exaggerated scale for purposes of clarity.
featuring - Compact, flat construction - Minimal catastrophic failure • Exceptional reliability and long life - Simplified circuitry • Negligible power requirements

SYLVANIA combines photoconductive elements with the luminous properties of electroluminescent phosphors to provide design engineers with a group of alpha-numeric readout devices and components capable of performing simple and complex logic functions, the conversion of digital information, and the storage and memory of data. These offer new and significant possibilities for end-product miniaturization together with dramatically enhanced reliability.
For example, new "crossed-grid" panels have been developed that utilize conductive strips placed at right angles to each other on opposite sides of an
electroluminescent phosphor layer. These "strips" when separately excited glow at the points of intersection. This provides a point of light that can be moved in $\mathrm{X}-\mathrm{Y}$ directions to create a display that is exceptionally small in front-to-back dimensions and is highly useful in position-plotting applications.
Sylvania Sales Engineers can give you details on specific EL-PC devices. Too, write for ten-page brochure, "Sylvania Electroluminescent-Photoconductive Devices," to Electronic Tubes Division, Sylvania Electric Products Inc., Dept. 1911, 1100 Main Street, Buffalo, N. Y.

High selectivity, attenuation and precision matching of . . .

NEW HILL FILTERS ASSURE FAST, PRECISE MEASUREMENT OF INTER-MODULATION DISTORTION

Actual operational curves, obtained from point-to-point readings, from Hill 34900 ond 34800 filters developed to fulfill customers' specific requirements.

These two highly stable, precision-matched Hill Electronic filters permit fast, exceptionally accurate measurement of inter-modulation distortion in communications systems. A band elimination filter places a narrow, deep notch in the white noise being passed through the equipment under test. Distortion generated in the notch is then isolated for measurement by the narrow band filter.
The high degree of selectivity and attenuation of these filters, and the excellent alignment of one within the other are demonstrated in the actual operational curves shown above. Used together, these filters provide 80 db attenuation from 6 to 252 kc .
This is a typical example of Hill's creative engineering that develops outstanding solutions to customers' specific problems involving LC and crystal control filters as well as precision frequency sources and other crystal devices.

WRITE FOR BULLETINS 34800/900

They contain details and specifications concerning the filters described above.

HILL ELECTRONICS, INC.

News

(Continued from page 30) industries. They believe they will find an "appreciable and sympathetic market."
The Company has signed its first international sales representative agreement with Originator Engineering Co., Stockholm, Sweden.

Telex Link With Rumania

New York - RCA Communication, Inc. has opened teleprinter exchange (telex) service between New York and Bucharest, Rumania. This brings to 54 the number of overseas points served. Rates are $\$ 3.00$ per min-a $\$ 9.00$ minimum is charged.

INSPECT SCORING DEVICE

Nato reps wind-up 60 day trip through U. S. Shown inspecting device at Franklin Systems, Inc., West Palm Beach, Fla. are (L to R): M. J. Cohen, VP Engineering-Franklin Sysems; Capt. W. F. Kirlin, USAF; Major Jean Bastien-Thiery and Pierre Boutroux, Nato and French Air Ministry; and H. C. Gibson, Pres., Franklin Systems.

AFRICA

Design New VOA Station

Monrovia, Liberia-Engineering and architectural design for the Voice of America's powerful mid-African radio relay station outside Monrovia will be done by Page Communications Engineers, Inc., Washington, D. C. The station will have six 250,000 watt and two 50,000 watt transmitters. It will provide radio coverage of Africa and supplemental coverage of parts of Central Europe and the Middle East. It will also permit relay around the world of broadcasts originating in Washington. Contracts for the 8 transmitters will soon be let.

The new station, although high power, will operate under international rules when it goes on the air and will not interfere with other broadcasts in the African area.

The Voice's East Coast facility, planned for completion by the end of 1962 , is on schedule. The 500,000 watt, 250,000 watt, and 50,000 watt transmitters will cover Europe, Africa, the Middle East, and South America. It will also transmit VOA broadcasts for relay by the new Liberian station.

NEW CIRCUIT POSSIBILITIES for low impedance, high current applications

SILICON SWITCHING DIODES

Combining high reverse voltage, high forward conductance, fast switching and high temperature operation, these diodes approach the ideal multi-purpose device sought by designers; they open new areas of opportunity for circuit design.

Type CSD-2542, for example, switches from 30 ma to -35 v . in 0.5 microseconds in a modified IBM Y circuit and has a forward conductance of 100 ma minimum at 1 volt.

Optimum rectification efficiency rather than rate of switching has been built into these silicon diodes. They feature very high forward conductance and low reverse current. These diodes find their principal use in various instrumentation applications where the accuracy or reproducibility of performance of the circuit requires a diode of negligible reverse current. In this line of general purpose types Clevite has available, in addition to the JAN types listed below, commercial diodes of the 1N482 series.

MILITARY TYPES

	JAN	SIGNAL CORPS	
1N457	MIL-E-1/1026	1N662	MIL-E-1/1139
1N458	MIL-E-1/1027	1N663	MIL-E-1/1140
1N459	MIL-E-1/1028	1N658	MIL-E-1/1160
			1N643

Write for Bulletins B217A-1, B217A-2 and B217-4.

Probing new dimensions in Electronics through Stackpole Research . . .

A MAJOR NEW FERRITE

FOR TELE-COMMUNICATIONS

Permeability: 1800

Temperature Constant: 1.8×10^{-6} per ${ }^{\circ} \mathrm{C}\left(-20^{\circ}\right.$ to $\left.120^{\circ} \mathrm{C}\right)$ Avg. Temperature Coeflicient (un-gapped cores):

$$
0.29 \% \text { per }{ }^{\circ} \mathrm{C}\left(-20^{\circ} \text { to } 85^{\circ} \mathrm{C}\right)
$$

$\mu 0$ (merit factor): Greater than 200,000 at 100 kc
these in brief are the salient electrical characteristics of Stackpole Ceramag 501-a remarkable new lowloss ferrite grade for the 10 kc to 250 kc range. Already revolutionizing the design of carrier-current communications filters, the material shows considerable promise for electronic switching circuits and others as well.

Cup cores of Ceramag 501 no larger than a quarter enable the design of filters with such narrow pass bands that message-handling capacities of communications systems can be increased from 2 to over 90 messages per channel. The extraordinary high gain of filters using Ceramag 501 combine with other inherent advan-tages-smaller size, no aging or life problems-for a significant contribution to system reliability.
But equally significant is the extremely close tolerances to which these cores are made. To achieve the exact air gap required, Ceramag 501 cups are supplied in matched pairs. Special Stackpole-designed mounting hardware and tuning slugs can also be supplied to assure easy assembly and maximum electrical performance with your own coil designs.
Almost four years in development, Ceramag 501 represents another basic contribution based on magnetic ceramic research and engineering by the oldest commercial ferrite producer in the United States.

Complete details on Ceramag 501 and the remarkable research facilities that made it possible are available upon request to the Electronic Components Division, Stackpole Carbon Company, St. Marys, Pa.

CERAMAG* FERRITE CORES * VARIABLE COMPOSITION RESISTORS SLIDE \& SNAP SWITCHES CERAMAGNET CERAMIC MAGNETS FIXED COMPOSITION CAPACITORS SWITCHES FOR CERAMAGNETR CERAMIC MAGNETS RIP FIXED COMELECTRICAL CONTACTS GRAPHITE BEARINGS. SEAL RINGS ANODES OU HUNDREDS OF RELATED CARBON \& GRAPHITE BEARINGS. SEAL RINGS ANHIIES PRODUCTS

JENNINGS VACUUM RELAYS

RA4B

REG

RB7A

what would you look for in the ideal relay?

And where will you find a relay that embodies all these desirable characteristics? Examine the ratings achieved by these typical Jennings vacuum relays and see how well they meet the requirements of many specialized applications.

Jennings vacuum relays are unequalled for solving difficult problems of antenna switching, pulse forming networks, or similar rf and dc circuits where reliability is of utmost imporrance.

JENNINGS RADIO MANUFACTURING CORPORATION 970 McLAUGHLIN AVE., P. O. BOX 1278 SAN JOSE 8, CALIF.

Tele-Tips

METERS that measure out the alcobol and water for guided massites must be highly accurate-for which a lot of happy catfish around Kansas City can be very grateful. To check the calibration of a Neptune Red Seal Meter the Columbian Steel Tank Co. last month filled a tank with 1,300 gallows of 190 -proof alcohol and water. The amount was carefully measured as it was put into the tank, and measured again as it was poured into the Missouri River. The accuracy had to tally within one-tenth of one per cent. . . . And the Missouri catfish enjoyed one gigantic binge.

JET CONTRAILS can be minimized, the Air Force has found, by mixing tiny hygroscopic (dustlike) particles in the engine exhaust. The resultant vapor trail is made up of droplets too small to be seen from the ground.

THE (VERY) CORRECT TIME IS . . . National Bureau of Standards has developed a system for synchronizing and setting widely separated clocks to a relative accuracy closer than a millionth of a second. It is being adopted by the Dept. of Defense for application at military installations. Synchronized with the highly accurate uniform time source at the Naval Observatory, Washington, D. C., the system may soon provide the timing necessary for the DOD's coast-to-coast missile ranges.
"COCKTAIL, PARTY EFFECT" allows a person to concentrate on the specific voice in which he is interested amid high surrounding noise levels. Two Bell Labs scienfists have duplicated the effect using separate inputs to two microphones (as human ears do) and a "gating wave" which is generate by the combined output of the two microphones. The effect of this gating was that the intersity of the combined signal was raised only when the desired voice arrived simultaneously at both microphones.
(Continued on page 38)

Bourns Trimpot

Puts the Proof in Humidity-Proof

Plunging a potentiometer into near-boiling water is just one of the ways Bourns puts the procf in humidity-proof. Every Tim pot unit made takes this 60 -second bath with the water sim mering at $90^{\circ} \mathrm{C}$. Air expanded by the heat creates four pou: nds of pressure inside the potentiometer-enough to cause bubbles -if it leaks. Only if the unit is completely leak.free does it pass the test.
Bourns humidity proofing starts at the beginning - with original design and selection of materials. The plastic chosen for Trim pot cases, for example, displays the unusual properties of high insulation resistance and extremely low moisture absorption

Further protection against humidity results from manufacturing procedures, such as internal potting of the resistance element and sub-components. Finally, Bourns samples all production for compliance to MIL-STD-202A, Method 106 as a routine part of a Reliability Assurance Program. As a result, Trimpot does more than "resist" roisture; it keeps moisture out.
For more information about the industry's largest selection of humidity-proof adjustment potentiometers - wirewound and carbon in a variety of sizes, power ratings, operating temperatures, etc. - write for new Trimpot summary brochure and list of stocking distributors.

Exclusive manufacturers of Trimpot $®$, Trimit ${ }^{(}$, and $\overline{\mathrm{E}} \cdot \overline{\mathrm{Z}} \cdot \mathrm{Trim} ®$. Pioneers in transducers for position; pressure and acceleration.

THREE KLEIN PLIERS

to make electrical wiring easier

Here are three newly engineered Klein Pliers which will solve difficult problems in the wiring of electronic assemblies. Catalog 103-A describes these and scores of other pliers in the complete Klein line. If you wire electronic assemblies, write for a copy.

ALL-PURPOSE ELECTRONIC PLIER
 Potent pending

Shear blade cuts fiush and holds clipped end of wire
Requires no sharpening; will cut hard or soft wire. Smooth, continuous action prevents shock which may damage resistors. For bare wire up to 18 gauge.
No. 260-6-length $63 / \mathrm{B}^{\prime \prime}$
No. 260-6C-with coil spring that holds jaws open

NEEDLE-NOSE PLIER Patent pending

Similar to No. 260-6 but nose has been slimmed down to permit use in confined areas.
No. 261-6-length $63 / 8$ "
No. 261-6C-with coil spring to hold jaws open

LONG-NOSE PLIER-KNIFE AT TIP

 Pot. No. 2,848,724Jaws behind blade hold clipped wire end firmly
A shear-cutting plier that will cut hard or soft wire. Blade is at the tip of the plier. Supplied with coil spring to keep jaws apart.
No. 208-6PC-length $65 / 8^{\prime \prime}$

Tele-Tips

(C'ontinued from page 36)
WHEN IREBUILT CRT'S are sold to TV owners in New York State there must now be written notification on the bill that the tube is "rebuilt" - not "new." The law went into effect Oct. 1. Survey had shown that 8 out of 10 families buying pix tubes thought they were buying new tubes. But industry sales figures showed that only 20% of the approximately $6,000,000$ replacement tubes sold each year are all new.

35-LB. RADAR SETS will be developed by Airborne Instrument Lab for the Signal Corps. The set "will detect a moving man at ranges from 150 ft . to over 2 miles and a moving $1 / 4$ ton vehicle at ranges from 150 ft . to 3 miles."

PIRODUCTION CONTROL gets a big assist from a new addition to IBM's 357 data collection system that allows it to read employees' identification badges. Information punched into the identification badge is automatically correlated with the job for payroll and personnel purposes.

INDUSTRY VETERAN SARKES TARZIAN was one of the 11 outstanding U. S. industrialists singled out by the Free Enterprise Awards Association, Inc., this year as "examples of the success possible under American free enterprise democracy."

ELECTRONIC "NEEDLE" that warns drowsy drivers that they are heading off the road is being tested at General Motors proving grounds. The device uses a wire in the center of the pavement, radiating a 2 kc signal. On the fenders of the car are mounted two ferrite coils, picking up the signals from the wire. The closer the coils are to the wire, the stronger the signal, so that when the car veers to one side the pickup from that side increases. The signal is amplified and fed to warning lights. If the warning lights are not heeded, a speaker is switched in to add an audible alarm.

-

the new TIII VIBRATION EXCITER

VIBRATION AND SHOCK TESTING
 WITH ONE COMPACT INSTRUMENT

First of its type, the 50 force-pound vibration exciter Model ST-100, is unmatched for components testing. Designed specifically for vibration and shock measurement to military specification, the unique features of this instrument also provide:

- no measurable distortion to 10 KC
- first major resonance above 12 KC
- useful frequency range exceeds 50 KC
- shock testing to $3,000 \mathrm{~g}$
- simple operation and portability

The performance-proven Model ST-100 is an entirely new type of vibration exciter. It virtually does away with "cross talk" ... completely eliminates unwanted output harmonics, structural and flexure resonances... provides an exceptionally linear frequency response that makes possible true conformance to the test specifications.
For complete information and applications data, contact ITT Instruments representative or write for Data File E1-1301-1

The ITT Model ST-100 can be easily integrated into your own system design... or it can be ordered as part of these complete, self-contained ITT testing systems:

MODEL 1201 VIBRATION TEST SYSTEM

MODEL 1205 VIBRATION AND SHOCK TEST SYSTEM
closed circuit television

 to the Editor

"Is the USSR This Good-?"

Editor, Electronic Indu'stries:
I am highly impressed by the contents of your September issue and would like to have reprints of the following articles:

How to Duplicate Technical Papers, p. 242

Storing with Thin Films, p. 89.
Reliability and Printed Circuit Connectors, p. 82, including the Part II.

Conversion of Binary to Analog Codes, p. 70.
I was also impressed by your transcript of the speech by Mr. D. Packard, at WESCON. What I would like to know is: 1) How come Soviet technical achievements are this good" 2) Why are their scientific articles so full of substance?

I agree with him that our achievements are superl-but the truth is not solely on our side. Nor the lies, on theirs. I guffawed over his description of his query at a Soriet school about the Ohm's Law, which no one knew. You see, it is not known as OHM's LAIW there. No more than advertising is known as PAVLOV'S REFLEX here. And your small note about the declining engineering school enrollment was much more to the point. It is easier to be a manager than an engineer, the kids found out-and much more profitable. Doesn't take any brains either. Not if you can blame the Federal Govt. for everything.

I will appreciate your reprints, and I like your mar.

Orest A. Meykar
Development Engineer
Burroughs Corporation
Great Valley Laboratory
Research Center
Paoli, Pa.

"A Navy Consultant—"

Élitor, Electronic Industrifs:
As Educational Consultant in the Advanced Electronics Training School with the Navy at Memphis, I am responsible for keeping the Instructor staff abreast of the latest developments in Electronics.
In the August, 1960, edition of Electronic Indestries, there were several reprints of articles that were available to subscribers. They were as follows:

1. The Binistor-A New Semiconductor Device, by Nicholas DeWolf.
2. Electronics and the Future of Agriculture, by Richard G. Stranix.
3. New Use for Fluxgate Principle, by George S . Kan.
4. Determining Transistor Power Dissipation, by John G. Naborowski.

These low-cost Type CE ceramic disc Hi-Kaps" have been extensively tested over an 18 month period by prime contractors in the missile and radar fields. Their findings: the excellence of the Centraliab design parameters for standard commercial units permits the identical capacitors to be used in military applications.

In radio-TV as well as military usage, these units operate from $-55^{\circ} \mathrm{C}$ to $-125^{\circ} \mathrm{C}$ without derating. They last longer than paper or mica capacitors, and their small size makes them economical to work with. Semi-stable 'Type CF Centralab Hi-Kaps offer similar advantages.

SPECIFICATIONS

CAPACITIES: $150-6200 \mathrm{mmf}$
SIZE: .290"-. 920° diameter, . $156^{\prime \prime}$ thick
WORKING VOLTAGE: 500 VDC
LEAKAGE RESISTANCE: Initial, 10,000 Megohms minimum; after humidity test, over 1000 Megohms
POWER FACTOR: 2° Max. at IKC
TOLERANCES: GMV $\pm 20^{\circ} \%, \pm 10^{\circ} \cdot,+80-20^{\circ} \%$

TYPE CE- $\%$ of 25° C Capacity vs. Temperature in \mathbf{C}

TYPE CF- $\%$ of 25° C Capacity vs. Temperature in C

Detailed information on these and many other centratab coramic capacitors can be found in Catalog $42-857$. Write for your free copy.

The Electronics Division of Globe-Union, Inc. 938L E. Keefe Ave., Milwaukee 1, Wisconsin Centralab Canada Limited - Ajax, Ontario

In RELIABILITY, test

the equipment tested.

G-E Five-Star Tubes

application needs best

TUBE LIFE REQUIREMENTS: LOW GRID CURRENT, HIGH \mathbf{G}_{m}

TUBE NOISE MUST REMAIN AT MINIMUM LEVEL

...in (\$p) Model 425A Micro Volt-Ammeter

So sensitive it will measure down to 10 microvolts and 10 micro-microam-peres-stable, with extremely low drift - Hew-lett-Packard's 425A calls for sustained tube performance at minimum noise level. In the ker amplifier socket for modulator output, General Electric 5-Star 5751-W A's have cut line rejects from noise sharply, and help preserve usefulness of the equipment after it is placed in service. Refore another tube in the same socket aused a 30 c; reject rate:

instruments must surpass

uses

because they satisfy

....here is your proof!

Circle 26 on Inquiry Card

TUBES MUST STAY FREE OF INTERFACE EFFECTS

...in (hp) Model 460B Wide Band Amplitier

In order that high pulse power or voltage may be applied to a load, Hewlett-Packard's 460 B uses 13. 5-Star 5654 tubes in a distributed-amplifier circuit. Tube requirements are severe. The high-voltage, low-duty cycle pulses entail operation at max ratings for brief intervals, between long periods of tube cut-off. Interface effects would handicap reliability. General Electric's 5654 's score both in minimum interface and high over-all performance...help Model 46 B meet consistently, often exceed, itsoperating specifications.

TELEPHONE TODAY! New York, WI 7-4065...Boston, DE 2-7122...Washington, EX 3-3600 Chicago, SP 7-1600...Dallas, RI 7-4296...Los Angeles, GR 9-7765, BR 2-8566...San Francisco, DI 2-7201

Progress Is Our Most Important Product

Vacuum process 200 units at once...

 FASTI

NEW CVC 10-PORT VACUUM PUMPING SYSTEM

In evacuation, leak-checking, backfilling and sealing of small electrical components, you'll be able to multiply production and profits with this flexible new CVC 10-Port Manifold Vacuum Pumping System.
Attach as many as 20 processing lines to each of the 10 ports -process up to 200 units at once. Remove all traces of moisture and corrosive contaminants before sealing off. Accessory ovens permit bake-out temperatures to $400^{\circ} \mathrm{C}$ if necessary. Ultimate pressure, $8 \times 10^{-16} \mathrm{~mm} \mathrm{Hg}$ with the basic system; $1 \times 10^{-i j} \mathrm{~mm} \mathrm{Hg}$ or lower with refrigeration accessories. Pumping speed at each port, 2.5 liters per second. You'll save pump-down time, too-rough pump all ports simultaneously to 100 microns in less than 2 minutes. You get volume production-fast!

Letters

to the Editor

(Continued from page 40)
5. Recordings from DC to 1 MC , by G. Nels Johnson and Lal Mirchandani.
Thank you for your excellent service to us. The EI magazine is an excellent source of information that would be almost impossible for us to obtain elsewhere.

Ronald E. Drew
Educational Consultant
AT(B) School, Building S-241
Naval Air Technical Training Center Memphis 85, Tenn.

Congratulations!

Editor, Electric Industries:
Please forward reprint of article: "An Introduction to Boolean Algebra," and also current September article "Electronic Industries Look at Unconventional Power Converters."
I would like to congratulate your staff for the terrific comprehensive editorial coverage.

Eugene Ross
Sales Manager
Photomation, Inc.
96 S . Washington Ave.
Bergenfield, N. J.

Unconventional Power Converters

Editor, Electronic Industries:
Please send me a copy of the article on "Unconventional Power Supplies" that appeared in the September 1960 issue of Electronic Industrics.
Incidentally, the article describing the production of thermionic converter's by the General Electric Company has a small error. The descriptive headings under the pictures of the vapor and vacuum thermionic are reversed. The vapor converter may be distinguished from the vacuum converter by the cesium reservoir tube attached to the anode of the vapor converter.

Charles D. Buell EEIT
General Electric Company
Defense Electronics Division
Mountain View Road
Lynchburg, Va.
Editor, Electronic Industries:
The September article by Christopher M. Celent added one more gem to the display showease that has been accumulated over the years. This article presents, in easily understandable language, the principal exotic power converters, and describes their operation in simple terms.

It would be appreciated if you could furnish 10 copies of this article

Probe clamps AROUND wire; measures by sensing magnetic field!

Think of the measuring convenience, time saved and accuracy gained when you don't have to break into a circuit, solder on a connection, or worry about probe loading.
With the (90) 428A Milliammeter and its new probe, you literally "clamp around" and read! You get maximum accuracy because there is no effective circuit loading from the 428A's dc probe. The instrument easily measures dc currents in the presence of ac. And insulation is more than adequate to insure safe measurements at all normal voltage levels
For extremely low current level measurement, sensitivity can be increased by looping the conductor through the "jaws" of the 428A probe two or more times.
Bref specifications are given here, for complete details and demonstration on your bench, call your (74) representative or write direct.

Specifications

Current Range: Less than 0.3 ma to $1 \mathrm{amp}, 6$ ranges. Full scale readings from 3 ma to $1 \mathrm{amp}: 3 \mathrm{ma}, 10 \mathrm{ma}$, $30 \mathrm{ma}, 100 \mathrm{ma}, 300 \mathrm{ma}, 1 \mathrm{amp}$. Accuracy: $\pm 3 \% \pm 0.1 \mathrm{ma}$.
Probe Inductance: Less than $0.5 \mu \mathrm{~h}$ maximum. Probe induced Voltage: Less than 15 mv peak.
Effects of ac in circuit: Ac with peak value less than Effects of ac in circuit: Ac affects accuracy less than 2% at frequencies different from the carrier (40 KC) and its harmonics.
Power: $115 / 230 \mathrm{v} \pm 10 \%, 50-60 \mathrm{cps}, 70$ watts.
Size: Cabinet mount, $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $141 / 4^{\prime \prime}$ " deep. Weight 19 pounds. Rack mount, $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $121 / 2^{\prime \prime}$ deep. Weight 24 pounds.
Probe Tip Size: Approximately $5 /$ g " $^{\prime \times} 7 / 16^{\prime \prime}$. Wire aperture diameter $3 / 16^{\prime \prime}$.
Price: (Cabinet) $\$ 475.00$; (Rack) $\$ 480.00$.
Data subject to change without notice. Prices f.o.b. factory.

HEWLETT.PACKARD COMPANY
1005 b PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A. HEWLETT-PACKARD S.A., RUE VIEUX BILLARD NO 1 , GENEVA, SWITZERLAND
CABLE: "HEWPACKSA" - TEL NO. (022) 26. 43, 36 CABLE "HEWPACK" - DAVENPORT 6-7000 field representatives in all principal areas

Du Pont CONDUCTIVE CEMENTS are easy to apply... eliminate soldering

Du Pont wition high-rpalily themor-
 riall! formulated for application om silicons, fermanimm. bathon amb ollow hanes. Therea fla Pont condurtiveremonts are casily applied by dig. brush or squerere . . . aminate soldering:

- Phermarolting quded comproitions
 hruat or aluerare application.
- Thamosedting siluer eomprestion Fonold is mitable lior application by
 platation bes dip or brush.
Altu proper emine and dryins. Lhese compositions exhinit wad atherfores. cleetriabl conductivity and ahtanion resistance

Du Pont conductive cemerets find wide applimation for lowl attachments: indiodes, transistors. resistors and similar compenents. (iold cements are particubarl suitathe for apdiantions where
resistance th stomsernhing adids is required.
Silver I'reparations: () 11 Ponl abso oflers a !ull lite al -iluer proparations -comblation cotature used in the eleotronic industry. Du Pont sile er preparations are stillerable . . . asy to hamille . . . have exerellent dedrimal properties.
For more detailed information. write fir bultetins on high-pualits Ion lome Comburtive Coments or sher prepamathos. Montion lise applialion ?on hatre in mind so that appropriate litrature an be suppliod. Du I'ont. lilere. bowlomicals Degartment. (emamie

Letters
 to the Editor

(Continued from page 44)
for the personal files of myself and my cu-workers.
J. K. Hayden

CAMPS Engrg. Sub-Section
General Electric Company
Low Voltage Switchgear I Pepartment 6901 Elmwood Avenue, Phila. 42, Pa.

Editor, Fleferronic INidstries:
Ilease send me a reprint of the splendid article on "Unconventional Power Converters" that appears in the September, 1960 , issue of your magazine.
C. Thomas Maney

Professor of Electrical Fngineering
University of Kentucky
Lexington, Ky.
Editor, Electronic Inidustries:
We shall appreciate it very much if you will send us two copies of the reprint of the article entitled, "Flectronic Inclustries Looks at Unconventional Power Converters" which appears in your periodical for September, 1960. Our Research Department and engineers are extremely interested in this subject.

Marie B. Spillane Librarian
Philadelphia Electric Company
1000 Chestnut Strect, Phila. 5, Pa.
Editor, ElaEctronic Industiries:
In conjunction with the keeping abreast of progress in direct conversion of heat to electricity, we shall appreciate a remrint of the article entitled "Unconventional Power Converters" by Assistant Folitor C. M. Celent and as occurring in the September, 1960 , issue of Elactronic I NDUSTRIEs.

This is a well-rounded article, and Mr. Celent is to be complimented on the fine job done.
I. A. M. Barnette

I'roduction Department
Petroleum Engineering
Humble Oil \& Refining Company
Humble Divixion
Houston 1. Texas

Éditor. Electronic Industries:

Much interest has been displayed among our engineers and physicis with reference to the article "Entronic Industries Looks at Ungpeartional Power Converters," spae of ing in the September, 19 fike to obyour magazine. We wor tain 6 additional this tain 6
B. Gerstoin

Section Chief
Nuclear Radiation I aboratory Asminal Compration
3800 (ontland Street, Chicagu 17

Measure dc currents

 0.3 ma to 1 ampere with
No Breaking of Leads No DC Connection No Circuit Loading

428A CLIP-ON
MILLIAMMETER.
Probe clamps AROUND wire; measures by sensing magnetic field!

Thınk of the measuring convenience, time saved and accuracy gained when you don't have to break into a circuit, solder on a connection, or worry about probe loading.
With the (40) 428A Milliammeter and its new probe, you literally "clamp around" and read! You get maximum accuracy because there is no effective circuit loading from the 428A's dc probe. The instrument easily measures dc currents in the presence of ac. And insulation is more than adequate to insure safe measurements at all normal voltage levels
For extremely low current level measurement, sensitivity can be increased by looping the conductor through the "jaws" of the 428A probe two or more times.
Brief specifications are given here, for complete details and demonstration on your bench, call your (7) representative or write direct.

Specifications

Current Range: Less than 0.3 ma to $1 \mathrm{amp}, 6$ ranges. Full scale readings from 3 ma to 1 amp : $3 \mathrm{ma}, 10 \mathrm{ma}$, $30 \mathrm{ma}, 100 \mathrm{ma}, 300 \mathrm{ma}, 1 \mathrm{anp}$.
Accuracy: $\pm 3 \% \pm 0.1 \mathrm{ma}$.
Probe Inductance: Less than $0.5 \mu \mathrm{~h}$ maximum.
Probe induced Voltage: Less than 15 mv peak.
Effects of ac in circuit: Ac with peak value less than full scale affects accuracy less than 2% at frequencies different from the carrier (40 KC) and its harmonics.
Power: $115 / 230 v \pm 10 \%, 50-60 \mathrm{cps}, 70$ watts.
Size: Cabinet mount, $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high. $1414^{\prime \prime}$ deep. Weight 19 pounds. Rack mount, $19^{\prime \prime}$ wide, 7" high, $121 / 2^{\prime \prime}$ deep. Weight 24 pounds.
Probe Tip Size: Approximately $5 / 8^{\prime \prime} \times 7 / 16^{\prime \prime}$. Wire aperture diameter $3 / 16^{\prime \prime}$.
Price: (Cabinet) $\$ 475.00$; (Rack) $\$ 480.00$.
Data subject to change without notice. Prices f.o.b. factory.

HEWLETT-PACKARD COMPANY
 1005 B PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A.

 HEWLETT-PACKARD S.A., RUE VIEUX BILLARD $\$ 01$, GENEVA, SWITZERLANDCABLE: "HEWPACKSA"' TEL. NO. (022) 26. 43, 36 CABLE "HEWPACK" - DAVENPORT 6.7000
Field representatives in all principal oreas

Test the new 405A DC Digital Voltmeter

NO DISTORTION OF THE FACTS

"Scotch" brant Precision Reels stack up well, thread smoothly

In instrumintation, it nearly goes without Sating that your choice of reels is is important as your choice of magnetic tapes. You can't affor ally distortion of the lacts wom deal with so why not give your "Scorch" brand Tape the best running mate-a "Scotch" brand Precision Reel

While most drop outs come from dust or other contaminants on the tape surface, the next most significant factor is related to improper handling Dents or creases in the tape backing. damage io tape edges calused by uneven winding. too mueh tension on the tape at the end of a pass-all of these affect performance. Any stresses which exceed the yield point of the tape can callse a permanent set-a phrsical distortion which in turn leads to the attenuation or loss of important signals.
Precision is no empty word when applied to the "Scotch" brand reel. Every detail-design, materials and production techniques - grows out of years of careful research and testing hy the same 3 M research teams who have continually led in the development of magnetic tapes.

The "Scotch" brand Precision Reel is machined of aluminum. Its unique design offers maximumprotection against tape damage from handling. while greatly lowering the momient of inertia-exerting less stress in stops and starts. Because the flanges are precision machined. they can be held to a fine tolerance-thicker at the huh. thinner toward the rim. These closely spaced, tapered flanges
 guide the tape into a smooth, even stack. Tape edges are kept perfectly aligned
Theading up is casy on you and the tape. The "Scotch" brand reel employs a precision ground neoprene ring instead of a threading slot which cinl catuse distortion of the inner turns of tape. To thread up, you simply start a turn of tape on the take-up reel. The neoprene ring. morcover, ates as a cushion for the innermost tape layers and guards against distortion from winding pressure and expallsion-contraction stresses.

Flange apertures are reduced to the minimum compatible with the need for observation and threading-giving further protection to tape and greater rigidity to the reel. Compare-as the moment of reel decision approaches, a look at all the facts should lead you to come out in favor of "Scorch" branio Precision Reels.

Your 3M Representative is close at hand in all major cities-a convenient source of supply and information. For details on reels and tape constructions, consult him or write Magnetic Products Division. 3 M Co ., St. Paul 6 , Minnesota

[^2]
Scotch brand magnetic tape
 FOR INSTRUMENTATION

Minestora Mrime ano Manuractuano company

Universal in Application...

Universal in Reliability...

SEMI-CONDUCTOR SEALS INDIVIDUAL TERMINALS MULTIPLE-LEAD HEADERS
 CONDENSER END SEALS COLOR CODED TERMINALS THREADED END SEALS CUSTOM SEALING SERVICE

Standardized Production

E-I offers designers and engineers the complete flexibility and economy of standardized production on all types of seals from individual terminals to sub-miniature closures. For proven reliability, specify the seals employed by leading manufacturers in both commercial equipment and space age projects.

Nation-wide Field Service

Write today for complete information on standard E-I seals or custom sealing of terminal assemblies of your own manufacture. E-I field engineers will gladly make recommendations on your specific requirements on receipt of your application data.

ELECTRICAL INDUSTRIES

MURRAY HILL, NEW JERSEY A Division of Philips Electronics \& Pharmaceutical Industries Corp.

Du Pont CONDUCTIVE CEMENTS are easy to apply... eliminate soldering

 selliny giold and wiser wimber. ©pcially formulatem for application on silicom. remanium. rarbon and wher baser. Theser Du Poun conductive ar. methe are carily apphech loy dip. herush or sureque . . . eliminate soldering:

- Thermarertinge zuld rompuitinns
 bruth or squergre application.
- Thermererling silver emmenition

 plication ha dip or lexu-1.
After proper curing and living. these
 cherrimal conductivity and abrasion resistance.

Du P'ont comductive coments find wide application for lead altachments in diodes. tranisisture resistors and sim-
 tienlarty suitalde for applimations where
 yuired.
Silver Preparations: Du Poul alsw whers a fall lime of oilver prearations -romdurlive comange used in the
 preparations are abldeallde . . . astsy th
 propertics.

Fin more detailed intinmation. write for builetins on high-quality Du Prome
 rationt. Mromion the appliation :m hate in mind so Hay appropriate lit-
 (rombemicals Werartmen, Corame Prouluctidivisim. Wimingumes. Ded.

©UPOND

Letters

to the

 Editor
(Contimued from paye 44)

for the personal files of myself and my co-workers.
J. K. Hayden

CAMPS Engrg. Sub-Section General Electric Company
Low Voltage Switchgear 1)epartment 6901 Elmwood Avenue, Phila, 42, Pa.

Editor, Ei.ectronic Industries:
Please send me a reprint of the splendid article on "Unconventional Power Converters" that appears in the Soptember, 1960, issue of your magazine.

> ('. Thomas Maney
> 1'rofessor of Electrical Engineering

University of Kentucky
Lexington, Ky.
Editor, Electronic Industries:
We shall appreciate it very much if you will send us two copies of the reprint of the article entitled. "Flectronic Industries Looks at Unconventional Power Converters" which appears in your periodical for September, 1960. Our Research Department and engineers are extremely interested in this subject.

Marie B. Spillane
Lilorarian
Philadelphia Electric Company
1000 Chestnut Street, Phila, 5, Pa.
Editor, Electronic Industries:
In conjunction with the kecping abreast of progress in direct conversion of heat to electricity, we shall appreciate a reprint of the article entitled "Unconventional Power Converters" by Assistant Editor C. M. Celent and as occurring in the September, 19(90, issue of Elfictronic Indostries.

This is a well-rouncled article, and Mr. Celent is to be complimented on the fine job clone.

> I. A. M. Barnette
> I'roduction Department
> Pcotroleum Engineering Humble Oil \& Refining Company Humble Division
Houston 1, Texas

Editm, Electronic Innustries:

Much interest has been displayed among our engineers and physicists with reference to the article "Electronic Industries Looks at Unconventional Power Converters," appearing in the September, 1960, issue of your magazine. We would like to obtain 6 additional reprints of this article.
B. Gerstein

Section Chief
Nuclear Radiation Laboratory AImiral ('mpuration
: 3800 (iortland Street, Chicago 17

Member National Association of Relay Manufacturers

Sales Engineering offices in: Atlanta . Boston . Buffalo - Charlotte - Chicago - Cincinnati - Cleveland - Dallas - Dayton - Denver Detroit . High Point - Kansas City - Los Angeles • Montreal . New York • 0.lando. Pitïburgh • St. Louis • San Carlos • Seattle . Toronto Export: Langguth-Oison Co., New York

Books

Statistical Theory of Communication
By Y. W. Lee, Published 1960 by John Wiley Sons, Ine., 440 Pork Ave., So., New York 16. 509 pages. Price $\$ 16.75$.
This is an introductory book. The object of the book is to present clearly and rigorlessly a physically motivated and systematic account of the statistical theory of communication-an account that includes essentially all of the basic elements. In preparing this book, the author has been guided by the idea that a teacher should not attempt to cover the subject of study but should attempt to uncover it for the student.

The book is primarily written for the first year graduate student in electrical engineering as a one-semester course. As such it does not include material non-linear systems.

Electronic Business Machines

Edited by J. H. Leveson. Published 1960 by Philosophical Library, Inc., 15 E. 40th St., New York. 272 pages. Price $\$ 15.00$.
This work is based on two courses of lectures given at the Dundee Technical College. The objects of the courses are to provide an introductory study of the applications of electronic computers to industrial and commercial situations and to provide an opportunity for those already possessing this knowledge to study recent developments in the field of business data processing.
The lectures have been rewritten in a style suitable for publication in book form and provide a study of computers -their scope, characteristics, operation and application-and a review of business problems from this viewpoint.

The book is divided into three main sections: programming for business purposes; business management and electronic data processing; computer equipment and applications.

Video Tape Recording

${ }^{\text {By }}$ Julian Bernstein. Published 1960 by John F. Rider Publisher, inc., $116 .{ }^{146}$ 14th St., New York, N. Y. 272 pages. Price $\$ 8.95$.
This definitive book presents a basic yet thorough treatment of the techniques, mechanics and circuitry used in the rapidly expanding field of video tape recording. For those having a limited technical background, the author has provided sufficient basic theory to enable them to comprehend the functioning of video tape equipment.

The text begins with an introductory history and develops the types of waveforms and signals used and required for tape recording. Since this text deals predominantly with recording of television signals, considerable space is devoted to electronic photography. 'lechniques and merhanics of recording are first reviewed and then
the specifics of video recording are presented. The various types of tape transports, video track patterns, and basic block diagrams of a television tape recorder are discussed.

Silicon Carbide, a High
 Temperature Semiconductor

Edited by J. R. O'Connor and J. Smiltens. Pub. Edited by 1960 by Pergamon Press, inc., 122 E. 55th St.. New York 22, 521 pages. Price $\$ 12.50$.
This volume contains the authoritative proceedings of the 1959 Boston Conference on Silicon Carbide, and as such is the first work to be devoted exclusively to silicon carbide technology.

The book contains the complete pro-ceedings-papers, all discussions and written comments-of the conference.

Further it reviews the present state of knowledge on this potentially, tremendously useful material, and evaluates its uses as a rectifier, transistor, electroluminescence source, thermoelectric generator, etc. The volume also contains the silicon carbide phase diagram and details of crystal growth, physical properties, semiconductor properties and applications.

Alternating Current Circuits, 4th Ed.

By Russell M. Kerchner and George F. Corcoran Published 1960 by John Wiley G Sons, Inc., 440 Park Ave., So., New York 16, 602 pages.
In this edition, numerous additions and modifications have been made thorughout where experience has shown the need for improvement. An introductory chapter on network concepts has been added to give the student a deeper insight into the general methods of network analysis. Network variables, topology, and duality are considered.

In order not to interfere with the vector terminology of electro-magnetic theory, the term phasor has been adopted for a time-varying quantity which is handled by vector methods. The change from vector to phasor diagram is made although as used in this book the distinction is unnecessary. To many electrical engineers a vector diagram will always be a vector diagram.

Introduction of Laplace Transforms for Radio and Electronic Engineers

 By W. D. Day. Published 1960 by Interscience Publishers, inc., 250 Fifth Ave,, New York 1, 183 pages.A difficulty which has been experienced by students and practicing engineers who have not been taught the subject was the finding of an introductory text that would cater to their particular needs. This is because the subject of Laplace Transforms was for so long the preserve of mathematicians with little practical understanding of radio and electronics.

In general the engineer is not interested in rigid mathematical proofs; he wants to use mathematics as a tool to solve his particular technical problem. That is the approach in the pres(('ontinurel on page 5.1)

Designed for rugged duty on the toughest applications

Assembled and sealed in Fansteel's surgically-clean "white room" for maximum reliability

Full 160 amp . load in half-wave circuits, up to 450 amps . in 3-phase bridge circuits

Full 240 amp . load in half-wave circuits, up to 675 amps . in 3-phase bridge circuits

Operating temperatures
up to $150^{\circ} \mathrm{C}$ Case temperature.
Pcak reverse voltages 50 to 400 volts.

Write for Complete Technical Data

FANSTEEL METALLURGICAL CORPORATION • North Chicago, Illinois • U.S.A.

offers a new high frequency, solid state Electronic Multiplier:

- Static accuracy comparable to the best time division multiplier designs
- Dynamic response far in excess of any other multiplier
- Factory calibrated - requires no field adjustment
- Solid state shaping networks
- Static Multiplier accuracy - to 0.05\%

For complete specifications, write for Data File No. 311

MULTIPLIER CONSOLE

1. Eight Independent Products.
2. Expandable to 16 Products with adapter kit.
3. Adequate power for expansion to 16 products.
4. Operational Amplifier for each product.
5. Amplifier Balance Meter.
6. Standard Rack Mounting.

Qualified engineers seeking rewarding opportunities in these advanced fields are invited to get in touch with us.

REEVES INSTRUMENT CORPORATION

Bourns Trimpot ${ }^{\circledR}$ Instead of a Fixed Resistor?

Yes, these units meet the same Mil-Specs that fixed resistors meet and give you the added advantage of adjustability! Because of their design and construction. Trimpot potentiometers are virtually unaffected by the most severe shock and environmental conditiors - a fact proven repeatedly in major missile and space programs.
Trimpot units offer several kinds of savings. They minimize the need to maintain stocks of close-tolerance resistors-you can adjust to compensate for the variances of fixed components. Production labor costs are cut, too, for Trimpot units eliminate
trial-and-error matching of fixed uits to the system. Savings also carry over to maintenance because the technician can adjust equipment quickly in the field-no time and dollars spent to replace components.
Before you specify fixed units, investigate all the advantages offered by Trimpot potentiometers. Over 20 basic models (wirewound and carbon)-in four terminal types and three mounting styles-are available on short notice from stocking distributors or factory. Get the facts... write for the new Trimpot brochure and list of distributors

Exclusive manufacturers of Trimpot ${ }^{\circledR}$, Trimit ${ }^{\circledR}$, and $E-Z-$ Trim ${ }^{\circledR}$. Pioneers in transducers for position, pressure and acceleration.

TIMERS

Atcotrol Percentage Timers ac
curately handle on-off opera-
tions for all types of electrically
heated equipment up to 25
amp. loads. End power waste. UL approved. Series 304

Atcotrol Miniaturized Reser Timers control AC or DC loads within variable timed intervals or sequences. Accuracy $1 / 4$ of 1%. Six basic circuit arrangements provide infinite combinations for automation functions. FM approved. Series 305

Atcotrol "Duo-Set" Timers control two independertty adjusted load circuits for oir-uff cycling. Set desired delay between deenergizing of forward and ener. gizing of reverse. End interrupting timer motor, straining of mechanism.

Series 306

Atcotrol Transistor Timers are new types for long life and simplicity in short interval, highly repetitive timing cycles. Conservatively rated at 3 mil . lion operations. Six timing ranges 1.5 seconds to 150 sec onds. Rated 15 amps @ 115 VAC, $10 \mathrm{amps} @ 230$ VAC. 4 amps @ 115 VDC. Series 308

IF IT'S A TIMING PROBLEM, SEE ATC. Wide product selec. tion includes cam timers, auto matic reset timers, revolution counters, electronic timers, im. pulse counters, transistor tim. ers, many others.
Special timers and counters designed to your requirements.

AUTOMATIC TIMING \& CONTROLS, INC. KING OF PRUSSIA, PENNSYLVANIA A Subsidiary of American Manufacturing Company, Inc
ATC. Div. of Interprovincial Safely Industries, Lid.. 5485 Nofre Dame St., West, Montreal : 30 , Quebec

Books

(Contimued from page 51)
ent volume. It deals with electrical circuits from the very first paragraph, and very rapidly fills up to the stage when the student is using transforms to investigate transient conditions.

The Surface Chemistry of Metals and Semicondutors

Edited by Harry C. Gotas, J. W. Foust. Jr., and W. J. Lafleur. Published 1960 by John' F. Wiley E Sons, Inc., 440 Park Ave., So., New York 16.
526 pages. Price $\$ 12.50$.
This volume contains the papers presented at the Joint Symposium of the Corrosion and Electronics Divisions of the Electrochemical Society on the surface chemistry of metals and semiconductors held in Columbus, Ohio, October 19-21, 1959. The symposium was conceived as a medium when effective exchange of theory and technology between the fields of metal surfaces and semiconductor surfaces.

Dictionary of Automatic Control

By Robert J. Bibbero. Published 1960 by Rein. hold Publishing Corp., 430 Pork Ave., New
York 22. Price $\$ 6,00$. York 22. Price $\$ 6.00$.
Here is an encyclopedic dictionary of automatic control terms. More than a mere collection of definitions, it provides a condensed discussion of each topic, including applications and related subjects. The book covers control theory and basic concepts, computers and data processing, industrial machine and process control, aircraft and missile control and telemetering, and control components and design factors.

Principles of Semiconductor Device Operation

By A. K. Jonscher. Published 1960 by John Wiley E Sons, Inc.. 440 Park Ave. So.. New York 16. 168 pages. Price $\$ 5.00$.

There are, on the one hand, many text books dealing at all levels with the basic framework of semiconductor physics. On the other hand, there is ample literature on the physics and applications of junction transistors and, to a much lesser extent, of other devices. It appears, however, that one topic of basic importance for the operation of semiconductor devices has been neglected by the former and taken for granted by the latter. This is the broad subject of injection, transports, and decay of excess carriers and semiconductors. The behavior of excess carriers follows its own specific laws which are neither self evident from basic semiconductor theory, nor can they be neglected if adequate understanding of device operation is to be achieved.

Books Received
 Installing Hi-Fi Systems

[^3]

SOME VERY IMPORTANT ODDS...AND ENDS

What odds will you accept that your circuitry connections perform with absolute reliability, every time you need them? Chances are you demand odds approaching 100 percent in your favor-you cannot afford a compromise with precision in the thousands of terminals in your equipment.

AMP INCORPORATED has a single task: to make wire terminations so reliable that the odds on failure at the end of your wires are zero.

AMP makes wire terminations-15,000 solderless, snowflake-different kinds of themfor any circuit connection anywhere in the world, backed by 1800 patents issued or pending in the U.S.A. and 18 other countries. It makes the tools to apply its terminals to any size, shape or kind of wire. It makes these products in the U.S., and in Great Britain, France, Holland, West Germany, Italy, Australia, and Japan, for distribution anywhere, to any industry.

For the unabridged AMP story, write for our Selectalog and Autolog catalogs.

AMP INCORPORATED

DELCO RADIO - THE LEADER IN POWER TRANSISTORS

2N174. This multi-purpose PNP german a supplies, and for use with 12 -volt power supplies where high reliability is desired despite the presence of voltage transients. It has a high maximum emitter current of 15 amperes, a maximum collector diode rating of 80 volts and a thermal resistance below $.8^{\circ} \mathrm{C}$ per watt. The maximum power dissipation at $71^{\circ} \mathrm{C}$ mounting base temperature is 30 watts. Low saturation resistance gives high efficiency in switching operations.

- The 2 N 174 is versatile, rugged, reliable, stable and low priced. For more details or applications assistance on the 2N174 or other highly reliable Delco transistors, contact your nearest Delco Radio sales office.

Newark, New Jersey 1180 Raymond Blva. Mlichell 2-6165

Santa Monica, California 726 Santa Monica Blvd. UPton 0.8807

Chicago, Illinois 5750 West 51 st Street POrtsmouth 7-3500

Detroit, Micligan
57 Harper Avenue TRinity 3.6560

Delco
RADIO

NEW BENDIX CERAMETERM

is offered as a superior solution to glass terminal problems confronting manufacturers of military electronics gear, transformers, condenser banks, relays, transistors and similar equipment.

Now in production-this new and better terminal with 8 big advantages: 1 Developed especially for super-reliability on high-performance applications involving shock and high temperatures. 2 Vacuum-tight seal. 3 Will withstand brazing temperatures at $1500^{\circ} \mathrm{F} .4$ Tested to $11,000 \mathrm{psi}$ shear stress without failure. 5 Ideal for encapsulated devices. 6 For both replacement and original equipment use. 7 Extreme resistance to cracking under mechanical or thermal stresses. 8 Variety of configurations. Send for full details.

VISIT OUR DISPLAY AT THE WESCON SHOW-
BOOTHS 1066.67.

Development of this new and better miniature metal-ceramic terminal was made possible by our extensive ex perience in producing vacuum-tight, miniature ceramic stens for the Bendix
line of metal-ceramic receiving tubes.

Electron Tubes Dept. E8 The Bendix Corporation Eatontown, New Jersey

Gentlemen: Please send me complete details on your new Bendix CERAMETERM.
I have in mind the following applications

NAME TITLE
COMPANY
ADDRESS
CITY

range: 40 H at 12 Amp. rms

NWL's latest unit is especially designed and engineered for air-blast operation at a temperature rise not exceeding $10^{\circ} \mathrm{C}$. Radial ducts permit free flow of air along both sides of the pie-wound coils. Rigid mechanical support assures permanent alignment of coils.

The reactor illustrated, is only one of many special units manufactured by NWL, such as: Iron core reactors, large power, electronic and pulse transformers, chokes, etc.

Each NWL unit is thoroughly tested and must meet all customer requirements before shipment. We shall be pleased to quote you up to 300 KV and up to 500 KVA , depending on your individual requirements.

Books

((${ }^{\prime}$ ontimucd fiom page 54)
Books Received Magnetic Amplifiers, Principles and Applications
By Poul Moli. Published 1960 by John F. Rider, Publisher. Inc., 116 W . 14 th St.. New York 11. 112 pages, paper bound. Price $\$ 2.45$.

Getting the Most Out of Vacuum Tubes
By Robert B. Tomer. Published 1960 by Howard By Robert 8. Tomer. Published St. Indianapolis W. Sams ${ }^{\text {G }}$ Co.. Ind. $1 \in 0$ poges. Price $\$ 3.50$.

Practical TV Trouble-Shooting

Pubitshed 1960 by Gernsbock Library, Inc., 154 W. 14th St., New York 11. 128 pages, paper bound. Price $\$ 2.35$.

Motorola Power Transistor

Handbook
Published 1960 by Motorola Semiconductor Prod. ucts, Inc., 5005 E. McDowell Rd., Phoenix, Ariz. 205 pages. Price $\$ 2.00$.

Handbook of Pilot Lights

Published 1960 by Diolight Corp., 60 Stewart Ave.: Brooklyn 37 , N. Y. 256 poges. Interested indiiduals are invited to write to the obove oddress for a "Handbook Application Form.'

Topics in Noise

uklished 1960 by Airborne instruments Laborofory Deer Park, L. I., N. Y. 51 pages, poper bound. Interested engineers should write on compony leiterhead to the above address.

Annual Review in Automatic

Programming, Vol. 1
Edited by Richard Goodman. Published 1960 by
Pergamon Press inc., 122 E. 55th St., New York Pergamon Press inc.., 122 E. 55th St., New Yor 22. 160 poges. Price $\$ 10.00$.

Symposium on Spectroscopy

Published 1960 by Americon Society for Testing Moteriols, 1916 Race St., Philodelphia 3. Pa. 246 poges. Price $\$ 7.00$.

GOVERNMENTAL PUBLICATIONS

Orders for these reports should be addressed to Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C. Make check or money order payable to "OTS, Dept. of Commerce." Prepayment is required. Use complete title and PB number for each report ordered.

A Direct-Reading Six-Decade

Precision Frequency Generotor
By J. E. McGeogh and G. K. Jensen. 14 pages. PBi51958. Price 504.
Synthesis and Purification of Dielectric Materials
By T. W. Dokin, et al. 141 pages. PB161366. Price $\$ 2.75$.

Optical and Electromagnetic

Techniques for Predication of Radome Boresight Errors
By G. M. Hahn. 86 poges. PB161126. Price $\$ 2.25$.
Research and Development Services Leading to the Control of
Electrical Properties of Materials for High Temperature Radomes
By L. M. Atlos. 34 pages. P8161423. Price $\$ 1.00$.

Measure 10cps to 110 Mc with one compact meter

Comprehensive range for only $\$ 1895$. Never before has so broad a range been offered for so low a price - a combination made possible by closely integrating a simple heterodyne converter with a top-notch 10 Mc counter. Frequencies up to 10 Mc are measured by direct counting. To measure frequencies above 10 Mc , the operator simply rotates reference frequency selector until panel meter shows strong deflection, then reads counter indication. Measurements take less than a minute to make. Accuracy far exceeds FCC requirements over communications range. Possible error is $.00004 \%$ or less from 1 Mc to 110 Mc .

Frequency measuring range locps to 110 Mc Sensitivity
100 mv rms into 1 M ohms
${ }^{\text {up to }} 10 \mathrm{Mc}$. 100 ohms up to 110 Mc Accuracy Oscillator accuracy $\pm 1 \mathrm{cps}$ Oscillator stability 3 parts in 10^{\prime} per week Recording facility Recording facility
Rear jack carries code signals to actuate Beckman printer Dimensions:
$83 / 4^{\prime \prime} \times 19^{\prime \prime}$ panel, $17^{\prime \prime}$ deep Weight
Ready for rack: approx. 47 Ibs. In cabinet: approx. 60 lbs. Price $\$ 1895$

Write for technical bulletin on Model 7175.

Berkeley Division
Richmond, California

FOR REEERENCE, DOK MHTO HGTOAGEN GOROTRONS" AKALLABLE IN VOGTAGES

FROM 900 TO27 Kt.

NOTE- WIRITE FOR DESIGN DATA ANO PERFDN WANCE SPECS. 70 APPLICATION ENG. DEPT.

Personals

Walter Hanstein. Jr. - appointed Associate Director of Engineering, Burroughs Corp.. Detroit, Michigan.
1)r. Francis S. Johnson, Manager of Lockheed's Space Physics Research, was appointed a Consultant to Subcommittees of NASA's Space Sciences Steering Committee. Ire will serve on the Ionspheric P hys ics Pancl.

Paul S. Mirabito-promoted to Vice President in charge of Burroughs' Defense Contracts Organization, Detroit. Michigan.

Joseph G. Koosman-promoted to Manager, Photosensitive Devices Lab, Electronic Tuhe Div., Allen B. DuMont Labs Div.:s. Fairchild C'amera and Instrument ('orp.. Clifton, N. J.

William O. Swinyard. Vice President and Director of Hazeltine Research. Inc., was presented a diamond pin upon recent completion ot $30-$ Years" service.

W. O. Swinyard

Dr. A. Stevenson
1)r, Ilden Stevenson-mamed Director of Rescarch, Pacific Semiconductors. Inc.. Culver City, Calif.

Roger E. Dumas - appointed Director of R\&D, Inductive Products Div.. Statham Instruments. Los Angeles. Calif.

Indrew E. O'Kerfe-appointed Kesearch Associate by Keuffel \& Esser Co., Hoboken, N. J., specializing in electro-photographic research and techniques.

Robert W. Pike-named Chief Inmineer in charge of R\&D at Industro Transistor Corp.'s new Semiconductor R\&D Center, Natick. Mass.

Richard V. Carroll-promoted to Senior Applications Engineer in charge of R-F Instrumentation at Borg-Warner Controls. Santa Ana, California.
1)r. Wendell Moyer. Jr.-ioins Marbon C hem ic al Div, Borg-Warner Corp., Washington. West Virginia, as a Group Lader in Vixploratory leseareh.
((imtinnted on page 66)
Circle 44 on Inquiry Card \longrightarrow

SUREICALLY CLEAN IS NOT CLEAN ENOUCH...

FOR the labrication of Saratoga Semiconductors, we use:
Cleansing solvents, so pure that one drop of water in 55 gallons=would reject them: processing acids of hyper-pure reagent grade or specifically developed semiconductor grade; purest water refined to 20 megohms resistivity.
Temperature and humidity in the air locked fabrication room are controlled to a plus or minus 2%; air with $99.3 /$ of impurities as fine as $1 / 10$ micron remored floods the work area.
These are reasons why Saratoga Semiconductors are rated Thoroughbreds. They outdistance all others for reliability, ruggedness and performance
Send for our new eutalogue SS-2001 ourlining details. specifications, and applications of Saratoga silicon zener regulators* and silicon power rectifiers.*

MAJORS and MINORS

... A Message to the Antenna Designer

A crowded spectrum plus high power radar and communication systems critically compound the problems of the antenna design engineer.
More than ever, the complete pattern including all the major and minor lobes of every radiating element must be graphed for sound engineering evaluation.

S-A Receiver Gets the Whole Signal

Scientific-Atlanta Series 402 Wide Range Receiving Systems are specifically designed for antenna pattern measurements. Unique in design, these receivers combine maximum sensitivity and linearity from 30 mc to above 100 kmc . They are also useful as multipurpose laboratory instruments for microwave testing, monitoring, and measuring applications.

Only from S-A, 1 db Linearity

 over Full 60 db Dynamic Range A recent development, S-A's P-4 modification adds 20 db to the normal 40 db dynamic range. The modification takes advantage of the gain vs AGC voltage characteristics of the Series 402. Existing receivers can be modified at the factory.
New Modification Z Broadens Use

Modification Z adds a precision IF attenuator and VTVM to the Series 402. Now RF and microwave signal level, gain, and isolation measurements can be made with fewer components and instruments. For instance, an X band 80 db attenuator can be calibrated to within $\pm 0.5 \mathrm{db}$ with a 1 mw signal source, a flap attenuator, a mixer, and an S-A Series 402 Z Receiver. Antenna gain can be measured by direct comparison with a standard gain antenna. Signal levels can be compared against a reference standard.

Other Features

One coaxial cable from antenna to receiver eliminates costly lossy waveguides and rotary joints. Antenna can be located up to 75 feet away with negligible loss in sensitivity it One receiving system covers 30 mc to above 100 kmc without plug-ins -2 Reception of cw signals from simple sources eliminates need for precise modulation it High sensitivity means low source power and long ranges it High selectivity reduces interference and cross talk between adjacent test ranges is Positive AFC action over full dynamic range provides pattern recording in deep nulls.
PRICES
Series 402, 2 to above 100 kmc
$\$ 7500$
Series 402A, 2 to above 100 kmc with AGC 8000
Series 402B, 30 mc to above 100 kmc 8500
Series 402C, 30 mc to above 100 kmc with AGC . . 9000
Modification P. 4 500
Modification Z 1000

NEW DATA FOLDER READY

For complete information ask for our new data folder from your nearby S.A engineering representative or write directly to Dept. 44.

SCIENTIFICATLANTA, INC.

2162 PIEDMONT ROAD, N. E.
ATLANTA 9, GEORGIA
PHONE: TRinity 5.7291

C TYPE MAGNETS in a wide range of sizes to meet your design needs in * Transverse Field Isolators * Differential Phase Shifters * Duplexers

Arnold C-type Alnico Magnets are available in a wide selection of gap densitres ranging from 1,000 to over 7,500 gausses. There are six different basic configurations with a wide range of stock sizes in each group.
The over-all size and gap density requirements of many prototype designs can be met with stock sizes of Arnold C Magnets, or readily supplied in production quantities.
When used in transverse field isolators, Arnold C Mag. nets supply the magnetizing field to bias the ferrite into the region of resonance, thus preventing interaction between microwave networks and isolating the receiver from the transmitter. These magnets are also used in differential phase shifters and duplexers, and Arnold is prepared to design and supply tubular magnets to provide axial fields in circular wave guides.

A feature of all Arnold C Magnets is the excellent field uniformity along the length of the magnet. Versatility in design may be realized by using multiple lengths of the same size magnet stacked to accomp.ish the needs of your magnetic structure.

Let us work with you on any requirement for permanent magnets, tape cores or powder cores. - For information on Arnold C Magnets, write for Bulletin PM-115. Address The Arnold Engineering Company, Marengo, Illinois.

ADDRESS DEPT. EI-11
7420 B

[^4] Find them FAST in the YELLOW PAGES

Now you can specify two great coaxial connector trademarks AMPHENOD and Gpc from the industry's largest manufacturer:

A NEW EXPANDED FACILITY OF THE AMPHENOL-BORG ELECTRONICS CORPORATION
Here's how the world's largest manufacturer of coaxial connectors can now serve you better-

Offering the broadest line of coaxial connectors available from one source, RF PRODUCTS can now provide:

* Widest selection of UG types.
* Most extensive non-UG line in the industry, including special connectors designed and built to meet your specific requirements.
* Local availability-your local authorized Amphenol distributor will soon have many specified IPC connectors available from stock.

A NEW DIMENSION in RF products capability-consolidating the design and production facilities of Amphenol Cable and Wire, Amphenol Coaxial Connectors, Industrial Products-Danbury Knudsen. Address all requests to:

At Last-High Reliability in Carbon-Film Potentiometers!

Bourns Trimpot ${ }^{\circledR}$ carbon-film potentiometers now offer you twice the stability of any carbon unit heretofore available at temperatures as high as $150^{\circ} \mathrm{C}$. Now, for the first time, you can incorporate high resistance, infinite-resolution potentiom eters in your circuit without sacrificing reliability. The reason Resiston*, a remarkable new carbon element that virtually eliminates the problems normally caused by extremes of temperature and humidity.

Thanks to this exclusive Bourns development, Trimpot carbon units can operate at temperatures
up to $\underline{150} \mathrm{C}$-with resistance shift only half that of ordinary carbon elements. In addition, they far exceed the requirements of Mil-Specs for humidity and MIL-R-94B

Trimpot Resiston units are available from factory and distributor stocks with three terminal types... three mounting styles . and standard resistances ranging from 20 K to 1 Meg. Resiston elements are availab e in most Bourns configurations. Write for the new Thimpot summary brochure and list of stocking distr butors and representatives.

Exclusive manufacturers of Trimpot®, Trimit ${ }^{(8)}$ and E-Z.Trim® ${ }^{\circledR}$. Pioneers in transducers for position, pressure and acceleration.

IERC TRANSISTOR HEAT DISSIPATOR

actual size

accepts .305 to 335 variations in TO-5 cases!

Simplified installation for effective heat dissipation with IERC Tran. sistor Heat Dissipators are illustrated: 1. Parts available in rivet or screw attaching types. 2. Single or multiple mounting on heat sink angle. 3. Back-to-back mounting.

Detailed information. performance graphs. efc. are available in latest lERC' Technical Bulletin. Write for a copy today!

INTERNATJONAL ELECTRONIC RESEARCH CORPORATION 135 West Magnolia Boulevard, Burbank, California

Personals

Henry M. Ruppel-elected to Vice President in charge of Engineering, responsible for Production Engineering and Quality Control at all Allied Control Co. plants in California, Connecticut and New York City.

Dr. John W. Coltman and Dr. John K. Hulm-named Associate Director's of the Westinghouse Research Labs.

Dr. E. John Whitmore-joins Sylvania Electric Products, Inc. as Manager of Development Engineering at the Williamsport facilities of the company's Special Tube Operations.
H. K. Smead-returns to Univac Military Div. Hdgs in St. Paul, Minn. as Assistant Manager, Advanced Navy Computer Dept. E. R. Quady succeeds Smead as East coast office manager.

Walter W. Kunde, Jr. named Chief Engineer, Hermetic Seal Transformer Co.'s Components Div., Garland, Texas.

W. W. Kunde, Jr.

O. O. Schaus

Orland O. Schaus-joins Audio Devices, Inc. N. Y., as Manager of Research and Engineering.

Lewis W. Imm—resigns as President of the Librascope Div., General Precision, Inc., to "enter" a new dynamic frontier of Technology." He continues in a special consultant capacity. William E. Bratton assumes the Librascope presidency.
W. Walter Watts elected Director of RCA succeeding Charles B. Jolliffe, Vice President and Technical Director of RCA who reached retirement age December 1, 1959. He also became Chairman of the Board and President of RCA Sales Corp. on August 18, in addition to his post as RCA Group Executive Vice President.

Frederick A. Schaner - promoted to Vice President in charge of Engineering, The Daven Co., Livingston, N. J., a subsidiary of General Mills, Inc.

compact transistor switching for millisecond 4 (monitoring

The new Brush Trans-Switcher eliminates relays-greatly simplifies your problems of operations monitoring. Designed to take full advantage of the fast response and high resolution of Brush Operations Monitors, this compact, solid-state switching unit accepts up to 100 different "on-off" signals in a broad range of pulse shapes and amplitudes. Interchangeable, plug-in decade boards are designed to accept different voltage ranges and modes of operation. Avoid the "black box" approach-specify the standard Brush Trans-Switcher for the ultimate in precise, reliable monitoring. Write for complete details.

Brush Operations Monitors' response to signals is virtually instantaneous-less than 4 milliseconds. Multiple high-speed events are clearly defined from start to stop, on a common time base-and at rates up to 500 per second. Portable 30 channel or rack-mounting 100 channel models record sharp reproducible traces with fixed-stylus electric writing that provides the utmost in reliability. "Built-in" transistor switching to eliminate relays is optional. No direct writing recording system can match the capabilities of Brush Operations Monitors for industrial and military analysis and control. Write for complete specifications and application data.

Next month

THE MINUTEMAN PROGRAM . . . BRUTE FORCE FOR TRUE RELIABILITY

Another in El's series of engineering staff studies. This feature describes the bold new industry-wide program to achieve near absolute reliability in a missile system. Sponsored by the United States Air Force, and involving some 13 electronic component suppliers, the program will in time be responsible for evaluating the quality and reliability of components and equipments to an unprecedented new high plateau. . . . 100 times higher than present levels. Get the details on white room testing, checking, recording, storage, etc. procedures employed. They are the keys to future manufacturing techniques.

COMPACT TRAVELING WAVE TUBE DESIGN

These small S-band tubes use a permanent magnet focus structure that it miniaturized along with other tube structures. The result is ruggedized, light weight, wideband 10 milliwatt and one watt tubes that are well suited for confined spaces such as found in airborne vehicles.

USING TRANSIENT-TESTING TECHNIQUES

Transient testing of linear networks has certain desirable features over steady state techniques. Before considering transient methods, however, a rough idea of the network to be tested should be had to determine which technique to use. This article gives simple tools to make a good choice.

PROPAGATION CONSIDERATIONS IN RFI

Another feature in Electronic Industries' continuing RFI series. The electromagnetic field generated by a radiating antenna is quite complex. This complex field is the result of the simultaneous propagation of the energy by several modes. These modes are used for desired transmissions and, unfortunately, are also available for undesired signals. The characteristics of these modes are described.

SHIELDING CRT'S FROM MAGNETIC FIELDS

The field of magnetic shielding is notable for its lack of numerical values. While the subject of how to achieve good quality shielding is not emphasized, a significant contribution is made in that the artcle indicates how to establish the essential shielding objectives.

Plus all our other regular departments

Our regular editorial departments are designed to provide readers with an up-to-the-minute summary of world wide important electronic events. Don't miss Radarscope. As We Go To Press, Elec-
tronic Shorts, Coming Events, El Totals, Snapshots of the Electronic Industries, El International, News, Briefs, Tele-Tips, Books, Representatives News, International Electronic Sources, Personals, etc.

COMING SOON

1961 CALENDAR OF COMING ELECTRONIC EVENTS

Year-round reference guide to all electronic symposia, conventions and shows.
*MARCH
Annual IRE Issue

Annual All-Reference \&
Directory Issue

GUN
Fig. 1: Basic parts of a beam tube are the gun, rf interaction structure, focusing arrangement, and collector.

Future Trends

BEFORE entering into a detailed discussion of trends in microwave beam tubes, it is well to pause to define our terms. The principal parts of a beam tube, Fig. 1, are the gun, the rf interaction structure, collector, and focusing arrangement. The gun is further subdivided into the cathode and associated electrodes, and must be suitably related to the focusing mechanism, which is ordinarily a solenoid or magnet.

Interaction Principles

A given gun and collector with some suitable focusing arrangement produces an electron beam usable in a great variety of tubes. It must, therefore, be regarded as a basic building block. This idea is clari-

fied and extended in Figs. 2, 3 and 4 which show several different useful tube types which may be built around a given electron beam.

The electrical characteristics of the simple helix, Fig. 2(a), are extremely attractive, especially for tubes operating at low levels of power and voltage. The wave velocity is relatively constant at a convenient value, which is approximately equal to the speed of light reduced by the radio of the pitch to the perimeter. The impedance is higher than that of any other known structure suitable for low-voltage operation. Therefore, the gain and other performance characteristics of helix-type traveling-wave tubes (TWT) are fairly constant over bandwidths of approximately an octave. For these various reasons it appears un-

Fig. 2a (left): When the gun and collector are regarded as basic building blocks, this is the modification for a helix TWT amplifier.
Fig. 2b (below): Structure for a helix backward-wave oscillator.
 predictions may be, a definite need exists for information on which to base future plans. This article fills that need.

By WILLIAM A. EDSON
General Electric Microwave Laboratory
Power Tube Dept.
Palo Alfo, Calif.

In Microwave Beam Tubes

likely that the helix will ever be replaced as the circuit used in broad-band, high gain amplifiers for low to medium power applications.

Fig. 2(a) shows a helix with a direct input connection and a coupled-helix output arrangement. The usefulness of the latter is based upon the fact that two concentric helices are strongly and directionally coupled if the phase velocities are made equal and the two have opposite pitches. In a relatively short distance the entire power on the inner helix transfers to the outer helix for delivery to the useful load.

Fig. 3a: Conventional four-cavity klystron amplifier with tuners. Tuners

Input coarial line
\& window

Either form of coupler, or other arrangements such as waveguide or cavity and coaxial combinations may be used at either input or output of the tube.

The attenuator, which is necessary to avoid regeneration and possible oscillation due to reflections from input and output mismatches, consists of a resistive film. This film absorbs energy from the electric fields which extend outward from the helix. A variety of other arrangements including coupled helices with resistive terminations are also useful as attenuators.

The oscillator, Fig. 2(b), also uses a simple helix

Fig. 3b: Periodically loaded waveguide traveling wave tube.

Fig. 4a: Resonant helices achieve interaction in this klystron.
Fig. 4b: In a reflex klystron, beam passes twice through cavity.

Fig. 5: The present and project cathode performances in beam tubes.

Future Trends (Continued)

but employs a different type of propagation referred to as a backward-wave because the direction in which phase is increasing is opposite to the direction of energy flow. Thus, to get interaction with a beam moving from cathode to collector, rf energy must be fed in at the collector end, propagating towards the cathode end of the tube. Unlike the ordinary for-ward-wave, this wave has a velocity which varies sharply with frequency. Therefore, the frequency of interaction can be varied through a range as much as two octaves by changing the velocity of the electrons by adjustment of the accelerating voltage. This principle of interaction can be exploited in two ways:
(a) A voltage-tunable regenerative amplifier which is highly selective results if a back-ward-wave tube is driven by a small signal connected to the collector end of the helix.
(b) Oscillations which are voltage tunable ensue if the beam current is increased somewhat above the value appropriate for amplification.

Klystron Amplifier

Fig. 3 (a) shows a conventional four-cavity klystron amplifier featuring the rocking-ring tuner developed at our laboratory. A small signal delivered to the first cavity produces in the electron beam a small degree of velocity modulation which in the first drift tube leads to a small amount of density or current modulation at the second cavity. This current develops in the second cavity a voltage which results in additional velocity modulation of the beam and compounds the effect of the first cavity. In typical circumstances, the peak voltage developed in the third cavity is a substantial fraction of the dc accelerating voltage, and the beam reaching the output cavity is strongly bunched. The output resonator is heavily loaded by the output waveguide so as to abstract as much energy as possible from this bunched beam.

Unlike the TWT, the klystron produces coupling between the input and output circuits only by the action of the electron beam. Because the beam is unilateral and the intrinsic shielding of the cavities is essentially complete, it is possible to realize stable amplification with gain values as high as 100 db in a single tube.

The periodically loaded waveguide of Fig. 3(b) may be thought of as a hybrid between a multicavity klystron and a helix TWT. Cavities somewhat resembling those of a klystron are stacked up and strongly coupled by means of large apertures or loops. The nature of the coupling determines whether the device operates on a fundamental forward-wave, such as the "cloverleaf" type TWT, or whether it operates on a higher order component forward-wave referred to as spatial harmonic TWT. The wave initiated near the cathode grows and produces a substantial degree of bunching in the electron beam as it travels toward the collector. As in helix-type TWT's, there will be an undesirable tendency toward oscillation unless some sort of internal attenuation is provided. This attenua-
tion is sometimes provided by spraying Kanthal or other high resistance material on the surface of some of the cavities near the center of the tube.

The same purpose is accomplished by severing the tube, Fig. 3(b). The amplified electromagnetic wave is absorbed in a ring or slab of carbonized ceramic, and the pre-bunched electron beam passes through a short drift tube to excite a new growing wave in the output portion of the tube. This wave is coupled out near the collector to drive the useful output load. Any reflection from the load passes with little loss through the several cavities back to the auxiliary coupler near the middle of the tube, which may be connected to a receiver, dummy load, or auxiliary input as the system needs dictate.

The structure just described includes features identifiable with both klystrons and TWT's. That is, traveling-wave interaction is used to obtain substantial bandwidth, while a drift tube is used to decouple the output from the input. These two ideas can be combined in many other ways. One example of such a combination is the extended interaction klystron, Fig. 4(a). In this case the interaction is achieved by means of resonant helices. However, the same general remarks apply to a great variety of structures using either traveling or standing-waves.

Extended interaction devices of this general kind combine the best features of conventional klystrons and TWT's. That is, considerable bandwidth, stability, high gain and good efficiency. Therefore, it is probable that they will ultimately replace both basic tube types.

Reflex Klystron

An important form of oscillator, commonly referred to as the reflex klystron, results if the electron stream is caused to reverse its direction and pass twice through a single cavity, Fig. 4(b). Reflex klystrons, like backward-wave oscillators, are relatively inefficient because it is impossible to establish simultaneously, conditions for optimum bunching and catching of the electrons in the beam. They are, however, of great economic importance because they are relatively cheap, require but one cavity, and are capable of a fair range of voltage tuning through the reflector electrode.

Of many other possible interaction principles, one which is novel and promising employs an electron beam in a smooth-walled waveguide such as a circular metal tube operating in a TE mode. Propagation in this system is characterized by a fast-wave which has a velocity substantially in excess of the speed of light. However, this wave will interact with an electron beam having a much lower velocity, provided the latter is periodically perturbed in velocity (speed and/or direction) by means of a (stationary) magnetic field or in some other suitable way. There is little doubt that a number of very useful devices will be developed from this novel interaction method, especially for extremely high peak and average powers. Because fast-wave interaction takes place in a simple unloaded waveguide of large size, it is very attractive for use in producing extremes in power (tens of megawatts) and frequency (say 300 kmC). These devices also will

Fig. 6: Present and project trends in perveance, solid \mathcal{E} hollow beams.

Fig. 7: Predicted available power output vs. midband frequency for octave-wide CW TW amplifiers. Parameter is year of initial production.

Future Trends (Continued)

become increasingly important at present powers and frequencies as soon as their efficiency can be shown to be competitive.

Other novel structures that are attractive for production of extremes in power or frequency are those using electron streams in parallel, such as the travel-ing-wave klystron (with some long-needed improvements for higher gain and efficiency), the multistream, multi-helix TWT and hollow stream TWT's and klystrons.

Cathodes and Beam Perveance

The oxide coated cathode is now about fifty years old. During that interval it has received extensive and intensive study. Although many important questions remain unanswered, there now exists a great wealth of experience with this cathode. Present processes yield cathodes which are fully satisfactory in situations where moderate values of life and emission density are sufficient or where the applied voltages are low. However, the trends toward higher powers and frequencies require increasing levels of voltage and emission density. Present cathodes do not yield satisfactory values of life in these situations and the rate at which over-all tube performance may be improved is likely to be limited by the rate at which cathodes can be improved.

Research work at our laboratory has indicated that
Fig. 8: Predicted locus of available power output vs. midband frequency for octave-wide pulsed traveling-wave tubes. Duty order: 0.01 .

oxide cathodes may be operated at extremely high emission levels for long periods of time in special diodes or triodes which have been fabricated from materials of utmost purity and which have been processed under conditions of extreme cleanliness. Unpublished results of Professor Coomes (Notre Dame University) corroborate these findings. While it is reasonable to hope that similar results can be achieved in beam type tubes there is no certainty this will prove to be true.

The dispenser cathode avoids some of the drawbacks of the conventional oxide coated cathode by supplying a reserve of barium or other active metal in a porous matrix of tungsten. Such cathodes run at rather high temperatures and evaporate relatively large amounts of barium. They are, therefore, of limited usefulness in many applications. However, they are capable of good life at substantially higher emission densities than are now allowable in oxide cathodes. They are also less vulnerable to contamination by their environment.

Curves showing present and projected values of life versus emission density for such cathodes are shown in Fig. 5. These curves can be used unchanged for the average density in pulsed operation provided the pulse length does not exceed about $10 \mu \mathrm{sec}$ and the duty cycle is not less than about 0.1. In more typical situations of low duty cycle, the peak density during the pulse may exceed the values indicated by a factor

Fig. 9: Predicted locus of available power output vs, midband frequency for CW Single-beam klystrons and narrow-band traveling-wave tubes, including fast-wave interactions. Production year is parameter.

of about 10 provided the pulse length does not exceed about $10 \mu \mathrm{sec}$. In long-pulse applications it is necessary to use values applicable to continuous emission regardless of how low the duty cycle.
Electron beams are characterized by a geometrical constant called the "perveance" which is the ratio of beam current to beam voltage raised to the three halves power. Because high perveance beans tend to reduce the operating voltages and to increase the bandwidth capabilities of beam tubes, there is great interest in producing such beams. Though in principle solid beams of perveance about 30×10^{-6} can be made, the useful perveance of such beams appears to be limited to values less than or equal to about 3×10^{-6}. This limitation is caused by space charge forces which oppose the formation of "bunches" of electron charge due to rf modulation. It appears impossible to avoid these "space charge debunching" forces which oppose build-up of rf modulation on the beam. Therefore, one must avoid increasing the charge density in the beam for a given current and voltage. To obtain increased beam current and power output for a given voltage, one may parallel many beams, each of moderate perveance, or use a hollow beam which may be thought of as an array of many separate beams in parallel. A thin cylindrical hollow electron beam of perveance 20×10^{-6} is used in the Z-5092, and much larger values of perveance are at least theoretically possible for hollow beams.

Curves showing present and projected values of
Fig. 10: Predicted locus of same characteristics as in 3 preceding illustrations but for pulsed klystrons and TWT's. Duty order: 0.01. Frequency coverage order: 15%. Parameter is year of initial production.

REFERENCE PAGES

The pages in this section are perforated for easy removal and retention as valuable reference material.

SOMETHING NEW HAS BEEN ADDED
An extra-wide margin is now provided to permit them to be punched with a standard three-holepunch without obliterating any of the text. They can be filed in standard three-hole notebooks or folders.
perveance for solid and hollow single beams are showat in Fig. 6.

Power Output

The maximum power which may be developed at a given frequency is an important measure of the usefulness of a given electronic device or interaction principle. In general, the maximum power which may be generated in a given way decreases sharply with increase of frequency. Many varied influences are involved and the over-all situation is complicated. However, one relatively simple principle is present in nearly every case. This is the principle of similitude or geometric scaling which states that the electromagnetic performance of a given geometry is preserved if the wavelength is scaled together with all linear dimensions. Thus, the surface area of a given design varies as the square of the wavelength. Because heat which may be dissipated tends to vary directly with surface area, the average power handling capability of a given design tends to vary with the square of wavelength unless limitations due to other influences such as output windows are encountered. This approximation is used in a number of curves discussed in the following paragraphs.
The variation of power output with frequency (or wavelength) is well illustrated by CW helix-type TWT's, to which electromagnetic scaling laws apply rather exactly and in which helix heating is the dominant limitation of power output. Curves of present and projected performance are shown in Fig. 7. It is seen that present techniques would yield a continuous power output of 100 kw at frequencies up to about 300 MC , though the tube would be inconveniently large. The curvature at frequencies near 100 KmC results from thermal spreading of the beam and other difficulties associated with producing small high-intensity beams.

The projected performance of pulsed helix-type TWT's is shown in Fig. 8. It differs from Fig. 7 mainly in that the peak power is increased by a factor of ten while the average power is substantially reduced.

The conventional multi-cavity klystron is extremely rugged and is subject to excellent cooling. As a CW amplifier it is able to handle approximately ten times as much power as a helix-type traveling-wave tube for the same frequency. This advantage, which is shared by all-metal loaded-waveguide traveling-wave tubes, is indicated in Fig. 9. The dotted line superimposed on these curves was derived several years ago. It represents a practical limit of power output for solid beam tubes based on various physical limitations as to beam density, focusing, and heat dissipation. Extension of the 1967 curve to the right of this dotted

Future Trends (Concluded)

line is justified on the basis of parallel circuit devices, hollow stream devices and the early promise shown by a fast-wave interaction principle, all of which use relatively large beams and structures for a given frequency.

For a number of system applications it is desirable to generate a given amount of mean microwave power by means of pulsed operation. In this mode of operation many megawatts of peak power at several hundred kilovolts have been obtained from klystrons. TWT's have not yet operated at such extreme levels, but are rapidly catching up with klystrons. Relatively high voltages are required, so that moderate values of current and current density result in tremendous power levels. The situation is represented by Fig. 10 which shows that the state of the art has already reached the power level at which a normal air-filled waveguide breaks down. The horizontal portions of the curve represent an arbitrary limitation of 300 kilovolts, dictated from external system considerations. Future power increase is associated with the perveance increases indicated in Fig. 6.

Efficiency

The efficiency with which power is converted from dc to ac is of central importance at all frequencies and all power levels. Unfortunately, present beamtype tubes are only moderately efficient. Nor is it likely that the efficiency will quickly or easily be improved. Present and projected efficiency values for a variety of tube types are given in Fig. 11. Two principal approaches to increase efficiency are available: improved interaction and improved collection of the spent beam. Of these the former is preferable because it is straightforward and increases the power output available from a given beam voltage and current. However, improved interaction is very difficult to realize requiring improved beam formation and control and, for TWT's, circuits of higher impedance. Therefore, it may prove more expedient to modify the collector in such a way that unused energy originally invested in the beam is returned after passage through the interaction structure.

Noise Figure and Gain

In most systems the same performance advantage results from a one db improvement of receiver noise figure as from a db increase of transmitter power. Therefore, reduction of receiver noise is of tremendous economic importance. Recent development of parametric devices, both solid state and beam type. suggest that the equivalent temperature of the receiving amplifier can be reduced far below room temperature. Microwave systems which employ highly directive upward-pointed antennas may take advantage of such devices because the equivalent temperature of space is much lower than that of the earth. Therefore, it is possible to achieve noise reductions to substantially lower values than the 4 to 8 db which may be taken as a typical contemporary noise figure relative to room temperature.

A projection of future noise reduction is shown in Fig. 12 which also shows a substantial increase in the typical gain of future beam-type amplifiers. Increased gain is desirable because it reduces the number of cathodes required by representative systems, provides for the possibility of negative feedback, and permits padding and other loss-adding techniques which are often desirable or essential.

Bandwidth

Helix-type TDT's readily provide a useful bandwidth of an octave or more. Because this bandwidth exceeds that which may be handled in a conventional waveguide or most other passive components, and because few systems can make use of so much bandwidth, there is little incentive to increase this parameter. Exactly the opposite situation exists with respect to klystrons and non-helix TWT's. Here the present state of the art produces bandwidths of only a few per cent while system needs suggest future use of 20 to 40%. Therefor, a great incentive to improvement exists. Present and future bandwidths are indicated in Fig. 13, where the curve for high power TWT is also applicable to hollow stream klystrons and hybrid tubes using extended interaction.

Weight Reduction

In the past it has proved so difficult to achieve creditable electrical performance in microwave beam

Fig. 12: Predicted performance parameters vs. initial production year.
tubes that little effort has remained for cost or weight reduction. However, this interim phase is now at or near an end, and weight and cost must be reduced to produce devices which are fully salable. The rate at which these parameters may be reduced is estimated in the upper line of Fig. 13. It is immediately obvious that no single line can represent all tube types and that the results achieved will vary enormously with the design and application of the particular tube. However, the trend indicated appears about right as an over-all average.

Current Control

A grid is a desirable adjunct to any microwave beam tube because it facilitates modulation of the output. Both improved results and reduction of modulator costs may be expected to result from the provision of a suitable grid. Therefore, designers are under considerable pressure to provide tubes with grids, and an increasing number of tube types have grids. This trend is also indicated in Fig. 13.

Linearity

Advanced systems for both radar and communication place increasingly severe requirements on the

gain constancy, linearity, and phase stability of microwave tubes. Many relatively complicated factors are involved including delay distortion, non-linear distortion, and change of phase with voltage and current. If does not appear practical to illustrate these trends in a graphical way. However, there can be 110 doubt that substantial improvements in performance will be demanded and produced, and that failure to comply with this demand will be disastrous.

Universal Test Station

DEVISING, building and preparing specialized test setups used for a limited number of times often adds considerably to design and manufacturing costs. This new
automatic Universal Test Station, built by Consolidated Avionics Corp., 800 Shames Dr., Westbury, N. Y., can perform a variety of tests on electronic products such as
transistors, tubes, diodes, transformers, signal generators, passive networks, transducers, power supplies, batteries, dc and ac amplifiers, filters, recorders, rate gyros, programmers, servos, etc.
Test procedures are pre-programmed and the results are pre-
(Continued on page 253)

By JOSEPH HABRA

Member, Technical Staff
U. S. Science Corp.

5221 West 102nd St.
Los Angeles 45, Calif.

Designing

THE mechanical modulator is used in the FAA's Glide Slope Projector. This projector is a radio facility which provides vertical guidance for instrument landings. The system provides a glide path by transmitting a combination of radiation patterns which result in two modulated signal areas.

Two mechanical modulators are used in each unit. The first furnishes a 150 CPS modulated signal below the glide path; the second, a 90 CPS modulated signal above the path.

The modulator consists of a $3 \lambda / 2$ hybrid with a characteristic impedance of $50 \sqrt{2}$ ohms; two identical variable impedances, each consisting of a 50 ohms dummy load; two inductive stubs; and, a variable impedance paddle wheel, Figs. 1 and 4.

The two variable impedances set up the condition for modulation.

The analysis is done in steps: first, the hybrid, then the variable impedance system. Only the important equations of the analysis are shown here.

Hybrid

The $3 \lambda / 2$ hybrid characteristic impedance Z_{0} is $50 \sqrt{2}$ ohms. All the transmission lines connected to the hybrid have a characteristic impedance of 50 ohms. The two modulating impedances Y_{a}, Fig. 2, are identical and are connected to the hybrid so that the following relation holds:

$$
\begin{equation*}
L_{2 z}-L_{i}=\frac{\lambda}{4} \tag{1}
\end{equation*}
$$

in the labaratory prototype $L_{2}=\frac{3 \lambda}{4}$:nd $L_{1}=\frac{\lambda}{2}$.

Fig. 2: Input and load impedances of hybrid are constant and equal.

Assuming negligible losses, the internal impedance $Z_{\text {in }}$ of the hybrid is found to be equal to:

$$
\begin{equation*}
Z_{\text {in }}=Z_{0} \frac{\left(y_{b}+\sqrt{2}\right)^{2}}{\sqrt{2\left(y_{b}+\sqrt{2}\right)^{2}}}=\frac{Z_{0}}{\sqrt{2}}=\text { constant } \tag{2}
\end{equation*}
$$

Where y_{b} is the normalized admittance at point B , Z_{o} (equal to $50 \sqrt{2} \mathrm{ohms}$) is the characteristic impedance of the hybrid. This is an important result since the transmitter supplying the unmodulated carrier has constant impedance. If the input impedance of the hybrid is not constant, reflection will result and the hybrid efficiency will go down rapidly.

Since the hybrid impedance is $50 \sqrt{2}$ ohms while the load impedance $Z_{L}=50 \Omega$,

$$
\begin{equation*}
Z_{\text {in }}=\frac{\sqrt{2} Z_{L}}{\sqrt{2}}=Z_{L}=\text { constant } \tag{3}
\end{equation*}
$$

This shows that the input impedance of the hybrid is constant and equal to the load impedance. If the load impedance is 50 ohms, then the transmitter internal impedance should be 50 ohms for good matching. This is an important result and if Eq. (2) is not valid, the hybrid is of little use.

Let the transmitter voltage be V_{s} and its impedance Z_{s}, then, if Z_{L} the hybrid load termination is 50 ohms , the hybrid load voltage V_{L} is:

$$
\begin{align*}
& V_{L}=V_{S} \cdot \frac{y_{a}-y_{b}}{y_{L} \eta_{a} y_{b}+y_{a}+y_{b}+Z_{S} Y_{a} y_{L}\left(y_{a}+y_{b}\right)+4} \tag{4}\\
& \text { Then, }
\end{align*}
$$

$$
\begin{equation*}
Z_{S}=\frac{Z_{0}}{\sqrt{2}} \tag{5}
\end{equation*}
$$

Also from the condition of Eq. (1), the following is true:

$$
\begin{equation*}
y_{b}=\frac{2}{y_{a}} \tag{6}
\end{equation*}
$$

Substituting Eq. (5) and (6) in Eq. (4) we get:

$$
\begin{equation*}
\frac{V_{L}}{V_{S}}=\frac{1}{2} \frac{y_{a}-\sqrt{2}}{y_{a}+\sqrt{2}} \tag{7}
\end{equation*}
$$

Since a sinusoidally modulated carrier is wanted, then,
tubes that little effort has remained for cost or weight reduction. However, this interim phase is now at or near an end, and weight and cost must be reduced to produce devices which are fully salable. The rate at which these parameters may be reduced is estimated in the upper line of Fig. 13. It is immediately obvious that no single line can represent all tube types and that the results achieved will vary enormously with the design and application of the particular tube. However, the trend indicated appears about right as an over-all average.

Current Control

A grid is a desirable adjunct to any microwave beam tube because it facilitates modulation of the output. Both improved results and reduction of modulator costs may be expected to result from the provision of a suitable grid. Therefore, designers are under considerable pressure to provide tubes with grids, and an increasing number of tube types have grids. This trend is also indicated in Fig. 13.

Linearity

Advanced systems for both radar and communication place increasingly severe requirements on the

gain constancy, linearity, and phase stability of microwave tubes. Many relatively complicated factors are involved including delay distortion, non-linear distortion, and change of phase with voltage and current. If does not appear practical to illustrate these trends in a graphical way. However, there can be no doubt that substantial improvements in performance will be demanded and produced, and that failure to comply with this demand will be disastrous.

Universal Test Station

DEVISING, building and preparing specialized test setups used for a limited number of times often adds considerably to design and manufacturing costs. This new
automatic Universal Test Station, built by Consolidated Avionics Corp., 800 Shames Dr., Westbury, N. Y., can perform a variety of tests on electronic products such as
transistors, tubes, diodes, transformers, signal generators, passive networks, transducers, power supplies, batteries, dc and ac amplifiers, filters, recorders, rate gyros, programmers, servos, etc.

Test procedures are pre-programmed and the results are pre(Continued on page 253)

Abstract

Manufacturers frequently give data for only one center conductor temperature and one ambient temperature. It is often difficult to extrapolate temperature data for other power levels and other ambient temperatures. Here is a method which simulates electrical loss without applying microwave energy. It produces a maximum amount of data with a minimum expense in time and money.

Determining Temperature Rise

THE increasing level of microwave power transmitted through coaxial transmission lines makes it necessary to consider heat transfer in the design and specification of these lines. Relatively small electrical losses in a coaxial line can result in surprisingly high center conductor temperatures. These increased temperatures not only increase electrical loss but may also result in failure of dielectric beads used to support the inner conductor. In designing high power rotating coaxial joints, conductor temperature is a major consideration in specifying mechanical clearances. Conductor temperature data is needed for the proper design of almost any high power coaxial line.

Inserting heat-dispersing resistors. Simulation of heat transfer conditions produce max. amount of data with a minimum expense.

Will a particular coaxial configuration in a proposed design require forced cooling? The question is difficult to answer even for standard coaxial lines because manufacturers frequently give data for only one center conductor temperature and one ambient temperature. It is often difficult (or even impossible) to extrapolate temperature data for other power levels or other ambient temperatures.

To help solve this problem, temperature data was obtained for three typical sizes of air dielectric coaxial lines operating in various ambient temperatures over a wide range of power levels. A technique was used which simulated electrical loss in the lines without applying microwave energy. The method produced a maximum amount of data with a minimum expense in time and money. With this data it is possible to determine whether a similar proposed coaxial transmission line will require forced cooling when it operates at its designed power level.

Allowable conductor temperature will, of course, vary from application to application. Where forced cooling should be employed is a matter of engineering judgment. This data should serve as a valuable basis for judgment.

Heat Developed in a Coaxial Line
The resistance, R_{1} per unit length of outer conduetor of a coaxial line at frequency f, may be expressed as:

$$
R_{1}=\frac{1}{r_{1}} \sqrt{\frac{f u_{1}^{\prime}}{4 \pi \sigma_{1}}}
$$

The resistance, R_{z} per unit length of inner conductor of a coaxial line at frequency f may be similarly expressed as:

$$
R_{2}=\frac{1}{r_{2}} \sqrt{\frac{f u_{z}^{\prime}}{4 \pi \sigma_{2}}}
$$

Laboratory set-up. Voltmeter - ammeter readings determine wattage dissipated.

By DENIS J. LOGAN
 Surface Armament Div.

Sperry Gyroscope Co.
Div. of Sperry Rand Corp.

Great Neck, L. I., N. Y.

of Coaxial Lines

Where: $\quad u_{1}^{\prime}=$ permeability of outer conduetor $u^{\prime} z_{2}=$ permeability of inner conductor $\sigma_{1}=$ conductivity of outer conductor $\sigma_{2}=$ conductivity of the inner conductor $r_{1}=$ radius to inside diameter of outeraconduetor

Fig. 1: Watts dissipated in 1st ft . of line vs temp. ($7 / 8 \mathrm{in}$. brass coaxial-unpainted.)

WATTS DISSIPATED IN FIRST FOOT OF LINE
$r_{2}=$ r:ulius to ounside diameter of inner conductor
$=$ frequency
For most coaxial lines constructed with both inner and outer conductors of the same material, the equations above show that a greater resistance per unit length, and hence greater copper loss, will occur in the center conductor. For representative lines with characteristic impedance equal to 50 ohms, we have closely:

$$
r_{1}=2.3 r_{2}
$$

from which it follows that the resistance per unit length of outer condactor is about 0.4 times that of the inner conductor. The total attenuation of a copper coaxial line with air dielectric having the dimensions r_{1} and r_{2} (in centimeters) may be expressed."

$$
\alpha=\frac{\sqrt{f}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)}{0.288 \operatorname{lnge} \frac{r_{1}}{r_{2}}} \times 10^{-8} \text { meper } / \mathrm{motin}
$$

Since I neper $=8.68 \mathrm{db}$ and $1 \mathrm{ft}=0.3048$ meters:

$$
=\frac{9.18 \sqrt{f}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right) \times 10^{-8}}{r_{1}} d b / f
$$

$$
\log \epsilon \frac{r_{1}}{r_{2}}
$$

It can be seen that attenuation is expressed in $\mathrm{db} / \mathrm{ft}$ rather than in w / ft. Herce, the heat .oss is not uniform but is greater toward the input power end. If 1000 w of power enters one end of a 100 ft line and only 500 w leaves the other end, a total loss of about 3 db has taken place. The average power lost would be $5 \mathrm{w} / \mathrm{ft}$. However, the ooss in every foot of line would be $0.03 \mathrm{db},(3 \mathrm{db} / 100)$, which for 1000 w of input power would be equivalent to about 7 w in the 1st foot. Apparently the end of the line clasest to the input end will be the hottesi.

Temperature With Known Power Loss

It is usually possible to determine the attenuation of a coaxial line from caiculations, experimentation.

Temperature Rise (Continued)

or manufacturer's data. With the attenuation known it is possible to calculate the wattage lost in the first foot of line. Determination of the temperatures in the line by heat transfer calculations is rather involved and requires quite a few assumptions and approximations. It was decided that, by simulating the heat transfer conditions that exist in a coaxial line under high power, the maximum amount of temperature data could be obtained with a minimum expense in time and money.

Three representative coaxial lines were studied. Each had hollow inner conductors. Strings of power resistors were inserted in series within the center conductors. It was possible to simulate varying degrees of electrical loss by adjusting the voltage across these resistors. The fact that all the heat was generated within the center conductor only approximated the condition of the line under high microwave power. Since 100% of the microwave power is not lost in the center conductor, this method results in inner conductor temperatures that are somewhat higher than those achieved under actual microwave power.

The procedure used in the experiments was relatively simple. One foot lengths of $7 / 8^{\prime \prime}, 15 / 8^{\prime \prime}$ and $31 / 8^{\prime \prime}$ outer conductor coax with 50 ohm characteristic impedance were used in the tests. Thermocouples were attached to the outside diameter of the inner and outer conductors at the midpoint of each one foot test specimen. Both ends of each coax line were then

Fig. 2: Watts dissipated in lst ft. of line vs temp. ($15 / 8 \mathrm{in}$. brass coaxial line-unpainted).

TABLE 1

AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{F}$)	NOMINAL OUTERCONDUCTOR SIZE OF COAX LINE $\left(Z_{0}=50 \Omega\right)$	TEMPERATURE OF OUTER CONDUCTOR (${ }^{\circ} \mathrm{F}$)	*PERMISSIBLE POWER LOSS PER FOOT (WATTS)
72	7/8	122	9.1
125	7/8	160	6.9
176	7/8	200	4.9
72	1-5/8	120	13.1
125	1-5/8	155	9.7
176	1-5/8	197	6.0
72	3-1/8	126	24
125	3-1/8	166	17.4

* POINT AT WHICH CENTER CONDUCTOR REACHES HEAT DISTORTION POINT OF TEFLON AT 66 psi $\left(270^{\circ} \mathrm{F}\right)$

```
G0-6
```

sealed with Duxseal. Each test piece was placed on small wooden blocks in an oven set to carefully maintain the selected ambient temperatures. In each case the voltage across the power resistors was varied with a Variac. Readings of a voltmeter and ammeter determined the wattage being dissipated. Temperature readings were obtained with a thermocouple bridge.

From the data obtained, plots of temp. vs. dissipated power were made and are shown in Fig. 1, Fig. 2 and Fig. 3.

Table 1 shows the point at which teflon beads will soften in the three representative coax lines.

Fig. 3: Watts dissipated in lst ft. of line vs temp. ($31 / 8 \mathrm{in}$. brass coaxial line-unpainted).

Graphic Plots

Note that all the plots in Fig. 1, Fig. 2, and Fig. 3 were made for brass coaxial lines. Actually, because of the type of heat transfer occurring in these cases, the type of material is insignificant (material will, however, play an important part in the electrical attenuation). The chief barrier to heat flow in a coaxial line is the air between the inner and outer conductor. The metallic tubes which are relatively thin in cross section offer very little resistance to heat transfer. Hence, the temperatures obtained from these curves will apply fairly closely to lines constructed of aluminum, magnesium, steel, etc. Surface condition will play some part in the heat transfer phenomenon and the use of dark finishes, preferably black, on both inner and outer conductors will undoubtedly result in lower temperatures than are indicated on the curves.

To determine the temperature of the inner and outer conductor, calculate the power dissipated in the first foot of line, enter the curve plotted for the appropriate ambient temperature and read the conductor temperatures directly. For a very short line the curve may be entered with the average power dissipated per foot since heat conduction in the line will tend to even the temperatures out. Dissipated power per foot is used on the graphs rather than input power because, for a given input power the loss will vary with frequency.

Seldom will a coaxial configuration be as simple as that from which the curves were plotted. However, where the center conductor is kept isolated from metal to metal contact with the outer conductor, the conductor temperatures should be of the same order as those on the graphs.

Where heat sinks exist on the inner or outer conductor, the graph values for the temperatures will be too high. Heat will be drawn from the conductors by conduction-the temperatures will be lower. An ap-

REFERENCE PACES

The pages in this section are perforated for easy removal and retention as valuable raference material. SOMETHING NEW HAS BEEN ADDED An extra-wide margin is now provided so as to permit them to be punched with standard three-holepunch without obliterating any of the text. They can then be filed in standard three-hole notebooks or folders.
proximation of the temperature drop due to a heat sink may be obtained by applying basic heat transfer theory.

Although the curves have been plotted for heat transfer conditions which may be more severe than are encountered in a particular application, they can still serve as a valuable guide to conservative design.

Conclusions

The data in the curves has been found useful in designing several coaxial components. It was possible to forsee cooling problems in several proposed designs before actual breadboards were constructed. In at least two cases the need for liquid cooling center conductors was recognized at the proposal stage.

By using the curves and low power attenuation data it was possible to determine the approximate center conductor temperature that could be expected in a line at a specific level of high power and to decide if the materials used in the design were satisfactory.

The data can be used in determining the power handling capacity of existing lines or components (where attenuation is known) without expensive high power testing. This is of particular significance when a source of sufficient output power is not available.

Although data was presented for only three coaxial lines, the method of simulating high power losses can readily be adapted to innumerable particular cases to obtain fairly reliable heat transfer data with a minimum of expense.

Photoemissive Material for High-Temperature

ANEW photoemissive material reported by the Westinghouse electronic tube div. maintains high level of sensitivity over many hours of operations at $250^{\circ} \mathrm{F}$. Developed under a contract with the Bureau of Ships, it is expected to be used in such devices as imaging and photomultipler tubes. It will permit operation at temps well above $140^{\circ} \mathrm{F}$, the temp at which the operating life of conventional materials has generally been inadequate. Also: the "dark current"a residual current produced in total darkness-is less than 1% of that for conventional materials.

The surfaces are of the bi-alkali type and are made by combining sodium and potassium with anti-
mony. In a number of experimental tubes, the material has been applied as a semi-transparent surface over a glass substrate. Photoresponse values up to $80 \mathrm{ua} /$ lumen have been recorded with response uniform within 10% over the useful cathode area.

When continuously illuminated and subjected to thermal aging at temp to $250^{\circ} \mathrm{F}$ and over periods up to 140 hrs, decline in photoemission displays an exponential rate of decay after an initial 10-hr aging period. Generally, decay of photosensitivity at a fixed temp follows an exponential function of the form: $I=I_{0} e^{-k t}$, where $I=$ photocurrent at time $t, I_{0}=$ initial
photocurrent, $\mathrm{t}=$ time at elevated temp, $\mathrm{k}=$ constant indicative of the rate of decay of photosensitivity.

Average bi-alkali surfaces tested at $250^{\circ} \mathrm{F}$ display an exponential rate of decay, k, of 1.0×10^{-3} corresponding to an absolute decrease in photosensitivity of 20% over a $100-\mathrm{hr}$ period. The best surfaces achieved, however, show a decay rate of 0.34×10^{-3} for an absolute decrease of 7% after 100 hrs . Measurements of spectral response before and after operation at elevated temperatures show that the decay in photoelectric yield is not constant at all wavelengths and is least in the region of 420 millimicrons.

By JOSEPH HABRA
Member, Technical Staff
U. S. Science Corp.

5221 West 102nd St.
Los Angeles 45, Calif.

Designing

THE mechanical modulator is used in the FAA's Glide Slope Projector. This projector is a radio facility which provides vertical guidance for instrument landings. The system provides a glide path by transmitting a combination of radiation patterns which result in two modulated signal areas.

Two mechanical modulators are used in each unit. The first furnishes a 150 CPS modulated signal below the glide path; the second, a 90 CPS modulated signal above the path.

The modulator consists of a $3 \lambda / 2$ hybrid with a characteristic impedance of $50 \sqrt{2}$ ohms; two identical variable impedances, each consisting of a 50 ohms dummy load; two inductive stubs; and, a variable impedance paddle wheel, Figs. 1 and 4.

The two variable impedances set up the condition for modulation.

The analysis is done in steps: first, the hybrid, then the variable impedance system. Only the important equations of the analysis are shown here.

Hybrid

The $3 \lambda / 2$ hybrid characteristic impedance Z_{0} is $50 \sqrt{2}$ ohms. All the transmission lines connected to the hybrid have a characteristic impedance of 50 ohms. The two modulating impedances Y_{a}, Fig. 2, are identical and are connected to the hybrid so that the following relation holds:

$$
\begin{equation*}
L_{22}-L_{41}=\frac{\lambda}{4} \tag{1}
\end{equation*}
$$

in the laboratory prototype $L_{2}=\frac{3 \lambda}{4}$ and $L_{1}=\frac{\lambda}{2}$.

Fig. 2: Input and load impedances of hybrid are constant and equal.

Assuming negligible losses, the internal impedance $Z_{\text {in }}$ of the hybrid is found to be equal to:

$$
\begin{equation*}
Z_{\text {in }}=Z_{o} \frac{\left(y_{b}+\sqrt{2}\right)^{2}}{\left.\sqrt{2\left(y_{b}\right.}+\sqrt{2}\right)^{2}}=\frac{Z_{o}}{\sqrt{2}}=\text { constant } \tag{2}
\end{equation*}
$$

Where y_{b} is the normalized admittance at point B, Z_{0} (equal to $50 \sqrt{2}$ ohms) is the characteristic impedance of the hybrid. This is an important result since the transmitter supplying the unmodulated carrier has constant impedance. If the input impedance of the hybrid is not constant, reflection will result and the hybrid efficiency will go down rapidly.

Since the hybrid impedance is $50 \sqrt{2}$ ohms while the load impedance $Z_{L}=50 \Omega$,

$$
\begin{equation*}
Z_{i n}=\frac{\sqrt{2} Z_{L}}{\sqrt{2}}=Z_{L}=\mathrm{constant} \tag{3}
\end{equation*}
$$

This shows that the input impedance of the hybrid is constant and equal to the load impedance. If the load impedance is 50 ohms, then the transmitter internal impedance should be 50 ohms for good matching. This is an important result and if Eq. (2) is not valid, the hybrid is of little use.
Let the transmittcr voltage be V_{S} and its impedance Z_{S}, then, if Z_{L} the hybrid load termination is 50 ohms, the hybrid load voltage V_{L} is:

$$
\begin{align*}
& V_{L}=V_{S} \cdot \frac{y_{a}-y_{b}}{y_{L} y_{a} y_{b}+y_{a}+y_{b}+Z_{S} Y_{o} y_{c}\left(y_{a}+y_{b}\right)+4} \tag{4}\\
& \text { Then, }
\end{align*}
$$

$$
\begin{equation*}
Z_{s}=\frac{Z_{o}}{\sqrt{2}} \tag{5}
\end{equation*}
$$

Also from the condition of Eq. (1), the following is true:

$$
\begin{equation*}
y_{b}=\frac{2}{y_{a}} \tag{6}
\end{equation*}
$$

Substituting Eq. (5) and (6) in Eq. (4) we get:

$$
\begin{equation*}
\frac{V_{L}}{V_{S}}=\frac{1}{2} \frac{y_{a}-\sqrt{2}}{y_{a}+\sqrt{2}} \tag{7}
\end{equation*}
$$

Since a sinusoidally modulated carrier is wanted, then,

Fig. 3: Details of the modulation envelope.

Featuring phase and frequency stability, the mechanical modulator has won a berth in FAA equipment being used at air terminals to reduce hazards.
A thorough treatment on its design is presented here.

a Mechanical Modulator

$$
\begin{equation*}
\left|\frac{V_{L}}{V_{s}}\right|=1-\frac{m}{2}\left(1+\cos \theta_{m}\right)=\frac{1}{2}\left|\frac{y_{a}-\sqrt{2}}{y_{a}+\sqrt{2}}\right| . \tag{8}
\end{equation*}
$$

If y_{a}, normalized Y_{a}, is found for a desired impedance, using m as the modulation index, then a capacitance function can be found for a sinusoidally modulated output V_{L}.

Variable Impedance System

The variable impedance system used to modulate the carrier sinusoidally is shown in Fig. 4.

The variable capacitor C is actually a paddle wheel, of predetermined shape, rotating between a blade, of predetermined shape, and ground.

The capacitance change is created by varying the dielectric constant of the medium, air, between the blade and ground. The capacitance function C at any time is made up of two parts: that due to the common area between the wheel and the blade; and, the stray capacitance which has its greatest effect at $C_{\text {min }}$ when the wheel and blade are out of mesh.

Two boundary conditions exist. The first when a high impedance exists at point P; this corresponds to $C_{\text {max }}$ of the variable capacitance. The second condition is when a zero impedance or short exists at point P. This corresponds to $C_{\min }$ of the paddle wheel. The first stub is set so that its inductive reactance is equal to the reactance of $C_{\text {mar }}$. The second stub is set so that its reactance equals the reactance of the transmission line Z_{2} at point N when C is equal to C_{min}.

The first stub, across the variable capacitor paddle wheel, has an inductive reactance ωL_{1} equal to:

$$
\begin{equation*}
\omega L_{1}=j \frac{1}{\omega C_{\max }-\frac{1}{Z_{1} \operatorname{tin} \beta x}} \tag{9}
\end{equation*}
$$

Where Z_{1} is the eharateteristic impedance of the line, $\beta x<\lambda / 4$, and $C_{\text {max }}$ is the maximum value of C. The value of $C_{\text {max }}$ determines at condition corresponding to maximum modulation (zero voltage for $m=1$).
The second inductive stub, a distance βx away from the paddle wheel capacitor, has an inductive reactance ωL_{2} equal to:

$$
\begin{equation*}
\omega L_{2}=j \frac{Z_{1}^{2} \omega\left(C_{\max }-C_{\min }\right) \tan \beta x}{\tan \beta x+\frac{1}{\tan \beta x}-Z_{1} \omega\left(C_{\max }-\left(C_{\min }\right)\right.} \tag{10}
\end{equation*}
$$

This value of reactance corresponds to $m=1$, or $\mathbf{1 0 0 \%}$ modulated carrier in the derivation of Eq. (10). For Eqs. (9) and (10) to be true, the following condition was found:

$$
\begin{equation*}
\frac{1}{\omega C_{\max } \tan \beta x}<Z_{1}<\frac{\tan \beta x+\frac{1}{\tan \beta x}}{\omega\left(C_{\max }-C_{\min }\right)} \tag{11}
\end{equation*}
$$

The normalized admittance y_{a} of the system as shown in Fig. 4 is equal to:

$$
\begin{align*}
y_{a}=\frac{50 \sqrt{2}}{Z_{D}} & +j \frac{50 \sqrt{2} Z_{1}{ }^{2} \omega \tan \beta x}{Z_{2}{ }^{2}\left(\tan \beta x+\frac{1}{\tan \beta x}\right)} \\
& \cdot\left[\frac{1}{\frac{1}{C_{\max }-C_{\min }}-\frac{1}{C_{\max }-C}}\right] \tag{12}
\end{align*}
$$

Where $Z_{0}, Z_{1}, Z_{2}, \beta x, C_{m a x}$, and $C_{\text {nin }}$ are all fixed parameters, the capacitance function C of the paddle whed is the only variable.

Laboratory Prototype

Substituting Eq. (12) in Eq. (8) and solving for C, the paddle wheel capacitance function versus the modulation envelope angle θ_{m}, we get $E q$. (13) which appears at the foot of page 84 .

Illustration of the casing, paddle wheel, blade and first stub.

Mechanical Modulator

(Continued)

The values used in the laboratory prototype are:
$C_{\mathrm{max}}=6 \mu \mu f, C_{\mathrm{miu}}=3 \mu \mu f, Z_{1}=150 \Omega, Z_{2}=50 \Omega, ~ \beta, c^{C}=45^{\circ}$ $f=332$ мг.

Using the above values, the capacitance function equation becomes:

$$
\mathrm{O}^{\prime}=6-\frac{1}{-\frac{1}{\left[1-\frac{m}{2}\left(1+\left(\sin \theta_{m}\right)\right]^{2}\right.}-.125} \quad(1.6)
$$

Eq. (14) is plotted in Fig. 5 for different modulation indices.

The capacitance function of Fig. 5 is the capacitance that the paddle wheel and blade should duplicate to get a distortionless sinusoidal modulated output. The figure also shows the effect of modulation on the maximum value of capacitance $C_{\text {max }}$.

A means of lowering $C_{\text {max }}$ without changing $C_{m i n}$, Fig. 5, is also a method of controlling modulation of the carrier wave.

The other variables besides the paddle wheel capacitance are the two inductive stubs.

Stub No. 1 Variation

Analyzing the capacitance function as given in Eq. (14), and taking into consideration a small variation of stub No. 1 inductance, we get Eq. 15 at the foot of this page.
Where o stands for a small change of stub length; $\delta=0$ corresponds to $m=1$ (100% modulation).

Eq. (15) is plotted in Fig. 6. This figure shows that increasing the inductance or length of the stub will shift the capacitance function downward at $C_{\text {mas }}$ without changing $C_{\text {min }}$. This shift downward corre-

Fig. 5: Plot of Eq. 14 for different indices.

sponds to decreasing the modulation at the expense of slight distortion increase. The introduction of a little distortion is obvious since the curves of Fig. 6 are not identical to the curves of Fig. 5.
Stub No. 1 then can be used as a means of varying the modulation of the carrier. In the laboratory prototype, shorting the end of the stub is accomplished by a sliding brass block which shorts the center conductor of the stub to ground, Fig. 9.

Stub No. 2 Variation

The analysis of the capacitance function C for a small change of stub No. 2 reactance is similar to the analysis of stub No. 1. The result is Eq. 16 at the foot of page 85 .

Where δ corresponds to a small change of the stub length, Fig. 7 shows that a change in stub No. 2 will vary the minimum value of the capacitance function without altering the maximum value. This will only change the carrier amplitude or power and will not affect the modulation which is a function of $C_{\text {max }}$. This power change is also at the expense of some increase in distortion. This stub could be a means of varying the carrier power output while the first stub is a means of changing the modulation.
The paddle wheel and blades shape gives a capacitance function which corresponds to a modulation index and a distortionless output. As the stubs are varied to control the carrier modulation and power output, a slight distortion is introduced and in the prototype this added distortion is within specificaton.

Tolerances

Tolerances on the paddle wheel and blades are of great importance. Solving for the modulated output carrier wave $f\left({ }_{m}\right)$, we get Eq. 17, also at the foot of page 85. This holds true
if $Z_{2}=150 \Omega, Z_{2}=50 \Omega, \beta x=45^{\circ}, C_{\text {raux }}=6 \mu \mu f,\left(_{\text {min }}=3 \mu \mu f\right.$ and $f=332 \mathrm{mc}$.

Fig. 6: Notice the introduction of a little distortion in this plot of Equation 15.

Fig. 7: This plot of Eq. 16 shows that the effect of a small change in length of Stub 2

Fig. 8: The capacitance functions for the plus and minus tolerances are shown here.

Then

$$
\begin{equation*}
(\theta)=1-2 \cdot \sqrt{1-\frac{1}{1+0.0553\left[\frac{1}{0.334-\frac{1}{6-C}}\right]^{2}}} \tag{18}
\end{equation*}
$$

if values for distortionless modulation are substituted for C in Eq. (18), then $f(\theta) \approx \cos \theta$, which corresponds to the carrier envelope for distortionless modulation.
Assuming certain mechanical tolerances for the paddle wheel, the blade, etc., two capacitance functions can be found for plus and minus mechanical tolerances, Fig. 8. These two capacity functions will determine by Eq. (18) two modulation envelopes $f_{1}(\theta)$ and $f_{2}(\theta)$ corresponding to \pm tolerances. Now by using Fourier analysis, the harmonics can be found and distortion in db computed.

TABLE I
NORMALIZED HARMONICS FOR \pm TOLERANCES

	Max. Negative Tolerance	Max. Positive Tolerance
Fundamental	1.00000	1.00000
2nd harmonic	.01285	.04304
3rd harmonic	.00394	.01286
4th harmonic	.00255	.00741
5th harmonic	.00138	.00919

The harmonics of plus tolerance are -26.465 db . Below the fundamental for minus tolerance, the harmonics are -37.233 db below the fundamental. These two figures were computed for a given mechanical tolerance of $\pm .010$.

The modulating frequency depends on the speed of the motor driving the paddle wheel and on the number of paddles in the paddle wheel. For an 1800 RPM
motor and a five paddle, paddle wheel, the modulating frequency is 150 cPs .

On p. 83 is a photographic reproduction of the casing that includes the paddle wheel, the blade, and the first stub. The case is grounded, thus eliminating any power radiation. The second stub is out of the casing and is simulated by an open length of line with a fine tuning capacitor at the end.

Advantages

The advantages of this mechanical modulator over conventional modulators are:
a. Phase stability; the phase is locked solid and does not drift at all.
b. Frequency stability; the modulating frequency is very stable because it depends only on the modulator motor RPM and the number of paddles on the paddle wheel.
c. Over-all reliability.
d. Constant modulation depth regardless of modulating frequency or output power.

Frequency Limitations

The frequency range over which this modulator will operate satisfactorily is as described below:

The carrier frequency range is $100 \mathrm{Mc}-1000 \mathrm{Mc}$. The lower limit depends on the physical size of hybrid. coaxial lines, etc.

The modulating frequency equals $\mathrm{RPM} / 60 \times$ No. of paddles.

The range is from de to a maximum possible of about 1000 cPS.

The results achieved are good compared to conventional modulators. The harmonics distortion obtained is -30 db with a power efficiency of 30%. A depth of modulation of 99% was easily obtained.

$$
C=6-\frac{1}{(0.334 \pm \delta)+.665} \sqrt{\sqrt{\frac{0.125}{\left[1-\frac{1}{2}\left(1+\cos \theta_{m}\right)\right]^{2}}-0.125}} \mu \mu f
$$

Dielectric Constants (Concluded)

less than 0.01, an oil bath will suffice. Although care must be taken in monitoring frequency, modulation can be accomplished at the repeller plate of the klystron. Greater stability may be obtained by making use of a ferrite modulator. The input to the ferrite modulator should be a very stable sine wave function generator or, better still, a frequency standard capable of modulating a microwave carrier to 100%.
Because of the very high VSWR, adequate isolation is essential. Again, ferrites designed for the specific frequency being used are recommended since they have very low forward loss compared to the isolation afforded. Isolation of the slotted section is extremely important, since it may act as a slide screw tuner.

The wave meter should be a high Q resonant cavity with provisions for monitoring the frequency to at least four significant figures. The detected wave meter output should be connected to a standing wave amplifier which is operated on its expanded scales. The expanded scales are recommended since the slightest frequency drift will result in a wide deflection on the VSWR indicator, making a frequency change more noticeable to the operator.

The attenuator should be a variable precision attenuator to compensate for any power level changes at the signal source. Since power level is important, as little attenuation as possible should be used.

The probe should be fixed to a carriage that is permanently fixed to a slotted section, thus insuring that the probe will travel the precise path intended through the slot. The probe should also contain a very sensitive crystal detector such as a type 1 N 23.
The correct depth of the probe is, of course, essential. In no case should the probe depth exceed $1 / 32 \mathrm{in}$. Any greater depth will upset the standing wave pattern to such an extent as to make the formulas for computation no longer applicable.
The standing wave amplifier should offer a high impedance to the crystal input from the probe; 200 K ohms should be adequate. The reason for the high impedance is due to the very sharp nulls of low energy that are being detected.
Since the power in the null, with simple equipment, is almost undetectable, it is necessary to use the socalled two-position method where a probe position reading is taken on either side of the null. These two readings are added and their sum divided by two to give the correct null position. It is necessary to take two probe position readings 3 db up from the null in order that X_{0}, X_{1}, and ΔX may be determined and $\tan \delta$ can be computed. These same two probe positions may also be used to find the null. If the null is detectable, it should not be used to calculate ψ. There may be FM in the null due to undetectable voltage fluctuations and, of course, there will be a certain degree of noise.
The short should be the very best possible and, if a rectangular guide operating in the TE_{01} mode is used, it should be replaced in the very same position at the end of the guide every time it is removed and replaced. The mounting holes in the short should
have a minimum amount of play in them. Any change, however slight, in the short position will cause a change in the standing wave pattern that will affect the parameters measured.

Sample Preparation

Preparation of the sample is extremely important. If a rectangular hollow guide is used and operated in the TE_{01} mode, the b dimension of the dielectric material should be held to within ± 0.0005 of the b dimension of the hollow guide. This close tolerance is necessary because the e field is at a maximum across this dimension. The a dimension should fit flush with the sides to a tolerance of ± 0.001. Here the tolerance is more lax since the e field is at a minimum. The thickness of the dielectric material is also important. It should be held to ± 0.0005 because of its effect on the value of ψ (the phase shift plus thickness). If it is desired, the dimension on the thickness may be held to ± 0.001 and the dielectric material rotated through four possible positions to obtain four values of the parameters, then the average values may be used for computation.

For dielectric materials that have a high or even moderate absorption factor, care should be taken to insure that all moisture has been removed.
Plexiglass, of the non-heat resistant variety, is recommended as a control because of its easy machineability and moisture resistance. Needless to say, it is important that exact data at the specific test frequency be available. Reference 1 contains the dielectric constants and dissipation factors of two types of polymethyl methacrylate (plexiglass).

Accuracy
The accuracy of the input impedance method is limited chiefly by the physical tolerances on both the equipment and the dielectric sample. A correction factor for the dielectric sample tolerance is given in Reference 3, Page 576, but it is strongly recommended that the sample tolerances given earlier in this paper be held.
When the loss tangent approaches values close to 0.1 , the errors (using the lossless technique) become more pronounced but will not exceed 1% for perfect equipment provided $n K^{\prime \prime}$ is less than 0.2. The number of wave lengths in the sample is represented by n. Obviously, it is impossible to use perfect equipment, but using a dielectric sample that is three-quarters of a wavelength thick will greatly reduce measurement error. ${ }^{1}$ The three-quarter wavelength refers to a three-quarter wavelength in the dielectric sample, within the guide.

References:

1. Von Hippel, A., et al, Dielectric Materials and Applications,

MIT Press and John Wiley \& Sons, Inc., New York.
2. Von Hippel, A., Dielectrics and Waves, John Wiley \& Sons,
Inc., New York. Chapman \& Hall, Limited, London. Inc., New York. Chapman \& Hall, Limited, London.
3. Montgomery, Technique of
3. Montgomery, 'rechnique of Microwave Measurements, M1T
Radiation Laboratory Series, Vol. II.
4. Dakin, T; W., and Works, C. N., "Microwave Dielectric Measurements," Journal of Applied Physics, Vol. 18, No. Nictrowave 9 ,
Sept. 1947 .
5. Surber, W. H., Jr., and Crouch, G. E., Jr., "Dielectric Measurement Methods for Solids at Microwave Frequencies," Journal of Applied Physics, Vol. 19, Dec. 1948.
6. Westphal, W. B., "Techniques and Calculations Used in
Dielectric Measurements on Shorted Lines," Report No. IX,
Laboratory for Insulation Laboratory for Insulation Research, MIT, Aug. 1945.
7. Gray, B, C. "An Application of Digital Computers to Computation of Dielectric Constants and loss Tangents, "- Auto-

The expression for the far field antenna pattern on a horizontal plane does not lend itselt to convenient analytical manipulation.

Furthermore it is inexact if applied to the pattern of an antenna enclosed within a radome. Approximations are sought which facilitate computation and design. These have acceptable accuracy and analytical convenience.

Finding Radar Pattern Equations with a Computer

By N. D. DIAMANTIDES
Dept. 475/G
Engineering Scientist
Goodyear Aircraft Corp.
1210 Massillon Rd.
Akron 15, Ohio

MILITARY technology is placing an unprecedented emphasis on radar for both offense and defense. Long range navigation, mapping, weather monitoring, search, bombing, reconnaissance and surveillance operations, advanced warning and interception, all depend primarily on radar of various types.

As need for radar information becomes more pressing, so does the need for increasing the sensor's resolution capabilities in both range and azimuth. Range resolution may be advanced, to a certain extent, by reducing the pulse length, but azimuth resolution is a much more difficult problem.
Since azimuth resolution is proportional to antenna size and inversely proportional to wave length, the effort is directed toward increasing the former and decreasing the latter. But there are limitations in both directions.

Decreasing the radiated wave length is limited since the beamed energy is attenuated more at high frequencies, which decreases the useful range.

Increasing antenna size, on the other hand, increases problems of increased space, weight, and structural adequacy-especially in airborne applications. Computational methods, therefore, are being relied upon to sharpen the display, for instance, in doppler and monopulse radars.

The Secondary Pattern

One radar feature that invariably enters the picture is the far field antenna pattern on a horizontal plane. i.e., the secondary pattern of radar terminology.

Theoretically, this feature may be described by ar expression of the form $(\sin x / x)^{2}$. Physically it measures the power radiated in a direction a certair number of degrees away from the optical axis on plane perpendicular to the vertical.

This particular expression, however, does not lenc itself to convenient analytical manipulations. Fur thermore, the expression is inexact if applied to the pattern of an antenna enclosed within a radome. The

A REPRINT

of this article can be obtained by writing on company letterhead to The Editor
ELECTRONIC INDUSTRIES
Chestnut \& 56tb Sts., Phila. 39, Pa.

Fig. 2: Computer diagram for antenna pattern curve fitting.

Radar Patterns

(Continued)

resulting error increases as the radome cross section by the radar beam plane of symmetry deviates increasingly from the circular shape. This is particularly true in the case of airborne radar where the radomes are forced into streamlined configurations. Reflection at the radome interfaces and diffraction aberrations redistribute the radiated power within the beam. Radome effects, for instance, include uneven attenuation and elimination of some of the zeroes which according to the above theoretical expression exist at the points.

$$
x= \pm k \pi, k=1,2,3, \ldots
$$

Similar effects may be present in the pattern generated through Lunemberg lenses.

Approximations

Because of difficulties in describing secondary antenna patterns with formulae derived through strict theory, approximations are generally sought. These will facilitate computational and design work. Within the desired azimuth range, these approximations describe the pattern mathematically in an inclusive way and with an acceptable accuracy and analytical convenience.

Eq. 1 is satisfactory for cases of small rocketcarried mapping radars and lends itself to a quick fitting of the experimental data from secondary pattern measurements:

$$
\begin{align*}
P(\theta) & =P_{o}\left[\exp \left(-a \frac{\theta^{2}}{w^{2}}\right)\right. \\
& \left.+m \cdot \exp \left(-b \frac{\theta}{w}\right) \sin ^{2}\left(\frac{c}{2} \frac{\theta}{w}\right)\right] \tag{1}
\end{align*}
$$

where P_{o}, a, b, c and m are constants for a given antenna-radome combination and relative orientation angle with respect to the radome meridian. On the
other hand, θ is the azimuth angle, and w one-half the beam width as defined by:

$$
\begin{equation*}
P(w)=\frac{1}{2} P_{0} . \tag{2}
\end{equation*}
$$

The validity of Eq. 1 is shown in Fig. 1. This is the result of actual measurements for a 2 -way transmission on a small antenna to be mounted within the tail of a rocket for high altitude radar picture studies. The data were taken with the antenna inside the radome. The assymmetry and attenuation effects are evident in the difference between the plots of the two halves of the pattern.

The parameter value for this particular case, after P was normalized to the peak value, were determined as:

$$
\begin{align*}
a & =0.8421 ; b=0.0454 \\
m & =0.0604 ; c=158.4 \tag{3}\\
w & =2.2^{\circ} ; \text { with } \theta \text { expressed in degrees. }
\end{align*}
$$

Using the Analog Computer

Curve-fitting for such parameter estimates is greatly simplified if advantage is taken of the analog computer. Eq. 1 in its normalized form:

$$
\begin{equation*}
P_{n}(\theta)=\frac{P_{P}^{\mp}(\theta)}{P_{0}} \tag{4}
\end{equation*}
$$

may be written as the sum of three elementary functions for positive values of the independent variable θ :

$$
\begin{equation*}
P_{n}(\theta)=f_{1}^{-}(\theta)+f_{2}(\theta)-f_{3}(\theta), \tag{5}
\end{equation*}
$$

where:

$$
\begin{equation*}
f_{1}(\theta)=\exp \left(-\frac{a}{w^{2}} \theta^{2}\right) \tag{6}
\end{equation*}
$$

and:

$$
\begin{align*}
& \sin ^{2}\left(\frac{c}{2 w} \theta\right)=\frac{1}{2}-\frac{1}{2} \cos \left(\frac{c}{w} \theta\right) \\
& f_{2}(\theta)=\frac{m}{2} \exp \left(-\frac{b}{w} \theta\right) \tag{7}\\
& f_{3}(\theta)=\frac{m}{2} \exp \left(-\frac{b}{w} \theta\right) \cos \left(\frac{c}{w} \theta\right) \tag{8}
\end{align*}
$$

The first function, $f_{1}(\theta)$, may be considered as the solution of the differential equation

$$
\begin{equation*}
f_{1}(\theta)+2 \frac{a}{w^{2}} \theta f(\theta)=0 \tag{9}
\end{equation*}
$$

For the two others, $f_{2}(\theta)$ and $f_{s}(\theta)$, which are linear, using the definition of the Laplace transform for zero initial conditions results in:

$$
\begin{gather*}
f_{2}(s)=\frac{m}{2} \frac{1}{s+\frac{b}{w}} \tag{10}\\
f_{3}(s)=\frac{m}{2} \frac{s+\frac{b}{w}}{\left(s+\frac{b}{w}\right)^{2}+\frac{c^{2}}{w^{2}}} \tag{11}
\end{gather*}
$$

Hence:

$$
\begin{gather*}
f_{2}(s)-f_{3}(s)=\frac{m c^{2}}{2 w^{2}} \frac{1}{\left(s+\frac{b}{w}\right)\left[\left(s+\frac{b}{w}\right)^{2}+\frac{c^{2}}{w^{2}}\right]} \\
=\frac{m w}{2 b} \frac{1}{\left(\frac{s^{2}}{\omega^{2}}+\frac{2 \zeta}{\omega} s+1\right)(\tau s+1)} \tag{12}
\end{gather*}
$$

where

$$
\begin{align*}
\omega & =\frac{b^{2}+c^{2}}{w} \doteq \frac{c}{w} \\
\zeta & =\frac{b}{b^{2}+c^{2}} \doteq \frac{b}{c} \tag{13}\\
\tau & =\frac{w}{b}
\end{align*}
$$

because in practice $b^{2} \ll c^{2}$.
Hence, the damped trigonometric term of Eq. 1 may be simulated by the system described in Eq. 12 subjected to an impulse input. Implementation of equations 9 and 12 on the analog computer as shown in Fig. 2 will give the pattern $P_{n}(\theta)$ at the throw of the multiple switch S.

The last cell in the circuit diagram is a means of automatic conversion of the values $P_{n}(\theta)$ into decibels as antenna patterns are ordinarily plotted. The conversion is based on the computer implementation of the fundamental integral:

$$
\begin{align*}
& -20 \int_{0}^{\theta} \frac{1}{P_{n}(\theta)} \dot{P}_{n}(\theta) d \theta=-20 \int_{1}^{P_{n}(\theta)} \frac{d P_{n}(\theta)}{P_{n}(\theta)}= \\
& \left.-20 \ln P_{n}(\theta)=-P_{n}(\theta)\right]_{d b} \tag{14}
\end{align*}
$$

REFERENCE PACES

The pages in this section are perforated for easy removal and retention as valuable reference material.

SOMETHING NEW HAS BEEN ADDED
An extra-wide margin is now provided to permit them to be punched with a standard three-holepunch without obliterating any of the text. They can be filed in standard three-hole notebooks or folders.

However, this plot in decibels cannot extend beyond the main lobe of the pattern, because the valleys between lobes represent vast db values which the limited voltage range of the computer cannot accommodate.

Computer Circuitry

In setting up the computer circuitry one is helped by the analytical format of Eq. 1 toward establishing good first order estimates of the parameters involved.

Thus, the first of the elementary functions, $f_{1}(\theta)$, usually overpowers the two others within the span of the antenna beam width, w. Consequently, from the experimental data the azimuth $\theta=w$ corresponding to the half power level may be read, a fact that subsequently establishes the value of a through equation 6 as:

$$
f_{1}(w)=\frac{1}{2}=e^{-a} .
$$

Hence:

$$
\begin{equation*}
a_{*}=0.693 \tag{15}
\end{equation*}
$$

where *, implies a first guess value. On the other hand, by noting that the distance θ_{I} between the valleys separating the first and second lobes corresponds approximately to π radians in the trigonometric term of Eq. 1 we establish that:

$$
\begin{equation*}
c_{*} \doteq 2 \pi \frac{w}{\theta_{I}} \tag{16}
\end{equation*}
$$

Furthermore, the peaks of the second and third lobe occuring at the points θ_{1} and θ_{2} for which the sinesquared term is roughly equal to unity, result in:

$$
\begin{align*}
& P_{n 1}-\operatorname{cxp}\left(-a_{*} \frac{\theta_{1}^{2}}{w^{2}}\right)=m_{*} \exp \left(-b_{*} \frac{\theta_{1}}{w}\right) \tag{17}\\
& P_{n 2}-\operatorname{cxp}\left(-a_{*} \frac{\theta_{2}^{2}}{w^{2}}\right)=m_{*} \exp \left(-b_{*} \frac{\theta_{2}}{w}\right)
\end{align*}
$$

from which:

$$
\begin{align*}
& b_{*} \doteq \frac{w}{\theta_{1}-\theta_{2}}\left\{\ln \left[P_{n 2}-\exp \left(-a_{*} \frac{\theta_{2}{ }^{2}}{u^{2}}\right)\right]\right. \\
&\left.-\ln \left[P_{n 1}-\exp \left(-a_{*} \frac{\theta_{1}{ }^{2}}{w^{2}}\right)\right]\right\} \tag{18}
\end{align*}
$$

With b known, Eq. 17 yield:

$$
\begin{equation*}
m_{*} \doteq\left[P_{n 1}-\exp \left(-a_{*} \frac{\theta_{1}{ }^{2}}{u^{2}}\right)\right] \exp \left(+b_{*} \frac{\theta_{1}}{w}\right) \tag{19}
\end{equation*}
$$

Once the computer circuit is set up and adjusted to the values $a_{*}{ }^{\prime}{ }_{*}, c_{*}$, and $m_{*^{\prime}}$ a systematic step wise variation of one parameter at the time, while the three others are held constant, provides a curve

$$
\left.P_{n}(\theta)\right] \mathrm{db}
$$

increasingly closer to the experimental plot. Through iteration between all four parameters a satisfactory approximation is quickly reached.

The resistor and capacitor values in the circuit diagram are in ohms and microfarads. Also, the following circuit-parameter settings should hold:

$$
\begin{gathered}
I C=-100 v ; \quad \beta_{1}=0.10 \\
B_{2}=R_{2} \omega=R_{2} \frac{C}{w} ; \quad \beta_{3}=20 R_{3} \zeta=20 R_{3} \frac{b}{c} \\
R_{0}=\frac{w^{2}}{2_{a}} ; \quad R_{1}=\frac{1}{200 m} ; \quad R_{4}=\frac{\tau}{4}=\frac{w}{4 b}
\end{gathered}
$$

Fig. 1: Wooden straps are placed around edges.

Fig. 2: Blueprint affixed to board with mask .ug tape.

Fig. 3: Light behind work gives precise view of perforations.

Fig. 4: Laying in wire on the board.
Fig. 5: Metal boards do not need to be hung. They can be stacked-saving space.

Metal Harness Boards

RAYTHEON Co.'s Cable Dept. (N. Dighton, Mass.) is successfully using perforated aluminum sheeting to replace plywood in the manufacture of electronic harnesses. The metal sheeting-available as a stock item in the correct thickness, perforation dia. and al-loy-outlasts plywood for this purpose and reduces the storage problem.
The material is first cut to the proper size. Next, four pieces of $1 \times 1 \mathrm{in}$. wood strapping are placed around the edges to form a border, like a picture frame (this allows sufficient clearance for the stud portion of the specially pins to be installed through the holes of the aluminum "boards"). The blueprint is fixed to the aluminum with
masking tape. A light source placed behind the sheet permits precise viewing of the perforations so that pins can be pushed through the blueprint and into the aluminum sheet. Holes in the aluminum are staggered so that any combination of pins to a tolerance of $\pm 1 / 8 \mathrm{in}$. is accommodated.
Some advantages: By pre-determining the size of cables being produced, the shop can have on hand just 4 or 5 standard size perforated boards; time for assembly and disassembly of cable board jigs is reduced to 40% of normal time; the pins can be removed for storage thus saving storage space; also: the metal boards will last from 3 to 5 years-and be used constantly.

New Wire Shielding Method

MANY methods have been conceived and used to shield insulated wire or cable. Methods such as braiding and placing wire inside of tubing have been used. Now a new process has been developed. It is said to be cheaper to manufacture, can be produced in unlimited lengths, and can be applied to all wire sizes.

The new process starts with the insulated wire to be shielded and lengths - up to 8000 feet - of metallic tape of any desired thickness. The tape is formed in a continuous process into a tube around the insulated wire. The joint in the tube is then arc welded without injury to the wire insulation. The welded joint and tube are then "cold-worked" until a perfect gas and water tight cylindrical tubing, which closely fits around the insulated wire, is produced.
Long continuous lengths of insulated wire have been shielded using this process. The shielding
is pure aluminum with a wall thickness of 0.010 in . The process is faster in production than other methods of shielding, and speeds of double or triple its present capacity are easily possible.
The tubing flexibility has proven satisfactory to industrial and governmental users, while the savings in weight and costs are noticeable. Wires as small as 0.075 in . in diameter, over the insulation, have been shielded with this process, and thought is now given toward the application and the process to cables in excess of 3 in . diameter. Due to the nature of the process, it is actually easier to make this shielding with thin walls of less than $0.025 \mathrm{in} .$, and the developers say that wall thicknesses of 0.007 in. and 0.005 in . are not only possible, but probable.
This process was developed by Electrarc, Inc., 20 Pemberton Square, Boston 8, Mass.

Microfilm At Redstone

THE U. S. Army Rocket and Guided Missile Agency (ARGMA) at Redstone Arsenal, Huntsville, Ala., is one of the largest Defense Department users of microfilm mounted in aperture cards. Their engineering documents section contains an active file of over 850,000 drawings and related documents, and they possess a historic file in excess of $1,500,000$ drawings and documents.

Prime contractors are permitted to supply complete engineering records in microfilm already mounted in aperture cards where provision is made for this procedure in the contract. In such a case they are not permitted nor required to submit drawings in hard copy.

ARGMA can instantly retrieve any of its $1,500,000$ drawings and can also print out in virtually any form desired - paper-to-paper, card-to-paper, card-to-card and pa-per-to-card. Concerned personnel can view enlarged microfilm drawings and, within seconds, obtain paper copy.

Small space is needed at ARCMA for full, active file of 850,000 engineering documents. Cabinets have documents for guided missile program.

Future plans call for further expansion of the mechanized filing system. Feasibility studies are being conducted on additional modifications which will permit more rapid search of filed microfilm documents, and studies are being made on using closed circuit TV.

Prime contractors and suppliers submit engineering data directly on microfilm already mounted into aperture cards to ARGMA and other agencies of the Army Ordnance Missile Command and to specified depots. ARGMA continues to receive and process hard copy engineering documents from contractors whose work load does not justify the installation of filming, card punching and mounting equipment and whose contracts do not permit this kind of operation. ARGMA then microfilms, maintains, and provides EAM cards for all such hard copy engineering documentation, as well as those engineering documents and related data originating at the Agency.

The single great advantage
(Continued on page 236)

Camera microfilms all engineering documents. More than 30,000 drawings a month are filmed.

Immediate reproduction comes from card-tocard printer. Rates are up to 600 cards/hour.

Printer-reader for fast scanning of microfilmed documents. Machine can also produce paper copy within 10 seconds.

Electronic accounting machines, coupled with aperture cards, are backbone of system. One card can easily be selected from file.

C. A. Bolt, Jr.

The theory of probe type transitions for radar antennas between rectangular waveguide and coaxial line is summarized. The design procedure of rotary joints using these transitions is discussed. A typical rotary joint design with very low VSWR for the 8.8 to 10.4 kmc range is also presented.

Designing

Rotary Waveguide Joints

IN the design of typical radar scanners, rotary joints are used in the waveguide transmission line between the movable antenna and the stationary portions of the scanner. These rotary joints usually consist of a transition from the dominant mode in rectangular waveguide to a short section of waveguide operating in a rotationally symmetric mode followed by a second transition to rectangular waveguide. Examples of rotationally symmetric modes which would be suitable for rotary joint designs are the TEM mode in coaxial transmission line and the TM_{01} mode in circular waveguide. Field configurations of these modes are shown in Fig. 1.

Circular waveguide of sufficient diameter to propagate the TM_{01} mode will also propagate the TE_{11} mode, which is not rotationally symmetric (Fig. 1). If the TE_{11} mode is not properly suppressed in a rectangular to circular waveguide transition, appreciable variation in reflection with rotation of the complete rotary joint results. The necessity of suppressing the TE_{11} mode in rotary joints employ-

By CONWAY A. BOLT, Jr.

Westinghouse Electric Corp.
Air Arm Div.
P. O. Box 746

Baltimore 3, Md.

ing circular waveguide generally limits the application of circular waveguide in wideband rotary joint designs.

The TEM mode is the dominant mode in coaxial line. Despite disadvantages of lower impedance (which complicates the matching problem somewhat) and lower power capability than in circular waveguide, coaxial transmission line is more satisfactory in wideband designs because of the absence of lower order mode suppression problems. The selection of dimensions small enough to eliminate the next higher order coaxial mode $\left(\mathrm{TE}_{11}\right)^{*}$ gives an outer diameter smaller than that of circular waveguide operated in the TM_{01} mode over the same frequency range.

Since a rotary joint essentially consists of two identical transitions, one to and one from a rotationally symmetric mode, the following discussion will be simplified by considering the design of single transitions hetween the dominant rectangular (TE_{10}) mode and the coaxial (TEM) mode and their application in the design of a complete rotary joint.

Fig. 2: Probe type rectangular to coaxial waveguide transition

Equivalent Circuit

The TE_{10} mode in a rectangular waveguide oriented perpendicular to the longitudinal axis of a coaxial line (TEM mode) may be excited by a probe-antenna parallel to the E field in the rectangular waveguide. As shown in Fig. 2, the probe is an extension of the center conductor of the coaxial line.

The transmission line equivalent circuit of an ideal transition of this type is shown in Fig. 3. In this figure, α is a coupling coefficient which serves as a measurement of the effectiveness of the probe-antenna in inducing a field in the rectangular waveguide; $Z_{e q}$ is the equivalent impedance of the rectangular waveguide operating in the TE_{10} mode; X is the reactance of the antenna as affected by the walls of the guide (the antenna resistance is assumed to be negligible); Z_{a} is the impedance at the terminals of the coaxial line; c is the distance along the waveguide from the short circuit to the center of the probe; and β is $2 \pi / \lambda g$.

Looking into the rectangular waveguide from the terminals of the coaxial line, the solution of the transmission line equivalent circuit (Fig. 3) is:

$$
\begin{equation*}
Z_{a}=\alpha Z_{\mathrm{eq}}\left(\sin ^{2} \beta c+j \sin \beta c \cos \beta c\right)-j . X \tag{1}
\end{equation*}
$$

If Z_{a} is assumed to be resistive and equal to the impedance of the coaxial line, Z coax, Eq. 1 indicates that a matched transition at a particular frequency is obtained when:

$$
\begin{gather*}
Z_{\text {coux }}=\alpha Z_{e d} \sin ^{2} \beta c, \text { and } \tag{2}\\
-j X=-j \alpha Z_{e q} \sin \beta c \text { cos } \beta c . \tag{3}
\end{gather*}
$$

The purpose of this brief study of the transmission line equivalent circuit of the rectangular-coaxial transition is not to obtain actual design dimensions immediately, but instead to become more acquainted with the physical significance of the various terms involved in its solution and thus to obtain more of a working knowledge of the transition and its component parts before proceeding with an actual design.

Radiation Resistance

The radiation resistance of an antenna in a rectangular waveguide closed at one end has been obtained by a number of investigators (Ref. 1, 8, 13, 15,

[^5]17 and 18). In general, either a uniform or sinusoidal current distribution is assumed along the length of the probe-antenna which is oriented parallel to the E field in the rectangular waveguide. The radiation resistance is then derived from the field at large distances from the antenna and the assumed current. Pearcey ${ }^{8}$ derives an expression for the current distribution instead. However, the expression for radiation resistance obtained is, to a first approximation, the same as that obtained by assuming a sinusoidal current distribution.

For a uniform current distribution, the radiation resistance of a small diameter cylindrical antenna of length l in a rectangular waveguide (as shown in Fig. 2) is given by:
(Continued on following page)

Fig. 4: Solution of equation 11 may be obtained from graph

Fig. 5: Broadband matching of R_{r} to a constant coax impedance

Rotary Joint (Continued)

$$
\begin{equation*}
R_{r}=\frac{\pi}{2} \frac{l^{2}}{a b}\left(\frac{\mu_{o}}{\epsilon_{o}}\right)^{t} \frac{\lambda_{o}}{\lambda} \sin ^{2} \frac{\pi x}{a} \sin ^{2} \beta c \text { (ohms). } \tag{4}
\end{equation*}
$$

For a sinusoidal current distribution, the radiation resistance is given by:

$$
\begin{equation*}
R_{r}=\frac{\lambda_{0} \lambda}{8 a b}\left(\frac{\mu_{0}}{\epsilon_{o}}\right)^{1} \tan ^{2} \frac{\pi l}{\lambda} \sin ^{2} \frac{\pi x}{a} \sin ^{2} \beta c \text { (ohms). } \tag{5}
\end{equation*}
$$

It should be noted that the radiation resistance of a small diameter $\left(\right.$ diam. $\left.<\frac{\lambda}{4}\right)$ antenna is independent of its diameter.
If the equivalent impedance of a rectangular waveguide is defined as the ratio of the maximum voltage to the total longitudinal current in the top or bottom wall (Refs. 2, $9 \& 12$) it is given by:

$$
\begin{equation*}
Z_{e q}=\frac{\pi}{2} \frac{\lambda_{0}}{\lambda} \frac{b}{a}\left(\frac{\mu_{0}}{\epsilon_{0}}\right)^{t}(\text { (olms) }) \tag{6}
\end{equation*}
$$

Eqs. 4 and 5 may be expressed in terms of the equivalent impedance resulting in equations of the form:

$$
\begin{equation*}
R_{r}=\alpha Z_{e q} \sin ^{2} \beta c \text { (ohms) } \tag{7}
\end{equation*}
$$

in which, for a uniform current distribution:

$$
\begin{equation*}
\alpha_{k}=\frac{l^{2}}{l^{2}} \sin ^{2} \frac{\pi \Lambda}{n} \tag{8}
\end{equation*}
$$

and, for a sinusoidal current distribution:

$$
\begin{equation*}
\alpha_{s}=\frac{\lambda^{2} \tan ^{2} \pi l / \lambda}{4 \pi b^{2}} \sin ^{2} \frac{\pi x}{a} \tag{9}
\end{equation*}
$$

Referring to Eq. 1, it can be seen that the resistive component of the solution of the transmission line equivalent circuit is equal to the radiation resistance of the antenna as given by Eq. 7. One criterion for obtaining a matched transition is, therefore, that the resistive component of the impedance at the terminals of the coaxial line be equal to the radiation resistance of the probe-antenna. For a uniform current distribution, this may be expressed as follows:

$$
\begin{equation*}
\operatorname{Real}\left(Z_{a}\right)=\frac{\pi}{2} \frac{l^{2}}{a b}\left(\frac{\mu_{0}}{\epsilon_{o}}\right)^{4} \frac{\lambda_{a}}{\lambda} \sin ^{2} \frac{\pi x}{a} \sin ^{2} \beta c \tag{10}
\end{equation*}
$$

The radiation resistance of an antenna inside a rectangular waveguide was obtained from the limiting value of the field at relatively large distances from the antenna and an assumed current distribution. The

Fig. 6: VSWR as a function of frequency for the transition match shown in figure 5 graph.
reactance, however, is determined from the nonpropagating field components close to the antenna. Consequently, it can be expected to depend a great deal upon antenna geometry. The reactance of a small diameter cylindrical antenna surrounded by air dielectric in rectangular waveguide has been investigated (Refs. 1 \& 8). However, the results obtained are, in general, too unwieldy for application to practical design problems. In addition, mechanical and high power capability considerations often dictate various antenna shapes or supporting structures (such as dielectric sleeves) which add further to the complexity of an analytical solution for the reactance. It is usually much more convenient to determine the antenna reactance experimentally.

The solution of the equivalent circuit for the rec-tangular-coax transition (Eq. 1) contains two reactive terms, one of which is a function of $c: j z Z_{e q} \sin \beta c$ $\cos \beta c$. This term gives the correction to the reactance of the probe-antenna resulting from its image in the end wall of the waveguide. The second term $(-j X)$ is the reactance of the probe-antenna.

Broadband Transition Design

In Eq. 2 and 3, $Z_{\text {coax }}$ is constant, depending only upon conductor diameters and the dielectric constant of the material between them. However, the radiation resistance and reactance of the probe and the end wall correction term are functions of frequency. For frequencies on either side of the design center frequency the transition is mismatched. Methods of obtaining a reasonably well matched transition over a relatively wide frequency range, in other words a broadband transition, will now be considered.

The first method which will be considered has been based on work by Mumford. ${ }^{6}$ Since the radiation resistance of the probe-antenna is a function of the length, c, of a short circuited section of transmission line, it would appear that for some value of c the

Fig. 8: Broadband matching of radiation resistance to coax impedance using coaxial transformer section
variation of the radiation resistance with frequency could be minimized. Then $Z_{\text {coas }}$ could be approximately matched to the radiation resistance over the greatest bandwidth; and reactive mismatch could be compensated for by varying x and l simultaneously (to maintain a constant value of radiation resistance at the design center frequency) or by selecting a suitable reactive matching element such as an iris.

The value of c resulting in zero slope of the radiation resistance as a function of frequency may be obtained by setting the first derivative of R_{r} with respect to i equal to zero. For an assumed uniform antenna current distribution (using Eq. 4 for radiation resistance), the following relationship is the result:

$$
\begin{equation*}
\frac{\tan \beta c}{\beta c}=\frac{2}{(\lambda / 2 q)^{2}} . \tag{11}
\end{equation*}
$$

Values of c satisfying this relationship correspond to short circuit positions giving minimum variation of R_{r} with frequency.

The assumption of a uniform antenna current distribution appears to give analytical results in better agreement with experimental measurements.

Eq. 11 may be solved using Fig. 4. In Fig. 4, c/ig is plotted as a function of $\overline{1} / 2 a$.

Once the "optimum bandwidth" value of c has been determined from Eq. 11 or Fig. 4, the radiation resistance is matched to the coax characteristic impedance as shown in Fig. 5.

The bandwidth of a transition is generally specified as the frequency range over which the VSWR is less than or equal to a particular value.

For maximum bandwidth, the ratio $R_{r} / Z_{\text {coas }}$ is made equal to the maximum allowable VSWR at approximately the center frequency (Fig. 5). This results in a VSWR frequency characteristic similar to Fig. 6. Reactive matching has not been included in this discussion; therefore, the calculated performance characteristics of a transition matched in this manner are undoubtedly somewhat optimistic.

A second method of broadbanding the transition employs a coaxial transformer section. The transmission line equivalent circuit of such an impedance transformer is shown in Fig. 7. If section 2 is terminated by its characteristic impedance, Z_{2}, and if the discontinuity capacitance at the junction of sections 1 and 2 is neglected, the impedance at terminals " a " is given by:
$Z_{a}=R_{a}+j X_{a}=\frac{Z_{12}^{2} Z_{2}+j Z_{1}\left(Z_{1}^{2}-Z_{2}^{2}\right) \sin \frac{2 \pi L}{\lambda_{1}} \cos \frac{2 \pi L}{\lambda_{1}}}{Z_{2}^{2}+\left(Z_{1}^{2}-Z_{2}^{2}\right) \cos ^{2} \frac{2 \pi L}{\lambda_{1}}}(12)$
in which λ_{1} is the wavelength in the transformer section (Section 1 of the transmission line).

The value of L resulting in zero slope of the resistive portion $\left(R_{a}\right)$ of Eiq. 12 is found by letting $\frac{d R_{a}}{d \lambda}=0$. For L to be a maximum (so that R_{a} will vary directly with the radiation resistance, R_{r}) the result is $L=\frac{n \lambda_{1}}{4}$ in which n is an odd integer.

If a coaxial transformer section is included in a rectangular-coaxial transition (by connecting the equivalent circuits of Figs. 3 and 7 at terminals " a "), Eqs. 1 and 12 are combined to give, for a matched transition:

$$
\begin{equation*}
R_{r}=\frac{Z_{1}^{2} Z_{2}}{Z_{2}{ }^{2}+\left(Z_{1}^{2}-Z_{2}^{2}\right) \cos ^{2} \frac{2 \pi L}{\lambda_{1}}}, \text { and } \tag{1;3}
\end{equation*}
$$

$\therefore-\alpha Z_{e q} \sin \beta c \cos \beta c=$

$$
\begin{equation*}
\frac{Z_{1}\left(Z_{1}^{2}-Z_{2}^{2}\right) \sin \frac{2 \pi L}{\lambda_{1}} \cos \frac{2 \pi L}{\lambda_{1}}}{Z_{2^{2}}^{2}+\left(Z_{1}^{2}-Z_{2}^{2}\right) \cos s^{2} \frac{2 \pi L}{\lambda_{1}}} \tag{14}
\end{equation*}
$$

Considering only the radiation resistance match relationship (Eq. 13), through suitable choice of values of Z_{1}, Z_{2}, c, L etc., it is now possible to make the resistive portion of Z_{a} approximately equal to the radiation resistance over a wide band as is shown in Fig. 8. The "optimum bandwidth" value of c at the center frequency is found using Eq. 11 or Fig. 4. The "optimum bandwidth" value of L is $\lambda_{1} / 4$ at the center frequency. Once these optimum values of c are determined, values of l, Z_{1}, etc., are obtained using Eq. 4 and 13.

Since various factors (such as the effects of probe geometry, probe supports, and the reactance of the relatively large hole in the top wall of the rectangular waveguide at the junction with the coaxial line) have

Fig. 9: Cross-sectional view of TEM mode rotary joint

Rotary Joints (Continued)

been purposely neglected from the equivalent circuit to avoid complicating it, the results obtained from its solution give only approximate design dimensions. Final design dimensions are obtained experimentally by a "cut and try process" based on the approximate dimensions obtained analytically or by appropriate scaling from a similar design.

Assembling Transitions

A cross sectional view of a typical TEM mode rotary waveguide joint is shown in Fig. 9. Broadband matching of the rectangular-coaxial transitions was accomplished by using a coaxial transformer section. The rotary joint consists of two broadband transitions connected by a short section of coaxial line with a coaxial choke in its outer conductor.

The Cooxial Line

Coaxial line dimensions are chosen to be sufficiently small to be below cut-off for the next higher order coaxial mode (TE_{11}) over the desired frequency range (to minimize VSWR variation with rotation), and sufficiently large to provide a generous safety margin for the power to be transmitted. The cut-off wavelength for the TE_{11} coaxial mode (Fig. 1) is given by:

$$
\begin{equation*}
\left.\lambda_{c} \simeq \frac{\pi \sqrt{\epsilon}}{2.03}(I)+d\right) \tag{15}
\end{equation*}
$$

in which D and d are the conductor diameters, and ε is the relative dielectric constant of the material between them. This relationship is accurate to $\pm 1 \%$ for values of D / d from 1.8 to 2.7.

For minimum voltage between the conductors consistent with the condition that the coaxial line is below cut-off for the TE_{11} mode (see Ref. 3), the design parameters are:

$$
\begin{align*}
I) / d & =2.09 \tag{16}\\
I+d< & \frac{2.03 \lambda_{c}}{\pi} \tag{17}
\end{align*}
$$

λ_{c} is the shortest free-space wavelength which must be transmitted. The characteristic impedance of a coaxial line, $Z_{\text {coax }}$, is given by the familiar relationship:

$$
\begin{equation*}
Z_{\text {coax }}=\frac{60}{\sqrt{\epsilon}} \log _{e} \frac{D}{d} \text { (olims) } \tag{18}
\end{equation*}
$$

Coaxial Impedance Transformer
In the rotary joint design shown in Fig. 9, the coaxial transformer section is a section of coaxial line partially filled with a solid dielectric. The solid dielectric sleeve surrounds the inner conductor and extends into the rectangular waveguide, also serving as a mechanical support for the probe-antenna.

The wavelength λ_{1} in a coaxial line with two concentric dielectrics as shown in Fig. 11 may be obtained from the following approximate relationship (see Ref. 5).
(Continued on page 250)

By SHELDON ISAACSON
The Marton Company
Orlando, Florida

Build Antenna

THE precise construction of test parabolas for antenna development calls for weeks of engineering time in parabola construction, in calculations, and in final measurements of predicted data. A fresh approach to this problem produced a new tool for parabola construction-the Para-Shaper.

The Para-Shaper is a parabolic shaped tool that spins its contour into a foam dielectric base. The dielectric is then coated, sanded and silver painted. The finished product serves as an accurate, low-cost parabolic reflector for antenna development tests.

The Para-Shaper can be constructed and final test measurements made in two days. It supplies the need for a rapid, low-cost method of fabricating test parabolas with the same accuracy as obtained from conventional methods.

Constructed of one-quarter inch aluminum, the Para-Shaper is shaped to the desired reflector curve. Its cutting edge is fluted with a 15 degree rake angle (Fig. 1). A mandrel is welded to the base to permit fabrication of test parabolas in a drill press. The material to be formed can be an expendable plastic,

Fig. 1: Para-Shaper tool. Cutting edge is fluted with a 15° rake angle.

Fig. 2: Grinding out Styrofoam parabola. Material can be an expendable plastic or any fine-grain unicellular material.

Building antenna test parabolas offen takes weeks of engineering time. Here is a new tool-the Para-Shaperwhich can do the job quickly, economically and with the same accuracy as conventional methods.

Test Parabolas

_Fast

Styrofoam, or any fine-grain, unicellular material, Fig. 2.

The Para-Shaper first grinds out the poly-foam plastic block into the shape desired, see Fig. 3. The air pockets are then filled with a suitable filler by coating the surface. A final grind is then done by the Para-Shaper. A light sanding follows which provides a smooth base for the final coating.

Silver coating of the surface is the final process in the construction of a test parabola. Two coats of Handy and Harmon silver paint No. 340 produced excellent results. If a cut parabola is to be built, the cutting operation can be performed before painting. Fig. 4 shows the sections of a parabola cut on the bandsaw. After parabola construction, the ParaShaper is used as the checking template.

Electrical Properties

To determine the accuracy of the Para-Shaper technique, a standard parabolic reflector was designed, using the parabolic equation:

$$
\begin{equation*}
Y^{2}=4 P X \tag{1}
\end{equation*}
$$

The reflector diameter was $2 \mathrm{Y}=18$ inches and the focal point (P) 5 inches. Solving X in terms of Y and P generated the shape of the parabolic

$$
\begin{equation*}
X=Y^{2} / 4 P \tag{2}
\end{equation*}
$$

The base values determined for the Para-Shaper construction are shown in Table I. The frequency used was $36,000 \mathrm{mC}$, where the wavelength was 0.328 inch. The measured smoothness of the reflector constructed by the Para-Shaper technique was well within 0.1 wavelength.

A feed horn was designed to illuminate the 18 inch reflector with a 16 db taper across the aperture. The measured SWR was 1.08:1 at the design frequency. The antennas were then pattern tested at 36 kmc . The results are tabulated in Table 2.

Table 1
Base values determined for the Para-Shaper construction (4P $=20 \mathrm{In}$.

Y	X
9.0	4.050
8.5	3.621
8.0	3.200
7.5	2.812
7.0	2.450
6.5	2.112
6.0	1.800
5.5	1.501
5.0	1.250
4.5	0.012
4.0	0.600
3.5	0.450
3.0	0.312
2.5	0.200
2.0	0.112
1.5	0.050
1.0	0.012
0.5	0.000
0	

Test Parabolas (Concluded)

Since the H-plane pattern shown in Fig. 5 was promising, a dual polarized feed system was designed for the cut parabola. Fig. 6 shows the horn and cut reflector.

The feed horns were tilted 23 degrees from the horizontal dish axis. The parabola was cut asymmetrically as shown in Fig. 4. Tests were made of both

Table 2

Half Power Beamwidth
H Plane
E Plane

Side Lobe Amplitude Gain
Half Beamwidth
H Plane
E Plane
Side Lobes
H Plane
E Plane
Cross Polarized Energy
H Plane
E Plane

Fig. 4: Sections of a parabola cut on a bandsaw.

Fig. 5: Single element pattern.

single-element and dual polarized patterns (Fig. 7 and 8). The results are listed in Table 3.

Test Results

In general, the test parabola results checked with the predicted data. The half power beamwidth for the cut parabola ran approximately 7% higher than predicted. This increase was caused by the change in edge taper on the off-axis feed. The most significant results achieved by the technique were low cost, accuracy, and short construction time. The entire test including all calculations, construction, and measurements took only two days.

Other Uses

The Para-Shaper technique is not limited to the construction of parabolic reflectors. Other items such as dielectric lenses can be constructed. The shape of the cutting tool need not be limited to the parabolic shape. Zoned lenses can be constructed by properly shaping the cutting tool. The technique may also be adaptable to the testing of complex lens structures, such as those used in optics.

Fig. 7: H-plane dual-polarized pattern.

For protection against

PROBD DAMAGE

designed for high performance, reliability . . . in aircraft, missiles and electronic equipment.

FEATURES:

- Closed Entry Contacts For

Protection Against Probe Damage.

- Monobloc insulators
- Low Engagement/Separation Forces
- Golden Iridite Finish to Meet

MIL Q. Q-P-416A, Type II Class 2.

- Insulators to Meet MIL-M 19833 Type GDI-30

Or MIL-M-14E Type MDG.

- Fully Interchangeable With Standard "D"

CINCH "D" SUB-MINIATURE CONNECTORS*

For Commercial Requirements
The CINCH STANDARD "D."*
designed to withstand rigid environmental conditions imposed by Military Specs-
*Manufactured by agreement with Cannon Electric Company ${ }^{\circ}$

AVAILABLE NOW!

Complete engineering data on both the Golden D Connector and the Standard D Connector is yours for the asking. Specification sheets and Catalog 100, cover Cinch Connectors. D Sub-Miniature, DPX and DPA types. Phone NE 2-2000 today or write/wire.

Microwave Equipment

Thirty-two-page catalog from Lel, Inc., 380 Oak St., Copiague, L. I., N. Y., presents the Company's products in the microwave, $r-f$, and i-f fields. Included are: Mixer - preamplifiers; Receivers, VHF Beacons; etc. Information includes technical specs, mechanical details, and electrical data. Also available: preliminary specs on a Solid-state Microwave Local Oscillator and on Parametric Telemetry Preamplifier Model RA-1. Some specs for R.A-1 are: passband, 225-260 IIC; Gain, 30 db nom. 25 db min.; Noise figure, 1 to 2 db (depending on' Varactor); Source impedance, 50 ohms; Load impedance, 50 ohms; and Power input, 115 v 60 CPS. Supplement to catalog No. 60 gives specs on several new products.

Circle 160 on Inquiry Card

ECM Equipment

Special test and support equipnient for ECM systems are featured in bulletin 05260750-134 from General Electric Co.'s, Light Military Electronics Dept., French Road, Utica, New York. Featured is a broad product interest-radar, sonar, communications, navigation, missile guidance and infrared, and supporting facilities. Support equipment includes ECM preflight test sets, antenna coupler test sets, waveruide and coaxial test assemblies, tuner test sets, maintenance sets, servo-noise amplifier test sets, etc.

$$
\text { Circle } 161 \text { on Inquiry Card }
$$

RF Calorimeters

Information on microwave calorimeters and loads to measure and absorb microwave energy between 1000 and $75,000 \mathrm{MC}$ in all ranges of power up to 50,000 wave. and 20 megawatts peak. Units are used for primary standards, functional test, quality control, maintenance, and training. Included is a sheet of formulaes used for calorimetric devices. Chemalloy Electronics Corp., Gillespie Airport, Santee, Calif.

$$
\text { Circle } 162 \text { on Inquiry Card }
$$

Electron Tubes

Short form catalog from Litton Industries, Flectron Tube Div., San Carlos, Calif., lists (in tabular form) their Miniature Noise Sources; Klystrons; Magnetrons; Duplexers and TR Tubes; TW Tubes; Backward Wave Oscillators; Carcinotrons; Crossed-Field Forward Wave Amplifier Tubes; Display Tubes; and Barratron ${ }^{1}$ Transmitting Tubes. Includes specs.

Circle 163 on Inquiry Card

Application Notes

Five application notes on Microwave subjects available from Hewlett-Packard Co., 1501 Page Mill Road, Palo Alto, Calif. They are: 1: Note 21 "Microwave Standards Prospectus"-standards, frequency, attenuation, impedance, and power. 2: Note 2 (revised) "Measuring Frequency from VHF up to and Above 18 KMC With Transfer Oscillator / Counter Techniques." 3: Note 43, "Continuous Monitoring of Radar Noise Figures" -a discussion of theory of noise figure measurements, and methods for measuring noise figure in operating radar systems. 4: Note 44A, "Synchronizing the 185 A Oscilloscope"methods of synchronization to permit direct presentation of waveshapes up to 1 KMC. 5: Note 46, "Introduction to Microwave Measurements."

$$
\text { Circle } 164 \text { on Inquiry Card }
$$

Rotary Joints

New 4 -page technical bulletin describes line of stock-design waveguide rotary joints. The 2 -color, illustrated brochure has electrical and mechanical specs and ordering information for 24 models of rotary joints. (Cata\log RJ-60.) Microwave Development Laboratories, 92 Broad St., Babson P'ark 57, Wellesley, Mass.

Circle 165 on Inquiry Card

Power Converter

Information on a new power converter designed to supply 12 vde from a 6 v battery from Hoover Electronics Co., 110 West Timonium Rd., Timonium, Md. With input voltage nominally at 6.3 v , the unit can supply output currents from 2 to 25 a at 12.6 to 14.0 v . Two outputs are sup-plied-one filtcred and one unfiltered. A ferrite choke is used in the filtered output to achieve low output noise levels for supplying transistorized receivers. Amb. temp. range is -30 to $+6.5^{\circ} \mathrm{C}$.

$$
\text { Circle } 166 \text { on Inquiry Card }
$$

Antennas

Data sheets from D. S. Kennedy \& Co., Cohasset, Mass., describe a mobile tracking antenna which is completely self-contained. The dish of the antenna is permanently connected to the tower which is a part of the trailer. The dish folds in a stow position when not in use-it uses an imported reflective plastic cloth. Also: information on a process for manufacturing antennas called "Spincasting." The process gives an unusually high precision surface for antennas by spinning resinous materials in standard dishes to form a perfect paraboloid.

Circle 167 on Inquiry Card

Microwave Paths

. Microwave Path Engineering Considerations" ($\$ 3.00$) from Lenkurt Electric Co., San Carlos, Calif., talks about: "Route and Site Selection"Microwave paths, Sources of path data; Site Data; Path Profiles; "Radio Engineering" - Propagation; Free Space Attenuation; Terrain Effects; Atmospheric Effects; System Desigin Criteria; "Equipment including radio, antenna systems, waveguide, and 1 -f combiners," and "Calculations for" a Hypothetical Microwave System."

Circle 168 on Inquiry Card

Passive Repeaters

"Passive Repeater Bearing Calculations and Settings," a 16-page technical discussion of the calculations necessary to properly orientate a large microwave passive repeater, is available from Microflect Company, Inc., 345025 th St. S. E., Salem, Oreyon. The booklet also contains a yraph for the selection of the proper passive repeater size to do a particular jul.

$$
\text { Circle } 169 \text { on Inquiry Card }
$$

Microwave Equipment

The standard and special products of Empire Devices Products Corp., Amsterdam, New York, are presented in catalog No. 604. Tech data is provided for such items as Noise and Field Intensity Meters; Receivers; Impulse Generators; Broadhand Power Density Meters; Balanced Crystal Mixers; Coaxial Attenuators; Power Dividers; Stub Tuners etc. (48-pages.)

Circle 170 on Inquiry Card

Choppers

Newly revised 4-page data sheet on VECO "Chopperette". which is nonhedroscopic, shock, vibration, and acceleration proof and meets MIL-E-$52-2 C$. Sheet gives details of operation, electrical and matching characteristics, transformer coupling, and zener diode choice, circuitry and typical applications. Data Sheet V383 B, Victory Engineering Corp., 521 Springfield Rd., Union, N. J.

Circle 171 on Inquiry Card

Thin Film Resistors

Bulletin No. 10A from Film Resistors, Inc., P. O. Box 49, 242 Ridgedale Ave., Morristown, N. J., describes their ultra-pure pyrolytic carbon and vacuum deposited metallic thin film microwave resistors. Sheets include curves, outline drawings, and tech data.

Circle 172 on Inquiry Card

NEW
 SOLID STATE
 MICROWAVE COMMUTATOR SINGLE POLE MULTIPLE THROW COAXIAL SOLID STATE (CRYSTAL) SWITCHES

in

SPST-SPDT-SPAT-SP10T (shown in Photo) OR ANY OTHER CONFIGURATION ON SPECIAL ORDER

THESE COMMUTATORS ARE INDISPENSABLE FOR:

- Antenna Lobing or Switching - Wullenweber Antenna Arrays
- Channel Switching

AND MANY OTHER FUNCTIONS WHERE PRIMARY CONSIDERATIONS ARE

- High Speed—Faster than $1 \mathrm{~m} \mu \mathrm{sec}$ - Low Operating Power - Broad Bandwidth - Reliability - Light Weight - Small Size - Temperature Insensitivity Over Wide Range COAXIAL SWITCHES AVAILABLE FROM 10 MC TO 12 KMC AND WAVEGUIDE SWITCHES AVAILABLE FROM 8.2 TO 18 KMC
 OTHER NEW MICROWAVE COMPONENTS
AMERICAN ELECTRONIC LABORATORIES, INC.
121 N. 7 th ST..
PHILADELPHIA G, PENNA.
Investigate the opportunities at AEL for creative engineers

[^6] Circle 82 on Inquiry Card

ONE

MANUFACTURING

SOURCE FOR ALL

RG/U COAXIAL CABLES

NEW

 SANGAMO resin-coated

 SANGAMO resin-coated tyo tyo SILVERED-MICA CAPACITORS...

Sangamo experience with mica caracitors and years of engineering know-how and quality development underline two new Type D Resin-Coated Silvered-Mica Capacitors. Designed for operation at 1 emperatures of $+125^{\circ} \mathrm{C}$ and +150 C , both offer the advantages of radial leads, small size, full rated working voltage without derating, and a clean, moisture-sealed protective resin coating. Physical and electrical features of the Type D capacitor are ideal for etched circuits, high component-density equipments, missiles, computers, and instrumentation devices. Type [y capacitors are available with characteristics C, D, E. or F, in nearly all capacitance values.

Test these new Sangamo Type D Resin-Coated SilveredMica Capacitors - they more than meer proposed military specifications. Try them in your own circuits they will fulfill all expectations of today's most critical applications. Those who know capacitors choose Sangamo for outstanding performance and long life.

What constitutes a superior dipped-mica capacitor?

Silvered-mica capacitors have achicred a rophtation over many yoars of use for high stability and high reliability. Nica's inherent low power factor, high dielectric strength, low dielectric absorption and high insulation resistance have made raca capacitors most desirable in electronic circuits where good stability with respect to temperature, frequency, and aging are required.
But refinements of mechanical features were required for today's high component-density equipment utilizing etchedcircuit construction. Some of the requirements that led to development of the dipped mica capacitor were:

1. A protective covering, that is thermally and mechanically rugged, impervious to moisture, and non inflammable.
2. Radial leads for rapid assembly, rigid mounting, and cool operation.
3. Small size and dimensional uniformity for more compact and standardized assemblies.
4. A glossy surface to which dirt does not adhere and which also enhances appearance.
5. Lower cost through improved automated manufacturing techniques.
Considering these requirements, Sangamo has designed two new Type D resin-coated, silvered-mica capacitors. They have a better coating resulting from finer materials used in the dipping process, and also possess the excellent performance characteristics previously established by other types of Sangamo silvered-mica capacitors.
MECHANICAL DESCRIPTION: The mica is carcfully selected for electrical excellence and dimensional uniformity. The silver is screened on the mica and fired to effect a positive bond. A positive low-resistance connection is assured by clips and leads of tinned brass pressure clamped to the section.
Good thermal shock characteristics, moisture resistance, and a glossy surface are provided by five separate resin coatings that do not appreciably alter the electrical characteristies of the silvered-mica section.

OPERATIONAL PERFORMANCE:

Type D capacitors are available in two maximum temperature ratings, $+125^{\circ} \mathrm{C}$ or $+150^{\circ} \mathrm{C}$. Both can be operated at rated voltage without derating.
The insulation resistance for capacitance values is shown in Figure 1 for $+25^{\circ} \mathrm{C}$, + $125^{\circ} \mathrm{C}$, and $+150^{\circ} \mathrm{C}$.

These capacitors are available in $\mathrm{C}, \mathrm{D}, \mathrm{E}$, or F characteristics over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ or $+150^{\circ} \mathrm{C}$ as shown in the following table:

TABLE I			
Characteristics Available in Type D Resin-Coated, Silvered-Mica Capacitors			
Characteristic	Temperature Coefficient ppm/ $/{ }^{\circ} \mathrm{C}$	Capacitance Drift Per Cent	Availability of Choracteristic
$\begin{aligned} & C \\ & D \\ & E \\ & F \end{aligned}$	$\begin{aligned} & \pm 200 \\ & \pm 100 \\ & -2010+100 \\ & 010+70 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.3 \\ & \pm(0.1+0.1 \mathrm{pf} .) \\ & \pm(0.05+0.1 \mathrm{pf} .) \end{aligned}$	All Values All Volues Above 20 pf . Above 50 pf .)

The moisture resistance is given as an insulation resistance greater than 10.000 megohms after a ton day eycle outlined in Method 106A. Figure 106-1 of Mil-S1d-202B.
Thermal and immersion cycling is given as an insulation resistance greater than 10,000 megohms when subjected to temperatures between $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ or $+150^{\circ} \mathrm{C}$ as outlined in Method 102A, test condition D and Method 104A, test condition B of Mil-Std-20213.
These capacitors will withstand a constant acceleration of 20 G 's in accordance with Mil-Std-202I3, Method 204A, test condition D.
Values of Q at rarious frequencies are shown in Figure II.
Type D capacitors can be stored at $-55^{\circ} \mathrm{C}$ without injury. Case insulationstrength is 200 per cent of rated voltage.
They will have an insulation resistance of 10.000 megohms at $+25^{\circ} \mathrm{C}$ after an accelerated life test of 2,000 hours
 duration at 150 per cent of rated voltage, at high ambient test temperatures of $+125^{\circ} \mathrm{C}$ or $+150^{\circ} \mathrm{C}$.
Acceptable Quality Levels (AQL) of completed units are fully met using the sampling plan set forth in Mil-Std$10: 5 \mathrm{~A}$. This limits visual and neechanical AQL to 1.5%; Electrical AQL to 0.65%; and environmental AQL to 2.5%.

Sangamo also supplies the Type D as a non-standard capacitor in accordance with special requirements. Where maximum dimensions are critical and military humidity specifications do not apply, Type D capacitors are arailable with fewer resin coats. If circuit design requires a lower temperat ure coeflicient, it can be provided when specified. Where improved reliability is an important factor, Type D capacitors can be 100 per cent short-term, accelerated life tested. In addition to straight lead design, Type D is also available with crimped leads which provide a positive stop when capacitors are mounted on eteled-circuit boards.

SC60.8

SANGAMO ELECTRIC COMPANY, Springfield, Illinois

for Engineers

Pulse Transformers

"Slabbed" circle cases for pulse transformers designed for ease of manufacture in the new Type 32% Pulse Transformer series are listed in Engineering Data Sheet No. 40240 , from Sprague Electric Co., 2.3:3 Marshall St., Nurth Adams, Mass. Ther offer means of anchoring leads and quickly inserting transformer windings, soldering the external leads to the ends of the windings, and pouring the encapsulating material.

```
Circle 173 on Inquiry Card
```


Converter

Data sheets from Vidar Corp.. 2107 El Camino Real, Palo Alto, Calif. describe the lidar 250 A and 25013 ac-dc Voltage-to-Frequency Converters. These will develop output pulses at a rate precisely proportional to input de or ac voltages. The two models are distinguished by output frequency range, the VIDAR 250.4 being a $0-100 \mathrm{kc}$ unit-the VIDAR $250 \mathrm{~B} 0-10 \mathrm{kc}$. For high accuracy instrumentation, response is instantane-ous-a step change in the input causes a step change in frequency. delayed no more than the period of one cycle. A 5 -position attenuator provides full-scale sensitivities ranging from 0.1 v . to 1000 rac or rde. Voltage range and ac or de mode can be selected manually at the front panel or by remote switch closure.

$$
\text { Circle } 174 \text { on Inquiry Card }
$$

Filters-High \mathbf{Q} Coils

New 1960-61, 16-page supplement, 2-color, catalog offers complete information on Electric Wave Filters and High Q coils. An easy reference Re-actance-Frequency chart is also included. Also, information on Company's transformers, reactors, magnetic amplifiers and pulse transtormers. United Transformer Corp., $1 \overline{\text { ®̄ }} 0$ Varick St., New York 13, N. Y.

Circle 175 on Inquiry Card

Cleaning Ultrasonically

Comprehensive information on the advantages of ultrasonic cleaning is contained in Bulletin 60-1, "How to Clean Ultrasonically with'Self Tuning," offered by Powertron Ultrasonics Corp., Patterson Pl., Roosevelt Field, Garden City, N. Y.'It provides a basic explanation of how ultrasonics works, what it can do to cut time and labor costs. and a guide to the selection of tank and generator sizes for various jobs. A discussion of the Company's new development, the Autosonic line of self tuning cleaners. is also included. A thorough chartguide to the correct cleaning solutions and temperatures for ultrasonic removal of more than 20 different common contaminants completes the hulletin.

Regulated Power Supplies

Power supplies connected in parallel to provide low-cost, regulated de power supply systems of greater power output and higher current ratings are described in Application Note DC. 400 from Sorensen \& C $(0$. (a sub) sidiary of Raytheon Co.) Richards Are., So. Norwalk, Conn. It illustrates the method of paralleling? MD supplies across a 115 vace line to double the current rating of the units.

Circle 177 on Inquiry Card

Storage Oscilloscope

Information and specs on a new wide-band, high frequency storage oscilloscope which features a $10-\mathrm{MC}$ handwidth and a writing speed of 1.000.000 in . a sec. is avaifable from the Industrial Systems Div., Ifughes Aircraft Co., P. O. Box 90904 , Airport Sta., Los Angeles 45, Calif. The Memo-Scope oscilloscope is designed with plug-in amplifiers, 1 -shot trigger circuits, delay lines and swing-out circuit boards for maintenance access. The company used epoxy glass circuit boards for high circuit stability. Circle 178 on Inquiry Card

Pressure Windows

New 12-page brochure describes waveguide pressure windows, their applications and installation suggestions. Pressure windows are a cailable as standard units to operate in from 2.4 to 40 KMC are designed to serve increasing power handling reguirements over exceptionally wide temp. ranges. Window types covered are: flange-mounted glass-kovar; flangemounted mica; pressure windowwaveguide assemblies; and solderable windows (including the new flexframe construction) for sealing reference cavities, filters, etc. Microwave Assoriates, Inc., Burlington, Mass.

$$
\text { Circle } 179 \text { on Inquiry Card }
$$

Components Catalog

Twenty-page catalog includes illustrations, technical information, performance charts on Anderson Solenoids, coils, transformers and electrical components. Of special interest, in addition to their "Series D Solenuids" are the new "ME Series Miniature Solenoids." Anderson Controls, Inc.. 9959 Pacific Ave., Franklin Park, Ill. Circle 180 on Inquiry Card

Gold Alloy Preforms

Tech. data sheets on gold alloy: and other semiconductor device alloy: available from Alpha Metals, Inc. 56 Water St., Jersey City 4 , X . J. Gold $99.99+$ pure alloyed with antimony, silicon, germanium, gallium or tin is fabricated into spheres, foil. washers, discs, rectangles and squares for semiconductor devices.

Circle 181 on Inquiry Card

Trimmer Capacitors

Advance specs for a new line of miniature trimmer capacitors which include 4 models, each available for panel or printed circuit mounting. Capacitance ranges are 1 to $4.5,1$ to 8.5. 1 to 1%, and 1 to $18 \mu \mu \mathrm{f}$. Behindpanel lengths (overall lengths for printed (ircuit types) are $27 / 64,5 / 8$, $13 / 16$. and $13 / 322 \mathrm{in}$. Q factor for all models is 500 at 50 MC ; Temp. coefficients are $\pm 50, \pm 75$ and ± 1.00. Corning Glass Works, Corning, N. Y.

Circle 182 on Inquiry Card

High-Frequency Bus Duct

Application data, 30-6663-for highfrequency bus duct, is contained in a new 12-page booklet available from Westinghouse Electric Corp., P. O. Box 2099, Pittsburgh 30, Pa. Descriptions. drawings, dimensions, spees, and engineering and test data give specific information needed to lay out. specify and install this type of bus duct. Applications of high-frequency bus duct include induction heating systems, missile-launching sites, and air-frame and electronics manufacturing facilities.

$$
\text { Circle } 183 \text { on Inquiry Card }
$$

Dielectric Ceramics

Technical data on "The Use of Rare Earths and Their Allied Elements in Dielectric Ceramic Materials," available from litro Chemical Co., 342 Madison Ave., New York 17, N. Y. Circle 184 on Inquiry Card

Military Components

New edition of Military Components Catalog, No. 50A. This 36 -page catalog can be considered a manual on U. S. Military specs covering those components which Ohmite manufactures. The catalog covers the latest versions of the following specs: MILR26, MIL-R-22, MIL-R-19365, MIL-R-98, M1L-R-9444, MIL-R-10509, MIL-R-19074; MIL-R-6749, MIL-R1227. MLL-R-3965, MIL-R-5757, and MIL-R-6i06. The catalog reduces the formidable maze of military specs to a fundamental lasis that makes simple, the writing of "type designations" and the ordering of military components. Ohmite Mfg. Co., 3679 Howard St.. Skokie, III.

Circle 185 on Inquiry Card

VHF Power Generator

Circuit details of a high-power, solid state VHF power generator are discussed in a new publication from Pacific Semiconductor's, Inc., 12955 Chadron Ave., Hawthorne, Calif. Contents of the brochure are limited to discussion and circuitry of a 250 MC 212. WHW power generator for which components are immediately available. A supplementary brochure discussing a 1 KMC UHF generator will be published later this year when required components become available.

Circle 186 on Inquiry Card

New from Sarkes Tarzian

HIGH

Latest in the growing line of Sarkes Tarzian semiconductor devices are High Voltage Silicon Cartridge Rectifiers in two series. Each series includes 18 different types with operating temperatures ranging from $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ ambient. The units feature low voltage drop and low reverse current.

Ferrule Mounted Series (S-5490 thru S-5507)

This high voltage series is equipped with a ferrule type mounting of silver plated brass and is available in both hermetically sealed glass or phenolic tubing. The units range in sizes from $13 / 16^{\prime \prime}$ to $61 / 6^{\prime \prime}$, have maximum rectified DC output currents varying from 45 to 100 milliamperes, and peak inverse voltage ranging from 1500 to 16.000 volts.

Axial Lead Series

(S-5518 thru S-5535)

This high voltage series is equipped with axial leads, with units ranging in size from $1 / 2^{\prime \prime}$ to $21 / 2^{\prime \prime}$ and lead lengths varying from $1^{\prime \prime}$ to $21 / 2^{\prime \prime}$. Peak inverse voltage starts at 1000 volts up to 10,000 volts, with maximum RMS input voltage ranging from 420 to 7000 volts. Maximum average rectifying currents at 25 degrees C vary from 70 to 250 MA, and at 100 degrees C , from 25 to 100 MA.

Both series are immediately available in production quantities! For additional information on the new Sarkes Tarzian High Voltage Silicon Cartridge Rectifiers, write Section 5652 C .

Sarkes Tarzian is a leading producer of semi-conductor devices in production quantities, including silicon power rectifiers, silicon tube replacement rectifiers, selenium rectifiers, modular silicon rectifiers and zener voltage regulators. Application engineering service is available without cost or obligation. Rectifiers

(FERRULE MOUNTED SERIES)			
Opcrating Temperature Rango- $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Ambient		Max. Ratings Half Wave Res. Load at $75^{\circ} \mathrm{C}$ Ambient	
JEDEC TYPE	$\begin{aligned} & \text { S. T. } \\ & \text { TYP:E } \end{aligned}$	PEAK INVEHSE vOLTS	$\begin{gathered} \text { MAX } \\ \text { RECTIFIED } \\ \text { DC OUTPUT } \\ \text { MA } \\ \hline \end{gathered}$
1N1133	S. 5490	1500	75
1N1134	S-5491	1500	100
1N1135	S. 5492	1800	65
1N1136	S. 5493	1800	85
1N1137	S-5494	2400	50
iN1T38	S.5495	2400	60
1N1139	S. 5496	3600	65
1N1140	S. 5497	3600	65
1N1141	S.5498	4800	60
1N1142	S.5499	4800	50
[N1143	S. 5500	6000	50
1N1143A	S. 5501	6000	65
1N1144	S. 5502	7200	50
iN1145	S. 5503	7200	60
1N1146	S-5504	8000	45
IN1147	S. 5505	12000	45
1N1148	S-5506	14000	50
1N1149	S-5507	16000	45

When ordering phenolic lubing as a substitute for glass lubing, add the letter "P" to S. T. Type No.

MAXIMUM RATINGS				
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Ambient				
$\begin{aligned} & \text { JEDEC } \\ & \text { TYPE } \end{aligned}$	$\begin{gathered} \text { S. T. } \\ \text { TYPE } \end{gathered}$	PEAK INVERSE VOLIS	MAX. RMS INPUT VOLTS*	MAX. RECT, DC OUTPUT (MA) (4. $300^{\circ} \mathrm{C}$
1N1730	S-5518	1000	700	100
1N1731	S.5519	1500	1050	100
1N1732	S. 5520	2000	1400	100
1N1733	S. 5521	3000	2100	75
IN1734	S. 5522	5000	3500	50
1N2373	S. 5523	600	420	100
\|N2374	S. 5524	1000	700	100
1N2375	S. 5525	1500	1050	100
1N2376	S.5526	2000	1400	100
1 N2377	S-5527	2400	1680	75
1N2378	S.5528	3000	2100	75
1N2379	S-5529	4000	2800	50
iN2380	S-5530	6000	4200	50
1 N 2381	S.5531	10000	7000	25
1N2382	S.5532	4000	2800	75
1N2383	S. 5533	6000	4200	50
in2384	S. 5534	8000	5600	35
1N2385	S. 5535	10000	7000	35

- Derate 50% for capacitive load in hall wave circuits.

For capacitive, motor, or battery loads, derate DC current by 20%.

Waveguide Data Chart

New Standard Waveguide Data Chart is a complete listing of waveguide information. It features military as well as EIA designation numbers, and shows virtually all required electrical as well as mechanical parameters for all waveguides in use today. Some parameters covered are: cut-off frequency, theoretical attenuation for both brass and aluminum waveguides, theoretical CW power rating, and the waveguide wavelength from the lowest to the highest frequency in any given band. Mechanical dimensions are also given for all waveguides, along with their tolerances. Also given is the Narda designation number for each waveguide along with the EIA and military numbers. Narda Microwave Corp., 118-60 Herricks Rd., Mineola, L. I., N . Y.

Circle 187 on Inquiry Card

Carrier System

The General Electric TCS-600, a fully transistorized multiplex-carrier system designed to transmit from 1 to 600 full duplex-toll quality-voice channels over a single microwave beam, is described in a bulletin from GE's Communication Products Dept., Lynchburg, Va. Also available: bulletins describing their Alarm/Control equipment for monitoring and fault location; their Dual-Beam Microwave; and their microwave terminal equipment.

Circle 188 on Inquiry Card

Microwave Instruments

Series of technical data sheets from Wave Particle Corp., Div. of Ramage \& Miller, Inc., 3221 Florida Ave., Richmond, Calif., describes their line of microwave instruments. Included are: Traveling Wave Tube Anplifiers; High power Microwave Signal Sources; B.W.O. Microwave Signal Sources; and X-band Weather Radar Systems. Spees are included.

Circle 189 on Inquiry Card

UHF-VHF Measurements

A line of high-frequency measuring equipment and accessories for signal and pulse generation, impedance measurement, detection, modulation, attenuation, and transmission through shielded coaxial lines is presented in a brochure from General Radio Company, 275 Massachusetts Ave., Cambridge 39, Mass. The 12 -page, 2 -color bulletin (catalog type) contains specs -electrical, mechanical, etc.-on all the equipment.

Circle 190 on Inquiry Card

System Engineering

"Microwave System Engineering," a 24-page booklet, from Sarkes Tarzian, Inc., East Hillside Drive, Bloomington, Indiana, is available to those requesting it on Company Letterhead. It provides basic information on the fundamentals of microwave propagation and on the limitations imposed by the high frequency of the microwave spectrum. Information includes: Propagation Fundamentals; Fresnel Zone; Fading; System Planning; and Equipment \& Site Selection.

Circle 191 on Inquiry Card

Microwave Equipment

Waveline, Inc., Caldwell, N. J., offers several items of interest to microwave engineers: A 4 -page brochure, "WR-51 Test Equipment"-a compilation of 60 waveguide instruments for use in the WR-51 waveguide size; a 4-page brochure, "Coaxial Microwave Filters"- 5 representative types of coax microwave filters with tech data; a data sheet describing their Model 609 Variable Fixed Attenuator (X. and K_{11} band) ; Description of a two section coaxial filter, 90116 (3.5 to 4.0 KMC) ; and information on a new product, "Coaxial Wavemeter" including tech data.

Circle 192 on Inquiry Card

Waveguide Assemblies

Catalog \# TL 601 from Technicraft Div. of Electronic Specialty Co., Thomaston, Conn., describes the company's products including: rectangular and circular waveguides, Broadband Ridge Waveguides; Flexible and Rigid Waveguide assemblies; Mixers, Duplexers; Matched Tees; Directional and Bi-directional Couplers; Short Slot Hybrids; Coaxial Adapters; Crystal Holders; Attenuators; Disconnects and Quick Clamps; Tuners; Loads, Phase Shifters; Antenna Feeds and Ferrite Devices.

$$
\text { Circle } 193 \text { on Inquiry Card }
$$

Microwave Ferrites

Microwave Ferrites produced by Indiana General Corp., General Ceramics Div., Keasbey, New Jersey, are featured in bulletin No. 259. It contains a microwave ferrite application chart and a table of magnetic properties. The inside spread features curves of magnetic and dielectric properties vs frequency. Also available: Bulletin 18 (Indox permanent Magnets) ; Catalog 20 (Alnico V load Isolator Magnets) ; and Engineering Bulletin 353 (Indox VI magnets for TWT's).

Circle 194 on Inquiry Card

Microwave Diode Handbook

Microwave diode handbook (50 d) from Sylvania Electric Products, Inc., 100 Sylvan Road, Woburn, Mass., includes: "Theory of Microwave Crys-tals"-physical design, general characteristics, mixer crystals, detector crystals, harmonic generation, and balanced sideband modulator; "Physical Testing"; "Application Testing" -renerator impedance, power level of mixer, reverse polarity, coaxial vs. waveguide design, matched pairs, crystal burnout, temperature effects, etc. (42-pages.) Also available: the 1960 edition of "Sylvania Microwave Diodes-Characteristics and Replacement Guide," and 2 booklets listing microwave tubes and other products hy frequency bands.

Circle 195 on Inquiry Card

Microwave Oscillators

Bulletin 814-A from Laboratory For Electronics, Inc., 1079 Commonwealth Ave., Boston 15, Mass., describes Series 814, high-power, ultrastable, tunable, microwave oscillators. It includes features, description, and applications. Bulletin is illustrated with graphs, tables and specs. Also available: Bulletin 820 XLK on the Series 820 XLK Ultra Stable Microwave Oscillators; a bulletin on the Epsi-Line Microwave components, and bulletins on Microwave Spectroscopy and the MTI Radar Test Set.

$$
\text { Circle } 196 \text { on Inquiry Card }
$$

Antenna Pattern Analyzer

Brochure form the Bendix Corp., Radio Div., Baltimore 4, Md., features Antenna Pattern Analyzer AN/ASM13. The system features direct recording of radar antenna patterns quickly and precisely. It is an airborne system that can be used with any ground radar to provide permanent graphs of the antenna pattern. Items for which data can be provided are: beamwidth, side lobe levels, dead spots, general beam shape, beam pointing accuracy, the effect of frequency changes or adjustments to the radar structure, and interference.

$$
\text { Circle } 197 \text { on Inquiry Card }
$$

Microwave Links

Four-page leaflet from Pye Telecommunications Ltd., Newmarket Rd., Cambridge (England), features their TV microwave link equipment Type PTC M1000. The unit is a long-range microwave equipment suitable for the transmission of monochrome videosignals simultaneously with high fidelity audio signals. Output power is 1 watt.

Circle 198 on Inquiry Card

IN THERMISTORS

 -ne ter namo. Keystone whether you need 10 or $10,000,000$ piecesSTANDARD PARTS
or SPECIAL ASSEMBLIES

Versatility Plus
A partial list of small discs and rods. all with identical characteristics

Temperature Coefficient $\left(25^{\circ} \mathrm{C}\right)-3.8 \% /{ }^{\circ} \mathrm{C}$
Beta Value ($37.8 \mathrm{C} / 104.4^{\circ} \mathrm{C}$) 3500 K
Ratio ($37.8^{\circ} \mathrm{C} / 104.4^{\circ} \mathrm{C}$) 7.3

Resistance $25^{\circ} \mathrm{C}$	Keystone Type Number	Diameter (Inches)	Thickness (Inches)
500	L0503.312.73	0.050	0.030
$\begin{array}{r} 160 \\ 500 \\ 1000 \end{array}$	$\begin{aligned} & \text { LO903.100.73 } \\ & \text { Logo3.-312.73 } \\ & \text { L909.623.73 } \end{aligned}$	$\begin{aligned} & 0.100 \\ & 0.100 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 0.030 \\ & 0.030 \\ & 0.100 \end{aligned}$
$\begin{aligned} & 100 \\ & 180 \\ & 200 \\ & 230 \\ & 270 \\ & 300 \end{aligned}$	L2003.62.73 L2006. 112.73 L2006.125.73 L2006.143.73 L 2008.168 .73 L2008-187.73	0.200 0.200 0.200 0.200 0.200 0.200	$\begin{aligned} & 0.030 \\ & 0.060 \\ & 0.060 \\ & 0.060 \\ & 0.080 \\ & 0.080 \\ & 0.080 \end{aligned}$
$\begin{aligned} & 100 \\ & 200 \\ & 250 \\ & 300 \end{aligned}$	L3006-62.73 L3008.125.73 L3018.187.73	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$	0.060 0.080 0.080 0.180
$\begin{array}{r} 270 \\ 5000 \\ 10000 \end{array}$	L060637-168-73 L060637.312C.73 L060437-6234.73	$\operatorname{Rod}_{3 / 8} 0.0060$ square,	

Special Mounting Requirements
Thermistor applications often dictate special mounting requirements. As a result. Keystone units are supplied with many types of special lead assemblies, mounting tabs, heat dissipating fins. Units are mounted in probes and transistor type cans, attached 10 plates and metal parts of wide variety.

Keystone has the experience (over almost a quarter of a century), the knowledge and production capability to handle your thermistor requirements in any quantity-of any type and size.

Because of unsurpassed quality control, your tolerance specifications are acceptable to $\pm 2 \%$ on resistance value and Beta value (in fact, we maintain a $\pm 2 \%$ production tolerance on the material constant of ali Keystone thermistors regardless of resistance tolerance). All parts can be supplied in pairs or sets matched closely in resistancetemperature or voltage drop characteristics.

We can supply discs, washers, rods, heads and special shapes including washer segments, square rods, rectangular waters, square waters, ete. Our experienced sales staff and engineering and research and development organizations are available for consultation. Write us or call today.

Circle 56 on Inquiry Card

RESISTOR DIVISION - St. Marys, Pa
Telephone: Terminal 4.1591

TRANSMITTER

L Band CW Transmitter Assembly feaures: Number of transmitters, 2 ; Frequency, transmitter No. $1,990 \mathrm{MC}$ $\pm 10 \mathrm{MC}$ - transmitter No. 2, 1800 $\mathrm{MC} \pm 10 \mathrm{MC}$; stability, $\pm 3 \mathrm{Mc}, \perp \mathrm{T}$ $=70^{\circ} \mathrm{C}$; power output, 5 w Peak, 50% duty cycle; modulation, square

WAVEGUIDE TERMINATIONS

New C-Band and XB-Band Water Loads, liguid-cooled, waveguide terminations, cover 5.8 to 8.2 KMC (Model $187 \mathrm{~B}-\mathrm{C}$) and 7.0 to 10.0 kMC (Model 1 1878-XB). These are precision devices suited for Calorimetric r-f power measurement as well as straight for

ward dummy loads. It combines low r-f radiation and vSWr (max. vSWr of $1: 10$ and typical values of $1: 05$) with max. reliability and power capability. Unpressurized, Model 187B-C can be operated at ave. 5 kw or peak 500 kw , Model 187-XB is rated at 3 kw ave. or 300 kw peak. Both can be pressurized to 45 psig for operation at higherlevels. SL, S and X-Band Water Loads are also available for 1.7 to 2.6 KMC, 2.6 to 4.0 KMC and 8.2 to 12.4 Kmc applications. Sierra Electionic Corp., Menlo Park, Calif.

Circle 201 on Inquiry Card

ISOLATOR ELEMENTS

Models 200, 210, 220, 230, 240, 250, Y-circulator or isolator elements, available at a specific frequency in the vhF-UHF region with these characteristics: Band (Mc), 200-800; Max. isolation (db), 40; Max. loss (db), 0.5 ; vSWR max., 1.1; Approx. Peak power (kw), 20; and Amb. temp., 20 to $2: 3^{\circ} \mathrm{C}$. They will provide 20 db of isolation, with insertion loss not exceeding 1.0 db , over' a frequency band of $f_{\text {man }}=1.3$ to 1.5 times $f_{\text {min }}$ if a variable magnetic field is applied. The vswr over this hand is not greater than 1.3. For a fixed magnetic field, the 20 db -isolation bandwidth de-

STORAGE TUBE

New direct-view storage tule, type if L-i26x, incorporates - writing guns and a viewing gun system producing a bright, non-flickering. uniform display over a 4 in . dia. area. Two clectrostatically focussed and deflected writing guns permit independent, si-

multaneous writing of 2 signals, Performance characteristics of the tube include brightness up to 2500 ft .lamberts with 10,000 v. applied to the phosphor, good resolution of halftone displays, and excellent display uniformity. The writing speed of $36,000 \mathrm{in}$. $/ \mathrm{sec}$. is sufficient to freeze high frequency transients, and storage time is long enough for examining and recording the display. Max. dia. is $51 / 4 \mathrm{in}$.-length is $153 / 4 \mathrm{in}$. Westinghouse Electronic Tube Div., P. O. Box 284, Elmira, N. Y.

$$
\text { Circle } 203 \text { on Inquiry Card }
$$

NOISE FIGURE BRIDGE

The Auto-Node, a flexible automatic noise figure bridge for simplified, automatic noise figure meter displays, features a small (probe size) temp. modulated resistor as a noise generator. Characteristics: Sine wave temp.-modulation at a 10 CPS rate with temp, excursions between 300° and $400^{\circ} \mathrm{K}$; small viwr variations during modulation (less than 2 parts in 1000); useful freq. range of noise generator from 2 to 2000 Mc. Highgain, low-noise post amplifier has noise-figure stability better than 3.5 (1) (matched). Gain raises input noise to 10 v . after final detection.

makes possible handling capabilities of up to 100 kw . They have broad perating temp. ranges. Special Mi--rowave Device Operations, Raytheon Co., 1:30 Second Ave., Waltham 54, Hass.

Circle 200 on Inquiry Card

creases to the order of 9 to 12% of the center frequency. Electro or permanent magnets can be supplied. Electronic Communications, Inc., Research Div., 1830 York Rd., Timonium, Md.

Bandwidth is 2 MC (supplied with 1 of 3 center freqs.: 30,60 and 70). Measurements are to within 0.2 d , accuracy (gain or less measurements). Kay Electric Co., Maple Ave., Pine Brook, N. J.

Circle 204 on Inquiry Card

in the interests of more stable telemetry power. . . VĀP-AIR 5-VOLT D.C. POWER SUPPLYS

VÄP-AIR . . . SPECIALISTS IN AIRCRAFT thermal controls for nearly 20 years
Entire sustems and a complete line of sensors. cooling effect detectors, electronic controls and precise voltage regulators. electro-pneumatic and electro-mechanical valves. adranced hot-air inline valves and pressure regulaiors. electric pouer controllers and heat exchange equipment -for aircraft. missiles and ground support.
for complete technical infermation and applications write:

VĀ-AIR the aERONAUTICAL DIVISION OF VAPOR HEATING CORPORATION. Dept. 6I-K 80 East Jackson Blvd., Chicago 4, Illinois

New York - St. Paul - Denver - Washington Philadelphia • Seattle • San Francisco - Houston Richmond • Los Angeles • St. Louis

BRIEF SPECIFICATIONS

Input Voltage 22 to 29 Volts D.C.
Maximum Input Transient..... 80 Valts above zero level, 10 to 20 milliseconds duration
4.975 to 5.000 Volts D.C. under all conditions of line load, and temperature variations 0 to 100 milliamps
30 millivolts peak-to-peak under input tran. sient conditions
$-65^{\circ} \mathrm{F}$. to $+185^{\circ} \mathrm{F}$
(can be furnished to $212^{\circ} \mathrm{F}$.)
100,000 feet
$11 / 2^{\prime \prime}$ by $11 / 2^{\prime \prime}$ by $11 / 2^{\prime \prime}$
5 ounces

Please send me more information on the Vāp-Air 5-Volt D.C. Power Supplys.

NAME FIRM

ADDRESS

CITY, ZONE, STATE

VOLTMETER

New Model 300-G Precision Electronic Voltmeter features 1% accuracy over the entire meter scale from 1 mv to 250 v . from 20 CPS to 20 Kc . Accuracy is better than 2% to 1000 v. and for the wider band of 10 CPS to 250 kc . Voltage coverage is from

1 mv to 1000 v . in 6 decade ranges. Shaped pole pieces are used to achieve a logarithmic characteristic over a 10 to 1 voltage range. The 5 - in . mirrorbacked scale with a 10 to 1 range has a 10% extension at both ends to reduce the amount of switching necessary when working at or near the end points of the scale. Basic meter error is less than $\pm 0.5 \%$ at all points. Input impedance is 2 megohms shunted by 15 pf , except 25 pf on the lowest voltage scale. Ballantine Laboratories, Boonton, N. J.

BROADBAND TERMINATION

Addition to the Half-X Component line, a broadband termination for 0.900 by 0.200 in . ID waveguide. This absorbing load exhibits a vSWR of less than $1.03: 1$ from 8.2 to 12.4 KMC . Max. power dissipation is 1 w ave. making the termination suitable for most low power design measurements

and production testing. Measuring 6 in. in length, cast aluminum construction results in a rugged yet light device. Flanging consists of a centered UG-67/U configuration. Turbo Machine Co., Lansdale, Pa.

Circle 206 on Inquiry Card

MICROWAVE MODULATOR

New high power microwave modulator, Model 10002, accominodates any of 76 magnetrons, covering 5,400 mC to $35,000 \mathrm{MC}$, with peak outputs from 20 kw to 500 kw . It is complete, compact, and self-contained, including high voltage power supply,

pulse generator, meters, viewing connectors for all principal parameters, controls and protective circuits. High voltage power supply is continuously variable from 0 to 8 kv at 200 ma ; pulse power output is 37 kv at 40 a max.; magnetron filament supply is continuously variable from 0 to 20 v . at 16 a. The pulse generator is free running and continuously variable from 180 to 3,000 pulses $/ \mathrm{sec}$. Standard pulse width is one μ sec. The Narda Microwave Corp., 118-160 Herricks Rd., Mineola, L. I., N. Y.

Circle 207 on Inquiry Card

TRANSFORMER CASES

Glass epoxy laminated cases are used to eliminate metal cans or potting molds in the encapsulation of high temperature transformers. The two halves are bonded together with the winding enclosed and the case is filled with potting compound. Simplified procedure reduces steps in pot-

ting, reduces weight of the unit, eliminates rejects due to thin spots. Thin wall, glass reinforced, laminated cases are available in all temperature classes. Stevens Products Inc., 86-88 Main St., East Orange, N. J.

Circle 208 on Inquiry Card

PHASELOCK RECEIVER

Model 90708 Phaselock Receiver provides sensitivity and flexibility for tracking of low level signals. Elec. specs: Input freq., $860-962 \mathrm{mc}$, Input impedance, 50 ohms; Input noise fig., 8 db max.; I-f bandwidth, 1000 cPs ; Sensitivity (Loop $\mathrm{S} / \mathrm{N}=1.4$) - Noise

bandwidth at $-150 \mathrm{dbm}=20 \mathrm{CPS}$ acceleration capability $=57 \mathrm{ft} / \mathrm{sec}^{2}$; Doppler tracking range, 72 kC ; Manual acquisition tuning range, 72 kc ; Zero input signal tracking filter drift, $3^{\circ} / \mathrm{sec}$; Doplar output-Balanced output, 500 ohms impedance level 2.8 v RMS- $\mathbf{1 0 0}$ ohms impedance level 3.3 v . rMs. Mech. specs: Drawers, standard 19 in. wide rack mountings, drawers on slides; Ht., standard 6 ft. rack; weight, 360 db (approx). Resdel Engineering Corp., 330 So. Fair Oaks Ave., Pasadena, Calif.

Circle 209 on Inquiry Card

SPECIAL PURPOSE FILTERS

A line of special purpose for telemetering, band pass, high and low pass, amplifier, discriminator and aircraft glide slope indicator applications. All units in line are hermetically sealed, and are designed in accordance with MIL-F-18327A. They

are built on special order. Detailed specifications available including bandwidth data and attenuation curves. Chicago Standard Transformer Corporation, 3501 W. Addison Street, Chicago 18, III.

Circle 210 on Inquiry Card

- NE NTEC

Standard types of Alite high voltage bushings are available in various sizes and configurations.

INSIDE LOOK AT ALITE-

Fact-packed, illustrated Bulletin A-40 gives vital technical data and product information. Write today

ALITE DIVISION

New
 Products

... for the Electronic Industries

POWER RESISTOR

Type $\mathrm{RH}-5$ wire wound, precision power resistor for problems where power and heat dissipation are complicated by miniaturization requirements. RH-5 is a 5 w resistor sealed in silicone and inserted in a radiator finned aluminum housing. It meets

MIL-R-18546B. It is impervious to moisture and salt spray. Type RH-5 measures $0.600 \times 0.334 \mathrm{in}$.; has a resistance range from 0.5 ohm to 20 K ohms. Tolerance range is $0.05^{\prime \prime}$, $0.1 \%, 0.25 \%, 0.5 \%, 1 \%$ and 3%. Temp. coefficient is $0.00002 /{ }^{\circ} \mathrm{C}$. It has welded construction from terminal to terminal. Max. operating temp. is $275^{\circ} \mathrm{C}$. When mounted on a heat sink, it is rated at full power up to $100^{\circ} \mathrm{C}$.. derating to 0 at $275^{\circ} \mathrm{C}$. Free air rating is full power up to $25^{\circ} \mathrm{C}$.. derating to 0 at $275^{\circ} \mathrm{C}$. Dale Products. Inc., Box 136, Columbus. Nebr.

Circle 211 on Inquiry Card

THERMISTORS

Midget baad thermistor for measuring temperature on the inside and outside surfaces of the Polaris and Atlas missiles is 0.010 inches in diameter and is mounted on a wire 0.001 inches in diameter. Nade of manganese nickel oxide, the thermistors can be used in medical applications inside a hypodermic needle to measure blood temperature. They are also used in radio frequency power measurements in the micro-

vave field and in the measurement ff low gas pressures. They can meaare temperatures ranging from $-76^{\circ} \mathrm{F}$ to $572^{\circ} \mathrm{F}$. Gulton Industries, nc., 212 Durhan Avenue. Metuchen. N. J.

Circle 212 on Inquiry Card

CRYSTAL MOUNTS

New line of coaxial crystal mounts accommodate almost all types of coaxial semiconductors and provide a wide range of connector types, frequency ranges, and other characteristics. Four basic types of mounts hold the ceramic cartridge, small and

large coaxial, and tri-polar types of crystals. They are equipped with a choice of $\mathrm{N}, \mathrm{BNC}, \mathrm{TNC}, \mathrm{C}$ or $\mathrm{H} \underset{\mathrm{N}}{ }$ male or female input connectors and BNC. TNC, or Microdot output connectors. Internal de returns cover from 30 to $1: 3000$ ac. Padded mounts, with attenuators built into the input can be supplied to provide a low input can be supplied to provide a low vswr. Where max. sensitivity is required, mounts tuned to a particular octave are also available. Microlab, 570 W. Mt. Pleasant A ve., Livingston. N. J.

Circle 213 on Inquiry Card

TELEMETRY TRANSMITTER

TR-10 is a transistorized foM telemetry transmitter for $F M / F M$ and PCM systems. Specifications include: 0.5 w output with true F.II modulation over complete $215-265$ MC telemetry hand; s9.9\%; reliability for 500 his.; modulation freg. response $\pm \underline{2}$ dh from :3 ces to 300 kc ; vibrationinduced noice less than 1.5 kc devialtion at 20 G's from 20 CPS to 2000 c'Ps; modulation linearity less than $1^{\prime \prime}$ from straight line at 12.5 kc de-

viation. It qualifies to radio noise spec MIL-STD-442, is hermetically sealed and exceeds military environmental specs including MiL-E-5272. United Electro-Dynamics, Inc., 200 Allendale Rd., Pasadena, Calif.

Circle 214 on Inquiry Card

DIGITAL DATA SYSTEM

Airborne Digital Data System, Model ADS-1 is for missile application to convert system parametric voltage measurements to a digital equivalent for use with FM-Telemetry systems, magnetic or paper tape recorders. It features a digital "yes-no"

type of information. Includes input multiplexing, analog to digital converter, output switching, channel identification and parity checking. It has 12 channels. Sampling rate is 120 samples/sec., conversion accuracy \pm $0.2^{\prime \prime}$ over operational temp. range, a 10 mv resolution and repeatibility and weighs 9.5 lbs. Full scale inputs of -5 to +5 v . at input impedances of greater than 10 megohms de and 1 megohm, 60 (Ps ac standard. InterMountain Instruments Br., CurtissWripht Corp., Flectronics Div., P. O. Box 8324 , Albuquerque, N. M.

Circle 215 on Inquiry Card

POTENTIOMETERS

New multigang configurations of t/e in. dia., precision wire-wound potentiometers and trimmers, for nissile and airborne use. Standard configurations include up to 6 gangs, servo or bushing mounted, with choice of ball or jewel bearings. The "ACEPOT" potentiometers feature standard linearity of 0.3%, while the "ACETRIN" trimmers provide 3% linearity. The "ACEPOTS" are available in standard resistance from 100

ohms to 250 K ; the "ACETRIMS" from 2 ohms to 250 K . Power Ratings are up to 2.5 w at $65^{\circ} \mathrm{C}$; maximum operating temperature is $150^{\circ} \mathrm{C}$. Ace Electronics Assoc. Inc., 99 Dover St., Somerville 44, Mass.

[^7]

How to build a better (audio signal) trap!

Magnetics Inc. permalloy powder cores give filter designers new attenuation and stability standards-and miniaturization to boot!

The art of trapping unwanted frequencies has been advanced during the past year with a succession of improvements in molybdenum permalloy powder cores by Magnetics Inc. Most audio filter designers now work with smaller cores, more stable cores and cores whose attenuation characteristics are ultra-sharp. Do you?
Do you, for example, specify our $160-\mathrm{mu}$ cores when space is a problem? With this higher inductance, you need at least 10 percent fewer turns for a given inductance than with the $125-\mathrm{mu}$ core. What's more, you can use heavier wire, and thus cut down d-c resistance.
What about temperature stability? Our linear cores are used with polystyrene capacitors, cutting costs in half compared to temperature stabilized moly-permalloy cores with silvered mica capacitors. Yet frequency stability over a wide swing in ambient temperatures is increased!

And what do you specify when you must rigidly define channel cut-offs, with sharp, permanent attenuation at channel crossovers? Our moly-permalloy cores have virtually no resistive component, so there is almost no core loss. The resultant high Q means sharp attenuation of blocked frequencies in high and low band pass ranges. Why not write for complete information? Like all of our components, molybdenum permalloy powder cores are performance-guaranteed to standards unsurpassed in the industry. Magnetics Inc., Dept. EL-82, Butler, Pa.

General Electric 2N396A and 2N526 transistors feature guaranteed maximum high temperature I_{∞} and minimum low temperature $h_{\text {st }}$

A WELL-CHARACTERIZED SWITCH AND AMPLIFIER FOR MILITARY USE WITH EXTREME STABILITY PROVED BY 10,000-HOUR LIFE TESTS

These two do the tough jobs-a fact demonstrated by their use in dozens of different missiles. Reliability and uniformity of parameters are enhanced by a $100^{\circ} \mathrm{C}$ bake on 100% of all manufactured product. All units also undergo a hydraulic pressure test to insure against leaks. Gettering guards against entrapped moisture and provides unusual stability of parameters.

USN 2N396A

Method B life-test of MIL-S-19500 assures exceptional reliability for General Electric's USN 2N396A. Life-test reliability is the highest for any transistor now covered by military specifications. The G-E USN 2N396A is guaranteed to have extremely low failure rates.
being required to meet acceptance criteria roughly equivalent to 0.65 AQL. Compare this with the AQL's of 4.0 and 6.5 generally used for life assurance in MIL specs.

USN 2N526
The Navy specification for General Electric's 2N526 reflects the outstanding characteristics of this transistor type. Among the features which contribute to its superiority are high dissipation (225 mw), $100^{\circ} \mathrm{C}$ maximum storage temperature and $h_{\text {fe }}$ from 53 to 90.
See your General Electric Semiconductor District Sales Manager for complete specifications. General Electric Company, Semiconductor Products Dept., Electronics Park, Syracuse, New York.

2N396 EXTENDED LIFE TEST STABILITY

2N526 EXTENDED LIFE TEST STABILITY

For fast delivery at factory low prices, call your authorized General Electric Distributor.

general electric

New

	Products

CRYOGENIC COOLER

Model FW-2? Cryogenic Cooler, for cooling dewar-type infrared detector cells with liquid nitrogen, liquid oxygen, or liquid air, will operate for $\dot{2} 2$ his from filling, 16 hrs after 24 hrs standby, or proportionate times up to 82 his total. It uses the natural pres-

sure build-up from thermal leakage or the residual pressure of filling operation to provide driving power to force liquid from the storage container to the cooling head. Self-limiting flow provides operation over a wide range of differential pressures using only an on-off control. Unit may be operated at reduced exhaust pressures to ohtain colder temp. (down to $633^{\circ} \mathrm{K}$ with liquid nitrogen). Various cool-down times and operating times are possible. ITT Laboratories, 3700 E. Pontiac St., F't. Wayne, Ind.

Circle 217 on Inquiry Card

KNOB FAMILY

New family of molded push-pull and lid knobs. This 2 -member family - \#236 and \#237-combines a smart angular contour and crowned top surface with functional design for a variety of pushing and lifting applications. Difference is that the \#237 is molded in $3 / 4$ scale, so the two may be matched whenever 2 sizes are required. The \#236 measures slightly less than 2 in . across the top and is

available with $1 / 4$ in. to $3 / 8$ in. D. tapped brass inserts and same size protruding studs. The \#237 has a $13 / 8 \mathrm{in}$. D. top and offers a choice of \#10 to $5 / 16 \mathrm{in}$. D. tapped brass inserts or protruding studs. DimcoGray Co., 207 E. 6th St., Dayton 2, 0. Circle 218 on Inquiry Card

25th edaniuexsaxy ${ }^{\text {Teax }}$

ADC INCORPORATED

2839-13TH AVENUE SOUTH - MINNEAPOLIS 7. MINNESOTA pacific branch North hollywooi, California
TRANSFORMERS - REACTORS • FILTERS • JACKS ANO PLUGS • JACK PANELS

Choose from 49 EIA values. All have
these characteristics:
Working voltage: 500 VOC

Insulation Resistance:
Q Value:
50,000 megohms minimum (500 VDC test)

Body Dimensions:

0.1 to $10.0 \mathrm{mmf} .160 \pm 005$ dia. $\mathrm{x} .400 \mathrm{max} . \mathrm{L}$ 10.0 to $18.0 \mathrm{mmf} .187 \pm .005$ dia. $x .230 \mathrm{max} . \mathrm{L}$

Leads:

No. 20 AWG Copper, heavily tinned to insure good solderability. $15 / 3 \pm 1 / 8$ long

Tolerance Color Code:

Jeffers Fixed Composition JM Capacitors are ideal for a broad range of circuit applications. They offer operating stability, moderate Q -and those other two indispensable characteristics, dependability and economy! Use them as coupling capacitors between RF amplifiers, AVC circuits, oscillators, IF stages-and in many other circuits where low capacitance is a requirement.
The insulated JM body consists of a molded thermosetting resin with a ceramic dielectric material dispersed throughout. The firmly embedded lead wires serve as electrodes.

For all the facts about the Jeffers line of JM Capacitors, write today!

JEFFERS ELECTRONICS DIVISION

Speer Corbon Compony
Du Bois, Pennsylvonia

Capacilance in mmid Standard Yalues in			Color Bands			$\left\lvert\, \begin{gathered} \text { Mox, } \\ \text { Body } \\ \text { Length } \end{gathered}\right.$
20\%	10\%	5\%	$1 s t$	2nd	3rd	
. 10	. 10		Brown	Black	Gray	. 400
	. 12		Brown	Red	Gray	. 400
. 15	. 15		Brown	Green	Gray	. 350
	. 18		Brown	Gray	Gray	. 281
		. 20	Red	Black	Gray	. 281
. 22	. 22	. 22	Red	Red	Gray	. 281
		. 24	Red	Yellow	Gray	. 281
	. 27	. 27	Red	Vialet	Gray	. 281
		.30	Orange	Black	Gray	. 281
. 33	. 33	. 33	Orange	Orange	Gray	. 281
		. 36	Orange	Blue	Gray	. 281
	. 39	. 39	Orange	White	Gray	. 281
		. 43	Yellow	Orange	Gray	. 281
. 47	. 47	. 47	Yellow	Violet	Gray	.281
		. 51	Green	Brawn	Gray	:2B1
	. 56	.56 .62	Green	Blue	Gray	.281
		. 62	Blue	Red	Gray	. 281
.6B	. 68	. 68	Blue	Gray	Gray	.281
		, 75	Violet	Green	Gray	.2B]
	. 82	- ${ }^{\text {P2 }}$	Gray	Red	Gray	.2B]
		. 91	White	Brown	Gray	.2B1
1.0	1.0	1.0	Brown	Black	White	. 281
		1.1	Brown	Brawn	White	. 281
	1.2	1.2	Brown	Red	White	. 281
		1.3	Brown	Orange:	White	. 281

Capacitance in minfa Standard Yalues in			Color Bands			Max. Body length
20\%	\% 10\%	5\%	1 st	2nd	3rd	
1.5	1.5	1.5	Brown	Green	White	. 281
		J. 6	Brown	Blue	White	. 281
	1.8	1.8	Brown	Groy	White	. 281
		2.0	Red	Black	White	. 281
2.2	2.2	2.2	Red	Red	White	. 230
		2.4	Red	Yellow	White	. 230
	2.7	2.7	Red	Violet	White	. 230
		3.0	Orange	Black	White	. 230
3.3	3.3	3.3 3.6	Orange	Orange	White	. 230
		3.6	Orange	Blue	White	. 230
	3.9	3.9	Orange	White	White	. 230
	4.7	4.3 4.7	Yellaw	Orange	White	. 230
4.7		4.7 5.1	Yellow	Vialet	White	. 230
		5.1 5.6	Green	Brown	White	. 230
		6.2	Green Blue	Blue	White	. 230
6.8	6.8	6.8	Blue	Gray	White	. 230
		7.5	Violet	Green	White	. 230
	B. 2	B. 2	Gray	Red	White	. 230
	$\left\lvert\, \begin{aligned} & 10 . \\ & 12 \end{aligned}\right.$	9.1	White	Brawn	White	. 230
10.		10.	Brown	Black	Black	. 230
	12		Brown	Red	Black	. 230
15.	15.		Brown	Green	Black	. 230
	18.		Brown	Gray	Black	.230

ONLY THE MINCOM CM-100 IS NOW PERFORMING OPERATIONAL PREDETECTION RECORDING

... and actually doing it at defense facilities as you read this advertisement
$50-\mathrm{mc}$ IF carrier heterodyned down to 750 kc . Random-spaced pulses $20 \mu \mathrm{~s}$ on-20 $\mu \mathrm{s}$ off-type information. Sweep rate: $50 \mu \mathrm{~s} / \mathrm{cm}$.

Months of exhaustive field testing prove that the Model CM-100, Mincom's latest instrumentation recorder/reproducer, is capable of performing predetection recording on an everyday operational schedule. Because of the CM-100's 1-megacycle response and constant phase equalization at all speeds, an original IF signal of 5.0 mc can be heterodyned so that the carrier and its sidebands fall within the system's frequency range.

Standard Production Model

In this standard production model, Mincom has reduced the series elements before data storage to receiver and mixer only, one step from the antenna. CM-100 thus records and reproduces the sidebands and carrier swing of a receiver intermediate frequency-and it does this with FM, FM/FM modulation, PCM and PCM/FM.

Compatible Recording, Phase Equalization

With Mincom's predetection reception and playback, recording ground stat.ons can be universal in the sense that all types of cata systems can be handled by the same equipment. Uniform phase equalization at all speeds mears that recorded predetected signals can be reduced in speed and studied with consistently good pulse response, using tunable discriminators.

Versatile System

The Mincom Model CM-100 does the work of two magnetic tape systems by storing both analog and pulse data with equal facility. It is also capable of recording and reproducing greater bandwidths at slower speeds, making possible longer recording times-from 3 hours and 12 minutes at $62.5 \mathrm{kc}-71 / 2 \mathrm{ips}$, to 12 minuies recording $1 \mathrm{mc}-120 \mathrm{ips}$.

Interested? Write today for brochure.
where research is the key to tomorrow

Another "impossible" job done by the Airbrasive...

abrading • cutting • deburring • stripping • drilling • cleaning • scribing

> Eclipse-Pioneer found: Airbrasive reduces lapping time from eight hours to 15 minutes!

When Eclipse-Pionecr, Division of The Bendix Corporation, handlapped shallow inclines in these alloy steel thrust bearings to depths of $0.0002^{\prime \prime}$ to $0.0004^{\prime \prime}$, it took eight hours. of laborious effort.
The S. S. White Industrial Airbrasive "does a better job... and takes 15 minutes:" they tell us.
Here is a unique industrial tool of many uses...cutting semiconductors ... adjusting microelectronic circuits . . . removing microscopic burrs...cleaning surfaces... and many others. It performs its magic with a superfine stream of abrasive particles and propellant gas that quickly cuts almost any hard, brittle material.
Important too...The Airbrasive is available at a cost you can afford... Under $\$ 1,000.00$!

Send us samples of your "impossible" jobs and we will test them for you at ho cost.
SEND FOR BULLETIN 6006
.. complete information.

New

Products

FAULT ALARM

Transistorized fault alarm for microwave system can report 11 or 17 different fault conditions. Transmitter at each station continuously scans for faults and reports to its receiver at a supervisory station every 4 sec. with a single AM tone. Tones can

he set within 1 of 5 ranges between 1 and 30 ke. More than :30 separate remote stations can report over a single baseband without interfering with other communications. 'lransmitter output may be bridged directly on the haseband, while receiver inputs misy be bridged on an isolation amplifier or service chamel output. Tramsmitter and receiver may also be used for binary data communication or remote control. For very large systens, they may be arranged for automatically interrogated operation. Collins Radio Co., 1930 Hi -Line Ir., I allas 7. Tex.

Circle 221 on Inquiry Card

CURRENT INDICATOR

Combining high sensitivity and low drift, Model I-309A Current Indicator is a wide-range current measuring instrument for measurement of electron or positive-ion beam current and general laboratory use. Full-scale sensitivity can be varied from 1 ma to 3 mua in 12 switch settings. Drift is less than 0.01% per hour and overall accuracy is 1% of full scalc. An

auxiliary output is provided to drive a 1 ma recorder. The instrument has a response time of 10 msec and can be used as a low-drift dc amplifier as well as a current indicator. Elcor. Inc., 1225 W. Broad St., Falls Church, Va.

Circle 222 on Inquiry Card

ANNOUNCING
 ANOTHER

NEW
 BORG

 MICROPOTNow . . . take your choice! Three or Ten-Turn Models of the most rugged, most reliable precision potentiometers ever developed . . . Borg 205 Series Micropots! For several years the entire electronics industry has shown its faith in Borg 205 Series Ten-Turn Micropots, but now comes the new Borg 205 Series Three-Turn . . . specifically designed to take full advantage of shorter housing length. Overall length is only $1-31 / 64^{\prime \prime}$, excluding shaft. What sets the Borg 205-3T apart in its class? Features like the long 13-1/16" resistance element for highest resolution; rigid terminals that are precision positioned, soldered to the resistance element and molded integrally with the housing. Let us send you complete data on the new Borg 205-3T now!

Write for complete engineering data...

[^8]
THE NEW BORG 205 THREE-TURN WIREWOUND PRECISION MICROPOT ${ }^{\oplus}$

SPECIFICATIONS

BORG EQUIPMENT DIVISION
Amphenol-Borg Electronics Corporation Janesville, Wisconsin • Phone Pleasant 4-6616

ENGINEERS

- who want to reach the top and are willing to WORK for it!

You'll find plenty of room for growth at the Philco TechRep Division. Our engineers, on assignment throughout the free world, are largely on their own in resporisible positions involving field servicing and instruction on all types of electronic equipment and systems, as well as researching ...engineering ... designing and performing modifications of global communications systems, world-wide radar defense networks, and missile systems and components.

Our far-flung program assures ground.floor opportunities for elec tronic engineers seeking the stimulating diversification of field engi neering, and guarantees your choice of work location and field of interest, as well as providing:

- Constant Career Guidance

- Top Compensation
- Liberal Employee Benefits

If you'd like to join our fine TechRep team, write today for an interview in your city and a copy of our full color booklet - "PHILCO FIRST In Employment Opportunities". Address inquiries to Mr. C. F. Graebe, Personnel Manager, Dept. 10.

New

Products

L-BAND TRANSMITTERS

A new L-Band Transmitter, Model 2701 is packaged for either airborne or ground use-a typical application would be for a beacon on target missiles. Spees include a frequency range of 1650 to 1680 MC . F.II modu-

lated with a minimum power output of 800 milliwatts. 'The transmitter' contains an Entegral power supply and operates from an input power of 0.7 amps at 29 volts over a temperature range of -55 to $72^{\circ} \mathrm{C}$. Size, $5 \frac{1,2}{}$ inches long by $351 i$ diameter. R S Filectronies Corp., $4: 35$ Portage Ave., Palo Alto, Calif.

Circle 223 on Inquiry Card

POTENTIOMETER

New Borg 205-3' ${ }^{\prime}$ (3-turn) Micropot has lieen added to line of Micropopot potentiometers. Terminals are soldered to resistance wire ends, prevision positioned and molded integrally with the housing. A stainless steel lead screw guides the moving contact to assure accurate settings, low torque and long life. Standard resistance ralues and other major specs (nom-standard resistances are available to 100 K ohms): Total resistance range, 10 to 50,000 ohms; Mechanical rotation, $1080^{\circ}+15$ -0°; Electrical Rotation, 1080°

$+14.4^{\circ}-0^{\circ}$; Linearity, independent or zero-based; Linearity accuracy, $\pm 0.5 \%$ to $\pm 0.1 \%$; Length (housing), $131 / 64$ in.; and weight, 3.2 oz . Borg Equipment Div., Amphenol-Borg Electronics, 120 So. Main St., Janesville, Wis.

Circle 224 on Inquiry Card

ACTUAL SIZE

Isolated Ground DMs a complete series of coaxial cable connectors

The new Isolated Ground DM Series gives absolute protection from circulating currents and ground loops that cause oscillation and faulty readings of current and voltage.
A unique, concentric three-element, glass-to-metal seal provides a hermetically sealed isolated ground without shoulder washers and other insulating or mounting devices.
The Dage Isolated Ground Series mates with the industry standard Dage DM Series for easy modification of existing systems.
Complete specifications are available in a four-page folder. Write or phone

DAGE

ELECTRIC CO., INC.
Beech Grove, Indiana • STate 7-5305

SUCCESSFUL LAUNCHING!

REVERE wire and cable stand extreme conditions

The Titan ICBM, produced by the Martin Co., has been hailed for its series of successful launchings. On the launching pad and in flight, Revere Teflon" hook-up wire, multiconductor cables and thermocouple cables contribute an important role in successful operation of this missile...

To connect components and serve as emergency fire circuits:
Permacode ${ }^{\text {"4 }}$ hook-up wires more than meet the extreme temperature range of the Titan's requirements. These specialty wires provide high flexibility, excellent chemical resistance and low electrical losses. Teflon insulates the silver-coated copper conductors and impregnates each insulating jacket of the wire or cable.

To interconnect electrical systems within the missile:

Revere multi-conductor cables have unusually small diameters and thus are highly flexible. Jacketing is supplied to meet particular service conditions; in this case glass fiber braid, coated and impregnated with Teflon, gives excellent chemical and solvent resistance as well as serving the extreme range of -65 to $+500^{\circ} \mathrm{F}$. specified for the Titan.

To transmit temperature data to blockhouse before launching:

Revere thermocouple wire and cable provide the high accuracy required. Type supplied for the Titan uses just one of many combinations of thermocouple junctions, insulation, jacketing and shielding available from Revere to meet or exceed applicable MIL-Specs.
fPermacode is Revere's potented process for permanent color-coding of wire.

CALL ON REVERE...

when your project rates the best in wire and cable

Revere also supplies many other components for missile and aero-space applications

- Fuel System Components •Molded Harness • Strain Gage Load Cells - Electronic Weighing Systems - Glaswitch ${ }^{\circledR}$ Sealed Dry Reed Switches

Write today for data sheets in your area of interest.
REVERE CORPORATION OF AMERICA/Wallingford, Conn.
One of Neptune Meter Company's E/ectronic subsidiaries

New

ULTRASONIC GRINDER

Faster-operating ultrasonic impact grinder can machine an area up to $13 / 8 \mathrm{in}$. in dia. Model 2-33:3 is for precision machining operations in the manufacture of semiconductor and other electronic devices. It can also be used for general purpose work in-

cluding cleaning and soldering. It features an air-cooled, 300-w magnetostrictive transducer and eliminates bothersome plumbing arrangements. The magnetostrictive transducer provides continuous operation. eliminating down-time for cooling often necessary with ceramic transducers. Transducer is an insert-type. Either coil or transducer can be removed without disturbing the other. Commercial Apparatus \& Systems Div., Raytheon Co., 1415 Providence Tpke.. Norwood, Mass.

Circle 225 on Inquiry Card

VARACTOR DIODES

Three new device types (the XI)501,502 , and 503) added to line of diffused gallium arsenide mesa microwave varactor diodes. The new XD503 is rated for a minimum cutoff frequency at brea! down of 310 kMC . At $V_{1:}=-2 \mathrm{v}$, the min. cutoff frequencies of the XI-500,501,502, and 503 are rated at $60,81,108$, and 144 kMc. They are packaged in the double-ended beryllium oxide cartridge for optimum microwave per-

formance. They also feature a low total capacitance range ($0.5 \mu \mu \mathrm{f} \mathrm{min}$. to $1.4 \mu \mu \mathrm{f}$ max.) and low series inductance ($0.7 \mathrm{~m} \mu \mathrm{~h}$ at 9.4 kmC). Texas Instruments Incorporated, P. O. Box 312. Dallas 21, Tex.

Circle 226 on Inquiry Card

JOHN SILVA, Chief Engineer Paramount Television Productions:

In planning the new control room for their famous Stage 6, Paramount Television specified only the best equipment manufactured. Included in this choice, naturally, were Conrac video monitors. Why Conrac? "Because of their unfailing ability to display all the information just as it is, without distortion, and do it dependably day after day after day," is the way John Silva put it. Whether you're building a new facility or expanding your present operation, it will pay you, too, to select Conrac - the finest in video monitoring equipment.

EVERY CONRAC MONITOR FROM 8" THROUGH 27" BROADCAST

 OR UTILITY includes these
important features:

\star Video response flat to 10 megacycles
\star DC restorer - with "In-Out" switch

* Provision for operation from external sync - with selector switch
\star Video line terminating resistor and switch
> "For our new control room, CONRAC MONITORS were the natural choice..."

New

Products

POWER SUPPLY

The TA-3, a small, lightweight, portable power supply, can be used for operating all cold-start miniature noise sources and noise generators and for many of the standard noise sources at currents up to 125 madc. Starting spike is approx. 1000 v. By.

single control. it provides a current range from 60 to 125 madc for any tube with an operating voltage from 30 to 100 v . and lower currents for tuhes with higher operating voltages. Max. ripple voltage under load is 4 vac. Characteristics: Input, 115 vac at 115 vac at $1 / 4$ aac; Output, Unloaded Supply Voltage, 350 vde, nom; I oaded Supply Voltage, 2:30-275 vde; ('urrent $1 \cdot 25$ made, max.; Size $41 / 2 x$ $53 \times 5 \times 4$ in. The Bendix Corp., Red Bank Div., Eatontown, N. J.

Circle 227 on Inquiry Card

DIGITAL CLOCK

Direct reading full vision in line digital clock features: digits can be reset individually by independent front panel reset controls; large $\quad 5 / 8$ in. digits on the 12 hr clock and $5 / 16$ in. digits on the 24 hr . clock; calibrated rotating visual 1 rpm seconds wheel. Clock movement shock resistant to withstand shock of 2000 lbs. per in.; clock movement fully en-

closed in anodized dustproof ahuminum case, size: height is $41 / 2 \mathrm{in}$. width 6 in. depth $31 / 4$ in.; weight, $31 / 2 \mathrm{Ibs}$. Available in 50 or 60 cycle, in all voltages. Pennwood Numechron Co., 7249 Frankstown Ave., Pittsburgh 8, Pa.

Circle 228 on Inquiry Card

SWITCHING PROBLEMS?

get fast off-the-shelf answers from complete stocks of basic precision switches and actuators always available for immediate delivery

BASIC SWITCH SERIES	DESCRIPTION	MODEL NUMBER
SUB-SUBMINIATURE T Iype Exceptionally high current capacity in tiny case. Only $1 / 2^{\prime \prime} \times 1 / 4^{\prime \prime} \times 3 / \mathbf{n}^{\prime \prime}$ yet UL listed at 7.5 amps. $125 / 250$ VAC. Also rated at 7.5 amps, 30 VDC resistive, 3 amps. 30 VDC inductive. Mounts side-by-side, four switches to the inch. actuators roller leaf	SPDT solder terminals SPDT solder terminals, U.L. leaf actuator roller leaf actuator	T3 T12 A5.710 A5-73
SUBMINIATURE E4 fype ACTUATORS togcle Ideal for compact electrical and electronic equipment. Low movement differential and operating force gives precision control in critical applications. Can be stacked and gang mounted. Meets MIL Specs. MS. 25085 and is UL listed at 5 amps. $125 / 250$ VAC. Also handles 4 amps, 30 VDC resistive. $2.5 \mathrm{amps}, 30 \mathrm{VDC}$ induc tive. Size: $25 / 7^{\prime \prime} \times 1 / 4^{\prime \prime} \times 23 / 4^{\prime \prime}$ PUSHBUTTON roller leaf	SPDT, solder terminais SPDT, turret terminals DPDT maintained toggle switch, $15 / 32^{\prime \prime}$ bushing TPDT maintained toggle switch, $1 / 33_{2}$ " bushing DPDT maintained toggle switch, $1 / 4^{"}$ bushing SPDT maintained toggle switch. $1 / 4^{\prime \prime}$ bushing DPDT momentary push-button switch, 's/12" bushing DPDT push-on, push-off, pushbutton switch, $1 / 3 z^{\prime \prime}$ bushing leaf actuator roller leat actuator	E4. 103 E4.110 A3-32-103 A3.33.103 A3.41.103 A3-42-103 A4-86-103 A4-87-103* A5-9 A5-10*
	```SPDT basic switch. screw terminals, U.L. roller leaf actuator leaf actuator```	F2-13   A5.47   A5.49

## Toggle Switches

Space-Saving
Cylindrical Types

Exceptionally rugged, cam roller Hetherington Toggle Switches positively cannot be teased off contact. Cylindrical anodized aluminum cases reduce size by $25 \%$ over conventional rectangular switches. Firmly an. chored terminals separated by heavy insulation barrier. All are 2-position, snap. action.

For information on full switch line, write for new CONDENSED CATALOG $\# 100$

es	CIRCUIT	RATINGS   (Resistive Loads)		MTG. HOLE OIA.	SPECIAL FEATURES
		28 v . dc.	115v.ac.		
MoOEL T2104	2-circuit	10 amps .	5 amps .	$1 / 4$ "	Designed to JAN-S.23, Amend. 3.
$\begin{gathered} \text { MOOEL } \\ \text { T2150 } \end{gathered}$	DPDT	1 amp .	1 amp .	1/4"	Miniaturized
	SPDT	5 amps .	$21 / 2 \mathrm{amps}$.	1/4"	Anodized aluminum case

ELECTROSNAP HETHERINGTON CONTROLG
CONTROLS COMPANY OF AMERICA
1420 Delmar Drive - Folcroft, Pennsylvania TELEPHONE LUdIOW 3-2100. TWX SHRN-H-SO2

[^9] furnished promptly. Samples available on request.


## LENZ ELECTRIC MANUFACTURING CO.

1751 No. Western Ave.,
Chieago 47, III.
In Business Since 1904

The micrometer is readable to 0.0001 in. and a calibration chart is furnished. Radar Design Corporation. Microwave Components, I'ickard Drive, Syracuse 11, New York.

Circle 230 on Inquiry Card

. . . . A-B hermetically sealed
composition resistors defy the severest atmospheric conditions

Allen-Bradley hermetically sealed composition resistors provide stability, reliability, and uniformity under extremes of humidity, such as illustrated above. This resistor consists of a specially processed, hot molded, carbon composit:on unit with an integral insulating jacket surrounding the carbon element. The entire unit is then hermetically sealed by means of a metallic seal and a ceramic jacket. This assures complete immunity to all elfects of moisture and humidity. And under extremes of vibration and shock, A-B resistors remain undamaged, stable, and extremely low in noise factor.

A-B ceramic encased resistors are available in $2{ }^{\circ}$ and $5 \%$ tolerances in standard EIA values to 22 megohms, and in higher values on special order. Since catastrophic failure does not occur in A-B hot molded resistors, these units combine narrow tolerances with absolute reliability. Designed for continuous operation at full rated wattage at $70^{\circ} \mathrm{C}$, Type ES resistors have a zero derating of $165^{\circ} \mathrm{C}$; Type CS and Type TS at $150^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$ respectively. For full details, write for Technical Bulletin 5003.


# now 100 times greater <br> <br> average power 

 <br> <br> average power}

Now you can obtain traveling-wave tubes capable of 10 to 100 times the average power of conventional helix tubes. These $X$-band tubes are representative of a wide variety of the first commercially available all metal filter-type structures yielding both high gain and wide bandwidth. Their attractively small size and weight are made possible through application of the latest periodic focusing techniques.
Typical of these recent advances is the pictured 308 H . For the first time a power traveling-wave tube is offered with a high- $\mu$ grid-controlled gun.
 This advantage, coupled with 53 db of saturation gain, provides exciting possibilities for the systems designer.
Consult with Hughes Microwave Tube Division if you have exacting design requirements of pulse rise time, phase shift sensitivity, bandwidth or power output. These qualities are yours in a light, compact, yet rugged package of all metal-ceramic construction. These advanced products can make your program a success. Orders are being accepted


LEFT: 100 kw peak power output ( 500 watt average), $8.5-9.5 \mathrm{kmc}$ frequency range, 54 db saturation gain, $1 \%$ maximum duty cycle, beam voltage $=38 \mathrm{kv}, 21 \mathrm{lbs}$. total weight of tube and magnet.


Control grid $\mu=55.15 \mathrm{kw}$ peak power output (150 watt average), $8.6-9.9 \mathrm{kmc}$ frequency range, 53 db saturation gain, $1 \%$ maximum duty cycie, beam voltage $=24 \mathrm{kv}, 14 \mathrm{lbs}$. total weight of tube and magnet.


20 kw peak power output (200 watt average), $8.4-9.6 \mathrm{kmc}$ frequency range, 54 db saturation gain, $1 \%$ maximum duty cycle, beam voltage $=24 \mathrm{kv}, 17 \mathrm{lbs}$. total weight of tube and magnet.

For full details on these and other equally outstanding tubes write or wire Hughes Microwave Tube Division, 11105 Anza Avenue, Los Angeles 45, California.

Creating a new world with ELECTRONICS
HUGHES

MICROWAVE TUBE DIVISION

## MAGNETRONS -(Continued)

Type	Description   App; Du. Cy.	Frequency   $(\mathrm{kmC})$	Heater   $\mathrm{V} ; \mathrm{A}$	Anade   $\mathrm{V} ; \mathrm{A}$	Pull. Foc.   $(\mathrm{mc} / \mathrm{s})$	Pls. Dur.   ( $\mu \mathrm{s})$	Power   Output


Type	Description App; Du. Cy.	Frequency (kmc)	Heater V;A	Anode V;A	Pull. Fac. (me/s)	$\begin{aligned} & \text { Pls. Dur. } \\ & (\mu s) \end{aligned}$	Power Output
GENERAL ELECTRIC - (Coninued)							
25425	v. tun	1.48-1.6	2.8,3	$1 \mathrm{k}, 01$		cw	I*
25428	v. tun	2.2-2.3	2.37,3	1880,.02		cw	10w
Z5436	v. tun	2.4-3.3	2.6,3	900.02		cw	5mw
ZM6006	v. tun	2.8-3.2	2,2.5	960, . 02		CW	2 w
25429	v. tun	8.5-11	2.5,3	1250, . 02		Cw	1 Tm
ZM6000	v. tun	2.09-2.41	2.3,3	1875, . 02		cw	10w
ZM6001	v. tun	1.625-1.7	2,2.5	500, .02		CW	$2 w$
ZM6003	v. tun	4.2-4.4	2,2.5	lk, 02		CW	2*
LITTON	INDUSTRIES, Electron Tube Div., San Carlos, Calif.						
L3204	$0.25$	$8.8 \pm .025$					40w
L3105	. 027	$9.3 \pm .04$					100w
L3028	. 027	9.28-9.32					120 w
L3379	. 003	8.8-9.5*					lkw
L3058	. 003	9.33-9.35*					1kw
L3358	. 001	16-16.5*					1kw
L3380	. 002	8.8-9.5*					2 kw
L3359	. 001	16-16.5*					2 kw
L3381	. 001	8.8-9.5*					3 kw
L3382	. 001	8.8-9.5*					4 kw
LT6233	. 003	9.28-9.345					7 kw
L3103	. 002	8.5-9.6*					30 kw
L3168	. 002	$9.375+.03$					30kw
L3306	. 002	16-17********					30kw
L3083A	. 001						60 kw
LT6543A	. 001	8.5-9.6*					65 kw
13305	. 001	8.6-9.5*					65 kw
LT6510	. 001	$9.375 \pm .03$					65 kw
LT4J52A	. 001	$9.375 \pm .03$					70kw
L3312	. 001	8.5-9.6*					200 kw
L3313	. 001	$8.6-9.5{ }^{\circ}$					200kw
LT4J50A	. 001	$9.375 \pm .03$					225kw
L3456	cw	0.35-0.59					500 w
L3459	cw	0.59-0.97					500 w
L3465	cw	0.975-1.5					400w
L3464	cw						400w
L3460	cw	2.35-3.575					500 w
L3461	${ }^{\text {c }}$	3.575-4.975					400 w
L3467	cw	4.975-6.175					400w
L3468	cw	6.175-7.275					300w
L3462	cw	7.275-8.775					
L3463	cw	8.775-10.475					250w
- Fix freq. 'ypes generally avatuhle thru fiange							
ME TCOM MCM10	$\text { A, INC. } 76 \mathrm{La}$	ayette Street, Salem, Mass.				U. 2	10kw
MCM11	tun, 002	5.4-5.9		1.3k, 0.8		1	100w
MCM12	tun, . 002	5.4-5.9		2k,1.1		1	400w
MCM13	tun, . 002	5.4-5.9		$2.8 \mathrm{k}, 1.9$		1	1 kw
MCM14	fun, 0002	5.4-5.9		$2.2 \mathrm{k}, 1.2$			400w
MXMIO	fix, . 0004	$9.375+.03$		2.8k, 1.5		0.25	800 w
MXM11	tun, 002	9-9.5		0.8		1	100w
MXM12	fix, .0004	$9.375 \pm .03$		3.7k,4.3		0.25	3.5 kw
MXM13	tun. 002	8.5-8.9		1.32k,0.9		1	100w
*XM14	tun, 002	8.9-9.9		1.22k,0.9		1	100w

 $\begin{array}{ll}\text { 2J30-34 } & \text { mult } \\ 242 & \text { mult } \\ 2355 & \text { mult } \\ 2556 & \text { mult } \\ \text { 4J31-35 } & \text { mult } \\ \text { 4J43-44 } & \text { mult } \\ \text { 4550A } & \text { mult }\end{array}$ mult res., . 001 2.7-29 4504 multres., 001 2.965-3.019 4552 A mult res., $001 \begin{array}{lll}9.345-9.405 & 13.7,3.2 \\ 9.35-9.4 & 12.6 .22\end{array}$ $\begin{array}{lll}4 J 53 & \text { mult res., } .001 & 9.35-9.4 \\ & 2.793-2.813\end{array}$ $\begin{array}{llll}714 \mathrm{AY} & \text { mult res, }, .002 & 9.003-9,168 & 13.7,3.5 \\ 5586 & \text { mult, } .001 & 3.28-3.32 & 6.3,1.5\end{array}$

5586	mult res., . 001	$2.7-2.9$	$16,3.1$
5657	mult res., .001	$2.9-3.1$	$16,3.1$
6027	mult res., .002	$9.345-9.405$	$6.3,0.5$

7182 mul

M501,A,B	muit res., . . 001	$2.94-3.06$	$5,2.6$
M502A	muit res., . 0005	$9.323-9.425$	$12.6,2.2$
M503,A	mult res., . 002	$9.345-9.405$	$6.3,0.5$
M504	mult res., . 0006	$9.325-9.425$	5.40

## M506A M507

## M508 $M 509$

## M513A

M508	mult res., 0001	9.21-9.27	6.3,0.5
M509	mult res., 001	8.77-8.83	$6.3,0.5$
M513A	mult res., . 0005	9.345-9.405	6.3,0.5
M519	mult res., . 0002	3.45-3.614	5,2.6
M521	mult res., . 001	9.6-9.7	3,3.5

## M523

$\begin{array}{lll} \\ \text { M525 mult res., , . } 001 & 9.58-9.705 \\ \text { M528 } & 2.75-2.855\end{array}$



## M537 M538A M539

## M546 M547

## M548 M549

## M554 M555

## $M 555$ $M 565$ $M 565$

## $M 566$ $M 569$

M56	mult res., . 001	$2.85-2.96$	12,15	$40 \mathrm{k}, 140$	7
M50	mult res., . 001	$2.95-3.06$	12,15	$40 \mathrm{k}, 140$	7
M573	mult res., .001	$2.85-2.96$	12,15	$38 \mathrm{k}, 144$	7
M574	mult res., 001	$2.95-3.06$	12,15	$41 \mathrm{k}, 132$	7


GENER		Power   0.89-0.94	12,56	ectady 5, N.Y.	2	c*	2.56w
GL7398	v. tun	2.2-3.85	2.5,3	1.25k, 02		c*	2w
25256	v. tun	2.35-3.6	2.6,3	2k, 03		C*	0.5 mW
25312	v. tun	2.2-2.3	2.5,3	1.85k, 02		c*	10w
25321	v. tun	2.9-3.1	2.6,3	1.25k, 02		cw	10w
Z 5360	v. tun	2.8-3.5	2.6.3	$1.25 \mathrm{k}, .02$		CW	100 mw
Z5405	v. tun	1-2.3	2.5,3	1.35k, 015		cw	1 w
Z5424	v. tun	2.9-3.2	2.5,3	2.2k, 05		cw	50w


ABBREVIATIONS AND   a-ampere ampl-omplifier cov-cavity cw-consinuous wove - lect-electros totic	NOTES   fix-fixed frequency   gg-grounded grid   int-intermediate amplifier   $k-t h o u s a n d$   megw-megowat	```min-miniature mw-milliwot& mod-modulotor muli-frequency multiplier; multi-resonator osc-oscillotor```	$\begin{aligned} & \text { P-peak } \\ & \text { pkgd-pockaged } \\ & \text { plsd-pulsed } \\ & \text { ppm-periodic permanent magnet } \\ & \text { pm-permanent mognet } \end{aligned}$	pwr-power refl-reflex res-resonator rug-ruggediaed sol-solenoid	tetr-tetrode   eri-qriode   tun-tunable   v. tun-valiage tuned   w-wott

Note 1: Velocity modulated ascillators ore listed under Magnetrons.

MAGNETRONS - (Continued)

Type	Description   App; $\mathrm{Dv}, \mathrm{Cy}$.	Frequency   $(\mathrm{kme})$	Heoter   $\mathrm{V} ; \mathrm{A}$	Anode   $\mathrm{V} ; \mathrm{A}$	Pull. Foc.   $(\mathrm{mc} / \mathrm{s})$	Pls. Dur.   $(\mu \mathrm{s})$	Power   Output

RAYTHEON MFG. CO. , Microwave \& Power Tube Operations, Waltham, Mass.

QKI72	osc, . 001	9.33-9.42		30k	
QK264	OSC, . 001	1.25-1.35		75k, 100	
QK313	osc, . 001	5.4-5.8		27n, 30	
QK324	0sc, . 0028	15.8-16.1		30\%,14	
QK362A	0sc. 002	9.3-9.5		2k, 1.25	
QK366	OSC, . 001	9.2-9.28		106,14.5	
QK367	osc, . 001	9.01-9.07		16k,16	
QK389	Osc, . 00007	23.8-24.2		16k,19	
QK390	osc	2.42-2.47		6.2k. 375	
QK456	osc, . 001	5.3-5.4		16\%,20	
QK457	osc, .002	5.5-5.8		2k,1	
QK470	OSc. 0012	1.2-4.3		75¢, 100	
QK520	ampl	1.22-1.35		40k,35	
QK366A	ampl, . 001	$9.245 \pm .04$		15k,13.5	0.5
QK655	fix, 0018	1.25-1.285	15,150	72k,150	5
QK666	fix, . 0018	1.32-1.35	15,150	72k, 150	5
QK735	tun, .003	5.4-5.9	5,1	2.3k, 1.5	1
RK4130	fix, . 002	1.22-1.232	23.5,2.2	39k,60	4
RK5J26	tun, . 002	1.22-1.35	23.5,2.2	$31 \mathrm{k}, 60$	4
RK6517	tun, . 0013	1.25-1.35	2.5,85	70k,60	3
RK5609A	fix	2.425-2.475	6.3,1.5	1.6k,0.15	
RK4J61	tun	2.45-2.72	6.3,1.5	1.5k, 0.15	
RK2J69	tun, . 001	2.695-2.755	6.3,1.5	20k,25	1
RK4J62	tun	2.695-3.015	6.3,3.5	1.5k, 0.15	
RK2J34	fix, 002	2.7-2.74	6.3,1.5	22x, 30	1
RK4J35	fix, . 001	2.7-2.74	16,3.1	30k,70	1
RK5586	tun, 001	2.7-2.9	16,3.1	323,70	1
RK6518	1ix, 0007	2.7-3.01	13,40	45k, 92	2
RK2J33	fix, 0002	2.74-2.78	6.3,1.5	22x,30	1
RK4J34	fix, . 0001	2.74-2.78	16,3.1	30k, 70	1
RK2J68	tum. 001	2.745-2.805	6.3,1.5	20k,25	1
RK6410	fix, 0001	2.75-2.86	8.3,85	76\%,135	2
RK2J32	fix, . 002	2.78-2.82	6.3,1.5	222, 30	1
RK4J33	fix, .001	2.78-2.82	16,3.1	30k,70	1
RK2J67	tun, . 001	2.795-2.855	6.3,1.5	20k,25	1
RK2J31	fix, 002	2.82-2.86	6.3,1.5	22k, 30	1
RK2J32	Fix, . 001	2.82-2.86	16,3.1	30k, 70	1
RK2J66	tun, 001	2.82-2.905	6.3,1.5	20k,25	1
RK6405	fix, 00006	2.25-2.91	8.3,85	56k,95	2
RK2J30	fix, 0002	2.86-2.9	6.3,1.5	22k, 30	1
RK4J31	fix, . 001	2.86-2.9	16,3.1	30k,70	1
RK5657	Lun, . 001	2.9-3.1	16,3.1	32.5k, 70	,
RK2J29	fix, . 002	2.914-2.939	6.3,1.5	22x, 30	1
RK2J28	14x, . 002	2.939-2.965	6.3,1.5	222,30	1

PLANAR TRIODES AND TETRODES

Type	Description   App; Du. Cy.	Freq.   (kme)	Heater   V;A	Anode   V;MA	Ampl   Foc	Max   Diss.	Power   Output


AMPEREX	ELECTRONIC	CORP.,	230 Dufty Ave.,	Hicksville		
7377	twin tetr	0.96	6.3P,0.6	250, $2 \times 40$		5w
TBL2/500	tti ampl	1	3.4,19	2k, 400	500w	
6907	twin tetr	0.6	$6.3{ }^{\circ} 1.3$	400,2x50	25w	15w
6252	twin tett	0.6	$6.3 \cdot 1.3$	400,2x50	25w	15w
EC157	tis ampl	4	6.3.0.73	200.60		
EC88	tis ampl	0.9	6.3.0.19	160,12.5	2.2w	65,


BRITISH	INDUSTRIES	CORP.,	80 Shore Road,	Port Washungto	N.Y.		
A2521	tri	1	6.3,0.37	250,20	$60^{\circ}$	2.5w	
A 2224	tif	3	6.3,0.4	350,150	30	10w	1w
A2327	tri	3	6.3,0.4	350,150	30	10w	1*
CV2204	tri	3	6.3.0.4	350.150	30	10w	1*
DET22	tri	3	6.3,0.4	350,150	30	:0w	4w
DET29	tir	6	6.3,0.4	450,120	55	10w	1.7w
DET24	tri	2	6.3 .1	400,600	33	20w	10w
ACT22	tii	1	6.3 .4	600,1.5a	22	75w	90w
ACT25	tri	1	13.5,2.8	1k, 5a	75	400w	300 w
ACT27	tri	0.6	15.6.7	1.5k, 10a	45	1.5 kw	lkw

ALLEN B. DUMONT LABS, INC., Clifton, N.J.


L. M. ERICCSON, Stockholm 20, Sweden (State Labs Inc., 215 Park Ave., South New York 3, N. Y.)

GENERAL ELECTRIC, Power Tube Dept., Schenectady 5, N. Y.


Type	Description   App; Du. Cy.	Freq. (kme)	Heater V;A	Anode V;MA	Ampl Fac	$\begin{aligned} & \text { Max } \\ & \text { Diss. } \end{aligned}$	Pow Outp
GENERAL ELECTRIC - (Continued)							
GL6283	tetr ampl	0.9	6.3,3.6	16k,300	10	300w	185 w
GL6942	tetr ampl	0.9	5.7.24	4k, 700	20	1.5 kw	1 kw
GL7399	tetr, 001	1.5	6.3,5.6	10kp,10a	10.5	300 w	52kw
Z5102	tets ampl	0.8	6.7,14.5	7k, la	20	3.5kn	3.2 kw
25049	tetr ampl	0.8	6.7,14.5	7k,1a	20	2kw	3.2kw
25033	tti OSC						


MACHLETT,	LABORA	25	INC., Sprin	e, Conn,		
ML2C41	tiiplad	${ }_{3}^{2.5}$	6.31	${ }_{3} 14.0 .125$	100	100
ML3CXI00A5	tri	3	6,1	1k,0.125	100	100
ML3CPN10A5	$t \mathrm{i}$	3	6.1	3.5kp.4.5a	100	10
ML6442	tri	5	6.3.0.9	3kp,3.75a	50	8
ML6771	tri	4	6.3,0.57	$0.3 \mathrm{k}, .033$	90	6.25
ML7209	tri plsd	3	6,1	3.5kp.4.5a	100	35
ML7210	tri	. 3	6.3,0.85	1k, 095	75	100
ML72 Pl	tri	3	6.3,1.3	lk, 0.19	80	100
ML7289	tri	3	6.1	1k,0.125	100	100
ML7698	tri	3	$6.3,1.3$	$3.5 \mathrm{kp}, 7.5 \mathrm{a}$	80	10
ML. 7815	tri	3	6,1	$3.5 \mathrm{kp}, 4.8 \mathrm{ca}$	100	10

NIPPON ELECTRIC CO., LTD., Tokyo, Japan


RADIO CORP. OF AMERICA, Tube Div., Harrison, N. J.

5675*	tri gg	3	6.3,0.135	135,24	20		50 mw
5876*	tri gg	1.7	6.3,0.135	250, .018			
5893**	tri, .001, gg	3.3	6.3.0.33	1.75k,320			1.2kwp
6263**	tri	1.7	6.3,0.28	275. 033	27	13*	
6264A*	tri	1.7	6.3,0.28	400, . 055	40	13\%	
6562*	fix tri ose	1.68	6.6,0.16	120, 034		3.6 w	
7533**	tun triose	1.66-1.7	6.6,0.16			3.6w	
7552*	tri ampl	1	6.3,0.225	125. 025		2.5w	
7553*	tri ampl rug	1	$6.3,0.225$	125	80	2.5 w	
7554*	tri	3	6,3,0.225	250, . 025		2.5\%	

*Pencil-type Construction
sYlvaniA, Special Tube Operations, 1891 E. Third St., Williamsport, Pa.

2 C 36	plsd osc	3	6.3, . 4	1.2k,0.9	25	$5 w$	200w
2 C 37	Cw OSC	3.3	6.3, . 4	200, . 025	25	$5 w$	450mw
5764	cwose	3.3	6.3, . 425	200, . 025	25	$5 w$	450mim
5765	CW OSC	2.9	6.3, . 4	180, . 025	25	$5 w$	250 mw
5768	gg ampl	3.	6.3, . 4	150, . 007	90	$2 w$	(10 db gain)
6481	cwosc	3.3	6.3, 4	180, . 016	25	$5 w$	500 mw
6503	cw osc	3.3	6.3, . 4	200, . 025	23	5w	450 mw
5767	cw osc	3.3	6.3, 4	200, . 025	25	5w	450 mm

KLYSTRONS


Type	Description App; Du. Cy.	Frequency (kme)	Heater $V ; A$	$\begin{gathered} \text { Beam } \\ V ; A \end{gathered}$	$\begin{gathered} \text { Refl } \\ V \end{gathered}$	Tun Ronge	Power Output
BOMAC LABORITIES, INC., -(Continued)							
BL802	tun	8.8-9.2		250			30 mw
BL819	tun	9-9.2		300			60 mw
BL820	tun	9.05-9.25		300			60 mw
BL824	tun	9.2-9.5		300			60 mw
BL841	fix	8-9.5		300			50 mw
BL843	fix	8-9.5		200			20 mw
BRITISH INDUSTRIES CORP, 80 Shore Road, Port Washington, N.Y.							
KLXI	4 car	4.1,4.8	4.1,4.8	11k, 0.3		$\pm 30 \mathrm{mc}$	1130w
KLS2	3 cav	5,9.5	5,9.5	10,1		$\pm 50 \mathrm{mc}$	1.7kw
COMPAGNiE GENERALE DE T.S.F., 79, Boulevard Haussmann, Paris 8, France							
AX435	ampl	3 .	340W	125k-120			6 megw
AX436	ampl	3	650w	250k-250			25 megw
68L6	osc	1.6-6.5	6.3-0.68	35 mA	700	10 mc	40 mw
5836	osc.pm	1.6-6.5	6.3-0.68	29 mA	700	10 mc	40 mw
6BM6	OSC	0.5-3.8	6.3-0.68	32 mA	700	12 mc	20 mm
KR117	osc	2.7-3.6	6.3-1	40 mA	450	25mac	150mw
KR142	OSC	2.7-3.6	$6.3-2.4$	80 mA	275	26 mc	180 mm
KR740	OSC mod	2,9-3.5	6.3-1		1k	40 mc	2.5*
KR74]	osc mod	3.45-3.75	6.3-1		Ik	40 mc	2.5 \%
KR 742	osc mod	3.75-4	6.3-1		1k	40 mc	2.5 w
KR743	ose mod	4-4.25	6.3-1		1k	40 mc	2.5w
EITEL-MeCULLOUGH, INC., San Carlos, Calif.							
$1 \mathrm{LK20XS}$	refl osc	$8.5-9.2$	6.3 .1	350, 055	150		75mm
$1 \mathrm{~K} 20 \times \mathrm{D}$	sefl osc	10-10.7	6.3,1	350, . 055	150		75mm
1 K 2 KA	refl osc	10.7-11.5	6.3.1	350, . 055	150		40nw
$1 \mathrm{KO15CA}$	refl osc	5.35-5.95	6.3,1	350, . 049	240		130 mw
1KO15CG	reff osc	5.35-5.95	6.3,1	350, . 049	240		130mw
1 K 75 CH	refl osc	$4.3 \pm 50 \mathrm{mc}$	6.3,1.5	750, . 060	350		1w
1 K 75 CK	refl osc	$4.3 \pm 50 \mathrm{mc}$	6.3,1.5	750,.050	350		1w
1K125CA	refl osc	3.7-4.4	6.3,1.5	1k, 075	275		1.6w
1K125CB	refl osc	4.4-5	6.3,1.5	1k, 075	345		2.5w
1K125CC	refl osc	4.5-5	6.3,1.5	1k, . 075	345		2.6 w
3 K 2500 X	3 cav ampl	9.8-1.2	7.5.5.8	7h, 0.455			1.32kw
3K2500SG	3 cav ampl	1.7-2.4	7.5,5.8	7k,0.57			1.3kw
$3 \mathrm{K3000LQ}$	3 cav ampl	0.61-0.985	5,32	9k, 0.6			2.4 kw
3 K 00000 LA	3 cavampl	0.4-0.6	8,40	15*,1.65			10.7 kw
3K50000LF	3 cavampl	0.57-0.72	8,40	15k, 1.65			10.7kw
3 K 0000 LQ	3 cav ampl	0.72-0.985	8,40	15k,1.65			10.7 kw
$3 \mathrm{KM3000LA}$	3 cavampl	0.385-0.585	5,32	9\%,0.59			2.3kw

## PULSE MAGNETRONS

| $\begin{array}{c}\text { Type } \\ \text { Number }\end{array}$ | $\begin{array}{c}\text { Frequency } \\ \text { Regange } \\ \text { L-3204 }\end{array}$ | $\begin{array}{c}\text { Peak } \\ \text { Power } \\ \text { (Min.) } \\ \text { Kw }\end{array}$ | $\begin{array}{c}\text { Outy } \\ \text { Ratio }\end{array}$ | Remarks |
| :--- | :--- | :---: | :--- | :--- |$\}$

CW MAGNETRONS

Type   Number	Frequency   Range   Megacyeles	Minimum   Powwer   Watts
L-3456	$350-590$	500
L-3459	$590-975$	500
L-3465	$975-1500$	400
L-3464	$1500-2350$	400
L-3460	$2350-3575$	500
L-3461	$3575-4975$	400
L-3467	$4975-6175$	400
L-3468	$6175-7275$	300
L-3462	$7275-8775$	300
L-3463	$8775-10,475$	250

> Remarks
> These CW Magnetrons may be pulsed to approximately 2 kilowatts peak power and are recommended for component testing.

[^10]$\square$

## LITTON INDUSTRIES

Electron Tube Division
San Carlos, California

KLYSTRONS - (c.ontinued)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Type \& Description App; Du. Cy. \& Frequency (kme) \& Heoter V; A \& $$
\begin{aligned}
& \text { Beam } \\
& V ; A
\end{aligned}
$$ \& $$
\begin{gathered}
\text { Refl } \\
V
\end{gathered}
$$ \& Tun Range \& Power Output <br>
\hline \multicolumn{8}{|l|}{EITEL-McCULLOUGH, INC.-(Continued)} <br>
\hline 3 KP 4000 LT \& 3 cavar pl \& 0.96-1.215 \& 7.5.5.5 \& 253,0.133 \& \& \& 38.2 kw <br>
\hline 3KM50000PA \& 3 caramid \& 0.225-0.4 \& 7.540 \& ${ }^{23 \mathrm{k}, 2.6}$ \& \& \& 23. 1 kk <br>
\hline $4 \mathrm{k500000} \mathrm{~L}$ \& 4 cavampl \& 0.7-0.985 \& 8,40
5
53 \& ${ }_{9 k, 0.58}^{16 \mathrm{k}}$. ${ }^{\text {a }}$ \& \& \& 2.15 kw <br>
\hline $4 \mathrm{KM3} 3000 \mathrm{O}$ \& ampl \& 0.61-0.985 \& 5.31 \& 8.5k, 0.55 \& \& \& 2.1kn <br>
\hline ${ }_{4}^{4 \mathrm{KM} 3000 \mathrm{~L}}$ \& $\underset{\text { amal }}{ }$ \& 0.4-0.63 \& 7.5,40 \& 177, 1.8 \& \& \& 10kw <br>
\hline $4 \mathrm{KM50000LQ}$ \& 4 cav aipl \& 0.61-0.985 \& 7.5,40 \& 17x, 1.8 \& \& \& 10\% <br>
\hline 4kM50000SG \& 4 cavampl \& 1.7-2.4 \& 6.3,37.5 \& 17k,1.9 \& \& \& 12kw <br>
\hline $4 \mathrm{KM170000LA}$ \& 4 cav ampl \& 0.3-0.5 \& 11,47.5 \& 33k. 4.8 \& \& \& 77 kw <br>
\hline $4 \mathrm{KYP10000}$ LF \& 4 cav amal \& $0.57-0.63$ \& 12.25 \& $61.55,0.15$ \& \& \& 400kwp <br>
\hline 6K50000LQ \& 4 cav ampl \& ${ }^{0.72-0.98}$ \& 8.40 \& ${ }^{19.55 k}$, 2.3 \& \& \&  <br>
\hline $\times 626$ \& 3
4
4
cav ampl
aral \& ${ }^{0.4} 0.0 .45$ \& 11.47.5 \& 45k,1.69 \& \& \& 155kw <br>
\hline $$
\begin{aligned}
& \times 602 \mathrm{~K} \\
& \times 679
\end{aligned}
$$ \& $$
\begin{aligned}
& 4 \text { cavampl } \\
& \text { ampl, } 0.167
\end{aligned}
$$ \& ${ }_{2} .845-2.865$ \& 11.25 \& 235k, 105 \& \& \& 10 meg k <br>
\hline $\times 700$ \& 4 cav ampl \& $2.4-2.9$ \& 7.5.5.5 \& $2 \mathrm{lk}, 0.138$ \& \& \& ${ }_{\text {20w }} 0$ <br>
\hline $\times 563 \mathrm{~K}, \mathrm{~L}, 4$ \& rmpl \& 5.4-7.1 \& 6.3,1 \& 3k,0.13 \& \& \& ${ }^{60 \mathrm{w}}$ <br>
\hline $\times 768$ \& 3 cav ampl \& $$
0.755-0.985
$$ \& \& \& \& \& <br>
\hline Y222 \& refl OSC \& 10.5-10.7 \& \& \& \& \& <br>
\hline \multicolumn{8}{|l|}{ELLIOTT BROTHERS, LTD., Elstree Way, London, England ${ }^{\text {a }}$, ${ }^{\text {a }}$} <br>
\hline 4 FKI \& \& \& 6.3.2.3 \& 4k, 0445 \& \& \& ${ }^{100 m \mathrm{mw}}$ <br>
\hline 4 FK2 \& '1x CSC \& 75 \& 6.3,2.3 \& 4k, 045 \& ${ }_{1 \mathrm{k}}{ }^{\text {* }}$ \& \& 5\%\% <br>
\hline 66 Kl
6 FFK \& ix Osc
lun osc \& 50 \& 6.3,2.3 \& 4k, 040 \& $1 \mathrm{k}^{*}$ \& 1.5kmc \& 3w <br>
\hline $8 \mathrm{fK1}$ \& Tx OSC \& 33-37 \& 6.3,2.3 \& 4k, 045 \& $1 \mathrm{lk}^{*}$ \& \& 15w <br>
\hline 8TFK? \& lun ose \& 33-37 \& 6.3,2.3 \& 4k, 0.045 \& $1{ }^{\text {c }}$ \& 1.6 kmc \& 10w <br>
\hline 8RK4 \& iun refl \& 34.5--35.5 \& 6.3,1.4 \& 2.1k, 011 \& 290 \& 1 kmc \& 30 m <br>
\hline 8RK8 \& tun refl \& 34.5-35.5 \& 6.3,1.4 \& 2.5k, 020 \& 290 \& 1 kmC \& ${ }^{2500 m W}$ <br>
\hline 12 FK 1 \& S1X OSC \& 21-25 \& 6.3,2.3 \& 4k, .060 \& $1{ }^{*}$ \& \& \%m <br>
\hline 12TFK2 \& iun Osc \& ${ }^{21-25}$ \& 6.3.2.2.3 \& 4k, 2.50000 \& ${ }_{290}$ \& \& ${ }^{80}$ <br>
\hline 12 RK 4 \& tun fell \& 21-25 \& ${ }_{6}{ }_{6}, 3,2.0$ \& 2.5k, . 020 \& 290 \& \& ${ }^{500 \mathrm{mw}}$ <br>
\hline 100RK2 \& plugin tefl \& 3.3-3.7 \& 6.3,0.66 \& 0.3k, . 045 \& 220 \& \& nw <br>
\hline -Focus \& \& \& \& \& \& \& <br>
\hline \multicolumn{8}{|l|}{EMI ELECTRON!CS, LTD., Hayes, Midodlesex, England} <br>
\hline R9555 \& :eft \& 37.5-43 \& 6.3,0.8 \& 2k, 012 \& 300 \& 60 mc \& 40 mw <br>
\hline R5146 \& -efl \& 34-36.5 \& 6.3,0.8 \& 2k, 012 \& 300 \& 60 mc \& 50 mw <br>
\hline R9518 \& 'ell \& 27.8-32.2 \& 6.3,0.8 \& 2k, 01 \& 300 \& 60 mc \& 60 mw <br>
\hline R9547 \& refl \& 24-27.8 \& 6.3,0.8 \& 2k, 012 \& 300 \& 60 mc \& 60 mv <br>
\hline R9520 \& 'efl \& 16.2-17.2 \& 6.3.0.6 \& 2k, 012 \& 100 \& 45 mc \& ${ }^{\text {chmw }}$ <br>
\hline 25182 \& 'efl \& 8.2-11.7 \& 63.07 \& 350, 05 \& 270 \& 20 mc \& 200 mw <br>
\hline 25157 \& :efl \& 7-10.3 \& ${ }_{6} 6.3,0.7$ \& 350, 04 \& 300 \& 20 mc \& 150 mw <br>
\hline ${ }^{25181}$ \& 'et| \& 5-4-8.2 \& 6,3,0.7 \& 250, .04 \& 500 \& \& 200 mw <br>
\hline R5222
R9546 \& :eff \& 32-37.5 \& 6.3.0.8 \& ${ }_{2 \mathrm{k}} \mathbf{2 5 0}, 012$ \& 300 \& 60 mc \& 40 mw <br>
\hline $\mathrm{R}^{29538}$ \& :ef \& 9.1-9.3 \& 6.3,1.2 \& 350, 04 \& 210 \& 20 mc \& ${ }^{60}$ \#w <br>
\hline R9539 \& retl \& 9.3-9.5 \& 6.3.1.2 \& 350, . 04 \& 220 \& ${ }^{20 m a c}$ \& 60 mW <br>
\hline R9540 \& retl \& 9.5-9.7 \& 6.3,1.2 \& 350, . 04 \& 230 \& ${ }^{20 m m}$ \& ${ }^{60 m \%}$ <br>
\hline R954] \& retl \& 9.7-9.9 \& ${ }^{6} .3 .12$ \& 350.04 \& 250 \& 20 mc \& 60 Trw <br>
\hline R9542 \& refl \& 10.1-10.6 \& 6.3,1.2 \& 350. 04 \& 260 \& 20 mc \& 60 mw <br>
\hline R9543
8954 \& rell \& 10.6-11 \& ${ }_{6.3,1,2}$ \& 350, . 04 \& 300 \& 20 mc \& 45 mw <br>
\hline Rens3 \& refl \& 9.55-9.9 \& 4,13 \& 1.35k. 008 \& 250 \& 25 mc \& 25 mw <br>
\hline \multicolumn{8}{|l|}{$\begin{array}{lllllllll}\text { R9515 } & \text { efl } & 7.05-7.3 & 12.6,1.1 & 1 k, 0.12 & 300 & 40 \mathrm{mc} & 2.2 w\end{array}$} <br>
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{R9537
R6010}} \& \& \& \& \& \& <br>
\hline \& \& 4.4-4.8 \& 6.3.0.9 \& $$
\begin{aligned}
& 750,0.14 \\
& 250.04
\end{aligned}
$$ \& 175 \& 20mc \& 150 mw <br>
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{R6015
R5081
R
efl
refl}} \& ${ }_{3}^{4.27-4.76}$ \& $6.3,0.9$
$6.3,0.9$ \& 750,0.14 \& 350 \& 40 mc \& <br>
\hline \& \& 1-4.2 \& 6.3.0.7 \& 250, 02 \& 400 \& \& 150mw <br>
\hline \multicolumn{2}{|l|}{R9559 - refl} \& 1-5.4 \& 6.3,1.2 \& 300, . 035 \& 350 \& 35 mc \& 100mw <br>
\hline \multicolumn{2}{|l|}{R9585 refl} \& 0.5-3 \& 6.3,0.7 \& 300, . 02 \& 400 \& \& 50пw <br>
\hline \multicolumn{2}{|l|}{R9586 -} \& 0.5-3 \& \& \& \& \& 120mw <br>
\hline \multicolumn{2}{|l|}{25205 refl} \& ${ }_{3}{ }^{3} .28$-36-3.72 \& ${ }_{4} 6.1 .3$ \& $$
\begin{aligned}
& 300,0.035 \\
& 250,032
\end{aligned}
$$ \& 140 \& 30 mc \& 150mw <br>
\hline \multicolumn{2}{|l|}{} \& 3.17-3.39 \& $4,1.3$ \& 250, . 032 \& 140 \& 30 mc \& 150mm <br>
\hline KR6 ${ }^{2}$ (eff \& tefl \& 2.93-3.13 \& 4.1 .3 \& 250, 032 \& 140 \& 30 mc \& 150mm <br>
\hline \multicolumn{2}{|l|}{R9570 3 cav. 002} \& 2.7-3.05 \& 11,8 \& 45k, 9 \& \& \& 100kw <br>
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{R957]
R9602}} \& 2.7-3.05 \& 11.8 \& 200,6.5 \& \& 30 mc
40 mc \& ${ }^{150} 5$ <br>
\hline \& \& 22-26 \& ${ }^{6.3 .3,0.8}$ \& $2 \mathrm{kk}, .01$ \& 300 \& 40 mc \& 50 nw <br>
\hline R9621 \& $\underset{\text { refl }}{\text { refl }}$ \& ${ }^{20-24} 3$ \& ${ }_{6.3,1.2}$ \& 350,04 \& 500 \& 25 mc \& 80 mm <br>
\hline \multirow[t]{2}{*}{25212
2522} \& ret \& 3.3-4.9 \& 63,1.2 \& 350, 04 \& 300 \& 25 mc \& 80 mw <br>
\hline \& \& \& \& \& \& \& <br>
\hline \multicolumn{8}{|l|}{ENGLISH ELECTRIC VALVE CO., LTD., Chelmsiord, Enpland} <br>
\hline K300 \& refl ost
refl ose \& ${ }^{9.32-3.5}$ \& 6,3,0.6
$6.3,0.6$ \& 350, 0.035 \& 375 \& 15 mc \& 30 nW <br>
\hline K301 \& refil isc \& $9.32-9.5$ \& 6.3,0.6 \& 350, 035 \& 155 \& 30 mc \& 30 mw <br>
\hline $K 302$
$K 305$ \& reft ose \& $9.25-9.5$ \& 6.3,0.6 \& 350, 035 \& 160 \& 35 mc \& 25 mm <br>
\hline K308 \& refl cost \& 8.8-10 \& 6.3,0.6 \& 350, . 0335 \& 210 \& ${ }^{40 m \mathrm{~m}}$ \& $40 \mathrm{~m} \times$ <br>
\hline K311 \& refl ost \& 8.5-9.5 \& 6.3,0.6 \& 350, , 0355 \& 355 \& 30 mc \& 45 mm <br>
\hline K312 \& refl osc \& 9.43-9.65 \& ${ }^{6.3,0.6}$ \& 350, 0335 \& 170 \& ${ }^{30 \mathrm{mc}}$ \& ${ }^{30} \mathbf{3 0 m w}$ <br>
\hline \multirow[t]{2}{*}{$K 313$
$K 315$} \& reff osc \& 9.645-9.775 \& ${ }_{6} 6.30 .6$ \& \& 260 \& 30 mc \& 20 mm <br>
\hline \& refl 0 OS
refl osc
cel \& ${ }_{8.2-8.3}^{9.105-9.205}$ \&  \& 350, 0.035 \& 310 \& 30 mc \& 20 mw <br>
\hline $\mathrm{K}_{\mathrm{K} 317}$ \& refl
refl

OSC \& 8.2-8.3
$9.43-9.65$ \& 6.3,0.6 \& 350, 035 \& 170 \& 30 mc \& 25m* <br>
\hline K321 \& refl
refl ose
cese \& $9.645-9.775$ \& 6,3,0.6 \& 350, .035 \& 175 \& 30 mc \& 25 mw <br>
\hline \& refl
cefl ose
ose \& ${ }_{9-10}^{9.645-9}$ \& 6.3,0.6 \& 350, .035 \& 390 \& 30 mc \& 45 mw <br>
\hline K324 \& refl cse \& 9.555-9.685 \& 6,3,0.6 \& 350, 0035 \& 180 \& 30 mc \& 25 mw <br>
\hline K 335 \& refl osc \& 9.555-9.685 \& 6.3,0.6 \& 350, 0335 \& 170 \& 30 mc \& 25 mw <br>
\hline K337 \& refl ost \& 9-10 \& 6.3,0.6 \& 350, .035 \& 390 \& 24 mc \& 45 mw <br>
\hline K340 \& refl OSC \& 9.3-9.5 \& $6.3,0.6$ \& 300, 0225 \& 165 \& 40 mc \& ${ }^{\text {S }}$ <br>
\hline K342 \& refl osc \& $\stackrel{8.5-9}{ }$ \& ${ }^{6.3 .30 .06}$ \& ${ }^{3500} .0035$ \& ${ }_{2}^{265}$ \& 35 mc
59 mc \& ${ }_{4}^{4} 40 \mathrm{~mm}$ <br>
\hline K 343 \& refl ose
refl osc \& ${ }^{12-925-7.725}$ \& 6.3,0.8 \& 750, .072 \& 350 \& 30 mc \& ${ }^{1}$ <br>
\hline \multirow[t]{2}{*}{$K 346$} \& refl osc \& 14.5-17 \& 6.3,0.6 \& 350. 030 \& 180 \& 75 mc \& 45 mm <br>
\hline \& ampi. 002 \& . $58-615$ \& 7,35 \& 75k, 10 \& \& \& <br>

\hline K347 \& 2 cav ose \& 8.5-10 \& 6.3,1.7 \& 700, 070 \& 150 \& $$
\begin{aligned}
& 12 \mathrm{mc} \\
& 35 \mathrm{mc}
\end{aligned}
$$ \& ${ }_{65} 1.2 \mathrm{~mm}$ <br>

\hline K350 \& refl ${ }^{\text {asc }}$ ampl, 001 \& 8.5-9.6 \& ${ }_{4}^{6.3,1.2}$ \& 1900, 100 \& \& \& 6 6megw <br>
\hline K352 \& ampl, 001
refl 0 osc \& ${ }^{2} 10.958$-12.2 \& 6.3,1.2 \& 400, .060 \& 250 \& 60 mc \& 250 mw <br>
\hline K353 \& cefll OSC
refl osc \& 10.66-10.72 \& 6.3,0.6 \& 250, . 015 \& 100 \& 30 mc \& 12 mw <br>
\hline K357 \& refl osc \& 10.5-12.2 \& 6.3,1.2 \& 400, . 060 \& 250 \& 60mc \& 250 mW <br>
\hline \multirow[t]{2}{*}{K359} \& rell osc \& $8.1-8.75$ \& 6.3,1.2 \& 350, .045 \& 500 \& 55mc \& ${ }^{907 m}$ <br>
\hline \& refl OSC \& 10.7-10.625 \& 6.3.0.6 \& 300,025 \& 200 \& \& 27 mw <br>
\hline
\end{tabular}



## Microwave Component News from SYLVIANIA

## Octave Bandwidth

 Coaxial Isolators from 1-11 kme

Broadband coaxial ferrite load isolators from $1-11 \mathrm{kmc}$ ( with octave steps from 1 to 8 ) are now available from Sylvania for almost every microwave application. They are especially well suited to test equipment and other wide band applications.
Operating curves for an FD-151P, shown at left, illustrate the outstanding performance of these units. In each case, operation exceeds the rated limits by a substantial margin throughout the entire band-not just at mid-band.

With normal handling, Sylvania ferrite isolators give this same electrical performance for years without deterioration or failure. They can be used to reduce the VSWR presented by a load or antenna, and to protect oscillator output from long line effects.

For more information on these units or other standard or custom built devices in Sylvania's extensive ferrite device line write, wire or phone your nearest Sylvania tube sales office, or contact Sylvania Special Tube Operations, 500 Evelyn Avenue, Mountain View, California.

## Subsidiary of GENERAL TELEPHONE \& ELECTRONICS





## Microwave Component News from SYLVINIİ

## Octave Bandwidth Coaxial Isolators from 1-11 kme

## TYPICAL PERFORMANCE CHARACTERISTICS





Broadband coaxial ferrite load isolators from $1-11 \mathrm{kmc}$ (with octave steps from 1 to 8 ) are now available from Sylvania for almost every microwave application. They are especially well suited to test equipment and other wide band applications.

Operating curves for an FD-151P, shown at left, illustrate the outstanding performance of these units. In each case, operation exceeds the rated limits by a substantial margin throughout the entire band-not just at mid-band.

With normal handling, Sylvania ferrite isolators give this same electrical performance for years without deterioration or failure. They can be used to reduce the VSWR presented by a load or antenna, and to protect oscillator output from long line effects.

For more information on these units or other standard or custom built devices in Sylvania's extensive ferrite device line write, wire or phone your nearest Sylvania tube sales office, or contact Sylvania Special Tube Operations, 500 Evelyn Avenue, Mountain View, California.

BACKWARD WAVE TUBES

Type	Description App; Du. Cy.	Frequency (kmc)	Heoter V; A	Helix $v$
bendix aviation corp., Red Bank Div., Eatontown, N.J. TE57 OSC 49-59				
TW066	OSC	$61-71$		
TW067	osc	49-59		
TW075	OSC	40-50		
TW082	OSC	50-60		
TW083	OSC	65-75		
TW085	OSC	$\begin{aligned} & 70-85 \\ & \text { or } \end{aligned}$		
TW087	OSC	85-100		



ENGLISH	ELECTRIC	E CO.,	D. ${ }^{\text {c }}$	150		
N1010, A*	cw, plsd osc	7-11.5	6.3,2.3	150	Pm	$\begin{aligned} & 150 \mathrm{mw} \\ & 150 \mathrm{mw} \end{aligned}$
N1OLOS	cw, plsd osc	7-11.5	6.3,2.3	150	501	800 mw
N1034. $\mathrm{A}^{*}$	cw, pisd osc	2.4-4.5	6.3,2.4	170	pm,	8007 w
N1034S	cw, pisd osc	2.4-4.5	6.3,2.4	170	sor	


HUGGINS	LABORATORIES,	INC.	999 E. Arques	. ${ }_{5}$ Sur	Calif.		
BAI	ampl	2.4-3.6	6.3.2.3	1.5k	820	10	
BA2	ampl	8.2-12.4	6.3,1.2	2.4 k	IN	10	
BA4	ampl	12-18	6.3,1.2	2 k	1 k	30	
HO!	OSC	2-4	6.3-1.2	3.4k	800		1m*
H02	OSC	8.2-12.4	6.3-1.2	2 k	1 l		10 mw
H03	OSC	3.75-7	7.0.8	3.4k	800		lmw
H04	OSC	12-18	7,0.8	2k	Ik		Imw
H09	OSC	1-2	6.3-2.5	2.8k	800		10 mw
H010	OSC	3.7-5.9	6.3,2	2 k	lk		10 mw
HO1!	OSC	5.2-8.3	6.3,1.4	2 k	1k		10 mm
H013	OSC	4-8	$6.3,1.4$	2.4k	1 k		lmw
H014	OSC	8.2-12.4	7,0.8	2	lk		1 mw
H017	OSC	7-11	$6.3,1.2$	2 k	1k		lmw
H019	OSC	12-18	$6.3,1.2$	2.2 k	1 k		1 mw
H020	osc	3.75-7	$6.3,1.4$	2.6 k	Ik		1076
H021	OSC	48	6.3-1.4	2.4k	Ik		10 mw
H022	OSC	8.2-12.4	$6.3-1.2$	2k	ppm		3 mw

TRAVELING WAVE TUBES

Type	Description App; Du. Cy	Frequency (knc)	Heater V;A	Helix $v$	Foc. Fld. (Gauss)	Gain   (db)	Noise Fig. (db)	Pawer Output
BENDIX AVIATION CORP., Red Bank, Eatontown, N.J. RXB10340l ampl 4-8								
COMPAGNIE GENERALE DE T.S.F., 79 Boulevard Hausmann, Pants 8, France								
TPO101	ampl	2.7-3.3	6.3	400	pm	27		
TPO301	ampl	8.5-9.6	6.3	800	0n	25		10w
TPO153	ampl	1.7-2.3	6.3	1 k	pm	25		5*
TP0410	ampl	5.9-7.4	6.3 6.3	1.85 k	pmin	27		10 w
TPO 103	ampl	2.9-3.1	6.3 ${ }^{6.3 .1 .4}$	1.7k	pm $p m$	20		2 w
TP0921	ampl	$3.8-4.2$ 3 $3-4.2$	6.3,1.4	1.8k	pm	25		$6 w$
TP0430	ampl	$3.8-4.2$ $3.8-4.2$	6.3 .2 .3 6.3	2 k	pm	37		15w


Type	Description   App; Du. Cy.	Frequency   (knc)	Heater   V;A	Helix   $V$	Foc. Fld.   (Gauss)	Gain   (db)	Noise Fig.   (db)	Power   Output

$\underset{\times 778}{\text { EITEL-McCULLOUGH, INC., San Carlos, Calif. }} \underset{5-11}{6.3 .0 .6}$

EML ELECTRONICS,	LTD.,	Hayes, Middlesex, England					
TWS1	ampl, cW	$1.5-3$	$5,5.5$	2.4 k	40		30 w
TWS3	ampl, cW	$2.7-4.1$	$6.3,0.5$	350	25	7	3 mw
TWC4	ampl, CW	$6-8$	$4,3.5$	2.6 k	39		2 w
TWS2	ampl, CW	$1.7-2.7$	$6.3,0.5$	350	25	7	3 mw

ENGLISH ELECTRIC VALVE CO., LTD., Chelmsiord, England

ENGLISH	ELECTRIC	VALVE	, LTD.	Chelm	${ }_{5}{ }^{\text {d }}$ En			
6861	\|w noise	2.7-3.5	5,0.5	375	525	24.5	6.5	$1{ }^{15 w}$
N100]	pwr	1.7-2.3	6.3,1. 5	2630	450	26		15 w
N1002	If noise	1.7-2.3	6.3,0.36	565	459	21	9	2.5 mw
N1004	pwr	3.8-4.2	6.3,0.68	2350	500	23		
N1005M	Iw noise	3.6-4.2	6.3,0.36	380	350	20.5	9	1.5 mw
N 1013	pwr	1.7-2.3	6.3,0.36	650	400	30	20	250 mw
N1016M	wide band	4.1-7	6.3,0.36	600	450	25	9	lmw
N1017M	If noise	1.2-1.4Gc	6.3,0.36	260	450	25	6.5	2 mw
N1018M	int	3.6-4.2	6.3,0.36	450	400	20	21	75 mm
N1029	pwr	5.85-8.4	6.3,1.2	2.5 k	600	35		5 \%
N1031	Iw noise	3.8-4.2	6.3,0.36	500	550	25	8.5	2.3 mw
N1032	int	3.8-4.2	6.3,0.36	1450	350	37	19	300 mm
N1033	pwr	3.8-4.8	6.3,0.71	2260	550	37.25		76
GEISLER	LABS, P. 0	Box 252, Men	Pak, Cal					
G10	ampl	2-4						10 mw
G12	ampl	$2-4$						l0mw
G100	amol	$2-4$						10mw
Gl00P	ampl	$2-4$						

# Creative Microwave Technology 

Published by MICROWAVE AND POWER TUBE DIVISION, RAYTHEON COMPANY, WALTHAM 54, MASS., Vol. 2, No. 5

NEW RAYTHEON MINIATURE, ALL-METAL INFRARED DETECTORS

Specially designed and constructed to resist shock and vibration in airborne applications

Raytheon's QKN748 and QKN884 are highly sensitive, compact, P-type infrared detectors. These gold-doped germanium devices feature all-metal construction and hermetically sealed windows of sapphire barium fluoride or anti-reflection coated silicon. They are ideally suited for airborne applications, including passive missile guidance and air traffic control systems, where resistance to shock, vibration and other extreme environmental conditions is required. Their detecting element has a spectral sensitivity ranging from 2 to 9 microns at an operating temperature of about $-195^{\circ} \mathrm{C}$. The standard effective detector area is $2.0 \times 2.0$ millimeters. Larger or smaller effective detector areas can be manufactured to meet specific requirements. The impedance range is 50,000 ohms to 1 megohm. The acceptance angle is dependent upon the effective detector area and can be as large as 150 degrees. The time constant is less than 1 microsecond.



## Excellence in Electronics

You can obtain detailed application information and special development services by contacting: Microwave and Power Tube Division, Raytheon Co., Waltham 54, Mass. In Canada: E. Waterloo, Ontario. In Europe: Zurich, Switzerland

Type	Description Appi Du. Cy.	Frequency (kme)	Heoter V;A	$\underset{V}{\text { Helix }}$	Foc. Fid. (Gouss)	Gain   (db)	Noise Fig.   (db)	Power Output


GEISLER	LABS,	INC. - (Continued)
G10	ampl	$2-4$
G11		$2-4$
G110		$2-4$
G20	ampl	$4-8$
G200	ampl	$4-8$
G21	ampl	$4-8$
G40	ampl	$8.2-12.4$
G41	ampl	$8.2-12.4$

GENERAL ELECTRIC, Power Tube Dept., Schenectady, N.Y.

GENERAL	ELECTRIC,	Power	70.35	550	600	25
Z3028	ampl	4-8	7,0.35	150	610	25
Z3031	ampl	12-17	6,0.2	700	500	35
Z3036	ampl	7-11	6.3,0.3	700	500	35
Z3040	ampl	35-40	$6,0.2$	2.60	pmom	35
Z3088	ampl	7-11	$6.3,0.3$	780	ppran	35
Z3090	ampl, . 005	8.5-9.7	4,3.8	1650	600	25
Z5259	ampl	8-12	6.3,0.3	850	600	25


HUGGINS	LABORATO	IES, INC..	999 E. Ar	${ }_{5}$	Sunnyva	Calif.		
HAl	ampl	2-4	6.3 .1	525	300	30 30		10mw   Iw
HA2	ampl	2-4	7,1.2	1.1k	600	30		10 mw
HAA	ampl	8-12.4	6.3,1.2	1.3 k	400	30		10mw
HA5	ampl	1-2	6.3.1.4	1.5 k	1 k	30		0.5 w
HA6	ampl	4-8	7,1.3 6	120	300	30		10mw
HA7	ampl	0.5-1	6.3,1.5	2.4k	1k	30		0.5 w
HA9	ampl	8 8-11 ${ }^{8} 12.1$	6.3,1.2 7.1 .2	2.3 k	1k	25		100 mw
HALO	ampl	8.2-12.4	7,1.2	850	lk	30		1w
HAL8	ampl	1-2	7.1.1.2	1.3 k	ppm	30		10 mm
HA2O	ampl	8-11	6.3,1.2	2.4k	ppmm	30		0.5w
HA21	ampl	8-11 $1.6-2.6$	6.3 .1	500	300	30		10mw
HA22	ampl	1.6-4-15	6.3.1.2	1.3k	400	20		5 mw
HA24	3 mpl	12,-18	6.3,1.4	1.3 k	1 k	30		5 mw
HA25	ampl	4-8	$6.3,1$	800	400	30		10 mw
HA26	ampl	-8	8.5.1	500	elec.	30		10mw
HA27	ampl	1-2	6.3 .1	800	ppma	30		10 mw
HA28	amp!	4-8	6.3,1	525	ppm	30		10 mw
HA29	3 mpl		7.1.2	1.1k	ppm	30		0.5w
HA30	ampl	2-1	6.3,1.4	220	ppm	30		10mw
HA31	ampl	1-2	7.1.3	1.6k	ppm	30		0.5w
HA35	ampl	4-8-1	6.3.1.4	300	ppm	20		10mw
HA36	ampl	0.5-1	6.3,12	1.3k	ppm	30		3 mw
HA49	ampl	10.5-16	6.3,1.2	220	ppm	20		10mw
HA51	ampl	0.24-0.5	$6.3,1.5$	200	elec.	20		3 mw
HA52	ampl	0.5-1	6.1	850		30		Iw
HA58	ampl	0.5-1	6,3	470	750	30	7	lmw
HA7O	ampl	2.3-3.5	5,11	470	750	30	8	1mw
HA75	ampl	2.2-3.7	5,1.1	470	750	30	6	17w
HA76	ampt	2.3-2.9	5.1 .1	${ }^{200}$	lk	25	10	! ${ }^{\text {mw }}$
HA14	ampl	1-2 212	$5,0.8$	1.25k	Ik	25	15	5mw
HAl5	3 mpl	8.2-12.4	5.1 .8	200	lk	25	15	Inw
HA17	ampl	1-2	5.0 .8	200	1k	25	15	1 mw
HAl9	ampl	1.6-2.6	$5,0.8$	1.25 k	1k	25	10	Imw
HA23	ampl	8.2-11	5.1 .1	700	1k	25	15	lmw
HA32	ampl	4-8	5.1.1	475	750	25	11	1mw
HA37	ampl	2-4-1	5,1	120	820	25	15	1 mw
HA40	ampl	0.5-1	5,1.4	1.3k	1 l	25	17	1 mw
HA43	ampl	12-18	5, ${ }^{5.1 .1}$	1.25 k	Ik	25	15	lmw
HA44	ampl	8.2-12.4		120	820	25	10	1mw
HA45	ampl	0.5-1	5,1.4	1.3k	1k	25	12	1mw
HA46	ampl	12-18	5,1.1	700	1 k	25	10	1 mw
HA47	ampl	${ }_{12-16}$	5.1 .4	1.3 k	1 k	25	13	1mw
HA48	anpl	12-16	5,1.4	2.6 k	Ik	28		Iw
PAI	ampl, 03	$8-11$	6.3,1.5	2.6 k	Ik	30		10w
PA3	ampl, 0.1	2-4	7.1	1.1k	Ik	30		25 mm
PA5	ampl, 0.1	8.2-12.4	7.0 .8	2.3k	${ }_{600}$	33		lw
PA6	ampt, 0.1	2-4	7.1	1.6 k	1.1 k	33		Iw
PA7	$3 \mathrm{mpl}, 0.1$	4-8	7.1.2 6	2.6 kk	ppm	30		Iw
PA9	$3 \mathrm{mpl}, 03$	8-11	6.3,1.4	2.6 k 2.38 k	250	28		
DAl	v. tun	2-4	6.3,0.85	2.38k 1.02 k	250	33		
DA2	v. tun	1-2	6.3,1.1	1065	250	30		
DA3	v. tun	0.5-1	6.311	2.5 k	400	25		
DA4	v. tun	${ }^{4-8}$	6.3,1.1	1.5 k	600	- 10		2mw
HA16	mult	1.76/8.8	6.1.2	250	550	-10		2miw
HA34	mult	0.4-1.2-4	6.3,1	250	530			

INTERNATIONAL TELEPHONE \& TELEGRAPH CORP., COmponents Div., P.O. Box 412 , Clitton, N.J.

Clitton, N.J.				
02013	ampl, cw	8-9.6	6.3,2.3	
02014	- ampl, . 005	8-9.6	6.3,5.2	9.6 k
02020	ampl, cw	$8-9.6$	6.3,2.5	1.2k
02023	- ampl, . 01	4-8	6.3,5.2	9
02024	- ampl, cw	8-9.6	6.3,2.3	3.2 k
$\times 2440$	-*ampl, 032	0.95-1.22	6.3,3	500
X258	ampl,cw	2-4	$6.3,2$	750
$\times 281$	ampl, cw	4-8	$6.3,1$	lk
$\times 282$	ampl, cw	4-8	6.3,1.5	2.6 k
$\times 287$	ampl, cw	$0.65-1.2$	5,0.65	120
$\times 298$	ampl, cw	4-8	6.3,2	850 1350
$\times 314$	ampl, cw	1.1-1.8	6.3,1.9	1350
$\times 319$	ampl, cw	5-6	6.3,2.2	2.8k
$\times 320$	ampl, 005	5-6	6.3,5	11 k
$\times 322$	ampl, cw	0.24-0.51	6.3,2.4	150

BES - (Continued)

INTERNATIONAL TELEPHONE \& TELEGRAPH CORP. - (Continued) 032 w								
X323	ampl, cw	$0.50-1.0$.	6.3,1.75	20	500			lkw
$\times 325$	*ampl, . 02	$0.65-1.20$	6.3,5.4	4.6 K	500 400	35		Iw
$\times 314 \mathrm{~A}$	ampl, cw	$0.50-1.01$	6.3,1.7	400	600	24		10 H
$\times 343$	ampl, cw	$0.95-2.05$	$6.3,1.6$	1350	700	24		10w
$\times 362$	ampl, cw	0.50-1.50	6.3,2.3	1250	750	30		2w
F6658	ampl, ${ }^{\text {cw }}$	1.7-4	6.3,2.5	${ }^{1} \mathrm{k}$	750	30		1kw
F6825	ampl, .005	2-4	6.3 .5	8 k	1.2 k	30		IkW
F6826	*ampl. 005	2-4	6.3,5	1.5 k	1.3 l	30		100mw
F6867	ampl, cw	8-9.6	6.3,0.85	1.48	1k			10w
F6868	ampl, cw	1.7-4	$6.3,2.5$	1.2k	1.3 k	30		10w
F6996	ampl, cw	$8-9.6$	6.3,2.3	1.2k	900	30		50 mw
F7066	ampl, cw	$8-12$	6.3,0.85	3.60	1.2 k	30		lw
F7067	* ampl, 01	8-12	$6.3,2.3$ 6.35	7.8 k	1.2 k	40		1kw
F7338	*ampl, 005	2-4	${ }_{6}^{6.3,5}$	1.1k	2.4 k	27		lkw
F7339	- ampl, 0005	8.5-9.6	6.3,2.5	9.6k	2.4 k	30		Ikw
F7340	- mipl, . 005	8-9.6	6.3,5.2	3.0 k	lk	25		5w
F7341	*ampl, 04	8-9.6	6.3, 5.2	7.5 k	1.2k	30		1kw
F7347	*ampl, . 005	2-4	6.3,5.2	7.5k 3.8 k	1.2k	20		5 w
F7524	ampl, cw	$8-12$	6.17	3.8 k	pkgd	20		$5 *$
F7525	ampl, ${ }^{\text {cw }}$	8-12	6.3, 6.3	1.4 k	pkgd	30		50 mw
F7526	ampl, cw	$8-12$	6.3, 6.3 .5 .2	9.64	$2.4 k$	30		lkw
D94A	- ampl, 0004	8-9.6	6.3,5.2	9.6 k	2.4 k	30		lkw
D958	- ampl, . 004	$8-9.6$	6.3, 3.2	2350	pkgd	35		lkw
02009	*ampl, 03	4-8.0	6.3,2.					
- Gridded								
LITTON INDUSTRIES, Electron Tube Div., San Caios, Calif. 20 mmw								
L. 3266	CW	7-11			PPRI			2 w
L3236	cw	7-11			PPTI			20 mw
L3470	cw	4-8			ppm			2w
L3471	${ }_{\text {c }} \mathbf{*}$	${ }_{8}^{4-8} 8$			ppmm			10w
13472	CW	$8.5-9.6$			pom			
MICROWAVE ELECTRONICS CORP., 4061 Transport St., Palo Alto, Calif. 10 5mw								
M2101A	ampl	$8-11$	6.3,0.25	1.2 k	1 k	${ }_{7}$	13	5 mw
M21018	ampl	$8-11$	6.3,0.25	1.2 k	ppma	30	20	10 mw
M2106A	ampl	7-11	6.3,0.25	1.2 k	ppmm	30	20	10mw
M2106B	ampl	7-11	6.3,0.25	1.2 k	ppmm	33	20	10mw
42106G	ampl	7-11	6.3,0.25	$1.2 k$	400	30	30	10mw
M2201A	ompl	7-12.4	$6.3,0.25$	1.2 k	400	30	30	10mw
M22018	ampl	$8-12.4$	$6.3,0.25$ 6.30 .25	1.2 k		30	30	10 mm
M2201C	ampl	$8-11$	$6.3,0.25$	800	400	25		10mw
M2203B	mod	4-8	6.30 .15	900	ppm	35		50 mw
M2202E	mod	5.4-5.9	6.3,0.25	1.2k	400	20		10mw
M2204A	mod	7-12.4	6.3,0.25	800	400	30	23	10п\%
M2207A	ampl	4-8	6.3-0.25	2.2k	1 k	33		Imw
M2403A	ampl	8-12.4	6.3,0.5	3.2 k	1.1 k	30		I*
M2405A	ampl	12-18	6.3,0.5	3. $k$	1.1	3		





5w
3megw
3megw
5
5 megw

MICROWAVE ELECTRON DEVICES
TRAVELING WAVE TUBES - (Continued)


PARAMETRIC AMPLIFIERS

Type	Description   Application	Frequency   (kmc)	Bondwidth	Cain   (db)	Pump   Freq   (kme)	Pump   Power   (mw)	Noise   Fig.   (db)	Power   Output


miCROWAVE ASSOCIATES. INC., Burlington, Mass.
MA2-750
MA2-750A

ampl, mix	$0.9-\mathrm{I}$	2 mc
$0.95-125$	2 mc	

MA2-10002 ampl, mix $\quad 1.25-1.35 \quad 2 \mathrm{mc}$
$100 \quad 2$

## Target Map Locator is Being Developed

A unique locator, capable of automatically selecting, in only 15 seconds. a target map from a compartment containing more than 11,000 different map microfilms, is being developed by the Fairchild Camera and Instrument Corporation and the U. S. Army Engineers.

Known as the Target Map Coordinate Locator, the unit is basically an optico-electro-mechanical
device consisting of a multidecked storage drum holding map transparencies, a movable film pick-up assembly, and a projection-display assembly.

To operate, a number is dialed like a telephone. It is intended that the unit will automatically select the correct target map transparency from the compartment and carry it to a rear screen projector for immediate viewing on a large screen.

An integral part of the equipment is a crosshair system of lo-

## Army Opens Longest S/C Radio Circuit on 100th Anniversary

The Army's longest direct highfrequency single channel radio circuit was opened to Australia on the 100th anniversary of the U. S. Army Signal Corps, the Dept. of the Army has announced. It is the only link established by the Army with a foreign government. The Australian Military Forces Director of Signals operates
the Australian terminal at Melbourne, Victoria while the American terminal is located at Davis, California.
The circuit ties in to the Army Communication and Administration Network at Davis, ACAN's West Coast Relay Station. Circuit control is centered at the West Coast Relay Station.
cating target coordinates. After the map transparency has been projected onto the screen, positioning of horizontal and vertical crosshairs on any target located on the screen will cause the unit to readout the Universal Transverse Mercator coordinates of the target.
"VERTICAL MOTION" TESTS


Instruments that record the pilot's bodily responses are checked by Armour Research responses are checked Ry technician, Rors and research scientist, E. S. Gordon. Designed by ARF for the Aero-Space Medical Div., WrightPatterson Field, Ohio, they are used with a vertical accelerator.

## ELECTRONIC INDUSTŔIES＇

## 1961 Directory of Microwave Equipment Manufacturers


#### Abstract

Names and addresses of electronic com－ panies making the principal microwave products for today＇s markets．Section 1 gives complete alphabetical listing of all active companies．Firms that are aster－


isked are companies who have provided verified product listings．In Section 2 these firms are again listed and identified with the specific products that they man－ ufacture．
＊American liketronice Jallis Inc lol N ath
smericans＂ronta
American Lava Corp Sub Minn Nining \＆ Alth Cherokee Blod \＆Mirs Hd Chatし Amowicand Marlain
Amoric：an Mashine \＆Houndry Co Gen bing American Minchine＂reenloich Comn
（iroupl 1 Tol

 bherrie：on Are New York NY






St Xew lyatell 11 Conn


（ages－．＂） 111
Amblne Capitron एis lai l＇alle Av ritizahethtown I＇יnmat
Gmaon Corp $\mathrm{T}^{-1}$ Veltons st Waltham it
Mass
thalomur Controls Jne 200 F＇atuls larl
Androw Antanna Corp bioc lien b
Whithy unt Canada st


Aber（atrombat rallif



＊Antemmavision Inc Box 11：9er Phoenix
Antenhavision The Box 11：ige Phoenix Vri\％
 lighon Ohin
Mineral llonic lembets Fis Box 110
Mineral Wealls T
Aphled Electronics $\quad$（＇o Sub Raythern Cu
＊Apmiararand Ave \＆San Francisen Calit
＊Applied ladiation Corp 2404 N Nain St
Amplierd Pesearela In
Applierd Prasearch Ine 76 S Pasples Ave
Arele Fashington ．Y
Arele Engineering Diy Arde Associates 7 －
Austin St Newark 2 N．T

－orcsi TI
－T：F＇Trobluets Ine PO Box Eit Ranton

＊cemat
＊Armar Jir Abmerican bosch éng lomsco． ＊Frumeral raldern City 犬

Conn
 Charing fross liel Lonelon iv ，＂\＃n sland
Ssociaterl folectrical Juchustrin：I＿tal（＇iol．
holmo l：d Tincoln Eundiand
＊Atlas lemg＇g＇o Lit Blue Ilial Ave Jiox
hury l：Mass

－Ale lbhila 2 t pemmia
Allicon Eluctronics Inc 21 fi Lyon st Paterson 4 N．J
Werbach Electronics Corp Ibist Arch sit「hila ？Prmat
Alsein Foluetmonies Dis Amsim io if ith Nr＂New lurk 11 N

St Brooklyn 11 NY
 Rai Tenaliy N．J
Antonetics Tiv North Amerinan Aviation

Areo Corp Nashville Div Nashville 1 Tenn

St Cincinmati 3.5 Ohio
＊Avionjes Div latll Aerosystems 1 © Buf
faln ：N

balie Ont Cathada

bhenck Pari $1:$ ．

Costa Mresa Coilif

Baldwin Piano
rinnati 2 Ohin Co 1801 Cillomet tre cim－
＊rinnatiz 2 Ohin
＊Bart Mf́r Corp 1：35 Manchrotor Pl New－
Paisce N．

1．androriale Fla

York 1 NY
Beauchaine \＆Suns Inc I，akrpory N゙I
＊Sellaire Jlectronies Inc big Whitc st li．．
lbank N．J
Fielock Instrument Corp 111－nj 1｜th Ivo
rollegr Toint 50 NY
＊Belz Industries Inc 80 Tinion St Minaala
1.1 NY



Serviced by Systems Engineering Offices of Airsupply-Aero Engineering Division of the Garrett Corporation - - Offices in All Principal Cities $\qquad$


## seasoned microwave designers and builders



Model SGO-2, common power supply


## Swept Signal Generators offering Constant Power Output over Entire Band

A common power and sweep supply can be used with any of the new Melabs electronically tuned signal generators covering, respectively, L, S, C, X and K band frequencies.
All five units are compatible with Melabs' radiometer and panoramic display unit. Addition of a receiver box creates a swept receiver or panoramic analyzer. TWT amplifiers with power outputs up to 1 watt can be supplied.



Linear time/frequency characteristic

## SPECIFICATIONS

Model SGS-2, S Band, with SGO-2 Power Supply
Power output:
Regulated, $10 \mathrm{mw} \pm 1 \mathrm{db}$; Lnregulated, 10 mw 2 KMC, rising to 300 mw at 4 KMC ; manual adjustment range, 30 db .
Internal modulation: For regulated power, pulse, 1-10 $\mu \mathrm{sec}$; square wave. Rep rate, $100-5000 \mathrm{cps}$.
External modulation: Any type, unregulated only.
Sweep:
Price:
0.3 to $30 \mathrm{cps} ; \mathrm{cw}$ through $100 \%$ of band.
(Model SGS-2, $\$ 2,300.00$; Model SGO-2, $\$ 900.00$;
$\left\{\begin{array}{l}\text { Model SGL-2, } \$ 2,600.00 ; \text { Model SGC-2, } \$ 2,400 \text {; } 0 \text {; } ; ~\end{array}\right.$

Data subject to change without notice. Prices f.o.b. facfory.
Employment opportunities at Melabs are exceptional for ambitious engineers and physicists; write in confidence.
(pronounced MEL-LABS) • Dept. M7, 3300 Hillview Ave. Palo Alto, California • DAvenport 6-9500

Buhax lurp Bendix l＇acilic biv 11600 shernall Way $N$ Hullywuod C＇ilif
Fellix Corp Lendix liadio Div listtimore
＊Liendix Corp 1104 fisher Lbldg I eetroit 2 Alch
Ebndix Curp Red Liank Div に＇l ä Latuntuwn NJ
Bendix Curp Eclipse Div＇Ieterburn N．I
＊irdair structures lnc 1 sou Lbshadway Lutialo 1：N Y
 St Van ouys Cillit
－Dlaw－linua Co 300 th Are f＊itt－forgh 른 Perlitat
－Eugart Mig Corp 315 Seigel st firomlelyn 6 N1
 Hatersun ：̈ NJ
＊Bonnac Lathone salem lid Beverly Mass Boontun liadio Corp Intervale lid lsoon－ ton NJ
Burcr－Warmer Controls IBorg－Warner（ ©orp BJou N゙ewport Blvd I＇O Liox lifis santat Ana Calif
Grach Mf：Corp Div Gen Bronze＇orp 200 Centrall Ave Newark：NJ
Breeze Curb 700 Liberty Ave Union N，l
＊Lrouks \＆Ferkins Inc l！ou Wo Fort st Detroit In Mich
Browning Labs Inc 100）Liion Ave Laconia －H
Brubaker E＂lectronics fuc $3 b^{2}$ Dr Culver City Calit
＊Brunu－New lork Industries Corp 400 w 3th st New York 1 NI
－Budd blectronics Inc ti－22 Queens St Long lsland City 1 V
Budd Stanley Co $\ddagger 3-01$ gend St Long
－Budelman City 1 Ni
＊Budelman Folectronics Corp 3T5 I＊aindeld Ave stamford Conn
Budelman Fiadio Corp $3 \overline{\mathrm{~J}}$ F Fairfield stann－
－
＊Lulovar Watch Co IElectronies folv 10－1）1
＊Eurndy Corp／Omaton I．iv Richards Ave
Burndy Corp H H Buggie Div liox S 17
Toledo 1 Uhio ＊Cable Electric
＊Cable Electric I＇roducts 23t Ditholl sit
Calif Magnetic Control Corp 11 G22 Vitlerio
St Nollywood Calit Calif Technical Industrie
Calif Technical Industries Div Texiron Inc Calmar Dix Calif ala beinoont to calr Calmag Div Calif Damentic Control Corp Canadian Applied atsearch
Canadian Applied Research Letd 700 Law rence Ave W Toronto Ont Canada
＊Canadian Avia clectronies Box 2030 st Laurelit Que Canada
＊Canadian Marconi Co 2442 Trenton Ave Montreal 16 ．Que Canalla
Canoga Div Underworo Corp 15：3：50 Ox－ nard St Van Nuys Calit
Canoga corp of Calif southern IBiv Carad Cura 2500 lyy
Cararif Cort 2500 bay Ral liedwomd city Cardinat Instrumentation（orp 4201 Ied－ whod Ave Los Allgeles bif cali
arol Cable Co $1!$ Niddle St L＇awtucket Cas
＊Cascade Research lliv I ewis \＆liaufoman Electronics Corp 5245 sim Fermando Rd Whos Angeles Calif
Cascade Research Corp IDiv Monogram precision Industries 5 ；i Victory Lane
Cawiotos Calif
Cane Electronies（orp tly Queens Central an Jose 12 Calil

Pte Claire Que Catd $1+i$ Hymus Blvd
Central Flectronic Mirss 2 Richwood Tl Denville Cermaseal Inc PO Bux 25 New lehamon Center NY
Ceranatronics Inc 364 Highland Ave Pas－ saic $1 . J$
＊CG Flectronics Corp 15000 Central liast Albuquerque N゙M
Chance Vought Electronics Iniv I＇O IBox 5007 Dallas Texas
＊Chenalloy Electronics Corp（illespie Airport Santee Calif
＊Chu Ascociates PO Bux 387 Whitcomb Ive Litileton Mass
Clegg Latos／Div Clegr Inc Ridgedalw Ave Morristown NJ
－Clongh－Erengle Co 6014 Broadway（＇hi－ cago 40 Ill
Collins Radio Co 2700 W Olive Ave Burbank Calif
Collins Radio Co 855 35th St NF Cedar Rapids Iowa
Collins Radio Co 1930 Hiline Ur Dallas 7 Texas
Columbia Products Co 6625 Shakespeare RA Columbia SC
Conmunication Accessories Co US 50 Hwy Lees Summit Mo
Comnunications Co 300 Greco Avr Coral Gables Fla
Computing Devices of Canada Lut PO Box 508 Ottawa Ont Canada

## 1961 Directory of Microwave Manufacturers（cont．）

＊Cunnector Corp of America 12459 Sher－ man Way N Ilullyword Cali Conrad \＆Moser 2 Borden Ave Long Island City 1 NY N Co 4212 buckner Contine Dallas＇Texas
＊Control Electronic＇s Co Inc 10 Stepar Pl Huntington sta N゙1
Convair Pomona Div Gen Dynamics Corp 15.5 W 5 th Pomona Calif

Convair San Diego Electronies 3165 Pa－ cific Hwy San Diego Calif
Cook Electric Co 2700 N Southomert Ave Chicago 11111
Cook Technological Center Div 6401 Oak－ ton St Morton rirove Ill
Co－Onerative Inclustries Inc 100 Oakdale Ihd Chester N．J
Corbin Corp 76 lrimrose Lane Levittown N．J
Corning Electronic Components Rrad－ ford l＇enna
Craig Systems Inc $\mathbf{3 6 0}$ Merrimack st Law－ rence lass
Cross County Audio Exchange 583 Gra－ matn Ave Fleetwood Mt Vernon N゙Y Cubic Corp 5575 Kearny Villa Rd San
＊Diego 11 Calif Componts Inc PO Box 248 Caldwell NJ
＊CWS Waveguide Corp 301 W Hoffman Ave Lindenhurst N
Tage filectric Co Inc Beech Grove Ind
Dahlstron Metallio Door Co lisuffalo \＆ 2 nil Sts Jamestown NJ
Daven Co Route 10 Livingston N．J
Davis Electronics Inc PO box 1ٌti Lur－ bank Calif
Dayst rom Inc Weston Instruments Div 61 Frelinghuysen Ave Newark 12 NJ
DBN Jesearch Cory PO Box .21 Cocoa Beach Fla
Defiance Eng＇g \＆Microwave Co Reverly Airport Beverly Mas：
＊Jemornay－Bonardi Corp 780 S Arroyo l＇kwy Pasadena＇alif
Deutschnann Corp Tole Providence Hwy Norwood Mass
＊Diamond Antenna \＆Microwave Corp 35 liver St Wincliester Mass
Dielectric Products ling＇g Co laymond Me
Dittnore－Freimuth Corp $2 \overline{5} 17$ F：Norwich St Milwaukee 7 Wis
＊Don－Lan Electronies Co 11：1 W Olympic Blyd Santa Monica Calif
－Dorne \＆Maryolin 29 New York Ave Wrne ery Mar
Double F Prorlucts Co 208 Standard St Fl Segundo Calit
Druglas Microwave Co 252 E 3rd St Mt Vernon NY Yo Ko kox 711 Thicf River Falls Minn
Dresser Ideco Co 8909 S Vermont Los Angeles Calif
Dumont Labs Inc Allen B i－ 0 Bloomfleld Ave Clifton NJ
Dunn Fig＇g Associates Inc 255 OBrien Hwy Cambrilge 41 Mass
Dwyer Eng＇g Co Airport Rd PO Box 4.2 Nashua NH
＊Dymec Div Hewlett Packard Co 3a： laure Mill Rd Palo Alto Calif
Dynamic Electronics Inc $8 i-46$ 120rd st Richmond Hill NY Wr Amelia Ave Or－ lando Fla
＊Fidgerton Germeshausen \＆Grier Inc 1 ba Prookline Ave Boston 15 Mass
alo Corp 13－10 111 St College Point 56 1．1 NY
Fyan Laboratory 10 －iń $11:$ tht St Rich－ mond Hill 19 ．
＊Eitel－MeCulhush Ine 301 Industrial Way －San Carlos Calif
Fiectrend Products Corp Rux 111 St Joseph Mich
Electro Contacts lur Main sit Osterville Mass
＊Flectro Inmplise Lal，Ine 2ns lziver St Red Bank …
Flectio Instrument Inc 2540 Aero Court San Diego 11 （＂alif
Filectronic Applications Inc $1: 14$ lite－hmond Hill Ave Stamford Con！
Felectronic Associates Inc Lamg l：ranews N．J Filectronic Communications Jnc 1501 i2nd St NSt Petersburg 10 Fla
Electronic Control Systems 2931 Barring－ ton Ave tos Angeles $\mathrm{b}^{\prime} \mathrm{Calif}$
＊lilectronics Development co 3743 Ca－
＊huenga Blvd N Hollywood valif
＊lilertronies E Orrlance Div／Aven Corp PO Box 116 Cincinnati 15 Ohio 50 Fer
＊Flectronic Specialty Co 5121 San Fer－ nando Red tos Angeles 3.9 Calif
＊Electron－Radar Products 1806 F Chi－ cago Ave Chicago $\overline{\mathrm{F}} 1 \mathrm{Il}$
Flectro－Pulse Inc $11 \$ 61$ Teale St Culver City Calif
blk Electronies Labs Inc 333 W 52nd st Elliott Brothers London Ltd Elstree Way Borehamwoud IIertfordshire England Elliott Brothers London Iatd liadar Jis Elstree Way Borehamwuod Hertford shire Englithid
＊Elm Labs l＇U Box 14 Hastings－on－Hud－ son NY
Elsin Electrunics Corp Eileen Way Syos－ set Ni
＊Emerson \＆cuming Inc 869 Washington St Canton 1 Mass
EMI Cosser ielectronics Woodside Dart mouth Nova Scotia
＊limpire Devices Droducts Curj 37 Pros pect St Annsterdam NY
Enmire Product Sales Corp 37 Prospect St Amsterdam NY
Enflo Corp Fellowship IRd Route is Maple Shade N .1
Mnergy Koutrols Inc 15 s 1st st Geneva 111
＊Engleliard Inulustries Inc D E Malie－ beace Div l＇ine d Dunham Sts Attle Mass
linglehard Inelustries Inc 113 Astor sit Newark N•J
Gigis Eruilntl
Entron Inc 4902 Lawrence St Bladens burg Md
Ercona Corp 1t WV 46 th St New Tork $3 t$
SCO Group Div＊Electronic specialty Co 121 San Fernando lid lus Angeles 33 Calif
Gugene Fingineering Co Inc 1217 Hyde l＇ark Ave llyde lark 36 Mass Box 66 Nact Fing g \＆
E－Z Way Towers Inc 5901 E Broadway Tampa 5 Fla
rairchild Astronics Div Straight Path Wyandanch LI NV
Vandanch Lic Co 416 I）St Redwood arinon Ele
Citysworth Electronics Co Div ITT 3702 fipontiac sit Ft Wayne Ind
Hamilton Ave I＇itts burgh 6 Pernit
Feedback Controls Inc $\$$ Eire Dr Natick Mass
Ferranti Flectronic Inc 30 Rockefel\}er
Perrotran Flectronics Co Inc 693 Broad－ Ferrotran Flectronics Co
way New Nork $48 W^{N} 25$ th St New York
10 NF
Filtron Co Inc Western Div 10023 W Jefferson Blwd Culver City Calif
Filtron Co 1：1－15 Fowler Ave Flushing
Fisher Fing＇g Inc PO Box 327 Huntington Ind
Formeraft Tool Co 2465 \＆Archer Ave
Chicago 16111 Comnerce Rd Cedar Foto Video
Grove Nit
Fox Co Thoma
＊Frequency Standards Div Harvard In
dustries Ine l3ox 504 Ashury Park $N$ N
＊Gabriel Flectronics Div Gabriel Co Milli Mass
Gates Electronics Co 1705 Taylor Are Suw York $N$
＊Gavitt Wire \＆Cable Co $45 \pi$ N Quince St PO Box 1596 Escondido Calif （ B Electronics Corp Hook Creek Riva Valley Stream NY
General Bronze Electronics Corp Hool Creek 1Blyd Valley Strean NY
＊General Cable Corp 40 ard Ave New York 17 NY
General Communication Co 677 Beacon St Boston 15 Mass
General Devices Inc PO Fox 2：3 Prince ton N．T
General Flectric Co Power Tube Dept Palo Altu Calif
General Electric Co Dist Assemblies Dept 41 Woodfurd Ave Plainville Conn
General Electric Co Missile \＆Ordnanc Dept 100 Plastics Ave יittsfield Mass Depal Flopic Ordnance Dept $1001^{\text {lis }}$ tics Ave littsfield Mass
General Fiectric Power Co Power Tuhe Dept Bldg 267 Schenectady 5 NI
General Electric Co HMEF Nept Syra cuse NY
General Electric Co Terhnical Product Dept Electronic Park Syracuse NY General E Utica NY
General Flectric Co MSVD 3198 Chestnu St Phila 4 Penna
General Flectric Co Communication
Products Dept Lynchburg Va

## MICROWAVE GENERATORS

# MOST FEATURES 



## POLARAD ELECTRONICS CORP. Eוויו

Please send me information and specifications on
$\square$ Model PMR
$\square$ Mode! PMX
$\square$ Model MSG-1
$\square$ Model CSG
$\square$ Model MSG-2A
$\square$ Model PMK
$\square$ Model MSG-34
$\square$ Model EHF (generator)
$\square$ Model KSS
$\square$ Model EHF (source)
$\square$ A copy of "Notes on Microwave Measurements."
My application is
Name
Title
Dept
Address
City

MODEL PMR	$\begin{aligned} & 500 \text { to } \\ & 1,000 \mathrm{mc} \end{aligned}$	Complete modulation capabilities - internal pulse modulator or FM modulator
MODEL MSG-1	$\begin{aligned} & 950 \text { to } \\ & 2,400 \mathrm{mc} \end{aligned}$	Complete modulation capability including square wave modulation
MODEL MSG-2A	$\begin{aligned} & 2,000 \text { to } \\ & 4,600 \mathrm{mc} \end{aligned}$	Complete modulation capability including square wave modulation
MODEL MSG. 34	$\begin{aligned} & 4,200 \text { to } \\ & 11,000 \mathrm{mc} \end{aligned}$	Widest frequency range in a single instrument
$\begin{aligned} & \text { MODEL } \\ & \text { KSS } \end{aligned}$	$\begin{aligned} & 1,050 \text { to } \\ & 11,000 \mathrm{mc} \end{aligned}$	Compact high power signal source with plug in tuning units-internal modulation
MODEL PMX	$\begin{aligned} & 4,450 \text { to } \\ & 11,000 \mathrm{mc} \end{aligned}$	Calibrated 1 milliwatt signal generator with complete modulation capability
MODEL CSG	$\begin{aligned} & 1,000 \text { to } \\ & 16,000 \mathrm{mc} \end{aligned}$	Higher power sweep generator
MODEL PMK	$\begin{aligned} & 10,000 \text { to } \\ & 21,000 \mathrm{mc} \end{aligned}$	Wider modulation capabilities - calibrated 10 milliwatt output
MODEL EHF (generator)	$\begin{aligned} & 18,000 \mathrm{to} \\ & 39,700 \mathrm{mc} \end{aligned}$	High frequency signal generator - operates on fundamentals
MODEL EHF (source)	$\begin{aligned} & 18,000 \text { to } \\ & 50,000 \mathrm{mc} \end{aligned}$	Widest and highest continuous frequency range - operates on fundamentals

MAIL THIS COUPON FOR MORE INFORMATION...

FREE LIFETIME
SERVICE

## POLARAD

## ELECTRONICS CORPORATION

43-20 34th Street, Long Island City 1, N. Y.
Representatives in principal cities.

## 1961 Directory of Microwave Manufacturers（cont．）

＊General Electric Co Ltd of England 80 Shore lid Port Washington Ni General llagnetics Inc 135 Bloomfield Ave blunmitield NJ
General Mills Inc 1620 Central Ave Min－ neapolis 13 Minn
（ienera）Precision Lab Inc 180 N Vinedo Are Pasadena Calif
＊General Radio Co 22 Baker Ave West Concord Mass
Geotechnical Corp 3401 Shiloh Rd Gar－ land Texas
Glasser Sieer：Corp 155 Oraton St New－ ark 4 N．J
Glasply Corp 70 Lyons I＇l Mount Vernon GY Gombos Inc Co John Webro Rd Clifton N．J
Goodrich Sponge Products B F Ris R F roon Dico Conic Div Gorham Mfg Co Gorham Electronics Drovidorham 7 Mig Co $: 33.3$ Adelaite Ave Providence ${ }^{2}$ R Bed－ ford Rd pleasantville NY
Granger Associates 966 Commercial $S$ Palo Alto Calif
Gray Mfg Co 16 Arhor St Hartford 1 Conn Gray Mfg Co 16 Arbor St Harti65 Remsen Ave Brooklyn 12 NY
Gruen Industries Inc／Electronic Products Div 9701 Reading Rd Cincinnati 15 Ohio Gulton Industries Inc 212 Durham Metuchen NJ
Hallamore Electronics Co ilf N Brook－ hurst Et Anaheim Calif
Hallicrafters Co 4401 W 5 th Ave Chicago 26111
Hanmarlund Mfg Co 460 W 3th St New
Hazeltine Electronics Div／Hazeltine Corb 5！－2．）Little Neck Pkwy Little Neck 62
Hermes Filectronics Co is Cambridge Pkwy Cambridge 42 Mass University $P$ bernes－sonic
＊Hermetic seal Transformer Co Special Froducts Div 292． Merrill Rd Dallas Texas
＊Hewlett－packard Co 2F－5 Page Mill Rd Palo Alt，Calif
－ilger \＆Watts Ltt 80 Shore Iad Port W゚ashingoton
＊High Valtage Engeg Corp Box as Bur－ lingeton Mass
－Hitemp Wires Co／Div simplex Wire \＆ Cable Co 1200 Shames Dr Westbury NY Hoffman Electronics Corp 3661 s Mill St
 19n N゙
Honeyw $\&-l l$ Controls Itd Vanderhoof Ave Toronto 17 Ont Camadi
＊Honston Fearless Corp 11 s01 W Olympic Rivol Los Angeles 64 Callf
Howaw Foundry Co 1700 N Kostner Ave Chicago 39 Ill
IIRI：Sifonce Inc Science Park State Park
Henna Hircraft Co－Fi Segundo Int＇！A／P 10 box 90426 Los Angeles 45 Calif
Hughes Aircraft Co Electronic Ary Div Fox ${ }^{2} 426$ Los Angeles 45 Calir
＊Hughes Components Div Bidg 20－Iioom 1：32 culver City Calif
Hughes semiconductor Div 500 Superior Are N．wport Beach Calif
＊Hycon Mfr Co 1030 S Arroyo Pkwy P＇asaderna Calif
Hy－Gain Antenna Products Co 1135 N 22urd \＆it lincoln Neh
Hyson $\operatorname{lifg}$ Co PO Box N Pasadena ralif
Illumitronic Fing g Co 680 E Taylor Ave Sumbvale Calif
Induslrial Development Fing＇g ．Issoc 7ann Pendurton Pk Indianapolis Ind
Industrial Frod－Danburs Tinudsen Div 33 F．Franklin Danbury Conn
Infrared Industries Inc 62 4 th Ave Wal－ （ham it Mass
Thfraral Stanfards Lab Div Infrared Ind fine llath Magnolia Ave Riverside Calif
 10th Ne New York 18 NY
Instruments for Industry Inc 101 New South Rd Hicksville Li NY
Insulating Fabricators Inc 150 Union Ave F Rutherford N．J
＊Intaslace Corp 135 Orange St floom－ field
Interconitinental Fiectronies Corp 15 s 1 Franklin Are Mineola 犬 Y
Int＇l Electronies Mfg Co and st Fat Grembwood Acres Annapolis Mr
＊ITT latbs 50 On Washington Ave Nutley
TTTH゙いeleral Div ITT Corp 10 Kinngsland par rititon NJ
Interstate Filectronics Corp inf $E$ Ver mont ．We Anaheim Calif
solantite Mfg Curp 337 Witren Ave
Stirling Circuit Breaker（o）di01 E Erie Ave Phila $3+$
ITEK Corp 1605 Trapelo lid Watham Mass
acols Instrument Co Bethesda If Itd
Jones Electronics Co Inc M C 185 N
Main St Bristol Conn
Jones Optical Works A D 2400 Massa－ chusetts Ave Cambridge 40 Mass
chasetts Ave Cambridge 0 Nass hrookfield III
Juad Wire Mfg Corp 22 Avenue A Turners Falls Mass 22 Avenie A Kahn \＆Co 885 Wells Rd Wethersfield Hartford Conn
Kaiser Aircraft \＆Electronics Div Kaiser lind PO Box 1828 Oakland 4 Calit
Kaiser Electronics lne 13 Monroe st 1 nion
＊Nay Electric Co Maple Ave rine Rrook
－Jownes Antenna Co Box 593 Lome Kay
Reariot Dix（ieneral Precision Inc 2.33 人 vinedo Ave l＇asadena Calif
＊Kearfott Div（ieneral Precision Inc $1+844$ Oxnard St Van Nuys Calif
＊Kearfott Div（ieneral Precision Inc 1150 MeBride Ave Little Falls N．J
Eelsey－Hayes Co 3600 Military Ave De－ troit 32 Mich
Eemtron Electron Products Ine if Prince Pl Newburynort Mass
＊Kennedy \＆Co 1$)$ s． 432 s Main St Co－
hasset Mass C／Div Bart Mfir 1：5 Man－
chester Pl Newark 4 NJ
＊Ken－Tron Corp 30：L，ynnway Lsun Mas：
＊enco Inc 131 ss sanford Ave Flushing
Kings Electronies（\％o Ine fo marbledale
 catro 3411
にulka Filectric ${ }^{\circ}$ orp $6: 3 \mathrm{~S}$ loultom st Mt Vermon NY
K－W Engineering Works N50 W＇G32s Pin Oak Court Buther Wis
＊Laboratory for lifectronice Ine－ 1 ：l lea－ com St Bostom 1 E Mass
 Chicago $1: 3111$
Lathlula Filectronies Corp 11－11 1：31：st St Coblege Point if N
 Van Nuss calif
Lance Antema Mfy Corp 1a：0－1N0： 1 st st San Fernanfor（alli
Land－Air me atty W Wilson Ave（lhicage ： 1111
＊Lalloint Industrites Inc उnis Wain St Ruckville comn
＊lavoie Labs Inc Matawan－Frechold Ra Morganville N．
Leach \＆Garner（ $\because$ Industrial bis Leach \＆Garner Bidg Attlehoro Mass
Larar Inc 3171 S lundy Dr ※́stuta Monica

Leitch Eng＇g（orb 326 Lincoln St Man－

Lel hine ：3x onk st Copiague NY
＊$\quad$ ankurt Electrice rosub sianeral Tele phone \＆Fileroronics 110 Gobnty Ra San Carlos（＇alif
＊Lenz Fillectric Alfg Co 1751 N Western Are Chicago ti 11
Levinthal Peleorironic Products Inc 8180 Hanover St lalo Alto Calir
＊Lewis Eng＇g（ 0 ，：3！Church St Niaga tucli Conn
Librascope Dir Gemeral Precision lne sus Western Ave（ilendale 1 （alif

Ling lilectronics Inc $9: 337$ ．Jeffersom Bive Culver City Calii
Ling Systens luc 11949 Vost it $\mathcal{N}$ Holly wowd Calif
Litton Industries Fibetron Tube Div gbu Industrial lid sim（＇arlos calif
Litton Trdustries Maryland bic foui Cab vert Rd College lark Md
＊Locrbheed Flectronics Co $\mathrm{T}^{*}$ S Toute 22 plaintield N．J
Loewy－Hybrobress Div Haldwin－I．ina ITamilton Corp 111 bth Ave New York $\stackrel{3}{3}$
＊Loral Electronics Corp 825 Bronx River Awe New York ig N゙Y Luhrs \＆Co（＇It 296 Hudson St Hacken－ sumbir i：ngineurs Inc $1432 \times$ Carlisle st Mnmar 21 Penma
MoMilatan Industrial Corp hownsville Ave Tpswich Mass


Madigan Corp 200 Stonelinge Lane Carle liace NY
＊Magnavox Corp 2131 Inetır Rd Ft Wayne Ind
＊Magnesium Products of Milwaukee Inc fio N Plankinton Are Milwaukee ．Wis Magnetic Research Corp 3160 W El Se gundo Biva Haw thorne eati
＊Nagnetic Shield Division Pertection Mica
Co 1322 N Jiston Ave（＇hicago 22 Ill
Mallory \＆Co Inc $P \mathbf{R}+2 \boldsymbol{S}$ Gray St In dianapolis 6 Ind
Mallory \＆Co Inc 3029 W Washington St Indianapolis ti lnd
＊Manson Laboratories luc ：375 Fairfield Ave stamford Conn
wareh Associates 145 Cortland st Linden－ hurst ${ }^{+1}$
Narconi Instruments Lid 111 Cedar Lane linglewood $\times$ J
Marconi Wireless Telegraph Co Led 750
3rd Ave New York ${ }^{17}$ NY $\quad$ Fargo Ave
＊Mark Products Co 543y Fargo Ave Nikokie Ill
Marquardt Corp Pomona Div $2 \pi 09$ N fiarey Ave l＇omona＇alif 1300 Bond St Master Mubile Nounts lne 1306 Bond St Los Angeles i5 Calii
Mathis Co if tidot S Oak Park Ave Chicago ：88 111
＊Maxson Corn W $1+400$ W 34th St New York N
Measurement：Mçraw－Wdison Inc Inter－ state Id l3omion
Measurements Dif Xedraw－IEdison Box 1 su Boonton N．J
Mechanical Enssraving Co Inc 10 Van Cort landt Ave New York 68 NV
Mechanical 1＇rombets Inc 1894 River St Jackson Mich
mectron Co lifi Ridge Ave North latu－ $\mathrm{fjeld} \times \mathrm{J}$
＊Jelabs De．jn MI 3800 Hillview Ave lalo Alto Calif
＊Melpar lur special Products Dept 3200 Arlington livid Falls（＇hureh Va
＊Henlo l＇ark bing＇g 711 Hanaiton Ave Menlo j＂ark Calif
＊Meridian Melaifraft Inc sa：a \＆Niller growe 10 F Whittier（alif
 Lyons Auc lrvington ※．J．
 tham 5．Jass
＊Metavae Inc fin－68 1 cond st folushing 58 ジす
＊Metcom lnc ili LaFayette sit salem Mass
＊Mrtropulitiar Telecominumic．iners Ames

Minacraft lrombets Inc int Mefarter Hwy Newark－バ．।
＊Mico lnstrimornt（＇a sa Trowbridge St （＂ambridge ：is Mass

 ingston ㅅ．．
Microphase（＇orp）Tus 11 lid Greenwich Conn
＊Microtech Im＂ 1 to Miblate Rd Cheshire Conn
＊Microwave Associates Tuc South Ave Burlington Mass
＊Microwave chomicals Latmratory Inc $2 \mathbb{S}$ Seventh Ave 火゙せい Y゙ork 1 NV
＊Nlicroware（ $o m m o n e n t s$ Ibylestown Pa
＊Nicrowavi forelonment lialss 42 Broad it Balbom l＇ark Wellesley bi Mass
Microwave Fillectronices（orn 1061 Trans bort St l＇alo Alto Calir
Microwava rube Div linghes Aircraf （10 $1110:{ }^{\circ}$ Angat Ave Ias Angeles 4 ！ （＇alif
Miller Associates PO Bux ：ilig Lakeville
linn－Honevwell Regulator ro Arronall
tical Dic ghon Rillgw：Ave Minme apolis 13 Minn
Miratel inc 1080 Dionne st St Paul 13 Minn
Missiler Systems Cory 11049 Vose st North Uollyworl Calif
issilemico luc TO Bos 71 g Nellowrme 1＊la
Iissourj litsedrola Laboratories Ine $210 n$ Tacust st st l，rutis on Mo

Huntincton lin

colo
onitor Systoms Inc Fiort Washinctor I enma
Ionrovia Aviation Corp sol［iosal Cak BIud l＇asadena Calif
loran metrument Corb 170 FA Orumer
Grove Fblid lasadena calif
Motorola Commanications \＆lidectronics Ind 4501 W Augustat Wlid ©hicago $\overline{6} 1$ Il fotorolat lie tol 111
Iotorola Tne $1 \pm 00 \mathrm{~N}$ Cictorn Ave Chicage
Iullard Fquipment Lid Torrington I London WC 1 Fnglatrd
fultronies The Box $15: 39$ d130 Washington
Blvel savasota lola
Varda Microwave Corp $1: 8-11 ; 0$ Herrick Ral Minenla N゙さ

## 1961 Directory of Microwave Manufacturers（cont．）

＊Nat＇l Beryllia Corp 1st Ave Haskell NJ ＊Nat＇l Beryllia Corp $4 \overline{9} 01$ Dell Ave N Bergen NJ

Malden Compa
New London lnstrument co lne 82 Union St New London Conn land 13 Ohio
＊Nichols Products Co $32 \overline{5}$ W Main St Moorestown NJ NJE Corp 20 Boright Ave Kenilworth N．J ＊Norden Div United Aircraft Corp 58 Commerce Rd Stamford Conn Northeast Electronics Corn Airport Ri Concord NH
＊Northeast scientiflc Corp 30 Wetherbee St E Acton Mass
ortheastern Eng＇g Inc 25 S Bedtord st Manchester NH

N R K Mig \＆Eug＇g Co 4601 W Addison St Chicago 41 Ill

Pl Denville NJ of America 2 Richwood ＊Okonite Co 220 Passaic St I＇assaic NJ Olympic Radin \＆TV Div Siegler Corly ＊Omega Lalss Inc Haverhill St Rowley Mass
Pacific Universal Prorlucts Corp 168 Packard Ae Pasadena 8 Calif

Olympic Blivd Los Angeles 123.3 .3 W ＊Panoramic Radio Products 520 N Fulton Ave Mt Vernon N1
Panseal Inc 10 Main St Little Ferry NJ $\star$ Parker Seal Co Div J＇arker－Hamitin Corp 1056 J Jefferson Plvd Culver City Paul \＆
Phila 40 eekman 1801 W Courtland St Pearce Simpson Inc 2295 N 14 th St Miami 35 Fla
Peer Inc 1 rrofessional Flectronic Eng＂$p$ Res Inc 2024 Shelby St Dallas 1：Texas Perfection Mica Co 1322 N Elston Ave Chicago 22 Ill
 Pescliel

Paterson N
Paterson NJ Je Nowners Rt．216 ＊Phalo Plastic Corp 530 Eoston Tpk ＊Shrewsbury Mass

Phelps Dodge Copper Products Corn 300 Park Ave New York 22 NY
lhiko Corp Tioga \＆C Sts Phila 24 1enna Philco Corp Gel Group 4700 Wissahickon Phileo Phila 44 Penna
Ave Phila ty \＆I Div 4 ：00 Wissahickon Ave Phila 44 Penna

5 th St Phila 40 Penna Pioneer Phdiastries Penna

Sioux City Iowa Inc 2700 Hawkeye Dr Sioux City Iowa
＊itometer Log Corp 237 LaFayette St
New York 12 NY ＊Plastoid Corp Ha Plastoid Corp Hamburg N．J Polarad Electronics Corn $43-20$ 3tth st l＇RD Electronics Inc 202 Tillary St Brooklyn 1 NY

Rdtronic Research Inc 732 i Westmore Pter Bumfiel
Potter \＆Brumfield
Princeton Ind $\mathbf{1 2 0 0}$ N：Brondway Power Designs
mond Hill Inc 89－25 130th St Rich－ Power Supplies In
land 111 Onc 1005 Olise st High－ Pratt Alb waukee 17 Wis
Precision Tube Co Church Pd \＆Wise hickon Ave North Wales Penna
＊Premier Instrument Corp 3：3 N゙ew Broad Press Wireless Labs Inc 25 Prospect Pl W Newton 65 Mass
＊Prodelin Inc 30：Bergen Ave ľearny NJ Production Research Corp Thornwood NY Pye Canada Lidd 82 Northline Jid Toronto 16 Ont Canada
ye Telecommunications Lti Newmarket Rd Camhridge England St Jirookiyn 19 Q OS Corp Bronx Blvd at 216 th st New York 67 NY
Dr Syracuse 11 Ny PO Box 38 Pickard Radar Measurements
Hicksville LI NY

## Mass

Radiation Inc Melbourne Fla
Radto Activities Inc 119 Dawsom Ave Raonton N.
dado City Products Co Centre \＆Glen－ Radio Corp of America Broadcast \＆TV Div Somerville NJ

Radio Corp of America Communications Products Dept Bldg 1－5 Front \＆Cooper Sts Caniden N．J
Radio Corp of America Commercial Elec ronic Products Front \＆Cooper Sts Camden NJ
Radio Corp of America Defense Electronic Pro Bldg 15－2 Front \＆Cooper sts Cam－ den NJ
Radio Corp of America Electron Tube Div Harrison N J
＊Radio Eng＇g Labs Inc 29－01 Borden Ave Long Island City 1 NY
8000 Woodey Northron Aircraft Inc soo woodey ave ran Nuys Calif Ramage \＆Miller Inc 3221 Florida Ave Richmond Calit corp PO Box sto ver 10 Colo
Rauland－Borg Corp 3535 W Addison st Chicago 18 Ill
Raytheon Mfg Co Maynard Labs Thomp－ son St Maynard Mass
Raytheon Mfg Co 1415 Boston \＆Provi－ dence Tpk Norwood Mass
Raytheon Co Conmercial Equipment liv 100 River St Waltham 54 Mass
＊Raytheon Co Microwave \＆Power Tube Div Foundry Ave Waltham 54 Mass
Raytheon Co 100 River $S t$ Walthan 54
Reed \＆Reese Retron Corp 717 N Lake Ave Pasadena Calif
Reeves Instrument Corn Fast Gate Blva Roosevelt Field Garden City NY emanco Inc 1805 Colorado Santa Monica Calif
Renfrew Electric Co Ltd 349 Carlaw Ave Toronto 9 Ont Canada
Republic Aviation Corp Famingdale 1，I NY
＊Resdel Eng＇g Corp 330 S Fair Oaks Ave Pasadena Calif
＊Resitron Labs Inc 2908 Nebraska Ave Santa Monica Calif PO Box $2346-Z \mathrm{ZF}$ Richmond Cali
＊R F Products Div Amphenol－Borg Elec－ tronics Corp 33 E Franklin Danbury Conn
Rheen Mfg Co－Electronics Div 3777 In－ dustry Ave Rivera Calif
Rich Electronics Inc 212 NW 8th Ave Miami 36 Fla
＊Rockbestos Wire \＆Cable Div Cerro de Pasco Corp 28. Conn
Roflan Co Topsfield Mass
Rogers Corp Windham County Irogers Conn
＊Roston Corp 5660 59th St Maspeth 78 LI NY
Royal Communications Systems 4501 I＇ros－ pect Ave Cleveland ：Ohio
$R$ S Electronic Corp PO Box 368 Sta A Palo Alto Calif
＊Sage Laboratories 3 Huron Drive Jast Natick Industrial Park Natick Mass
Sanders Associates 95 Canal St Nashua NH
Saratoga Industries Congress \＆Ballston Aves Saratoga Springs NY
＊Sarkes Tarzian Inc East Hillside Dr Bloomington Ind
＊Saxton Products Inc 4320 Park Ave New York NY
＊Scatter－Comniunication PO Box 551 Leesburg Va
＊Schaevitz Eng＇g PO Box 505 Camden NJ
Scientific－Atlantic Inc 2162 Piedmont Rd NE Atlanta 9 Ga
Servo Corp of America 111 New South Rd Hicksville NY
Servomechanisnas Inc Los Angeles Div 12500 Aviation Blvd Hawthorne Calif ＊SFD Laboratories Inc Union NJ
Shalleross Mfg Co Preston St Selma NC
Shell Electronic Mfg Corp 112 State St Westhury NY
Short Bros \＆Harland Lttl Castlereagh Belfast Northern Ireland
＊Sierra Electronic Corp Div Philco Corp 3885 Bohannon Dr Menlo Park（alif Sierra Electronics Corp 250 E 3rd St Mount Vernon NY
＊Silicone Insulation Inc．Seabury Ave \＆ Butler Pl Bronx 61 NY
Sivers Lab Kristallvagen 18 Hagersten Sweden
Skiatron Electronics \＆TV Corp 180 Varick St New York 14 NY
Solartron Electronic Group Ltd Queens Rd Thames Ditton Surrey England
＊Specialty Automatic Machine Corp 80 Cambridge St Burlington Mass
＊Specialty Electronics Development Corp 115 Eileen Way Syosset NY
＊Spectralab Inst Co 608 Fig Ave Mon－

Sperry Farragut Co Div Sperry land Corp Farragut Rd Bristol Tenn
Sperry Electronic Tuhe DiN spery Rand Corp PO Box 652 Gainesville Fla
－Sperry Gyroscope Co Air Arm Div Great Neck NY
Sperry Gyroscope Co Electronic Tube Div Great Neck NY
－Sperry Gyroscope Co Div suerry Rand Corp Great Neck NY
Sperry Gyroscone Co Marine Jiv Roose－ velt Field Mineola Ny
－Sperry Microwave Electrunics Co PO Box 1828 Clearwater Fla
Sperry Semiconductor Div suerry Rand Corp Wilson Corp South N゙orwaik Conn Spincraft Inc 4122 W State St Mllwaukee 8 Wis
＊Spinform Div Antenna Systems Inc 369 Lincoln st Hingham Mass
Stainless Inc 3 st North Wales Penna
Standard Electronics Farminglale N．J
Stewart lingineering Co $46 i^{7} 1 \mathrm{ain}$ Creel Rd santa Cruz Calif
＊Stewart Warner Electronics Div 1300 N Kostner Ave Chicago 51 IIt
Stoddart Aircraft Radio Co bibtt Santa Monica Blvd Hollywood ss＂alif＂
Stromberg－Carlson－San Diego $18: 5$ Han－ cock St Bnx 2449 San Dieg＂ 12 Calif
＊Stromberg－Carlson Div G上neral Dyn－ amics Corp 100 Carlson Ral fochester 3 NY
Stromberg－Carlson Div Gen Dynamics Corp 1400 N Goodman st Rucleester NY Suffolk Products Corp Woodbine \＆Scui－ der Ave Northport NY
Summit Industries Inc $210+\mathrm{W}$ Rusecrans Ave Gardena Calif
＊Sunnyvale Development Center sperry Gyroscope Co Div Sperry land Corp PO Box 697 Sunnyvale Calit
Sylvania Electric Product：Ine Special Tube Operations 500 Evelyn Ave Moun－ tain View Calif
＊Sylvania Electric Products lne 100 syl van Rd Woburn Mass
Sylvania Electric Products Ine Flectronic Systems Plant 175 Great Arrow Ave Buffalo 7 NY
＊Sylvania Electric Products Ine E：Brl st Williamsport Penna
＊Sylvania Flectronic System：Dir Syl vania Electric Products Inc bis 2nd Ave Waltham it Mass
Tamar Flectronics Inc 2045 W Rosecrans Ave Gardena Calif
Tapco Group Thompson Ramo Wooldridge
Inc 2355．Euclid Ave Cleveland 17 Ohis
Taurus Corp $\&$ Corvell St Lamlertville N．J
Tech Labs Bergen \＆Edsall Blval Palisades Park N．J
＊Teclinical Appliance Corp 1 Taco st PO Box 38 Sherburne N3＇
Technical Materiel Corp 700 Fenimore Rd echnical Materiel Corp 700 Fenimore Rd Mamaroneck NY
Technical Oil Tool Corp 105：N LaBrea Los Angeles ：38 Calif
＊Technicraft Div Electronic Specialty Co Thomaston Conn
Technfques Inc 40 Jay St Englewrod N．J
Telco Electronies Mfg Co 400 W Wyman St Rockford 111
Telcon Metals Telcon Works Manor Rnya Crawley Sussex England
Tele－Beam Industries Atlas Peak Rd Napa Calif
Telechrome Mfg Corp os Ranick in Amityville LI NY
＊＇Telecomputing Corp 915 N Citrus Ave Los Angeles Calif 20 Diller Ave Newton
Telecontrol Corp 20 Diller Ave Newton
Telectro Industries Corp $3.1-1 \mathrm{~s} 87 \mathrm{th}$ st Long Island City 1 NY
＊Tele－Dynamics Div American Bosch
Arma $50 n 0$ Parkside Ave Fhila ：31 Penna
Telerad Mrfg Corp 1440 Broadway New
Televiso Corp 1415 Golf Rd Les Plaines TII
Telewave Lahs Inc 43－20 34th St Lome Island City NY
＊Telonic Engineering Corp 753 Proalway
Telonic Industries Inc 60 N 1st Ave Beech Grove Ind
＊Telrex Labs Asbury Park NJ
Temen Aircraft Corp PO Box tis1 Dallas 22 Texas
Tenatronics Ltd 1011 Power Ave Cleve－ land 14 Ohio
Texas Instruments Inc／Apparatus Div ginoo Lenmon Ave Dallas ？Texas
＊Thermal Wire of America Keeler＇s Bay
South Herort
＊Thwing－Alhert Instrument Co ：3：51 Pul－ aski Ave Phila 44 Penna
＊Topatron Inc 942 E Ojai Ave Ojai Calif
Topp Industries Inc 8907 Wilshire Blvd
＊Torngren Co Caw
＊Torngren Co C W 236 Pearl St Somer－
ville 45 Mas
－Torotel
34 Mo
Mo
5512 E
110th St 34 Mo
＊Tower Construction Co 2700 Hawkeye
Dr Sioux City 2 Iowa

Trad Electronics Corp 1 bol Foirst Ave As－ bury Park N．J
＊Trak Microwate（orן sul，Trak Flec．



Transdyne Corp is Ahertson Ave dhort－ $\operatorname{son} \times{ }^{\circ}$
Transline paectronic fommmonication coo 304 NIt leasant Ave Newiark 4 N．
Transonic Ine sos lfith st Bakersfield Calit
＊TRCi Inc 2 Aerial Way Syonett ILI NY
Tri－Fy Tower Corp $127^{\circ}$ luyo St Tulare Calif
＊Tru－Commentor Corp 11 if Inion st Lynn Mas：
＊Turbo Maedine Co Lansiale Tenna
＊Ucinite（＇o $4 \overline{5} 9$ W゚atertown St Newton－ ville lio Mass
Underword Corp Canoga Div 150 Elgin Hwy l＇t W＇alton Beach Fla
Union Flectronjes \＆Wachine Corp 71 Broadway Wakefield Mass
United ，Mreraft Prombuts Inc 1116 Bo－ lander Are Inayton $x$（bhir．
 New Iork 13 N゙Y
＊Universal＇fransistor bronlucts Corp 36 Sylvester st W0esthury 1．I NY
Univox Corp 4301 W ．Fettetson Blvd Los Angeles Calif
＊Univox Corp 102 Warrell St New York 6 NH
＊Uniwave Inc 109 Marine St Farmingdale ＊United States Wire \＆Cable Corp Progress \＆Munroe sts I nion NJJ U S Testing Co 1415 I＇ark Ave Holoken


1961 Directory of Microwave Manufacturers（cont．）
＊Valur Filectronics Co 13214 Crenshaw Blvd（iandena ditlid
van Norman lndustries Inc boctronjes Van Norman lindustrics Inc jolectron
Div 1 si branite st Manchester NH
＊Varian Associates dill Hansen Waỵ I＇alo Alto＇alif
Vectron lne 1b1I Trajuelo Rd Wathath itf
 St Wakefield Dass
＊Virginia lolectronius Co 5211 River Rd
 ＊Whaline［ne 3E S St Clair St ］hyton－ Ohio
Walthan Electronius Corp ij！Nain st Walthath Mass
Ward I＇ronluets Corp lidson St Amsterolam Warien Mfe Co Newtown las lituletom Warren Mfe Co Newtown ind ditienom
Mass N Waveguide Ine 176 b lacentia Consta
 ＊Waveline Ine l＇O liox ils W Citbwel NJ
Vave／Iarticle（＊orp I’O Box＂．te denlo Park Calif
＊Wasne Kerr Corp 1 fi3：Lace St lhila 3 Penna
Webcor Inc－Electronirs Div 816 N Kedzie Webster Mfg 317 Roebling Ỉs $S$ San Webster Mifg Calif
＊W＇einschel Eng＇g 10.503 Metropolitan Ave Ktnsington Md
＊Wells Industries Corp 6880＇Iroost Ave $\therefore$ lloblyword citlif Wextbury N 「 Werstoury A
 ＊Nestgat
lall Ine PO Box $1 ; 0$ Yellow springs Ohin
Wratinghousi Electric Co Div Air Arms Div P（JBox 74 latimore Md Box as Finnira Ny
Fiostinthouse lilectric Corp ？Gateway Center l＇f Hox sロ7x fittsburgh ？ Penna
Vestrex Comb liv Litton fmlustries 111 Sth Ave New Vork 11 NV
 cial St E Werymonth s！Mass
＊White \＆Son dinnos L．：if Vornna Ar． Newark＋ぶ，
＊Wiley Fiectronics Co Low salsare lutus－ tries 204：IV Chervj D．ह＇lmenix Ariz ＊Wincharmer Corp E F th \＆Livision St sioux City 2 Iowra
Winder Aircraft Corp Fla PO 8 Dunnellan W．ria Equipment Corp Lukach Court Milltown NJ
Young Spring \＆Wire Co Gonset Div Sol s Main st Burbank Calif
＊Cenith Plastics Co Box 91 rardena Calif
＊Kenith Radio Corp 6001 W Dickens Are Chicago 39 Ill

## Products \＆Manufacturers

## Listing microwave firms and the specific products they manufacture



## Sperry Gyroscope Co Div Sperry Rand

Corp Microwave lelectronics Co
Sylvania Electronic systems（Waltham） 5 Telecomputing Corp
Texas Instruments Incorporated／ Apparatus Div
TRG Inc
$4-\pi$
$3-4-6$
Varian Associates
Weinchel Fingineering
2－6
1－4
Westinghouse ir Inc （Baltimore）

2－3－4－5－6
Zenith Radio Corp

## ANTENNAS \＆ACCESS．

Antennas，bedspring ．．．．．．．．．．．．．．．．．．．．．．． 1
Antennas，mounts
Antennas，parabolic
Antennas，radar
Antennas，scatter propagation
Horns，microwave
Joints，rotating
Repeaters，passive

ACF Electronios
Adams－Russell Co Ine
$1-2-3-4-5-6-7-9$
Aeronca Mfg Corp／Aerospace Div
Ainslie Corp 1－2－3－i－
Aircom Inc
$1-2-3-6-6-6-7$
Aircraft Armaments Inc
Airtec Inc
Airtron Div Litton Industries
ies
1－6－7
American Electronic Laboratorios Inc $6-7$
Andrew California Corp $-3-4-5-6-S-3$
Andrew Corp $\quad 2-3-4-\overline{-6}-6$
Antenna \＆Radome lesearel
Associates
Automation Dynamics Corp
Bart Mfer Corp
Bellaire Flectronic＇s Inc
Bel\％Industries Inc．
Bendix Corp（Detroit）
Plaine Flectroneties Inc
Birdair Structures Inc
Blaw－Knox ${ }^{\circ}$
Bogart Mís $1^{\prime \prime \prime \mu}$

Broulss \＆Ferkins Inc
Cascade Ileseareh Int Lawis of
Kaufman $\operatorname{Fl}$ levoronics（orp
CG Electronics Corp
Cha Associates
C W S Wavegnide corp
DeAlornay Ibonardi
Diamond Antemma \＆Nicruware
Corp $\because \because-\frac{1}{-j-\vec{j}-7-\infty}$

Jorne d Margolin Inc
Denctronics \＆Orinance Div／Aven
Corp
$3-4-1 ;$
$t-1 i$
$8-!$
lidectronic Sperialty Co
wlectron－Radar loducta
Electron－Radar I＇roduct：
Jim Mff Co Inc
E－Z Way Towers Inc
FxR Inc
Gabriel Electronics Div liabritel

GB Electronics Corp $\quad 2-8-4-5-6-\frac{1}{6}$
General Communicition Co
General Electric Fo／LMEI 3－4－a－t
Gombos Co Inc John
Houston Fearless（orp $\because-8-4-8-8$
Hughes Compontents Div
Hycon Mfg Co
I－T－E Circuit Breaker Co $1-\ddot{-2}-8-4-5-1 i-7-4$
J＇ITL Laboratorjes（ 500 Wiaslington Ave）
Kearfott Div（ieneral Prueisfom
Ine（Van Nuys）
Iennedy \＆Co i）
İent Corp F C
Lieco Inc
Lockheed Electronice Co
MeMillan Industrial Corp
Arcmillan Laboratory Inc
Magnavox Ci
Magnesium Iroducts of Milwibliee Ing
Mark Products Inc $\quad \because-3-\pi-6-8$
Maxson Corp W J，
Melpar Ine（spectial Promurts
Dept
Meridian Metalcraft Inc $\quad \begin{aligned}-4-1-9 \\ 4-6\end{aligned}$
$3-4-4-7-9$
Microflect Co Inc
Microtech Inc
Microwave Associates Inc
Microwave Components
Microwave Development Liabs
Narda Microwave Corp
Nat＇l Beryllia Corp（Haskell）
Nat＇l Beryllia Corp（N Ferogen）
Nichols Products Co
Norden Div United Aircratit 3－4－6－7－！
$\begin{array}{ll}\text { NRK Mfg\＆Eng＇g Co } & \text { di－7 } \\ \text { Polarad Electronics Corp } \\ 3-6\end{array}$
Prenier Instrument Co
4－5－6

All merchandise of current manufacture, suitable for laboratory experiments and training aids. Complete transmitter and receiver parts. All units are constructed of standard RG-52/U brass waveguide and employ UG/39 type flanges unless otherwise stated. All units are nickel plated
\#501 Wave Guide type RG52 equipped with 2 type UG 39 flanges, 501 C has two chokes type UG 40, and 501 CF has one flange and one choke. Standard length $4^{\prime \prime}$, can also be furnished in full inches from' 2 " to 20 " or longer $2^{\prime \prime}$ to $4^{\prime \prime}$
\#502 Wave Guide to Coax Adaptor type flange two to Coax Adaptor has UG39 type flange. two inches of RG 52 type guide and a UG 23 connector which will mate with UG 21 cable connector as used with RG 8,9 or 10 type coax.
$=503$ Klystron Tube Mount for 723A'B or 2 K 25 Klystrons. Equipped with 3DB pad. 1N23 crystal. UG 88 connector for crystal current. RG 52 Wave Guide and UG 39 type ilange. Power cable equipped with Mip8 connector to connect with 510 power supply. This Klystron tube mount may be used as local oscillator for micro wave receiver, transmitter. signal generator, spectrum analyzer and test oscillator. Klystron not supplied. Klystron shell is at ground potential using 510 power supply ............. $\$ 24.00$ $=503 \mathrm{~A}$ Klystron Tube Mount same as 503 less pad and crystal mount ................... \$15.00 $\# 504$ Frequency Meter consists of $4^{\prime \prime}$ length of RG 52 type wave guide with UG 39 input and output flanges. The $l^{\prime \prime}$ micrometer head ly 8.2 KMC to 10 KMC . The coupling and permit satisfactory absorption indications of permit satistactory absorption indications of resonance in the tuning band ......... $\$ 30.00$ $=505$ Slotted Line consists of a $4^{\prime \prime}$ length of slotted RG 52 equipped with UG 39 input and output flanges. The sliding probe, adjustable for depth and 5 CM travel, is equipped with a IN 23 crystal terminated in to a UG 88 connector and 200 ohm shunt resistance. With a suitable amplifier as supplied in the 510 power supply, wave length and VSWR can be indicated … ...... $\$ 30.00$ \#506 Flap Attenuator adjustable from 0 to over 20 DB at power levels under 1 watt. Consists of $4^{\prime \prime}$ length of RG 52 equipped with 2 type UG 39 flanges $廿 507$ Wave Guide Termination consists of 2.5 inches of RG 52 guide and a UG 39 input flange. Will absorb power at levels less than 1 watt. The strip of absorbing material is easily removed ......................... $\$ 5.40$ $=508$ Thermister Mount consists of 1.75 tth ength of RG 52 guide with a UG 39 input range. Thermister balances, with no RF power input. at 600 to 1000 ohms and will
indicate down to 1 MW RF with a 100 micro ampere bridge balance meter. High power levels may be indicated using fixed standard attenuators ahead of the thermis ter. D. C. bridge output is through a UG 88 connector to DC power and bridge balance meter in type 510 Power Supply..... $\$ 18.00$ \#509 Horn Antenna consists of $3^{\prime \prime}$ length of RG 58 guide flared at one end for low gain transmission or reception. Output is through coax connector type UG $23 \quad \$ 9.00$ \#509-F Horn Antenna with flange input $\$ 9.00$ \#510 Power Supply furnishes fixed regu tated cavity potential for 723 A 8 or 2 K 25 Klystrons (cavity grounded) adjustable and Klystrons (cavity grounded) adjustable and
regulated repeller voltage, unregulated filament and means to insert signal for repeller modulation. sensitive meter may be switched from tube mount crystal current to Thermistor bridge output and to vSWR amplifier output. Regulated power for thermister bridge and VSWR amplifier also provided for. Operates from 110 to 130 volt $A C 1060 \mathrm{C}$ 's power, using less than 50 watts.
$\$ 120.00$ \#511 Shunt Tee consists of $3^{\prime \prime}$ length of RG 52 guide equipped with three UG 39 flanges
$\$ 12.00$
$\# 512$ Directional Coupler consists of $4^{\prime \prime}$ length of RG52 guide equipped with UG 39 flanges. Attenuation approximately 20 DB . Directional output is terminated in UG 23 connector.

UG 23
$\$ 15.00$
$=513$ Fixed Attenuator is the same as 506 except fixed pad is used. ............... $\$ 13.50$ \#514 R.F. Cable consists of 2 feet of RG 8 type coax equipped with two UG 21 cable connectors
$\$ 6.00$ \#5 515 Video Cable consists of 2 feet of RG 58 cable equipped with two UG 89 cable connectors
$\$ 4.50$
$\Rightarrow 516$ Series Tee consists of $3^{\prime \prime}$ lengths of RG 52 guide terminated with 3 type UG 39 flanges. ............................................... $\$ 12.00$ \#517 Tuning Probe is the same as 505 except that probe is grounded and crystal is not required
$\# 518$ Crystal Mount consists of 2 inch length of RG 52 equipped with 2 UG 39 Flanges and IN23 crystal terminated with UG 88 connector. Suitable for R.F. detection or mixer applications as required for heterodyne reception and spectrum analyzers.


## "X" BAND MICROWAVE COMPONENTS 8.7 to 9.3 KMC



\#512

\#506

$\# 508$


Prodelin Inc
Reeves Instrument Corp Rostun Corp
$1-2-3-4-5-6-8$
$2-7$ Rostun Corp
Sage Labratories Inc Scatter Communication Silicon Iusulation Inc
Specialty jolectronics Develnoment
Corr
Sperry Liyroscope Co Div Sperry Rand Sperry
Sperry Microwave Filectronis＇s Co \＆－b－7
Spinfornn I）iv Anterna systents
IIll $1-2-3-4-\boldsymbol{- 1}-\mathrm{i}-\mathrm{T}-\mathrm{N}-4$
Sylvaniat Electronic Systents （V゙altham）

Technioraft Liv lilectronio sumedalty
Co
Telecombuting Corp
Telres lachs
＂lexats lnstruments Incorpmonted／
Aphatallas livision
Torngren co lix
Transed lrondurts Inc
Trec lime
$-\because-7-4-5-6-7-8$
furlow N：は
3－4－6i


WVaveline Ine
Waretink fonse Air Arm for
（fathimbore）fames 1
$2-: \because-1-6-4$
Whit
Wrnit lantiox（a）

COMPONENTS

Absorbers，microwave	
Attenuators	2
Cavities	
Circulators，ferrite	4
Crystal mounts	5
Discriminators	6
Duplexers	7
Filters ．	8
Filters，waveguide	9
Hybrid junctions	0
Isolators	
Mixers	
Modulators，ferrite	3
Modulators，phase	14
Modulators，magnetic	5
Modulators，pulse	6
Multiplexers	17
Phasers	18
Probes	9
Power supplies，microwave	20
Power supplies，radar ．	1
R－F Heads	22
Shutter	23
Sliding loads	24
Terminations	25
Tuners	26
Tuners，klystron	27

 $13-14-15-16-17-18-19-20-21-22-25-26-2$ Adames－lnussell Co lne
Arler Fectronias ind

 $13-20-29-24-25-26-2$.
 Indいs！ries｜o－11－12－1：－11－15－14－17－18－ Altume 1 l g （＇口
 llu
 Andraw（＇alifurnia Corp Indreve（ory
Antronna \＆Jiadome liestatrel
（ 1 （1） AHtCHIASVixion Juc D！川lied Fadiation Corp $16 i-18-19$
 A $1:$ F＊frodurds Ine（River lourest）

Avionics Div IGill Aerosystoms Cu Aviondes Div
Batird－Alomic lne
Batird－shomber
Sart Mig Corp）
Bellatiru bectronics Inc
Belock Jnstrumment Corp
Bel\％Judustrias Inc
Rendix Corp（Tuetroit）
t）$: \therefore-4-5-6-7-8-12-10$ $11-12-1: 3-15-1+17-18=$ $1-12-13-1.3-1+17-18=$
$1!-20-21-20-25-20-27$
Hemdix（arp（Ritontown） $1-2-5-8-2-19$ Bugatt Mfy Corv

1－18－19－2
Brigue Electric Mify Co
20－21

1961 Directory of Microwave Manufacturers（cont．）
 Bruno－New Vork Industries Corp Ifudelman Eloctronies Corl
surnil Corb／ Cimadian Marcuni

Han Elecetronice C＇orp 2－4－11－1：－14 （＂aswell Eleetronies Corp $1-9-1-11=$
（＇A likectrentes Corp
＇＇hanmallos l＊halronics（＇or＇）
（＇allins Fitalio C＇o／Western J）

（＊ontrol liverotronies
2－3－4－5－7－x－！ 11
（＇）lne
12－11－1
（＇orning E＊lotronic Components


momomay bonlardi $\quad$ 12－1！1－04－45－20
IDiamond Antema \＆Nicrowive 2－3－5－7－

bom－l an Jolectronics Ine $1-3-2$ ：
Filur ton（icrmeshausen \＆Grier
Inc（Boston） $2-14-\underline{0} 0-21$
Flectro Inmoulste Labluc－1－2－2
bilectronies de Ordmance l）iv／Aveo


$\therefore$ 据民ron－Iadar Products $\because 1 m$ Mfg Co Inc．
limurson ex（bming Ine
limpire Devices Froducts Corp 5－12－22
Filtron（＇or Itre
－rufuency Slandands 3－fi－7－8－9－10－12－17－20 ドNI Ine

5－11－12－14－1ti－1！
ils Fitedmonies Corp
ioneral Cable Corp
＇eneral（ommmanicaltion Co
：coneral Witurrio Co／Jower Tube Inept

4－16－17－20－21－22－2
ieneral liferetric Co Ittd of Fingland $3-\overline{3}-7$ Ientral Xafonetices Inc
ionteral Jatelio Co
$2-3-ラ-\mathrm{T}-\mathrm{S}-4$


special l＇rombets live 15－20－21


 lurhes commonents Jji

1－4－11－1：
Haveon llfg（a）
$+-\therefore-7-x-10-11$

 （bom TV： Jumes Elertronics Co Inr M C

 $13-1:-1+1-22-23-3$
小゙alls）
N゙enl Corp jo（ 3－10
Lathratory fur foladromics
Ine／Instrumatht Ili
latloint Jnalnstries Jna $\qquad$ 2－1－1：3－14－1 $\begin{array}{r}6-1 \%\end{array}$ biece Jnc －ッ－－！！－111－12－1

lollrs d（’い（：H
｜1－1；i－1｜
Alc．alillan lndusirial（＇orp
Ne．Millan 1 ansmratory Ine


Daxson Corp 1 IV I．
－115－17－20－21－2！
Mrelatis
Xeljua lnc aspecial

$\pi-8-4-111-11017$
$211-01$
Meridian Metaloraft lac
$12-1 N-2-2+-2.0$
$1-2-2$
levenm lne $\quad 3-7-12$
Wetropolitam－7＂elecommumioators $\quad 8-11$－




Wierownive（＇hemicals
Latboratory Inc $\quad 2-8-1!+-20-2.0-2$


Miriblel luc


Natjomal ：ompants lme
$-\frac{3}{11}$
Nichors l＇rowlacets t＇o $\quad \mathrm{B}=1: 1$




11．c $16-1$ ！ $1-2: 3-3+-2.1-24$
J＇acific liniversal frombets（＇ul｜）
I＇H11mater latig Cor＇p
$3-12$



Jradelin！！w


biv（ 1001 Jivit St）



Filectrontis Corr
较


Sierra dileotronic（orp／Div
Philvo（ory
speciatly F：lectronios Developmotat
（いい）
Spertralaily Instromernts

－－＋＋－－－ $11111-1$－$-1:$

stewart－Wamer Jilectronics
stodelart Aircratt l：adio Co In
Sylvania l：lectric Iroducts lu

（Willialmsport）
sylvania riectronic system：
（Waltham）
Technioraft Div Electronic
Specialty Co
－$-\therefore-5-10-10$
Teleconnuting Curp

Telonic mingeering Cor
fexas Jnstrunterts Incorporaleal
Apharalus Div
Torntel live
Trak Nlicrowave Corp Sul）
Trak lislectroniosco
Transero l＇roducts Inc
TlRG Ithe
$1+-15-1+i-17-19-20-3 *-21-25-21$ ＂ru－Consuertor Crir）
＇lurbo Natuhine 「＇o
「einitr Cn

$\because 1-シ 2-38-35$
lniwave lne


W゙：
Wavelinc Ine

$12-10-2-21-25-26$
Weinsohtel Finginereing
－－5－2 $5-26$
Wells Imbustries Corl
Westinnlomse Air Arm Triv


Zenitll litdin（oom）

TUBES，MICROWAYE
\＆SEMICONDUCTORS

Amplitron ATR	2
Backward wave	
Diodes，mixer	
Diodes，varactor	
Klystron	
Klystron，reflex	
Lighthouse tubes	8
Magnetron	
TR	10
Traveling wave	1
Triodes，planar	2
Parametric Amplifiers， electron beam	3
Airtron Dix Litton Industite	－${ }^{4}$
Amperex lilectronic Corp	－9－11－12
Bemdix（orp（letroit）	$3-1-6-7-11-12$
Bendix Curp（featontown）	3－6－7－11

## 1961 Directory of Microwave Manufacturers（cont．）

Homac Lals Inc
Caswell Elactronicer
Caswell Electronies Corp
Corp of ．Imerica Mfrs Div Ntelear
Cont
Corp ot limerica Camera \＆Instrumunt Corp

## －10－12

Ddgerton Germeshausen \＆Grier
Ine（Brston）
Gitel－NcCullouth Inc
$3-6-7-1-11$－11
General Elerotric Co／I＇ower Tube


1TT Laboratories
LaPoint Industries Ave）3－4－5－11－12
LaPoint Industries Inc $1-4-5-4$

2－7－9－10
$\begin{array}{lr}\text { Nicrowave Associates Inc } & 4-5-9-10-11 \\ \text { Microwave Electronics Corp }\end{array}$
Microwave Tube Diven Corp
Aircrafe Tube Inv Hughes
Polarad Eil＋etrenices corp
Polarad Electrenics（ourp
Raytheo
Raytheon C＂o／Commercial Equipment
Div（100 River st） $1-3-6-7-9-11$
Raytheon Co $\mathrm{N} \& \mathrm{~F}$ T Div
（Foundry Ave，
Resitrondry Ave，
1－：3－6－7－4－11
Resitron Lathoratories Inc
111－12
Sperry Givroscope Co Div Sperry Rand Cory
Stewart Engineering Co
Sylvania Electric Pronluels Inc
（Mt Viev）

Sylvania Electric Prombets（Woburn）t－o
Sylvania Electric I rombets Inc
（Villiamsport）
$-3-9-10-12$
Texas Instruments Incorporated／
Apparatu：Division
Trinite Co
5
11
Varian Assmobates
Tareline Int

Zenith Radio Comp

## TEST EQUIPMENT，MICROWAVE



ACF Electrunics Aeronca Mfg Crip Aerospace 6－11－12－14－16 Div
Aircom Inc
3－4－5－ 7 7－13－14
tireraft Armaments Inc Aircraft Radio Corp
Airtec Inc
13－11
Airtron Inc Div Litton
Inctustries
fi－S－！ $\mathrm{l}-1: \mathrm{B}-1 \mathrm{f}-17$
Alfred Electronias
8－9－11－17 Andrew Califurnia Conn Antenna Radome lieseareh
Associates
Arma Div／American Buwh Corl
Autonation Dynamies Corp
Baird－Atomic Ine
Bellaire Electronirs Inc
Belock Instrument Gur Bendix Corp（Detroit）

4－7 1：1：－12．
$4-7-8-9-11-12$
Bruno－New York Industries Corp Bulova Watch Co Electronios Dip Canadian Aviation Electronic＇s

Canadian Marconi Co
13－14－1：
Chemalloy Elaconi Cr Clough－Brengle Co
10 CW S Wareguide Corp Diamornay Bonard

Corp


Don－Lan Electronics Inc
Dumont Laboratories Allen $\mathrm{H} / \mathrm{Wi}$
Fairchild Camera \＆Instrument Corp
Dymec Div Hewlett－Packard Co 111－1：：－1．
Fectro 10 inc $10-1$ ，
Electronics \＆Ordnance Dis $2-3-4-5-1: 3-17$
Corp
Corp
lectronic Specialty Co
Elm Mfo Co Inc Products
Eim Meg Co Inc
requency Standards
GB Electronics Corp 1－2－3－8－10－13－1：－17
General Communication Co $2-4-6-7-111$
General Electric Co／LMIED $11-7: 11$－14－1
General Flectric Co／a $1-7-10-1: 3-17$
General Radio Co Ltd of Eingland
General Radio Co
Hewlett－Packard Co John（i－s－9－11－17
Intalspace Corp $\mathrm{Co} \quad 2-3-5-6-8-10-1 \frac{1}{2}$
ITT Labor Corp
Jones Lelectories（ 500 Washington Avo）
Kones Electronics Co 1nc 11 C

Laboratory for Electronics Inc
Instrument Div $1-8-11-12-1: 1-14-1 \mathrm{i}$
LaPoint Industries Inc $\quad \overline{-6-6}-\boldsymbol{i}$
Lavoie Laboratories Inc $11-12-1,-11$
lieco Inc
fi－8－9－17
Lockheed Electronies Co $\quad$ 18－1t－16
Magnavox Co
10－1：3－16
Manson I aboratories Ine
10－12－1．
Maxson
$10-14$
$1-10-16$
Melpar Inc（sipecial
Products Dept）
$N-1: 1-1$
Meno rark Engimeering
Mico inst
Microlab
Microter h Inc
S－10－13－1 $\frac{8}{7}$
Microwave Associates Inc $\begin{gathered}\$-1(1-13-1 \\ 1-2-4-5-\$-15-1\end{gathered}$


Farrla Microwave Corp $\quad 2-8-1 i-S-1-1 d$
National Company Inc
Nehois Prorlucts Co
Norren Div United Aircratt $\quad 13-14-10$
Omera Labt Scientific Cory
10
Omega Laboratories Ine fi－s－17
J＇anoramic Radio Prothets Inc $\quad 1-\bar{i}-14$
Sitometer log Corp $\overline{1}-11-1 \cap-14-1 \mathrm{f}$
＇olarad Flectronics Corp 1－10－11－12－13－1i
PRD Electronics Inc 1－2－3－5－6－8－4－11－12
Radio City Products Co Inc
recision Instrument Co
Radio lingineering Laboratorjes $\quad$ a－11－12
Ramage \＆Miller Inc
10－1
Raytheon Co／Commercial Fauipment
Div（ 100 River $S t$ ）
Reeves Instrunient Corp
13－1．
Sage Lahoratories Inc
1．i－1．1
Schaevitz Engineering 1－f－T－S－10－1：i－14－14
Sierra Electronic Corp Div
Phileo Corp
$5-8-10$
Specialty Flectronics Development Corp
$10-11$
Spectralab Instruments
Co Hicrowave llectrnnies
Stewart－Warner Flectronies
Technicraft Div Electronic Specialty Co

8－17
Teleconnputing Corp
$1: 3-1+-11$
$10-11$
$\begin{array}{ll}\text { Telonic Enginecring Curp } & 10-1 \\ \text { Telonic Industries Inc } & 10-1\end{array}$
Telonic Industries Inc
$10-1: 1$
12
14
Topatron Inc
Trak Microwave Crorp／Sul，Trak Plectronic Co
Transco Products Inc
TRG Inc
Turbo Machine Co
Valor Instruments Inc

Varian Associates
Waveguide Inc
Waveline Inc
2－6－10－17
$8-9-13-1 \frac{1}{1}$
Wavne Kerr Corp 2－4－6i－1
Westingh ringinerrins
（Batimuse Air Arm IIj
（Baltimort）

SYSTEMS—MICROWAVE


ACF Electronics
$1-\ddot{2}-3-4-5-6$
Adams－Russell Co Inc
1－4－（i）
Aeronca Mfg Corp／Aerospace
1－2－：－4－6
Aircom Inc
？10－$\quad \frac{1}{2}$
American Electronic I aboratories lnc
Antenna \＆Radome Researeh
Associates
A R F＇lroducts Inc
Avtomation Dynamics（：orp
Avionics Div／Bell Aerusvstems Cu $3-\frac{2-1}{3-1}$
Belock Instric Inc
Belock instrument Corp
Bendix Corp（Detroit）
Budelman Electronics Corp
Canadian Aviation Electronics $\quad 1-4-1$
Canadian Marconi co $1-2-3-4-2-0$
CG Electronics Corp
Diamond Antenna $\&$ Microwave Corp $\begin{gathered}2-3 \\ 1-3\end{gathered}$
Dynatronic Inc $1-2-3-4-5-6$
Electronics \＆Ordnance Div／Aveo Corp
Electronics Development Corp $1-3-4-6$
Electronic Specialty（＇is $1-2=$
Empire Devices l＇roducts Corl
FXR Inc
4
$3-4-6$
General Electric Co／Comnumieation
Products Dept $1-4-5-6$
General Flectric Co／LAMED 1－2－3－4－5－f
GI＇L Div General Precision Inc
Houston Fearless Cory
1－2－3－5
Hycon Meg Co
T Laboratories
（：00 Washington－Ive） $1-\ddot{-2}-8-4-5-0$
Kennedy \＆Co D S
$-2-8-4-5-1$
Ia Point Industries
1－3－4－5－6
Lenkurt Electric Co Ine
$1-2-3-4-i$
Lorkheed Electronjes Co $\quad 1-2-4-6$
lonal Electronics Corp
Magnavox Co
$9-3-4-6$
$2-3-4$
Mathson Iaboratories Ine
1－6
Maxson Corp W L
1－2－3－4－5－4i
Nelpar Inc（special
Iroducts Dept）
1－9－8－4－：
Miller Associates
Missile Systerns Corl
1－4－6
Motorola Communiritions
1－2－4－6
Electronics
National Company Ine
1－4－5－6
Norden Div United Airrraft $1-3-5-1 ;$
Polarad Electronics Curp
Prodelin lnc
Radio Corp of America／Communica－
tion Products Dejt $1-2-3-1-5-1$
IRadio Fingineering Jaboratories $\quad 1-4-5-6$
lamage \＆Miller Inc
Raytheon Co／Conmmercial Eifuipment
Div（ 100 River St）
Reaves Instrument Corp
Resdel Fugineering（ ory
arkes Tarzian Inc
Saxton lrodurets Inc
Scatter Communication
Schaevitz Engineering
Sierra Electronic Corp Div
ahilco Corp

pinform Div Antenna Systems
Stewart－Warner Electronics
$1-2-: 3-4-5-6$
Stewart－Warner Electronics $\quad 3-2-3-5-6-6$
Corp（ 100 Carlson Div Gien Dynamics
（＇orp（ 100 Carlson Rd）
Sunnyvale Development Center $\quad 3-1$
Yiania Electronic Systems
（W＇altham）
（W：altham）
1－2－8－8－4－5－6
Telecomputing Corp $\quad$ Tele－Dynanics Div Americin B－3－4－6
Tele－Dynanics Div American Busch
Arma Corp
Texas：Instruments Incorporated
Apparatus Division
1－2－8－1－6
Turbo Machine Co
Varian Associates
（lingholse Air Arm Jiv＊
$1-2-3-4-6$

TRANSMISSION LINES \＆ACCESS．

Cable，coaxial	
Cable，low capacity ．．．．．．．．．．．．．．．． 2	
Coaxial－switches	
Coax－waveguide adapter	
Couplers，coaxial	
Flanges	
Slotted Lines	
Waveguide，flexible ．．．．．．．．．．．．．．．．． 8	
Waveguide stands	
Waveguide，switches ．．．．．．．．．．．．．．．． 11	
Waveguide windows ．．．．．．．．．．．．．．．． 12	
Waveguide bends ．．．．．．．．．．．．．．．．．．．．．．． 13	
Adams－Trussell Co The	
Ainslie（ or ）	กi－9－13
Aircom Inc	メースーフ－9－10－11－13
Aircraft Armanments lnc	（1－11－13

## 1961 Directory of Microwave Manufacturers (cont.)



TV.CONTROLLED RIVETER


Giant Drivamatic Riveter at Douglas Aircraft, Long Beach, Calif. is controlled through use of TelAutovision camera installed by TelAutograph Corp. Entire operation on fuselage assembly of a DC-8 jetliner is viewed through 17 -inch TelAutograph monitor, connected to a camera in a blind position, where the rivet cam is located. Operator can adjust machine manually if rivet holes are out of alignment.

## Drivamatic Riveter Developed by Douglas

Precision alignment of large automated machine tools at Douglas Aircraft Co. in Long Beach, Calif., is now possible with the installation of industrial TV by TelAutovision Closed Circuit TV, a Div, of TELautograph Corp. Douglas facilities engineers in the DC-8 Jetliner assembly plant worked with the General Electro-Mechanical Corp, engineers on plans for a Drivamatic Riveter for the fuselage assembly. The specially designed Riveter is programmed by

Formeraft Tool Co
FWIR Inc
(i-7-10-11-1 ${ }^{6}$ Gavitt Wire \& Cable Co GB Electronics Cory General Cable Corp General Cabmmunication Co 7-9-11-1 $\frac{1}{3}$ -9-11-13

4-6-9-13 General Radio Co
$4-5-7-10-11$
Gombos Co inc John
Hewlett-Packard Co $\begin{aligned} & \text { His- } \\ & \text { Hitenı Wire Co Div Simplex Wire }\end{aligned}$
Hitenıp Wire
\& Cable Co
Houston Fearl
Houston Fearless Corp
Hughes Components Div
Hycon Mfg Co
Intaspace Corp $9-13$
ITT Laboratories ( 500 Washington Ave) 7
Jones Electronics Co Inc M C
Judd Wire Mfg Corp
$1-2$
$-12-13$
Kennedy \& Co D S 6-7-8-9-10-11-12-13
Kent Corp ${ }^{\prime \prime} \mathrm{C}$
Ken-Tron Corl,
Lenz Electric Mig Cu
Lenz Electric Mig Cn
Lewis Ingineering Co $\quad 1-2$
Leco Inc
$1-2$
Lecnetic Shield Div Perfection
$\underset{\text { Iica Co }}{ }$ Contic $1-2-5-8-9$
Microtech Inc 3-4-5-6-7-8-9-11-12-13
Microwave Associates
Inc
Microwave Components
-7-9-10-11-12-13

Labs $4-6-7-9-11-12-13$
Meridian Metaleraft Inc
4-9-13
Missile Systems Corp
4-5-7-10-13
Nat'l Heryllia Corp (Haskell)
Nat'l Beryllia Corp (N Bergen)
Nichols Products Co
NRK Mfg \& Engineering Co 9-11-12-13
tape prepared in advance by means of a digital to analog converter. It will position to a non-accumulative tolerance of 30 thousandths-of-aninch. Fuselage panels of 31-foot length, held within a 40 -foot tooling frame, travel longitudinally along a 90 -foot floor mounted track, while being automatically riveted Tack rivets every five feet are used as synchronization points to check the precision of the programming.

## Amperex Introduces 6BL8 and 6FY5 Tubes

Two new tube types-the 6BL8 and GFY5, which together comprise a TV front end of low noise and high gain and reliability, have been introduced by Amperex Electronic Corp., 230 Duffy Ave., Hicksville, N. Y.

The 6BL8 is a miniature triode pentode with separate cathodes, especially designed for use as an oscillator-mixer in TV receivers. It also can be used as a horizontal oscillator, a video and sound IF Amplifier, and in sync circuits.

The 6FY5 is an "Ampliframe" triode with remote cutoff characteristics, an improved version of the type 6ER5, having 1 db less noise and 2 db higher gain. It is especially designed for service in VHF tuners for TV receivers. It is controlled for low noise figure at 220 MC and is operational at lower supply voltage.

Okonite Co $\quad 4-7-4-10-1$ 1-2
Onnega Laboratories Inc $4-7-4-10-13$
Pacific Universal Products Corp
Parker Seal Co
I'halo Plastics Corp
Phelps Dodge Copper Products Curp $\begin{aligned} & 1-2 \\ & \text { Plastoid Corp }\end{aligned}$
Precision Tube Co Inc
Precision Tube co I
$\underset{\text { Premier Instrument }}{\substack{3-4-5-6-7-14-10-11-12-13}}$
Co Electronics Inc $\begin{gathered}3-4-5-6-1-1-10-11-12-13 \\ \text { PRD } \\ \text { E-5-7-10-13 }\end{gathered}$
Prodelin Inc
Pronics Inc
1-2-3-4-5-6-7-9
Prodelin Inc
Resitron Laboratories Inc
RF Products Div Amphenol Borg
Electronics Corp 1 -3-3-4-5-9
Rockbestos Wire \& Cable Div
Cerro de Pasco Corp
Sage Laboratories Ime
Sage Laboratories ine
$1-2$
$4-5-7$
Schaevitz Engineering 3-4-5
Specialty Automatic Machine ("
Sperry IIcrowave Electronics
Co $4-5-7-10-11$
Sylvania Electric Products Inc
(Mt Fiew)
Sylvania Electric
(Wilianisport) $\quad 1-6-9-13$
Technicraft Div Electronic Specialty
Co $1-3-4-6-7-8-4-11-12-13$
Telonic Industries Inc
Thermal Wire of Anterica 3-4-5-11
Transco Products Inc
4-! $10-11-12-1$
TRG Inc
Tru-Connector Cors
urbo Machine Co
Uninite Co Corp (New Iork)
United States Wire © Cable Corl ${ }_{10-11-1}^{1}$
Uniwave Inc
Valor Instruments
Inc Associates
Virginia Electronics Co Inc
Waveguide lne
Waveline Ine
1-9-11-13
Western Int'l Co
Wiley Flectronics Co
11-13

## WESTINGHOUSE REDESIGNS TRADEMARK AND LOGOTYPE



Westinghouse has redesigned its trademark and logotype, modernizing symbols and improving corporate identity. The traditional Circle W trademark has been retained, but changed in dimensions. Small solid circles have been added to the peaks of the W. Type has been changed from Caslon to semicondensed Cothic in the logotype.

## Canadian Radar Volunteers Disbanded

Volunteers comprising the Royal Canadian Air Force's 14 Auxiliary and Warning Squadrons, manning the radar stations of the Pinetree Line, will be disbanded over a twoyear period beginning next year. Their duties will be taken over by the Semi-Automatic Ground Environment (SAGE) System, upon its installation at North Bay, Ontario.


# Congratulations! 

## to WESTINGHOUSE for an exciting breakthrough.

A radar receiver noise figURE of 2.8 db at an X-band operating frequency has been achieved by engineers of the Westinghouse Air Arm Division. Dr. Robert Rampolla (left), and Mr. Thomas Hollis (right), using a true nondegenerate X-band parametric amplifier and a Microwave Associates "pill" varactor (MA-4253), achieved a 20 db gain with excellent stability and ample bandwidth.

This remarkable accomplishment in lownoise amplification at X-band resulted from research on a program sponsored jointly by Westinghouse and the L. S. Navy.

Sophisticated Varactor technology at Microwave Associates which made these results possible has produced the most complete line available of advanced varactors in standard, miniature "pill", and glass packages.

Write for detailed information and performance data on varactor techniques.

## A MICROWAVE ASSOCIATES, INC.

BURLINGTON, MASSACHUSETTS
Western Union FAX
TWX - Burlington, Mass. 942
Phone BRowning 2-3000

Gridded traveling wave tubes with broad-band frequency response sometimes have "dips" in their frequency response. The r-f power regulator described is an automatic gain control device that samples the r-f output and levels the frequency response by varying the tube's gain.

# Eliminating 

## Frequency <br> "Dips" in TWT's

By IRVING M. GOTTLIEB<br>Calif. Registered E. E.<br>931 Olive<br>Meno Park, Calif.

$\mathrm{A}^{\mathrm{N}}$N amnoyance often encountered with traveling wave amplifiers is that the so-called "broad-band" frequency response is actually plagued with perturbations, some of such violence as to suggest the presence of high $Q$ wave traps coupled to the slow wave structure. The r-f power regulator to be described is an automatic gain control device which samples a portion of the r-f output and varies the grid bias in such a way as to level the frequency response.

This device is not only applicable to gridded traveling ware tubes, it is also useful with conventional electron tube oscillators and amplifiers. providing that the operating mode is restricted to the class "A" region (that is, the grid must not draw current). When so used, a flat frequency response is attainable over a much wider spectral range than would otherwise be the case.

Fig. 1: Block diagram shows the power regulator for TWT's


The block diagram of the r-f power regulator is depicted in Fig. 1. An ac amplifier is supplied with a constant amplitude audio-frequency signal from a multi-vibrator and level-clamping circuit. The gain of the ac amplifier is controlled by a de amplifier which receives its actuating signal from the rectified r-f derived from a portion of the r-f output circuit. The most straightforward way of accomplishing this is by means of an attenuating directional coupler and a crystal detector. The ontput of the ac amplifier is rectified so that a positive dc voltage is obtained. However, the net voltage applied to the grid of the traveling ware tube is negative by virtue of battery B2.

Suppose that, as a result of manual or automatic tuning of a microwave oscillator driving the traveling wave amplifier, a dip in frequency response occurs. Decreased de signal voltage is thereby applied to the dc control stage. This changes the bias applied to the ac amplifier in such a direction as to increase amplification. The audio frequency signal applied to the ac amplifier now receives higher gain. Subsequent rectification of this signal then results in a more positive (less negative) dc grid bias applied to the traveling wave tube. In this way the tendency for the response to dip is counteracted. In the event of a tendency for the r-f output level to rise, the converse sequence of events occurs. As a consequence of this regulating action, the r-f output of the traveling wave amplifier is maintained relatively flat with respect to frequency.

The schematic diagram of the r-f power regulator is shown in Fig. 2. Q1 is the dc control stage. Re-

## (Continued)

Fig. 2: Schematic diagram of the r-f power regulator. Parts list is given in the article.

sistance R1 is simultaneously the plate load of Q1 and part of the bias network for ac amplifier stage, Q2. Inasmuch as Q1 is an npn transistor connected in the grounded base configuration, its collector does not draw appreciable current when no negative dc voltage is received at the emitter. Under this condition, sufficient forward bias is available from resistance R1 and R2 to enable transistor Q2 to develop high amplification of the audio frequency signal derived from the multivibrator (Q4 and Q5).

> A REPRINT
> of this article can be obtained by writing on company letterhead to The Editor
> ELECTRONIC INDUSTRIES, Chestnut \& 56th Sts., Phila. 39, Pa.

When a negative signal is applied to the emitter of Q1, this transistor conducts; in so doing, it deprives ac amplifier stage Q2 of forward bias. The current (and voltage) gain of Q 2 is thereby reduced. As a result, the second ac amplifier stage Q3 receives a signal of lower amplitude level than would be the case if Q2 was permitted to develop its maximum gain. In turn, the positively polarized dc output voltage developed across shunt rectifier CR1 is decreased. The dc voltage appearing at the output terminal is the resultant of this voltage and a portion of battery voltage derived from B2. Battery B2 causes the net polarity of the dc voltage at the output terminal to be negative with respect to ground. Thus, the rectified r-f which applies forward bias to Q2 produces the ultimate result of making dc voltage at the output terminal more negative. Actually, a very small increase in negative voltage applied to Q1 suffices to produce a relatively large increase in output negative voltage, that is, in the grid bias of the traveling wave tube. The voltage amplification involved here is on the order of several hundred to one.

When initially placing the r-f power regulator in operation, switch SW1 should be set in its open position. Adjust potentiometer R23 to provide about three volts of negative bias to the grid of the traveling wave tube. This measurement should be made with respect to the cathode of the traveling wave tube and a vacuum tube voltmeter should be used for the purpose. Closure of SW1 should then make the circuit operative.

For best results, the emitter-base voltage of input stage Q1 should never fall below about 0.6 volt. If difficulty is experienced here, it may be possible to remedy the situation by using a directional coupler with less attenuation. Between six and ten db attenuation was found suitable for traveling wave tubes having output ratings between 0 and 20 dbm . It is imperative that the frequency response of the directional coupler and associated crystal mount be reasonably flat over the desired frequency range. Otherwise the dc voltage applied to the input diode of Q1 will convey erroneous information and will provoke unwarranted corrective action. For optimum results, use the transistor with highest beta in the Q1 circuit position. It is also desirable that transistor Q2 has a relatively high beta. For the circuit functions served by Q3, Q4, and Q5, beta is not an important consideration.

## Parts List



## Page from an

## Engineer's Notebook

## \#58 - Cancellation of Sine Waves

SUCCESSFULLY cancelling two signals often depends on how close the signals are in amplitude. waveform, and phase. Phase differences are of ten the most troublesome because of the tight tolerances which must be maintained. Information regarding cancellation of two identical sine waves with slight phase differences is here summarized and tabulated.

Consider two sine waves of unit amplitude, but with a small phase difference:

```
\prime,}=\operatorname{sin}\omega
\prime2=\operatorname{sin}(\omega)\pm(x)=\operatorname{sin}\omega!\operatorname{cos}\alpha\pm\mp@code{0)s}\omega!\operatorname{sin}\alpha.
```

Fig. 1: Cancellation of equal sine waves as the phase is shifted.

Subtracting, the resultant output will be:

```
c
```

The resultant can be considered a sine wave of two components: an in-phase part of magnitude (1$\cos \alpha$ ), and a quadrature part of magnitude $(\sin x)$. But if $\alpha$ is small, $\sin \alpha$ is very much larger than

By JAMES J. DAVIDSON
RCA Victor Record Division 501 North La Salle St.
Indianapolis 1, Ind.
( $1-\cos \alpha$ ), and the in-phase component can be neglected. Under these conditions:

```
1,}=\pm(\operatorname{sin}\alpha)\operatorname{cos}\mp@subsup{\alpha}{}{\prime}
```

Using this approximation, the values of Table I were calculated, and Fig. 1 was drawn from the results. The approximation is accurate to within $0.1 \%$ at $4^{\circ}$.

The cancellation is tabulated and plotted in decibels because this represents the most useful form.

## References

1. J. J. Davidson, "A Suggested Method for Measuring Tape Modulation Noise." Journal of the Aurlio Enginccrin! Society, Tol. 8, No. 1, pp. $23-28$, Jan. 19fi!.

* Formerly with ISCA 「ietor Hom* Instrument.s.

Table 1
Cancellation of Equal Sine Waves with a Phase Difference

Phase Difference $\alpha$		Resultant   Cancellation   (Decibels)
Decimal Degrees	Degrees \& Minutes	
0	0	$-\infty$
0.05	$0^{\circ} 3^{\prime}$	-61.18
0.1	$0^{\circ} 6^{\circ}$	-55.16
0.15	$0^{\circ} 9^{\prime}$	-51.64
0.2	$0^{\circ} 12^{\prime}$	-49.14
0.25	$0^{\circ} 15^{\prime}$	-47.20
0.3	$0^{\circ} 18^{\prime}$	-45.62
0.4	$0^{\circ} 24^{\prime}$	-43.12
0.5	$0^{\circ} 0^{\prime} 00^{\prime}$	-41.18
0.75	$0^{\circ} 45^{\prime}$	-37.66
1.0	$1^{\circ} 0^{\prime}$	-35.16
1.5	$1^{\circ} 30^{\prime}$	-31.64
2.0	$2^{\circ} 0^{\prime}$	-29.14
2.5	$2^{\circ} 30^{\prime}$	-27.20
3.0	$3^{\circ} 0^{\prime}$	-25.62
3.5	$3^{\circ} 30^{\prime}$	-24.29
4.0	$4^{\circ} 0^{\prime}$	-23.13

LIMITED SUPPLIES STILL AVAILABLE . . .
from ELECTRONIC INDUSTRIES Reader Service Dept.
56 th \& Chestnut Sts., Philadelphia 39. Pa.

## REPRINTS:

1960 Transistor Interchangeability Chart		504	ach
	25 or more	304	
		\$1.00	"'
Electronic Hardware Chart	26 to 100 copies.	$75 \$$	"
	More than 100 copies	$50 ¢$	'
Today's Electronic Engineer		504	




Miniaturize 3.5 KC low pass filter. 10 K ohms to 10 K ohms. Within 1 ob up to 3500 cycles. Greater than 40 db beyond 4800 cycles.


Three KC and 6 KC flat top band pass filters 400 ohms to 20 K ohms MIL-T-27A; each filter 1.7 lbs .

Plus
over 1,000
STOCK ITEMS with UTC
High Reliability from your loca! distributor


Fifteen cycle and 135 cycle filters for Tacan. 600 ohms to high impedance. Extreme stability $-55^{\circ} \mathrm{C}$. to + $100^{\circ} \mathrm{C}$.


High frequency Minifilters, 33 oz. MIL-T27A Grade 5. 150 KC High Pass 3 db to 150 KC, down 45 db below $85^{\prime} \mathrm{KC} .7500$ ohms.


## TO YOUR REQUIREMENTS

Almost thirty years of experience in the design and production of special filters have resulted in UTC being a first source for difficult units. Present designs incorporate a wide variety of core structures, winding methods, and capacitors to provide maximum performance, stability, and reliability. The units illustrated show a few of the thousands of specials produced by UTC, to customers' requirements, and only slightly indicate the possibilities in present special filter design. Range of frequencies on special units is from .I cycles to 400 MC.


Curves of our miniaturized 90 and 150 cycle filters for glide path systems. $1^{1 / 4^{\prime \prime}} \mathrm{X}$ $13 / 4^{\prime \prime} \times 15 / 8^{\prime \prime}$.


Power line filter from sources of 50 to 400 cycles . . . attentuation from 14 KC to 400 MC ... 29 cubic inches.


Multi-channel telemetering band pass filters for 400 cycle to 40 KC . Miniaturized units for many applications.

## UNITED TRANSFORMER CORP.

150 VARICK STREET, NEW YORK 13, N. Y.
PACIFIC MFG. DIVISION: 4008 W. JEFFERSON BLVD., LOS ANGELES 16, CALIF. EXPORT DIVISION: 13 EAST 401h STREET, NEW YORK 16, N. Y. CABLES: "ARLAB"

## USE THIS FREE READER SERVICE CARD

Kees up to date-get the facts about the new products and equipment as they hit the market. ELECTRONIC INDUSTRIES' advertisers will be glad to send you complete literature giving specifications and data relating to those products advertised in this issue. To help you, the new product items, new literature and advertisements in this issue are numbered consecutively, from the front to the back of the book. The extra cards are for the use of your associates with whom you share your copy of ELECTRONIC INDUSTRIES.

## BUSINESS REPLY MAIL

no postage stamp necessary if mailed in united states

## POSTAGE WILL BE PAID BY ELECTRONIC INDUSTRIES

The Computer Center
P. O. Box 8221

Philadelphia 4, Pennsylvania
$\qquad$
FIRM ADDRESS
CITY OR TOWN . StATE.

	2	3		5		7	8	9			12	13	14		6		18	
	22	23	24	25	26	27	28	9	30	31	32		34	35	36	37	38	9
41	42	43	44	45	46	47	48	9	50	51	52	53	5	55	56	57	8	59
	62	63		65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
8	82	83	8	85	86	87	88	89	90	9	92	93	94	95	96	97	8	\%
101	102	103	10	105	106	107	108	109	110	111	11	隹	114	115	116	117	118	119
12	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139
41	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
1	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	9
181	182	183	184	185	186	187	18	189	190	191	192	193	194	195	196	197	198	199
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219
22	222	223	224	225	226	227	228	229	230	23	232	233	234	235	236	237	238	239
241	242	243	244	245	246	247	248	249	250	25	252	253	254	25	256	257	258	259
26	262	26	26	265	26	267	268	269	270	271	272	273	4	275	276	277	278	279
28	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299
1	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339
34	342	343	34	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359
asteard valid 8 weeks anly. After that use owin lelterhead deseribing item wanted.$361362363364$																		

Please send me further information on the items I have circled above.

# ALPHABETICAL LISTING OF 

62 ADC Incorporated - Transformers, filters, jacks and plugs.
Aircraft Armamente, Inc.-Waveguide quick disconnect.
108 Alford Manufacturing Company-Slotted lines.
Alite Division, U. S. Stoneware-Ce-
11 Allegheny Ludlum Steel CorporationMolybdenum permalloy nickel-iron strip.
81 Allen-Bradley Company - Composition
148 Allied Chemical, General Chemical Div. Electronic-grade chemicals.
151 Allied Radio Corporation - Electronic supply catalog.
Alpha Metals, Inc.-Flux filled solder washers.
122 American Electrical Heater CompanyElectric wire stripper.
American Electronic Laboratories, Inc. -Solid state microwave commutator. American Time Products, Inc.-Frequency standards.
AMP Incorporated-Wire terminations, Amperite - Thermostatic delay relays and ballast regulators.
66 Amphenol-Borg Electronics Corporation, Borg Equipment Div.-Precision potentiometers.
47 Amphenol-Borg Electronics Corporation, RF Products Div.-Coaxial connectors Amplifier Corp. of America-Flutter meter.
Andrew Corporation-Radome equipped antennas
Anton Machine Works-Electron tube parts.
Arnold Engineering Company, TheMagnets for microwave applications.

157 Associated Research, Incorporated-Insulation resistance tester.
Automatic Timing \& Controls. Inc.Timers.
Babcock Relays, Inc.-Relays.
42 Beckman Instruments, Inc., Berkeley Div.-Frequency meter.

117 Beckman Instruments, Inc., Helipot Div. -Trimming potentiometers.
40 Bendix Corporation, The, Electron Tube Products-Ceramic-metal terminal.
354 Bendix Corporation, The, Pioneer Cen-tral-Sonic energy cleaning equipment.
140 Bendix Corporation, The, Semiconductor Products-Switching transistors.
346 Biwax Corporation-Asphalt base compounds.
156 Boonton Electronics Corporation - RF voltmeter.
21 Bourns, Inc., Trimpot Div.-Humidityproof trimming potentiometer.
36 Bourns, Inc., Trimpot Div.-Trimmer potentiometer.
48 Bourns, Inc., Trimpot Div--Trimmer potentiometers.
344 Brinkmann Instruments, Inc. - Micro manipulators.
3 fio Bruno-New York Industries Corporation -Pig-tailoring machine
50 Brush lastruments, Div. of Clevite Corp.
-Printed circuit transistor switches.
Brush Instruments, Div. of Clevite Corp. - Portable recorders.

Burnell \& Company, Inc.-Crystal fil-
ters.
ters.
Bussmann Mig. Division McGraw-Edison Company-Fuses and fuseholders.
116 CBS Electronics, Semiconductor Opera- yems Div.-Cable, connectors, and Ughea Aircraft
Systems Div.-C
harness syems.
Centralab, The Electronica Div. of GlobeUnion, Inc.-Ceramic capacitors.
Centre Circuits, Inc.-Printed circuit equipment.
Century Electronics \& Instruments, Inc. Girain Gauges
Thu Dynamic Industries, Inc.-保
inch Manufacturing Corporation-SubClare
cuit Company, C. P.-Printed cirClevite Trans
Silic Transistor Div. Clevite Corp.omputer
Solid Measurements Companytimer.
Conrac. Inc.-Video monitors.
Consolidated Vacuum Corporation-Vacuum pumping system.
Controls Company of America, Control Switch Div.-Precision switches and actuators.
Curtiss-Wright Corporation-Ultrasonic delay lines, digital motors, and time delay relays.
Custom Components, Inc.-Permeable di-
electric. electric.
Dage Electric Compans, Inc.-Coaxial cable connectors.
Dale Electronics, Inc.- Miniature deposit
Davies Molding Complary switchem. Plastic knobs, handles, and appliance feet. Coils, Inc.-Miniature R. F. chokes.
Deutsch Company, The-Hermetic connectors.
Du Pont, Electrochemicals Dept.-Conductive cements.
Dynatran Electronics CorporationSemiconductor test equipment.
Elastic Stop Nut Corporation of Amer-ica-Time/delay/relay.
Electra Manufacturing Company-Car-bon-film resistor.
Electrical Industries - Glass-to-metal seais.
Electro Impulse Laboratory, Inc.Calorimeter bridge.
EICO, Electronic Instr. Company, Inc. - Electronic supply catalog.

Elgin-National Watch Company-Power type relays.
Fairchild Controls Corporation - Prensure transducer.
Fairchild Semiconductor CorporationSwitching transistors and diodes.
Fairmount Chemical Company, Inc. Soldering flux.
Fansteel Metallurgical CorporationFansteel Metallurgical CorporationSilicon power rectifiers. molded platic parts.
Freed Transformer Company, Inc.Toroidal inductors and audio trangformers.
FXR, Inc.-Ferrite isolators.
FXR, Me-Wave isolators.
107 FXR, Inc.-Broadband fixed coaxial attenuators.
General Electric, Receiving Tube Dept. -Amplifier tubed.
General Electric, Semiconductor Dept.Switch and amplifier transistors.
General Product Corporation-Terminal boards.
General Motors, Delco Radio Div.Power tranalintors.
Gertach Products, Inc.-AC/DS ratio standard.
Globe Industries, Inc.-Vaneaxial blowGors. triode oscillator.
Graphic Systems-Visual control board.
Gremar Manufacturing Company, Inc.RF connectors.
G-V Controls, Inc.-Thermal relay.
Handy a Harman-Silver for electronic splications.
Harrel, Incorporated-Temperature controls.
Hewlett-Packard Company-Clip-on milliameter probe
Hewlett-Packard Company-Power supplies.
Hill Electronics, Inc.-Band elimination filter.
Howard Industries, Inc.-Motor part

Hughes Aircraft Company, Microwav Tube Div.-Traveling-wave tubes.

# ADVERTISERS IN THIS ISSUE <br> ADVERTISERS FROM WHOM YOU DESIRE FURTHER INFORMATION 

3 Hughea Aircraft Company, Semiconductor Div.-Nanosecond diodes and germanium diodes.
4 Hughes Aircraft Company, Vacuum Tube Products Div.-Direct view storage and cathode ray tubes.

358 Ideal Precision Meter Company, Inc.Precision panel meters.
324 Industrial Electronic Engineers, Inc.Industrial Electronic Engin
118 ITT, Federal Div. Laboratories-Com11\%, Federa Div. Laboratorien-Com24 ITT Industrial Products Div.-Vibration 11 exciter.
61 Industrial Test Equipment CompenyElectronic generators.

## PROFESSIONAL ENGINEERING OPPORTUNITIES

Circle number of company on card at right rom whom you desire further information.

502 Boeing Airplane Company, Wichita Div. 501 National Cash Register Company. The
603 Philco, Techrep Div.

Newark Electronics Corporation-Electronics catalog.
Institute of Radio Engineers, The-IRE computer issue.
International Electronic Research Cor-poration-Transistor heat dissipators. International Resistance CompanyTrimmer potentiometers.
Jeffers Electronics Division of Speer Carbon Company-Fixed composition capacitors.
Jennings Radio Manufacturing Cor-poration-Vacuum relays.
Jettron Products, Inc.-Special sockets and connectors.
JFD Electronics Corporation - Fixed miniature metalized inductors.
Johnsun Company, E. F.-Variable capacitors.
Jones, Howard B., Div. of Cinch Mfg. Company-Fanning strip.
Jones Electronics Company, Inc., M. C. - Microwave test equipment.

Kay Electric Comyany-High frequency attenuators. Inc.-Coaxial broad band ferrite isolators.
Kemet Company, Div. of Union Carbide Corporation-Solid tantalum capacitors.
Kester Solder Company - Resin-core soider.
Keystone Carbon Company-Thermistors. Klein \& Sons, Mathias - Electronic pliers.
Knights Company
quency standard The James - FreKrengel Manufacturing Company, Inc. -Peg stamps.

Lel, Inc.-Telemetry preamplifier.
Lenz Electric Manufacturing Cornpany Lenz Electric Manufacturin
Litton Industries, Electron Tube Div.Microwave tubes.

Magneeraft Electric Company-General purpose relay.
Magnetics, Inc.-Powder cores.
Marconi Instruments-Q-Meter.
Melabs-Swept gignal generators.
Microflect Company, Inc.-Passive repeater antennas.
Microlab-Microwave component catelog.
Microwave Associates, Inc.-Voltage variable capacitors.
Microwave Chemicals Laboratory, Inc.Ferrimagnetic line width spheres. "X" Bacrowave components, inc.
Midwest Foam Products CompanyPolyether or Polyester foams.
Minnesots Mining and Manufacturing Company, Magnetic Products Div.Precision reels.
Minnesota Mining and Manufacturing Company, Mincom Div.-Instrumentation recorder/reproducer.
Motorola Semiconductor Products, Inc. - Power transistora.

Mucon Corporation-Capacitora.

Nothelfer Winding Laboratories, Inc.Air core reactor.

Employment-Use the handy card below to get more information on the engineering positions described in the "Professional Opportunities" Section which begins on page 255 of this issue.

## PROFESSIONAL ENGINEERING OPPORTUNITIES

Please send me further information on the engineering position I have circled below.

501	506	511	516	521
502	507	512	517	522
503	508	513	518	523
504	509	514	519	524
505	510	515	520	525

YOUR NAME
TITLE

HOME ADORESS

CITY or TOWN
ZONE
STATE.
NOV. 1960
NEW Subscription Order

## Please enter a new complimentary subscription to ELECTRONIC INDUSTRIES

Company Name:


Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Position
Company Address:
City: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zone . . . . . . State
Specific Products Manufactured

YOUR NAME
TITLE.
NOV. 1960
FIRM
FIRM ADDRESS
CITY OR TOWN.
.ZONE.
state.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
| 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
| 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
| 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 |
| 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 |
| 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 |
| 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 |
| 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |
| 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 |
| 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 |
| 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 |
| Postcord valid 8 weeks only. After that use own letrerheod describing | item wanted. |  |  | 361 | 362 | 363 | 364 | 365 |  |  |  |  |  |  |  |  |  |  |  | Postcord valid 8 weeks only. After that use own letterheod describing item wanted. cision resistors.

Panoramic Radio Products. Inc.-Spectrum nalreer.

89 Polarad Electronies Corporation-Microwave generators.
Power Designs, Inc.-Voltage regulaPRD Electronics, Inc.-Attenuators.

130 Radio Cores. Inc.-Powdered iron toroids.
Radio Materials Company-Disc capacitors.
Raytheon Company. Industrial Compo-
nents Div.-Submininture tubes.
Raytheon Company. Microwave and

BUSINESS REPLY MAIL
no postage stamp necessary if malled in united states
POSTAGE WILL BE PAID BY ELECTRONIC INDUSTRIES

CHESTNUT \& 56th STS.
PHILADELPHIA 39, PA.

## Chilton Company

Power Tube Div.-Miniature Infra red detectors.
Reeves-Hoffman, Div. of Dynamics Corp of America-Crystal oscillator.
Reeves Instrument Corporation-Elec. tronic multiplier.
Revere Corporation of America-Wire and cable.
Rohn Manufacturing Company - Com munication tower.

Sangamo Electric Company-Mica ca pacitors.
Saratoga Semiconductor Div. of Espey Mfg. \& Electronics Corp.-Silicon zener regulators and power rectifers Sarkes Tarzian. Inc.-Silicon cartridge rectifers.
Schweber Electronics - Tantalum capacitor distribution.
Scientific-Atlanta. Inc. - Antenna pat-
Shure Brothers, Incorporated - Rugged communications microphone.
SIFCO Metachemical. Inc.-Printed circuit repair equipment.
Specially Automatic Machine Corpora-tion-Precision waveguide bending.
Spectrol Electronics Corporation-Ultra miniature trimmer potentiometer.
Sperry Semiconductor Div. of Sperry Rand Corp. Semiconductor devices.
Sprague Electric Company - Deposited
carbon resistors. carbon resistora.
diffused- Company-Micro-alloy
difused-base transistors.
Spraque Electric Company-Pulse-form ing networks.
Stackpole Carbon Company - Magnetic ceramic ielrites.

Towers
Stanpat Company - Preprinted acetate sheets.
tevens Manufacturing Company, Inc.Thermostats.
Stromberg-Carlaon Company-Telephone relays.
Struthers-Dunn, Inc.-Dry reed relays
Superior Tube Company-Miniature disc cathodes.
Sylvania Electric Products, Inc., Elec tronic Tuben - ElectroluminescentPhotoconductive devices.
Sylvania Electric Products. Inc., Semi conductor Div.-Mesa transistors.
Sylvania Electric Products, Inc., Semi conductor Div. - Microminiaturized ransistors.
IVania Electric Products, Inc., Specia Tube Operations-Coaxial isolators.

Taylor Fibre Company-Laminated plastics.
Telonic Industries, Inc.-Sweep genarstors.
Texas Instruments. Incorporated-Microwave varactor diodes.
Thomas \& Betts Company. The-Fiat conductor cable
Times Wire \& Cable Div., The Inter national Silver Company - Cosxial cables
Tinsley Laboratories, Inc. - Corning glass filters.
Tower Construction Company-Towers. reflectors, and buildings
Trak Microwave Corporation, Trak Elec tronics Co.-Microwave oscillator cavitie
Transitron Electronic CorporationTransitron Eransistor. Electronic CorporationSilicon rectifer. Silicon controlled rectifier.
Transitron Electronic CorporationSilicon rectifier, 10 amp .
Trangitron Electronic CorporationSilicon rectifler, 50 amp.
Electronic
CorporationSwitching transistor.
Transitron Electronic CorporationSwitching transistor.
Tung-Sol Electric. Inc.-Voltage regulator tubes.
Turbo Machine Company - Microwave antennas.
nectors. United Transformer Corp. - Special
filters. flters.
Vapor Heating Corporation-D.C. power supply.
Varian Associates-Klystrons.
Victoreen-Corona type voltage regulators.

Waveline, Inc.-Triode oscillators, wavemeters, tunable filters
Westinghouse Electric Corporation-Silicon power transistors.
Williams \& Co., C. K.-Pure lerric oxides, magnetic iron oxides, magnetic iron powders.

X-Acto, Inc.-Pen knife.
Zenith Radio Corporation - Electron beam parametric amplifier.

# PRD previews/reviews/design notes 

## Design Considerations of Attenuators

The end use of an attenuator-whether as a standard in power or attentation measurements, a power or signal level adjuster, an isolator or buffer pad will, of course, bear on its design. But certain design and construction needs also remain constant. Here are some of the considerations that go into a PRD attenuator.

## Attenuating Elements

We have found that metallized glass or ceramic generally make the best resistive elements. They are smooth, chemically inert, non-hygroscopic, and will not warp or change shape. We apply an extremely thin metal film to the element in two ways: by "paint" coating and baking, and by high vacuum deposition. The baked-on film method proves best for coaxial attenuators, and the vacuum deposition preferable for waveguide.

## Fixed Coaxial Attenuators



PRD 1100


PRD 130
The two basic types of coaxial attenuators produced by PRD are shown above, in schematic drawing and photo-
graphs. The first, represented by the PRD 1100 , uses one or more $T$ sections with lumped resistive elements. The distributed type, illustrated by the PRD 130 , uses an inner conductor of an electrically long resistive film. The $T$ section PRD 1100 operates best at low frequencies, from de to 4 KMC ; the PRD 130 ranges from 2 to 10 KMC . Both dissipate one watt and are calibrated to $\pm 0.2 \mathrm{db}$ accuracy. The PRD 130 can attenuate up to 20 db ; PRD 1100 up to 10 db .

## Waveguide Attenuators



The drawing above gives a schematic presentation, with equivalent circuit, of a resistive film parallel to the electric lines in a waveguide. Attenuation is varied by moving the metal-coated glass panel in two usual ways: (1) by lower-

ing it into the waveguide through a slot, as in the PRD 153-B, known as a "flap" type (Freq. range 18.0 to 26.5 KMC ; Attenuation to 35 db ; Max. VSWR 1.10 ; Max. insertion loss 0.5 db ; Calibration accuracy $\pm 0.2$ ); or (2) by moving the lossy clement from the side wall toward the center of the waveguide
...known as the "vane" technique, and illustrated by PRD 178-B (Freq. range 5.4 to 7.2 KMC : Attenuation to 45 db ; Max. VSWR 1.15; Max. insertion loss 0.5 db ; Accuracy to $\pm 0.2$ ).


Another version of the vane method of attenuation is exemplified by our level set attenuators, such as the PRD 171-B (Freq. range 2.6 to 3.95 KMC ; Max. attenuation to 40 db ; Max. VSWR 1.15).


These are only a few of more than one hundred attenuators produced by PRD and a brief review of the broad design principles involved. For more specifications on these and other units, write for the PRD Attenuator brochure. For design information, write our Applications Engineering Department.

We have many interesting openings for engineers...contact Mr. John R. Zahka

ELECTRONICS, INC.
A Subsidiary of Harris-Intertype Corporation Formerly, Polytechnic Research \& Development Cor, Inc.

[^11]

282 SEVENTH AVE. - NEW YORK 1, N. Y. No. 12 Conp. on Mag. a Mag. Mat'l. 172 Nov. 14-17, Hotel New Yorker, NYC

## New <br> Products

## RELAY EQUIPMENT

Heterodyne Microwave Relay equipment for TV video relay intercomection. Designed primarily for multihop requirements, is available in :3 basic configurations: a terminal transmitter, terminal receiver, and heterodyne repeater. It is completely crys-

tal controlled, power output is 8 w at 2000 mc . The video bandwidth is flat to 8 mc , down 2 lb at 10 mc . The heterodyne microwave relay is capable of handling wide band TV video signals while simultaneously handling 15 Kc audio channels. Suitable sound diplexing equipment is available for either single or dual sound channel operation. Sarkes Tarzian, Inc., Broadcast Equipment Div., East Hill I) r., Bloomington, Ind.

Circle 257 on Inquiry Card

## "C" BAND OSCILLATOR

Model 151C Miniature Triode Oscillator has a power output 65 mw min. at 4200 Mc. Only $41 / 2$ ounces in weight, it covers from 4200 MC to 6000 MC in 50 MC min. steps. Each is designed for max. stability having temperature stability of $\pm 10 \mathrm{kC}^{\circ} \mathrm{C}$, min. size, max. output and has a vernier ( 50 MC ) control of frequency. Plate voltage is 200 v nominal and 6.3

v for filaments. It features preset tuning and may be applied as a local oscillator, cw signal source and driverlor crystal harmonic generators. John Gombos Co., Inc., Webro Rd., Clifton, N. J.

Circle 258 on Inquiry Card


## NEW Miniature MICROWAVE OSCILLATOR CAVITIES

now available

TRAK Electronics Company, Wilton, Connecticut, announces the formation of TRAK MICROWAVE CORPORATION to increase its developmental facilities for triode cavities in r-f signal generation from 500 Mc upwards. Present low, medium and high power cavities are available for application in grid pulse, plate pulse, and CW service.

TRAK expanded its Microwave Cavity line, which started in 1949, by adding the following 7 NEW miniature Cavities in 1960:
TRAK Type 9127-L At 1090 Mc, tuneable +25 Mc . available from $900-1200 \mathrm{Mc}$.
TRAK Type 2958
At 925 Mc , iuneable $\pm 50 \mathrm{MC}$, available from $500-2200 \mathrm{Mc}$.

TRAK Type 2959 At 1.5 KMc , tuneable $\pm 50 \mathrm{Mc}$ available from 500-2200 Mc.

TRAK Type 9127-SL At 2 KMc , tuneable $\pm 100 \mathrm{Mc}$. available from $800-7000 \mathrm{Mc}$.

TRAK Type 9127-S Available in 3 segments of S-Band: 2700-3000 MC $3000-3300 \mathrm{Mc}, 3300-3600 \mathrm{Mc}$.
TRAK Type C-3136 Tuneable $2700-3400 \mathrm{Mc}$.
TRAK Type 9127-C Tuneable $5400-5900 \mathrm{Mc}$.
ALSO, OSCILLATORS ENGINEERED to your specifications!

We invite you to write for new TRAK MICROWAVE CAVITY BULLETIN.


## trak <br> Microwave

## TRAK MICROWAVE

CORPORATION

## Subsidiary of

TRAK Electronics Company 5008 N. Coolidge Avenue Tampa 3. Florida REdwood 6.6422

## New

## Products

## COAXIAL WAVEMETERS

A new line of transmission type coaxial wavemeters cover from 2300 to 8200 ac. Units equipped with oversized $2-\mathrm{in}$. micrometers directly readable to 0.001 in . Meters are calibrated every 5o mc. Standard models available with female type N

input and output connertors or with a direct de output through a female type BNC connector. The crystal output models are adjusted to give a min. of $20 \mu_{a}$ de output with 1 mw input power. Spees (Model No.; Freq. Range; Accuracy; Loaded (Q): 951-2:300-3600, $0.0: \% \%, 1000 ; 951 \mathrm{CR}$ — $2300-3600,0.02 \% 1000 ; 452-3600-$ $4500,0.02 \%, 4000 ; 952(\mathrm{R}-3600-1500$, $0.00 \%$, $4000 ; 953-4500-5900,0.02 \%$, $4000 ; 353 \mathrm{CR}-4500-5900,0.02 \%$, $4000 ; 5.54-5!100-82100,0.02 \%, 3000$; $954 \mathrm{CR}-5400-8200$, $0.02 / 6,: 3000$. Waveline, Inc., Caldwell, N. J.

Circle 259 on Inquiry Card

## PARAMETRIC AMPLIFIERS

First of a line of parametric amplifiers, the S-band Model S1000. Typical specifications include a tuning range of 100 Mc , operating gain of 17 db , bandwidth of 20 Mc (at $3-\mathrm{ch}$ ) points), and a system noise figure of $2.5-3.0 \mathrm{db}$ (operating into a mixer with a noise figure of 10 db ). The assembly consists of a 3 -port ferrite circulator, a reffection-type diode amplifier, a pump klystron, a variable attenuator and a directional coupler

monitor. For some applications, ferrite isolators may be necessary between the antenna and the circulator and/or between the circulator and the mixer. Mircomega Corp., Venice, Calif.

Circle 260 on Inquiry Card

## DIRECTIONAL COUPLERS • RF LOAD RESISTORS COAXIAL TUNERS • RF WATTMETERS•VSWR METERS

## Microllatch

 RF Power and VSWIR measuring instruments are rugged and aceurate in both field and laboratory use. The patented circuit produces an output essentially independent of frequency. Over 3800 models of coupler units available. MICROMATCH instruments meet highest govermment and commercial standards, combine highest quality with low cost.

RF POWER and VSWR Instruments

$\begin{gathered} \text { Model } \\ \text { No. } \end{gathered}$	Frequency Ronge (mes.)	Power Range Incident \& Reflected (watts)	$\begin{gathered} \text { RF Connectors } \\ \text { ond } \\ \text { 1mpedance } \end{gathered}$	
263	0.5-225	0-10; 100; 1000	Type $\mathrm{N}^{*}$	52 ohms
706N	28-2000	0.400	Type $\mathrm{N}^{*}$	52 ohms
711 N	25-1000	0.30; 75; 300	N plus 83	R Adaplers
712 N	$25 \cdot 1000$	0-2.5; 5; 10	N plus 83	R Adapters
722 N	1000-3000	0.4	Type N	52 ohm 5
723 N	1000-3000	0-12	Type N	52 ohms
405B8	28-2000	0. 4000	1\%\%*Flan	51.5 ohms
445 AlO	20-2000	0. 40,000	$31 / 8$ " Flan	50.0 ohms


Model	Frequency   Range   (mcs.)	Power Range   Incident \& Reflected   (walts)	RF Connectors   Ond
No.			

RF OUTPUT DIRECTIONAL COUPLERS

Model	Frequency Ronge (mes.)	Coupling Altenuation	$\begin{aligned} & \text { RF Connectors } \\ & \text { and } \\ & \text { Impedance } \end{aligned}$	
313 N 3	300-2000	30 db	Type $\mathrm{N}^{*}$	52 ohms
313N5	60-2000	50 db	Type ${ }^{*}$	52 ohms
442 A 40	200-1000	40 db	31/8**Flange	50.0 ohms

## ABSORPTION TYPE RF WATTMETERS

Model No.	Frequency Ronge (mes.)	Power Range (watts)	RF Connectors and Impedance	
$\begin{aligned} & 621 \mathrm{~N} \\ & 625 \mathrm{C5} \\ & 651 \mathrm{~N} \\ & 611 \mathrm{A7} \\ & 612 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \text { to over } 1000 \\ & 50-1000 \\ & 25-1000 \\ & 50-1000 \\ & 44-1000 \end{aligned}$	$\begin{aligned} & 0-120 \text { milliwats } \\ & 0-120 \\ & 0-25 ; 100 ; 500 \\ & 0-1200 \\ & 0-8000 \end{aligned}$	Type N*   Type C   Type N   31/8" Flange   $31 / 8$ " Flonge	52 ohms   50 ohms   52 ohms   50 ohms   50 ohms
RF	D RESIST			
Model No.	Frequency Ronge (mes.)	RF Power Dissipation (watis)	RF Connectors and Impedance	
$\begin{aligned} & 603 N \\ & 633 N \\ & 636 N \\ & 638 A \end{aligned}$	$\begin{aligned} & 3000 \\ & 3000 \\ & 3000 \\ & 2000 \end{aligned}$	20 (air cooled)   50 (oir cooled)   600 (air cooled)   6000 (water cooled)	Type $N$   Type $N$   Type $\mathrm{N}^{*}$   31/8" Flonge	52 ohms   52 ohms   52 ohms   50.0 ohms



Model   No.	Frequency   Ronge   (mes.)	Power   Range	RF Connectors					
and								
Impedance				$	$	641 N	$0-3000$	$0-3 ; 10 ; 30 ; 100 ; 300$
:---:	:---:	:---:	Type N ohms					

COAXIAL LINE TUNERS

Model   No.	Frequency   Ronge   (mcs.)	Ronge   of   Correction	RF Connectors   and   Impedance
151 N	$200-1000$   $500-4000$	Tunes o load with o VSWR   of 2.00 max. down to a   VSWR of 1.00	Type $N$   Type $N$ 50 ohms
152 N			

For more information, write:

M. C. JONES ELECTRONICS CO., INC.

## New

 Microwave Component Catalog Lists 7317
## Stock

 Units

You'll want a copy of the new Microlab 72 page Microwave Component Catalog which includes newly designed TERMINATIONS, FIXED and TURRET ATTENUATORS (miniaturized, up to $12,000 \mathrm{mc}$; and high power, up to 15 w ; precision units with improved VSWR and attenuation values); HIGH and LOW PASS FILTERS; COAXIAL TUNERS; RESISTIVE and REACTIVE POWER DIVIDERS; COAXIAL CONNECTORS; CRYSTAL MOUNTS; MONITOR TEES; DC BLOCKS; DC SHORTS; SIGNAL SAMPLERS.
Catalog also includes Design Section for each product and a special article on the Applicacation of Matrix Algebra to the Design of Microwave Networks.

WRITE FOR YOUR
CATALOG NOW.

## MICROLAB

570 W. MT. PLEASANT AVE. LIVINGSTON. N. J. WYman 2-5700

[^12]
## New <br> Products

## MIXER—PREAMPLIFIER

New 5.15 to 5.85 кac combination mixer-preamplifier for microware and guidance systems eliminates the problem of variable parameters resulting when separate mixer's and preamplifiers are combined. Model $187 \mathrm{MB}-360 \mathrm{~F} 1$ is a low-noise, wide-

band downconverter for maser and parametric r-f amplifiers. Noise figure is less than 7 db with gain of 25 db. Preamplifier is six-tuned, with a stabilizing circuit that eliminates need for realignment after replacing tubes or crystal. Preamplifier output is matched to 50 obms. allowing main amplifier to be remosely located. Microwave Development Laboratories, Inc., 92 Broad St.. Babson Park 57, Wellesley, Mass.

Circle 261 on Inquiry Card

## INDUCTION MOTOR

Addition of $A-10-11$ unit to line of miniature and subminiature special service motors. Motor operates continuously over an amb, temp. range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Totally enclosed it exhibits low starting torque and conforms to MIL-M-7969, MIL-E-5272A, and MIL-A-8625. Design features: Horsepower, $1 / 400$; Voltage, 115 v., $400 \mathrm{css}, 3$ phase; Speed (RPM), 10,500; Torque (full load)

(oz. in.), 0.24- (starting oz. in.), 0.20; Pull-Out Torque (oz. in.), 0.35 ; Efficioncy (full load), $35 \%$; Current (full load) (amp.), 0.10; Weight (oz.), 3.5. Kearfott Div., General Precision, Inc., 1150 McBride Ave., Little Falls, N. J, Circle 262 on Inquiry Card

## MICROWAVE TRIODE

Type DX145A/EC157, a high gain, wide band, disc-seal microwave triode, when operated as a narrow band cw amplifier, will have a gain of 18 to 19 db with a power output of 0.5 w at $4 \mathrm{kmC}$. As a broadband amplifier at 4 KMC it will have a gain of


12 db with a power output of 0.5 v . Saturation Cw power output can be as high as 2.5 w . Expected life is $10,000 \mathrm{hr}$-guaranteed for 6000 . As an oscillator, it will operate in the 5 кMC region; as a doubler it will provide a useful output at 6 kMc . It operates at 180 v . It can be built into cavities for free air convection cooling at max. power output. Tube is designed with a threaded grid ring for superior anode-cathode isolation and simplified tube replacement. Amperex Electronic Corp., Microwave Tube Dept., 233 Duffy Ave., Hicksville, L. I., N. Y.

Circle 263 on Inquiry Card

## RELAY_CAPACITOR KIT

Engineers Relay and Capacitor Kit for prototype, development and engineering labs. Kit consists of 20 standard microminiature relays (MIL-R-5757 and MIL-C-25018) in 3 header and 4 mounting configurations: 160 hi-temp ceramic capacitors (MIL-C-11015) from $39 \mu \mu \mathrm{f}$ to 10,000 $\mu \mu \mathrm{f}$; and container with engineering data drawer. Kits save on paper work, help solve project schedule

problems by having essential components immediately available for breadboards and other needs. Electronic Components Div., Telecomputing Corp., 14704 Arminta St., Van Nuys, Calif.

Circle 264 on Inquiry Card

## MADT ${ }^{\text {® }}$ transistors from Sprague*


for the highest r-f operating frequency of all mass-produced transistors
for the fastest switching time of all mass-produced transistors
for storage temperatures up to $100^{\circ} \mathrm{C}$

## DESIGN AROUND SPRAGUE MICRO-ALLOY DIFFUSED-BASE TRANSISTORS

## available now at sensible prices you can afford!

Sprague Germanium Micro-Alloy Diffused-Base Transistors, well-known for their rugged vhf performance, are now priced below other transistors with comparable electrical characteristics. In many areas, this permits designers to improve circuit techniques without necessarily increasing costs. Expanded production facilities enable us to ship quantity orders on short notice. Add to this their ultra-fast switching time, and you have three good reasons why Sprague MADT ${ }^{\text {B }}$ Transistors have achieved their high level of acceptance.
With Sprague Transistors, circuits in vhf amplifiers and oscillators can now operate with collector currents as high as $50 \mathrm{ma} .$. with power dissipation up to 50 mw ... with collector to base voltages to 15 v . They have been application tested through the entire military electronics vhf spectrum.
The application table may well suggest the use of one or more Micro-Alloy Diffused-Base Transistor types in your latest circuit designs.

* Sprague micro-alloy, micro-alloy difused-base, and surface barrier transistors are fully licensed under Pbilco patents. All Sprague and Pbilco transistors having the same type numbers are manufactured to the same specifications and are fully interchangeable.

MICRO-ALLOY DIFFUSED-BASE   TRANSISTOR APPLICATIONS	
Type	Application
2N499	Amplifier, to 100 mes
2N501	Ultra High Speed Switch   (Storage Temperature, 85 C)
2N501A	Ultra High Speed Switch   (Slorage Temperature, 100 C)
2N504	High Gain IF Amplifier
2N588	Oscillator, Amplifer, to 50 mcs

For complete engineering data on the types in which you are interested, write Technical Literature Section, Sprague Electric Co., 233 Marshall St., North Adams, Massachusetts.

You can get off-the-shelf delivery at factory prices on pilot quantities up to 999 pieces from your local Sprague Industrial Distributor.

# SPRAGUE 

THE MARK OF RELIABILITY

## 1 IさWV "C" BAND

## Pulsed <br> TRIODE <br> Oscillator

$\pm 1$ MC FM at 20 G's, 20-2000 cps $\pm 20 \mathrm{KC}$ per degree $C$
No mode skipping
Less than 1 MC pushing figure
Low pulling figure
Long mean-time-to-failure life
No special pulse shaping required
Milli-microseconds rise time
No magnetic shielding required
2 KW " S " Band Model 302 S aiso available

## GOMBOS <br> CO., INC.

WEERO ROAD, CLIFTON, N. J.

WRITE TODAY ForDescripsive Lirerature. We would also appreciate receiving your special requirements for active and passive Cavities, Components and Sub-systems.

We are a recognized, quality manufacturer of a complete line of Triode Oscillators, Amplifiers and Multipliers from "L" Band through "C" Band. We also produce a complete line of Tunable Band Pass Fiters from "L" through "Ku" Band.

## New

## Products

## CONTROL RELAY

Industrial control relay, the "Compact 300." is rated at 6 a. 300 v . max. The unit is a fixed circuit device with provisions for 8 independent poles. It is also available in 2, 3, 4 or ( 6 poles in any combinations of normally open or normally closed contacts. It re-

quires up to $70 \%$ less panel area than conventional relays-only $5^{1 ⁄ 2}$ in. ${ }^{2}$ of panel space are required for a relay of from 2 to 8 poles and up to 48 poles can be mounted per linear foot. Bifurcated (split-saddle) contacts provide 4 current paths. The magnet assembly and contact mechamism are completely enclosed in a molded case to protect against accidental damage. Cutler-Mammer. 436 N .12 th St.. Wilwatkee, Wis.

$$
\text { Circle } 231 \text { on Inquiry Card }
$$

## X-BAND CIRCULATOR

Three ounce X-hand circulator hats a minimum isolation of 20 db and a max. insertion loss of $0 . t$ dh wrer a 6 per cent band. Packace is less than 3/4 in. high and $I^{\prime} \geq$ in. in dia. less TNC roax connectors. The new unit has: a visw of less than $1.4: 1$. handles 10 w average power and 10 kw peak

power. Input impedance is 50 ohms. It can be designed into a composite strip line circuit thus elminating connectors between elements. Hycon Mfs. Co.. 10.30 Soath Arroyo ParkWay, Pasadenal. Calif.

$$
\text { Circle } 232 \text { on Inquiry Card }
$$

New	
	Products

## MICROWAVE RELAY SYSTEM

Portable microwara relaly systems 400.A has baseband width or 5 nc power output of 0.1 w and operates in the 10.500 to $1: 200$ wo range. Transmitter and receivere iself-contained) weigh 31 and 32 lbs. Fea-

tured: low power consumption (transmitter-70w, receiver-1fiow) ; plug-in i-f amplitier: calibrated valiable frequency wavemerer allows change in operating freq. without noed for wavemeter roplacement; a built-in test meter, huilt-in input sighal attenuator; 5 MC basdovidth. flat within 0.5 db : a modulator test output connector. and reliable AliC action with pull-in range over the entire i-f bandpass. Electronia Systems
 River St.. Jalckson, Nich.

Circle 233 on Inquiry Card

## FILM RESISTORS

Thintilm carlon resistors ane desioned for use in merowave attenwators. precision coaxial terminations. dummy loads. coupling loops. ate. sperifications include: Frequenco. de to 10.1000 310 (useable to 100 кallo): Resistance dise resistors flobol ohms to fol whms rod resisturs- 0.001 ohms to 1500 ohms; Temperature,


- 55 to +150 C : Mumidity. (1 to 100r, relative humidity. Tight tolelances to =1' are standard. They are protected with sperdal eposy
 Ridgedale Avo. Morristown, S..J. Circle 234 on Inquiry Card


## WhiveLINE

## COAXIAL CAVIIIES

## TRIODE OSCILLATORS

- Available in $S$ and $C$ bands.
- Unique tuning adjustment.
- Temperature compensated.
- Rugged mecharical design.


## WAVEMETERS

- Four models available to cover 2300 to $8200 \mathrm{mc} / \mathrm{s}$.
- Accuracy .02\%.
- High unloaded Q.
- Accessory crystal current meter available.



## tuNable Filters

- Multi-cavity ganged or individually tuned.
- Minimum insertion loss.
- Covering 2000 to $6000 \mathrm{mc} / \mathrm{s}$.
- Standard models available.


## WAVELINE

CALDWELL, NEW JERSEY


## IN SIZES FOR EVERY APPLICATION

Now-from Kearfott, a new and broader line of Ferrite Isolators to satisfy the most exacting requirements of band width and isolation. Combining low unit loss characteristics with compactness and light weight. this new series of Kearfott Coaxial Isolators is available from present stock. Immediate selection and faster delivery is assured ...precision performance proven.

MODEL	FREQUENCY	ISOLATION	$\begin{aligned} & \text { INSERTION } \\ & \text { LOSS } \end{aligned}$	VSWR
C991100.402	$1.2-2.6$ KMC	10 DB Min.	1.0 DB Max.	1.20
C992100-405	2.0-2.5 KMC	30 DB Min.	. 8 DB Max.	1.20
C992100-404	$2.0-4.0 \mathrm{KMC}$	10 DB Min.	1.0 DB Max.	1.20
C992100.407	$3.0-3.5 \mathrm{KMC}$	35 DB Min.	. 8 DB Max.	1.20
C993100.401	$4.0-8.0 \mathrm{KMC}$	10 DB Min.	1.0 DB Max.	1.20
C994100.403	7.0-9.0 KMC	25 DB Min.	.8 DB Max.	1.20

Complete information on these or all of the models is available by directing inquiries to: 14844 Oxnard Street. Van Nuys, California. or the sales office in your area.


## KEARFOTT DIVISION <br> GENERAL PRECISION. INC.

Little Falls, New Jersey

## Never before a power supply to meet so many of your requirements so well!

Ov2amp OUTPUT!

120 watt output, fully regulated for high power transistor and other applications! Fully adjustable output with current limiter for safe low power applications! Extremely low noise and ripple, less than $250 \mu v$, for more applications! High order of line, load and temperature regulation for maximum stability! Meets all specs from 0 to $55^{\circ} \mathrm{C}$ !

New $\frac{1}{\text { m }}$ 722AR provides fully regulated output 0 to $60 \mathrm{v}, 0$ to 2 amps . Noise and ripple are less than $250 \mu \mathrm{vrms}$. Continuously adjustable safety circuit limits maximum current flow, prevents overload damage to transistors under test. Remote sensing terminals are provided so that the ohmic resistance of the supply lead does not affect regulation. Temperature-stable components insure dependable, "within spec" performance from 0 to $55^{\circ} \mathrm{C}$. Good temperature stability also assures constant, reliable output. Load regulation less than 5 mv for 0 to 2 amps change. Load voltage and current meters and threeterminal output are provided (pos. or neg. to ground or floating). Output terminals duplicated front and rear. Floating output permits series comnection for higher voltages. And the dop 722AR costs only $\$ 525.00$ !

## OTHER top REGULATED AND KLYSTRON POWER SUPPLIES:

dip 711A Laboratory Power Supply, 0 to 500 v @ 100 ma , $\$ 250.00$ (cabinet), $\$ 255.00$ (rack mount); he 712B Power Supply, 0 to 500 v @ $200 \mathrm{ma}, \$ 365.00$ (cabinet), $\$ 3.50 .00$ (rack mount): tip 715A Klystron Power Supply, Beam 250 to $400 \mathrm{v} @ 50 \mathrm{ma}$, Repeller 0 to $900 \mathrm{v}, \$ 300.00$; kp 721A Transistor Power Supply, 0 to $30 \mathrm{v}, 150 \mathrm{ma}, \$ 145.00$.

Data subject to change without notice. Prices f.o.b. factory,

## SPECIFICATIONS, 霝 722AR

Rated output:

Line Regulation:

Load Regulation:

Noise and Ripple:
Output Vernier:
Temperature Stability

Temperature fange:
Output Impedance:

Output Meters:

Cooling:
Size:
Weight:
Price:

Protection: Output current limiter continuously adjustable from less than 100 ma to 2.2 amps

Forced air
0 to $60 \vee \mathrm{dc}$
0 to 2 amps dc
Less than 2.5 mv for $\pm \mathbf{1 0} \%$ line voltage change; any output between 0 and 60 v .

Less than 5 mv for 0 to 2 amps change; any output between 0 and 60 v .

Less than $250 \mu \mathrm{vrms}$
Range, 1.3 v ; resolution, 5 mv .
Better than $0.02 \% /{ }^{\circ} \mathrm{C}$ or $5 \mathrm{mv} /{ }^{\circ} \mathrm{C}$, whichever is larger
0 to $55^{\circ} \mathrm{C}$ for operation within specifications
Dc: Less than 2.5 milliohms
Ac: Less than 5 milliohms in series with $4 \mu \mathrm{~h}$
Voltage: 0 to 60 v , one range
Current: 0 to 2.5 amps , one range
$19^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $12^{\prime \prime}$ deep Net 34 lbs .
$\$ 525.00$

1055B Page Mill Road
Cable "HEWPACK"

Palo Alto, California, U.S.A.
DAvenport 6.7000

HEWLETT-PACKARD S.A.
Rue du Vieux Billard No. 1 Geneva, Switzerland Cable "HEWPACKSA" Tel. No. (022) 26.43. 36

Sales representatives in all principal areas


Series 157

	OPERATION width   RANGE: W KMe   ISOLATION:   upon range   VSWR: Wav   Coax 1.2 m   INSERTION   1 of a series   ion micro   igned to $m$   ds of the $m$   R's Ferrite   d, high pe   coaxial m   ch provide   minimum   these isol   lication wh   nuate eithe   power flo   attenuation   They are   WR present   ate the osci ration.	Full wave   guide 3   2.0 to   5 to 30   guide 1.1   SS: 1 db   of FXR   aveco crowave   solators   ormance   maximu   sertion   ars are   the for   without   used op   by a   ator for	uide be   KMc   depenc   max   ax   new   pone   industry.   re bro   wavegu   mpon   isola   ed in   desired   ard or   orrespo   site di   educe   ore sta	
$\begin{array}{\|c} \text { Madel } \\ \mathrm{No}, \end{array}$	Frequency   Range KMc	Minimom Isolation di	Peak Power	Price
H157A	3.95-5.85	18	*2KW	\$270.00
C157A	5.85-8.20	20	*2KW	245.00
W157A	7.05-10	24	*2KW	245.00
X157A	8.20-12.4	30	*2KW	220.00
Y157A	12.40-18	24	**1KW	245.00
K157A	18.00-26.50	24	**1KW	270.00
K157AFt				270.00
N157A	2.00-4.00	15	**2KW	450.00

*Load VSWR 5 * * Load VSWR 2
tK157AF has the same specifications as K157A, except for the flange.

Wriste for Catalog Sheet No. 157


PXR, Ine.
Design-Development-Manufacture
25-26 50th Street/ RA. 1-9000 Woodside, N. Y./TWX: NY 43745

Circle 104 on Inquiry Card

## New

## Products

## MICROWAVE ABSORBER

Exxosorb AN-W is a series of broadband flexible foam microwave absorbers which can be used where it will be in contact with fuel, lubricants, or hydraulic fluids. It is a

truly broadhand absorber. Reflectivity remains at a low level even though the frequeney is varied and incident angle is varied. (Reflectivity is below $2!$, even at a $70^{\circ}$ in(idence angle.) Standard sheets are $2 \times 2 \mathrm{ft}$; thickness is the same as corresponding Eccosorb AN. Emerson \& Cuming. Inc., 869 Washingtom St, Canton, Mass.

## Circle 237 on Inquiry Card

## RESISTANCE CARDS

Kit contains high stability microwave attenuator material in easy-touse card form. It includes 11 metal film resistance cards, $21 / 2 \times 6 \mathrm{in}$., and one metallized mica card $2 \times 21 / 2 \mathrm{ir}$. plus instructions and tech notes. For microwave applications requiring accurate, reproducible dissipation at low $r$-f power, they may be punched, drilled. machined or sanded to suit your own needs. Meetirg MIL-P18177 specs, they are available from


25 to 750 ohms $/ \mathrm{sq}$. and in standard values of from 50 to 500 ohms. Standard resistance tolerance is $\pm 10 \% / \mathrm{sq}$. While attenuations values up to 70 db are obtainable, the vswr can be held to less than 1.10 over broad bands. Filnohm Corp., 48 W. 25th St., New York 10, N. Y.

Circle 238 on Inquiry Card

You can look at Philbrick's USA-3 Amplifier at least 3 ways


1. Undressed - Here's the basic unit itself - more performance per dollar than any other operational amplifier. Highly reliable - no electrolytic capacitors or glow tubes, Designed to prevent self-destruction, even when output is grounded. Drift, noise, offset under 100 microvolts. Output, $\pm 115 \mathrm{vdc}$. Wide frequency range - dc to 100 kc (attenuation less than 3 db ) when connected as gain-of-ten amplifier. Printed circuit board, $7^{\prime \prime} \times 21 / 2^{\prime \prime}$. Price, 1 to 9 units: $\$ 95$

2. Dressed - In a neal $3^{3 \prime} \times 7 \eta^{\prime} h^{\prime \prime}$ ventilited aluminum package, it becomes the USA-3-M3. It has sufficient room for the user to implement its operational destiny by installing additional circuit components. For example, you make it into a complete diode function generator, or integrator, or whatever you wish. The important feature of plug-in interchangeability is enhanced by the 4 to 7 spare terminals on the Blue Ribbon Connector, Price, I to 9 units
$\$ 125$

3. Dressed-up - Now it's a full tedged utility packaged amplifier, known as the UPA-2. Combining a new level of convenience and flexibility, it is immediately operational when plugged into any Philbrick power supply. It can be made to drive a 12,000 ohm load to 100 volts in either direction. Designed for bench top use, it comes installed in a $312^{\prime \prime}$ rack adapter, from which it is easily removed. The UPA-2 is ideal for analog computing, measurement and control, continuous data reduction, and many other feedback operations. Price, 1 to 9 units:
\$149

- OEM's: write, wire, or phone
for quantity prices
- Military equivalents available
- 8 page technical manual avail
able on request

GEORGE $A$.

## PHILBRICK <br> RESEARCHES, INC.

285 Columbus Avenue, Boston 16, Mass.
COmmonwealth 6-5375, TWX: BS 1032, FAX: BSN Representatives in principal cities
Export Office: 135 Liberty Street, New York 6, N. Y Tel. WOrth 4-3311, CABLE: TERMRADIO Circle 105 on Inquiry Card


OPERATION: Full waveguide band-
width
RANGE: 3.95 KMe to 40.00 KMc lin 7 sizes)
CROSSTALK: 60 db min
VSWR: 1.10 max
Choice of manual or electrical drive High.power sepacity

## *

No. 2 of a serics of $F X R$ 's new precisionmicrowave components designed to mect the ever-growing needs of the microztaie industry.

FXR's Waveguide Switches find applications on the test bench and in microwave systems. Operating over the full waveguide frequency ranges, these sw-itches provide trouble-free operation with high isolation and high-power capacity. The milled alu. minum waveguide rotor assures low VSWR. For long life it is mounted on hall bearings and is electrically connected to the stator through non contacting choke sections.

MODEL   NO.	FREQUENCY   RANGE   KMC	WAVEGUIDE   TYPE   RG-( ),	EPRICE   (MANUAL
H641A	$3.95-5.85$	49	$\$ 350.00$
C641A	$5.85-8.20$	50	300.00
W641A	$7.05-10.00$	51	265.00
X641A	$8.20-12.40$	52	225.00
Y641A	$12.40-18.00$	91	250.00
K641A, AF	$18.00-26.50$	53	275.00
U641A, AF	$26.50-40.00$	96	300.00

-Slightly higher for electrically driven units.
Write for Casalog Shees No. 641
FXR, Inc.
Design-Development-Manufacture 25-26 50th Street/RA. 1-9000 Woodside, N. Y./TWX: NY-43745

## New

## Products

## TUNNEL-DIODE OSCILLATOR

"lommedediote oscillator (available on a sampling hasis). Wevelopmental Trye SS-100, is a patage abpox. fi $x: 3 \times$ an exclusive of tuning dial and connectors, and less than! I Ib. in weight. Application of only 10.2 v. to

the ascilhator unit produces a power output of soceral tenths of a mw, tunable wer the 100-1400 Mo hathd. It provides a new type of tumable sig-nal-soure component that arn be de signed to meet the needs of new radar. telemetion and satellite sostems. Radion Corpe of America, Semicomblutors Dis., Marrisom, … J.

## Circle 239 on Inquiry Card

## heterodyne repeater

Nicrowave sestem can tramsmit ']' programs through a sories of relay hops withut degrading viewing guality. The RT-:3A Heterodyne Repeater is for continuous. mattended aperation in the $\because \mathrm{Kan}$ frequener range. the heterodyme repeater method eliminates demodulation and remodulation at each relay site. Adrantages include: 10 w output power for signal reliability owe grater path lengthe; mecte F're, Noser and moposed El. color and monorimeme standards: built-in metering and monitoring fa cilities; unattended operation; restig-

ial sidehand transmission plus crys-tal-controlled fregurery stability permit use of ? RT-3.A sestems within assigned 17 wo chanmels for spectrum conservation; and uses standard high gain paraholic antemas, Ader Filectronics. huc. New Rochelle. N.

Circle $2+0$ on Inquiry Card

FREQUENCY RANGE: 0.6 KMc to 12.4 KMc

ATTENUATION VALUES: $3,6,10$, 20 db
CONNECTORS: Type $N$ - male one end, female the opposite end

## *

No. 3 of a series of $\Gamma X R^{\prime}$ s new pre. cision microwatecomponents designed to meet the ener-grouing needs of the microwave industry.

FXR's Broadband Fixed Coaxial Attenuators are extremely useful and completely dependable in applications requiring isolation betwecn RF components anc exrending powe meter ranges. They may also be used for the calibration of directional acteristics and for similar applica. tions. These atenuarors have evcep. tional stability and are capable of withstanding appreciable overloads and peak power with no change in characteristics. They have hiph shock and vibration resistance and exhibit a negligible change of atrenuation a negligible change of attenuation undin humidity and emperatu cycling

Model   No.	Frequency   KMC	Max,   VSWR	Frequency   Sensitivity   di	Price
N180A	$.6-11.0$	1.3	$(-3)$	$\$ 42.00$
N180B	$1.0-11.0$	1.3	$(.6)$	42.00
N180C	$1.0-2.0$	1.35	$(-1.2)$	42.00
N 300	$2.0-11.0$	1.30	$(+1.3)$	
	$3.0-3.11 .0$	1.35	$(-1.3)$	42.00

Wri:e for Catalog Sheet No. I80


FXR, Inc.
Design-Develofment-Manufacture 25.26 50th Street/RA. 1.9000 Woodside, N. Y./TWX: NY 43745 Circle 107 on Inquiry Card


## FEATURES

- Rafed residual SWR - under 1.010; rated error in detected signal under 1.005 .
- Several models covering various bands from 50 to 4000 mc .
- Engraved scales and verniers permit one to read the probe position to 0.01 centimeters.
- Opfional accessory: a rack and pinion carriage drive than can be engaged or disengaged at will.
- Precision lapered reducers are available for use in making accurate measurements in a wide range of rigid and flexible coaxial transmission lines.

Write for complete information on AMCI Slotted Lines.


Circle 108 on Inquiry Card

## DELIVERY <br> OF ALL <br> TYPES

## by the leader for over 10 years

 NAFY TERMINAL BOARDS


## Lub



Gen-Pro military terminal boards are manufactured and inspected in accardance with latest revisian of MIL-T.16784, BuShips Dwg. 9000-S6505-B-73214 and BuOrd Dwg. 564101. Molding compound, per MIL-M-14E assures low dielectric loss, high insulation resistance, high impact strength.

NEW MINIATURE TYPES NOW AVAILABLE
Gen-Pro miniature type military terminal boards conform with Bureau of Ships Drawing RE10-D-764, as referenced in MIL Standard \#242.

WRITE soday for new catalog with illustrations \& specifications

Miniature 267810

## GENERALPRODUCTSCORPORATION Over 25 Years of Quality Molding

UNION SPRINGS, NEW YORK
TWX No. 169

Products

## TRANSISTOR POWER SUPPLY

The V-410, All-Transistor power supply provides these TV broadeast voltages and currents: V-410, up to 1.5 a at $2 \times 0$ vdc regulated; V-410 MON, up to 1.5 at 280 vde regulated, centering current from a self-contained module; V-410-CAM, up to 1.5

a at 280 vde regulated, centering current from a self-contained module, up to 100 madc, constant current, for camera focus current. Specs: Load current, 200 ma to 1.5 a; Output voltage, 275 to 285 vde; max. ripple, 5 mv l'ms; Regrolations vs load, $\pm$ $0.5 \%$ max.; Regulation vs. line, 士 $0.5 \%$ max.; Source impedance, 0.5 ohms, 0 to 100 kc ; Unregulated output, 350 v. approx. at up to 200 ma. Foto-Video Electronics, Inc., :3i Commerce Rd., Cedar Grove, N. J.

Circle 241 on Inquiry Card

## OSCILLOSCOPE

The Type 560 is basically an indicator. It contains a 5 -in. CRT with 3.5 kv accelerating pot., an $8 \times 10 \mathrm{~cm}$ viewing area, an amplitude and sweeptime calibrator, and a regulated de supply $(30 \mathrm{w})$. Indicator accepts any 2 of 4 plug-in units-which drive the deflection plates directly. It can use a time-base unit, Type 67 (21 calibrated sweep rates- 1 usec/cm to $5 \mathrm{sec} / \mathrm{cm}$ with one of those signalamplifier units: a basic amplifier, Type 5! ( $1 \mathrm{v} / \mathrm{cm}$, de to 400 Kc ) ; a 1 MC amplifier, Type 60 ( $50 \mathrm{mv} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$, calibrated decade-step at-

tenuator) ; a differential-input amplifier, Type (i:) (100:1 rejection ratio, $1 \mathrm{mv} /(\mathrm{m}$, de to 300 kc$)$. It can operate as an X-l Oscilloscope using identical amplifier units in both channels. Tektronix. Inc., P. O. Box 500, Beaverton, Ore.

Circle 242 on Inquiry Card


## KEMET COMPANY EXPANDS ITS SOLID TANTALUM CAPACITOR LINE!

These new, smaller sized J-series capacitors - an addition to the proved and accepted H -series solid tantalum line-comply with and in many instances exceed the requirements of MIL-C-26655A.

For example, these capacitors are available in capacitances up to 22 microfarads at working voltages of 50 volts at 85 degrees $C$. At 125 degrees C., they operate at two-thirds of the 85 degree C. working voltage. Available with or without insulating sleeves, the new J -series capacitors maintain the excellent low
leakage current characteristics associated with the H -series line, even though they occupy about $1 / 3$ of the space of the earlier types.

These new capacitor designs are made possible by the advanced research facilities available at Union Carbide Corporation, plus the fact that "Kemet" is not dependent on other suppliers for the mining or processing of tantalum.

For literature, write Kemet Company, Division of Union Carbide Corporation, 11901 Madison Avenue, Cleveland 1, Ohio.


FREE! The Catalog that has werything in ELECTRONICS for
INDUSTRY, DEFENSE, BROADCAST

452

## pages!



Semi-Conductor Headquarters For Incustry at Quantity Prices Competitive with Manufacturers

Texas Instruments • Hughes Philco - General Electric General Transistor - Bendix - International Rectifier - Sylvania - Sarkes Tarzian - Hoffman - I.T.\&.T. - RCA Motorola - Raytheon - Ohmite CBS Electronics - Westinghouse

Newark stocks and distributes over 450 top lines covering every phase of electronics!
Semi-Conductors - Connectors Relays - Switches - Industrial Tubes - Test Equipment Transformers - Controls Resistors - Meters - Capacitors

- Pilot Light Assemblies
$\star$ COMPETITIVE FACTORY PRICES $\star$ COMPLETE ON-HAND STOCK $\star$ IMMEDIATE DELIVERY
Your One.Point Source for All Your Electronic Needs HTELNASITS
223 W. Madison St., Chicago 6, Illinois 4747 W. Century Blvd., Inglewood, California Circle 111 on Inquiry Card


## Powdered Iron Toroids

APPLICATIONS
High Q circuits for

- Transformers- I.f., etc.

Precision filters
d Linear
roroidal features
Reduces spray fields ond proximity effects to obtain better stability.
Permits small coil canstruction
Higher effective permeability
Coupling not affected by funing circuit High stability with temperoture and time Low harmonic distortion
8 Improved insutation results in high $Q$
8 Manufacluring methods permit close control of permeability and 0
9 Finishes of tough thermosetting resins minimizes moisture absorption ond provides insula tion suitable for winding enameled wire directly an the core.

CORE SIZES
Cores are available in diameters from 9/32 OD to $2^{\prime \prime} \mathrm{OD}$
Permenbility: from 8 to 45
Recommended frequencies:
Materials ore ayailable
good 0 from 0.1 to 25 MC
Write far samples and further information.


## New

Products

## TUNEABLE LOAD

New standard tumeable loads, pre(ision laboratory instruments, provide accuracey and versatility in vswa measurements. The tumeable loads can reduce their own reactive elements to a negligible value, and the resulting vswe is the residual viwe of the

slotted line USWR of 1.005 can be achieved at single frequeneios and $1.0 \geq$ max. for a full oetave. Also onere meviously calibrated a voluntary mismateh of known phase and magnitude can he introduced without changing the reference plane. Two models: available, the TI, 2000 from 250 to 2000 Mc and the Tl,-4000 from 2000 to 4000 me, they are supplied with trpe N or (" connectors. They will handle 1 w, 1 kw pak and have mierometer; calibration resedable to $\pm 0.001 \mathrm{in}$. The variable mismateh that cean be introduced is :3.0 max. for the Tl.-2000 and Tl.-4000. Maury \& Associates, 10:3:; Mills Ave., Pomona, (alif.

$$
\text { Circle } 243 \text { on Inquiry Card }
$$

## HEAT DISSIPATOR

Transistor Heat-dissipating Retainer features all-bervollium ropper spring finger construction to acombmodate dia. variations from 0.305 in. to $0.3: 35$ in. found in T(0-5, TO-9, 'T'()-11 and ${ }^{\prime}$ T()-:3 transistor cases. It provides max. thermal contate with the transistor case. This results in most efficient transfer of heat from transistor case to the dissipator and heat sink. Dethods for monnting are simple and suitable for either printed

cireuit boards. chassis and beat sinks. It provides effective themal henefits and max. retention in extreme shock and vibration environmentr. IERC: Div., Intornational Electronic Research ("orp., 1:35 W. Maymolia Blud., Burbank, Calif.

Circle 244 on Inquiry Card

plated compression caps provide the resistor with positive termination. Coated with Electra's "R" Coating to resist moisture, impact and high temperatures, it has a resistance range of 10 ohms to 300 K , a wattage rating of 110 watt @ $125^{\circ} \mathrm{C}$., and a maximum rated voltage of 250 volts. *Actual size: . $250^{\prime \prime} \pm$ $.010^{\prime \prime}$ length ; diameter . $093^{\prime \prime}$.

Metal Film:

## Arailability:

Electra MFS 1/10..."R" coated epoxy Electra MF 1/10 ... Molded jacket

Deposited carbon:
Electra DC 1/10..."R" coated epoxy.
Electra DCM 1/10... Molded Jacket

Designed for use where space is a critical factor, this tiny DC 1,10 resistor measures only $1 / 4^{\prime \prime *}$ in length, and yet its solid ceramic core foundation makes it thermally stable, while the use of diamond spiralled carbon film assures higher reliability. Sturdy No. 22 leads $11 / 2^{\prime \prime}$ long (plus or minus $1 / 8{ }^{\prime \prime}$ ) with silver

## Availability:

## PRECISION WAYEGUIDE BENDING

 TO. YOURSPECIFICATIONS

Bends, Twists, Offsets, Coils,
Transitions, Fabrications and complete assemblies to your prints. AUTOMATIC MACHINE C $\begin{array}{lllllllll} & R & P & O & R & A & T & I & O\end{array}$ 80 CAMBRIDGEST BURLINGTON, MASS. TEL. BRowning 2.0800
Circle 113 on Inquiry Card

## New

## Products

## VSWR INDICATOR

For microwave instrumentation and testing performance of wave guide assemblies instrument can be used with oscillator's using Klystron tubes and especially with the Solartron Klystron Power Supply Unit Type AS 5 (i2. For operation from a microwave crystal probe detector ele-

ment, input impedance is 10,000 o:ms. It provides a sensitive and selective amplification which grives an indication on a 6 in. dia, meter directly in terms of swr. By the use of 2 selective amplifiers in series tuned to 3 KC and with a $\pm 50 \mathrm{CPS}$ bandwidth, there is a low noise level on the detector signal applied to the meter, thus max. gain can be used without loss of accuracy. Meter indicator has 4 scales, a linear scale of 50 div., 2 square law scales in direct terms of VSWR, ard a scale in terms of reflection co-efficient. Max. sensitivity is approx. $0.3 \mu \mathrm{v}$ for full scale meter. deflection. Solartron Inc., 1743 S. Zeyn St., Anaheim, Calif.

## Circle 245 on Inquiry Card

## COAXIAL LINE DUPLEXERS

Addition to microwave components linc, branched coaxial line duplexers, utilize two cell-type TR tubes and a single cell-type receiver protector tube. In the $31 / 8 \mathrm{in}$. unit, two band pass filters are shown, one in the receiver circuit and one in the AFC pick-up circuit. Visible also are directional couplers used for measuring

transmitter power and antenna circlit vswr. Unit shown is rated as follows: frequency 406-450 mc; transmitter po 3 now max.; transmitter po (av), 5 kw max. Bomac Laboratories, Inc., Salem Rd., Beverly, Mass.

Circle 246 on Inquiry Card


# Higher permeability values now guaranteed for Allegheny Ludlum's Moly Permalloy 

## Means new, consistent and predictable magnetic core performance

Molybdenum Permalloy nickel-iron strip is now available from Allegheny Ludlum, with higher guaranteed permeability values than former typical values. For the buyer, this new high quality means greater uniformity . . . more consistent and predictable magnetic core performance.

This higher permeability is the result of Allegheny Ludlum's intensive research on nickel-bearing electrical alloys. A similar improvement has been made in AL-4750 strip steel. A.L continues its research on silicon steels,
including Silectron, well-known grain-oriented silicon steel, and other magnetic alloys.
Complete facilities for the fabrication and heat treatment of laminations are available from Allegheny Ludlum. In addition, you can be assured of close gage tolerance, uniformity of gage throughour the coil, and minimum spread of gage across the coil-width.
If you have a problem relating to electrical steels, laminations or magnetic materials, call A.L. Prompt technical assistance will be yours. And write for more in. formation on Moly Permalloy. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa.

Expert distributlon. Electrical Materlais: AIRCO INTERNATIONALINC.. NYC I7


Now Added to Industry's Most Complete Line of Germanium Power Transistors

## NEW CBS



## Advantages

- High power oulput: up to 30 w Class A, 100 w Class B, 1000 w switching
- High voltages . . . high current gains . . . and high working currents
- Low-distortion ring emitter construction
- Hermetically welded JEDEC TO. 36 male indus. trial case


## Characteristics

All these CBS high-power transistors have: Max. dissipa. tion, 150 watts for a typical thermal resistance of $0.5^{\circ}$ C/W; max. collector current, 15 amperes; junction temperatures, -65 to $+100^{\circ} \mathrm{C}$.

Type	Max. W. Diss.*	Max   Thermal   Res ${ }^{\circ} \mathrm{C} / \mathrm{W}$	Max. $V_{\text {Cbo }}$	Max. $V_{\text {CES }}$	$\mathrm{h}_{\text {PE }}(1 \mathrm{c}=5 \mathrm{~A}$ )	
2N173	70	1.0	60	50	35	70
2N174	85	0.8	80	70	25	50
2N277	70	1.0	40	40	35	70
2N278	70	1.0	50	45	35	70
2N441	70	1.0	40	40	20	40
2N442	70	1.0	50	45	20	40
2 N 443	70	1.0	60	50	20	40
2N1100	85	0.8	100	80	25	50

[^13]
## save costs • space • weight

You can now replace two 40 -watt or four 20 -watt paralleled power transistors with one CBS PNP highpower transistor. This one design change brings you important transistor . . . component . . . assembly . . . space . . . and weight savings. New economies become possible in power supplies and amplifiers and in highpower switching circuits.

Note the wide line of these CBS PNP high-power transistors, their pertinent characteristics and many advantages. Ask for complete technical data. Order these money-saving units today . . . at factory prices for quantities up to 1000 . . from your Manufacturers Warehousing Distributor.
;BS ELECTRONICS, Semiconductor Operations, Lowell, Mass. - A Division of Columbia Broadcasting System, Inc.

## CALL YOUR LOCAL

(a)
Manufacturers
Warehousing
Distributor

Amer. Electronic Supply, Inc.	Iowa Radio Supply Co., Inc.
Rochester 5, N. Y.   LOcust: 2-3010	Cedar Rapids, lowa EM: 4.6154
John A. Becker Co.	Lafayette Ra
Dayton, Ohio	Jamaica 33, N.   Axtel: 17000
Bell Electronic Corp.	New York 13, N. Y. WOrth: 6-5300
Los Angeles, Calif. PLeasant: 2.7191	Bronx 58, N. Y. FOrdham: 7.8813
Busacker Equipment	Boston 10, Mass. HUbbard: 2-7850
Corp.	Newark 2, N. J. MArket: 2-1661
JAckson: 9.4626	Plainfield, N. J. PLainfield: 6.4718
C \& G Electronics Co.	Elwy W. Ley Co.
Seattle, Wash. MA: 4.4355	Paramount, Calif.   NEvada: 6.8339
Cramer Electronics, Inc.	Milo Electronics Corp.
Boston 16, Mass. COpley: 7-4700	New York 13, N. Y. BEekman: 3-2980
D \& H Distributing Co.	Newark Electronics Corp.
Baltimore $30, \mathrm{Md}$. SAratoga: 7-5100	Chicago 6. III.   STate: 2-2944
Durrell Electronics Waltham, Mass. TWinbrook: 3-7020	Olive Industrial Electronics, Inc. St. Louis 30. Mo. VOlunteer: 3-4051
Electronic Center. Inc.   Minneapolis, Minn. FE: 8.8678	Pace Electronic Supplies, Inc. Chicago 48, ROdrey: 3.6300
Electronic   Expeditors, Inc.   Milwaukee 12, Wisc.   WOodruff: 4-8820	Phila. Electronics, Inc.   Philadelphia, Penna. LOcust: 8.7444
Electronic Parts Co.   Albuquerque, N. M. AL: 6-0946	Santa Monica Radio Parts Corp. Santa Monica, Calif. EXbrook: 3.8231
Electronic Supply   Melbourne, Fla.   PArkway: 3-1441	Stack Industrial Electronics Inc. Binghamton, N. Y.
Electronic Wholesalers, Inc.	BInghamton: 3-7337
Washington 1, D. C. HUdson: 3.5200	Radio and Electronic Parts Corp. Cleveland 15, Ohio
Fortune Electronics Corp.	UT
San Francisco, Calif. UNderhill: 1-2434	S. Sterling Co.   Detroit 35, Mich.   BRoadway: $3-2900$
General Radio Supply Co., Inc. Camden. N.J. WAlnut: 2-7037	Summit   Distributors, Inc.   Buffalo, New York   GRant: 3100
Graham Electronics Supply Inc. Indianapolis 4, Ind.	Swieco, Inc. Electronic Supply Div.
M Elrose: 4-8487	Fort Worth, Texas ED: 2.7157-RI: 8.2229
Harvey Radio Co., Inc.	Telrad Electronics
N. Y.C. $36, N . Y$. JUdson: 2.1500	San Diego, Calif. AT: 1.7754
Hudson Radio \& TV   New York, N. Y.   TRafalgar: 3 -2900	United Radio, Inc. Cincinnati, Ohio CHerry: 1.6530
Industrial Electronic Supply	R. V. Weatherford Co., Inc.
Grand Rapids, Mich. CHerry: 1-5695	Glendale, Calif.   VIctoria: '9.2471

## New

## Products

## SUBCARRIER OSCILLATOR

Morbel (0-2) voizage controlled sub carrier uscillator features data stahility for far telenetoring applications foum - 5 C to +125 C. First of a now series of solid state telemeterime components using silicon semiconductors, it is packated in a die cast alu-

minum configuration that features a captive serew hold down and a renoval levice. Paekage measumg $2.25 \times 1.875 \times 0.875 \mathrm{in}$. is smallest of : packaging modules in the series of telemetering hardware Adjustment rontrols for centering, deviations sensitivity and output provided at top of unit. Available in standard IRIC chanmels with inputs of either 0 to 5 v.. or - $21 / 2$. to $+2 \underline{1} / 2$ v. Dorsett Electronics Laboratories. Inc., 113 15. Boşd. Norman, Okla.

Circle 247 on Inquiry Card

## PUSH-BUTTON TIMER

Fush-Button 'limer provides automatic shut-off and reset. For ac or s. operation, Model :309 features 0.0ntes repeat accuracy; a metal-toneoprone impingement clutch; one S.I.I).T. smap-action load contact in series with the motor, plus option of additional S. P. 1 .T. snap-action independent load contact. It can be mounted in : ways: one hole mount-

ing with modern ring champ; surface mounting with bracket; or front-ofpanel mounting. Available in lif standand dial ranges from 6 sec. to 60 hrs. Automatic Timing \& Gontrols, lne., King of I'russia, I'a.

## The Finest MONDATVRE <br> R. F. CHOKES Available Frow Stock

Delta spares nothing to maintain the highest quality. It combines advanced engineering and the latest volume production techniques to give you the very finest at prices that are right. Delta's 1000 series of R.F. Chokes serve a wide range of Filter network, high Q R.F. and I.F. circuit and Telemetering needs. They're precisely accurategive dependable uniform performance. Inductances conform to MIL-C-15305 B standards. Fungus resistant and ruggedized, they withstand unusually hard treatment.

Solenoid wound, these chokes provide inductances from 1.1 why to 120.0 why They can be supplied with formed leads for printed circuits or epoxy encapsulated to your specific requirements.

Delta also makes miniature coils, chokes, RF-IF transformers, filters and a wide varicty of coils for Radio, TV, industrial and military applications. Its engineers are always available to help meet your needs.
When it comes to coils, you can depend on Delta.


1128 MADISON AVENUE PATERSON, NEW JERSEY A subsidiary of
JETRONIC INDUSTRIES, INC - PHILADELPHIA

HELITRIM® $1 / \mathbf{2}^{\prime \prime}$ SQUARE TRIMMING POTS... Now available from Helipot at the lowest price in history: Model 70 with Teflon leads, 84.95 and down: Model 71 with pins. $\$ 5.45$ and down.
Take your pick: Model 70 with leads... Model 71 with pins. They'Il solve your trimming and space problems and see you through adverse environmental conditions, too!
They should. Theyre the best pair of square trims on today's market... at this or any price! The reasons?
Elementary... they offer special features (such as Teflon leads on the 70) as standard! And both standard models incorporate a unique slip clutch stop that positively prevents the wiper from going off the end of the coil and into dead space. (Continuous units are available as special.)
The specs tell the story! Standard resistance ranges of 10 to 50,000 ohms ... resolution from $1.01 \%$ at 10 ohms to $0.083 \%$ at 50 K ohms $\ldots 1$ watt power input at $50^{\circ} \mathrm{C}$ derating to zero at $150^{\circ} \mathrm{C}$ !

And all this performance is packed into a $1 / 2^{\prime \prime}$ square allmetal housing that's sealed against humidity.
Convinced? If not, there are more perstaders in our catalog. Ask for it.

## LOW PASS FILTER

Hodel 36:. H .ow Pass Filters are ractive clements facilitating microWave measurements hy suppressing hamomics. Measurement arearary of standing wave ratio and response atre increased since transmission is at a single frequency. Specs (M:3OA and


N:36ed in order : Pass hand, 10 to 15.5 KMC-15 to 21 KMC; Standing Wave ratio (mass hand). 1.5:1-1.5:1; Insertion loss (pass hathd), less than 1 dh-kess than 1 dh; stop band, $1!$
 (stop band), at least 40 db -at least 10 db; Waveguide sige WR 75-WR 51; Flange, flat cover-flat cover: length. + $15 /: 32$ in. $-3 \quad 1 / 32$ in.; Weight, not 9 oz-not 5 o\%. HewlettPackard Co.. 1501 Page Mill Rd., I'alo Alto, Callif.

Circle 249 on Inquiry Card

## DELAY LINES

Series of compad and highJy atecurate delay lines allow broader band operation, lower attenuation, accuracy at higher frequencies and sreater stability, incorporating the wreatest amount of cable in the least possible space. The delay lines consist of 285 ft. of $1 / 2$ inl., 50 ohm Foamflex cable in each unit. The delay time within wach line has a tested accuracy of $\pm$


1 musec. Terminating ends are bent on a $\ddot{\sim}$ in. radius. The size of each whit is 16 in . across (diameter) hy fi in. in height. The Electronies lliv., American Tuhe bending Co., New Haven, Comb.

Circle 250 on Inquiry Card
POTS : MOTORS : METERS
Helipot Division of Beckman Instruments, Inc. Fullerton, California


## COMMUNICATIONS

## VIA THOPO SCMTIER


IT Resedacg ANe mpotancumanta
D Bycysung Eycuntanuly
[i Muxdurachurines
[ Instarghalich

## III

## Fateryl Division - LABORATORIES



Developed with extra reliability to effectively meet exacting requirements over a tremendous range of application with a substantial saving in cost, as follows:

1. Armature hinge pin is centerles ground stamless steel with wer-size precision reamed learing surfaces for stabilized adjustment and long operating life.
2. Glass insulation for high di.electric trength and for added resistance to hinmidity and temperature change.
3. Ruggedized. independently riveted coil terminals.
4. Molded liton hobhins.
5. Puilt-in contart wipe: comaets riveted for added dependahility.
6. Modular construction-permits chaness in coils. contact comhinations or terminal arrangements with minimum added cost.
MAGNECRAFT Engineers are confident that the extra reliability built into the new Class 88 Relay makes it the most suitable relay for thousands of uses as well as the least costly to use.

The new Closs 83 i: ovoilable for $A C$ to 440 volts. $D C$ to 220 volts; with 5 or 10 ompere contocts to 3 PCT; furnished open, with plastic enclosure (shown below) and seoled.
Dimensions, overoll-13/6 $\times 1 \frac{1}{4} \times$ $1^{1316 ;}$ interchongeable with mony re. 'oys of similor size.


Class 83 Relay, p!ug-in mounted with trarsparent plast:c enclosure.


Class 8\&R Power Relay. Furnished with 15 ompere contacts to DPDT fo: $A C$ or $D C$ operotion.

Write for literature or send specifications covering your requirements for quotation.

## MAGNECRAFT ELECTRIC CO

3350 H W. Crand Avenue. Chicago 51. [1].

## Representatives in Principal Cities

## HIGH SPEED SWITCH

New ultra high-speed microwave switch consists of $: 3$ identical switc. $l_{-}$ ing cells-each capable of 17 d ) isolation and 1.5 d , insertion loss. The :; cells cascaded together offer con-servatively- 40 db of isolation and 4.8 db max. insertion loss. Similar

(haracteristics may be obtained at $X$ and KU band frequencies using the correct number of cells to give the necessary isolation. Featured are: Switching Speed, rise time, $10 \mathrm{~m} \mu \mathrm{sec}$ max.; becay time, 10 musec max.; Frequency Band, 5.4 to 5.9 kMC ; Isolation, 40 d , min.; Insertion I.oss, 4.8 dh max.; I'ower HandIing, 4t mw; Drive Power required, 150 mw ; Length, 4 in. Kearfott Div., Microwave Products, General Precision Inc. 1484.4 Oxnard St., Van Nuys, Calif.

Circle 251 on Inquiry Card

## SEMICONDUCTOR SILICON

High purity silicon in polycrystalline rod form is above Grade I in quality. Rods are suitable for zone refining to the single crystal silicon used in power rectifiers, transistors, diodes, and other semiconductor devices. By vacuum zone refining, the polycrystalline rod can be converted to single crystal silicon having typical resistivity greater than 1000 ohmcm, minority carrier lifetime wreater than $400 \mu \mathrm{sec}$. Available in various

diameters up to 1 in. and lengths to $17^{1 / 2}$ in., the rods are characterized loy a high degree of purity and maximum uniformity to facilitate zone refining. Dow Corning Corp., Midland, Wich.

Circle 252 on Inquiry Card


## Minimum cutoff frequency of 144 kmc at -2 v

DESIGN NOW with the new TI XD-500 series diffused gallium arsenide mesa varactor diodes. Obtain guaranteed high $\mathrm{Q} /$ high frequency performance at extremely low noise levels in your parametric amplifiers, harmonic generators, microwave switches, and sub-harmonic oscillators.
By eliminating whisker inductance, Texas Instruments can now provide you with varactors having the lowest series inductance in the industry, typ $0.7 \mathrm{~m} \mu \mathrm{~h}$. Packaged in a double-ended beryllium oxide microwave cartridge, the XD-500 series microwave varactors feature matched temperature coefficients for wide operating temperature range. All TI microwave varactors are tested for diode action in liquid nitrogen before being shipped to designers of missile/space vehicles, communications networks, radar sets, telemetry systems, and other microwave applications.

Contact yeer nearest TI Estinical sales representative for complete specifications and price infortiation, or your limen ant.therized TI distributor.



## FASTEST:

## kestre (4.4.4) resin-Core soloder

No solder on the market works as fast, as sure as Kester " 44 " Resin-Core Solder . . . with its instant fluxing action. Flux-residue is non-corrosive, nonconductive . . . fungus resistant too. Available in all alloys, core sizes and diameters.

FOR HIGH SPEED PRODUCTION
LINE SOLDERING

> WRITE today for free 78-page Technical Manual "SOLDER .. Its Fundamentals and Usage."

## KESTER SOLDER COMPANY

4210 Wrightwood Avenue. Chicago 39, Illinois
Newark 5. New Jersey - Anaheim, California - Brantford, Ontario, Canada over 61 years' experience in solder and flux manufacturing Circle 121 on Inquiry Card

## solve WIRE-STRPPPING probelems

 with NEW (6)asico GLO-MELT WIRE STRIPPERFAST, FLEXIBLE AND ECONOMICAL REMOVAL OF ALL PLASTIC INSULATED WIRE
Wire stripping problems fade away wilh a Wasseo Glo-Melt wire stripper. This new tool is a cool, light, highly flexible hand piece with a single, heavy duty Nichrome culting ele. ment for long life. It can be used for on the job applications or for bench work with optional foot comtrol. The Wasseo Clo-Melt wire stripper gives you a cleaner, faster joh, . . . is perfect for hard-to-get-at places . . . strips insulation including Teflon, Nolun and fiberglase up to No. 8 insulated wire with a simple neist of the wrist. No sharpening or adjustime-just plug in and you are ready instantly to do a perfeel stripping joh with speed and ease. Inquire about our 10 day free trial.


- INCREASES JOB EFFICIENCY



## New <br> Products

## SHIFT REGISTER ELEMENTS

Magnetic shift register elements, can operate at low power levels, and provide dense packaging of components. Each wafer-like element stores a single binary bit of information, and can be assembled in modules with up to 10 elements/in. Electrical

design of the serial driven, gated transfer element permits operation at an information rate of 100 kc a peak shift pulse power of 0.1 w . Shifting function is accomplished with a single turn on cach marnetie core, redacing connections by $33 \% \%$, anc increasing overall reliability. Each has a single hole molded in the wafer for linking toroidal magnetic cores with a single drive or shift wire. Ceneral Elctric Co., Heavy Military Electronics Dept., Bldg. No. 3 , Court St. Plant, Syracuse, N. Y. Circle 253 on Inquiry Card

## MULTIMETER

Multi-function current, resistance and voltage meter. Current range is $10!$ to $=0$ a $\pm \because \neq \%$ de and $\pm 3 \%$ ac. Resistance range is 10 ohms to 10 megohms center scale, $5 \%$ accuracy. Ac voltages can be measured from 1 $m v$ to $1 \mathrm{kv} \pm 8 \%$ over the 20 c g to 1 Mc range, de 1 my to $1 \mathrm{kv}=-\%$. A function changing mechanism shows only the range in use. Two calibrating output voltages are available, 1 vde and 1 vac RMs: square wave

controlled by a zener reference circuit to an accurary of $1 \%$. A 1 MC dbm scale is provided for audio measurements, Input impedance is 10 megohms. Smith-Florence, Inc., 4228 23id Ave. W., Seattle 99, Wash.

Circle 254 on Inquiry Card

## POS-E-KON" the only connectors designed expressly for FLAT CONDUCTOR CABLE



For military and other precision eppliontions, basic connector is customadapted for any installation. Interconnect or terminate flat multi-conductor cable or flexible printed circuitry with these completely dependable, easily installod fittings. Designed to our requirements, the Pos-E-Kion Line in as versatile and extensive as your needs. Many standard items to ohoose from.

PATENTS PPENGING

write to:


## THE THOMAS \& BETTS CO.

## POS-E-KON DIVISION

ELIZABETH,<br>NEW JERSEY<br>IN CANADA, THOMAS \& BETIS LID MONIREAL

ALL T\&B PRODUCTS ARE AVALLABLE THROUGH THE LOCAL T\&B DISTRIBUTOR

## No, it's not a transistor.


... it's the new Spectrol ultraminiature trimmer... the smallest trimming potentiometer on the market! Measuring $1 / 3^{\prime \prime}$ in diameter, weighing only 1 gram, and designed specifically for transistor circuits, the Spectrol Model 80 is a remarkable breakthrough in component technology.

Design engineers can now shrink printed circuit packages in all three dimensions. The single turn adjustment is from the top, rather than the side. It is ideal for printed circuit applications. Sealed construction allows complete package encapsulation.

THE MODEL 80 is approximately one-quarter the size of ordinary trimmers, yet it offers greater resolution and resettability because the resistance element is nearly twice as long. These trimmers meet all applicable military and commercial specifications including the most severe humidity cycling and immersion tests.

## AND TWO NEW MINIATURE POTENTIOMETERS, TOO!

Sturdy construction provides reliable operation at a modest price. Only one-half inch in diameter, the new bantam weight Models 140 and 150 rotary potentiometers are well suited to trimming, control and servo applications where space and environmental conditions are critical. Standard linearity is $\pm 1.0 \%$ with $\pm 0.5 \%$ available on special order. Servo mount ball bearing type units have standard linearity of $\pm 0.5 \%$. Slotted shafts are standard on all models.

SPECIFICATIONS


DIAMETER: 0.345"
STANDARD RESISTANCES (0hms): 50, 100 ,
200, 500, 1K, $2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}$
RESISTANCE TOLERANCE: $\pm 5 \%$
NO. TURNS: ONE
POWER RATING: 1 watt at $70^{\circ} \mathrm{C}$
LINEARITY: $\pm 1.0 \%$
NOISE: 100 . ENR per NAS. 710
SHOCK: 50 G
VIBRATION: 30 G to $2,000 \mathrm{CPS}$
HUMIDITY: MIL-E.5272C, Proced. I (10
days, cycling) and MIL-STO-202A, Method 104. Condition A (immersion in hot water) SALT SPRAY: MIL-STO-202A, Method 101A,
Condition A (96 hours)
LOAO LIFE: 1000 hours
WEIGHT: 1 Gram
PRICE (1.9 units): $\$ 6.00$ each


DIAMETER: $0.500^{\prime \prime}$
STANDARD RESISTANCES (ohms): 50, 100,
$200,500,1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}$
RESISTANCE TOLERANCE: $\pm 5 \%$
NO. TURNS: ONE
POWER RATING: 2 watts at $70^{\circ} \mathrm{C}$
LINEARITY: $\pm 1.0 \%$ standard, $\pm 0.5 \%$ special ( $\pm 0.5 \%$ standard on servo mount) NOISE: 100SENR per NAS-710
SHOCK: 50 G
VIBRATION: 30 G to $2,000 \mathrm{CPS}$
HUMIDITY: MIL-E-5272C, Proced. I (10 days, cycling)
Salt spray: MIL-Sto-202A, Method 101A, Condition A (96 hours)
LOAD LIFE: 1000 hours
WEIGHT: 0.1 OZ.
PRICE (1.9 units): $\$ 10.00$ each


DIAMETER: 0.500"
STANDARD RESISTANCES (ohms): 20K, 50K,
70 K ( 50 ohms to 20 K also available)
RESISTANCE TOLERANCE: $\pm 5 \%$
NO. TURNS: ONE
PDWER RATING: 2 watts at $70^{\circ} \mathrm{C}$
LINEARITY: $\pm 1.0 \%$ standard, $\pm 0.5 \%$
special ( $\pm 0.5 \%$ standard on servo mount)
NOISE: 100 OENR per NAS. 710
SHOCK: 50 G
VIBRATION: 30 G to $2,000 \mathrm{CPS}$
HUMIDITY: MIL-E-5272C, Proced. I (10
days, cycling)
SALT SPRAY: MIL-STO-202A, Method 101A,
Condition A ( 96 hours)
LOAD LIFE: 1000 hours
WEIGHT: 0.15 oz .
PRICE ( 1.9 units): $\$ 12.00$ each

The Spectrol name, your assurance of quality. New Spectrol trimmers and miniature potentiometers are produced to the same exacting standards of quality and reliability engineered into the entire Spectrol potentiometer line... the largest selection in the industry.

Available now for immediate delivery. Standard models of Spectrol trimmers and miniature potentiometers, as well as other standard precision potentiometers, are available from your nearby Spectrol distributor. For complete technical information, contact your Spectrol engineering representative or write directly to the factory. Please address Dept. 44

ELECTRONICS CORPORATION<br>1704 South Del Mar Avenue • San Gabriel, California Phone: ATlantic 7-9761

## from first call to fast delivery...



sets the pace in special RF connectors!
Connecting an Eimac Klystron to RG-126/U cable calls for a special, low VSWR adapter. Gremar designed and delivered it in days... not weeks. Other examples of Gremar's fast delivery of specials include strip transmission line to co-ax adapters, crystal adapters and many other special RF connectors.

Gremar's special delicery capabilities are based on a constant inventory of 500,000 assembled units of more than 2000 types of RF connectors and adapters... plus more than $4,000,000$ component parts ready for adapting to most problem specifications. And when components do not exist, Grenıar makes them fast.

What is your problem? Because Gremar connectronics ${ }^{\text {a }}$ concentrates engineering, production and quality control on RF connectors and components only, your requirements receive the specialized attention that slashes design-todelivery time . . . as our customers testify. For all the facts fast... on stándards or specials...
contact

descriptive brochure available on request


MANUFACTURING COMPANY, INC.
RELIABILITY THROUGH QUALITY CONTROL Dept. E, Wakefield, Mass., CRystal 9-4580

U. S. Navy pilot. J. H. Bahlman describes reaction during simulated "flame out" at 15.000 ft . IL to R) Rear Adm. R. Bennett; H. Lehnc (Sylvania) : Col. H. V. Parris (Aerospace Medical Labs); and Capt. E. C. Callahan, Comm. Officer and Dir. of Training Cntr., (U.S.N), Port Washington, N. Y.

## Digital Trainer

## Simulates Flight

A new digital flight trainer and research device called UDOFTT (Universal Digital Operational Flight Trainer, Tool) has been developed by Sylvania Electric Products. Inc., 730 :3rd Ave., N. Y. Built under sponsorship of the Air Force and Navy, it is being considered for simulating hypersonic and orbital flight. A simulation of the Drina Soar (space vehicle) is being considered.

Mathematical representations of the characteristics of the vehicle to be simulated are transferred through punched cards into the computer's magnetic core memories. Manipulating the controls provides new information to the computer which then computes the equations of motion and activates the instruments in the cockpit to correspond to the plane's "actions".

UDOFTT, which operates at a rate of more than 200,000 operations per second, is the result of intensive research by the Navy and Air Force to develop a flexible computer ssstem with "real-tine" capabilitythe ability to respond instantaneously to the commands of a student pilot within the cockpit or an instructor at an external control panel.

Future uses for the sustem will include research in engineering techniques, mathematical techniques, and "human engineering" or psychology-such as pilot reaction in coping with abnormal circumstances.


## Which cable has the <br> Beldioil?

Both shielded cables have the same number of twisted pairs with dentical AWG. But . . . the cable with exclusive Belden BELDFOIL is smaller in diameter.
What does this mean to you? It means that when you specify BELDFOIL, you are really buying extra space-extra conduit space, extra raceway space, extra console and rack space,
A new development by Belden-BELDFOIL shielding is $100 \%$ effective. It is a major development in quiet cables. BELDFOIL eliminates crosstalk and is superior for statipnary or limited flexing at both audio and radio frequencies.

BELDFOIL shielding is a lamination of aluminum foil with Mylar which provides a high dielectric strength insulation that is lighter in weight, requires less space, and is usually lower in cost. For multiple-paired cables, with each pair separately shielded, the Mylar is applied outside with an inward folded edge.** This gives $100 \%$ isolation between shields and adjacent pairs.


For complete specifications, ask your Belden electronics jobber.
*Belden Trademark Reg. U. S. Pat. Otf. **Patent applied for
power supply cords - cord sets and portable cordage • electric household cords • magnet wire • lead wire - automotive wi and cable - aircraft wires - welding cable

## PRECISION-Stainless Steel Waveguide QUICK DISCONNECT



LOW COST OFF SHELF DELIVERY

K BAND
$X$ BAND

For Laboratory or Service Applications

Direct Inquiries To James L. Tobin
AIRCRAFT ARMAMENTS, inc. COCKEYSVILLE, MARYLAND

Circle 126 on Inquiry Card

## YOURS TODAYA frequency standard so accurate that it measures time with a rate of change of less than one second in sixty years! $5 \times 10^{-12} /$ DAY



AJK-SULZER FSIIDOT currently saves as the basic quartz crystal Frequeney standard amployed by wwvL (Bureau or Standards, Bouldar, Colorado) to provide a 2 okc reference symal havisy a stablity $0 / 1 \times 10^{10} / 2 \mathrm{ay}$.

Total Eimensions, Standard and Power Sugply: $71_{2}{ }^{*} \mathrm{~W} \times 6^{\prime \prime} \mathrm{H} \times 121_{2}{ }^{\circ} \mathrm{D}$. Shown mounted in $7^{\prime \prime} \times 19^{\prime \prime}$ rack panel.
THE JK-SULZER FS-1100T FREQUENCY STANDARD is a standard of frequency and time . . . born of and for the age of space. It is fully transistorized. A double proportional control oven houses a 1 mc precision quartz crystal having a $Q$ exceeding 2 million. Each unit is built, aged, and calibrated at Washingten, D.C., against groandwave signals of WWV. Simultaneous outputs of 1.0 mc and 100 kc . A companion power supply permits operation from 115 volt AC plus automatic 12 hours minimum of emergency or portable operat'on from batteres. Today, you can order this $5 \times 10-15 / \mathrm{Day}$ stability. for early delivery, for a wide range of research and test applications. Write for technical literature

## The James Knights Company, Sandwich, Illinois

SPECIALISTS IN FREQUENCY MANAGEMENT for space explorotion programming, high speed novigation, anc spectrum conservation in the growing communications field.

## DUMMY LOAD

New 11 lb. dummy dissipates 1.5 kw ave power and :300 kw peak power without liquid cooling. For unc with S-land radar, No. X 3075 measures $14 \times 4^{7 / k} \times 1606 \mathrm{in}$. It is compatible with the $R(i-75)$ waveguide, and can be used with any radar op-

erating from 2600 to 3950 MC to dissipate energy when the radar is not transmitting. Use of inert, hightemperature silicon earbide as the absorptive element minimizes water absorption, increases stability, and lengthens trouble-free life. Liguidcooled versions also available. Smaller and lighter models of dummy loads for lower power were previously introduced. Airtron-Pacific, $5 \times 7:$ Rodeo Rd., Los Angeles 16, Cillif.

$$
\text { Circle } 255 \text { on Inquiry Card }
$$

## ACCELERATION INDICATOR

'The AI-1 Acceleration Indicator is a light weight direct indicating acceleration sensor. It is for use wherever a record of maximum shock or accelaration received is desired. Some uses are aircraft landing gear, shock testing of equipment and shipping of delicate instruments or other equipment. Specs: Range, $0-150$ g; Acculacy, i'', of full scale; Size, $3 / 2$ in.

diam. by $27^{2} \mathrm{~s}$ in. long; Weight, 0.3 oz ; Mounting, cable clamp. fusc clip or bracket; Natural Frequency, :30 (ps (Nom). Lastern Technical Associates, Inc., Main St., North Acton. Mass.


# INHERENT STABILITY Assured in a DALOHM MC Resistor 

The freezing temperature of coils is mild by comparison with the temperature extremes at which Dalohm resistors can operate reliably.
Stored on the shelf for months . . . or placed under continuous load...operating in severe environmental, shock, vibration and humidity
conditions ... Dalohm precision resistors retain their stability because it has been "firmly infixed" by Dalohm design and methods of manufacture.
For all applications demanding resistors that meet or surpass MIL specifications, you can depend on Dalohm.

## DEPOSITED CARBON • MOLDED - MINIATURE DALOHM TYPE MC RESISIORS

Made of pure crystalline carbon film with no binder or filler, these resistors offer excellent high frequency characteristics.
A molded housing provides complete electrical insulation and mechanical protection.

TYPICAL DERATING CURVE


- Rated at $2,1,1 / 2,1 / 4$ and $1 / 8$ watts
- Resistance range from 1 ohm to 50 megohms, depending on type
- Standard tolerance $\pm 1 \%$
- Temperature coefficient 500 P.P.M. maximum
- Smallest in size, ranging from $9 / 64^{\prime \prime} \times 1332^{\prime \prime}$ to $3 / 8^{\prime \prime} \times 21 / 4^{\prime \prime}$
- Full load operation to $70^{\circ} \mathrm{C}$., derating to 0 at $150^{\circ} \mathrm{C}$.
- High heat dissipation
- Meet applicable paragraphs of MIL-R-10509B.

Write for Bulletin R-35, with handy cross-reference file card.

## SPECIAL PROBLEMS?

You can depend on Datohm, too, for help, in solving any special problem in the realm of development, engineering. design and production. Chances are $y(\mu$ can find the answer in our standard line of precision resistors (wize wound. metal film ard deposited carbon): trimmer potentiometers; resistor networks; colletfilting knobs: and hysleresis notors. If not. just outline your specilic situation.

## DALE ELECTRONICS, Inc.

1304 28th Ave., Columbus, Nebr.
Hathewiny in
INSTRUMENTS, INC.


The ever-increasing growth of the Electronics Industry has meant greater demands on Engineering talent . . . on testing . . . R \& D . . . systems . . . quality control. To keep pace with the everconstant need for more reliable electronic components, USC has added to its facilities-thus increasing, even more, its capacity for the design and production of electronic connectors of optimum dependabil-
ity. In addition, expanded manufacturing areas will further insure strict adherence
to tight "due dates". NOW, MORE
THAN EVER, USC PROVIDES THE RAPID, RELIABLE ANSWER
TO ANY COMPLEX CON. NECTOR PROBLEM

U. S. COMPONENTS, INC. 1320 Zerega Ave., New York 62, N. Y.

## ELECTRON TUBE NEWS

## ...from SYLVANIA

## specifically for "on-off" and control applications...

 STABILITY - LONG LIFE EXPECTANCY - HIGH UNIFORMITY

More than a decade ago. Sylvania developed the first vacuum tube specifically for computer-type applications . . . the reliable 7AK7. Today, there is a large family of field-proven Sylvania types specifically designed for "on-off" control applications, including eleven premium-quality Gold Brund Tuhe types.
Sylvania Gold Brand Tuhes for computer applications exhibit highly stable electrical characteristics even under long periods of operation at cutofl conditions - offer high uniformity of characteristics from tube to tube - feature long life and reliability. This is the direct result of stringent material and process controls to assure minimal cathode interface formation, low cathode sublimation. improved plate dissipation capabilities and low interement leakage.

sylvania medium-mu twin triodes Absolute Maximum Ratings			
Sylvania Type	Description	Plate Dissipatio (Watts)	DC Cathode n Current (mA) (Each Section)
GB-5844	7-pin, T-51/2 miniature, relatively high zerobias plate current and sharp cutoff.	0.50	9.0
GB-5913 ${ }^{1}$	9 -pin, T-61/2 miniature, mid-tapped heater for 6.3 V or 12.6 V operation. Bulb temperature capability of $120^{\circ} \mathrm{C}$. Designed for multivibrator applications.	2.5	20
GB-5964	7-pin, T-51/2 miniature. Utilizes "flat" cathode which enables use of "flat" grid wires for exceptional accuracy in grid alignment. Large plate area for excellent heat dissipation. Max. bulb temp. rating is $150^{\circ} \mathrm{C}$.	1.5	15
GB-5965 ${ }^{1}$	9-pin, T-6 $1 / 2$ miniature, mid-tapped heater for 6.3 V or 12.6 V operation. Dffers high zero-bias plate current and sharp cutoff characteristic.	2.2	15
GB-62111	$9-p i n, T-61 / 2$ miniature, mid-tapped heater for 6.3 V or 12.6 V operation. Especially designed for frequency-divider circuits.	1.0	14
GB-6350'	9 -pin, $\mathrm{T}-61 / 2$ miniature, offers high zerobias plate current and sharp cutoff. High perveance type with gm per unit of 4600 $\mu$ mhos. Utilizes "flat" cathode, "flat" grid wires, large plate area. Max. bulb temp. rating is $120^{\circ} \mathrm{C}$.	3.5	25
GB-7044	9-pin, T-61/2 miniature, features $\mathrm{gm}_{\mathrm{m}}$ per unit of $10,000 \mu$ mhos. Uses "flat" cathode, "flat" grid design. Large plate area has "wings" for improved heat dissipation capabilities. Max. bulb temp. rating is $160^{\circ} \mathrm{C}$. Designed for cathode-follower applications.	4.5	50

${ }^{1}$ Separate terminals for each cathode

In addition to $100 \%$ tests for ac and de shorts, samples are life-tested for 1000 hours of "on-off" operation and checked at intervals of $40,200,500$ and 750 hours. Rigid performance requirements are placed on such end points as cathode interface impedance, plate current stability, cutoff stability, heater-cathode leakage, interelenient insulation, continuity, grid current. Heater cycling tests are performed for a minimum of 2000 cycles-one minute "on," four minutes "off."
Ask your Sylvania Sales Engineer for full information about Gold Brand Tubes for "on-off," control and other critical industrial-military applications.

SYLVANIA DUAL-CONTROL* MULTIGRID TYPES Absolute Maximum Ratings			
Sylvania Type	Description	Plate Dissipation (Watts)	DC Cathode   Current (mA)
GB-7AK7	8-pin, lock-in base, T-9 pentode. Features high zero-bias and sharp cutoff. Designed for gating or driving applications.	8.5	-
GB-5915A	7-pin, T-51/2 heptode. Designed for gated amplifier service.	1.0	20
GB-6145	8-pin, lock-in base, T-9 pentode. Features gm of $9700 \mu$ mhos.	10.0	-
GB-6888	8-pin, T. 9 pentode. Max. bulb temp. rating is $130^{\circ} \mathrm{C}$. Designed for pulse amplifier, core driver and coincidence circuits.	8.0	80

*Grids $=1$ and $=3$ can be used as independent control electrodes.

## NEW! SYLVANIA-7738, -7803

...feature high electrical stability, high reliability in short continuous service under difficult environmental conditions.

OESIGN MAX. RATINGS   Continuous Class C Sve at 175 MC	7738	7803	
Plate Voltage	330	200	Volts
Plate Dis:sipation	5.0	3.5*	Watts
Plate Input	7.5	5.5*	Watts
Cathode Current	40	30*	mAdc
Grid Current	10	2.5*	mAdc
Negative Grid Voltage	50	75	Volts
Grid Circuit Resistance			
Fixed Bias	0.1	0.1	Megohm
Cathode Eias	0.5	0.5	Megohm

*Each section

Originally designed for service in expendable sonobuoy equipment dropped by aircraft. these two types are typical of Sylvania capabilities in the design, development and manufacture of tubes for specialized industrial-military applications. If your design requirements demand specialized industrial-military type tubes, draw on the creative engineering and production capabilities of Sylvania. Your Sylvania Sales Engineer is ready to work with you.

SYLVANIA-7738. . . a miniature high-mu triode, 7738 utilizes silver-plated pins and high gridwire T.P.I. for excellent VHF performance. Lead inductance is optimized by the use of shielding. It is capable of withstanding 450 g shock.

SYLVANIA-7803
. a miniature double-triode, it offers high $g_{\text {.. }}$ of $12,500 \mu$ mhos per unit and low capacitance. 7803 uses the Sylvania-developed, rugged strap frame grid-enabling use of fine grid wire, high T.P.I.


For further information, contact the Sylvania Field Office nearest you. Or for data on specific typer, write Electronic Tubes Division. Sylvania Electric Products Inc.. Dept. K. 1100 Main Street. Buffalo 9. N. Y.


Since final quality of your production of ferrites, electronic cores, and magnetic recording media depends on proper use of 3 specialized groups of magnetic materials . . you'll find it mighty helpful to have all the latest, authoritative technical data describing the physical and chemical characteristics of each. This information is available to you just for the asking. Meanwhile, here are highlights of each product group.

PURE FERRIC OXIDES-For the production of ferrite bodies, we manufacture a complete range of high purity ferric oxide powders. These are available in both the spheroidal and acicular shapes, with average particle diameters from 0.2 to 0.8 microns. Impurities such as soluble salts, silica, alumina and calcium are at a minimum.

MAGNETIC IRON OXIDES-For magnetic recording-audio, video, instrumentation etc.-we produce a group of special magnetic oxides with a range of controlled magnetic properties. Both the black ferroso-ferric and brown gamma ferric oxides are available.

MAGNETIC IRON POWDERS-For the fabrication of magnctic cores in highfrequency, tele-communication, and other magnetic applications, we make a series of high purity iron powders.

If you have problems involving any of these materials, please let us go to work for you. We maintain fully equipped laboratories for the development of new and better inorganic materials. Write... stating your problem . . to C. K. Williams \& Co., Dept. 30, 640 N. 13th St., Easton, Penna.

c. K. WILLIAMS \& CO.

EAST ST. LOUIS, ILL. - EASTON, PA. emeryville, cal.

## New

Products

## REFRIGERATION SYSTEM

The U-522477 Mechanical Refrigeration System consists of an aluminum plate type condenser and evaporator, semi-hermetically sealed 400 cycle compressor, blower, and associated controls and chassis. The overall envelope dimensions are 14 in .

dia. $\times 10 \mathrm{in}$. long, with half the dia. occupied by the Mechanical Refrigeration unit. Capacity is 275 w at a max. amb. of $149^{\circ} \mathrm{F}$. System is used with a radar system and cools the Vidicon tube of a CCTV system which shows on a television screen, visually the object on a radar screen. The Mechanical Refrigeration System cools and maintains the Vidicon tube and associated electronic components of the closed television circuit at a safe operating temp. United Aircraft Products, Inc., 1116 Bolander Ave., Dayton 8, Ohio.

Circle 265 on Inquiry Card

## POWER SUPPLY

The Model HC40-50 is rated at 0-40 vdc, $0-50$ amperes continuous duty and is continuously variable over the full range. Regulation is 10 mv for $\pm 10 \%$ variations. Riple is less than 2 mv RMs. Overshoot does not exceed $1 \%$ of voltage settirg and recovery is less than $500 \mu \mathrm{sec}$ for full current step changes. Output voltage does not rise above the selected setting when the line is interrupted. Automatic overload circuit cuts off supply

when output current exceeds a preset point selected by variable front panel control. Other features: remote load sensing, and plug-in modules. MidEastern Electronics, Inc., 32 Commerce St., Springfield, N.J. Circle 266 on Inquiry Card

## COMPLETE LINE OF STANDARD INSTRUMENTS...


-MODEL 1803
TRANSISTOR PARAMETER TEST SET
Measures the small signal " $h$ " parameters and wide range of Ico.

*model 1811

## MILLIMICROAMMETER

Measures low level dc currents from less than 1 mua to 3 ma. Chopper stabilized. No zero adj.

*MODEL 1802
RF TRANSISTOR TEST SET
Measures $\mathrm{F}_{\mathrm{a}}, \mathrm{Ft}_{\mathrm{t}}$ to $50 \mathrm{mc}, \mathrm{rb}_{\mathrm{b}} \mathrm{C}_{\mathrm{c}}$, and Cob-Direct reading.
*Ail above instruments are complete and require no accessories - line operated - no batteries.
ALSO: MODEL 1816-TUNNEL DIODE TEST SET - MODEL 1808 wide range diode test set
...and CUSTOM DESIGNED MANUAL AND AUTOMATIC SEMI-CONDUCTORTEST EQUIPMENT.

## DYRNATRAN dectraxics carporaliou 178 HERRICKS ROAD MINEOLA, NEW YORK PIoneer 1-4141

## TIMEANDEMOTION STUDY



## A SOURCE OF PRIDE

## sfFPRY

## SPERRY SEMICONDUCTOR DIVISION

OF
SPERRY RAND CORPORATION NORWALK, CONNECTICUT

Sure it's late and all you've had was coffee and cigarettes-but now the job is done. The design is a good one-the components reliable-the specs have been met-now it's time to go home and relax. You feel secure knowing the components are equal to your design.
We try our very best to build semiconductor devices that you can "design in" with confidence. Typical case in point: The Sperry IN690 and IN920 series silicon diodes enable a single diode to handle more current at a lower junction temperature than that possible with a combination of several low current diodes* . . . this reduces "multicomponent unreliability"..-17 separate tests during mechanized manufacture ensure reliability of product performance. You experience a good feeling doing business with quality manufacturers.
*excerpt from Technical Application Bulletin \#2105 fegiona: offices: chicago, illinois; el segundo, californiai westwood, new jersey: tewks bury, Massachusetts: stamford, connecticut; towson, maryland; massapequa park, niw york.

# Electronic Sources 

## Up-to-the-minute abstracts of articles appearing in the leading foreign electronic engineering journals

## 114

## ANTENNAS, PROPAGATION

Statistical Distribution of the Degree of Fading in Radio Relay Line Intervals, A. I. Kalinin. "Radiotek" No. 5. 1960. 7 pp. Expressions for integral curves are given for the distribution of the degree of fading in radio relay line intervals, according to normal laws for the values of the effective vertical gradient of the dielectric penetration in air. Limiting expressions for the distribution curves are also given. Examples are presented of integral curves for the degree of fading distribution. (U.S.S.R.)

Transformer Distance Transmission Based on Two-phase Contactless Induction Potentiometers, Yu. M. Pul'er. "Avto i Tel." July 1960. 9 pp . Construction circuit, operation and basic principles of the theory of angular distance transmission realized with the help of contactless two-phase induction linear potentiometers are considered. (U.S.S.R.)

The Power Gain of Multi-Tiered VHF Transmitting Aerials, P. Knight and G. D. Monteath. "BBC Mono." 31 July 1960. 34 pp. (England.)

Some Peculiarities of Audio Wave Propagation Over Areas Covered with Vegetation, F. J. Meister. "Freq." June 1960. 7 pp. Results are reported as gained on grain fields by means of a rotating quasi-spherical radiator. (Ger many.)

A Directional Antenna with a Periodic Bent Feed, G. v. Trentini. "Freq." July 1960. 5 pp. The author proposes and investigates by experiment directional antennas made of a conductor that is bent periodically in a plane and arranged before a reflector curtain with a small separation and a parallel of slightly inclined orientation. (Germany.)


## CIRCUITS

Transistors in Audio- and Carrier-Frequency Amplifiers, K. Lamont. "El. Tech." Aug. 1960. 8 pp . This paper discusses the characteristics of common-emitter transistor amplifiers in relation to the specific requirements of communication systems. (England.)

Continuously Variable Bandpass in the Audio Range, W. Ohme. "Freq." May 1960. 5 pp. It is shown, how and under which conditions a band-pass filter can be constructed whose bandwidth and lower cut-off frequency can be varied continuously throughout the audio range. (Germany.)

Resonant Circuit Amplifier, S. John. Rund." Sept. 1960. 3 pp. (Germany.)

Generation of High Voltage Pulses, K. D. Moser. "El. Rund." Sept. 1960. 5 pp. (Germans:)

The Insertion Characteristics of Cascaded Circuits, W. Herzog. "Nach. Z." Sept. 1960. 4 pp. A number $n$ of equal four-terminal networks is combined by means of bridge circuits to one four-terminal network. The impedance natrix of the resulting four-terminal network is determined. (Germany.)

Calculation of Electric Circuits with Rectangu-lar-Hysteresis-Loop Core, V. F. Beljavskii, Yu. M. Shamaev. "Avto i Tel." Aug. 1960. 10 pp. (U.S.S.R.)
Approximate Calculation of Transient Processes in Thermistor Circuit, N. P. Udalov. "Avto i Tel." Sept. 1960. 3 pp. (U.S.S.R.)
Millimicrosecond Blocking Oscillator, U. P. Melnikoff. C. Y. Schatz. "Radiotek" 15, No. 6. 1960. 9 pp . The basic distinction of a millimicrosecond blocking oscillator is that the rise time of the puise is of the same order as the time duration of the peak. It is, therefore, no longer valid to assume that the fast processes responsible for the rising part of the pulse are small compared to the parameters affecting the rest of the pulse, and thus can be neglected. The time duration of all sections of the pulse depend simultaneously on all circuit parameters. This article analyzes the processes which take place in such a blocking oscillator and presents methods for its design and calpulations. (U.S.S.R.)

ITse of Feedback to Compensate Frequency Response of Wide Band Amplifiers, L. B. Ustinova, Z. N. Luzianina. "Radiotek" 15. No. 6. 1960. 12 pp . In the article, the author presents a design procedure for frequency compensation of two-stage amplifiers by applying feedback in the system. Design parameters are obtained by manipulation of the cubic gain expression. The parameters are analyzed for hish and mid-frequency ranges and tabulated. Numerical examples are illustrated. The author also compares qualitatively feedback compensation with other methods of frequency compenation. (U.S.S.R.)

Analytic and Graphic Methods for Low-Frequency Semi-Conductor Triode Amplifier Design. N. S. Nikolayenko. "Radiotek" 15, No. 7. 1960. 9 pp. A methor for designing lowfrequency semi-conductor triode amplifiers is presented and discussed in this article. Compared to amplifier design methods hased on triode parameters, this method offers several advantages. It is characterized by attractive appearance, applicability to design of amplifiers operating in various manners, and good precision and simplicity of design. (U.S.S.R.)

An Investigation of Transient Processes in Class B Amplifiers, Influenced by the Reactive Characteristics of the Power Supply Impedance. A. T. Balanoff. "Radiotek" 15, No. 7. 1960. 8 pp . The reactive characteristics of the nower supply's impedance exert a certain influence on the periodically repeating transient processes in class B amplifiers. These processes have been analyzed theoretically and experimentally. The results of the analyses are presented in this article. It is shown in what manner negative feellback affects the amplitude of non-linear distortions caused by the transient processes. Critelia are griven for the design of the output capacitors in the filterrectifier and the design of blocking capacitors in the self-bias circuit. (U.S.S.R.)

## REGULARLY REVIEWED

## AUSTRALIA

AWA Tech. Rev. AWA Technial lleview Proc. AIRE, Proceedings of the Insitution of Radio bingineers

## CANADA

Can. Elec. Eng. Canadiun Eletronics Eugimurving
EI. \& Comm. Electronics and fommunications

## ENGLAND

ATE J. ATE Journal
BBC Mono. BBC Eingineering Monographs Brit. C.\&E. British Communications is VlecE. \& R. Eng. Electronie \& Radio Engineer Ef. Energy. Filectrical Energy
GEC J. General Electrical Co. Journal
J. BIRE. Journal of the British Institution of Radio Engineers
Proc. BIEE. Proceedings of Institution of Electrical EngIneers
Tech. Comm. Technical Communications

## FRANCE

Ann. de Radio. Annales de Radioclectrieite Bull. Fr. El Bulletin de la Suxiete rranlaise des Electriviens
Cab. \& Trans. Cables \& Transmission
Comp. Rend. (comptes licudus Hebdomadaires des Seances
Onde. LOnde Electrique
Onde. Lech. Rerue Technique
Rev. Tech. Rerue Technique
Telonde. Teloute
Toute R. Toute la Radio
Vide. Le Vide

## GERMANY

AEG Prog. AEG Progress
Arc. El Uber. Archiv der Elektrischen UberArc. $\begin{gathered}\text { tragung }\end{gathered}$
EI Rund. Electronische Rundschau
El Rund. Elcetr
Freq. Freuurnz
Hochfreq. Hoclifrequenz-technik und Electroakustik
NTF. Viachrichtentechnische Faciberichte
Nach. Z̈. Nachrichtenterhnische Zaitschrif
Rundfunk. Kundfunktechnische Mitteilungen
Vak. Tech. Vakuum-Teclinik

POLAND
Arch. Auto. i Tel. Archiwum Automatyki 1 Telemechaniki
Prace ITR. Irace Instytutu Tele-I Radiotechnicznero
Roz. Elek. Rozprawy Biect rotccinizne

## USSR

Avto. i Tel. Avtomatika i Telemakhanikis
Radio. lkalio
Radiotek. Radiotekhnika
Radiotek. Radiotekhnika
Rad. Elek. Radiotekhnika i Elektrunika
Iz. Acad. Bulletin of Academy of Sciences USSR.

- Photocopies of all foreign articles are available at 75 cents per page, remitted with order. Unless otherwise indicated, articles appear in language native to country of origin.
- A reprint of this section, "International Electronic Sources" is available without charge.

Requests for the above should be sent. on company letterhead, to:

Electronic Sources Editor ELECTRONIC INDUSTRIES
Chestnut \& 56 th Sts.
Philadelphia 39, Pa.

Selection of Optimum Statistical Parameters of Trigger Circuit, B. N. Fayzulaev, V. I. Yanushkevitch. "Radiotek" 15, No. 7. 1960. 7 pp . This article discusses and analyzes a typical pentode trigger circuit. It is of primary interest to establish the tolerances of the statistical parameters for a given speed of operation. Also determined is the maximum speed of operation with given tolerances. Optimum relationships of statistical parameters are determined and recommendations are offered to select tubes for the trigger. (U.S. S.R.)

A Process of Frequency Determination at the Output of an Ideal Narrow-band Filter During Phase-Frequency Modulation, L. I. Yaroslavsky, B. I. Iachinson. "Radiotek" 15, No. 7. 1960. 7 pp . This article's objective is to study transient processes - specifically, the processes involved in establishing the instanprocesses involved in establishing the instan-
taneous frequency and the instantaneous amplitude at the output of a narrow-band system, when the input is frequency-phase modulated; i.e. when its frequency and phase is changed by discrete jumps. Pure frequency modulations and pure phase modulations are analyzed as separate particlar cases of phase-frequency modulations. (U.S.S.R.)
Synchronization Stability in an Oscillator Influenced by Modulated Oscillation, Y. I. Samoy lenko. "Radiotek" 15, No. 7, 1960. 5 pp Conditions are obtained for the wave phase stability of the oscillator, synchronized with a small outside signal, amplitude or frequency modulated. An analysis is made of the extent to which maximum allowable detuning depends on the system parameters and parameters of the active waves, without destroying the bynchronization stability. (U.S.S.R.)
Improvement of the Phase-Frequency Response of Selective Amplifiers with Feedback, at Great Frequency Separations, V. L. Zmudikoff. "Radiotek" 15, No. 8, 1960. 4 pp. At fre quencies far removed from the quasiresonant freguency, the gain of selective amplifiers with frequency sensitive feedback approaches unity, and not zero, as is the case with resonan amplitiers. This results in a decreased selectivity and decreased signal to noise ratio in feedback amplifiers. Two methods are offered to remove this residual gain by adding subtractive networks. (U.S.S.R.)
New Theory on Self-Contained Four-Pole Networks and Their Application in Amplifiers with Distributed Gain, E. V. Zelyach. "Radiotek" 15, No. 8, 1960. 12 pp . New parameters are introduced for self-contained four-pole networks. These parameters are defined as characteristic voltages and currents. A theory is developed for cascaded conrents. A theory is developed for cascaded connection of matched structure. Formulae are given to calculate voltages and currents at the terminals of the four-pole for various loads. The theory is applied in the analysis of amplifiers with distributed gain. Formulae are obtained for the amplifier gain, taking into consideration mismatching of both ends of grid and plate circuits. (U.S.S.R.)

## ( )

## COMMUNICATIONS

A Method of Reducing the Image and Comhination Interference in a Superheterodyne Receiver, B. N. Mityasheff. "Radiotek" 15, No. 7, 1960. 2 pp . A brief decription of a new method to eliminate image and combination interferences produced in superheterodyne reception. This method permits more adreception.
vanced and perfected design of receivers. Results of an experiment are included. (U.S.S.R.)
Carrying Capacity of Symmetrical Channels with Carying Parameters in Unlimited Frequency Bands, L. M. Finek. "Radiotek" 15 , No. 7, 1960. 8 pp . According to Shanon, the definition of the carrying capacity of a channel
is the maximum amount of information which can be iransmitted through this channel when coded properly and with the least possible error probability. In this article, the carrying capacity is calculated for communication channels with varying parameters. The prescribed signal power relation to white noise spectral density is maintained. The operation takes place in any freguency bandwidth and the coding method is a discrete symmetrical type.
(U.S.S.R.) (U.S.S.R.)

Concerning Noise-Stability of Width and TimePulse Telemetering with Strong Fluctuation Noises, N. V. Pozin. "Avto i Tel." Sept. 1960. 3 pp. (U.S.S.R.)

Ideal Complex Signal Identification System, L. F. Borodin. "Radiotek" 15, No. 8, 1960 . 11 pp . An identification system is considered, which will provide maximum probability for a correct reception of correction code combinations for a given receiver. It is shown that the use of such ideal systems and constantly spaced codes permits transmission through channels with prescribed accuracy. Error compensations is indicated using arithmetic operations. Results of a statistical experiment are presented for the purpose of comparing several reception methods with the ideal one. (U.S.S.R.)

Crosstalk in Multichannel FM Communication Systems, Arising in Scattered UHF Propaga1960, A. V. Prosin. '"Radiotek" 15, No. 8 1960. 10 pp. A method is developed to calculate cross distortions in multichannel systems with F'M and frequency multiplexing. The source of these distortions is the multi-beam scattered propagation of ultra short waves. Formulae are obtained for the determination of cross-talk. The dependence of cross distortions on the length of the conduit is established, as are the antenna radiation patterns and several other characteristics. (U.S.S.R.)

Congestion in Automatic Telephone Exchanges, F. Capello. "Alta Freq." April 1960. 8 pp A sampling method is analized, intended to determine the overall grade of service for an automatic telephone central office, by means of test calls put through the exchange with predetermined frequency and distribution during the most busy hours. (Italy.)

The Optimum Size of Cable Branching Ranges for Local Telephone Systems, H. Kremer "Freq." May 1960. 6 pp . The calculation of the optimum size of cable branching ranges leads to cable distribution boxes with 150 to 250 main-cable pairs (total capacity about 400 to 600 pairs) in the ultimate stage of expansion. (Germany.)

A Character Reading Device for Typewritten Figures, W. Dietrich. 'Nach. Z." July 1960. 4 pp. (Germany.)

High Speed Printer for $\mathbf{3 0 0 0}$ Words/Min. '"El Rund." July 1960. 3 pp. (Germany.)
Designing a Full-transistorized AM-FM Receiver, R. Wagner. "El. Rund." July 1960. 5 pp. (Germany.)

Magnacard-a Synthesis of Magnetic Tape and Punched Card. "El. Rund." July 1960. 2 pp.
(Germany.)

The Transducer Loss of Earphone and Microphone Capsules, K. Braun. "Nach. Z." Aug 1960. 6 pp. (Germany.)

A Transistorized PPM System for 60 Channels, H. M. Christiansen and M. Schlichte. "Nach Z." Aug. 1960. 8 pp. (Germany.)

The Radio Conditions in the International Geophysical Year, B. Beckmann and A. Ochs. "Nach. Z." Sept. 1960. 5 pp. (Germany.)

Improvement of the Frequency Stability of a High Frequency Oscillator Frequency Modulated Means of a Condenser Microphone, H. Maier. "Nach. Z." Sept. 1960. 5 pp. (Germany.)
Modern Problems in the Design of Master Con-
trol Systems, L. W. Germany. "Rundfunk." Aug. 1960. 8 pp . This paper surveys the factors governing the choice of a master control system, and describes various methods of switching and program control. (Germany.)
An Electronic Slave Clock Reading Directly in Seconds, Konrad Seiferth. "Rundfunk." Aug. 1960. 4 pp. Various problems of studio operations make the use of direct reading clocks necessary. This article describes an electronic slave clock which displays the time by means of three groups of numbers 15 mm high (hours-minutes-seconds) which are illuminated and easily readable. (Germany.)
Investigations on Some Constructional Materials for Telephone Exchanges as Far as Contact Materials Containing Silver and Palladium Are Affected, H. Lipke and W. Clement. "Nach. Z." Sept. 1960. 5 pp. (Germany.)

The Radio VF-Telegraphy System "Funk WT," a New Transistorized Telegraphy Transmission System with Channels of Different Bandwidth, Ernst A. Fuchs. "Nach. Z." Sept. 1960. 5 pp. (Germany.)


## COMPONENTS

Exponential Transformers with Logarithmic Law of Transformation. A. L. Novikov. "Avto Tel." July 1960. 11 pp. Exponential trans formers with logarithmic law of transforma tion are analyzed. (U.S.S.R.)
Influence of Magnetization Irregularity on Core Static Characteristics, G. D. Kozlov. "Avto i Tel." July 1960. 16 pp. (U.S.S.R.)
Design and Calculation of Induction Clutches M. S. Mirensky. "Avto i Tel." July 1960. 11 p. An induction clutch which is more simple and more reliable than induction clutches described in literature before is considered.
(U.S.S.R.) (U.S.S.R.)

Contactless Magnetic Time Relay, N. M. Tishchenko. "Avto i Tel." Aug. 1960. 12 pp. Time relays using inertia properties of magnetic amplifiers are considered. (U.S.S.R.)
Relays with Flat Protected Contacts, G. Bergstrasser. "Nach. Z." Aug. 1960. 4 pp. (Ger many.)

Tantalum Capacitors with Sintered Anode and Solid Electrolyte, W. Mosebach. "El. Rund." Sept. 1960. 3 pp. (Germany.)


COMPUTERS

Digit Device Elements of Computation Based on Principle of Integrating Voltage Pulsed E. K. Yuferova. "Avto i Tel." Aug. Pulses, | pp. K. Yuferova. "Avto i Tel." Aug. 1960. 8 |
| :--- |

The Applications of Electronic Digital Computers in the Theory of Networks, H. Hartl. "Nach. Z." July 1960. 4 pp . (Germany.)
The Realization of Square Law Two-Terminal Network Characteristics Using Canonic Circuits without Transformers with the Aid of Program-controlled Computers, R. Unbehauen. "Nach. Z." July 1960. 6 pp . (Germany.)
The Application of Computers in the Chemical Industry, Th. Ankel. "rt." July 1960.7 pp .
(Germany.)

Shift Registers, Generating Maximum-Length Sequences, P. H. R. Scholefield. 'El. Tech." Oct. 1960. 6 pp . In this article some examples are given of an improved logical arrangement are given of an improved logical arrangement


# extreme sensitivity 10 mc to $44,000 \mathrm{mc}$ 



## PANORAMIC'S

SPA-4
SPEGTRUM ANALYZER

> MORE USEABLE SENSITIVITY
> $\begin{aligned} & \text { BAND } \\ & 10-420 \mathrm{MC} \\ & 350-1000 \mathrm{MC} \\ & 910-2200 \mathrm{MC}\end{aligned}$
> $\begin{aligned} & 910-2200 \mathrm{MC} \\ & 1980-400\end{aligned}$
> $\begin{gathered}1980-4500 \mathrm{MC} \\ 4.5-1088 \mathrm{KMC}\end{gathered}$
> $\begin{array}{r}4.5-10.88 \mathrm{KMC} \\ 10.88-18.0 \mathrm{KMC}\end{array}$
> $18.0-26.4 \mathrm{KMC}$
> $26.4-44.0 \mathrm{KMC}$
*measured when signal and noise equal $2 X$ noise.
Using one funing head which contains one
triode and two Klystron oscillators, Model
SPA-4 offers more exclusive advantages for
applications demanding extreme sensitivity,
stability, versafilify, accuracy.

- Three precisely calibrated amplitude scales
Two $\mathbf{4 b} \log , 20 \mathrm{db}$ linear. 10 db power.
Two independent frequency dispersion
ranges-continuously adjustable-0-70 me
and 0.5 mc . Negligible internal frequency
modulation permits narrow band analysis
of FM problems.
- Yariable I.F. bandwidth from 1 kc to 80 ke.
- Push-butfon frequency selector.
- Synchroscope output with 40 db gain.
Accurafe measurement of small frequency
differences. A self-contained marker os-
cillator, modulated by a calibrafed ex-
ternal generafor, provides accurafe dif-
Tremendous flexibility and many unique advances
of Panoramic's compact SPA. 4 make it unsur.
passed for visually analyzing FM, AM and pulsed
signal systems; instabilities of oscillators: pulsed
spectro; detection of parasitics; studies of hore
monic outputs; radar systems and other signal
sources.
Wrife, wire or phone foday for
detailed SPA-4 bulletln.

Panoramic
radio producis. Inc.

540 So, Fulton Ave., Mount Vernon, N. Y. OWens 9.4600 - "TWX: MT-V-NY- 5229 Cable: Panoramic, Mt. Vernon. N.Y. State Circle 95 on Inquiry Card

## International ELECTRONIC SOURCES

register sequences to be generated with fewel circuit components than in earlier methods. (England.)


## CONTROLS

Extremum Intermittent Systems with Random Noises, A. A. Pervozvansky. "Avto i Tel." July 1960. 6 pp . Dynamics of a class of optimum intermittent systems is analyzed. Drift of extremum state and high frequency noises are considered as random time functions. (U.S. S.R.)

Investigation of Periodic Behavior in Extremum Relay Systems, I. S. Morosanov, "Avto i Tel." July 1960. 7 pp . On the basis of the approximate calculation of periodic behavior in extremum relay systems there are determined areas of existence of self-oscillations in such systems for object linear units of any kind. Some ways of increasing frequency of these systems are considered. (U.S.S.R.)

Limited Dynamic Properties of Power Executive Components of Servosystems, G. A. Nadzafova. "Avto i Tel." July 1960. 9 pp. The problem of the shortest transient process in electrical servosystems is considered. A dc electrical executive unit with independent excitation is analyzed. (U.S.S.R.)

Dynamic Characteristics of System Jet Ampli-fier-Servomotor, B. D. Kosharsky. "Avto i Tel." July 1960. 11 pp . Structural circuits and basic dynamic characteristics of a linearized system jet amplifier-servomotors in the case of using one-stage and two-stage amplifier are considered. (U.S.S.R.)
Investigation of Servosystem with Electromagnetic Induction Clutch Operating with Low Null Current, P. F. Klubnikin. "Avto i Tel." July 1960. 9 pp. (U.S.S.R.)

Optimum-Extremal Systems of Two Kinds, L. N. Fitzner. "Avto i Tel." Aug. 1960. 7 pp . Design of two kinds of the simplest extremal systems with linear units is considered. (U.S.S.R.)

Operating Mode Automatic Optimization Based on Statistical Control Criteria, S. A. Doganovsii. "Avto i Tel." Aug. 1960. 10 pp. (U.S.S.R.)

Choice of Combined Linear Control System Parameters, V. Ya. Rotach. "Avto i Tel." Aug. 1960. 6 pp. (U.S.S.R.)
A Problem of Optimum Control, I. A. Litovchenko. "Avto i Tel." Aug. 1960. 12 pp . An optimization problem (in a certain sense) of the path of pursuing a body controlled according to the law of proportional navigation. (U.S.S.R.)

Remote Control of Spread Objects, V. A. Ilyin. "Avto i Tel." Aug. 1960. 8 pp . New devices of high reliability for selection and remote control of spread objects with double-frequency code are considered. (U.S.S.R.)

Compensation of Servosystems by Means of Discrete Computing Device, L. N. Volgin and L. N. Smoljar. "Avto i Tel." Aug. 1960. 7 pp. (U.S.S.R.)
The Stability of Periodic Motions of Piece-Wise Automatic Control Systems, K. K. Belja. "Avto i Tel." Aug. 1960. 7 pp. (U.S.S.R.)

Motion of Hydraulic Servomotor in Automatic Control Systems with Jet Amplifier, V. J. Goltraf. "Avto i Tel." Aug. 1960. 4 pp . (U.S.S.R.)

Dual Control Theory, I. A. A. Feldbaum. "Avto i Tel." Sept. 1960. 10 pp . Some basic problems of the communication theory are compared with those of the automatic control theory. The idea of the dual control is introduced. The problem of design of an optimum, in statistical sense, closed-loop dual control system is formulated. (U.S.S.R.)

Parametric Phenomena in Simplest Continuous Extremal System, V. S. Baranova and A. A. Pervozansky. Avto i Tel." Sept. 1960. 4 pp (U.S.S.R.)

Fluctuation Effect on Extremum Relay Systems with Self-Oscillating Regime, I. S. Morosanov. "Avto i Tel." Sept. 1960. 10 pp . (U.S.S.R.)

Extremum Control by Means of Random Scan. L. A. Rastrigin. "Avto i Tel." Sept. 1960. 8 pp. A method of random scan applied to the problems of extremum control of multiparameter systems is proposed. The device realizing the method is described. (U.S.S.R.)
Stability of Control System with Two Nonlinear Elements, Chun Jen-Vey. "Avto i Tel." Sept. 1960. 7 pp. (U.S.S.R.)
Precise Determination of Periodic Regimes in Piece-W ise Automatic Control Systems, E. N. Rozenwasser. "Avto i Tel." Sept. 1960. 14 pp. (U.S.S.R.)
Theory of Two-Channel Servosystems with Relay Element in AC Circuit, A. A. Krasovsky. "Avto i Tel." Sept. 1960. 13 pp. (U.S.S.R.)
Investigation of Some Matrix Decoders with Relay Output, T. P. Belaya. "Avto i Tel." Sept. 1960. 9 pp. (U.S.S.R.)

Theory and Technique in Register Control, K. Anke and C. Kessler. "rt." July 1960. 6 pp. The register stability of today's multicolor rotary printing presses is usually supervised by feedback control. The theory of this type of control and its practice are investigated, comparing a discontinuous, on-off controller with a proportional and lead type controller. (Germany.)

Methods for the Analytical Treatment of Im-pulse-Regulated Control Systems, J. Piesch. "rt." July 1960. 7 pp. (Germany.)


Explorations of the Ionosphere During the International Geophysical Year Using the Method of Vertical Sounding, N. M. Boyenkova. "Radiotek," 15, No. 4, 1960. 3 pp. This article deals with the vertical probing of the ionosphere, performed as part of the general world effect during the Geophysical Year. With the help of an oscilloscope, having a very long screen persistence, it was possible to obtain panoramic images of frequency response as a function of altitude by sweeping the whole frequency spectrum at a high rate. Typical graphs are also included and the frequency of data taking described and explained. (U.S.S.R.)

A Survey of Electronic Quantum Devices, M. A. Eingorn. "Radiotek," 15, No. 5, 1960. 8 pp . The effort of the author in this article is directed to classify electronic quantum devices according to their operational principles and basic characteristics into three major groups. Some applications of such devices are discussed with the help of a number of block diagrams. (U.S.S.R.)

Cosine-Cube Pulses, M. C. Gurevitch. "Radiotek," 15, No. 5, 1960 . 4 pp. The author analyzes pulses formed according to the third power of the cosine, which he calls "Cosinecube pulses." He shows that these pulses have a shorter settling time and that radiations outside the band fade away faster with increasing frequency as compared with second cosine pulses. (U.S.S.R.)

Tendencies in the Development of Modern Operational Calculus, F. H. Lange. "Hochfreq." April 1960. 8 pp. The analysis of linear networks is treated using four different operational methods. All four are discussed and their usage is indicated. The first two methods, the regular Laplace transformation and a modified Laplace transforma-


## PRECISION FORK OSCILLATOR UNITS

## TYPE 2003



Size $1 \frac{1}{2}$ " dia. $x$ 4 $1 / 2$ "H. Wght. 8 oz. Frequencies: 200 to 4000 cycles

## Accuracies:-

Type $2003\left( \pm .02 \%\right.$ at $-65^{\circ}$ to $85^{\circ} \mathrm{C}$ ) Type R2003 ( $\pm .002 \%$ at $15^{\circ}$ to $35^{\circ} \mathrm{C}$ ) Type W2003 ( $\pm .005 \%$ at $-65^{\circ}$ to $85^{\circ} \mathrm{C}$ ) Double triode and 5 pigtail parts required. Input, Tube heater voltage and $B$ voltage Output, approx. 5 V into 200,000 ohms

## TYPE 2007-6

TRANSISTORIZED, Silicon Type Size $11 / 2^{\prime \prime}$ dia. x $31 / 2^{\prime \prime} H$. Wght. 7 ozs. Frequencies: 360 to 1000 cycles Accuracies:
$2007-6$ ( $\pm .02 \%$ at $-50^{\circ}$ to $+85^{\circ} \mathrm{C}$ R2007-6 ( $\pm .002 \%$ at $+15^{\circ}$ to $+35^{\circ} \mathrm{C}$ W200 $-6\left( \pm .005 \%\right.$ at $-65^{\circ}$ to $+85^{\circ} \mathrm{C}$ Input: 10 to 30 Volts, D. C., at 6 ma . Output: Multitap, 75 to 100,000 ohms

## TYPE 2001-2

Size $3^{3 / 4 " x} 4^{1 / 2 "} x 6^{\prime \prime}$ H., Wght. 26 oz.
Frequencies: 200 to 3000 cycles
Accuracy: $\pm .001 \%$ at $20^{\circ}$ to $30^{\circ} \mathrm{C}$ Output: 5V. at 250,000 ohms Input: Heater voltage, 6.3-12-28
B voltage, 100 to 300 V ., at 5 to 10 ma .

ACCESSORY UNITS FOR 2001-2


L-For low frequencies multi-vibrator type, 40-200 cy.
D-For low frequencies counter type, $40-200 \mathrm{cy}$.
H -For high freqs, up to 30 KC .
M-Power Amplifier, 2W output.
P-Power supply.

## TYPE 2121A

Size $8^{3 / 4}{ }^{\prime \prime} \times 19^{\prime \prime}$ panel Weight, 25 lbs. Output: 115 V 60 cycles, 10 Watt Accuracy: $\pm .001 \% 20^{\circ}$ to $30^{\circ} \mathrm{C}$
 Input,
115 V ( 50 to 400 cy .)

## TYPE 2111C

Size, with cover
$10^{\prime \prime} x 17^{\prime \prime} x 9^{\prime \prime} H$.
Panel model
$10^{\prime \prime} \times 19^{\prime \prime} \times 8^{3 / 4 \prime} \mathrm{H}$.
Weight, 25 lbs.
Frequencies: 50 to 1000 cy ,
Accuracy:
( $\pm .002 \%$ at $15^{\circ}$ to $35^{\circ} \mathrm{C}$ )


Output: $115 \mathrm{~V}, 75 \mathrm{~W}$.
Input: $115 \mathrm{~V}, 50$ to 75 cy .
when requesting information, please specify type number



111 CEDARLANE - ENGLEWOOD, NEW JERSEY Circle 136 on Inquiry Card


Here are the advantages you can expect when you specify Midwest Foam -

- All TYPES OF Polyether or Polyester FOAMS
- Quality with economy
- Customized service
- Controlled cellular structure
- Uniform proposity and compression
- COMPLETE DESIGN SERVICE AVAILABLE

Here are the finest facilities available anywhere with the newest techniques in the production of polyurethane foam. A $600^{\circ}$ production line customized to your specifications is at your command. We can guarantee your needs on your delivery date to eliminate your storage costs and to climinate costly rejects and obsoletes. We have the automation, you push the button. NO ORDER TOO SMALL OR TOO LARGE

Representatives - we still have some choice territories available. If you would like to represent the finest plastic foam producer in the United States, contact us immediately.

## MIDWEST FOAM PRODUCTS COMPANY <br> 1632 Chicago Avenue, Evanston, Illinois - DAvis 8.6905

Factory-North Chicago, Illinois
Circle 137 on Inquiry Card

## Sources

tion (Carson-Laplace) are function transformations. The third and fourth methods are based on function algebra, one starting with the Duhamel integral and the other with the convolution integral. The novelty of the third and fourth ones is the direct application of the time function itself. (Germany.)

The Entropy of Typewritten Texts, G. A. Kayser. 'Nach. Z." May 1960. 6 pp. For various typewritten texts the distribution of groups of linear and heterogenous surface elements up to a length of $n=6$ surface elements is determined by means of an evaluation device and the entropy of the $n$-th order is calculated. (Germany.)

New Discoveries on Biotic Effect by RF, H. Hubner. "El. Rund." June 1960. 2 pp. The author discusses the interesting possibilities resulting from the lately discovered effects. (Germany.)

The Syncardon, R. Marin. "El. \& Auto." May 1960. 3 pp. Blood circulation troubles are only too frequent nowadays. They are now amendable to treatment through the use of an original new device the Syncardon. Its function is to help blood circulation in case of deficiency in the operation of blood vessels. It uses a combination of electronic and pneumatic techniques. (France.)
A new Method for Automation, P. Lemenier. "El. \& Auto." May 1960. 3 pp. A new method consists in confining the wiring inside depressed areas, previously produced while molding the insulating support itself. A purely chemical dip method is used to produce a rugged nickel-chromium metallization. (France.)

Review and Forecast of Tellurium and Thermoelectricity Research in Canada, S. R. Mester. "El. \& Comm." July 1960. 3 pp. Recent research into thermoelectric alloys has provided many significant electronic applications. (Canada.)

Masers or Parametric Amplifiers?, D. C. Laine. "El. Tech." May 1960. 12 pp. This paper surveys two important recent developments in low-noise microwave amplificationthe maser and the parametric amplifier. A brief discussion of the principles of operation is followed by a brief outline of the various types of amplifier in each of these two groups. (England.)

The New Electronics, Low Temperatures-1. "El. Tech." June 1960. 3 pp. (England.)

The New Electronics, Low Temperatures-2. "El. Tech." July 1960. 5 pp. (England.)
Unitized Nucleonic Equipment, D. R. Trotman. "Brit. C\&E." June 1960. 5 pp. This paper describes the circuitry and application of a new form of pulse counting equipment, built on a standard chassis frame, and employing distributed power supplies for each unit by means of a control shelf. The basic chassis mechanics and system were developed by A.E.R.E., Harwell. (England.)

Determination of Maximum Error of Binary Multiplier, Yan Si-Zen. "Avto i Tel." July 1960. 8 pp. Digital integrator based on a binary multiplier is considered. (U.S.S.R.)
Estimate of Mean-Square Deviation from known Trajectory, E. A. Barbashin. "Avto i Tel." July 1960. 10 pp . New methods of estimating the mean-square deviation from the known trajectory are given. (U.S.S.R.)

Choice of Optimum Number of Pole Pairs and Main Dimensions of Slide Electromagnetic Clutches with Massive Steel Anchor, A. D. Osdeev. "Avto i Tel." Aug. 1930. 8 pp. (U.S.S.R.)

The Indefinite Integral Energy Spectrum of a Stationary Random Procesg, B. R. Levin. "Radiotek" 15, No. 6, 1960. 3 pp. Certain non-stationary processes are evident when fre-


## NEW RELIABILITY

IN COMPUTER LOGIC CIRCUITRY

## WITH FAIRCHILD CONTROLLED LIFETIME TRANSISTORS AND DIODES

These Fairchild transistors and diodes permit the design of simple, reliable computer logic circuitry through elimination of circuit clamps and speed-up capacitors. Also, transistor power dissipation is reduced. Even in this simple circuit, these Fairchild diodes and transistors - because of their controlled lifetime characteristics - permit switching speeds of $40 \mathrm{~m} \mu \mathrm{~second}$ delays per logic function. The transistors have low controlled storage time under severe overdrive conditions. The diodes have fast decay time at very low reverse current conditions. Stability over the full silicon temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ provides high fan-out and very high fan-in capability.
simple saturated ndr logic circuti using fairchilo 2n7dg transistor and fdioo ultra fast switching diddes gives high switching speeds and reliable performance


RATINGS AND CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right)-2 N 706$ NPN DIFFUSED SILICON TRANSISTOR

SYMB0L	CHARACTERISTICS	Rating	MIN.	IYP.	MAX.	TEST CON	ITIONS
$V_{\text {CBO }}$	Collector to base voltage	25 v	20				
$V_{\text {EBO }}$	Emitter to base voltage	$3 v$					
	Total dissipation, $100^{\circ} \mathrm{C}$ free air ambient	150 mw					
hFE	D.C. pulse current gain					${ }^{1} \mathrm{C}=10 \mathrm{~mA}$	
$V_{B E}$ (SAT)	Base saturation voltage				0.9	${ }^{\prime} \mathrm{C}=10 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{B}}-1 \mathrm{~mA}$
$V_{\text {CE }}$ (SAT)	Collector saturation voltage			0.3	0.6	${ }^{\prime} \mathrm{C}=10 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{B}}-1 \mathrm{~mA}$
$h \mathrm{fe}$	Small signal current gainal f - 100 mc			4		$\mathrm{I}_{\mathrm{c}}-10 \mathrm{~mA}$	$V_{C}=10 \mathrm{~V}$
Cob	Collector capacitance (140kc)			3.5 pf 6 pf		$\mathrm{I}_{\mathrm{E}}=0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{C}}=10 \mathrm{v}$

SPECIFICATIONS - FAIRCHILD FD100-25 ${ }^{\circ} \mathrm{C}$ Except As Noted

SYMBOL	CHARACTERISTICS	MIN.	MAX.	CONDITIONS
BV	Breakdown Voltage	$\begin{gathered} 75 \\ \text { volts } \end{gathered}$		(a) $I_{R}=5 \mu \mathrm{~A}$
$I_{R}$	Reverse Current		. $100 \mu \mathrm{~A}$	(a) $\mathrm{V}_{\mathrm{R}}-50 \mathrm{v}, 25^{\circ} \mathrm{C}$
$V_{F}$	Forward Voltage Orop		Iv	a) $I_{F}-10 \mathrm{~mA}$
C	Capacitance		$2 \mu \mu \mathrm{f}$	(c) $V_{R}-0 v$
$\mathrm{t}^{\text {r }}$	Reverse Recovery Time To lr - 1 ma		$4 \mathrm{~m} \mu \mathrm{~s}$	(a) $\mathrm{I}_{\mathrm{f}} \mathrm{I}_{\mathrm{r}}=10 \mathrm{ma}$
	Maximum Power Dissipation		250 mw .	
	Temp. Range Operating $\quad 65^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ Storage $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$			

Write for full information on this circuit and complete specifications on the transistor and diode.

A wholly owned subsidiary of Fairchild Camera and Instrument Corporation


545 WHISMAN RD. • MOUNTAIN VIEW, CALIF. • YORKSHIRE 8-8161


Ma ade only by Krengel Mfg. Co., Inc., Perma-Grip Peg Stamps with Deep-Kut dies give you clear, clean, sharp markings every time.

Each set of peg stamps contains all the letters in the alphabet plus all the numbers 0 to 9 .

$$
\begin{array}{ll}
1 / 16 & \text { ABC123 } \\
3 / 32 & \text { ABC123 } \\
1 / 8 & \mathrm{ABC} 123 \\
5 / 32 & \mathrm{ABCl} 23 \\
3 / 16 & \mathrm{ABC} 12 \\
1 / 4 & A B C
\end{array}
$$

## Complete set $15{ }^{95}$

Circle 139 on Inquiry Card

## International ELECTRONIC SOURCES

quencies are modulated by a random process noise. In the analyses of the energy spectra of such modulated frequencies theories behind stationary random processes are often used. In this article, expressions are derived for the instantaneous spectrum of the indefinite integral of a stationary random process. It is shown that a very widely used enerixy spectrum integral formula is obtained by averaging these expression with time. (U.S.S.R.)
"Jumps" in Electronic Circuits, S. A. Dobrov $"$ Radiotek 15. No. 7, 1960. 8 pp. A method of voltage and current the originating time of voltage and current jumps isteps) in circuits containing non-linear two-and-threeterminal networks. It is shown that to obtain the solution to the problem, it is not necessary to write the complete differential equation for the circuit in question. It is sufficient to know certain of its parameters. In conclusion, seweral examples are given for circuits, widely
used in radio systems. (USS used in radio systems. (U.S.S.R.)


## INDUSTRIAL ELECTRONICS

Transidyn Control Systems for Rolling Mills, D. Strole and H. Vogl. "rt." June 1960. \& in. An introduction into the problems typical for rolling mills is followed by an example demonstrating the Transidyn control methos and, furthermore by a discussion of the essential Transidyn networks for rolling
mill drives. (Germany.)
Improving the Final Vacuum in a Diffusion Pump, P. Opitz and F. Schneider. "Vak. Tech." May 1960. 1 p . (Germany.)
('ontrol of Some Continuous Industrial Processes by Means of Minimum Change of Controlled Inputs, I. A. Burovoj and S. V. Emel-


## (1)霎

## MATERIALS

Novel Glass Type Material in Electronies, W Hennig. "El. Rund." June 1960.2 mp Hotoform is a novel type of a glass, the structure and properties of which gass, the varied by ultra-wiolet or thermal irradiation. (Germany.)

Magnetostrictive Ferrites and Their Applica tions, Z. Kaczkowski and A. Smolinski. "Roz Elek." Vol. 6, No. 1-2. 29 pp. Principal definitions for the magnitudes determining magneto-strictive properties of the material wre given. (Poland.)

Segregation and Distribution of Impurities in the IPreparation of Germanium and Silicon J. Goorissen. "Phil. Tech." No. 7, 1960. 11 1IM. Silicon and germanium are purified by zone melting. Uniform distribution can be achieved by two new processes, whereby as much impurity is added from outside to the \%one ber second as leaves it via the solidliguid interface to enter the growing crystal. (Netherlands, in English.)
The Effect of Shearing on the Initial lermeability of Cores with Interlaced Laminations, R. Brenner and F. Pfeider. "Ireq." May
1:960, 15 pp. IGermany.)

Curves of the Complex Permeability of Thin Strips, R. IBoll. "Frea." July 1960. 12 pp. The paper begins with a survey of the locus curves of the complex permeability as expected with classical eddy currents, inhomogeneity of the permeability over the cross-sectional area of the lamination, and consideration of the maknetic domain structure. Also considered are the locus curves with relaxations and
those calculated from the motional equation of the Bloch wall. (Germany.)

Piezomagnetic Ferrites, Applications in Filters and Ultrasonics, C. M. van der Burgt. "El. Tech." Sept. 1960. 12 pp . (England.)


## MEASURE \& TESTING

Comparative Evaluation of Parallel and Series Methods of Frequency Division, Y. H, Bakaev, P. I. Kuznetzov. "Radiotek." 15, No. 4, $1960,8 \mathrm{pp}$. The authors evaluate by direct comparison the two methods of frequency division; namely, the series and the parallel methods. They analyze the effects on both systems by smooth noise and also by noise with high occasional peaks and tabulate the results for each method. They show the probability of division for each method and their combinations. Finally, on the basis of their combination, they draw conclusions on the merits of the two methods. (U.S.S.R.)

Linear Distortion During Continuous Wave Sampling, V. A. Vol. "Radiotek," 15, No. 4, 1960. 6 pp . The author analyzes distortion in sampling systems arising from the variation in the converter transconductance and from the fact that the sampling pulses are not of infinitely small duration. It is shown that, if during the sampling period the varia ion of conversion transconductance is asymmetrical, the output voltage depends not only on the frequency corresponding to the output signal component, but also on its phase. Consequently, the distortion can be regarded as phase-frequency distortion in the first approximation only. (U.S.S.R.)

Development of Simple Test Equipment to Produce and Measure Mechanical Impact, Th. Kuegler. "Freq." July 1960 . electron tubes are expected to be immune to mechanical impact and vibration. The paper deseribes the formation and propagation of derives and and derivilherem demands for the generation the properties of making a comparison with the properties of known impact machines many of which are relatively complicated and expensive. (Germany.)

Analysis of Harmonic Frequency Dividers, 1 H. Rizkin. "Radiotek" 15, No. 8, 1960. 9 pp It is shown that in several cases the analysis of harmonic frequency dividers, described by differential eduations higher in order than wo, can be reduced to an analysis of a than tain equivalent divider whose differential e.luation is but of the second order. A method is shown to design an equivalent system for two general-type circuits. Formulae are given o determine the amplitude and the phase of the divided freguency wave for two types of dividers, as expressed in the equivalent system parameters. (U.S.S.R.)

Analysis of Noises in Power Lines of 0.4/6 KV, L. I3. Venchkorskii. "Avto i Tel." Aug 1960. 9 pp . The results of analysis of noises in the power line of the oil lease of $0,4,6 \mathrm{kv}$ n the range front 150 e to 100 kc are given.
U.S.S.R.)

Spectrum Analysis of the Amplitude-Phase Modulations, L. E. Klyagin. "Radiotek" 15, No. 8, 1960. 7 pp. Exact design formulae are obtained permitting evaluation of spectra which are produced in amplitude-phase modulated transmitters built according to R. L. Kahn's design. The impossibility to obtain oscillations with optimally an amplitude-phase modulation is shown. The second side band can be suppressed only partially. In this respect, the circuit has no advantages over the well-known circuit with quadrature modulation. (U.S.S.R.)
A Leak Detector with a Cold Cathode Ionization Manometer, G. Zinsmeister. "Vak. Tech." May 1960. 4 pp . Sensitivity measurements of

## Extra quality at no extra cost with Bendix Semiconductors

## Bendir Bulletin

# NEW 25-AMP DAP TRANSISTORS SWITCH IN MICROSECONDS 

## High Current-Fast Switching-High Voltage -give engineers wider design latitude

The new 25 -amp germanium INP Bendix ${ }^{\text {B }}$ Diffused Alloy Power DAP ${ }^{\circledR}$ transistor line-with its microsecondfast, higher-current switching (typically $5 \mu \mathrm{sec}$ at 25 amperes)-frees engineers from the design restrictions set up by ordinary germanium alloy transistors. Omly Bendix offers such a high-current, high-speed DAP transistor line.
But high current is by no means the whole story. Bendix DAP transistors make possible increased circuit stability
over a wider range of temperatures from $-60^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$. They are also

rated at higher collector-to-emitter breakdown voltages, while providing lower input resistance, controlled current gain, and lower saturation voltages. In short, here is a special high-frequency, high-voltage line that opens the door to many new design ideas and applications.
For details on our complete line of power transistors, power rectifiers, and driver and MIL-type transistors, write on your letterhead for your bendix SEMICONDUCTOR CATALOG.
ATTENTION ENGINEERS: Write our Employment Manager for information about challenging opportunities we offer in semiconductors.



semiconductor products
Red Bank Division
holmdel, new jersey

## Special Sockets

## and

## Connectors



Jettron is fully-equipped to design and manufacture your precision electronic components including connectors, sockets and cable assemblies. Call or write Jettron for quotations on "specials" for all commercial and military applications.


56 Route 10, Hanover, New Jersey Telephones: TUcker 7-0571-0572 Sales Engineers in Principal Cities Circle 141 on Inquiry Card

## JETTRON

## International ELECTRONIC SOURCES

a leak detector working together with a cold cathode gauge are reported. As the leak detector responds only to changes of pressure, the sensitivity has to be defined in a different way from other leak detectors. (Germany.)


## RADAR, NAVIGATION

Certain Aspects in Bearing Determination of Interfering Waves, Y. A. Yeruchimovitch. Interfering Waves, Y. A. Yeruchimovitch.
"Radiotek" 15 , No. 6, 1960 , 5 pp. In this article processes are analyzed of finding direc. tions of two interfering radio waves using amplitude sensitive direction finders with direct reading. Laws, governing the elliptic form and errors of bearings, are established, as well as their relationship with other parameters of the incident waves. Attention is called upon the important function of the lateral inclination of waves from the circle of their propagation along the earth's surface. The following phenomena are explained: "parallelogramming," "wandering bearings" and "circular reception." A number of practical recommendations are also given. (U.S.S.R.)

Accuracy of Parameter Measurements in a Radar System Used for Observations of Meteorites, E. I. Fialko. "Radiotek 15, No. 6, 1960. 3 pp . Unstable radar parameters are known to distort the meteorite count as function of time. The important problem is to establish the accuracy with which the parameter stability must be maintained and measured, It is often assumed that the mean rate per hour of meteorite echos is affected very little by such radar parameters as the transmitter power, threshold signal power, etc, However, in this article, the author shows that these
assumptions are false, by establishing the extent to which various parameters do effect the meteorite count by radar, (U.S.S.R.)
Influence of the Distance Between the Magnetron and the Discharger on the Characteristice and Losses of a Balanced Duplexer, B. E. Rubinstein. "Radiotek" 15, No. 7, 1960. 5 pp. In contemporary radar technology, two types of duplexers are basically used which permit reception and transmission using the same antenna: branched duplexers and balanced duplexers. The aim of this article is to analyze the operation of a balanced duplexer. In this analysis, the characteristics are analyzed of each of the dischargers of which the doubled ATR consists. (U.S.S.R.)
Helices as Relay Lines, G. Piefke. "Nach. Z." Aug. 1960. 5 pp. (Germany.)


## SEMICONDUCTORS

Design of a Semiconductor Relay, C. V, Kulikov. "Radiotek," 15, No. 4, 1960. 8 pp. This article describes the design of semiconductor relays, consisting of transistors, diodes, and thermistors. Such relays have great advantages of compactness, ruggedness in vibration and shock environments, very high switching speeds, absence of mechanical contacts and high-power switching abilities. Methods for temperature compensation of such cascaded relays are presented. Methods are also given, based on an introduced concept of a "self-contained three-pole," to calculate the threshold levels of response, which characterize the insensitive zones and the hysteresis loop. Performance data and results of a typical relay are included. sults of
(U.S.S.R.)


# Available now for reliable, high-speed switching! <br> <br> SYLVANIA <br> <br> SYLVANIA 2N705 7 2N710 2N7II $f$ $7 / \prod_{\substack{\text { actual } \\ \text { sile }}}^{\substack{\text { ins }}}$ <br> <br> MESA <br> <br> MESA TRANSISTORS 

New, PNP diffused-base germanium units . . . designed, produced and controlled specifically for reliable performance in high-speed switching service.
As with all Sylvania computer-type semiconductor devices, rigid quality controls are applied to the manufacturing processes and materials for Mesa Transistors. These assure exceptionally high performance, electrical uniformity and long life. Tests that simulate extreme environments give maximum assurance of reliability.
Sylvania Mesa Transistors are available through your Sylvania Field Office or your local Sylvania franchised Semiconductor Distributor. For technical data, write Semiconductor Division, Sylvania Electric Products Inc., Dept. 1911, Woburn, Mass.

2N705 GAIN BANDWIDTH PRODUCT vs. COLLECTOR-EMITTER VOLTAGE and COLIECTOR CURRENT


Note: The product of high frequency beto times the frequency of measurement gives the frequency $f_{T}$ at which beto is unity.


ELECTRICAL CHARACTERISTICS AT 25 C

Characteristics	2 N 705			2 N 710			Units
	Min.	Typ.	Max.	Min	Typ	Max.	
$\begin{aligned} & \mathrm{BV}_{\text {cat }} \\ & \mathrm{I}_{\mathrm{c}}=-100 \mathrm{~A}_{\mathrm{A}, \mathrm{I}_{1}}=0 \end{aligned}$	-15.0	-	-	-15.0	-	-	v
$\begin{gathered} 8 V_{600} \\ \mathrm{I}_{1}=-100 \mu \mathrm{~A}, \mathrm{I}_{6}=0 \end{gathered}$	-3.5	-	-	-2.0	-	-	v
$\begin{aligned} & 8 \mathrm{~V}_{\mathrm{cIs}} \\ & \mathrm{I}_{\mathrm{c}}=-100 \mathrm{uA}_{\mathrm{A}, \mathrm{~V}_{\mathrm{ti}}}=0 \end{aligned}$	-15	-	-	-15.0	-	-	$\checkmark$
h,	$\begin{aligned} 25 @ \mathrm{~V}_{\mathrm{et}} & =-3 \mathrm{~V} \\ \mathrm{I}_{\mathrm{c}} & =-10 \mathrm{~mA} \end{aligned}$			$\begin{array}{r} 25 @ V_{c t}--.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{c}}=-10 \mathrm{~mA} \end{array}$			
$\begin{aligned} & V_{\mathrm{ta}} \\ & \mathrm{I}_{\mathrm{c}}=-.4 \mathrm{~mA}, I_{c}=-10 \mathrm{~mA} \end{aligned}$	-. 34	-	-. 44	-. 34	-	-. 50	v
$\begin{gathered} I_{c s o} \\ v_{c t}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{g}}=0 \end{gathered}$	-	-	-3.0	-	-	-3.0	\# ${ }^{\text {A }}$
$\begin{aligned} & V_{c i} \\ & I_{s}=-4 \mathrm{~mA}, I_{c}=-10 \mathrm{~mA} \end{aligned}$	-	-	- 30	-	-	$-.50$	v
$\begin{gathered} \quad \mathrm{t}_{\mathrm{d}}+\mathrm{I}_{\mathrm{c}} \\ \mathrm{I}_{\mathrm{bt}}=1.0 \mathrm{~mA}, \mathrm{~V}_{c c}=-3.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{t}}(\mathrm{off})=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{c}}=300 \Omega \end{gathered}$	-	80	75	-	60	75	masec
$\begin{aligned} & i_{s} \\ & I_{n 1}=-1.0 \mathrm{~mA}, V_{c c}=-3.5 \mathrm{~V} \\ & I_{n 2}=0.25 \mathrm{~mA}, R_{c}=300 \Omega \end{aligned}$	-	75	100	-	75	100	$\mathrm{m}^{4} \mathrm{Sec}$
$\begin{gathered} \mathrm{I}_{4} \\ \mathrm{I}_{\mathrm{st}}=-1.0 \mathrm{~mA}, V_{c \varepsilon}=3.5 \mathrm{~V} \\ \mathrm{I}_{62}=-0.25 \mathrm{~mA}, \mathrm{R}_{\mathrm{c}}=300 \mathrm{n} \end{gathered}$	-	80	100	-	80	100	m"Sec



Pari No.	Capacitance   mmi	Tolerance	Working   Volis D.C.
NC-5	5	$15 \%$	50
NC-7.5	7.5	$15 \%$	50
NC-10	10	$15 \%$	50
NC-15	15	$15 \%$	50
NC-22	22	$15 \%$	50
NC-33	33	$15 \%$	50
NC-47	47	$15 \%$	50
NC. 68	68	$15 \%$	50
NC-82	82	$15 \%$	50
NC-100	100	$20 \%$	50
NC-250	250	$20 \%$	50
NC-500	500	$20 \%$	50
NC-750	750	$20 \%$	50
NC-1000	1000	$20 \%$	50
NC-1500	1500	$25 \%$	25
NC-2000	2000	$25 \%$	25
NC-3000	3000	$30 \%$	25
NC-4000	4000	$30 \%$	25
NC-01	10000	$30 \%$	10

Mucon's broadened family of "NAR-ROW-CAPS" subminiature ceramic capacitors are .095" wide max. by .095" thick max.-specifically designed to enable mounting $.100^{\prime \prime}$ between centers. Length is $1 / 4^{\prime \prime}$ max. for parts NC-5 through NC-750: 5/16" max. for parts NC-1000 through NC-01.
 CORPORATION 9 ST. FRANCIS ST., NEWARK 5, N. J. Circle 144 on Inquiry Card

## International ELECTRONIC SOURCES

Semiconductors-'Their Types and 【lses, H. J Thuy. "rt." May 1960. 5 pp. The most important constructional elements of semiconductors are listed and a description is given of their fields of application, their structure and some of their typical properties. (Germany.)

The Junction Transistor Basic Operating Mode, M. K. Achuthan. "El. Tech." June 1960. 3 pp. (England.)

Tunnel Diodes Operation and Application, G. N. Roberts. "El. Tech." June 1960. 6 pp. (England.)

Design of a Diode Rectifier, (i. I. Lcevitan. "Radiotek" 15, No. 6, 1960. 2 pp . The staitistical characteristic curve for a diode is generally represented by two straight lines which join on the ordinate. This is an approximation to the true curve of the diode characteristic. The author presents a more accurate method for calculations of the characteristic curve by deriving appropriate equations and supporting graphs. (U.S.S.R.)

Magnetic Semiconductor Amplifier, R. A. Lipman and M. V. Ol'Shvang. "Avto i Tel." July 1960. 11 pp. A magnetic semiconductor amplifier operating as a key with intermittent regulation and based on relaxation generator with pulse-width modulation. (U.S.S.R.I

Semiconductor Contactless Switching Elements, E. V. Miller. "Avto i Tel." July 1060. II pp. Contactless switching elements elaborated for replacing contact relays in automatic regulating systems are proposed. The calculation of these elements is described. (U.S.S.R.)

New Transistors and Diodes. H. Lennartz. "El Rund." July 1960. 4 pp. (Germany.)

Tunnel-Diodes, W. W. Gartner. "El Rund." July 1960. 7 pr . The paper deals with the physical basis of the tunneling effect, the
dimensioning, manufacture and ratings of the tunnel diode, and its application as uscillator. amplifier and switch. (Germany.)

Photomagnetoelectric Effect and Photoconductivity in Semiconductors, V. Andresciani. "Alta Freq." April 1960. 52 pp. The photomagnetoelectric effect has been examined in semiconductor crystals from a more general point of view than in the forner works. (Italy.)


## TELEVISION

Signal Formation in an Image Iconoscope with Point Trace Scanning, L. I. Hromov. "Radiotek" 15, No. 6, 1960. 6 pp . In recent years of electronic technology, a scanning technique by point tracing has been introduced widely. In this method, beams of electrons, as they move continuously along horizontal lines, in both the transmitting and receiving tubes, are triggered on and off synchronously with the frequency of the points. Certain effects which are produced as the electrons sweep the image iconoscope target are analyzed. Among these is the electron cloud. Experimental data obtained is given which permits the evaluation of the charge density and afterglow of this electron cloud. (U.S.S.R.)
Modern Viewpoints in Designing Color TV Film Scanners with Light Spot Tubes, P. Neidhardt. "El. Rund." Aug. 1960. 7 pp. (Germany.)

The Test-Line Signals of the French Television Service, A. Pouyferrie and G. Frachet. "Rundfunk." Aug. 1960. 5 pp. (Germany.)
Distortions Due to System and Trausmission Faults in Color Television Based on the

## NEW non-corrosive HYDRAZINE FLUX* ends residue problems on soldered joints, saves production time

HYDRAZINE FLUX leaves no rosin residue. New flux in water and water-alcohol solutions vaporizes completely at soldering temperature. Leaves no residue which would support growth of fungus. Will not corrode. Conforms to strict military requirements.
HYDRAZINE FLUX permits prefluxing. This means you can hold prefluxed parts before soldering-an efficiency measure
that can increase manhour output substantially.
Ideal for soft-soldering a wide range of copper and copperbased alloys in electronic applications.

Test Hydrazine Flux in your own plant. Write for a sample of Hydrazine Flux and technical literature . . . for name of your nearest distributor.
*U.S. Patent No. 2,612,459


## Handy \& Harman

# Siluer Siffermartet 

## Has every form of silver for your electronics applications

Silver, in many forms and alloys, is a necessity in the electronics and electrical industries. To meet this need on a high quality leve', Handy \& Harman manufactures powder, flake, paint, paste, sheet, strip, wire, etc., for printed circuits, wiring, resistors, condensers, thermistors, contacts, printed terminal strips on glass, ceramics, plastic laminates, etc.
Another "At Your Scrvice" Division of the Handy \& Harman Silver Supermarket is our Research and Engineering Department. Always ready to help you with any problem or project you may have involving silver for any application.

## VISIT OUR BOOK DEPARTMENT

We hatre five Technical Bulletins giving engineering data on the properties and forms of Handy \& Harman Silver Alloys. We would like you to have any or all of those that
particularly interest you. Your request, by number, will receive prompt attention.
Fine Silver Bulletin A-1
Silver-Copper Alloys Bulletin A-2
Silver-Magnesium-Nickel Bulletin A-3
Silver Conductive Coatings Bulletin A-4
Silver Powder and Flake Bulletin A-5
Your No. 1 Source of Supply and Authority

General Offices: 82 Fulton St., New York 38, N. Y.



Marcus Hook, Pa.


El Segundo (Los Angeles), Calif.

## in every major electronics center

## $B \& A^{\circ}$ assures fast, dependable supply of highest-purity "Electronic-Grade" chemicals

Wherever your electronics plant is located, you're close to a source of Baker \& Adamson "ElectronicGrade" chemicals-the nation's high-est-quality line. B\&A production facilities at Chicago, Ill., El Segundo, Calif., Marcus Hook, Pa., and Nichols, California, plus 24 stock points across the nation assure same or next day delivery in most major electronics centers.

The extensive $B \& A$ line ranges from acetone to zinc sulfide, including such electronic-grade chemicals as hydrogen peroxide and the purest hydrofluoric acid for semi-conductor production.

B\&A controls impurities in "Elec-tronic-Grade" chemicals to a degree surpassing all previous standards! Highest purity is assured through rigorous methods of chemical and
instrument analysis, and in the case of solvents is supplemented by resistivity measurements . . . a technique introduced by Baker \& Adamson scientists to detect and determine trace impurities.

Our free booklet, "B\&A Electronic Chemicals," includes a listing of products with specifications and uses. Write today, on company letterhead please, for your copy.

GENERAL CHEMICAL DIVISION

# ADVANCED DESIGN COMPONENTS 



## New ULTRASONIC DELAY LINES

Low cost - Small size

Development engineers can now employ new concepts in existing and proposed applications. These Curtiss-Wright delay lines are extremely small. hermetically sealed and vibration proof. They are ideally suited for use in computers, coders and decoders, telemetering and navigational systems.

## SPECIFICATIONS

Delay range... . 5 to 6000 microseconds
Tolerance . . . . . . . . . $\pm 0.1$ microsecond
Signal to noise ratio. Greater than 10:1
nput \& output impedance. . $\mathbf{5 0 - 2 0 0 0}$ ohms Carrier frequency. ........ $100 \mathrm{kc}-1 \mathrm{mc}$ Delay to pulse rise time. .. Up to 800:1

DIGITAL MOTORS
For high reliability applications


These stepping motors meet the requirements of assured reliability and long life for aircraft, missile and automation sy'stems.

## FEATURES

Dynamically balanced Bi-directional - Positive lock Simplicity of design High pulsing rate

TIME DELAY RELAYS
For high vibration applications

"H" Series thermal time delay relays are designed to meet the high shock and vibration conditions of today's military applications.

FEATURES
Time delays from 3 to 180 seconds Temperature compersated Hermetically sealed - Miniature Meets rigid environmental specifications

## a complete

 selection of
## low cost

standard models

## Howard motor parts sets

Ratings from $1 / 200$ to 1 H.P. Howard standard motor parts include armatures and fields, brushes and brushholders, rotors, stators and fans. If you use motor parts, write Howard for complete information.


HOWARD INDUSTRIES, INC., 1730 State Street, Racine, Wisconsin Divisions: Electric Motor Corp., Cyclohm Motor Corp., Boyd Scruggs Co. Circle 150 on Inquiry Card
send for the

## ALIIED

1961 ELECTRONIC SUPPLY CATALOG
572 PAGES - MOST COMPLETE


## BUY AT FACTORY PRICES

WORLD'S LARGEST STOCKS...SPECIALIZING IN:

## - Semicanductors

- Special-Purpose Tubes
- Connectors
- Relays
- Relays
- Transformers - Resistors, Controls
- Switches, Timers
- Electronic Parts for Every Industrial Need

ONE ORDER TO ALLIED FILLS THE WHOLE BILL
Have the world's largest stocks of electronic equipment at your command. No need to deal with hundreds of separate factories-one order to us fills the whole bill. You get same day shipment. You buy at factory prices. Write today for the free 1961 allifed Catalog-your one-source electronic supply guide.

## ALLIED RADIO

your dependable source for
everything
electronic supply

100 N. Western Ave., Dept. 18-L

Chicago 80, III.
$\qquad$ 0


ELECTRONICS


60 HERRICKS ROAD. MINEOLA. L. I.. N. Y. PIONEER 6-6520. TWX G-CY-NY-58OU

## New

## Products

## MAGNETIC REED RELAY

Magnereed Relay, Class 101, combines in a small size a stable contact resistance, long life, and high switching speed. It consists of a magnetically actuated contact assembly inside an actuating coil. Gold contact are hermetically sealed in an atmosphere

of inert gas. Standard contacts are single pole. single throw, normally open; rated 12 w resistive load-1 amp. max. Contact resistance is 50 milliohms, max; breakdown voltage 200 vac rms min. Coil power; nom, 100 mw ; $\mathrm{min}, 50 \mathrm{mw}$. Operate time, less than 1 msec ; release time, less than $1 / 2 \mathrm{msec}$. Dimensions; Relay body (coil) $7 / 8$ in. long; 7/16 in. dia. Overall length with standard solder terminals, $11 / 2$ in. Magnecraft Electric Co., 3352 W. Grand Ave., Chicago 51, Ill.

Circle 267 on Inquiry Card

## R-F INDUCTORS

New series of slug-tuned, shielded $r-f$ inductors, the series 900 are for military and high quality commercial applications. The series cover from $0.5 \mu \mathrm{~h}$ to $100 \mu \mathrm{~h}$ in 10 steps and is most useful over the 0.5 to 60 Mc spectrum where the ave. $Q$ is 70 . The assembly consists of powdered iron cups and core mounted in a plated brass case. The windings are sealed with epoxy. A built in tension device locks the slug in place. For i-f and

r-f amplifiers, they can be used in telemetering, radar, and communications equipment. Mounting is a single threaded $1 / 4-28$ bushing. North Hills Electronics, Inc., Glen Cove, L. I.. N. 1 .

Circle 268 on Inquiry Card

## AC/DC RATIO STANDARD

For those who require an AC/DC RATIO STANDARD in a single package, Gertsch offers its Models 1001 and 1002. Like all GERTSCH RATIO STANDARDS ( 1000 Series), these units feature: heavy duty instrument switches, transient suppression, $A C$ Ratios up to $1.111 ו 1$, bold in-line readout and extra-heavy mechanical construction to insure TRUE STANDARDS PERFORMANCE.

	AC	DC
Lineority:	1 part per million	10 parts per million
	$(0.0001 \%)$	$(0.001 \%)$
Resolution:	6 Place $(0.0001 \%)$	6 Place $(0.0001 \%)$



GERTSCH PRODUCTS, Inc.
3211 South LaCienega Boulevard, Los Angeles 16, California
TExas 0.2761 - VErmont 9.2201
$=$ Gentsch $=$
Circle 154 on Inquiry Card


# Now - a commercial version of the popular square trimmer at $40 \%$ cost saving 

Now available, a commercial version of the popular square trimmer at a $40 \%$ saving in price and at no sacrifice in quality.
Circuitrim 'Type 100-Ideal for circuit board mounting. $1^{\prime \prime}$ diameter $x^{7} z_{3 \prime \prime}^{\prime \prime}$ thick, screwdriver slot in top for setting. 1 watt at $60^{\circ} \mathrm{C} .10$ to 50 K ohms $\pm 10 \% \cdot 320^{\circ}$ rotation. Also a vailable, the popular subminiature square trimmer
design. Circuitrim Type 200-Superior stability under extreme conditions. $12^{\prime \prime}$ square case interchanges directly with established designs. T'eflon-coated leads or printedcircuit pins. 1.5 watts at $60^{\circ} \mathrm{C}$. 10 to 50 K ohms $\pm 5 \%$. Lead-screw actuation, $24: 1$ adjustment ratio.
Write for Bulletins AE-19 and AE-20. International Resistance Co., 401 N. Broad St., Philadelphia 8, Pa.

Leading supplier to manufacturers of electronic equipment


## THELEADER

## in R.F. Voltage Measurements at Low Level from $\mathbf{1 0} \mathbf{K C}$ to $\mathbf{6 0 0} \mathbf{~ M c}$

MODEL 91-CA
300 microvolts to 3 volts
Price: $\$ 495$

MODEL 91-C
1000 microvolts to 3 volts
Price: \$395
also manufacturers of the following instruments:


DC Millivoltmete


Inductance Bridge


Capacitance Bridge


UHF Grid Dip Meter

New	
	Products

## CONNECTORS

A new series of TNC Coaxitube ${ }^{\text {r }}$ (Semi-Rigid) Connectors feature Collett clamp construction-a reliable method of positive cable clamping so cables cannot turn or pull out. They are also available in TM seriesminiatur:zed versions of TNC-for

use where size and weight are criti cal considerations. Weatherproof, the metal parts are silver plated; contacts have gold plate over silver plate. Standard specs include: Impedance matched, 50 ohms; Operating Temperatures, $-65^{\circ} \mathrm{F}$ to $+260^{\circ} \mathrm{F}$; Voltage, 1500 v RMS, 60 cycles (TNC), 500 v RMS 60 cycles (TM) ; Threaded Couplings 7/16-28 UNEF-2 (TNC), 5/16-32 NEF-2 (TM). Other voltages and impedances in other connector types available. General RF Fittings, Inc., 702 Beacon St., Boston 15, Mass.

Circle 270 on Inquiry Card

## ULTRA-HIGH-VACUUM VALVE



Giant valve developed by RCA uses sealing technique which permits it to remain vacuum tight at pressures down to $2 \times 10^{-10} \mathrm{~mm} \mathrm{Hg}$. Directly below the valve are two 2.000 lite liquid nitrogen cold traps supported by a freon baffle nesting on a 10 in , mercury dif fusion pump. Hoses on upper manifold of the valve are connected to a hydraulic system that furnishes a 25 -ton force to close the valve's seal. Valve was constructed under an AEC contract.

## Read INSULATION RESISTANCE

## to FIVE MILLION MEGOHMS

VIBROTEST© Megohmmeters provide direct reading resistance measurements to bive million megohms of electronic circuits, cable assemblies, transmission lines, mutors, generators. servos. components and insulating malerials. Push-hutton operation makes possble high speed production testing Self-contained high voltage supply eliminates cranking and leveling. W'rite for complete manual.


Model 250 vibrotest Meg. ohmmeter with ranges to 50,000 megohms. Complete $\$ 279.50$.

## HIGH VOLTAGE BREAKDOWN

 Insulation Leakage Current HYPOT Test Sets provide direct reading of insulation leakage current in arcord with mili tars and commercial test specifications. Mod els are available to supply a.e and d.e test potentialo to 150 kv and higher. Optional features include automatic rate of voltage rise control. automatic test pecling and others to meet ebers test application.Model 424 HIPOT provides 0.5000 v d c for testing cables, condensers, coils, transfurmurs and assemblies. Measures leakage 01 to 10 ) micruamperes wher four sole ranges Hapid tharging of capariturs with 5 ma. wutput. siffentaned power supply. Gomplete 8497.00.

## Associated Rese

Humetivn
3787 W. Belmont Àvenue - Chicaḡo 18, Illinois
$10-35.20$ Circle 157 on Inquiry Card


Write for Manual H-66


## 35,000 SMASHING, BATTERING IMPACTS-

and still working perfectly!

MonO-OUR" HOUSING

CORROSION-PROOF
$\mathrm{H}_{\mathrm{H}} \mathrm{GH}-1 \mathrm{MPACT}$

## NEW

## shura "TEN-FOUR"

COMMUNICATIONS microphone

## proves its incredible durability

in this gruelling destruction test!


New SHURE "TEN-FOUR" MICROPHONE, with exclusive Armo-Dur housing, and another microphone with standard die-cast metal housing were dragged for miles on a test drive over all kinds of pavements at speeds to 30 mph . In a matter of minutes, it was subjected to greater punishment


For the microphone that stands up under severe operating conditions with no loss of high speech intelligibility, be sure to specify the Shure "Ten-Four" when you order your new communications equipment or replacements.
(Can be furnished with "Controlled Magnetic" or carhon cartridge.)
SHURE BROTHERS, INCORPORATED
222 Hartrey Avenue, Evanston, Illinois
HIGHEST QUALITY MICROPHONES - FIXED - STATION AND MOBIL Circle 159 on Inquiry Card

## New Tech Data

## for Engineers

## Recovery Time Tester

Bulletin 60-1 from Contronics, Inc., 37 Leon St., Boston, Mass., describes a unit for the automatic measurement and recording of semiconductor diode recovery time: 1 unit can do the work
formerly performed by 6 operators using oscilloscopes and auxiliary equipment by having all time and voltage discriminations performed electronically, providing faster and more accurate readings.

Circle 271 on Inquiry Card


## ELECTRON TUBE PARTS Only precision offers you highest quality... Only precision offers you highest quality... Only precision offers you highest quality...

Lower cost-closer tolerances through Anton's unique facilities in manufacturing of metal parts for transmitting radar and geiger counter tubes.

All magnetron anode cavities are hobbed (not machined) resulting in perfect uniformity.
Send drawings of your designs for quotation and take advantage of our production experience in this field.


## Anton Machine Works

Standard \& Magnetic Parallels - Standard \& Adjustable V-Blocks - Diamond Holders - Milled Blanks

## Power Supply

Details on a 100 -w-sec. stored energy welding power supply for the electronic component packaging field available from Hughes Aircraft Co., Vacuum Tube Products Div., Marketing Dept., 2020 Short ist., Oceanside, Calif. Model VTW-30, delivers a stepfree, adjustable range of power of 0.5 to 100 w -sec. A pulse width of less than $11 / 2 \mathrm{msec}$ assures no burning or discoloration of the weld area and no heat damage to the components being welded. Each weld pulse repeats exactly, providing uniformity to eliminate damaged components or reject materials.

Circle 272 on Inquiry Card

## Toroids

New catalog (57B) describes the complete line of "Custom-designed" toroids of Cinema Engineering Div., Aerovox Corp., 1100 Chestnut St., Burbank, Calif. Complete specs are given on epoxy encapsulated and wax impregnated styles covering approx. $90 \%$ of all toroid inductor requirements. Information is provided on frequency, size and ordering. Encapsulated units meet MIL-T-27. Catalog also covers uncased, and steel cased styles available.

Circle 273 on Inquiry Card

## Laminated Plastics

The 1961 edition of Formica Designer's Fact Book, a technical reference book on laminated plastics contains property and application data covering 70 standard, special, and molding grades of high-pressure thermosetting laminating plastics, military specs, a grade comparator chart, tolerance and weight specs (115pages). Formica Corp., 4550 Spring Grove Ave., Cincinnati, Ohio.

Circle 274 on Inquiry Card

## Covering Solar Cells

First in a new series of Technical Reports from the Military Products Div., Bausch \& Lomb, Inc., Rochester 2, N. Y., is entitled, "Emissivity Enhancement of Solar Cells for Temperature Control." It discusses various techniques for coating these cells in order to increase cell efficiency by re-radiating heat and reducing operating temperature when they are exposed to direct sunlight. The importance of this coating is directly related to the success of current space research programs, since silicon solar cells are used as an electrical power source for satellites and other space vehicles. Major sections are devoted to: construction of coating, emissivity, solar adsorptivity, reflectance, and temperature determination. Charts and diagrams included.

Circle 275 on Inquiry Card

## Terminations

Product bulletins from Sage Laboratories, Inc., 3 Huron Dr., Natick, Mass., feature 50 Ohm Coaxial Terminations (Models 920 \& 921). These are wide range, low VSWR matched terminations for field and lab use.

Circle 276 on Inquiry Card


NEW MOTOROLA 15 AMP POWER TRANSISTORS

MAXIMUM RATINGS						Electrical Characteristics		
Type	$\begin{gathered} \mathbf{P}_{\mathrm{e}} \\ \text { wats } \end{gathered}$	$\begin{gathered} \mathrm{T}_{1} \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} B V_{\text {c. }} \text { o } \\ \text { volts } \end{gathered}$	$\mathrm{BV}_{\mathrm{ces}}$ volts	$\underset{\operatorname{amps}}{\mathrm{I}_{\mathrm{C}}}$	$\mathrm{h}_{\mathrm{FE}} @ \mathrm{l}_{0}$		
						min	max	amps
2N441	150	100	40	40	15	20	40	5
2N442	150	100	50	45	15	20	40	5
2N443	150	100	60	50	15	20	40	5
2N174	150	100	80	70	15	25	50	5
2N1358	150	100	80	70	15	25	50	5
2N1100	150	100	100	80	15	25	50	5
2N1412	150	100	100	80	15	25	50	5
2N277	150	100	40	40	15	35	70	5
2N278	150	100	50	45	15	35	70	5
2N173	150	100	60	50	15	35	70	5
2N1099	150	100	80	70	15	35	70	5



118 TYPES AVAILABLE IN TO. 3 CASE


In addition to new $\mathbf{T 0} \cdot 36$ units, Motorola offers over 118 different standard types in $\mathrm{TO}-3$ Case. $3,5,10,15$ and 25 amps. 90 watts power dissipation. Up to 120 volts. $0.8^{\circ} \mathrm{C} / \mathrm{W}$ maximum thermal resistance. $100^{\circ} \mathrm{C}$ junction temperature. Special "Meg-A-Life". units offer military reliability for industrial applications.

Motorola power transistor reliability is now available in a new, improved "low silhouette" TO-36 package. These new devices offer many outstanding design advantages including:

- 150 watt power dissipation
- $0.5^{\circ} \mathrm{C} / \mathrm{W}$ maximum thermal resistance $\left(0.35^{\circ} \mathrm{C} / \mathrm{W}\right.$ typical)
- $100^{\circ} \mathrm{C}$ junction temperature - 15 amps
- hfe ranges from 20.70
- Require $30 \%$ less headroom than other TO.36 cases
- Rugged internal structure - Improved cold weld
- $100 \%$ lot life tested to assure highest reliability

IMMEDIATELY AVAILABLE IN 1 TO 999 QUANTITIES from your authorized Motorola Semiconductor Distributor. FOR COMPLETE TECHNICAL INFORMATION and the name of your local distributor write MOTOROLA Semiconductor Products Inc., Dept. LS, 5005 E. McDowell Road, Phoenix, Arizona


MOTOROLA<br>Semiconductor Products Inc.



Repetitive symbols . . . in fact any drafting, blueprint or specification detail items . . . can be applied in seconds, rather than drawn in hours. If your engineers or drafismen haven't yet discovered the speed and economy of STANPAT, they are wasting valuable hours ... and valuable money.
STANPAT tri-acetate sheets are quickly and easily adhered to your tracings without special equipment. Reproductions are crisp and clean... Won't dry out, come off or wrinkle. Mail the coupon today and see for yourself.


## Tech Data

## for Engineers

## Waveguide Switch

Single-page data sheet from Waveguide, Inc., Costa Mesa, Calif., describes the Model WXS waveguide switch, a single pole, double throw, manually operated switch for laboratory use. Switch features low VSWR and high isolation.

Circle 277 on Inquiry Card

## Display Device

Four-page, 2-color bulletin from Kearfott Div., General Precision, Inc., Little Falls, N. J., describes the Digistrobe, a digital display device which uses the stroboscopic principle to provide an in-line, in-plane, highdefinition, white-on-black display. A single display can be used to sample several inputs on command. Bulletin includes design features, schematics, and specs.

## Circle 278 on Inquiry Card

## I-F/R-F Microwave Catalog

Catalog describes Company's line of modular i-f amplifiers, automatic frequency controls for klystrons, microwave i-f converters and high temperature transistorized power supplies. The 8-page, 2 -color bulletin gives engineering information on all models. Orion Electronic Corp., 108 Columbus Ave., Tuckahoe, N. Y.

Circle 279 on Inquiry Card

## Power Oscillator

Tech data sheet from W. L. Maxon Corp., Instruments Div., 475 Tenth Ave., New York 18, N. Y., describes their UHF Wideband Power Oscillator Model M1141. Descriptive data and tech data included. Unit features a frequency range from 200 to 2500 MC (in two bands) and Power output from 10 to 40 watts (varies with frequency).

Circle 280 on Inquiry Card

## Ceramics

Technical data sheets from Na tional Beryllia Corp., 4501 Dell Ave., No. Bergen, N. J., describe their Berlox ${ }^{\text {r }}$ and Berlox EMR beryllium oxide ceramic bodies fabricated in vacuum tube envelopes, heat sinks, rods, tubes, washers and other shapes. Information includes physical, thermal, mechanical and electrical properties.

Circle 281 on Inquiry Card

## Test Equipment

A 5-page, 2-color Bulletin 400 categorizes products by frequency range, waveguide size and price. Featured are attenuators, isolators, slotted sections, mounts, frequency meters, adapters, klystron power supplies and coaxial equipment. PRD Electronics, Inc., 202 Tillary Street, Brooklyn 1,


## HARRY DAVIES MOLDING CO.

1428 N. Wolls Streal, Chicogo, III.

## FREE CATALOG samples

 sampleson reques

Circle 320 on Inquiry Card

## TELEMETRY PREAMPLIFIER

for Reliable

## LOW NOISE RECEPTION

The LEL TP-5 Telemetry Preamplifier is designed to be installed at a telemetry receiving antenna. The unit is weatherproofed for outdoor use. Ceramic tubes are used to provide a low noise figure and stable performance without forced air cooling.

Specifications:
Gain

Large production gives you low prices! - that's why.


## 2 to 180 Seconds

Actuated by a heater, they operate on A.C., D.C., or Pulsating Current.

Hermetically sealed. Not offected by allitude, moisture, or climate changes. SPST only—normally open or closed.
Compensated for ambient temperature changes from $-55^{\circ}$ to $+80^{\circ} \mathrm{C}$. Hearers consume approximately 2 W . and may be operated continuously. The units are rugged, explosion-proof, longlived, and-inexpensive!
TYPES: Standard Radio Octal, and 9 .
Pin Minialure . . . List Price, $\$ 4.00$.
Also-Amperite Differential Re- PROBLEM? Send for lays: Used for automatic overload, unBulletin No. TR-8I
der-voltage or under-current protection.

## BALLAST REGULATORS

Amperite Regulators are designed to keep the current in a circuil automatically regulated
at a definite value (for example, 0.5 amp .) . For currents of 60 ma . to 5 amps. Operate
on A.C., D.C., or Pulsating Current.


Hermetically sealed, they are not affected by changes in alfitude, ambient temperalure ( $-50^{\circ}$ to $+70^{\circ} \mathrm{C}$ ), or humidity . . Rugged, light, compact, most inexpensive $\qquad$ List Price, \$3.00.
Write for 4 -page Technical Bulletin No. AB-51
AWPERITE

561 Broadway, New York 12, N. Y. ... CAnal 6.1446 In Ganada: Atlas Radio Corp., Ltd., 50 Wingold Ave., Toronto 10

## HIGH ACCURACY

 CALORIMETER BRIITEACCURACY BETTER THAN $1 \%$


Direct Reading with self contained calorimetric loads, cooling system and circulating system
In these Calorimeter Bridges the RF power to be measured is compared to a known AC power. This AC power is metered by a wattmeter with an accuracy of $1 / 4 \%$ of full scale. The accuracy of these Calorimeters depends primarily on the accuracy with which the AC power introduced into the AC standard load is measured. Since RF power is compared to AC power, both of which will depend to an equal extent on the ambient temperature, the effect of the ambient temperature on this power measurement is, therefore, cancelled out.

TYPE	FULL SCALE POWER RANGES IN WATTS	FREQ. RANGE KMC	VSWR MAX.	MEASURING TIME	ACCURACY
CB-33	15, 30, 60	DC - 4 KMC	1.25	1 min . or less	
CB-34	25, 50, 100		1.25	1 min . or less	1\%
CB-35	50, 100, 200, 400	DC - 4 KMC	1.25	1 min . or less	1\%
CB-36	125,250, 500, 1000	DC - 4 KMC	1.25	1 min . or less	$1 \%$

WRITE for COMPLETE INFORMATION

## Slectra Impulse laboratory we. | 208 River st. - Red bank, N.J. Phone: SHadyside 1-0404

## Circle 323 on Inquiry Card



ONE-PLANE PRESENTATION
 Decoders Available. complete specifications Representatives in principal cifies

## Industrial Electronic Engineers, inc.

5528 Vineland Avenue
North Hollywood, California

$\frac{\text { GOLSTAT VOLTAGE }}{\text { BURTHT CURRENT }}$
$\frac{\text { GOLSTAT VOLTAGE }}{\text { BURTHT CURRENT }}$
from the SAME TERMINALS!

F.O.b. FACTORY

Other Models Available Write For Catalog

MODEL 4005 is a 40 volt, 500 ma, regulated DC power supply incorpo. rating AMBITROL,* a transistorized regulator permitting continuous control of voltage or current to $.05 \%$ with adjust. able automatic electronic crossover to either voltage or current regulation.

## Tech Data

## for Engineers

## DC Power Supplies

"Tung-Sol Tips," No. 11, Sept. 1960, (a monthly publication of Tung-Sol Electric, Inc., 95 8th Ave., Newark 4, N. J.) features an article on dc power supplies. It is illustrated with curves, tables, schematics, and a trouble shooting chart.

Circle 283 on Inquiry Card

## Coaxial Hybrid Mixers

Mullard Equipment Ltd., Mullard IIouse, Torrington Pl., London (England) offers a data sheet describing mixers for S and X -band frequencies. Design is based on a coaxial phase-reversal hybrid circuit which will operate over a $3: 1$ frequency range without tuning, and which can be scaled in dimensions for each band. Circle 284 on Inquiry Card

## Dip-Brazing

Four-page brochure discusses Aluminum Dip-Brazing, a process that allows perfect joining of aluminum to form homogeneous parts. It offers a strength of weld equal to or better than the parent metal. Also: a data sheet describing the company's miniature C band Triode Oscillator. Sheet includes outline drawing, tech data, and curves (frequency vs. power). John Gombos Co., Inc., Webro Road, Clifton, N. J.

Circl. 285 on Inquiry Card

## Millimicrosecond Data

Wall chart from Lumatron Electronics, 116 County Courthouse Rd., New Hyde Park, L. I., N. Y., includes: frequency-time conversions; attenuator design; capacitive reactance; step function response of line terminations; db-voltage ratio conversions; delay characteristics of coaxial cable; and ratio of inner to outer dia. of coaxial devices.

Circle 286 on Inquiry Card

## Power Generators

Series of data sheets from Raytheon Co., 100 River St., Waltham 54, Mass., describe the Company's Power Generators. Included are Models PGM 100 and 101 for laboratory use (power output of 800 w at 2450 MC ); they feature variable power from 250 to 800 watts, standard RG 104/U waveguide output; both 120 cycle and $10 \%$ modulated dc operation, and peak power as high as 1125 watts.

Circle 287 on Inquiry Card

## Indicator

Single page data sheet, bulletin S259 , from Specialties, Inc., Charlottes-ville-Albemarle Airport, P. O. Box 888, Charlottesville, Va., features the Specialert Signaler, a fast, positive indication of electrical failure or functional information. It offers a printed display and can be used in circuits requiring from 1 to 220 vac/dc.

Circle 288 on Inquiry Card

## OHMITE PREGISION RESISTORS 5 TYPES . . . TOLERANCES TO 0.1\%



(5.) VITREOUS ENAMELED (Power Type)

This large family of precision resistors offers you flexibility for varied applications and traditional Ohnite quality for the most exacting requirements. Many of these styles are stocked in a wide range of values by the factory and Electronics Distributors throughout the country.
METAL FILM (SERIES 77) Units consist of metal film on glass substrate. termetically sealed in high temperature resin. They possess long load and shelf life, low noise level, excellent high-lirequency characteristics, and exceed military specifications. Rated at $125^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$. Resistances from 25 ohms to 2.5 megohms. Wattages from $1 / 4$ to 2 watts. Cylindrical, semicylindrical, or flat-sided shapes with radial or axial leads. Tolerances are $0.1 \%, 0.25 \%, 0.5 \%$, and $1 \%$. Bulletin 155.

MOLDED WIRE-WOUND (SERIES 88,
Power Type) These resistors utilize a single-layer winding on a ceramic core, welded connections throughout, and a molded silicone ceramic jacket. Uniform physical size in each rating. Supplied in 1, 3, 5, 7, and 10 -watt sizes; resistances to approximately 50,000 ohms. Units meet MIL-R-26C specifications. Tolerances are

0
0
0
0
0
0
0
0
0
0
0.
0
69
0.3
0
0
0
0
0 $25^{\circ} \mathrm{C}$ ). Bulletin 153 .

## ENCAPSULATED (SERIES 85 AND

86) Resistance wire, pie-wound on a steatite bobbin, is enveloped in an epoxy type resin. Welded connections throughout. Units meet and surpass military specifications. Series 85 has axial leads; Series 86, lug-type terminals. Designed to meet the requirements of MIL-R-93B Resistance values to 3.1 megohms. Tolerances are $0.1 \%, 0.25 \%, 0.5 \%$, and $1 \%$.

VARNISH IMPREGNATED (SERIES 83, 84) Enameled wire is pie-wound or non-hygroscopic ceramic bobbin, and entire unit is vacuum impregnated. Radial wire lead, or radial lug terminals. Made to order only. Resistances from 0.1 ohm to approximately 5 megohms; $1 / 2$ and 1 -watt sizes. Tolerances are $0.1 \%, 0.25 \%$, $0.5 \%$, and $1 \%$.


VITREOUS ENAMELED (POWER
TYPE) Most Ohmite power resistors can be provided to close tolerances when precision as well as high wattage is desired. Depending on the requirements, the units are generally derated (often to $10 \%$ of free air watts) to minimize the effect of TC and maintain the best stability.

## OHMITE

manufacturung companv
3662 Howard Street
Skokie, lllinois

RHEOSTATS - RELAYS P POWER RESISTORS PRECISION RESISTORS MICROMODULES PRECISION RWITCHES GERMANIUM DIODES TANTALUM CAPACITORS * R. F. CHOKES TANTALUM GARIABLE TRANSFORMERS

## OHMITE



## Optical Maser

(Continued from page 7 )
Bell Laboratories' scientists R. J. Collins, I. F. Nelson, A. L. Schawlow, W. L. Bond, C. G. B. Garrett, and W. K. Kaiser described their physical experiments with an optical maser in the current issue of "Physical Review Letters." The working substance was synthetic ruby, a material originally proposed for use in optical masers by Schawlow. It was used in the manner originated by T. H. Maiman of Hughes Research Laboratories, who first observed optical maser effects in ruby.
The heart of the Bell Laboratories optical maser is a synthetic ruby rod, $1 / 2 \mathrm{in}$. long and $1 / 5 \mathrm{in}$. in diameter. The two ends were polished until extremely flat and parallel, then covered with a reflecting layer of silver thin enough to be slightly transparent. This ruby rod was held in the center of a spiral photoflash lamp, and illuminated with an intense flash of ordinary white light.

The investigators found that when the power applied to the flash lamp exceeded a certain value, a nearly parallel beam of light was emitted through the silvered ends. This light was red, like the ordinary fluorescent light from ruby, but differed from it in several important ways. First, it was sixty times closer to being "monochromatic" (of a single frequency) than the ordinary fluorescent light from ruby.
Secondly, the light was shown to be "coherent," or of a single phase. This was demonstrated by arranging two fine, parallel slits in a thick silver coating on one end of a ruby rod. The pattern of emerging light showed that the light from one slit was "interfering" with the light from the other, indicating that the emitted light was in phase across the end of the rod.

Thirdly, almost all of this monochromatic light was emitted within a cone angle of only $.1^{\circ}$. Within this cone, the intensity of the light was far higher than could be obtained by the ordinary fluorescent process.

The coherent light was found to be emitted in intense short bursts, each in the order of a millionth of a second long. With the present flash lamp, maser action could be sustained for about a thousandth of a second, during which several hundred of these bursts were observed.

SOCIAL SECURITY RECORDS


Twelve Electronic Data Processing Systems, (five RCA 501 's and seven RCA 301's) will be installed on Jan. 1, 1961 by the Bureau of Old Age and Survivor's Insurance in seven payment centers to handle the nation's voluminous Social Security paperwork.

## Fighter-Bomber Control System Built by Hughes

A new aircraft electronic system, TARAN (Tactical Attack Radar and Navigation), developed by Hughes Aircraft Co., Culver City, Calif., enables a fighter-bomber to fly hedge-hopping missions in adverse weather and to avoid detection by darting in below an enemy's radar cover. The system makes possible the operation of tactical aircraft oy electronic control much as all weatker interceptors do. TARAN was especially designed to fit into a small, fast fighter aircraft and would be easily operated. It has three basic capabilities: navigation, air-to-ground attack and air-to-air attack. One of TARAN's features is a "terrain avoidance" mode enabling the radar to "see" only those objects high enough to be dangerous to the aircraft. "Ground mapping" is an added feature, designed to aid blind flying. In this mode the radar scope displays a "picture" of the terrain beneath the aircraft so that the pilot can orient himself and compare the radar picture to the navigational map display. These features wert developed to enable to pilot to fly out to a distant target, destroy it and return to base without ever actually seeing the enemy or ground at any time.

The problem of building a high degree of versatility into such a small system was overcome by new miniaturization and packaging techniques, by integrating components in such a way that the same units perform both armament control and navigation functions, and by building a radar of microwave frequency.

## NEW solder development!



ALPHA flux-filled washers open a whole new field of automatic soldering opportunities!
Unique design insures maximum surface-to-surface contact on close-fitting parts, complete peripheral fluxing. Produced through a special ALPHA process, they provide. for the first time. completely new soldering opportunities.
ALPHA makes a wide range of flux-filled and solid preforms Request information loday!
When dependability counts! $\boldsymbol{A} 1 \mathrm{~A}$
Ia Les Aagelen, Calif.:
2343 Saybrook Ave.
In Chicago, Ill.:
ALPHALOY Corp., 2250 S. Lumber St.
Other ALPHA products:
Core and Solid Wire Soldere * Fluzee • High Purity Metal
Circle 328 on Inquiry Card


## CLARE printed circuit relays CUSTOM-BUILT to YOUR DESIGN



# 0 @ $\begin{gathered}\text { SPAGE } \\ \text { WEIGHT } \\ \text { COST }\end{gathered}$ <br>  

This outstanding relay assembly brings to designers of data processing and data logging equipment all the proved advantages of clare mercury-wetted contact relays in the smallest possible space.

Individual switch capsules and coils are affixed to a printed circuit board and sealed from dust, moisture or tampering by "skin-pack", a tough vinyl coating.

Let us show you how we would adapt your board to include either the standard HG relay or the ultra-high speed HGS ... as well as other selected components.

4 This switch has a life expectancy of over one billion operations. Exact size.

Each capsule surrounded by individual coil, wound to customer's specifications.

Discover how you can save time, space and money . . . with clare printed circuit relays. Contact your nearby clare representative or address: C. P. Clare \& Co., 3101 Pratt Blvd., Chicago 45, Illinois. In Canada: C.P.Clare Canada Limited, P. O. Box 134, Downsview, Ontario.


Circle 330 on Inquiry Card


ANDREW RADOME EQUIPPED ANTENNAS DEFY ICE...SNOW...WIND
Andrew radomes provide excellent 2 -way year-round protection for Andrew microwave antenna systems. First, they protect feed and reflecting surface against the attenuating effects of snow, ice and debris accumulation. Secondly, for tower mounted antennas they reduce the effects of wind thrust by $35 \%$.
All Andrew radomes are lightweight and easy to install-clip directly to the dish rim of existing antennas. Unheated radomes are suitable for all but exceptional cases. In areas where freezing rain occurs, heated radomes can be provided.

## SPECIFICATIONS

 STANDARD RADOMES| Dia. <br> Feet | Yype <br> Na. | Attenuation <br> $\mathbf{C k m a c}$ db | VSWR <br> Cantributian <br> $\mathbf{6 k m a}$ | Thrust at* <br> $\mathbf{3 0} \mathbf{p s f}$ <br> (Flats), lbs. |
| :---: | :---: | :---: | :---: | :---: |
| 10 | $R 10$ | 0.4 | 0.02 | 1990 |
| 8 | $R 8$ | 0.4 | 0.02 | 1270 |
| 6 | $R 6$ | 0.4 | 0.02 | 714 |
| 4 | $R 4$ | 0.4 | 0.02 | 320 |
| 2 | $R 2$ | 0.4 | 0.02 | 75 |

Including antenna
HEATED RADOMES

Dia. Feet	Type Na .	Attenuation   (a) $6 \mathrm{kmc} . \mathrm{db}$	VSWR Contribution (10. 6 kmc .	Thrust at* 30 psf. (Flats), las.	Pawer: Reqmis.
10	HR10	0.7	0.02	1.990	3.400 watts
8	HR8	0.7	0.02	1,270	2.400 watts
6	HR6	0.7	0.02	714	1,200 watts
4	HR4	0.7	0.02	320	550 watts
2	HR2	0.7	0.02	75	150 wats

Fancluding antenno
*: Pawer requirements far HR10 and HR8 are 3 wire single phase 60 cycle
220 valts.
Power requirements fas HR6, HR4 and HR2 are single phase 60 cycle 115 v .
For further details on ANDREW Microwave Antennas, Radomes, Wave Guides write for new Andrew Catalog M.

ANTENNAS
ANTENNA SYSTEMS
TRANSMISSION LINES

P. O. Box 807, Chieago 42, Illinois

Boston - New York - Washington - Los Angeles - Toronto

"We have paid particular attention to antennas during high wind conditions of gusts up to 40-60 m.p.h. It is very obvious that these radomes quite materially reduce the wind loading on the parabolas-due to their shape factor." Washington State Patrol, Kennewick, Washington
"We have had up to four inches of ice on the radome with practically no reduction of antenna effectiveness." KLIX-AM-TV, The KLIX Corporation, Twin Falls, Idaho
"Our field forces report that the radomes produce a signal loss of less than 1 db per antenna. Several radomes were removed and antennas inspected following a heavy snow storm and no snow or ice was found in the antennas." Natural Gas Pipeline Company of America

# rele-tech's ELECTRONIC OPERATIONS 

## SYSTEMS-WISE

- A new communications system demonstrated by Infrared Industries, Inc., Waltham, Mass. uses infrared radiation as the voice carrier. A hand-held, self-powered Infraphone (about the size of a home novie camera) is "aimed" at another unit anywhere within its line-ofsight. Both phones are identical transmitter-receiver units. Range of operation is hundreds of yards-clarity is comparable to telephone.
- NAB contends that the FCC is the final authority in determining' whether construction of a radio or TV tower constitutes a hazard to air navig'ation. The action was taken in answer to a statement by the Federal Aviation Agency seeking final approval by the aviation agency before such tower's could be built.
$\checkmark$ A policy statement by 'T. Keith Glennan, NASA head, has been hailed by Homer R. Denius, Pres., Radiation Inc., Melbourne, Fla. 'The statement offered NASA's assistance to private industry for development of radio satellite communications systems. Courier satellite, launched Oct. 5 demonstrated feasibility of these systems. Radiation, Inc. has proposed systems for 24 -hr satellite programs.
- Panel 5 of ElA's National Stereophonic Radio ('ommittee has completed tests several weeks ahead of schedule. Upon correlation, the data collected will be presented for review by the NSRC Coordination Committee prior to submission to EIA for filing with the FCC. Tests measured transmission and stereophonic reception of 6 stereo FM systems and evaluated compatibility of monophonic receivers to the broadcasts.
"NOISIEST" SPOT IN TOWN

- IBM's 1009 links magnetic core memories of solid-state IBM 1401 computers over regular local or long distance telephone or telegraph lines allowing two-way communication between computers at the rate of 150 numbers or letters per second. With IBM's 1009, the IBM 1401 can function as either a data transmission or data receiving terminal, as well as a regular data processing system.


## ELECTRONIC DATA SYSTEM

Flight testing at G.E.'s Flight Test Facility of its 193-3 turbojet engines, slated for the $2,000 \mathrm{mph}$ B-70 bomber will be speeded up by installation of a data processing system and companion airborne data acquisition system, secured from Radiation Incorporated, Melbourne, Fla. Advanced systems combine analog and digital techniques using pulse code modulation.


- NAB's Selection Committee has elected Governor Leroy Collins of Florida as its President, succeeding the late Harold E. Fellows. He was elected for a three-year term, beginning in January, at $\$ 75,000$ per year.
- Electrical signals have been sent for over a hundred miles from a transmitting station deep in a mine shaft. Experiments were conducted by Space Electronics Corp., 930 Air Way, Glendale, Calif. for the Air Force. The Air Force feels the technique can furnish possible communications for buried sites.
- An image translator to measure photographic traces of missile trajectories is being developed for the Army by Gilliland Instrument Co., Oakland, Calif. The $\$ 100,000$ system will measure $X$ and $Y$ co-ordinates of point or line images to within one microm. Trajectory can be measured in minutes. System will be similar to the company's "Franckenstein" Image Translators which are used for satellite orbit computation and nuclear research.
- FCC requests that U. S. licensees or applicants with international broadcasting problems refer them to the FCC rather than deal directly with foreign licensees or foreign governments. Unauthorized negotiations involve the risk of violating U. S. laws which prohibit certain types of "correspondence or intercourse" with foreign governments.
- The 1960-61 TV Comumittee on Video Tape Usage has been selected by the Policy Committee of NAB. Willard A. Michaels, WJBK-TV, Detroit, Mich., is chairman.


## LAMINATED PLASTICS

Taylor laminated plastics, also known as reinforced plastics, are thermoset-ting-type materials formed by impregnating paper, cotton cloth, asbestos, glass cloth, nylon or other base materials with synthetic resins and fusing them into sheets, rods, tubes and spesial shapes under heat and pressure. These materials exhibit a valuable sombination of characteristics, includng high electrical insulation resistance, :tructural strength, strength-to-weight atio, and resistance to chemical rection; also adaptability to fabricating perations.
ypes of laminated plastics made by Taylor here are four basic types of Taylor aminated plastics commonly specified nd used throughout industry today. hey are as follows:

ienolic Laminates. Paper, cotton bric or mat, asbestos, glass cloth or lon bases impregnated with phenol rmaldehyde resins. These provide :ength and rigidity, dimensional stality, resistance to heat, chemical re:tance, and good dielectric characterics. Some Taylor grades are excelit basic materials for gears, cams, nions, bearings and other mechanical plications. Others are widely used in minal boards, switchgear, circuit eakers, switches, electrical applices and motors. Also in radios, teleion equipment and other electronic vices; and in missiles as nose cones, haust nozzles, and combustion chamr liners.


Melamine Laminates. Glass cloth or cotton fabric impregnated with melamine formaldehyde resin. Taylor melamine laminates have superior mechanical strength and are especially desirable for their arc-resistant qualities. Good flame and heat resistance, good resistance to the corrosive effects of alkalis and most other common solvents, besides other favorable characteristics. Typical applications include arc barriers, switchboard panels, and circuit-breaker parts in electrical installations.


Silicone Laminates. Continuous-filament woven glass fabric impregnated with a silicone resin. These laminates combine high heat resistance (up to $500^{\circ} \mathrm{F}$. continuous) with excellent electrical and mechanical properties. They are primarily used in high-temperature electrical applications and high-frequency radio equipment.

Epoxy Laminates. Continuous-filament woven glass fabric or paper impregnated with epoxy resin. Glassfabric grades are designed for use in applications requiring high humidityresistance, good chemical resistance,

and strength retention at elevated temperatures. Paper grades are used under high-humidity conditions where resistance to acids and alkalis is required. Both grades are characterized by good dielectric strength, low dielectric losses, and high insulation resistance even following severe humidity conditions.

Recent technical advances in the bonding of various metallic and nonmetallic materials to laminated plastics have opened up new design opportunities. It is now possible to bond virtually any compatible material with a laminated plastic to form a composite which combines the advantages of both. One of the first composite materials was a copper-clad laminate used for printed circuits. More recent composite laminates, usually manufactured to customer specification, include the following: Taylorite ${ }^{\circledR}$ vulcanized fibre-clad, rubber-clad, asbestos-clad, aluminumclad, beryllium-copper-clad, stainless-steel-clad, magnesium-clad, and silverand gold-clad. Any one of these materials can be sandwiched between sheets of laminates, too, and can be molded to fit specific requirements.
Send for complete information about any or all of these Taylor laminates. And remember Taylor's new selection guide will simplify your problems in choosing the right laminate for your specific application. Taylor Fibre Co., Norristown 53, Pa.


Fig. 1: Waveguide bender and twisting device for shaping small waveguide will cut costs.

## By HARLIN L. BUNN

Electronic Engineer
University of California
Lawrence Radiation Lab.
P. O. Box 808

Livermore, Calif.

## For Custom Installations...

# Make Your Own <br> Waveguide Bends 

> Costs can be sharply reduced on custom waveguide installations
> by bending and twisting your own waveguide.
> With the simple bender described here relatively unskilled persons can make these bends and twists.

IN the course of providing microwave diagnostic systems for the Sherwood Physics groups, the Microwave Diagnostic Group has had to provide various and sundry waveguide runs. These runs necessitated the use of E - and H -plane bends and waveguide twists for maintaining the correct polarization.

The past practice has been to purchase these units from outside vendors and install them in the system. A typical system might involve the use of a half dozen bends and from two to four waveguide twists. Depending on the band used, the cost of bends range from $\$ 30$ to $\$ 50$ each, and twists cost about $\$ 50$ each. The total cost would amount to perhaps $\$ 500$ for seemingly insignificant transmission line sections for one system.

The Sherwood activity encom-

[^14]passes frequencies from X -band to 3 mm so that a very sizable amount of money must be invested in waveguide sections. A typical order for bends covering three bands comes to about $\$ 1,000$. This order was cancelled after the design of the machine to be described was completed. Estimated cost using the machine was $\$ 250$.

Waveguide flanges cost about \$2 each. The cost of RG96/U waveguide per foot is about $\$ 4.50$, and three or four bends can be made from a foot of waveguide. It is easy to see that if relatively unskilled technicians are used, these bends can be made for no more

[^15]than $\$ 15$ each, once an initial set up is made. Small numbers such as two or three pieces of course would not pay as it would be cheaper to buy them. However, many such items are required in the Sherwood work and the author has designed a very simple machine for making bends and twists.

With this machine we can provide a very long run of waveguide which includes many such twists and bends with only two flanges for a standard length of waveguide. An electrical advantage is gained through this practice as there is resistive loss associated with each set of coupling flanges. This can be very important in the $50-100 \mathrm{kmC}$ range. Relatively large losses can be acquired in this frequency range with the use of several sets of flanges.

In addition, there is a theorem which says that we can obtain a standing wave ratio for two com-

# Waveguide Bender 

(Continued)

ponents connected in tandem which can have a value between the dividend and the multiplicand of the individual ratios. It is easily seen that with several components it is possible to obtain relatively high values of standing wave ratio. This can be quite important in receivers used for determining electron temperatures. The elimination of several sets of flanges for a custom installation can be very beneficial in eliminating these two sources of electrical disturbance.

## Bending Machine

Figure 1 shows the basic machine. A roller is attached to the base plate at the right hand end by means of a metal plate and a pivoting pin. A rectangular groove is machined in the roller. This groove has the outside dimensions of the waveguide being bent. For example, for an $E$-plane bend in RG96/U, a groove 0.365 inches high by 0.225 inches deep is machined in the section. Attached to the pivot screw is a bending arm on which is mounted a ball bearing solid roller that presses against the waveguide. A slot is provided in the bending arm for adjusting the position of the roller. Figure 1 shows three sets of rollers for making E - and H -plane bends in the waveguide bands $18-26.5 \mathrm{kMC}$. $26.5-40 \mathrm{kMC}$, and $50-75 \mathrm{KMC}$. Also shown are sections for making twists in these bands.
must be filled with some material which will prevent the inside surface of the guide from collapsing. One end of the waveguide is pinched in the vise and the filler is introduced and packed tightly. This must be done with a hammer and a rectangular section whose dimensions correspond to the inside dimensions of the guide. The packing should be done as the filier is introduced, not after it is completely filled. When the filling is complete, the other end of the guide is pinched tightly and the waveguide is inserted in the machine.

Figure 2 shows the waveguide mounted in the machine ready for bending. The waveguide should be clamped to the base plate by means of a "C" clamp to prevent its moving when pressure is applied for bending. The other end of the guide is left free as seen in the figure. Figure 3 shows the waveguide after the E-plane bend is
made. Figure 4 shows the same piece set up with the H-plane roller in preparation for making the H plane bend. Figure 5 shows the section after the $H$-plane bend is made.
It is important to use the correct filler in the waveguide. The author's experience has been that low melting point metals such as cerobend are unsuitable as it is practically impossible to remove all the bits and pieces. This shows up in bench measurements as high standing wave ratios and excessive ining wave ratios and excessive in-
sertion loss. The filler found to be most suitable was a fine type of sand used in foundries and known by the name "San Diego Fine." This packs quite well and does not scratch the surface of the waveguide.

After the bending is complete, the pinched-off ends of the waveguide are sawed off and flanges are soldered on. This completes the op-

Fig. 3: An Eplane bend is shown completed

## Forming Bends

To begin with, the waveguide

Fig. 2: Waveguide is positioned in device for making a bend.



Fig 4: Rollers are changed for an H -plane bend in guide.


Fig. 6: Waveguide is positioned for making a twist with wrench.
eration. The sand is removed by a fine jet of high pressure air. A vacuum cleaner can be used to catch the sand.

## Making Twists

The device for making twists is a length of a cylindrical section whose inside dimensions will just clear the outside diagonal of the rectangular waveguide. On one end of the section, a flat surface is milled away until it is barely touching the top of the inserted waveguide. A flat tab is screwed to this surface to prevent the waveguide from turning in the section. This can be seen clearly in Figures 1, 6, and 7 . The same procedure for filling mentioned above is followed.

Figure 6 shows the waveglide section after the E-plane bend has been made with the section attached for twisting. The length of twist is controlled by the length of the cylindrical twisting section.

The twist attachment is inserted very simply by sliding it on the straight end of the waveguide with the end of flat tab loose. The tab is then tightened, and a torque is applied with an adjustable wrench as shown in Fig. 6. After the twist was made, the tab was loosened and the twist section slipped off. The H-plane bend was then formed. Figure 7 shows the completed section with the E-plane bend, the twist, and the H-plane bend. Shown also are the three twist sections with short pieces of waveguide assembled to illustrate the procedure.

The completed section was made to illustrate the procedure. In practice, we would probably want to use much longer runs. There is no limitation on the length involved except that the waveguide comes in standard lengths. Allowance must be made for the end sections which are sawed off.

Sample sections were cut open and the dimensions measured after the bends were made. The dimensions had changed about 0.005 to 0.010 inch. A different filler could eliminate this change but it is not serious. A slight change in the cutoff frequency and the waveguide impedance may result. Bench measurements showed the units to have lower standing wave ratios than most of the commercially available units in the possession of the Diagnostics Group.

## Acknow/edgment

The author wishes to express his thanks to Ralph Senechal, Electrical Engineering Aide, who constructed the machine and formed the guides shown. Previous experience gained in working with certain shop personnel at ITT Laboratories, Nutley, New Jersey, was also very helpful in formulating the design.

Fig. 5: H-plane bend is shown completed in waveguide.


Fig. 7: Complete set of units for shaping waveguides are shown.


## TOWER TIPS

## INSURANCE

If a station decides to hire its own erector to install the tower, it is recommended that the following evidence of insurance from the erector (in the form of certificates) be obtained. The following different insurance certificates are customary today:

1. Workmen's compensation and occupation diseases, including employer's liability insurance. LIMITS: This insurance should be checked with the statutory requirements as applicable in the state in which the work is being performed. Employer's liability should be at least $\$ 25,000$.
2. Contractor's public liability insurance which covers damage and injury to objects and people not under the care and custody of the contractor. LIMITS: Bodily injury, $\$ 15,000 / 100,000$; property damage, $\$ 15,000 / 100,000$.
3. Contractor's protective liability insurance protects the contractor with his subcontractors. For example, the contractor may sublet the foundations or sublet the electrical work or paint because of union problems. LIMITS: Bodily injury, $\$ 15,000 /$ 100,000; property damage, $\$ 15,000 /$ 100,000.
4. Automobile liability insurance. This covers all motor vehicles owned or leased including nonownership liability covering contractors' employees' personal cars and trucks. LIMITS: Bodily injury, $\$ 100$, 000 ; property damage, $\$ 100,000$.
5. Direct damage insurance. This insurance provides for protection against all risk of the tower, antenna, lines, and the equipment which the erector is working on or material which is in his (erector's) custody until completion of the job. LIMITS: Should be set to cover the value of the tower, lights, coaxial lines, antenna, and any other equipment he is installing, plus erection labor involved.
The owner should have an insurance policy covering any loss to the tower once the tower erection is completed and the customer has accepted the tower. Values are set for replacement values, namely, the price which he has paid for the tower and equipment on the tower plus the cost of erection.
(Reprinted from Nab Engineering Handbook)

# for Broadcasters 

## Electrical Thermometer

SIEGFRIED S. MEYERS, Ph.D
Regents Educational TV Project N. Y. State Dept. of Ed. Albany, N. Y.
The increase in electrical resistance of a tungsten filament with rising temperature is used to indicate temperature by employing such resistance changes as a shunt across the movement of a $0-200$ range microammeter in a conventional ohmmeter circuit. Fig. 1 shows the circuit of a modified ohmmeter in which a momentary dpst toggle switch is used to first calibrate the scale for cell-voltage deterioration and then to read the unknown temperatures.


Fig. 1: Tungsten filament bulb is used as a temperature sensing probe in conjunction with a microam meter.

Fig. 2: Completed electrical thermometer, along with temperature probe is shown.


As the temperature increases, the tungsten's resistance increases. Hence, more current flows from the dry cell through the microammeter across which the tungsten probe is shunted. The scale readings are then calibrated for temperature values by direct comparison with the observed readings of a standard thermometer.

## \$\$\$ for Your Ideas

Readers are invited to contribute their own suggestions which should be short and include photographs or rough sketches. Typewritten, double spaced text is requested. Our usual rate will be paid for material used.


## NEW 2" BLOWERS.......

Globe's new $2^{\prime \prime}$ diameter VAX-2 vaneaxial blowers give you substantial amounts of cooling air in a rugged, compact, lightweight package. Check over these two blowers.
VAX-2-MC. Designed for 50 cfm . $\sqrt{12} 2.1^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ back pressure, unit operates on 200 v.a.c., 400 cycle, 3 -phase or 115 v.a.c., 400 cycle, 1-phase. Variable speed high altitude units available. Length is $1 \frac{1}{2} 2^{\prime \prime}$; weight is 50 oz . Flange mounting. Designed for MIL specs.

VAX-2-MM. Designed for 41 cfm . a $1.5^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ back pressure, unit operates on 26 v.d.c., but other versions may be wound for up to 115 v.d.c. operation. Length is 2 "; weight is 50 . Flange mounting. Designed for MIL specs.

Request Bulletin VAX. 2 from Globe Industries, 1784 Stanley Avenue, Dayton 4, Ohio.

## cloge <br> clobe

## GLobe

 INDUSTRIES, INC.
## THUMBWHEEL SWITCHES <br> TABET U.S. Patent 2,841,660

## Binary \& Digital

- For Critical Reliability Applications.

- Available with internal lighting MIL-L-25467A.


Permanent waler type, Series TSB-P. Available in $8,10,12$ or 16 positions, up to 36 switches per assembly.

CHICAGO DYNAMIC INDUSTRIES, Inc. PRECISION PRODUCTS DIVISION 1725 Diversey Blvd., Chicago 14, Illinois Phone: WEllington 5-4600

Circle 337 on Inquiry Card

## SWEEP

## GENERATORS

FOR
THE

## MICROWAVE

 FREQUENCIES 950-2450 mcTelonic's new ED-1A and ED-4A Sweep Generators provide a flat, stable, swept signal source for operation in the region of 950 to 2450 mc . The ED-1A operates in the 950 to 1800 mc range, and the ED-4A covers 1450 to 2450 mc . Both instruments feature variable sweep width and have an output of over 0.3 volts RMS into 50 ohms.

The instruments use a 6AF4A tube to excite a harmonic generating diode that provides an output, filtered to deliver only the second harmonic. Signal level is well isolated from the source to the load and is held constant by a leveling circuit.

Several accessories such as harmonic markers, fixed markers, and detectors are available to extend usefulness of both instruments in laboratory-type applications.

	Center   Model	Frequency Range	Swept Range	Swept   Width
Price				
$E D-1 A$	$1000-1700 \mathrm{mc}$	$950-1800 \mathrm{mc}$	$.05-8 \%$	1495.00
ED-4A	$1500-2400 \mathrm{mc}$	$1450-2450 \mathrm{mc}$	$.05-8 \%$	1495.00

For complete data on the ED series or other Sweep Generators and accessories write to

Beech Grove, Indiana

## ROHN COMMUNICATION TOWER



* This extremely heavy duty tower is designed for a wide variety of communications of all kinds. $\star$ This No. 60 ROHN tower is suitable for height up to 490 feet when properly guyed and installed.
$\star$ Completely hot dipped zinc galvanized after fabrication.
$\star$ Designed for durability, yet economical - easily erected and shipped. ROHN towers have excellent workmanship. construction and design. Each section is 10 feet in length.

FREE
Details and complete engineering specifications gladly sent on request. Also ROHN representatives ore coast-to-coast to assist you.

Write-Phone-Wire Today!
ROHN Manufacturing Co.
| 6718 W. Plank Road, Peoria, llinois Phone 7-8416
"Pioneer Manufacturers of Towers of All Kinds"

## Contour Mapping Process Automated With Digitizer

New Digitizer, built for Lockwood, Kessler \& Bartlett, Syosset, L. I., N. Y. by AIL Div. of CutlerHammer, Inc., Mineola, N. Y., works from aerial photos, in conjunction with Wild Stereoplotter, key device in Photogrammetric process of mapmaking, recording coordinates from photos on paper, in light signals, and on punched paper

Coordinates, elevations and other data obtained by viewing matched aerial photos in the Stereoplotter go automatically to the Digitizer. Recorded information is then fed to an electronic computer for all necessary calculations.

## RCA Boosts Output Of Nuvistor Tubes

RCA's Nuvistor electron tube production is being stepped up with the installation of high-speed machinery at the Harrison, N. J. plant.

A new commercial version of the tube, the RCA-6CW4 high mu triode, is the heart of a "New Vista" tuner used in RCA's black and

FIRE CONTROL DIRECTOR


Small drive motor used in Polaris Missile Inertial Guidance System is contrasted with new Fire Control Director, MK 73. Used with the AN/SPG-51 Radar to track and illuminate enemy aircraft traveling at supersonic speeds, the gearless power drive is displayed by coinventor, E. B. Canfield, Advanced Contrel Engineer, G. E. Ordmance Dept., Pittsfield, Mass.
white TV receivers.
Engineering sampling of a developmental, small-signal general purpose tetrode (A-2654E) has also been successfully tested.


Complies with standards se ${ }^{4}$ by the Instifute of Radio Engineers. With Built-in 3 kc Oscillator, High-Gain Preamplifier, Limiter, and Filter. Ranges: 0.5 to $6 \mathrm{cps}, 0.5$ to $250 \mathrm{cps} ; 5$ to 250 cps . Designed for rapid visual indication of flutter and wow produced by magnetic tape recorders and playback equipment, dise recorders and reproducers (all speeds), sound film mechan. isms and film recorders.
Flutter and wow readings can be separated by - high-pass and low-pass filter. Large, sensi. five 7 inch meter has three scales: $0.3 \%, 1.0 \%$, and $3.0 \%$, calibrated for flutter and wow readings. Accuracy within $2 \%$ of full scale value, independent of wave.form, amplitude variation, hum, noise, switching surges and other extroneous transients.

## CONDENSED SPECIFICATIONS

Input Voltage ..................0.001 to 100 Volts

Ranges
0.01 to $3 \%$

20 db
3,000 Cycles
Oscillator (Built-in)
Not Price
$\$ 495.00$
Write far camplete specificatians ta Dept. El:

## AMPLIFIER CORP. of AMERICA <br> 398 Broadway, New York 13, N. Y.

## New Sy/vania concept in MICROMINIATURIZATION

## wafer thin! feather light!

## "PANCAKE"TRANSISTORS

## In Germanium Alloy-Junction

and Germanium Mesa Structures

. . . offering exceptional volumetric efficiency ( $85 \%$ smaller, $85 \%$ lighter than electrical counterparts) - increased ruggedness • correct pin-circle geometry for 100 -mil automation grid system.
Sylvania announces 10 switching transistors in the new "PANCAKE" package - shorter in height than the diameter of conventional $1 / 2$-watt resistors, flatter than conventional silvered-mica capacitors. All types feature clear glass, stressfree matched seals, true chemical bonds that offer exceptional hermetic reliability and strength, excellent resistance to thermal shock. They with-
stand atmospheric pressure as high as 200 p.s.i., enabling high-pressure leakage tests for militaryindustrial quality assurance.

For information on these and other "PANCAKE" types under development utilizing mesa and alloy-junction techniques, contact your Sylvania Representative. For technical data, write Semiconductor Division, Sylvania Electric Products Inc.. Dept. 1811. Woburn, Mass. Sylvania "PANCAKE" TRANSISTORS also available through Sylvania franchised Semiconductor Distributors.


> Subsidiary of GENERAL TELEPHONE \& ELECTRONICS

## Rotary Joints

(Continued from page 98)


Fig. 10: VSWR vs. frequency for rotary joint shown in Fig. 9

$$
\begin{equation*}
\left(\frac{\lambda_{1}}{\lambda}\right)^{2} \simeq-\frac{\frac{1}{\epsilon_{1}} \log _{e} \frac{d_{2}}{d}+\frac{1}{\epsilon_{2}} \log _{e} \frac{l}{l_{1}}}{\log _{e} \frac{D}{d}} \tag{13}
\end{equation*}
$$

The characteristic impedance, $Z_{1}$, is given by:

$$
\begin{equation*}
Z_{1}=60 \frac{\lambda_{1}}{\lambda} \log _{s} \frac{D}{d} \text { (ohms). } \tag{20}
\end{equation*}
$$

The impedance at the junction of the coaxial transformer and the rectangular waveguide may be found from Eq. 12.

Besides using two concentric dielectrics, a coaxial transformer may also be designed using a different dielectric or different conductor diameters.

## Design of Coaxial Chokes

A choke consists of a short-circuited section of line, one half wavelength long, placed in series with a discontinuity (such as the break in the outer coaxial conductor in the rotary joint shown in Fig. 9.) To minimize frequency sensitivity, the choke is composed of two series connected quarter-wavelength sections of different characteristic impedances. This facilitates the construction of a "folded choke" as shown in Fig. 12. Generally, the first section is made as small as is practical considering the mechanical tolerances involved, and the second section is made approximately four times as wide. More detailed information concerning choke design may be found in the literature. ${ }^{7}$

## Miscellaneous Design Considerations

For adequate performance of a rotary joint of the type shown in Fig. 9 at high pulse power levels, a few general precautions should be taken. First, the power capability of the coaxial transformers and the coaxial line should obviously be made greater than the desired operating peak power level by a generous safety margin. Second, to minimize high voltage gradients in the immediate vicinity of the probe-antenna, it is necessary to provide a spherical radius at the ends


Fig. 11: Coax line with two concentric dielectrics

Fig. 12: Coaxial "folded choke."
of the probe and to provide a radius at the junction between the outer conductor of the coaxial line and the wall of the rectangular waveguide. Third, air inclusion between the dielectric (teflon is usually employed because of its low losses at microwave frequencies) and the central metal rod must be avoided.
In addition, care must be taken that the dielectric is homogeneous. Since at high power levels relatively high voltage gradients exist around the central metal rod, these gradients may be high enough to cause breakdown in any small air bubbles existing in this region. This would result in a gradual deterioration of the solid dielectric and finally in breakdown between the rod and the waveguide walls or the outer coaxial conductor. Air inclusion may be avoided by maintaining close dimensional tolerances in the manufacture of the metal rod and dielectric parts, or by packing these items during assembly with a small quantity of silicone compound or a similar substance to fill in any potential air bubbles. Dielectric parts should also be thoroughly cleaned before assembly.
"Wow" or variation of the VSWR or phase with rotation of the rotary joint results from tilting of the dielectric and metal rod during rotation and from the presence of non-rotationally symmetric modes in the coaxial section. It can be minimized by maintaining close concentricity tolerances between the bearing and the coaxial components, by maintaining perpendicularity between the coaxial line and the rectangular waveguide, and by selecting coaxial line dimensions such that the desired operating frequency range is well below the cut-off frequency for the $\mathrm{TE}_{11}$ coaxial mode.
(Contimued on page 252)


Typical response curves indicating the various shape factors available in standardized Burnell Crystal Filters





Running the


## gamut in crystal filters

## burney crystal filters now cover fullest range yet possible 

To its notable achievements in advancing the electronic arts, Burnell \& Co. now adds another-the development of moderately priced high attenuation crystal filters covering the extraordinary range of 1 kc . to 30 mc . This represents a range many times broader than previously thought practicable. In addition, the Burnell Crystal Filter line now includes several types heretofore considered impossible.

More than 15 years research, development and experience are represented in the designs illustrated in the response curves shown. Burnell \& Co. has taken crystal filters out of the luxury class in applying its experience to their design and manufacturing without incurring developmental and engineering costs.

Whether your crystal filter needs are for standard mits or those engineered to center frequency, band width, selectivity and impedance level, call on our Crystal Filter Division for quick delivery. Send now for Crystal Filter Catalog, X T455,

## Rotary Joint (Concluded)

## Experimental Results

The VSWR as a function of frequency as measured for a typical rotary joint design of the type shown in Fig. 9 (for RG-52/U waveguide) is given in Fig. 10. "Wow" is practically negligible: approximately 0.02 variation in VSWR. The insertion loss was found to be approximately 0.1 db . over the frequency range of 8.8 to 10.4 KMC .

This typical rotary joint was tested at peak power levels in excess of 250 kilowatts without breakdown.

# NOW! <br> MINIATURE AGASTAT ${ }^{\ominus}$ 

time/delay/relay

## MEASURES ONLY

 4"x $1 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}$

The Miniature Agastat time delay relay is a space-saving answer to aircraft, missile and computer problems. You get all these valuable features in one small package:

- Easily adjusted timing ranges as short as $\mathbf{0 3 0}$ seconds.
- Repeat accuracy of $\pm 5 \%$.
- Time delay on energizing or de-energizing.
- For DC or AC operation.
- Hermetically sealed or dust-proof housings.

Write today for the full details on the new miniature Agastat. Dept. A36-1132.

## AGASTAT TIMING INSTRUMENTS

## ELASTIC STOP NUT CORPORATION OF AMERICA

 1027 NEWARK AVENUE, ELIZABETH 3, NEW JERSEYCircle 345 on Inquiry Card

## ASPHALT BASE COMPOUNDS

for coil impregnation, potting, cable conduit sealing, drum and barrel liners, etc.

- Variable thermal conductivity.
- Softening points from $150^{\circ} \mathrm{F}$ to $295^{\circ} \mathrm{F}$.
- Low viscosity-high cold flow systems.
- Technical consultation available.


## Send for GENERAL SPECIFICATIONS CHART

 Stock available for immediate delivery3440 HOWARD STREET - SKOKIE, ILLINOIS Telephones: ORchard 3-1050 • AMbassador 2-3339

## BIWAX BIWAX CORPORATION

Circle 346 on Inquiry Card

## A REPRINT

of this article can be obtained by writing on company letterhead to The Editor
ELECTRONIC INDUSTRIES, Chestnut \& 56th Sts., Phila. 39, Pa.

The equivalent circuit presented may also be applied to the design of rectangular and ridged waveguide "doorknob" transitions. Further information concerning these transitions may be obtained from Refs. $2,3,10,11$ and 16.

The probe type transition design may be used as a coaxial line to rectangular waveguide adapter as well as in rotary joint designs.

## SYMBOLS AND DEFINITIONS

$a=$ width of rectangular waveguide.
$\alpha=$ coupling coefficient of probe-antenna in rectangular waveguide.
$b=$ height of rectangular waveguide.
$\beta=2 \pi / \lambda g$
$c=$ distance along rectangular waveguide from short circuit to center of probe (see Figure 2).
$d=$ diameter of coaxial inner condurtor.
$d_{1}=$ diameter of dielectrie sleeve in coaxial line (see Figure 11).
$D=$ diameter of coaxial outer conductor.
$\epsilon=$ relative dielectric constant.
$\epsilon_{0}=$ permittivity of free space, $8.85 \times 10^{-12}$ farad per meter.
$l=$ length of probe - antenua.
$L=$ length of coaxial transformer section.
$\lambda=$ free-space wavelength.
$\lambda_{c}=$ cut-off wavelength.
$\lambda_{0}=$ guide wavelength.
$\lambda_{1}=$ wavelength in dielectric-filled coaxial line.
$\mu_{0}=$ permeability of free-space, $1.257 \times 10^{-6}$ henry per meter.
$R_{r}=$ radiation resistance of probe - antenna.
$x=$ distance from probe - antenna to side wall of waveguide.
$X=$ reactance of probe - antenna.

## REFERENCES

1. Chien, W. Z., L. Infeld, J. R. Pounder, A. F. Stevenson, and J. L. Synge, "Contributions to the Theory of Waveguides," Canadian Journal or Research, V. 27 (Section A), Pages 69129, July, 1949.
2. Cohn, S. B., "Design, of Simple Broad-Band Wave-Guide-to-Coaxial-Line-Junctions," Proceedings of the I.R.E., V. 35 , Pages 920-926, Sept. 1947.
3. Grantham, J. P.. "Microwave Rotating Joints," Electronic Fngineering, V. 23, Pages 332-335, September, and Pages 377. 381, October, 1951.
4. Marcuvitz, N., Waveguide Handbook, Pages i2-So, McGrawHill, New York, 1951.
5. Ibid., Pages 396-397.
6. Mumford, W. W., '"The Optimum Piston P'osition for WideBand Coaxial-to-Waveguide Transducers," Proceedings of the I.R.E., V. 41, Pages 256-261, February, 1953.
7. Nieman, F. L., "S-Band Coaxial Line to Rectangular Waveguide Transitions," Radiation Laboratory (M.I.T.) Report 802, l'ages 35-36. December 7, 1945 .
8. Pearcey, T., "An Antenna Theory of the Waveguicle Probe," Council for Scientific and Industrial Research, Division of Radio Physics, Sydney, Australia, Report No. RPR72, April, 1947.
9. Ragan, G. L., Microwave Transmission Circuits, Page 5 ?. McGraw-Hill, New York, 1948.
10. Ibid., Pages 314-455.
11. Riblet, H. J., and R. L. Williston, "X-band Rotary Joint." Transactions of the I.R.E. Prof. Group on Microwave Theory Transactions of the 1.R.E. Prof. Group on Microway
12. Schelkunoff, S. A., Electromagnetic Waves, Page 319, D. Van Nostrand, New York, 1943.
13. Ibid., Pages 494-496.
14. Schwiebert, H., "Wideband Waveguide Rotary Joint," I.R.E. Convention Record, Part 8 (Communications and Microwave), Pages 57-60, 1955.
15. Slater, J. C., Microwave Transmission, Chapter VII, Mc-Graw-Hill, New York, 1942.
16. Swern, L., "Broadband Coaxial Line to Waveguide Adapters Using Step Ridge Transformers," Proceedings of the National Electronics Conference, V. IX, Pages 805-813, 1953.
17. Vellat. T., "Die Abstrahlung von Dipolen in einem Hohileiter mit rechteckigem Querschnitt," BuIletin Schweizerischer Elektrotechnischer Verein (Zurich, Switzerland), V. 40, Pages 860-869, October 29, 1949.
18. Wheeler, H. A., "The Radiation Resistance of an Antenna in an Infinite Array or Waveguide," Proceedings of the I.R.E., V. 36, Pages $478-48$ i, April, 1948 .
 interchangeable with many other makes


Stromberg-Carlson"s type "E" relay combines the time-proven characteristics of the type " $A$ " relay with a mounting arrangement common to many other makes.

As the drawing above shows, universal frame mounting holes and coil terminal spacing allow you to specify these relays-of "telephone quality"-interchangeable with the brands you have been using. Costs are competitive and expanded production means prompt delivery.

Welcome engineering features of the telephone type " $E$ " relay areContact spring assembly maximum of 20 Form A, 18 B, 10 C per relay.
Coil: single or double wound, with taper tab or solder type terminals at back of relay.
Operating voltage: 200 volts $D C$ maximum.
You may order individual can covers in a choice of 3 sizes for the new relay, as well as for our type " A " and "C" relays.

Write to Telecommunication Industrial Sales, 126 Carlson Road, Rochester 3, New York. Or in Atlanta call TRinity 5-7467; Chicago: STate 2-4235; Kansas City: HArrison 1-6618; Rochester: HUbbard 2-2200; San Francisco: OXford 7-3630.

## STROMBERG-CARLSON GENERAL DYNAMICS

Circle 350 on inquiry Card

## Test Station

(Continued from page 77)
sented in several different forms. It features : reduction in test times, reduction of man-hours (unattended operation', !ower skill level required for routine testing, elimination of test repors through automatic realout and recording, and elimination of record keeping (done atutomatically).

A coded, 8-level perforated tape contains the complete lest routine. Stimuli are automatically selected and applied to the unil under test. Response is measured and digitized. The digitized data are then compared against programmed limits and the measured input and output values plus evaluation results are printed and punched onto paper tapes.

Some of the specs and features: programmable signal sources include 2 de units for from 0.1 to 50 v in 0.1 v steps with currents to 15 a ; two de sources from 1 to 100 v in 1 v steps with currents to 100 ma; two de sources from 101 to 999 v in 1 v steps with currents to 10 ma ; ac source ranging from 10 CPS to 100 KC in 1 CPS steps and from 1 mv to 10 v in 1 mv steps; and a fixed sources of $115 \mathrm{v}, 60$ and 400 CPS, 15 a ac and 28 vdc , 15 a . Dc sources accurate to $0.1 \%$. AC to $0.01 \%$ (freq.) and $0.25 \%$ (amplitude - distortion less than $0.1 \%$ ).

## POLARIS INSPECTION

Vice Adm. W. F. Raborn, Dir. Special Projects, U.S.N. and head of Polaris missile program inspects assembly line at Hughes Aircraft Co.'s EI Segundo, Calif., plant where guidance system is being produced. Plant Manager, Joe Ferderber is on the left.



HARREL

## RELIABILITY

IN HIGH PRECISION
temperature control

## Proportional Controllers

Reliable - Completely solid state. No vacuum tubes, moving parts or relays to wear out. Precise - Control to a fraction of a degree.
Smooth Control - Furnishes exact amount of steady power to hokd temperature to desired value.
High Poneer - From a few watts to several kilowatts.
Mil Spec. - Meet all applicable MIL specs.
for close temperature control of tloated gyros, delay lines. or other electronic or industrial equipment. Models for 60 cps . 100 cps , or de operation.

## Pure DC Output Models

same pruportional control as standard, but output is pure de for applications such as gyro test tables where noise output of relay or standard proportional controller is objectionable.

## Oven Controls

where really precise control of ovens is required. For crystal drawing, fractional distillation, etc. 500 watts to several kilowatts.

## Relay Type Controllers

where low initial cost is a prime requirement and close temperature control and extreme reliability of proportional control not needed.

## HARREL, incorporated

1788 First Avenue New York 28. N. Y. SAcramento 2-3683


TEMPERATURE
CONTROLS

relay
MPLIFIERS


SINE WAVE Circle 351 on Inquiry Card


National has had many years' experience making significant contributions to the defense effort, including airborne components.

# COMPARE THIS OPPORTUNITY WITH WHAT YOU ARE NOW DOING! 

## HERE'S WHAT Chathonald NEW MILITARY RESEARCH AND DEVELOPMENT PROGRAM OFFERS.

This operation will interest any engineet or scientis powsessing enough self-confi-dence-ability and experience-to develop projects initially and carry them through to completion.

## WHO WE'RE LOOKING FOR

National is loohing for military-oriented scientists and engincers who hold a B.S. degree or advanced degrees. You should be working in electronic. electro-mechanical. mechanical, physics, optics. mathematics. or other related areas. Preterence will be given to those who have had several years experience dealing with prime contractors and government agencies.

As a member of National's New Military Development Team-you will be working initially with our Military Proposal Group. As proposals hecome specilic projects. your responsibility wilt continue through the contractual stage for techmical liaison, fulfillment of contractual obligations including hardware development, meanwhile retaining sufficient tlexibility to continue your proposal efforts.

## WHY YOU SHOULD INVESTIGATE

National's new Military Research and Development Program oflers you unustal latitude in responsibility. It offers you the chance to participate in milatary projects

## THE NATIONAL CASH REGISTER COMPANY, DAYTON 9, OHIO

## ONE OF THE WORLD'S MOST SUCCESSFUL CORPORATIONS

from start to finish. Furthermore. you now have the opportunity to join an operation still in its formative stage-yel backed by one of the workds most successful most reputathe corporations.
COMPLETE INFORMATION is yours by sending your résumé to Mr. T. F. Wade. Technical Placement Section F9-3, The National Cash Register Company, Dayton 9. Ohio. All correspondence will be kept strictly confidential.
*THADEMARH REG its BNT QFF.


ELECTRONIC DATM PIROCESSING DIVERSIFIED CHEMICAL PRODUCJE ADDING MACHIMES - CASH REGISTE絞 ACCOUMTIHG MACMIAES . NCR PAPER

# PROFESSIONAL OPPORTUNITIES 

Reporting late developments offecting the employment picture in the Electronic Industries

Design Engineers - Development Engineers • Administrative Engineers<br>Physicists - Mathematicians - Electronic Instructors - Field Engineers<br>Engineering Writers<br>- Production Engineers

## "Man On the Moon By '70" A Practical Goal For U. S.

"We can have and should have men on the moon before 1970," says Dr. Robert W. Buchheim, head of the Aero-astronautics Dept., The RAND Corp., "but, the U. S. space program should be bigger and faster." Dr. Buchheim spoke before the 14th National Conference on the Administration of Research held at the Univ. of Michigan.

He pointed out the abundance of resources and skills that the U.S. has compared to the Soviet Union, and declared that, "our physical and human resources could support a larger space program without real interference with other activities."

From presently available evidence, it looks like the Russians will be first to land on the moon. The U. S. program calls for manned flights to the moon in the 1970's. The weights of the Sputniks are much greater than any of the U. S. efforts, and the U. S.'s "Saturn" won't be operational until after 1963.

Who should bear the cost? The Government, he says, because the cost is too large for any single private organization. "But there is no incompatibility between government space exploration and free enterprise and democratic processes, so long as we retain our faith in free enterprise and democratic processes and use them. To get the most out of astronautics, more science programs generally must be undertaken and private sources can do much to set the direction of astronautics by supporting these related sciences."

## New Semiconductor Maker

The Espey Mfg. \& Electronics Corp. has established a new division for the manufacture and marketing of semiconductor products. It will be called the Saratoga Semiconductor Div., Saratoga Springs, N. Y. Initial products will be silicon diodes, including power rectifier and zener regulator types.


Dr. P. D. Eddy, Pres., Adelphi College (L) presents certification of appreciation to $H$. Fialkov, Pres., General Transistor Corp., for its "leading role in founding and supporting the Adelphi Research Center, Mineola, L. I., N. Y."

## GM Inst. to Award First EE Degrees

General Motors Institute will award baccalaureate degrees in electrical engineering for the first time in 1963. The Institute presently awards degrees in mechanical and industrial engineering.
The new curriculum, resulting from a demand from GM plants for EE's, is directed toward three important areas of need for electrical engineers by General Motors: product design, plant engineering, and process engineering. EE's can study in one of two fields, electrical machinery power distribution, and process equipment or in "light" electrical equipment such as controls, instrumentation, and product design and development.

## Measure Radio Waves From Saturn and Nebula

University of Michigan scientists have measured radio waves from the planet Saturn and from a planetary nebula-a remote, gassurrounded, dying star. Measurements were made with U-M's high precision 85 ft . radio telescope and their new, highly-sensitive ruby maser amplifier.

Saturn's atmospheric temperature was found to be $100^{\circ} \mathrm{K}$ ( $-283^{\circ} \mathrm{F}$ ). The findings were accurate within $10 \%$. Measurement of the planetary nebula - 3,000 light years away-is significant because these sources are small and very distant. The measurements can help determine electron densities in the gas envelope which surrounds the central star in these nebulae.
The measurements, made by Jerald J. Cook, and Lloyd G. Cross, may help in understanding the evolutionary processes of stars, the physical characteristics of planetary nebulae, and perhaps detect both the existance of magnetic fields in nebulae and cosmic ray electrons surrounding these nebulae.

## FOR MORE INFORMATION

 on positions described in this section fill out the convenient inquiry card, page 169.
## Ballistic missiles: the ultimate



## weapon?


#### Abstract

The ICBM is often called the "ultimate weapon." Yet, throughout history, there have been many so-called ultimate weapons. Men of science have always found a defense.


Today, Hughes engineers are studying this problem. The programs being initiated are uncovering many challenges for imaginative engineers and scientists.

The high order of complexity in ballistic missile interception means that all of the traditional areas in-volved-early detection, discrimination, acquisition, tracking, data processing, intercept and kill-must be expanded to new highs in the state of the art.

Of tremendous help are the lessons learned during the development of the first successful airborne electronics intercept system-made up of the Hughes Electronic Armament System and Hughes Falcon air-to-air-guided missiles.


This Hughes three dimensional radar antenna, shown in the process of retruction, is completely mobile. Developed byHughesengineers, frequency-scanning radar provides umbrella-like protection for key defense areas.

This complete flip-flop circuit demonstrates Hughes capabilities in the field of solid state duta processors. Hughes congineers are broadening the state of the AICBM art by drawing upon a great number of such advanced electronic techniques.


Hughes is also drawing on its skills in such fields as advanced infrared and radar detection systems, satellite communications systems, electronic scanning radar systems, space vehicle technology, microwave propagation, advanced data handling and display systems, and other fields of advanced electronics.

Hughes Anti-ICBM work will be coordinated to combine the efforts of virtually every Hughes activity. In this way, every conceivable idea can be studiedand the entire spectrum of electronics broadened.
The great variety of advanced electronics projects and the basic scientific-orientation at Hughes offers the engineer the ideal environment for personal and professional growth.

Newly instituted programs at Ilughes have created immediate openings for enginecrs erperienced in the follouiny areas:
Computer Components Semiconductor Product Eng.
infrared
Anti-submarine Warfare
Digital Computers
Electro-optics
Systems Design \& Analysis

Microwave \& Storage Tubes Communications Systems Inertial Guidance Field Engineering Circuit Design \& Evaluation

Write in contidence to Mr. R. A. Martin
Hughe's General offices, Bldg. 6-C-il. Culver City, Calij.


- Advanced hydrogen systems being developed by The Garrett Corporation solve the problem of keeping men alive and equipment operating for long periods of time in future satellites and space capsules.

Engineers at The Garrett Corporation's AiResearch Manufacturing Divisions are dealing with challenging problems in fast-moving fields.
Diversification of effort and vigorous leadership have made Garrett the world's largest manufacturer of aircraft components and systems and a leader in specialized missile and spacecraft systems.

## Major fields of interest are:

- Environmental Control Systems-Pioneer, leading developer and supplier of air conditioning and pressurization systems for commercial and military aircraft, and life support systems for satellites and space vehicles.
- Aircraft Flight and Electronic Systems-Largest supplier of airborne centralized flight data systems; also working with other electronic controls and instruments including missile and submarine applications.
- Missile Systems-Largest supplier of accessory power units, AiResearch is also working with hydraulic, hot gas and hydrogen systems for missiles, liquid and gas cryogenic valves and controls for ground support.
- Gas Turbine Engines-World's Jargest producer of small gas turbine engines, with more than 9000 delivered in the $30-850 \mathrm{hp}$ class. Studies include industrial and nuclear applications.

Excellent positions are available for qualified men with M.S., Ph. D. and Sc. D. degrees for work in these areas.

Send resume to: Mr. R. H. Horst
THE GARRETT comporamtion AiResearch Manufacturing Divisions
Los Angeles 45, California • Phoenix, Arizona

## Industry

## News

Warren S. Jones appointed Distributor Sales Manager, Times Wire and Cable Div., International Silver Co., Wallingford, Connecticut.

George Kappelt appointed Director of Engineering Laboratories, Bell Aerosystems Co., Buffalo, N. Y.

Walter H. Eichelberger, Jr. named Merchandise Manager, Philco Corp's Radio and High-Fidelity Dept., Consumer Products Div., Phila., Pa.

Edgar C. Barnes appointed Manager of Radiation Protection, Westinghouse Electric Corp's Atomic Power Group, Forest Hills, Pittsburgh, Pa.

Andrew J. Chitiea appointed Assistant to Allan R. Shilts, Vice President and General Manager, Strom-berg-Carlson, a division of General Dynamics.

A. J. Chitiea
M. D. Lockwood

Myron D. Lockwood appointed Vice President, Sperry Gyroscope Company, Great Neck, N. Y.

Emmanuel P. Courtillot named Director of European Planning, Varian Associates, Palo Alto, Calif. He will work from his office in Zug, Switzerland, headquarters of Varian's European subsidiary, Varian A.G.

Frank J. Shannon, Sr. appointed Manager, Washington, D. C. District, The W. L. Maxson Corp., N. Y., N. Y.

Duane C. Manning appointed Marketing Manager, Electronics Div., Elgin Watch Co., Burbank, Calif.
J. N. Koys appointed Division Sales Manager and F. J. Kadlec appointed Division Manufacturing Manager, Amphenol-Western Connector Division, Amphenol-Borg Electronics Corp., Chatsworth (Los Angeles suburb), Calif.

Donald D. Mallory named Manager of Product Operations, Components Div., Hughes Aircraft Co., Los Angeles, Calif.


## WHA GOES ON UP THERE?

This question has been asked and answered a thousand different ways at BOEING/WICHITA...however in flight testing, both in the air and in simulators, you never run out of "Whys?" and "Hows?".

BOEING/WICHITA needs more experienced flight test engineers right now in the following areas:

Electrical Instrumentation
Ground Operations
Test Operations
Boeing also has requirements for Senior Engineers in :
Electronics / Propulsion / Structures Mechanical Equipment / Aerodynamics

Write in confidence to: Mr. Melvin Vobach, Dept. OEN Boeing Airplane Company, Wichita 1, Kansas

Please send me complete information about Boeing Wichita and your new "Opportunities Brochure,"


NAME $\qquad$
ADDRESS
CITY $\qquad$ STATE
I have a degrec(s)
in the following:


## $\mathrm{NEW}_{\text {from }}$

## JFD

## FIXED MINIATURE METALIZED INDUCTORS

JFD now offers a complete line of fixed-value miniature Metalized Inductors in inductances to cover a wide variety of circuit application requirements


The new JFD Inductor series employs silver film permanently fused to a low loss dielectric glass cylinder. This lightweight monolithic construction achieves a new high in stability, durability and economy; a new low in temperature coefficient of inductance and distributed capacitance. Assures you of utmost reliability for critical circuit operation

TYPICAL PANEL MOUNT JFD METALIZED INOUCTORS

Mode!	Inductance	$\mu \mathrm{h}( \pm$ )	
LF.1P010	0.10	-	Q Min.
LF.1P025	0.25		145
LF. 1 P040	0.40		135
LF-1P070	0.70		120
LF-1P100	1.00		135
LF-1 P200	2.00		180

mount and printed circuit types from $05 \mu \mathrm{~h}$ to $2.00 \mu \mathrm{~h}$. JFD Metalized Inductors can also be designed to help solve any development, design, or production problem. The number of turns, types of windings, size and distributed capacitance, $Q$ and other parameters can be designed to suit individual circuit requirements. Write for bulletin 223 for full specifications.

## Features

1. Rugged construction affords unusually high stability under conditions of severe shock and vibration. 2. Use of glass dielectric assures low temperature coefficient of inductance and operation without derating over a wide range of extreme environmental conditions.
2. Low distributed capacity.
3. Special alloy plating protects metal parts from corrosion.
4. A high $Q$ over a broad frequency range.
5. Silver plated copper leads.
6. A vailable in panel mount and printed circuit mount types.

# JFD ELECTRONICS CORPORATION 



# Tung-Sol tubes help CHICAGO AERIAL keep 'copter blades on "right track" 

Chicago Aerial Industries’ automatic Electronic Blade Tracker brings new standards of accuracy to the critical job of tracking helicopter blades to assure that they are all rotating in the same plane, or track. Proper rotation means smoother flight characteristics, minimized vibration, reduced structural stresses and lower maintenance costs. It virtually makes obsolete the manual flag-tracking method.

The Tracker uses range finding principles to triangulate for each successive blade height. Electrical signals generated by photo-cells in the electro-optical pick-up positioned beneath the rotating blades are fed to a computer analyzer. These signals are then converted to dc voltages proportional to blade height, which registers on the front-panel meter.

Because rigid standards of reliability are mandatory for this equipment, Chicago Aeria! selected Tung-Sol tubes to handle the vital regulation
function in the conversion network. Tung-Sol 5687 series regulator tubes minimize any variations in output voltage due to load current or line voltage changes. Both tubes maintain 150 volts $\pm 1$ volt insuring the most precise readings.

CAI adds still another name to the growing list of manufacturers who are calling upon Tung-Sol tubes and semiconductors to deliver top performance reliability. Like CAI, you can get the benefit of Tung-Sol component know-how, too. Tung-Sol makes a component for virtually every industrial and military requirement. Our applications engineers will be glad to make an impartial recommendation for the component complement that will best satisfy your design needs. Tung-Sol Electric Inc., Newark 4, N. J. TWX:NK 193.

Technical assistance is available through the following sales offices: Atlanta, Ga.: Columbus, Ohio; Culver City, Calif.: Dallas, Texas; Denver, Colo.; Detroit, Mich.: Irvington. N. J.: Melrose Park, Ili.; Newark, N. J.: Philadelphia, Pa.; Seattle, Wash. Canada: Toronto, Ontario.

Give your Products
MORE REIIABILITY and
BETTER PERFORMANCE with


In stock for immediafe delivery

## TOROIDAL INDUCTORS



## Ruggedized,

MIL STANDARD AUDIO TRANSFORMERS

Cot. No.	Imped. level-ohms	Appl.	MIL Sto.	mil Type
MGA 1	Pri. 10,000 C.T   Ses. 90.000   Split 8 C.T	Intersloge	90000	TF4RXISAJ001
MGA 2	Pri. 600 5plis Sec. 4. 8, 16	Matching	90001	TF4RXIGAJO02
MGA 3	Pri. 600 Split   Sec. 135,000 C.t	Inpus	90002	TFARXI0A J001
MGA 4	Pri. 600 Split   Sec. 600 split	Matching	90003	TF 4RX16A.J001
MGA 5	$\begin{aligned} & \text { Pri. 7.600 Tap } \\ & 6.4 .800 \text { Split } \\ & \text { Sec. } 6000 \text { Spo } \end{aligned}$	Oulpus	90004	TFARXI JAJ001
MGA B	$\begin{aligned} & \text { Pri. } 7,000 \text { Top } \\ & \text { See } 4,8,8,16 \end{aligned}$	Outpus	90005	TF 4RXI3A.002
MGA 7	Pri. 15,000 C.T.   Sec. 600 Split	Oulput	90006	TFARXI3AJ003
MGA ${ }^{\text {a }}$	Pri. 24,000 C.T.   Sec. 600 Splis	Output	90007	IF4RX13AJ004
MGA 9	Pri. 60,000 C.t.   Sec. 600 Sply,	Output	90008	TF4RXI3AJOOS

FREED TRANSFORMER CO., INC.
1726 Weirfield St., Brooklyn (Ridgewood) 27, N.Y.
Circle 357 on Inquiry Card

## Representatives

## REPRESENTATIVES WANTED

Manufacturer of Microwave Test and Production Components wants Engineering Reps in the following areas: (1) Canada; (2) New York City \& Long Island; (3) Texas, New Mexico; (4) Chicago area; (5) Florida; (6) Northern California, Oregon, Washington. Box 11-1, Editor, Electronic Industries.

Electronic Connector Manufacturer seeks sales reps in Southern Maryland, Washington, D. C. area, and Northern Virginia. Box 11-2, Editor, Electronic Industries.

Manufacturer of Microwave Components is seeking Jobber Reps throughout the U.S. to handle its complete line especially designed for use as training aids in manufacturing plants, military installations, and in engineering colleges. Box 11-3, Editor, Electronic Industries.

## S. CALIF. ERA SEMINAR



During the Personnel and Selection Seminar held by the Southern California Chapter of the Electronic Representatives Association, Dr. Joics B. Stone dealt with the problems faced by the representative when hiring new sales and office personnel. He introduced new testing and evaluation methods to guide the representative in his selection.

International Resistance Co. has appointed Midwest manufacturer's reps for its Control Components Div. products, namely: Koehler-Pasmore, Detroit (Detroit area); Pan-Technical Engineering \& Supply Co., Houston (Gulf coast area of Texas and Louisiana) ; Jack F. McKinney, Dallas (most of Texas, Louisiana, Oklahoma).

New England Communications, Inc., 572 Washington St., Wellesley, Mass. has been appointed a manufacturer's rep. for the RCA LD-150 transistorized two-way mobile radio and equipment.

Jaeger-Cordray, Inc., Orlando, Fla., has been appointed representative for Southwestern Industrial Electronics Co. (SIE), Dresser's Electronics Div., in the Southeastern region of the U. S.

ESC Electronics Corp., Palisades Park, N. J., has appointed Perrott Assoc. as sales representatives in Florida, Georgia and Alabama.

George F. Bohman, Orlando, Fla., has been appointed sales representative for Rotron Cooling Equipment in Florida; Fred F. Sylvester Assoc., Bayshort, L. I., N. Y., is representative in Metropolitan New York including Long Island and Northern New Jersey.

The Schaffer Engineering Co., Detroit, Mich., has been appointed Michigan sales representatives for Cincinnati Sub Zero Products, Cincinnati, Ohio.

Michael F. Olah. Jr., has been named midwest representative for the Litton Industries' Electron Tule Div., Dayton, Ohio.

Industrial Electronic Engineers, Inc,. North Hollywood, Calif., has appointed McGill \& McGill as their exclusive sales representative in the San Francisco Bay area.
The Hainge Co., Inc., Houstom, Tex., has been appointed representative in the Southwest for F. J. Stokes Corp., Philadelphia, Pa.

## How To Get Things Done Better And Faster



BOARDMASTER VISUAL CONTROL
$\leadsto$ Gives Graphic Picture - Saves Time, Saves Money, Prevents Errors
B Simple to operate-Type or Write on Cards, Snap in Grooves
\& Ideal for Production, Traffic, Inventory, Scheduling, Sales, Etc.
A Made of Metal. Compact and Attractive. Over 500,000 in Use.
Full price $\$ 4950$
FREE
24-PAGE BOOKLET NO. Z-50 Without Obligation

# ELECTRONIC INDUSTRIES Advertisers - November 1960 

This index is published as a convenience. No liability is assumed for errors or omissions.



## C




## E



F		
Fairchild Controls Corporation   Fairchild Semiconductor Corporation   Fairmount Chemical Company, Inc.   Fansteel Metallurgical Corporation   50, 51   Formica Corporation   Freed Transformer Co., Inc.   28, 29   FXR, Inc.   180.181		



## 1

Ideal Precision Meter Company, Inc. ....... 257


K

$\begin{array}{llll}\text { Lel, Inc. } & 231 \\ \text { Lenz Electric Manufacturing Company } & & 132 \\ \text { Litton Industries, Electron Tube Div. .................................. } & 140\end{array}$

M

192
115

Melabs Microflect Company, Inc.
Microlab
Microwave Associates, Inc.
Microwave Chemicals Laboratories
Microwave Components, Inc.
…
Minnesota Mining \& Manufacturing Comp.... 2
Magnetic Products Div
Magnetic Products Div.
Mincom Div.
Motarola Semiconductor Products, Inc.... 229

N
National Cash Register Company
Newark Electronics Corporation ................. 254
Nothelfer Winding Laboratories, Inc.

Ogilvie Press, Inc.
Ohmite Manufacturing Company


R


5
Sangamo Electric Company
104, 105 ratoga Semiconductor Div. Espey Mfg. Electronics Corp
Sarkes Tarzian, Inc.
Schweber Electronics
Scientific-Atlanta, Inc
Shure Brothers, Inc.
SIFCO Metachemical Inc.
Spectral Electronics Machine Corporation .... 236
spectrol Electronics Corporation .......196, 197 Sperry Semiconductor Division of S"Serry
Rand Corp. 206
Sprague Electric Company ........... \& is 175
Stackpole Carbon Company, Electronic
Components Div.
Stainless, Inc.
Stanpat Company
Stevens Manufacturing Company, Inc
Stromberg-Carlson Company
Struthers-Dunn, Inc.
35
244
230

Sylvania Electric Products, Inc
Electronic Tubes Div.
Electronic Tubes Div. (Insert following pa 202) Semiconductor Div. Special Tube Operations
217. 247

T

Taylor Fibre Company .......... ........... 240	
Telonic Industries, Inc.	2
Texas Instruments, Incorporated ............ 193	
Thomas \& Betts Company, The	195
Times Wire \& Cable Div., The International Silver Company	
Tinsley Laboratories, Inc.	268
Tawer Construction Campany	264
Trak Electronics Company	172
Transitron Electronic Corporation	128. 129
Tung-Sol Electric, Inc.	263
Turbo Machine Company	249
U	
U. S. Components, Inc. United Transformer Corporation	
V	
Vapor Heating Corporation ................. 111   Varian Associates .............................. 142   Victoreen	


$X$
X-Acto, Inc., Div. of Handicraft Tools, Inc. 235

"'PIG-TAILORING"' o revolutionary new mechanical process for higher production at lower costs. Fastest PREPARATION and ASSEMBLY of Resistors, Capacitors, Diodes and all other axial lead components for TERMINAL BOARDS, PRINTED CIRCUITS and MINIATURIZED ASSEMBLIES.
PIG-TAILORING eliminates: - Diagonal cutters - Long nose pliers . Operator judgment . $90 \%$ operator training time - 8roken componenls Broken leads - Short circuits from clippings . $65 \%$ chassis handling. Excessive lead toutness - Haphazard assembly methods.

PIG-TAllORING provides: - Uniform component position - Uniform marking exposure - Miniaturization spacing control - " 5 " leads for termimals - "U'" leads for printed circuits. Individual cut and bend lengths. Better time/rate analysis - Closer cost control. Invaluable labor saving - Immediate cost recovery.

Pays for itself in 2 weeks


Write for illustrated book to Dept. El-11


Circle 360 on Inquiry Card

News of Mirs'

## Representatives

Two new sales reps for Motorola's Solid State Electronics Dept. have been appointed, namely: Dayton Assoc. of Dayton, Cincinnati and Cleveland, Ohio; and Southgate, Michigan in Ohio, Michigan, West Virginia and western Penna. and The L. L. Schley Co. of Watertown, Mass. and Syracuse, New York in the New England and upper New York State territories.

Len-Bar Co., Electronics has been appointed sales rep for Potter \& Brumfield, a Div. of American Machine \& Foundry Co. in Southern California.

Land-C-Air Sales, Tuckahoe, N. Y. has appointed Jerry Balash its rep in the Phila. trading area. He will work from the LCA office at 32 Rittenhouse Road, Ardmore, Pa.

J. Balash

R. H. Hilderbrand

Speer Carbon Co., St. Marys, Pa. has appointed Robert H. Hilderbrand its Onondaga Electronics Div. sales rep in the Baltimore/Phila. area.

Semiconductor Div. of Syntron Co., Homer City, Pa. has appointed the Danco Corp., Fairview Village, Pa. its East coast sales rep.
H. H. (Pete) Seay has been named a rep. by Astron Corp., East Newark, N. J. He'll work out of headquarter's at 3850 Fairlington Drive, Columbus, Ohio, covering Ohio and West Virginia.

Elgin Labs, Inc., subsidiary of Erie Resistor Corp., Waterford, Pa. has appointed George K. Egelston, senior salesman in Chicago, to cover Michigan including the Detroit metropolitan area. He also has supervision over Illinois, Indiana, Western Ohio, Michigan and the St. Paul-Minneapolis, Minnesota area.
A. D. Stone, Jr., with headquarters at 10234 Lakewood Blvd., Downey, Calif., has succeeded R. J. Hedberg as West coast sales rep. for GE insulating materials.


Now, for missile environments and for all applications where greater precision is necessary, G-V Controls offers the revolutionary new PT Thermal Relay-the most precise thermal relay ever built!

And the PT's sturdiness is unequalled in thermal relays. It withstands missile vibration and shock far better than any other thermal relay.


## SPECIFICATIONS

Time Delay: 3 to 60 seconds (Factory Set)
Setting Tolerance: $=5 \%( \pm 1 / 4 \mathrm{sec} . \mathrm{min}$.
Temperature Compensation: Within $\pm 5 \%$ over $-65^{\circ} \mathrm{C}$.
to $+125^{\circ} \mathrm{C}$. rarge ( $\pm 1 / 4 \mathrm{sec}$. min.)
Heater Voltages: 6.3 to 115 v . for delays up to 12 sec .; 6.3 to 230 v . for longer delays.

Power Input: 4 watts. Rated for continuous energization at $125^{\circ} \mathrm{C}$.
Contacts: SPST, normally open or normally closed. Rated 2 amps. resistive at 115 v . AC or 28 v . DC.

Insulation Resistance: 1,000 megohms
Dielectric Strength: 1000 v. RMS at sea level. 500 v . RMS at $70,000 \mathrm{ft}$.
Vibration: Operating or non-operating, 20 g up to 2000 cps Shock: Operating or non-operating, 50 g for 11 milliseconds
Unidirectional Acceleration: 10 g in any direction changes delay by less than $5 \%, 50 \mathrm{~g}$ by less than $10 \%$ with proper orientation.
Weight: 2 to $2^{1 / 4}$ ounces.
Write for Product Data Bulletin \#PD-1015

## G-V CONTROLS INC. Livingston, New Jersey



From RCA's microwave designers


## With a Terminal Noise Figure as Low as 2.8 db .

Here are the dramatic facts about the new RCA developmental type A-1207 series of Ultra-Low-Noise Traveling-Wave Tubes.
4.5 db Maximum Terminal Noise Figure. This is a realistic value of noise figure because it includes coupler losses. Because this is a maximum value, the average noise figure for tubes in this series is consiclerably less than 4.5 dl . Laboratory tests of tubes of this series have shown terminal noise-figure values as low as 2.8 db .
Advaneed Proven Design. The design of the developmental type A-1207 series is based on that of the well known RCA-6861. Only recently Zurich Airport reported 19,200 hours of service from a 6861.
Complete S-Band Coverage. The developmental type A-1207 series offers coverage in bandwidths of 200 Mc to 800 Mc for S-band frequencies between 2200 Mc and 4100 Mc .
1 Milliwatt Minimum Power Output. Youll obtain an output of over 1 milliwatt with a minimum gain of 20 db from any tube in this remarkable series.

Most important of all, the RCA developmental type A-1207 series is a firm design, ready for immediate production and delivery to meet your schedules. Get full details about this umsual new line of ultra-low-noise traveling-wave tubes today. Contact the RCA Field Office nearest you. RCA Electron Tube Division, Harrison, N. J.

[^16]
[^0]:    Our engineers will be happy to assist you with specific applications. Telephone. wire or write today for information: HUGHES. Vacuum Tube Products Division, 2020 Short St., Oceanside. Calif.

    For export information. please write: Hughes International, Culver Cıt, Calitornia.

[^1]:    HUGHES
    Creating " new world with Alectromics
    -ー-
    VACUUM TUBE PRODUCTS DIVISION
    HUGHES AIRCRAFT COMPANY

[^2]:    'SCOTCH" and the - Plaid Design are registered trademarks of 3 M Com pany, St. Paul 6, Minnesota. Export: 99 Park Avenue, New York, N.Y. In Canada: London, Ontario.
    © 1960 3.1 Co.

[^3]:    By Jeff Markell and Jay Stantan. Published by Gernsback Library, Inc., 154 W, 14th St., New (C'ontinued on puge 58)

[^4]:    BRANCH OFFICES and REPRESENTATIVES in PRINCIPAL CITIES

[^5]:    * This mode is analogous to the TEnt mode in circular waveguide; see Marcuvitz. Grantham ${ }^{\text {s }}$ refers to the lowest order coaxial mode with non-vanishing cutoff as the $T E_{10}$ mode.

[^6]:    In Canada contact: Conway Electronic Enterprises Regd., Toronto, Canada

[^7]:    Circle 216 on Inquiry Card

[^8]:    Mechanical Rotation ......... $1080^{\circ}+15^{\circ}-0^{\circ}$
    Electrical Rotation $. . . . . . .1080^{\circ}+14.4^{\circ}-0^{\circ}$
    Total Resistance
    10 to 50,000 ohms; tolerance $\pm 3 \%$,
    Linearity Accuracy $\pm 0.5 \%$ to $\pm 0.1 \%$
    *Tolerance for 10 ohm units $\pm 10 \%$.

[^9]:    *Designates actuator assembled with switch. **Order these actuators separately. Assemble on switch when mounting. NOTE: ALL SWITCHES MOMENTARY CONTACT UNLESS OTHERWISE NOTED

[^10]:    CROSSED-FIELD FORWARD WAVE AMPLIFIER TUBES - BARRATRONO TRANSMITTING TUBES - MINIATURE NOISE SOURCES • DUPLEXERS \& TR TUBES - DISPLAY TUBES

[^11]:    202 Tillary Street, Brooklyn 1, N. Y.
    ULater 2-6800
    HARRIS
    1608 Centinela Ave., Inglewood, Cal. ORegon 8-6822

[^12]:    Circle 97 on Inquiry Card

[^13]:    $\cdot 25^{\circ} \mathrm{C}$ base mounting temperature.

[^14]:    Work performed under auspices of the U. S. Atomic Energy Commission.

[^15]:    A REPRINT
    of this article can be obtained by writing on company letterhead to The Editor ELECTRONIC INDUSTRIES Chestnut \& 56th Sts., Phila. 39, Pa.

[^16]:    RCA ELECTRON TUBE DIVISION FIELD OFFICES... INDUSTRIAL TUBE PRODUCTS SALES: Detrail 2, Michigan, 714 New Center Building, TRinity 5-5600. Newark 2, N. J., 744 Braad St., HUmbald 5.3900 . Chicaga 54, lllinais, Suite 1154, Merchandise Mart Plaza, Whitehall GOVERNMENT SAIES : Nalif., 6355 E. Washingtan Blvd., RAymand $3 . \mathrm{B} 361$ - Burlingome, Calif., 1 B38 EI Camina Real, OXfard 7.1620 .
     Washingtan 6, D. C.. 1725 "K" St., N.W., FEderal 7.8500 .

