## TELE-TECH

 \& Electronic Industries

## UNEXCELLED FOR BY-PASS OR FILTERING APPLICATIONS

## RMC


.0047
.005
$2 \times .002$

$\pm 20 \%$
$.02^{\circ}$
$+80 \%-20 \%$

## SPECIFICATIONS

GUARANTEED MINIMUM VALUE
POWER FACTOR: $1.5 \%$ Max. (a) 1 KC (initial)
POWER FACTOR: $\mathbf{2 . 5 \%}$ Max. (a) 1 KC (after humidity)
WORKING VOLTAGE: 1000 V.D.C.
TEST VOLTAGE (FLASH): 2000 V.D.C.
LEADS: No. 22 tinned copper (. 026 dia.)
INSULATION: Durez phenolic-vacuum waxed
INITIAL LEAKAGE RESISTANCE: Guaranteed higher than 7500 megohm:
AFTER HUMIDITY LEAKAGE RESISTANCE: Guaranteed higher than 1000 megohms


RADIO MATERIALS CORPORATIOM
GENERAL OFFICE: 3325 N. Californic Ave., Chicago 18, ill.
FACTORIES AT CHICAGO, ILL. AND ATTICA, IND.
DISTRIBUTORS: Confact Jobbers Sales Co., P. O. Box 695, Fairlawn, N. I.

## \& Electronic Industries

## SEPTEMBER, 1954

FRONT COVER: METERS AND TEST INSTRUMENTS-In loboratories, factories, broadcast stations, as a mal er of fact everywhere in the electronic industries, measuring devices play a vital role in furthering the state of the art. The meter symbals shown between the ever present, and ever necessary, signal generator and oscilloscope are those presented in the Circuit Symbals section of the June 1954 Electronic Industries Direc. lory issue of rele Tech
Totals: '53-'54 Government Contract Awards3
As We Go To Press ..... 9
Stop Wasting Engineers ..... 57
Radarscope: What's Ahaad for the Electronic Industries ..... 58
Wideband UHF Sweep Frequency Generator ..... 60
New Resistor Voltage Coefficient Tesfer ..... 62
Designing an Electro-Thermal Relay ..... 65
The Geodimeter-An Elecfronic "Eye" for Measuring Distance . C. E. Granavist ..... 68
Compandors Boost Performance of Voice-Frequency Circuifs. Tate B Collins dr ..... 70
Measuring Time-Delay in Pulse Circuifs ..... 72
Cues for Broadcasfers ..... 74
Plafing Quantify Indicator for L-Band Waveguides
Martin Davidson \& Nichoias S. Rahal ..... 76
Tunable CW Magnefron Designed for UHF ..... 78
Frequency Response Characteristics of Magnetic Tape
Walter T Selsted 5 Ross H. Sryder ..... 80
Preview of International Instrument Show ..... 81
NBS Spurs Research in Radio Propagation ..... 82
Designing Scale Model Aircraft for Anfenna Analysis-Part One
Robert f. Blaine ..... 84
Portable Calibrating Standard Checks Test Panel Accuracy ..... 86
New Automatic Electronic Assembly System ..... 88
Remote Unit for Sporfscasts ..... 89
DEPARTMENTS

| Books | 44 | Industry News | 32 | Personal . . . . . . . . . . . . . . . . . 124 |
| :---: | :---: | :---: | :---: | :---: |
| Bulletins | 120 | New Equipment | 90 | Tele Tips . . . . . . . . . . . . . . . . . . 50 |
| Coming Events | 14 | News of Manufacturers Rep | 130 | Washington News Letter 98 |

TELE-TECH ELECTRONIC INDUSTRIES^, Vol, 13. No. 9 Published monthly by Coldwell.Clements, Inc. M. Clements, President; M. H. Newton, Assistont fo President: John J. Borghi, Vice President and Secretory; M. 8. Clements, Trensurer Acceotance under section 3464 Postal Laws and Regulations authorized at Bristol, Conn., June 9, 1954. Additional occeptonce of New York, N. Y. 754 o copy. Annual Subscription Rales: United States ond possessions: $\$ 7.00$, Can. ado: $\$ 8.00$; All Other countries: $\$ 10.00$. Please give title, position and company connection when subscribing. Copyright by Caldwell-Clements, Inc., I95 Printed in U.S.A

## CALDWELL-CLEMENTS, Inc

- Reg. U. S. Por. Off


## An Announcement

of the Utmost Importance to Engineers Doing Research and Design Work in the Entire Audio Frequency Range.

## Burnell and Co., Inc.

is proud to announce the development of an entirely new product-

## R ото Roid

 a Variable Toroidal Inductor (pafent applied for)ROTOROID will prove to be a valuable aid in the solution of many engineering problems - in research and design - and opens new possibilities for production which were previously impractical or impossible.

## RotoRoid

. . . is a continuously variable, stepless toroidal inductor which can provide a $3: 1$ range of maximum to minimum inductance in $180^{\circ}$ rotation of a shaft.. . . employs no mechanical resistance contacts and is therefore free of noise and wear.
... requires no DC saturating currents and thereby eliminates the need for circuitry.. . . is applicable over the entire audio range (from approximately 300 cps ). ROTOROID is nct limited to any stock value of nominal inductance. It is available in any value of inductance now available in regular toroids.. . . is hermetically sealed and is vibration and shock-proof, can be chassis or panel mounted.

Write Department G for further information.
Burnell \& Co., Inc.
Yonkers 2, New York

PACIFIC DIVISION: 720 Mission Street, South Pasadena, California

An outstanding feature of ROTOROID is that, at maximum inductance, it provides the full $\mathbf{Q}$ of the toroid it contains. Thus, the user is at once able to take advantage of the high $\mathbf{Q}$ characteristics of toroids while at the same time having available a variable inductor not previously available in a toroid.

Applications: Virfually unlimired. Just efow of the many possible uses of ROIOROID are:

- Tunable Audio Oscillators

Variable Z Devices
Servo Systoms
Telemefering

- Adjustable Selective Networks

Variable Phase Shifi Networks
Variable Filters
Electro-Mechanical Control Systoms
Availability: Immediately available: ROTOROIDS VTI-16 and VTI-3 which are equivalent in electrical characteristics to Burnell oroids TC-16 and TC- 3 in cases $21 / 4^{n}$ in diameter, 3-1/16" long. Soon to be available: two miniature types equivalent to Burnell toroids TCO and TC-6.

Facts and Figures Round-Up September, 1954

ELECTRONIC INDUSTRIES


1953-54 GOVERNMENT ELECTRONIC CONTRACT AWARDS
Below is a summary of the classifications and dollar value of electronic equipment selected from contracts awarded by government procurement agencies in the one year period June 1953 to June 1954.

| A |  | Diodes Driftmeters Dummy Loods |  |
| :---: | :---: | :---: | :---: |
| Accolerometers | 961.120 |  |  |
| Actualors ${ }^{\text {Actuator }}$ Ports | $\begin{array}{r} 3.165,618 \\ 264,838 \\ 136,261 \end{array}$ | Oyno |  |
| Adopters, ompliner ${ }^{\text {Al ernators }}$ \& Voltoge Con. |  | E |  |
|  |  |  |  |
| Hols | 365.849 | Exciter |  |
| Allimelers | 1,051,710 | Elestrocardiographs |  |
| met | 54.530 |  |  |
| Amplifier Aisys, motor | 130,454 |  |  |
| Amplifiers | 12,910,019 | Forsimile Sets |  |
| Anolyze | 1,030,834 | ${ }_{\text {Filters }}{ }_{\text {Fire }}$ |  |
| Anodes | 679.956 |  |  |
| Anlennos | 1,875,020 | Flight simulators |  |
| Antenno Assys | 164,436 |  |  |
| Antenno feeds | 43,572 | Frequency Meters - --4 |  |
| Anienna Suppo | 151.834 |  |  |
| Auto Pilots | 6.039,490 |  |  |
| Auto Pilot Cor | 2,862,078 | Generators |  |
| Automatic Pilot syste | 1,942,682 | $\text { Generator } \mathrm{Ge}$ |  |
| Gyros |  |  |  |
| Botteries | 28,591.742 | H |  |
| Boltery Charg | 191,300 | Hand Sels |  |
| Bridges | 28,946 | Handses-Headses |  |
| Brush Assys | 50,668 | Handsors-Headse |  |
| Headphones, rodi |  |  |  |
| Coble | 8,144,765 | Heodsels |  |
| Coble Assy .......... ${ }^{76,140}$ Homing Groupi |  |  |  |
| Coble tonaducer | 252.000 |  |  |
|  |  |  |  |
|  | 352,317 56 | Ignition Analyzer |  |
| $\underset{\text { Calibrators }}{\substack{\text { copacitor-he }}}$ | 56,709 |  |  |
| Copacitor-Re Copacitors, | 131.251 | Inspection UnitsInstrument Landing system |  |
| Copacitors, | 231,516 |  |  |
| Covities | 214.64 | Insulation, sheet |  |
| Covilies, u | 30,030 | Insulation, tape ....... |  |
| Check Sels, radio sonde | 104.320 |  |  |
| Code Practice Equip | 140,320 | Intercoms stations |  |
| Coils, Mise | 29.521 | lintersom, stations |  |
| Communication Facilities | 279.470 | inverters ............. |  |
| C-mmunications Vans ${ }_{\text {components vector magn- }} \mathbf{1 , 6 2 4 , 1 6 3}$ |  |  |  |
| Camponents, vector magne- | 114,805 | J |  |
| mponenis, rodio sel | 153.159 |  |  |
| pound Insulating | 130.900 | Jack Box Assys Jocks, telephone |  |
|  |  |  |  |
| nic | 30,520 | Junction Boxes . . . ${ }^{\text {a }}$ |  |
| nnectors | 1,808,334 | K |  |
| nnectors Assys | 39,851 | Ker |  |
| nnectors \& cords | 29,937 |  |  |
| nnectors, plug | 176,916 | Kirs, ontenna capacitance |  |
| inectors, reseptacles | 39,081 |  |  |
| metiors, | 58,464 | L |  |
| Isoles | 329,390 |  |  |
| atrols | 3,687,326 | Leods, olectrie ...... |  |
| C wrol Panols | 951,166 |  |  |
| ETrols, radio set | 1.289,871 | (ligh Assys |  |
| ${ }^{\text {c. Hol }}$ trystems, gunfire | 90,863,885 |  |  |
| verters | 594,850 | Ioran .............. |  |
| 3 | 37,170 |  |  |
| - Mounis | 35,264 | M |  |
| nter Moasure Xmithing |  | Magneto Assy |  |
| ntermeasures Receivers | 218,715 | Mag. Sound Recorders |  |
| plers, directional | 192,582 |  |  |
| $\boldsymbol{c}$ ting Equipment ultro- |  | Meosuring Sels Meters |  |
|  | 100,000 |  |  |
| Hol Molders | 112,395 | Meters, froquency |  |
| ${ }^{\text {chel }}$ Kits | 44,388 |  |  |
| $c$ tot Units | 192,450 | Microlinks <br> Microphones |  |
|  |  | Mirrophone, simulator sels |  |
| Linos, Solid |  |  |  |
|  |  | Millivolimotors |  |
|  | 48.785 | ```Mobile Trainers ...``` |  |
|  |  |  |  |
| alized Readour Equip- |  | Motor Generators |  |
|  | 92,143 |  |  |

TEE-TECH \& ELECTRONIC INDUSTRIES - September 1954
$\begin{array}{ll}\text { Mounts, vibrator } & 255,081 \\ \text { Multimeters } & 363,460\end{array}$
Oscillator Filter Elemen:s
Oscillator Filter Elemen
Oscillators
Oscillograph Processing
system
System
Oscillossopes
49,303
211,481
525,074 Panel Assys
6,525.074 Ponel Assys
$5,600,491$ Poards
189,253 Panel, Mountings
309,383 Panels. general control Panels, general control
Panoramic Adapters
Paper, electro sensitive
Plotting Boards Plotting Boards
$1.756,813$ Plugs, "elephone
142,345 Positioning Mechanisms Potentiometers Power Supplies
Preomplifier strips
Public Address System
Q Meters $\quad \begin{gathered}Q \\ R\end{gathered}$
Rador Beacons
Racks
Radar Componen
Radar Compon
Rador. GCA
Rador, GCA
Redor Sets
Rodio Alla:hments
Radio Compasses
Radio Compass Unils
Radio Phonographs
Radio Phonograph
Radios, portable

Rodio Sel Control Radio Sels
Radiosondes
Rodio Telephones
Radio Telephone systems
s
Rodomes Instruments
Reactors.
Recepfacles
Receptacles
Receptacles a plugs
Recoivers, double synchros
Receiver-T
Recorders
Recorder-Reproducers
Recorders, sound
Recording Units
Records, pulsed
photographic
Rectifiers
RF Assy RF Assys Refectors, radar Regularors Relay Box Assys Relay Equipment Relays, solenoid Repeaters ${ }^{\text {sol }}$ Reproducers, sound Resistance Bridges Resistors, variables Rheostals
Room Scre Rotors

| 80.875 | Suppressors. | 72 |
| :---: | :---: | :---: |
| 30,181 | Switches | 752,376 |
| 34,326 | Switch Assys | 62,036 |
| 774,597 | Switches, disconned | 14.800 |
| 62,199 | Switches, rotary | 204.596 |
| 31,400 | Swirchboards | 397,287 |
| 63,490 | Switchgear | 568.973 |
| 78,120 | Switch Boxes, relay | 132.056 |
| 49,200 | Switches, control stick | 05,253 |
| 195,478 | Synchros | 1,100,072 |
| 279,268 | Synthetic Ouariz | 146,447 |

196.250
86.991

255,01
363,46

27,95
$1.161,65$
108,9
972,9

132,500
$1,009.107$
232
979.627

84
207,841
$6 \in 3,606$
$6 \in 3,406$
30,196

45,462

1,594
2,006
2,006
40,356
40.356
150,000

150,000
109,051
343.052
79,432

# New Extra Play tape gives $50 \%$ more recording time! 

A revolutionary development for radio stations, recording studios-in fact all users of magnetic tape! New "Scotch" Brand Extra-play Magnetic Tape 190A makes it possible to record entire symphonies, lengthy news and sports events without stopping for reel change. With $50^{\circ}$ c more tape on each reel, new Extra-play tape offers the same recording time found on $11 / 2$ reels of standard tape.

Exclusive feature of new "Scotch" Brand 190A tape is a thinner magnetic coating. Made of high-potency oxide, the new coating has been reduced from standard 0.6 mils to 0.3 mils and the high frequency range extended appreciably. A $30 \%$ thinner tape backing offers more uniform hi fi response with crisper, cleaner tones, yet maintains "Scotch" Brand's reputation for sturdy, long-life tape construction.


EXTRA THIN TAPE $-50 \%$ thinner, more potent oxide coating, $30 \%$ thinner backing permit more 190A tape to be wound on standard-size reel. Result: one roll of new tape does job of $11 / 2$ reels of standard tape.


INCREASED FREQUENCY rance of new Extra-play tape enables tape machines to produce recordings with greater hi fi response than formerly possible with most conventional magnetic tapes.


STRENGTH TO SPARE - New 190A tape stands up under even grueling steel ball drop test. Naturally it's tough enough to withstand severe stresses of sudden machine stops, starts and reverses.
 Extra Ploy Magnetic Tape 190A


Current flow deflects the rotor of Edison's Sensitive Magnetic Relay in a direction determined by current polarity. Changing the operating current gradually causes the moving contact to follow the rate of change until it touches one of the stationary contacts. This basic operation adapts the Edison Relay for use as a null detector in a bridge circuit - and as a sensing element in a contactor servo circuit.

For designers of electronic equipment, Edison's Sensitive Magnetic Relay - a product of the world-famous Edison Laboratory-offers other outstanding features:

- Low power operation - Standard types close on input currents as low as 30 microamperes - available in special circumstances for even lower current.
- Versatility -Interchangeable coils can be supplied with resistances from 0.5 to 23,000 ohms. Normal closing power may be increased 10,000 times without adverse effects.
-Contacts - Platinum-iridiuın wire, either SP'ST or SPDT, with capacity of $1 / 3$ ampere at 28 volts D.C. non-inductive.
- Stability - Test relays have exceeded $8,(100,000$ cycles without calibration change.
-Shock and vibration resistant - Relay will withstand shock of 50 g 's in all planes without damage.

II rite us for complete data on this new Eilisun development.

A GREAT NAME CONTINUES GREAT NEW ACHIEVEMENTS instrument division - 93 lakeside avenue - west orange, new jersey

## TELE-TECH

\& Electronic Industries
M. CLEMENTS

Publisher
DR, O. H. CALDWELL Publisher Edrorial Consurton
ERARD F. OSBAHR ALBERT J. FORMAN
Edilor Associale Editor
DR. A. F. MURRAY JOHN H. BATTISON Contributing Editor Contributing Editor B. V. SPINETTA, Directory Editor MARTHA USDIN, Assistont Editor CARL THOMAS, Assistant Editor
R. C. DAVIES, Woshinglon News Edifor CHARLES F. DREYER, ArI Director GAIL CARLSON, Ediforial Secrefary Lt. Col. STANLEY GERSTIN, Contribuling Editor

## BUSINESS DEPARTMENT

M. H. NEWTON, Business Manager HOWARD A. REED, General Sales Manager PAUL J. CARNESE, Sales Promotion Manager JOSEPH DRUCKER, District Manage
JAMES S. COLEMAN, Assf. Sales Manager N. McAllister, Assl. Business Manager CECILIA KAVANAUGH, Advg. Records
A. SHILLIN, Production Manager

480 Lexington Ave., New York 17, N.Y. Telephone Plazo 9.7880
S. M. GASKINS, Western Manager JOHN D. LUPTON, District Manage 201 N. Wells Sp., Chicago 6, III. Telephone RAndolph 6.9225

CHRIS DUNKLE \& ASSOCIATES Californio Representatives
3257 W. 6th Street, Los Angeles 5, Calif. Telephone DUnkirk 7.6149
1355 Market St., San Francisco 8, Calif
Telephone KLondike 2-2311, Ext. 579
M. GROENING, Asst. Circulation Manager JOHN J. BORGHI, Controller

CIRCULATION 21,500

## EPA

TELE.TECH• \& ELECTRONIC INDUSTRIES is edited for top-level engineers and executives throughout the electronic industries. It gives the busy engineering executive outhoritative information and interpretation of the latest developments and new products, with emphasis on subjects of engineering import and
given to:

## MANUFACTURING

-Electronic
equipment, communications, - Electronic
broadcostin
microwave communications. mentation, telemetering, computing. - Military equipment including radar. sonar, guided missiles, fire controls. -TV.FM-AM receivers, phonogrophs recorders,

## OPERATION

- Fixed, mobile and airborne communicotions in commercial, municipal, aviation and government services. ing, records, audio and sound sysiems, motion piclure production -Miltary, civilion and scientific elec. tronic computing and control sysiems
-Reg. U.S. Pat. Off.

THE ELECTRONIC INDUSTRIES DIRECTORY
Published annually as on infegra section of TELE-TECH in June

Capacity: Whether you require a few hundred or several million parts, the right size and type of equipment is available. Ample kilns available plus many special kilns, including controlled atmosphere kilns, provide firing capacity at optimum temperature.

Voiumes Batteries oi presses include sev. eral rotaries, each capable of producing up to $1,500,000$ parts a day of small, simpla daciens. These are baitked by vast volume resources for rew material preparation, firing and mactioning botlib befare and after firing.

## offers you these advantages for

## Die Pressed <br> Ceramics

FOUR LARGE MODERN PLANTS INSURE QUICK DELIVERIES!

Versatilirys More than flify years of spedollized experience has made it possible to produce Alsimag parls inat meet "Impos: sible" requirements.

Engineering Assistance: If you will send details of your requirements, our engineers will submit suggestions on material and design to assist you in finding the most efficient and economical solution to your requirement.

## 53 RD YEAR OF CERAMIC LEADERSHIP

##  <br> CHATTANOOGA 5, TENNESSEE

OFFICES METROPOLITAN AREA 671 Broad St., Newark, N. S., Mirchell $2-8159$ - SYRACUSE. N. Y. 647 S Warren Si. Phone 74.4889 and 74-4880 - CLEVELAND. SOI2 Euclid Ave., Room 2007, Express 1.6685. NEW ENGLAND 1374 Mass. Ave., Cambridge, Mass., Kirkland 7.4498. PHILADEEPHIA: 1649 N. Broad S... Oriole Dr.. Dallas 9. Dixon 9918 - LOS ANGELES: S603 N. Huntington Dr. Capirol 1.9114. SOUTH SAN FRANCISCO 320 Shaw Rd., Plaza 6-0800 PITtSBURGH. 911 Plaza Bldg., Allantic 1.2075


## MINIAUURIZED 5 AND 10 WATT WIRE-WOUND RESISTORS!

 space is a factor. They re ideal for point-topoint wiring, terminal board mounting, and processed wiring boards, where they fit in admirably in dip-soldered subassemblies.

Axial lead Blue Jackets are rugged vitreous enamel power resistors built to withstand the severest humidity performance requirements As for economy, these newest members of the Sprague Blue Jacket family are low in cost . . . eliminate need for extra hardware . . . save time and labor in mounting!

# SPRRGUE 

You can get these outstanding new Blue Jacket Resistors without delay in any quantity you require. Sprague Engineering Bulletin 111 gives full data on these and all other commercial Blue Jacket Resistors. Send for your copy.

## SPRAGUE ELECTRIC COMPANY

 233 Marshall Street, North Adams, Mass.| SPRAGUE TYPE NO. | WATTAGE RATING | DIMENSIONS <br> $L$ (inchos) D | MAXIMUM RESISTANCE |
| :---: | :---: | :---: | :---: |
| 27E | 5 | 11\% 616 | $17,500 \Omega$ |
| 285 | 10 | 1\%/6 $/ 16$ | 35,000 $\Omega$ |

Standard Resistance Tolerance: $\pm 5 \%$

As We Go To Press...


## GE Announces Plans For Transistor Production

The General Electric Co. has announced that it is tooling for mass production of high frequency transistors.
Dr. W. R. G. Baker, GE v.p. and general manager of the Electronics Div., said that plans for large quantity production of the transistors has been made possible through development of a "rate-grown" method of producing essential transistor elements. This method is expected to cut costs of transistors to the point where they can compete with vacuum tubes.

william Engeler, GE design engineer, checks first step in production of rate-grown transis tors-erystal growing in furnace. Some 2000 units are made from single erystal ingol

Briefly, the method consists of introducing special impurities, gallium and antimony, and varying the hea controls during the crystal growing process. By this method, as many as 100 wafer-thin layers of specially treated germanium in $x$ six-inch ingot are formed. The ingot is then diced into bars each several thousandths of an inch long with a layer through the center. The layer does the work of a grid. The sections of the bar on either side take the place of the cathode and plate of the tube.
Actual production will begin in 1955 at the company's Syracuse, N.Y. plant. See p. 118 for further details.

## Use of TV in Warfare Demonstrated

Use of TV in warfare to give commanders at view of front-line operations was demonstrated publicly for the first time from Fort Meade, Md., in a color TV broadcast over the NBC-TV network, Aug. 11. The demonstration was staged by the Army Signal Corps with the cooperation of the Radio Corp. of America and the National Broadeasting Co. Participating in the demonstration were General Matthew B. Ridgway, Chief of Staff, U. S. Army; Lieut. General Floyd L. Parks, Commander, Second Army: Maj. General George I. Back, Chief Signal Officer, U. S. Army: and Brig. General David Sarnoff, Chairman of the Board of RCA

The demonstration coincided with the 20th anniversary of the first proposal for military uses of TV. That proposal was reportedly taken to Washington in 1934 by General Sarnoff. Out of it developed plans for wide-spread applications of TV as a weapon of defense on land. in the air and on the sea.

Televised information from the "battlefield" was relayed to a "command post of the future," for viewing by the regimental commander. The "eyes" of the operation was experimental combat TV equipment, portable cameras of which were in the hands of Signal Corps personnel accompanying the assaulting troops. Remote TV interrogation was used.

## Columbia Introduces

 "Kilosphere" LoudspeakerThe kilosphere, a small device no larger than a candy bar yet containing more than one thousand minute loudspeaker outlets, is Columbia Records latest innovation in music reproduction, according to an announcement by James B. Conkling, President of the company. Twin " $K$ " speakers, with more than 2000 outlets, will be incorporated in Columbia's latest 1954 models of its famous high fidelity " 360 " phonograph as well as in the new Columbia Bell \& Howell table model tape recorder, Mr. Conkling stated.

Developed by Columbia's Department of Engineering and Development, the " K " speaker is a perforated metal oblong with more than 500 tiny apertures, encased in a thin plastic foil. Each of the apertures acts as a loudspeaker when the covering membrane of foil is set into vibration by electric signals from the phonograph system.

Since electric force is applied over the entire " K " speaker instead of at a single point, as in conventional cone speakers, the 1000 tiny speakers all operate in exact phase. Distortion due to variations in phasing is thus eliminated and the clean. brilliant reproduction of high frequencies is made possible.

## G. E.'s

LATEST CONTRIBUTION TO

## CUSTON BUILT TO PROYIDE 143 POWER COMBINATIDNS!

* Smallest unit size yet developed!
* Most reliable performance of any rectifier within this category!
$\star$ Hermetically sealed for lifetime use!

The following germanium rectifier stacks, each occupying a volume of only $1.62^{\prime \prime} \times \mathbf{2 . 5} \mathbf{5}^{\prime \prime} \times \mathbf{6 . 0 0 ^ { \prime \prime }}$, are typical of the 143 standard stacks in G. E.'s new rectifier line.

CIRCUIT
Half Wave .
Full Wave Center Tap
Full Wave Bridge .

Three Phase Bridge . . . . . $1.3 \mathrm{amps} @ 575$ volts or $2.6 \mathrm{amps} @ 280$ volts
Three Phase Star . . . . . . $1.8 \mathrm{amps} @ 280$ volts or $3.6 \mathrm{amps} @ 140$ volts


## As We Go To Press

## DuMont Announces <br> Universal Breadboard

Circuit design engineers concerned with the building of model circuits will be interested in a universal breadboard assembly recently announced by DuMont Labs.

As shown in the accompanying picture, the unit consists of a chassis frame and an assortment of phenolic sub chassis designed so that tubes and components can be mounted quickly and conveniently.


Flexible breadboard speeds sircuit design
Design of the units is aimed at producing "modular" sections in which circuit conditions would approximate those of actual production. DuMont engineers also pointed out the advantage of this system in making the primary layouts for printed wiring.

## New Philco Speaker and Color TV Tube Announced

Concurrent with its entry into the phonograph field, Philco has announced the development of an electrostatic speaker to be used as a tweeter in its high-fidelity players. It employs 16 vertical columns arranged to form a half-cylinder. Sound is diffused over a $180^{-}$pattern.

The company's new president. James H. Carmine, revealed that a 21-in. single-gun color TV tube had been developed. The rectangular tube, which produces a 250 sq. in. picture, does not require u shadow mask. Because of its simple construction, it is expected to cost only about $15 \%$ more than equivalent black-and-white tubes in mass production. Philco will not make any color sets this year.

Reports unconfirmed by the company say the tube employs secondary emission from one phosphor to index the electron beam for proper registration of the right color at a given time. The phosphor is reportedly placed on the face in separate lines for each color. Scanning is either at right angles to vertical lines, or "wobbled" across three horizontal lines.

COMPUTER HANDLES POWER PROBLEMS


A new ae network calculator, built by the Westinghouse Electric Corp. at a cost of $\mathbf{\$ 4 0 0 , 0 0 0}$, was recently pul into service by the Franklin Institute, in cooperation with seven major power companies in Penn., N. J. and Delaware. The utilities will use this computer to help solve the complex problems involved in maintaining theip power systems.

## Plan U.S.-Alaska Cable

Plans for an underwater telephone cable system linking the forty-eight states with Alaska have been announced by the Long Lines Dept. of American T. \& T. An appli-

cation filed with the F.C.C. sets the terminal points of the cable as Port Angeles, Washington and Ketchikan, Alaska, a distance of 800 nautical miles. Present telephone service between Alaska and the U. S. is provided over 13 radio and land line circuits.

## Bill to Study <br> Transatlantic TV Passed

Congress has passed and sent to the President a bill which would set up a commission to study the proposed establishment of a transatlantic TV system and to promote the use of radio-TV telecommunications between free nations. The nine-man commission would operate with a $\$ 250,000$ appropriation, and include two senators, two representatives, and at least one member from both the communications industry and education.

The House report referred to the NARCOM plan which utilizes VHFmicrowave relays linking islands to span the Atlantic. Details of this plan were first revealed in "Global Microwave System for TV and Communications," Nov. 1952 TELETECH \& ELECTRONIC INDUSTRIES.

## Low-Cost Color TV

Emerson is now offering color TV receivers for sale at a retail price of $\$ 695$. The new receiver, the Emerson Model C-501, incorporates a 15in. picture tube, which is now being produced in limited quantities.

## MORE NEWS <br> on page 14



## As We Go To Press

CHECKING MAGNET QUALITY


This recording hysterisigraph in the Carboloy Dept. of GE in Detroit makes a complete record of a magnet's entire hysterisis loop automatically. Any part of loop is explored af will

## '"Tinkertoy'' Pays Dividends

Mechanically produced electronic equipment has shown many superior qualities compared to equipment produced by conventional means, according to the Navy's Bureau of Aeronautics. In a directive issued to the Navy departments responsible for design and procurement of electronic equipment, BUAER recommended that contractors be encouraged to use mechanized production techniques wherever possible. and particularly in the manufacture of mobile equipment.

## $1,000,000$ th Transistor Observed at Raytheon

The millionth germanium junction transistor produced at the Raytheon plant in Newton. Mass. was the occasion for a review of the progress made in improving transistor reliability in the past few years.

The company officials pointed out
that with nearly a million transistors in operation, field failures are now running at less than $2 \%$ per year.

In the line of new developments. Raytheon spokesmen foresaw pro-


Checking out finished transistor af Raytheon
duction of power output and radio frequency transistors late in the year, with the first transistorized portable and pocket radios appearing in 1955.

MORE NEWS
on page 18

## COMINE EVENTS

Aug. 25-Sept. 4-National Radio Show, Earls Court, London. (Preview for overseas guests on Aug. 24)
September-First International Scientific Radio Union, Amsterdam, Holland.
Sept. 1-16-Golden Jubilee Meeting of the International Electrotechnical Commission, University of Pennsylvania, Philadelphia, Pa .
Sept. 5-9-International Frankfort Fair, Frankfort, Germany.
Sept. 8-11-Symposiun. on Propagation Standards and Problems of the Ionosphere, sponsored by the NBS Central Radio Propagation Laboratory. Boulder (Colorado) of the NBS.
Sept. 13-24-International Instrument Congress and Exposition. Commercial Museum and Convention Hall, Philadelphia, Pa.
Sept. 15-17-IRE-MIT Symposium on the Information Theory, co-sponsored by the AIEE and URSI, Massachusetts Institute of Technology, Cambridge, Mass.
Sept. 16-18-Joint Electron Tube Engineering Council General Conference, Chalfont-Haddon Hall, Atlantic City, N. J.
Sept. 28-30-1954 National Packaging and Materials Handling Competition, sponsored by the Soc. of Industrial Packaging and Materials Handling Engineers. Chicago Coliseum, Chicago, 11 .
Sept. 30-Oct 1-5th Annual Meeting and Exhibit of the Professional Group on Vehicular Communications of IRE. Rice Hotel, Houston, Texas.
Scept. 30-0ct. 1-Fall Assembly Meet.
ing of the Radio Technical Commission for Aeronautics. Willard Hotel, Washington, D. C.
Sept. $30-0 \mathrm{ct}$. 2-High Fidelity Show, International Sight and Sound Exposition, Inc., Palmer House, Chicago.
Oct. 4-6-Tenth Annual National Elec. tronics Conference, Hotel Sherman, Chicago, Ill.
Oct. 11-15-AIEE Fall General Meeting. Morrison Hotel, Chicago, Il .
Oct. 13-15-Joint Meeting of RTCM and IRE Professional Gp. on Communications Systems. Somerset Hotel, Boston, Mass.
Oct. 13-17.-1954 Annual Convention, Audio Engineering Society. Hotel New Yorker, N. Y.
Oct. 18-20-RETMA Radio Fall Meeting, Hotel Syracuse, Syracuse, N. Y. Oct. 18-22-42nd National Safety Congress and Exposition, Conrad Hilton, Congress, Morrison and La Salle Hotels, Chicago, III.
Oct. 21-23-8th New England Conference of the American Soc. for Quality Control. Ten Eyck Hotel, Albany, N. Y.

Oct. 26-28-2nd National Conference on Tube Techniques, sponsored by the Working Group on Tube Techniques of the Dept. of Defense. Western Union Auditorium, 60 Hudson St., N. Y. C.

Oct. 27-30-30th National Convention of the National Assoc of Education Broadcasters. Hotel Biltmore, New York.
Nov. 4-5-East Coast Conference on Airborne and Navigational Electronics, sponsored by the Baltimore section of IRE and IRE Professional

Group on Aeronautical and Navigational Electronics. Sheraton-Belvedere Hotel, Baltimore, Md.
Nov. 10-11-AIEE Conference on Electronic Instrumentation and Nucleonics in Medicine, Morrison Hotel, Chicago, Ill.
Nov. 10-12-18th Annual Time and Motion Study and Management Clinic, sponsored by the Industrial ManageSociety. Sherman Hotel, Chicago, Ill.
Nov. 12-13-National Symposium on Quality Control Methods in Electronics, sponsored by the Professional Group on Quality Control of IRE and Electronic Technical Comm. of the American Soc. for Quality Control. Hotel Statler, New York.
Nov. 18-19-6th Annual Electronics Conference, sponsored by the Kansas City Section of IRE, Hotel President, Kansas City, Mo.
Nov. 21-22-Automatic Control Equipment Exhibition. Waldorf-Astoria Hotel, N. Y. C.
Nov. 29-Dec. 4-First International Automation Exposition, 242nd Coast Artillery Armory, New York, N. Y.
Dec. 8-10-4th Annual Eastern Joint Computer Conference and Exhibition, jointly sponsored by the AIEE, IRE, and ACM. Bellevue-Stratford Hotel, Phila. Pa.
ACM: Assoc. for Computing Machines.
AES: Audio Engineering Scciety. IRE: Institute of Radio Engineers.
ISA. Instrument Society of America.
NACE National Assoc. Corrosion Engineers.
NARTB: National Assoc. of Radio and TV Broad. RETMA: Radio-Electronics-TV Manufacturers RTCM1: Radio Technical Commission for Marine URSI: International Scientific Radio Union

Polarad equipment.

Polarad NTSC Color TV Equipment consists of fully integrated units that combine ease of operation with maximum flexibility.

COLOR BAR GEmERATOR-PT-203 Provides color TV test signals, NTSC standards, for color TV equipment, networks and components. Supplies complete composite video signal in the form of seven fundamental color bars simultaneously with seven gradations of gamma bars. White dot pattern superimposed on both color and gamma bars. Color test pattern can be used for adjustment of both color transmitter and receiver circuitry. Internal switching permits 19 different test patterns.

COLOR SYNCHRONIZING GENERATOR-PT-201 Furnishes NTSC color TV subcarrier frequency component and contains diyider network to yield 31.5 KC sıgnal. Provides driving, blanking and synchronizing pulses, as well as vertical and horizontal dots for linearity checks. Used to drive color bar generators, or any other NTSC color TV generating equipment. Utmost stability assured by driving all pulses from leading edge of crystal controlled oscillator Unit may be locked to synchronize with 60 cps line. Also available as a separate unit, PT-202 Subcarrier Frequency Gen. erator to modify any existing standard IB.W) synchronizing generator in accordance with NTSC color TV standards.

COLOR TV VIDEO MONITOR-M-200 COmpact, rug. ged instrument consisting of two portable units. Uses 15 inch RCA tri-color Kınescope. Checks quality of NTSC color video signals in studio, on transmission or in factory Excellent synchronizing stability. Displays highest defintion transmitted pictures with exceptionally good color rendition. All controls on front panel. Instrument may be rack mounted or employed as field test

ALSO AVAILABLE An NTSC color TV Flying Spot Scanner, furnished as a completely packaged unit supplying a standard color video signal. For further information, contact your nearest Polarad representative or write directly to the factory.

colon bar gemerator pt-zos OUTPUT SIGMALS: Composite Video (2 outputs) (Sync. negative \& Dositive) SIGNAL INFORMATION 7 Bars of Color
7 Bars of Gamma Gradations White Dot Pattern (Vert and Hor) EXT. VIDEO INPUT FOR MIXING 2 volts neg polarity

COLOR SVmCMEOMIZINE GENERABOR PT-201 OUTPUT SIGNALS
Synchronizing signal (Meg.)
Camera Blanting Signal (Pos., Neg.) Morizontal Drive Signal (Mes.) Vertical Drive Signal (Neg.) omposite Video Oupput (Nog., Pos.) ( $3.579545 \mathrm{me} / \mathrm{s}$ )

## COLOR VIDEO MOMITOR M-200

Signal Polarity-Positive, Negative, Balanced
input Video-0.25 to 2.0 Volts, pean to peall input Impedance -66 mml across 22 megohms
esolution-250.300 IInes (Full Utilization of NTSC Color Signal Bandwideth) Morizontal and thertcan across rasto


## 



YOU CAN FILL ALL YOUR FUSE NEEDS FROM ONE SOURCE

... by Standardizing on BUSS FUSES

Just turn to BUSS for all your fuse requirements in any size from $1 / 500$ ampere up. The line is com-plete:-standard type, dual-element (slow blowing), renewable and one-time types . . . plus a companion line of fuse clips, blocks and holders.

You'll find that by obtaining all your fuses from one source you can save time and money by simplifying your purchasing, stock handling and records.

Why BUSS fuses give "troublefree" protection.

To make sure of dependable electrical protection under all serv-
ice conditions, - every BUSS fuse normally used by the Electronic Industries is tested in a sensitive electronic device that rejects any fuse not correctly calibrated, properly constructed and right in all physical dimensions.

Should you have a special problem in electrical protection
. over 39 years of research and practical experience is available to you when you turn your electrical protection problem over to BUSS. The facilities of the world's largest fuse research laboratory will be brought to bear on the problem helping you select the fuse or fuse mounting best suited to your needs.


## TV MONITOR MODEL 335E

All channels 2 to 83
Exceeds F. C. C. requirements
121/4" high; rack mounted
High stability, accuracy, long-term dependability
Monitors visual, aural f́requencies; percentage aural modulation

Xew!Small, low-cost monitor for all TV channels gives continuous, precise indication without adjustment

The unusually compact, low-cost Model 335 E occupies just $12^{1 / 4 "}$ of a standard relay rack. Yet it accurately and continuously performs all VHF and UHF television monitoring functions including visual and aural carrier frequency and aural carrier percentage modulation measurement.
Carefully engineered crystal reference oscillators provide accuracy in excess of F. C. C. requirements for all channels. Because discriminator accuracy does not depend on a tuned circuit, no timeconsuming adjustments are required during operation. It is never necessary to reset carrier level or realign circuits. Proper operation of the monitor can be checked conveniently by controls located behind the front panel cover.

Trouble-Free Dependability The monitor is specifically designed to operate at full accuracy over long periods of time without maintenance. Highest quality components and construction are used throughout. A new chassis design increases accessibility of components and makes possible cool operation Copyright 1953 Howlett.fockord Co.
through forced ventilation. Extra features include provision for remore indicating meters, remote peak modulation indicator lamp, and a demodulated signal for aural monitoring.

The instrument also includes a frontpanel crystal cemperature indicator and illuminated meter faces. It firs a standard relay rack, and can be color finished to match your transmitter installation.

## SPECIFICATIONS

## aural frequency monitor

Deviation Meter Range: +6 kc to -6 kc . Accuracy: Befler than $=1,000 \mathrm{cps}$ for of least 10 days.
AURAL MODULATION METER
Modulation Range: Meter reads full scale on 33.3 ke swing. Calibrated to $100 \%$ at 25 kc swing; $133 \%$ at 33.3 ke swing. Accuracy: Within $5 \%$ of mod. full scale.
Meper Characterisiliss: Meter damped in accordance F.C.C. requirements. Reads peak value of modulation peak of duration between 40 and 90 milliseconds. Mefer refurns from full reading 10 10\% of full value within 500 to 800 msec .
Frequency Response: Flat within $\pm 1 / 2 \mathrm{db}$. 50 to $15,000 \mathrm{cps}$.
MODULATION PEAK INDICATOR
Peak Flash Range: From $50 \%$ to $120 \%$ modulation ( $25 \mathrm{ke}=100 \%$ ).

VIDEO FREQUENCY MONIIOR
Deviation Mefer Range: +1.5 to -15 kc. Accuracy: Befter than 500 cps for af least 10 doys.
AUDIO OUTPUT
Frequeney Range: 50 to $15,000 \mathrm{cps}$. Re. sponse flat within $=1 / 2 \mathrm{db}$. Standard $75 \mu$ sec de-emphasis circuit.
Distortion: Less than $0.25 \%$ af $100 \% \bmod$ ulation.
Oufpur Volrage: 10 volis info 20,000 ohms at $100 \%$ modulation (low frequencies)
Moniforing Oupput: I milliwalt into 600 ohms, balanced, al $100 \%$ modulation (low frequencies).
Residual Noise: At least 70 db below out put level corresponding to $100 \%$ mod. ulation (low frequencies).
GENERAL
Frequency Range: Channels 2 to 83 inclu sive, including offset channels.
R. F. Power Required: Approx. I wall.

Exiernal Mefer Indication: Available for aural carrier deviation, video carrier deviation, oural modulation percent. age and peak indication.
Size: $12 \frac{1}{4}^{\prime \prime} \times 19^{\prime \prime} \times 13^{\prime \prime}$. Rack mounting
Power: 115 volts, $50 / 60 \mathrm{cps}, 180$ walls.
Price: \$1,950.00 f.o.b. factory.
Data subiect to change without notice
HEWLETT-PACKARDCO.
2757 Page MiM Road, Palo Alto, California, U \& A
SALES AND ENGINEERING REPRESENTATIVES
IN PRINCIPAL CITIES


Provide delays ranging from 2 to 120 seconds.

- Actuated by a heater. they operate on A.C.. D.C.. of Pulsating Current.
- Hermetically sealed. Not affected by altitude, moisture, or other climate changes.
- Circuits: SPST only - normally open or normally closed.
Amperite Thermostatic Delay Relays are compen. sated for ambient temperature changes from $-55^{\circ}$ to $+70^{\circ} \mathrm{C}$. Heaters consume approximately 2 W . and may be operated continuously. The units are most compact. rugged, explosion-proof, long-lived, and - inexpensive! TYPES: Standard Radio Octal, and 9-Pin Miniature.
PROBLEM? Send for Bulletin No. TR-81


## BALLAST-REGULATORS

- Emperite Regulators are designed to keep the curent in a circuit aufomatically regulated at a definite value (for example, 0.5 cmp ).
- For currents of 60 ma . to 5 cmps . Operates on A.C., D.C.o Pulsating Current.
- Hermetically sealed, light, compact, and most inexpensive.


Maximum Wattage Dissipation: T61/2L-5W. T9-10W.

mperite Regulators are the simplest, most effective method for oblaining aufomatic regulation of current or voltage. Hermetically sealed, they are not affected by changes in altitude. ambient temperature ( $-55^{\circ}$ to $+90^{\circ} \mathrm{C}$ ), or humidity. Rugged: no moving parts; changed as easily as a radio tube.

Write for 4-page Technical Bulletin No. AB-51
MPERITE CO. Inc., 561 Broadway. New York 12, N. Y. In Conado: Allas Radio Corp Itd, 560 King St, W., Toronto 26

## As We Go to Press

## New Company Formed

A new IT\&T subsidiary, Farnsworth Electronics Co., has been formed at Fort Wayne, Ind. to take over the research and production activities in the fields of industrial and defense electronics formerly carried on by IT\&T's CapehartFarnsworth Co. Division. Dr. Harvard L. Hull, former v.p. and general manager of R \& D at Capehart Farnsworth, becomes president of the new firm.

## WLAC-TV Joins Network

Station WLAC-TV, Nashville (Old Hickory). Tenn. has been connected to the Bell Telephone System's network TV facilities. Network programs now reach 303 stations in 194 cities in the U.S.

## Reduced Royalfy Rates

Reduction in the patent royalty rates on radio sets, black-and-white TV receivers, black-and-white TV kinescopes, electron tubes, and certain commercial radio apparatus have been announced by R.C.A. The reductions become effective Jan. 1, 1955. The cuts range from $25 \%$ on commercial radio apparatus to $56^{r}$ on those sound radio receivers employing tubes.

## Station Modifications for Color

FCC regulations require TV stations to make certain modifications in order to broadcast programs originated in color. An alternative is to remove the chrominance components from the color signal received from the network. Field Bulletin 20 released by Allen B. DuMont Labs. describes a simple filter which attenuates the color subcarrier 23 db , while having little effect on the sidebands.

## High-Strength Tape

"Scotch" brand magnetic tapes No. 111 and "High Output" No. 120 are now nationally available on highstrength polyester backing as well as on conventional acetate backing. according to an announcement by Minnesota Mining \& Mfg. Co., St. Paul, Minn. Designated "Scotch" magnetic tapes No. 111 AM and "High Output" No. 120 AM, the two new tapes are identical in magnetic characteristics to their acetate base counterparts. Labeled "PE" backing, the new plastic base is recommended for humid environments.

## MORE NEWS

on page 24


## evolution <br> of an

idea. . . how KEYSTONE shortens the interval from

a hot new electronic idea with important uses but involved transformer
problems which threaten to bog down the ultimate mass production... but schedules must be met. A smart engineer turns to KEYSTONES
reply sheet ... quickest way to filling the most exacting transformer requirements of all military and commential units. KEYSTONE evaluates the conditions and custom \&ngineers the correct type transformer. . . putting it into immediate production . . . exclusive KEYSTONE techniques and internal flexibility cut your costs through faster deliveries of precision custom-built units ... phich have proven to be the economic solution to leading electronic manufacturers ${ }^{\circ}$ most difficult applications.
"KEYSTONE is correct for every application."

© wn

## HOW TO TAP THE RRAIN of a piece of metal



[^0]
## CUT TV COSTS, MAINTAIN QUALITY WITH G.E.S NEW 600-SERIES TUBES!

> Now, for the first time, designers can have "series-string" economy at no sacrifice of TV reliability!

* Every G-E 600-Series Tube has same heater warmup fime. Greatly reduces fube failures, because voltage will not build up excessively in some tubes while others are warming up more slowly.
t. All filaments are $600-\mathrm{ma}$. They employ special large-diameter wire, with fower bends for better insulation against heatercathode shorts.
\& 24 G-E 600-Series fypes are ready now! More coming.

QUALITY TV performance-costs sharply reduced! G-E tube-design service brings you both benefits with the new 600 Series. Now, by means of "seriesstring" design, you can save on transformer and circuitry . . . yet maintain highest standards of receiver dependability, with service callbacks at a minimum.

Meet today's stiff TV competition at its own price level, but with far superior performance! Use G-E 600-Series Tubes, designed for "series-string" operation. List at right shows wide range of types available. Others soon. Get full information from Tube Department, General Electric Company, Schenectady S, N. Y.

COMPARE heater-wire thickness and number of bendi


C-E 600-SERIES 3AU6
Wire diameter . $00366^{n}$ (coated diameter approximately .009"). 4 strands, with only 3 bends.


STANDARD GAU6
Wire diameter . $00226^{\prime \prime}$ (coated diameter approximately.008"). 6 strands, with 5 bends in all.

CHECK YOUR CIRCUIT NEEDS AGAINST THIS LISTI

G-E 600-Series Tubes

Prototypes

| 3als | $\begin{gathered} \text { GALS } \\ \text { S2ALS } \end{gathered}$ |
| :---: | :---: |
| зай | $\begin{aligned} & \text { GAUS } \\ & \text { I2AUS } \end{aligned}$ |
| 3ecs | cscs |
| 3EE6 | $\begin{gathered} \text { CBE6 } \\ 1212 E 6 \end{gathered}$ |
| 30N6 | Gens |
| 3ayb | $63{ }^{6} 6$ |
| 3ces | ${ }^{\text {OCB }}$ |
| sams | $\begin{aligned} & \text { GAOS } \\ & \text { J2AOSS } \end{aligned}$ |
| sek7-A | sak7.A |
| 30 | -s |
| STE | 670 |
| sue | cus |
| svact | $\begin{aligned} & \text { SVO-GT } \\ & \text { I2VG-OT } \end{aligned}$ |
| CSt-A | OSA |
| OSN7-GTE | GSNT-GTA |
| 12ax4-GTA | 12AX40t |
| 1284-A | 1284 |
| 120M7 | 12847 |
| 1:8ks | $\begin{gathered} \text { OBK5 } \\ 258 \times 5 \end{gathered}$ |
| 1280aga | $\begin{aligned} & 6306-0 A \\ & 25806-0 A \end{aligned}$ |
| 1287-A | 1287 |
| 12caor | 2sle-gr |
| 12worr | $\begin{aligned} & \text { SWG-GT } \\ & \text { 25W-GT } \end{aligned}$ |
| 23CDGAA | 25CDGO |

Other Inper to follow soon
 taken from actual results obtained from a nationally known independent $\checkmark$ testing laboratory.


* ceramic caseo paper dielectric capacitors -
* More than 60 million of these capacitors have been used by nationally known radio and television manufacturers with no reported field failures. These ceramic capacitors ore available in 200, 400, 600 ond 1000 working voltage ratings.

Jatbers and Distribulors are re quested to write for information to Arco Electronics, Inc., 103 ta. loyelte St., New York, N. Y.

MOLDED MICA


MICA TRIMMER

## ... 1088 foot guyed tower designed for triple service

With their new Blaw-Knox tower, and operating on channel 5 to full maximum power of 100,000 watts, WMCT in Memphis, Tennessee, has increased their coverage $100{ }^{\circ}$.
The 1088 foot tower is a triangular guyed type with insulated base and sectionalizing insulators at the 640 foot level.

This special design tower does triple duty. The lower part is used as an AM radiator for WMC. In the portion above the insulator and just below the top is mounted an 8-bay FM antenna for WMCF. On top of the tower is a 6 -bay super turnstile antenna for television station WMCT.

In addition to this main tower, they use three Blaw-Knox self-supporting 315 foot towers in nighttime directional operation . . . plus a 310 foot guyed tower for an auxiliary. So at this one station they have a total of five Blaw-Knox towers.

This unusual installation is typical of how we are prepared to cooperate with you on any antenna tower problem you may have.

For more information on the many types of Blaw-Knox Antenna Towers, simply write for your copy of Bulletin No. 2417. Or, for prompt service send us your inquiry, specifying height of tower and type of antenna.

BLAW-KHOX COMPAMY<br>BLAW-KNOX EQUIPMENT DIVISION . TOWER DEPARTMENT PITTSBURGH 38, PENMSYLVANIA



- Daktat

Looking skyward, note the solid round corner legs and the double laced structural angle bracing. Insert shows the triple unir compression cone base insulator.

## complete testing with one



Combined in this equipment are means to measure power...observe transmitter spectra distribution ...measure frequency and supply artificial signals. You can analyze bandwidth characteristics. A self-contained square wave generator aids in making standing wave measurements. One portable unit does all - on the bench or in the field efficiently and at much lower first cost than with separate instruments.
Quick function selection - merely flick the front panel switch to the function desired. Controls are grouped for easy operation by personnel with minimum training. After initial warm-up, any function is immediately available for use.

Unitized construction - each test section is mounted on a separate plug-in sub-chassis. For unusual applications, special units can be provided which are interchangeable with standard sections. Service and maintenance is simple and quick.


FEATURES:
SIGNAL GENERATOR:CW, Square Wave, FM or pulse mod.' RF, 8.5 10 10 KMC.

## POWER MONITOR: Measures aver.

 age power of signals from 8.5 to 10 KMC, Accuracy $\pm 2 \mathrm{db}$ of full range.WAVEMETER: Reaction cavity wavemeter, 8.5 to 10 KMC, accurate to $0.03 \%$ at standard temperature and humidity.
SPECTRUM ANALYZER: 8.5 to 10 KMC displayed on $3^{\prime \prime}$ CRT, I F bandwidth of 15 kc for optimum pulse rendition. SIZE: $18^{\prime \prime} \times 111 / 2^{\prime \prime} 114^{\prime \prime}$ WEIGNT: 45 lbs
$\qquad$


Sales Olfices Eastern Offlce: 1378 Main Ave., Clifton, N.J. Midwest Office: 188 W. Randolph St., Chicago, III. South Central Office: 6115 Denton Dr., Dallas, Texas Western Area Office: 253 N. Vinedo Ave., Pasadena, Calif.

## As We Go to Press . . . .

## New Audio Felts

Three new applications of felt designed to provide major improve. ments in the acoustics of high fidel ity audio systems have been announced by the American Fe l Company of Glenville, Conn. The new products are: Acoustical Fel. for dampening speaker chambers Latex Impregnated Felt for floatmounting record players and turntables; and "Acousti-Pad" to be used as a supplemental pad for record players and changers.

Acoustical Felt for effectively controlling unwanted sounds in high fidelity audio systems is a new use for an old established product Known as "K" Felt, it has long been in use as acoustical insulation in airplanes. Now it is planned to utilize felt's damping qualities for improving acoustical enclosures or


Closeup showing application of latex Impregnated felt on motorboard for floatmounting record players and furniables
chambers of high fidelity loud speakers. Acoustical Felt (mothproofed and flame-resistant) will be available in 10 yd . rolls, 1 yd . wide and $3 / 8 \mathrm{in}$. thick. Price is $\$ 6.00 \mathrm{a}$ yd.
Latex Impregnated Felt, a felt strip with die-cut crescent arches. shock mounts record players and turntables, to eliminate vibration and to reduce feed back. This will be available in $1 / 2 \times 3 / 4 \mathrm{in}$. cut strips at a list of 45 c a foot or in cartons containing 100 feet ( 20 five-foot lengths) at $\$ 45.00$ per carton.
"Acousti-Pad" is a micro-porous rubber material resembling felted rubber. It is said to improve tone quality thru better stylus tracking, reduce vibration and feed back, reduce stylus noise on poor recordings, and reduce rumble and turntable noise. It also cushions record fall on changers. "Acousti-Pads" for an 8 in. turntable will list for $\$ 2.00$, for 10 in . turntable $\$ 2.25$, and for 12 in . turntables at $\$ 2.50$. Pads for 17 in . transcription tables will retail at $\$ 5.00$ each. Ingalls Electronics Co., 30 West Putnam Ave., Greenwich, Conn. is national distributor.

Tork


Cam
In seven specific grades, Clevelite is one of the finest and most complete lines of tubing available to the electronic and electrical industries.

## Grade

Grade E
Grade EX
Grade EE
Grade EEX ...Superior electrical and moisture absorption properties
Grade EEE ...Critical electrical and high voltage application
Grade XAX ...Special grade for government phenolic specifications
Grade SLF ...Special for very thin wall tubing having less than . 010 wall
High performance factors, uniformity and inherent ability to hold to close tolerances, make Clevelite outstanding for Coil Forms, Collars, Bushings, Spacers and Cores.
Competent Research and Engineering facilities are always available to aid in solving those tough and stubborn design and fabrication problems. May we help you?
WHY PAY MORE? For Good Quality . . . call CLEVELAND! *Reg. U. S. Pat. Off.

Improved new Torkrite is now available in various diamofer tubes. Lengths from $3 / 4^{\prime \prime}$ to $31 / 8^{\prime \prime}$ are made to Al 8-32, $10-32,1 / 4-28$ and $5 / 16$ 24 cores.

$$
\star \quad \star \quad \star
$$

Fast, Dependable Delivery af all times


## Styroffex Coaxial Cable FIRST CHOICE AGAIN FOR

## COMMUNITY ANTENNA SYSTEMS

## ค- beay

LYCOMING TELEVISIUN CORPORATION ${ }^{\text {REcEIVEO }}$

Phelps-Dodge Copper Products Corporation
40 New York 5. New York
Attentiont Mr. Lemmle
Dear Mr. Lemme:
Now that wr have used and become acqua inted with your Styrofle
fulfilied many of the desired properties which wo have found
lacting in other types of coaxial cable.
We now have approzimately four miles of Styroflex of the wain line into our Montoursville installation. Its gesipormance mander of our layout. Our experience yith coaxial cable in the past made us dublous about your attenuation claims, and to vo allowed ourselves quite large reserve on our repeater amplifiers. Upon installation, we found this to be complatel fleations only by negligible amounts. However, the one fracto Which to us has become wost important, is that wo-ftuld your cable to be extramely stable yith cemperature varlationsi something completely iscicing in other types of coazial. cable Which we have used. Brierly, in passing, wo should sliso that it is farorabjo to constrictin, A1though ve have used strpoflex for a short period of theo our investigation bears
 As you gathered from the above, Were extremely pleasta
with our Styroflex installation. Feel free to call upon us vith our Styroflex installation. Feel tree to
for recommendation at any time you desire.


# PHELPS DODEE COPPER PRODUCTS CORPORATION 

40 WALL STREET, NEW YORK 5, N. Y



## WESTON TV TEST EQUIPMENT

In the new 980 Line, W ESTON offers TV technicians not only a group of superior, up-to-the-minute instruments, but a new, greatly simplified and fime-saving method of TV receiver alignment as well.

The instruments in this line represent a completely new approach in test equipment design and operation . . . instruments that set entirely new standards in performatce . . . in operating simplicity . . . in value!

In the new simplified method of alignment which they provide, it is no longer necessary to connect the calibrator to the receiver. This simplified hook-up eliminates the spurious markers and receiver oscillations encountered with conventional hook-ups. Further, there is no disappearance of markers at trap resonant frequencies. And there are many other advantages, too; all enabling you to do a better alignment job, in one-half the uswal time, and at far higher profit.

980 Line instruments are available to TV technicians through leading distributors. Literature giving complete information gladly sent on request. Return the coupon today.
-a time-saving instrument for TV shop, engineering laboratory, and industrial alignment applications. Negative and rositive $\mathbf{Z}$-axis markers are provided for wave-form pattern inalysis. Extremely useful for making linearity adjustments, calibrating signal generators, and determining signals of unknown frequencies. Generated markers are visible even at sound trap frequencies. Generated frequencies are fundamenrals ... not harmonics. Simultaneous multiple marker insertion .. no distortion of response curve ... fewer connections to TV receiver.

model 984

## SWEEP GENERATOR

-for efficient trouble shooting and lab practice in problems of sound and video IF circuits, associated trap cir cuits. TV tuners, video amplifiers and all-purpose visual alignment. RF OUTPUT: Frequency modulated signal, TV channels 2 to 13 inclusive, complete FM coverage available by means of two preset selector positions. FREQUENCIES ARE FUNDAMENTALS OF THE OSCILLATOR FREQUENCY. IF/VIDEO OUTPUT: Frequency modulated signals ranging to 50 megacycles, continuous tuning, signals free from harmonics. SWEEP WIDTH: Full 10 megacycles on all channels. OUTPUT VOLTAGE (RMS): 0.1 Volt, sweep is linear. Output is essentially flat.


## model 982 VACUUM TUBE VOLTMETER

-a self-contained, battery operated Vacuum Tube Voltmeter, particularly adaptable to the Radio-TV servicing industry where the requirements of peak to peak measurements of a-c voltages exclude the use of conventional meters. Makes possible quantitative measurement of all complex wave form voltages utilized in video, sync and deflection circuits with no a-c line interference in critical measurements. Battery operation affords complete isolation from spurious response due to stray a-c fields and circulating ground currents. Circsit loading on peak to peak measurements climinated.

## model 983 OSCILLOSCOPE

-a high gain, wide band oscilloscope. Band width of 4.5 megacycles allows accurate display of video frequencies, including pulse wave forms and color synchronizing bursts. High sensitivity of 17 millivolts per inch makes it ideal for setting resonant traps, as a general null indicator, signal tracing in low level stages, phase measurements as well as for sweep frequency visual alignment of TV receivers. Has provisions for internal calibration, internal phased sine wave, and Z-axis intensity modulation. Reversal of polarity of both horizontal and vertical signals accomplished by means of toggle switching. Identical vertical and horizontal amplifiers direct coupling used throughout.


## MODEL 981

 PROPORTIOMAL MUTUAL CONDUCTANCE TUBECHECKER-provides meter measurement of leakage resistance as high as 5 megohms between tube elements . . . nine single circuit. twelve position selector switches protect against obsolescence three toggle switches make it possible to check and compare sections of twinsection tubes at only one setting of selector switch. Transconductance measurements high as 30,000 micromhos with filtered d-c plate, screen grid, and control grid potentials. Precision voltage divider network and switch provides signal voltages of $0.65,1.3,2.6$, and 5.2 volts peak to peak at a frequency of 5000 cycles. Tubes checked more closely to circuit operating conditions. Better Gm accuracy obtained.

## model 980 analyzer

-highiy versarile, accurate and rugged volt-ohm-milliammeter with a combination of functional ranges which provide a wide range of test measurement applications in the electronic field. D-c sensitivity of 20,000 ohms/volt, a-c sensitivity 1000 ohms/volt. Accuracy $2 \%$ d-c, $3 \%$ a-c. Range and functional switching greatly simplified by use of a single dial for all ranges and functions.
for TV it's the 980 Line

WESTON Electrical Instrument Corporation 614 Frelinghuysen Avo., Nowark 5, N. 1
Sond copy of bulletin $\pi$
Name
Addreet
city $\qquad$

## Onething in common ...



GREAT NAMES IN COMMUNICATIONS...

RELY ON
+illiallared crystals

These companies - and many others in leadership position in the field-depend on Midland crystals for completely reliable frequency control in their products.

THAT FACT IN ITSELF is testimonial enough to the kind of performance Midland Quality Control has built into millions of crystals for every communications use.

Whatever your Cyital meed. conventional or highly specieliged When it has to se efactly right, contact


## A REED is a reed is a reed... if it's recorded on

## Soundcraft magnetic recording tape

A reed is never a flute . . or a flue pipe. So. to be sure of capturing all the haunting brilliance of reed instrumentsInd the full range of sounds of the entire orcheslra - always use Soundcraft Tapes! Why?

Because Soundcraft Tapes, and only soundcraft Tapes, combine:

- Constant depth oxide for uniform middleand low-frequency response.
- Micro-Polished coating, a patented Soundcraft process that eliminates unnecessary head wear and gives uniform highfrequenc: response right from the start.
- Pre-Coated adhesive applied directly 10 base-firmly anchors the oxide in place.
- Surface-lubrication on hoth sides! Nofriction, no chatter, no squeal.
- Chemical balance throughout to prevent cupping, curling. peeling, chipping.
- Uniform output of $=1 / 4 \mathrm{dh}$. within a reel, $\pm 1 / 2 \mathrm{db}$. reel-to-reel

> SOUNDCRAFT TAPES FOR
EVERY PURPOSE

## Soundcraft Tape for all high-fidelity record-

 ing.Soundcraft Professional Tape for radio. TV and recording studios. Splice-free up to 2400 feet. Standard or professional hubs.

Sounderaft Lifftime' Tape for priceless recordings. For rigorous use. For perfect program timing. It's on a base of Dupont
"Mylar" Polyester Plastic. A third as strong as steel. Store it anywhere. Guaranteed for a lifetime.
Get the Soundcraft Recording Tape you need today. Your dealer has it.

## REEVES

SOUNDCRAFT


10 East 52nd St. , N. Y. 22, N. Y
FOR EVERY SOUND REASON


The Model 615 VTVM is a precision instrument functional in design . . . professional in appearance. The direct-reading digital display eliminates most interpolation error - shortens costly "learning curve" in factory and assembly line inspection.

Other features - never before offered in an instrument of comparable price - include 1\% accuracy (DC and ohms), and I millivolt sensitivity. Inspect the Model 615 at your Electronic Parts Jobber's. You'll agree the new standard is

Hycon ..."where accuracy counts."

- 12 RANGES: AC, DC, OHMS - AC fREQUENCY RESPONSE TO 250 MC (with auxiliary probes) - OVERLOAD PROTECTION - LIGHTWEIGHT, STURDY STEEL CASE - PROVISIONS FOR BENCH STACKING

The Model 615 VTVM is one of a matching set of precision test instruments, which includes the Model 617 Oscilloscope (designed for color TV) and the Model 614 Standard VTVM.

Service facilities in your area.
WYCore mfg. Company
2961 east coloraco strett pasadema e, califormia
"Where Accuracy Counts"


Robert A. Gingrich has been named asst. secretary and asst. treasurer of Hoffman Radio Corp., TV Div., Los Angeles. Other top-level appointments were Joseph S. McGee, to the newlycreated position of asst. secretary of Hoffman Laboratories Inc., and R. W, Westerfield as director of purchasing for the TV division. Mr. Westerfield had previously been associated with the Hallicrafters Co., as special assistant to the president, Wm. Halligan. He will now be in charge of all TV and radio procurement at Hoffman.
T. R. Dreyer has been appointed divisional vice-pres. and general manager of American Machine \& Foundry Co.'s manufacturing division, in charge of the five AMF plants in Buffalo, Boston, Brooklyn, N.Y., Glen Rock, Pa., and New Haven, Conn.


Donald C. Burnham has joined the Westinghouse Electric Corp. as vicepres. in charge of manufacturing, succeeding T. I. Phillips, who is retiring after 39 years of service. Mr. Burnham, prior to this appointment, was manufacturing manager of the Oldsmobile Div. of General Motors.

Harry W. Houck has been elected president of Measurements Corp., subsidiary of Thomas A. Edison, Inc. Mr. Houck joined Measurements Corp. shortly after its formation in 1939. The company currently produces standard signal generators and other testing equipment.
B. B. Countryman was named vicepresident, purchasing division, at Minnesota Mining and Mfg. Co., St. Paul, Minnesota. He has been director of purchases since 1942, and is a former director and vice-pres. of the National Assoc. of Purchasing Agents. The company also announced the appointment of I. R. Hansen to the position of assistant treasurer.

Dominick J. Capano has been elected vice-pres. of S.O.S. Cinema Supply Corp., in charge of TV Studio and film production sales. Another recent promotion is that of William H Allen to the position of production manager.
(Continued on page 34)

STABLE - Typical average change after 1000 hours lood life fest $0.2 \%$.

AGURATE - Within $1,2,5 \%$ on all standard fypes.

LOW T.C. -200 p.p.m. per ${ }^{\circ} \mathrm{C}$ cbove 20K,
100 p.p.m. per ${ }^{\circ} \mathrm{C}$ below 20K.
iUGGED_E Epoxy resin coating re-
mains elastic, connol crack or chip.

Shallcross Borohm resistors are unusually stable, accurate, and long-lived as a resule of Shalleross' basic research on carton films and manufacturing processes. Commplete control of the quality and diseribution of the buro-carbon film on specially formulated ceramic rods assures minimum film variation within each unit, as well as from unit to unit.

Aucomatic machine handling of resistors throughour the carbon deposition process prevents contamination. Rigid automatic control of rod and gas temperatures during deposition eliminates soot furmation in the carbon film. Resistance for a given size rud is therefore borth predictable and reproducible.

Borohm resistors have negligible voltage cocticient. consistent temperature coeflicient, and stabilisy proven by temperacure cycling, moisture resistance, and luad life tests.

For detailed information as to sizes, styles, ratings, and perfurmance test data results write for the new Shallcross Eingineering Bulletin L-33.

Representatives in principal U. 5. cifies, Teronle, Canada, and Vonceuver, B. C.

518 PUSEY AVE. COLLINGDALE, PENNA.

(Continued from page 32)
Walter J. Maytham, Pacific Coast regional manager for the Westinghouse Elec. Corp., was recently elected a vicepresident of the firm. Similar distinctions went to Dale McFeatters, of Pittsburgh, Pa., director of information services for the corporation and $\mathbf{O}$ tis $\mathbf{O}$ Rae, of Atlanta, Ga., southeastern regional manager of the apparatus divisions. E. V. Huggins, vice-pres. for corporate affairs, has been named secretary of the corporation.

Robert J. Brown has been appointed manager of sales at G.E.'s Heavy Military Electronic Equipment Dept., Syracuse, N.Y. Other appointments were Peter J. Schenk, manager of marketing research and product planning; Paul J Fritschel, manager of product service and Fred Gangberg, manager of marketing administration.

H. Jacobs

R. J. Brown

Herbert Jacobs is the new general manager of Jerrold Electronics Corp., Philadelphia, manufacturer of master antenna systems. He will co-ordinate all departments in the Phila. plant and the seven affiliate companies.

Don Larson was recently named to the post of general manager of the West Coast Electronic Manufacturers' Association, a newly-created post established to meet the increasing need for coordination of the activities of the 165 member companies.

Wayne Graham has been named West Coast divisional sales manager for the Reeves Soundcraft Corp., manufacturers of magnetic recording tape and equipment. He will maintain offices at 1429 N. Vista St., Hollywood 46.

Arthur C. Treece has been appointed manager-marketing of GE's Laminated and Insulating Products Dept., Coshocton, Ohio. He has been with GE since 1922.
A. J. Kendrick, formerly of RCA Victor, has been named eastern manager of the commercial music division of Magnecord Inc., with offices in the RCA building, 630 Fifth Ave., New York.

## Other Artos Machines

The complete line of Artos automatic wire cutting and stripping machines will handle cut lengths from 1 in . to 60 ft ., stripped lengths to $61 / 2 \mathrm{in}$. at one end and $81 / 2 \mathrm{in}$. at the other, wire from No. 12 to No. 000 gauge, and up to 3600 pieces per hour. Ask for recommendations on your problems.

## WRITE FOR BULLETIN

Get the complete story-write now for Bulletia 40 on the Artos Model CS-10.


Automatic Wire Cufting and Stripping
ENGINEERTNG CO.


## Standard Frequencies

Type 1100-A
Primary Frequency Standarl
. . supplies standard frequencies ranging from one pulse per second to several megacyeles... accurate to $1 / 2$ part in 100 million over short periods.
It consists (A) of a 100 -kc oscillator, with temperature-controlled quartz bar, multivibrator units for $100 \mathrm{kc}, 10 \mathrm{kc}, 1 \mathrm{kc}$ and 100 cycles, an a-c operated power supply and a Syncronometer. The Syncronometer's microdial arrangement permits accurate comparison against standard time signals.


This equipment is the most accurate, commercially-available frequency measuring system obtainable. It supplies usable frequencies of high, known accuracy over an extremely wide range. It incorporates many operating conveniences, and requires little attention or maintenance.

Since 1915 Manufacturers of Electronic Apparatus for Science and Industry

## GENERAL RADIO Company

## 275 Massachusetis Aranue, Cambaldga 38. Mossachusetts, U.S.A.

90 West Street new york
805513 th St., Siluer Spring. Md. WASminoton D. C. 920 S. Michigan Avenue CHICACO s 1000 N. Seward Street los angeles 38

ADMITTANCE METERS AMPLIFIERS
COAXIAL ELEMENTS DISTORTION METERS FREOUENCY MEASURINO APPARATUS TEOUENCY STAMDAROS IMPIOANCE ERIDEES HOMT METERS MEOOMMMETERS
modulation meters motor controls mull depectors oscimators PARTS B ACCESSORIES polariscopes PRECISION CAPACITORS pulse gemerators R-L-C DECADES R-L-C Standardos
sIgNAL GEMERATORS SOUND a VIERATION METERS STROBSCOPES
IV A BROADCAST MONITORS U-M.F MEASURING SOUIPMENT UNIT INSTRUMENTS
variacs ${ }^{\circ}$
V-1 vOLTMETERS
WAVE ANALYEES wave fiters

## RHERIES STRING TV SETS

## 12BQ6GT

IPrototype-6BOGOTI
Heater Volts 12.6
Heater Current 0.6 A

12BH7A
1Protorype-128H7
Heoter Volts $63^{\circ}$
Heater Current 0.6 A

12W6et
IPratompe-6W6GTI
Heater Volis 12.6
Heater Current 0.6 A

## GAX7

Prolorype-12AX7)
Hooler Volls $3.15^{\circ}$ Hoolor Current 0.6 A

## 6SN7GTB

IPrototype-1SN7GTN
Heater Volis 6.3
Hearer Curront 0.6 A


Hootor Current 0.6 A

12AX40TA
PProlotype-12AX4GTI
Heoter Voim 12.6
Heater Curreal 0.6 A


12B4A
|Prototype-12B41 Heater Volts $6.3^{\circ}$ Heater Volits $6.3^{*}$
Heater Current 0.6 A

6AU7
Prolotype-12AU71
Heotar Current 0.6

Using heaters parallel connected


(Continued from page 34)
James H. Carmine, executive v.p. at Philco Corp. for the past five years, has assumed the presidency of the firm. He succeeds William Balderston, who was elected chairman of the board following the announcement by James T. Buckley that he would decline re-election.


Keeton Arnett was recently named v.p. for administration at Allen B. DuMont Laboratories, Inc.

Peter J. Jensen has been named manager of manufacturing at Carboloy Dept. of G. E., Detroit, Mich.

James D. Helm, sales manager of special accounts at G.E., Syracuse, N.Y., has also been named sales manager for mobile communications equipment.

John R. Crawford has been named sales manager of the Components Division at Servomechanisms, Inc., Garden City, N.Y.
William R. Sears has been appointed Pacific coast manager of sales promotion and publicity for Sylvania Electric Products Inc. His offices are at 215 Market St., San Francisco. The N.Y. office of Sylvania announces the appointments of John C. Taylor, as merchandising supervisor for the Equipment Picture Tube Sales Dept., and Carroll L. Hasler as supervisor of sales administration in the Electronic Products Sales Division.

Edward A. King Jr. has succeeded J. Walton Colvin as manager of government sales at the Bendix Radio Div, of Bendix Aviation Corp. Mr. Colvin is now marketing manager of the firm.

Lawrence J. Straw is the new genera! sales manager of the Standard Piezo Co., Carlisle, Pa., crystal manufacturers.

Henry G. Baker will serve as v.p. and general mgr. of the new RCA Victor Television Division. James M. Toney, former director of distribution, becomes general mgr ., and Louis J. Collins, sales mgr., of the newlycreated RCA Victor Radio and Victrola Div.
(Continued on page 158)

## if ac Klystron Report

Ruggedized X Band local oscillator reflex klystrons

## IKO15XA - coaxial output IKO15XG $\cdot$ waveguide outpı



Ne er it ment of airborne environment plus the features of single adjustment tuning and rapid production are offered only in Eimac 1K015XA and 1K015XG local oscillator reflex klystrons.
*VIBRATION—withstands 10G's of continuous vibration.

- AlTITUDE-arc-guard protection of leads eliminates possibility of flash-over at extremely high altitudes.
*SHOCK-withstands 100G's of impact shock.
-TEMPERATURE - maintains frequency stability through a


## EITEL-McCULLOUGH, INC.

 SANBRUNO•CALIFORNIA[^1]

TYPICAL OPERATION
(uith flat load)
IKOISXA and IKOISXG KLYSTRONS
MODE
D.C Resonator Voltage

7314
D.C Cathode Current D.C Repeller Voltage

Power Outpue
Frequency
Electronic Tuning Range
$53 / 4$
$\begin{array}{rr}36 & 300 \\ -65 & 47\end{array}$
$-65 \quad-170$
$30 \quad 100$
$\begin{array}{rr}9000 & 9000 \\ 55 & 40\end{array}$

RAPID PRODUCTION-simplified design permits rapid, low cost production.
RELIABLE PERFORMANCE -25 to 100 milliwatts power output from 8400 to 9600 mc with low power consumption-plus assurance of uncompromising Eimac quality proved through 20 years of electron-power tube design and manufacture.

SINGLE TUNING - one-adjustment tuning without the use of lock nuts.

- For further information about the 1 K015XA, 1 K015XG or uny of the complete line of Eimac klystrons, iucluding high power LHF.TV amplifiers, contact our Technical Services department.



## NDUSTRY

(Continued from page 34)
James H. Carmine, executive v.p. at Philco Corp. for the past five years, has assumed the presidency of the firm. He succeeds William Balderston, who was elected chairman of the board following the announcement by James T. Buckley that he would decline re-election.


Keeton Arnett was recently named v.p. for administration at Allen B. DuMont Laboratories, Inc.

Peter J. Jensen has been named manager of manufacturing at Carboloy Dept. of G. E., Detroit, Mich.

James D. Helm, sales manager of special accounts at G.E., Syracuse, N.Y., has also been named sales manager for mobile communications equipment.

John R. Crawford has been named sales manager of the Components Division at Servomechanisms, Inc., Garden City, N.Y.

William R. Sears has been appointed Pacific coast manager of sales promotion and publicity for Sylvania Electric Products Inc. His offices are at 215 Market St., San Francisco. The N.Y. office of Sylvania announces the appointments of John C. Taylor, as merchandising supervisor for the Equipment Picture Tube Sales Dept., and Carroll L. Hasler as supervisor of sales administration in the Electronic Products Sales Division.

Edward A. King Jr. has succeeded J. Walton Colvin as manager of government sales at the Bendix Radio Div. of Bendix Aviation Corp. Mr. Colvin is now marketing manager of the firm.

Lawrence J. Straw is the new general sales manager of the Standard Piezo Co., Carlisle, Pa., crystal manufacturers.

Henry G. Baker will serve as v.p. and general mgr. of the new RCA Victor Television Division. James M. Toney, former director of distribution, becomes general mgr., and Louis J. Collins, sales mgr., of the newlycreated RCA Victor Radio and Victrola Div.
(Continued on page 158)

## ifac Klystron Report

Ruggedized X Band local oscillator reflex klystrons

## IKO15XA - coaxial output IKO15XG $\cdot$ waveguide outpı



## R

eliable X band performance through the VAST* punish ment of airborne environment plus the features of single adjustment tuning and rapid production are offered only in Eimac 1K015XA and 1K015XG local oscillator reflex klystrons.
*VIBRATION-withstands 10G's of continuous vibration.

- Altitude-arc-guard protection of leads eliminates possibilits of flash-over at extremely high altitudes.
*SHOCK-withstands 100G's of impact shock.
*TEMPERATURE - maintains frequency stability through a temperature variation of $-20^{\circ}$ to $80^{\circ} \mathrm{C}$.


## EITEL-McCULLOUCH, INC.

SANERUNO•CALIFORNIA


TYPICALOPERATION
(with flat loud)
IKOISXA and IKOISXG KLYSTRONS

| MODE | $73!4$ | $53 / 4$ |
| :--- | ---: | ---: |
| D.C Resonator Voleage | 250 | 300 |
| D.C Cathode Current | 36 | 47 |
| D.C Repeller Voltage | -65 | -170 |
| Power Output | 30 | 100 |
| Frequency | 9000 | 9000 |
| Electronic Tuning Range | 55 | 40 |

RAPID PRODUCTION-simplified design permits rapid. Iow cost production.

RELIABLE PERFORMANCE-25 to 100 milliwatts power output from 8400 to $9(0) \mathrm{mc}$ with low power consumption-plus assurance of uncompromising Eimac quality proved through 20 years of electron-pouer tube design and manufacture.

SINGLE TUNING - one-adjustment tuning without the use of lock nuts.

- For further information about the IK015XA, $1 \mathrm{K015XG}$ or any of the complete line of Eimas klystrons, inslsding high pou'er UHF.TV amplifiers, contacl our Technical Services departmens.


## superior..

 including superb transmission of FCC-approved COLOR sienc
## HIGH POWER P/us PERFORMANCE



QUIET! Water-cooling of final anodes only assures extremely quiet operation no noisy "wind-tunnel" roar.

## 25 kw



COMPACT! By actual comparison this transmitter requires $60 \%$ less space. The aural and visual sections can be separated and subdivided for flexible layout arrangement.


ECONOMICAL! Both aural and visual amplifiers are identical - spare parts are interchangeable.

[^2]－Single 4W20000A tetrode used in both aural and visual amplifiers of 25 KW ．Pair employed in aural and visual amplifiers of 50 KW ．
－Separate built－in power supplies in both aural and visual amplifiers safeguard against cut－off due to pos－ sible failure in either section．
－Exceeds FCC color specifications．
－Low Driving Powerl 25 KW Transmitter：only 500 watts．
50 KW Transmitter：less than 5 KW ．
－Compact design permits ono－man turning－quickly and easily．
－Simple broadband circuits require minimum tuning with aid of built－in wobbulator and band－pass indicator．
－No external sideband filter required．Intermediate level modulation provides simpler attenuation．
－No fuss in tube－changing！Tubes equipped with self－ sealing quick－disconnect couplings．Tube－changing time： 30 seconds．
－Trouble－light system indicates and locates breake downs instantly．

Add up all the features of the Du Mont $25 \mathrm{KW} / 50 \mathrm{KW}$ transmitters and compare to other transmitters in this power class．You＇ll quickly discover that your bess buy is Du Monf，from the initial cost view and on an operating cost basis．With a Du Mont installation，more of that high－power money will find its way into your pocket．

WRITE ．．．for Bullotin describing in detail the new Du Mont 25 KW（for Channels 2－6）or 50 KW（for Channels 7－13） Tolovision Transmittors．

TELEVISION TRANSMITTER DEPARTMENT ALLEN E．DU MONT LABORATORIES，INC．

ClIfPon，N． s ．


Are you ready for a revolutionary concept in the electrical and electronic industrythe Magnetics, Inc. "Performance-Guarantce" on Tape W'ound Cores. Guarantced
to meet your specifications, and sold at standard prices; these Cores mean truly economical production of high permeability magnetic devices in your plant.


## GET THE COMPLETE STORY

A wealth of new and unusual material on Tape Wound Cores is available to you in Catalog TWC-100, "Performance-Guaran. teed Tape Wound Cores." Tables A and B of the catalog, reproduced on this page, present a striking illustration of material not to be found compiled together elsewhere.
Data and descriptive details on high permeability materials factory core matching . . . free enginecring design services . pages of characteristic graphs and tables... are yours for the asking. Simply write on your company letterhead.

## MAEMET/GSIMC.

Typical of the unusual scope of the material contained in Catalog TWC. 100 are Tables A and B, reproduced from Poge 4 of "Performance.Guaranteed Tape Wound Cores."

DEPT. TT 7, BUTLER, PENNSYLVANIA
TELE-TECH 2 ELECTRONIC INDUSTRIES • Septomber 1954


LIST OF STOCKED UNITS
All other values and types on Special Order Suffix
发


Length
Width $\quad$ 1...........1/32 Height
Woinht
$11 / 16^{\prime \prime}$
$1.23 / 32^{\prime \prime}$
 Sounting $\quad \begin{array}{r}1 / 8 \times 9 / 32 \\ \text { Serows } \\ \text { Cutout }\end{array} \quad 4 / 40^{\prime \prime}$ studs

HS206. H5848 HS608 a HSO73

## Solse

DIMENSIONS

Length .... $1.1 / 16^{*}$ | Width |
| :--- |
| Height |
| Weight |
| $1 / 2^{*}$ |
| $1 / 4^{\prime \prime}$ | Woight $\quad 1.5 \mathrm{oz}$ Mounting $\quad 4 / 40^{3 / 4^{m}}$ sfud Cutout $\quad 1 / 2 \times 5 / 16^{\circ}$



## SEE YOUR

 CAC MANniv Mom-Harold Gray Assoce. - LA. 4-4258 206 Fifth Avo., New Yort, M. Y
Hilluz Charles R. Nilo Co.-Eldin G-2286 MTlimiz-Charion. R. Hiv-Boulovard 1202J (L. G. Korman) 5006 Komeod, Bevitimore 6 , Md cmipied-Gessmer 8 Clart Co.-hezers Ph. 4-6121 6349 N. Clart. Chicaeo. In.
WMins CIV-E. W. MeBrade Co.-Oalmar 9222
6315 Brookside Plaza, Ramere City, Mo.
L03 13537 Adsisesamual 0 . Jownti-Stite 9-6027 13537 Addison St. Sherman Oaks, Callf.
P. O. Box 152. Hembure, inc.-Emerson 3405 S. O. Box 152, Hemburs, N. Y.

Shicher-Naylor Electric Co.-2-3894
Stato Tomer Sicz., Room 317, Syrucuse 2, M. Y shit Tom (Monry Lavia) P. O. Can 156, Merldem, Conm.

nsomi-Honry Lavin Rscoe.-3.3446
(Robt V. Curtin) 82 Cune St., Meodium, Mass.



COMMUNICATION ACCESSORIES COMPANY

## Thinking of



# builds'em for heavy loads and long service! 

## Cramped quarters

don't cramp the style of ADVANCE midgets and miniatures. You can use them on loads up to 5 amperes continuously... and at three times their rating intermittentlywith complete safety. They'll resist shock and vibration...stand up under temperature extremes. Youll find them readily adaptable to any mounting need...any type of duty. Some examples:


## MM \& MP SERIES

This ultra-small dc relay occupies less than $1 / 2 \mathrm{Cu}$. in. mounting space! It's stable under vibration and shock .plated to prevent corrosion. Operate time is 5 milli-seconds. Contact rating: .5 amp. or 1 amp .


Miniolure Telophane Trpe

## TQ SERIES

Only .94 cu. inches in size, yet this relay carries 5 -amp. loaos in any combination up to 4 PDT. Mechanically secured throughout, it's extremely efficient. Non-gassing insulation. Withstands 10 G vibration. Temp. range: $-55^{\circ}$ to $+125^{\circ} \mathrm{C}$.


Guntrol Purnose Midanl
MG \& MF SERIES
Endless uses for this midget ADVANCE relay. It's engineered for high efficiency and low price. Operates in any position, with positive contact. light vibration and shock resistance. Two-amp. or 5 -amp. contacts.

Hermetic enclosures on these types are impervious to varying climatic conditions... are sealed and carefully checked against leakage.

Write for literature on any of the aboue series, or the complete ADVANCE line.

## ADVANCE ELECTRIC AND RELAY CO.

2435-M NORTH NAOMI STREET, BURBANK, CALIFORNIA
Sales Representatives in Principal Cities of U.S. and Canada

## BOOKS

## Engineering Analysis

Hv II. II. Ser Planck and A. K. Teare, Jr


Aptly subtitled "An Introduction to Professional Method," this textbook offers valuable aid in training the engineer to approach technical problems from a sound scientific basis. Using a multitude of examples, from integrating circuits to non-fogging mirrors, the text shows how the engineer should treat new situations. It encompasses the definition of the specific problem, planning the attack, making simplifications, checking results, and learning from the problem experience. Of prime significance is the general technique of translating a physical situation into mathematics, grinding the crank, and then interpreting the result.
Chapter subjects included are application of professional method, understanding principles fundamental to engineering, translation into mathematics, solutions of differential equations checking results, and interpretation of the mathematics. Among the numerous examples are those relating to accelerometers, analogs, cable heating, dynamometers, electrostatic precipitators, fluxmeters, insulation, potentiometers, servos, vibration and many others of interest to electronic engineers. AJF

## Color TV Dictionary

R, J. Mirharal Joohnnom. Publinherd 19.58 by Johen F. Niller Publisher. Inc.. 8801 Tanal sis., Nous

The host of new technical terms which were born with the development of the color TV medium are not readily absorbed in the engineer's vocabulary without some omissions in understanding. The importance of achieving full comprehension-or at least having a handy reference where it may be ob-tained-is underscored by the extensive use of color TV terminology in current electronic literature. Consequently, the publication of this dictionary should be most welcome. It contains some 263 names and terms, and 45 illustrations. Evidently to permit easy usage and to appeal to the widest possible cross-section of readers, the author has made each definition concise, clearly understandable and unencumbered by complex mathematics. The basis of this book are the terms originated by the NTSC. Electronic engineers will no doubt find this compact volume very useful. AJF.

## The Dictionary of Business

 and IndustryEditecol by Roheri J. Schuarts. Published 195s H. C. Forlors \&i. Sons, HiO Fijth 1 renue, (Continued on page 46)


## Here's New Technical Data on Silectron cores . . . all shapes and sizes

This new bulletin contains design information on Arnold cores wound from a grain-oriented silicon steel. Silectron. Curves showing the effect of impregnation on core material properties are published for the first time. This 52 -page bulletin includes information on cut "C" and "E" cores, and uncut toroids and rectangular shapes. Sizes range from a fraction
of an ounce to hundreds of pounds in standard tape thicknesses of $1,2,4$ and 12 mils.
A new method of tabulating core sizes is introduced whereby cores are listed in the order of their power handling capacity. You'll find this Silectron core bulletin a valuable addition to your engineering files-urite for your copy.

The Arnold Engineering Company


SUBSIDIARY OF allegheny tudlum steel corporation General Office \& Plant: Marengo, Illinois DISTRIC SALES OFFICES . . . Now York: 350 Fifth Ave.
Los Angeles: 3450 Wilshire Blvd.
Boston: 200 Borkeley St.

## Why Ace Shielded Enclosures are your

$\cdots$ 405
offers the highest attenuation over the widest frequeney range, proved by independent resting loboratories.
... 4 E takes the guesswork out of shielded enclosure buying. You got all the facts on which to base sound decisions, backed by guarantoed test data.
and only Ace, offers a fruly inferchangeable-panel enclosure, with belting inferior to the roem but external to the shiolding modium.
$\cdots$ AF5 provides full engineering assistance-assurance that your specific enclosure needs will be mof.
is first and foremost in the dosign and manufacture of every type of shielded enclosure for electronics, military, and general industry.
...ACE "GELL-T

## ...ACE SINGLE-S <br> FHELD SCREENHD EMCLOSUHCS

An economical enclosure, available in copper or galvanized wire cloth, that meets basic requirements for suppressing r-f radiations of industrial or laboratory equipment. Copper Screen: 70 db from 100 kc to $1000 \mathrm{mc}, 40 \mathrm{db}$ at 14 kc . Galvanized Screen: 40 db from 15 kc 10400 mc (Uniform-Field measurements).

Write for Catalog and Free Technical Data.
ACE ENGINEERING \& MACHINE CO., INC.
3644 N. Lawrence 5ireot + Philodelphia 40, Po. Tolephono: REgent 9-1019 - REgent 9-2537 - GArfield 5-1160

## BOOKS

Nux York. Price 57.95 ; with thumb index
This is an unusual volume which should prove to be of considerable value as a reference source for plants. laboratories and individual libraries. It defines over 45.000 business, trade, industrial and legal terms, most of which have never been included in standard dictionaries or other reference sources. The book was compiled over a five year period and represents the editing of more than 125,000 terms received from over 1100 trade associations in the U.S. In addition to definitions, this dictionary also contains 36 pages of valuable time saving charts and tables on coins and notes of the world; foreign weights and measures; weights of materials; conversion factors; squares and cubes; measurement units etc.

## ASTM Standards on Materials for

 Radio Tubes and Electronic Devices and Electrical Heating, Resistance, and Relafed AlloysPrepared by ASTM Commiffee B.\&. Publinhord l95s by American Suripty for Teating Matrrials, 1916 Rare St., Philadelphia 3, Penna. $21 \%$ paers. Price $\$ 2.75$.
Of special interest to the engineer who designs, tests or specifies the metal elements employed in electronic devices, the 1954 edition of this compilation includes in their latest form 44 widely used ASTM standards, including 30 test methods; 10 specifications; and 4 recommended practices.
Materials and subject cover: electri-cal-heating alloys; electrical-resistance alloys; electric-furnace alloys; radio tubes, electronic devices, and lamps; heat-resisting alloys; electrical contact materials; and thermostat metals. This new addition embodies numerous revisions of existing tests and specifications and much new material prepared since the previous edition. There are 11 new standards included.

## BOOKS RECEIVED

## R-C/R-L Time Constant

Ay tloxander Shure. Publisherd $19.5 \$$ by John F. Rider Publisher, Inc.. 880 ( Canal St., New
Yuork 13, N.t. sit pares. Price $\$ .90$. Basic inatructional iext presenta the development of charge curves, discharge curips and sime

## 'SOLDER

- its fundamentals


## and usage"

new NII page 6 zy hoak scriflen and compilod by Dr. Cliflord L. Barbrr, Kesearsh Direrlur of Keater Solder Company, Chicaro is ta revtify the basic lieerthis new rolume on sulder and to provide the solder user srith a thoroughly scientific study of the industrial application and usage. Charts, rables and phutugraphs aro included. It is offered with. out rharge to interested Tele.Terh readers. Address Kester Solder Companv, 4201 Wrighe.
wrood Avenue, Chicano 39, Illinois, Depl. TP.
Techniques of Plant Maintenance and Engineering
Prorcedings of the eechnical spasionn held roncurrently with the Fifth National Plant Maino tenance and Enginecring Shuso in Chirago. Jan. IUSt. Publishord bv Clapp poliak. Inc., ss1 Madison I.e., New York 17. N.Y.

## SYLVANIA NOW OFFERS



## For X-Band Balanced Duplexers



SPECIFICATIONS
Lealuage Power . . . . . . . . ....... 10 mw max. 0.1 org max.

Recovery Time . . . . . . . . . . . . . . $7 \mu$ sec. max.
Duplexer Loss (Including interaction) less than 1.2 db for any magneiron impedance or phace.

Here's Sylvania's answer to today's demand for a completely balanced duplexer for use in microwave system design.

## Consider these advantages

This new tube is mounted between two readily obtainable short slot hybrid couplers and offers unusually broad band applications ( $12 \%$ band width).
In addition, its simplicity of design permits a reduction in both size and weight, and provides greater crystal protection. For complete information regarding this improved duplexer or other TR and ATR Tubes simply drop a line to Dept. $4 \mathrm{E}-440$ ), at Sylvania.
"Another reason why it pays to specify Sylvania."


Sylvania Electric Products Inc., 1740 Broadway, New York 19, N. Y.

University Tower Building, St. Catherine Sireor, Monireal, P. Q.
LIGHTING•RADIO E ELECTRONICS.TELEVISION
TELE-TECH \& ELECTRONIC INDUSTRIES - Septembor 1954

## VIDEO

## TRANSMISSION TEST EQUIPMENT



1041-8R STAIR SIEP GENERATOR (Variable) Chaths lincory and grey
 seale output relationship in linear or non-linear ars. rem. Built.in color carner generalor may be added to steps. Sert porch burst al loss leak-in to 3.58 MC color equipment.


## 1071-AE WINDOW GENERATOR (Variable)

 Determines ringing, smears, steps, low lre quemar till, phose shilt. mismatched termina. fions, efc. in IV sig. nals or systems.

1070-BR MULTI-BURST
FREQUENCY GENERATOR ( 13 lreq select. able from .5 to 5 MC$)$ Checks wide band coaxial sables, mirroewve links, individual units, and remplete TV systems for freguanry response characteris: tics. Produces six fro. suencies simultaneously plus ehite bur reference. switchable color burst on back perch.


New Telechrome equipment designed to provide test signals for precise checking of video facilities. This equipment is now in use by major networks, TV stations, and the Bell Telephone System. This type of equipment was recently described by H. Gronberg of NBC before the NARTB Engincering Conference in Chicago. These units arc available individually or as an integrated system with 75 ohm or 110 ohm balanced output.


OSCILLOSCOPE CAMERA MODEL 1521-A (Polaroid Land Type)
for instantaneous 1-10-1 ratio pholo-recording of these or other test signals.

MODEL 600-A HI-LO CROSS FILTER
mODEL S24-D OSCILLOSCOPE


Litcrature on these ond more than 100 oddi tional instruments for color IV by TELE.
CHROME are available on request.

The Nation's Leading Supplier of Color TV Equipment 88 Merrick Road Amityville, N. Y.

AMityville 4.4446


Fastening wires with new tool.

Since telephony began, there has been just one way to install telephone wires on poles: have a trained man climb up and fasten them there. Now Bell Laboratories engineers have developed a special pole line for nural areas. The entire line can be erected without climbing a pole.

The whole job is done from the ground. Light-weight poles are quickly and easily
erected. Newly created tools enable men to fasten wires to crossarms 10 to 25 feet over their heads.

This inexpensive line promises more service in sparsely populated places. From original design to testing, it exemplifies a Bell Telephone Laboratories team operation in widening telephone service and keeping costs down.


Key to the urw "crimbless" pale is this insulator. Cirround creuss me lumg-handled torils t, pluce the wire in position and then liock it fast.

## Bell Telephone Laboratories


improving telephone service for america provides careers for creative men in scientific ano technical fielos

## INTERNATIONAL RECTIFIER



1521 E. Grand Ave. El Segundo. Calif. Phone: ORegon 8-6281 CHICAGO: 205 W. Wacker Drive. Phone: Franklin 2-3889 NEW YORK 501 Madison Avenue . Phone: Plaza 5-8665


WIVES of our electronic engineering readers have their own special brand of appreciation of electronic artistry. Several of these keen eyed ladies in the interior decoration field spotted the interesting pattern made by circuit symbols on the cover of the June Electronic Industries Directory issue of TELE-TECH, and hastened to apply for rights to reproduce the design on fabrics and wall coverings.

CIRCUIT DIAGRAMS on clothing have a unique appeal. For example, Magnecord has a tie displaying the cascode stage in the M80 tape recorder amplifier. Originally, broadcast station engineers got them free for expressing opinions of the M80. Engineers who have no M80, or no opinion, can get the tie the hard way-by sending $\$ 1.75$ to the company.

HORSERACE HUSTLERS have taken a fancy to radio. Police recently cracked a ring which enabled a bettor to place a few dollars on a nag's nose after he'd won the race. This beat-the-bookie scheme employed a man at the track with a miniature transmitter to notify a cohort outside who the winner was. All this before the track's official announcement. The information was phoned to another transmitter operator who tapped out the winning number. This was picked up by a man in the betting parlor wearing a shock receiver against his skin. Dididididah-and he could feel that No. 4 won, before the bookie knew the race was over.

REMINISCENT of eight years ago, when TV was in swaddling clothes, are the new signs of the times being proudly displayed in front of bars: Come In And Watch Color Television.

WHERE'S THE HP? $92 \%$ of the nation's six billion horsepower are under the hoods of our cars and trucks, reports Steelways. Per capita hp of prime mover engines has risen from 0.5 in 1899 to 39 in 1954.

UHF is so named, according to one wag, because it is the Unhappy Frequency.
(Continued on page 54)

## Hughes Fusion－Sealed Germanium Diodes



Hughes Point－Contact Gcrmanium Diodes are fusion－scaled in a one－piece，gas－tight glass cnvelope ．．．impervious to moisture， fumes or other external contaninating agents． The flexible dumet leads are especially suit－ able for spot－ivelding；or they can be iron－ or dip－soldered as close as $1 / 6$ inch to the diode body－without special precautions．

The germanium crystal is permanently bonded to one lead，the cat whisker is welded to the other，and the point of the cat whisker is welded to the crystal． Hughes diodes are highly resistant to shock and vibration．Positive mechani－ cal stability is achieved without risking contamination from fluxes，waxes or impregnants．And－each diode is thor－ oughly tested to ensure the stability of
its electrical and physical characteristics． All this means：sturdy，highly reliable diodes．
Types－The Hughes line of diodes comprises standard retma，jan，and many special types．Special types are produced according to customer speci－ fications and are tested at high or low temperatures ．．．for specific recovery time ．．．for matching in pairs or quads．

ELECTRICAL SPECIFICATIONS AT $25^{\circ} \mathrm{C}$ unless otlierwise indicated

| DESCRIPTION | RETMA Hughes Type | Clip－in <br> Hughes Type | Peak Inverse （volts） | Ahanlute <br> Maximum Inverve Wirking Village （volls） | Minimum Fiorward Current （a）+1 V （m．t） | Maximum Inverse Current |  | Other Characteristios |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $(\mathrm{m}(\mathrm{~mA}) \mathrm{sic}$ | $\begin{aligned} & \text { Other } \\ & \text { (mili) } \end{aligned}$ |  |
| $\begin{aligned} & \text { IIIGII } \\ & \text { PE゙AK } \end{aligned}$ | $\begin{aligned} & 1 \mathrm{~N} 5513 \\ & 1 \mathrm{~N} 6 \mathrm{BA} \end{aligned}$ | III）205z <br> 111）2（1153 | $\begin{aligned} & 190 \\ & 130 \end{aligned}$ | $\begin{aligned} & 150 \\ & 1(16) \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$ |  | $\begin{aligned} & 0.500 \text { ( } 11510 \mathrm{~V} \\ & 0.62 . j \text { (a } 1100)^{\prime} \end{aligned}$ |  |
| I MEG TYPES | $\begin{aligned} & \text { 1.N67A } \\ & \text { 1N99 } \\ & \text { 1N1100 } \end{aligned}$ | 111） 20.54 111） 2055 HI）ะ 456 | $\begin{aligned} & 1(10) \\ & 100 \\ & 1(N) \end{aligned}$ | $\begin{aligned} & 811 \\ & 811 \\ & 811 \end{aligned}$ | $\begin{array}{r} 10 \\ 100 \\ 8010 \end{array}$ | 00.0 0．n：5 0.1151 | $0.1005(a$ $5 V$ $10.145 j(a$ $0 V$ $0.1005(a$ $5 V$ |  |
| $\begin{gathered} \text { 500K } \\ \text { TYPES } \end{gathered}$ | $\begin{aligned} & 1 N 89 \\ & 1 N 97 \\ & 1 N 98 \\ & 1 N 116 \\ & 1 N 117 \\ & 1 N 118 \end{aligned}$ | （III） $2(1157$ （11） 20.58 11D）\＆u：3 （II） 20106 1II） 21061 111）206z | $\begin{array}{r} 1100 \\ 1(0) \\ 100 \\ 75 \\ 75 \\ 75 \end{array}$ | $\begin{aligned} & 80 \\ & 811 \\ & 80 \\ & 60 \\ & 60 \\ & 131 \\ & 610 \end{aligned}$ | 3.5 <br> 110 <br> 2100 <br> 5.0 <br> 10.0 <br> （2） 0 |  | 0 OW）x（a 0 V $0.10) x(a$ 5 V $0.008(a)$ 5 V |  |
| GENERAL PLRIMSE | $\begin{aligned} & 1 N 90 \\ & 1 N 95 \\ & 1 N 96 \end{aligned}$ | III）20BS （11）2064 1HD 2065 | $\begin{aligned} & 75 \\ & 75 \\ & 7.5 \end{aligned}$ | $\begin{aligned} & 60 \\ & 60 \\ & 60 \end{aligned}$ | $\begin{array}{r} 5.0 \\ 10.0 \\ 20.0 \end{array}$ | $\begin{aligned} & 0.5(x) \\ & 0.5100 \\ & 0.5(x) \end{aligned}$ |  |  |
| J．AN <br> TYPES | IN126＊ <br> 1N147＊＊ <br> 1N128＊＊＊ <br> 1N108 |  | 7.5 18.5 50 104 | （i） （H） 40 80 | 5.11 $\mathbf{3 . 0}$ $\mathbf{9 . 0}$ 5．0 These values | $\begin{gathered} 0.850 \\ 0.8(4) \\ 0.8 .50 \\ \text { testerl lour } \end{gathered}$ | $\begin{aligned} & 0.050 \Leftrightarrow 10 \mathrm{~V} \\ & 0.02 .5(10 \mathrm{~V} \\ & 10.010 @ 10 \mathrm{~V} \\ & 0.1655 \text { @ } 10 \mathrm{~V} \\ & 70 \text { at } 75^{\circ} \mathrm{C} \end{aligned}$ | Non－IIN equivalent，III）さいz0； dip－in．HI）z（Mi6 <br> Non－JIN equivalent，III）\＆（171； elip－in．III） 2 （miz <br> Non－JIN equivalent，HI）zozz； elip－in，IIDzors |
| COMPUTER TYPES | 1N191 <br> 1N198 <br> 111）2013 <br> 1II）と（1） | 1II） 8077 <br> HD 2078 |  | $\begin{aligned} & 8 \\ & 8 \end{aligned}$ |  | 4（0）た $\Omega$ min．between － 10 and－501（a $55^{\circ} \mathrm{C}$ \＆ z（x）N゙ $\Omega$ min．Inetween -10 and－ $5106^{\prime}\left(a 55^{\circ}(\circ \$)\right.$$\left\lvert\, \begin{array}{lll} 0180(a) & -9 V \\ 10.60 & (a) & -6 V \end{array}\right.$ |  | Back resistance recovers to <br>  for 1.1 I9z）in $0.5 \mu$ ser and 3.5 $\mu$ sec max．，respertively．$\ddagger$ 0）zusec recosery lime． $0 . z$ uner recovery time．－ |
| UHF | HDE016A |  |  |  | UIIF MIXF．R IOIOUE |  |  |  |
| MISCELLANFOES | HDP051 |  | 125 | 100 | 4.0 | 0050 |  | 1N63 equivalent． |
| That mollage at shich dynamic resisance is sero when buck collage rival linearly of 90 <br>  <br>  capacilince is so $\boldsymbol{\tau} \boldsymbol{\mu}$ ． <br>  rent mas legg than ot $m$ ． 4 ，whicherer ocenes fird <br> $\bullet$ Formerly s．Ve9．A． <br> ＊Formerly INTOA． <br> ＊＊Farmerily INsiA． |  |  |  |  |  |  |  |  |

Descriptive Bulletin SP2A is available on request．

## Hughes

Aircrafi Company，Culver City，Calif．

New York Chicago


## now sweep over 400 mc. at UHF without tuning

New Kollsman TYPE 2144 Wide Range Sweep Generator specifications

| Frequency Range | $\begin{aligned} & 2144-01 \\ & 2144-02 \\ & 2144-03 \end{aligned}$ | 225 to 420 mc . 470 to 890 mc . 850 to 1275 mc . |
| :---: | :---: | :---: |
| Minimum Power Output |  | 10 milliw |
| Output Impedance |  | 50 ohms |
| Maximum Source VSWR |  | 1.25 |
| Amplitude Linearity |  | $\pm 1 \mathrm{db}$ |
| N iker Frequency Calibration |  | 5 mc . |
| Marker Frequency Accuracy | $\begin{aligned} & 2144-01 \\ & 2144-02 \\ & 2144-03 \end{aligned}$ | $\begin{aligned} & \pm 1 \mathrm{mc} . \\ & \pm 1.5 \mathrm{mc} . \\ & \pm 2 \mathrm{mc} . \end{aligned}$ |
| Sweep Rate | . . . . | 60 cycle |
| Tube Complement | - • . | $\begin{aligned} & \text { 6AF4, 6J } 6, O A 2, \\ & 6 \mathrm{X} 4 \end{aligned}$ |
| Primary Power . | - . . . | 117 volts, 60 cycles, 60 watt |

Also Available-Step Attenuator TYPE 2171-01 specifications
Insertion Loss Less than $1 / 2 \mathrm{db}$.
Attenuation Steps $0,3,6,9,12,15,20$, 30, 40, 50, 60, 70, db.
Frequency Range DC to 1000 mc .
Maximum VSWR 1.2
Other Attenuation Steps Available

Write for complete information on KOLLSMAN TYPE 2144 SWEEP GENERATORS and type 2171 ATTENUATORS.

470 to 890 MC. CMARACTERISTICS
TAKEN WITM 2144-02 GENERATOR
a) Detected output of sweep generator, showing marker at 650 mcs.
b) VSWR display of unterminated transmission line
c) VSWR display of terminated transmission line.
d) Preselector responses of UHF tuner a channels 14, 20, 30 and 40
e) Preselector response of tuner at channel 50, expanded on scope
f) Input VSWR display of tuner at channel 50.


TME TYPE 2144 SWEEP GENERATOR SIMPLIFIES LABORATORY

AND PRODUCTION MEASUREMENTS

- Instantaneous display of frequency response, impedance or VSWR over 400 mc . without test equipment adjustment.
- Simultaneous observation of desired and spurious receiver responses.
- Display antenna characteristics over entire operating band.

WITH THESE DESIRABLE FEATURES

- 50 ohm output.
- Low source VSWR and amplitude non linearity.
- Passive variable marker for stable, accurate frequency indication, with easily read dial.
- Oscilloscope horizontal sweep signal and base line retrace blanking.
* 60 cycle sweep rate for easy observation.
- Voltage regulation minimizes effect of line voltage variation.
- Uses only standard plug in tubes.


The electric fence chargers manufactured ly Northern Signal Co., Saukville, Wis., are subjected to extremes of stifling heat or icy cold, yet they must still deliver a measured shock of strong intensity.0004 seconds on, one second off . . . And frequently when installed in barns they are exposed to ammoniacal fumes.

An important reason why the chargers are proving so effective under such rigorous conditions is that in each control unit is a "Really Reliable" RRco. selenium rectifier, Type 8Y1, whose size happens to be only a $1 / 2^{\prime \prime}$ cubed!

All Radio Receptor rectifiers, ranging from the smallest ones such as 8 Yl , all the way up to the large power stacks required by heavy industry, have an inherent ruggedness that makes them ideal for duty under just such adverse conditions as this.

If you'd like data on some specific problem in rectification, drop us a line without obligation. And make sure to request our new 24 page rectifier bulletin No. 177- T2.

We also manufacture Germanium Diodes and Transistors.

## Semi-Conductor Division

 and control operations to push-button simplicity. Because of their versatility, they will fire your imagina-tion-suggest challenging new ways to manufacture better products faster, at lower cost.

Clippard Miniature Pneumatic Cylinders, for example, are so small they can be jig mounted on $7 / 6^{\prime \prime}$ centers, making them ideal for activating electrical contacts, valves or small work holding or feeding fixtures. In test operations (see jig illustration at right) they actually give an operator extra hands to work with thru use of a foot pedal air valve.

If your manufacturing process involves the testing, sorting, grading or matching of resistors, the Clippard P. R. 5 Automatic Resistance Comparator will pay for itself very quickly, permitting you to compare unknown resistors with a standard resistor simply by touching them across two terminals. Work can be handled either by unskilled operator or auto. matic production set-up.
The Clippard P. C. 4 Automatic Capacitance Comparator is a companion instrument permitting you to accurately check, grade, sort or match up to 8000 condensers of any type ( 10 mmfd to 1000 mfd ) in one day. Either unskilled labor or automatic set-ups can be used.

Write for catalogue sheets describing these ver. satile new "helping hands" to automation, and literature showing how others are using them to produce higher quality products at lower cost, today!

> Clippard

IMSTRUMENT LABORATORY, INC.
7390 Colorroin Rood, Cinclanati 24, Ohio
manufacturers of r.f. COILS AND ELECTRONIC EQUIPMENT

(Contimued from page 50) MOSQUITOS are lured to their death in electrified cages by loudspeakers which reproduce certain recorded mosquito buzzing sounds, amplified 500,000 times. Every mosquito seems to have a FM mechanism tuned to a fixed frequency, so different groups evidently not attuned to each other do not understand one another's calls. The female mosquito does all the talking with its hairless antennae. The males with heavily haired antennae just listen. The two types of calls are the love call and lust call, the latter indicating the location of blood by the female. (Males are satisfied with fruit juice.) Thus to clear an area for public health control, love and lust calls are played to lure both males and females.

INFLUENCE OF TV on the 1952 presidential election is discussed in a recent report on a survey conducted by Miami Univ. under a grant by the Crosley Broadcasting Corp. It shows that the campaign was decided more on the basis of personalities than issues. Copies are available from Dr. J. Seibert, Miami Univ., Oxford, Ohio.

PENMANSHIP training program at Minneapolis-Honeywell has resulted in an increase of $20^{\circ} \mathrm{n}$ in the speed of number recognition, $9 \%$ improvement in accuracy, and 6\% gain in legibility.

PAINLESS DENTISTRY may be in the offing thanks to the ultrasonic tooth drill developed by the Naval Medical Research Institute. Discomforting vibration, heat and noise are reportedly eliminated. A similar drill developed by Cavitron Equipment Corp. and Columbia Univ. operates at 29 kc . The metal tip vibrates 0.001 in., striking a water suspension of aluminum oxide particles which do the actual cutting. Credit for this development belongs to a number of scientists, and to the dogs and cats who have volunteered to have cavities ground in good teeth for the sake of science.

SERIES STRING tubes for TV receiving increased attention. Eliminating transformer cuts set weight by more than 3 lbs .


## SMOOTHER, EASIER TV CAMERA CONTROL

HOUSTON-FEARLESS CRADLE HEADS

Perfect balance makes the big differcnce in the errific nev Houston-Fearless Cradle Heads! No matter bew the camera is cilced, is is always in absoluse balance.. resulting in wonderful new ease of operation and semarkable new smoothness never before achieved.

This perfea balunce is made possible by che cradle action of the head When the camera is titted up om down, thit cradle rotates around a constant ceneer of gravity, malaralning positive balance at all times. Added weight, such is long lenses and camera accessories, is easily compeasated for by simply moving the camers and the rop plare of the hoad forward or bitck by means of a lead screw. This adjustment does not require loosening the campora hold-down screws.

The Cradle Head rides on four phenolic-covered ball hearing rollers for smooth, quier, easy tilting. Panning is also smooth and easy, accomplished by two precision ball bearings in the base. Drag adjustments and brakes are provided on both pan and tilt.
FOR MONOCHROME AND COLOR TV CAMERAS The new Houston-Fearless Cradle Heads are available in two cypes: Model MCH for standard black and white cametas. Model CH-1 for the RCA Color TV camera.
Like all Houston-Fearless products, these new Cradle Heads are soundly engineered and precision buile of the finert marerials to give a maximum of dependable servtee. Send the coupon below for complete information today.

> The foviston Minitioss Covhoration


THE MOUSTON-FEARLESS CORP.
II801 W. Olympie Blyd., Los Angeles 64, Collf.
Send information on $\square$ Crodle Heods $\square$ Friction Heods
$\square$ Remote Control Heods $\square$ Tripods $\square$ Dollies $\square$ Comero Cranes $\square$ iV Pedestols $\square$ Film Processors

Fiem
City-
 m- Motios Piarte Fill Procening Equipmial

820 HFTK ATH. NET YORK 20, N.Y

## only Sprague makes them all!

## YOU CAN CHOOSE FROM 5 DIFFERENT STYLES OF TANTALEX* CAPACITORS

Looking for tantalum electrolytic capacitors? You'll save time and trouble by checking Sprague's completc selection first. Sprague makes more types of tantalum capacitors than any otber manufacturcr.
Spraguc Tantalex capacitors provide maximum capacitance in minimum space . . . exhibit no shelf aging under long testing periods... have extremely low leakage current. And most important, they give unusually stable performance, because they're made with tantalum, the most stable of all anodic film-forming materials.

There's a complete range of sizes and ratings available in Tantalex capacitors . from the ultra-miniature 10 mf . 4 volt unit in a case only ${ }^{\prime}{ }_{x}$ " in diameter by ${ }^{5} 1 \mathrm{~s}$ " ${ }^{\prime \prime}$ long. . . to the $7 \mathrm{mf}, 630$ wolt unit in a case 1 's" in diameter by $2^{119} \mathrm{ma}_{2}$ " long. As for case styles, Sprague makes them all, from tiny tubular and cup units to the large cylindrical types.

For complete details relating to your miniaturization or high temperature problems, write Sprague Electric Co., 233 Marshall St., North Adams, Mass.

Sprogue, on request, will provide you with complete application engineering service for optimum results in the use of tantalum capocifors.


NEW!
T1P: 101 D for low-rest Mransistor sireviery

Espociolly unatul for Alien, exopling, and hp poss applicalioms in tronslator oloctranice, whio foll type mindature Yontalox copociton woin intendod for uso in hearing oids, pocket roition. and similor unes. Opereting imporature rence is -20 to $+65^{\circ} \mathrm{C}$. Eoquee Enginooring Bullotin 353.


Here ars inbular copocilions hermeticolly moded In cosen of alliver plated copper, Inteided for upplications ham 3 to 130 vdt thetr meoll copecilonce drep-aff at sxiremely loer homeroturex, edremply low lechogn aureed, wed low
 linginetting Bultolin 351.


TYPE 1031 ulfra-miniature capasifors for mamsistor aircuifry
 length, thexe are the smallest slectrolymes mada. Providing ralalivaly large velves of copocitonce in the very minlreye of asece in bypeat, Empplinger and firiar applicaltion, they ars idnally sulled for fisculslisi hwaring aily and military amplifiors in which smoll size is all-important.
Requist Enginooring Eullotin 352

TYPE 104D ministure "cup" eepasiner for millhery use

These low-rolloge unith tasaht of o sinturnat porous tontolums anodo hoved in a midature silver thimble, which sorves as both collionto and container for the elactrolyte. Volume is lese than $1 / 10$ cuble inch; operating fomperature remge -35 to $+35^{\circ} \mathrm{C}$, and up to $100^{\circ} \mathrm{C}$ with a voltage dereting of $13 \%$. Requess Enginooring Eullotin 354.

TYPE 100D for -55 to $+125^{\circ} \mathrm{C}$ opration for milifary use

These hormoticelly sealod eapoction ere avell. able in valtage ratings up to 630 valh at $05^{\prime} \mathrm{C}$ or 560 volts af $125^{\circ} \mathrm{C}$. They are of the simberull porous tontalum anode type, anth Intarmai ean struction to withatand high strosk sewore vilirarion, and thermal cycling. Requasl! Inilneering Bulletin 250 A .

# TELE-TECH \& Electronic Industries 

O. H. CALDWELL, Editorial Consultant $\star$ M. CLEMENTS, Publisher $\star 480$ Lexington Ave., New York 17, N. Y.

## STOP WASTING ENGINEERS!

In this age when technological superiority is the keystone of national survival. disturbing evidence of poor utilization of engineering manpower for defense has come to our attention. It is particularly unsettling when we consider that our slim margin of engineers and scientists in the labor force, about 743.000 compared to the Soviet's 550,000 , is being whittled away by an aggressive educational training program. Last year 43,000 engineers graduated in the U.S.S.R., but only 24.000 in the U.S., despite the fact that our overall college enrollment is more than double that of the Russians. And let's not kid ourselves that their quality is significantly lower.
Basically we're fumbling the ball on engineering manpower in three ways. First. Selective Service policies are diverting engineers. Second, military policies are discouraging civilian scientists. Third, utilization of engineers in the armed forces is reported to be inadequate.

SELECTIVE SERVICE: Studies by the Engineering Manpower Commission and Scientific Manpower Commission point up the fact that engineers and scientists comprise a scant $1 \%$ of the labor force, but make up $3 \%$ of the armed forces and are filling $8 \%$ of draft quota requirements. Also during the past 15 months some 4000 advanced technical students have been denied deferments after starting their studies. In the words of Howard Meyerhoff, executive director of SMC, "Selective Service policy could not do a more effective job of slowing down our technological progress if the policy were devised in the Kremlin."

While we don't believe that engineers or any other group should be the nation's sacred children, Selective Service should give greater consideration to the vital role engineers play as civilians working on military projects. And so far as equality of sacrifice is concerned, granting an engineering student a deferment to complete his studies does not exempt him from service. His sacrifice may be all the greater because the postponement may make his obligation more difficut when the deferment expires.

CIVILIAN ENGINEERS: It is no secret that a significant number of civilian engineers employed by the government have been dissatisfied with many of the
frustrations and irritations of military restrictions. Very recently the House Subcommittee on Military Operations came out with a report criticizing the Department of Defense for inept handling of civilian scientists. In testifying before this committee. Dr. James Killian. Jr., president of Mass. Institute of Technology, described the deterioration in the relationship between the government and scientists. He also noted the "undue regard to what sometimes seems to be a preoccupation with security procedures and policies at the expense of scientific progress."

To correct this serious situation, the government must make such modifications of the security system as will convince engineers that their rights are being adequately safeguarded and their work unimpeded. within the bounds of national safety. Also many secondary irritations, including needless military inspections, rigid insistence on set hours for a working day, inadequate salaries, and denial of officer club privileges, could surely be eased by intelligent planning.

MILITARY ENGINEERS: Scattered reports reach us that the not-too-funny military joke, "I'm a communications engineer, so they sent me to Cooks \& Bakers School." is still applicable How applicable is still a question since the degree of utilization of the engineering talents possessed by members of the armed forces has never been fully studied and publicly reported. But there is sufficient evidence to warrant a quiet investigation of military classification and assignment procedures and accomplishments with regard to engineers and other skilled men in short supply.

In essence we're wasting engineers at a time when technological superiority is the touchstone of survival. Let's get on the ball by:

1. Setting Selective Service policies, in conformance with existing law, to allow more engineers to complete their education, or to put their skill to good use on defense projects.
2. Modifying government policies concerning civilian engineer employees to make these men feel enthusiastic instead of frustrated.
3. Making sure that engineers in the armed forces are making use of their skills wherever possible.

## RADARSCOPE

## Revealing important developments and trends throughout the spectrum for radio, TV and electronic research, manufacturing and operafion

NEWEST THING in prospect is magnetic "printing," which may well revolutionize the offset, duplication and telemeter-printing fields. System consists of very wide strip of magnetic tape with white coating which passes multiplicity of recording heads. Magnetized tape is placed in solution which deposits black iron powder on white areas having recorded signals.

COLOR TV is slowly gaining some stability. Favorable indication was recent Motorola promise to produce 25,000 color sets by year's end, using CBS' 205 picture tube. Other picture tube makers are ironing out prototype bugs in shadow mask and deflection grid types in anticipation of stepped up production this fall. Specu-

## AUTOMATIC PRODUCTION



Close-up of one station in automatic production system developed by United Shoe Machinery Corp., Boston, Mass. Printed wiring boards with pre-punched holes ore conveyed from pollets of left to inserting head. Components on tape bell are fed from reel af upper right. Head automatically cuts and forms component leads and inserts them in holes. Board then moves to next station. See p. 88 for detalls

lation is rife on possible impact of hush-hush Philco tube, reported to use phosphor secondary emission indexing system which eliminates any mask but requires more complex timing circuits.
HOMES OF TOMORROW will feature closed circuit TV, quick cooking electronic ovens, electrical heat pumps for heating and cooling, multi-colored wall lighting panels and large flat picture-on-the-wall TV screens, forecasts GE executive Vice-President Roy W. Johnson. (See Radarscope disclosure, "TV without CRT," in April 1952 TELE-TECH \& ELECTRONIC INDUSTRIES, page 34.)
WATCH FOR one of the largest TV receiver manufacturers to enter the closed circuit TV field.

FIELD SEQUENTIAL COLOR TV isn't completely dead, at least so far as closed circuit applications are concerned. Neither is color TV projection. In hospitals, for example, color of internal organs is important in using video medium for instructing future surgeons. Simplicity of standard black-and-white projection and camera tubes combined with whirling color discs favor field sequential system for certain limited uses.
MAGNETIC RECORDING is still something vague or non-existent to a strikingly large portion of the general public despite considerable promotion by tape and recorder manufacturers. With education will come a greatly expanded market.
FUTURISTIC WRIST WATCHES displayed at a jewelers convention included a timepiece which receives radio signals broadcast from a central station to keep it accurately synchronized. Another watch detects radioactivity as well as tells time.
"NAILED TO THE FLOOR" TV set price leaders which produce little profit for the manufacturer or dealer are being placed on the market to meet cut-throat price competition. Companies hope consumers will go for deluxe models which have greater margin of profit. Trouble so far is public liking for cheaper sets. Sales rise expected this fall should lift number of set makers out of the doldrums.

ELECTROSTATIC SPEAKERS, also loosely referred to as capacitive and dielectric speakers, are the latest trend in mass produced high-fidelity systems. These units are most useful in tweeter applications. Simple construction promises low costs. Patent coverage is not clear cut, so litigation between big firms using units in their phonographs is a strong possibility.


## INTERSTELLAR SPACE

PROBING THE OUTER REACHES of Space with radio telescopes is becoming an increasingly important activity of modern day astronomers. Distant stars are "seen" by the radio noise they emit. Even astral dust, which hides remote galaxies from the most powerful optical telescopes, can be penetrated by the radio telescope. Within three years, a radio telescope with a dish 250 ft in diameter will be constructed in Australia under a $\$ 250,000$ grant by the Carnegie Corp. Together with a similar unit nearing completion in England, radio sources throughout the heavens may be explored and plotted. Going a step beyond examination of space, the International Astronautical Federation recently met in Austria to discuss space platforms and other plans for getting along between here and the moon. One expert on the extraterrestrial optimistically suggested that TV companies might be interested in supporting such a venture since it would be necessary to go into space to establish a universal communications service. He noted that a satellite vehicle revolving at a height of some 345 miles with an inclination of $45^{\circ}$ to the equator could telecast over $90 \%$ of the earth's surface.

## NATIONAL ECONOMY

GROSS NATIONAL PRODUCT is expected to total $\$ 358$ billion for 1954 . Despite the fact that this amount of services and goods produced reflects a decline of $\$ 7$ billion from the peak year 1953, lower taxes and increased consumer income indicate that 1954 will be a fairly good business year. For the first five months of this year, personal income was at an annual rate of $\$ 285$ billion, which is $\$ 600$ million higher than the corresponding 1953 period. Gross national product predicted for 1964 is $\$ 500$ billion.

## AIRCRAFT

FUTURE GROWTH of the aviation industry appears to be closely related to advances made in aircraft electronic systems. Around 1941 there were about 200 lowfrequency radio range navigational aids on domestic civil airways, no instrument landing systems available for scheduled operation, and some 23,000 civil and military aircraft flown, reports Stanford Research Institute's Research for Industry. Today with 375 omnidirectional ranges and 141 ILS at U. S. airports, over 127,000 aircraft are flown annually in the U. S. This progress has required considerable investments in electronic gear. Before World War II the electronic investment per civil aircraft was about $\$ 4000$. Today DC-6 radio costs about $\$ 30,000$. Prewar fighters carried $\$ 3000$ of
electronic equipment. Today the figure is closer to $\$ 300,000$ for military fighters. and $\$ 750.000$ on jet bombers. Prospects are for an accelerated growth of airborne electronics due to higher operating speeds, all-weather flying, and new aircraft types.

## THE YEARS AHEAD

ELECTRONIC THINGS TO COME are often the subject of sensational prognostications by semi-technical science fiction enthusiasts and others not much better qualified to envision the technological future. But it is a rare not-to-be-missed event when one of the most brilliant and respected electronic scientists sets down his thoughts on how electronic devices will serve us a quarter-century hence. It is all the more impressive when we realize that 25 years ago when the electronic art was in its early infancy this man foresaw with remarkable clarity of vision the manner in which we would utilize electronics today. So it is with great pride that we herald the forthcoming October issue of TELETECH \& ELECTRONIC INDUSTRIES containing "The Years Ahead," writen by a pioneer inventor, a founder of the IRE, Dr. Alfred N. Goldsmith. Don't miss it!

TRANSISTORS


Marking a milestone in the growth of transistor production, Charles F. Adams, Jr., left, president of Raytheon Mig. Co., presents io Mass. Governor Christian A. Herter the millionth transistor produced by the Waltham firm. Raytheon reports that field performance of $1,000,000$ units in actual service are showing failures of less than $2 \%$ per year, with over $1,000,000,000$ operating hours to date

## Wile-Band UHF Sweep Frequency



BY RICH:ARI I). BODGNEK Rudio Communicutionx Eingrg. Sect Kallsuman Inarrumeru! Cierpo Elowhurst. N. Y.

ASWEEP frequency generator which covers the entire frequency band of interest each cycle is for many applications a more useful tool than one with a limited sweep width and separately variable center frequency. In fact, it can be used to replace the latter since the horizontal gain and position controls of the oscilloscope used to view the output allow control of the frequency range of the display from the full band down to a small percentage of the band being swept. The wideband sweep generator is simpler to use, being merely "on" or "off" and allowing all variation to be performed at the oscilloscope, which is normally convenient to the operator. It is somewhat simpler to construct. especially for the UHF band, since it requires no tuning capacitor, a difficult mechanical problem at these frequencies. It is more versatile, allowing, for example, use of one generator by a number of operators. yet leaving each one separate control of the scope display band; and it is more useful in any case where it is an advantage to view a large percentage of the band at once.
The design techniques for a UHFTV sweep generator described here are also useful for equipment in the 200 to 2000 mc . The generator presents a continuous display on an oscilloscope screen of 460 to 920 mc , with an output of better than 1 volt into 50 ohms varying less than 1 db over the band (Fig. 6). Using the same design technique, oscillators were also designed and built with sweep ranges of 220 to 440 MC and 750 to 1400 mc .

Dnsoillatenc fircmis
The uscillator used is of the modi-

## A central signal source for separate test operations is provided by a generator which sweeps a complete band. Adjustments are made at the individual oscilloscopes

fied Colpitts type with a 6AF4 triode shown in Fig. 7. It has been shown
grid capacity and the internal plate and grid lead inductance. It is as-


Fig. 1: Copacity variation required vs, series external inductance
Fig. 2: Characteristic impedance and capacity per unit length of two strip transmission line

that $\boldsymbol{f}$ circuit of this type allows a triode to oscillate above its "self resonant frequency," defined as the oscillation frequency with the plate and grid short circuited at the tube pins. Fig. 8 shows an approximate equivalent tank circuit which takes into account the internal plate to
sumed here that $\mathrm{C}_{\mathrm{pg}}=2.3$ unf and $\mathrm{L}_{1}+\mathrm{L}_{k}=.020 \mu \mathrm{~h}$, and that this circuit alone predicts the resonant frequency of the oscillator. From this circuit and the assumptions on $\mathrm{C}_{10}$ and $\mathrm{L}_{1}+\mathrm{L}_{k}$, the external reactance required can be determined as a function of frequency. This is plotted

## Generator

n Fig. 9, which shows the self resoant frequency of the 6AF4 to be bout 740 mc .
The external tank circuit consists If a series combination of fixed inluctance and variable capacitance. lo obtain the input impedance varition required (Fig. 9), the percentige change in capacity needed is an nverse function of the magnitude of the series inductance and a direct unction of the value of minimum apacity. This is demonstrated in rig. 5, which shows the values of naximum and minimum capacity required as a function of L . The ratio $\mathbf{C}_{\text {max }} / \mathbf{C}_{\text {min }}$ approaches four as L becomes large (and $\mathrm{C}_{\mathrm{m} \cdot \mathrm{n}}$ becomes small).
The above considerations provide some initial restriction on the operating point to be chosen. Naturally, it is desirable to require a small change in capacity. It is also important, however, both that the minimum capacity required not be too small and that the inductance not be too large. Capacities below about $1 / 2 u$ uf are difficult to achieve and reproduce controllably due to unavoidable strays and tolerance requirements. Inductances much above $1 / 4$ wh become more lossy, are more difficult to reproduce exactly, and require a type of construction which makes reducing the capacity between the two inductances in the tank circuit more difficult. Fig. 5 shows that the limiting factor here, however, is the restriction on $\mathrm{C}_{\mathrm{m} / \mathrm{n}}$ to $1 / 2 \mu \mu \mathrm{f}$, (or the total series capacity to $1 / 4 \mu \mu f$ ), which occurs at L equal to about $0.12 \mu \mathrm{~h}$.
It is desirable to use a simple two plate capacitor for a mechanical sweep generator, allowing the motion of one plate to change the capacity by effecting a change of plate spacing. For reasons of balance and elimination of moving contacts, two capacitors in series are used, as shown in Fig. 2. The stators, consisting of two coplanar flat plates, are tied to the plate and grid inductances respectively, and a single plate moves against both stators. This arrangement is shown in Fig. 3. The total external series inductance required will be between 0.03 and $0.12 \mu \mathrm{~h}$, from Fig. 1 and the above restriction on $\mathrm{C}_{\mathrm{min}}$. This places $0.015<\mathrm{L} / 2<0.060 \mu \mathrm{~h}$, orders of magnitude obtainable with short, thin (Continued on page 106)


Fig. 4: (r) Oscillator with side plate removed. The stators and inductors are supported by textolite

Fig. 5: Curves of constant series inductance and constant platemotion vs. plate length and width


## New Resistor Voltaǵe Coefficicient

The variation of resistance with applied voltage is accurately predicted by measuring the harmonics generated due to the resistor's non-linearity

by lontis a. mosenthal<br>and 1skioc. Prof. of Eleciricul Eingre.<br>Rulgerx I iniverxity<br>Neve lirunsweich, No.J.

aRvolid S. LOUIS Markite Co. 15.5 Warerly Place<br>Now York, N. 1

TTHE voltage coefficient for a resistor is a measure of the resistance change due to the application of voltage. In the accepted measurement of voltage coefficients, the resistance at 11,1, of rated voltage and at rated voltage are determined on a bridge. The per-unit change in resistance per change in voltage (at which the measurements are made) results in a voltage coefficient. The appropriate equation is Voltage coefficient $\mathrm{C}_{\mathrm{v}}=$

$$
\mathrm{R}_{1}-\mathrm{R}_{2}
$$

$$
\mathrm{K}_{2} \times \frac{}{\mathrm{F}_{1}-\mathrm{H}_{2}}-1(N)
$$

where $R$, is the resistance measured at rated voltage ( $E_{1}$ ) and $R_{2}$ is the resistance measured at 0.1 rated voltage ( $E_{z}$ ). In applying rated voltage it is important that heating effects do not enter the picture. Therefore a standard test procedure requires that the rated voltage never be applied for more than 1 sec in approximately 15 sec intervals. In general, voltage coefficient measurements are awkward to make.
Fortunately, voltage coefficient has not been a serious limitation to the application of various resistors in conventional circuits. With the growing importance of pulse techniques in electronic circuits, however, it is likely that the voltage coefficient will be more seriously considered. In all circumstances, it is a measure of a deviation from the ideal resistor.

It is of interest to note that for certain standards a $0.02 \% /$ volt voltage coefficient is tolerable for a 1 watt resistor. For a 10,000 ohm 1watt resistor, the rated voltage is 100 v . and the change in resistance from small voltages to the rated voltage should be less than $2 \%$ or 200 ohms. Resistors of lesser wattage ratings are allowed as much as $0.035 \% /$ volt for a voltage coefficient.
A technique will be described wherein voltage coefficient can be determined while rated voltage is applied to a resistor. The voltage is ac and because of the non-ohmic nature of the resistor under test, harmonics of the applied voltage are generated. By properly interpreting the measured harmonic content, a voltage coefficient can be established for the resistor at rated dissipation. At the same time, a nonlinearity coefficient ( $\beta$ ) can be evaluated for the volt-ampere characteristic of the resistor.

Since the coefficient is determined at rated power conditions, the test parallels actual application. Measurements can be made rapidly and with greater ease; they are stable and reproducible.

The non-ohmic nature of a resistor can be described by assuming it to have a volt-ampere characteristic, at a single internal temperature, of the form


1. A. Rosenthal

A. S. Louls
where $i$ is the current flowing as a result of the instantaneous applied voltage and $\alpha$ is the nominal conductance of the resistor in mhos. Since the resistor is passive, the characteristic must pass through the origin and have zero-point symmetry unless partial rectification occurs within the unit.

Therefore, the power series need not contain any even terms under this assumption of a bilateral and passive unit.

## Bilateral Itenintorn

All of the many resistors tested were, to the limit of resolution, bilateral and passive. The coefficients $B, \gamma$, etc., described the nonlinearity; they are positive for resistors having negative voltage coefficients. It has been observed that within the power ratings of any resistor, the $\beta$ coefficient is predominant for applied voltages with low crest factors. If a voltage
$\mathrm{v}=\mathrm{V}_{\mathrm{o}} \sin 0$, where $\theta=\omega \mathrm{t}=2 \pi \mathrm{ft}$
is applied to the resistor under test,

Fig. 1: (I) Commercial version of Voltage Coefficient Test Sef. Fig. 2: (r) Schematic of basic voltage coefficient apparafus


## Tester

the current flowing will be (neglecting harmonics higher than the third),

$$
\begin{gathered}
i_{1}=\left(x V_{n}+\beta V_{0}{ }^{3} 3 / 4\right) \sin 0- \\
\beta V_{0}{ }^{3} \sin 354,
\end{gathered}
$$

and it contains a third harmonic component. The comparison resistor. as shown in Fig. 2, will carry a current

$$
i_{2}=g V_{0} \sin \theta
$$

Since the center tapped transformer passes on to the secondary a voltage of the form

$$
\mathrm{V}_{1}=k\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)
$$

where $k$ is a transformer constant, $g$ can be adjusted so that

$$
\mathbf{g}=a+3 \beta \quad \mathrm{~V}_{0}^{2} / 4=\alpha
$$

This is equivalent to canceling out the fundamental and being left with only the nonlinearity which can be measured as

$$
\mathbf{V}_{1}=\mathbf{k} \beta \mathbf{V}_{0}{ }^{3} \sin 3 \rho / 4
$$

The term $\sin 39$ merely indicates the form of the balance voltage. By measuring $\beta$ the first order nonlinearity is evaluated and it will be shown to be the most significant one present. Referring to the earlier definition of conventional voltage coefficient, the equation

## Whandu

 WWYYWYOW MWMWMFig. 3: Two typical third harmonic voltages

Fig. 4: Rear view of voltage ceefficient tester



Fig. 5: Third hormonic content measured for A-Thyrite resistor; B-Resistor $\mathrm{F} \quad 1 / 2-2-12$; CResistor F $1 / 2-1-10$; D-"C" packed in dry ice; E—Resistor A $1 / 2-1-10$; F-Resistor $\mathrm{B} 1 / 2-1-10$

$$
\mathrm{C}_{8}=\frac{\mathrm{R}_{1}-\mathrm{R}_{2}}{\mathrm{R}_{2}} \times \frac{100}{\mathrm{E}_{1}-\mathrm{E}_{2}} \%
$$

can be written as,

$$
C_{v}=\frac{1 / \alpha-1 /\left(\alpha+\beta V^{2}{ }_{\Omega}\right)}{1 / \alpha} \times \frac{100}{V_{\sigma}}
$$

which can be simplified to

$$
C_{v}=\beta V_{0} / a
$$

This voltage $V_{0}$ is the peak value of the applied voltage and the above equation will give the voltage coefficient in this dynamic technique.
The constant for the transformer was found by measuring the output voltage ( $V_{1}$ ) for a 1 ma . unbalanced ac current and it is given by

$$
i_{2}-i_{1}=0.8 \times 10^{-3} V_{1} .
$$

This equation holds for peak or RMS values and if $V_{1}$ is in $m v$, as practically found, the form is

$$
i_{2}-i_{1}=0.8 \times 10^{-6} V_{1}
$$

Solving for the $\beta$ coefficient the equation is

$$
\beta=4(0.8) \quad 10^{-6} V_{1} / V_{0}^{3}
$$

where all voltages are peak values or

$$
B=1.6 \times 10^{6} V_{1} / V_{0}^{3}
$$

for RMS values of voltage.
The voltage coefficient is then,

$$
\mathrm{C}_{\mathrm{v}}=3.2 \times 10^{6} \mathrm{~V}_{\mathrm{i}} / a \mathrm{~V}_{0}^{2}
$$

(peak values of voltage are used) and since $(1 / a)$ is the reciprocal of nominal resistance the expression
can be simplified to

$$
\mathrm{C}_{\mathrm{v}}=2.3 \times 10^{-6} \mathrm{~V}, \mathrm{~V}_{1}=2 \mathrm{R}
$$

(RMS volts used)
or if the measurement is made at rated power $P_{R}$ then

$$
\begin{aligned}
& \mathbf{C}_{\mathrm{v}}=2.3 \times 10^{-6} \mathrm{~V}_{1} \mathrm{P}_{12} \\
& =2.3 \times 10^{4} \mathrm{~V}_{1} \mathrm{P}_{\mathrm{k}} \mathrm{Y},
\end{aligned}
$$

where $V_{1}$ is in millivolts (RMS) and $P_{11}$ is in rated watts.
For example, a $1 / 2$-watt, 12 K resistor tested with 77.5 v applied resulted in a mean $\mathrm{V}_{1}$ value of 11.1 mv . The value of $\mathrm{C}_{\mathrm{v}}$ is
$\mathrm{C}_{\mathrm{x}}=4.6 \times 10^{-} \times 11.1=0.005 \%$;
the value of $\beta$ is

$$
B=1.6 \times 10^{0}(11.1) /(77.5)^{3}
$$

$$
=0.382 \times 10^{10}
$$

and the general volt-ampere characteristic is
$i=83 \times 10^{-6} \mathrm{~V}+0.000038 \times 10^{-6} \mathrm{~V}^{2}$
Errer Correction
It is apparent that the nonlinearity is not great, and an extremely sensitive apparatus is required for its detection. A small error in the determination of $\beta$ exists due to the neglect of higher order nonlinearities. The third harmonic measured does contain some distortion which will increase as the amplitude of the applied voltage increases. In order to investigate the magnitude of this error, a wave analysis of the harmonic output was made. The results

Coefficient Tester (Cominued)


Fig. 6: Noise measurements. Noise voltage generated by resistor is first amplified and filtered
are tabulated below:

Resisto Frequency Harmonic of RMS (CPS)

| 3rd | 97 |
| ---: | :---: |
| 5th | 27 |
| 7th | 10 |
| 9th | 5.6 |
| 11th | 3.1 |
| 13th | 2.1 |

Resistor B-1/2-1-10 70 v . applied Frequency Harmonic (, of RMS (CPS)

|  |  | 3rd |
| :---: | :---: | :---: |
| 180 | 5 th | 100 |
| 300 | 7 th | 8 |
| 420 | 2.1 |  |

The resistor having the greater nonlinearity was responsible for a larger number of harmonics, whereas a moderate voltage coefficient resistor produced essentially a pure third harmonic. The VTVM, although it is an averaging type of meter, gave readings that were within 2 , of the 3rd harmonic rms value. An advantage to using a wave analyser as a voltmeter lies in the fact that the fundamental balancing is not critical. The third harmonic is selected from the large fundamental that may appear in the output

## Scope Interpretalion

The harmonics can be observed directly by using a linear internal sweep synchronized to the line fre-
quency as shown in Fig. 3. A Lissajous figure can also be observed by using the line frequency on the horizontal deflection plates. The resulting Lissajous figure as shown in Fig. 7 is a rotated " $S$ " shaped curve typical of a fundamental and third harmonic starting in phase. The Lissajous figure can be made to have no area, indicating that there are no miscellaneous phase shifts. It is interesting at this point to consider the possibility of these generated harmonics being caused by periodic temperature variations. If a resistor has sufficiently small mass and a high temperature coefficient, its resistance may follow the instantaneous power variations, which are double frequency in nature. The current flowing in this resistor would contain a distinct third harmonic Such temperature effects have not been observed in the resistors studied to date. Since there is no area to the Lissajous figure, the fundamental and third harmonics are in phase. This is an unlikely condition if the thermal inertia of the resistor is significant. No appreciable change in measured third harmonic was observed for a frequency variation from 50 to 500 cPS using the described apparatus with a high voltage coefficient resistor. In addition, temperature coefficients were measured for all resistors under test. For many, the temperature coefficient changes sign and there is no observed relation between temperature coefficients and harmonics generated.

The temperature coefficients were obtained by measuring the room temperature ( $23^{\circ} \mathrm{C}$.) resistance and then placing the resistor in a hot box maintained at $80^{\circ} \mathrm{C}$. As the resistor came up to temperature its resistance was "tracked" in order to detect any change in the sign of the coefficient. The final resistance ( $80^{\circ}$ C.), when compared with the cold resistance, gave a qualitative indication of the mean temperature coefficient of resistivity.

A wire wound resistor having a coefficient of 190 parts per million per ${ }^{\circ} \mathrm{C}$. indicated no third harmonic at rated power even though the temperature coefficient is comparable to that of certain composition resistors. It appears that the harmonics generated are due only to voltage coefficient effects.

The sign of the voltage coefficient can be determined by examining the third harmonic wave form as balance is approached (Fig. 3). By increasing the comparison resistor, or, decreasing the linear current, a depression is observed in the peaks of the fundamental, which by referring to the derived equations are indicative of $a+\beta$ (negative $C_{v}$ ), or the fundamental and 3rd harmonic start in phase. As the current $i_{2,}$ is further decreased the output signal goes through an all harmonic state and then proceeding to the other side of balance, the third harmonic "peaks" the fundamental waveform. This is equivalent to the two starting $180^{\circ}$ out of phase. For all composition resistors tested it was observed that the $B$ factor is positive or the voltage coefficient is negative.

## Apparalue

The apparatus is sketched in Fig. 2. The current flowing into the resistor under test is compared to that of a wire wound variable resistor by subtracting the currents in a transformer. When the fundamental components cancel the harmonics generated by the test resistor are measured by a voltmeter and observed on a cathode ray oscilloscope. The transformer is a well balanced, well shielded, high quality grid input transformer ( 150 ohms to 50,000 ohms). Power for driving the resistor under test is obtained from the ac line ( 60 cPs ), controlled by a variable transformer and filtered of miscellaneous line disiurbances.

Third and higher odd harmonics included in the power line supply will not disturb the apparatus since these harmonics are applied symmetrical to the resistor under test
(Continued on page 110)

## Designing An Electro-Thermal Relay


fig. 1: Hermatically sealed thermal relay employing direct expansion element of hot wire type

## A review of the considerations followed in developing a thermal relay capable of time delays adjustable from a fraction of a second to several minutes

Athermal relay has been defined as one which operates on the heating effect produced by the flow of an electric current rather than by magnetic action or induction. This definition makes certain differences between thermal and magnetic relays immediately apparent. In the first place, magnetic materials as such need not be employed in the construction of a thermal relay. Secondly, contact operation in the thermal relay is brought about by a rise in temperature rather than by a change in magnetic induction. Where high conductivity wire is employed in the exciting coil of the magnetic relay in order to produce maximum ampere turns for a given input power and winding cross section area, a high resistivity alloy is usually used for the heating coil of the thermal relay

The time constant of electro-magnetic relay structures seldom exceeds one second. On the other hand, thermal time constants in the order of minutes are readily obtainable with relatively small elements and it is this inherent delay characteristic of the thermal relay which has led to its extensive use in the many and varied applications where time delay relays are required. Relays
which employ the thermal principle are not restricted to delay applications however and those with negligibly small operate times often compete favorably with electromagnetic types.

Thermal Expannion
While many different schemes have been employed in thermal relay construction, our scope here must be limited to the simple but impor-


By JOHV J. DIETZ. Ch. Engr. Inxerumem! Divixion Thoman 1. Edixom Ine II est (Drange. V.J.
tant class of relays in which the expansion or deflection of an actuating clement is directly made to do the work of moving the contacts and to produce contact operation at some time during the heating cycle.
A relay employing a direct expansion element of the hot wire type is shown in Fig. 1. Here the change in length resulting from the temperature rise of the expanding wire is mechanically amplified and made to operate the contacts. The small thermal mass of the wire makes rapid operation possible and relays of this type may be set to operate anywhere from a few tenths of a second to three seconds. Materials selected for the expanding element must have a high temperature coefficient of expansion, high electrical resistivity and high creep strength at the maximum operating temperature of the wire. Where ambient compensation must be provided linearity of the expansion coefficient over the ex-

Fig. 2: Thermal relay in which motion of a bimetal strip direcilly produces contact ope-ation



Fig. 3: (I) Bimefal element at left bends in proportion to heat until contact is made. Fig. 4: (r) Relay in which heater voltage has little efiect on timing

## Thermal Relay (Comtinued)

pected operating range in both the actuating and compensating elements is essential. Typical metals employed are the chrome-nickel and nickeliron alloys.

In Fig. 2 we have shown a typical relay of the bimetal type in which the motion of the bimetal strip directly produces contact operation. The bimetal has been found to be a highly satisfactory heat storage means particularly in relays operating in the timing range of from a few seconds to about ten minutes. The deflecting elements used are usually of the Invar-stainless steel variety and these provide high deflection rates and good stability.

Both of the relays illustrated are ambient compensated and both are hermetically sealed in size T-9 shells of the type used in the manufacture of radio receiving tubes. The design in each case provides for adjustability of their timing characteristics after sealing.

## Himplal Operated Relaya

For our purpose here we will emphasize and discuss in some detail the considerations which apply to the design of bimetal operated relays of the time delay type. Much of what follows is basic however and therefore applicable to thermal relays as
a class. Our approach will be to examine the simple configuration shown in Fig. 3 and then in the light of this examination to discuss the more practical structure of Fig. 2.

We have in Fig. 3 a simple bimetallic element mounted cantilever fashion to an insulating block at its lower end and carrying a moving contact at its free end. A second and non-deflecting member is also mounted to the block and carries the fixed contact at its upper end. A heater winding is wrapped around the bimetal member and electrically insulated from it. If now a current is allowed to flow through the heater the bimetal will begin to store up heat energy and as it does so its temperature will rise and it will gradually bend. After a predetermined time interval the contacts will close This we refer to as the Operate Time -the interval between the application of the heater voltage and relay contact operation.

## .Mashpmacical .fralysis

Now, the exact mathematical analysis of the thermal behavior of even the simple structure shown in Fig. 3 would be quite complex. Fortunately, however, certain simplifying assumptions may be made which
greatly reduce the work involved without introducing errors of consequence.

$$
0-\theta_{0}=\frac{W}{A_{\alpha}}\left(1-\epsilon^{-\frac{t}{p v c / \lambda \alpha}}\right)
$$

If for convenience we set,

$$
\begin{equation*}
\mathrm{pvc} / \boldsymbol{A}_{\alpha}=\lambda \tag{2}
\end{equation*}
$$

We may write,

$$
\begin{equation*}
\theta=\theta_{n}+\frac{W}{A_{\alpha}}\left(1-\epsilon^{-\frac{1}{\lambda}}\right) \tag{3}
\end{equation*}
$$

Where
$\mathrm{W}=$ power input to heater winding in watts.
$P=$ ave. density of bimetal in $\mathrm{gms} . / \mathrm{cm}^{3}$.
$V=$ total volume of bimetal in $\mathrm{cm}^{3}$.
$C=$ ave. specific heat of bimetal in watt-secs. $/ \mathrm{gm}^{\circ} \mathbf{C}$.
$A=$ total surface area of bimetal in $\mathrm{cm}^{2}$.
$\alpha=$ coefficient of heat transfer to surroundings in watts $/ \mathrm{cm} .^{\circ}{ }^{\circ} \mathrm{C}$.
$\theta=$ temperature of bimetal at any time $t$ in ${ }^{\circ} \mathrm{C}$.
$\theta_{\mathrm{a}}=$ temperature at $t_{0}$ or ambient temperature in ${ }^{\circ} \mathrm{C}$.
$t=$ time in seconds
$\lambda=$ thermal time constant.
Those familiar with electrical circuitry will recognize Eq. 3 as being analogous to that defining the instantaneous voltage across a capacitor being charged through a series resistance from a battery source.

Examination of these equations will lead to a number of interesting conclusions. We find to begin with that the temperature time curve will be exponential and that the naximum temperature rise will be cqual to $\frac{W}{A \alpha}$, that is, this rise will be directly proportional to the power nput to the bimetal and inversely to the heat loss coefficient and the surface area which is dissipating this loss. The thermal time constant $\lambda$, defines one of the basic characterisics of the thermal relay and warrants closer attention. Eq. 3 tells us that $\lambda$ is equal to the number of seconds required for the bimetal to attain $63 \%$ of its ultimate temperature. The importance of this constant lies in the fact that its numerical value is related to the practical limits of timing to which a relay of the type under consideration may be adjusted. Thus greatest reliability of contact operation occurs in the timing range from $t_{1}$ to $t_{2}$ on the curve of Fig. 5 and we would find that for timings much below or above these values small variations in ambient temperature would result in large percentage changes in the operate time. Similarly, any mechanical shift in the structure resulting in a small gap change would produce the same result. Moreover, as the operate point is raised above point B the sensitivity of the operate time to heater voltage becomes increasingly great. The actual usable timing range will, therefore, be determined primarily by the time constant of the structure employed and its dimensional stability. Contact erosion or build-up during operating life, the ambient temperature and voltage range over which the relay must operate, and the degree of repeatability of operating time required are additional controlling factors.

Eq. 2 defines the time constant in terms of the physical characteristics
of our simple relay. We note that it has the dimensions of time and further that it is directly proportional to the volume of the bimetal and to its density and specific heat and inversely to the heat loss coefficient and the surface area. This being so a greater mass of metal in the actuating element does not necessarily result in a longer time constant. Instead, this factor will depend primarily upon the ratio of volume to surface area. It follows from this that where this ratio can be increased, as for example by doubling the thickness of a thin rectangular strip, the time constant will be almost doubled. On the other hand doubling the width of the strip will but slightly alter the ratio and produce a negligible increase in its value. In this connection it is interesting to note that attempts to miniaturize a thermal relay of a given construction by scaling down its linear dimensions will result in a reduction of the ratio of $V / A$, since $V$ is reduced faster than A , and therefore a reduction in $\lambda$. We note also that while $P, V, C$ and $A$ depend entirely on the material of which the bimetal is made and upon its shape, the heat loss coefficient " , is determined principally by the thermal conductivity of the gaseous medium through which heat is transferred to the walls of the relay and to the surroundings.

## Thermal Condactors

This relationship of the loss coefficient to the time constant may, be taken advantage of in the case of hermetically sealed relays to obtain either shorter or longer operate time ranges than those possible in air without altering the size of the heat storing bimetal. Thus for short timing relays $a$ is made large by employing a good thermal conductor such as hydrogen while for long delay times the relay may be pumped down to a high vacuum and $a$ thus reduced to
a minimum. Other stable gases with higher molecular weights such as nitrogen and argon may be employed when intermediate timing values are desired.
In practice, time constant ratios of 8 to 1 are readily obtained in this way for a given size actuating element. By altering the bimetal thickness as well as the gas fill the time constant ratio may be further increased and a value of 30 to 1 is easily achieved.

Some idea of the advantages resulting from the use of gas conductivity for the adjustment of thermal time constant may be obtained when it is realized that the simple substitution of hydrogen for air in the case of short delay relays makes it possible to increase the bimetal thickness by a factor of 2.5 . The effect of the increased stiffness thus obtained is to move the fundamental resonance frequen $\because y$ of the bimetal from approximately 50 cPS to 125 cPS or well above the $0-55$ cPS range specified in MIL-E-5272, Procedure III.

## Sataration Temperature

Fig. 6 shows the effect of changing the gas fill within the relay enclosure for a given size bimetal. Note that for a given heater power the saturation temperature attained increases as a decreases. Thus for the unity coupling case where the gas does not play a role in the transfer of heat from the heater winding to the bimetal, vacuum relays may be operated at lower heater power than gas filled types having comparable gap spacings.
Since both the time constant and the saturation temperature attained by the heated bimetal are dependent upon the residual gas pressure within the relay enclosure, it is of great importance that the structure be thoroughly out-gassed during
(Continued on page 139)

Fig. 5: (I) Greatest rellability of contact operation occurs in the pange from $1,10 \mathrm{f}$. Fig. 6: (f) Effect of changting gas fill for given size bimetal

| 入 $\lambda$ TIME | ${ }^{\lambda} \mathrm{H}_{2}{ }^{\lambda} \mathrm{N}_{2} \quad \lambda_{\text {VAC }} \quad$ TIME |
| :---: | :---: |

TELE-TECH \& ELECTRONIC INDUSTRIES - September 1954

# The Geoodimeter-an Electronic 



Fig. I: (I) Geodimeter. Photo fube unit is at right, large container (c) holds high voltage transformer and rectifiers. Fig. 2: (r) Diagram of unit


#### Abstract

A high degree of accuracy is claimed for this Swedish electronic equipment which computes point-fo-point distances from the phase difference between light waves


By C.E: GRANQHIST<br>Sroonsken AlB Ciasaccumulator<br>Stockholm, Siceden

FOR accurately determining the position of points in the field for mapping purposes, it has been customary to start from a base line, the position of which is exactly determined by astronomical methods and the length of which is measured directly with a carefully calibrated tape. From the terminal points on this base line the angles to a third point are then determined. which together with one terminal point of the base line determine the first side in a chain of triangles. At significant distances from the base line, errors occur because the angles are added progressively. Furthermore, certain data are difficult to obtain as it is not always possible to set out a base line of sufficient length.

The methods of determining distances with the help of radio waves has been tried out. but the difficulties are considerable, since it is difficult to determine the rate of propagation at the frequencies employed with sufficient accuracy. Moreover. the presence of electrically conducting objects in, or close to, the direction of measurement gives rise to appreciable errors that are difficult to check

A Swedish geodesist, Dr. Erik Bergstrand, demonstrated at the end of the 1940's that it was possible in practice, by employing light, to carry out direct determinations of length with the high degree of accuracy necessary in geodetic measurements. The advantages resulting from the use of light are considerable, inasmuch as the rate of propagation of light waves is very accurately known.

## Operatina Principlen

The principle of the geodimeter (Fig. 1), the name adopted for the improved Bergstrand instrument, is based on a modification of the method employed by Fizeau more than 100 years ago. Thanks to the recent introduction of modern electronic and optical devices, however, the sensitivity and accuracy have been increased to a very high degree in measuring 35 to 40 km .
The light ray employed for the measurements is divided up into flashes by means of a Kerr cell (Fig. 5) and a crystal-controlled high frequency generator: $10,000,000$ such
flashes being transmitted per second After reflection in a reflecting device located at the other end of the section measured, the flashes are received by the geodimeter's receiver in which a highly sensitive photoelectric cell converts the light impulses into electrical impulses. See Fig. 2. The distance is ascertained by measuring time taken by the light ray in its passage over the measured section. Since the speed of propagation of light is accurately known and the flashing frequency is well defined by the crystal-controlled generator, the accuracy in the determination of the distance will also be very high. The geodimeter is equipped with a built-in calibrating device by means of which the effect of instrument errors is considerably reduced.
In order to explain more clearly the principle of the instrument one can think of making the following experiment.
The apparatus set up sends out a pulsating light beam (Fig. 3) that is reflected from the mirror and sent back to the instrument. The photomultiplier, or receiver, is connected to the voltage of the Kerr cell, or transmitter, in such a way that the sensitivity of the photomultiplier is synchronized with the light output from the Kerr cell. Thus maximum output of light from the Kerr cell coincides with maximum sensitivity of the photomultiplier. If now the photomultiplier is detached from the geodimeter and brought up to where the light beam leaves the instru-

# "Eye" Sor Measuring Distance 

nent, maximum deflection will be sead on an indicating meter conlected to the photomultiplier, beause the phase of maximum light oincides with the phase of maxinum sensitivity of the photomultiilier

Phese Mpanurementa
If the photomultiplier is moved along the path taken by the light beam. the indicating meter will show - minimum some distance away from the Kerr cell. This is because the phase of maximum light no longer corresponds with the phase of maximum sensitivity, due to the delay in time of the light beam to reach the photomultiplier. As the photomultiplier is moved further away along the light path a successive number of maximum and minimum indications will be noted, all the way out to the mirror and all the way back again. The distance from the geodimeter to the mirror and back can then be expressed in a number of whole cycles, and a fraction of a cycle, because it is not likely that the distance to be measured coincides with a number of whole cycles. The measurement of the distance can then be divided into two operations, that of measuring the number of whole waves and that of measuring the length of the partial wave. The former is quite simple and shall be explained later on. The latter is measured as follows.


Fig. 3: Method of modulating light beam. Receiver sensifivity is also voried at same frequency

The synchronizing voltage pulse from the Kerr cell to the photomultiplier is run through a variable electrical phase delay line. The phase delay could be adjusted until the indicating meter again reads maximum. and then the phase delay in degrees is the same as the length of the partial wave in degrees. The length of the partial wave could then conceivably be read directly on the dial of the phase delay line. It is very difficult, however. to read я maximum or minimum on such a

Fig. 4: (I) Schematic diagram of null indicator Fig. 5: (r) Rerr cell-polaroids, condenser, lamp

meter, due to light intensity fluctuations from changing atmospherical conditions.
To avoid this, two photomultipliers can be used, placed half a wavelength apart along the axis of the received beam. (Wavelength means of course the length of the light beam pulsations, not the wavelength of light.) When these photocells are being moved along the beam, or when the delay line is varied, one cell will indicate an increasing voltage and the other a decreasing voltage. The point where the two voltages are equal will then be very easy to determine accurately with a sensitive bridge galvanometer. It is very difficult to use two cells, however, because at the frequency used, a half wave is 15 meters long and because it is very unlikely to fird two photocells that are perfectly matched.

## $180^{\circ}$ Phase Shlft

One cell might possibly be used if it could be moved back and forth from one measuring point to the other quickly enough. In the geodimeter this is done electrically. The synchronizing voltage pulse, taken from the Kerr cell and applied to the photomultiplier, is moved half a wavelength in phase one hundred times per second. To "move" an (Continued on page 146)

# Compandors Boost Periormance of 



> Application of the compandor to physical or carrierderived circuits can effect an increase of 22 db in the signal-to-noise ratio, eliminating the need for expensive line work

The compandor is a device for improving the intelligibility of speech transmission circuits by increasing the signal-to-noise ratio. It was originally developed for use with transoceanic radio circuits in the early 1930's, but until recently its use has been restricted by prohibitive installation costs. Improvements have now brought the cost and complexity of individual units within il range where, within the next few years, we can expect a wide-spread increase in their use.
Since the compandor can effect a practical improvement in signal-tonoise ratio of about 22 db , its use can often eliminate the need for extensive line work. which is otherwise the only means of bringing presently substandard physical or carrier derived circuits up to usable quality The device can also often permit the installation of new carrier channels on lines which would otherwise require expensive retranspositions to keep cross-talk within required limits.

## Compandor Action

Design of carrier systems with compandors as an integral part of each voice channel also permits relaxation of design requirements for various channel and system filters or amplifiers, with consequent economies in equipment manufacturing.
The miniaturized compandor man-
ufactured by Lenkurt is designed for general purpose use in all of the above mentioned applications-presently installed circuits-new carrier circuits-and new carrier equipment. The complete unit, as shown in Fig 1 , is only $3 \frac{1}{4} \mathrm{in}$. wide, 2 in . high, and less than 10 in . deep. Only two tubes are required. Test points on the front of each unit facilitate testing for routine maintenance and trouble shooting, and the entire unit can be quickly removed from its mounting and replaced by another. An interchangeable resistance hybrid or four-wire termination arrangement plugs into each unit. Four complete compandors plug into a rack-mounted shelf which occupies only $31 / 2 \mathrm{in}$. of rack space and also contains necessary fusing and alarm circuitry.

To obtain the maximum benefits available from the use of compandors, it is necessary to appreciate both the advantages which can be obtained from its application, and the manner in which compandor action may limit use of the device on certain types of circuits.

## Compandor Theory

One of the basic principles of transmission engineering is that the effect of noise coming into the line between terminals can be reduced without increasing the net loss of a circuit if the transmitting level is
increased and a loss of the same amount is inserted at the receiving end. Noise is then reduced by the same amount as the inserted loss.

The compandor takes advantage of this principle, without the need for higher power amplifiers, by decreasing the range of intensities in transmitted signals. For weak signals the compandor increases the level at the sending end and decreases it in the same ratio at the receiving end. Strong signals are changed little or not at all since in this case there is usually adequate


By TATE B. COLLINS Jr. Automatic Electric Sales Corp. 1033 W. Van Buren St., Chicago 7, Ill.
signal-to-noise ratio. But for this change in intensity range, crosstalk between systems (as distinguished from noise or crosstalk into one system) would not be effectively reduced.

Although the average noise improvement from available compandors is rated as 22 db , the actual improvement obtained in any particular case is a function of how noisy the circuit is without is com-


Fig. 2: Block diagram of Type 5090A compandor

Fig. 3: Compresser and expandor functions


## Voice-Frequency Cirreuits

andor, and of how loud the user is talking. With a very loud talker on very noisy circuit there could conceivably be no improvement. This undition is approached when neech and noise are of equal intensity at the input to the expandor.

To fully appreciate both the posstbilities and the limitations of the use of a compandor on all types of channels transmitting various types of intelligence, it is necessary to understand how the device produces in improvement in signal-to-noise ratio.

## Aperation

The compandor is basically a fourwire device, treating each direction of transmission separately. Each compandor unit consists of a compressor (in the transmitting branch) and an expandor (in the receiving branch). Thus a channel must have a compandor at each end for proper operation.

The basic equipment of a compandored circuit is illustrated in Fig. 2 for one direction of transmission. The reverse direction is, of course, identically equipped. Here you will note that at each end part of the signal (compressor output or expandor input) passes through a rectifier which in turn controls the operating point of the variable loss device.
The effect of a compandor on a range of input signals is illustrated in Fig. 3. An input intensity range of 56 db is compressed to one-half or 28 db for transmission between terminals. At the receiving end of the circuit these signals pass through an expandor and the original intensity range of 56 db is restored.

Compandor operation is illustrated more completely in Fig. 4 where the compression and expansion of signals in a compandor is indicated for two different speech powers.

## Noise Idiantage

The two examples of carrier channel operation, one with and one without a compandor, shown in Fig. 4, indicate how the compandor permits operation over circuits otherwise too noisy for use. A line noise intensity of -51 dbm has been assumed at the input to the carrier terminal. The noise can be either
crosstalk or random induced effects. Gains and losses are shown for a high intensity signal of 0 dbm at the 0 level point and a low intensity signal of -31 dbm at the 0 level point.

In the upper part of Fig. 4, where compandors are not used, the low intensity signal reaches the input of the receiving carrier terminal 3 db below the assumed noise power. Since the line noise is amplified in the carrier terminal by the same amount as the transmitted signals, the noise would reach the listener 3 db higher than the signal. For the
case they both enter the expandor instead of going directly to the toll switchboard. The desired signal enters the expandor with an intensity of -6 dbm and the noise enters the expandor with an intensity of -21 dbm . Since signals are attenuated by an amount proportional to their power (in this case 18 db attenuation for the desired signal, 28 db for the noise), the expandor serves to increase the margin between signal and noise. For the same signal which was 3 db below the noise in the circuit without a compandor, the circuit with a compandor provides a


Fig. 4: (1) Noise levels seen graphically with and without compandor equipment
Fig. 5: (above) RMS crosstalk coupling on 50 mi . section of a typical C transpased lead
signal-to-noise ratio of 25 db . Except for increasing the signal-to-noise ratio, the action of the compressor and expandor is not apparent to the listener. Note that here the higher intensity signal is now 56 db above the noise level-a highly acceptable circuit.

## Gain Varies

In the example mentioned here, it has been assumed that the action of the compandor is determined by a single tone. In operation, of course, the action is dynamic; compressor gains and expandor losses change constantly as the intensity of the transmitted intelligence changes. Compressor gain and expandor loss
(Continued on page 143)

# Measuring Time-Delay in Pulse 

## New test gear enables designers and users of time delay pulse equipment to make measurements of time intervals to within a few milli-microseconds

Bv MELIVIN H. MERPHY Brubaker Mfg. Co., Inc. 9151 Expoaition Drire. Los Angeles 34, Californina

DESIGNERS and users of timedelay pulse equipment are faced with the problem of making accurate measurements of time intervals to within a few milli-microseconds. While a number of methods have been devised to give this order of accuracy, a pressing need exists today for specific equipment and methods conveniently applicable to pulse circuitry, and it is in that light that the following discussion should prove of considerable value.
For purposes of simplification, we will confine ourselves to discussion of the passive electro-magnetic delay line.

## Eqnipment

For accurate time measurements, using this method, the following equipment is required:

1. A crystal-controlled time-mark generator with markers of 0.1 and $1.0 \mu \mathrm{sec}$.
2. Three continuously variable delay devices. Two such devices
with a 0-50 usec range with coarse and fine controls; one with its dial calibrated in terms of time.
3. A pulse generator with a $10-\mathrm{kc}$


Fig. 1: Marker-Pulser for delay-line testing
repetition rate, and with variable pulse width, rise time and amplitude.
4. An oscilloscope with an accurately scribed graticule.
All of the above equipment, except the oscilloscope, may be con-
veniently combined into one unit as shown in Fig. 1. A block diagram of the complete system is shown in Fi , 2. By feeding the markers into th. Z-axis of the oscilloscope, the swee, is intensity-modulated. It is necessary to have sufficient amplitude and proper shaping of the markers in order that they may have adequate definition.
The calibration of the variable calibrated delay is set and checked by observing the zero and the 0.1 usec points on its dial. With the dial set at zero, delay the sweep trigger by adjusting the fine sync-delay control until al 0.1 usec marker lines up with any vertical reference line on the oscilloscope screen. Adjust the calibrated delay dial, which also delays the sweep, until the next 0.1 usec marker is exactly lined up with the same reference line on the graticule. This point on the dial is marked.

## Heporalibraienn

If the calibrated delay is a linear device. it is only necessary to divide the dial into ten equal divisions so that each one of these divisions will represent 10 milli-microseconds.

Fig. 2: Block diagram of system for checking time-delays in pulse circultry. All functions shown in diagram, except oscilloscope, are housed in unt above


## Cireuits

'rovisions should be included in this ariable delay for resetting to the initially inscribed dial scale. In this manner, it is possible to periodically rheck and correct, if necessary, the calibration of the delay dial.
if all pulses were ideal pulses. having instantaneous rise and decas times, the point on the input and output pulses chosen as a time reference, would be of no importance, regardless of the service the delay line performed. Unfortunately, from a practical viewpoint, the ideal pulse cannot be generated nor can the delay line exactly reproduce it at its output terminals. In other words, all pulses have finite rise and decay times. Therefore, the points on the input and output pulses between which time is measured must be compatible with the service the delay line is to perform.
Fig. 3 illustrates three individual time measurements made on the same delay line; the rise and decay times are exaggerated for clearness The $50 \%$ point of the input pulse was used as a reference for the time between A-B. The time A-C was measured between the $50 \%$ points of the input and output pulses. The time measurement D-E was made center to center, with respect to time of that portion of the input and output pulses above the $50 \%$ point of the input pulse. It is readily seen that there is considerable time difference between these measurements. However, each of these measurements are valid provided the proper measurement is associated with the proper delay-line usage.

## Delay Line Fanctions

The measurement $\mathrm{A}-\mathrm{B}$ would be used if the delay line were to function as a trigger delay and the circuit being triggered fired at a voltage level equal to the $50 \%$ point of the input pulse. Time A-C would be (orrect if it were a video-delay $t$ reasurement. The time D-E would apply if the delay line were to be employed to open a gate circuit and i the gated signal was to appear in the center of the gate.
Since the procedure for each n:easurement is identical, measuren ent A-B will be described in detiil. The pulse rise time, width, and a nplitude must be adjusted to be as nearly identical as possible to the


Fig. 3: Three time measurements on same delay line. Rise and decay times are exoggerated


Fig. 4: Referonce points for marker adjusiments as seen against barikround of scopo graticule


Fig. 5: Reference points for measurement of pulse rise time. Decay Ilme will be identical
actual pulse that will drive the delay line in the circuit for which it was designed. This is necessary since these three quantities have a pronounced effect on the performance of the delay line. If they are badly adjusted, an individual time measurement will be in error by many milli-microseconds.
The two most critical quantities in the pulse are rise time and pulse width. If the rise time is too fast there will be high-frequency components, of large amplitude, in the pulse that will lie beyond the pass band of the delay line. If the delay line is a low-pass device with sharp cutoff characteristics, the above condition will cause severe ringing on the pulse because of the excessive high-frequency component and sharp cutoff condition. The required band width of the delay line is re-
lated to pulse-width by: Band Width $x$ Pulse Width $=K$. If the pulse width is too narrow there will be excessive insertion loss in the delay line. It is also required that all necessary precautions be taken in order to reduce the effects, on the delay line, of stray constants added by the test circuit. This is accomplished by the use of short, shielded, and properly terminated leads.

Refer to Fig. 4. With the oscilloscope switched to the input of the delay line, adjust the fine pulsetrigger delay and fine sync delay until a 1.0 usec marker is on a vertical reference line and the $50 \%$ point of the leading edge of the input pulse. Switch the oscilloscope to the output of the delay line and count the number of $1.0 \mu \mathrm{sec}$ markers that appear between the input- and out-
(Continued on page 160)

# CUES for BROADCASTERS 

## Practical ways of improving station operation and efficienc,

## Improved Remote Control for Push Button Transmitters

## ARCHIE T. SICHEL, Eng.

Supervisor, WIBG, WIBG-FM, Philadelphia 19, Pa.

IIN the article by Philip Whitney I entitled "Remote Control for Push Button Transmitters" (Feb. 54), there is a "fail safe" feature that has been overlooked; and, with minor changes, can be incorporated in the unit. By referring to the original circuit it can be seen that failure of the relay power supply, or failure of the capacitor associated with the "off" relay, would make it impossible to turn off the transmitter by remote control. Due to the fact that capacitors and rectifiers do deteriorate in time, it is felt that protection against this type of failure should be included in the unit.
The changes necessary to afford this protection would be to change the control relay to a double pole relay, remove the capacitor and resistor associated with the "off" relay and use the front instead of back contacts on the "off" relay.
The circuit as modified operates as follows: When voltage is applied to the remote control line it closes the control relay which, in turn, closes both the "on" and "off" relays. The "off" relay will remain closed as long as the control relay is closed, but the "on" relay will close only momentarily until C-1 is discharged and then it will open.
Momentary operation of the "on" relay is accomplished through use of the $\mathrm{R}-1, \mathrm{C}-1$ charging circuit. When the control relay is open C-1 will charge up to full voltage through R-1, when the control relay is closed, the accumulated charge in C-1 closes the "on" relay and holds it closed for the short period of time it takes for C-1 to discharge. Resistor R-1 must be large enough to limit the current below the holding current needs of the relay, otherwise the relay would remain closed.

As far as the "off" relay is concerned, it may be possible to eliminate it completely if the contacts on the control relay are heavy enough to handle the transmitter "off" ciruit directly. Its purpose is merely to break the transmitter "off" cir-

## \$\$\$ FOR YOUR IDEAS

Readers are invited to contribute their own suggestions which should be short and include photographs or rough sketches. Typewritten, double-spaced text is requested. Our usual rates will be paid for material used.
cuit whenever the control relay opens.
A question might come up in the reader's mind about the possibility of operating both the "on" and "off" relays from one set of contacts on the control relay. This could be done, but, if C-1 shorted while the transmitter was on the air and the control circuit opened, both relay coils would effectively be in series across the power supply and enough current might flow to keep them from releasing.

## Multispeed Turntable \& Needle

STEPHEN POPP, Studio Supervisor,
WIL, St. Louis 8, Mo.

WE needed a system, fool-proof and error proof for 33,45 , and 78 rpm records. We use the same transcription arm and stylus (one mil) for LP and standard 2, or 2.5 mil, grooved 78 rpm . With only 8 grams pressure on records the arm does not jump out of grooves-unless table is hit.

The GE reluctance cartridge (RPX-046) and the GE RPJ-004 one mil stylus give the same fidelity for all records. We believe any variable reluctance cartridge and one mil stylus will do the same job.

The pressure can be adjusted to 8 grams. We have ours mounted on the Gray 106 SP transcription amn used in conjunction with the Gray 602 equalizer, and Gates CB 14 table which combines the mercury AC switch and speed selector. This it is not necessary to slip dic (which results in very little cloth wear on turn table and less we:r. on motor and rubber drive wheels) and the record or ET can be spun in by pushing switch handle toward speed desired. This turntable also has provision for changing from 33-1/3 rpm to 45 rpm by slipping a plug into $33-1 / 3 \mathrm{rpm}$ spindle through the top of the turntable rim.
After operating this system for approximately 162 hours per week for the last four months, we feel we should pass along this information as it may be of some help to some broadcaster. We are still using same stylii and with only 8 grams pressure they may go for a long time yet!

## Automatic Program Line Changeover Circuir

G. HAROLD BREWER, Chief

Engineer, WARK, Washington, D.C

THIS changeover device was designed as part of WARK's remote control system to change automatically the program and control circuits to the emergency loop in the event of line failure. The changeover unit is installed at the transmitter end of the lines, and



Automatic shangeover sircuit switches program and control circuits simultaneously to emergency loop In case of bine failure
the grid circuit of the 6SN7 tube senses the presence of the remote control hold voltage, keeping L-1 normally in service. However, if this voltage drops out due to line failure, or if the operator at the studio operates his line selector to L-2, (the emergency loop,) all relays in this unit open, changing the service to $\mathrm{L}-2$. The studio operator in this manner actually changes both ends of the line at once. The circuit has been designed to operate on either a negative or positive voltage of 15 volts or more. The sensitivity control in the grid circuit of the 6SN7 tube is adjusted for positive operation of the relays
on the lowest line voltage used. The filter condenser in the line relay power supply circuit has been made large enough to prevent the circuit from operating during polarity reversals of line voltages, on a control system using this principle.
This circuit may also be used on any lines that are not used for control or with control voltages, by using a hold voltage on the line in a similar manner. The line centertapped potentiometers when adjusted for minimum line noise on each end of the line have no effect on the line performance and in many cases may actually tend to reduce any line noise present.

In the event of a tube or component part failure in the changeover circuit, all relays will fall out, placing the emergency circuit, L-2 in service. Program service may then be restored by the studio operator, by the operation of his line selector switch at the studio, to the L-2 position.
The circuit indicated in the diagram, shows application to a program line which has been simplexed for remote control purposes. Such an application may be desirable since both services, program and control, may be switched to an emergency loop, simultaneously.

## Emergency Remote Equipment

T. A. HILDEBRAND, Chief Engineer, KBMY, Billings, Mont.

WE were called upon to broadcast a disc-jockey show from a downtown store window for promotion purposes. None of our remote equipment had facilities for turntable inputs, so a good public address amplifier which had the required inputs was rented and connected to the broadcast loop as shown. All the components were mounted in a metal utility box with the VU meter mounted on the front. The bass tone control was locked in its normal position with cellophane tape and the treble control locked in a similar manner but with the treble slightly boosted to over(Continued on page 100)


Fig. 1: Needie-like projections are test probes

## Plating Quantity

## A non-destructive method of measuring the internal silver plating on waveguides and similar plated tubing permits rigid quality control and assurance of proper operation

B: HARTIN DAVIDSON and VICHOLAS S. RAHAL*
ACF Electronics. 800 . Pill Sio. Alexandria, Va.
${ }^{*}$ This article was prepared while Messrs. Davidson and
Rahal were with the National Bureau of Standards.

THE quantity of internal plating on stainless steel L-band waveguides can be conveniently measured externally by the electronic instrument described here, which was developed for the Navy Dept. by NBS. The test method, which is non-destructive, is based on the difference in electrical conductivity of the base material and the plated material

Stainless steel is used as base material in fabricating rectangular L-band waveguides to obtain a favorable strength-per-unit-weight relationship, compared to other materials, such as bronze. The conductivity of the stainless steel used is $1 / 48$ th that of silver, hence internal plating is mandatory for electrical reasons. Ambient conditions of use are such that corrosion is a serious factor. Thus there is a necessity for determining if adequate amounts of internal plating are present at all parts of the waveguide. The buyer's specification for these guides calls for a stainless steel wall thickness of 0.037 in . Type 321 or type 347 steels, which are 18-8 stainless steels are specified for the base material. The normal crosssection dimensions inside the guide are 6.5 by 3.25 in . The waveguide sections may have a length of as much as 10 ft . The types and amounts of platings desired are shown in Fig. 3.

## DC Conductivity

The situation presented in Fig. 3 and in Table 1 with regard to the relative conductivities and thicknesses of the respective layers of metal indicates that a direct measurement of the dc conductance between a pair of points will give sufficiently sensitive indications, within reasonable limits of error, of the amount of silver deposited upon the nickel plated stainless steel wall. Values of conductivity in the table
are given with respect to the conductivity of stainless steel in order to simplify the marking and interpretation of the indicating meter scale. In terms of these units, it is seen that the specified composite of the three metals has a relative conductance of 143 units. If the amount of deposited nickel were to vary by $+50 \%$ the error in the indication of the amount of silver present would be only $\pm 5 \%$. A tolerance of $\pm 0.005$ in. in the thickness of the stecl base would have the same effect.
To measure the local conductance of the waveguide wall, a known

amount of direct current is made to flow through it by using a pair of pointed metallic probes as electrodes. Hereinafter these will be referred to as the "Current Probes." By measuring the potential between any other two points in the neighborhood of the current probes the conductance can be determined, provided current flow is laminar throughout the material, and provided the linear dimensions of the material are several times greater than the current probe spacing. Laminar or two-dimensional current flow is obtained by making the current probe spacing much greater than the thickness of the waveguide wall.
The expression for the potential difference between any two points in an infinite plane current sheet
generated by a source and sink of equal strength is

$$
\begin{equation*}
\mathrm{E}=\frac{\mathrm{l}}{2 \mathrm{r}_{1} \pi \mathrm{t}(2.54)} \ln \frac{\mathrm{r}_{2} \mathrm{r}_{1}}{\mathrm{r}_{1} \mathrm{r}_{\mathrm{t}}} \tag{1}
\end{equation*}
$$

where $E$ is the potential difference in volts,
I is the current in amperes,
is the conductivity in reciprocal microhm-centimeters,
$t$ is the thickness of the sheet in inches.


Fig. 2: Plating indicator seen schematically


Fig. 3: Plating thicknesses for woveguides
$r_{1}$ is the distance in inches from the current source to the potential point nearest it,
$r_{2}$ is the distance from the current sink to the potential point nearest the current source,
$r_{3}$ is the distance from the current sink to the potential point nearest it,
$r_{t}$ is the distance from the current source to the potential point nearest current sink,
and the logarithm is taken to the base e.
If the probe is symmetrical $\left(r_{2}=\right.$

# Indicator for I-Band Waveǵuides 

$r_{4}$ and $r_{1}=r_{3}$ ) then the expression becomes:

$$
\begin{equation*}
\mathrm{E}=\frac{1}{\gamma \pi t(2.5 t)} \ln \frac{r_{g}}{r_{i}} \tag{2}
\end{equation*}
$$

## Probe Design

In the simplest and most useful probe configuration the potential probes are aligned with the current probes. The current probes are pointed brass rods spaced two inches apart. The potential probes are hard steel needles which occupy intermediate positions. (See Fig. 1.) These needles are spring-loaded and project slightly beyond the current probes in order to ensure good contact when the entire probe assembly is in position for measurement. The spacing of the potential probes ( 1 in .) is determined on the basis of the potential plot of Fig. 4. This shows the variation of potential in the current sheet along the line between the current probes. The upper end-point of the plot represents a practical limit of potential imposed by the necessity of maintaining a finite current probe contact area. The tips of the current probes must be somewhat blunted in order to keep the contact resistance low since currents as high as 5 amps may be passed.

The position of the potential probes is chosen first, so as to obtain a high potential difference and. second, so that small variations in the probe point spacing which may occur as a result of handling and wear will have a minimum effect on the reproducibility of readings. To fulfill the latter condition the potential probes should not be placed in the region next to the electrodes where the potential gradient changes rapidly.

## Circail Denigm

Measurements can be obtained with this type of probe assembly on either a constant current or constant voltage basis. If 1 amp of constant current is used for a set of measurements for example, the potentials measured in the case of the waveguide under consideration vary from approximately $300 \mathrm{\mu v}$ for the unplated waveguide to approximately $80 \mu \mathrm{v}$ for a properly plated guide. By using a storage battery, a rheostat,
an ammeter, and a dc vacuum-tube microvolt-meter, potential measurements on a constant-current basis can be readily made.

The advantage of the constantpotential type of measurement, which is used in the Waveguide Plating Indicator, described, is that the current which is required to maintain constant potential across the potential probes is directly proportional to the conductance of the material and hence will vary directly
with the quantity of plating. This permits the use of a linear directreading meter scale.
By using the simple servo techniques of self-balancing, the Indicator is made to read directly, and is automatized to such an extent that only an indicating meter and power switch occupy the front panel. The instrument is completely devoid of operating adjustments. The operator need only place the probe on the (Conitinued on page 136)


Fig. 6: Meter scole is in units of 0.001 in .


Fig. 7: Correction factors for small dimensions
Fig. 5: Checking plating of t-band waveguide


# Tunable CW Mağnetron 

Fig. 1: Complete magnetron assembly has iwo outpuis and tuning cavity coupled to anode cavily

THE RCA developmental magnetron described here was designed to give 10 kw . of continuous-wave power at a frequency of 825 mc . Early in the development it was decided that the tube should be tunable, and the present model includes a tuning cavity coupled to one of the magnetron cavities. An adjustable diaphragm varies the capacitance of the tuning cavity and permits tuning over the range of 785 to 845 mc .

The tube is designed to be plate modulated for UHF TV transmitter service. Frequency control during plate modulation is maintained by the injection-locking system developed by L. L. Koros. ${ }^{1}$ This system

> Complete data on developmental UHF-TV transmitting fube features coupled-cavity funing. Stable operation adjustable over $\mathbf{6 0}$ MC range achieved at outputs up to $\mathbf{2 0}$ kw

By D. E. NELSON, Tube Depariment, Radio Corp. of America, Harrison, N. J.
has been successfully applied to a 1 kw . magnetron providing an incidental phase modulation of less than $25^{\circ}$ for $85 \%$ plate modulation with an injection power equal to $10 \%$ of the peak magnetron power.

Anode
The vane-type anode having ten resonators with conventional double ring strapping, shown in Fig. 2, is similar in design to that used in a 1 kw . FM magnetron previously described. ${ }^{2}$ The unstrapped anode capacitance is $13.5 \mu \mu$ f, the strap capacitance is $14.3 \mu \mu$, and the induc-tance-to-capacitance ratio ( $\mathrm{L} / \mathrm{C}$ ) is 47. This anode is designed for use


Fig. 2: (1) Ten-cavily, vane-iype anode Fig. 3: (r) Tuning cavity is coupled to anode resonator Fig. 4: (I) Cold-test curves show mode operation Fig. 5: (r) Stabilization in three $\pi$-modes


with a magnetic field of 400 gausses; the ratio of this magnetic field to the characteristic magnetic field of the anode ( $\mathrm{B} \mathrm{B}_{0}$ ) is 2.6. The diameter of the anode is 1.625 in ., and the diameter to the back of the resonators is 4.825 in.

The untuned pi-mode frequency of the anode is 831 Mc and that of the $\mathrm{n}=4$ mode is 1350 mc . The mode separation, therefore, is $62 \%$. The unloaded $Q$ of the anode is approximately 2000. The tube is normally loaded to provide an external $Q$ of 75 to 100. For values of $Q$ within this range, the circuit efficiency is 95 to $97 \%$ and the bandwidth is 8 to 11 мc.

The anode is watercooled by means of a waterjacket around the anode shell.

Coupled-cavity tuning is used, primarily because it provides good performance at low cost. This type of tuning does not require close spacings and, therefore, eliminates the necessity for precision drive mechanisms. The disadvantage of this tuning method is the possibility of oscillation in one of the two additional pi-modes which are introduced.

Tuning is accomplished by means of a reentrant cylindrical cavity coupled to one of the magnetron anode resonators, as shown in Fig. 3. The tuning-cavity capacitance is varied by the movement of a diaphragm which approaches the center post of the cavity. Because the diaphragm is stressed beyond its elastic limit, a bellows is provided in back of the diaphragm to complete the vacuum envelope.

A set of cold-test tuning curves is shown in Fig. 4. As mentioned above, the coupled-cavity tuning introduces additional pi-mode resonances above and below the main tuning curve. Evaluation of cold-test data was necessary to obtain a tuning-cavity geometry which would insure operation in the main mode.

Valuable information concerning

## Designed for UHF <br> the mode in which the magnetron

will operate may be obtained from cold-test measurements of the stabilization factor $S$. This factor may be defined as the ratio of the energy stored in the anode and the tuning cavity to the energy stored in the anode. ${ }^{3}$ Fig. 5 shows the variation of stabilization factor in the three pimodes of operation. The tube usually will operate in the mode having the lowest stabilization factor provided the output circuit and the load have a bandwidth covering the frequencies of all the modes. If, however, the load or output circuit has limited bandwidth, the tube tends to operate in the mode having the highest ratio of loaded $Q$ to stabilization factor $\left(Q_{L} / S\right)$. This mode selection criterion is based on the fact that if a multi-mesh, self-oscillatory system has possible more than one mode of resonance, it will operate in the mode which requires a minimum dissipation from the power sources present in the system.
The stabilization factors of the three pi-modes were varied primarily by changes in the diameter of the cavity center post and, to a lesser extent, by changes in the length of the cavity and the center post. Changes in the iris produced marked changes in the tuning ranges
but permitted little control of the stabilization factors.

## Dusput Connection

The output connection utilizes a conventional glass-kovar seal designed to work into a 52 -ohm $31 / 8$ inch coaxial line. The kovar parts used in the output lead are copper plated after the glass-to-metal seals are made. The output assembly is shown at the right and left in Fig. 1. This assembly is r-f brazed into a stud projecting from the anode, and may be removed if $s$ seal fails or if a change in the degree of coupling is desired. This seal has been used with the magnetron operating into a matched load at a continuous power output of 20 kw .

## Cathode

The oxide-coated nickel-mesh cathode which was originally used operated satisfactorily at power outputs of 2 to 4 kw ., but its operating temperature was too high to provide adequate life, even when the heater input power was reduced to zero. At a power output of 10 kw ., the end shields of the cathode began to emit, and this emission increased progressively. After a few hours' operation


Fig. 6: Cothode is mounted in top cover assembly
at 10 kw ., the leakage current from the end shields became so great that oscillation ceased. Heavier cathodes and cathode leads were used to obtain greater conduction cooling, but the improvement was disappointingly small. Because it was desired to avoid the necessity of water-cooling the cathode, a thoria-dispenser-type cathode which could operate at higher temperatures was substituted. A thoria-cathode, top-cover assembly is shown in Fig. 6. The cathode consists of an outer cylinder 0.700 in . in diameter and $21 / 2 \mathrm{in}$. long, which is perforated with several hundred ${ }^{1} / 2$ inch-diameter holes and an inner cylinder, spaced 0.100 in . from the inner surface of the perforated sleeve, which provides a (Continued on page 150)

Fig. 7: (1) Performance chan for new magnetron Fig. 8: (r) Rieke diagram shows loading considerations



TELE-TECH E ELECTRONIC INDUSTRIES - Sepiomber 1954

## By W alter T. sel.steil <br> \& ROSS H. SNYDER <br> Ampex Corporation <br> Redecoerl City, Cialif.

THE frequency response characteristics of magnetic recording tape itself are essentially unlimited, since the magnetic medium can accept magnetic flux impressions at an extremely high rate, a rate whose upper limit may reasonably be estimated at many megacycles, since the medium is a form of powdered iron.
The practical limit to frequency response of the magnetic tape medium is, at the present time, much less than this. One limit is imposed by the minimum wave length which can be recorded and reproduced which represents the highest frequency which can practically be handled by the equipment.
This minimum wave length may be determined by the ratio of wave length to tape surface roughness and magnetic oxide particle size, if an infinitely small reproducing gap be assumed.

The minimum wave length may also be determined by the smailest output signal from the playback head which will yet maintain the necessary signal-to-noise ratio in a given application Reduced penetration of the magnetic coating occurs as recording frequency increases, and this, with other effects, results in a declining response toward the upper band-pass limit, despite the effect of increasing rate of flux change, so that, regardless of our ability to keep gap size small with relation to minimum wave length on the tape, the output voltage from the playback head may decline toward the upper end of the spectrum to the point where, when related to irreducible system noise, it is unusable

For presently available tape coatings. this point of minimum wave length is approximately 0.000125 in . measured longitudinally along the tape. This may be taken as representing a full wave length. beyond which a further reduction in re-

# Frequency Response 

## Upper frequency limit is found to be defermined by ratio of wavelength to magnetic oxide particle size

corded wave length will result in output from the playback head very rapidly approaching zero. At a tape speed of 100 ips , for example, the frequency at which these effects limit response is 800 kc .

## Sker Efferf

There is still another practical limitation on useful frequency response which at the present time appears even more commanding. A very small amount of skew in the manner in which the tape passes the record and playback heads, at very short recorded wave lengths, introduces gross reductions in high frequency output. The magnitude of this effect may be judged from an example.
$\phi=\tan ^{-1} \quad \lambda-y / x$
Where
$\rho=$ the angle of skew


Lines of flux in record head and gap
$\lambda=$ the wavelength on the tape $\mathrm{y}=$ gap size
$\mathbf{x}=$ track width
Now, tape in current production is held to widths of $1 / 4 \mathrm{in}$., +0 , -0.004 in., a variation which is remarkably small and involves extreme precision in manufacture. It is, nevertheless, large in proportion to the effects we are considering here, and this should be borne in mind, even though for the purposes of this example it is ignored.
From the above it may be seen that even if we deal with n gap size of 0.0001 in ., with tape $1 / 4 \mathrm{in}$. in width. in a transport mechanism producing zero skew in the tape guidance, $Q$ becomes $\tan ^{-1} 0.0001$. and $\phi$ is 20 in . of arc. Alignment of
record and playback gaps would, then, necessarily be held to tolerances much less than this, since 20 in. of misalignment is that degree of skew which will produce zero output at the minimum ( 0.000125 in .) wave length. This means that if either end of the gap were as much as $25 \mu \mathrm{in}$. off the ideal centered position, the head output would be zero at the desired highest usable frequency. The practical result of imposing such impractical tolerances is that the output from recorded frequencies in the vicinity of the 0.000125 in . wavelength will vary grossly in amplitude with time and position. Such commonly encountered factors as the mechanical history of the tape, temperature, humidity, width variations in the tape, and warpage of the transport mechanism will all greatly aggravate the effect.

## Threp Connideralion

Aside from those factors which must be considered in attaining the maximum extension of frequency range, we must also consider the practical requirements for useful head life and useful output, all three of which are inter-related. Every application dictates its own division among the characteristics of head life, useful output, and highest frequency of response, and in every different application good engineering practice requires the optimizing of these for the application. For example, in direct magnetic recorders for audio purposes, a tape velocity of $71 / 2 \mathrm{ips}$ can produce a frequency response of plus or minus 2 db from 50 to $10,000 \mathrm{cPs}$ plus or minus 4 db from 30 to 15,000 cPS, with signal-to-noise above 55 db on a wide-band basis, using $1 / 4$ in tracks, with a head whose gap size

Design of record head hinges on three factors


# Characteristies of Maǵnetic Tape 

is 0.00025 in ., gap depth 0.035 in . A realistic life expectancy for such a head is of the order of $10,000 \mathrm{hrs}$ Thus, extremely desirable characteristics in every direction are realized by appropriate arrangement of design parameters. (See Fig 4.)

## S-to-N Ratie Limifa

Direct recording methods are most widely used for audio purposes because they offer the highest sig-nal-to-noise ratio with wide-band frequency response, commensurate with tolerable equipment and medium costs. In this type of recording the signal-to-noise ratio limit is imposed by the nature of the tape itself. It is true that even wider band-pass and higher signal-tonoise ratios may be obtained with the use of redundant FM recording systems, but at vastly increased cost.
The maximum signal level to which signal-to-noise ratio is referred is generally taken as that point at which total harmonic distortion (primarily third) is $3 \%$ due
to the approach of tape saturation. The background noise, which in the case of present day red oxide tapes is approximately 65 db below the $3 \%$ point measured on a conventional wide-band basis, is due primarily to minute variations in the residual magnetic flux surrounding the particles of oxide. These vary slightly in size, slightly also in permeability, resulting in random noise output from the heads, whose sensitivity is to the rate at which these flux variations occur. Its characteristic is that of "white noise." It is generally far less objectionable to listeners than clicks and pops which are associated with dust particles and electrostatic effects on phonograph records. A secondary source of noise associated with magnetic recording is known as "modulation noise" or "noise behind the signal" and is due in part to non-homogeneity of the tape coating, and in part to the flutter of the tape drive system. Since flutter is speed change, the rate at which flux changes across the magnetic playback gap occur is altered
by flutter effects, the alteration appearing as noise when a flux pattern exists on the tape, but not in its absence, hence this type of noise appears only in the presence of recorded signals and proportion to it, and is not included in the basic noise of the system in the absence of signal. Non-homogeneity of the tape can be due to coating difficulties and non-uniform distribution of oxide-binder mixture-there is, after all, a limit to the precision with which the coating may be mixed and applied. The contribution to modulation noise which is made by non-uniformity of coating has been progressively reduced by tape manufacturers in recent years.

## Implitade Variations

Non-uniformities in tape which cause major or minor amplitude variations are of varying degrees of importance to the different recording methods mentioned. Variations in the amplitude of reproduced sig-
(Continued on page 134)

## Preview of International Instrument Show

TTHE First International Instrument Congress and Exposition, sponsored by the Instrument Society of America, will be held at the Commercial Museum and Convention Hall. Philadelphia, Penna.. Sept. 13-

24. 1954. Featured will be equipment exhibits by 450 domestic and foreign companies, the Instrument Maintenance Clinic, and an extensive technical paper program ar ranged by 12 technical societies in cooperation with ISA.

The Exposition by 450 firms will be held on Sept. 15-21, closed on


Commercial Museum \& Convention Hall, Philadelphio,
where Instrument show will be held Sept, 13-24

Sept. 19. The complete exhibit represents $\mathbf{7 0 , 0 0 0} \mathrm{sq}$. ft.. and admission is free.

The Instrument Maintenance Clinic will run for three consecutive days starting Sept. 17. Four simultaneous schedules of instruction will be presented at the Univ. of Pennsylvania. The Clinic is open to mem-
bers of ISA and cooperating societies (including IRE, AIEE, ASME and American Institute of Physics) without charge. Non-members will be charged $\$ 5.00$. Clinic registration can be made by writing to P. V. Jones, Manager, Instrument Society of America, 1319 Allegheny (Continued on page 116)


Air view of the National Bureau of Standards' Central Radio Propagation Lab at Boulder, Colorado Buildings in the background, also part of center, are portions of the wBs-AEC Cryogenic Engineering Lab


Radiosonde is suspended from a free balloon and telemeters data on weather condifions

## NBS Spurrs Research


(1) WBS model antenna range is largest of lis kind. V-structure supports target transmitter at vertex. (r) MBS' frequenty standard is more accurate than earth's rotation, needs periodic corrections
(i) Microwave components of MBS refractometer. In operation, unit is raised to top of 500 Tt . 1 ower (r) Microwave refractometer measures the refractive Index of lower atmosphere for propagation sludy

Analogue computer for solving the radio refractive index equution, a product of CPRL research

 N2
atomic beam clock. Controlled beam of cesium atoms permils accuracies of better than 1 in 10



Station WWV. Transmitred signal is controlled to accuracy of two parts in 100 miliion
in Radio Propag̊ation

New laboratories to coordinate government operations

A S the nation's central agency for - collecting radio propagation data. the Central Radio Propagation Laboratory (CRPL) of the National Bureau of Standards, analyzes and disseminates information that aids reliable global aviation, all-weather shipping and harbor control, and worldwide communications. The Laboratory's studies of frequency allocation and interference affect the establishment and operation of AM. FM, and TV broadcast stations. Data on ultra-high-frequency radio propagation and the development of improved microwave methods are important to the Weather Bureau and military aerologists for use in upperair temperature, humidity, and wind measurements. Accurate measurement methods and standards maintained by CRPL are essential to studies in many branches of engineering and physics. Also, many industrial applications of radio require CRPL standards and measurement techniques. In order to more effectively serve these interests, the Na tional Bureau of Standards is establishing a new multimillion-dollar radio research laboratory in Boulder, Colorado.

Radio propagation studies were formally begun at the Bureau in 1909 with the measurement of low-
frequency radiations. The studies were extended to include higher frequencies after the basic demonstrations of ionospheric reflection of radio waves in 1926. Full achievement of the value of systematic collection of radio propagation data was not accomplished until the Combined Chiefs of Staff (U. S. Armed Fcrces) established the "Interservice Radio Propagation Laboratory" (IRPL) at NBS in the spring of 1942.

Although the need for coordination was apparent, the magnitude of the task was too complex to achieve success in one organizational step. Accordingly, on May 1, 1946, the Central Radio Propagation Laboratory was established as one of the technical divisions of the National Bureau of Standards. A Radio Propagation Executive Council, organized to formulate general policy, included representatives of the Army, Navy, Air Force, FCC, CAA, Coast Guard. State Department, and the radio industry. Besides the existing IRPL functions, the new Laboratory assumed the duties of the NBS Radio Section. These included the maintenance and development of radio standards, the operation of radio broadcasting station WWV, and (Continued on page 152)


Three-cavify klysiron fransmitter on top of Cheyenne Mi., Cole. aids tropospheric research


NBS field station near Boulder is WWV monitor, also acts as lonosphere probing station

NBS microwave adjustable frequency standard, for calibrafing secondary standards


# Desig̊ning Scale Model Aircrait 

Part One
of Two Parts

Accurate predictions of antenna performance depend on precise duplication of the physical contours and electrical characteristics of the aircraft

Hy ROBERT F. HLAINE Creative Eingineering Corp 10816 Burbank BIrd. N. Hollnoood, Calif.

DURING the last ten years or so, the use of scale model aircraft to obtain radiation pattern information on scale model antennas has become an increasingly important part of the aircraft antenna designer's technique. It can be shown theoretically that certain conditions may be imposed using Maxwell's equations which describe the propagation of radio energy, keeping constant relationships between physical sizes and frequencies involved. If these conditions are properly met on scale model antennas on scale model aircraft, reasonably accurate radiation pattern information can be obtained. (The procedure is seen in Fig. 2) If the aircraft is scaled down in size and if the size-wavelength -of the incident energy is also scaled down in the same ratio, all other factors (except the conductivity of the skin of the aircraft) can be allowed to remain as they would be in the full scale aircraft. To preserve the applicability of these equations, as the aircraft is scaled down in size the conductivity of the aircraft skin should be changed in the inverse ratio. In other words, the conductivity of the surface of the aircraft should be increased in the same ratio. This is an almost impossible condition to meet, particularly if the scale factor is, say, 2 to 1 or greater, and it is one of the problems which is not even approximately solved today. This shortcoming will be discussed later as some model making techniques are outlined.

## Equipment

To begin with, a typical outlay of equipment as generally used for recording scale model radiation patterns from a model aircraft consists of a fixed directional transmitting antenna supplied with energy from a suitable signal generator, a nonmetallic support of a design which allows the model to be rotated and


Fig. 1: (1) Test range with dish antenna in rear. Fig. 2: (f) Rodiation is seribed in control room
which support itself can be rotated, either rotational motion being independently controllable so that the model in effect can be "viewed" from any angle by the transmitting antenna. For recording, a detector. amplifier, and a suitable recorder linked by servo systems to the model and the tower rotators are provided.

## Supporting Toncor

One of the most important pieces of equipment is the tower, or support for the model. This constitutes the highly critical immediate environment in which the antenna is examined. Ideally the aircraft and antenna combination should be examined under conditions equal to their flight in free air, separated from all factors which could cause reflection or refraction of the radio waves. It is desirable to use a tower which is as nearly "transparent" as possible, simulating air. Towers made of fiber-glass reinforced resin as used in radome structures and having plastic gears, shafts, and bearings for accomplishing the rotational motions, together with certain other provisions such as high resistance audio cable have been found to be satisfactory for scale
model antenna studies.
Most generally the models used in a number of leading antenna laboratories measure around 2 to 8 ft . in major dimensions, corresponding to scale reductions of, say, ${ }^{1}$ i.nth to ${ }^{1} 11$ th. (See Fig. 1) The scale size of the model depends on the frequencies to be used in the measurements and those frequencies are in turn governed to considerable extent by the size of the tower on which the model is supported. This size imposes limits on such variables as separation between the transmitting antenna and the model antenna being investigated, distance above ground, and others. Frequencies in the order of 1000 Mc , corresponding to a wavelength of 11.8 in., and higher are usually required to minimize the effects of ground reflections and the reflections caused by nearby objects such as the tower's own base, there being practical limits on the size of these plastic structures. A tower in use at a number of laboratories active in pattern measurement is shown in Fig. 1 with some of the basic relationships between the principal elements of an antenna pattern range shown. A model of approximately $1 / 30$ th scale is shown mounted on the tower.

# for Antenna Analysis 

Because of the nature of the plastic structure of this type of tower there is a weight limitation on models. Generally 50 or 60 lbs . is considered near the limit if the model is reasonably well balanced. Unbalanced models may have to be kept to as little as 25 lbs ., in some instances, to obtain smooth and satisfactory motion. Here wind velocities may become a factor as the surfaces of a good sized model present considerable resistance to the breeze. Gust loads may rise to troublesome levels.

## Copper Clad Modeln

Models in use most generally to day are of two general structural types. Hollow wood elements with metallized copper surfaces predominate and formed sheet copper elements are called for in some cases.


Fig. 3: Jet model has copper metallized skin
The former type is built of fine grain medium weight wood, formed and contoured from accurate templates, and a "skin" is then applied as copper foil or by flame spraying zinc and then copper evenly over the surface. (Fig. 4 and 5) The application of molten metal on wood requires a special technique in order to avoid subsequent separation because of weather changes, moisture, handling, soldering, and other conditions. This bond has been attained and today gives very satisfactory results.
The metallized copper skin on wood type of model at first had many shortcomings, but today the
techniques developed by at least a couple of western model making laboratories provide acceptable conductivity factors for most pattern work, and accuracy of high order. Small scale model antennas can be easily installed, moved, or changed with a minimum of laboratory time and weights as low as 28 lbs., for models with almost 10 ft . major dimensions are in use. Soldering can be done by using careful cleaning and proper flux. Removing excess flux is not difficult and should be done as the virgin copper is very susceptible to oxidation-corrosion. Ordinary medium to low wattage irons, preferably of the smaller size, work well and a light quick touch is best.
Models built up from soft copper sheet. formed in somewhat the same way as the body and fender man works, are in some use, but this method leaves quite a bit to be desired in both scale accuracy of contour and in certain strength requirements at stressed or attach points. They furthermore frequently run into pretty high cost brackets if accuracy is critical for the studies involved.

## Deponised Copper

Also in the second general type classification are models built by a variation of the lost wax process wherein contours are established on plastic or wax and the copper skin is deposited electrolytically to a desired thickness. Keeping the thick-


Fig. 4: Cut outs simulate glass windows
ness of the electroformed skin constant poses a somewhat complicated problem, especially where a complex configuration of the model's surfaces exists. The cost of this type of electroforming is very high as a rule, and complex models using it are apt to cost as much as $\$ 20,000$ or more for scale sizes with major
dimensions in the 6 ft . class. Better techniques and cleaner aircraft configurations are acting to improve this cost somewhat.
On the other hand, models of wood with metallized skin, even to such close scale tolerances as $.005^{\prime \prime}$. are costing laboratories between $\$ 1000$ and $\$ 3000$, depending on size and complexity.

With some emphasis being put on larger models for pattern work, a new method is coming into use which involves the use of plastic foam, "sandwich" elements with fiber glass reinforced polyester resins, and either of the metal skin applications mentioned above. Some of the techniques involved are fairly complex, but the gain in sizeweight advantage is almost unbelievable. Models with spans or lengths as great as 20 ft . are being made pussible at weights well under 100 lbs . Costs, especially where complex electroformed skins are applied run very high-on the order of $\$ 35,000$-reflecting also the high man-hour factor of the method


Fig. 5: Super-Constellation to $1 / 50$ th scole
The detail and dimensional accuracy of any scale model can be only as great as that given in the engineering data and prints furnished the model-maker. Because templates are used in the process of fabricating virtually every model regardless of what type of construction is used, their preparation is of prime importance, toward both time saving and accuracy of patterns. Herein lies one of the keys to fast model fabrication and of course, cost.

Really good liaison between engineering and the antenna test group (including its model makers) can avoid losses in time and gains in model costs. An accurate model can be made from two or three well done drawings, if they simply give all key dimensions, angles, and sufficient well chosen profiles and section cut lines.

## Part Two Will Appear

In The October Issue

## Portable Calibrating

## Periodic re-calibration of production line indicating instruments is made possible by this mobile unit which has an accuracy 5 to 10 times the instruments being fested

By FREID J. LINGEI.
Electronics Laboratory General Electric Co. Sytacuap, N. Y.

QUALITY production of electronic devices requires maintaining accurate production test equipment and a very important factor in this equipment is the electrical indicating instrument. In normal use, most instruments will maintain their accuracy for a number of years. However, in production test panels this may not be the case. Here because of abnormal conditions such as mechanical shock in moving test setups, possible exposure to motor and transformer fields, extreme overloads due to faulty units, etc., the indicating instrument may be damaged.
This damage may often go unnoticed at the time, although the instrument may be off calibration by as much as $20 \%$. Errors of this type may be caused by broken pivots or jewels, bent pointers, off balance, pulled down magnets, shorted multiplier resistors, etc.

## Minimizes "Dourn Time"

To help insure accurate production test equipment, it is advisable to periodically check the indicating instruments against standards which have an accuracy 5 to 10 times the instruments under test. This check should preferably be made with the test panel in its normal operating location for two reasons. First, to minimize "down time" during check and second, to make certain all the factors which could normally influence the reading are acting on the instrument at the time of check. Some of these factors are panel material, meter position, heat and magnetic fields.

A portable calibration standard to check the production test units was designed and constructed by the

Fig. 1: (fop left) Portable calibrating standard
Fig. 2: Mefers are sponge-mounted in shelf Fig. 3: Mefers can be removed for remofe checks Fig. 4: Resistors are easily occessible

Electrical Section of GE's Electronic Laboratory. One unit of this type has been in use by the Government Equipment Dept. at Electronics Park for over two years. A second unit recently completed is in use at the Utica Works.

## Demeription

The portable calibrating cart is designed for in-place voltage and current checks of small panẹl meters and test equipment. It contains 0.2 of $1 \%$ standard meters with all necessary controls and power supplies.

Ranges:
AC volts $1.2 ; 3 ; 6 ; 12 ; 30 ; 60 ; 120$; 300; 600; 1200 ( 60 or 400 cy )
AC amperes 15; 30
DC amperes 1.2; 12; 30; 60; 120
DC milliamperes $1.2 ; 12 ; 60 ; 120$; 300; 600
DC Microamperes 60; 120; 600
DC volts $1.2 ; 3 ; 6 ; 12 ; 30 ; 60 ; 120$; 300; 600; 1200
VTVM check may be made by means of a precision attenuator for additional ranges of 0.0012 v . to 0.12 v . full scale on 60 or 400 cPS.
Ohm checks for multimeters may be made by means of precision resistors with values of $1 ; 10 ; 100$; $1000 ; 10,000 ; 100,000 ; 1 \mathrm{meg} . ; 10 \mathrm{meg}$; 100 meg.

## Cabinet

All the equipment is contained in a steel cabinet, 3 ft . $55 \mathrm{ft} . \times 19 \mathrm{in}$. with a $2-\mathrm{ft}$. projecting shelf for the instrument standards as shown in Fig. 1.
Ball bearing type rubber tired wheels are provided for easy motion to the various positions. The Variac control panel and standard instrument box are removable as a unit and may be mounted adjacent to the meters under test where space does not permit rolling the whole cart. The weight of the complete unit is approximately 1000 lbs .

## Standarda

The standard meters are normally mounted in a wooden case in the shelf portion of the cart on a sponge rubber pad, as shown in Fig. 2. The

## Standard Checks Test Panel Accuracy



Fig. 5: Schematle diagram of measuring circuil and secondary power distribution
shelf portion of the cart is recessed to keep the standards horizontal and to permit the addition of lighting such as by a small fluorescent lamp along the top underside of the shelf.

The AC meter is a General Electric 0-150 volts; 60-400 cycles; P-3 with a fundamental accuracy of $\pm \mathbf{0 . 2 \%}$ of full scale. A special potential transformer provides the necessary additional ranges and output voltages to give an overall accuracy including the meter of $\pm 0.4 \%$.
A precision voltage divider has its output connected directly to the $1 \mathrm{~K}: 1$ binding posts to eliminate stray pick up. This direct connection helps make possible accurate

VTVM checks down to 1.2 mv full scale.
The de meter is a G.E. 0-50 microammeter with a fundamental accuracy of $\pm 0.2 \%$ of full scale. Ring shunts with Standard Electric Time 100 a. jack connections are provided for the 30,60 and 120 a. ranges. The 30 a . shunt was made from 3 parallel 20 in . sections of 0.128 in . D. manganin wire and the 60 a. shunt from 2 parallel 12 in. sections of 0.160 in . D. manganin wire. The 120 a. section uses a standard 500 mv 100 a. shunt.

The remaining current and voltage range shunts and resistors are connected in circuit by means of G.E. type SB-1 transfer switches to
give an overall accuracy including the meter of $\pm 0.4^{\prime}$. The millivolt drop on the dc current range is 1200 mv for the ranges 60 нa thru 12 a and 600 mv for 30,60 and 120 a .

## Idjuntable Malitipliprn

Each dc voltage multiplier is provided with a small wire wound adjustable series resistor for adjust ment. Each current range has a 200 ohm adjustable resistor in the mv circuit for calibration of each individual range. These adjustable resistors are mounted on the sides of the sliding shelf as shown in Fig. 4 Here they are easily accessible for adjustment yet completely enclosed

## Calibrating Standard (Continued)



Fig. 6: Front panel layout of calibrating cart
within the cart walls when the cart is in use.

A double range 15/30 AC Ammeter, a G.E. P-3 may be connected in circuit when necessary for high ac current checks. Other ac standards up to 120 a . with or without a current transformer may also be used. AC current standards are normally not supplied, except the

15/30 ammeter
A Leeds \& Northrup instrument switch provides quick connection to $\pm 1.0 \%$ composition resistors for ohmeter checks in the range of 1 ohm through 100 megohms.

A detailed diagram of the measuring circuit and the secondary power distribution is shown in Fig. 5.

## Hemote Cherking

The Variac control panel and Standard meters may be removed from the cart for remote checking of small panel meters in test units as shown in Fig. 3. This procedure is followed where it is inconvenient to move the whole cart. When operated in this way, the Function and Range switches are set on the cart and the Coarse and Fine controls set at the remote position. A 12 conductor cable plugs into the back of the Variac control panel and connects to the cart. This provides the necessary power, range resistors, etc.

The standards may also be removed for checking or for shipping separately when the cart is moved by truck between buildings.

All power supplies are self contained and operate from any convenient 15 a., $110 \mathrm{v}, 60 \mathrm{CPS}$ single phase outlet. All voltages and currents are continuously adjustable from the same control panel with both coarse and fine control Variacs. The fine control Variac is connected to the output of the coarse control and feeds the primary of a 10 v filament type transformer. The 10 v secondary is then connected in series with the power supply input to permit constant percentage fine control over the full range of the coarse control Variac. This facilitates accurate setting of instrument readings over the full range of the cart. Front panel layout and markings are shown in Fig. 6.

## Voliage Regulation

Ample input voltage regulation is provided by a large capacity Sorenson model 1000 S voltage regulator.

Important circuits are fused from the front of the panel and pilot lights are provided to help insure correct control settings for the various tests.

For maximum safety, the cart chassis is grounded to the 3rd wire of the 3 -wire 110 v plug. All circuits (Continued on page 126)

## New Automatic Electronic Assembly System

AUTOMATIC assembly of electronic equipment may be the outcome of a machine development which has recently been demonstrated by the United Shoe Machinery Corp., 140 Federal St., Boston, Mass. The experimental conveyor-type machine automatically inserts resistors. capacitors, jumper wires, and eyelet-type terminals in printed circuit wiring boards. Operating at the rate of 9600 boards in an 8 -hour day, United's experimental automatic assembly machine is readily adjustable to provide for changes in circuitry and components. It is mechanically straightforward and rugged equipment. designed to handle standard electronic components with simplicity of change-over and maintenance.

In its present state of development, printed wiring boards up to $5 \times 8 \mathrm{in}$. are loaded by hand onto pallets or frames by which they are conveyed to each of the several inserting stations. At each of these stations, a pallet is stopped and one
component automatically inserted in any desired location on the board. As it now stands the experimental machine will insert only resistors, tubular and disc ceramic capacitors, jumper wires, and eyelets. However, if United's concept of automatic assembly in the electronic field as shown in the experimental machine meets the requirements of the industry, it is expected that the now incomplete development will be carried further.
The complete system for automatic assembly of electronic equipment as United now sees it will include means for automatic placement of PW boards in the pallets, additional inserting heads for tube sockets, coils, and other components, as well as stations for dip soldering, testing. and pallet unloading, together with provision for automatic return of pallets to the loading station.
An important part of United's experimental system is the "belting" of pigtail components in order to (Continued on page 128)


System for cutomatie assembly of electronic equipment employs several stations to insert various components in prinied wiring boards


Key to automatic insertion of axial lead components is belting machine which feeds parts through lead straightening and taping sections. Belfed components are then wound on reel


Fig. 1: (1) Underside of compaci remote amplifier. Fig. 2: (f) Volume limiter fer remole line is useful for 20 db inpur range

## Remote Unit for Sportscasts

## Communications type volume limiter and amplifier keep constant level even when excifed voice peaks vary over 15 db . Compact unit easily consfructed

FOR the engineer in a small broadcast station, the play-by-play sportscast is often the most difficult to handle manually. Stations generally are equipped with a volume limiting amplifier just preceding the transmitter audio system. but this provides only about 5 db of compression for an output increase of 1.5 db . While this is ample for musical programs and general studio performances, it is not sufficient for play-by-play sportscasts where excitement and enthusiasm often cause the average voice peaks of the sportscaster to vary as much as 15 db .

A volume limiter such as shown schematically in Fig. 2 can be used to great advantage placed in the re-
mote loop under these conditions. It is the forward acting type developed primarily for communications systems, but adapted for broadcast by using push-pull circuitry to allow better low frequency response without the compression transient that is produced in the single ended version. A forward acting compressor is to be preferred because it can be adjusted to provide an output with negligible increment over an input range of up to 20 db . It can be placed in the remote line, either at the broadcast station or at the remote location. The latter is desirable because it will guard against over-driving the remote line, something that must be considered when the remote program must be trans-


By EII IIIIA:R. Ti.chnical Directur
 II piser. Idaltu"
mitted over a carrier-current loop. For consenience in transporting and setting up the remote gear, the number of physical units should be kept to a minimum-preferably one. Figs. 1, 3 and 4 show a remote amplifier which includes the limiter described, associated amplifiers and the power supply built into one compact case. As is shown in the (Continued on page 132)

Fig. 3: Complefe circuit of remote limiter-amplifier used to keep constant leval at sports broadcasts. See text for complete parts lists


## New Components \& Equipment

## WWV RECEIVER

A receiver constructed to receive radio stations WWV and WWVH, time and frequency standard stations of NBS, is crystal controlled, having six bands at $2.5,5,10,15,20$, and 25 mc , selectible

by panel switch. The circuit features dual conversion and narrow band i-f stages for maximum selectivity and image rejection. Four i-f stages insure adequate sensitivity for good reception under the most difficult conditions. A cathode coupled crystal oscillator circuit controls fine tuning for the six plug-in crystals. Shasta Div., Beckman Instruments Jnc.。 P. O. Box 296, St. A., Richmond. Calif.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## VOLTMETER

The Model 104 voltmeter for carrier system installation and maintenance measurements, covers the frequency range from 5 to 150 kc and has a frequency calibration accuracy of $\pm 1 \mathrm{kc}$. Signal measurement range is $-80+42$ dbm at 600 ohms impedance. Signal

measuring accuracy is $\pm 2 \mathrm{db}$ over the range $-70+42 \mathrm{dbm}$. Input impedance is 10,000 ohms in the pass band, and higher in the rejection band. Resporse is down 3 di at 300 cps off resonance, 45 db at 1.500 cps off resonance. Reads direct in dbm, ard is designed for operation into an unbalanced 600 ohm line. Sierra Electronic Corp., 1050 Brittan Ave., San Carlos 2, Calif.-TELETECH \& ELECTRONIC INDUSTRIES

## ROTARY SWITCH

The Type JV-9000 series power switch is designed to meet the requirements of medium high power, accuracy, and long life needed in transmitter, industrial control and balancing, laboratory test-

ing, power supply converter, and other special applications. Rated at 750 w at sea level ( $71 / 2 \mathrm{amps}, 60 \mathrm{cps}, 115 \mathrm{v} \mathrm{ac}$ ), 375 w at $35,000 \mathrm{ft}$. Has been used up to 20 mc . Breakdown point, 3,000 v RMS60 cps . The unit is available in 1 pole 2 to 17 positions per section or 3 pole 2 to 5 positions per section up to six sections Centralab, Div, of Globe-Union Inc., 900 E. Keefe Ave., Milwaukee 1. Wis.-TELE-TECH \& ELECTRONIC INDUSTRIES

## TRANSFORMERS

Linear differential transformers, designed to detect and measure linear displacement, have output with core displacement of 0.05 v per thousandth in. i.e., 0.001 v will indicate a movement of

0.00002 in. Designed for medium audio frequencies at input voltages from 3 to 10 v . Used with oscillators, oscillographs, oscilloscopes, or vacuum tubes, the units enable electrical measurement of mechanical motion in such applications as temperature and pressure variation bellows, contour surface wear, membrane motion, etc. Gudeman Co., 340 W. Huron. Chicago 10, III.-TELETECH \& ELECTRONIC INDUSTRIES.

## ETCHED CIRCUITS

"Flying M" etched circuits eliminate hand wiring by etching the desired pattern on a metal clad laminate. It is said that that the process, in many instances. saves labor costs up to $50 \%$; and also

reduces weight and space. "Flying M" etched circuits are now in use in amplifiers, tape recorders, vacuum tube voltmeters, TV receivers, signal generators, hearing aids, transmitters, and other electrical ar.d electronic devices. The producers of these circuits also of fer many pre-fabrication services. Miller Dial \& Name Plate Co., 4400 N. Temple City Blvd., El Monte, Calif.-TELE-TECH \& ELECTRONIC INDUS. TRIES.

## POLAR RELAY

The series PTW polar relay, developed as an improved replacement for the W.U. type 17 relay, measures $2^{21 / 116}$ in. in height plus $5 / 8$ in. projection of the banana-type plug connections. The unit can be quickly ard easily adjusted to

meet specified performances. Coils are in four sections. Sensitivity as low as 2 ma can be obtained by placing all coil wirdings in series-aiding. "Break-tomake" travel time, when the armature is in transit touching neither contact, varies with the degree of energization of the operating wirdings. Automatic Electric Co., 1033 West Van Buren St., Chicago 7, Ill.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## New Electronic Products

## COUPLING UNIT

Type 564-A coupling unit enables coupling an external oscillator in the new type $260-\mathrm{AQ}$ meter for $Q$ measurements in the audio and supersonic ranges. Input impedance-when

connected to the Q Meter-is 500 ohms; output impedance-provided by voltage injection circuit of Q meter- 0.3 ohms; frequency range 1 kc to 50 kc ; input voltage requirements-variable up to 22 v. Case is $11 / 4 \times 21 / 2 \times 33 / 4 \mathrm{in}$. Provides binding posts for connecting the external oscillator; also a coaxial cable and BNC connector to the Q meter. Buonton Radio Corp., Boonton. N. J. -TELE-TECH \& ELECTRONIC IN DUSTRIES.

## SERVO CONTROL MOTOR

The Model 1050 servo control motor, just introduced, was designed to operate Borg "Micropots," but can be used in other servo applications. The unit is approximately $11 / 2 \mathrm{in}$. in diameter, $11 / 2$ in. long with a $1 / 2 \mathrm{in}$. shaft extension. Minimum locked rotor torque is 0.82

oz.-in. in either direction when operated at 115 v . Mounts firmly with three mounting screws tapped into the housing. Induction type, 2 phase, 115 v 400 cPs, 5500 rpm no-load speed. Borg Equipment Div., The George W. Borg Corporation. 120 S. Main St., Janesville, Wis.-TELE-TECH \& ELEC TRONIC INDUSTRIES.

## CAPACITOR

A new alkyd resin, molded case capacitor of the "postage stamp" type was recently introduced for radio, television and various types of electrical and electronic equipment. Temperature range is

up to $100^{\circ} \mathrm{C}$ with full rated voltage. The "Mylar" dielectrics have an insulation resistance of 50,000 megohms minimum, 300 percent more capacity, and equal or exceed all other electrical requirements in JAN-C-91. The company now has two molds capable of producing eight sizes. Condenser Products Div., New Haven Cluck and Watch Co., 7517 N. Clark Si., Chicago, III.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## TV TUBE TESTER

The recently announced TV-20a television tube tester is an improved version of the TV-20. The new unit has listings of all recently announced color TV tubes, increased sensitivity to all types of internal leakage and gas, and a rugged new leatherette case. The instrument can test an entire set of TV tubes in a few minutes. Has no roll chart, practically no set-up. Further it has a large 4 -in. meter, a positive "gas" detection circuit, dynamic conductance, and automatic "line" compensation. American Scientific Development Co., P. O. Box 104. Fort Atkinson, Wis.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## POTENTIOMETER

"Jeco" precision potentiometers can check voltage ratios to an accuracy of 5 parts per million, angular rotation 8 parts per million in $360^{\circ}$. The units can be built to operate continuously at $200^{\circ}$ C. and to withstand shocks up to 100 G 's or more in any direction without momentary opens. It is said that these potentiometers, for a given diameter and kind of wire, can have up to 5 times the total resistance of other such units of the same dimensions. Sizes range from $14 / 8 \mathrm{in}$. to 15 in . in diameter. Jarvis Electronics Corp., 6058 W. Fullerton Ave.. Chicago 39, Ill.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## CONSOLE RECORDER

The Model F6C console recorder has direct-writing oscillograph. Frequency resporse with compensated amplifiers is flat from 0 to 80 cPS. Suitable for many computers now on the mar-

ket. Six charts speeds are available: $0.5,1.0,2.5,5.0,10.0$, and $25 \mathrm{~mm} / \mathrm{sec}$ with an electrically operated $10-1$ changer. Oscillograph is available for curvilinear ink recording, curvilinear electric recording, or rectilinear ink recording. Console is available with ac, dc, high gain. de low gain, or strain amplifiers. Photron Instrument Co., 6510 Detroit Ave.. Cleveland 2. O.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## OVEREND TENSION

A new overend tension for winding fine wires in multiple is said to maintain higher winding speeds and reduce wire breakage at the start of winding. A compensator takes up slack after the coil is wound and the arbor stopped. Mounting makes tension-to-line adjust-

ment easy. The devices can be used with the Universal No. 102 winder on fine wires from 38-50 (B\&S) in producing spool wound coils, and the Nos. 104, 107, and 108 coil winders for producing paper insulated coils. Liniversal Winding Co., P.O. Box 1605, Providence, R.I.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## New Test Instruments For

## IMPEDANCE BRIDGE

The vector impedance bridge, recently announced, measures impedance, capacity, inductance, resistance, and transformer turns ratios. An internal source provides the signal for the unit.


Salient features are direct reading of vector magnitude and phase angle. Because the phase arm presents 1,000 ohms impedance regardless of position of phase switch, the phase arm and magnitude can be varied without interaction. The prominent reactive component can be determined as capacitive or inductive by noting the position of the function switch that null is detected. Republic Engineering Co. Inc., Beltsville, Md. -TELE-TECH \& ELECTRONIC INDUSTRIES.

## SURVEY METER

The Model 2582 "Samson" self-contained, battery-operated, ionization type survey meter has been announced for surface measurement of any low-level alpha, beta, or gamma contamination (C-14, I-131, S-35, radium etc.). It features a 40 cu . in. ion chamber with a $0.5 \mathrm{mg}^{\prime} \mathrm{cm}^{2}$ rubber hydrochloride win-

## VOLTMETER

The Model 615 digital vacuum voltmeter is a $\mathbf{1 \%}$ instrument with a digital display of information. Performance specifications: Ranges, ac and dc, 0-3, $10,100,300,1,000 \mathrm{v}$, with auxiliary

probe, $0-30,000 \mathrm{v}$ dc. Resistance, $0-100$, $1,000,10 \mathrm{~K}, 1000 \mathrm{~K}, 10$ megohms. AC frequency response; 30 cps to 50 mc (with auxiliary probes). Input inıpedance, 10 megohms. Power Supply Requirements, $115 \mathrm{v}, 60 \mathrm{cps}$. Indicator, 3-digit counter with illuminated decimals and polarity sign. Approximate weight, 7 lbs. Case size, $8^{1 / 2} \times 11 \times 7^{1 / 2} \mathrm{in}$. Hycon Mfg. Co., 2961 East Colorado St., Pasadena 8, Calif.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## OSCILLOSCOPE

Model ES-520,5 in. general-purpose oscilloscope has a push-pull vertical and horizontal drive, $20 \mathrm{mv} / \mathrm{in}$. vertical sensitivity, 50 mv in, horizontal sensitivity; a 3-step, frequency-compensated, vertical input attenuator; vertical frequency

## VOLTAGE MULTIPLIER

The Model 620 extra-high voltage multiplier enables measurement of alternating potentials up to 60 kv peak with all types of company voltmeter (and other makes) and serves as a po-

tential divider with most CRO's for displaying high potential waveforms. An applied voltage is attenuated 10,000 to 1 with $2 \%$ accuracy between 60 cPS and 6 mc . Connection is made to an associated instrument by a 6 ft . cable. Input capacitance is $38 \mu \mu \mathrm{f}$. Shunt resistance is above $10^{6}$ megohms. Ballantine Laboratories Boonton, N. J.,-TELE-TECH \& ELECTRONIC INDUSTRIES.

## PANEL METERS

Panel meters will be made with dc ranges showing any practical scale from $300 \mu$ a to 800 ma . These sealed, ruggedized units will be available in two sizes. $21 / 2 \mathrm{in}$. and $31 / 2 \mathrm{in}$. Pre-production approved by the Government. Current production at two company plants. The

dow protected by a stainless steel grill. Three alpha ranges cover any count rate from 0 to 12,500 counts min . corresponding to radium gamma ranges of approximately 0 to 18 milliroentgens $/ \mathrm{hr}$. The unit will detect alphas with energies as low as 1.0 mev ; betas as low as 15 kev. Nuclear Instrument \& Chemical Corp., 223-233 W. Erie St.. Chicago 10. III.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## The Electronic Industries

## ANALYZER

Model 901 transconductance analyzer and circuit simulator can measure transductance under all kinds of operating voltages. Further, it can reproduce any type of static or dynamic tube

characteristics. Simple push button switching applies the appropriate voltages to each tube element from a highly regulated power supply. The instrument is entirely self-contained, and does not require accessories. Detailed information is available at Neu London In. strument Co., P. O. Bux 189, New London. Conn.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## DIGITAL VOLTMETERS

Automatic digital voltmeters have been designed in standard models ranging from 2 to 5 in-line digits in voltage ranges from 1 mv to $1,000 \mathrm{v}$ with automatic ranging indicated by moving decimal point. Input impedance, 1.000

megohms: accuracy, 1 digit; average reading time, less than 1 second. Models may be specified to operate printers, electric typewriters, or IBM punches. Only 10 vacuum tubes control stepping switches to balance input voltage against reference. Dimensions: standard rack and panel, $51 / 4 \times 19 \mathrm{in}$. Electro Instruments, Box S. Old San Diego Station, San Diego, Calif.-TELET'ECH \& ELECTRONIC INDUSTRIES.

## TESTER

The Model 631 volt-ohm-milliammeter and vacuum tube voltmeter combination comprises a single unit with the following characteristics: 34 ranges; V-O-M, 10 ac-dc $v$. Six direct current

resistances from 0.1 ohms to 150 megohms-decibel and output readings. VTVM. four. including 1.2 volt range for grid voltage and accurate discriminator alignment. First division mark at 0.02 v. Sensitivity. V-O-M, 20,000 ohmes on de, 500 ohms/v on ac; VTVM, 11 megohms. One switch selects all ranges. Triplett Electrical Instrument Co., 122 Main St., Blufton, Ohio. -TELE-TECH \& ELECTRONIC INDUSTRIES.

## PRESSURE BALANCE

Type 37-10:3 precision pressure balance provides a laboratory standard for precise calibration of pressure pickups with accuracy comparable to the highest quality manometers. A visual digital readout counter with digits to

1.000 makes possible immediate readings. Readings can be held when required, or attached to electrical tabulating devices through a built-in electrical analog dc 10 v output. Three types of readings are possible-differential pressure, gage pressure, and absolute pressure. Consolidated Engineering Corp., 300 N. Sierra Madre Villa, Pasadena 8. Calif.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## MULTI-TEST AMPLIFIER

Model 2000 is a VSWR amplifier with multiple test functions that features crystal current measurement for monitoring CW levels. Has $\mathbf{1 0 0}$ на Weston meter; dual channel inputs that

eliminate continuous cable changes, sensitivity 0.3 mv for full scale deflection. 60 db range calibrated to $\pm 0.1 \mathrm{db} 10 \mathrm{db}$ step. crystal or bolometer inputs, plug-in filter units from 250 to 2500 cPs. The culmination of extensive research, it is said, the unit affords greater ease of operation with faster and more accurate readings Waveline. Inc., Greenbrook Rd., Caldwell. N.J. - TELE-TECH \& ELECTRONIC INDUSTRIES.

## OSCILLOGRAPHS

Multichannel direct-reading oscillographs, recently announced, feature four and six channel systems. An electrically controlled chart drive enables instantaneous speed selection. Range of sixteen accurate chart speeds from one

$\mathrm{cm} / \mathrm{hr}$. to $\mathbf{2 5 0} \mathrm{mm} / \mathrm{sec}$. is possible Speeds are selected by front panel control or by an accessory remote control unit. Both inkwriting and combination ink and electric writing units are available. Electro-dynamic penmotors record static and dynamic phenomena from de to 100 cPs when used with amplifiers. Brush Electronics Co.. Equipment Dept. RT-1, 3405 Perkins Ave., Cleveland 4, Ohio-TELE-TECH

## New Test Instruments

## VTVM

The new Model VM-1 is a true peakreading vacuum tube volimeter capable of measuring pulses with very short duty cycles. Designed to operate over the band width 50 cPs to over 100 mc , the instrument can be used to measure positive peak, negat.ve peak, or peak-

to-peak voltage of a wave form. Voltage range of the unit is 100 v full scale; with available multipliers, to 30 kv . The measuring elements are housed in a probe to allow direct connection to the voltage source. Gertsch Products Inc., 11846 Mississippi Ave., Los Angeles 25. Calif.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## IMPEDANCE METER

The Model 541-A (TS-710 TSM) crystal impedance meter is designed to measure directly the effective resonance and anti-resonance of quartz crystal units. It replaces the older Model 460 (TS-537 TSM). It consists of a twotube resistance-capacitance coupled os-

cillator covering a frequency range of 10 to $1,100 \mathrm{kc}$ in five bands. The three variable adapters have maximum resistance values of $500 \mathrm{k}, 50 \mathrm{k}$, and 5 k . Two other adapters are furnished that enable testing crystal units contained in HC5 U and octal base holders. Radio Frequency Laboratories. Inc., Engineering Dept., Boonton 20. N. J.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## SPECTRUM ANALYZER

The FXR spectrum analyzer, designed for greater accuracy and convenience in microwave spectrum analysis, applies push-pull deflection to both horizontal and vertical plates. The r-f heads are interchangeable, and the r-f amplifier has a center frequency of 20 mc


With the use of a cascade input, overall gain is 110 db . Visual indication of spectra is provided by a 5 in . oscilloscope tube with a sweep rate of 10 to 20 cPs. Frequency dispersion is 1 to 10 $\mathrm{mc} / \mathrm{in}$. with pulse lengths of 0.2 to 2.0 usecs. F-R Machine Works. Inc., Electronics \& X-Ray Div.. 26-12 Borough Place, Woodside i7. N. Y.-TELETECH \& ELECTRONIC INDUSTRIES.

## MODULATION METER

The 205.A FM medulation meter, now in production, his a tuning range of 25 mc to 500 mc . It measures FM deviation plus or minus $0-25 \mathrm{kc}$, and its kc-calibrat:d. 3 in. meter is accurate within $10 \%$ full scale. The instrument can also be used as a relative field-

strength meter. A built-in speaker is provided for aural checking of transmitter quality, and an oscilloscope connection enables one to "see" the modulation. Dimerisions: $7 \times 12 \times 71 / 4 \mathrm{in}$. Weight, 14 lbs . Lampkin Laboratories, Inc., Bradenton 17, Florida.-TELETECH \& ELECTRONIC INDUSTRIES.

## TRANSISTOR ANALYZER

A new instrument, called the trans:stor analyzer, has been developed which can directly measure the circuit constants of transistors while they are in operation. The unit is small, light weight, and portable, and can be used to tist any type of junction transistor

at low frequencies. Generally, small signal T-equivalent-circuit parameters are the basis for transistor operation analysis and design. The new instrument makes direct measurements of these parameters. Armour Research Foundation of Illinois Institute of Technology. Technology Center, Chicago 16, III.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## VIBRATION ANALYZER

The Model 400 electronic vibration voltmeter is capable of balancing rotating parts at speeds up to 5.000 rpm and tracing any vibration up to $20,000 \mathrm{cpm}$. Analysis of high frequency vibrations resulii ig from defective bearings, electric motor torque pulses, transformers,

etc., is made through electronic frequency and displacement circuits which render data on panel meters. Accuracy tn $10 \%$ is maintained on all three ranges, 0.001 in ., 0.01 in ., and 0.10 in . full scale. International Research \& Development Corp., 168 E. Hosack St.. Columbus 7, Ohio.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## New Electronic Equipment

## zELAY

Balanced armature, permanent maget type, very high sensitivity relay is internally shock and resistant mounted. crew-on cover is gasket sealed. Size, ${ }^{3} / 4 \mathrm{in}$. diameter, $21 / 4 \mathrm{in}$. long. Variations,

infinite for 0.2 ta to 10 amps , or 0.1 mv to 500 v . Higher volts or ampere sensitivities with external multipliers. Accuracy, trip point to $1.0 \%$; differential, less than 1.0.\% Resporse time 50 sec. to 5 second time delay. Contacts, SPST or SPDT. Standard rating 5 to 25 ma ; dc.; other ratings to $1 / 2 \mathrm{amp}$. Weight, 4 oz . Assembly Products, Inc., Main at Bell St., Chagrin Falls, O.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## UHF-VHF TUNER

The Model UV 13 is a combination tuner for covering the entire UHF and VHF TV bands allotted by the FCC. When "plugged in" to each other, two complete tuners become one homogeneous unit, or when UHF is not desired. the VHF can be used alone. No stringing, soldering, or adjustment of any

kind is required when the UHF unit is added or removed. A firm mechanical connection is made by tightening two accessible screws. Tuning and dialing are accomplished on one set of concentric dial and knob combinations Sarkes Tarzian. Inc., B?oomington. Ind. -TELE-TECH \& ELECTRONIC INDUSTRIES.

## COMPUTER

The new Model CRC 102-D retains the small size and easy maintenance of the former Computer Research Corp. CRC 102-A computer. It accepts data from an electric typewriter, punched

paper tape. magnetic tape, or punched cards. All data is entered into the machine, operated on, and printed out in decimal form. A new 200 character-per-second paper tape reader and a new 60 character-per-second paper tape purch are available as accessories which greatly reduce machine filling time and problem change-over time. The National Cash Register Co., Elec tronics Div., 3348 W. El Segundo Blvd. Hawthornc. Calif. - TELE-TECH \& ELECTRGNIC INDUSTRIES

## POTENTIOMETER

The RL11C wire-wound potentio meter provides two output voltages proportional to the sine and cosine shaft rotation angle. The unit is equipped with ball bearings, precious metal contacts and silver slip rings. It has a 360 continuous mechanical rotation. Standard winding resistance is 16,000 ohms

$\pm 10 \%$. At $65^{\circ} \mathrm{C}$, the rating is 1.5 w . Life expectancy is 350,000 revolutions, minimum. The output wave is pure sine or cosine. Deviation is less than $\pm 0.5 \%$. Rawson Electrical Instrument Co., 110 Potter St., Cambridge, Mass.-TELETECH \& ELECTRONIC INDUSTRIES.

## VSWR INDICATOR

The Model 110A X-band indicator consists of an oscillator, a wavemeter, a forward and reverse directional coupler with bolometer take-offs for source and reflected power, and a

direct-reading ratiometer having dou ble scales calibrated in VSWR. The accurate wavemeter supplements the approximate calibration of the directreading oscillator dial. Frequency coverage, X-band, continuous 8.500-9,600 мс; r-f source klystron type, V 260; accuracy overall, $2^{\%}$ : directional couplers, directivity greater than 40 db . Indication of VSWR is shown on two direct-reading scales. The Low scale covers 1.06 to 1.3; the High scale1.3 to 2.5. Color Television Inc.. 973 E. San Carlos Ave., San Carlos, Calif. TELE-TECH \& ELECTRONIC INDUSTRIES.

## SIGNAL GENERATOR

The Model B signal generator is designed to check equipment requiring multiple pulse modulated microwave frequency energy with widths and delays that can be accurately controlled. The unit consists of 4 interchangeable $r-f$ heads that provide coverage from 950 to $10,750 \mathrm{mc}$, with single dial, direct-

reading tuning controls. A direct-reading r-f attenuator is provided in each $r-f$ head. The modulator portion furnishes five independent pulse channels that are adjustable in time and width. Polarad Electronics Corp., 100 Metropolitan Ave., Brooklyn 11, N. Y.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## Survey of

## New Products of the Month

## Capsule summaries of latest electronic developments provide handy reference for engineers in the market for new equipment and components

PULSF, TRANSFORMERS. The MDT series 142 King St, by Magnetics Research Co., magnetic drum or tape recording heads, is available in primary-secondary turns to match any head to any driving tube.
CAPACITOR. Miniature model being produced by Hermaseal Co., 1101 Lafayette St. Elkhart. Ind., in a range of 0.4 to $0.8 \mu \mu \mathrm{f}$. glass stator directly soldered to standard

PICKUP ARM. Model 190, redesigned to require less, mounting space. Retains low
vertical mass, static and dynamic balance, vertical mass, static and dynamic balance,
absense of armi resonance of original design. absense of armi resonance of original design.
Now requires 17 m 17 in. motor board. PickNering \& Co.. 309 Woods Ave., Oceanside,

RATF-OFF-TURN TABLE, by Genisco. Inc. 2233 Federal Ave, Los Angeles 64, Calif.,
improved by strobe monitoring system, has improved by strobe monitoring system, has
variable range from 0.01 to $1,200^{\circ} / \mathrm{sec}$. with variable range from 0.01 to 1,200 sec. METER MECHANISM by Marion Electrica Instrument Co.. Manchester. N.H.. to provide instrument stability, etc., employs an endpivoted coil assembly and a bearing shaft in a shielded inagnetic structure to produce 6,000 gauss in a single air gap.
POWER SUPPLY. The "Rodic", mobile iransmitter Type RO-2, by Tech LaboratorN.J., offers $75 \%$ efficiency, 5 to $8 \%$ regulation. and surgeless low-starting current. Operates from 6 v battery. Outputs, 520 v 320 ma or 33 v at 320 ma .
CONNFCTORS, series VR and VP, made by Viking Electric Co., 1061 Ingraham St.. Los cally-sealed circular units with a Kovar type glass seal fused to a contact base and steel body. Contacts, gold over silver.
D.C. POWF:R SUPPLY, PS-3. by Hugo Meyers Co.. Inc., 39 West 60th St., New York 23 , despite input line fluctuations of 90 output despite input line fluctuations of 90 to 130 v , tinuous operation. Dimensions, $4 \times 5 \times 8 \mathrm{in}$.

DELAY LINE, Model V-104, by Control Electronics Co. Inc. 1925 New York Ave.. Huntington Sta., New York, provides a variable delay from $0-1.2 \mu \mathrm{usecs}$ to applied wave forms. Overall accuracy is 5 m . Rise time

CAPACITORS, electrolytic Types MT and SMT. are low current drain units especially designed by Illinois Condenser Co.. 1616 North Throop St., Chicago 22, III., for use with transistors, printed circuits, hobby
models, etc.

NETWORK BOARD, Model P100, by Instrument Research Co.. 371 Harvard St., Camand 3 capacitance decade units. Each covers 0 to 1.111 .000 ohms in 100 ohm steps. Panel $19 \times 21$ in.

[^3]POWER SUPPLY, Model ME/PP-11, is a Maryland Erequency stabilized unit made b Md.. provides 60 CPS . 115 or 230 v source to operate frequency critical devices requir ing 200 w
METAL PATTLRNS. Hammered metal effects in any metal sheet or strip up to 38 Metals Corp are available at Ridgidized mill-finish as rolled, colorized, high-lighted and painted surfaces.
SERVO DEMONSTRATOR UNIT. Model MA-93001, designed for training purposes by Magnetic Amplifiers. Inc.i 632 Tinton synchros, and tachometer assembly contain ing magnetic amplifier. demodulator, stabilizer, and terminals
SWEEP GENERATOR. Model WR-86A. wide range sweep instrument for designing, testing and servicing UHF TV equipment supergenerators according to RCA Tube Division. Harrison, N.J.

METER, Model 721, with $2^{12}$ in square Mront. made by Burlington Instrument Co. 151 N . Third St., Burlington. la., is available with dc or ac movemends rectifier type instruments. db indicators, and ac
voltmeters.

TOROID INDUCTORS, by Mico Instrument Co., 10 Trowbridge St., Cambridge 38. Mass., combine the toroid structure with the characteristics of the new "Ferroxcube" 3C core material and are particularly suited the re-
quirements of small size and wide range of quirements of sma

RECORDER-RFPRODUCER, Model 5301, offered by Haller. Raymond and Brown. Inc.. State College, Pa., provides for simultaneously recording radar and air-ground voice
radio signals. Tape record plays back origradio signals. Tap
inal air situation.

PRESSURE RATIO INDICATOR. Model 1985 developed by Kollsman Instrument Corp., -08 45th Ave.. Elm diaphragms that actuate a lever system and a direct-reading indicator.

COUNTING DIAL. Model A-230, miniature produced by S. A. Asquith Co., 2439 Fletcher Dr., Los Angeles 26. Calif.. is designed for use 10 turn or less potentiometers. Requires in. panel spa
either direction.

TEST SOCKET ADAPTERS, by Pomona Electronics Co., 524 W. Fifth Ave., Pomona Calif.. are 7 and 9 pin test socket and 8 pin octal test socket units for measuring volt age, resistance, audio and video, from chassi

ROTARY SOLENOID. No. BD4 "Ledex", by G. H. Leland. Inc., S. Main St., Dayton 4. O., operates like six other models in current production New, unit is $19 / 16$ in. in diam. Available
rotation.

OSCILLATOR, Model G-1. pulse and square wave source, has variable repetition rate rankes. Rates controlled to $1 \%$ accuracy Rutherford Electronics Co., 3707 S. Roberson Blvd., Culver City, Calif
MiLLIVOLTMETER. 213-A. has high sensitivity, stable zero, direct polarity indication dc. zero center movement wjth plus or dc zero center movement winth deflection. Industrial Control co..
Winandanch. N.Y.

FILTERS. Scientific Specialties Corp., Snou and Union Sts., Boston 35. Mass., have announced three symmetrical high-pass onm circuits. Units have tran mission line sections for use in unbalanced transmissiori

SNAP ACTION SWITCH. A sub-miniature Mnit developed by Electro-Snap Switch \& III. for precision applications is in a plastic case approximately $1.0 x^{1 / 2} \times 1 / 4$ in. in size Carries 5 amps at $125 / 250$ VAC $-2^{1} 1_{2}$ amps
at 30 VDC

TEST PROBES. available at the Technica Sales Department. Allen B. Du Mont Laboraories, Inc.. Clifton. N. J. ITypes 2607, 2608. 2609। have BNC terminations on the probe cables that match panel terminations of
Du Mont Types 303 -A. 303-AH, 323. and 329 cathode-ray oscillographs.

PULSF: TRANSFORMER type PT-4, is a our-winding unit with $2: 2: 1: 1$ turns ratios. 120 ohms characteristics impedance, $0.03 \mu \mathrm{sec}$ rise time. 20', droop at ${ }^{1} u$ sec. 40 en at ${ }^{2}$ usec. Made by Berkshire Laboratories, 688
Beaver Pond Rd.. Lincoln, Mass.

DINACORD" is a professional tape re corder for portable use, rack mounting, or console installation by The Pentron Corp up to $10^{1} 2$ in. reels. Conforms to NARTB standards inroughout.
MICROWAVF TESTING INSTRUMENT, of ered by Kearfott Co.. Inc.. 14844 Oxnard St. Van Nuys. Calif. is designed for labora-
torv. production line. field testing and mainenance of X-band radar. Size, $17 \times 10^{1} \frac{1}{2} x$ 13 in .
INSL:LATION TESTER. Multipurpose instru3758 ment : Belmont Associated Research, Inc tures a range of $1-50.000$ megohms at 500 VDC. For insulation resistance measurement Model 250 "Vibratest" is 115 VAC line operated.
POSITION SERVO ACTUATOR, model 205. by Summers Gyroscope Co, 2328 Broadway. Santa Monica, Calif., features torque-to-
inertia ratio of 200,000 rad $/ \mathrm{sec}^{2}$ coupled with an acceleration time constant of 10 milliseconds.
3-GUN CR TUBE, type 53 RAP, is a 5 in which designed for multi-channel oscilloscopes three transient. random, or high frequenc: phenoirena. Made by Electronic Tube Corp.,
1200 E. Mermaid Lane. Philadelphia 18, Pa

INDICATOR EIGHTS for slide base lamps announced by Dialight Corp. fo Stewart Ave.. Brooklyn 37. N. Y. comprise new series designed to employ any telephone tractors or other tools.

VARIABLE INDUCTANCE COILS announced by North Hills Electric Co., Inc., 246-32 54th Ave., Douglaston 62, N. Y. (the series 120) cover the two microhenries to two millihenries range with eleven coils. Each coil is
adjusted by a low loss core. Individually boxed and color-coded.

RELAYS, Part No. 8-4C, by Leach Relay Co., 5915 Avalon Blvd., Los Angeles 3. Calif. are of the miniature telephone type and are designed for all communication applications. Hermetically sealed 9 or 14 pin plug-in or solder terminals available.
POTENTIOMETERS. A new line of subminiature trimmer potentiometers 0.530 in ustable 0.281 in . deep for use an preset ad has been announced by Rockbar Corp., 215 E. 37th St.. New York 16, N. Y.

SPARTAN•TELEQUIP • STEWART-WARNEK•SYLVANIA•STROMBERG-CARLSON - MOTOROLA • TRAD • TRAV-LER • WESTINGHOUSE • WILCOX-GAY • ZENITH • PELCO RADIO • FEDERAL•MEISSNER•INDUSTRIAL TELEVISION•KAYE HALBERT haZELTINE • SETCHELL CARLSON • WELLS-GARDNER • WEBSTER CHICAGO B.M. - WESTERN ELECTRIC COMPANY • SPERRY • FEDERAL TELEPHONE AND IIO • COLLINS RADIO • STANDARD COIL • SARKES-TARZIAN • ADMIRAL•AIR ANDREA • ANSLEY • AUTOMATIC RADIO • NATIONAL-SIMPLEXVORTH • NIELSON • ARVIN INDUSTRIES • OLYMPIC RADIO • PACKARD • CONRAC • CROSLEY • ALLEN B. DuMONT • EMERSON • GAROD • GENERAL - FADA• FEDERAL TELEVISION • HALLICRAFTERS • BELMONT • BENDIX • :K • CAPEHART-FARNSWORTH - CERTIFIED RADIO - HOFFMAN • INTERTELEVISION • MAGNAVOX • MARATHON • PHILCO • PILOT RADIO INGTON • SCOTT • SENTINEL • SPARTAN • TELEQUIP • STEWARTLVANIA • STROMBERG-CARLSON • MOTOROLA • TRAD • TRAV-LER VSE • WILCOX-GAY • ZENITH • DELCO RADIO • FEDERAL • MEISSNER ELEVISION • KAYE HALBERT • HAZELTINE • SETCHELL CARLSON• - WEBSTER CHICAGO•I.B.M.•WESTERN ELECTRIC COMPANY• TELEPHONE AND RADIO•COLLINS RADIO•STANDARD COIL

Centrally located plants at Chicago, Shelbyville, Indiana and St. Louis

## WASHINGTON

## Nems Letter

Latest Radio and Communications News Developments Summarized by TELE-TECH's Washington Bureai

NETWORK PROBE-Since the FCC already has certain regulatory powers over networks and especially over the stations affiliated with the major broadcasting and television networks, it is deemed unlikely that the projected full-scale investigation of the networks by the Senate Interstate Commerce Committee which is being advocated by Chairman Bricker (R., Ohio) will be productive of anything more than lengthy hearings, if the latter ever comes to pass. With Congress adjourning in early August, Senator Bricker was slated to cancel any plans for hearings at this session and was now considering the program of preliminary study of the issues, particularly the relation of the networks to UHF television expansion, during the recess until the next session of Congress in January.

UHF TELEVISION-The Senate Communications Subcommittee, headed by Senator Potter (R., Mich.), decided, in the closing days of this session of Congress, to persuade the radio manufacturing industry to reach an agreement to produce only all-channel receivers as a means of bringing relief to UHF television. In addition, the Potter subcommittee considered the establishment of an advisory group on UHF television to take up the various proposals-such as moving all TV to UHF, moving all TV to VHF, making the allocations more flexible, etc.-and to evaluate the various proposals as to engineering and economic feasibility. Multiple ownership of video stations, Senator Potter told Tele-Tech, would require more study by the subcommittee before a decision could be reached by his group. Elimination of the $10 \%$ federal excise tax on all-channel receivers to pave the way for increased UHF stations is to be pressed at the next session of Congress.

MANUFACTURERS' RADIO-Establishment of a system that will utilize frequencies which are now lying idle but which can be used in certain areas for the greatest benefit to all is being urged upon the FCC as "the next great constructive step to be taken in the development of mobile communications." This proposal was announced by the National Association of Manufacturers' Committee on Manufacturers Radio Use. The NAM body stressed that the FCC refusal to establish a manufacturers' radio service "does not alter the essential facts that radio communication is a valuable tool in productive manufacturing operations" and its full use and development are being severely restricted by the limited number of frequencies now available to the special industrial radio service. The committee was critical of the FCC's "rigid subdivision" for particular groups as an obstacle to effective frequency utilization.

JTAC PROPOSAL-Instead of adopting its spuriou: radiation suppression table, the FCC could make : periodic review of all new developments and the progress of the radio art so that the industry and the Commission might cooperatively formulate the best and most realistic methods of solving these problems. This was proposed to the FCC by the Joint Technical Advisory Committee, headed by A. V. Loughren of the Hazeltine Corp., who worked closely with the Institute of Radio Engineers' President W. R. Hewlett in formulating the JTAC views presented to the FCC.

HIGHWAY RADIO-A revised, nationwide geographical frequency assignment plan for the 14 frequency channels allocated by the FCC for state highway purposes in the $46-47 \mathrm{mc}$ band, incorporating splitchannels, is under intensive study by the two final groups of regional highway communications committees, western and southeastern, which are scheduled to meet in September. The two other regional meetings were held last spring. A national meeting of the American Association of State Highway Officials' Committee, to be held November 10 in Seattle, is slated to discuss progress on the split-channel assignment plan and other matters, including the use of 450 mc equipment, interference to television, the use of industrial television in highway operation and the use of induction radio systems in heavy traffic areas. Radio is considered allimportant by the state and county highway departments in view of the $\$ 50$ billion highway construction plan proposed by President Eisenhower at the recent governors' conference.

POLICE RADIO-The increased value of radio communications to the state and municipal police departments of the nation, as well as the vital role they play in civil defense, provided the highlights of the 20th annual conference of the Associated Police Communications Officers at Pittsburgh in mid-August. Top FCC officials and the Federal Civil Defense communications chief stressed these two themes in principal addresses at the four-day conference with Commission Safety \& Special Radio Services Bureau Chief Edwin L. White outlining the rights and responsibilities of the police radio service. Improvements in equipment was a major theme at the conference with officials of General Electric, Radio Corp. of America, Motorola, Allen B. Du Mont Laboratories, Bendix Radio, Andrew Corp., Shure Bros. and Dictaphone Corp. describing new apparatus and operational developments of importance to the police radio services.
National Press Building
ROLAND C. DAVIES Washington, D. C.

Washington Editor

## SMALL EYE FOR A BIG JOB...

## the <br> GPL PYE STATICON

## the miniature camera tube for new advances in industrial TV



The Staticon (Type GP-6198) is a photoconductive tube, operating on the low velocity scanning principle. It is only $61 / 2$ inches long and 1 inch in diameter, yet has a resolution of 600 lines or better.
The sensitivity of the Staticon provides a clear sharp picture at $f / 2.0$ with only 50 foot-lamberts in the scene.

Developed and refined specifically for high
definition in small size, the Staticon permits major advances in compact, light-weight TV cameras for many uses. Intial cost and operating costs are lower.

Complete specifications of this tube are available from any Gencral Precision Laboratory office. The tube will be olfered to distributors throughout the U.S., as well as in complete camera chains by GPL PYE.


## THE MODERN INDUSTRIAL CAMERA

This GPI. PYE camera uses the new Staticon! It's highdefinition TV for industry and science. All main elements in one case: uses standard TV receivers or monitors for viewing at any distance.
Staticon camera has simple controls, uses AC power, needs only normal lighting.
Full technical details, and demonstration at your site, from any GPL office.

Make the GPL PYE Line a must-see at the Instrument Show! PHILADELPHIA-SEPT. 13-24, BOOTHS 609-611

## General Precision Laboratory <br> INCORPORATED PLEASANTVILLE NEW YORK <br> REGIOMAL offices: chicaco - atlanta - dallas - elendale, california



## FERRITES

You'll be well repaid by getting the facts on a special group of Y'ure Ferric Oxides, developed I by Williams especially for use in the manufacture of ferrites. Williams Ferric Oxides analyze better than $99 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$. They contain a minimum of impuri-
| ties. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty.
| Tell us your requirements ... we'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 30, C. K. Williams \& Co., Easton, Pa.

## WILLIAMS COLORS \& PIGMENTS C. K. WILliAMS \& CO. Geston, Po. E East Sp. Lovis, ill. Emeryville, Gol.

PD.S. Wo oleo produce inN Moonolce hoon duifry, powders for the Electronic Core indusurv. the Magnefic Tapt Roconding IndusLinformation.

## CUES for BROADCASTERS

(Continued from page 75)
come the treble losses in the unequalized loop.
The monitor speaker level is adjusted by the 500 ohm "T" pad (Mallory T500 or equiv.) so that feedback does not occur when the microphone is in use. By placing the speaker at a reasonable distance from the microphone it is unnecessary to use a speaker muting switch. With the resistance values shown, the line level was about a plus 8 VU . A good quality hum free amplifier should be selected with a power rating of at least 10 watts.

## Automatic Time Signal

F. H. FRANTZ, 610 College Drive, Starkville, Miss.

LISTENERS rely heavily on local dradio stations for time. Unfortunately, programming does not always allow a time announcement precisely on the hour, half hour or quarter hour. An automatic time signal is the perfect answer to the problem. This is easily accomplished by inserting small insulated machine screws on the clock face at 12 , 3,6 , and 9 so that the minute hand makes contact as it passes. These screws are tied together and form one switch terminal. A larger screw placed further out on the circumference of the clock face, beyond the minute hand, and extending far enough above the face to make contact with the second hand, forms the second switch terminal. This contact is placed in line with "12." The terminals are open at all times


Minute and second hands open and close this circuit to provide quarter-hour timing signals
except for the short interval when the second hand passes over " 12 " and the minute hand is on one of the four quarter hour contacts. This switch controls a low current relay that feeds a tone signal across the program line.

## Broadcast to PA Transition

J. C. FRENCH, 5243 LaGrange

Rd., LaGrange, Ill.
TT is often found desirable to feed 1 into the PA, whatever program is on the air just prior to remotes.
Economies dictated the use of only one loop, and it had to be used for talkback to the studio. A crystal receiver was built and the output terminated in a mike plug matching the PA. A short antenna provided ample volume.
On cue from the studio, the PA mike channel fed from the crystal receiver was faded out, and the mike channel on the remote unit faded in. Because the PA was also fed from the output of the remote unit on another mike channel, it was automatically connected.
"BIG TV LOOP"


New television pathway, 2,400 miles long, links sfatlons in the northe jstern quarter of the U.S. Net. work provides four video channels, iwo in each direction. along radic relay route extending from N.Y. to Chicago, via Buffalo and bock through St. Louls, Pittsburgh and Washington. Any station in the loop can transmit to or receive programs from other loop stations with minimum of switching

. and for magnetic DATA RECORDING it pays to specify

## Type E $\mathbf{P}$ udiotape

*Extra Precision magnetic re cording tape for telemetering. electronic computers and other specialized applications.

- Specially produced from the most carefully selected materials and ingredients. to meet the most exacting requirements for uniformity and freedom from microscopic voids or imperfections. Available in any desired width, on standard plastic base and on $1,11 / 2$ and 2 mil "Mylar". Ask for Bulletin No. 207.



## BALANCED PERFORMANCE preserves the <br> full brilliance of the original live sound

AUDIOTAPE's oxide coating has been developed and perfected to 1 provide maximum uniformity of response throughout the en tire audible frequency range. This assures utmost realism in the reproduction of every sound - brings out the best in any tape recorder.

Now this same truly fine performance can be obtained in a tape of exceptional strength, stability and permanence - Audiotape on "Mylar" polyester film! Almost unbreakable and virtually immune to extremes of temperature and humidity, this new polyester tape has already found many profitable applications in the professional recording field. It is available on $1, l^{1 / 2}$ and 2 mil "Mylar", in 300 to 2500 foot reels. Ask your dealer for Audiotape bulletin No. 201; or write to:
$\dagger$ DuPont trade mark for their polyester film

## AUDIO DEVICES, Inc.

444 MADISON AVE., NEW YORK 22, N. Y.
Offices in Hollywood - Chisago
Export Depl., 13 East 40th St., New York 16. N. Y., Cables "ARLAB


##  s. and enjoy modern film telecasting!

- Smooth, Silent Operation - No Flutter
- Preview of all Program Sources


## - Color and Monochrome, 16 MM and 35 MM Models

Once you've seen CineScanner operate-witnessed the clear, steady pictures and observed the smooth, silent performanceyou will agree it's the only way to televise film-in monochrome or color!
There are good technical reasons why: The Philco CineScanner employs flying-spot scanning, a technique never equaled in producing high definition pictures. In CineScanner, there's no hot projection lamp to fail or burn the film. Only source of light is a long life, cathode-ray tube with dependable "cold" light harmless to film. CineScanner employs a special continuousmotion film transport mechanism designed by Philco and built by the Mitchell Camera Corporation of Hollywood . . . no noisy. film-damaging intermittents in the CineScanner! Most important of all to color Broadcasters, CineScanner uses economical photo tubes instead of expensive camera tubes . . . and there are no color registration problems in CineScanner!

With the Philco CineScanner, you can start today in monochrome, convert tomorrow to color-with no obsolescence of equipment! Get full technical data on this new and greatly improved method of televising films and slides. Contact Philco, Dept. "T" today.


$\rightarrow$
Interior view of the Alm unit showing precision film transport mechanism, sound head and the simplicity of the optical system.

Simplifled diagram showing the basic principles of CineScanner operotion.


[^4]
## NewComponents\&Equipment

## RECTIFIER TUBE

Type 6508 mercury vapor rectifier tube, designed for relatively high voltage and current operation, has a peak inverse voltage rating of 21 kv and voltage drop of 14 volts. The cathode is directly heated and oxide coated. The

## CAPACITORS

New capacitors, "Tekaps", are most practical in values of $0.5 \mu \mu \mathrm{f}$ and $10 \mu \mu \mathrm{f}$. Extremely small, they are easily manufactured to close tolerances. The capacitors have a zero temperature coefficient from $-60^{\circ}$ to over $300^{\circ} \mathrm{C}$. and a

dielectric constant of 2.0 at all operating frequencies. Power factor at all operating frequencies is 0.0005 . Moisture absorption factor is zero. Silver plated terminals allow soldering directly into circuits, but leads can be furnished if desired. Anchor Radio Corp., 2215 S. St. Louis Ave.. Chicago 23. III.-TELETECH \& ELECTRONIC INDUSTRIES

## CARD RECEPTACLES

New printed card receptacles offer ease of removability and changeability, use of multi-wire connection to terminals, and dependable performance after repeated insertions. Card thicknesses range from 0.061 to 0.071 . The contact, or polarizing insert, snaps in firm position into the molded body. It is easily removed or its position changed by pinching the tongue and pushing out. The insulating body is available in mineral-filled melamine, Alkyd 440 A, or Diallyl Phthalate. U. S. Components Inc., 454-462 E. 148th St. New York 55, N. Y.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## TELEPHONE SYSTEM

The "Telecom" 4A23 private, irdependent, automatic dial system, consists of an automatic switching unit housed in a $10 \times 22 \times 28 \mathrm{in}$. dusttight cabinet, and the telephones. Operates from standard $115 \mathrm{v}, 60 \mathrm{cPS}$, ac power. A suitable transformer can be supplied where power source has a different voltage or frequency. No multipair cables or junction boxes. Single pairs of wires to each station can tie in up to 23 telephones. An added "Telecom" paging unit makes any telephone a "mike" for a public address system when a preset code number is dialed. Telecom Inc., 1019 Admiral Blvd.. Kan. sas City, Mo.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## AMPLIFIER

The plug-in type "Uni-level" ampl fier can be used as an average aud level control device or a peak level cor trol amplifier. Used as an average aud level control amplifier, with the avera: program material set for a normal lev.

he output will be compressed for incoming signals exceeding the preset level and expanded for signals below it. Differences between recordings, film projectors, microphones, or network signals are automatically controlled su that the amplifier audio output level remains relatively constant without apparent sound distortion. General Electric Co., Electronics Park, Syracuse. N. Y.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## SUBMINIATURE TOROIDS

Three standard lines of subminiature toroids are available packaged for MIL-T-27: QL050 series, vacuum wax im. pregnated with flexible high temperature plastic leads. Size, $5 / 8 \mathrm{in}$. O.D

$1 / 8 \mathrm{in}$. I.D., $9 / 32 \mathrm{in}$. high. MP 050 series molded plastic units with axial wire leads suitable for point-to-point wiring or terminal board mounting. Size, ${ }^{11 / 16}$ in. high, ${ }^{11,16}$ in. O.D. HS050 series, in hermetically sealed, $7 / 16 \times 11 / 16404$ in. cans with wire leads. Wired in subminiature sockets or soldered to printed circuit boards. Communications Acces sories Co., 110th St. \& 71 Highway. Hickman Mills, Mo.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## UUARTZ CRYSTALS

The G-12A "Glasline" unit is a rently developed precision quartz crys| design, which, according to U.S overnment laboratory tests, varied in equency less than 1 part in 100 million hen measured continuously for two

weeks. This corresponds to a rate of change of less than 1 second in three years. The unit also employs new techmiques in processing and packaging. It was developed to meet the demand for hetter frequency control necessary to ininimize the increasing congestion in the radio spectrum. James Knights Co, Sandwich. III.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## GRID DIP OSCILLATOR

The Model 59-UHF megacycle meter is designed to measure the resonant frequencies of passive circuits. Also, to serve as an auxiliary signal generator, in oscillating or absorption marker for

ise with a sweep-frequency generator, wavemeter or hetrodyne frequency leter and as a low sensitivity receiver field-strength meter for tracing surces of spurious oscillations in retivers and transmitters. Rated at 30 w . lperates from 117 v, 60 cps . Employs separate power supply and indicatig unit. Measurements Corporation, Chomas A. Edison Subsidiary, 116 Ionroe St., Boonton, N.J.-TELEECH \& ELECTRONIC INDUSTRIES.

## CONNECTORS

The series "FHL" 6-point connectors, with a sea level breakdown of 4,000 $v$ RMS and a current rating of 5 amps , have an 8 oz . maximum disengagement force without sacrificing mv drop; thus reducing breakage encountered when

contact forces are too great. A rugged center key, plus a one-way contact arrangement, provides positive polarization. Two vibration rings with matching detent action provide a positive "lock" against accidental disconnection. Hoods are in aluminum (with cable clamps) or molded insulating material. DeJurAmseo Corp. 45-01 Northern Blvd., Long Island City 1, N.Y.-TELE-TECH \& ELECTRONIC INDUSTRIES

## RESISTOR

The new "Economy" resistor is wound on Mil grade Steatite forms in sizes and ohmages that are the same as vitreous enameled types of like wattage. The unit is coated with a silicone base compound that has withstood $2,000 \mathrm{hrs}$. in a continuing moisture chamber test. The insulation resistance of the coating has exceeded 100 billion ohms after 250 hours in an atmosphere of 120 and $\mathbf{9 0 \%}-\mathbf{9 9 \%}$ relative humidity. The coating on a 10,000 ohm 10 w resistor withstood 10 times rated load for 5 seconds without physical or electrical change. Milwaukee Resistor Co., 700 West Virginia, Milwaukee 4, Wis.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## INDUSTRIAL TV TUBE

Staticon camera tube type C-931-B for industrial TV has an operational life of 500 to 1000 hours. Tube is designed to have window masked to have an aperture $1 / 2 \times 3 / 8 \mathrm{in}$. General Precision Laboratory, 63 Bedford Road, Pleasantville, N. Y.-TELE-TECH \& ELECTRONIC INDUSTRIES.

## More New Products

on pages 90-96

## TRANSISTOR SOCKETS

A standard strip of transistor sockets for use in transistor circuits has been designed, and, after successful laboratory use, is now made available to the industry. It is said that the socket makes it possible to group transistors, particu-

larly in computer circuitry. Dimensions of the first model which has 10 sockets are $6 \times 1 \times 1,4$-in. Other models are being developed to accommodate 30 or more sockets in a single phenolic strip. Contacts are phosphor bronze. Solder contacts are copper. Hydro-Aire, Inc. Electronics Div., 3um Winona Ave., Burbank. Calif. - TELE-TECH \& ELECTRONIC INDUSTRIES.

## PRESSURE TRANSDUCER

The model S-3 pressure transducer operates on the variable reluctance principle and is suitable for use with a wide varicty of recording and tele-

metering systems. When the gage is connected in an electrical bridge circuit. the output signal is proportional to the input pressure. The unit features 50 usec rise time, $1 \%$ or less non-linearity. 0.1 to $0.4 \%$ hysteresis, $0.3 \%$ acceleration sensitivity, $0.01 \%^{\circ} \mathrm{F}$. zero shift with temperature. Weighs 2 oz . and is $3 / 4 \times$ $3 / 4 \times 1 / 18$ in. in size. Ultradyne Engineering Labs., Inc., P.O. Bux 8007. Albuquerque, New Mexico.-TELETECH \& ELECTRONIC INDUSTRIES.

...AND SUP RING ASSEMBUES
brush holotrs - arush assemalies
CONTACT ASSEMBLIES
Use SILYER GRAPHALLOY for applicetions requiring low olectrical noise; low and comblant confact drep; high current dencity and minimum weor.

> EXTENSIVEY USED NN:

## SELSYMS • GUN FIRE COWTROLS ROTATIMG THERMOCOUPEE and STRAIN GAGE CIRCUTTS ROTATIMG JOINTS • DYMAMOTORS

Wide range of gredes available for standard and special applicertions.

## Orue Gipotellay Pracead



Graphite Metallizing Corporation


## Sweep (Yenerator (Continued from page 61)

strips of metal, easily reproducible to close tolerances. By placing the two thin inductive strips parallel and coplanar (Fig. 6), the stray ca-


Fig. 6: Waveform of escillator oufput
pacity between inductances is kept extremely small.

## Drive Merhaniam

At this point some consideration must be given to the mechanical drive requirements. The simplest technique is to attach the moving plate to a large speaker driving unit.


Fig. 7: Modified Colpitts oseillator circuil
Referring to Fig. 3, the plate would move against the stators in a reciprocating motion of total movement $\Delta$, the spacing between plate and stators varying from $h_{m i n}$ to $\left(h_{m i n} \div \Delta\right)$. The smaller $h_{m i n}$ can be made, the smaller the motion ( $\Delta$ ) required for a given percentage


Fig. 8: Equivalent tank sircuit of oseillator
change in capacity. For reasons of planarity tolerances obtainable on fixed and moving plates, reproducibility of motion and elimination of danger of striking plates, the smallest practical choice of $h_{\text {min }}$ was
found to be .016 in .

## Trannmission Idne Elpment.

The basic circuit, the mechanica technique, and the order of magnitude of components having been de. termined, it was necessary to choos an exact design capable of sweepin. between 460 and 920 mc with a: small a motion ( $\rfloor$ ) and plate are $(b \times 1)$ as possible.

The capacity between stators and moving plate cannot be determined from simple plate capacitor formulae, since 1) the spacing $h$ can become large with respect to the small plate dimension $b$, and 2) the dimensions of the plate (b,l or both) can become a relatively large fraction of a wavelength. The effective capacity can therefore be accurately determined only by transmission line techniques. Terman ${ }^{2}$ gives the capacity per unit length vs $b / h$ of long strips in parallel, where $b$ is the strip width and $h$ is the spacing. From this data, $Z_{0}$ vs $b / h$ can be determined


Fig. 9: External reactance required by baF4
assuming a TEM mode, from the relation

$$
Z_{0}=\sqrt{\mu \varepsilon / \bar{C}}
$$

where $\mathbf{C}$ is capacity per unit length, $u$ is permeability and $\varepsilon$ is dielectric constant between plates. These are plotted in Fig. 2 for air dielectric.
By considering the plates to be open circuited transmission lines of length 1 , plate width $b$ and spacing $h$, and using the relation

$$
\left|X_{c}\right|=Z_{0} \cot \beta 1
$$

the curves of Fig. 8 were obtained. Curves of constant total series inductance ( L ) in the region of interest are plotted vs $b$ and 1 assuming $\mathrm{h}_{\mathrm{m} \mid \mathrm{o}}=0.016 \mathrm{in}$. and $\mathrm{f}_{\mathrm{mlo}}=460 \mathrm{mc}$. Also plotted are curves of constant total plate motion $(\Delta)$ for 920 Mc maximum frequency. Operation is limited to the shaded region on Fig. 8 , which is bounded by three limiting curves. The right hand bound is the curve of $\Delta=3 / 8$ in., the maxi-


## LEADING BIG-SCREEN COLOR TUBE

## . . . for Biggest Picture

. . . for Superior Performance
. . . for Delivery NOW!
The CBS-Colortron " 205 " is today traveling in freight cars and trucks to the nation's leading TV set manufacturers. It was chosen by them. because of: The " 205 's" larger 205 -square-inch screen. The " 205 's" over-all superior performance. The " 205 ' s " easier circuit adjustments. The " 205 " s " absence of "pincushioning" and other distortion. And the " 205 ' s " availability in production quantities now ! big.SCREEN COLOR TV IS HERE . . . today . . . at CBS-Hytron. Original . . . simple functional . . . advanced design of the " 205 " made this possible: 1 . With its curved screen-mask construction. 2. With its maximum use of the screen area. 3. With its electromagnetically converged three-beam electron-gun assembly. And CBS-Hytron's huge, new Kalamazoo plant stands ready to step up the " 205 's" availability when needed. Yes, you can look to CBS-Hytron as the leader . . . and major producer of big-screen color picture tubes.

IT'S CBS.HYTRON FOR NEW COLOR RECEIVING TUBES TOO

DESCRIPTION

CBS-Hytron 6AM8
CBS-Hytron 6AN8
Half-wave, high-volfage rectifier Diode, sharp-culoff pentode Medium-mu triode, sharp-cutoff pentode
CBS-Hytron 6BDAA Sharp-cutoff beam friode, highvoltage regulator
CBS-Hytron 6806 Sharp-cutoff $\mathbf{r}$ demodulator
Triple-diode d-c restorer

HOW "205" ACHIEVES BIGGEST PICTURE As its name implies. picture area of " 205 " is a big 205 square inches. The " 205 " achieves this maximum utilization of screen area: 1. By photographic printing of tricolor screen directly on inside of curved face. '2. By using a simple, light-weight shadow mask. 3. By positioning the three mask supports above and below the desired screen area .... where the screen is masked off anyway by the set maker to obtain the desired $4 \times 3$ aspect ratio. This permits full lateral use of screen.

new . . . Free "205" Data "悬 on Keep abreast of big-screen color TV, Four-page sheet on CBS-Colortron 205," RETMA type 19VP22, contains complete data on: Construction . . . operation . . . application . . . installation . . adjustment . . . electrical and mech. anical characteristics. Write for Bulletin E. 227 today!

CBS-HYTRON Main Office: Danvers, Mossochuselts
A Division of Columbia Broadcasting System, Inc.
A member of the CBS family: CBS Radio . CBS Television - Columbia Records, Inc. - CBS Laborafories CBS-Columbia. CBS International CBS-Hytron


## ELECTRIC SOLDERING IRONS

and that's why ANY model of American Beauty Electric Soldering Iron can be chosen with the assurance that it is absolutely DEPENDABLE-DURABLE-EFFI.


## Sweep Generator

(Continued from page 106)
mum motion obtainable with a reasonable size driving unit. The lowe bound is the curve of $\mathrm{L}=0.12 \mu \mathrm{~h}$ which was stated previously as bein! the largest induetance consistan with the minimum effective capacit. requirement. The third boundary derives from the fact that the plate can also be considered transmission lines of length $b$, width 1 and spacing $h$, a condition which gives rise to a different oscillating frequency $f_{2 .}$. The tank will usually oscillate a the lower of the two resonant frequencies, since the magnitude of the negative resistance looking into the tube goes up with decreasing frequency'. Below and to the right of the curve $\mathbf{b}=1$ on Fig. 5, $f_{2}$ will be


Fig. 10: Curves of frequency vs. plate spacing
higher than $f_{p}$, the desired frequency. The curve marked $f_{2}=$ $1.2 f_{11}$ is the condition for the value of $f_{2}$ to be $20 \%$ above 920 Mc at $h_{\text {mix }}$, and provides a reasonable safety factor, considering that the difference between $\mathrm{f}_{2}$ and $\mathrm{f}_{\mathrm{r}}$ becomes smaller with lower frequencies, $f_{2}$ being only a few megacycles above 460 at $h_{\text {min }}$ for this boundary curve.

## Experimental Renalts

The point marked * within the shaded area on Fig. 5 was chosen as the operating point, representing $\mathrm{b}=5 / 16 \mathrm{in} ., 1=1-7 / 16 \mathrm{in}$., $\mathrm{L}=$ $0.065 \mathrm{uh}, \Delta=19.64 \mathrm{in} . \mathrm{d}$ was chosen as 3 in., and the oscillator was constructed as shown in Fig. 4, the stators and inductors being supported by textolite. The moving plate was made from $1 / 16 \mathrm{in}$. thick aluminum, and mounted to the driv-

## 

## -GA\&F CARBONYL IRON POUDERS

THF K.TRAN - made hy Automatic Manufacturing Corporation -measures only ${ }^{3} 4^{4}$ " across. Yet it is available in RF and IF transformers covering frequency ranges from 20 KC to 30 MC and higher! For its size, it covers the widest range of uses in the If field-and with unsurpassed stabilities. . . . As indicated, the makers credit K.TRAN's success, in large measure, to the controlled uniformity of G А \& F Carbonyl Iron Powders.

Tinlay there are ten types of iron powders male by the Carhonyl Iron Process - with the particle sizes ranging from 3 to 20 microns in diameter. The iron content of some types is as high as 99.6 to $99.9 \%$.

With quite different chemical and physical characteristics, the ten types lend themsielves to many different uses-to increase $Q$ values, to vary coil inductances, to
coils. to confine stray fields and to increase transfurmer coupling factors. The Carhonyl Process assuren the quality and uniformity of each type.
We urge you to ash !our core maker. vour coil winder. your industrial designer, how G A \& F Carhonsl Iron Powders can in crease the efficiency and performance of the equipment or product you make, while reducing teoth the cost and the weight. We also invite inquiries for powilers whose performance characteristics are different from those exhibited by any of our exi-ting types.

This 32-page book offers you the most rimorochensive treatment set given to the charactrri-tics and applications uf G A \& F Carbonsl Iron Punders. BO', of the stors is told with photomicrographs, diagram:- performance eharts and tailes. Tur your sopy-witbou abligation-tindly adiress lopartment 87.


## aNTARA ANTARA. CHEMICALS



## Investigate

 before you buy ...
 choose rust!

If you are considering Remote Control for your transmitter, investigate before you buy. Chonse the system that's designed for you and you'll choose Rust. Here's why
No two Rust systems are exactly alike. Rust remote control systems are engineered to fit your transmitter, whatever its make or model. Even the interconnection diagrams you get are especially drawn up for your equipment. Thirty different component units are stocked so that your specific problems can be solved by standard Rust units, prior to installation.
What does all this mean? It means that when you buy a

Rust offers many standard Rust ofters units which sample By metering ung or currents. any voltages you will find only investigating you units use only Rust metering wound resistors precision wire-woure coefficient of low temperature readings of high of provide readings Shown to provey and stability. Sho dc accuracy and the $108-8 \mathrm{~A}$, is the $\begin{aligned} & \text { metering unit. }\end{aligned}$

Rust system it is complete. Your installation is easier and quicker. Because there are no tubes, there are no tube failures. Because there are no adjustments, there are no maladjustments. The Rust System functions as it should... with little or no maintenance.
When you shop around for Remote Control take a peek behind the panel. You'll find Rust offers the best buy for you.

## Sweep Generator

(Continued from page 108)
ing unit by a screw into a plexiglas block glued to the diaphragm. Fig. 11 shows the theoretical curve of spac ing $h$ vs frequency for the abovi conditions. Also plotted is a curvi measured with the driving unit un excited and moved manually t various $h$ values, measured with feeler gauge. The agreement wit! theory is good.

Under operating conditions (driving unit oscillating at 60 cycle rate) the performance was the same a measured under static conditions Fig. 1 shows the oscilloscope trace or oscillator output under these conditions, with marks at 460 and 920 mc introduced by cavities in series with the output. The output amplitude is constant within 1 db .
1.J. II. Petlit. "UHF Tricxle (\%scillator using Serie. Tuned Circuit." Prot. IRF:, vol. 38, No. क pr. 03:-635. June 1950.
2. F. F. Terman. Rulio Enginecrs' Handbnok
Mchaw-Hill Co., New York, First Ed., p. 113.

## Coefficient Tester

(Continued from page 64)
and the comparison arm. They cancel out in the balanced circuit arrangement. The isolation transformer allows for proper grounding of the apparatus which is otherwise sensitive to stray fields. Voltmeter V . allows for the setting of the power level in the resistor and $V_{1}$ is a vacuum tube voltmeter capable of reading 1 mv full scale. When observing the harmonics generated, the internal sweep can be used on the CRO and synchronized with the line. It is equally informative to apply to the horizontal deflection circuit the voltage $\mathrm{V}_{\mathrm{o}}$, since the resulting Lissajous figure is a picture of the nonlinearity amplified. The apparatus has been designed for resistors falling between 1,000 and 21,000 ohms. but can be readily modified to include a broader range. A small balancing condenser across the variable resistor is desirable to cancel its inductance. In the vicinity of 10,000 ohms, 150 uf were sufficient for an excellent reactive balance and this capacitor is not at all critical.

## Procedure

The procedure in using the apparatus is not involved. For a resistor under test, a voltage is applied so as to dissipate rated power. By adjusting the balancing arm, the error voltage as observed on the oscilloscope or voltmeter can be minimized

## For Your Equipmini-



Sharp Cup-off Pentode
5896
Double Diode Detector
899
Semi-remote
Cur-of Peniode
5902
Audio Power Peniode
$-5903$
Double Diode Defector
T5904
Medium Mu Triode
\$5905
Sharp Cui-off Peniode
TS906
Sharp Cup-ofi Peniodo
High Mu Double Triode 6153
Sharp Cut-off Pentode
Low Cgp (Separato
suppressor)
6154
Remote Cut.off Pentode
Low Cgp (Separate
suppressor)
6205
Sharp Cut-off Pentode
(Separale suppressor) 6206
Semi-remote Cul-off
Pentode (Separale
suppressor)
\$630a Voltage Reference Tube

- 26 -volf heater $\uparrow 26$ volts all elements ICold Cathode Irpe All other types are 6.3 volt heaters.

For complete data sheets and specifications concerning any of the above tube types and for application information, see your Sylvania Sales Engineer or write to: Sylvania Electric Products Inc., Dept. 4R-4409, 1740 Broadway, New York 19, N. Y.


LIGHTING - RADIO ELECTRONICS TELEVISION

In Canode: Syivonla Electric ICanoda) Lid., University Tower Oldg., Si. Calherine Si. Montreal. P. Q.


3XP RAYONIC CATHODE RAY TUBE provides a brilliant and sharply-defined trace and high deflection sensitivity at medium anode potentials. When comparing 3RP operating at 1000 volts second anode against 3 XP operating at 2000 volts, the results are astonishing. For the same spot size, 3XP light output is improved by a factor greater than 4, vertical deflection sensitivity improved by a factor of 2 , while the horizontal sensitivity remains unchanged. Because 3XP is enclosed in a short envelope and has half the inter-electrode capacities of the 3RP, the tube lends itself admirably to high frequency video work as well as for low repetitive operation.
TECHNICAL DATA The basic properties of the cathode ray tube that concern the designer or the user are: deflection sensitivity, unit line brightness, line width, static voltage requirements and physical size. A comparison between cathode ray tubes manufactured by Waterman Products Company is shown in the table below. These tubes are available in P1, P2, P7 and P11 phosphors. 3JP1, 3JP7, 3SP1 and 3XP1 are available as JAN tubes.

| TUBE | Physical data |  |  | Static voltage |  |  | DEFLECTION* |  | LIGKT OUTPUF• |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Face | Length | Base | A3 | A2 | A2 Man. | Vert | Hor |  |
| 3JPI | $3^{\prime \prime}$ | 10'1 | Med Dihepial | 3000 | 1500 | 2000 | 111 | 150 | 352 |
| 3 MPI | $3^{\prime \prime}$ | $8^{\prime \prime}$ | Sm Duodecal |  | 750 | 2500 | 99 | 104 | 33 |
| 3RPI | $3^{\prime \prime}$ | 91\%" | Sm Duodecal |  | 1000 | 2750 | 61 | 86 | 44 |
| 3SPI | $1.5 \times 3^{\prime \prime}$ | $91 / 3^{\prime \prime}$ | Sm Duodecal |  | 1000 | 2750 | 61 | 86 | 44 |
| $3 \times \mathrm{Pl}$ | $1.5 \times 3^{\prime \prime}$ | 8\%" | Loctal |  | 2000 | 2750 | 33 | 80 | 218 |

** Defiect:on in voles per inch Fong aight output of an element of a raster line cone mm
WATERMAN PRODUCTS CO., INC. PHILADELPHIA 25, PA.

CABLE ADDRESS: POKETSCOPE


WATERMAN PRODUCTS INCLUDE
3JP I, 3JP7, 35PI, 3XPI JAN RAYONICR
Cathode Ray iubes
3JP-3MP-3RP-3SP-3XP RAYONIC CATHODE RAY TUBES
Avallable in P1, P2, P7, and PIl Phosphors POCKETSCOPES PULSESCOPESO RAKSCOPES

## Coefficient 'Tester

(Continued from page 110)
and it is the minimum value whic can be recorded for calculation pus poses. If a resistor has a large tem perature coefficient it is advisabl to wait until thermal equilibrium ; reached. By tracking the balanc point a qualitative approximatio as to the temperature coefficient ca be obtained. The trimmer condens C may be altered to get a complet cancellation of the fundamental sig nal.
Resistors of commercial manufac ture were obtained in lots of fiv, each. These are typical cylindrica rod-type units with wattage rating between $1 / 2$ and 1 watt. The grou; represents the typical stock of wholesale distributor of resistor components in the resistance range under test. These units are desig-


Fig. 5: Lissajous figures at balance point
nated by a code number. The first letter designates the manufacturer, the first number-the wattage, the second number-the type (one manufacturer may have several types). and the last number is the resistance in kilohms. Results based on the average value are given in Table I.

Noise measurements on these resistors were also made as described later. Since the voltage coefficient may be a function of the mechanism which causes noise (e.g., internal arcing and breakdown), these data are presented for comparison.

For the small selection of resistors tested there is a wide range of voltage coefficients. The highest is over sixty times as bad as the lowest. Within a manufacturers group, there may be extreme variations indicating the degree of control achieved. For example, testing 10 units of manufacturer " $A$ " gave a maximum deviation from the average of $-6.5 \%$
to $+9.88^{\prime}$ whereas resistors of manufacturer " $B$ " fell between $-38 \%$ to $-68 \%$. In respect to noise. it appears that for a given structure and geometry, noise is approximately proportional to voltage coefficient. When testing a single group, those resistors having large voltage coefficients were observed to have large noise values. The factor relating noise to voltage coefficient is not a constant between manufacturers. It is probably dependent on current densities and electric field concentrations within the resistor body

It was also observed that the voltage coefficient varies inversely as the length of the resistor squared for at particular material.

All composition resistors tested indicated that the voltage coefficient decreases with rising temperature. Therefore operating a resistor at high ambient temperatures decreases

TABLE I

its voltage coefficient. If a resistor were to have a $\beta$ coefficient independent of temperature, the third harmonic generated would be proportional to the amplitude of voltage cubed. A Thyrite (GE's silicon carbide non-ohmic resistor) resistor which has an extremely high voltage coefficient behaved exactly that way. In Fig. 5 curves are plotted on log$\log$ coordinates in order to show this variation in $\beta$ with voltage. The Thyrite curve (A) has a slope of 3.0 whereas curves $E$ and $F$ (mfrs. A and B) have slopes of 24. This indicates the $\beta$ is proportional to $1 / V^{n \prime}$ for these two resistor types. Other resistors of different manufacture are more extreme in the variation of $B$. Curves $C$ and $D$ compare the same resistor characteristic for free space cooling and when packed in "dry" ice (D).
The foregoing observations indicate that the conduction mechanism

## electronics

 trends to Airdesign

Among the "new and revolutionary" developments popping up every day, transformers may seem pretty static. But not to engineers at Airdesign.

Here you'll find transformer design experts applying the newest principles and materials-many of them not yet common knowledge-to improve transformer performance or to solve unique design problems. And batking up their efforts are Airdesign's skilled production people completely equipped for transformer manufacture of all types up to 5KVA.

Whether your needs involve ordinary power or audio transformersor more complex items such as pulse transformers and ultra-sonic trans-formers-Airdesign engincers can supply you with the most up-to-date units of superior quality . . . when you need them. Call Airdesign for your next transformer order and see.



Your "special" filter problem may already be aC-D QUIETONE stock ifem.

Check first with Cornell-Dubilier, the world's largest manufacturer of R.F. attenuation filters. The feed-thru or PI filter you are looking for may already
 be a stock item with C-D. For your special design and application problems, C-D's great filter laboratory and Technical Advisory Service is available to you without obligation. Write for catalog No. 148, describing C-D's stock line of QUIETONE FILTERS.
Cornell-Dubilier Electric Corp., Dept. J-94 South Plainfield, New Jersey.




## Coefficient Tester

(Continued from page 113)
is far from simple in composition resistors. A detailed study of the various factors involved may be warranted at some future date but is beyond the scope of this article.
Noise measurements were made using the set-up of Fig. 7. A battery, by-passed with a 10 mfd . condenser, supplies 90 v to a $10,000 \mathrm{ohm}$ wire wound matching resistor in series with the resistor under test. The noise voltage generated in the resistor is amplified (using the amplifier built into a Hewlett Packard 400 C voltmeter) and filtered before being measured with a voltmeter. A frequency response characteristic of the filter showed the response to be down by 3 db at 500 and $5,000 \mathrm{cPs}$. The system was calibrated with a sinusoidal signal at 1500 cPS and an output reading of 14 mv . was equivalent to $100 \mu \mathrm{v}$ input. Residual noise in the system was equivalent to about $5 \mu \mathrm{v}$. It was observed on an oscilloscope that stable resistors had uniform noise levels whereas poorer resistors would generate large random spikes. The following equation was sufficiently accurate for the noise measurements made:

$$
\mathrm{e}_{\mathrm{a}}=\frac{\mathrm{R}_{\mathrm{x}}+\mathrm{R}_{\mathrm{m}}}{\mathrm{R}_{\mathrm{mi}}} \times \frac{100}{14} \times \frac{\mathrm{R}_{x}+\mathrm{R}_{\mathrm{m}}}{\mathrm{R}_{\mathrm{x}}} \times \frac{\mathrm{e}_{\text {mase }}}{90},
$$

where $e_{n}$ is the generated noise voltage and the other factors are defined in Fig. 6. The measured noise is in millivolts and the result ( $e_{n}$ ) has the dimensions $\mu \mathrm{v} / \mathrm{v}$. Although the applied voltage was not rated voltage, it was observed that for all practical purposes, the noise is proportional to applied dc voltage.
This noise test deviates slightly from that suggested in J.A.N. specifications R-11 section F3C (11) in order to use available equipment.

## Automatic Production Proceedings Available

Proceedings of the Symposium on Automatic Production of Electronic Equipment held last April 19-20 in San Francisco, have been published by Stanford Research Institute. The symposium was jointly sponsored by the Air Force and SRI. The 119page bound volume contains 17 papers and illustrations relating to the general aspects of automation, product design, construction techniques, materials, components and the design of automatic production lines. The proceedings may be obtained for $\$ 4.00$ a copy by writing the Public Relations Office, Stanford Research Institute, Stanford, Calif.

## let ér go, skipalong,

 stick with the "K"brand you know"Maverick" usually spells trouble, on the production line as well as out on the range. Being an unknown quantity or a "Johnny-come-lately," it leaves room for genuine doubt both as to performance and quality. And that's the reason so many experienced buyers - production experts to supervisors - insist on Kester . . . the one "brand" that is synonymous with the best solder and solder products.

Next fime, choose one of these fomous solder products: " $44^{\prime \prime}$ Resin, "Resin.Five" and Plastic Rosin - oll made only by KESTER . Key Name in Flux-Core Solder for More Than 50 Years.


## Instrument Show

Ave., Pittsburgh 33, Penna.
Among the subjects covered by the Clinic are graphic panel components. electronic potentiometers, electric meters, pH instruments, combustion controls, thermocouples, pyrometers and gas analysis equipment. Enough instructors are being provided by instrument manufacturers to take care of about 400 students.

Technical paper sessions are open to members of cooperating societies and foreign visitors without payment of a fee. For others there is a registration fee of $\$ 5.00$. Among the papers which are expected to be of special interest to the electronic engineer are the following.

## Sept. 14

Computing Machine Control of a Batch Chemica! Process"-1. Lefrouitz. Case Inst
$\cdots$ Some Differences Between Robots and HuSmme Differences Between Robots and Hu-
man Beings in the Proces; of Decision man Beings in the Process of Decision
Making -1. D. Trimmer, U. of Tenn. -Analog Study of Interacting and Non-interacting Multiple Loop Conirol Systems for Turbojet Engines"-W. E. Phillips. Jr. .. Lewis Flight Prop. Labs.
Medical Aspects of Radiological Defense "Medical Aspects of Radiological Defense"

- E. G. Williams, M.D., Fed. Civil Defense Admin Williams, M.D.. Fed. Civil Detense Federal Civil Defense Administration:J. C. Greene. Fed. Civil Defense Admin. "The Use of a Presurized Ion Chamber and Floating Grid Electrometer in a Wide
Range Instrument for Civil Defense"-H. Range Instrument for Civil Defense"-H
V . Neher. Jordon Electronic Mfg. 'Rannan Ner. Jordon Electronic Mfg. Available Components"-H. Lawrence, Am Cyanamid.
"The Self Indicating Dosimeter in Civil De-- fense"-C. R Siebentritt, Jr., Bendix "Evaluation
ments"-S. W. Wests of Radilogical Instru
. NBS. - Requirements of Radiation
dustry in National Emergency - L. J. Deal
- Automatic Data Reduction for Jet Engine Testing at the Arnold Engineering De-
velopment Center-A. H. Hodges, ARO, ...The. Synchro Timer and Its Application to Material Handling and Sorting Operations -. A. A. S. Burgoyne. Pratt \& Whitney. "Production Measurement and Recording""Survey of Analog-to-Digital G. G. Bower, Naval Ordnance Lab "ADRAD: An Automatic Digital Recorder for Analog Data"-W. G. Deutsch. G E. Sept. ${ }^{15}$
-The Sta
"The Standardization of Automatic Control Terminology in Germany"-R. Oetker. Sieniens \& Kalske
Memory"-W. A. Edson. Stanford U. - An Instrument for the Rapid and Accurate Calibration of O-Meter"-J. T. Koppen-
haver. RCA.
- An Electro Mechanically Stabilized dc Am-- plifer-H Recording Amplitude-Distribution. lyzer"-1. H. Gerks. Collins Radio AnaA Phase Meter for Ultra Low Frequency Range"-R.W. Houghton \& R. E. Crosby, - Jr." Technology Inst.
"An R. F. Linear Decelerator Mass Spectro"Why Electronic Process Control"-D. M. Boyd. Jr., Universal Oil Prods.
Integration of Concepts in the Terminology of Measurement and Control ${ }^{-1}-\mathbf{H}$. $\mathbf{L}$. Mason. NBS
Microwave Calorimeters"-I. K. Munson, Vectorimeter for Color Television Mea-surements"- J. F. Fisher. Philco. A Broad Range Instrument for the Measurement of Capacitor Temperature Co-
efficient ${ }^{\text {. }}$ J. H. Ollis. RCA. -Accurate Diode Switch for Use in Analog Computation"一T. H. Tuchepp. Columbia $\cdots$ U. ${ }^{\circ}$ R. F. Mass Spectrometer Utilizing Linear Accelerator"-M. K. Testermann


## PIPELINE 10 PRECISION



## MODEL WWVR

A receiver of the instrument class which setting a new standard for the reception and presentation of the world's finest standards o time and frequency as broadcast by the Na tional Bureau of Standards from WWV and WWVH.

The fundamental use of this receiver is in the calibration of local equipment to the accuracy of these primary time and frequency standards.

This time soving instrument incorporates all the latest techniques for clear reception. A glance of the front panel will af once show the ease of operation and instont availability of the desired Radio and Audio frequencies.

Model WWVR allows the operator full use of the world's finest primary standards of frequency and time. All frequencies broadcast from WWV (or WWVH) are accurate to one part in fifty million. This instrument in your laboratory will

## truly give you o

PRIVATE PIPELINE TO PRECISION
-Specifications-
SENSITIVITY-Better than 1 microvolt on all frequencies.

SELECTIVITY-Less than 18 KC for -60db, 2.5 KC for -3 db .
FREQUENCIES-Choice of three RF front ends delivered with receiver, $2.5,5,10,15,20$ or 25 mc .

SMALL IN SIZE—Standard $51 / 4^{\prime \prime}$ relay rack panel.
DOUBLE CONVERSION-First IF amplifier af 2 MC , crystal converter to 60 KC second IF omplifier.
FRONT END-Four funed circuits of the signal frequency for maximum sensitivity and image rejection
AGC and AVC-AGC system provides constont RF input to second detector. AVC system independently controls oudio resulting in constant output on tones.
INDIVIDUAL INPUTS-Three individual inputs for tuned antennas plus one common input for broad-band antenna. Balanced 300 ohm or unbalanced 72 ohm input.

Send for complefo specificafions,
prices and delivery sehedule.
ept. 16
Microwave Spectroscopy" - Van Zandt WillUse of the Photormultiplier in Measuring Ultrashort Times and Ultra Small Light Intensities"--G. Morton, RCA. A New 12-Element Automatic Oscillograph
and Applications on the Bonnevilte Power and Applications on the Bonnevilte Power Systems"-C. M. Hathaway, Hathaway Inst. Co.. W. L. Davis \& J. R. Curtin. Clark. W. G. Amey \& G. C. Mergner. New Advances in Servo Type Systems"Messrs. Kinard, MacIntoch \& Hanson, G.E. Fundamental Properties of and Methods tor Rating Noise"-L. L. Beranek, Bolt. Special Problems in Noise Measurement"S. M. Potter \& G. L. Bonvallet, Armour Nuclear Magnetic Resonance"-J. S. Waugh Siept. 20
Instrumentation for Vibration. Testing and Analysis"-A. Crawford, Internat1. Res. \& New Types of Photoelectric Measuring De-vices"-B. Lange. Berlin-Zehlendorf Miniaturization of Transducer for Mobile Applications"-O. W. Sailer, Con. Engrg Sept. 21
Aeroisee Rocket Grenade Instrumentation J. R. Walsh. Evans SCEL

Use of an Analog Computer in Solving A Magnetic Tape Recorder for Flight Recording Use ${ }^{*}$-R. L. Sink, Con. Engrg.
sept. 22
Dynamometers and Their Control for Torque Measurement"-H. Gibson. G.E. Thrust Dynamometers"-M. C. Tate, A H Emery
Sept. 23 ${ }^{\text {Indial }}$ Application of Electromagne Flow Meters -Jan Boeke. Foxboro. Galvonometer Systems-Their Characte tics. Frequency Response and SensitivityC. A. Heiland. Heiland.

Transducers: The Tools of Instrumentation" -L. Seldin Du Mont.
sept. 24
Use of Meter Relays in Industrial Progress' -P. St. Amour. Assembly Prods.


Type 01-1529
YES_Hermetically Sealed CLASS H

Open Type Transformer possible Only With

## FORM FLEX

Wesigned for long life at "Hot Spot" temperatures of $200^{\circ}$ C. permittink weight and size vealed (MIL-T-2i) Grade 1, using exclusive FormFlex pruces

Manufocturers of Inductive Equipment
AIRCRRFT TRANSFORMIER CORPORATION
Long Branch, N.J.

Engineer assembles pulse system in 30 minutes, using Burroughs "do-it-yourself" units
Standard, matched units, performing basic functions, connect together to form even the most complex pulse systems


## 1. START

Envinerer studies time chart of the desiried pulse secquence. This is the output he wants the pulse sistem to proxluce.

## 2. PLANNING <br> THE SYSTEM

He determines which Burroughs units he needs and how the should te connew ted wereher This can tre done is turams of a simplified blenk diagram. Time: $1(1$ minnote
3. ASSEMBLING

## THE UNITS

U'sing standard coaxial cables. he completes his pulke sitem br connerting the unis tugether atcording (1) his blenk diagram. Time: 20) แinแルハ

## 4. ЈOB COMPLETED

histem now prexluces the "xam pulse seypumendesired Engincer salles weeks of bread board engineering. sital time. uncertainte: and (omsiderable equipmentast Ind his Burooughs "Unitized" pulse handling equipment cant be usided over and ower wsation on differemt fiture projects.

## GET THE FACTS

No matter how complex the pulse seguence you need. you can produce it quickly and at relatively low cost with Burroughs "Lnitized" pulse handling equipment. If son prefer. send us a timing diagram of the pulse sequence required, and we'tl advise sou what Burroushs units you need and the (o)s. Immediate delivery from stock. Write Burroughs Corporation. Blectronic Instruments Division, Dept. 2J, $12(19)$ 'ine St., Phila. 7. Pa.


FIRST IN PULSE HANDLING EQUIPMENT


## ALLIED'S |955

## 308-PAGE CATALOG

## Wordis larqeest Stocks of

## ELECTRONIC SUPPLIES FOR INDUSTRY

Simplify and speed your purchasing of electronic supplies and equipment. Send your orders to us at ALLIED-the reliable one-supply-source for all your electronic needs. Depend on us for quick shipment from the world's largest stocks of special-purpose electron tubes, test instruments, audio equipment, electronic parts (transformers, capacitors, controls, etc.) and accessories-cwervhing for industrial and communications application, for research, development, maintenance and production. Our expert Industrial supply service will save you time, effort and money. Send today for your free copy of the 1955 allied Catalog-the complete up-fo-dure guide to the world's largest stocks of Electronic Supplies for Industrial and Broadcast use.
ulira-modern facilities
for the fobsest Service in Elecirpnic Supply



## Hermetic

## Headers

## for Every

## Application:

1. Hermetic gives you widest variety in size and design.
2. Hermetic "custom-builds" to include such features as:

- Welding closure
- Provision for isolation of heat zone
- Variable terminal spacing
- Polarity indication
- Special sizes and shapes
- Clear glass windows for photo-sensitive elements
- Compression-seal or matchedglass types


## C. H. O. for Transistor

HEADERS


DIODE ENCLOSURES

3. Hermetic's quality production techniques are field performanceproved leak-proof. Mass spectrometers and similar inspection devices are employed. Extra quality finishing operations at Hermetic include hot tin dipping for ease-of-solderability.

Hermetic headers are equolly applicable for other miniaturized electronics "packoging": rectifiers, reloys, printed circuit ossemblies, etc. Ask for our catalog.

## Ruggedized and aged

## "RELIABLE" DOUBLE TRIODE

The "Reliable" version of the 2C51 and 5670
 pendability in increasing or controll. ing alternating voltages or powers . . . in changing electrical energy from one frequency to another . . . or in generating an alternating voltage?

If so, spectify the Red Bank RETMA 6,385 "Reliable" Double Triode. For it is specially ruggedized to perform at top efficiency longer, even under operating conditions of severe shock and vibration. And, as further assurance of its extra reliability, each RETMA 6.385 is factory-aged with a . 5 -hour run-in under various overload, vibration and shock conditions, such as it might meet on the job.

Whether you need tubes as amplifiers. mixers, or oscillators, it will pay you to investigate the supcrior, longerlasting performance qualities of the Bendix Red Bank RIETMA 6,385 .


Two illustrated folders from Romar Plas tics Inc., 1311 E. Main St.. St. Charles. III cover a complete line of plastic knobs designed for electronic equipment.

## Microwave Tubes

Specifications on a line of travelling wave amplifiers, backward wave oscillators, and microwave gas control tubes. with descriptions of uses for which they are intended. White Electron Devices Inc., Ramsey. NJ.

## Potentiometers

Six basic models in a line of standard and power type potentiometers are described in a new 8-page brochure released by the Electronic Sales Div. DeJUR-Amsco Corp..
$45-01$ Northern B'vd. L.I.C., 1. New York.


## 2. BULLETINS

## Synchros

A new 20-page. two-color brochure. "The Synchro Story," describes the materials, processes. and operations involved in the
manufacture of precision synchro instruments. Mailed on request to Clifton Precision Products Co.. Inc.. Marple at Broadway

## Shock Mounts

A leaflet describes the shipment-protection hse of "Barrymounts". comnression-type hock mounts. Made by The Barry Corn. scribes the causes of shipment damage

## Transformers

Catalog $400-$ L. covering transformers and reactors made by Maquire Industries. Inc. Thordarson-Meissner Mfg. Divisions. 7th and
Belmort, Mt. Carmel. III. features a TV replacement section and output transforme chart

## Relays

Leach Relay Co., Div. Leach Corp., 591: Avalon Blvd.. Los Angeles 3. Calif has re leased a 44-page, 2 -color. Ioose-leaf catalos which illustrates and describes standard meet special requirements. Free on request

## Microwave Equipmenf

Bulletin 72B-P4 provides detailed engineering and applicaion equioment produce hv Lenkurt Electric Co.. 1105 Old County Rd., San Carlos. Calif

## Flexible Shafts

Catalog 5494, released by Kupfrian Mfg Co.. 395 State St.. Binghamton. N.Y. con lains technical Illustrates over 30 lenain shafts and assemblies; more than 100 con ponents.

## Instruments

Catalog No. 28, published by The Hickok Electrical Instrument Co. 10514 Dupont Ave. Cleveland. O... presents 49 pages of illustrations. descriptions. and tables covering the more popular types of the com

## Crystals

Crystals for the Critical", a 14-page catalog covering the application. ordering, and technical description of various classifications of crystals. and a discussion of basic leased by James Knights Company. Sandleased by
wich. III.

## Mechanical Instruments

Catalog M-2-A. published by Weston Elec. trical Instrument Corp., 614 Frelinghuysen Ave. Newark 5, N.J. illustrates and gives complete basic information on the company and complete listing of 9 . 10 , and 12 inch circular recorder charts are available by writing directly to the company.

## Capacifors

The 1954 edition of the "Hi-Q Ceramic Capacitor Catalog has been released by Aerovox Corp., 740 Belleville Ave New

## SSB Filfer

Detailed instructions on the installation of a single side band filter and the theory of its operation are contained in an 18-page inCormational bulletin released by Burnell $\&{ }_{2}$ Inc.. 45 Warburton Ave.. Yonkers 2.
(Continued on page 155)


Bor some are standouts for performance!
Products may seem similar, but results often differ. Designed for performance and engineered for dependability, quality JOHNSON components are often the answer where other products fall short

Examples of popular JOHNSON components are shown in the accompanying illustrations.
Miniature Capacitors - An original Johnson development, these miniature air variables are the smallest made. Rugged and dependable, they represent just ane of the many types of qualty variable capacitors designed by Johnson for virfually every lectronic need.
Nylon Tip Jack- The finest insulated tip jack on the market today. Injection molded of tough, low loss nylon-silver plated contacts. Suited to coded application-available in 11 colors. ilot Lights-Shown here, the $1^{\prime \prime}$ and $1 / 2^{\text {" }}$ enclosed types are just two somples from Johnson's complete line of Pilot Lights and Jewel Assemblies. Other types: Open, Variable Intensity, and UL Approved.
Tube Sockets-(4 pin Bayonets illustrated) A quality line of heavy duty steatite and parcelain sockets. Miniafures and Shieids, Wafers, Bayonet, and Special Purpose types available. Banana Plugs and Jacks - Skillfully machined and heavily plated, Johnson plugs and marching jacks are highly corrosion resistont. Studs extend full length for added strength-an indus. ry favorite for years.
Knobs and Dials - A distinctive line of knobs and dials with that "custom look." 12 futes instead of the usual quantity provide comfortable touch, dial markings readily seen even under adverse lighting conditions. Made of tough, scratch resistont black phenolic.
Insulators-Strength when you need it-a line of low loss, high quality steatite and porcelain insulators. Standoff and feed-thru types as well as antenna strain insulators, feeder insulators and bushings.
Shath Couplings - Designed for the most exacting application, no fatigue failure here. These flexible and fixed shaft couplings are capable of many thousands of operating cycles.
For complete informotion on all quality Johnson Products, write
for your copy of the NEW General Products Catolog :975.

## E. F. JOHNSON COMPANY

2229 SECOND AVENUE SOUTHWEST - WASECA, MINNESOTA



These fly-back transformer coils look alike. But they're not.
Their mission in life is slightly different.
Their specs are different.
Their manufacture by Stone involved a completely different sequence of steps because the end use of each is slightly different.

This is a splendid illustration of the versatility of materials used by Stone. Because of this, Stomized spiral wound phenolic impregnated paper tubes have a distinct advantage over other basic materials which have to follow a rigid sequence of steps of manufacture.

Let one of our conveniently located representatives call on you. He will quickly show you how Stone can adapt its wide range of materials and manufacturing processes to your problem.

## Military Contract Awards

See page 3 for cumulative sfatistics on elec ronic procurement.
Electronic products, dollar value, and name of manufacturing contractors receiving award: as reported by U.S. Dept. of Commerce Electrode, welding-68,200-The MeMay Co., Me
Kay Bldg., 1005 Liberty Ave., Pipisburgh, Pe
Aluminum Conductor-4T.939-Reynolds Metal Co., Louisville, $\mathbf{K y}$.
Cable-39,423-Clark Cable Corp., 3184 Wes 32nd St., Cleveland 9, Ohio.
Loudspeakers-65,617-densen Mig. Co., 6601 s Laramie Ave., Chicago, III.
Loudspeakers-31,684-University Loudspeakers
Inc., 80 S. Kensico Ave., White Plalns, M. $\boldsymbol{Y}$.
Jack Box Assy.-41,666-Palmer Elec. 2 Mig Co., 24 Water St., Wakefield, Mass.
Transformer, synchro conirol-56,740-Kearfor Co., 1378 Main Ave., Clifion, N.J.
Mofor-28,990-Electrical Engineering \& Mig Corp., 4612 W. Lefferson BIvd., Los Angele 16, Callf.
Junction Boxes-70,222-Sunstrand Aviation Div., Sunstrand Mach. Tool Co., $2 \not 221$ Elev enth St., Rockford, III.
Accelerometers.164.874-Bendix Aviation Corp Teterboro, M.J.
Generators-249,927-Bendix Aviation CoIp., Te terboro, M.J.
Frequency Mefer-143,621—The Sperry Corp. Great Neck, L.l., New York.
Signal Generafors-544,587-Transitron, Ine, New York, N.Y.
Reclifier Converters-27,500-Westinghouse Elec. Trie Co., Washington, D.C.
Controls, radio set-21,106-The Magnavar Co., Forl Wayne, Ind.
X-Ray Apparafus-463,785-Universal X-Ray Producis, Inc., 1140 M. Western Ave., Chicago 22, III.
X-Ray Apparafus-565,500-Professional Equipment Co., 1401 North First Ave., Maywood, III.

Camera System-44,000-X-Ray Department, General Electric Co., Milwoukee, Wis.
Componenis, radar-217,480-Moforola, Inc., 2710 N. Clybourn Ave., Chieago i4, IIL
Electron Tube-200,561-Sylvania Elecirie ProdUCis, 1740 Broadway, New York 19, N.Y.
Encoder-47,500-The Baldwin Piano Company, 1801 Gilbert Ave., Cincinnall, Ohio.
Countermeasures Repeater-83,901-Instruments for Industries Co., Old Country Rd., Mineola, N.Y.

Uitrasonic Visual Display-158,428—Freed Electronies \& Controls Corp., 200 Hudson St., New York 13. M.Y.
Radio Set-31,141-Philco Corp-, Wlssahickon, Phlladelphia 44, Pa.
Mofor-33,500-Dalmo Vietor Co., 141 El Camino Real, San Carlos, Calif.
Frequency Converter Comparafor-643,571—Notional Co., Inc., Malden, Mass.
Anfennas-284,941-Technical Appliance Corp., Sherburne, N.Y.
Radar Relay Systems-45,703—Moforola, Inc., Chicage, III.
Radio Transmitters-57.387-Stavid. Eng. Inc., Plalnfield, N.J.
Analyzer-75,198-Sperry Corp., Great Meck, L.l., M.Y.

Radio Receiver Transmitters-5,155,320—Admiral Corp., Chicago, III.
Switch, thermosiat-89,050-Alresearch Mig. Co, Div. Garrelf Corp., 9851.9951 Sepulveda Bivd., Los Angelos 45, Callf.
Osellloscope, cathode ray-68,944-Laboratory for Electronics Inc., 75 Pifis St., Boston 14, Mass. Modification Kits-247,057-Western Union Tele. graph, 60 Mudson St., New York, N.Y.
Oselllator Unif, control fome-104,162—Espey Mifg. Co., Inc., 528 Easi 72nd St., New York 21, N.Y.
Course Centering Assy.-25,164-Alcor Electronics Corp., 180 Lafayelle Si., New York 13, N.Y. (Continued on page 125)

DO YOU GET THIS AODIO READING...

C
مall it a Uni-Level amp or a "station attendGnt"... either name tells the total potential value to both large and small audio operations. This unit is ideal for controlling level changes encountered between different program sources such as remotes, network, transcriptions, and film projection.

Yes, in any studio, you can count on the BA-9-A to provide higher average output

## Progress is Our Most Important Product

 GENERAL ELECTRIClevels. Count on it to save time and effort while performance is greatly improved.
Get all the facts today on this important new audio development. Complete specifications will be on the way to you as soon as we receive the coupon below. Be sure to fill it in now!


This harness is an example of the work being done today by amphenol in the highly specialized field of cable assemblies. Others many unbelievably intricate, are being made daily for the electronics industry-and each particular assembly reflects the skill and experience of amphenol. There are many advantages in ordering cable assemblies from amphenol. Foremost is that of single source, under which each assembly is covered by a single part number and a single purchase order: amphenol assumes the responsibility of procuring and expediting the components used in the assembly, saving time, worry and cost for the customer. There are highly competent employees engaged in cable assembly work at amphenol. They have had years of experience in this complicated field and work for you with speed and skill. Rigid in-process inspection procedures guard the quality of the assembly from the moment individual components are received until the complete assembly is shipped.

## I ilitary Contract Awards

## (Continued from page 122)

.e. electron-150,010-Syivania Electric Prodcis, New York, N.Y
(a) Testers-25,119—Square Root MIg. Corp., 191 Saw Mill River Road, Yonkers, M.Y. lio Beacon-46,399-American Mach. \& Foundry Co., 1085 Commonwealth Ave., Boston 15, Mass.
stron Tube-30,794-General Electris Co., schenectady, N.Y.
thron Tube-284,750-General Electric Co. Elec. Division, I River Rd., Schenectady, M.Y se, e!ectron-i65,863-Kuthe Labs, Inc., 730 So. 13 th Si., Newark, N.J.
ie, eiectron-173,352-Sylvania Electric Produets, 1740 Broadway, New York 19. N.Y. pacitor Test Set-39,977-Sunshine Scientific inst., 1810 Grant Ave., Philadelphia 15, Pa. B llery-27,963-Ray-O-Vac Company, 212 E. Washington Ave., Madison 10, Wis.
Antenna Kit-66,161-Gar-Let Mig. Co., Waltham, Mass.
$M$ ter Test Equip-186,598-Dubrow Deveicpment Company, 225 Penn. St., Burlington, N.J.
Qesistance Bridge-63,991-The Winstow Co., Inc., 9 Liberty St., Newark 5, N.J.
Batery Pack-418,500-The Eagle Picher Co. American Uuilding, Cincinnati 1, Ohio.
D.rection Finder-286,492—Parchester Mach. Corp., 204-206 Lafayefte St., New York 12, N.Y.

Conduit Assy., elec-Johns-Manville Corp., Box 500, Hackensack, N.J.
ruke. electron-512,295—Sylvania Electric Produets, Inc., 1740 Broadway, New York 19, M.Y. flectron Tube-43,860-Radio Corp. of America, RCA Vietor Div., Marrison, N.J.
Modification Kif-66,701-Times Facsimile Corp., 540 W. 581h St., New York 19, N.Y.
Baftery, box-50,965-Kane Mfg. Co., Kane, Pa, Electron Tube-200,000-General Electric Co., 1 River Rood, Schenectady, N.Y.
Receiver, transmitter-498,682—Federal Teiephone $t$ Radio Corp., Clifion, M.J.
Electrodes-46,870-The MeKay Co., 1005 Liberty Ave., Piflsburgh 22, Pa.
Mandset-Meadset-151,280-Roanwall Corp., 622 Pacific St., Brooklyn, N.Y.
Amplifier Unit-28,334-El-Tronies, Inc., Fifth 4 Noble Sis., Philadelphia 23, Pa.
Panoramic Adapler-30,419-Panoramic Radio Products, Inc., 10 South 2nd 5 t., Mi. Vernon, N.Y.

Radio Sef-177,120-Schutting \& Co., Inc., 5005 Calvert Road, College Port, Md.
Niatiery-33,940-P. R. Mallory $\&$ Co., Inc., 60 EIm St., Morth Tarrytown, N.Y.
Hattery-54.950-Olin Industries, Inc., 275 Win chester Ave., Mew Haven, Conn.
(ibe, electron-167,896-Sylvania Electric Products, Inc., 100 Sylvan Road, Woburn, Mass. -eperforator-31,949-Teletype Corporation, 1400 Wrightwood Ave., Chicage 14, III.
able and Reels-S57.898-General Cable Corp. 123 S. Broad St., Philadelphia, Pa.
rable and Reels-1,217,813-General Cable Corp., 123 S. Broad St., Philadelphia, Pa. control, transmitter-94,883-George Varan 8 Co., 835 Morth 19th St., Phiodelphia 30, Pa. lummy Load-189,912—Polarad Electronics Corp. 100 Metropolitan Ave., Brooklyn 11, N.Y.
ube, electron-25,152-Chatham Electronies Corp., 630 Mr . Pleasant Ave., Livingstone, N.Y.

Ube, electron-75,913-Raytheon Mig. Co., $5 \$$ Chapel St., Newion 58, Mass.
telemetering System-39,996-Bendix Aviation Corp., 186 West Oiive St., Surbank, Calif.
inalyzer, spectrum-42,068-Polarad Electronics Corp., 100 Metropolitan Ave., Brooklyn 11, N,Y,
Waveguide, elbow- 32,704-Sightmaster of Calif., Co., Gillespie Airport, Santee, Calif.
lelays-33.092-Guardion Electrical Mig. Co., 1621 Walnut S1., Chicago, III.


## FLYBACKS designed to your exact specifications -

built for EXTRA years of trouble-free performance.

FAST SERVICE
on your requirements: Heppner has


2 airplanes and 6 pilofs in the Sales and Engineering Departments.

SPECIALISTS IN ELECTRO-MAGNETIC DEVICES

HEPPNER
MANUFACTURINGCOMPANY Round Lake. 111
Phone: S-2164


John J. Kopple
James C. Mugoleworth Raloh Hafley

Tru. M. Cochrane Co,
CO3 So. Alvarado SI.. Los Angeles, Calit.


Dalohm deposited carbon re sistors are manufactured under rigid controls to deliver matchless performance and economy in any high-low resistance range.

Dalohm resistors are sealed against moisture with special silicone coating having high di-electric strength, excellent thermal conductivity, and high
resistance to abrasion
From 1 Ohm to 200 Megohms depending on type.

Temperature coefficient 200 PPM per degree $C$ for lower resistance ranges up to 500 PPM per degree $C$ for higher ranges
$1 \%$ accuracy. $2 \%, 5 \%$, and $10 \%$ tolerances also available

## Calibrating Standard

(Continued from page 88)
are also insulated from the cart $t$ prevent cross grounding when con necting to test panels.

The dc, filtered, full wave voltag supply uses four 1616 vacuum tub rectifiers and a multi-section filte with a tapped output resistor fo voltage between 0 and 1200 dc with a ripple content less than $0.2 \%$ High voltage for this supply is ob tained from the same instrumen potential transformer used for a voltage checks thus helping reduc, cart cost and weight.

## Herilifies

A center tapped copper oxide rectifier with filter provides dc curren with a ripple content less than $2^{\prime \prime}$, for 0.06 to 12 a . This supply consist: of a high current filament transformer with its primary and secondary windings in series to provide approximately $5-0-5 \mathrm{v}$ out at 100 a. A half-wave 6 v 150 a plating rectifier was rewired to provide a center tapped rectifier. This complete assembly with filter condenser was approximately $1 / 3$ the size of the nearest commercially available unit
A multi-tap instrument potential transformer provides output tap from 1.2 to 1200 v for all ac voltage checks. Its ample capacity of 20 watts maximum permit checking as many as five voltmeters at a time if necessary.

The 400 cPS supply delivers up to 20 watts maximum power for all ac 400 cPs voltage checks. It consists of an isolation transformer, a General Radio 400 cPS vacuum tube tuning fork oscillator and a high quality audio amplifier. The output of this combination is fed to the instrument potential transformer with output taps of $1.2-1200 \mathrm{v}$.

AC, 60 CPS current is obtained from the transformer used in the de current supply for the full range of $0-120 \mathrm{a}$

## Commectiona

The meters under test are connected to the standard with twowire six-foot flexible cable with pin banana plug at the cart end and a jack plug at the test end. Jack receptacles for this plug are generally provided under each meter to be tested. On high voltage, high current, or on special circuits, a separate connection is made at the meter under test rather than through jack receptacles.

Standard Electric Time Co. high


## Saves Engineering Manhours

The Model LSA Spectrum Analyzer is Polarad's answer to rising engineering costs when high performance and economy are essential.

This unique engineering tool helps get results faster with fewer personnel and in less space. Because of its ultra simplicity, tremendous frequency coverage and remarkable instrumentation the Model LSA can handle almost any problem in the radio spectrum (10 mc to $33,000 \mathrm{mc}$ ) with the greatest of ease, reliability and accuracy

## How The Model LSA

 Cuts Production Costs In the factory, Model LSA's simplicity of operation, direct reading and "GO-NO-GO" electronic display speeds production and cuts costs. Uniform quality and high performance of your complete equipment is assured by checking it with a Polarad Spectrum Analyzer.Expensive personnel training programs are eliminated by the Model LSA, which often actually takes the place of the microwave specialist and frees engineers for other work. For further details contact your nearest Polarad representative or write direct to us.

FEATURES:
Frequency Range 10 mc $33,000 \mathrm{mc} ; 5$ tuning heads Accuracy Frequency Calibration-1\% Spectrum Display variable from 250 kc to 25 mc Frequency Marker for measur. ing frequency differences of $0-25 \mathrm{mc}$
Broad Band R.F. Attenuators
$10 \mathrm{mc}-12,000 \mathrm{mc}$
Automatic Voltage selector for each tuning head Single Dial Control Direct Frequency Reading Spectrum Displayed on 5 cathode ray tube

USES:
Examine pulse spectrum of magnetrons and klystrons Measure noise and interference spectrum
Act as broad band receiver from 10 mc to $33,000 \mathrm{mc}$ Observe and measure harmonic frequency differences Measure band width of microwave cavities Calibrate microwave oscillators and preselectors

The Model LSA provides difect means of rapid, occurate measurement of spectral disploy of r.f. signals from 10 to 33,000 MCS

## Available on Equipment Rental Plan

## Polarad Electronics Corporation

 100 Metropolitan Avenue, Brooklyn 11, N. Y.REPRESENTATIVES • Albuquerque - Atlanta - Boston - Chicago - Cleveland - Fort Worth - Kansas City • Los Angeles • New York • Philadelphia - San Francisco - Seattle - St. Paul - Syracuse - Washington, D. C. - Canada, Arnprior - Export: Rocke International Corporation

## ELECTRICAL ENGINEERS or PHYSICS GRADUATES



The time was
neper merre "pperresuce than movi" for hecomines associated with thec ficld of adranced
clectromios.
Because of military emphasis this is the most rapidly
stroumus and promising sphere of cinderuer
for the rouns? electrical enyinect or plysicist.

Since 1948 Hughes Research and Development Laburaturies have been engaged in an expandmg program for design, development and manufacture of highly complex radar fire conterol shatem, for fighter and intercepter nircraft. This requires Hughes technical advisors in the field to erve companes and military ugencics employing the equpment.
As one of these freld engmeers you will become fermiliar with the entire systems involved, including the mont advanced electronic computcrs. With this advantage you will be ideally situated to broaden your experience and learning more quickly for future application to advanced electronics activity.
Poritions are available in the continental United States For married and single men under 35 years of age. Overseas assignments are open (i) single men only.

## Calibrating Standard

(Continued from page 126)
current jacks are provided on the side of the cart for de and ac high current connections.

A four pin Jones plug in the control panel connects to a demagnetizing coil for adjustment of dc meters when necessary. A separate 5 a Va riac provides power to this plug independent of the calibration circuits.

A two-connector 110 v receptacle is mounted in the lower front of the cart for connection to a soldering iron, test lamp or VTVM. It is connected to the ac line ahead of the cart circuit breaker to permit working on the cart with all the calibration circuits inactive.

## Assembly System

(Continued from page 88)
secure the best "feeding" conditions. One machine has already been built for belting resistors, the basic design of which may be readily extended to other axial lead components. In this equipment resistors are fed automatically through lead straightening and taping stations.
At the conveyor, belted components are fed from reels into the inserting heads which automatically cut and form the wire leads and insert them through the pre-punched holes in the printed wiring boards. At the same station the lead ends protruding through the board are automatically clinched to hold each component in place until the board is dip soldered. To avoid damage to the bodies of components they are handled by their leads throughout the belting, inserting and clinching operations.

To insure uniformity in the completed product, United has built several safeguards into its experimental machine. Included are provisions to stop the machine when a station is empty, when a component is missing or not correctly inserted. or when an inserting head does not complete its cycle. It is expected that the first experimental conveyor will be operating on production assemblies in Sept., 1954.

See page 58 for more details.

## Barry Publishes New "Shock" House Organ

A periodical devoted exclusively to shock, vibration and noise isolation is now being published by the Barry Corp., Watertown, Mass., called "Shock and Vibration Control Notes."
(Continued from page 124)
ines M. Valentine has been prod to sales manager of the TV h of Federal Telecommunications Nutley, N. J. Mr. Valentine has with the IT\&T corporation since and has supervised the installaof a number of TV stations in the and overseas.
(harles J. Adolph Jr. has been apponted manager of the West Coast off.ce of Kollsman Instr. Corp., manufit. Jurers of precision aircraft and optical instruments and systems. Mr. Adolph has been with Kollsman since 1937, as a member of the engineering staff, and. since 1939, as asst. manager of the Glendale, Calif. plant.

C. J. Adolph

M. C. Eliason
M. C. Eliason was appointed sales manager at the Electronic Equipment Div. of Air Associates Inc. in Orange, N.J. Immediately prior to the appointment, Eliason had been a Systems Enpineer at Hughes Aircraft Corp. Earlier, he had spent seven years as an electronic engineer at Air Associates.

Rudolf Leopold has been named manager of the newly formed Specifications and Records Dept. of the Communicatons Products Div. Allen B. Du Mont Labs Inc. He will be in charge of drawling up the plans and specifications for (the Dumont line of TV broadcast trans(titters and studio equipment and the sobile communication products.
J. D. Webster, G.E. engineer, has been ransferred to the company's X-ray dept. in Milwaukee as manager of inustrial and non-allied sales. Since 1951 Vebster has worked as sales engineer $n$ the Apparatus Division industrial ales dept. in San Francisco.
R. R. Jenner, formerly chief radio ind electronics engineer for Beech Aireraft Co., has been appointed to the eewly created post of director of airorne products for Micro Switch, Freeort, Ill., division of Minneapolis-Honywell Regulator Co. He will be lirectly responsible for the design and roduction of all Micro Switch prodicts destined for use in the aircraft ndustry.

## Forging Stronger Links

 in Microwave Relay

## OTAN STANDBY ELECTRIC PLANTS

Microwave fransmission is only as dependable as each of its relay links. If one repeater station cannot operate, messages do not get through.
To assure electric power for transmission, hundreds of microwave relay stations across the country are equipped with Onan Stand by Flectric Plants. When central station power is interrupted, the Onan plant starts automatically, supplies power for as long as the emergency lasts, then stops automatically. Controls are available to provide a time interval between power interruption and start ing. Onan Standby Electric Plants have theen proved indispensable in installa tions serving oil and gas pipelines, utilities, railroads, TV networks, po lice and other government law enforcement departments.
If you have a problem in standby power for microwave radio, or any application, write our sales engineers. Onan Standby Electric Plants range from 1,000 to 50,000 watts.

## New 5CW

5.000 watts A.C. Air-cooled
Gasoline Powered

- COMPACT-Take less thon one cubie yord of spoce Easier to install. Con-
nection box provided for quict hook-up. - UNI-DUCT COOLING - Cooling air drawn by vacuum through generato pelled through one small vent is exich also discharges engine enhaust. Quiel operating. No liquid coolan's to freere - DUILT FOR HEAVY DUFY-Smooth. opposed, 4 -cycle air-cooled engines deliver roted horsepower at moderate speed. Unusually
tares for long life.
- DE LUXE EQUIPMENT - Noiking eutra to buy. Impulse-coupled, high-ransion
magneto, radio shielded. Oil-bath air cleaner, fuel fiter, oil pressure gouge, fuel tank, muller and exhoust fubing, All heated
enclosed.

A size and model for every standby application!


3,500 watts A.C. 2-cyl. air-cooled


10,000 watts A.C.
2-cyl..oir-cooled


10 to 35 KW A.C.
Water-cooled

## Write for opecifications




OVER 200 BASIC TYPES TO CHOOSE FROM

Do audio attenuator problems cost you money? Chances are Shallcross has a model to match your specifications exactly-and at moderate cost.
Shallcross attenuators are made in over 200 basic types. Each type can be supplied with a choice of attenuation characteristics . . . with a positive detent mechanism . . . and in numerous input and output impedances. Where calibration must be extremely accurate. Shallcross precision wire-wound resistors are used. For less critical applications, models with high grade composition resistors can be supplied-often at lower cost.

A complete description of all Shallcross attenuators - mountings, characteristics, and circuits is yours for the asking in Bulletin L-4A. SHALLCROSS MFG. CO., 518 Pusey Avenuc,

## Collingdale, Penna. <br> QUICK DELIVERIES! Small quantities of QUICK 20 step Shalleross composition resistor popular 20 step and wire-wound potentiome



Abbett \& Ilustiss. 1105 Commot wealth Ave., Boston, Mass., have bee appointed reps for Condenser Produc Co., division of New Haven Clock Watch Co.. to cover all the New Ens: land States
Lee H. Owens, 2331 W. Washingte Blvd., Los Angeles, has been appoint Pacific coast representative for Meas urements Corp., Boonton. N.J. M Owens will handle the southern Cal fornia territory.

Yewell Assoc.. with offices at 75 Main St., Waltham, Mass., and 1101 । Main St., Bridgeport, Conn., has bect appointed the exclusive representativ for the New England and eastern N.Y area for Sensitive Research Instr. Corp 9-11 Elm Ave., Mt. Vernon, N.Y. For the Philadelphia, eastern Pennsylvani and southern N.J. area, the company appointed the 1. E. Robinson Co.。 7217 Marshall Rd., Upper Darby, and 37A Thomas St., Harrisburg, Pa.; for Indiana, T. R. Law of Law Instrument Co., N. Darling St.. Angola, Ind.; in the Cleveland, Ohio area, the S. Sterling Co., 4040 Mayfield Rd., Cleveland 21 Ohio. For export, the exclusive rep for the Sensitive line is Ad. Auriema. Inc., 89 Broad St., N.Y.C.

Designed specineally to eliminate any sup. porting harnesses which were necessary in The past to prevent dangerous "Buggy Whip". This unit is absolutely sligproof once connected to the pleture tube. The connector is manufactured from tempered steel. hot tinned, with vinyl Insulation.
and is wired to customer specincations.
further information and samples will be sent on regrest. Dept. T.9

INDUSTRIAL 109 rancest,newromen, ar. HARDWARE Maonurot ruive Compaus, luc.

MANUFACTURERS' REPS

Askania Regulator Co., 240 E. Ontario l., Chicago, has been appointed midvestern representative for Librascope nc., manufacturer of computer com--onents, and Geo. A. Philbrick Re.arches Inc., electronic analog comuter manufacturer.

Gordon Dougherty, a former princiul in the reps firm of Hagerty-Scott Co., Detroit, has formed his own oranization, Gorden Dougherty Assoc. with offices at $23391_{2}$ S. Cedar St., Laning. Mich

Kuessler Sales Co., 6907 Melrose Ave., os Angeles, has added 750 sq. ft . of display space to their facilities, including a completely equipped sound room

Thompson Engincering Service. 4378 Lindell Blvd., St. Louis, Mo. announces that they are specializing in representing West Coast electronic component manufacturers in the midwest. They Lurrently represent fifteen West Coast manufacturers of aircraft and electronic quipment.
A. E. Heitner. formerly with the pur, hasing sections of Emerson, Tele-King ind Video Products, will handle office sales and sales service for Sydney H. Baum \& Co., 70-15 Fleet St., Forest Hills 75, N.Y. Lewis B. Carlan has joined Baum as a sales engineer.

William S. Spring. 15 Elm Pl., New Canaan, Conn., has been appointed manufacturers rep for Boston, N.Y. and Philadelphia territories by Magnetics Inc., Butler, Pa.

Herb Erickson Co. of Atlanta, Ga. has been appointed southeastern rep for the Allen D. Cardwell Electronics Proiluctions Corp., subsidiary of Chesspeake Industries, Inc., which manuactures meteorological equipment, apacitors, UHF converters. printed ircuits, recorders and transmitters.

Tubergen Associates, formerly John B. Tubergen Co., Los Angeles, has been tppointed West Coast rep for N.R.K. Mfg. \& Engrg. Co.. manufacturers of nicrowave assemblies, radar compoinents, and mechanical assemblies.
A. J. Rissi. Monrovia, Cal. will cover outhern California and Arizona for Superex Electronics Corp., Yonkers, N.Y., manufacturers of electronic counter display items and Everlast Wire \& Cable Co., Haverstraw. N.Y., manufacturing : line of specialties and TV vire.

Art Cerf \& Co.. of Newark, N.J.. repesenting the Lowell Mfg. Co., St. Louis, io., aluminum ceiling baffle and grille nanufacturer, in the Middle Atlantic tates.

## JK GLASLINE crystal sets stability record* of 1 PART IN 100,000,000

 opening new concepts of stabilized frequency controlIn test by a leading U.S. Col
using a G. 12 A 1000 kc crystal

VOT A "L ABORATORY" CRYSTAL: This record was made by the reproducible type JK G-12A quartz crysta! illustrated, using a precision oven, over a two week continuous test periost. This stability, corresponding to a rate of change of less than one second in more than three years, challenges existing methods of meusurement. Presented here are several erystal units from the ultrastable JK GLASLINE series. Write ue for additional information.

JK GLASLINE G-12A
Frequener Range: 540 to 1600 ke
Stability: $\pm 15$ eveles or better, 0 so $50^{\circ} \mathrm{C}$
RECOMMENDED for entrome Drecision hoaveney applicotions in the 1 me region. Also f.C.C. Approved for broadeay use

JK GLASLINE G-9」
Frequency Range: 1 to 10 ke
Frequency Toleriance over ronge of $-40 \mathrm{in}+70^{\circ} \mathrm{C}$ Without circuit adiustment: $\pm 03 \%$

RECOMMENDEfis as a fime bose for electronic instrumontation, pulse time modulation systems, radar, sonar, computers, otc.

## JK GLASLINE G-9

Frequency ranse: $\mathbf{4}$ to 500 kc and 1.2 to
RECOMMENDED for hequency soondards and master ascillators in the communieations and wired camier soectra. mansmitters and digital hequency meosuring syatoms.

> "Cuystals for the Critical"


...So you'll
NEVER COME HOME TO DARKNESS


## Sportscasts

(Continued from page 89)
complete schematic of Fig. 3, the pre-amplifier was designed to feed the limiter circuit, whose output is amplified to produce an audio level of up to +15 dbm at the 500 ohm line terminals.

The unit was constructed with consideration for ease of wiring. servicing, operating and transporting. With the exception of the microphone jacks, all connections are made at the front panel. The knobs and switches are recessed so that there is no need for a cover, simplifying the set up at the remote site. The knobs can be recessed at the cost of accessibility because once set for a particular announcer and location (i.e., line loss) they need not be changed during the entire broadcast. The limiter will keep the output nearly constant, electronically, with input changes on the order of 15 to 20 db .


Fig. 4: Simply consiructed remote equipment with recessed knobs ready for sporiscast

The simple design of this type limiter makes it possible to build a remote amplifier that has no more controls than one without the compression feature. There are no particularly critical circuits to make construction difficult, and only the usual precautions need be taken. The use of a common ground wire, grounded to the chassis only at the input tube socket, is a must. Good quality, shielded audio transformers should be used, and placed as far as practical from the power transformer and chokes. The same applies to the input circuits. A metal 6 J 7 should be used as the input stage, with shielded wire connecting the microphone pads to the input transformer. If the power transformer is not electrostatically shielded, 0.001 uf capacitors should be used to by-pass each side of the AC line to the chassis. Naturally, the headphone jack should be insulated from the panel, as it is across the balanced output line.

Any number of inputs could be
sed, but since there is usually no eed for more than two. only two ere provided. Up to the point of ompression, this unit functions the ame as any remote amplifier, and hus can be used at reduced microhone input on any type program. $t$ can even be used into the full ompression range, but on music, he compression may become noticeable to the listener and therefore hould be avoided. On sportscasts, the average listener can only tell that the level is pleasingly constant. and the compression does not in any way detract from the program.
The equipment pictured has been in use for nearly a year with no trouble of any kind encountered during that time.

## PARTS LIST FOR FIGURE 3



## New Link Radio Corp.

A new company, Link Radio Corp., 125 W. 17 St., New York 11, N.Y., has been organized, and taken over all assets of former Link Radio. Firm is under presidency of Murray Platt.

## SNAKE CHARMER



New cage-by-coge electionic heating control made by Minneapolis-Moneywell and installed in the reptile house of New York's Bronx Zoo lures the snakes to the front of the cage where they can best be viewed. Grading up of temperatures toward front encourages comfort-seeking ereatures to move forward


For years, National dials and knobs have been the popular choice of amateurs, experimenters, and commercial users.

National dials feature smooth, velvety action. easily-read scales and quality construction. Many dials, like the $\mathbf{N}$ and ACN dials shown, can be specially calibtated or supplied with blank scales for commercial applications.
Natidnal knobs - distinguished by their clean, functional, chrome and plastic styling and sturdy construction ard the most popular of their type ever produced. All
fit $1 / 4$ thafts. For commercial applications, they can be
supplied in special colors and with special calibrations.
Write for new National catalog of dials and knobs to Dept. 「-954

## "National

national company, Inc., 61 Sherman St., Malden a8, Mass.


## Magnetic Tape

(Continued from page 81)
nals may be due to any one or more of several different causes: 1) "Holes" in the magnetic coating due to omission or removal of coating. will cause a reduction in output of a signal recorded over such a defect. which will be dependent upon the size of the hole in relation to the wavelength of the signal being recorded, and to the track width. 2) Inclusions of foreign materials such as slivers of acetate, dust, etc., which do not extend physically above the surface of the surrounding oxide. but which have no magnetic properties, act upon the recording in the same way as do "holes." 3) "Noduses" are clumps of the oxide coating which rise above the surrounding oxide surface, which may be either conglomerates of oxide, or oxide surrounding a foreign particle. Such nodules cause a reduction in reproduced signal by physically lifting the medium momentarily from intimate contact with the gap in passing.

## Importance of Defertn

The importance of these tape defects differs greatly with the different types of recording. In the case of direct recording, when it is used principally for audio, such variations as would be caused by tape defects go virtually unnoticed excepting at the lowest tape velocities, with the narrowest tracks, or in the presence of abnormally low tape tension. When direct magnetic recording is used for the more critical purposes of handling data, tape defacts may produce very objectionable amplitude variations, since amplitude reductions as great as $80 \%$ are frequently encountered from these causes, particularly at short wavelengths. The primary reason for the development of FM magnetic recording systems was to overcome the amplitude variations inherent even in highly refined tape. However, these defects, if gross, will still cause errors and increase noise in FM tape systems, since associated with amplitude modulation of the carrier is a related frequency modulotion which appears as noise to some degree. Pulse width modulaion systems suffer from dropouts in a different manner, since no effect is produced upon the reproduction until a pulse is completely dropped, at which, of course, the loss of information is total for that moment. This, in the case of PWM systems,
s generally not very serious since the data is usually of the analog ype and integrated therefore over in extended time. Direct pulse digital recording systems. like pulse width modulation systems, suffer losses due to the various dropout rauses which are either negligible or total: in the case of direct pulse recordings. however, this is of much greater consequence, since information points are often discrete and unrelated. The significance of such erors is readily realized when we consider that the error might be the zero which changes $\$ 60,000$ to $\$ 6,000$, as might occur in accounting systems. Errors of this kind may be minimized by various techniques such as changes in head geometry. pre-inspection of the tape, redundant recording methods, and electronic error-detecting techniques. With sufficient care in applying such measures, a digital recording system is obtainable wherein the first error will undoubtedly occur when the tape breaks, once again bringing the ultimate limitation of the recording method back to the characteristic of the medium itself

## New Berndt-Bach Plant

Berndt-Bach, Inc., manufacturer of Auricon sound-on-film cameras and kinescope recording equipment. has announced completion of a new plant at 6900 Romaine St., Hollywood 38, Calif.

## Haydu to Burroughs

Burroughs Corp. has announced the acquisition of Haydu Brothers of New Jersey. Plainfield, N. J. manufacturers of electronic tubes and components. The company will continue its operations under George K. Haydu, formerly president, who has been named General Manager

WEATHERPROOF ANTENNAS


UNF-TV fransmifting anlenna windows al Gabrial Co. ape wearherproofed with solid sealer made by Minnesofa Mining \& Mfg. Absence of solvent ellminates possibility of shrinkage


TELE-TECH \& ELECTRONIC INDUSTRIES • Sepiember 1954


## - Stoddart NM-10A - 14kc to 250ke

Commercial Equivalent of AN/URM-6B
VER
VERSATILITY... The NM-10A is designed to meet the most exacting laboratory standards for the precise measurements, analysis and interpretation of VIF radiated and conducted radio-frequency signals and interference. Thoroughly portable, yet rugged, the NM-10A can be supplied with accessories to fulfill every conceivable laboratory and field requirement.
EXCELLENT SENSITIVITY. . The NM-10A sensitivity ranges from one micro-volt-per-meter to 100 microvalts-per-meter, depending upon whether rod or shielded loop antennas or line probe are used.
ACCURACY...Each equipment is "hand calibrated" in the Stoddart Test Laboratories by competent engineers. This data is presented in simplified chart form.
DRIPPROOF. . . Sturdy dripproof construction allows long periods of operation in driving rain or snow without adverse effects.
FLEXIBLE POWER REQUIREMENTS ...The ac power supply permits operation from either 105 to 125 volts or 210 to 250 volts ac, at any frequency between 50 cps and 1600 cps .
Stoddart RI-FI* Meters cover the frequency range 14 kc to 1000 mc HF NM-208, 150 kc 80 25 me Commercial Equivalent of AN/PRM-1A. Self-contained
tapteries. A C. supply optional. Includes siandard broadeast band, radio range, WWV, and communications frequencies.
Has BFO.
Has BFO.

## Plating Indicator

(Continued from page it)
waveguide and read the meter.
The schematic diagram of the indicator is shown in Fig. 2. The servomotor is geared to an autotransformer which controls the output of the current power supply consisting of a transformer, a dry-dise rectifier, and an R-C filter. The power supply feeds the current probes. A separate B supply is used to energize a cascaded arrangement of a voltageregulator tube and voltage-reference tube. This arrangement provides a very stable reference voltage of approximately 220 וv across the $21 / 2$ ohm resistor. This reference voltage is in series with the potential probes and servo amplifier input. The servo loop is arranged so that the current flow through the current probes adjusts until the potential across the potential probes "bucks out" the reference voltage. The servo amplifier and motor combination is a propritary type which has a null sensitivity better than $1 u v$. A dead spot error of this magnitude is of little significance in comparison with the errors associated with marking and reading the meter scale and the other sources of error previously discussed.

When current flow is interrupted by lifting the probe from the waveguide. a switch in the probe housing shunts the current flow and simultaneously operates a relay which disables the servo motor. Under these conditions the ammeter reading is maintained when the probe is removed from the waveguide. Thus a succession of readings can be taken along the waveguide in fairly rapid order since the meter needle does not respond from the zero mark at each reading. The chassis of the indicator contains a $100-\mathrm{K}$ pot. which sets the reference voltage and which need be adjusted only when the type-5651 voltage-reference tube is replaced.

Cise of the Inatrument
Fig. 5 shows a measurement being taken on the outside wall of a section of L-band waveguide. In making measurements the probe points are kept in parallel alignment with the longitudinal axis of the guide. With this orientation, measurements can even be made directly on the corner bends. The main effort required on the part of the operator in the use of the instrument is the interpretation of the meter scale (Fig. 6). The numerical scale units, designated as "thickness units" are
in terms of thousandths of an inch ( 0.001 in .) of stainless steel base material which has a nominal conducivity of 0.0128 reciprocal microhmcentimeters. The nominal conductivties of nickel and silver exceed that of the stainless steel by factors of 10 and 48 respectively. Thus, if the incremental meter reading is divided by 10 in the case of nickel and by 48 in the case of silver the nominal thickness of either layer can be determined after the respective platings have been deposited. By using the instrument in this manner the plating process can be investigated without having to destroy the waveguide in order to discover the extent of plating non-uniformity within the suide.

For use as an inspection tool to determine if a finished waveguide is acceptable, the "Ag" mark on the meter scale may be used as the acceptance limit whereby readings below this mark indicate underplating. The "SS" and "Ni" marks on the meter scale indicate nominal readings for the unplated waveguide and the waveguide plated with 0.001 inch of nickel. respectively.

## Cormer and Edge Effectn

It has been mentioned that conductivity measurements can be made directly on the corner bends of the waveguide when the probe is aligned longitudinally. This can be explained heuristically by observing that distortions of the shape of the waveguide cross-section which leave the wall thickness unchanged will have no effect on the longitudinal distribution of the equipotentials where they cross the line between the current probes.

The radius of the probe "circle of influence" is $3^{3} 4 \mathrm{in}$. The circle of influence is here defined as the size of a thin circular conducting sheet of given thickness which results in a conductance measurement error of $-5 \%$ compared to a large conducting sheet of the same thickness and conductivity. The curve marked $C$ in Fig. 7 shows the effect on conductance measurement of decreasing the radius of the conducting sheet. Correction factors can be obtained from this plot to determine the conductance of samples which are only slightly larger than the size of the probe itself. The plot further shows that the fact that the waveguide is a tubular surface instead of a plane surface will not affect the accuracy of measurement so long as the perimeter of the waveguide cross-section is much larger than the influence area radius.

The choice of a circle as a measure

## 45 RPM problem?

 Here's your solution...
## Newest Fairchild Turntable gives

 exact timing at all 3 speedsIf the recent decision of the Record Industry to standardize dise jockey releases at 4.5 rpm makes your present equipment inadequate, you need the Fairchild 530 Transcription Turntable. Exact timing of all transcribed program material for radio and television applications is assured. The Fairchild 530 reaches stable speed quickly without overshoot ...completely eliminates



Monulactured by highly modern processes under rigid laboratory control. This ad slipped to your letterheod will bring a working somple.

## uitralow

 \&attenuation| WE ARE SPECIALLY ORGANIZED | C 1 | 7.3 | 150 | $.36^{\circ}$ |
| :--- | :--- | :--- | :--- | :--- |
| C 11 | 6.3 | 173 | $.36^{\circ}$ |  |
| TO HANDLE DIRECT ORDERS OR | C 2 | 6.3 | 171 | $.44^{\circ}$ |
| ENQUIRIES FROM OVERSEAS | C 22 | 5.5 | 184 | $.44^{\circ}$ |
| SPOT DELIVERIES FOR U.S. | C 3 | 5.4 | 197 | $.64^{\circ}$ |
| BILLED IN DÜLLARS- | C 33 | 4.8 | 220 | $.64^{\circ}$ |
| SETTLEMENT BY YOUR CHECK | C | 4.6 | 229 | $1.03^{\circ}$ |
| CABLE OR AIRMAIL TODAY | $\mathbf{4 4}$ | 4.1 | 252 | $1.03^{\prime}$ |

'MX and SM' SUBMINIATURE GONNEGTORS
Gonstant $50 \Omega-63 n-70 \Omega$ impedances
TRANSRADIO LTD.138a Cromwell Rd. London SW7 ENGLAND enales: rausen, conoon

## INDEXING TURNTABLES OF EVERY DESCRIPTION

Eisler is considered a pioneer of indexing mechonisms. Hos designed and buift turntables for over 50 yoars. Indexing range from to 400 RPM. Eislet indexing turntables have been adopted as standard and you can add parts for your own production. Hundreds of Eisler indexing machines are in daily use


## Plating Indicator

(Continued from page 137)
of influence area actually is somewhat arbitrary since the configuration of the current flow field is longitudinally elongated in the probe region. This is seen by comparing curve A and curve B in Fig. 7 which illustrate edge effect. In curve A the probe is aligned parallel to the edge of the metal sheet while in curve B the probe is aligned transversely to the edge. The distance measurement in the latter case is taken from the current probe point nearest the edge By obtaining correction factors from these curves conductance measurements can be made up to the end of the wave guide. However, that would hardly be necessary in practical situations since the errors due to edge effect assume importance only when approaching within 1 in of the edge

## Limilalions

The method of determining the thickness of metal sheet by measuring the dc conductivity has been previously applied in situations where a mechanical measurement could be made only by destructive means. The extension of the method to measure plating thickness is a logical one, especially in the situation in which a small variation in the thickness of plated material has a much larger effect on conductance than like or larger variations in the thickness of the base material.
Heretofore in this article the term "plating thickness" has been avoided because the conductance of a layer of plating is a function of its thickness and density. The conductivity of plated silver can easily vary downwards from the nominal handbook value by a factor of two depending on the multitude of variables which enter into the electrochemistry of the plating process. However, if the plated metal is reasonably pure the density decreases proportionally. Thus, if it is known only that the electrodeposition method plates reasonably uncontaminated metal the conductance method of plating measurement can be used to determine if an adequate quantity of plating has been deposited.
In addition to its use in measuring waveguide plating quantity the instrument can be used to determine thickness of homogeneous metal sheets, to sort metals, and as a rapid means of measuring conductivity (or resistivity) of conducting sheet of known thickness. In the latter ap-
lication the conductivity (or reistivity) can be computed by comlaring the known thickness of the naterial with the instrument readng or the instrument can be calirated to read conductance (or reistivity) directly for given thickesses of material.

## lhermal Relay

(Continued from page 67)
-vacuation in order that a stable vacuum may be maintained during life. Furthermore, the materials employed in the relay must be carefully selected to have low vapor pressures at the maximum operating temperatures. We have found in practice that most metals, some metallic oxides, ceramics, glass and mica are suitable and that organic materials, phenolics and other plastics are unsatisfactory. The use of getters to clean up the small amounts of residual gases which may be liberated during continuous operation of the relay insures good stability during life.

## Imbipat Cundisionn

While the structure we have considered would make a simple and practical relay capable of providing time delays to about 2 min . for a bimetal $11 / 2 \mathrm{in}$. long by $1 / 4 \mathrm{in}$. wide and 0.030 in. thick, it would fall considerably short of meeting certain of the important operating requirements encountered in the field. For one thing, the operate time would be dependent upon the starting or ambient temperature and while this effect may be reduced by increasing the heater power, and thus the temperature of the bimetal at the operate point, a more adequate solution is necessary if the wide ambient temperature requirements called for in military specifications are to be met.

## Dperato Time

A simple and satisfactory way of making the operate time of a thermal relay independent of ambient temperature is to make its contact gap spacing independent of this variable. This means the employment of some type of temperature sensitive secondary element effecting the position of the "fixed" contact. When this approach is used in relays of practical form it is difficult to obtain complete thermal isolation from the primary element and this has the effect of reducing the maximum time to which the relay can be set. This effect is illustrated in Fig. 6. Curve 1 shows the heating characteristic of the pri-


## the accepted leaders in tape recording

The finest production tape recorder built, surpassing any comparable recorder in every performance specification. M80 offers 15 kc response at $71 / 2 \mathrm{ips}$, a full line of accessories, and such valuwable operating features as slot loading, automatic tape lift, and remote pushbutton control.


Your dealer is listed in the classified telephone directory

## 

1101 S. KILBOURNE AVE. CHICAGO 24. ILL. DEPT.TT.9


## SUPERIOR'S NEW MODEL TV-40 C.R.T. TUBE TESTER

 Simply insert line cord into any 110 voll A.C oullet, then atroch tester socket to tube base (Ion trop noed not be on tube). Throw switch up for quality rest a. read Throw switch down for all leatage sests.
t A complete picture fube rester for litsle more than the price of a "make-shiff" adapter!l
t Tesis all magnefically deflected tubes. . . in the sel... out of the set. . . in the cartonll
The Kinescope Tube (TV Picture Tube) compared to the standard receiving sube is a very complicated component. The complexity of its make-up makes it impractical to employ the same circuit used to test standard receiv. ing fubes. On the other hand, the advanfage of being able ta use one socket for all C.R.T. tubes, and the fact that all such iubes use the same filament Voltoge, has enabled us to design this relatively simple, yet extremely efficient lester.

## Write to Dept. TT-9 for complete catalog.

## SUPERIOR INSTRUMENTS CO.

2435 White Plains Road

## Thermal Relay

(Contin::ed from page 139)
mary element and curve 2 that for the compensating element. Since the contacts will now operate when a given temperature difference has been obtained between the two bimetals rather than at a fixed temperature we must subtract the ordinates of curve 2 from those of curve 1 in order to obtain the actual tem-perature-time characteristic.
Note that if we attempt to set the operate time to 2 min ., a value readily attainable in the uncompensated relay, we would find that the contacts would close at time $t$ and then reopen at time $t_{1}$. This behaviour results from the fact that the time constant of the exponential heating curve of the compensating element must necessarily be longer than that for the primary element since the former is more loosely coupled to the heater winding. It is evident therefore that anything done in the design toward reducing the


Fig. 6: Curve for ambient-compensared relay
thermal coupling between the two elements while allowing for their mutual coupling to the surroundings will minimize the reduction of the effective time constant of the relay.

For the optimum temperature compensation the change in gap spacing as a function of time as well as the initial gap must be independent of ambient temperature. It is important therefore that the deflection rates of the bimetals employed be both identical and linear over the widest temperature range to which the primary element will be subjected in operation.

## Compannating Himptal

In the Edison Type 501 Relay shown in Fig. 2 a compensating bimetal identical to the primary element is employed to maintain a uniform gap spacing with ambient temperature. Minimum thermal coupling between the elements is obtained through the use of a ceramic mount-
ing support, by a coplanar relationthip of the two bimetals and by naximum possible separation between them. Both bimetal elements are punched from the same strip and separated by the assembly operator, who attaches them to the insulator. in order to insure matching.
Returning again to the simple structure of Fig. 3, the slow-make, slow-break contact action would cause contact arcing if operated in air thus limiting the contact handling capacity of the relay especially at higher voltages. This difficulty might be eliminated by resorting to some form of snap action mechanism and this was done in the relay shown in Fig. 1 by associating a magnet and pole shoe with the contacts. Another approach would be to seal the relay into a non-oxidizing and arcquenching atmosphere or into a vacuum where contact arcing is not readily sustained. This method has the obvious advantage that the structure is not complicated by the addition of magnets or snap springs. The desirability of hermetically sealing the relay for a number of additional reasons and long years of successful experience with slowmake, slow-break glass sealed thermostats led to the adoption of this means of arc suppression for the Type 501 Relay.

## Cinn Flexibility

While gases with high thermal conductivity are usually employed at the low end of the timing range and high vacuum at the upper end, considerable flexibility exists and fills other than those used in the standard relay types may be desirable where some special characteristic is required. Thus, a high vacuum fill may be called for in shorter operating time relays where very long reoperate times are necessary, where higher contact voltages must be interrupted or where dielectric strength between the heater and contact circuits must be at a maximum. When such special fills are used, contact spacing on the one hand and safe critical voltage limits on the other must be carefully observed if reliable operation is to be obtained.

The dependence of the operate time of simple types of thermal relays upon the voltage applied to their heaters has already been touched upon. It is obvious that while the timing must always vary with the applied voltage, the magnitude of this effect will depend upon how high on the heating curve the operate point is placed. Thus, in a

## ENGINEERS

* ADMINISTRATIVE $\begin{gathered}\text { - SEROJECT } \\ \text { - SERIOR }\end{gathered}$
- INTERMEDIATE
- JUNIOR


## LONG RANGE PROGRAMS IN ...

RESEARCH
DEVELOPMENT
4 DESIGN

- Fire Control Systems - Radar Systems

\author{

- Communications - Navigation <br> - Transistors
}
- Guided Missiles - Telemetering
direct inauiries to-
Director of Engineeting
Government Pioducts


## CROSLEY DIVISION

AVCO Manufocturing Corporation
Cincinnati 15. Ohio

"You can't worry Ed since he's been specifying G-E lamps in his plans"
Ed has found he can depend on little General Electric lamp hulths to fit his design specifications exactly-no matter how tough the job. You, too, can rest assured when you specify G-E lamps for your products. Hundreds of lab tests prove the complete line of General Electric lamps give long life, dependable performance. For more information see your nearest G-E lamp supplier, or write General Electric, Dept. 166-TT-9, Nela Park, Cleveland 12, Ohio.

## GENERAL

electric


## Kaichal DR

 SAVES YOU UP TO $50 \%$ wire mun -. . . it is lighter in weight (more feet per pound), and the per pound price is low. Total savings approximately $50 \%$.
. . . Kanthal DR improves the performance of resistors and precision equipment. Its electrical resistivity is high - 812 ohms per circular mil foot - its temperature coeffcient is low ( $\pm .00002^{\circ} \mathrm{C}$ between $-50^{\circ}$ and $+150^{\circ} \mathrm{C}$ ), and it has a low thermal EMF to copper.
Available in fine gages and all types of in. sulation.

$$
\frac{\bar{K}_{1} N T H A L}{\text { Thand }^{2}} \text { THE KANTHAL CORPORATION }
$$



Quality manufacturer of Deflection Components and Coils. NEW! $90^{\circ}$ high efficiency yokes. Let us TACKLE your parts problem. We are always ready to promptly send sample to your specifications. Our prices always reflect our favorable labor market and low overhead.

TEL-RAD MFG. CO., INC.<br>Radio and Television Components

7th and Madison Street, Phone: Green 270, Fennimore, Wisconsin

## Thermal Relay

(Continued from page 141)
relay having a low ratio of critical voltage to operate voltage the effect will be at a minimum and it will become proportionately greater as this ratio approaches unity.
It is possible in some cases to use a heater wire material having a high temperature coefficient of resistance to reduce the variation of timing with heater voltage and both nickel and certain special alloys have been so employed. When such heaters are used the power input and therefore the rate of temperature rise of the actuating bimetal varies to somewhat less than the square of the applied voltage, thus providing some degree of built-in regulating action.

Timing Characterinsicon
As a matter of interest, thermal relays may be constructed so that their timing characteristics are practically independent of applied heater voltage. A relay of this type is shown in Fig. 4. In this embodiment


Fig. 8: Timing is made independent of vollage
two temperature compensated structures similar to shoe used in the relay of Fig. 2 are mounted in parallel to a ceramic supporting insulator and arranged circuit-wise as shown in Fig. 8. When so connected, unit (A) will act as a self-regulating current interrupter having the interesting characteristic that it will maintain the rate of electrical energy input to its heater at a constant value independent of variations in line voltage. Since the heater of the time delay unit ( B ) is connected in parallel with that of the current interrupter, the rate of energy input and therefore the timing of this unit will likewise be independent of line voltage. In order to insure adequate voltage compensation it is necessary that the period of the interrupter unit be short relative to the operate time of the time delay unit. A typical relay recently built showed less than a 10 sec . variation in operating time around a nominal value of 300 secs. over a voltage range from 85 to 150 v .

In discussing the application of ermal time delay relays we must gin by pointing out that these deces are not capable of providing e accuracy of synchronous motor iven timers. Thus, we have found at individual relays of the bimetal pe are capable of repeat operation an accuracy of plus or minus $3 \%$ the timing range between 30 secs. nd 5 mins . at rated heater voltage nd at room temperature. For the wer timing settings this percentage vill increase reaching about plus or ninus $\mathbf{1 0 \%}$ at 5 secs. The usual tolrance on operate time on relays which are produced in quantity is tus or minus $15 \%$ although closer limits are often feasible and may be obtained in special relays.
The advantages of the thermal relay over other types lie in its inherent simplicity and reliability and in its low cost. In addition it will operate on either direct or alternating current and its timing characterislics are unaffected by line frequency uver a very wide range. Furthermore, it is almost completely silent in opcration, it is not position-sensitive, there are no bearings to cause difficulty at low temperature and its contacts are readily sealed against dust, dirt. oxidation and the effects of high altitude.

## Compandors

(Continued from page 71)
are determined by the total power being transmitted. If both the high and low intensity signals described above were sent simultaneously, the action would be determined by their combined power or, since the weaker signal is so low, effectively by only the strongest signal. In this case the instantaneous noise improvement would be $21 / 2 \mathrm{db}$ when both signals are being transmitted; however, the noise would be attenuated immediately when signal transmission is stopped, so the circuit would still sound quiet in the absence of speech.
It is apparent, therefore, that the actual improvement in signal-tonoise ratio must depend on the volume of the speech being transmitted and on the amount of noise encountered.
An interesting point to note here is that the over-all noise improvement observed by a listener will generally be greater than the actual improvement when speech is present. This is caused by the fact that durirg quiet periods (between words) the expandor returns to the condition of maximum loss. There-

Ethe KEY to your problems
pha@stron $21 / 2^{\prime \prime}$ and $31 / 2^{\prime \prime}$ CUSTOM panel instruments
METAL-CASED TO INSURE THEIR CONTINUED INTEGRITY


MEETS RIGID PERFORMANCE REQUIREMENTS OF MIL-M-6A! Pha@strod TIME PROVEN MOVEMENTS ANTI-MAGNETIC SHIELDING
$2 \%$ ACCURACY

INSULATED
ZERO ADJUSTMENTS
Phaostron CUSTOM Panel Instruments offer highest quality at now low cost.

## pha@atron PRICE - YOU CANNOT BUY BETTER

Inquiries are invited and catalogue sheets are available on this NEW CUSTOM LINE which also includes 6" MIRROR SCALE INSTRUMENTS.

PHAOSTRON CO. - 151 PASADENA AVE. - SO. PASADENA, CALIF.

## Siability and opporfunity for ELECTRONIC ENGINEERS

at the "Laboratory in the Sky"

One of America's leading centers of long-range radio and electronic developments offers outstand. ing opportunities for accomplishment, advance. ment and stability. Write for booklet describing projects, facilities and employee benefits.

## INPERESTING ASSIGNMENTS IN

Microwave Links • Pulse Networks • Radar
Direction Finders • Air Navigation Systems
Television Transmitters and Studio Equipment Antennas • Computers • (iuided Misilles
Telephone and Wire Transmission Sy:stems
Mifcrowate and Gas Discliarge Tubes - Dielectrics

MAIL THIS COUPON TODAY Federal Telecommunication Labotatories 西y A Division of International Pelophene and Telegraph Corparation


Federal Telecommunication TT-9 Laboratories
500 Wushington Ave., Nutley. N. J. I f'lease send me a copy of "Your future is with FTL."

## Electronic Engineers Your Move

The men we seek are experts in their specialized fields; capable of filling responsible engineering positions with MELPAR, a leader in research and development. Perhaps one of these men may be you. We invite you to learn about our long-range military and industrial programs. If you are experienced in one or more of the fields listed, write us about yourself, and let us tell you during a personal interview about our past record of success and how you can successfully fit into our future plans.


(1)
rechnical Personnel Representativ
melpar, inc.
A Subsidiary of the Westinahouse Air Brake Co
452 Swann Ave., Dept. TT9, Alexandria, Virginia or 11 Galen St., Watertown, Mass.

## IF YOU NEED IT

Dage can make it!


LEFT: DAGE Tyde inc Con. nectors ore used in this Avien copacitor type two unit fual goge.

Doge CBSN-552
Snap-on BNC
Connector

## Dage Radio Frequency Connectors

Your special RF Connector requirements receive special attention at DAGE . . . mas. ters of custom design and manufacture.

DAGE makes all standard connectors, including new sub-miniatures, to precise military and commercial specifications

DAGE invites your request for details,

Write DAGE todoyl quotations, recommendations, and your order for standard or special RF Connectors.

> - - -

GE MAKES RF CONNECTORS FOR-
Federal Telephone 8 Rodio Corp. The Magnovar Company
Capehart-Farnsworth Company
Bendir Aviation Corp. Motorola Inc.
Federal Telecommunication Laboratories Boeing Airplane Company Lavoí Laboratories. Inc Thompson Products. Ine.
Stamford Electronics Company
AND MANY OTHERS

## Compandors

(Continued from page 143)
fore, the noise improvement is maximum. Then, when the line is in use. the noise level to the listener may rise, but it is masked by the speech Because the listener observes a quiet circuit when no speech is present his ear tends to strike a balance between idle and talking periods. Determination of compandor noise improvement must be made by listening tests with various volume talkers and various noise intensities rather than by direct meter readings. Compandor advantage in noise reduction during speech has been quoted as 22 db , and this figure is generally used for planning purposes.
To help determine the practical noise advantage to be expected, extensive tests have been made under controlled conditions using both 1000 CPS tone and a 3 kc band of thermal noise as interference. Three typical expected talker volumes were used to approximate maximum, average, and minimum speech intensities.


Fig. 6: Single units plug into shelf assembly

The compandor advantage for various 1000 cPs interference levels for the various speech intensities is shown in Table 1.


These test results are the average of impressions by careful listeners whose judgment generally differed by less than 1 db . Although tests with a 3 kc band of thermal noise were less conclusive than those with the 1000 cPs interference, the average of individual observer's reactions agreed essentially with the tabulated results shown.

Use of a compandor will reduce the intensity only of interference arising in the compandored portion of the circuit. Any noise entering the compressor will be amplified and attenuated in the same manner
as the desired intelligence. For these reasons the principal benefits arising from compandor usage are reduction of crosstalk and reduction of any ambient noise caused by induction from power lines or any other sources of interference.

Generally speaking, compandors can be used to advantage on any physical, phantom, or carrier-derived telephone channel used for speech transmission. The method of application, and the advantages derived will vary depending on the type of transmission facility and communication plant concerned.

One other field of compandor application of particular interest, in view of current trends towards increased use of microwave systems, is their use with the radio channelizing equipment. In the past, multichannel point-to-point radio systems have often been limited to a small number of repeater sections because the radio noise and distortion products accumulate from each link. The same system using compandored carrier equipment can readily be extended through additional repeater sections without degrading system performarice.

Economies achieved by compandor application to point-to-point radio systems include: (1) fewer repeater sections on long systems, (2) smaller antennas and tower structures for short links, (3) extension of the present system by being able to add more repeaters in tandem, and (4) reduced and simplified maintenance because of relaxed alignment limits.

## Missile Firm Expands

Ramo-Wooldridge Corp., Los Angeles, guided missile and electronic firm, is adding a $150,000 \mathrm{sq}$. ft. facility on an 8-acre site, reports Dr. Dean E. Wooldridge, president. Also, a wholly-owned subsidiary, Pacific Semiconductors, has been formed, with Dr. Harper Q. North as president. This new firm will

(I) io if Drs. Wooldridge, North and Ramo, formerly fop scientists for Hughes Aircraft, discuss plans for Pacific Semiconductors
manufacture transistors of advanced design and has the financial backing of Thompson Products, Inc., Cleveland, Ohio.

KAHLE MACHINES for Automatic Production of TRANSISTORS ELECTRONIC TUBES from Sub-miniature to Catbode Ray Wore than forty vears of precisionengineering experience is buite into the Kalite madhines which are supplied to the electronics industry for genetal purpose or for special purpose. Ilundreds of production problems have leen presented to killle-in evers (ase Kahte has designed and deretoped a mactine to proxluce results as specified kable specializes in equip. ment for manulacturing sub miniature moniature, vomblatd, cathexte rav, transmitting tules and transWens and other ghas pats in tumited quantits For lataratory neceds or for misimum prowlution thens
 MODEL 21AE. Automatk leall Wite Helding Mathine. (2) MODEL 2179. Autumatr A Alturi Stem Mi,thine 13) MODEL 1384,



## 隹

Write Kalile now for fell details

## Kahle

ENGINEERING COMPANY



A truly superior switch for
MASTER CONTROL AND MONITOR SWITCMING OF AUDIO a VIDEO CIRCUITS COMPUTERS - TELEMETERING TELEPHONY - DELAY LINES ETC.
Advantages
Extreme fexibility
Fast quiet switching
Crosstalk down 00 Db at 10 MC Any group of setups may be held intact while setfing up others Provision for spot or remote control Strapwiring eliminated Excellent HF characteristics
Palladium contacts
Reduced cost
Compact design, small size


- Individual magnets af each cross-over.
- Maximum, six conductors per circuil.
Low operating power- 2.5 watls
- Life-tested to 100 million
Simple "package" installation operations.


## New Second Edition

completely revised to answer your questions about
 the LATEST developments in IV-including COLOR

## TELEVISION

The Electronics of Image Transmission in Color and Monochrome

by V. K zworykin Direction of Electronic Researin, RCA LoboraTON, RCA Loboratories. Princelon, N. J .

TThis entirely new edition of TELEVISION reflects the tremendous technological advances that have raised TV from a restricted, experimental field to a major industry in the past fourteen years. The well-known authors have completely revised the book. londing it with practical, up-to-date information.

This is the first book to give adequate coverage to color television. Its consideration of both the theorectical and practical aspects is sufficiently detailed to give a sound working understanding of this important new development. The second edition is more than 60 or larger than its predecessor and most of the illustrations are new

Offering as it does a broad and useful understanding of the engincering aspects of TV, this work is a must for your library.

19541037 pages 728 illustrations $\$ 17.50$

May we send you a copy of TELEVISION, Second Edition, to read and examine ON APPROVAL?

Simply mail
the convenient coupon below!

JOHN WILEY \& SONS, Inc.
440 Fourth Avenue, Now York 16, N. Y
Ploose sond me for free examination o copy of the new Second Edition of TELEVISION. Within ten doys 1 will either return the book and owo you nothing or will remit $\$ 17.50$, plus ! posloge.

Nome
Addren
City
Zone .... State
$\square$ SAVE POSTAGE. Check here if you ENCLOSE poyment, in which rose wo poy postoge. Same ! return privilege applies, of cours

## Geodimeter

(Continued from page 69)
electrical pulse half a wavelength is the same as to shift polarity or phase $180^{\circ}$.
In the geodimeter the remaining fractional wavelength is measured as outlined above, using a null detector. To account for inaccuracy in the delay line, the Kerr cell, the photomultiplier and the associated electrical network, the light beam is run through a variable internal light path, positioned above the instrument. The length of this light path is mechanically varied until the null detector again reads zero, and the actual length of the partial wave that had to be measured can now be read directly on the dials of the light path.

It will be remembered from above, that the distance to be measured had been divided into a number of whole waves and one partial wave, the latter now having been measured. The length of the whole waves is easily determined, knowing the frequency of the crystal oscillator. The number of whole waves also has to be determined. This is done by changing the crystal and repeating the measurements. If the distance to be measured is known within a quarter of a wavelength, 7.5 meters, this need not be done. If the distance is known within a few kilometers, two crystal frequencies must be used, and if the distance is not known at all, three frequencies are needed.

## Dncillator and Amplifier

The two modulating frequencies are 10 mc and $10.1 \mathrm{mc} \pm 0.01 \%$. The oscillator is working into a doubletuned band filter for elimination of unwanted harmonics and subharmonics.
The crystal oscillator is of the low impedance type. By supplying the grid bias for the oscillator tube from the grid circuit of the following tube, a simple kind of avc action is obtained. The advantage of this method is that a very low r-f voltage across the crystal is obtained, meaning greater stability. At the same time the tube is working in class A without grid current and, consequently, with a minimum load on the crystal. Changes in frequency are smaller than $10^{-7}$ for changes of $\pm 20 \%$ in plate and heater voltages. This means that frequency stability is practically entirely determined by ageing effects of the crystals. As the frequency used is easily compared with stand-


MEGACYCLE METER
2.2 mc. 10400 mc . Frequency Accuracy $\pm 2$ 2\%

## The MULTI-PURPOSE INSTRUMENT

- For detormining the resonent frequency of puned circuits, ontennas, transmission lines, by-pass condonsers, chokas, coils.
- For measuring capacitance, inductance, O, mutual inductanco.
- For proliminary tracking and alignment of racelvors.
- As an auxiliary signal generator; modulared or unmodulated.
- For antonna lunjng and transmither noutrolizing, power off.
- For locating parasilic circuits and spurious resonances.
- As a low sensitivily receiver for signal tracing.

And Many Other Applicetions


## What's the use?



## TWICE THE USE!

A RADICALLY NEW AND COMPLETELY INSULATED Mueller DESIGN HAS dOUBLED THE USEFULNESS OF OUR ALLIGATOR CLIPS

Gives you complete insulation in the tightest spots, plus the usval quick convenience of a Mueller clip.


## THE CLIP

Is our well known No. 60-5 (steol) or No. 60-CS (solid copper) alligator clip, with serow connection and barrel for banana plug.

## THE INSULATOR

The skin-tight 2 -piece vinyl insulator retains the clip's slimness. The flexing, slotted tip provides "lip action"-keeps all metal covered-even when gripping terminals, studs, tabs, etc.

## THE COMPLETE UNIT

Sold as a unit only, with factory applied insu. lators. Shipped half red, half black for easy lead identification.


## ASK FACTORY FOR FREE SAMPLE TODAY!


\#63 INSULATED ALLIGATOR CLIP. Steol, cadmium plated, with screw connection.
\#63-C Same as above, but solid copper, with brass serew connection.

## Mueller Electriclo

1585H E. 31 st St., Cloveland 14, Ohlo
ard signals, e.g. WWV, the ageing can be controlled and corrected for. The power stage consists of two push-pull connected tetrodes, type QE 04 10, with a total power output of about 5 watts. The matching to the capacitive load of the Kerr cell is effected by a r-connected network tuned by a variable capacitor.

## Heceicer and Detector

The r-f voltage for the photocell plate is obtained inductively from the Kerr cell circuit. The variable delay is divided into two parts, one coarse adjustment in eleven steps. built up of series inductances and shunt capacitors, and a fine adjustment consisting of a slight detuning. by means of a variable condenser. of the tuned circuit transforming the relatively low voltage across the delay line to the photomultipliers plate. Close to resonance the amplitude change is negligible for phase shifts up to about $\pm 20 \mathrm{de}-$ grees, which is sufficient for covering the intervals between the positions of the coarse adjustment.

The photocell is of the multiplier type. Of the different types of this kind, 1P21 has been chosen because of its low dark current and high sensitivity. The supply voltage is about 800 volts, as this gives good sensitivity with high signal-to-noise ratio. Because of the low dynode voltages, about 75 volts, mean electron velocity is low and transit time not negligible. The supply voltage is stabilized by means of neon tubes not in order to keep amplification constant but only to make deviations in transit time harmless. As most of the information lies in a comparatively low frequency interval, say 50 to 150 cPs, it is possible to use a high resistance in the photo-multipliers anode circuit, as this means higher voltage output. This resistance is directly connected between grid and cathode of the first amplifier, a low microphonic pentode, in series with a variable bias voltage for compensating changes in voltage drop across the anode resistance with changes in light level. Of course only small changes can be compensated for in this way.

## Vult Detecter

The null detector, Fig. 4, consists of two high-slope pentodes, whose control grids are connected in parallel to the plate of the voltage amplifier. The suppressor grids are supplied with a part of the ac bias voltage in such a way that one tube is conducting during "positive" half


May be operated between halved or doubled impedances


Write today for the Peerless Catalog

Electrical Products
A oivision of


9356 Santa Moniea Blvd., Beverly Mills, Calif. 161 Sixth Avenue, Mew Yort 13, Mew Yert

## Geodimeter

(Continued from page 147)

## Pioneers of modern crystal development

- more widlely used for military applications
- more widely used by the world's leading airlines
- more widely used for critical frequency control for practically any application

NEW CRYSTAL CATAIOG


STANDARD PIEZO COMPANY Carlisle, Pa.
just off press listing all stand ord erystal types. Write for your copy today.
periods and the other one during "negative" half periods. Large capacitors in the plate circuit of the tubes are discharged during conducting intervals, and the potential difference is measured with a highly sensitive dc instrument. If the control grid voltage only contains even harmonics of the bias frequency, the potential difference between the plates is zero and the instrument reading will be zero too. If, however; the bias frequency and/or odd harmonics thereof will appear, balance is disturbed and we get n deflection on the instrument, the sign and magnitude of which are dependent on the sign and amplitude of the unbalanced voltage. This device is of course very sensitive to disturbing voltages of the supply frequency, and special means are provided for eliminating an unbalance of this kind. A control is obtained by changing the connections to the suppressor grids. If there is an unwanted unbalanced voltage, instıument deflection will change with polarity switching.

Accuracy in most measurements is limited by noise of different kinds. In this case noise originates principally from the photocathode. There are three possibilities of diminishing noise of this type, firstly by selecting a material with a low noise factor, secondarily by decreasing the band width and, thirdly, by lowering the working temperature. Of these the first two have been used. The bandwidth is reduced to about 0.01 cps by choosing a very long time constant for the instrument (damping with silicon oil).
The choice of bandwidth is, in fact, an important one, as the accuracy obtained is, to a high degree, determined by the bandwidth. One can look upon the function of the indicating instrument from another angle. If direction springs are removed, the pointer of the instrument will constantly move with a velocity depending on the magnitude of current, the latter being the difference between currents during positive and negative half periods. The deflection of the pointer will thus be proportional to the time integral of the unbalance current (the instrument is supposed to be overdamped). Assuming a certain very small unbalance, it is evident that the instrument's mean deflection will be proportional to the time elapsed from application of current unbalance.

## Now on press ...

 NEW
# "ELECTRONIC DICTIONARY' 

(Multi-Language, Illustrated)
another editorial service by

## TELE-TECH

## \& Electronic Industries

Caldwell-Clements, Inc., publishers of "TELE-TECH \& ELECTRONIC IN. DUSTRIES" will soon publish for the first time anywhere a unique, illustrated dictionary of Radio-TV. Electronic terms.

## In 4 Languages

This new multi-language dictionary will cover the twenty major engineering categories of the electronic industries. It will illustrate all important components and equipment used in these fields, and define them in four languages.

## A Valuable Reference Work

This practical, quick-reference dictionary will be a must for electronic engineers, production heads, executives in foreign, and domestic electronic fields, for companies with foreign affiliates, exporters, purchasing agents, etc. Everyone will find it an invaluable desk companion.

Caldwell-Clements, Inc.
480 Lexingion Avenue, Now York 17, N. Y.
TELETECH
hifctronic indusiries





Stort with Synthane Laminated Plastic Com Blanks $\checkmark$ Accurately furned and bored $\checkmark$ Pin hole drilled $\checkmark$ Radial layout lines imprinted 5 Sizes-Sold Soparately or in Sots


## Eanlizas

 for the best in audio
compactness plus performance in your next Cinema equalizer

Cinema Equalizers feature
... Compactness without sacrifice to quality and reliability. The 40318 Equalizer may be purchased on a component unit basis for mounting into your present console panel. Write for catalog \# 12E today.

## factort representatives

 ThROUGHOUT THE NATIONEXPORT AGENTS: Frarge \& Manson, Lrd. 301 Clay Sr.- Son francisco, Calit. U.S. A

## CW Magnetron

(Continued from page 79)
reservoir for the thoria. The 0.010 in . space between the two cylinders is packed with thoria paste. Cathodes have been made using two different base metals, tantalum and molybdenum. The tantalum cathodes require a brightness temperature of 1600 to $1650^{\circ}$ C. for operation. Considerable difficulty with heater life was experienced at this cathode temperature. The molybdenum cathodes require a brightness temperature of $1600^{\circ} \mathrm{C}$. for activation, but activation is very rapid and the brightness temperature may then be reduced to 1300 to $1350^{\circ} \mathrm{C}$. The cathode is indirectly heated by a bifilar heater made of 0.040 inch tungsten wire. The heater power required to start the tube is 550 watts: after the tube starts oscillating the heater power is reduced to about 300 watts.
The cathode is supported and insulated from the top cover by a


Fig. P: Set-up for double-loop injection tests
cathode lead consisting of forsterite insulators which are sealed to 52alloy cylinders by means of a tung-sten-iron metalizing process using silver-copper eutectic solder. The cathode-cover assembly is sealed to the anode by means of a demountable copper-gasket seal formed by compression of a copper gasket between polished steel flanges.

A photograph of the completed tube is shown in Fig. 1.

## Performance

Tentative operating data for this developmental high-power magnetron are given in Table I. When this tube is operated at an anode voltage of 6700 v ., it is capable of producing a power output of 10 kw . at an efficiency of 50 to $55 \%$. At an anode voltage of 9000 v ., a power output of 20 kw . has been obtained at an efficiency of 60 to $65 \%$. A performance chart for the tube is shown in Fig. 7, and a Rieke diagram in Fig. 8. The

## IN

## PRINTED CIRCUITIS



Experience, more specifically High Production Experience, in applicable graphic arts techniques, plastic and mefal fabricating methods and precision electro-mechanical component manufacture are important factors in a smooth conversion to use of prefabricated wiring. METHODE places such experience af the service of receiver and equipment manufacturers.


Demonstration model of one of the first commercially successful radios utilizing a prefabricaled wiring boord furnished by METHODE. Courtesy Hallicrafters Co.

Many of the early leaders (names on re. quest) in the utilization of prefabricated wiring have employed the fortunate combination of equipment and know-how of. fered by METHODE's established position in the wiring device field. As with other wiring devices utilized in electronics, specialization by a component manufacturer offers producers advantage in quality and economy while permilting concentration on the applications of this new and basic com. ponent product.
Write for our new "Printed Circuit Handbook - UTILIZATION OF PREFABRICATED

WIRING"


## SAVES ENGINEERING TIME



The Type 531 Oscilloscope saves engineering time two ways. It provides you with an extremely wide range of facili. ties. It eliminates the need to hunt up another oscilloscope when your require. ments change say from "high-gain" to "wide-band", or to "dual-trace"
Plug-in preamplifiers are used for maximum flexibility in signal handling. Sweep-speed range is 600 million to one - the widest you can get in a single oscilloscope. Accelerating potential is high enough to permit photographing a single sweep...even at the fastest sweep speed.
Direct-Reading in Time and Amplitule. You can read time and amplitude with accuracies comparable to indicating meters.
Sweep Range - $0.02 \mu \mathrm{sec} / \mathrm{cm}$ to $12 \mathrm{sec} / \mathrm{cm}$.
IOKV Accelerafing Potenflal
Versaflle Triggering Circuitry
Price- $\$ 995$ plus price of desired plug in units

## PLUG-IN UNITS

TYPE 538-Same us 53A with odditional
ac sensitivity to $5 \mathrm{mv} / \mathrm{cm}$
TYPE 53C-Dual-trace unit Two identical channels, de to $8.5 \mathrm{mc}, 0.05 \mathrm{v} / \mathrm{cm}$ al anplifies Electronic switching triggered by oscilloscope sweep or free-running of about 100 kc . .... $\$ 275$ TYPE 53D - Differential inpur. DC 10350 ke al full range - $1 \mathrm{mv} / \mathrm{cm}$ to 125 vicm at 50 mv ' cm . Prices f.o b. Portlond (Beaverton) Oregon.

See the Type 531 of the
INTERNATIONAL INSTRUMENT EXPOSITION phlladelphla - and at the NATIONAL ELECTRONIC CONFERENCE, Chicago

Tektronix, Inc.
P. O. Box 831 L

Porriand 7, Oregon
Chone: CYpress 2-2611
tube has a tuning range of 60 Mc with little variation in efficiency over this range.

The dynamic frequency pushing for power variation from 250 watts to 10 kw . is approximately 10 mc . The frequency pulling for a standingwave ratio of 1.5 is approximately 5 мс.

This magnetron may also be operated in the low-frequency pi-mode with good efficiency over part of the tuning range. In this mode, however, the power output is limited to a few kilowatts by the upper current boundary of the mode. In addition, the diaphragm in the tuning cavity tends to overheat when the tube is operated in the low-frequency mode because of the changed current disiribution.

## Injection-Lecking

Although injection-locking and modulation tests on the developmental high-power magnetron have not been completed, the tube shown

| TABLE ! |  |  |
| :---: | :---: | :---: |
| Tentative Data for the Developmental High-Power Magnetron |  |  |
|  | Starting | Operating |
| Weater Voltage (ac) | 15.0 370 | 31 amps . |
| Frequency Range | 785-845 | MC |
| Maximum Frequency | 6.0 | MC |
| Cathode Anode | 6.0 | M |
| Capacitance | 25 | $\mu \mathrm{ff}$ |
| $\begin{aligned} & \text { Cooling - Water and } \\ & \text { Forced Air } \end{aligned}$ |  |  |
| Typical Operation |  |  |
| External Magnetic |  |  |
| Anode Voltage (dc) | 6600 | G. |
| Anode Current | 3.0 | amps |
| Power Input | 19.8 | kw. |
| Power Output | 10.0 | kw. |
| Efficiency | 50 | \% |

in Fig. 1, which has two output connections, has been injection-locked (without modulation) with static locking ranges up to 10 mc . Considerable care is necessary in the adjustment of the locking circuit to prevent damage to the injection amplifier tube as a result of too much power being fed to it from the magnetron.

Tens Lipimp
A block diagram of the test setup for the double-loop injection tests is shown in Fig. 9. An 8.6 mc crystal feeds the multiplier chain. The 413 mC output of the multiplier chain drives the injection amplifier, which operates as a frequency doubler to protect its grid circuit from power fed back from the magnetron. The injection amplifier is a UHF power tetrode. The output of the injection amplifier is fed through a doublestub tuner into one of the connec-
newest, neatest, lightest lapel mike on the market

with the adjustable clip
that grips from any angle . . .


The handiest. low cost lapel mike for all tape recording uses . . . it weighs only 1 ounce and has an alligator clip that really holds. The clip is rubber padded and adjustable holds the mike where you put it; on draperics, clothing or recorder case. Speech reproduction is crisp. clear-cut with chest sounds damped out. Case is light efces plastic. Crys. tal and ceramic interiors available. Send coupon for full information.
Model L-100 (with clip and 20-ft. cable) List Price............. $\$ 12.50$ Model 100 (with clip and with 7-ft. cablc) List Price.............. $\$ 8.00$


923- 17/h St. N.E.
Ceder Rapids, lowe
Please send me complete information on your new Models L-100 and 100.

Name.-
Address.............................................
City
State


## Complete Testing Equipmenf for

## OMNI and

## LOCALIZER RECEIVERS

A.R.C. Type H-14 Signal Generator


For a quick and accurate check by pilot before take-off, or for maintenance on the bench, this is the favored and dependable instrument. Checks up to 24 omni courses. omni course sensitivity, to-from and flagalarm operation, and left-centerright on localizer. For ramp check RF output I volt into 52 ohm line; for bench checks, $0-10,000$ microvolts.
The H-16 Standard Course Checker is a companion instrument to the H-14. lt makes possible a precise check on the course-accuracy of the $\mathrm{H}-14$ or of any other omni signal generator. Just as a frequency meter
 is necessary in con.
nection with a variable frequency signal generator, the H-16 Standard Course Checker is required in connection with a VOR signal generator for a precise measurement of phase accuracy.
These instruments sold only direct from factory.

Write for detailed literature

## CW Magnetron

(Continued from page 151)
tions to the magnetron. The magnetron output is connected to a highpower water load.
This paper was presented at the 1953 National :lectronics Conference held in Chicago.

1. L. Koros, "Frequency Control of Modulated Proc. NEC, vol. 7, pp. 39-45, 1951.
 and II. R. Hegbar, "A One-Kilowati Frequency,
Nodulated Nagnetron for 900 Megacycles,", Modulated Maznetron for 900 Megacycles,
Pror. I.R.E., vol. 35, pp. 664-669; July, 1947 Pror. I.R.E., vol. 35, pp. 664-669; July, 1947.
G. B. Collins, Microwave Magnetrons, MicGrawHill Book Co. New York, N. Y., Chapter 16. $19+8$.

## Ralio Propagation

(Continued from page 83)
the incipient standards work on high frequencies, radio counter-measures, and radiosondes.
Current activities are divided along research lines essentially according to the manner in which radio energy is propagated. The Ionosphere Research Laboratory investigates the physical phenomena affecting the ionosphere and radio propagation in and through the ionosphere. The Systems Research Laboratory is concerned with the characteristics of radio systems depending on propagation in the troposphere (up to about 10 mi . above the surface of the earth). The Measurements Standards Laboratory performs research and develops standards and methods of measurement for all electrical quantities used at radio frequencies. Finally, the CRPL propagation prediction services correlate the wide-spread observations made by CRPL and other laboratories (both foreign and domestic) and prepare propagation predictions for users of the radio spectrum.

## AMF Acquires

## Potfer \& Brumfield

Option to acquire Potter \& Brumfield Mig. Co., Princeton, Ind., has been exercised by American Machine \& Foundry Co., according to Morehead Patterson, AMF board chairman and president. R. M Brumfield will remain president of P \& B, which makes relays and motors.

## TV Camera Tube Warranty Period Doubled

The warranty period for RCA vidicon TV camera tubes purchased for replacement has been doubled, and now extends to 500 hours. Types covered are 6198 and 6326.


We are staffed to design to your specifications or manufacture to your drawings. Supporting this engineering and manufacturing capacity is a completely equipped Electrical Testing Laboratory utilizing the finest in Testing Techniques. Technicraft also has a complete line of flexible waveguides and test components.

Write for literature.


1500 Thomaston Road IHOMASTON, CONNECTICUT | West Coast office | $\begin{array}{l}\text { Westron, } 7407 \text { Melrose Ave., } \\ \text { Los Angeles 46, California }\end{array}$ |
| :--- | :--- |



## ELECTRONIC FILTER DESIGN ENGME

Excellent salary and opportunity offered by expanding. nationally known manufacturer of coils and filters. Location: Metropolitan Area, N.Y.C. Necessary qualifications: thorough knowledge of filter design theory.

Box-TT954
to your specifications
... for quick delivery
You tell our engineers your needs, and Thermador's Electronics Plant goes into imme. diate operation. Complete unsurpassed facilities and precision craftsmanship man ufacture transformers that meet your most exacting requirements.
Your completed transformers are subjected to extreme environmental conditions; tested under critical loads. Thermador transformers with-

## Precision-designed Thermador Transformers

stand the severest testing will exceed any MIL require. ments or exacting specifica. tions. Thermador certifies your transformers without delay.
We work from your specifications to develop a trans former for your application, chassis or performance stand ards... one or a thousand. Delivery is quick. Tell us what you need. Call us today. Request literature from: Electronic Division, Thermador Electrical Manufacturing Company, 2000 South Camfield Avenue, Los Angeles 22, Calif. PARKVIEW 8.2105

## THERMADOR

Electronic Division

S EVEN
$L E A$ A 6 6

Increased Insulation BETTER CONNECTIONS JONES BARRER TERMINAL STRIPS
leakoge poth is increased - dired shonts fram frayed terminal wires pervented by bakelite baniers placed between terminals. Binder screws and iserminals brass, nickel.plated. Insulation, black molded bakelite. Finest construction. Add much to equipment's effect

Jones Means Proven Quality


Illustrated: Screw Terminals - Screw and Solder Terminals Screw Terminal above Panel with Solder Terminal below. Every type of connection.

Six series meet every requirement: No. 140, 5-40 screwss No. 141, 6.32 screws; No. 142, 8-32 screws; No. 150, $10-32$ screws; No. 151, 12-32 screws; No. 152, $1 / 4-28$ screws.
Catalog No. 20 lists complete line of Borrier Strips, and other lones Eleclrical Connecting Devices. Send for your copy.

|  |  |
| :---: | :---: |
|  |  |

Special embossed construction eliminates torque control problems and stripping. Custom fabrication to your exact specification assure's correct dimensions to within the most critical tolerances. We will furnish - without charge - a pilot production run of custom-made embossed forms to fit your particular application.
Soles Representatives in:
Philodelphia:

A NEW UNIVERSAL KLYSTRON POWER SUPPLY


- Positive or negolive grid operation.
- Widest modulation lrequency range.
- Beam voltage Regulated continuously variable over ranges of 300 to 1500 v . of 65 mo . or 103600 v . at 25 ma .
- Repeller vallage Direct reading continuously variable over the range of -20 to -750 volts.
- Modulation: Square wove, 10 w looth, ex. ternol or highly stable c-w operation. Specify the PRD Model 801-A




## Your one best source for

broadcast equipment
85535 th St., N.F.,
Cedar Rapids, Iowa
261 Madison Avenue,
New York 16
1930 Hi-Line Drive,
Dallas 2
2700 W. Olive Ave.,
Burbank
Dogwood Rd.. Fountain City,
Knoxville, Tenn.
Petroleum Bldg.,
Tallahassee, Florida
74 Sparks St.
Ottawa, Ontario


## E. BULLETINS

(Continued from page 121)

## TV Broadcast Anfennas

The RCA line of VHF Superturnstile Antennas is described in new catalog-No. B. 739 which provides engineering specifications and a list of accessories, in addition Available from Engineering Products Div.. RCA. Camden 2, N.J.

## Mefallizing

A reference folder describing the latest advances in vacuum metallizing has been
prepared by the Tungsten Div.. Bergen prepared by the Tung
Wire Rope Co Lodi. $\mathrm{N} J$

## Crystals

Specifications on the Heemco line of lowfrequency crystals and circuits employing them are contained in a catalog just released
by the Hill Electronic Engrg. and Mig. Co.. by the Hill Electronic En
Inc., New Kingstown. Pa

## Germanium Diodes

Comprehensive data on the type 1 N series germanium diodes. including standard types. replacement types, construction, dimensions.
charts. etc Intemnational Resistance Co., 401 N. Broad St., Philadelphia 8, Pa

## Aircraft Equipment

Fourth catalog in a series of seven which provides a most comprehensive and informative rererence on aviation suppies, this volnent used in aircraft Write for Catalog 210. on company letterhead. to Air Associates
Inc., Dept AD. Teterboro. N J

Linear Slide Rule
2-page folder describes uses for and brief description of the linear scale slide rule as opposed to the logarithmic slide rule Available from M L. Groder. 2003 E. 12 St.

## Compufers

A 12-page illustrated product brochure decribes a line of electronic computers and plug-in components, including information puters, accelerometers. and positioning mechanisms. Write for copies to Servomechanisms Inc. Westbury Div. Post \&

## Transformers

A new 1954 catalog, listing more than 500 transformers, of which over 60 are new Transformer Corp., Venice, Calif.

## Power Supplies

A new catalog provides information on the operating principles and specifications on each instrument in their line of voltage regulators. "B" supplies, frequency changers, inverters and magnetic-amplifier DC sources. Inc., 375 Fairfield Ave., Stamford. Conn

## Mobile Unit

A data sheet released by Bendix Radio Baltimore. Md. describes the Type MRT-10 1) Series Communication Unit 'Trafficmaster', a complete. self-contained. mobile communiused for fixed station and other types of service.

## Tape Recorder

Catalog B. 1700 available from the Engineering Products Div.. RCA. Camden 2. N.J. describes the RT-11B Magnetic Tape Re-
corder, a professional unit designed for re. corder. a professional unit designed for
cording studios and broadcast stations. (Continued on page 156)

If you have design experience in

## MAGNETIC AMPLIFIERS

## CRYSTAL and

 L-C FILTERS
## MINATURE TRANSFORMERS

## PLASTIC ENCAPSULATION TECHNIQUES

lor if you are an engineer desiring experience in these fields)
you owe yourself an investigation of the career advantages offered by Communication Accessories Company, Hickman Mills, Missouri
located in South Suburban Kansas City, where you and your family can enjoy advantages of:

1. Management-owned expanding organization
2. Rural atmosphere - 25 minutes to metropolitan Kansas City
3. Newly developed housing facilities, schools and shopping centers.

For confidential negotiations, address inquiries to W. S. Bonebright, V.P.

COMMUNICATION ACCESSORIES COMPANY

HICKMAN MILLS, MISSOURI

ONONDAGA POTTERYCOMPANY Electronics (TPCD Division


From the basic raw material to the finished product - Onondaga Pottery Company controls every step in manufacturing to insure top quality and complete dependability. Our facilities are ample to fulfill any or all of your requirements for multiple capacitor and resistor-capacitor combinations. We solicit your inquiry.

## ONONDAGA POTTERY COMPANY

Syracuse 1, New York

## [Angitort Lywor

16 mm SOUND.ON-FILM EQUIPMENT FOR TELEVISION NEWSREELS, TV FILM INSERTS AND KINESCOPE RECORDINGS ... SOLD WITH A 30-DAY MONEY-BACK GUARANTEE. YOU MUST BE SATISFIED!


WRITE FOR FREE ILLUSTRATED INFORMATION


BERNDT-:ACM, Inc. 6926 Romaine St., Hollywood 38, Calif. MANUFACTURERS OF SOUND-ON-FILM RECORDING EQUIPMENT SINCE 1931


## 2. BULLETINS

## Pulse Transformers

A new catalog that lists the electrical and physical characteristics of the Utah line of bulse transformers. has been announced by Utah Radio Products Co., 1123 E. Franklin St.. Huntington. Ind. The catalog also lists a few high power pulse and guided missile transformers

## Tube Shields

Two free booklets. "Effect of Tube Shields on Miniature Electron Tubes" and "An tron Tubes" have been released by International Electronic Research Corp. 175 W Magnolia Blvd., Burbank, Calif.

## Indusfry

Highlights of Major Alexander P. de Seversky's address at the symposium on Mycalex Corv Air Power." Avallable from Plaza. New York 20, N.Y.

## Springs

Two new catalogs are available to users of copper springs and beryllium copper
components. Catalog $B$ contains design incomponents. Catalog 8 contains design in-
formation, and Catalog 8A describes copper components designed specifically for the electronic industry. Available from Instrument Svecialties Co., Inc. 275 Bergen Blvd., Little Falls, N.J.

## Heating Controls

Full information on a complete line of heating controls. thermostats, thermometers switches and valves is contained in the 1954 catalog of Minneapolis-Honeywell Regulator Co. 621 E. Hennepin Ave., Minneapolis, Minn.

## Transformers

United Transformer Co.. 150 Varick St. New York 13. N.Y. has released their 1954 Catalog A. Which contains engineering speciactors and filters.

## Industrial Recorders

Two publications are available without charge from the Sanborn Co., 195 Massa-
chusetts Ave., Cambridge 39, Mass. whose work involves measurement-recording of pressure, temperature, stress, etc. One is a catalog of oscillographic recording systems, the other, a quarterly publication
deals with industrial recording.

## Bafferies for Transisfors

Burgess Battery Co has made available a four-page folder describing developments In the field of transistor batteries. Write Transistor Engineers. Burgess Battery Co., Freeport, Ill

## Microwave

Technical Bulletin T-2600 enables the design engineer to evaluate all the available microwave balanced mixer designs as to mechanical packaging. electrical characteristirements. Available from Airtron Inc Dept., A., 1103 W. Elizabeth Ave., Linden.

## Microwave

A line of microwave test equipment for Ku-band measurements is described in a 4page illustrated brochure from Waveline Inc., Caldwell. N.J. Among items covered junctions, noise signal sources, and sliding load terminations.

## Tefon Fabricafing

A release from Halogen Insulator and Seal Corp. 10121 Franklin Ave. Franklin Park Il., describes properties of Teflon and applications


Hold open wiring, fragile tubing, etc., with these NyGrip* plastic cable clips and perforated strapping - light weight. flexible, strong. ${ }^{7 \mathrm{TM}}$

Write for
tree samples,
information.
WECKESSER CO., 5259 N. Avondale Ave., Chicago 30
$\square$


Minialurization made fewer physical sizes to cover a large capacitance range. Non.wire lead capacitors can be made even smaller.

## miniature-in size only

When your design says miniature and your specifications say quality - here's the combination...

The Corning Fixed Glass Capactitor is approxumately one third smaller than other hinds of equal capacity. In performance, the Fixed Glass Capacitor has mon of the advantages of micia-plus some special features of its own
Youlll find a lot about their pertormance in the way they're made. Latyers of conductor and diclectric are seated together at high temperature and pressure to form a rugged monolithic unit. The seal cannot he altered nor can properties be changed short of destroying the capacitor.
You can use Corning Fixed Glans Capacitors at temperatures to $125^{\circ} \mathrm{C}$. and higher, with proper voltage de-rating. The temperature coelficient remauns the satme after repeated temperature cycles and it is held within narrow limits over a wide temperature range with very little variation between capacitors. Capacitance drift is close to zero. Usually it's less than the error of measurement
Moisture can't enter these Fixed Glass Capacitors. Insulation revistance is high. Dielectric athorption is low
And you can get a variety of sizes and shapes. Because of its unique construction, the Corning Fixed (ilass C Capacitor allows wide latitude of equipment design. We can make capacitors to your electrical and physical specifications. What's more, single, self-supported units can be designed for high voltages or high capactitances. Series parallel combinations extend the range still further.
For more information about the remarkathe advantages of Corning Fixed Glans Capacitors, please write, wire or phone us.

$\sqrt{ }$
CORNING GLASS WORKS, CORNING, N.Y.
New Products Division
Crexing means researck ie Gliso

## STAND-BY <br> tV TRANSMITTING antennas

for channcls 7-13
Na Diplexer Needed

## transmitier


VISUAL
IRANSMITER

A simple, versatile and economical system consisting of two separate bays of type 1020 slotted-ring antenna can be used with a 50 kw transmitter. No diplexer of any kind is needed. The aural and visual transmission lines need not be of equal lengths. Write for Bulletin T-854.


(Continued from page 38)
Clarence Harding has been promoted to general manager of Ircal Industries, California subsidiary of the International Resistance Co., Philadelphia, Pa. Mr. Harding has been asst. treasurer and controller at IRC for the past nine years.

Joseph B. Elliott has resigned his position as exec. v.p. of the Consumer Products Div., RCA, to become president of Schick Mfg. Co

J. B. Elliolt

w. R. Slaughfer

Brig. Gen. Willis R. Slaughter, U.S.A. (Ret.), former head of the Ordnance Training Command, Aberdeen Proving Grounds, has joined the W. L. Maxson Corp., N.Y.C., as Plans and Programs Advisor.

William W. Wexler has been named advertising and sales promotion manager in the equipment sales division of Raytheon Mfg. Co., Waltham, Mass.
I)avid A. Harkavy, former advertising manager at Harrison Radio Corp., has been appointed industrial advertising mgr. for DeJUR-Amsco Corp., Long Island City, N.Y

Thomas II. Bay is the new sales manager of the Potentiometer Div., Fairchild Camera and Instrument Corp., Hicksville, N.Y., succeeding Stuart Edgerly, who resigned to take a similar position with Fenwal Inc., Ashland, Mass.

Ray W. MacDonald, general manager of international operations of Burroughs Corp., was recently named a vice-president. Mr. MacDonald is in charge of the corporation's sales and service operations outside the U.S. and Canada.

Hale P. Faris is the new general sales manager at Motordyne Inc., Monrovia, Cal., manufacturers of motors, dynamotors and inverters. Mr. Faris was formerly with Redmond Inc.

James R. Bradhurn was elected president of ElectroData Corp., electronic compater affiliate of Consolidated Engineering Corp., Pasadena, Cal.


## CANOGA

CORPORATIOH
59.55 Srpulveda Rlud.. Sian Nuys, Calif.
for every application...

in Conodo Allat podio Corp. lid Toranto. Ont

CI ENE
Agency
DVANC
Agenial
AgCRAF
Agency
IRCRAF
Agenc
IROESI
$\underset{\substack{\text { Agency- } \\ \text { IRDESIC }}}{ }$
AgORD
Agency
AIIED
MERICA Agency
MERICE
Agency
MERIC
AMERIC
Agenc
MPERI
Agen
ANTAR
NIARA
IIN
Agenc
ARNOLI
Agen
ARTOS
Agen
AItAS
AUDIO

BELL
BENDI
BERNE
BLAGE
SURNE
AURRI
bussi


## TELE-TECH ADVERTISERS - SEPTEMBER, 1954



CE ENGINEERING \& MACHINE CO. . ..... 46
DVANCE ELECTRIC \& RELAY CO. ....... 4 .
Ageniy-Wessern dverrising Agency. Inc................. 152
Agency-Burke Dowling Adoms, Inc. 117
IRCRAFT TRANSFORMER CORP..............
ARDESIGN, INC. ............................ 113
-IFORD MANUFACTURING CO, INC I58
Agency-Engineered Adveltising ............ 118
.LIED RADIO CORP.
MERICAN ELECTRICAL MEATER CO 108
Agency - ' Huberl Advertising Counselon
Agency Power and Condon Adv.
MERICAN MICROPHONE CO
116
AMERICAN PHENOLIC CORP. ............ 12
Agency-H, Cold Ca
NTARA CHEMICALS DIV. GENERAL ANA IINE \& FILM CORP.
ARNOIU ENGINEERING CO.
Agency-Walker \& Downing. General Agency
ARTOS ENGINEERING CO. .................
ATIAS SOUND CORP.
AUDIO DEVICES INC

BELL TELEPHONE LABS. INC. ........... 49
RENDIX AVIATION CORP., REDBANK DIV. 120
BERNDT-BACH, INC. 156
BLAW-KNOX CO. 23
Agency-Kelchum, Mocleod \& Grove. Inc
SURNEIL \& CO., INC.
BURROUGHS CORP Advelising Co. Inc. 117
BUSSMANN MFG. CO

CALDWELL-CLEMENTS, INC. ..................... 148
CANOGA CORP.

CECO DISTRIBUTING CORP. ............. 149
Agency-J.M. Kessling
CHESTER CABLE CORP.
Agency-George Momer Martin Asso 38

Aaency-D ' ${ }^{\text {Compbell, Inc. }}$
CINEMA ENGINEERING CO. 97

CIEVEIAND CONTAINER CO.
CIIPPARD INSTRUMENT LABORATORY
25

COllINS RADIO CO.
COLUMBIAN CARBON CO
OMMUNICATION ACCESSORIES CO
ORNEIL-DUBILIER ELECTRIC CORP
CORNING GLASS WORKS ........
157

| CROSLEY DIV. AVCO MFG. CO |
| :--- |
| CUNNINGMAM, SON A CO., INC, JAMES: 141 |
| 15 |



EITEL-MCCUILOUGH, INC.
Agen:r-Conner.Jackson- Walker \& McClure Adv
ELECTRO MOTIVE MFG. CO. .............
Agency - Coir snow In. CO.

FAIRCHILD RECORDING EQUIPMENT CORP. 137 FEDERAL TELECOMMUNICATION LABS ... 143
Agency-J. M Mothes. Inc.
FORD INSTRUMENT CO.
FREED TRANSFORMER CO., INC. .... 160
Agency Fianklin Adverlising Agency
GARDE MANUFACTURING CO. ....... 120
Agency - Franklin Adveltising Agency
GENERAL ELECTIC CO. 11, 21, 123
Agency-Manon Inc
GENERAL ELECTIC CO. 141
GENERAL PRECISION IAB., INC...... 99

| Ayency-Burke Dowling Adams, Inc. |
| :--- |
| GENERAL RADIO CO. |
| 5 |

Agenit K K Morong Co
GRAPHITE METALIZING CORP. ..... 100


IISCO COPPER TUBE \& PRODUCTS, INC. 140 INDUSTRIAL HARDWARE MFG. CO., INC. 130
INTERNATIONAL RECTIFIER CORP. SO

JOHNSON CO., E. F. 121
Agency - Firesione Goodmon Adv Agency, Inc.
JONES DIV., HOWARD B.,
CINCH MFG. CORP.
CINCH MFG. CORP 154

KAHLE ENGINEERING CO. 145
Agency-ContíAdverlising AzP: 142
KANTHAL CORP.
Agency- PS Advertising. Inc.
KEARFOTT CO., INC.
Agency-Western Adv Agency. In
KESTER SOLDER CO.
KEYSTONE PROOUCTS CO. 19
Agency-Conti Advertising Agency, Inc 131
KNIGHTS CO.. JAMES
Agency Kenneth B Bullet A Assor
KOLISMAN INSTRUMENT CO., INC
OLLSMAN INSTRUMENT CO.. INC 5

LORAL ELECTRONICS CORP. 27


NATIONAL CO. 133

ONAN SONS INC D W
Alency-Graves \& Assoc

PERRLESS DIV., ALTEC LANSING CORP 147 PERMAG CORP. ..... 156 Agency-Joseph P Schneider inc 143
PHAOSTRON CO PHELPS DODGE COPPER PRODUCTS CORP. 16 PHILCO CORP. 102, 103
AlARAD CORP Paliod Co
OLI
AlIENG
POITSECHNIC RESEARCH \&
OEVEIOPMENT CO
DEVELOPMENT CO
POTVER CO 134
Aqency Symonds. Mackenzie \& Co 153
PRECISION PAPER TUBE CO.
Agenci- Symonds Mackenzie \& Co
PYRAMID ELECTRIC CO.
Agency Burton Browne Adverlising IS

RADIO CORPORATION OF AMERICA Cover 4 Agencr Al Poul lefton Co Cover 2 RADIO RECEPTOR CO., INC. 53
Agency-Woller I Zimmerman Awar 135
RAYPAR. INC
Azenc: Suli Roberts 2 Assoc. 13
RAYTMEON MFG CO.
Agency Wolter 8 Snow \& Staf int 3
REEVES SOUNDCRAFY CORP.
Agency-J M Mothes, Inc.
RESINITE CORP.
Agencr-symonds. Mackenze \& Co. inc 110
QUsT INDUSTRIAL CO., INC.
Aqency-Robell Horlwell Gobine Adv

| SHALLCROSS MFG. CO. ${ }^{\text {a }}$ Agency Hary ${ }^{\text {Pridae }}$ | 33, 130 |
| :---: | :---: |
|  |  |
| SIGMA INSTRUMENTS. INC | 132 |
| Agencr Mersmer \& Culver. Ine |  |
| SPECIFIC PRODUCTS CO. | 116 |
| Agencr-Allen Doisey \& Horfield Inc |  |
| SPRAGUE ELECTRIC CO |  |
| Agencr-stuart Sonde Aar |  |
| SPRAGUE ELECTRIC CO | 56 |
| Aaency-Harty P. Bridae Co |  |
| Standard piezo co | 148 |
| Agene,-Harir P Bridar Co |  |
| Stoddart alrcraft radio co. | 36 |
| Agency Allen Dorsery Holfield ing |  |
| Stone paper tube co | 122 |
| Arencr-Roberi M Gomble If A. |  |
| SUPERIOR INSTRUMENTS CO. | 140 |
| Agencr Bass \& Co. Inc |  |
| SYIVANIA ELECTRIC PRODUCIS, INC |  |
| Aosncy-Crcil 8 fresbier Int. |  |
| SYNTHANE CORP. |  |

TECHNICRAFT LABS., INC 152
Aoencr-Charles Brunelle Co
TEKTRONIX. INC
TELECHROME, INC EI
TEL-RAD MFC. CO. 142
Aoanc: Sander Ridkin Adv Agen
THERMADOR ELECTRICAL MFG CO
Aaence Wes Marquis. Inc
TRANSRADIO ITD
TUNG-SOI ELECTRIC, INC 36, 37
Anency EO M Frevstodi Assoc. Inc
TURNER CO
Agency W


While every precaution is taken to insure oscu-
vacy. we cannot guarantee against the pessibillty of on occosional change or omission in the

## FREED

## MAGNETIC AMPLIFIERS

Freed Magnetic Ámplifiers, Saturable Transformers and Reactors are designed for efficient operation and long life. They can be used wherever reliable, rugged and maintenance free systems are required.
The types of amplifiers listed be low are designed to control AC servomotors.
Development facilities are avail. able for the design of magnetic amplifiers to meet specific requirements.
All standard units are hermetically sealed and meet MIL-T-27 Specilications.


SATURABLE TRANSFORMERS Controlled with dual triode: plate supply can be either DC or AC: no rectifiers: AC or DC control signals.
PUSH-PULL MAGNETIC AMPLIFIERS - AC or DC control signals: high gain: may be used with magnetic or vacuum tube preamplifiers if needed.
FAST-RESPONSE MAGNETIC AMPLIFIERS - High gain: hall-cycle per slage response time: $A C$ or DC control signals: RC feedback networks for control system stabilization can be used directly: preamplifier not needed.
HIGH TEMPERATURE MAGNETIC AMPLIFIERS - Designed to operate in ambient temperatures as high as 200 C : AC or DC control signals.
DRIFT-FREE MAGNETIC AMPLIFIERS - For Control Systems of high stability with rigid "driftfree" requirements.

## For Complete

Detailed Technical Information Send for Bulletin No. 5410

## FREED <br> TRANSFORMER CO., INC.

1718 Weirfield St.
Brooklyn (Ridgewood) 27, N. Y.

## Time Delay

(Continued from page 73)
put reference points. If the time between these points is greater than the total time across the face of the oscilloscope, adjust the sync delay until the output pulse appears on the screen, counting the 1 usec markers as they pass the vertical reference line. When the last, full 1 usec interval has been counted, switch to the 0.1 usec markers and identify the 0.1 marker that corresponds to this last 1 usec marker. Count the number of full, 0.1 usec intervals from this point. Set the last 0.1 marker on a vertical reference line with the fine sync control, point 3 in Fig. 4. Switch the marker selector to the off position and move the calibrated delay dial from zero until point $B$ moves to point $C$ on the graticule. Read directly from the calibrated dial the time that is to be added to the last full 0.1 usec interval. If the total delay is less than 1 usec proceed as before but use only the 0.1 usec markers and the calibiated delay dial.

This same equipment may also be used to measure the rise or decay time of a pulse. Rise or decay time is defined as that time it takes a pulse to vary between its $10 \%$ and $90^{\prime}$, amplitude points. Since measuring decay times is identical to measuring rise times, only a risetime measurement is described.

Refer to Fig. 5, and with the fine pulse-trigger delay and fine sync delay, set a 0.1 usec marker on the 10 e amplitude point and a vertical reference line on the graticule, point A. Count the number of full 0.1 usec intervals between the $10 \%$ and $90 \%$ amplitude points. With the fine sync delay set the last 0.1 marker on a vertical reference line, point $D$. Switch the marker selector to the off position and move the calibrated delay dial from zero until point B moves to point $C$, and add the time read from the calibrated dial to the last 0.1 usec marker. If the total rise time is less than 0.1 usec, proceed as before but use only the calibrated delay dial.

## Job Opportunities for Engineers

A number of vacancies for electronic engineers now exist at the U.S. Naval Air Missile Test Center, Point Mugu, Calif. Salaries are to $\$ 8360$ per annum. Information is available from R. A. Riebow, employment superintendent.

## Low noise level <br> Precision Stability

## RATING - 1 watt.

TEMPERATURE COEFFICIENT-From approx. $+0.1 \% /{ }^{\circ} \mathrm{F}$ for $5000 \overline{0}$ ohm values to approx. $-0.2 \% /{ }^{\circ} \mathrm{F}$ for 10 megohm values.

VOLTAGE COEFFICIENT-Rated at less than $0.02 \%$ /Volt.

UPPER TEMP. LIMIT- $170^{\circ} \mathrm{F}$ for continuous operation.
NOISE LEVEL - Low noise level inherent, but at extra cost we can test and guarantee standard range resistors with "less noise than corresponds to a resistance change of 1 part in $1,000,000$ for the complete audio frequency range.'
VALUES
Standard Range - 1000 ohms to 9 megohms.
Extra High Value Range - Up to $10,000,000$ megohms.
BULLETIN 4906
has full details. Send for a
copy. Attention Dept. QR


Industrial division
 NEW YORK 16, W. Y.
Westera District Office - Timas Bultaing. Long Beach, Celif.

Do you want more information about

## LEADING MANUFACTURERS

are using spoce in this issue to acquaint you with their products. Perhaps you want more information on some of them-on one or two, or possibly a score. You can cover all of your needs with the cards below. They are convenient and postree.

204 Aireraft Tranaformer Corp.-Hermetically sealed transformers sos Atrdesien, Ine-Tranaformers
zut Alford Mig. Con Inc.-Stand-by TV transmitting antenaas
307 Allied Redio Corp-Electronic supplies
308 Ameriean Electrical Heaker Co.-Soldering irons
309 American Lave Corp.-Ceramie components
310 Ameriean Mierophone Co-Mierophones, phono eartridges
311 American Phamolice Corpo-Cable asoemblies
312 Amperite Co., Ime-Delay relays
313 Antare Chemieale Diva, General Amalime Pile Corp.-Iron powders
314 Armold Eactucertag Comsilicon Steel coren
315 Arten Engineoring Co.-Automatic wire eutting machines
316 Atlan Sonad Corp-Microphone ntands, booma
317 Aadio Devices, Inc-Magnetie recording tape
iil Bell Telephone Laba., Ine.-Polo-line construetion
319 Bendis Aviation Corpor Rodbank Div.-Electron tubee
389 Berwit-Each, Ine,-Sound-on-film equipment
321 Blaw-Knoz Ce,-Antenna towers
223 Barmall a Co., Ine.-Varlable toroide
324 Barronghs Corp.-Unitised palse sytem
325 Bunsama Mfy. Con-Fuses
326 Canoga Corp.-Sweep fregneney generatora
227 CBS-Hytron-Color TV pieture tube
318 Cees Dutribating Corp-All-directional dolly
329 Chester Cable Carp-Wires \& eables
330 Cinel Mg. Corp.-Connectore
331 Chaeman Engtiserting Con- Equaliben
312 Clevoland Container Co-Phenolie tubing

Wrine In bexes the code nembers of groducts for whlch you want Informetion. See list above and on nest pege.

TELE-TECH-SEPT. 1954
CALOWHL-CLEMBMTS, iNC., 400 Laxigylen Avewe, Mou Yeit 17

## PRODUCTS advertised in

## TELE•TECH <br> fiectronic industries

Uso the convenient postagefree cards below to get information quickly abous products listed hero-all advertised in this issue

333

357 Comeral Eleetrie Com-Unblevel amplifers
38: Geners! Electric Ce-Steeked germanium rectifiers*
259 General Procioion Lab. Ine.-Miniature TV camera sube
340 General Redto Com-Froguency measuring ejobment
Listings continued on nexd poge | | | $\mid$
Use these postege-free eorla to get further Informetiee

White In bexes the code nombers of products for which you wont information. see list above and on next page.


Your sempeny
Addreas

Your nome
Tour phisle
TELE-TECH-SEPT. 1954
CALDWELL-CLEMBNTB, INC., aso Lezingles Avenve, Mow Yowt 17

## PRODUCT INFORMATION?

If that is what you need, use the cords below to get it quickly, through

## Listings continued from preceding page

361 Graphite Motalliktag Corp-Brushes contacta
362 Hellpot Corp-Free technical paper
368 Heppaer MIg. Com-Flsbacks
364 Hermotic Seal Prodactis Co-Hermetic headern
365 Hewlett-Peckard Co.-TV monitor
368 Ecaston-Fearices Corp-Cradle heads
867 Habbell, Inea, Harrey-Connectora
368 Eigeghen Atreraft Con-Germanium diodeo
369 Haghes Besearch E Dev. Labe-Tiggineering personnel
270 Hycen Mis. Co-Digtal VTVM
871 Hece Cogper Tube A Producta, Ime-Conacetore
171A Indastrial Hardware Mis. Cen Inco-Anode connectors
372 International Reetifer Corp-Selentum rectifiers
378 Johneon Con E, P-Capacitors, jacks. lights, knobs
374 Jomen Divo Foward Bo, Cinch Mfg. Corp.-Terminal atrips
875 Kahle Engincering Co-Transiator production equipment
376 Kanthal Corp-Resistance wire
877 Kearfott Cos Inc.-Mierowave teating equipmenta
378 Kecter Solder Co.-Solder
379 Eeystone Producta Com-Transformers
880 Enights Co. James-Crystals
281 Kollsinan Instrument Con Inc.-Sweep senerator
888 Loral Electroniea Corp-Wlectronic milltary equipment
ans Megnecord, Inc.-Tape recorder
381 Magnetica, Ine-Tape wound corm
385 Meaurenents Corp-Megacycle meter
386 Melpar, Ine-Engincering personnel
287 Mothode MPs. Co-Printed circuits
388 Midiand Mfg. Co.-Cryotala
388 Minacesta Mining Afs. Co-Magnetic recording tape
190 Mitemell Iadantrics-aldering from
358 Meeller Electrie Co-Alligator elipa
398 Nettoral Co-Dials A knobs
s93 Oaan Soas, Isc., D. W.-Stand-by electric plants
394 Onandaga Pottery Co.-Multiple capacitorb-reaintor
isf Peerleas Divo, Altee lanaing Corp.-Repeating coll
3esA Permag Corp-Permanent magnets
398 Pheostron Cos-Cuntom panel instrumente

307 Phelan Dadge Copper Predacta Corb_-Coaxial cablea
318 Phileo Corp-TV Alm Seanner
302 Polared Electroales Corp.-NT8C color TV equipment
100 Polarad Electroale Corp-Spectrum analysen
401 Polytechale Researel A Development Co_-Klystron power supplies
402 Potter Com-Filters
408 Precialon Paper Tubo Co-Saper tubee
404 Pyranid Ebectric ComMIL eapseitor
$\Delta 05$ Radio Corporation of Ameries-TV pleture tubee
400 Rello Material Corpmblec eapecitora
407 Redio Receptor Con Inem-Selenium rectilers
408 Raspar, Ine.-High voltage tube socketo
102 Raytheon Mis. Co.-Microwave accemsorien
410 Reavea Sounderaft Corp.-Magnetic recording tape
411 Resinite Corp-Imbosed coll forms
418 Rat Indantrial Co., Ime-Tranamitter remote-control syentem
111 Shallereey Mfg. Co-Reniators
414 Shallerees Mfg. Co.-Audio attenuatore
415 8ifen Instraments, Inc.-Photoelectrie light control
416 Specife Prolucts ComWVR receiver
417 Sprague Eleetric Co.-Wirewound resistore
418 Sprague Electrie Co.-Tantalum electrolytie eapacitora
410 Standard Pieso Co-Cryatals
430 Btadart Alreraft Redle Com- Prequency measuring equipment
481 8tome Paper Tube Co-Paper tubes
422 Superlor Intranenta Co-CRT tube tester
428 Bylvania Electrie Preducts Ine-X-band duplexer tubes
41 Sylvania Electrie Prodacto Ine-Subminiature tubes
125 8ynthane Corp.-Plastic cam Manks
424 Techaleraft Labs., Ine.-Mierowave aseemblies
427 Tektrealx, Ine-Oscilloseopes
428 Telcehrema, Inc-Video tranaminsion test equipment
129 Tel-Rad Mis. Co., Imem-Detection componente colls
430 Thermedor Ehectrieal Mig. Ca.-Transformers
481 Tranaradio Ltil-Coaxial cable
132 Tuag-Sol Electite Ise-TV rocelving tubes
438 Tarnar Co-lapel mierophone
484 Watorman Prolucto Co.-Cathode ray tubes
435 Weckecoer Co--Plastic cable clipe
426 Weaton Electrical Inatrument Corp.TV east equipment
427 White Demtal Mig. Co, 8. Br-Molded resiators
428 Wlley Sons, Johm-Book on TV engineering
489 Wulame Co., Ine., C. E-Ferric oxides

MAIL CARD
TODAY

NOT GOOD AMER NOV. 1, 1954

TELE-TECH \& ELECTRONIC INDUSTRIES 480 tuanerow avisul - Num Toes 17, R. T.

HRST Cuss
permit Me. 22273
(Sec. 34.9, P.L.AR.)
NEW roak, N.Y.
BUSINESS REPLY CARD
No rostage stamp mecissary if mailed in united states
POSTAGE WILL BE PAID BY
TELE-TECH
a ELECTRONIC IMDUSTLIES
480 LEXINGTON AVENUE NEW YORX 17, N. Y.
Caldwell-Clemenfs, Inc.


BUSINESS REPLY CARD
MO FOSTACE STAMP NECESSAET IP MAILED IN UNITED STATES
POSTAGE WILL BE PAID BY TELE-TECH \& ELICTIONIC IMDUSTIES
480 LEXINGTON AVENUE
NEW YORK 17, N. Y.
Coldwell-Clements, Inc.

## mast class

 PERMT No. 22273(sec. 24.9. PLen.)
Mew Yoik, M.T.

## New

## Switch

 SWITCHES


Why not call on DAVEN today to assist with your development project, especially if you need switches that must render maximum performance in minimum space.

179 CENTRAL AVENUE NEWARK 4, NEW JERSEY


PRITT III BITDDINC

- In bidic


[^0]:    You can see why a job with ford Instrument offers young engineers a challenge. If you can qualify, there may be a spot for you in automatic control development at ford a spot for you in automatic control development af ford. Write for brochure ab
    State your preference.

[^1]:    6 temperature variation of $-20^{\circ}$ to $80^{\circ} \mathrm{C}$.

[^2]:    SERIES 9000 (LOW BAND) 25 KW VHF TELEVISION TRANSMITTER

[^3]:    "VIBRATION IOCK," designed for use an the "MRE" series of electrical connectors by Glenbrook. Conn.. automatically engages the mating connector parts. Lock screws have been eliminated.
    ENCASEMENT ASSEMBLY, made by Torocoil Co.. 1374 Mobile Court, St. Louis 10 . inductors. High impact strength plastic cup with an appropriate disc and machine screw contains the toroid.

[^4]:    GOVERNMENT \& INDUSTRIAL DIVISION • PHILADELPHIA 44, PA.

