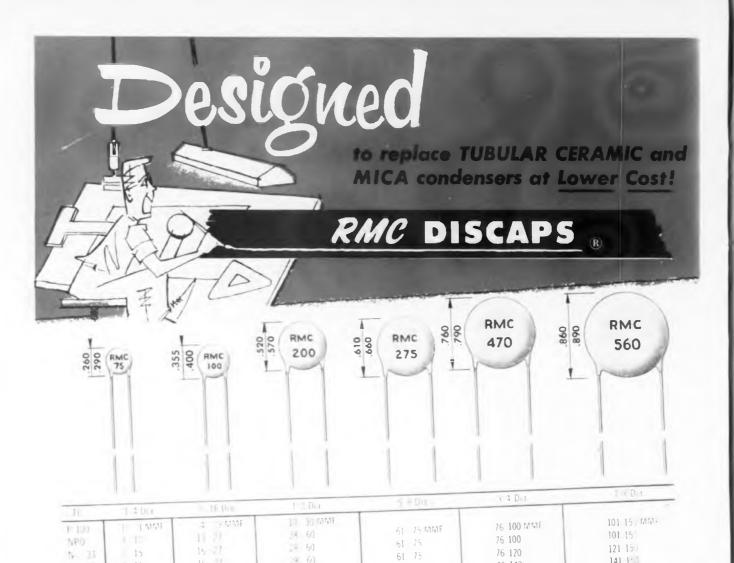
TELLE-TECH.

a Electronic Industries:



THERMISTORS

Dynamic Electronic Control Component! SHASE THIS IRT ISSUE

PERSONAL PROPERTY.

IN PLEASURE - PROTECTION

The design of Type C temperature compensating DISCAPS has stood the test of more than four vears of volume production.

16 30

16 30

21. 40

26 56

51 100

76 120

15

60

11. 80

57 150

121 200

Now universally specified as a money-saving replacement for tubular ceramic and mica capacitors, Type C DISCAPS are available in a wide range of capacities and temperature coefficients for many applications. They feature smaller size, lower self inductance, and greater dielectric strength. Rated at 1000 working volts, Type C DISCAPS assure trouble-free performance on VHF or UHF applications. Their lower initial cost and greater mechanical strength poemits. cost and greater mechanical strength permit a substantial lowering of production costs.

If you have a design problem requiring a standard or special type of ceramic capacitor why not let RMC engineers solve it for you.

SPECIFICATIONS:

76 140

101 150

101 150

121 200

201 280

251 330

276 470

POWER FACTOR: Over 10 MMF less than .1% at 1 megacycle Under 10 MMF less than .2% at 1 megacycle

141 1:0

151 190

151-13

201 243

281-350

331.560

471.560

WORKING VOLTAGE: 1000 V.D.C.

TEST VOLTAGE (FLASH): 2000 V.D.C

CODING | Capacity, tolerance and TC stamped on disc

INSULATION: Durez phenolic-vacuum waxed

INITIAL LEAKAGE RESISTANCE: Guaranteed higher thein 7500 megohms

AFTER HUMIDITY LEAKAGE RESISTANCE: Guaranteed higher than 1000 megohms

LEADS: No. 22 tinned copper (.026 dia.)

TOLERANCES: ±5% 10% 20%

These capacitors conform to the RTMA specification for Class I ceramic condensers.

The capacity of these capacitors will not change under voltage.

SEND FOR SAMPLES

61 75

76 100

76 100

90 12

200 250

DISCAP CERAMIC CAPACITORS

24

N 150

N 270

N 330

170

14 750

N 1400

N 2200

47. 75

RADIO MATERIALS CORPORATION

GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III.

FACTORIES AT CHICAGO, ILL. AND ATTICA, IND. DISTRIBUTORS: Contact Jobbers Sales Co., 146 Broadway, Paterson 1, N. J.

TELE-TECH

& Electronic Industries

APRIL, 1954

SECTION ONE:

FRONT COVER: THERMISTORS—Highly versatile thermally sensitive resistors provide low-cost reliable means for measuring and controlling many functions. Among the numerous industrial and communications applications are control of temperature, air flow, servo motors, radiation, amplifier gain and liquid level. Other uses include voltage regulation, microwave power measurement, filament protection, and circuit compensation for ambient conditions. For complete technical details and list of thermistor manufacturers, see page 73.

Totals: What It Takes to Earn Taxes, Mfrs. Report 1953 Earnings	3
As We Go to Press	9
Electronic Engineering Associations And You	69
Thermistors: Components for Electronic Control and Measurement	
Albert J. Forman	72
Self-Oscillating UHF Transistors Dr. Hons E. Hollman	75
Industrial Applications of Transductors	78
Compatible Color Signal Content and Transmission E. S. White and M. H. Kronenberg	80
Designing Inductively Coupled Traps	83
G-Curves and Degenerative Amplifiers	86
New Test Tape for Magnetic Recorders	88
Contouring TV Antenna Patterns	90
Low-Level FM Altimeter	93
A Ruggedized FM Telemetering Transmitter	94
Cues for Broadcasters	96
Electronic Power for a Synchrocyclotron Lester Kornblith, Jr.	98
Automatic Picture Tube Metallizing Unit	100
IRE Professional Engineering Groups	101
IRE Show Exhibits and New Products	102
RCA's New 19-Inch Color Tube	168

DEPARTMENTS

Books	48	News of Manufacturers Reps	36
Bulletins	134	Personal	156
Coming Events	16	Radarscope	70
Industry News	159	Tele-Tips	
New Equipment	106	Washington News Letter	124

SECTION TWO: ASSOCIATIONS SERVING THE ELECTRONIC INDUSTRIES

TELE-TECH*, Vol. 13, No. 4. Published monthly by Caldwell-Clements, Inc. M. Clements, Presidents; M. H. Newton, Assistant to President John J. Borghi, Vice President and Secretary; Marguerite B. Clements, Treasurer, Acceptance under section 34-64 Postal Lows and Regulations authorized at Bristol, Conn., February 8, 1952 with additional entry of New York, N. Y. 75c a copy. Annual Subscription Rates: United States and Possessions: \$7.00; Canado 88-00 All Other Countries: \$10.00. Please give title, position and company connection when subscribing Capyright by Coldwell-Clements, Inc., 1954. Printed in U.S.A.

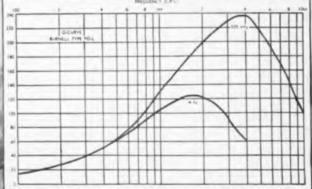
CALDWELL-CLEMENTS, Inc.

Publication Office, Bristol, Conn.

Editorial/Business Offices 480 Lexington Ave., New York 17, N. Y., Tel. Plaza 9-7880
Publishers also of MART and TECHNICIAN

Reg. U. S. Pat Off.

TELE-TECH'S CIRCULATION, 21,000


Because of increases in circulation which are not always shown in current audited statements, advertisers should disregard only comparison based on a previous period or any that fails to show TELE-TECH'S guaranteed circulation of 21,000.

A New Level in Engineering is Achieved in the Functional Design of Toroidal Decades*

This unique development permitting precision toroids to be combined in decade steps of inductance will appeal to all engineers who are familiar with the disadvantages of the ordinary type of inductance decade box.

All the decade units in the plug-in decade series are higher Q toroids such as are employed in the Burnell attenuation filters. They are guaranteed to a tolerance of 1% of the marked inductance and have extremely good stability of inductance vs. voltage and tempera-

PLUG-IN DECADE COILS
CAN ALSC BE DESIGNED
WITH SPECIAL
CHARACTERISTICS FOR
SLIGHT EXTRA CHARGE.
UNITS GENERALLY
AVAILABLE FROM STOCK
ARE AS FOLLOWS:

OTHER RECENT Burnell ACHIEVEMENTS IN TOROIDS AND FILTER NETWORKS

SIDE BAND FILTERS

Our most recent engineering development in communications filters has already stirred the interest of the leading receiver manufacturers in the country.

ufacturers in the country.

The new side band filters which eliminate, for most applications, the necessity for expensive crystal filters are expected to accelerate the advancement of single side band communications.

MINIATURE TELEMETERING FILTERS

In recognizing the need for miniaturization of the presently bulky telemetering equipment, our engineering staff has succeeded in reducing the size of telemetering filters to as little as 25 to 50% of the original volume.

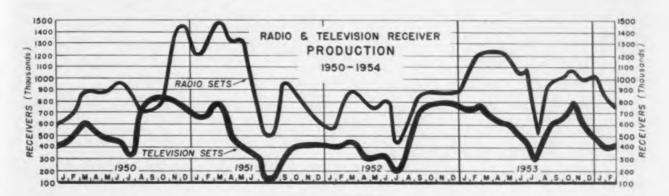
SUB MINIATURE TOROIDS

Toroids for intermediate frequencies of 100KC to 1 megacycle. A wide variety of coils ranging in size from $\frac{1}{2}$ 8 inch provides high \underline{Q} in the frequency range between audio and RF.

The tiny toroid about the size of a dime has been welcomed by designers of sub miniature electronic equipment for the transistor, guided missile and printed circuit field,

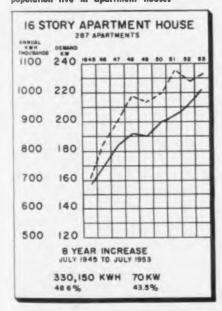
Literature for all the above available on request

Write for new and enlarged 16 page catalog 102A


See us at the IRE show booth 678 Kingsbridge

Armory, N. Y. City, March 22-23-24-25,

Exclusive Manufacturers of Communications Network Components



Broadcast Stations in U.S.

	AM	FM	TV
Stations on			243 VHF
Air	2467	533	130 UHF
Under Construction	134	62	79 VHF
(CPs) Commercial			134 UHF
Under Construction			12 VHF
(CPs) Educational			15 UHF
Applications Pending	1		247 VHF
Applications of the same			54 UHF

GROWTH OF DEMAND for electrical power by consumers is dramatically portrayed by the 8 year increase curve for a 16 stery apartment house as shown below. Appearing in the Adequate Wiring Reporter and made available through Con Edison of New York City, report also mentions that 74% of the metropolis population live in apartment houses

A survey conducted by the American Society of Tool Engineers reveals that industry itself considers the following facilities to be obsolete:

Machining equipment and		Metal forming processes	28%
processes	30 %	Grinding-finishing	
Automation equipment and		equipment	23%
processes	20%	Production welding	
Inspection methods	34 %	equipment	25%

What It Takes to Earn Taxes

The Tax Foundation, 30 Rockefeller Plaza, New York, has compiled the time taken to earn the following current expenses by a worker receiving \$4500 yearly.

Food	8:00	to	9:36	AM		36	minutes
Transportation	9:36	to	10:11	AM	*********	35	10
Housing	10:11	to	11:54	AM	*********	44	30.
Taxes	1:00	10	3:34	PM		154	44
Medical	3:34	to	3:56	PM		26	10
Recreation	4:27	to	4:44	PM	**********	17	
Other items	4:44	to	5:00	PM		16	14
Clothing	3:56	to	4:27	PM		31	146

MAJOR MANUFACTURERS REPORT 1953 SALES

Name	Sales		Net In-		Earning		
Mfr.	(Thous	ands)	come	(000)	Share (Cmn)		
	1952	1953	1952	1953	1952	1953	
GE	\$2,623,888	\$3,128,127	\$151,720	\$165,728	\$5.26	\$5.75	
RCA	1853,000	693,941	\$32,325	35,022	2.10	2.27	
Stromberg Carlson	*48,098	65,242	1,241	1,667	3.28	3.40	
Sylvania	+235,023	293,267	6,961	9,536	3.04	3.10	
Western Electric	1,311,332	1,507,953	47,082	52,605	_	_	
Westinghouse	1,454,272	1,582,047	68,581	74,322	4.23	4.53	
	* No	Sales	† Gross	Income	‡ Net	Profit	

GOVERNMENT ELECTRONIC CONTRACT AWARDS

This list classifies and gives the value of electronic equipment selected from contracts awarded by government procurement agencies in February 1954.

		3		-	
Actuator Assys	\$ 102,486	Generators	1,467,592	Relay Box Assys	28,407
Ampliflers, magnetic	78,437	Kits, flight tester	209,332	Squadron Guidance Equipment	991,100
Anodes, silver	25,480	Kits, receiver parts	29,716	Switchboard	58,544
Autopilot Comp.	438,935	Lamps, incandescent	46,771	Switchboard Generator Control	95,798
Coble		Milliameter	1,594	Switches, retary	132,938
Cable Assys .		Millivoltmeter	2,006	Test Sets, crystal unit	86,826
Connectors, shell		Oscillograph, direct inking	28,044	Test Sets, electron tube	24,741
Control, switchboard generator	95,792	Oscillograph Processing System	108,983	Transformers	87,443
Couplers, directional	35,940	Power Units	65,772	Tubes, electron	754,581
Crystal Units	32,410	Radiosondes	245,400	Tubes, magnetren	45,600
Dummy, load	102.582	Receivers	152,235	Wattmeter, r-f	168,577
Electrodes, covered	65,620	Resistors, welding	36,600	Wire	161,578

1954

Type 1217-A Unit Pulser . . . \$195

... features pulse durations from 0.2 to $60,000~\mu sec$ and wide range of repetition rates ... $0.05~\mu sec$ rise time and minimum overshoot ... internal oscillator makes unit independent of external synchronizing signals

Pulse Repetition Rates — 12 different repetition frequencies from 30 c to 100 kc.

Pulse Widths — durations are continuously variable from 0.2 to 60,000 $\mu \rm{sec}$ — accuracy of $\pm 15\%$ or 0.2 $\mu \rm{sec}$, whichever is the greater — stability is excellent

Good Pulse Shape — rise time, 0.05 μ sec — fall time, 0.15 μ sec (depending on load characteristics) — overshoot less than 5% of half maximum amplitude — pulse top flat to within 5% of maximum amplitude, at all durations.

Variable Amplitude — zero to 20-v, open circuit, for pulses of either polarity — pulse amplitude adequate for direct use on oscilloscope deflection plates.

Output Impedance — 200 ohms for positive pulses; 1500 ohms for negative.

Provision for External Synchronization — (either pulses or sync waves may be used for continuous locking from 15 c to 100 kc).

Sync Signal for Scope — sync leads pulse by $1/10~\mu \rm{sec}$ so that leading edge will be visible on scope.

Power — Type 1203-A Unit Power Supply recommended.

Dimensions $10\frac{5}{8}$ x $5\frac{3}{4}$ x $6\frac{1}{4}$ inches — net weight, $5\frac{1}{4}$ lbs.

UNIT AMPLIFIER

Type 1206-B Unit Amplific

General - Purpose
Unit A nolim

. Uses new single ender

push-pull circ

mooth

liding

n u-h

locks

omple adust

ion of

vith t

depart

calibra

modu

The p

nclud

levice these

unique design eliminates need for cus man output transformer with its low and hig frequency limitations.

Wide Frequency Range — essentially at fig 20 c to 100 kc.

Low Distortion — less than 1% harm nic d tortion with 2-watts output over most of figure range — negligible a-c hum.

High Power — less than 1-volt inp give 3-watts into 600 ohms — 50-to-1 voltage ain.

Faithful Pulse Amplification — 2 μ =0 retime in passing 50-v peak-to-peak square wave.

Input Impedance — 100,000 ohms in para with 35 $\mu\mu$ f.

Power Required — amplifier plugs direct into Type 1203-A Unit Power Supply (\$40 addition cost).

Compactness — dimensions are 9% x 5% x 6% inches — 4 lbs., net weight.

Type 1212-A Unit Null Detector . . . \$145

...a Sensitive Voltage Indicator for Bridge Measurements from 20 c to 5 Mc... three-stage, logarithmic amplifier gives on scale range of 120 db

High Sensitivity — less than 40 μ v at 1 kc for 1% meter deflection, yet takes 50 v to drive needle off scale — 2 μ v sensitivity with accessory Type 1951-A Filter for use from 400 cycles to 1 kc (\$75 additional cost) — with filter and earphones, minimum detectable signal is approximately 0.25 μ v.

Good Stability — balanced meter circuit and regulated power in-

put insures good stability — shock mounted amplifier shelf minimizes microphonics.

Operating Conveniences — zero control on panel — sensitivity control sets meter to full scale for voltage display range required.

Power — Type 1203A recommended.

Dimensions $9\frac{1}{2}$ x $5\frac{3}{8}$ x 6 inches — net weight is $5\frac{1}{2}$ lbs.

Low-Cost General-Purpose Unit Instruments

For Research, Development

and Educational Laboratorie

G-R Unit Instruments are compact and reliable test as measuring apparatus, which incorporate one basic electronic circ in each unit. Refinements such as attenuators and outponents are not built-in; they are available instead as accessor

plug-in units, making for low cost and maximum versatility. Plate and filament power are obtained from external Unit Power Supplies in most cases.

GENERAL RADIO Company

275 Massachusetts Avenue, Cambridge 39, Massachusetts 20.5.1 90 West St. NEW YORK 6 920 S. Michigan Ave CHICAGO 5 1000 N. Seward St. LOS ANGELES

Basic element in a High-Frequency Null Detector...converts and reliably detects frequencies from 50 Mc to 5000 Mc when used with the G-R Type 874-MR Mixer Rectifier and appropriate Unit Oscillator

High Gain — 90 db gain at 30-Mc center frequency makes for great sensitivity; less than 2 $\mu volt$ from 400 ohms gives 1% meter deflection.

Wide ¾-Mc Bandwidth—makes possible detection of pulsed signals — modulation on signal is amplified by cathode follower with 0.4 Mc bandwidth and passed to binding posts on panel

Convenience in Use — acci de 70-db attenuator permits rel de measurement of relative signal els — large panel meter is all-brated linearly and in db.

Two Internal Power supplie one for the amplifier and one the local oscillator supplying heterodyning signal.

Dimensions 5% x 10½ x inches — net weight is 8¼ lbs.

PRINT IN B

type 12 A UHF Unit Oscillator . . . \$235

ended

put gives gain.

μτες της ave.

in parales

additions

ts

ptories

test an

ic circu

d outpo

d

:cl ste

el. ole

ne or

ig he

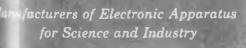
X 78

al

s Ili-

drivers 200 mw from 250 to 920 Mc... he will known butterfly tuning unit assures mooth frequency adjustments and avoids midin contacts and other difficulties inherent nu-hf tuning elements.

A cylindrical casting mounted on a panel houses the geals which spread the 90° rotation of the butterfly over 270° on the tuning dial—frequency calibration is 1%—an aluminum cover supplies adequate shelding—variable output is obtained through an adjustable magnetic loop which couples to the field about the "butterfly"—dimensions are 7 x 6½ x 9½ inches; net weight is 6¼ lbs.


nterconnections between these basic building blocks permit the formation of a wide variety of semblies and measuring systems of varying omplexity. This is the G-R "Unit" concept... providing adustry and university with laboratory-quality instrumentation of greatest adaptability.

UNIT OSCILLATORS

for complete coverage from 500 kc to 920 Mc

These oscillators are efficient, well-shielded sources of power with unusually wide frequency ranges. They are built for naximum utility in research laboratory, production test to be a compactness, rugged-construction, accurate dialabiration, variable power output, and terminals for direct modulation over the audio-frequency range.

The popular G-R Type 874 Coaxial Accessories, including attenuators, filters, rectifiers, coupling devices and many other elements, plug directly into these oscillators, as well as other unit instruments, to form many different measuring setups.

POLABISCOPES

R-L-C DECADES

PRECISION CAPACITORS

PULSE GENERATORS

TITANCE METERS

TITES

TIAL ELEMENTS

RITION METERS

DIRECY MEASURING
APPARATUS

JENCY STANDARDS

ANCE BRIDGES

METERS

DENCY MEASURING APPARATUS SIGNAL GENERATORS

JENCY STANDARDS SIGNAL GENERATORS

ANCE BRIDGES STROBOSCOPES

METERS TV B BROADCAST MONITORS

HMMFTERS U-H-F MEASURING EQUIPMEN

JIATION METERS UNIT INSTRUMENTS

VARIACE

LATORS VARIACE

LATORS WAYE ANALYZEBS

MAYE ANALYZEBS

MAYE FITTERS

YHF UHF Unit Oscillator

... (similar to Type 1209-A)... has very wide 65 to 500 Mc range... utilizes lighthouse tube and simultaneously variable condenser and inductor built in a single unit... provides as much as 1/2 watt.

Price: \$190

RF Unit Oscillator

...2 watts from 500 kc to 5 Mc; 200 mw above...this instrument's 100:1 frequency span is obtained in two ranges by a unique design. Price: \$295

... semi-butterfly tuning circuit varies inductance and capacitance simultaneously to supply at least 80 mw into 50 ohms ... slow-motion drive gives 1% accuracy in dial settings. Price: \$190

Type 1214-A Unit Audio Oscillator

... supplies either of two fixed audio frequencies, 400 c or 1000 c ... gives 0.2 watt into 8000 ohms ... it is intended primarily as a modulating source for the high-frequency unit oscillators, but also finds use as a general-purpose tool in college and industrial lab...it has

industrial lab ... it has its own built-in power supply, unlike other Unit Instruments Priced at only \$68

Type 1213-A Unit Crystal Oscillator

... supplies 10-kc, 100-kc, 1-Mc signals, and harmonics as high as 1000 Mc...short-term stability is one part per million when adjusted to WWV...this oscillator and a good communications receiver permit measurements to an accuracy of 0.0002% or better to 15 Mc (limiting factor is receiver calibration) \$130

Type 1203-A Unit Power Supply

shown plugged-into Oscillator

Unit Power Supplies

Small, convenient and inexpensive—They provide suitable a-c heater and d-c plate power for all G-R Unit Instruments (not incorporating their own

supplies)...plug directly into other units to form compact assemblies

Type 1203-A Unit Power Supply

... provides 3 amps, maximum, at 6.3 volts ac; 50 ma, max, at 300 volts dc... negligible hum... both d-c and a-c supplies isolated from ground and from each other... Dimensions are $5 \times 5 \frac{3}{4} \times 6 \frac{1}{4}$ inches... $5 \frac{1}{2}$ lbs net weight... \$40

Type 1204-B Unit Variable Power Supply

... supplies fixed a-c heater voltage and variable d-c voltage for laboratory use... output is 3 amps at 6.3 volts ac and maximum of 100 ma at 300 volts dc... Variac control on panel conveniently adjusts dc from zero to full value... large panel meter indicates d-c voltage and current... operates from ordinary 115 v, 60-cycle lines and takes 75 watts at full load... 978 x 534 x 614 inches, overall, and 11½ lbs... \$90

How should attenuation be measured?
Why is interchangeability

What kind of enclosure do you need?
Which shielding material is best?

What is the important difference between attenuation and insertion loss?

HOW YOU CAN EVALUATE

se important?

Shielded Enclosures

Selecting the proper shielded enclosures today is a big job... and no wonder! The unqualified statements and ambiguous terminology of some enclosure manufacturers makes intelligent purchasing extremely difficult.

To eliminate these difficulties, ACE has prepared a definitive booklet: Evaluating Shielded Enclosures, by Richard B. Schulz, noted authority on the suppression of r-f interference, and consultant to ACE. Here are free, factual data you should be acquainted with . . . for only by applying a realistic approach to shielded enclosure selection can you be sure of getting what you pay for.

Send for this interesting Free Booklet

ACE long ago eliminated guesswork as a factor in the design of shielded enclosures. Every ACE claim is backed by complete guaranteed test data, for every design is thoroughly analyzed and approved by independent engineering laboratories. Whether

you need a galvanized screen room, a copper screen room, or a solid sheet RFI enclosure (Lindsay Structure), you can depend on top performance when you choose ACE... first and still foremost in the design and manufacture of every type of shielded enclosure.

A COMPLETE LINE OF ENCLOSURES FOR INDUSTRY, SCIENCE AND MILITARY,
FEATURING HIGHEST ATTENUATION, FULL INTERCHANGEABILITY, INSIDE BOLTING*

(*Patents Pending)

Exceeding JAN-1-225; 16E4 (ships); MIL-16910; MIL-S-4957

(Write for RFI Bulletin No. 1, and ACE Bulletins Nos. 3 & 5)

you always get your money's worth with ACE

ACE ENGINEERING & MACHINE CO., INC.

3644 N. Lawrence Street Philadelphia 40, Pennsylvania

TELE-TECH

& Electronic Industries

M. CLEMENTS DR. O. H. CALDWELL
Publisher Editorial Consultant

BERNARD F. OSBAHR
Editor
DR. A. F. MURRAY
Contributing Editor
B. V. SPINETTA, Directory Editor
MARTHA USDIN, Assistant Editor
CARL THOMAS, Assistant Editor
R. C. DAVIES, Washington News Editor
CHARLES F. DREYER, Art Director

CHARLES F. DREYER. Art Director
GAIL CARLSON, Editorial Secretary
Lt. Col. STANLEY GERSTIN, Consulting Editor
(Vice Pres. & Gen. Mgr., Caldwell-Clements
Manuals Corp.)

BUSINESS DEPARTMENT

M. H. NEWTON, Business Manager
HOWARD A. REED, General Sales Manager
JOSEPH DRUCKER, District Manager
JAMES S. COLEMAN, Asst. Sales Manager
N. McALLISTER, Asst. Business Manager
CECILIA KAVANAUGH, Advg. Records
A. SHILLIN, Production Manager
480 Lexington Ave., New York 17, N.Y.
Telephone PLaza 9-7880

S. M. GASKINS, Western Manager JOHN D. LUPTON, District Manager 201 N. Wells St., Chicago 6, Ill. Telephone RAndolph 6-9225

CHRIS DUNKLE & ASSOCIATES
California Representatives
3257 W. 6th Street, Los Angeles 5, Calif.
Telephone DUnkirk 7-6149
1355 Market St., San Francisco 8, Calif.
Telephone KLondike 2-2311, Ext. 579

WARREN S. BROWN, Circulation Manager M. GROENING, Asst. Circulation Manager JOHN J. BORGHI, Controller

CIRCULATION 21,000

Because of increases in circulation which obviously cannot be shown in current audited statements, advertisers should disregard any comparison bosed on a previous period or any that fails to show TELE-TECH's guaranteed circulation of 21,000.

TELE-TECH* & ELECTRONIC INDUSTRIES is edited for top-level engineers and executives throughout the electronic industries. It gives the busy engineering executive authoritative information and interpretation of the latest developments and new products, with emphasis on subjects of engineering import and timeliness. Special attention it given to:

MANUFACTURING

- Electronic equipment, communications, broadcasting, microwave relay, instrumentation, telemetering, computing.

- Military equipment including radar, sonar, guided missiles, fire controls.

- TV-FM-AM receivers, phonographs, recorders, reproducers.

OPERATION

Fixed, mabile and airborne communications in commercial, municipal aviation and government services.

Broadcasting, video and audio recording, records, audio and sound systems, motion picture production.

Military, civilian and scientific electronic computing and control systems.

**Reg. U. S. Pat. Off.

THE ELECTRONIC INDUSTRIES DIRECTORY

Published annually as an integral section of TELE-TECH in June

Are you ready for a revolutionary concept in the electrical and electronic industry the Magnetics, Inc. "Performance-Guarantee" on Tape Wound Cores, Guaranteed to meet your specifications, and sold at standard prices, these Cores mean truly economical production of high permeability magnetic devices in your plant.

BASIC PHYSICAL CONSTANTS OF COMMON MAGNETIC MATERIALS Satur. Flux Resistivity Curie Grams Density Microhm- Point per Gausses Cm 0°C cc NI Fe Other Structure Hy Mu 80 79 17 4 Mo "random" 18 Alloy 48 52 "random" 0rthonol 50 50 oriented 15,500 20,000 Magnesil TRADE NAMES OF SIMILAR MATERIALS TABLE B Magnesil Orthonol VOILA BA Hy-Mu 80 Armco Oriented T Carpenter 49 Hypersil Permeron Allegheny 4750 Orthosil Mo-Permalloy Deltamax Hypernik Silectron Mu Metal* Hypernik V

Typical of the unusual scope of the material contained in Catalog TWC-100 are Tables A and B, reproduced from Page 4 of "Performance-Guaranteed Tape Wound Cores."

GET THE COMPLETE STORY

A wealth of new and unusual material on Tape Wound Cores is available to you in Catalog TWC-100, "Performance-Guaranteed Tape Wound Cores." Tables A and B of the catalog, reproduced on this page, present a striking illustration of material not to be found compiled together elsewhere.

Data and descriptive details on high permeability materials . . . factory core matching . . . free engineering design services . . . pages of characteristic graphs and tables . . . are yours for the asking. Simply write on your company letterhead.

DEPT. TT-7, BUTLER, PENNSYLVANIA

NEW!

for convenient point-to-point wiring . . .

MINIATURIZED 5 AND 10 WATT WIRE-WOUND RESISTORS!

Here are two truly miniaturized self-mounting wire-wound power resistors to simplify your TV and industrial electronic production where space is a factor. They're ideal for point-to-point wiring, terminal board mounting, and processed wiring boards, where they fit in admirably in dip-soldered subassemblies.

Axial lead Blue Jackets are rugged vitreous enamel power resistors built to withstand the severest humidity performance requirements As for economy, these newest members of the Sprague Blue Jacket family are low in cost... eliminate need for extra hardware... save time and labor in mounting!

You can get these outstanding new Blue Jacket Resistors without delay in any quantity you require. Sprague Engineering Bulletin 111 gives full data on these and all other commercial Blue Jacket Resistors. Send for your copy.

SPRAGUE ELECTRIC COMPANY
233 Marshall Street, North Adams, Mass.

SPRAGUE TYPE NO.	WATTAGE RATING	DIMENSI L (inches		MAXIMUM	
27E	5	1%	%	17,500 Ω	
28E	10	1%	3/16	35,000 Ω	

Standard Resistance Tolerance: #5%

SPRAGUE

PIONEERS IN ELECTRIC AND ELECTRONIC DEVELOPMENT

NORTH ADAMS, MASSACHUSETTS

EXPORT FOR THE AMERICAS SPRAGUE ELL PRIC INTERNATIONAL LTD. NORTH ADAMS MASS CA

CABLE SPREVIN

As We Go To Press...

Punched Card Phone "Conversation"

Development of a punched card Transmitter that "talks" over regular relephone circuits at the rate of almost 1,000 alphabetic or numeric characters a minute has been announced by IBM. Also capable of checking the accuracy of its rapidfire "conversations" by listening in on them, this new development insures the exact, fast duplication of punched card data between points thousands of miles apart.

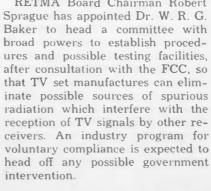
When information is to be sent to a distant point, the transceiver reads the data recorded in IBM cards in the form of punched holes. As the cards are being read, electronic circuits generate coded impulses in the form of "beeps," each series of sounds representing a hole in the card. These sound signals actuate the punching mechanism in the distant receiver which simultaneously creates exact duplicates of the cards being transmitted. The newly-created punched cards then become immediately available for accounting machine and computer proc-

Unique Single-Tube Color Camera

A single pick-up tube, all electronic TV camera having simultaneous output in three colors is under development by Color Television. Inc. It is designed to be used with a single standard monochrome camera tube such as the image orthicon. Portions of the camera have been tested experimentally, but a complete unit of this type has not yet been constructed. The key to the problem is a special optical system which analyzes the color information in the scene viewed, and presents it in the form of a pattern which yields the required modulated signal when scanned. This optical filter causes a phase shift of the CIE diagram in accordance with the dominant wave-

length of any color. It also provides amplitude modulation of the subcarrier according to the luminance difference between the primaries.

Tetrode Transistor Commercially Available


Tetrode junction transistors originally developed by Bell Telephone Labs. and described in the Nov. 1952 issue of TELE-TECH & ELEC-TRONIC INDUSTRIES are being mass produced for commercial availability by Germanium Products Corp., 26 Cornelison, Jersey City, N.J. These units, which have a fourth electrode connected to the center junction layer, offer high gain at frequencies much higher than is possible with conventional types. They are different than the dual-triode "tetrode" transistors announced during the past year.

Sudden Tube Failures

The Navy Department reports that one in exery six vacuum tube failures are of a sudden nature, according to a surveillance program carried out by Aeronautical Radio, Inc. Combined tube returns from all military bases which were monitored indicate following causes of return: 28.7% electrical, 21% mechanical, 18.5% miscellaneous, and 31.8% no defect found.

RETMA Acts on TV Interference

RETMA Board Chairman Robert Sprague has appointed Dr. W. R. G. broad powers to establish procedintervention.

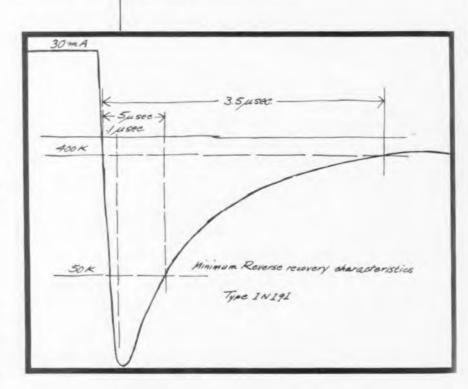
Hughes Diodes for Computer Applications

Types 1N191 and 1N192

The reliability of Hughes Germanium Diodes in many types of computer applications has been recognized in the field for some time. Their performance frequently under severe operating conditions—continues to add to this reputation.

Now, as part of the continuing program to meet the expanding requirements for computer components, Hughes announces the registration of Diode Types 1N191 and 1N192. Both are selected for their outstanding performance in computer service.

These computer type diodes, like all Hughes diodes, are designed to ensure extremely high moisture resistance...thermal stability...electrical stability...subminiature size...thorough dependability. These features mean long life with minimum maintenance.


Recovery Time • Characteristics

at 25° Centigrade

Type~1N191 50 K Ω @ 0.5 #sec and 400 K Ω @ 3.5 #sec maximum. Type~1N192

50 K Ω @ 0.5 µsec and 200 K Ω (a 3.5 µsec maximum.

Fo measure pulse recovery for both types, diodes are pulsed at 30 mA in the forward direction and then a back voltage of -35 volts is applied.

Maximum Back Current at 55° Centigrade

Type 1N191 .025 mA @ -10V and .125 mA @ -50V.

 $Type~1N192 \\ .05~{\rm mA}~@~-10{\rm V}~{\rm and}~.25~{\rm mA}~@~-50{\rm V}.$

If you need special computer type diodes, chances are that we can furnish them on a production basis—because we are constantly producing and providing many types to meet literally hundreds of electronics and communications applications. Among these are high forward conductance, low-voltage diodes, used for certain computer applications. Write for new descriptive brochure.



NEW YORK CITY CHICAGO

It's easy to convert tube exhaust systems with these pump and port units

For most rotary exhaust machines—

CVC's Oil Diffusion Pump model MB-10 and port type TP-02 offer the maximum compactness and performance:

- Together they measure only 8¾" high; operate through any sweep and sliding valve combinations.
- The pump speed is 10 liters/second; ultimate pressure in the port is 10⁻³ mm Hg or lower; high limiting forepressure is 0.5 mm Hg.
- The two-position mechanically operated port and valve with its rugged mounting flange is easily attached to standard rotary machines.
- There's a readily removable jet assembly; jet parts separate to facilitate cleaning.
- The heater operates directly from any 115 volt power supply.

For large size TV picture tube exhaust-

CVC's Fractionating Oil Diffusion Pump type MCF-60 with the quick closing port produces pressures of 10⁻⁵ mm Hg and lower before getter flash in the large size picture tubes. Illustrated above is CVC's model MCF-60-013 (19½" high) having a rated speed of 60 liters/second and provided with:

- Water-cooled port for protection of rubber sealing gasket during bakeout.
- Quick opening compression type tubulation seal.
- Easily removable jet assembly.
- Properly located glass trap and clean-out port.

It's pumps like these that make CVC inline and rotary exhaust systems so efficient and economical to operate.

Whether you require just the pumps or a completely engineered exhaust unit, we welcome the opportunity of talking with you. Consolidated Vacuum Corporation, Rochester 3, New York (A subsidiary of Consolidated Engineering Corporation, Pasadena, Calif.)

Consolidated Vacuum Corporation

Rochester 3, N. Y.

designers and manufacturers of high vacuum equipment SALES OFFICES: PALO ALTO, CALIF. • CHICAGO, ILL. • CAMDEN, N. J. • NEW YORK, N. Y. See us at the I.R.E. Show Booths 233 & 235

formerly

oum Equipment Dept

Visit the ASTRON EXHIBIT

Booth 368 I.R.E.

Radio Engineering Show March 22-25

ASTRON

CORPORATION

255 Grant Avenue, E. Newark, N. J.

Manufacturers of a complete line of capacitors, standard and subminiature filters for every television, radio and electronic application.

Export Division Rocke International Corp., 13 East 40 St., New York, N.Y.

In Canada Charles W Pointon 6 Alcina Ave . Toronto 10, Ontario

ceramics and metal

and accurately combined

are permanently

The metal bands on the rotor shafts shown at the left, above, are concentric with the shaft to within 0.001 in.

Stupakoff

assemblies

Your production procedure is simplified when you use highprecision Stupakoff ceramic-to-metal assemblies. Extensive experience in the field of electrical and electronic ceramics, thorough familiarity with methods of metallizing, and the use of modern precision manufacturing methods insure the high quality and uniformity of Stupakoff Assemblies.

Among the assemblies made by Stupakoff are: rotor shafts, strain and spreader insulators, stand-offs and trimmers. Ceramic bodies are specially formulated for the intended service; metals used include silver, copper, brass, stainless steel and monel. Stupakoff's broad experience in this field insures the selection of a method of assembly best suited to meet service conditions.

A few types of Stupakoff Ceramic-to-Metal Assemblies are illustrated in the photographs on this page.

STUPAKOFF CERAMIC & MANUFACTURING COMPANY

LATROBE, PENNSYLVANIA

Small metallized ceramic parts are accurately made and dependably uniform.

Some of the larger types of Stupakoff metal-

As We Go To Press . . . (Continued)

Conference Coordinating Committee Established

Six trade associations have organized a committee for the purpose of coordinating regional conferences. The associations include NEDA, WCEMA, RETMA, Sales Managers Club, Assoc. of Electronic Parts and Equipment Mfrs., and The Representatives.

Thermoelectric Comparator Sorts Metal

A fast non-destructive instrument for sorting different types of metal has been revealed by General Motors. The unit, known as the thermoelectric metal comparator, can also detect chills in castings and measure the thickness of metallic plating. It contains a thermocouple-type loop of two different metals, and the part being tested forms part of the loop circuit. The instrument's two probe tips are the hot and cold junctions where they touch the metal under test. Since the temperatures of the two junctions are kept constant, the resulting reading is a measure of the metal's composition.

Speedy Response

Within two days after radio station KRIB, Mason City, Iowa, was burned off the air, it was back on again thanks to the immediate emergency shipment of equipment by Collins, and crystal grinding by James Knights.

GIANT TOWER

WHIO-TV, Dayton, Ohio, now has a 1104-foot TV tower in operation. The tower's builder, the Blaw-Knox Co., reports it to be the world's tallest. It weighs 600,000 lbs., is mounted on a 832,000-lb. concrete base, is 14-ft. triangular, and has an elevator to top

New Diode Process

Sylvania Electric Products has announced the development of a manufacturing process that will increase greatly the stability and life of germanium diodes which are used widely in military and commercial electronic equipment. The process produces germanium with a molecularly stable surface. Diodes made in the past have occasionally developed a second unwanted barrier on the surface of the germanium, causing the characteristics to drift.

Empire State Asks TV Rent Raise

The seven New York City TV stations with antenna installations on the Empire State Building mast are negotiating a proposed rent increase within the terms of the present lease which expires on April 30, 1954. The rent raise from \$70,000 to \$200,000 for each station has been requested. This amount does not include presently occupied transmitter and office space.

Picture Tube Production Discontinued

Federal Telephone and Radio is discontinuing the production of black-and-white TV picture tubes. The facilities thus made available will be utilized to increase production of other commercial products.

Color Broadcast Catalog Issued

The first catalog of color TV broadcasting equipment to be released by RCA contains detailed descriptions covering all essential items of color networking and test equipment. Units are available either individually or as a package. Networking equipment is priced at \$9455, and test gear for \$8833. RCA has also announced that it will provide, free of charge, the parts and service required to modify its TV transmitters for color, at the time color terminal equipment is installed.

Bell TV Network Expands

With the connection of KTXL-TV, San Angelo, Tex., to the Bell Telephone System's nationwide network of TV facilities, network TV programs are now available to 280 stations in 176 cities in the U.S.

TWO-WAY RADIO ON THE GOOD BLIMP "RANGER"

Aerial eyes are the latest aid to public safely utilized by Miami, Fla. The blimp "Ranger is equipped with Motorola two-way VHF radio enabling its crew to contact land-sea mobiles

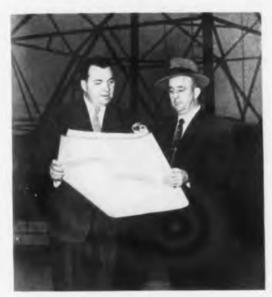
New Tape Firm

A new company, Magne-Tronic Inc., 122 E. 42 St., New York 17, N. Y., has been formed. Its primary interest is the reproduction of sound on magnetic tape. P. L. Deutsch is president, and J. F. Hards is vice-president.

RCA Enters RR Communications Field

The Engineering Products Div. of RCA has entered the railroad communications field. The company is offering a line of VHF and microwave equipment capable of handling telephone, telegraph and signal functions.

Color TV Rental


Based on the belief that the public would be reluctant to pay about \$1000 for early color TV receivers with small screens Emerson has set up a rental program which allows the customer to pay for the set on a month-to-month rental basis. The fee, which has not been disclosed yet, would include installation and service.

MOBILE RADIO FOR RACERS

Two-way GE radio system serves as communication link between pit truck and two stocracing cars during 160-mile race at Dayton Beach, Fla. Lap, track conditions and gas supplinformation was relayed between drivers and

Checking construction blueprints: owner Robert W. Rounsaville (left) with Lee Smith, station manager in Louisville.

al

ut

rs

N'S

on he

red

nd

95=

THREE-STATION ORDER INCLUDES:

- **6 GPL-Pye Camera Chains**
- 3 GPL-Continental Transmitters
- 3 Videcon Film Chains
- **6 GPL Projectors**
- 3 Antennas and associated equipment

ROBERT W. ROUNSAVILLE PICKS GPL EQUIPMENT FOR THREE NEW TV STATIONS

WQXI-TV

WQXL-TV

WQXN-TV

LOUISVILLE

• With three new TV stations in highly competitive markets, Robert W. Rounsaville picked GPL equipment because "I just had to have both quality and economy . . . the quality to match existing stations; the economy to withstand the financial competition.

My engineers studied the field . . . looked at all lines. GPL was the final choice: for engineering quality and operating economy. With three stations, the savings from this equipment are mighty important. In fact, they mean profit or loss."

Whether you have one, three or five stations, General Precision products can do two major things for you: give you the best pictures on the air today, and save you operating costs. If this sounds too good . . . ask for proof. GPL engineers will bring equipment to your studios, work with your cost figures, to prove the double benefits.

Write, wire or call for complete information.

General Precision Laboratory

INCORPORATED
PLEASANTVILLE NEW YORK

Cable address: Prelab

Expart Department: 13 East 40th St., New York City Cable address: Arlab

Subsidiary of General Precision Equipment Corporation

Camera Chains • Film Chains • GPL-Watson Varifocal Lenses • Theatre TV Equipment • GPL-Continental Transmitters

TELE-TECH & ELECTRONIC INDUSTRIES . April 1954

15

Transistorized Film Projector Introduced

Ampro Corp. is introducing an optical-magnetic motion picture projector using a transistor. The company reports this to be the first

Transistorized 16-mm film playback projector

transistor application to such equipment. The transistor replaces a bulky transformer, allowing the complete system to be housed in a single case.

Defense Expenditures

Department of Defense electronic and communications expenditures for the fiscal years 1954 and 1955 are expected to be over \$1.5 billion, bringing the total expenditures for the five-year period 1951-1955 to about \$4.4 billion. It should be noted that much more has been spent on electronic equipment in different budget classifications such as guided missiles and ships.

First DuMont Mobile Radio

The first two-way mobile radio equipment designed by Allen B. DuMont Labs. has been announced by the company's new Mobile Communications Dept. It is the MCA-101A, rated at 35 watts at 25-45 MC, and 30 watts at 45-54 MC. Equipment for 150-160 and 450-470 MC is under development.

Excise Tax Campaign On

RETMA is conducting a campaign to lower the excise tax on black-and-white TV receivers, and to exempt color sets from such tax. It is attempting to convince the House Ways and Means Committee to amend the Reed Bill to institute a proportional tax reduction, cutting the TV excise from 10% to 8%, and to follow the traditional policy of withholding any tax on a new product such as color TV.

New "Lighthouse" Tube

A new "lighthouse" triode transmitting tube, GL-2C39-B, has been developed by GE. Rating are 2500 MC, 100 watts, and 400 g shock resistance.

April 2-3—Biennial Rice Exposition of Engineering Science and Arts, The Rice Institute, Houston, Texas.

April 5-8—A.M.A. 23rd National Packaging Exposition, Convention Hall, Atlantic City, N.J.

April 5-10—International Congress Soundtrack Recording, Paris, France. April 15-16—RETMA Engineering Department Conference on Reliability of Electrical Connectors. Illinois In-

stitute of Technology, Chicago, Ill.

April 19-20—Symposium on Automatic

Production of Electronic Equipment,
sponsored by Stanford Research Institute and U.S. Air Force, Fairmont
Hotel, San Francisco, Calif.

April 22-23—AIEE Conference on Feedback Control, Claridge Hotel, Atlantic City, N.J.

April 22-23—Joint Meeting of Radio Technical Commission for Aeronautics, Franklin Inst. Labs., and IRE Professional Group on Aeronautical and Navigational Electronics. Franklin Institute, Philadelphia, Pa.

April 24—Eighth Annual TV Conference, IRE Cincinnati Section. Cincinnati, Ohio.

April 26-29—1954 Metal Powder Show. Sponsored by Metal Powder Association, Drake Hotel, Chicago, Ill.

April 26-30—Tenth Biennial ASTE Industrial Exposition, Philadelphia Convention Center, Phila., Pa.

April 27-29—AIEE Electronic Components Conference, Washington, D.C. April 28-30—RTCM Spring Assembly Meeting, St. Francis Hotel, San Fran-

cisco., Calif.

May 3-6—URSI, U.S.A. National Committee and IRE Professional Group on Antennas and Propagation. Joint Spring Technical Meeting. National Bureau of Standards, Washington,

D.C.
May 4-6—1954 Electronics Components
Symposium, RETMA and others, U.S.
Department of Interior Auditorium,
Washington, D.C.

May 4-7—1954 AWS National Spring Technical Meeting, Hotel Statler, Buffalo, N.Y.

May 4-9—SMPTE 75th Annual Meeting, Statler Hotel, Washington, D.C.

May 5-7—Third International Aviation Trade Show, 71st Regiment Armory, New York, N.Y.

May 5-7—IRE Seventh Region Conference and Electronic Exhibit, Multnomah Hotel, Portland, Ore.

May 5-7—AIEE Northeastern District Meeting, Schenectady, N.Y.

May 5-8—1954 Welding and Allied Industry Exposition, Memorial Auditorium, Buffalo, N.Y.

May 7-8—IRE North Atlantic Region, New England Radio Engineering Meeting, Sheraton Plaza Hotel, Boston, Mass.

May 7-9—AFCA National Convention, Shoreham Hotel, Washington, D.C.

May 10-12—IRE National Conference on Airborne Electronics, Dayton Biltmore Hotel, Dayton, Ohio

May 17-20—Basic Materials Exposition. International Amphitheatre, Chicago

May 17-20—1954 Electronic Parts Show Conrad Hilton Hotel, Chicago, Ill.

May 17-20—New York Import Show, 34th St. Armory, New York, N.Y.

34th St. Armory, New York, N.Y.
May 24-26—IRE, AIEE, IAS, ISA 1954
National Telemetering Conference,
Hotel Morrison, Chicago, Ill.

May 25-27—NARTB Convention Engineering Conference, Palmer House, Chicago, Ill.

June 13-18—ASTM Annual Meeting, 11th Exhibit of Testing and Scientific Apparatus and Laboratory Supplies and Ninth Technical Photographic Exhibit, Sherman and Morrison Hotels, Chicago, Ill.

June 15-17—RETMA Convention, Palmer House, Chicago, Ill.

June 16-18—High Vacuum Symposium, Berkely Carteret Hotel, Asbury Park, N.J.

June 21-25—AIEE Summer General and Pacific Meeting, Hotel Biltmore, Los Angeles, Calif.

July 6-9—International Conference on Electron Microscopy, Joint Commission on Electron Microscopy of International Council of Scientific Unions, London, England

July 8-12—Convention British Institution of Radio Engineers, Christ Church, Oxford, England.

July 13-15—Plant Maintenance Show, Pan Pacific Auditorium, Los Angeles, Calif.

Aug. 25-27—Western Electronic Show and Convention. Los Angeles and San Francisco IRE sections and WCEMA sponsored. (Show) Pan-Pacific Auditorium, Los Angeles. (Convention Hq.) Ambassador Hotel, Los Angeles, Calif.

September—First International Scientific Radio Union, Amsterdam, Holland.

Sept. 1-16—Golden Jubilee Meeting of the International Electrotechnical Commission, University of Pennsylvania, Philadelphia, Pa.

Sept. 15-21—ISA First International Instrument Exposition, Convention Hall, Philadelphia, Pa.

Sept. 30-Oct. 2—High Fidelity Show, International Sight and Sound Exposition, Inc., Palmer House, Chicago.

Oct. 4-6—Tenth Annual National Electronics Conference, Hotel Sherman, Chicago, Ill.

Oct. 8-20—RETMA Radio Fall Meeting, Hotel Syracuse, Syracuse, N.Y. Oct. 13-16—Audio Fair-Audiorama

Oct. 13-16—Audio Fair-Audiorama 1954, Sponsored by AES, Hotel New Yorker, New York N. Y.

Yorker, New York N. Y.

ACM: Assoc. for Computing Machines.
AES: Audio Engineering Society.
AFCA: Armed Forces Communications Assoc.
AIEE: American Institute of Electrical Engineers.
AMA: American Society of Tool Engineers.
ASTM: American Society of Tool Engineers.
ASTM: American Society of Testing Materials.
AWS: American Welding Society.
IAS: Institute of Aeronautical Science.
IRE: Institute of Radio Engineers.
ISA: Instrument Society of America.
NACE: National Assoc. Orrosion Engineers.
NARTB: National Assoc. of Radio and TV Broadcasters.
RETMA: Radio-Electronics-TV Manufacturers
Assoc.
RTCM: Radio Technical Commission for Marine

SMPTE Soc. of Motion Picture and TV Engineering.
URSI: International Scientific Radio Union.
WCEMA: West Coast Electronics Manufacturer's Association
WESCON: Western Electronics Show & Convention.

TELE-TIPS on page 43

Welded Terminals

Proved by Years of Service

NOW AVAILABLE IN ALL

OHMITE® WIRE-WOUND RESISTORS

Provide a Perfect,
Permanent Connection
between Resistance
Wire and Terminal

WELDED RESISTANCE WIRE

All Ohmite resistors now have the resistance wire welded to the terminals instead of soldered or brazed. This provides a resistor with superior characteristics.

WELDED TERMINAL LUG

Another Ohmite resistor feature is the welded terminal band. The band is permanently held together around the resistor tube by means of welding, providing a strong, permanent fastening.

SEE NEXT PAGE

Now in All Sizes ... Welded Terminals

OHWITE. RESISTORS

PATENTED OHMITE PROCESS

Ohmite has persected and patented a new welding technique, and has developed a method of testing every weld between the resistance wire and terminal. Thus, with every Ohmite resistor, you are assured of permanent terminal connections, unaffected by vibration or high temperatures.

PERFECT ELECTRICAL CONNECTIONS

The fusion of the metal in the resistance wire and terminal lug provides a perfect and permanently stable electrical connection. This is extremely important in eliminating noise in audio circuits or instability in other highly sensitive circuits.

HIGH-STRENGTH ALLOY TERMINALS

The terminals on Ohmite resistors are made of a special high-strength alloy, which has a coefficient of expansion that is properly related to that of the enamel, ceramic core, and wire. This keeps the terminal firmly anchored, and prevents cracking of the enamel.

The resistance wire is welded practically flush with the terminal, so there is no projection extending from the surface. Hence, the connection and terminal are as well covered and protected by the vitreous-enamel coating as the winding itself.

PROVED IN TEN YEARS OF SERVICE
Ohmite developed welded terminals more than ten years ago. Since that time, this construction has been gradually extended to cover the entire Ohmite line. Millions of these welded resistors have proved their reliability in the toughest kind of service.

WRITE on Company Letterhead for Catalog and Engineering Manual No. 40.

Be Right with

THESE OTHER OHMITE FEATURES

Ohmite resistors provide other important advantages, too-a superior vitreous-enamel covering, which holds the winding rigidly in place, preventing "hot spots." and protecting the winding from moisture and fumes; strong ceramic core that is unaffected by cold, heat, fumes, or high humidity; and hot tinned terminal lugs for ease in soldering. For unfailing dependability, specify Ohmite resistors.

OHMITE MANUFACTURING CO.

3662 Howard Street, Skokie, Illinois (Suburb of Chicago)

OHMITE

RHEOSTATS . RESISTORS . TAP SWITCHES

ESIGNER'S

from the RCA Tube Division

New Vidicon for TV Film Cameras

RCA-6326 is a small camera tube utilizing a photo-conductive layer as its light sensitive element and as its fight sensitive element and offering 600-line resolution. With it you can televise motion-picture film with an average high-light illumination of only 100-300 footcandles on the tube face—and transparencies and opaques with a constant illumination of approximately 10 foot-candles on the tube face.

(RCA-6198 Vidicon is for Industrial TV)

New Multiplier Phototube for Fast-Coincidence Scintillation Counters

Among the features offered by the RCA-6342 are its small spread in electron transit time and its relative freedom from after-pulses. It offers a "head on" design with flat face which allows excellent optical coupling between the cathode and the phosphor crystal. In addition, it has a focusing electrode to permit optimizing the magnitude, uniformity, or speed of the response in critical applications.

New Color-TV Image Orthicon

RCA-6474/1854 Image Orthicon is a television camera tube intended for use in color-TV cameras utilizing the method of simultaneous pickup of the studio or outdoor scene to be televised.

Features of this Image Orthicon include: exceptional sensitivity; a spectral response approaching that of the eye; and an ability to translate colors very accurately. Because it operates on a substantially linear signal-output characteristic, it can produce signals for pictures having natural tone values and accurate detail.

New Beam Power Tube for UHF!

RCA-6448 is a beam power tube featuring a coaxial electrode structure. The tube is intended for operation as grid-driven power amplifier to provide high gain at requencies up to 1000 Mc. Sync-level power output is 15 Kw at 500 Mc in color or black-and-white TV operation—and 12 Kw at 900 Mc. RCA-6448 also features water-cooled electrodes, and a multi-strand thoriatedlungsten filament for economical operation, high emission capability, and long life.

RCA-"Headquarters" for

Tricolor Kinescopes, Receiving Tubes, Components, Power Tubes, Pickup Tubes, and Test Equipment for Color-TV-

Thyratrons Magnetrons TV Camera Tubes Rectifier Tubes

Commercial Engineering, Section 1) 50 R

RCA Tube Division

Voltage Regulator Tubes Cathode-Ray Tubes Vacuum-Gauge Tubes Transmitting Tubes Germanium Diodes

RADIO CORPORATION of AMERICA ELECTRON TUBES

LE-TECH & ELECTRONIC INDUSTRIES . April 1954

Please send me technical data on: ☐ Multiplier Phototube, RCA-6342 Beam Power Tube, RCA-6448 ☐ Film-Camera Vidicon, RCA-6326 ☐ Image Orthicon, RCA-6474/1854 Name

Raising WXEL's new 73-foot antenna to top the new 702-foot Truscon Steel Tower. Over-all height 775 feet.

See The TRUSCON Display I. R. E. 5HOW 327 Computer Ave. Kingsbridge Armory, Bronx, N. March 22-25

A TALLER TOWER...AND MORE POWER...FOR WXEL, CLEVELAND

WXEL now 775 feet over-all on a new Truscon Tower

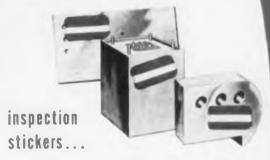
Cleveland's WXEL-TV recently stepped up its visual effective radiated power from 25.6 to 42.4 KW peak. At the same time, the station changed from Channel 9 to Channel 8. A vital part of the change-over was the erection of a new Truscon Guyed Tower and a new 12-bay antenna totaling 775 feet over-all.

This new Truscon Steel Tower puts WXEL's 12-bay superturnstile antenna 1,000 feet above average terrain. The telecaster's original Truscon Tower, which hoisted a 6-bay superturnstile antenna 725 feet above average terrain, is being retained for stand-by duty.

Talk to Truscon when you require new or expanded tower facilities. Truscon knows towers-has designed and engineered many hundreds which now stand strong and tall in all types of terrain and climates. Truscon builds them tall or small . . . guyed or self-supporting... tapered or uniform in cross section for AM, FM, TV, and Microwave transmission. Telephone or write your nearest Truscon district office-or "tower headquarters" in Youngstown-for the latest delivery information.

TRUSCON STEEL DIVISION REPUBLIC STEEL

1092 ALBERT STREET • YOUNGSTOWN 1, OH10 Export Department: Chrysler Building. New York 17, N.Y.



they sure speed production ... there's no moistening —no waste motion!"

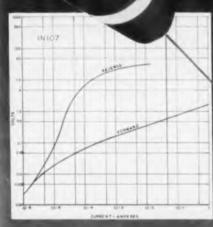
Consider these practical labeling advantages!

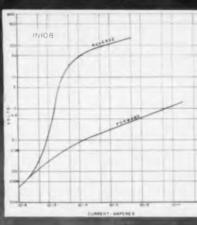
- All waste motions are eliminated—for unlike ordinary labels, Avery Pressure-Sensitive Labels are applied dry! An automatic dispenser pops them out-the operator simply lays the label in place on the product or packagewithout moistening. That's all there is to it!
- Production line speed—Avery dispensers speed every type of labeling job-whether it's a single item or a thousand. Labels are fed, one-at-a-time, ready for instant application. There's no sorting of loose labels...no messy glueing or licking...no soiled, spoiled packages.
- They stick, and stay stuck—Avery Kum-Kleen Labels stick to any clean, smooth surface-right now-and will not curl, peel or pop off! That's why Avery Kum-Kleen Pressure-Sensitive Labeling is different...it's practical and economical. Write now for details—free sample labels—case histories!

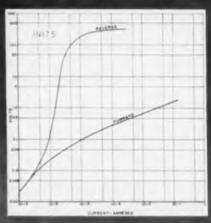
An ideal application...removable, Kum-Kleen Inspection Stickers provide a quick, positive means of designating whether an item is accepted, rejected, to be reworked or scrapped. Avery Kum-Kleen Labels are faster, safer and more efficient than chalk, grease pencil or gummed labels...they're quickly applied without moistening—and stick tight to all clean, smooth surfaces. They never curl or pop off-yet they're easily peeled off (without leaving a mark) when the job is done!

AVERY ADHESIVE LABEL CORP., Custom Div. 111

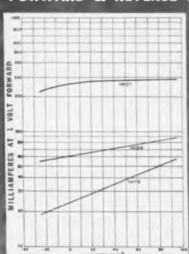
117 Liberty Street, New York 6 • MOR S. Dearborn Street, Chicago 5 1616 S. California Ave., Monrovia, Calif. Offices in other principal cities

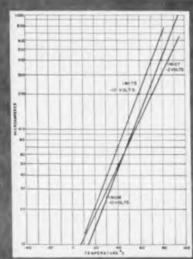

Please send case histories Have the Avery Label man call

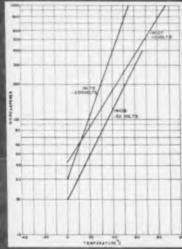

Company.



temperature & low voltage characteristics


UNION DIODES





FORWARD & REVERSE CHARACTERISTICS OVER CURRENT & VOLTAGE RANGES

FORWARD & REVERSE CHARACTERISTICS UNDER TEMPERATURE CHANGES

ACTUAL SIZE

Your inquiries are invited on the many uses of Union Diodes exclusive with National Union. You will find that Union Diodes have characteristics particularly useful to the circuit designer interested in small signal and pulse applications. For example, the turn-on and turn-off time of the 1N107 is equal or superior to most point-contact diodes.

The accompanying charts show the Union Diode's behavior with temperature variations. Also plotted, over wide ranges of voltage and current, are their forward and reverse characteristics.

Important to you is the fact that Union Diodes are produced by the electronics engineers who helped pioneer the original research and development leading to such devices.

NATIONAL UNION RADIO CORP.

HATBORO, PENNSYLVANIA

here's what's behind the

crystal that's so far ahead

The Midland Factory shown above is the world's largest plant devoted exclusively to producing crystals for frequency control. It is equipped with the finest and most complete production and testing machinery ever developed for this purpose. Here Midland pioneered development of crystals for color television, and is now ready for full-scale production.

All this is important to you for just one good reason: Every Midland crystal you use has been produced by such advanced techniques and under such rigid quality controls that you can be sure it will prove its completely reliable quality under every operating stress.

impo

ower fr

Midland Critical Quality Control extends through every step of crystal production, and includes precise angular control by X-ray. Uniform accuracy is maintained to the millionth part of an inch.

Whatever your Crystal need, conventional or highly specialized, When it has to be exactly right, contact

Midland MAN

MANUFACTURING COMPANY, INC. 3155 Fiberglas Road, Kansas City, Kansas

WORLD'S LARGEST PRODUCER OF QUARTZ CRYSTALS

LAST A TRULY FLEXIBLE AIR DIELECTRIC CABLE

important "for the first time" story . . .

here has long been cable easy to install,

here has long been highly efficient cable.

ELIAX is the first cable to deliver both characteristics. It is as flexible in application as solid dielectric cable, but has the same being as copper air dielectric. HELIAX is superior in design, in efficiency and in electrical performance at microwave and lower frequencies, yet it is comparable in cost to lower frequency cables.

e of Installation (HELIAX can be pulled through conduit and bent satelly without changing its characteristics) means substantial savings netallation costs.

LIAX is crush proof, may be removed from one installation, coiled and stalled. Now available in 7/8 size in continuous lengths. Soon available argenizes. Send the coupon for detailed specifications.

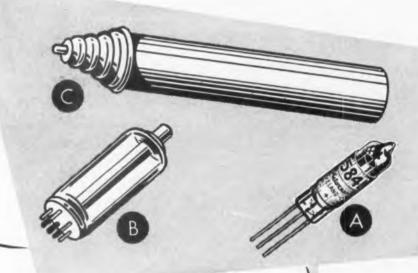
ANDREW CORPORATION - 363 EAST 75th ST. • CHICAGO 19, ILLINOIS

Gentlemen

Please send bulletin 70-A, giving technical details and specifications on your 7,8° diameter flexible HELIAX cable (Type HX-0).

NAME.

POSITION


COMPANY

ADDRESS

ALEXISSION LINES FOR LINES AN INCREMANT . INTEREST OFFICE ANTICONAL ARTERNA COMPARTS ANTICONAL TRACE OF THE LIGHTON PARTY OF

... as simple as ABC to select a Voltage Regulator Tube from Victoreen's unsurpassed variety of tube types.

Victoreen's customary high quality of material and workmanship assures long, reliable operation in all of your applications.

A List of the Most Frequently Used Voltage Regulator Tubes

Many other voltage regulator tubes are available - from 50 to 50,000 volts.

	TUBE TYPES	STARTING VOLTAGE (D.C.)	NOMINAL VOLTAGE (D.C.)	VOLTAGE REGULATION	CURRENT RANGE (Max.)
_	VXR-400	430	400	1.5%/50 µa	100 פע
A	VXR-500	530	500	1,5%/50 pa	100 μα
	VXR-600	630	600	1.5%/50 µa	100 pa
	5950	735	700	1,5%/50 µa	100 μα
T-3	VXR-800	835	800	1.5%/50 µa	100 μα
GLASS	5841	940	900	1,5%/50 µa	100 סע
ENVELOPE	VXR-1000	1050	1000	1.5%/50 µa	ەبر 100
	6143	1 260	1200	1.5%/50 µa	100 μα
	VXR-1500	1570	1500	1.5%/50 µa	100 פע
	VXR-1800	1890	1800	1.5%/50 µa	100 סע
	6119	2100	2000	1.5%/50 µa	100 µa
В	VXR-2500	2700	2500 ± 5%	3%/100 µa	250 pe
D	VXR-1401	1475	1400 ± 5%	5-55 µe 1.5%	ەر 250
T 5-1/2	VXR-2002	2100	2000	3%/100 µa	250 pa
GLASS	VXR-4000	4500	4000 ± 5%	3%/100 µa	250 µa
ENVELOPE	VXR-5000	5500	5000 ±5%.	3%/100 pa	250 µa
6	VXR-10KV	10500	10,000	2%/100 µa	1000 μα
C	VXR-12KV	12500	12,000	2%/100 μα	1000 פע
	VXR-14KV	14500	14,000	2%/100 µa	ەبر 1000
SPECIAL	VXR-16KV	16500	16,000	2%/100 µa	ەبر 1000
ENVELOPE	6392	20000	18,000	2%/100 µa	ەبر 1000
	6353	21000	19,300	1.5%/250 µg	1000 פע

SPECIFY quality components by

COMPONENTS DIVISION

Victoreen Instrument
3800 PERKINS • CLEVELAND 14, 0.

... producer of a greater variety of voltage regulator tube types than any other manufacturer.

For a complete catalog of electronic components request form 3016A.

TEST TAPES

"THE MEASURE OF YOUR TAPE RECORDER'S PERFORMANCE"

D-110 - 5" reel, 71/2 ips D-111 - 7" reel, 15 ips

Recorded on REEVES SOUNDCRAFT LIFETIME magnetic tape made of DuPont "Mylar" Polyester film.

The only tape for indicating:

- Wow and Flutter
 - Head Azimuth Alignment

ALONG PERFORATION

FOLD

- Frequency Response
- Signal to Noise Ratio
 - Signal Level
 - Tope Speed

for technical data see following page

TEST INDICATOR

D-500 TEST LEVEL INDICATOR

For use with any test tapes and test records....

The only accurate, yet inexpensive substitute for a good voltmeter. Consists of three bulbs calibrated to light up at 3 db intervals when connected across speaker leads.

TEST RECORDS

"THE MEASURE OF YOUR PHONOGRAPH'S PERFORMANCE"

D-100-12" vinyl disc, 331/3 rpm

The only record for measuring:

- Frequency Response
 Rumble and Hum
- - Wow and Flutter
- Tracking

"THE MEASURE OF YOUR PHONOGRAPH'S EQUALIZATION"

D-101-12" vinyl disc, 331/3 rpm

The only record with these response curves:

- · Columbia LP
- * AES
- . NARTB

iy

y

RCA's "New Orthophonic"

IN ADDITION . AUDIO EQUIPMENT OF TESTED QUALITY IS FULLY STOCKED at the DUBBINGS co., inc.

FOR YOUR CONVENIENCE . . . AN ADDRESSED, POSTAGE FREE ORDER ENVELOPE IS AT RIGHT

Simply detach along perforated lines, fill out and mail today

To Calibrate for Peak Hi-Fidelity. Performance use

AUDIO TESTS

DETACH

ALONG

CLD

PERFORAT

FOLD

THIS

SEAL

TAPE 08

exclusively engineered by

the DUBBINGS co., inc.

ORDER NOW WITH THIS CONVENIENT POST-FREE, ADDRESSED ENVELOPE

FIRST FOLD HERE

Quant	illu —	Amount
Guant	iry	Amoun
	D-110 TEST TAPE 5" reel 7½ ips INTRODUCTORY OFFER @ \$10.95 (For Orders Received After May 15, 1954, cost is \$12.50)	\$
	D-111 TEST TAPE 7" reel 15 ips INTRODUCTORY OFFER @ \$15.95 (For Orders Received After May 15, 1954, cost is \$17.50)	5
	D-500 TEST INDICATOR @ \$3.95 for use with any test topes or records	5
	D-100 TEST RECORD @ \$3.50 "The Measure of Your Phonograph's Performance"	\$
	D-101 TEST RECORD @ \$4.95 "The Measure of Your Phonograph's Equalization"	5

Simple, complete instructions

enclosed with all the above.

DLD	*SECOND FOLD MERE	
1	Fresh 7" Reel of REEVES SOUNDCRAFT LIFETIME Tape (\$9.75 list) @ \$6.50	
15 %	Fresh 101/2" Reel of REEVES SOUND- CRAFT LIFETIME Tape (\$19.80 list) @ \$13.20	
FLAP AND SEAL WITH "1"	England Damittanes Putusan	\$.50
	First and Second Folds TOTAL New 1954 Audio Catalog [] Recording Service Bulle	\$ tin
	UNCONDITIONAL MONEY BACK GUARANTEE!	
FOLD THIS	ADDRESS	
Ī	CITYZONESTATE	OPHILE
	I BW 8: A LKOLESSIONAT IN EFECTIONICS	OTTITLE

Please Print

LISTEN...
TO
WHAT
AUDIO EXPERTS
ARE
SAYING...

GEORGE MAERKLE, Chief Engineer, Fisher Radio Corporation.

"The DUBBINGS" D-110 and D-111 Test Tapes are
the first to fill the long standing need for accurate and
easily used means of evaluating and improving
performance of magnetic recording equipment..."

ROBERT J. MARSHALL, Chief Engineer, Foirchild Recording Equipment.
"DUBBINGS' new Test Tapes are welcome companions to this company's series of fine test records. They demonstrate the same high calibre and are the only practical means for truly measuring the high fidelity tape recorder's performance. Getting all the important tests on a single reel is a tribute to advanced engineering know-hou.

MAROLD D. WEILER, author of "High Fidelity Simplified," in his forthcoming book, "Tape Recorders and Tape Recording," states: "The DUBBINGS" Test Tapes are an absolute must for anyone interested in obtaining and maintaining peak performance from his tape recorder. Their use insures better tapes. They are more than just test tape..."

comprehensive
technical specifications
on

DUBBINGS':

AUDIO TESTS

SKE PRECEDING PAGE FOR VITAL FACTS

BUSINESS REPLY ENVELOPE First Class Point Ma, 1051, Soc. 34.9, P.L.&R., Long Island City, M. Y.

The DUBBINGS Co., Inc.

41-10 45th STREET

LONG ISLAND CITY 4, N. Y.

DEPT. 44RT

D-110 TEST TAPE—"The Measure of Your Tape Recorder's Performance" 5" reel 71/2 ips, REEVES SOUNDCRAFT LIFETIME Tape

WOW AND FLUTTER-3,000 cps tone * HEAD AZIMUTH ALIGNME 41-5,000 cps tone * FREQUENCY RESPONSE-30 to 7,500 cps in 13 step; 30, 50, 100, 200, 400, 700, 1 kc, 2, 3, 4, 5, 6, 7 5 kc. Recorded with standard NAB characteristic for 7½ inches per second. * SIGNAL TO NOISE RATIO -400 cps tone, 15 to 50 db in 5 db steps with announcements. * MAXIMUM SIGNAL LEVEL-zero level, 400 cps, 3% total harmonic distortion. * TAPE SPEED-timing beeps at 0, 5 and 10 minutes. Detailed instruction book enclosed.

D-111 TEST TAPE—"The Measure of Your Tape Recorder's Performance" 7" rool, 15 ips, REEVES SOUNDCRAFT LIFETIME Tape

cother

Since

super

a ilea

viles

61-ks

Corre other

P IVI

1. Tem

OL

101

it.

bli

01

10

118

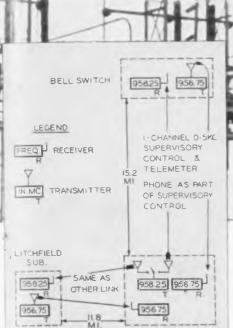
1

16

l b

WOW AND FLUTTER-3,000 cps tone * HEAD AZIMUTH ALIGNMENT-10.000 cps tone * FREQUENCY RESPONSE-30 to 15,000 cps in 14 steps 30. 50, 100, 200, 400, 700, 1 kc, 2, 4, 6, 8, 10, 12, 15 kc. Recorded with standard NAB characteristic for 15 inches per second. * SIGNAL TO NOISE RATIO-400 cps tone, 15 to 50 db in 5 db steps with announcements * MAXIMUM SIGNAL LEVEL-zero level, 400 cps, 3% total harmonic distortion. * TAPE SPEED-timing beeps at 0, 5 and 10 minutes. Detailed instruction back enclosed.

D-500 TEST LEVEL INDICATOR


RANGE-Calibrated for 3 db increments in level; 1 db increments can be judged easily • SENSITIVITY-Indicates at listening volume level when some nected across 3 to 16 ohm loudspeaker terminals • FREQUENCY RESPONSE-Non-frequency discriminating, equally accurate at any frequency. Precision made, durable construction, leads and alligator clips supplied. Detailed, easy to use instruction book enclosed.

D-100 TEST RECORD—"The Measure of Your Phonograph's Performance" 12" pure vinylite disc, 33½ rpm micrograeve.

FREQUENCY BANDS-30. 50. 100, 250, 400, 700, 1 kc, 2, 4, 6, 8, 10, 1 kc, 4½ db/oct, attenuation below 500 cps. Constant velocity above 1 kc, 1 å cm/sec level • ACCURACY-Within 1 db • WOW AND FLUTTER-3,000 cps tone • TRACKING TEST-5 bands of 400 cps tone at increasing levels 3.5, 4, 6, 8½, 11 cm/sec. • UNMODULATED GROOVE-to check rumble, 10.50 and hum Both sides of record identical. Detailed, easy to use instructions on record cover.

D-101 TEST RECORD—"The Measure of Your Phonograph's Equalization" 12" pure vinylite disc, 33% rpm microgroove.

FREQEUNCY BANDS-30, 50, 100, 250, 400, 700, 1 kc, 2, 4, 6, 8, 10. If klor each of the following recording curves, Columbia LP, NARTB, AES and the RCA "New Orthophonic". An additional 1 kc reference band be seach frequency run * ACCURACY-within 1 db. Detailed, easy to use insuctions on record cover.

Arizona Public Service Co. 960-mc Microwave system. Selector switch connects transmitter to either antenna at Phoenix steam plant


Since 1949 Arizona Public Service Company has used RCA Microwave for remote supervisory control of two substations from a seam-electric plant. One installation provides remote control and indications on five kv breakers, telemetering of voltage and corrent, and a 2-way voice channel. The other installation controls two breakers and provides telemetering and voice channels liween plant and switching station. (See matic.)

our years of operation under trying conons have proved the reliability of RCA crowave. Through ambient 140-degree th, high winds, severe sand and dust rms, violent rain and electric storms blic Service's supervisory control system ed on the job. Here was a link which was ependent of the transmission lines it rices... providing reliable communicaits and control when needed most.

MANY ENGINEERING ADVANTAGES

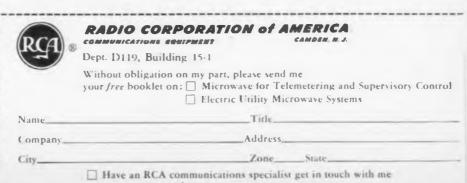
and engineering features led Public Servto select microwave rather than high-line rier. Microwave offered good noise and fortion characteristics, easy tie-in with bile radio, greater channel capacity, reatable freedom from interference, and relatease of maintenance.

The economy factor also favored RCA

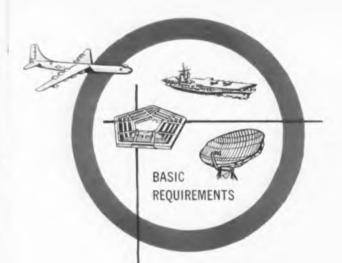
RCA MICROWAVE radio-relay communication and remote control

Microwave provides all-weather remote control and telemetering for Arizona Public Service Co.

Unattended substations receive control impulses from steam plant at Phoenix


Through severest heat, sand, electric storms ... Arizona Public Service Company's remote supervisory control system (via Microwave) stays on the job

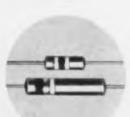
Microwave. While a one-channel microwave system generally costs more than carrier to install, in this particular case it cost \$9,000 less because crowded carrier frequency space would require considerable new equipment. In addition, RCA Microwave's built-in provisions for extra channels make it the least expensive form of communication per channel mile.


A PRACTICAL SYSTEM

Outage time of RCA Microwave is next to zero. "Dish" antennas beam highly direcrional radio signals from one relay station to the next. The radio transmissions follow a line-of-sight path—can approximately parallel power lines. Equipment uses easy-toservice familiar circuits and readily available tubes. It can interconnect with existing telephone lines, switchboards and mobile radio installations. One RCA Microwave system will handle up to 25 voice channels (or 25 x 18 telemetering and control channels).

You can prepare now for your expanding communications needs, before they develop. The booklets listed below provide quickly digested facts to help with future planning. Mail the coupon—there's no obligation on your part. And remember, the RCA Service Company provides nation-wide installation and service facilities.

JAN and MIL Specifications are basic guideposts for electronic advancement, whether used as engineering reference points or as procurement standards. IRC's dual emphasis on mass production and frequent, accurate performance testing assures you of the highest performance standards at the lowest possible cost.


all equivalent to JAN or MIL specifications.

And all are standard units, available on excellent delivery cycle! If you manufacture end-equipment for the armed forces and must meet these specifications, or if you apply them as standards to your own requirements, depend on IRC for everything you need. For, manufacturing the widest line of resistors in the industry—127 different types in all—IRC is logically your best source of JAN and MIL type units.

JAN-R-29 specification For all requirements of JAN

For all requirements of JAN-R-29 Specification, Amendment 4, IRC sealed precision Voltmeter Multipliers function efficiently even when exposed to the most severe humidity. Used with 1-milliampere DC instruments, they enable voltage measurements to be made up to 6000 volts. Send for Bulletin.

JAN-R-184 specification

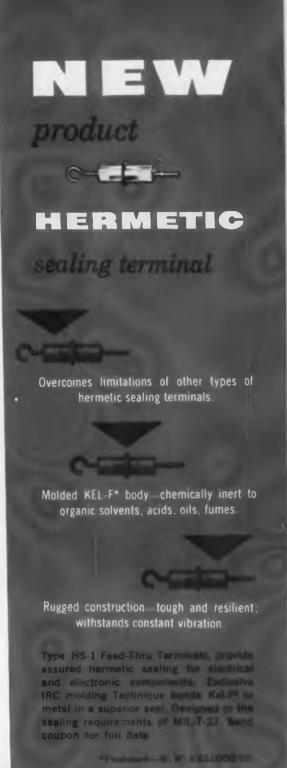
Unusually stable and inexpensive, IRC BW Wire Wounds meet JAN-R-184 Specification, Amendment 5, at ½ and 1 watt. Resistance element is uniformly and tightly wound on insulated core. Molded housing provides full insulation. Widely used in meters, analyzers, high stability attenuators, low-power ignition circuits, etc. Send for Bulletin.

MIL-R-26B specification

For high power dissipation, IRC Power Wire Wounds meet every commercial requirement of MIL-R-26B Specification, Characteristic G. Tubular, flat, fixed, adjustable, inductive, noninductive, lead, lug and ferrule types provide resistors for virtually any circuit. From 5 to 225 watts. Send for Bulletin.

MIL TYPE RESISTORS

MIL-R-11A specification


IRC Advanced BT Resistors meet and beat MIL-R-11A Specification, Amendment 2. Filament-type resistance element and other exclusive features afford extremely low operating temperature and superior power dissipation in a compact, light, fully insulated unit. Available at 14, 1/2 and 1 watt to MIL specification and 2 watts to commercial specification. Send for Bulletin.

on & Deposited Carbon Precise Power Resistors Voltmeter tipliers Low Wattage Wire Inda Insulated Composition Insulated Controls Volume Controls

never the Circuit Says

Procision Wire Wounds • Ultra HF
HI-Voltage Resistors • SelenRectifers • Insulated Chokes
Thirmetic Sealing Terminals •

INTERNATIONAL RESISTANCE CO.

407 N. Broad St., Philadelphia 8, Pa.

In Canada: International Resistance Co., Ltd., Toronto, Licensee

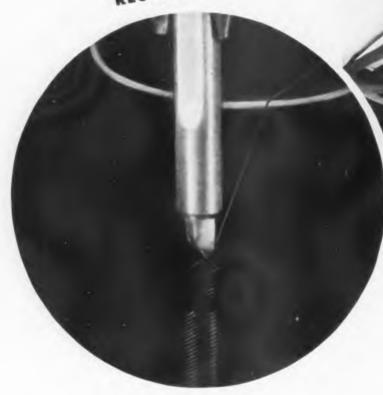
Send me data on

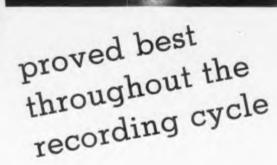
MF Voltmeter Multipliers,

BW Resistors,
Power Wire Wounds,
Advanced BT Resistors,
HS-1 Terminals.

Name._____

Company.____


o...pa.ry.


Address.____

City._____State__

NOW...try the revolutionary new Soundcraft

MicroLac RECORDING DISCS

After months of exhaustive pre-testing in leading recording studios throughout the country, Soundcraft brings you its all-new MicroLac Recording Discs.

These revolutionary new discs:

- 1. Are unmatched for play-back perfection.
- 2. Carry a far quieter, wider range signal straight through from your cuttings to your final stampers.

Check these qualities to see why the new MicroLac Discs are the finest high-fidelity recording discs in the world:

- Noise level well below that of your own recording equipment.
- Perfected thread throw, especially for microgroove recordings.
- Quieter with cold stylus than most discs with hot stylus.
- Unsurpassed silvering qualities, for finer masters, mothers and stampers.
- Constant depth of cut, with or without advance ball.

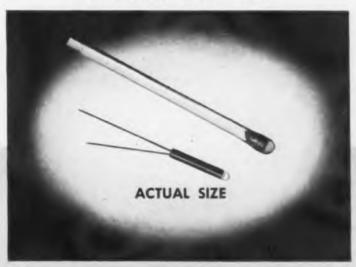
Soundcraft MicroLac Discs are made on the finest aluminum bases, optically tested for flatness and smoothness . . . degreased for permanent lacquer adhesion . . . deburred for perfect edge seal.

Their new lacquer coating is forced through eight stone filters to a maximum particle size of less than one micron. It is applied automatically in a 250-foot-long sealed tunnel in which four air conditioners in series, each with a Precipitron, remove the last possible traces of dust.

Revolutionary as the new MicroLac Discs are their brand new, high strength, parcel post and tumble tested shipping containers. They deliver your discs factory new They open easily as a drawer. They make ideal perminent storage chests, with numbered spaces for individual disc titles.

Try the sensational new Soundcraft MicroLac Discright away. See and hear for yourself why we believe them to be the world's finest!

REEVES SOUNDCRAFT CORP.


Dept. N4, 10 East 52nd Street, New York 22, N. Y.

TELE.

HIGHLY SENSITIVE ... COMPACT IN SIZE!

SYLVANIA PHOTODIODE

IN77A

The Sylvania 1N77A is a highly sensitive compact junction photodiode.

Its useful sensitivity covers the visible spectrum and extends into the infrared region where it peaks at approximately 1500 Angstrom Units.

Consider these advantages:

- 1 Hermetically sealed in glass.
- 2 Extreme stability in operation.

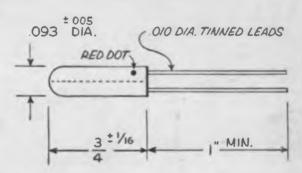
u-

h-

ht

nu

es,


eu. 12 16

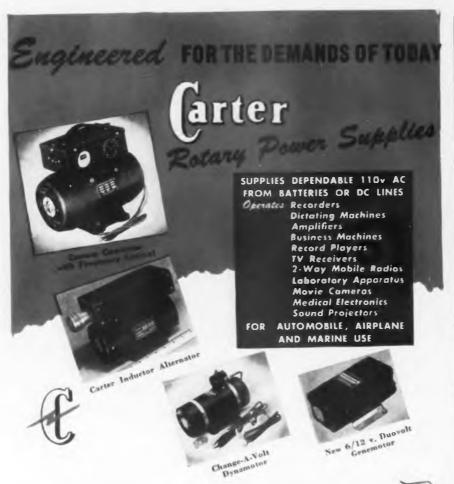
SC

- 3 High sensitivity (5.0 volt peak to peak across a 100 k-ohm load).
- 4 Low dark current (500 μ a @ -50 volts).

The high sensitivity and compact packaging of the 1N77A should provide the answer to many light-sensing application problems. Still more reasons why it pays to specify Sylvania.

DETAILED DRAWING

FOR FULL DETAILS about the complete line of Sylvania diodes write to Dept. 4E-4404 at Sylvania.


SYLVANIA

Sylvania Electric Products Inc.,

1740 Broadway, New York 19, N. Y.

In Canada Sylvania Electric (Canada) Ltd., University Tower Bldg. St. Catherine Street, Montreal, P. Q.

LIGHTING . RADIO . ELECTRONICS . TELEVISION

In keeping with the many NEW developments in radio, video, audio electronics. CARTER today offers an advanced line of totary power supplies specially designed to meet present day functional requirements. Efficient, dependable, ample in capacity. Harmonious in appearance with modern recording, testing and transmitting equipment.

NEW Carter DUOVOLT Genemotors provides dependable 6/12 v. ROTARY dynamotor power for mobile radio equipment operating EITHER from 6 or 12 volt battery.

NEW Carter Change-A-Volt Dynamotors adapt existing 6 volt mobile radio to 12 volt batteries found in many new cars. No rewiring necessary.

Carter Custom Converters provide up to 500 watt capacity for operating recorders, movie camers, projectors, business machines and many other types of AC equipment from battery power or in DC districts. Carter Custom Dynamotors are for DC to DC voltage conversion in mobile and marine communication, geophysical instruments, lab equipment. Carter TV converters operate big screen sets from 6 v. to 220 v. DC input. Carter Inductor Alternators provide HIGH FREQUENCY AC from DC input voltage. Standard Carter Genemotors are widely used to power mobile, aircraft, marine and railway radio installations. You will be amazed at the many NEW applications now served by Carter Rotary Power Supplies.

POWER?

Other type inverters produce AC by reversing the flow of DC, the second a switch. 120 times a second Rotary converters actualty generate AC voltage from an alternator, same as the utility stations. That's why ROTARY POWER is cleaner AC, more dependable, free from sudden failure.

WRITE FOR NEW 1954 CATALOG OF CARTER DYNAMOTORS AND CONVERTERS

New Alkyd Uses at IRE Show

Many applications of the various types of alkyd molding compoundare being exhibited by the Barrell Division of Allied Chemical & Dy Corp. at the IRE National Convention, Kingsbridge Armory, New York City, including one that holds a key position in making color television reality.

The Tube Div. of RCA is having the base of the first commercial color picture TV tube molded of Plaskon granular alkyd, because it will provide, with minimum leakage, the required insulation for the 11,000 voltapplied to one of the base pins of this tube. Alkyd was chosen also because of its higher resistance to the adverse effects of humidity and moisture.

Two other qualities which alkyd possesses were also factors in its selection for the color TV tube base. Alkyd can withstand high temperatures for long periods without damage; and, secondly, it is easily molded, making large-scale production possible.

Aircraft Application

AC Filament OC Plate Vol OC Grid Volt Plate Load T Prom BF Gri OC Plate Cu Plate Input Plate Dissip OC Grid Cur Driving Power Plate Power Tobe Power

AC Filament OC Plate Vel BC Grid Velt Peak RF Gri Plate Currer Plate Dissip BC Grid Cur Brive Power Plate Power Tobe Output

6333 Water 645 Force 644 Water 6447 proce

7 be T

SIE

Several new applications for molded plastics have been found by the aviation industry including one which eliminates 140 assembly operations, recently announced by Westinghouse Electric Corp. It involves the chassis of a centralized, electrical control system which is made of molded fibrous glass reinforced alkyd.

The Westinghouse application is an approach to aircraft wiring which brings numerous electrical components from throughout the plane into one spot on a single panel. This panel is designed as a removable, "plug-in" unit that can be readily exchanged so that the aircraft can be returned to operation while the replaced panel is being serviced.

Control Chassis Provides Insulation

Using Plaskon alkyd 440A, Westinghouse engineers designed a singly tray-like chassis on which a major portion of the electrical components of a control panel are mounted. The molding replaces, in one step, and alternate design requiring 140 separate assembly operations. The chass itself provides insulation of one connection from another, and is highly are resistant. It made possible a rearrangement of components for easier wiring and assembly, and enabled designers to reduce the overall height of the unit by 1½ in.

Grier CO

2645 N. Maplewood Avenue Chicago 47, Illinois

WORLD'S LARGEST EXCLUSIVE MANUFAC-TURERS OF MOBILE RADIO ROTARY POWER SUPPLIES

Representatives in Principal Cities

CM-130-4

Amperex 2 NEW RUGGEDIZED TRIODES

HEAVY DUTY RF
INDUSTRIAL
APPLICATIONS

OPERATING DATA, 6333

RF POWER AMPLIFIER and OSCILLATOR CLASS C TELEGRAPHY

MAXIMUM RATING TYPICAL OPERATION

	per tube	one tube
AC Filament Voltage	-	22 velts
OC Plate Voltage	15000	12000 velts
DC Grid Voltage	3000	1600 velts
Plate Load Resistance	-	3500 ohms
Prim RF Grid Voltage	-	2600 velts
OC Plate Current	2	1.55 amps
Field input	30	18.60 kw
Plate Dissipation	10	4.35 hw
90 Grid Current (approx.	.) 400	165 ma
Briving Power (approx.)	-	420 watts
Plate Power Output	-	14.25 kw
Tabe Power Output	-	745 BTU/min.

y

S

le

d n h

to el

ed ed

911

le,

OT.

its

115

BIL

5 9

T -

ily

or

ė

54

6446

RF INDUSTRIAL OSCILLATOR

(3 PHASE, FULL WAVE, UNFILTERED SUPPLY)

For Frequencies Indicated 5 12.5 20(mc.)

	MAXIMUM RATING per tube	TYPICAL OPERATION one tube
AC Filament Voltage	-	22 volts
DC Plate Voltage	15000	15000 velts
9C Grid Veltage	- 3000	- 1250 volts
Pam RF Grid Voltage	-	2400 voits
Plate Current	2	2 amps
Plate Input	30	30 kw
Plate Dissipation	20	10 kw
BC Grid Current	400	250 ma
Brive Power (approx.)	-	620 watts
Plate Power Cutput	-	20 kw
Tube Output	-	1138 BTU/min.

DIRECT INTERELECTRODE	CAPACITANCES	
Grid to Plate	32 44	
Grid to Filament	17 μμ1	
Plate to Filament	1.8 µµ/	

6333	Water Cooled) .	LIST	PRICES	\$230.00
6445	(Forced Air Cooled)			375.00
6446				255.00
6447	orced Air Cooled)			400.00

ACCESSORIES The Type Water Jacket Grid Connector 6333 DW-1580 Y-13326 (Supplied with tube without charge)

Implete technical data available from our Application Engineering Department

Y-13326 (Supplied with tube without charge)

S-15096

POWER TUBE SELECTION CHART

i... yours for the asking! Camprehensive tolored chart shows ratings in power output and frequency for typical applications. Also gives a correlated table of FCC frequency allocations. Helps you find, in a moment, the tube or tubes that will fit your adustrial and communication jobs.

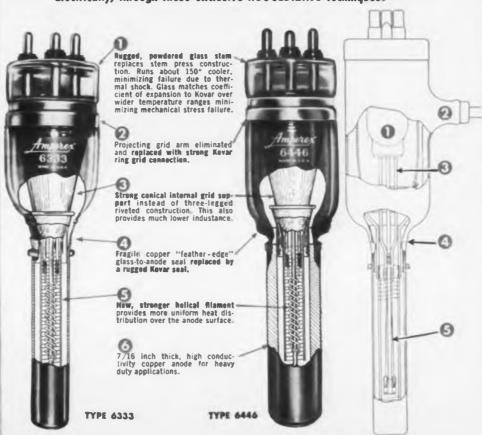
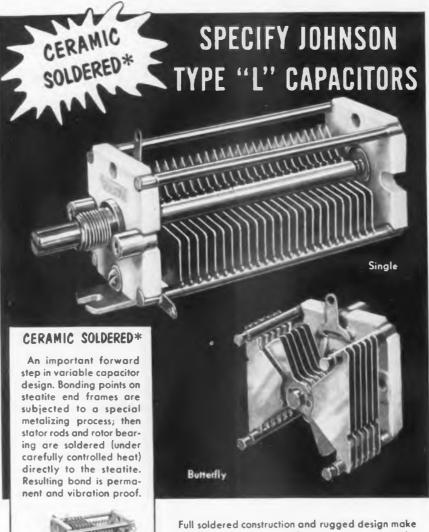

TYPE 6333 (WATER COOLED)

Plate Dissipation 10 kilowatts. Furnished with grid connector for direct interchangeability with type 892 without any equipment modifications. Suitable for communications as well as industrial applications. Available in air-cooled version, Type 6445.

TYPE 6446 (WATER COOLED)

A heavy wall triode capable of dissipating 20 bilowatts continuously. Massive anada 17/16" thickl, provides high heat storage capacity for heavy intermittent duty. Migh dissipation reserve allows extreme mismatch of load to tube impedance. The tube is therefore protected against maladjustment or misuse of equipment. Uses only ½ the water flow required for type 892, for equivalent anade dissipation. Available in air-coaled version, Type 6447.

AMPEREX tubes give you better performance and longer life, Physically and Electrically, through these exclusive RUGGEDIZING techniques:



CONVENTIONAL TUBE STRUCTURE

AMPEREX ELECTRONIC CORP.

lable At Year Louis From Bio

Want a rugged high frequency capacitor able to withstand extreme vibration?

JOHNSON type L high frequency capacitors the perfect choice for any electronic application requiring extreme stability and rigidity. Rotor bearing, stator rods, and structural tie rods are soldered direct to 3/16" steatite end frames. Tests prove resulting ceramic to metal bond is stronger than the rugged end frames themselves . . . won't loosen or break loose in roughest vibration . . . rotor and stator alignment is permanent, capacity wobble is eliminated.

OTHER DESIGN FEATURES

Extra thick (.020) brass plates and large diameter (1/4") stator rods for extremely low inertia mass . . . special split sleeve tension bearing and silver plated beryllium copper wiring contact for constant lorque and smooth silent capacity variation even at highest frequencies. Standard spacing .030 rated at 1,500 volts peak DC breakdown; over 500 volts peak at 50,000 feet altitude. Panel space required 1½" square. Mounting posts tapped 6-32 on 1-3/32" centers. Shaft is ¼" with screwdriver slot. Standard plating corrosion-resistant bright alloy.

Write today for quotations or additional data

JOHNSON COMPANY

APACITORS . INDUCTORS . SOCKETS . INSULATORS . PLUGS . JACKS . KNOBS . DIALS AND PILOT LIGHTS

221 SECOND AVENUE SOUTHWEST

Differential

Type L variables also available

with .020, .060, and .080 spacing

for special applications in produc-

tion quantities. Special plating, mounting brackets, shaft lengths,

terminals also furnished to speci-

WASECA, MINNESOTA

Leonard Zlowe, formerly with th Burndy Engineering Co., has been ap pointed sales engineer on the staff of Frederick I. Kantor, 4010 Saxon Ave New York 63, N.Y. to augment the firm audio and electronic coverage of industrials and distributors in the New Yor

Associated Engineering Service, Inc. 1 Thomas Circle, N.W. has been named the representative for Shasta Div. o: Beckman Instruments, test equipmen manufacturer, in the Washington, D.C. area. The Jack C. Gilbert Co., 4034 Benton Blvd., has been appointed at Kansai City, Missouri. The Instrument Service Labs, Ltd., 21 W. Broadway, Vancouver. B.C., for western Canada. Loren F Green & Assoc., 4949 W. Diversey Ave. in Chicago, Ill. Land-C-Air Sales, 42 Oak Ave. in Tuckahoe, New York: G. E. Moxon, 422 La Jolla Avenue, in San Mateo, California; Murphy & Cota, 1409 Peachtree St., N.E. in Atlanta, Georgia: Pikney & Hine, 552-3 Plymouth Bldg... in Minneapolis, Minn.

Cargo Packers Special Products Co., 73 Rutledge St., Brooklyn, N.Y. has been appointed national distributor for Radio Receptor's Thermatron Packaging Sealer.

John C. Lee has been named district sales representative for the American Silver Co., close tolerance strip manufacturers, to cover the Kentucky, southern Ohio and southern Indiana area, from offices at 2111 Carew Tower, Cincinnati. Ohio.

Thomas L. Stevens Co., 1151 S. Broadway, Los Angeles, will cover the southern California area for Dale Products. Inc., manufacturers of resistors and electronic components.

Gawler-Knoop Co., with three offices at: 178 Eagle Rock Ave., Roseland, N.J., 901 Pershing Drive, Silver Spring. Maryland; and 835 Glenside Ave., Wyncote, Pa., has been named sales representative by Waveline, Inc., microwave instrument manufacturer. Similar appointments went to Everette Associates. Inc., at 6744 N. California Ave., Chicago Ill.; Box 6236, Speedway City, Indianapolis, Indiana; and 1629 East 31st Street Kansas City, Missouri. Also, Robert A Waters, Inc., 4 Gordon Street in Boston, Mass.; and at 1150 Whalley Ave., New Haven 15, Conn.; John B. Tubergen Co. 2232 West 11th St., in Los Angeles, California and Edward A. Ossmann & Associates, located at 3 Juniper St., Rochester 10, N.Y. and 308 Merritt Ave.. Syracuse, N.Y.

Alden (Pat) Bowser, until recently deputy chief of CAA electronics, has been appointed engineering representative of Lenkurt Electric Sales Co. San Carlos, Cal.

twin power triodes regulation

PLATE DISSIPATION

The new Chatham Type 6336 is a twin power triode with special suitability for voltage regulating applications. Used as a series tube, it will pass a minimum of 150 milliamperes per section with 40 volts, D.C.

plate voltage. Special features include a hard glass envelope, an 8-pin button stem with Jumbo Octal Base.

CHARACTERISTICS (PER SECTION)

PLATE DISSIPATION: 30 WATTS **AMPLIFICATION FACTOR: 2.7**

TRANSCONDUCTANCE: 11,000 MICROHMS

PLATE RESISTANCE: 250 OHMS

HEATER REQUIREMENTS: 6.3 V., 4.75 AMPS.

The tubes shown are typical items from the complete Chatham line of general and special purpose tubes. Included in this line are Amplifiers, Mercury and Inert Gas Rectifiers, also Mercury, Inert Gas and Hydrogen Thyratrons.

Most Chatham tubes are available directly from stock and can be supplied promptly. Chatham also designs, develops and manufactures special tubes to exact customer specifications inquiries are invited.

TYPE 6394 TWIN TRIODE

Similar to Type 6336 in every respect except for Heater Re-quirements which are 26.5 velts, 1.25 amps.

CHATHAM TYPE 6AS7G IMPROVED TWIN This Chatham Twin Triode is built to close tolerance — features plate current and GM characteristics held within ±10%, very low microphonics, improved triode balance, absence of grid current and greatly reduced plate current drift. Plate current is 125 milliamperes at 40 valls, D.C. plate voltage. The characteristics of this tube recommend it especially for voltage regulation circuits. Base is Medium Shell Octal. POWER TRIODE -

CHARACTERISTICS: (PER SECTION)

- * Plate Dissipation: 13 Watts
- * Amplification Factor: 2.0
- * Transconductance: 7,000 Micromhos
- * Plate Resistance: 280 Ohms
- *Heater Requirements: 6.3 Volts

Executive and General Offices: LIVINGSTON, NEW JERSEY Plants and Laboratories: NEWARK and LIVINGSTON, NEW JERSEY

DOUGLAS DC-7

Diamond Connectors at work in DC-7 radio equipment, helping to insure reliable communication.

Depends on

G

fo fit

DIAMOND CO-AXIAL CABLE CONNECTORS

As dependability in electronic circuits becomes more critical, coordinated engineering and manufacturing effort of a highly refined degree becomes an unqualified "must".

This Company is proud that its product has been selected for use in THE NEW DOUGLAS DC-7.

7 North Avenue, Wakefield, Massachusetts

for Unattended OPERATION THE Gatesway is THE COMPLETE WAY.

When you buy Gates remote control, you certainly do not buy half a loaf. — The Gatesway is indeed the whole loaf in reliable equipment for unattended operation.

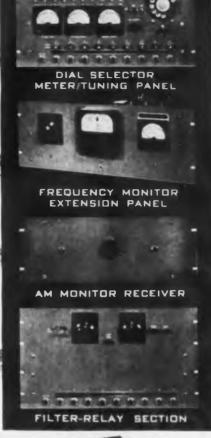
Gates remote control includes rack cabinets for both studio and transmitter, completely wired and ready to use. Motors for remote tuning are supplied with adjustable brackers to fit nearly every application. The antenna and leady in are standard equipment — or, to the point, we don't believe you will need the help of your local hardware or electrical store to complete the installation.

And no equipment of this kind is complete without a national sales and service organization such as Gates can offer. There, are five Gates major branches plus a field engineer near you, no matter where you are.

Available for the asking is a new 8-page brochure on Gates complete remote control systems. — By having this informative brochure you will quickly discover why the Gatesway is the COMPLETE WAY and yet costs, in many instances, actually less.

COMPLETE TRANSMITTER CONTROL
IN UNDER-WINDOW
CABINET

TOWER LIGHT



ET LOS

POWER SUPPLIES

PRIMARY CONTACTOR

FM MONITOR RECEIVER

DIODE ANTENNA CURRENT METERING

MOTOR TUNING. ALL MOUNTINGS PROVIDED

Houston 2700 Polk Avenue New York, 51 East 42nd Street

ated

mes

e n

NC

GATES RADIO COMPANY

Manufacturing Engineers Since 1922

Washington D.C. Warner Blog Las Angeles 4501 Survet Blog New York QUINCY, ILL U S A

Atlanta, 13th & Spring Sts Montreal, Canadian Marcon Co

aterman OCKETSCOPE The Pocket-Size Oscilloscope S-15-A S-14-A S-14-B

6'INCHES

Featuring small size, light weight and outstanding performance the HIGH, WIDE and TWIN POCKETSCOPES have become the "triple threat" of the oscilloscope field. Their incomparable versatility, reliability and accuracy have skyrocketed this team of truly portable instruments into unparalleled demand. Each oscilloscope features DC coupled amplifiers in both vertical and horizontal channels.

The S-14-A HI-GAIN POCKET-HIGH

SCOPE provides the optimum in oscilloscope flexibility for analysis of low-level electrical impulses. Extremely light weight (12% lbs.), compact in size (12 x 5% x 7 in.), dependable and accurate in performance. Vertical and horizontal channels: 10mv rms/inch with response within 2DB from DC to 200 KC and pulse rise of 1.8 µs... non-frequency discriminating attenuators and gain controls with internal calibration of trace amplitude . . . repetitive or trigger time base with linearization from 1/2 cycle to 50 KC with ± sync or trigger.

The S-14-B WIDE BAND POCKETSCOPE is ideal for investigations of transient signals, DC signals, aperiodic pulses or recurrent waveforms. Vertical channel: 50 mv rms/in. within -2DB from DC to 700 KC... pulse rise time of 0.35 µs. Horizontal channel: 0.15v rms/in. within -2DB from DC to 200

KC... pulse rise of 1.8 μ s. Attenuators and gain controls are non-frequency discriminating... trace amplitude calibration... repetitive or triggered time base from $\frac{1}{2}$ cycle to 50 KC... \pm sync or trigger... trace expansion, filter graph screen and many other features... 14 lbs... 12 x 6 x 7 inches.

is a portable, twin tube, high sensi-tivity oscilloscope with two independ-

ent vertical as well as horizontal channels. It is indispensable for investigation of electronic circuits in industry, school and laboratory.

The S-15-A | mv rms/in. with response within-2DB POCKETSCOPE | from DC to 200 KC and pulse rise time of 1.8 µs . . . horizontal channels 1v rms/in. within —2DB from DC to 150 KC . . . non-frequency discriminating controls . . . internal signal amplitude sable for investigation calibration . . . linear time base from this in industry, school Vertical channels 10 calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration . . . linear time base from the calibration in the calibratio

The S-11-A INDUSTRIAL POCKETSCOPE is a small, compact (5x7x11 inches), and lightweight (8¾ lbs.) instrument for observing electrical circuit phenomena. The flexibility of the POCKETSCOPE permits its use for AC measurements as well as for DC. The vertical and horizontal amplifiers are capable of reproducing within -2DB from DC to 200 KC with a sensitivity of

repetitive time base from 3 cycles to 50 KC continuously variable throughout its range . . . variations of input impedance, line voltage or controls do not "bounce" the signal—the scope stabilizes immediately.


RAYONIC CATHODE RAY TUBES BY WATERMAN

TUBE	PHYSICA	L DATA	STATIC V	OLTAGE	DEFLECTION'		LIGHT
TUBE	FACE	LENGTH	A3	A2	VERT	HOR	OUTPUT
3JP1	3′′	10''	3000	1500	111	150	357
3MPI	3''	8′′		750	99	104	33
3RP1	3''	9.12"		1000	61	86	44
3SP1	1.5×3′′	9.12"		1000	61	86	44
3XPI	1.5x3"	8.875"		2000	33	80	218

The basic properties of the cathode ray tube that concern the designer or the user are: deflection sensitivity, unit line brightness, line width, static voltage requirements and physical size. A comparison between cathode ray tubes manufactured by Waterman Products Company is shown in the table adjoining. These tubes are available in P1, P2, P7 and P11 phosphors. 3JP1, 3JP7, 3SP1 and 3XP1 are available as JAN tubes.

*Deflection in volts per inch.
**Light output of an element of a raster line (one mm long and not exceeding .65 mm in width) in microlumens

The Oscilloscope that Portrays the Pulse

Precision Engineer

The PULSESCOPES are cathode ray tube oscilloscopes that portray the attributes of the pulse; shape, amplitude, duration and time displacement. All PULSESCOPES have internally generated markers with the basic difference that in the SAR PULSESCOPE the markers initiate the sweep while in the others the sweep starts the markers.

BROAD The S-6-A BROAD BAND Scope is a PULSESCOPE

in performance, POCKETSCOPE in size. The instrument measures DC as well as AC signals. Unique DC calibration methods permit rapid measurements of either positive or negative, AC or IDC signals. Vertical amplifier sensitivity of 0.2v rms/inch, and response to 5 mc within 3DB... pulse rise time of 0.1 μ s... internal markers from 1 to 1000 μ s... repetitive or trigger sweep from 5 cycles to 500 KC with 5X sweep expansion. 5X sweep expansion . . . sweep, marker and DC calibrating voltage available externally, Size $8\frac{1}{2} \times 6\frac{3}{4} \times 13\frac{3}{4}$ in. Weight 22 lbs. Operates from 50 to 400 cycles at 115 volts AC.

LAB

The S-5-A LAB PULSESCOPE is a JANized (Gov't Model No. OS-26)

portable, AC, wide band-pass, laboratory oscilloscope ideal for pulse as well as general purpose measure-ments. Internal delay of 0.55 µs permits observation of pulse leading permits observation of pulse leading edge. Includes precision amplitude calibration, 10X sweep expansion, internal trace intensity time markers, internal trigger generators and many other features. Video amplifier 0.1v p to p/inch... pulse rise time of .035 µs or response to 11 mc. 1.25 to 125,000 µs triggered or repetitive sweep... internally generated markers from 0.2 to 500 µs... trigger generator from 50 to 5000 trigger generator from 50 to 5000 pps. for internal and external trig-gering. Operates from 50 to 400 cycles at 115 volts AC.

SAR

The S-4-C SAR PULSESCOPE is

A JANized (Gov't Model No. OS-4) portable instrument (31.5 lbs.) for precision pulse measurements for radar, TV and all electronic measurements. Portrays all attributes of the pulse...internal crystal controlled markers of 10 and 50 μs available for self-calibration. R operation a small segment of the A sweep is expandable for detailed observation with a direct-reading calibrated dial accurate to 0.1%. Video amplifier band-pass up to 11 mc...optional video delay 0.55 μs ...pulse rise and fall time better than 0.07 μs ...R pedestal (sweep) 2.4 to 24 μs ...video sensitivity of 0.5v. p to p/inch. Easily convertible from μs to yards. Operates from 50 to 400 cycles at 115 volts AC. A sweep is expandable for detailed

derman

RAKSCOPE

Because the panel is only 7" high and fits any standard rack, the S-12-B RAKSCOPE admirably fills the need for a small oscilloscope of

wide versatility. With all the features of the S-11-A POCKETSCOPE, the RAKSCOPE is JANized (Gov't Model No. OS-11), and has many additional advantages; the sweep, from 5 cycles to 50 KC, is either repetitive or triggered . . . vertical and horizontal amplifiers are 50 mv rms/inch with bandpass from 0 to 200 KC . . . special phasing circuitry for frequency comparison.

25, PHILADELPHIA PENNA.

CABLE ADDRESS, POKETSCOPE, PHILA.

Manufacturers of POCKETSCOPES® • RAKSCOPES® • PULSESCOPES® and RAYONIC® TUBES

154

FOR PRECISE DELAY INTERVALS

TYPE SDL-15 TOOO YARDS
(3.051 MICROSECONDS)

TYPE SDL-16 2000 YARDS (6.102 MICROSECONDS) of Sta

to Av

DI

tai

It

Ol

bo

a pof los of lai

M (8

pu

T

la m

co

de

ar

u

01

le

01

pi ci ci fo

STANDARD MODELS

For

1000 or 2000 YARD MARKER USE **DESCRIPTION**

Frequency 30 mc Hermetically Sealed Case Attenuation 26 db into 1000 ohms Bandwidth 8 mc

Bliley Type SDL-15 (Double Ended)
Bliley Type SDL-16 (Single Ended Ringing Type)

CUSTOM BUILT

For

ANY DELAY INTERVAL IN RANGE 2-2500 MICROSECONDS

For technical details concerning both custom built and standard models ask for Bulletin =45-A.

FEATURES

Frequency Range 5 - 100 mc Low Attenuation Low Spurious Response Low Temperature Coefficient

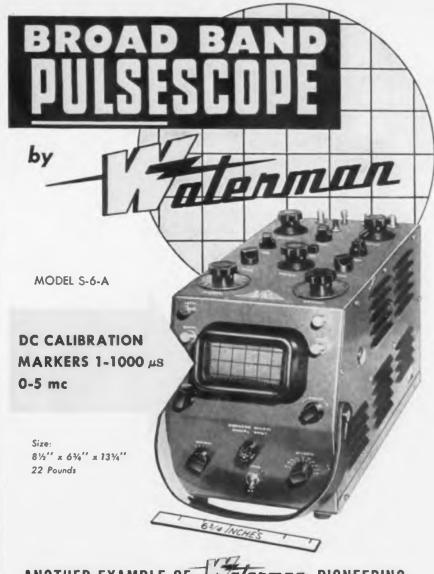
Wide Bandwidth

BLILEY ELECTRIC COMPANY

UNION STATION BLDG., ERIE, PENNSYLVANIA

MOST UNDERSTANDING WIFE of the year" citation went to Mrs. J. Stan Surber, whose husband spends 19 hours weekly on his amateur radio hobby, for helping her spouse to win GE's Edison Radio Amateur Award for outstanding public service

DELIGHTFUL NONSENSE is contained in humorous tale published in the Feb. 1954 Hoffman Transmitter. It is entitled "There's No Place Like Ohm . . . a fable for engineers in which the hero conquers a hardboiled erg and wins the coil." The story opens with, "Once upon a time when t equals zero, there lived in a small cavity in a dielectric medium, a poor struggling dipole by the name of Eddy Current. He was deeply in love with a beautiful coil by the name of Ann Ion. . . . However, her father, a rich magnet and power factor, had laid down a strict set of boundary conditions for her future husband.


(1

MOST RADIO AND TV stations (87%) do not pay newspapers for publishing their program logs, according to a recent NARTB study. Those not asked to pay are in population areas representing about 66 million people. Some 27% in areas containing 9 million people are being asked to pay, but only 13% are doing so. The 14% refusing to pay use their own promotional devices, and none reported dissatisfaction with their present methods.

PHONE-ANSWERING instrument called the "Metaphone," being made by The Bristol Co., permits a public utility employee to phone a remote, unattended reservoir to obtain data on storage conditions at any time. The reading is determined by the length of time a buzzer sounds, which is proportional to water height or gas pressure.

"ELECTRONIC TIN CUP" is what some people are calling the Chicago project to solicit funds for an educational TV station. It seems that contributors are being sold on the idea that the station would be used for charitable fund-raising campaigns such as March of Dimes and Red Cross.

(Continued on page 46)

ANOTHER EXAMPLE OF Walerman PIONEERING ...

The S-6-A BROAD BAND Scope is a PULSESCOPE in performance, POCKETSCOPE in size, and it compares more than favorably with oscilloscopes that are transportable, instead of portable. The instrument measures DC as well as AC signals. Unique DC calibration methods permit rapid measurements of either positive or negative AC or DC signals. The scope uses a 3XP1 tube with 1500 volts on the second anode, thus providing a brilliant trace for high speed transients even at low repetition rates. Vertical amplifier sensitivity of 0.2v rms/inch, and response to 5 mc within 3DB . . . pulse rise time of 0.1 μ s . . . internal intensity markers from 1 to 1000 μ s . repetitive or trigger sweep from 5 cycles to 500 KC with 5X sweep expansion...sweep, marker and DC calibrating voltage available externally. Size $8\frac{1}{2} \times 6\frac{3}{4} \times 13\frac{3}{4}$ in. Weight 22 lbs. Operates from 50 to 400 cycles at 115 volts AC.

WATERMAN PRODUCTS CO., INC.

PHILADELPHIA 25, PA. CABLE ADDRESS: POKETSCOPE

WATERMAN PRODUCTS INCLUDE

S-4-C SAR PULSESCOPE® S-5-A LAB PULSESCOPE S-6-A BROADBAND PULSESCOPE S-11-A INDUSTRIAL POCKETSCOPE S-12-B JANIZED RAKSCOPE® S-14-A HIGH GAIN POCKETSCOPE S-14-B WIDE BAND POCKETSCOPE S-15-A TWIN TUBE POCKETSCOPE RAYONIC® Cathode Ray Tubes and Other Associated Equipment

Toulu kuntional

TUBECHECKER by WESTON

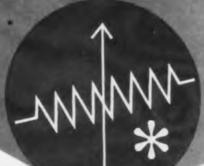
with new features for greater accuracy and timesaving facility in all testing

- Provides accurate meter measurement o leakage resistance as high as 5 megohms be tween tube elements.
- Permits high transconductance measurements, with ranges 3000/6000/12000/24000 micromhos.
- Multiple switching protects against early obsolescence, allows making any combination of tube connections.
- Element switching permits checking and comparing individual sections of twin-section tubes without changing selector switch.
- Only one socket for each type tube base eliminates plugging tubes into wrong sockets.
- Sockets for all type bases... including acorn and 7 and 8 pin subminiatures.
- 19 filament voltage settings—.65 to 115 volts. 5 plate voltages — 20 to 177 volts. A 45-volt source for testing subminiature types.
- Grid bias, plate voltage and meter sensitivity adjustable.
- Large, readable fan-shaped meter . . . new roll chart with complete, up-to-date data on all tubes.

pro

Complete data on the new Model 981 Type 2 available in bulletin form. Write...WESTON Electrical Instrument Corporation, 614 Frelinghuysen Avenue, Newark 5, New Jersey.

Available through leading distributors



WESTON Model 981 Type 2

WESTON Instruments

From "The House of Resistors" **

come ..

COST-REDUCING CONTROLS

So you must get cost down in designing that assembly? That's just the time to enlist Clarostat's cost-saving talents and facilities. The same superlative engineering and production skill that accounts for the finest quality in controls and resistors, is also available for designing and fabricating cost-reducing components. Three typical examples are presented herewith. These are standard items, promptly available in any quantities, at marked savings. And for any extraordinary requirements, special controls and resistors can be developed, tooled-up and produced.

0(

dy

nd

ts.

23

ilt

V-

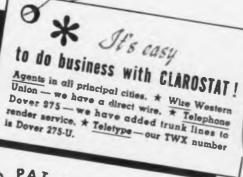
on

2

N

e-

y.


15

The original "Humdinger"
Series MH. Compact, rugged,
wire-wound control. Virtually
millions in use. Fibre base holds
resistance winding. Movable arm and
shaft, 1-watt. 2 to 1000 ohms.

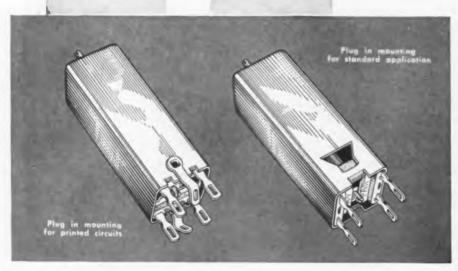
Latest "Humdinger" Series 39.

Metal-case mounted with rivets or screws. Mounting surface serves as cover. Semi-fixed setting by screwdriver slipped into rotor slot — no shaft. 2-wats. 4 to 5000 ohms.

Twist-Tab Mounted Series 47.
Eliminates usual bushing,
lockwasher, nut. Comparitionelement control. Metal or plastic
shaft, Plastic shaft has rear
slatted protrusion, therefore
adjustable from front or rear.

**Trade Mark

ECLAROSTATE STATES


CONTROLS and RESISTORS

CLAROSTAT MFG. CO., INC., DOVER, NEW HAMPSHIRE
In Canada: CANADIAN MARCONI CO., Ltd., Toronto, Ont.

another raypar first

for printed circuits

Compare these features . . .

- * Wide range of impedances to cover all applications
- * Excellent Stability & High Gain
- * Micrometer core adjustment
- * Compression moulded plastic base for auto radio and other high temperature applications
- * Individually tested and visually aligned and preset before shipping

Send us your inquiries for delivery and quotations. Request our free catalog and engineering handbook.

incorporated

7800 WEST ADDISON STREET

CHICAGO 34. ILLINOIS

SERVING AMERICA'S LEADING RADIO & TV MANUFACTURERS

(Continued from page 43)

DIVERSIFICATION is illustrated in the product line of Brown Instruments. Ninety-four years ago the company made a pyrometer. Today, 20 classes of products form the basis for more than 15,000 different applications covering 450 industries.

THUMBS UP view by CBS-TV President J. L. Van Volkenburg says that TV and education will become increasingly concerned with each other through the coming years, and what each will contribute to the other may prove quite as significant as any other development in our national life.

THUMBS DOWN view by Robert Hutchins of Univ. of Chicago says that astronomers have discovered a kind of moss on the planet Mars, and he takes this to be a race of humans reduced by TV to the life of the vegetable.

MOTHER EARTH is 4.5 billion years old, according to recent studies by Univ. of Chicago atomic scientists. This bears out speculations by astronomers. Previous findings by geologists had indicated that the earth was only a youthful 2.5 billion years old.

SERVICE DELUXE is provided by the telephone company in Vienna, Austria. A customer can learn who is singing that night at the opera, or when the next eclipse of the moon will occur. Sports enthusiasts can call for football and racing results. Musicians can hear the normal A sounded for them. Housewives are told the recipe of the day. Even the kiddies may phone for a story from "Aunt Fairytale."

JUST THE FACTS MA'AM—A number of years ago when IRC was in its infancy (and again during World War II), a few FBI agents came down to investigate. It seems that some overly anxious ladies had heard about this group, busily at work doing goodness knows what. With a name like International Resistance they feared that this was the outpost of bloody revolution. A quick look around convinced the FBI

(Continued on page 48)

V

ie h

ie at

VS.

я

ıd

ıs

ie

m

es

y

У

1e on

У a, is or on an ts.

A

re he

m

٠A

as ng

ıts

ns

ad

at

at. 0-

he

A BI

54

HERMETICALLY SEALED Germanium Diodes

COMPLETE METAL TO CERAMIC SEAL. Gas-tight ceramic cases with metalized ends permit solder seal to nickel pins.

MOISTURE PROOF. These new diodes exceed the requirements of JAN humidity specifications.

REQUIRED ELECTRICAL PROPERTIES. More than two years of development were necessary to perfect this combination of hermetic seal and superior performance.

MECHANICAL STABILITY. Platinum-rhuthenium whisker is welded to the germanium pellet.

LONG-LIFE. The elimination of moisture effects adds years to the life of your equipment!

Production quantities of hermetically sealed types 1N69, 1N70, and 1N81 are now available. Hermetically sealed commercial types are expected to be ready in a few months. Be sure to include them in your design planning now! For complete information write: General Electric Company, Section 4844, Electronics Park, Syracuse, New York.

You can put your confidence in_

GENERAL SA

This advertisement will appear April, 1954, in Tele-Tech

A. Ceramic Case

B. Solder

C. Germanium Pellet

D. Weld

E. Platinum-Rhuthenium Whisker

F Wold

G. Solder

H. Nickel Pin

I. Weld

J. Leaded Copper Clad Wire

MAKIMUM RATINGS (A) 25°C)

Hermetically Sealed DIODES	1N69	1N70	1N81"
Peak Inverse Voltage	75	125	50
Continuous Operating Inverse Voltage	60	100	40
Min. Forward Current (MA) at + 1V	5.0	3.0	3.0
Max. Inv. Current 40)	850	300	10
At — 10V AV Rectified	50	25	10
Current (MA)	40	30	30
Peak Rectified Current (MA)	125	90	90
Surge Current (MA)	400	350	350

NEWS FROM OUR ADVANCED DEVELOPMENT LABORATORIES

• A four-terminal junction transistor has been developed having a region of negative output impedance. This switching device is unique in that two coincident trigger signals are required to turn it on. Thus two gating functions may be accomplished by a single transistor.

LICENSED UNDER PATENTS OF THE BELL SYSTEM

(Continued from page 46)

that there wasn't a trace of the sulversive present. This story is tru Not even the names have bee changed to protect the innocent-

WHO WILL BUY COLOR TV? recent Emerson survey indicates that consumer interest is tied up with individual income. The breakdown

42% -

will buy color TV when cost is no high than \$500. 176% of this group were in the \$7,500 to \$15,000.

S7,500 to \$15,000.

Will buy color TV when the price is the higher than \$400 and the sets have at lect 19-in. screens. 198% of this group were in the \$5,000 to \$7,500 bracket).

Will buy color TV only when sets become available at less than \$300 with 21-in screens. (The members of this group were almost entirely in the under-\$5,000 bracket.

S5,000 bracket. The typical response was, "We will get the color programs in black-and-white on regular TV sets."

THE ONLY TIME you ever succeed when you are an inventor is the last time you try So we have to teach people to fail intelligently." Charles F. Kettering.

Television, A World Survey

Edited and prepared by the United Nations Edu-cational, Scientific and Cultural Organization Published 1953 by Columbia University Press 2690 Broadsoay, New York 27, N. Y. 181 pages. Price \$1.75.

Here is one of the most comprehensive global examinations of the TV medium. It is based on data available during the first quarter of 1953, so it does not account for expansion during the past year. Nevertheless, its detailed coverage of 45 countries and territories as well as the United Nations, make it an interesting and authoritative source book worthy of favorable recommendation.

The worldwide status of TV is summarized in the introductory chapter of "The Structure of Television." This is followed by specific information about each country, including history of TV development, legal and organizational structure, source of revenue and advertising policy, and standards and technical facilities. Also, information is presented on programming, number and types of receivers, license fees. production of equipment, and professional training.

(Continued on page 60)

hal rith. W

ucthe to

184

ble

» if

ing

led ies.

9 il

rce 2n-

m-

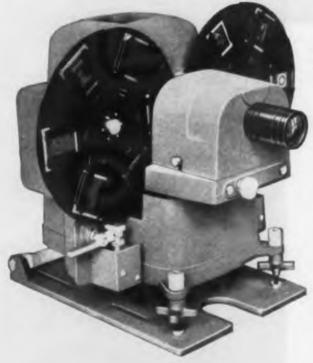
OD is

out TV

na

ad-

ind


i is

ber :es.

es-

GRAY TELOJECTOR

STAR PERFORMER ...

Complete Projection System

The New Gray 3B Telojector (2" x 2" Transparency Slide Projector) utilizes a single lens —permits superposing of two images on an optical axis . . . eliminates any need for external registration adjustment. The improved unit provides positive focusing of images on the camera tube with an uninterrupted sequence of slides for television commercials, news flashes and photographs or station and sponsors' identification.

for TV commercials

Precision Projection BETTER Commercials at LOWER COST

Yes . . . now you can use better 2" x 2" transparencies in uninterrupted sequence at lower cost. Important too, Gray Telojector is low in initial cost . . . ideal for budget-minded program directors. Telojector is compact, light weight, troublefree. Two turrets take up to 12 slides at one loading. Additional loaded turrets are substituted in a matter of a few seconds . . . providing unlimited continual sequence. Controlled locally at the unit or remotely at the master video console. Also, can be used with the Gray 35B Manual Control Box to produce superposition, laps, fades and slide changes at any desired rate.

YOU ARE INVITED:

See the NEW, SINGLE lens Gray Telojector and complete line of TV-Broadcasting Equipment at Booth 297, I.R.E. Show, March 22nd-25th, Kingsbridge Armary, New York. If unable to visit I.R.E. Show write for illustrated, detailed information on the NEW, SINGLE LENS GRAY TELOJECTOR.

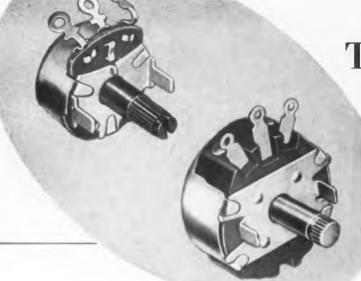
is a word ADLAKE engineers don't understand!

Often, a problem that "can't be solved" is merely one which hasn't yet been brought to the right people. When such problems come in to ADLAKE relay engineers...problems requiring special relays for unusual installations...they promptly drop the "can't". For, if there is no ADLAKE Relay to answer a specific need, one will be designed and manufactured to fill it.

ADLAKE Morcury Relays have proved their ability to stand up under the most adverse conditions of temperature and moisture. Their time delay characteristics are fixed and non-adjustable...normal line voltage fluctuations or ambient temperatures from -38° to 200° F. have no material effect on these characteristics.

Yes, in chick incubators or diesel locomotives... wherever sensititivy and dependability are required...ADLAKE Relays can be counted on. Send for complete Relay catalog today...The Adams & Westlake Company, 1175 N. Michigan, Elkhart, Indiana. In Canada, write PowerLite Devices Ltd., of Toronto.

EVERY ADLAKE RELAY IS TESTED
—AND GUARANTEED
—TO MEET SPECIFICATIONS!


Type 1045 Quick-Acting Relay contact either normally open or normally closed.

THE Adams & Westlake COMPANY ALL

Established 1857 • ELKHART, INDIANA • New York • Chicago Manufacturers of ADLAKE Hermetically Sealed Mercury Relays

These tab-mounted variable controls can trim your assembly costs

Looking for cost-cutting ideas? Mallory bushingless tab-mounted controls, either carbon or wire-wound, may be just what you need. They save you money in several ways:

Easier mounting:

just twist the tabs, and the control is installed on the chassis. Extra built-in stabilizing points increase rigidity of mounting . . . prevent rocking.

No hardware needed: you save the cost of a lock washer and nut, besides obtaining a less expensive control.

Ideal for service adjustments in television receivers, these controls afford the high standards of Mallory performance at economical price. Both carbon and wire-wound types are available in choice of ratings, with or without attached switch. The carbon controls offer additional economies: an optional phenolic shaft at lower cost than steel, and a rotational stop that gives the effect of a fixed and variable resistor in a single unit.

For complete information, write today for the new Mallory Technical Bulletin.

Specifications:

Carbon Controls

Wire-Wound Controls

Resistance: 200 ohms to 10 megohms

3 to 15,000 ohms

Tolerance: +30% standard: ±20% available

+10% (closer tolerance on request)

Wattage: Linear: 12 watt

2 watts

Size:

Other tapers: 14 watt

119% '' dia., 5/8"-.640" max.

Tapers: Linear, logarithmic. reverse logarithmic

Linear (standard): others on request

Steel or phenolic

Shaft: Mounting:

Two mounting lugs on 316" radius

Parts distributors in all major cities stock Mallory standard components for your convenience.

Serving Industry with These Products:

Expect more...

from MALLORY

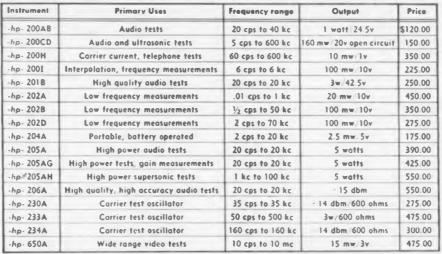
Get more

Electromechanical—Resistors • Switches • Television Tuners • Vibrators Electrochemical — Capacitors • Rectifiers • Mercury Batteries Metallurgical—Contacts • Special Metals and Ceramics • Welding Materials

ELECTRONIC TEST INSTRUMENTS

TEST VOLTAGE PROBLEMS 1/100 cps to 10 mc?

Hewlett-Packard has 17 different oscillator models. Some are highly specialized, others are all-purpose instruments. Almost certainly, there's a model to meet your exact requirements. All are precision instruments of highest quality. All embody the famous RC circuit pioneered by -bp- Check the table below for the oscillator that can help you most. Then write us for complete operating and application details.


-hp- 200CD AUDIO OSCILLATOR

World standard for electronic or electrical measurements, now redesigned with wider range, lighter weight, smaller size. Use for any lab, field or production problem in subaudio, audio, telephony, carrier, supersonic, telemetering or rf measurement fields. Highest stability, low distortion, constant output, no zero set while operating. With carrying strap for bench or portable use; or for tack mounting.

-hp- 204A Battery-Operated Oscillator

Precision instrument for measurements 2 cps to 20 kc where ac power is not available. Compact, light weight, weather-proofedextra rugged construction for field duty. Frequencies set and read directly on large dial. Particularly useful for telephone or remote broadcast line checks, strain gauge applications, telemetering and geophysical measurements. Provides completely humfree signal. Operates from flashlight and 45-volt batteries. Output stable and constant throughout range.

-hp- 650A Resistance-Tuned Oscillator

Highly stable, wide band (10 cps to 10 mc) oscillator particularly useful for testing television amplifiers, receiver alignment, bridge or carrier circuits, wide band systems; determining tuned circuit response. Operates independently of line or tube changes, requires no zero setting. Output flat within 1 db throughout range, monitored with VTVM. 60 db attenuator adjusts in 10 db steps.

-hp- 202A Low Frequency Function Generator

Compact, convenient, all-purpose source of transient-free voltages between 1/100 cps and 1 kc. Provides distortion-free signals for vibration studies, servo applications, medical and geophysical work and other subsonic problems. Generates sine, square or triangular waves. Output 10 v RMS, balanced or single ended, 1% distortion, constant within 0.2 db.

Data subject to change uithout notice. Prices f.o.b. factory

HEWLETT-PACKARD COMPANY

2711T PAGE MILL ROAD . PALO ALTO, CALIFORNIA, U.S.A.
SALES REPRESENTATIVES IN PRINCIPAL CITIES

Export: Frazar & Hansen, Ltd., New York City, San Francisco, Los Angeles

Instruments for Complete Coverage

BULB MAKING MACHINE

GLASS TUBING CUTTING MACHINE VERTICAL TYPE

LEAD WIRE WELDING MACHINE

BUTTON STEM MACHINE

GLASS TUBING CUTTING MACHINE HORIZONTAL TYPE

AUTOMATIC EXHAUST MACHINE

Built into the automatic machinery shown on this page is knowledge of every phase of electronic tube production...

Kahle's "6 Wonders" are engineered to mass-manufacture Sub Miniature Tubes so that the burden of "knowing how" to make the product falls upon the machinery itself instead of the manufacturer. Forty-six years of intimate contact with the design and construction of custom machinery together with a long history of pioneering successes in electronics and allied industries, produce the "know-how" in such combinations of machines as the models depicted above. Kahle executives have vast experience in the actual manufacturing of the end products which such machinery produces. This cumulative knowledge is built into the machinery to solve bottlenecks and gives a smooth uninterrupted flow of the finished products.

"Built-in know how" is what makes Kahle's name the password in the electronics and glass industries where production difficulties can be overcome with custom machinery.

(ONTI

Call on Kahle and learn how you can benefit from the company which enjoys the respect of the industry's leaders.

anhle

ENGINEERING COMPANY 1313 SEVENTH STREET . NORTH BERGEN, N. J.

CROWAVE **Complete coverage of** ■ the range 950-10,800 mcs /sec.

RATOR

with Polarad single dial operation

Four new Microwave Signal Generators covering the range 950-10,800 mcs/sec. All with famous Polarad single dial operation. Each provides the maximum working range possible in

one compact signal generator. And, additional Polarad Signal Generators are available to cover 12.8 to 39.7 kmc.

These features on all MSG units assure fast and simple operation: direct reading, single dial frequency control that tracks reflector voltages automatically . . . direct reading attenuator dial . . . conveniently placed controls, in logical sequence . . . high visibility on the face of each instrument.

Polarad Signal Generators are built to the same high standards required for military equipment. They are practical for the factory assembly line-engineered ventilation assures continuous and stable operation of all instrument functions. Components are readily accessible for easy maintenance. And laboratory accuracy is guaranteed under the most rigorous operating conditions.

Write directly to Polarad or your nearest Polarad representative for details.

MSG-1	• • •	MSG-3	
950-2400 MCS/sec.	2150-4600 MCS/sec.	4450-8000 MCS/sec.	6950-10,800 MCS/sec.
	(Frequency set by means of a	single directly calibrated control)
±1%	<u>+</u> 1%	±1%	±1%
1 MW	1 MW	.2 MW	.2 MW
120 db	120 db	120 db	120 db
±2 db	±2 db	±2 db	± 2 db
50 ohms	50 ohms	50 ohms	50 ohms
115V±10% 60 cps	115V ± 10% 60 cps	115V±10% 50-1000 cps	115V±10% 50-1000 cps
3 to 300 microsecor 40 to 4000 pulses p Internal or external,	er second		
40 to 4000 cps	, sine wave or pulse ±2.5 MCS	±6 MCS	±6 MCS
Positive or Negative 40 to 4000 pulses 0.5 to 2500 microse (For multiple pulses	per second		
Positive, delayed & 40 to 4000 pps Greater than 25 vol	ts		
17" long x 13¼" hi	gh x 151/2" deep 60 lbs.	17 long x 15 high x	191/2" deep 100 lbs.

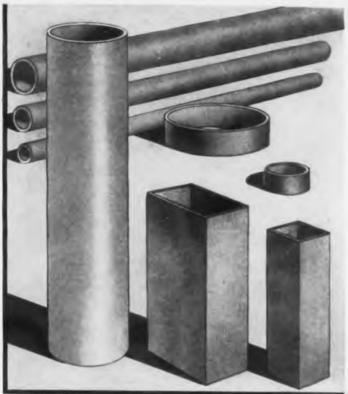
Frequency Range Frequency Accuracy Power Output Attenuator Range Attenuator Accuracy Output Impedance Input Power Internal Pulse Modulation Pulse Width Delay Synchronization Internal FM: Type Rate Synchronization Frequency Deviation **External Pulse Modulation: Polarity** Pulse width Pulse separation Output Synchronizing Pulses: Polarity Voltage Rise time Size Approx. weight

> Also available-MSG 4A: 6,950-11,500 MCS/sec. ELECTRONICS CORPORATION 100 METROPOLITAN AVENUE,

"THE FINEST SIGNAL GENERATORS OF THEIR KIND"

BROOKLYN 11, NEW YORK

REPRESENTATIVES Albuquerque - Arnprior. Canada - Atlanta - Boston - Chicago - Cleveland - Fort Worth - Kansas City - Les Angeles - New York - Philadelphia - San Francisco - Seattle - St. Paul - Syracuse - Washington, D. C.


Here's a brand new, extremely efficient Crystal Diode Holder designed for you by Sylvania.

The contacts retain diodes with terminal leads ranging from .078 to .125 diameter, with ease of insertion and withdrawal. The centerline of retention is specially located at sufficient distance from the surface of the mounting plate to allow installation of large diam-

eter Crystal Diodes. Mounting plate is made of laminated phenolic and the contacts can be furnished in either phosphor bronze or brass with silver plating. Eyelets are made of nickelplated brass.

For detailed specification sheets concerning this improved diode holder or any other Sylvania part write to Sylvania today!

PROVEN

IN HUNDREDS OF CRITICAL APPLICATIONS EVERY DAY

QUALITY

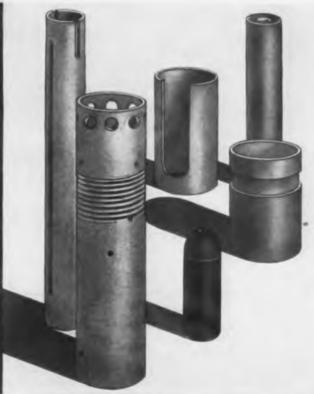
TO MEET UNLIMITED NEW APPLICATIONS

CLEVELITE*

LAMINATED PHENOLIC TUBING

Moisture Resistant
Mechanically Strong
High Dielectric Strength
Dimensional Stability
Low Loss Factor

USE CLEVELITE


to make a good product better . . . and at lower costs!

SERVICE

Our Design and Production Departments are geared to customers' needs in every way. Deliveries are prompt!

WRITE to The Cleveland Container Company plant nearest you for a copy of our CLEVELITE brochure . . . of value to every Engineering Department.

* Reg. U. S. Pat. Off

WHY PAY MORE?
For Good Quality
call Cleveland!

The CLEVELAND CONTAINER CONTAINER CONTAINER CONTAINER CONTAINER CONTAINER

PLANTS AND SALES OFFICES of Chicago, Dairoll, Memphis, Plymouth, Wisc., Oydensburg, N. Y., Jamesburg, N. ABRASIVE DIVISION of Cleveland, Ohio
CANADIAN PLANT: The Cleveland Container, Canada, I.M., Procest, Ontario

REPRESENTATIVES

NEW YORK AREA R.T. MURRAY, 604 CENTRAL AVE., EAST ORANGE, N. J.
NEW ENGLAND R. S. PETTOREW & CO., 62 LA SALE RD., WEST HARTFORD, CONN.
CHICAGO AREA PLASTIC TUBING SALES, 5215 N. RAVENSWOOD AVE., CHICAGO
WEST COAST MY. M. COCHRANE CO., 408 S. ALVARADO ST., LOS ANGELES

PERMANENT MAGNETS and ASSEMBLIES for Magnetrons and Traveling Wave Tubes

The group of magnets illustrated above, weighing from a fraction of a pound up to 75 pounds, are indicative of the wide range of Arnold production in this field. We can supply these permanent magnets in any size or shape you may need, with die-cast or sand-cast aluminum jackets, Celastic covers, etc. Complete assemblies may be supplied with Permendur, steel or aluminum bases, inserts and keepers as specified . . . magnetized and stabilized as desired. • Let Arnold handle your magnetron and traveling wave tube permanent magnet requirements.

Made to your Specifications

OR COATING REQUIRED

* We'll welcome your inquiries

THE ARNOLD ENGINEERING COMPANY

General Office & Plant: Marengo, Illinois

DISTRICT SALES OFFICES . . . New York: 350 Fifth Ave.

Los Angeles: 3450 Wilshire Blvd. Boston: 200 Berkeley St.

DUMONT

COMMUNICATIONS

like the proverbial distance between two points...

The shortest distance between two points is a straight line — and the best way to bridge that distance is via electronics, for both sight and sound.

The greatest name in *modern electronics* now brings you two-way mobile communications equipment that is scheduled to set new standards of performance, reliability, and value. Du Mont, manufacturers of fine electronic equipment, are now setting the stage for the introduction of mobile communication products designed to fill your needs better.

DU MONT communications equipment includes:

MOBILE TRANSMITTERS • RECEIVERS • FIXED STATION EQUIPMENT •
REMOTE CONTROL APPARATUS • RELAY CONTROL EQUIPMENT—
POINT TO POINT • ALL ALLIED ACCESSORIES FOR EMERGENCY
COMMUNICATION SERVICES.

MOBILE COMMUNICATIONS DEPARTMENT ALLEN B. DUMONT LABORATORIES, INC. Clifton. New Jersey another great line of products joins the Du Mont line of quality

research

cathode-ray

television broadcasting

> television receivers

television transmitters

cathode-ray instruments

covers are used as component parts them being:

Stonized spiral phenolic coil forms, of many products of the electronics lug collars, bushings, and printed and electrical industries, among

R.F., I.F., AND IISCILLATOR, AND OTHER COILS FOR RADIO AND TY PERMEABILITY TUNERS TUBULAR CONDENSERS TRANSFORMER COILS - ELECTRIC MOTORS . SELENIUM RECTIFIERS . RELAYS . TIME CONTROL ASSEMBLIES

Why Don't You Write Us?

WE HAVE a lot to offer you, particularly if you manufacture any of the items or related products listed on this page.

Stone, alone in the paper tube field, can place at your service the experience gained from an industrial heritage of 126 years. Down through the years, we have been able to improve our accuracy of manufacturing and our mass production techniques to such a point that we can assure you quality products at low cost. Many hundreds of the country's leading manufacturer's know this to be

Small diameter spiral wound insulating tubing from 3/64 to 1" ID is our specialty although the larger sizes are available. All Stone tubes are custom-made despite the fact

they are mass produced and can be furnished in hi-dielectric kraft, fish paper, and plastic films in various wall thicknesses and lengths. They can also be formed, notched, punched, printed, dipped or impregnated with a variety of waxes and resins.

Why don't you write us or better still, get in touch with our nearest representative? Stone makes many thousands of different items and we are sure that we can either adapt one of the products to your own requirements ... or develop one specifically for you. You will be certain to find an organization ready and able to offer you unsurpassed service . . . the kind that has made Stone one of the world's largest small diameter paper tube manufacturers.

STONE PAPER TUBE COMPANY

INCORPORATED

900-922 Franklin Street, N. E., Washington 17, D. C.

(Continued from page 48)

Theory and Design of Electron Beams (2nd Ed.)

J. R. Pierce, Published 1954 by D. Van Nostrand Co., Inc., 250 Fourth Ave., New York 3, N. Y. 222 pages, Price \$4.50.

This valuable addition to the growing list of technical books in the Bell Laboratories Series includes the most important facets of electron flow as applied to electron tubes. In a way, it is the minimum amount of information that an advanced engineer or physicist must have for a really good understanding of electron flow focusing in devices other than electron microscopes and image tubes. In the author's own words, "No attempt is made to deal with problems of experimental technique; concerning these I offer nothing but sympathy."

The first seven chapters cover the basic principles and equations concerning electron beams, and go into magnetic and electric lenses. The next three chapters include the effect of thermal velocities, space charge in electron beams, and electron guns. The eleventh chapter, which was not in the first edition, discusses periodic focusing fields and their advantages over magnetic or electric fields which do not vary with distance. Considering the complexity of the subject, the author has done an excellent job in making this volume easily readable and highly useful. AJF

di

fo

at

D

di

ra

A

th

p

n

to

п

a

BOOKS RECEIVED

Radio Amateur's Handbook (31st Ed.)

Edited and published 1954 by the American Radia Relay League, Inc., West Hartford T. Conn. 800 pages. Price \$3 in U.S., \$3.50 in U.S. Posessions and Canada, \$4 elsewhere. Book includes radio fundamentals, tube charts. and wealth of practical design and operating information. Among topics covered are semiconductors, UHF, single-sideband, and superselectivity.

Magnetic Fields of Cylindrical and Annular Coils

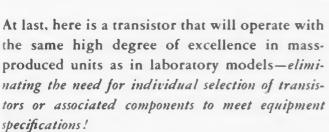
Prepared by National Bureau of Standards. Published 1953 by Government Printing Office. Washington 25, D.C. 29 pages. Price \$.25. In terms of Legendre functions which involve ratios of significant dimensions of colls, data provides basis for computing magnetic field itself in full detail, point by point. No formulas for this purpose have been readily available hitherto.

Scientific American Reader

Edited by staff of Scientific American. Published 1954 by Simon & Schuster, 630 Fifth Ave., New York 20, N. 1, 596 pages. Price 50. Selected articles provide comprehensive pic-ture of entire world of science. Informative section of book discusses computers, business machines and automation.

Investigation of Electron Tube Reliability in Military Applications

Prepared and published 1954 by Aeronautical Radio, Inc., 1523 L St. N.W. Washington 5, D.C. (Refer to L. E. Davis). 97 pages. Price 3.50. Results of tube surveillance program conducted for Army, Navy, and Air Force under Bureau of Ships contract. Evaluation of factors affecting reliability discussed.


PHILCO ANNOUNCES

TRANSISTOR

New Diffused Alloy Junction Type Has Amazing Advantages...

Philco now presents to industry a new diffused alloy junction transistor with uniformity of characteristics never before attained in production.

Design engineers will welcome the predictable performance of circuits incorporating this superior transistor.

Now in production at Philco, this new transistor meets the high standards required for production applications. It is one of the smallest transistors

- Minimum size.
- Hermetically sealed, resistance-welded metal case . . . leads sealed in glass.

ever produced. Leads are fused in glass—the entire transistor is enclosed in a metal envelope—an instantaneous resistance weld hermetically seals the complete unit. Advanced processing techniques and new mechanical design features assure excellent characteristics and uniformity throughout the life of the transistor. Phone, write or wire Philco today for descriptive literature and specifications on this revolutionary transistor.

- Uniform characteristics.
- Designed to meet typical military environmental conditions.

PHILCO CORPORATION

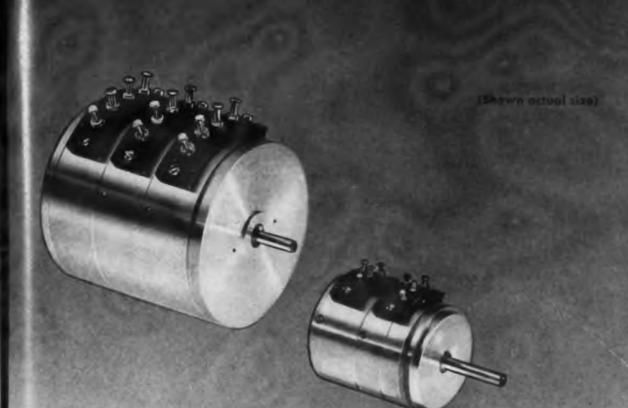
GOVERNMENT & INDUSTRIAL DIVISION . PHILADELPHIA 44, PA.

5 More reasons why FAIRCHILD can meet

TYPE 753 – Sine-cosine potentiometer – Full sine-cosine function without mechanical cams and linkages – can be ganged up to 6 cups. 20,000 ohms per quadrant; linearity, ±0.5% peak-to-peak; 3" diameter, 11/4" long from front of servo flange to rear of cup. Also available as straight sine function.

TYPE 745 – 10-turn helical potentiom ter – Meets rigid government requirements for humidity, salt spray, altitude, temperature vibration, shock, sand, dust and fungus resistance. High electrical accuracy (linea ity $\pm 0.025\%$); resistance range 100 to 300,000 ohms. 2" diameter, $2\sqrt[5]{2}$ " long from from of servo flange to end of case. Mechanical and electrical rotation, 3600° ($+2^{\circ}$ – 0°).

chile


prob

Corp

See the complete Fairchild line of puts at the IRE Show, Booth 648, Radio Road and Circuits Avenue.

TYPE 771—The FilmPot, metallic film potentiometer—Infinite resolution, high temperature operation (225°C). High wattage dissipation and exceedingly wide resistance range (100 to 200,000 ohms). Only ¾" in diameter and ½" long. Resistance element is precious metal deposited on an inorganic base. Available with servo flange or threaded bushing mounting.

POTENTION ETERS

all your precision potentiometer needs

neter

ts for

ature,

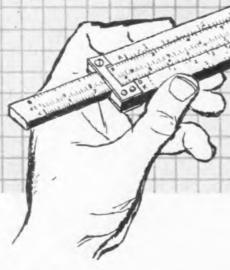
is re-

ea ity

0,100

n of

TYPE 754-2" linear potentiometer-Resistance range from 800 ohms to 100,000 ohms. High linearity (±0.15% standard). Internal clamp rings permit ganging up to 8 cups on single shaft without increasing overall diameter. AIA standard 2" servo mount. Depth is 1" with .594" added for each cup section ganged. Gold-plated terminals are easier to solder and have better resistance to corrosion.


TYPE 741-11/8" linear potentiometer—Internal clamp rings permit ganging up to 5 cups on a single shaft without increasing the over-all diameter. Resistance range 500 to 25,000 ohms; linearity ±0.5% standard. Electrical angle 350°. Only 11/8" in diameter and 18" long; starting torque is 0.25 oz.-in. The simplified slip ring construction and a one-piece paliney wiper give longer life and lower noise.

● Available immediately in sample quantities. Look to Fairchild for assistance in solving all your precision potentiometer problems. Fairchild has, or can make, a potentiometer to fit any requirement. For information write: Fairchild Camera & Instrument Corp., Potentiometer Division, 225 Park Avenue, Hicksville, L. I., N. Y., Dept. 140-45EI.

engineers are critical people

We <u>know</u>, because we're engineers, too

Radio and TV stations, recording studios, commercial and industrial film studios, testing laboratories, program production organizations and a host of others have long needed a thoroughly professional, well designed, easily maintained tape recorder.

More than a year ago, Presto's top engineers were assigned to the development of such a recorder. Months later a test model was completed which not only met these specifications, but embodied a completely new principle of recorder design . . . unitized construction; the entire capstan drive is a separate, easily removed unit.

The instrument was designated "Model RC-11," and then a series of rigorous tests were begun. The RC-11 was run continuously for hours at a time under the most adverse conditions. These tests resulted in further improvements.

Finally, when we were satisfied that this was the finest tape recorder of its type that could be built, we tooled up and put it into production.

By reputation engineers are the most critical people on earth. (We know, because we're engineers, too.) And, some of the most qualified recording engineers who have seen and operated the RC-11 share one opinion . . . that here is the finest, easiest to operate, best performing tape recorder available today.

Export Division:
Canadian Division:

25 Warren Street, New York 7, N. Y. Walter P. Downs, Dominion Square Bldg., Montreal

PRESTO RC-11 TAPE RECORDER

IN CONSOLE WITH 900-A3
AMPLIFIER

- Self-contained Capstan Drive
 Unit 3 motor drive
- Three magnetic heads in metal enclosure.
- Push button function switches.
- Reel capacity to 1012" diameter.
- Response: 50 to 15,000 cycles
 2 db.
- Flutter: less than 11/2% at 15"/sec.
- Signal to noise: 55 db, at 2% distortion.

WORLD'S LARGEST MANUFACTURER OF PRECISION RECORDING EQUIPMENT AND DISC.

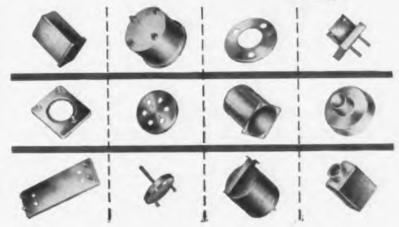
PROPERTY OF THE PROPERTY OF T

CON IZEC hun are

you

pred

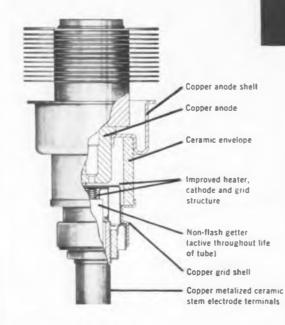
Can


TELE

Under pressure for

"SPECIALS" . . . ODD SHAPES AND SIZES AT MASS PRODUCTION PRICES. Hudson standardized production methods make it possible to solve even unusual closure problems quickly, from stock. The Hudson line includes hundreds of stock closures available with a choice of optional features. All parts are precision fabricated from selected metal stocks. Cans, covers and quality metal stampings are available in brass, copper, aluminum and steel.

CONSULT THE HUDSON CATALOG OF STANDARD-IZED PARTS! Contains complete specifications on hundreds of different standard catalog items. All are available for fast delivery. Call or write for your copy, now!


HUDSON TOOL AND DIE COMPANY · INC

118-122 SO. FOURTEENTH STREET, NEWARK 7, NEW JERSEY

EIMAC announces

the 2C39B

- Ruggedness of ceramic
- High conductivity of copper

TYPICAL OPERATION

(RF Oscillator 2500mc)

D-C Plate Voltage	•		900v
D-C Grid Voltage .	٠		-22v
D-C Plate Current		0	90ma
D-C Grid Current			27ms
Heaful Power Outpu	. 6		15.

he Eimac 2C 39B, unilaterally interchangeable with the 2C 39A, is a new tube type with advancements that provide longer life, more useful power output, efficiency and stability, and greater immunity to thermal and physical shock. Rugged, low loss ceramic replaces glass throughout the Eimac 2C 39B and highly conductive, heat dissipating copper is utilized in the anode, anode shell and grid shell. Use of ceramic and copper, an exclusive Eimac feature, allows higher operating temperatures and minimizes RF losses. Electrode terminals are formed in the stem by copper metalizing the ceramic stem surface. All external contact surfaces are silver-plated. New heater, cathode and grid structures, plus a non-flash active getter, add to long life and stability. These features, born out of Eimac experience over the past few years in research and production of glass and ceramic 2C 39As, make the Eimac 2C 39B an incomparable planar-type 100 watt triode for UHF operation through 2500mc.

● Eimac, one of the world's largest designers and manufactured of electron-power tubes, presents its 20th Anniversary display at the March IRE show—booths 549-551

EITEL-MCCULLOUGH, INC.

ELECTRON-POWER TUBES

Photocircuits

PRINTED-CIRCUIT

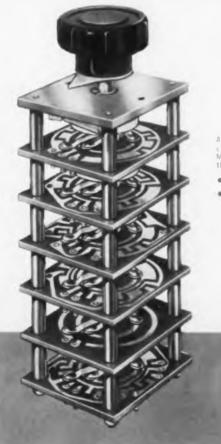
SWITCH PLATES

COMMUTATOR DISCS

and associated

ELECTRO-MECHANICAL ASSEMBLIES

(to your specifications)


We can supply either the fabricated plates and discs or complete electromechanical assemblies.

cluren

Photo Courtesy of Link Aviation Corporation Photocircuits has made many important advances in the art of printed circuitry and now offers its skill and experience in the design, engineering and production of these components and "packaged" electro-mechanical assemblies to effect great improvement and cost reduction of your end products.

COST ADVANTAGE EXPERIENCED!

In the case of a 6-deck, 27-position decade switch assembly using raised silver-plated contacts on one side with inter-connecting conductor pattern on second, and terminal lugs at pattern terminations for external wiring, a cost reduction of approximately 40% has been realized.

These are some of their ADVANTAGES:

FLUSH SURFACE. For long wearing "bounceless" rotary action.

NICKEL-RHODIUM Plating. For smooth, hard, long life contacts. (Silver-Rhodium, Silver and Gold plating available as needed.)

COMPOSITE LAMINATE. Of appropriate plastic core to insure flatness and good mechanical strength. IMPORTANT! Switch plates and commutator discs can be backed with either aluminum or steel for rigidity and strict flatness.

LONG LIFE. With proper combination of laminates, brush pressures and contact materials, satisfactory, life experiences from 10 million to 100 million revolutions have been reported.

APPLICATIONS where Photocitcuits' SWITCH PLATES and COM-MUTATOR DISCS have proved their value

- BINARY CONVERTERS
- · STEPPING SWITCHES
- . SHAFT READ OUT DEVICES
- PROGRAMMING & TIMING SWITCHES
- . TELEMETERING SWITCHES
- . CODE DISCS

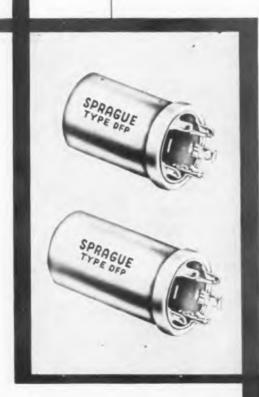
This Engineering Brochure FREE on request.

For full information call or write

Marituis

CORPORATION

Planners in Cost-Cutting Frinted Circuit Techniques


Dept. TT4, GLEN COVE, NEW YORK
Glen Cove 4-4000 Flushing 3-5050

BOSTON: 25 Huntington Ave. • COpley 6-7705 CNICAGO: 4258 W. Irving Park Rd. • PAlisades 5-1170 PHILADELPHIA: 1531 Spruce St. • Kingsley 5-1205 ROCHESTER, N. Y.: 3 Juniper St. • Culver 7635 LOS ANGELES: 68071/2 Metrose Ave. • Webster 3-7276
ROYAL OAK, MICN.: 4512 M. Woodward Ave. • Liberty
CLEVELAND: Fidelity Bidg. • PRospect 1-1552
TORONTO, CAM.: 290 Lawrence Ave., W. • ORchard 3003

DEPENDABILITY

is why Sprague
Type DFP Twist-Loks*
are the preferred

ELECTROLYTIC CAPACITORS

Leading television set makers rely on Sprague as their major source for electrolytic capacitors.

Stability under maximum operating conditions plus outstandingly 1-o-n-g service life are the engineering reasons for this preference.

From the business standpoint, it makes good sense to deal with a supplier whose quality of product is uniformly excellent and who has the largest production facilities in the industry.

And now a new plant is being completed to permit Sprague to accept an even larger portion of your requirements.

SPRAGUE ELECTRIC COMPANY
233 Marshall St., North Adams, Massachusetts

*Trademark

Sprague, on request, will provide you with complete application engineering service for optimum results in the design of equipment using electrolytic capacitors. SPRAGUE

WORLD'S LARGEST CAPACITOR MANUFACTURER

TELE-TECH

& Electronic Industries

O. H. CALDWELL, Editorial Consultant * M. CLEMENTS, Publisher * 480 Lexington Ave., New York 17, N. Y.

Electronic Engineering Associations and You

As we go to press with this issue, the Institute of Radio Engineers starts its 42nd national convention in New York City. The growth of this organization which is dedicated to the furtherance and advancement of electronic engineering in all its phases, is truly symbolic of the rapid growth of our industries. Organized in 1912 and boasting some 46 members in that year, the society's primary interests then focused on radio and electrical communications. Now with some 37,000 members, the scope of activity has broadened tremendously and we have, besides the main membership body, some twenty one major professional groups interested in as many specialized fields of electronic engineering. (See page 101 for a listing of these groups and a capsule summary of their principal objectives.) We are proud to salute the achievements of the Institute of Radio Engineers and its members on this occasion.

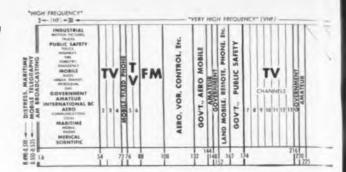
Associations Support Our Industry

On this occasion also, we should like to call attention to the nearly seventy other societies and organizations which, through the years, have come to play very important direct and indirect roles in our activities. As a second section to this issue we have listed these groups in the first of our Electronic Industries Reference Library Series. We are certain that each of our readers, in reviewing this section, will find one or more organizations that will be of especial direct interest.

It is significant to note that the great forward steps taken by all of these organizations toward establishing workable technical standards and smooth industry operating procedures comes in large measure from individuals who give willingly and freely of their time and energies. Many of these individuals are assisted by their business organizations who, in recognizing the need for such groups, encourage the engineer members of their staffs to take active parts. In many instances, these companies also underwrite the dues,

traveling expenses and the time from the regular work week necessary for their participants.

Engineering Associations Must Grow


We hope that these engineering associations will continue to grow and we hope too that many more engineers as well as their employing organizations will see the desirability of taking active parts in those groups that are of especial moment to them. For it is through the efforts of these groups that we can formulate coordinated means to: a) overcome industry adjustments or recessions as they occur; b) contribute to our government in times of need the best electronic engineering brains in the world producing the finest electronic weapons; c) perpetuate our industries by attracting and making it possible for the creative members of our younger generations to find absorbing and lucrative fields of endeavor.

A New Association Horizon

During World War II many particularly difficult electronic research problems had to be overcome and it became a practice for the government to arrange cooperative research programs with colleges and manufacturing organizations. While this activity is still being carried on to some degree, there are signs that these programs are slowing up. We find now, too, that the number of new students entering college engineering courses each year is barely enough to meet industry demands. Perhaps in the light of these two factors, engineering associations will see a new objective horizon. By working through the schools and colleges, the engineering associations could provide comprehensive scholarship programs that would attract many more new electronic engineering students and that could continue an active research program which would be directed toward improving the every-day life of the American

RADARSCOPE

Revealing important developments and trends throughout the spectrum for radio, TV and electronic research, manufacturing and operation

SELF-POWERED TRANSISTORS are undergoing intensive laboratory study, and announcements proclaiming the development of the first experimental models may be forthcoming within the year. Units will depend upon built-in radioactive materials to provide power.

ELECTRONIC COMPUTERS will feature three different types of amplifying devices in 1956 commercial models, according to present indications. These include magnetic amplifiers, transistors and vacuum tubes.

HIGH-VOLTAGE RESISTOR rated at 20 kv, and quite suitable for color TV, is expected to make its bow in the not too distant future. The big news about this component is the low selling price—under 10 cents hopes the manufacturer.

WORLD'S FASTEST PRINTER should step out of the laboratory about one year from now. It should solve many computer problems caused by output devices much too slow for the computing system. Based on a thermal principle, this printer can print a digit on a piece of paper in 1 microsecond.

RECORD VALUE of corporate securities were offered for sale by the communications industry in 1953, reports

the Securities and Exchange Commission. The total of \$856 million accounted for about 10% of all corporate issues during the year.

E

au

the

IIS 1

the

Sea

The

lar

the

Dr

wh

wi

cil

nt

hi

th

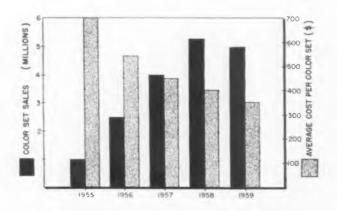
TECHNICAL WRITERS and editors have formed their own professional society at a meeting in the American Academy of Arts and Sciences in Boston.

TAX REVISION proposals published by the National Machine Tool Builders Association, 10525 Carnegie Ave., Cleveland, Ohio, should be of considerable interest to electronic industries management.

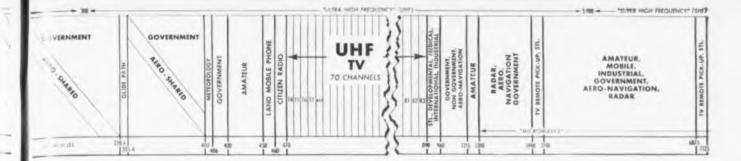
BRITISH TV is struggling under the weight of excessively restrictive labor agreements. This little-publicized fact is one of the important reasons BBC has not been able to expand as much as it is capable.

SALES RECORDS for 1953 were reported by General Electric (\$3.128,127,000-19% over 1952), RCA (\$853,-000,000-22.9% over 1952), and Sylvania (\$293,267,408-24.8% over 1952).

RESILIENCE, machinability and light weight are factors favoring the increasing use of magnesium in electronic and communications equipment, particularly portable military types.


CONELRAD FOR AVIATION radio services has been proposed by the FCC in cooperation with the CAA. During an emergency, all aviation stations except those required for traffic control would maintain radio silence.

TRANSISTOR FRAUD has been perpetrated on some unwary organizations. In one case, shrewd operator in France promised to rejuvenate unworkable transistors for a trifling 40 cents each. What happens to them after they are sent abroad is anybody's guess.


BEST GUESS to date on annual rate of transistor production is 2,000,000 to 3,000,000 per year, including both military and commercial.

GETTING COLOR TV on the road to public acceptance is a ticklish problem, particularly since prices are high, screens are small, programming is at a minimum, and service contracts are expected to cost \$250 to \$300 per year. For these reasons, Emerson's imaginative plan to rent, not sell, its first color receivers is causing a stir in the industry. Other companies are turning over idea of rent-or-sell option.

COLOR TV GROWTH

Sales of color TV receivers for 1955-1959 has been predicted in a new survey prepared by Dr. A. R. Oxenfelds for "Fortune" magazine. Results shown above indicate decreasing cost per set, and increasing sales leveling off in 1958-1959. Report also forecasts total of 53,000,000 sets in 1959, with 18,000,000 of these being color. Dollarwise comparison with predictions published in Sept. 1953 TELE-TECH & ELECTRONIC INDUSTRIES, page 17, indicates almost identical estimate for 1957 sales (\$1.8 billion), but new survey shows more rapid rise is anticipated for 1955-1956

ETHICS can mean a great deal to an industry because it encourages public confidence. And it seems all he more necessary when the industry is as competitive as the TV-electronic field. In widely separated quarters here is talk of adopting some sort of "Code of Ethics Seal," as was recently done by the Industrial Equipment Div. of the Gas Appliance Manufacturers Association. The next step needed is a formal proposal.

INDUSTRIAL

DECENTRALIZATION of factories is motivated by several factors, including lower labor costs, cheaper land, improved access to raw materials, etc. Sometimes the justifiable savings resulting from a plant move are attended by more headaches than the saving is worth. Drawing upon the experience of several manufacturers who have moved-and are glad they did-there are several points to keep uppermost in mind. These include willingness of public carriers to add transportation facilities, receptiveness of community, obtaining prospective employee lists, and local publicity. Fortunately, a number of states will perform related services free of charge. If the company would be happier if the workers did not unionize, it is imperative that the pay scale be higher than the legal minimum, and even higher than the going rate in the area.

COMPONENTS

A WORD OF CAUTION to electronic manufacturers overly anxious to get into large production of high-priced specialty components just because a new development or material shortage comes along. Color TV rush recalled shortage of critical materials at start of Korean War. One manufacturer spent a pile of money to tool up for a special component made of non-critical materials. After tooling up, the critical material became plentiful again, and the investment was lost. Something similar may be expected for color TV because engineers are busy designing expensive specialties out of receiver circuits.

ECONOMICS

STATUS OF INDUSTRY is no cause for joy in top management circles. Value of unfilled orders held by all U.S. manufacturers has fallen \$17 billion or 20% during the past year. Business inventory rose \$5 billion, and unemployment rose well over 2 million. However, things are far from black. Industrial production has been running only 2% under the 1953 average, interest

rates are lower, and money is loosening up. Significant tax cuts have been enacted, and more may be forthcoming. 1954 looks like a reasonable time to accelerate the introduction of new technical developments, and to put the proverbial shoulder behind some aggressive selling.

GERMANIUM PURIFICATION

New and simple refining method for producing germanium of near-perfect purity (99.9999999%) has been developed by Bell Telephone Labs. This is equivalent to a pinch of salt in 35 freight cars of sugar. The new process is being used to purify many substances other than germanium. It is based on the fact that impurities are not equally soluble in the solid and liquid states. Therefore, circular induction heaters move a narrow molten zone slowly along an inget, "sweeping" impurities to one end. The molten zone holds the impurities while the ingot solidifies into a purer state, W. G. Pfann (I), inventor of the zone-melting process, is shown aperating the refining equipment while J. H. Scaff holds a large single germanium crystal

Thermistors: Components for

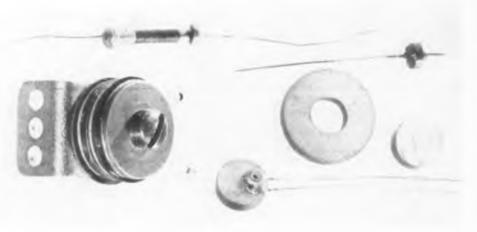


Fig. 1: Washer, disc and rod type thermistors made by Victory Engineering. Note washer mounting (1)

Versatile thermally-sensitive resistors open new design horizons. Innumerable industrial and communications applications include temperature compensation, AGC, regulation, surge protection, oscillators, radiation detection

> By ALBERT J. FORMAN, Associate Editor TELE-TECH & ELECTRONIC INDUSTRIES

THERMISTORS are one of the most versatile circuit elements ever developed. They offer innumerable opportunities to improve performance and reduce costs of many electronic control and measuring devices. Although they have been in existence for a number of years, thermistors have been favored with renewed interest only recently, possibly due to the demands of current trends in electronic equipment design, coupled with new developments which have improved thermistor performance characteristics.

Briefly, thermistors are thermally sensitive resistors made of a class of ceramic-like semiconducting material such as metallic oxides. They do not rectify. Because they have a negative temperature coefficient, as they become heated their resistance decreases. There are three primary ways of changing thermistor temperature: Externally, directly and indirectly. In the externally heated method, resistance changes as the ambient temperature varies. In the directly heated method, an electric current passing through the thermistor raises its temperature. The indirectly heated method depends upon a separate heating coil in thermal, though not electrical, contact to maintain constant temperature irrespective of ambient.

One or more of three main characteristics are utilized in most applications. The resistance-temperature characteristic (Fig. 3) provides large changes in resistance for small changes in temperature, and over the range -100°C to +400°C the ratio of cold to hot resistance may conceivably decrease several million to one.

The voltage-current characteristic (Fig. 4) follows Ohm's law provided the power dissipated in the thermistor does not raise its temperature measurably above ambient. Therefore, increasing the current up to a point will produce a proportional voltage drop, just as in a conven-

tional resistor. A further current increase will cause the voltage drop to remain constant, and a still further current increase will cause the voltage to decrease because of the negative resistance characteristic.

be

diff

twe

rog

per

to

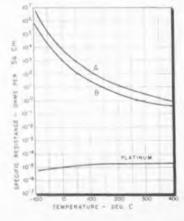
cui

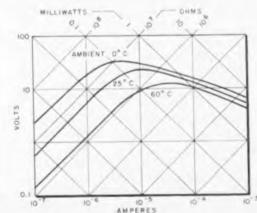
pł

The rate of thermistor temperature rise is dependent upon power dissipation and thermal mass. For a particular applied voltage, the current will rise to a maximum and remain essentially constant. The time required for the current to go from minimum to maximum determines the thermistor's dynamic current-time characteristic (Fig. 5).

Thermistor Function Symbols

There are several important symbols which represent thermistor functions. R_o is the cold resistance, measured at a specified temperature with a power small enough to keep the thermistor from heating. At 25 C, different thermistors may generally be obtained with R_o of 2 ohms to as high as 5 megohms. Typical tolerance values are between 5% and 20%.


The temperature coefficient of resistance, α , is the ratio of the rate of change of resistance with temperature to the resistance of the thermistor. Representative values are from 3.0 to 5.5%/°C.


B is a material constant, and is usually about 3500 to 4000°K.

The dissipation constant, C, is a proportionality factor of power dissipation to consequent temperature change. C may be as low as 60 µw/°C to as high as 30 mw/°C. Special mountings may increase this value several times.

The highest rating for maximum continuous ambient temperature, T,

Fig. 3: (I) Typical thermistor resistance-temperature characteristic compared to platinum. Fig. 4: (r) Logarithmic plot of voltage-current characteristics. Note power and resistance values

Electronic Control and Measurement

is usually about 300°C, but it could be much higher. Maximum current may range from 25 ma to 7 amps in different types.

The thermal time constant, τ , is the time required for a thermistor to change 63% of the difference between its initial value and that of its surroundings when no electrical power is being dissipated in it. Depending on conditions, it may be anywhere from several milliseconds to five minutes, or even longer.

Although circuit designers usually use the manufacturer's performance curves, it may be helpful to approximate a thermistor's resistance, R, at an absolute temperature, T.

$$R=R_{_0}e^{\,B\left(\frac{1}{T}-\frac{1}{T_0}\right)}$$

where e is 2.7183. Another useful relationship is

2

f

e

0

$$\alpha = \frac{B}{T^2}$$

Before discussing the application of thermistors to specific circuits, it will be worthwhile to examine the physical construction of different thermistor types.

The washer type thermistor (Fig. 1) is used when it is desirable to clamp the unit to a body to follow the temperature of the large body, or to increase the thermistor's current carrying capacity. Typical size may be 0.15 in. thick, 0.75 in. O.D., and 0.28 in. I.D. Most thermistor contact areas are silver coated.

The disc type thermistor (Fig. 1) is similar to the washer type, but it may be obtained with leads, and does not have a center hole. It is generally a low resistance element, and employed where space does not

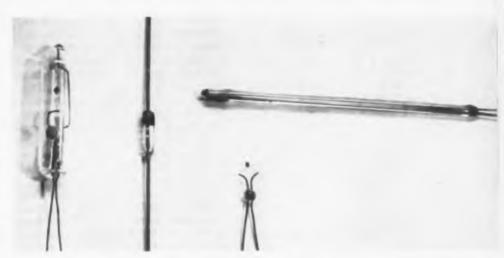


Fig. 2: Bead types made by American Radio. Unit at left is in bulb, others exposed or in glass

restrict its use. Size may range from 0.2 to 0.6 in. O.D., and 0.04 to 0.5 in. thick.

The rod type thermistor (Fig. 1), often produced by an extrusion process, is used when a high resistance is required or when space demands a slender element. High temperature grades are coated with

glass glaze. Diameters as small as 0.05 in, are available.

The bead type thermistor (Fig. 2) consists of a small sphere of material, between 0.006 and 0.1 in., deposited on two parallel platinum wires. They may be enclosed in glass or mounted in evacuated or gasfilled bulbs. This type is extremely

THERMISTOR MANUFACTURERS

American Radio Co.

135 Broadway, New York 6, N.Y.

Bendix Aviation Corp.
Friez Instrument Div., 1454 Taylor Ave.,
Baltimore 4, Md.

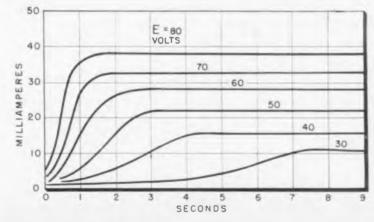
Electron-Radar Products

1041 N. Pulaski Rd., Chicago 51, III.

General Electric Co.

Corboloy Dept., 11157 E. 8 Mile Rd. Detroit 32, Mich.

Keystone Carbon Co. 1935 State St., St. Marys, Penna Micro-Circuits Co.


Servo Corp. of America 2020 Jericho Turnpike, New Hyde Park, L.I., N.Y.


> Stupakoff Ceramic & Mfg. Co. Latrobe, Penna.

Victory Engineering Corp.
Springfield Rd., Union, N.J.

Western Electric Contact Graybar Electric Co 420 Lexington Ave. New York 17, N.Y

Fig. S: (1) Dynamic time-current characteristics at various voltages are important in thermistor time delay and negative resistance devices. Fig. 6: (r) Printed circuit thermistors made by Micro-Circuits. Resistive material may be sprayed or painted on

small, very sensitive, and has a short time constant.

The flake type thermistor is made by cutting a film of the oxide material into flakes, and then firing the flakes on a smooth ceramic surface. Possible dimensions are 0.0004 to 0.002 in. thick, 0.05 to 0.5 in. long, and 0.01 to 0.05 in. wide. They are excellent for detecting radiant energy.

The printed circuit thermistor (Fig. 6) is a recent innovation. It may be similar to the rod or disk type, except that the resistor paint is silk-screened or sprayed on the base.

Thermometry

The thermistor is a very desirable device for the control, measurement or compensation of temperature. By taking advantage of the temperature-resistance characteristic, it can be used as a resistance thermometer

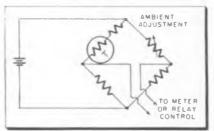


Fig. 7: Thermistor in temperature measuring bridge. Output could actuate heat control

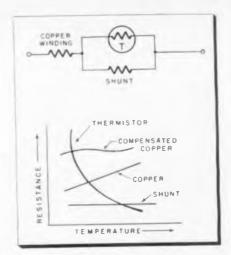
with greater sensitivity than is possible with a thermocouple and does not contaminate. By connecting the thermistor in a resistance measuring device such as a Wheatstone bridge (Fig. 7), temperatures may easily be measured with a precision of 0.001°C or better. Some units are sensitive to a change as small as 0.000001°C.

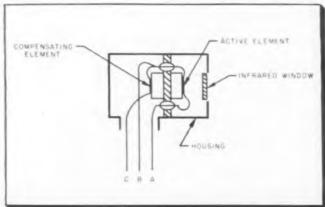
For extremely accurate measurement of temperature differential, a

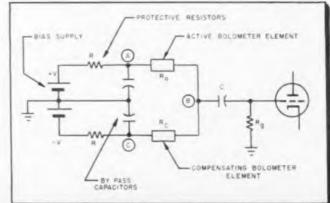
thermistor may be used in each of two adjacent bridge arms. For ordinary measurement, a simple thermistor in series with a resistor and meter will indicate temperature by passing more current when the temperature rises. The added resistor is necessary to limit the current which would otherwise cause self-heating in the thermistor. These sensitive devices are excellent for remote temperature indication.

Temperature control may be achieved by a slight modification of the measuring circuit. Instead of indicating on a meter, the increased current caused by higher temperature is fed to a relay or servo control system which actuates a heating or cooling mechanism. The critical temperature environment of much electronic equipment could benefit from such control.

Changes in the resistance of circuit elements may be compensated by a thermistor. For example, the increased resistance of a copper coil $(+0.4\%)^{\circ}$ C) may be offset by a series thermistor of one-tenth the resistance and $-4\%/^{\circ}$ C at a reference temperature. Another alternative is to place the thermistor in parallel with a resistor. (See Fig. 8.) One application of such compensation is for dc motor windings, where higher temperature increases copper resistance, thereby reducing motor speed perhaps 10%. A thermistor in series with the winding may keep the speed correct to 5%. Other similar applications include temperature (and consequently frequency) stabilization of communications systems, and compensating for core material heating with attendant inductance variation. Without going into detail, it is easily seen how thermistors may be similarly applied in calorimetric, light sensitive, medical and alarm devices.




Fig. 8: Temperature compensation of copper winding accomplished by thermister and shunt


Whether radiations are infra-red or high-frequency r-f, thermistor bolometers can measure, locate, or control them. At infra-red wavelengths of 1 to 15 microns, flake type thermistors can detect a few degrees deviation from ambient at a considerable distance, or even 1/1000 mwatt. Used as a pyrometer, they can be employed as a direction finder to point out heat sources, or to indicate overheated parts in a jet plane or factory.

In a typical construction, the active thermistor element receives radiation through a selective window (Fig. 9) which passes heat, but not light. In the same housing is a compensating thermistor which automatically adjusts for ambient variations. Because these elements operate at a few microvolts, the associated amplifier must have low noise. DC is used on the preamplifier filaments because hum is in the spectrum of the thermistor time constant. Furthermore, to use an ac amplifier, the heat source is usually chopped mechanically at 15 to 30

(Continued on page 170)

Fig. 9: (1) Flake thermistor radiation detector made by Servo Corp. of America employs temperature compensation. Fig. 10: (r) Associated circuitry

Self-Oscillating UHF Transistors

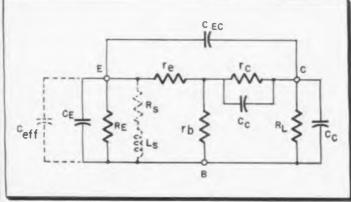


Fig. 1: (I) Photo of transistor oscillator with internal self-excitation, Fig. 2: (r) Equivalent circuit of transistor surrounded by its cold capacities.

Discovery of interesting phenomenon in standard pointcontact types offers new possibilities for 600 mc operation. Oscillations occur exclusively within transistor without external resonator. Microwave generation foreseen

By DR. HANS E. HOLLMANN U. S. Naval Air Missile Test Center Point Mugu, Calif.

TRANSISTORS and conventional electron tubes operating on the principle of space-charge control are duals in that the transistor effect is a type of current control, more accurately a control of the current transfer or current distribution in a semiconductor, whereas the functioning of vacuum tubes is based on an electrostatic control of the space charge around the grid. With a grain of salt, the duality may be expressed in terms of the ratio between input and output resistances, which is extremely high in the field of electron tubes, but very low in the field of transistors.

On the other hand, there exists also an electronic dual of the conventional triode in the form of the aperiodic positive-grid or retarding-field tube whose functioning is based on an equivalent control of the cur-

rent transfer in vacuum instead of in a semi-conductor.^{1,2} Since the retarding-field tube operates in the region of a saturated grid current, its output impedance is infinitely high and its impedance ratio is zero: The retarding-field tube may be visualized to be the prototype of an ideal transistor which, with semiconductors, can only be approached to a certain degree but never fully accomplished.

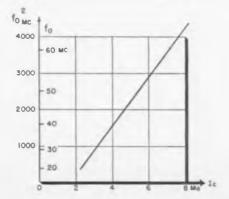
The retarding-field oscillator, in which the tube drives an external tank circuit of any arbitrary resonant frequency by virtue of feedback, is the perfect example for a transistorized Hartley oscillator.3 With this picture in mind, the question arises as to whether the transistor may be simulated by a positivegrid tube even up to the transit-time region, i.e., up to frequencies where the transit-time effects of the charge carriers govern the entire self-excitation. The most famous phenomena are the free electron-oscillations discovered by Barkhausen and Kurz.4 In order to gain a fundamental insight, let us consider parallel-plane electrodes and let it be assumed that the cathode-grid and grid-plate spacings are equal. For the fundamental mode of operation, the electrons take a full period to travel from the cathode to the plate and back. With zero plate-potential, the frequency is related to the positive grid-potential Vg by the Barkhausen-relation $\lambda^2 V_g = const.$ or $f_o^2/2$

 $V_{\rm g}=$ const. Despite this simple formula, the mechanism of self-excitation is rather complicated because all electrons are required to "dance" inphase by virtue of velocity-modulation and bunching effects.

In the field of transistors, equivalent self-oscillations of the charge carriers, the electrons or holes, have not been observed and are very unprobable because of diffusion, etc. Nevertheless, the author succeeded in the observation of internal oscillations in point-contact transistors (Fig. 1) which, to a certain degree, resemble the electron-oscillations in that they occur without any external resonator being present, and in that their frequency is related to the operational conditions by a formula as simple as the Barkhausen-relation.

Induced Emitter Inductance

The mechanism of internal transistor oscillations may be understood by reference to the basic circuit depicted in Fig. 2. The transistor is considered to be in the grounded-base connection and is surrounded by its "cold" electrode and socket capacitances $C_{\rm E}$, $C_{\rm EC}$, and $C_{\rm C}$. In addition, there is the barrier-layer capacitance $C_{\rm c}$ across the collector resistance $r_{\rm c}$.


As it is well known, the input impedance of the grounded-base transistor is given by the simplified formula.⁵

$$Z_{in} \cong r_e + r_b (1 - \alpha_o). \tag{1}$$

Up to the vicinity of the alpha-cutoff value f_c , the short-circuit current gain α_0 becomes complex and may be expressed in terms of the empirical approximation f_c .

$$\alpha = \frac{\alpha_o}{1 + jf/f_o} = \alpha_o \frac{1 - jf/f_o}{1 + (f/f_o)^2}$$
(2)

Fig. 3: Internal oscillation frequency-current

SELF-OSCILLATING TRANSISTORS (Continued)

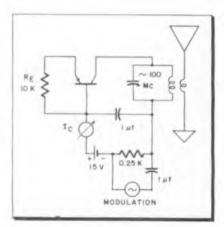


Fig. 4: Schematic of FM transmitter with multiplication of internal transistor frequency

Introducing Eq. (2) into Eq. (1) gives the input impedance

$$\begin{split} Z_m &\cong r_e + r_b \bigg(1 - \frac{\alpha_o}{1 + (f/f_c)^2} \bigg) + \\ & \quad \quad j \cdot \alpha_o r_b \cdot \frac{f/f_c}{1 + (f/f_c)^2} \end{split}$$

which can easily be seen to be the series connection of the resistance

$$R_e \cong r_e + r_0 \frac{1 + (f'f_e)^2 - \alpha_0}{1 + (f/f_e)^2}$$
 (3b)

and inductance

$$\omega L_{\star} = \alpha_{o} r_{b} \frac{f/f_{\sigma}}{1 + (f/f_{\sigma})^{2}} \tag{3c} \label{eq:delta-f}$$

according to the imaginary term with the positive sign.

If we consider the external capacitances including the collector capacity to be concentrated in an effective value $C_{\rm eff}$ between emitter and base, this capacity together with the induced inductance $L_{\rm s}$ forms a series-resonant circuit having the frequency

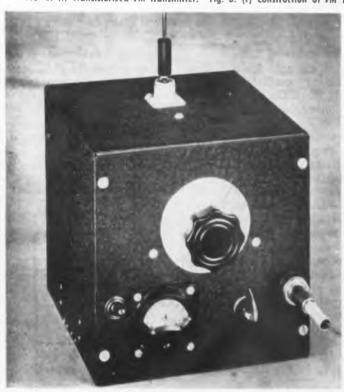
$$f_n = f_n [2 \pi f_n \alpha_n r_n C_{eff} - 1]^{-16}$$
, (4a)
Self-excitation occurs as soon as the series resistance $R_n \equiv 0$ which leads to a

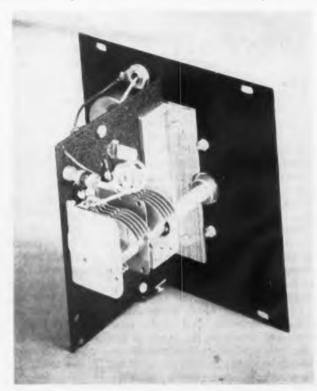
critical current gain $\alpha_e = \left[1 + \frac{r_e}{r_b}\right] \left[1 + \left(\frac{f_o}{f_c}\right)^{\sharp}\right]$

Transistors having a sufficiently great α_0 are capable of exciting their internal resonators the frequency of which, in a first order approximation, is proportional to the square root of the cutoff frequency f_c .

Let an r-f transistor be given having the parameters $r_o=300$ ohms; $r_b=200$ ohms; $a_o=10$; $f_c=40$ MC; and $C_{eff}=4$ $\mu\mu f$. With these values, the term $2\pi f_c r_b C_{eff}=2$ a_o and Eq. (4b) gives $a_o=7.5 < a_o$ so that internal oscillations with the frequency

 $f_{\rm u} \cong f_{\rm e} = 40$ MC can be expected.


The developed philosophy of internal transistor oscillations may be compared with that of the electron oscillations in a positive grid tube. In the latter, there is no resonant system except the "dancing" electrons themselves whose displacement current also leads to a negative resistance. In transistors, the collector capacitance is reflected into the emitter circuit with opposite polarity and thus represents an induced inductance which, in turn, resonates with the natural transistor capacities.


"Dual Miller Effect"

Although the origin of the induced emitter inductance is fully disclosed by the analysis, an analogy may be helpful for obtaining a simpler insight. Acording to the Miller effect, the grid capacity of a vacuum triode increases considerably because the grid- and plate-voltages are in phase-opposition so that the displacement current is proportional to the voltage amplification. In transistors, this phenomenon is reversed because input and output voltages are in phase.

If the voltage amplification is one, there is no voltage difference between emitter and collector potential and the collector capacity C_c is charged exclusively by the collector current. As soon as the voltage gain exceeds unity, the collector voltage exceeds the input voltage so that the emitter "sees" the collector capacitance with opposite sign, i.e., in the form of an inductance. Although

Fig. 5: (1) Transistorized FM transmitter. Fig. 6: (1) Construction of FM transmitter, showing location of transistor and associated components

this explanation exhibits certain drawbacks, the origination of the induced emitter inductance may be attributed to a "Dual Miller Effect."

Transistor Oscillation

Transistors with a sufficiently large ao such as the RCA 2N33 produce internal oscillations whose frequency depends solely on the operating conditions, i.e., on a and rh but, in addition, also on Cett. Fig. 1 shows an RCA transistor supported by its preresistors in the emitter and collector circuit each one of the

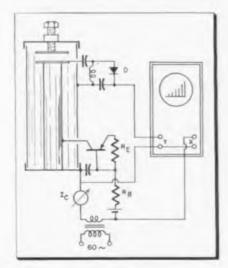


Fig. 8: Test device for producing UHF spectrum

value of 10 kohms. The internal oscillations are powerful enough to be measured by means of a grid dip meter in close vicinity of the oscillating transistor.

Fig. 3 illustrates the reciprocal values of the second power of measured frequencies for versus the collector current. The line reveals the transistor-oscillation formula

 $f_0^2/I_c = constant$ which is the dual of the Barkhausen relation. With collector currents ranging from 2 to 8 ma., the frequency of the internal oscillations rises from 25 Mc up to 75 Mc, depending on the characteristic param-

eters of the individual transistors. For frequency stabilization, an external resonator such as a tank circuit may be inserted into the collector circuit. In this case, the free oscillations lock-in as do the electron oscillations in a Barkhausen tube.

As has been shown at lower frequencies, the high nonlinearity of transistors causes not only distortions but, at the same time, makes the resonators nonharmonic. Both effects result in an efficient frequency multiplication which has been called a "Circular Frequency Multiplication"3 because it occurs exclusively within the transistor and its attached resonators. A circular frequency multiplier may be visualized as a linear multiplier cascade wound around a single active element.

Consequently, a tank circuit resonating at a high order of harmonics can easily be inserted into the collector lead thus resulting in the simple oscillator circuit diagrammed in Fig. 4. Figs. 5 and 6 show photos of a test transmitter operating at the second or third harmonic, thus producing frequencies in the range of 100 Mc. FM is achieved by merely causing the collector current to fluctuate a minute amount around its zero value. Thus, for example, the output voltage of a record player with a piezoelectric pickup in the magnitude of 100 mv suffice to produce a 100% frequency swing and a high-fidelity FM of unsurpassable simplicity.

Fig. 7 shows the photo of a UHF oscillator with an RCA 2N33 transistor and a cavity resonator. The extremely high sensitivity of the fundamental frequency requires a constant-current supply which is achieved by means of a saturated vacuum tube. The output energy is measured by means of a crystal diode near the top of the cavity and feeding the galvanometer. In this way, signals down to 50 cm (600 MC) have been produced powerful enough

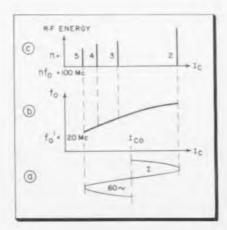


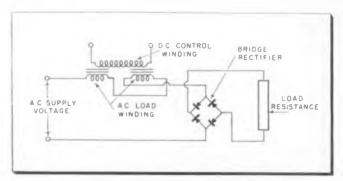
Fig. 9: Frequency modulation (a) of Internal oscillations (b), and resulting spectrum [c]

to be observed with the aid of a microwave absorption meter.

600 Mc is by no means the upper limit. High harmonics will permit production of microwaves, particularly with high alpha cutoff types.

In order to investigate the production of high-order harmonics, the testing device diagrammed in Fig. 8 has been built around the described cavity oscillator. The collector current is modulated around a dc value by means of a superimposed ac component of 60 cps. The output of

Fig. 7: Transistorized UHF oscillator and cavity resonator. Supply current is stabilized with the aid of a saturated vacuum tube


the diode D produces the Y-deflection of the CRO whose X-deflection occurs in synchronism with the power line. Fig. 9 illustrates the resulting frequency spectrum in a qualitative manner. I,,, is the main supply current which is swept by the ac current I- in the range between I', and I",. The current sweep results in an associated frequency sweep (b) which may cover the band from $f'_{.0} = 20 \text{ MC to } f''_{.0} = 50 \text{ MC}.$ If we assume the output resonator to exhibit the resonant frequency nf_o = 100 мс, for example, resonance occurs every time the frequency ratio passes a whole number n from 2 to 5. As a result, a frequency spectrum according to the diagram (c) can be seen. The rf energy increases, of course, with increasing current until it reaches the permissible load.

After it has been shown that a large a is the prerequisite for the internal self-excitation, it is quite evident that a delicate selection of transistors even of the same type is necessary to obtain satisfactory performance. Although most of the RCA 2N33 types functioned satisfactorily, they must be protected against overloading which causes a sudden reduction of a...

REFERENCES

- N. H. E. Hollmann, "Transistors in Terms of Vacuum Tubes," Tele-Trech & Electronic Industries, Oct. 1953, p. 82 fl.
 2. H. E. Hollmann, "Vacuum Tube Analogy of Transistors" Electronics, July, 1952, p. 156 fl.
 3. H. E. Hollmann, "Transistor Oscillators," Tele-Tech & Electronic Industries, Oct. 1953, p. 82 fl.
- 82, ff.
 Barkhausen und K. Kurz, "Die kürzesten mit Vakuumröhren herstellbaren Wellen," Phys. Zeits., vol. 21, 1920, pp. 1-6.
 S. F. Shea, Principtes of Transistor Circuits, New York 1953, p. 61.
 D. A. Thomas, "Transistor Amplifier—Cutoff Frequency," Proc. I.R.E., vol. 40, Nov. 1952, pp. 1481-1483.

Industrial Applications

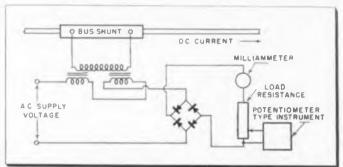
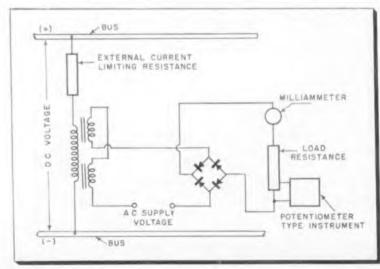
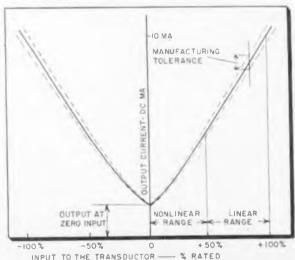


Fig. 1: (1) Basic transductor circuit contains de control common to pair of ac load windings. Fig. 2: (1) Single-ended current transductor

Magnetic amplifiers preserve electrical isolation while metering voltages and currents. Major applications also include detection of arc-back in mercury rectifiers and over-current detection for selection tripping


> By R. J. RADUS, Westinghouse Electric Corp., 7325 Penn Ave., Pittsburgh 8, Penna.


RANSDUCTORS are magnetic amplifiers of the saturable reactor type that are used as auxiliary metering devices in high-potential dc systems. They can be used to obtain electrical isolation between the bus potential and the associated and control circuits because the load winding which feeds the metering circuit is electrically isolated from the control winding which is fed from the d-c system. The relationship between the signal fed to the control winding and the signal that feeds the metering circuit (i.e. input vs output) is linear to the extent that transductor operation is compatible with industrial metering accuracies. The linear relationship between the input and output currents of a saturable reactor is inherent when high permeability "square-loop" core material is used. A number of technical papers have been written describing in full the operation of saturable reactor circuitry.1-2 This paper will not be concerned with such a description. The operating limits of the transductors developed to date are ±1/4% on accuracy for single-ended transductors, ±1% on accuracy for push-pull transductors and 3300 v dc on working voltage. This 3300 v dc does not represent a maximum value, however, it is the highest value that has been specified to date.

The basic transductor circuit used throughout this paper is the conventional series-connected saturable reactor with the addition of a bridge rectifier for conversion to dc output. As shown in Fig. 1, the reactors consist of a pair of cores with individual a-c or load winding and a d-c or control winding common to both cores. The operation of transductors as auxiliary metering devices depends upon their ability to sense a current or voltage in the system and to provide an output to the metering or control circuit which accurately represents the average value of the system current or voltage (i.e. they must function as the instrument transformers of ac systems).

Transductors of a current measuring type (Fig. 2) have been developed to sense the voltage drop developed across a standard bus shunt and to respond to changes in this shunt voltage. The actual current rating of the shunt is of minor importance for most applications because the transductor responds to

Fig. 3: (1) Single-ended potential transductor for sensing bus voltage changes. Fig. 4: (r) Characteristic curve of single-ended transductor

of Transductors

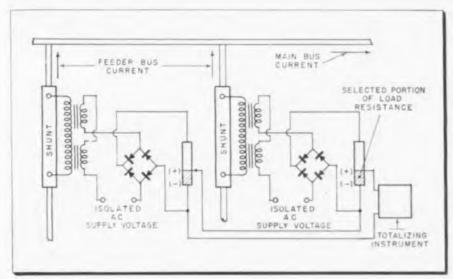
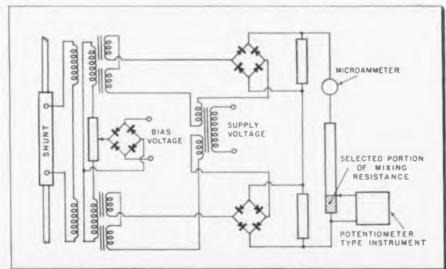


Fig. 5: Totalizing arrangement using single-ended transductors and linear part of curve in Fig. 4

the percent rated shunt voltage. For applications in which the transductor causes appreciable loading of the shunt, the error can be calculated and compensated for at the time of installation.

Transductors of the potential measuring type (Fig. 3) have been developed to sense the bus voltage of a system and to respond to changes in this voltage. External resistance is added in series with the d-c or control winding to limit the current to approximately 10 ma. Operation with different nominal bus voltage requires only the proper value of external limiting resistance.

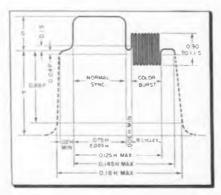

Transductors can be applied in the metering of individual currents and voltages or of networks where it is necessary to provide a scheme for totalizing a group of individual currents and voltages.

A typical application of singleended circuitry as applied for metering individual unidirectional current is shown in Fig. 2. A potential transductor is applied for metering individual unidirectional voltage in the same way except that the control winding is connected as in Fig. 3. The operation of the single-ended circuit when applied as shown in Figs. 2 and 3 is typified by the characteristic curve of Fig. 4 when the relationship of input to output is expressed as percent rated input to the transductor versus output in milli-amperes of dc current. The dotted lines of Fig. 4 indicate that manufacturing tolerances are to be expected in production units. The operating characteristics of the single-ended circuitry can be interpreted for the instruments of Figs. 2 and 3 from the curve of Fig. 4. At zero input there is a finite output current flowing to the instrument. This is the magnetizing current of the reactors in Figs. 2 and 3 and it will move the calibrated zero upscale by roughly 15% of full scale deflection. The curve is not linear from zero to 50% rated input, so the meter scale will not be linear for this range. The curve is linear for range of input, 50% rated to 100% rated, so the meter scale will be linear for this range. Actually this type of application does not need linear operation of the transductor since a particular meter scale is calibrated for each transductor. The instrument used in the circuits of Figs. 2 and 3 can be either a dc milliammeter or a null-balancing potentiometer type instrument or both. The milliammeter is connected in series with the load resistance and is activated by the output current. The potentiometer type instrument is connected across a portion of the load resistance and is activated by the voltage developed in this selected resistance by the load current. The calibration of the milliammeter is made by obtaining full-scale deflection on the instrument at 100% rated input to the transductor. The calibration of the potentiometer type instrument is made by selecting the portion of the load resistance which develops the full scale input voltage of the instrument at 100% rated input to the transductor. The instrument scales can then be calibrated on a point by point basis over the desired range.

Typical Application

A typical application which does utilize the linear section of the curve of Fig. 4 is given in the totalizing scheme of Fig. 5.4 Totalizing is accomplished by measuring the currents of the individual feeder buses with transductors and using each of the outputs to activate the same potentiometer type instrument. Assuming that the shunts in the feeder buses have the same current and voltage ratings, the relationships between input to the transductor and output to the totalizing instrument for each transductor must be identical if equal values of current in each of the feeder buses are to cause equal deflections on the potentiometer type instrument. This means that the characteristic curves of all transductors used in a totalizing (Continued on page 126)

Fig. 6: Push-pull current transductor for metering individual unidirectional current


Compatible Color Signal Content

THE NTSC signal is essentially the same signal as is currently being transmitted and received in the standard black-and-white TV system except that additional chrominance information has been "tucked in" and a reference burst added to the horizontal back porch. Compatibility with existing black and white receivers, which has been one of the prime system considerations, is assured because such receivers are unable to respond to the additional NTSC signal content, and see the signal as a standard black-and-white transmission

The realization that the additional information contained in the signal has been trimmed down because of the physiological and psychological limitations of the true terminal device—the human observer—is fundamental to any further discussion. The outstanding factors considered are:

1. Color detail carried by modulating frequencies greater than about 1.5 MC is not appreciated by the eye. This, of course, simplifies the problem of "tucking in" additional information in the existing bandwidth.

2. The employment of a color subcarrier frequency equal to a high odd harmonic of one-half the line frequency results in the subcarrier and all its color sidebands appearing in the unused portions of the existing spectrum, midway between the monochrome sideband clusters. In addition to providing much needed spectrum space, this device takes advantage of the integrating property of the eye to produce cancellation of the color subcarrier and color sideBy E. S. WHITE, Chief Engineer & M. H. KRONENBERG, Sr. Project Engineer CBS-Columbia 3400 37th Avenue Long Island City, N. Y.

NTSC waveform, showing color burst

band frequencies which appear on the kinescope. Since the kinescope is not a linear device nor the eye a perfect integrator, this frequency interleaving effect does not result in complete cancellation, in the practical case, but rather in low visibility of the unwanted frequencies.

3. Although the eye requires good color presentation in large areas, in smaller areas (detail carried by modulating frequencies from about 0.5 Mc to 1.5 Mc) it is limited in appreciation and will accept a two, instead of three, color rendition along a CIE chromaticity diagram locus. Experiments have confirmed that a large reduction of such color detail lying along the green-magenta direction is acceptable to the eye. Therefore, color detail in this region transmitted only along the orange-cyan direction (orthogonal to green-magenta) is highly satisfactory. This physical consideration leads directly to the narrowband Q and wideband I concept of signal content.

witl

a co

tain

arra

nal

cole

the

and

at t

ma

to

No

sce

and

tric

du

ler

spe

the

qu

(V

N

an

ma

fir

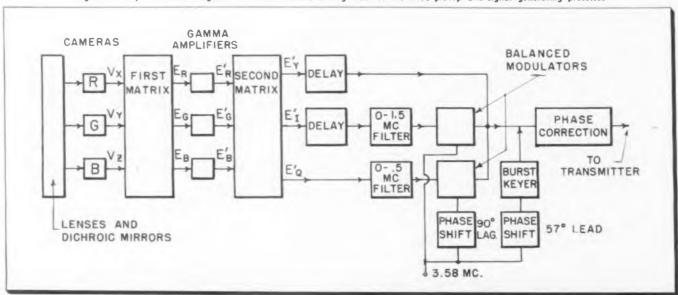
ta

lie

ar

to

na


F

4. The eye is relatively more sensitive to variations in green, less to red, and least to blue. This is related directly to the brightness sensation effects of the three colors; i.e., the eye sees a given energy level green as brighter than the same energy level red which appears brighter than the same energy level blue. The construction of the monochrome portion of the NTSC signal is based on this

important phenomenon.

5. While variations of the luminance content of a scene are readily noticed by the eye, variations in chromaticity (hue and saturation) are not. If the signal were so devised that the receiver chrominance channels did not respond to externally introduced luminance variations, significant noise and interference improvements would result. Since the kinescope display depends on what occurs both in the receiver's monochrome and chrominance channels, any reduction in the latters' contribution to the overall noise and interference would be exceedingly helpful. This approach, called the constant-luminance system, has been incorporated into the NTSC specifications. It is of interest to note that, subject to certain restrictions, once the monochrome portion of the signal has been constructed in accordance

Fig. 1: A simplified block diagram that illustrates the arrangement of the NTSC pickup and signal generating processes

and Transmission

Developing a practical viewpoint toward, and soundworking concepts of, the NTSC color signal standards

with the principles expressed in 4, a constant-luminance system is obtained automatically.

Fig. 1 is a simplified block diagram arrangement of the pick-up and signal generating processes. Both the color and the monochrome details of the scene are first sent through a lens and dichroic-mirror arrangement. at the output of which the red, green, and blue content of the scene is automatically sorted out and channelized to the red, green and blue cameras. Note that all the information in the scene is picked up simultaneously, and this simultaneous feature is retained throughout the system. Electrical voltages Vz, Vy, and Vz are produced at the camera outputs, and these voltages are functions of the lens, dichroic-mirror, and camera spectral characteristics as well as of the scene itself. To produce the required red, green and blue voltages $(V_R, V_G, \text{ and } V_B)$ specified by the NTSC, different amounts of V_z , V_y and V_z must be combined; i.e., matrixed. This is accomplished in the first matrix unit. Calibration is obtained when an Illuminant C white light pick-up produces equal voltages V_R , V_G , and V_B .

In all further discussions, V_R , V_G , and V_B are individually referenced to those values of V_R , V_G , and V_B which produce the maximum luminance value of an Illuminant C white

light pick-up. For example, when the maximum luminance Illuminant C is being viewed:

$$\begin{split} \frac{V_{R}}{V_{R_{max}, \ C}} &= E_{R} = 1 \\ \frac{V_{G}}{V_{G_{max}, \ C}} &= E_{G} = 1 \\ \frac{V_{R}}{V_{R}} &= E_{G} = 1 \end{split}$$

Table I indicates the numerical values of $E_{\rm R},\,E_{\rm G},$ and $E_{\rm B}$ for some typical scenes.

 $E_{\rm R}$, $F_{\rm eq}$ and $E_{\rm n}$ are then sent through gamma amplifiers which produce outputs:

$$E_{\alpha} = E_{\alpha}^{\frac{1}{n}}$$

$$E_{\alpha} = E_{\alpha}^{\frac{1}{n}}$$

$$E_{\alpha} = E_{\alpha}^{\frac{1}{n}}$$

Since the pick-up device itself provides some inherent gamma correction, the value of n is chosen so that the overall transfer gradient, γ , associated with each primary color is 2.2. The importance of gamma correction in providing more pleasing picture rendition and improved signal to noise ratio is universally accepted in

black and white television. Its increased importance and complexity in dealing with color reproduction and hence, three, instead of one, channels of information can be readily recognized. At the present state of the art, the accepted method of gamma correction is not all that could be desired, and, as a matter of fact, results in a departure from constant-luminance operation.

Second Matrix

 $E'_{\rm R}, E'_{\rm G}$, and $E'_{\rm R}$ are linearly added and subtracted in the second matrix to produce the following three outputs:

$$\begin{aligned} \mathbf{E'}_{Y} &= \mathbf{k}_{\perp} \mathbf{E'}_{0} + \mathbf{k}_{z} \mathbf{E'}_{R} + \mathbf{k}_{z} \mathbf{E'}_{H} & (1) \\ \text{where } \mathbf{k}_{\perp} &= 0.59, \, \mathbf{k}_{2} = 0.03, \, \mathbf{k}_{\perp} = 0.11 \\ \mathbf{E'}_{1} &= 0.74 \, (\mathbf{E'}_{1R} - \mathbf{E'}_{Y} - 0.27 \\ (\mathbf{E'}_{B} - \mathbf{E'}_{Y}) & (2) \\ \mathbf{E'}_{Q} &= 0.48 (\mathbf{E'}_{R} - \mathbf{E'}_{Y}) + 0.41 \\ (\mathbf{E'}_{B} - \mathbf{E'}_{Y}) & (3) \end{aligned}$$

 ${\rm E'}_1$ and ${\rm E'}_Q$ are shown expressed in terms of the color difference signals $({\rm E'}_R-{\rm E'}_Y)$ and $({\rm E'}_R-{\rm E'}_Y)$. An alternative representation, in terms of the color voltages, is obtained by substituting (1) in (2) and (3):

$$\mathbf{E'}_{1} = -0.27 \, \mathbf{E'}_{G} + 0.60 \, \mathbf{E'}_{R} - 0.32 \\ \mathbf{E'}_{B} = -0.52 \, \mathbf{E'}_{G} + 0.21 \, \mathbf{E'}_{R} + \\ 0.31 \, \mathbf{E'}_{R}$$
 (5)

The values of \mathbf{k}_1 , \mathbf{k}_2 , \mathbf{k}_3 , in Eq. (1) are of great importance. $\mathbf{E'}_Y$ is the gamma corrected monochrome portion of the NTSC signal, and the k's are the relative brightnesses of the three primary colors, as discussed previously. Note that an improved signal to noise ratio results since the color, green, to which the eye is most sensitive to noise variations, receives the greatest amplification, while the color, blue, to which the eye is least

Fig. 2: Vector relations at outputs of balanced modulators

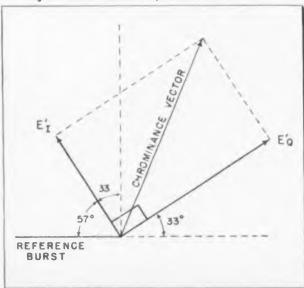
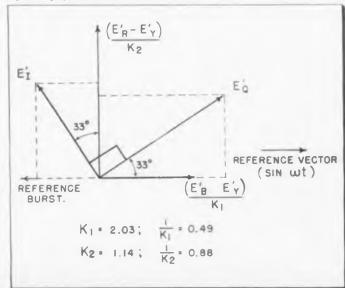



Fig. 3: (Right) Relationship between E', E' and color difference signals

COMPATIBLE COLOR SIGNAL (Continued)

sensitive to noise, receives the least amplification. Also, photographic experience has indicated that the most pleasing monochrome rendition of a colored scene results when the colors are permitted to make their relative brightness contributions. It should be remembered, further, that this choice of k values, with certain additional restrictions, results in constant-luminance operation.

Discussion of the coefficient values of E'_1 and E'_2 in Eq. (2) and (3) is best deferred until after the balanced modulator operation has been reached.

Color Elimination

As pointed out previously, for detail corresponding to frequencies above 0.5 Mc, the elimination of color lying along the green-magenta CIE chromaticity diagram locus is acceptable to the eye. Since this corresponds to the E'_{ij} information, a low pass (0 to 0.5 Mc) filter substantially reduces the higher frequency amplitudes in this channel. On the other hand, the E'_{ij} channel, containing orange-cyan information, is permitted to pass modulating frequencies up to 1.5 Mc, the practical limit of color appreciation of the eye.

Since the time delay of a low pass filter section is inversely proportional to the cut-off frequency, the 0 to 1.5 Mc E'_1 filter will introduce less delay than the 0 to 0.5 Mc E'_0 filter. To insure that both the E'_0 and E'_1 information will arrive at the balanced modulators in time coincidence, an additional delay of the order 0.5 μ s is inserted in the E'_1 channel. Because there is no filtering in the E'_2 channel, additional delay of the order of 1.0 μ s is inserted to insure time coincidence of the three

channels at the output of the balanced modulators.

In the encoding process, E', is fed to one balanced modulator while E'Q is fed to the other. A carefully controlled 3.58 Mc color subcarrier sine wave frequency is introduced at this point, and three separate outputs, differing in their respective phase relationships, are obtained. One output is applied to the I modulator, another output, 90° lagging, is applied to the Q modulator, and the third output, 57° leading, is supplied to a burst keying circuit providing the reference burst on the horizontal back porch. The resulting vectorial relationship at the modulator outputs is shown in Fig. 2, together with the total chrominance vector which is the vectorial sum of its orthogonal E', and E'₀ components.

The I modulator is arranged so that there is no output when \mathbf{E}'_0 is zero. Similarly, no output is obtained from the Q modulator when \mathbf{E}'_0 is zero. This insures that there is no color subcarrier output when a monochrome scene is being picked up. Furthermore, since the dc component of a colored scene must be inserted, both the color subcarrier and its side-band frequencies appear at the output whenever color is picked up.

Color Difference Signals

Returning to the coefficient values of E'_1 and E'_Q in (2) and (3), their determination may best be understood by recalling that, in an earlier version of the NTSC signal, it was the $(E'_R - E'_Y)$ and $(E'_R - E'_Y)$ color difference signals which were specified. Fig. 3 shows the color difference signals and their relationship to the E'_Q and E'_1 vectors. The 33°

rotation of the vectors expresses electrically the colormetric shift to the green-magenta and orange-cyan loci of operation.

In this earlier NTSC version, the color difference signals, $(\mathbf{E'}_{R} - \mathbf{E'}_{Y})$ and $(E'_B - E'_Y)$, were passed with equal bandwidths, and both were operated in vestigial side-band manner in the receiver. The resulting quadrature cross-talk was sufficiently annoying so that CPA (Color Phase Alternation) was required for acceptable correction. The use of CPA, however, gave rise to additional system aberrations. The NTSC, therefore, finally adopted the narrowband $\mathbf{E'}_{Q}$ and wideband $\mathbf{E'}_{1}$ system which minimized quadrature cross-talk and eliminated the use of CPA.

Numerical Values

Es (

cau

the

the

vid

ma

to

out

sta

vic

tak

qu

TE

In specifying the numerical values of K_1 and K_2 shown in Fig. 3, the following constraints were imposed in this earlier version:

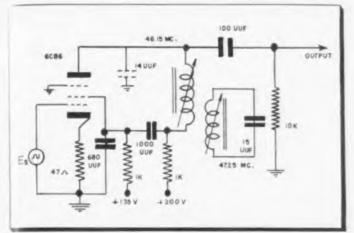
1. The monochrome portion of the total video signal must be the same as Eq. (1) to achieve constant-luminance operation: i.e.,

 ${\bf E'}_{\gamma}=0.59\ {\bf E'}_{\rm G}+0.30\ {\bf E'}_{\rm R}+0.11\ {\bf E'}_{\rm R}$ 2. When gray or white is picked up; i.e., ${\bf E'}_{\rm B}={\bf E'}_{\rm G}={\bf E'}_{\rm R}$, the chrominance portion of the video signal must vanish.

3. The color difference signals must be orthogonal to each other.

4. Consistent with favorable signal to noise ratios, K₁ and K₂ should be small enough so that the amplitudes of the 3.58 Mc color subcarrier and its sideband frequencies appearon the receiver kinescope through the monochrome channel of a color receiver or through a black-and-white receiver do not swing the beam intensity beyond black. This nonlinear operation of the kinescope would work against the desired low visibility effect achieved by frequency interleaving.

Peak Amplitudes


It is of interest to note that while the values of K_1 and K_2 are individually dependent upon the peak amplitudes specified, their ratio K_1/K_2 is fixed as soon as the first three constraints are imposed. The values determined were:

$$K_1 = 2.03$$

 $K_2 = 1.14$

Since it would be most desirable to maintain equivalence between the already specified color difference vectors and the $\mathbf{E'}_1$, $\mathbf{E'}_Q$ vectors, the projections of the latter on the for(Continued on page 201)

TABLE I TABLE I: VALUES of \mathbf{E}_R , \mathbf{E}_H , and \mathbf{E}_B at OUTPUT of FIRST MATRIX values at Output of First Matrix

	ER	EG	EB
Maximum white	1	1	1
Gray midway between maximum white and black	0.5	0.5	0.5
Black	0	0	0
Saturated red at max luminance	1	0	0
Saturated green at max luminance	0	1	0
Saturated blue at max luminance	0	0	1
Saturated yellow at max luminance	1	1	0
Saturated magenta at max luminance	1	0	1
Saturated cyan at max luminance	0	1	1
Saturated red with luminance midway between max and min	0.5	0	0
Saturated yellow with luminance midway			
between max and min	0.5	0.5	0

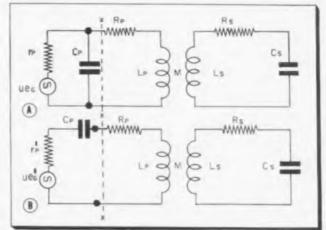
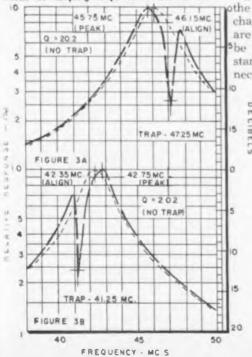



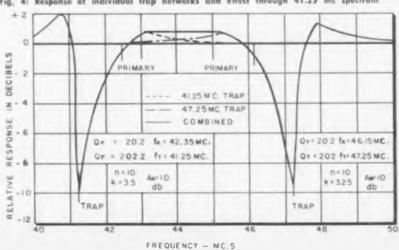
Fig. 1: (I) Stagger-tuned stage showing inductively coupled trap. Fig. 2: (r) Equivalent circuit (a) and Thevenin reduction (b)

Inductively Coupled Traps

THE video i-f system of a TV receiver is a complex network because of the many functions it must perform, the most pertinent being the prevention of interference from the adjacent channel sound and video carriers. However, the primary function of the i-f system is to amplify the video signal at the output of the tuner mixer to a substantial level at the video detector. Also, it must amplify with a minimum amount of distortion to the video signal, a band of frequencies from 3 to 4.5 MC wide in order to take full advantage of the high frequency components of modulation.

Fig. 3: Theoretical response curves showing effects of coupling traps to 2-terminal net

Comprehensive analysis serves as practical guide to engineers faced with video i-f and similar network problems. Special emphasis given to effect on "electrical fidelity"


> By WILLIAM F. GARIANO. Allen B. DuMont Labs., 750 Bloomfield Ave., Clifton, N. J.

In as much as the video i-f network is a wideband system, it becomes susceptible to interference from signals within the bandpass as well as those near the extremes of the pass band. The interfering signals within the bandpass are in general special cases and cannot be readily eliminated by any particular design technique. However, those interfering signals found at the extremes of the bandpass, namely the adjacent channel sound and video carriers are adherent to the system and may be approached from the analytical standpoint. For this reason it is necessary to employ some means of

eliminating these unwanted frequencies since the tuner mixer output contains both the desired picture and sound i-f signals as well as picture and sound i-f signals of the adjacent channels.

The simple video i-f response curves obtained by either stagger tuned or double tuned networks are not sufficient to reject some of these undesired signals effectively and yet maintain the video i-f qualities of adequate gain, selectivity, sensitivity and stability. Therefore, a need of additional circuitry for eliminating these undesired frequencies arises, the simplest and most economical

Fig. 4: Response of individual trap networks and effect through 41.25 mc spectrum

means being the inductively coupled trap.

Generally, in the majority of TV areas, 30 db of attenuation between the undesired carriers with respect to the picture carrier frequency is suitable to eliminate video and sound beat interference from the desired video signal. High "Q" trap circuits must be employed that offer a sharp attenuation at these unwanted frequencies without destroying the gain and picture quality of the video i-f system. Receivers operating in fringe areas may require additional adjacent channel traps although these are unnecessary in the majority of TV areas.

The associated sound carrier on the other hand is always present and this trap should possess the following characteristics: first, the ability to attenuate the 4.5 MC sound beat to a level where it becomes negligible in the video picture; secondly, a flat response in the region of the sound carrier frequency must be maintained so that FM slope detection in the form of horizontal bar interference in the video picture does not become apparent. Again the trap should not alter the bandwidth of the video i-f response to the point where it effects the "Electrical Fidelity" of the system.

Analytical Analysis

The analytical analysis presented in this paper is a modification of the familiar double-tuned network theory. It is based on the principle of having a network tuned to a desired rejection frequency coupled to another tuned network fed from a high impedance constant current generator namely, a pentode tube. A mathematical equation relating the attenuation coupling and phase characteristics of an inductively coupled trap was devised on the basis of the usual narrow bandwidth assumptions. The analysis is particularly applicable to stagger-tuned amplifiers, since the networks used in such a system are generally two terminal networks. This analytical expression permits the usual design practices to be followed so that the amplitude and phase characteristics of the trap circuit may be added to that of the system in order to determine the net overall amplitude and phase responses of the amplifier.

If the analysis is applied to any four-terminal network, modification of the driving point impedance must be made before proceeding with the analysis. This modification of driving point impedance may simply be acquired by multiplying the trap response equation by the driving point impedance equation of the system in question. This modified driving point impedance then becomes the complex impedance of the network including the effects from the traps. Figs, 1 and 2 show an example of a stagger-tuned stage illustrating the principle of the inductively coupled trap network.

A mathematical relationship for the trap response may be expressed as a function of the following parameters namely, the attenuation, coupling factor, separation frequency between the networks, a generalized frequency separation, and "Q" ratio. The trap response equation is:

(Amplitude)

$$|A| = \begin{bmatrix} \frac{[(k+1) - nB (B - B_1)]^2 + }{[1 - nB (B - B_1)]^2 + } \\ \frac{[nB + B - B_1]^2}{[nB + B - B_1]^2} \end{bmatrix} 1 = 2$$

(Phase)

$$\theta = \text{Tan}^{-1} \left[\frac{k [(B_1 - B) - nB]}{k [1 - nB (B - B_1)] +} \right]$$

$$\frac{(n \cdot B^2 + 1) [1 + (B - B_1)^2]}{(n \cdot B^2 + 1) [1 + (B - B_1)^2]}$$

The terms in the above equations are defined as follows:

k - coupling factor

B₁ = frequency separation between the primary and the secondary

$$n = ratio's of "Q's" (Q_{\sigma}|Q_{\rho} = n)$$

$$B = 2Q_{\nu}\Delta = 2Q_{\nu} (W - W_{\alpha}) / W_{\alpha}$$

B — generalized frequency separation

$$B = 2Q_0 \Delta = 2Q_0 (W - W_0) (W_0$$

$$B_1 = 2Q_p \Delta_p = 2Q_p (W_p - W_n) W_n$$

It becomes desirable to know the relationship that exists between the coupling and the attenuation especially at the resonant frequency of the trap, where B, the generalized frequency separation, becomes zero. Solving the trap response equation in terms of Ar the attenuation ratio for B = 0, we find that the coupling factor k becomes a function of two parameters, namely B, or the frequency separation factor between the primary and trap circuit, and

the attenuation ratio Ar. These three parameters are related to each other by the following equation:

 $(Ar^2-1)(B_1^2+1)=(k^2+2k)$

Design Technique

To show how the mathematical equation for the amplitude as well as the phase characteristics of an inductively coupled trap are used, a typical design problem in the form of a Butterworth stagger-tripletuned network employing inductively coupled traps will be given as an example. Since the networks employed in a stagger-tuned system are two terminal networks, and since the analytical expressions for the inductively coupled trap circuit were based on having the trap circuit coupled to a two terminal network, the relative trap response may then be simply added to that of

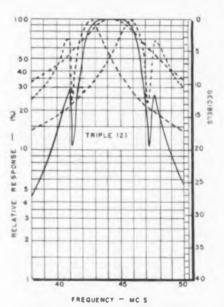
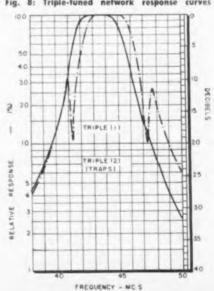



Fig. 5: Theoretical curves for networks

Fig. 8: Triple-tuned network response curves

the staggered system, with a net result being a mathematical formula for the response of the network including the effects from the traps.

An adjacent channel sound carrier trap as well as an associated sound carrier trap were employed in the case of a typical 41.25 MC stagger tuned amplifier. It has been previously determined by experimental data, that inductively coupled trap Q's in the order of 200 and attenuations in the vicinity of 10 db are not unreasonable design factors at this frequency. Also it may be shown experimentally as well as analytically that the trap network should be coupled to a network in the system which is adjacent in frequency to that of the trap circuit. This must be so if the designer wishes to minimize the degree of in-band amplitude and phase distortion for a given trap at-

network should be coupled to a network in the system which is adjacent in frequency to that of the trap circuit. This must be so if the designer wishes to minimize the degree of in-band amplitude and phase distortion for a given trap at

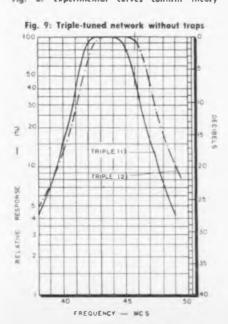

FREQUENCY — MC S

Fig. 6: Experimental curves confirm theory

EXPERIMENTAL

THEORETICAL

TIVE

tenuation ratio. On the basis of this experimental information as well as the fact that a simple stagger-tuned system is composed of a number of two terminal networks, the trap coupling problem becomes relatively simple. The associated sound carrier trap will then be coupled to that network of the staggered system determining the lower limit of the desired response, while on the other hand the adjacent channel sound carrier trap will be coupled to that network specifying the upper limit of the bandpass.

Response Curves

Figs. 3a and 3b are theoretical response curves showing the effects of coupling these traps to their respective two terminal network of the staggered system. The response of the network without the trap is also

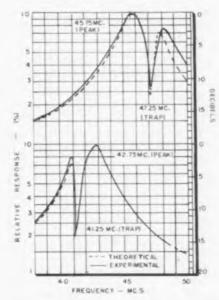
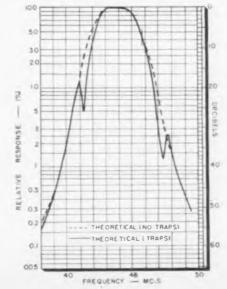



Fig. 7: Experimental data comparing networks

Fig. 10: Overall response of video 1-f system

plotted for a means of comparison. From these results it may be readily seen that the trap network tends to shift the frequency of staggering in the direction where the net bandwidth of the overall system is reduced. Also, because of the double peaked response of the trap network a certain amount of energy in the form of a "kick-back" appears in the undesired region of the bandpass. For this reason it becomes apparent that it would be desirable to have very high Q traps, so that the amount of energy appearing in the outer bandpass region be of insignificant amplitude. Also, it would be desirable to have the frequency separation between the network and the trap circuit as small as possible, so as to minimize the amount of inband amplitude and phase distortion presented by the trap circuit. Again, in tuning the system on the basis of a single frequency alignment technique, the original frequencies of staggering must be used even though the net result of tuning shows the peak of the response to be at some other frequency. Reference to the analytical analysis found in the appendix will show the reason for this tuning procedure.

Fig. 4 is a relative response in db of the individual trap networks and their cumulative effect throughout the entire 41.25 MC video i-f spectrum. It will be well to note that traps add a small amount of gain to the desired bandpass region of the video i-f spectrum. Also from the individual trap responses shown the amount of energy present in the outer pass region is small, which fact may be basically attributed to the high Q and closeness in tuning between the trap circuit and the network to which it has been coupled.

Degree of Accuracy

Fig. 5 contains theoretical curves of the individual networks of the staggered system as well as the over-all response. Fig. 6 contains confirming experimental curves these theoretical computations. The degree of accuracy between the theoretical and experimental results is quite high and tends to prove the validity of the original design assumptions for Q and attenuation. Fig. 7 contains experimental data comparing the individual networks to which the traps were coupled with their respective theoretical response. The results here show a slight discrepancy in the theoretical

(Continued on page 142)

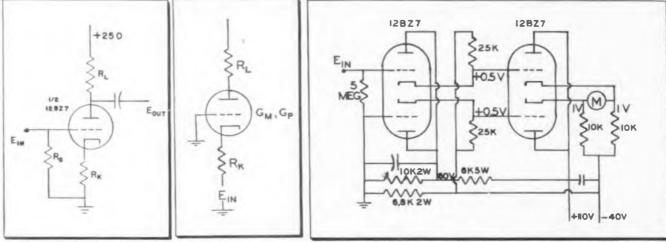


Fig. 1: Triode degenerative amplifier Fig. 3: (Center) Grounded grid amplifier Fig. 4: (Right) Vacuum tube voltmeter circuit

THE establishment of design equations for amplifier circuits capable of generating signal output voltages at one or more points in addition to the normal output terminals requires considerable care. All equations established for a tube circuit refer the tube voltages to the potential of the cathode. Where the cathode is not at ground signal potential, a cathode signal voltage term must be included. The derivation of the operating equation of the

By Dr. KEATS A. PULLEN
Orduance Dept.
U. S. Army Bullistic Research Labs.
Aberdeen Proving Grounds, Md.

cathode degenerative triode amplifiner is carried out in full in order to show the technique in a typical problem. Equations for other circuits, derivable in similar manner, are quoted without derivation.

Triode Degenerative Amplifier

The triode degenerative amplifier (Fig. 1) develops a signal voltage across the cathode impedance as well as across the output impedance. As a consequence, the grid to cathode voltage and the plate to cathode voltage must include the voltage component developed across the cathode impedance, $R_{\rm K}$. The basic

G-Curves and

plate current Eq. (1) then takes the form of (2)

$$i_p = G_M e_s + G_p e_p$$
 (1)

$$i_p = G_M (E_{in} - i_p R_K) + G_P (i_p R_K - i_p R_L) + (2)$$

Checking the grid mesh circuit and the plate mesh circuit (or junction pair equivalent) shows that the multiplier of G_M is exactly the grid to cathode voltage, and the multiplier of G_P the plate to cathode voltage.

Solving Eq. 2 for the voltage amplification gives

$$VA = G_M R_L/[1 + (3)]$$

 $(G_M + G_P) R_K + G_P R_L$

The parenthesis term in the denom-

inator of Eq. 3 gives the effect of cathode degeneration. By comparison, one sees that the effect of plate conductance is to introduce what might be called plate degeneration.

Effective Stabilization

fec

rec

ter

lar

the

de

an

as

sig

SU

ma

de

of

(F

10 be of

th

ze

at

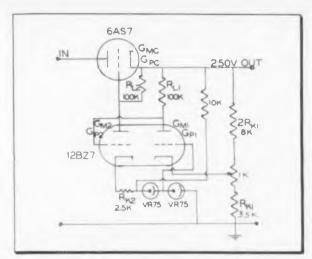
ati

ur

fic

di


in


on

TE

When the parenthesis term of the denominator is large compared to the first and last terms of the denominator, appreciable degeneration results. Then, if the plate conductance is small compared to the transconductance, the amplification will be just slightly less than $R_{\rm L}/R_{\rm K}$. The amplification approaches this ratio more and more closely as the plate conductance becomes smaller and smaller com-

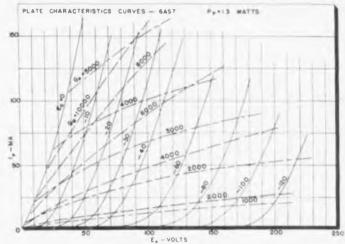


Fig. 5: Compound voltage regulator circuit Fig. 6: Characteristic curves on 6AS7 tube

Degenerative Amplifiers

Seventh in the series of articles describing vacuum tube conductance curve design techniques

pared to the transconductance. Effective stabilization of an amplifier requires first that the parenthesis term of the denominator of (3) be large compared to the balance of the denominator, and second that G_P be small compared to G_M .

Design Example

As an example of the design of a degenerative amplifier, assume that an amplifier is required to provide a stabilized amplification of approximately 35. The output peak to peak signal voltage required is 140 v. A supply voltage of 250 v. is available.

A 12BZ7 tube triode section makes an excellent choice for this degenerative amplifier. Examination of the curves of the 12BZ7 tube (Fig. 2) indicates that choice of a 100,000-ohm load resistance should be a good initial choice. The range of plate voltage change indicates that the 140 volts required should be available. With $R_{\mbox{\tiny K}}$ equal to zero, amplifications at zero bias and at -1 v. and -2 v. bias respectively are 68, 72, and 57. Cathode degeneration may be inserted to reduce the stage amplification to 40. A cathode resistor of 1000 ohms resistance, if unbypassed, will reduce the amplifications to 40.5, 42, and 36.2 at zero bias, -1 v., and -2 v., respectively. The resulting feedback reduces the distortion to approximately half the value without feedback.

Drawing the load line corresponding to 100,000 ohms load resistance on Fig. 2, and reading the plate cur-

rent change caused by a change of bias from zero to minus two volts, one finds that the plate current changes from 2.3 ma. to 0.8 ma. This 1.5 ma. current change produces a 150 v. output for a grid to cathode bias change from zero to -2 v. The input signal required from grid to ground in the cathode degenerated amplifier is the sum of the grid to cathode signal voltage and the cathode to ground signal voltage. The cathode voltage change resulting from the signal voltage may be found from multiplying the value of the cathode resistance by the plate current change. The cathode amplification factor may be found from

$$VA = G_{M} R_{K}/[1 + (4)]$$

$$(G_{M} + G_{P}) R_{K} + G_{P} R_{L})$$

The grid to ground signal voltage required to provide the two volt grid to cathode voltage change is found to be 3.5 v. in the problem under consideration.

Grounded Grid Amplifier

The form of grounded grid amplifier commonly used in TV may often be represented as in Fig. 3. The amplifier equations derived from Fig. 3, for plate and cathode, are

$$VA_{P} = (G_{M} + G_{P}) R_{L} /$$
 [1 + G_{M} + G_{P}) R_{K} + G_{P} R_{L}] (5

$$VA_{K} = (1 + G_{P} R_{L})/$$

$$[1 + G_{M} + G_{P}) R_{K} + G_{P} R_{L}]$$
(6)

Examination of Eq. 6 shows that the cathode gain is one half when

$$(G_M + G_P) R_K = 1 + G_P R_L$$
 (7)

Where the input voltage $E_{\rm in}$ is dependent on the value of $R_{\rm K}$, the maximum amplification in a grounded grid amplifier may not occur when $R_{\rm K}$ is zero. If, for example,

$$E_{in} = E_1 k \sqrt{R_K}$$

then maximum amplification occurs when

$$R_K = (1 + G_P R_L)/(G_M + G_P)$$
 (8)

CONDUCTANCE CURVE

techniques for additional design applications are described by the author in the following issues of TELE-TECH & ELECTRONIC INDUSTRIES:

Sept, 1953: "G Curves & Impedance Ampli-

July 1953: "Conductance Curves Speed Pentode R-C Amplifier Design"

May 1953: "Conductance Curves Speed Triode R-C Amplifier Design"

Feb. 1953: "UHF Oscillator Design Notes"
Nov. 1950: "Use of Conductance, or G, Curves

for Pentode Circuit Design"

Aug. 1949: "Using G Curves In Tube Circuit

Design," Pt, I

July 1949: "Using G Curves in Tube Circuit
Design," Pt. II

Examination of Eqs. 5 and 6 provides information on the tube design characteristics desired for grounded grid operation. The first of these characteristics is a high transconductance. With high transconductance, reasonable amplification may be obtained in the presence of moderate amounts of electrode capacitance. The second is a small plate conductance. With a low plate conductance the tube loading can be small enough to achieve adequate amplification.

The 12BZ7 tube appears to be nearly ideal for a grounded grid amplifier application. With a plate voltage of 125 v. and a tuned circuit

(Continued on page 164)

THE growing popularity of magnetic tape recorders for professional audio and broadcast services, as well as home entertainment, has fostered the need for a relatively simple means of measuring recorder performance. This means should require a minimum of auxiliary equipment and set-up time, and should retain accuracy over a long period of time.

The test tape is capable of meeting these requirements. A few manufacturers have developed test tapes designed to measure one particular function, such as head alignment or frequency response, on a reel. The need still appeared to exist for a test tape, which on a single reel would provide the means for testing practically all of the important functions of a tape recorder.

Test Tape Development

It was with this in mind that The Dubbings Co. undertook the development of the D-111 test tape, "The Measure of Your Tape Recorder's Performance." Besides enabling the user to see how well his recorder is performing, it enables him to obtain peak performance by correcting those electrical and mechanical difficulties indicated by the performance symptoms. Also, the D-111 permits a potential recorder purchaser to evaluate the differences between various makes and models—and they often vary considerably.

The D-111 is a full-track 7-inch reel, and runs for close to 15 minutes at 15 in. sec. Since this tape acts as a

New Test Tape for

By JULIUS 4. KONINS, Chief Engineer, The Dubbings Co., Inc., 41-10 45th St., Long Island City 4, N.Y.

standard reference, it is most important that it be free from stretching, remain uniform under extreme storage conditions, and resist breaking and curling. Consequently, the new Reeves Soundcraft "Lifetime" tape is used exclusively. This tape, made of DuPont mylar polyester film, fulfills the requirements. Production recordings are made on the finest professional tape machines manufactured by Fairchild Recording Equipment Co.

Six of the most important tests for a magnetic recorder are recorded on the tape. See Fig. 2. Voice announcements are included. The tests are for wow and flutter, head azimuth alignment, frequency response, signal-tonoise ratio, maximum signal level, and tape speed. Only a vacuum tube voltmeter or similar instrument is required to make most of the tests.

Wow and Flutter

Frequency wow is a modulation effect which is caused by periodic variations of the tape speed. Flutter is a similar, though higher frequency, cyclic deviation from true frequency. This may be detected by ear if the change in pitch is as small as 0.5%. The D-111 has a 30-second 3000-cycle tone recorded on it. Very

high quality recorders are often rated for 0.1% rms wow and flutter, while average quality machines range from 0.3% to 0.4%. If the ear, which is very sensitive to changes in pitch at 3000 cycles, cannot detect any wow, the recorder wow is probably under 0.5%.

A simple trick to make the magnitude of wow more evident is to induce a wow by touching the reel during operation. If a light touch causes a considerable increase in wow, the normal level most likely is well under 0.5%. On the other hand, if a heavier touch does not materially increase the total wow, rest assured that the wow was excessive to begin with.

Abnormal wow is a clue for the troubleshooter. It may lead to a faulty capstan, worn idler, defective motor, or distorted reel. Also, all friction surfaces should be checked for oil, spring tensions tested, and any tape binding in the guides noted; however, eccentric rotating parts are generally the prime offenders.

Head Alignment

ela

ke

out

IS 1

out

rate

jus

obt

jus

bee

usi

01' 1

bac

tou

rec

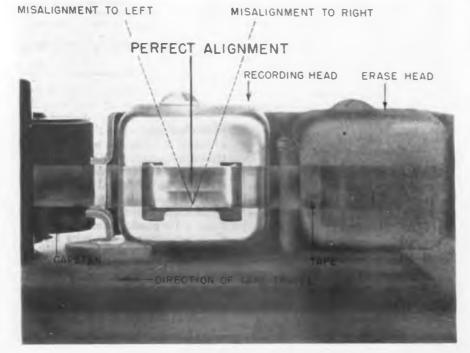
tou

test

ran

wit

The


sec

10 :

At first it was intended to evolve a means by which the user could tell exactly how much the recorder head deviated from perfect azimuth alignment merely by playing the test tape. A method was developed to do this. It consisted of recording seven sections of tape, with the fourth section aligned vertically. The other sections were recorded with the head at increasing increments of deviation from the vertical. On playback, maximum output would be achieved at that section corresponding to the playback head alignment. This method worked well in experimental tapes but was abandoned after it became apparent that the angle of deviation was of little consequence, the important thing being the high frequency loss that the misalignment created.

A simpler, yet more conclusive, method was decided upon for inclusion in the D-111. It consists of a 10,000-cycle tone recorded by a head in perfect vertical alignment. To determine if the machine under test has a properly positioned head, gently touch the top and bottom of the moving tape with a pencil or

Fig. 1: Relative positions of tape, capstan and heads. Correct azimuth alignment is indicated

Magnetic Recorders

Peak performance may be achieved by using six most important tests recorded on single reel. These include wow and flutter, head alignment, frequency response, signal-to-noise ratio, maximum signal level, timing

elative azimuths of the tape and head a small amount. If the resulting output drops when the tape is kewed in both directions, then the head is properly aligned because output is maximum when the tape is untouched. Conversely, if touching the tape top or bottom increases output, then the head is not accurately aligned and should be adjusted until maximum output is obtained.

For machines with a separate record head, this too may be adjusted after the playback head has been corrected. Record a 10,000-cycle tone on a piece of scrap tape, using a signal generator, test record, or the test tape on a second machine as the source. Play the scrap piece back on the corrected head, and touch the top and bottom. If the record head is perfectly aligned, touching the tape will cause a drop in output. See Fig. 1.

e

£

11

d

e.

S.

n

ns

on

ed he nis

it of ce, gh

ve, lula ad leest

ad,

OI

954

Frequency Response

The D-111 test tape includes two test runs of 14 steps covering the range 30 to 15,000 cycles recorded with NARTB standard characteristic. The first run goes rapidly through the entire range, allowing a few seconds for each step. Its purpose is to allow the user to set the volume

level according to the response peak for the main frequency run which follows. The overall frequency response may be plotted by noting the output level for each voice-announced twelve-second step. These frequency steps are: 30. 50, 100, 200, 400 and 700 cps, and 1, 2, 4, 6, 8, 10, 12 and 15 kg.

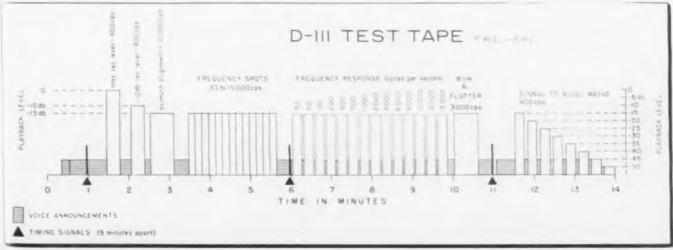
A top quality professional or highfidelity recorder may be expected to have a frequency response of =2 db from 50 to 15,000 cycles, at 15 ips. Moderately priced machines depart quite sharply from such flat response. Should the resulting response data indicate that the recorder is not performing according to its capability, there are several trouble spots worth checking. The fault may lie with either the record or playback amplifier if either has improper equalization. Low bias may be the cause of poor low frequency response, and too high bias may result in poor high frequency response. A worn head or inadequate tape-tohead contact, as may be caused by tape rub-off, will attenuate high frequencies. Other troublemakers, such as head misalignment and incorrect tape speed, may be corrected with tests on the D-111 specifically intended for the purpose.

Signal-to-noise ratio is a measure of the difference between signal level and noise. In general, the better the

recorder, the higher the S/N ratio. A first class professional machine might have a S/N ratio of 50 to 55 db, while a good home recorder's S/N ratio would probably be around 35 to 45 db at 15 ips.

The D-111 provides the means for measuring S/N ratio from 15 to 50 db, based on a zero level of 3% distortion, which is the NARTB standard. For most recorders, this section of the test tape is an exact S/N measure; for the best quality machines, it indicates the lowest maximum ratio, 50 db, which may be tolerated.

The recording consists of a series of 400-cycle signals, each diminished in volume in steps of 5 db. During each tone period, the playback volume of the recorder should be increased to maintain constant volume output. Naturally, the noise level of the recorder increases simultaneously with the upward adjustments of the volume control. Eventually a level is reached where the noise during the few quiet seconds between voice-announced tone levels is as loud as the tone just heard. The level noted at this interval is the recorder's signal-to-noise ratio.


A S/N ratio which turns out to be worse than expected would indicate the necessity for checking certain key points which may be the noise source. These include a head with remanent magnetization, excessive vacuum tube noise, or hum induced by stray fields.

Maximum Signal Level

A 400-cycle tone on the test tape provides an excellent means of calibrating for the optimum level at which all future tapes should be recorded. It is recorded at zero level, based on the NARTB standard of 3%

(Continued on page 180)

Fig. 2: Playback level, time of signal steps, and frequencies on tape which tests recording level, alignment, response, timing, wow, and S/N

Contouring TV Antenna

Advent of high gain antennas demands close attention to null regions. Adjustment of vertical plane pattern, in conjunction with height, location, gain and transmitter power requirements, can insure desired coverage

By L. O. KRAUSE, Supervisor Antenna & Relay Engineering General Electric Co. Syracuse, N.Y.

The advent of high gain antennas for television has aroused interest in the manner of insuring adequate signal in the so-called "null-regions." Generally, four factors—average antenna height, antenna location relative to population and terrain, antenna gain, and transmitter power—enter into coverage consideration. Adjusting the antenna vertical plane pattern to pro-

vide certain signal levels based on the requirements of these four factors may be defined as pattern contouring.

The present trend in antenna use has been toward greater tower heights, and greater distance from antennas to primary city. Thus, some of the problems of applying high gain antennas have increased. These problems are fundamental, and greater care and study have been required to provide adequate installation of such antennas. The answer to most of these problems has been to modify the normal pattern of the antenna.

Fig. 1 illustrates the vertical plane antenna pattern. It is that pattern which lies in a vertical plane passing through the axis of the antenna, the magnitude of the field being plotted versus angle when taken at constant distance. Usually, such patterns are measured with the antenna horizontal simply for physical reasons. In order to get a general idea of what is meant by contouring,

see Fig. 2. Here is a standard an tenna pattern with basic nulls, over laid on one side by a tilted pattern and on the other side by one with null fill-in. In general, contourin employs these two basic factors—til and null fill-in.

Null:

pha

he

nno

vh

ig

vhi

ha

who

or

a n

as

CON

be !

F

eri

nu

2

3

4

10 1

ten

is i

fart

effe

cou

crea

awa

tion

gair

whi

commulithe tand sign committed become become the committed become the committed become the community of the

lec

1 SI

mm ie c

ove

lete n r liete

ELE-

T

F

Nulls are fundamental in antenn. arrays. An antenna array is composed of a prime element having it. own pattern, multiplied by the array factor which will be defined. Null will exist where either the array factor becomes zero, or where the prime pattern has a null. Generally the prime pattern is broad in vertical shape, and its nulls are usually at low angles which do not cause difficulty. However, the array factor resulting from a large vertical aperture, produces nul's at high angles. or near the horizontal. These are the nulls which usually cause difficulty Therefore, in the following, the discussion will tend to center around array factor nulls.

The array factor is basically a summation of vectors. Fig. 3 illustrates a two-element system, showing how the distant field is made up of the sum of two components. I_1 is the current flowing in element 1 and I_2 is the current flowing in element 2. The angle \circ corresponds to

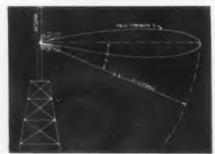


Fig. 1: Geometry of the vertical plane, illustrating the vertical pattern of an antenna

Fig. 2: Normal plot, showing vertical pattern

nulls, with nuil fill-in and beam tilt overlay

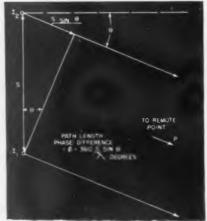


Fig. 3: Fundamental sketch of 2-element array

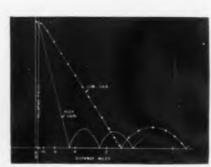
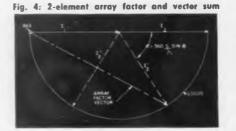
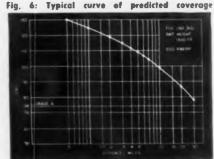




Fig. 5: Overlay of low-gain and high-gain antenna. Note nulls move to greater distance

Patterns

he path length phase difference. The phase angle a is a function of he angle below the horizontal, and equals [S sin θ/λ] 360 degrees where S is the element spacing. ig. 4 shows how the sum of the ector components makes a locus vhich constitutes the amplitude and hase of the array factor. Note that when o equals 180° the array facor passes through zero and gives null. Nulls exist any time the locus passes through the reference. More complex graphical array factors will he shown later, and this point should be borne in mind.

Factors which may affect the pattern contouring required may be enumerated as:

- 1. The antenna gain.
- 2. The antenna height.

30

up

is

to

rage

1954

3. The transmitter power.

4. Terrain, and location relative to the principal area to be covered.

For example, let us consider antenna gain. If the gain of the antenna is increased the pattern nulls move farther away from the antenna. This effect is shown in Fig. 5. Also, of course, as the antenna height is increased, the nulls again move farther away from the antenna in proportion to the height.

Thus the combination of increased gain and increased antenna height, which is becoming more and more common practice today, leads to nulls becoming quite distant from the transmitting site. As this distance becomes greater, the effective signal level in the null naturally becomes lower. The amount of transmitter power being employed then becomes an important factor. The higher the transmitter power, the greater the relative depth of null which may be tolerated, since the total level of signal is increased.

Terrain effects enter in that the round may slope away abruptly on one side and be relatively flat on the other side. A combination of electrical and mechanical beam tilting may be necessary to handle such situation. In this way, a city lying mmediately below the antenna may be covered by adequate signal, while city on the flat side may also be overed.

Null Fill-In Required

A good place to start in trying to letermine the amount of null fill-n required is from a typical predicted coverage curve based on FCC propagation Data. This curve is

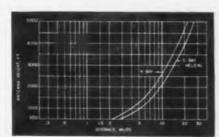


Fig. 7: Nul location for UHF helical antennas

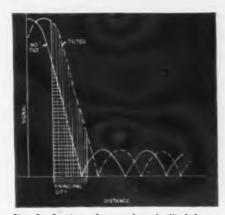


Fig. B: Overlay of normal and tilted beam, showing effect on the medium distance area

shown in Fig. 6 for 200 kw ERP and antenna height of 1300 ft. For example, note that at a distance of 5 mi., a tolerable null depth of 34 db exists for grade A. Now, if the ERP is dropped by 10 db, for example, by using a 1 kw transmitter instead of a 10 kw transmitter, the needed null fill-in steps up in the same proportion, or 10 db more null fill-in to a level of 24 db is required. Now if the antenna were 470 ft. high, so that the most distant null fell at 1.8 mi., note that no more null fill-in would be required at 20 kw ERP than with the previous level of 200 kw ERP and the higher antenna. This shows the tie-in between antenna height, gain and transmitter power.

A typical graph of null location, made for the G.E. 4 and 5 bay UHF helical antennas is shown in Fig. 7. It is very simple to calculate the location of these nulls by placing certain conditions on the array factor. In some cases it may be desirable to estimate quickly where the nulls will fall. A quick rule of thumb method for the most distant null is to take the antenna gain times the antenna height. For example, with a UHF antenna gain of 25, and antenna height of 1.000 ft., the most distant null will fall at 25,000 ft. or almost 5 mi.

Fig. 9: Two-element array factor showing the effect of amplitude to prevent null formation

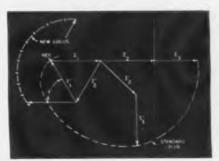
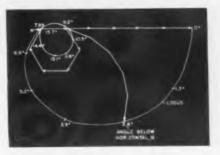



Fig. 10: Three-element array factor showing the effect of phase to prevent null formation Fig. 11: VHF six-bay standard array factor

This rule of thumb method assumes that the antenna gain is close to the antenna aperture in wave lengths. Sometimes the gain is altered by feed line losses or other factors to a large degree. To obtain a more accurate estimate for such antennas, it may be desirable to use the antenna aperture in wavelengths times the height of the antenna. The actual simplified expression is d hns/m λ , where h = antenna height, n = number of elements, s is elemtn spacing, $\lambda =$ wavelength, m = number of null (the most distant occurring when m = 1), d is the distance and comes out in same terms as h.

Once we know where the nulls will fall and what ERP is to be transmitted, the amount of null fill-in required may be obtained. We arrive now at the problem of determining how to accomplish the filling of these requirements.

Beam Tilting

Beam tilting as such usually helps solve a high gain coverage problem in the medium distance range. Also, some beam tilting may be desirable for maximum range, since the horizon is depressed from the horizontal, the amount of depression increasing

TV ANTENNA PATTERNS (Continued)

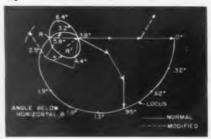
with antenna height.

To demonstrate how beam tilting may solve the problem of covering medium distances, see Fig. 8. Note that without beam tilt, the area at a medium distance from the antenna may have large variations in signal across the area. However, by tilting the beam a small amount, this medium area may be brought up to a high level point on the beam without much variation in average signal.

Simple beam tilting is accomplished by the technique known as phase shift. In other words, uniform phase advance is put in each primary unit of the antenna array from bottom to top. In a two-element array, the maximum signal will occur at a distance below the horizon at that angle where \$\phi\$ is equal to the phase lead angle, gamma. The same principle applies to larger arrays.

It should be noted that phase shift on a two-element array will not produce null fill-in but only beam tilt. No matter what the relative phases are, the array factor locus will always pass through the reference, and produce a null. Even an antenna array comprising many elements may be broken into groups such that a total of only two groups may be operated on. For example, a 12-bay antenna might be broken into two groups of six, and each group of six may be represented as one primary element of the array. Then relative phase shift between these two groups will produce beam tilt but not null fill-in.

The actual amount of total deviation to be made from the standard pattern distribution, to secure a certain amount of null fill-in, may require a considerable amount of trial and error work. However, certain general principles do apply.


Previously, it was noted that null fill-in cannot be accomplished by using two-element array phase shift. However, by using relative amplitude deviations, null fill-in can be accomplished in a two-element ar-

ray system. This is shown in Fig. 9. Note that with the currents in one element reduced as compared to that in the other, the array factor locus no longer passes through the reference. In a two-element array employing amplitude deviations, the degree of null fill-in may be observed immediately, as represented by the remaining vector as the locus crosses the axis at point A. The fact that the basic element may have nulls must be included in the overall picture.

Null fill-in can be accomplished by phase shift if more than two elements are used in the operation. The minimum basic array which may be employed to produce null fill-in by phase shift is three. The use of this technique is illustrated in Fig. 10. Note that with uniform phase and amplitude distribution, a null occurs when the three currents form an equilateral triangle causing the locus to pass through the reference point. Now, however, if the top current I₃ is given a phase lead, the array factor locus shifts a new patch which does not pass through the reference. No null will then exist in the region where one previously existed. Quite often, it may not only be the first or most distant null which is concerned, and then the array factor must be analyzed for a greater region. After making such an analysis, it may be found that a combination of amplitude and phase deviation may be desirable.

Generally speaking, the amount of fine control which may be achieved depends on the number of elements employed in the array. For example, to produce null fill-in by phase shift, say on a 12-bay antenna, the antenna must not be broken down to less than three elements of four bays each. Thus, the extension of these fundamental operations to larger arrays is possible, but may be time consuming in order to produce the results desired.

Fig. 14: Standard 4-bay UHF array factor. The angles on locus are those below the horizontal

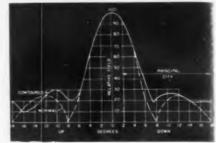


Fig. 12: VHF six-bay contoured pattern, show range of principal city, with overlay

For VHF the highest gain antenna usually employed is the 12-bay super turnstile. In many cases, some contouring of the pattern of this antenna is desirable. However, before discussing contouring the 12bay pattern, let us examine the well-known six-bay antenna. Even though this antenna is not of particularly high gain by present standard, there are some applications which make contouring of its pattern required.

The array factor of a standard six bay antenna is shown in Fig. 11. The degree marks located on the array locus correspond to degrees below horizontal. The complete array factor is not shown, since it would become quite crowded around the reference region, since the array factor circles through the reference point several times before again unwinding. As was the case with the previously discussed two-element array factor, every time the locus passes through the reference point, a null exists.

sho

tion

vel

ure

ins

free

des

Ca

of t

ele

ma

a h

cra

lan

tion

onl

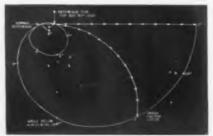
ope

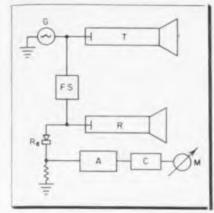
of

faci

tecl

lish


TELE


A particular application in Brazil called for a six-bay antenna, but with the principal city lying very close to the transmitting site in the range from 2° to 23° below the horizontal. Simple beam tilting alone could not handle this situation. Fig 12 shows a standard six-bay pattern showing how this particular city lay almost completely in the null and side lobe region. The only answer here was contouring the pattern, as shown by the solid line.

For most applications of 12-bay antennas, only a small amount of fill-in of the most distant null is required. A very simple way to accomplish this is by 90° phasing of the top or bottom bay of the antenna. In order to illustrate the effect of such phasing, the applicable portions of the array factor are shown in Fig. 13. Note that 90° lag in the bottom bay shifts the reference point as shown on the slide The array locus then fails to pass through this reference, and so nul fill-in has been accomplished.

When such phasing is done, the 12-bay pattern undergoes a small (Continued on page 138)

Fig. 13: VHF 12-bay array factor, standard phasing of the top or bottom bay

e

S

У

11

nt

13

ıll

zil

ut

гу

·i-

ne

ig

rn

81

nd

er

as

ay of

°e-

of inthe ble are lag erde iass iul

954

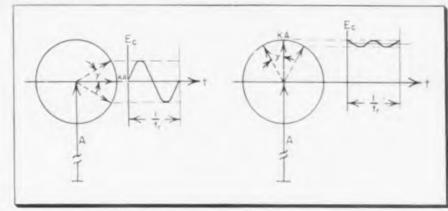
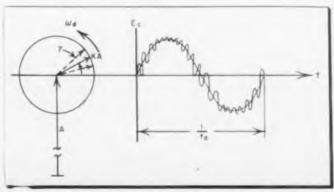


Fig. 1: (Left) Block diagram of FM altimeter. 10,000 MC FM generator (G); Transmitter (T); Phase shifer (FS); Ground signal receiver (R); Mixer rectifier (Re); Amplifier (A); Count averaging mechanism (C). Fig. 2: (Right) Vector representation of FM altimeter operation. Max carrier signal amplitude (A); Received signal (KA); y distance above ground; fr is repetition frequency of transmitter.

Low-Level FM Altimeter

New NBS development enables helicopter operator to know position of craft within 2 ft. of landing surface

BY using appropriate frequency shifting and by modifying existing techniques for recognizing short-distance information, the National Bureau of Standards has developed an altimeter that will measure altitudes as low as two feet. This instrument, called the nonquantized frequency-modulated altimeter, was designed by H. P. Kalmus, J. C. Cacheris, and H. A. Dropkin as part of the Bureau's research in ordnance electronics. The NBS altimeter makes it possible, for instance, for a helicopter pilot to know when his craft is within several feet of the landing surface, whereas conventional altimeters give information unly to the closest 10 or 20 feet. An operating frequency in the X-band of the radio spectrum (10,000 MC) facilitates the use of equipment and techniques resonably well established and technologically available.


Most FM altimeters for aircraft generate high-frequency signals and direct the radio energy along a narrow path. When the radiated energy strikes a reflecting surface (the deck of a ship, for instance), it returns to the transmitter-receiver location essentially along the same path. Electronic circuits translate into feet or miles the period elapsed between the time the signal left the transmitter and the time it returned to the receiver. Ideally, the transmitter frequency of such an altimeter should be continuously variable, starting at zero frequency and continuing to higher and higher frequencies. The distance between the transmitter and the ground would then be computed electronically from the frequency difference between the received signal at one instant and the transmitted signal at that same instant. With such a continuously variable generator, the frequency of the received signal would always be lower than the transmitted signal by an amount dependent on the instantaneous distance from the ground.

Because transmitters cannot be continuously varied between zero and an infinitely high frequency, altimeters in actual practice generate a relatively narrow band of frequencies and transmit this range at a The distancerecurring rate. dependent time delay between the transmitted and received signals still forms the basis for measuring altitude, but in conventional models the recurrence of like frequencies within short intervals introduces an error that prohibits the accurate detection of altitudes less than 10 or 20 feet. Furthermore, conventional altimeters operate under a quantized system, in which integral distances (10, 20, 30 feet) are added and the average over a period of time is a measure of the altitude of the transmitter. This system is efficient and accurate in the measurement of

(Continued on page 182)

Fig. 3: (Left) Detected signal of nonquantided FM altimeter incorporating an amplifier with a uniform frequency characteristic.

Fig. 4: (Right) Detected signal of FM altimeter incorporating a circuit that filters out from the counter energy at frequency fd.

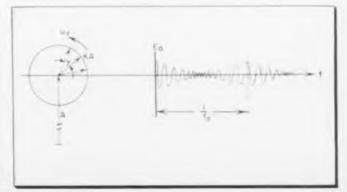


Fig. 1: (1) Crystal-controlled telemetering transmitter. Fig. 2: (r) Block diagram shows oscillator, modulator, multipliers and amplifiers

TELEMETERING requirements have fostered the need for a transmitter with a stable carrier frequency, and one that would be reliable under rather severe conditions. Consistent operation with 100 g shocks, 50 g accelerations, vibrations of 2 to 10 g's in the frequency range of 10 to 500 cps, and on ambient temperature range from -65°C to +90°C were required. Reliability was of utmost importance since the time consumed by weeks of preparation for one test run would have been lost by a transmitter failure.

As a start, all the commercial telemetering transmitters that could possibly fill the application were examined in the hope that one of them could be used. All had free running oscillators which allowed intolerable carrier drifts of up to 0.5mc. Their spurious sideband radiations were not within the FCC or military specifications. Distortion averaged around 5%. Their physical construction cast doubt upon their reliability under the required service conditions. Hence, it became apparent that it would be necessary to develop a new telemetering transmitter.

Subminiature Tubes Used

The unit shown in Fig. 1 is the final product. It is crystal controlled with a nominal power output of 2 watts and operates in the 215 Mc to 235 мс telemetering band. Subminiature tubes are used throughout with the exception of the power output tube which is a miniature type. This unit has been produced on a large scale and has been used in a diversified number of applications. The carrier frequency changes are less than $\pm 0.005\%$ over a -20° C to $+90^{\circ}$ C ambient temperature range. The spurious sideband radiation greater than 50 db down from the

A Ruggedized FM

By R. G. SPANN, Sperry Gyroscope Co., Great Neck, L.I., N.Y.

carrier level. The distortion, at a modulation index of 2.0, is less than 2.3% for any modulating frequency between 1500 cps and 50 kc. The transmitter bandwidth is 3.1 Mc. The unit is compact, measures about $5\frac{1}{12}$ by $4 \times 1\frac{1}{2}$ in. and weighs 2 lbs.

A transmitter with these characteristics can be used advantageously for three general applications.

1. Applications that require several transmitters operating in the same telemetering band; for instance, where data are required from more than one mobile vehicle, or where more channels of data are desired than one transmitter is able to handle. Two or more transmitters would make it unnecessary to have complex switching of data on the sub-carriers.

2. Applications under rugged operating conditions; for instance, rockets, aircraft, or mobile applications over rough terrain.

3. Applications where dependability is paramount; for instance, in unattended telemetering stations, or projects in which weeks of preparation would be nullified on the test run by a transmitter failure. In an FM-FM system, failures can occur in the sub-carrier modulators and the greater portion of the data will still come through. However, if the transmitter fails none of the data channels are transmitted.

Fig. 2 is a block diagram of the circuit. The oscillator is a crystal controlled high impedance type circuit. The crystal frequency is approximately 6 Mc and is multiplied

36 times to the carrier frequency by four frequency multipliers. The crystal now used has a stability of ± 50 cycles MC over a temperature range of -20°C to $+90^{\circ}\text{C}$. If operation over a greater temperature range is desired, there are crystals now available that have the same frequency stability over a -55°C to $+120^{\circ}\text{C}$

Frequency Multiplier Chain

op

te

via

inc

abl

am

cor

car

and

mo

cor

fre

and

mo

tor

and

que

end

du

vil

cor

570

Th

ere

rat

du

ho

tra

are

thr

SIS.

hol

tur

mo

Lo

TEL

The frequency multiplier chain consists of four stages-2 doublers and 2 triplers-all double-tuned. The circuits have been stabilized against temperature changes by the use of compensating capacitors of the correct temperature coefficients. The use of several double tuned stages provides a dual advantage. First, spurious radiations are more effectively attenuated and second, the larger the multiplication factor used the less distortion obtained. The stages are adjusted by tuning for maximum grid drive at the succeeding stage. Test points are provided in the grid circuit of each stage and are so shunted that a standard dc milliameter with an internal resistance of 100 ohms can be used as a tuning indicator. The power output stage consists of a miniature type push-pull amplifier tube whose nominal power output is 2 watts, giving the transmitter a possible line of sight range of about 100 miles. The output signal is fed to an antenna by a 50 ohm coaxial cable.

The transmitter is phase modulated at the crystal frequency. The modulator is a standard circuit that

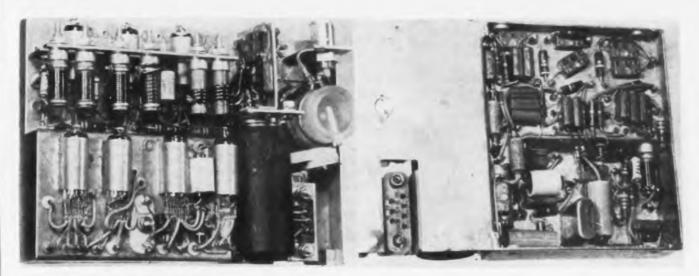


Fig. 3: (I) Top view of transmitter chassis. Note absence of terminal boards. Fig. 4: (r) Underside of chassis showing point-to-point wiring

Telemetering Transmitte

Crystal-controlled system designed to provide reliable operation over extreme range of shock, vibration and temperature. Examination of environmental conditions

has been modified so that large deviation values of the carrier will not increase the distortion to undesirable amounts.

y

50

m

C

in

in

rs

ed.

ed

he

he

he

ges

st,

ec-

he

sed

he

for

ed-

in

are

ia-

of

in-

on-

oull

wer

nsnge

gnal

hm

du-

The

that

1954

The audio amplifier increases the amplitudes of subcarriers which are considerably attenuated by the subcarrier oscillator isolating resistances, to the level required by the modulator. This amplifier-modulator combination provides a modulation frequency range between 1500 cps and 50 Kc. It requires 0.02 v to give a modulation index of 2.0. The modulator input impedance is 10,000 ohms and 510 unf.

Low Microphonic Noise

5702 tubes were chosen for the frequency multiplier stages in preference to other types because they produced low microphonic noise under vibration. A 6K4A and a 5703 were compared for the audio stage but the 5703 was superior microphonically. The 5763 and 5656 were both considered for the output tube. The 5673, rated at 2.83 watts at 175 Mc, produced less than 1 watt at 219 MC however, and was discarded

Fig. 3 shows the top side of the transmitter chassis. The components are mounted to glass-insulated feedthrough terminals on a 3-deck chassis. No terminal boards are used. The holders designed for the subminiature tubes provide for good shock mounting and good heat conduction. Located in order from left to right on

the top deck are the audio, oscillator, modulator, and first doubler tubes. The lower deck contains the interstage coupling coils with their respective 5702 frequency multiplier tubes mounted beneath. The 5656 output stage is located to the left of the chassis. The tank coil is wound on the polystyrene cylinder to the left of the 5656 tube. Because of the high temperature developed a teflon insulated coaxial cable is used. For all uses where high shock and vibration are experienced the slugs are sealed in the coil forms after tuning and shafts of the coils are secured with a thermoplastic type cement.

Component location on the chassis was determined with the aid of a vibration table. Components were oriented or shifted and chassis resonant points damped in order to reduce vibration modulation to a minimum Many time-consuming changes that would have been discovered later in type tests of the pilot models were climinated by this procedure.

Fig. 4 illustrates the underside of the transmitter. The crystal is located at a low temperature spot on the lower deck. Point to point wiring is used throughout. This chassis structure was favored over potted circuit techniques because the rugged and space saving advantages of potting were outweighed by the difficulty of manufacture, test, and repair, and by the uncertain dielectric properties of potting compounds at high frequencies.

The power supply requirements are relatively small. The B+ draws approximately 100 ma at 200 volts: filament 1.8 amps at 6.3 v. The unit continues to operate within specifications with plate and filament voltage changes of #10% of their nominal values. These power characteristies make the unit adaptable to either conventional rectifier, dynamotor or battery type power supplies.

The transmitter is, upon completion of assembly, sprayed with a resinous coating, to provide a sealing against moisture and resistance to fungus. The units are then heat cycled three times between -20°C and 90°C in order to heat stabilize the the components before they are tested and tuned.

Test Unit Designed

To provide a rapid and consistent means of testing the transmitter, a test unit was designed which incorporates in one unit most of the equipment required. This telemetering transmitter test unit is shown in Fig. 5. It contains variable heater and B - supplies, an r-f wattmeter, a carrier frequency meter, a modulation meter and an RF level meter. The test unit is built around a crystal controlled super-heterodyne receiver. The first limiter grid current is metered for the r-f level indication, the audio output is measured by a three range AC vacuum tube voltmeter calibrated in KC deviation, and the dc output of the discriminator is connected to a balanced dc vacuum tube voltmeter and is used to indicate any change in transmitter frequency. The transmitter output is fed to the r-f wattmeter and then through a 60 db attenuator to the receiver input. Meters are provided in order that the filament and

(Continued on page 160)

CUES for BROADCASTERS

Practical ways of improving station operation and efficiency

Monitor Amplifier

FOREST J. PINKERTON, Chief Engineer, WWOD, Lynchburg, Va.

DURING the process of building new studios which included a new control board, a need was felt for a simple but effective monitor amplifier. The result was a very simple amplifier which included some novel features not found in most monitors.

This amplifier is fed from the station modulation monitor which has a fairly high level output, making high gain stages unnecessary. We wanted, through suitable switching, to be able to feed a program cue down any of our remote lines and, most of all, allow the remote operator to call into the control room at any time prior to a broadcast without any assistance from the studio operator. By using push-pull stages all the way and high quality transformers, a simple and efficient amplifier was constructed.

Transformer T-2 acts as a combination input, output and V-2 grid impedance. The remote lines, through their respective switches are connected to the 500 ohm side of T-2 through P-1, a 6 db pad. This pad may be changed to any value needed or a variable used. The program is amplified by V-1 and the output is sent down the remote line by T-2, giving the remote operator his cue. At any time he wishes to contact the studios, he merely opens his gain and talk into his microphone. This is fed back through T-2, into the grids of V-2, and is amplified with the program from V-1 overriding the program and calling the studio operators attention to the fact that the remote line is ready for a check.

Another feature is the simple and economical master gain control. This is the dual potentiometer R-1a and R-1b. This replaces the usual variable T or H pad in the input line and once set is left in that position. The speaker level in the control room is adjusted by means of an external line pad in the speaker line. The output is sufficient for all normal levels, and the quality leaves nothing to be desired.

Halo for the Tower

SAM LILES, Transmitter Supervisor, WPTF, Raleigh, N. C.

A N unusual type of TVI was experienced at WPTF when it was discovered that during periods of high humidity, corona discharge was taking place at the tops of our two directional towers. On modulation peaks in damp weather, TVI sufficient to cause vertical roll-over was noted at distances of three or four miles.

The cure was a ring of copper tubing supported on legs so that the copper ring just cleared the tops of the beacons. The halo ring also acts as a lightning protective device for the tower lighting system.

Conelrad Alarm

B. ALLEN, WINZ, Miami, Fla.

OPERATION of the Conelrad alarm system at WINZ is based on the principle that the receiver

AVC is the triggering medium. Receiver sensitivity control (S-40B Hallicrafters) precedes the AVC, therefore it acts inversely on this alarm system; i.e. the lower the sen-

for be sp:

ste be fro

me

too

be

tei

SPI

sli

pla

the

to

ma

of

Spi

pro

no

mu

peo

dir

bei

des

Sm

Re

EL

of

Th

we

por

the

nel

abl

The

goo

dov

fess

mil

sma

loca

cha

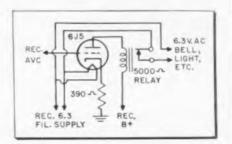
a n

x 3

cate

out

and


mic

TELE

A

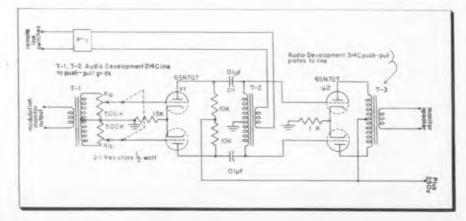
T

V

Conelrad alarm triggered by receiver AVC

sitivity setting, the more quickly the system reacts because the bias is correspondingly lower. The system may be adapted to perform satisfactorily with most receivers incorporating AVC.

Fabricating Copper Line


L. B. DAY, JR., KVET, Austin, Tex.

A method for bending copper tubing was described in TELE-TECH (March '53, page 86) which advocated packing sand into the tubing. This is an excellent method but it also has several disadvantages. As the author mentioned, it is not successful with tubing over ¾ inch diameter. It is also inconvenient in that sand could be easily spilled into the equipment and it may be necessary to clean and dry tubing in which sand has been used.

Another method of preventing kinks while bending copper tubing is the use of inside or outside bending springs. While not very useful when bending steel tubing, or where heat must be applied, they can be used on practically all available sizes of soft, thin wall, annealed copper and aluminum tubing as well as bendable coax and "gas lines" to make extremely close neat bends.

To obtain the necessary springs, determine the inside and outside diameter of the tubing or cable to be bent; then, determine the distance from the nearer end of any tube at which a bend will be made. For short pieces this will not matter, but on long lines it will indicate the need

Modulation monitor amplifier feeds remote cues and allows remote operator to call control room

for an outside spring since it would be impossible to retrieve an inside spring.

After the requirements of the job are determined, heavy close wound steel springs made especially for bending tubing may be obtained from practically any dealer in commercial refrigeration supplies and tools. Sometimes door springs may be used, but this will have to be determined experimentally. The proper spring should fit very closely, but slip freely in, or on, the tubing to be bent.

Actual bending is accomplished by placing the spring inside or outside of the tubing at the point at which the bend is to be made and bending to shape, the coils of the spring maintaining the round cross section of the tubing while it is bent. If there is a choice of springs, the inside spring should always be used as it provides more support, but this is not always possible.

After the tubing is bent, the spring must be removed and this is frequently difficult. Removal can be expedited by twisting the spring in a direction which increases or decreases its diameter. When this fails, a spring can usually be freed by bending the tubing more than desired and then straightening it to the desired shape.

5mall Preamplifier for Remote Recordings

ne

is

m

C-

ex.

ıb-

E-

ich

ıb-

but

As

uc-

di-

in

nto

:es-

in

ting

gnic

:nd-

eful

iere

ı be

sizes

pper

l as

ds.

ings.

e di-

o be

ance

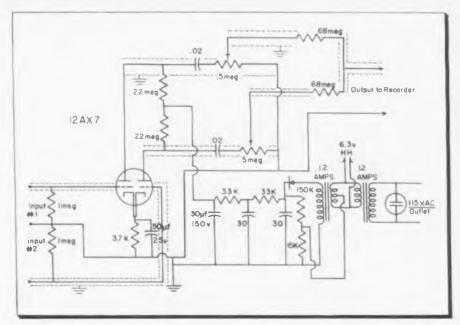
ne at

For

, but

need

1954


ELLIOTT FULL, Chief Engineer KXIC, Iowa City, Iowa.

FOR several years, KXIC has recorded and rebroadcast portions of monthly city council meetings. These recordings, unfortunately, were seldom satisfactory as our reporter did not have adequate gain or the proper number of mike channels on his non-professional, portable recorder to do the job correctly. The problem was: How to get good recordings without loading him down with expensive and heavy professional equipment, mixer box, mike extension, etc.

We solved the problem by using a small mixing pre-amp permanently located in the city hall council chambers. The pre-amp is housed in a miniature utility cabinet with an attached chassis measuring 4" x 5" x 3".

The filament transformers are located on the back of the cabinet. The output cord is about eight feet long and is equipped with a plug that connects into the tape recorder microphone input.

Almost complete hum elimination

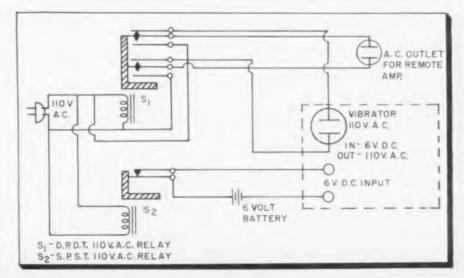
Circult of small mixing preamp for remote recordings. Isolation and filtering eliminates hum

is achieved by isolating the line, ample shielding, positive filaments, and adequate filtering. Separating the two transformers from the circuit by locating them outside the cabinet also helps.

The bad acoustics of the council chambers are still with us, but this little unit has completely overcome our earlier recording troubles. power supply is needed in a hurry. Because we had a 6v. dc to 110v. ac vibrator in stock we used the circuit shown in the diagram. It is inexpensive and quite reliable. A car battery can be used for the 6v. supply. The vibrator which is very noisy should be placed a good distance from the microphone and amplifier.

Stand-by AC Power for Remote Amplifiers

EMANUEL FARBA, Chief Engineer, WNEX, Macon, Ga.


MOST of the smaller stations have little need for a remote amplifier that will automatically switch its operation to batteries should the AC power lines fail. However, sometimes an important remote is scheduled and such a

Locating DA Faults

RUSSEL GRAMBSCH, Chief Engineer, WOSA, Wausau, Wis.

ON a directional array it is sometimes difficult to locate the fault, when the system goes bad, because of mutual between towers. In fact it may be hard to decide which tower circuit is faulty. WOSA is a 5 KW, DA-2 with the antenna circuit as (Continued on page 114)

Standby power for remote amplifiers obtained from vibrator operating from car battery

Electronic Power for

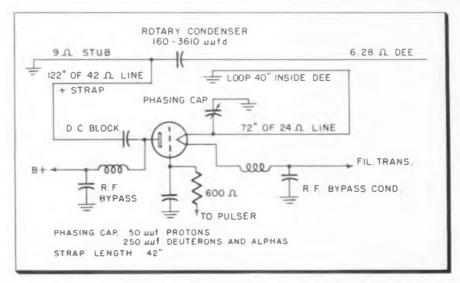


Fig. 1: R-F supply system can cover both proton and deuteron ranges with minor adjustments

By LESTER KORNBLITH. Jr., Chief Engineer, Institute for Nuclear Studies, University of Chicago, Chicago 37, III.

The synchrocyclotron is a development by McMillan of the original cyclotron of Lawrence and Livingston, in which the energy attainable by the particles being accelerated is greatly extended.

In the cyclotron, ions are accelerated in an evacuated space between the poles of an electromagnet. They are constrained to move in circular orbits by the uniform magnetic field in which they find themselves and are accelerated by the electric fields which they encounter in the course of their motion. These electric fields are applied between two hollow semi-circular electrodes, called "dees," located in the pole gap. With

proper adjustment of the frequency of the electric field the ions continue to gain energy and radius with each revolution and will spiral outward until their maximum energy is reached near the periphery.

The operation of the conventional cyclotron depends upon the fact that, for nonrelativistic velocities, the time of flight of an ion around an orbit in a uniform magnetic field is independent of the energy of the ion and the frequency required for accelerating the ion is constant. This condition holds until the effect of the relativistic increase in mass becomes important. At this time the necessary synchronism between the

frequency of rotation of the ions and the frequency of alternation of the electric field is lost. This condition occurs at about 25 million electron volts for protons.

il

US

5€

m

ma

ter

de

qu

as

bei

du

pro

in

de

15 titi

the

des

ing of

ere

ter

sho

teri

bet

be

deu

for

cha

be i

acti

from

tem by the

has

the

It is

both

with

con

low

the

prov

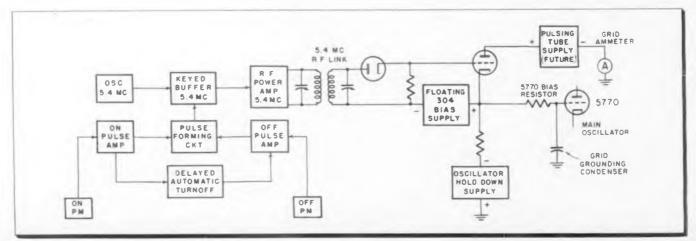
nect

thro

ine.

is c

TELE-


In

McMillan's idea, which had been proposed independently by Veksler, was that synchronism could be maintained by decreasing the frequency as the particle was accelerated and was moving on orbits of increasing radii. The motion of the particles has the property of phase stability, which makes the idea a practical one. Because of this stability the rate at which the frequency is altered is not critical.

The synchrocyclotron which we are considering is the 170-inch machine of the Univ. of Chicago.4 In this machine the central field is 18,600 gauss, and protons begin their acceleration when the frequency is 28.4 Mc. As this frequency is decreased, the protons gain in energy and move outward in radius until the frequency reaches 18.2 Mc. The protons then have an energy of 450 million electron volts and are at radius 76 in., magnetic field 17,600 gauss. The cycle is completed in about 3 milliseconds and is repeated 50 or 60 times a second During this cycle the particle travels about 300 miles. The protons, at the end of their acceleration cycle are normally caused to strike some sort of target, causing nuclear transformations with their accompanying radioactivities.

The principal items which will be discussed are the r-f supply system providing the electric field for acceleration, the magnet current

Fig. 2: Pulser system turns oscillator on during those portions of the FM cycle which are actually required for particle acceleration

a Synchrocyclotron

Growing importance of electronic devices in nuclear field illustrated by detailed description of pulsed FM oscillator using rotating capacitor. Current regulator and remote servo indicator circuit design and performance discussed

regulator for providing constant magnetic field and equipment for monitoring the output of the machine.

R-F Supply System

The requirement on the r-f system (Fig. 1) is that it supply to the dee a voltage of the proper frequency and of as large a magnitude as possible. In the 170-inch machine a single dee is used, the other dee being represented by a grounded dummy dee. The dee, which is approximately semi-circular, is 164 in. In diameter and looks like a transmission line of about 6 ohms. The dee voltage is of the order of 10 to 15 kv, which is sufficient for a repetition rate of 60 per second.

a

n

in

in

115

1C

of

re

ald

ed

e-

ıd.

ıV-

at

me

ns-

be

ac-

ent

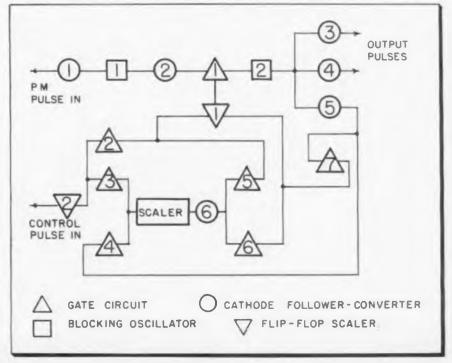
1954

The frequency range required for the acceleration of protons is 28.4 -18.2 Mc. The machine was originally designed so that with minor switching operations the frequency range of 14.2-11.8 Mc could also be covered to allow acceleration of deuterons. Subsequent experience has shown that, by making certain internal readjustments in the system, better operation for protons could be attained at the sacrifice of the deuteron range. Since the demand for deuterons was small, these changes were made. The system can be changed back to deuteron operation in one or two weeks time. The actual frequency range covered is from about 28.8 to about 17 MC.

The basic design of the r-f system is identical with that developed by MacKenzie for the same use at the Univ. of Calif. This system has several advantages over most of the many other possible systems: It is inherently capable of covering both the proton and deuteron ranges with minor adjustments; the rotary condenser is located at a point of low magnetic field; and dc bias for the dee to avoid ion loading is easily provided.

In this system the dee is connected to a rotating condenser through a section of transmission line. The other side of the condenser is connected to ground through a transmission line stub. It is possible

to proportion the dimensions of the whole system so that it behaves like a uniform transmission line, shorted at one end and open at the other, with the rotating condenser inserted at a point about one-third of the way from the shorted end. This system will resonate at a frequency which depends upon the capacity of the condenser. The minimum frequency is approached as the capacity of the condenser becomes very large and the system behaves as a resonant quarter wave line. As the capacity approaches zero the system behaves as a three-quarter wave line with a 180 phase shift at the condenser. The theoretical ratio of maximum to minimum frequency thus is three.


In practice, the attainable ratio is appreciably less than three. This is mainly because of the finite capacity limits of the rotating condenser and the difficulty of arranging an efficient coupling to the oscillator tube over such a wide frequency range. The coupling for the tube is designed to avoid undesired modes of oscillation of the system. A particularly troublesome parasitic

mode is a three-quarter wave mode which places no voltage across the condenser. In this mode the condenser has no control over the frequency at which the system resonates; since the condenser losses do not appear, this mode has a higher Q than the proper mode. If the condenser losses are excessive, the condenser can behave as a mode selector, tending to favor the incorrect mode. For this reason the condenser must be designed to have as small a loss as possible.

Oscillator Tube

The oscillator tube is coupled across the condenser through long high impedance lines, so designed that the excitation phase is incorrect for the 3/4-wave untunable mode. The tube is operated grounded-grid, to take advantage of the inherent freedom from oscillator parasities which this type of operation can afford. The oscillator excitation is thus supplied to the cathode, which must be driven in phase with the anode. The cathode is indirectly coupled by means of a loop suspended inside the dee to induce a voltage which, transformed through a long line, drives the cathode with enough amplitude in the proper phase. Because of the resistive component of the drive impedance, the actual phase must be corrected by capacity loading of the cathode. The anode is coupled directly by means of a long line which is connected in

Fig. 3: Pulser controller provides means for operating at other than normal 50 or 60 pps

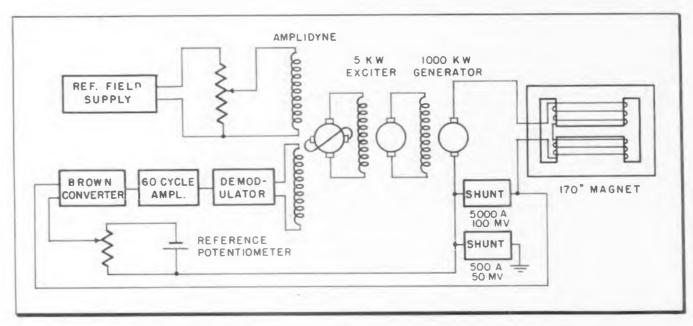


Fig. 4: Magnet current regulator employs voltage from shunt bucking against reference pot. Difference voltage is utilized to control current

parallel with the stub line. These arrangements are shown in Fig. 1.

The resonant system, consisting of the dee and its line and condenser stator, the rotor, and the grounded stub line and its stator, is all suspended and operated in vacuum. The dee is 164 in. across the tip, and it and its line are of such length that the rotary condenser shaft is 157 in. from the center of the magnet. The rotor of the condenser, which is 181/2 in. in diameter and about 4 feet long, has 6 rows of blades with 85 blades in each row. It was machined out of a solid steel forging and then copper plated. The rotor blades mesh with stator blades to leave a minimum gap of 0.110 in. This gives a total design capacity of $3600~\mu\mu f.$ At the present time the machine is being operated with the stators retracted as far as possible, increasing the gap and decreasing the area, and thus decreasing the maximum capacity and increasing the amount of rotation required to cover the proton frequency range. The effect of this change is to increase the duty cycle for acceleration and thus allow increased repetition rates and substantially increased output from the machine. A spare set of stators is now being fabricated incorporating an adjustable number of smaller blades so that this effect can be fully exploited. The stub line is of the same width as the rotor and has a length determined by the position of two shorting bars.

The dee is an aluminum frame-

work covered with water-cooled copper skins. This structure is cantilevered from its rear supports, which consist of one vertical rod pulling down and two rods pulling up and outward. Two additional rods pulling back (towards the condenser) and slightly downward pro-

vide stability against motion toward or from the magnet. These rods are necessary to resist eddy current forces produced when the magnet current is changed. Three rods support each of the two rotor bearing blocks.

(Continued on page 186)

Automatic Picture Tube Metallizing

TIRTUALLY automatic production of the vacuum-metallized coating on the inner surface of TV picture tubes can be achieved with a new self-contained unit developed by the F. J. Stokes Machine Co. All valve, pump and switching functions are controlled by a standard sequence-type electrical timer.

In operation, a piece of aluminum

Fig. 1: Aluminum strip is placed on tungsten

filament before uncoated tube

ribbon is placed on the stranded tungsten filament spanning the gap between two electrodes (Fig. 1). The uncoated tube is automatically lowered into the unit, the operator pushes one button to start the timer (Fig. 2), and pays no further attention to it until the operation is finished.

(Continued on page 179)

Fig. 2: Pushing button starts automatic operation. Flashing current preset by rheostat

IRE Professional Engineering Groups

A capsule summary of the membership segments functioning in 21 specialized fields of electronic engineering.

AERONAUTICAL AND NAVIGATIONAL ELECTRONICS —1,411 members—Dr. K. C. Black, Chairman . . . next major meeting May 10-12 at National Airborne Electronics Conference in Dayton, Ohio . . . The application of electronics to operation and traffic control of aircraft and to navigation of all craft.

ANTENNAS AND PROPAGATION—1,221 Members—P. S. Carter, Chairman...next major meeting May 3-6 at URSI-IRE Spring Meeting, Washington, D. C....Technical advances in antennas and wave propagation theory and the utilization of techniques or products of this field.

AUDIO — 2,164 Members — M. Camras, Chairman . . . next major meeting Oct. 4-6 at National Electronics Conference, Chicago, III. . . . Technology of communication at audio frequencies and of the audio portion of radio frequency systems.

BROADCAST AND TELEVISION RECEIVERS—1,124 Members—E. I. Anderson, Chairman . . . next major meeting April 24, 8th Annual Spring Technical Conference, Cincinnati, Ohio . . . The design and manufacture of broadcast and television receivers and components and related activities.

ıt

et

g

be

1P

ne

or

er

is

954

BROADCAST TRANSMISSION SYSTEMS—665 Members—L. Winner, Chairman . . . next major meeting October, Fourth Annual Broadcast Symposium, Philadelphia, Pa. . . . Broadcast transmission systems engineering, including the design and utilization of broadcast equipment.

CIRCUIT THEORY—2,187 Members—Dr. C. H. Page, Chairman . . . design and theory of operation of circuits for use in radio and electronic equipment.

COMMUNICATIONS SYSTEMS—738 Members—Col. John Hessel, Chairman . . . next major meeting April 28, IRE-AIEE Symposium on Military Communications Systems, New York, N. Y. . . . Radio and wire telephone, telegraph and facsimilie in marine, aeronautical, radio-relay, coaxial cable and fixed station services.

COMPONENT PARTS—394 Members—F. A. Paul, Chairman . . . next major meeting May 4-6, Electronic Components Symposium, Washington, D. C. The characteristics, limitations, applications, development, performance and reliability of component parts.

ELECTRON DEVICES — 1,097 Members — Dr. L. S. Nergaard, Chairman . . . next major meeting Oct. 18-20, IRE-RETMA Radio Fall Meeting, Syracuse, N. Y. . . . Electron devices, including particularly electron tubes and solid state devices.

ELECTRONIC COMPUTERS—2,267 Members—J. H. Howard, Chairman . . . next major meeting December, Eastern Computer Conference . . . Design and operation of electronic computers.

ENGINEERING MANAGEMENT—1,276 Members—Gen. T. C. Rives, Chairman . . . next major meeting Oct. 4-6 at National Electronics Conference, Chicago,

III. . . . Engineering management and administration as applied to technical, industrial and educational activities in the field of electronics...

INDUSTRIAL ELECTRONICS—854 Members—Dr. E. Mittlemann, Chairman . . . next major meeting Annual Industrial Electronics Conference, Cleveland, Ohio . . . Electronics pertaining to control, treatment and measurement, specifically in industrial processes.

INFORMATION THEORY—1,166 Members—Dr. W. G. Tuller, Chairman . . . Information theory and its application in radio circuitry and systems.

INSTRUMENTATION—1,988 Members—I. G. Easton, Chairman . . . next major meeting September, 1st International Instrument Conference, Philadelphia, Pa. . . . Measurements and instrumentation utilizing electronic techniques.

MEDICAL ELECTRONICS — 702 Members — L. H. Montgomery, Jr., Chairman . . . The application of electronics engineering to the problems of the medical profession.

MICROWAVE THEORY AND TECHNIQUES — 1,184 Members—A. G. Clavier, Chairman . . . next major meeting May 3-6 IRE-URSI Spring Meeting Symposium on Millimeter Waves . . . Microwave theory, microwave circuitry and techniques, microwave measurements and the generation and amplification of microwaves.

NUCLEAR SCIENCE—236 Members—Dr. L. V. Berkner, Chairman . . . next major meeting Oct. 6-7, 1st Annual Conference, Chicago, III. . . . Application of electronic techniques and devices to the nuclear field.

QUALITY CONTROL—480 Members—L. Bass, Chairman . . . next major meeting Nov. 12-13 National Symposium on Quality Control, Hotel Statler, N. Y. Techniques of determining and controlling the quality of electronic parts and equipment during their manufacture.

RADIO TELEMETRY AND REMOTE CONTROL — 826 Members — M. V. Kiebert, Jr., Chalrman . . . next major meeting May 24-26 National Telemetering Conference, Chicago, III. . . . The control of devices and the measurement and recording of data from a remote point by radio.

ULTRASONICS ENGINEERING—101 Members—A. L. Lane, Chairman . . . next major meeting Oct. 4-6 National Electronics Conference, Chicago, III. . . . Ultrasonic measurements and communications, including underwater sound, ultrasonic delay lines, and various chemical and industrial ultrasonic devices.

VEHICULAR COMMUNICATIONS—596 Members—W. A. Shipman, Chairman . . . next major meeting Sept. 30-Oct. 1, 5th Annual Meeting, Houston, Texas . . . Communications problems in the field of land and mobile radio services, such as public safety, public utilities, railroads, commercial land transportation, etc.

(See also "A Roster of Associations in the Electronic Industries," Section 2, this issue)

New Products at

Previews of new equipment and what

Booth 145

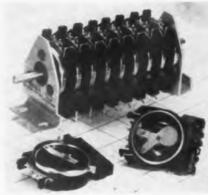
Analyzer

The Models MRFR 30-1 and MRFR 30-2 spectrum analyzer contains many narrow gates, or filters adjacent in frequency that cover any desired spectrum. The signal to be analyzed is fed to all the filters simultaneously, and each filter

output is applied to the stator of a capacitance communitator. When scanned by the rotor, this yields the output of all the filters in frequency sequence. Maximum sensitivity is attained by high-Q manetostriction rods as filters, Raytheon Manufacturing Co., Equipment Engineering Div., 148 California St., Newton 58, Mass.—TELE-TECH & ELECTRONIC INDUSTRIES.

Booth 216 Noise Figure Meter

The Model NFT transistor noise figure meter eliminates manual step-by-step adjustment of noise reference sources, switching from internal to external source, and monitoring of output levels. Accomplishing this process automati-



cally many times per second obtains a continuous direct reading of noise figure which reduces measurement to a simple meter reading. Noise figure is measured in accordance with IRE standards, one cycle band width at 1,000 cps. Electronic Research Associates, P.O. Box 29, N. Caldwell, N.J.—TELE-TECH & ELECTRONIC INDUSTRIES.

Booth 226

Potentiometer

The RVBC 15% in. plug-in potentiometer combines "unitized" construction with plug-in mountings. The entire plug-in ganged assembly or an individual section can be removed and replaced. Plug-in units are supported on

front and rear brackets, though units are also available in servo type mountings. Dual loaded ball bearings and the unique design of the crank-arm and coupling-pin assembly minimize torque and radial shaft play, and reduce backlash. Technology Instrument Corp., 531 Main St., Acton 54, Mass.—TELE-TECH & ELECTRONIC INDUSTRIES.

Booth 233

Aluminizer

The inline system of "aluminizing" TV picture tubes, called the "Aluminizer," consists of twenty self-contained vacuum pumping carts, each of which accommodates a picture tube and a single locomotive. A stationary type "Aluminizer," consisting of from one to four carts is used for pilot plant opera-

tions and can be converted to the inline system when additional capacity is needed. The stationary, or bench type unit is suited for color TV tube leak-checking without major alterations. Cycling is automatic. Consolidated Vacuum Corp., 735 Ridge Road West, Rochester 3, N.Y.—TELE-TECH & ELECTRONIC INDUSTRIES.

Booth 248

Amplifier:

en sight parts to car put the put of de sign me se tr A se T. T.

m cab ti ra or gr co th si

The hp-Models 490A and 491A traveling wave amplifiers provide complete "S" band frequency coverage, large power output, high gain, and µsec pulse modulation. Being broad band linear devices they can be connected to

the output of signal generators to provide signal and modulation information at a greatly increased power level. They are also suitable as a broad band r-famplifiers for receiver and detector applications. Hewlett-Packard Co., 395 Page Mill Road, Palo Alto, Calif.—TELE-TECH & ELECTRONICS INDUSTRIES.

Booth 261

TV Camera System

The "Kay-Lab" TV camera system comprises the camera, camera control, and synchronizer monitor. The small, light, camera consists of a vidicon pick-up tube operated with an 8 MC bandwidth cascode pre-amplifier. Electrical adjustments can be made remotely at

the camera control which consists of an 8 MC video amplifier, horizontal and vertical deflection chassis, and a power supply. Up to 500 ft. of cable can be used between camera and control unit. Kalbfell Laboratories, Inc., P. O. Box 1578, 1090 Morena Blvd., San Diego 10, Calif.—TELE-TECH & ELECTRONIC INDUSTRIES.

the IRE Show

exhibits will display at the convention

Booth 323 Pulse Height Analyzer

The Model 520 twenty-channel differential pulse height analyzer was designed primarily to analyze the pulseheight spectrum obtained from nuclear particle detectors. It is useful, however, to study other phenomena where events can be expressed in terms of electrical pulses of various amplitudes. Basically, the unit consists of a linear amplifier, an 'expander' or "window amplifier,' pulse lengthening circuit, and twentyone pulse-height discriminators-twenty of which are followed by an anti-coincidence and scaler-drive circuit, a scale of sixteen, a register drive, and an electromechanical register. There are also two scales of 256 with registers to record the total" and "surplus" count. All 22 scalers and registers are reset electrically from one push button control. Atomic Instrument Co., 84 Massachusetts Ave., Cambridge 39, Mass.—TELE-TECH & ELECTRONIC INDUS-TRIES.

Booth 444 Resistors

The "Stand-Ohm" resistance units, made for top of chassis mounting to remove a high heat source from the critical components area, are integrally bracket-mounted to aid in heat conduction to the chassis. In turn, the chassis radiates the heat and affords cooler overall operation. Wound with high grade resistance wire on a flat ceramic core, heavier gauge wire can be used. The wound core is coated with silicone cement and inserted into a ceramic tube that is filled with silica and sealed with silicone cement to exclude moisture

m

11,

k-

d-

eal

and

wer sed

alb-

578,

lif.

954

from the winding. The units are supplied in 10, 15, 20, and 25 w. ratings in 1½, 2, 2½, and 3 in. heights, respectively. All are ½ in. in diameter and fit in a ¾ in. chassis cutout. Tru-Ohm Products, Div. of Model Engineering & Mfg. Inc., 2800 N. Milwaukee Ave., Chicago 18, Ill.—TELE-TECH & ELECTRONIC INDUSTRIES.

Booth 445 Connector

The QWIK microphone connector is a bullet-shaped, streamlined unit that is smaller than other models and designed to be operated by one hand. The dielectric is the "Amphenol Blue 1-501 material approved under government specifications. Shell bodies are satin nickel finish zinc alloy. Buttons used to connect or disconnect mating parts are of "Tenite" and operate by thumb pressure. American Phenolic Corporation, 1830 South 54 Ave., Chicago, III.—TELE-TECH & ELECTRONICS INDUSTRIES.

Booth 574 Switches

The "17AS" series of subminiature rotary selector switches enable switching as many as eight different circuits with one compact assembly With from two to eight switching units and from two to eight detent positions—with a 45 angle beween detents-virtually any switching sequence is possible. The eight-switch assembly requires only a 1-17,64 in. diameter mounting surface Overall length is less than four inches. In the eight-switch assembly, four switches can be wired normally-open and seven normally closed, etc. The switches are rated for an inductive load of 3 a. at 30 v. dc. and 10 a. at 125 or 250 v. ac. Micro Switch Div., Minneapolis-Honeywell Regulator Co., Freeport, Ill.—TELE-TECH & ELECTRONIC INDUSTRIES.

Booth 463 Relay

The "Series OCS" relay is an adaptation of the Automatic Electric Type 44 rotary stepping-switch mechanism that provides means for using every pulse,

every second pulse, or every nth pulse to perform a series of operations in a planned sequence. The unit can be used as a relay to replace latch-in type relays where shock and vibration requirements of MIL-R-6106 have to be met. Automatic Electric Co., 1033 West Van Buren St., Chicago 7, Ill.—TELE-TECH & ELECTRONIC INDUSTRIES.

Booth 532

Plastics

The Herbert oxy cold bar demonstrates how various grades of "Synthane" products are combined with entirely different materials. Used as an electrical static eliminator that supplies a safe source of high voltage electricity

to neutralize static charges during the processing of paper, plastics, paper, etc., the unit combines three grades of "Synthane" with a thermoplastic bar, an aluminum bar, and copper emitter points. The bar is made from Grade XXX tube stock; the brackets from Grade XX black sheet stock. The end connector is Grade C black, and the end plugs are Grade XX black. Synthane Corp., Oaks. Pa.—TELE-TECH & ELECTRONIC INDUSTRIES.

Booth 704 Camera Chain

The Model UK-1A photoconductive camera chain includes camera with cables, friction head and dolly, camera control monitor, and synchronizing generator. The camera employs elec-

tronic viewing and a 7-inch direct view screen. All controls except mechanical focus are located on the illuminated control panel below the screen. Can be mounted by one man on any standard tripod or dolly. Electronics Division, Willys Motors, Inc., Benore Road, Toledo 1, Ohio.—TELE-TECH & ELECTRONIC INDUSTRIES.

IRE Show Exhibits

Previews of the latest electronic equipment that

Booth 130 Aircraft Electronics

Complete line of receivers, transmitters, and mobile units, with accessories. Glide slope receiving antennas, omnimag indicator and distance-measuring equipment. Bendix Radio.

Booth 145-149 Tubes and Radar Components

Complete line of diffused junction transistors, subminiature tubes, and germanium diodes. Also miniature differential, servo motor, one-way transmission lines (gyrators), bridge rectifiers, miniature rate gyro and accelerometer, and radar altimeter. New products include spectrum analyzer, magnetrons, magnetic shift register and hydraulic servo valve. Raytheon Mfg. Co.

Booth 174-196 Magnets

Magnets for electronic and automotive industries, featuring application to suspension, driving, braking and torque control. Thermistor demonstration unit. Line of barium oxide magnets and aluminum-clad magnets. Carboloy Dept. of G. E.

Booth 185-187 Graphic Recorders

Electronic recording equipment for monitoring operations in industry. Three channel recorder plots time vs. occurrence on eight-day tape. Alden Electron and Impulse Recording Equip. Co.

Booth 191 Recording Paper

Electrosensitive, smudge-proof paper for use in Alden and similar recorders, with special application to facsimile techniques. Alfax Paper and Engineering Co.

Booth 193-195 Antennas

Microwave, UHF-TV, and communications antennas, featuring new passive reflector and mount for microwave relay systems. Also demonstrated—a simplified mount for 2000 Mc offset parabolic feed. Gabriel Electronics Div.

Booth 204 Microwave Meter

Microwave multiplier measures and generates frequencies from 500 to 10,000 MC. This new device requires stable driving source. Also, VHF interpolator for 20 to 1000 MC, and VHF frequency meter with accuracy and stability of 0.001%, covering 20 to 640 MC. Gertsch Products, Inc.

Booth 210

Meters

Test instruments for magnetic measurements, featuring rotating coil gasmeters and fluxmeters. Line of precision laboratory ac and dc meters, and sinecosine potentiometers for radar and computer design. Rawson Electrical Instrument Co.

Booth 216 Test Equipment

Line of transistor test equipment and miniaturized power packs. Audio frequency transistor amplifiers for PA and intercom use. Electronic Research Associates.

Booth 233-235 Tube Mfg. Equip.

New rotary tube exhaust machine for manufacture of miniature tubes and 4-unit stationary aluminizer for TV picture tubes. Complete line of vacuum gauges. Consolidated Vacuum Corp.

Booth 242-244-246 Test Equipment

Complete line of VHF and UHF signal generators for color and B&W. Also, crystal controlled decade-switched oscillator covering 100-500 MC, complete radar noise figure measuring equipment, and radar-type receiver with 30 MC i-f for low level microwave measurements. Kay Electric Co.

Booth 273-275 Tubes

Among tubes for communications uses are miniature twin tetrodes featuring low drain for mobile use, and ruggedized triode. Other features include point-contact transistors, power-frequency-application power tube chart, and rectifiers, thyratrons and ignitrons for control uses. Amperex Electronic Corp.

Booth 368 Capacitors

Line of bonded plastic capacitors and line of subminiature metallized paper capacitors designed for operation over temperature range -55° C. to 125° C. Also, miniaturized r-f noise suppression filters. Astron Corp.

Booth 373 Microwave Accessories

Samples of Mitered Elbows, waveguide switches, Hybrids and transitions. Features "Flexaguide" line of flexible waveguide and dummy loads, with demo model of complete waveguide section of radar system. Airtron, Inc.

Booth 374

Static Alarms

300 V

or

to

ec

300

pe

nev

Eri

800

100

Ma

Boo

900

gel

tor

me

Bo

clo

ma

Bo

file

su

Bu

Bo

W

di

Bo

m

Bo

to

m

Be

li. U

TE

F

Industrial applications of static alarm and static control systems. High voltage dc insulation tester and Power supplies, with range of 5 kv to 75 kv. The Hewson Co., Inc.

Booth 376 Microwave Equipment

Microwave waveguide instruments for frequencies from 1,000 to 40,000 Mc. Includes laboratory measuring devices, attenuators, power measuring equipment, waveguide tuners, frequency meters, and new standing wave detector and amplifier. Waveline Inc.

Booth 390 Connectors

British manufacturer. Line of unique subminiature connectors and high impedance precision connectors. **Trans**radio Ltd.

Booth 394-396 Connecting Devices

Tube sockets, terminal strips, micro connectors, multi-plugs and sockets. Also, line of barrier terminal strips, fanning strips and tube shields, etc. Howard B. Jones Div., Cinch Mfg.

Booth 397, 494-495 Delay Lines

New developments in use of fused silica as delay medium at ultrasonic frequencies. Printed circuits, featuring photochemical glass—complete line of high-temp resistors, capacitors, and products of new research in high-frequency resistors. Corning Glass Works.

Booth 445-447 Connectors

Various types of connectors introducing new gold plated contacts and improved dielectric. Series of miniature connectors and new latched and keyed shell-type connectors. American Phenolic Corp.

Booth 458-460 Tube Checkers

Test instruments, including oscillographs and tube checkers. Free tubetesting service to exhibitors on Dynamic Mutual Conductance Tube Tester. Hickok Electric Inst. Co.

Booth 462-464 Vibration Testers

Complete line of electrodynamic shakers, force output from 25 to 2500 pounds, with electronic power supplies. Vibration measuring instruments and accelerometers. The Calidyne Co.

and New Products

will be on display during forthcoming convention.

Booth 471-473-475 Waveguides

Waveguide switches and wavemeter or 6-60 cm. High power coaxial attenutor, rectangular recorder and polar ecorder. Thompson Products, Inc.

3ooth 538 Resistors

Resistor and capacitor considerations n color TV design. Industrial uses for pecial carbon resistor products and new high-dielectric-constant material. Erie Resistor Corp.

nî

y

rs

S-

es

ro

ts.

te.

es

iic

of

nd

KS.

DES

n-

ıre

ed

ıe-

ers

10-

hy-

er.

ers

500

ies

ind

754

Booth 567 Transmitting Tubes

New kilowatt range triodes and tetrodes with coaxial terminal ring seals and thoriated tungsten filaments for industry and broadcasting. Heavy wall mode triodes for industrial service; broadcast types for AM, FM and TV. Machlett Laboratories.

Booth 603 UHF-TV Sweep Generator

UHF sweep generator covering 450-900 Mc. Other equipment: FM Signal generator, S-Band Microwave generator, square wave generator and broadband amplifier. New London Instrument Co.

Booth 604-605 Tape

Complete line of pressure-sensitive tapes of plastic, acetate fibre, paper and cloth, with dispensing machines. Permacel Tape Corp.

Booth 678 Filters

Newly developed single side band filters, and subminiature telemetering filters. Also, new plug-in decades and subminiature toroids designed for use in transistorized electronic equipment. Burnell & Co.

Booth 681 Power Transistors

Transistors capable of 5 watts dissipation and output powers of over 20 watts, cofeatured with a line of gold bonded germanium diodes, and silicon diodes. Transitron Electronic Corp.

Booth 686 TV Broadcast Equip.

New video distribution amplifier for small studio budget. Line of hermetically sealed precision resistors and miniature wirewound resistors measuring ½ x ½ in. Eastern Precision Resistor Corp.

Booth 703 Mfg. Technique

Introducing equipment for conversion to the modular design in electronics manufacturing. Sanders Associates, Inc.

Booth 723 X-Band Mixer

A compact X-band mixer for radar or link applications has been developed. Unit can be furnished completely wired and tested in brass, silver and rhodium plated, or aluminum. Premier Instrument Corp., 52 West Houston St., New York 12, N. Y.—TELE-TECH & ELECTRONIC INDUSTRIES.

Booth 790 Waveguides

Precision bending and forming of waveguides. F. C. Kent Co.

Booth 850 Test Equipment

Ultra-sensitive, shock proof meters, with 1 µa movement and ultrasonic attenuation measuring set for 5 MC to 70 MC. Crystal dielectric memory cell for computer use, with line of temperature compensating capacitors, printed resistors, etc. Gulton Mfg.

Booth 882 Microphones

New miniature, condenser-type microphone fits coat lapel. Extra sensitive medical microphone for detecting and registering heart beats. Altec-Lansing Corp.

Booth 719 Deflection Yoke

A special type TV camera deflection yoke is used to control the electron scanning beam as it moves vertically or horizontally. Each raster is scanned at 525 lines/sec. the same as commercial broadcast TV camera and home re-

ceivers. Horizontal resistance is 3.59 ohms; vertical resistance, 161 ohms. Horizontal inductance is 0.92 mh; vertical inductance, 53.2 mh. Dimensions: 1% in in diameter by 4 in in length. Weight, approximately 4 oz. Resistor Div., I-T-E Circuit Breaker Co., 1924 Hamilton St., Philadelphia 30, Pa.—TELE-TECH & ELECTRONIC INDUSTRIES

Booth 807-809 Tape Duplicator

The mass production of full-fidelity recorded tapes is the aim of a new highspeed tape duplicating system capable of reproducing 2400 hours of recorded material in eight hours. A half-hour program is copied in 3^3_4 minutes. System permits speed-ups as high as 320-to-1

in making multiple copies of recorded tapes. Ampex Corp., 932 Charter St., Redwood City, Calif.—TELE-TECH & ELECTRONIC INDUSTRIES.

Booth 840

Oscilloscope

The Model 54 automatic oscilloscope sweep halves cathode-ray oscilloscope use time, it is said. The unit locks onto a signal of 0.1 to 50 v. in the frequency range of 20 to 30,000 cps. and automatically generates a sawtooth sweep voltage of perfectly synchronized constant amplitude. This voltage can be fed to the X axis amplifier of any oscilloscope. Positive and negative sweep polarities are available. Input impedance is 1 megohm. Sweep frequency is always one-half the signal frequency so that two cycles of the signal are displayed on the oscilloscope screen. Audio Instrument Co., Inc., 133 West 14 St., New York 11, N. Y.—TELE-TECH & ELEC-TRONIC INDUSTRIES.

Booth 869

Oscillographs

The new Brush oscillographs are multi-channel instruments that are said to provide a new high in performance. The units are equipped with an electrically controlled chart-drive that provides multiple chart speeds and instantaneous switching; and, a choice of ink or electric writing. New accessories are, event and timing markers, dual motor drive to double the number of chart speeds, and a remote control unit. Mounting can be a standard rack or a bench-top console. Brush Electronics Co., 3405 Perkins Ave., Cleveland 14. Ohio.—TELE-TECH & ELECTRONIC INDUSTRIES.

New Test and

COLOR TV GENERATOR

Model 650 C incorporates a feature to provide accurate registration adjustment of the three color guns in the tube of new color TV receivers. It provides means for the accurate adjustment of

focus, convergence, centering of individual beams. purity yoke, dynamic convergence, linearity and aspect ratio. Operation requirements are a quick connection to antenna of color TV receiver and setting the 650 C to produce white dots on the receiver CRT. Then, color guns are adjusted until colored fringes disappear from around the dots. The equipment is also a device for black and white receiver trouble-shooting and identifying trouble in any section of a TV set. The Hickok Electrical Instrument Co., 10606 Dupont Ave., Cleveland 8. Ohio—TELE-TECH & ELECTRONIC INDUSTRIES.

TESTERS

Three new high-voltage, pocket voltamp testers have been added to the "Amprobe Junior" line. Each has two voltage ranges; 0-150/600 v. ac and is available in ranges of 0-25, 0-50, or 0-

100 amps ac. The line also includes 0-125/150 v. models in 0-10, 0-25, 0-50, and 0-100 amp. current ranges. Pyramid Instrument Corp., 630 Merrick Rd., Lynbrook, N.Y.—TELE-TECH & ELECTRONIC INDUSTRIES.

SIGNAL GENERATOR

The "Decalator" 100-1 signal generator provides decade selection of 9,000 predetermined crystal-controlled frequencies in 100 cps steps over the range 100 KC to 1 MC. Two banks of crystals,

having a short-term stability of 5 cps and overall accuracy within 0.025%, control the output of the device. Output voltage is 3 v. maximum into 600 ohms. Total harmonic content is less than 3% at any frequency. Signal generator output measurement characteristics are obtained through an output meter followed by a step-by-step attenuator calibrated in fractions of full-scale meter readings. An AGC circuit maintains the output level of the unit within 1 db. Decade Instrument Co., Box 153, Caldwell, N.J.—TELE-TECH & ELECTRONIC INDUSTRIES.

PHASE METER

Type 405 phase meter is a device for studying phase relationship between two signals, and presenting phase angle in degrees on an 8-in. panel meter. Frequency response, 8 cps to 150 kc. Phase

range, 0-36°, 0-90°, 0-180°. Accuracy, maximum error is less than ±3% or ±2° at any range. Input voltage 0.1 v. to 70 v. from 8 cps. to 150 kc. Input power, 115 v. or 230 v. rms, ±10%, 50-60 cps, 60 w. Advance Electronics Co., Inc., 451 Highland Ave.. Passaic, N.J.—TELE-TECH & ELECTRONIC INDUSTRIES.

MONITORS

Types FTL-12B (VHF) and FTL-57A (UHF) are TV frequency and modulation monitors with the high order of crystal oscillator stability of ±1/2 part per million over a 7-day minimum period. The carrier frequency accuracy is ±200 cps for the visual monitor and ±500 cps for the aural monitor. Accurate crystal oscillators are incorporated in both monitors to enable rapidly checking zero carrier frequency readings and maximum frequency error indications. The r-f input level can be checked by the front panel meters. High quality, low impedance audio output is provided for monitoring purposes. Output of high impedance for distortion measurements is also incorporated. Distortion is less than 0.25%. Noise measures at least 70 db below output corresponding to 25 KC deviation with 50 cps modulation. Federal Telecommunication Laboratories, Div. of I. T. & T., 500 Washington Ave., Nutley, N.J.—TELE-TECH & ELEC-TRONIC INDUSTRIES.

ice u

volta

ire o

neg

1,500

valu

and

acci

ohm

COVI

cur

in n

are

Ins

COI

gai

Co

TEI

"PULSESCOPE"

A new "Pulsescope" in "Pocket-scope" size features instantaneous direct-reading dc. calibration of either positive or negative signals. The instrument has a vertical amplifier sensitivity of 0.2 v. rms/inch response from dc. to 5 MC within 3 db, or pulse rise of 0.1 µsec. and internal intensity modulated markers of 1, 10, 100, or 1,000 µsec.

Repetitive or trigger sweep is variable from 5 cps. to 500 kc with 5X sweep expansion. Sweep, marker, and dc. calibrating voltage is available externally. Operates from 50 to 400 cps. at 115 v. ac. Size, 8½ x 6¾ x 13¾ in. Weight, 22 lbs. Waterman Products Co., 2445 Emerald St., Philadelphia 25, Pa.—TELE-TECH & ELECTRONIC INDUSTRIES.

Measuring Equipment

VOLTMETER

of

rt

m

y

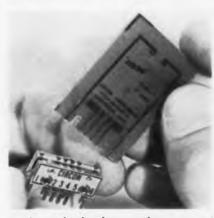
n

al

d

d

H


The Model 201 vacuum tube voltmeter is a general purpose laboratory or servace unit for the measurement of ac or do voltages and resistances. DC voltages are covered in seven full scale ranges of 1.5 to 1,500 volts at an impedance of 11 megohms. AC ranges are calibrated both

in RMS values of sine waves (1.5 to 1,500 v. full scale) and peak-to-peak values of 4 to 4,000 v. Separate scales are provided for the 0-4 peak-to-peak, and the 0-1.5 v RMS ranges for greater accuracy. Resistance values from 1,000 ohms to 1,000 megohms, full scale, are covered in seven ranges. Maximum accuracy is a midscale, which is calibrated in multiples of 10 ohms. Standard probes are included. Shasta Div., Beckman Instrument, Inc., P.O. Box 296, Sta. A, Richmond, Calif.—TELE-TECH & ELECTRONIC INDUSTRIES.

CONNECTORS

The "Circon" series of miniature and subminiature printed circuit connectors, now in limited production, consists of sixteen models in each of the miniature and subminiature basic modules of two, four, six, and twelve contacts at rated

maximum loads of one and two amps. contact. They are produced in three gauges to accommodate $\frac{1}{10}$ in., $\frac{3}{10}$ in., and $\frac{1}{10}$ in. printed circuits. Circon Component Co., 17544 Raymer St., Northbridge, Calif.—TELE-TECH & ELECTRONIC INDUSTRIES.

TEMPERATURE DETECTOR

The Model 221 N90A temperature detector is designed for use with temperature recording, indicating, and control equipment where fast response is a primary requirement, as the unit has an exponential time-constant of 0.8 seconds or better in an agitated water bath.

Its useful temperature range is from -70 C. to +200 C. Accuracy is ±1.0% or better in mid-scale region. The sensing element is a nickel winding having a basic resistance of 90.38 ohms at 0°C. The instrument is sealed in a stainless steel housing with a glass-to-metal sealed base through which the electrical connection is made. It is not affected by most forms of destructive radiation, and exerts maximum resistance to corrosion. Thomas A. Edison, Inc., Instrument Div., 51 Lakeside Ave., West Orange, N. J.—TELE-TECH & ELECTRONIC INDUSTRIES.

MAGNETRON

The 6444 CW magnetron resembles a standard receiving tube and operates from a plate supply of 450-500 v. and a heater supply of 6 v. and is designed for use in the range 9,800-10,000 MC. Originally developed by Signal Corps Engineering Laboratories as the

ESM-48, the 6444 is fixed-tuned, incorporates the Philips dispenser-type cathode, and delivers 1 w. of CW energy into a standard klystron type output. Microwave Associates. Inc., 22 Cummington St., Boston 15, Mass.—TELE-TECH & ELECTRONIC INDUSTRIES

INSULATION TESTER

For use in the coating of magnetic wire and similar fine wires, a new continuous type of coating continuity tester counts and records pinholes automatically at speeds up to 600 feet per minute. The instrument consists of a continuously variable power supply with indicating

voltmeter, magnetic counter and felt cup electrode. A flashing lamp and bell indicates the frequency of the pinholes. In conjunction with the footage counter, the instrument produces a continuous display of total number of pin holes for a given footage. Peschel Electronics, Inc., 13 Garden St., New Rochelle, N. Y.—TELE-TECH & ELECTRONIC INDUSTRIES.

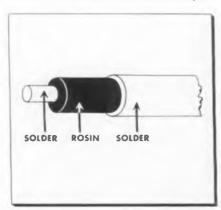
TEST SET

A new test set provides rapid and reliable measurement of the voltage coefficient for composition resistors. It finds application in the study of resistor materials and geometry, contact behavior, and semi-conductor phenomena. Further, the unit can be used for inspection and quality control. The instrument operates on the principle that the nonohmic nature of a material or resistor results in the generation of current harmonics when an alternating

current is applied. These harmonics can be accurately interpreted in terms of v. coeff. Resistance range, 1,000 ohms to 1.1 megohms; test voltages, 0-500 v., power dissipation, 2 w. Supply, 105-135 v. ac., 60 cps. Brunswick Instruments, P. O. Box 813, New Brunswick, N. J.—TELETECH & ELECTRONIC INDUSTRIES.

New Lab and Plant Equipment

MIDGET PRESS


A precision-built, open-back, inclinable punch press has a solid, heat-treated alloyed steel crankshaft, a roller-bearing mounted flywheel, and a self-contained clutching mechanism that is independent of the crankshaft.

The drive collar is also of steel alloy, heat-treated and ground. Connecting rod and crankshaft bearings are of special bronze alloy. Ram and ram guides are of the over-size length 90° V type. The standard stroke is ¾ in., though a 1 in. stroke is optional at extra charge. Kenco Manufacturing Co., 5211 Telegraph Road, Los Angeles 22. Calif.—TELE-TECH & ELECTRONIC INDUSTRIES.

SOLDER

Alpha "Cen-Tri-Core" (sequence action) energized rosin-filled solder consists of a solder wire coated with rosin over which is formed the outer solder sleeve. This makes a rosin void impos-

sible, and, thereby, assures continuity of flux and reduction of cold joints and rejects. Despite the high activity of energized rosin, it is said that it is non-corrosive and electrically non-conductive. Conforms to Federal Specifications QQS-57 1b, Par. E-2a and has been tested in cycled humidity 250 v. dc. at high temperatures for 1,008 hrs. with

no evidence of breakdown or corrosion.

Alpha Metals, Inc., 56 Water St., P.O.

Box 34, Bergen Station, Jersey City 4.

N.J.—TELE-TECH & ELECTRONIC INDUSTRIES.

FOLDING TRUCKS

Several models of folding trucks originally designed for sales, service, and delivery of business machines, may interest manufacturers and sales-service organizations in the electronic industries. Collapsible for easy storage and transportation, they can be set up in a moment and wheeled to any location and serve as a table or stand. The "Regular" size is for 25 to 300 lb. loads; the

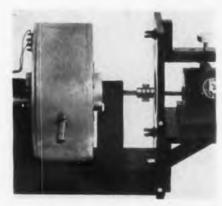
"Heavy Duty" for loads up to 500 lbs.; and the "Self-Balanced 2 Wheeler" is for almost any load that one can handle on a two-wheel truck. All sizes are designed to handle a 50% overload. One or more of the trucks will be shipped for examination without obligation to purchase. The Federal Cash Register Co., P.O. Box 2265, Kansas City 6, Mo.—TELE-TECH & ELECTRONIC INDUSTRIES.

SOLDERING IRONS

Two new electric soldering irons, Cat. Nos. 3118 and 3210 are small, light weight units that are adapted to conventional use or in the manner of the pencil-type soldering iron. Identical in shape, size, weight, construction, and wattage, they differ only in the size of the tip. No. 3118 has a 1/8 in. diameter tip, No. 3120 has a 316 in. tip. The elements of both irons are replaceable, the casing material is lifetime nickel stainless steel. Each has a light weight, ultraflexible, special-size cord. The elements are wound on a single piece, solid brass spool. Input is 30 w. Weight, approximately 7 oz. Overall length, approximately 914 in. American Electrical Heater Co., 6110 Cass Ave., Detroit 2, Mich.—TELE-TECH & ELECTRONIC INDUSTRIES.

TEMPERATURE CONTROL

The Series 97 electronic temperature controller uses a resistance temperature

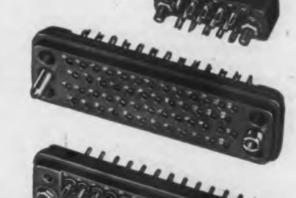

detector element as a sensing device in a bridge circuit in conjunction with high gain phase sensitive amplifier relay unit. A dial sets the temperature control point, and red and green light indicate temperature above or below the set point. The single pole two-wall control contact will handle 220 v. at

amps. Standard ranges are 0° to 100 300°, or 500°F, and C., but any range between the limits of 200° to 500°C, can be supplied in conjunction with an appropriate resistance bulb from the Fielden list. Sensitivity is 0.1°F, on all ranges Only two vacuum tubes are employed The unit is encased in a 6½ x 7½ x 4 in cast aluminum housing. Fielden Instrument Div., Robertshaw-Fulton Controls Co., 2920 North 4th St., Philadelphia, Pa.—TELE-TECH & ELECTRONIC INDUSTRIES.

DYNAMOMETER

The "Dyna-Chek" Model DM-3 measures the horsepower output of electric motors of 2 hp. and less. Model MDM tests motors of less than y_{10} hp. Two types of broad-range speed measuring equipment are available as extra acces-

sories. One provides accuracy to 2%, the other to $\frac{1}{10}$ of 1%. Both models are supplied with a special dc power supply. Mission-Western Engineers, Inc., affiliate of Western Gear Works, 132 West Colorado, Pasadena 1, Calif.—TELETECH & ELECTRONIC INDUSTRIES.



...THREE TO FIFTY

MINIATURIZED

Micro Connectors (shown here completely within color great) save space, weigh less, and are more officient.

Cinch molded general purpose connectors are available with from three to fifty contacts in low loss material for chassis mounting or assembled with cap for cable applications, terminals gold or silver plated. Cinch experience indicated in the wide variety of designs and materials available, in service and consistent use, assures you the connector for your purpose.

CONSULT CINCH

CINCH MANUFACTURING CORPORATION

1026 South Homan Ave., Chicago 24, Illinois

Subsidiary of United-Carr Fastener Corporation, Cambridge, Mass.

O _ pe- bb ro- len ges ed k 4 In on- lel- BC- gas-tric DM Pwo ring ges-

Cinch electronic compo-

nents are available at leading jobbers — every-

where.

2%. are oply ffili-Vest LE-ES.

1954

NEW lower priced FOCOMAG USES SINGLE FERRITE MAGNET

Another HEPPNER First

- Lower priced, compact. Cuts receiver costs. Uses only ONE ferrite magnet (an exclusive feature).
- Superior focusing more uniform field. The sintered ferrite is extremely uniform throughout. Focuses all tubes up to 27".
- Completely shielded. No harmful external field.
- Extended focus range has very fine adjustment to exact focus.
- Built-in centering device.
- Flexible nylon adjusting shaft eliminates breakage.
- Picture positioning lever. You specify mounting arrangement.

Lower your set costs with this NEW FOCOMAG. Write today for further information.

Round Lake, Illinois (50 Miles Northwest of Chicago)

Phone: 6-2161

SPECIALISTS IN ELECTRO MAGNETIC DEVICES

Representatives: **John J. Kopple**60 E. 42nd St., New York 17, N. Y.

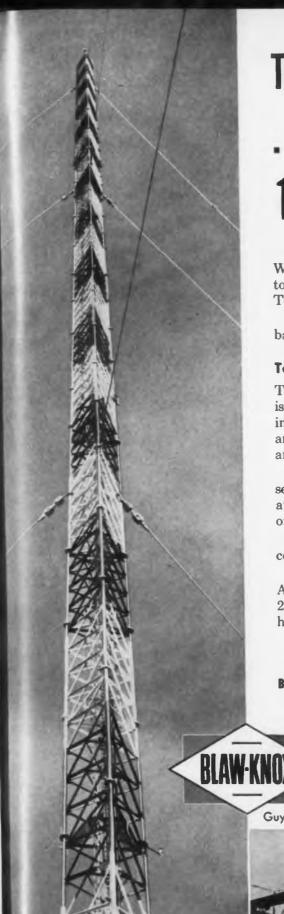
James C. Muggleworth
506 Richey Ave., W. Collingswood, N. J.

Ralph Haffey R. R. 1, U. S. 27, Coldwater Rd., Ft. Wayne8, Indiana

Irv. M. Cochrane Co.
408 So. Alvarado St., Los Angeles, Calif.

POTENTIOMETERS

The new "J" series high-precision, single-turn, continuous-rotation potentiometer is designed for servo mounting and can provide resistances from 2 to 100,000 ohms with tolerances as close as $\pm 1\%$. Linearity tolerance of $\pm 0.25\%$


can be achieved in resistances below 10,000 ohms, and $\pm 0.15\%$ in resistances of 10,000 ohms and above. Power rating of the series is 4 watts ambient at 40° C. Derating is unnecessary at ambients up to 40° C. Up to 21 extra taps can be added to each unit. Each is spotwelded to a single turn of resistance wire without shorting out adjacent turns, and as many as six sections can be ganged on one shaft. Sections of the series can be ganged with other series. Unit diameter is 2 in., overall section length, 11% in. Each ganged section adds 39/64 in. Helipot Corp., Div. of Beckman Instruments, Inc., 916 Meridian Ave., South Pasadena, Calif. -TELE-TECH & ELECTRONIC IN-DUSTRIES.

I-F TRANSFORMER

The "K-Tran" 455 KC i-f transformer has been miniaturized. Only 1/2 in. square by 11/2 in. high, with an overall length of $1^{15}/_{16}$ in., the unit provides the gain and bandwidth characteristics formerly obtained in larger i-f assemblies, and can be used with subminiature tubes where sockets are not required. A small non-metallic screw driver is used to adjust the transformer to resonance. J. W. Miller Co., 5917 South Main St., Los Angeles 3, Calif. -TELE-TECH & ELECTRONIC IN-DUSTRIES.

GE Curtails Color-TV

The General Electric Company has announced that it will curtail the production of 15-inch color television tubes. The company said "This change in the production schedule is a result of recent indications that the future trend is going to be toward the larger sizes of color tubes."

us

Tallest TV tower in the South ... WMCT's new 1088 foot guyed tower

With their new Blaw-Knox tower, and operating on channel 5 to full maximum power of 100,000 watts, WMCT in Memphis, Tennessee, has increased their coverage 100%.

The 1088 foot tower is a triangular guyed type with insulated base and sectionalizing insulators at the 640 foot level.

Tower designed for triple service

This special design tower does triple duty. The lower portion is used as an AM radiator for WMC. In the portion above the insulator and just below the top is mounted an 8-bay FM antenna for WMCF. On top of the tower is a 6-bay super turnstile antenna for television station WMCT.

In addition to this main tower, they use three Blaw-Knox self-supporting 315 foot towers in night time directional operation . . . plus a 310 foot guyed tower for an auxiliary. So at this one station they have a total of five Blaw-Knox towers.

This unusual installation is typical of how we are prepared to cooperate with you on any antenna tower problem you may have.

For more information on the many types of Blaw-Knox Antenna Towers, simply write for your copy of Bulletin No. 2417. Or, for prompt service send us your inquiry, specifying height of tower and type of antenna.

BLAW-KNOX COMPANY

BLAW-KNOX EQUIPMENT DIVISION - TOWER DEPARTMENT PITTSBURGH 38, PENNSYLVANIA

BLAW-KNOX ANTENNA TOWERS

Looking skyward, note the solid round corner legs and the double laced structural angle bracing, Insert shows the triple unit compression cone base

COMPLETE CIVILIAN LINE

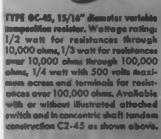
Exceptionally good delivery cycle on civilian orders due to tremendous mass production facilities,

TYPE C45-70

NEW RIGH QUALITY MINIATURIZED
"DIME-SIZE" CIVILIAN CONTROL—
Performance Fally Equal Larges

Types.

TYPE 70, 3/4" diameter mutualise composition resister. Wattage ratings .3 watt for resistances through 10,000 ohms, 2 watt with 350 volts maximum across and terminals for resistances over 10,000 ohms. Also available in remembric shaft undem construction C45-70 as shown above.



ITPE CC-35, 1 1/5" dismeter veriable competition resistences through 10,000 chms, 2/3 watt for resistences over 10,000 chms through 25,000 chms, 1/2 watt with 500 volts maximum across end terminals for resistences over 25,000 chms. Available with or without literated arached switch and in concentric that transfer resistences over 25,000 chms. Available with or without literated arached switch and in concentric that transfer concentration C2-35 as the mabove,

offs (TYPE C45-70 ILLUSTRATED).

OTHER EXPORT

TYPE C45-70

NEW 38-PAGE ILLUSTRATED CATALOG-

Describes Bestrical and Meshenical characteristics. Special Features and Constructions of a complete line of variable resistors for military and civilian use, includes dimensional drawings of each resistor. Write today for your cours.

TYPE 45, (JAN-8-44, Type RV2)
1/4 wait, 15/16" diameter veriable composition resister.
Also available with other
special military features and
covered by JAN-8-44 including security that tenden
construction. Attached switch
can be supplied.

TTPS 35, (JAN-2-99, Type RV 3 1/2 wall, 11/8" diameter varishie composition resister. Also available with other special military features no covered by JAN-2-94 lecteding coverentric shaft landon covaruction. Altoched sellid can be expelled.

TYPE 252, UAN-8-19, Type 2A29

2 work, T 17/6-4" diameter veriable wirewassel resistor.

Also available with other special military features not covered by JAN-8-19 including concentric shaft tendent construction. Attached switch can be supplied.

TYPE 25, (this 8-19, Type BA36 (May also in used an Type BA25 4 wall, 1 17/23" and a variable wirewood racine. Also available with other special military features not covered by JAM-8-19 including executive shall implem emercular attributes with implementation. Attracted witch the appellant.

COMPLETE MILITARY LINE

Immediate delivery from stock on 189 types including JAN-R-94 and JAN-R-19 types of variable resistors.

TYPS 45, (Ministerized) 1/2 unit 70°C, 3/d" dismater ministerized variable compasition resistor.

TYPE 18
7 well 70°C, 15/16° dissolve sorishife associative resistor. Attacked awards can be supplied. Also availoble in concentric shaft lundom construction.

TYPE 95, (IAN-R-94, Type RY4)
2 wolf 70°C, 71/5" discount variable
comparities ratiole. Also available
with other special military features
not covered by JAN-R-94 including
concentrate shall handless construction.
Amenical militares has simplified.

UNPRECEDENTED PERFORMANCE CHARACTERISTICS

Specially designed for military communications equipment subject to act oneimpressure and humidity ranges. -55°C to +150°C ...cridity to estimates

ches Browne Advartish

GB

CHICAGO TELEPHONE SUPPLY
Corporation

Here is new lightweight equipment for ground or shipboard communication with aircraft, or other uses, such as air-ground operation in oil or mining prospecting. The set may be fastened in place in aircraft and connected to an aircraft antenna to supplement the airborne equipment already installed, for special work. The ARC Type 12 operates on a 24 volt power source - the only additional equipment required. 118-148 mc. Both transmitter and receiver are easily portable, in a rugged carrying case. Complete weight, packed, is only 37 lbs. With its sectionalized antenna, it can be set up and be onthe-air in a few minutes.

Assembly consists of ARC Type R-19 Receiver and choice of Type T-11B or T-13A Transmitters, all widely used by Army, Navy and Air Force. Distance range is 50 to 100 miles with aircraft at 3,000 to 10,000 feet. Write for detailed description.

CUES for BROADCASTERS

(Continued from page 97)

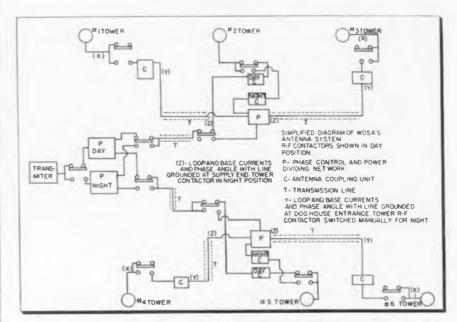


Diagram showing the antenna circuit of WOSA, a 5KW DA-2 station.

shown in the simplified diagram. The two center towers are used for day pattern at which time the end ones are floating. On the night pattern all six are used.

With the following method faults can be localized in the tower circuits not used in the day pattern. With the station operating on day pattern I went through the following procedure on each tower separately and logged the readings of the induced currents for future reference in case of difficulty. I would suggest a little caution as some set ups may change the loading on the transmitter considerably. Also another thing to watch is the base currents which in some set-ups may be considerably more than the normal base current reading for that tower.

1. I logged loop current and phase angle with tower grounded. (X)

2. Loop current, base current, and phase angle with transmission line grounded where it enters that towers dog house and the r-f contactor for that tower switched manually into its night position. (Y)

3. Loop current, base current, and phase angle with transmission line not grounded and r-f contactor of that tower in night position. Loop current, base current, and phase angle transmission line grounded at supply end and contactor for that tower in night position. (Z)

In case of difficulty all one has to do is take these measurements and see where they vary from those logged with system working properly.

Service Aid for Tape Recorder Take-Up Clutch

HAROLD 1. PETERS, Chief Engineer, WOMI, Owensboro, Ky.

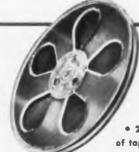

TROUBLE resulting from too much oil on clutch felts can be corrected by a simple modification. At fast rewind speeds and high ambient temperatures a small amount of lubricating oil in the clutch felts is released and travels up the walls of the large drive wheel to the driving surface. Here it is transferred to the motor shaft by the take-up puck wheel, and the oil eventually causes slippage in the capstan drive takeup puck with resultant errors in tape speed.

This oil can be trapped before it reaches the driving surface of the takeup friction assembly by turning two narrow grooves on each side of the exposed walls of the large wheel of this assembly. Oil trapped in the grooves can then be removed during regular maintenance inspection.

If there is no lathe readily available, a homemade tool, such as the sharpened end of a small rat-tail, or three-cornered, file can be used to turn the grooves while the wheel is still on the recorder, and the unit switched to "forward." The tool should be sharpened to cut a Veeshaped groove for best results. A square-bottom groove is better if a lathe is available. The grooves need not be more than .020 to .030 in. deep.

NEW HOT-SLITTING PROCESS

GIVES audiotape EXTRA STRENGTH



IN THE manufacture of Audiotape, particular care has always been given to the slitting operation, in which the processed tape is cut into reel-size widths. Precision straightline slitting has been one of the reasons why Audiotape tracks and winds perfectly flat and has no fuzzy edges to impair frequency response.

Now, however, even this superior slitting operation has been still further improved by precisely controlled heat application. The result, though not visible to the naked eye, is a significant increase in tape strength.

For thermal slitting avoids the formation of the microscopic cracks and irregularities which result, in varying degrees, from any cold slitting process. Each such defect is a source of weakness and a potential tape break.

The thermal treatment in no way alters Audiotape's balanced performance. Hence Audiotape not only offers you the most faithful reproduction of the original sound, but also assures the highest mechanical strength obtainable with cellulose acetate base material—all at no extra cost.

S

d

p

y

it e

of 2

e

1-

ie

il,

d el it ol

A

ed

n.

54

Audiotape is now available on this NEW 7" PLASTIC REEL

• 21 inch hub • more area for labeling • less chance of tape spillage • greater protection to tape • rugged, non-warping construction • distinctive, modern design ... and in colors, too!

Audiotape 7" reels can now be obtained, for special applications, in red, blue, green, yellow or clear plastic. And Audiotape is also being offered on either blue or green colored plastic base, in addition to standard red. These distinctively colored tapes offer interesting possibilities for specialized recording and filing applications. Write for further details

AUDIO DEVICES, INC.

444 Madison Avenue, New York 22, N.Y.

Export Dept., 13 East 40th St., New York 16, N.Y., Cables "ARLAB"

audiotane •

audiofilm . audiopoints

In design, there is no comparable microphone that equals Turner 80 styling and compactness. Styling that pleases the eye and fits in with modern surroundings. Compactness that makes this microphone convenient and easy to use. You can cradle it in the palm of your hand. Actual size (not including C-4 stand) only $4\frac{1}{2}$ " in length.

For PA, home recorder, dictating machine, office and factory call systems and amateur uses, the Turner 80 performance is always dependable.

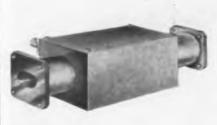
Sensitivity: Approx. 58 db below 1 valt/dyne/sq. cm. Response: 80 to 7000 cps. Weight: 5 oz. less cable. Cable: 7 foot attoched single conductor shielded.

C-4 stand gracefully matches the Turner 80. Both are satinchrome plated. Stand won't tip or slide with weight of cord.

Turner 80 list price_____\$15.95
C-4 stand list price____\$ 5.75

EXPORT: Ad Auriema, Inc., 89 Broad St., New York 4 CANADA: Canadian Marconi Co., Toronto, Ont., and Branches

................


New Technical Products for the Electronic

AMPLITUDE MODULATOR

The "Gyraline" microwave amplitude modulator is a section of cylindrical waveguide containing a ferromagnetic core. When external voltage is applied

VIBRATION MOUNT

The protection of directly read or remotely registered instruments used in airborne operations from vibration and shock is provided by model K130

to a coil that surrounds the waveguide, a magnetic field acts on the ferrite. This causes Faraday rotation of the transmitted microwave energy and degree of attenuation is a function of this rotation. The unit can be used to provide direct CW signal amplitude modulation from 0° to over 90°, or it can be used as a continuously variable microwave attenuator by varying the voltages applied to the input coil. VSWR is 1.4 to 1 (or less). Insertion loss is less than 1 db. Five models are available: 5900-6400, 6400-6900, 6900-7400, 8500-9900, and 9600-11,200 MC. Cascade Research Corp., 53 Victory Lane, Los Gatos, Calif.—TELE-TECH & ELECTRONIC INDUSTRIES.

CRYSTAL UNIT

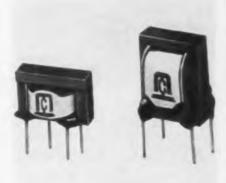
The Bantam BX crystal is a hermetically sealed unit with wire leads and a 15 MC to 100 MC range. It has the same

performance characteristics as MIL types CR-23 or CR-32. It can be wired into a miniature socket or soldered to a printed circuit terminal board. Bulletin 46 contains additional technical information. Bliley Electric Co., Union Station Building, Erie, Pa.—TELE-TECH & ELECTRONIC INDUSTRIES.

mounting system. It is a center-of-gravity type that employs stainless steel resilient cushions that are corrosion-resistant and unaffected by extreme temperature exposure, oil, water, solvents, fungi, or dust. Multi-directional design is said to provide maximum stability and protection at any altitude under the most adverse flight and landing conditions. Robinson Aviation, Inc., Teterboro, N.J.—TELE-TECH & ELECTRONIC INDUSTRIES.

CONTACT PROTECTOR

FTR 8A2PS1 contact protector is a unique application of selenium cells for eliminating the destructive effects of arcing at contact points. These tubular units have peak voltages and timing characteristics that make them applicable to all equipment that draws up to 600 ma operating current at voltages up



to 150 v., ac or dc. They connect into a circuit much in the same way as do resistors or capacitors. Technical information is available on request to the Federal Telephone & Radio Co., Selenium-Intelin Dept., 100 Kingsland Road, Clifton, N.J.—TELE-TECH & ELECTRONIC INDUSTRIES.

Industries

TRANSFORMERS

Miniature transformers for use with printed circuits are now available with power handling capacities which range from 8 mw. to 2 w. The units have

special soldering tabs that can be inserted in a printed circuit terminal board and be mounted and connected by dip soldering. To assure strength characteristics, the units are resin impregnated. Microtran Co., 2117 Mott Ave., Far Rockaway, N.Y.—TELE-TECH & ELECTRONIC INDUSTRIES.

SWITCH BUSHING

A 15½2 in. diameter bushing with 32 threads/in. is designed for toggle switches, telephone switches, and circuit breakers that must be seal-proof mounted. A silicone rubber diaphragm, tested from -40° C. to 150° C. at 90 psi maximum pressure is bonded to the stainless steel handle and bushing. The diaphragm has been tested statically without failure at 240 psi ambient room temperature. At 90 psi, the unit has

been tested up to 150,000 cycles of handle throw without leakage. The maximum deflection angle is ±25° of arc. The key slot is on the outside for radial location. Krautter-Weber Tool Co., 69-77 Twelfth Ave., Newark 3, N.J.—TELE-TECH & ELECTRONIC INDUSTRIES.

Bourns sub-miniature

PROVIDE THE ULTIMATE IN CIRCUIT TRIMMING

Simple screwdriver adjustment...

The TRIMPOT is a 25 turn, fully adjustable wirewound potentiometer, designed and manufactured exclusively by Bourns Laboratories. Electrical settings in increments of ¼ to ½% are securely maintained during vibration of 20 G's up to 2,000 cps or sustained acceleration of 100 G's. Bourns' unique self-locking design eliminates cumbersome locknuts. Power rating is ¼ watt at 100° F. Standard resistance values from 250 ohms to 25,000 ohms are available for immediate delivery. Information on higher and lower resistances on request.

Bourns TRIMPOTS are accepted as standard components by aircraft and missile manufacturers and major industrial corporations.

9 TRIMPOTS
TAKE LESS
SPACE THAN
A 2¢ STAMP

Tiny cross-sectional size—only 1/4" x 5/16"—and rectangular shape save valuable panel space. Instruments are easy to mount individually or in stacked assemblies with two standard screws through the body eyelets.

Bourns also manufactures precision potentiometers to measure Linear Motion; Gage, Absolute, and Differential Pressure and Acceleration.

BOURNS LABORATORIES

6135 MAGNOLIA AVENUE · RIVERSIDE, CALIFORNIA

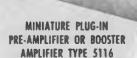
Technical Bulletin On Request, Dept. 172

PRESSURE PICKUP

Immediate response where pressure transients occur too rapidly for observation with conventional indicating devices is provided by type 4-312 pressure pickup. Absolute models are avail-

able in 10, 15, 25, 50, 100, and 150 PSIA ranges. Differential models are supplied with ranges ± 5 , ± 7.5 , ± 12.5 , ± 25 , ± 50 , and ± 75 PSID, and are usable with maximum line pressures of 150 PSI. Upper limits of gauge pickups are 5, 10, 25, 50, 100, and 150 PSIG. Other ranges are available on special order. Pickup weight is 20 grams. Diameter and length, 0.5 in. and 0.75 in. Overloads to 250% of full scale can be tolerated without damage. Each pickup is individually calibrated and supplied with a calibration certificate. Consolidated Engineering Corp., 300 N. Sierra Madre Villa, Pasadena 8, Calif.—TELE-TECH & ELECTRONIC INDUSTRIES.

INDUCTORS


Type SL2 miniature inductors are random wound on plastic bobbins using coated wire. Wound cores are checked with their own pot cores for inductance and Q, and are adjusted to the specified value. The coils, Ferroxcube pot cores.

and leads are then assembled and vacuum-impregnated with tropicalized r-f wax. Values of inductance range from 2.2 to 220 mh. Nominal tolerance is ±10% ± one turn. Nominal Q tolerance is ±20%, Core material is Ferroxcube 3C. Curie temperature, 172° C. (342° F.) Weight, ½ oz. Mico Instrument Co., 75 Trowbridge St., Cambridge 38, Mass.—TELE-TECH & ELECTRONIC INDUSTRIES.

QUALITY IN MINIATURE! Langevin Plug-IN

AMPLIFIERS and POWER SUPPLIES

AMPLIFIEK 17Ft 5110
Miniature plug-in two stage, low noise pre-amplifier or booster amplifier. The smallest high performance amplifier of its type that exceeds FCC requirements. Small size, excellent design and plug-in features make type 5116 ideal for installation in consoles and equipment racks. Push button metering facilities and gold plated plugs are standard at no extra cost.

-for Radio and Television Broadcast, **Recording Studios** and Sound Systems

AVAILABLE MMEDIATELY

MINIATURE PROGRAM BOOSTER or MONITOR AMPLIFIER TYPE 5117

A plug-in two stage, push-pull, fixed gain audio ampli-fier. The most compact amplifier available for this service. Outstanding quality recommends type 5117 for applications requiring out-standing performance and maximum availability. Push button metering facilities and gold plated plugs are standard at no extra cost.

A miniaturized power supply of extremely compact design. Built of highest quality component parts throughout, type 5208 is designed for continuous service. Capable of supplying power for 10 Type 5116 pre-amplifiers or lesser combinations of types 5116 and 5117. Overall length 103/4"; width 254" height 3".

-f

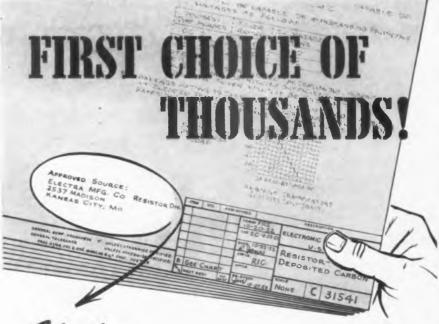
is

V-

54

-the name synonymous with quality in audio equipment and components since 1923

NEW! File Catalog for broadcast engineers and sound technicians available without obligation. Request your copy today—just call or write, on company letterhead, to:


A SUBSIDIARY OF THE W. L. MAXSON CORPORATION

PLUG-IN POWER SUPPLY TYPE 5206

Designed for use with Langevin Miniature Amplifiers. Provides AC for amplifier fitaments and well filtered DC for amplifier plate. One unit provides adequate power to operate up to 22 Type 5116 Amplifiers or lesser combinations of Types 5116 and 5117 with separately fused filament and plate supplies.

EXPORT DISTRIBUTORS: INTERNATIONAL STANDARD ELECTRIC CORPORATION, 50 CHURCH ST., NEW YORK CITY

Electra Deposited Carbon Resistors

From Hearing Aids to Guided Missiles Electra Deposited Carbon Resistors have become "First Choice" on thousands of blueprints. Leading engineers have good reasons for this specified choice... Deposited carbon resistors because they are extremely stable, small in size, accurate to ± 1% but available also in other resistance tolerances and low in cost. Electra resistors are preferred because month after month, year after year, quality is always dependably high.

Purchasing and production people prefer Electra because of fast, dependable delivery—production schedules are met on time!

Electra Deposited Carbon Resistors are available in 8 sizes $-\frac{1}{8}$ watt to 2 watts, and in two types - coated as well as hermetically sealed. They are manufactured to specification MIL-R-10509 A.

Make your "First Choice" Electra Deposited Carbon Resistors!

Electra carbon-coat PRECISION RESISTORS

Write for complete information

Electra Manufacturing Co.
2537 Madison Avenue

KANSAS CITY 8, MISSOURI

CONNECTOR

The series "PC" printed circuit connectors facilitate direct connection to a printed circuit "plug" or "plugmounted" subassembly. Both sides of the printed circuit card can be used for wiring to the external circuit with

the double-row contact construction of the unit. This provides up to 30, 36, and 44 contacts on the PC-15, PC-18, and PC-22, respectively. The connectors are also available in single-row construction, however. Multi-conductor, twosided, pressure contacts of spring temper phosphor bronze are gold-plated over silver for low contact resistance. Terminal ends can be hot tinned for easy soldering. The low resistant contacts have a maximum voltage drop of 20 mv. Positive polarization is provided with polarizing stud that can be located at any contact. DeJur Amsco Corp., 45-01 Northern Blvd., Long Island City, N.Y.—TELE-TECH & ELECTRONIC INDUSTRIES.

FOCUSING MAGNET

A single "Focomag" ferrite magnet will provide a uniform field and superior focusing for TV tubes up to 27 in. It also provides an extended focus

range with a very fine adjustment to exact focus and a built-in centering device. The entire unit is shielded, hence, there can be no harmful external field. A lever positions the TV picture and several mounting arrangements are available. Heppner Manufacturing Co., Round Lake, III.—TELE-TECH & ELECTRONIC INDUSTRIES.

CONNECTORS

The Series "B" bayonet-locking, miniature electrical connectors are completely weatherproof. Die cast aluminum shells assure maximum mechanical protection. Synthetic rubber seal rings offer resistance to moisture and dust. Keyways in the shells provide polarization. Contacts are precision-machined and gold-plated over silver. Molded insert bodies are melamine filled for dielectric strength, mechanical strength. and arc resistance. Voltage breakdown between contacts at sea level is 2,600 VDC; 1,100 VDC at 60,000 ft. Weight of panel-mounted receptacle is 0.60 oz. Weight of cable-mounted plug is 0.50 Winchester Electronics, Inc., Crescent St., Glenbrook, Conn.—TELE-TECH & ELECTRONIC INDUSTRIES.

VARISTOR KITS

d

d

e.

of

d

d

17

to

19

d.

al

re

re 0.,

54

Two new "Thyrite" varistor kits provide a variety of miniature disc-type and rod-type varistors for experimental applications in electronics, communications, power control, etc., Kit No. 1, Cat. No. 108L338G1, contains 12 miniature disc-type varistors, two each of six ratings, color-coded with connecting leads. Kit No. 2, Cat. No. 108L338G2, contains 10 rod-type varistors, two each of five ratings, color-coded with connecting leads. Both kits contain data tables of physical and electrical properties and log-log volt-ampere characteristics graphs. General Electric Co., Dept. 42-211, Pittsfield, Mass—TELE-TECH & ELECTRONIC INDUSTRIES.

COMPONENT GROUP

Model 1110A experimental mechanical component group is a set of standard precision mechanical parts comprising gears, shafts, bearings, hangers, and mounting plates. When coupled to necessary motors, tachometers, syncros, potentiometers, and amplifiers, the set facilitates the rapid build-up of a flexible experimental mechanical assembly of a servo-system, computer, or regulator. The set was developed to provide means for quickly synthesizing the electromechanical parts of the control system. Servo Corporation of America, 20-20 Jericho Turnpike, New Hyde Park, N.Y.—TELE-TECH & ELEC-TRONIC INDUSTRIES.

PRINTED CIRCUITS

The flush switch plate shown is indicative of current production of printed circuits with continuous follow-through patterns for increased efficiency, faster and easier assembly, and the elimination of hardware for more usable space. In one square foot of printed circuit board 0.125 in. thick, 150 0.20 in. diameter holes can be plated through. Insulated Circuits, Inc., 115 Roosevelt Ave., Belleville, N. J.—TELE-TECH & ELECTRONIC INDUSTRIES

OVER 200 BASIC TYPES TO CHOOSE FROM

Do audio attenuator problems cost you money? Chances are Shallcross has a model to match your specifications exactly—and at moderate cost.

Shallcross attenuators are made in over 200 basic types. Each type can be supplied with a choice of attenuation characteristics... with a positive detent mechanism... and in numerous input and output impedances. Where calibration must be extremely accurate, Shallcross precision wire-wound resistors are used. For less critical applications, models with high grade composition resistors can be supplied—often at lower cost.

A .complete description of all Shallcross attenuators — mountings, characteristics, and circuits is yours for the asking in Bulletin L-4A. SHALLCROSS MFG. CO., 518 Pusey Avenue, Collingdale, Penna.

QUICK DELIVERIES! Small quantities of popular 20 step Shallcross composition resistor potentiometers and wire-wound ladders without detents are immediately available.

Shallcross

WASHINGTON

News Letter

Latest Radio and Communications News Developments Summarized by TELE-TECH's Washington Bureau

NEW CONQUESTS—Industrial and mobile radio communications, including microwave, intraplant, vehicular and remote control services, have taken away an important part of the spotlight of television both among the radio-electronic manufacturers and the present and potential users of these services, and both the latter groups are seeking to have speedy formulation of permanent rules and standards to get the microwave and intraplant services, particularly, on a "green light" speedway. It is known that the members of the Radio-Electronics-Television Manufacturers Association as well as the leading industries and services using these media of communications are greatly concerned with an expeditious decision by the FCC so they can be established on a regular service basis.

MICROWAVE GROUP-To promote orderly allocation of microwave frequencies and to demonstrate to the FCC the need for eliminating the present developmental status of microwave service, approximately 50 communications engineers and consultants from twelve major segments of users and representatives of manufacturers such as Motorola, RCA-Victor, General Electric, Westinghouse, Federal Telephone and Radio Corp., Collins Radio and the Canadian General Electric recently formed a Microwave Users Council. FCC Safety and Special Radio Services Bureau Chief Edwin L. White outlined the requirements of the FCC in the promulgation of a clear policy on the microwave spectrum and a delineation of the services to be furnished by the Bell System and the industries and state and local governmental organizations in the public safety field.

CONTROVERSY LOOMS-There is no question that the conflict of interests between the Bell System and the private users of microwave and mobile radio serviceswith the latter supported by the manufacturers cited above-will brew up into a heated controversy which will be carried to the FCC in the Commission's proceedings on the formulation of rules and standards for those radiocommunications services. At the recent microwave users council meeting this was under the surface but was not brought out in the statements at the sessions. The FCC was asked to hold up the finalization of the dockets' procedure blueprints on microwave until the Radio-Electronics-Television Manufacturers Association and the American Petroleum Institute's central committee on radio have completed surveys and studies requested by the Commission. To illustrate the scope of the users who formed the council they were the API committee, the railroads, national committee on utilities radio, forest industry, American Trucking Associations, National Bus Communications, forestry conservation departments of states, special industrial radio group, the Associated Police Communications Officers and the International Municipal Signal Association.

CALIFORNIA SYSTEM—Based on the views of FCC Commissioners in the hearing on the quarter-centuryold Federal-State Marketing News Service's radiotelegraph network covering California, that state's plan for a statewide microwave system to handle all California state governmental communications, voice and telegraph, would receive a cool FCC reception when that plan comes before the Commission. The FSMNS is slated to relinquish its five frequencies under the provisions of the international frequency allocation agreement, first devised at Atlantic City and then implemented last year by the world nations at Geneva. A majority of the FCC Commissioners definitely indicated their feeling that the regular communications services of the telephone and telegraph companies could serve the needs of the state.

FCC CHAIRMAN—All indications, at TELE-TECH's press deadline, pointed to the reappointment of FCC Chairman Rosel H. Hyde as chieftain of the Commission when his one-year term in that post expires April 18. Chairman Hyde is supported for reappointment to the Chairmanship by most of his fellow-Commissioners. Mr. Hyde is well deserving of the continuance at the helm of the FCC in view of his career of more than a quarter century with the old Federal Radio Commission and the present FCC in their legal departments. He was named Commissioner after having served as General Counsel. In addition, as Chairman during the past year, he has directed the FCC's functioning so well that it is up-todate in the processing of television station construction permit applications—a task which was slated to take up to five years has been cleared away in one year. The UHF television prospects, incidentally, have been dampened by the withdrawal of several score of applications for that service.

FM BAND—The FCC is endeavoring to bolster the sagging fortunes of FM broadcasting by allowing that service to furnish non-broadcast operations such as background music service, storecasting and transitcasting. Major industrial radiocommunications services, such as the petroleum and power utilities, have proposed that the FCC consider a reallocation of the FM frequencies to give their operations badly needed spectrum space.

National Press Building Washington, D. C.

ROLAND C. DAVIES
Washington Editor

Nothing on the market today excels the low priced Class B protection of Varflo Tubing and Sleeving

Flexible Varflo is solvent-, oil-, moisture-, flame-, and fungus-resistant. Passes the NEMA heat endurance test of 15 minutes at 225°C. Also passes 100 hours at 125°C. Will not lose dielectric strength when subjected to severe handling, bending and twisting. Has good shelf life.

Available in Grades A-1 and B-1 tubing and Grades C-1 and C-2 sleeving.

Let us help you with your problem. Describe it in a letter—no cost, no obligation.

m

n ap

ch

es

ES

54

VARFLEX CORPORAT	ION		
508 W. Court St., Rom			
Please send me free folder containing description and samples Varflo Tubing and Sleeving.			
I am particularly intere	ested in insulation for		
Name			
Company			
Street			
• • • • • • • • • • • • • • • • • • • •			

FREE SAMPLES ... Mail Coupon Today!

Total costs come down — each time a Gabriel Passive Reflector goes up. Mark these savings in time, manpower, and overall costs of tower installation with this new Gabriel design.

- Save man hours a smaller crew spends less time on each installation. The all-aluminum, heliarc welded unit is easily hoisted into position where adjustable U-clamps have been set at required tower height.
- Reflector adjustment is fast and precise. Easily reached hand-crank and gear system gives exact station-to-station directivity through 90° in azimuth, through $\pm 5^\circ$ from 42° in elevation. Turn-buckled guy wires rigidly fix mount and reflector against heavy wind pressures.

New research by our affiliate, The Gabriel Laboratories, has determined optimum reflector size, contour, and shape for greater gain characteristics with specific tower heights and antenna diameters. Reflectors are "sandwich" type, of aluminum sheets and honeycomb core bonded and sealed at edges.

Write for mechanical specifications and specific systems application data. On Display at Booth 193-195 I.R.E. Show.

GABRIEL electronics division

FORMERLY WORKSHOP ASSOCIATES DIVISION
THE GABRIEL COMPANY, 210 ENDICOTT STREET, NORWOOD, MASS.

UPSET PINS

Improvement in automatic high-speed machines have made possible the production of precise upset pins in diameters from 0.010 to 0.090 in. on straight or formed wires in all workable metals. Heads and flanges are rounded, and can

be positioned to any specified distance from the wire end and held to closed tolerances. Head variation is possible within limits. Art Wire & Stamping Co., 227 High St., Newark, N. J.—TELE-TECH & ELECTRONIC INDUSTRIES.

SWITCH

The PM-901-A is a light-weight, manually-operated, broad-band, impedance-matched switch for X band in RG-52/U waveguide size. Input power may be diverted to either of two output channels. Maximum VSRW in switched positions is 1.10 over the band 8500 to

9600 MC. and isolation between output channels is nominally 30 db. General Precision Laboratory Inc., 63 Bedford Road, Pleasantville, N. Y.—TELE-TECH & ELECTRONIC INDUSTRIES.

CAPACITORS

"Hy-Met" metallized paper capacitors are designed for operation over the temperature range from -55° to +125° C. They are available in metal, papertubular, and bathtub containers and include MIL-C-25A case styles and sizes. Metal cased capacitors are hermetically sealed with glass-to-metal terminals and ruggedized for shock and vibration resistance. All units are precision-tested individually before leaving the factory. Astron Corp., 255 Grant Ave., East Newark, N.J.—TELE-TECH & ELECTRONIC INDUSTRIES.

EL SEGUNDO CALIFORNIA Largest Range in the 101/10 10 1/s" Industry Solenium Raciosed В2 A5 A10 Pigtail Terminals B10 Ferrule Terminals CLEMITE COLL A15 INTERNATIONAL RECTIFIER CORP. Stud Terminals B-10-M CARTRIDGE TYPES 1.5 ma to 60 ma PHOTOELECTRIC CELLS 20 volts to 10,000 volts Send for Bulletin PC-649 Send for Bulletin H-1

d - tts

at al

ine 5" rad ad re or lly m k,

WASHINGTON

News Letter

Latest Radio and Communications News Developments Summarized by TELE-TECH's Washington Bureau

NEW CONQUESTS—Industrial and mobile radio communications, including microwave, intraplant, vehicular and remote control services, have taken away an important part of the spotlight of television both among the radio-electronic manufacturers and the present and potential users of these services, and both the latter groups are seeking to have speedy formulation of permanent rules and standards to get the microwave and intraplant services, particularly, on a "green light" speedway. It is known that the members of the Radio-Electronics-Television Manufacturers Association as well as the leading industries and services using these media of communications are greatly concerned with an expeditious decision by the FCC so they can be established on a regular service basis.

MICROWAVE GROUP-To promote orderly allocation of microwave frequencies and to demonstrate to the FCC the need for eliminating the present developmental status of microwave service, approximately 50 communications engineers and consultants from twelve major segments of users and representatives of manufacturers such as Motorola, RCA-Victor, General Electric, Westinghouse, Federal Telephone and Radio Corp., Collins Radio and the Canadian General Electric recently formed a Microwave Users Council. FCC Safety and Special Radio Services Bureau Chief Edwin L. White outlined the requirements of the FCC in the promulgation of a clear policy on the microwave spectrum and a delineation of the services to be furnished by the Bell System and the industries and state and local governmental organizations in the public safety field.

CONTROVERSY LOOMS-There is no question that the conflict of interests between the Bell System and the private users of microwave and mobile radio serviceswith the latter supported by the manufacturers cited above-will brew up into a heated controversy which will be carried to the FCC in the Commission's proceedings on the formulation of rules and standards for those radiocommunications services. At the recent microwave users council meeting this was under the surface but was not brought out in the statements at the sessions. The FCC was asked to hold up the finalization of the dockets' procedure blueprints on microwave until the Radio-Electronics-Television Manufacturers Association and the American Petroleum Institute's central committee on radio have completed surveys and studies requested by the Commission. To illustrate the scope of the users who formed the council they were the API committee, the railroads, national committee on utilities radio, forest industry, American Trucking Associations, National Bus Communications, forestry conservation departments of states, special industrial radio group, the Associated Police Communications Officers and the International Municipal Signal Association.

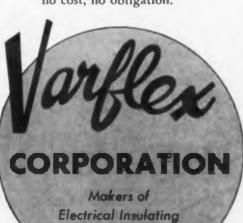
CALIFORNIA SYSTEM-Based on the views of FCC Commissioners in the hearing on the quarter-centuryold Federal-State Marketing News Service's radiotelegraph network covering California, that state's plan for a statewide microwave system to handle all California state governmental communications, voice and telegraph, would receive a cool FCC reception when that plan comes before the Commission. The FSMNS is slated to relinquish its five frequencies under the provisions of the international frequency allocation agreement, first devised at Atlantic City and then implemented last year by the world nations at Geneva. A majority of the FCC Commissioners definitely indicated their feeling that the regular communications services of the telephone and telegraph companies could serve the needs of the state.

FCC CHAIRMAN—All indications, at TELE-TECH's press deadline, pointed to the reappointment of FCC Chairman Rosel H. Hyde as chieftain of the Commission when his one-year term in that post expires April 18. Chairman Hyde is supported for reappointment to the Chairmanship by most of his fellow-Commissioners. Mr. Hyde is well deserving of the continuance at the helm of the FCC in view of his career of more than a quarter century with the old Federal Radio Commission and the present FCC in their legal departments. He was named Commissioner after having served as General Counsel. In addition, as Chairman during the past year, he has directed the FCC's functioning so well that it is up-todate in the processing of television station construction permit applications—a task which was slated to take up to five years has been cleared away in one year. The UHF television prospects, incidentally, have been dampened by the withdrawal of several score of applications for that service.

FM BAND—The FCC is endeavoring to bolster the sagging fortunes of FM broadcasting by allowing that service to furnish non-broadcast operations such as background music service, storecasting and transitcasting. Major industrial radiocommunications services, such as the petroleum and power utilities, have proposed that the FCC consider a reallocation of the FM frequencies to give their operations badly needed spectrum space.

National Press Building Washington, D. C.

ROLAND C. DAVIES
Washington Editor



Nothing on the market today excels the low priced Class B protection of Varflo Tubing and Sleeving

Flexible Varflo is solvent-, oil-, moisture-, flame-, and fungus-resistant. Passes the NEMA heat endurance test of 15 minutes at 225°C. Also passes 100 hours at 125°C. Will not lose dielectric strength when subjected to severe handling, bending and twisting. Has good shelf life.

Available in Grades A-1 and B-1 tubing and Grades C-1 and C-2 sleeving.

Let us help you with your problem. Describe it in a letter—no cost, no obligation.

n

ıs

h at

S

	STREET, STREET	1
VARFLEX CORPORATION		-
508 W. Court St., Rome, N. Y.		
Please send me free folder containing description	and	san
Varflo Tubing and Sleeving.		

I am particularly interested in insulation for.

Name_____

Street______Zone___State____

FREE SAMPLES .. Mail Coupon Today!

Tubing and Sleeving

Yes! You get immense satisfaction from gold in any form...and particularly from the performance of the gold-plated contacts in Cannon's modern "UA" Series of audio connectors,

Contacts are heavily gold-plated over standard silver plate...not just "flashed" with a light coating of gold. You get maximum protection from oxidation and deterioration in vital audio circuits...absolute reliability. Cannon has furnished gold-plated contacts for years. Cannon "UA" Series of audio connectors

Cannon "UA" Series of audio connectors are the result of the combined efforts of Cannon engineers and outstanding RETMA audio engineers of the country. Plug shells are of steel. Plugs feature Cannon's thumb-pressure LATCHLOCK design...no accidental disconnect. Full-floating socket contacts ease strain on insulator-dielectric during engagement... prolong life. Rubber relief collars and bushings provide shock and moisture protection. Flat-top design assures positive polarization. All "UA" units carry three 15 amp. contacts. Grounding contact engages first.

Cannon manufactures the leading lines of audio connectors. In addition to the "UA" Series, you should investigate our "P," "O," "X," "XK," and "XL" lines for all requirements in audio and video equipment. Connect with Cannon!

Write for Bulletin PO5 and RJC Price List!

Refer to Dept. 201

CANNON ELECTRIC COMPANY, 3209 Humboldt Street, Los Angeles 31, Colif., Factories in Los Angeles; New Haven; Toronto, Canada; London, England. Representatives and distributors in all principal cities.

GANNON ELEGIRIG

Since 1915 I.R.E. SHOW BOOTH 546

TRANSDUCTORS

(Continued from page 79)

scheme must be coincident and linear for the desired range of operation. Since single-ended transductor operation is characterized by nonlinearity in the vicinity of zero control they are not applicable to system which require full range totalizing. However, there are systems which require only limited range totalizing for which single-ended transductor are applicable. A typical example of this type system is an electro-chemi-

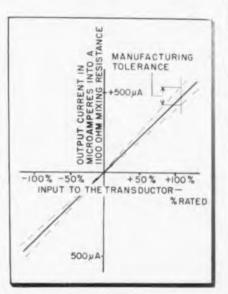


Fig. 7. Push-pull transductor characteristic

cal process line whose feeder buses operate at all times between 50% and 100% rated current. The mechanics of matching single-ended transductor outputs for totalizing are more easily explained if the characteristic curves are also expressed in terms of percent rated input to the transductor versus output voltage in millivolts developed across a selected portion of the load resistance. The first step in matching transductor outputs is to compensate for the gain tolerances of Fig. 4 by varying the load resistance until the linear sections of the curves are parallel. Although the single-ended transductor is essentially a constant current device, sufficient change in gain can be made to compensate for manufacturing tolerances. The second step is to select that portion of the load resistance which develops the desired voltage drop when rated input is fed to the transductor. Thus. all of the transductors can be calibrated for the same output to the totalizing meter per unit feeder bus current. When the selected portions of the load resistances are connected in series so that the voltage drops

STACKPOLE COMPONENTS!

Write for the new 56-page Stackpole Catalog RC-9 for complete charts, graphs, formulas, and detailed specifications on these dependable components.

Electric Company, St. Marys, Pa.

n o n

ng

o ii-

%

eed re

ed to lt-

ng ite

by he re

ed nt in or cof

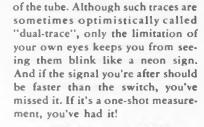
ed

15,

li-

he us ns

ed ps


54

Only A MULTI-CHANNFI"

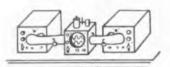
SCOPE

LETS YOU SEE, MEASURE, AND RECORD Simul-Scopic * SIGNALS LIKE THESE

Take any two simultaneous events ... the input and output of a circuit, speed and vibration, velocity and acceleration. To compare them you might rig up two ordinary scopes. But from there on in you've got double-trouble. You either get a stiff neck looking from one scope to the

Nummu

THE STIFF-NECK STINT


other, or you diverge your eyes and let 'er rip.

If you don't happen to be gifted with double vision, you might turn

THE WIDE-EYED WATCH

to science's substitute—an optical system. Now the two traces of light are bounced from the c-r tube faces to a single viewing screen. If you are lucky enough to approach this delicate monstrosity without damaging it by breathing, you still might not find those elusive pips you're after. Somewhere along the long

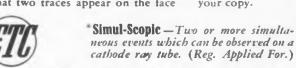
THE OPTICAL OPPRESSION

light path, your signals got all bounced out, maybe right out of the picture.

In case you're also not gifted with a high-frequency switching neck, you can always fall upon an electronic switch. With this built-in gadget, a single tube switches rapidly from one phenomenon to another for you. And the switching is so fast, that two traces appear on the face

These shortcomings become proportionately worse as the number of phenomena you wish to measure increases. An optical system gets hulkier losing more light at the same time, while an electronic switch leaves you less of a chance to catch those high speed transients.

Actually, it's not economical to consider either. Both approach or even exceed the cost of the only practical system-ETC multi-channel oscilloscopes. Through the combination of 2, 3, 4, 6, or even eight electron guns in a single ETC cathode ray tube, you can see all the necessary phenomena on a single screen . . . just as clearly, just as accurately, and just as completely as the presentation on a single channel



THE Simul-Scopic SYSTEM

scope. There is no other solution so easy to use, so comprehensive in its presentation, and so economically practical. Our new catalog, Oscillography . . . Key to the Unknown shows you many more reasons why ETC

scopes and tubes are best for simultaneous display. Write for your copy.

ectronic tube corporation

1200 E. MERMAID LANE, PHILADELPHIA, 18,

TRANSDUCTORS (Cont.)

add, the reading on the totalizing instrument will represent the sum of the feeder bus currents.

Pash-Pull

A typical application of push-pul circuitry as applied for metering individual unidirectional current is shown in Fig. 6. A push-pull potential transductor is applied for metering individual unidirectional voltage in the same way except that the control winding is connected between buses with an external series resistance as is shown for the singleended transductor of Fig. 3. The operation of the push-pull circuit, applied as shown in Figure 6, is typified by the characteristic curve of

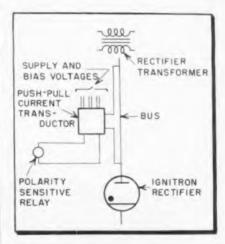


Fig. 8: Bus-tap current transductor used in detecting arc-backs in ignitron rectifiers

Fig. 7, when the relationship of input to output is expressed as percent rated input to the transductor versus output in microamperes of d-c current into a specified mixing resistance. The dotted lines of Fig. 7 indicate that manufacturing tolerances are to be expected in production units. The operating characteristics of push-pull circuitry can be interpreted for the instruments of Fig. 6 from the curve of Fig. 7.

Fig. 7 shows that the output of the push-pull transductor is zero at zero input and is linear for the full range of input (0 to 100% rated), hence the instruments of Fig. 6 which are activated by this output will have linear scales. The instrument in Fig. 6 can be either a dc microammeter or a null-balancing potentiometer type instrument or both. The dc microammeter is connected in series with the mixing resistance and is activated by the entire output current. The potentiometer-type in-

SPECTRA BRIGHTNESS SPOT METER

ins 01

mI. ul in-

is enerage the

Je-'ies le-

The piof

in-

≥nt

sus

11'-

st-

n-

:es

ics

T'-

ig.

he ro ge

ice

ve ig.

ter :er dc

ies is

rn-

54

NO MORE GUESSWORK IN BRIGHTNESS READINGS

FEATURES OF STANDARD MODEL

- Direct Reading in Footlamberts Small Angle

- Direct Reading in Footlamberts
 Small Angle
 Extreme Range of Sensitivity . . . From 0.1 to 1000000 FTLS in Six Ranges
 Locking Microammeter . . . Reading Retained until Button Depressed
 Self-Contained . . . Requires no External Power or Wiring. External. Optional
 Completely Portable . . . Small Size and Light Weight
 Accuracy . . . Better than 5% Over Entire Sensitivity Range
 Dependability . . . Battery Replacement Only Maintenance
 Focusing . . . from 4 to z by Rotating Lens Barrel . . . Supplementary Lens Available to Focus 1/10" at 2"
 Filter Wheel For Color Temperature Massyrement
- Filter Wheel For Color Temperature Measurement

SPECIAL MODELS

In addition to the Standard Model. SPECIAL MODEL with 12 degree acceptance angle and higher sensitivity are available on request.

Photo Research Corp. is proud to include the following well-known organizations among the users of the SPECTRA brightness spot meter:

A&M College of Texas Admiral Corporation Army & Air Force Motion Picture Service Asvin Film & Theatrical Production Camera Equipment Co. Chicago Park District Columbia Broadcasting System, Inc. Consolidated Film Industries Daybrite Lighting, Inc. Eastman Kodak Company Frazar & Hansen, Ltd. General Electric Company

Harrison Wholesale Company The Hydro-Electric Power Comm. of Ontario Ingersoll Products Division Kistner, Wright & Wright Libbey-Owens-Ford Glass Co. Metro-Goldwyn-Mayer Studio The Miller Company Motion Picture Research Council, Inc. National Broadcasting Company, Inc. National Carbon Company National Film Board, Canada National Research Council, Canada Pittsburgh Corning Corp.

Portsmouth Naval Shipyard Society of Motion Picture & Television Engineers Stanford University The Strong Electric Corp. Sunbeam Lighting Company Sylvania Electric Products. Inc. United States Navy U.S. Naval Academy University of Kentucky University of Michigan Virginia Polytechnic Institute Westinghouse Electric Corp.

Write for illustrated brochure giving complete details of these special features and specifications of SPECTRA BRIGHTNESS SPOT METER, and various attachments for special purposes.

PHOTO RESEARCH CORP.

Karl Freund, President

127 W. ALAMEDA AVE., BURBANK, CALIFORNIA

CARGO PACKERS EAST & WEST COAST PACKAGING SERVICE!

CALIFORNIA -2050 BROADWAY, SANTA MONICA

Individually-engineered CLIMATE-PROOF, SHOCK-PROOF PACKAGING

To meet the increased, country-wide demands of the electronics industry. Cargo Packers has now inaugurated complete facilities in the West Coast area also, for packaging protection of delicate instruments, equipment and components, including

- Experts in Military Specifications
- Economical Production line methods
- Full Compliance in Every Detail
- Competent Consulting Service

Whether in storage or in transit anywhere, absolute protection against strain, stress, shock, vibration, temperature or humidity fluctuations, moisture - or even skin damage - is assured by Cargo Packers' individual attention to every job. For recommendations on specific packaging problems, call or write our Sales-Engineering Department today.

PACKAGING FOR ORDNANCE AND INDUSTRY

TRANSDUCTORS (Cont.)

strument is connected across a portion of the mixing resistance and is activated by the voltage developed in this selected resistance by the load current. The calibration of a demicroammeter is made by varying the mixing resistance to obtain fullscale deflection on the meter for 100% rated input to the transductor. The calibration of the potentiometer type instrument is made by selecting the portion of the mixing resistance which develops the full scale input voltage of the instrument for 100% rated input to the transductor

The mechanics of matching pushpull transductor outputs for totalizing is less involved than matching single-ended transductor outputs, but it is still convenient to express the characteristic curves in terms of percent rated input to the transductor versus output voltage in millivolts developed across a selected portion of the mixing resistance. The characteristic curves for push-pull transductors can be made identical for totalizing simply by calibrating each transductor for the same output to the totalizing meter per unit feeder bus current. The outputs are connected together the same as for the single-ended units of Fig. 5 and again the reading on the totalizing instrument will represent the sum of the feeder bus currents.

The characteristic curve of Fig. 7 shows that the push-pull transductors will supply a change in the polarity of output for a change in polarity of input. As a bi-directional device, the push-pull transductor is directly applicable to the metering of bi-directional currents and volt-

(Continued on page 132)

EXAMINE CAMERA AT CLINIC

Foreign visitors discuss operation of RCA's Type monochrome TV studio camera with T. Griffith (on platform), manager of RCA b.oad-cast premotion. Visitors attended 19th television technical training course conducted by RCA Engineering Products Division.

Typical Installation of B & M Spotlights in "I Love Lucy" TV Show

BARDWELL & McALISTER'S Engineered Television Lights

TV SPOT Model 5000 TV SPOT Model 1000/2000

This complete line of television spotlights was especially designed and engineered for television stage lighting. The many years of experience in the production of studio lights for stage and motion pictures was drawn upon to produce the B & M TV Spots which make possible painting with light. Painting with light is the ability to control the light source in order to emphasize the necessary highlights and all the important shadows. Only through controlled light can the scene and subject be given the desired brilliance, beauty, and third dimensional effects to produce ideal screen pictures.

Our specialists are always ready to assist and advise your engineering staff so that your studies and stages will be fully equipped to properly paint with light. Write for complete specifications and prices of these B & M TV Spots.

ARDWELL & MCALISTER, Inc. 2950 ONTARIO STREET

TRANSDUCTORS (Cont.)

ages. It can also be used in control schemes to detect reverse currents or voltages. A typical application of a push-pull current transductor in a control scheme is shown in Fig. 8.4 In this scheme the push-pull transductor is used to detect the reversal of current that occurs in an arcback of an ignitron rectifier and the directional output can be used to activate a polarity sensitive relay in a fault clearing mechanism. For application to control schemes, such as given in Fig. 8, where accuracy is not of prime importance, a bus-tap transductor is used.4 As shown in Fig. 8, this type unit eliminates the need for a shunt since it uses a section of the bus as a shunt. The operation of current transductors either single-ended or push-pull which use the bus-tap scheme for sensing the bus current is the same as the operation of current transductors which use shunts to sense the bus current.

Transductors are applicable to high-voltage dc systems as auxiliary metering and control devices. They can be applied to meter both unidirectional and bi-directional currents and voltages, and the outputs are suitable for use with standard switchboard instruments and nullbalancing potentiometer type instruments. Their operation in industrial installations is compatible with industrial metering accuracies. The electrical isolation they maintain between the system potential and the metering and control circuits permits safe operation with standard instruments and control equipment and provides adequate safety to operating personnel.

J. R. Specht and R. N. Wagner, "The Theory of the Current Transductor and Its Application in the Aluminum Industry," A.I.E.E. Trans., vol. 69, pp. 441-452; 1952
 H. F. Storm, "Series-Connected Saturable Reactors with Control Source of Comparatively High Impedance," A.I.E.E. Trans., vol. 69, Part II. pp. 1299-1309; 1950
 W. F. Horton, "I-olation Metering of D-C Bus Currents," Proc. N.E.C., vol. 8, pp. 260-262: 1950

1950 W. A. Derr and E. J. Cham, "Magnetic Am-plifier Applications in D-C Conversion Stations," Paper 53-26 presented at the A.I.E.E. Winter Meeting, New York; 1953

Electralab, Inc. A Farrington Subsidiary

The production facilities of the Farrington Mfg. Co., Jamaica Plain, Mass., entered the field of printed circuitry recently, with the acquisition of Electralab, Inc., of Cambridge, Mass. as a subsidiary. The merger is aimed at stepped-up production of quality printed circuits, with special application to the modular Design System.

is p

11

d

h

dsd

it

e

d

Want the facts and specifications on weights, tolerances, forms and grades available? Or dielectric strengths, colors, suggested applications, machining and forming techniques? Here's the whole story in one thumb-tahbed package. It's a catalog you can't afford to be without, so ask the National representative nearest you for your copy. He's listed in the classified directory. Or write to National Vulcanized Fibre Co., Dept. K-4, Wilmington 99, Delaware.

... to make good welding equipment even better, vulcanized fibre is used to get results. And this service-proven fact is by no means limited to welders' masks! Take a look at welding-rod holders and cable connectors... at rheostats, generators, transformers, switches, and circuit breakers. The welder may not realize that practically all such items are safer, longer-lived, and more dependable because of the vulcanized fibre used in their construction . . . but they are!

Unusual? Not at all. Vulcanized fibre is used in thousands of applications throughout industry simply because nobody has ever been able to make a material to beat it. And many have tried in the past 70 years.

Consider a material which is tough and strong... has high dielectric strength... weighs half as much as aluminum... can be drawn, formed, shaped, or machined... and is *very* economical. It's a designer's dream.

We know of no industry in which vulcanized fibre can't be used to advantage. Do you?

Nothing takes the place of Vulcanized Fibre

NATIONAL

WILMINGTON 99, DELAWARE

Speeding Electronic Progress through CRYSTAL

The new JK-G9A extends the advantages of glass enclosed crystals to the mediumfrequency range between 1200 kc and 5000 kc, providing a superior crystal for many applications in VHF and UHF equipment, frequency standards and monitors, and other precise requirements. The crystal operates in a vacuum, free of contamination and protected from its environment. The unit has excellent mechanical ruggedness. The crystal plate is custom designed for each application and is capable of performance far beyond previously available types. The unit may be designed for maximum stability over a wide temperature range, or temperature controlled in the JKO7É oven. Approximate height, above chassis, 2.375". Maximum dia. of octal base, 1.260". Consult us on specific applications.

Transistor Sockets

Bulletin No. 1954-1, covering subminiaturatube and transistor sockets produced by Super Ear Products Co., 675 Merrick Road Lynbrook, N.Y., illustrates six units angives code numbers, number of contacts dimensions, and list prices.

Panel Visibility

Brochure "D", available on request to Universal Aviation Equipment, Inc., 36: Fifth Ave., New York 1, N.Y. describes "Universal" illuminated control panels dials and knobs designed to produce maximum day and night visibility.

Vibration Isolator

Bulletin 537, available at the Barry Corp 700 Pleasant St., Watertown 72, Mass. pre-sents detailed application information on the Series 262 and 633 "Barrymounts" de-signed to isolate motor noise and vibration

Wire and Cable

A new catalog recently released by Lenz Electric Mfg. Co., 1751 N. Western Ave., Chicago Ill. provides complete specifications of the company's line of hook-up and lead wires, and cables produced for the electronic industries.

G9A

TYPE

3579 545 KI

A technical information bulletin issued by P. R. Mallory & Co., Inc., Battery Division, North Tarrytown, N.Y., contains descriptive data covering the company's new transistor power supplies and its standard line of Mercury "A" batteries and multi-cell combination "A" and "B" packs and stacks that can be tailored for greater capacities or higher voltages.

"Crystal Handbook"

A handbook of crystal and oscillator theory has been compiled and published by James Knights Co., Sandwich, Ill. Intended for the design engineer using crystals. Price, \$1.00.

Measurement Techniques

Vol. 5, No. 1-2 of the Hewlett-Packard Journal describes time interval techniques involving high-speed clutch systems, relay operating times, phase delay at low frequencies, etc. The publication may be obtained from Hewlett-Packard Co.. 395 Page Mill Road, Palo Alto, Calif.

DB Meters

A newly revised engineering data sheet that gives complete information on 1½ in db panel meters for commercial and military applications has been announced by International Instruments Inc., P. O. Box 2954. New Haven 15, Conn.

Counter Techniques

"The Application of Counter Techniques In Precision Frequency Measurements," pre-sented at the WESCON, 1953, is available on request to Berkeley Division, Beckman In-struments, Inc., 2200 Wright Ave., Richmond. Calif.

Power Supplies

Power Designs Inc., 119-22 Atlantic Ave., Richmond Hill 19, N.Y. have released a 4-page brochure that describes and presents engineering data that covers the power supplies produced by the company.

Camera Accessories

The 96-page 55th annual camera, lens, and equipment catalog published by Burke and James, Inc., 317 South Wabash Ave., Chicago 4, Ill., is available free of charge.

Need a SPECIAL material?

enz ve., ons ead nic

by on. ive itor of mhat

ard ues lay enned //ill

in ary er-

on Innd,

nts

and

154

LAVA • SILICON CARBIDE

ALUMINA (vitrified or porous) • CORDIERITE

STEATITE • ZIRCONIUM OXIDE • ZIRCON

MAGNESIUM SILICATE • ALUMINUM SILICATE

FORSTERITE • TITANIUM DIOXIDE

SEE OUR DISPLAY

BOOTH NO. 340

BASIC MATERIALS EXPOSITION

The Product
Development Show

CHICAGO MAY 17-20, 1954 Development of new, special purpose ceramic compositions is a regular part of our work. No matter what your requirements are, the chances are good that we have an AlSiMag composition that will do the job.

If you need a material with special characteristics or have a difficult design involving intricate shapes or close tolerances, give us your requirements. Let us show you what we can do.

S3RD YEAR OF CERAMIC LEADERSHIP

AMERICAN LAVA CORPORATION

A Subsidiary of Minnesota Mining and Manufacturing Company

CHATTANOOGA 5, TENNESSEE

OFFICES: METROPOLITAN AREA: 671 Broad St., Nework, N. J., Mitchell 2-8159 • SYRACUSE, N. Y.: 204 Marding Place, Phone 9-0656 • CLEVELAND 5012 Euclid Ave., Room, 2007, Express 1-6685 • NEW ENGLAND: 1374 Mass. Ave., Cambridge, Mass., Kirkland 7-4498 • PHILADELPHIA: 1649 N. Broad St., Stevenson 4-2823 • ST., LOUIS: 1123 Washington Ave., Garfield 4959 • CHICAGO: 228 N. LeSalte St., Central 6-1721 • SOUTHWEST, John A. Green Co., 6815 Oriole Dr., Dallas 9, Dixon 9918 • LOS ANGELES. 5603 N. Huntington Dr., Capital 1-9114

TURBO BRAND Miniaturization Wire was specially developed in The William Brand laboratories to meet a use need within the range of -55° C to +105° C and maximum operating voltage of 600 volts rms. This "mini" wire is available in 20 strandings, ranging from 7/38 to 19/25 and in a graduated scale of AWG sizes from 30 to 12, It is available in both solid and stranded - in solid colors or "candy striped" with 1, 2 or 3 tracers.

TURBO INSULATION

TURBO "mini" wire is insulated to withstand the effects of water, oils, aircraft engine fuels, hydraulic fuels, dilute acids, alcohol, alkalies, ethylene glycol and fungus. The primary insulation is TURBO 540, an extruded polyvinyl chloride compound. For further protection there is an extruded jacket of nylon over the primary insulation, which gives added resistance to mechanical wear and abrasion.

SPECIAL MINIATURIZATION PROBLEMS To assist engineering and manufacturing organizations in special problems arising in the use of miniaturization wire, The William Brand Research Department will welcome the opportunity of offering suggested solutions of such problems. such problems.

Insulating Material TURBO

Specialists Since 1920

THE WILLIAM BRAND & CO., INC.

Dept. T-4 Willimantic, Conn., U.S.A., Tel. HArrison 3-1661

TURBOTUF Insulating Tubing and Sleeving - TURBO Insulated Wires - Wire Markers - Extruded Tubing - Varnished Saturated Sleeving and Tubing - Cambric Cloths, Tapes, Papers - Mica

SALES REPRESENTATIVES IN PRINCIPAL CITIES

Audio Systems

"Tools for Building Temples of Tone," 16-page brochure, tells how to select conponents for a home audio system, includin the cartridge, record player and change tape machine, tuner, amplifier, and loucspeaker system. Write for Bulletin No. 21 to Electro-Voice, Inc., Buchanan, Mich. Enclose 10¢ in coins or stamps.

Tube Selector

The "Picture Tube Selector," a pocket size, slide-rule device that solves most plc ture tube replacement problems has been made available by Allen B. Du Mont Laloratories, Inc., Cathode Tube Div., 75 Bloomfield Ave., Clifton, N.J. The selector may be obtained at all distributors of the company's replacement picture tubes.

Recording Systems

A new 38-page catalog by Sanborn Co-Industrial Div. 195 Massachusetts Ave Cambridge 39, Mass. describes oscillographic recording systems and accessories.

Resistors-MIL Type

Catalog Data Bulletin D-1 released by International Resistance Co., 401 North Broad St., Philadelphia 8, Pa. contains com-prehensive engineering data, photos, charts, and graphs covering "IRC" precision wire and graphs covering wound resistors.

Electronic Equipment

Electro-Tech Equipment Co.. 308 Canal St., New York 13, N.Y., have released Catalog No 54, an illustrated, indexed 189-page presentation of a wide variety of electronic meters, controls, and test equipment Attached is a folder, "Off-The-Shelf-Service," that explains the policy and service of the company.

Coils and Meters

Catalog 102-A, a new 16-page publication. introduces a line of subminiature toroidal colls and toroidial coll meters made by Burnell & Co., 45 Warburton Ave., Yonkers. N.Y. It includes descriptions, and attenuation and Q curves.

Terminal Boards

Bulletin "Terminal Boards", page 1, in color, presented by the Electronic Sales Division, DeJUR-AMSCO Corp., 45-01 Northern Blvd., Long Island City, N.Y. includes information concerning base materials and pin arrangements.

Monograph

"Electrical Noise in Wire-Wound Potentiometers," a 21-page illustrated technical paper that describes noises that originate in a precision potentiometer; discusses methods of observing and measuring noise, etc. The monograph, by Irving J. Hogan, is available at Technical Information Service. Helipot Corp., 916 Meridian Ave., South Pasadena, Calif.

Tape Recording

Audio & Video Products Corp., 730 Fifth Ave., New York 19, N.Y. have released their new 6-page tape recording accessories catalog. It contains specifications and descriptive material on recommended accessory items.

"Microwave." a 10-page booklet illustrates and describes microwave communication equipment with block diagrams and pictorial applications. Collins Radio Co.. 855.35 St.. N.E., Cedar Rapids, Iowa.—TELE-TECH & ELECTRONIC INDUSTRIES

OVER 6,000 ROUTE-MILES of RADIO RELAY SYSTEMS INSTALLED

High Points of PTM ENGINEERING and **PERFORMANCE**

- Pulse-Time Modulation assures maximum circuit reliability.
- Simplest and smallest RF equipment.
- Highest RF power output.
- Fewest tubes-lowest maintenance.

orth

odial

kers

ntio-

inate

oise. n. is vice.

outh

Fifth their ories de-

954

- Simple intermediate drop and insert equipment.
- Simple individual common type channeling units.
- Simple delay line method insures channel synchronization.
- Unaffected by fog, rain, snow, ice, static or magnetic storm.
- High signal-to-noise ratio.
- Outstanding for high quality of voice and other transmission.
- No inter-channel cross-talk due to non-linearity of common elements.
- Energy beamed by non-critical directive parabolic reflectors.
- High power provides large fading margin.
- 99.22% reliability achieved without RF stand-by.

SUCCESSFUL operation in many industries proves Federal's PTM is better because of its inherent simplicity ...!

Streamlined circuitry-fewer tubes! That's the basis of Federal Pulse-Time Modulation Microwave superiority... for multi-channel radio relay systems of any length . . . over any terrain!

Federal PTM gives pipelines, power utilities, telephone companies, railroads and others complete, simultaneous, all-weather voice and signal facilities ... without costly line construction and maintenance.

Proved-in services include: toll circuits, dialing, dispatching, telemetering, supervisory and remote control. teleprinter, telegraph, speech-plus-duplex, mobile radio ... in fact, all industrial communications needs.

Get the facts about Federal PTM ... backed by decades of experience in engineering, system planning and turnkey installations. Write to Dept. H-266.

MICROWAVE MOVIES:

Be sure to see Federal's 16 mm. sound-

Be sure to see Federal's 16 mm, sound-and-color motion pictures:
"Microwave Communications for Pow-er Utilities"..."Pipeline Communications With Microwave"..."Microwave for Mod-ern Telephony"..."Railroad Operation With Microwave"..."Modern Communi-cations With Microwave." Prints shipped without charge for company showings. Write to: Film Distributing Department.

Visit Federal's Exhibit—IRE Show—885-893 Audio Ave. at Broadcast Way

Federal Telephone and Radio Company

PTM AND WIRE TRANSMISSION SALES

100 KINGSLAND ROAD, CLIFTON, N. J.

In Canada: Federal Electric Manufacturing Company, Ltd., Montreal, P. Q. Export Distributors: International Standard Electric Corp., 67 Broad St., N. Y. IT'S A FACT...

ITaT scientists conducted the first successful demon-stration of voice commu-nication via microwave, March 31, 1931, across the English Channel.

MODEL CS-6E

Finished Pieces Per Hour—15 in. lengths, 3000 per hour; 97 in. lengths, 500 per hour.

CAPACITY

Maximum Stripping Length $-1\frac{1}{2}$ in. at each end.

Maximum Cutting Length—97 in. Minimum Cutting Length—2 in. (½ in. special).

Wire Handled—Solid or stranded single conductor wires, parallel cord, heater cord, service cord, etc.

Maximum Wire Size — No. 10 stranded or No. 12 solid.

Other Artos Machines

The complete line of Artos automatic wire cutting and stripping machines will handle cut lengths from 1 in. to 60 ft., stripped lengths to $6\frac{1}{2}$ in. at one end and $8\frac{1}{2}$ in. at the other, wire from No. 12 to No. 000 gauge, and up to 3600 pieces per hour. Ask for recommendations on your own specific problems.

Artos Automatic Machines.

The Model CS-6 illustrated can complete up to 3,000 pieces per hour in 15-in. lengths, and other lengths in proportion. You save through combined operations...through quick, easy set-up...through unskilled help who can handle this machine. You obtain substantial time savings over the best man-

cut to length, and stripped at one or both ends...investigate

Highly accurate machine operation reduces work spoilage to an absolute minimum — errors due to the human element are eliminated. There is no cutting of strands or nicking of solid wire. Uniform lengths and uniform stripping are produced consistently.

ual or semi-automatic methods.

WRITE FOR BULLETIN

Get the complete story—write now for Bulletin 35-C on Artos Model CS-6 machines.

Automatic Wire Cutting and Stripping

46, Wis.

TV Antenna Patterns

(Continued from page 92)

amount of downward beam tilt as well as null fill-in. The small amount of beam tilt resulting quite often is desirable in that the horizon may actually be this amount depressed because of the height of the antenna In fact, null fill-in usually is required only when these antennas are mounted at such heights as to result in a fair amount of horizon depression.

To provide phase deviations, the corresponding cables feeding the bay to be phased are modified slightly in length to result in proper phasing of these bays. This is the

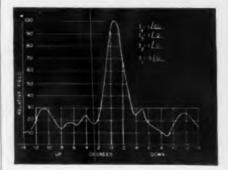


Fig. 15: UHF 4-bay helical contoured pattern

only thing necessary when accomplishing contouring by phasing. When amplitude distribution is used for contouring, or when used in addition to phasing, proper matchers are placed in the branches feeding the corresponding bays, to result in the current amplitude distribution desired. A contoured pattern is usually designed on a per-channel basis, since both the cable lengths and branching matchers are to some extent frequency sensitive. In some cases, broadband matchers may be applied to widen the band width for which the contoured pattern will exist.

UHF Applications

The gains used in UHF are considerably higher than used in VHF. Some contouring is therefore more often required for UHF since the nulls now fall a considerable distance away from the transmitter. Here again, the two basic techniques of phase and amplitude deviation from standard are used for contouring solutions.

Fig. 14 illustrates the standard 4-bay UHF array factor, the angles marked on the locus again representing the angle below horizontal. Lead-phasing the top bay moves the locus outward from the reference. Further, by additionally reducing

*Please address your inquiries:
CHIEF CONSULTING ENGINEER
Transistor Development and Application Division

ne ne

be

ill

M S

F.

he

er.

les

on ir-

rd

les real. he

ce.

ng

54

HYDRO-AIRE

3000 WINDNA AVENUE, BURBANK, CALIF.

Subsidiary of Crane Co.

CONSULTANTS ON TRANSISTOR APPLICATIONS

We're long past the "Cat's Whisker stage" with Transistors. Contact Hydro-Aire for consultation NOW!

The day has come when the Electronics Industry must examine all vacuum tube applications for the possibility of substituting Transistors. Of course, it will not be a matter of simple replacement; each application must be designed around the Transistor. But the advantages of the Transistor are overwhelming. You get small size and light weight, long life and low cost. In addition, there is an endless potential of entirely new applications still unexplored.

Hydro-Aire is ready to co-operate with you in exploring this fascinating new field. The specialized know-how of our experienced Transistor Development and Application Division is yours for the asking. Our research engineers are waiting to consult with you.*

To the E. E. or

Physics Graduate

with experience in

Radar or Electronics

Visit HUGHES EXHIBITS

at the NATIONAL CONFERENCE OH AIRBORNE **ELECTRONICS**

Dayton, Ohio-May 10, 11, 12, 1954

Hughes Research and Development Laboratories are engaged in a continuing program for design and manufacture of advanced radar and fire control systems in military all-weather fighters and interceptors.

THE GREATEST advancements

YOU WILL serve as technical advisor in the field to companies and government agencies using Hughes equipment.

TO BROADEN your field of experience in radar and electronics you will receive additional training at full pay in the Hughes Laboratories to become thoroughly familiar with Hughes radar and fire control equipment.

AFTER TRAINING you will be the Hughes representative at a company where our equipment is installed; or you will advise in the operation of Hughes equipment at a military base. (Overseas assign-

in electronics are being made in this sphere because of military emphasis. Men now under 35 years of age will find this activity can fit them for future application of highly advanced electronic equipment.

the amplitude and modifying the

phase of the bottom bay, two power-

ful controls are obtained for con-

touring. The results of a typical case

TV ANTENNA PATTERNS (Cont.)

Fig. 16: UNF 5-bay antenna array factor

ments, single men only.)

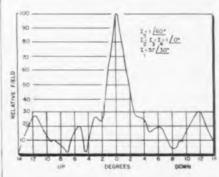
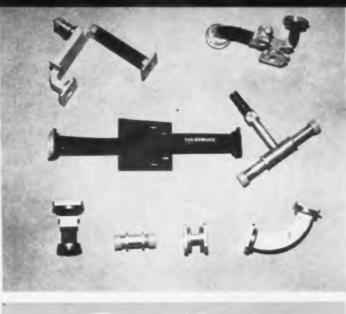


Fig. 17: UHF 5-bay helical contoured pattern

are shown in Fig. 15. The relative bay currents are as indicated. The phasing required is accomplished simply by relative bay rotation. The amplitude distribution is obtained by a variation in the matcher at the proper bay feed. Naturally, with the amount of contouring shown here, some gain reduction occurs. Also, the pattern shown included some beam tilt. The amount of actual beam tilt may additionally be controlled by reinserting the proper amount of progressive phase shift, over and above the deviations used to procure the original contouring. The amount of contouring and tilt may be modified after installation


Such contouring of course is not limited only to the four-bay, similar basic methods being used for contouring the five-bay helical. The basic array factor is shown in Fig. 16. By operating on the top and bottom bays alone, a large amount of contouring can be provided. Actual pattern illustrations are shown in Fig. 17, illustrating a fair amount of


The author wishes to acknowledge the assistance of Mr. R. E. Fisk in preparing much of the pattern data.

simply by rotating the top bay. contouring.

This paper was presented at the NARTB Broadcast Engineering Conference, April 28-May 1, 1953, held in Los Angeles.

for Performance and Dependability

Co-Operative Industries, Inc.

NULL-POINT BRAZED SEAM

WAVE GUIDES

Semi-Rigid and Flexible

• Eliminates need for composite rigid and flexible multiplejoint assemblies with attendant high losses.

OUTSTANDING FEATURES

- Pressurizable to 3 ATM
- 2 No RF leakage
- 3. Ruggedized construction, yet lighter in weight
- 4. Performs to complex configurations
- 5. Excellent power handling capacity
- Annular corrugations permit guide terminations at flange faces

SEMI-RIGID PREFORMED WAVE GUIDE ASSEMBLIES

ELIMINATE

Misalignment and cumulative tolerance problems
Lengthy tooling programs

ASSURE

Electrical properties equal to rigid No increase in weight or space requirements Higher pressure capabilities

ne your specifications for quotation. Engineering consultations writed without shiftention

CO-OPERATIVE INDUSTRIES, INC.

100 Oakdale Road - Chester, New Jersey

newest aids to

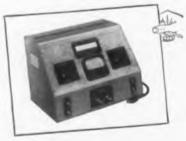
Here are three unusual "helping hands" which will enable you to reduce many of your present production and control operations to push-button simplicity. Because of their versatility, they will fire your imagination—suggest challenging new ways to manufacture better products faster, at lower cost.

Clippard Miniature Pneumatic Cylinders, for example, are so small they can be jig mounted on 34" centers, making them ideal for activating electrical contacts, valves or small work holding or feeding fixtures. In test operations (see jig illustration at right) they actually give an operator extra hands to work with thru use of a foot pedal air valve.

If your manufacturing process involves the testing, sorting, grading or matching of resistors, the Clippard P. R. 5 Automatic Resistance Comparator will pay for itself very quickly, permitting you to compare unknown resistors with a standard resistor simply by touching them across two terminals. Work can be handled either by unskilled operator or automatic production set-up.

The Clippard P. C. 4 Automatic Capacitance Comparator is a companion instrument permitting you to accurately check, grade, sort or match up to 8000 condensers of any type (10 mmfd to 1000 mfd) in one day. Either unskilled labor or automatic set-ups can be used.

Write for catalogue sheets describing these versatile new "helping hands" to automation, and literature showing how others are using them to produce higher quality products at lower cost, today!


INSTRUMENT LABORATORY, INC.

7390 Colorain Road, Cincinnati 24, Ohio

Clippard MINIATURE PNEUMATIC CYLINDERS (No. MAC 38), are shown above in a typical test jig set-up activating electrical contacts. Size of cylinders overall is 2½½° x ½½° dia., stroke ½° maximum, spring return piston. Operates on as little as 12 pounds air pressure.

P. R. 5 AUTOMATIC RESISTANCE COMPARATOR permits unskilled operator or automatic set-up to test, grade, sort or match as many resistors a minute as can be touched across two front terminals. Range 100 ohms to 100 megohms. Three scales of deviation from your standard: —5% to +5%, —25% to +30% or —50% to +100%.

P. C. 4 AUTOMATIC CAPACITANCE COMPARATOR grades, sorts, checks or matches all types of condensers (10 mmfd to 1000 mfd) at production speeds with laboratory accuracy. Requires no accessories other than the standard capacitor against which unknowns are to be compared.

Coupled Traps

(Continued from page 85)

assumptions of Q and attenuation, but as shown in Fig. 6 these errors become negligible when compared on an over-all basis.

Until now the amplitude characteristics of an inductively coupled trap circuit has been the main topic of discussion. However, the phase characteristics of a trap are of equal importance in so far as they have serious consequences on the "Electrical Fidelity" of a video i-f system. This fact will be borne out by a practical video i-f amplifier design illustrated in the following section, by determining the system's 250 KC transient response through analytical as well as experimental methods.

Practical Video I-F Amplifier Design

The evaluation of picture quality or "Electrical Fidelity" of a video i-f amplifier requires consideration of the phase as well as the amplitude characteristics. Mathematically the response of a video i-f amplifier to a unit voltage can be determined from the phase and amplitude characteristics. The idealized i-f standards of uniform amplitude response. sharp cut-off, and constant time delay are of little practical significance since the requirements of sharp cut-off and high rejection are contrary with constant time delay. On the other hand the simple video i-f response curves obtained by either stagger-tuned or double-tuned networks are not sufficient to prevent

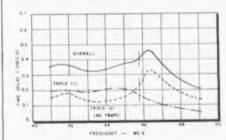


Fig. 11: Time delay of staggered-triples

interference from the adjacent channel sound and video carriers, and thus traps must be employed in the system. However, traps tend to distort the amplitude as well as the phase characteristics of an i-f system. Fortunately, however, the amplitude and phase characteristics are directly related to each other regardless of what circuit is used, provided it is a minimum phase shaft network. The transient response can be readily calculated from the effect of this relationship

RUGGED—MOISTURE PROOF
NO FLAKING PROBLEM
SINGLE CRYSTAL CONSTRUCTION
UNAFFECTED BY COMMON ACIDS
AND ALKALIS
LEAD WIRES TIED DIRECTLY TO
ACTIVE ELEMENTS

Tung-Sol TS series diodes are assembled on a glass stem 1/4" long and 5/32" wide. Overall height is less than 3/16". Lead wires are sealed into the glass stem. Moisture cannot penetrate along the leads even after the wire has been flexed many times. This feature is an especially important safeguard against humidity failure.

The "single ended" design of Tung-Sol Diodes permits visual inspection of the crystal and cat-whisker after assembly. Thus, accurate positioning of the whisker wire on the germanium surface is assured—not a matter of chance.

Single crystal germanium is used exclusively for all Tung-Sol Diodes. The wafer is soldered

directly to the flattened top end of one lead wire. There is no plating—thus no flaking problem.

The S-shaped whisker is platinum-ruthenium wire, presently the most satisfactory whisker material. It is spot welded to the lead wire.

Both tinned lead wires are tied directly to the active diode elements. There are no intermediate connections—an important consideration for high frequency service.

The insulating case is nylon, selected for its excellent moisture resistant properties. The case is filled through its open top with a special epoxy resin which is equally moisture resistant and is mechanically stable. The resin is unaffected by all common acids and alkalis. This construction produces a completely shockproof diode.

All Tung-Sol Diodes are hot stamped with type number and a polarity bar to indicate the "cathode" or germanium connection. Legibility is permanent.

Tung-Sol Diode design meets all application requirements.

For more information about Tung-Sol TS series type Diodes, write to Commercial Engineering Dept.

TUNG-SOL ELECTRON TUBES

TUNG-SOL ELECTRIC INC., Normanic A. Norm Jacquey

Coltum Affects, Commission, Coltum Coltum Congress, Delica, Delica, Delica, Delica, Delica, Coltum Coltum

precision measurement demands

WAVELINE MICROWAVE.

instruments

Such as impedance measuring units incorporating the last word in precision . . .

or impedance matching devices to lacilitate laboratory measurements

and components

Whether they be custom built, special assemblies for experimental, and laboratory work...

or components
to be incorporated
in radar or
communication
systems...

because

Years of experience supplying microwave instruments to meet the most exacting measurement needs of industry have established Waveline as the unchallenged precision leader in the field.

New expanded facilities insure even greater plant flexibility, faster deliveries on both catalog units and special assemblies.

Write or wire today for the address of the nearest Waveline field sales engineer who is always ready to give immediate and personal attention to your microwave problems.

Technical data on microwave instruments sent on request.

CALDWELL, NEW JERSEY

COUPLED TRAPS (Cont.)

and it is the purpose of this bulletin to show how the inductively coupled trap affects this pertinent aspect of "Electrical Fidelity."

For reasons of simplicity, economy, gain, selectivity, stability, and ease of alignment, a four stage 41.25 MC stagger-tuned amplifier utilizing the 6CB6 vacuum tube was designed to have a 6 db bandwidth of approximately 3.5 to 4.0 MC, and an

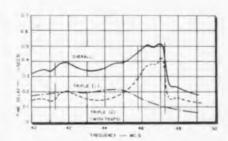


Fig. 12: Time delay characteristics with traps

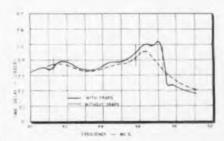


Fig. 13: Comparison of overall responses

adjacent channel sound carrier rejection of 30 db with reference to the picture carrier as well as an associated sound carrier rejection of 20 db min. with reference to the picture carrier.

The 3-stage stagger-tuned amplifier discussed in a previous section of this paper, as well as the response of another triple-tuned network, will serve as the networks depicting the overall response of the system to be analyzed. A comparison of the "Electrical Fidelity" of the system in terms of the 250 KC transient response, with and without the trap circuits, will be made in order to determine what effects traps incur on the picture quality of a video i-f system.

Since the amplitude and phase characteristics of stagger-tuned or any other multi-tuned network can be determined from methods explained in detail by publications dealing with the fundamentals of network theory, and since the introductory sections of this bulletin dealt with these characteristics for inductively coupled trap circuits,

AND STILL THE Biggest News

-in hermetic sealing today!

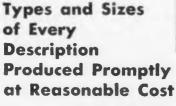
1255F/90T-RR-P12

of

C

le

ty


se


an k-

162SF/90T-RS-OS

SUPER-RUGGED

compression sealed terminations

Over four years ago, Electrical Industries developed and brought to practical reality the first compression sealed termination. Field tested in thousands of applications over the intervening years, acceptance is now overwhelming. The demonstrated superiority of the compression type seal needs little emphasis. Ability to withstand punishment is outstanding to a degree that leaves little room for comparison with other types. As the originators of compression sealed terminals and headers, Electrical Industries offers exceptional capabilities in meeting specific requirements with speed, precision and economy. For complete information call, write or wire your requirements.

DIVISION OF AMPEREX

ELECTRONICS CORPORATION

ELECTRICAL INDUSTRIES

44 SUMMER AVENUE, NEWARK 4, NEW JERSEY

EXPORT AGENTS: PHILIPS EXPORT CO., 100 EAST 42nd STREET, NEW YORK 17, N. Y.

"Off the air? How long?"

It's not a pleasant feeling to be told "You're off the air'" is it? Especially when you are doing your other duties. Well, there's no need to be caught red-faced, nowadays.

The RUST CARRIER INTERRUPTION ALARM gives an engineer many worry-free hours away from the controls. This is the first unit specifically designed and produced by a reputable manufacturer for carrier failure alarm. It has an internal buzzer, with connections for external alarm.

- For any AM, FM or TV transmitter.
- For CONELRAD alarm with any AM or FM receiver.
- For remote operation with remote control systems.
- For countless uses in radio communication.

Price \$68.75 with full instructions to operate. FOB Manchester, N. H. Immediate delivery.

the FUST industrial company, inc.
608 Willow St., Manchester, N. H.

COUPLED TRAPS (Cont.)

only the final theoretical computations will be illustrated. Fig. 8 contains the response curve of the triple tuned network (triple 2) explained in the introductory section of this paper as well as the triple tuned network (triple 1) comprising the remaining network of the over-all amplifier system. Fig. 9 shows the same response curves less the trap circuits in triple 2. Fig. 10 are over-all response curves of the video i-f system with and without traps. The results illustrated in this plot show how the associated sound carrier trap tends to reduce

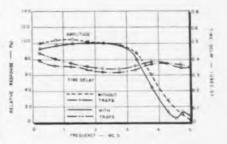
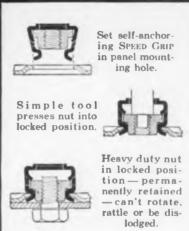


Fig. 14: Low pass amplitude and time delay

the bandwidth of the over-all system, while the adjacent channel trap on the other hand increases the rate of cut-off on the video carrier side. The effects of these aspects on the transient response will be shown later, but at this point the phase characteristics in terms of the time delay response will be illustrated.

Staggered-Triples

Fig. 11 contains plots of the individual time delay characteristics of the staggered-triples without traps, as well as their over-all response. Fig. 12 shows time delay curves of these same amplifiers, but with the addition from the trap circuits. Comparing the two over-all responses of the system in Fig. 13 shows that abrupt shifts in the time delay characteristics take place within the regions of the trap frequencies. The associated sound carrier side shows a relatively small shift in time delay whereas the adjacent channel sound carrier side shows abrupt changes especially within the region of the picture carrier frequency. The effects of these nonlinear transitions in time delay on picture quality is serious since they tend to shift the principle frequencies of the transient response.


In order to evaluate the transient response of the video i-f amplifiers presented as examples, they must

New, Self-Anchoring SPEED GRIP® cuts assembly costs in half!

Whatever your present method of attaching square nuts to panels, new self-anchoring Speed Grips can do the job faster, easier, better. This unique fastener has spring steel "mechanical hands" that permanently lock the nut in bolt-receiving position. It cannot be dislodged even with rough handling. Applied after painting or porcelainizing, there is no clogging, retapping or masking of threads to bother about. And it is ideal for blind location attachments.

Total up the savings in application time—in expensive assembly equipment—in handling time—in assembly steps—and you'll switch to self-anchoring Speed Grips—the newest addition to the complete Tinnerman line of Nut Retainers.

Write today for free copy of new detailed Speed Grip Bulletin, No. 335. Tinnerman Products, Inc., Dept. 12. Box 6688, Cleveland 1, Ohio. In Canada: Dominion Fasteners

Ltd., Hamilton, Ontario. In Great Britain: Simmonds Aerocessories, Ltd., Treforest, Wales. In France: Aerocessoires Simmonds, S.A., 7rue Henri Barbusse, Levallois (Seine).

e

e - e 9

S

cs ut

ay ut

r-

13

1e

ce

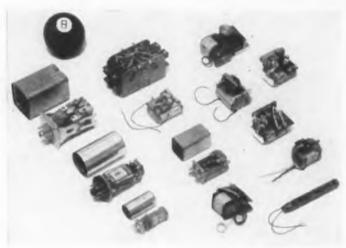
de

ly re of

ne us ile

nt rs

54


UNRELIABILITY IS NOT FUNNY

A competitor has taken us to task.* Because we are delighted to find somebody else willing to come out and admit just who he is and what he's up to, we'd like to answer him candidly, even though it seems he's missed our point quite a bit.

He implies we treat unreliability as a joke, and our customers as naive to expect anything better. To straighten him out:

- what we think is funny is the way some customers distill the story of what they want to accomplish into pure mathematics and formal specifications and then expect reliability;
- what we think is pathetic is the way an unreliable relay disappoints a member of that growing body of good customers who are naive enough to let their hair down, skip the formalities, and tell us what they are after. So little do we like this that we just announced (in the January ad which teed off our friend) respectively our fifth and sixth design attempt to do one particular job right.

It may be that our friend mistakes willingness to talk turkey in turkey-talk with mere frivolity, but that's a small crime. His ad is good and worth reading.

DC POLAR

RELAYS

At all events, here are 13 relays (not counting the eight ball) which we now have in various stages of development,

only three of which have had their first shiver under public scrutiny.

6 exist by reason of dissatisfaction with reliability of existing products.

7 exist by reason of a frontier which, 'though it may be neither new nor romantic, we think can be cracked. Their nature is briefly indicated just in case anyone else wants to get into the argument.

If you can't tell which is which, don't be surprised. As we said, only three are ready to talk about. But even so there's no harm in letting us know if you're interested in things indicated above or anything else, for that matter.

- · Multi-circuit heavy current switch.
- · DPDT or SPDT three-position non-
- SPDT very high speed telegraph or information repeater.
- DPDT or SPDT low cost.
- · SPDT miniature three-position.
- Sensitive high current SPST.

RELAYS

- · Low cost DPDT. SPDT midget low cost.

- AC
 - Tuned (resonant) (1200-2800 cps).
 - for pulse counting (0-60 cps).

mechanically centered.

- DC NEUTRAL . Very sensitive and precise
 - 400 cycle (non-rectifier).
 - · Constant voltage temperature compensated high overload rated. RELAYS
 - · Self-synchronous aperiodic motor

SW PARK SS. SCIENTIFIC AMERICAN, March 1856 He isn't really a competitor, by makes meter-more ment relays which are a coupling of orders more sensitive than anything as made, and have different limitations. Ours are often used between such types and the load to give maximum protection to delicate contacts.

SIGMA INSTRUMENTS, INC. 40 PEARL ST., SO, BRAINTREE, BOSTON 85, MASS,

COUPLED TRAPS (Cont.)

first be transformed into their equivalent low pass network. As a result of the demodulation process employed in a vestigual sideband transmission system, the energy present in the lower sideband must be added vectorially to that of the upper sideband. This addition may be accomplished by either graphical or analytical procedures. The analytical approach is the most preferable since accuracy is of importance in determining the exact amplitude and phase characteristics of the principal frequencies of the transient response.

ar

£ 1

he

th

1.6

11

it

11

1 3

112

: 18

-ul

rea

des

cel 611 am

sin am

ch

the

Fig. 14 shows the demodulated or low pass equivalent amplitude and

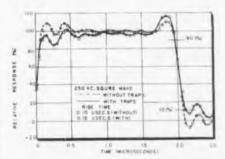


Fig. 15: Theoretical transient response

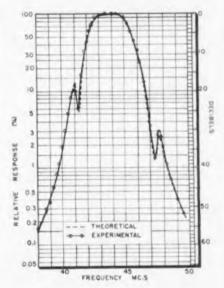


Fig. 16: Amplifier amplitude response

time delay characteristics of the amplifier with and without the trap circuits. From these curves two definite conclusions may be drawn, one being that the associated sound carrier trap tends to reduce the effective bandwidth of the system, and secondly that the adjacent channel sound carrier trap tends to advance the time delay characteristics of the network especially within the principle frequencies of the transient esponse. Thus, the associated sound arrier trap will effect the rise-time f the transient response as well as he ring frequency. The adjacent nannel sound carrier trap, on the ther hand, will determine the deree of smear as well as the perentage anticipatory overshoot present in the transient response. Fig. 5 contains theoretical curves of the ansient response of the system, ith and without trap networks.

id

5y

st

зу

al

f-

of

he

or

the rap .wo

wn.

ind

ef-

and

nel

nce

the

in-

ient

954

In order to bear out the validity these analytical computations, for electrical Fidelity," experimental trives for the amplitude response the amplifier with and without aps are shown in Figs. 16 and 17. Figs. 18 and 19 illustrate photographic experimental confirmation in the theoretical transient response adculations. The experimental result obtained were well within the realm of experimental error.

General Practice

No theoretical approach to the design of a video i-f amplifier would be complete in its own right unless certain practical aspects were fulfilled. One such requisite is that the amplifier be free from regeneration since regeneration tends to alter the amplitude as well as the phase characteristics of the system. Again, the stagger-tuned networks should

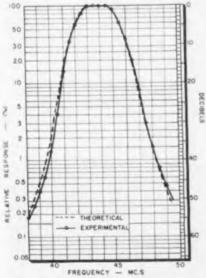


Fig. 17: Experimental amplifier response

le arranged in accordance with ood engineering practices, and yet llow a fair degree of flexibility so is to meet changing production requirements. However, as further proof of the practical aspects of the nalysis presented in this bulletin, fig. 20 contains photographic evilence in the form of a representa-

COLOR TV Wickes EQUIPMENT

COLOR CONVERSION PACKAGE

An integrated basic package for producing color signals. Converts monochrome synchronizing generator for color, generates standard color bars, and encodes output of Color Bar Generator, color camera chain, or color slide scanner to produce composite color video signal. Requires 70 inches of standard rack space. Includes units listed below.

Interlace Signal Generator ISG-2.

Generates subcarrier of 3.579545 mc ± .0003%.
Supplies one subcarrier output at 75 ohms for Color Coder.
Isolation amplifiers provide three additional 75-ohm subcarrier output nits Supplies 31.5 ke signal for locking synchronizing generator. Provides 1575 ke test marker pulse.

Color Bar Generator CBG-1.

Five adjustable pedestal forming channels. Allows choice of several bar patterns, Two frequently used combinations

1. Six colors plus black and white.

2. White, black, two primary colors, and two mixture colors, plus I and Q or R-Y and B-Y.

Color Coder CC-1.

Matrixes red, green, and blue signals to produce luminance signal, l, and Q. Produces R-Y and B-Y which quadrature-modulate subcarrier signal in doubly-balanced modulators.

Adds together composite synchronizing signal, chrominance subcarrier signal, and luminance signal to produce composite video signal.

I, Q, R-Y, and B-Y can be turned off individually. Composite video signal can be used to modulate television transmitter, or distributed to color video monitors and test positions.

Power Supplies.

Provide regulated B+ voltage and filament voltage for all units in the conversion package.

Above units are available as separate items.

VECTOR DISPLAY EQUIPMENT MODEL VDE-3

The Model VDE-3 Vector Display Equipment displays in vector form the chrominance components of standard color bar signals. Also displays prominent chrominance components of any composite television signal. Checks accuracy of color signal, drift in color coder and other generating equipment, and alignment of color coder using standard color bar signal. Vectors

displayed on oscilloscope with overlay accurately calibrated in degrees and amplitude. The Model VDE-3 includes self-checking Decoder and Keyer, Burst-Controlled Oscillator, Regulated Power Supply, and 7-inch oscilloscope with calibrated overlay.

Other color television signal generating and test instruments are available. Specifications and prices forwarded upon request.

Visit us at the Radio Engineering Show—Audio Avenue, Booth 823

TELE-TECH

CLOSING DATES

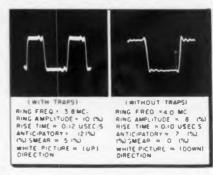
25th of second month preceding date of issue, for all ads requiring proofs, composition, foundry work, key changes, etc.

1st of preceding month for complete plates only-no setting.

20th of preceding month—Publication Date

Cancellations not accepted after 1st of preceding month.

Caldwell-Clements, Inc., 480 LEXINGTON AVENUE, NEW YORK 17


COUPLED TRAPS (Cont.)

tive production amplifier. Figs. 10 and 18 are experimental results depicting the "Electrical Fidelity" of this particular amplifier which was one of many amplifiers having such a high degree of correlation existing between the theoretical and the practical design.

Video Transformer Test dig


In checking the theoretical computations for the inductively coupled trap circuit, experimentally it became very desirable to have some means in which the electrical aspects of the circuit to which the trap was coupled could be checked rapidly as well as independently from the other networks of the amplifier. For this reason a test jig as shown in Fig. 21, was devised having a flat amplitude response from 35 MC to 55 MC, with a relative gain of approximately 30,000 µv for a 1 volt dc detector level. A threestage stagger-tuned triple comprised the network used to obtain this desired response. A fourth stage was employed as a means for which the coil or transformer in question could be simulated to those operating conditions existing in the actual amplifier itself. In this way the characteristics of the coil or transformer could be investigated accurately as well as quickly with regard to such design constants as Q and tuning range. Thus the test jig allows one a means of measuring these coils or transformers on a semi-production basis by comparing their electrical characteristics to that of a standard.

On the other hand the test jig may serve the designer of a video i-f amplifier as a useful laboratory tool in so far as it allows him to

Figs. 18-19: Experimental translent response

check experimentally the networks he has computed theoretically. In this way the designer affords himself a means of working out his particular design problems with little or no loss of time and mate-

SOLDER COMPANY

4210 WRIGHTWOOD AVENUE, CHICAGO 39, ILLINOIS
NEWARK 5, NEW JERSEY - BRANTFORD, CANADA

leoras ich st-

the

lig

mled beme asthe ted tly the jig sed ase ive for

eesed

le-

vas the

uld

noli-

ac-

ner as

ıch

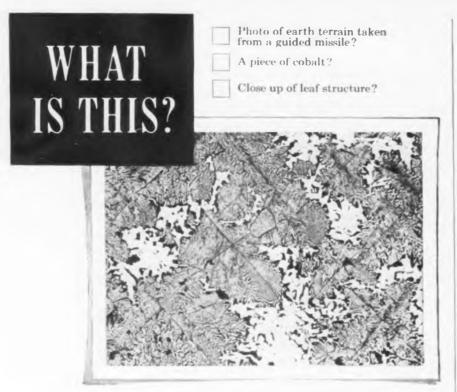
ing one

or ion

cal

ird.

jig


deo

ory

110)

rks
In
imhis
vith
ite-

954

If you answered cobalt you are correct. The illustration is a photomicrograph of a piece of cobalt magnified 80 times.

THE PROBLEM: In making such a photograph the microscope camera must be completely isolated from vibration. Even the slight tremor caused by a step on the laboratory floor can affect the accuracy and clarity of the photograph.

William J. Hacker & Co., Inc., New York, agents for the Reichert Research Metallograph, brought this problem of vibration to Robinson.

THE SOLUTION: Since conventional types of vibration control systems were inadequate, Robinson engineers designed a mounting base employing their exclusive all-metal resilient cushioning material, Met-L-Flex. This mounting system is so sensitive it will isolate vibration from every angle, and keep the camera free-floating and motionless at all times.

Do you have a problem of Vibration Control in your business?

This same engineering know-how and skill can be put to work on your vibration control problem . . . whether it involves precision instruments, electronic or television equipment, aircraft, motor vehicles, home appliances, or industrial machinery of any size or weight.

Unlike old fashioned rubber mountings, Robinson Met-L-Flex* mountings

are unaffected by age, oil, bacteria, water, dust, dirt or temperature extremes. They are inherently damped, and they do not pack down or wear out.

A letter or telegram will bring a Robinson engineer to analyze your particular problem and suggest a solution. Write or wire us immediately. Industrial Division, Dept. TT6.

*MET-L-FLEX is the copyrighted designation for the all-metal resilient cushions developed and pioneered by Robinson

COUPLED TRAPS (Cont.)

rial. In all, the jig serves a very useful purpose in the development of complex multi-tuned circuit constants, and for this reason should be considered as a possible tool in the design of video i-f amplifiers employing inductively coupled trap networks or similarly related networks.

The analytical analysis presented may be considered as nothing more than a simple modification of the familiar double-tuned network theory, the major difference being the reference network and the narrow bandwidth assumptions. Whether the network to which the trap is coupled be either a two-

Fig. 20: Representative production amplifier

terminal, four-terminal, or an n-terminal network, modification of the driving point impedance must be made before proceeding with the analysis. Again, the analysis may be applied to the top-capacity coupled trap network as well as the top-inductance coupled trap circuit.

It may be further concluded, that the "Electrical Fidelity" in terms of the 250 KC square wave response, of a video i-f amplifier employing inductively coupled traps, may be determined on the basis of the information presented in this bulletin. In this way the designer of such networks or similarly related networks may find this analysis of assistance to him by enabling him to direct his design constants to that condition wherein the predicted values depict the "Electrical Fidelity" of the system in terms of good transient response, high gain, adequate selectivity, stability, and ease of alignment.

In the stagger-tuned system, it is necessary to couple the trap circuit to that network in the system which is close in frequency so as to minimize the degree of in-band amplitude and phase distortion. The adjacent channel sound carrier trap tends to advance the time delay characteristics of a video i-f amplifier which invariably results in a smeared transient response as well

Precision Designed for LOWEST VSWR!

TYPE 116-A
WAVEGUIDE
TERMINATION

of nbe he n-

ted ore the ork ing the ns. the

91

n-

of ust ith

'sis

ity

the

uit

hat

of

of

in-

de-

or-

In

et-

rks

ace

his

ion

ysreec-

gn-

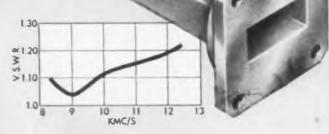
wit

ich nioliadrap lay

oli-

ı a

rell


154

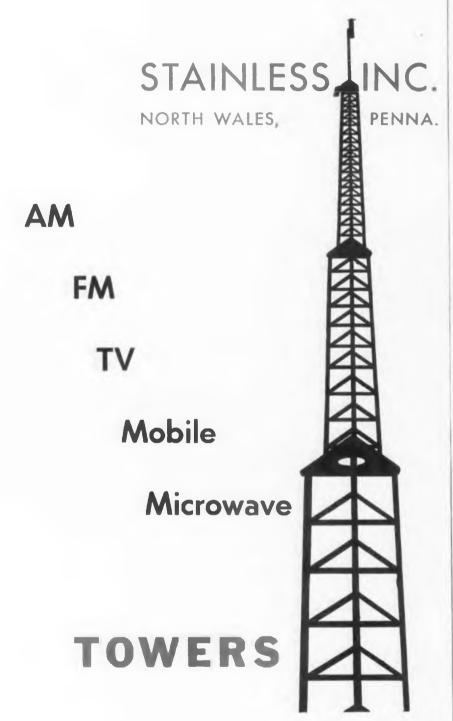
TYPE 354-B
WAVEGUIDE
TO COAXIAL LINE
ADAPTER

- Frequency Range: 8.2 to 12.4 kmc/s
- Very Low VSWR: Less than 1.01
- Stable Characteristics
- Rugged
- Waveguide Type: RG-52/U
- Flange Type: UG-39/U

For precision measurements PRD presents a standard of impedance. The termination consists of a matched resistive insert terminating a section of RG-52/U waveguide. Each insert is tested to insure that its VSWR is less than 1.01. Dimensions are maintained so that its characteristic impedance is within 0.5 percent of nominal. Flange faces are milled flat and the screw holes are referenced to the center line of the waveguide.

- Wide Frequency Range: 8.2 to 12.4 kmc/s
- . Low VSWR: (See curve)
- Waveguide Type: RG-52/U
- Flange Type: UG-39/U
- Coaxial Connector: Mates with UG-21B/U or equivalent

The Type 354-B Adapter is designed for making minimum reflection connections between waveguide and coaxial line. Typical VSWR is shown in the curve. The low VSWR assures least disturbance of the electrical properties of mating components.


CHECK WITH PRD FOR QUALITY-BUILT TEST EQUIPMENT

Slotted Sections, Transmission Line Components, Frequency Measuring Devices, Detection and Power Measuring Elements, Signal Sources and Receivers, etc. Write today for the PRD Illustrative Catalog. Address Dept. T-4

Politichmic RESEARCH

WESTERN SALES OFFICE: 741 ½ North Seward St. Hollywood 38, California & DEVELOPMENT COMPANY-Inc

55 JOHNSON STREET, BROOKLYN 1, NEW YORK

COUPLED TRAPS (Cont.)

as an increase in the anticipatory over-shoot. On the other hand the associated sound carrier trap tends to reduce the over-all bandwidth of the system thus raising the risetime as well as lowering the ring frequency of the transient response. However, this small amount of picture quality degradation may be considered acceptable, since the trap networks tend to alleviate a more pertinent problem, namely, the prevention of interference from the adjacent channel sound and video carriers.

Amount of Attenuation

On the other hand, the amount of attenuation that can be had from a single inductively coupled trap network is limited. It was apparent from both the theoretical as well as

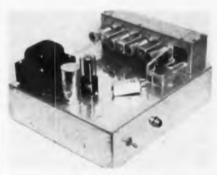


fig. 21: Test jig with flat 35-55 mc response

the experimental standpoint, that attenuations greater than 10 db for an adjacent channel sound carrier trap produced a smear in the transient response of the video i-f system, that could not be compensated for by any simple alignment correction. However, higher Q traps improved the attenuation problem without further picture quality deterioration, but the stability and reliability of such a network is difficult to maintain at 40 Mc.

Bandwidth Constant

In regard to the gain-bandwidth constant of a video i-f amplifier, if the designer wishes to maintain the same bandwidth conditions that existed without the trap networks, there then exists a corresponding reduction in amplifier gain. This factor may be of significant importance in the case of a low-cost receiver design, since the sensitivity and selectivity requirements may not be in line with the economic limitations of the receiver.

Styroflex Coaxial Cable FIRST CHOICE FOR

COMMUNITY ANTENNA SYSTEMS

The superior operation, ease of installation, maintenance-free characteristics and low loss of Styroflex coaxial cable were proved in International Telemeter Corporation's first community antenna system at Palm Springs, Cal. This successful application has made Styroflex a unanimous choice for use in the company's second community antenna system being constructed at Burbank, Cal.

cbe

of

It-

an

ap

nt m,

or on. ed ut on, of

th

if

he

ks, ng

ce

be

154

PHELPS DODGE COPPER PRODUCTS

CORPORATION

40 WALL STREET, NEW YORK 5, N.Y.

Just compare!

Check these Aerovox features against all other forms of printed circuitry:

(1) Metallic silver conductor mechanically formed. (2) Phenolic base materia not subjected to acid or chemical deterioration. (3) Silver partially imbedded in phenolic base—not dependent on adhesive. (4) Readily solderable—either dip or iron soldering. (5) Negligible oxidation or tarnishing under normal conditions. (6) No surface plating required for most switching circuits or normal protection. (7) Temperature range of -65° to +125° C. will not affect bond. (8) Identically reproducible. due to precision printing technique. (9) Available in productionany quantities—meeting any reasonable delivery schedule. • Obviously different!

GET THE FACTS ...

Comprehensive primer on "Printed Wiring" is yours for the asking. Also representative samples Let us quote on any wiring, switching or commutating requirements. Write on your company letterhead.

AEROVOX CORPORATION NEW BEDFORD, MASS.

DIVISION OLEAN, N. Y.

ACME ELECTRONICS INC. MONROVIA, CALIF.

CINEMA ENGINEERING CO. BURBANK, CALIF.

In Canada: AFROYOX CANADA LTD., Hamilton Ont

Henry Magnuski, formerly chief en gineer of the microwave research de partment of Motorola, was recently named associate director of research o that company's communications and electronics division. In his new position

H. Magnuski

Mr. Magnuski acts as techincal consultant on all products manufactured by the division. The company also announced the appointment of Lloyd P. Morris to the position of chief engineer of a new Motorola department-an engineering advisory service for 2-way radio and point-to-point VHF systems

Richard P. Corporon, former development engineering head at Penn Controls, Inc., has joined the communications department of the N.Y. Central, at New York. Other N.Y. appointments were Roy A. Calendine, to general plant supervisor, and William B. Anderson. to communications traffic supervisor.

Edward C. Lloyd has been named chief of the mechanical instruments section of the NBS, following the retirement of Dr. W. G. Brombacher. Dr. Robert D. Huntoon was recently designated acting chief of the NBS electronics division and associate director for physics.

Dr. Frederick W. Brown has been appointed director of the new Boulder (Colorado) Laboratories of the National Bureau of Standards.

William C. Jenner has joined Houghton Laboratories, Inc., Olean, N.Y., as Chief Electrical Engineer. Mr. Jenner was formerly with Reliance Electric and Engineering Co. of Cleveland, Ohio.

John W. Christensen was recently promoted to vice-president and chief engineer of CBS laboratories.

Carmine Masucci, formerly of Sylvania Electrical Products, Inc., has been appointed as senior project engineer to the staff of CBS-Columbia.

Dr. James B. Fisk, until recently the director of research in physical sciences at Bell Laboratories, has been elected vice president in charge of research,

de

th 0 an ioi

on -

red

an-

neer

en-

way

ms.

vel-

on-

ica-

tral, ents

lant son,

med

ents

re-

Dr. des-

lec-

ctor

been ılder

ional

ugh-

, as

nner

ctric

Ohio.

ently

chief

Syl-

been

er to

1954

succeeding Dr. Ralph Bown, who continues as a vice-president, with a new assignment in planning laboratories programs.

John M. Del Vento has been made chief engineer in the current expansion of the engineering, research and testing facilities of Waveline, Inc., Caldwell, N.J. Following World War II service as an instructor in radar and other electronic navigation techniques, Mr. Del Vento specialized in microwave research and development with Federal Telecommunications Laboratories. Priorily, he established microwave tube production and testing techniques with National Union Tube Co.

Dr. John E. Barkley, former head of physical-chemistry research at the Armour Research Foundation, has been appointed manager of physics and

chemistry research for the Mechanical Division of General Mills. Dr. Barkley will direct research in fields related to food and petroleum processes.

Dr. Theodor Buchhold has joined the Ford Instrument Co., Division of Sperry Corp., as staff consultant to the vicepresident for engineering. Dr. Buchhold, who has been active for many years in rocket and guided missile experimentation, will specialize in research and development projects.

PRECISION RESISTORS

And it's precision that lasts! Accompanying chart reports load-life test on five Type CPH 1/2 watt (metal-cased) Carbofilm Resistors. Note that all five samples stay well within $\pm 0.25\%$ after 500 hours.

The guaranteed tolerance of Carbofilm Resistors is $\pm 1\%$. Excellent stability re. temperature and voltage coefficients, overload, ageing, noise, etc. Made under Western Electric patents, these resistors provide the dependability of wire-wounds with the compactness of carbons.

In two types: Coated (special resin film) units for economy as well as accuracy and stability. Hermetically-sealed (metal-cased with glass-to-metal sealing) units for extraordinary protection. Both types in 1/2, 1 and 2 watt sizes.

Get the FACTS -

Engineering literature on request. Let our precision-resistor specialists collaborate on your precision-resistance problems.

HI-Q Capacitors **AEROVOX**

ACME CORPORATION

CINEMA ELECTRONICS, INC. ENGINEERING CO.

NEW BEDFORD, MASS. MONROVIA, CALIF. BURBANK, CALIF. In Canada: AEROVOX CANADA LTD., Hamilton, Ont.

Advertise in the

CALDWELL-CLEMENTS, INC.

480 Lexington Avenue, New York 17, N.Y.
Telephone Plaza 9-7880

1954 ELECTRONIC INDUSTRIES DIRECTORY

to be published in the JUNE ISSUE of

TELE-TECH

& Electronic Industries

The most complete, up-to-date directory in the electronic engineering field, serving 21,000 top-level engineers.

Including

- -Complete listing of electronic products.
- -Up-to-date list of manufacturers.
- -Extensive listing of trade names.
- —Directory of electronic distributors.
- —Directory of representatives ("Reps")
- —List of TV-electronic consulting engineers.
- —List of TV-radio-electronic engineering societies.
- -Complete finding index-alphabetical.

And . . .

—The sensational, exclusive LOCALIZER INDEX

Your Localizer listing, immediately under your free editorial listing in the Alphabetical List of Manufacturers, may include your executive, engineering and sales personnel; the trade or brand names of your products; a list of your branch or regional offices; and, most important, a complete list of your representatives, arranged alphabetically by cities.

These Localizer listings are a new selling punch, delivered at the point of sale. They minimize long distance telephone and telegraph charges, reduce time-consuming correspondence, increase the number of inquiries, speed service to the customer and help to get orders in places where local bias exists.

Listings available by the inch.—First inch, \$25.00; each additional inch, \$20.00

Send for circular giving specimen listings and other types of paid listings available.

Earl F. Sanderson, assistant general manager of Eitel-McCullough, Inc. since 1949, has retired on the advice of his physician. John Stenson, purchasing agent for the company since 1951, has been made administrative assistant to George Wunderlich, general manager of the San Bruno, Calif. firm.

Harold Jones, head of the technical information center of Motorola Communications & Electronics Inc., Chicago, Ill., has been promoted to the position of

Harold Jones

executive assistant to the national sales manager. In his new position Mr. Jones will assist with the sales and promotion of all communication products distributed through this wholly owned subsidiary of Motorola Inc.

sidiary of Motorola, Inc.

C. J. Harrison has been made sales manager of the Mobile Communications Department of the Communication Products Div., Allen B. Du Mont Laboratories, Inc. He will organize a national sales operation which will service representative distributors of mobile radio products. Previously, Mr. Harrison was marketing manager of the division's Transmitter Department. Kenneth F. Petersen has been named marketing manager of the TV Transmitter Department and will coordinate the activities of regional district managers and sales representatives from coast to coast, and aid in supervising distribution of telecasting equipment.

Joseph M. Coleman was recently appointed merchandising assistant for Sylvania Electric Products, Inc. Radio Tube and Television Picture Tube divisions. Formerly with the J. Walter Thompson advertising agency, Mr. Coleman will work on merchandising programs to support the company's distributor sales force.

W. F. Hoeppner has been appointed assistant to the president of Capehart-Farnsworth Co., Fort Wayne, Ind. Joining the predecessor company in 1941, Mr. Hoeppner became comptroller of the present company in 1949. P. H. Hartmann will assume the management of the comptroller's department.

(Continued on page 204)

NOW

HIGHER TAPE SPEEDS
WIDER TAPE WIDTHS
HANDLES TELETYPE TAPE

0 to 60 INCHES/SEC.
IN 5 MILLISECONDS
WITH THE NEW

Patter

DIGITAL MAGNETIC-TAPE HANDLERS

	SPECIFICA	TIONS		
Model Number	901A	901B	902	
Tape Speeds (in./sec.)	30/15	30/15	60/15	
Tape Widths	1/2"	1/4"	1/4", 1/2", 5/8"	
Number of Tracks	6	2	2 6 8	
Start-Stop Time	5 msec	5 msec	5 msec	
Reel Capacity	2,400'	2,400'	1,200'	
Reel Size	10 1/2"	10 1/2"	8"	

High-speed magnetic-tape recorders having low start-stop times give a new dimension to data handling by absorbing digital information when and where it is made and making it available when and where it is needed.

Digital information corresponding to any phenomenon can be recorded as the phenomenon occurs, continuously or intermittently, fast or slow, and later fed at optimum speed into reduction devices such as computers, punch cards and printers.

Speeds of 60 inches per second with 5-millisecond start-stop times permit digital techniques to be applied to jobs that previously required more expensive but less reliable methods. Typical applications include business machine problems, control of machine tools and other high-speed industrial processes, study of fast-moving missiles and telemetering.

Potter Magnetic Tape Handlers offer, in addition to the new higher tape speeds mentioned, wider tape widths for more channels with lower tape tension controlled by photoelectric servos. And, the price is but a fraction of that of much less versatile recorders. Other data handling components and complete systems are also available for special problems.

FOR FULL INFORMATION, WRITE DEPT. 4-J

POTTER INSTRUMENT CO., INC.

115 CUTTER MILL ROAD

GREAT NECK, N. Y

Buy the components which comprise a servo system from several manufacturers, and chances are that you are butchering. After you waste time, labor, machinery, and material, modifying each component to make it usable, you still have to be satisfied with the limited system efficiency provided by unmatched units.

Case histories prove that complete assemblies of Transicoil components not only assure improved system performance but actually cost less than the total purchase price of the individual components acquired from several sources.

If you are now purchasing components from several manufacturers, a serious talk with Transicoil might well pay you dividends in lower costs and better results. But if your problem requires only an individual component, you can be sure of optimum performance from the Transicoil units you specify.

FM TELEMETERING

(Continued from page 95) plate voltages can be monitored. The only additional equipment needed is an audio signal generator and an instrument for checking distortion.

Reliability Program

A subject of prime concern at present is the reliability of the equipment that is designed. Reliability importance was first being recognized during the initial conception of this unit. A lot was said about designing reliable equipment but there existed few positive principles for guides, other than such time worn maxims as "don't overdrive" and "keep components within ratings." Since reliability was a prime requisite in the service this unit was to perform. steps were planned to minimize the basic causes for failures. In a reliability study conducted on military World War II equipment, five basic causes of failure were discovered.

These were:

- 1. Tubes
- 2. Poor engineering
- 3. Faulty components
- 4. Faulty installation, operation and maintenance procedure.
- 5. Manufacturing faults.

To reduce tube failures a tube test program was undertaken that was based on the fact that the rate of tube failures with life is highest during the first interval of life and follows thereafter a failure rate that is exponential in character. By burning in every tube under a vibration of 25 cps and 0.01 in. amplitude and at an ambient temperature of 100°C for 100 hrs., the greater portion of potential failures were culled out. This burnin period was followed by 100% inspection according to JAN specifications

Forty percent of the failures in the study, excluding those due to tubes, had been traced to poor engineering. Development time was short and high performance was the primary goal in the design of this equipment. In order to obtain the high performance, circuits were unnecessarily complicated, newly designed nonstandard components were used, and many components were misapplied and used above their rated values. Reliability was sacrificed for per-formance. To avoid repeating these mistakes, principles that were simple but effective were used to design dependability into the transmitter. First, reliability, simplicity, and the conditions of service were emphasized right from the beginning. The emphasis on reliability gave an added factor to be weighed in the design

If your station plans to begin television service, or go to high power . . . Standard Electronics invites you to compare and decide on a basis of cold facts.

Compare circuitry . . . tube replacement costs . . . power consumption . . . ability to transmit color signals . . . operating simplicity . . . eye appeal . . . maintenance . . . deliveries . . . comparative factors that truly decide which transmitter best serves your needs.

Comparison Chart of VHF High Power Transmitters (50 K W)

	Transmitter B	Transmitter C	Transmitter D
AMPLIFIER DRIVES WITH 5 KW	NO	YES	YES
AMPLIFIER WILL OPERATE WITH ANY MAKE DRIVER	NO	NO	NO
TUBE COST COMPLETE SET	\$11,625 \$4,237	\$13,230 (est) \$6,429 (est)	\$9,250 (est) \$5,050 (est)
AIR COOLED	YES	NO	NO
POWER LINE REQUIREMENTS (at black level)	460 V 60 cy, 3 φ 193 KW	208/230 V 60 cy, 3 φ 150 KW (est)	208/230 V 60 cy, 3 φ 165 KW (est)
FLOOR AREA (including power equipment, blowers, etc.)	154 sq. ft.	160 sq. ft. (est)	
ALL TUBES VISIBLE FROM FRONT	NO	NO	NO
SELF CONTAINED (no separate enclosures, vaults, pumps, etc.)	NO	NO	NO
INDIVIDUAL CHASSIS CONSTRUCTION	NO	NO	NO
INTERUNIT CABLING WITHOUT TRENCHES	NO	NO	NO

PRST TO DELIVER TOMORROW'S EQUIPMENT TODAY.

A.

e a.

n

n

00

nd y it.

ly

nd ed. S.

le r. 1e

≥d gn

standard electronics corporation

A SUBSIDIARY OF CLAUDE NEON, INC.

285-289 EMMETT STREET . NEWARK 5, N. J.

Magnecord M80

the only professional tape recorder with every needed feature

- Complete slot loading
- Interlocked pushbutton controls
- 15,000 cps response at 71/2"
- Lowest flutter rate obtainable
- Full remote operation
- Automatic tape lifter
- Instantaneous stop and start
- Positive, direct-drive timing
- Interchangeable head assemblies
- Mounts in console, rack, or case

Feature for feature, the all-new Magnecord M80 is the finest professional tape recorder ever built for its price! The M80 is lighter, more compact, easier to operate and maintain than any comparable recorder, yet brilliantly superior in every performance specification! It is the outstanding choice for your precision recording requirements!

For full details, see the Magnecord distributor listed under "Recording Equipment" in the classified telephone directory. Or write;

Magnecord, INC.
DEPT. TT4: 225 WES

225 WEST OHIO STREET CHICAGO 10, ILLINOIS

FM TELEMETERING (Cont.)

and influenced many decisions which otherwise might have favored unnecessary performance characteristics. Second, the breadboard models of the transmitter were type tested as soon as possible. They were vibrated, shocked, accelerated, and heat tested. With the early type tests, shock resistance, thermal stability and vibration damping developed with the other characteristics and they were consequently not the cause of costly patchwork changes that usually result when type testing is delayed to the pilot model stage.

To reduce component failures standard components were used except in a few instances where none were available. Such was the case with the audio bypass capacitor. These new components were thor-

Fig. 5: Telemetering transmitter test unit

oughly life tested by the component engineers. All components were derated voltage- and temperature-wise to meet the existing conditions reliably.

Faulty installation, operation and maintenance procedures were prevented by adequately prepared specifications and instructions.

Minimizing Failures

To minimize failures due to manufacturing faults, it was necessary to add to the normal manufacturing procedures an additional emphasis of care. Assembly and inspection personnel understood the rugged conditions that were to be met and consequently units were assembled, inspected, and tested in rigid accordance with specifications. By having the engineers that designed the transmitter carry their responsibility through the manufacturing and test stages, production problems were solved more in accordance with the overall reliability and performance requirements of the unit rather than with production techniques and principles. In addition to frequent quality reviews of the product, several units of a production run were assigned to the engineering labs for complete environmental and operational test.

Since reliability is the result of continuing and prolonged corrective measures and redesign, a special failure report system was instituted. This consisted of an orderly system of reporting failures that occurred at the various stages of manufacture and test and of those that occurred in the field. These failures were analysed by the engineer responsible. If they were design faults, they were corrected; if they were workmanship faults, better quality control was instituted. The majority of the failures reported by this program were still tubes. Most tube failures were due to the falling off of transconductance below specifications. No serious component failures outside of tubes occurred. Redesign was of a minor nature; for example, a coil that required sleeving or a terminal that needed clipping to prevent shorting under vibration.

Although security restrictions prevent the disclosure of exact results, this reliability program has shown two things. First, reliability is much more effective when it is used as a guiding principle right from the initial conception of the design. Second, tubes, even with careful application, are still the biggest problem in any reliability program. Most positive results can, however, be obtained if the other causes of failure, namely; engineering, manufacturing, and the installation and maintenance, are rigorously pursued.

In conclusion, this transmitter has proven itself hundreds of times on numerous types of duty. Its excellent frequency stability and attenuation of spurious sidebands have allowed it to work side by side with other radio equipment without interference. Its compact heavy-gage structure made it possible to gather data under rugged, high shock applications. It is a transmitter that can be relied upon to send the data back.

S

d

g

d,

ty

st

re

ne

m

ts

54

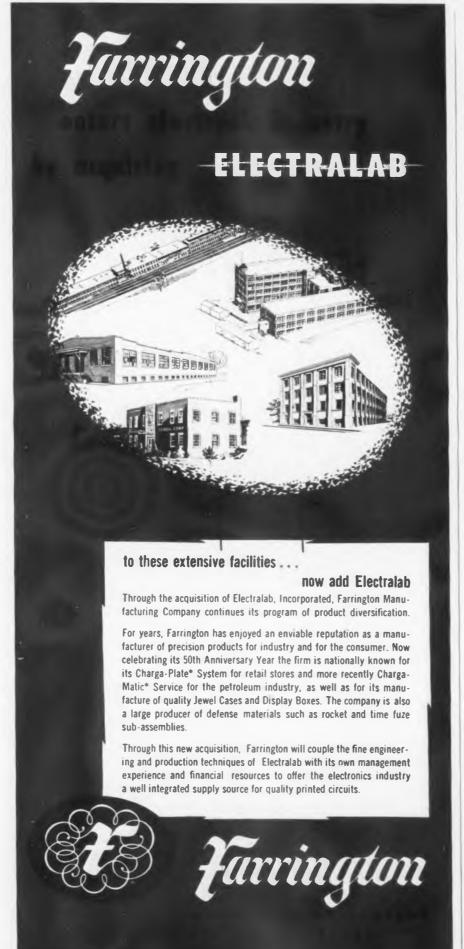
This paper was presented at the 1953 National Telemetering Conference held in Chicago.

New Bedford Gets New TV Station

Southern Massachusetts and Providence, R.I., will be served by WTEV, now under construction. Transmitter and studios will be located in Freetown, Mass., 8 miles from New Bedford, Mass. Operation is slated to begin within six months.

JENNINGS VACUUM CAPACITORS OFFER...

The Correct Combination of Size and Power Rating for a Specific Application


The wide choice of size and power ratings for a given capacity range is illustrated by these four units all having maximum capacities of 1000 mmfd. JENNINGS functional designs thus permit you to select the smallest vacuum capacitor that will meet your voltage and current requirements.

Please let us suggest the capacitor that will best meet your specific circuit conditions.

Literature mailed upon request

JENNINGS RADIO MANUFACTURING CORPORATION • 970 McLAUGHLIN AVE. P.O. BOX 1278 • SAN JOSE 8, CALIFORNIA

G-Curves

(Continued from page 87)

as a load, a transconductance as high as 7000 micromhos with a plate conductance of the order of 54 micromhos may be obtained.

Assume that a 300 ohm input impedance push-pull grounded grid TV booster is required which can be built as an ac-dc unit. The use of the 12BZ7 tube is desired. Examination of the vertical 125 v. load supply load line indicates that the use of about a half volt bias on the tube should be satisfactory. The ac-dc requirement makes necessary blocking capacitors in the input and the output twinleads. Shunt cathode feed through a center-tapped r-f choke and common cathode bias resistor may be chosen. Choosing a plate current of 5 ma. per tube and a bias of 0.35 v., the cathode resistor should have 35 ohms resistance. Plate dissipation, 0.6 watt, is less than half that allowed. Transconductances of the tubes are about 6200 micromhos and plate conductances are about 54 micromhos.

The value of resonant resistance chosen for the output tuned circuit depends upon bandwidth requirements for the plate circuit. If no increasing of bandwidth is required. one chooses a tuned impedance satisfying $G_{\scriptscriptstyle \rm P}$ $R_{\scriptscriptstyle \rm L}=\,1.$ If increase of bandwidth is required, then GP RL may be made greater than one. With $G_P R_L = 1$, one obtains the booster input to plate amplification equal to 41.3 nominal. The input to output amplification at three hundred ohm impedance level then is approximately 3.7 to one. The plate tuned impedance is about 18,500 ohms including the loading of the output circuit.

Electronic Voltmeter

An electronic voltmeter having low input loading and comparatively high output is frequently needed. Since the 12BZ7 tube makes an excellent cathode follower for voltmeter use, a sample design using this tube follows.

The cathode follower is a combination of an impedance changer and a voltage repeater. A voltage applied to the cathode follower grid at very high impedance is repeated in the cathode circuit with a small voltage loss, but greatly reduced effective impedance. The equation for the cathode follower is

 $VA = G_M R_K / [1 + (G_M + G_P) R_K]$ (9)

Effective cathode follower action requires that $G_{\rm M}$ $R_{\rm K}$ be large compared to one. Then the efficiency of

the cathode follower depends on $G_{\rm M}/$ ($G_{\rm M}+G_{\rm P}$). As in the grounded grid amplifier, a high transconductance and a low plate conductance is needed in a tube to be used as a cathode follower.

Assume that the voltmeter design is as shown in Fig. 4. The unit is to use regulated voltage from an OA2 tube or an OD3 tube. The components values shown in Fig. 4 develop a bias of approximately 0.5 v. on each tube. The heater voltage of the input tube is reduced by 0.5 v. to improve the tube input impedance. Voltages are indicated to permit the reader to check the design on Fig. 2. The overall voltage efficiency of the two tubes in series is 95.7%.

Series Tube Voltage Regulator

As a final example of degenerative amplifier design, consider the two-stage amplifier and series tube regulator shown in Fig. 5. The triode V_1 acts as a grounded grid triode, and V_2 as a degenerative amplifier. The series tube, V_3 , acts as a special cathode follower. The grounded grid amplifier, V_1 , since its applied input signal appears both at the plate and the cathode obeys

 $\begin{array}{l} i_{_{\rm Pl}}\,R_{_{\rm L}}/\Delta E_{_{\rm I}} = (G_{_{\rm ML}}-2\,G_{_{\rm Pl}})\,R_{_{\rm L}}/~(10) \\ ||3+2\,G_{_{\rm MI}}\,R_{_{\rm KI}}+G_{_{\rm Pl}}~(3R_{_{\rm LI}}+2R_{_{\rm KI}})| \end{array}$ The total voltage applied to the grid of V_2 is the sum of $i_{_{\rm Pl}}R_{_{\rm LI}}$ and the input voltage $\Delta E_{_{\rm L}}.~Call$ this sum $\Delta E_{_{\rm L}}.$ Then the amplification for the second tube is

$$\frac{-\tilde{t}_{\nu^{2}} R_{L^{2}}}{\Delta E_{z}} = (11)$$

$$-G_{M^{2}} R_{L^{2}} - G_{F^{2}} R_{L^{2}} (\Delta E_{1}/\Delta E_{z}) = \Delta E_{4}$$

 $1 + G_{M2} R_{K2} + G_{P2} R_{L2}$ ΔE_2

The loop amplification of the regulator may be calculated by the use of Eqs. 10 and 11. If the bias of V_1 is taken as -0.9 v., the amplification of the input tube is 10, and $\Delta E_2 = 11\Delta E_1$. The amplification of V_2 , with a -0.9 v. bias, is 23.4, giving an over-

COLOR CAMERAS TESTED

Color television cameras enter final test stage at RCA's Camden, N. J. plant, These initial commercial models are being shipped to networks and independent TV stations throughout the country

PLANTS IN SOUTH PLAINFIELD, N. J.; NEW SEDFORD, WORCESTER AND CAMBRIDGE, MASS; PROVIDERCE AND HOPE VALLEY, R. I. INDIANAPOLIS, IND.: FUGUAY SPRINGS AND SAMFORD, M. C. AND SUBSIDIARY, THE RADIARY CORPORATION, CLEVELAND, ONIO

G-CURVES (Cont.)

all feedback path amplification of 258. If, on the other hand, $R_{\rm K2}$ were zero, the overall amplification would be 625.

th

tu

CI

The control tube itself behaves as a cathode follower with the load serving as the cathode impedance. If the regulator source voltage changes, the regulator action of the amplifier corrects the change. The regulator tube plate current change equation takes the form

$$i_{pe} = G_{Me} \left[(\Delta E_3 / \Delta E_1) i_{pe} R_{Ke} \right] + (12)$$

$$G_{Pe} \left(i_{Pe} R_{Ke} + \Delta E_p \right)$$

where $\Delta E_{\rm p}$ is the plate supply voltage change. The overall load voltage change, $i_{\rm pc}$ $R_{\rm Kc}$, is

$$i_{pe} R_{Ke} = G_{Pe} R_{Ke} \Delta E_{p} / \ensuremath{ (13)} \\ [1 + (\Delta E_{1} / \Delta E_{1}) G_{Me} R_{Ke} + G_{Pe} R_{Ke}]$$

For a voltage change \mathbf{E}_k in the cathode circuit, resulting from any cause, the resulting voltage change produces a compensating change in voltage loss given by

$$\frac{i_{pe} R_{Ke}}{\Delta E_{k}} = (14)$$

$$- (\Delta E_{1}/\Delta E_{1}) G_{Me} R_{Ke} - G_{Pe} R_{Ke}$$

 $1 + (\Delta E_a/\Delta E_1) G_{Mo} R_{Ko} + G_{Po} R_{Kc}$

Choice of a 6AS7 as the regulator tube permits determination of the overall regulation characteristics. The curves on the 6AS7 tube are shown in Fig. 6. If the total cathode current of the 6AS7 tube is taken as 100 ma., with a bias of 30 v. developed by V₂, the required supply voltage is 347 v. for 250 v. output. The effective load impedance is 2500 ohms. Assuming $R_{\rm K2}$ is zero, the cathode load voltage change resulting from a source voltage change of 10 v, is 0.0097 volts. If the voltage change were in the cathode circuit, the compensating change would be approximately 9.999 v., leaving only 1 mv. uncompensated.

If, on the other hand, the load current drops to 50 ma. in the regulator cathode, a regulator bias change of 10.5 v. is required to compensate for the current change if the souce supply voltage does not change. The bias change is read by reading down the 97 plate voltage line of the 6AS7 from 100 ma. to 50 ma. The change in bias is 10.5 v. This 10.5 v. bias change requires a load voltage change of 105 625 or a 17 mv. change in the load voltage.

Normally the regulation of the source supplying the control tube is not ideal, as has been assumed above. The effect of the source supply regulation may be compensated if the voltage against load current characteristic is known. The voltage variation resulting from the

source causes the voltage loss across the control tube to vary. Consequently, a load line on the regulator tube characteristics may be plotted showing he tube voltage loss against tube current. The required bias is determined on the regulator tube load line.

ρf

d

IS

d

Ιf

s,

r

r

n

[e

3)

ıe

y

(e

n

4)

or

1e

:S.

re

łе

n

v.

is

0,

ze

ge it,

oe.

ly

ad as to

ze

ot

у

zе

to

v.

a

a !e.

ne

is

ce

nad

ne

ne

54

In the problem just considered, assume that the source voltage increased 10 v. when the load current was changed from 100 to 50 marequired to produce constant output. The output voltage change then Eighteen volts change in bias is now is 0.029 v.

Choice of the tube to be used in degenerative amplifier should be made carefully. As can be seen from the examples, the 12BZ7 tube should be one of the tubes considered in the design of triode degenerative amplifiers. High values of transconductance and small values of plate conductance are the preferred parameters for efficient degenerative amplifier and cathode follower design. Degeneration improves the amplifier linearity by limiting the effective transconductance of the tube. The amplification then becomes more dependent on circuit component values than on moderate variations of the tube parameters. The result, where tube ratings are used conservatively, is improved circuit reliability.

The next article in the series takes up the effect of degeneration on the operation of pentode amplifiers. The presence of the screen grid and the resulting current division causes the pentode degenerative amplifier to behave differently in several respects than the triode degenerative amplifier.

Design calculations indicated in the examples in this and other articles of this series assume that, except where noted, uncontrolled parameters (such as array capacitances or cathode to grid contact potential) may be neglected. If one's design, using the described techniques, appears not to function properly after a careful check of tubes and wiring, one would check for possible interference by these uncontrolled parameters. The contact potential for the 12BZ7 tube, for example, is nearly 1v. Consequently, the minimum grid to cathode bias for the vacuum tube voltmeter input tube would actually have to be approximately 1v. Oscillation may occur in almost any of the circuits having as much complexity as the regulated power supply or the vacuum tube voltmeter.

Manufacturer Offers Custom Facilities

Hi-Spex Manufacturing Co., Inc., 319 Schuyler Ave., Kearney, N.J., announces the availability of custom facilities for the production of precision coils for field windings, filament, solenoids, toroidal, bobbin and electrical assemblies, and transformers, power, audio, choke and specialty from multi-watt up to 5 KVA. Facilities are also available for the manufacture of precision armatures for electronic equipment.

In color TV instrumentation, one name stands out — TELECHROME. No wonder, for only TELECHROME has had more than three years of experience producing Color TV generating, testing and broadcasting equipment for America's foremost TV manufacturers, broadcasters and laboratories.

Complete equipment for generating color bars, creating encoded and composite pictures from transparencies; color signal certification; transmission, reception, monitoring, and analysis of color pictures — literature on these and more than 100 additional instruments for color TV by TRLECHROMB are available on request.

DELIVERY 60 DAYS

...designed for Kinescope Recording...and also shoots regular Live Action 16 mm Sound-On-Film Talking Pictures with no Camera modification! The "Super 1200" Camera with "TV-T" Shutter (Pat. Appl'd. for 1949) can Kinescope Record a 30 minute continuous show using 1200 foot film magazines. Write today for information and prices.

USE AURICON "TV-T" KINESCOPES FOR:

- * DELAYED RE-BROADCASTING
 - * SPONSOR PRESENTATIONS
 - * COMPETITION CHECKS
 - * PILOT KINESCOPES
 - * SHOW-CASE FILMS
 - * "HOT KINES"
 - * AIR CHECKS

Auricon 16 mm Sound-On-Film Cameras are sold with a 30-day money-back guarantee. You must be satisfied!

Auricon 50 ft. Kinescope "TV-T" Demonstration Films are available on loan to TV Stations and Film Producers. Please request on your letterhead.

BERNDT-BACH, INC.

7325 Beverly Blvd., Los Angeles 36, Calif.

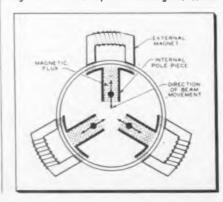
MANUFACTURERS OF SOUND-ON-FILM RECORDING EQUIPMENT SINCE 1931

RCA's New 19-inch Color Tube

The recent RCA development of a tricolor kinescope using a 19-in. envelope is scheduled for production in the very near future. A comparison of this new tube's design features with those of the 15GP22, the 15-in. type made available earlier, will highlight modifications required to achieve a large color picture.

The overall length of the 19-in, tube is 26^{15}_{16} in., which is about the same as that of the 15GP22. The larger picture size is obtained by increasing the deflection angle from 45° to 59° . The new picture area, $15^{5}_{16} \times 11^{7}_{8}$ in., is close to 162 sq. in., or almost double that of the 15GP22. Three major features contributed considerably to the good results obtained. These include: A new electron-gun and convergence system, a modified shadow mask design, and improved phosphors.

Convergence


Convergence, or the coincidence of the three electron-gun beams at the phosphor dot trio, became increasingly difficult in the 19-in. tube because of the larger deflection angle. As in all three-beam color tubes, to prevent color fringing, the relative angles of the beams must be altered in synchronism with the scanning. This is called dynamic convergence. Unlike the 15-in. tube, special deflection yoke design can no longer adequately reduce the effect of varying convergence displacements, particularly toward the screen edges.

The solution of the convergence problem was obtained by designing a gun which provides for individual convergence control of each beam. The new gun has the same delta-type arrangement of three closely spaced guns as the 15GP22. A major difference is the fact that the 15-in. tube has an electrostatic converging electrode consisting of a 9-kv No. 4 grid is used. It also has a

3-kv grid No. 3.

However, in the 19-in. tube, control of convergence is obtained by magnetic fields formed between each of the three pairs of pole pieces mounted above the

Fig. 1: Individual dynamic convergence control

ultor 27-kv No. 4 grid. See Fig. 1. The magnetic fields are induced in the pole pieces by three external electromagnets coupled through the glass tube neck. For example, the change in the convergence angle of the green beam is a function only of the current through the corresponding external magnet. For convergence stability at the center of the screen, each of the three guns is tilted slightly over 1°.

lig me fid

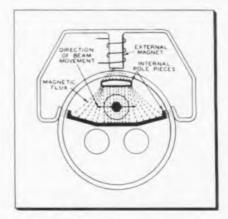


Fig. 2: Blue center convergence corrector

To compensate for small deviations in center convergence due to manufacturing variations, a small dc field is provided by blue corrector poles mounted on the No. 3 grid of the blue gun. See Fig. 2. The resulting tangential movement of the blue beam permits exact center convergence. Because the magnetic convergence is independent of the focusing system in the 19-in. tube, it is no longer necessary to use dynamic focusing. In the 15GP22, the No. 4 grid carried the dynamic focusing and convergence voltages.

Screen Assembly

In the center of the screen, each beam is smaller than the phosphor dot, and lands in the center of the appropriate dot. Toward the edge of the screen, the radial separation of the beams is increased, and the portion of each beam landing on the phosphor dot moves radially outward. If the beam shift is sufficiently great, part of it will fall on an adjacent dot, producing an unwanted color. To prevent this latter effect, the diameter of the apertures in the shadow mask is gradually reduced from the center to the edge, reducing the landing diameter of the beam, and preventing fringing. The resulting increased color purity is accompanied by decreased light output (2:1) toward the edge, but this is not objectionable.

Phosphors

Three improved phosphors are used in the 19-in. tube. The short-persistence

red phosphor (zinc selenide) of improved efficiency results in double the light output of former red phosphors. A more saturated blue phosphor (zinc sulfide) having short persistence is used, as well as a short-persistence green (activated willemite) of good efficiency. This new group of phosphors provides mproved efficiency and balance.

he

ole

ets

ck ngh 'or

> of is

in

tr-

0-

ed

see

re-

act

Ig-

he

is

Fo-

rid

n-

am

nd

ate

the

in-

am

ra-

ufan ted the ow

the

ing

ing

lor

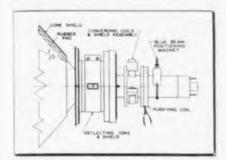
sed

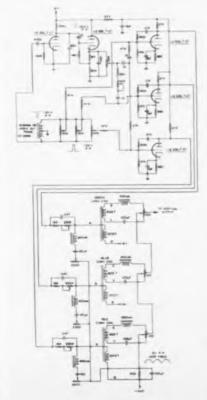
but

sed

nce

54



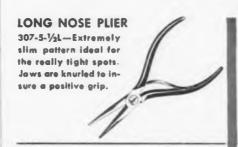

Fig. 3: Components on color picture tube neck

Associated Components

A number of circuit changes have resulted from the increased ultor voltage requirements (27 kv, 700 µa) of the 19-in. electrostatic focus tube, but the deflection circuitry is essentially similar to that used with the 15GP22. The convergence circuit, however, requires more careful attention. See Fig. 4.

The various deflection and convergence components discussed are shown in their final mounting position in Fig. 3. Initially, the same deflection yoke as used on the 15GP22 is employed on the 19-in. kinescope, except that a copper shield is added to keep the magnetic field of the yoke out of the pole-piece region of the gun.

Fig. 4: Experimental convergence circuit



KLEIN Quality Pliers

FOR THE ELECTRONICS INDUSTRY

Now, Klein quality pliers are available in new compact patterns for precision wiring and cutting in confined space. Note, too, the replaceable leaf spring that keeps the plier in open position,

ready for work. All are hammer forgedfromhigh-gradetoolsteel, individually fitted, tempered, adjusted and tested-made by plier specialists with a reputation for quality "since 1857."

OBLIQUE CUTTING PLIER - 210-5L - For cutting small wires or trimming plastic. Entire length of cutting knives works flush against cutting surface. 5 or 6-inch sixes.

LIGHTWEIGHT **OBLIQUE CUTTING** PLIER 209-5-Smaller than 210-5L with an extremely narrow head Entire length of cutting knives works flush against cutting surface.

TRANSVERSE END **CUTTING PLIER** 204-6-Useful in precision work where ordinary ablique or end cutters are too bulky. Gives a clean, flush cut.

PRINTED CIRCUIT PLIER 052-L-Special knives shear and crimp wire in one operation. Crimped wire holds loose parts in position for dip soldering. Knives face operator for visual inspection. Ask for Bulletin 753.

This Klein Pocket Tool Guide gives full information on all types and sizes of Klein Pliers. A copy will be sent without obligation.

"Since 1857"

ASK YOUR SUPPLIER

Foreign Distributor: International Standard Electric Corp., New York

Mathias Established 1857 3200 BELMONT AVENUE, CHICAGO 18, ILLINOIS

& Sons Chicago, III., U.S.A.

Your career can go up

with Lockheed's expanding Missile Systems Division

- Recently formed from other Lockheed engineering organizations to prepare for the era of automatic flight, the Missile Systems Division offers a few Research Engineers the career opportunity of a lifetime.
- For Research engineers of ability, experience and initiative, this is an unparalleled opportunity for advancement and achievement.
- The positions now open call for experience in airborne weapons systems problems such as: weapons design, system evaluation, guidance methods, sub-system requirements and operational problems.
- In addition to outstanding career opportunities, the Lockheed Missile Systems Division offers you excellent salaries commensurate with your experience, generous travel and moving allowances, and a better life for you and your family in Southern California.
- Coupon below is for your convenience.

Mr. L. R. Osgood Dept. TT-MRE-4

LOCKHEED MISSILE SYSTEMS DIVISION

7701 Woodley Avenue, Van Nuys, California

Dear Sir: Please send me information on the Missile Systems Division.

my field of engineering
my street address
my city and state

THERMISTORS (Continued from page 74)

CPS to develop an input signal. See Fig. 10.

Bead thermistors are a means of measuring microwave power. These stable units are employed in balanced or unbalanced bridges, the latter providing more rapid readings, and terminate the transmission line. After being calibrated for power characteristics with dc or low-frequency power, they are inserted in the coax or waveguide. The currents induced in the thermistor by the r-f causes the resistance to drop, and the resulting meter deflection caused by bridge unbalance is read in terms of power. Such a thermistor, rated say at 20 mw, may be overloaded for a considerable time without affecting calibration.

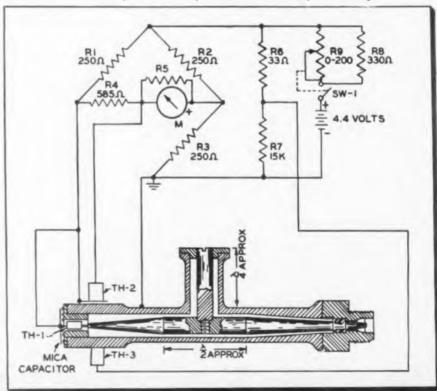
As with some other thermistor systems, the r-f measuring bridge must be compensated with a second thermistor which maintains the zero point by compensating for changes in ambient temperature. For fine accuracy, a third thermistor may be incorporated to maintain constant sensitivity by offsetting the increased sensitivity which could result at low temperatures. See Fig. 11.

By passing a current through a thermistor sufficient above ambient to heat it, its resistance change will be dependent on how rapidly heat is removed by the environment. In this we have the means for measuring and controlling liquid level humidity, air flow, thermal conductivity, vacuum, and other condition which can affect the rate of hea transfer to the surrounding medium In the simplest case, a series o thermistors may be mounted alon the wall of a tank and connected in series with a voltage source and meter or control valve actuator (Fig 12). When the liquid in the tank rises, one thermistor after another is immersed, and thereby cooled. The cooling makes the resistance rise, and if the meter is properly calibrated, the lower current reading due to the thermistor's increased resistance will be a measure of the liquid's height.

tu

te

th


an

80

Da

For the other quantities mentioned, i.e., humidity, thermal conductivity, air flow and vacuum, two heated thermistors in a bridge are used for the instrumentation. (See Fig. 13.) One unit in one arm is sealed in a reference chamber. The thermistor in the adjacent arm is exposed to the open air for an anemometer, in a pipeline for a flow meter, in a gas chamber for a thermal conductivity analyzer, and in a vacuum system for a vacuum gage. These devices utilize both the volt-amp and temperature-resistance characteristic of the thermis-

Fig. 11: Microwave power measuring system uses three thermistors: TH-1 is r-f sensitive, TM-2 maintains constant sensitivity, and TH-3 compensates for ambient temperature changes

In certain respects, thermistors have properties similar to vacuum tubes in that they can alter the intensity of electrical energy passing through them. The nonlinear voltamp characteristic may be put to good use to stabilize high and low frequency oscillator amplitude. These oscillators operate on the basis of positive feedback around he vacuum tube. By inserting a hermistor of selected resistance in he feedback circuit, the phase and nagnitude of the feedback may be

2

n

a

ns

no

o: he

nby eis

IS-

nn-

wo are See

he

is

OW

um

the

is-

is-

TH-2

1954

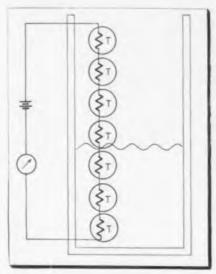


Fig. 12: Liquid level measurement accomplished by series of thermistors. Rising liquid cools thermistors, increasing circuit resistance

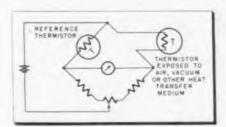


Fig. 13: Humidity, air flow, gas conductivity or vacuum may be measured with bridge containing reference thermister and similar unit in medium to be measured. Heat transfer is directly related to condition of the medium

controlled. Besides exacting a cost saving, thermistor-controlled oscillators have several advantages over those whose amplitude is limited by vacuum tube nonlinearity. Harmonic content in the output is smaller, and operation is less dependent on variations in individual tube construction and supply voltages. The thermal inertia of the thermistor will easily prevent it from varying at the oscillation frequency for all frequencies down to a fraction of a CPS.

As has been suggested previously, the main point of caution for such

Your career can go up

with Lockheed's expanding Missile Systems Division

- Outstanding career opportunity comes rarely in a man's life. But such an opportunity exists now for Electro-Mechanical and Electronic Engineers in Lockheed's Missile Systems Division.
- Recently formed from other Lockheed engineering organizations, the Missile Systems Division is in a stage of dynamic expansion. For Electro-Mechanical and Electronic Engineers of ability, experience and initiative this is an unparalleled opportunity for advancement and achievement. A number of present openings are on a high executive level.

The openings are for

ELECTRO-MECHANICAL ENGINEERS

with circuit or servomechanisms experience (aircraft or missile experience preferred)

ELECTRONIC ENGINEERS

experienced in any or all of the following fields: Micro-Wave Techniques, Electronic Components, Circuit Design, Flight Instrumentation

In addition to outstanding career opportunities, the Lockheed Missile Systems Division offers you excellent salaries commensurate with your experience, generous travel and moving allowances, and a better life for you and your family in Southern California.

Coupon is for your convenience

Mr. L. R. Osgood • Dept. TT-M-4

LOCKHEED MISSILE SYSTEMS DIVISION

7701 Woodley Avenue • Van Nuys, California

Dear Sir: Please send me information on the Missile Systems Division.

..............

my name

my field of engineering

my street address

my city and state

Sets A NEW Standard for performance

PRECISION TEST INSTRUMENTS

No. 1040 VACUUM TUBE VOLTMETER. Self contained — A.C. operated. High imped-ance — wide frequency. For use at audio and supersonic frequencies.

No. 1010A COMPAR-ISON BRIDGE. Self contained — A.C. op-erated. Ideal for taboratory and production testing of resistors, testing of resistors, condensers and inductors.

No. 1020B MEGOHM-METER. DIRECT READING. Self con-tained—A C. operated. Electronically regulated supply, I megohm to 2 million megohms.

Ne. 1060 VACUUM TUBE VOLTMETER. A 50 megohm input im-pedance wide frequen-cy range V.M. for use at audio and super-space for sonic frequencies

No. 1030 LOW FRE-QUENCY "O" INDI-CATOR. DIRECT READING. Measures "O" factor of coils, also inductances, dis-tributed capacity imtributed capacity, im-pedances and dielectric

No. 1110A INCREMENTAL INDUC-TANCE BRIDGE. For accurate testing of communication and tel-evision components un-der load conditions.

TRANSFORMERS & FILTERS

TOROIDAL INDUC-TORS. 60 CPS to 1 MC. Also miniature in-ductors from 1000 CPS to 100 KC.

TRANSFORMERS. Constructed to MIL - T -27 specifications. De-signed for optimum pulse performance.

MINIATURE AUDIO. Hermetically sealed — constructed in accordance with MIL - T - 27 specifications.

HERMETICALLY SEALED COMPO-NENTS. Constructed in accordance with MIL-T-27 specifications,

PRECISION FILTERS.
10 CPS to 1 MC.

HIGH FIDELITY. 1/2 DB 20 CPS to 30 KC.

COMPLETE CATALOG ON REQUEST FREED TRANSFORMER CO., INC.

1726 Weirfield St. Brooklyn (Ridgewood) 27, N. Y.

THERMISTORS (Cont.)

an application is to compensate the control thermistor with a second thermistor when ambient temperature may be expected to affect operation. If the control thermistor is a heater type, the compensating unit may be a disc type which controls the heater current from an auxiliary source, keeping the control unit at constant temperature.

Thermal feedback is also useful for amplifier automatic gain control. One method of accomplishing this is to shunt a thermistor across the input, and its heating element across the amplifier output. (See Fig. 14.) If the output power rises to a high level, the heater current will increase, raising the thermistor's tem-

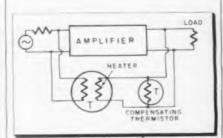


Fig. 14: Thermal feedback applied to amplifier AGC. Increased output causes heater to reduce resistance of thermistor shunted across input circuit provides overload pratection

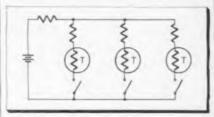


Fig. 15: Thermistor as a lock-out switch

perature. The resulting lower shunt resistance will lower the amplifier input.

In similar fashion, thermistors may be employed in speech volume limiters, automatic level regulators, expanders and compressors.

The flake type thermistor described previously may be applied to communication and navigation systems. A strong light or infrared signaling source can be read at a considerable distance. For navigation, thermistors can sight the sun through clouds, locate ships, or detect icebergs.

The voltage across a thermistor rises to a peak, and then drops rapidly with an increase in current. This permits applications analagous to those of gas-filled tubes possessing the breakdown voltage charac-

(Continued on page 175)

YOU CAN'T HAVE THESE

*Because these television lenses are being offered for the first time to increase camera versatility. Complete the range of your TV camera lenses with these previously unavailable focal lengths. Supplement the lenses you are now using for increased versatility and performance.

ANGENIEUX RETROFOCUS

wide angle lens (35mm focal length) f2.5. Focusing mount with iris diaphragm. Highest resolution for sharpest images

MEYER PRIMOPLAN

length) fl 9 Focusing mount with iris diaphragm. Longer than normal focal length for universal application

MEYER TELEPHOTO

Write today for our complete price list of all of our special lenses for television cameras—28mm through 250mm Samples for test purposes available on request.

PONDER & BEST

TELELENS DIVISION

Importers of fine Photographic Equipment

814 North Cole Avenue Hollywood 38, California

Do you want more information about PRODUCTS

LEADING MANUFACTURERS

are using space in this issue to acquaint you with their products. Perhaps you want more information on some of them-on one or two, or possibly a score. You can cover all of your needs with the cards below. They are convenient and postfree.

advertised in

ELE-TECH

Use the convenient postagefree card below to get informaquickly about products listed here all advertised in this issue

Amplifiers; power supplies-Langevin Mfg. Corp. 102 103 Audio attenuators—Shallcross Mfg. Co. 193A Automation Aids—Clippard Instrument Lab., Inc. Batteries for transistor circuits-P. R. Mallory & Co., Inc. 104

Adhesive, acid-proof, extra strength-Carl H. Biggs Co.

- Brushes; contacts; assemblies—Graphite Metallizing Corp. Cabinets, metal; racks; chassis—Par-Metal Products Corp. 106
- Cable, air dielectric-Andrew Corp. Cable grips, nylon-Weckesser Co.
- Capacitors, all types-Pyramid Electric Co. 108
- Capacitors, ceramic disc-Radio Materials Corp.
 Capacitors, miniaturised—Cornell-Dubilier Electric Corp.
- Capacitors, rugged high frequency-E. F. Johnson Co. 108C Capacitors, subminiature paper-Hopkins Engineering Co.
- 109A Capacitors, vacuum-Jennings Radio Mfg. Corp. Capacitors, electrolytic-Sprague Electric Co. 110
- Capacitors, electrolytic, paper, mica-Sangamo Electric Co.
- Capacitors, sealed plastic film—Electronic Fabricators, Inc. Ceramic assemblies, metallized—Stupakoff Ceramic & Mfg. Co.
- 114 Ceramic compositions, tube sockets—American Lava Corp.
 114A Chassis, expandable—U.M. & F. Mfg. Corp.
- Coil bobbins-Precision Paper Tube Co.
- Coil forms, resinated-Resinite Corp.
- Coil winders, toroidal; portable engraver-Mico Instrument Co. 117
- Communications equipment-Allen B. DuMont Labs., Inc.
- Connectors; cables; plug-in units-Alden Products Co.
- 119 Connectors, co-axial cable-Diamond Mfg. Corp. Connectors, gold-plated audio-Cannon Electric Co.
- Connectors, gold-plating process for—Sel-Rex Precious Metals, Inc.
- 121A Connectors, molded micro-Cinch Mfg. Corp.
- Connectors, precision RF-Dage Electric Co.
- Controls, composition and wire-wound—Chicago Telephone Supply Corp.
- Controls: resistors-Clarostat Mfg. Co., Inc. 124
- Control system, remote-Paul Schafer Custom Engineering 125
- Controls, tab-mounted variable-P. R. Mallory & Co., Inc. 126 Cord and tape, nylon-Hemingway & Bartlett Mfg. Co.
- Cores, tape wound-Magnetics Inc.
- 127A Crystals for airborne equipment—Standard Piezo Co. 128 Crystals. frequency control—Midland Mfg. Co., Inc.
- 128A Crystals, frequency control-James Knights Co. Crystals, frequency control-Reeves Hoffman Corp.
- Deflection yokes-Videocraft Mfg. Co.

June

after

pood

Not

NOUIRY

954

- 130 Degausser for tape & film-Cinema Engineering Co.
- Delay lines, fused silica-Corning Glass Works
- Delay lines, ultrasonic-Bliley Electric Co. 132
- 132A Differential, mechanical-Ford Instrument Co. Diodes, erystal-National Union Radio Corp.
- 133A Diodes, germanium, for computers—Hughes Aircraft Co.
 134 Diodes, holder for crystal—Sylvania Electric Products Inc.
- Diodes, sealed germanium-General Electric Co.
- 135A Diodes, shock-proof germanium Tung-Sol Electric Inc.
- Dollies, all-directional-Ceco Distributing Corp.
- Dollies; cranes; tripods-Houston Fearless Corp 137
- Dollies, portable camera-Camera Equipment Co. 138 Dynamometers, precision-George Scherr Co., Inc. 139
- Enclosures, shielded-Ace Engineering & Machine Co., Inc.
- Engineering personnel-Hughes Research & Dev. Labs. 141 Engineering personnel-Lockheed Aircraft Corp.
- 141B Engineering personnel-Melpar, Inc.
- 141C Filters noise suppression-Astron Corp.
- Focusing units, ferrite magnet-Heppner Mfg. Co.
- Fuses-Bussmann Mfg. Co. 143
- 144 Generators, aircraft omni-signal-Aircraft Radio Corp.
- Generators, RF, IF, AF signal-Measurements Corp.
- 145A Generators, sweep frequency-Manufacturers Engrg & Equip. Corp.
- 146 Glass tubing and cane-DeMuth Glass Works, Inc.
- Instruments; detectors; amplifiers-General Radio Co.
- Insulation, glass bonded mica-Mycalex Corp. of America 147
- Kinescope recording, camera for-Berndt-Bach, Inc. 147A
- Labels, pressure-sensitive paper-Avery Adhesive Label Corp.
- Magnetic test tapes; test records-Dubbings Co., Inc. 147C
- 148 Laminated plastics-Synthane Corp.
- Lenses, TV camera-Ponder & Best
- 149A Meter, brightness spot-Photo Research Corp.
- 150 Magnetrons, magnets for-Arnold Engineering Co.
- Manual, TV transmitting antennas-General Electric Co.
- 151A Meters, ruggedized panel-DeJur-Amsco Corp.
- 151B Microphones-Altec Lansing Corp.
- Microphones-Turner Co.

Listings continued on next page

Use these postage-free cards to get further information

Write in boxes the code numbers of products for which you want information. See list above and on next page.

Your company

TELE-TECH-APRIL 1954

CALDWELL-CLEMENTS, INC., 480 Lexingree Avenue, New York 17

Your title

Write in boxes the code numbers of products for which

you want information. See list above and on next page.

Your company

TELE-TECH-APRIL 1954

CALDWELL-CLEMENTS, INC., 400 Lexington Avenue, New York 17

June after pood Not NOUIRY

PRODUCT INFORMATION?

If that is what you need, use the cards below to get it quickly, through

Listings continued from preceding page

- 152A Microwave instruments & amemblice-Waveline Inc.
- 152B Microwave relays-Federal Telephone & Radio Co.
- 152C Microwave relay, reflectors-Gabriel Electronics Div., Gabriel Co.
- Microwave, remote centrel via-Radio Corp. of America
- Microwave signal generators—Polarad Electronics Corp. 154
- Microwave test equipment-Diamond Microwave Corp.
- 155A Microwave tubes and components-Bomae Labs., Inc.
- 156 Nameplate, metal adherive-Miller Dial & Name Plate Co.
- 156A Nut retainers, self-anchering-Tinnerman Products, Inc.
- Oscillators, specialised and all-purpose-Hewlett-Packard Co. 157
- Oscillescope, multi-channel-Electronic Tube Corp. 158
- Oscilloscopes, small broad-band-Waterman Products Co., Inc.
- Packaging, shock-proof-Cargo Packers Inc.
- 160A Phase meters-Industrial Test Equipment Co.
- 160B Photodicde, junction type—Sylvania Electric Products Inc. 161 Pilers for wire and printed circuite—Mathias Klein & Sons
- 161A Potentiometers, circuit trimming-Bourns Labs.
- Potentiometers, precision-Fairchild Camera & Instrument Corp.
- 162A Power supplies, retary-Carter Motor Co.
- 163 Printed circuits—Allied Photo Engravera. Inc. 163A Printed circuits—Electralab Inc. 163B Printed circuits—Farrington Mfg. Co.

- 164 Printed circuite-Insulated Circuite Inc.
- Printed circuits, components for-Photocircuits Corp.
- Printed circuits, transformers for-Raypar Inc.
- 167 Printed wiring-Aerovox Corp.
- Pumps, tube enhant system—Consolidated Vacuum Corp. Q-standard, sealed, precision—Boonton Radio Corp.
- 169A Radioactive & luminous materials—Sampson Chemical & Pigment Corp.
- Recording disco-Reeves Soundcraft Corp. 170
- Rectifiers, selenium-International Rectifier Corp.
- 171A Relays, ac & do-Sigma Instruments, Inc.
- Relaya, mercury-Adams & Westiake Co. 172
- Relays, vibration-resistant-Hart Mig. Co.
- 174 Beluctance cartridges; pre-amplifiers—General Electric Co.
- Remote control systems-Gates Radio Co. 175
- Resisters-International Resistance Co.
- Resistors; capacitors; switches-Stackpole Carbon Co. 177
- Resistors, carbon film precision—Hi-Q Div., Aerovox Corp. Resistors, metal film—Continental Carbon, Inc. 178
- 179A Besisters, ministure wirewound—Sprague Electric Co.
- Resistors, precision carbon-Electra Mfg. Co. 180
- 180A Resistors, wire wound—Atlas Resistor Co. Div. Phila Electronics, Inc.
- 181 Serve assemblies-Transicoil Corp.
- Serves, low pass filters for-White Instrument Labs. 182
- Sockets, hermetically scaled-Elco Corp. 183
- Solder, Suz-core-Kester Solder Co. 163A Solder, pre-formed, resin-filled-Alpha Metals, Inc. 184
- Spetlights, TV stage lighting—Bardwell & McAlister, Inc. Stamp dies, engraved vinylite—Krengel Mfg. Co., Inc. 185
- Stampings; cleanres-Hudson Tool & Die Co., Inc.

- Stripe, fanning and barrier terminal-H. B. Jones Div., Cinch Mfg. Corp. 188
- 188A Switches, crossbar-James Cunningham, Son & Co., Inc.
- 188B Switches, high-speed retary—General Devices, Inc.
- Switches, phenolic, hi-amp-Grayhill
- 189A Tape, handlers for magnetic-Potter Instrument Co., Inc.
- Tane, magnetic recording-Audio Devices, Inc. 190
- Tape recorder, pertable-Magnecord, Inc.
- 192 Tape recorders, console model-Presto Recording Corp.
- Telephone handasts-Shure Brothers, Inc. 193
- Terminal beards; electronic hardware-U. S. Engineering Co.
- 194A Terminale; lugs; hardware-Citation Products Co.
- Terminations, compression sealed—Electrical Industries 195
- Test instruments, radar and TV-Kay Electric Co.
- Test instruments; transformers-Freed Transformer Co., Inc. 197
- Testers, hipet-Peachel Electronics, Inc.
- 198
- Thermisters--Victory Engineering Corp.
- 198B Thermisters, close-telerance-American Radio Co., Inc.
- Toroidal decades, filters-Burnell & Co. 199
- 199A Towers, broadcast antenna-Stainle
- 199B Towers, guyed & self-supporting-Blaw-Knox Co.
- 199C Towers, steel antenna-Truscon Steel Div., Republic Steel Corp.
- Transformers, icolation-Peerless Div., Altec Lansing Corp.
- 200A Transistors-Hydro-Aire Inc.
- 201
- Translators, sealed junction—Philos Corp. Transmitter, paging service—Gates Radio Co.
- 202A Transmitters, breadcast—Collins Radio Co.
 202B Transmitters, pertable VHF—Aircraft Radio Corp.
 202 Triodes, 100 watt UHF—Eitel-McCullough, Inc.

- Tabe manufacturers, machinery for-Kahle Engineering Co. 204
- Tubecheckers-Weston Electrical Instrument Corp. 205
- Tubes, power triodes--Chathani Electronics Corp.
- 207 Tabes, receiving-Radio Corp. of America
- Tubes, transmitting-Amperex Electronic Corp. 207A
- 207B Tubes voltage regulator-Victoreen Instrument Co.
- 208 Tubing, laminated, phonolic—Cleveland Container Co. 208A Tubing and sleeving, insulation—Variex Corp.
- Tubing, paper & impregnated-Stone Paper Tube Co., Inc.
- 210 Turns-counting dial-Helipot Corp.
- TV breadcast equipment-Standard Electronics Corp. 211
- 211A TV breadcast, color unit for-Wickes Engrg. & Construction Co.
- 211B TV breadcast equipment for color-Telechrome Inc.
- TV camera chains & transmitters-General Precision Lab. Inc. 212
- 212A TV camera tubes; UHP and phototubes-Radio Corp. of America 213 TV projection system-Gray Research & Dev. Co., Inc.
- Vulcanised fibre-National Vulcanised Fibre Co. 214
- 214A Waveguides; microwave components—Polytechnic Res. & Development Co.
- 214B Waveguides; waveguide accemblice-Co-Operative Industries, Inc.
- Wire forms, springs—Dudek & Bock Spring Mfg. Co. Wire, miniaturization—William Brand & Co., Inc. 215
- 216 216A Wire stripping machines—Arton Engineering Co. 217 Wire, teffen-insulated-Cornish Wire Co., Inc.

MAIL CARD TODAY

NOT GOOD AFTER JUNE 1, 1954

TELE-TECH & ELECTRONIC INDUSTRIES

480 LEXINGTON AVENUE

NEW YORK 17, N. Y.

FIRST CLASS

PERMIT No. 22273 (Sec. 34.9, P.L.AR.)

NEW YORK, N.Y.

FIRST CLASS PERMIT No. 22273 (Soc. 34.9, P.L&R.) NEW YORK, N.Y.

BUSINESS REPLY CARD

NO POSTAGE STAMP NECESSARY IF MAILED IN UNITED STATES POSTAGE WILL BE PAID BY

TELE-TECH

A RECTRONIC INDUSTRIES

480 LEXINGTON AVENUE NEW YORK 17, N. Y.

Caldwell-Clements, Inc.

BUSINESS REPLY CARD NO POSTAGE STAMP NECESSARY IF MAILED IN UNITED STATES

POSTAGE WILL BE PAID BY TELE-TECH

A ELECTRONIC INDUSTRIES

480 LEXINGTON AVENUE NEW YORK 17, N. Y.

Caldwell-Clements, Inc.

teristic, making thermistors successful substitutes for lock-in or lock-out switches.

As a lock-in switch, the thermistor is connected in a circuit with normal voltage less than breakdown. By briefly applying a breakdown voltage, a large current is passed, effectively locking in the low voltage circuit until it is opened.

As a lock-out switch, several thermistors may be connected in parallel to a voltage source (Fig. 15). An open key is in series with

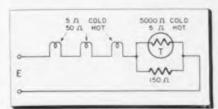


Fig. 16: Thermister surge protection reduces failures in series tube and lamp filaments

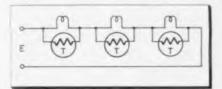


Fig. 17: Shunting thermitters across series lamps permits uninterrupted operation of remaining lamps if one or more units blow out

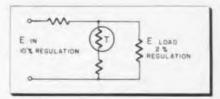


Fig. 18: Voltage regulation effected by thermistor which draws more current if V rises

each unit. As soon as one key is closed, the corresponding thermistor breaks down, causing a large current flow and increased voltage drop across the series source resistor. The voltage is reduced sufficiently so that no other thermistor will break down if their keys are closed until the circuit has been returned to normal voltage. A modification of this arrangement makes possible a voltage selective system.

Protection and Regulation

The same circuit which was described for automatic gain control (Fig. 14) may be applied to overload protection. For such protection, the time constant must be long enough to pass pulses of short duration, and prevent the passage of continuous high level signals.

A simple method of protecting

This ONE instrument ckecks RF, IF, and AF performance of receivers.

SPECIFICATIONS:

FREQUENCY RANGE: 20 cycles to 200 Kc. in four ronges, 80 Kc. to 50 Mc. in seven ranges.

OUTPUT VOLTAGE: 0 to 50 volts across 7500 ohms from 20 cycles to 200 Kc. 0.1 microvolt to 1 volt across 50 ohms over most of range from 80 Kc. to 50 Mc.

MODULATION: Continuously variable 0 to 50% from 20 cycles to 20 Kc.

POWER SUPPLY: 117 volts, 50/60 cycles. 75 watts. DIMENSIONS: 15" x 19" x 12". Weight, 50 lbs.

Standard Signal Generator

20 cycles - 50 mc.

FEATURES:

- · Continuous frequency coverage from 20 cycles to 50 mc.
- · Direct-reading individually calibrated dials.
- Low harmonic content.
- · Accurate, metered output.
- Mutual inductance type attenuator for high frequency oscillator.
- Stray field and leakage negligible.
- Completely self-contained.

THERMISTORS (Cont.)

series lamp indicators or tube

heater strings from voltage surges when power is being applied is to connect a parallel thermistor-resis-

tor combination in series with the lamps or filaments. (See Fig. 16.) For illustrative purposes, assume

three lamps are in series, each with a cold resistance of 5 ohms and

hot resistance of 50 ohms. If the thermistor cold resistance is 5000

ohms and hot resistance 5 ohms, and if the parallel resistor is 150 ohms there will be no initial current peak

because total circuit resistance will

always be about the same. At the

Fig. 19: Thermistor as a time delay control

TO CONTROL

Fig. 20: Servo control with thermistor bridge

MEASUREMENTS S CORPORATION **BOONTON - NEW JERSEY**

YOU NEED IT -

can make it!

LEFT: DAGE Type BNC Connectors are used in this Avien capacitor type two unit fuel quqe.

Dage Radio Frequency Connectors

Your special RF Connector requirements receive special attention at DAGE ... masters of custom design and manufacture.

DAGE makes all standard connectors, including new sub-miniatures, to precise military and commercial specifications.

DAGE invites your request for details,

quotations, recommendations, and your order for standard or special RF Connectors.

Connector

DAGE MAKES RF CONNECTORS FOR-

Federal Telephone & Radio Corp.
The Magnavox Company
Capehart-Farnsworth Company
Radio Receptor Company, Inc.
Bendix Aviation Corp.
Motorola Inc.
Federal Telecommunication Laboratories
Boeing Airplane Company
Lavoie Laboratories, Inc.
Thompson Products, Inc.
Western Electric Company
Stamford Electronics Company AND MANY OTHERS

Write DAGE today!

DAGE ELECTRIC COMPANY, INC. . BEECH GROVE, INDIANA

moment the current surge starts. total resistance is 15 ohms for the lamps and almost 150 ohms for the parallel combination, or 165 ohms. After the lamps and thermistor have heated, the resistance is 150 ohms for the lamps and about 5 ohms for the combination, or 155 ohms.

Series Lamps

A different approach to series lamps ensures continuous operation even it one or more blow out. In this case a small disc thermistor is connected in parallel across each lamp. (See Fig. 17.) When the lamps are operating normally, the voltage across each thermistor is low and the resistance remains high, having no effect on the lamp. However, if a bulb burns out, the complete line voltage appears across the thermistor, causing it to break down to a resistance as small as that of the lamp, and restoring operation of the other bulbs until the one burned out is replaced.

Thermistors make useful, yet inexpensive, voltage regulators. By placing one in series with the output resistor, an increase in voltage will make the resistance decrease, maintaining a near constant output voltage across the combined output resistor-thermistor series (Fig. 18).

to

he i.)

th

he

00

ne

ak

iII

he

rol

ge

ts.

ne

ne

15.

ve

ns

or

ps.

es

on

In

is

ch

he

he

w

h,

vn-

he

VI

of

of

ed

Зу

54

Timing

Just as the thermistor's thermal nertia and high initial resistance prevent destructive current surges in series tube filaments, these properties may be exploited to delay operation of a circuit. Current rise sufficient to actuate a relay may be delayed from a few milliseconds to several minutes. (See Fig. 19.) The

Fig. 21: Thermistor manufacture at GE

absence of moving parts, coupled with long life and small size have made this thermistor application a very popular one.

The time delay thermistor should be allowed to cool before a second operation, otherwise the second timing interval will be shorter than the first. This may be accomplished by having the working relay short circuit the thermistor when it closes. If the closed relay time is sufficiently great, the thermistor will be available for use as soon as the relay drops out.

To avoid long cooling periods, a cooling time delay method using two relays is also available. Here the thermistor is heated by a large current for a short interval compared to the desired time delay. The current is reduced, and when the thermistor's resistance increases sufficiently it trips the working relay. With this arrangement, the thermistor may be used again immediately.

Servo Control

Two thermistors in opposite arms of a bridge circuit will provide a simple means of detecting voltage changes, and applying a corresponding differential voltage to a remote servo indicator or control. With the bridge balanced at a speci-

PRESENTS THE NEW 670 CARDIOID MICROPHONE

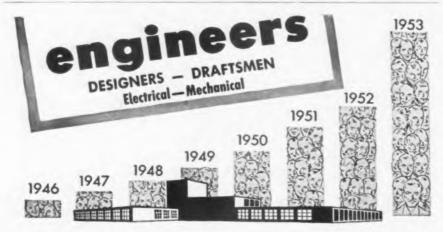
The 670 microphone is the answer to an increasing demand for a cardioid microphone that will deliver highest quality performance at moderate cost; a microphone that is small, rugged, and light in weight. Similar in appearance and performance to the famous Altec Lansing 639 and about one half the size, the 670 is ideal for sound systems and for radio and television broadcasting. It consists of a ribbon type velocity element coupled to an acoustical network and enclosed in an attractive lightweight plastic housing. The 670 is sturdy, easy to adjust and has a true cardioid pickup pattern, minimizing feedback and audience and background noises.

An outstanding feature of the Altec Lansing 670 is the adjustment shutter which allows positive and automatic selection of the desired directivity pattern. Setting the shutter at three different marked points will provide cardioid, figure eight or omnidirectional patterns. Settings between these points establish variations of the three basic patterns. This permits the continual shifting of the null point of the microphone over a 90 degree angle, thus effectively tuning out sources of undesirable noise.

Whatever your needs in the field of sound, it pays to remember that Altec Lansing offers the finest.

A SOUND REPUTATION SECOND TO NONE

9356 Santa Menica Blvd., Beverly Hills, California 161 Sixth Avenue, New York 13, N.Y.


Investigate the Series 410 Low Pass Filters based on a new RC network, and specially designed as stabilization circuits for servos having a DC control stage.

- Derivative or lead response in the low-frequency control region.
- High-frequency cutoff with an attenuation peak at the carrier or ripple frequency.
- Reasonable phase angles in the high-frequency region.
- Small size and weight obtained by plastic embedment.
- Excellent temperature stability.

Write for Bulletin 410.

INSTRUMENT ABORATORIES

203 RIVERSIDE DRIVE AUSTIN 4. TEXAS

Do YOU belong in this picture of progress?

EXCEPTIONAL project diversification military and commercial - enables MELPAR to offer you individual recognition, rapid advancement and ground-floor opportunity with a progressive company.

If you qualify and wish to join this sucgrowing organization, write now for further information about a personal interview in your area.

Address: Personnel Director, Dept. T-4.

Experience desired in one or more of these Experience desired in one or more of these or allied fields: Data Handling Equipment transpiretic cores, magnetic recording equipment, analogue to digital conversion, shaft digitizers). Flight Simulation (servomechanisms, pulse circuitry, electronic cabling). High Frequency Antennas. Audio and Video Circuit Design. Small Mechanisms Design. Mechanical Packaging of Electronic Components. Heat Transfer and Thermodynamics. Design of reciprocating compressors, hot gas generators and diesel engines.

440 Swann Ave., Alexandria, Va. 10 Potter Street, Cambridge, Mass.

A SUBSIDIARY OF THE WESTINGHOUSE AIR BRAKE COMPANY

THERMISTORS (Cont.)

fied input voltage, no output will occur. A change in voltage will unbalance the bridge by reducing the thermistor resistances, and produce an output voltage to feed the servo. (See Fig. 20.)

Special thermistors have been made, having extremely short thermal time constants, which may be used as an oscillator, modulator or amplifier, with proper biasing on the negative slope of the volt-amp characteristic. These units are still developmental. Production methods (Fig. 21) of standard types (Fig.22) are gradually being improved.

Applications

The number of possible applications for thermistors is extremely great, and to some extent limited only by the imagination. Thermistors provide one of the simplest means for providing various control and measurement functions. Of course, they may not be used indiscriminately, and care must be taken to account for ambient temperature

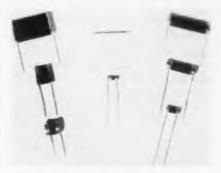
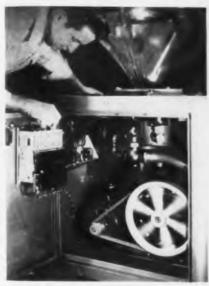


Fig. 22: Thermally sensitive resistors made by Stupakoff are of varied shapes and sizes

changes, self-heating, and other environmental conditions. As engineers become increasingly familiar with thermistor capabilities, we can look forward to very extensive application throughout the electronic industries.

Batcher, Ralph R., "Thermistors in Electronic Circuits," Electronic Industrics, Jan. 1945, pp. 76-80.


Circuits," Electronic Industries, Jan. 1945, pp. 76-80.
Johnson, J. C., "Thermistor Technics," Electronic Industries, Aug. 1945, pp. 74-77.
Batcher, R., and Moulic W., Electronic Control Handbook, Caldwell-Clements, Inc., pp. 86-90.
Thermal Detectors," Electronic Industries, Sept. 1946, p. 87 et seq.
Jones, William T., "Microwave Test and Measuring Equipment," Electronic Industries, Nov. 1946, pp. 48-54.
Becker, J. A., Green, C. B., and Pearson, G. L., "Properties and Uses of Thermistors—Thermally Sensitive Resistors," Bell System Technical Journal, Jan. 1947, pp. 170-212.
"German Scientists Study Thermistors," Tele-Tech & Electronic Industries, July 1947.
Dowell, K. P., Thermistors as Components Open Product Design Horizons," Electrical Manufacturing, Aug.: 1948.
Manufacturers' Technical Bulletins: American Radio Co.; General Electric Co., Carboloy Dept.; Servo Corp. of America; Victory Engineering Corp.; Western Electric.

Metallizing Unit

(Continued from page 100)

The rough pumping stage of the cycle automatically begins. A continuously running rotary mechanical pump reduces the pressure to about 200 microns in 2.5 minutes. At this preset time, the oil diffusion pump cuts in automatically to reduce the pressure in the tube to that desired for vaporizing the aluminum to be deposited. This takes four or five minutes.

Next the preset timer trips a switch which passes 25 amps through the filament which extends up through the tube neck. The resulting

d

st

H

-

n

n-

zi-

ar

an

p-

nic

pp

onic

ept

nally lour

Tech

Open ujac-

Doloy Engi

954

Fig. 3: Micrometer setting on sequence time is adjusted to control duration of flashing

heat melts and vaporizes the short bent strips of aluminum ribbon. At the low pressure now in the chamber, the aluminum takes flight in molecular form, depositing as a thin coating over all of the inner surface of the tube. The duration of the flash is adjustable to give the desired thickness. This coating will provide a brighter picture and prevent phosphor burns.

After flashing the filaments, the timer closes all vacuum valves, breaks the vacuum, and releases the tube, which is lifted by the automatic lowering device. Average length of the complete cycle is about 8 minutes. The overall dimensions of the "package" (see Fig. 3) is 30 x 24 x 33 m.

"Stabilized Germanium"

Sylvania has announced the development of "stabilized germanium" transistors and high temperature germanium-silicon alloys.

new! **O** STANDARD measures true O to + 3%

- Hermetically sealed against humidity effects.
- Inductance accurate to = 1%.
- Temperature coefficient data furnished.

Here, for the first time, is a Q-Standard which provides an accurately known Q and reactance for precise measurements. It also provides a convenient way to check overall Q-Meter performance

Write for further information

TYPE 513-A

SPECIFICATIONS

INDUCTANCE (L)

Naminal Value: 250 uh Accuracy: = 1 %

DISTRIBUTED CAPACITANCE (Cd)

(When mounted on Type 160-A or 260-A Q-Meter).

Nominal Value: 9.0 ppf. Accuracy: = 2%

EFFECTIVE Q (Qe)

(Specified at 0.5, 1.0, and 1.5 mc, and 22° C).

Nominal Value: 180 to 250

Accuracy: =3%.

the NEW FORD INSTRUMENT COMPANY

- Operates in working circle of 1.000" max. diameter
- . Lost motion does not exceed 12 mins.
- High sensitivity
- Stainless steel throughout; resistance to wear and corrosion
- Uses Zerol bevel gears.
- Weight, with typical end gears, is less than one ounce

The 1/8" differential is the latest and smallest addition to the Ford Instrument line of single spider gear differentials. Engineered to highest military and commercial standards. this highly reliable unit provides extreme accuracy in additive and subtractive operations, while functioning with minimum friction and backlash.

FORD INSTRUMENT COMPANY

31-10 THOMSON AVENUE LONG ISLAND CITY, N. Y.

WRITE FOR FULL DETAILS

Fully illustrated data sheet gives performance curves and characteristics. Please address Dept. TT.

Test Tape

(Continued from page 89)

total harmonic distortion, which enables the user to determine if the recording level indicated as proper by the recorder's VU meter or glow lamp is in fact the correct volume

To use this test, the tape is played back at a normal volume, and the playback volume control setting at which this is done is carefully narked as zero level. Note the output for this zero level. Then some fresh tape is inserted in the machine. and a 400-cycle tone from a second tape recorder or signal generator is recorded on it at the level indicated as proper by the recorder's meter or lamp. Note that this "proper" level may not yet be the truly correct one.

Level Too High

After the 400-cycle signal is recorded, it must be played back at the volume control setting which was marked zero level during the playing of the test tape. The output should be at the same zero level noted before, if the recording level was correctly adjusted. If it is higher, it means that the recording level was too high, and that 3% distortion has probably been exceeded.

Again a 400-cycle tone is recorded on the fresh tape, only this time at a lower recording level. If the playback output is now zero level, using the playback volume setting first marked zero level, the level at which the fresh tape was recorded is the maximum that all future tapes should be recorded to limit distortion. If the output is still above zero level, the 400-cycle tone is recorded on the fresh tape again, using a still lower than "proper" level, until the output is also zero level.

For those machines which have a VU meter, another 400-cycle tone is provided at exactly 10 db below maximum or zero level to check for proper recording level. This is the correct level at which this test should be made since the tone is virtually undistorted.

Tape Speed

The stretch-proof characteristics of the mylar tape make it possible to space timing beeps accurately at 0, 5 and 10 minutes, and to have them retain their accuracy for measuring tape speed for unlimited replays. With watch in hand, the user simply observes if the second and third beeps come at the correct time after the first. For example, if it took

longer than 5 minutes for the second beep to sound, it means that the tape speed is too slow.

An excellent professional machine should come as close as ±1 second in a 15 minute reel. Some of the cheaper recorders made for the home market have shown speed variations as great as 2 minutes during 10 minutes of play.

Other Audio Test Methods

Historically, it is worth noting that the D-111 is the outgrowth of two similar test discs produced by Dubbings: The D-100 for measuring frequency response, tracking, noise and wow; and the D-101 for measuring and adjusting a phonograph system's equalization, including frequency runs based on Columbia LP, AES, NARTB and RCA's "New Orthophonic."

d

1(

el

e.

ch

it-

rel

is

ed.

ed

at

ng

rst

ich

the

pes or-

ero

led

:till

the

e a
e is
low
for
the
test
is

eed

stics sible

v at

nave

easre-

user

and

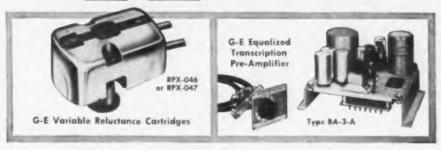
time

took

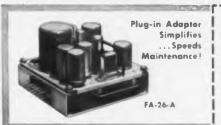
1954

Another test tape is made as a 7½ ips companion for the D-111. It is the D-110, made of the same Reeves Soundcraft "Lifetime" tape on a 5 inch reel. Besides the different tape speed, the main difference in the tests recorded is the limited frequency response run, which is in keeping with the capabilities of recording at 7½ ips. This test run contains the frequency steps: 30, 50, 100, 200, 400, and 700 cps, and 1, 2, 3, 4, 5, 6, 7.5 kc.

The above tests offer the audio and broadcast engineer a most convenient and accurate means of checking sound equipment and obtaining and maintaining peak perormance.


"EMMY" for NTSC

Dr. W., R., G. Baker, Chairman of the National Television System Committee, (right) receiving the award presented by the Academy of Television Arts And Sciences for the color television work of NTSC. RETMA Director H. L. Hoffman accepted the "Emmy" in Los Angeles in the absence of Dr. Baker. The above presentation took place in New York City at a recent meeting of the RETMA Board of Directors


to put live quality into transcriptions

HIGH-QUALITY reproduction demands this preferred equipment. Broadcasters use it to realize fully the superior play-back performance achieved with General Electric Variable Reluctance Pickups! Note these and a host of other outstanding features: Four position switch controls high-frequency response • Headphone cueing circuit • Full "NAB" low frequency response • Feeds directly into mixer systems.

Send for FREE Transcription Accessories booklet now!

GENERAL ELECTRIC

General Electric Company, Section 4844
Electronics Park, Syracuse, New York
Please send me free bulletin ECB-18B.

NAME

ADDRESS

ALTIMESS

STATE

LOCALIZE YOUR SELLING

Localizer Listings result in quicker evaluation of inquiries, save time and money; cut red tape and get you to buyer faster. Space may be purchased by the inch, immediately under your firm name, for the listing of

- Local representatives
 Branch or regional offices
- Territories covered
- Types of products
- Brand names
- Executive and sales personnel

Write for details or phone Tele-Tech, 480 Lexington Ave., New York 17, PLaza 9-7880. Use Localizer Listings to supplement your free editorial listing in the Manufacturers' Alphabetical Index in the

ELECTRONIC INDUSTRIES DIRECTORY

Coming in the June issue of

TELE-TECH

Beat THE Heat (AN OLD CORNISH CUSTOM)

with

TEF-COR"

HOOK-UP WIRE

scores another triumph with this tough, super-flexible product that has proven itself under fire.

Heat-resistant to 500°

This new super-heat wire, insulated with "TEFLON," is ideal for guided missile, jet and lowtension aircraft applications, transformer and coil leads. Sizes from AWG10 through 28. Also supplied with silver coated copper shields, and to individual customer requirements. Write for further information.

- + Cold-resistant to -67° F
- High dielectric properties
- Does not support combustion
- Impervious to known solvents
- Perfect concentricity
- *Tough, homogeneous, uniform

Companion to the famous "NOFLAME-COR"

"MADE BY ENGINEERS FOR ENGINEERS"

CORNISH WIRE CO., INC. 50 Church St., New York 7, N.Y.

Pick 'DIAMOND H' RELAYS

JIBRATION

RESISTANCE

Vibration resistance range of "Diamond H" Series R Relays has been more than doubled, extending now from 0 to well over 1,000 cycles per second at 15 "G's." Hermetically scaled, miniature aircraft relays, they are basically 4PDT but are also available in DPDT and 4PDT with two independent coils, either or both of which will operate the unit. They meet all requirements of USAF Spec. MIL-R-5757B . . . and far surpass many.

Operating shock resistance exceeds 50 "Gs"; temperature range is from -65° to +200°C. They operate consistently over 400,000 cycles without failure at 5 Å, and go 3,500 or more under 30 Å, at 30 V., D. C. resistive. Voltages up to 300 D. C. at 4/10 Å, are carried for more than 400,000 cycles. Coil resistances up to 50,000 ohms available. Operating time is 10 ms. or less; drop out time 3 ms. or less. Sensitivity approaches 100 mw. at 30 "Gs" operational shock resistance. Inter-electrode capacitance is less than 5 mmf. contacts to case; less than 2½ mmf, between contacts. All standard mounting arrangements.

Bulletin R-150, giving basic performance data under varying conditions, is yours on request. Our engineers are prepared to work with you to develop variations to meet your specific requirements. Tell us your needs.

THE HART MANUFACTURING COMPANY
218 Bartholomew Ave., Hartford, Conn.

FM Altimeter

(Continued from page 93)

higher altitudes, but it does not provide accurate values of very low altitudes.

The NBS altimeter (Fig. 1) employs a 10,000 Mc FM generator and conventional microwave equipment to amplify and radiate the highfrequency energy. A small portion of the transmitted signal is fed through a frequency shifter and is then combined with the signal received from the ground. The frequency shifter may be either an electrical or mechanical device designed to produce a new signal with a frequency displaced by a constant amount (about 100 cycles) from the frequency of the transmitted signal. The combined signals—from the frequency shifter and the ground-are rectified, amplified, and then fed into a counting-averaging mechanism.

I se of Vectors

The operation of the NBS altimeter may be best explained by using vectors. See Fig 2. Consider the maximum amplitude of the carrier signal to be represented by a vector directed vertically (Fig. 3). The received signal becomes an oscillating vector at the tip of the carrier vector. It swings back and forth with an angle wholly dependent upon the distance between the transmitter and the reflecting surface, and at a fixed rate determined by the repetition frequency, fr, of the transmitter. For short distances this phase excursion through which the vector moves is quite small; for larger distances, the angle increases accordingly. At even larger distances the phase angle may be several multiples of 2π or 360° . The base line around which the vector oscillates is determined by the phase of the carrier wave which strikes the ground. For example, if the phase of the wave at the ground is 45°, 90° or 180° respectively, the vector assumes corresponding base-line positions—the 90-, 180-, or 360-degree axis of the conventional quadrant system.

Oscillating Vector

Besides being controlled by the altitude of the transmitter, the oscillating vector is also affected by the output signal from the frequency shifter in the NBS altimeter. This very low frequency, denoted by f_d makes the phase vector rotate around the tip of the carrier vector. The signal resulting from the combination and rectification of the carrier vector, and the phase vector,

which has both a rapid oscillation and a slow rotation, may be represented by a projection of the phase vector on the carrier vector. The number of oscillations within one period of the recurrence or repetition rate is entirely dependent upon the altitude of the transmitter. If the altitude is low, the phase excursion will also be small, and the projection plotted against time may be but one wave in a period 1 fr. For larger distances, the phase excursion will be correspondingly larger, and the number of waves within the same period will be increased.

W

n-

nd

nt

h-

on

ed

is

e-

an

ith

int he

al

e-9

re

ito

tiby

ler ar-

a

3).

os-

arrth ent

ns-

and

the

nsase

tor

lis-

rd-

the

oles

und

er-

rier

For

e at

reor-

-the

the

tor

al-

cil-

the

ency

 Γ his

f far

tate

ctor.

om-

car-

ctor,

1954

The major difficulty in using a conventional altimeter occurs at the

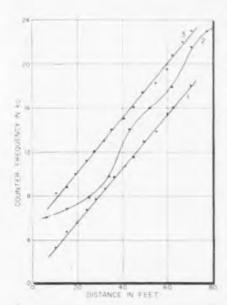
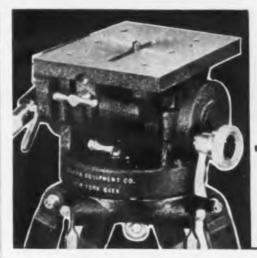



Fig. 5: Output vs distance for (1) amp!lfier with uniform frequency characteristic (2) amplifier with fd filter (3) amplifier with peaked frequancy characteristic

very short distances. If the carrier wave strikes the ground at a point of zero phase, the phase vector will then swing back and forth around what corresponds to the zero-degree position in the quadrant system. The projection of the vector on a time base may be one complete wave in the period 1/f_r. However, if the altitude is increased by 1/8 wavelength the carrier wave will strike the ground at a 45-degree phase point. The phase vector would then oscillate around the 90-degree position of the quadrant system. The projection of this motion on the time base would be two complete waves. The method for determining altitude is to count the number of waves produced by the projection of the phase vector. Thus, for essentially the same distance as in the first example above there is an ambiguity. Furthermore, at very short distances, for a fixed phase position (for example, zero degrees) the altitude

No More Groping ...

NEW MODEL C

"BALANCED" TRIPOD HEAD

gives you correct center of gravity

...in a Flash!

No more groping for center of gravity. The new Model C "Balanced" Tripod Head is equipped with a convenient, accessible positioning handle mounted below the top plate, which allows the operator to reposition the camera to the correct center of gravity. No matter what focal length lens is used on the camera turret, the camera can be balanced on the Model C Head without loosening the camera tie-down screw.

It has all the features which have made the "Balanced" head a gem of engineering ingenulty—quick release pan handle, tilt-tension adjustment to sult your preference. It's a Cameraman's dream!

NEW PORTABLE 3-WHEEL COLLAPSIBLE DOLLY

Dolly folds to fit into carrying case — 18"x 12"x36". Weighs only 60 lbs. Has wheel in rear for steering, which may be locked for straight dollying.

Dolly assembled-with tripod mounted. Also mounts Baby tripod.

WE SELL, RENT & SERVICE CAMERAS & MOVIOLAS & EDITING & LIGHTING EQUIPMENT Complete line of 16mm and 35mm equipment for rent.

MITCHELL: Standard, HI-Speed, BNC, NC, 16mm. BELL & HOWELL: Standard, Shift-over, Eyemo. MAURER: 16mm Cameras. ARRIFLEX. MOVIOLA Editing Machines. Synchronizers, DOLLIES

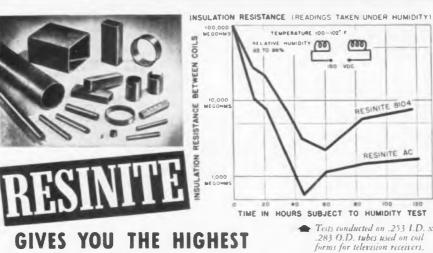
WE CALIBRATE LENSES-Precision "T" Stop calibrations of all types and focal lengths.

We design and manufacture lens mounts. In fact, we are specialists in all motion picture and TV photographic needs.

Crosstalk down 60 Db at 10 MC Any group of setups may be held intact while setting up

Provision for spot or remote

Compact design, small size Low operating power—2.5 watts Simple "package" installation


Individual magnets at Maximum, six conductors

per tirruit

Life-tested to 100 million aperations.

JAMES CUNNINGHAM, SON & CO., INC. Tel: BAker 7240 Dept T-1, Rachester, New York

GIVES YOU THE HIGHEST INSULATION RESISTANCE OF ANY RESINATED PRODUCT

tests, actual field operations and reports from manufacturers—prove the outstanding operating characteristics of Resinite. In volume resistivity...low moisture absorption ... excellent thermal properties...low power factor ... and resistance to voltage breakdown ... Resinite outperforms all other resinated products.

Resinite Coil Forms are available with inside or outside threads-slotted, punched or embossed. Special three-row threaded design permits axial pressure in excess of 25 lbs. Torque controllable to + or -1 inch oz. very high dielectric properties under extreme humidity.

Write today for full details and technical information

CORPORATION DIVISION OF PRECISION PAPER

2035L West Charleston Street, Chicage 47, Illinois 79 Chapel St., Hartford, Conn.

FM ALTIMETER (Cont.)

may be increased while the number of waves will remain the same. Thus a count of one may correspond to any altitude from 0 to 10 feet or more. At larger distances, a particular count will have this indeterminateness of ten feet; for example, a count of 5 may correspond to any distance between 40 and 50

Error Correction

The NBS altimeter overcomes these errors by superimposing a slow continuous rotation of the frequency-shifted signal vector, fd. This causes the phase vector to rotate slowly at an angular velocity $2\pi f_a$ and gives it an average position that is time-dependent. While the phase vector is rotating at a rate f it also swings back and forth at a rate f. For each oscillation, the phase vector will produce one or two waves as previously. Now, however, in each period of $1/f_{\rm d}$ second both will occur. The NBS altimeter uses the average number of waves to obtain the altitude. The greater the ratio f_r/f_d, the larger the number of counts per $1/f_d$ period. Since many waves are counted the average value can be changed by small fractional increments. In contrast, the count of conventional altimeters can change only by integers.

As the altitude is increased the phase excursion increases. Hence, it is evident that a larger proportion of two counts will be obtained. This increases the average number of counts per $1/f_d$ period. Thus the average count provides a continuous nonquantized indication of altitude.

Three Altimeter Systems

The utilization of frequency shifting and the slow, continuous rotation of the phase vector has led to the development of three altimeter systems. The first employs an amplifier with a uniform frequency characteristic. The detected signal appears as a sine wave of period 1/fd having a train of waves superimposed. The number of waves in the train are dependent upon the altitude. The counter indicating altitude counts the waves having zerocrossings, which is obtained whenever the detected signal voltage becomes zero. Such a value is a function of the angular excursion of the phase vector and the long-time rotation of the frequency-shifted signal fd. In the NBS system, a linear relationship exists between distance and counting rate, which would be continuously maintained if the fre-

ing.

RESINITE 8104

RESINITE "AC"

RESINITE 104

very high dielectric properties-com-

pletely immune to electrolytic corrosion.

for stapling, severe forming and fabricat-

quency shifter produces energy only at a frequency dependent on the sum of the carrier and shifted frequencies. However, practical frequency shifters also pass a small amount of energy at the difference frequency. This corresponds to a carrier with one or two sidebands separated by the shifted frequency. If this mixture s fed into a rectifier, a signal at the shifted frequency is obtained as long as the amplitude of the desired signal does not exceed the amplitude of the envelope of the undesired mixture. This is similar to the capturing effect in conventional FM receivers and is due to the action of the limiter which is incorporated in the counter.

US

to

or

r-

X-

nd

50

OR

es

a

nis

ite

fa

on

he

f

a

he

wo

er.

oth

ses

b-

he

oer.

ny

lue

nal

of

ige

the

, it

ion

his

of

the

ous

de.

ms

ift-

ta-

to

eter

pli-

ar-

ap-

 $1/f_a$

im-

the

lti-

ude

ro-

en-

be-

ncthe

ota-

gnal

ela-

and

on-

fre-

1954

Low Level Signals

The second system is designed for low signal levels. Here the frequency characteristic of the amplifier must be shaped to eliminate the frequency f_d from the counter. Thus, one would obtain the same series of voltage fluctuations that were previously superimposed on the wave of period 1 fd, but with the fd component filtered out and the voltage axis being the average of all the fluctuations in a period $1/f_r$. The phase vector may be considered as being periodically arrested (Fig. 4) so that it swings back and forth through an angle dependent upon the distance between the transmitter and the ground. The number of counts per repetition period is determined by the crossings between the curve (cyclic fluctuations) and its average value (over each variation per repetition-rate cycle). The height-indicator of an altimeter using this system must be equipped with a dial calibrated according to a nonlinear curve which deviates from linearity only by a small degree and only at the very low altitudes. As compared with standard altimeters, the only additional components are the frequency shifter, which is inserted between the power oscillator and the mixer, and the recalibrated dial-indicator.

Interference Suppression

The third system suppresses interference from the leakage signals at frequency fa by using an amplifier whose gain is proportional to frequency. The output caused by the low frequency, f_d, is very small while the high-frequency fluctuations are accentuated. Because every wave can now be counted, a linear relationship between distance and counting rate is obtained. See Fig. 5 for output curves for various sys-

"Nobleloy" METAL FILM RESISTORS

FOR APPLICATION WHEN PERMANENCY AND HIGH TEMPERATURE STABILITY -- ARE A MUST

Efficient manufacturing methods and adequate plant equipment combined with our research facilities maintains our pace with electronic progress to economically provide dependable, high quality resistors. The Nobleloy metal film resistor is our tribute to the electronic industry for a fixed resistor that assures initial accuracy and high stability.

NOBLELOY TYPE NF 1/2 WATT

A metal film miniature precision resistor with a metallic resistance element deposited on a low loss ceramic carrier and axial leads firmly fastened to silver contact bands. A layer of vitreous enamel protects metal film

against unusual atmosphere conditions, Primarily designed to meet MIL-R-10509A specifications.

NOBLELOY TYPE X

A metal film resistor with radial leads firmly fastened to extremely low resistance metal contact films to reduce contact resistance. It has a hollow center that permits greater heat radiation to withstand overloads, and possesses excellent resistance stability under adverse operating conditions. Each unit marked with resistance and tolerance.

NOBLELOY TYPE PX

A metal film resistor identical in construction as type X. A different improved alloy resistance film is used to allow for better temperature coefficient. Each unit marked with resistance and tolerance.

WM WIRE WOUND RESISTORS

Composed with a minimum of .0015 inch wire that is wound automatically for true parallel winding to prevent shorting at turns. Terminals are securely bonded for permanent connections to the winding. They are moisture resistant and recommended for circuits requiring very low resistance, which is not ordinarily available in the carbon style.

Write for latest catalog and prices

CONTINENTAL CARBON, INC.

CLEVELAND 11, OHIO CLEARWATER 1-6500

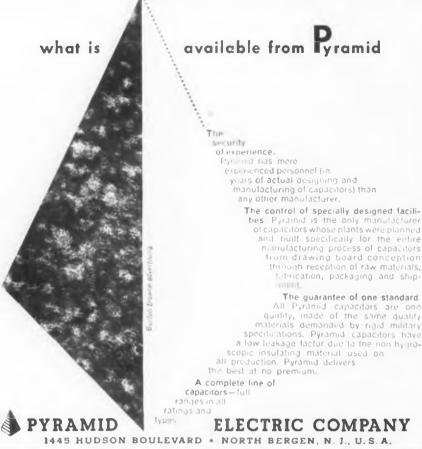
CONTINUOUSLY VARIABLE DELAY LINES-

with 5 x 10⁻¹⁰ sec. Resolution Time

• PHASE SHIFTER FOR COLOR TV

FOR MEASURING SMALL TIME INTERVALS

• FAST RISE TIME—LESS THAN 10% OF THE TIME DELAY AT ANY POINT **SPECIFICATIONS**


Time Delay (Cont. Variable) Attenuation to DB PER 0.1 st

TAPPED DELAY LINES

with Excellent Transient Response

WRITE FOR DATA!

ADVANCE ELECTRONICS CO. . 451 HIGHLAND AVE., PASSAIC, N. J.

erates at room temperature and is simple

BETTER APPEARANCE - the mirror-like

finish will not corrode or oxidize-each part maintains a like-new appearance

Packaged in 1, 5 and 10 ounce bottles.

and has indefinite stock life

to maintain

Synchrocyclotron

(Continued from page 100)

The rotor and dee must be supported by insulators since there are no possible support points which are always at radiofrequency ground potential. The insulators are all exposed on one side to the atmosphere to dissipate the radiofrequency heating, necessitating the use of long support rods to reach from the dee and rotor to the insulator caps. The insulators are made of low loss steatite and are designed for operation, with convection air cooling, to 40 kv of dee voltage and, with forced air cooling, to 60 kv.

The support rods enter into the resonant standing wave pattern and thus have currents flowing into them from the rotor and dee. In all cases provisions have been made for a good current path into the support rods. Closed loops at the base of support rods have been studiously avoided. Brushes have been provided to shunt r-f around the rotor bearings to prevent damaging arcs in the bearings and so to assure reasonable bearing live.

Tank Interiors

The interiors of all vacuum tanks are lined with copper sheet where they face the dee, rotor, or stub line, providing a continuous current path. Above and below the rotary condenser a set of copper skins is placed considerably closer to the condenser than the copper liners on the tank wall. This reduces the inductance which appears in series with the condenser and allows the line to resonate at frequencies high enough to start the proton range. In order to cover the deuteron range, the skin below the condenser is lowered and a gap is opened in the skin above the condenser. These changes were made from outside without breaking the vacuum.

Water cooling is provided for all support rods and tank liners, and the stub line, rotor, and dee. Water for those parts not at radiofrequency ground potential is brought in through the hollow support rods. This water cooling contributes to the stability of the machine by keeping small the mechanical distortions which even moderate temperature changes can induce. In addition, it holds down the temperature of the r-f system so that operation is not often interrupted by gas bursts and discharges.

The oscillator tube is operated with the grid grounded. Its housing is divided into an upper or cathode

tacts.

uses the SEL-REX BRIGHT GOLD

PROCESS to electroplate high qual-

ity AMPHENOL AN Connector con-

SEL REX PRECIOUS METALS, INC.

Dept. TT-4 229 Main Street . Belleville 9, N. J.

section, and a lower or anode section to guarantee minimum coupling between these electrodes. The cathode drive is supplied by a coaxial line coming through the top of the house, and the plate load is driven by a coaxial line coming out of one ide. The box is mounted on wheels and tracks in order to move it to facilitate servicing other parts of the machine. Water, high voltage, and control wiring connections are easily removable.

p-

11.6

nd

1X -

ere

CY

of

the

ps.

ra-

to

the

ınd

nto

all

for

ort

of

slv

ro-

tor

res

DEN

nks

ere

tub

ur-

ro-

ins

the

on

in-

ies

the

igh

ige.

ron

ser

the

ese

ide

all and iter

reght

ods.

to

by

lis-

·m-

ad-

ra-

op-

by

ited

ing

ode

954

Air-couled Triode

The tube used is an RCA type 5770 thoriated-tungsten filament water-and air-cooled triode especially designed for grounded grid operation. This tube has a plate dissipation rating of 40 kw at 30 Mc. It is mounted in a 1/2-inch thick mild steel jacket to provide magnetic shielding against the stray field of the cyclotron magnet which is about 300 gauss at this point. Cooling is provided through a water coil made of two 20-foot lengths of 1-inch nylon jacketed Tygon tubing wound on an insulating support. Air blowers are provided to cool the plate, filament, and grid seals.

Vacuum condensers were originally used for plate blocking, grid grounding and cathode phasing purposes, as they would be expected to provide the high current, high voltage, and low inductance characteristics which these services require. When trouble was experienced with voltage breakdown of the plate blocking condenser, the vacuum condensers were replaced with ceramic condensers. Eight 500-mf, 15,000-volt, units are used in parallel. The vacuum condensers used for grid-grounding were replaced by a homemade parallel plate condenser using Teflon insulation in order to eliminate resonances in the old arrangement. The photograph of Figure 3 was taken before these changes were made.

Oscillator Power Supply

The oscillator power supply is rated at 200 kw and can deliver 11.5 amperes at 17.4 kv. The voltage is continuously variable from about 1 kv to maximum at rated current. The rectifier output is filtered through a choke input filter with 58 mf of output capacity to reduce supply droop during pulsed operation. A 70-ohm resistor is placed in series with the output, in order to protect the 5770 oscillator tube from flash-arc damage by limiting the arc current until the supply breaker

Standard
TOLERANCE is
Close
TOLERANCE with

The new EFCON® plastic Film Capacitor, Type MH, is produced with tolerances of ±5%, ±2% and ±1% in standard production! High stability without derating. DuPont's "Mylar"® polyester film with low dielectric absorption. Leads soldered directly to foil. Hermetically sealed in metal cases.

Also available: Type MC-"Mylar" polyester film capacitor in wax impregnated cardboard tubes; Type S — Molded silvered mica capacitor.

Write for informative brochure.

ELECTRONIC FABRICATORS, INC.

682 Broadway, New York 12, N.Y.

*DuPont Trademark

MINIATURE PLASTIC

FILM CAPACITORS

SYNCHROCYCLOTRON (Cont.)

trips and thus limiting the energy dissipated in the tube.

The plate coupling line of 42-ohm characteristic impedance is built from 4-inch circular copper tubing inside an 8-inch circular tube and includes a replaceable strap in the plate line box, where the plate line enters the stub tank. This box amounts to a non-uniform section of line which may be adjusted to give roughly the same effect as changing the line length. The cathode coupling line consists, outside the vacuum tank, of 6-inch circular conductor inside an 8-inch square box. Inside the vacuum tank, it is a 4-inch in 6-inch coaxial line. It has sufficient cross-section to handle the 300-ampere filament current for the oscillator tube, allowing the elimination of one filament choke.

Oscillator Pulser

A number of factors make it desirable to turn on the oscillator only during those portions of the frequency modulation cycle which are actually required for acceleration. The most important of these is that during certain parts of the condenser cycle the system tends to go into undesired modes of oscillation outside the useful frequency range, frequently failing to return to the proper mode in time to start ion acceleration at the high frequency end of the range. An additional result of these parasitic modes is the heating of parts of the system in the vacuum and the consequent evolution of gas. A pulser has therefore been provided to turn the oscillator on and off at appropriate times

Timing signals for operating the pulser are obtained from two photomultipliers which look at a mirror mounted on the rotary condenser shaft. The mirror has six sides, corresponding to the six sets of blades on the rotor, and is fixed with respect to the blades. The photomultiplier housings are mounted on carriages which move on a semicircular track concentric with the rotor shaft. The carriages are driven by selsyns operated from the control room and their position is indicated by a device to be described later. Cathode followers are built into the photomultiplier housings and the output sent through coaxial cable to the control room. There the two pulses are used, after amplification and shaping, to start and end a control multivibrator pulse. An additional multivibrator is provided which puts out a pulse an adjustable time after the "on" photomultiplier pulse. This pulse will turn off the control multivibrator in the absence of a pulse from the "off" photomultiplier. The output of the control multivibrator is fed through a cathode follower to the pulser cabinet in the cyclotron pit. In this cabinet is located a 5.4 Mc oscillator using a 6V6 which feeds a keyed buffer using a 6L6 which in turn feeds an 807 power amplifier. The control multivibrator pulse is fed through a 6V6 amplifier to the cathode of the keyed buffer, allowing it to amplify the 5.4 MC signal and drive the power amplifier. A switch is provided to ground the buffer cathode, permitting it to operate continuously.

žУ

m

ilt

nd

ne

ne

X

of

ve

ng

1-

c-

n-

ox.

a

as

lle

nt

he

ly

re

m.

at

ngo on ze.

he

on су

he in

nt ıas he ite

he

0or

er

11-

les

ith

:0-

on

ni-

he

en

rol

ed

er.

he

he

to

wo

on

n-

di-

led

754

The grid of the oscillator tube is (Continued on page 190)

E. P. Gertsch Named President of WCEMA

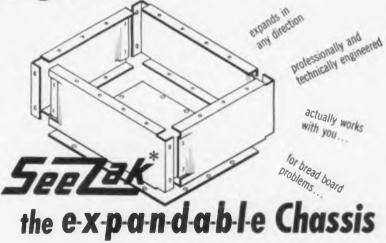
E. P. Gertsch, owner and president of Gertsch Products, Inc., 11846 Mississippi Avenue, Los Angeles, Calif., has been selected president of

E. P. Gertsch

WCEMA (West Coast Electronic Manufacturers' Association) for 1954. He is one of the founders of WCEMA and has been an active leader in the association since its birth eleven years ago. He has served on the Board of Directors as Vice-Chairman of the Los Angeles Council in 1952, and as chairman of the first WCEMA Scholarship Committee. He was recently elected chairman of the 1954 Executive Committee for the Los Angeles Council.

Prior to organizing his own company, Mr. Gertsch had a long record of experience in the electronic field, having held management posts with Hoffman Radio Corp., Air Associates, and Radio Corporation of America.

IF IT'S NEW ... IF IT'S NEWS ... IT'S FROM ELCO

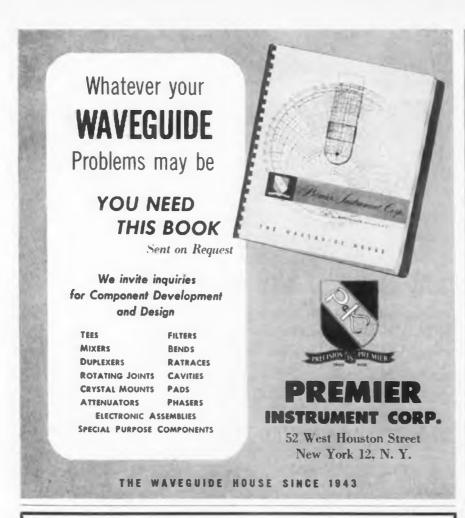


News that is bound to make headlines again for Elco Corporation is its new hermetically-scaled socket for use at high altitudes; and to give complete protection against moisture conditions. Floating contacts of heat-treated beryllium-copper assure complete relief of strain from glass of tubes. The Kel-F body is retained in an aluminum or brass

housing, terminating with hermetic-seal on chassis end. A retainer ring lined inside with silicon rubber screws on to the housing, forming a complete seal around the tube; and also acts as tube retainer. Water absorption: 0. Condensation inside socket: practically 0. Contact resistance .001". Silicon seal withstands temperature up to 525° F. Complete contact float; excellent tube retention under pressure. Available in 7- and 9-pin miniature tube class, with or without shields. Drawings and prices are yours upon request.

For Catalog Sheets, Call GArfield 6-6620 or Write ELCO Corp., 190 W. Glenwood, Phila. 40. Pa.

Constructors! Engineers!



- 315 standard chassis sizes. 196 standard cabinet sizes plus unlimited combinations.
- Only 14 rail lengths, 2", 3", 4" high are required.
- *Reg. Pat. Pend. U.S. Pat. Office
- Expands from 4" to 17" in any direction in one inch increments.
- Top at bottom plates at least one gauge heavier than usual.

* contact your local jobber or write direct *

U.M.&F. Mfg.Corp.

10929 Van Owen Street North Hollywood, California

Coming in June

ELECTRONIC INDUSTRIES DIRECTORY

Published annually as an integral section of

Join the industry's leaders by using display space or Localizer Listings (by the inch) immediately under your firm name in the Alphabetical Index of Manufacturers. Many advertisers will use both display and Localizer space.

Your advertisement in this directory will put your product in front of 21,000 top-level engineers, in the magazine they prefer, just at the time when they are ready to specify or buy.

Don't miss the most complete, accurate and uptodate directory in the electronic engineering field.

Write or phone for details

TELE-TECH, 480 Lexington Ave., New York 17, Plaza 9-7880

SYNCHROCYCLOTRON (Cont.)

normally held at about minus 1200 volts by a separate bias supply. During the pulse, this bias is overcome by the voltage developed across the cathode resistor of the pulsing tube. The pulsing tube, for which three 304TL's in parallel are used, is driven by the rectified voltage from a tuned circuit inductively coupled to the 807 power amplifier. This arrangement is used so that the low level stages are not required to operate at oscillator bias potential. Suitably insulated power supplies are of course required and interlocks are provided to insure that plate voltage cannot be supplied to the cyclotron oscillator unless all required voltages are present in the pulser. A block diagram of the pulser system is shown in Fig. 2.

Pulser Controller

After the cyclotron has been in operation for some time, it became apparent that it would be desirable to provide means for operating under conditions other than the normal 50 or 60 pulses per second. A circuit was therefore designed which could be inserted between the "on" photomultiplier and the pulser to provide several modes of operation. The modes selected were the following: 1) normal continuous operation 2) n pulses per control pulse, and 3) 1 pulse each n control pulses, where n is any power of two from zero to five. In addition, a time clock was provided which could be used to determine the length of operating time under the first and third modes. The control pulses referred to may be supplied from an external source, for example a piece of experimental apparatus, or from a one-second pulser which was already available in the machine. The cyclotron cannot of course be pulsed directly by the control pulses because of the requirement that it come on at the proper part of the condenser rotation cycle. It is however pulsed at the proper time in the first cycle following the control pulse. Two output channels are provided, one for triggering the cyclotron and one for triggering experimental apparatus, if desired. A block diagram of this unit is shown in Fig. 3.

The "on" photomultiplier pulse is amplified and inverted in cathode follower-inverter 1 and used to trigger blocking oscillator 1. The blocking oscillator pulse is fed through cathode follower 2 to the main gate 1. Pulses passed by the

200

ly.

r-

ed

he

01

re

lt-

ly

er.

he

to

al.

ies

T-

iat

to

all

he

he

in

ne

ale

n-

ır-

A

ed

en

he

of

re

us

rol

n-

rer

li-

ed

ne

ler

n-

p-

for

tal

nd

ole

n-

by

he

he

:a-

at

cle

wo

ne

ne

·a-

of

is

иde

to

he

fed

he

the

154

SPEED AUTOMATIC SOLDERING

for flame, oven or induction heating

Increase Production • Melts Faster • Guarantee Product Precision • With on Without Self-Flux • Save Labor Costs • Designed For Your Application • All Sizes, Shapes, Alloys. Stronger, Smoother Joints.

Alpha's preformed solders, in any shape or size, cut many hours from your production time. You can select washers, rings, coils, cut shapes, drops, pellets, solder foil, to fit your specific needs. They save you considerable money and materials in repetitive soldering processes.

AVAILABLE IN

* CEN-TRI-CORE

ENERGIZED

ROSIN-FILLED

★ UNI-CORE

LEAK-PRUF

ACID-FILLED

★ SINGLE-CORE ★ SOLID WIRE

★ SHEET SOLDER

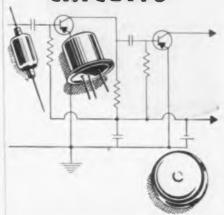
Please consult us on your soldering problems. Trained Field Engineers always available to assist you. Small or large quantities.

for further information

write ...

ALPHA METALS, INC.

58 Water St., Jersey City 4, N. J.
Specialists IN SOLDER For Over 50 Years


main gate trigger blocking oscillator 2 which drives the output cathode followers 3 and 4. Control pulses are formed in a one-shot multivibrator 2 and applied to gates 2 and 3. For continuous operation gate 2 is opened, turning on control flipflop 1. For the second type of operation, n pulses per control pulse, gate 2 is again opened. Gates 4 and 6 are also opened. Pulses from blocking oscillator 2 are now fed through cathode follower 5 and gate 4 into the scaler unit. The scaler counts to n and then sends a pulse through inverter 6 and gate 6 to turn off control flip-flop 1. This cycle is repeated for each control pulse. For the third mode of operation, one pulse each n control pulses, gates 3, 5 and 7 are opened. Control pulses go through gate 3 to the scaler which counts n of them and then sends a pulse through gate 5 to turn on the control flip-flop. The output pulse from blocking oscillator 2 is then fed through cathode follower 5 and gate 7 back to the control flip-flop to turn it off.

This circuit was built using standardized single-stage plug-in units. These units have proven very satisfactory from a maintenance point of view and are designed in such a way that they should be useful in future circuits.

Operating Characteristics

It has been known for some time that r-f systems of this sort have operating difficulties at practical vacuums due to ion loading. These troubles are caused by ions that find themselves between the high voltage components and grounded surfaces and oscillate under the influence of the electric field. During the course of their oscillations they ionize additional gas molecules until the loading on the oscillator is so severe that it refuses to continue in oscillation. The remedy for this condition is to bias the components of the system and thereby get rid of the ions. This is done in the case of the dee and the condenser rotor. The grounded stub line cannot be biased, however, so an arrangement of so-called clearing wires and skins is provided in the region between the stub line and the ground skin. These clearing wires are isolated from both stub and ground and are biased. Care must be exercised to avoid resonances in the clearing wires at frequencies covered by the oscillator as such a resonance could easily destroy a set of mounting insulators. The biases for the rotor, dee, and clearing wires are supplied from 300 ma

TRANSISTOR CIRCUITS

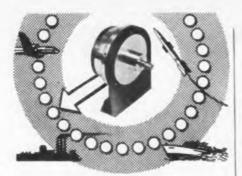
MALLORY

MERCURY BATTERIES and SILVERLYTIC CAPACITORS

Designed Specifically for TRANSISTOR APPLICATIONS
Available Now in PRODUCTION QUANTITIES

Mallory Mercury Batteries are ideally suited for the power supply requirements of transistor circuits.

Available as single cells or multi-cell packs in a wide range of voltages, they deliver the constant energy output needed for best results.



Also perfectly suited to transistor applications, these tiny, Mallorydeveloped Silverlytic

Capacitors have been expressly designed for the requirements of low voltage circuits and miniaturization.

> For complete data, write to P.R. Mallory & Co. Inc. Indianapolis 6, Indiana

Precision HIGH SPEED Rotary

MULTICONTACT SWITCHES

and

SAMPLING DEVICES

for

Military or Industrial Low Current Applications

Check this representative list

	Check this representative list
	Used In: COMPUTING DEVICES DATA HANDLING SYSTEMS FM-FM TELEMETERING SYSTEMS CHOPPER DEVICES MULTICHANNEL TEMPERATURE ALARMS PAM TELEMETERING SYSTEMS PAM TELEMETERING SYSTEMS RADAR DISPLAY SYSTEMS SYNCHRONOUS DEMODULATORS TRANSISTOR ANALYZERS Used For: AUTOMATIC CALIBRATION COMMUTATION AND SUB- COMMUTATION AND SUB- COMMUTATION MULTICHANNEL LOW LEVEL AMPLIFICATION MULTIPLE AMPLIFIER STABILIZATION STRAIN GAUGE SAMPLING SYNCHRONIZED MULTICHANNEL SAMPLING THERMOCOUPLE SAMPLING Reiared Specialfies: CODED SHAFT ROTATION LOW SPEED PRECISION SWITCHES MULTICHANNEL MAGNETIC PICKUP DEVICES MULTICHANNEL MAGNETIC PICKUP DEVICES SERVO-POSITIONED SWITCHES SERVO-POSITIONED SWITCHES SPECIAL MOLDED CONTACT
	PLATES SUBMINIATURE PRECISION SWITCHES VERY LARGE NUMBER OF CONTACTS OR POLES
	Send for convenient spec sheet GENERAL DEVICES, Inc. Box 253, Princeton, New Jersey Associated with: Mclean Engineering Laboratories
i	Princeton, N. J.

Manufacturers of:

Electronic Cabinet Cooling Fans

SYNCHROCYCLOTRON (Cont.)

rectifiers adjustable from 0-3 kv negative, and are applied through 7000-ohm resistors. In addition, each clearing wire is decoupled from the set of clearing wires by an individual 5000-ohm resistor. This serves to leave some voltage on the rest of the wires if one is shorted or grounded through a gasarc. Bias voltages are supplied to the rotor and dee through choke coils which are grounded to r-f by large condensers.

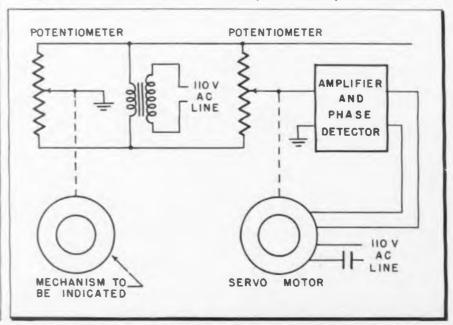
Once the clearing system for the stub was adequately worked out, operation of the oscillator followed directly. The oscillator normally operates with an anode voltage of about 10 kv. At this voltage there is an average plate current of about 1.5 amperes and about a half ampere of grid current. The input to the oscillator during the pulse is approximately 40 kw. About 5% of the power appears in the ions which strike the target.

Parasitic Modes

There are still indications of parasitic modes which are capable of destroying associated equipment, though no serious trouble has ever been encountered. All parasitics which have been observed are at frequencies higher than the usable range, so techniques which discourage higher frequency modes are useful. No wave traps are required.

The operation of the oscillator is quite stable, none of the adjustments being very critical. This is

probably due in large part to the high impedance into which it operates. A consequence of this is that although the oscillator operates at high efficiency, it does not deliver as much power to the dee as it might.


Magnet Current Regulator

The energy of the protons at any radius and frequency is directly related to the magnetic field. Close regulation of the field is therefore essential. At the time work was started on this machine, the necessary degree of current regulation required was not known, and 0.1% was arbitrarily adopted as a design value. Subsequent experience has shown that somewhat poorer regulation can be tolerated.

The magnet is powered by a 1000 kw motor generator set rated at 275 volts, 3636 amperes with an overload rating of 25%. The regulator was designed to provide a direct-reading setting at any value from zero to 5000 amperes, positive or negative. Tests indicated that the control was capable of maintaining an accuracy of one or two amperes over extremely long periods of time.

A block diagram of the regulator is shown in Fig. 4. A voltage corresponding to the magnet current is obtained from a 100-mv shunt in the magnet circuit. This voltage is bucked against the voltage from a reference potentiometer on the control console. The difference voltage, which is proportional to the error in magnet current, is chopped by a 60 cycle Brown Converter, ampli-

Fig. 5: One of two channels in position indicator. Only two leads are required to remote unit

Are you using a
LACING CORD or
FLAT BRAIDED TAPE
with <u>all</u> these
advantages?

CHECK HERE

the

erhat

at

ver

it

lor

any

re-

ose

ore

₩as

es-

ion

1%

ign

has

gu-

000

at

an

gu-

ilue

tive

the

ing

res

of

itor

or-

ent

t in

is

n a

on-

age,

ror

y a

pli-

a

- ☐ Made of Nylon
- ☐ 100% fungus-proof
- Laces tighter with less pull
- ☐ Laces faster
- ☐ High abrasion resistance
- ☐ Low moisture absorption
- ☐ Retains desirable malleability of wax and yet has a melting point of over 190°F.
- Non-toxic to humans
- ☐ Meets Army, Navy and Civilian "specs"

Switch to
NYLON
LACING CORDS and
FLAT BRAIDED TAPES
MADE BY

HEMINWAY & BARTLETT

The Haminway & Bartlett Mfg. Company 500 Fifth Ave., New York 36. New York Sales Offices: Chicago, Philadelphia, Boston St. Louis, Cincinnati, San Francisco, Los Angeles, Charlotte, N. C., Gloversville, N. Y. Foreign Agent: Turner, Halsey Ca., Inc., 40 Worth Street, New York, New York Cable Address: THECOTEX

fied, demodulated, and applied to one control field of a 150-watt amplidyne. A second control field on the amplidyne is supplied by an adjustable reference field voltage and the amplidyne output fed to the field of the generator exciter. The amplidyne used was selected because it was readily available at low cost from surplus dealers. A better arrangement would have been to use a larger amplidyne and eliminate the exciter.

Reference Potentiometer

The reference potentiometer utilizes a 10-turn Helipot as the continuously variable element with ranges selected by a 6-point switch. By proper selection of constants the interval between successive ranges is 20 mv, which is the voltage produced across the shunt by 1000 amperes. The Helipot also covers a range of 20 mv and is provided with a 1000-division Duodial so that any current may be selected by adding the Helipot reading to the range switch setting. The potentiometer draws 0.2 milliamperes and is powered by a dry cell. A Weston standard cell and a galvanometer are included for standardizing. The battery current is left on at all times. As a result of this precaution and of the fact that the control room temperature is kept fairly constant, standardizing is required at very infrequent intervals, perhaps weekly, or even less often.

Electrostatic Skield

The potentiometer output is connected in series opposition with the voltage from the shunt. This shunt is connected to the control room by a long shielded lead (200 feet) with the shield grounded at the shunt. The error voltage is connected to one contact of the Brown Converter and the other contact is grounded. An input transformer is connected between the leaf of the Brown Converter and ground. In order to avoid difficulty with noise pick-up, the shield of the shunt lead is used as the ground for the entire input circuit. As a result, very little voltage is picked up between input leads (about 10 µv) although the whole input circuit goes up and down about 0.1 volt with respect to ground. Disturbance because of this effect is avoided by an electrostatic shield in the input transformer.

The amplifier proper consists of two pentode stages and a high gain triode directly coupled to a cathode follower which drives a push-pull

BRUSHES CONTACTS

SLIP RINGS

... AND SUP RING ASSEMBLES

BRUSHES - CONTACTS - ASSEMBLIES

... Use SILVER GRAPHALLOY for applications requiring low electrical noise; low and constant contact drop; high current density and minimum wear.

EXTENSIVELY USED IN:

SELSYNS - GUN FIRE CONTROLS
ROTATING THERMOCOUPLE and
STRAIN GAGE CIRCUITS
ROTATING JOINTS - DYNAMOTORS

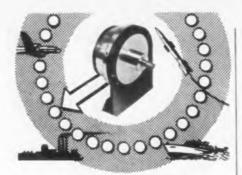
Wide range of grades available for standard and special applications.

Other Graphalloy Products

rays and Coorings (applicable -- 100 to -- 200 figures) and for with apparent coefficient ball that of steel will not using that on law tamperatural); oil from Pierca Rings, Soul Rings, Thrust and Frection Washers, Law York

b	RAP	HIT	t 1	AET	ALL	W	N	9	ιo	KI	0'	RAI	110	N

1002 Nepperhan Ave. • YONKERS, NEW YORK


Please send data on Graphallay BRUSHES and CONTACTS.

Send data on BUSHINGS.

NAME & TITLE

COMPAR

CITY

Precision HIGH SPEED Rotary
MULTICONTACT
SWITCHES
and
SAMPLING
DEVICES

Military or Industrial
Low Current Applications

Charly this representative list

Check this representative list Used In: COMPUTING DEVICES DATA HANDLING SYSTEMS FM-FM TELEMETERING SYSTEMS CHOPPER DEVICES MULTICHANNEL TEMPERATURE ALARMS PAM TELEMETERING SYSTEMS PAM TELEMETERING SYSTEMS RADAR DISPLAY SYSTEMS SYNCHRONOUS DEMODULATORS TRANSISTOR ANALYZERS Used For: AUTOMATIC CALIBRATION COMMUTATION AND SUB- COMMUTATION FUNCTION GENERATION MULTICHANNEL LOW LEVEL
AMPLIFICATION MULTIPLE AMPLIFIER STABILIZATION
MULTIPLE AMPLIFIER STABILIZATION MULTIPLEXING RECORDER CHANNELS PARAMETER DISPLAY ON CRO MULTISIGNAL COMPARISON STRAIN GAUGE SAMPLING SYNCHRONIZED MULTICHANNEL SAMPLING
THERMOCOUPLE SAMPLING Related Specialties:
LOW SPEED PRECISION SWITCHES MILTICHANNEL CAPACITATIVE DEVICES
MULTICHANNEL ELECTRONIC SWITCHES
MULTICHANNEL MAGNETIC PICKUP DEVICES
DHOTO-ETCHED SWITCHES SERVO-POSITIONED SWITCHES SPECIAL MOLDED CONTACT PLATES
SUBMINIATURE PRECISION SWITCHES
VERY LARGE NUMBER OF CONTACTS OR POLES
☐ VERY HIGH SPEED SWITCHES Send for convenient spec sheet
GENERAL DEVICES, Inc. Box 253, Princeton, New Jersey
Associated with:
McLean Engineering Laboratories Princeton, N. J.

Manufacturers of:

Electronic Cabinet Cooling Fans

SYNCHROCYCLOTRON (Cont.)

rectifiers adjustable from 0-3 kv negative, and are applied through 7000-ohm resistors. In addition, each clearing wire is decoupled from the set of clearing wires by an individual 5000-ohm resistor. This serves to leave some voltage on the rest of the wires if one is shorted or grounded through a gasarc. Bias voltages are supplied to the rotor and dee through choke coils which are grounded to r-f by large condensers.

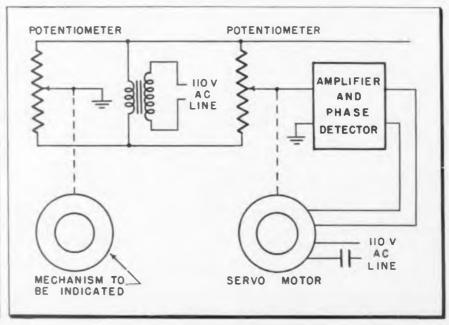
Once the clearing system for the stub was adequately worked out, operation of the oscillator followed directly. The oscillator normally operates with an anode voltage of about 10 kv. At this voltage there is an average plate current of about 1.5 amperes and about a half ampere of grid current. The input to the oscillator during the pulse is approximately 40 kw. About 5% of the power appears in the ions which strike the target.

Parasitic Modes

There are still indications of parasitic modes which are capable of destroying associated equipment, though no serious trouble has ever been encountered. All parasitics which have been observed are at frequencies higher than the usable range, so techniques which discourage higher frequency modes are useful. No wave traps are required.

The operation of the oscillator is quite stable, none of the adjustments being very critical. This is

probably due in large part to the high impedance into which it operates. A consequence of this is that although the oscillator operates at high efficiency, it does not deliver as much power to the dee as it might.


Magnet Current Regulator

The energy of the protons at any radius and frequency is directly related to the magnetic field. Close regulation of the field is therefore essential. At the time work was started on this machine, the necessary degree of current regulation required was not known, and 0.1% was arbitrarily adopted as a design value. Subsequent experience has shown that somewhat poorer regulation can be tolerated.

The magnet is powered by a 1000 kw motor generator set rated at 275 volts, 3636 amperes with an overload rating of 25%. The regulator was designed to provide a direct-reading setting at any value from zero to 5000 amperes, positive or negative. Tests indicated that the control was capable of maintaining an accuracy of one or two amperes over extremely long periods of time.

A block diagram of the regulator is shown in Fig. 4. A voltage corresponding to the magnet current is obtained from a 100-mv shunt in the magnet circuit. This voltage is bucked against the voltage from a reference potentiometer on the control console. The difference voltage, which is proportional to the error in magnet current, is chopped by a 60 cycle Brown Converter, ampli-

Fig. 5: One of two channels in position indicator. Only two leads are required to remote unit

Are you using a LACING CORD or **FLAT BRAIDED TAPE** with all these advantages?

CHECK HERE

the er-

nat

at ver

or

ıny

re-

ose

ore

vas

es-

ion

1%

ign

as

ru-

000

at

an

a

lue

ive

the

ing

res

of

tor

or-

ent

in

is

1 a

n-

ge,

ror

/ a

oli-

754

- Made of Nylon
- □ 100% fungus-proof
- Laces tighter with less pull
- ☐ Laces faster
- ☐ High abrasion resistance
- ☐ Low moisture absorption
- Retains desirable malleability of wax and yet has a melting point of over 190°F.
- □ Non-toxic to humans
- ☐ Meets Army, Navy and Civilian "specs"

IF NOT... Switch to NYLON **LACING CORDS and FLAT BRAIDED TAPES**

HEMINWAY & BARTLETT

MADE BY

The Heminway & Bartlett Mfg., Company 500 Fifth Ave., New York 36, New York Sales Offices: Chicago, Philadelphia, Boston. St. Louis, Cincinnati, San Francisco, Los Angeles, Charlotte, N. C., Gloversville, N. Y. Foreign Agent: Turner, Halsey Co., Inc. 40 Worth Street, New York, New York Cable Address: THECOTEX

fied, demodulated, and applied to one control field of a 150-watt amplidyne. A second control field on the amplidyne is supplied by an adjustable reference field voltage and the amplidyne output fed to the field of the generator exciter. The amplidyne used was selected because it was readily available at low cost from surplus dealers. A better arrangement would have been to use a larger amplidyne and eliminate the exciter.

Reference Potentiometer

The reference potentiometer utilizes a 10-turn Helipot as the continuously variable element with ranges selected by a 6-point switch. By proper selection of constants the interval between successive ranges is 20 mv, which is the voltage produced across the shunt by 1000 amperes. The Helipot also covers a range of 20 mv and is provided with a 1000-division Duodial so that any current may be selected by adding the Helipot reading to the range switch setting. The potentiometer draws 0.2 milliamperes and is powered by a dry cell. A Weston standard cell and a galvanometer are included for standardizing. The battery current is left on at all times. As a result of this precaution and of the fact that the control room temperature is kept fairly constant, standardizing is required at very infrequent intervals, perhaps weekly, or even less often.

Electrostatic Shield

The potentiometer output is connected in series opposition with the voltage from the shunt. This shunt is connected to the control room by a long shielded lead (200 feet) with the shield grounded at the shunt. The error voltage is connected to one contact of the Brown Converter and the other contact is grounded. An input transformer is connected between the leaf of the Brown Converter and ground. In order to avoid difficulty with noise pick-up, the shield of the shunt lead is used as the ground for the entire input circuit. As a result, very little voltage is picked up between input leads (about 10 uv) although the whole input circuit goes up and down about 0.1 volt with respect to ground. Disturbance because of this effect is avoided by an electrostatic shield in the input transformer.

The amplifier proper consists of two pentode stages and a high gain triode directly coupled to a cathode follower which drives a push-pull

SLIP RINGS

... AND SUP RING ASSEMBLES

... Use SILVER GRAPHALLOY for appli-

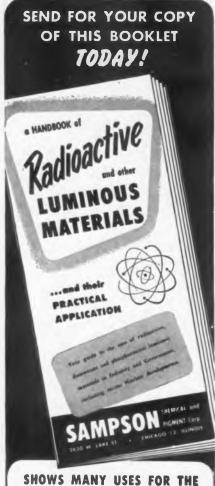
cations requiring low electrical noise; low and constant contact drop; high current density and minimum wear.

EXTENSIVELY USED IN:

SELSYNS . GUN FIRE CONTROLS ROTATING THERMOCOUPLE and STRAIN GAGE CIRCUITS **ROTATING JOINTS - DYNAMOTORS**

Wide range of grades available for standard and special applications.

Other Graphalloy Products



1002 Nepperhan Ave. . YONKERS, NEW YORK

sess sand dote on Graphelley BAUSHES and CONTACTS. Send dere on BUSHINGS

HAME & TITLE

COMPANY STREET

APPLICATION OF RADIUM AND ALL OTHER TYPES OF LUMINOUS MATERIALS!

DIALS, POINTERS, KNOBS, etc. accurately processed to your tolerances according to Government Specifications! From Blueprint to finished Product, our materials and methods of appli-

cation are Government Approved! SAMPSON will process large-scale orders as well as orders for "one - of - a - kind!"

SAMPSON CHEMICAL AND PIGMENT CORP.

2030 W. Lake St. . Chicago 12, III. . Dept. TT-4

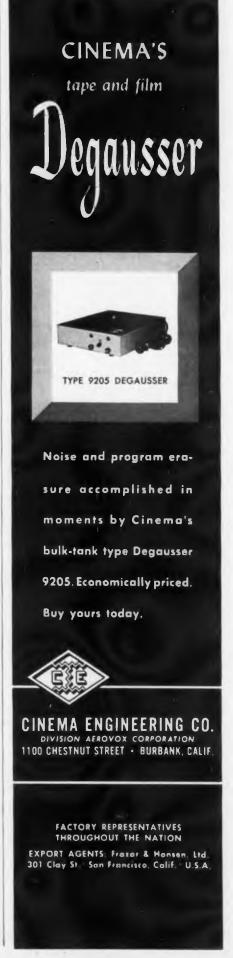
USE	COUPON	FOR	YOUR
	FREE CO	PY!	No.

Chemical & Pigment Corp.
2830 W. Lake St.
Chicago 12, Illinois
Please rush by return mail your free "Handbook of Radioactive and other
Luminous Materials."
CO. NAME

STATE. BY..... TITLE

ADDRESS.....

CITY


SYNCHROCYCLOTRON (Cont.)

output stage through an interstage transformer. The output is then transformer coupled to the demodulator. The demodulator is a ring type demodulator with input and output impedances of 500 ohms. It is supplied with 60-cycle switching voltage through a transformer and variable phase shifting network. The galvanometer used for standardizing the reference potentiometer is also used, through a suitable series resistor, to measure the demodulator output voltage which is applied to the amplidyne field. The reference field voltage is supplied by a separate rectifier and is adjusted by a voltage divider consisting of a potentiometer and a set of resistors selected by a switch ganged with the current selecting range switch. The procedure on operating is to adjust the reference field potentiometer so that the amplifier output, as shown on the galvanometer, is approximately zero. Coarse adjustment of this is done automatically by the range switch. Under this condition the regulator operates essentially as a null device. No trouble has been experienced with this unit in almost four years of operation.

Position Indicator

It was apparent early in the design of the cyclotron that a device would be required to indicate in the control room the position of certain remotely controlled components. Such a device has been built and installed and consists of two separate channels each of which has a ten position switch for selecting the component to be indicated.

A block diagram of one channel is shown in Fig. 5. The system is a null type servo system employing two Helipots, one mechanically driven by the component to be indicated and one driven by a servomotor. Both Helipots are energized through a transformer from the 110-volt 60-cycle line. The moveable arm of the remote Helipot is grounded and an amplifier is connected between that of the local Helipot and ground. The amplifier output is fed to a phase-sensitive power amplifier and then to the control field of the servo motor. The Helipots are all 10,000 ohm units, one of the local ones having 10 turns and the other 25. The remote Helipot would normally have the same number of turns as the local one, but this is not a necessary condition. Neither is it necessary that they have the same resistance. The

SWEEPMASTER

Sweep Frequency
Generators
give you these
outstanding
advantages

• A Frequency Marker with an accuracy of \pm 2%, independent of Sweepwidth, is inserted after external detection, eliminating undesirable transient distortion or limiting. This unique marker is independently adjustable in amplitude.

ullet An attenuator whose performance is free of frequency distortion, providing an output Envelope flat to within ± 1 db over the maximum sweep range.

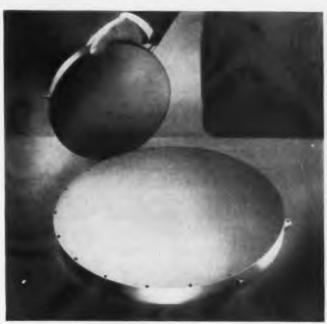
Separate examination of either the positive or negative envelope by front panel control.

• Durable, compact, lightweight Output and Detector Probes.

Descriptive Specifications

MODEL	FREQUENCY MARKER RANGE	SWEEPWIDTH CONTINUOUS ADJUSTMENT	RF OUTPUT 50 OHM * TERMINATION	
SM I	100 KC to 11 MC	150 KC to 14 MC	1 Volt RMS	
SM II	500 KC to 50 MC	150 KC to 20 MC	0.1 Volt RMS	
SM III	500 KC to 75 MC	150 KC to 20 MC	0.1 Volt RMS	

*75 ohm available when specified


Il rite for complete information

MANUFACTURERS ENGINEERING & EQUIPMENT CORP.

25 Mill Road

Hatboro, Pa.

Rear-Corning Delay Line with 1550 microsecond delay. 10" diameter. Front-Corning Delay Line with 2800 microsecond delay. 17½" diameter. Both are lightweight, ruggedly built units.

Announcing

CORNING Fused Silica Ultrasonic Delay Lines

To meet the needs of electronic equipment manufacturers for rugged, reliable, and accurate solid ultrasonic delay lines, we can now supply Corning Fused Silica Delay Lines designed and manufactured to your own specifications within the following ranges.

Delay Time 100 to 3000 microseconds within very close limits

Frequency Range 5 to 60 megacycles

Spurious Response . . . Up to 60 db below desired signal

quency are possible

Temperature Range . . . Storage temperature from -65°C

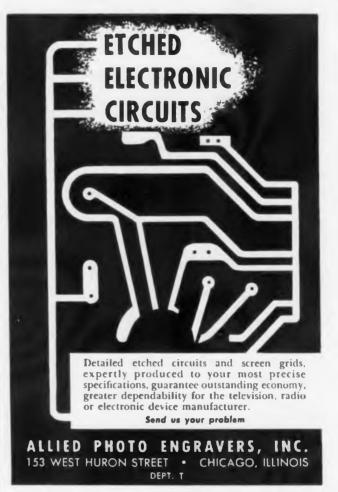
to 85°C without affecting operation

In addition, Corning Fused Silica Delay Lines have low attenuation, smooth pass band, and meet military specifications for shock and vibration.

From manufacturing the fused silica, through precision grinding to final testing and inspection, Corning Fused Silica Delay Lines are produced under our own roof. That way we can control quality and insure reliability from raw materials to finished product. Our engineers will be glad to work with you on any problem you might have involving solid delay lines.

For further details, write to Department TT-4.

CORNING GLASS WORKS


CORNING, N.Y.

New Products Division
Coming means research in Glass

See the new Corning Fused Silica Ultrasonic Delay Lines at the I.R.E. Show, Booth 494.

W

in

of ro A bi

all the possibilities of designing for compactness, simplicity, and increased sensitivity?

VECO THERMISTORS,

as components, are supplying the solutions to many design and circuitry problems. Investigate today!

VECO THERMISTOR DATA BOOK

V-42. AVAILABLE
Some Present Uses: Time delay •
Gas analysis • Volume limiting • Surge protection • Vacuum manometry • Flow measurement • Temperature control • Temperature measurement • Radar power measurement • Temperature compensa-tion • Oscillator stabilization • new applications being developed. Visit Victory at the IRE Show

\$5.00 cash or money order, plus postage, will bring you the VECO Experimental THERMISTOR-VAR-ISTOR Package, No. 168 — 7 items and application circuitry - value of over \$15.00.

Victory INGINITIONS COMPORATION CAS ANALYSIS CILLS

WHAT GOES ON INSIDE?

When you choose a turns-counting dial, remember that it's a mighty important adjunct to "the works"... for it tells you what is going on inside... where it counts.

The DUODIAL* counts the turns of a multi-turn component accurately...to a hundredth of a turn. And it does this so well that it is being used in all sorts of electrical, mechanical, hydraulic and pneumatic applications.

How It Works... The DUODIAL consists of two coaxial dials... the inner dial is calibrated to count hundredths of each turn... and drives the outer dial which counts the number of completed turns. Thus, if the outer dial reads 4 and the inner dial 37, the reading is 4 complete turns plus 37 hundredths of the fifth turn (4.37 turns). The inner dial and integral knob are fastened directly to the shaft of the rotating device... the critical readings of the inner dial are, therefore, free from backlash

Also...since the DUODIAL can be rotated by either the knob or the shaft...it will set a device to a desired number of turns...or will count precisely the full and partial revolutions of a power-driven device.

DUODIALS are cleanly designed, attractively finished, in a variety of types and sizes...several with locking mechanisms.

Data File... For information and specifications on all DUODIALS, write to Helipot Corporation, a division of Beckman Instruments, Inc., South Pasadena, California. Ask for Data File 403

*T.M. REG. 250

Helipot makes a complete line of single-turn and multi-turn precision potentiometers, and turnscounting DUODIALS. Many models are regularly carried in stock for immediate shipment.

SYNCHROCYCLOTRON (Cont.)

local Helipot has double shaft extensions, coupling on one end to the motor and on the other end to a suitable Duodial which is used as an indicator. The position is therefore readable to one part in 1000 or 2500, depending upon the channel, and may be estimated to twice this accuracy. The sensitivity of the system is great enough that the reproducibility is limited primarily by the number of turns of wire on the Helipot (about 10,000). The absolute accuracy is limited by the linearity of the Helipots, which is 1% for two Helipots, but this is not an important limitation since most of the units to be monitored are non-linear functions of the angle of rotation. A great advantage of this system is that only two leads are required to the remote unit and noise pickup is non-existent.

Beam Monitorina

Two means are provided for routine beam monitoring. The first is a large high pressure ionization chamber having a volume of about 1.9 cu. ft. and operating at 30 atmospheres. This chamber is placed well out of the ion beam, but in such a position as to monitor the general background radiation. The ion chamber current is measured by a balanced cathode follower electrometer feeding a 100-mv circular chart recorder. Relay switching of the electrometer grid resistor provides three ranges of sensitivity. Quite high sensitivity is possible with this arrangement and for preliminary adjustment of the machine a full scale range of about 10-10 amperes was used. Present ranges are 10-8, 10-6 and 10-5 amperes full scale. This unit is battery operated. except for the recorder, and is very stable. The monitor reading is, however, sensitive to direction of beam rotation and target arrangements.

Second Monitoring System

The second monitoring system is useful only with a target such as is used for production of mesons or neutrons, but under these conditions measures a quantity directly proportional to beam intensity. In this system the target is mounted on a small heat leak which is attached to a large thermal radiator. Temperature differences across the heat leak are measured by a thermocouple and recorded on a strip-chart recorder. Since the energy loss in the target can be computed and the target thermally calibrated, a fairly

Are better than <u>rubber</u> 3 ways

ENGRAVED Vinylite IS ACID-PROOF

Acid etching inks, used for permanent stamping on metal and all non-porous surfaces will eat away at rubber. Vinylite resists this action . . . gives longer life by far.

ENGRAVED Vinylite STAMP DIES GIVE RAZOR-SHARP IMPRESSIONS EVERY TIME

Opaque inks will clog shallow rubber stamp faces rapidly. Our deep-molded engraved VINYLITE stamp faces have more than three times the depth of ordinary rubber stamps. Markings always remain super sharp ... the clearly identifying mark that distinguishes and labels your product of quality.

ENGRAVED Vinylite STAMP DIES HAVE CUSHION-LIKE RESILIENCE

Our VINYLITE molding process includes a timed curing that imparts to this versatile plastic all the elasticity of rubber. Resilient VINYLITE STAMP DIES resist abrasive action, conform to irregular surfaces . . . and last much longer!

Engraved Vinylite Stamp Dies are adaptable to any automatic or hand marking device. They can be used to stamp on every surface, metal, wood, fabric, paper, plastic, etc.

KRENGEL MANUFACTURING CO., INC.						
Dept. 58, 227 Fulton St., I	New York 7, N Y CO 7-5714					
Please check the following						
Free Vinylite Sample I and Price List	Please have salesman call for appointment					
NAME						
COMPANY						
STREET						
CITY	ZONE STATE					

THE"Field-Proved"STANDARD

IN COMMUNICATIONS...

INTRODUCES A NEW

...the first Handset specially engineered for two-way

Specially Designed to Suit Your Specific Applications

Here is a truly modern functional handset specifically designed for 2-way communications! A product of the Shure Laboratories with many years of experience in safety mobile communications. the THIO Handset brings you these features: . . . the field-proved controlled reluctance assembly as a receiver . . . high output balanced response carbon transmitter . . . oversize switch chamber providing flexibility in stacking of famous Shure long-life leaf blades . . . handle provides for maximum number of conductors . . . solderless connections for rapid servicing . . . rugged shock resistant handle . . . design smart to the eye, natural in the hand.

For more complete information write to SALES DIVISION

The answer to your

complex circuitry!

SHURE BROTHERS, Inc.

Manufacturers of Microphones & Acoustic Devices 225 W. HURON ST., CHICAGO 10, ILL. Cable Address: SHUREMICRO

SYNCHROCYCLOTRON (Cont.)

good measurement of beam current can be obtained. Outputs from the thermocouple are of the order of 10 mv which can be easily measured

Since the thermal system has a time constant of the order of 2-10 minutes, depending on the construction, the response of the monitoring system is very slow. This difficulty has been overcome by the construction of a computing circuit which adds to the thermocouple voltage a voltage proportional to its derivative. This circuit has been described elsewhere.8

Many other items of electronics equipment of a fairly standard nature are used for a particle accelerator. Among these might be included power supplies, vacuum measuring equipment, portable radiation monitoring equipment and test equipment. Experimental apparatus, which is beyond the scope of this paper, uses a great deal of electronics, some of standard design but most quite novel and interesting. Several of these items are described in the subsequent papers.

Acknowledgments

Most of the equipment described in this paper is not the work of any one person but is the result of the cooperation of a group too numerous to mention individually working under the direction and guidance of Professor H. L. Anderson. The project has been supported in large part by the Office of Naval Research and the Atomic Energy Commission and has had the very substantial backing of the facilities and personnel of The University of Chicago.


This paper was presented at the 1953 National L'ectronics Conference held in Chicago.

REFERENCES

- E. M. McMillan, "The Synchrotron—A Proposed High Energy Particle Accelerator," Phys. Rev., vol. 68, p. 143, Sept. 1945.
 E. O. Lawrence and M. S. Livingston, "The Production of High Speed Protons Without the Use of High Voltages," Phys. Rev., vol. 38, p. 834, 1931.
- V. Veksler, "A New Method of Acceleration Relativistic Particles," J. Phys. U.S.S.R., 9, p. 153, no. 3, 1945.
- Anderson, Marshall, Kornblith, Schwarcz, and Miller, "Synchrocyclotron for 450-Mev Pro-tons," Rev. Sci. Instr., vol. 23, p. 707, Dec
- R. MacKenzie, "The Proton Deuteron of tem for the Berkeley Synchrocyclotron," J. Sci. Instr., vol. 22, p. 302, May 1951. R. MacKenzie, "Wide Range Frequency dulation," Phys. Rev., vol. 74, p. 104, ystem Sci.
- K. R. Mac Modulation," July 1948.
- July 1948.

 K. R. MacKenzie, "Preliminary Report on the Three Quarter-Wave' RF System for Frequency Modulated Cyclotrons," AEC Report, AECD-1850, Sept. 1947.

 R. L. Garwin, "A Servomechanism for the Elimination of Time Lag," Rev. Sci. Instr., vol. 23, p. 681, Dec. 1952.

NEW

LIGHTWEIGHT CHAMPION!

the spider ALL-DIRECTIONAL DOLLY

We have no objections to heavyweights—but if you're looking for a rugged lightweight that outclasses every dolly in its field—then The SPIDER is your best buy.

The SPIDER is all-directional. Maneuver it anywhere by a simple turn of a steering wheel—even in a 360° arc. It does away with the heavy post or elevator to raise or lower the camera. Just mount your own tripod on The SPIDER—point the arrow on the wheel in the direction you want to go—and you're there! One man operates both the camera and the dolly.

THE SPIDER IS A MUST FOR MOBILE TV UNITS AND SMALL TV OPERATIONS.

It's a wonderful supplement to the heavy pedestal in the studio.

Priced to gladden the hearts of the most thrifty.

only \$650 Arrange for a demonstration today.

CCCO DISTRIBUTING CORPORATION

FOILCAL

ŀе

1954

An
AMAZING
new discovery
lets you

NAME PLATE Costs!

Maintain Quality and Meet all Specifications

Use rivetless FOILCAL, the new revolutionary etched metal name plate affixed by a permanent pressure-sensitized adhesive. It's easy, simple to apply! National users include such companies as

Westinghouse Electric Corp.
Radle Corparation of America
Federal Telephone & Radio

FREE! Test FOILCAL at our expense!

FOILCAL withstands temperatures from -58°F up to 257°F, resists abrasion and fading, adheres to any clean, smooth surface. Write Dept. TT today for your FREE packet of FOILCAL samples.

FILLER DIAL AND NAME PLATE CO. 4400 NO. TEMPLE CITY BLVD. EL MONTE, CALIFORNIA

In the Greater Los Angeles Area

Agencies in All Principal Cities

THE LARGEST, MOST COMPLETE NAME PLATE HOUSE IN THE WEST,
SERVICING THE U. S. AND CANADA

HOPKINS

Phone, Wilte or wire TODAY!

Dept. W., 2082 Lincoln Ave. Altadena, Calif. SYcamore 8-1185 Offices in WASHINGTON, D.C. and DETROIT

NEW SUB MINIATURE Metallized Paper CAPACITORS

In sizes to fit your exact need! Save space!

- Resin impregnated and rectangular shaped for maximum space conservation
- Completely encased in a non-nutrient plastic for maximum fungus and humidity protection
- Operating temperature range -55°C to +100°C
- ✓ Temperature coefficient = .07%/°C
- Excellent capacity retrace

MADE TO YOUR EXACT SPECIFICATIONS IN ANY SIZE, SHAPE, QUANTITY

Precision coil bobbins are fabricated from high dielectric materials and quality controlled to the most minute tolerances... Yet, because they are made on special high production equipment, they're available to you for prompt delivery at low unit cost. Cores are spirally wound dielectric kraft, fish paper, acetate, phenol impregnated or combinations. Flanges are cut to any specification for all types of mountings.

Request illustrated bulletin. Send specifications for samples.

We also manufacture paper tubes in all sizes, shapes, ID's and OD's.

Sales Representatives in:

Upstate New York: Syracuse, N.Y., Syracuse 76-8056

Maryland:

PRECISION

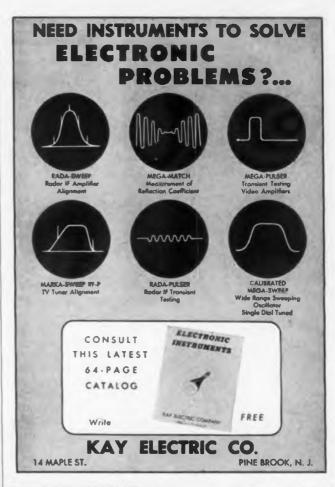
Baltimore, Maryland, Plaza 2-3211

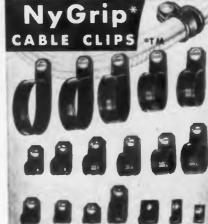
New England:
Framingham, Mass., Framingham
To91
New York, New Jersey:
Jersey City, New Jersey,
Journal Square 4-3574
Upstate New York:

Philadelphia, Pa., Chestnut Hill 8-0282
Northern Ohio, Western Pennsylvania:
Cleveland, Ohio, Atlantic 1-1060
Indiana, Southern Ohio:
Lagansport, Indiana, Lagansport 2555

Missouri, Southern Illinois, Iowa: St. Louis, Missouri, Sterling 2318

California:
Pasadena, California, Sycamore 8-3919 Canada: Montreal, Quebec, Canada, Walnut 2715


PRECISION PAPER TUBE CO.


2057 W. CHARLESTON ST.

CHICAGO AT ILL

Plant No. 2: 79 Chapel St., Hartford, Conn Also Mfrs. of Precision Coil Bobbins

They're made of Solid NYLONlight weight strong—tough easy to apply no sharp edgesmay be used from -60 to 250° F. -write for free samples and full information.

WECKESSER CO. 5259 N. Avondale Av. Chicago 30, III.

DO YOU KNOW THAT . . .

THE 1954 ELECTRONIC INDUSTRIES DIRECTORY

To be published in TELE-TECH in June, will contain

EXTENSIVE TRADE NAME LISTINGS

Contains thousands of trade names of electronic and applied products—the most comprehensive trade name lists ever compiled in this industry. Makes it as easy as A-B-C to find the manufacturer when you know only the trade name.

GLASS TUBING

three standard Machine-made in

compositions

DG #91

a standard soda lime glass with a thermal expansion of 92 x 10⁷ —softening point 701° C—density 2.52

į,

e of

N-

ıh—

ly-

° F.

free

full

CO.

le Av.

III.

ied

1954

DG #12

a potash-soda-lead glass with a thermal expansion of 89 x 10⁷ —softening point 630° C—density 3.05

DG #264

a lead-barium (iron sealing) glass with a thermal expansion of 118 x 10⁷—softening point of 603° C—density 2.76

In addition to supplying tubing and cane bulk packed in long lengths, we also fabricate in the form of glazed cut tube sections, flat or round bottom tubes or envelopes, and specially tooled shapes.

Your inquiries will be appreciated and will have prompt attention.

DEMUTH

GLASS WORKS, Inc.

PARKERSBURG, W. VA.

Sales Offices

NEW YORK - CHICAGO PHILADELPHIA

Compatible Color Signal

(Continued from page 82)

mer, as in Fig. 3, should be equal. Solving,

$$E'_{Q} \cos 33 - E'_{1} \cos 57^{\circ} = 0.49$$

 $(E'_{B} - E'_{Y})$
 $E'_{Q} \cos 57^{\circ} + E'_{1} \cos 33^{\circ} = 0.88$
 $(E'_{W} - E'_{Y})$

and

$$\mathbf{E'}_{0} = 0.48 \; (\mathbf{E'}_{0} - \mathbf{E'}_{y}) + 0.41 (\mathbf{E'}_{0} - \mathbf{E'}_{y})$$
 (6)

Similarly,

$$\mathbf{E'}_{1} = 0.74 \ (\mathbf{E'}_{11} - \mathbf{E'}_{5} - 0.27 \ (\mathbf{E'}_{6} - \mathbf{E'}_{7})$$
 (7)

Therefore, as long as operation is below 0.5 Mc, where both \mathbf{E}'_1 and \mathbf{E}'_Q are present, the chrominance portion of the video signal is alike, whether mathematically expressed in terms of \mathbf{E}'_1 and \mathbf{E}'_Q or in terms of $(\mathbf{E}'_R - \mathbf{E}'_Y)$ and $(\mathbf{E}'_R - \mathbf{E}'_Y)$.

The three independent signals E'_Y, E'₁, and E'_Q are sent through a phase correction network which provides NTSC specified compensation in the video signal for errors which will be produced by the transmitter and receiver. These departures from constancy of time delay arise from vestigial sideband operation and from the high frequency cut-off characteristics in typical receivers. As is to be expected, uniform time delay of picture display information is of even greater importance in color receivers than it is in black and white.

Complete Video Signal

The complete video signal may be expressed in the form:

$$E_{\rm M} = E_{\rm Y}^{\prime} + [E_{\rm Q}^{\prime} \sin (\omega t + 33^{\circ}) + E_{\rm L}^{\prime} \cos (\omega t + 33^{\circ})]$$
 (8)

where the reference vector, sine wt. is taken as 180° rotated away from the reference burst. Fig. 3 illustrates this relationship. As has been shown, below 0.5 mc, the video signal may also be represented in the form.

$$E_{M} = E_{s}^{*} + \left[\frac{1}{2.03}(E_{s}^{*} - E_{s}^{*})\right]$$

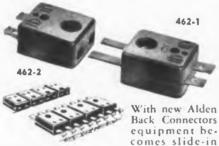
 $\sin \omega t + \frac{1}{1.14}(E_{s}^{*} - E_{s}^{*})\cos \omega t$
(9)

This video signal is then fed to the transmitter where it modulates the r-f carrier in the normal manner and is eventually radiated through the antenna.

Some mention should be made of the choice of frequencies for the color subcarrier, and the horizontal and vertical scanning circuits. It is desired to have the color subcarrier

New components, designs and techniques for the Electronics Engineer

O Solving the problems of high voltage and corona suppression for Color TV


New Alden #220 FTSC 20-pin connector with highvoltage leads completely sealed in polyethylene.

Alden High Voltage Anode Cables to handle 20,000 to 30,000 volts. Of polyethylene with integrally molded tube cap of hitemperature Nylon with extended sleeves; Hi-v. Disconnect completely sealed and with long leakage surface; phosphor bronze Anode Clip. Wide variety available.

Adapting electronic designs to Plug-in Unit Construction

units with single accessible check point for all in-out leads.

Plug-in Packaging Components for starting plug-in design from

up to 20-pin CHASSIS

Here are standard components of tremendous flexibility to assemble your circuitry into plug-in units, and end up with equipment all mounted as illustrated. Will accommodate tremendous variety of circuitry.

To mount your circuitry in compact vertical planes

Alden standard components, to mount your circuitry in compact vertical planes as illustrated here, consist of Prepunched Terminal Card, Miniature Staking Terminals, Card-mounting Sockets.

Tell us your area of interest and we'll send Spec. Sheets and details.

COMPATIBLE COLOR SIGNAL (Cont.)

frequency a high odd harmonic (455) of half the horizontal scanning frequency.

$$f_{CS} = 455 f_H/2$$
 (10)

To minimize the appearance on the receiver kinescope of the beat frequency (approximately 920 kc) between the color subcarrier and the 4.5 Mc intercarrier sound frequencies, use is again made of the low visibility principle:

4.5 MC $-f_{CS} = (2n + 1) f_H/2$ (11) Substituting Eq. (10) in (11),

$$f_{\rm H} = \frac{9_{\rm MC}}{(2 \text{ n} + 1) + 455} \tag{12}$$

By arithmetic inspection of (12), when n=58, $f_{\rm H}$ is closest to its 15, 750 cps value in black-and-white TV. When n=58,

$$f_{\rm H} = 15,734^{\circ} \text{ ces}$$
 (13)

Since

$$f_{H} = \frac{525}{2} f_{x}$$
 (14)

From Eq. (13) and (10),

$$f_s = 59.9 \text{ cms}$$
 (15)

$$f_{ex} = 3.579545 \text{ MC}$$
 (16)

Human Engineering Institute Course

Dunlap and Associates will offer another Human Engineering Course during week of May 10, 1954, in Stamford, Conn. Course will deal with equipment and product design in connection with human limitations. Enrollment deadline is April 15, and is limited to approximately 16 people. Tuition fee is \$300. For further information contact: Dr. Bernard J. Covner, Director, Human Engineering Institute, 429 Atlantic St., Stamford, Conn.

Librascope Acquires Minnesota Electronics

Librascope, Inc. of Glendale, Calif., a subsidiary of General Precision Equipment Corp., has acquired Minnesota Electronics Corp. of St. Paul, Minn., manufacturers of digital computers and components.

Minnesota Electronics has recently developed "sub-miniature magnetic decision elements" which will be used in combination with Librascope's computer techniques.

Minnesota Electronics will continue to operate with its present management and personnel.

SENSITIVE HIPOT TESTERS

Model H5 AC/DC 0-5 KV

- 5 11-amp. Circuit Breaker
- Trips on Corona Discharge
- Deenergizes High Voltage
- Non-destructive
- Adjustable to 500 µ-amps.
- Both AC and DC outputs

Other Standard Models—up to 100 KV. DC

Send for Bulletins

PESCHEL ELECTRONICS, INC.

13 Garden St. New Rochelle, N. Y.
Ph. NE 6-3342

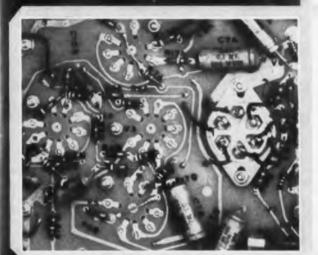
MICO

Precision Apparatus

TOROID COIL WINDERS UHF COAXIAL WAVEMETERS

Send for Illustrated Catalogs

MICO INSTRUMENT CO.


75 Trowbridge St., Cambridge, Mass.

- speed production
- eliminate hardware with (Ci)

Carry-Through Printed Circuits

proved enormously successful as shown by this sub-assembly

I.C.I. carries the pattern of the printed circuit through the holes to the other side to maintain efficient continuity.

NO hardware . . . with resulting excellent economies plus speeded-up production and more useable space. In a one square foot area of a printed circuit board .125" thick, 150 holes .020" in diameter can be successfully plated through.

I.C. I.'s unparalleled experience and engineering staff are at your disposal. WRITE, detailing your requirements for specific help and a copy of our thorough, new technical brochure which explains our research, design and conversion services.

I. C. I. also handles complete sub-assemblies as shown.

119 Roosevelt Avenue, Belleville, New Jersey

Try HELIX

BONDING AGENT R-313

 A thermosetting adhesive that cures at room temperature and needs no pressure. High electrical insulating

H

RES

SS.

954

- Gives a bonding strength of 3000 psi between metal parts.
- Non-porous gives high pressure seals between metal and glass, plastics, etc.
- Unaffected by acids, alkalies, fuel and lubricating oils.
- Reduces manufacturing costs by eliminating bolts, screws, rivets.

Write for Literature to Dept. TT-4 A better product for better production

CARL H. BIGGS

COMPANY 2255 Barry Avenue

W. Los Angeles 64, Calif.

Do you know this about Laminates?

SHEET COMBINATIONS

Synthane can be bonded securely to rubber, metal and other materials.

TUBING COMBINATIONS

Synthane can be cured directly onto metal tubes or rods to form a tight, permanent bond.

Despite Synthane's hard, smooth surface, we can print on it to make instrument panels, dials, and other components. The process is permanent; the im pressions stay put

POST FORMING

Certain grades of Synthane may be reheated and post-formed

	ANE
3	

SYNTHANE CORPORATION

11 RIVER ROAD, OAKS, PENNA

Please send me a copy of the Synthane catalog

(zone) State_

specify these 3%, $400 \sim$ isolation transformers

Hermetically sealed meet MIL-T-27 grade 1, class A requirements

> Primaries 115V, 3¢△ 380-1000 cycles

T-806-H Sec. 26V, 3¢Y 0.65 amp A.C. per ¢

> T-810-H Sec. 26V, 3¢Y 1.3 amp A.C. per ¢

Dimensions Weight
T-806-H 2½"x4"x1½" 1.95 lbs.
T-810-H 3½"x4"x1½" 2.4 lbs.

Write today for quotation on your special requirements.

A DIVISION OF

9356 Santa Menica Blvd., Beverly Hills, Calif., 161 Sixtn Avenue, New York 13, New York

(Continued from page 158)

Bert Rice has been promoted to district manager in the CBS-Columbia national sales organization. Formerly, he was sales manager for CBS-Columbia Distributors, Inc., New York City distributor. In his new post, he will cover distributors in Newark, Philadelphia, Baltimore, Washington, Norfolk, and Roanoke.

Leroy L. Emmel, Christian J. Goodman, and Jon B. Jolly have been appointed to the new field sales engineering staff covering the germanium products of General Electric Electronics Div. They will make their headquarters at 200 Main Ave., Clifton, N. J. Harvey F. Hodsdon, Vincent J. Huntoon, and Albert C. Oeinck, also appointed to the germanium products staff, will make their headquarters at 3800 North Milwaukee Ave., Chicago, Ill.

Leo Kagan has been elected vicepresident in charge of sales of Elco Corporation, Philadelphia, Pa. Prior to his association with Elco in 1952, Mr. Kagan

Leo Kagan

had been assistant New York sales manager of Zenith Corp., district manager of Bendix Home Appliance Department for Bruno of New York, and divisional sales manager for Woodstock typewriters.

Robert L. Unger was recently made director of industrial relations for Hoffman Radio Corporation's TV division. He will maintain headquarters in Los Angeles and has appointed William Cecil of Kansas City as personnel manager of the company's new factory in that city.

Seymour Mintz, former vice-president of the Admiral Corp., Chicago, Ill., has been appointed president of CBS-Columbia, TV and radio receiver manufacturing division of Columbia Broadcasting System Inc. Mr. Mintz has also been elected member of the CBS Board of Directors, and vice-president of the parent company.

Complete Testing Equipment for

OMNI and LOCALIZER

RECEIVERS

A.R.C. Type H-14 Signal Generator

For a quick and accurate check by pilot before take-off, or for maintenance on the bench, this is the favored and dependable instrument, Checks up to 24 omni courses, omni course sensitivity, to-from and flagalarm operation, and left-centerright on localizer. For ramp check, RF output 1 volt into 52 ohm line; for bench checks, 0-10,000 microvolts.

The H-16 Standard Course Checker is a companion instrument to the H-14. It makes possible a precise check on the course-accuracy of the H-14 or of any other omni signal generator. Just as a frequency meter

is necessary in connection with a variable frequency signal generator, the H-16 Standard Course Checker is required in connection with a VOR signal generator for a precise measurement of phase accuracy.

These instruments sold only direct from factory.

Price H-14, \$942.00
Price H-16, \$398.00
Prices f.o.b. Boonton, N. J.
Write for detailed literature

TELE-TECH ADVERTISERS - APRIL, 1954

ACE ENGINEERING & MACHINE CO. Agency—Harry P. Bridge Co.	EITEL-McCULLOUGH, INC	NATIONAL VULCANIZED FIBRE CO
ADAMS & WESTLAKE CO	Agency—Conner Jackson Walker McClure Adv. ELCO CORP. 189	OHMITE MANUFACTURING CO. 17, 18
Agency—Henri, Hurst & McDonald, Inc. ADVANCE ELECTRONICS CO	Agency—Fien and Schwerin ELECTRA MFG. CO	Agency—Fensholt Advertising Agency PAR-METAL PRODUCTS CO. 187
Agency—Corbin Advertising Agency AEROVOX CORP	Agency—R. J. Potts-Calkins & Holden, Inc. ELECTRALAB, INC. 165	Agency—H. J. Gold Co. PEERLESS DIV., ALTEC LANSING CORP. 204
Agency—Austin C. Lescarboura & Staff AIRCRAFT RADIO CORP. 114, 204	Agency—Robert Hartwell Gabine Adv.	Agency—Dan B. Miner Co., Inc. PESCHEL ELECTRONICS, INC. 202
AgencyBurke Dowling Adams, Inc.	Agency—George Homei Martin Assoc	PHELPS DODGE COPPER PRODUCTS CORP. 155
ALDEN PRODUCTS CO	ELECTRONIC FABRICATORS, INC. Agency—Gotham Advertising Co.	Agency—Compton Advertising, Inc. PHILCO CORP
ALLIED PHOTO ENGRAVERS CO 196 Agency—Fred Sider Adevrtising	ELECTRONIC TUBE CORP. Agency—Harry P. Bridge Co	Agency- Julian G. Pollock Co PHOLOCIRCUITS CORP
ALPHA METALS, INC.	FAIRCHILD CAMERA & INSTRUMENT CORP. 62, 63	Agency—The Kotula Co. PHOTO RESEARCH CORP. 129
Agency—Jules Wagner Advertising ALTEC LANSING CORP	Agency—G. M. Bosford Co FARRINGTON MFG. CO.	POLARAD ELECTRONICS CORP. 55
Agency—Dan 8. Miner Co., Inc. AMERICAN LAVA CORP	Agency—Robert Hartwell Gabine Adv. FEDERAL TELEPHONE & RADIO CO	Agency J. R. Flanagan Adv. Agency POLYTECHNIC RESEARCH & DEV. CO., INC. 153
Agency-Power and Condon Adv. AMERICAN PHENOLIC CORP. Sec. Two-2, 4, 6, 8	Agency—J. M. Mothes, Inc. FORD INSTRUMENT CO. 180	Agency—George Homer Martin Assoc. PONDER & BEST, INC
Agency-Burton Browne Advertising	Agency—G. M. Bosford Co.	Agency—Elmer W. Ayer Advertising POTTER INSTRUMENT CO. 159
AMERICAN RADIO CO., INC. 206 AMPEREX ELECTRONIC CORP 35	FREED TRANSFORMER CO	Agency-J. B. Roberts, Inc.
Agency—Shappe-Wilkes Inc. ANDREW CORP	GABRIEL ELECTRONICS DIV. GABRIEL CO. 122 Agency—Larcom Randall Advertising	PRECISION PAPER TUBE CO. 200 Agency—Symonds, MacKenzie & Co.
Agency—Burton Browne Advertising ARNOLD ENGINEERING CO	GATES RADIO CO	PREMIER INSTRUMENT CORP. 190 Agency—Kelly Nason Inc
Agency-Wolker & Downing, General Agency	GENERAL DEVICES INC	PRESTO RECORDING CORP. 64
ARTOS ENGINEERING CO	GENERAL ELECTRIC CO. 22 47 181 Agency—Moxon, Inc.	PYRAMID ELECTRIC CO. 186
ASTRON CORP. 12 Agency—Salow & Assoc. Adevrtising	GENERAL PRECISION LAB., INC. Agency—Burke Dowling Adams, Inc.	Agency-Button Browne Advertising RADIO CORPORATION OF AMERICA
ATLAS RESISTOR CO., PHILADELPHIA ELECTRONICS INC	GENERAL RADIO CO. Agency—K. E. Morang Co.	Cover 4, 19, 29 Agency—J. Walter Thompson Co
AUDIO DEVICES, INC 115	GRAPHITE METALLIZING CORP. 193	RADIO MATERIALS CORP. Cover 2
Agency— Rickard & Co., Inc. AVERY ADMESIVE LABEL CORP. 21	Agency—Kotula Co. GRAY RESEARCH & DEVELOPMENT CO	Agency—Turner Advertising Agency RAYPAR, INC
Agency—Martin R. Klitten Co., Inc. BARDWELL & McALISTER, INC	Agency—Taylor & Greenough Co GRAYHILL	Agency—Buti Roberts and Assoc. REEVES-HOFFMAN CORP. 46
Agency—Elmer W. Ayer Advertising	Agency—Merchandising Advertisers, Inc.	REEVES SOUNDCRAFT CORP. 32
Agency— Abbott Kimball Co. of Calif.	Agency—Wilson, Haight, Welch & Grover, Inc.	Agency—J. M. Mothes, Inc.
Agency—Lott Advertising Agency	MELIPOT CORP	RESINITE CORP. 184 Agency—Symonds, MacKenzie & Co., 186
Agency—Ketchum, MacLeod & Grove, Inc	HEMINGWAY & BARTLETT MFG. CO. 193 Agency—R. T. O'Connell Co.	ROBINSON AVIATION, INC. 152 Agency—Platt, Zachary & Sutton, Inc.
BLILEY ELECTRIC CO 42	HEPPNER MFG. CO 110	RUST INDUSTRIAL CO., INC. Agency-Robert Hartwell Gabine Adv.
Agency—John Harder Fenstermacher BOMAC LABORATORIES, INC. Cover 3	Agency—Burton Browne Advertising HEWLETT-PACKARD CO. 53	SAMPSON CHEMICAL & PIGMENT CO. 194
Agency—Larcom Randall Advertising BOONTON RADIO CORP. 180	Agency L. C. Cole Co. HOPKINS ENGINEERING CO. 199	Agency—Austin Advertising Agency SANGAMO ELECTRIC CO. 175
Agency—Frederick Smith Advertising Agency BOURNS LABORATORIES	Agency—Walter Marto Advertising HOUSTON-FEARLESS CORP	SCHAFER CUSTOM ENGINEERING PAUL 187
Agency—The McCarthy Co.	Agency—Taggart & Young Advertising	Agency-Peterson, Scholer & Buck Agency Inc.
BRAND & CO., INC., WILLIAM 136 Agency—Cary Snow, Inc.	HUDSON TOOL & DIE CO. Agency—George Homer Martin Assoc	Agency-Marvic Illustrations
Agency—Mitchell Adevitising Agency	HUGHES AIRCRAFT CO., SEMICONDUCTOR	SEL-REX PRECIOUS METALS, INC. Agency—Bass & Co., Inc.
BUSSMANN MFG. CO	Agency—Foote, Cone & Belding HUGHES RESEARCH & DEV. LABS	SHALLCROSS MFG. CO. 121 Agency—Harry P Bridge Co
CAMERA EQUIPMENT CO. Agency—J. M. Kesslinger & Assoc.	Agency—Foote, Cone & Belding HYDRO-AIRE, INC. 140	SHURE BROS., INC. 198 Agency—Henry M. Hempstead Co
CANNON ELECTRIC CO	Agency—Koy 3 Durstine Co.	SIGMA INSTRUMENTS, INC.
Agency—Willard G. Gregory & Co. CARGO PACKERS INC	INDUSTRIAL TEST EQUIPMENT CO 206 Agency—Mac Berman Adv	Agency—Meissner & Culver, Inc. SPRAGUE ELECTRIC CO
Agency—George Homer Martin Assoc CARTER MOTOR CO	INSULATED CIRCUITS, INC. Agency—Art-Copy Advertising Agency	Agency—Stuart Sands Adv SPRAGUE ELECTRIC CO Agency—Harry P Bridge Co.
Agency—Robert Peterson Advertising Agency CECO DISTRIBUTING CORP. 199	INTERNATIONAL RECTIFIER CORP. 123 Agency—Roy F. Irvin Adv.	Agency-Harry P Bridge Co. STACKPOLE CARBON CO.
Agency—J. M. Kesslinger & Assoc. CHATHAM ELECTRONICS CORP	INTERNATIONAL RESISTANCE CO. 30, 31 Agency—John Falkner Arndt & Co. Inc.	Agency—Horry P. Bridge Co STAINLESS, INC 154
Agency - George Homer Martin Assoc	JENNINGS RADIO MFG. CO. 163	STANDARD ELECTRONICS CORP. 161
CHICAGO TELEPHONE SUPPLY CORP. 112, 113 Agency—Burton Browne Advertising	Agency—L. H. Waldron Adv. Agency JOHNSON CO., E. F	Agency—Wehner Advertising Agency STANDARD PIEZO CO 188
CINCH MANUFACTURING CO	Agency—Firestone Goodman Adv JONES DIV., HOWARD B. CINCH MFG. CORP. 196	Agency—Godfrey Agency STONE PAPER TUBE CO., INC
CINEMA ENGINEERING CO. 194 Agency—R. L. Power	Agency—Symonds, MacKenzie & Co., Ine KAHLE ENGINEERING CO. 54	Agency-Robert M Gamble Jr. Adv STUPAKOFF CERAMIC AND MFG. CO
CITATION PRODUCTS CO. 206 Agency—Jarrett Advertising Agency, Inc.	Agency—Conti Advertising Agency	Agency—Walker & Downing SYLVANIA ELECTRIC PRODUCTS, INC. 33, 56
CLAROSTAT MFG. CO., INC	Agency—Felt Advertising Inc.	Agency-Cecil & Presbrey Inc
CLEVELAND CONTAINER CO	KESTER SOLDER CO	SYNTHANE CORP. 203 Agency—John Falkner Arndt & Co., Inc
Agency—Nesbitt Service Co. CLIPPARD INSTRUMENT LAB., INC. 142	KLEIN & SONS, MATHIAS Agency—Buchen Co.	TELECHROME, INC
Agency—S. C. Boer Co. COLLINS RADIO CO. 198	KNIGHTS CO., JAMES 134 Agency—Kenneth B. Butler & Assoc	TINNERMAN PRODUCTS, INC
CONSOLIDATED VACUUM CORP. 11	KRENGEL MFG. CO., INC 197	TRANSICOIL CORP. 160 Agency—Harry P Bridge Co.
Agency—Charles L. Rumrill & Co., Inc.	Agency—Tracy, Kent & Co., Inc. LANGEVIN MFG. CORP. 119	TRUSCON STEEL DIV., REPUBLIC STEEL CORP. 20
CONTINENTAL CARBON CO. 185 Agency—Nicholas Masso Advertising	Agency—George Homer Martin Assoc. LOCKHEED AIRCRAFT CORP	Agency—Meldrum & Fewsmith, Inc. TUNG-SOL ELECTRIC, INC. 143
CO-OPERATIVE INDUSTRIES, INC. 141 Agency—Richard LaFond Advertising	Agency—Hal Stebbins, Inc.	Agency—E. M. Freystodt Assoc., Inc. TURNER CO. 116
CORNELL-DUBILLER ELECTRIC CORP. 166 Agency—Friend-Reiss-McGlone Adv	MAGNECORD, INC	TURNER CO
CORNING GLASS WORKS 195	MAGNETICS, INC. Agency—Lando Advertising Agency	U. S. ENGINEERING CO. 195
Agency—Charles L. Rumrill B. Co , Inc. CORNISH WIRE CO 182	MALLORY & CO., INC., P. R	Agency—O. K. Fagan Adv. Agency VARFLEX CORP
CUNNINGHAM, SON & CO., INC., JAMES 183	Agency—Aitkin-Kynett Co MANUFACTURERS ENGRG. & EQUIPMENT	VICTOREEN INSTRUMENT CO. 26
DAGE ELECTRIC CO. 176 Agency—Jim Bradford Advertising	CORP. 195 Agency—Frederick Smith Adv. Agency	Agency—Carpenter Advertising Co. VICTORY ENGINEERING CORP. 196
DEJUR-AMSCO CORP. 149 Agency—Friend-Reiss-McGlone, Adv	MEASUREMENTS CORP. Agency—Frederick Smith Adv. Agency	Agency—Associated Publishing Services, Inc. VIDEOCRAFT MFG. CO. 201
DEMUTH GLASS WORKS, INC. 201	MELPAR, INC	Agency—R N. Johnson Adv
Agency—King & Cottermon Advertising DIAMOND MFG. CORP	Agency—Lewis Edwin Ryan Adv. MICRO INSTRUMENT CO. 202	WATERMAN PRODUCTS CO. 40, 41, 43 Agency—Abner J. Gelula & Assoc Inc
Agency—Robert Hartwell Gabine Adv. DIAMOND MICROWAVE CORP	MIDLAND MFG. CO., INC. 24	***************************************
Agency—Robert Hartwell Gabine Adv DUBBINGS CO	Agency—R J. Potts-Calkins 8 Holden, Inc. MILLER DIAL B NAME PLATE CO. 199	WESTON ELECTRICAL INSTRUMENT CORP. 44
Agency—Jesse Jacobs Associates DUDEK & BOCK SPRING MFG. CO. 200	Agency—Welsh-Hollander Advertising MYCALEX CORP. OF AMERICA 179	Agency—G. M. Basford Co. WECKESSER CO
Agency—Chicago Advertising Agency	Agency-George Homer Martin Assoc.	WHITE INSTRUMENT LABS
Agency—Austin C. Lescarboura & Staff	NATIONAL UNION RADIO CORP. Agency—Brooks and London Adv.	WICKES ENGRG. & CONSTRUCTION 150

- Measures phase shift in transformers, amplifiers, litters, and phase displacement networks.

 Measures from 0 to 360 degrees.

 Readings not affected by noise and harmonics.

 Phase shifts of the order of 01 degree can be measured employing special circuit techniques.

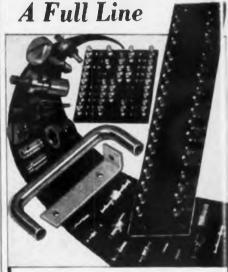
 Measures in phase and quadrature components separately.
- nents separately.

SPECIFICATIONS

Accuracy—Basic accuracy plus or minus 2 degrees. Plus or minus 1 degree due to meter error.

Noise and Harmonic Rejection 40 db. down Sensitivity 6 millivolts full scale Maximum Input Voltage 125 volts RMS Peak Input Signal 400 volts Frequency Range 20 to 20,000 cps.

INDUSTRIAL TEST EQUIPMENT CO. 55 EAST 11th ST., N. Y. 3 - Tel: GR. 3-4684


(Continued from page 204)

C. H. Hartley has been appointed sales director of Servomechanisms, Inc. Mr. Hartley is now located at the company's corporate offices in Garden City, New York. In his new capacity he will co-

C. H. Hartley

ordinate the overall sales and promotional efforts of the company's three United States divisions and its Canadian subsidiary, Industrial Electronics of Canada, Ltd.

● Terminal Lugs ● Insulated Terminals • Electronic Hardware ● Handles ● Captive Screws

● Brackets ● Dial Locks ● Spacers Shaft Locks Binding Posts

Completely assembled terminal boards to meet all government specifications.

Immediate delivery from stock or to order on all items.

Write for Catalog T

CITATION PRODUCTS CO.

THERMISTORS

Close

High Quality

For Further Information Write

AMERICAN RADIO CO. INC.

135 Broadway New York 6, N. Y.

NEW PRECISION DYNAMOMETER

For determining the force required to actuate delicate mechanisms.

> Here is a new instrument that has quickly become an indispens-

become an indispensable aid to measure, calibrate and standardize the pressure or power required to actuate fine precision mechanisms and spring tensions of ELECTRIC CONTACTS - RELAYS - CLOCKS - TELEPHONES - BUSINESS MACHINES - MICRO MOTORS for Electric Rezers - WINDSHIELD WIPERS - TIME SWITCHES - ETC. . .

THE DYNAMOMETER IS AVAILABLE IN 2 SIZES WITH OPERATING PRESSURES RANGING FROM 5-15 GRAMS TO 100-1000 GRAMS.

RITE FOR ILLUSTRATED FOLDER

GEORGE SCHERR CO., Inc.

200-TT LAFAYETTE ST. . NEW YORK 12, N.Y. See us at Booth 516-A.S.T.E. Show-April 26 to 20

WIRE WOUND RESISTORS

5 WATT **5 WATT TO 250 WATT** TO 100.000 OHMS

10 WATT ADJUSTABLE FIXED AND ADJUSTABLE

Send for New Catalog

ATLAS RESISTOR CO. DIV. PHILA. ELECTRONICS INC.

24 East Coulter St., Phila. 44, Pa. TE 9-7224

microwave tubes and components

GAS SWITCHING TUBES — Bomac carries the most extensive line of TR, ATR, Pre TR and attenuator tubes available for all frequency bands and power levels.

SHUTTER TUBES — Bomac has introduced a new concept in TR switching, offering continuous crystal protection through wave guide shorting plus TR tube action.

HYDROGEN THYRATRONS — Bomac offers a complete line for use as switch tubes in line type modulators for pulsing magnetrons in radar equipment. Also used for precise triggering at high power levels.

PRESSURIZING WINDOWS — Bomac has windows available for all wave guide sizes, broad band charac-

teristics with low insertion loss, temperature range -55° C to 100 C and 30 lb. sq. in. pressure differential either direction.

SILICON AND GERMANIUM DIODES — Bomac diodes are manufactured to high standards to assure electrical uniformity, high burnout and humidity resistance.

DUPLEXERS — Bomac's line of dual TR tubes can be supplied with hybrids to make a complete duplexer to customer specifications.

MAGNETRONS — Bomac has available tunable and fixed tuned magnetrons with high peak RF powers for pulsed service in the higher frequency bands.

We invite your inquiries regarding

cers sts al nt

ock

ient

ens-:alithe fine

ions 5 -MAtric IME

E IN URES 100-

DER

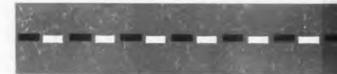
1954

- **ENGINEERING**
- DEVELOPMENT
- PRODUCTION

Bomac Laboratories, Inc.

BEVERLY, MASSACHUSETTS

GAS SWITCHING TUBES DIODES - HYDROGEN THYRATRONS DUPLEXERS - MAGNETRONS MODULATORS


Catalog on request. Write (on your company letterhead) Dept. T•4 BOMAC Laboratories, Inc. Beverly, Mass.

LONGER LIFE

SUPERIOR PERFORMANCE

AT NO EXTRA COST

Built-in features make RCA Receiving Tubes your best buy

The peak performance you get from RCA tubes costs you no more. Andyou can rely on their built-in quality for dependable service. Here's why . . .

RCA works closely with equipment designers-knows firsthand the design objectives of modern receiving tube circuits. RCA makes full use of this knowledge in constantly improving the tube types of interest to you-the equipment manufacturer.

- RCA-6J6 features...

 —pure-tungsten heater for improved
- special cathode material to help maintain tube characteristics throughout

-individual adjustment of each tube mount for increased uniformity of characteristics of each triode unit.

- RCA-6CB6 features... -improved design of Grid-No. 2 for cooler operation and longer life
- special controls on materials and processing for improved uniformity of plate cutoff and for reduced variations in characteristics when heater voltage fluctuates.

- RCA-6AU6 features...
 —double-helical heater for extremely low hum level
- inverted pinched cathode to reduce possible motion of tube elements, thus reducing microphonics.

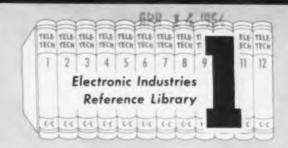
Get the benefits of superior circuit performance. Reduce your factory-line rejects, and "in-warranty" failures. Specify RCA receiving-type tubes. They cost no more-actually cost less in the long run.

For technical information on RCA tubes, write RCA, Commercial Engineering, Section D50Q, Harrison, N. J. Or call your nearest Field Office.

(EAST) Humboldt 5-3900 415 S. Fifth St., Harrison, N. J.

(MIDWEST) Whitehall 4-2900

(WEST) Madison 9-3671 420 S. San Pedro St., Los Angeles 13, Cal.



RADIO CORPORATION of AMERICA ELECTRON TUBES

HARRISON, N.J.

TELE-TECH

& Electronic Industries

CALDWELL-CLEMENTS, INC. * 480 LEXINGTON AVENUE, NEW YORK 17 N.Y. * PLaza 9-7880

A ROSTER OF ASSOCIATIONS IN THE ELECTRONIC INDUSTRIES

the lasting impact of the vacuum tube on modern industry is second only to that of the introduction of the wheel, in its influence on man's welfare. Today, electronic apparatus bisects every industry. Primary and marginal engineering associations are blazing new trails in electronics. This review of important associations in or allied to the electronic industries is another of TELE-TECH's many "Firsts" in subjects of major interest to the field.

- ACOUSTICAL SOCIETY OF AMERICA 1800 Members 57 E. 55th St., New York, N. Y. EL 5-5850 . . . Hallowell Davis, Pres; Wallace Waterfall, Secy . . . Annual Conv. June 23-26; No exhibits . . . Conv. location: Statler Hotel, New York City . . . To disseminate information on the subject of acoustics and to promote practical applications.
- AMERICAN ASSOCIATION OF ENGINEERS 6000 Members 8 S. Michigan Ave., Chicago 3, III. RA 6-9085 . . . P. J. Lucey, Pres; M. E. McIver, Secy . . . Annual Conv. November; No exhibits . . . Conv. location: Undetermined . . . Promote social and economic welfare of the engineering profession and the professional engineer.
- AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS—46,906 Members—33 W. 39th St., New York, N. Y. PE 6-9220 . . . E. B. Robertson, Pres; H. H. Henline, Secy . . . Regional meetings: May 5-7 Van Curler Hotel, Schenectady, N. Y.; June 21-25 Hotel Biltmore, Los Angeles, Calif.; Oct. 5-7 Abraham Lincoln Hotel, Reading, Pa.; Oct. 11-15 Hotel Morrison, Chicago, Ill. Advancement of theory and practice of electrical engineering and of allied arts and sciences.
- AMERICAN PHYSICAL SOCIETY 11,200 Members Columbia University, Broadway & 116th St., New York, N. Y. UN 5-4000 . . . H. A. Bethe, Pres; K. K. Darrow, Secy . . . Annual Conv. January 1955; Exhibits: Undetermined . . . Conv. location: Statler Hotel . . . Advancement and diffusion of the knowledge of physics.
- AMERICAN RADIO RELAY LEAGUE 60,000 Members 38 LaSalle Rd., W. Hartford 7, Conn. Adams 3-6268...G. L. Dosland, Pres; A. L. Budlong, Secy ... Annual Conv. Undetermined ... Association of amateur radio operators.

- AMERICAN SOCIETY FOR QUALITY CONTROL—7,500 Members 70 E. 45th St., New York 17, N. Y. ORegon 9-2784 . . . A. L. Davis, Pres; D. Shainin, Secy . . . Annual Conv. June 9-11; Exhibits . . . Conv. location: St. Louis, Mo. . . . Advancement and diffusion of knowledge of the science of quality control and Its application to industrial processes.
- AMERICAN SOCIETY FOR TESTING MATERIALS—
 10,000 Members 1916 Race St., Philadelphia 3,
 Pa. RI 6-5315 . . . L. C. Beard, Jr., Pres; R. J. Painter,
 Exec. Secy . . . Annual Conv. June 13-18; Exhibits
 . . . Conv. location: Sherman Hotel and Morrison
 Hotel, Chicago, III. . . . To disseminate information
 on engineering materials, standardization of specifications, and methods of testing.
- AMERICAN SOCIETY OF MECHANICAL ENGINEERS—39,133 Members—29 W. 39th St., New York 18, N. Y. PE 6-9220 . . . Dr. L. K. Sillcox, Pres; C. E. Davies, Secy . . . Annual Conv. Nov. 27-31; No exhibits . . . Conv. location: New York City . . . An educational professional body concerned with mechanical engineering and allied arts.
- AMERICAN SOCIETY OF TOOL ENGINEERS 28,000 Members 10700 Puritan Ave., Detroit 38, Mich. UN 4-7300 . . . R. F. Waindle, Pres; H. E. Conrad, Secy . . . Annual Conv. April 26-30; Exhibits . . . Conv. location: Convention Hall, Philadelphia, Penna. . . Dissemination of knowledge of tool engineering.
- AMERICAN STANDARDS ASSOCIATION—2,400 Members—70 E. 45th St., New York 17, N. Y. MU 3-3058 . . . R. E. Gay, Pres; Vice Admiral G. F. Hussey, Jr., (USN Ret.) Secy . . . Annual Conv. Nov. 15-17; No exhibits . . . Conv. location: Hotel Roosevelt, New York . . . To provide an orderly set of voluntary coordinated standards and to promote the knowledge and use thereof.

ires.

ibes.

less

RCA

∃ngi-

N. J.

L. Cul.

electrical components

The American Phenolic Corporation is the world's largest manufacturer of electronic components. These include famed ANs as well as many special types of audio, power and rack and panel connectors.

All Amphenol AN connectors are made to government specifications; under these specifications, however, alternate processes of manufacture are allowed. Where a choice is given, Amphenol has always gone to the highest quality interpretation. Thus many features of Amphenol AN connectors exceed the basic requirements of the specifications and are unique. Gold-plated contacts on all Amphenol AN connectors are the latest example of this quality interpretation.

The many special types of Amphenol connectors have earned a reputation for quality throughout the electronics industry. The unique BLUE Ribbon connectors, Signal Corps power plugs, the miniature 26 series and many other connectors are but a few of the Amphenol special electrical components.

AMERICAN PHENOLIC CORPORATION chicago 50, illinois

TELE-TECH'S ROSTER OF ELECTRONIC INDUSTRIES ASSOCIATIONS

- MERICAN WOMEN IN RADIO AND TELEVISION 900 Members 70 E. 45th St., New York 17, N. Y. MUrray Hill 9-8520 . . . Mrs. Doris Corwith, Pres; Miss Betty Chapin, Secy . . . Annual Conv. April 22-25; No exhibits . . . Conv. location: Muehlebach Hotel, Kansas City, Mo. . . . An organization for interchange of information and for mutual benefit of women engaged in radio and television industries.
- NTENNA MANUFACTURERS ASSOCIATION 12
 Members—c/o Wm. J. Parker Co., 366 Mudison
 Ave., New York, Murray Hill 2-2925 . . . Martin
 Bettan, Pres.; David Laine, Exec. Secy. . . . Annual
 Conv. May 17; Exhibits . . . Conv. location: Conrad
 Hilton Hotel, Chicago, Ill. . . . To solve mutual problems relating to the availability of antenna materials
 and to the distribution of finished products.
- RMED FORCES ELECTRONICS COMMUNICATIONS ASSOCIATION 7,500 Members—1624 Eye St., N. W., Washington 6, D. C. EX 3-3033 . . . Rear Admiral Joseph, Pres.; George P. Dixon Col. (Ret.), Exec. Vice Pres. . . . Annual Conv. May 6-8; No Exhibits . . . Conv. location: Hotel Shoreham, Washington, D. C. . . . A patriotic educational and nonprofit communication and electronic society dedicated to military, scientific and industrial preparedness.

C

IS

T

0

e

S

a

e

S

S

1-

1-

e

e

ıl

6

- ASSOCIATED POLICE COMMUNICATION OFFICERS, INC. 1,650 Members 18108 Strasburg Ave., Detroit 5, Mich. Lakeview 6-4751 . . . Brower McMurphy, Pres.; W. H. Durham, Secy. . . . Annual Conv. Aug. 10-13 Exhibits . . . Conv. location: William Penn Hotel, Pittsburgh, Pa. . . . For the improvement of all forms of police communications and to coordinate efforts over any frequency conflicts.
- ASSOCIATION FOR COMPUTING MACHINERY—1,500 Members 2 E. 63rd St., New York 21, N. Y. TE 2-8665... Samuel Williams, Pres; Dr. E. Bromberg, Secy... Annual Conv. June 23-25; No exhibits... Conv. location: Ann Arbor, Mich... Advancement, design and development of modern mathematical machinery for logic, statistics and kindred fields.
- ASSOCIATION OF ELECTRONIC PARTS AND EQUIP-MENT MFRS 125 Members 11 S. LaSalle St., Suite 1500, Chicago 3, III. Dearborn 2-4217 . . . K. W. Jensen, Chmn; K. C. Prince, Exec. Secy . . . No annual conv. . . . To treat with all problems relating to the sale and distribution of electronic items through electronic distributors.
- SSOCIATION OF FEDERAL COMMUNICATIONS CON-SULTING ENGINEERS—44 Members—1242 Munsey Bldg., Washington 4, D. C. DI 7-8215 . . . F. G. Kear, Pres.; T. A. M. Craven, Secy. . . . Annual Conv. April 30th; No exhibits . . . Conv. location: Atlantic City, N. J. . . . To provide for mutual improvement of consulting engineers before the FCC and to promote the proper application of radio communication regulations emanating from the proper federal agencies.

- AUDIO ENGINEERING SOCIETY—1,505 Members—Box 12, Old Chelsea Station, New York 11, N. Y. OR. 5-7820 . . . Jerry B. Minter, Pres.; C. J. LeBel, Secy. . . . Annual Conv. Oct. 13-16; Exhibits . . . Conv. location: Hotel New Yorker, New York . . . To advance theory and practice of audio engineering and closely related arts.
- ELECTROCHEMICAL SOCIETY 3,141 Members 216 W. 102nd St., New York 25, N. Y. RI 9-0602 . . . M. J. McKay, Pres; Dr. H. B. Linford, Secy . . . Annual conv. May 2-6; No exhibits . . . Conv. location: Chicago, III. . . . Advancement of science and technology of electrochemistry, electronics, electrothermics, electrometallurgy and allied subjects.
- ELECTRONICS MANUFACTURERS ASSOCIATION 25
 Members 598 Madison Ave., New York 2, N. Y.
 MUrray Hill 8-3200 . . . David Wald, Pres; J. W.
 Martindale, Exec. Secy . . . No annual Conv. . . .
 To review and study the labor relations problems of its membership.
- ENGINEERS JOINT COUNCIL—8 Members—29 W. 39 St., New York 18, N. Y. PE 6-9220 . . . Dean Thorn-dike Saville, Pres.; T. A. Marshall Jr., Secy . . . Annual Conv. none . . . To provide information for and assist Governmental activities on professional engineering matters and to advance the science and profession of engineering.
- FEDERAL COMMUNICATIONS BAR ASSOCIATION, 600 Munsey Bldg., Washington, D. C., Sterling 3-1000 . . . V. B. Welch, Pres.; T. H. Wall, Secy . . . Annual Conv. dates undetermined; no exhibits . . . Conv. location: Washington, D. C. . . . To maintain the standards and ethics of lawyers practicing before the FCC.
- HIGH FIDELITY INSTITUTE OF THE ELECTRONICS INDUSTRIES—1 N. LaSalle, Chicago 2, Ill. J. J. Kahn, Commissioner . . . Annual Conv. May 15; No exhibits . . . Conv. location: Chicago, Ill. . . . To dispel public confusion on "high fidelity" and to promote buyer confidence in high fidelity equipment.
- INSTITUTE OF RADIO ENGINEERS 37,134 Members 1 E. 79th St., New York 21, N. Y. RE 7-9600 . . . W. R. Hewlett, Pres; G. W. Bailey, Exec. Secy . . . Annual Conv. March 22-25; Exhibits . . . Conv. location: Waldorf-Astoria Hotel and Kingsbridge Armory . . . To advance the art and science of radio communication and to promote professional welfare of engineers engaged therein.
- INSTITUTE OF THE AERONAUTICAL SCIENCES—12,000 Members 2 E. 64th St., New York 21, N. Y. TE 8-3800 . . . J. L. Atwood, Pres; R. R. Dexter, Secy . . . Annual Conv. Jan. 1955; No exhibits . . . Conv. location: Hotel Astor, New York . . . To facilitate the interchange of technical information relating to the engineering design and development of airborne craft

RADIO FREQUENCY cables and connectors...

Amphenol RF connectors and cables are available in a wide variety of types for every RF application. Skilled workers using the most modern equipment assure the complete quality of every Amphenol RF component.

There are over 250 types and sizes of RF connectors now made by Amphenol. Series include BNC, BN, N, HN, C. LC, Push-on, UHF, adapters and splices. The selection of an RF connector from the Amphenol catalogs is your best guarantee of low RF loss, perfect match and never-failing continuity.

In addition to a complete line of RG coaxial cables. Amphenol has many new cables suited to practically every special application. New ALJAK, Miniature, Noise-free and Tri-axial are all recently developed cables that will prove of value to the electronics industry. Material used in all cable is the finest.

Request currently issued bulletins on RF connectors and cables.

AMERICAN PHENOLIC CORPORATION chicago 50, illinois

more MPHENOD information on pages 6 & 8

TELE-TECH'S ROSTER OF ELECTRONIC INDUSTRIES ASSOCIATIONS

- NSTRUMENT SOCIETY OF AMERICA 7,500 Members 1319 Allegheny Ave., Pittsburgh, Pa. Cedar 15621 . . . W. A. Wildhack, Pres; P. V. Jones, Jr., Secy . . . Annual Conv. Sept. 13-24; Exhibits . . . Conv. location: Undetermined . . . Advancement of theory, design, manufacture and use of instruments in various sciences.
- OINT COMMITTEE ON EDUCATION TELEVISION—
 1785 Massachusetts Ave., N.W., Washington 6, D.C.
 Hudson 3-6620 ... Ralph Steetle, Exec. Director;
 Blanche Crippen, Asst. Director ... No convention
 ... To present the case for educational television to the FCC in the Interests of seven educational organizations.
- OINT ELECTRON TUBE ENG'G COUNCIL OF RETMA AND NEMA 6 Council Members 500 5th Ave., New York, N. Y. LO 5-3450 . . . V. M. Graham, Chmn; F. J. Martin, Secy . . . Conference: Sept. 16-18; No exhibits . . . Conference location: Chalfonte Haddon Hall, Atlantic City, N. J. . . . To develop standards, proposals, and data dealing with electron tubes and allied sealed devices.
- JOINT TECHNICAL ADVISORY COMMITTEE 8 Members 1 E. 79th St., New York 21, N. Y. RE 7-9600 . . . A. V. Loughren, Chmn; L. G. Cumming, Secy . . . Annual Conv. April 22; Conv. location: Undetermined . . . To assist the Federal Government on electronic engineering matters impartially and on an engineering basis.
- MAGNETIC RECORDING INDUSTRY ASSOCIATION 25 Members Room 1011, 444 Madison Ave., New York 22, N. Y. PLaza 3-0973 . . . J. F. Hards, Fres; Herman Kornbrodt, Secy . . Annual Conv. May 1954; No exhibits . . . Conv. location: Conrad Hilton Hotel, Chicago, Ill. . . . To further the uses of magnetic recording and to bring about a better understanding among the dealers, distributors and manufacturers in the industry.
- NATIONAL ALLIANCE OF TV & ELECTRONIC SERVICE ASSNS.—36 Members—5908 S. Troy Ave., Chicago 29, III. Grovehill 6-6363 . . . F. J. Moch, Pres.; J. B. McDowell, Secy. . . . Annual Conv. Sept. 24-26; Exhibits . . . Conv. location: Morrison Hotel, Chicago, III. . . . To unite ethical local and regional associations into a national organization working cooperatively for the best interest of independent service.
- NATIONAL APPLIANCE AND RADIO-TV DEALERS AS-SOCIATION — 1141 Merchandise Mart, Chicago 54, III. Michigan 2-5505... Vergal Bourland, Pres; A. W. Bernsohn, Managing Dir..., Annual Conv. Jan. 1955; No exhibits... Conv. location: Chicago, III... Promote and establish high ideals in the merchandising of appliances, radios and television.

- NATIONAL ASSOCIATION OF ELECTRICAL DISTRIBUTORS 1,100 Members 290 Madison Ave., New York 17, N. Y. MUrray Hill 6-4633 . . R. M. Johannesen, Pres; C. G. Pyle, Exec. Dir. . . Annual Conv. June 6-11; No exhibits . . Conv. location: Convention Hall, Atlantic City, N. J. . . To disseminate information on industry matters and to promote beneficial relationships among electrical distributors
- NATIONAL ASSOCIATION OF MUSIC MERCHANTS—
 1,500 Members 28 E. Jackson Blvd., Chicago 4,
 Ill. Harrison 7-2150...R. B. Wells, Pres; W. R. Gard,
 Exec. Secy... Annual Conv. July 12-15; Exhibits
 ... Conv. location: Palmer House, Chicago, Ill....
 For the mutual advancement of individuals and organizations selling at retail, musical instruments,
 radios, television, phonographs and kindred articles.
- NATIONAL ASSOCIATION OF RADIO AND TELEVISION BROADCASTERS 1,803 Members 1771 N St., N.W., Washington 6, D. C. Decatur 2-9300 . . . H. E. Fellows, Pres; C. E. Arney, Jr., Secy . . . Annual conv. May 23-28; Exhibits . . . Conv. location: Palmer House, Chicago, Ill. . . . Advancement of aural and visual broadcasting arts.
- NATIONAL AUDIO-VISUAL ASSOCIATION—400 Members 2540 Eastwood Ave., Evanston, III. Davis 8-3376... Don White, Exec. Vice Pres... Annual Conv. Aug. 1-4; Exhlbits... Conv. location; Conrad Hilton, Chicago, III... Trade assocation of audio-visual dealers.
- NATIONAL CITIZENS COMMITTEE FOR EDUCATIONAL TELEVISION—20 Members—1200 18th St., Washington, D. C. Metropolitan 8-2526 . . . R. R. Mullen, Exec. Director . . . No annual convention . . . To aid civic and citizen groups in construction and operation of non-commercial educational television stations.
- NATIONAL COMMUNITY TELEVISION ASSOCIATION—82 Members P. O. Box 71, Palmerton, Pa. 6435 . . . M. F. Malarkey, Jr., Pres; C.-E. Reinhard, Secy . . . Annual Conv. June 14-16; Exhibits . . Conv. location: Park Sheraton Hotel, New York . . . To standardize community TV antenna system operations
- NATIONAL CONFERENCE ON AIRBORNE ELECTRONICS, Wright Patterson Air Force Base, Dayton, Ohio . . . R. J. Doran, Pres.; Monroe Baran, Secy. . . . Annual Conv. May 10-12; Exhibits . . . Conv. location: Dayton, Ohio . . . To disseminate regularly the latest technological developments in electronic equipment for aircraft.
- NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION—547 Members—155 E. 44th St., New York 17, N. Y. Murray Hill 2-1500 . . . J. H. Jewell, Vice Pres; W. J. Donald, Managing Dir. . . . Annual Conv.

the 165 series

These new connectors are miniature AN-types and are available in two sizes and six contact configurations. The 165 series is a totally new development and may be obtained only from Amphenol. . . . Write for 165 series bulletin.

wik microphone connectors

New QWIKs are the most efficient and beautiful microphone connectors available. Bullet-like shape and fine materials combine to make QWIKs the pre-eminent connector choice for every audio application. OWIKs have gold-plated contacts and utilize 1-501 blue dielectric; available with 3 or 4 contacts.

blue Ribbon connectors

Famous Amphenol BLUE Ribbon connectors now have entirely new hardware fittings as well as improved barrier polarization. Keyed shells and latchlock cans are available for the entire BLUE Ribbon

Proved BLUE Ribbon connectors provide fastest connect and dis-connect of electronic sub-assemblies where visual alignment is not possible.

AMERICAN PHENOLIC CORPORATION

chicago 50, illinois

TELE-TECH'S ROSTER OF ELECTRONIC INDUSTRIES ASSOCIATIONS

Nov. 8-12; No exhibits . . . Conv. location: Haddon Hall Hotel, Atlantic City, N. J. . . To disseminate technical and sales information and to develop industry standards.

- ATIONAL ELECTRONIC DISTRIBUTORS ASSOCIATION 375 Members 228 N. LaSalle St., Chicago 1, III. Financial 6-5570 . . . D. W. Mack, Pres; L. B. Calameras, Exec. Vice Pres. . . . No annual convention . . . The dissemination of information concerning the electronics industry of interest to the distributors of radio, television and industrial electronic equipment.
- ATIONAL ELECTRONICS CONFERENCE 84 E. Randolph, Chicago 1, III. FR 2-1211 . . . Dr. R. M. Soria, Pres; G. I. Cohn, Secy . . . Annual Conv. Oct. 4-6; Exhibits . . . Conv. location: Hotel Sherman, Chicago, III. . . . A national forum on electronic research, development and application.
- HATIONAL SOCIETY OF PROFESSIONAL ENGINEERS

 32,000 Members 1121 15th St., N.W., Washington 5, D. C. Adams 4-1622 . . . T. C. Forrest, Jr., Pres; P. H. Robbins, Exec. Director . . . Annual Conv. June 10-12; Exhibits . . . Conv. location: Milwaukee, Wisc. . . . For the advancement of public welfare and promotion of professional, social and economic interests of the Professional Engineer.
- PHONOGRAPH MANUFACTURERS ASSOCIATION—
 14 members 277 Broadway, New York 7, N. Y.
 RE 2-6980 . . . Joseph Dworken, Pres; A. D. Adams,
 Secy . . . No annual convention . . . Advancement
 of quality manufacturing procedures and operation
 of phonograph reproduction equipment.
- RADIO CLUB OF AMERICA—340 Members—11 W. 42 St., New York 36, N., Y. LOngacre 5-6622 . . . F. H. Shepard Jr., Pres.; O. James Morelock, Secy. . . . Annual Dinner December 3. Location: undetermined . . . To interchange ideas among all radio enthusiasts.
- MADAR-RADIO INDUSTRIES OF CHICAGO, INC. 61 Members—1 N. LaSalle St., Chicago 2, Ill. CE 6-0077 . . . L. F. Muter, Pres.; S. I. Neiman, Exec. Secy. . . . Annual Conv. none . . . A liaison organization with government agencies for Chicago electronic equipment manufacturers.
- ADIO ELECTRONICS TELEVISION MANUFACTURERS ASSOCIATION 372 Members 777 14th St., N.W., Washington 5, D. C. National 8-3902 . . . Glen McDaniel, Pres; J. D. Secrest, Secy . . . Annual Conv. June 15-17; No exhibits . . . Conv. location: Palmer House, Chicago, Ill. . . . Non-profit trade association of the radio-electronics-television industry.
- ADIO PIONEERS 900 Members 580 5th Ave., New York 36, N. Y. PLaza 7-1800 . . . P. W. Morency, Pres; John Patt, Vice Pres. . . . Annual Conv. May 26; No exhibits . . . Conv. location: Palmer House,

Chicago, III. . . . A fraternal and educational society in radio and television.

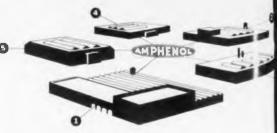
- RADIO AND TELEVISION EXECUTIVES SOCIETY—1,000 Members 420 Lexington Ave., New York 17, N. Y. LE 2-3988...G. T. Shupert, Pres; Elizabeth Clarkson, Exec. Secy... Annual Meeting May 12; No exhibits... Meeting location: New York City... A fraternity of persons professionally interested in radio and television broadcasting and allied fields.
- RECORD INDUSTRY ASSOCIATION OF AMERICA 50 Members 1 E. 57th St., New York 22, N. Y. MUrray Hill 8-3778 . . . J. B. Conkling, Pres; J. W. Griffin, Exec. Secy . . . No annual convention . . . To disseminate information to the industry and to promote beneficial relations among interested persons such as authors, artists, dealers, distributors, etc.
- REPRESENTATIVES OF ELECTRONICS PRODUCTS MAN-UFACTURERS — 640 Members — 600 S. Michigan Ave., Chicago 5, III. Harrison 7-2402 . . . Russ Diethert, Pres; Elvera Bendt, Secy . . . Annual meeting of national delegates: March 23; No exhibits . . . Conv. location: Waldorf-Astoria Hotel, New York . . . Independent sale representatives for electronic product manutacturers, subscribing to a National Creed of Sales Ethics.
- SCIENTIFIC APPARATUS MAKERS ASSOCIATION—208
 Members 20 N. Wacker Drive, Chicago 6, Ill.
 State 2-0277 . . . E. J. Albert, Pres; Kenneth Andersen, Exec. Vice Pres. . . . Annual Meeting: May 2-7;
 No exhibits . . . Conv. location: Broadmoor, Colorado Springs, Colo. . . . An association of companies manufacturing and distributing laboratory and industrial instruments, apparatus and supplies.
- SOCIETY OF MOTION PICTURE AND TELEVISION ENGINEERS 4,600 Members 40 W. 40th St., New York 18, N. Y. LO 5-0172 . . . Herbert Barnett, Pres: Boyce Nemec, Secy . . . Annual Conv. May 3-7; No exhibits . . . Conv. location. Washington, D. C. . . . Advancement of theory and practice of engineering in motion pictures, television and allied arts and sciences.
- ULTRA HIGH FREQUENCY TV ASSOCIATION 400
 DeSales Bldg., Washington 6, D. C. NAtional 8-0032
 —Lou Poller, Pres.; W. A. Roberts, General Counsel
 . . . Annual Conv. Feb. 1, 1955, exhibits undecided;
 Conv. location: Washington, D. C. To promote
 and foster use of ultra high frequencies for television
 broadcasts.
- WEST COAST ELECTRONIC MANUFACTURERS ASSO-CIATION — 172 Members — 370 Fair Oaks Ave., Pasadena 1, Calif. . . . E. Gertsch, Pres.; G. Yarbrough, Secy. . . . Annual Conv. August 25-27 at WESCON, Pan-Pacific Auditorium, Los Angeles; Exhibits . . . To advance electronic industries in the west.

it

T

at AMPHENOL engineering skill, production know-how build better components

Five modern plants, highly skilled employees and, above all, engineering imagination have made Amphenol the world's foremost producer of quality electronic components.


In every field of electronics you will find that Amphenol components are preferred because of the insistence on quality through every step of component designing and production. Every employee is deeply conscious of this heritage of quality and for over twenty years each has added his contribution to the constantly developing reputation of the Amphenol component.

Amphenol Cataloging

General Catalog B-3

In your copy of the Amphenol General Catalog B-3 you will find a complete cross-section of the over \$11,000 components now being produced by Amphenol. Also listed are the various special catalogs and product literature which may prove of value to you for particular electronic applications.

AMERICAN PHENOLIC CORPORATION

chicago 50, illinois