ELECTRONIC industries

More Than 50,000 Will Attend The

47th Annual IRE National Convention, March 23-26
For An Exclusive Comprehensive Analysis Of
His Work, Family, Hobbies, Pay, Possessions, etc.

See page 108

See page 25I

March • 1959

High Performance Ceramic Capacitors

DISCAPS

tYPE C

Type C DISCAPS meet or exceed the specifications RS-198 of the E.I.A. Small size and lower self-inductance make them ideal for many applications. Rated at 1000 working volts, Type C DISCAPS have a higher safety factor than other standard ceramic or mica capacitors.

Also available in Fin-Lock leads.

TYPE B

These DISCAPS are designed for by-passing, coupling or filtering applications and meet all specifications of the E.I.A. for type Z5U capacitors. Rated at 1000 V.D.C.W., Type B DISCAPS are available in capacities from .00015 to .04 M.F.D.

Also available in Fin-Lock leads.

TYPE JF

Type JF DISCAPS have a frequency stability characteristic superior to similar types. These capacitors extend the available capacity range of the E.I.A. Z5F type between $+10^{\circ}$ and $+85^{\circ} \mathrm{C}$ and meet Y 5 S specifications between -30° and $+85^{\circ} \mathrm{C}$.

Also available in Fin-Lock leads.

TYPE JL

For exceptional stability over an extended temperature range, Type JF DISCAPS should be specified. They provide a minimum capacity change as temperature varies between -55° and $+110^{\circ} \mathrm{C}$. Standard working voltage is 1000 V.D.C.

Also available in Fin-Lock leads.

See Booth 2216 at IRE Show

ROBERTE. McKENNA, Publisher - BERNARD F. OSBAHR, Editor

> Surprised and Pleased

Todays' Engineer

It's nearly time again for Electronic Industries most outstanding annual event. The 47th National IRE Convention takes place at the New York Coliseum and the Waldorf-Astoria Hotel, March 23-26. Traditionally, we devote a considerable portion of each year's March issue to a review of the technical sessions and to the exhibits planned for this event. This year the convention report starts on page 108.

More than a decade of experience in reporting this occasion served to provide us with very reliable tools for estimating each year's editorial requirements . . at least so we thought. We were very much surprised at the
business reports for this year, however. An unexpected increase in volume makes this year's issue some 66 pages larger than last year. This in turn has enabled us to add quite a number of timely editorial pages in this issue. For this we are more than pleased. . . . We now have an opportunity to provide even more in the way of editorial features that we hope will benefit you, our reader. All in all, this "IRE" issue of Electronic Industries is the largest one ever produced since the publication was founded in 1942 as Electronic Industries! From all of us, thanks again for this wonderful vote of confidence.

In the December 1958 editorial "Today's Electronic Engineer" we summarized the results of a survey that ElecTRONIC INDUSTRIES conducted during the fourth quarter. This was a mail survey to EI readers to determine more of the personal characteristics of today's engineer. In the conclusion it was mentioned that the questionnaire data had been transcribed onto IBM cards. These

IBM cards, properly manipulated, can be made to reveal most interesting and significant data. We have performed such a breakdown by age groups and by the regions where engineers are located. Our 11-page report begins on page 251 . We hope you find this to be as interesting and as informative as we have!

Some of you have noticed our new editorial monthly feature "Problem Clinic." But for those who haven't, we should like to call your especial attention to it. In the past many readers have written to us about particularly vexing technical problems that have confronted them. Our readers service department and our editorial staff has been able to provide solutions to a great many of these. Some of them, however, seem to have no known answers.

The purpose of the "Problem Clinic"
is to take such problems to as many professional engineers as possible. It is our hope that at least one of our readers has previously solved this or a similar problem. Or perhaps one of our readers will be able to suggest a solution to this unknown.

At any rate, so far "Problem Clinic" has averaged six suggested solutions per problem and the number of "new" problems coming in has about doubled. As another EI reader service, we'd be glad to assist you with any technical problems you may have!

ROBERT E. McKENNA; Publisher BERNARD F. OSBAHR, Editor

CREIGHTON M. MARCOTT

 Managing Editor RICHARD G. STRANIX JOHN E. HICKEY, Jr. Associate Editors CHRISTOPHER CELENT Assistant Editor DR. ALBERT F. MURRAY Contributing Editor ROLAND C. DAVIES Washington News MARIE T. McBRIDE Directory Editor ELMER KETTERER Art EditorCHARLES F. DREYER Cover Designer
EDITORIAL CORRESPONDENTS
Washington-1093 National Press Bldg. GEORGE BAKER
RAY M. STROUPE N. R. REGEIMBAL

San Francisco-1355 Market Street
EUGENE R. TARNOWSKY
BUSINESS DEPARTMENT
WALTER M. DeCEW Promotion Manager ELMER DALTON Circulation Manager GORDON HERNDON Production Manager
REGIONAL SALES MANAGERS
Philadelphia Office-
56th \& Chestnut Sts.
SH $8-2000$
JOSEPH DRUCKER
New York Office-100 East 42nd 5 t. Phone OXford 7.3400 GERALD B. PELISIER (Metropolitan N. Y.) MENARD DOSWELL III
Now England Now England
RAndolph 6-2166 GEORGE H. FELT
Cleveland Office-930 Keith Bidg. SUperior 1-2860
Los Angeles- 198 S. Alvarado St.
DUnkirk 7-4337
B. WESLEY OLSON

San Francisco Office- 1355 Market 5 S.
DON MAY
Atlanta 3, Ga.-
911 William-Oliver Bidg.
JAckson 3.6791
JOHN W. SANGSTON
Dallas-Meadows Bldg., Expressway Merson 8 -4751
HAROLD E. MOTT
London, WI-4 Old Burlington St.
D. A. Goodall Ltd.

GErard $8517 / 8 / 9$
JOS. C. HILDRETH, Board Chairman G. C. BUZBY, President

Vice Presidents: P. M. Fahrendorf. Leonard V . Rowlands, George T. William Hobert E. McKenna; Treasurer, Wlair Moffett: Directors: Marry, John Blair Moffett; Directors: Maurice E. Cox, Frank P. Tighe Everit B, TerJohnt C. Hildreth Jr, Chase. Jr., Heinle, John H. Kofron Warles A. S. lember of the Editorial Woshir Member of the Editorial Board, Paul Wooton
Comptroller. Stanley Appleby.

ELECTRONIC INDUSTRIES, March, 1959

 8, No. 3, A monthly B, No. 3. A monthly publication of Chilton offices of Chectnut \& 56 therial \& Advertising offices at Chestnut \& 56 th Sts., Phila. $39, \mathrm{~Pa}$. Accepted as controlled circulation oublication at Phila., Pa. 75e a copy; Directory issue (June), $\$ 3.00$ a copy. Subscription rates U. S. and U. S. Possessions: 1 yr. $\$ 5.00 ; 2$ yrs. $\$ 8.00$. Canada 1 year, $\$ 7.00 ; 2$ yrs. $\$ 11.00$. All other countries 1 yr. $\$ 18.00 ; 2$ yrs. $\$ 30.00$. Copyright 1959 by Chilton Company. Title Reg. U. S. Pat. Off. Reproduction or reprinting prohibited except by written authorization.
ELECTRONIC INDUSTRIES

Vol. 18, No. 3

March, 1959

MONTHLY NEWS ROUND-UP

Radarscope: What's Ahead for the Electronic Industries 4
As We Go To Press 7
TOTALS: Late Marketing Statistics 19
Snapshots . . . of the Electronic Industries 22
Coming Events 9
Elecfronic Industries' News Briefs. 21
Infernational News 15
Electronic Shorts 10
Washingłon News Lełfer 119
Next Month In Electronic Industries 75
Editorial: Surprised \& Pleased; Today's Engineer 1
Interference from the lonosphere 77
M. L. Shopiro
Exploiting Other Communications Media 79
J. L. Ryerson
How to Measure Wide Band Impedance 87
K. A. Simons
Increasing the Input Impedance 85
A. D. Evons
Problem Clinic 92
Engineer's Notebook: Locating the Operating Point of a Triode 93
M. Martin \& A. E. Richmand
Communicating in Space (Part 21 94
Dr. L. P. Yeh
What's New 100
Radiation Shielded Thermometer Design 102
J. D. Humphreys
Standardizing "Stereo" Broadcasting \& Recording 106
I.R.E. Show Features Space Theme 108
1959 Transistor Interchangeability Chart 143
I.R.E. Technical Papers Program 222
Professional Opporfunities 249
"Today's Electronic Engineer" 251
International Electronic Sources 131
NEW PRODUCTS \& TECH DATA
New Tech Dafa for Engineers 212
New Products 120
I.R.E. New Products. 111
DEPARTMENTS
Personals 72
Lełters 60
Books 50

I

 Highlights

 Highlights
 Of This Issue

"Today's Electronic Engineer"

page 251
Some six months ago El set out to learn just as much as possible about the average electronic engineer. Thousands of questionnaires went out to engineers in all parts of the country. The whole range of engineers was included: jr. engineers, project engineers, senior engineers, vicepresidents for engineering. And the questions we asked were searchingly personal, such as:

- What is your income today?
- What was your income 5 years ago?
- How much life insurance do you have?
- How much is your house worth?
- What is the worth of your liquid assets?
- How many firms have you worked for?
- Does your firm have a pension plan?
- How many cars do you own?
- What are your future plans?
- How many children do you have?

Amazingly enough, more than half of the engineers that we questionnaired sent in their answers. Here is a summary of what they reported.

Industry's First Transistor Interchangeability Chart!

page 143
'Interchangeability" has been looked to for many years in the transistor industry but until now only scattered attempts have been made on the part of individual manufacturers to make interchangeability information available to engineers. Here for the first time is comprehensive all-industry cross-referencing of transistors and their nearest equivalents. All the major transistor manufacturers have cooperated with El in this project. It is the first time that such unanimous cooperation has been obtained. The information includes not only data on interchangeability but also dimension drawings as well, so that both electrical and physical interchangeability can be checked.

Ionospheric Interference

page 77
Where directional antennas are pointed skyward two main sources of interference are encountered that are propagated by the ionosphere. First is where static interference and man-made signals enter the radar beam; and second, where transmitted power is scattered back along the path. These difficulties can be minimized through proper design.

Other Communications Media!

page 79
Radio communications has distinct disadvantages, to the military's thinking. Frequency space is limited, it is easily jammed, and much too unreliable. To overcome these drawbacks the USAF is investigating the properties of low frequency radio, sound, light, heat and nuclear radiation as means of communication.

1959 National IRE Convention!
page 108
"Space" will be the featured theme of this year's IRE Show meeting at the New York Coliseum, March 23-26. Highlight will be a panel discussion by 10 distinguished authorities on the various aspects of space travel and communication. Over 850 exhibitors will be displaying products for the expected 55,000 engineers and show visitors.

Today's Electronic Engineer

Transistor Interchangeability Chart

Ionospheric Interference

Other Communications Media
1959 National IRE Convention

RADARSCOPE

READ-OUT LAMP

This 14-segment electroluminescent readout lamp - termed an Alpha lamp by Westinghouse - can display all letters of the alphabet, numerals 0 through 9 and symbols. Characters are formed by applying 240 -volt or 460 -volt ac signal to the proper terminals.

SMALL ELECTRONIC FIRMS are showing an increasing tendency to form cooperative pools to strengthen their position in bidding for government contracts. The Small Business Administration is lending its assistance in the formation of these pools and formally approves the pools' proposed operations. Five pools have now been set up. The latest, Electrodyne Industries came into existence last month. It was formed by 4 Long Island firms, HoldenMassey Corp., Republic Electronic Industries Corp., Microtran Co., Inc., and Paromal Products Inc. The pool will seek government contracts for radio transmitting and receiving and radio navigation equipment, radar and radiac equipment, guided missile assembly and instrumentation.
"NUCLEAR POWER is not the panacea for the world's future energy needs," says W. Kennetin Davis, former Director of Reactor Developments of the USAEC. He says, "At most we can anticipate only about 25% of our total energy requirements coming from nuclear power even after it is fully developed and economically competitive." This is still quite a substantial contribution, for the consumption is expected to just about quadruple by 2000 A.D. "Methods of storing thermo or electrical energy for use in mobile applications and many specialized uses should be developed and will becoms of increasing importance in future decades," he says.

CLOSED CIRCUIT COLOR TV has important implications for department store use. With wide screen projectors, such as the newly introduced CIBA "Fidophor" units, the stores have an important tool for window displays and store front merchandising.

VACUUM TUBE PROSPECTS continue to look up, despite the various obituaries being written for the industry. Sales volume last year reached about $\$ 800$ million despite the first half recession. A total of $\$ 866$ million for 1959 is now estimated by at least one major manufacturer.
"TIME REVERSAL TECHNIQUES" are based on a theory that signals transmitted over long distances, if reversed in their direction of flow midway between the transmitter and receiver, will retain their fidelity over the entire transmission route. Case Institute of Technology last month was issued a contract from Rome ADC to investigate whether this theory has applications to the transmission of digital data. The research will be carried on over a transmission line 700 miles long. Among the applications foreseen is the transmission of digital information to a satellite for rebroadcast back to earth.

EXPERIMENTAL SEARCH RADAR

Lincoln Lab of M.I.T. has just completed construction of this new high-power experimental search radar on Boston Hill in North Andover, Mass. Though it weighs more than 50 tons, it can be rotated at 5 rpm in winds of 60 mph and still maintain accuracy of less than 0.1°.

COST-PLUS POLICY of the government is getting some second thoughts. Pentagon purchasing agents, in certain cases are offering extra profits to defense contractors for contributions toward improved performance, earlier delivery, or lower cost. They figure that each extra dollar profit is more than offset by the savings in other costs. The Defense Dept. is caught in a pinch, between the demands for economy on one side and the skyrocketing costs of modern weapons system on the other. Somehow new methods must be derived to cut costs, or provide improved performance for the same costs. The logical party to make these improvements is the contractor. The only thing needed is incentive, and the most logical incentive is added profits.

AN EXPECTED BOOM in FM car radios could give a shot in the arm to FM station operation. Certain advertisers have found that for certain products and services, FM is already more economical in cost per thousand than AM radios. FM is acquiring a reputation for audiences of "taste and discrimination," which is attractive to certain advertisers.

THE RECESSION had little effect on the semiconductor business last year. Sales of transistors, rectifiers, and diodes reached a new record high of $\$ 195$ million, an increase of 35% over 1957. Industry spokesmen are estimating a further growth of 30% in 1959 and a gross business in excess of $\$ 250$ million. H. B. Fancher, General Manager of GE's Semiconductor Products Dept. sees the largest growth in the rectifier area. "Sales of semiconductor rectifiers," he says, "can be expected to increase by 50% from the 1958 level of 33 million, to around $\$ 50$ million." However he estimates that the largest dollar increase will be in transistors, which will be twice as large as that for rectifiers.

ENGINEERING

IF SPACE ENGINEERING is to acquire the momentum typical of American competitive industry, something will have to be done about the patent situation. So long as the Government retains the controls in the Space Acts, there is hardly sufficient incentive for the bulk of the industry to get excited over the space age possibilities. It is easy to demand relaxation of the Government's control, but obviously the requirement of military security must also be recognized. Just how much relaxation can be reasonably expected was discussed last month by 130 members of the National Association of Manufacturers' Patents Committee in a meeting in Washington. Sitting in on the discussions for the Government was Commissioner of Patents, Robert C. Watson. A long range plan is now being drafted.

PRODUCTION

PRE-PRODUCTION COSTS have been significantly reduced at Westinghouse's Air Arm Div. in Baltimore through a system they tab MMI (Mechanized Manufacturing Information). The new system, designed around semi-automatic and automatic business machines, significantly compresses the time involved in getting new military developments from drawings into actual weapons systems. Company spokesmen estimate, "The new technique will save approximately a half a million dollars in the Air Arm Division's measurable 'paper work' processing costs by 1962." Under MMI, the basic information is placed on perforated paper tape immediately after engineering drawings and specifications are issued. From this point on, data needed by each of the many departments involved in the manufacturing process are issued simultaneously on either tape or punched cards so that purchasing can begin to acquire materials while manufacturing is preparing to process the materials when they arrive. A time study showed that where 4 to 10 weeks were required under the old system, MMI has reduced the work to from 2 to 5 weeks. Westinghouse spokesmen feel that the new system will have far reaching effects throughout the entire defense products industry.

MISSILE RESEARCH

New hypervelocity instrumentation for missile and space vehicle research has been developed by Avco Research and Advanced Development Div. This shadowgraph system employs a catadioptric light screen that detects the presence of a projectile breaking the beam.

SPRAGUE RELIABILITY in these two dependable wirewound resistors

Bine: Yachet

Sprague's new improved construction gives even greater reliability and higher wattage ratings to famous Blue Jacket miniature axial lead resistors.

A look at the small actual sizes illustrated, emphasizes how ideal they are for use in miniature electronic equipment with either conventional wiring or printed wiring boards.

Get complete data on these dependable minified resistors, write for Engineering Bulletin 7410.
TAB-TYPE BLUE JACKETS: For industrial applications, a wide selection of wattage ratings from 5 to 218 watts are available in Sprague's famous TabType Blue Jacket close-tolerance, power-type wirewound resistors. Ideal for use in radio transmitters, electronic and industrial equipment, etc. For complete data, send for Enginecring Bulletin 7400A.

INSULATED-SHELL POWER RESISTORS

New Koolohm construction features include welded leads and winding terminations-Ceron ceramicinsulated resistance wire, wound on special ceramic core-multi-layer non-inductive windings or high resistance value conventional windings-sealed, insulated, non-porous ceramic outer shells-aged-onload to stabilize resistance value.

You can depend upon them to carry maximum rated load for any given physical size.

Send for Engineering Bulletin 7300 for complete technical data.

SPRAGUE ELECTRIC COMPANY

233 MARSHALL STREET • NORTH ADAMS, MASS.

As We Go To Press

TUBE CHECKER DELUXE

Up to 2,500 electron tubes per hour are checked by this new testing machine at RCA Electron Tube Div., Harrison, N. I.

Gravity Measurements Can Be Made From Air

A major technological breakthrough in geophysics by taking the first successful measurements of gravity from an aircraft was announced by the Air Research and Development Command.

The flight tests signify a giant step forward in gaining basic knowledge of our planet, said Dr. Lloyd Thompson of the Geophysics Research Directorate, Air Force Cambridge Research Center, Bedford, Mass. "This opens a whole new field of geodetic, gravity and geophysical applications," he said.

Previously, it had been thought impossible to measure gravity from the air. Scientists charting the earth's gravity field were restricted to tedious, time-consuming measurements on land or sea urvolving many variable factors.

Airborne gravity measurements will give rapid answers to many geodetic survey questions. For example, map-makers will be able to precisely locate islands, measure exact distances between continents and accurately plot the entire world. Also, the exact center of the earth can be located.

Call For WESCON Papers

Engineers who wish to present papers at the 1959 WESCON should send $100-200$ word abstracts, with complete texts or detailed summaries, to Dr. K. R. Spangenberg, WESCON, 60 W. 41st Avenue, San Mateo, Calif.

Political Pressure Kills Booster Ruling

The FCC's plans to kill off operation of illegal TV 1 ooster stations by March 30 have foundered under a barrage of complaints from Congress.

An FCC letter of Dec. 31 stated that all VHF boosters-channel repeaters or VHF-VHF translatorsmust convert to UHF translator systems by the March date. Approximately 1,500 stations would be affected.

With the long-delayed ruling finally announced Congress suddenly erupted with a flurry of bills to legalize booster operation. Faced with mounting opposition the FCC hurriedly reconsidered, voted to give operators 6 months, rather than 90 days, to suspend booster operation.

The commission announced that it needs to "give further study to the legal and technical aspects of the situation."

CORROSION MEASUREMENTS

Differences of as little as 1 -millionth of an inch in the internal corrosion in a pipe or tank are detected by this new measuring instrument by Crest Instr. Co. div. of Magna Products Co.

Missiles Guided By
 Photos of Terrain

By combining radar and aerial mapping the Air Force has come up with an electronic guidance system that controls not only the direction of an aircraft's flight but also its altitude.

The system can be programmed to ascend over mountain peaks or to skim at low levels over coastal plains.

The ATRAN guidance system, developed by Goodyear Aircraft Corp. for the Mace weapon system, gets no direction after the launching. The aircraft is controlled through comparison of the radar image returned from the ground with actual aerial photos. For use with the equipment the aerial photos are translated into synthetic film.

Since topographical maps exist for most of the world, the film can be quickly made for any desired course, enabling a missile or an airplane to be electronically guided almost anywhere.

Electronic Support Systems to Rome AMA

The Air Materiel Command is tightening up the management of Electronic Support Systems. The first move as made last month in setting up a new unit, Detachment 1. Rome Air Materiel Area, located at Wright-Patterson AFB.

The Support Systems are used in gathering intelligence data, in air defense and strategic bombing, controlling air traffic and in longrange weather forecasting.

Rome AMA now becomes responsible for procurement and production for a number of Support systems necessary for communication and control networks, and for air defense.

AMC is also establishing a new office to handle liaison with the farflung radar picket lines, BMEWS, DEW Line, SAGE and White Alice, and the Air Defense Systems Integration Division (ADSID). The new office comes under the Directorate of Procurement and Production.

More News on Page 9

Want a billion-position switch?

Magnetic amplifier manufacturers turn to Orthonol ${ }^{\circledR}$ tape cores for precise proportioning control or switching action

Orthonol is a switching material that can be turned all the way on-or part way on-with vast precision.
The rectangular B-H loop of the 50% nickel, grain-oriented alloy provides an amplifier output which is linear and directly proportional to control (reset) current. This response is so linear that the amplifier acts as a valve with an infinite (at least a billion) number of steps from full off to full on.
Full off and full on can be achieved with snap action, because the horizontal saturation characteristic of the B-H curve means a very low saturated impedance. Thus, when the amplifier is on, it is on; when it is off, it is off. On-to-off impedance ratios of at least 1000 to 1 provide complete assurance of this absolute characteristic.
Should your manufacturing facilities prevent the use of

Orthonol in tape wound core form, you can still take advantage of this excellent material in laminations. An Orthonol laminated core has characteristics almost identical to those in toroidal form.
Like all Magnetics, Inc. products, Orthonol tape wound cores and laminations are Performance-Guaranteed. Full details await your inquiry. Magnetics, Inc., Dept. EI-60. Buller, Pennsylvania.

mhenetics inc.

Visit our Booth 2533 at the IRE Show

Coming Events

A listing of meetings, conferences, shows, etc., occurring during the period March-April that are of special interest to electronic engineers

Mar. 1-3: Southeastern Regional Conference, Nat'l Assoc. of Music Merchants; Dinkler-Plaza Hotel, Atlanta, Ga.
Mar. 2-4: Electronics Conference, American Management Assoc.; Statler Hilton Hotel, New York, N. Y.

Mar. 2-6: Western Joint Computer Conf., IRE, AIEE, ACM, Fairmount Hotel, San Francisco, Calif.
Mar. 5-6: Flight Propulsion Meeting, IAS; Hotel Carter, Cleveland, Ohio.
Mar. 5-7: Western Age Conference, Domestic Trade Dept., Los Angeles Chamber of Commerce; Los Angeles, Calif.
Mar. 6-7: Meeting, American Physical Society; Univ. of Texas, Austin, Tex.
Mar. 8-11: Gas Turbine Power Conf. and Exhibit, ASME; NetherlandsHilton Hotel, Cincinnati, Ohio.
Mar. 8-12: Aviation Conference, ASME; Statler Hilton Hotel, Los Angeles, Calif.
Mar. 10: Annual Meeting \& Election of Officers, Assoc. of Electronic Parts \& Equipment Mfgs. Assoc.; Como Inn, Chicago, Ill.
Mar. 10-12: Electrical Mfg's Exposition; Franklin County Veteran's Memorial Bldg., Columbus, Ohio.
Mar. 11-12: Iron \& Steel Instrumentation Conference, ISA; Pick-Roosevelt Hotel, Pittsburgh, Pa.
Mar. 12: Symp. on Microwave Techniques for Computing Systems, ONR, Information Systems Branch; Dept. of Interior Auditorium, Washington, D. C.
Mar. 15-18: 37th Annual Convention \& Broadcast Engineering Conf., National Assoc. of Broadcasters; Chicago, Ill.
Mar. 16-20: 11th Western Metal Exposition and Conference, American Society for Metals; Pan-Pacific Auditorium and Ambassador Hotel, Los Angeles, Calif.
Mar. 17: Annual Meeting, Broadcast Pioneers; Conrad Hilton Hotel, Chicago, Ill.
Mar. 17-21: 8th Electrical Engineer's Exhibition; Earls Court, London, Eng.
Mar. 18-20: Conference, EIA; Statler Hotel, Washington, D. C.
Mar. 22-24: Northwestern Regional Conf., National Assoc. of Music Merchants; Hotel Multnemah, Portland, Oregon.
Mar. 22-25: Numerical Control of Machines in Production Processes, Engineering Depts. of UCLA and Purdue Universities; Campus, UCLA, Los Angeles, Calif.
Mar. 23-25: Meeting, American Rocket

Society; Daytona Beach, Florida. Mar. 23-26 National Convention and Radio Engineering Show, IRE; Waldorf-Astoria Hotel and the Coliseum, New York City.
Mar. 24-25: Meeting, Institute for Printed Circuits; New York, N. Y.
Mar. 26: 15th Annual Quality Control Clinic, Rochester Society for Quality Control; University of Rochester, Rochester, N. Y.
Mar. 30-31: Meeting, American Physical Society; Hotel Somerset, Cambridge, Mass.
Mar. 30-April 1: Chicago Electrical Industry Show; Hotel Sherman, Chicago, Ill.
Mar. 31-April 2: 21st American Power Conf., Ill. Inst. of Tech.; Sherman Hotel, Chicago, In.
Mar. 31-April 2: 9th Intn'l Symp. on Millimeter Waves, Polytechnic Inst. of Brooklyn, IRE, Dept. of Defense Research Agencies; Auditorium of the Engineering Societies Bldg., Polytechnic Institute of Brooklyn.
Mar. 31-April 3: National Aeronautic Meeting, SAE; Hotel Commodore, New York, N. Y.
Apr. 1-30: 9th Plenary (CCIR) International Radio Conf., CCIR; Biltmore Hotel, Los Angeles, Calif.
Apr. 2-3: Conference on Silicon Carbide, Air Force Cambridge Research Center, Boston, Mass.
Ap̄r. 2-3 Conf. on Electrical Applications in the Textile Industry, AIEE; Heart of Atlanta Motel, Atlanta, Ga.
Apr. 2-3: Tech. Conf. on Physical Metallurgy of Stress Corrosion Fracture, AIME, Mellon Institute, Pittsburgh, Penna.
Apr. 2-4: Meeting, AIP, Optical Society of America; Hotel New Yorker, New York, N. Y.

Abbreviations:

ACM: Association for Computing Machinery AFOSR: Air Force Office of Scientific Research
AIEE: American Inst, of Electrical Engrs.
AIME : American Institute of Mining \& Metallurgical Engineers
ASME: American Society for Mechanical Engineers
ASTM: American Society for Testing Material
CCIR: International Radio Consultative Committee
EIA : Electronic Industries Assoc.
IAS: Institute of Aeronautical Sciences
IRE: Institute of Radio Engineers
ISA : Instrument Society of America
ONR: Office of Naval Research
SAE: Society of Aeronautical Engineers
SMPTE: Society of Motion Picture \& TV Engineers
SPI: Society of Plastics Industry WCEMA: West Coast Electronic Manufacturers Assoc.

Employment to Rise in '59-Boom in '60

"Help wanted" advertising, a reflection of the country's economic trend, is increasing after declining for 23 months. A gradual increase will continue through 1959 but surge upward during 1960. These are some of the conclusions reached by a survey conducted by "Help Wanted Trend" (January 1959), a monthly report published by B. K. Davis \& Bro., 1616 Walnut St., Phila., Pa.

The survey showed that the recent recession hit bottom in March. The cities hardest hit were Detroit, Cleveland, and Pittsburgh, which depend on heavy industry.

The report predicted that consumer spending will go up in 1959. Government spending will increase -despite the President's plea for economy. Employment will go up, but so will unemployment, and college recruiting will boom again this year.

Engineering Writing

The IRE Professional Group on Engineering Writing and Speech will present a program of five technical papers at the coming IRE Show and Convention.

The program will be presented on Monday, March 23, at 2:30-5:00 P.M. in the Jade Room, WaldorfAstoria.

SOME HIGHLIGHTS OF 1959

Mar. 23-26: National Convention, IRE; Waldorf Astoria (Hdqts), New York Coliseum (Radio Engr'g Show), New York, N. Y.
April 5-10: 5th Nuclear Congress, Institute of Aeronautical Sciences, Coordinated by EJC, ISA, ASME, IRE; Municipal Auditorium. Cleveland, Ohio.
May 6-8: Electronic Components Conference, WCEMA, IRE, EIA, AIEE; Benjamin Franklin Hotel, Phila., Pa.
May 18-20: Electronic Parts Distributors Show, Assoc. of Electronic Parts \& Equipment Mfg., Inc.; Conrad Hilton Hotel, Chicago, Ill.
Aug. 18-21: WESCON, West Coast Electronic Mfgs. Assoc. \& 7th Region IRE; San Francisco, Calif.
Oct. 12-14: Nat'l Electronics Conf., IRE, AIEE, EIA, SMPTE; Hotel Sherman, Chicago, Ill.
Nov. 9-11: Radio Fall Meeting. IRE EIA; Syracuse, N. Y.
Nov. 30-Dec. 1: Eastern Joint Computer Conf., IRE (PGEC), AIEE, ACM; Hotel Statler, Boston, Mass.

ELECTRONIC SHORTS

- Dept. of the Army has awarded four contracts in excess of $\$ 5$-million for the development and production of three additional MOBIDIC computers and for programming assistance. MOBIDIC is the high-speed, van-mounted digital computer being developed for the Army by Sylvania Electric Products, Inc., under contract with the Army Signal Corps. The awards announced today bring to a total of four the number of MOBIDIC computers ordered by the Army.
- The largest closed-circuit TV network in history was employed by International Business Machines Corporation for a coast-to-coast sales meeting. The one-hour telecast, produced and networked by TNT (Theatre Network Television, Inc.), covered 157 locations in 147 cities. This is the largest number of cities ever linked in any closed-circuit telecast of any kind. The largest previous business meeting ever held was also an IBM sales meeting which embraced 80 cities on September 2, 1958. The IBM telecast reached all IBM salesmen and customer engineers in the United States.
- Radar advisory service to civil air carrier jet aircraft has been extended to the three transcontinental jet routes linking Los Angeles and San Francisco with New York. This joint service of the Federal Aviation Agency and the U. S. Air Force Air Defense Command, is also provided to civil jets operating from New York over the Northeastern portion of the country and from New York to Miami, Florida, at altitudes from $\mathbf{2 4 , 0 0 0}$ feet to $\mathbf{3 5 , 0 0 0}$ feet inclusive. The radar advisory services is designed to inform pilots of civil jet transports operating en route with information on other traffic as observed on radar in their area.
- Successful test firing of a revolutionary new low-cost meteorological rocket that can be launched by a 2 -man crew has been accomplished. The rocket eventually will be made of finely spun glass fibers so that it may be fired by meteorological personnel over populated areas and exploded to fragments after it has gathered needed data. Named ARCAS (Allpurpose Rocket for Collecting Atmospheric Soundings) the rocket was made for the Office of Naval Research by the Atlantic Research Corporation of Alexandria, Virginia. In the most impressive of 4 rounds fired, ARCAS reached 174,000 feet with a payload of instrumentation. A new type launcher of ingenious design makes it possible to fire the ARCAS with a crew of only two men.
- A new development in electron tube manufacture that promises to greatly improve performance of electronic equipment, has been accomplished by Sylvania Electric Products, Inc. Known as "Sarong," the skin-tight film coating is wrapped around the tube cathode. In conventional tube manufacture, the cathode coating is sprayed on in liquid form. More stable tube characteristics and longer tube-life are anticipated. First application will be in the field of TV tuners.
- A new micromodule concept can reduce many military electronic items to at least one-tenth-and in some cases to as much as one-thousandththeir present bulk. Experimental circuits, including entire assemblies of transistors, wiring and other elements, have been compressed by Radio Corp. of America into micromodules no bigger than a cough drop. A single unit, or module, can be built to function as an amplifier, oscillator, filter and the like, in aggregate, to meet specified needs in electronic circuit design. RCA is now at work on a 2 -year, $\$ 5$-million contract with the U. S. Army Signal Corps for development of the micromodule concept to the point where ground tactical, fixed plant, and airborne systems can be sharply reduced in bulk and weight.
- The first photographs of a conventional radar display have been made at an altitude of $100,000 \mathrm{ft}$ from a balloon-lofted instrumented radar gondola. Using an unmanned 2 -million cu. ft. free balloon, the task was accomplished through a joint effort by Goodyear Aircraft Corp. and the Winzen Research Corp. of Minneapolis, Minn. for the USAF. The present contract calls for three such flights. The unusual pictures, showing an aerial radar view in plan position form rather than the view as seen in conventional photographs, will extend man's limited knowledge of radar characteristics at stratospheric altitudes.

Electronic Firms, Govt. 1-2 in Campus Recruiting

The California Institute of Technology recently released its annual report on "Placement Activities: 1957-1958." It contains many facts of interest, but the following merit special mention :

For the first time in five years there was a decrease in the number of organizations represented on the campus for the purpose of interviewing students. From 183 in 1956-57, the number dropped to 158. The number of interviews declined from 2667 to 2592. Electronics - computing companies had the largest representation; government agencies were second.

The percentage of Bachelors planning to do graduate work continued to increase. It was 64%, as compared with 60% in 1957, 58% in $1956,47 \%$ in 1955.

One hundred per cent of the engineering graduates received and accepted job offers. Salary offers for this group ranged from $\$ 575$ to $\$ 1,050$, with a median of $\$ 750$. The median for Ph.D.s was only $\$ 700$, but the range was from $\$ 350$ to $\$ 1$,292. The median for Bachelors of Science in fields other than engineering was $\$ 490$, for Masters of Science, $\$ 615$. Offers in each category except the Ph.D. were substantially higher than in 1957.

The head of a private employment agency foresees no increase in the demand for college graduates without experience "until after the first of the year-if then.

Urge More RED Contracts For Smaller Companies

The Small Business Administration, Lafayette Bldg., Washington, D. C., is distributing a new directory of 1,400 companies interested in Research and Development contracts. In issuing the directory, the Small Business Administration urged procuring agencies and major contractors doing R \& D work to consider the potential of smaller businesses. Receiving the directory are Government agencies, some major prime contractors, Government $R \& D$ centers, and other agencies.

[^0]

Digital Computer Techniques-State of the Art

Failure of computers has been known to force scientists back to more primitive forms of calculation. (Note the extra digit which comes in handy when numerical concepts need to be "carried".) However, at Hughes, we have developed and are producing components which insure you against breakdown even under the most severe operational conditions. Our most powerful ally is an almost unreasonable passion for quality control.

On the following three pages you'll find specific examples of Hughes reliable components - Para-
metric Amplifier Diodes, tonotron* Storage Tubes, and MEMO-SCOPE Oscilloscopes.

In addition to these, other Hughes Products devices which offer you this "built-in" reliability include: Precision Crystal Filters for selective tuning...Rotary Switches...Thermal Relays... MEMOTRON ${ }^{\text {® }}$ and TYPOTRON ${ }^{\text {® }}$ Storage Tubes... Microwave tubes...Diodes, Transistors and Rectifiers with uniform performance...and Industrial Systems which automate a complete and integrated line of machine tools.
*Trademark of H.A.C.

with the Hughes MEMO-SCOPE ${ }^{*}$ Oscilloscope

Trial and error methods necessary to capture elusive transients on comentional scopes waste time, film. and preciou- research dollars. \ever again meed this happen. With the Ilushes m:no-scopre" oscilloscope you ma! instanty "freeze" wave forms with bitiliant darit for careful study. comparison and analysis. The Hughes wevo-scople" ascilloscoper retains these frozen transionts until intentionally erased. Selected transiont information may be triggered externally or internally. Successive wave forms mar be written abose helon or directly over the original information.

SWEEP SPEED FOR STORAGE: 10 microseconds to 10 seconds per division ($0.33^{\prime \prime}$). FREQUENCY RESPONSE: DC to 250 KC down 3 db .

SENSITIVITY: 10 millivolts to 50 volts per division or with optional high sensitivity preamplifier 1 millivolt to 50 volts per division.
APPLICATIONS: Trouble shooting data reduction equipment . . . switch and relay contact study... ballistics and explosives research ... ultrasonic flaw detection... physical testing shock - stress - strain.

A llughes representaive will glatly drmonstrule the meno-sione osrilloscopu' in your compam: Simply aldress your request 10 : Hughe's Products. Warheting Dept.-mewo-scopre
International Airport Station. Los Angges 15: California

PARAMETRIC AMPLIFIER DIODES

FOR LOW-NOISE MICROWAVE AMPLIFIERS

Now Hughes Products brings you high performance parametric amplifier diodes at a price in the same range as good microwave mixer crystals. These Hughes diodes have been designed to solve your problems associated with low-noise parametric amplifiers, modulators, frequency converters, harmonic generators, electronic tuners, switches, etc., at microwave as well as at lower frequencies.

Used in a 3000 Mc high gain parametric amplifier with both signal and idler channels as inputs, these diodes have produced at room temperature in
the laboratory a noise temperature of $100^{\circ} \mathrm{K}$ above absolute zero. Noise temperatures of $50^{\circ} \mathrm{K}$ above absolute zero were obtained when diode was cooled by liquid nitrogen.

The Hughes Parametric Amplifier Diodes are available in two rugged, hermetically sealed versions. One has a miniaturized glass package (type HPA 2800) ; the other has been adapted to a conventional microwave package (type HPA 2810). Both are hermetically sealed in glass and have the same cutoff frequency.
technical specifications and data:

HUGHES PRODUCTS

HUGHES PRODUCTS

the first 21"storage tube

High light output! Controlled Persistence! Full gray scale!

The Hughes 21" tonotron* tube offers you a new level of sophistication in displays for: Air traffic control, Combat situation plotting, Radars, Large-scale read-out, Medical diagnosis, Industrial television, and Slow-scan displays.

This new TONOTRON tube provides high light output. integration abilities, full gray scale, controllable persistence, and a very large display area-all in one envelope!

Hughes also announces a $21^{\prime \prime}$ character-wziting TYPOTRON ${ }^{\text {® }}$ storage tube, which gives you the added capability
of high-speed digital character display. The $21^{\prime \prime}$ typotron tube is ideally suited for any of your digital read-out requirements. In addition, this unique typotron tube offers you either character read-out or spot writing modes-or a combination of both capabilities.

Both the $21^{\prime \prime}$ tonotron Tube and the $21^{\prime \prime}$ TYpotron tube are now available for delivery. For additional information please write: Hughes Products, Electron Tubes, International Airport Station, Los Angeles 45, California.

See the new Hughes 21" Tonotron tube in action at the I.R.E. show (Booths 280/-2807)

Greating a new world with ELECTRONICS

HUGHES PRODUCTS

[^1](1) 1959. HUGHES AIRCRAFT COMPANY

SEMICONDUCTOR DEVICES • STORAGE AND MICROWAVETUEES • CRYSTAL FILTERS • OSCILLOSCOPES • RELAYS • SWITCHES • INDUSTRIAL CONTROL SYSTEMS

Electronic Industries International

Canada-E.M.I., Electrical \& Musical Industries Ltd., has increased its investment in A. C. Cossor (Canada) Ltd., and obtains a controlling interest in the firm. The new name of A. C. Cossor Ltd. will be E.M.I.Cossor Electronics Ltd.

United Kingdom-Philco Corp. has reached a licensing agreement with Thorn Electrical Industries, Ltd., London, whereby Thorn will acquire two Philco British subsidiaries to manufacture and sell the American firm's television receivers, radios, and high-fidelity phonographs. Thorn has acquired all the issued capital stock of Philco (Overseas) Ltd., and Philco (Great Britain), Ltd. Both concerns will be operated as units of Thorn. Thorn will manufacture and sell Philco-trademarked equipment in the United Kingdom and make export models of some Philco equipment for Philco International Corp's overseas distribution outside the U. K.

Colombia-International Petroleum Co., Ltd., subsidiary of Standard Oil Co. (New Jersey), will install a Bendix G-15 general-purpose computer in its Bogota plant. The computer will handle survey data reduction in the petroleum engineering field and data processing of company payrolls.

Territory of Hawaii-A $\$ 400,000$ observatory is to be built on Ewa Beach about two miles west of the entrance to Pearl Harbor, Honolulu. Designated The Honolulu Magnetic and Seismological Observatory, it will serve as a center for magnetic observations, needed for accurate compass calibration, and as the heart of the seismic sea warning system in the Pacific. The observatory should be ready for use by December 1959.

USSR - The U. S. Government, American Industry, and other private groups will collaborate on an "American Exhibition" in Moscow for 6 weeks beginning around July 4, 1959. The USSR will stage a similar exhibition in the Coliseum in New York City around June 28. The American exhibit will feature American education, science and research, and art. President Eisenhower has authorized the use of $\$ 3,300,000$ in Mutual Security Funds in addition to $\$ 300,000$ available from a U. S. appropriation for an exhibit which did not take place last year. While there will be industrial displays, it will not be a trade fair.

Liberia-Liberia is getting $\$ 3,000$,000 from the U. S.'s Development Loan Fund to improve their telecommunications facilities. The loan covers telephone, telegraph, teletype and other services between Monrovia and county and provincial centers.

Switzerland-Controls Company of America has formed a new subsidiary, Controls A.G., in Zug, Switzerland, under Mr. Remy Ludwig. The new company becomes the center of foreign operations for Controls Company, which also operates a manufacturing plant in Nijmegen, Holland.

Export Controls-Eighty five commodities, removed earlier from individual export requirements, now require individual export licenses for shipment to Poland. At the same time, thirty commodities have been removed from the list, including certain capacitors, resistors and magnetic and electrostatic separators.

West Germany-General Controls Co. has set up a new subsidiary, General Controls, G.m.b.H, in Dusseldorf. Helmut Kiepe, West German industrialist, is General Manager and holds minority interest. The subsidiary will be the sales and distribution center for Continental Europe for the parent company. Limited manufacturing of some General Controls products will begin late this year.

Norway-Marconi VHF multichannel terminals and repeaters have been ordered by the Norwegian PTT to extend their coastal radio telecommunications network. Terminal stations have been planned for Hammerfest, Honningsvag, Berlevag and Vardo, with repeaters at Gamvik and Makkaur. The total distance covered by the route is about 200 miles.

Israel - Snyder Mfg. Co., Phila. manufacturer of auto radios and TV antennas, plans to purchase more of its electronic components from plants in Israel during the coming year. The company has been purchasing electronic components from European and Far East manufacturers for the past 10 years.

Japan-An IBM 704 is being installed at the Japanese Meteorological Agency in Tokyo, to be used for daily weather predictions, especially the prediction of the course and speed of typhoons. There will be a mutual exchange program of information with the U. S. Weather Bureau in Washington to conduct weather studies for the entire northern hemisphere. Information will also be fed to the system from ships at sea and from U. S. Air Force weather stations. The Japanese Meteorological Agency, a branch of the Japanese Government, ordered the machine from International Business Machines Co. of Japan, Ltd. (See photo below.)

IBM 704 data processing system, destined for the Japanese Weather Bureau in Tokyo, is loaded aboard ship in San Francisco. It is the first of its size delivered to the Asia Pacific area. The weight of the loaded van-45,000 lbs. made a thorough inspection of the high way route from Y_{0} kohama to Tokyo for height and bridge load clearances necessary.

> MORE INTERNATIONAL NEWS ON PAGE 26

BROAD-BAND TRAVELING-WAVE TUBES OF GENERAL LABORATORY ANTICIPATE NEEDS OF ECM AND

Designers of electronic countermeasure and pulsed radar systems are continually making important progress toward equipments with greater flexibility, increased range, improved accuracy and reliability.

Development of low- and mediumpower traveling-wave tube amplifiers for these equipments is a major effort at the General Electric Power Tube Department's Microwave Laboratory, Palo Alto, California.

These amplifiers provide wide, instantaneous bandwidths (typical range, 2 to 1) through the use of slow-wave structures having unique helix designs. Active programs include tubes with CW power levels up to 100 watts and above, and pulsed power outputs of several kilowatts. Gains from 25 to 35 db are typical.

The use of permanent magnets and full metal-ceramic construction allows the design of compact, lightweight tubes, able to withstand severe environments found in aircraft and missile applications.

Traveling-wave tube pioneering is only one of the broad range of activities at the General Electric Microwave Laboratory. Active developments in other fields are listed at the right.

All developmental work is done with an eye to practical, economical manufacture -thus minimizing the time lapse between prototype development and quantity pro-duction-and to the realistic tube needs of future microwave equipment. Technical inquiries pertaining to advanced tube development invited. Power Tube Dept., General Electric Co., Schenectady, N.Y.

The General Electric Power Tube Microwave Laboratory is located at Stanford Industrial Park, Palo Alto, California where it was one of the Park's pioneer installations. Its scientists and engineers have the advantage of technical exchange with the facuity and research staff of Stanford University, as well as extensive opportunities for graduate training. Constant technical liaison is also maintained with General Electric's own Research and General Engineering Laboratories, Schenectady, New York.

ELECTRIC MICROWAVE PULSED RADAR SYSTEMS

The extensive program of the General Electric Microwave Laboratory on advanced microwave components and techniques includes the following:

CW Klystron Amplifiers Super-Power Klystrons Voltage-Tunable Oscillators High-Power Duplexers Microwave Filters

Pulse Klystron Power Amplifiers High-Power Pulsed TWT Amplifiers Low- and Medium-Power CW TWT Amplifiers Low-Noise, Broad-Band TWT Amplifiers Frequency Multiplier TWT Amplifiers

One of several unclassified designs in advanced development, this 100 -watt CW tube features a multiple helix structure, involving four parallel beams for higher power output over a wider bandwidth. Frequency range is 7.5 to 11.3 kmc , with 25 db gain minimum.

Progress/s Our Most Important Product

From Transistor Center, U.S.A....

PHILCO

announces a new family of LOW COST Medium Power Alloy Junction Transistors

Introducing a completely new family of PNP germanium transistors, especially designed to meet rigid military and industrial specifications . . . at lowest possible prices.

These transistors are available in production quantities, for use in teletypewriters, control
amplifiers, ignition systems, mobile radios and desk calculators (2N1124); servo amplifiers, voltage regulators and pulse amplifiers (2 N 1125 , 2N1126, 2N1127); medium power audio and switching applications (2N1128, 2N1129, 2N1130). Also available in quantities 1-99 from your local Philco Industrial Semiconductor Distributor.

Make Philco your prime source of information for all transistor opplicotions. Write to Lonsdale Tube Company, Division of Philco Corporation, Lansdole, Pa., Dept. El 359.

TYPE			VCEs Max. (Volts)	Peak Ic (Amps)	P Max. (Watts)	$\begin{aligned} & F_{\alpha b} \\ & \text { (MC) } \end{aligned}$	Beta	Applications	PRICE
	2N1124	40	35	0.5	0.3	$\begin{gathered} 0.4 \\ \mathrm{Min} \\ \hline \end{gathered}$	$\begin{gathered} \text { hfo } \\ 40 \\ \text { Min } \end{gathered}$	For high voltage general purpose use in a mplifier and switching. Small signal beta controlled.	\$1.30
	2N1125	40	40	0.5	0.3	$\underset{\text { Min }}{1.0}$		For high voltage, higher frequency industrial amplifier and switching systems. Large signal beta controlled.	\$1.90
	2N1126	40	35	0.5	1.0	$\begin{gathered} 0.4 \\ \mathrm{Min} \\ \hline \end{gathered}$	hie 40 40 Min	1 watt version of 2 N 1124 for servo amplifiers and relay actuators. Small signal beta controlled.	\$1.80
π	$2 N 1127$	40	40	0.5	1.0	$\begin{aligned} & 1.0 \\ & \mathrm{Min} \end{aligned}$	$\begin{gathered} h_{\mathrm{FE}} \\ \text { (a0-150 } 0.5 \mathrm{mpp} \end{gathered}$	1 watt version of 2 N 1125 for servo amplifiers and control systems. DC beta controlled.	\$2.40
	$2 N 1128$	25	18	0.5	0.15	1.0	$\begin{gathered} \mathrm{hfe}_{\mathrm{e}} \\ 70-150 \end{gathered}$	For low distortion, high level driver and output application. Small signal beta controlled.	* .95
$\frac{10}{11}$	$2 N 1129$	25	25	0.5	0.15	0.75	$\begin{gathered} \mathrm{h}_{\mathrm{FE}} \\ 100.200 \\ \text { (a) } 0.1 \mathrm{amp} \end{gathered}$	For high gain general purpose amplifier and switching. Typical DC beta 165.	\$1.10
	$2 N 1130$	30		0.5	0.15	0.75	$\begin{aligned} & \mathrm{h}_{\mathrm{Fs}} \\ & \text { (a0) } 0.1 \mathrm{ikmp} \end{aligned}$	For higher yoltage, higher level amplifier and switching applications. Typical DC beta 125 .	\$. 95

Available in Production Quantifies-Also Available from Local Distributors

PHILCO CORPORATION

LANSDALE TUBE COMPANY DIVISION

JAPANESE ELECTRONICS PRODUCTION
 1956, 1957 and nine months 1958

An increasing amount of interest is being shown in foreign production and exports. Japan is one of the countries that
is creafing this inferest. The figures for Japanese producfion are fabulated below.

	Thousand Units			Value		
	1956	1957	$\begin{gathered} \text { Jan.-Sept. } \\ 1958 \end{gathered}$			$\underset{1958}{\text { Jan.-Sept. }^{2} .}$
Consumer өlectronic products.............		$\begin{array}{r} 40,370.0 \\ (112.1) \end{array}$	$\begin{array}{r} 61,519.3 \\ (170.9) \end{array}$	$\begin{array}{r} 63,505.2 \\ (176.4) \end{array}$
Radio receivers	3,060.3	3,684.9	3,357.1	19,958.8	25,977.6	23,384.8
Television recejvers	312.1	605.3	745.5	18,126.5	31,257.9	35,851.5
Television receiver kits	n.a.	7.5	9.2	n.a.	271.6	311.9
Phonographs.	56.2	59.6	38.1	540.2	778.3	465.2
Record players.	158.8	312.2	273.0	841.3	1,535.3	1,409.5
Recorders	21.1	49.4	66.7	903.2	1,408.9	1,783.0
Other			n.a.	289.7	299.3
Commercial, industrial, and military electronic equipment.	$\begin{array}{r} 20,050.5 \\ (55.7) \end{array}$	$\begin{gathered} 27,845.8 \\ (77.4) \end{gathered}$	$\begin{gathered} 21,979.7 \\ (61.1) \end{gathered}$
Radio broadcast equipment . . .				375.7	167.2	123.0
Television broadcast equipment				683.1	1,090.8	2,099.4
Industrial television equipment				n.a.	36.9	74.9
Radio \& microwave communications equipment: Fixed: Single channel communications equipment:						
Long, medium \& shortwave transmitting equipment	0.1	0.2	0.4	75.8	97.3	90.1
Long. medium \& shortwave receiving equipment.	0.1	0.2	0.1	32.8	70.2	47.7
H-F transmitting equipment	0.2	0.1	0.1	459.6	503.3	267.4
H-F receiving equipment	0.3	0.1	0.7	96.0	73.3	206.0
VHF transmitting \& receiving equipment	1.2	1.9	1.6	623.0	547.2	404.8
Microwave transmitting \& receiving equipment		0.3	0.3	2.0	84.3	93.6
Accessories. .				126.4	221.9	178.6
Multi-channel communications equipment:						
VHF transmitting \& receiving equipment	. 1	.1	. 1	197.5	230.9	161.7
Microwave transmitting \& receiving equipment	. 2	. 4	. 4	646.0	1,937.0	1,150.6
Accessories.				207.6	477.3	372.9
Mobile radio equipment:						
Land.	2.8	3.2	4.2	1,176.7	1,016.9	1,380.4
Marine	2.6	3.1	1.9	1,730.1	2,124.6	1,286.6
Airborne	. 1	. 2	. 2	104.2	140.8	207.1
Portable.	3.1	1.8	1.9	335.0	326.7	297.8
Electronic detection \& navigation equipment:						
Sonar	454.3	509.0	237.7
Loran		\ldots	127.4	775.4	275.7
Direction finder		466.1	673.4	530.2
Radio beacon	28.6	40.4	41.8
Radar.	591.2	808.4	627.1
Other.				441.0	339.5	485.3
Ultrasonic equipment				110.7	175.9	103.7
H-F heating equipment	113.5 10.846	399.0	$\begin{array}{r}310.0 \\ \hline 1025 .\end{array}$
Other			10,846.2	14,978.2	10,925.6
Electron tubes.	$\begin{array}{r} 18,803.7 \\ (52.2) \end{array}$	$\begin{array}{r} 25,018.6 \\ (69.5) \end{array}$	$\begin{gathered} 18,684.2 \\ (51.9) \end{gathered}$
Semiconductors .				n.a.	3,852.6	$5,814.5$
	n.a.	3,862.8	6,381.6	n.a.	(10.7) 592.4	$\begin{aligned} & (16.2) \\ & 657.6 \end{aligned}$
Transistors	n.a.	5,746.0	15,823.4	n.a.	3,203.9	5,064.0
Photo-transistors	n.a.	2.4	9.8	n.a.	5.1	13.7
Thermistors	n.a.	178.5	842.1	n.a.	51.2	79.2
Electronic components . .		10.0.0		$\begin{gathered} 9,586.4 \\ (26.6) \end{gathered}$	$\begin{array}{r} 12,143.8 \\ (33.7) \end{array}$	$\begin{gathered} 9,851.5 \\ (27.4) \end{gathered}$
Capacitors	138,533.6	232,398.0	201,814.0	3,948.5	5,094,6	4,161.4
Resistors.	120,398.5	210,988.0	184,300.0	1,646.5	2,255.0	1,919.3
Transformers	7,740.8	8,293.8	7,790.2	2,400.7	2,727.0	2,068.2
Speakers.	2,322.8	2,969.5	2,801.5	1,590.7	2,067.2	1,702.6
TOTAL.	-....		$\begin{array}{r} 88,810.6 \\ (246.7) \end{array}$	$\begin{array}{r} 130,380.1 \\ (362.2) \end{array}$	$\begin{array}{r} 119,835.1 \\ (332.9) \end{array}$

NOTE: U. S. dollar equivalent converted from yen at the rate of 360 yen $=\$ 1.00$
Value in million yen; figures in parentheses, U. S. dollar equivalents in millions

We've been hearing comments that have the ring of praise about them. They have been comments on the simplicity of our Lawrence-type color display tube, 5CGP29. We build other color and monochrome cathode ray tubes, e.g., for applications requiring high definition of a hush-hush nature, or for fine character writing and many other applications. But let us discourse on the 5CGP29.

First of all it adapts to a great many equipments now limited by monochrome. It adapts with the same yoke you are now using and without the need to build a six-foot voltage-control console. The 5CGP29 does not have fussy requirements.

Post-Deflection Focusing is incorporated in the design. The electron beam paths are directed through an array of grid wires to an aluminum-backed phosphor screen on the face of the tube. Switching voltages on adjacent grid wires change the impact point of the focused beam. None of this is particularly
critical in operation. And the operating voltages are such as not to produce what the low-temperature lab men call "thermal chaos."

There is very likely nothing more dramatic in the world of electronics than the face of a 5CGP29 discriminating between different classes of information in extra dimensions with bold colors. Military people appreciate it when, again with different colors, the 5CGP29 promptly discriminates in radar between hazardous and non-hazardous objects, or between friendly and unfriendly targets, for example.

A number of commercially available phosphors, with differing responsive qualities, afford wide variations in persistence and colors. There are dozens of uses for the tube in science, industry, and the military service. Let us tell you about them. Electronic Display Laboratory, Litton Industries Electron Tube Division, Office E10, 960 Industrial Road. San Carlos. Calif.

CAPABILITY THAT CAN CHANEE YOUR PLANNING

Electronic Industries'

Capsule summaries of important happenings in affairs of equipment and component manufacturers

EAST

ROME CABLE CORP. AND ALUMINUM CO. OF AMERICA have announced plans to affiliate. Alcon will acquire all the properties of Rome Cable for 355,226 shares of Alcoa common stock. The agreement is subject to approval of Rome shareholders who will meet on March 25th.

MICROTRAN CO., INC., Valley Stream, N. Y., has announced completion of a 5000 sq. ft. addition to their present transformer manufacturing facilities. This represents a 50% increase in plant facilities.

SERVO CORP. OF AMERICA, L. I., N. Y. has received a production contract totaling $\$ 481,400$ for computers for airborne dead reckoning tracers. Contract was awarded by U. S. Navy's Aviation Supply Office.

EASTERN PRECISION RESISTOR CORP. has announced that it is now operating the delay line and pulse transformer business for the Electronic Circuits Corp. E.C.C. was acquired from Epsco, Inc., Boston, Mass., and Digitronics Corp., Westbury, L. I.

ALLEN B. DU MONT LABORATORIES, INC., Clifton, N. J., has received a $\$ 1.3$ million sub-contract to produce 22 universal missile test sets for the Navy's Sparrow III program. The award was made by Raytheon Mfg. Co., prime contractor for the missile system. Units will be produced at their West Coast plant.

AVION DIV., ACF INDUSTRIES, INC., has received a series of contracts totaling $\$ 200,000$ for production of radar beacons for the U. S. Air Force Titan Intercontinental ballistic missile nose cone. They were awarded by Avco Mfg. Co.

KAHLE ENGINEERING CO. has completed a move to new and enlarged plant quarters. The new plant is located at 3322 Hudson Ave., Union City, N. J.

PHILIPS ELECTRONICS INSTRUMENTS DIV., Mt. Vernon, N. Y., has just announced the completion of a new Norelco portable X-ray spectrograph. It was developed specifically for use in the field and around industrial plants.

RAYTHEON MFG. CO. has signed an agreement for the purchase of approximately 130 acres of land on Routes 2 and 128 in Lexington, Mass., for an executive-research park. The first building plan will be an executive office building. It will become headquarters for the electronics firm when completed.

FXR, INC., announced a production schedule that enables them to make immediate deliveries of the recently introduced Model B811A Universal Ratiometer. The instrument houses, in one package, a VSWR amplifier and a ratiometer for reflectometer measurements.

- SYLVANIA ELECTRIC PRODUCTS, INC., has opened a new 30,000 sq. ft. building which houses their Electronic Systems Division headquarters and fabrication facility. The building is located near their Waltham Laboratories.

SPRAGUE ELECTRIC CO., North Adams, Mass., has purchased the magnetic component and filter product lines of the Hycor Div. of the International Resistance Co. of Philadelphia. Sprague will take over the manufacture of the various Hycor product lines except for precision resistors which are not involved in the sale.

WESTINGHOUSE ELECTRIC CORP. has announced the development of a digitally programmed analog computer. It is a hybrid of two basic computing techniques, digital and analog.

RADIO CORP. OF AMERICA has announced the development of electroluminescent panels that emit a soft glow of light in any one of six specific colors instead of the single green color heretofore achieved. The panels have possible uses in many fields.

BENDIX AVIATION CORP., Red Bank Div., has announced the production of a new germanium driver transistor series that can be used in audio amplifiers, audio oscillators, Class A and Class B amplifiers, power switches, servo controls, relay drivers and motor controls. They are designated 2 N 1008 -A-B.
IT\&T'S INTELEX SYSTEMS, INC., will build and equip the nation's first fully mechanized mail processing plant and post office at Providence, R. I. It will be leased to the Post Office Dept. for 20 years. Estimated construction cost is $\$ 20$ million.

MID-WEST

MONSANTO CHEMICAL CO., St. Louis, Mo., has developed a new modifier for epoxy resins. It is trademarked Mod-Epox and is said to improve the bonding strength of simple epoxy adhesives as much as 40 to 80%.

DALE PRODUCTS INC., Columbus, Nebr., has announced their affiliation with International Standard Electrical Corp. to handle their overseas business. They will offer broader international representation of Dale Products' components.

ROHN MFG. CO., Peoria, Ill., has increased their hot-dipped galvanizing facilities by 600% with a new modern galvanizing plant.

EMERSON ELECTRIC MFG. CO. of St Louis, and LITTON INDUSTRIES, INC., of Beverly Hills, Calif., have announced the formation of an industrial team to complete the development of a counterbattery radar and computer system. The team is participating in a competition for a counterbattery system now under consideration for inclusion in Army equipment requirements.
SAVAGE INDUSTRIES, INC., Phoenix, Ariz., has announced that it will cease operations of its subsidiary, Savage Instrument Co Telemetering operations of the instrument firm will be moved to Wiley Electronics in Phoenix.

TEXAS INSTRUMENTS INCORPORATED has started construction on a 192,000 sq. ft. addition to the present 310,000 sq. ft. Semi-conductor-Components Div. plant. Completion is expected in about 12 months.

BURROUGHS CORP., Detroit, Mich., will shortly start construction of a new \$2 million engineering and administration building at its Tireman Ave. military electronic computer plant.

MOTOROLA INC., Chicago, Ill, has announced the addition of a complete line of car radio antennas to their list of consumer products. They have models to fit and complement almost every foreign and domestic car, truck, boat or tractor.

THE VICTOREEN INSTRUMENT CO. has established a new Industrial Automation Div. Division will handle the fields of radioactive isotopes application to automatic process control, non-destructive testing, gamma irradiation and polymerization with nuclear devices.

WEST

GLOBAL VAN LINES, INC., worldwide moving firm with headquarters in San Gabriel, Calif., has placed in service the first of a fleet of vans which have been designed specifically for the movement of electronic equipment. The first manufacturer to take advantage of this new service was the Burroughs Corp., Electrodata Div. at Pasadena, Calif.

HOFFMAN ELECTRONICS CORP. have established their Science Center in Santa Barbara, Calif., pending construction of a permanent facility.

UNGER ELECTRIC TOOLS, INC., Los Angeles, Calif., has just celebrated the production of their 10 millionth soldering iron.

LING ELECTRONICS INC. has completed an agreement for the acquisition of Alteo Companies, Inc., stock. The proposed acquisition is to be effected through a share for share exchange of common stock.

HUGHES AIRCRAFT CO. has purchased the assets of Vacuum Tube Products Co., Inc., of Oceanside, Calif. The latter company will continue to market and produce its lines of vacuum tubes, precision electronic welding equipment, diodes, gauges, controls and timers in existing plants under the same management.

SERVOMECHANISMS, INC., Hawthorne, Calif., has received contracts from The Martin Co. in the amount of $\$ 656,859$. This raises the total amount of True Airspeed Computer orders to over $\$ 1.6$ million. Two other orders presently on the books are from Lockheed Aircraft and Douglas Aircraft.

FISHER BERKELEY CORP., Emeryville, Calif., saya they are now the largest intercom manufacturer in the west as a result of their recent purchase of Bennett Laboratories, Inc. of Redwood City, Calif. The two companies will remain separate entities, but overall management will come entirely from Fisher Berkeley personnel.

CONVAIR DIV. OF GENERAL DYNAMICS CORP. has just received a $\$ 31,400,000$ contract from the U. S. Navy for production of an advanced version of Terrier guided missiles. The new missile will incorporate improved guidance features and substantial improvements in coverage over the present Terrier. It is intended for the same surface-to-air use as the now-operational version.

UNITED STATES CHEMICAL MILLING CORP., producer of chemically milled products for the aircraft and missile industries, has announced the formation of an Electronics Div. The Manhattan Beach, Calif., firm has complete manufacturing facilities for the design and production of all types of printed circuit boards and chemically blanked parts.

PACKARD-BELL ELECTRONICS CORP., Los Angeles, Calif., has been awarded two contracts totaling approximately $\$ 5$ million for the production of advanced electronics equipment for the U. S. Navy. The prime contract with the Navy Bureau of Aeronautics calls for additional mission and traffic control equipment for Douglas A4D 'Skyhawks" and Chance Vought F8U "Crusaders."

CONSOLIDATED ELECTRODYNAMICS CORP., Pasadena, Calif., Board of Directors approved a plan to incorporate the company's Systems Div. and to operate it as a wholly owned subsidiary of the parent corporation. The new company will be called the Consolidated Systems Corp.

"STRAIGHTEN UP 'N' FLY RIGHT'

Azimuth heading of the Jupiter guidance system is monitored right up to blast-off Perkin-Elmer short range theodolites, planted next to missile, correct any deviations.

LARGEST SAPPHIRE LENS

 Synthetic sapphire lens, reportedly the largest in the world, is part of highly advanced infra-red optical system produced by Spectron, dept. of the Transducer Div., Consolidated Electrodynamics Corp.

SUBMARINE SIMULATOR
Adm. C. Wheakley and Clevite's T. E. Lynch (I) and A. L. W. Williams discuss the intelligence mechanism of the Navy's new submarine simulator. Designed by Clevite, it can be programmed for up to 6 hrs. of tactical maneuvers, including sound and radio effects.

VIBRATION TESTS

Random noise pulses feed the shaker table at right to check a typical component utilized in space vehicles. DuMont 411 scope shows noise signal at USARDL, Ft. Monmouth.

IRRADIATED PLASTICS
From the "pit" (right) at Radiation Applications Inc. a test run of plastics is removed which contains important new properties induced by radiation grafting. The cobalt-60 source is housed in $31 / 2$ ton lead shield with $4-\mathrm{ft}$. thick walls of concrete.

HIGH-SPEED HEAT
The simulated temperatures of high-speed flight are preduced by this quick-heat source at Boeing Airplane Co. Ignitron units at right provide close control of heat level.

OLD-TIMER!

KDKA chief engineer Ted Kenney (below) demonstrates replica of KDKA's original control board used to transmit results of the Harding. Cox election in 1920. Board is being delivered to Smithsonian Inst., Wash., D. C.

NAVY'S PRIDE-POLARIS!
First photos of the Polaris $A X-1$ test vehicle (above), placed on its launcher prior to test firing at the Atlantic Missile Range, Cape Canaveral, Fla. The solid-propellant missile, developed by Lockheed's Missile Systems Div., has a range of 1,500 miles.

AUTOMATIC TESTING

For testing a missile target seeker (right), Westinghouse has developed a series of test stands such as this. The operator checks the data and a photo of the computer out put as presented on the oscilloscope.

COMPLETELY SEALED

MINIATURE QUARTZ SEALCAPS

Moving upstairs? Then you'll welcome the new JFD precision Miniature Quartz Sealcaps that seal out moisture, seal in reliability and accuracy. regardless of atmosphere.
These new JFD variable trimmer piston capacitors combire the unique characteristics of Sealcap construction and miniature quartz capacitor design. Each is filled with dry nitrogen under pressure and then sealed to maintain the compression, prevent corona and voltage breakdown at high altitude. Linear tuning with fine resolution is assured permànently, without breaking of seal.
Sealcap design also blocks the formation of moist ure inside the unit, increases insulation resistance and dielectric strength. The use of quartz dielectric results in high Q, ultra low loss high frequency operation, greater stability, and approximately zero temperature coefficient.

JFD Standard Sealcaps are available unpotted or encapsulated in epoxy resin for higher dielectric strength. Our engineering staff will welcome the
opportunity to relate the advantages of Sealcaps to your specific application. In the meantime, why not write for Bulletin No. 215? Also available in glass dielectric, Bulletin No. 207A.

FEATURES

1. Sealed interior construction lacks out all atmospheric effects.
2. High O.
3. Anti-backlash design assures excellent tuning resolution no capacitance reversal while luning.
4. Extreme stability at high and law temperatures.
5. Uitra linear tuning for accurate alignment.
6. Low temperature coefficient of capacitance.
7. Low loss low inductonce coaxial tuning for high frequency use.
8. Special alloy plating protects metal parts against carrosion.
9. Fused Quartz dielectric with exceilent electrical propenties offers no derating of 150° Centigrade.
10. Rugged construction for shack and vibration resistance.
11. Miniaturized construetion supplies maximum copacity in minimum space.
12. Positive mechanical stops af both ends of adjustment.
13. Available in ponel and printed circait type mountings unpotted or encapsulated for complete imperviousness to humidity and moisture.

JFD Canada lid.

1462 62nd Street, Brooklyn, New York
Ranges from . 6 to 1.8 pf. to 8 to 16 pf. in 12 standard models.

JFD International
15 Moore Street
New York, New York

KNOW YOUR NEW WORLD ${ }_{\text {by reserving y your copy }}$

 of THE NATURE OF THE IONOSPHERE-AN IGY OBJECTIVE, special February issue of PROCEEDINGS OF THE IRE. On these pages you will find a distillation of 18 months of an intensive international effort. Set against a background of earlier work, here is a new compendium of engineering knowledge edited to your special interests. Here is your new frontier.

PARTIAL CONTENTS OF IONOSPHERE-IGY ISSUE

"The Earth and its Environment" by S. Chapman, U of Colorado
"The Constitution and Composition of the Upper Atmosphere" by M. Nicolet, Radio and Meteorology Institute, Belgium
"The Normal F-Region of the Ionosphere" by D. F. Martyn, Radio Research Labs. CSIRO, Australia
"The Normal E-Region of the Ionosphere" by E. V. Appleton, U of Edinburgh, Scotland
"The D.Region of the Undisturbed lonosphere" by J. J. Gibbons \& A. H. Waynick, Penn State U
"The Distribution of Electrons in the Ionosphere" by J. O. Thomas, U of Cambridge, England
"Motions in the Ionosphere" by C. O. Hines, Defense Research Board, Canada
"Meteors in the lonosphere" by L. A. Manning \& V. R. Eshleman, Stanford U
"Atmospheric Whistlers" by R. A. Heiliwell, Stanford U \& M. G. Morgan, Dartmouth U
"Radiation and Particle Precipitation upon the Earth from Solar Flares" by L. G. B. Biermann \& R. Lust, Max Planck Institute for Physics and Astrophysics, Germany
"The Very-Low-Frequency Emmissions Generated In The Earth's Atmosphere" by R. M. Galiet, National Bureau of Standards
"The F-Region During Magnetic Storms" by K. Maeda, Kyoto U \& I. Sato, Shiga U, Japan
"Aurora Phenomena" by E. N. Parker, U of Chicago
"Rocket Observations of the Ionosphere" by H. Friedman, U. S. Naval Research Lab.
"Earth Satellite Observations of the lonosphere" by W. W. Berning, Aberdeen Proving Grounds
"Exploration of the Upper Atmosphere with the help of the 3rd Soviet Sputnik" by V. I. Krassovsky, Institute for Atmospheric Physics, Moscow

THE INSTITUTE OF RADIO ENGINEERS

1 East 79th St., New York 21, N. Y.

Enclosed is $\$ 3.00$
Send this special issue of THE NATURE OF THE IONOSPHERE-AN IGY OBJECTIVE to:
\qquad

[^2]
A LOOK INTO THE FUTURE OF TRIMMING POTENTIOMETERS

From the applied research lab. oratories of the leading manwound components, comes a complete line of wire wound trimming potentiometers radically new in concept
that will set the standard in our industry for years to come not a repackaging of a design that was outdated before our first missile was launched . . . but a wholly new design from the inside out . . . to meet the requirements of todoy . . and to-morrow.

ELECTRONIC INDUSTRIES

International

(Continued from page 15)

Ireland-Operations have begun at the first industrial plant erected in the free zone of Shannon Free Airport. The U. S. owned Coin-Operated Amusement Machines Co. (COAMCO) is using the facility for the assembly and shipment of electronically-operated amusement machines. Future plans call for complete manufacturing in Ireland. The development inducement program offers grants of up to $\$ 140,000$ for construction, 25 year exemption from income taxation, and customs-free use of the airport's facilities.

Canada-Hughes Aircraft Co. has named R-O-R Assoc., Ltd., Toronto, Ontario as distributor of their commercial products in Canada. The firm will distribute the complete line of Hughes semiconductors, cathode ray storage tubes, microwave tubes, and test instrumentation.

United Kingdom-Professor E. E. Zepler, Ph.D., Chair of Electronics at the University of Southampton, has been elected the 15th President of the British Institution of Radio Engineers.

Japan-Japanese electronic production continued to increase in 1958. Production for the first 9 months of 1958 was 24% above the same period in 1957. Japanese exports are also showing rapid gains. Exports for the same period amounted to $\$ 26,000,000$ -about $\$ 8,000,000$ more than in 1957. The above figures were compiled from reports prepared by the American Embassy in Tokyo.

Transatlantic TV - Tropospheric scatter now makes transatlantic TV technically possible-but over $\$ 50$,000,000 would be needed to build from 6 to 10 North Atlantic relay stations. Ed Dykes, Assistant Director of Page Communications Engineers, Inc. lists these developments which make such transmission possible: bigger antennas, accurate prediction of fades, power requirement reduction, bandwidth reduction, easier tests, and the "Mavar" amplifier, a device which cuts noise amplification.

United Kingdom-Three specialdesign radar projectors, which minimize "radar blindness" through a rapid photographic process which projects the picture on a large screen have been bought from England. The annoying flicker found on the ordinary radar screen can cause " radar blindness" after prolonged watching by otherwise healthy and efficient personel.

THIS CONTROL PROBLEM HAD TO BE SOLVED

FOR AUTOMATIC DOLLAR BILL CHANGERS

A.B.T.'s (division of Atwood Vacuum Machine Co., Rockford, llinois) intricate control problem in their unique "bill changer" required Hoffman Silicon Solar Cells, of exacting quality, to automatically register the authenticity of a dollar bill, in this innovation in automatic vending.
You, too, may have a control problem requiring immediate and accurate registering-instantaneous response (20 microsecconds)-long life (10,000 years ${ }^{\text {s }}$) -high light conversion efficiency (up to 10%)-wide spectral response range ($4,000 \cdot 11,500$ angstroms) - extended operating temperature range ($-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$).

Hoffman Silicon Solar Cefls, born from the same family as these which are still powering the U. S. Navy's Vanguard satellite's radio transmitter, can be the answer to yeur control problem. For details consult the Heffman Solar Cell applications specialist in your area or write to Department SS.

FREQUENCY STANDARDS

*31/8" high
400-1000 cy.

PRECISION FORK UNIT

 TYPE 50Size $1^{\prime \prime}$ dia. x 33/4" H.* Wght., 4 oz. Frequencies: 240 to 1000 cycles Accuracies:-

Type 50 ($\pm .02 \%$ at -65° to $85^{\circ} \mathrm{C}$) Type R50 ($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$) Double triode and 5 pigtail parts required Input, Tube heater voltage and B voltage Output, approx. 5 V into 200,000 ohms

PRECISION FORK UNIT

TYPE 2003
Size $1^{1 / 2^{\prime \prime}}$ dia. $x 4^{1 / 2^{\prime \prime}}$ H.* Wght. 8 oz. Frequencies: 200 to 4000 cycles Accuracies:-

Type $2003\left(\pm .02 \%\right.$ at -65° to $85^{\circ} \mathrm{C}$)
Type R2003 ($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$)

Type W2003 ($\pm .005 \%$ at -65° to $85^{\circ} \mathrm{C}$)
*31/2" high 400 to 500 cy . optional Double triode and 5 pigtail parts required Input and output same as Type 50, above

FREQUENCY STANDARD

 TYPE 50LSize $33 / 4 " x 41 / 2^{\prime \prime} x 51 / 2^{\prime \prime}$ High Weight, 2 lbs.
Frequencies: $50,60,75$ or 100 cycles

Accuracies:-
Type $50 \mathrm{~L}\left(\pm .02 \%\right.$ at -65° to $85^{\circ} \mathrm{C}$)
Type R50L ($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$) Output, 3 V into 200,000 ohms
Input, 150 to $300 \mathrm{~V}, \mathrm{~B}$ (6 V at .6 amps .)

FREQUENCY STANDARD

 TYPE 2005Size, $8^{\prime \prime} \times 8^{\prime \prime} \times 7^{1 / 4 \prime}$ High Weight, 14 lbs.

Frequencies: 50 to 400 cycles
(Specify)
Accuracy: $\pm .001 \%$ from 20° to $30^{\circ} \mathrm{C}$

Output, 10 Watts at 115 Volts
Input, 115V. (50 to 400 cycles)

FREQUENCY STANDARD

TYPE 2I2IA
Size
$8^{3 / 4}{ }^{\prime \prime}$ x $19^{\prime \prime}$ panel
Weight, 25 lbs. Output: 115 V 60 cycles, 10 Watt
 Accuracy
$\pm .001 \%$ from 20° to $30^{\circ} \mathrm{C}$
Input, 115 V (50 to 400 cycles)

FREQUENCY
 STANDARD

TYPE 2IIIC
Size, with cover $10^{\prime \prime} x 17^{\prime \prime} x 9^{\prime \prime} H$. Panel model $10^{\prime \prime} \times 19^{\prime \prime} \times 83 / "^{\prime \prime} H$.

$$
\text { Weight, } 25 \text { lbs. }
$$

Frequencies: 50 to 1000 cycles
Accuracy: ($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$)
Output: $115 \mathrm{~V}, 75 \mathrm{~W}$. Input: $115 \mathrm{~V}, 50$ to 75 cycles.

ACCESSORY UNITS

for TYPE 2001.2
L-For low frequencies
multi-vibrator type, $40-200 \mathrm{cy}$.
D-For low frequencies
counter type, 40-200 cy.
H -For high freqs, up to 20 KC .
M-Power Amplifier, 2W output.
P-Power supply.

This organization makes frequency standards within a range of 30 to 30,000 cycles. They are used extensively by aviation, industry, govern. ment departments, armed forces-where maximum accuracy and durability are required.

WHEN REQUESTING INFORMATION PLEASE SPECIFY TYPE NUMBER

American Time Products, Inc.

TOP LEVELETALIK relayed on teleprinted tape

At U.S. Army field communications centers, Kleinschmidt torn tape relay units send, receive, retransmit messages to widely-dispersed commands
"Getting the word" from top command to outlying units in the field can create a communications traffic jam. This compact relay unit solves the problem. It quickly, accurately, automatically numbers and prints each message as it simultaneously relays another message to one or 100 receivers in the communications network! Developed
in cooperation with the U. S. Army Signal Corps, the unit's applications include telemetering, integrated data processing, torn tape communication. In recognition of Kleinschmidt's high standards of performance, equipment produced for the U. S. Army is manufactured under the Reduced Inspection Quality Assurance Plan.

GOVERNMENT ELECTRONIC CONTRACT AWARDS

This list classifies and gives the value of electronic equipment selected from controcts awarded by government agencies in Jonuary. 1959.

Fellowships Awarded

Nine Hughes Aircraft Co. scientists and engineers: Dale B. Donalson, Edward H. Erath, Robert Lull Forward, Robert W. Hougardy, Maier Margolis, James E. Mercereau, Louis A. Rondinelli, Frank L. Vernon, Jr., and James K. Yakura have been awarded Hughes Staff Doctoral Fellowships, according to Dr. Andrew V. Haeff, company vice-president.

The fellowships provide a minimum of $\$ 1500$ a year plus cost of tuition, fees and textbooks. Winners will hold their regular fulltime jobs at Hughes during the summer and those attending nearby universities will work one day a week during the academic year.

More News on Page 68

ALL-PURPOSE DIGITAL VOLT-OHM METER

Examine these outstanding features.

As the picture reveals, BECKMAN/Berkeley's Model 5350 is the most useful, most versatile digital instrument of its kind. It offers operating flexibility and features not found in digital voltmeters costing three times as much. The Model 5350 makes it feasible to replace multipurpose analog equipment with a more accurate, rapid and foolproof means of making the vast majority of everyday voltage and resistance readings.

Three digits present all readings within the nominal full scale range (000 to 999), a fourth digit permits off-scale readings up to 150% of full scale. All electronic construction eliminates troublesome stepping switches and permits an instantaneous display of readings at rates up to 10 per second.

Berkeley Division

2200 Wright Avenue, Richmond 3, California a division of Beckman Instruments, Inc.

Superior Crack Resistance

Abstract

Laboratory tests and production results prove "SCOTCHCAST" Flexible Resins (1) superior in resisting cracking from thermal or mechanical shocks; (2) offer important advantages for impregnation, embedding, and encapsulating motors, coils, transformers, resistors, capacitors, and other electrical and electronic components.

With "Scotchcast" Brand Flexible Epoxy Resins, you can be sure of shock resistance properties that surpass any required to satisfy the most rigid military specifications *; can reduce the expenses normally entailed in screening and testing resins for prototypes. "Scotchcast" Flexible Resins can also cut your production costs by reducing rejections because of insulation cracking. And, of course, "Scotchcast" Flexible Resins give you the added assurance of customer satisfaction because the units you supply can withstand stresses of the most severe environmental conditions.

* A paper describing specially developed thermal shock tests of greater severity than those called for by the MIL-I-16923C Shock Test, is available upon request. Contains complete information 10 duplicate tests in your own laboratory. Free upon request to $3 M$ Co. at the address below.

When to use

FLEXIBLE RESINS

"Scotchcast" Flexible Resins were developed by 3 M to meet the need for crack resistance under stresses of mechanical and

Why A Flexible Resin? This unretouched photo shows what happened when two "shock resistant" resins-both passing Thermal Shock Tests of MIL-I-16923C Type C-were cast about a metal insert to more closely reproduce stresses in service. The permanently flexible "SCOTCHCAST" No. 241 , on the right, withstood 10 cycles (130° to $-55^{\circ} \mathrm{C}$.) and absorbed all stresses without cracking. The resin on the left cracked during the first cycle. Shrinkage stresses during cooling exceeded the strength of the resin. Write for paper describing these tests in detail.
thermal shock. In addition, the stress-relieving properties of these resins reduce to a minimum the effect of resin shrinkage on the magnetic properties of core materials. Similarly, fine wire breakage is completely eliminated.
"Scotchcast" Brand Flexible Resins are true flexible resins - made permanently flexible by modifying the molecular structure of the resin itself. This gives them the permanent ability to withstand shrinkage stresses during cooling when cured, and environmental stresses of mechanical shock and rapid severe temperature changes.
"SCOTCHCAST" is a registered frademark for the elec. trical insulating resins of 3 M Co., St, Paul 6 , Minn. Export: 99 Park Ave., New York 16, Canoda: London, Ontarib,
"SCOTCHCAST" No. 253 . . the flexible resin for dipping!

This transformer meets MIL-T-27A Grade 5 requirements. It was impregnated using "SCOTCHCAST" No. 241, and then dipcoated with "Scotchcast" Resin No. 253. There is no limit to the sizes and shapes of properly designed components that can be dip encapsulated with No. 253.

A newly revised booklet covering impregnating and encapsulating transformers to meet MIL-T-27A specifications is now available. Covers all six grades and gives four proven processes. Free . . . write for it.

Ready-to-use "SCOTCHCAST"

As with all "Scotchcast" Brand Resins, you get these crack-resistant resins in ready-to-use production-proven formulations: "Scotchcast" Nos. 235 and 241 for the ultimate in impregnatirg and casting ability; and "Scotchcast" No. 253 for smooth, uniform dipcoating results. All three have 2 to 4 day pot life at room temperature, yet can be cured in 2 hours at $250^{\circ} \mathrm{F}$. All are supplied as pre-formulated, pre-measured resin-and-hardener systems, complete, ready to use in simple mixing ratios such as one-to-one and two-to-one to eliminate the need for special mixing and dispensing equipment and highly trained scientific personnel on the procuction line.

FREE TECHNICAL ASSISTANCE

3M's trained field engineers supported by 3 M 's research organization are fully qualified to assist or advise you in designing or modifying units for resin encapsulation; can help you select the correct "Scotchcast" formulation for any application. Technical service is provided without cost or obligation. Write: 3M Co., 900 Bush Ave., St. Paul 6, Minn., Dept. TP-39.
SCOTCHCAST
INSULATING RESINS

Silicon
General Purpose-Diodes

Very High Frequency Silicon Power Transistors

Six new typess three oscilltat transistors and three
tumplifier truasistors, rate ulurently available in limited - Power capabilities at 70 megsacycles of $1 / 4,1 / 2$, and - High volaye capability permitting operation at col-- Colloctor power disisiation rating of $21 / 4$ watts at
Soc c case temperature Typieal amplifier gain of 10 dh at 70 mc .

Please Note

All specifications and information contained herein are current as of February 25 , 1959. This advertisement has been inserted in the March
issue of Electronic Industries to speed the comissue of Electronic Cndustries to speed the com-
munication of PSI product information to the specifying engineer. Similar product advertise-
ments, compiled from latest PSI specifications, ments, compiled from latest PSI specifications,
will appear regularly in this and other leading electronic publications.
rijil actual size

Silicon

High Conductance Diodes

Silicon
Subminiature Rectifiers
त15

Silicon Very High Voltage

Varicap

Voltage-Variable Capacitor

Non-Linear Resistors

 fill

Standard Encapsulations

Rapidly expauding programs in Very High Fro quence and Tery High Power silicenn trausistors
silicon microdiodes, voltage-vartialle caluacitors and
 ber of exceptional technicall staff opportunities at Pacific Semiconductors, Inc

ELECTTICAL ENGINEERS . . diode and transisto PHYsicisis and test equipment development. PHYsIIIITSS. . . Product research including develop
ment of transistors, diodes, and other semiconduc tor components.
PHYSICAL SCIENTISTS...challenging research programs in crystal growth and perfection studies em ploying the latest infrared and etton pitt eenhimue
. solid state diftusion techniques and the stud \ldots solid state diftusio

Sone of thess positions encompass full supervisory responsisibility . Al officr an oppportunity for growth and individual recognition that is unique in the seniconductor field.
If you nere interested in associatinus yourself and your future with a dynamic. growing company such as Pacific Senicenductors, Ince, you shoul investigite these oppportunities it once.
For speceific information in your particulirr fick
write to Technical Staff Placement, Picific Semi condluctors Inc., 10451 W . Jefferson Blva., Culver
City, Califormii

NEW!
Eight new EIA types
Fast Recovery Silicon Diffusion Computer Diodes (ifl) actual size

...added to the broadest line of Fast Recovery Silicon Computer Diodes in the industry!

Tmem		Mamem	Matimimme	${ }^{\text {amaxamamer }}$			
			 250 80	Rememe			
-1mas	$\stackrel{20}{20}$	10		${ }^{\text {2000\% }}$			
Inser	$\stackrel{10}{10}$	${ }_{10}^{10}$		${ }_{\text {lox }}^{\text {ama }}$	${ }_{0}$		
meoum convorrace trpes							
cow conoucrame pres							

Switch to Silicon!

Physical Characteristics

 Patants. No. 2825 ITf4, No No.
Other patents pending
\#
Pacific Semiconductors, Inc. 10451 West Jefferson Boulevard, Culver City, California
TExas $0-4881$, TExas 0 .-6113
TWX: CULVER CITY CAL
T135

NEW!

Zener Diodes
500 mW Power-Dissipation
(ifil) actual size

Tele-Tips

THE U. S. RADAR SCREEN showed some embarrassing holes in the middle of the Cuban trouble. Two Cuban air force officers landed their B-26's at Daytona Beach, Florida without being detected.

ELECTRONIC MUSIC got a grant of $\$ 175,000$ from the Rockefeller Foundation. Columbia and Princeton Universities shared jointly in the award which covers a fiveyear period. It provides for acquisition and design of electronic equipment and its maintenance, and technical assistance to composers.

DEFINITIONS of the international yard and the international pound have been agreed on by the six principal English-speaking countries. The yard is set at 0.9144 metre, and the pound equal to 0.45359237 kilogram.

RADAR SPACE observatory containing a nuclear power source to supply electrical energy is proposed by three Univ. of Michigan researchers to determine where on the moon the first landing should be made to avoid sinking in the globe's dust-like surface.
"SOS" signals off the California coast were traced to two teenagers and their surplus "Gibson Girl" transmitters. The boys didn't realize that the sets automatically transmitted distress calls when they tinkered with them.

JAMMING SPACE communications would be one way of restricting the Russians' effectiveness in space warfare, says Dr. Simon Ramo. Speaking at the Institute of the Aeronautical Sciences he made the point that the only way to beat the Russians in a space war would be actually to have more satellites in the sky than they do. With more satellites we could jam the Reds' communications network, and immobilize their operations.
(Continued on page 46)

for isolating high voltages

The Shell-Type Donut Transformer (Secondary Floating) is used for isolating high voltages on filaments, cascaded high voltage power units, etc.

The low cost of this unit is achieved by eliminating ceramic bushings, oil and tank. Similar units, but of core type, have been manufactured for the past 15 years and have demonstrated reliable performance.

The new Shell-Type Donut Transformer has a much more compact design. In comparison with the conventional oil tank unit,
its size and weight are reduced approximately 40%.
The NWL Shell-Type Donut Transformer, a new member of the well-known family of NWL custom-built Transformers, is made to fit the particular needs of the user. Each Nothelfer transformer is individually tested for core loss, polarity, voltage, corona, insulation breakdown and aging characteristics and must meet all customer's requirements before shipment. We shall be glad to receive your specifications and quote you accordingly.

nothelfer winoing laboratories, inc., P. O. Box 455, Depi, El-3, Trenfon, N. J. Specialists in Custom-Building

NEW DISTRIBUTION NETWORK MAKES IMMEDIATELY Avallable all the important advantages of BENDIX CONNECTORS

Large inventories of Bendi. ${ }^{(8)}$ Electrical Connectors are now strategically located to assure you rapid delivery, regardless of your requirements or your location.

Each distribution center is factory-approved and inspected, and is stocked with connectors and components in an exceptionally wide range of types and sizes. Assembly and quality control facilities are maintained in complete accordance with factory standards and recommendations. Their staffs are
adequate to assure not only immediate service but also reliable, efficient shipment of your order.

This expanded distribution system, combined with our greatly enlarged factory production facilities, makes available to all users the important advancements in engineering and design for which Bendix Electrical Connectors are favorably known.
We suggest you check the map now for the source nearest you.

Now Available from $\mathbf{B \&} \mathbf{A}^{\circ}$

 HIGH-PURITY LOW-MELTING GLASS
For Coating Electronic Devices

Here's good news for every producer of electronic devices. Lowmelting glasses-a new research development reported before the Electrochemical Society by S. S. Flaschen and A. D. Pearson of Bell Telephone Laboratories* may represent a major breakthrough in low cost and highly efficient protective coating of semiconductors, capacitors, diodes and other types of electronic devices.

These new, high-purity, lowmelting glasses promise an ideal coating for protecting germanium and silicon transistors and diodes
from atmospheric oxidation, contamination and humidity. Coating may be accomplished by simply dipping the devices in a fluid bath of the glass, withdrawing and cooling; by vapor deposition; or through the use of a pre-form (compressed powder).

Research quantities now available
from B\&A!
We can now supply low-melting glasses to meet the needs of your development engineers. Write us today for further information or technical assistance.

Abstract Na. 216. Jouznal of The Electrochemical Soci-
ety, August, 1958.

GENERAL CHEMICAL DIVISION

Radio Receptor silicon diodes
 0 GHARACTERISTICS

high speed • high conductance • high temperature high voltage • high back resistance

General Instrument semiconductor engineering has made possible these Radio Receptor diodes with a range of characteristics never before available to the industry.

The types listed here are just a small sampling of the complete line which can be supplied in volume quantities for prompt delivery. Write today for full information.

Including the industry's most versatile diode with uniform excellence in all parameters

GENERAL PURPOSE TYPES		FAST RECOVERY TYPES	HIGH CONDUCTANCE TYPES	
1 N456	1N461	1N625	1 N482	1N484A
1N457*	1 N462	1 N626	1N482A	1N484B
1 N458 ${ }^{\circ}$	1 N463	1 N627	1N482B	1 N485
1N459*	1 N464	1 N628	1 N 483	1 N485A
		1 N629	1N483A	1N485B
			1N483B	1 N486
			IN484	1 N486A
- JAN Types				

PLUS a large group of special DR numbers developed by General Instru. ment Corporation with characteristics that far exceed any of the standard types listed abovel

Semiconductor Division
GENERAL INSTRUMENT GORPORATION
65 Gouverneur Street, Newark 4, N. J.

* By definition-a direct reading DC electrical indicating instrument with an effective scale length of 70 inches and an accuracy of $.05 \%$.
 BILITY-as a rack-mounted, edgewise panel instrument or as a portable instrument. The SRIC DIFFERENTIAL " 70 " INCREMETER is a high resolution, phenomenally accurate measuring device with proven stability, because it is an Electrical Indicating Instrument.
DIAMOND PIVOTED OF COURSE.
DIAMOND PIVOTED OF COURSE.
VIISIT US AT THE NEW YORK IRE SHOW-BOOTHS $3410-12$

Tele-Tips

(Continued from page 41)
FLYING SAUCER sightings hit a new low during the last half of 1958. A slim total of two were reported.

SOLDERING TIPS take on new life through a plating process by Hexagon Electric Co. The plating immunizes the shank of the tip from solder, to prevent adhering of solder except on the working surface.

FCC FIELD ENGINEERS ran into their usual quota of odd-ball interference cases during the past year.

One particularly queer case involved a California family that went on vacation, leaving their AM receiver turned on. Possibly out of loneliness, it began to retransmit the programs of a local broadcast station, in a way that played havoc with reception by radiotelephone stations up to 33 miles away. A new tube and flick of the "off" switch cleared up the trouble.

Hoax signals being transmitted on a space satellite frequency were confusing scientists here and elsewhere. By working night and day, FCC field engineers traced the transmitter to a spot deep in a national forest. The three operators were arrested and fined. The six FCC engineers got citations and cash awards.

Another problem is the "salty" language used by the boat skippers. Fines up to $\$ 500$ have been levied for off-color remarks transmitted on marine radiotelephones.

Alaskan stations heard the plaintive distress call, "My engine has conked out. I have landed but can't walk out. Send a 'copter to pick me up." A coordinated air search fanned out over the area, searched vainly for a downed aircraft. Finally, a 12 -year old boy confessed that, while "playing jet pilot" in an unattended private plan, he had used the transmitter.

Newest version of Consolidated's low-cost leak detector contains an integral cold trap and design changes which greatly extend analyzer life and provide optimum performance during weeks of continuous leak testing. On the quality-control line of Wiancko Engineering Co.-in constant operation up to 24 hours a day - CEC's 24-210A keeps the leak checkout of explosion-proof systems abreast of a crash-basis production schedule.

As the ideal leak detector for aircraft, missile, and armedservices suppliers, this helium-sensitive mass spectrometer accurately locates leaks of $1 \times 10^{-9} \mathrm{~atm} \mathrm{cc} / \mathrm{sec}$ of air on both
vacuum and pressure systems. Mobile operation in the shop is afforded by a wheeled workstand-specially designed for convenience.

Constructed for years of economical performance, the 24-210A features a stainless steel manifold system, standard 110 volt/60 cycle line power for operation, and a large-volume cold trap which needs refilling only once an eight-hour shift.

The instrument is designed for maximum operator efficiency in mass-production testing... offering the highest performance per dollar invested. Contact your nearest CEC Field Office for information, or write for Bulletin CEC 1830-X35.

CONSOLIDATED ELECTRODYNAMICS 300 N. Sierra Madre Villa, Pasadena, Calif.

FOR EMPLOYMENT OPPORTUNITIES WITH THIS PROGRESSIVE COMPANY, WRITE DIRECTOR OF PERSONNEL

AUXILIARY TEST STATIONS ... PSM 102 \& 202 may be used with all CEC Leak Detectors for hooding, probing, and inside-out leak testing techniques. PSM 102
is a semi-automatic or manual unit with one or two bell jars. PSM 202 is fully automatic. Write for Bulletin CEC 4.62.
"1PB600" Series pushbutton switch, one of many in the "One-shot" IIne.

New "'One-Shot" switches produce
 one square wave pulse per operation

These are typical output curves for the "1PB600" Series "One-Shot" switch, illustrated above.

This new series of snap-action switches incorporates a special circuit which produces a single square wave pulse regardless of the speed of switch operation. Variations can be furnished with pulse widths from 0.1 to 10.0 microseconds. The basic "One-Shot" circuit can be provided with a variety of switch types. No standby power is required. The circuit is potted for physical and environmental protection.
These "One-Shot" assemblies provide a pre-engineered, compact package to accomplish a shaped wave output, thus eliminating costly, time-consuming custom development of circuits.
"One-Shot" switches are available for operation in temperatures from -65° to $+185^{\circ} \mathrm{F}$.
Applications include computer and radar consoles, keyboards, electronic test equipment, fusing, arming and firing circuits, checking ring counters, setting and resetting flip-flops, and reflected pulse systems. Ask for data sheet 150.
Engineering assistance on switch application is available from the micro switch branch office near you. Consult the Yellow Pages.

MICRO SWITCH . . . FREEPORT, ILL.
A division of Honeywell
In Canada: Honeywell Controls Limited, Toronto 17, Ontario

Iave

Hand size, but with the features of a full-size V-O-M.
20,000 ohms per volt DC; 5,000 AC.
EXCLUSIVE SELECTOR SWITCH speeds circuit and range settings. The first miniature V-O-M with this exclusive feature for quick, fool-proof selection of all ranges.

SELF-SHIELDED Bar-Ring Instrument; permits checking in Strong Magnetic Fields.

Fitting interchangeable test prod tip into top of tester makes it the common probe, thereby freeing one hand.

Unbreakable plastic meter window.
BANANA -TYPE JACKS-positive connection and long life.

The most comprehensive test set in the Triplett line is Model 100 V-O-M Clamp-On-Ammeter Kit, now available at distributors. The world's most versatile instrument-a complete accurate V-O-M plus a clamp-on-ammeter with which you can take measurements without stripping the wires. Handsome, triplepurpose carton holds and displays all the components: Model 310 minjaturized V-O-M, Model 10 Clamp-On-Ammeter, Model 101 Line Separator, No. 311 extension leads and a Leather Carrying-Case, which neatly accommodates all the components. Model 101 literally, makes it possible to separate the two sides of the line when using Model 10. Extension leads permit use of Model 10 at a distance from the V-O-M. Complete Model 100 is only $\$ 59.50$.

For full information see your Triplett distributor or write
TRIPLETT ELECTRICAL INSTRUMENT COMPANY: BLUFFTON, OHIO

AND A VOM FOR EVERY PURPOSE AND EVERY PURSE

630
630-A
$630-\mathrm{PL}$
$630-A P L$
630-NA
630-T
631
$310 \quad 666-\mathrm{HH}$
625-NA
666-R

the REASONS "WHYY"

1. Coupling HIGH QUALITY ... and ECONOMY... this phenolic tubing is now used as the standard coil form by all leading radio and television manufacturers.
2. SEVEN GRADES are available, ensuring the correct electrical and physical characteristics needed.
3. NO TOOL CHARGES! You save because it is completely fabricated to your specifications in our plants.
4. HIGH DIELECTRIC STRENGTH, with ratings up to 250 v.p.m.
5. LOW MOISTURE ABSORPTION, averaging only 5% at $95^{\circ} \mathrm{F}$. relative humidity, is another important property.
6. HIGH HEAT RESISTANCE, retains its specific characteristics up to a continuous temperature of $250^{\circ} \mathrm{F}$.
7. CHEMICAL RESISTANCE to normal strength basic, acidic, and salt solutions.
8. UNIFORM CLOSE TOLERANCES guarantee a maximum unit performance regardless of size of production run.

Write for our latest "Clevelite" brochure.
Why pay more? For quality products...call Cleveland! *Reg. U.S. Pat. Off.

PLANTS \& SALES OFFICES:

Cleveland detroit

CHICAGO
CHICAGO
tos ANGELES
PIYMOUIH, WIS.
JAMESBURG. N 1 .
OGDENSBURG

THE

GIEVELAND CONTANEF
6201 barberton ave. - cleveland 2, ohio
ABRASIVE OIVISION ai CLEVELAND. OH,O

NEW "AVALANCHE" DIODE SWITCHES IN LESS THAN 0.15 MILLIMICROSECOND

Low Capacitance - Low Dynamic Resistance

Fastest switching device known to science is a new Sperry Semiconductor diode, developed in collaboration with the Univac Division. Observations indicate this diode turns on a current pulse in less than 0.15 millimicrosecond. While calculations indicate even faster response is possible, measurement is limited by the rise time of present-day pulse generators.
Full significance of this Sperry achievement in the art of solid state switching is still to be explored. Immediate applications seen for the design engineer include advanced computers capable of processing data in three days that today takes a year . . experimental UHF, TV and microwave circuitry
navigation and guidance systems for missiles and space vehicles. Prime feature of this device is that its low dynamic resistance and capacitance do not limit its switching time.

The device, packaged as a subminiature glass diode, is designed to operate around the breakdown voltage of an alloyed P-N junction utilizing the avalanche breakdown effect for switching. The P-N junction is formed by alloying a microscopically small (.0015" diameter) aluminum dot onto an N type silicon wafer. This aluminum dot is biased negatively with respect to the silicon wafer near the breakdown voltage. A sudden increase or pulse on this negative voltage causes a current to flow by an
"avalanche" mechanism in which one electron will cause many, many more electrons and holes to flow.

Designed for volume production, this new diode is available in limited numbers for experimental use. Write for more information.
Visit our booth 1410-1416, 1959 Radio Engineering Show, March 23-26.

SPERRYSEMICONDUCTOR DIVISION, SPERRY RAND CORPORATION, SOUTH NORWALK, CONNECTICUT Address all inquiries: Marketing Department, Great Neck, N. Y., or Sperry Gyroscape offices in Brooklyn. Chicago. Cleveland, Seattle, San Francisco. Los Angeles, New Orleans, Boston, Battimore, Philadelphia.

Choose ELECTRA and get locked-in reliability ...

Five outstanding precision resistors, each designed to help you solve specific reliability problems...

1 Deposited Carbon, with new R Coating-Low in cost, yet meets or exceeds all Mil-R-10509B requirements.
2 Deposited Carbon, plastic encapsulated-A precision resistor encased in a super-tough molded jacket . . . remarkable ability to withstand mechanical abuse.
3 Deposited Carbon, hermetically sealed-Encased in impervious ceramic sleeve, sealed with special silver alloy solder . . . outstanding resistance to humidity and other enemies of reliability.
4 New Precision Carbon Film, Series 125-Thanks to Electra's exclusive new type R-5 coating, withstands 125 C under full load for 1,000 hours with less than 1% change.
5 Molded Metal Film-Equals or surpasses precision wire wound resistors, yet smaller in size, lower in cost, also gives you better RF performance plus uniformity in size over a wide resistance range.

All available in a wide range of sizes and resistance ranges . . . your request will bring full details by return mail. Write today.

Books

(Continued from page 50)

Reflex Klystrons

By J. J. Hamilton. Published 1959 by The Macmillan Co., 60 Fifth Ave., New York 11. 260 pages. Price $\$ 9.00$.
This book, a survey work, provides a simple, concise - but thorough treatment of the reflex klystron. It is written primarily for those just entering the microwave oscillator field, but it should be of interest and value to all microwave engineers.

It opens with an historical background, then gives operating principles, theoretical aspects, and a description of cavity resonators and output systems with definitions, measurements and circuits. The theory of an idealized reflex oscillator is presented along with the effects of deviations from the ideal case and the extent of validity of the simple theory applied to the practical case. It discusses load effects and engineering aspects. Chapters are devoted to representative and unconventional reflex klystrons. The final section discusses future trends and new microwave devices and lists the principal symbols used.

The Practical Dictionary of Electricity and Electronics

By R. L. Oldfield. Published 1959 by American Technical Society, 848 East 58th St., Chicago 37. Price $\$ 5.95$.
A basic vocabulary of modern electricity and electronics, this book contains the terms most often used in theory and practice. Drawings and pictures are used wherever they help in visualizing the action or term being defined.

A handbook section has tables, symbol charts (illustrated) and formulas most often used by engineers and scientists. A "memory refresher" technique is used for classifying types of equipment or components under general headings. Cross referenced terms are indicated in boldface type.

Guide to the Literature of Mathematics and Physics Including Related Works on Engineering Science
By Nathan Grier Parke III. Published 1958 by Dover Publication, Inc., 920 Broadway, New York 10. Price $\$ 2.49$.

This book was written to meet the needs of scientists and engineers for a classified guide to mathematical and physical literature. The first section of the book offers suggestions for those unfamiliar with library techniques.
(Continued on page 54)

basic snap-action switches

FOR AIRCRAFT, MISSILE, ELECTRONIC AND INDUSTRIAL APPLICATIONS

- quality engineered designed to meet human factors
- over $\mathbf{6 0 , 0 0 0}$ switch and actuator variations available
- adaptations can be made to fit your requirements

tiny

switches?
LOOK AT THESE...
moisture proof? SEE HERE...

sub-sub-miniature

actual size
T series SPOT

Only $.526^{\prime \prime}$ L. x. $250^{\prime \prime}$ W. x $.323^{\prime \prime}$ H. No dead break, perfect for super-sensitive uses. High repeatability, only one moving part besides button. Rugged construction withstands extreme shock and vibration.
Amp. Temp. T. $3-65^{\circ}$ to $+250^{\circ} \mathrm{F}$.
T- $7-65^{\circ}$ to $+350^{\circ} \mathrm{F}$.
Elec. $\quad 7.5 \mathrm{amps}$ (ft) $125 / 250$ V.A.C.
Rating: 7.5 amps Res. fo 30 V.D.C. 3 amps Ind. @ 30 V.D.C.
sub-miniature

actual size
E4-100 series SPOT
L.W.H. $25 / 32^{\prime \prime} \times .250^{\prime \prime} \times 23 / 64^{\prime \prime}$

Elect. $5 \mathrm{amps}(a) 125 / 250$ V.A.C.
Rating: 4 amps Res. (t 30 V.D.C.
2.5 amps Ind. a 30 V.D.C.

Operating Force 150 grams max.
Amp. Temp. $\quad-65^{\circ}$ to $+250^{\circ} \mathrm{F}$.
Variety of termination and operating characteristics. For switches meeting Military and U.L. approval, write for details.

gang in min. space w/ciose-tolerance mtg.

A5-71/T-3
new designs on the boards, send us your requirements

A5-73/T. 3
slier leaf

A4-15/E4-103

A9.7/E4-103 rotary
miniature
ENVIRONMENT FREE

L.W.H. $1 / 8^{\prime \prime} \times 11 / 32^{\prime \prime} \times 19 / 32^{\prime \prime}$

Exec. 5 amps (a) $125 / 250$ V.A.C. Rating: 4 amps Res. we 30 V.D.C.
2.5 amps Ind. @ 30 V.D.C.

Operating Force 5 to 17 oz .
Amp. Temp. $\quad-65^{\circ}$ to $+180^{\circ} \mathrm{F}$
EF-105-65

Termination, $12^{\prime \prime}$ of 20 ga . wire epoxy resin sealed. Enclosed basic switch conforms to MIL-S-6743, with entire unit meeting MIL-E5272A.

A5-59/EF-103

leaf

A3.38/EF-103 A3.38/EF-103
momentary

A3-51/EF-103 momentary,
(center off) (center off)

A5-103/EF-103 roller leaf

A4-58/E•-103 A4-58 /tr- 103
roller ball, cam act

Need a special switch?

Often standard switches can be modified to do the job. If a special switch is required, Electrosnap engineering can create new switches in any quantity to your specificatons. Send us your problemour answer can save you time and money.

SWITCH DIVISION - 4244 W. Lake Street, Chicago 24, Illinois
Telephone: VAn Buran 6-3100, TWX No. CG-1400

The concept of creativity

Reliability....uniformity...performance. You expect all three from Triad transformers. To these qualities, Triad brings the concept of creativity.
Typical result of Triad's continuing research is a new toroid transistor power transformer. Innovations in winding and core material boost efficiency to as much as 90%. Inputs are for use with $6 \mathrm{v}, 12 \mathrm{v}$, and 28 v
 battery-driven transistor inverters, with outputs of rectified DC from $250 \mathrm{v} @ 65 \mathrm{ma}$ to $600 \mathrm{v} @ 200 \mathrm{ma}$. Also available: AC outputs @ $115 \mathrm{v}, 60 \mathrm{cps}$ and 400 cps .
Light, compact, encapsulated, these new Triad units meet Mil. Specs.; are ideal for printed circuitry. See them at Triad's booth, I.R.E. Show-or write for literature.

TRIAD TRANSFORMER CORPORATION
4055 REDWOOD AVE VENICE, CALIFORNIA A SUBSIDIARY OF LITTON INDUSTRIES

Books

(Continued from page 52)

The bibliographical part of the guide contains about 2300 entries under some 150 subject headings. Under each heading is a paragraph or two delineating the subject, suggesting related headings, and in some cases singling out titles that will prove useful as a point of departure

Guided Missile Engineering

Edited by Allen E. Puckett and Simon Ramo. Pub lished 1959 by McGraw Hill Book Co., Inc., 330 West 42nd St., New York 36. Price $\$ 10.00$.
Guided missile engineering requires the simultaneous and compatible solution of problems in aerodynamics, structures, propulsion, electronics, instrumentation and other related fields. Thus the modern engineer needs to know not only the problems in his own specialized field, but to some degree the problems in all other areas relating to the over-all performance of the device.

This book, written by 18 missile engineering experts, gives important principles and engineering techniques of the various sciences that make up the field. With it the engineer can gain a clear understanding of the relation between his field and guided missile engineering as a whole.

Books Received

Research Highlights of the National Bureau of Standards Annual Report, Fiscal Year 1958
Available from Superintendent of Documents, U.S. Government Printing Office, Washington 25, D. C. Price 45 cents.

Tube \& Semiconductor Selection Guide-1958-59 2nd Edition
Compiled by Th. J. Kroes. Published 1958 by the Tech. E Scient. Lit. Dept., N. V. Philips Gloeilampenfabrieken, Eindhoven. Holland. 158 pages. Price $\$ 1.50$.

Guide to Mobile Radio

By Leo G. Sands. Published 1958 by Gernsback Library, inc., 154 West 14th St., New York 11. 160 pages. Price $\$ 2.85$.

Transistors Theory and Practice 2nd Edition

By Rufus P. Turner. Published 1958 by Gernsback Library, Inc., 154 West 14th St., New York 11. 160 pages. Price $\$ 2.95$.

A-C Circuit Analysis

By A. Schure. Published 1959 by John F. Rider Inc., 116 West 14th St., New York 11. 104 pages.
Price $\$ 1.80$.

KEMET SOLID TANTALUM CAPACITORS PROVIDE UNMATCHED STABILTY UP TO $125^{\circ} \mathrm{C}$

The curve at the right illustrates actual leakage current for a "Kemet" 5 mfd .30 volt capacitor over a 2000 hour test interval when measured at $125^{\circ} \mathrm{C}$ (not at room temperature). This characteristic is extremely important where equipment must provide stable operation at elevated temperatures.
"Kemet" capacitors offer precision electrical performance over long periods of storage and service life . . . proved temperature stability from $-80^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \ldots$ and exceedingly low dielectric losses. KEMET COMPANY - supplier of a complete line of solid tantalum capacitors - is not dependent on other suppliers for the mining or processing of tantalum.

WRITE TODAY FOR FREE
This four-page folder provides performance curves, operating characteristics and specifications.

KEMET COMPANY
DIVIBION OP

LEAKAGE CURRENT vs. TAME AT $125^{\circ} \mathrm{C}$ "KEMET" K5H3O SOLID TANTALUM CAPACITOR (Average of Typical Capacitors)

OFFICES: 11901 Madison Avenue, Cleveland 1, Ohlo

modular enclosures

How commercially available

Shielding, Inc. manufactures dust free enclosures for use in sub-assembly rooms, laboratories and prototype departments, high precision and military equipment production areas, and all applications which require a high degree of freedom from contamination.
The engineering and design skill which has made Shielding, Inc. the leading manufacturer of RF Shielding Enclosures is also responsible for the special design features of our Dust Free Enclosures:

missile circuitry must be dependable and economical, too!

Formica ${ }^{(1)}$ XXXP-36 now better than ever!

12\# average bond strength
$500^{\circ} \mathrm{F}$ solder heat resistance

1 million megohms IR
Cold punch 1/6"
Dimensional stability
Low moisture absorption

Circuitry in the Bomarc-and many other missiles, too-is made of Formica XXXP-35. It's recognized everywhere as one of the best paper base copper clad laminates ever made, and yet it's definitely not a premium price sheet. Therefore, the valuable properties shown at left (normally found only in premium sheets) cost circuit manufacturers nothing extra.

For complete information on XXXP- 36 and the other outstanding grades in the Formica copper clad line, get your copy of the new Copper Clad Technical Data Book, form 830. Phone your district Formica representative, or write Formica Corporation, a subsidiary of American Cyanamid, 4536 Spring Grove Ave., Cincirnati 32, Ohio.

Twist it tii It Smaps and It still

WON'T

LEAK

The new improved Fusite V-24 Glass is so solidly fused to the stainless pins that 180° twisting won't break the bond between glass and metal.

Here is the line of hermetic terminals that is so resistant to both mechanical and thermal shock that terminals require no special nursing in application. Weld them, solder them, treat 'em rough-your assembly will remain hermetic, free of cracks under Statiflux testing.

Only V-24 Glass developed and smelted here in our own plant can produce terminals that give you such latitude in your production operation.

Wide variety of combinations of size, flange treatments, pin types and placement.

Write Dept. G-1 today stating your application and we'll send appropriate samples for your own testing.

THEY PROBE THE FUTURE OF DEEP-SEA TELEPHONY

"Dry Land Ocean," under construction at Bell Laboratories, simulates ocean floor conditions, is used to test changes in cable loss. Sampie cables are housed in pipes which contain salt water under deep-sea pressure. The completed trough is roofed in and is filled with water which maintains the pipes at $37^{\circ} \mathrm{F}$., the temperature of the ocean floor.

Deep in the ocean, a submarine telephone cable system is extremely hard to get at for adjustment or repair. This makes it vitally important to find out what can happen to such a system before it is installed.

Bell Laboratories engineers do this by means of tests which simulate ocean floor conditions on dry land. Among many factors they test for are the effects of immense pressures on amplifier housings and their water-resistant seals. They also test for agents which work very slowly, yet can cause serious destruction over the years-chemical action, marine horers and several species of bacteria which strangely thrive under great pressures.

Through this and other work, Bell Telephone Laboratories engineers are learning how to create better deep-sea telephone systems to connect America to the rest of the world.

Highly precise instruments developed by Bell Laboratories engineers are used to detect infinitesimal changes in cable lossto an accuracy of ten millionths of a decibel.

Seawater and sediment in bottle characterize ocean floor. Test sample of insulation on coiled wire is checked for bacterial attack by conductance and capacitance tests.

New Speed...Versatility ... Reliability

TRANSISTORIZED DICITAL MAGNETC TAPE HANDLER

- Check these new standards of reliability and performance

- Completely tronsistorized for maximum reliability
- Trouble free brushless motors
- Over 50,000 passes of tape without sig. nal degradation
- Linear servo system
- Life expectancy of pinchroll mechanism: over $100,000,000$ operations
- Skew $\pm 3 \mu_{\text {sec }} 1 / 2^{\prime \prime}$ tape, center clock at 100 i.p.s.
- Vacuum loop buffer
- Continuous flutter free cycling 0 to 200 cps
- Normal speed up to 100 i.p.s.
- Rewind or search speed constant of 300 i.p.s.
- Six speeds forward or reverse up to 150 i.p.s.
- Better than 3 miliseconds start, 1.5 millisec. stop
- Front panel accessibility
- In line threading
- End of tape and tape break sensing
- All functions remotely controllable
- Tape widths to $11 / 4^{\prime \prime}$

The 906 is usually supplied with the Potier 921 transistorized Record-Playback Amplifier; a unit that features:

> Pulse or level oulputs Output gating 1 i.p.s. to 150 i.p.s.

Manual, relay, or
electronic function switching
Dual read-write operation

Potter also manufactures a complete line of Perforated Tape Readers, High Speed Printers and Record-Playback Heads.

Contact your Potfer representative or call or write direct for further information.

POTTER INSTRUMENT COMPANY, INC. Sunnyside Boulevard, Plainview, N. Y.

OVerbrook]-3200

[^3]The mark of

Potter has career opportunities for qualified engineers who
like a challenge, and the freedom to meet it.

Letters

to the Editor

"Perforated Pages"

"If possible, have each feature article so printed that it can be removed and filed separately from any other feature articles . . ."

> Samuel A. Welk Engr.

Carrier Development Dept. Lenkurt Electric Co., Inc.
San Carlos, Calif.
"I am sure that there are many engineers like myself who "clip" and "abstract" your very fine magazine, after it has been read by all the regular people on the circulation list.

Can you possibly move the informative articles to the "left hand" side of the page, as shown on the attached sample. This would simplify clipping the pages a great deal since a very sharp razor blade is now required to do this, at the binding margin."

John E. Troutman,
Section Head, Liaison
Electronics Systems,
Stromberg-Carlson Co.
1400 N. Goodman St.,
Rochester 3, N. Y.
"I have a suggestion on your format. A wider binding-edge margin would permit page-clipping and notebook filing without loss of information from punch holes . . ."

> Loren A. Long, Engr.

Electronics Div..
Iron Fireman Co.
Portland, Ore.
"Print on one side of page only, with advertising on opposite side so references may be clipped and mounted . . ."

Rolland B. Arndt, Staff. Engr.
Remington-Rand Univac Div.,
Sperry Rand Corp.
St. Paul 16, Minn.

Ed. These letters are typical of the many that we have received on this subject. And that is why last month we started perforating the pages of El's editorial section, where the main articles are found. Now these pages can be easily detached and filed away for future reference, just as you, our readers, requested. We think that this is a big step forward in technical journalism. We hope you will agree.

As to the second point-separating articles so they can be removed in-dividually-this is rather difficult to arrange at times. The only promise we can make is that-we'll try.

Inside ESC: Number One

 RESEARCH KEEPS ESC FIRST in custom-built delay lines!

From the research laboratories of ESC come pathfinding prototypes that keep ESC first in custom-built delay lines. As America's largest producer of delay lines, ESC has constantly assumed leadership in the vital area of research and development, creating delay lines that have met the most stringent requirements of military and commercial applications.

But there is more to ESC leadership. Its production and quality control facilities are unequalled in the field. ESC submits complete and definitive laboratory reports with all custom-built prototypes which include submitted electrical requirements, photo-oscillograms, the test equipment used, and an evaluation of the electrical characteristics of the prototype.

Distributed constant delay lines - Lumped-constant delay lines - Variable delay networks - Continuously variable delay lines - Pushbutton decade delay lines - Shift registers - Pulse transformers - Medium and low-power transformers . Filters of all types - Pulse-forming networks - Miniature plug-in encapsulated circuit assemblies

See you at the I.R.E. Show-Booth \#2409

Silicone Sponge Rubber

remains flexible at extreme temperatures $-100^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}$

COHRlastic R-10470 silicone sponge rubber has a dense, uniform, non-absorbing closed cell structure, highly suitable for soft gasketing, vibration dampening, fairing strips, seals, pads, bumpers, dynamic cushions and other applications where resiliency at extreme temperatures is required. It has superior compression set resistance, excellent dielectric properties, immunity to aging, ozone and weather hardening and good chemical resistance - non-sticking, odorless, non-corrosive.
COHRlastic R-10470 can be bonded to metals, plastics, fabrics or silicone rubber. Sheets $24^{\prime \prime} \times 24^{\prime \prime}$ and in thicknesses $1 / 16^{\prime \prime}$ through $1 / 2^{\prime \prime}$ are available from stock. Larger sizes up to $30^{\prime \prime} \times 30^{\prime \prime}$ and special molded and extruded shapes are made to order. CHR silicone sponge rubber is sold nationally through distributors.

FREE SAMPLES and folder - write, phone or use inquiry service.

COHRlastic R-10470 Silicone Sponge Rubber

SPECIFICATIONS:

COHRlastic R-10470 meets many specifications. Some are listed below:

AMS 3195
AMS 3196
MIL-R-6130A type 2
Boeing BMS 1-23
Martin MC1 4546
Martin MB 6130
Bendix ES 0709
Douglas DMS 1597
Lockheed LAC 1-924

PROPERTIES	Range of typical properties COHRlastic R-10470	Typical accepted standards
Tensile	50-130 psi	40 psi , min.
Elongation	175-225\%	$125 \% \mathrm{~min}$.
Water absorption (Immersion 24 hrs	$3-6 \%$ @	10\% max.
Density, lbs./cu. in.	$\begin{gathered} .020-.030 \\ \text { (firm) } \end{gathered}$. 030 max.
	$\begin{aligned} & .013-.018 \\ & \text { (medium) } \end{aligned}$. 020 max.

Low temperature brittleness
(5 hrs.@ $-100^{\circ} \mathrm{F}$., No No
bend flat) cracking cracking
Compression deflection (compressed to 75% of original thickness)
Room temperature

Type firm	$12-18 \mathrm{psi}$ range 1	$12 \mathrm{~min} .-$ 20 max. psi
Type medium	$8-14 \mathrm{psi}^{2}$ range 1	$6 \mathrm{~min} .-$

$-65^{\circ} \mathrm{F}$. pct. difference

$$
-10 \% \text { to }+15 \% 1
$$

$212^{\circ} \mathrm{F}$. pct. difference

$$
+5 \% \text { to }+10 \%{ }^{1}
$$

Compression set (compressed to 50% of original thickness)
22 hrs. @ $70^{\circ} \mathrm{F} \quad 0.5 \% \quad 10 \%$ max. (firm) ${ }^{1}$ 5.30% (medium) ${ }^{1}$

40\% max.
22 hrs. @ $-65^{\circ} \mathrm{F}$
$0-5 \%$
$10 \% \max$.
(firm) ${ }^{1}$
5.30%
(medium) ${ }^{1}$
40% max.
22 hrs.@ $212^{\circ} \mathrm{F} \begin{gathered}10-25 \% \\ (\mathrm{firm})^{1}\end{gathered} \quad 30 \% \max$.
(firm)
60% max.
1 ASTM D 1056-56T

CHR products include:

COHRlastic Aircraft Products - Airframe and engine seals, firewall seals, coated fabrics and ducts
COHRlastic Silicone Rubber Products Silicone rubber moldings and extrusions, silicone rubber sheets, silicone sponge rubber Temp-R-Tapes - Pressure sensitive, thermal curing Teflon and silicone tapes
Allied Products - COHRlastic silicone cements and conductive gasketing

NEW KLISTRON POWER SUPPLY Features Wide Voltage Range, Hi-Power Capacity and Small, Compact Construction

SPECIFICATIONS

	BEAM	REFLECTOR	GRID
Voltage Range	-200 to -4000 V	0 to 1000 v	0 to +150 v 0 to -300 v
Regulation	0.01\%	0.01\%	0.01\%
Max. Ripple	3 mv	3 mv	5 mv
Current	0 to 150 ma (360 w max)	-	5 ma (max)
Power Requirements: $105-125 \mathrm{v}, 50 / 60 \mathrm{cps}$ (also available for 230 volt operation) Dimensions: $111 / 2^{\prime \prime} \mathrm{W} \times 20^{\prime \prime} \mathrm{H} \times 171 / 2^{\prime \prime} \mathrm{D} \quad$ Weight: 110 pounds			

This new . Micholine Universal Klystron Power Supply Model 62Al is a good example of many superior engineering developments coming from the modern Clearwater plant of Sperry Microwave Electronics Company.

Using conservatively-rated components, the Model 62 Al provides a voltage range from 200 to 4,000 volts meets the needs of nearly cvery klystron available today, as well as several small
cw magnetrons. Internal modulator supplies sawtooth, square wave or sine wave modulation . . external modulation from cither a high or low level outside source is committed through the use of an internal amplifier.

In addition to these advantages, the Model 62A1 requires about one-half the space of the usual power supply - and operating convenience is emphasized by grouping controls for simple, casy
adjustment. Write for Microline 62Al data sheet.
Visit our booth 1410-1416, 1959 Radio Engineering Show, March 23-26.

OO LOOK AT THEIR DESIGN

IRC 2 W 's are designed with a one-piece nickel silver center terminal and collector ring. Resistance wire is wound by specially designed IRC machines and bonded to the core by a special coating to prevent wire shifting even under most unfavorable conditions.

OOLOOK AT THEIR ADAPTABILITY

You name it-the IRC 2W has it: Single control: single with SPST, DPST or SPDT switch; duals, concentric duals, with or without switch; 3 -gang or 4-gang, waterproof shaft and bushing.
IRC 2W's are available with most any shaft and bushing style, including a "shaft locking" type bushing. For your further convenience there is a wide selection of standard and special locating lugs.

OOLOOK AT THEIR PERFORMANCE

IRC 2 W Controls exceed MIL-R-19A specifications of 3% maximum and $11 / 2 \%$ average change for $40^{\circ} \mathrm{C}$ load life at 1000 hours. Resistance change is less than 2% maximum after 25,000 cycles under rated load.

OO LOOK AT THEIR CHARACTERISTICS

2 W Controls may be obtained in resistance values from 1 to 50,000 ohms, and in tolerances of 10% and 5%; lower tolerances are available on special request.

Standard taper is linear; modified logarithmic or special tapers are available.

OO LOOK AT THEIR APPLICABILITY

IRC 2 W Controls are widely used in circuits for servo-mechanisms, test instruments, measuring instruments, automatic controls, military equipment, and many other electronic devices where high stability and low cost are necessary factors.

OO LOOK AT BULLETIN A.3a

for complete details of construction and specifications; derating, taper and resolution charts. Write for it today.

Visit IRC at the IRE-Booth 2821

COAXICON-brand new. One stroke of the A-MP precision tool does it.
Two strokes and you have the pin and receptacle units permanently attached to coaxial cable. For low level circuitry, either panel mounted or free hanging.

- Reliability-the highest. Cost-lower than anything you're now using.
- Further, coaxial cable is fully supported against vibration.
- All this in seconds . . . no more burned insulation . . . no more tedious soldering ... no more doubtful connections. Attachments at unbeatable speed that give you the finest termination at the lowest total installed cost.

Write for more information today.

AMP INCORPORATED

A system with complete files, complete data and complete processing . . . to handle all operations.

It's a proven fact . . . that of the total work necessary to put a missile into the air, a staggering 90% is primarily logistical and involves the control of many individual maintenance parts. This figure becomes compounded as the number of inactive, but ready-tofire missiles increases . . . and keeping track of their individual needs becomes a herculean task.
It is clear that an efficient system of organizing, filing and searching great masses of data at high speeds, and at realistic costs is necessary. The Magnavox Company answers the need for "discrete" unit data record handling for both government and industry with Magnacard.
You are invited to investigate and make use of these new techniques . . . write today for illustrated brochure.

Magnacard

DATA HANDLING EQUIPMENT BY

Maanavox
 FOR MILITARY LOGISTICS AND INDUSTRY

THEMAGNAVOXCO. - DEPT. 49 - GovernmentandIndustrial Division •FORTWAYNE, IND.

The many advance design features of the Trimpot have proved themselves repeatedly in major aircraft/missile systems and in commercial electronic equipment where reliability, accuracy plus miniature size are of prime importance. Pinpoint settings made on the Trimpot remain stable under the most severe environmental conditions. And - these units save important space - typical size is $11 / 4^{\prime \prime} X$ $5 / 16^{\prime \prime} \times 3 / 16^{\prime \prime}$. Bourns offers the world's largest selection of leadscrew actuated potentiometers... over 500,000 units in distributors' warehouses across the nation to fill your orders. Before specifying, investigate Bourns Trimpot, the original leadscrew actuated potentiometer. Write for our new Model Summary Brochure \#4 and list of stocking distributors.

ONLY BOURNS TRIMPOT GIVES YOU ALL THESE OUTSTANDING FEATURES

LEAD SCREW - Staintess steel lead screw for low nolse, high
performance during rotation.

O-RING - Slicicon rubber O-Ring seais poten-
tiometer against humidity. Prevents flashovef to shaft head for high voltage operation.

SHAFT HEAD - Stainless steel with machined slot for screw. driver adjustment. Meets mili. tary salt spray requirements.

SOLDER TERMINALS - Tinned
terminals are compact yet
large enough for easy soldering. Teflon-insulated leads and printed circuit pins are also available.

SILVERWELD* TERMINATION - ExcIusive with Bourns potentiometers. Unequalled in ruggedness. A metal-tometal bond from the terminal to the resistance wire.

PICK-OFF - Gold-plated beryllium copper pick-off malntains constant pressure on lead screw.

ELEMENT - Special ceramic element card for maximum reliability is precislon wound with low-temperature-coefficient resistance wire.

SHAFT RETAINER - Shaft is locked in place for top performance under extreme shock. vibration and acceleration.

SHAFT INSULATOR - High-dielec. tric-strength, ceramic insulator isolates shaft head from in. ternal circuits.

This cutaway of Model 224 is typical of the design of all Bourns potentiometers though some features vary from model to model.

ACTUAL SIZE
Most models available with insulated stranded leads, solder lugs or printed circuit pins in resistances from 10Ω to 1 Meg.

シ0UTENTS

Laboratories, Inc.
P.O. Box 2112A. Riverside, California

Plants: Riverside, Calif. and Ames, Iowa

* trademark

Exclusive manufacturers of TRIMPOT®, TRIMITB. Pioneers in potentiometer transducers for position, pressure and acceleration

IN SILICON RECTIFIERS

IN SELENIUM RECTIFIERS

OVER 400,000 DIFFERENT STACK COMBINATIONS AVAILABLE

Available in all standard cell sizes and circuit arrangements to meet any specific requirementfrom a few milliamperes to power loads of many kilowatts. Write for Bulletin 6,400.

FANSTEEL

RELIABILITY

Visit Us At Booths 4021-4022 I.R.E. SHOW

FANSTEEL METALLURGICAL CORPORATION North Chicago. III., U.S.a.

WINDTUNNEL BOOSTER

Auxiliary compressor designed by Westing house for the 16 ft . transonic wind tunnel at NASA, Langley Field, Va. will remove dead air around tunnel at $1,000,000 \mathrm{ft} 3 \mathrm{~min}$.

Night Photos Taken With Infrared Device

Objects or scenes can be photographed in total darkness using a new research tool, the Thermograph, developed by the Barnes Engineering Co., Stamford, Conn. for the U. S. Army Engineer Research and Development Labs., Fort Belvoir, Va.

Infrared radiation is collected by an optical scanning system and focused onto a detector which produces a voltage output. The difference between the signal and a reference signal is amplified and then modulates the light output of a glow tube. The glow tube forms a thermal image on a photographic film.

The Thermograph will be used in developing the basic characteristics for the design of therml imaging devices for night reconnaissance, terrain mapping and target location. It has already found some commercial application such as detecting "hot spots" in inaccessible equipment areas.

One Billion Dollars For Space Conquest

The basic formula for the conquest of space-money, organization and research-is now available to the United States, according to Maj. Gen. J. F. Phillips (USAF-Ret.), Secretary of the Guided Missile Committee, Aircraft Industries Association.

The National Aeronautics and Space Administration, an exten-
sion of the National Advisory Committee for Aeronautics, the Advanced Projects Research Agency within the Department of Defense and the research facilities of the military services are mentioned as major coordinating space agencies.

A billion dollars is available for new hardware and basic research. A solid foundation of programs has already been established in such widely separated areas as: housing humans in space capsules, super radio antenna for maintaining space vehicle communications and a $1,-$ 000,000 pound thrust rocket for lunar probes.

IRE Awards for '59

The Board of Directors of I.R.E. has announced that the 1959 W.R.G. Baker Award will be given to Richard D. Thornton, Assistant Professor of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Mass. for his paper entitled "Active RC Networks" which appeared in the September 1957 issue of "IRE Transactions On Circuit Theory."

Franklin H. Blecher of Bell Telephone Labs., Murray Hill, N. J. is the recipient of the 1958 Browder J. Thompson Memorial Prize Award for his paper entitled "Design Principles for Single Loop Transistor Feedback Amplifiers." Mr. Blecher's paper, like Mr. Thornton's also appeared in the September 1957 issue of IRE Transactions On Circuit Theory.

HIGH FLYER

NIKE-ASP research rockets built by Cooper Development Corp. are gathering data on radiation at altitudes as high as 150 miles up.

NewS-T-A SOLID TANTALUM CAPACITOR
Unsurpessed abhility at operiating retiperatures from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. With douhlf the cappify ratiog in the samin care size Arallabir in raiges of , 0057 in 330 miti, 6 to 60 volus
 (whle). Write for Butletin 6.112

Pronifes maximum ecomamy whnce
wide tapucty tolerancry art permibrible. The Chpucty tolersave for the BLU-CAP Capuction is

"HP" TYPE TANTALUM CAPACITOR

Giret exceptional perfarmance in applicutatas requiriog biagh ambien imiperainire feviantice $\left(60125^{\circ} \mathrm{C}\right.$) and wibeation etritanee. Wifte for Bulterin fotit.

[^4]

TO USERS OF BRUSH DIRECT-WRITING RECORDERS!

ALL AVAILABLE NOW

JUST 4 COAXIAL ISOLATORS COVER 1000 to $11,000 \mathrm{mc}$

GENERAL PURPOSE BROADEAND

HIGH POWER VERSION FOR COUNTERMEASURES APPLICATIONS

Model - D 44 L 2-950-2350 mc
Power average-400 w
Peak-10kw
Insertion loss (max)-1.0 db Isolation (min) - 10 db

NARROW BAND -
IMPROVED CHARACTERISTICS FOR RADAR

Model-44 L I-1250-1350 mc 44 S 1-2700-3100 mc 44 C 1-5200-5900 mc
Insertion loss (max) - 0.6 db
Isolation (min) - 12 db
Power average - 10 w

The isolators shown here are typical of the wide variety of new ferrite and solid state devices developed and manufactured by Sperry Microwave Electronics Company. All of these components represent the latest technical advances-all
are the result of more than six years of intensive research devoted to this highlyspecialized field.

For additional information, write to Sperry Microwave Electronics Company, Clearwater, Florida.

Visit our baoth 1410-1416, 1959 Radio Engineering Show, March 23-26.

BALLANTINE VOLTMETER
 Price: $\$ 235$.

SPECIFICATIONS

VOLTAGE RANGE: 1 millivalt to 1000 valts rms. in 6 decade ranges (.01, .1, 1, 10 , 100 and 1000 valts full scale).

FREQUENCY RANGE: 10 to 250,000 cps.
ACCURACY: 2% thraughout valtage and frequency ranges and at all points on the meter scale.
INPUT IMPEDANCE: 2 megahms shunted by $15 \mu \mu \mathrm{f}$ except $25 \mu \mu \mathrm{f}$ on lowest range.
DECIBEL RANGE: -60 to +60 decibels referred to 1 valt
STABILITY: Less than $1 / 2 \%$ change with power supply valtage variation fram 105 to 125 valts.
SCALES: Lagarithmic valtage scale reading fram 1 to 10 with 10% overlop at both ends; auxiliary linear scale in decibels from 0 to 20.
AMPLIFIER CHARACTERISTICS: Moximum voltage gain of $60 \cdot \mathrm{DB}$; moximum output 10 volts; output impedance is 300 ohms. Frequency response flot within 1 DB from 10 to $250,000 \mathrm{cps}$.
POWER SUPPLY: $115 / 230$ valts, $50-420 \mathrm{cps}, 35$ watts approx.

Personals

Richard D. Fullerton is now Chief Engineer, Systems Div., at Pacific Automation Products, Inc. He was formerly with the Radio Corp. of America, Missile and Surface Radar Dept. as Systems Project Engineer Leader.

Dr. Sherrerd B. Welles is now Senior Engineering Specialist for Sylvania Electronics Systems, a division of Sylvania Electric Products Inc. He will be responsible for improving and maintaining the interchange of technical information.

Walter Bein, Chief Engineer for Burnell \& Co. has been elected an Officer of the company and to the post of Director of Engineering with broad research and development responsibilities.

W. Bein

C. H. Single

Charles H. Single is now Computer Engineering Manager at the Berkeley Div. of Beckman Instruments. He was formerly Chief Project Engineer.

Dr. C. E. Oelker has been appointed Director of Engineering for the Cincinnati Div, of Bendix Aviation Corp. He was formerly Manager of missile systems for the Crosley Div. of the Avco Mfg. Corp.

Edward Hoffart has been appointed an Executive Staff Engineer for Hoffman Laboratories Div., Hoffman Electronics Corp. He was previously Chief Engineer, Topp Industries, Inc.

Walter W. Mieher has been appointed Engineering Manager of Sperry Gyroscope Co.'s countermeasures Div. Until his promotion, he had been serving as Chief Engineer of Sperry's Air Armament Div.

Kenneth A. Simons has been appointed Chief Engineer at Jerrold Electronics Corp., Philadelphia. He will head the research and development program.

Gail B. Rathbun has been named Engineering Manager for electrical products at Westinghouse Electric Corp.'s Sunnyvale, California Div.

Creative Microwave Technology MOMON

Published by MICROWAVE AND POWER TUBE DIVISION, RAYTHEON MANUFACTURING COMPANY, WALTHAM 54, MASS., Vol. 1, No. 3

NEW AMPLITRON* BOOSTS L-BAND RADAR OUTPUTS TO MORE THAN 5,000 KW

Extends range to radius of 250 miles at 80,000 feet

Now being incorporated in L-band ARSR systems for the C.A.A., Raytheon's new broad-band QK-653 pulsed-type Amplitron transmits ten times more power than maximum power levels of original RF drivers, increasing the detection range of these systems more than 60%.

The Amplitron is a highly efficient (50\% to 70%) liquid-cooled, integral-magnet microwave tube.

When used with Raytheon's new high-gain 40-ft. antenna, the QK-653 triples the detection range and the warning time of standard long-range search radars.

Non-reentrant RF circuit permits control of oscillation by frequency of RF input over the entire band, 1,280 to $1,350 \mathrm{Mc}$, at optimum gain and efficiency, without mechanical or electrical tuning. Changes in anode current or voltage have little effect on total phase shift. The Amplitron exhibits excellent reproduction of input spectrum even under high-ripple pulse conditions.

The exceptional phase stability of the QK-653 is particularly advantageous in MTI radar applications.

* Raytheon Trade Mark

Block Diagram of Typical Amplitron Installation

Excellence in Electronics

aAYTHEOL

SEE THE COMPLETE LINE OF RAYTHEON TUBES
IRE - N. Y. COLISEUM - MARCH 23-26 - BOOTH 2610-2614

Don't Miss These Features

in next month's ELEGTRONIC industriles

"Where The Engineer Comes First"

TUBES OR TRANSISTORS?

An examination of the advantages and disadvantages of both tubes and transistors from the standpoints of efficiency, temperature, frequency, noise, voltage, spread of characteristics, nuclear radiation, etc.

SPECTRUM ANALYZERS

A spectrum analyzer is an electronic device which visually presents the spectra of signals applied to its input terminals on a cathode ray tube. In past years they have become rather well-known test and measuring instruments. Here is an interesting study of their design criteria.

WHAT CATHODE IS BEST FOR THE JOB?

Types of construction available to the design enginser fall into two groupings-tubes and discs. For various applications seamless, welded and drawn, lapped seam or locked-seam fabrication offer certain advantages. Choice of active or passive base material will affect the hum characteristic and life of the tube.

RF ANECHOIC CHAMBERS

The recent development of low-frequency, broadband absorbers makes it possible to make radiation tests indoors at frequencies as low as 50 MC . At outdoor sites, reflections from earth and nearby objects cause measurements to be unreliable and repeatability is difficult. These rooms will assist greatly in evaluating electronic systems and antennas.

Plus all our other regular departments

Our regular editorial departments are designed to provide readers with an up-to-the-minute summary of world wide important electronic events. Don't miss Radarscope, As We Go To Press, Electronic Shorts, Coming Events,

El Totals, Snapshots of the Electronic Industries, El International, News Briefs, Tele-Tips, Books, Rep News, International Electronic Sources, Personals, Industry News and New Products.

COMING SOON:-

I7th ANNUAL JUNE DIRECTORY AND ALL-REFERENCE ISSUE. Reference type editorial material is now being reviewed for inclusion in this great issue. Aftar publication last year, many readers wrote in suggesting additional reference data that they would like to have included. All El readers now once again have this opportunity. All suggestions received by April 6 will be given careful consideration. No guarantees after this date, however, because it does take considerable time to gather, prepare, and print these data.

Watch this issue also for: 1959-60 Semi-Conductor Dioje Specifications. 1959-60 Germanium \& Silicon Transistor Specifications.
*AUGUST
WESCON Convention
*NOVEMEER
Microwave Issue

Skyward facing directional antennas are easy prey for ionospheric reflection interference. How to determine the possibilities of subjection to this source is this article's objective.

Interference from the

By MARTIN L. SHAPIRO

Research Engineer Boston Engineering Office Boeing Airplane Co. Lexington Mass.

GROUND to air communications systems, radars or other radio links with directional antennas that point skyward are subject to two main sources of interference propagated via the ionosphere.

In the first case, static interference and man-made signals may be reflected from the ionosphere and enter the beam of the radar receiving antenna, Fig. 1.

Fig. 1: Static interference and man-made signals, reflecting from the ionosphere, may enter the beam of a radar receiving antenna.

Fig. 2: Transmitted power can be scattered back to the receiver.

In the other case, transmitted power can be scattered back along the path transmitter-ionosphere-ground-ionosphere-receiver, as show in Fig. 2.

In either case interference is only possible when the ionosphere reflects the "operating frequency" $\left(f_{c}\right)$ at an angle of incidence ϕ, Fig. 3.

Theory
Consider the passage of a plane electromagnetic wave across the boundary of two media of refractive indices n and n^{\prime}, Fig. 4. Snell's law states that n $\sin \phi=\sin \phi^{\prime}$. For the ionosphere

$$
\begin{equation*}
n^{\prime}=\sqrt{1-\left[N e^{2} /\left(m \epsilon_{0} \omega^{2}\right)\right]} \tag{1}
\end{equation*}
$$

Where $\lambda^{*}=$ number of electrons per cubic meter
$e=$ electronic charge
$m=$ mass of electron
$\epsilon_{0}=$ permittivity of free space
$\omega=2 \pi \times$ the frequency of the electromagnetic wave
Critical reflection exists when $\angle \phi=90^{\circ}$ or $\sin \phi=n^{\circ}$.
In this case

$$
\begin{gather*}
\sin \phi=\sqrt{1-\left[N e^{2} /\left(m \epsilon_{\theta} \omega^{2}\right)\right]} \tag{2}\\
\omega^{2}=N e^{2} /\left(m \epsilon_{\theta} \cos ^{2} \phi\right) \tag{3}
\end{gather*}
$$

Hence

$$
\begin{equation*}
f_{c}^{\prime}=(1 / \cos \phi) \sqrt{V e^{2} /\left(4 \pi^{2} m \epsilon_{o}\right)} \tag{4}
\end{equation*}
$$

where f_{c}^{\prime} is the critical frequency for forward reflections at an angle of incidence, ϕ.

Table 1
main lobe frequency

α	h	f_{0}	Layer
40°	50 km	19.5 mC	
40	100	19.7	\mathbf{E}_{2} and \mathbf{E}_{a}
40	200	19.9	\mathbf{F}_{2}
40		20.2	

Ionosphere

Now reflections at vertical incidence occur at a critical frequency of f_{0} which is given by making $\phi=0^{\circ}$ in Eq. (4),

$$
\begin{equation*}
f_{0}=\sqrt{\left[N e^{2} /\left(4 \pi^{2} m \epsilon_{0}\right)\right]} \tag{5}
\end{equation*}
$$

Hence, substituting in Eq. (4), we may relate the critical frequency f_{c}^{\prime} at oblique incidence to the critical frequency at vertical incidence by the expression

$$
\begin{equation*}
f_{0}=f_{c}^{\prime} c_{c}(1) \phi . \tag{6}
\end{equation*}
$$

The angle ϕ is shown in triangle RIO, Fig. 3, where O is the center of the earth and R is the radar site. From triangle RIO

$$
\begin{gather*}
r / \sin \phi=(r+h) /[\sin (90+\alpha)] \tag{7}\\
\sin \phi=(r \cos \alpha) /(r+h) \tag{8}
\end{gather*}
$$

and from Eq. (6)

$$
\begin{equation*}
f_{0}=f_{c}^{\prime} \sqrt{1-[(r \cos \alpha) /(r+h)]^{2}} \tag{9}
\end{equation*}
$$

Thus when the vertical sounding of the ionosphere shows that f_{0} is greater than the value given by Eq. (9), oblique reflection will occur at a frequency f_{c}^{\prime} and transmission angle α. Conversely we may assume that no interference from ionospheric reflection will occur when f_{o} is below this value.

Example

Assume: (1) a desired operating frequency, f_{c}, of 30 MC ,

(2) a beam elevation of 40°,
(3) the operating site to be Washington, D. C., and
(4) the equipment will operate during sunspot maxima.
Using these assumptions in Eq. (9), the computed vertical critical frequency f_{0} indicates that oblique reflections are possible. Table 1 shows values obtained for heights from 50 to 300 km . Under these conditions, f_{0} does not vary appreciably with the height of the ionized layer, and therefore it is necessary to

Table 2

VERTICAL CRITICAL FREQUENCY
F: Layer Over Washington, D. C. - National Bureau of Standards

Frequency MC	Dec. '46	Jan.	Feb. ${ }^{\prime} 47$	Mar. '47	Apr. '47	$\begin{gathered} \text { May } \\ \prime 47 \end{gathered}$	$\begin{gathered} \text { June } \\ \hline 47 \end{gathered}$	$\begin{gathered} \text { July } \\ \hline 47 \end{gathered}$	Aug. '47	Sept. '47	Oct. $' 47$	Nov. '47
	Hours Per Month											
15-15.9	-	\checkmark	-	-	-	-	-	-	-	-	1	$\bar{\square}$
4-14.9	-	1	5	1	-	-	-	-	-	-	3	29
3-13.9	6	15	61	37	4	-	-	-	-	30	61	120
12-12.9	57	76	133	106	41	-	-	-	-	36	116	73
11-11.9	108	94	46	56	83	14	3	1	11	55	42	28
10-10.9	51	47	14	30	80	47	3	1	11	87	34	25

Ionospheric Interference

(Concluded)

consider only the layer with highest electron density, irrespective of its height in the ionosphere.

National Bureau of Standards measurements of vertical critical frequencies centered at Washington, D. C., were used as a basis for the data collected here.

On all occasions during the day the highest electron densities occurred in F_{2} region. Table 2 shows the number of hours per month in which the vertical critical frequency of the \mathbf{F}_{2} region was greater than 10 mc . The year 1947 has been chosen as it corresponds to the maximum of the sunspot cycle. The records of 1952 (not shown) were also examined. These records correspond to the minimum of the sunspot cycle and show that the critical frequencies of the F_{2} layer were much less than in 1947.

It can be seen that f_{0} is never greater than 20 mc and hence no reflections are expected in the main beam from the F_{2} layer.

During the night the highest electron densities occurred in the E region, but on no occasion were the critical frequencies as great as the F_{2} values given in Table 2.

Side Lobes

From Eq. (9) the vertical critical frequency for oblique reflections at an angle of elevation may be computed. These values are given for α between 0° and 40° in Table 3.

PERFORATED PAGES!

In response to many reader requests the pages in the main editorial section have now been perforated. This will enable readers to easily remove material for their reference files. If the copy of Electronic Industries you receive already has pages removed that you want, please let us know. We'll be glad to provide the missing pages.

$$
\begin{aligned}
f_{o} & =f_{e}^{\prime} \sqrt{1-[(r \cos \alpha) /(r+h)]^{2}} \\
& =30 \mathrm{mc} \sqrt{1-\left(\frac{8.45 \times 10^{3} \mathrm{~km} \mathrm{cos} 25^{0}}{8.45 \times 10^{3} \mathrm{~km}+200 \mathrm{~km}}\right)^{2}} \\
& =30 \times 10^{6} \sqrt{1-\left(\frac{8.45 \times 10^{6} \times 0.906}{8.45 \times 10^{6}+200 \mathrm{~s} 10^{3}}\right)^{2}} \\
& =30 \times 10^{6} \sqrt{1-(7.66 / 8.65)^{2}} \\
& =30 \times 10^{\circ} \sqrt{1-(0.855)^{2}} \\
& =30 \times 10^{\mathrm{V}} \sqrt{1-0.784} \\
& =30 \times 10^{\mathrm{V}} \sqrt{\frac{0.216}{}} \\
& =30 \times 10^{6} \times 0.465 \\
& =14.0 \mathrm{mc}
\end{aligned}
$$

Fig. 4: Refraction from one medium to another.

Table 3 SIDE LOBE ANGLE

α	ϕ	f_{0}
0°	78°	6.72 MC
5	76	6.9
10	74	8.5
15	71	9.95
20	67	12
25	62	14
30	58	16
35	53	18
40	48	19.9

In the preceding example no interference will be obtained in the main lobe by reflection from the ionospheric layers. However, since it is difficult to design an antenna with no side lobes, it is necessary to examine the chart to avoid side lobes where they will degrade the system operation.

Acknowledgment

The author wishes to acknowledge that this article has been prepared from information derived from research conducted while a member of the Scientific Staff of Harvard College Observatory, working under the direction of Dr. Gerald S. Hawkins and Prof. Fred L. Whipple. In effect, this article is a general case of a specific problem faced by the Harvard Radio Meteor Project and debated by Dr. Gerald S. Hawkins (Radio Astronomer) and Mr. Martin L. Shapiro (Radio Engineer) in their paper, "Oblique Reflections at 32.8 mc ."

References

1. Lovell, Clegg, Radio Astronomy.
2. Pawsey, Bracewell, Radio Astronomy.
3. Hawkins, Dr. Gerald S. and Shapiro, Martin L., "Oblique Reflection at $32.8^{\circ} \mathrm{mc}$."
4. Revised edition of the Final Summary Report of The Harvard Radio Meteor Project, Sept. 14, 1956, by Prof. Fred L Whipple, Dr. Gerald S. Hawkins-Contract AF 19 (122)-458 Subcontract 57.

Exploiting Other Communications Media

Abstract

Extensive development of radio communications has overcrowded existing facilities. A solution to relieve this situation, through the use of light, heat, gamma rays and other media is proposed.

IN spite of the extensive development of radio communications over the past 50 years many problems have arisen due to the great number of users. In particular, the USAF faces an unsatisfactory communication situation for these reasons:
a. Huge volumes of information must be transmitted over channels which are unreliable because of the natural properties of the transmission media used.
b. "Subscribers" must commu-
nicate with each other without delay.
c. No single type of communication circuit is satisfactory for the entire globe.

USAF's communication problems are further aggravated by the limited radio spectrum and the common use of the spectrum. Other factors involved in communication problems are cross talk, enemy jamming, and enemy eavesdropping.

This article examines means of
communication other than conventional radio frequencies and shows what may be expected. It outlines the necessary research to give us the capability we require. Some of these means offer truly exciting possibilities for solving the most severe problems which face the Air Force in its global mission.

We will consider low frequency radio, sound, light, heat and nuclear radiation for communications. Possible frequency ranges
(Continued on following page)

Fig. 1: Forms of radiation spreading and the ideal-no spreading.

Fig. 2: Various ducts are available for sound and radio waves.

Fig. 3: Radio waves at 10 KC are conducted in this rare duct of about 2000 km dia.

TABLE 1
poSSible frequency ranges and media of propagation

Type of Energy	Propagation Medium	Frequency or Wavelength Range
Audible sound	atmosphere, sea water, rock strata, underground water	16 cycles per second to 10 kilocycles
Ultrasonics	atmosphere, sea water,	10 kilocycles to 100 kilocycles
Very low frequency radio	atmosphere, outer ionosphere, rock strata	1 kilocycle to 100 kilocycles
Present radio	atmosphere, lower ionosphere, surface of earth	100 kilocyeles to 1000 megacycles
Microwave		1000 megacycles
		1000 kilomegacycles
Infra red		100 kilomegacycles to
Visible light	atmosphere	0.7 to 0.4 microns
Ulitraviolet		0.4 to 3×10^{-4} microns
X-rays, gamma rays		3×10^{-4} and lower (microns)
Electrons, protons, etc.	outer space	High energy particles

Communications Media (Continued)

and media of propagation are as shown in Table I.

Energy Transmission
The range of energy transmission is limited by the nature of the medium of progagation and the equipment. Signals are lost in a medium by:
a. Spreading
(1) inverse square law
(2) inverse first law
b. Absorption-attenuation per unit range
c. Noise.

Forms of spreading, Fig. 1, follow the inverse square range law (spherical divergence) and the inverse first law (circular divergence). Fig. 1 also shows the ideal case in which all energy passes between two points without spreading.

Nature has provided a number of media in which propagation occurs by the inverse first power of range. This comes about when the material composing the earth and its atmosphere occurs as spherical shells. Transmission through these natural ducts is very desirable because of the great ranges which may be obtained with lowpowered transmitters. Fig. 2 illustrates a number of ducts for sound and radio.

The sound duct in the troposphere at 15 km and in the sea at
a depth of 1 km are caused by bending of the waves rather than reflection. At the center of each duct the waves move more slowly than those that deviate from the center. Consequently, a received signal spreads out over a longer time period than is required to transmit it. This reduces the speed with which messages may be sent to about one every ten seconds.

Radio waves are ducted within the troposphere by reflection from both the ionosphere and the earth's surface. It is possible to conduct sound and radio waves through appropriate rock strata by reflection from their boundaries and it is also possible to conduct sound along underground water. Ducting by reflection from well-defined boundaries causes messages to arrive over individual paths which means that the same message may be received more than once. This does not limit the message rate to the extent that it is limited by ducting due to bending. VHF radio waves may also be conducted along atmospheric refraction minima which are known to exist in the vicinity of the trade winds.

A rare form of duct in which spreading of power does not occur is shown in Fig. 3. Radio waves of a frequency of 10 Kc are conducted along the earth's magnetic field in a tube about 2000 km in diameter. The receiving point is
in the same relation to the earth's south pole as the transmitting point is to the north pole.

Absorption of energy by the transmission medium results in a loss which increases exponentially with range in all media and propagation modes. In general, the attenuation per unit range for all forms of propagation is a first or square law function of frequency. The attenuators per unit range for most of the radio spectrum is so low that its increase with frequency has only a negligible effect. For sound this is not true.

Received signals are often obscured by the presence of undesired signals in the medium. These signals result from both natural and man-made phenomena. For radio, natural noise is caused by lightning and the sun. For sound, natural noise is caused by animal life, winds, thunder, water waves, rain, and so forth. In general, the medium noise level rises as the frequency is reduced. It falls off at very low frequencies due to the absence of natural sources near zero frequency.

Generation, Radiation, and Reception

The range over which any signal may be transmitted depends on these equipment parameters:
a. Transmitted power
(1) generated power
(2) antenna gain
(3) efficiency
b. Received power
(1) sensitivity
(2) antenna gain
(3) efficiency.

The ability to transmit over long ranges is related to power of the transmitter, the gain of the antennas, and the efficiency for a specified receiver.

The sensitivity of the receiver is the minimum power which may be identified as the signal. Sensitivity is limited both by noise present in the medium and noise generated in the equipment. Receiver noise results from thermal vibration of atoms and emission of electrons due to thermal or other causes. Since noise occurs over a wide band of frequencies, it may be reduced by reducing the number of frequencies to which the receiver is sensitive. This group of frequencies, called the bandwidth of the receiver, is directly proportional to the noise power received.

The gain of the receiving antenna has the effect of multiplying the amount of power received in a specific direction. If an antenna receives power equally in any direction, it has a gain of one. If an ommidirectional antenna receives a
signal of one millionth of a watt, an antenna gain of 1000 would cause the receiver to receive onethousandth of a watt. If received power is converted to heat in the antenna, only a fraction of the power received will be delivered. This fraction is called its efficiency.

Fig. 4 shows a functional diagram of a general transmitting and receiving system. The delivered power is intensified by the antenna gain and transmitted through the medium. In the medium, power is absorbed and spread so that only a fraction of it is delivered to the receiver. The receiving antenna intensifies both the signal and medium noise and delivers it to the receiver. The receiver introduces additional noise and the recovered signal is mixed with both forms of noise.

Propagation Losses

The Appendix contains an analysis of all propagation losses and equipment limitations of proposed methods of communications except for deep rock sound and radio, and upper atmospheric sound, which are not included because of lack of sufficient data. Curves of relative system sensitivity vs. range in kilometers are shown in Fig. $\overline{0}$. These curves are plotted for in-

PERFORATED PAGES!

In response to many seader requests the pages in the main editorial sertion have now been perforated. This will enable readers to easily remove material for their reference files. If the copy of Electronic Industries you receive alreacy has pages removed that you want, please let us know. We'll be glad -o provide missing pages.
verse square law spreading. The two horizontal parallel lines show the effect of the improvement of the present state-of-the-art sensitivities by a factor of 1000 . From this curve it can be seen that improvements of less than five km result for sound in air, supersonic sound in sea, and gamma rays. Low frequency radio and low frequency sea sound show an improvement of 5000 km , while ultraviolet, infra-red and 5 kC sea sound show improvement in the order of 50 km .

Fig. 6 illustrates the effect of ducting of very low frequency radio and sound in air. It can be seen that 5 kc sea sound is improved by 80 km , low frequency sea sound is improved by 100,000 km and very low frequency radio by $72,000 \mathrm{~km}$. These improvements are rather startling, but

TABLE 2
COMPARATIVE SUMMARY TABLE

Form of Energy	Medium of Propagation	Frequency or Wave Length	Radiation Efficiency \%	Range inverse SquareKilometers	Range Inverse FirstKilometers	No. Teletype Channels 60 WPM
Audible Sound	Sea depth 1 km	200 cps	20	350	8,000	1
		5 kc	50	30	45	25
Audible Sound	Upper air Rock strata	$\begin{aligned} & 200 \mathrm{cps} \text { to } \\ & 10 \mathrm{kc} \end{aligned}$	Further exploration required			
VLF Radio	Air	5 kc	0.5	680	4,500	42
		30 kc	30	1,200	10,000	132
VLF Radio	Outer ionosphere	$5 \text { kc to }$ $35 \mathrm{kc}$	1.0	1000 to 15,000		63
Radio Frequencies	Rock Strata	5 kc to 1 mc	Further exploration required			
Ultraviolet	Lower atmosphere	$\begin{aligned} & 0.2 \text { to } 0.35 \\ & \text { microns } \end{aligned}$	25	100	- .	25,000

Fig. 4 (above): In the transmission medium, power is absorbed and spread so that only a fraction of it is delivered to the receiver.

Fig. 5 (right): The relationship of system sensitivities to the range measured in kilometers, for spherically divergent propagation.

Communications Media (Continued)

you should bear in mind that the curves are based on average power. The improvement figure of 1000 is also high, but it is used only for comparison.

The long range potential of low frequency sound in sea and very low frequency radio is attractive. However, use of this type of propagation involves the areas of inefficient radiation from small antennas, and transmission of small amounts of information per unit time.

To transmit low frequency sound or radio, the dimensions of an antenna should be comparable to the wave length but this is not possible because wave lengths of many kilometers are used for radio and wavelengths of many meters are used for sound. When high power is fed into a relatively small sound transducer, the resulting high pressures exceed the static pressure of
the medium and cause elastic breakdown. High voltage required for small radio antennas causes dielectric breakdown (arcing) in air.

It is possible to use small transmitting antennas if they are surrounded by a small wavelength medium. If the outer surface of the medium is arranged so that excessive reflection of radiation does not occur, transmission of power can be achieved with smaller structures. Experiments with powdered iron have confirmed this concept in radio transmission.

Ferromagnetics

Wavelengths of radio waves that measure 10 to 100 KC are reduced by a factor of over 1000 in ferromagnetic materials. Fig. 7 shows a proposed antenna of this type compared with a conventional antenna.

Analysis shows that greater

bandwidth can be achieved with the proposed ferromagnetic antenna than with a conventional antenna with a resulting increase in the rate of information transmission. As an example, when conventional antennas are used, teletype pulses may be generated at the rate of about 40 per second at 30 kc which is equivalent to 120 five-letter words per minute. A standard teletype can deliver 60 words per minute over this frequency band. If a ferromagnetic antenna is used, the rate would be 2000 words per minute.

A method for improving the information rate of a narrow band system is given in the Appendix. It is shown that very small variations in the power level of a pulse may be detected in a narrow band system. For example, if the level of a pulse is allowed to vary from 1 watt to 26 watts, each pulse level may be used to represent one letter of the alphabet. This means that one pulse becomes the equivalent of the five teletype pulses presently required to represent one letter. However, more sophisticated methods are possible, such as phase instead of amplitude coding.

Findings

Examining the results we see that audible sound in the sea, rock strata and upper atmosphere, very low frequency radio in the atmosphere, rock strata and outer ionosphere, and ultraviolent in the lower atmosphere appear to be most
promising types of propagation. However, before actual utilization of these may be accomplished, further experimental data must be obtained since many of the calculations were based on meager data or theoretical extrapolations.

In the case of audible sound, samples of deep rock strata must be obtained to determine its absorption characteristics. Efficient transmitters and receivers must be embedded in the strata of deep wells to determine the actual ranges of propagation. Further data must also be obtained on the propaganda of sound in ducts in the upper atmosphere.

To effectively use the range potentialities of very low frequency radio, smaller, more efficient antennas must be perfected. A thorough study must be made of the concept of using media such as ferrites for construction of these antennas. In addition, the electrical characteristics of deep rock strata must be obtained to carefully evaluate this medium.

Although ultraviolet radiation may only be used for line of sight transmission because of the lack
of ducts, it has a great deal of promise due to low background signal. High intensity sources of ultraviolet and suitable modulating equipment should be developed.

The comparative summary in Table II shows those areas which have promise. The method of computing information rate as teletype channels is given in the Appendix. Ranges are based on a power of 5 kw for each type of transmission.

An extremely serious disadvantage of these modes of communication (except ultraviolet) is the excessively narrow bandwidth of the channels. Very low frequency radio has this limitation only because of the inherent properties of present antennas. The intermediate matching media technique suggested in this article could improve very low frequency radio. Low frequency sound in sea has nonlinear effects in the duct as well as other reverberation sources which also limit the information capacity.

Based on a paper presented at the IRE Na tional Convention, March 1958, New York, N. Y.

Fig. 7: A comparison of the ferromagnetic antenna with the conventional type.

Because of space limitations, detailed analyses and calculations have been placed in an Appendix. A copy of this appendx may be obtained by writing on company letterhead to

The Editor
Electronic Industries
Chestnut \& 56th Sts., Phila. 39, Pa.

The Military Is Looking For . . .

The Government carries on a comprehensive research and development program that continually seeks to improve the quality of American arms and equipment. But despite this activity the Government must continually look to private industry for new developments, ideas, or techniques. One of the principal ways of making their interests known to industry is through the National Inventors Council which each year publishes, "Inventions Wanted by the Armed Forces."

The following are some of the highlights among the electronic and electrical requirements that the Government is looking to private industry to provide.

Acoustic Transducer - A sharply unidirectional device of small size compared to wave-
length for sound detection on signals as low as 5 cps .

Power Rectifiers-to work in an ambient of -20° to $500^{\circ} \mathrm{C}$.

Transistors - to operate efficiently (greater than 50%) as oscillators and amplifiers at UHF, and at temperatures over $150^{\circ} \mathrm{C}$.

Resistors - in the 1 to 100 megohm range with positive temp. coefficients, preferably as high as $1,000 \mathrm{ppm}^{\circ} \mathrm{C}$. Power rating at least $1 / 4$-watt, and no larger than $1 / 2$-watt commercial composition resistors.

High Angle Direction Finding Techniques-to handle steeply downcoming sky wave signals in the frequency range $1-12 \mathrm{MC}$. Instrumental bearing accuracy is of
the order of 2 degrees standard deviation on signals with a minimum field strength of $20 \mathrm{mv} /$ meter.

Infrared Transmitting Materi-als-Development of infrared transmitting materials having the following properties: 75% transmission from 0.8 to 8 micron wavelength in 1 cm . thickness. (2) Melting or softening point above $500^{\circ} \mathrm{C}$. (3) Capable of standing thermal shock of $100^{\circ} \mathrm{C} /$ sec. (4) Resistance to abrasion and solution by atmospheric fluids.

Television System—of inproved resolution which will permit optical tracking of guided missiles. Quality of the images should approach that of a photograph.

Video Compression-A method of bandwidth compression of 3.5 MC signals down to the order of 1 MC for transmission, and to recreate the original bandwidth signals after transmission.

Increasing the Input Impedance

Abstract

Transistor amplifiers can exchange voltage gain for input impedance by using negative feedback. In addition, voltage gain can be made more independent of transistor by the same circuitry.

ATRANSISTOR amplifier is usually considered to have relatively low input impedance, high output impedance, and high voltage gain. Since the maximum available power gain of the device is limited, voltage gain must be decreased if it is desired to have high input impedance and low output impedance. By employing negative feedback, voltage gain can be "exchanged" for input impedance. In addition to increasing the input impedance, negative feedback can be used to make the voltage gain more independent of transistor parameters.

This article describes a transistor amplifier having an input impedance of 8 megohms, a voltage gain of 40 db , and an output impedance of 600 ohms. The gain is stable to $\pm 0.10 \mathrm{db}$ over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and to within $\pm 1 \mathrm{db}$ over the frequency range of 6 cps to 300 kc . The input impedance is greater than 1 megohm between the frequencies of 25 cps and 350 KC , and greater than 8 megohm between the frequencies of 400 cps and 30 Kc .

The type 2N338 transistors used will give reliable performance at

Fig. 1: Simplified circuit of the high input impedance amplifier has com-mon-emitter collector stage followed by 3 common-emitter stages.
temperatures in excess of $150^{\circ} \mathrm{C}$, but other components used in this amplifier limited the maximum safe temperature to $125^{\circ} \mathrm{C}$.

Simplified Circuit

Fig. 1 shows the simplified circuit of the amplifier. It consists of a common-collector stage followed by three common-emitter stages. High input impedance and gain stability are achieved by overall negative feedback provided by resistor $\mathrm{R}_{\mathrm{F} 4}$. Resistors $\mathrm{R}_{\mathrm{B} 1}, \mathrm{R}_{\mathrm{C} 1}$, and $R_{C 2}$ represent the effective impedances of the networks necessary to establish the proper operating bias conditions for the amplifier. Resistors $\mathrm{R}_{\mathrm{F} 1}, \mathrm{R}_{\mathrm{F} 2}$, and $\mathrm{R}_{\mathrm{F} 3}$ are individual stage feedback resistors.

This simplified circuit is valid for mid-frequency range where the reactances of bypass and coupling capacitors may be neglected. The small arrows indicate the phase relationship of the signal voltage at various points in the circuit.

Note that in this circuit, the
roltage drop across $R_{F,}$ is in phase with the input voltage. The ac current through $\mathrm{R}_{\mathrm{F} 4}$ is approximately equal to the product of the input current and the current gain of the individual amplifier stages. Thus, the effective value of $R_{F_{4}}$ referred to the input terminals is approximately ($A_{1} A_{2} A_{3} A_{4}$) R_{F}, where A_{1}, A_{2}, A_{3}, and A_{4} are the current gains of the individual stages.

If the amplifier current gain is 10^{6} and the value of K_{F} is 6 ohms, then the equivalent value of R_{Ft} referred to the input ter:minals is 6 megohms. The approximate input impedance may be expressed as:

$$
Z_{1 n}=|\mathbf{A}| \mathrm{R}_{1},-\%
$$

where, $A=$ current wain of the amplifier, $\mathrm{R}_{\mathrm{F}_{+}}=$feedback resistor, and $\mathrm{Z}_{1}=$ input impedance of the amplifiers without feedback.

The voltage gain may be expressed as:

$$
\frac{V_{n}}{V_{i n}}=-\frac{\lambda}{R_{1}} \frac{\mathrm{R}}{\mathrm{R}_{1}-Z_{1}}
$$

and if

$$
\begin{equation*}
A\left|\mathrm{R}_{\mathrm{R}_{4}}\right\rangle>2 \tag{13}
\end{equation*}
$$

this reduces to:

$$
\frac{V_{0}}{V_{\text {in }}}=-\frac{\mathrm{lk}}{\mathrm{l}_{\mathrm{r}}}
$$

The negative sign merely indicates that the output voltage is 180° out of phase with respect to the input voltage.

Circuit Description

The complete amplifier circuit is shown in Fig. 2. The four stages are direct-coupled. Adequate stability of bias conditions is provided by means of the large emitter resistors R4, R9 and R14. which are bypassed for signal frequencies. Bias voltage for the first stage is developed across the 9 -rolt "Zener" diode, I1.

The collector Q1 is coapled to the feedback resistor R_{F+} by $C 2$ and D1. If this collector was bypassed to ground, the input impedance would be shunted by the $h_{\text {, }, ~}$ of this unit. Table 1 gives the approximate de bias conditions of the four transistors.
The output impedance is set by the value of R 12 which is 600 ohms. The input impedance is approximately equal to the product of the amplifier current gain and the feedback resistor R13. Since

Fig. 2 (above): The complete amplifier circuit. Input impedance approxim ates product of amplifier current gain and feedback resistor, R13.

Fig. 3 (right): Rela tionship of input impedance, measur ed at 1 KC to the ambient temperature.

Fig. 4 (right): Volt age gain is almost independent of ambient temperature.

the current gain is a function of transistor parameters, the input impedance can be expected to be a function of ambient temperature. Fig. 3 is a plot of the input impedance at 1 kc vs. the ambient temperature.
The voltage gain is largely determined by the ratio of the output resistor R12 to the feedback resistor R13 and is almost inde-

TABLE 1

Transistor	$\mathrm{V}_{\text {ce }}$	I_{E}
Q_{1}	$3 \mathrm{v}$.	0.010 ma
Q_{2}	6	0.50
Q_{3}	13	0.59
Q_{4}	6	4.8

pendent of transistor parameters. It, therefore, should not be sensitive to ambient temperature variations. This is confirmed by Fig. 4, which is a plot of the voltage-gain vs. ambient-temperature.
The noise level of the amplifier will be a function of the input termination. Equivalent input noise will range from about 24 d, volts with the input shorted up to about 540 volts with the input open. Fig. 5 is a plot of equivalent input-noise vs. input termination for the amplifier using typical transistors.

Careful consideration should be the amplifier by reducing the effect of stray capacity between components and ground. Fig. 6 shows the voltage-gain and input-impedance vs. frequency characteristics of the amplifier.

This amplifier was designed and built to demonstrate a technique for obtaining high input impedance in a transistor amplifier. Calculations indicate that, with careful construction, performance can be predicted with a fair degree of accuracy. Silicon transistor type 2N338 was chosen because of its high value of $h_{f e}$, high α cutoff frequency, and good high-temperature performance.

Of course, the principles involved are not limited to silicon transistors. They can be used just as effectively for germanium transistors. In fact, the circuit shown in Fig. 2 can be used with germanium transistor type 2 N 366 if the voltage reference diode D1 is changed from type TI 655C9 to type TI 653C6. For germanium units, however, the maximum ambient temperature should be reduced from $+125^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.

Acknowledgment

Credit goes to Mr. Lee L. Evans for helpful suggestions in arriving at the final design of this amplifier and for making measurements to obtain performance characteristics.

Because of space limitations, detailed analyses and calculations have been placed in an Appendix. A copy of this appendix may be obtained by writing on company letterhead to

The Editor
Electronic Industries
Chestnut \mathcal{G} 56th Sts., Phila. 39, Pa.

1. Montgomery, G. Franklin, "High Input Impedance Transistor Amplifier," Electronic Design, pp. 48-49, Aug. 6, 1958.

Bibliography

Fig. 5 (above): Noise level of the amplifier is a function of the input termination.
Fig. 6 (below) : Relationship of the input impedance and voltage gain to the frequency.

How to

Fig. 1: This is the basic test set-up for making wide-band impedance measurements.

Measure

Wide Band

 ImpedanceThe sweep frequency, delay line method of testing is not new. First used to align TV broadcast antennas, it has since found widespread use in that industry. Basic principles and some techniques that allow an increase in measurement accuracy are discussed.

THE basic equipment test set-up for wide-band impedance measurements is shown in Fig. 1 (A). An attenuator pad is generally connected between the sweep and the detector to isolate the generator from the varying impedance. It also ensures that the detector is fed from a well-matched source.

The detector is needed when the sweep covers a frequency range above the upper response limit of the scope. The high-frequency voltage is rectified, and the detected output, a slowly-varying voltage representing the envelope of the high-frequency input, is applied to the oscilloscope.

The equivalent circuit is shown in Fig. 1 (B). A voltmeter (the detector and scope) measures the voltage at the junction between a matched source and a transmission line with a load on its far end. The voltage at this junction may be considered as being due to the sum of two waves: the main wave energy which comes out of the sweep and goes down the line and the reflected wave, energy which has travelled down the line, is reflected from the load, and comes back up the line.

Terminated Line

With a well-designed sweep, the main-wave is made approximately constant with frequency. When the

Fig. 2: A typical scope pattern when the delay line is terminated in a resistance equal to its characteristic impedance.

Fig. 3: With a generator sweeping from 0 to 50 MC , this is the pattern for an open circuit delay line $1 / 2$ wavelength long.

Fig. 4: When end of the line is short circuited, phase of the reflected wave is reversed producing zero voltage at short.

Impedance Measurement

(Continued)

delay line is terminated in a resistance equal to its characteristic impedance, there is no reflected wave. The scope then shows a constant voltage.

Fig. 2 illustrates a typical pattern. On the forward trace the output stays constant as the frequency changes across the sweep band. The reverse trace is "blanked"; the sweep output being keyed to zero to provide a reference line showing where zero output is.

Fig. 5: Effect of doubling the line length is evident. Open circuit delay line pattern is shown in (A) ; short circuit in (B).

Open Circuit Line

When nothing is connected to the end of the line, this "open circuit" cannot dissipate. All the energy striking it is then reflected. When the line loss is small, the reflected wave at the detector has

Fig. 7: (A) Ripple pattern from 150 ft . of RG11/U cable, shorted at the far end, Notice that the pattern is about the same as that for 66 ft . piece of RC59/U, in Fig. 6(B). The attenuation of RGII/U is about one-half that of RG59/U for a given length; so doubling the length just about cancels the attenuation improvement due to the larger cable. (B) shows the pattern from about 50 ft . of RGII/U showing the great reduction in ripple height at this length.
essentially the same amplitude as the main wave. The total voltage there depends only on their phase relation. When they are in phase, they add to produce a voltage twice the "main wave only" condition. When they are 180° out of phase, they cancel to produce zero output.

Fig. 3 illustrates the pattern with a generator sweeping 0 to 50 mc , and an open-circuited delay line $1 / 2$ wavelength long at 50 mc . The reflected wave at the open circuit is in phase, at all frequencies, with the main wave. Near zero frequency the effective length of the line is zero. The two waves are then in phase and add at the detector, producing a maximum. At 25 Mc , the line is $1 / 4$ wavelength long. The main wave shifts 90° in phase as it travels down the line to the end. The reflected wave shifts another 90° on its way back. The two components are then 180° out of phase at the detector, giving a minimum at that frequency. At 50 mc , the reflected wave has travelled a full wavelength ($1 / 2$ wave down, $1 / 2$ wave back) by the time it gets back to the detector so the components add to a maximum.

Short Circuit Line

Fig. 4 illustrates the pattern ob-

Fig. 6: Ripple pattern for high-grade delay line (A) compared with that for a cheaper cable, RG59/U, (B). Greater attenuation of latter shows up in minima being farther from zero.

the length that may be effectively used is the line attenuation. As the length is increased, more and more energy is lost in the line, so the reflected signal, as it shows up back at the detector, gets increasingly weaker. Fig. 6 (A) shows the ripple pattern resulting with a shortcircuit termination, a sweep from 50 to 100 mc ., and a high-grade delay line for 5 mc . between peaks.

The delay factor for this cable was 0.8 , so its length, by the formula, would be $(492 \times 0.8) / 5$ or 79 ft . Due to the greater length of this line, and the higher frequencies involved there is appreciable loss in the line. Although the reflected wave at the shorted end is equal to the main wave (reflection -100%), the main wave is stronger at the detector than it is at the far end. This is due to attenuation as it travels down the line. The reflected wave is weaker at the detector than it is at the load, due to attenuation as it travels up the line from the load. This shows up on the ripple pattern in the fact that the minima do not quite go to zero, since the weakened reflected wave does not quite cancel the main wave.

Fig. 6 (B) shows the effect of using a cheaper cable (RG59/U) with higher loss. This line was cut for the same electrical length, but because its delay factor is 0.67 , its physical length was shorter, 66 ft . Its greater attenuation shows up in the fact that the minima are still farther from zero. Notice that this effect is more pronounced at the high frequency end of the sweep, where the line loss is higher.

Various Resistive Terminations

The wave reflected from a purely resistive termination is in phase with the main wave at the load for resistance values higher than Z_{o}, or 180° out of phase for values lower than Z_{0}, and the amplitude of the reflection increases as the reresistance differs from Z_{0}.

Fig. 8 (A) shows superimposed the ripple patterns obtained with a low-loss 20 mC delay line, a sweep from 50 to 100 Mc , and the indicated terminations. Note that all the patterns have minima at the same frequency as that with a shorted end.

Fig. 8 (above): Patterns from several resistive terminations: when they are (A) lower than the characteristic impedance; (B) higher than characteristic impedance.

Fig. 9 (below): A capacitive termination (A) has minima higher in frequency than those due to a short; inductive termination (B) minima are above those from an open circuit.

The impedance of a load giving a minimum at the same frequency as a short circuit is resistive and lower in resistance than Z_{0}.

Fig. 8 (B) shows the patterns from several resistive terminations higher than Z_{01}. They all have maxima at the "short-minimum" frequencies.

The impedance of a load giving a maximum at the same frequency as a short-circuit minimum is resistive and higher in resistance than Z_{o}.

Purely Reactive Terminations

A pure reactance does not dis-
Fig. 10: (A) The pattern for a series RC termination is compared with those for matched and short circuit terminations (B).

sipate energy. so the wave is reflected from a purely reactive termination at full amplitude. Its phase is shifted depending on the magnitude of the reactance relative to Z_{0}. Thus the ripple pattern obtained with purely reactive terminations has the same amplitude as with an open or short circuit, but the minima and maxima are shifted in frequency. Fig. 9 (A) shows the patterns obtained with two sizes of capacities compared with open and short circuit patterns.

The ripple pattern resulting from a capacitive termination has mini-

Fig. 11: A series resonant circuit termination pattern (A) is compared with matched and short circuit terminations (B).

Fig. 12: Same conditions as Fig. 11 (B) but with (A) 5 MC and (B) 2.5 MC delay lines.

Impedance Measurement

(Continued)

Fig. 13: The degree of mismatch can be conveniently related with this nomogram.

VS.WR NOMOGRAPH

Fig. 14: If attenuator (A) is set for same ripple height as from unknown (B), return loss of the unknown equals twice the attenuator settingindb.
ma falling higher in frequency than those due to a short circuit, and lower than those due to an open circuit. This may be stated another way:

If we mark the frequencies of short circuit minima (see marks on Fig. 9A) the marks will fall on down slopes with a capacitive load.

Fig. 9 (B) compares the ripple patterns for two sizes of purely inductive terminations with those from an open and a short circuit.

The ripple pattern from an inductive termination has minima falling above those from an open circuit, and below those from a short circuit. If we mark the frequencies of short circuit minima, the marks fall on up-slopes for inductive terminations.

Complex Terminations

When a termination has both dissipation (resistance) and reactance the reflected wave is reduced in amplitude, and shifted in phase relative to the main wave. Correspondingly, the ripple pattern has a lower amplitude, and minima shifted in position compared with a short or open circuit.

Fig. 10 (A) illustrates the ripple pattern obtained with a low-loss 5 MC delay line and a series RC
termination. At higher frequencies, where the reactance is lower, the termination approaches a matched condition, and the ripple has lower amplitude. The nature of the termination can be seen more clearly if the ripple pattern is compared with that obtained with a short circuit, and that obtained with a matching resistance. Fig. 10 (B) shows the three patterns superimposed. By observing the fact that down-slopes occur at shorted-minimum frequencies, and the ripple gets smaller at high frequencies, we could conclude that the load had the characteristics of a series RC circuit.

Fig. 11 (A) shows the ripple pattern with a 20 MC line and a series resonant circuit. Fig. 11 (B) shows the same pattern superimposed on a short circuit pattern and one from a matched resistor. By observing that its impedance is capacitive below the resonant frequency (down-slope at short-circuit minimum frequencies), matched at resonance (low ripple amplitude near 75 MC), and inductive above resonance (up-slope at shortedminimum) we could deduce that it was a series RLC circuit with R equal to Z_{0}.

Fig. 12 (A) and (B) show the ripple patterns obtained under the

Fig. 15: Patterns obtained with the attenuator connected at the detector end of the line.

Fig 16: To determine the return loss: pattern for triple tuned bandpass filter connected to end of line (A) is superimposed on pattern of a shorted line with 8 db attenuation (B).

Fig. 17: These traces show the extremes that may be encountered in cable reflections.
same conditions as Fig. 11 (B) but with 5 MC and 2.5 MC delay lines respectively. They show how increased length in the delay line depicts the impedance characteristic in more detail.

Determining Reflection Coefficient and VSWR

There is a temptation, in using the delay-line technique, to assume that the VSWR of the load is found by taking the ratio of minimum to maximum of the ripple pattern displayed on the scope. Two factors, the loss of the delay line and the non-linearity of the detector, make this procedure quite inaccurate. A more accurate procedure that eliminates the effect of the line loss and minimizes detector non-linearity is to compare the amplitude of the ripple pattern from the unknown with that from a short- or open-circuit.

Let A be the peak-to-peak amplitude of the ripple pattern obtained at the frequency of interest with the line shorted. Let B be the peak-to-peak amplitude of the ripple pattern from the unknown at this frequency.

Then the reflection coefficient of the unknown (ratio of main wave to reffected wave) : $K=B / A$.
$\%$ reflection $=100 \mathrm{~K}$.
The Return Loss (reflection coefficient as a db ratio) is $20 \log _{10}$ $1 / K$.

The VSWR (ratio of max. voltage at load to min. voltage) is $(1+K) /(1-K)$. These various ways of expressing the degree of mismatch are conveniently related by the nomogram shown in Fig. 13.

A more accurate, and generally more convenient way of determining the reflection coefficient of a
load is to compare the height of its ripple pattern with the height of the pattern obtained with a short at the far end of the line, and a variable attenuator inserted between the line and the detector.

Fig. 14 illustrates the calibration set-up. By putting the attenuator at the detector end of the line the ripple height is determined

Fig. 18: Accurate measurements are made difficult by irregularities in delay line.
primarily by its attenuation, and its impedance match is less important than if it were connected at the load end of the delay line.

Fig. 15 illustrates the ripple patterns obtained at various settings of an attenuator connected in this way. Note that the ripple height with 5 db set on the attenuator, is what would be seen from a load having a return loss of twice this many db, e. g., 10 db . Fig. 15 (B) was made by increasing the vertical gain 10X compared with (a). Note that the ripple corresponding to a return loss of 40 db (VSWR 1.02) is readily seen. Also, note
the irregularities in the way these traces match up. These are due to very small errors in the impedance match and delay of the attenuator used.

Fig. 16 illustrates how the technique is used in determining return loss. A triple-tuned band-pass filter was conrected to the end of a 2.5 MC delay line, giving the ripple pattern of Fig. 16 (A). Note the three frequencies of best match. To determine the maximum reflection within the pass band, the ripple from a shorted line through a variable attenuator was set to the same height as the maximum ripple in the pass band. The attenuator read 8 db , indicating a maximum return loss for this filter of 16 db . The two patterns are shown superimposed in Fig. 16 (B).

Irregularities in Delay Lines

With reasonable sweep output level and scope gain, we see ripples corresponding to 40 or even 50 db return loss. It is not generally possible to make measurements with this much accuracy. The limiting factor is not gain, but the uniformity of the delay line.

Many commercial coaxial cables have a degree of nonuniformity that results in appreciable reflections from within the cable, even when terminated with the best possible load. A poor cable may have reflections with a return loss of as little as 20 db . Most cables run at or above 30 db , and only an excepfionally uniform cable has internal reflections more than 40 db down.

To illustrate the extremes that may be encountered several traces were made. Fig. 17 (A) shows the ripple pattern of a 5 mc delay line
of exceptional uniformity terminated in a load that closely matches its impedance. It was possible to see variations in the pattern only by increasing the vertical gain 10 X (Fig. 17B). Comparing the ripple pattern with the calibration pattern corresponding to 40 db return loss, it can be seen that the combined return loss of cable and termination is decidedly better than 40 db over the whole frequency range of the sweep. For contrast, Fig. 17 (C) shows the trace with a very poor piece of cable. Even with the best termination possible, its variation is more than 10 X greater than the other cable (compare with 17A).

Fig. 19: A coaxial switch will give the same convenience of simultaneous presentation for the calibration of delay lines.

PERFORATED PAGES!

In response to many reader requests the pages in the main editorial section have now been perforated. This will enable readers to easily remove material for their reference files. If the copy of Electronic Industries you receive already has pages removed that you want, please let us know. We'll be glad to provide the missing pages.

Fig. 18 is an illustration of the way in which irregularities in the delay line can make accurate measurement difficult. (A) shows the ripple pattern amplitude under a calibration condition corresponding to 30 db return loss (high vertical gain was used). (B) shows the pattern with termination adjusted for minimum ripple. This line, a 150 ft . length of RG11/U, has internal reflections a little more than 30 db down. (C) shows the pattern resulting when a load having a return loss of 30 db was connected to the end of this line.

The line irregularities prevent accurate display of the load characteristics. A further hazard is that the internal reflections probably indicate a considerable variation in characteristic impedance of one section of the cable as compared with another. Thus, the impedance which will match the far end depends on just where the cable is cut.

Comparison Technique

The patterns illustrating this article were recorded with a Moseiey X-Y recorder, using a Jerrold Model 707 Precision Sweep Generator, which has sweep speeds adaptable to use either with a recorder or a normal oscilloscope. Where patterns are shown superimposed, they were made by simply changing the load connections without touching the sweep settings and recording the second trace on top of the first. This is, of course, not possible with a scope. but the same convenience of simultaneous presentation for calibration can be obtained by using a Jerrold Model FD-30 Coaxial Switch.

For Delay Line work, it is connected as shown in Fig. 19, superimposing a calibration pattern from a second delay line on the pattern of the load being adjusted or measured.

PROBLEM CLINIC Lightweight Magnetic Tape Recorder

AGOVERNMENT agency is interested in small lightweight magnetic-tape recording equipment for use in self-powered, freerunning ship and submarine models.

Final detailed specifications for this equipment have not yet been established, since the design of the associated instrumentation system may depend somewhat on the type, capacity, and performance characteristics of the tape recorder which is obtainable. Tentative requirements for such a recorder are as follows:

Size: Limited by internal dimensions of model, approximately $6 \times 10 \times 14$ inches or more in length.

Type of recording: Parallel bi-
nary digital, 10 bits, 1 sign, 1 parity, 1 sprocket, and 1 spare; serial digital ; FM ; or FM/FM. Type of recording will be selected based on considerations of accuracy, size, power consumption, cost, and availability. Multi-track digital recording is preferable, but other types may be dictated for other reasons. Overall accuracy must be at least 2%, with higher accuracy being expected for digital recording.

Number of tracks: 2 to 14, depending on mode of recording used.

Tape width: Standard width desirable, but special widths permissible.

Running time: 4 mins. minimum (duration of one test run); longer desirable.

Tape speeds: Speed and speed regulation consistent with the mode of recording.

Playback: Playback of data into shore-based recording equipment without removal from the model; capable of being rewound and readied for subsequent test by remote command.

Power supply: Operable from 400 cPS 1-phase ac, or $24-28 \mathrm{v}$ dc, or other.

Record amplifiers: Input from transducers ± 5 volts range, high impedance. May be packaged separately from transport if required to meet size limitation (or may not be supplied).

Temperature: $+5^{\circ}$ to $+50^{\circ} \mathrm{C}$ (operating).

Pressure: Up to 35 psia (operating).

Humidity: Up to 100% relative; must be waterproof or adaptable to "canning" for use in flooded models.

Page from an
 Engineer's Notebook

\#47 Locating the Operating Point of a Triode

By M. MARTIN
and A. E. RICHMOND
Tektronix, Inc., Portland, Ore.

IN designing electronic equipment we often have to locate the operating point of a triode when $E_{b b}$, R_{L}, and R_{k} are given. The following rapid method of locating the operating point will be explained using the circuit of Fig. 1 as an example.

1. On the family of tube $I_{b}-E_{b}$ curves, plot a load line (line A of Fig. 2), in the usual manner, taking the load resistance as the sum of R_{L} and R_{k}. Neglect R_{k} if R_{L} is many times greater than R_{k}.
2. Select one of the $I_{b}-E_{b}$ curves corresponding to some given grid voltage E_{c}. (In Fig. 2 we have chosen the curve corresponding to $\mathrm{E}_{\mathrm{c}}=-6$ volts.) Calculate the plate current that must flow to produce the selected grid-cathode-bias voltage drop E_{c} across R_{k}. Plot a point on the selected curve corresponding to this value of current (point B in Fig. 2).
3. Repeat Step 2 using a different curve corresponding to a new grid voltage E_{c}. (In Fig. 2 we
have chosen the curve corresponding to $\mathrm{E}_{\mathrm{c}}=-4$ volts.) Plot a point on this second curve corresponding to the new current that must flow to produce the new voltage drop E_{c} across R_{k} (point C in Fig. 2).
4. Connect the points found in Steps 2 and 3 with a straight line. The intersection of this line (extended if necessary) with the load line is the operating point (point D in Fig. 2).

PERFORATED PAGES!

In response to many reader requests the pages in the main editorial section have now been perforated. This will enable readers to easily remove material for their reference files. If the copy of Electronic Industries you receive already has pages removed that you want, please let us know. We'll be glad to provide the missing pages.

Fig. 1. Triode circuit used to illustrate method of locating operating point.

System Designing . . .

Communicating in Space

This young and controversial art is discussed from the overall and performance points of view. Known techniques and experimental data are analyzed, in hopes that a more realistic approach to the problem can be made.

Pary Two of Two Parts

Fig. 5: The ranges for feasible direct communication systems at 1000 megacycles.

I\mathbf{N} the present study, a fading margin of 20 db will be allowed in all cases. For space-to-space communication, this margin may be too severe but for either space-to-earth or earth-to-space communications, this margin may not be enough. Fading may be reduced by circularly polarized antenna systems or diversity techniques.

System Design Chart

A 1000 MC system design chart with transmitter power required per cycle bandwidth vs. distance, based on the following assumptions is shown in Fig. 5.
(a) A carrier-to-noise ratio of 15 db is considered usable.
(b) A fading margin of 20 db is allowed.
(c) Parabolic antennas are assumed.
(d) Three groups of systems are used-Isotropic-Isotropic, Di-rective-Isotropic and Direc-tive-Directive.
(e) 240 ft is considered the largest feasible antenna on earth and 10 ft in space vehicles.

[^5]For other frequencies, a correction factor as shown in Table 4 may be used subject to an error of $\pm 3 \mathrm{db}$ within $100-10000 \mathrm{mc}$ range because the frequency effects of both receiver noise figure and line losses are neglected.

Ranges of Feasible Systems

With the present state of the art, the ranges of feasible direct communications, with a carrier-tonoise power ratio of 15 db and fading allowance of 20 db , may be read from Fig. 5. The results are summarized in Table 5.

It seems that long range space-to-space communication is a much harder nut to crack than either space-to-earth or earth-to-space communications. The development of omnidirectional high gain antenna for space vehicles seems to be one of the most urgent requirements.

Moon Relays

There are two types of moon relays: (1) using the moon as a passive reflector. (2) using the moon as an active repeater station.

From the radio transmission point of view the active relay is easier because a lot of hardware can be put on the moon; but the problem is "how to get there and set up the equipment."

The passive relay is feasible for stations on earth at present if not too high a signal-to-noise ratio can be tolerated.

A sample calculation for a practical system is shown in Table 6.

If usable carrier-to-noise ratio (C / N) is taken as

Fig. 7: Note that the min. number of satellites is set by the geometry; the min. height by atmospheric drag and satellite size and mass.

$R=$ TRUE EARTH RADIUS $\doteq 4000$ MILES

Fig. 6: Satellite communication geometry with the earth as a relay station.
$K=$ EFFECTIVE EARTH RADIUS FACTOR

$$
\begin{align*}
& h=\frac{K R}{\cos \theta}-K R \tag{1}\\
& d=\frac{2 \pi(K R+h)}{n} \tag{2}\\
& \theta=\frac{360^{\circ}}{2 n}=\frac{\pi}{n} R A D . \tag{3}
\end{align*}
$$

PERFORATED PAGES!

In response to many reader requests the pages in the main editorial section have now been perforated. This will enable readers to easily remove material for their reference files. If the copy of Electronic Industries you receive already has pages removed that you want, please let us know. We'll be glad to provide the missing pages.

Space Communications

(Continued)

Table 5
 FEASIBLE DIRECT COMMUNICATION RANGES

	Space-to-space	Space-to-earth or earth-to-space
Transmitter Power	10 w	10 w
Frequency	100 MC	300 Mc
Space Antenna	Isotropic	Isotropic
Earth Antenna		240 ft .
Fading margin	20 db	20 db
C/N power ratio	15 db	15 db
Range 1 cps B.W.	$3 \times 10^{4} \mathrm{mi}$.	$2 \times 10^{6} \mathrm{mi}$.
Range - 10 cps B.W.	10^{4}	7×10^{5}
Range 100 cps B.W.	3×10^{3}	2×10^{5}
Range 1 KC B.W.	10^{3}	7×10^{4}
Range $10 \mathrm{KC} \mathrm{B.W}$.	3×10^{2}	2×10^{4}
Range - 100 KC B.W.		
Range-1 MC B.W.	3×10	2×103
Remarks	freq. cor. $=1000 / 100=10$	No freq. cor.
	Range $\infty 1 /\left(\right.$ Bandwidth ${ }^{1 / 2}$	

Table 6 PRACTICAL MOON-RELAY SYSTEM

PRACTICAL MOON-RELAY SYSTEM	
Frequency	2000 MC
Transmitter Power	$10 \mathrm{kw} \mathrm{CW} \mathrm{(40} \mathrm{dbw)}$
Antenna size	60 ft . parabolic
Antenna beamwidth	0.6°
Antenna gain (two-way)	100 db
Circuit loss (Isotropic antennas)	-276 db
Line losses	-4 db
Received power	-140 dbw
Noise figure	9 db
KT	-204 dbw
3 kw bandwidth	35 db
Noise power	-160 dbw
Median C/N ratio	20 db

Table 7

SATELLITE COMMUNICATION SYSTEM PERFORMANCE

Parameters	$\begin{aligned} & \mathrm{n}=3 \\ & \mathrm{~h}=5000 \mathrm{mi} . \end{aligned}$
Transmitter power	10 w
Frequency	100 MC
Antenna	Isotropic
Path distance $K=4 / 3$	$20,000 \mathrm{mi}$.
Antenna System gain	0 db
Free space loss	163 db
Line loss	1 db
Fading margin	20 db
Received power	$-174 \mathrm{db}$
Receiver noise fig. KT	$\begin{gathered} 7 \mathrm{db} \\ -204 \mathrm{dbw} \end{gathered}$
Noise power per cycle	-197 dbw
$\mathrm{C} / \mathrm{N}-1 \mathrm{cps}$ B.W.	23 db
C/N-10 cps B.W.	13 db
C/N-100 cps B.W.	3 db

15 db , there is only a 5 db fading margin. The system will, therefore, work on slightly more than 50% of the time. To have a higher reliability, circular polarization and diversity system may have to be used.

Utilization of the moon as passive reflector for space-moon-space, space-moon-earth and earth-moonspace communications is rather remote because the limitation of the space transmitting system except when the space rehicles are not far away from the moon.

Satellite Communication and Relays

Satellite-to-satellite communications could only be made under certain limitations. Fig. 6 shows the geometry for line-of-sight transmissions between satellite at grazing incidence.

The curves in Fig. 7 are obtained from this geometry. It can be seen that the minimum number of satellites required is set by the geometry, and the minimum height by atmospheric drag and satellite's size and mass. The drag will take energy out of the orbit and cause the satellite to spiral to earth. To be useful for communication purposes, the satellite must remain in orbit for fairly long times, if not permanently. A method of calculating elliptical orbital lifetimes has been suggested. ${ }^{13}$

System performance for $\mathrm{n}=3$ (minimum number of satellites at grazing incidence) is tabulated in Table 7.

It seems that only narrow band operation is possible with satellite-to-satellite communications using 3 satellites. One solution is to increase substantially the number of satellites.

The range of satellite-to-satellite communication may be extended by using the earth station as a repeater. On the other hand, the range of earth-toearth communication may be extended by using the satellite as a repeater. Satellite relays like moon relays, may also be divided into two trpes : Passive and Active.

To use the earth as a relay station, the satellites must be placed in orbits higher than the height required for line-of-sight communications at grazing incidence. This can be explained by referring to Fig. 6. Ground station located at A can see the two satellites simultaneously at one instant only. As soon as the satellites move away from the positions (S^{1} and S^{2}) as shown. A can see only one satellite. Therefore, relay is impossible.

Suppose the satellites are placed in orbits 2 h miles (twice as much as the height required for satellite-to-satellite line-of-sight communications at grazing incidence). Then a ground station at B can see both satellites at a distance corresponding to $2\left(\theta^{\circ}-\theta\right)$ and the number of ground stations required will be equal to $\frac{2 \pi}{2\left(\theta^{\prime}-\theta\right)}$ or $\frac{\pi}{\left(\theta^{\prime}-\theta\right)}$. Number of ground stations vs. number of satellites at various satellite heights are plotted in Fig. 8.

As an example, let the number. n, of satellites in orbit be 15. For satellite height equal to 4 h (h may be read from Fig. 7, in this case $h=85$ miles) or 340 miles, the number n_{g} of ground stations required is equal to n or 15 , to relay the communication from one satellite to the other.

The use of a passive reflector on earth as satellite-earth-satellite relay is impractical because of the size of the reflector required. Only active relay seems usable. A feasible active relay system is shown in Table 8.

Active Relay System

In this system, it is assumed that a 10 w transmitter is used in the satellite. The earth station transmitter is thus limited also to 10 w , if two-way transmission is required. For one-way transmission, this limitation will be removed. The range, then, will depend on the parameters of the earth station. No example is given for one-way system but the same method as shown in Table 8 can be used for design.

The range of satellite-to-satellite communications can ioc extended many times as much by relay through an earth repeater station. This, however, requires the moving of two parabolic antennas 240 ft . in diameter to track the satellites at a velocity, say, of $20,000 \mathrm{mph}$. Such undertaking may not be easy, if not impossible.

An alternative is to have the earth antenna fixed. The information from one satellite first passing through the earth antenna is stored and later relayed to the next satellite passing through the same antenna. In this case, only one earth antenna is required. However, it must have a wider beamwidth so that there is enough time for an appropriate amount of information to be stored and become useful. This will reduce the
gain of the earth antemna and thus the range extended.

In earth-satellite-earth relays, an active repeater in the satellite is also possible. However, the repeater must provide a large amout of gain. Since such provision is very unlikely at least at the present moment, the range extended by a satellite repeater may not be very much.

For passive relays, the factor of $A_{b} / 4$ may be used to compare moon relay with satellite relay. Table 9 shows a comparison of the two.

A sphere with a diameter of approximately 200 in . (17 ft .) at 300 mile height is required to have the same effect as a reflecting body as the moon at 24×10^{4} miles away. To put a number of 17 ft . spheres in orbit is possible in the not too distant future.

The angle subtended by the satellite of 100 in . diameter is, however, extremely small, in the order of 10^{-3} degree. Unless its orbit can be pre-calculated to a fair accuracy, radio tracking will not be easy. Fortunately, from the experience gained in the observation of the Russian and American satellites, determination of a satellite's orbit is no longer considered as a serious problem.

Another interesting parameter in satellite relays is the siant range, which is the maximum distance between the earth station and the satellite. Fig, 9 gives the slant range for various satellite heights.

Other Considerations

The Carrier-to-Noise Power Ratio previously dis-

Fig. 8: The relationship of the number of ground stations to the number of satellites, orbitting at different heights, for relay purposes.

Fig. 9: The maximum slant range for various satellite heights.

Space Communications

(Continued)

cussed sets the limit of the reliability of the system. The actual performance is, however, specified as the post detection or baseband signal-to-noise power ratio per channel at the receiver output. Typical value is 40 db or 50 db FIA Weighting, corresponding to 37 db or 47 db flat weighting.

In dealing with radio transmission through Space, long range is of primary interest. The received signal is, therefore, usually weak. Therefore, a minimum usable signal-to-thermal noise power ratio per channel other than the conventional and more realistic to radio transmission in space must be established. It is suggested that a minimum of 25 db signal-to-noise power ratio per channel for 0 dbm test tone is considered usable for space communication.

There are definite relations between the carrier-tonoise power ratio (C / N) and the channel signal-tonoise power ratio $\mathrm{S}_{0} / \mathrm{N}_{0}$. These relations, however. depend on the modulation and multiplexing techniques.

Various combinations of mulitplexing and modulating techniques in various degrees (single, double, triple, etc.) of modulation could make up a large variety of systems. Much has been written about such combinations and their advantages and disadvantages ${ }^{14-16}$. However, regarding the final modulation (modulation of the radio carrier) emphasis has been put on either AM or FM and very little is said about SSB.

Although there is the obvious difficulty of dealing circuit-wise with single sideband and its pulse demodulation problem in the application of time division multiplex to modulate the radio carrier, the use of SSB as the final modulation (modulation of the radio carrier) in frequency division multiplex seems to have some advantages over either AM or FM, such as smaller i-f bandwidth and no threshold effect.

Another interesting subject is the antenna system. It is not intended here to cover this topic in detail. Only a brief outline will be given. Antenna systems in space communications may be divided into two main categories.
(a) Those installed in the space vehicles and (b) Those used on the earth. Important, factors to be considered in both categories are gain, polarization and physical characteristics.

The antenna systems in the space vehicles may be developed from the known techniques such as turnstile, dipoles and slot antennas that had been used in rockets, missiles and satellites. However, due to much longer path distances being involved, the antennas must have large gains. At the same time it should not have too high a directivity for easier tracking. Furthermore, the physical dimensions must be small due to the limited size of the vehicle. Large gain, omnidirectivity, and small sizes are contradicting requirements in conventional types of antenna systems. Therefore, new techniques and radical designs are required.

On earth, the antenna systems are not as restricted as those in the space vehicle. In radio astronomy, dipole arrays and rhombic antennas have been used for

VHF frequencies and parabolic antennas (up to 250 ft . diameter) for UHF frequencies. In missile tracking, Helical arrays have been used because of its circularly polarized characteristics. This characteristic is very useful because of the fading of the signal. All these kinds of antenna systems could be very well adopted for space communications except, perhaps, a much higher degree of maneuverability is required because of the high speed of space vehicles. This requirement is very tough for large antennas such as 250 ft . parabola. Furthermore, a beamwidth of not less than $2-5^{0}$ is preferred at present to ease up the tracking problem. This would limit the gain considerably. Again intensive research and development are required.

This article is based on a maper presented at the 4th National Aero-('om Symposium, Oet. l! ins, litica, N. Y.

Table 8
ACTIVE SATELLITE-EARTH-SATELLITE RELAY* (TWO-WAY)

	Satellite-Earth	Earth-Satellite
Transmitter Power	10w (10 dbw)	10W (10 dbw)
Frequency	300 MC	300 MC
Satellite Antenna	Isotropic	Isotropic
Earth antenna (parabolic)	240 ft .	240 ft .
Fading Margin	20 db .	20 db .
C/N power ratio	15 db .	15 db .
Range 1 cps B.W.	$2 \times 106 \mathrm{mi}$	$2 \times 106 \mathrm{mi}$
Range 1 KC B.W.	7×104	7×104
Range 1 MC B.W.	2×10^{3}	2×10^{3}
Noise Power-1 cps B.W.	-198 dbw	-198 dbw
Noise Power-1 KC B.W.	-168 dbw	$-168 \mathrm{dbw}$
Noise Power 1 MC B.W.	$-138 \mathrm{dbw}$	-138 dbw
Recrd. Power 1 cps B.W.	-183 dbw	-183 dbw
Recvd. Power-1 KC B.W.	-153 dbw	-153 dbw
Recvd. Power 1 MC B.W.	-123 dbw	- 123 dbw
Earth Repeater Gain-1 cps B.W.	193 db gain reqd. to give 10 dbw power 163 db gain reqd. to give 10 dbw power 133 db gain reqd. to give 10 dbw power	
Earth Repeater Gain-1 KC B.W.		
Earth Repeater Gain-1 MC B.W.		

* There is a degradation of C / N of 3 db because of two hoops.

Table 9

SATELLITE vs. MOON RELAY

	$\begin{gathered} \text { Distance } \\ \text { d in } \\ \text { miles } \end{gathered}$	Radius \mathbf{R}	$\mathbf{A}_{\mathrm{b}} / \mathrm{d}^{4}=\pi \mathbf{R}^{2} / \mathrm{d}^{4}$	Value Relative to moon
Moon	24×104	$10^{3} \mathrm{mi}$.	10-15 mi. ${ }^{-2}$	$1(0 \mathrm{db})$
Satellite	300	10 in .	$10^{-17} \mathrm{mi} .{ }^{-2}$	$10^{-2}(-20 \mathrm{db})$
Satellite	300	100 in .	$10^{-15} \mathrm{mi} .{ }^{-2}$	1 (0 db)

References

1. "Communications and Navigation Techniques of Interplanetary Travel,' Construccio, IRE Transactions, Vol. ANE-4, Dec. 1957
2. "Space Exploration--The New Challenge to the Electronics Industry," Prew, IRE Tranactions, Vol. MIL-1, Dec. 1957.
3. "Challenge to Industry: Spaceship Telemetry, Steier, Special Issue for Electronics and Guidance, Missiles and Rockets, Feb. 1958
4. "Space Vehicle Conmmunication System Design," Sukhia, 1958 Conference Proceedings, 2nd National Convention on Military Electronics, IRE.
5. "Radar Echoes from the Moon," Mofenson. Electronics, Apr. 1946, pp 92-98.
6. "Detection of Radio Signals Reflected from the Moon,' Dewitt et al. Proc. $I R E$, Mar. 1949, pp. 229-242.
7. "Moon Echoes and Transmission Through the Ionosphere," Kerr et al Proc. IRE, Mar. 1951, pp. 230-242.
8. "An UHF Moon Relay," Sulzer et al proc. IRE, Mar. 1952 , p. 361.
9. "Lunar Radio Echoes," Trexler Proc. IRE, Jan. 1958, pp. 286-292.
10. "Radar Echoes from the Moon at a Wavelength of $10 \mathrm{CM}, "$ Yaplec et al. Proc. IRE, Jan. 1958, pp. 293-297.
11. "UHF Moon Deflections," Fricker et ai. paper presented at URSI Meeting, et al. paper presented $24-26$. Washington, D. C.
12. "Radio Observations on the Russian Satellites,' Proc. I.E.E., Part B, Mar. 1958. pp. 81-115.
13. "Elliptical Orbit Lifetime," Breakwell and Koehler, Lockiheed Aircraft Cor poration, Palo Alto, Calif., May 1958 (Private Communication).
14. "Theoretical Analysis of Various Systems of Multiplex Transmission," Landon, $R C A$ Review, June and Sept., 1948 15. "Radio Telemetry," Nicholas and Rauch, Review of Scientific Instruments Jan. 1951, pp. 1-29
15. "Comparison of Required Radio Frequency Power in Different Methods of Multiplexing and Modulation," Nicholas, IRE Convention Record, 1954, Part 5, DD. 59-65.

Ratio Transformers

AMAJOR break-through in the clesign of sub-miniature military type co-axial ratio transformers has been recently accomplished. By the use of new techniques and materials, units with an overall diameter of $21 / 2 \mathrm{in}$. have been developed which compare in performance with large rack and panel trpes. Six units can now be placed in line on a standard $19-\mathrm{in}$. rack panel. (See photo.)

Some of the units now available have the following characteristics:

1. Two decades and a single turn interpolating potentiometer;
2. Three decades and a single turn interpolating potentiometer;
3. Three decades and a 10 turn interpolating potentiometer;
4. Three decades and no potentiometer;
5. Three decades and a 10 position resistor step interpolation; and
6. Phase reversing first decade, followed by two decade dividers.
These small sub-miniature units are already in production for the computer in one major missile pro-
gram and are being designed into several other programs.
Trade-named "RatioTrans"* and manufactured by Gertsch Products Inc., these units have been and can be designed for many types of

Lower unit is a standard rack type "RatioTrans," ${ }^{*}$ the upper indicates six comparable units mounted in the same space.
automatic data handling and machine positioning, Both rotary shaft driven and automatic switching types are available.
"TM

Tandem Electrostatic Accelerators

ADESIGN refinement in particle accelerators steps up the ion beam energy as much as four times to increase the utility of such machines in basic nuclear research.

Dr. Robert J. Van de Graaff Massachusetts Institute of Technology who developed the particle accelerator bearing his name points to the two, three and four-stage tandem accelerator as the most feasible source of particle energies required for effective bombardment of the heaviest of the atomic nuclei.

Already in existence is the 10 mev two-stage tandem Van de Graaff, manufactured by High Voltage Engineering Corp., Burlington, Mass., which enables exploration of the nuclear energy level of certain heavy elements not previously possible. The tandem comprises two 5-mev Van de Graaff accelerators horizontally placed end to end with a common high voltage terminal. With the tandem principle, it is possible to apply constant voltage to the beam not once, but two, three or even four times, correspondingly increasing the posi-tive-ion output energy, while retaining the precision and flexibility

Fig. 1: Two stage tandem, Van de Graaff accelerator.
associated with constant-voltage acceleration.

POSITIVE-ION ENERGIES IN MEV

for Three Differenł Arrangements of Tandem Accelerators

Pasifive lon	Two- Stage	Three- Stage	Four- Stage
Hydragen	$\mathbf{1 3 . 4}$	20.1	26.8
Helium	20.1	26.8	$\mathbf{4 0 . 2}$
Oxygen	60.3	67.0	120.6

Assumption: Terminal potential $=$ b.7 megavolts.
Complete stripping of positive ions.

In standard electrostatic accelerators, positive ions are produced inside the high voltage terminal and accelerated to ground in one step. In a two-stage unit, negative ions are produced at ground, and accelerated to a high-voltage positive terminal. Inside the terminal, the negative ions are stripped of electrons, becoming positive ions, which then receive an additional acceleration from terminal to ground. Since the particle beam receives
(Continued on page 105)

UltrascopeFor Medical Electronics

ANEW electron tube, called the "ultrascope," is expected to be a substantial help in medical and industrial research.

The tube is the "eye" of a new simple attachment for a microscope, which for the first time allows direct visual focusing of an image under ultraviolet light. It converts invisible ultraviolet im-

This simple drawing illustrates how specimens under ultraviolet light may be studied directly. The ultrascope unit, including power supply, is priced at $\$ 1500$; it replaces a TV system costing $\$ 15,000$.
ages of specimens into visible pictures that can be interpreted quickly by medical research workers. The accessory replaces the regular eyepiece of a microscope adapted for ultraviolet viewing.

The device is a significant step along the road of cooperation between medicine and electronics.

This new microscope accessory is expected to be a valuable asset in hospitals, medical schools and bio-
chemical manufacturing. It should also find application in many areas of industrial research for ultraviolet examination of organic materials, including latex, nylon, tobacco, paint and foods.

Cylindrical in shape, the new tube is $21 / 4 \mathrm{in}$. long and $13 / 8 \mathrm{in}$. in diameter.

All methods of ultraviolet microscopy take advantage of the fact that specimens absorb ultraviolet rays in various degrees depending on the ultraviolet wavelength.

Evaluation tests of a prototype of this accessory at the National Institutes of Health reveal that this new device has a very satisfactory degree of resolution.

The Institutes of Health tests were conducted under the supervision of Dr. George Z. Williams, chief of clinical pathology and a recognized authority on ultraviolet microscopy (EI, May 1957, p. 61). The tests have produced "promising results."

Use of the accessory with the ultrascope has several important advantages over previous ultraviolet microcopy techniques. For the first time it offers a simple electronic tool for ultraviolet studies in medical and biological research.

Previously, this type of instrument has had to be constructed from large, separate component parts, oftentimes at great expense (TV camera chains for $\$ 15,000$) and inconvenience.

A commercial model of the ultraviolet image-converter unit, equipped for direct viewing and photography, will be made available in the near future by Bausch \& Lomb Optical Company of Rochester, N. Y.

The Bausch \& Lomb U-V PhotoMicroscope will be priced at about $\$ 3,250$ including microscope, ultraviolet optics and image converter.

In the Bausch \& Lomb U-V Photo-Microscope, the Ultrascope is mounted at right angles to the usual viewing axis. A camera is in position to record the image, under ul-tra-violet light, which can now be focussed visually.

Offered as an accessory, the B\&L Grating Monochromator provides an excellent U-V light source. The B\&L Image Conve:ter Unit (ultrascope tube and 35 mm camera) is available for use on existing monocular microscopes and is priced at about $\$ 1,500$.
The ultraviolet image-converter tube, is the outgrowth of a quartercentury of RCA research and development on image tubes. Imageconverter tubes, sensitive to infrared rays, were used in the famous "Sniperscope" of World War II and the Korean War. Mounted on gun sights, this device enabled soldiers to see enemy troops and vehicles in total darkness. Until
(Continued an page 219)
This is the Ultrascope-the image-convarter tube which allows direct visual focussing of an image under wltraviolet light.

A difficult problem in the field of instrumentation is the accurate measurement of atmospheric air temperature in the presence of solar radiation. This article describes the design of such a thermometer which is accurate to ± 0.25 degrees

Fig. 1: The thermometer assemblies are shown installed on 30 ft . towers.

0NE of the most difficult problems in the field of instrumentation is the accurate measurement of atmospheric air temperature in the presence of solar radiation. In weather observations these measurements are usually made by means of a mercury thermometer located in a wooden shelter. The shelter is generally about 2 feet by 2 feet by 3 feet high and has louvred walls and a pitched roof. Such equipment is totally inade-
quate for the accurate determination of atmospheric temperature when subjected to conditions of high solar radiation.

Shielded Thermometer

This article describes the design of and the laboratory tests on an aspirated, radiation shielded thermometer which is capable of measuring air temperature within a proven accuracy of $\pm 0.25^{\circ} \mathrm{F}$ including errors due to maximum

By J. D. HUMPHREYS

Quolity Evaluation Lab.
U. S. Noval Ammunition Depot

Oohu, T. H.
solar radiation encountered on the earth's surface at the U. S. Army's Dugway Proving Ground in Utah. The instrument was developed in connection with an automatic meteorological digital telemeter system wherein a number of unattended remote stations collect and transmit data to a receiving-recording station. ${ }^{1}$ Since the system is used for micro-climatological research, measurements are taken close to the ground and laboratory accuracy is mandatory. The thermometer assemblies can be seen installed on the 30 ft tower shown in a remote station photograph of Fig. 1.

Fig. 2 is a general view of the unit showing the hooded 2 in . diam-
eter tube approximately 4 feet long. Aspiration air is drawn across a wire wound sensing element into this tube and into the 20 cfm electric-motor driven blower mounted on the opposite end. In passing through the blower the air is heated slightly due to local blower motor heating and if exhausted so that heated air enters the intake of an adjacent thermometer intolerable errors would result. This is prevented by stacking the theremometer sensing heads on one side of the tower and exhausting the aspiration air horizontally away from each sensing head on the other side as shown in Fig. 1. Exterior surfaces of the assembly are painted with a special high reflectivity gloss white enamel so that much of the radiant energy impinging thereon is reflected away.

Fig. 3 shows some of the external and internal
tics to determine radiant energy values versus altitude of the sun. The solid curves shown in Fig. 4 were plotted from pyroheliometer records for 28 June 1955 and 24 October 1955 representing extreme conditions recorded to date at the installation site. Since these curves present the energy levels received on a horizontal surface, it was necessary to modify them so that they approximate the values of radiant energy received on a surface normal to the sun rays throughout the day. By collecting normal to the sun readings with a portable solar radiation meter (GE, Type DW-69) on several unusually clear days it was established that:

1. When the sun is at the horizon the radiation normal to the sun is approximately 50% of the maximum value observed at 12 o'clock solar time.

Shielded Thermometer Design

details of the sensing head. The cylindrical portion of the hooded shield surrounds an inner cylinder of slightly smaller diameter shown in the right portion of the rectangular insert of Fig. 3. The nickel wire thermometer element shown next to the shield is mounted inside. The superior performance characteristics of the complete assembly depends to a large degree on the excellent heat transfer and reflectivity characteristic of this light-weight inner shield. Because of these characteristics the shield operating temperature is practically identical to that of the atmospheric air drawn into the intake and it is relatively insensitive to heating caused by solar radiation. It is made of 2 mil polished metal foil and provides a large surface area to mass ratio.

Atmospheric air enters at the head assembly through two separate intakes, one at the upper annular opening and the other at the lower annular opening. Air entering the upper opening is drawn through the space between the inner and outer shields while air entering the lower opening is drawn through the center of the inner shield and passes over the thermometer element. With this arrangement the former air flow serves to stabilize the average temperature of the head assembly interior at approximately the same temperature as the atmosphere. Thus, the temperature of the latter air flow is virtually unaffected by solar radiation heating. As presented later, the results of special tests show the errors caused by solar radiation to be less than $+0.20^{\circ} \mathrm{F}$.

Radiation Tests

Of considerable interest in the development of the shielded thermometer was the construction of a suitable laboratory test facility to simulate the maximum energy received at the field installation for various angles of solar radiation.

Data were collected on solar radiation characteris-

Fig. 2: Radiation shielded and aspirated thermometer unit.

Fig. 3: Solar radiation shielded and wire-wound thermometer details.

Shielded Thermometer (Continued)

2. The shape of the curve of radiant energy versus time is parabolic. The dotted curves shown in Fig. 4 were developed for a surface normal to the sun in the above manner and values taken from these curves were used in the radiation tests on the thermometer assembly. Note that the abscissa contains two scales, one the solar altitude angle and the other solar time. These values were obtained from computations and data as presented in the American Ephemeris and Nautical Almanac Tables for the field installation latitude and longitude.

In preparing for the simulated radiation tests to evaluate the performance of the shielded thermometer assembly it was found necessary to set up test equipment in a completely sealed and unventilated room as

Fig. 4: Incident solar radiation recorded on surfaces at Dugway, Utah.

shown in Fig. 5. The Radiation Shielded Thermom eter was mounted on one wall with the aspirator blower on the outside, exhausting into the atmosphere. Two lamps (GE 375R40/1) for simulating solar radiation are shown in position at a desired altitude angle of the sun and set about 30 inches from the thermometer. The portable solar radiation meter was used to measure the incident radiant energy illuminating the shield. Special resistance bulb temperature sensors manufactured by Minneapolis-Honeywell can be seen in each corner of the room (near ends of arrow labeled $\Delta \mathrm{To}$). These were shielded from possible radiation by aluminum foil sheets. A special Minneapolis-Honeywell precision differential temperature indicator shown in the lower left corner was connected to each temperature sensor and the shielded thermometer so that the difference in temperature between the left and right side of the room ($\Delta \mathrm{To}$) and the difference in temperature betwen the left side and the test unit ($\Delta \mathrm{T} 1$) could be observed as desired.

An interesting side light is that, although the sealed room provided a test environment relatively free of temperature gradients and drafts, the instrumentation used was so sensitive that the mere opening and closing of the door caused erratic test recordings. To obtain steady-state test conditions it was necessary to let the equipment and test personnel "soak" in this room with the doors closed for approximately 30 minutes before each test. In addition dispersion of equipment and personnel was required to

Fig. 5: Solar radiation test in unventilated, sealed room.
prevent excessive convective heat drafts from affecting the thermometer readings.

Performance Characteristics

The characteristic performance of the shielded thermometer under conditions of solar radiation is shown in Fig. 6. The curves are identified and show the temperature errors introduced from values of radiant energy of $1.00,1.50$ and $1.56 \mathrm{GM}-\mathrm{CAL} / \mathrm{CM}^{2} /$ MIM for corresponding sun altitudes of 0,45 and 73.2° obtained from the dotted curve of Fig. 4 for 28 June 1955. Other combinations of radiant energy and sun altitudes from dotted of curve of 24 October 1955 produced smaller errors than shown on Fig. 6
and so were not recorded. A peculiar, but constant, characteristic of the test environment is evident from the curves labeled Δ To (difference in temperature between left and right sides of room). After the lamps were turned on the steady-state air temperature of the right side of the room was consistently $0.1^{\circ} \mathrm{F}$ lower than the left side air temperature. Assuming a linear relationship from one side to the other, the air temperature entering the shielded thermometer is then $\frac{\Delta T o}{2}$ degrees F lower than the air temperature on the left side. Thus the total thermometer error due to solar raditation is $\frac{\Delta T o}{2}+\Delta T_{1}$ and from the curves is a maximum of $\frac{0.10}{2}+0.15=0.20$ degrees F. Notice that this maximum solar radiation error occurs during the summer months while the sun is close to the horizon. This is to be expected since at these small angles the radiant energy impinges directly on the cylindrical portion of the shield and is not deflected by the hood.

References

1. Weather Data by Digital Telemeter, J. D. Humphreys, Control Engineering, December 1957.

Fig. 6: Shielded thermometer performance characteristics are shown

PERFORATED PAGES!

In response to many reader requests the pages in the main editorial section have now been perforated. This will enable readers to easily remove material for their reference files. If the copy of Electronic Industries you receive already has pages removed that you want, please let us know. We'll be glad to provide the missing pages.

Diodes for Parametric Amplifiers

NTOISE temperatures as low as $50^{\circ} \mathrm{K}$ above absolute zero for a diode cooled by liquid nitrogen, and only $100^{\circ} \mathrm{K}$ above absolute zero operating at room temperature have been obtained by Hughes Aircraft Co. in a high

Tandem Accelerator

(Continued from page 100)
gain 3000 mC parametric amplifier using sample diodes of a newly developed type.

Initial production of several hundred of these diodes per week is in effect and they are immediately available to the industry. The
diode is the heart of the paranetric amplifier but also has other important microwave applications such as switching and harmonic gener ation.

It is available in two rugged and hermetically-sealed versions - one for the region below 1000 Mc and a second for the micro-wave region.
(Continued on Page 270)
two stages of acceleration, the device may then be called a two-stage tandem accelerator.

Dr. Van de Graaff believes nuclear research to be the most promising field for tandems. In these
multi-stage machines the precision and flexibility of constant-voltage particle acceleration will be available for an increased scope of nuclear investigations throughout the periodic table. $\star \star \star$

Fig. 3: Four stage tandem, Van de Graaff Accelerator.

Standardizing Stereo-1

NSRC gets under way. Panel 1 met March 4. Chairmanships and scope of pane/s announced. Manufacturers suggest stereo transmission systems.

Duties of the Coordination Committee and Panels

COORDINATION COMMITTEE

Scope: This committee shall coordinate the activities of the other panels, shall prepare definitions, and shall prepare the NSRC Final Reports for the approval of the NSRC.

PANEL 1 - SYSTEM SPECIFICATIONS

Scope: Panel 1 shall consider system proposals for compatible stereophonic broadcasting; shall identify the technical issues in said proposals and refer them
where necessary to other panels for detailed study; shall formulate a consistent set of transmission specifications for each form of broadcasting; and shall provide an overall evaluation of the system performance implied in the specifications.

Block diagram show ing organization of National Stereo. phonic Radio Committee and its officers.

PANEL 2-INTERCONNECTING FACILITIES

Scope: Panel 2 shall study and recommend technical characteristics of interconnecting lines, networks, studio-transmitter links and related stereo-transmission facilities between program origination points and the transmitters proper, said characteristics to include tolerable limits on crosstalk, relative time delay, frequency response, gain, and such other matters as must be controlled to assure a stereo signal of adequate quality at the transmitter input.

ADDRESS LIST - PANEL CHAIRMEN AND VICE CHAIRMEN

PANEL 1

Hirsch, Charles J., Executive Vice President, Hazeltine Research Corporation, 5925 Little Neck Parkway, Little Neck 62, 25 Little Neck Parkway, Little Neck
New York-Telephone: Flushing $7-8700$. Wintringham, W. T., Bell Telephone Laboratories, Murray Hill, New Jersey.
PANEL 2
Jensen, Axel, 21 Mea Drive, Berkeley Heights, New Jersey-Telephone: (Summit, N. J.) Crestview 3-5425

Barstow, John M., Bell Telephone Laboratories, Inc., Murray Hill, New Jersey.

PANEL 3
Harmon, Ralph N., Dir. \& Vice Pres. for Engineering, Westinghouse Broadcasting Co., Inc., 122 E. 42nd Street, New York 17 , N. Y.-Telephone: MU 7-0808.

PANEL 4
Benjamin, Joseph N., President, David

Bogen Company, P. O. Box 500, Paramus, New Jersey-Telephone: DIamond 3-5700. Williams, Fred B., Director of Radio Engineering, Motorola Inc., 4545 Augusta Blvd., Chicago 51, Illinois.

PANEL .

Walker, A. Prose, Manager-Engineering Department, National Association of Broadcasters, 1771 N Street, N.W., Washington 6, D. C.-Telephone: Decatur 2-9300.
Beville, Ross H., Vice President for EngiWeering, Radio Stations WWDC and WWDC-FM (Washington, D. C.), 8800 Telephone: TUckerman 2-7600.

PANEL 6
Goldsmith, Dr. A. N., Consulting Engineer, 597 Fifth Ave., New York 17, N. Y.-Telephone: PLaza 3-4150.
Schroeder, M. R., Acoustic Research Dept., Bell Telephone Laboratories, Murray Hill, Bell Telepho

Scope: Panel 3 shall study the system proposals referred to it by Panel with particular regard to (1) the feasibility of the proposed transmission method and (2) methods of adapting the proposals to existing broadcast transmitters.

PANEL 4-BROADCAST
RECEIVERS
Scope: Panel 4 shall study the system proposals referred to it by
panel 1 with particular regard to (1) the performance of existing monophonic receivers when tuned to the stereophonic signal (receiver compatibility), (2) the performance of stereophonic receivers designed for the stereophonic signal (stereo performance) and (3) the performance of stereophonic receivers when tuned to monophonic signals (reverse receiver compatibility).

PANEL 5-FIELD TESTING
Scope: Panel 5 shall study and
compare the system proposals referred to it by Panel 1, with particular regard to coverage, interference effects and other matters related to channel utilization; and shall conduct field tests with the advice and assistance of the other panels.

PANEL 6-SUBJECTIVE ASPECTS

Scope: Panel 6 shall provide to the other panels scientific information on the subjective aspects of stereophonic sound.

Stereo and Compatible Single Channel Reception

SEVERAL commercial radio and television stations have recently begun offering stereophonic sound programs, by broadcasting over two separate sound channels. In various experimental arrangements, the two channels required have been selected from different combinations of AM, FM, and TV channels. The listener then spaces the appropriate receivers properly in his home. Results have been sufficiently favorable that more and more broadcasters are now considering offering stereo programming.

The major obstacle to vastly increased use of this type of stereo broadcasting, however, is the person who listens with only one receiver. If the broadcaster tries for the full stereo effect, the sound the single channel listener hears comes from only one of the two widely-spaced microphone pickups, and he misses a portion of the program. What he does receive is poorly balanced, because of the placement of the pickups in relation to the sound sources. The broadcaster has had to dilute the stereo effect in order to preserve satisfactory reception for the single channel listener.

Now this single channel problem may be eliminated without affecting the stereo listener, through the use of a new "compatibility" circuit which has been developed by F. K. Becker of Bell Telephone Laboratories. The circuit depends for success on a psycho-acoustic phenomenon known as the "Precedence Effect". This effect operates in such a manner that when a single sound is reproduced through two separate loudspeakers, but is

delayed several milliseconds (thousandths of a second) in one, the listener will "hear" the sound as if it came only from the speaker from which he heard it first. He will judge the second loudspeaker to be silent. The amount of the Precedence Effect depends somewhat on the length of delay builtin; at 10 milli-seconds, the sense of direction for an average observer is as if the echo were 8 to 10 decibels softer than the sound preceding it.

In stereo transmission over a radio station and a TV station, the circuits between the microphone pickups and their corresponding radio or TV transmitters are cross connected through two delay lines, each with its own buffer amplifier. Because of these cross connections,
music or voice signals from the left microphone are transmitted directly to the left loudspeaker in the listener's home, while the same signal is slightly delayed before reaching the speaker to his right. The stereo listener will hear the sound as if it came only from the left loudspeaker because of the Precedence Effect. Conversely, the sound from the right microphone goes direct to the right speaker, but is delayed before reaching the left speaker, and is therefore unheard. Thus, the brain of the stereo listener localizes the sound he hears as coming direct from each of his two speakers, and full stereophonic effect is maintained.

However, monophonic reception is completely compatible with this,
(Continued on page 116)

THE rapid strides which have been made in the past year in space technology and other major new fields of electronics have given a radically new look to the program of the 1959 IRE National Convention, scheduled for the Waldorf-Astoria Hotel and New York Coliseum on March 23-26.

Highlighting the 54 sessions will be a special Tuesday evening symposium at which ten of the nation's foremost experts will discuss "Future Development in Space." Present developments, too, will receive a good deal of attention in two additional sessions devoted to Space Electronics.

Two new entries of unusual in-
terest have been included in the program this year: a symposium on Psychology and Electronics in the Teaching-Learning System, and a session on Theory and Practice in Russian Technology. Other sessions range over the fields of

Ernst Weber, President, IRE

IRE Show

 Will Feature "Space" ThemeHighlight of 4-day show and convention will be discussion on "Future Developments in Space" by ten leading national authorities. Over 850 exhibitors will be displaying their products to an expected 55,000 members and visitors.
all 28 IRE Professional Groups and include such timely topics as Widening Horizons in Solid State Electronics, Frontiers of Industrial Electronics, Man-Machine System Design, and Military Electronics Looks Forward.

Donald B. Sinclair, Vice-Pres., IRE

Dr. W. R. G. Baker, Treas., IRE

Exhibit space at the mammoth New York Coliseum has been completely sold out, assuring visitors that the Radio Engineering Show will provide them with the most complete showcase of new apparatus and products ever assembled under one roof. Eight hundred fifty exhibitors will display thousands of the latest developments. many for the first time. For the convenience of visitors, the exhibits will be grouped as follows: Floor 1—Systems; Floor 2—Components; Floor :3-Instruments: Floor 4-Production.

Convention activities begin on Monday morning, March 23, with the Annual Meeting of IRE in the Grand Ballroom of the Waldorf. Donald B. Sinclair, vice president of the IRE, will be the principal speaker.

The social activities include a get-together cocktail party Monday evening and the Annual Banquet Wednesday evening, at which the 1959 IRE award winners will be honored. Because an attendance of over 55,000 is expected at the convention, members are being urged to send in their reservations for these functions immediately.

An entertaining program of tours, luncheons, fashion shows and matinees has been arranged for the wives of members.

IRE TECHNICAL SESSIONS

ACOMPREHENSIVE program of 54 technical sessions will attract at least 55,000 radio engi-

Haraden Pratt, Secretary, IRE

Products will be displayed by more than 850 electronic manufacturers
neers and scientists. Thirty-three sessions are scheduled for the Wal-dorf-Astoria Hotel and 21 at the Coliseum.

One of the opening sessions on Monday afternoon will discuss engineering writing. The paper "Using the Psychological Approach in Scientific Writing" is being presented by John L. Kent of the Datex Corp. The paper points out how scientists, engineers and other technically trained persons can write better with less effort if they adopt the techniques described.

Trying to obtain additional finan-

John D. Ryder, Editor, IRE

cial backing for your firm? Casper M. Bower's Utilities \& Industries Corp. paper entitled, "Obtaining Capital for the Smaller Electronic Firm—Methods and Pitfalls," describes how' the small electronics firm may go about obtaining financial assistance. Mr. Bower also describes pitfalls that should be avoided in obtaining capital. This paper is only one of several being presented Monday afternoon for management in the Empire Room of the Waldorf-Astoria Hotel.

Mobile microphones have been a problem with broddcasters. Pefer K. Onnigian, KBET-TV, describes a fully transistorized wireless microphone in his paper, "A New Wireless Microphone for TV Broadcasting." The unit described meets FCC rules for such devices. It requires no external antenna and eliminates trailing wires. It is approximately the size of a package of king sized cigarettes. During the Tuesday afternoon session, Mr. Onnigian will alsn describe a companion receiver which may be used with the unit.

Lately, seme of the greatest strides in medicine have come about due to electronics. An increasing amount of interest is being shown in this field. V. K. Zworykin's paper, "Recent Advances in Medical Elec-
tronics" should be one of the highlights of the medical electronics sessions. In his paper he indicates ways for increasing further the effectiveness with which engineering knowledge may be applied to medical problems.

New microwave developments are cropping-up every day. One of the latest is the ability to obtain as many as 10 local oscillator frequencies from one tube. Charles W. Flynn, ITT Labs., describes the application of a commercially available traveling wave tube for this use in his paper, "A Mobile Frequency Local Oscillator." Paper is being presented Tuesday afternoon.

Engineers engaged in component design should place the sessions on components parts on top of their list. On Wednesday morning, C. H.

Complete
 1959 IRE

TECHNICAL PAPERS PROGRAM
to be found on
page 222

Aerial view of New York's Coliseum, again the site of this year's IRE National Convention

Lewis is presenting an interesting paper called, "Trend of Things to Come." He points out in his paper that the conventional components will disappear and their function will be taken over by specially designed materials performing single and multi-purpose functions. He will describe in detail the knowledge and skills that must be acquired by electronics specialist of the future to keep pace with this fast moving segment.

One of the hottest moving areas in the electronics field is ultrasonics. Every day new applications and uses for this new "tool" are being found. There is some real interest-
ing information being presented in the two ultrasonic engineering sessions. One being held Thursday morning and the second one Thursday afternoon. The sessions are a must for engineers working in the ultrasonic field.

With the increasing availability of automation equipment, the industrial electronics field has been spurting ahead. The Thursday morning session on industrial electronics should be of interest not only to those in the field, but those interested in entering the field of industrial electronics. Almost every day there is mention in the news-
(Continued on page 222)

1959 IRE National Convention-Technical Program

	Waldorf-Astorio Hotal						Now York Coltseum		
	Searlight Roof	Astor Gallety	Iade Room	Sert Room	Empire Room	Graod Balliroom	Norse Hislld	Marconi hall	Faraday Hall
Monday, March 23 2:30-5:00 p.m.	Seasion 1	Session 2	Sestion 3	Session 4	Session 5		Session 6	Sension 7	casion 8
	Adaptive Control Processes nod Allied Systems	Vebicular Come municarions	Eogineering Speect Speech	Radio Frequeacy Intefference	Engineering Management Techniques		Production Techoiques	Navigarion and Traffic Coatrol	Electronic Devices
$\begin{aligned} & \text { Tuesday, March } 24 \\ & \text { 10:00..... } \\ & \text { 12:30 p.m. } \end{aligned}$	Session 9	Session 10	Session-11	Session 12		Session 13° Eggine eriag Managemen - II	Seasion 14	Sesaion 15	Seasion 16
	New Techoiques for Analysis	Nuclear Instrumentation Techaiques - I	Broadeasting -1	Contributions to Stereo Sound Reproduction			Medical Electroaics - I	Laod and Space Electroaica	Panel. Wideniag Horizons in Solid Seate Electronic:
$\begin{aligned} & \text { Tuesday, Murch } 24 \\ & \text { 2:30-5:00 p.m. } \end{aligned}$	(e) Sessios 17	Session 18 Nuclear Instrumentation Techniques - 10	Session 19Brondcastiog - II	Sessicn 20 Speech and Circuits			Session 21	Session 22	Sefation 23
							Medical Electronics - II	Reliability Techniques	Microwave Tubea
Tuesday, March 24 8:00-10:30 p.m.	Session 24 Panel: Furure Developments in Space				x				
Wedoesday, March 25 10:00 a.m. 12:30 p.m.	Session 25 The Satistical Theory of Signals and Circuits	Session 26 Radio and Television Receivers	$\begin{aligned} & \text { Session } 27 \\ & \hline \text { Component } \\ & \text { Parts - 1 } \end{aligned}$	Session 28 Digital Telemetering		Session 29* Symposium: Psychology and Electroaics in the Teaching-Learning System	Session 30	Session 31	Session 32
							Commuaic ation by Scarter sy stem	Mathematical Approaches for Reliability	Microwave Derices
$\begin{aligned} & \text { Wednesday, March } 25 \\ & \text { 2:30-5:00 p,m. } \end{aligned}$	Session 33 Electronic Computers: Systems and Applications	Session 34 Symposium on Sequentia! Circuit Theory	Session 35 Component Parts - II	Session 36 Space Electronics			Session 3	Session 38	Session 39
							Communication by HF Radio and by Wire Line	Propagation and Anteanas - I	Microwave Theory and Techniques
Thursday, March 26 10:00 \#.... 12:30 p.m.	Session 40 Theory nod Practice in Russian Techoology	Sessios 11 Circuir Theory II - Analysis and Syachesis	Session 42 Uluasonic Engineeting - I	Session 43 Military Electronics - LooksForward	Session 44 Frontiers of Industrial Electrosic:		Sension 45	Session 46	Sesstion 47
							Man-Machise System Design	Atresoas - II	Inatrumentation: Derices and Circuirs
Thursday, March 26 2:30-5:00 p.m.	Session 48 Electronic Computers: Components nad Circuits	Session 19 Circuit Theory III - Applications	Session 30 Uluasonic Eogineering - II	Session 51 Concepts and Programs			Session 52	Session 33	Session 34
							Communication Engineering in Broadcasting	Antennata - III	Thatumpentation for High Speed Data Acquisizion

1—Digital Totalizer

Series 40A, transistorized digital totalizer operates from contactors. photocells, or other sensing devices which count objects. Handles wide range of input signals. Dynapar Corporation, Inc. Booth 3116.
Circle 161 on Inquiry Card, page 123

2—BW Oscillator

The QK634 is a voltage tunable, wideband (8150 to 11000 mc) CW BWO. Minimum power output is 150 w . Nominal power output is 200 to 25) w. over the band. Raytheon Mfg. Co. Booth 2611.
Circle 162 on Inquiry Card, page 123

3-Meter Relay

Model 137 VHS non-indicating meterrelay will trigger control action on signal changes as small as $0.2 \mu \mathrm{a}$. or 0.1 mv . dc. It has adjustable contacts. Assembly Products, Inc. Booth 3815 . Circle 163 on Inquiry Card, page 123

4-Frequency Monitor

Model M-4990 guards the position of a broadcaster's transmitter frequency within ± 2 ppm. Signal may be connected to a monitor or transmitter over 20 m . away. Gates Radio Co. Booth 1310 .
Circle 164 on Inquiry Card, page 123

5-Printed Circuit Board

Diallyl phthalate block. Right angle pins assemble to board on one side, to receptacle on the other. Sockets are solderless crimp-type, snap-locked contacts. Burndy Corp. Booth 3107.
Circle 165 on Inquiry Card, page 123

6-Panel Meters

Unimeter Series. dial component sections combine with separate basic movemert sections for a variety of meters. Sections slide together, lock with a thumbscrew. Triplet. Electrical Inst. Co. Booth 3613.
Circle 166 on Inquiry Card, page 123

7-Ceramics

AlSiMag ceramic developments include: multi-pin hermetically sealed headers, capacitors, alumina ceramics in complex shapes, wire guides fo: coils, missile components. American Lava Corp. Booth 3901.
Circle 167 on Inquiry Card, page 123

8-Checkout System

Automatic, high speed, test equipment designed to check out "Thor" ground support units. Unit is part of a multi-purpose checkout system for missiles and aircraft. Packard Bell Corp. Booth 1313.
Circle 168 on Inquiry Card, page 123

9—Capacitors

Radial lead capacitor, CY17C, has a dissipation factor less than 0.0005 with Q over 2500 . Capacitance drift is less than 0.05% with a TC of 115 $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from -55° to $+125^{\circ} \mathrm{C}$. Vitramon, Inc. Booth 2401.
Circle 169 on Inquiry Card, page 123

10-Voltage Dividers

Model 1000, AC Ratio Standard, has ratio accuracies as good as 0.0001%. Has dual range for high or low voltage operation. Also: FM-7/IIM-2, Frequency and Deviation Meter. Gertsch Products, Inc. Hooth 3701.

Circle 170 on Inquiry Card, page 123

11—Crossbar Switch

Memory device for analog and digital computer uses Matrix principle. Used for programming and sequencing. Handles up to 1200 circuits. Life exceptancy 50×10^{6} operations. North Electric Co. Booth 2125.

Circle 171 on Inquiry Card, page 123

12-Phase Meter

Model 200 AB measures phase angles in the presence of noise and harmonic voltages. Also: Model 150 Power Oscillator which supplies 160 va at two frequencies. Industrial Test Equipment Co. Booth $\mathbf{3 2 0 6}$

Circle 172 on Inquiry Card, page 123

13-Analog Computer

Educational Electronic A nalog Computer, EC-1, for teaching and demonstrations and for lab use. Also the OR-1, a 5 in, oscilloscope featuring a 5 ADP'2, Hat-faced CRT. Heath Co. Room 267.

Circle 173 on Inquiry Card, page 123

1 - Silicone Rubber

Silastic RTV 502, silicone rubber, cures at room temp,-sets in 30 min . Also: Other silicon products for filling, potting. encapsulation, and impregnating. Dow Corning Corp. Booth 1308.

Circle 174 on Inquiry Card. page 123

15-Signal Generator

Microwave signal generator has direct digital readout, accuracy to $\pm 1 \%$ and can be $A M$ or FM modulated. Also: spectrum analyzer Model SA-84W. Volarad Electronics Corp. Booth 3210

Circle 175 on Inquiry Card, page 123

16-Solar Cell

Silicon solar cells for calibrating artificial light sources in terms of solar energy radiation are considered the solar cell analog to the pyroheliometer standard. International Rectifier Corp. Booth 2901

Circle 176 on Inquiry Card, page 123

17-Shaft Position Encoder

Type RD-13B Digisyn, is a 13-digit, photoelectric, shaft position encoder with a 10 v . output $\pm 10^{\circ} \%$ from $-40^{\circ} \mathrm{F}$ to $+165^{\circ} \mathrm{F}$., and provides a signal to null ratio of 100:1. WayneGeorge Corp. Booth 1417.

Circle 177 on Inquiry Card. page 123

18-Sweep Oscillator

Model CP has variable sweep widths that cover Video. i-f, and VHF in 6 switched bands. Also: The Megalator, a transistorized amplitude modulator, de to 1000 mc. Kay Electric Company. Booth 2608.

Circle 178 on Inquiry Card, page 123

19-Capacitors

Miniature capacitors, 50 v., are designed for operation at $85^{\circ} \mathrm{C}$ without derating and to $125^{\circ} \mathrm{C}$ with $50^{\prime} 6$ derating. Units, from $0.001 \mu \mathrm{f}$. to $1.0 \mu \mathrm{f}$. Hermetically sealed. Good-All Electric Mfg. Co. Booth 3716.

Circle 179 on Inquiry Card, page 123

20-Power Supply

Variable Frequency Power Supply, VFS 300. provides 250 va . output power, output frequency from 45 to 2000 CPS , and variable output voltage of 0 to 140 v RMS. $105-130 \mathrm{v}$ ac, 50 -60 cps input. Itek Corp. Booth 3220 .

Circle 180 on Inquiry Card, page 123

21-'Transformers

Miniature, low-power, wide band, hioh frequency transformers have turns ratios from $1: 1$ to $1: 10$. Primary impedance levels are 50 ohms and 100 ohms. Military units meet MIL-T-27A. Aladdin Electronics Co. Booth 3938.

Circle 181 in Inquiry Card. page 123

$22-A n t e n n a$

Variable Polarization Antenna, Model 157, for X-band features motor-driven remote control of polarization. Frequency range is 8.500 to 9,600 mc. Has 50 kw nominal peak power capacity. California Technical Ind. Booth 1111.

Circle 182 on Inquiry Card. page 123

23-Epoxy Compound

Hysol 6700 Series epoxy compounds are ready to use without adding hardening agents. Meet MIL-T-27B. Also: epoxy molding powder, Hysol 8610, a one component powder. Houghton Labs., Inc. Booth 4213.

Circe 183 on Inquiry Card. page 123

24 -Resistor

High energy resistors handle up to 25 w. at $1000^{\circ} \mathrm{F}$ with no derating. Resistance ranges from 0.2 to 1.1 K ohms. Materials have low sensitivity to induced radio activity. The Carborundum Co. Booth 2930.

Circle 184 on Inquiry Card. page 123

25-Function Generator

Model 100, Diode Function Generator, has a punched card memory. Accuracy-0.1co; re-peatability- 0.02%; input and output range$\pm 100 \mathrm{v}$; input impedance- 1 megohm; Frequency response-de to 10 Kc . Electrol, Inc. Booth 1625.

Circle 185 on Inquiry Card, page 123

26-Dipole Feed

Model DIC-3045, $7 / 8$-in., coaxial dipole feed has a frequency range from 3800 to 4150 mc Max voltage standing wave ratio is 1.35 to 1.0 . Diamond Antenna \& Microwave Corporation. Booth 3237.

Circle 186 on Inquiry Card, page 123

27-Connector

Center screwlock, pin and socket connectors have from 34 to 104 contacts. Body material is molded from glass filled diallylphthalate (MIL-M-19833, Type GDI-30, Green). DeJurAmsco Corp. Booth 2307.

Circle 187 on Inquiry Card. page 123

28-Control Tower

Mobile air traffic control tower, AN/MRN-15, is helicopter transportable. It contains all the electronic equipment needed for aircraft control and guidance at an airstrip. Craig Systems, Inc. Booth 1325.

Circle 188 on Inquiry Card. page 123

29-Differential Voltmeter

Model MV-212C, ac differential voltmeter, is designed for differential measurements from 0.7 v . to 300 v . in the frequency range from 20 CPS to 500 kc . Accuracy is 3%. Cohu Electronics, Inc. Booth 3409.

Circle 189 on Inquiry Card, page 123

See these Products at IRE

33
34
35

30-Response Piotter

Model ARP-2, audio response Plotter, makes permanent pen-written frequency response curves of any audiorange equipment. Also: meters and power supplies. Southwestern Industrial Electronics Co. Booth 3305.
Circle 190 on Inquiry Card, page 123

31-Power Rectifier

Silicon Power Rectifer for $165^{\circ} \mathrm{C}$, service. Type 4 A is 35 a .; Type 6A is 20 a . Also: other silicon power rectifiers, capacitors, and refractory metals. Fansteel Metallurgical Corp. Booth 4021.
Circle 191 on Inquiry Card, page 123

32-Klystron Tubes

Type Z-5095 is designed for pulsed operation and X-band service. Type Z-5214 is a continuous-wave, integral, 4-cavity design (7500 to 8500 MC). Also: 10 other tubes. General Electric Cc. Booth 2924.

Circle 192 on Inquiyy Card. page 123

33-Potentiometers

Ten-turn potentiometers are $1 / 2$ in. x 1 in. Also: series 319 Wire-wound gangable pots; Series 318, printed circuit, "Squaretrim", Trimming Pots, Daystrom Pacific, Booth 1804.
Circle 193 on Inquiry Card, page 123

34-Frequency Generator

"L" band frequency generator has stability better than 1 part in 10° per day. Also: a precision crystal oven with temp control to $\pm 0.02^{\circ} \mathrm{C}$ over $50^{\circ} \mathrm{C}$ ambient. Manson Laboratories, Inc. Booth 3225.
Circle 194 on Inquiry Card, page 123

35-Capacitor

Microminiature feed-through capacitor is thermal-shockproof. Also: a magnetic amplifier, electrically and spring driven gyros, and analog-todigital shaft converters. Telecomputing Corp. Booth 2128.
Circle 195 on Inquiry Card, page 123

36-Tape Cable

Wiring assemblies are made by laying one section of Tape Cable on another and soldering the desired conductor intersections through the insulation. Tape Cable Corp. Booth 4133.
Circle 196 on Inquiry Card, page 123

37—Radar System Tester

Model AN/GPM-25 Radar System Tester is designed for testing bombing radar systems and as a navigation and weather radar tester. Unit is portable. General Mills, Mechanical Div. Booth 1900.

Circle 197 on Inquiry Card, page 123

38-Ultrasonics

The "Polaris", an industrial ultrasonic washing system, has a 1 kw 40 kc ultrasonic generator. Also: an ultrasonic dishwasher and the "Redstone", a roll-around unit. Narda Ultrasonics Corp. Booth 4532.
Circle 198 on Inquiry Card, page 123

MOLDED PRINTED WIRE EDGE CONNECTORS

SINGLE AND DUAL CONTACT TYPES

Single Contact Type No. 29029 A or B* Made in 6 through 25 contacts inclusive. Designed for nominal $1 / 16^{\prime \prime}$ printed wire board, either single or two sided copper.

A polarizing contact made of brass, Sel-Rex gold plated, can be placed in any contact position. Insulation material is of glass filled Diallyl Phthalate (Type GDI-30 per Mil. M-19833). Contacts are of Beryllium Copper or Phosphor Bronze with Sel-Rex gold plate .00003 Minimum. Terminals are mounted on .156" centers. Mounting holes are $.128^{\prime \prime}$ dia.

Made in 12 through 50 contacts in multiples of two. Designed for nominal $1 / 16^{\prime \prime}$ printed wire board, copper clad on both sides.
Contacts, polarizing contact, insulation and mounting holes are the same as described for No. 29029.
*A-Phosphor Bronze Contact *B-Beryllium Copper Contact

Standardizing Stereo

(Continued from page 107) since a listener to each single channel hears the total sound from both microphones in a balanced reproduction. The slight delay built in apparently does not affect his reception at all, according to subjective tests performed at Bell Laboratories.

Typical operating conditions in listening tests conducted today had a time delay of 10 milliseconds. with the volume of the delayed channel $11 / 2 \mathrm{db}$ softer than that of the direct. (The Precedence Effect. which was first discovered in 1933, operates over a delay range of from 5 to 35 milliseconds).

This development should make it possible for many more broadcasters to offer double-channel stereo programming without diluting the stereo effect or penalizing the single channel listener, who now make up the majority of their audience.

AM Stereophonic Broadcasting

AN AM stereophonic broadcasting system different from any yet introduced-and closely related

AM Stereo Broadcasting

PHILCO Corp. has developed a new system of radio broadcasting designed to bring stereophonic sound into every American home. The system provides a signal which could be used for stereo reception and which would not affect present AM transmission to existing monophonic receivers. No new radio frequencies will be required, and stations will be able to switch from monophonic to stereophonic broadcasts at will. Block diagrams of transmitter and receiver for Philco's new stereo system are shown below. When field testing is
approved company plans to cooperate with any licensed broadcaster and with NSRC.

to the duplex radio transmission system Dr. Frank Conrad, Westinghouse radio pioneer, discovered in the twenties-has been shown by the Westinghouse Electric Corporation's television-radio division. The stereophonic signal is achieved by simultaneous amplitude and frequency modulation of the carrier.

The new system provides: 1) excellent compatibility for monophonic reception of the stereophonic signal on conventional AM receivers; 2) reasonable stereophonic reception and reproduction with two conventional AM receivers; and 3) high quality stereophonic reception and reproduction with inexpensive receivers specially designed for the system.

The new system is compatible with present FCC standards for AM broadcasting. The amplitude modulation is essentially that of the normal commercial broadcast band signal and the stereophonic information is supplied by varying the carrier frequency. The stereophonic information is contained in the band from 300 to 3000 cps . It is therefore, practical to use frequency modulation for the stereophonic information without interfering with adjacent AM channels.

Transmission of the AM and

[^6]FM signals is accomplished in a manner that permits any standard AM receiver to pick up and reproduce, distortion-free, balanced monophonic sound, while a stereophonic receiver-with separation circuit and multiple speakers will convert these AM and FM signals into true stereophonic sound.

An interesting additional feature of this system is that two standard AM receivers carefully tuned: one to the low side of the AM channel. the other to the high side-placed four to eight feet apart-can reproduce reasonable stereophonic sound.
"Such compatibility," means that the millions of AM radio receivers now in daily use are in no danger of becoming technologically obsolete; they still can be used for monophonic reception of both regular and stereophonic broadcasts. And in homes where there are two $A M$ radios, the owners can enjoy the naturalness of stereophonic sound by properly tuning both to the same AM station.
"The system standards will be submitted to the National Stereophonic Radio Committee for study. A proposal for a test demonstration is being submitted to the FCC. As soon as this authorization is received, Westinghouse Broadcasting Company will conduct a test program over one of its stations - probably Pittsburgh's
pioneer KDKA-about the middle of March."

The system was developed by C. W. Batugh, Jr., Harold E. Sweeney, and others of the advanced development group. These engineers set up the following specifications for the AM-FM signal:

1. The signal carrier shall be both amplitude and frequency modulated.
2. The amplitude modulation is predominantly proportional to the algebraic sum of the two stereophonic signals (L-left microphone + R-right microphone) but includes a smaller signal that is a function of the stereophonic difference signal ($L-R$). This function to be developed by a compensating system.
3. The maximum amplitude modulation shall be limited to 95%.
4. The frequency modulation shall be from the components of the stereophonic difference signals between 300 and 3000 cps. The filter cut-off rate shall be 6 db /octave. The maximum deviation shall be 3 kc .
5. When only one stereophonic signal exists the maximum instantaneous amplitude shall occur simultaneously with the maximum instantaneous frequency deviation of the transmitted signal.
The compensating system reduces crosstalk of the l'M signal into the AM channel of the radio receiver. Knowing the bandpass characteristics of the average broadcast receiver, it is possible to design a transmitter system that will reduce crosstalk. The precompensation used in the transmitter will fully correct the signal for the average IF passband.

In the transmitter block diagram the compensation network shown operates to modify the AM modulation as a function of the stereophonic signal. As a result. the envelope of the signal leaving the transmitter is precorrected so that a standard AM radio will receive and reproduce monophonic sound substantially independent of the stereophonic difference signals.

The phase corrector network \#1 is used to equalize the audio phase shift so that the frequency modulation and the precorrection envelope

Standardizing Stereo

Block diagram of Westinghouse's AM compatible stereophonic receiver
modulation are coincident in the transmitted signal. Phase corrector \#2 puts the $L+R$ modulation in time coincidence with the $L-R$ modulation in the transmitted (Contimued on page 238)

Do You Know Your istors?

By Rudolf F. Graf

THIS little quiz will test your familiarity with present day istors. As of now we know

1. CHRONISTOR

2. FERRISTOR
3. FILMISTOR
4. LUMISTOR
5. MAGNISTOR
6. PERSISTOR
7. PHOTOTRANSISTOR
8. RESISTOR
9. SENSISTOR
10. SPACISTOR
A. High speed, high current switching transistor.
B. Hermetically sealed. Deposited carbon resistor.
C. Subminiature elapsed time indicator.
D. Newly developed four terminal high temperature semi-conductor.
E. A. semi-conductor device having a valtage dependent nonlinear resistance.
F. Inrush current limiter to protect tube heaters.
G. Light sensitive semi-conductor.
H. Miniature two winding saturaable reactor, for power levels up to tens of watts.
I. Small two winding saturable reactor operating on a high carrier frequency.
J. A stable multivibrator which replaced mechanical vibrators.
of only 19 , but new ones are being announced frequently.

A total of 16 to 19 correct answers is excellent. Twelve to 15 is good and a score of 11 or less shows that a little more istor study is needed.
11. STABISTOR
12. SURGISTOR
13. THERMISTOR
14. THYRISTOR
15. TRANSISTOR
16. TWISTOR
17. UNIVISTOR
18. VAMISTOR
19. VARISTOR
K. Temperature sensitive resistor.
L. Special type of silicone resistor.
M. Circuit element opposing a flow of current.
N. Semi-conductor based on the principle of electron flow within a solid.
O. A Voltage regulating silicon diode.
P. Memory device consisting of a tiny coil of magnet wire wound on a central conductor.
Q. Superconductive bi - metallic printed circuit memory element.
R. Precision resistor having a ribbon of metal fused to wall of steatite tube.
S. An electroluminescent material.

For Telegraph - Teletype - Data Handling Remote Control functions, etc.
\square Receive Band Pass Filters
\square Transmit Band Pass Filters
\square Oscillator Networks
\square Discriminator Networks

TRANSMIT FILTERS

90-0574 SERIES
Variation From Center Frequency

ATTENUATION: (Typical)
Insertion power loss $=$ less than 5 db
Band width @ 3db relative: ± 55 CPS
Band width @ 25 db relative: ± 170 CPS

RECEIVE FILTERS

90-0573 SERIES
Variation From Center Frequency $-200-150-100-50 \quad F_{0}+50+100+150+200$

ATTENUATION: (Typical)
Insertion power loss $=$ less thall 6.5 db
Band width @ 3db relative: ± 52 CPS
Band width @ 35db relative: ± 130 CPS
170 CYCLE SPACING - 425 CPS TO 3315 CPS TRANSMIT PART \# 90-0574-00/17
RECEIVE PART \# 90-0573-00/17
IMPEDANCE: Input 600 ohms-Output 600 ohms
NOMINAL OPERATING LEVEL: 1 Volt DC ISOLATION: Terminals to case 10,000 Megohms minimum at 500 volts TEMPERATURE RANGE: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient
CASE: Hermetically sealed
MOUNTING: $6.32 \times 3 / 8$ studs
TERMINALS: Tefion
C-A-C has produced many types of telegraph filters with a variety of channel spacing, e.g., 120 cycle, 150 cycle and others. Also available in impedance levels for completely transistorized equipment. Other miniafurized packages available. Please inquire.

C-A-C BUILDS TOROIDS FOR ALL APPLICATIONS

Over 2200 different types and sizes carried in stock. Inductance Values from .05 MH . to 60 HY .

News Letter

ONE OF EVERY $\$ 4$-In the Defense Department $\$ 40.9$ billion budget for fiscal year 1960 (starting July 1) there is only $\$ 1,057,000,000$ directly attributable to major procurement and production of the electronic and communications equipment. Pentagon officials, however, advised Electronic Industries that the actual amount which would be expended for com-munications-electronic items would be much larger. It is estimated to be $\$ 1$ of every $\$ 4$ for the entire military procurement. Total communications-electronic procurement and production for the armed services may run as high as $\$ 7$ billion. In the budget much of the electronic procurement requirement is "hidden" in aircraft procurement, missiles, research and development and other categories of the Defense Department funds.

FCC FUNDS INCREASED - Despite the economy trend in the Eisenhower budget, the FCC was allotted an additional $\$ 1,180,000$ in fiscal 1960. The Commission in the upcoming year would receive an appropriation of $\$ 11$ million as compared with $\$ 9,-$ 820,000 . Outlining the FCC's activities in general terms, President Eisenhower declared in his budget message that "Growth in workload coupled with the needed reduction in time lag between dates of receipt and dates when applications are reached for consideration require an increase in manpower for 1960." The FCC's broadcast regulatory activities would receive the highest proportionate share of the increased funds. For common carrier regulation there would be a boost of $\$ 100,000$ and for safety and special radio services an increase of around $\$ 200,000$.

PAY TELEVISION BAN - A joint Congressional resolution which would ban any pay television operation (except technical tests) whether interstate or intrastate and either by wire or radio, has been offered in the House by Chairman Oren Harris (D., Ark.) of the House Interstate \& Foreign Commerce Committee. This committee has jurisdiction over the FCC. Under the resolution, the FCC could authorize technical tests of paid TV for limited purposes. If the resolution is enacted by the Senate and House, it would enforce the ban on pay TV since the commission would be authorized to bring a civil action against any violators. This Congressional policy coincides with the thinking of FCC Commissioners in previous rulings . . . to limit the present status of pay TV to technical tests.

SPECTRUM CLASH-The FCC inquiry into the uses of the spectrum from 25 to 890 megacycles will bring to the forefront the clash for spectrum space
between television interests and non-broadcast services. Hearings may start in early March. The nonbroadcast users of radio-the Bell System and mobile radio services-feel that the space allotted to uhf television is not being utilized effectively since there are very few uhf television stations in operation. The police, fire, taxicab, trucking, industrial radio services have unlimited expansion plans and consequently demands for greatly increased frequency allocations.

MANY DEMANDS FOR SPECTRUM-In the UHF TV space, the biggest potential requirement is the Bell System's application for 75 megacycles to serve mobile radio users. There are also many specialized requirements for this portion of the spectrum. Some of these are: ramp control of airfield service vehicles by airlines; electronic highways including traffic light control; ambulance coordination; doctors urban mobile radio service, and doctors rural dispatching service.

RADIO ASTRONOMY RULES-The FCC has denied the petition of aeronautical radio organizations for a "stay" of its new rules. The rules require applicants for new or changed radio stations within a radius of about 50 miles of the two observatories to notify the National Radio Astronomy Observatory of their plans. This will enable that organization to submit comments to the FCC before it acts on the applications. In essence the rules are to "guard against possible harmful interference" to the National Radio Astronomy Observatory at Green Bank, W. Va. and the Naval Radio Research Observatory at Sugar Grove, W. Va.

OPPOSE SPACE ALLOCATIONS - The National Association of Broadcasters, Aeronautical Radio, and the Air Transport Association have opposed the FCC recommendations for spectrum space in space communications. The FCC-formulated space communication recommendations are to be made by the United States at the upcoming international radio conference in Geneva. The NAB noted that the FCC listing of the $100-150 \mathrm{MC}$ band for space communications affected part of the FM broadcast band. Arinc and ATA declared that the 108-130 MC band includes a number of general aviation frequencies, air traffic control and VOR operations.

New
 Products

POWER INVERTER

Transistorized power inverter supplies ac sine wave power from a battery line source, and has short-circuit and input overvoltage protection. Nominal input voltage: 24,26 or 28

vdc; output voltage: 26 and 115 vac standard. Output frequency of 400 CPS is standard, with 1200,1500 and 2000 CPS available. Output power: 40 va. Operating temperature range: $-55^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$. Three standard terminations are available- A / N connector, wire-lead pigtail, and solderlug terminals. Arnold Magnetics Corp., 4613 W. Jefferson Blvd., Los Angeles 16, Calif.
Circle 251 on Inquiry Card, page 123

THERMOCOUPLE CALIBRATOR

Model TC-2 for controlling and recording test temperatures. Thermocouples replace the stainless steel ice bath with test tubes and rack for cold junction compensation, with a con-stant-temperature, thermocouple reference junction. The $40 \times 30 \times 70 \mathrm{in}$. unit has: potentiometer, standard cell, null indicator, wet cell storage battery, 24 point rotary switch, Bureau of Standards calibrated thermocouple (12 points up to $2200^{\circ} \mathrm{C}$), and

furnace control instrumentation. It has an F-4 modified furnace with a $43 / 4$ in. ID Kanthal-wound doublecore of 5-zone construction. Arcweld Manufacturing Co., Grove City, Penna.
Circle 252 on Inquiry Card, page 123

DUAL-BEAM "SCOPE"

Oscilloscope, Type 411, displays $\mathrm{x}-\mathrm{y}$ plots and simultaneously displays either the x - or y - signal against time. There are 9 major modes of display. Additional modes (27) are

possible. Vertical resolution is $20 \mu \mathrm{~V}$ on each of the 2 channels. Frequency response is from dc to beyond 100 kc . Featured is a full-scale amplitude measuring range of from one mv to 500 v. in 17 steps. Overall accuracy (amplitude) on the Y -axis of the identical channels is within 5% of full scale. Allen B. Du Mont Laboratories, Inc., 760 Bloomfield Ave., Clifton, N. J.

Circle 253 on Inquiry Card, page 123

VOLTAGE COMPARATOR

Test module, 200 Series Voltage Comparator, trips a DPDT relay output when the unknown signal input exceeds the value of the reference input. Using direct voltage comparison, it has applications in military ground support equipment, airborne instrumentation, modular test equipment, alarm/control systems and data gathering and processing systems. Transistorized, it features high sensitivity. Output relay contact rat-

ings are 2 at 28 vdc . Repeatability of trip point is $\pm 1 \mathrm{mv}$. and overload capacity is 1000 times rated sensitivity. Meets MIL-E-5400A and MIL-E5272. Trio Laboratories, Inc., Plainview, L. I., N. Y.
Circle 254 on Inquiry Card, page 123

VACUUM PUMP

Motor driven air pump has a continuous duty cycle and is qualified for 1000 hr . minimum life. Operation is oil-free, and requires no lubrication. Operating temperature range is

$-65^{\circ} \mathrm{F}$ to $+200^{\circ} \mathrm{F}$. Compressor capacity is 0.025 ppm at 30 psia outlet with 7 in. Hg. absolute inlet pressure. For vacuum it will reduce 800 cubic volume from $29.92 \mathrm{in} . \mathrm{Hg}$. absolute to $0.5 \mathrm{in} . \mathrm{Hg}$. absolute in 2 min . with outlet discharging to sea level. Motor is $1 / 4 \mathrm{HP}, 400 \mathrm{CPS}, 3$ phase, 207 V . and is fan cooled. Great Lakes Manufacturing Corp., 4223 Monticello Blvd., Cleveland 21, Ohio.
Circle 255 on Inquiry Card, page 123

GERMANIUM TRANSISTORS

Germanium high frequency, dif-fused-base "mesa" transistors feature alpha cutoff frequencies up to 750 MC and power dissipations of 750 mw. The pnp transistors, 2N1141, 2N1142 and 2N1143 have minimum current gains of 12,10 and 8 db at 100 mc and operate at junction temperatures up to 100° with 750 mw power dissipation at $25^{\circ} \mathrm{C}$ case temperature. They are enclosed in a welded JETEC TO-5 outline pack-

age. Units exceed MIL-T-19500A. High dissipation is realized through direct contact between the header and the active element. Texas Instruments Incorporated, P. O. B. 312, Dallas, Tex.
Circle 256 on Inquiry Card, page 123

and provides better measurements and assures more accurate reading of VSWR and allows direct reading of reflection coefficient angle and high-power models automatically reject source harmonics

Sound impossible? Not at all. Thanks to a major advance in the science of standing wave measurements!
These new measuring devices, called Rotary Standing Wave Indic̣ators, represent a bold solution for VSWR and impedance measurements for waveguide and coaxial systems from $100 \mathrm{mc} / \mathrm{s}$ through $7 \mathrm{kmc} / \mathrm{s}$. The resulting reduction in insertion length alone completely makes obsolete the use of slotted sections in this frequency range. The PRD model 223 RSWI (shown here) for use with WR-2100 waveguide systems measures 10 inches as compared with slotted sections measuring over 4 feet!
The PRD Type 219 for use in coaxial systems from 100 to $1,000 \mathrm{mc} / \mathrm{s}$ weighs only $41 / 2$ pounds and adapts to most types of connectors: Types N, BNC, C, 7/8" coaxial, LT, and TNC.

The waveguide RSWI's are available on special order in two power-handling models:
the -LW models are low-power broadband and can handle most laboratory bench-power requirements; the -HN models are high-power 12% bandwidth units and can operate under kw and megawatts of power. All the RSWI's are available for use in waveguide systems from WR-159 through WR-4200.
Specifications and details for the waveguide RSWI's can be found on page H-5 of the latest PRD catalog, E-8. Specs and data for the PRD Type 219 can be found on page B-13. If you do not happen to have ready access to this 160 -page reference manual, a complimentary copy can be obtained through your local PRD representative or by dropping us a line on your company letterhead.
Complete information on the principles of rotation of a probe in the circular plane of polarization and a full, technical description of the Rotary Standing Wave Indicators are contained in the latest PRD REPORT, VOLUME 6, Number 1. For your free copy send your request to:

Type 223-LW Waveguide Rotary Standing Wave Indicator for standing wave and reflectivity measuraments in WR-2100 waveguide systems over the frequency range
from 350 to $530 \mathrm{mc} / \mathrm{s}$. Residual VSWR less than 1.03.

Type 219 Rotary Standing Wave Indicator for use in coaxial systems for standing wave and reflectivity massurements over the frequency range from 100 to 1,000 mc / s. Residual VSWR less than 1.03 .

for the First Time ...

MODEL X4063
Equivalent to Jan DA

The Bogart Model 4063 5:

loads hos evolved from o nees:
very high power dummy loods ts tory use. Originaly developed for Control Instrument Group, the 4 time, the only family of high that have been approved b; agencies. These units have bet fied in accordance with specific and MIL-T-945A. Previously, the and Mil-T-94SA. Previously, wide acceptance by service bre
won wide acceptance by service during tuning and mainte
renonce and stondard test cord tions.
with the highest power adar systems,
are lightweight, compoct, resistant
with which they will be used. ?educed

Model No.	Equivalent JAN Norrenclature	Frequency Range IKNC/S)	Max. Peak : Power imegaWatts)	Average Power (Fatts)	Maximum VSWR	Approx. Length (Inches)	Width (inches)	Height (Inches)	Approx. Weight (Lbs.)	Waveguide AN Type
L4063	DA-147/J	1.12-1.70	17.2	6000	i. 15	33	9	$11 / 1 / 2$	60	RG-103/U
R4063	Pending	1.70-2.60	6.0	5000	1.10	$211 / 2$	$61 / 2$	$81 / 2$	20	RG-105/U
S4063	DE.145/L	$2.60 \cdot 3.95$	3.2 -	4500	1.10	14	5	61/2	9	RG.75/U
A4003	Pending	$3.30-4.90$	2.1 -	2200	1.10	13	51/2	$61 / 2$	8	WR229 \dagger
H4063	DA.149/U	3.95.5.85	1.3 *	2000	1.10	$91 / 2$	$31 / 2$	4	5	RG.95/U
C4063	DA.144/U	5.85.8.20	0.71 *	1000	1.10	8	3	4	$21 / 2$	RG-106/U
84063	DA-148/J	7.05-10.0	0.46	600	1.10	$61 / 2$	21/2	3	1	RG-68/U
X4063	DA-146/J	8.20-12.4	0.29	500	1.10	6	$21 / 2$	$21 / 2$	1	RG-67/U
KU4063	DA-159/J	12.4-18.0	0.16	250	1.15	4	$21 / 2$	21/2	$1 / 2$	RG-107/U**
K4063	DA.160/J	18.0.26.5	0.058	150	1.15	4	21/2	$21 / 2$	1/2	RG-121/U
KA4063	DA.158/U	26.5.40.0	0.031	75	1.15	. 4	2	2	1/2	RG.96/U**
	*"These peak	powers apply	in 001	suty cycie	applicati	ons."	fretma	signation	1 ${ }^{\text {alu }}$	num equivalent

"Peak pawess are warranted at thirty ;30) PSIG pressurization specification
Above data subject to change without notice
BOGART
BOGART MANUFACTURING CORPORATION

```
        BOGART
        REPRESENTATIVES
MAINE
NEW HAMPSHIRE
NEW HAN
RHODE ISLAND
MASSACHUSETTS
    JOIMN E. BOEING COMPANY
    P.OB.BOX 235
    LEXINGION,MASSA
BOGART
REPRESENTATIVES
MAINE
YERMONT SHIRE
RHODE ISLAND
CONNECTICUT
MASSACHUSETTS
JOIMN E. BOEING COMPANY
LEXINGION, MASSACHUSETIS
```

CALIFORNIA
JOE DAVIDSON AND ASSOCIATES
POST OFFICE BOX 108
SOUTH GATE. CALIFORNIA
NEvada 6.2245
JOE DAVIOSON AND ASSOCIATES
SA NATOMA STREET CRANCISCO. CALIFORNIA
HAmlock 1.0464
ARIZ.DNA
NEW MEXICO
JOE DAVIDSON AND ASSOCIATES
6.3 EAST FOURTH STREE
SZOTTSDALE ARIZONA
NORIH CAROLIN
NORIH CAROLINA
ENHESSEE
LARCO. INC.
1O43 B PROVIDENCE ROAD
CHARLOTTE NORTH CAROLINA
EDison 4.7090
LARCO INC.
3389 NÓITINGHAM ROAD
WNSTON SALEM.
NORTH CAROLINA
PArk $3-4205$
nnsylvania
NEW JERSEY PARER NAUDAIN COMPANY
SUBURBAN STATION BUILDING
FOOM 846
FHILADELPHIA 1,
MARYLAND
MIRGINIA
DELAWARE
IPAREER NAUDAIN COMPAN
S2 BRANDON ROAD
\$2 BRANDON ROAD
IALTIMORE 12 MARYLAND
WALTIMORE
VAlley 5.5492
FLORIDA
GEORGIA
DON \ddagger PHELPS
4OI CEYLON DRIVE
GArden 4.9716
NOKTHERN ILLINOIS
NORTHERN INDIANA
EASTERN IOWA
SOLTHERN WISCONSIN
ENGINEERED SALES CO, INC.
3592 MIWWUKEE AVENUE
392 MILWAUKEE AVENUE
HICAGO 4I ILLINOIS
PEnsacola 6.0555
SOUTHERN OHIO
SOURTERRN OHENTUCKY
SOUTHERN INDIANA
ELECIRO-SALES ASSOCIATES
DABEL STATION BOX 143
DAYION 20, OHIO
CHopel 4.555 :
NORTHERN OHIO
WESTERN PENNSYLVANIA
ELECTRO.SALES ASSOCIATES
ELECTRO. SALES ASSOCIATES
281 EAST 216 th STRET
281 EAST 216th STREET
CLEVELAND 23.
REdwood 2.7444
SOJTHERN MICHIGAN
NORTHWESTERN OHIO
ELECTRO.SALES ASSOCIATES
36500 WEIDEMAN ROAD
MT. CLEMENS, MICHIGAN
MOward 8.2461
OKLAHOMA
TEXAS
KANSAS
MISSOURI
TEX.O.KOMA SALES COMPANY
GRAND PRAIRIE, TEXAS
GRAND PRAIRIE, TEXAS
ANdrew 2.0866
WASHINGTON STROUM COMPANY
$16 / 2$ BROADWAY
SEATILE WASHINGTON
OREGON
Samuel N. stroum company
6224 EAST BURNSIDE
PORTIAND OREGON

CALIF ORNIA
POST OFFICE BOXD ASSOCIATES
SOUTH GATE. CALIFORNIA
NEvada 6. 2245
50 NATOMA STREET
SAN FRANCISCO CALIFORNIA
Himlock 1.0464
NEW MEXICO
JDE DAVIDSON AND ASSOCIATES
SZOTTSDALE ARIZONA
NORIH CAROLINA
SOUTH CARRLINA
ENHESSEE
LARCO INC.
1043 PROVIDENCE ROAD
EDISOR 4.7090
LARCO INC.
3369 NOITINGHAM ROAD
NNSTON SALEM
PArk 3.4205
EASTERN PENNSYIVANIA
NEW JERSEY
L. PARKER NAUDAIN COMPANY
SUBUREAN STATION BUILDING

FOOM 846
FHILADELPHIA 3, PENNSYLVANIA timenhouse 6-3185
MARYLAND
VIRGINIA
DELAWARE

1. PARKER NAUDAIN COMPANY
S2 BRANDON ROAD

ALTIMORE 12. MARYLAND
rs
GEORGIA
DON 1401 PHELPS
ORLANDO, FLORIDA
NOKTHERN ILLINOIS
NORTHERN INDIANA
EASTERN IOWA
SOLTHERN WISCONSIN
ENGINEERED SALES CO. INC.
1592 MLLWAUKEE AVENUE
3592 MILWAUKEE AVENU
EHICAGO 4 ILLINOIS
PEnsacola 6.0555
OHIO
SOUTHERN OHIO
NORTHERN KENTUCKY
SOUTHERN INDIANA
ELECIRO-SALES ASSOCIATES
ELECIRO-SALES ASSOCIATES
DABEL STATION BOX 143
DAYION 20. OHIO
CMapel 4.555 !
NORTHERN OHIO
ELTEN PENNSYLVANIA
CLEVELAND 23. OHIO
REdwood 2.7444
SO JTHERN MICHIGAN
NORTHWESTERN OHIO
ELECTRO.SALES ASSOCIATES
36500 WEIDEMAN ROAD
36500 WEIDEMAN ROAD
MT. CLEMENS, MICHIGAN
MOWOI $8.24,1$
OKLAHOMA
TEXAS
KANSAS
MISSOURI
TEX.O.KOMA SALES COMPANY
GRAND PRAIRIE, TEXAS
WASHINGTON
SAMUEL N. STROUM COMPANY
162 BROADWAY
SEATIE, WASHINGTON
OREGON
SAMUEL N. STROUM COMPANY
PORTLAND. OREGON

Fallen Barriors...

"SOLAR" BLIND MULTIPLIER PHOTOTUBES

PHOTOSENSITIVE DEVICES DEPARTMENT

Several photocathodes h

the need for high ultrave been designed to fill
presence of white light andet response to the
in a series of multiplier are now available plier phototubes.

HIGH RESOLUTION CATHODE-RAY TUBES from

CATHODE-RAY TUBE ENGINEERING DEPARTMENT

A family of cathode-ray tubes, practical to operate, low in price and consistently able to produce a spot size of less than .001" are now available in 3-, 5- and 7-inch diameter tubes.

RUGGEDIZED DIRECT VIEW STORAGE TUBE
Storage tube engineering department A compact, 4-inch direct view
specifically ruggedized few storage tube and designed for maximu for military appli is ready for new maximum storage time plications new equipment design.
from

Phosphor research and development engineering

An extremely fine grain phosphor screen capable
of resolving a . OOl" spot with minimum conical dispersion and electrically stable has been created to take advantage of new Du Mont electron gun design.
...These are just a few of many new Du Mont developments. Tell us your specific tube requirements...

MAGNETIZING FORCE-Oersteds

Where You Need High Permeability at Low Inductions You Can Boost Performance With Armco 48 Ni

For high quality audio and instrument transformers, specialty motors. generators, and electronic equipment where high permeability is a must, Armco 48 Ni provides this performance-improving combination of advantages:

Very High Permeability at low and moderate inductions. Its initial permeability is approximately twice that of the oriented silicon steels.

Low Hysteresis Loss is assured by precise control of processing. An exceptionally high Figure of Merit, Q, makes Armco 48 Ni especially suitable for communications equipment.

Extremely Low Coercive Force enables you to minimize core losses for a wide range of frequencies. In the low and moderate range, H_{C} for 48 Ni is only 10 to 30% of that for silicon steel.

Armco's special nickel-iron magnetic alloy, 48 Ni , is produced in thicknesses of $14,10.6,4$. and 2 mils , processed for either wound cores or stamped laminations. With
it you can cut down on core size and weight, as well as reduce the energy losses of your products.

For uscful design data on Armico 18 Ni and Armeo 48 Orthonik, a square-loop nickel-iron magnetic alloy, just fill out and mail the coupon.

ARMCO STEEL

Armco Division - Sheffield Division - The National Supply Company - Armco Drainage \& Metal Products, Inc. - The Armco International Corporation - Union Wire Rope Corporation - Southwest Steel Products

Electronic Sources

Up-to-the-minute abstracts of articles appearing in

the leading foreign electronic engineering journals

ANTENNAS, PROPAGATION
Propagation of Very High Frequencies on Rough Surfaces, R. Schuenemann. "Hochfreq." May 1958. 3 pp . Discussed are multiple reflections and refractions as well as fading due to irregular propagation. (Germany.)

The Radiation Pattern of a Delta Antenna with Major Vertical Loop, W. Knappe. "Freq." Aug. 1958. 6 pp . In order to study the ionosphere, one needs a broad band antenna with a vertical directivity. The radiation pattern of a delta antenna is similar in bandwidth directivity to vertical rhombic antennas. The cost of a delta antenna is only half that of a rhombic. A detailed analysis of delta antennas is provided. (Germany.)
Band Width and Gain of Short Antenna (h $\lambda / 10$), H. E. Froeling. "Freq." Sept. 1958. 12 pp. The author derives at equations which define the band width as well as the impedances of short antennas. The band width of a short antenna can only be increased when the vertical part of the antenna is increased, as well as the top capacity to a boundary condition and coinciding with the impedance. Numerous examples are given. (Germany.)

AUDIO

Theory of Cardioid Microphones, I. P. Valkó. "Hochfreq." May 1958. 3 pp. After a brief summary of pressure and gradient microphones the author discusses the cardioid microphone which can be visualized as a 3 -terminal network with 3 mechanical, respectively acoustical impedances. The cardioid-like characteristics and linear frequency response point out certain relations between the various impedances which hold through for any type of construction. (Germany.)

A Gradient Telephone Set for Conference Calls, C. Smetana. "Hochfreq." May 1958. 7 pp. To enable conference calls by use of microphones and loudspeaker, a gradient microphone with associated amplifiers is required. The author discusses construction and characteristics of the microphone and the remaining systems. (Germany.)

CIRCUITS

A Multiple-Branch System for Shunt Selection with Controlled Coupling, M. E. Gertsenshtein, A. M. Pokras, L. G. Solovei. "Radiotek." Jan. 1959. 6 pp. A simple method is given for designing a branching network for parallel selection. The method permits practical designs to be based on computed data without any complex experimental procedure. The method is used to design a simple waveguide branching system for shunt selection with an input traveling-wave ratio of 0.95 in the center of the band. (U.S.S.R.)

Controlling the Duration of the Output Pulse from a Blocking Oscillator, B. S. Danilov. "Radiotek." Jan. 1959. 9 pp. The paper analyzes the processes which occur in a system consisting of two coupled blocking oscillators. It is shown that in such a system it is possible to achieve control of the generated pulse duration. (U.S.S.R.)

On Selective RC Amplifiers, O. G. Kozina, A. A. Frantsuzov. "Radiotek." Jan. 1959. 8 pp . The paper studies the behavior of a selective amplifier with a double Tee bridge in its feedback circuit for small variations of the bridge parameters. In particular, the effect of these variations on self-excitation is studied. A new feedback circuit is given. The computation of the circuit is analyzed. and the results are experimentally verified. (U.S.S.R.)

A Voltage Controlled Continuously Variable Low-Pass Filter, A. J. Seyler. "El. Eng." Jan. 1959. 8 pp . A continuously variable lowpass filter is described which has been designed and constructed by using the time series method and delay line techniques. (England.)

Analysis and Synthesis of Some Discrete Contactless Circuits, B. I. Rameev and Yu. A. Schreider. "Avto i Tel." Jan, 1959, 9 pp. Labeling schemes based on diode logical circuits used in the computer Strela are considered. Algebraic analysis and synthesis of the schemes mentioned are treated. Some ways of simplifying the said schemes are proposed. (U.S.S.R.)

Transient Processes in Magnetic Circuits of Electromagnetic Clutches, G. M. Fliedlider. "Avto i Tel." Jan. 1958. 14 pp . An engineering analysis method for transient processes in magnetic circuits of electromagnetic clutches is recommended. The magnetic circuit consists of some solid parts, the influence of eddy currents is being taken into consideration. The equations of these processes are analyzed: calculation formulae and an example of analysis are given and compared with experimental data. The influence of eddy currents on the anchor movement is defined. (U.S.S.R.)

The Impulse Function in the Theory of Linear AC Networks, V. Dolezal. "Hochfreq," May 1958. 6 pp. A theory is expounded which

REGULARLY REVIEWED

AUSTRALIA

AWA Tech. Rev. AWA Technical Review Proc. AIRE. Proceedinss of the Institute of Radio Engineers

CANADA

Can. Elec. Eng. Canadian Electronics Engi-
El. \& Coering Comm. Electronies and Communications

ENGLAND

ATE J. ATE Journal
BBC Mono. BBC Engimeering Monograplis Brit. C.\&E. British Communications \& Elcc-
E. \& R . Eng. Electronic \& Radio Enginelr El. Energy. Electrical Energy
GEC J. General Electrical Co. Journal
J. BIRE. Journal of the British Institution of Radio Engineers
Proc. BIEE. Proceedings of Institute of Electrical Engineers
Tech. Comm. Teclnical Communications

FRANCE

Ann. de Radio. Annalus de Radioelectricite Bull. Fr. El. Bulletin de la Societe Francaise des Electriciens
Cab. \& Trans. Cables \& Transmission
Comp. Rend. Comptes Rendus Hebdomadaires des Seances
Onde. L'Onde Electrique
Rev. Tech. Revue Technique
Telonde. Telonde
Toute R. Toute la Radio
Vide. Le Vide

GERMANY

AEG Prog. AEG Progress
Arc. El Uher. Archiv der Elektrischen Uhertragung
El Rund. Electroniscine Rundschau
Freq. Frequenz
Hochfreq. Hochfrequenz-technik und Electroakustik
NTF. Nachrichtentechnische Fachberichte Nach. Z. Nachrichtentechnische Zeitschrift Rundfunk Bundfunktechnische Mitteilungen Vak. Tech. Vakuum-Technik

POLAND

Arch. Auto. i Tel. Archiwum Automatyki i Telemechaniki
Prace ITR. Prace Instytutu Tele-I Radiotechnicznego
Roz. Elek. Roaprawy Electrotechniczne

USSR

Avto. i Tel. Avtomatika i Telemakhanika Radio. Radio
Radiotek. Radiotekhnika
Rad. i Elek. Radiotekhnika i Elektronika Iz. Acad. Bulletin of Academy of Sciences, USSR.

[^7]

EIMAC KLYSTRONS performance proved in original Tropo-Scatter systems

Eimac klysirons are used in nearly every major military and commercial tropo-scatter system in the world. The list is impressive: Pole Vault, Texas Towers, Dew Line, White Alice, SAGE, NATO, Florida-Cuba TV, and numerous commercial networks. They have been selected for systems from Norway to North Africa, from the Arctic Circle to the Andes, from the United States to the Far East.

In most of these systems Eimac klystrons are used exclusively. The reason is simple: Eimac-pioneered external-cavity klystrons make it possible to generate high power at ultra-high frequencies simply, reliably and at low cost. With the Eimac externalcavity system, tuning cavities, couplers and magnetic circuitry are all external to and separate from the tube. This permits ex-
ceptionally wide tuning range and simplifies equipment design. Cost is lowered because this external circuitry is a permanent part of the transmitter and is not repurchased when tubes are replaced.

The reliability of these high-performance devices is exceptional. Some of the original Eimac klystrons installed in Project Pole Vault-the first major tropo-scatter network ever established - are still going strong with more than 25,000 hours of air time logged to their credit.

Eimac manufactures a complete line of amplifier and pulse klystrons covering the most important areas of the UHF spectrum. Write our Application Engineering Department for specific information.
doals with probiems of line.re networks excted by the palses. The calculations only use chassical mathematical methods. Germany. 1

Properties of Mathieu-Function and Similar Functions Demonstrated on Feedhack Mixers. H. Jungfer. "Frea." June $1: 5 \mathrm{~s} 8.10 \mathrm{pp}$. lluiy 1958 . \& pp. If the freduency is fed lack to the mixer by a low pass filter, one arhieves a frequency division of $2: 1$. The behavior of this circuit. including damping., can be calculated with the Neissner, respectively Mathien differential equation. The theoretical valnes currespond very closely with the experimentally determined values. IGermany.)

Design of a Low Noise Level First Stage for a Low Frequency Amplifier Using the Transistor OC603. J. Schubert. "Freq." Sept, 1958. (1) m. Discussed in great detail is the design of a low frequency transistor amplitier and the determination of optimum conditions as to noise and amplification factor. Comparison is made with electron tube preamplitiers. 1(iernuany. 1
Bund-Pass Amplifiers. Their Synthesis and Gain-Bandwidth Factor, F. S. Attyal "Arc Eil. Uber." June 195%. 14 pp . The maper investigates synchronous, stagyered-tuned, sin-gle-tuned, quasi-Tchebysheff stagyered-tuned, maximal flat damped stagrered-tuned, etc., annlifiers. 1 (iermany-)
A Transistor Anplifier with High Input Impedance and Low Noise Figure, A. F. Bach mann. "Arc. El. Uher." July 1958.1 pp . The "Darlinkton" circuit of two transistors prevonts the property that the minimum noise figure appears for high values of the source impedance. The circuit consists of two de roupled transistors and berforms like a sinsie transistor having a verg high current wain and hish input impedance. IGermany.l

The Use of Non-Euclidian Geometry in the Network Theory. E. F. Bolinder. "Are. El, Uher." Aug. 145s. 4 mp. A survey is pre sented in network themry. An attempt is made to correlate the isolated applications found in the literature. Impedance transformations are set in correspondence, nonPucledian transformations in the Poincaré and Cayley-Klein model of two and threcdimensional hyperbolic space. (Germany.,

C

COMMUNICATIONS

Remote Control Equipment For Telecommunication Systems. The Transmission Of The Signals and Supervision, G. Pietrzik, "Nach. Z." Dec. 1958.5 prs. In the equipment described here the pulses for remote control are transmitted either as $50 \mathrm{c} / \mathrm{s}$ AC pulses over twowire lines without repeaters or as voice-frequency (2900 c/sl pulses over low-frequency lines, carrier-frequency channels or microwave link order-wire channels when equipped with repeaters. (Germany.)

Retrospect On Telephone Communication Over The Germany Coaxial Cable Network, W. Hoffmann and K. Witt. "Nach. Z." Dec. 1958. T pgs. The paper is a report of telephone communication over coaxial pairs in the German trunk cable network during the period from 1936 to 1958. (Germany.)

Magneto-Ionic Fading In Pulsed Radio Waves IReflected At Vertical Incidence From The Ionosphere, C. Abhirama Reddy, et. al. "J. BIRE." Nov. 1958. 7 pp . The results of a fairly extensive study of magneto-ionic fading in pulsed radio waves vertically reflected from the F2region of the ionosphere are presented. Phase baths of the two interfering magneto-ionic conmonents are calculated on the basis of ray theory assuming a parabolic distribution of ionization in the F2-region. The calculated frequencies of fading are found to agree
fairly well with the observed valnes. (England.)
Pulse Multifrequency Telemetering Device. F. A. Katkov. "Avto i Tel." Jan. 1959. \& pp. The paper deals with using pulse disturbances electromechanic vibrators to form frectuencs signals in mu'tifrequency telemetering and telesixnalization devices. Various circuits of telemetering and telesignalization devices for whects distributed aloner the general communication channel are proposed. IU.S.S.R.I

Certain Problems of "Inclined-Keturn" Ionospheric Probing, 13. I. Osetrov. "Radiotek," Tan. 1959. 8 pp. Method is analyzed for performing inclined-return probing of the ionosphere on the hasis of experimental sturlies. The paper points out the significance of the method with respect to increasing the stability of short-wave radio-communication and radio-broadcast stability. A brief analysis is made of the use of inclined-return proling for studying inhomogeneities in the ionosphere. (U.S.S.R.)

On the Theory of Frequency Modulation, R. P. Poilov. "Radiotek." Jan. 1959. 10 pp. The paper analyzes the theory governing a react-ance-tube modulator which is designed for a wide-band freguency-rocking oscillator. Simple formulas are derived for computing the circuit elements. An equation is derived fol the modulation characteristic, and a compatation example is piven. The validity of the computations is verified experimentally (U.S.S.R.)

The Influence of Unsymmetric RF Stages on Communication Channels Using Amplitude Modulation, R. Hofer. "Arc. El. Uber." Sept 1958 . 13 plo. A mathematical method is developed that allows an approximation of the side band currents with an unsymmetrical amplitude versus frequency function of RF . anuplifiers stages which have an amplitude-le pendent source impedance. IGermany.)

Computing Nonlinear Distortion and the Dynamic Range for a Panoramic Radio Receiver, M. I. Svetlov. "Radiotek." Jan. 11559. 11 pm . The paper analyzes the nonlinear distortion which occurs in the wide-band stares of a panoramic receiver channel. It is shown that special types of cross-modulation distor tion are the most dangerous. The corresponding computation formulas are derived, and methods are sugrested for combating this type of distortion. A formula is derived for determining the dynamic range of the wideband stages and of the receiver as a whole. (U.S.S.R.)

Considerations About the Theory of Multiple Lines, W. Oehrl, et al. "Arc. El. Uber." June 1958. 6 mp . The relationship between inductance and capacitance coefficients of multiple lines permits orthogonal transformation of a set of n intercoupled lines into a set of n equivalent lines. An example of the application is given for the case of two coupled lines. (Germany.)

Basic Theorems of the Information Theory Applicable to the Communication Technique. H. Wolter. "Arc. Ei. Uber." Aug. 1958. II pp. The paper brings into evidence an ambiguity in the proof of the sampling theorem and certain experimental inconsistencies concerning the expansion theory. It is further proven that sharply defined frequency limits would be contradictory to Maxwell's equations, and to the causality minciple. (Germany.)

Distribution of the Delay Time in Teleprinter Exchanges. H. Stoermer. "Arc. El. Uber." Aug. 1958. 8 pp . The delays encountered in teleprinter exchanges differ from those in telephone communication due to the storage capacity of the perforated paper tape. By reference of a small model the paper shows how to modify the conventional delay theors and applying it to the planning of teleprinter exchanges. For the purpose of the investiration it is assumed that all messages have the same lengths. (Germany.)

COMPONENTS

Concerning Design of Frequency Contact Transformer to Control an Asynchronous Motor, N. V. Meerov, et al. "Avto i Tel." Jan 1959. 9 pp. The paper shows possibility and expediency of using a contact mechanic rectifier to design a frequency transformer and to control speed of an a-c motor. Main features of a current transformer operating in invertory regime are ascertained and some ways to solve the commutation problen are proposed. (U.S.S.R.)

The Life of Ballasts for Gas-Discharge Lamps, II Capacitors, T. Hehenkanip. "Phil. Tech," 8 Dec. 1958. 8 pp. A life test is discussed in which capacitors are loaded under 1.5 , to twice the normal tield strength at periodically varying temperatures. (Netherlands, in Finglish.)
Physics and Techniques of Electro-Mechanical Filters. W. Poschenrieder. "Freq." Aug. 1958. 9 pm . Initially, the theory of filters is discussed. It is followed by the theory of mechanical filters. The design of a torsion filter is detailed. (Germany.)
The Sluggishness of Germanium Diodes and its Influence in Rectifier and Limiting (ircuits. W. Heinlein. "Freq." May 1958, 5 pp; June $1: 58.8 \mathrm{pp}$. Experimental means are provided to determine the dynamic characteristics of ermanium diodes. The limitations of germanium diodes for rectifiers and limiting ircuits are discussed. (Germany.)

The Flux Resetting Masnetir Amplifier, J. Sherlock. "El. Energy." Jan. 1959. 9 pp. This article gives an account oi the progress in this field using a particular type of amplifier. (England.)
Features of Ferrite \mathbf{U} Cores for Horizontal Output Transformers, R. Falker and E. E Huckling. "El. Rund." Jan. 1959. 6 pp. After a brief sketch of the operating conditions in which one uses ferrite U cores in horizontal transformers for TV receivers, and a summary of the important magnetic properties, measurement results are given for the behaviour of German and other ferrites in respect of permeability and loss variation over a temperature range. The results are discussed in relation to ferrite characteristics, and proposals made for uniform guality standards. (Germany.)
Improving the Performance of Small Electro dynamic Vibration Generators, I. M. Steel "El. Energy." Jan. 1959. 6 pp. (England.)

Transformer Leakage Field Analysis by Electrolytic Tank Analogue. P. H. G. Allen. "El. Energy." Jan. 1959. 5 pp. The application of the electrolytic tank analogue to plotting magnetic fields, having circular symmetry is described. Taking the transformer reactance field as an example, the direct analogue is derived for a very elementary system. When this is represented in "orthogonal" terms, the analogue can be extended to include arbitrary systems of any configuration. Practical details include methods of current supply and potential measurement as well as of model construction. The computation of reactance and flux density values from analogue measurements is illustrated by a practical example. (England.)

COMPUTERS
Determination of the Attenuation in a Telephone Network, G. Breitschneider. "Freq." Aug. 1958. 5 pp. The author describes a method to determine the attenuation in a random-connected system. He suggests the use of electronic computers to determine the system limits. (Germany.)

E

An Electronic Ratio Calculator, A. D. Boron kay. 'El. Eng." Jan. 1959. 3 pp. In elec ronic computers all-electronic ratio circuits are seldom used due to the difficulty of find ing a strict analogue of a quotient. The sys tem described in this article is based not on a strict physical analogue but on an approxi mation valid within certain limits; the prin ciple being that an approximately linear rela ion exists between the phase-angle of the sum of the two signals and the amplitude ratio. The ratio measuring device consists of an adding circuit which sums the numerator and denominator, a phase sensitive circuit to provide an electrical quantity proportional to the sum vector and a phase sensitive controlled rectifier. (England.)

CONTROLS

Linear Thyratron Control Circuits, G. G. E. Low. "El. Eng." Dec. 1958. 2 pp. A description is given of two simple circuits in which thyratrons are used in such a way as to provided a linear relationship between a slowly varying d. c. signal voltage at the grid and the average anode current. The anodes of the thyratrons are supplied from an a. c. source in the usual manner and clearly the circuits are limited to applications in which the variations in the signal voltage are slow compared with the frequency of the supply. (England.)

Approximate Determination of Self-Oscillations in a Synchromotor Control System, D. P Petelin. "Avto i Tel." Jan. 1959. 7 pp. The paper treats the problem of self-oscillations in a synchromotor control system, its nonlinear element being characterized with the functions $g^{2} \sin \theta,(\sin \theta)^{2} \mathrm{p} \theta,(\sin \theta)^{2} \mathrm{p}^{2} \theta_{0}$ $(\sin \theta)^{2} \mathrm{p}^{3} \theta$. (U.S.S.R.)

Determination of Optimal Pulse Transfer Function of a Servosystem for a Certain Class of Disturbances, P. S. Matweev. "Avto i Tel," Jan. 1959. 12 pp. The paper deals with determination of optimal pulse transfer func tion of a servosystem when disturbances of a certain class (preset harmonic and exponential time functions and stationary random functions) are applied to its input. The connec tion of correlation function with Green func tion is used to solve the problem. Determina tion is illustrated with two examples. (U.S.S.R.)

Self-Oscillations in a Control Single-Loop System Having Two Symmetric Relays, Tu Syui-Jan and Tei Lui-Vy. "Avto i Tel." Jan. 1959. 14 pp . Using the method of Tsypkin (1) accurate periods equations are deduced to determine symmetric periodic regimes in a single-loop system having two symmetric relays. Supposing that relays are separated with harmonic filters, accurate methods yield the same results as approximate methods based on harmonic balance. (U.S.S.R.)

On Electronic Control of Low-Power Motors, H. Volz. "El. Rund." Jan. 1959. 3 pp Whereas previously most articles having discussed electronic control of low-power motors, the present work deals with simple circuits of low-power motor regulation. The calculations take into account all possible parasitic influences which can be reduced by suitable control. With the aid of a closed control loop these influences can be still further reduced. (Germany.)

Transmitting Valves for Use in Industry, R Hubner. "El. Rund." Jan. 1959. 3 pp. The operation of oscillator valves in industry differs in many respects from that in communication transmitters, and it is understandable that valve manufacturers concerned themselves with the development of generator valves designed for the stringent demands of industry. Simple circuits are made possible by using a.c. plate operation, and a typical operation
s calculated. The importance of choosing valves of robust design is emphasized. (Germany.)

Remote Control for Communication Trans mission Systems, G. Bischoff. "Nach. Z." Jan. 1959. 5 pp . Remote control equipment is used in communication systems on cables, open wires and radio links. Its use and operation is explained by means of an example of a radio link. (Germany.)

The Pros and Cons of Common Control Means, M. Hebel. 'Nach. Z." Jan. 1959. 13 pp The pros and cons for the use of common control means in telephone switching circuit are reported in a form which takes into con sideration the latest proposals and the results of increasing electronification. Draft proposals for a system design with a "quasi direct control" of the switching and coupling means are described. The excellent trustworthiness of the constructional elements used at present is compared with new tendencies in the development. (Germany.)

Modern Control Systems for Group of Lifts, S. T. Hunt. "El. Energy." Jan. 1959. 10 pp. Considerable progress has been made in recent years in automatic control systems for banks of interconnected passenger-operated lifts. This article shows how the facilities provided by such installations have evolved and describes the principle of automatic traffic analysis by which the operation of the lifts is adjusted to meet different traffic requirements during the day. (England.)

On the Computation of Statistical Moments K. B. Krukovskii-Sinevich. "Radiotek." Jan. 1959. 5 pp . A formula is derived for the statis tical moment of k-th order for a random process at the output of a passive linear fourterminal network. An example is used illus trating the use of higher-order moments for computing the probability density at the output of an autocorrelation receiver. (U.S.S.R.)

Transient Performance in D-C Circuit Consisting of a Thermistor and Ohmic Resistance, A. G. Shashkov. "Avto i Tel." Jan. 1959. 8 pp. Transfer function and stability conditions of the circuit consisting of a thermistor and ohmic resistance are obtained. The block-diagrams of the circuit are drawn. The construction of the transient processes in the circuit is described. The generally accepted idealiza-tion-the averaging of the thermistor tem perature by its resistance-is assumed as bais. (U.S.S.R.)

Correlation between LaPlace Transformation and Infinite Series, J. Wetzger. "Freq." May 1958. 5 pp . Many technical problems in the field of thermo-dynamics, communication, and others, lead to progressions and frequently to infinite series. In order to study the behavior of an infinite series one can make use of the correlation between these series and function transformations. The paper high lights special properties of the LaPlace in tegrals. (Germany.)

LaPlace Transformation Used to Express the Sum of a Converting Series, O. Heymann. "Arc. El. Uber." July 1958. 5 pp. Expansion of the integrand by powers of the timedomain variable and subsequent integration lead to a transformed series which is asymptotic as a rule. Only a few terms are required to state the sum of the series with sufficient accuracy. (Germany.)

Energy Balance within an Electron Beam, H. Rogelnik. "Arc. El. Uber." Sept. 1958. 8 pp. The interaction between electron beams and electromagnetic fields leads to an exchange of
field energy and kinetic energy of the charged particles. Within the second order perturbation theory of the one-dimensional electron beam the AC power conversion theorem becomes identical with CHU's power theorem for linear circuits. (Germany.)

Microwave Generstors with Closed Operating Space for Dielectric Heating of Victuals and Indostrial Products, W. Schmidt. "El. Rund." Jan. 1959. 4 pp . The method of operation and the measuring technique of a microwave generator (magnetron) with closed operating space for dielectric heating of victuals and industries products having been described in the first and second parts of the article, the third and last part deals with the mechanical construction of such a unit. (Germany.)

On the Design of the Transition Region of Axisymmetric Magnetically Focussed Beam Valves, V. Bevc. et. al. "J. BIRE." Dec 1958. 13 pp . The assumption of a particular magnetic-field variation in the transition resion of an axially symmetric beam-type device (e.g., klystron, travelling-wave tube) leads to the solution of the equations of elec tron motion by means of an analogue computer. To illustrate this novel method of solution, beam envelopes are presented for Brillouin flow, periodic magnetic focussing and space-charge-balanced flow. By matching the beam envelopes with those obtained from the theory of the Pierce gun, dimensions are obtained for an electron gun that produces the required beam. (England.)

A Vibrating-Head Scanner for lnspection and Indexing of Magnetic Recordings, J. S. Gill. "El. Eng." Jan 1959, 2 pp. When it is necessary to read a stationary or very slowly moving magnetic tape a conventional playback system cannot be used because the output s proportional to speed and falls to zero when the tape is stationary. In this article vibrating playback head is described which can be used for reading stationary magnetic recordings. The principle has been successfully applied to the extraction of larynx ex itation from recorded speech by direct visual interpretation of the waveform. (England.)

The Use of Dekatrons for Pulse Distribution, G. H. Stearman. "El. Eng." 3 pp. Feb. 1959 (England.)

MATERIALS

A Comparison of Wool Wax and Petroleum Jelly as Impregnants for Paper Capacitors, J. S. Dryden and R. J. Meakins. "Proc AIRE." Oct. 1958. 3 pp . (Australia.)

A Simple and Compact Arrangement for Measuring the B-Activity of Weak Radioactive Samples, K. Van Duuren. "Phil. Tech." 8 Dec. 1958. 7 rp. (Netherlands, in English.)

MEASURE \& TESTING

Teleprinter Signal Regenerator Equipped With Transistors, F. Obst and F. Ohmann "Nach. Z." Dee. 1958. 4 pgs. An electronic signal regenerator is described, which operates without vacuum or gas-filled valves and is equipped only with transistors. Its low power consumption permits an extremely condensed construction. The circuit on the basis of a counting method makes the regenerator suitable also for higher in formation rates. (Germany.)

Selection of Matched Components from Random Samples, D. P. C. Thackeray. 'E. \& R.

For Every Fuse Application•

there's a safe and dependable BUSS or FUSETRON Fuse

The complete BUSS and FUSETRON fuse line includes:

Single-element fuses for circuits where quick-blowing is needed; - or singleelement fuses for normal circuit protection; - or dual-element, slow-blowing fuses for circuits where harmless current surges occur; - or indicating fuses for circuits where signals must be given when fuses open. Fuses range in sizes from $1 / 500$ amperes up - and there's a companion line of fuse clips, blocks and holders.

Each fuse electrically tested to assure you dependability

Every BUSS or FUSETRON fuse is tested in a sensitive electronic device that automatically rejects any fuse not correctly calibrated, properly constructed and right in all physical dimensions.

You get the safest, most modern protection possible when you specify BCSS or FUSETRON fuses. You'll save time and trouble too, by using this one source for all your fuse needs.

For more information, write for bulletin SFB.

Tell us your requirements and we'll have a fuse to match, for example:
For fuses that abolish needless blows . . specify.. Fusetron fuses
$1 / 4 \times 11 / 4$ inch.
Glass tube.

dual-element - slow blowing type
These fuses avoid needless blows from starting currents or surges. Yet protection is afforded against shortcircuits or continued overloads.
Test specifications - carry 110%, open at 135% within 1 hour.

Voltage	Amperes
250 or less	up to 2
125 or less	up to 7
32 or less	up to 30

For Signal or Visual indicating fuses ... specify . . . Fusetron FNA fuses
$13 / 32 \times 11 / 2$ inch.

固菑
Fusetron fuse with indicating pin which extends when fuse is blown. Can be used in BUSS fuseholders to give visual signal or, if desired, pin can be used to actuate a light or audible signal by using fuses in BUSS Signal fuse block.

0 to $21 / 2$ ampere sizes and 12 to 15 ampere sizes listed as approved by Underwriters' Laboratories.

$$
\begin{array}{ll}
\text { Voltage } & \text { Amperes } \\
250 \text { or less } & 1 / 10 \text { to } 30 .
\end{array}
$$

For fast acting fuses for protection of instruments specify BUSS AGC fuses

$$
\begin{aligned}
& 1 / 4 \times 11 / 4 \text { inch. } \\
& \text { Glass tube. }
\end{aligned}
$$

In sizes up to 2 ampere, for circuits of 250 volts or less, they provide high speed action necessary to protect sensitive instruments or delicate apparatus.
Listed as approved by Underwriters' Laboratories.
Test specifications - carry 110%, open at in 1 hour or less. $1 / 500$ to 2 ampere sizes

For high interrupting capacity fuses . . . specify.. BUSS KTK fuses
$13 / 32 \times 1 \frac{1}{2}$ inch.

Capable of safely interrupting 68,000 amperes at voltages of 500 or less, AC or DC.
Test specifications - Carry 110%, open at 135% in 1 hour or less.
Voltage
Amperes
500 or less.
$1 / 10$ to 30.

BUSS fuses are made to protect,-not to blow, needlessly. BUSS makes a complefe line of fuses for home, farm, commercial, electronic, automotive and industrial use.

Eng." Dec. 1958. 4 pp. Some problems in com ponent selection are outlined, with especial reference to the selection of transistors from random samples, the selection of such samples from stocks, and the stocking of quantities which make such procedures possible. The methods are briefly illustrated by the example of a d.e. transistor amplifier, temperature and gatin stabilized. An analogy is drawn bet ween such procedures and those involved in the selection of personnel. (England.)

A Sampling Comparator, Arieh FishemannArbel. 'EL. Fing." Dec. 1958. 5 pp. A sampling comparator compares the instantaneous value of two waveforms at constant intervals of time. The response of the comparator desuribed in this article extends from d.c. to a mactical limit of half the sampling frequency. Applications of the comparator to a delta modulator, and to a binary quantizer are given. (England.)

Light Intensity Meters for Local and Remote Indication, E. F. Hasler and G. Spurr. "'Hi!. Fing." Dec. 1958. 7 pp. Measurement of daylipht illumination is necessary to the electricity supply industry for the prediction of the demand for artificial lighting. This article describes a method of measurement using a photocell as the grid leak of a block oscillator. dimphasis is placed on the sinnplicity, reliability and versatility of the princijle. (England.)
The Cathode-Ray Oscilloscope: A Survey, J. F. Golding. "13rit. C. \& E." Jan. 1959, 7 pgs. The cathode-ray oscilloscope has evolved from a simple indicating device into a precision measuring instrument. This article briefly describes the evolution of the instrument and the functions of the more conmon circuits used. Abridge specifications of the oscilloscopes available on the home market, are siven in a table. (England.)

Methods for Computing and Eliminating Modulation Noise Which Occurs During Frequency Conversion, I, M. Zhlobinskii and L. G. Sodin. "Radiotek." Jan. 1959. 8 pp. The paper derives relationships for determining the frequency of the signal which produces modulation noise during frequency conversion. The eonditions for eliminating this noise are analyzed. A graphical method is presented which permits a simple and rapid selection of the intermedisite frequencies for an audio or panoramic radio receiver. (U.S.S.R.)

Precision Multiplier, L. N. Fitsner. "Avto. i Tel." Jan. 1959. 8 pp. Precision multiplier with static error equal to $0.01-0.02 \%$ of output voltage scale and usual high-speed is considerch. Low error duantity is achieved by combination of rough and precise bystems combination of rouns.
blocks. U.S.S.R.)

The Production and Measurement of UltraHigh Vacua, A. Venema and M. Bandringa. "Phil. Tech." 8 Dec. 1958. 13 pp. (Netherlands, in English. 1

An Apparatus for Testing the Solderability of Wire, J. A. Ten Duis. "Phil. Tech." 8 Dec. 1958. 4 pp. An apparatus for testing the solderability of wire has been developed and has now been in use for some years. An globule of solder is split in two by the wire under test, which has first been dipped in the flux. After some time, varying from 0.1 sec to more than 30 sec, the two halves flow abruptly together over the wire. This time is taken as a measure of the solderability of the wire. The apparatus has also been used for investigations into the influence of the composition and quantity of the solder, of the soldering temperature, of the composition of the flux and of the surface condition of the wire. These investigations were concerned in particular with the dip-soldering process employed for printed wiring. INetherlands, in English.)

Noise Measurements, E, Luebcke. "Freq." Jul. 1958.5 pp . The article classifies the various noise sources in the frequency spectrum up
to 12,800 cycles. Level of noise is neasured at various frequencies. (Germany.)

A Precise Capacity Goniometer, G. Ziehm "Freq." Sep. 1958. 7 pp. To achieve accurate directional indications the coupling capacity between rotor and starter of ultra-high freguency goniometer must be sinusoidal is to angle of rotation. The conditions to achieve this are analyzed. (Germany.)

Measurements of Quadripole Parameters and Material Constants with the Aid of Logarithmic Transmission Line Charts, K. Jost and G Schiefer. "Arc. El Uber." Jul. 1958. 6 pp. The numerical evaluation of the quadripole parameters and the material constants is greatly simplified by the adoption of a love arithmic transmission Jine chart. The method is outlined in detail. (Germany.)

On the State of Oscilloscope Technique, G Heindl. "El. Rund." Jan. 1959. 3 pp. Whereas the amplifier circuits including delay networks, time-deflection circuits, and triguering having been described in the first and second parts of the article, the present third and last part considers the technique of cathoderay tubes and their high voltage power supply, the power supply unit and the feature of modern oscilloscopes. (Germany.)

A Demonstration Oscilloscope. W. Auer and F. Unger. "El. Rund," Jan, 1959. 2 pp, An oscilloscope with a $21^{\prime \prime}$ TV picture tuhe for demonstration purposes is described. Up to four processes can be displayed simultaneously with the help of an electronic switch, each input having independent height, brightness, x shift control, and time marker pips. Frequency range is $2 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}$ with full utilization of screen height. (Germany,)

Continuous Measurements of the Capacity in Coaxial Cables During Their Manufacture, D, Wolff. "Nach, Z." Jan, 1959. 4 pp. Known measurement methods for tests diring the manufacture of coaxial cables with solid dielectrics are hriefly described. On the basis of these methods, a novel method for continuous measurements of the capacity in coaxial cables by means of a water jacket as a test electrode, uses an electronic "impedance transformer," for an accurate limitation of the test length of the water electrode. The equivalent electric circuit for this test tube is given and is used for the design of the impedance transformer. The stability of multistage impedance transformers is briefly discussed. (Germany.)

A Teleprinter Distortion Recorder, R. Lutz. "Nach. Z." Jan. 1959. 3 pp . Recording equipment for the measurement of distortions in teleprinter signals is described. This equipment records on paper the distortiuns in the form of sequences. (Germany.)

Reciprocity in Radio-Frequency Measurements, G. D. Monteath. "E. \& R. Eng." 3 pu. Jan. 1059. It is well known that the reciprocal theorem permits the interchange of source and detector in certain measurements. This article draws attention to advantages to be gained hy making an appropriate choice. The interchange of source and detector in stand-ing-wave measurement, a possibility which appears to have been overlooked. is shown to he permissible, and applications are discussed. (England.)

High-Q Echo Boxes, A. Cunliffe. "E. \& R. Eng." 4 pp. Jan. 1959. The performance of tunable H_{0} cylindrical echo boxes may deteriorate sharply when the length of the cavity is approximately that for which, theoretically, another mode has the same resonant frequency as the operating mode. The cause of this effect is investigated. and the nodes for which the effect is likely to be greatest are named. Cavities should be designed so that the frequency-length curves for these particular modes do not cross the frequencylength curve for the operating mode. IEngland.)

A Nicrowave Frequency Standard, Part I, 13. H. I. James and M. T. Stockford. "El. Eng." Jan, 1959. 6 pp. This article describes an equipment which produces positively identified signals for calibration purposes in the frequency range $7 \mathrm{kMc} / \mathrm{s}$ to $20 \mathrm{kMc} / \mathrm{s}$: Both limits may be extended. (England.)

RADAR, NAVIGATION

Radio Links for the Control of Aeronautical Air-Ground Equipment. W. S. McGuire. "Proc. AIRE." Oct. 1958. 10 pp . A multichannel radiotelephone limk system is described over which aeronautical air-ground-air transmitters and receivers situated in isolated areas can be controlled. (Australia.

The Statistical Properties, the Frequency Spectrum and the Suppression of Low Frequencies in Signals for Radar PPI Displays, H. Groll and E. Vollrath. "Nach. Z." 8 pp. Jan. 1959. The distribution of targets on radar PPI displays as well as a method for determining the number of targets is described. The representation of frequency spectra and their relationship with the signal contents is discussed with the aid of examples. A possibility for suppressing the low frequencies by means of a sisnal controlled carrier moslulation as well as the resulting modified spectra are shown. (Germany:)

Radar Systems with Electronic Sector Scanning, D. E. N. Eavies. 'J. BIRE." Dec, 195s. if pp. A discussion of the application to radar of a system of electronic sector scanning. recently described in relation to underwater acoustic echo-ranging. (England.)

SEMICONDUCTORS

A Transistor with Thyratron Characteristics and Related Devices, W, Von Munch. "J, 13IRE." Nov. 1958. 8 pgs. A semi-conductor device with thyratron-like input characteristics is obtained by immersing, during the alloy process, a tungsten whisker into the collector contact of an npn-junction transistor with high base resistivity. Details of production and electrical performance are given. The radial voltage drop which is set up in the base layer causes a restriction of carrier transport to a region of small cross-section, (England.)
The Complex Characteristics of a High Frequency Transistor in the Frequency Range from 0 to 2 mc , G. Ledig. "Freq." May 1958, 12 pp . Jan. 1958, 13 pp . The author discusses in detail the theoretical and practical aspects for ohtaining the characteristics. 1Germany. \mid

A Temperature-Stabilized Photo-Transistor Relay Circuit, J. C. Anderson and T. Winer. 'El. Eng." Jan. 1959. 2 pp . A junction phototransistor can be used to operate a relay directly but the performance obtained varies widely with ambient temperature. In this article a circuit is described in which a photo-transistor and an ordinary junction transistor are used in a 'long-tailed pair' arrangement. In this way the variation in dark current with change in ambient temperature is much reduced, while high sensitivity is achieved; the transient response is alsa shown to be good. (England.)

Properties of Hook Transistors in Switching and Amplifying Circuits, L. M. Vallese. 'J, BIRE." Dec. 1958. 8 pp . The circuit properties of hook and $\mathrm{p}-\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor configurations are examined for applications to switching circuits and to linear amplifiers. (England.)

Hall Effect in Semiconductor Compounds, M. J. O. Strutt. "E. \& R. Eng." Jan. 1959. 9 pp . (England.)
(Continued on page 140)

> Johnson pilot lights immediately available for original equipment or in-the-field replacement!

Choose your next group of panel indicators from E. F. Johnson's "preferred" line-over 47 separate assemblies carefully selected from Johnson's standard line by many of the nation's top design and development engineers. Available in a wide variety of types, these "preferred" units may be obtained from stock at parts distributors throughout the country for original equipment or in-the-field replacement. Write for your free copy of Johnson's newest pilot light specification catalogsee how easy it is to select the right pilot light . . . fast!

YOU ARE READING THE BIGGEST MARCH ISSUE OF THIS PUBLICATION SINCE IT WAS ESTABLISHED AS ELECTRONIC INDUSTRIES IN 1942

This March 1959
ELECTRONIC INDUSTRIES
brings you-

* MORE EDITORIAL INFORMATION
* MORE ADVERTISING INFORMATION
in a single, convenient, monthly package.
CONCLUSION! You are a very important person to all of our editors, and of course, to the many companies whose advertising messages are addressed to you on these pages.

ELECTRONIC INDUSTRIES

Chestnut \& 56th Streets Philadelphia 39, Pa. SH 8-2000

MICA

IS NATURALLY BEST!...

- High Heat resistance and Dielectric Strength
- Chemically inert - non Hygroscopic
- Tough, Resilient - Low Space Factor
- Readily available according to ASTM Specifications
For FREE copy of ASTM Specs. (Dept. E3) or other information write to:

MICA Importers Association, Inc. 420 Lexington Ave., N. Y. 17, N. Y.

Circle 339 on Inquiry Card, page 123

Announcing the new MINCOM CV-100

frequencies from 400 cycles to 1.0 megacycle

A NEW RECORDER/REPRODUCER FOR THE RECOVERY OF VIDEO, RADAR AND COMPLEX ELECTRONIC SIGNALS

Extreme band widths and extremely narrow pulses can now be recorded and reproduced with a minimum of distortion on MINCOM'S new magnetic tape system, the Model CV-100. The advanced performance of this new MINCOM unit includes the recovery of seven tracks on $1 / 2$ inch SCOTCH Brand tape.

Already previewed and enthusiastically received, the MINCOM CV-100 is currently under construction for many branches of the defense establishment. If your specific need is for the precise video and radar reproduction offered by the CV-100, write or call MINCOM for complete details.

2049 South Barrington Avenue, Los Angeles 25, California Teletype: West Los Anyeles 6742

Minefsota Mining and Manufacturing company

—. WHERE RESEARGHISTHEKEYTOTOMORROW

High Temperature

Sources

(conlinued from page 137)

TELEVISION

On Commuting Video Amplifiers with Minimum Lag. R. H. Gurfinkel. "Radiotek." Jan, 1959. 3 pp . The paper studies the computation of a video amplifier with specified gain.M, band width I° and minimum lag t_{1} from input to output. Computing graphs are given for the fuantities M, W and t_{1} which simplify the design of such amplifiers, (U.S.S.R.)

Instruments Used for TV Transmission Measurements, O. Macek. "Freq." Jul. 1958. 8 pp. This article illustrates the German TV standards and instruments used to maintain the described tolerances. (Germany.)

The Use of Limiters in TV Apparatus, W. Dillenburger. "Freq." Aug. 1958. 7 pp. After a brief discussion of the limitations of pick-up tubes the author describes the various ways of compensating for streaking, resulting from bright signals. Clamping and limiting circuits are the main subject. (Germany.)

An NTSC-Color Modulator for the CCIR Standard. F. Jueschke. "Arc. El. Uber." Jun. 1958. 18 pp . Particular attention is paid to the problem of the conversion of the three monochrome simnals supplied by the picture sender into the luminance and chrominance used for the coding by the NTSC system. A separate section of the paper deals with the facilities for adjusting and operating the modulator. Practical circuits are proposed. (Germany.)

Television Intermediate-Frequency Transmitters for Laboratory Use, Paul Klopf. "Rundfunk." Dec. 1958, 12 pp . The author describes a television modulator for laboratory measurements and tests in connection with the resid-ual-sideband transmission system for the 625. line CCIR standard. The author discusses, by means of test signals, test patterns and halftone picture, the transmission quality via the modulator and an intermediate-frequency standard receiver. (Germany.)

Investigations in Connection with the Operation of Television Transmitters with Precision Carrier-Frequency Offset, Herbert Hopf. "Rundfunk." Dec. 1958, 12 pp. (Germany.)

A Contribution to the Planning and Construction of Television Outside-Broadcast and FilmRecording Vehicles, G. Schadwinkel and H. Kading. "Rundfunk." Dec. 1958, 12 pp . The authors report about the planning and construction of television outside-broadcast and film-recording vehicles, as developed by the N.W.D.R, and its successors, where they are at present in use. They describe the singlevehicle system, that is to say, that whereby ench rehicle is equipped with production and engineering control cubicles and apparatus room and is capable of carrying through a transmission independently. The conditions required of the vehicles are examined by means of a load diagram. (Germany.)

A Television Waveform Generator Using Transistors, F. Rozner, "El. Eng." Jan, 1959, 4 pp. This article describes a television waveform generator for use with transportable television broadcasting equipment. Very small size, weight and power consumption are achieved by the use of transistors and the complete elimination of thermionic devices throughout. The waveform generator uses digital techniques and, although this demands a large number of active elements. the resulting performance is, to a large degree, indeqendent of the characteristics of individual transistors, h.t. variations, etc., and the stability and precision are adequate for hroadeasting purposes. (England.)

Fastest delivery . . . highest quality . . . optimum reliability . . . these are the qualities that make Super-Temp's TEFLON* insulated, high temperature wires first choice all the time. Super-Temp has the right wire, cable or tubing, designed for specific applications, or can fabricate them to your particular requirement.
NEED IT FAST? . . . SEE SUPER-TEMP FIRST!
*DuPont's TfE Resin

Superteup

American Super-Temperature Wires, Inc.
32 West Canal Street, Winooski, Vermont - University 2.9636
General Sales Office: 195 Nassau St. - Princeton, N. J. - Walnut 4.4450 Agents in principal electronic manufacturing areas

under actual pulse conditions

Here's
 technical data on
 ARNOLD SILECTRON CORES

Bulletin SC-107 A, this newly-
 reprinted 52 -page bulletin contains
design information on Arnold Tape Cores wound from Silectron (grain-oriented silicon steel). It includes data on cut C and E cores, and uncut toroids and rectangular shapes. Sizes range from a fraction of an ounce to more than a hundred pounds, in standard tape thicknesses of 1, 2, 4 and 12 mils.
Cores are listed in the order of their powerhandling capacity, to permit easier selection to fit your requirements, and curves showing the effect of impregnation on core material propertics are included. A valuable addition to your engineering files-k'rite for juur copy today.

ADDRESS DEPT. T-93

The inset photograph above illusstrates a special Arnold advantage: a 10-megawatt pulse-testing installation which enables us to test-prove pulse cores to an extent unequalled elsewhere in the industry.

For example, Arnold 1 mil Silectron "C" cores-supplied with a guaranteed minimum pulse permeability of 300 -are tested at 0.25 microseconds, 1000 pulses per second, at a peak flux density of 2500 gausses. The 2 mil cores, with a guaranteed minimum pulse permeability of 600 , receive standard tests at 2 microseconds, 400 pulses per second, at a peak flux
density of 10,000 gausses.
The test equipment has a variable range which may enable us to make special tests duplicating the actual operating conditions of the transformer. The pulser permits tests at $.05, .25,2.0$ and 10.0 microsecond pulse duration, at repetition rates varying anywhere from 50 to 1000 pulses per second.

This is just another of Arnold's facilities for better service on mag. netic materials of all description. - Let us supply your requirements. The Arnold Engineering Company, Main Office E Plant, Marengo, Ill.

Still another anether"demand"member has joined U.S.C.

family of Printed Card Connectors . . . the new, dual row taper pin Series UPCC . . . FDTP bringing the total of different available types to over 400 .

- Conforms to MIL-C. 8384 and NAS specs.
- Molding materials-melamine and diallyl phthalates
- Die cast aluminum shells-aluminum hoods
- Ideal for critical environmental conditions
- Silver plated-gold flash contacts
- Screw lock elements-stainless steel-double lead for double speed

UPCC-M \& -F units available with wire solder, turret type, solderless AMP 37, or dip solder terminals ($1 / 16^{\prime \prime}, 1 / 8^{\prime \prime}, 1 / 4^{\prime \prime}$ boards).
UPCC-FDTP units take AMP 53 taper pins.

Also custom configurations to meet your specific application requirements.

454 East 148th Street • New York 55, N. Y ${ }^{\text {• CYpress }} 2.6525$

ELECTRONIC INDUSTRIES

First Industry-Wide Transistor Interchangeability Guide!
-Listing over 500 JEDEC types, with their direct replacements or nearest equivalents

ONLY AATHELIN OFFERS BOTH

 SILICON TRANSISTORS
for COMPLEMENTARY CIRCUITS because characteristics are so similar as to permit full and confident use

Actual
Size

Specify RAYTHEON and get these significant advantages:

Higher, more constant beta
Lower saturation voltage
Low noise type available in both PNP and NPN

Made by the Raytheon reliable fusion alloy process which assures more constant characteristics over the entire temperature range

FOR LARGE SIGNAL APPLICATIONS
Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$

	Type	$\begin{gathered} \begin{array}{c} I_{E D} \text { or } I_{c c} \\ \text { at } V_{C B}= \\ \\ \mu \mathrm{A} \end{array} \mathrm{~V}_{\mathrm{dc}} \end{gathered}$	$\begin{aligned} & v_{C E} \\ & \text { max. } \\ & \text { volts } \end{aligned}$	$\mathrm{H}_{\mathrm{fe}} \dagger$ ave.	$\begin{gathered} \mathrm{rb}^{\prime} \\ f=1 \mathrm{Mc} \\ \text { ohms } \end{gathered}$	r_{c} kilohms	Noise Figure db (max.)		$\begin{aligned} & \mathrm{f}_{\alpha \mathrm{b}} \\ & \text { ave. } \\ & \mathrm{Kc} \end{aligned}$
p	2N327A	0.005	-40	15	1200	500	30	65	200
N	2N328A	0.005	-35	30	1400	500	30	65	300
	2N329A	0.005	-30	60	1500	500	30	65	400
$(1+y){ }^{(1+y}$	2N619	0.005	50	15	2000	500	30	35	200
P	2N620	0.005	40	30	2500	500	30	35	350
N	2N621	0.005	30	60	2700	500	30	35	500

†for PNP, $\mathrm{I}_{\mathrm{B}}=-0.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=-0.5 \mathrm{~V}$; for NPN, $\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=1.5 \mathrm{~V}$
FOR SMALL SIGNAL APPLICATIONS
Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$

		Type	$\begin{gathered} I_{\mathrm{EO}} \text { or } \mathrm{I}_{\mathrm{CO}} \\ \text { at } \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}_{\mathrm{dc}} \\ \mu \mathrm{~A} \end{gathered}$	$V_{C E}$ max. volts	$h_{f e}$ ave.	$h_{i e}{ }^{*}$ max. ohms	$\begin{aligned} & h_{o c}^{*} \\ & \text { max. } \\ & \mu \text { mhos } \end{aligned}$	Noise* Figure db	$\begin{gathered} \mathrm{cob} \\ \mathrm{f}=100 \mathrm{l}, \\ \quad \text { ave. } \\ \mu \mu \mathrm{f} \\ \hline \end{gathered}$	$f_{\alpha} b$ ave. Kc
		2N1034	0.005	-40	15	3000	70	30	65	200
		2N1035	0.005	-35	30	3000	85	30	65	300
		2N1036	0.005	-30	60	3000	100	30	65	400
53.44		2N1037	0.005	-35	30	3000	85	15	65	250
(c_{1}	N	2N1074	0.005	50	15	3500	70	30	35	200
	-	2N1075	0.005	40	30	3500	85	30	35	350
		2N1076	0.005	30	60	3500	100	30	35	500
		2N1077	0.005	30	25	3500	85	15	35	300

${ }^{*} \mathrm{~V}_{\mathrm{c}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{E}}=3 \mathrm{~mA}$
\qquad

1959

Transistor Interchangeability Chart

Listing over 500 JEDEC types, with their direct replacements or nearest equivalents

CONFIDENT that interchangeability of transistors is an important trend that will benefit the entire industry, Electronic Industries joins with the major transistor manufacturers in presenting this first comprehensive listing of transistors and their nearest types.

Of the 627 transistors registered with the Joint Electron Device Engineering Council (now Electronic Industries Association), more than 500 are tabulated in this listing. Only those types which manufacturers suggested as either equivalents or "nearest types" are included. Where the EIA type number is missing it means that, in the material submitted by the manufacturers, no equivalent was indicated as available. These are listed separately at the end of the chart.

The manufacturers who furnished this information point out that the data supplied is based on published electrical specifications. Since physical di-
mensions may vary considerably, and manufacturing techniques are not identical, it should not be assumed that cross-referenced transistors are exact equivalents.

Included in this tabulation are the transistor numbers and dimension diagrams, both of which follow the registry of the Joint Electron Device Engineering Council (e.g., 2N34, Fig. 5). To this has been added the intended application of the transistor and any special "notes" that might be significant in considering replacements. For exact comparison of electrical characteristics, the reader is referred to the Electronic Industries' June 1958 Directory of Transistor Manufacturers and Types.

The manufacturers included in this survey are listed below, with the abbreviation that identifies each throughout the listings.

AMPX-Amperex

BEN-Bendix Aviation Corp.
BO-Bogue Electric Mfg. Co.
CBS-CBS Hytron
CLE-Clevite Transistor Products
DEL-Delco Radio Division, General Motors Corp.
FAIR-Fairehild Semiconductor Prods.

MANUFACTURERS

GE-General Electric Co.
GP-Germanium Products Corp. MAL—P. R. Mallory \& Co., Inc. MH-Minneapolis-Honeywell Regulator Co. MOTR-Motorola, Inc.
MU-Mullard, L+d.
PHIL—Philco Corp.
RAY—Raytheon Manufacturing Co.

RCA—Radio Corporation of America
SPR-Sprague Electronics Co.
SYL-Sylvania
TI-Texas Instruments, Inc.
TR-Transitron Electronic Corp.
TS—Tung-Sol
W-Westinghouse
WE-Western Electric Co.

AF-Audio Frequency
Ampl-Amplifier
CNVTR-Converter
EIA-Electronic Industries Assoc.

AbBREVIATIONS

HF-High Frequency
1F—Intermediate Frequency
JETC-Joint Electron Tube Council
Ose-Oscillator
Pł-Point Contact

PWR-Power
RF-Radio Frequency
SI-Silicon
SW-Switch

THERE'S A PHILCO TRANSISTOR FOR EACH OF YOUR CIRCUIT REQUIREMENTS

TYPE			
2N128	40	60	General communications; MIL specifications
2N240	30	Switching rates 20 mc	High-speed switch; controlled hole storage and saturation characteristics; MIL specifications
2N299	$\begin{gathered} 22 \mathrm{db} \\ \text { (a) } 10 \mathrm{mc} \end{gathered}$	110	Tuned amplifier; MIL specifications
2N300	18	95	Video amplifler; MIL specification
2N344	22	50	General purpose; narrow beto spread (11-33)
2N345	35	50	General purpose; similar to 2N344 with higher beta; MIL speciffcations
2N346	20	75	General purpose; like 2N344 and 2N345 but higher frequency
SB	20	45	General purpose amplifier

TYPE	MICRO ALLOY GAIN	DIFFUSED-BAS FREQUENCY $f_{\text {max }}$ in mc	TRANSISTORS (MADT*) APPLICATIONS
2N499	10db@ 100 mc	320	VHF amplifier; MIL specifications
2N500	22mw PO (a) 200mc	400	VHF oscillator; MIL specifications
2N501	$\begin{gathered} h_{\mathrm{FE}} \\ 35 \end{gathered}$	Switching rates 40 mc	Ultra-fast switch; typical $\mathrm{t}_{\mathrm{r}} 9 \mu \mathrm{sec}$; $t_{5} 9 \mu \mathrm{sec} ; \mathrm{t}_{\mathrm{f}} 7 \mu \mathrm{sec} ;$ MIL specifications
2N501A	$\begin{aligned} & h_{\text {FE }} \\ & 35 \end{aligned}$	Switching rates 40 mc	Rated at $100^{\circ} \mathrm{C}$; MIL specifications
2N502	10db @ 200 mc	700	VHF amplifier; MIL specifications
2N502A	$\begin{gathered} 10 \mathrm{db} @ \\ 200 \mathrm{mc} \end{gathered}$	700	Rated at $100^{\circ} \mathrm{C}$; MIL specifications
2N503	12.5 db (a) 100 mc	420	VHF amplifier
2N504	$\begin{gathered} 46 \mathrm{db} \text { @ } \\ 455 \mathrm{kc} \end{gathered}$	Minimum 50	If amplifier; high level logic switch
2N588	14db (a) 50 me	250	General purpose RF-IF amplifier

*Trademark Philco Corp. for Micro Alloy Diffused-base Tronsistor

MICRO-MINIATURE TRANSISTORS			
TYPE	GAIN	FREQUENCY $f C_{b}$ in me	APPLICATIONS
2N207	100	2	Low level amplifier; particularly suited for hearing oid use; N.F.* 15 db max
2N207 A	100	2	Low level amplifier; particularly suited for hearing aid use; N.F.* 10 db max
2N207B	100	2	Hearing aid input stage; other extremely low noise applications; N.F.* 5db max
2N534	150		High voltage amplifier switch
2N535	100	2	General purpose; $85^{\circ} \mathrm{C}$ max temperature rating; N.F.* 10 db max
2N535A	100	2	General purpose; $85^{\circ} \mathrm{C}$ max temperature rating; N.F.* 5 db max
2N535B	100	2	General purpose; $85^{\circ} \mathrm{C}$ max temperature rating; N.F*
2N536	$h_{\text {FE }}$	2	Low level switch of pulse rates

2N495 15			General purpo
			cations
2N496	hfe	$\mathrm{fr}_{\mathrm{T}} \mathrm{llmc}{ }^{* *}$	High-speed switching; MIL speci-
*Trademark Philco Corp. for Silicon Alloy Transistor **Frequency for bota=1 BILATERAL TRANSISTOR			
TYPE	GAIN	FREQUENCY	APPLICATIONS
2N462	45		Controlled puls
*Forward and inverse			$t_{\text {on }}$ and toff $12 \mu \mathrm{sec}$)
		POWER TRANSISTORS	
TYPE	GAIN	FREQUENCY	APPLICATIONS
2N386	33db @ 5w PO	Minimum	High-voltage general purpose amplifiers; relay actuators and
		7	
2N387	33 db @ 5w PO	Minimum 6	High-voltage general purpose amplifiers; relay actuators and
			power converter
	MEDIUM FREQUENCY TRANSISTORS		
TYPE	$\begin{aligned} & \text { GAIN } \\ & \text { hFE } \end{aligned}$	FREQUENCY	APPLICATIONS
2N597	70	4.5	High-voltoge general purpose amplifier and switch; TO-9 case
2N598	85	7.5	500 kc logic switching; TO-9 case
2N599	105	18	Logic switching rates up to 1 mc ; core driver; TO-9 case
2N600	85		
		7.5	500kc switching; 1 watt peak power dissipation for 0.1 sec ;
2N601	105	18	High-power core driver; typical rise time 0.1μ sec; stud mount
2N1123	70	4.5	High-voltage power amplifier and switch; stud mount
TYPE	$\begin{aligned} & \text { GAIN } \\ & \text { hFE } \end{aligned}$	FREQUENCY	APPLICATIONS
2N670	hfo100	$\mathrm{f}_{\propto \mathrm{b}} 700 \mathrm{kc}$	High peak current pulse amplifier; relay driver
2N671	100	$f_{\propto b} 650 \mathrm{kc}$	High power version of 2 N6 70 ; stud mount
2N672	20 (Sat.)	$0.5 \mu \mathrm{sec}$ max tr_{r}	
			High-current switching core driver; controlled rise, fall, and storage times
2N673	20 (Sat.)	$0.5 \mu \mathrm{sec}$ max $\mathrm{t}_{\mathbf{r}}$	High power version of 2N672; stud mount
		EDIUM POWER TRANSISTORS	
TYPE	GAIN		APPLICATIONS
2N223	hfe		
	110		Audio driver; exceptional beta linearity
2N224	90	0.51	Audio output; exceptional beta
			linearity; ovailable as matched pair (2N225)
2N226	60	0.4	Audio output; exceptional beto linearity; available as matched pair (2N227)
2N1124	$\operatorname{Min}_{\mathrm{f}} \mathrm{~h}_{\mathrm{fe}}$	$\begin{gathered} \text { Minimum } \\ 0.4 \end{gathered}$	E3-51 based high-voltage, general purpose industrial amplifier
2N1125	$\begin{aligned} & \overline{\mathrm{hfe}_{\mathrm{e}}} \\ & 100 \end{aligned}$	Minimum 1	E3-51 based high-voltage, medium frequency amplifier and switch E3-51 based high-power, highvoltage, general purpose indus-
2N1126	Min $\mathrm{hfe}_{\mathrm{fe}}$ 40	$\underset{0.4}{\text { Minimum }}$	
2N1127	100	Minimum 1	E3-51 based high-power, highvoltage, medium frequency amplifier and switch; stud mount E3-51 based audio driver
2N1128	$\mathrm{hfog}_{\text {f }}$ 100	1	
2N1129	165	0.75	E3-51 based high gain transistor for amplifier and switching E3-51 based general purpose audio transistor
2N1130	125	0.75	

PHILCO, CORPORATION LANSDALE TUBE COMPANY DIVISION

LANSDALE, PENNSYIVANIA

1959 TRANSISTOR INTERCHANGEABILITY CHART

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline EIA MO. \& TYPE \& application \& MFR. \& MFR. \% 0 . \& mearest type \& outline \& notes \& eia no. \& TYPE \& APPLICATION \& MFR. \& MFR. Mo. \& MEAREST TYPE \& OUTLIME \& HOTES \\
\hline 2H90 \& Pnp \& af Ampl \& \[
\begin{aligned}
\& \text { TR } \\
\& \text { GT } \\
\& \text { RCA } \\
\& w
\end{aligned}
\] \& 2N90 \& \[
\begin{aligned}
\& \text { GT20 } \\
\& 2 \mathrm{~N} 105 \\
\& 2 \mathrm{~N} 402
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { FIg. } 20 \\
\& \text { F1g. } 30
\end{aligned}
\] \& \& 2 N 17 \& NPN \& af Ampl \& \[
\begin{aligned}
\& \mathrm{TI} \\
\& \mathrm{GE} \\
\& \mathrm{TR} \\
\& \mathrm{TR}
\end{aligned}
\] \& 2N117
2N117 \& \[
\begin{aligned}
\& 2 N 332 \\
\& 2 \mathrm{~N} 47 \mathrm{I}
\end{aligned}
\] \& F19. 12 \& Sllicon-nigh temperature \\
\hline 2 2194 \& nPN \& hFrf Ampl \& \begin{tabular}{l}
SYL \\
GE \\
GT \\
RCA
\end{tabular} \& 2 N 94 \& \[
\begin{aligned}
\& 2 \mathrm{HI} 169 \mathrm{~A} \\
\& \mathrm{GT948R} \\
\& 2 \mathrm{~K} 139
\end{aligned}
\] \& \[
\begin{array}{ll}
\text { Fig. } \& 5 \\
\text { Fig. } \& 16 \\
\text { Fig. } \& 17
\end{array}
\] \& \& 2N118 \& NPN \& AF Ampl \& \[
\begin{aligned}
\& T I \\
\& G E \\
\& T R \\
\& T R
\end{aligned}
\] \& \[
\begin{aligned}
\& 2 \mathrm{NII} \\
\& 2 \mathrm{NII}
\end{aligned}
\] \& \[
\begin{aligned}
\& 2 N 333 \\
\& 2 N 474
\end{aligned}
\] \& Flg. 12 \& Sllicon-HIgh Temperasure \\
\hline 2 MY \(^{\text {¢ }}\) \& NPN \& \[
\begin{aligned}
\& \text { RF Ampl } \\
\& \text { SW }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { SYL } \\
\& \text { GE } \\
\& \text { GT } \\
\& \text { RCA }
\end{aligned}
\] \& 2N94A \& \[
\begin{aligned}
\& 2 \mathrm{NI} 169 \mathrm{~A} \\
\& 6 \mathrm{~T} 92 \mathrm{R} \\
\& 2 \mathrm{~W} 139
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Fig. } \\
\& \text { Fig. } \\
\& \text { Eig. }
\end{aligned}
\] \& \& 2WH18A \& NPN \& AF Ampl \& \[
\begin{aligned}
\& T 1 \\
\& T R \\
\& T R
\end{aligned}
\] \& \[
\begin{aligned}
\& 2 \mathrm{NItBA} \\
\& 2 \mathrm{NiIBA}
\end{aligned}
\] \& \(2 \times 474\) \& \& Sllieon -hign Temperature \\
\hline 2N96 \& PNP \& af Ampl \& \begin{tabular}{l}
RCA \\
GE \\
GE \\
GT \\
RCA \\
W
\end{tabular} \& 2N96 \& \[
\begin{aligned}
\& 2 N 190 \\
\& 2 N 322 \\
\& \text { GT } 14 \\
\& 22206 \\
\& 2 N 403
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { FIg. } 8 \\
\& \text { Fig. } 15 \\
\& \text { FIg. } 30
\end{aligned}
\] \& Obsolete \& \(2 \mathrm{~N} / 19\)

$2 \mathrm{~N} / 20$ \& NPN
NPN \& AF Ampl

af Ampl \& $$
\begin{aligned}
& \text { TI } \\
& \text { GE } \\
& T R \\
& T R \\
& T I \\
& T I
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} \mid 19 \\
& 2 \mathrm{~N} / 19 \\
& 2 \mathrm{~N} \mid 20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 335 \\
& 2 \text { N479 } \\
& 2 \text { 2N335 }
\end{aligned}
$$
\] \& \& Sllicon-HIgh Temperature

Sillcon_High Temperature

\hline 2M97 \& NPN \& af Ampl \& $$
\begin{aligned}
& \text { B0 } \\
& \text { GE } \\
& \text { GT }
\end{aligned}
$$ \& 2N97 \& \[

$$
\begin{aligned}
& 2 N 169 \\
& 2 N 444
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\mathrm{FIg} . & 12 \\
\mathrm{Fig} . & 16
\end{array}
$$

\] \& \& 2N123 \& PNP \& RFSW \& | GE |
| :--- |
| GT |
| RCA |
| SYL | \& 2 N 123 \& GTi 23 2N404 21404 \& \&

\hline 2N97A \& nPw \& AF Amp 1 |F Ampl SW \& B0

68 \& 2N97A \& 2N169A \& \[
$$
\begin{array}{ll}
\text { F1g. } & 12 \\
\text { Fig. } & 16
\end{array}
$$

\] \& \& 2W124 \& NPN \& RFSW \& | RAY |
| :--- |
| $T 1$ GE | \& 2 N 124 \& $2 N 426$

24293 \& Fig. 12 Fig. 16 \&

\hline 2M98 \& NPN \& AF Ampl if Amp: \& $$
\begin{aligned}
& \text { BO } \\
& \text { GE } \\
& \text { GT }
\end{aligned}
$$ \& 2N98 \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 169 \mathrm{~A} \\
& 2 \mathrm{~N} 445
\end{aligned}
$$
\] \& F19.

Fig.

16 \& \& 2W125 \& NPN \& RFSW \& $$
\begin{aligned}
& \text { Tl } \\
& \text { GE }
\end{aligned}
$$ \& 2N125 \& 2N167 \& Flg. 12 fig. 16 \&

\hline 2499 \& NPN \& | F Ampl \& \[
$$
\begin{aligned}
& \text { B0 } \\
& \text { GE } \\
& \text { GT }
\end{aligned}
$$

\] \& 2N99 \& \[

$$
\begin{aligned}
& 2 N 169 A \\
& 2 H 445
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\text { Fig. } & 12 \\
\text { Fig. } & 16
\end{array}
$$

\] \& \& 2 N 126 \& NPN \& RFSW \& \[

$$
\begin{aligned}
& \mathrm{TI} \\
& \mathrm{GE}
\end{aligned}
$$

\] \& 2 N 126 \& 2N167 \& \[

$$
\begin{array}{ll}
\text { Fig. } & 12 \\
\text { Fig. } & 16
\end{array}
$$
\] \&

\hline 2N100 \& NPN \& IF Ampl \& B0
GE

GT \& 2N100 \& $$
\begin{aligned}
& 2 N 170 \\
& 2 N 446
\end{aligned}
$$ \& Fig.

Fig.
F \& \& 2 H 127
2N128 \& NPN
PNP \& RFSW
hf Ampl \& \& 2 N 127

2 N 128 \& 2N167 \& | F1g. 12 |
| :--- |
| Fig. 16 |
| Fig. 9 | \&

\hline 2M103 \& NPN \& AF Ampl |F Ampl \& GT
B0
GE

GT \& 2 N 103 \& $$
2 \mathrm{~K} / 70
$$

GT35 \& $$
\begin{array}{ll}
\text { Fig. } & 12 \\
\text { Fig. } & 16
\end{array}
$$ \& \& 2 T 28 \& PNP \& \& PHiL SYL GT RCA \& \& \[

$$
\begin{aligned}
& 2 N 247 \\
& 2 N 604 \\
& 2 N 247
\end{aligned}
$$
\] \& Fig.

Fig.
27S \& "Surface Barrler Type"

\hline 2H104 \& PNP \& af Ampl \& | RCA |
| :--- |
| GE |
| GT |
| W |
| RAY | \& 2N104 \& \[

$$
\begin{aligned}
& \text { 2N190 } \\
& 2 N 565 \\
& 2 N 402 \\
& 2 \mathrm{~N} 464
\end{aligned}
$$
\] \& F19.

Flg.
Flg.
\% \& \& $2 N 129$

2W130 \& PNP \& hF Ampl

af Ampl \& | PHIL SYL GT RCA |
| :--- |
| RAY | \& 2N129

2N130 \& $$
\begin{aligned}
& \text { 2H247 } \\
& \text { 2H603 } \\
& \text { 2N247 }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { Fig. } 9 \\
& \text { Fig. } 27 \mathrm{~s}
\end{aligned}
$$
\] \& "Surface Barrier Type"

\hline 2N105 \& PNP \& AF Ampl \& $$
\begin{aligned}
& \text { RCA } \\
& \text { GE } \\
& \text { RAY } \\
& \text { GT } \\
& W
\end{aligned}
$$ \& 2N105 \& 2N191

2 N 465 GT8I 2 N 403 \& $$
\begin{aligned}
& \text { Fig. } 20 \\
& \text { Fig. } 8 \\
& \text { Fig. } 30
\end{aligned}
$$ \& \& 2H130A \& PNP \& AF Ampl \& GE GE RCA w RAY \& 2N130A \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 186 \\
& 2 \mathrm{N3} 19 \\
& 2 \mathrm{~N} 105 \\
& 2 \mathrm{~N} 402
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 8 \\
& \text { Fig. } 20 \\
& \text { Fig. } 30
\end{aligned}
$$
\] \&

\hline 2N106 \& PNP \& AF Ampl \& RAY
GE
W

RCA \& 2N106 \& \[
$$
\begin{aligned}
& 2 \mathrm{2N} 189 \\
& 2 \mathrm{~N} 402 \\
& 2 \mathrm{~N} 104
\end{aligned}
$$

\] \& | Fig. 12 |
| :--- |
| Fig. 8 |
| FIg. 30 |
| Fig. 17 | \& \& 2N131 \& PNP \& AF Ampl \& | GT |
| :--- |
| w |
| RAY |
| GE |
| GE | \& 2N131 \& | GT14 2N402 |
| :--- |
| 2N187 |
| 24319 | \& FIg. 30

Fig. 80 \&

\hline 2W107 \& PNP \& af ampl \& GE GT SYL RCA w RAY \& 2N107 \& $$
\begin{aligned}
& \text { GT222 } \\
& 2 \mathrm{~N} 34 \\
& 2 \mathrm{~N} 218 \\
& 2 \mathrm{~N} 402 \\
& \mathrm{CK} 722
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { Fig. } 8 \\
& \text { Fig. } 5 \\
& \text { Fig. } 15 \\
& \text { Fig. } 30
\end{aligned}
$$

\] \& \& 2 M 1314 \& PNP \& AF Ampl \& | RCA |
| :--- |
| w |
| RAY |
| GT |
| w | \& 2N131A \& \[

$$
\begin{aligned}
& \text { 2N105 } \\
& 2 \text { 2N402 } \\
& \\
& \text { GT20 } \\
& 2 N 402
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 20 \\
& \text { Fig. } 30
\end{aligned}
$$
\] \&

\hline 2N109 \& Pnp \& af Output \& RCA
GE
GE
GT
SYL
W
RAY \& 2N109

2N109 \& \begin{tabular}{l}
2N188

2N192

GTIOS

2N403

2N464

 \&

Fig. 17

Fig. 8

Fig. 8

Fig. 30
\end{tabular} \& High eurrent \& 2N/32 \& PNP \& AF Ampl

AF Ampl \& | RAY |
| :--- |
| GE |
| GE |
| RCA |
| W |
| RAY | \& 2N132 \& \[

$$
\begin{aligned}
& 2 N 241 \\
& 2 N 321 \\
& 2 N 105 \\
& 2 N 403
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 8 \\
& \text { Fig. } 20 \\
& \text { Fig. } 30
\end{aligned}
$$
\] \&

\hline 2W111 \& PNP \& - F Ampl RF Ampl \& RAY
GE
GT
RCA

w \& 2N111 \& $$
\begin{aligned}
& 2 N 135 \\
& 2 N 519 \\
& 2 N 218 \\
& 2 N 614
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { Fig. } 12 \\
& \text { Fig. } 8 \\
& \text { Fig. } 15
\end{aligned}
$$

\] \& \& 2N133 \& PNP \& AF Ampl \& | GT |
| :--- |
| w |
| RAY |
| GE |
| RCA | \& 2N133 \& | GT81 2K403 |
| :--- |
| 2N186 |
| 2K175 | \& \[

$$
\begin{aligned}
& \text { FIg. } 30 \\
& \text { FIg. } 8 \\
& \text { FIg. } 17
\end{aligned}
$$
\] \& Low Nolse

\hline 2 HIIIA \& PNP \& |F Ampl RF Ampl \& | RAY |
| :--- |
| GE |
| RCA |
| W | \& 2NIIIA \& \[

$$
\begin{aligned}
& 2 N 135 \\
& 2 N 218 \\
& 2 N 614
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\text { FIg. } & 8 \\
\text { Fig. } & 15
\end{array}
$$
\] \& \& 2N133A

2N/35 \& PNP
PNP \& AF Ampl

af Ampl \& | RAY |
| :--- |
| GT |
| GE |
| SYL | \& 2N133A

2×135 \& 6774

21139 \& $$
\text { Flg. } 8
$$ \& Low Nolse

\hline 2N112 \& PNP \& RF Ampl \& | RAY |
| :--- |
| GE |
| GE |
| GT |
| RCA |
| w | \& 2N112 \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 135 \\
& 2 W 136 \\
& 2 N 520 \\
& 2 W 218 \\
& 2418
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { FIg. } \\
& \text { FIg. } \\
& \text { Fig. } \\
& \text { Fig. }
\end{aligned}
$$

\] \& \& 2N136 \& PNP \& HF Ampl \& | GT |
| :--- |
| RCA |
| W |
| RAY |
| GE | \& ${ }^{2 N 136}$ \& \[

$$
\begin{aligned}
& 2 N 520 \\
& 2 \mathrm{~N} 139 \\
& 2 N 614 \\
& 2 N 482
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 17 \\
& \text { Fig. } 8
\end{aligned}
$$
\] \&

\hline 2Hil2A \& PNP \& (F Ampl \& | RAY |
| :--- |
| GE |
| RCA |
| | \& 2NII2A \& \[

$$
\begin{aligned}
& 2 N 136 \\
& 2 N 218 \\
& 2 N 615
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\text { Fig. } \\
\text { Fig. } & 15
\end{array}
$$

\] \& \& \& \& \& | SYL |
| :--- |
| GT |
| RCA |
| W |
| RAY | \& \& \[

$$
\begin{aligned}
& 2 N 139 \\
& 2 N 520 \\
& 2 N 139 \\
& 2415 \\
& 2 N 482
\end{aligned}
$$
\] \& F1g. 17

Fig. 17 \&

\hline 2W113 \& PNP \& RF Ampl \& | RAY |
| :--- |
| GE |
| GT |
| SYL |
| RCA |
| W | \& 2N113 \& \[

$$
\begin{aligned}
& 2 N 137 \\
& 2 N 521 \\
& 2 N 139 \\
& 2 N 139 \\
& 2 N 617
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } \\
& \text { Fig. }
\end{aligned}
$$
\] \& \& 2\%137 \& PNP \& hF Ampl

af Output \& | GE GT RCA RAY |
| :--- |
| W RAY | \& $2 N 137$

$2 N 138$ \& \[
$$
\begin{aligned}
& 2 N 521 \\
& 2 N 140 \\
& 2 N 484 \\
& 2 N 615
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 8 \\
& \text { Flg. } 17
\end{aligned}
$$
\] \& High Curfent

\hline 2N114 \& PNP \& RFSW \& | RAY |
| :--- |
| GE |
| GE |
| GT |
| RCA |
| W | \& 2N114 \& | $2 \mathrm{H} / 23$ |
| :--- |
| 2N137 2N522 $2 \mathrm{~N}_{140}$ 2N617 | \& \[

$$
\begin{aligned}
& \text { Fig. } 12 \\
& \text { Fig. } 8 \\
& \text { Fig. } 8 \\
& \text { Fig. } 17
\end{aligned}
$$

\] \& \& 2N138A \& PNP \& Af Ousput \& | GE |
| :--- |
| RCA |
| SYL |
| W |
| RAY |
| GE | \& 2N138A \& | 2W192 |
| :--- |
| 2×406 |
| 2N406 |
| 2N6I |
| 2N187 | \& \[

Flg. B
\]

$$
\text { Fig. } 30 \mathrm{w}
$$ \& High curiment

\hline 2N116 \& PNP \& Af Amp! \& $$
\begin{aligned}
& \text { CBS } \\
& \text { GT } \\
& \text { RCA }
\end{aligned}
$$ \& 2N116 \& \[

$$
\begin{aligned}
& \text { GT81. } \\
& 2 \mathrm{HI} 75 .
\end{aligned}
$$

\] \& Flg. 17 \& \& \& \& \& RCA SYL W \& \& \[

$$
\begin{aligned}
& 2 \times 406 \\
& 2 N 406 \\
& 2 N 60
\end{aligned}
$$

\] \& \[

Flg. 30 w
\] \&

\hline
\end{tabular}

Some design engineers specify PNP switching transistors because they consider them inherently more reliable. Actually NPN transistors can give you superior reliability along with their wellknown higher speed. Life tests covering hundreds of thousands of CBS-Hytron NPN alloy-junction germanium switching transistors proved this during the past year. See graphs comparing these transistors with typical military-approved PNP transistors.
The superiority of CBS-Hytron NPN transistors is achieved by special processing: For example, advanced surface chemistry techniques seal out moisture and centamination. Precise control of alloying produces high back voltages. Thorough bake-out stabilizes gain. The result is reliable NPN computer-type switching transistors featuring fast switching . . . high voltage . . . low cutoff current . . . and low saturation resistance . . . in a welded JETEC T0-9 package.

CBS-Hytron NPN Switching Transistors

Type	Minimum $\mathrm{BV}_{\text {cbo }}$ (Volts)	Dissipation (a) $25^{\circ} \mathrm{C}$ (Milliwatts)	$\underset{\mathrm{h}_{\mathrm{FE}} @ \mathrm{I}_{\mathrm{c}}(\mathrm{Ma})}{\substack{\text { Minimum }}}$			Application
2N356	20	100	20	100	3	Core Driver
2N377	25	150	20	200	6	Core Driver
2N385	25	150	20	200	6	Core Driver
2N388	25	150	30	200	8	Core Driver
2N438	30	100	20	50	4	Logic Circuit
2N438A	30	150	20	50	4	Logic Circuit
2N439	30	100	30	50	8	Logic Circuit
2N439A	30	150	30	50	8	Logic Circuit
2N440	30	100	40	50	12	Logic Circuit
2N440A	30	150	40	50	12	Logic Circuit

Operating and storage temperature, $\mathrm{T}_{\mathrm{j}}=-55$ to $+85^{\circ} \mathrm{C}$

A comprehensive line of these reliable CBS-Hytron NPN high-speed switching transistors is available now in production quantities. Check the table. Order types you need . . . or write for Bulletin E-293-302 giving complete data...today.

semiconductors

Sales Offices: LoweH, Mass., 900 Chelmsford St., GLenview 4-0446 - Newark, N. J., 32 Green St., MArket 3 -5832 - Melrose Park, III., 1990 N. Mannheim Rd., EStebrook 9-2100 - Los Angeles, Calif., 2120 S. Garfield Ave., Raymond 3-9081

Ela Mo.	TYPE	APPLICATIOM	MFR.	MFR. No.	nearest type	OUTLINE	notes	eia mo.	TYPE	APPLICATION	MFR.	MFR. NO.	nearest type	OUTLINE	notes
2N139	PNP	ha ampl	$\begin{aligned} & \mathrm{RCA} \\ & G E \\ & G E \\ & G T \end{aligned}$	2N139	$\begin{aligned} & 2 N 135 \\ & 2 N 136 \\ & \text { GTI } 60 \mathrm{R} \end{aligned}$	$\begin{aligned} & \text { Fig. } 17 \\ & \text { Fig. } 8 \\ & \text { Fig. } 8 \end{aligned}$		2 N 167	NPN	S*	$\begin{aligned} & G E \\ & G T \\ & R C A \end{aligned}$	2 N 167	$\begin{aligned} & \text { GT } 167 \\ & 2 H 269 \end{aligned}$		
			SYL W RAY	2N139	$\begin{aligned} & 2 \mathrm{NG15} \\ & 2 \mathrm{NH} 48 \end{aligned}$	Flg. ${ }^{17}$		2N168	NPN	RF Ampl	$\begin{aligned} & G E \\ & G E \\ & G T \end{aligned}$	2 N 16 B	$\begin{aligned} & 2 \mathrm{~N} 293 \\ & \text { GT792R } \end{aligned}$	$\begin{array}{ll} \text { Fig. } & 16 \\ \text { Fig. } & 16 \end{array}$	Obsolete
2N140	PNP	hfose	RCA	2N140		F18. 17					${ }_{\text {SKL }}^{\text {RYA }}$		2N94A	$\begin{array}{ll} \text { Fig. } 12 \\ \text { Fig. } 17 \end{array}$	
			${ }_{\text {GE }}^{6 E}$		24136 $2 N 137$ 2057	F19. FIg .		2W168A	NPN	hF OSC	GE	2 N 168 A		Fig. 16	
			Gr SrL	2N:40	GT7618						SYL		2 N 212	Fig. 12	
			${ }_{W}^{\text {Sr }}$		2N617						$\mathrm{SrL}_{\text {SCa }}$	2 N 168 A	$2 \mathrm{H140}$	F19. 16	
			Ray		2 N 485									Fig. 17	
2N145	NPM	If Ampl	TI	2N149	2 N 253	Flg. 12		2N169	NPN	IF Ampl	${ }_{\text {GE }}^{\text {GE }}$	2N169		Fig. 16	
			$\mathrm{GE}_{\mathrm{GE}}$		$2 \mathrm{2H169}$	F19. 16					${ }_{\text {srL }}$		$2 \mathrm{Ng4a}$	Fig. 12	
			${ }_{\text {GE }}^{\text {GT }}$			FIg. 36					rCa		2N139	Fig. 17	
			SYL		2 294A	Fig. 12		2N169A	NPN	IF Ampl		2N169A			
			RCA		2 2 218	Fig. 15		2N69	N,	If Ampl	${ }_{5 \times \mathrm{L}}^{6}$	2N169A	2N94A	Fig. Fig. l	
2N146	npm.	If Ampl	TI	2N146	24254	Fig. 12					${ }_{\text {SYL }}$	2N169A	2N139	F19. ${ }_{\text {FIG. }} 16$	
			GE		${ }_{2}^{21169}$	Fig. 16									
			GE GT			FIg. 16		2N170	NPN	RF Ampl	GE	2N170		Fig. 16	
			SYL_{2}		$2 \mathrm{H94A}$	FIg. 12					${ }_{\text {SYL }}^{\text {GT }}$		6T948R		
			RCA		2N218	$\mathrm{FIG}_{6} 15$					RCA		${ }_{2} \mathbf{2 N 1 3 9}$	Flg. 17	
2N147	NPN	IF Ampl	TI	2 N 147	${ }_{2}^{2 N 254}$			2 L 172	APN	IF Ampl	T1.	2N172			
			GE		${ }_{2}^{2 H 16893}$	$\begin{aligned} & \text { Flg. } 16 \\ & \text { FIg, } 16 \end{aligned}$					GE GT		2N168A G7792R	$\text { FIg. } 16$	
			GT		6T948R						${ }_{\text {SYL }}$		${ }_{2 N 212}$		
			${ }_{\text {STL }}$		$2 \mathrm{2m94}{ }^{\text {a }}$	Flg. 12					rca		2 1 140	F19. 17	
			RCA		$2{ }^{1218}$	Fig. 15									
20148	NPN	If Ampl	T	2N148	2 N 253	Fig. 12		2N173	PNP.	PWR Ampl	$\begin{aligned} & \text { DLC } \\ & \text { SYL } \end{aligned}$	$2 N 173$		FIg. 23	
			GE		2 L 169	Flg. ${ }_{\text {Fl }} 16$					CLE		CTP1504		
			GE GT		$\begin{aligned} & 2 \mathrm{~N} 292 \\ & \text { GT948R } \end{aligned}$						$\begin{aligned} & \text { RCA } \\ & \text { BEN } \end{aligned}$		$\begin{aligned} & 2 \mathrm{~N} 301 \\ & 2 \mathrm{~N} 677 \mathrm{~B} \end{aligned}$	F1g. 25	
2N148A	NPN	If Ampl	וr	2N148A	2 2 254			2N174	PNP	PWP Ampl	olc			F19. 23	
			GE		2N169A	fig. 16					SYL	2 N 174			
2M148	NPN	If Ampl	1	2N149	2N253	F19. 12					${ }_{\text {CLE }}^{\text {CLE }}$		$\begin{gathered} \text { CTPI } 503 \\ 2 H G 778 \end{gathered}$		
			${ }^{\text {GE }}$		2 N 169	F19. 16									
			${ }_{\text {GF }}^{\text {GE }}$		CT948R			2N175	PNP	AF Ampl	RCA	2N175		F19. 17	Low Nolso
													2466 24192		
2N149A	npm	If Ampl	11	2N149A	2 N 254	F19. 12					GT		${ }_{6 T 74}$	Fig. 8	
			GE		2N169A	Flg. 16					,		2 4 403	F1g. 30	
2W150	NPN	If Ampl	11	2N130	2 N 253	F1g. 12		2N176	PnP	PMR Ampl				Flg. 25	
			GE		${ }_{2}^{21169}$	F19. 16				ampl	mTR	2 N 176		Fig. 25	
			${ }_{6 T}^{\text {GE }}$		2N292 GT948R						RCA BEN		$\begin{aligned} & 2 \mathrm{~N} 301 \\ & 2 \mathrm{~N} 235 \mathrm{~A} \end{aligned}$	FIg. 25	
2M150A	nPm	If Ampl	T	2NISOA	$\begin{aligned} & 2 \mathrm{~N} 254 \\ & 2 \mathrm{NI} 169 \mathrm{~A} \end{aligned}$	FIg. 12		2N178	PNP	PMR Ampl	MTR	2 N 178			
			GE			Flg. 16					Cle		CTP1105		
											BEN		2 N 235 A		
2 L 155	PMP	PwR Ampl	${ }_{\text {ces }}^{\text {ces }}$	$2 N 158$$2 \times 155$		F1g. 25 Fig. 25		24180	MP	AF Outat					
			CLE		2 2157	Fig. 25		2 l	A	ap output	GE	2180		Flg. 8	mign Current
			RCA		2 H 301	Fig. 25					GT		2 2565		
			日EN		2N235A						RCA		2 N 109	Fig. 17	
2N156	PNP	PMR Ampl	cas	2 L 156		Flg. 25					War		${ }_{2}^{2 N 460}$	Fig. 30w	
			SYL		2 2142	Fig. 25									
			${ }_{\text {SYL }}^{\text {STA }}$	2M156		F1g. 25		2N181	PnP	af output	ces	2 L 181			mign Current
			RCA		24301	FIg. 25					${ }_{\text {ck }}^{\text {GE }}$		${ }^{2 N 1888}$	F19. 8	Hen
2 H 158	PnP	PWR Ampl	cas	2N158		FIg. 25					RCA		2 2 270	Fig. 275	
			SYL		${ }^{21242}$	F1g. 25					${ }_{W}$		2460	f1g. 30	
			RCA		$2 \mathrm{2N301}$	Fig. 25									
			CLE		${ }^{21262884}$			24182	NPN	If Ampl	cas	2N182			
			日EN		2N639A					${ }^{\text {sw }}$	GE		2 N 167	FIg. 16	
21158A	Prp	PWR Ampl	CBS	2N158A		fig. 25					${ }_{\text {RCA }}$		21445 2×269	fig. 30 Fig. 15	
			SYL			flg. 25					RCA		2 269	Fig. 15	
			CLE		2 24268A			24183	NPN	Sw	cos	2×183		Fig. 5	
			ben		24639a						GE		${ }^{21167}$	F19. 16	
2N160	NPN	IF Ampl		2N160			sllicon				$\underset{\text { RCA }}{\text { GI }}$		214446 2×269		
			GE		2N332	FIg. 30	stron								
2H160A	NPN	If Ampl	B0	2N160A		Flg. 12	slilion	2N184	NPN	s*	CBS	2N184			
					24332	F1g. 30					${ }_{\text {GE }}^{\text {GT }}$		$2 N 167$ $2 N 447$	F19. 30	
2 N 161	NPN	Rf Ampl	${ }_{\text {GE }}{ }_{\text {O }}$	$2{ }^{\text {N } 161}$	24333	flg. 12	sllicon				RCA		2N269	FIg. 15	
						Flg. 30		2H185	PNP	Af Ampl	TI	2 N 185		fig. 12	
241814	NPK	Rf Ampl	$\begin{aligned} & B 0 \\ & G E \end{aligned}$	$2 \mathrm{M} / 6 / \mathrm{A}$	24333	$\begin{array}{ll} \text { Fig. } & 12 \\ \text { Fig. } & 30 \end{array}$	slilion				${ }_{\text {GE }}^{\text {GT }}$		$2 N 1888$ 6781 2434	Fig. 8	
2×162		rf ampl									SYL		${ }_{2}^{2434}$	FIg. 5	
	NPN		$\begin{aligned} & 80 \\ & G E \end{aligned}$	2N162	2 3 335	F1g. 12 fig. 30	stlicon				${ }_{w}^{\text {RCA }}$	2N61	2 N 109	$\begin{aligned} & \text { FIg. } 17 \\ & \text { Fig. } 30 \mathrm{w} \end{aligned}$	
2 H [24	NPN	RF Ampl	$\begin{aligned} & B 0 \\ & \text { GE } \end{aligned}$	2N162A	24335	$\begin{array}{ll} \mathrm{flg} . & 12 \\ \mathrm{Flg} . & 30 \end{array}$	silicon	2N186	PNP	af Output	${ }_{\text {GE }}{ }^{\text {c }}$	2N186		flg. 8	High Currant
21163	NPN	RF Ampl	${ }_{\text {GE }}^{\text {GO }}$	${ }^{2 N 163}$		Fig. 12	sllicon				STL		6720 2434		
					21335	Flg. 30					RCA		2 N 109	F1g. 17	
2 H 163 A	NPN	rfampl	$\begin{aligned} & \mathrm{BO} \\ & \mathrm{GE} \end{aligned}$	2N163A	2N335	FIg. 12 F1g. 30	silicon				${ }_{\text {Ray }}$		$\begin{aligned} & 2 N 61 \\ & 2 N 464 \end{aligned}$	Flg. 30	
$2 \mathrm{2H1644}$	NPN	hf OSC		2N164A			0bsolete	221864	PNP	Af output	GE	2w186A		Flg. 8	High Currant
			GE			Fig. 16					SYL		21270 $2 N 270$	Flg. 27s	
2×165	nPN	hf OSC									${ }^{\text {W }}$		$2 \mathrm{N61}$	FIg. 30	
			$\mathrm{GE}_{\text {GE }}$	2 N 165	${ }^{24169}$	Flg. 16	obsolete								
			GT		gTe4br			2W187	PnP	AF output	GE	24187	6781	FIg. 8	High Current
21186	NPN	rf Ampl		2×166		F1g. 30	obsolete				SYL		2134		
			GE		${ }^{2} \mathrm{H} 170$	F19. 16					rca		$2{ }^{21109}$	F19. 17	
			ST ${ }_{\text {RCA }}$		21229 218218	F19. 15					${ }_{\text {rar }}$		$\begin{aligned} & 2461 \\ & 2 N 465 \end{aligned}$	F19. 30	

TUN G -sol GERMANIUM TRANSISTORS

(38)	MEDIUM 2N461, POWER OUTLINE TO-9

INVERTED HEADER DESIGN BRINGS YOU THESE BENEFITS . . .
improved thermal properties for longer life superior mechanical characteristics for increased reliability

MEDIUM POWER, MEDIUM FREQUENCY MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$) TYPICAL VALUES ($25^{\circ} \mathrm{C}$)

TYPE	Pc mw	Vce volts	VCB volts	$\begin{gathered} \text { Ic } \\ \text { ma } \end{gathered}$	${ }^{\circ} \mathrm{C}$	Max. Icво $\mu \mathrm{a}$	hfe	fab mc	$\begin{aligned} & \mathrm{Ge} \\ & \mathrm{db} \end{aligned}$
2N381	200	-25	-25	200	85	20	36	1.2	31
2N382	200	-25	-25	200	85	20	54	1.5	33
2N383	200	-25	-25	200	85	20	72	1.8	35
INDUSTRIAL TYPES									
2N460	200	-	-45	400	100	15.	25	1.2	34
2N461*	200	-	-45	400	100	15.	50	1.2	37
*Designed to meet MIL-T-19500/45									

POWER, MEDIUM FREQUENCY

MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$) TYPICAL VALUES ($25^{\circ} \mathrm{C}$)

TYPE	$\begin{aligned} & \mathrm{Pc} \\ & \mathrm{w} \end{aligned}$	Vce volts	VCB volts	$\begin{gathered} \text { Ic } \\ \text { ma } \end{gathered}$	${ }^{\text {T }} \mathrm{C}$	Max. Icso mc	hfe	$\begin{aligned} & f_{\alpha} b \\ & m c \end{aligned}$	$\begin{aligned} & \mathrm{Ge} \\ & \mathrm{db} \end{aligned}$
AUDIO TYPES									
2N242	15	-45	-	2	85	1.0	50	0.4	34.0
POWER SWITCH TYPES									
2N378	50	-20	-40	5	100	0.5	30	0.3	24.0
2N379	50	-40	-80	5	100	0.5	30	0.3	28.5
2N380	50	-30	-60	5	100	0.5	50	0.4	30.0
2N459	50	-60	-105	5	100	0.5	30	0.3	28.5

HIGH POWER, MEDIUM FREQUENCY

$$
\text { MAXIMUM RATINGS }\left(25^{\circ} \mathrm{C}\right) \text { TYPICAL VALUES }\left(25^{\circ} \mathrm{C}\right)
$$

					Max.		
TYPE	$V_{C E}$ volts	VCB volts	$\begin{aligned} & \text { IC } \\ & \text { A. } \end{aligned}$	${ }^{\text {Tj}}$	$\begin{gathered} \text { Icso } \\ \text { ma } \end{gathered}$	hfe	ta e_{e} Kc

MILITARY TYPE
TS 74B Designed to meet MIL-T-19500/13A dated 8 January 1958
INDUSTRIAL TYPES

2N173	-50	-60	15	95	8	52	10
2N174	-70	-80	15	95	8	37	10
2N174A	-70	-80	15	95	8	37	10
2N277	-40	-40	15	95	8	52	10
2N278	-45	-50	15	95	8	52	10
2N441	-40	-40	15	95	8	30	10
2N442	-45	-50	15	95	8	30	10
2N443	-50	-60	15	95	8	30	10

MEDIUM POWER, HIGH FREQUENCY

MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$) TYPICAL VALUES ($25^{\circ} \mathrm{C}$;

COMPUTER TYPES									
2N404*	120	-24	-25	100	85	5	30	12	-
2N425	120	-20	-30	400	85	5	30	4	-
2N426	120	-18	-30	400	85	5	40	6	-
2N427	120	-15	-30	400	85	5	55	11	-
2N4281	120	-12	-30	400	85	5	80	17	-
2N578	120	-14	-20	400	85	5	15	5	-
2N579	120	-14	-20	400	85	5	30	8	-
2N580	120	-14	-20	400	85	5	45	15	-
2N581	120	-14	-18	100	85	5	30	8	-
2N582	120	-14	-25	100	85	5	60	18	-
GENERAL PURPOSE TYPES									
2N413	120	-18	-30	200	85	5	30	2.5	10
2N414	120	-15	-30	200	85	5	60	5	16
2N416	120	-12	-30	200	85	5	80	10	20
2N417	120	-10	-30	200	85	5	140	20	27

*Designed to meet MIL-T-19500/20
\dagger Designed to meet MIL-T-19500/44

Exclusive Tung-Sol Colld Weld Seal!

All Tung-Sol Power and High Fower transistars are sealed by advanced cold weld process for three:way quality boost . . .

True hermetic, copper-to-coppe: seal improves transistor thermal characteristics.
Elimination of heat-damage, heat-caused moisture and "splash" increase overall reliability.
Vacuum-light, moisture-proof cold-weld seal lasts even through "breathing" over long life operation.
For detailed information on spedific types or to fill a particulà need, contact: Tung-Sol Electric Inc., Newark 4, New Jersey.

1959 TRANSISTOR INTERCHANGEABILITY CHART

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline EIA Mo. \& TYPE \& APPLICATIOH \& MFR. \& MFR. Mo. \& nearest type \& OUTLIME \& notes \& eia no. \& TYPE \& APPLICATION \& MFR. \& MFR. Mo. \& hearest type \& OUTLINE \& HOTES \\
\hline 2N1874 \& PNP \& AF Output \& \[
\begin{aligned}
\& G E \\
\& S Y L \\
\& B C A \\
\& w
\end{aligned}
\] \& 2 2187A \& \[
\begin{aligned}
\& 2 \mathrm{~N} 270 \\
\& 2 \mathrm{~N} 270 \\
\& 2 N 61
\end{aligned}
\] \& \[
\begin{array}{ll}
\begin{array}{l}
\text { ig. }
\end{array} \& 8 \\
\text { Fig. } \& 275 \\
\text { Fig. } \& \\
\hline
\end{array}
\] \& Mign Curreni \& 2N211 \& NPN \& HF 05c \& \[
\begin{aligned}
\& 5 Y 2 \\
\& 6 E \\
\& 6 T
\end{aligned}
\] \& 2 N 211 \& \[
\begin{aligned}
\& 2 \mathrm{H} 293 \\
\& \text { GT948R }
\end{aligned}
\] \& \begin{tabular}{l}
\[
\text { Fig. } 12
\] \\
Fig. 16
\end{tabular} \& \\
\hline 2 H 188 \& PNP \& AF Out put \& \begin{tabular}{l}
GE \\
GT \\
SYL \\
Ray \\
RCA
\end{tabular} \& \(2^{\text {N188 }}\) \& \[
\begin{aligned}
\& \text { GT109 } \\
\& 2 N 34 \\
\& 2 N 465 \\
\& 2 N 109 \\
\& 2 N 60
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Fig. } 8 \\
\& \text { Fig. } 5 \\
\& \text { Fig. } 17 \\
\& \text { Fig. } 30
\end{aligned}
\] \& High Current \& 24212
24213 \& NPN \& hF OSC
af Ampl \& \begin{tabular}{l}
SYL GE GT \\
SYL GE
\end{tabular} \& 2N212
2N213 \& \[
\begin{aligned}
\& \text { 2N293 } \\
\& \text { GT792R } \\
\& 2 \mathrm{NI} 69 \mathrm{~A}
\end{aligned}
\] \& \begin{tabular}{l}
Fig. 12 \\
Fig. 12 \\
FIg. 16
\end{tabular} \& converter \\
\hline 2H188A \& PNP \& AF Ourput \& GE SYL RCA w \& 2N18BA \& \[
\begin{aligned}
\& \text { 2N270 } \\
\& \text { 2N270 } \\
\& 2 \mathrm{~N} 60
\end{aligned}
\] \& \begin{tabular}{l}
Fig. 8 \\
Fig. 275 \\
Fig. 30
\end{tabular} \& High Current \& 2M215 \& Pnp \& af ampl \& \[
\begin{aligned}
\& \text { RCA } \\
\& \text { GE } \\
\& \text { RAY } \\
\& \text { GT } \\
\& W
\end{aligned}
\] \& 2N215 \& \[
\begin{aligned}
\& 2 \mathrm{~N} 191 \\
\& 24465 \\
\& 24565 \\
\& 2 \mathrm{~N} 402
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Fig. } 15 \\
\& \text { Fig. } 8 \\
\& \text { Fig. } 30
\end{aligned}
\] \& \\
\hline \({ }^{2 H 189}\) \& PNP \& af Ampl \& GE GT 5 YL RCA w fay \& \(2 \times 189\) \& \begin{tabular}{l}
GTI4 \\
2 H 34 \\
2H 109 \\
2 N 402 \\
2H465
\end{tabular} \& \[
\begin{array}{ll}
\text { Fig. } \& 8 \\
\text { Fig. } \& 5 \\
\text { Fig. } \& 17 \\
\text { Fig. } \& 30
\end{array}
\] \& \& 2N216

2N217 \& \& If Ampl
af Ampl \& SYL GE GT RCA GE GT \& 2N216

2N217 \& | 2N169 GT948R |
| :--- |
| 2N192 |
| GT109 | \& \[

$$
\begin{aligned}
& \text { Fig. } 12 \\
& \text { Fig. } 15 \\
& \\
& \text { Fig. IS } \\
& \text { Fig. } 8
\end{aligned}
$$
\] \&

\hline 2W190 \& PNP \& AF Ampl \& | GE |
| :--- |
| GT |
| 5YL |
| RCA |
| w |
| RAY | \& 2N190 \& \[

$$
\begin{aligned}
& \text { GT20 } \\
& 2 H 34 \\
& 2 H 109 \\
& 2 H 403 \\
& 2 H 465
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 8 \\
& \text { Fig. } 5 \\
& \text { Fig. } 17 \\
& \text { Fig. } 30
\end{aligned}
$$

\] \& \& 2 H 218 \& PNP \& If ampl \& | SYL |
| :--- |
| RAY |
| W |
| RCA |
| GE | \& 2N217

2N218 \& $$
\begin{aligned}
& 2 \mathrm{~N} 465 \\
& 2 \mathrm{~N} 403 \\
& \\
& 2 \mathrm{~N} 135
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { Fig. } 15 \\
& \text { Fig. } 30 \\
& \text { Fig. } 15 \\
& \text { Fig. } 8
\end{aligned}
$$
\] \&

\hline 2N191 \& Pnp \& AF Ampl \& | GE |
| :--- |
| GT |
| SYL |
| RCA |
| w |
| RAY | \& 2 N 191 \& \[

$$
\begin{aligned}
& \text { GT8I } \\
& 2 N 34 \\
& 2 H 109 \\
& 2409 \\
& 2 H 465
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\text { Fig. } & 8 \\
\text { Fig. } & 5 \\
\text { Fig. } & 17 \\
\text { Fig. } & 30
\end{array}
$$

\] \& \& 24219 \& PNP \& hF OSC \& | GT |
| :--- |
| w |
| RCA |
| GE |
| RAY |
| GT | \& 2N219 \& | GT760R 2 N 482 2 N 615 |
| :--- |
| 2 H 136 2N485 |
| GT76IR | \& \[

$$
\begin{aligned}
& \text { Fig. is } \\
& \text { Fig. } 8
\end{aligned}
$$
\] \&

\hline 2H192 \& PNP \& AF Amp: \& | GE |
| :--- |
| GT |
| SYL |
| RCA |
| w |
| RAY | \& 2N192 \& | GT8। 2H34 |
| :--- |
| 2 H 109 |
| 2 N 61 |
| 2N466 | \& \[

$$
\begin{aligned}
& \text { Fig. } \\
& \text { Fig. } 5 \\
& \text { Fig. } 17 \\
& \text { Fig. } 30 \mathrm{w}
\end{aligned}
$$

\] \& \& 2N220 \& Prip \& AF Ampl \& | w |
| :--- |
| RCA GE GT |
| RAY |
| W | \& 2N220 \& | 2N617 |
| :--- |
| 2N192 |
| GT74 |
| 2N466 |
| 2 N 403 | \& \[

$$
\begin{aligned}
& \text { Fig. } \\
& \text { Fig }
\end{aligned}
$$
\] \& Low nolse

\hline 2H193 \& NPN \& HF OSC \& $$
\begin{aligned}
& \text { SYL } \\
& G E \\
& G T
\end{aligned}
$$ \& 2N193 \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} / 67 \\
& \mathrm{GT} 948 \mathrm{R}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\text { Fig. } & 12 \\
\text { Fig. } & 16
\end{array}
$$

\] \& \& $2 \mathrm{H222}$ \& PNP \& AF Ampl \& \[

$$
\begin{aligned}
& \text { GT } \\
& \text { SYL } \\
& \text { RAY }
\end{aligned}
$$

\] \& 2N222 \& \[

$$
\begin{aligned}
& 2 H 34 \\
& 2 \mathrm{H} 464
\end{aligned}
$$
\] \& Fig. 5 \&

\hline 2H194 \& NPN \& hF OSC \& SYL GE GT RCA \& 2N194 \& \[
$$
\begin{aligned}
& 2 \mathrm{~N} / 69 \\
& \mathrm{GT} 948 \mathrm{R} \\
& 2 \mathrm{~N} 219
\end{aligned}
$$

\] \& \& \& 2 N 23 \& PNP \& AF Ampl \& | PHIL |
| :--- |
| GE |
| GT |
| sri | \& 2N223 \& | 2 H 109 2 H 192 |
| :--- |
| GT81 |
| 2N270 | \& \[

$$
\begin{aligned}
& \text { fig. } 31 \\
& \text { fig. } 8
\end{aligned}
$$
\] \&

\hline 2H195 \& PNP \& af ampl \& $$
\begin{aligned}
& T R \\
& G T \\
& \text { SYL } \\
& \text { RCA } \\
& W
\end{aligned}
$$ \& 2N195 \& \[

$$
\begin{aligned}
& \text { GT82 } \\
& 2 H 217 \\
& 22217 \\
& 2 H 403
\end{aligned}
$$

\] \& | $\begin{array}{ll}\text { Fig. } & 15 \\ \text { Fig. } & 15\end{array}$ |
| :--- |
| Fig. 30 | \& \& \& \& \& | Ray |
| :--- |
| RCA |
| W |
| PHIL | \& \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 466 \\
& 2 \mathrm{~N} 270 \\
& 2 \mathrm{~N} 402 \\
& 2 \mathrm{~N} 217
\end{aligned}
$$

\] \& \[

Fig. 30
\] \&

\hline 2H196 \& PNP \& af Ampl \& $$
\begin{aligned}
& \text { TR } \\
& \text { GT } \\
& \text { SYL } \\
& \text { RCA } \\
& W
\end{aligned}
$$ \& 2N196 \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 403 \\
& \\
& \text { GT81 } \\
& 2 \mathrm{H} 217 \\
& 2 \mathrm{H} 217 \\
& 2 \mathrm{~N} 403
\end{aligned}
$$
\] \& Fig. 30

Fig. ${ }^{15}$

Fig. 30 \& \& 24 \& PNP \& AF Out \& | PHIL |
| :--- |
| GE |
| RAY |
| SYL |
| RCA |
| w | \& 2N22 \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 217 \\
& 2 \mathrm{~N} 241 \mathrm{~A} \\
& 2 \mathrm{~N} 466 \\
& 2 \mathrm{~N} 270 \\
& 2 \mathrm{~N} 270 \\
& 2 \mathrm{~N} 60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 31 \\
& \text { Fig. } 8 \\
& \text { Fig. } 275 \\
& \text { Fig. } 30
\end{aligned}
$$
\] \& High Curront

\hline 2N197 \& PNP \& Af Ampl \& $$
\begin{aligned}
& \text { TR } \\
& \text { GT } \\
& \text { SYL } \\
& \text { RCA } \\
& W
\end{aligned}
$$ \& 2N197 \& \[

$$
\begin{aligned}
& \text { GT81 } \\
& 2 N 217 \\
& 2 N 217 \\
& 2 N 403
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 15 \\
& \text { Fig. } 30
\end{aligned}
$$

\] \& \& 2N225 \& PNP \& AF Output \& PHIL GE RAY SYL RCA w \& 2N225 \& \[

$$
\begin{aligned}
& \text { 2N24 1A } \\
& 2 \mathrm{~N} 466 \\
& 2 \mathrm{~N} 270 \\
& 2 \mathrm{~N} 270 \\
& 2 \mathrm{~N} 60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { FIg. } 31 \\
& \text { Fig. } 8 \\
& \text { Fig. } 275 \\
& \text { Fig. } 30
\end{aligned}
$$

\] \& | High Current |
| :--- |
| Matched palr of |
| 2N224'S Bota metch 78 |

\hline 24198 \& PNP \& af ampl \& $$
\begin{aligned}
& \text { TR } \\
& \text { GT } \\
& \text { SYL } \\
& \text { RCA } \\
& \text { W }
\end{aligned}
$$ \& 2N198 \& \[

$$
\begin{aligned}
& \text { GT20 } \\
& 2 N 217 \\
& 22217 \\
& 2 \mathrm{~N} 403
\end{aligned}
$$
\] \& Flg. 15

Fig. 30 \& \& 24226 \& PNP \& Af Output \& | PHIL |
| :--- |
| GE |
| GT |
| SYL |
| RAY |
| RCA | \& 2N226 \& \[

$$
\begin{aligned}
& \text { 2N404 } \\
& 2 \mathrm{~N} 188 \mathrm{~A} \\
& \text { GT } 109 \\
& 2 \mathrm{~N} 270 \\
& 2 \mathrm{~N} 465 \\
& \text { 2N } 270
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 31 \\
& \text { FIg. } 8 \\
& \text { Fig. } 275
\end{aligned}
$$
\] \& Hign Currons

\hline 2H199 \& PNP \& Af Ampl \& $$
\begin{aligned}
& \text { TR } \\
& \text { GT } \\
& \text { SYL } \\
& \text { RCA } \\
& \text { W }
\end{aligned}
$$ \& 2N199 \& \[

$$
\begin{aligned}
& \text { GT14 } \\
& 2 \text { 2N34 } \\
& 22109 \\
& 2 H 403
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\text { Fig. } & 5 \\
\text { Fig. } & 17 \\
\text { Fig. } & 30
\end{array}
$$

\] \& \& $2 \mathrm{H227}$ \& PNP \& AF Ourput \& W \& 2 N 227 \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 60 \\
& \\
& \text { 2N188A } \\
& \text { GT109 } \\
& 2 \mathrm{~N} 270
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 30 \\
& \text { Fig. } 31 \\
& \text { Fig. } 8
\end{aligned}
$$

\] \& | High Current |
| :--- |
| Matched palir of |
| 2N226's Beta mateh 78 |

\hline 211200 \& PNP \& AF Ampl \& | TR |
| :--- |
| GT |
| RCA |
| w | \& 2N200 \& \[

$$
\begin{aligned}
& 2 H 566 \\
& 2 N 206 \\
& 2 N 403
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\text { Fig. } & 15 \\
\text { Fig. } & 30
\end{array}
$$

\] \& \& \& \& \& | SYL |
| :--- |
| RCA |
| w |
| RAY | \& \& \[

$$
\begin{aligned}
& \text { 2N270 } \\
& \text { 2N270 } \\
& \text { 2N60 } \\
& \text { 2N466 }
\end{aligned}
$$
\] \& Flg. 275

Flg. 30 W \&

\hline 21204 \& PNP \& Af Amp! \& | TR |
| :--- |
| GT |
| RCA |
| w | \& 2N204 \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 564 \\
& 2 \mathrm{~N} 206 \\
& 2 \mathrm{~N} 403
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 15 \\
& \text { Fig. } 30
\end{aligned}
$$
\] \& \& 2 2228

2H229 \& NPN

NPN \& \begin{tabular}{l}
AF Output

AF Ampl

 \&

SYL GE

SYL GE GT

\end{tabular} \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 22 \mathrm{~B} \\
& 2 \mathrm{~N} 229
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 169 \\
& \\
& \text { 2N169 } \\
& \text { GT229 }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\text { FIg. } & 12 \\
\text { FIg. } & 16 \\
\text { FIg. } & 12 \\
\text { FIg. } & 16
\end{array}
$$
\] \& High Currone

\hline 2N205 \& PNP \& AF Ampl \& $$
\begin{aligned}
& \text { TR } \\
& \text { GT } \\
& \text { RCA }
\end{aligned}
$$ \& 2N205 \& \[

$$
\begin{aligned}
& \text { 2H566 } \\
& 2 H 206 \\
& 2 H 402
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 15 \\
& \text { Fig. } 30
\end{aligned}
$$

\] \& \& 2N231 \& PNP \& If Ampl \& PHIL RCA w \& 2 N 231 \& \[

$$
\begin{aligned}
& 2 \mathrm{H} 218 \\
& 2 \mathrm{~N} 615
\end{aligned}
$$

\] \& \[

$$
\begin{array}{lll}
\text { F1g. } & 15 \\
\text { FIg. } & 30
\end{array}
$$
\] \&

\hline 24206 \& PNP \& Af Ampl \& $$
\begin{aligned}
& \text { RCA } \\
& \text { GE } \\
& G T \\
& W T
\end{aligned}
$$ \& 2N206 \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 191 \\
& 2 N 567 \\
& 2 \mathrm{~N} 403
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 15 \\
& \text { Fig. } 8 \\
& \text { Fig. } 30
\end{aligned}
$$

\] \& \& 2N232 \& PNP \& IF Anpl \& \[

$$
\begin{aligned}
& \text { PHIL } \\
& \text { RCA } \\
& w
\end{aligned}
$$

\] \& 2 N 232 \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 218 \\
& 2 \mathrm{~N} 615
\end{aligned}
$$
\] \& Flg. 15 \&

\hline 21207 \& PNP \& AF Ampl \& PHIL GT RCA \& 2N207 \& $$
\begin{aligned}
& 2 \mathrm{H} 22 \mathrm{O} \\
& \text { GT81 } \\
& 2 \mathrm{H} 105
\end{aligned}
$$ \& \[

$$
\begin{array}{ll}
\text { Fig. } 32 \\
\text { Fig. } 20
\end{array}
$$

\] \& \& 24233 \& NPN \& RF Ampl \& | SYL |
| :--- |
| GT |
| RCA | \& 2N233 \& \[

$$
\begin{aligned}
& \text { GT948R } \\
& 2 \mathrm{~N} 218
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\text { Fig. } & 12 \\
\text { Fig. } & 15
\end{array}
$$
\] \&

\hline 2月207A \& PNP \& AF Ampl \& PHIL GE ACA \& 2N207A \& $$
\begin{aligned}
& 2 \mathrm{~N} 24 \mathrm{I} \\
& 2 \mathrm{~N} 105
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { Fig. } 32 \\
& \text { Fig. } 8 \\
& \text { Fig. } 20
\end{aligned}
$$

\] \& \& 24233A \& NPN \& RF Ampl \& | SYL |
| :--- |
| GT |
| RCA | \& 2N233A \& \[

$$
\begin{aligned}
& \text { GiT948R } \\
& 2 \mathrm{H} 218
\end{aligned}
$$
\] \& \&

\hline 212078 \& Pxp \& Af Ampl \& | PHIL |
| :--- |
| GE |
| RCA |
| RAY | \& 2N2078 \& \[

$$
\begin{aligned}
& \text { 2N241 } \\
& \text { 2N105 } \\
& \text { 2N465 }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\text { Fig. } & 32 \\
\text { Fig. } & 8 \\
\text { Fig. } & 120
\end{array}
$$

\] \& \& 2N234 \& PNP \& PMR Ampl \& BEN SYL CLE RCA \& 2 N 234 \& \& \[

$$
\begin{array}{lll}
\text { Fig. } & 25 \\
\text { FIg. } & 25
\end{array}
$$
\] \&

\hline
\end{tabular}

0
 MERCK HAS ALL FOUR FORMS OF
 Nill

 IN PRODUCTION QUANTITIES

See our display at the I.R.E. Show, Booth 4521

For additional information on specific applications and processes, write Merck \mathcal{E} Co., Inc., Electronic Chemicals Division, Department EI-1, Rabway, New Jersey.

MERCK DOPED SINGLE CRYSTAL SILICON-offers doped float zone single crystals of high quality at low costs. Yields of usable material are reported to be especially high when device diffusion technics are used with these crystals. Float zone single crystals doped either " p " or " n " type with resistivities from 3 to 300 ohm cm . any range plus or minus 25% and a minimum lifetime of 100 microseconds are available in diameters of 18 to 20 mm ., and random lengths of 2 to 10 inches.
NOTE: Doped single crystals in other diameters, resistivities, or lifetimes not listed above can be furnished as specials.

MERCK HIGH RESISTIVITY "P" TYPE SINGLE CRYSTAL SILICON-offers float zone single crystals of a quality unobtainable by other methods. Available with minimum resistivity of 1000 ohm cm . " p " type and a minimum lifetime of 200 microseconds, diameter 18 to 20 mm ., random lengths 2 to 10 inches.

MERCK POLYCRYSTALLINE BILLETS-have not previously been melted in. quartz, so that no contamination from this source is possible. Merck guarantees that single crystals drawn from these billets will yield resistivities over 50 ohm cm . for " n " type material and over 100 ohm cm . for " p " type material. Merck silicon billets give clean melts with no dross or oxides.
MERCK POLYCRYSTALLINE RODS - are ready for zone melting as received.. . are ideal for users with float zone melting equipment. Merck polycrystalline rods are available in lengths of $81 / 2$ to $101 / 2$ inches and in diameters of 18 to 20 mm . Smaller diameters can be furnished on special order. In float zone refining one can obtain from this material single crystals with a minimum resistivity of 1000 ohm cm . "p" type with minimum lifetime of 200 microseconds or the material can be doped by user to his specifications.

ULTRA-PURE

1959 TRANSISTOR INTERCHANGEABILITY CHART

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Ela Mo. \& TYPE \& application \& MFR. \& MFR. Mo. \& hearest type \& OUTLIME \& notes \& ela no. \& TYPE \& APPLICATIOM \& MFR. \& MFR. NO. \& MEAREST TYPE \& Outline \& HOTES \\
\hline .21234^ \& pne \& PWR Ampl \& \[
\begin{aligned}
\& \text { BEN } \\
\& \text { SYL } \\
\& \text { CLE } \\
\& \text { RCA }
\end{aligned}
\] \& 2N234A \& \[
\begin{aligned}
\& 2 \mathrm{H} 242 \\
\& \mathrm{CTPI} 104 \\
\& 2 \mathrm{H} 3 \mathrm{O}
\end{aligned}
\] \& \[
\begin{array}{ll}
\text { Flg. } \& 25 \\
\text { Fig. } \& 25
\end{array}
\] \& \& 2 N 256 \& PNP \& PWR Ampl \& C日S SYL CLE RCA \& \[
\begin{aligned}
\& \text { 2N256 } \\
\& \text { 2N256 }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { CTP1109 } \\
\& \text { 2N301 }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Fig. } 25 \\
\& \text { fig. } 25
\end{aligned}
\] \& \\
\hline 21235 \& pnp \& PWR Amp: \& \[
\begin{aligned}
\& \text { BEN } \\
\& \text { SYL } \\
\& \text { CLE } \\
\& \text { RCA }
\end{aligned}
\] \& 2 N 235 \& 2H235A
2H235A
2 H 257
2 H 301 \& \begin{tabular}{l}
FIg. 25 \\
Fig. 25
\end{tabular} \& \& 2 L 257 \& PNP \& PWR Ampl \& \[
\begin{aligned}
\& \text { BEN } \\
\& \text { CLE } \\
\& \text { SYL } \\
\& \text { RCA }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 2N257 } \\
\& \text { 2N257 }
\end{aligned}
\] \& 2H234A \& \[
\begin{array}{ll}
\text { flg. } \& 25 \\
\text { FIg. } \& 25
\end{array}
\] \& \\
\hline 24235A \& PNP \& PWP Ampl \& \begin{tabular}{l}
BEN \\
SYL \\
CLE \\
RCA
\end{tabular} \& \[
\begin{aligned}
\& 2 \mathrm{~N} 235 \mathrm{~A} \\
\& 2 \mathrm{~N} 235 \mathrm{~A}
\end{aligned}
\] \& \[
\begin{array}{r}
2 \mathrm{~N} 257 \\
2 \mathrm{~N} 301
\end{array}
\] \& \[
\begin{aligned}
\& \text { Fig. } 25 \\
\& \text { Fig. } 25
\end{aligned}
\] \& \& 2 L 265 \& PNP \& AF Ampl \& \[
\begin{aligned}
\& \text { BEN } \\
\& \text { GE } \\
\& \text { RAY } \\
\& \text { GT }
\end{aligned}
\] \& 2N265 \& \[
\begin{aligned}
\& 2 \mathrm{~N} 235 \mathrm{~A} \\
\& \text { 2N465 } \\
\& \text { GT81 }
\end{aligned}
\] \& FIg. 8 \& \\
\hline 21236 \& PNP \& PMR Ampl \& \[
\begin{aligned}
\& \text { BEN } \\
\& \text { SYL }
\end{aligned}
\] \& 2 N 236 \& \[
\begin{aligned}
\& 2 \mathrm{~N} 236 \mathrm{~A} \\
\& 2 \mathrm{~N} 242
\end{aligned}
\] \& \[
\begin{array}{ll}
\text { Fig. } \& 25 \\
\text { Fig. } \& 25
\end{array}
\] \& \& \& \& \& \begin{tabular}{l}
GT \\
SYL \\
RCA \\
W
\end{tabular} \& \& \begin{tabular}{l}
\(0 T 82\) \\
2 F 406 \\
2 N 406
2 N 403 \\
\(2 \mathrm{~N}_{4}\)
\end{tabular} \& \[
\begin{array}{ll}
\mathrm{FIg} . \& 15 \\
\mathrm{FIg} \& 15 \\
\mathrm{FIg} . \& 30
\end{array}
\] \& \\
\hline 2H236A \& PNP \& PwR Ampl \& \[
\begin{aligned}
\& \text { BEN } \\
\& \text { SYL } \\
\& \text { CLE }
\end{aligned}
\] \& 2N236A \& \begin{tabular}{l}
2H242 \\
CTPIII7
\end{tabular} \& \[
\begin{array}{ll}
\text { Fig. } \& 25 \\
\text { F1g. } \& 25
\end{array}
\] \& \& 21266 \& PNP \& AF Ampl \& \[
\underset{W}{G E}
\] \& 2N266 \& 2461 \& \[
\begin{aligned}
\& \text { Fig. } 8 \\
\& \text { Fig. }
\end{aligned}
\] \& \\
\hline 2M236B \& PnP \& Pwr ampl \& \[
\begin{aligned}
\& \text { BEN } \\
\& \text { SYL } \\
\& \text { CLE }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 2N236日 } \\
\& 2 \mathrm{~N} 236 \mathrm{~B}
\end{aligned}
\] \& СтP117 \& \& \& 21267 \& Pnp \& rf Ampl \& \begin{tabular}{l}
RCA \\
GT \\
SYL \\
RCA
\end{tabular} \& 2N267 \& \[
\begin{aligned}
\& \text { 2N606 } \\
\& 2 \mathrm{H} 247
\end{aligned}
\]
\[
2 H 247
\] \& \[
\begin{aligned}
\& \text { Fig. } 15 \\
\& \text { Fig. } 27 \mathrm{~S}
\end{aligned}
\] \& "Orift" \\
\hline 2 237 \& PNP \& PWR Amp 1 \& \begin{tabular}{l}
\(T 1\) \\
GE \\
GT \\
SYL \\
RCA
\end{tabular} \& 2N237 \& \[
\begin{aligned}
\& \text { 2N } 192 \\
\& \text { 6T81 } \\
\& 2 \text { 2N242 } \\
\& 2 \mathrm{H} 220
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Fig. } \\
\& \text { Fig. }
\end{aligned}
\] \& \& 2 N 268 \& PNP \& PWR Ampl \& \begin{tabular}{l}
RCA \\
CL \\
SYL \\
RCA \\
BEN
\end{tabular} \& \[
\begin{aligned}
\& \text { 2N268 } \\
\& \text { 2N268 }
\end{aligned}
\] \& \[
\begin{aligned}
\& 2 \mathrm{~N} 30 \mid \mathrm{A} \\
\& 2 \mathrm{~N} 639 \mathrm{a}
\end{aligned}
\] \& F1g. 25 \& 2 watt \\
\hline 21238 \& PNP \& Af Ampl \& \begin{tabular}{l}
\(T 1\) \\
GE GT SYL RCA \\
\(W\) \\
RAY
\end{tabular} \& 2N238

2N402 \& 2 H 191 GT81 2H217 2 H 217

\[
2 \mathrm{~N} 465

\] \& | Fig. 12 |
| :--- |
| Fig. 8 |
| Fig. 15 |
| Fig. 15 |
| Fig. 30 | \& \& 2N268A

2N269 \& PNP
PNP \& Pur Ampl

hf sw \& | CLE |
| :--- |
| SYL |
| BEN |
| RCA GE |
| GT | \& 2N268A

2N269 \& $$
\begin{aligned}
& 2 \mathrm{~N} 268 \\
& 2 \mathrm{H} 639 \mathrm{~A} \\
& \\
& \\
& 2 \mathrm{~N} 123 \\
& 6 \mathrm{~T} 269
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { Fig. } 25 \\
& \text { Fig. } 15 \\
& \text { Fig. } 9
\end{aligned}
$$

\] \& | 10 Watq |
| :--- |
| 2 Waq? $\begin{aligned} & \mathrm{fCo}=4 \mathrm{Mc} \\ & \mathrm{fCo}=8 \mathrm{Mc} \end{aligned}$ |

\hline 2N240 \& PNP \& s* \& PHIL SYL GT \& 2N240 \& $$
\begin{aligned}
& 2 \mathrm{~N} 217 \\
& 2 \mathrm{~N} 604
\end{aligned}
$$ \& F19.

F19. \& \& 2 2 270 \& PNP \& AF Ampl \& RAY
RCA
GE \& 2N270 \& 2 N 404

2 N 32 O \& Fig. 27 \&

\hline 2H24. \& PNP \& Af Output \& $$
\begin{aligned}
& \text { GE } \\
& \text { GT } \\
& \text { SYL } \\
& \text { RCA } \\
& W
\end{aligned}
$$ \& 2N241 \& \[

$$
\begin{aligned}
& \text { GT109 } \\
& 2 H 241 A \\
& 2 H 217 \\
& 2 H 59
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 8 \\
& \text { Fig. } 8 \\
& \text { Fig. } 15 \\
& \text { Fig. } 30 \mathrm{w}
\end{aligned}
$$
\] \& High Current \& 21271 \& PNP \& hF Cnver \& ${ }_{\text {SY }}^{\text {SY }}$ \& 2N270

2N27। \& 2459

24411 \& $$
\begin{aligned}
& \text { Fig. } 27 \mathrm{~S} \\
& \text { Fig. } 30 \\
& \text { Fig. } 17
\end{aligned}
$$ \&

\hline 2 2 241 A \& PNP \& af Output \& | GE |
| :--- |
| RAY |
| SYL |
| RCA |
| W | \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 241 \mathrm{~A} \\
& 2 \mathrm{~N} 241 \mathrm{~A}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 466 \\
& 2 \mathrm{~N} 217 \\
& 2 \mathrm{~N} 59
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { F1g. } 8 \\
& \text { F1g. } 8 \\
& \text { F1g. } 15 \\
& \text { FIg. } 30
\end{aligned}
$$
\] \& kign Current \& 2N271A \& Pnp

Pnp \& If ampl

RF sw \& | RAY |
| :--- |
| SYL |
| RAY |
| GT | \& 2N271A

2N272 \& | 2N139 |
| :--- |
| $\mathbf{6 7 7 5}$ | \& F19. 17 \&

\hline 21242 \& PNP \& PWR Ampl \& $$
\begin{aligned}
& \text { SYL } \\
& \text { RCA } \\
& \text { CLE } \\
& \text { BEN }
\end{aligned}
$$ \& $2^{\text {N242 }}$ \& \[

$$
\begin{aligned}
& \text { 2N301 } \\
& 2 N 257 \\
& \text { 2N235A }
\end{aligned}
$$
\] \& \& \& 24274

$2 N 277$ \& PNP
PNP \& RF Ampl

PWR Ampl \& | RCA |
| :--- |
| GT. |
| GT |
| 0६L | \& 2N274

2N277 \& $$
\begin{aligned}
& 2 \mathrm{Z} 606 \\
& 2 \mathrm{H} 607
\end{aligned}
$$ \& Fig. 15

Fig. 23 \& "Orift"

$55 w$

\hline 21243 \& NPN \& PWR Ampl \& $$
\begin{aligned}
& T 1 \\
& T R
\end{aligned}
$$ \& 2N243 \& 24342 \& \& slicon \& \& \& \& \[

$$
\begin{aligned}
& \text { SYL } \\
& C L E \\
& \text { BEN }
\end{aligned}
$$
\] \& \& 2N278 CTPI508 2N677A \& F19. 23 \&

\hline 21244 \& NPN \& PwR Ampl \& TR \& 2N244 \& 24343 \& \& sillion \& 24278 \& PnP \& PWR Ampl \& \& $$
\begin{aligned}
& 2 N 278 \\
& \text { 2N278 }
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& \text { FIg. } 23 \\
& \text { FIg. } 23
\end{aligned}
$$
\] \& 55w

\hline 21247 \& PNP \& RF Ampl \& $$
\begin{aligned}
& \text { RCA } \\
& \text { GT } \\
& \text { SY } \\
& \text { SYL } \\
& \text { RAY }
\end{aligned}
$$ \& 2N247

2N247 \& | $\begin{aligned} & \text { 2N606 } \\ & 2 \mathrm{~N} 607 \end{aligned}$ |
| :--- |
| 2 N 417 | \& Fig. 27

Fig. 278 \& "Drift" \& 2 2 279 \& PNP \& AF Ampl \& | CLE |
| :--- |
| BEN |
| AMPX |
| GE |
| GT |
| RCA | \& 2N279 \& \[

$$
\begin{aligned}
& \text { CTPI506 } \\
& 2 H 677 A \\
& \\
& 2 H 187 \\
& \text { GT14 } \\
& 2 N 215
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 35 \\
& \text { Fig. } 8
\end{aligned}
$$
\] \&

\hline 21248 \& PNP \& kF RF Ampl \& $$
\begin{aligned}
& \text { TI } \\
& \text { GY } \\
& \text { SYL } \\
& \text { RCA }
\end{aligned}
$$ \& 2N248 \& \[

$$
\begin{aligned}
& 24608 \\
& 24247 \\
& 2 \mathrm{~N} 247
\end{aligned}
$$
\] \& Fig. 27

Fig. 27 s \& $f C O=50 \mathrm{Mc}$
$\mathrm{fcO}=1.5 \mathrm{Mc}$ \& 2 280 \& PNP \& af Ampl \& ${ }_{\text {AMPX }} \mathrm{GE}^{\text {a }}$ \& 2N280 \& 2 4 402

24188 \& $$
\begin{aligned}
& \text { FIg. } 30 \\
& \text { FIg. } 35 \\
& \text { FIg. } 8
\end{aligned}
$$ \&

\hline 2×249 \& Psp \& AF Output \& \[
$$
\begin{aligned}
& \text { TI } \\
& \text { GE } \\
& \text { SYL } \\
& \text { RCA } \\
& W
\end{aligned}
$$

\] \& 2N249 \& \[

$$
\begin{aligned}
& \text { 2N188A } \\
& \text { 2N270 } \\
& \text { 2N270 } \\
& \text { 2N59 }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 28 \\
& \text { Fig. } 27 \mathrm{~S} \\
& \text { Fig. } 30 \mathrm{w}
\end{aligned}
$$

\] \& Hign Currene \& 2 281 \& PNP \& AF Ampl \& | RCA |
| :--- |
| w |
| AMPX |
| GE | \& 2 N 281 \& | GT20 |
| :--- |
| 2 215 |
| 2 N 403 |
| 2N241 | \& \&

\hline 24250 \& PNP \& PWR Ampl \& | T |
| :--- |
| SYL |
| CLE |
| RCA |
| BEN | \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 250 \\
& 2 \mathrm{~N} 250
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 257 \\
& \cdot 2 \mathrm{~N} 30 \mathrm{I} \\
& 2 \mathrm{~N} 235 \mathrm{~A}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Fig. } 25 \\
& \text { Fig. } 25
\end{aligned}
$$

\] \& \& 2H282 \& PNP \& AF Ampl \& | GT |
| :--- |
| w |
| AMPX |
| GT | \& 2N282 \& | GT81 |
| :--- |
| 2N403 |
| OT109 | \& \[

$$
\begin{aligned}
& \text { Fig. } 30 \\
& \text { Fig. } 35
\end{aligned}
$$
\] \& Matched palir of $2 \mathrm{~N} 28: \mathrm{S}$

\hline 24251 \& Pnp \& Pwr Ampl \& \[
$$
\begin{aligned}
& \mathrm{TI} \\
& \text { SYL } \\
& \text { CLE } \\
& \text { RCA } \\
& \text { BEN }
\end{aligned}
$$

\] \& 2N251 \& | 2N296 2N268A |
| :--- |
| 2N301A |
| 2N639A | \& \[

$$
\begin{aligned}
& \text { FIg. } 25 \\
& \text { FIg. } 25
\end{aligned}
$$

\] \& \& 2 2 283 \& pnp \& af ampl \& | AMPX |
| :--- |
| GE |
| GT |
| RCA | \& 2N283 \& \[

$$
\begin{aligned}
& 2 H 188 \\
& 24563 \\
& 2 H 215
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \dot{F 1 g .} 35 \\
& \text { fig. } 8
\end{aligned}
$$
\] \&

\hline 2 2 252 \& PNP \& hf cavetr \& TI
GT
RAY
RCA

w \& 2 N 252 \& $$
\begin{aligned}
& 2 N 606 \\
& 2 N 485 \\
& 2 N 140 \\
& 2 N 617
\end{aligned}
$$ \& FIg. 17 \& \& 21284

21285 \& PNP \& AF Ampl

PWR Ampl \& | AMPX |
| :--- |
| GE |
| GT |
| BEN |
| CLE | \& 2N284

2N285 \& $$
\begin{aligned}
& 2 H 188 \\
& 6 T 87 \\
& 2 \mathrm{~N} 2854 \\
& \text { CTP1117 }
\end{aligned}
$$ \& \[

$$
\begin{array}{ll}
\text { flg. } & 35 \\
\text { fig. } & 8
\end{array}
$$
\] \&

\hline 24253 \& NPN \& If Ampl \& TI
GE
GT
SYL

RCA \& 2 253 \& $$
\begin{aligned}
& 2 H 293 \\
& \text { GT948R } \\
& 2 H 94 A \\
& 2 H 139
\end{aligned}
$$ \& \[

$$
\begin{array}{ll}
\text { Fig. } & 12 \\
\text { Fig. } & 16 \\
\text { Fig. } & 12 \\
\text { Fig. } & 17
\end{array}
$$
\] \& 455 kc \& 2N2854

21291 \& PNP \& AWR Ampl \& \begin{tabular}{l}
ben

SYL CLE

$T 1$

 \&

$$
\begin{aligned}
& \text { 2N285A } \\
& \text { 2N285A }
\end{aligned}
$$

2N291
\end{tabular} \& CTPIII \& \&

\hline 2 2 254 \& NPN \& If Ampl \& $$
\begin{aligned}
& T 1 \\
& G E \\
& G T \\
& \text { GTL } \\
& \text { RYA }
\end{aligned}
$$ \& 2 N 254 \& \[

$$
\begin{aligned}
& 2 H 293 \\
& 6 T 948 R \\
& 2 H 94 A \\
& 2 H 139
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\text { Fig. } & 12 \\
\text { fig. } & 16 \\
\text { fig. } & 12 \\
\text { fig. } & 17
\end{array}
$$

\] \& 455kc \& \& \& \& | GE |
| :--- |
| GT |
| SYL |
| RCA |
| w | \& \& \[

$$
\begin{aligned}
& \text { 2N188A } \\
& 6781 \\
& 2 N 270 \\
& 2 H 270 \\
& 2459
\end{aligned}
$$
\] \& FIg. 30w \&

\hline 2×255 \& Pnp \& PWP Ampl \& \[
$$
\begin{aligned}
& \text { CBS } \\
& \text { SYL } \\
& \text { CLE } \\
& \text { RCA } \\
& \text { BEN }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \mathrm{~N} 255 \\
& 2 \mathrm{~N} 255
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { CTPIIO8 } \\
& \text { 2H301 } \\
& \text { 2N234A }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{lll}
\text { FIg. } & 25 \\
\text { FIg. } & 25
\end{array}
$$
\] \& \& 24292 \& NPN \& 1 Fampl \& \& $2 N 292$

2 W292 \& \begin{tabular}{l}
6T948: 24216

24410

 \&

FIg. 16

1g. 12

Ig. 16

1g. IS
\end{tabular} \&

\hline
\end{tabular}

 operating temperatures

SILICON POWER

 TRANSISTORSAvailable Now in production quantities!

The Westinghouse Silicon Power Transistor pictured above is a highly efficient device which greatly increases the range of applications for transistors which must operate without high losses in the "true power range." Thanks to a remarkably low saturation resistance-less than .750 ohms at 2 amperes and .5 ohms at 5 amperes-these transistors possess very low internal dissipation, and can be efficiently used in applications where they must handle as much as 1000 watts. For example, as a DC switch, handling 750 watts (150 volts at 5 amps) the internal dissipation is about 9 watts, with an efficiency of better than 99%.

Additionally, and unlike germanium units which are limited to approximately $85^{\circ} \mathrm{C}$, these transistors can operate in ambient temperatures up to $150^{\circ} \mathrm{C}$. Thus, even where the higher power rating is not required, these units may be used for their high temperature capabilities.

There are a great many applications for which this new type of silicon power transistor is ideally suited. It will find use in inverters or converters (AC to AC ; AC to DC ; DC to AC ; DC to DC), regulated power supplies, servo output, and other aircraft circuits, as well as in certain amplifiers and switching applications.

Westinghouse Silicon Power Transistors are available
in 2 and 5 ampere collector ratings. Both of these are available in $30,60,100$, and 150 volt ratings in production quantities for your immediate applications. Sample quantities are available in higher voltage ratings. Call your Westinghouse representative or write directly to Westinghouse Electric Corporation, Semiconductor Department, Youngwood, Pennsylvania.

Low saturation resistance
Important improvements in silicon purification and transistor fabrication have produced a new series of Westinghouse Power Transistors of exceptionally low saturation resistance.
you CAN BE SURE...IFIT'S

Westinghouse

Now from CLEVITE . . .

Clevite offers new types with improved reliability and power handling capacity.

EIA REGISTERED TYPES WITH:

- Improved seal for long life.
- Saturation voltage less than IVolt
at increased maximum rated current of 15 amperes.
- Average thermal resistance $0.7^{\circ} \mathrm{C}$ per watt.
- Current gain controls: 60-150 at 5 amperes.
- 100% test for resistance to transient burn out.
- Either standard pins or solder lugs.

CLEVITE

TRANSISTOR PRODUCTS

241 Crescent St., Waltham 54, Mass. TWinbrook 4-9330

TECHNICAL DATA
Typical Electrical Characteristics al $25^{\circ} \mathrm{C}$

2N1147 Series has solder lugs 2N1146 Series has standard pins	$\begin{aligned} & \text { 2N1147 } \\ & \text { 2N1146 } \end{aligned}$	$\begin{aligned} & \text { 2N1147A } \\ & 2 \mathrm{~N} 1146 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 2N1147B } \\ & 2 \mathrm{~N} 1146 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { 2N1147C } \\ & 2 \mathrm{~N} 1146 \mathrm{C} \end{aligned}$
Collector to Emitter Voltage Shorted Base (IC = 1 amp)	$\begin{aligned} & 30 \mathrm{~V} \\ & (\text { Min }) \end{aligned}$	$\begin{gathered} 40 \mathrm{~V} \\ (\mathrm{Min}) \end{gathered}$	$\begin{gathered} 60 \mathrm{~V} \\ (\mathrm{Min}) \end{gathered}$	$\begin{aligned} & 75 \mathrm{~V} \\ & (\mathrm{Min}) \end{aligned}$
Saturation Voltage (IC $=15 \mathrm{amps}$)	$\begin{gathered} \text { I.OV } \\ (\text { Max }) \end{gathered}$	$\begin{gathered} 1.0 \mathrm{~V} \\ (\mathrm{Max}) \end{gathered}$	$\begin{gathered} 1.0 \mathrm{~V} \\ (\mathrm{Max}) \end{gathered}$	$\begin{aligned} & 1.0 \mathrm{~V} \\ & (\text { Max }) \end{aligned}$
DC Current Gain $(1 C=5 \mathrm{amps})$	60-150	60-150	60-150	60-150
$\begin{gathered} \hline \text { DC Current Gain } \\ (I C=15 \mathrm{amps}) \\ \hline \end{gathered}$	35	35	35	35
Absolute Maximum Ratings				
Collector.Current	15 amps	15 amps	15 amps	
Collector to Base Voitage	40V	60 V	80 V	100 V
Collector to Emitter Voltage	4 V	60 V	80 V	100 V
Power Dissipation at $70^{\circ} \mathrm{C}$ Case Temperature	25 W	25 W	25 W	

OTHER CLEVITE DIVISIONS:
Cleveland Graphite Bronze - Brush Instruments Clevife Electronic Components - Clevite Harris Products Clevite Lid - Clevite Ordnance - Clevite Research Center Intermetall G.m.b.H. - Texas Division

1959 TRANSISTOR INTERCHANGEABILITY CHART

1959 TRANSISTOR INTERCHANGEABILITY CHART

DIFFUSED

 ALLOY
OWER

 TRANSISTORS

Because no other transistor offers this combination of features and uses, you will want to try out the $D \wedge P$ transistor in your circuits. Get full details now on new Bendix diffused alloy power transistors by writing semganductor producis, bendid aviation corporation, long branch, NEW JERSEY.

	Ratings		Typical Performance			
	Vdc	$\begin{gathered} \mathrm{P}_{\mathrm{C}} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{Ic}=5 \mathrm{Adc}) \end{gathered}$	$\begin{gathered} V_{s} \\ (\mathrm{IC}=5 \mathrm{AdC}) \end{gathered}$	f_{α}	rbb'
2N1073	40	35 W	40	0.5 Vdc	1.5 mc	2 ohms
2N1073A	80	35 W	40	0.5 Vdc	1.5 mc	2 ohms
2N1073B	120	35 W	40	0.5 Vdc	1.5 mc	2 ohms

> West Coast Office: 117 E. Providencia Ave., Burbank, Calif.
> Canadian Distributor:
> Computing Devices of Canada, Itd., P. O. Box 508, Ottawa 4, Ontario Export Sales and Service:
> Bendix international Division, 205 E. 42 nd St., New York 17, N. Y.

NEW SHOCKLEY TRANSISTOR DIODES COMBINE FAST SWITCHING WITH HIGHER

TYPE D

TYPE AD

CHARACTERISTICS OF SHOCKLEY
4-LAYER TRANSISTOR DIODES
Available in production quantities

$\begin{aligned} & \text { TYPE } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { Switching } \\ \text { Voltage } \\ \left(V_{s}\right) \\ \hline \end{gathered}$	OTHER CHARACTERISTICS OF ALL UNITS		
			TYPE D	TYPE AD
trpe d		Holding Current (h_{h})	$\begin{aligned} & 3 \pm 2 ; 10 \pm 5 ; 20 \pm 5 \text { and } \\ & 35 \pm 10 \mathrm{ma} . \\ & <1 \text { or }>50 \text { on special order. } \end{aligned}$	15 ± 10 and $35 \pm 10 \mathrm{ma}$.
4N20D 4N25D	$\begin{aligned} & 20 \pm 4 \\ & 25 \pm 4 \end{aligned}$			
4N30D	30 ± 4	Holding Voltage (V_{h})	0.5 to 1 voll	0.5 to 1 volt
4N35D 4N40D	35 ± 4 40 ± 4	Switching Current (I_{s})	$<200 \mu$ amps.	$<200 \mu$ amps.
4N450 4N50D	45 ± 4 50 ± 4	"0n' Time Constant	$0.1 \mu \mathrm{~S}$ (Circuit will determine specific switching time)	$0.1 \mu \mathrm{~s}$ (Circuit will determine specific switching time)
4 N 55 D	55 ± 4			Generally < $100 \mu \mu \mathrm{f}$. Exact
$\begin{aligned} & \text { 4N60D } \\ & \text { 4N80D } \end{aligned}$	$\begin{aligned} & 60 \pm 4 \\ & 80 \pm 8 \end{aligned}$	Capacitance	value dependent on V_{s} and applied voltage.	value dependent on \dot{V}_{s} and applied voltage.
4N120D 4N200	$\begin{aligned} & 120 \pm 12 \\ & 200 \pm 20 \end{aligned}$	Ambient Temperature	$-60^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$.	$-60^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$.
TYP	AD 30 ± 4	Current Carrying Capacity	50 ma. steady d.c. or 2 amp. pulse current--50 μ (or less) pulse duration.	300 ma. steady d.c. or 20 amp . pulse current--50 $\mu \mathrm{S}$ (or less) pulse duration.
4N40AD 4N50AD 4N200AD	$\begin{aligned} 40 & \pm 4 \\ 50 & \pm 4 \\ 200 & \pm 20 \end{aligned}$	Resistance (R)	$\begin{aligned} & \hline R_{\text {off }} \cdot>1 \text { megohm } \\ & R_{\text {on }} \cdot<7 \text { ohms at } I_{h}+25 \text { ma. } \\ & \cdot<2 \text { ohms at } 2 \text { amps. } \\ & \text { (typical value } 0.2 \text { ohms) } \end{aligned}$	$\begin{aligned} & R_{\text {off }}->1 \text { megohm } \\ & R_{\text {on }},<7 \text { ohms at } I h+25 \text { ma. } \\ & \cdot<1 \text { ohm at } 3 \text { amps. } \\ & \text { (typical value } 0.06 \text { ohms) } \end{aligned}$

POWER HANDLING determined by an "on" time constant of approximately 0.1μ s and an "off" time constant of approximately $0.2 \mu \mathrm{~S}$. . . coupled with increased power handling ability, are now available with the Shockley 4-layer transistor diode - a twoterminal, self-actuated silicon switch with operating characteristics based on the principles of transistor action.
This new device is solving critical solid-state circuitry problems in many fields, requiring close tolerances ... and unfailing reliability.

TYPICAL APPLICATIONS PULSE GENERATORS PULSE AMPLIFIERS OSCILLATORS RELAY ALARM CIRCUITS RING COUNTERS DETONATOR FIRING CIRCUITS MAGNETRON PULSING SONAR PULSING TELEPHONE SWITCHING COMPUTER CIRCUITS

ENGINEERING DATA

 AND ASSISTANCEOur engineering staff, under the direction of Dr. William Shockley, will assist in solving circuitry problems using standard transistor diodes; also, will develop custom units to meet individual specifications. Write to Dept. 2-1.

Shockley Transistor Corporation
Stanford Industrial Park, Palo Alto, Calif.
A SUBSIDIARYOFBECKMANINSTRUMENTS.INC.

The following EliA registered types do not appear in the chart since the manufacturers, They information submitted, indicated no replacements or substitutes for these transistors the complete the Eta list of registered types.

(7)

80 milli-micro-second rise time with 2 watts power dissipation at $25^{\circ} \mathrm{C}$. This speed and power is combined with silicon's superior high-temperature reliability. The switching performance that this affords has a place in every advanced-circuit evaluation program.
Double-diffused mesa-type construction provides mechanical ruggedness and excellent heat dissipation besides being optimum for high.frequency performance (typical gain-bandwidth product 80 Mc). This type is under intense development everywhere. Fairchild has it in production.
Quantity shipments now being made give conclusive proof of the capabilities of Fairchild's staff and facilities. We can fill your orders promptly. You can start immediately on evaluation and building of complete prototype equipment. Gearing to your future production needs, Fairchild will have expanded facilities to over 80,000 square feet by early ' 59 .

2N696 and 2N697 - NPN SILICON TRANSISTORS

Symbol	Specification	Rating	Characteristics	Test Conditions
$V_{\text {CE }}$	Collector to Emitter voltage ($25^{\circ} \mathrm{C}$.)	40 v		
${ }^{P}{ }_{C}$	Total dissipation at $25^{\circ} \mathrm{C}$. Case temp.	2 watts		
$h_{\text {FE }}$	D.C. current gain		$\begin{aligned} & \text { 2N696-20 to } 60 \\ & \text { 2N697-40 to } 120 \end{aligned}$	$\begin{aligned} & { }_{l}^{C}=150 \mathrm{ma} \\ & \mathrm{~V}_{\mathrm{C}}=10 \mathrm{v} \end{aligned}$
$\mathrm{R}_{\text {CS }}$	Collector saturation resistance		3.5Ω typical 10Ω max.	$\mathrm{C}=150 \mathrm{ma}$
${ }^{\text {fie }}$	Small signal current gain at $\mathrm{f}=20 \mathrm{Mc}$		5 typical	$\begin{aligned} & B=50 \mathrm{ma} \\ & \mathrm{C}=10 \mathrm{v} \\ & \mathrm{~V}_{\mathrm{c}}=10 \end{aligned}$

For data sheets, write Dept. J3

844 CHARLESTON RD. • PALO ALTO, CALIF. • DA 6-6695

$300^{\circ} \mathrm{C}$ HIGH VACUUM BAKE-OUT ASSURES EXTREME RELIABILITY OF MOTOROLA MESA TRANSISTORS. This is just one of the many extra steps being taken to guarantee the integrity and reliability of the 2 N 700 (a 200 mc amplifier) and the 2 N 695 (a 5 millimicrosecond switch). Incorporate these "transistors of the future" in your circuits, now!

2N700 UHF AMPLIFIER TRANSISTOR

f max 1000 mcs PG (Neut.) . . 14 db at 200 mcs $\mathrm{BV}_{\mathrm{CB}} @ 100 \mu \mathrm{a}$. . . . 33 volts NF@ $200 \mathrm{mcs} \ldots9 \mathrm{db}$ Max Power 75 mw at $25^{\circ} \mathrm{C}$

2 2N695 ULTRA HIGH-SPEED SWITCH

$\mathrm{BV}_{\text {cbo }} \mathrm{Min}$.	18 volts
BV ebo Min.	4.0 volts
$\mathbf{l}_{\text {co }}$ @ 5 volts	. $1 \mu \mathrm{a}$
$\mathrm{B}_{\mathrm{hFE}}$ at 10ma	0.3 volts
I_{C} max	50 ma
	75 mw

$P_{\mathbf{G}}$

Operating Junction temperature $100^{\circ} \mathrm{C}$
see the
MOTOROLA MESAS at IRE BOOTH no. 1105-6

MOTOROLA SEMICONDUCTORS

MOTOROLA INC., 5005 E. MCDOWELL, PHOENIX, ARIZONA

REGIONAL OFIFICES:

RIDGEFIELD, NEW JERSEY
540 Bergen Boulevard WHitney 5-7500

CHICAGO 44, ILLINOIS 4900 West Flournoy Street 4900 West Flourno
ESterbrook 9-5200

HOLLYWOOD 28, CALIFORNIA
1741 Ivar Avenue

WORLDS

FASTEST
SWITCHING TRANSISTOR!

MOTOROLA MESA 2N695

TEST CIRCUIT
The above data is from an independent test conducted by Edgerton, Germeshausen \& Grier, Inc., Boston, Mass.

Available "off the shelf" From these distributors
ALAMOGORDO Radio Specialties, HEmlock 7.0370 BOSTON Cramer Electronics, COpley 7.4700 CAMDEN General Radio Supply Co., WOodiawn 4-8383 chicago Allied Radio Corp., RAymarket 1-6800 Newark Electric Company, STate 2-2944 JAMAICA, N. Y. Lafayette Radio, AXtel $1-7000$ LDS ANGELES Kierulff Electronics, RIchmond 7-0271 NEW YORK Milgray Electronics, REctor 2.4400 Radio Wire Television, worth 6-5300 OAKLAND Elmar Electronies, Higate 4-7011 PHOENIX Radio Specialties, ALpine $8-6121$ SAN DIEGO San Delco, CYpress 8-6181 WASHINGTON, D. C. Electronic Industrial Sales, Hudson 3-5200.

SEMICONDUCTOR PROGRESS . .
 THROUGH RESEARCH

An artist's conception entitled "Semiconductor Progress through Research" depicts the flow of solid state devices from the raw state to products, to applications of the future. A reproduction of this painting, suitable for framing, is available on request. Literature describing the progress of General Transistor's products, also developed through research, is available, in the form of technical engineering bulletins, on request.

GERMANIUM	GERMANIUM	GERMANIUM
HIGH SPEED	HIGH FREQUENCY	GENERAL PURPOSI
COMPUTER SWITCHING	TRANSISTORS	TRANSISTORS
IRANSISTORS		

\square

DELCO POWER TRANSISTORS

	TYPICAL CHARACTERISTICS AT $25^{\circ} \mathrm{C}$			
EIA	2N297A*	2N297A	2N665**	2N553
Collector Diode Voltage (Max.)	60	60	80	$\begin{gathered} 80 \\ \text { volts } \end{gathered}$
HFE ($\left.\mathrm{l}_{\mathrm{c}}=0.5 \mathrm{~A}\right)$ (Range)	40-100	40-100	40-80	40-80
HFE ($\left.\mathrm{l}_{\mathrm{c}}=2 \mathrm{~A}\right)(\mathrm{Min}$.	20	20	20	20
$\mathrm{I}_{\text {co }}\left(2\right.$ volts, $25^{\circ} \mathrm{C}$) (Max.)	200	200	50	50 \%
Ico (30 volts, $71{ }^{\circ} \mathrm{C}$) (Max.)	6	6	2	2 ma
$\mathrm{Fae}_{\text {a }}$ (Min.)	5	5	20	20
T (Max.)	95	95	95	$95^{\circ} \mathrm{C}$
Therm Res. (Max.)	2	2	2	$\begin{aligned} & 2^{\circ} \\ & c / w \end{aligned}$

Delco Radio announces new PNP' germanium transistors in 2N553 series - the 2N297A and 2N665, designed to meet military specifications. These transistors are ideal as voltage and current regulators because of their extremely low leakage current characteristics. All are highly efficient in switching circuits and in servo amplifier applications, and all are in volume production! Write today for complete engineering data.

[^8]See you at IRE Show, Booth 1512.

DELCO RADIO
 Division of General Motors - Kokomo, Indiana BRANCH OFFICES

VISUAL MICROWAVE ANALISSIS-10 to 44,000 mc COMPLEX SPECTRUM DECODING

Dissect complex pulse spectrum visually by means of Polarad Model SD-1

MULTI-PULSE SPECTRUM SELECTOR

Used with any Polarad analyzer, this Model SD-1 Spectrum Selector permits complete analysis of any complex pulse modulated microwave signals. The unit decodes and isclates any segment of a complex pulse train and permits corresponding spectrum analysis of that segment.

Model SD-1 Spectrum Selector displays pulse groups up to 180 microseconds duration (Model SD-1K: 350 microseconds).

Applications:

Design and operation of radar, telemetry equipment, IFF systems and beacons.

Ask your nearest Polarad representative (in the ellow Pages) for a copy of "Handbook of Spectrum Analyzer Techniques' and "Notes on Microwave Measurements"'

POLARAD
 ELECTRONICS
 CORPORATION

43-20 34th Street, Long Island City 1, N. Y. Representatives in principal cities

Analyze complex spectrum visually using any of Polarad's wide band

MICROWAVE ANALYZERS

COMPLETE FACLLITIESCODED MICROWAVE SIGNALS 950 to $10,750 \mathrm{mc}$

APPLICATIONS:

One integrated instrument:
Provides a complete system for simulating and testing missile and telemetry systems, IFF and radar, microwave beacons, direction finding and navigational equipment and microwave relay links.
Performs general purpose signal generator and oscilloscope measurements, multi-pulse testing and analysis.

SEt frequency

Frequency range 950 to $10,750 \mathrm{mc}$ is covered by four interchangeable microwave oscillator units, all stored in the instrument, Each has UNI-DIAL control, precision power monitor circuit to maintain 1 milliwatt power output reference level, and non-contacting short-type chokes to assure long life.

visually check multt-pulse code

Calibration of r-f pulse width, delay and group repetition rate is simplified by ability to view pulse train on a precision oscilloscope with a built-in wide band r-f detector.

adjust multi.pulse code

Code modulation is achieved with five independently adjustable pulse channels providing: pulse repetition rate variable, $10-10,000 \mathrm{pps}$; width variable 0.2 to 2 microseconds; delay variable 0-300 microseconds. Pulse rise and decay, 0.1 microsecond.

NO ADJUSTMENT NECESSARY on self-contained power supplies. Klystron power unit adjusts to proper voltage automatically for each interchangeable tuning unit. Built-in AC regulator. Equipped with an electronically regulated low-voltage DC supply.

VISUALIY CHECK MULTI-PULSE CODE

Postage
Will be Paid
by
Addressee

BUSINESS REPLY CARD

First Class Permit No. 18, Long Island City 1, N.Y.

MAIL THIS CARD
for detziled specifications. Ask your nearest Polarad Ask your nearest iolar Yellow Pages) for a copy of "Notes on Microwave Measurements'

POLARAD ELECTRONICS CORPORATION
43-20 34th Street, Long Island City 1, N. Y. Represenaatives in principal cities

Tere's a compact honey! The new RCA "VC" (Very Compact) Picture Tubes-now 2 nches shorter than their prototypes!
Now commercially available in the new "VC" 110° designs are the RCA-17DKP4 and 2CA-21EQP4, all-new premium types. They utilize conventional 110° components and ircuitry. And, with only slight changes in focusing-voltage control, they are unilaterally -nterchangeable with previous 110° types. RCA "VC" 110° types employ the same heater athode assembly that has been used and proven for reliability over the past decade in ¿CA Picture tubes.
;o, when the need arises for a slim, very compact TV-set design, contact your RCA Field lepresentative. Your pass words are RCA "VC" 110° Picture Tubes. For technical data, rrite RCA Commercial Engineering, Section C-50-DE, Harrison, N. J.

RADIO CORPORATION OF AMERICA

RCA FIELD OFFICES

EASI: 744 Broad Stree Newark 2, N. J. HUmbaldt 5.3900
MIDWEST:Suite 1154 Aherchandise Mart Plaze Chicaga 54. 111 WHitehall 4-2900

WEST: 6355 E. Washingtan Blyd las Angeles 22, Calif. liaymand 3.8361

American Beauty soldering irons have led the field in quality and production performance since 1894. There is a model to meet every soldering requirement.
Write for our 16 page catalog, showing our complete line, their use and care.
AMERICAN ELECTRICAL HEATER COMPANY

sinct

New

MAGNETIC CORE FERRITE

Ferrite material, MN-31, has high initial and maximum permeabilities, high saturation magnetization, and low losses from 10 to 500 KC . Properties include: Initial Permeability

(at $21^{\circ} \mathrm{C}$ and 50 KC), 2100; Max. Permeability (at 2000 gauss), 13500 ; Flux Density (at 7 oersteds w/Rowland Ring Test Circuit and Fluxmeter), 4300 gauss; Flux Excursion (for 1 oersted), 3500 gauss; Retentivity (B_{r}), 1700 gauss. Coercivity (H_{c}), 0.13 oersted; Loss Factor ($1 / \mu \mathrm{Q}$) at $50 \mathrm{KC}, 7.5 \times 10^{-6}$, and at $500 \mathrm{Kc}, 30 \times 10^{-6}$; Temperature Coeffieient of Initial Permeability (\%/心), app. $0.2^{\circ} \mathrm{C}$; Curie Temperature, over $180^{\circ} \mathrm{C}$; DC Resistivity, 250 ohm-cm. Kearfott Co., Inc., 1500 Main Ave., Clifton, N. J.
Circle 257 on Inquiry Card, page 123

DUMMY LOAD

The Matchmaster unit consists of a dummy load with direct reading r-f watt meter and standing-wave-ratio bridge (SWR). It is useful in electronic labs or factories for measuring the SWR in antenna feed lines, ad-

justment of radio transmitter power output before going in the air and many other applications. All components are contained in a cabinet $6 \times 8 \times 8$ in. Barker \& Williamson, Inc., Bristol, Pa.
Circle 258 on Inquiry Card, page 123

New
 Products

R-F ATTENUATOR

A $50 \mathrm{ohm}, \mathrm{r}$-f Attenuator is a variable step attenuator which operate from dc to 500 mc . They are rotary adjustable. Each resistor is mounted in a cavity which eliminates reac-

tive components over the useful frequency range of the unit. The resistors are of a stabilized variety, precured to minimize long-term drift and installed to prevent element value shift due to soldering heat. Three types of 50 ohm units are available and 4 types at 75 ohm impedance. Combinations of up to 4 units can be supplied on standard $31 / 2 \times 19$ in. rack mounted panels. The unit extends 5 in . behind panel. Ortho Filter Corp., 196 Albion Ave., Paterson 2, N. J.
Circle 259 on Inquiry Card, page 123

GALVANOMETER AMPLIFIER

Galvanometer Amplifier, Model T6GA matches low power signals of 1 v. or more directly to high frequency, high current galvanometer oscillographs. Specifications include: Voltage gain: Adjustable from 0 to 1.0 ; output (37 ohm load) : $\pm 2.4 \mathrm{v}$. at 65 ma dc to 8 kc , limits at ± 100 ma; output impedance: 2 ohms de to 10 Kc ; controls: 6 gain controls, 1 power off-on switch; input impedance: 47 K ; isolation: individually floating channels for use with un-

grounded loads; noise: less than 3 mv peak-to-peak; drift: less than $3 \mathrm{mv} /{ }^{\circ} \mathrm{F}$; power requirements: 115 v . ± 10 v., 50 to $440 \mathrm{CPS}, 45 \mathrm{w}$. Minne-apolis-Honeywell, Boston Div., 40 Life St., Boston, Mass.
Circle 260 on Inquiry Card, page 123

750 MLS T0 $55^{\circ} \mathrm{C}-100 \mathrm{~T} 0600$ PIV

o Low Forward Drop \circ Low Reverse Current

Parzian

F\&H SERIES SILICON RECTFIFERS
F SERIES-ELECTRICAL RATINGS-Capacitive Loads

$\begin{aligned} & \text { 5. T. } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Mox. } \\ & \text { Peok } \\ & \text { Inverse } \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & \text { Max. } \\ & \text { RMS } \\ & \text { Volts } \end{aligned}$	Current Rotings-Amperes											
			Max. D. C. Leod			Max. RMS			Max. Recurrent Peak			Surge - 4MS Max.		
			55.	100 c	$150^{\circ} \mathrm{C}$	55 c	100 C	C $150^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
F. 2	200	70	. 75	. 5	. 25	1.875	1.25	. 625	7.5	5.	2.5	75	75	35
F. 4	400	140	. 75	. 5	. 25	1.875	1.25	. 625	7.5	5.	2.5	75	75	35
F-6	600	210	. 75	. 5	. 25	1.875	1.25	. 625	7.5	5	2.5	75	75	35

H SERIES-ELECTRICAL RATINGS-Capacitive Loads

$\begin{aligned} & \text { 5. T. } \\ & \text { Type } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Max. } \\ \text { Peak } \\ \text { Inverse } \\ \text { Volts } \end{gathered}$	$\begin{aligned} & \text { Mox. } \\ & \text { RMS } \\ & \text { Volls } \\ & \hline \end{aligned}$	Current Ratings-Amperes											
			Max. D C. Load			Max. RMS			Max. Recurrent Peak			Surge - 4Ms		$\begin{array}{ll} M a x . \\ 150^{\circ} \mathrm{C} \end{array}$
			$55^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	
10 H	100	35	. 75	. 5	. 25	1.875	1.25	. 625	7.5	5.	2.5			
20 H	200	70	. 75	. 5	. 25	1.875	1.25	. 625	7.5	5.	2.5	75	75	35
30 H	300	105	. 75	. 5	. 25	1.875	1.25	. 625	7.5	5.	2.5	75	75	35
${ }^{40 \mathrm{H}}$	400	140	. 75	. 5	. 25	1.875	1.25	. 625	7.5	5.	2.5	75	75	35
50 H	500	175	. 75	. 5	. 25	1.875	1.25	. 625	7.5	5.	2.5	75	75	35
60 H	600	210	75	. 5	. 25	1.875	1.25	. 625	7.5	5.	2.5	75	75	35

Write for design notes No. 30 and 31
VISIT US AT THE IRE SHOW-BOOTH \#3053

SARKES TARZIAN, INC., Rectifier Division

 DEPT. EE-1, 415 NORTH COLLEGE AVE., BLOOMINGTON, INDIANA[^9]
Tape specs are getting tougher every year

Keeping ahead of its customers is the only way a magnetic tape manufacturer can meet the rapidly rising standards being set for its product. And often the standards are as varied as they are exacting. Special slitting tolerances, coating thicknesses, base materials and magnetic oxides are rapidly becoming more usual than novel. Audio Devices' battery of Automatic Certifiers is one of the unique means used to make sure EP Audiotape always meets customer specifications.

Type EP Audiotape is the extra precision magnetic recording tape for applications in computing, automation, telemetering and seismography. The Automatic Certifier records and plays back every inch of the EP Audiotape under test. These tests can be so demanding that if the tape fails to reproduce a single test pulse out of the 40 million put on a single reel, the entire reel is rejected. There are no ifs, ands or buts.

This is one of many special quality-control operations to which EP Audiotape is subjected. From raw materials to hermetically sealed containers, every reel gets individual attention.

EP Audiotape quality is so well verified by instruments like the Automatic Certifier that every reel is guaranteed to be defect-free! For more information write for free Bulletin T112A. Write Dept. TT, Audio Devices, Inc., 444 Madison Avenue, New York 22, N. Y.

AUDIO DEVICES, INC.
444 Madison Ave., N. Y. 22, N. Y.
In Hollywood: 840 N. Fairfax Ave.
In Chicago: 5428 Milwaukee Ave.
Export Dept.: 13 East 40th St., N. Y., 16 Rectifier Division: 620 E. Dyer Rd., Santa Ana, Calif.

BEAM SWITCHING TUBES

Miniature beam switching tubes, shielded (Type BD 316) and unshielded (Type BD 203), operate at transistor voltages, and retain the characteristics of regular beam

switching tubes. Dimensions are reduced by 35%. They may be used in direct contact with each other. They are 10 position tubes for distribution, counting, coding and decoding, sampling and conversion. Each tube may replace 20 or more transistors or other components. They can be arranged to switch in sequence or at random, can le preset to any position, and interconnected as distributors to any number of positions. Burroughs Corp., Electronic Tube Div., P. O. Box 1226, Plainfield, N. J.

Circle 261 on Inquiry Card, page 123

CONSTANT SPEED MOTOR

High temperature, continuous duty, $11 / 4 \mathrm{in}$. PM governed motor with gear reduction and filter for precise timing applications, does not deviate more than 3% from 60 RPM with 60 oz. in. load and 24 to 29 vdc supplied under any combination of the following MIL-E-5272 conditions: Temperature: $-55^{\circ} \mathrm{C}$ to $+122^{\circ} \mathrm{C}$, procedure

I; vibration: Procedure 1; shock: Procedure II; acceleration: 10 g , procedure 1 or II. Type 13 R-9102-00 also meets MIL I-6181B radio noise specs. John Oster Manufacturing Co., Avionic Div., 1 Main St., Racine, Wis.
Circle 262 on Inquiry Card, page 123
 PANORAMIC'S

The SF-2, Panoramic's Synchronous Frequency Analyzer, is all electronic, instantaneously tracks speed changes in ynamic balance and resonance analyses of rotafing and reciprocating devices. A single run vields a complete plot of frequency vs. amplitude. Used in coniunction with the LP.la, it has arequency range up o 7500 cps . . tracks fundamental or 2nd, 3rd, 4th and 5th harmonic. Selectivity adjustable from $10 \mathrm{cps}-1 \mathrm{kc}$. Lin and 40 db log cali-
 brated amplitude.

The G-6, Panoramic's Broad Band Response Indicator, extends the range of Panoramic's Curve Tracing Systems o 15 mc ! In combination with the SPA-3., it shows esponse to fundamental frequency only, gives a single line presentation, discriminates against noise and hum and has virtually unlimited dynamic range. 0.15 mc range in 0.3 mc segments. I v. into 72 ohms output with up to 60
 db attenuation.

The LF-2a. Panoromic's Improved Subsonic Spactrum Analyzer, has a redesigned pen recorder, stabilized base line, a second (externally activated) pen for marker injection, an optional internal $3^{\prime \prime}$ CRT, a more precise center frequency control and all the features that made the LF-2 ideal for applications where exceptionally high resolution is required or where analyses are made over extended periods. Frequency range
0.5-2250 cps.

The New Function Selector Panel for the LP-la, Panoramic's Sonic Spectrum Analyzer, permits critical analysis of random and other complex waveforms. To the Lp-ia's standard features it adds $10-1000 \mathrm{cps}$ adjustable IF
bandwidth, 1-0.1
eps adjustable
video (low pass) output filter. and a voltage calibration reset.

0.5 cps through 44,000 me:

SEE how they can solve your measurement and analysis problems

Panoramic's forward thinking, long and specialized experience in the development of spectrum analyzers, brings to you the human engineering and stable, direct reading displays that make possible rapid and reliable analysis for your measurement problems . . . whether it be subsonic or microwave . . . noise, vibration, instabilities of oscillators, detection of parasitics, studies of harmonic outputs or your own special problem.
Here are just a few of Panoramic's long line of widely accepted and
 completely dependable instruments. If you won't be at the Show, write NOW for technical bulletins, new CATALOG DIGEST and ask to be put on the regular mailing list for THE PANORAMIC ANALYZER featuring application data.

540 South Fulton Ave., Mount Vernon, N.Y. Phone: OWens 9-4600
Cables: Panoramic, Mount Vernon, N.Y. State

The SSB-3, Panoramic's New Rapid Test Instrument for SSB Transmissions, combines in one convenient package a sensitive spectrum analyzer (the SB-12a Panalyzor), a stable tuning head, a two-tone generator and internal calibrating circuitry to set up, adjust, monitor and trouble-shoot SSB and AM transmissions. Simple to operate, compact and exceptionally compact a

The SPA-2, Panoramic's New Microwave Spectrum Analyzer, was specifically designed for high resolution analysis of broad pulse spectra. Two tuning heads with a frequency range from $50-4000 \mathrm{mc}$, 200 cps resolution, 1 mc sweep widt IF continuously reducible to db log , bandwidth, contral, 40 db log, 20 db lin and square scales calibrated and continuously variable differential markers.

The SPA.4, Panoramic's Advanced High-Frequency HighSensitivity Spectrum Analyzer, has a tange of 10 mc to $44,000 \mathrm{mc}$ with one tuning head, many unique features funing head, mas flexibility. Resolution and rremenly voriable from I ke to 80 continuously 70 me wide sweep width kc. 70 mc wide sweep to 0 . Careful continuously widios interference. hielding to avoid interference. Calibrated power, voltage and log amplitude scales.

KLEIN midget pliers speed up electronic assemblies

Hardly larger than a package of your favorite cigarettes, these Klein midget pliers fit into small spaces, simplifying wiring on electronic assemblies.

Midgets in size but giants in performance, they make it easy to work in confined space.

These midgets are recent additions to the famous Klein line of high-quality pliers. Scores of long nose, side cutters, oblique cutters and other types are illustrated and described in the Klein catalog. A copy will be sent without obligation.

FREE KLEIN CATALOG

Catalog 101A, listing and describing scores of Klein Pliers, will be sent on request. Write for it today.

ASK YOUR SUPPLIER

Foreign Distributor: International Standord Electric Corp., New York

TAPE READER

Photo-electric paper tape reader, Model PR-2, operates at 400 characters per sec and will stop or start on 1 character. Any 5, 6 or 7 channel numeric code can be read and trans-

lated to G-15 code. In addition to positive and negative numbers, the external code may include control characters and certain special characters. It will accept up to 500 ft . rolls of tape. While the G-15 computer is equipped with its own searchable, magazine loaded, photo-electric reader for data and program input, the PR2 accessory extends input versatility by allowing entry of data from a wide range of recorders. Bendix Computer Div., 5630 Arbor Vitae St., Los Angeles 45, Calif.
Circle 263 on Inquiry Card, page 123

RECESSED BLOWER

Two-speed packaged blower for use where side exhaust is required or where air is to be diverted into a duct system. The blower has a panel size $83 / 4 \mathrm{in}$. deep and fits standard 19 in. racks. It has an air delivery of 800 cfm at high speed and 600 cfm

at low. The motor meets the intent of MIL-E-4158A. The fllter is permanent; the grille stainless steel. The blower is normally used for bottomrack mounting. McLean Engineering Laboratories, Princeton, N. J.
Circle 264 on Inquiry Card. page 123

New
 Products

TELEMETRY ANTENNA

TACO G-1054 design features circular polarization, choice of helical feeds, a 6, 8 or 10 ft . dia. parabolic reflector, and a manually controlled mount for ground or vehicle installa-

tion. Gain is 23 to 26 db over an isotropic source, nominal beam width is 8° to 14°. Frequency range is $940-$ 980 Mc . vSWR of the complete antenna is less than 1.3. Azimuth adjustment is 360°; elevation adjustment $0-90^{\circ}$. Used for orbital and into-space telemetering or TV-Studio Transmitter Links (STLT) by feeding the dish with a 1990-2110 mC feed. Technical Appliance Corp., Box GC 38, Sherburne, N. Y.
Circle 265 on Inquiry Card, page 123

ADJUSTABLE SPEED DRIVE

"Motorformer Series" adjustablespeed drives has 17 different models ranging from $1 / 20$ to $3 / 4 \mathrm{HP}$. All models feature smooth control from zero to maximum rated speed. Conservative rating of rectifiers and motors assures continuous operation at

any speed. The entire controlled rectifier is contained in a compact enclosure that is designed for either bench use or wall mounting. Servo-Tek Products Co., 1086 Goffle Road, Hawthorne, N. J.
Circle 266 on Inquiry Card, page 123

The 1959 IRE Show marks the first anniversary of a new concept in ac voltage dividers-the ESI DEKATRAN decade ratio transformer. During the past year we have been pleased with your response to the following "firsts" provided by our DEKATRAN "component type" decade transformers.
FIRST with coaxial dials, switches and toroidal transformer for maximum performance in minimum space.
FIRST to break the "price barrier" providing laboratory instrument performance at a component price.
FIRST with toroidal transformer encapsulated in the front panel mounting assembly for maximum rigidity and ability to meet military vibration and shock requirements.
FIRST with unique suppression of s witching transients.
FIRST with "overlap" feature permitting voltage settings at

CLEGTRO-MEAEUREMENGO, ING。

7524 S. W. MACADAM
PORTLAND 19, OREGON

TYPE WW ENCAPSULATED RESISTORS

Wire Wound, Precision, Hi-Value, Non-Inductive

TYPICAL DERATING CURVE

The DALOHM line includes precision resistors (wire wound and deposited carbon); trimmer potentiometers; resistor networks; collet fitting knobs and hysteresis motors designed specifically for advanced electronic circuitry.
If none of the DALOHM standard line meets your needs, our engineering department is ready to help solve your problem in the realm of development, engineering, design and production.
Just outline your specific situation.

High resistance value, wire wound resistors designed for non-inductive requirements that demand the closest precision tolerance. Encapsulated in carefully compounded material, selected for matching coefficient of expansion to that of the wire.

- Rated at . 1 watt to 2 watts, with a wide selection, depending on type and size.
- Resistance range from 0.6 ohm to 6 Megohms, depending on type.
- Tolerance: $\pm 0.05 \%, \pm 0.1 \%, \pm 0.25 \%$, $\pm 0.5 \%, \pm 1 \%, \pm 3 \%$.

TEMPERATURE COEFFICIENT: Within 0.00002 /degree C.

OPERATING TEMPERATURE RANGE: $-55^{\circ} \mathrm{C}$. to $125^{\circ} \mathrm{C}$.

SMALLEST IN SIZE: $1 / 8^{\prime \prime} \times 3 / 8^{\prime \prime}$ to $21 / 8^{\prime \prime} \times 7 / 8^{\prime \prime}$.
COMPLETE PROTECTION: Encapsulating material makes them completely impervious to penetrating effects of salt spray, humidity, moisture and corrosive gases and vopors.

CONFIGURATIONS: WWA - axial leads; WWP-parallel leads; WWR-radial leads; WWL-lug style terminals; WW-RB-military style with lug terminals; HWA and HW-RBhigh temperature applications.

MILITARY SPECIFICATIONS: Surpasses MIL-R-93B, characteristic A and B; MIL-R. 9444.

Write for Bulletin R-26

New Products

CARD RECEPTACLES

Printed circuit card receptacle connectors, "RELI-ACON" have 24, 22, 18,15 and 10 contact single side receptacles, and $48,44,36,30$ and 20 contact double side receptacles, all

having 0.156 centers. They accommodate Class 1 (broad limits) tolerances on NEMA nominal 0.062 in. laminates. Maximum contact resistance is 4 mohm measured on a 0.054 in. card after insertion of a 0074 in . card. The double side card receptacle maintains a minimum of 1 oz. per contact on a 0.054 in . thick card after 1000 insertions of a circuit board having a thickness of 0.074 in . Methode Mfg. Corp., 7447 W. Wilson Ave., Chicago 31, Ill.
Circle 267 on Inquiry Card, page 123

EPOXY MATERIAL

Epoxy material, "Filmex", is a tissue-thin epoxy sheet that can be die-cut, provides a bond exceeding 5000 lbs in shear strength and may be used for bonding practically any materials such as glass, ceramics, or metals and is not afferted by temperatures to $400^{\circ} \mathrm{F}$. A translucent ma-

terial, it is completely flexible and ranges in thickne s from 0.0015 to 0.020 in . It melts in place at $200^{\circ} \mathrm{F}$, and then is cured for 40 min . at $392^{\circ} \mathrm{F}$. Mansol Ceramics Co., 140 Little St., Belleville, N. J.
Circle 268 on Inquiry Card, page 123

New
 Products

PHOTOCELLS

Three-dimensional selenium photovoltaic "contour photocells" can be shaped into almost any form, mounted on a rotating shaft in a position control servomeck nism, or used as a

form of non-linear function generator, when formed into a photosensitive cam. These cells may be used in electronic photoelectric devices for control applications, production flow processes, and automatic inspection and. sorting. They can be produced to any requirement (curved, cylindrical or other configurations) in 3 -dimensional shapes with as little as 1 in . radius of curvature. International Rectifier Corp., El Segundo, Calif.
Circle 269 on Inquiry Card, page 123

RASTER TIMERS

Expanded sweeps have no loss of detail on either side of the observed event with the " 101 " Series Raster Timers, used to study phenomena occuring in time from 10 msec . to 50 sec. They provide a sweep raster of 10 traces on a de oscilloscope. Traces are time calibrated with controlled markers. Bandwidth is dc to 200 kc . They are available in 2 models with

total sweep length from 10 ms to 100 ms and 1 sec . to 50 sec ., and provide 5 in . scope tubes with about 40 in. of effective trace per raster. American Electronic Labs., Inc., 121 N. 7th St., Philadelphia 6, Pa.

Circle 270 on Inquiry Card, page 123

DALOHM

 ...for Gomplete Reliability Under Savere Environmental Condifions
NIEW

 \square
TYPE 750 TRIMMER POTENTIOMETERS

Super-Miniature, Wire Wound, Precision

The 750 trimmer, with a completely sealed case and welded construction, offers outstanding performance and stability.
It has a space saving design for advanced electronic circuits where it's mandatory to meet demanding conditions of miniaturization, reliability, precision and severe operating conditions.
Two terminal styles available: 750 W -with leads extending from end of case; 750WP-with leads extending from bottom of case for printed circuits.

- Rated at 2 watts, up to $70^{\circ} \mathrm{C}$. ambient.
- Resistance range from 100 ohms to 30 K ohms.
- Standard tolerance: $\pm 5 \%$, closer tolerance available.
OPERATING TEMPERATURE RANGE: $-55^{\circ} \mathrm{C}$. to $175^{\circ} \mathrm{C}$.
SUPER-MINIATURE SIZE: $.180 \times .300 \times$ 1.00 inch.

RESOLUTION: . 1% ta 1%, depending on resistance.
SHAFT TORQUE; 5 inch/ounces max.
BACKLASH: 10° maximum.
SCREW ADJUSTMENT: 18 turns, nominal. MOUNTING: Individually or in stacked assemblies with standard $2-56$ screws.
SAFETY CLUTCH: Clutch arrangement on movable wiper contact prevents breakage due to over-excursion.
WEIGHT: 1.8 grams.
MILITARY SPECIFICATIONS: Surpass applicable paragraphs of MIL-R-19A, MIL-R-12934A, MIL-E-5272A and MIL-STD-202A.

TYPICAL DERATING CURVE

JUST ASK US
The DALOHM line includes precision resistors (wire wound and deposited carbon); trimmer potentiometers; resistor bon); trimmer potentiometers; resistor networks; collet fiting knobs and hys* advanced electronic circuitry.
If none of the IDALOHM standard line meets your needs, our engineering department is ready to help solve your problem in the realm of development, engineering, design and production.
Just outline your specific situation.
Write for Bulletin R-41

RELIABILITY

Missile launching equipment manufacturers must be positive of every component in their vital equipment. For this reason, Air-Marine blowers are specified equipment in many of the launching beds built today. The blower shown here is currently being used in the Army's NIKE Hercules Program. Interested manufacturers are urged to look into the proven reliability of Air-Marine's complete line of sub.fractional H.P. Motors, Blowers and Fans.

air-marine motors, inc.

AMITYVILLE, NEW YORK

LOS ANGELES, CALIF.

See us at the IRE Show
 Booth 2315

New

 Products
ADD-ON FUSE BLOCKS

Add-On Fuse Blocks, for protection of solenoids, small motors, or control apparatus on multiple circuit equipment, can be assembled into a block of any number of poles. The

single pole blocks interlock and each unit is locked in place by a single screw. Additions may be made at either end. Poles may be added or removed without disconnecting terminal leads on other units. Each fuse may be a circuit disconnect. Clips permit raising one end of the fuse to a right angle position to the block. Bussmann Mfg. Div., McGraw-Edison Co., University at Jefferson, St. Louis 7, Mo.
Circle 271 on Inquiry Card. page 123

CHOKE KITS

R-F chokes (63 chokes) in the prefered series of inductance values, packaged in 3 clear-plastic boxes for the immediate selection of choke parameters. Each kit has a block which holds the chokes in proper position, permanently mounted to a blackboard which contains complete technical data for each choke. Series "S" Kit has 19 chokes from $0.1 \mu \mathrm{H}$ to $100 \mu \mathrm{H}$. Se-

ries "M" Kit has 19 chokes from 1.0 $\mu \mathrm{H}$ to $1000 \mu \mathrm{H}$. Series "L" Kit has 25 chokes from $1.0 \mu \mathrm{H}$ to $10,000 \mu \mathrm{H}$. Inductance values are preferred values. Essex Electronics, 550 Springfield Ave., Berkeley Heights, New Jersey. Circle 272 on Inquiry Card. page 123

New

Products

CONNECTORS

Series of subminiature precision connectors, SMI-C have a stainless steel reinforcing retainer under each screwlocking element to remove torque stresses from the molded

bodies. Positive re-entrancy of the male pins is assured each time by a flanged guide female contact. Selfalignment action is also assisted by provision of wider countersink on upper end of contact. They are available in contacts of $7,11,14,20,26$, 34 or custom configurations. The connectors may be used for critical environmental conditions and extremes of military applications. U. S. Components, Inc., 454 E. 148th St., New York 55, N. Y.
Circle 273 on Inquiry Card, page 123

DUPLEXER

Duplexer has a reject attenuation greater than 100 db . Designed for operation in the 755 to 985 MC band, it is especially suited to tropospheric scatter applications. The duplexer enables the same antenna to be used simultaneously for both transmitting

and receiving. It is made of high strength aluminum alloy. The transmitter and receiver ports are equipped with transitions which are fitted with coaxial inputs. D. S. Kennedy \& Co., Cohasset, Mass.
Circle 274 on Inquiry Card. page 123
Cirle 274 on Inquiry Card page 123

Catalog PF1258 lists standard and optional electrical and mechanical specifications on the complete Waters line of miniature precision potentiometers. It's helpful in selecting the right pot for almost any application. Write for it.

CTROL Contact Meter/Controller For accurate control of systems or equipment

Continuously controls or limits any electrical variable . . . a selfcontained, transistorized unit using no locking coils or magnetic contacts . . . Reset is automatic, but manual reset can be provided if signal locking action is necessary . . . allows use of infinitesimal signal current. Write for bulletin.

Integral torque device. Design of form eliminates loose leads, loose lugs, loose parts. Complete Line - Available with standard bushings or retractable types for single or double tuning. Diameters available: . $205^{\prime \prime}$, $.250^{\prime \prime}, .375^{\prime \prime}$, and $.500^{\prime \prime}$ in a vari-' ety of lengths. Write for folder

There's a Waters wire-wound Miniature Precision Pot for almost any linear or non-linear application. Outside diameters range from $1 / 2^{\prime \prime}$ to $15 / \mathbf{s}^{\prime \prime}$. All are rigidly tested in our own "in-plant" testing laboratory.

RIBBED CERAMIC COIL FORMS

designed for triple.tight slug TUNING

TORQUE WATCH GAUGES®

For quick, visible, precise measurements of extremely low starting and moving torques. Compact hand tool features Jacobs-style chuck for ease of use. Accuracy: $\pm 5 \%$ of full scale standard. 48 models available, starting with low of .005 to .6 , and a high of 2 to 40 oz . in. Most models available with CLOCKWISE, COUNTERCLOCKWISE, or BI-DIRECTIONAL dials. Write for Folder 3001.

(®)
MANUFACTURING, INC.
WAYLAND, MASSACHUSETTS
See us at the I.R.E. show

Victoreen Glass-Sealed Resistors have always been synonymous with the highest product quality. You get high power with high stability . . . absolute independence from unfavorable environments . . . closer production and inspection tolerances.

And now-because of new quality-volume production tech-niques-Victoreen can offer these superb components at highly competitive prices. New pricing structure, with large quantity discounts, brings prices down below a dollar. The trend is to Victoreen Deposited Carbon Resistors-get with it now. an-9242

Victoreen

5806 Hough Avenue • Cleveland 3, Ohio

New

Products

SOLID STATE COUNTERS

Totalizing and predetermined electronic counters for laboratory or production control. Solid state and cold cathode components in the circuitry eliminate warm-up time and tube re-

placement. Unit has no moving parts. The 3, 4, or 5 -decade counters measure $9 \times 7 \times 6$ in.; weight about 7 lbs. Available accessories include: magnetic pick-ups, infra-red beam pick-ups, stylus pick-ups and impulse shaping pre-amplifiers. These accessories obtain operating power from the counter itself. Instrument Div., Redford Corp., Lake Luzerne, N. Y.
Circle 279 on Inquiry Card, page 123

MAGNETIC CORE TESTER

Production and laboratory instrument, Model RK-100 for testing tape wound cores, ferrite cores, and relays. Two units may be operated synchronously for eore plane and coincident current testing. Features include: 2.0% meter for rough settings -precision resistors for current measurements- 0.1 ma . to 1.0 a . current pulses- $0.1 \mu \mathrm{sec}$ to 1 msec cur-

家

rent rise time- 9 pulse logical pat-terns-handling of switching times to $35 \mathrm{msec}-\mathrm{requires}$ only 1 winding on core being tested. Arkay Engineering, Inc., 225 Santa Monica Blvd., Santa Monica, Calif.
Circle 280 on Inquiry Card, page 123

NEED LARGE WAVEGUIDE? Look to I-T-E to meet all your needs: conventional types or special designs

Ralary jaint and step iwist. High-power rotary joint designed for low VSWR. Binomial stepped 90° twist has 1.02:1 VSWR over wide band.

Waveguide transfarmer features low VSWR, high power, economy.

Gas barrier utilizes Rexolite window for maximum RF transmission.

A camplefe large waveguide service. These units reflect I-T-E's design and production capabilities with large waveguide. Noncontacting short circuit section shown is available with servo-controlled motor drive. For proper electrical continuity, all waveguide flanges are heid to 0.001 in . flatness (total indication) ... are perpendicular within 0.030 (for two flanges, total indication). Available in sizes WR770 through WR 2300.

I-T-E is staffed and equipped to meet your requirements for large waveguide used in multimegawatt radar and scatter communications systems. For conventional needs, I-T-E manufactures an extensive line of standard configurations. And where special problems exist, depend on I-T-E waveguide engineers to originate special designs exactly suited to your wants and at reasonable cost.

Productionwise, I-T-E can provide faster deliveries, thanks to its fully equipped waveguide shop. Custom-designed tools and fixtures assure both flaw-free fabrication and production-line efficiency. Every step-from the initial sheet metal work to final finishing-is performed under one roof . . . under one responsibility. You benefit from lower VSWR, plus maximum strength with lightness and economy.

Let I-T-E's broad design experience and unique production facilities work to solve your waveguide problems. Address your inquiries to I-T-E's Special Products Division. And ask for your copy of free-space vs. guide wave lengths conversion tables for large waveguide.

I-T-E CIRCUIT BREAKER COMPANY
Special Products Division - 601 E. Erie Avenue - Philadelphia 34, Pa.

When Top Quality Capacitors Are Required Specify Pyramid Mylar' or Tantalum

Miniaturized to provide maximum space economy.
New Pyramid Tantalum slug capacitors have cylindrical cases and contain a non-corrosive electrolyte. Due to the special construction of materials used in the manufacture of Pyramid Tantalum slug capacitors, these units are both seep and vibration proof. In addition, this type of capacitor assures long service life and corrosion resistance-made to meet MIL-C-3965 Specifications.

Commercially available immediately, these new Pyramid Tantalum capacitor units have an operating range between $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ for most units without any de-rating at the higher temperature.

Pyramid new Mylar capacitors have extremely high insulation resistance, high dielectric strength and resistance to moisture penetration.

Commercially available immediately, Pyramid Mylar capacitors have an operating range between $-30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with voltage de-ratings above $+85^{\circ} \mathrm{C}$. Pyramid wrapped Mylar capacitors-Series Nos.: 101, 103, 106 and 107 have the following characteristics:

Construction Styles:

Basic No.	Type Winding
101	Inserted Tabs
103	Extended Foil
106	Inserted Tabs
107	Extended Foil

$$
\begin{aligned}
& \text { Exenaed roll } \\
& \text { Inserted Tabs }
\end{aligned}
$$

$$
107 \quad \text { Extended Foil }
$$

$$
\begin{aligned}
& \text { Shape } \\
& \hline \text { Flat } \\
& \text { Flat } \\
& \text { Round } \\
& \text { Round }
\end{aligned}
$$

Toierance: The standard capacitance tolerance is $\pm 20 \%$. Closer tolerances can be specified.
Electrical Characteristics: Operating range for Mylar capacitors-from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and to $+125^{\circ} \mathrm{C}$ with voltage de-rating.
Dissipation Factor: The dissipation factor is less than 1% when measured at $25^{\circ} \mathrm{C}$ and 1000 CPS or referred to 1000 CPS.
Insulation Resistance:

Temperature	$\underline{1 R \times m f d}$
$25^{\circ} \mathrm{C}$	50,000
$85^{\circ} \mathrm{C}$	1,000
$125^{\circ} \mathrm{C}$	50

Maximum IR Requirements
15,000 megohms
6,000 "
300 "

Pyramid Mylar capacitors are subject to the following tests:
Test Voltage—Mylar capacitors shall withstand 200% of rated D.C. voltage for 1 minute at $25^{\circ} \mathrm{C}$.
Life Test-Mylar capacitors shall withstand an accelerated life test of 250 hours with 140% of the voltage rating for the test temperature. 1 failure out of 12 is permitted.
Humidity Test-Mylar capacitors shall meet the humidity requirements of MIL-C-91A specifications.
Complete engineering data and prices for Pyramid Mylar and Tantalum Capacitors may be obtained from Pyramid Research and Development Department.

- ou pont registered trademark

New
Products

VARIABLE RESISTOR

Vernier variable resistor has ball bearing rotation for fine tuning applications. Contact arm rotates 1° per 13.5° shaft rotation. Total contact arm rotation is $300^{\circ} \pm 5^{\circ}$. Total shaft

rotation approximately 4000°. Type VA- 45 is $15 / 16$ in. dia., $1 / 4$ to $1 / 2 \mathrm{w}$. Resistance range is 250 ohms through 10 megohms (linear taper). Voltage rating across end terminals is 500 vdc and voltage rating bushing to terminals 1000 volts ac for 1 min . hi-pot test with 750 vdc operating maximum. Chicago Telephone Supply Corp ration, Elkhart, Ind.
Circle 275 on Inquiry Card, page 123

TERMINAL BLOCKS

Type 7TB12, through-connection terminal block, is made to Navy drawing 9000, S6505B, 73214, Rev. H. It provides feed-thru conections top and bottom, and comes in several different lengths and number of terminals. It is moulded of glass-filled Alkyd plastic (Type MAI-60) as per MIL-M-14E. The moulded-in threaded studs are

of manganese-bronze. It is supplied with slotted brass nuts made to specifications, packaged separately or supplied assembled. Kulka Electric Corp., 633-643 So. Fulton Ave., Mt. Vernon, N. Y.

Circle 276 on Inquiry Card, page 123

New
 Products

FIELD INTENSITY RECEIVER

Calibrated microwave field intensity receiver for measurements of microwave power in the 1000 to 10000 mC freq. rañe, measures the absolute level of radiated or conducted inter-

ference, and the susceptibility of other instruments and components to such interference. It features 4 interchangeable plug-in tuning units, Simultaneous tuning of the receiver and signal calibrator; a calibrated meter for r-f signals; audio, video and recorder outputs; and an aural tuning aid circuit for detecting weak or unmodulated signals. Polarad Electronics Corp., 43-20 34th St., Long Island City 1, N. Y.
Circle 277 on Inquiry Card, page 123

SYSTEM ERROR BRIDGE

Theta-Bridge measures the angular position of any synchro or resolver inaccessibly located within a complex system without any mechanical coupling. It is also used to simulate a perfect synchro or resolver input to a system. Three dials display angular position digitally to three decimal

places over a 360° range. Specifications: Accuracy, 10 seconds of arc. Readability, 0.001°. Size, 19 in. wide by $10 \frac{1}{2} \mathrm{in}$. high by 8 in . deep. Theta Instrument Corp., 48 Pine St., East Paterson, N. J.
Circle 278 on Inquiry Card, page 123

INTRODUCING THE SPECTROL METAL MTLTMETVANPRECISIONPOT

Another example of creative engineering from Spectrol, the new Model 590 10 -turn pot features machined aluminum construction with the helical coil placed directly against the case for maximum heat dissipation. You can expect a longer operating life at higher ambient from the Model 590.

Non-hygroscopic aluminum case furnishes excellent dimensional stability

The new pot operates in a relative humidity of 95% over a temperature range of -65 to $+150^{\circ} \mathrm{C}$. It functions above 20 g vibration from 55 to 2000 cps , withstands a 30 g shock, and meets all specifications to an altitude of 30,000 feet.
Now in production, the new 590 is available in ranges from 25 to 120,000 ohms. Standard linearity tolerance is $\pm 0.3 \%$ with 0.025% on special order. Featuring fused-glass sealed terminals flashed with precious metal, the unit can be supplied with as many as 48 terminals. Both ends of the shaft are supported by ball bearings. The $1^{\prime \prime}$ diameter unit is also available with nonlinear functions.

Your nearby Spectrol sales engineering representative will be glad to provide complete technical information or you may write directly to Dept. 323.

ELECTRONICS CORPORATION
 "precision electronic components"

1704 South Del Mar Avenue, San Gabriel, Calif.
do you neio Automation FOR FINISHING wIRE LEADS WITH TERMINALS ATtACHED?

SOME EXAMPLES OF TERMINALS ATTACHED BY ARTOS MACHINE

1. Measures and cuts solid or stranded wire $\mathbf{2}^{\prime \prime}$ to $250^{\prime \prime}$ in length.
2. Strips one or both ends of wire from $1 / 8^{\prime \prime}$ to $1^{\prime \prime}$.
3. Attaches any prefabricated terminal in strip form to one end of wire. (Artos Model CS-9 attaches terminals to BOTH ENDS OF WIRE simultaneously.)
4. Marks finished wire leads with code numbers and letters. (Available as optional attachment.)

PRODUCTION SPEEDS up to 3,000 finished pieces per hour. Can be operated by unskilled labor. Easily set up and adjusted to different lengths of wire and stripping-die units for different types of terminals simply and quickly changed.
ENGINEERING CONSULTATION . . . recommendations without obligation. Special adaptations made to fit requirements of your product. Machines for all types of wire lead finishing.
VISIT US AT
BOOTH 4208
IRE SHOW

WRITE for FREE Bulletin No. 655 on Artos TA-20-S
World Leaders in
Automatic Machines for Finishing Wire Leads

For Your Special Applications

The bulk of UTC production is on special units designed to specific customers' needs. Illustrated below are some typical units and some unusual units as manufactured for special applications. We would be pleased to advise and quote to your special requirements.

FILTERS All types for frequencies from 1 cycle to 400 MC .

IERC and government testing*, using latest techniques, proved THERMA-flex tube shield liners to be the most efficient heat-dissipating liners available! IERC THERMA-flex liners and tube shields will meet all requirements of MIL-S. 9372 (USAF) and MIL-S-19786 (NAVY). In the shield, the broad areas of the liner attain a particular semi-eliptical precision spring curve. Tube insertion causes spring curve to flex and adjust to contours of bulb. This action grasps a major portion of tube surface, absorbing heat from hot spot which is transferred to shield and heat sink and dissipated by conduction, radiation and convection.

THERMA-flex high-efficiency tube shield liners are available now for most sizes and types of IERC Miniature Heat-dissipating Electron Tube Shields.

See NEL Reliability Design Handbook, Sec. 502 -"Improved Type Miniature Tube Shields," OTS - Jan. 15, 1959

International Electronic Research Corporation 145 West Magnolia Boulevard, Burbank, California

Write for helpful, FREE, IERC Tube Shield Guide with over 1,200 tube and tube shield combinations to help you avoid thermal problems in your new equipment designs or retrofitting plans!

Heat-dissipating electron tube shields for miniature, subminiature and octal/power tubes.

SERVO AMPLIFIER

Transistorized Model A3300-01 has an internal de power supply and provides 90° phase shift. Power supplied to the load is in pulse form of constant amplitude, and width, or

time duration of the pulse is proportional to the amplitude of the input signal. Gain is established at values between 80 and 1600 , with external resistors. It may be modified for 400 CPS where max. power input is 16 w . Input impedanee is $5 \mathrm{~K}-100 \mathrm{~K}$ ohms; signal frequency, 60 cPS ; max. signal input, 30 v. RMS; voltage output, 40 v., 60 cPs. Kearfott Co., Inc., 1500 Main Ave., Clifton, N. J.
Circle 283 on Inquiry Card, page 123

PRESSURE SWITCH

Pressure Switch/Transducer, Series 1500 , is for use in aircraft, missiles and rockets. Moving parts are contained in an aluminum housing, en-vironmentally-sealed by O-rings, at each end. It car sense pressure levels of from 0.5 to $4,000 \mathrm{psi}$. Eight switches cover the pressure span. Exact calibration is obtained with an external adjustment, which is locked by 2 set

screws. Meets MIL-E-5272A. Assembly is resistant to corrosive operating media. Optional mounting bracket provides vibration isolation up to 2 ,000 cPs and up to 50 g's. Haydon Switch, Inc., Waterbury 20, Conn. Circle 284 on Inquiry Card, page 123

New

Products

TRANSFORMER KIT

Miniature, Pulse Transformer Lab Kit has 10, 3 -winding pulse transformers providing pulse widths from 0.1 to $10 \mu \mathrm{sec}$. Range can be extended to $40 \mu \mathrm{sec}$. The first 2 windings of

all transformers are in a 1 -to- 1 ratio. On 6 , the 3 rd winding is in a 1 -to- 1 ratio with 3 taps, and on 4 , the 3 rd winding is in a 1 -to- 5 ratio with 3 taps. A combination of 20 different ratios is possible. Designed for blocking oscillator circuits, computer circuits, and interstage coupling. High permeability, low-loss cores are used. They plug into a standard miniature 9 pin tube socket. New York Transformer Co., Alpha, N. J.
Circle 285 on Inquiry Card, page 123

PREAMPLIFIER

Low noise, parametric r-f, preamplifier, Mrdel MA-1C, when coupled to conventional UHF receivers (350500 mc band) achieves low noise performance. Overall receiver noise figures below 1.0 db (approximately 80° Kelvin) are achieved with bandwidths of approximately 1% through the specified tuning range. The preamplifier performs as a straight-

through parametric low noise amplifier with r-f output obtained at the signal frequency. It is normally used in conjunction with an existing receiving installation. Microwave Associates, Inc., Burlington, Mass. Circle 286 on Inuqiry Card, page 123

VISIT THE NEW YORK COLISEUM IRE SHOW March 23-26 BOOTH 1522-24
and see the

NEMS•CLARKE PHASE-LOCK

and

Special Purpose RECEIVERS

We will display a complete line of Telemetry equipment and auxiliary units

- Preamplifiers

Spectrum Display Units

- Multicouplers

Circle 104 on Inquiry Card, page 123

ard rack mounting or in carrying case. Integrates with above model 1008-A Test Signal Keyer.

1043-DR VERTICAL INTERVAL

DELETER-ADDER
Integrates with model 1008.A to recognize incoming test signals. Deletes incoming test signals and/or adds new test signals.

. . - specify REVERE TEFLON* CABLE

Electronic cables, the "nerves" of monitoring and testing systems in missiles, rockets and aircraft, are constantly being stressed by the searing heat around jet engines . . . the sub-zero cold of the stratosphere ... immersion in fuels, chemicals or solvents. Revere Teflon Cable meets these high service requirements . . . and those of computer and radar applications, too.
Revere Teflon Cables are available with 2 or more teflon-insulated, silver or nickel plated, stranded copper conductors, rated for continuous operation from $-90^{\circ} \mathrm{C}$. to $+210^{\circ} \mathrm{C}$. Cables are shielded with silver or nickel plated copper as required. Jackets to suit application-silicone treated glass braid, teflon, Kel-F**, vinyl, nylon, etc.
Conductor size: 28 to 16 gage in . $008^{\prime \prime}$ (300 volt), $.010^{\prime \prime}$ (600 volt) and $.015^{\prime \prime}$ (1000 volt) wall thicknesses. Ten and fifteen mil wall conductors meet applicable requirements of MIL-W-16878, Type E and EE.

TYPICAL SPECIFICATIONS - Single Conductor Tefion Insulation

REVERE CORPORATION OF AMERICA

Wallingford, Connecticut
A SUBSIDIARY OF NEPTUNE METER COMPANY
*E.I. du Pont trademark *M.W. Kellogg trademark $+\begin{aligned} & \text { Wire passes } 500 \mathrm{nr} \text {.'st } \\ & 250^{\circ} \mathrm{C} \text { heat-aging test }\end{aligned}$... also cold bend test

Culation Resistance Greater than $10^{4} \mathrm{megohm} / 1000$
Continuous Operating Range $-90^{\circ} \mathrm{C}$. to $+210^{\circ} \mathrm{C}$. (\dagger)
Dielectric Constant @ $1 \mathrm{MC} / \mathrm{Sec}2 .5$ maximum
Flammability ..ess not support combustion Shrinkage Less than $1 \mathbf{1}^{\prime \prime}$ in $18^{\prime \prime}$ @ $250^{\circ} \mathrm{C}$ for 96 hrs. aluminum oxide, $1 / 2 \mathrm{lb}$. weight

Specific Gravity .. 2.2 average
Chemical and Solvent Resistance
Excellent

New

Products

RECORDER/REPRODUCER

Magnetic tape continuous-loop recorder/reproducer Type 5-781 for repetitive study of highly transient data, random occurrences, and timedelay applications, provides selective

or simultaneous erase for 14 analog, FM, or PDM record/reproduce channels. It is compatible with the Type 5-752 reel recorder. Featured are: full-speed operation at 60 IPS in less than 1 sec., full stop in less than 0.5 sec., simplified tape threading, automatic tape tensioning, and closed-loop tape drive, for precise control of tape movement over the magnetic read/ write heads under the drive capstan. Consolidated Electrodynamics Corp., 300 N. Sierra Madre Villa, Pasadena, Calif.
Circle 289 on Inquiry Card, page 123

SHIFT REGISTER

Miniature Shift Register, Model SR-104, is a one-core-per-binary-bit unit with a 5 kc information rate and a signal-to-noise ratio of $10: 1$. The operating temperature range is from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. A 14.0 usec , 22 v . output pulse is obtained by applying a $10.0 \mu \mathrm{sec}, 7 \mathrm{ma}$ input pulse

and subsequently an 8.0 usec., 300 ma shift pulse. It is encapsulated in an epoxy compound and occupies 0.2 cu. in ESC Corporation, 534 Bergen Boulevard, Palisades Park, New Jersey.
Circle 290 on Inquiry Card, page 123

New	
	Products

OSCILLOSCOPE

Type 507 oscilloscope is designed for high-voltage surge testing. CR tube vertical-deflection factor is app. $50 \mathrm{v} / \mathrm{cm}$ at $24-\mathrm{kv}$ accelerating potential. The 10 -step input switch selects

attenuation of 10% of the input signal per step; has a 72 -ohm characteristic impedance. Vertical-input system withstands crest voltages of 3 kv of the standard 1.5 by $40 \mu \mathrm{sec}$ surge testing waveform. It has 11 calibrated sweep rates: from 20 $\mathrm{m} \mu \mathrm{sec} / \mathrm{cm}$, to $50 \mu \mathrm{sec} / \mathrm{cm}$. Sweeps can be triggered internally or by external signal and can be operated singleshot. Tektronix, Inc., P. O. Box 831, Portland 7, Ore.
Circle 291 on Inquiry Card, page 123

POWER SUPPLY

Model PS-30T, 30 kv dc., full-wave voltage-doubler type, power supply, operates on 117 v., 60 CPS or 400 CPS input; delivers 1 ma . continuous and 1.75 ma. peak current. Ripple is 1.5% at 1 ma . and regulation is approx. 7% from no load to full load. The unit incorporates 1 B 3 rectifier tubes

and FCI plastic dielectric capacitors, is hermetically sealed and oil filled. It is housed in a $5 \frac{1 / 4}{} \times 113 / 8 \times 91 / 2$ in. case with oil-tight, solder-seal terminals. Film Capacitors, Inc., 3400 Park Ave., New York 56, N. Y.
Circle 292 on Inquiry Card, page 123

Speaking of service... have you heard what PRICE is doing?

Price Electric has created a new service department within their sales organization . . . to give you fast, personalized service from inquiry to delivery.
As you know, Price has always had an enviable reputation for quality and reliability. Their relays are everywhere ... flashing across the sky in our satellites, in missiles, telephones, car radios, business equipment, and a thousand other precision uses. Now . . . Price offers you reliability AND improved service.
Why not give Price Electric a try on your next relay requirement?

SEE The NEW 1959 LINE OF PRICE RELAYS at the IRE SHOW BOOTH 2407

For more reliable soldering and less down time by skilled or unskilled workers

NEW

 with built-in MAGNASTAT
femperature control

...automatically maintains correct soldering temperature

Here from Weller, long-time leader in the soldering field-a precision soldering tool with built-in temperature control. Never overheats. Proper soldering temperature automatically remains constant. This means less tip redressing-less down time-and more reliable soldering by all production employees. Plus these other advantages:

- Soves current when idling
- Reaches full heot quickly
- Approximately $1 / 2$ the weight of uncontrolled iron
- Delicate balance-cool handle
- All structural parts ore stainless steel
- Cord plugs inta handle
- Guaranteed ogainst de. fects in material and workmonship

All models have 3-wIre plug

SENSING DEVICE IS IN THE TIP . . . fully protected by a sheath of stainless steel. Tip is tapered for heat efficiency and screws on simply and securely.

3 models available in 3 different wattages

WRITE FOR MAGNASTAT CATALOG BULLETIN

WELLER ELECTRIC CORP. 601 Stone's Crossing Rd. Easton, Pa.

Products

SILICON TRANSISTORS

Types 2N1131 and 2N1132 are pnp silicon transistors closely matching the 2N696 and 2N697 types. Typical rise time is 80 milli-micro-seconds. Dissipation ratings are 2 watts at

$25^{\circ} \mathrm{C}$ and 1 watt at $100^{\circ} \mathrm{C}$. Existence of these closely related devices of opposite polarity affords opportunities for circuit designs based on complementary symmetry. Fairchild Semiconductor Corp., 844 Charleston Rd., Palo Alto, Calif.
Circle 293 on Inquiry Card. page 123

FLOATING ZONE FIXTURE

Floating zone fixture for the production of ultra-high purity metals and semi-conductor materials. Purification or crystal growing is achieved by traversing a narrow molten zone along the length of the process bar while it is being supported vertically in vacuum or inert gas. Designed for production, the Model HCP provides flexibility for lab studies. Featured are: Continuously variable up, down, and rotational speeds, independently control-

led, and an arrangement to rapidly center the process bar within a straight walled quartz tube supported between gas-tight, water-cooled end plates. Lepel High Frequency Labs., Inc., Wocdside, N. Y.
Circle 294 on Inquiry Card. page 123

ULTRA LOFG LIFE MIXIE THEE

54032

ACIUAL SIZE

thousands of hours... extra

the most dramatic

 development in indicator tube historyAnother electronic achievement by Burroughs Corporation provides extended tube life, by thousands of hours, for the new ultra long life Nixie indicating tube. This latest technical advance is the result of a new manufacturing process and a special combination of inert gases in the tube bulb.
There are three distinct ultra long life Nixie tube sizes available - miniäture, standard and super. These complement the regular line of Nixie tubes where extraordinary life is required.
Continued pioneering in the development of indicating tubes coupled with extensive production facilities has enabled Burroughs to develop the most "perfect" in-line indicating tube ever mass produced.

The Nixie tubes are gas-filled, coldcathode, ten-digit (" 0 " thru " 9 ") numerical indicator tubes having a common anode. They are all electronic, in-line readout devices which provide an ideal means of converting electro-mechanical or electronic signals directly into read. able characters.

NIXIE Tube Exclusive Features:

- All Electronic

- Lowest Cost
- Lowest Power
- Lightest Weight
- Most Readable for Number Size
- Smallest Volume any Number Size
- Maximum Temperature, Shock and Vibration Specs
- And Now, Longest Life

Designing reliability into electronic components and instrumentation is Borg Equipment Division's business. Borg's reliable engineering, research and production facilities are at your service for commercial or military projects. Bring your component reliability problems to Borg. You'll enjoy working with our cooperative, creative engineering staff. The result will be a sound, practical and reliable solution at a considerable saving of time and money. Here are just a few of the products manufactured by Borg . . .

FREQUENCY STANDARDS

AIRCRAFT INSTRUMENTS

POTENTIOMETERS

MULTI-TURN COUNTING DIALS
FRACTIONAL H.P. MOTORS
SPECIAL DESIGNS

WRITE FOR COMPLETE ENGINEERING DATA

BORG EQUIPMENT DIVISION

Amphenol-Borg Electronics Corporotion

 JANESVILLE, WISCONSINCircle 112 on Inquiry Card, page 123

\section*{New} | | Products |
| :--- | :--- |

PHASE SHIFTER

Phase Shifter, Type Q-4, 400 CPs, provides any phase shift from 90° leading to 90° lagging for testing electronic equipment and control circuits, watthour meters, rotating

standards, wattmeters, power-factor indicators, induction relays, and instrument transformers. Direct-reading scales on the instrument, are calibrated in deg. for the electrical angle of displacement and in corresponding power-factor values. True-power-factor can be read directly. Ratings are: 1000 va continuous duty; input 120/ 240 v .; output, 120 or $240 \mathrm{v}, 3$ phase. Knopp Inc., 1307 66th St., Oakland 8, Calif.
Circle 295 on Inquiry Card page 123

ELECTRONIC PLIERS

Channellock pliers are designed for all types of electronics work. Features include slender, long-reach jaws and handles, precision-matched jaws and points, hand-honed specially hardened cutting edges and easy-to-handle blue plastic-coated grips. This line includes a flat-nose plier, a diagonal cutter with wire-stripping notch, a

round-nose plier and a long-reach end cutter. The pliers are forged from high grade, properly heat treated steel and have a full-polished finish. Champion DeArment Tool Co., Meadville, Pa.
Circle 296 on Inquiry Card, page 123

WHAT'S ALL THIS TALK ABOUT SONIC ENERGY CLEANING?

Sonic Energy Cleaning is a practical production tool that will reduce rejects on many parts and products, lower cleaning costs and improve product performance.
So there's plenty of good reason for all the talk about Bendix Sonic Energy Cleaning.
Bendix ${ }^{\left({ }^{(1)}\right.}$ pioneered and has led in development of Sonic Energy Cleaning for industrial applications and so has more Sonic Energy experience. Our Sonic Energy Applications Laboratory has no equal in its ability to provide the most efficient answer for cleaning applications that can use Sonic Energy to advantage. And our line of Sonic Energy Cleaning systems is most complete.
It makes real sense for any manufacturer to utilize the Bendix way of investigating his application and verifying any equipment requirements.

> NEW, UP-TO-THE-MINUTE REPORT ON SONIC ENERGY CLEANING

SONIC ENERGY CLEANING

Circle 113 on Inquiry Card, page 123

New
 Products

JUNCTION TRANSISTOR

The 2N1010, transistor, for AF amplifiers, is a germanium alloyjunction transistor, npn type, suited for use in the input stages of highfidelity preamplifiers, tape recorders,

RCA

microphone preamplifiers, and hearing aids in which low noise factor is important. Designed to operate from extremely small input signals, it has a noise factor of 5 db with a generator resistance of 1000 ohms and an integrated noise bandwidth of 15 kc . Typical small-signal current gain is 35. Alpha-cutoff frequency is 2 mc . Semi-conductor and Materials Div., Radio Corp. of America, Somerville, N. J.

Circle 297 on Inquiry Card, page 123

SILICON RECTIFIER

Types 6A, a 20 a . silicon power rectifier, is for high temp service at voltages from 50 to 400 v . It will carry a full 20 a. load in half-wave circuits and up to 60 a . in bridge circuits. It may be operated at ambient temperatures up to $165^{\circ} \mathrm{C}$ and is unaffected by storage temperatures

from $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$. It has a standard 14-28 threaded mounting stud and may be mounted in any position. The entire unit is hermetically sealed. Fansteel Metallurgical Corp., Dept. EIP, North Chicago, Illinois. Circle 298 on Inquiry Card, page 123

Reliability...

 THIS POT'S GOT IT!Borg 1100 Series Micropots . . . the ten-turn pots that offer reliability at a sensible price.

Here are total resistance values from 50 to 100,000 ohms with a tolerance of $\pm 5 \%$. Here's independent linearity accuracy of $\pm 0.5 \%$ to $\pm 0.1 \%$. Here's life expectancy of not less than 25,000 cycles (500,000 revolutions).
Optional features? Lug type terminals or coded flexible leads . . . rear shaft extensions . . . and single or ganged assemblies to mention a few.

And get this - simplicity of design gives Borg 1100
Series Micropots permanent accuracy and long life.
Want more specs? We've got a pot full.
They're yours for the asking.

Write for Catalog BED-A90 and name of your nearest Borg "Tech-Rep"

BORG EQUIPMENT DIVISION
AMPHENOL•BORG ELECTRONICS CORPORATION JANESVILLE, WISCONSIN

u.s. semcor medium power... AXIAL LEAD RECTIFIER

with single DIFFUSED silicon junction

New

Products

TEST SETS

Series 5700 DC Hypot tests high voltage electronic tubes, cables and bushings, and the dielectric strength of insulating materials to ASTM standards. Controls are located on a

waist high panel sloped for easy reading. Two $41 / 2$ in. meters on the panel indicate output voltage and leakage current. Safety features are incorporated. The output test potential is continuously variable from zero to maximum and indicated by metering directly in the final output. Associated Research, Inc., 3777 W. Belmont Ave., Chicago 18, Ill.
Circle 299 on Inquiry Card, page 123

SIGNAL GENERATOR

Portable, Standard Signal Generator, Model 560 - FM, is designed for the mobile communications industry. It provides frequency modulation from an internal 1000 cPs source or can be modulated externally up to 15 кc. Direct reading individually calibrated scales cover frequency ranges of $25-54,140-175,400-470$, and $890-$ 960 mc . A fine frequency control is provided capable of varying carrier Γ

frequency ± 8 кc. Peak deviation to $\pm 16 \mathrm{KC}$ is read directly on a meter. Output can be varied from 0.1 to 100 ,$000 \mu \mathrm{v}$ across a 50 ohm termination. Measurements Div., McGraw-Edison Co., Boonton, N. J.
Circle 300 on Inquiry Card, page 123

New

Products

SHORT COIL RELAY

Modified version of the short coil TS telephone type relay features bifurcated contact arms with as many as 20 arms per relay (10 arms per stack). The TS operates on as little

as 100 mw per movable arm and can be furnished to operate on voltages up to 110 vdc . It will switch up to 4 a . at 155 v .60 CPS , resistive loads. It is mounted with tapped \#4-40 studs on $3 / 8 \mathrm{x}$ 7/8 in. centers, and measures $13 / 4 \mathrm{in}$. long x $15 / 32 \mathrm{in}$. wide $\times 19 / 16 \mathrm{in}$. high. Weighs app. 3 oz . Relays are furnished with pierced solder lugs or taper tabs. Potter \& Brumfield, Inc., Princeton, Ind.
Circle 351 on Inquiry Card, page 123

AXIAL BLOWER

Miniature Tubeaxial fan, Model S2223-3 for spot cooling equipment in restricted spaces, uses a 1 in. dia. motor, at $16,500 \mathrm{RPM}$, deliver 40 CFM at 0 in. S.P., operates from 200 v , 3 phase, 400 crs. It can withstand ambient temperatures of up to $125^{\circ} \mathrm{C}$ with a minimum life of 2000 hrs . It meets MIL-E-5272. It passes shock, vibration, salt spray (50 hrs), hu-

midity (10 days), and fungus (28 days) while having a 1500 v . hi-pot for 1 min . and performance tested after each phase of environmental testing. Air-Marins Motors, Inc., 369 Bayview Ave., Amityville, L. I., N. Y. Circle 352 on Inquiry Card, page 123

$\mathbf{T}_{\mathbf{c}} \leq .0005 \%$ per ${ }^{\circ} \mathbf{C}$

$65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$

u. s. semcor temperature compensated

REFERENCE ELEMENT

superior in performance to 1 N 430 Series

IRE SHOW BOOTH NO. 3823

Custom transformers for printed circuits are now available from ADC in five standard case sizes with terminals and inserts on $0.1^{\text {" }}$ grid multiples. Audio, power, and ultrasonic transformers and inductors with maximum electrical performance for each size are being custom designed for transistor and vacuum tube circuitry. Raised mountings prevent moisture from being trapped. Available in Mumetal cases. They meet MIL-T-27-A Grade 5 Class R or S Life X, and can be designed to meet 500 and $2,000 \mathrm{cps}$ vibration.

Note: Other combinations are available with 400 cps max. volt ampere ratings up to 15 for Fig. 1, 10 for Fig. 2, 6 for Fig. 3, 4 for Fig. 4 , and I for Fig. 5

WRITE TODAY FOR COMPLETE INFORMATION

AUDIO DEVELOPMENT COMPANY
2839-13th Avenue South TRANSFORMERS • REACTORS - FILTERS - JACKS \& PLUGS • JACK PANELS

New

Products

SWEEP OSCILLATOR

Magna - Sweep, an all-electronic sweeping oscillator, has sweep widths of 1000 Mc and wider. Frequency range is 5 Mc to 1000 Mc . It may be used for stardard frequency align-

ment procedures for TV, radar, or communications systems. Specs include: Sweep width, 1000 Mc , continuously variable over frequency range; Center frequency, variable through frequency range; Sweep rate, variable around 30 CPS ; r-f output, 0.1 v . across 50 ohms (min.) ; Sweep output, regular sawtooth, amplitude approx. 20 v.; Frequency markers, frequency marks plus a precision wavemeter. Kay Electric Co., Dept. E.I, Maple Ave., Pine Brook, N. J.

Circle 353 on Inquiry Card, page 123

STRAIN GAGE PLOTTERS

Models 220 and 221 are for plotting structural tests and engine load tests. They can scan and record up to 20 channels $/ \mathrm{sec}$. and plot up to 96 channels. They automatically plot individual graphs for each channel while the test is in progress. There are 3 zero positions/channel, separate range selectors and gage factor selectors. Switching is accomplished by

heavy-duty rotary type multideck switches. They can be modified for millivolt inputs such as thermocouples. Gilmore Industries, Inc., 13015 Woodland Ave., Cleveland.
Circle 354 on Inquiry Card, page 123

New
 Products

GAMMA DOSE RATE METER

Model 592B determines leakage and true dose rate associated with X-ray installations; radioisotopes in laboratories, hospitals and industrial plants; and for radiation dosage

measurements by regulatory agencies. The unit has two controls: a range switch and a zeroing knob, and a 3 -in. meter. The zero knob is protected against inadvertent movement. High impedance circuitry is hermetically sealed and range switching is performed in the low impedance portion of the circuit. The Victoreen Instrument Co., 5806 Hough Ave., Cleveland 3, Ohio.
Circle 355 on Inquiry Card, page 123

TEST CHAMBER

Model FB-30-5-5 temperature testing chamber has interior dimensions, $40 \times 38 \times 36$ in. Features are: standard range $+300^{\circ}$ to $-100^{\circ} \mathrm{F}$; viewing window, 24×24 in.; cascade system with Freon-13 and Freon-22; adjustable input controls. Performance: room temperature to $+70^{\circ} \mathrm{F}$ in 38 $\min . ;-70^{\circ} \mathrm{F}$ to room temperature in 13 min . Heat dissipation up to 2 kw

at $-70^{\circ} \mathrm{F}$. Temperature to $-100^{\circ} \mathrm{F}$ can be attained in less than 1 hr . Chamber interior is stainless steel. Control within $2^{\circ} \mathrm{F}$ of set point is standard. Conrad, Inc., 141 Jefferson St., Holland, Mich.
Circle 356 on Inquiry Card, page 123
 assist you. Chances are we've made it before. Your requirement may be for subminiature cable with 36 AWG single conductor wire, or for large cable where 6 AWG wire is used. Tensolite makes both, and all the sizes between. Naturally, we recommend individual conductors of our FLEXOLON wire for all demanding applications. Its highly flexible Tefion Insulation withstands a wide range of ambients (from -90 deg. C. to +250 deg. C.) and exceeds all requirements of MIL-W-16878 types E and EE.

Tensolite cables utilize the maximum number of conductors in a minimum of area-saving weight and space-available as ribbon cable or standard round configurations. Complete and thorough inspections before, during and after manufacture, part of the most rigid quality control program in the industry, assures reliability of the finished product.

Give your Tensolite representative a copy of the specs for your current cable requirements, or send them direct to us in Tarrytown. We will be glad to quote on your needs.

HOOK-UP WIRE • AIRFRAME WIRE - COAXIAL CABLE • MULTI-CONDUCTOR CABLE • MAGNET WIRE TENSOLITE \& FLEXOLON are trade marks of Tensolite Insulated Wire Co., Inc. •TEFLON E. I. du Pont de Nemours Co.

See us at Booth 4330 at the IRE Show

At the zero second everything must function without failure. ANDREW Heliax cable is used in postassembly and preflight checkouts of missile radio frequency systems. The cable forms a closed circuit over which interrogation and response signals are transmitted between checkout equipment and airborne radio frequency packages. The Heliax cable runs from a mobile trailer to connecting points on the missile.

The ruggedness of Heliax makes it well suited to this challenging task, where its low VSWR, low RF leakage and low attenuation give accurate measurement of systems performance. Flexibility permits the cable to be taken down, recoiled and subsequently reused many times.

If you require similar characteristics in a cable, consider the special advantages of Heliax.

Heliax is normally supplied as an assembly, complete with end fittings factory attached, reducing installation labor and improving quality.

Complete uniformity throughout its entire length gives Heliax superior electrical characteristics.

Heliax is always less difficult, less costly to install, easier to handle.

Heliax is available in $7 / 8$ "size (Type H0) and $15 / 8^{\prime \prime}$ size (Type H1).

Write for free sample lengit

New

Products

CROSSBAR SCANNER

Model SC-4, Self-Stepping Crossbar Scanner with optional remote dial control, is basically, an F Crossdar Switch with simplified drive circuitry for connecting sequentially a 6 -wire

circuit with each of 100 sets of 6wire terminals, at speeds up to 50 sets per second. It is designed for fast, quiet operation without adjustment over millions of operations, with low crosstalk between adjacent cireuits at frequencies up to 10 megacycles. James Cunningham, Son \& Co., Inc., P. O. Box 516, Rochester :, N. Y.

Circle 357 on Inquiry Card, page 123

COAX COUPLER

Flat coaxial couplers limit frequency response variation to 0.2 db over a full octave and present a deviation of mean value from nominal of $\pm 0.3 \mathrm{db}$. Five calibration points on the nameplate form a curve for determining intermediate points. Calibration aceuracy is $\pm 0.1 \mathrm{db}$. Connectors are Series N female, with others available. Six models, 3040 through 3045 , cover frequency bands from 240 to $11,000 \mathrm{MC}$ with a nominal coupling value of $20 \mathrm{do} ; 4$ models

have 10 db values, covering 500 to 8000 MC. Primary VSWR is 1.1 to 1.25 , and secondary VSWR is 1.2 to 1.3 , depending on the model. Narda Microwave Corp., 118-160 Herricks Rd., Mineola, N. Y.
Circle 358 on Inquiry Card, page 123

A FULL LINE OF SERVOSYSTEM ANALYZERS

Choose from 5 dependably accurate models covering ranges from . 001 to $\mathbf{1 0 0}$ cps.

SERVOSCOPE ${ }^{\text {n }}$ makes preproduction problem-solving on servo systems, equipment, and components accurate-and flexible.

Wide range coverage. Fast direct-setting and read-out. Highaccuracy measuring of phase, transient response, and gain. Plus-rapid plotting of Nyquist, Bode, or Nichols diagrams.

The result : safe, dependable control system evaluations-in advance-of ultimate operating behavior patterns.

The SERVOSCOPE servo analyzer is a versatile precision instrument with a full range of applications...
for the laboratory - in design and test stages of control systems.
on the production line-for system inspection, quality control
and as a teacher-in the university and in industry. A proven training aid in theory and practice.

SERVOSCOPE-most widely used method for control behavior analysis -because of features, according to the model selected, like these:

- Covers the frequency range from . 001 to 100 cps in the choice of five standard models.
- Evaluates AC carrier and DC servosystems.
- Generates sine wave, modulated carrier wave, and square wave phaseable signals with respect to either clectronic linear
sweep or sinusoidally modulated reference signal.
- Frequency calibration accuracy of $\pm \mathbf{2} \%$; phase measurement accuracy of $\pm 1 \%$.
- Accepts any carrier frequency from 50 to 5,000 cps.
- Indicates by means of servoscope Indicator or oscillograph recording.

Discoter the full benefits of the SERvoscope!
Write for complete specifications and application tips-today!

[^10]See latest Servoscope models at the
I.R.E. SHOW -

Booths \#3615-3617.

BDMGO-GRAY
 SNAPSLIDE F

 PROVIDE VIBRATION-PROOF HOLDING

 PROVIDE VIBRATION-PROOF HOLDING AND QUICK, FOOL-PROOF RELEASE!

 AND QUICK, FOOL-PROOF RELEASE!}

APPROVED UNDER ARMY-NAVY STANDARDS

Here's a simple, easy means of securely fastening assemblies to withstand shock or vibration, and yet allow quick removal for inspection or repair. Instant snap action engages or releases fastener . . . no tools are required! After installation, fasteners never need adjustment . . . even with repeated use.

Three sizes available for different load requirements. Large and medium sizes are made of corrosion-resistant stainless steel. Small size is made of nickel-plated brass. Stock parts fit various thicknesses of flanges and mounting plates . . . special parts can also be supplied.

WRITE FOR FULL DETALLS TODAYI

213 E. SIXTH STREET DAYTON, OHIO
Circle 121 on Inquiry Card, page 123

Now...

POSITIVE ACTION SWITCHES

- Wiping contacts insure perfect switching for very low energy circuits
- Positive-break action insures safe, reliable switching with high energy circuits
- Direct toggle-to-contact mechanism guarantees switching action
- First totally enclosed, environment proof toggle switch
- 1° lever throw opens circuit
- Positive detent action prevents switch teasing
- New insulating material gives 3 times greater arc tracking resistance
- Greater terminal clearance for easier wiring
- Improved bushing seal is molded in place

> CUTLER•HAMMER

Cutier-Hammer Inc., Milwavkee, Wis. • Divisien: Airborne Instruments Laboratory. • Subiditar: Cutler-Hammer International, C. A. Associtas: Canadian Cutter-Hammer, Ltd.; Cutter-Hammer Mexicana, S. A.; Intercontinental Electronics Corporation,

New

Products

TV CAMERA

TV camera, Model 1986 CN , can operate in noise environments up to $\pm 145 \mathrm{db}$ without an acoustical housing. It has been used in sound levels above 190 db . Applications include

use on rocket or jet engine test stands. It features a video-signal amplifier with subminiature tubes mounted in a heat sink. It provides full 600 -line resolution. Used with a camera control unit, it automatically adjusts to changing light conditions over a 2000:1 range. Kin Tel Div., Cohu Electronics, 5725 Kearny Villa Rd., Box 623, San Diego, Calif.
Circle 246 on Inquiry Card, page 123

FREQUENCY MONITOR

AM frequency monitor guards transmitter frequency with an accuracy of $\pm 2 \mathrm{ppm}$. Printed circuits aid in precision monitoring. A vac-uum-type crystal unit eliminates air gap adjustments and speeds installation. A blanket heater provides even heat distribution to crystal and oscillator components. The signal may be

connected direct to the monitor, or transmitter 20 miles or more from remote control (unattended) transmitter sites. It is $101 / 2 \mathrm{in}$. high, 19 in . wide and $105 / 8 \mathrm{in}$. deep. Gates Radio Co., Quincy, Ill.
Circle 247 on Inquiry Card, page 123

* That martyred, hands-tied feeling you get when your specification is loaded.

Did your contract specify that you use unproved devices instead of tubes? For a reason? Or just because something "new" was available? (Which meant derating your whole circuit just to get the performance you know tubes will give!) Well, mister designer, you are a victim of speciphobia!

Don't feel bad. Lots of circuit designers are in the same quandary. But why not do something about it? Summon your manly courage, and go ask this specifier whether he wants novelty (at an awful price), or:
...known performance, known reliability, safe design, good logistics, systems flexibility, and cconomy (all of which you can prove). In short ... a design that doesn't apologize!
Then, when he innocently asks ". . . Why of course. How can you get this?", just tell him to get out of orbit and specify tubes. As a matter of fact, General Electric 5-Star Receiving Tubes. And tell him that you'll apply them with all your up-to-date know how on how to care for an electronic circuit.

If he's still skeptical, just ask him to come see us. We've got some data we'd be glad to show, and match with anything he's got. And while we're at it, don't forget to have us show him the tubes we're working on for the circuits you'll be designing next. Want small size? Well, you ain't seen nothin' yet! Receiving Tube Dept.,Owensboro, Ky.
P.S. Come on over to Booth 2908 at the IRE Show, and we'll show you tubes doing things that make other devices blush. Look for the 7 -foot tube!

Progress Is Our Most Important Product

for Engineers

Variable Delay Lines

Data sheet on 30 MC to $10,000 \mathrm{MC}$ delay lines list 4 specific high frequency delay lines: 1 variable and 3 fixed. The variable has a bandwidth of 125 MC and a time delay of 0 to $50 \mathrm{~m} \mu \mathrm{sec}$. The fixed have delays of 10 , 50 , and $200 \mathrm{~m} \mu \mathrm{sec}$. with bandwidths of 500,50 and 30 MC respectively. Impedance ranges are from 50 to 120 ohms. Other characteristics are listed. Control Electronics Co., Inc., 10 Stepar Place, Huntington Station, L. I., N. Y.
Circle 199 on Inquiry Card. page 123

Synchro Coupling Problems

Tech Bulletin discusses problems associated with coupling a synchro under test to a precision Angular Divider. Angular and parallel misalignments are treated to produce a rotational standard with essentially zero transmission error. Theta Instrument Corp., 48 Pine St., East Paterson, N. J.
Circle 200 on Inquiry Card. page 123

High Temperature Wire

The 1959 catalog, 64 pages on Teflon insulated wires and cables has 8 sections of engineering information and prices on high-temperature magnet wire, lead wire, cables, tubing, and Teffon tape, and detailed general information on the products. Also contains mil specs, temperature ranges, wire and cable constructions, colors, tests, and design criteria for high temperature wiring. American Super-Temperature Wires, Inc., Winooski, Vt.
Circle 201 on Inquiry Card, page 123

Semiconductors

Products catalog includes a transistor chart, transistor replacement chart, and price lists. Included are data sheets on germanium transistors and silicon rectifiers. Bendix Aviation Corp., Semiconductor Products, Red Bank Div., 201 Westwood Ave., Long Branch, N. J. J.
Circle 202 on Inquiry Card. page 123

Magnetic Amplifiers

Bulletin E PD 1296 gives specs on the Vickers 1290 Series Super Power gapless core magnetic amplifiers, consisting of 18 standard sizes with power outputs of 500 va to over 32 kva. Includes tables of electrical characteristics, curves, basic circuit diagrams, and dimensions. Vickers, Inc., Electric Products Div., 1815 Locust St., St. Louis, Mo.
Circle 203 on Inquiry Card, page 123

Rocket Flight Measurement

How the flights of intermediate range rockets and guided missiles at the White Sands, New Mexico, Missile Range are measured by Univac Scientific Computer is described in an illustrated booklet, U1561, published by Remington Rand Div., Sperry Rand Corp., 315 4th Ave., New York $10, \mathrm{~N}$. Y. The story is illustrated.
Circle 204 on Inquiry Card. page 123

Cable Assemblies

A 12-page catalog covers standard molded-type cable assemblies and field, special, and coaxial types. Thirty four standard types are illustrated utilizing common connector ends and standard molded terminal ends. There are 3 pages of tabular reference data giving types, cable numbers, corona levels and special remarks. H. H. Buggie, Inc., Box 817, Toledo 1, Ohio. Circle 205 on Inquiry Card, page 123

Pulse Control Instruments

An 8-page condensed catalog of unitized pulse control instruments provides capsule technical descriptions of more than 25 Burroughs pulse control instruments, including pulse generators, flip-flops, coincidence detectors, delays, mixers, counters and power supplies. Burroughs Corp., Electronic Tube Div., P. O. Box 1226, Plainfield, N. J.
Circle 206 on Inquiry Card. page 123

Voltage Regulator

Bulletin \#6.04 (6 pages) from Electric Regulator Corporation, Pearl St., Norwalk, Conn., describes a $60-$ finger regulator for direct control of voltage of main fields of large alternators and generators; line load regulation; power amplification; impedance matching, and system stabilization. Basic types and available variations, circuitry, and typical applications are described.
Circle 207 on Inquiry Card, page 123

Transducers

Three bulletins, 58-131-135, and 58140, describe a series of pressure transducers. Model DP-7 measures differential pressures in terms of an electrical output. Models GP-15D and DP-15D convert hydraulic pressure into a proportional electric signal. BJ Electronics, Borg-Warner Corp., 3300 Newport Blvd., Santa Ana, Calif. Circle 208 on Inquiry Card, page 123

Management Practice

The Unwritten Laws of Engineering, a 50 -page booklet published by ASME, is for engineers interested in learning good management practice and for technical administrators as a refresher in the techniques of sound management. General Transistor Corp., 91-27 138th Place, Jamaica, N. Y.
Circle 209 on Inquiry Card. page 123

Relays

Engineer's Fact File on Mercury Plunger Relays includes load ratings, contact data, coil characteristics, mounting dimensions, diagrams, illustrations, and technical articles on application engineering. Ebert Electronics Corp., $212-31 \mathrm{M}$ Jamaica Ave., Queens Village 28, N. Y.
Circle 210 on Inquiry Card, page 123

Radioisotopes in Research

Tech Bulletin \#3 describes the use of radioactivity in measuring the amount of a substance in a mixture where ordinary analytical methods cannot be used because the amount is so minute. Nuclear-Chicago Corporation, 223 W. Erie Street, Chicago 10, Illinois.
Circle 211 on Inquiry Card. page 123

Potentiometer Definitions

Brochure lists functional potentiometer definitions as a guide to users of Clarostat products, and avoids misinterpretation of terminology between supplier and buyer. Clarostat Manufacturing Co., Inc., Dover, New Hampshire.
Circle 212 on Inquiry Card. page 123

Pulse Height Analyzers

"Let's Analyze the Situation" is title of new bulletin comparing features of commercially available MultiChannel Pulse Height Analyzers. Radiation Instrument Development Laboratory, Inc., 5737 South Halsted Street, Chicago 21, Illinois.
Circle 213 on Inquiry Card. page 123

Toggle Switch

An 8-page catalog lists 200 models of toggle and trigger switches by Sargent Electric Corp., 630 Merrick Rd., Lynbrook, N. Y. Ten of the series are treated in detail with dimensional outlines, illustrations, electrical and mechanical specifications and applications.
Circle 214 on Inquiry Card. page 123
(Continued on Page 216)

What is the true value of high purity aluminum foil in electrolytic capacitors?

Since the word "purity" is relative, the term "high purity" in describing the foil used in electrolytic capacitors has been often misused. Twenty years ago, $\mathbf{9 9 . 8 0 \%}$ aluminum was the highest purity commercially available. A few years later, 99.85% aluminum anodes became available and for a period of time were considered "high purity" foil.
Today, 99.99% aluminum is readily available for applications where the cost differential between 99.99% and standard purity anodes is justifiable. In some technical circles, purities of 99.85% to 99.87% aluminum are still referred to as "high purity". At Sangamo Electric Company high purity means 99.99% aluminum or better anode foil.
From the engineer's viewpoint, the advantage of $\mathbf{9 9 . 9 9 \%}$ aluminum over $\mathbf{9 9 . 8 7 \%}$ aluminum in electrolytic capacitors is both tangible and intangible. Most of the benefits are derived from the fact that there are fewer crystals of metal impurities on the surface of the higher purity foil. Crystal impurities such as iron do not form an insulating dielectric oxide and produce points of high electrical leakage. In a circuit, where capacitors of lower anode aluminum purity are used, voltages are set up between the dissimilar metals and deformation, or point corrosions, slowly takes place. This action decreases the shelf life of the capacitor.
Other benefits provided from the use of 99.99% aluminum foil include longer life, better high temperature operation and lower dissipation factor. When variable factors are equal, the summary advantages of 99.99% anodes versus 99.87% anodes can be shown as follows:

	99.87% Anodes	99.99% Anodes
DC leakage	Per Mil-C-62A or EIA-RS-154	EIA-TR-140 or about $1 / 2$ leakage for 99.87% anodes
Shelf life	2 years	$21 / 2-3$ years
Estimated life expectancy	$4-7$ years	$7-12$ years

Where extremely low leakage is important, where temperature of operation is between $65^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, or where exceptional long life is required and something better than standard electrolytic capacitors is desired, 99.99% aluminum anodes are well worth the additional cost.
Capacitor manufacturers, like Sangamo, pay a premium of approximately 60% more for 99.99% aluminum foil. To obtain this near-perfect purity, the aluminum ingots used to produce 99.99% anodes must be reprocessed from a good supply of bauxite and a well run electro-chemical process.

The use of 99.99% high purity aluminum anodes in Sangamo Type TR Twist-Tab Electrolytics, surgically clean papers, and a highly effective end seal gives these capacitors excellent operating life and superior electrical characteristics. They are designed to operate in a temperature range from $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and are available in ratings from 3 to 450 volts D.C.
Engineering Catalog Number 2227 gives full information and is available upon request for your files.

SC59-1
SANGAMO ELECTRIC COMPANY, Springfield, Illinois --designing towards the promise of tomorrow

New Tech Data

for Engineers

(Continued from Page 116)

Calculator
A pocket-sized Circular slide rule for engineers and plant and office executives is offered by General Industrial Co., 5738 Elston Ave., Chicago 30, IIl. Complete easy-to-follow instructions are included with each rule.
Circle 215 on Inquiry Card, page 123

Ceramic Capacitor Guide

Ceramic Capacitor Cross-Reference Guide lists over 600 Centralab ceramic capacitors by type and rating, stocked in production quantities. Equivalent units of other manufacturers, where available, are listed next to the Centralab capacitors. The guide contains separate sections devoted to general purpose discs and tubulars, temperature compensating discs and tubulars, high voltage discs, dual capacitors, buffer capacitors, low voltage capacitors, stand-off and feed-thru, transmitting, high accuracy and trimmer capacitors. Centralab Div., GlobeUnion Inc., 900 E. Keefe Ave., Milwaukee 1, Wis.
Circle 216 on Inquiry Card, page 123

Magnetic Amplifier Manual

Magnetic Amplifier Design Manual, Engineering Bulletin \#403-A, has 45 schematic diagrams and graphs describing magnetic amplifier design and application techniques. Covered are: Signal mixing, voltage and current comparators, automatic pilot systems, electrohydraulic valve drives, gyro and position pickoffs, insulation and cable barriers checker, integrators, limiters, sweep generator potentiometric amplifier circuit, relay tester, LaPlace transforms, transform generation, velocity servos, etc. Acromag, Inc., 22519 Telegraph Rd., Detroit 41, Mich.
Circle 217 on Inquiry Card, page 123

Miniature Transformers

Short form catalog lists miniature, subminiature, transistor, MIL-T-27A and industrial transformer specs available from distributor stock. Microtran Co., Inc., 145 E. Mineola Avenue, Valley Stream, N. Y.
Circle 218 on Inquiry Card, page 123

Industrial TV Cameras

A 4-page illustrated bulletin describing industrial television cameras gives complete specifications for 2 cameras in the company's line. Included are camera acessories, such as remote-control pan-tilt and iris-focus units, an autozoom lens, and acoustical and weatherproof camera housings. KIN TEL Div., Cohu Electronics, Box 623, San Diego, Calif.
Circle 219 on Inquiry Card, page 123

Magnetic Recording

Treatise, "The Tape Recorder as an Instrumentation Device" discusses the fundamentals and chief applications of magnetic instrumentation recording, traces the burgeoning need for precise measurement, and points out how magnetic-tape devices are uniquely suited to meet it. Included in the booklet's 74 pages are a discussion of the principles of magnetic recording, the physical elements of instrumentation recorders, and the four major recording processes - direct, frequency modulation, pulse-duration modulation, and digital. Ampex Corp., Instrumentation Div., 934 Charter St., Redwood City, Calif.
Circle 220 on Inquiry Card, page 123

PTFE Tubing

A 3-color, 4-page brochure contains prices, tolerances, sizes and application information on PTFE (polytetrafluoroethylene) tubing. A gatefold chart lists electrical, mechanical, chemical and thermal properties of the high temperature tubing. Crossreference charts are provided for "Super - Thin," "Thin - Wall" and "ASTM Wall" PTFE tubings by AWG size and footage and dimensional tolerances for PTFE tubings by AWG. Irvington Div., Minnesota Mining and Mfg. Co., 900 Bush Ave., St. Paul, Minn.
Circle 221 on Inquiry Card, page 123

Phenolics

An 8-page, illustrated brochure, CDC-358, describes General Electric's complete line of phenolic resins, var nishes and molding powders. It includes product features, special properties, and detailed technical data on phenolic molding powders, laminating varnishes, foundry resins, Methylon coating resins, and industrial resins and varnishes. General Electric Co., Pittsfield, Mass.
Circle 222 on Inquiry Card, page 123

Microfilm

Brochure describes the Copiffash, a portable 35 mm microfilming camera and the Camcopy Reader. The Copiflash will film wiring diagrams, maps, contracts, etc. The Reader has an $111 / 2 \times 181 / 2 \mathrm{in}$. black ground glass screen for reading the microfilm. Camcopy, Inc., Box 27, Matawan, New Jersey.
Circle 223 on Inquiry Card, page 123

Capacitors

Bulletin ME-58, Synchro Corporation, Electronic Division, Hicksville, Ohio, contains information on Dry electrolytic capacitors. Included are specifications, dimensional drawings, and details of mountings.
Circle 224 on Inquiry Card, page 123

Temperałure-Millivolt Tables

Chart of Temperature - Millivolt Conversion Tables for thermocouples from Thermo Electric Co., Inc., Saddle Brook, N. J. for Fahrenheit-Centigrade temperature conversion, in 5° increments, to mv values for 8 different thermocouple calibrations. The 2color chart is punched for a 3 -ring binder, or may be used as a wall chart. Values based on reference junction temperatures of $75^{\circ} \mathrm{F}$ and $25^{\circ} \mathrm{C}$. Correction factors for other reference junction temperatures are provided. Temperatures are from $-320^{\circ} \mathrm{F}$ to $+3270^{\circ} \mathrm{F}$ and $-200^{\circ} \mathrm{C}$ to $+1800^{\circ} \mathrm{C}$.
Circle 225 on Inquiry Card, page 123

Germanium Diodes

Bulletin 158 from Ohmite Mfg. Co., 3683 Howard St., Skokie, Ill., describes their line of gold-bonded germanium diodes. It lists types for general purpose and computer use, where from 1 to 4 operating characteristics are specified. Special computer types with 10 specified characteristics are also shown. Featured is a system to classify diodes for ease in selection by number and value of characteristics.
Circle 226 on Inquiry Card, page 123

Logic Modules Nołes

"Simplified Design of Digital Logic Using Magnalog System," is 7th in a series of semiconductor application notes from Semiconductor Div., Dept. K, Hoffman Electronics Corp., 930 Pitner Ave., Evanston, Ill. The 8page, 2-color brochure describes 12 typical applications for Magnalog logic modules. Each application with power supply circuitry is illustrated by a logic diagram, wiring diagram and waveshape photo. Included are "recommendations for designing: "Basic Logic," "Or," "Not-And," "And," "Modified And," "Bistable," "One" Generator, "Shift Register," "Binary Counter," "Binary HalfAdder," and "Binary Full Adder."
Circle 227 on Inquiry Card, page 123

Literature Lists

Two literature lists on fiber research, one on electron microscope work and the other on X-ray diffraction investigations, are offered by Instruments Div., Philips Electronics, Inc., 750 So. Fulton Ave., Mt. Vernon, N . Y. The tabulation of electron microscope papers includes 79 articles which appears in domestic and foreign publications and lists 6 textbooks and reference books. Fifty eight articles are tabulated in the X-ray diffraction list.
Circle 228 on Inquiry Card, page 123
(Continued on Page 118)

Put PERMANENT MAGNET SPECIALISTS on your development feam

Application of permanent magnets in microwave devices has resulted in vastly improved performance, lower costs and greater stability. Since the early days of micro-wave research, The Indiana Steel Products Company magnet design engineers have worked closely with leading manufacturers, providing expert help in developing special-purpose permanent magnet assemblies for such applications as radar magnetrons, backward wave oscillators, pm-focus traveling wave tubes and load isolators.

A discussion with permanent magnet specialists at The Indiana Steel Products Company may be just the stimulus your new design efforts need - or perhaps you'll find a way to improve your present products. In any case, you can be sure of this nobody knows permanent magnets like Indiana. And, because Indiana produces all permanent magnet materials, Indiana design engineers are well qualified to recommend the one best material for your design. Why not call in an Indiana man today?

THE INDIANA STEEL PRODUCTS COMPANY
VALPARAISO, INDIANA
WORLD'S LARGEST MANUFACTURER OF PERMANENT MAGNETS

INDIANA PERMANENT MAGNETS

FREE DESIGN MANUAL

Write TODAY for important free, new catalog for micro-wave design engineers - "Alnico Load Isolator Magnets," which describes shapes and sizes, magnetic properties and performance characteristics of this complete line of Indiana permanent magnets. Ask for Catalog No. 20N-3.

(Continued from Page 212)

Crystal-Counter Chart

An $81 / 2 \times 11$ in. chart shows the working range for crystals and counters in X-ray Spectograph applications. It covers the atomic scale of elements from 10 to 100 and is divided into two parts, one deals with K lines and the other with L lines. Instruments Div., Philips Electronics, Inc., 750 S. Fulton Ave., Mount Vernon, N. Y.

Circle 229 on Inquiry Card, page 123

Right Angle Connectors

Illustrated 6-page brochure gives specifications, outline dimensions and general information on right angle pin and socket connectors for printed circuit applications. Electronic Sales Division, DeJur-Amsco Corporation, 45-01 Northern Boulevard, Long Island City 1, New York.
Circle 230 on Inquiry Card, page 123

Relays

A series of relays, Models TT and TS, are described in Bulletin No. 160 from Ohmite Manufacturing Co., 3679 Howard St., Skokie, Ill. The relays feature "Molded Module" contact springs, which are molded into a single assembly, high sensitivity, and high ambient operating capability.
Circle 231 on Inquiry Card, page 123

Ceramics

Bulletin 116, a 4-page catalog, describes a line of off-the-shelf high temp ceramic tool components including: bushings, washers, discs, plates, rods, and v-blocks. It has: dimensions, tolerances, and mechanical and electrical properties of the hi-temp ceramic components. Duramic Products, Inc., 262-72 Mott St., New York 12, N. Y.
Circle 232 on Inquiry Card, page 123

Pulse Transformers

A 24-page catalogue, "Pulse Transformers" contains tables, charts, and schematics, and a brief history of low-level pulse transformers, their measurements, specifications, applications, interchangeability, dielectric ratings, manufacturing, and other data. Also included is information on some of PCA's 2,000 standard design transformers, case types and specifications data. PCA Electronics, Inc., 16799 Schoenborn St., Sepulveda, Calif.
Circle 233 on Inquiry Card, page 123

Design Data

Data sheets, Telehint \#7 and \#8, from Illumitronic Engineering Co., 680 E. Taylor Ave., Sunnyvale, California, give ways of calculating inductance, determination of Q and complete design of final output circuits.
Circle 234 on Inquiry Card. page 123

Silicone Guide

The 1959 illustrated reference guide describes what silicones can best meet the needs of problems ranging from adhesives to release agents, resins to rubbers, dielectrics to water repellents; contains graphic examples showing where they are currently used, and information on how to get specific data on the silicone material best suited to any application. It features an expanded indexing system. Dow Corning Corp., Midland, Mich. Circle 235 on Inquiry Card. page 123

Coils \& Transformers

Inductance values, curves (Q vs freq.), outline drawings, and general information on their line of torroids, transformers, filters, and magnetic amplifiers are contained in Catalog 858 issued by Communication Accessories Co., Lee's Summit, Mo.
Circle 236 on Inquiry Card, page 123

Fans \& Blowers

The 1959 McLean catalog features packaged fans, blowers, and accessory equipment used for cooling electronic apparatus. The 36 -page catalog contains new and improved models and information, construction features and specifications of the entire line. McLean Engineering Laboratories, P. O. Box 228, Princeton, N. J.
Circle 237 on Inquiry Card, page 123

DC Motor Operation

Catalog 11058, Servo-Tek Products Co., 1086 Goffle Rd., Hawthorne, N. J., is a 16 -page compilation of technical data. It has a discussion of the basic methods for operating dc motors from ac power sources and typical schematic diagrams. Included are: Specifications and speed and torque ratings.
Circla 238 on Inquiry Card, page 123

Power Supply

Two page, 2-color, bulletin describes the Model 104, transistor regulated power supply for general laboratory applications. Quan-Tech Laboratories, Morristown, N. J.
Circle 239 on Inquiry Card, page 123

Packaged Circuits

Packaged Circuit guide, 16 pages, contains replacement information on packaged circuits used in equipment of over 200 manufacturers. It also describes 9 new packaged electronic circuits. Centralab Div. of GlobeUnion, Inc., 900 East Keefe Ave., Milwaukee, Wis.
Circle 240 on Inquiry Card, page 123

Power Supplies

A 36-page catalog from Lambda Electronics Corp., $11-11131$ St., College Point 50, New York, has information and specs on the company's line of transistor-regulated and tuberegulated power supplies and outline drawings of the equipment.
Circle 241 on Inquiry Card, page 123

Sonic Energy Cleaning

A 3-color report, "How to Appraise Sonic Energy Cleaning," has been published by the Pioneer-Central Div. of Bendix Aviation Corp., Hickory Grove Rd., Davenport, Iowa. Five subjects are covered: what sonic energy is, how it cleans, how its efficiency can be evaluated, an analysis of applications, and an outline of the division's services to potential users.
Circle 242 on Inquiry Card, page 123

Transistor Sockets

Bulletin 112 contains outline drawings and general specifications for Series 3300 combination transistor sockets. Sockets are designed to accommodate transistors with triangular round or in-line pin configurations. Elco Corp., M St. below Erie Ave., Philadelphia, Penna.
Circle 243 on Inquiry Card, page 123

Button Cell Batteries

A 4-page, colored, illustrated brochure highlights the features, design potentials, and specifications of the VO-Series, nickel cadmium, button cell battery line produced by the Alkaline Battery Div., Gulton Industries, Inc., Metuchen, N. J.
Circle 244 on Inquiry Card, page 123

Converter-Inverters

Spectrol Electronics Corp., 1704 South Del Mar Ave., San Gabriel, Calif., has released a 4 -page, 2-color data file describing their Transidyne line of converter-inverters. Has features, specs, and styles of the 4 basic series.
Circle 245 on Inquiry Card, page 123

Burnell \& Co. may not be experts in the art of head shrinking. But when it comes to toroids, filters and related networks, Burnell has the know-how to solve an infinite variety of small space problems. The new $M / C R O I D$ filters by Burnell \& Co. are a notable achievement in the shrinking of filters which can be designed for low pass or band pass applications.

For example, as a low pass filter, Type TCLJ starts at 400 cps . Physical size is $11 / 16^{\prime \prime} \times 1 / 11 / 16^{\prime \prime} \times 1 / 2^{\prime \prime}$ max. For higher frequencies from 7,500 cycles up to 100 kc , size is $3 / 4^{\prime \prime} \times l^{\prime \prime}$ x $1 / 2^{\prime \prime}$.

The band pass filter, Type TTJ pictured here, ranges from 7,350 cycles
up to 100 kc . Physical size is $1 / 2^{\prime \prime} \times$ $19 / 32^{\prime \prime} \times 15 / 16^{\prime \prime}$, weight .3 ounces, band width 15% at 3 db and $+60 \%$ -40% at 40 db . Wherever space and performance are critical requirements, miniaturized MICROID © low pass and band pass filters provide utmost reliability as well as more unit surface economy on printed circuit boards. Completely encapsulated, they are ideally suited to withstand high acceleration, shock and vibration environments. Write for special filter bulletin to help solve your circuit problems.

See these and other subminiature components on display at Booth 2919-2921, IRE Exhibit.

PIONEERS IN TOROIDS, FILTERS AND RELATED NETWORKS

EASTERN DIVISION

DEPT. I-I5

 10 PELHAM PARKWAY PELHAM, N. Y. PELHAM 8.5000TELETYPE PELHAM 3633

FREQUENCY (KC)

PACIFIC DIVISION
DEPT. 1-I5
720 MISSION ST.
SOUTH PASADENA, CALIF.
RYAN 1-2841
TELETYPE PASACAL 7528

Write for Data Sheet M 8-1. It's yours for the asking.

Armed with the data in this folder, you can create an optimum design for a 12 -watt magnetic amplifier . . . get the closest possible control over its design and construction... for control of servo motors, regulated power supplies, etc.

You build the amplifier around its basic component the saturable reactor. Twenty-four ARNOLD saturable reactors are described in the folder. There's full information as to what associated components are necessary, and how to use the components in a proper magnetic amplifier circuit.

In buying just the saturable reactor, you get far more latitude than in buying a whole black box. And you won't have to prepare comprehensive specs., or depend on an outside source for the complicated designs.

ARNOLD MAGNETICS CORP.
4615 W. Jefferson Bivd., Los Angeles 16, Calif. REpublic 1.6344

Circle 145 on Inquiry Card, page 123

AC RATIO STANDARD

Years of experience in the design and manufacturing of Ratiu Transformers (RatioTrans*) from the pioneer and (RatioTrans*) from the pioneer and Model 1000 AC Ratio Standard.
This dual range instrument provides frequency range front $30-1460 \mathrm{cps}$ and 50 cps - 10 kc with input vollages of 2.5 f and . 35 f respectively (f in cpls).

RATIO ACCURACY: I PART PER MILLION

6 PLACE RESOLUTION 0.0001%

IRE SHOW
 Booth
 Nos. 3701
 and 3703

GERTSCH PRODUCTS, Ine.

Circle 146 on Inquiry Card, page 123

New Tech Data

(Continued from page 216)

Diodes

The Shockley Transistor Corp., Stanford Industrial Park, Palo Alto, Calif., has published data sheets on their 4-layer Transistor diodes. Characteristics of standard devices, Types D and AD, include: Switching voltage and current, holding voltage and current, resistance capacitance, current carrying capacity, and ambient temperature.
Circle 363 on Inquiry Card, page 123

Digital Instruments

Three lines of digital instruments for measuring ac and dc voltage, voltage ratio, and resistance are described in the Spring, 1959, Short Form Catalog issued by Non-Linear Systems, Inc., Del Mar, Calif. Selection guides simplify selecting accessories from the line.
Circle 364 on Inquiry Card, page 123

Cathode Ray Indicator

Two-page bulletin describes an X-Y coordinate indicating device having identical high gain dc-coupled amplifiers on both the horizontal and vertical axes. Includes physical and electrical specs of the instrument. Technitrol Engineering Co., 1952 E. Allegheny Ave., Phila., Pa.
Circle 365 on Inquiry Card, page 123

Reflectors

Microwave passive aluminum reflectors are featured in a 20 -page, 2 -color catalog from Tower Construction Co., Sioux City, Iowa. Included are types of design, construction details and test procedures.
Circle 366 on Inquiry Card, page 123

Plastic Laminate

New Products Bulletin describes the characteristics and specifications for Duralar, an all new plastic laminate, used to fabricate printed charts, diagrams and signs. Duralith Corporation, 1025 Race Street, Philadelphia 7, Pa.
Circle 367 on Inquiry Card, page 123

Potentiometers

A 48-page catalog from Markite Corp., Dept. 100,155 Waverly Place, New York, N. Y. describes the company's line of precision potentiometers. Featuring a conductive plastic element the line includes: rotary rectilinear, linear, non-linear, singleelement and dual element units.
Circle 368 on Inquiry Card, page 123

Wire and Cable

Catalog from General Electric Co., Wire and Cable Dept., Bridgeport, Conn., features wire and cable for aircraft, missiles, and rockets. Included are descriptions, sizes, resistances and weights. Insulations used are also described.
Circle 369 on Inquiry Card, page 123

Ultrascope

(Continued from page 101)
recently, the development and production of image-converter tubes had been confined to military purposes and was handled in conjunction with the Engineer Research and Development Laboratories, Corps of Engineers, U. S. Army, at Fort Belvoir.

The ultraviolet accessory viewer consists of two units. One unit, which fits on to the barrel of a microscope, contains the ultrascope and an eyepiece; the other unit is a compact power supply. A cable connects the power supply to the ultrascope tube.
Invisible rays from an ultraviolet lamp are projected through the specimen under observation, and through an ultraviolet objective lens. An invisible ultraviolet image of the specimen is formed on the faceplate of the image-converter tube. The faceplate transmits ultraviolet rays and has on its inner surface a photosensitive material which converts the ultraviolet image into a corresponding pattern of electrons. This electron pattern is, in turn, focused on the fluorescent viewing screen at the opposite end of the tube.

A visible image of the specimen appears on the viewing screen in yellow-green light and is observed through a lens of the desired magnification. Because the human eye is most sensitive to yellow-green light, that color range provides comfortable viewing during prolonged observations.

The unit is also easily adapted to photomicrography and thus can provide film records of the specimen under study.

istor Answers

(From quiz on page 117)
-

From the manufacturer of the widely used and well known
FM. 3 Frequency Meter and the later FM-6 Frequency Meter comes the newest addition to a growing family of fine instruments. The newest, the FM. 7 provides in a small package all of the essentials for the mainrenance of mobile communications systems.

NEW FREQ METER

MEASURES AND GENERATES: 20 mc to 1000 mc ACCURACY: 0.0001% exceeding FCC requirements 5 times MODULATION: AM, 30% at $1000 \mathrm{cps} ;$ FM, 1 kc at 30 mc 5 kc at 150 mc , or $\mathbf{1 5} \mathbf{~ k c}$ at 450 mc max.

ROANOKE. VA.
This new, ultra modern plant, formally dedicated March 17, 1959 as the newest link in the ITT Components Division manufacturing network, is devoted to the development and production of ITT Traveling Wave Tubes and latron* Storage Tubes.

III Components Division provides a wide range of special purpose tubes for communications, industrial and military requirements, backed by the research, development and manufacturing experience of the worldwide International Telephone and Telegraph Corporation.

A. ITI Power Triodes, for CW and pulse operation are used as modulators, amplifiers and oscillators in communications or industrial service. Water cooled and air cooled types.
B. Iatron* Storage Tubes, recently developed by ITT Components Division, have highpersistence screens for radar and display devices where extreme brightness is required.
C. Traveling Wave Tubes, developed by ITT and manufactured by ITT Components Division for microwave communications, and military applications.
D. Kuthe KU-73 ceramic envelope hydrogen thyratron, an essential element in radar modulation, is one of many hydrogen filled tubes available.
E. Evaporative Cooled Power Triodes feature high anode dissipation, exceptionally high anode overload capacity-greatly reduces liquid cooling requirements.

KU 73 CERAMIC THYRATRON
*IATRON - Trademark of International Telephone \& Telegraph Corporation.

NEWARK, N.J.
the Laboratories, inc., Newark, N. J. a it of ITT Components Division, is the urld's largest manufacturer of hydrogen yratrons and hydrogen diodes.

CLIFTON, N.J.

ITT Power Tubes, selenium and silicon rectifiers are among the products manufactured at the ITT Components Division plant in Clifton, N. J.

PALO ALTO, CALIFORNIA Specialized research and production facilities in Palo Alto, California, are the source of ITT tantalum capacitors and seals manufactured by techniques developed over years of experience and research.

III Components Division products - Silicon Rectifiers, Selenium Rectifiers and Diodes; Tantalum Capacitors and Seals-are widely used in specialized military and industrial equipment where rugged construction, minimum size, maximum operating efficiency and temperature stability are critical, as well as in home entertainment appliance devices requiring economy, ease of assembly and minimum space.

HIGH VOLTAGE RECTIFIERS

See us at

Booths 2510-2520 \& 2615-2625
IRE SHOW

SILICON POWER RECTIFIERS

PRECISION COMPONENTS

TIME DELAY RELAYS

For military applications - " H " and " S " Series

You can meet the shock and vibration conditions specified by today's military applications with the " H " Series thermal time delay relay. They are small in size, of rigid construction and manufactured with thorough quality control and testing to assure conformity to the highest standards. The " S " Series has a single pole, double-throw contact arrangement with long life.

FEATURES:
Time delays fram 3 to 180 seconds Temperature compensated
Miniature - Hermetically sealed
Meets rigid environmental specifications

New DIGITAL MOTORS

Stepping motors for high reliability applications. Meet the requirements of assured reliability and long life for aircraft, missile and automation systems.

features
Bi-directional - Positive lock - Dynamically balanced \cdot Simplicity of desıgn \cdot High pulsing rate.

New ULTRASONIC DELAY LINES

Enables development engineers to employ new concepts in existing and projected applications. Low in cost, small in size and simple to operate.
SPECIFICATIONS
Delay range $\ldots \ldots \ldots 5$ to 6000 microseconds
Tolerance $\ldots \ldots \ldots \ldots \ldots+0.1$ microsecand
Signal to noise ratio........eater than $10: 1$
Input and output impedance. 50 ta 2000 ohms
Carrier frequency............. $\mathrm{kc}-1 \mathrm{mc}$
Delay to pulse rise time........... to $800: 1$

WRITE FOR COMPLETE COMPONENTS CATALOG 159 ELECTRONICS DIVISION
CURTIIS-WRILETI CORPORATION • WEST CALDWELL. N. ل.

IRE Show

(Continued from page 110)
papers of a new plant or a new process going automatic. This field promises to provide significant social and industrial contributions during this generation. Even the straight-laced banker has given way to automation in his field.

Are you a computer engineer? If so, you had better attend all of the sessions concerning electronic computers. The way your field is moving these sessions are a must to you. Papers being presented will cover many new applications, components, and circuits for applications in the field of computers. One of your big problems is system checkout and fault finding. The paper, "Automatic Checkout Equipment Featuring Test Programs for Diagnostic Checking," by R. B. Whitely and L. J. Lauler, Lockheed Aircraft Corp., will give you some good ideas on this problem.

TECHNICAL PROGRAM

Monday Afternoon-March 23

Adaptive Control Processes and Allied Systems
Waldorf-Astoria-Starlight Roof
On Adaptive Control Processes, R. Beliman and R. E. Kalaba

A Dynamic Programming Approach to Adaptive Control Processes, M. Freimer
On the Optimum Synthesis of Multipole Systems in the Wiener Sense, H. C. Hsieh and C. T. Leondes.
On Adoptive Control Systems, L. Braun, Jr.
Extension of Phose Plone Analysis to Quantized Systems, P. H. Ellis.

Vehicular Communications

Waldorf-Astoria-Astor Gallery
An Anolysis of Radio Flutter in Future Communications. N. W. Feldman. Radio Set, AN/GRC-59, Rugged, Reliable Design for Tactical Usage, W. F. Given.
A New Approach to Compactness in Mobile Rodiotelephone Design, W. Ornstein.
A New Manual Mobile Telephone System, A. F. Culbertson.
Performance of "Low-Plate-Potential' Tube Types at Mabile-Communications Frequencies, R.J. Nelson and C. Gonzalez.

Engineering Writing and Speech

Woldorf-Astoria-Jade Room
Using the Psychological Approach in Scientific Writing, J. L. Kent.
An Effectual Approach to an Orally Presented Paper, I. J. Fong.
A Self-Improvement Progrom for Engineering Writers, A. H. Cross.
Rubjectivity versus Objectivity in the Technical Report, S. Cohen.

Radio Frequency Interference

Waldorf-Astoria-Sert Room
Standard Measurement Parameters for Phenomeno Distributed in Time and Frequency, E. W. Chapin.
Magnetic Field Pickup for Low-Frequency RadioInterference Measuring Sets, M. Epstein and R. B. Shulz.

Microwave Duplexer Tube Characteristics Under Spurious Radiation Conditions, 1. Reingold,
Technical Considerations in the Assignment of Operating Frequencies in a Communications System, O. M. Salati and R. A. Rosien. (Continued on page 224)

AT LAST-The IDEAL BARRIER TERMINAL STRIP

JONES 500 SERIES LONGER-STURDIER

Wider and higher barriers for increased creepage distances. Closed bottoms for complete insulation. Material between barriers at the base adds to the strength and maintains the same creepage distance between contact to contact and contact to ground. Can be imprinted here. No insulating or marker strip required. Three series - 540, 541 and 542 having the same terminal spacing as our 140,141 and 142 series.

Complete listing in the new Jones No. 22 catalog. Write for your copy today.

Visit Booth 2535 at the IRE Show

Circle 147 on Inquiry Card, page 123

EXTRUSIONS AND CONNECTORS

WITHOUT TOOLING GOSTS

 cally built, to your own design.

More than 50 different styles of connectors, extrusions and accessories are readily locked together to form the framework of any type of housing. Standard gauge aluminum sheets are cut and fitted to complete the enclosure.

Assembling connector and extrusion

Locking connector and extrusions

The Bud Imlok system can solve your special housing need. For complete details parts list and prices write for Bulletin 1858 . . . or better still-see the Bud Imlok products at your distributors.

Completed framework

BUD RADIO, INC.
2118 East 55th Street
Cleveland 3, Ohio Dept. T

DC-DC CONVERTER
All Items Designed for 13.6V. Except 8034 which is for
 28 V input. TYPICAL DC-DC CONVERTER CIRCUIT

Part	Total VA. Output	D.C. Output			
Number		$\begin{gathered} \text { F. W. } \\ \text { Volts } \end{gathered}$	Ma.ge		Mave Ma.
M8034	125	500	250	250	420
M8035	125	500	250	250	420
M8036	40	450	90	225	155
M8037	225	250	90	125	155

TRANSISTOR DRIVER

Designed specifically for transistor, servo and audio
Frequency response 70.20 K
Size AF mill through AH Hermetically seated to MIL-T.27A.
EPOXY MOLDED See catalog for exact sizes and weights. ON SPECIAL
ORDER ONLY part Part Number Application M8002* Coll. to P.P. Emit. 560 M8003* Coll. to P.P. Emit. 625 100 С.T. $20 \quad 1.5$ M8005 Coll. to P.P. Emit. $7,000 \quad 320$ C.T 7004 M8006 Coll. to P.P. Emit. $10,0006.500$ C.T. . 75.005 - Bi.filar wound to minimize switching transients.

Write TODAY for catalog and price litt of the complete MICROTRAN line

milcROTRARI company, inc.
 145 E. Mineola Ave., Valley Stream, N.Y.

IRE Technical Papers

(Continued flom page 222)
Precipitation Stotic at High Altitude, L. A. Hartman and F. B. Pogust.
Precipitation Generated Interference in Jet A craft, R. L. Tonner ond J. E. Nanevicz.

Engineering Management Techniques Woldorf-Astorio-Empire Room
The "Maximum" Manoger in Reseorch and Development, M. A. Williamson
Marketing F'actors in Reseorch and Development, H. M. Rainie, Jr.

Obtaining Copital for the Smaller Electronics Firm-Methods ond Pitfolis, C. M. Bower
Simulotion Techniques for Understanding $\dot{R} \& D$ Manogement, E. B. Roberts.

Production Techniques

New York Coliseum-Morse Holl
Microcircuitry-A New Approach to Miniaturizotion. Productibility, and Reliobility, W. D. nsuloted Flexible Printed Wiring Techniques, W. B. Wilkens.

A Semi-automatic Transistor Testing Mochine, E. Millis.
The Development of Automatic Machinery for Moking Electron-Tube Stems, M. M. Bell.
Microminioturization, D. W. Moore.

Navigation and Traffic Contral

New York Coliseum-Morconi Holl
Loron-B Precision Novigotion, W. J. Romer. A Synthetic Fufure Environment for Anolysis of
Rador Beacon System Capacity, A. Ashley ond F. H. Bottle, Jr. Air Troffic Control Co and M.H. Northman.
Use of Airport Surface Detection Rodar os o Tool in Airport Research, M. A. Worskow. An Improved Instrument Low Approach System Compotible with Tacan, M. Korpeles ond E. G. Pafker.

Electronic Devices

New York Coliseum-Forodoy Holl
The Field Effect Tetrode, H. A. Stone, Jr. A Theory of the Tecnetron, A. V. J. Mortin. A Simple and Flexible Method of Fobricating Diffused NPN Silicon Power Transistors, L. D. Armstrong ond H. D. Hormon. A Twenty-Ampere Switching
Nowolk.
Drift Considerations in Low-Level Direct-Coupled Tronsistor Circuits, J. R. Biard ond W. T. Motzen.
Video Crystol Tester, Y. J. Lubkin.

Tuesday Morning-March 24
New Techniques for Analysis Woldorf-Astorio-Storlight Roof
Simplified Method of Determining Tronsient Response from Frequency Response of Linear Networks ond Systems,
A New Method of Analysis of Sampled-Data Systems. A. Papoulis.
Etotisticol Filter Theory for Time-Vorying Systems, E. C. Stewort and G. L. Smith.

On the Phose Plone Analysis of Non-Linear Time On the Use of Growing Herm. to ldentify Static Nonlineor Lory D. C. Lai and W. H. Operotors, J. H

Nuclear Instrumentation Techniques-1 Waldorf-Astoria-Astor Gollery
A Transistorized Nuclear Reactor Count Rate Chonnel. J. H. Cawley.
Transistorized Source-Ronge Reactor Instrumento tion, R. R. Hoge
A Two-Dimensionol Kicksorter, R. Chose.
A Transistorized Pulse Height Anolyzer, R. T Graveson.

Broadeasting-I

Woldorf-Astoria-Jade Room
FM Carrier Techniques in the RCA Color Video ${ }^{\text {Tape Recorder, R. D. Thompson }}$
A Deleter-Adder Unit for TV Vertical Interval iest Signals, J. R. Popkin-Clurman ond F bovidoff.
Ans Electro-Servo Control System Capable of Cor recting Zero Point Zero Five Microsecond Ro tational Errors, W. Barnhart.
iransistorized Video Switching, J. W. Wentworth,
C. R. Monro, and A. C. Luther, Jr.

New Approach to Low Distortion in a Transistor Fower Amplifier, H. J. Paz.

at your wits end...

Looking for custom-made

fine pitch

precision gears???

The production of custom-made, fine pitch precision gears is part of the daily routine at Bochme. Whatever your precision gear needs - up to A.G.M.A. precision \#3, $1 / 3^{\prime \prime}$ to 5 " O.D., 180 to 16 D.P. - our specialized engineering skills and excellence of craftsmanship produce the precision gears or gear trains that meet your specific problem.

We have been in the business of design and manufacture of precision equipment, since 1917. Boehme electrical, clectro-mechanical and electronic products are setting precision standards for the rapidly progressing fields of automation and instrumentation. Our specialty is meeting your precision manufacturing requirements.

Let us submit estimates of your needs based on your sketches or blueprints, at no cost or obligation to you. Write now, for more information.

H. O. Boehme, Inc.

Contractors, Designers, Manufacturers of Precision Electrical, Electro-

Mechanical and Electronic

Equipment since 1917
915 Broalway New York 10, N. Y.

Circle 110 on Inquiry Card, page 123

Nicolaas Bloembergen
Co-winner, Morris Liebmann Memorial Prize

Contributions fo Stereo Sound Reproduction

Waldori-Astoria-Sert Room
The "Null Method" of Azimuth Alignment in Multitrock Mognetic Tope Recording, A. G. Evons.
Three Chonnel Stereo Playback of Two Trocks Derived from Three Microphones, P. W. Klipsch. Study of O Two-Chonnel Cylindrical Ceramic Tronsducer for Use in Stereo Phonogroph Car tridges, C. Germano.
The Single Stereophonic Amplifier, B. B. Baver and J. M. Hollywood.
A Frame-Grid Audio Pentode for Stereo Output, J. L. McKain and R. E. Schwab.

Design Considerotions for Stereo Cortridges, J. H. MeConnell.

Stotus Report on Stereophonic Recording ond Reproducing Equipment, W. S. Bachmon.

Engineering Management-lll
Waldort-Astoria-Grand Ballroom
The Advonced Reseorch Projects Agency-Operotions and Plans, J. E. Clork.
Plonning ond Monaging a Multi-Compony Electronic Systems Program, E. G. Fubini
Intro-Company Systems Monagement, H. H. Goode.

Medical Electronics-I

New York Coliseum-Morse Hall
A Dato System for Physiological Experiments in Satellites, M. A. MeLennan.
A Logical Structure for Diagnosis Based on Probobility, S. Rush.
Microwove Radiation as a Tool in Biophysical Research C. Susskind, B. S. Jacobson, and S. B. Prausnitz.
The Reliability Problem in Machines and in Noture, W. B. Bishop and J. A. LoRochelle. Respiratory Control of Heart Rate: Laws Derived from Anolog Computer Simulation, M. E. Clynes.

Land and Space Electronics

New York Coliseum-Marconi Hall
Applicotion of Sotellite Doppler Shift Measurements.
Part I-Sotellite Freguency Measurements, O P. Loyden and H. D. Tanzman.

Part II-Slont Range at Nearest Approoch, H putnik II
as Observed by C-Band Radar. D. K Barton.
ree-Rotor-Gyro Stobilized Inertial Reference
Ground ${ }^{\text {Prm }}$, Mitsutomi. for Caherent Bistotic Rador, H. A. Crowder
Lond Vehicle Guidance by Radar, Y. Chu ond P. N. Buford.

Widening Horizons in Solid-State Electronics

New York Coliseum-Faraday Hall
Ferrites and Microwave Solids, C. L. Hogan. Solid-State Energy Sources, W. J. Vander Grinten Advanced Semiconductors, W. M. Webster, Jr.

Tuesday Afternoon

Information Theory

Waldof-Astoria-Starlight Roof
Information Rate from the Viewpoint of Induc. tive Probability, L. S. Schwortz, B. Harris, and A. Hauptschein.

Binory Relay Communication and Decision Feedbock, J. J. Metzner.
(Continued on page 226)

Take a walk along most any assembly line anywhere in the electronics industry ... and what do you see? KESTER FLUX•CORE SOLDER . . . the standard today as it's been for many years. Manufacturers and engineers know they can depend upon Kester to protect their products' reputation. Why not let it do the same for you?
WRITE today for recommendations and free literature.
Kester Soloen Company
4210 Wrightwood Avenue Chlcago 39, lllinois
Newark 5, New Jersey Brantford, Canada 123

Meet Mr. Phil A. Ment Electronic Engineer

That letter he's about to mail is his EEECTRONIC INDUSTRIES subscription renewal.

Did you mail yours? Make sure you do when it arrives. Otherwise you'll miss our 17th ANNUAL DIRECTORY and ALL. REFERENCE HANDBOOK (June issue).
The most comprehensive-most useful directory in the industry.
send for the most widely used
ELECTRONIC SUPPLY GUIDE ALLIED'S

COMPLETE 452-PAGE 1959 CATALOG

your best buying guide to the world's largest stocks of ELECTRONIC SUPPLIES FOR INDUSTRY

Simplify and speed your purchasing of electronic supplies and equipment: send your orders to us for fast shipment from the world's largest stocks of electron tubes (all types and makes), transistors, test equipment (see our money-saving KNIGHT-KITS), audio equipment and electronic parts. Our expert Industrial supply service saves you time, money and effort. Send today for your free 1959 allied Catalog-your complete Buying Guide to quality Electronic Supplies for Industrial and Communications use.

Send for
FREE
Catalog

Circle 128 on Inquiry Card, page 123

MILLER
 small, adjustable R. F. COILS

-built with top quality materials, impregnated with moisture-resistant varnish, and 100% tested to exacting specifications.

SUB-MINIATURE RANGE:

-15 items, with inductances from 17 to 300 microhenries. Form dimensions: $3 / 16^{6}$ diameter $\times 5 / 8^{\prime \prime}$ long. Mounting hole: $11 / 64^{\prime \prime}$.

MINIATURE RANGE:

-15 items, from .4 to 800 microhenries. Form dimensions: $1 / 4^{\prime \prime}$ diameter x $7 / 8^{\prime \prime}$ long. Mounting hole: $3 / 16^{\prime \prime}$.

STANDARD RANGE:

-13 items, from 9 to 2100 microhenries. Form dimensions: $3 / 8^{\prime \prime}$ diameter x $1 \cdot 1 / 16^{\prime \prime}$ long. Mounting hale: $1 / 4^{\prime \prime}$.

Immediate deliveries on larger quantities from the factory. Over 400,000 catalog items carried regularly in stock. Smaller quantities from any leading parts distributor. Miller R.F. coils are competitively priced.
Specials-send us your requirements for a prompt quotation. We also build to Military Specifications. Write for the Miller industrial catalog.

IRE Technical Papers

(Continued from page 225)
Results of a Geometric Approach to the Theory and Construction of Non-binary, Multiple Error, and Failure Correcting Codes, B. M. Dwork and R. M. Heller.
An Application of the Theory of Games to Radar Reception Problems, N. J. Nilsson
Perception Simulation Experiments, F. Rosenblatt.

Nuclear Instrumentation

Techniques-II
Waldorf-Astoria-Astor Gallery
A Transistorized Cold Cathode Decade Counter. H. Sadowski and M. E. Cassidy.

A High Sensitivity Semi-conductor Diode Modulator for DC Current Measurement, H. E. DeBolt.
Control Concepts for Nuclear Ramjet Reactors R. E. Finnigan.

Low Background Nuclear Counting Equipment H. D. LeVine, R. T. Graveson, and A. L. Charl ton.

Broadcasting-II

Waldorf-Astoria-Jade Room
Possibilities of Major Simplifications in Color Television Live Cameras and Recording Devices Through the Use of Chroma Field Switching and Subsequent Automatic Color Balance, W
Report Hughes.
Report of TASO Committee 3.3 on Correlation of Picture Quality and Field Strength, C. M. Braum and W. L. Hughes.
Report of TASO Committee 5.4 on Forecasting Television Service Fields, A. H. LoGrone.
A New Wireless Microphone for TV Broadcasting, P. K. Onnigian.
Television Program Automation System Using Beam Switching Tubes with Shift Register Cir cuitry, F. C. Grace.

Speech and Circuits

Waldorf-Astoria-Sert Room
Speech Bond-width Compression with Vocoders, F. H. Slaymaker,

Audio Applications of a Sheet-Beam Deflection Tube, J. N. Van Scoyac.
A Drift-Free Direct Coupled Amplifier Utilizing - Clipper-RC Feedback Loop, J. N. Van Scoyoc and E. S. Gordon.
The Application of the Silicon Capacitor in Automotic Sweep Circuits and "Signal Seeking "' Receivers, J. Black.
An Analysis of a Transistorized Class "B" Vertical Deflection System, Z. Wiencek and J. E Bridges.

Medical Elecfronics-II

New York Coliseum-Morse Hall
Recent Advances in Medical Electronics, V. K. Zworykin. Electrode J. W. Moore and J An Electronic
del Castillo
Transistor Waveform Generators, G. N. Webb and R. N. Glackin.
Cordiac Pacing-Stimulation by Very Portable Equipment, D. G. Kilpatrick.
The Design ' of a Fetal Phonocardiotachometer H. S. Sawyer.

Reliability Techniques

New York Coliseum-Marconi Hal
Development and Utilization of Redundant Sys tems, S. Nozick.

Franklin H. Blecher
1958 Browder J. Thompson Memorial Prize

(Continued on page 228)
this Howard fractional H.P. gear motor can be used for

RATIOS FROM 10:1 to 60:1
MODEL 2900: 2 Pole-4 Pole Induction with A26 Gear Unit
DIAMETER $33 /$ bl $^{\prime \prime}$
LENGTH. 73/4" $1081 / 4_{4}{ }^{\prime \prime}$
HORSE POWER: $1 / 70$ to $1 / 15$ depending on length of stacking.
TORQUE OUTPUT. Up to 60 in lds depending on ratio.
BEARINGS: Permanently lubricated and sealed ball bearings

Check your specifications with Howard. Write for complete details and prices on these and other Howard gear motors and reduction units.

MODEL 29.500: Universal AC/DC or Shunt with A26 Gear Unit
DIAMETER: $33 / 6^{\prime \prime}$
LENGTH: $713 / 4^{\prime \prime}$ to $737 / 4^{\prime \prime}$
HORSE POWER: $1 / 70$ to $1 / 4$ depending on length of stacking.
TORQUE OUTPUT: Up to 60 in . Ibs. depending on ratio.
BEARINGS: Permanently lubricated and sealed ball bearings.

HOWARD INDUSTRIES, INC. 1730 State St., Racine, Wisconsin
Coro Racine tlectric Prods., loyd Scruggs Co Divisions. Electric Motor Corp., Cyclohm Motor CorD. Aacine Clectric Prods.,
Circle 138 on Inquiry Card, page 123

OF GUARANTEED DEPENDABILITY

CINCINNATI SUB-ZERO TESTING and CHILLING EQUIPMENT

As the oldest manufac-
 turer of temperature testing and storage units in operation today, we take pride in our record for 100% reliability . . . and for building a little more into every unit produced.

Write describing your requirements. We'll gladly send literature, or have our Engineers submit estimates on request.

Member: Environmental Equipment Instifute
Representatives in all major industrial cities.

CINCINNATI

 SUB-ZARO PRODUCTS3930-El-9 Reading Rd. - Cincinnati 29, Ohio Circle 139 on Inquiry Card, page 123

A problem in management organization, Aengineering coordination, and producfion skill.

Problems:

182 Kiss of Parts, too few
for production tooling, too many for hand means.
$2 \frac{39}{\text { kit. printed boards per }}$
331 different circuit con-
3 figurations.
4 Close mechanical toler-
5 Dua-metal electroplat.
5 ing, gold and solder.
6 Running changes.

Solutions:
1 A separate precision circuit organization.
2 Close customer líaison.
, Personnel and know-how
3 geared to military quality requirements.
4 Outstanding plant and 4 equipment.
5 Large fooling and pro5 duction resources.
6 High production momen-

प1 = ——— 0

has the same solutions for YOU ...
for further information address: MILITARY CONTRACTS COORDINATOR

Manufacturing corp.
7447 W. Wilson Ave., Chicago 31, III.
Circle 140 on Inquiry Card, page 123

AIR-WOUND INDUCTORS

More than a quarter century of experience-the longest in the industryis behind these outstanding coils. But we don't stop here: Custom coil designing to operating specifications has always been an essential part of our service, and we can produce efficiently in large or small quantities. If you must solve a special coil application in a hurry, our know-how is as close as your telephone. Call ST 8-5581.

Specialists in Designing and building equipment to operating specifications
A\& olso design and manufacture filters for: ANTENNAS• RADIO INTERFERENCE• RADIO RANGE•UHF and VHF as well as mony special types designed to performance specifications. Available to commercial or military standards.

Beaver Dam Road, Bristol, Penna.

High Reiiability Statistically Demonstrated. B. L. Weller
Circuit Redundancy, J. H. S. Chin
An Original Reliability Program for a Development Project, K. S. Packard
Failure indication Considered as a Problem in Sequential Analysis, W. B. Bishop.

Mierowave Tubes

New York Coliseum-Faraday Hall
Microwove Detection with Vacuum Tube Diades, N. E. Dye, J. Hessler, Jr., A. J. Knight. R. A. Miesch, and 'G. Papp.
Priming Techniques for Reducing Jitter on Pulsed Reflex Klystrons, P. A. Crandell.
A Multiole Frequency Local Oscillator, C. W. Flynn.
Selective Signal Suppression and Limiting in Traveling. Wave Tube Amplifiers, H. J. Wolkstein and E. Kinaman
A New Backward-Wave Oscillator for the 4 to 5Milimeter Region, J. A. Noland and L. D. Cohen.

Tuesday Evening

Future Developments in Space

Waldorf-Astoria-Starlight Roof
Space Philosophy, L. V. Berkner.
Engineering Needs, F. H. Griswold
Spoce Vehicles, G. H. Stoner.
Spoce Engineering, O. G, Villard, Jr
Communications and Dota Transmission, G. S. Shaw.
Space Navigation, L. E. Root
Military Applications, J. M. Gavin.
Brophysical Problems af Space Travel. T. C Helvey.
Medical Aspects, O. H. Schmitt
Soace Science, H. E. Newell.

Wednesday Morning-March 25

The Statistical Theory of Signals and Circuits
Waldorf-Astoria-Starlight Roof
Coding a Discrete information Source with a Distortion Measure, C. E. Shannon.
The Probability Density of the Output of a Filter when the Input is a Random Telegraphic Sigwhen the Anput is a
On the Solution of an Eigenvalue Equation o the Wiener-Hopf Type Defined in Finite and Infinite Ranges, R. Mittra.
Optimum Estimation of Impulse
Presence Estimation of Impulse Response in the Presence of Noise, M. J. Levin.
An. Approximate Method of Camputing Modula A Products, J. L. Ekstrom.

Radio and Television Receivers

Waldorf-Astoria-Astor Gallery
Considerations in Transistor Automabile Receiver Front End Design, R. Martinengo.
A Five-Transistor Autamobile Receiver Employing Drift Transistors, R. A. Santilli and C. F. Wheatley.

Dr. E. Leon Chaffee
IRE Medal of Honor

Telemetering antenna systems available for all bands-215-265, 940.980 mc . Gain up to 26 db . Either wide or narrow beam. Single or tri-helical models, and single helical feeds utilizing parabolic reflectors of 6,8 , or 10 -foot diameters.

Write for complete technical dato...

TECHNICAL APPLIANCE CORPORATION SHERBURNE, NEW YORK
Circle 142 on Inquiry Card, page 123

Improvements in Detection, Gain Control, and Audio Driver Circuits of Transistorized Broadcost Band Receivers. R. V. Fournier ond D Thorne.
Apolication of Rotationally Non-symmetrical Electron Lenses to TV Image Reproduction, D. Taylor. N. Parker, and N. Frihart.
A High Sensitivity Ultrosonic Microphone, P. Desmares and R. Adler.

Component Parts-I

Woldorf-Astorio-Jade Room
Progress Report on Ad Hos Group Study on Specificotions E. J. Nucchi.
Trend of Things to Come, C. H. Lewis
Review of the Copacitor Art Kohn
Electronic Materials-An Industry-Wide Problem A. M. Hadley

A New Method for Maintaining Uniform Cooling Airflow during Maintenance and Operation, A. Perlmutter.

Digital Telemetering

Waldorf-Astoria-Sert Room
Digitol-to-Analog Conversion and Mulifiplexing, D. Block and M . Palevsky.

A Hich-Speed Airborne Digital Dato Acquisi tion System, S. Cogan and W. K. Hodder. A System for Editing and Computer Entry of Flight Test Data, S. F. Higgins.
The use of a Fractianal Bistable Multivibrator Counter in the Design of an Automatic Discriminotor Calibrator, M.W. Williard and G. F. Anderson.

Analysis of Multiplex Error in FM/FM and PAM/FM/FM Telemetry, J. Schenck and W. F. Kennedy.
Comments Relative to the Application of PCM to Aircraft Flight Testing, R. S. Djorup.

Symposium:

Psychology and Electronics in the Teaching-Learning System
Waldorf-Astoria-Grand Bollroom
eaching Machines B. F. Skinner.
Teaching Physics by Television, H. E. White Preliminary Studies in Automated Teoching, R F. Mager.

Problems and Possibilities of Electronic Systems in Higher Education, C. R. Carpenter. (Continued on page 230)

RUGGEDIZED YAGIS

For reliable, high-performance communications operations...
such as off-the-air pickup, military transmit and/or receive, meteor burst communications, low-frequency microwave. Featuring up to 16 -bay stacking with gain up to 24 db . and flexible spacing of bays for specific needs. Frequency range from 30 mcs . through 500 mcs .

Write for complete echnical data on standard and special antenna systems.

ECHNICAL APPLIANCE CORPORATION

 SHERBURNE, N. Y.Circle 143 on Inquiry Card, page 123

Now both DC \& AC precision measurements may be made with this all new jf precigion instrut ment. The Madel 803 may be used as an AC Differential Voltmeter, DC Potentiometer, or DC/AC VTVM. Actually 3 INSTRUMENTS IN ONE!

STANDARD CELL REFERENCE

DC
Accuracy: Better than . 05% from . Iv ta 500 Valts

Resolution: .005 v at 500 v to .00005 v at . Iv
Search Ranges: 500-50-5..5v
Null Ranges: 10.1-.1-.01v
Input Resistance: Infinite at Null

AC

Accuracy: Better than $.2 \%$ from .5 Volt. to 500 Volts from 30 CPS to 5 KC

Resalution: .005 v at 500 v to .00005 v at .1 v
Search Ranges: 500-50-5.5v
Null Ranges: 10-1-.1-.01v
Input Impedance: 1 Meg. shunted by approx.
25 mmf .

Microwave Component News from SYLVANIA

LN/EKT space Saving Ferrite Devices

Three-port Circulator, Model FD-TC 522

Coaxial Ferrite Isolator, Model FD-155

Sylvania introduces new ferrite devices covering UHF through K band

Sylvania scientists and engineers have developed advanced ferrite devices with new utility and reliability. They are the results of pure research and product development by the Microwave Physics Laboratory, now a part of Special Tube Operations.

Now, new Tee circulators are available that perform the same electrical function as standard phase shift circulators, yet occupy only 25% of the space and cost much less. The devices can also be used as isolators and as fast-acting switches.
New isolators, available in coaxial and standard design, incorporate exclusive space-saving features in addition to outstanding electrical performance. The $81 / 2$-inch FD-151, for example, provides 15 -db isolation across the band from $2-4 \mathrm{kmc}$. Whatever the degree of isolation required, you'll get a smaller package and top reliability from Sylvania.

Data on Sylvania ferrite devices available from stock may be obtained from your Sylvania representative or by writing to the address below. Devices can also be custom designed to meet your specific requirements.

∇ SYLVANIA

Sylvania Electric Products Inc. Special Tube Operations

500 Evelyn Avenue, Mountain View, California

IRE Technical Papers

(Continued from page 228)

Communication by Scatter System
New York Coliseum-Morse Hall
Predicting the Performance of Long-Distance
Tropospheric Communication Circuits, A. P. Barsis, K. A. Norton, and P. L. Rice.
A Study of the Economic and Technical Feasibility of Utilizing Tropospheric Scatter Links in the National Network of Korea, C. A. Parry. A Formalized Procedure for the Prediction and Analysis of Multichannel Tropospheric Scatter Circuits, C. A. Parry.
Multibeam Transhorizon Tropospheric Communications, J. H. Vogelman, J. L. Ryerson, and
Sim. Bickelhaupt.
Simplified Base Band Diversity Combiner, R. T. Adams

Mathemafical Approaches for Reliability

New York Coliseum-Marconi Hall
The Reliability Game, R. F. Edwards
Operational Reliability Model for a Reconnais sance System, L. L. Philipson.
What Price Reliability? J. Klion and J. J. Naresky.
System Efficiency and Reliability. R. E. Barlow and L. C. Hunter.
Analysis of System Reliability from the Standpoint of Component Usage and Replacement. B. J. Flehinger

Microwave Devices

New York Coliseum-Faraday Hall
A Microwave Meacham Bridge Oscillator, W. R. Sooy, F. L. Vernon, and J. Munushian.
A Linear Phose or Amplitude Modulator for Special Consideration J. Gindsberg.
Special Consideration in the Design of a Tunabie Multielement Waveguide Filter, R. L. Sleven. Strip Tronsmission Line Corporate Feed Struc. tures for Antenna Arrays, D. Alstadter and F. O. Houseman, Jr.

Low-Loss S-Band and L.Band Circulators for Use with Masers and Reactance Amplifiers, F. Arams, G. Kroyer, and S. Okwit.

Wednesday Afternoon

Electronic Computers: Systems and

 ApplicationsWaldorf-Astoria-Starlight Roof
Radar System Simulation Techniques, J. M. Lambert and A. J. Heidrich.
Application of the NCR 304 Data Processor to the Synthesis of a Digital Computer Building Block, G. H. Goldstick and M. Kawahara.
Automatic Checkout Equipment Featuring Test
Programs for Diagnostic Checking, R. B, Whiteley and L. J. Lauler.
Systems Organization of a Special Purpose Air. borne Digital Computer, H. H. Schiller The Automatic Position Survey Analyzer and Computer, F. J. Altermon.
Symposium on Sequenfial Circuit Theory Waldorf-Astoria-Astor Gallery
A Survey of the Theory of Finite-State Logical Machines, D. Huffmon.

Paul R. Weimer
V. K. Zworykin Television Prize

Richard D. Thornton 1959 W. R. C. Baker Award

Mothematical Modets for Sequential Machines, S. Seshu.

Information Transfer in Asyncitronous Systems, D. E. Mufler.

Component Farts-II

Waldorf-Astoria-Jade Room
A Proctical, Comprehensive Component Appiication Program, C. G. Walance.
Army Electronic Research: Tneory to Reatity, L. J. D. Rouge.

A Review of the Influence of Recent Material and Technique Development on Trapisformer Design, H. Nordenberg
Improvements Made in Electronic Parts During the Past Ten Years. H. V. Nob'e
An Analysis of Printed Wire Edge Connectors, D. R. Sheriff.

Space Electronics

Waldorf-Astoria-Sert Room
A Time Redundancy Instrumentation System for an ICBM Re-Entry Vehicle, R. E. Sclimidt, J. and R A. Pcrier
A General' Purpose FM T-ansmitter for Airborne
Telemetry, P. E. Tucker and R. T. Murphy.
The Tricot System, D. F. Gumb
A Circularly Polarized Feed for an Automotic Tracking Telemetry Antenna, R. C. Baker.

Communication by HF Redio and by Wire Line
New York Coliseum-Morse Hall
Design Considerations for Space Communications, J. E. Bartow, G. N. Krossner, and R. C. Riehs. riverse lonosphere, \mathcal{G}. D. Hulst.
A Frequency Stepping System for Overcoming the Disastrous Effects of Mcltipath-Distortion on High Frequency FSK Communications Cir* cuits, A. R Schmidr.
High-Stability Linear Phase Vaice Frequency Multiplex, D. Karp, R. M. Lerner, J. F. Mercurio, Jr., anc W. E. Morrow. Jr.
A 2500-Band Frequency Wire for Voice Frequency Wire Line Transmission,
J, C. Myrick and G. Holiand

Propagation and Antennas-I

New Yark Coliseum-Morconi Hall
Tropospheric Scatter Prapagation Characteristics, A. J. Svien and J. C. Domingue.

Optimum Antenno Heiant for lonospheric Scatter Propagation, R. G. Merri'l
Terrain Return Measurements at X -, Ku-, and Ka Band, R. C. Taylor
Theory of Raciar Return from Terrain, W. H Peake.
A New Concept in High-Frequency Antenna De sign, R. H. Du.Hamel and D. G. Berry.
Large Antenno Systems for Fropagation Studies, Kamen.

Microwave Theory and Techniques

New York Coliseum-Faraday Hall
Some Camments on the Classification of Waveguide Modes, A. E. Karbowiak.
Noise Figure of Receive: Systems Using Para. metric Ampiifiers, J. Sie and S. Weisbaum. Low-Noise Parometric Arrplifiers and Converters T. B. Worren.

Microwave Techniques in Neasurement of Lifetime in Geımaniumi. A. P. Rams.3, H. Jacobs, and F, A. Srand. (Continumd on page 234)

Microwave Component News

 from SYLVANIA
N/EKTV Subminiature Microwave Diodes

Sylvania opens the way to advanced miniaturization concepts in microwave and radar design with new smaller Silicon Microwave Diodes

Major step in the trend to ever smaller radar and microwave equipment to meet today's military and commercial demands is represented by Sylvania's new line of subminiature microwave diodes. The new diodes meet the electrical performance of their larger counterparts and are equivalent in ruggedness and reliability. They combine in one unit Sylvania's unmatched experience in diode packaging and proven technical excellence in microwave diode design.
The subminiature metal-to-glass package opens the way to new possibilities in strip-line and slab-line transmission designs. Included among the new types are Detector Diodes ranging in frequencies from 100 mc to $9,000 \mathrm{mc}$ and Mixer Diodes in frequencies from $3,000 \mathrm{mc}$ to $9,000 \mathrm{mc}$. Contact your Sylvania representative for full information on the new subminiature microwave diodes-or write Sylvania directly.

NEW SYLVANIA MICROWAVE DIODES

D 4064-S Band Mixer
D 4065-X Band Mixer

SYLVANIA

Sylvania Electric Products Inc.
Semiconductor Division
100 Sylvan Road, Woburn, Mass.

Amperex ${ }^{\circledR}$ tubes

 are making music in theworld's finest S干EREB
systems...

AMPEREX 'preferred' tube types have proven themselves in the world's finest monophonic amplifiers. Now AMPEREX is paving the way with tubes for the world's finest Stereophonic systems. Developed in the research laboratories of Philips of the Netherlands, and applications-engineered by Amperex for the American electronics industry, these ultra-advanced tubes have proven their reliability and unique design advantages in late model amplifiers and tuners of the world's leading high fidelity manufacturers. Sold by franchised dealers everywhere... available for off-the-shelf deliveries in any quantity.

Detailed data and applications engineering assistance available from Semiconductor and Special Purpose Tube Division, Amperex Electronic Corp., 230 Duffy Avenue, Hicksville, Long Island, N. Y.

EL84/6BQ5-unque AF power pentode combining high gain and linearity with 9 -pin miniature con struction. Up to 17 watts in push-pull.
EL85/6CW5-LOW voltage, high current version of ECL82/6BM8-Triode-pentode. Up to 8 watts in push-pull.
UCL $82 / 50 B \mathrm{MB}$-Series string ($100 \mathrm{ma}, 50 \mathrm{v}$) version of ECLB2/6BM8.
PCL82/16A8-Series string (300 ma . 16v) version of ECL82/6BM8.

VOLTAGE AMPLIFIER TYPES

EF86/6267-High-gain pentode with exceptionally low hum, noise and microphonics. Particularly suitable for pre-amplifier and input stages. Similar to the $Z 739$ and the 5879 .
ECCB1/12AT1-Medium-gain dual triode with low hum, noise and microphonics. Replaces the 12AT7 without circuit changes.
ECCE2/12AU7-Low-gain dual triode with low hum,
noise and microphonics. Replaces the 12AU7 with out circuit changes.
ECC83/12AX7-High-gain dual triode with low hum noise and microphonics. Replaces the 12AX7 with: out circuit changes.

ECF80/6BL8 - High-gain triode-pentode with low hum, noise and microphonics

RF AMPLIFIER TYPES

69J8/ECC88-Frame grid, sharp cut-off twin triode Particularly suitable for cascode circuits, RF \& IF amplers, tures high transconductance and low noise
*6ESE-Similar to 6Dj8/ECC88. Has remote cut-off characteristics.
*6ER5-Frame grid shielded triode with remote cutof! characteristics. Suitab!e for RF amplifiers in TV \& fM tuners. Features high transconductance
and low noise
〒ECC85/6A08-High gain dual triode for FM tuners with shield between sections for reducing oscilJator radiation.
EBF89/60CB-Duo diode-pentode with remote cut off characteristics. Suitable for RF \& IF amplifiers. ECF80/6BL8-High gain triode-pentode for RF amplifiers.

RECTIFIER TYPES

E280/6V4-Indirectly heated, full-wave rectifier with 6.3 v, 0.6 amp. heater, 90 ma, output capacity and $9-\mathrm{p}$ in miniature construction.
E281/6AC4 - Indirectly heated, full-wave rectifier witn $6.3 \mathrm{v}, 1$ amp heater, 150 ma , output capacity and 9-pin miniature construction.

G234/5AR4 - Indirectly heated, full-wave rectifier with $5 \mathrm{v}, 1.9 \mathrm{amp}$ heater and 250 ma , output capacity. Octal base. Replaces the 5U4G without circuit changes with the advantage of lower tube voltage drop because of the unipotential cathode.

Also Available: INDICATOR TUBE TYPES
EM84/6FGG-Indicating pattern is a varying length bar. For use in broadcast receivers and tape recorders.

DM70/1M3-Subminiature type with "exclamation mark" indicating pattern. Features low filament consumption (25 ma.)

GERMANIUM DIODES

1N542-Matched pair. Replaces 6AL5 in FM de- 1N87A-High RF rectification efficiency diode. Suittecter circlits. able for AM detector circuits.

THE DIFFERENCE AT A GLANCE!

New Tri-AMP 3-phase Bridge		Standard Type 3-phase Bridge	
Dimensions	Amp.	Dimensions	Amp
$4^{\prime \prime} \times 4^{\prime \prime}$	54	$\begin{aligned} & 4^{\prime \prime} \times 4^{\prime \prime} \\ & \text { Fon Cooled } \end{aligned}$	16.8
$4^{\prime \prime} \times 4^{\prime \prime}$ Convection Coal	${ }_{\text {led }}{ }^{18}$	$4^{\prime \prime} \times 4^{\prime \prime}$ Convection	$\operatorname{led}^{6.7}$

Conventional selenium rectifiers are obsolete now that General Instrument has developed the amazing new Radio Receptor Tri-Amp - a completely new selenium semicorductor operating at triple the ctirrent density of standard stacks. Even more important, these stacks give complete reliability over a life span of more than 100,000 hours.
Tri-Amp rectifiers have all the advantages of selenium, and elaborate protective devices required by other semiconductors for overvoltage and overcurrent aren't necessary
Produced with unique equipment, these $\mathbf{R R c o}$. rectifiers are available in volume quantities for immediate delivery. For full information, write today to Section EI-3.

3* AMP/IN ${ }^{2}$

SELENIUM RECTIFIERS

RP

RADIO RECEPTOR COMPANY, INC.

Subsidiary of General Instrument Corporation
240 Wythe Ave., Brooklyn 11, N. Y., Telephone: Evergreen 8-6000
GENERAL INSTRUMENT CORPORATION INCLUDES F. W. SICKIES JIVISION. AUTOMATIC MANUFACTURING DIVISION, RADIO RECEPTOR COMPANY. INC. AND MICAMOLD ELECTRONICS MANUFACTURING CORPORATION (SUESIDIARIES)

OVER 100 TYPES IN STOCK...CUSTOM MOLDINGS TO SPECIFICATION...SEND FOR FREE CATALOG Lerco Electronics, Inc.
501 S. Varney Street, Burbank, California
Circle 155 on mquiry Card, page 123

IRE Technical Papers

Microwave Mixer Performance at Higher Intermediate Frequencies. M. Cohn and J. B. Newman.

Thursday Morning-March 26
 Theory and Practice in Russian Technology

Waldorf-Astoria-Starlight Roof
Highlights of Soviet Information Theory, P. E.
Digital Computer Activities in the Soviet Union, Theory and Pr
Theory and Practice in Automatic Control, W. E. Vannah.

Circuit Theory II—Analysis and Synthesis

Waldorf-Astoria-Astor Gallery
Sensitivity of Transmission Zeros in RC Network Synthesis, F. F. Kuo.
Synthesis of Active Networks-Driving-Point FuncLions, N. DeClaris.
Linear Modular Sequential Circuits and Their Application to Multiple Level Coding. B. Taylor-Cauchy Transforms for
Taylor-Cauchy Transforms for Analysis of a Class of Nonlinear Systems, Y. H. Ku, A. A. Wolf, and J. H. Dietz.

Ultrasonic Engineering-I

Waldorf-Asforio-Jade Room
Automatic Uitrasonic Flaw Detection, E. G. Cook. Covitation Erosion of Sonic Radiating Surfaces, Osterman.
Piezoelectric and Dielectric Properties of Cer* amics in the Potassium-Sodium Niobate System. L. Egertan and D. M. Dillon. Transducer Properties of Lead Titanate Zirconate Ceramics, D. Berlincourt, B. Jaffe, H. Jaffe, and H, Krueger.

Milifary Electronics Looks Forward

 Waldorf-Astoria-Sert RoomMeasurement of Missile Miss Distance, A. E. Hayes, Jr.
Radar Testing for a War Environment. R. W. Radar Hanfor
Trends in Inertiol Navigatian, F. Stevens.
Space Vehicle Electromagnetic Communications and Tracking, H. Hoffman, Jr.

Frontiers of Industrial Electronics

 Waldorf-Astoria-Empire RoomSome Characteristics of the Industrial Electronic Business, H. A. Strickland, Jr.
Autamation Trends in the Bank Industry, B. Miller. Industrial Electronics-The Growing Servant of Mankind, T, A. Smith.

Man-Machine System Design

New York Coliseum-Morse Hall
Communiction Display and Cantrol-A New Concept, R. J. Meyer.
The Effect of Loop Characteristics upon Humon Gain, J. S. Sweeney and A. Graham. The Influence of Nonlinear Transfer Function on

Charles H. Townes
Co-Winner, Morris Liebmann Memorial Prize

Deflection

specialists

COMPLETE LINE for every Military and Special purpose . . . in PRODUCTION QUANTITIES or CUSTOM DE-
SIGNED to your specific requirement.

FOR PPI DISPLAYS

Compact Rotating Coil Yoke

Stock Type Y25 illustrated

OTHER ROTATING TYPES available with fixed off-centering or rotating off-centering. Many mechanical and electrical variations.
FIXED TYPES with push-pull windings. Low current coils for slower sweep speeds. Low impedance coils for transistor drives.
Neck diameter, core material, configuration, deflection angle and electrical design to your precise spec. For engineering help, contact Dr. Henry Marcy today.

syntronic
 INSTRUMENTS, INC.

100 Industrial Road, Addison, Illinois Phone: KIngswood 3-6444

Circle 156 on Inquiry Card, page 123
 2 KVDC- 30 KVDC metallized PAPER \& MYLAR CAPACITORS

Film Capacitors, Inc.
3400 PARK AYEHAE - NEW YORK 56, N. Y.
Circle 319 on Inquiry Card, page 123

you save 50% on Top-Quality Test Instruments
Hi-Fi - Ham Gear KITS AND WMRED
for professional and home use
TEST INSTRUMENTS
battery eliminators
battery eliminato
battery testers
battery
bridges
decade boxes
electronic switch
flyback tester
oscilloscopes
probes
probes
signal and
sweep generators
tube testers
transistor tester
vacuum tube
voltmeters
milliammeters

HI.FI
stereo and monaural tuners
preamplifiers
power amplifiers integrated amplifiers
speaker systems speaker systems
HAM GEAR
CW transmitter modulator-driver grid dip meter
OVER $11 / 2$ MILLION EICO instruments in use throughout the world.

LIFETIME service and calabration guarantee, IN STOCK at your neighborhood EICO dealer. Send now for FREE catalog EIN-3

EIGO
 33-00 N. Blvd., L. I. C. 1, N. Y.
 praised by the experts as Best Buys in Electronics

IRE Booth 1413
Circle 313 on Inquiry Card, page 123

Jack W. Herbstreit
Harry Diamond Memorial Award
Cothode-Roy Tube Visuol Detection Threshold C. W. Miller ond W. R. Minty.

Humon Foctors in the Design of the NRL Nucleor Reoctor Control System, H. J. Berliner, M. P. Young, and G. F. Wall.

Antennas-II

New York Coliseum-Marconi Hall
Electricolly Smoll DF Antenna, E. McCann and H. H. Hibbs.

Experiments ond Colculations on Surface-Wove Antennos, R. G. Molech ond S. J. Blank.
Ferrite Excited Slots with Controllable Amplitude and Phose, H. E. Shanks and V. Galindo.
Improved Feed Design for Amplitude-Monopulse Rodor Antennos, J. P. Shelton.
The Directionol Coupler Antenno, C. Fink.
Arbitrorily Polarized Planer Antennas, F. J Arbitrorily Polarized Planer A
Goebels, Jr. and K. C. Kelly.
Instrumentafion: Devices and Circuits
New York Coliseum-Faraday Hall
Printed Circuit DC Motors for Electronic and Instrument Applications, R. P. Burr and J Henry-Baudot.
A 100 CPS X-Y Recorder, J. P. Brady, Jr.
A Proposed Automatic Test Set for the Measurement of Communication Cable Parameters, H. N. Aviles.

A Precision 60-MC Logarithmic Amplifier, S Cohen. H. Laskin, E. Schecker, and B. Woodward.
Design and Development of a Noise and Field instrument for 1000 to $12,000-\mathrm{MC}$ frequency Range, A. Borck and M. Rodriguez.

Thursday Afternoon

Electronic Computers: Components and Circuits

Waldorf-Astorio-Starlight Room
Magnetic Drum Time Compression Recorder, W. R. Chynoweth and R. M. Page Fast Microwove Logic Circuits, D. J. Blathner and F. Sterze
 12-Bit Accuracy and Fast, Nonsequentiol Switch ing, H. S. Horn.
Ayynchronous Electronic Switching Circuits, M. The Cycle Splitter-A Wide-Bond Precision Fre quency Multiplier, B. E. Keiser.

Cireuif Theory III-Applications

Waldorf-Astoria-Astor Gallery
Ponoramic Spectrum Analyzer in Real Time, B. D. Steinberg and W. G. Ehrich.

A Long-Memory Delay-Line Analog Recirculator, M. S. Zimmerman, W. G. Ehrich, and D. E. Sunstein.
Choice of the Shape of the Input to a Spectrum Analyzer in Terms of 1 ts Effect on Tran sient Selectivity and Signal Detectability, W Gersch.
A Minimum Distortion Tapered-Transmission-Line Transformer for Pulse Application. H. Amemiya Transistor Digitol Tape Record Circuit. A. E. Hayes, Jr.

Ultrasonic Engineering-II

Waldorf-Astoria-Jade Room
(Continued on page 236)

THRUST SEHSING FOR IIQUID ROCKET ENGINES
*STATHAM PA324 Pressure Transducer

Because of its outstanding performance in severe missile environments,
the Statham Model PA324 Absolute Pressure Transducer has been chosen to play the key role in important new thrust control systems based on accurate measurement of thrust chamber pressure.
For further information write for
Data File EI-600-1.
Statham instruments, inc.
12401 West Olympic Boulevard Los Angeles 64, California

Circle 157 on Inquiry Card, page

IRE Technical Program

(Continued from page 235)
Thickness-Shear Mode Borium Titonote Ceramic Transducers for Ultrasonic Delay Lines, J. E. May: Jr.
Vibrotions of Ferroelectric Transducer Elements Loaded by Masses and Acoustic Radiation, F Rosenthal and V. D. Mikutait.
Effect of Electricoi . Mikutoit
Resistance Electrical and Mechanical Terminating Resistance on Loss and Bandwidth According to the Conventional Equivalent Circuit of a Most Out of Your Ultrosonic Delay Line, R. N. Most Ou
Meosuring the Charocteristics of Present-Day Ultrasonic Deloy Lines, J. J. G. McCue and M. Axelbonk

Ultrasonic Welding Equipment, J. N. Antonevich.

Concepts and Programs

Waldorf-Astoria-Sert Room
An Orbit Program for Engineering Use, H. R. Smith and B. H. Bloom.
A Study and Design Evaluation of the ThrowAwoy Mointenance Concept, J. J. Andreo and M. V. Ratynski

Amplitude Modulated Video Integrator, R. E. Ellis.
The Significance of Specifications in Govern. ment-Sponsored Technical Development Programs, J. Cryden.

Communicafion Engineering in Broodeasting

New York Coliseum-Morse Hal
Transmission of Television Signals over o Brood. Bond Tropospheric Scatter Link, L. Pollack.
Installation and Operational Aspects of a Private Television Mierowve System, A. Shelton
Mobile Microwove Television Pickup Operationa Experiences, G. E. Homilton.
Effect of Frequency Cutoff Charocteristics on Spiking and Ringing of TV Signals A on Fowler and J. D. Igleheart.
50 -Kilowatt Antenna Switching System, J. W Smith.

Anfeanas-III

New York Coliseum-Marconi Hall
Log Periodic Feeds for Lens and Reflectors, R. H. DuHamel and F. R. Ore.

Broad-Band Conical Helix Antennas, H. S Borsky.
Very Broad-Bond Feed for Poroboloidal Reflectors: J. R. Tomlinson and M. N. Fullitove.
Far Field Potterns of Circulor Poraboloidal Reflectors, G. Doundoulakis and S. Gethin.
Effects of Random Errors on the Performance of Antenno Arroys of Mony Elements, L. A. Ron dinelli.
The Hourglass Scanner, a New Rapid Scan, Larae Aperture Antenno, M. N. Fullilove, W' G. Scott, ond J. R. Tomlinson.

Instrumentation for High-Speed Dafa Acquisifion

New York Coliseum-Foraday Hall
A 64-Chonnel Millimicrosecond Time Analyzer. T. P. Long.

Magnetic Recording and Reproduction of Pulses, D. F. Eldridge.

An Improved Method of Calibrating FM Magnetic Tope Transports, L. Bohnstedt.
Rotrase, a High-Capacity, Low-Level Automotic Dato Hondling System, G. F. Mooney
A Dato Processing System Using Glow Tubes, S. K. Chao.

Solid-State Digest

The 1959 Solid-State Conference held in Philadelphia, Pa., Feb. 12-13 broke all previous attendance records. More than 2100 engineers registered. The technical papers presented during the two-day session have been assembled in a printed 104-page book in digest form. Copies are priced at $\$ 4.00$ each and may be obtained from H. G. Sparks, The Moore School of Electrical Engineering, University of Pennsylvania, 200 South 33rd St.,

Philadelphia 4, Pa.

Northwest Area Office
530 University Avenu 530 University Avenue
Palo Alto, California

Reliable performance in all environments is assured with Kearfott precision microwave equipment and components. Available from the experienced Kearfott organization are: complete design and development, engineering, high production capacity utilizing the newest in equipment and dip-brazing techniques, modern check-out and test facilities. A Kearfott engineer can help with your microwave design problems.

Kearfott

KEARFOTT COMPANY, INC.
Microwave Division 14844 Oxnard Street Van Nuys, California

A Subsidiary of General
Precision Equipment Corporation

SALES OFFICES
echnical bulletins on all Kearfott products are available on request.

First Digital Voltmeter With Mathematically Perfect Logic．．．

The first stepping switch voltmeter with mathemati－ cally perfect logic ．．．and the first to be completely transistorized！It＇s the NLS V－34，the latest instrument to be developed by the originators of the digital volt－ meter．The exclusive new digital logic of the NLS V－34 allows readings to be made without cycling stepping switches through all nine positions in each decade．For the first time，＂needless nines＂are eliminated ．．．the result：longer switch life and shorter measuring time． Check the exclusive features listed below．

＂NO NEEDLESS NINES＂
 FOR FASTER MEASUREMENTS AND GREATEST RELIABILITY

MATHEMATICALLY PERFECT LOGIC－No numbers change that absolutely do not have to change．Stable measure－ ments can be made of varying voltages．
STEPPING SWITCHES SEALED IN OIL－Each stepping switch is mounted in an individual oil－filled container．No manual lubrication needed．Oil bath extends life by factor of ten．
PLUG．IN STEPPING SWITCH MODULES－Stepping switches can be replaced as quickly as plugging in the meter． FIRST COMPLETELY TRANSISTORIZED DIGITAL VOLTMETER－ Even logic functions are performed by semi－conductors． Switch points reduced to one－half those required by ＂completely transistorized＂competitive meters．Only the NLS V－34 is transistorized to the fullest possible extent．

SPECIFICATIONS

Range to ± 1000 volts ．．．Ratio to $\pm .9999$ ．．． 10 Megohm input impedance ．．． 0.01% accuracy ．．．Automatic range and polarity changing ．．．five－digit model also available．

See the NLS V－34 at the 1959 I．R．E．Show ．．．and write today for complete information．

Originators of the Digital Voltmeter
non－linear systems，
ince del mar（San Diego），california
1959 IRE SHOW－Booths 3041－2

COMPARISON CHART

The few steps required by the NLS V－34 to make a typical measurement（3rd column）are compared with the many re－ quired by competitive meters． Note the blue＂needless nines＂ in the middle column．

NO．Of Stips	$\begin{aligned} & \text { COMPETI- } \\ & \text { MEVE } \\ & \text { METERS } \end{aligned}$	NLS
0	＋． 8888	＋． 8888
1	＋．8889	－． 8888
2	＋．8880	－． 9888
3	＋．8890	－． 0888
4	$+.8800$	－． 1888
5	＋．8900	－． 1988
6	＋．8000	－． 1088
7	＋． 9000	－． 1188
8	$+.0000$	－． 1198
9	－． 0000	－． 1108
10	－． 0001	－． 1118
11	－． 0002	－． 11119
12	－． 0003	－． 1110
13	－． 0004	－． 1111
14	－． 0005	
15	－． 0006	
16	－． 0007	
17	－． 0008	m
18	－． 0009	$>$
19	－． 0019	$\underset{7}{\sim}$
20	－． 0029	＋
21	－． 0039	ㅍ
22	－． 0049	\％
23	－． 0059	\sim
24	－． 0069	\％
25	－． 0079	¢
26	－． 0089	\cdots
27	－． 0099	E
28	－． 0199	2
29	－． 0299	Z
30	－． 0399	－
31	－． 0499	点
32	－． 0599	－
33	－． 0699	\sum
34	－． 0799	O
35	－． 0899	\sim
36	－． 0999	上
37	－． 1999	$\underset{\sim}{*}$
38	－． 1099	\sum_{\sim}
39	－． 1199	$\stackrel{\text { c }}{5}$
40	－． 1109	5
41	－． 1119	
42	－． 1110	世
43	－． 1111	エ

Precision in miniature

Waveforms Portable
520A Voltmeter
510B Oscillator

NOW! COMMPACT RACK \& PANEL MOUNTNES

 IN ANY SHAPE OR FORM YOU NEE! cost, even on custom specifications. Mass production techniques applied to special order work

See us at the I.R.E. Booth 3222

Send todoy for complete technical informotion. If you prefer, phone:

miniature" ELECTRONIC INSTRUMENTS
339 Sixth Avenue, New York 14, N. Y. - WAtkins 9-2795 Circle 320 on Inquiry Card. page 123

Standardizing Stereo

(Continued from page 117)
signal. The phase correction may be considered as a delay correction.

The simplicity of the radio receiver designed to reproduce two stereophonic sound channels that are broadcast over a single commercial broadcast AM channel is shown in the block diagram of an AM compatible stereophonic receiver. As mentioned, this method provides for the balanced monophonic information ($L+R$) to be carried by the envelope and the stereophonic information ($\mathrm{L}-\mathrm{R}$) by the frequency. The detectors separate these AM and FM signals; the adder and subtractor combine them to obtain the left and right signals; the speakers reproduce sounds in spatial relation to their locations at the point of origin. The FM detector, the adder, the subtractor, and the extra speaker when added to a standard AM radio receiver convert it into an AM compatible stereophonic receiver.

Parametrics \& Masers

-Questions \& Answers

What is a parametric amplifier?
It is a solid state amplifier notable for excellent noise performance at microwave frequencies. It employs as the principal source of energy not a DC power supply as does the conventional electron tube amplifier, but rather high frequency energy derived from a so-called "pump." Depending on the particular type of parametric amplifier, this pump must supply energy at a fixed and stable frequency, from about two to many times higher than the frequency of the signal we wish to amplify. In the tube amplifier the energy transformation from the DC source to the signal is provided by the electron beam. In contrast to this, the parametric amplifier employs a solid state element to transform energy from the high frequency pump to the signal. In almost all cases of practical significance to date, this solid state element has been a special type of semiconductor diode. When excited by the pump, this diode behaves like a capacitor, with the terminal capacitance varying at the pump frequency. In the simplest parametric amplifier this capacitance is pumped at twice the signal frequency. The amplification process then has a simple mechanical analogue, namely that of
a child "pumping-up" the excursions of a swing by raising and lowering his center of gravity twice during each complete cycle of the swing.

The excellent noise properties of this amplifier stem in part from the absence of a hot cathode and a spatial motion of electrons both of which form important sources of noise in tube amplifiers.

What is a maser amplifier?

It is a microwave amplifier yielding the ultimate in noise performance in present technology. This noise performance is greatly superior to the best obtainable with electron tubes, transistors or parametric amplifiers. In contrast to these types, the maser makes use of the quantized nature of matter, that is, of the fact that molecules or atoms in many types of materials exist in discrete energy levels or oscillatory states. Amplification is obtained by the interaction between an electromagnetic field and these discrete energy levels. A spatial transport of electrons is not utilized and a major source of noise, thereby, eliminated.

While many different schemes of maser operation are possible and have indeed been investigated, the so-called "Three-Level Solid State Maser" is beginning to emerge as the most useful and practical amplifier. In one of its more successful forms, it employs synthetic ruby of precisely
controlled chemical composition as active material. To create within this material three energy levels having the separation and population densities required for amplification, it must be cooled to liquid helium temperature, immersed in a strong and quite uniform $D C$ magnetic field and subjected to high frequency radiation. The source of this high frequency radiation is again called the "pump," although its action is basically different from that of the pump used in the parametric amplifier.
Maser amplifiers have been operated at microwave frequencies from about 1000 to $10,000 \mathrm{mc}$. In this frequency range the effective sky temperature is low enough to permit the fullest utilization of the low noise properties of maser amplifiers.

Applications of Parametric Amplifiers and Masers.

Both are low noise microwave amplifiers and are therefore useful as first stages in very sensitive microwave receivers. The noise performance of the maser is greatly superior to that of the parametric amplifier. On the other hand, the maser is a more costly and complex device since, for the present at least, it requires refrigeration. There are many applications, however, in which the increase in range made possible by the greater sensitivity of the maser amplifier is (Continued on page 240)

TEMPERATURE TRANSDUCERS

Other Specifications:

Calibration accuracy:
$0.1-1.0 \%$, depending on temperature range
Repeatability and
bysteresis.
within calibration accuracy
Resistance at 32 F :
$100 \pm 5 \mathrm{ohms}$
Nominal temperature. resistance coefficient:
$0.0018 /{ }^{\circ} \mathrm{C}$
Output:
0.5 vdc , when Arnoux

100 -ohm TME is used.

The newest line of Arnoux temperature transducers - 100-ohm resistance, 200 -millisecond response permits accurate measurement of transient temperatures such as those in missile and aircraft applications. The output signal is 0.5 vdc for as small a span as 180 F, when Arnoux transistorized TME-1 or TME-2 systems or similar equipment is used.

The fluid-immersion transducer (4)01L-1)), for static or moving fluid, is LOX compatible and available in two calibration ranges: -302 F to -285 F , -320 F to +500 F .

The air transducer $(4101 \mathrm{H}-10)$ is for static to high. velocity gases.

The surface transducer ($2101 \mathrm{H}-15$) is for materials of limited area and thickness, and has great mounting versatility.

Both air and surface types are available in two calibration ranges: -100 F to $+500 \mathrm{~F},-100 \mathrm{~F}$ to +1200 F .

Sales Offices: Beverly Hills, Calif.• Dallas•Great Neck, N.Y.• Seattle • Bryn Mawr, Pa.

		wiet
${ }_{\text {rex }}$		
${ }^{24+4}$	$0-28$ Vbe	
${ }_{\text {cter }}^{\text {Trever }}$		${ }^{32}$
(tact		
${ }_{\text {rabaicct }}$	${ }_{0}$	

 Ti30VIOAt

new "TEKSEL" SELENIUM RECTIFIERS Single Phase F'ull Wrave Bridge-One Year Gid						
$\begin{aligned} & \text { MAX } \\ & \text { DC } \\ & \text { DM P } \end{aligned}$	${ }_{\text {livac }}$	36 VaC zivoc	${ }_{\text {a }}^{\text {givac }}$	JVVAC S6VOC	13001C	¢fivac
	8Al8	8036 2.30		4iv2 4.5	(1)130 8	81236
	${ }^{\text {BEI }}$		8154 8.8	${ }^{\text {Et72 }} 726$	诫30	
				${ }^{8} 6.00$	80.30	
	1018184	8336	-134 12.75	77218.7	13130	1275
		81365 12.60	BK54		8×130	Pk256
	-119	14146	欴54	8 m 7219.9		$1{ }^{120656} 10$
	-011 19.					
	BRII 29	8R36 47	1054 69.3	B472	8 BR 130	BE265
	ES 1833.45	as36	8554 121.50	572135.75	6S130 192.75	E5266 388.9
"SILTAB" SILICON RECTIFIERS $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Convection Cooled Full Wave Bridge. Single Phase-Dated \& Guaranteed.						
$\begin{array}{ll} A K P \\ A C \end{array}$	TVNAC GVOC	1 120NC	210 VAC 18 VFOC	280 VAC 250 VOC 205	84OVAC 7500	1120 VAC
$\begin{array}{r}\hline 1 \\ \hline 3 \\ \frac{1}{6} \\ 10 \\ 15 \\ 24 \\ 35 \\ 50 \\ 100 \\ 150 \\ \hline\end{array}$	4.20	4.50	. 25	6.15	18.45	27.00
		17.10	19.0	2	\%	${ }^{88.00}$
	27.15	${ }^{30.75}$	34.60	40.30	-	1794.00
	39.60	45.75	49.3	${ }^{61.6}$	182.50	34.00
	45.30	57.60	63.75	77.15	${ }^{39.75}$	
	59.75	72.45	${ }^{81} .60$	93,90		
	72.50 10790	13.80	${ }^{952.95}$	108	Query	
	${ }^{107.30}$	139.00	${ }^{237.50}$			
	235.60	26960	295.50	339.60	duery	uver
NEW SILICON $500 \mathrm{MA} / 100^{\circ} \mathrm{C} / 280 \mathrm{VAC} / 400$ g.l.v. 						

[^11]
PREGISION POWER OSCHLLATORS

$\$ 119.00$

MODEL 1040

SPECIFICATIONS
Frequencies...... 400 or 1000 C.P.S. by selector switch (other frequencies on request)
Distortion. Hum Level. Output Power. Power Supply. Dimensions.

MODEL
1040A

Less than 1%
Approximately $.05 \%$ of rated output 3 watts into matched resistive load 115 volts, 60 C.P.S., 40 watts $5-11 / 16 \times 9 \times 61 / 8$ inches

OTHER MODELS AVAILABLE
DESCRIPTION POWER OUTPUT
Sim. to Mod, 1040

EXCELIENT ACCURACY AND STABILITY • TRANSFORMER ISOLATED OUTPUT • 3 OUT-
PUT IMPEDANCES • LOW INTERNAL IMPEDANCE • OUTPUT VARIABLE UP TO 120 VOLTS
 Circle 150 on Inquiry Card, page 123
 Most of these applications occur in the 1000 to $10,000 \mathrm{mc}$ range where the effective sky temperature is very low and where the receiving antenna is essentially pointed at the sky as in missile defense, radio astronomy and satellite communications. Another condition for the fullest utilization of maser noise performance is that the noise contributed by transmission loss between the receiving antenna and the maser amplifier be kept as low as possible.

Below 1000 mc , sky noise becomes sufficiently high that masers can no longer be used efficiently. Frequencies in this vicinity are used for "scatter" or "over-the-horizon" propagation. Here, the parametric amplifier appears quite attractive, since its noise performance is sufficiently better than that of vacuum tubes in this range (Continued on page 243)

"Inside Out" Motor

A design concept developed by Rotron Manufacturing Co., Inc., Woodstock, N. Y,, for their line of Military type cooling fans is incorporated in their latest commercial blower, the Muffin. The design reverses the standard rotor-stator positions; the stator is placed inside the rotor.

The basic fan has just two parts. The rotor, fan blades, and shaft make up one part; the stator, bearings, and mounting bracket the other. The pieces in each part are

reinforced with fiberglass and held together by the encapsulating resin.

The "inside out" concept and cantilevered bearings permit a reduction in length to $1 \frac{1}{2}$ in. The 5 in . sq. fan, driven by the 60 cycle, shaded-pole motor, moves over 100 CFM at comparatively high pressures and within the limits of 42 db on the A scale.

TELERAD is yourbest, most reliable source for prompt delivery to meet immediate FLEXIBLE Waveguide needs

TELE-FLEXI

TELE-FLEX...standard moulded sections, the ideal waveguide for use where vibration mounts are not practical.

FOR OVER 15 YEARS
 Telerad Manufacturing Corporation has been a dependable source for reliable microwave components and equipment, built to military standards.

Telerad products embrace L, S, C, X and K bands.
dUPLEXERS • MIXERS • ATTENUATORS • FEEDS
CAVITIES • dIRECTIONAL COUPLERS • LOADS
FREQUENCY METERS • SIGNAL GENERATORS
POWER METERS • PHASE SHIFTERS • TUBE MOUNTS
ROTARY JOINTS - THERMISTOR MOUNTS
RADAR BEACONS • RADAR TRANSMITTERS
WAVE GUIDE SWITCHES guide for use where extremely tight radii must be held.

Catalog on request.

HETERODYNE FREQUENCY METER . . . accurate to . 01% frequency measurement 100 $10,000 \mathrm{mc}$ (TFM-186).

GUIDED MISSILE BEACONS... high sensitivity, proven reliability, available in S and L bands.

X-BAND POWER METER . . frequency meter and calibrated signal generator, self-contained, immediate delivery (TSG-147D).

MANUFACTURING CORPORATION

Dallas: Southern Industrial Electronics, 429 Exchange Building Chicago: Lee Falkenburg, Airborne Sales, 1665 North Milwaukee Avenve Canada: Instronics, Itd., P.O. Box 51, Stittsville, Ontario

DESIGNERS and MANUFACTURERS 1440 Broadway, New York 18, N. Y. BRyant9-0892

ATTENTION: Aircraft and Missile Manufacturers and Designers...for Missiles and Drones contact TELERAD

New High-Sensitivity S-Band Beacons and High Power (1000 watt) Multiple-Pulse Decoder Circuitry Beacons

New

HIGH POWER, HIGH-SENSITIVITY, S-BAND DECODER TYPE GUIDED MISSILE BEACON ... A reliable beacon of ruggedized construction with decoder circuitry accepting two and three pulse interrogation code groups and rejecting unwanted signals. Designed particularly for use with radars using coders such as the KY-94/GPA but subject to some modification to meet individual customer requirements.

Model: SRTS-2003CH
Receiver frequency: $2700-2900 \mathrm{mic}$
Image rejection: 50 db minimum
Triggering sensitivity: -65 dbm minimum Code selection: two-pulse or 3 three-pulse Transmitter frequency: 2700-2900 mr
Transmitter pulse width: $0.75 \pm 0.25 \mu \mathrm{sec}$
Transmitter repetition rate: 100-100C $\operatorname{\text {pps}}$ Transmitter peak power: 1000w

Modulator: bugged thyratron type
Altitude: to $7 \mathrm{E}, 000 \mathrm{ft}$.
Size: $61 / 2 \times 71 / 2 \times 9^{3 / 4}(475 \mathrm{cu}$. in.)
Weight: $151 / 6$ Ws.
(with heat dissipating case)
Power supplies available:
$28 \pm 2 \vee$ iransistorized converter
drawing 4 A and requiring no ex.
terfal heat sink, or 115 V 400
cycle supply

MODEL 19SC "S" BAND BEACON—Small; Ligntweight

RECEIVER
Frequency range: 2825-2925 MC/Sec.
Stability: $\pm 2 \mathrm{MC}$ Sec
Triggering sensitivity: - 40 DBM
Interrogation:
(a) Single 1 microsecond pulse
(b) Double 1 microsecond pulses
spaced 3 microseconds
Interrogation rate: $100-1500$ cycles per second
TRANSMITTER
Frequency range: $2850-2950 \mathrm{MC} / \mathrm{Sec}$
Stability: $\pm 2 \mathrm{MC} / \mathrm{Sec}$
Transmitted pulse width
0.75 ± 0.1 microsecond
Peak power output: 50 watts
POWER SUPPLY
Input voltage:
$6.5 \pm .5$ V.D.C. @ 2.5 amperes

Output voltage: :50 V.D.C
DUPLEXER
Isolation: 20 DB (Min.)
ENYIRONMENTAL AAD MECHANICAL
SERVICE CONDITIOAS
Acceleration: 100 G in the longitudinal direction, 25 G if other directions
Shack: 100 G in the longitudinal direction and the other mutually perpendicular directions
Vibration: 10 to 55 c.p.s. @ 08 inch
Temperature: $+32^{\circ}$ to $+158^{\circ} \mathrm{F}$
Humidity: Up to 100%
Pressure: 15 lbs. sq. in. gauge
Size (Receiver-Transmitter):
$61 / 4^{\prime \prime} \mathrm{L}$. $\times 2 \frac{1 / 2 " \text { " Diam. }}{}$
Weight (Receiver-Transmitter): 2 lbs Size (Power Supply): $5^{\prime \prime} \mathrm{L}$. $\times 22^{1 / 2^{\prime \prime}}$ Diam Weight (Power Supziy): 2 lbs .

HIGH-SENSITIVITY S.8ANO BEACONS
New superheterodyne S-Band Beacens for guided missile and drone-control applications. These receivers feature lightweight, small size, excellent reliability, ruggedized censtruction.

RECEIVER-TRANSMITTER

Over-all triggering sensitvity: -65 DBM
Receiver frequency: $2700-2900 \mathrm{mc}$
Receiver frequency stability: ± 2 regacycles per second
Image rejection: 50 do minimum
Peak transmitter power output: 100 watts minimum
Transmitter pulse width: 0.75 microseconds
Transmitter repetition rate: 200-1,000 pos
Transmitter stability: ± 2 megacycles per second
Transmitter frequency range: 2850 tc 2950 mc
Size: $9^{\prime \prime} \times 5 \frac{1}{4^{\prime \prime}} \times 5$
Weight: 8 lbs.
POWER SUPPLY
Input Voltage: 115 volts at 600 cycles
Input Power: 80 watts
Size: $7^{\prime \prime} \times 5^{\prime \prime} \times 4^{3 / 4^{\prime \prime}}$
Weight: $51 / 2 \mathrm{lbs}$.
A 28 volt $D C$ supply is available on soecial order

NEW HIGH-POWER "S" BAND TRANSMITTER CAVITY MODEL STS-42-Small Size; Lightweight

Frequency range: $2700-2900 \mathrm{MC}$ Vibration: 10-2000 C.P.S.@ 106 Peak Power Output: 1 Kw (Min.) Size: $43 / 4^{\prime \prime} \mathrm{L} . \times 13 / 4^{\prime \prime} \mathrm{W} . \times 21 / 4^{\prime \prime} \mathrm{H}$
Frequency stability: 4 MS Sbock: 50 G
Temperature range $-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Telerad
DESIGNERS and MANUFACTLRERS 1440 Broadway, New York 18, N. Y.

MANUFAGTURING GORPORATION

Dallas: Southern Industrial Electronies 429 Exchange Building
Chicago: Lee Falkenburg, Airborne Sales, 1665 Nerth Milwaukee Avenue Canada: Instronics, Ltd., P.O. Box 51 St tiville, Ontario
(Continued from page 240) to make possible considerable extensions in range and, with it, great reductions in system costs. Parametric amplifiers should also find applications in radio relay communications at microwaves where the antennas, because of their low elevation, receive some ground noise and in radar and missile guidance applications where the utmost in receiver sensitivity is not required.
From prepared statement distributed exclusively at the 1459 Solid State Conterence, Feb. 12-13, 1959 , Philadelphia, Pa. by E. D. Reed, Bell Telephone Laboratories Inc., Murray Hill, N. J.

Engineering Enrollments Sagging, Despite Demands

For the first time in seven years, and despite still-critical demands for engineering talent, enrollment in American engineering schools is on the decline.

The 153 accredited American engineering colleges had 2.9% less students in the fall of 1958 than in the fall of 1957. And the freshman class which entered last fall was 11.6% smaller-59,164 instead of 67,071 -than 1957.

Declining enrollments have not yet affected the number of engi-
(Continued on page 244)

AVOID rows mexme TRANSFORMER TROUBLES

INSTALL MODERN DESIGN by HUGHEY \& PHILLLIPS, Inc your most dependable source of Obstruction Lighting l:quipment
the widest selection of Control and Alarm Apparatus in the Industry.

THREE SIZES
750, 1750, 3500 WATTS
İssential wherever 60 cycle power must be transferred efficiently across two points with very' low capacitance or at very high voltages.

REqUEST DESCRIPTIVE bULLETIN HPS-152

HUCHEY \& PHILLIPS, INC.

 MANUFACTURERS OF300MM Beacons, Obstruction Lights, PhotoElectric Controls, Beacon Flashers, Special Junction Boxes, Microwave Tower Light Con: trol and Alarm Systems, Tower Isolation Trans: formers, and Complete Kits for: Tower Lighting, Sleetmelter Power and Control.
3200 N. San Fernando Blvd. Burbank, Calif.
Circle 331 on Inquiry Card, page 123

This handy card gives you details on composition, particle shape and chemical analyses of Mapico's wide range of pure synthetic iron oxides. Unequalled for uniformity ... Mapico oxides are available in three different particle shapes, with several ranges of particle size ... provide controlled electronic characteristics and shrinkage. A request on your letterhead will bring you this free chart and working sample.

Columbian Carbon Company

380 Madison Avenue, New York 17, N. Y. Circle 335 on Inquiry Card, page 123

MICRO-MINIATURE

 prectison wiere.eond RESISTORSfixed, noninductive

newly developed Kelvin "RELAXED WINDING" techniques practically eliminate resistance drift with age and "shorts" or "opens" due to thermal shock.

PLASTIC ENCAPSULATED SERIES "EP"

The 0.05 W micro-miniature type EP-00 is $.080^{\prime \prime}$ dia. $x .32 .5$ long, 50 K ohms max. resistance. Available with radial and axial lead wires.
ALL CONNECTIONS ARE WELDED. High temperature epoxy plastic is used in an exclusive vacuum encapsulation process. Standard resistance tolerances to 0.1% (specials to 0.01%). Environmental temperature range: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Ceramic series "CB"

The 0.15 W miniature type CB-05 is $1 / 4^{\prime \prime}$ dia. $\times 1 / /^{\prime \prime}$ long, 500 K ohms max. resistance. Available with radial and axial lead wires, or lug terminals. Standard resistance tolerances to 0.1% (specials to 0.01%). Environmental temperature range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

send for complete literature

ELECTRIC COMPANY 5907 Noble Avenue, Van Nuys, California Circle 324 on Inquiry Card. page 123

(Continued from page 243) neering graduates- 31,216 in 195758 compared with 27,748 the previous year. But the numbers are far short of the record graduation of eight years ago, when World War II veterans were finishing their delayed college careers.

These engineering enrollment figures come from the annual official survey students and degrees conducted by the American Society for Engineering Education in cooperation with the U. S. Office of Education. Final results were reported today by Justin C. Lewis, Head of Higher Education Statistics, and Dr. Henry Armsby, Chief for Engineering Education, both of the U. S. Office of Education.

Fears of dropping engineering enrollments were confirmed by the official figures. Engineering students are now less than 7.7% of all American college students, compared with nearly 8.5% in 1957. Enrollment of second-year students is down 6% from last year, and third-year students are down 4%. Only in the fourth- and fifth-year category does this year's enrollment total as large as last year's. This gives promise of more graduates in June 1959; but there may be fewer in the years thereafter.

Graduate study in engineering continues to increase sharply, and enrollment is now at record levels, according to the ASEE-Office of Education figures. This fall 27,456 students were enrolled in master's degree programs, an increase of 14.7% over 1957 ; and $4,762-$ up 14.3%-were studying for doctor's degrees.

Last year 5,751 master's degrees were given in engineering, nearly 10% of all master's degrees given in the United States during the year. There were 653 doctor's degrees, 8% of doctor's degrees given in all fields.

Electrical engineering with slightly over 56,000 undergraduate students is by for the most popular engineering field; just over 8,700 bachelor's degrees in electrical engineering were awarded in 1957-58.

Electrical engineering is also most popular among graduate students, with chemical engineering second and mechanical engineering third.

The lightest, fastest, most reliable way to

SECURE WIRES \& WIRE BUNDLES!

Made from high strength Dul?ont Zytel, compact Dakota fastening devices provide positive holding power under extreme loading and shock. Unaffected by vibration. Comprehensive range of sizes and accessories.
If you're not acquainted with advanced Dakota securing products, write today for complete details! State application for engineering recommendations.
*a thademark of dakota engineering. inc.
DAKOTA ENGINEERING, INC. 4317 SEPULVEDA BLVD. • CULVER CITY, CALIFORNIA

Circle 152 on Inquiry Card. page 123
SCALA PRECISION ANTENNAS

VHF YAGI

for the 40 to 300 mc range

Rugged mechanically and electrically, the Scala Model CA5-150 is a 52 -ohm 5 element yagi. Nine db gain on the major lobe is assured by careful design and Scala's exclusive feed system which eliminates radiation from the feed line and provides equal distribution of current to the driven element. The unit is available in anodized aluminum and plated or stainless steel. This exceptionally rugged antenna exceeds the demanding requirements of railroads, utilities and government agencies. 72 ohm, 5 and 10 element yagis (HDCA models) also available for community systems and TV off the air pickup.
Write jor complete catalog on Scala corner reflectors, UHF-VHF yagis, paraflectors, ground plane and heated ground plane antennas. Please address Dept. El 3.

SCALARADIO COMPANY
2814 19th Street - SAN FRANCISCO 10, CAL. Circle 153 on Inquiry Card, page 123

ALPFRITA prifirbed

by design engineers - because they're MOST COMPACT • MOST ECONOMICAL SIMPLEST • HERMETIGALLY SEALED

Also-Amperite Differential Relays: Used for automatic overload, un-der-voltage or under-current protection.

Thermostafic DELAY RELAYS

2 to 180 Seconds

Actuated by a heater, they operate on A.C, D.C., or Pulsating Current.

Hermetisally sealed. Not offected by alifiude, moisture, or climate changes. SPST only eriomally open or closed. Cormpenseted for ambient temperature shanges from -55° to $+70^{\circ} \mathrm{C}$. Heaters consume approximately 2 W . and may be operated continuously. The units are rugged, explosion-proof, longlived, and-inexpensive!
TYPES: Standard Radio Octal, and 9. Pin Miniature . . . List Price, \$4.00. Standard Delays

BALLAST REGULATORS

Amperite Regulators are designed to keep the current in a circuit autematically regulated at a definite value (for example, 0.5 amp .) ... For currents of 60 ma . to 5 amps . Operata on A.C., D.C., or Pulsating Curreat.

Hermetically sealed, they are not affected by changes in slitude, ambient tempercture (-55° to $+90^{\circ} \mathrm{C}$), or humidity ... Rugged, light, compact, most inexpensive \qquad . . list Price, $\$ 3.00$.
Write for 4-page Technical Bulletin No. AB-51

MPERITE CO.Inc., 561 Broadway, New York 12, N. Y Telephone: CAnal 6-1446
In Canada: Atlas Radio Corp., Ltd., 50 Wingold Ave., Toranto 10

HI VOLTAGE LOW INDUCTANCE CAPACITORS

Designed as high temperature gas discharge sources for Thermonuclear and similar type power research. Suitable for high peak energy within a short time constant and for blocking, bi pass service, power supply filters and similar applications.

FEATURES

- Voltage Ratings up to 150 KV .
- High energy content up to 4000 joules.
- Ringing frequency as high as 1.25 mcs .
- Hermetically sealed. Low cost per joule.

Write for complete information and data sheets on Tub Type AE30OB and Tubular Type AE301.

Manufacturers of High Voltage Capacitors Low Inductance Capacitors Pulse Forming Networks Radio Noise Filters Wire Wound Resistors

AXEL ELECTRONICS

Div. of Axel Bros. Inc.
134.20 Jamaica Ave., Jamaica, N. Y. Circle 326 on Inquiry Card, page 123

Honeywell 800 computer performs 30,000 three-address operations per second handles 8 separate programs simultaneously

Computer Handles 8 Jobs at One Time_Checks Work

A new medium-scale computer, the Honeywell 800, can process up to 8 data-handling or scientific computation jobs simultaneously. It uses "Traffic Control" to allow the central processor to communicate simultaneously with as many as 16 input or output devices, eliminating bottlenecks caused by the comparatively slow speeds of supporting equipment. Paralleled jobs can be separately started and stopped as though they were being performed on separate machines.

Orthotronic Correction is used to reconstruct lost, damaged or garbled data instantly and automatically. The system also incorporates an extensive checking network, including double-reading of all source data, parity checks within each word, and record to permit verification of accuracy whenever information is transferred within the system.

Deliveries of the all-transistorized system from MinneapolisHoneywell Regulator Co., Datamatic Div., Newton Highlands, Mass., are scheduled for the last quarter of 1960.

Indian Program Lures Electronics Industry

Indian leaders and officials of the U. S. Bureau of Indian Affairs are developing greater economic activity around the reservations so that Indian people can improve their basic living standards.

The Bureau's Industrial Development Program extends certain types of services and aid to manufacturers seeking new plant sites. The Bureau also has authority, un-
Headquarters for
HICH POTENTIAL
Testing

,Every over-potential test need from the generator to the appliance motor . . . is met by a HYPOT

150 KV Testing

 Mobile HYPOT ${ }^{\circledR}$Non-destructive testing of power cables, generators, and insulators with AC or DC test potentiols to 150 KV . New DC Mobile HYPOT is easier to handle, cuts costs. Write for bulletin "Mobile HYPOT*".

30 KV Testing

Bench HYPOT® ${ }^{8}$

 Models ovailable with $A C$ or DC test potentials from 5 to 30 KV . Widely used for insulation testing of cobles, distribution equipment and heavy duty motors.
10 KV Testing

Portable HYPOT Jr. ${ }^{\text {(B) }}$

The advanced over-potential tester that enables anyone to make high potential breakdown tests. Separate lights indicate excess leakage current and insulation breakdown. Available with test voltoges from 1500 v a-c to 10000 vo.c. $10-35.10$

Associated Research

3787 W . Belmont Avenue - Chicago 18, Ilinois Circle 327 on Inquiry Card, page 123

How To Get Things Done

 Better And Faster

BOARDMASTER VISUAL CONTROL

\& Gives Graphic Picture - Saves Time, Saves Money, Prevents Errors
© Simple to operate - Type or Write on Cards, Snap in Grooves

* Ideal for Production, Traffic, Inventory, Scheduling, Sales, Etc.
A Made of Metal, Compact and Attractive Over 350,000 in Use

$$
\text { Full price } \$ 4950 \text { with cards }
$$

FREE

24.PAGE BOOKLET NO. Z-50 Without Obligation

Write for Your Copy Today
 GRAPHIC SYSTEMS

55 West 42nd Street - Now York 36, R.Y.
Circle 328 on Inquiry Card, page 123

- A smooth, positive mednanical drive system with continuously variable up, down and rotational speeds, all independ. ently controlled.
- An arrangement to rapidly center the process bar within a straight walled quartz tube supported between gas-tight, water-cooled end plates. Placement of the quartz tube is rather simple and adapters can be used to accomodate larger diameter tubes for larger process bars.
- Continuous water cooling for the outside of the quartz tube during operation.
- Assembly and dis-assembly of this system including removal of the completed process bar is simple and rapid.
der a special vocational training program for American Indians, to reimburse manufacturers for a portion of the costs involved in training new Indian workers.

Information is now being gathered in towns adjacent to Indian reservations in States west of the Mississippi River, as well as in the States of Mississippi, North Carolina, Florida, Michigan and Wisconsin.

Six years ago, the Bulova Watch Company-prompted by the North Dakota Indian Affairs Commission -established a jewel-bearing plant at Rolla, North Dakota. Twothirds of the 150 employees are Chippewas from the nearby Turtle Mountain Reservation, who perform highly exacting bench and machine work in manufacturing bearings for the aircraft industry.

Plant manager Delbert Anderson reports, "Bulova is happy with production at the Rolla Plant. As for performance of our Indian workers, let me say that 8 out of 12 of our production supervisors are Indians."

A well-known electronics firm, the Simpson Electric Division of the American Gage \& Machine Company, Chicago, Illinois, located a plant near the Lac du Flambeau Reservation in Wisconsin prior to the beginning of the present Program. Their experience has proved invaluable to the Bureau in organizing the Program. Simpson Electric employs 200 workers in precision assembly and testing opera-tions-one half of whom are local Indians.

Harold Redding, plant superintendent, says, "We consider our Lac du Flambeau plant a definite success. Our labor turnover is far below the average for the industry, so is absenteeism. Our operation has, incidentally, dispelled any notion that American Indians are not equal in ability and dependability to any other group of workers."

The Branch of Industrial Development of the Bureau of Indian Affairs invites inquiries from industries concerning plant establishment or expansion. All inquiries are treated with strictest confidence.

Chief of the Branch of Industrial Development is J. N. Lowe, Bureau of Indian Affairs, Department of the Interior, Washington 25, D. C.
 tate that is pre-printed with your standard and repetitive blueprint items, easily transferred to your tracings by an adhesive back or front. Relieves time-consuming and tedious defail of re-drawing and re-letfering specification and revision boxes, standard symbols, sub-assemblies, components and cross-sections. Saves hundreds of expensive hours of drafting time and money, frees the engineer for concentration on more creative work.

so simple to use:

(1)
PEEL the tri-acetate adhesive from its backing.
(2) PLACE the tri-acetate in position on the tracing.

ENGINEERS

MOVE FORWARD

FAST AT LINK

Talented engineers who are looking forward to careers with genuine opportunity will find that they can keep moving forward at Link Aviation.
Located in Binghamton, in the heart of Upstate New York's all-season vacationland, Link's activities are steadily expanding. New positions exist for men with productive experience in several fields:

- Staff scientists, for advanced work on analog computers, airborne instrumentation, industrial controls and precision measurements
- Mechanical engineers, for electronic and electro-mechanical packaging
- Design engineers, for work on analog computers, systems, and components
- Senior optics development engineers

- Applied mathematicians

Link Aviation, Inc., is engaged in projects whose scope far exceeds its long-standing reputation for flight-simulation equipment. Engineers are stimulated by this diversity. And they like the recognition given them, in such forms as excellent salaries, exceptional insurance and retirement plans, and tuition-free advanced university courses.
If you want to progress in this direction contact us at once.

> Write to: Mr. A. R. Wieland, Link Aviation, Inc., Binghamton, New York

LINK AVIATION, INC.
A subsidiary of General Precision Equipment Corporation

PROFESSIONAL OPPORTUNITIES

Design Engineers • Development Engineers • Administrative Engineers • Engineering Writers Physicists • Mathematicians - Electronic Instructors • Field Engineers • Production Engineers

"Today's Electronic Engineer"

What is the age of the "average" engineer? What is his income? How much life insurance does he carry? How much is his house worth? How many children does he have? What is the worth of his liquid assets? El wondered about this personal side of the engineer and set out to find the answers. We did, from thousands of engineers across the country.

IN recent years electronic engineers have become the "prized possessions" of their organizations rather than merely creative, educated and talented employees. The tremendous growth pattern of this industry involving the production of both consumer and military items has been the cause for engineering talent shortages in many areas. As a result, electronic manufacturing and development organizations have been forced into competitive recruitment programs as a means of self-survival. At technical shows and conventions the "engineers wanted" bulletin boards and the "recruitment suites" are now an accepted part of the proceedings. Much has been written by many companies to "sell" the engineer on the advantages they offer. Salaries, paid vacations, extended education, health benefits, pension plans, profit sharing plans are all part of a "fringe" benefit program that engineers look for in accepting new positions today. Some organizations with adequate resources undertook extensive research programs to develop data that in turn would enable them to attract new scientific talent. Other organizations with lesser amounts of wherewithal un-
dertook proportionately more modest programs.

In all of this activity several significant points did emerge. Companies knew that they needed an ever increasing amount of scientific talent in order to continue producing and to grow and prosper. Companies also learned to develop effective recruitment techniques and incentives. But also, it became apparent that many organizations were not quite certain about the personality characteristics of the engineers they wanted to reach and about the occupational advantages that they enjoyed. In an effort to provide such information on both an informative and statistical basis, Electronic Industries conducted a readership survey during the 4 th quarter of 1958 . (See Today's Electronic Engineer, page 1, December 1958.) The data collected was transcribed onto IBM cards and the cards in turn were then manipulated to show data by age groups and by regions where the engineers are employed. Below and on the succeeding pages we are proud to present the results of this analysis. Age groups are the ordinates, regions the abscissas. Under totals we show the number of questionnaires involved and the
percentage with relation to 100%. Under the regional listing we show only the number of questionnaire returns from that region.

We should like to emphasize that this presentation is only one way to utilize this data. Because the basic information has been punched onto IBM cards there are a great many other ways in which to cross correlate this information.

Age Groups	\%
Under 25	4
25-29	18 (75\% under 40
30-34	32 (years of age
35-39	$21)$
40-44	12
45-49	6
50-54	4
55 and over	3

Education

Degrees 92%
B.A, B.S. 71% hold one or more (44% hold B.S.E.E.)
M.A., M.S. 18% hold one or more

Ph.D. 3% hold one or more

Military Service

67.6% have served in the armed forces

A. Navy	41% B. Army 39\% (3\% served in more than 1 branch)
C. Air Fores 20%	
D. Marines	3%

Miscellaneous Information

16% are ham operators 8% are licensed pilots
(Continued on page 251)

Why engineering staff turnover

at General Electric's

Heavy Military Electronics Dept.

is less than $31 / 2 \%$

> A Success Story of Particular Interest

> To The Engineer
> Capable of More
> Creative Productivity

There are many reasons for Heavy Military's remarkable turnover record. We believe that the preponderant factor is Heavy Military's policy of advancement based solely on individual contributions. Where a man goes - how fast he goes-is not determined by artificial standards: degrees, "salary norms," age, seniority. Recognition and renumeration, under our Salary Administration Plan, increase directly with accomplishment. And there are two parallel paths of advancement: as specialist consultant - or as manager-supervisor, with equal compensation and status.

The result? Professional achievements that have steadily enlarged Heavy Military's responsibilities. This has meant a 5 -fold growth of the professional staff; a 4 -fold increase in number of engineering management and supervisory positions in just 4 years.

Does this environment of vigorous accomplishment appeal to you?

If so, look into Heavy Military's openings on long-range projects in all the areas listed to the right:

Radiometry

3-D Radar Systems Ultra-Range Radars

Data Processing
Sophisticated Display Digital Detector Trackers Integrated Air-Defense Environments Air-Space Management Systems
Unconventional Communications Systems
Synchronous and Scatter Systems
Secure Communications
High-Speed Data Links
Space Communications
Advanced Sonar Systems
Long-Range Search Sonar
Doppler Sonar
Secure Underwater Communications Mine Warfare Sonar

Your confidential resume will receive careful attention.
Write to: Mr. Georce B. Callender, Div. 24MC
HEAVY MILITARY ELECTRONICS DEPARTMENT
GENERAL ELECTRIC

A4-year
average including transfers to other G-E components, retiraments, etc.

					APPROX	imate a	nNuAL I	NCOME	EARS AGO?						
	$\begin{aligned} & \text { Tot } \\ & \text { No. } \end{aligned}$		New Engl.	Middle Atl.	E.N. Cent.	W.N. Cent.	South	West	$\underbrace{\text { No. }}_{\text {Total }}$	New Engl.	Middle AtI.	E.N. Cent.	W.N. Cent.	South	West
Age - under 25															
Under 5,000	55	98.2	10	16	6	3	1	19							
Age $25-29$									Age 30-34						
Under 5,000	269	83.5	17	106	34	12	38	62	$270 \quad 43.8$	22	85	37	22	44	60
5,000-5,999	35	10.9	5	11	5	1	3	10	18530.0	16	71	25	8	19	46
6,000-7,499	8	2.5	2	3	2			$!$	11618.8	4	55	11	7	11	28
7,500-9,999	6	1.9		2	1		2	1	$35 \quad 5.7$	2	16	6		4	7
10,000-12,499	2	. 6			1		1		7 1.1		4		I		2
12,500-14,999	2	. 6		1				1	20.3						2
15,000-17,499															
17,500 and over									20.3		I			1	
Median - \$5,000									Median - \$5,79						
Age 35-39									Age $40-44$						
Under 5,000	75	18.0	14	22	10	6	8	15	3113.5	2	9	4	4	8	4
5,000-5,999	114	27.3	7	34	23	3	23	24	$42 \quad 18.3$	6	12	7	1	4	12
6,000-7,499	107	25.7	6	43	14	7	19	18	$53 \quad 23.0$	2	16	4	3	11	18
7,500-9,999	89	21.3	12	32	11	4	6	24	$62 \quad 26.9$	7	28	4	1	11	11
10,000-12,499	18	4.3	2	9	3	1		3	$26 \quad 11.3$	1	16	2	2	1	4
12,500-14,999	7	1.7		4	1			2	93.9		3	2			4
15,000-17,499	5	1.2	2				2	1	52.2	1	,	2		1	
17,500 and over	2	0.5		2					20.9		I	,			
Median - \$7,226									Median - \$6,3						
Age 45-49									Age 50-54						
Under 5,000	11	10.3	2	4	1	2		2	$3 \quad 4.3$	1					2
5,000-5,999	19	17.7		6	2	4	3	4	$7 \quad 10.0$		1	4		1	1
6,000-7,499	23	21.5	4	8	4		2	5	1115.7	2	6				3
7,500-9,999	28	26.2	1	10	6	1	2	8	2738.6	2	12	5		1	7
10,000-12,499	16	14.9	1	10	2		1	2	$\begin{array}{ll}9 & 12.8\end{array}$		2	2	2	1	2
12,500-14,999	3	2.8			1			2	68.6	1	3	2			
15,000-17,499	2	1.9			2				34.3		3				
17,500 and over	5	4.7	I	3				1	$4 \quad 5.7$	1	2				1
Median - \$7,512									Median - \$8,70						
Age 55 and over															
Under 5,000	1	2.2					1								
5,000-5,999	3	6.5					,	2							
6,000-7,499	7	15.2	2	1	2		1	1							
7,500-9,999	8	17.4		1	4		2	1							
10,000 ~ 12,499	5	10.9	1	2	1		1								
12,500-14,999	4	8.7		3	1										
15,000-17,499	4	8.7	1	2	1										
17,500 and over	14	30.4	1	10	1		2								
Median - \$10,500															

APPROXIMATE ANNUAL INCOME - TOOAY?

	Total		New Enal.	Middle AtI.	E.N. Cent.	W.N.	th	West	$\begin{gathered} \frac{\text { Total }}{\text { No. }} \frac{\%}{2} \\ \text { Age } 25-29 \end{gathered}$		New EngI.	Middle AtI.	E.N. Cent.	$\begin{aligned} & \text { W.N. } \\ & \text { Cent. } \end{aligned}$	South	West
Age - under 25																
Under 5,000	2	2.3		2					3			2				1
5,000-5,999	14	16.5	2	5	2			4	26	7.6	3	6	7	2	3	5
6,000-7,499	54	63.5	8	21	5	4	6	10	130	38.2	8	43	15	7	23	33
7,500-9,999	14	16.5	2	3	1			8	153	45.0	10	64	23	6	16	34
10,000-12,499	1	1.2						1	25	7.4	3	12	1		1	8
12,500-14,999									3	. 9			I		1	1
15,000-17,499																
17,500 and over																
Median - \$6,750									Median	\$7,6						
Age 30-34									Age 35	39						
Under 5,000	2	. 3		1				1	1							I
5,000-5,999	9	1.5		1	4		3	1	3	. 7			1	1	1	
6,000-7,499	71	11.5	4	23	10	4	12	18	32	7.9	5	11	7	1	3	5
7,500-9,999	295	48.0	24	107	42	27	38	57	124	30.8	7	41	24	6	25	21
10,000-12,499	167	27.2	12	71	17	7	16	44	132	32.8	16	46	19	7	17	27
12,500-14,999	46	7.5	2	20	3		6	15	73	18.1	8	25	6	6	9	19
15,000-17,499	18	2.9	2	6	1		2	7	27	6.7	6	10	2		2	7
17,500 and over	7	1.1		2	2		1	2	11	2.7		6	2			3
Median - \$7,700									Median	\$11,						

4	1.8	1	2	1			
16	7.1	2	5	3	1	2	3
65	28.8	3	15	9	5	14	19
68	30.1	8	25	5	1	14	15
34	15.0	2	19	2	2	4	5
24	10.6	2	12	3	2		5
15	6.6	1	6	3			5

$$
\text { Age } 45-49
$$

1	.9	1					
1	.9					1	
8	7.4	1	2	1	3	1	
33	30.6	1	14	4	3	4	7
28	25.9	4	6	6	1	1	10
17	15.8		9	2		3	3
11	10.2	1	7	2			1
9	8.4	1	4	3			1

Median - \$11,030
Median - \$10,983

Age $50-54$
Age 55 and over Under 5,000
5,000-5,999 $6,000=7,499$ 7,500-9,999 $10,000=12,499$
$12,500-14,999$
$15,000-17,499$
17,500 and over

1	1.4	1	1				
5	7.2		1	3		1	
12	17.1	2	5	1		3	
18	25.7	1	5	3	1	1	7
15	21.4		9	2		1	3
10	14.3	1	5	2	1		1
9	12.9	2	4	2		1	

17,500 and over
Median $-\$ 12,235$

3	5.9	1
9	17.6	
10	19.6	1
7	13.7	1
7	13.7	
15	29.4	2
Median	$-\$ 13,927$	

APPROXIMATE ANNUAL INCOME - 5 YEARS FROM NOW?

Notal New Middle E.N. W.N. South West
Mo. $\%$ Engl. Atl. Cent. Cent. Sous
Age - under 25

Age $=$ under 25							
Under 5,000							
$5,000-5,999$	1	1.2		1			
$6,000-7,499$	2	2.4			1	1	
$7,500-9,999$	25	29.8	4	12	2	1	1
$10,000-12,499$	46	54.7	7	15	4	2	5

Total New Middle E.N. W.N.
No. \% Engl. AtI. E.N. W.N. South West Age 25-29

1	.3		1			2	2
16	4.8	2	6	4		7	18
65	19.6	4	18	10	8	18	34
127	38.3	10	45	17	3	18	
84	25.3	1	38	9	4	13	19
30	9.0	2	17	4		1	6
9	2.7	2	2	1		1	3

Median - 11,652

Age 30-34									Age 35-39													
Under 5,000	1	. 2		1																		
5,000-5,999	1	. 2		1					2	. 5						2						
6,000-7,499	7	1.1		1	3		2	1	3	. 8	1				1	1						
7,500-9,999	46	7.5	3	12	6	3	8	14	22	5.5	2	9	7	1	2	I						
10,000-12,499	146	23.9	12	50	21	16	18	29	73	18.3	6	22	14	4	16	11						
12,500-14,999	206	33.8	13	80	30	16	27	40	109	27.4	8	35	17	9	18	22						
15,000 - 17,499	131	21.5	12	52	13	2	17	35	105	26.4	12	41	12	4	8	28						
17,500 and over	72	11.8	4	30	6		6	26	84	21.1	2	32	11	3	10	16						
Median - \$13,762									Median - \$14,770													
Age $40-44$									Age $45-49$													
Under 5,000									2	1.9	1 I											
$5,000-5,999$																						
6,000 - 7,499	4	1.8	1	2	1				,	1.0						1						
7,500-9,999	15	6.8	2	6	3	1		3	7	6.7		3	1	2		1						
10,000-12,499	42	18.9	3	8	6	2	8	15	22	20.9	2	8	3	2	3	4						
12,500-14,999	60	27.0	3	20	6	2	17	12	23	21.9		10	3	2	2	6						
15,000-17,499	49	22.1	5	20	2	3	8	11	26	24.8	3	8	6	1	2	6						
17,500 and over	52	23.4	4	25	8	3	1	11	24	22.8	2	13	3		1	5						
Median - \$14,582									Median - \$14,782													
Age 50-54									Age 55 and over													
Under 5,000									25.0						1	1						
$5,000-5,999$																						
6,000-7,499	2	3.2	1	1												2.6		I				
7,500-9,999	2	3.2			2				4	10.3	I	1			1	1						
10,000 - 12,499	12	19.0	2	4	2		1	3	4	10.3		2	1		1							
12,500-14,999	13	20.6	1	3	2		2	5	5	12.8		3	1		1							
15,000 $=17,499$	19	30.2	I	7	4	1		6	9	23.1		2	3		2	2						
17,500 and over	15	23.8	1	9	3	,		I	14	35.9	1	10	2		1							
Median - \$15,790									Median	- \$17												

ARE YOU MARRIED OR SINGLE?

Age - under 25	Total		$\begin{gathered} \text { New } \\ \text { Engl. } \end{gathered}$	Middle Atl.	E.N. Cent.	W.N. Cent.	South	West	Total		New Engl.	Middle Atl.	E.N. Cent.	W.N. Cent.	South	West
	No.	\%														
									Age 25							
Married	47	54.7	5	18	4	3	2	15	287	81.3	20	103	40	13	39	72
Not Married	39	45.3	7	14	4	2	4	8	66	18.7	5	30	9	2	7	13

(Continued on page 254)

	${ }_{\text {Total }}$		$\begin{gathered} \text { New } \\ \text { Engl. } \end{gathered}$	Middle AtI.	E.N. Cent.	W.N. Cent.	South	West	Total		$\begin{aligned} & \text { New } \\ & \text { Engl. } \end{aligned}$	Middle Atl.	E.N. Cent.	W.N. Cent.	South	West	
Age $30-34$									Aqe 35	- 39							
Married	568	91.0		41	205	74	36	73	139	398	94.8	40	139	60	20	56	83
Not Married	56	9.0	3	29	5	3	6	10	22	5.2	4	8	2	,	2	5	
Age 40-44									Age 45	- 49							
Married	102	92.7	8	38	19	6	8	23	224	95.7	18	85	25	11	34	51	
Not Married	8	7.3	I	4		2		1	10	4.3	1	2	2		3	2	
Age 50-54									Age 55	and o							
Married	68	97.1	7	29	12	2	3	15	54	98.2	5	28	10	7	4		
Not Married	2	2.9			I			,	1	1.8					1		

HOW MANY CHILDREN?

IN HOW MANY INDIVIDUAL PLANTS OR COMPANIES HAVE YOU WORKED SINCE LEAVING SCHOOL?

Total		$\begin{gathered} \text { New } \\ \text { Engl. } \end{gathered}$	Middle At 1.	$\begin{aligned} & \text { E.N. } \\ & \text { Cent. } \end{aligned}$	W.N. Cent	South	West	Total		New Engl.	Middle Atl.	E.N. Cent.	W.N. Cent.	South	West
								Age 25	- 29						
63	75.0	8	24	7	5	5	14	166	47.3	6	59	22	6	31	42
14	16.7	2	4	1		1	6	113	32.2	10	43	18	6	10	26
3	3.6	1	1				1	50	14.3	7	19	6	3	4	11
2	2.3	1	1					12	3.4	2	5	,			4
1	1.2		1					5	1.4		4			1	
								4	1.1		2	I			1

			New Engl.	Middle Atl.	E.N. Cent.	W.N. Cent.	South	West	$\underbrace{\text { No. }}_{\text {Total }}$	New Engi.	Middle AtI.	E.N. Cent.	W.N. Cent.	South	West
Age 30-34									Age 35-39						
One	168	26.9	13	57	18	19	25	36	$77 \quad 18.4$	4	33	15	7	8	10
Two	175	28.0	14	63	23	11	23	41	$95 \quad 22.8$	10	32	9	5	19	20
Three	145	23.2	7	61	19	7	18	33	8821.1	9	28	12	6	13	20
Four	77	12.3	7	34	11	1	10	14	$\begin{array}{ll}78 & 18.7\end{array}$	13	27	13	1	9	15
Five	29	4.6	1	8	4	1	2	13	$37 \quad 8.9$	5	9	6		6	11
Six	18	2.9	2	9	3		1	3	$18 \quad 4.3$	1	9	4		1	3
Seven	8	1.3		2			1	5	92.2	I	2		1	1	4
Eight	3	0.5			1			2	92.2		4	2			3
Nine or more	2	0.3						2	$6 \quad 1.4$	1	2			1	2
Median - 2									Median - 3						
Age 40-44									Age $45-49$						
One	18	7.7	3	5	3		5	2	$11 \quad 10.1$	3	4	4			
Two	37	15.9	3	15	3	3	6	7	$19 \quad 17.4$	1	8	4	3	2	1
Three	62	26.6	5	27	8	3	6	13	$17 \quad 15.6$	3	5	4			5
Four	34	14.6	2	13	4	2	3	10	$20 \quad 18.4$	1	10	2	3	2	2
Five	28	12.0	2	8	3	3	4	8	109.2		4	2		2	2
Six	22	9.4	1	5	4		6	6	87.3		2	2	1		4
Seven	9	3.9		4	1		2	2	$6 \quad 5.5$		1	2			3
Eight	11	4.7	1	5			2	3	$6 \quad 5.5$		3		1	1	$!$
Nine or more	12	5.2	2	4	1		3	2	$12 \quad 11.0$	1	5			1	5
Median - 3									Median - 4						
Age 50-54									Age 55 and over						
One	5	7.2		5					23.7		1			1	
Two	10	14.5	1	6				3	$\begin{array}{ll}9 & 16.6\end{array}$	2	7				
Three	7	10.2	1	5				1	$5 \quad 9.3$		3	,		1	
Four	8	:1.6	1	4	1	1		1	$7 \quad 13.0$	2	4	1			
Five	7	10.2	1	1	1			4	713.0	1	4	1			1
Six	13	18.8	1	4	6		,	1	$4 \quad 7.4$		1	2		1	
Seven	4	5.8	1	2			1		35.5		1	2			
Eight	9	13.0		1	5	1	1	1	$6 \quad 11.1$		3	,		1	1
Nine or more	6	8.7	1	1				4	1120.4		4	2		3	2
Mediars - 5									Median - 5						

DOES YOUR COMPANY PROVIDE PENSIONS?

have you established your own private persion?

Age - under 25

Yes	18	22.8		7	1	3	2	5
No	61	77.2	I I	24	5	1	3	17
Age 25-29								
Yes	92	30.5	6	30	12	6	14	24
Ho	210	69.5	14	81	30	7	25	53
Age 30-34								
Yes	189	33.9	13	63	29	13	22	49
No	369	66.1	26	142	42	20	51	88
Age 35-39								
Yes	138	38.3	16	49	18	9	18	28
No	222	61.7	25	77	35	9	31	45
Age 40-44								
Yes	80	38.5	8	29	9	0	13	21
No	128	61.5	9	50	12	10	21	26
Age $45-49$								
Yes	143	47.2	1	17	8	6	3	8
No	48	52.3	6	17	7	2	5	11
Age 50-54								
Yes	29	49.2	4	13	5	1		6
No	30	50.8	2	II	8		2	7
Age 55 and ovèr								
Yes	22	52.4	2	13	2	4	1	
No	20	47.6	3	8	4	3	2	

The states included in the various territorial breakdowns are as follows: NEW ENGLAND-Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut. MIDDLE ATLANTICNew York, New Jersey, Pennsylvania. EAST NORTH CENTRALOhio, Indiana, Illinois, Michigan, Wisconsin. WEST NORTH CENTRAL—Minnesota, Jowa, Missouri, North Dakota, South

Dakota, Nebraska, Kansas. SOUTH-Delaware, Maryland, Dist. of Col., Virginia, West Virginia, North Carolina, South Carolina, Georgia, Florida, Kentucky, Tennessee, Alabama, Mississippi, Arkansas, Louisiana, Oklahoma, Texas. WEST-Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, Washington, Oregon, California, Alaska.

HOW MUCH INSURANCE DO YOU CARRY?

Age $50-54$
$\$ 1,000-5,999$
$6,000-10,999$
$11,000-15,999$
$16,000-20,999$
$21,000-25,999$
$26,000-30,999$
$31,000-40,999$
$41,000-50,999$
$51,000-75,999$
$76,000-100,999$
101,000 and over
Mean - $\$ 34,565$
Medi an - 25,000

	11.6	1	3	3			I	7	13.	
- 7	10.1	1	2	2	1		1	6	11.	1
10	14.5		5			1	4	9	17.	
11	15.9	I	3		1		6	3	5.	
9	12.9		4	2		1	2	5	9.	
9	12.9	2	2	2		1	2	6	1.	
7	10.2		5	2				5	9.	
4	5.9	1	2	1				3	5.	
2	3.0	1	1					3	5.	
2	3.0		2					2	3.	1
								Mean Median	-	

if thinking of joining another company - percentage increase in salary expected for job in your local area?

Total
No. Engi. Middle Atl. Cen .N. W.N. Cent. C Cent.

Total New Middle E.N. W.N. No. \% Engl. AtI. Cent. Cent. South West Age - under 25

5%	1	1.2					1	
10%	26	32.1	2	7	3	2	4	8
15%	20	24.7	4	6	2		1	7
18%	2	2.5		2				4
20%	21	26.0	3	10	1	3		4
25%	6	7.4	2	3	1		1	1
30%	3	3.7		1				
40%	1	1.2		1				
Over 100%	1	1.2	1					
Median - 15%								

Age	
5%	
6%	
7%	
8%	
10%	107
12%	
15%	
18%	
20%	
25%	
30%	
33%	
35%	
50%	
60%	
Median - 15%	

Age $35-39$								
0\%	1	0.3		1				
2\%	1	0.3						1
5\%	5	1.3			1		1	3
6\%	5	0.3						1
7\%	1	0.3						1
8\%	1	0.3						1
10\%	97	25.2	11	24	11	5	13	33
12\%	3	0.8	1					2
15\%	87	22.6	6	36	13	7	13	12
20\%	92	23.9	9	38	21	2	13	9
22\%	1	0.3		1				
25\%	52	13.5	8	20	4	5	6	9
30\%	15	3.9	1	7	3		2	2
35\%	2	0.5		1		I		
40\%	3	0.8	1		1			1
50\%	18	4.7	2	7	3		3	
Over 100\%	4	1.0		1			1	2
Median - 15\%								

Age $45-49$								
0\%	1	1.0		1				
5\%	3	3.1		1	1			1
10\%	19	19.3	1	10	3	1	2	2
12\%	1	1.0		1				
15\%	9	9.2			4	2	1	2
20\%	22	22.4	3	7	1	2		8
25\%	18	18.4		8	3	1	3	3
30\%	10	10.2	2	3	I		1	3
40\%	3	3.1			1	1		1
50\%	8	8.2	1	3	2			2
Over 100\%	4	4.1	I	1	2			
Median - 20\%								

Age 55 and over					
10%	4	11.1		2	2
12%	1	2.8		2	
15%	5	13.9		4	2
20%	10	27.8	2	2	
25%	4	11.1	1	2	
30%	2	5.5			
40%	1	2.8		5	2
50%	8	22.2			1

Packing circuits to circle

the world

New Electronic Scanning radar antenna-Frescanar-developed by Hughes at Fullerton, positions beams in space by electronic rather than mechanical means.

Purity Plus-Hughes Products Division engineer checks semiconductor materials to insure parity.
"Project Cordwood"' is a new Hughes Communications project which has produced low-cost, widely interchangeable circuit modules (see photo on left-hand page). Other projects under way at the Hughes Communications Division involve the development of systems which deflect their signals from meteors and artificial satellites. Allied to this is the Hughes adoption of the wire-wrapping technique to obtain compact, reliable and automatically applied wiring.

Because of the dynamic growth in communications, Hughes has established a separate, major Communications Division. Already, work has extended past the transfer of information to the use of information to supplement man's abilities where human resources are inadequate.

From the discovery of basic scientific knowledge through the creation of working hardware, the systems approach is typical of Hughes activities . . in Airborne Electronics Systems, Space Vehicles, Plastics, Nuclear Electronics, Microwaves, Ballistic Missiles and many others.

This atmosphere offers creative engineers and scientists the widest possible scope of opportunity for personal and professional growth.

Similar opportunities are open at Hughes Products, where Hughes developments are translated into commercial products - semiconductors, specialized electron tubes, and industrial systems and controls.
the West's leader in advanced electronics

hughes atrcraft company, Culver City, El Segundo, Fullerton and Los Angeles, California; Tucson, Arizona

I. R.E. CONVENTION: Visit the Hughes Recruiting Center at The Waldorf-Astoria Hotel or Booth Numbers 2801-2807.

Newly instituted programs at Hughes have created inmediate openings for engineers experienced in the following areas:

Communications Semiconductors Field Engineering Industrial Dynamics Digital Computer Eng. Microwave Engineering

Circuit Design Test Engineering Systems Analysis Technical Writing Electron Tubes Industrial Systems
Write in confidence, to Mr. Tom Stewart, Hughes General Offices, Bldg.6-C3, Culver City, California.
(c) 1959. H. A.C.

If thinking of joining another company - percentage increase IN ANOTHER PART OF U. S.?

(Continued on page 262)

The famed Voodoo fighter craft, versatile Ta!os and Quail Missiles, the F4H Mach $2+$ all weather Navy fighter, and the World's First Manned Satellite Capsule give this statemerit literal as weil as figurative truth. New programs at McDonnell call for an eiectronic capability of the highest order. Men able to combine bold imagination and technical skill in the fields of electronics systems and electronic product design will find professional fulfillment on such projects as: the creation of an advanced high speed automatic checkout system for F-101B aircrafit; developing the first manned orbital space ship; and the design of advanced aircraft and space vehicles. If you seek the extraordinary ir, engineering growth, environment and diversity... if pleasant suburban family living is a must... if the convenience of exceptional advanced educational facilities is important, we invite your resume. Write: Mr. Raymond F. Kaletta, Engineering Employment Supervisor, P.O. Box 516, St. Louis 66, Missouri.

ST. LOUIS, MO.

	Total		New Engl.	Middle AtI.	$\begin{aligned} & \text { E.N. } \\ & \text { Cent. } \end{aligned}$	W.N. Cent.	South	West	Total		New Engl.	$\begin{gathered} \text { Middle } \\ \text { AtI. } \\ \hline \end{gathered}$	$\begin{array}{r} \text { E.N. } \\ \text { Cent. } \end{array}$	W.N. Cent.	South	West
Age - under 25									Age $25-29$							
Freedom to follow ideas More interesting work	44	53.7							12	3.6	2	4	4		2	
Pleasant work conditions	4	53.7	8	16	3	4	2	11	127	38.0	11	58	23	6	18	11
Caliber of deople	4	4.9		1			2	2	60	18.0	5	9	5	2	3	36
Security-advancement	18	22.0	4	7	1	1		3	13	3.9		3	1	2	3	4
Geographical location	16	19.5			2	1		5	86	25.7	4	39	16	4	12	11
Have all at present		19.5		6	2		2	6	62	18.6	2	24	6	3	13	14
Company's reputation	1	1.2				1			8	2.1		1				6
Position	8	9.8	1	5		1		1	21	2.4 6.3	,	3	2	2		
Can accomplish more									,	$\begin{array}{r}\text {. } \\ \hline\end{array}$	1	5	5	1	5	4
Company's future-growth									5	1.5	2	2				I
Better organized firm	2	2.4	1				1		9	2.7	2	2	1		3	1
Increased ood'ty to learn Small size bus. for self	6	7.3	1	3.	I		1		20	6.0	2	10	4		3	4
Fairness of promotion	1	1.2						1	1	. 3		1				
Share-the-brofit olan	1	1.2						1	1	. 3		1				
Management I could admire	2	2.4		1				1	4	1.2	1	2	1			
Job satisfaction	1	1.2		1					1	1.2	1	2	1	1		
Design-develorment work	4	4.9		3				1	14	4.2	1	5		1		
Good Facilities	2	2.4			1		1	1	26	7.8	2	8	6	1	4	4
Close location-easy access	1	1.2				1			26	7.8 .3	2	1	6		4	6
Management's attitude									9	2.7	1	5			2	1
Fringe benefits-pension	3	3.7	1	1				1	18	5.4		7	3		4	
Salary	,	1.2		1									1	1	1	3
Opo'ty. for mng't. post	1	1.2			I				8	1.8	2	3	1		1	
Size of company									8	2.4	2	5		1		
Tyre of nroduct	1	1.2						1	2	. 6					1	1
Age 30-34									Age 35-39							
Freedom to follow ideas	33	5.6	1	9	8	2	3	10	23	6.0	2	8	5			
More interesting work	237	40.4	21	88	25	15	26	62	136	35.5	11	54	11	7		$3{ }_{3}^{6}$
Pleasant work conditions	40	6.8	3	14	4	2	7	10	34	3.9 8.9	1	54 8	4	1	22	31
Caliber of peoole	22	3.8		11	2		3	6	14	3.6	2	4	4		7	13
Security-advancement	152	25.9	11	44	29	7	23	38	80	20.9	7	27	15		2	5
Geogranhical location	96	16.4	4	33	15	6	18	20	43	11.2		27	15	8	7	16
Have all at nresent	4	. 7		1			1	2	7	1.8	5	15	5	3	11	4
Company's reputation	17	2.9		6	3	2	5	1	18	4.7	1				2	
Position	29	4.9	2	13	3	1	4	6	16	4.2	2	6	4	2	2	6
Can accomolish more	5	. 8		।	1		2	1	8	2.1	2	3	4	1	1	5
Company's future-growth	18	3.1	I	9			2	6	26	6.8		8		1	2	2
Better organized firm	16	2.7	1	5	2	I	1	6	17	6.8 4.4	1	8 10	5	2	4	3
Increased opo'ty to learn	22	3.8	1	9	2	I	4	5	21	5.4	2	10	3		2	1
Small size bus. for self	1	. 2							2	- 5.5	2	8	2	3	1	5
Share-the-profit olan	5	. 8		1	3	-	1		2	. 5						
Management I could admire	12	2.0	1	6	1	1	2	1	10	. 5		1	1			
Job satisfaction	8	1.4		1	,		2	4	10	2.6	2	2		1	1	4
Design-develodment work	13	2.4	2	6		1	2	4	5	1.3		3	1		1	
Good Facilities	38	6.5	2	13	6	8	4	2	10	2.6	1	6				3
Close location-easy access	9	1.5	,	4	2		,	5	22	5.7		9	3	1	4	5
Management's attitude	12	2.0	1	5	1					1.0		1	1			2
Fringe benefits-dension	17	2.9			,	1	2	2	10	2.6	2	3	2	1	1	1
Salary	3	. 5	2	12	1			2	4	1.0		1	1	1	1	
Onn'ty. for ming't. post		3.6		2		1			1	. 3						1
		3.6	3	7	2	1	2	6	17	4.4	2	4	5	1	3	2
size of combany	7	1.2	2		1		2	2	3	. 8	1	1			1	
Tyee of product	4	. 7		1		1		2	4	1.0	1				1	
Part ownership-stock	4	. 7		4					4	1.0			2		1	1
Voice in company dolicy	3	. 5		2			1		3	1. .8		2	2			1
Age 40-44									Age $45-49$							
Freedom to follow ideas	14	6.5	2	5	1	1	3	2	2	2.0		1			1	
More interesting work	63	29.2	3	23	7	4	13	13	39	39.4	4	18	3	4	1	9
Pleasant work conditions	16	7.4	1	6	1		2	6	11	11.1		5	3	1	1	1
Caliber of peoole	8	3.7	2	3	1		1	1	5	5.0		3		1		,
Security-advancement	39	18.0	3	16	3	2	7	8	18	18.2	3	5	2	2	2	4
Geographical location	22	10.2	2	8	4	1	3	4	9	9.1		2		2	1	1
Have all at present	4	1.8	2				1	1	3	3.0			1		,	
Company's reputation	16	7.4		8	4		2	4	6	6.1	1	3	1		1	
Position	13	6.0		3	3		3	4	5	5.0		3				2
Can accomplish more	3	1.4					1	4	3	3.0		1	1			2
Company's future-growth	14	6.5	2	4	1		3	4								1
Better organized firm	7	3.2		3			2	2	10	10.1			1	1		5
Increased opp'ty to learn	2	. 9	1		1				4	4.0		2	1		1	5
Share-the-profit olan	2	. 9	1					1								
Management I could admire	3	1.4		2				1	3	3.0			2			
Job satisfaction	3	1.4		,				1	1	1.0		1	2			
Design-development work	4	1.8		1			1	2	1	1.0						
Good Facilities	20	9.3		8		3	5	4	5	5.0	1		1			
Close location-easy access	3	1.4		2				1	1	5.0 1.0	1				$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
Management's attitude	3	1.4		1			1	1								
Fringe benefits-pension	7	3.2	1	2	1		1	2	3	3.0		1	I			1
Sal ary	3	1.4	1	1	I				1	1.0			1	1		1
OpD'ty. for mng't. Dost	15	6.9	1	5	2	2	2	3	1	1.0		1				
Size of company	4	1.8		2	1			1	1	1.0		1				
Type of product	5	2.3	1	3				1								1
Part ownership-stock	1	. 5		1												

If YOU WERE CONSIDERING CHANGING TO AMOTHER COMPANY BUT FINANCIAL GAIN WAS NOT THE MOST IMPORTANT REASON
-- WHAT OTHER FACTOR WOULD BE OF PRIME INTEREST TO YOU?

	$\frac{\text { Tot }}{\text { No. }}$		New Engl.	Middle Atl .	E.N. Cent.	W.N. Cent.	South	Hest		al	New Engl.	Middle At1.	E.N. Cent.	$\begin{aligned} & \text { W.N. } \\ & \text { Cent. } \end{aligned}$	South	West
Age 50-54									Age 55	and						
Freedom to follow ideas	4	6.2				1	I	2	3	8.6		1	2			
More interesting work	18	28.1	2	8	2	1	1	4	7	20.0 5.7		6			1	I
Pleasant work conditions	2	3.1	1					1	2	2.8		1				
Caliber of people	2	3.1	2						5	14.3		2			1	2
Security-advancement	8	12.5		3	1	1		3	2	1.3 5.7		2	1		1	
Geographical location	9	14.0		4	2			3	3	8.6	1	1	1		1	
Have all at present				3	1			1								
Company's reputation Position	5 2	7.8 3.1		3	1			1								
Position	2	3.1	1	1				1	1	2.8					1	
Can accomolish more	3	4.7			,			1	1	2.8						
Company's future-growth	3	4.7	1		2				1	2.8						1
Better organized firm	2	3.1		1	1				2	5.7		1				
Increased ooo'ty to learn Small size bus. for self	1	1.6		1												
Share-the-profit plan									1	2.8			1			
Managerent I could admire	2	3.1	1					1	1	2.8		1				
Job satisfaction																
Design-development work Good Facilities	4 7	6.2 10.9			2	1		1	5	14.3		2	3			
Good Facilities	+ 7	10.9 1.6		1				1								
Close location-easy access	51	1.6		1					1	2.8		I				
Management's attitude	3	4.7		2				1	2	2.8		1			1	
Fringe benefits-pension	1	1.6			I				1	2.8	1					
OpD'ty, for ming't. Dost	3	4.7		2	1											
Size of company	I	1.6						1	1	2.8		1				
Type of nroduct	1	1.16	1							2.8						
Part ownership-stock	2	3.1		2												
Voice in company policy	1	1.6	1													
Totals do not add to 100% due to multiple answers																

What is the present approximate value of your liquid assets?

ELECTRONICS

Significant contributions to the advancement of the state of the art in electronics have been made by lockheed engineers and scientists. As manager of important missile and weapon systems, the Division has solved a variety of problems in the electronics field. These include: computer development; telemetry; radar and data link; transducers and instrumentation; microwave devices; antennas and electromagnetic propagation and radiation; ferrite and MASER research; solid state electronics, ineluding devices, electro-chemistry, infrared and optics; and data reduction and analysis.

Over one-fifth of the nations missife-borne telemetering equipment was produced by Lockheed last year. Its PAM/ FM miniaturized system provides increased efficiency at one-fourth the weight of FM/FM missile-borne systems.

Advanced development work in high-energy batteries and fuel cells has resulted in a method for converting chemical energy directly into electrical power that promises a fuel utilization of almost 100% and an energy conversion efficiency of 70% or better.

Areas of special capability in computer development include the design of large scale data handling systems; development of special purpose digital computing and
analog-digital conversion devices; development of high speed input-output equipment; and advanced research in computer technology, pattern recognition, self-organizing machines, and infornation retrieval.

Other major developments are: a digital flight data recorder able to record each of 24 channels every few seconds; digital telemetry conversion equipment to reduce telemetered test data to plotted form rapidly and inexpensively; advancements in the theory of sequential machines; and a high speed digital plotter that can handle some four thousand points per second with the finished plot programmed into the datal tape as a continuous curve.

Lockheed Missiles and Space Division is engaged in all fields of the art-from concept to operation. Its prograns reach far into the future and deal with unknown environments. It is a rewarding future which scientists and engineers of outstanding talent and inquiring mind are invited to share.
"The organization that contributed most in the past year to the advancement of the art of missiles and astronautics" - nalional missile industry conference award.

JF SPACE TECHNOLOGY

PLEASE Check any of the following activities in which you participate?

Age - under 25			n						Age	25-2						
Civic Organization	3	5.2	1					2	37	12.8	2	15	6	4	9	1
Social Welfare	3	5.2	1	1	1				23	7.9	2	11	7	4	3	
Veterans' Organizations									21	7.2	1	8	3	2	5	2
Church Groups	20	34.5	2	6	3	1	3	5	152	52.4	7	43	22	7	25	27
Fraternal \& Service Org.	21	36.2	3	11	1	2		4	85	29.3	6	30	15	4	13	17
Country Club	1	1.7			1				15	5.2	1	12	1		i	
Prof. Bus. Ass 'n.	20	34.5		8	2	1	2	7	125	43.1	11	54	16	6	9	29
Other Sports Clubs	14	24.1	4	5	2	1		2	$\cdot 78$	26.9	7	27	14		10	20
Other Organizations	7	12.1	,	5		1		4	50	17.2	5	15	11	3	5	11
Age 30-34									Age	35-3						
Civic Organization	118	22.7	8	37	15	4	13	14	96	27.5	8					
Social Welfare	81	15.6	4	26	12	7	12	20	60	17.2	6	20		5		17
Veterans' Organizations	41	7.9	3	14	10		7	7	28	1.2 8.0	6	20	13	3	8	10
Church Groups	256	49.2	21	78	40	18	44	55	159	45.6		50	4	2	2	
Fraternal Service Org.	1.18	22.7	7	49	11	11	18	22	159	20.6	17	50	26	13	26	27
Country Club	32	6.2	1	15	5		6	5	25	7.2	8	28	11	2	8	15
Prof. Bus. Ass 'n.	238	45.8	16	83	29	19	32	61	180	51.6	21	56	28	12	2	
Other Sports Clubs	93	17.9	5	41	7	3	11	43	65	18.6	9	20	28 9	12	11	35 14
Other Organizations	90	17.3	9	34	9	9	5	24	74	21.2	10	23	15	3	8	15
Age 40-44									Age	5-49						
Civic Organization	59	28.1	4	26	10	4	7	9	Age 27	26.5						
Social Welfare	55	26.2	8	16	6	3	11	12	30	29.4	4	$\begin{array}{r}9 \\ \hline\end{array}$	5	2		
Veterans' Organizations	15	7.1		3	2	1	2	7	6	5.9	4	1	5	2	2	2
Church Groups	120	57.1	12	48	13	5	22	21	52	51.0	5	19	7	4	4	12
Fraternal s Service Org.	60	28.6	7	24	7	2	7	13					3	2	4	12
Country Club	23	11.0	2	9	6	2	2	3	15	22.5 14.7	2	12	3 3	2	1	4
Prof. Bus. Ass'n.	102	48.6	8	37	16	3	14	25		56.9				6	5	
Other Sports Clubs	40	19.0	4	17	3	2	7	7		56.9 12.7	4	18	12	6	5	12
Other Organizations	35	16.7	2	9	4	2	11	7	20	19.6	I	6	6	2	3	
Age 50-54																
Civic Organization	9	14.0	2	4	2			1	Age	19.6						
Special Welfare	10	15.6	1	4	4			1	8	17.4		3	2		2	1
Veterans' Organization	4	6.2	1	1				2	2	1.4 4.3		2				
Church Groups	28	43.7	6	9	6	1		6	15	32.6		9	4		2	
Fraternal \& Service Org.	20	31.2	4	7	2			7	19	41.3	4	7	5		2	1
Country Club	8	12.5	1	4			1	2	7	15.2		3	2		2	
Prof. Bus. Ass'n.	30	46.9	3	8	7	2	1	9	20	43.5	2	10	3		4	
Other Sports Clubs	13	20.3	1	7	2		1	2	13	28.3		10			1	1
Other Organizations	13	20.3	1	6	3			3	11	23.9		4	3		3	I
Note: Total adds to more than 100% due to multiple answers.									Note more mult		add \% wers					

What sources do you presently use to keep abreast with this changing industry?
Total New Middle E.N. W.N. South West Total New Middle E.N. W. M

Age - under 25
Company training program
Engineering associations
Engineering conventions
Trade Shows
Conversation with others
Trade magazines
Post graduate courses
Other

(Continued on page 268)

J. B. WASSALL, DIRECTOR OF ENGINEERING, WITH LOCKHEEL SINCE 1937

A message of importance to career-minded engineers:

"Lockheed aircraft continue to blaze new trails for manned flight. The new Electra is America's first prop jet airliner. A Navy version of the Electra will be the country's first turbine-powered submarine hunter.
"Already, our design groups plan the supersonic jet transports of 1965. Meanwhile, new speed and altitude records set by a Lockheed F-104 Starfighter move manned flight to the fringes of outer space.
"Within and beyond lie many problems for our engineers: problems in aero and thermodynamic characteristics at supersanic speeds, in radar, in-optics, in infrared, in data processing for airborne detection systems and in all phases of design. Additional long-range problems exist in nilitary systems analysis, nuclear and space craft systems, commercial air transport studies, and industrial operations research.
"There are openings now for thoroughly qualified electronics and aerothermodynamics and design engineers and operations research specialists.
"If you are interested in a Lockheed career in California, write us today. Address E. W. Des Lauriers, Manager Placement Staff, Dept. 106,

Lockheed

 1708 Empire Avenue, Burbank.'ENGINEERS: Write Mr. Des Lauriers for your copy of a paper on
"Airborne Early Warning in the Missile Age" presented by Robert A. Bailey, Chief Engineer, California Division, Lockheed Aircraft Corporation, at the 6th USAF World Wide Weapons Meet.

Age - under 25	Total		New Engl.	Middle Atl.	E.N. Cent.	W.N. Cent.	South	West	(Total		$\begin{aligned} & \text { New } \\ & \text { Engl. } \end{aligned}$	Middle Atl.	E.N. Cent.	$\begin{aligned} & \text { W.N. } \\ & \text { Cent. } \end{aligned}$	South	West
	No.	\%								No.							
									Age 40-44								
0 wn	10	13.0		3	1			6	Own	208	89.3	16	79	25	9	29	50
Rent	67	87.0	10	25	6	3	6	17	Rent	25	10.7	3	8	2	2	8	2
Age 25-29									Age 45-49								
0 wn	174	51.0	10	60	23	10	28	43	Own	98	89.1	9	35	18	8	7	21
Rent	167	49.0	15	69	23	4	18	38	Rent	12	10.9		7	1		1	3
Age 30-34									Age 50-54								
0 wn	488	79.2	37	171	64	35	61	120	Own	64	91.4	6	28	10	2	3	15
Rent	128	20.8	6	59	15	3	18	27	Rent	6	8.6	1	1	3	2	3	1
Age 35-39									Age 55 and	over							
Own	353	84.6	39	124	48	19	50	73	Own	45	86.5	5	22	9		5	4
Rent	64	15.4	5	21	13	2	8	15	Rent	7	13.5		3	1		3	

IF YOU OWH YOUR HOME, WHAT IS ITS APPROXIMATE VALUE?

	$\begin{aligned} & \text { Tota } \\ & \text { Ho. } \end{aligned}$		New Engl.	Middle Atl.	$\begin{gathered} \text { E.N. } \\ \text { Cent. } \end{gathered}$	$\begin{aligned} & \text { W.N. } \\ & \text { Cent. } \end{aligned}$	South	West	Tota No.		$\begin{gathered} \text { New } \\ \text { Engl. } \end{gathered}$	Middle Atl.	E.N. Cent.	W.N. Cent.	South	West
Age - under 25									Age 25	- 29						
Less than $\$ 10,000$									7	4.1		4	1		1	1
10,000-14,999	5	55.6		1				3	48	27.9	3	18	6	3	11	7
$15,000-19,999$ $20,000-24,000$	4	44.4		2				2	87	50.6	5	25	12	7	13	25
$20,000-24,000$ $25,000-29,999$									23	13.4		8	3		3	9
$\begin{aligned} & 25,000=29,999 \\ & 30,000=39,999 \end{aligned}$									4	2.3	1	,	1			1
									3	1.7	1	2				
Median - \$15,000									Median	- \$16,	775					
Age $30-34$									Age $35-$	- 39						
Less than \$10,000	11	2.3		4	1		5	1	10	2.8		1	2		5	2
10,000-14,999	94	19.3	9	29	10	12	21	13	62	17.6	3	21	13	3	9	13
15,000-19,999	208	42.7	19	81	25	15	20	48	105	29.8	10	43	12	6	16	18
20,000-24,999	104	21.4	6	34	14	5	4	41	94	26.6	13	36	7	7	10	21
25,000 $=29,999$	41	8.4	2	13	$1!$	2	7	6	55	15.6	10	15	10	2	7	11
30,000-39,999	22	4.5	1	7	3	1	3	7	19	5.4	3	6	3	1	2	4
40,000-49,999	6	1.2		3				3	4	1.1		1			2	2
50,000 and over									4	1.1		1	1			2
Median - \$18,345									Median -	- \$20,	000					
Age $40-44$									Age 45	-49						
Less than \$10,000	4	1.9	1	1	1			1	3	3.1		1		1		1
10,000-14,999	41	19.7	4	14	6	2	6	9	16	16.3	2	7	2	1	2	2
15,000-19,999	55	26.5	4	15	5	4	13	14	22	22.5	1	10	4	2	1	4
20,000-24,999	56	26.9	5	29	4	1	5	12	16	16.3	3	3		2	2	6
25,000-29,999	20	9.6	I	9		,	1	8	23	23.5	1	8	7	2	2	3
30,000-39,999	24	11.5	1	9	6	1	3	4	10	10.2		4	4			2
40,000-49,999	6	2.9		2	2			1	6	6.1	2	2				2
50,000 and over	2	1.0			,			1	2	2.0			1			1
Median - \$20,350									Median -	- \$22,	500					
Age 50-54									Age 55	and ov						
Less than $\$ 10,000$									4		1					
10,000-14,999	5	7.8		2		1	1	1	4	8:9		2	2			
15,000-19,999	14	21.9	3	7	1		1	2	6	13.3	1	3			1	1
20,000-24,999	14	21.9	2	6	3			3	12	26.7	1	5	2		2	2
25,000-29,999	15	23.4	1	8	3			3	4	8.9		1	1			1
30,000-39,999	12	18.8		2	2	1	1	6	9	20.0	1	7	1			
40,000-49,999	2	3.1		2					5	11.1		2	2		1	
50,000 and over	2	3.1		1	1				4	8.9	1	2	1			
Median - \$24,000									Median	- \$24,	999					

WHIICH TYPE OF MUSIC DO YOU PREFER?

DO YOU ATTEND CHURCH AS OFTEN AS ONCE A MONTH?
$\begin{aligned} & \text { Total } \\ & \text { Now Middle E.N. W.N. } \\ & \text { No. } \\ & \text { Engl. AtI. }\end{aligned}$ Cont. Cent. South West

Age - under								
Yes	43	50.6	3	13	6	3	5	13
No	42	49.4	9	19	2	2	1	9
Age 25-29								
Yes	209	59.7	14	74	33	11	34	43
No	141	40.3	10	58	16	4	11	42
Age $30-34$								
Yes	377	60.5	31	121	54	29	58	84
No	246	39.5	13	112	25	10	21	65
Age 35-39								
Yes	228	54.9	24	68	40	17	33	46
No	187	45.1	19	77	22	4	25	40

	Tot No.		New Engl.	Middle Atl.	E.N. Cent.	W.N. Cent.	South	West
Age 40-44								
Yes	152	65.2	15	54	18	8	26	31
Ho	81	34.8	4	33	8	3	11	22
Age 45-49								
Yes	72	65.5	6	26	9	6	7	18
No	38	34.5	3	16	10	2	1	6
Age 50-54								
Yes	40	58.0	6	12	9	2	1	10
Ho	29	42.0	1	17	3		2	6
Age 55 and over								
Yes	25	47.2	1	13	6		4	1
No	28	52.8	4	14	4		4	2

ENGINEERS...PHYSICISTS

NEW opportunities at Motorola in Chicago

give yourself and your family all the big city advantages at a relaxed midwest pace, while you ADVANCE YOUR CAREER

Outstanding career opportunities are waiting at the many Motorola research and development laboratories in the Chicago area. This is your opportunity to advance your career with a swiftly expanding company, working in the most modern and well instrumented laboratories... with liberal employee benefits, including an attractive profit sharing plan and association with men of the highest technical competence.

You'll like living in one of the beautiful suburbs of the playground of the midwest, where there are endless social, cultural, and educational activities to choose from the year-round. Exciting life or quiet life-Chicago offers either.

MILITARY POSITIONS OPEN

- Radar transmitters and receivers
- Radar circuit design
- Antenna design
- Electronic countermeasure systems
- Military communications equipment design
- Pulse circuit design
- IF strip design
- Device using kylstron, traveling wave tube and backward wave oscillator
- Display and storage devices

CIVILIAN POSITIONS OPEN

2-WAY Radio communications

- VHF \& UHF Receiver - Transmitter design \& development - Power supply - Systems Engineering - Selective Signaling - Transistor Applications Crystal Engineering - Sales Engineers PORTABLE COMMUNICATIONS
- Design of VHF \& UHF FM Communications in portable or subminiature development.
microwave field engineers

Write to:
Mr.L.B. Wrenn Dept. C MOTOROLA, INC. 4501 Augusta Blvd., Chicago 51, Ill.

ALSO . . . there are excellent opportunities in PHOENIX, ARIZONA•RIVERSIDE, CALIFORNIA

Diodes

(Continued from page 105)
Newly developed modular line production techniques make these diodes available at a price in the same range as good microwave mixer crystals.
The exceptionally low noise performance of amplifiers using the new diode is already in a range competitive in many applications with the solid state maser. The latter holds the record for absolute minimum noise performance.

The parametric amplifier does not require low temperatures for operation. It does, however, have two channels of amplification, usually called the signal and idler chamels. These channels were used simultaneously to obtain the low noise temperatures mentioned above. As a further comparison, the best reported low noise microwave tubes have noise temperatures of about $300^{\circ} \mathrm{K}$ at 3000 MC , but have the advantage of single channel amplification and electrical tunability.
The development of the Hughes diode resulted from a cooperative effort between the development laboratories and the semiconductor divisions of Hughes. The amplifier was designed and operated by Dr. R. C. Knechtli and R. Weglein for the noise measurements. It is related to the type of amplifier developed by Dr. Uenohara at the Bell Telephone Laboratories.
With the noise temperatures of $50^{\circ} \mathrm{K}$ and $100^{\circ} \mathrm{K}$ obtained at liquid nitrogen and room temperatures, respectively, the 3000 mc amplifier gives 30 db of amplification with 2 mC bandwidth or 10 db of amplification with 25 Mc bandwidth. Such amplifiers would, of course, be useful in many applications of microwave and UHF receivers where greater sensitivity or lower receiver noise is required.
The production models of the Hughes diode, designated HPA2800 and HPA-2810 have a nominal cutoff frequency of $70,000 \mathrm{MC}$ at maximum back bias with a nominal zero-bias capacitance of $2.5 \mu \mu \mathrm{f}$, it was disclosed. Its exceptional noise performance is attributed to its low equivalent series resistance at microwave frequencies.

Man-Machine Relationships a Growing Field for Operations Research

Mathematicians. Physicists and Engineers with experience or strong interest in Operations Research on large-scale automated systems will be interested in the major expansion program at System Development Corporation.
SDC's projects are concerned primarily with man-machine relationships in automated systems in a number of fields, including air operations. The application of new and advanced digital computer techniques is particularly important in optimizing these man-machine relationships. SDC activities constitute one of the largest Operations Research efforts in the history of this growing field.
Senior positions are among those open. Areas of activity include : Mathematics, Systems Analysis. Forecasts, Cost Analysis,

Operational Gaming, Design Analysis, Performance Evaluation. Those who have professional questions or desire additional information are invited to write Dr. William Karush, Head of the SDC. Operations Research Group. Address System Development Corporation, 2428 Colorado Avenue, Santa Monica, California.
"Method for First-Stage Evaluation of Complex ManMachine Systems" A paper by Mr. I. M. Garfunkel and Dr. John E. Walsh of SDC's Operations Researeh Group is available upon request. Address inquiries to the authors.

ENGINEERS

...because crowth is the pattern here-healthy, vigorous, rapid-providing unusual opportunitics for a good man to move ahead. Norden's professional staff las increased 40% in six months.

New long-range commitments give you accelerated opportunities to learn and grow, meet new challenges, expericnce individual achievements.

Acquisition by United Aircraft has added extensive research facilities (including the most advanced computation services) to Norden's fine R \& D labs. You also enjoy the long-term carcer benefits and growth potential of association with one of the country's leaders in the development of advanced aireraft propulsion systems.

And the diversity of Norden's projects makes it easy to get the right assignment to utilize your skill and ingenuity. (Project range: communications, radar, infra-red, missile and aircraft guidance, TV circuitry, inertial and stellar navigation, data handling, navigation-stabilization systems, bomb director systems.)

Professional Development

2 Years at

 Norden Labs add up to 4 in ...in yourTELEVISION \& PASSIVE DETECTION

- Transistor Circuit Development High \& Low Light Level TV Camera De. sign • Video Information Processing • TV Monitors \& Contact Analog Displays - Military Transistorized TV Systems (Also openings for recent EE grads)

RADAR \& COMMUNICATIONS

Design E Development of:

- Antennas - Microwave Systems \& Components * Receivers - Transmitter Modulators © Displays - Pulse Circuitry (VT \& Transistors) © AMTI * Data Trans mission - ECM

DIGITAL

- Digital (Senior) Design: Logical, Circuit, Magnetic Storage

PROJECT ENGINEERING

- Senior Engineers - Engineering Pro. gram Mgt.

SYSTEMS ENGINEERING

- Synthesis, analysis \& integration of electronic \& electro-mechanical systems

QUALITY ASSURANCE

- Systems Reliability Analyses - Com ponent Reliability \& Evaluation © Vibra. tion, Shock \& Environmental Test Standards
ENGINEERING DESIGN
- Electronic Packaging FUTURE PROGRAMS
- Systems Engineer (SR) - Broad creative background, ability to communi-cate-experience in radar, TV systems - supervise R\&D proposals - Senior Engineer - Cost development for R\&D proposals. Require broad technical experience in electro-mechanical and electronics systems
STABILIZATION \& NAVIGATION
- Servo Loops for gyro stabilization, antenna stabilization, accelerometer force balance, antenna scanning - Repeater Servos - Transistorized Integrator, DC Amplifier, Servo Amplifier Magnetic Amplifiers - Transistorized DC \& AC power supplies - Gyros \& Ac. celerometers

TECHNICAL EMPLOYMENT MANAGER

NORDEN DIVISION - UNITED AIRCRAFT CORPORATION 121 WESTMORELAND AVENUE - WHITE PLAINS, NEW YORK

I am interested in obtaining further information on opportunities at Norden Laboratories.

NAME
ADDRESS
CITY ZONE \qquad STATE

DEGREE YEAR

Industry

News

Dr. James B. Fisk, Executive Vice President of Bell Telephone Labs., has been elected President of the company. Bell Labs. is the research and development unit of the Bell Telephone Systems.

Dr. Patrick Conley has been appointed Manager of the Westinghouse Electric Corp.'s Air Arm Div. Previously, Dr. Conley was technical Director on the defense products group headquarters staff in Washington, D. C.

Thomas Finlay has been named Sales Manager of the Precision Potentiometer Div. of Spectrol Electronics Corp. He was formerly Assistant Sales Manager.

T. Finlay

R. Leary

Raymond T. Leary, Sales Manager of the Distributor Div. of CornellDublier Electric Corp., has been elected a Vice President of the corporation.

Albert W. Brandmaier has been named Director of European operations for Consolidated Electrodynamics Corp. He will represent the corporation in licensing and manufacturing negotiations between CEC and companies in Europe and the United Kingdom, and direct European marketing operations and activities of FmbH, wholly owned German subsidiary in Frankfort am Main.

Vice Admiral Charles B. Momsen (Ret.) has been named as a Consultant on the Staff of the Vice President in Charge of Engineering of the Bendix Aviation Corp. Adm. Momsen is known for his work on the "Momsen Lung"-a submarine escape device.

Stanley N. Golembe, formerly Executive Vice President, has been elected President of Power Sources, Inc.
(Continued on Page 274)

SPARROW III-the Navy's tenacious, lightningfast, air-to-air missile-is intended for extensive use by Navy fighter aircraft in fleet air defense. Sparrow III is a Raytheon prime contract.

HAWK-the Army's defense against low-altitude attackers-carries out its destruction in the blind zone of conventional radars. Hawk development and production is under Raytheon prime contract.

TARTAR-A substantial contract for vital electronic controls for this Navy destroyer-launched missile is held by Raytheon. This equipment-a tracking radar and associated units-enables it to "lock $\mathrm{cn}^{\prime \prime}$, cling to target's path, despite evasive tactics.

ADVANCED PROJECTS in aeronautical structures as well as missile guidance and control are now underway in Raytheon laboratories. New facilities are continually being added for this work.

PRELIMINARY NEW DESIGNS of tomorrow's missiles will result from the advanced work being done by today's missile engineers. Raytheon plays an important role in this area.

Raytheon diversification offers

JOB STABILITY

FOR CREATIVE

MISSILEMEN

Here is an opportunity to free yourself of worry about a job that's here today, gone tomorrow.
Diversified assignments-only possible in a company with Raytheon's wide range of missile activities-means security not found in one- or two-project companies. You apply your creative energies to the many projects you work on, and they in turn are your "insurance" against falling into a rut.
Individual recognition comes quickly from Raytheon's young, engineer-management-men who are keenly aware of the engineer's needs and contributions to missile progress.
Dynamic Raytheon growth-the fruit of this management's progressive policies-is best illustrated by the fact that Raytheon is already the only electronics company with two prime missile contracts-Navy Sparrow III and Army Hawk.
The next step is up to you. Why not get frank answers and helpful information on the type of job suited to your background and talents, its location, salary and other important details. Write, wire or telephone collect: The number is CRestview 4-7100 in Bedford, Massachusetts. Please ask for W. F. O'Melia.

RAYTHEON OPPORTUNITIES NOW OPEN IN:

WEAPONS SYSTEM ANALYSIS • CONTROL SYSTEMS

- PACKAGING • MICROWAVE • RADAR • SPECIFI-

CATIONS • MISSILE AERODYNAMICS - WIND TUNNEL TESTING • AERODYNAMIC HEATING • ROCKET ENGINEERING • VIBRATION MEASUREMENT and DATA REDUCTION

RAYTHEON MANUFACTURING COMPANY Missile Systems Division, Bedford, Mass.

See your personal efforts integrated into the total flight system with a prime contractor...

REPUBLIC AVIATION

It's an unnerving experience, in this era of systems engineering, for a man to work long and hard on a subsystem or component project and then see the product of his labor leave the plant in a packing case on its way to a prime contractor for systems installa. tion. How different is the picture at Republic Aviation! Working for this prime systems contractor you will have the opportunity to see the total flight system take shape and the satisfaction of seeing your personal efforts become an important part of it. You'll broaden your experience and professional interests by working with capable men from varied disciplines on advanced electronics for every type of flight vehicle-from guided missiles to helicopters.

Decide NOW to join this Prime Contractor

Gain accelerated advancement by becoming a ground floor participant in Republic's $\$ 35$ million R\&D program aimed at bringing about substantial breakthroughs in aeronautics and space technology. A new order of career progress is waiting for engineers and scientists at Republic Aviation.

Investigate these electronic opportunities with Republic
In ertial Guidance \& Navigation / Digital Computer
Development / Systems Engineering / Information Theory Telemetry-SSB Technique / Doppler Radar / Countermeasures Radome \& Antenna Design / Microwave Circuitry \& Components Receiver \& Transmitter Design / Airborne Navigational Systems Jamming \& Anti-Jamming / Miniaturization-Transistorization Ranging Systems / Propagation Studies Ground Support Equipment

NEW YORK INTERVIEWS DURING IRE NATIONAL CONVENTION
Plan now to visit Republic representatives
at the Convention Hotel (March 23-26)
Please send resume in complete confidence to:
MR. GEORGE R. HICKMAN
Engineering Employment Manager, Dept. 13 C

Industry News

Recent appointments at Texas Instruments Inc. include: H. J. Wissemann, Assistant Vice President as General Manager of the Apparatus Div.; E. O. Vetter as an Assistant Vice President; and J. R. Juncker as Military Relations Engineer for the Semiconductor-Components Div.

Dr. Mervin J. Kelly, Chairman of the board of Bell Telephone Labs. has been elected a Director of Tung-Sol Electric Inc. He is also a Director of Sandia Corp., The Prudential Insurance Co. of America and Bausch and Lomb Optical Co.

M. Kelly

J. Degen

Joseph F. Degen has been appointed Vice President-Manufacturing of Daystrom-Weston Divisions, Daystrom, Inc. He was formerly Vice President of Manufacturing for Weston Instruments Div.

Three new executive assignments within the Radio Corp. of America are: George W. Chane, Vice President, Finance and Management Engineering; Ernest B. Gorin, Vice President and Treasurer-with responsibility for banking and investments, treasury, corporate secretary, and stockholder relations matters; and Howard L. Letts, Vice President and Controller.

Raymond W. Smith and Harold A. Strickland, Jr., have been elected Vice Presidents of the General Electric Co. Mr. Smith is General Manager of the Transformer Div., Pittsfield, Mass. Mr. Strickland is General Manager of the Industrial Electronics Div., New York City.

Henry F. Dever, Vice President of Minneapolis-Honeywell Regulator Co. and President of its Brown Instruments Div., has been elected President of the 200 -member Metal Manufacturers' Assoc. of Philadelphia. He previously was Treasurer.

High level assignments in the design and development of system electronics are available for engineers in the following specialties:

- electronic and flight data systems and CONTROLS A wide choice of opportunities exists for creative research and development engineers having specialized experience with control devices such as transducers, flight data computers, Mach sensors, servomechanisms and circuit and analog computer designs utilizing transistors, magnetic amplifiers and vacuum tubes.
These positions require men capable of coordinating the design and development oi complete electronic control and flight data systems for use in current and future high performance aircraft and missiles.
- SERVO-MECHANISMS AND ELECTRO-MAGNETICS Requires engineers with experience or academic training in the advanced design, development and application
of magnetic amplifiers, inductors and transformers.
- FLIGHT INSTRUMENTS AND TRANSDUCERS design analysis: Requires engineers capable of performance analysis throughout preliminary design with ability to prepare and coordinate related proposals.
development: Requires engineers skilled with the analysis and synthesis of dynamic systems including design of miniature mechanisms in which low friction, freedom from vibration effects and compensation of therno expansion are important.
- proposal and qualtest engineer for specification review, proposal and qualtest analysis and report writing assignments. Three years electronic, electrical or mechanical experience is required.

Forward resume to: Mr. G. D. Bradley

Our mission is simply stated: advancing the state of the art in electronics to satisfy the demands of the space age and the increasingly complex problems of defense.

To the experienced engineer with an inquiring mind we extend an opportunity to blaze new technological trails and to constantly explore the parameters of his personal ability.

DURING THE I.R.E. SHOW, members of our fechnical staff will be available for inferviews.
Opportunities are available in the following areas of Melpar's diversified activities:

Reconnaissance Syslems Engineering Department

Airborne Equipment

Ground Data Handling Equipment
Ground Support Equipment
Simulation \& Training Systems

Communication \& Navigation Systems
Detection \& Identification Systems
Chemistry Laboratory
Antenna \& Radiation Systems
Applied Physics Laboratory
Analysis \& Computation Laboratory

For details about these openings and
facts on a dynamically growing organization, write to:
Technical Personnel Representative

A Subsidiary of Westinghouse Air Brake Company 3007 Arlington Boulevard, Falls Church, Virginia 10 miles from Washington, D.C.

REPS WANTED

Manufacturer, TWT solenoids, current regulated power supplies, actuating solenoids, custom r-f and i-f chokes, transformers and coils, seeks representative for the Buffalo-Rochester area, the Chicagoland area, Texas, and the Pacific Northwest. (Box R3-1, Editor, Electronic Industries.)

A manufacturer of cooling equipment is looking for reps to cover Western Wisconsin and Minnesota. Method of manufacturing can be seen at booth 3825 , IRE show. Contact Ben Eckenhoff, McLean Engineering Co., Princeton, N. J.

Laboratory for Electronics, Inc. has appointed 3 new sales reps for their Microwave Instruments and Components. They are: William F. Hemminger Co. for Florida; Harold M. Hassmann for the Gentile, WrightPatterson Air Force areas; and J. Y. Schoonmaker Co. for Oklahoma, Arkansas, Louisiana and Texas, except El Paso.

PIC Design Corp., has 3 new sales reps, and 1 new sales export company. They are: Frank Tye Sales, Illinois; Forristal-Young Sales Co., Missouri, Iowa, Nebraska, Kansas; C. D. Daniels Co., Oklahoma; and Teletech International Corp., all foreign sales.

Samuel K. MacDonald, Inc., Philadelphia, Pa., has been appointed sales rep for Columbus Electronics Corp., Yonkers, N. Y. in Southern New Jersey, Pennsylvania, Delaware, Maryland, Virginia, West Virginia and Washington, D. C.

Schaevitz Engineering has appointed 3 new sales reps: Testco, Seattle, Wash., will represent the company in Washington, Oregon, Idaho and Montana. Ensco, Kansas City, will handle the Missouri, Kansas, Iowa and Nebraska areas. Southwest Electronic Industries, Dallas, Tex., will cover Texas, except El Paso, and Oklahoma, Arkansas and Louisiana.

Five new sales reps are now with Formica Corp., Cincinnati. They are: Shelton F. Jones, New York; C. Leo Masuret, Milwaukee office; Thomas K. O'Brien, Jr., Chicago; Doane T. Pickering Jr., Minneapolis; and Kenneth W. Thomas, Cincinnati office.

The Tompkins Co. has been appointed rep in the Mountain States and most of the Central states by The Barden Corp.
 NGRINCR

COMPUTER ENGINEERS here are the types of engineers We need:

\author{

- SENIOR SYSTEMS ENGINEERS
 - SENIOR CIRCUIT DESIGNERS
}

\author{

- SENIOR LOGICAL DESIGNERS
 - SENIOR ELECTRONIC DESIGN ENGINEERS
}

COMPUTER ENGINEERS:

Senior Systems Engineers-Strong Theoretical and Design Knowledge in Electronic Engineering, including familiarity with electromechanical digital machines. Prefer experience with commercial application of digitalprocessing equipment, will consider scientific or defense application. Operational experience a distinct asset. Advance degree desired.
Your Work ot NCR - analyze and direct product improvement of digital computers.
Senior Circuit Designers - experienced in the design, development and analysis of transistorized computer circuits, including application of magnetic cores to high-speed memories.

Your Work of NCR-opportunities involving decision making concerning reliability, cost and component selection are offered.
Senior Circuit and Logical Designers -similar experience and duties as noted for Senior Circuit Designers plus evaluation and debugging arithmetic and control areas of computer systems.

DATA-PROCESSING ENGINEERS:
Senior Electronic Design Engineersexperienced in the development of logical design using standard computer elements.
Your Work of NCR - to evaluate and design transistorized circuits including voltage regulated power supplies and circuitry related to decimal to binary coding.

WHERE YOU WILL WORK ... at NCR's NEW Engineering Research Center, Dayton, Ohio.
You'll be working under the most stimulating and advanced R and D facilities with broad creative freedom in the engineering field which is yours.

HOW CO I APPLY?

Simply send your résumé to: Mr. K. C. Ross, Professional Personnel Section E, The National Cash Register Company, Dayton 9, Ohio.

- trademark reg. u.s. pat off

versatilf data processing
VErSatie data processing
ADDING MACHINES - CASH REGISTERS ACCOUNTHG MACHHES - NCR PAPER

Ideas are the life-blood of an operation devoted exclusively to diversified electronics research, development and production. So it's logical, we think, for the project engineer to see his idea to completion ... from design through construction through field testing (and sometimes, alas, back to the drawing board). The effectiveness of this project approach is illustrated by our achievements in military and industrial electronics. If you generate sound ideas and would like the opportunity to follow through on them... and if you like the idea of living beneath bright, sunny skies the year around ... write to Mr. Kel Rowan, Department E3.

Electronic Engineers, Mechanical Engineers, Physicists - SYSTEM ANALYSIS, DESIGN AND TEST-Radar Missile Guidance - Navigation Combat Surveillance Communications - Field Engineering - Dafa Processing and Display-CIRCUIT DESIGN, DEVELOPMENT AND PACKAGING-Microwave - Pulse and Video Antenne - Transistor - R.F and I.F Servos - Digital and Analog TECHNICAL WRITERS AND ILLUSTRATORS, QUALITY CONTROL ENGINEERS, RELIABILITY ENGINEERS
Moforola also offers opportunities af Riverside, California and Chicago, Illinois

Neely Enterprises' annual sales conference brings together Field Engineers and Staff from 8 offices. Norman B. Neely, President, in front row, left of center. To his left is R. L. Boniface, V.P. G Gen. Mgr. To his right are: R. L. Morgan, V.P., Engr'g, and R. H. Brunner, Sales Mgr.

Electrical Specialty Co., San Francisco is now rep in 11 western states for the Resistance-Wire Div. of C. O. Jelliff Mfg. Corp.

Aerol Assoc. is now sales rep in 13 western and southwestern states for electronic connector manufacturer, H . H. Buggie, Inc.
E. W. Humphreys is now West Coast rep for the 'Texilene' line of electrical wire and cable fillers of E. W. Twitchell, Inc.

Ferrotran Electroncis Co., Inc., has appointed Featherstone \& Salisbury Co. rep for Northern California and Northern Nevada.

Fast-moving, new developments in semiconductur devices - many of them the work of Sylvania Semiconductor Division scientists and engineers-have created a stimulating climate which will keep you substantially ahead of the field. Vital new areas are now being probed where your abilities and talents can play an important part - with commensurate rewards and recognition for you.

SEMICONDUCTOR DEVICE ENGINEERS

Experienced in design, development or production engineering, transistors, silicon devices, crystal diodes or rectifiers.

MICROWAVE ENGINEERS

Experienced in semiconductor device work or microwave circuit development. Microwave experience, even though not in devices, is acceptable.

FIELD ENGINEERS

To provide technical liaison between development and production engineers and customers who are electronic equipment manufacturers. Must have background in semiconductors and communication circuitry.
Please send your resume in confidence to: Mr. Joseph Reilly

100 Sylvan Road • Woburn, Massachusetts

General Electric's New Defense Systems Dept.

From many diverse disciplines in engineering and the sciences, capable men are coming together to form the nucleus of the new Defense Systems Department-an organization devoted exclusively to conceiving, integrating and managing prime defense programs, such as:

Whether you are a systems engineer now or not, the inauguration of this new department presents a rare opportunity for bringing your own career into sharp focus in systems engineering.

Immediate assignments in
SYSTEMS PROGRAM MANAGEMENT WEAPONS ANALYSIS WEAPONS SYSTEMS INTEGRATION ELECTRONICS • DYNAMICS
COMPUTER LOGICAL DESIGN PRELIMINARY DESIGN APPLIED MATHEMATICS advanced systems development SYSTEMS EVALUATION THEORETICAL AERODYNAMICS

Please direct your inquiry in strictest confidence to Mr.E.A.Smith, Dept. 3D. (...!,!!!)!)!)

Defense Systems Defartment GENERAL (3) ELECTRIC

300 South Geddes Street Syracuse, New York

Advanced Ceramic Design of 25 Amp Silicon Diode Increases Reliability By Localizing Internal Expansion Under Shock Loads of Temperature

Germanium Rectifiers Reduce Lost Power Costs as Much as 45.5% !

Four years of field experience has yielded indisputable facts to indicate that germanium is the best rectifier for high-current low-voltage equipment.

Of the semiconductors available, germanium exhibits the lowest voltage drop. This factor alone can mean real power sitvings to equipment users. For example, a 10,000 ampere germanium power supply operating ten hours a day, six days a week will save 912 KWH per week over a silicon unit of the saune rating . . a a savings in power dollars amounting to $\$ 948.48$ per year! These figures are based on an average cost of $\$.02$ per KWH. The user who pays more for power will save more!

Pictured here is the International Rectifier 500 Ampere Germanium Junction featuring efficiency to 98.9%. . the most efficient rectifier available for plating and other electrochemical applications from 1,000 to 200,000 amps. Write for Bulletin GPR-2S or
Circle 3 on Inquiry Card, page 123

Technical Article Available:
Elimination of Surge Voltage Breakdowns of Semiconductor Diodes in Rectifier Units.

Write on your letterhead.

Here is the 25 to 45 amp silicon rectifier series that really has the "give" it takes to operate with long-term depeudability in the toughest industrial applications. Capable of operation in temperatures to $200^{\circ} \mathrm{C}$, they feature a mechanical ruggedness that sets new standards of resistance to shock and strain.

Now in full procluction at International Rectifier Corporation, these diodes are the result of a completely new process in silicon rectifier manufacture.

The package itself is extremely rigid externally, but highly flexible internally. Radial and axial stresses crossing the unit are taken up by adjoining membranes to permit localized expansion under shock loads of temperature. At the same time, the unique case construction forms a hard shell over the rectifier junction, protecting it from virtually every type of mechanical strain.

The adaptability of this new device to de power supplies for high temperature operation make this a major step forward in semiconductor manufacture that can increase the life and performance of your equipment.
For immediate attention to your application requirements, contact the fac-

Rating: 50 to 500 volts PIV $\cdot 25$ to 45 Amps.
tory or our nearest sales office. Bulletin SR-304-A, deseribing these diodes in technical detail is now available.

Circle 4 on Inquiry Card, page 123
Assembling Your Own Silicon Stacks?
Write on Letterhead for technical article "Mounting Methods and Cooling Considerations - Silicon Stud Mounted Diodes."Ask for Rectifier News-RN 858.

New Developments Broaden the Application Range of the Toughest of Rectifiers... Selenium!

Enginecrs who really know will tell you that the selenium stack is a veritable "brute for punishment!" Over the years it has proven to be the most dependable and versatile rectifier for the greatest number of power applications. Progressive developments at International Rectifier have resulted in cell types with distinct advantages to equipment where selenium has consistently proven best and have also opened new areas of application where it will excel.

52 volt cells reduce stack size 50% as compared to standard cells, and by reducing the number of cells, reduces forward resistance by 50%, making improvements in the regulation of power supply voltage possible.
high current cell.s now deliver twice the rectified de output per sq. in. than do the standard cells... again reducing stack size by 50%. High inverse voltage ratings and low forward alrop are alditional advantages.

Only International Stacks have the three features that add up to dependability: Fine Grain Selenium Layer, Platelok Construction and the Patented Bellows Spring.
If you design hattery chargers, arc wolders or mag amp equipment, look into these atleancements. Write direct for Bulletins SR-152 and SR-160 or, if you prefor

Circle 5 on Inquiry Card, page 123

[^12]
ELECTRONIC INDUSTRIES Advertisers - March 1959

AIR-MARINE MOTORS, INC
AIR-MARINE MOTORS, INC.
Malcolm W. McClelian Adv.
ALFORD MANUFACTURING COMPANY
Engin MANUFACTURING COMPANY
ALLIED CHEMICAL CORP., GENERAL CHEMICAL DIV. Kaster Hilton Chesley Clifford \& Apherton
ALLIED RADIO CORP
George Brodsky, Adv. Inc
AMPEREX ELECTR ONIC CORP
…...... 232
AMERICAN ELECTRICAL HEATER COMPANY 178
Haig Bayleran Assoc.
AMERICAN SUPER
AMERICAN SUPER.TEMPERATURE WIRES iNC.
Paul M. Healy, Adv. Agency
AMERICAN TIME PRODUCTS, INC
H. M. Alexander \& Assoc.
AMPERITE CO INC

H
H. J. Gold Co.
AMP INCORPORATED 65
M. Russell Berger, Inc.
AMPHENOL-BORG ELECTRONICS CORP

BORG EQUIPMENT DIVISION202, 203
E. R. Hollingsworth \& Assoc.

ANDREW CORPORATION
Frank C. Nahser, Inc.
ARNOLD ENGINEERING COMPANY, THE
ARNOLD MAGNETICS CORP
Balsam Adv. Inc.
ARNOUX CORPORATION
ARTOS ENGINEERING COMPANY 192
Cramer-Krasself Co.. The
ASSOCIATED RESEARCH, INC
AUDIO DEVELOPMENT COMPANY 206 246

AUDIO DEVICES, INC.
Marsteller, Rickard Bebharal and Ree...... 180
AXEL ELECTRONICS 246 Richard \& Gunther

BALLANTINE LABORATORIES, INC
Frederick Smith Adv. Agency
BARKER \& WILLIAMSON INC
Babcock, Romer, Carberry \& Murray,
Inc. \quad BECKMAN INSTRUMENTS, INC. BERKELEY Cha
BELL TELEPHONE LABORATORIES
N. W. Ayer \& Son, Inc.
BOEHME INC H 0

Battista Adv
BOGART MANUFACTURING CORP.
Richard \& Gunther, Inc.
BOURNS LABORATORIES, INC
Allen, Dorsey \& Hatfield. Inc.
RUSH INSTRUMENTS DIVISION CLEVITE CORP
Duffy, McClure \& Wilder, Inc
BUD RADIO, INC.
Allied Advertising Agency, Inc
BURNEL \& CO. INC.
Mohr \& Eicoff."Inc.
BURROUGHS CORPORATION
BUSSMANN MFG. DIVISION, MCGRAW. EDISON CO.

CBS-HYTRON SEMICONDUCTOR OPERA TIONS, A DIV OF COLUMBIA BROADCASTING SYSTEM
Bennett \& Northrop, Inc.
CENTURY LIGHTING, INC
Kenneth L Curtis Adv.
CINCH MANUFACTURING COMPANY
CINCINNATI SUB-ZERO PRODUCTS
El: Cohan Adv., Agency
CLEVELAND COÑTAINER CO. THE
CLEVITE TRANSISTOR PRODUCTS DIVISION OF CLEVITE CORPORATION
Chambers Wiswell Shattuck Clifford \& McMillan Inc
COLUMBIAN CARBON COMPANY Donahue \& Coe, Inc.
COMMUNICATIONS ACCESSORIES COM PANY
Car Lawson Adv. Co
COMPUTER INSTRUMENTS CORP
CONNECTICUT HARD RUBBER CO
Troland, Inc.
CONRAC, INC.
CONSOLIDATED ELECTRODYNAMICS CORP ANALYTICAL \& CONTROL INST. DIV Hixson \& Jorgensen. inc.
CURTISS-WRIGHT CORP.
Burke Dowling Adams, Inc
CUTLER-HAMMER, INC
DALE PRODUCTS, INC
Ayres, Swanson and Associates, Inc.

DAKOTA ENGINEERING, INC. 245
DELCO RADIO, DIV. OF GENERAL MOTORS 172 Campbell-Ewald Company
DEUTSCH COMPANY THE
Charles Bowes Advertising, Inc
DIMCO-GRAY CO.
Weber, Geiger \& Kalat Inc.................. 210
DU MONT LABORATORIES, INC., ALLEN B.
INDUSTRIAL TUBE SALES
Lescarboura Advertising, Inc
EASTERN PRECISION RESISTOR CORP. 26
ELECTRONIC INSTRUMENT CO., INC.
235
(EICO)
235
EITEL-MCCULLOUGH INC. Adv.
132
Cunningham \& Walsh Inc.
ELECTRA MANUFACTURING CO
Valentine-Radford Adv.
ELECTRO-MEASUREMENTS, INC.
ELECTROSNAP CORPORATION, SWITCH
Stoetzel \& Associates Inc.
ESC CORPORATION
61
Keyes, Martin \& Company
FAIRCHILD SEMICONDUCTOR CORP. 168
Boland Associates
68, 69
Symond Metallurgical Corp.
Symonds, Mackenzie \& Company 235
Pike \& Becker Inc.
FLUKE MANUFACTURING CO., JOHN 229
David W. Evans \& Associates
FORMICA CORP. A SUBSIDIARY OF
AMERICAN CYANAMID
57
Perry-Brown, Inc
Perry-Brown Inc. 58
GARRETT CORPORATION, THE
275
GATES RADIO COMPANY Comy
Halbach, Adv.
GENERAL' ELECTRIC CO. POWER TUBE DEPT.

16, 17
GENERAL ELECTRIC CO. RECEIVING TUBE DEPT. ..
GENERAL ELECTRIC CO. DEFENSE SYSTEMS Dept.
Dept.
GENERAL ELECTRIC CO. HEAVY MILITARY ELECTRONICS DEPT. 250 Deutsch \& Shea Inc
GENERAL INSTRUMENT CORPORATION SEMICONDUCTOR DIV.44, 45
GENERAL TRANSISTOR CORPORATION.170, 171
Conti Ady Inc.
GERTSCH PROOUCTS, INC
218, 219
GRAPHIC SYSTEMS
219
246
G-V CONTROLS INC. Inc. Cover 3 Keyes, Martin \& Company

HOFFMAN ELECTRONICS CORPORATION SEMICONDUCTOR DIV
Sander Rodkin Adv. Agency itd
HOUSTON FEARLESS CORPORATION
Tigort \& YARES CORPORATION 09*
HOWARD INDUSTRIES, INC.
HUGHES AIRCRAFT COMPANY
11, 12, 13, 14, 258, 259
HUGHEY \& PHILLIPS INC
Jack Packard Adv.
243

INDIANA STEEL PRODUCTS CO., THE ... 215
NTERNATIONAL RECTIFIER' CORP.
Compton Advertising Inc.
280
INDUSTRIAL TEST EQÜIPMENT CO. 240
INTERNATIONAL ELECTRONIC RESEARCH CORP. Jaycraft Co. Adv
INTERNATIONAL RESISTANCE CO. 64
Arndt-Preston-Chapin-Lamb \& Keen, lnc.
INSTITUTE OF RADIO ENGINEERS. THE ... 25
Raymond Schoonover Ady
I-T-E CIRCUIT BREAKER COMPANY 189
Gray \& Rogers, Adv.
ITT COMPONENTS DIVISION, INTERNA
TIONAL TELEPHONE \& TELEGRAPH CORPORATION
Conti Adv. Inc.
.220, 221

JENNINGS RADIO MANUFACTURING CORP.
L. H. Waldron Adv.

Delphi Adrentisin CORP
JOHNSON CO., E. F. .
JONES DIVISION. HOWARD B., CINCH
MFG. CORP.
Symonds, MacKenzie \& Company, Inc.

KAHLE ENGINEERING CO
Kelly Nason, Inc. 243
Josepnson, Cuffari \& Company .

KEARFOT COMPANY. INC
The McCarty Company
M. Dorsey and Associates, Adv.
KEMET COMPANY DIVISION OF UNION

CARBIDE CORPORATION
William Esty Company, Inc
KESTER SOLDER CO
…...... 225
KEYSTONE CARBON CO. 134
Downing Industrial Adv. Inc.
SONS, MATHIAS
The Buchen Company
KLEINSCHMIDT, DIVISION OF SMITH.
CORONA MARCHANT INC. 29 CORONA MARCHANT INC

LEPEL HIGH FREQUENCY LABORATORIES,
INC. ... 247
Apex Graphic Co. Inc.
LERCO ELECTRONICS, INC. 234
Bill West Adv
LINK AVIATION, INC
248
GITTON INDUSTRIES, ELECTRON TUBE DIV. 20
Calkins \& Holden, Inc.
LOCKHEED MISSILES \& SPACE DIV.....264, 265
LOCKHEED, MISSILES \& SPACE DIV......264,
Hal Stebbins, InC.
LOCKHEED. THE CALIFORNIA DIVISION OF
LOCKHEED, THE CALIFORNIA DIVISION OF
LOCKHEED AIRCRAFT CORP.
Hal Stebbins, Inc.
MCDONNELL AIRCRAFT
MAGNAVOX CO. THE, GOV'T. \&
INDUSTRIAL DIV.
INDUSTRIAL DIV.

Rothbardt \& Haas Adv., Inc.
MAGNETICS, INC. 88
Lando Advertising Agency
MARCONI INSTRUMENTS 240
Williams Advertising Service Corp.
MELPAR, INC. 276
MEE Belmont Ver Standig, Inc.
MERCK \& CO.. INC., ELECTRONIC
CHEMICALS.
CHEMICALS
Charles W. Hoyt Company, Inc.
METHODE MFG. CORP. 227
Sander Rodkin Adv. Agency Ltd.
MICA IMPORTERS ASSOCIATION. INC.... I38
Richard \& Gunther, Inc.
MICRO SWITCH, DIV. OF HONEYWELL.... 48
MICRO SWITCH, DIV. OF HONEYWELL.... 48
Reincke, Mever \& Finn, Inc.
MICROTRAN COMPANY, INC. 224
Richard \& Gunther, Inc.
MILLER COMPANY, J. W. 226
MILLER COMPANY, Advertising, Inc.
MINNESOTA MINING AND MANUFACTUR-
ING CO MINCOM DIVISION..........
ING CO. MINCOM DIVISION
MINNESOTA MINING AND MANUFACTUR- 32

MISSILES \& SPACE SYSTEMS-DIVISION OF
UNITED AIRCRAFT CORP. 25
UNITED AIRCRAFT CORP.
Chambers, Wiswell Shattuck, Clifford
Chambers, Wiswell Shattuck, Clifford \&
McMillan, Inc.
RECRUITMENT
MOTOROLA, INC., RECRUITMENT 270
MOTOROLA, SEMICONDUCTORS 169
Advertising Associates
MOTOROLA, INC., WESTERN MILITARY
ELECTRONICS CENTER
Jennings \& Thompson Adv., Inc.
NATIONAL CASH REGISTER CO. 277
McCann-Erickson, Inc.
NEMS-CLARKE COMPANY 195
John E. Waterfield Adv Inc.
NON LINEAR SYSTEMS INC.
NON LINEAR SYSTEMS, INC.
Barnes Chase Co.
NORDEN LABORATORIES 272
Deutsch \& Shea, Inc.
NORTH ATLANTIC INDUSTRIES, INC. 238
NORTH ATLANTIC INDUSTRIES, INC.
Adrian E. Clark, Jr. Inc.
NOTHELFER WINDING LABORATORIES,
Williams Advertising Service Corp.
ONAN \& SONS, INC., D. W.021*
Graves \& Associates, Inc.
PACIFIC SEMICONDUCTORS, INC.33-40
Hixson \& Jorgensen, Inc.
PANORAMIC RADIO PRODUCTS, INC.
181
Harold Marshall Advert sing Co. Inc.
PHILCO CORP., LANSDALE TUBE DIV....18, 146
Maxwell Associates, Inc
PIONEER CENTRAL DIV. BENDIX AVIATION CORP.
OLARAD ELECTRONICS CORPORATION 175-176 Howard A. Harkavy, Inc.
OIYTECHNIC RESEARCH
POLYTECHNIC RESEARCH \& DEVELOPMENT CO. INC.
Smith Winters, Mabuchi, Inc.
(Continued on page 282)

For product information, use inquiry card on page 123

RADIO CORPORATION OF AMERICA, BROADCAST AND TELEVISION EQUIP MENT 012,* 013*
Al Paul Lefton Compan
RADIO CORPORATION OF AMERICA ELECTRON TUBE DIVISION
RADIO CORPORATION OF AMERICA SEMICONDUCTOR AND MATERIALS DIV. Cover 4
Al Paul Lefton Company
RADIO MATERIALS COMPANY Cover 2 RADIO RECEPTOR COMPA
WOI RECEPTOR COMPANY, INC. 233
RAYTHEON MANUFACTURING COMPANY,
COMMERCIAL EQUIPMENT DIV. 014^{*}
DOnGHE
MICROWAVE \& POWER TUBES DIV.72-73
Donahue \& Coe Inc
MISSILE SYSTEMS DIV MISSILE SYSTEMS DIV

273
RAYTHEON MANUFACTURING COMPANY
SEMICONDUCTOR DIVISION I4
144
RED BANK DIV, BENDIX AVIATION CORP. 16 MacManus, John \& Adams. Inc.
REPUBLIC AVIATION
REVERE CORPORATION OF AMERICA 19
W. L. Towne Advertising

HEEM MANU Advertising
FENSE AND TECHNICAL PRODUCTS' DIV. I2I
Getz and Sandborg. Inc.
Jackson. Haerr Peterson 018^{*}
SANGAMO ELECTRIC COMPANY 213
SARKES TARZIAN, INC., RECTIFIER DIV.... I7
Argyle Wampler Adv., RECTIFIER DIV.
SCALA RADIO COMPANY
Bonfield Associotes Inc
Bonfield Associates, Inc.
CINTILLA DIVISION, BENDIX AVIATION ORP.
SENSITIVE RESEARCH INSTRUMENT CORP.
SERVO CORPORATION OF AMERICA 20
Smith, Winters Mabuchi, Inc
HIELDING, INC.
SHOCKLEY TRANSISTOR CORPORATION A
SUBSIDIARY OF BECKMAN INSTRUMENTS.
INC. .. 16
Charles Bowes Advertising inc
SIERRA ELECTRONIC CORPORATION..023,* 024*
L. C. Cole Company Inc.

CORPORATION 19
Bonfield Associates Inc.
SPRRY MICROWAVE ELECTRONICS CO.,
OIV. OF SPERRY RAND CORP..............63, 7
SPERRY, SEMICONDUCTOR DIV, SPERRY RAND CORPORATION
Reach. McClinton \& Co
SPRAGUE ELECTRIC COMPANY
Stuart Sande Adv.
STAINLESS INC.
Marvin Gaskill
STANDARD ELECTRONICS, RADIO ENGI-
NEERING LABORATORIES, INC.06.* 07*
led Gravenson, lnc.
STANPAT CO.
Richard \& Gunther
STATHAM INSTRUMENTS, INC 235
SYLVANIA ELECTRIC' PRODUUCTS, INC

SYLVANIA SEMICONDUCTOR DIVISION ... 279
Deutsch \& SMICONDUCTOR DIVISION
Deutsch \& Shea, inc
Burton Browne Adv
SYSTEM DEVELOPMENT CORPORATION ... 271 Stromberger, LaVene, McKenzie Adv.

TAB
Charles H. Rogers Associates, Inc.
TAMAR ELECTRONICS, INC.
TECHNICAL APPLIANCE CORP
TELECHROME MANUFACTURING CORP..... 197
TELECHROME MANUFACTURING CORP..
The Powerad Co.
TELERAD MANUFACTURING CORP. 240
Beckert and Bradley, Inc. \quad WIRE CO., INC.... 207 Sanger-Funnell, Inc.
TEXAS INSTRUMENTS INCORPORATED 150, 151 TRIAD TRANSFORME
TRIAD TRANSFORMER CORP..' A SUBSIDI-
ARY OF LITTON INDUSTRRE
ARY OF LITTON INDUSTRIE'S 54
Calkins \& Holden, Inc.
TRIPLETT ELECTRICAL in
RIPLETT ELECTRICAL INSTRUMENT CO.... 49
Burton Browne Adv.

TUNG-SOL ELECTRIC, INC.
E. M. Freystadt Associates, Inc

UNITED TRANSFORMER CORPORATION ... 193 Shappe-Wilkes, Inc.
U. S. COMPONENTS, INC.
U. S. SEMICONDUĊTOR PRODUCTS, INC.

Gordon H. Dibble Company
VECTOR ELECTRONIC COMPANY
M Dorsey and Associates Adv.
VICTOREEN INSTRUMENT COMPANY. THE IBB
Palm \& Patterson, Inc.
For product information, use inquiry card on page 123

the strongest link in your 1959 selling program will be...

JUNE DIRECTORY AND ALL-REFERENCE ISSUE
LOOK AT IT THIS WAY. The comparisons a buyer makes when he goes to the catalog ads in his product directory are often decisive. They can make or break all your previous selling efforts.

In 1959 one directory will go into the hands of more potential buyers in the electronic manufacturing market than any other. That is ELECTRONIC INDUSTRIES' JUNE DIRECTORY.

It has by far the largest O.E.M. circulation. And it has more subscribers in the United States than any commercially published directory in its field.

During the 12 months starting June 1959, a catalog-type ad in the ELECTRONIC INDUSTRIES' directory could again and again be the pay-off point for interest you have stimulated by direct mail, sales calls, publicity, and regular advertising.

So Plan Now FOR A SPREAD, AN INSERT, OR MULTIPLE PAGES IN ELECTRONIC INDUSTRIES' JUNE DIRECTORY AND ALL-REFERENCE ISSUE

- The only electronic industry directory combined with a major compilation of engineers' reference data.
- The most complete product guide in its field, listing the manufacturers of over 2,600 different classes of electronic products.
- Easiest-to-use product break-downs, based on the Electronic Industries Classification. (EIC code.)
- More than 100 pages of year-round technical reference data.

CLOSING DATE FOR INSERTION ORDERS AND PLATES—MAY Ist 1959

ELECTRONIC INDUSTRIES

Dependability and long life

previously available

only in high-cost relays

G-V RED/LINE
 low-cost thermal timing relays

te sound design, sturdy construction and reliable operation long ;sociated with G-V Hermetically Sealed Thermal Relays is available a low-cost form, fully qualified for industrial control . . . light id inexpensive enough for electronic and communications circuits. elays of 2 seconds to 3 minutes - Energizing voltages - 6.3 to 230 or DC

RUGGED STAINLESS STEEL MECHANISM

Relay mechanism is of stainless steel, differential exparision type, used in all G-V Thermal Relays. All parts are welded into a single integral structure.

SHATTERPROOF-NO GLASS

No glass is used in mechanism, encasing shell, or base. This avoids the danger of cracking or breakage in handling and use.

STEEL ENCASED HEATERS

Heating elements are conservatively designed, wound with Ni chrome wire on mica and encased in stainless steel, insuring long heater life even when energized continuously.

DUST TIGHT ENCLOSURE

A dust tight metal shell completely enclosing the relay mechanism and contacts, crimped tightly to the base, provides complete protection for the structure.

TAMPER PROOF

Time delay intervals are preset at the factory. Thus changes of delay interval in the field which might damage associated equipment are avoided.

directiy interchangeable

Directly interchangeable with all other octal-size relays.

Write for Publication 131.

AVALABLE FROM STOGK

For rapid delivery, Red Lime Relays ale manufactured and stocked in both normally open and nommally closed types, in the standard heater voltages ānd delay intervals listed. Relays for other voltages and delay intervals can be provided on special order.

6.3 v	26.5 v.	115 v.	230 v.
2 sec.	2 sec .	2 sec .	-
5 sec .	5 sec .	5 sec .	-
10 sec.	10 sec .	10 sec .	10 sec .
20 sec .	20 sec .	20 sec .	20 sec .
30 sec .	30 sec .	30 sec .	30 sec .
45 sec .	45 sec .	45 sec .	45 sec .
50 sec .	60 sec .	60 sec .	60 sec .
90 sec .	90 sec .	90 sec .	90 sec .
i26) sec.	120 sec	120 sec .	120 sec.
181) sec.	180 sec .	180 sec .	180 sec .

OTHER U. S. \& FOREIGN PATENTS PENDING

RCA-2N643, RCA-2N644, and RCA-2N645 feature controlled minimum gain-bandwidth products, of 20,40 , and 60 Mc

RCA continues to pioneer superior-quality semiconductor devices with the new RCA-2N643, RCA-2N644, and RCA-2N645 "Drift" transistors. These three new units feature controlled minimum gain-bandwidth products permitting the design of extremely high-speed non-saturating switching circuits with rise, fall, and propagation time in the order of 20 millimicroseconds.

For your high-speed switching circuits requiring pulse repetition rates up to 10 Mc . investigate the superior design possibilities and benefits available to you with the new RCA "Drift" transistors-RCA-2N643, RCA-2N644, and RCA-2N645-hermetically sealed in cases utilizing dimensions of Jetec TO-9 outline. Your RCA field representative has complete details. Call him today. For technical data, write RCA Commercial Engineering, Section C-50-NN, Somerville, N. J.

Semiconductor and Materials Division

Somerville, N.J.

RCA Field Offices
EAST: 744 Brood Street
Nework 2, N. J.
HUmboldt 5.3900
NORTHEAST: $64^{\prime \prime} A$ " Street
Needhom Heights 94, Moss.
Hllicrest 4.7200
EAST CENTRAL: 714 New Center Bldg., Detrait 2, Mich, TRinity 5.5600
CENTRAL: Suite 1154, Merchondise Mort Plazo Chicago 54, 111.
Whitehall 4.2900
WEST: 6355 E , Washington Blvd.
los Angeles 22, Colif.
RAymond 3.8361
GOV'T: 224 N . Wilkinson Street
Dayton, Ohia
BAldwin 0.2366
1625 "K" Street, N.W.
Washington, D. C.
District 7.1280

[^0]: More News on Page 26

[^1]: *Trademark of Hughes Aircraf1. Co

[^2]: All IRE members will receive this February issue as usual.

 Extra copies to members, $\$ 1.25$ each (only one to a member)

[^3]: Engineering Quality

[^4]: FANSTEEL METALLURGICAL CORPORATION North Chicago. III., U.S.A.

[^5]: *DR. LEANG P. YEH was a Fellow Engineer, Westinghouse Electric Corp., Baltimore, Md., when this article was prepared.

[^6]: Left: block diagram of Westinghouse's AM compatible stereophonic transmitter

[^7]: - Photocopies of all foreign articles are available at 50 cents per page, remitted with order. Unless otherwise indicated, articles appear in language native to country of origin.
 - A reprint of this section, "International Electronic Sources" is available without charge.
 Requests for the above should be sent, on company letterhead, to:

 Electronic Sources Editor
 ELECTRONIC INDUSTRIES Chestnut \& 56th Sts. Philadelphia 39, Pa.

[^8]: ${ }^{* M i l}$ M T 19500/36 (Sig. C.)
 **Mil. T $19500 / 58$ (Sig. C.)
 NOTE: Military Types pass comprehensive electrical tests with a combined acceptonce level of 1%.

[^9]: In Conada: 700 Weston Rd., Toronro 9, Tel. Roger 2-7535 • Export: Ad Auriema, Inc., New York City

[^10]: 20.20 Jericho Turnpike, New Hyde Park, L. I., N. Y.

[^11]: Circle 318 on Inquiry Card, page 123

[^12]: EXECUTIVE OFFICES: EI SEGUNDO, CALIFORNIA P PHONE OREGON Q-6201• CABLE RECTUSA
 BRANCH OFFICES: NEW YORK: 132 EAST 70TH ST.,...TRAFALGAR 9-3330 - CHICAGO: 205 W. WACKER DR.... FRANKLIN 2-3888 - NEW ENGLAND: 7 DUNSTER ST., CAMBRIDGE. MASS. .UNIVERSITY 4-E520. PENNSYLVANIA: SUBURBAN SOUARE BUILDING. ARDMORE, PENNA..... MIOWAY 9-1428 - MICHIGAN: IT99 COOLIDGE HIGHKAY. BERKLEY. MICH.....LINCOL.N 8.IIA4

