

A"SPARKING" PARTY

Will There Be A Niche For You?

Industries Need Chemists-

Pay Them Good Salaries

Industrial plants of all kinds have awakened to the need of skilled, trained chemists. Good salaries are paid them. There is no reason why you, too, cannot join this small army of trained men who are reaping material benefits from their knowledge that guards and advances civilization!

-and Special 30-Day Offer!

Besides furnishing the student with his Experimental Equipment. we are making an additional special offer for a short while only. You owe to yourself to fith out aborit it. Write totay for Chemists " Send the coupon wist now while it Chemists. Send the coupon rggrt now whle it is resh in your mind. Or just address on a postal and jiming the coupon may ever you do. act Loray. Signing the coupon may prove the most impor ar a fou the facts.

Act Now!

CHEMICAL INSTITUTE OF NEW YORK

Home Extension Division 6 West Broadway, New york ity
Please send me at once Fithout any obligation on my part. your free Boak, "Gpportunities for Chemists." and full particulars a'sout the Experimental Equipment given to every student. Als tell me about your plan of payment and special 30 -day offer.

NAME
ADDRESS . \qquad
CITY
STATE.

NNo man knows what is in store for him. Men now famous in business may leave their names in the HALL OF FAME. Great discoreries been born over night - marvelous scientific deeds sometines were the results of decades of labor, ather times the outcome of a scant week s research. Truly, no man can tell what the future holds for him. But it is within the power of each and everyone of $u s$ to control our own destinies, by self-training and diligent study to fit ourselves to render a hasting service to the world-a servise that will hring reward, perhaps in fame, perhaps in riches. You control sour own future.

Great Growth of Chemistry

What It Means to YOU

It is the growth of chemistry that has made the past century the most wonderful period in man's history. In a fe:v years the chemist has changed the industrial customs of the world. In a little more than one century be has advanced civilization by ten centuries. Do you know you can learn chemistry at home in your leisure hours? You can-hundreds of othe:s are learning now!

Experimental Equipment Furnished to Every Student

We give to every student withont additional charge this chemical equipment, including forty-two pieces of leboratory apparatus and supplies and seventeen different chemicals and reagents. These comprise the apparatus and chemicals used for the experimental serves not only as a case for the outfit but also as a useful laboratory accessory for performing countless experiments. Full particulars abrut this special fenture of our course are contained in our free book, "Opportunitics for Chemists

Dr. T. O'Conor Sloane Will Teach You Chemistry in Your Own Home

The Chemical Institute of New ork of which Dr T O'Cono Sloane is Ecucational Director, was founded to fill the reed of amlii tious, far-sighted mea who realize and recognize the sElendid future chemistry oftess then, but who cannot spare the time nor the money most guthority on chemistry, will teach you and will gire you any individual help you maz require. He will persnnally go over your pape-s correct them, point out your faul s, and place you on the path which bears foot-prints of many who have

Easy Monthly Payments

You don't have to have even the small price of the ccurse to star: You can pay for it in small montrly feel them. The cost of our course is eery low, and includes everything even the Experimental Equipment there are no extras to buy with cur course. Our plan of monthly pay ments places a chemical education within the reach of everyone.

Chemical Institute of New York, Inc.
Home Extension Division 6
66.B West Broadway, New York City

Would you like to make \$10 an hour?

Sounds like big pay, doesn't it?
But thousands of men, when they have climbed the ladder and figured back, have found that the time they spent in spare-hour reading and studying paid them bigger than any wages they ever earned.

Let's figure it. There are at least three evening hours a day that can be used in putting practical knowledge into your head. Suppose you used just a fair portion of these, putting in, say, 500 hours a year for two years1000 hours in all.

The well-informed man in any business can expect to earn $\$ 2000$ a year more than the uninformed one. In five years this difference amounts to $\$ 10,000$, or $\$ 10$ for every hour of your two years' spare-time employment.

Thellll/4, we are putting, it congervatively,

 Many men have found their use of spare time paid them as high as $\$ 25$ to $\$ 50$ an hour. Spare-time investment isCROEE the biggest thing you can undertake.

LIBRARY OF PRACTICAL ELECTRICITY

//|||||!!!!" A combined reference library and home-study course

The Croft Library of Practical Electricity Paves the Way to Bigger Pay for You

Thos. A. Edison, the great electrical inventor, writing to Terrell Croft, said:
"Your method of explaining by analogy with things everyone knows, and the simple illustrations make your work one of the best that I have yet seen." In the Croft books you will find complete, detailed and up-to-the-minute information on electricity, from the simplest principles to complete and economical operation of a central station. You will be told the things you need to know about motors, generators, armatures, commutators, transformers, circuits, currents, switchboards, distribution sys-tems-electrical machinery of every type, installation, operation and repair-wiring for light and power-how to do it mechanically perfect in accordance with the National Electrical Code-wiring of finished buildings-underwriters' and municipal requirements -how to do the complete job, from estimating it to completion-illumination in its every phase-the latest and most improved methods of lighting-lamps and lighting effects, etc.

Send for your set of these pay-increasing books today and judge their value for yourself. Don't wait. You can make every evening hour worth $\$ 10$ or more to you.
Free examination-No money down-Easy payments We want you to test our statements-we want you to compare the Croft books with others, Fill in and ination. We take all the risk-pay all charges. You assume no obligation-you pay nothing unleas you

7 Reasons for Owning the Croft Library

1 Every page of this 3000-pase Library ha taken from every-day electrical practice. Gisoft deate your daily work.

2

 2 The author's knowledge of alectricity has been Cbtained through actual ahirt-slecto practico. Beginning as an apprentice hineman, ho went man, ctc., until he atainad the ponition of electrical engineer with ane of the big electrical manufacturing companien. Now he heede his own consulting company.3 Seven years of thought, time and efrort were put into thene great bookt. In them you will find all the easentials of modern eloctrical oundard electrical references books of todar.
4 The books contain nothine but live, practical material. They are kept up to the minute by trical worker will appreciate the value of thia
5 Everything in the volums io clearly writtenclearly illustrated. Every man ablo to rend and write can underatand and use them. Yet they are neither olementary or amateurish.
6 The flexible keratol binding of the Croft or home libe them ideal for either workabos and they will last.
7 Tho worth of any set of booke hasually indlcated by ite ale. Over 80, H10 electrical work. Croft book. There's a sound reason for thia popularity.

Send this

 CouponMcGRAW-HILL BOOK CO., Inc 370 Seventh Avenue, New York City
Free Examination Coupon McGraw-Hill Book Co., Inc.
370 Seventh Ave., New York.
Gentlemen-Please send me the CROFT LIBRARY OF PRACTICAL ELECTRICITY (shipping chargee prepaid), for 10 days' free examination. If satisfactory, I will send $\$ 1.50$ in ten days and $\$ 2$ per month until $\$ 19.50$ has been paid. If not wanted, I will write you for return whipping instructions.
(Write plainly and fill in all lines.)
\qquad
\qquad
\qquad
\qquad
Occupation.

PRACTICAL ELECTRICS is published on the 15th of each month at 53 Park Place, New York City. There are 12 numplers ncr year. Subseription price is $\$ 2.00$ a year in U.S. and possessions. Canada and foreign eountries $\$ 2.50$ a year. U. S. coin as well as U. S. stamps accepted (no foreign coin or stamps). Single copies 20 cents each. A sample will he sent gratis on reauest. Checks and money orders should he drawn to order of PRACTICAL that copies are not miscarried or lost
that copies are not miscarried or lost. to: Editor, PRACTICAL ELECTRICS. 53 Park Place. New York. Unaccepted contributions cannot be returned unless full postage has been Pablished by EXPERIMENTER PUBLISHING CO.. INC. CO., INC.
Publishers of "Science and Inventical Electries Co., Inc., ${ }^{\text {In }}$, wner)
"Science and Invention" and "Thadio News"
S. GERNSBACE, Treasurcr
included. All aecepted contributions are pard ror on whbliwatho. A special rate is paid for novel experiments; good photopraphs arcomnanying them
are hikhly desirable. PRACTICAL ELECTRICS. MONTII.Y entered as are himhly desirable. matter Octher 14, 1921, at the New Yor's Post Office under second-class matter Octoher 1., C, 1892 , Title resistered at the Patent Office, Act or Congross of March 3, ${ }^{18 \% 9 \text {, Title registered at the Patent Office, }}$ Copyright, 1922, by 1 RACTICAL ELECTRICS COMI ANY, INC., New York. The contents of this Magazine are conyrishted and must not be reproduced without giving full credit to the pullichtion.
I'RACTICAL, ELECTRICS is for sale at all news stunds in the United States and Canada ; also at Brentano ${ }^{\text {s. }}$, 37 Avenue de lopera, Paris.

10,000 Trained Men Wanted in the Electrical Field

The World Technical Institute methods of training men at home are a revelation. "I am amazed at the manner in which you cover the most difficult subjects in electricity without resort to higher mathematics," says one of the leading vocational educators of America.

Salaries of \$72 to $\$ 200$ Per Week

The World Technical Institute agrees to give you a better training than any other similar Institution, or refund your money.

The highest salaries in the history of the electrical industry are now paid. Nearly one billion dollars per year is being spent on extensions, materials, apparatus, maintenance
There are $14,000,000$ old houses and thousands of new ones under construction to be wired. Trained men are at a premium. Salary, bonus and overtime have brought about undreamed of earnings.
Manufacturers of electrical machinery are operating to their fullest capacity. Scores of great hydro-electric projects are planned.

WORLD TECHNICAL INSTITUTE YOU! Young man and old are you looking for

Now is your chance. The opportunity to make good, to do credit to yourself and family, is here. Don't waste any more valuable time in thinking and talking about what you want to do, what you would like to do. Your success in the electrical game is sure.

As-In-Practice Training at Home

Take the short-cut to big pay. The World Technical Institute's improved methods of training men of all ages are ten years ahead of anything of the kind.
No Matter About Your Age, Experience,

The World Technical Institute Offers:You What No Other School Can Offer-
Complete, practical, simpliffed intruction in every phase of
(2) Power plant managem
(3) tenance, installation.
(3) Wiring, armature winding, bat-
(4) Illumination digns, motion pic-
(5) ture and de machinery of every
6) description, repairs.
(6) Contracting, merchandis -
(7) Train lighting farm phy
(8) welding meters, instruments.
(8) Automobile ignition, lighting
(9) Complete instruction in wireless.
10) Real working outfit, presented
11) Are. real employment service.
2) Information which will enable you to become an expert drafto-
(18) Revietv
electrical encineer. work by an
(14) Personal instruction by an electrical engíneer.
(15) Money-bick guarantee bond.
(1) Consulting service until you are
(17) All the advantage week.
(18) Inform System.
(18) Information which will enable you to procure a license in any
(19) Instruction which will helo you to begin earning money in few weeks after you enroll.
(20) Aivloma which means that you have completed the most practical course of training in existence.
or Previous Education
If you can read and write, if you can add, rubtract, multiply and divide, we can make of you an expert. We will help you to make more money than you have ever
dreamed of earning. Our course outclasges all others in simplicity, accuracy, modernity and thoroughness.
Free Tools, Instruments, Material
You will be supplied with a real working outfit. consipting of a motor and over eighteen standard articles Superior to the working outfl of any other school. It is
yours to keep. No etrings attached to it

Free Employment Service
We render a real employment ser-
ice to students who wish to avail vice to students who wish to avail
themselves of the same. We give real time and energy to pe give students in. satisfactory positions.

Money-Back Guarantee

You run no risk whatever in en-
rolling with us. The risk is all ours. rolling with us. The risk is all ourn. We give you a Bond which guaran
tees tatigfaction. tees antisfaction.
Mail Free Coupon Now
Our great free electrical book, and all particulars in regard to the most remarkable offert ever made by any nchool will be mailed to you free and
postpaid upon receipt of coupon. WORLD TECHNICAL INSTITUTE
Fuller Bldg., Jersey City, N. J.

Absolutely Free. $\underset{\text { Pase }}{\substack{\text { Thi } \\ \text { sook } \\ \text { got }}}$

This book, which coat $\$ 2,500$ to prodace, is roura for the asking. It will tell you hundreds of vital facts about the world of electricity which you should know. It also reveals the startling truth about the latent method of preparing men for big positions.

Your Future Lies in This Coupon

[^0]Addrese.
$\ddot{P} . \underline{E} .6-2 \boldsymbol{2 3}$

KNOW WHO IS SENDING

Get twice the pleasure and usefulness out of your receiving set. Look up the name and location of any ship or land station whose messages you pick up-learn the name and address of that amateur whose sending set you just heard.

4th EDITION OF THE CONSOLIDATED RADIO CALL BOOK

7 Two-Color Radio Maps

Five of them are Continental Maps showing all stations throughout the world handling commercial traffic, with their calls; one showing the amateur radio districts of the United States and the principal radiophone broadcasting stations with their calls; and a map of the United States Weather Forecast Zones. Seven wonderful, twocolor radio maps with a wealth of information that will give you a great deal of pleasure and knowledge.

Ninety-five per cent of all Amateur Calls in the U.S. and Canada are Listed Besides Other Valuable Information Contained in This Book
Amateur Radio Calls of the United States and and Changes in Various Governmental Reg-

Canada; Every Vessel, Coast Station, and Radio-Compass Station in the World; Radiophone Broadcasting Stations of the United States; Every High-Power Station in the World; Special Land Stations of the United States; Time Signals, Hydrographic and Weather Reports of the United States and Principal Foreign Countries; International Abbreviations; Assignment of International Calls; Press Schedules; Radiogram Rates; Cable Rates; International Morse Code and Continental Signals; and Complete General Information covering Distress Calls, International Safety Signal, Use of 800 -Meter Wave Length, Amendments
 ulations, How to Determine Charges on Radiograms, Free Medical Advice by Radio to Vessels, and much other useful to information.
And every vessel and land station in the world is represented and listed alphabetically, according both as to name of vessel or land station, and to call letters. The Consolidated Radio Call Book is the only book in print officially listing all the Radio calls as issued by the Bureau of Commerce. And the New Radiophone Broadcast Section is particularly complete and gives all available information concerning calls, wave lengths, PROGRAMS, etc.

Consolidated Radio Call Book Co., Inc. 96-98 Park Place, New York City

Great 40-page Supplement FREE to all who have the 4th Edition Call Book

Eefinteane Electrical Expert

Trained "Electrical Experts" are in great demand at the highest salaries, and the opportunities for advancement and a big success in this line are the greatest ever known.
"Electrical Experts"earn $\$ 70$ to $\$ 200$ a week. Fit yourself for one of these big paying positions. In my twenty years of Electrical Engineering I have gathered some wonderful and interesting facts about this great
industry "Vital Facts." I will send them to you free.

Learn at Home to Earn \$12.00 to $\$ 30.00$ a Day

Today even the ordinary Electrician - the "screw driver" kind - is making money - big money. But it's the trained man the man who knows the whys and wherefores of Electricitypicked out to "boss" ordinary Electricians - to boss Big Jobsthe jobs that pay. You, too, can learn to fill one of these jobs-spare-time only is needed. Be an Electrical Expert"-Earn $\$ 70$ to $\$ 200$ a week.

Age orlack of Expe-

 rience No Drawback You don't have to be a College Man; you don't have to be a High School graduate. If you can read and write English, my coursewill make you a big success. It is

Some Eeatures of My Course That Make SUCCESS Certaim

1. PracticalMoney-Mak ing lnstruc:ion-no useless, high-sounding theory,
2. Free Electrical Outfit. - Finest outfit ever experiment home experiment and
3. Free EmploymentService. (Helps you get
4. Free Consulting Service. (No chance to get stuck on anything, while study-
5. Free Engineering
. Magazine.
6. Free use of my Elec-
trical Laboratory.
7. Extra Courses Free-Dadio-Electrical
8. Spare Time WorkSpecial earn-while
9. Reduced prices on.
10. Reduced prices on all
11. Cash Refund Guarantee Bond.
These features are big Free Book.
the most simple, thorough, and successful Electrical Course in existence, and ofters every man, regardless of age, education, or previous experience the trical Elo become. in a very short time, an Elecweek
 called upon to do later on. In other words, learn by doing. That is the method of the New York Electrical School.

Five minutes of actual practice properly directed is worth more to a man than years and years of book study. Indeed, Actual Practice is the only training of value, and graduates of New York Electrical School have proved themselves to be the only men that are fully qualified to satibfy EVERY demand of the Electrical Profession.

The Only Institution of the Kind in America

At this "Learn by Doing" School a man acquires the art of Electrical Drafting; the best business methods and experience in Electrical Contracting, together with the skill to install, operate and maintain all systems for producing, transmitting and using electricity. A school for Old and Young. Individual instruction.

Over 8,000 Graduates are Successful Men in the Electrical World

No previous knowledge of electricity, mechanics or mathematics is necessary to take this electrical course. You can begin the course now and by steady application prepare yourself in a short time. You will be taught by practical electrical experts with actual apparatus, under actual conditions.

The N. Y. E. S. gives a special Automobile Ignition Course as an advanced training for Auto Mechanics, Garage Men and Car Owners. The course covers completely all Systems of Ignition, Starters, Lighting and other electrical equipment on automobiles, motor Hoats, airplanes, etc.

Let us explain our complete courses to you in persqu. If you can't call, send now for 64-page book-it's FREE to you.

New York Electrical School

31 West 17th Street, New York

H. Germsback, Editor and Publisher T. O'Comor Sloane, Ph.D., Associate Editor

Flectrifying Airplanes

All have heard of the trackless trolley, but what to call this tethered aeroplane is a differlt queation. The illustration speaks for itself, and

ELECTIRICALLY driven vehicles are gradually taking the place of gas and steam propelled devices, as the advantages of electricity as a motive power over all other existing forms of nower are becomlng more widely appreciated.
Not so long ago electrically driven vehicles were few in number, the gas engines and steam engines being used almost exclusively. Then the electrically driven street car came into use, the electric motors in the car taking current through an overhead wire. As electrical development increased, the electrically driven motor bus, or trackless trolley car, taking current tlirough an overhead wire, came into use. This car has finally been developed so that it may carry its own electric energy, stored up in storage batteries. Motor boats and submarines are other devices emplosing electricity as a motive power. Cone concern in New York operates electrically driven taxicabs exclusively.

Electric battery trucks and cars are
used extensively in many industrial plants, and in some cases electric battery locomotives are used for hauling heavy freight trains. Perhaps the most important application of electricity is for electrifying the steam rallroads. Electric locomotives are used exclusively in many cities in place of the smoky and noisy steam locomotives. They are also used in long tunnels where the smoke and stenm wonld be objectionable, and in the near future we may expect all railroad companies to install electric locomotives in place of the crude steam locomotives.

Perhaps the only, vehicle that has not been electrified is the airplane. Why cannot the airplane be electrified as well as all other types of vehicles? Of course the difficulties involved are enormous, especially if we desire to have the airplane carry its own power, in the form of storage batteries. This would be impossible at the present stage of electric development due to the excessive weight. Obviously some form of trolley wire is re-
quired, such as the illustration shows. By this method the direction and height of the airplane's course would be limited; it would mean that the airplane route would be limited to one or more places, or wherever the trolley wires are strung. This, of course, would prevent the electrically driven plane from being used universally in place of the gas driven plane, but for some uses the electric plane would be desirable, especially where safety and dependability are of importance, such as in mall planes and passenger planes. For such needs an electric airplane route be tween the largest cities would be found very useful.
The altitude at which the airplane flles would be limited to perhaps 100 feat; In case of an accident or of an Interruption in the power suppls, the plane would only lave a short distance to volplane to the ground. The ground under the airplane route would be leveled, so the plane could alight and roll on the ground. This would be taken advantage of probably when
traveling over a steep hill. At night the entire course would be illuminated by electric lamps, as a guide for the pilot.

Another condition that affects the electrifying of airplanes is the weight of the electric motors. The motor would require the same careful attention to design as did the gas engine. The present electric motors are four or five times as heavy for the same power as the gas engines, so that special light weight airplane motors would be necessary. Due to the practically constant speed of the propeller the motor could be of the alternating current induction type, which is the most reliable motor in existence. The use of alternating current would greatly facilitate the transmission of power over the line.

The design of the trolley wire and trolley would have to be carefully determined and tested out experimentally. The illustration shows one method, the current from the trolley passing through a strong cable, a small steel cable being used in order to reduce the air resistance as much as possible. By using fairly high voltage

the resistance of the trolley contact and the steel cable would have little effect.
Now that the airplane is electrified, next comes the helicopter-a special type of airplane. By means of huge propellers this device rises straight up, vertically. Recent tests of experimental heliconters have shown that they may yet be practical, but in case of motor failure they crash to the

Possibilities of the electric helicopter. An it rises, a double electric cable is carried along to drive ite motor. If the idea could be carried out in practice, it would afford a most useful exploratory agent which in War.
ground. By electrifying them, using relia ble electric motors in place of questionable gas engines, this danger is alleviated.
The illustration shows, an electrified helicopter, with cables connecting the motors in the helicopter to the source of electricity on the ground. This device would be found useful in army work for aerial photography and for observations.

Loud Speakers for Street Cars

T
HE introduction of an electric railroad in a community involves very heavy caplitaltzation, which of course includes overhead charges and amortization. The capital has to have interest paid upon it, and a large part of the investment is devoted to introducing perhaps a conduit for the conductors or to erecting an overhead line of wire, with adequate supports, and laying a track which is of very expensive description and laid with very heavy rails. To reduce the expense of running the cars, which of course is one way of meeting the overhead, the cars are made very large, so that the regulation two men, a conductor and a motorman, take care of a conductor ander of passengers.
As another way of meeting the emergency, the one-man car has been introduced. This is not a new idea, for in the old days of horse-cars, one-man cars were used very extensively, the driver being
responsible for the collection of fares, often by a special fare box, in which the nassengers were supposed to put the coin due for their ride.

The motorman on a one-man electric car has much to do, and it is advisable that all his energles be conserved as far as possible. It is also desirable to have the names of the streets called out to the passengers, and the motorman with his back to the interior of the car is not well placed for calling the street names in a voice which will be effectual.

A speaker can talk into a microphone in a low, clear volce, and the sound can be reproduced through a loud talker so as to be increased in volume and given a proper orientation as regards the passengers.
We illustrate a one-man trolley car, in which the streets are announced to the
passengers by a loud speaker. Immediately by the side and at the level of the driver's mouth, a microphone is carried on an arm projecting from the frame of the car over the commutator. This connects with one or more loud talkers within the car, so that all the driver has to do is in an ordinary, distinct volce, not too strong, to announce the street, and the loud speaker reneats it the passengers in clear and distinct tones.

It will be seen that while the driver naturally talks with his face away from the passengers, the loud talkers face the passengers as they repeat the words. The apparatus is a very nice addition to the equipment of the car, and one which would naturally be supposed to increase the popularity of the line. Althaugh we speak of it with reference to a onp-man car, it obviously can be applied just as well to others.

Neon Glim-Lamps

EVERY experimenter who has worked with a spark coil is familiar with the beautiful light effects obtainable 3 rom Geissler tubes. These are evacuated glass tubes of fanciful shape, with a short wire electrode sealed in at each end of the tube, and the tube filled with a rarified atmosphere of different gases, hydrogen, nitrogen, oxygen, carbon dioxide, etc., each gas having its characteristic color as the electric discharge passes through it.

The voltage on the secondary of a spark coil is usually 30,000 volts or more, so that the electrode distance of some five inches is easily britiged in the very low pressure gas. It will be also remembered that the two ends of a Geissler tube appear differently in operation, and that this difference may be reversed by reversing the flow of the primary current. The explanation of this is that the electric discharging phenomenon is distinctly different for the positive pole (anode) and for the negative pole (cathode). Near the former will appear a bright halo of a color depending upon the gas used there, while the immediate vicinity of the cathode will remain practically dark.

A comparatively new lamp, perfected recently in Europe and available on all markets abroad, the so-called Neon GlimLamp, is nothing but such a Geiss!er tube modified in several respects.
Instead of using a glass tube the conventional pear-shaperl incandescent lamp bulb was retained. To reduce the operating voltare from several thousand volts down to a more convenient and less troublesome value the distance between the two electrodes was reduced from some five or more inches down to about onesisteenth inch. It was also found that the mininum operating voltage required could be greatly reduced by using a gas within the bulb, which has a specially low electrical break-down coefficient. Continned research resulted finally in the choice of neon gas as best suited for the purpose.
Neon is one of the so-called rare gases, like helium, krypton or xenon. One million cubic feet of our air contain about 15 cubic feet of neon. $15 y$ liquefying air and a very complicated separation process of
all its other constituents. neon is obtained by a subtractive method.

In the Geissler tuhes it was the shape of the glass, its fluorescence and the color of the electric discharge between the two sealed-in electrodes which constituted the purpose of the device. The new neon lamp is built with a different point in view. The shape of the electrodes and maximum luminosity are here the main factors. If.

"How to Make It"
 issue of
 "Science and Invention"

The June issue of "Science and Invention" will be the great "How to Make It" number. In this issue will appear about 50 articles, all "How to Make It" of every description.
It will be simply "chock-full" of all sorts of articles so dear to the heart of every experimenter and every dabbler in the various arts. Don't miss this issue!

In the June number, also, the following important electrical articles will appear:
"Photos Show Tracks of Atoms." By Prof. William D. Harkins, University of Chicago.
"The Pay-as-You-Leave Trolley Car-New Yorls's Latest."
"X-Ray Movies."
"The Electric One-Man OrchestraFor the Theatre of Tomorrow." By H. Gernsback.
"Photographing Sound Waves in the Home Laboratory."
"Experimental Electro-Chemistry." By Raymond B. Wailes.
"The de Forest Talking Movie."
"Hunting Trouble in Radio Sets." By H. Winfield Secor.
"Reflex Sets Save Tubes-How to Build Them." By A. P. Peck.
for example, firom a thin sheet of aluminum or any other metal we cut two pieces, shaped in the form of. say, a letter "A." and mount these two pieces parallel t"
each other, about one-sixteenth inch apart, and enclose these fixed letters in a glass bulb filled wilh low pressure neon gas, with an electrode connection for each plate, a luminous letter "A", will appear upon applying a voltage of about 200 volts to the two electrodes.

If the voltage applied is giving direct current, one of the two opposing letter electrodes will remain dark, while the other one will glow with a pinkish-orange color, giving a very pleasing and penetrating hue. Reversing the current will cause the previously dark electrode to glow, and vice versa. If alternating current is used the glow will change from one electrode to the other at the rate of the frequency of fhe alternating current. With commercial frequencies of 25 to 60 cycles ner second the change will be so rapid that both eleetrodes will appear evenly aglow at all times. Hut this is only an illusion, hecause the human eye cannot follow these rapid changes. As a matter of fact, with 5 cycles this constiant change causes quite a pronounced flicker.
A very remarkable property of these lamps is the extremely sinall power consumption, which is between 2 and 5 watts, or only some 10 to 20 millianneres at 220 volts per lamp. A sinall toy transformer, such as used to operate electric toy trains, if wound with a ratio of $110-220$ volts, has ample power to supply a dozen of these neon lamps. Of course it is not to be expected that such a small amount of electrical energy can produce a large amount of light; the average neon lamp will give only about one candlepower. But general illumination is not at all the purpose of these lamps. They are being built and used as siomal lamps. showing luminous letters or fignres, or as fancy decoration lamps.

In a row of sockets, arranged closely one next to the other, may be fastened a numler of neon lamps to spell out names, words or sentences for advertising purposes. Think of "FXIT" signs in theaters, of house numbers. of physicians' names over their house doors, of street names, and of safety signs in mines. A host of other possibilities nffer a field for these new lamps. The low wattage is in all eases a ereat boon. Take, as an example.
the word "EXIT"; its four lamps will consume on an average 4 times 3 watts. At 10 cents per kilowatt-hour the operation of this sign will cost about one cent for ten hours.

It is further possible to combine several letters or figures into one common glass tube. This reduces the price and simplifies the mounting of the lamp considerably. Such multiletter lamps are being made to order.
But there is another important use for these lamps, as switch position indicators in power houses or switching stations. By connecting a neon lamp in parallel with a switch on a circuit of 200 or more volts this lamp will light up when the switch is in open position, thereby indicating whether the circuit is closed (dark) or open (glowing). Because of the extremely high internal resistance of the lamp as compared with the relatively low resistance of currentconsuming apparatus, such as motors, a light circuit, etc., the lamp will burn at practically its full rated luminosity regardless of the resistance of the circuit. Placed in parallel with a fuse, the glowing of the lamp will signal a blown fuse to the attendant. In direct current circults of more than 200 volts the lamp can be used as a very slmple polarity indicator.

For the present it is imposslble to manufacture neon

Various designs of the glim lamps, showing how well adapted they are for display. The sign at the bottom gives the German word for "Ticket
glim-lamps for voltages of less than 200 volts. This is the minimum critical voltage at which a discharge takes place through the gas. For American conditions, where 110 volts have been standard for most distribution systems, this is no doubt a very great disadvantage, requiring a 110 to 220 volt step-up transformer in alternating systems, and eliminating the lamps entirely in 110-volt, two-wlire, direct current networks. But in Europe, where these lamps are on sale now, this is no handicap, as practically all the systems operate on 220 volts, both for direct and alternating current. A life of at least 1,000 hours is guaranteed for the lamps.

One other unique property of the lamps may be mentioned, With incandescent lamps a "flashing" effect must be produced by some form of electromagnetic or thermal interrupter, which opens and closes the circult at regular intervals. Such devices have a limited range, and are liable to get out of order. But if a neon lamp is shunted with a condenser and with a resistance in serles with the combination, regular blinking on alternating cirquits without any moving mechanism, is automatically produced. By adjusting the condenser and resistance the frequency of blinks may be altered from one every ten minutes th 15,000 per second.

Largest Transformers

THE Westinghouse Electric \& Manufacturing Company has just completed six of the largest sin-gle-phase auto-transformers ever built.

The transformers are of the water-cooled type and are for outdoor service to form a part of the largest 220,000 -volt power system in existence. Each unit is rated at $36,700 \mathrm{kv}-\mathrm{a}, 50$ cycles, glving a bank capaclty of over $100,000 \mathrm{kv}-\mathrm{a}$, and is adapted for star primary and secondary connections with solidly grounded neutral, stepping down from 220,000 to 150,000 line voltages. A tertiary winding, connected in delta, is supplied for suppressing third harmonics in the voltage wave. The transformers are of the shell type and are designed to withstand without injury mechanical stresses due to short circults, when unlimited power is supplied at the terminals. The tested efficlency was over 99 per cent.
The new transformers are to be used for changing the voltage of the two 150,000 -volt lines now running between the Big Creek stations and the Eagle Rock sub-station to 220,000 volts. At present the city of Los Angeles is supplied with power through the Eagle Rock substation, the power being transmitted to Eagle Rock over two 50-cycle transmission

Gigantic transformer recently constructed for one of the wemtern developments in California. The man at the side gives an idea of its mtartling dimensions. Interesting figures are given in the article.
lines from the great hydraulic development on the Kern River. These transmission lines are now operated at 150,000 volts, but the growth of the hydraulic development has made it necessary to change them to

220,000 volts in order to economically carry the increased amount of power.

In addition to being the largest auto-transformers ever built, these uhits are also the largest units in existence for stepping down from a 220,000 volt line. An Idea of their size will be given by the following figures: The tank, which has flat sides and half round ends, is 10 feet 3 inches wide and 14 feet 3 inches long, and approximately 15 feet high. In order that it may be shipped, the side walls are divided near the middle so that the top portion can be lifted off. The heiglit from the ground to the tip of the condenser bushings is about 27 feet.

Ten thousand pounds of copper and about 45,000 pounds of iron laminations were required for each transformer, Over one-quarter mile of copper tubing was required for the cooling coils, and, at normal ratIng, 75 gallons of cooling water per minute must be circulated through them. The total weight of the complete transformer is over 90 tons. Two standard flat cars were required to ship each tank and transformer without oll, and a tank car was needed to carry the 9,050 gallons of oll required for each transformer. The all alone weighs about 30 tons, according to its specific gravity, which is variable.

Electric Pneumonia Cure

ANEW development in electro-therapy, called the diathermine treatment, which promises to be of great benefit to mankind, has been recently introduced in Hoboken by Dr. H. V. Broeser; X-ray specialist of St. Mary's Hospital. This is a new process for treating pneumonia, and was first conceived by Dr. Harry E. Stewart of Yale, a well known coach and athletic leader. Dr. Stewart treated twenty cases in the United States Marine Hospital on Staten Island, with remarkable results; in fact several, who seemed to have little chance of recovery, improved greatly under the application. The method is anplied only in extreme cases, and so far not a case has been lost.
The patient undergoing treatment is first prepared by being lathered on chest and back with ordinary shaving soap and water, after which a metal electrode, four inches by seven inches, is placed over the lathered portions and held in place with Turkish toweling. The lllustration shows one of the electrodes on the chest of the patient, the towel being pulled aside to show the application. A circuit from a high frequency current apparatus is then connected to the electrodes, the excitation penetrating deep into the body of the patient and raising the temperature of the lungs. The soap is applied so that the skin is not directly in contact with the electrodes and it tends to prevent blistering, although an occasional spark jumps from the electrode to the skin and raises a silght blister.

The treatments last 20 minutes and are applied twice a day. For the first five minutes the current is gradually Increased to the maximum, which is about 2,000 milli-amperes. The current remains at this value for ten minutes and is then gradually decreased. The patient receives no electrical shock; he sometimes complains of the sensation of heat, so that it is recessary to regulate the amount of current according to the different types of patients. Usually four treatments are suf-

A new cure for pneumonia. Instead of the pneumonia jacket we have a heating system based on passing a current through the body for protecting a heating
ficlent, although some patients require as many as eight.
The benefit derived from this treatment is presumably due to the heat generated in the body of the patient by the action of

HXPERIMENTERS and amateurs, we want your ideas. Tell us

 about that new electrical stunt you have meant to write up right along, but never got to. Perhaps you have a new idea, perhaps you have seen some new clectrically arranged "do-funny"-we want these ideas, all of them. For all such contributed articles that are accepted we will pay one cent a word upon publication. The shorter the article, and the better the illustration-iohether it is a sketch or photograph-the better we like it. Why not get busy at once? Write legibly, in ink, and on one side of the paper only.EDITOR.
the electric oscillations. This action directly or indirectly introduces heat deep into the lungs without burning the skin,
and seems to soften or otherwise break up congestion, and a few treatments seem to cause rapid clearing up of the trouble. The temperature on the surface of the body is about 100 degrees, and the temperature within the lungs is from 104 to 106 degrees. In some experiments on dogs the temperature within the lungs was found to be 115 degrees.

In patients treated in this way the fever gradually subsides; heavy breathing stops; cyanosis or blueness disappears, indicating that the lungs are able to absorb greater cuantities of oxygen. There is no sudden drop in temperature, as is the case sometimes with pneumonia treated in the usual fashion. There seems to be a dilation of the blood vessels of the lungs, with the rellef from congestion.

The use of heat in the treatment of pneumonia is very old, and many people have been saved by the simple application of a mustard plaster; but this superficial treatment is very inefficient in getting heat into the lungs.

Flectrical experimenters will be interested in noting that although two amperes of electricity act upon the chest and the back of the patient, there is no electrical shock. It has been known for years that a high frequency electric current will give no shock, and two theorles have been advanced to explain the reason. One theory is that the high frequency current travels on the surface of the skin, and does not penetrate deep enough to effect the nerves, hence is not felt or produces no sensation of shock. The other theory is that the rapidly changing current reverses before the nerves have time to transmit the sensation of pain to the brain, and each reverse of current annuls the effect of the previous cycle of current. The results obtained from curing pneumonia by electricity would indicate that the high frequency current nenetrated deep into the body of the patient, and this fact seems to support the latter theory, a sort of race between nerves and currents.

Efficiency Tester

The illustration shows the application of electricity for eleterminating the capacity

New electric questionnaire: a registering apparatus tells how at typist is affected by her work
from the standpoint of efficieney.
of clerical workers. The personal elements involved in the operation of a tynewriter are being recorded electrically, a system adonted by the Prussian Ministry of the Interior and by the municipality of Eerlin.
The apparatus is here shown testing the work of a typist for determining fatigue points and special Inaptitudes and aptitudes. The apparatus can be connected so as to record pulse beats, which give a clue to steadiness of nerve of the operator. There would be a suggestion, at least, that the mere Idea of being subjected to such test would materially disturb the equanimity of the subject of examination, but perhaps to no greater degree than bein: confronted by Mr. Edison's formidable questionnaire.

Odd Uses for Flectrical Appliances

By J. F. Bullared

SOMLE morning one is confronted by the fact that there seems to be no draft to the chimney. It is almost impossible to make the furnace fire burn as usual. Some sort of forced draft is essential if the house is to be kept warm.

An electric fan would answer the purpose admirably but the cord on the fin is not long enough to reach the nearest lamp socket and permit the fan to be placed close up to the ash pit door. Besides, experience has shown that when a fan is maced close to the door it soon becomes covered with fine ashes, which get into the noving parts and do serious damage to the fan.

Under such conditions the vacuum cleaner can be brought into service. This appliance has a cord long enough to be connected to the lamp socket, even though that socket be some distance from the furnace. If the air hose is connected to the blower part of the cleaner and the apen end of the hose is placed just below the grate, when the current is turned on, all the air that is needed will be blown into the body of fuel.

The vacuum cleaner also has another advantage over the fan; it can be placed far enough away from the furnace, so that there is no danger of damame by the fine grit of the ashes set in motion by the streans of air. The end of the hose can be placed far enourh alw from the grate so that the heat will do no harm. It is better, however, to use rine of the fiber tubes in the end of the hose. or even make a tin tube by cutting un a tin can. rolling the tin around a piece of romnd wood of the rimht diameter, tying it in place with wire and soldering the erlge.

This makes an air-timht tube which will answer the purpose adnimably: the cost is very moderate, so that if damaged it does not matter so much.

If the tuhe made from one tin can is not long enough, more cans nity be used. Cut un the eans, press the tin out flat and solder one sheet to the other until a strip long enough has been formed. It is well to have the different pieces overlap each other about a quarter of an inch. The overlaps should he the same size on all the pieces and only one side need be soldered.

Next, roll the sheet thus formed around the wooden cylinder with the soldering on the outside, fasten the tin in place with wire wound around it, and solder along the edge. An overlap is to be made at the edge in order to make the work of soldering easier. When this tube is used see that the overlaps of the sections on the inside of the tube point in the same direction as the stream of air. When they point in this direction a few small leaks at the spots where the soldering was done will not be dangerous.
On the other hand, if the overlaps point against the stream of air, air will be forced through the smallest leaks, and in addition these laps offer resistance to the flow of air, with the result that not as much is blown into the fire bed.

Should there happen to be some tin cans around, of just the right diameter to fit into the end of the air hose, making the tube becomes still simpler. Then all that is necessary is to cut off the tops and the bottoms of the cans, cut a short gash into one end of each with a pair of tinsmith's shears, force the cut end into the end of another can, and solder.
There will be less danger of damaging the air hose when this tube is inserted, if the end that goes in has its edges hammered in all the way around, forming a smooth rim free from all sharp edges or points. This hammering can hest be accomplished by placing the tube over the piece of wood on which it was first forment. with the end of the tube to be hammered projecting about a quarter of an inch from the end of the wond. fastening the tube in place by means of a couple of tacles or nails dyiven in close to either end. and hammering the edge of the tube over with a wooden mallet. The wonden mallet will give a smoother edge than the use of a hammer.

After the edge has been hammered down flush with the end of the wond bar remove the wood through the other end and with a smaller hammer. a round nosed one is hest. hammer this turneti-in edge down flat acainst the inside of the tube.

A tuhe marle in this manner will last a long time, will not damage the air hose, and can be placed quite close to the grate. Usually the air blowing through the tube will keep it mol enouch. so that there is no dancer of the solder melting even
thongh the and of the tute is placed very cluse to the grate.
The vacuum cleaner, however, is not the only household appliance that can be used for various purposes. If a small fluintity of hot water is desired in the morning for shaving purposes, the electric llatiron can be utilized to provide it.

A small stand is first made, of wire or wood. If made of wood, only three pleces wre needed. Pieces of board sevenpighths of an inch thick are excellent for the purpose. One piece five by seven inches in size serves as the base of the stand. Two other pieces seven inches long and either four or five inches wide are nailed to this base.
These should be nailed with the fiveinch edge nearest the center of the base, just touching lines that have been drawn $13 / 4$ inch from the outer edges of the base, oir in other words just far enough from the center of the base so that the handle of the flatiron will fit in between them when they are nailed in place.

Now by placing the flatiron unside down with the handle in the space hetween these two vertical pieces, there is a very serviceable electric stove unon which a cup of water may be heated, a slice of bread toasted, a small quantity of cocoa made, or any other heating or cooking clone that is possible with a small electric stove.
One of the reflector type room heaters may not appear of much service during the liot weather in the summer. However, if the guard is removed and in place of the heating coil a large clear glass lamp is inserted. it will he found to serve very nicely for lighting up the back yard, if necessary to enter it after dirk. perhaps working in a car at night.
If one has just purchnsed some young chickens which need to be kept warm and comfortable, the heating pad may be just the thing to supply the heat in a homemade brooder. A little experimenting will show just which heat will keep the hrooder at the right temperature. The pad may be placed on a shelf fust above the chickens and screened in so that it will not be damaged by the occupants of the brooder.

Christmas tree lights are usually packed away just after Christntas and not used again until the following Christmas, yet
there are many other ways in which they can be of use. Perhaps a Hallowe'en party is to be held: Jack-o-lanterns fit in very nicely with the decorations, but as most of these are made of paper it is dangerous to illuminate then with candles.

If a couple of 16 -light Christmas tree lighting outfits are avallable, eight lanterns can be hung on each of four strings of wires rumning fron the center fixture of the room to the corners of the room,
with al Christmas tree light concealed in eacl of these lanterns. It is then safe to use practically any other decorations desired and the room is made much more attractive than would have been the case had the Christmas tree outfits not been used. In addition, the fire hazard has been reduced to the minimum.

In using these lights, however, it should be borne in mind that they do generate a good deal of heat and light fluffy paper should not be lrought into direct contact
with them or be bunched directly above them.

These lights may also be used for other decorative purposes. lior exaniple, if some special decorations are desired for Fourth of July one might use card-board tubes covered with red paper to resemble fire crackers. The cord of the light is drawn through this lube and fastened so that the lamp will burn just at the top of the tube, Red carbon lamps used in this manner give quite a novel effect.

Tra褔c Dome Siǵnal

An automohile running acainst a traffic dome signal, constructed to sink under its weight.

WE have lefore now illustrated ilhominated safety domes to be placed on roads as traffic guides or warning. The idea lats leen to produce a light under heavy grating, which grating would lee so bow that al cat which by any accilent struck the dome, would run over it withont disagreeable jar.
The onjortion to this arrangement was that the light was at too low a level and could not be seen with suflicient distinctness. The one we illustrate overcomes this difficulty. It comprises as before a heavy iron or steel grating, almost come shaped, and carried within a heavy (asing whose top is level with the ground. The cone mojects cight inches above the street level. and within the cone are two 50 -watt incandescent lamps. The rume is perforated to let the light show ont, in two or three different designs; the cone is so high that the light is visible for a consiterable distance, and theme is no mistaling the
sigmal. The part of the structure, incluting the cone with cylindrical balse which carries the lamps, is telescoped into a second cylinder, within which it moves vertically up and down. To hold the cone in place, helical springs are provided; these hold it in the highest position. If a car strikes it ly accident, the springs yield, and the come with supporting cylinler is forced down into the containing colinder, so that the car rolls allong almost as if on the level.
The removable conical dome projecting nearly a foot above the pavement is at guite an effectual height, to give the light arod range and visibility. The cone is apmoximately anches in diameter at the

Details of the telescopic construction and lighting arrangement of the traflic dome in cross-section.

Traffic dome sinking under thé weight of an automobile running against and over it.
base. In one design colored bull's-eye lenses are introduced in the openings of the dome. In others the light emitted is the nataral light of the incandescent lamp.
lf a city erects a heavy warning signal in a roadwaf, which will injure any : antomobile striking it, there is always a suggestion of a damage sult by the owner whose car is injured. The idea of these low level, roadway signals is to warn passing cars, and to direct their comrses, without any danger of injury.

It is recorded, we helieve, that damages have been recovered hy an automohilist who ran into a fixed signal post placed in the middle of the road. The traffic dome, while just as useful as the every-day type, can do no harm to automohile or waron and they cannot harm it. This is more than can be said for the traflic sional post, which will destroy a mud guard.

Heatim: Band

'T' is often fommel to be a defect in electric cooking vessels that the heating element is a part of the smpliance and is irremovalbe therefoom.

In the small immersion heaters which are so much used a separation of the heating element from the contaliner is accomplished. Another solution is given by the apparatus we illustrate, of German origin.

What may be termed a heating band, with a spring to draw the ends torether, is made of such size as to fit around the ressel to be hated. The heating eloment is made of elomme nickel and is covered on its outer circumference with a liver of asliestos to prevent loss of heat. The inner side is insulated by mica which. while affording electric insulation from the metal of the pot, is so thin that it does not cut off the heat noticeably.

There is a protective envelope which moy be made of nickel steel, and sometinies an inner strip of conper also. To apply, the band is sprung around the pot, and here, ss will be seen, it is necessary for the vessel to he of proper diameter, so where several pessels are t to be heated in succession by one of these appliances it
ill he necessary to have the reanisite numbor of vessels of identical size.
The helieal suring draws the ends together so as to bring the mica in close comalat with the sirle of the vessel. The hand is about $1: / 4$ inches high and is made

A heating band. When this is sprung around a vessel it leats it very effectually, and the heater vessel. It is intended for househotd use of the
in a number of different sizes for diameters ranging from 4 to 10 inches. There is a certain amount of difliculty in chang. ing the heating element, replacing an old defective one with a new one, but this is not often necessary, as the life of the coil is very long. The connection with the circuit is very carefully carried out, so that there is no possible chance of burning out. The small sized bands with an expenditure of 500 to 700 watts will bring a quart of water to the boil in about eight minutes. The largest band takes about 1,100 watts.
It will be seen that it is a very simple matter to distend the ring a little, so as to receive the vessel to be heated, It is, of course, quite essential that the contact between hand and vessel should be good, and naturally the circular contour of the band must not be disturbed, although of course the spring will do much to draw it into shane. The ideal systrm would seem to be to keep it as permanently as possible on the saucepan or other vessel on which it is to he used. As slonw in the drawing, the ressel is to be cylindrical, not conical, in shape.

A convenient machine for grinding the surface of trolley rails by an electrically driven emery wheel, the power being taken from the trolley wire proper. On one end of the machine are seen two small wheels, so that the machine can be pushed off to one side like a wheelbarrow
On the right, a double decked, six-wheeled, railless trolley of English construction.

AN almost disastrous element of expense incident to trolley lines is the track. The rails are extremely heavy and are lail on a very expensive foundation. They have a double purpose to fulfill; they mast carry the car and carry it smoothly, and have to act as a conductor of current for its return to the generators in the distant power house.
The illustration shows a grinder for surfacing off and cleaning the rail tops. The current that goes through the car motors has to pass from car wheel to rail, so it is an object to have the surface of the rail clean; the trolley car runs so fast that any irregularities in the track produce considerable irregular movements in the car, small imperfections in the track seeming to be magnified as far as affecting the car is concerned. The emery wheel grinds many of these away.
The grinder is simply a little car in itself, carrying a motor to drive an emery wheel. The power is derived from the trolley wire, and the grader is, of course, fltel with all the required feeds and adjustments for doing its work, which is grinding the surface of the rails by a rapidly rotating emery wheel.
Two wheels will be seen carried on an
axis parallel to the rails, which wheels are on the right hand, as the illustration shows the apparatus. If a workman lifts up the other end of the machine. these wheels rest upon the ground and tie machine is eompletely lifted from the rails, and can be pushed away to one side, out of the course of the regular running trolley cars. Power can be taken from an overhead wire by a pole carrying a wire, with its own little overhead trolley to rest upon the upper surface of the wire, rather than to pass upward against the lower surface.

Directly over the motor will be seen the vertical feed, operated by a hand wheel and feed screw.

T${ }^{\top}$ HE trolley-bus, or electric railless - vehicle, operated from an overhead trolley wire, is growing in popularity in thickly populated districts in England, where electric current is easily obtained. For interurban traffic the trolley-bus is showing economies in operation as compared with the petrol velicle, where it is impossible owing to high costs to lay down tramway tracks.

The Tramways Department of the Brad-

Service Umit

ford City Councll has sown much enterprise in experimenting with trolley-buses of varied spes, and one of the latest rehicles on the road is a six-wheeled car with a capacity of over 60 passengers. All four front wheels steer, and the drive from a 70 -horsepower electric motor is taken through a counter-shaft to the rear axle. The rear wheel has twin tires and consequently the load is distributed over eight tires.

Without passengers the vehicle weighs seven tons, the load being distributed evenly between the two rear wheels and the four front ones. The front wheels steer independently from one steering column, being mounted automobile fashion on stub axles and not carried bogrie fashion. The capacity of the vehicle is almost equal to that of a tramway car, but the running costs are much lower as only the overhead equipment is to be protded at the outset.

In England the street cars not only lay their own track when a new service is begun, but they must mointain the road between the rails and 18 inches on each side so long as the service is run, although the ordinary street traffic contributes its share of damage to the surface.

Contributed by G. Ceowterer.
ing one of its utilities gives the basis for the whole story. It is suggestively named liy the manufacturers "The Electric IIousehold Servant."

A most convenient little motor mounted on a
wheeled tripod, so that it rar. be pushed about
wherever its services are fequired, and can be
made to do all sorts of wojk in the house. woik in the house.

If a house is fitted op with electrical appliances, each with its own motor and connections, the expesse will be very large. But by such an appliance as this, if one is content to operate one appliance at a time, the expense of instaliation will be greatly reduced, for this motor will operate anywhere within reach of a base socket or burner socket, As regards the variety of work which 't can do, it may be taken as representing a number of electrically driven machines, if circumstances pernit of theic being operated singly.

Lilliputian Fan

AMONG the peculiarities of automobiles is their faculty of producing drafts when not desired, and of heing decidedly warm in summer when standing, the drefts which may verge upon being obnox lous being really missed by the occupants of $\mathfrak{i l}$ motionless car.

The illustration shows a little electric far which is lesimnel for use in limousine cars especially. This is arranged to be attached to the ceiling or side and has a domble adjusting bracket so that it can be twisted atmont to inroduce currents of air in any desired direction. Mosquitoes and flles are banished by operating this fan, and one very obvious suggestion is made that it be used in ambulanoes for the sick.

It is constructed for the voltage of an automobile starting battery, six volts, and is .zvailahle for use wherever such a circuit can be drawn upon. liven simall cabin

A small fan mounted on an adjustable bracket for use in motor hoats, automobiles and similar for use in motor hoats, automobated on is small.
boats, we are told, find such an apparatus a welcome addition to their cabin luxuries.

After the automobile has been used with sashes closed, as during a storm, the fan can be turned on when returning to the marage, so as to drive out the exhausted air, and it even may be used to circulate the air when the windows are closed, which after all is sometimes an alleviation, although not a strictly logical procedure.

It thus nppears that in this Liliputian fan a most useful accessory for the automobile, motor boat and the like is provided. In the automobile it may even operite to break up the drafts wilch sometimes are found to be so very anuoying, in alleged closed cars, which are really, in many cases, unclosed, at least to the extent that gaps are provided for the most obnoxious kind of unexpected and disagreeable drafts.

Storage Battery Filler

CONSIDERABLE time and labor in filling storage battery cells is saved by the semi-automatic filler, a new device of extreme simplicity, illustrated here.

A most convenient apparatus for filling storag batteries which lights a lamp when the battery is fulli, so that the water can be turned off by hand.

By means of this the exact amount of water is permitted to flow into the cells without overflowing or causing the electrolyte to spill over. In addition to saving time, the use of this device will materially aid in keeping the battery tops dry and will be equally useful where one battery is kent or where a fleet is maintained.
The filler is connected with a supply of distilled water by a hose. A compression pinch-cuck cuts off the water or lets it pass as desired.
The harrel end or handle of the filler is grasped with the index finger resting upon
the trigser on the lower side. The nozzle end is inserterl in the filling vent, the trigger is then pressed, omening the pinch-cock, and the water flows through the hose into the cell.

As soon as the level of the liquid reaches the proper height it causes a contact to be made and a small electric bulb signal lights. The trigger is then released, shut ting off the water, and the operation is repeated in the next cell.

THE basis of this motor is an old bell mechanism, and the illustration is so clear that a description is hardly needed.

A board or metal glate is mounted ver tically on a base as shown and to it the magnet from an old bell is attached, with armature and contact. The armature with its wire prolongation constitutes the strikin m arm of the bell, and when current is turned on this arm will vibrate up and down very raplidly.

I3y means of a connecting rod connec tion is made with the crank on the end of the axle of a flywheel, As the armature of the striking arm goes up and down, it will turn the flywheel, whose inertia will reduce the rapidity of motion, so as to make the device practical.

As shown, the armature is attached to a vertical spring laok of the marnet; it may he pivoted or carried hy a horizontal spring: of comrse all such details are affected by the construction of the bell. The end of the wire projecting from the armature is bent into an eye to recelve the up-

Toy Motor

A well designed, reciprocating toy motor, contructed from an old electric bell, really Eivine some interesting results.
per end of the connecting rod, which is properly bent to correspond. A neater way would be to flatten both ends, to drill them and to insert a rivet, but this little engine is supposed to be constructed along the simplest possible lines.

A wooden wheel or roller, 3 inches in dianmeter, will answer for the flywheel. A grooved pulley can be placed in the center of the shaft to receive a thread or string to represent the helt. But little power is necessary for operation.

Contributcd by IIENBE RUFALI. JR.

A New Prime Contest

N one of our fortheoming issues we will begin to give a series of prizes for letters giving odd and unusual electrical experiences.

Nearly every one of us has had an odd or unusual experience in electricity, sometimes humorous, sometimes pathetic, sometimes puzzling, and it would appear that our readers should let us have some of their personal experiences for the benefit of all the readers.

We are certain that this department will prove of much interest and instructicn, and until further notice we shall pay the following prizes:

The more unusual the experience, the more chance you have to win a prize. Illustrations are not nocessary, but the

First Prize $\$ 20.00$
Second Prize $\$ 10.00$
Third Prize $\$ 5.00$
Fourth Prize $\$ 2.50$

letter shonld be either typewritten or written in ink. No penciled matter can be considered. Write only on one side of the paper.

If two contestants should send in the same winning experience, both will receive the same prize. In the event of two or more persons sending in the same as best, second lest, etc., each tying contestant will receive the prize tied for.
Prize winning letters will be judged as follows: The first prize will be awarded for the letter giving the oddest or most unusual experience. The second prize to the one considered next best, and so on.

Communfations to this department should be addressed "Editor, Odd Electrical Experiences, c/o Practical Electrics, 53 Park Place, New York City.

Motor Electrics

Radiator Alarm

MANY automobiles are not equipped with motometers for indicating the tomperature of the water within the radiator. A large number of those so equipped, have no facilities for lighting the gage at night. Therefore, at

Location and connections of a thermostat bar on the upper part of an automobile radiator, for
night, on a matiority of cars, there is no way of telling from the driver's seat just how lont the water becomes. Under these conditions a radiator may freeze, the water circulation may become impaired, or serious damage result.

The accompanying illustrations show a home-made contrivance which closes a circuit and caluses a small electric light bull, which is located in the dash, to light up. The operation of this alarm, which is really a heat-affected switch, is obtained by a strip of brass and iron ripeted together, with one end stationary. Brass has an expansion coefficient nearly 50 per cent greater than that of iron. When the strip lies flat at, say, 60 der., it will assume a slight curve at, say 100 deg. Thus it is easy to assemble this switch so that it will close at any desired temperature. The apparatus is honsed in an asbestos-lined metal box, which is soldered to the back of the radiator, just under the hood. A special thumb nut operating an eccentric, enables the operator to vary the temperature at which the light will burn. Thus, because of radiation, it will be set to close at a higher temperature in winter, than in summer.

Top view of the thermostat bar as installed by
the filling pipe of the radiator on the top.
ghe the radiator on the top.
Procure a lieavy metal hox about three and one-half incles in diameter and one inch dere, which is providerl with a screw-un cover. Cut two strips of iron and brass, each three inches long and onehalf ineh wide. 'lhese should be not thicker than 16 -pound bond paper. The rlvets used must be of rather soft metal to prevent burkling the strips, but they should be set solid.

One end of this strip is latid upon at raised-up areal of solder placed at one side of the hox, ind then covered with more
solder, forming the stationary end. The brass strip lies next to the box bottom, but with a clemrance of at least one-sixteenth of an inch. If possible, the strip should he riveted at a relatively low temmerature, not exceeding 80 degrees.
Drill al hole through the opposite side of the box, directly over the free end of the strip, large enough for a small fiber bushing. This hole should be squared slightly, and the bushing cut to fit, to lessen the possibility of its turning with the nut when in use.

Prepare a knurled nut of brass and mount it on a small brass shaft which fits the bushing rather snugly. On the inner end of this shaft, mount a small eccentric of brass or conper. Use a good cement to secure the bushing in place. For pase in connecting up the circuit, the thumb mut should also be provided with a small knob terminal. This takes the ungrounded wire.
Cut a piece of sheot asbestos to fit inside the box cover, and other pieces to fit in the bottom and along the sides, portions being cut away where necessary to brevent interforence with the mechanism.

General layout and partial view of the switchboard of the heat alarm, which notifies the driver when his radiator is getting too hot.

This box is thon soldered to the radiator as shown, and the circuit wired up, taking current from the storage battery and running through a switch, also mounted on the dash. The ground wire way be fastened to any metal part of the machine, insuring a good ground.

If desired. a two-way switch can be installed, so that either the light can be made to show at night when the circuit is closed, or a huzzer, located beneath the dash, can be made to give the warning by day.

The thumb nut arljuster can be operated by lifting the hood. If the bushing fit is tight enough, an adjustment will not jur when the car is driven over rough roads. Though the two-metal strip is very thin, it is reasonably accurate because it stands on edge, immune to most up-and-rown motions.

Contributed by I)ale R. Van Horne:

Flashing Automobile Accessory Display

As thashers are quite expensive to buy, some of your many readers might be interested in this ome. A small fan motor is the means of opreation. The automohile atcessories emmoeterl 10 this mathine are a stoplight, flashlight, two spotlights. hacking-liglit, tail-light and horn. The two spotlights are on the same contact, the
stoplights and horn on another contact. The parts required are:
? pieces of $3 \times 12 \times 12$ incli wood.
1 disc 10 inches in diameter $3 / 4$ inch thick of wood.
1 piece strap iron 5/8 $\times 1 / \mathrm{s}$ inch thick.
ToLights Distributor Arm Brass Plate

Belt-driven electric light fiasher, designed by the writer for a window display of automobile accessories, but applicable to show windows in general.

1 piece round rod $1 / 4 \times 6$ inches long.
1 piece brass $1 / 32 \times 1 / 2 \times 8$ inches long. 4 copper strips $1 / 32 \times 1 \times 4$ inches long.

1 brass plate 3 inches in diameter, 1/32 inch thick.

1. bolt $1 / 8 \times 1$ inch

1 bolt $3 / 16 \times 21 / 2$ inch.
4 small screws.
1 spring $1 / 4$ inch.
The two 12×12 inch pieces arromaled together as shown in Figure 1. $\Lambda: 3 / 8$-inch hole is drilled 5 inches from the top and (; inches from each side. A piere of $1 / 4$ inch copper tulhing is pressed in this hole for bearing. The 10 -inch disc is drilled in the center with a $7 / 32$-inch drill.

It is then placed on the end board with the holes centered, and a circle is drawn on the board around the disc. The copper strips are then beveled at each end and tacked to the edge of this line.
A 3/16-inch hole is drilled through the ton corner of each copner strip for lead wires. The 3 -inch brass plate is centered on the disc and tacked in place, the tacks being kent close to the edge. The distributor arm is bolted to the opposite side of the disc, the bolts coming throngh at the edge of the brass plate. A $1 / 4$-inch shaft is forced through the central hole Brass Plate
eopper Segments

Disposition of the electric contacts on the two faces of the belt-driven pulley used in constructin this very effective window display
of the disc. This is then placed in the hearing, several washers being used to keep the dise from rowhing on the end मiere.

The bark batriner is then constructerl as shown in Figure 1, the $5 / 8 \times 1 / 5$-inch strap iron leing used. The spring is Maced between hearing and disc. The contact finger is mate from the 1 defoch lorass as shown in rigure 1. The tension bolt is lasteneal to lloe rontart finger with the wire, a small hole leeing drilled through the finger for this

Contributed by J. B. Rurnett.

Experimental Electrics

Hncandescent Lamp Fxperiments

By Clyde J. Fitch

TIIF conduction of electricity through al vacmun by means of the electron flow from a hot filament to the plate, is a luanch of science still in
foil couting on the outside of the bulb to the filanent. The tin foil coating also prevents, to a qreat axtent, radiation of heat and light from the lamp, and thus tends to
keep the glass at a fairly high temperature
It is necessary, in order to perform these experiments, to use a large size type B

In these illustrations are shown the connections for various experiments with incandescent lamps which are coated with tin foil as indicated, in bulb. The article describes in detail what each experiment is.
its infancy and affords scope for considerable research.
Many experimenters have been harred from working along these lines on account of the difficulty of constructing electron tubes, and consequently practically all of the discoveries and theories in olectron emission have been made and advanced lig research engineers, who have a large, well-equipped laboratory at their disposil. It is safe to say that if all experimenters had adequate facilities for experimenting in thermionic emission, the art would advance much more rapidly. However, many experiments based on this phenomenon may be made with the ordinary incandescent lamp.

It is well known that the specific resistance of glass is lowered a considerable amount by the application of heat-as will be demonstrated later in one of our experiments. Now, if we take an ordinary incandescent lamp and coat the outside of the bulb with tin foil, we have an excellent experimental electron tubo, comprising a filament, which is made incamlescent by the passage of curront. ansl in mate. the tin foil coating on the outside of the bulb. The hot filament acts as a source of plortrons and also heats the ghass of the bulb, thus lowering the specific resistance of the glass to such a value that a considerable current ran be made to pass from the tin

4 STARS

In" the June issue of "Radio News" will be found articles by the following famous radio scientists: Sir Oliver Lodge, F.R.S., LL.I). J. A. Fleming, M.A., D.Sc., F.IR.S. John Scott Taggart, F. Inst. P. 'rofessor W. Palmer Powers.

Do you know "Pigs Is Pigs" Butler, one of America's leading humorists? Mr. Ellis Parker Butler is contributing a monthly story to "Radio News." Don't miss any of these excruciatingly humorous stories!

Look for these articles in the June issue of "Radio News":
"Vast Range of Ether Vibrations." By Sir Oliver Iodge.
"Some New Dual Amplification Circuits." By John Scott-Taggart, F. Inst. P.
"Electrons, Electric Waves, and Wireless Telephony." By J. A. Fleming, M..., D.Sc., F.R.S.
"Matching Impedances." By Professor W. Palmer Powers.
"Construction of D.Shaped Variometers." Hy D. R. Clemons.

Mazdar lamp. The type \mathbf{B} Mazda lamps, in ("apacities over 100 watts, have been superserled by the type C Mazda lamps, which are filled with gas, and may not work properly, although experiments with the gas filled bulbs may roveal other new and interesting phenomena. There are a few trope B Mazda lamps of over 100 watts cabacity now on the market, and if nossible a lamp of at least 250 watts should be obtainel. This is the trye and size of bulb used in the following experiments. Different bulbs of the same capacity and type have different characteristics, and the results obtained below will vary considerably with different bulbs.
The 250 watt Mazda I bulb was coated with tin foil, as shown in the diagrams. The tin foil strip, $\bar{\pi}$ inches withe was wrapped around and shellarked to the glats as shown. Iffor lighting the lamp the hoat generated loy the ignited filament thoronghly dried and baked the shellac ann? in foil to the erlass.
Fig. 1 shows the arrangement for the first experiment. The lamp was connected to the 110 volt dired eurrent lighting circuit, with a dry battery and milliammeter in the rirenit as shown. The negafive tarminal of the hattery was comected to the position side of the filament, and the poxition terminal of the hattery was connereded to ame terminal of the milliam-
meter. The other terminal of the milliammeter was connected to the tin foll coating on the bulb.
About one minute elapsed before the milliammeter registered any current flowing through the buib; as the glass became warmer the current increased, in jumbs, until in about five minutes the flow became steady. A curve was plotted, with the voltages of the coating as abscissas and the currents as ordinates.
Hereafter we shall speak of the tin foil coating as the plate, for it acts as such in these experiments. We now return to the curve which is shown at (A), below. It will be noted that with no battery voltage the plate current was 2.2 milliamperes; the current in this case passed from the positive side of the filament through the meter to the plate, and then through the bulb to the negative side of the filament.
There is nothing unusual in this phenomenon, which is just is special production of the "Edison effect," and the results obtained were as expected. Practically every electron tube will behave in the same manner. If higher plate voltages were available and the curve continued, it would probably flatten out at the top, as the supply of electrons from the hot flatment is limited, and the current could not increase unless the filament temperature were increased.

A most peculiar action of the bulb was observed in the experiment shown at Fig. 2. Here the battery was reversed, and the positive terminal of the battery was connected to the negative terminal of the filament. According to all theories and expectations, no current should flow through the meter. But a current did flow through the meter, and flowed through the bulb from the filament to the plate, the opposite direction of the current-flow through any ordinary electron tube. A curve of this current was plotted, which curve is shown at (IB) below. With no battery voltage, a current of 1.2 milliamperes passed from the filament to the plate. The current gradually increased when the battery voltage was applied, until at $13 \bar{y}$ volts the maximum current was flowing. The next reading was taken at 157.5 volts, and the plate current was zero. At this voltage the bulb was a perfect. rectitier, that is, current would flow from the plate to the flament, but not from the filament to the plate. At 180 volts the current was . 05 milliamperes, and increased as higher voltage was established.
Another peculiar action observed was that when first taking the reading with no battery voltage the current was about 5 milliamperes, and was very unsteady. In about two minutes the current settled down to 1.2 milliamperes and becume steady.

The explanation of these peculiar phenomena is not known. It may be the result of some secondary electron emission due to bombardment on the glass wall by the electrons from the filament, but it seems that with a negative charge on the tin foil coating, no electrons would strike the glass. Then again it may be due to ionization of the residual gas in the bulb due to an electron flow from the negative side of the hot filument in the bulb to the positive side of the filament in the bulb. Whatever the action may be, it is not due to leakage through the hot glass wall from the tin foll coating to the bulb socket, as the current drons instantly on opening the filament circuit before the glass cools. If it were due to leakage what, then, is the cause of the strange dip in the curve?

A voltmeter was connected between the plate and the positive side of the filament, and indicated a difference of potential of 28 volts, about one-fourth the voltage
across the filament. The plate was negative with resprect to the positive side of the filament. The voltmeter was then comnected between the phate and the negative side of the tilament, and also indicated 28 volts. The biale was bositive with respect to the negative sille of the filamenr.
Fig. 3 shows a circuit in which the lanm reproduced, very faintly, words spoken into the microphone. The sound emitted from the lamp was probahly due to a cundenser effect of the tin foil coating, although the lamp reproduced no sound when extinguished. Probably the space vithin the bulb hecame conductive,

Reproduction of a photograph of the apparatus used in the experiments described in this article.
This is the apparatus shown in diagram in the This is the apparatus shown in diagram in
various illustrations of the preceding pagc.
due to the electron flow from the filament, and this suace acted as one side of the condenser, of which the tin foil coating was the other sille: the hot glass acted as an imperfect dielertric. The lamp would talk with the plate either positive or negative with respect to the middle polnt of the filament.
In trying to make the lamp generate high frequency oscillations by taking advantage of the dip in the curve (13), the circuit shown in Fig. 4 was used. A 1250turn honeycomb coil was shunted by a variable condenser and connected in the plate circuit. The plate was kept negative

Curves or graphs showing the relations of plate voltages and plate currents in this interenting
suite of experiments.
with respect to the filament by means of the battery. Current was flowing from the flament to the plate in this case. Sure enough, at high pitched squeal could be heard with the ear held close to the lamp, but later investigations showed that the variable condenser had no effect on the frequency of the oscillations, and that the lanip would sing either with or without the battery, but would not sing with a battery of over 135 volts.
An iron core choke coil was connected to the lamp in place of the honeycomb coil and condenser. This also made the lamp sing at the same frequency. Start-
ing with a cold lamp, five minutes elapsed before the lamp, would sing. The frequency of the singing note was later found to dehend upon the area of the tin foll coating. With a smaller coating the frequency was much higher.

A sinaller lamp, one of 60 watts rating, Was coated with tin foll, but this lamp would not sing, and would not pass current from the filament to the tin foil plate, as did the larger lamp. One peculiar phenomenon observed in the smaller lamp was that the lower part of the glass which was uncovered by the tin foil, became coilted on the inside with a silvery deposit, Which gave it the appearance of a mirror. The crass covered by the tin foil had no deposit.

A loud speaker was connected to the limp as shown in Fig. 5 , and reproduced the singing note with great intensity. On touching the free terminal (T) with the tinger, the intensity was greatly increased, due to the capacity of the body. The negative side of the tilament in all of these experiments was grounded. A variable condenser was connected between the negative side of the filament and terminal (T) and the result was the same as when touching (T) with the finger. On shorting the condenser there was no change in the singing note. A battery connected between the negative side of the filament and terminal (' I), with the negative side of the battery connected to terminal (T), increased the intensity of the singing note slightly. A large permanent magnet held in the vicinity of the kmp modified the singing note considerably.

The experiment shown in Fig. 6 proved that glass is a filir conductor of electricity when hot. The tin foil coating was removed from the glass | in two longitudinal strips, thus leaving two separate tin foil plates on the bulb. A battery of 180 volts was connerted to one plate and one side of the milliammeter. The other side of the milliammeter was connected to the other plate, and the lamp was then connected to the 110 volt line. In about five minutes, which was the time refuired to leat the glass, a current of two milliamperes passed through the meter. On opening the filament circuit, the current gradually died down to zero as the glass cooled.

Fig. 7 shows a popular vacuum tube amplifier hook-up. One tin foil plate was used as a grid, and the other tin foil plate was used as a plate. The plate and grid were, of course, on opposite sides of the filament, as in the old DeForest audions. Words spoken into the microphone were clearly reproluced in the loud speaker, but with very little or no amplification. Different values of plate and grid voltages changed the character and ainplification of the speech.
Fig. 8 shows another circuit used for reproducing speech in the loud talker. In this case a coll of wire was wound around the lamp through which the speech currents in the microphone circuit passod. The words were clearly reproduced in the loud talker, but with no amplification.
Another 250 watt Mazala I3 lamp was coated with tin foil and subjected to the above tests. This lamp acted more peculiarly that did the first. The lamp would sing at a much higher pitch, and the singing note would gradually grow louder until it would suddenly stom and a few seconds later start in singing again. Sometimes the bulb would emit a blue glow. due, of course, to ionization of the residual gas in the bulb. The lanp would emit this bue glow with no battery voltage appliod to the tin foil plate.
These experiments have proved most interesting to the author and some mone pected resilts were obtained. The Edison effert which is involved is nne of the great fundamental discoveries in electrielty.

Motor

Starting Solenoid

By Jesse Marster

CONTTAARY to the usual course, this automatic starter does not attract its iron plunger when the current in the solenoid is greater than a certain value, but it does attract the plunger when the current is less than this certain value.

In Figure ? we have illustrated an iron framework (FW), built rectangularly, with an opening on the bottom. A soft iron planger (I'), narrower at the bottom than at the top, fits into this framework. There are three important air graps in this arrangement. Two air gans (DD, Fig. 2) are between the plunger (P) and the bottcm of the framework (FF), and one air gap (C^{+}) exists between the top of the plunger and top of framework.

Figures 3, 4 and 5 illustrate this arrangement with the addition of a coil which has been wound around the plunger (P); the black circles represent the cross sections of the coll wires (CC). Now suppose that a large current is passed through the coils (CC). According to electromagnetic principles the iron becomes magnetized and magnetic lines of force flow through the plunger (P) and the

Fig. 3.-Effect of a strong current on the so Renoid, the lines of force filling the air gaps, pulling the armature down.
framework (FF) as shown in Figure 3. It will be observed that the lines of force pass from framework to the plunger directly and also by way of the nir gaps (DD) at the bottom. The reason for it is that since the plunger is narrow at the bottom it is more easily saturated than at the top, and hence can carry fewer lines of magnetic force. The excess above those which It can carry flows through the air gaps (DD) into the wider portion of the plunger. The lines of force also pass from plunger to framework via the air gap (U) at the top.

As a result of this current in the coll and the magnetic field thus set up there is an attraction, or an upward pull, on the plunger, by the lines of force in the air gap (U). However, this ullward pull is opposed by two forces: (1) the weight of the plunger and (2) the attraction or downward pull on the plunger by the lines of force in the two air gaps (DI). Both these forces pull the plunger down and overcome the upward pull of the force at alr gap (U).

Suppose, now, that the current in the coils (CC) decreases. As a result the lines of magnetic force flowing throngh the coll are less, and this condition is illustrated in Flgure 4, which has fewer lines than Figure 3. Since there are fewer lines of force passing from the framework (FIF) to the plunger (P) at the hottom, most of these lines can pass through the narrow
portion of the plunger without saturating it. However, there will still be a few lines passing through the air gans (DD), these few being the slight excess over the saturation anount in the narrow portion of the plunger. Since there are now fewer lines of force in the air galps (DD) than

Fig. 2.-A diagram, giving the features of design and relations of the solenoid and its plunger or armature.

Interesting Articles to Appear in July Issue of Practical Electrics

Electric Fountain of Youth, By Clyde J. Fitch.
Ford Coil Buzzer.
My Wakeful Bedfellow,
By M. McCabe.
Motor Driven Furnace Control.
Electric Thread Gauge.
Repairman's Test Panel.
Determining Moisture. By George G. McVicker.
there were before, the force of attraction at these gaps pulling the plunger downward is less also, but since there are also fewer llnes of force in the upper air gap (U), due to the decreased current, the force of attraction there pulling the plunger up is also less. As a result the weight of the plunger and the downward pull at (DD) are still great enough to

Fig. 4.-A medium current, which does not pull the armature upwards.
hold the plunger down against the upward pull at air gap (U).

If the current now decreases stlll further, the new state of affairs will be as depicted in Irgure 5. Since the current in the coils has decreased, the lines of force
have also decreased. This time the lines of force are few enough for all of them practically to pass through the narrow portion of the plunger without passing through the air gaps (DD). Since there are practically no lines of force through the air gaps (DD), there is practically no downward pull on the plunger, but there is still a heavy upward pull on the plunger. The plunger is therefore now pulled up to its new position shown in Figure 5.
It is thus seen that for such a consoruction of an electromagnet as is here given the plunger is not pulled up by heavy currents, but is pulled up when the current has decrensed below a certain value. This is the principle of the automatic starter here described, and its construction is based on that shown in the illustrations.

Figure 6 illustrates the cross section of the automatic motor starter based on this principle. It is shown mounted on a slate panel. It has the iron framework (FF) and a plunger (P). It will be observed that the plunger (P) is narrower at the bottom than at the top and forms two air

Fig. 5.-Effect of a weak current with resulting armature.
gaps (DI)) with the iron framework ($\mathrm{I}^{\prime} \mathrm{F}$). The plunger (P) forms the air gap (U) with the upper portion of the framework (FI'). To the plunger (P) on the tol is attached by means of a link rod a contact plate (CP). Its function will be explained later. The action of this arrangement is exactly as explained in the theory. When the current is reduced to a certain value the plunger is pulled up by the magnetic force at the air gap (U).

I3y shortening the air gaps (DD) we decrease the value of the current at which the plunger is lifted. On the other hand, if the air gaps (DD) are very long the opposite effect takes place. As a result, by increasing the length of the air gaps (DD) we increase the value of the current at which the plunger is lifted.
lby adjusting the size of the air gaps (ID)) we can set the value of the current at which we desire the plunger to be lifted. These adjustments are effected by means of an adjusting plug (AP) at the bottom of the framework, seen In Flgure 6. This plug is seen to be threaded and hollow, the plunger (${ }^{P}$) fitting inside it loosely. By screwing the adjusting plug (AP) up, the hollow iron tule moves upward and thus decreases the air gaps (DD). Isy screwing it downward, the alr gaps (DD) are incrased in size. In this way the device can be adjusted to operate at any particular current value desired, which current value can he read by an ammeter placed in series with the coils (CC).

The manner in which this device is used as an automatic motor starter is illustrated in Figure 7. We have here desig-

Fig. 6. Section of a motor starting solenoid showing the cylindrical case, coil, armature, and contacts.
nated three of these electromagnets schematically. Ieferring back to Figure 6, we see that the plunger carries a contact plate (CP). Directly above the contact plate will be seen two laminated brushes (ISI), more obvious in the photograph of Figure 8 . When the plunger is lifted the contact plate connects these brushes and short circuits the coils above each solenoid. The starting resistances are designated by $\left(\boldsymbol{R}_{1}\right)$, $\left(\boldsymbol{R}_{2}\right)$ and $\left(\boldsymbol{R}_{3}\right)$ and are connected across the brushes and magnet coils as shown. It will be observed that the last magnet has a snall sliunt coil (SHC), the purpose of which will appear later. The manner in which this starter operates is now as follows:

The llne switch (S) is closed and the main current flows through three paths: (1) through the shunt fleld, (2) through the shunt coil (SHC) by way of the auxiliary switcll contact (AC), and (3) the main current through the notor. This last current flows from positive of the main througli the motor armature;
through the entire starting resistance (R_{1}), (R_{2}), (I_{3}); through magnet coil $\left(C_{1}\right)$ to the negative of the main. Thus the motor starts up with mininum current since all the starting resistances are in circuit. As the motor picks up speed its current decreases until, depending upon the adjustment of nagnet (1), the current has been reduced to a certain amount at which the plunger of the first magnet is pulled up and its contact plate $\left(\mathrm{CP}_{1}\right)$ makes contact with its brushes (B_{f}), and thus short circuits its resistance coil (R_{n}). The current now flows as follows: From positive of mains through motor; through starting resistances (R_{2}) and (R_{3}); through magnet coil $\left(\mathrm{C}_{2}\right)$; through brushes and contact plate (\mathbf{B}_{1}) and (CP_{1}) ; through coil (C_{1}) to negative of mains.
The motor now continues to grain speed

Fig. 8. The complcte solennid in its case with
its contacts to operate in starting a motor.
and the motor current decreases still further. When again this current is reduced to a certain low value, depending upon the adjustment of the plunger in magnet (2), the plunger is lifted and contact plate $\left(\mathrm{CP}_{2}\right)$ short circuits its brushes (B_{2}), thus Short clrcuiting second starting resistance $\left(\mathrm{R}_{2}\right)$.

Fig. 7. Wiring diagram of starting solenoids. The one on the right is specially connected to

The motor stlll continues to gain speed and the current in motor decreases until a value is reached, depending upon the adjustment of the plunger in magnet (3), when the last plunger is lifted and the contact plate $\left(\mathrm{CP}_{3}\right)$ short circuits the brushes (13_{8}), thereby short circuiting the last of the starting resistances $\left(R_{3}\right)$. Thus all of the starting resistance has been automatically eliminated and the motor is now getting full line voltage.

It will be noted that since the last resistance is cut out there ts no current flowing through any of the magnet colls (C), and both plungers $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$ of the first two magnets are released. In order to prevent this last plunger from dropping when the current in its coil (C_{3}) is eliminated, a small shunt holding coil (SHC) is included which, althongh not powerful enough to lift the plunger itself, is sufficiently powerful to hold the plunger up once it has been lifted by the series coll $\left(\mathrm{C}_{3}\right)$. This shunt holding coil is therefore used on the last step of all these starters.

The number of magnets used in starting a motor depends upon the size of the motor. Thus a very small motor of onequarter horsepower may require only one coil, since it can be started in one step. Larger motors require more steps, some of them requiring 5 or 6 .

Static Discharge Plug for Gasoline Tanks

Numerous conflagrations have occurred which have been attributed to static electricits.
A semeral minajole is that before introduring ail into blue tank, whuse friction might wenerate a slarking potential, a

This grounding prevents sparks, and the tank can now be filled in safety. If the ground connection is merely a temporarily extemporized one, as where a truck is drawn up alongside the road to be filled, it chatin may be used to give the ground.

A^{4}UTOMOIBILISTS or those connected with gasoline supply stations, have observed that sparlis indicating a discharge of static electricity sometimes occur when gasoline is being poured into an automobile tank.

Filling-pipes showing the ground connection. The arrow (A) points at the wire connceted to the grounded metal.
It will be evident that an automobile on insulating rubber tires, might become charged, Leyden-jar fashion with static electricity, and when sparks occur in the presence of air and gasoline vapor there is great probability of explosion and conHasration.

In the case of storage tanks, pumplng stations, and trucks, the fact is recognized that there is a distinct danger of fire.

The discharging plug in position on the top of neck, shown, inserted in the side of the filling plug is inserted into the side of the filling nozzle, which plug is made of metal, and by a heavy wire or chain, connects with the ground. It will be observed in the central and right hand pictures, where the arrow (A) points at the plug, which has a landle for the operator, and it will be noted that the cover of the filling neck is open. Insertion of the plug onens the cap automatically.

The operator is preparing to fill the tank which has becn protected by the insertion of the anti-
static plug. It will be noted the cap is wide apen.

Where this apparatus is used on a truck or automobile, the occupants can feel that if they are riding upon an insulated Leyden jar, at all events it is not a charged one.
In this connection it will be noted that the dragging of an iron chain upon the ground behind an automobile has been suggested as a means of keeping it safely discharged.

The Three-Brush Automobile Generator

By M. Mighstone

II has been the writer's experience that to the ordinary car owner, and a majority of garage men, the theory and operation of the three-brush automobile generator is clothed in deep and impenetrable mystery.
In reality, the manner of operation of -he third-brush controlled generator is quite as simple as the proverbial A B C, to anyone with a fair knowledge of electricity and electro-magnetism, as it is hoped the following discourse will show :

It goes without saying, of course, that an ordinary generator is entirely unsuitable for supplying the electrical system of an automobile with current; this is because the voltage and consequent supply of current would continually fluctuate over a wide range, according to the varied speeds of the engine.

The three-brush generator entirely overcomes this defect, supplying the bat-
 Diagram of a two pole generator with three
brushes, but with the third one disconnected: showing the relations of the different parts of the field.
tery, lamps, and other apparatus with a steady current at all speeds of its armature. As the name implies, three brushes are used, two being placed in the usual position of neutral field. and a third, generally movable, located between them, its position being determined by the amount of current desired.

Before entering upon the explanation of its action let us go over a certain phase of operation of direct current generators not generally taken up in textbooks or schools. Above is shown an ordinary direct current generator, of the two-pole variety, and the direction of flow through its windings, consiclering it to be rotating in a clock-wise direction. A ring wound armature is shown for convenience, the action being identical on the ordinary drum wound lind, and is divided into the four 90 degree sectors, ($\mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$), to clarify the description.

Suppose the armature to he revolving at a certain speed, and supplying current to some device. Applying the "Rule of the Right Hand" to the direction of current flow in the armature, it can be seen that two south poles are formed on the armature in the sectors (M) and (N), and two north poles in the sectors (O) and (P), as diagrammed.

The opposition of the south pole on the armature coils in sector (M) and the south pole of the main field magnetism causes a weakening of the flux in this portion, while a strengthening action occurs in sector (O) due to the cumulative, or helping action of the north pole on the armature with the south field pole. On the opposite side the action is similar, except that the portion where the maximum
density of magnetism occurs is in sector (N) and the point of minimum density is in sector (P). It appears, then, that instead of flowing directly across the armature from field pole to field pole, the magnetism runs diagonally from sector (0) to sector (N). The effect, however, is of a field of uniform strength, as the decrease of magnetism in sectors (M) and (I') is balanced by the increase in sectors (O) and (N).

Now let us examine the next drawing-a conventional diagram of a three-brush generator is shown. As can be seen, all the current supplied to the field windings is taken from the coils in the portion designated as sector (M), or where the magnetic field is weakest. Suppose now the armature to be revolving at a certain the armature to be revolving at a certain battery, lights, etc., of the car.
If the speed is increased, as it will be if the engine is accelerated, the voltage and current supplied naturally tend to increase also. The increased current through the colls will cause the south pole on the armature in sector (M) to increase in strength, thereby increasing its opposition with the south field pole of the machine, and lessening the amount of magnetism cut by the armature coils at this point.
The voltage of the armature colls, which supply the field windings with current, will drop, and also the current, causing a decrease in the main magnetism across the entire armature. The subsequent drop of voltage across the main brushes will, in a properly designed machine, cause the current supplied to the apparatus to return to its original value. In an ordinary generator, the decrease in field density at this point is compensated for by the increased strength of field in sector (0), thus allowing a rise in voltage, but this machine cannot take advantage of such halancing effect, due to the fact that the field windings are not connected the field windings are

The higher the speed, which the armature attains, the greater becomes the current which attempts to flow through it, and the greater becomes the "bucking" action in sector (M), causing the current through the field coils to drop lower and lower, clecreasing the field magnetism to compensate for the increased speed of the armature.
It is necessary, of course, that an ahnormal current shall flow through the system for the regulating action to take place, but this excess current is so small, and flows for such a brief instant of time, that it is not to be taken into account.

When the speed of the armature drops below what might be termed normal, as it does when the engine is idling, the voltage across the main brushes would tend to drop, and likewise the current. The dron of current in the arnature causes the south pole on the armature in sector (M) to weaken, the bucking effect between it and the south field pole of the machine is lessened, causing a strengthening of the main field magnetism at this point. This would cause the coils supplying the field windings with current to move across more magnetic lines of force per second, the voltage and current supplied to the field is increased, and thereby the main magnetic fleld. The increase in density of the nain magnetic field causes an increase in voltage across the main brushes, bringing the current supplied to the apparatus of the car back to normal.

The reason why the moving of the third brush will increase or decrease the current supplied, is due to the fact that less colls supplying the field windings are in action
as the third brush is moved nearer the bottom main brush, and so less current is sent through the field windings at a given speed. Therefore, a lesser current flow through the armature is required to cause a balance in the "bucking" flelds in sector (M) for a given speed, than when the brush is higher un. The exact reverse is true when the brush is moved nearer the top main brush, It is by this means that the current supplied to the battery for charging is regulated.

The three-brush generator is one of the most freakish machines in the electrical world, and will run contrary to almost every conclusion, which might be made by an observer unacquainted with its vagarles. For instance, if a resistance develops in the battery circuit of the car, which is in parallel with the lamp and other circuits, the headlights will increase in brilliancy, and may even burn out, if the

Diagram showing the operation of a two pole gencralor with the third brush connected in the two
diagrams illustrate the reactions of thie type of machine.
resistance is of sufficient value. This is caused by the generator increasing its main voltage in an attempt to bring back the current to normal, from which it has fallen due to the resistance in the battery rircuit. In order that the reader may not be here confused, I will repeat that this device controls the current anly, not the voltage. This may seem still more confusing, and in direct defiance of Ohm's law, but a review of the last few l'nes and al little reflection may make the matter clear.

If all the loid is suddenly disconnected from one of these machines, the voltage will rise to an incredible height, sometimes four or five hundred volts, and will almost instantly ruin the windings. This is caused by the opposition of the two soutli poles in sector (M) becoming practiailly zero, as only the current consumed by the field is flowing through the armature, and this is far from normal. There will ensue a stern chase of the current in the armature attempting to generate enough magnetism to stop the rise of fiell current, but naturally without success, as the greater the flow of current throurh the armature becomes, just so does the current through the field increase, and likewise the main magnetism, which in turn causes an increase of current in the armature-and so on, round and round in a vicious circle ending only when the machine goes up in smoke. It is for this reason that some inanufacturers place a fuse in the field circuit to protect the generator should the main circuit be sudrenly opened. It is well to remember this sact when searching for trouble :n a generator which has suddenly "gone dead."

New Theory of Magnetism

By T. J. J. See, PRod.
Professor of Mathematics, U. S. Navy.

IT is scarcely necessary to point out to the readers of Practical Electrics that although we have had many notable treatises on magnetism since the first great work published in the year 1600 by Dr. Gllbert, of Colchester, physician to Queen Elizabeth, yet in all these modern treatises not a single explanation worthy of the name has been offered on the cause of magnetlsm! The result is a great need for a working theory of magnetism which will enable us to see what is going on in the fleld about a magnet.

The theory herein set forth was developed by the writer in 1916, and first published in a work entitled Electrodynamic Wave-Theory of Physical Forces, Vol. 1, 170 pages, Boston, London
and Paris, 1917; but has recently been exand Paris, 1917 ; but has recently been extended in a series of papers on the New
 5
Enlarged view of one of the magnets assumed to be in the field of force, shown in the upper illustration immediately above the field.

Theory of Ether just appearing in the Astronomische Nachrichten, the International journal of astronomy at Klel, which is now in its hundredth year and 212th volume. As the New Theory of the Either is a very extensive work of highly mathematical character, we are obliged to restrict the discussion to very simple outlines which will convey clear ideas to our inlnds.

For a long time it has been known that all matter sends out a pecullar influence or flux of energy, which acts on other bodies; and ever since the publleation of Sir Isaac Newton's Principia, 1687, it has been shown that all actions are mutual. Thus any influence exerted by one body on another will be based on the interactions of the two bodies, through the Etherial Medium enveloping both masses.

About 1850 it was discovered by the celebrated English electrician, Faraday, that all bodies are magnetic, but In varying degrees. Iron, steel and nickel are typical metals with strongly magnetic properties, and as far back as 1822 the celebrated French physicist, Ampere, explained magnetism by elementary electric currents clrculating about the atoms. In the year 1917 the writer was able to show that this Ampere theory is identical with the modern wave-theory, in which the atoms are supposed to be vibrating and incessantly sending out waves through the surrounding ather.

When agitated violently the atoms are heated up and made to enit waves of heat

2. The field of force surrounding a wire through which a current is passing,
these short. Accordingly, why may not the longer waves of magnetism and of gravitation? such was the question whicl has at length led to the very reniarkable new theory of the ether, with simple and direct explanation of magnetism and electrodynanic action.

In the accompanying figure 1 we have outlined the body of a simple bar magnet, and also traced In detail the type of waves supposed to recede away from the magnet in the equatorial plane. It will be remembered that although the great mathematical physicist J. Clerk Maxwell was able to show that certain stresses are at work in the ether about a magnet, by which the lines of force tend to shorten themselves, he was unable to concelve of any physical cause for the action. Maxwell had not thought of waves of the type here imagined.
It is easlly shown (cf. Astron. Nachr., No. 5044, p . 54, May, 1920) that the amplitude of the waves follows the law here indicated,

This is the formula for gravitation, magnetism and similar forces which follow the law of the inverse squares.

Now It is very remarkable that the chlef forces in nature vary Inversely as the square of the distance From this fuct we know that if waves be the cause of the forces, the waves have to have amplitudes varying inversely as the distance, as shown in equation 1 above.

To deduce the law of the wave amplitude (1) in tridimensional space we proceed as follows: The displacement of any particle of a medium due to wave motion, of a fiven wave length, is independent of the periodic time; and since the oscillatory orbits of the particles are described in equal times, under continuous flow of the waves, these orblts will be proportional to the displacements or other homologous lines pertaining to the peri.

The other magnet on an enlarged scale, as shown to the right in the opper illustration.
odic paths of the particles. Let the velocIties of the moving particles be v, and m their mass; then their kinetic energles will be represented by $1 / 2 \mathrm{mv}^{2}$. In the spherical expansion of the ether waves there will be no loss of energy in free space; hence on two successive sphere surfaces of thickness $d r$, the energies are equal, so that we have: $4 \pi r^{2} \cdot \frac{1}{2} m r^{2}=4 \pi r^{\prime 2} \cdot \frac{1}{2} m v^{\prime \prime}$ or

$$
\begin{equation*}
v^{2}: v^{\prime 2}=r^{\prime 2} \cdot r^{2} \tag{4}
\end{equation*}
$$

The kinetic energy of the vibrating molecules varies inversely as the square of the distance. But the velocity varies also as the amplitude, in simple harmonic motion ; therefore, for the amplitudes A^{\prime} and $A^{\prime \prime}$, corresponding to the radil r^{\prime} ind $r^{\prime \prime}$, we have by taking the square root in equation (4)

$$
\begin{align*}
& A^{\prime}: A^{\prime \prime}=r^{*} ; r^{\prime} \tag{5}\\
& A^{\prime \prime}=\frac{A^{\prime} r^{\prime}}{r^{\prime \prime}}=\frac{k^{\prime \prime}}{r^{\prime \prime}} \tag{i}
\end{align*}
$$

Accordingly the amplitude or side displacement becomes

$$
A=\frac{k}{r}
$$

$$
\begin{equation*}
A=\frac{k}{r} \tag{1}
\end{equation*}
$$

or varies Inversely as the distance.
And it is proved in works on plysics that the energy of the waves is proportional to the square of the amplitude, and thus the force they exert becomes simply :

$$
\begin{equation*}
r=A^{2}=\frac{k^{2}}{r^{2}} \tag{2}
\end{equation*}
$$

as shown in the accompanying figure 1. To understand the mechanism of magnetism, imagine waves receding away from the larger magnet, is shown in the diagram, and let the smaller magnet (i3) present opposite poles. This corresponds to the case of attraction. The waves from the small magnet (B) rotate in the opposite sense to those from the large magnet (A) ; and when the two sets of waves in-
serpenetrate, they undo one another as far as possible at every point of the wavetield.
Thus the larger waves tend to collapse when the smaller waves run through them; and this collapse or contraction gives rise to pulling. Such a contraction of the ether between the bodies is what ve call attraction. The action when the aether contracts is like that of a stretched mass of India rubber-it pulls the bodies together, by forces depending on the two magnets, their size and power, or degree of perfection of magnetization.
It is shown in the Wave-Theory (A. N. 5044, p. 55) that the light travels 904,000 times faster than sound, from which it follows that the aether is 689,321 ,600,000 times more elastic than air in proportion to its density. This number is enormous, and as the waves travel in free space with the velocity of light, and accumulate power by nere superposition, in proportion to the mass, or the number of atoms from which the waves proceed, we perceive that the action will depend directly on the mass, as in Newton's law of gravitation. Moreover, the intensity of the force will vary inversely as the square of the distance. This gives, therefore, a perfect explanation of the attraction of magnets which present opposite poles.

Let us now consider the cause of repulsion, when like poles are presented, which is exhibited in the second case on the right, in the same diagrant. In this second case the waves from (B) rotate in the same sense as those from the larger magnet (A). When such waves interpenetrate, with the superposed rotations at every point in the same direction, one set of waves adds to the amplitudes of the other set; and the result is increased angitation of the æther, which thus tends to expand this nedium between the two bodies. This expansive tendency of the gether thus gives rise to repulsion, and the magnets tend to push one another away. Thus we have a simple explanation of repulsion when like poles are presented.

Accordingly, we have a simple explanation of both attraction and repulsion, which no one has been able to devise heretofore. An explanation based on waves which is simple and direct has so much to commend it that we may pronounce it the true cause of the phenom-
enon. It thus appears as if we have at last discovered the cause of magnetism, and finally of electrodynamic action and universal gravitation.
An experiment by Dolbear (Matter, Ether and Motion, Boston, 1894, p. 95) throws great light on the tendency of Faraday's lines of force to shorten themselves.
"If a dozen disks five or six inches in diameter are set loosely an inch apart unon a spindle a foot long, so that they nuay be rotated fast, yet left free to move longltudinally upon the spindle, they will all crowd up close together as the pressure is less between them than outside. If one can imagine the spindle to be flex-
 pares with the ether waves already illustrated and described
ble and the ends brought opposite each other while rotating, it will be seen that the ends would exhibit an apparent attraction for each other, and, if free to approach, would close up, thus making a vortex ring, with the sections of the disks. If the axis of the disks were shrinkable, the whole thing would contract to a minimum slze that would be determined by the rapidity of the rotary movement, in which case not only would it be plain why the ring form was maintained, but why the diameter of the ring as a whole should shrink. So long as it is rotated it would keep up a stress in the air about it. So far as the experimental evidence goes, it appears that a vortex ring in the
uir exlibits the phenomenon in question."

Now, according to the wave-theory, every line of force about a magnet is an axis of a rotating filament or ether vortex and thus the lines of force tend to shorten themselves, as in Dolbear's experiment. The lines of force in the form of circles surround a wire bearing a current, which means that the wave rotations are flat in the planes passing through the axis of the wire. This arrangement is shown in figure 2. And as the magnet also sends out waves flat in the equatorial plane, at right angles to the magnetic axis, we see why ε magnetic needle sets itself at right angles to the axis of the wire bearing the current, as first noticed by Oersted in 1819.

If we examine figure 2 we notice that the rotations in the waves above are opposite to the ones below. Hence, when two currents flow in the same direction the collanse of the ether waves retween the wires causes the wires to attract, which conforms to observation. When the currents flow in opposite direction the rotations of the waves between the wires are in the same direction, and by the increase of amplitude thas arising, the ether expands itself, so that the wires repel, in accordanze with observation.

Accordingly, waves are the cause of electrodynamic action. It only remalns to add figure 3, to illustrate the wave field of the earth's magnetism. It should be noted, as shown by Gauss, 1838, that the waves receding from the earth depend on $1 / 1380$ th part of the atoms of our globe. These atoms are lined un in parallel planes-the other $1379 / 1380$ ths being arranged with their planes lying haphazard, and producing the central action of gravitation.

With the rotations of their waves directed so as to harmonize mutually, the compass needle lies in the hollow of the receding earth waves, and thus pointing steadily to the Pole, guides the mariner safely over the trackless sea. This gives a very direct and simple explanation of the earth's magnetic field. The wave field about the globe is so very beautiful to behold that we cannot but regret it was not made known to us long ago. But who will show it to us?

Triples Table-Tap

Economical Fuse Cutout

By Docteur L. Debatz, Bordeaux, France

${ }^{*}$ T"IIPIEX TABLE-TAP" is the name given to a new electrical appliance. The manufacturer claims that with this device any householder can wire his own furniture in a few milnutes. It consists of a block of strong, black, fireproof composition, and carries three beveled tee-

Triple connection-block for use apon a table, so that by placing such block upon the table or fastening it to any part therenf, connections are supplied for three different articles.
slot outlets arranged multiple, as well as a blade connection for the motor plug.
This latest idea may be fastened to the under side of a table top, or upon a wall surface, by means of two screws through
countersunk holes at the ends. The device is sold, completely wired, with eight feet of silk covered cord, a motor plug, and a separable attachment plug which fits any lamp socket or convenlence outlet.
This Triplex Table-Tap is backed with green baize and may also be used as a portable outlet, on tea wagons, side-boards and serving tables; or on the work bench, around the car, or wherever a convenient tee-slot electrical connection might be required.

TAKE an old discarded switch (A). Remove the shaft and the contact spring. With strong scissors cut two strips of thin sheet lirass und bend these with pllers is shown.
Insert these curved springs between the porcelain base and brass contact, and finally an automobile fuse is sprung in between the two springs. These automobile fuses were picked un from the United States War Departinent surplus for one franc the parcel of ten.
(A) is the old switch; (B) is the fuse when finished; (C) is the porcelain cover.

Utilizing a disearded switch for making a plog fuse-an interenting contribution from our distin-fuse-an interenting contrion

Awards in the $\$ 50$ Special Prize Contest
 For Junior Electricians and Electrical Experimenters

First Prize, $\$ 25$
Mr. Harold Jackson,
R. No. 4, Box 141,

Kankakee, III.

Second Prize, $\$ 15$
Mr. Amedeo Giolitto, 836 Illinois Avenue,

Rockford, III.

Third Prize, $\$ 10$
Mr. Harry Cole, Box 285,
Evanston, Wyo.

Hon. Mention
Mr. J. Leo Vanderheyden Buckingham, Iowa

Hon. Mention
Mr. Leo J. Coley, General Del., Glen Falls, N. Y.

Firpst Prize
 Dynamo Field Made from Pulley

Ly IIAROLD JACKSON

AVEIR satisfactory tield for a small experimental dynamo or motor cam be made of an old cast iron pulley, which may be about 12 inches in diameter with at face of almont 4 inches.
The hub and inner end of the spokes are cut away, as shown by the dotted lines in the sketch. This is accomplished by sawing off the spokes with a hack saw, the exact length of the remaming portion of the spoke being determined by the size of the armature to be used.
Drill a $3 / 8$-inch hole through the rim and down lengthwise through each spoke to receive the bolt which holds the field

discarded belt-pulley used as a field for a nulti-polar dynamo or motor. Wach spoke is the piece.
coil and pole pioce in place. This arrangement is clenrly shown in the sketch. The pole pieces are small castings about three inches square, the inner surface of which is curved to conform with the cylindrical surface of the armature. The field coils are form-wound, and properly placed upon the cores to produce alternsite north and south poles. This makes a very rigid and satisfactory field.

Seconal Prize Double Action Vibrator

IV: Ameneo Giolitto

WITM this vibrator it is possible to interrupt the primary circnit of a spark coil with twice the frequency as is possible with the ordinary vibrator. As the voltage developed in the secondary of a spark coil depends a great deal on the speed at which the primary current is interrupted, this vibrator wonld greatly increase the secondary voltage. It consists of a pair of electromisnets mounted on a hase and arranged to vibrate the steel reed (R). This reed, as it moves towards the magnets, breaks contact with (B) and makes contact with (C) and then in moving back to its normal position breaks contact with (C) and makes contact with (B).

Binding posts (A) are connected in

$\$ 50$ IN PRIZES

A special prize contest for Junior Electricians and Electrical Experimenters will be held each month. There will be three monthly prizes as follows:

First Prize $\$ 25.00$ in gold
 Second Prize $\$ 15.00$ in gold
 Third Prize $\$ 10.00$ in gold

Total $\quad \$ 50.00$ in gold

This department desires particularly to publish new and original ideas on how to make things electrical, new electrical wrinkles and ideas that are of benefit to the user of electricity, be he a householder, business man, or in a factory.

There are clozens of valuable little stunts and ideas that we young men run across every month, and we mean to publish these for the benefit of all electrical experimenters.

If in any way possible, a clear photograph should be sent with the idea; but if that is not possible, a good sketch will do.
This prize contest is open to everyone. All prizes will be paid upon publication. If two contestants submit the same idea, both will receive the same prize.

Address all manuscripts, photos, models, etc., to Editor, Electrical Wrinkle Contest, in care of this publication.
series with the printary of the spark coil and some batteries. The dry cell connocted as shown in the diagram supplies. the current consumed by the magnets.

Now it can he easily seen that for every hack-and-forth moveliont of the steel raed the primary circuit of the spark coil would

A special buzzer connection to be used to make and break an induction coil primary, so as to give double the frequency that would be attained by the
regular connection.
be made and broken twice, whereas it would only be made and broken once with the ordinary vibrator. The double action vibrator has the disadvantage of requiring an extra dry cell, but the results obtained are worth while.
sparking at the contacts (B) and (C) is prevented by connecting a one microfiriad condenser (D) across the binding pests (A).

If this vibrator is to be used in connection with a spark coil which already has a vibrator, then the vibrator on the spark coil would have to be blocked so that it will not interfere with the action of this one.

Thized Prize Wheatstone Bridge

A Wheatstone bridge, which with two elements for changing resistance on one of the arms, gives \rightarrow accurate results.
THF base of the hridge may be made - of a piece of wood seven inches square. The rheostat, a long helical coil bent in the are of a circle, may be wound on a metal rod which has been well insulated. (ierman silver wire about Ne. 22 B , and s. galuge is used for the rheostat. The length of each turn should be measured and marked around the circumference of the rheostat.

A piece of wrood taken from a yard stick or rule is cut off about three inches long and marked in sixteenths of an inch. One side is cut at an angle as shown at (N) below the large diagram, so that the key (K) will not come off easily.
A piece of resistance wire (A, B) is stretched over the piece of wood. The wire is of the same gange as that used on the rheostat. The end (B) is connecter to one end of the rheostat and the end (A) is left free.
The wooden part of the key is about three-quarters of an inch lang and as wide as the rule (N). A piece of brass is used at the contact (\mathbf{Y}, N); they key so as to make contact with (A, B). A piece of copper wire coiled as a spring is connected from the key to the binding post just below (A).
(D, \mathbf{E} and $\mathrm{F}^{\text {) }}$) are pieces of sheet conper about a quarter of an inch wide.
The galvanometer may be any sensitive one.
To use the Wheatstone bridge, a known resistance is connected at (iR) and the unknown at (x). Then the key (K) and the rheostat are varied until there is no deffection. Then the length of wire from key to index and from index to (C C) form a proportion as follows:

> KI : IX : : N:CC.

If (R) is two ohms and (K. I) six inches and (IX) fifteen inches, $2: x: 0: 15$ or $\frac{2}{x}=\frac{6}{15}$ and (x) would equal five ohms.

Honorable Mention Dry Cell Potential Changer

13y J. Leo Vanderheyden

A potential changer, using five dry cells and making a most convenient connection employing such cells for general laboratory purposes.

IN some of my experiments with sule 1 noids and coils I wis only whle to secure variable voltage after connecting five dry cells with two 6 -point switches, as shown in the illustration. I soon discovared several other advantages in this plan. First, I am able to secure the voltage of any one cell of the five, any two cells of the five, and so on ; almost any combination I could want, providing the cells wanted stind side by side.
Another advantage is that it is possible to reverse the flow of current coming from any cell or any combination of cells.

The following is a table for the proper use of the 6 -point switches. The first colmmn of tigures denotes the cell or cells wanted. The second and third columns refer to the contact points on the switches (A) and (B):

Travel of collrent:

Orlinary	Reverse		
1	$I!$	A	I
1	2	2	1
2	3	3	2
3	4	4	3
4	5	5	4
5	6	6	5
1	3	3	1
1	4	4	1
1	5	5	1
1	6	6	1
2	4	4	2
3	5	5	3
4	6	6	4
2	5	5	2
3	6	6	3

Monorable Mention Domestic Water Heater

I?y leo J. Corey

TIIE following deseribed applianere gives hot water at a moment's notice and (wiss very little to make up. The mater rials redinired are:

Our 留50

TTHE editorial staff is pleased to disclose the results of the Title l'rize. Contest, innounced in our issue ot March, 1923.

If this contest is to be judged solely by the number of replies that were received, it may properly be considered a "howling success." If it is to be judgerd by the merit of some of the entries, we would feel justified in stating that it wats disappointing. No great amount of ingenuity was evinced in many of the titles submitted, and the judges were hard pressed to award the prizes as shown.

Most of the suggestions were somewhat irrelevant, and not 5 per cent of the entire number ware descriptive, which, under the rules of the contest. wis one of the deciding factors. Ilere are a few examples of the "brilliant" outbursts
"Studying His Job."
"Let the IBall (Bawl) Wait."
"When Tears Avail Not."
"Cause for Delay."
"Parting Ways."
"Broken Promises."
"The Inventor's Wife."
"Business Before Pleasure."
"Inınractical Iilectrics."
"Practical Electrics." (About 2.000 of these.)
"Tears: Versus Iơlectricity."
"Separated by Electricity."
"The I"ower of Electricity."
"An klectrical Shock."
"The Radio Widow." (Several thousand of these, although it is difficult to say where Radio entered into this cover at all, there being no such intimation.
In awarding the prizes, the judges have chosen the titles not only descriptive but with some measure of cleverness as well. The prize winning titles follow :

Title Prize FIRST PRIZE, \$25
 "An Electrical Interrupter" lired D. Vercelifino,
 $\because 39$ 3rd St., East, Dickinson, N. D.

SECOND PRIZE, \$15
"Practical Neglectrics"
Allen Bitrie,
106 County St., Monett, Mo.

THIRD PRIZE, $\$ 5$
 "A Loose Connection"

B. Halpern,

80 Corona Ave., Elmhurst, L. I., N. Y. also Roy S. Tones, Bethel, Me.

I Hitere of $: / 4$-inch iron pipe, 24 inches loms, threaded at both ends. Several sheets of mica, such as is used for stove doors. One spiral coil of resistance wire, such as is used for the heating element of an electric stove. Some usbestos powder mixed with plaster of Paris, and some asbestos sheeting.
Cover the pipe with sheet mica for a distance of 18 inches. Isind the ends with stovepipe wire. Over this wind resistance wire, which should have previously been straightened out. The turns are spaced one-eighth inch apart.
Over the completed winding spread a paste made of the mixture of asbestos powder and plaster of Paris with water. After being allowed to dry, the whole thing is wrapped with thin asbestos sheeting.

The finished pipe is installed before the faucet, and wires are run from the ends of the windings to a double pole fused switch. After connecting the switch to the lighting circuit, close the switch and open the faucet to get hot water.

This is a simple contrivance to make Cold Water Supply

Simply constructed appliance for heating water as it is drawn from the faucet.
mind cath easily be aldipterl for a hath or wiash basin if required.

Comest

FOURTH PRIZE, $\$ 3$

"A Non-Conduct-Her" JACK Bowen 1239 20th St., Detroit, Mich. also Lioy S. Tones, Ihelhel, Me.

FIFTH PRIZE, \$2

"The Experimental Widow"
Charles T. Sage.
18 East Main St., Gowinda, N. Y.

HONORABLE MENTIONS

"A Loose-Coupler" I3. Halpers,
So ©orona Ave., Nimhurst. I. I., N. Y.
"Shocking Revolt, Eh Watt?"
Wimilias R. Westwood,
f. $\overline{-1}$ Union Terrace, Jamaica Plain 30, Mass.
"Technical Grounds for Desertion" Mohini Jacobs,
:31 West 110th St., New York City.

"Electrical Interference

Beatrice Weathers,
102 North 15th St., Frederick, Okla.
"The Crucible Test"

- W. L. Dysart,

Box 1515, Harlowton, Montana.

"His Bitter Half"

R. L. Sanders,

1839 Logan Ave., Des Moines, Iowa.
"A Hubby With a Hobby" F. D. Hooex,

1306 West 58 th St., Los Angeles, Callf.
In clever as in prize winning answers, the East was in the minority.
All in all, the contest, we believe, was very satisfactory, and the results have been so encouraging that we shall stage another one in a coming issue.

Thief Catcher

I^{N}N our Decemher issue we showed a bry who received a shock when he pulled

A bunch of bananas in this illustration is made a terminal of the secondary of an induction coil, so as to shock any enterprising youth who attempta to steal one of the fruit.
or tried to pull a door-bell surreptitiously. The present illustration shows a similar system of preventing the theft of bananas by the younger element.
A hoard (A) has one end supported by springs, so that when depressed by the welght of anyone stepping on it, it closes an electric contact as shown. This hoard is covered with a metal sheet, which is connected also to the metal contact block (C). A round-headed brass screw will answer for the contact (D) ; when the board is stepped upon the circuit will be closed at (CI)), the battery will operate the spark coil as shown, which is provided with a spark gap at (E), and which need not be much more than one-sixteenth inch long.

One of the secondary wires is carried to the bunch of bananas, and may be thrust through one or more of the fruit, or deep down into the stems. The pilferer is supposed to recelve a warning shock, when he steps upon the board and tries to make of with a banana.

Contributed by Paul STuck.

Double Solenoid Engine

[^1]Porcolain tubes ($\mathrm{P} Q$), using 150 feet of wire.
lour flanges are made from stout cardboard and secured with sealing wax to the ends of the tubes, as shown by the dotted lines in the diagram. Then the wire, which may be ordinary bell-circuit or magnet wire, is wound on, 75 feet to each tube, and the coils are covered with paper or other naterial in order to inmprove the appearance.
Two ammatures (M and N), composed of two 16-penny wire nails with tin strips soldered to their upper ends as shown, are constructed and fastened by pins to the oscillating cross-bean (W), which is mounted on a wooden pillar rising from the base.

The automatic switch is made in the following manner: A strip of stout brass (S), slorut 2 inches long and $3 / 8$ inch wide, is pivoted on a wooden block about $11 / 2$ by $21 / 2$ inches in surface dimension. The plvot passes through a sheet of brass (Y), to which one of the wires is soldered.

The contacts (C) and (I)) are thin pleces of brass fastened to the wood hlock by screws and set far enough apart so that the switch will not short-circuit them.

The wiring is arranged as shown in the Hllustration. When a battery is connected to the terminals (T) and (T^{\prime}), and the switch (S) touches (D), the current flows through the right-hand solenoid; the armature (N) is drawn down, cansing the cam-notel (G^{1}) to strike the switch (S), and set it on (C), which changes the flow of current to the left-hand solenold; the armature (M) is drawn down, which causes the cam-notch (G) to strike the switch, setting it again on (D). Thus, the lever (S), fastened to the cross-beam (W), alternates back and forth with great speed, turning the flywheel (5) hy means of the connecting rod (R). The flywheel can be taken from an old toy steanl engine, and an 8-penny nall can be used for the connecting rod (S).
The signs + and - are used at the terminals (T) and (T^{\prime}) for simpliclty in explaining.

Contributed by E. H. Stivender.

Multiple Fuse

IN cases where fuses are likely to hlow out frequently the multiple fuse here described will be found most convenient. The simple turning of a knob brings another fuse into circuit, untll a set of eight fuses have been burned out ; the necessity of inserting a new fuse each thme one is blown is thus obviated.
A multiple fuse can he made by anyone and wilt prove economical both as to time and expense. Any slze fuse wire can he utilized and is easily renewed.
The box is 6 incles by 4 inches by $11 / 2$ inches, inside measure. It may be constructed of almost any kind of wood, is about $1 / 4$ inch thick and any desired finish may be applied.

Two disks $31 / 2$ inches in diameter are made of some kind of insulating and virtually fireproof material, such as slate, formica, etc. A circle 3 inches in diameter is scribed upon each disk, and $81 /{ }^{1 / 2}$-inch holes are drilled equidistant around each circle. A $1 / 1-$ inch liole is drilled in the centers of the disks. A brass bolt $1 / 2 \mathrm{inch}^{2}$ long is placed in the holes on the circles and a thiln brass nut is screwed on each. The fuse wire is wound around the circle,
touching all the bolts just above the nut. A second nut taken from an old dry cell is screwed down against the wire. If de-

Multiple fuse system by which turning a handle or knob brings a new fuse into circuit when an old one blows out, saving a great deal of trouble in replacements.
sired, contact points may be used in place of tliese.

Two $1 / 4$-inch brass shafte with a small wooden knob on one end of each come next. One is $3 / 4$ inch in length and the other $11 / 2$ inches. A line is drawn lengthwise on the top of the box, and two $9 / 32-$ Inch holes are bored on the line, "- inches from each end. 'The shaft, $3 / 4$ inch long, is pussed through the hole on the right and a washer is slipped on from the othor side. One of the disks is put in place with the bolt to hold it, with the fuse underneatli, and a nut is screwed on. The other shaft pusses through the left liole and a washer, then a tube or bushing slightly larger than the shaft, is slipped on. Jhis bushing is 1 inch long. Anothey washer is placed on the shaft and the other disk is aftixerl like the first one.

A piece of wood $1 / 2$ Inch square is secured in each corner of the box for the brushes to be aftixed to. 'ITe brushes are made of spring brass $1 / 4$ fncl wide, and are bent and mounted as shown. Copper. wires are soldered to the brushes and connected to binding posts in the sides.

The disks are numbered from 1 to 9 , under the center of ench fuse, and two z/8-inch holes are bored so as to be in line with the numbers as the disk rotates, which will indicate what fuses are in use. Contributed by Roy C. Huntrir.

Combination Switch

 push-buttons specially arranged so that both can be pushed and held down.

TIIE switch illustrated is made out of two push buttons of the double contact tylue. These buttons are mounted on a wooden base and by the arrangement shown it is possible to press both at once by simply turning the knob in the right direction.
Round pieces of wood have been sul)stituted for the buttons, that is, for the part which is pushed by the tinger. These round pieces of wool (A) are mechanically connected together by screwing a length of brass strap (B) to them. The part (C) is also made from a piece of brass and is bent as shown. On the top of this piece a hole is drilled and then tapped to fit the screw on the knob. The switch is now ready to be connected up to the circuit; it may be connected in many ways and used for various purposes.

It can be used in any place where a sinall double pole, double throw, switch is required, as it is practically such. Figure (1) shows how the different contacts are connected together, when it is desired to use the switch as a reversing switch. Figure (2) shows the scheme of connectlons when used as a change-over switch. It will be noted that the lower contacts are connected to a D. C. circuit, while the upper contacts are connected to an A. C. circuit; the movable ones (D) are connected to some apparatus which is to be tested on both A. C. and D. C. circuits.

Then to change over from A. C. to D. C. it would be merely necessary to turn the knob, as this would cause the movable contacts to make contact with the lower ones. If now the knob is turned in the other direction, the movable contacts will be allowed to return to their former position, and they touch the upper contacts. It will also le seen that, if the knob is turned slichtly, the contacts (D) will be moved to a pusition between the lower and upper contacts; when in such a position they would not touch either set of contacts and the switch would be in an off position and both circuits would be open. By using ordinary push buttons instead of those of the double contact type it would be possible to construct a double pole, single throw switch in the manner described above.

Contributed by Amedeo Giolitto.

Simple Electric Heater

A very nice electric stove of home construction, utilizing the simplest materials, which will give really efficient results.

AA VERY simple electrlc heater, inexpenslve and easily constructed, is made of ordinary tin of the kind used for lining boxes, or which is found in a five gallon oll can.

Unsolder the ends, bottom and top. Mark off, as shown above, a piece 24 inches long by 12 inches wide. This pro-
vides material for a heater of 1.6 kilowatt capaclty; it will take 15 amperes on a 110 volt circuit.
The tin is cut into strips $1 / 4$ inch wide. The element is now ready to be placed on a piece of asbestos board to which have been attached telephone Insulators or a couple of porcelain insulators. Two pleces of asbestos board about 1 inch wide are used is spreaders.

As a heater of this type does not acquire red heat, the warmtil will last indefinltely; and its comparatively large radiation surface renders it more desirable to use than one that consumes more current and attains a red hot temperature.

Door Lock Tell-Tale

Figure 1 shows how locking a door may be made to close a tell-tale circuit, and figure 2 shows the circuit proper. When one button is pushed it tells if the door is locked, as it it to be connected for all doors and windows of the hisitors bell.

A SIMPLE scheme for a door lock indicator is illustrated here. The connection is intended to conveniently indicate upon retiring that all doors in the house are locked.
The arrangement consists of simply constructed switches, one for each door, placed in series with a push-button located in some convenient place, say, the upper hall, and the whole in parallel with the doorbell circult already in use.

If the doors are all locked the lock switches will give a complete circuit except for the main switch. Upon pressing the latter, the doorbell will ring, indicating that no door is left unclosed or unlocked.
The construction of the lock switches, if such are to be used, is very simple; such a switch ernsists of two small phosphor bronze springs, fastened to a fiber strip.

The switches, being small enough, will fit into the lock mortise of the door jamb. The whole can be neatly connected with bell wire.

Contributed by A. F. Begin.

Lamp Chimney Battery

MANY of our readers are interested in small sized home-nade electric batteries, and from our contemporary, La Nature of Paris, we take a description of the Lampetaz battery.

The battery constructed by M. Lampetaz, a citizen of Lyons, is a gravity battery. It is composed of four elements, as
he describes it, though of course any number can be used. The battery jars are cylindrical lamp chimneys, such as used for Argand gas burners, cylindrical tubes of about $13 / 4$ inches in diameter anc 7 or 8 inches long.

The tubes are placed upon a wooden base and they may be surrounded by a frame of wood nearly $1 / 2$ inch high. which is to be filled with melted sealing wax. Care must be taken that the sealing wax is not put in so hot as to crack the glass.

Another way is to bore holes in the whaten base, using perhaps a thicker piece, into which the chimneys will fit, and here quite an insignificant amount of wax will make them completely watertight.
The container is now complete; a heave copper wire, wound into a spiral, is inserted in each chimney, the straight wire rising from it over the top. Four or five turns should be in the bottom of each chimney. The straight plece of wire rising through the chimney may be bent down over its tolp.

On the upper edge of each chimney a bit of zinc is bent over hook fashion so as to hang upon the edge, or it may be attached by a copper wire if it is of such thickness as to be unlendable. It is suggested that all sorts of scraps of zine may be used for this purpose. It should descend about two inches from the top of the chimney and should be amalgamated by preference. A teaspoonful of copper sulphate is phaced in each vessel, and water is poured in until the level reaches within an inch or less of the top. The water should be poured in very gently.
This gives us the gravity battery; it has considerable resistance, which is an objection, but possesses the advantage of great constancy as regards voltage. The originator employs this little battery for the charging of accumulators. The construction is considered not only simple but extremely economical, as no expensive parts are used. A suggestion is made that it may be provided with a box to cover it, keeping out all dust, and the box may, of course, carry binding posts if desired.
A battery using Argand lamp chimneys as the entainers. They are set in holes in a board and secured by sealing-wax or other cement.

Gas Stove Lighter

THL gas lighter for the kitchen range can be built by any amateur handy with tools, who has a few odds and ends around his shop.
The coil can be any kind of a coll with a vibrator, such as a liord coll. From four to six dry cells should be enough to operate this lighter. The hook switch can be taken from an old telephone, or one can be made very easily; it is installed in a small box on the wall near the stove.

The lighter can be made from ony kind of a handle, such as a screwdriver handle.

I used a handle from an old electric soldering iron. The landle should have a long ferrule with a ring on the side to hang it on the hook. The wire from the box to the handle should be flexible, and

Stove -lighting apparatus; the lighter proper, when not in use is carried on a hook switch like a telephone receiver, opening the eircuit and sav-
ing the battery. The circuit is only closed for ing the battery. The circuit is only close
the few seconds used in lighting the stove.
should end in a small rod which passes through the handle.

The coil is equipped with a safety gap, that is, a $1 / 4$-inch gap, so when taking the handle from the hook the spark will jump this gap until the lighter is placed on the burner, then the spark will jump from the lighter to the burner, and light the gas. One side of the secondary terminals must be grounded to the gas pipe.

Such an outfit may be installed in the basement, and the three wires taken up through the floor to the switch box nearby the stove.

Contributed by A. Guy Christy.

Dry Cell Connector

ANEW and interesting method of quickly changing dry cell connections has been developed. The value of the method lies in the fact that all the cells are in constant use, giving longer life, and providing a convenient system of varying the voltage, within certain limits. This is obtained by changing the connections of the various groups of cells from multiple to series, and vice versa.

In this method, three double-pole, doublethrow switches are connected as shown in the illustration. The connections for cell groups (any number in a group) are brought out on a panel as shown at the right of the illustration. Two binding posts, shown at the left, form the outlet. More switches may be added as may be neces. sary, controlling more grouns of cells.

Switches "A" and "C" euch control the connections between two groups of cells, (A) 1 and \cong andl (B) 3 and 4 respectively. Switch "Is" controls the connections between the outputs of switches "A" and "C." Any switch tlurown to the right

Connection of eight dry cells, with three switches,
so as to give a varying voltage according to how the switches are thrown.
connects the groups it controls in series. Any switch thrown to the left connects the groups it controls in multiple. Ap-
moximate voltages of $3,8,10$ and 1: may he obtained, using two dry cells to each group.

Contributed by C. W. Butlelr.

Electric Draught Control

THE apparatus illustrated operates as an electrically controlled weight-releasing device. In its construction an old bell is used; as shown, it opens the draughts of a furnace. A pusla button placed near the bedside is pressed at $5: 30$ A. M.; this opens the draughts, so that by 7:00 A. M. two pounds of steam will he generated in a low-pressure heating boiler.
The gong is removed from a bell and the stem of the bell hammer is cut oft about a half inch from the end of the armature. The remaining stub is bent at right angles to form a catch, as shown in the diagram, to receive the end of the trigger.

The interrupter is short-circuited by connecting a wire from the interrunter regulating screw to the grounded binding post, is shown in the illustration. The triguer is made from about three inches of fairly stiff wire. One end is twisted to receive the screw on which it is pivoted, and the other end is flattened out to engage the catch at the end of the armature. The end of a rone or chain holding up a weight is hooked to the trigger about one-half inch from the bolt or screw, on which the trigger is pivoted.

The button may be located anywhere, and two dry cells are sufficient to operate the device. When the circuit is closed,

A furnace draft-opener. When the eurrent is turned on, a suspended weight is released which opens the drafts. It can be made to open as many as desired by proper connections.
the armature is drawn to the magnets, releasing the trigger, which in turn releases the weight opening the draughts of the furnace.

Contributed by David M. Arthur.

Automatic Arc Lamp

AN automatic arc lamp is described here, which is operated by two independent electromagnets. The materials required are:
One piece of wood for a base: one wooden block about 2 inches by 3 inches by $11 / 2$ inches; two small carbon rods: an old 2,000 -ohm telephone ringer: a small iron rod about eight inches long; a small weight, and a small iron strip.
Near the middle of the base secure the wooden block so that it will be 2 inches high, 3 inches long and $11 / 2$ inches wide. The small iron strip is affixed to this, and bent so that it comes up from the block about three inches and forms a bend as indicated, giving a support for the iron rod.
Then take the colls from the ringer, remove the wire from one of them and rewind it with larger wire (about No. 20 D. C. C.). Mount them on the ends of the block, as shown here. The one with the large wire is the coil to be used in series with the arc, and the one with the small wire is to be shunted across it. On the end nearest the shunt coll monnt one carbon as shown; fix the other carbon on one
end of the iron rod. Then by means of a small pin and holes drilled in the rod and the standard, fix the rod so that it is free to swing up and down. The small sliding weight is put on and adjusted so that it is almost balanced, but the car-

A suggestive arc lamp emplaying two electromagnets, one in series and one in shunt, for its applications.
bons will barely touch each other. Wire up as shown and it is ready adjusted for use.

The are is self-starting as the current comes through the carbons, then through the series coil, which pulls the lever down and opens the carbon points. If the carbous become too fir apast the current through the series coil is smaller and that through the shunt is larger. This regulates the points again.

Contributed by Woodson Matthews.

Automatic Window Closer

TIIS device closes and onens a window in case of rain without disturbing the sleeper as do many kinds of rain alarms. The funnel fills with rain water, closing the circuit between the metal plate and the metal of the funnel. The plunger of the solenoid is drawn back, releasing the catch. A metal roller is used as shown to minimize friction. As the solenoid armature releases the catch the window falls and the circuit is broken between the roller and the armature, thus breaking the circuit.

A weight may be placed on the window so that it will be certain to fall; or else a suring may be arranged to pull it down, by attaching one end of the spring to the sill and the other to the window.

A piece of felt may be fastened to the sush bottom, which will prevent noise when the window drops.

Contributed by Cecil Cook.

Window closing apparatus operated by a rainfall; which wetting salt and charging a funnel closes the circuit, withdraws a latch and causes the window to descend.

Electric Fire Lighter

IN rural sections where it is the custom to let fires go out during the night, and where wood is depended upon entirely for fuel, an apparatus of the following description will be found very useful during the winter time. When residing in the country the writer made one which worked perfectly.

A fire lighter, which ignites a sheet of paper so as to set kindling wood on fire and start a coal stove

The apparatus is constructed of the following materials: Three binding posts, one ${ }^{1 / 2}$-inch induction coil, four dry cells, a block of wood $4^{\prime \prime} \times 6^{\prime \prime} \times 1 / \underline{2 \prime}$ ", a match, a switch, and the necessary wire to make the connections.

Mount two of the binding posts on the hock opposite each other, and with the aid of two pieces of short wire make a spark gap. The third post is mounted about two inches back from the center of these two. Through the hole of this post a match is placed and securely clamped so that its head will fall in the spark gap between the other two hinding posts. Jake all the necessary connections to the coil and battery.

Before retiring at night kindling and wood are placed in the fire box of the stove. A piece of paper is trailed from the grate to the hearth, where the lighter rests, and arranged so that an edge of it will be adjacent to the match head.

When the current is turned on the spark will ignite the match and thus the paper will eatch fire and trail up to the kindling in the stove. The result is a nice warm kitchen when the family comes down.

Contributed by Howard M. Harris.

Storage Battery Convenience

Monnting a storage battery on a platform carried by four "domes of silence" with a rubber mat to protect the wood, so that the battery can be conveniently pushed under the table and thus be easily disposed of.

HRRE is a little idea which was worked out in a few hours and has proved to be a great help.

My storage battery is under the table and as is customary when necessary to test the battery, or fill it. I had to either crawl under the table or lift out the heavy battery:

I overcome the difficulty by building a very simple cart for it. First an automobile running board rubber pad was secured. This was fastened to a hardwood board of the same size. As for the size, get one about 1 or $1 / 2$ inch larger than the battery base. Cleats were fastened to the board to give it strengtl. To the cleats "domes of silence" were fastened, two domes to each cleat.
The rubber protects the floor from the acid, and the domes prevent the floor from being marred, and slide with a minimum of friction.

Contributed by W. F. Arr.

Stairway Alarm

A
STMP is selected near the bottom of the stairs, then the thread or horizontal hoard is taken up and two hinges fastened to the side. The hoard is then replaced. A small spring is put under each enul, so as to keep the step raised.
The springs may be fastened in place by drilling holes the size of the springs, one halfway through the step and another in the board directly under the hole in the stel.
A switch is made by screwing a strip of eopper to the board and soldering a wire to the strip. A serew is placed directly under the strij, and a wire is fastened to this sorew and connected to one pole of the hattery. The other wire connects to onc derminal of a bell. The other terminal of the bell connects with a switch placed on the watl. A wire from the other battery bimbing post commerts to the binding post on the switch and completes the circuit.

One of the treads on a flight of stairs is hinged with connertions, so as to give an alarm if an intruder steps upon it.

When anyone steps on the stairs, the hinged board is pressed down, closing the switch and giving the alarm.

Contributed by Williaar Meaghim.

Simple Push-Button Switch

THI: construction of a very neat and simple switch of the push-button type is shown in the accompanying illustration. The main parts of the switch are three clips, which are easily made or may be taken fiom an ordinary knife switch.
These clips, (A), (B) and (C), are mounted on a piece of hard rubber as shown in the side view of the complete switch. It will be seen that the blade (I)), journalled in the clip (B), is operated by the buttons (1) and (2). Pressing the button (1) the blade will break contact with clip (A) and make contact with clip (C), and at the same time the button (2) will be pushed out. If the button (2) is now pushed the blade will make contact with (A) and break contact with (C) ; consequently this switch could be used as a three-way switch, since it can open one circuit and at the same time close another.

It also can be used as an ordinary switch, and in this case the two wires leading to the switch are connected at (B) and (A), or (B) and (C). The different parts of the switch are shown in detail in the drawing, while a front view of the switch is also given. The blade

Fig. 2

A Well-designed push-button switch for home construction, giving perfect results.
(D), which is made of copper, must be shoted as shown, providing a slight amount of parallel motion. so as to permit free movement of the buttons in the holes of the hard rulber piece (E). The buttons may be made from hard wood, although hard rubber buttons are much neater in appearance.

Contributed by Amedeo Grolitto.

Electric Latch

$I^{\text {B }}$F gou have a sliding door on your labForatory which requires a lock this is just the thing. Tire movable latch must be of iron or else the magnet will not lift it. Arrange the pivot so that when the latch is all the way up it will hit both magnets efually.
The drawing shows the connections to the battery and the push-button on the sliding. Some brass spring clips will be noted in the circuit at the edge. These conduct the current across the gap between the edge of the door and the frame, when the door is closed. They should

An electric door latch; it is designed for a sliding door and is operated by a small battery.
make a sliding and tight contact with the other strips on the door frame where the other ends of the wires are fastened. When the door is open the circuit is "broken" and the latch falls hack into place or can be pushed down by hand, ready to lock the door when it is closed.
The door has to open quickly when the button on the door is pushed, as the minute the door opens a few inches the circuit is broken and the latch falls.

Contributed by Harry I. Eider.

Static Electric Experiments

By Raymond B. Wailes Balloons as Pith Balls

W$T \mathrm{E}$ have all tried the familiar pith ball experiments with static electricity, noting the attraction of unlike charges and the repulsion of like

. Fig. 2
Fig. 1
India rubber balloons used to show attraction and repulsion of electric charges; a very demonatrative substitute for the classic pith balls.
charges of electricity retained on the surfaces of the balls. By substltuting toy balloons, the effects of attraction and repulsion can be shown with declded clearness, and, unlike the pith balls, to a large audience.

An inflated toy rubber balloon when rubbed with fur of any sort will acquire an electrical charge. Grasp the balloon tightly and stroke it against slster's fur piece or the family cat. The string attached to the vent will be seen to adhere closely to the entire outer surface of the balloon, as if it were wet. If the balloon be touched to a dry wall it will remain until the charges have seeped off. Fig. 1. The sparking of the charges can be clearly heard if the balloon is pulled or blown along the wall with the breath.

In a like manner, two inflated balloons tied as shown in Figure 2 with a string will repel one another, if both are rubbed on fur. One balloon should be grasped in one hand and the other in the other hand when charging them by rubbing.

Delivering Leyden Jar

A Leyden Jar which delivers small charges slightly impairing the main charge can be made as shown in the illustration, Figure 3A. The jar is a widemouthed bottle with an inner coating of tinfoil (1C). The cork (C) is perforated In the center with a paper tube, through which a brass rod (R) passes. The rod is separated from the paper tube by sulphur, introduced by gently melting roll sulphur or sulphur flowers in a porcelain

Fig. 2
Fig. 3
A simple construction of a Leyden jar, which can be discharged fractionally. The appliance used to do this is of the ntmost simplicity and effectiveness.
dish and pouring the liquid into the paper coll, stopped at the bottom, and allowing It to cool. This makes a perfect insulator. The end of the rod (R) should contain metallic bristles. These can be made by soldering bits of fine copper wire on the end of the rod. The nietal tube (T) has a flat bottom and in position (Fig. 2) rests upon the bottom of the
bottle, or on the inner tinfoil coating of the Leyden jar.
When charged, the jar can be placed on its side on a sheet of glass, after slightly turning its mouth or stoppered end downward, as shown in Fig. 3. This causes the inner metal tube to recede from contact with the inner tinfoll coating, yet still retaining contact with the rod through the metallic bristles or wires. The charge can then be taken from the plate (S) on the outer end of the rod (II). To remove another charge from the far, stand upright until the metal tube slides down on the little metal wire bristles and comes in contact with the inner tinfoil coating, then slant it until the month is downward and the metal tube (T) recedes from the tinfoil conting on the inner side of the jar as before. This can le repeated until the jar is completely exhausted of its charge little by little.
Charging a Leyden Jar from the 110-Volt Circuit
By making the cover for an electrophorous as shown in Figure 4, the Leyden jar can be charged directly from the 110 volt lighting circuits.

In the original Leyden jar a section of a metallic ointment box can be used, being inverted and soldered to the end of the $\operatorname{rod}(R)$, Fig. 4. The other half (T) of the tin salve container should le fitted

A Leyden jar, arranged to be charged, from the 10 volt lighting circuit-a potential normally too slight to give any tangible result.
with a glass or sealing wax handle as shown. Its that surface should be glven a coat of shellac which is dried, and niay be baked.

When the cover thus formed is placed on top of the Leyden jar and the two are connected with the 110 mains, using a lamp or fuse in series, and the wires are separated, a charge can be obtained from the jar.
This arrangement can also be used to charge an electroscope, the rod (R) being bent into the form of a stirrup at the end and the gold or aluminum leaf supported by the base of the stirrup.

Apparatus for Tapering Charge
T THEN charging storage batteries, best results are obtained when, as the charging progresses, the charging rate constantly decreases. An automatic device for this purpose can be easily made, givlng the battery a tapering charge and turning off the current at the end of the charge.
The actuating part of the device consists of a that helical spring which tends to turn the rheostat in the direction of increased resistance. The unwinding of the spring is controlled by an electromagnet, controlled ly a clock. Fis. 2 slows the spring, axle of the rheostat and a ratchet wheel. The ratchet wheel is soldered to the shaft; directly in front of it a spiral spring (which can be taken from
an old alarm clock) is also fastened to the shaft. One end of the shaft is slotted; a flat piece of metal inserted in this slot serves as a handle to wind the spring. A brass tube is slipped over the other end of the shaft and soldered. The purpose

Fig. 1. An apparatus for charging a storage battery with a tapering current, which diminishes as the battery becomes more and more nearly charged.
of the brass tube is to courle the shaft of the spring motor to the shaft of the rheostat. One end of the brass tube is fitted with a thumb-screw, which is loosened when it is desired to wind the spring. If It were not loosened, the lever of the rheostat would interfere with the winding of the spring.

The rheostat is mounted back of the frame. The diagram also shows in detail the escapement pallet which is operated by the electromagnet. An alarm clock has a contact for the minute hand placed over the number 12, controlling the current through the magnet.

Connections are made as shown in Fig. 1. It is important that the leads of the rheostat shonld both be connected as shown, for if they were reversed the current would increase instead of decreasing, as the lever of the rheostat is turned to the right. One thing that should be noted is that the magnet is sobject to the full line voltage when the rheostat lever Is on the extreme end point. The windIngs must be able to stand the current, yet able to operate the catch when the lever is on the other end potnt with full resistance. When the nilnute hand of the clock passes over (12) it completes the circuit through the magnet, which pulls the pallet end down; the spring turns the rheostat contact arm a little to the right, but when the circuit is broken the magnets lose their magnetism and the spring pulls the catch back to its original position; this again allows the spring to turn the rheostat a little more to the right.

Fig. 2. The details of the ratchet wheel and spring which effects the tapering of the current for charging a storage battery.

If the number of teeth in the notched wheel were increased, the apparatus would decrease the charging current at a slower rate, but on the other hand, if another contact were placed on the clock at (6) and connected to that on (12) the apparatus would decrease the current at a double rate; that is, every half hour the rheostat would be turned to the right.

Contributed by Amedeo Grolitro.

Motor-Driven Furnace Control

Bbidolv is deserilued a home-matre,
 has been in surocessful oproration for severial montlas.
Motor(A) is a Koblins \& Myers oscillat-

A number of details of an apparatus for controlling the drafts of a furnace which operates by turning current on and off, controlled by a rotating commutator drum, so as to get positive results.
ing fan motor ; gears (B) and learing (C) are from a Bosch magneto. The bracket support (I)) is made from $1 / 4^{\prime \prime}$ gas pipe, which is fustened to the hose with a crow foot. (I) is the brake drum, which is made from one of the flanges of a marnet wire spool. (F) is an insulated bushing, which moves freely over the bolt (G). (H) is the control drum with its contact strips, and (I) are the fingers, which are made from clock springs or spring tempered lorass. At (J) are insulated contacts pass. ing the current from the street service for operating the notor.
(K) is a magnetic contactor made from a low voltage coil of a Westinghouse $71 / 2$ lonsepower type (A) automohile starter. It was rewound with No. 24 D. C.C. magnet wire for battery operation. (I) is the brake shoe. Fig. 3 slows the control drum and one finger. Fig. 4 shows the development of the control drum. Which nay be cut out and wripped around a cylinder so that both edges met, and will then show the exact layout of the drum.

The drum used is alout two inches in diameter and is made from a magnet wire spool. (Al) is the thermostat, made from copper and zinc. (N) and (O) are plug switcłes or jacks. (I) is made from spring brass. The plugs is made from $3 / 16^{\prime \prime}$ brass rod and a switch button. (P) and (P) are magnotic contactors made from buzzers. (Q) ind (Q) are

The switchboard of the furnace control: the switch arms are behind the panels and are not seen.
puch buttom controls for operiting the furnace by hand after mulling out the phas (N). The plug (0) is used to disconnect the control entirely.

We will assume that the control is set up and raidy to operate, the drmm to revolve in the direction of the arrow at the lonttom. The finger (Y) is constintly resting on the ring (Z) which distributes
current to all serments. (W) is supposed to be resting on (X) at (X) linger 1 will not be making contact with segment -3. 3 will he making contact with 4 , whicla will light lamp 7 when switoh (S) is pressed, indicating that the draft is off.

When the thernmmeter returns to the position manked cold, contact (U) closes, contactor (I^{\prime}) also closes contact (J), which starts the motor (A) until the drum makes one-lialf revolution, which causes the finger (W) to leave its segment (X) and onen the circuit. Finger 5 is now making contact with the segment 6 , which will light the lamp 7 , when the switch (T) is pressed, indicating thit the draft is on. ininger 1 is making contact with semment 2, so the drum is ready for another half revolution, As soon as the thermostat returns to the position marked "hot," all segments on drum are connected together as shown by dotted lines.

Owing to the cost of the motor, some experimenters may be inclined to belleve this rlevice too expensive to construct. The whole affair, ready to operate, did not rost me over $\$ 2.00$, is I obtained the motor

Wiring diagram of the furnace control, showing the commutator or contact drum. By following out the diagram the reader will have no difficulty in
and the marnet parts from a junk dealer. The gears can be of any ratio to suit the huilder. I used a 2 -to- 1 ratio, which takes about five seconds to close on open the drift,

Contributca b! I. SAUNDERS.

Alarm Clock Double Signal

THE illustration shows the use of an alarm clock for closing a circuit me chanically and operating one of two sig. nats as desired. When it does this, an electric alarm bell or a buzzer is sounded, according to the way a double throw, single pole switch (I) is thrown.

The connections are shown very clearly. (A) is a switch pivoted at (D) ; if it 1ourhes the end of the contact (C), it cinses an electric circuit. When the circuit is closed if the switch (1) is thrown to the right, an alarm bell will ring; if thrown to the left a buzzer will sound. (II) is a pivoted block insulated from the circuit and attached by a string to the rimpler. The bell is removed from the clock, so that the clapper can have a good range of motion. The alarm clock is set for any lesired hour, and when that time comes, the rolpper (X) starts to vibrate, jerks the string and pulls the block (B) from uncler the switch (A) whose end then drops upon the contact (C) and gires the desired alarm.

A lamp (H) is connected so that when
the swltch below it is thrown to the right or left, it will light.
The system can be convenielitly operated from a battery circuit, as it is hardly supposed to be operated upon a high service voltage circuit.
 Arrangement for an alarm clock slanal, which
can be set by a double throw switch so ms to ring can be set by a double throw switch so ms to ring switch is thrown.

At (l3) the terminals of the system are indicated.

Early Morning Service

THE bell is romoved from an ordinary alarm clock and the ball of the clapper arm is cut off. Over this arm it piece of insulating materinl such as fibee, is secured, on which fibre is fastened a contact point. Two binding posts are fastened to the rim of the clock by screws, but thoroughly insulated from the rim, The contact piece, (A), is a strip of copper, whicll should be bent in such a manner as ro allow the moving contact (B) to strike against it, but does not allow contact (13) io mose far enough to vibrate. A single winding of the alarm lasts indefinitely.
There is a wall socket (C) to which is connected a colfee nercolator. ard acruss the line a bell ringing transformor (D) is comnected. This transformer onerates a buzzer through a single pole switrh, which is used to control the buzzer. The whole outfit is connerted by a swivel plug (E) to a wall socket (F) on the service circuit.
The mowable contact (I:) is reset by hand, and at the predetermined domr the

This other obliging clock turns on curment in the morning by means of an alarm clock, for doing all morning by means of an alarm clock, fot doing all dietary articles.
clock releases the allimm movement, contuct (I) automatically closes the circuit, the buzzer sounds, and in a few minutes the coffee is ready. In the winter a heater may be connected at (C) so that the room is warmed also.

Contributed by Wifliam F . Leather.

N this department are published various tricks that can be performed by means of the electrical current. Such tricks may be used for entertaining, 1 for window displays, or for any other purpose. This department will pay monthly a first prize of $\$ 3.00$ for the best electrical trick, and the Editor invites manuserints from contributors.
To win the first prize, the trick

Fig. 1
The rotor of this apparatus is carried in a floating vessel: a bar extending across the outer basin

AN electric notor that depends upon the magnetic field of the earth for its action is shown in the illustrations. The rotor is a straight bar electromagnet floating in a dish of water. It makes about two revolutions per minute. Although the efliciency is almost zero, such it motor is very simple and interesting, and many experiments can be performed with it. For use as an attraction in a store window it may be suspended by two chains from the ceiling, like a lanp globe. The chains serve to conduct the electric current to the electrodes in the dish as well as to support the dish. The fact that the motor depends upon the earth's magnetism for rotation will baffle many "electrical experts."

The motor is very delicate and requires a great deal of patience and skill to construct, but when once rumning it will operate a long time without attention. The only drawhack is that a potential of at least 110 volts on a direct current circuit is necessary to run it,

The diagran (Fig. 1) shows clearly the theory of action. The 110 v . line is connected through a lanm-hank resistance to the two electrodes in a dish of salt water. Three 50 witt lamps in parallel will give about the right value of resistance. The electrodes in the dish are placed east and west of each other referred to the magnetic meridian. The resistance of the salt

Fig. 2
Section of the above apparatus, showing very
clearly how it is kept in proper position by the clearly how it is kept in proper position by th
centering pin.
water is high, so that part of the current flowing through the water will pass through the windings of the electromagnet and magnetize the iron core, and the polarized electromagmet will swing around and point north and south. It this position virtually no current flows throush the windings of the electromamet and the iron core loses its magmetism, but the momentum ${ }_{\text {mas }}$ med in turning so fir will carry it a little farther so hhat the current will asain flow through the winding but in the reverse direction. This will magnetize the iron core again. but the polarity will be reversed, and the magnct will continue lotating in the same direction until it arain proints north and south. 'This atetion will le continued is loner in the current flows through the w:ater.

Another unioue feature about this motor is that the lamps in the lamp bank resistance light up to almost full brilliancy when the magnet is pointing east and west, and are dimmed when the nuagnet points north and south. It is interesting to watch the lamps gradually light up brightly and then gradually dim down to it dull red. An inmmeter piaced in the circuit will show that the current increases and decreases as the magnet rotates.

The electro-magnet comprises three layers of No. $24 \mathrm{I}, \& \mathrm{~S}$. enameled magnet wire wound on an iron core made up of a bundle of soft iron wiles $21 / 2$ inches long. 'The diameter of the core is $1 / 4$ inch. It lies in a cardboard dish as shown, which is made waterproof by heating in paraftin. The terninals of the winding which are immersed in the solution may be of thin lead foil, and may be held in place by a rubber band encircling the floating dish. The electrodes hanging over the edge of the glass dish may be of heavy lead strip. It is important that no iron be used for electrodes or other connections, as the tiniest bit of iron near the rotor will stop it from running. The rotor is pivoted to keep it centrilly located. as shown in Fig. '. The solution may be of salt watel or dilute sulphuric arid. The acid or salt should be added to the water until the lamps light a dull red when the magnet points nowth and south.

Fig. 3 shows how a small 3 -volt lamp may be momnted on the motor to make it look noore interesting. The lamp will gradually light up brightly and gradually go out twice every revolution, and will resemble a miniature flashing lighthouse. In this case the rotor is pivoted from underneath by means of a hat pin, the lower end of which is weighted with a piece of lead. Care should be taken to regulate the current flow through the solution so that the flashlight bulb will not burn out. A colored bulb, blue, for instance, will give the motor a more attractive appearance.

If a permanent horseshoe inagnet is held over the rotor in such a way that its field will assist the magnet field of the earth, the rotor will race around at high speed and splash water out of the dish. Turning the horseshoe magnet around 180 degrees will reverse the direction of rotation of the rotor.

Fig. 3
I'erspective view of the motor, of a somewhat different construction, provided this time with a

Magnetic Heat Swing

TIIE property of iron in becoming non-magnetic when heated suggests the ronstruction of a novel and interesting magnetic heat pendulum.

The illustration is self-explanatory. The swing is made of two tine wires and has it wooden block suspended to its ends, which carries the iron or steel to be subjected to magnetic-hent action, The whole apparatus must be adjusted to proper working conditions, when the swing will oscillate for a considerable length of time.
The Bunsen burner (or alcohol lamp) is placed near the ends of a horseshoe magnet, but not touching the magnet, for the magnet must not be heated to the least dearee. The swing is starteal in motion; when at the peak of its swing to the lefthand side the iron piece is attracted and held by the magnet. In this position it also is held alone the flame of the burner, which heats the metal under test and in consequence reduces the magnetic attraction. The metal in the swing no longer is held by the magnet and swings off to the right, to at once return to the left towards the magnet again. During this double swing it hecomes conled to sach an extent as to be again attracted by the magnet, the heat of the lamp again renders it non-magnetic. and it swings away.

As statal hefore, the adjustment is rather critical, but is not difficult to carry nut. The swing proper must be made of thin wires. A ringstand can be used, with gond results. to support it.

A magnetic pendulum, kept in motion by heat affecting its magnetic relations.

THE idea of this department is to present to the layman the danger of the electrical current in a manner that can be understood by everyone, and that Will be instructive too. There is a monthly prize of $\$ 3.00$ for the best idea on "short-circuits. Look az the illustrations and then send us your own par. ticular "Short-Circuit. It is understood that the idea murt be ponable iaborate sketch, or to write the verses. We will attend to that. Now, let's mee what you cen dol

This little grawe
Molds porr 'Tommy Slator.
lle "shunted" a sorket
Witlo a radiator
—S"andey Mobaska

Lies sleeping here
Aloysius Gump.
"her math-hole hat wires
That touched his pump. - Manweld , Tackson.

Here rests in peater. Alexander Tripper.
His hair was cut with : shorted 'lectric clipper.

This monument's for Emanuel Trout. He grounded himself Throngh a water spmut.

THIS department is conducted for the benefit of everyone interested in electricity in all its phases. We are glad to answer questions for the benefit of all. 1. Not more than only publish such matter as interesta the majority of readers.
2. Write on only one side of the paper: all matter for each correspondent.
3. Sketches, diagrams, etc., must always be on separate sheets.
4. This department does not answer questions by mail free

25 cents for each. On questions entailing research work, intricate calculations, patent research work, etc, glad to answer special questions at the rato of ill be informed as to such charge.
Kindly oblige us by making your letter as short as possible.

Telephone Induction Coil

(2S3)-M. E. Munz, New York City, asks:
Q.1.-Will you please tell me how to build a telephone transformer for use with a transmitter button? I would be inter. ested in getting the best possible design.
A.1.-Data for building a very efticient telephone induction coll is as follows:
On a soft iron wire core $41 / 4$ inches long by $3 / 8$ inch in diameter wind 400 feet of No. $\because 8 \mathrm{~B}$. \& S. gauge enamel or silk covered copper magnet wire. This winding is the secondary of the induction coil. The finer and softer the iron wire used in the core the more efficient will be the induction coll.

The core should be wrapped with several layers of thin paper before winding the wire, and two wooden ends should be forced over the ends of the core as shown in the illustration. The resistance of the first winding, or secondary, is approxi

3/8 rooclen spool ends

Section and perspective drawing of telpphone Indaction coil, showing relation of the different parts, coil windings, and heads.
mately 27 ohms. On top of this coll sev. eral layers of paper are wrapped, and then the primary winding, comprising 400 feet of No. $26 \mathrm{I} 3 . \& \mathrm{~S}$. insulated copper magnet wire, is wound over the paper. The resistance of this mimary winding is approximately 17 ohms. The primary winding is protected from mechanical injury by several liyers of paper, wrapped around tirhtly and shellacked.

High Voltage Coil

(284) -K. F. Kaplan, Memplis, Tenn., asks:
Q. 1.-What is the most compact method for winding and insulating high voltage trinsformer coils?
A. 1.-A section of a coil that has the required amount of electrical insulation crowded into the minimum of space is shown in the illustration. There is a potential difference across each turn of the wire, so that as one layer of wire is wound over the other layer, the potentiall difference from laver to layer gradually increases, until at the end of the layer the potential difference is at a maximum and there is danger of the insulation breaking down at this point. In this type of coll, the insulation and distance between the overlying coils gradually in creases with the voltage, so that adequate

Sectional view of a coil showing how the diswince between wires of varying potential in the as possible such apparatus is increased as far as possible to prevent perforation.
insulation with a minimum of insulating material is assured.
Q. 2.-Is there any machine which will automatically wind these coils?
A. 2.-A coil winding machine was described in the March, 1923, issue of this magazine that will wind this type of coil. This machine will also wind several other Interesting designs of colls.

"Electric Movie"

(285)-M. P. Boyd, Corpus Christl, Texas, writes:
Q. 1.-Please advise what kind of electric light tubes I can use for intermittently lighting a revolving sign so that it wlll appear stationary.
A. 1.-A Geissler tube may be used, and should be mounted as shown in the fllustration. The revolving sign is driven by a motor, which motor also drives a commutator for making and breaking the primary circuit of the induction coil, so that the Geissler tube will flash on and off in synchronism with the revolving sign. In fact, a Geissler tube is not necessary if a fairly large induction coll is used, as the spark from the secondary of the induction coll, if placed in front of a reflector, will be sufficient to llluminate the revolving sign. The vibrator of the Induction coll should be screwed down tight.
Q. 2.-Can I use this same apparatus for making a small animated cartoon on the revolving wheel?
A.2.-Yes. The cartoons should be

Commutator or interrupter

Interesting experiment in the persistence of vision, using a Geissler tube for intermittent of a motion picture.
drawn on the wheel as illustrater, so that they will appear to move when illuminated ly the interrupted light. Of course, if all of the cartoons are illuminated, all will appear to move, one heing slightly behind the other in its motions. The experiment will give a very spectacular effect in n dark room.

Telegraphone Queries

(286)-L. C. Greer, St. Paul, Mo., asks : Q. 1.-What size wire is used for re cording messages on a steel wlre telegraphone?
A. 1.-Number 30 B. \& S. gauge steel piano wire may be used. The dianeter of this wire is 0.010 inch.
Q. 2.-Kindly give data for constructing the magnet coils.
A. 2.-The two magnet colls are wound

Illustration of the operation of the telegraphone. in which the message is impressed by magnetiz. tion on a steel wire.
to a resistance of 10 ohms each, on a soft iron core shaped as shown in the fllustrition. Number "4 13. \& S. enatmeled copper wire may be used. The role tips of the magnet are pointed and just touch the steel wire as it basses by. A microphone is connerted in the primary dircuit of an induction coil, the secondary of the coil being connected to the telegraphone magnet. The secondary coil should have a resistance of 20 ohms and the primary coil a resistance equal to the average resistance of the microplone.

On talking into the microphone the fluc. tuations of the electric current set up a fluctuating magnetic field acrass the poles of the electromagnet, producing corresponding polarities in the wire, which magnetically impress or record on the field changes on the moving steel wire, and are retained by it. The speech is reproduced by connecting a telephone receiver across the electromageet winding in place of the secondary of the induction coil, and running the steel wire through again. The magnetized steel wire passing by the poles of the electromagnet induces currents in the magnet windings which

PROTECT YOUR LIFE AND HOME
 SEND ONE DOLLAR DEPOSIT, PAY BALANCE ON ARRIVAL THE UNWIN TRADING COMPANY, 55 BROADWAY, NEW YORK
 headquarters for police and military goods
 THE HIGHEST GRADE OF GOODS AT THE LOWEST POSSIBLE PRICE

AUTOMATIC PISTOLS

This model is of small size, and can be comveniently carried in the pocket. Made of best blue steel, riffed barrel, checkered grip.
automatically loads and ejects the carautomatically $\begin{aligned} & \text { tridges. Positive safety, makes accidental }\end{aligned}$ discharge impossible. A quick shooter, of good aim and great penetrating power. You vill do well in buying several of these Automatics at our low price:

AUTOMATIC PISTOL (20 Shot, 32 Cal.)

The STEEL MULE a heavy and eturdy Military Gun, with the strength and kick of a mule. 32 caliber, 10 shot. with extra magazine, making 20 quick shots. Made of best blue steel, rifled barrel, checkered grip, positive safcty. Suitable for Detectives, Watchmen, and to keep at home and in business. It commands respect.
(This is one of the guns we sell most heavily. It has passed the Official Military Tests wherever presented.)

GENUINE GERMAN MALSER

Our Mausers are fresh stock, the latest model. This gun is too well known to reguire any description. Made of best blue steel, by expert workmen. Quantity limited, and prices advancing. Take advantage of our low prices.
$\underset{\substack{25 \\ 10 \\ 10 \\ \text { call. } \\ \text { shot }}}{ } \$ 12.50$
$\underset{9}{32 \text { chal. }} \mathbf{9} \mathbf{~ s h o t}$

GERMAN MAUSER WITH COMBINATION WOOD STOCK

This is the big Military and Hunting Mauser, can be used as a Pistol, and by clipping the traveling case at itts enc, makes a very poweritul riffe. This
gun is known the world over, and very hard to gun is known the world over, and very hard to get. (Our supply in this
model is very limited, so we require a deposit oi $\$ 5$ with order, lalance payable C.O.D.)

30 cal.
10
shots
$\$ 37.50$
${ }_{10}^{9} \mathrm{M} / \mathrm{M} \mathbf{~ s h o t s ~} \mathbf{\$ 7 . 5 0}$

GENUINE GERMAN LUGER

This is the GENUINE LUGER, known the world over as the hardest hitter. It wat pen-
etrate $10 / 0^{\prime \prime}$ of hard pine. 10 shots in $14 / 3$ seconds, or as slow as you wish. This is the German Offcer's Pistol, well known throughout the world.
${ }^{30}$ cal. $\$ 23.50$
$9 \mathrm{M} / \mathrm{M} \quad \$ 25.00$

STANDARD TOP BREAK REVOLVERS, AUTOMATIC EJECTORS This model is too well known to require description. Blue or nickel finish. Hard rubber handles.

$$
\begin{aligned}
& 5 \text { shots } \\
& 32 \text { or } 38 \text { cal. } \$ 9.75
\end{aligned}
$$

HOLSTERS

Regular Revolver or Pistol Holster, to carry in belt, $\$ 1$: to suit Hand Ejecting Revolvers, \$1.50; Western Holster, ms illustrated, with straps to pass around chest to hold holster on \$1.90

Made of the best Blue Tool Steel, by the leading rifle
maker. Handles all 22 cal. cartridges, short, lang and long rifle. Two safety devices. (Send $\$ 5$ deposit with order,
halance C.O.D.) Only... $\$ 19.00$

SWING OUT HAND EJECTING LEFT-HAND WHEELER REVOLVER
Made by Beistegui Bros., Spain Well known as a Military, Police, Detective and Secret Service Gun, in great use in the Weatern States. It is a Man's Gun. Built for hard service, by experts, and is certainly a jewel as far as workmanship, finish and action are concerned. This gun can be operated with one hand. A wuch at the lever brings out the Swing Out Cylinder, and a touch with one finger will eject all the shells. Hand checked wood, or hard rubler han-
dles. Furnished in nickel or blue. Short, medium or long barrel.

32 cal. $\$ 17.50 \quad 32.20$ or 38 cal. $\$ 19.50$
6 shots $\$ 10 t s$
THE WESTERNER
Regular Swing Out
Hand Ejecting LeftHand Wheeler Revolver
32.20 cal. 7 shot $\$ 14.50$
38 cal. 6 shot $\$ 14.50$.

A powerful 7 shot gun : made specially for Rangers,
mountaineers and men working in unprotected places, scmal requiring a safe and efficient weapon. Quick as a fiash, with great pene-
trating power and true marksmanship. Carry this gun with you, and you will feel fully protected.

Made of best blue steel, rifled barrel. Hammer with eafety. Fires regular 32.20 or 38 caliber ammunition.

SEND ONE DOLLAR WITH ORDER (with the exception on orders for Mauser with Stock, and Rifles, when we require $\$ 5$ deposit with order). Just select the article you require, and send us your order with one dollar deposit. You pay on arrival balance pending, plus few cents postage. We guarantee satisfaction, or we promptly and cheerfully refund your payment.

AlL OUR GOODS ARE BRAND NEW, FRESH GOODS
ALL OUR GUNS SHOOT STANDARD AMERICAN AMMUNITION THE UNWIN TRȦDING COMPANY, 55 Broadway, New York

YOU CAN EARN
 \$50 A Week

six months from now-if you sign the coupon at the bottom of this column today.

We will teach you in half a year's time from the day you enroll as a home student the vital principles of Electricity, and you will be supplied at once vith the big laboratory outfit, shown in this advertisement, and other outfits as fast as you require them, absolutely free of cost. You will also receive personal instruction from the President of the school.

> This is Laboratory Outfit No. I, given to every home study student. it is not a toy
ouffit, and in a month after you have had it you can do anything an ordinary electrical

Have you a Radio receiving set? If you have you can listen to two lectures a week delivered from our Ibroalcasting Station by our President. If you haven't a receiving set, you can hear these lectures at places in your home town that we will send you to as soon as you enroll
lou nead not be told that Electricity offers a better chance for alvancement and a bigger
starting salary than any other trade or pro fession

With our certificate of qualification you can enter this great profession at a salary of
$\$ 50.00$ or more a week, and as you adyance $\$ 50.00$ or more a week. and as you advance
in knowledge and expertness, your salary will in knowledge and expertness, your salary will
be increased surprisingly. be increased surprisingly.

We operate, in Nilwaukec, the largest Electrical Schoos in the Inited States. With the help we offer students, who study at home ant hour or fwo cach evening, throukh the casting lepartmont, reaching every city town athd hamlet in the United States, you get twice a week, free, knowledge that will gelp you anazingly in your studies,

The lessons are written in simple language, anil anyonc who can read a newspaper can unterstand them.

We will make it easy for you to become member of our great home student body yout will sign the coupon below, It is heat not to delay as our offer will be with-
drawn when one thousand additional siudents drawn when one thousand additional siudents
ant enrolled.

Extension Division,
School of Engineering of Milwaukee
Dept. FJ6 415 Marshall Street, Milwaukeo. Wis
Please send me free and without any obligation on my Jart, full details of your special offer to home students in Practical Electricity
Name
Atdiress
Cits.

How and|jWhy?

biss through the telephone receiver coils and actuate the telephone receiver diablorigm, thus reproducing the speech which originally produced the varied wolarities constituting a record on the wire.

The steel wire is cleared of all magnetic irregularities by passing it over the pole of al strong electromagnet, called an "erasingr" magnet, or "wipe-off" magnet.

A Common Error

(28-)-Ki. U. Lang, Chicago, Ill., asks:).1.-I have been working with 110woll current taken from a surface line and have had occasion to make some calculations. IIow can the current be called 110 -volt, if, as I understand, it is the same all over the line, so that as great a curront goes through one inch of the line as through a mile of it? There must be a catch somewhere, because the voltage on the inch of wire is very minute, compared to that on a mile of wire; so how ran a current in the inch of wire be a 110 -rolt current?
A.1.-You are evidently a little mixed in assuming that there is such a thing as a 110 -volt current. This seems to be a historical error that became very popular in conversation, also in some books and magazines, and is still in use hy some electrical students who should know better, but through force of habit still speak of a 110 -volt current

110 -volt line, or 110 -volt circuit, should be used in place of 110 -volt current, as the voltage is on the line regardless of whether any current is flowing or not. It is customary to speak of a circuit as $110-$ volt A. C., the A. C. standing for alternating current, and is usel merely to distinguish the line from a D. C. or direct current line.
Q. 2.-What is the direction of flow of current through an electron tube, such as the Fleming Valve?
A. 2.-The direction of current flow through an electron tube is assumed to he from the plate to the filament but in actuality because the plate is held positive with respect to the filament by means of the (13) battery, the electric current is a stream of negative electrons flowing from the filament to the plate. In the early days of electricity, before anything was known about electrons, the direction of current flow was unfortunately to be from the mositive terminal of the hattery or other source of supply, to the negative terminal ; and when the electron tube came in vogue it was found and demonstrated exporimentally that an electric current consists of a stream of electrons flowing from the negrative pole to the positive pole, But the old assumption of current flowing from negative to mositive has never been changed, which accounts for some of the confusion when studying vacuum tubes.

Electroplating Solution

(288)-Kenneth Norton, Rockwell City, Iowa, inquires with reference to copper plating.
Q.1.-I have a eopper plate which I propose to use for the anode and copper sulphate. To make the solution, how large should the container be for copper plating and how should I make the copper sulphate solution?
A. 1.-A $21 / 2$, gallon porcelain crock or glass jar will he found convenient for copper plating. The solution comprises Ω pounds of copper sulplate, 2 gallons of
water, and 6 ounces of sulphuric acid Six to 10 amperes to the square foot of plating surface should be used at a potential of from 1 to 2 volts.
Q. 2.-Please give directions for maklng a simple electrostatic machine that will give about a 1 inch spark.
A. 1.-A simple electrostatic machine was described in the December, 1921, issue of Practical Electrics.

A very simple electrostatic generator was described in the May, 1922, issue. This generator comprised two copper discs bolted on each side of a pulley and suspended in mid-air by a thick linen thread belt from the pulley of an electric motor. With the motor running at a speed of 3000 revolutions per minute, a spark $3 / 4$ inch in length is said to jump from the discs to a piece of metal held in the hand. The gyroscopic effect of the spinning discs keeps them balanced.

Home-Made Dynamo

Diagram of winding of an 18 slot armature winding.
(289)-Mr. Fred Post, Auburn, Ill., writes:
I have a home-made dynamo which has a round field, four poles and is shunt wound. The armature is $4^{\prime \prime}$ diameter by $4^{\prime \prime}$ long, and has 18 slots; the commutator has 9 segments. This dunamo developed up to 40 volts. At low speed I use it to clarge storage batteries at 9 volts and 15 amperes very successfully. But when I atteinpt to burn 32 volt lamps or to run 32 volt motors, or run the dynamo idle, sparking at the commutator is very bad.
I would like to rewind the armature with a double layer per slat and use a commutator of 18 segments.
Q.1.-Vill you please draw a diagram showing how this can be rlone?
A. 1.-We show a diagram of the winding you ask for. Starting at commutator segment A the winding passes through slot $1-14$, around the back of the armature to slot 1-6 and then to segment 13. From I) it passes through slot $2-15$, around the back of the armature to slot $2-7$, and then to segment C, etc. The commutator segments are connected diametrically across from each other as shown. Two collectins hiusbes are used and they are placed O) degrees apart on the commutator.

Electrolytic Generator

$(290)-H$. A. Payton, Sacramento, Cal., asks

Q, 1,-Is thele any cheinical that will produce electricity in any amount? There seems to be a reneral opinion that ordinaly salty waler does so to a limited extent.
A,1.-There is no such thing as a chemical that will in itself alone produce electricity. Even chemicals that are used in batteries will not produce current unless the electrodes are present. Ordinary salty water in whlich a stidp of coppor and a strip of zinc are immersed will form a

"BUILD YOUR OWN" WITH "RASCO" PARTS!

THEE Radio Specialty Company-"RASCO" for short-now in its third year, is unquestionally ine most unique radio parts supply hompt attention. The reason is simple: 80% of our orders are small.

- is simple: 80% of our orders are smato service. Ask any of your radio acquaintances what thry think of "RASCO" service, "RASCO" promptness. Thousands upon thousands of unsolicited testimonials
Order direct from this page. All goods sent prepaid in 24 hours. We pay all transportation charges. Money refunded if goods do not satisfy

Learn COMMERCIAL Electrical Engineering in One Year

To fill the ever increasing domand for electrically trained busiaess men, consulting and eficiency en rineers, mon for thorough, condenaed, and very practical ormo to high echool gradastes.
W. tach by practical work aud acientific methode under retical working conditions. Specialists for 27 yeara in

Electrical
 Engineering with B. S. Degree in 3 years

Eleatrotechnice 1 to 2 yeara. Electrical end Mochanieal
Drafting 9 montha. Antomotive Electricity 3 mothe. Armature Winding and Motor Generator Repair $\mathbf{\$}$ monthe. Pretical Electricity 6 month.
Aplace for every atudent regardlem of age or education. truetion. Studente' Activities of experta, individual in ion Wli Sudents Activitiel. Radio Broadcasting Sta
SCHOOL O OR ENGINEERIMG
Founded 1905
School of Engineering of Milwankee. 415 Marshall Street, Milwankee, Wis.
Without obligating mo in any way, pleaso mail free
unotrated book and further particulars on the course I havemmarked with an X. X.
:.... Electrical Enineering
…. Prectical Electricity
....Drafting
....Automotive Electricity
$\cdots .3$ mo. Armature Winding Coure
$\ldots .3$ mo. Light and Motor Wiring Courve Name Complere

HOW TO BECOME A

PROFESSIONAL PHOTOGRAPHER
EARNING $\$ 35$ TO \$I25 A WEEK
An interesting illastrated book. let (froe) on cheoving a vocation, ties Photography offere jou.
MOTION PICTURE - CONMERCLAL - PORTRAITURE Throe to di mentho eoares. Moder equipment. Day or eveniag clasees. Eaty torma. Aak for Catalog No. 57.
N. Y. INSTITUTE of PHOTOGRAPHY N. Y Y INSTITUTE of PHOTOGRAPHY 141 W. 36th St. $\quad 630$ So. Wabash Ave. 505 State St.

SAVE MONEY

pairing ur bellis. Hehting, ang and ré trons, varmum rleanern. winhing ma Chines, ette., whehont pratious experiE1ERTHICAL, KINLS: Mast eomplete

 plas a few cenaln pnatake hhenderivered. Or aend a dollar mill whit your order.
Topay. Money baek if not satiofied Cireular Mreey
HOME BOOK CO
388BI Arcade Bldg., Cleveland, Ohio

How and Why?

simple cell, but of rather high resistance, low potential quickly polarizing and one which deteriorates on standing.
Q.2.-How would you connect a small generator and motor to pick up current from a chemical solution instead of from the atmosphere as is now standard practice?
A.2.-You are evidently a little confused in stuting that a generator picks up current from the atmosphere. A generator generates current, regardless of whether the atmosphere is present or not. In other words, a generator will generate current If placed in a perfect vacuum. A chemical solution will only interfere with the action of the generator and will in no way help the generation of electric current.

Alternating Current Bell

Plan and cross-section of an interesting alternating current bell.
(291)-L. T. Richards, Boston, Mass., inquires:
Q.1.-Will you please show the construction of a bell that will operate on altermating current and will not have the harsh sound produced by the ordinary door bell?
A. 1.-The results you ask for are not easlly obtained. However, the bell shown in the lllustration may, with a little experimenting, meet your requirements. This bell depends for its action upon the alternating magnetic field set up by the alternating current in the electromagnet inside a gong. The gong is of magnetic material, iron or soft steel, and acts as the return circuit for the magnetic flux. The core of the electromagnet is just short enough to fit inside of the gong and leave a small air gap between the poles of the electromagnet and the gong. The alternating magnetic attraction between the electronngnet and the gong set the gong into vibration, at a frequency depending upon the frequency of the alternating current. If the frequency of the
alternating current supply is 60 cycles, the frequency of the gong will be 120 cycles per second.

The main difficulty in constructing a bell of this kind is to find a gong that will have a natural frequency of vibration double the frequency of the alternating current supply. If the natural frequency of the gong is even slightly different, the gong will emit no sound.

We can give you no constructional details on this bell, as we do not know the size and shape of the gong which you may select or the voltage at which you intend to operate the bell. The electromagnet can be wound for 110 volts and operate on the house lighting circuit direct, or the magnet can be wound for a lower voltage and operate through a bell ringing transformer. The core must be of laminated construction so as to reduce eddy current losses.
You might try a tuning fork instead of the gong.

Vibrating Rectifier Query

(292) -William Nash, Handsboro, Miss. asks
Q. 1.-I have a 100 -watt synchronous vibrating rectifier and destre to rewind it for 500 watts. How many pounds and what size wire shall I use? The rectifier is to operate on 110 volts A. C. and deliver 10 amperes D. C.
A. 1.-The size of the wire in vibrating rectifiers is usually not taken into consideration unless these rectifiers depend for their operation on the current fiowing through the colls.
In many vibrating rectiflers only a slight amount of current is used to keep the arm oscillating constantly, and current may be taken off as desired.
If the amperage or the amount of current rectified is not in excess of six or seven amperes, the device may be operated safely for quite a length of time. If a greater amount of current is required, the contacts must be increased in size and shunted by condensers; otherwise sparking results at this point.

Instrument Queries

(293) - R. Phillpps, Mineola, L. I., inquires:
Q.1.-Kindly explain the difference between a voltage transformer and a current transformer.
A. 1.-These transformers are used with measuring instruments in power stations and on switchboards where it is of advantage to step down (a) the current or (b) the voltage to a value sultable to the measuring instruments and thus prevent passing the total current through the instrument or applying the total voltage to the instrument. The instruments are calibrated according to the step-down ratio of the transformers so that they will indicate the total voltage and current. Current transformers have only one or two turns on the primary, through which the line current passes. The secondary winding comprises many turns and is connected directly to the current measuring device. In case the current measuring device is to be disconnected for repairs or for other reasons, the secondary wincling of the transformer should first be short circuited; otherwise dangerous voltages will be set up in this winding. Potential or voltage transformers have a primary winding of many turns, which is connected directly across the line; the secondary coll has only a few turns which connect directly to the voltage measuring instrument.
Q. 2.- Can any ammeter or voltmeter be used on both direct and alternating current?
A. 2.--There are several types of meters that may be used for measuring both al-

How and Why?
(Continued from page 222)

ternating and direct current, such as the lot wire instruments and the Thompson inclined coil instruments.
Q.3.-Explatin the operation of overload and underload circuit breakers.
A. 3.-Overload clrcult breakers are arranged to open the clicuit when the current rises to a predetermined value. There are many types, but all work on the principle of a magnet pulling an armature and releasing a catch, allowing the contacts to upen under the influence of a powerful suring. Underload circuit breakers are just the opposite of overload circuit breakers; the circuit is opened when the curvent decreases to a predetermined value. In this case the maguet releases an armature and allows the contacts to open.

Filter Query

(294)-Clare R. Tracy, Toronto, Ont., writes:
Q. 1.-Will you kindly advise how to smonth out the current from an electrolytic rectifier?
A. 1.-The current from an electrolytic rectified may be filtered or smoothed out loy means of a combination of choke coils and condensers. An iron core choke coll is connected to each lead from the rectifier and then a condenser is connected across the two leads from the choke colls. The current is withdrawn from the condenser. We can give you no data on the construction of the choke colls or the condenser as we do not know the voltage or current you are working with. However, if the voltage is under 100 volts and the current is of several amperes value, the choke coils will have more effect than the condenser; if the voltage is several hundred volts and the current only a few milliamperes, the condenser will have more effect than the choke coils.

Generator Queries

(295) -G. Philip Saxer, Fleetville, Pa., asks:
Q. 1.-Can a compound wound D. C. generator be used for charging storage batteries?
A. 1.-Tes. There is no reason why a compound woind generator may not be used for charging batteries.
Q.2.-Can a 110 -volt 25 -ampere con-

AnUncrowdedried
Modern Photography offors blg opportunities for mon Only a stop from amateur to proparesional work. Earn monay on the side while learning.
FPE Professional Camera and equipment fres. RL- Eunities now open in the differant pranche of photography. Find out how you can qualify. Degt: 1244 TBOL Michigen Avo. Chicago, U.S.A.

MONEY for YOU

Add to your Salary-Make extra Pin Money. Start a lucrative business of your own. Spend an hour each day taking subscriptions for the "Practical Electrics Co." We'll pay you well and you'll enjoy the work. Write for full particulars. Circulation Dept. Practical Electrics Co., 53 Park Place, N. Y. C.
pound wound I). C. generator, speed 1,850, be rewound for 60 volts and deliver 25 amperes or more at a speed of 1,200 R.P.M.?
A. 2.-The generator may be rewound for the lower voltage, but we do not advise it as the voltage is more conveniently lowered by means of a rheostat either in the shunt field circuit or in series with the generator output line. Reducing the speed will also lower the voltage. We do not alvise you to rewind the generator yourself, as this should be done by an experlenced winder.

Home Heating by Electricity

CoAT, problems are not causing any parCticular worry to several householders of Tacoma, Wash., because their homes are heated wholly by electricity supplied hy the electric public utility company. There are three or four homes in that city where this interesting innovation has been tried with success and according to reports the families in question are decidedly enthusiastic over the idea.
It is made possible by a special electrical installation and by means of a special rate of one-half a cent per kilowatt hour, estahlished by the electric light company. Without sump sperial rate it would not be econonical for any family to electrically heat their home.
The household making the hest showing for a typical winter season consumed 26,200 kilowatt hours of electric current for heating the house through the winter. at the special rate mentioned this amnounted to $\$ 131$, which compares well with the ordinary winter's coal bill-is suhstantially lower than many such bills, in fact. This house made a slightly better record than the others. The electric current was used in conjunction with an air furnace. and a separate electric meter was installed to measure the current used.
A big advantage was the elimination of ashes and dust, the handling of ash cans and especially the necessity for early rising to start the fire up. All that had to be done was to push a convenient switch and electricity did the rest. And, as stated, the dllemna of securing coal is transferred to the shoulders of the public utility. If the latter uses water power instend of coal, the situation Is, of course, easily met.

Electrical Don'ts

DON'T leare the electric iron connected to the circuit and go to talk over the telephone, answer the door or attend the haly. It costs money for the fire department to turn out for a run, even if it is only to put out a flaming ironing board.

Don't use paper shades or other inflammable materials or decorations against electric lamp bulbs.

Don't continue to use an appliance after its connection cord shows signs of worn or frayed insulation. Have it repaired.

"Dishwasher Does Dirty Work"

I
CAN do my own cooking even though I work in an office," said a business woman when asked what restaurant she patronized, "and I do not have my hands soaked up in clishwater, either. I have an electric dishwasher which does the dirty work for me."

Waterpower Plants of California

CAIIFORNIA is the premier state in U waterpower electric development, and in one recent year $1,172,353$ horsepower was utilized. The waterpower plants of the state are valued at $\$ 143,556,838$.

I Pay

Your Railroad

B. W. COOKKE.
 Chicago

The Electrical Center

 of the WorldWe pay your railroad fare to Chicago - the Electrical Center of the World - from any place in the United States. Grasp the ofportunity to see the country at oll expense. The largest electrical school in the country specializing in electrical instruction only. Get a complete training so you can make big money as Power Plant Operator, Superintendent, Telephone man, Construction worker, auto, truck or tractor electrician, battery man, radio expert, or you can go into business for your. self as electrical contractor, dealer, auto $\$ 20,000$ a year. Hundreds of our graduates today are making big money and you can do the same if you grasp this opportunity - act now.

Learn Electricity In 3 Months

No books or uselese theory. Yoo are trained on from door bells to power plants Yous work on motors. generators, house-wiring, autos, batteries, thio, switch-boards, power plants-evergthing to make you an expert ready to step.

Radio Course FREE

We include the following free with the regular ceurse: (1) A complete course in auto, truck and tractor elec-
tricity und gtorage batterieg. Greatest outluy of tricity and gtorage batteries. Greatest outluy of (2) Course in Radio-the marvel of the age. Con(2) Course in Radio-the marvel of the age. Conn-
you own wiretaling and opprating. You can build you own wireless telephone set. (8) A life scholarship in the Coyne school. You can atray as long as you wish and ret
tralning at any time in the future.

Earn While You Learn
We help students to secure jobs to earn a good part
of their expense while studying.
Send Coupon Now
Don't delay a minute-send that coapon in right now
for our bis free catalog and full particulars of Free

A Wonderful Book on Finger Prints FREE to YOU!

F solved through Tinger Print Evidence by bome of F zolved through Finger Print Evidence by some or ping iliostrations Greatest book ever publis.

Big Money to Experts!

 Big Special Oifer ionon onow Write to once. Get furl deUNIURPSITY OF APPL never vene dreamed UN A-157 1920 Sunnvside Ave. Chicago

[^2]A 1,000,000-Volt Transmission Line

AN increasing amount of attention is being devoted by our electrical engineers to high-voltage tran: mission problems and water power development. In two papers, read hefor the meeting of the American sor riety of Civil Engineers recently. the mossihility of transmission at $1,000,000$ volts was considered, and both authons Mr. Ir. W. I'eek, Jr., and I'rof. Harris. J Cyan, stated that it would be necessary to have a minimum of 100,000 kilowatt: of mower per circuit before transmission at this high voltage would be economically facasible, owing to the great cost of the lines and apparatus. Such transmission lines should have tuhular condurtors if inches in diameter. spaced so foot apart an er-foot insulators on towers about 200 fret high. No doubt the limitations on the commercial use of higher voltages than those in operation at present (the highest transmission pressure is 220.000 volts) will not be due to engineering difliculties, lut rather to the bocation of the sources of and maliets for the powor. It all evonts, it is signiticant that engineres are serionsly discussing the possibility of 1,000 kilo-volt lines. Thoush thero have been great developments in bwer distribution, followed by industrial oxpansion in Cali fornia. it is probable that future progres will be "aren greater: The whole of the Pacific Coast is within jon miles of the extensive water power resonters of either the Colorathor Columbial Rivers. and we have mon loubt that eftorts will be marke to werobne transmission obstarles, in order to find sulable markets for the powor

London Electricity

IONDON'S electric lighting bill will be \triangle cut hy $\$ 3,000,000$ nearly, it is believerd. when a pooject now in course of romplotioll is madr effective.

This proviles for the miting of all elertrial supply companies in london ant the suburls, covering an area of 1 , (ififo squatre miles and affecting a population of close on $8.000,000$ people. There will be omly 12 generating stations in the whole area, agrinst about 50 now in existence. and the saving will allow of a reduction in cost of something like 1 万 per cent per unit. England is following our example in developing large plants. New York has shown how to do it

There's Some U'se Crying Over Spilled Light: Rays Should Have Right Slant

D

OES vour electric lighting spill wer Your home, or is it spayed, withont waste, attractivery and comfortatbly to the ero, in the maces where it belongs?
Inatime a pipe of water, spilling quanditios of water on the lawn in just one spot. That is what the current is domen with raw light in four home unless sou have sem to its proper reflection, shading :mal direction.

The science of illumination teaches how to spray light, without waste, by means of reflectors that redirect the light rays, thus litting it for the eyes that must use this light and the room it must brighten.

An Electric "Wear" Indicator

MY^{7} opinion has leen asked saveral times recently concerming the bringing wht uf a device 10 judicate or ammonce hearming wear ly electrical means. This is an ingenious device, which inserts an insulated tule into the bearing, and permits at jwinter contained within the insulaterl tube. to be set within a certain distance of the shaft. That is. the bearing is drilled out at the appointed place, the insulated tobe

NOV. 1921 TO OCT. 1922

Bound in blue cloth Gold Stamped

Over 900 original articles by the best writers in the Electrical field.

Over 2000 illustrations.
Everybody interested in Electricity should have this bound volume on his shelf.

PRICE \$1.75

Express collect

Practical Electrice Conpany,
53 Part Place, New York, N. Y. Enclased please find $\$ 1.75$ for which send me by express, collect, Volume No. 1 of Practical Euectrice.

Name
Address
Town.............. State.

Electrical

Engineering

 an one Year

 BLISS ELECTRICAL SCHOOL OB TAKOMA AVE., WASHINGTON. O.C.

TEARN AT HNME , UNRING SPARE TME

ULTRA-LENS MICROSCOPES

 dione timen teir conte Completo outhter at
 Al your dealers or bu mall direct The Specialty Mfg. Co. Reg., Milton, Pa.

Earn \$10.00 a Day

Selling a houmehold neceanity, one to a dozen
in each home; big seller, good repeater. Write for Free iample and particulars to
"STICK-ON" COMPANY
16-22 hUdSon street, new york

No matter who or what you are, whether you are too thin or too fat-or unable to
leep and eat properiy, you need a

RESIBELL

Ask your dealer or send your name and addreas for particulars.
HAIMS 932 East $\begin{aligned} & \text { Address } \\ & 140 \text { th } \\ & \text { St., }\end{aligned}$ Cleveland, Ohio

SEX
Practical Information all sex mattors Send 10 c today, stamps or 10 C catalog. Nothing else like it

in this country.
 B O ○ K S in this country

Embarrassed in company, lacking in self-control? Let me tell you how you can overcome these troubles
Radio Fans - Everywhere T. obtelu the prmont eficiency nee HILCO Variemeters. Variecenplers. Variable Condeusers in your receiving eat.
WALTER W. DUDLEY, 49E Lonis Bldg., Dayton, Ohio
fixed, and sullicient metal left just over the end of the pointer to allow the bearthe end of the pointer until that amount is worn down. When this wear has taken phace, the wearing seal is worn through, and contact made letween the pointer end and the shaft. This completes a battery circuit, rings a bell, or lights a lamp, or may be used to also switch off the power. Thie method is most ingenious, but hardly necessary, except with nachinery in which the wear is extraordinarily rapid and unaroidable. Ohviously, the equipment is go ing to cost something to buy and fit up, and with the excellent long-wearing qualities of most bearings, and the ample margin in hand, the device scarcely has much scope. Any engineer, for instance, who neruits motor bearings to wear so much hat the rotor is down on the stator before he notices the fact, is not paying the attention to his job which he should do. 'This device might help such a man, but it is too costly to contemplate, and the twile of man concerned not worthy of being lusted with a plant.

S. E. D.'s Classification of "Electrical Fires"

FIRE underwriters and other insurance Corganizations have expressed interest in the proposed classification of fires attributable to electrical origin which originated with the Society for Electrical Dewelomment some mumh ago. and the Flectrical Manufacturers Council, among others, has indorsed the plan. This classification as recently revised and agreed upon is as follows:

1. lires calused by defective or improper wiring, sulnstand apraratus and installations, etc.
". Fires caused by overfuslng and overbading electric circuits.
2. Wires caused by electric flatirons, curling irons and similar devices. worn portable cords, old electrical appliances, etc.
3. Fires ratused hy streat-railway current, automohile electric systems, high-tension bower lines, etc.
4. Fires caused by static electricity, lighting and electrical disturbances over which little control is as yet possible.
'lhis scheme not only classifies electrical fires according to their origin, but puts the blame for eatch clearly and directly on the rause responsible.

Resistance Wire from Scrap

A
GOOD resistance wire for operatlng are lights or furnaces, small motors, induction coils and many other things in the experimenter's shop may be had at an electric repair shop for little or nothing. Ask for old heating elements from electric irons. The wire may be mounted on porcelain tubes or in any way to suit the luilder's fancy.

The wire may be soldered together with silver solder, using borax on the joint.

Contributed by Harold Prix.

How to Adjust an Ammeter

TF your auto ammeter is out of true it does not need to be taken to pleces to be adjusted. Place one pole of a horseshoe magnet to one side of the meter, then quickly remove 1t; sometimes the needle will go further from the zero mark, then place the opposite pole of the magnet to the same side of the meter and remove quickly. This will bring the needle to the zero mark. If the needle is only slightly off the magnet will only have to be brought to a half inch of the meter.

Contributed by Belarave F. Gostin.

Two Valuable Books On Armature Winding

No technical library can be complete without "How to Wind D. C. Armatures" and "Single Phase Armature Winding' By W. E. Hennig.
These books are well indexed for quick reference. All subjects are handled in such a very clear, thorough, able manner and so profusely illustrated by diagrams of windings that the reader requires no technical knowledge or education to fully understand this important subject.
They are really indispensable to every man engaged in electrical work, and are of particular value to the electrical student, the electrical salesman and supply dealer. In fact, they will be highly valued by anyone interested in armature winding.

As a practical electrician and armal ure winder 1 have been handicap-
ped on account of lack of information ped on account of lack of indinare winding ather special prailems associated with armature wisding in inshation from your booka and found I was able to solve the most dificult as well as the simpler problems. By applying the knowledge in your books, 1 have bettered my position and am not dependent on others for infor-
mation. These books fill a bong felt wamt, sa they can be understoorl by non-

Send today-NOW—get these books -the most valuable, helpful and interesting of any cier written on the subject of Armature Winding.

These Dealers Carry Our Books Atwater, H. E., Plattsburgh, N, Y.
B. \& H. Supply Co., Providence, R. Bullocks IIdw. Co., York, Nebraska
Burlington Elec. \& Nov. Co., Burlington, N. Beard's Temple of Music, Paragould. Ark Bishop Electric Co., Johnson City, Tenn. Burgess Elec. Co., Bluefield, W. Va. Broadway Dept. Store, Los Angeles, Calif. Brilliantonc kadio I'roducts, New York City Berman Radio Co., Boston, Mass. Berman Radio Co., Boston, Mass.
Badger Radio Co., Milwaukee, Wis Badger Radio Co., Mitwaul
Bickett Bros., Zion City, Ill
Bickett Bros., Zion City,
Bryan, R. F., Tyler, Texas
Bryalt, R. F... Tyler, Texas.
Centell Co., S., Strand, London, W. C Continental Eilec. Sup. Co.. Washington, D. De Laplaine, New Brunswich, N. J.
Diamond News Co., Havana, Cuba.
Dewey Sporting Goods Co., Milwauke, Wis. Eberlaardt \& Son Co., M., Astoria, L
Electric Shop, Now Brunswick, N. J.
Ernest Flectric Co.. St. Lotis, Mo.
Electric Auro Ipm. Co.. Denver, Colo
Elite Filectrie Shoo, Fi Paso, Texas
Electric Apuliance (o., San Francisco, Calif Finch \& Hahn, Schenectaty, Foster Book \& (igar Co., St. Lolis, Mo Findley Fiectric Co. Ninncapolis Barre, Fa Flecks Electric Service Sta., Tiffin, Ohio. Electric Co., (Grenda \& Sether) Gee Electric Co., Wheeling, W. Valls, Minn Galveston Wireless Supply' Co.,
Goetz's Music Store, Fort Wortveston, Texas Huse \& Sons, W. A., Providence, R. I.
Hunter, J. B., Boston, Mass.
Hubbard Elec. Co.. Battle Creek, Mich. Hygrade Elec. \& Now. Co., New lork, Ifanson Electric Co.. Portland, Oregon Hill Co., Geo. A., Lowell, Mass.
Hentzschel, W. W., Baltimore, Md.
Htmemann Electric Co., Philadelphia, Pa.
Hamilton, H., Greensburg, Pa.
Interstate Elec. (o. of Ala., Birmingham, Ala. International Radio Corp., Winnipeg, Man, Can.
International Electric Co.llington, New Zealand Jacksons Radio Eng. Lab, Waco, Texas
Knoxville Radio Co., Knoxville, Tenn.
King, H. W., Des Noines, Iowa.
Kock, John R., (harleston,
Law, F. M., Norristown, Pa.
Laws Blythe Electric Co., Atchison, Kansas
Modell's, New York City.
Mechanics (o., II. Ci Fort Worth, Texas.
Macaulay Bros, Detroit, Mich,
Mc.Arthur Electric Co., Chicago, Ill.
Natick l3ook Store, Los Angeles, Calif Northwest Radio Sirvice, Scattle, Wash Noll \& Co, E. 1., 1'hiladelphia, Fa. Nelsons Radio Supply Co., 1'hocnix, Ariz. Mublac Liblrary, Detroit, Nich. Phila. W'ireless Sales Corp, Philadelphia, Pa.
Polozvinski \& Co B F Detrote
peerless actric B. Fin Detroit, Mich
phila. Sporting Goods Co., San Francisco, Calif. Roberts Bros. Electric Co., Philadelphia, Pa. Radio 1:qp. Co, of Texas, Dallas, Texas,
Radio (oncert \& Eqp. Co., Los Angeles, Calif Radio Electric Shop, Cleveland, Ohio
Reuter Electric Co., Cincinuati, Ohio
Reynolds Radio Co., Denver,
Randolph, J. O., Higbee, Mo,
Rallio IIlectric Co., Fort Worth, Texas
Radio Specialty (oo., New York city
Self Service Jhonograph Co., Vew
Skokos, S., P'erth Amboy, N. J.
Spectator, The, Bruce Mines, Ont., Can Snell Co., Gico, W.. Philadelphia, Pa. Schrocder Electric Co., Albany, N. Y. Smith, II. E., Batavia, N. Y.
Southern Elec. Co., Jachsonville, Fla
S. A. S. Radio C"Haterson, N. J

Steiger \& Co, 1... New York Cit
Sykes \& Co., Rockester, N. Y.
Security Radio \& Supply Co., St. Louis, Mo Superior Radio \& Eqp. Co. Columbus, Ohio Steward Elec. Service Co., Urbana, Ohio
Utzinger Book Store, Astoria, Orecon Universal Supply Co, St Louis Yeihl Crawford Hew. Co., Fort W'orth, Texas Vilcanizers Supply Co., Kansas City, Mo. Virginia Radio Service, Medford, Ore. Yiking Radio Co., New York City Wite, Eugene G., Philadelphia, Pa. Woodhead. L, F., Rosewell, N. Williams Book Store, Boston, Mass. Wribur Electric Co., Baltimore, Md. Williamson Electric Co., Seattle, Wash. Wilson, J. L., New York City
Zibart Bros., Nashville, Tenn Seattle, Wash

Get These Wonderful Radio Books

LOUD - TALKERS HOW TO BUILD THEM

By H. WINFIELD SECOR

Associate Editor of Science \& Invention
This book describes how to build two distinct and different pes of radio loud-talkers, which can be built with either electroanagnetic field to be excited from storage battery as well permanent magnet field requiring no separate sattery excitation. The third chapter deals with improvised loud-ralkers and gives for use with radio receivers of the Baldwin and other types. Several elaborate hook-ups are giveil of the author's own radio receiving set, comprising one stage of elaborate hook-ups are or and tiree stages of autio-frequency amplification, together with of radio-frequency, detec-oud-talker
Complete data is given for all the parts of the loud-talkers, including the field magnet wind ings, as well as the diaph agon or moving coil windings, and also the step-bown transformer be commected between the vacuum tube amplifier and the loud-talker proper
In preparing these designs the point has been constantly kept in mind to use the simplest parts cial types costing $\$ 40.00$ on anyone can build a successful loud-talker equivalent to the commerEven where the experince.
himeelf, which are really few in number possess the skill or the time to make all the parts the price of a commercial loud-ralker, by having save a great deal of money or at least half hop, and then assembling them and, or the size of wire, etc., ate given for plang the coils himself. Circuit connections and data bart of the house not occupied by the radio the loud-talker on a separate floor or in another which cannot be obtained anywhere else and which has not been published took, giving data 4 pages 25 illasirations, bonat in bramitn!

EVERY RADIO ENTHUSIAST SHOULD HAVE A COPY OF THESE BOOKS WRITTEN BY THE
FOREMOST AUTHORITIES IN EVERY BRANCH OF THE SUBJECT

25c.

Each

Postage Prepaid
48 Pagcs. 26 Illustratims

Bound in Reautifni Tao. Color Cat

Order from your dealer-or direct from us put to.

ADIO FREQUENCY AMPLIFIERS AND HOW TO MAKE THEM

This the more adanced amatcur. fhowing the construction of the Radio Frequency Amplifying Transīormer and giving complete const-uctional data. It shows the ayplication of Radio Frequency to ambifying units that the amateur may already possess and gives 15 hook-1ps showing practically every use Radio Frequency Amplifying Transiormers can be

32 Pagcs, 15 :Ifustrations
Bound in Bcautiful Two-Color Cover Size, $51 / 2 \times 71 / 2$ inches. Prepaid 25 from us
233 FULTON STREET NEW YORK CITY, N. Y.

How to Hook Up -A
 Transmitter Button to Make an $\mathbb{E} f \mathrm{ficic}^{\text {M }}$ Loud Talker

A Transmitter button with a few dry cells and a telephone receiver will make a remarkably simple and efficient loud talker. A Microphonic amplifier of this type is just the thing for use with a radio set. The weak music and signals may be amplified many times their original value. It is possible to entertain a large audience with a simple radio equipment if a transmitter button is used in the circuit as explained in diagram A.

The cost is extremely low, and the results are comparable with those produced by highest grade of expensive loud talkers.

As may be seen in the diagram, two dry cells or a small storage battery are connected in series with the transmitter button and a 4 to 75 ohm telephone receiver. The transmitter button is secured to the diaphragm of the telephone in the radio receiving set. To accomplish this properly, scrape off the enamel (if diaphragm is enameled) on the face of the diaphragm and solder the small hexagon nut supplied with the button to the exact center. Care should be taken that the thin diaphragm is not bent or otherwisc harmed. The transmitter

button is then screwed into place. Connections, as shown in the diagram, are made with flexible wire. A horn may be placed over the low resistance receiver if desired. When the radio set is properly tuned and signals are being received, the transmitter button is operated by the vibration of the diaphragm of the recelver. As the receiver diaphragm vibrates, the mica diaphragm on the transmitter button also vibrates. The carbon grains are compressed at varying pressure; the current flowing through the local battery circuit is thus varied and results in an amplification of the sounds in the low resistance telephone loud-talker.

Diagram B, which includes a step-up transformer, is to be used with loud talking receivers of high resistance. The primary of the transformers should have a mary of the of about 75 ohms. An ordinary telephone induction coil will serve as the transtormer in this circuit.

You can get the above-described transmitter button FREE in subscribing to Practical Eiectrics Magazine at $\$ 2.00$ per year (12 months). Send your subscriptions today.

Make all remittances payable to Practical Electrics Co., 53 Park Place, New York City.

Wonderful Inventions

BEI.OW are given some queries just as $B_{i}^{E L}$ iow are given some queries fust as have been embellished.

It may low of interest to some of my fellow insects to know that several new types of electric motors have been intypes rented recently, and atcording to cusvented recently, and arer Gas and Electric Light Company, they hatve been on the market for some time.

It is my duty 11 inform prospective customers ats to the kind of current avallable in their neighborhood for power. One of these gentlemen desired to know whether we could furnish power for his 250-volt, direct current, 60-cycle, 3 -plase motor. Of course I told him all our efforts at cross breeding genelators had failed so far and hence no hybrid currents were ayailable.
Scarce had I recovered from the shock occasioned by this startling request ere my ignorance was again uncovered. This time the gentleman wished to know if he could use his 110 -volt, $60-\mathrm{cylind}$ m motor on our lines. I tried to explain to him that only stiaight eights and double acting, inverse time elemen, reversed phase, intercompounded differential three-wire motors were allowed, but to no avail. Ere I hat finished forty of the sixty cylinders lotektired and sadly misused the telephone so that I failed to obtain further information concerning this wonderful invention. Contributcd by D. W. Vallow.

Finding "Shorts"

A

 PUSE mis hlow out in some one's housc. and when replaced blows (wain. In reason therefore being evident. Lisualty at smm i- the caluse, but finding it is another mather. for an inexperienced herson. Usually it is a thatiron or a toaster or some other device, hut fuses are too expensive 10 continue blowing them in the allont to whain lisht, and they are usually searce around the ordinaty household.lise surt one fuse is groul ; insert a lamp in plate of the other fuse, first turning off all sockets :uhl switches. Then furn them on one at a fine: the lamp will give a dim limh until the defective mutlet is durned on when it will be brigh. This thruer on when ant and the others used wutke bat be cut out and the others nsed until an alectrician's services are avall able.

Contributcd by W. C. Johnson.

Electrical Machinery, 1921

THE Departmont of Commerce annount es that aceording to repornts made at the liureat of the Census the value of products of establishments primarily engraged in the manuficture of electrical machinery apmatus and supplies amounted to s83:, 0.3f,000 in 1021, as compared with $\$ 097,0(98.000$ in 1919. and $\$ 333,170,000$ in 1914, :l decrease of 16.4 per cent from 1919 to $10 \% 1$, lut an increase of 148.8 per cent for the seven-year period, 1914 to 1921.
In addition, electrical products to the value of $\$ 49,003,000$ in 1921, $\$ 65,558,000$ in 1919, and $\$ 24,262,000$ in 1914 were reported by estabiishments classified in other industries.

Of the 1,333 establishments reporting products valued at $\$ 5,000$ and over in 1921, 220 were located in New York: 166 in Illinols; 161 in Ohio; 116 in Pennsylvania; 113 in New Jersey; 105 in Massachusetts: 73 in California; 60 in Connecticut ; 54 in Wisconsin; 49 in Indiana; 47 in Missourl; 40 in Michigan; 16 in Minnesota; 13 in Washington; 12 each in Kentucky and Rhode Island; 11 In Maryland; 8 in New Hampshire; 7 each in Colorado, Iowa, and West Virginia; 6 in Oregon; 5

Anyone can become an expert wireman and secure a license by following the

The National Authority for 29 Years
Endorsed by the Wiring Department of the Joint Committee for Business Development Joint in the Movement to "Electrify"
For twenty-nine years this book has been the acknowledged authority on electric light and power wiring and construction, and is in constant use by wiremen, contractors, and engineers throughout the U.S and Canada. It is the only up-todate book on the subject published.

Thousands of young men have become expert wiremen and electrical contractors by mastering the simple rules given in "Standard Wiring."

So simple that a school boy can understand, yet so complete and thorough that all the leading wiremen and contractors use it in preference to any other book.

This latest- edition contains over twice the amount of useful information ever before published. The National Electrical Code explained and illustrated. New illustrated chapters on Outside Wiring and Inside Wiring for all systems for both direct and alternating currents; House and Residence Wiring, Garage Wiring, Theatre and Moving Picture House Wiring, Marine Wiring, Electric Sign Wiring.

How to install, cperate and care for Generators, Motors, Storage Batteries, Meters, Electric Ranges and every kind of wiring device for light, heat and power. How to secure the proper illumination for every condition; latest Mazda lamp data; 250 electric terms and their definition and values; the complete Metric system; firty-two of the latest tables on wires and miring; all dimensions, weights and capacities of wires and cables for copper, brass and iron; tables, showing at a glance, and without any figuring, the right size of wire for power or lighting jobs for any capacity. New 1923 edition just out.
Leather Cover. Gilt Edges. Pocket SIze. $\$ 2.00$ Sent an rectipt of Price
H. C. CUSHING Jr.

10 WEST 40th STREET, NEW YORK

NEW AND POPULAR BOOKS Every Radio Enthusiast Should Have These Books:

Wireless Course in 20
Lessons

By S. Gernsback, A. Lescarboura and H. W. Secor, E.E. (119h Edition)

A Course that tells your everything you wish to

 ordhis Course bas been enishtiorably revised in hate ocetrind it Radid T-lepranhes and Telephony
1ithin recent sits
 Cloth bound in vellum de Luxe, stiff
covers, hand sewed. sotil stamped, each $\mathbf{\$ 1 . 7 5}$ Same book, limn binding. colored cover.... \$0.75

The How and Why of Radio Apparatus

By H. W. Secor, E.E.
This newest book on radio matters fills a distinct
 a mealth of tcchiniquc and instruction for the Ractio inesigning Expert-as well as teiclers and students of the subject in general.
a
bery broal field has been cosored by the autior, Elving a great amount of information the any branch of the hadio or allied arts eaged in surcly need this latest contribution to radio litera-
ture. This newest of Radio Work has 160 pages, fo $x 9$ Cloth bound in vellum de Luxe, stiff \$1.75 eovers, hand-sewed, gold stamped, each... $\$ \mathbf{\$ 1 . 7 5}$
Same book, limp bind ing, colored cover...,

Experimental Electricity Course in 20 Lessons

By S. Gernsback and H. W. Secor, E.E. Every phase of experimental electricity is treated ments are descrised and explained and nearly application of Electricity in modern life is glven
A masterpiece. Explains erery elec:rical devtce ator made. North its weight in gold for the who wishes to know shout slectricits, and to the experimenter it is stilt more valuable because of The Best Electrical T
The Best Electrical Text-Book on the Market Thic : ok contains 128 pages, and more than 400 Cloth bound, stiff covers, hand-sewed, \$1.25

DEALERS-Ask for wholesale discount

BARGAINS BY MAIL

PROMPT SERVICE

Complete Parts for Cockaday Four- $\$ 18.00$ Circuit Tuner for Flewelling Cir 17.50

Complete Parts for Reinerti. Circuit. 12.50
Thordarson Transformers
Acme Transiormers 23 -Plate Ideal Variable Condenser
23-Plate Ideal Variable Condenser
Freshman Variable Grid Leak.
Prethe Moulded Variometer.
Pathe Moulded Variocoupler
Arrow Variometer
Arrow Variocoupler
Turney Headset
Baldwin Loud Speaking Ünit Magnovox Pathe Loud Speaker
We carry complete line of all standard parts at lowest prices All merchandise guaranteed.
EASTERN RADIO EQUIPMENT CO.
2013 Boston Road, N. Y. City, N. Y

LEARN RADIO
 Here's your opportunity. Radio needs Trained men in demand at highest salaries.
 Be a Radio Experf
 I will train you, quick ly and easily, to desikn, construct, instal, opperate, repair. maintain, and sell all forms of Radio apparatus. My new methods
 $\$ 1,800$ to $\$ 10,000$ a Year FREE Wonderful, home-construction, tube Writefor"Radio Facte" free. Engineer Mohaupt American Electrical Association

LOUD SPEAKER FOR CRYSTAL SET

By uaing the STEINMETZ ampliger you can fill the whole room with music aad can increase your rang up to 1000 miles. $\$ 8.50$. Let us

Specials for Limited Time Only Radiotron UV200 Detector Tube, \$3.95. Ampliger tubes, 34.75 . $11 / 2$ volt dry cell tubes. $\$ 4.75$. Sockets, 50 c . Standard 2000 ohm phones, $\$ 3.9$. Novo $221 / 4{ }^{2}$ vol "
B".
Batteries, $\$ 1.50$. Rheostate, 50 c . Vacuum tube "B" Batteries, $\$ 1.50$. Amplifier sete, $\$ 8.50$. This coupon must accompany order.

Complete instructive catalog at your dealer or Steinmetz Wireless Mig. Co., 5706 Penn. Ave., Pittsburgh, Pz

Hear Atianta

On Crystal wormit rimit inneapolin. Davenport, FortWorth, Dallas, Kansas Usual cryital set requires only eary inexpenaive hanges. Send stamp for further information or $\$ 1$ for copyright drawinga andinstructions. Every hing Leon Lambert, 505 South Volutsia, Wichita, Kan

FLEWELLING PARTS COMPLETE

 lueprint$\$ 18.00$
Build one-the best single tube circuit on the market
THE RADIO PHONE SALES CO. 211 Newa Bldg., Enid, Okla.
in Nebraska; 4 in Texas; 3 each in Louisi ana: North Carolina, and Virginia; 2 each in Alabama, District of Columbia, and Oklahoma ; and 1 each in Florida, Georgia, Kansas, North Dakota, Utah, and Vermont.

Four states reported products at more than $\$ 100,000,000$ each. Illinois, the leading state in 1921, produced 20.2 per cent of the total value of products in that year : New York, 17.9 per cent; Pennsylvanis. 13.9 per cent ; and Ohio, 12.3 per cent.

In January, the month of maximum employment, 187,075 wage earners were reported, and in July, the month of minimum employment, 149,697, the mininum representing 80 per cent of the maxinum. The average number employed during 1921 was 161.204 as compared with 212,374 in 1919 and 118,078 in 1914.

The general statistics for 1921, 1919, and 1914, are summarized in the following statement: the figures for 1921 are pre liminary and subject to such change and correction as may be found necessary from a further examination of the original reports.

STATEMENT OF THE OWNERSHIP MANAGE
MENT, CIRCILATION, ETC.: REQUIRED

BY' THE ACT OF CONG̈RESS OF

of Practical Electrics, Published Monthly at New York, N. Y. for April 1, 192 State of Neiv YorkCounty of New York, ss
Before me. a Notary Public in and for the State Bef county a foresaid. personally appeared Hugn Gernsback. who, having been duly sworn according to law, deposes and says that he is the Editor of the Practical Eicctrics and that the following is, to the best of his knowledge and belief, a true statement of the ownership, management (and if a daily paper, the circulation), etc., of the aforesaid publication for the date shown in the above cantion, required by the Act of August 24, 1912, embodied in section Regulations, printed on the reverse of the pub1. That the names and addresses of the pub agers are:
Publisher, Experimenter Publishing Co., 53 Park Place. New York City.
Editnr, Hugo Gernsback, 53 Park Place, New York City.
Manacing Editor. Thomas O'Conor Sloane, 53 Park Place. New York City. W. DeMott, 53 Park
Busincss Manacer, Robert W. Place, New York City.
2. That the owners are: (Give names and addresses of individual owners, or, if a corporation, give its name and the names and addresses of stockholders owning or holding 1 ner cent or more of the total amount of stock.) Practical Electrics Co., Inc.. whose stockholders consist of: Hugo Gernsback, 53 Park Place, New York City: Sidney Gernsback, 53 Park Place, New York City W. DeMott. 53 Park Place. New York City. 3. That the known ders owning or holding and other security holders owning or holding per cent or more of tores are: (If there are none, so state.) None
4. That the two paragraphs next above, giving the name's of the owners, stockholders, and security holders, if any, contain not only the list of stockholders and security holders as they appear unon the books of the company, but also, in cascs where the stockholder or security holder appears upon the books of the company as trustee or in other fiduciary relation, whe name of the person or corporation for whom such twustee is acting, contain statements embracing affiant's full knowledge and belief as to the circumstances and conditions under which stockholders and security holders who do not appear upon the books of the company as trustees, hold stock and securitics in a capacity other than that of a bona fide owner; and this affiant has no reason to be lieve that any other person, association, or or poration has any interest direct orinarect in the said stock, bonds, or other secur stated by him.
issue of this purage number or copies or each issue of this publication, so the paid subscribers drring the six months preceding the date shown above is:
(This information is required from daily publications only.)
H. Gernsback

Sworn to and subscribed before me this 19th day of March, 1923
(Seal.) Joseph i. Kraus
New York County Register's No. 3337 Queens County Register's No. 2951. My commission expires March 30, 1923.

Every Radio Fan Should Have This Book

Price Only
 ustefnd to everybody from lue-
 along gently until you can cal tliagram

E52 pages Pocket Size Compiled by
 broacleasting stations: rallio experiments; infinitions;
roctes ant symbols; techutral gestions for getting more A pocket course in radio! Werery page tells sousome-
hing ustful, antl thore are 62 pages; hundreds of illus-
trations incl diagrams. It is trations and diagrams. It is
the biggest dollar's worth in radio. and will save you from Wastiner money
that don't work.

Send \$1 to-day and get this 562-page I. C. S. Radio Handbook before you spend another cent on parts. Money back if not satisfied.

AUTOMATIC TIMER

for Yord Cars- positively prevents all timer
 or all speeds-Does away with spar lever. Back-kick practicalis o ruined starting systems-saves gasolune, glves more power-easier start ing-steadier pulling. Sold on mon ey back guarantee-Fvery Ford ow ner Will busgat

FREE Drafting Lesson

Not a penny to send for this Free Trial Lesson which shows how easily you can learn Drafthg by mail under Chicago "Tech" experts. Prepare now or paying positions. Draitam. Send today for the weekly. Big jobl are waiting. Send today for the
CHICAGO TECHNICAL COLLEGE 686 Chicago "Tech" Bldg., CHICAGO

Agents Wanted

Free Book. Start little Mail Order business. Home employment eveninge. Pier, Dept. 191-A, 74 Cortlandt St., New York.
Large Shirt Manufacturer wants Agents to sell complete line of shirts direct to wearer. Exclusive patterns. Big values. Free samples. Madison Mills,
503 Broadway, New York.

Agents Sell Harper's Household Cleaning Set. Walls, hangs dries windows ; mops, scrubs, cleans wals, hangs paper, sweeps, etc. Complete Set sells
for less than $\$ 3$. Over 100 per start without acent. 132 A ${ }^{\text {St., }}$ Fairfield. Iowa.
We Want Salesmen and Agents, either whole or side line, to sell our low priced radio books to the trade. Excellent proposition for live wires. The E. I. Company, Publishers, 233 Fulton Street, New

Big Money and Fast Sales - Every owner buys Gold Initials for his auto. You charge $\$ 1.50$ make and free samples. Americail Monogram Co., Dept.
226, East Orange, N. J.

Automobile Accessories

Ford, Chevrolet, Overland, Dort owners, protect your Generator, Lights and Battery with the guarantee. Saves its cost in first Money back makantee. Valuable circular Free. Complete Protector prepaid $\$ 2.50$. Agents wanted. Lupton, Hill \& Lupton, Dayton, Ohio.

Books

Send for New Illustrated Catalog of Books on 122 E Liberty Street, New. Spon \& Chamberlain L Liberty street, New York.
Diseases and Their Innate Healer. Treats on anamia, apoplexy, appendicitis, asthma, bronchitis, cankers, constipation, consumption, convulsions, debility, gallstones, headache. Book 50c. A. J. Stevens, Wauseon, Ohio.
Diseases and Their Innate Healer. Book 50c. A. J. Slevens, Wausenn, Ohio.
"Lights, Colors. Tones and Naturess Finer Forces, including Vibrations; Electromagnetons; tions: Marvelous opportunities; 260 pages : Satisfaction Guaranteed: $\$ 2.00$; Table Contenta Free. Pisco. Stevens, Publisher, 242 Powell, San Fran-

Elcctricians-Examinations Book of Questions and Ahswers, with diagrams, symbols, tables, s1.25. Aaron Shapiro, preparation for license, New York.

Chemistry

Learn Chemistry at Home-Dr. T. O'Conor will teach you. Our hore and scientific authority, course is a real our home study correspondence course is a real short cut. You can learn in half you would get at a college or university. See our full page ad on inside front cover of this issue for special 30 -day offer. Chemical Institute of New York, 66 W. Broadway, New York City.

For Advertisers

28 Words 200 Newspapers and Magazines, combined $\$ 5$. Inch $\$ 15$. Beck Age., 5406 Alaska, St.
Louis.

Inch Display advertisement 100 magazines, thrice \$8. Beck Age., 5406 Alaska, St. Louis.

For Men

Enjoy Life Smoke "Old Field Tobacco." Sample 10c. Hast Mailing Company, Paducah, Ǩy.

Formulas

Aquarium cement resists action of water; stick to all materials. Formula 15 c . El Dorado Lab.,
Berwyn, Ill.

Business Opportunities

Sell us your spare time. You can earn Fifteen to Fifty dollars weekly writing showeards at home. to canvassing , pleasant, profitable profession. easily quickly learned by our simple graphic block
system : artistic ability unecessary you and supply work. Wilson Methods, Limited, Dept. J. Toronto, Canada.
Bix Money in Radio. Thousands of men needed in fastest growing industry. Best positions go to holding Government License in Radio. Eagy to
qualify for this at qualify for this at home in spare time. Write for ties in Radio: tells hovy youlies bigger opportunities in Radio; tells how you can easily qualify for
them. Address National Radio Institute, Dept M1345 Pennsylvania Ave., N.W., Washington. D. C.
Certificate issued, in home examination for what you already know, to show your accomplishmenta. Many have an expert knowledge of their busines tho they have never had the opportunity to go to a technical school. You can now take the examinacate. We alsn lrok un your and receive a certifito that too. Write today. We will position to command bigger pay at once. you in a ination by correspondence in the following. Electrical Buildine Technician. Electrical Contracting. Radio Technician. Automotive Shop Practice. Ga, Fage Technician. Construction Wireman, Hydro Electric, Automotive Engineer, Automotive Wir ing, Storage Batteries. Illinois Practical Techni-
cians Institute, DeQuoin, Ill.
$\$ 15$ wrekly, spare time, legitimate business. Cap25c. Harry J. Hesslein. 18 Nora, Spoksing. Plans

Big Profits! Manufacturing and selling your own products. Full particulars,
I aboratory. Caldwell, New Jersey. Wright

For Sale

Sale or Trade-Unused, complete I. C. S. Electrical Fingincering Curse, $\$ 80$ cash, including critipment of ofuivalent. value. H. H. G. Crose Idaho Teeh. Inst., Pocatello, Idaho. H. G. Crose,
For Sale-1" Spark coll (Voltamp), Good Cond. \$3.5. $20 . W$
69 to
90
klis. Generator. skids, $\$ 35.00$; orivinal cost $\$ 75,40 \mathrm{lbs}$. Samarakite (Uranium Ore). \$10, and ahout 80 lbs . Carnotite, $\$ 3.00$ (Samp. Free), and $\$ 300.00$ worth of other lah. Material, very Cheap. must dispose of same. moving into an apartment. List on request. Ali vuaranteed satisfactory. C. A. Barley, 708 Dol-
nhin St., Baltimore, Md.
${ }^{2-12 "}$ Inductance Coils. These coils throw a each to huild. They are excellent cost over $\$ 300.00$ and other research work, where a large soark coil is required. Coils have independent magnetic vihrators and can the used for many different purproses. These inductance coils will be sold at a very low price. as the owner no longer requires them. For further particulars address Box 86, in
care of this publication.

For the Photographer

Camera + Hospital-Camera Repairing a Spe cialty, Expert on all Shutters. Parts. Send your broken Camera. Turner, 1679 Ave. A, N. Y.

Help Wanted

We want Salesmen and Agents. either whole or side line, to sell our low priced radio books to the trade. Fixcellent proposition for live wires. The York Cits.

Stop Daily Grind. Dependable plans free. Easy silvering mirror, tableware, headlights, etc. Clarence Sprinkle, Dept. 87, Marion, Indiana.
Detectives Earn Bir Money. Fxcellent opportunity. Travel. Great damand everywhere. Experican Detective System, 1968 Broadway, N. \mathbf{Y}.

Instruction

Physics Taught by Mail. Instruction in Heat, with your answers to tricity. Fee 25 c per lecture today. Willard Institute, Box 502. Worcester. Mass.

Improved Made Toys

We show you how to earn tig money easliy with our cating forms making Whistling Birdi, Wild Animals, Crowing Roosters, Automobiles, Basehall Players, Statue of Liberty, Indians. Toy Soldiers, Cowboys, Barking Dogs, Wag Tail Pups, Miniature castings of Capitol, Bathing Girl Souveniers and others. No experience necessary. We $\$ 3.50$ up. We buy large quantities of finished from at highest prices. Spot cash. Sead for and information free. The Improved Metal Casting Co., 342 East 145 th Street, New Work.

Languages

World-Romic System. Masterkey to All Languages. Primers, 23 languages, $\$ 1.94$ each lan Chindau, Danish, Dutch, Bulgarian, Cantonese French, German, Hungarian Iish, Scotch English, Latin, Panjabi, Polish, Portuguese, Rumanlan, Russian, Sechuana, Spanish, Swedish. Pronuncia, tion Tables, 94 languages, 30 c each language. Languages Publishing Co., 8 West 40th St., New York.

Mail Order Business

$\$ 50$ Weck, evenings. I made it: mail-order business. Booklet for stamp tells hcw. Sample and plan. 25 cents. Free 12 articles Sorth $\$ 3$. Alpco scot, Cohoes, N. Y.

Miscellaneous

If you are ambitions and have not succeeded as an Inventor. Author, or in any other line of endeavor. do not despair. Let us solve your probto bring you success. Write fully, Enclosing stamp Youths ${ }^{\circ}$ Guide-Post. Box 872 , Newport News, Va.
Movic Films IRented. Particulaxs free. George Fisher, Cos Cob, Connecticut.

Old Money Wanted

$\$ 2$ to $\$ 500$ each paid for hundreds of old or odd coins. Keep all old money-it may be very valuable. Send 10 cents for New Illustrsted Coin Value Book, size 4x6. Get posted. We psy cash. Clarke
Coin Company. Ave. 78, Le Roy, If. Y.

Patent Attorneys

Patent applications filed on partial payment Co. 692 F Starks, N.W. Washing. Milo B. Stevens \&

Patents-Send for form 'Eviderce of Conception" to be signed and witnessed. Form, fee schedule, information free. Lancaster and Allwine, 288
Ouray Blde., Washington, D. C.

Patents

Get your own patents. Application blanks, complete instructions, \$1. Windsor Cutting, Campbell, California.
Patents promptly procured. Bookdet and advice
ree. James N. Lyles, 734 E. 8 th St. Washington,

Personal

 Exchange Chcery Letters with new friends.Write Betty Lee, Inc., ${ }^{4254}$ Broadway, New York City. Slamp appreciated.

Stamping Names

Stamp Names on Key Checks. Make $\$ 19$ per 100. Some make $\$ 10$ daily. Either sex. Work can be done at home, spare time. Send 23 c for sample $\xlongequal{\text { and instructions. B. Keytag Co., Colioes, N. Y. Y. }}$

Wireless

Wireless Course in 20 Lessons. By S. Gernshack, A. Lescrarboura and H. W. Secor. F. F. Tells you everythinc you want to know anout "Wireless"theory. practice and history. A clear. concise course on every phase of this subject 160 pages-
350 illustrations, $? 0$ tahles. Stilf cloth cover, $\$ 1.75$ 350 illustrations, so tahles. Stir cloth cover, $\$ 1.75$
postpaid. Fxperimenter Publishing Co. Book postpaid. Fxperimenter Publishing Co., Book

Each a Leader In Its Field

Science \& Invention

Is one of the most interesting magazines published. It is more interesting than fiction.
It is profusely illustrated and covers in word and picture the latest achievements in the sciences-in Invention, Astronomy, Physics, Chemistry, Electrics, Mechanics, etc.
It has a large section devoted exclusively to Radio.
SCIENCE \& INVENTION has the distinction of being more often quoted than any other magazine in the world.

More than 100 large pages-with over 300 illustrations, drawings, etc.

Special prize contests are offered each month
On all newsstands, 25c a copy.
(Add 50c to the cost of each magazine for Canada or Foreign)

\author{

Subscription Prices

 Science \& Invention
 Radio News
 One Year
 12 Issues
 \$2.50
 Each}

Radio News

"The 100 Per Cent Wireless Magazine"
The Largest Radio Magazine in the World
Is read by more than a million Radio enthusiasts each month.

Its position as the leader of all Radio publications is universally recognized by dealers, radio manufacturers and every branch of the radio industry and its pages reflect their confidence.

RADIO NEWS contains more articles by Radio Experts - more specific information - detailed drawings - illustrations and news - than is published in any other magazine.
More than 200 large pages monthly. Profusely illustrated.

On all newsstands, 25c a copy.

Each Packet

 containsILLUSTRATED DIRECTIONS LIST OF PARTS REQUIRED WIRING DIAGRAM and full size
PANEL DRILLING TEMPLATE

Six Packets 50c. Each

No. I. How to make a Short Wave Regener. ative Set.
No. 2, How to make Detector and Amplifier Units.
No. 3, How to make a Radiophone Crystal Set.
20 Radiophone Diagrams and Hook-ups. 14 Radio Formulae and Diagrams. All About Aerials.

ASK FOR
"Consolidated" Patterns FOR MAKING YOUR OWN

For sale everywhere in the United States and eleven foreign countries

GO TO YOUR NEAREST DEALER OR JOBBER
There's not space enough to list them all. But here are a few firms who carry our line
(More names of our dealers in your town furnished on request)

```
Alamo Sales Corp., Indlanapolis, Ind.
Alhaty IRadio corl,#, Albany,N.N. Y.
Allied Rhtio &"O, N, Y. C., IlI
Mulks Antrae & ©O., Mllwaukce, Wis,
Jacub Andressen (Co. Minneapolis, Ming
Atlantic Katio co,: Moston, Mass,
limburger & Co, Newark, N. J. N.J.
Mamnster &o l'ollard Co. Newark, N.
Jos-A. Becker, laltinmer, Md,
The Benumoil'ro.. St. I.ouls, Mo.
Browklyn ltalo Service !'N: Hrooklyn, N. Z。
J. H., Bumnelt & Co. N. #%. C
Capltal Fllec, "O, Atlanta, Ga.
CQpital tadio Sumply to., Indignapolis, Ind.
Carnahum (Halzell, Ine,"N. Y. C. 
Gev. H. Thase, Newnort, RR. I. Chjago, Ill
Clapp-Eastham Co., Cambridge, Mass,
```



```
Cutter * Wombl Supply 'o., loston, Mass.
Detraney-Feleh &o Mo, 1Pantucket. R. I. 
Douhledas-1IIt! Co. Jittsburgh, I'a.
T, F,atom 'o., lid., W'inneneg, Can.
Flec. Ammlance co, Chtrago, Il.,
```



```
FH1/ott Elec, Co. Clereland. Ohlo.
Farbanks Elec.Co, Stamford, Conn.
Feteral Elecisunwhy Coo% Detrolt, Mich., J.
Fenma dco. N. Y CC. Co., Paterso
Fergus Elec. Co,%/anesrille, Ohlo,
```



```
Frank Ralio co, Nrenton, N.J.
Fremont Madlo ro, N. V. S, Louls, No,
*)
Gain-a-day Filec. C'o, Plitsburgh, Pa.,
```


 Great Bend Ructlo bilec. Co, Great Bend, Kan,
IIarry C. Grove, Inc, Washington, C Wrm, (iurd \& ©o, London, Ont., Can.
Hall Electric co, Columbus, Hall Electric Co., Columbus, Uhio.
Hatfild Filec.
Co., Indianapolis, Iod Hatfeld Flec. Co., Indianapolis, Lud. IIess Isros., Allentown Pa Milekson Electrle Co., ikochester, N. I. Ludwis Hommel \& \&o. I'Itsburkh. 1pa Hues do Philip Huwe. Co., Dallas, Texas ignitton Service Supply Co., Allany, N. Y. Inland Ele ertic 'oo, "hicago, IIt.

 Interstate Eliec. Co, Nhreverort, La,
A. II. Jarvis, ittow, A. II. Jarris, inttow, Ont, Can. J. J. Kellcher Elec. Nhon, N. Y. C. Dasid Killowh \& Co, N. Yas. i) \&F Kusel Co., Watertuwn, Wis. tehiph Ratio Co., Hethlehen, IPA. Lewis Elec. Supply c'o, boston. Niass.
Liberty Ineandeseent Sup. No. l'itsburgh, Pa Ifberty Rhallo "'o. N. Ye, I, Mouls, Mo, M. H. Jacy \& CO., N. Y. C Marhathan Flee Sum. Coo, N. Y. C. MeArthur Filec. So, Ghicacogo, Inl. Medarty Mros. Fe Ford, Ruffalo, X. Y Aessersmith \& \& Kins, Nabura Falls, Ň. F Leo. I. Mesberg Co., Nan Franelso, Cualif. Midwest Radio co. Cincinnati, Ohio. Millen \& Son Litd., Montreal, Can. Mrssoula Elec. Supply Co., Missoula, irontana. Montana Flectric Co., Butte, Mont. Montsomery Ward \& \& Co., Thicaro, Ill,
W. G. Nagel Elec. Cn., Tolclo, Oinio. Nageli Idwe Co., Minnearnlts, Minm.
 Newnam-Stern io. Aleveland, osio. E. It. Noll. Philadelnhian, I'a, Seatte, Wash North-West Flec. Euluij, Mo, St Paul, Simn, Korthwest hadio service Mo, Mentlis, Wash.
Overlandi Radio Equin, Mo, N. Y. C. yeerless Elec, " σ N Minneapolis, Minn.
 Mhladelphia Wirelcss Sales 'orn Philadelphla, Pa i'foneer Electric "o. St. Laul, Minn. F. D. I'ftes Con., Boston, Mass.

 II. Co Roterts Fier. Nupply ro., Philadelphia, IPa.

 Salem irower \& Light sup, Mo. Silem, Mass. Sare-tarel Radio Co, Dlatadebhta, l'a,

 Smith Novotuy filec. Co., low fargeles. Calit steriling liser. co, Minmeapolis. Sinn. Subhs Electrie Con I'ortland, O: e. Southwest Radio supply (oo, Damas, Texas, N, s. Eadto Co., of Pemn. irfitsobreh. I'a. Warner laros., Oakland, Calit. Western Railio El. Co., Los Angeles, Calif. Western Radio Co, Kansas Cits. Mo. Matit.
Wheeler-fircen Eilce. Supply in. Rochester, Whtall Elce. Co. springfeld, Mass. Wilmington Elee. She. Seatle. iviash. The Winchester Store, N, Y.
Wolfe Electrle Co. Omaha, Nebe.
Jos, M, Zamolski, Baltimore, M

98 PARK PLACE, NEW YORK CITY
NOTICE TO DEALERS-YOUR name may appear in next issue-ASK US!

Let These Guides

Solve Your Problems

a new library for electrical workers!

THE McGraw-Hill Book Company, publishers of books for practical men since 1876, announce the publication of a new library for electrical workersThe Library of Electrical Maintenance and Repairfive big volumes devoted to sound, practical, how-to-do-it information on electrical repair work

Electrical Maintenance and Repair

FIVE practical "how-to-do-it" books for electricians, electrical repair men and electrical maintenance men.

Five books that take up actual jobs and show you step by step what to do.

Five books that show you just how to go about the locating and remedying of motor and generator troubles, the rewinding of motors, the re-connection of motors to meet any condition of voltage, phase, frequency and speed.

The five books'in the ELECTRICAL MAINTENANCE AND REPAIR LIBRARY give you information that you will find of priceless value every day on every job, if you are concerned in any way with the care and repair of electrical machinery.

[^3]7 reasons why you should have these books

1. The five books in this library discuss actual repair jobs and thow yote step by step wher wrong.
2. They show you how to locate and remedy motor and gerer ator troublies.
3. They show you how to re. connect motors 10 meet any frerguency and spered.
4. Thew give you supgestions for preveling tlectrical machin. ery trouble:
5. They corer fully the rewind. ing of motors.
6. They present information that will help you fet better per. vice out of your electrical equipment.
7. Thery give you tables. data. kinks that you will find of priceless value every day on cevery job, if you are cont. carned in any way with the machine ry.

[^0]: WORLD TECHNICAL INSTITUTE,
 Fuller Bidg., Jerwey City, N. J.
 Gentlemen:-Send to me postpaid, and without obliga tion, your valuatle illustrated book entitled. 'Electrict Taught by a Msster Teacher," almo full particulars in regard to your course and the remarkable offer yow are making to etudents.

 Name.

[^1]: Very nicely designed electric motar of the reciprocating onder, Hsing iwo solenoids; it lepresents in a sense a two-cylinder reciprocaling sieam engine.

[^2]: OLD MONEY WANTED
 $\$ 2$ to $\$ 500$ EACH pald for handredm of old or odd Coins. Keep all old money andredm of old or oddRY valuable coina. Send $10 c$ for Now Ill'a
 VEIN VALUE BOOK, mize 4×6. Get poeted. We pay CASH. Clarke Coin Co., Avenue 77, Io Boy,

[^3]: ## These books tell you

 How to replace commulator segmentsHow to connect an induction motor winding to meet any condition of voltage, phase, freruency and speed-
 How to check this reconnection to know if the motor will operate under the new condition
 How to draw a diagram for any windins
 Ten most common defects in windings How to locate defects-
 How to figure a new winding for an
 How frecuency affects winding and How frequency aftects winding and How merfor
 How performance is affecter by a change in winding-
 How to find out what the trouble is when a motor or generator will not run-
 How to remedy the trouble -
 How to lseep electrical machines in first-class operating condition-
 How to re-arrange a three-wire system
 to reduce voltage fuctuations-
 How to test meters
 How to turn down a commutatorHow to insert spare transformer in star-delta group-
 How to remove defective field coils -
 And hundreds of other practical methods and kinks

