VOLUME 6

RIDER

$$
\begin{aligned}
& \text { TELEVISION } \\
& \text { MANUAL }
\end{aligned}
$$

JOHN PR RIDER

RIDER

TELEVISION MANUAL

VOLUME 6

JOHN F. RIDER PUBLISHER, INC.

BOOKS BY RIDER

Perpetual 'Trol'ble Shooter's Manual.s Volumes I to V Abridged (one volume)

Volcame VI	Volume X	Volume XIV	Volume XVIII
Volume VII	Volcae XI	Volume XV	Volume XIX
Volume VIII	Vollate XII	Volume XVI	Vollame XX
Volume IX	Volume XIII	Volume XVII	Voluat XXI
*			
Riber Television Manuals			
Volume 1		UME 3	Volume 5
Volume 2		UME +	Volume 6

Rider PA Manuals
Vollime I
*
Master Index - Vols. I-XV
Television-How It Works
*

The Radio Amatelr's Beam Pointer Guine -
Instaliation and Servicing of Low Power Public Aididess Systems
Inside the Vacula 'I`lbe Servicing Superheteronynes
Servicing Receivers by Means of Resistance Measluement

Aligning Philco Receivers, Voll mes I anio II
Automatic Frequency Control. Systemis
Servicing by Signal Tracing
' Гhe Oscillator at Work
The Meter at Work
Vaculu"Ilve Voltafeters
*
An Hour a Day winh Rider
ON:
Resonance ani) Alignaent Automatic Vollme Control Alfernating Clurents in Raibio Receilers ()-C Voltage I)istribution in Radio Receivers

Fincyclopedia on Cathode-Ray Oscilloscopes ind Their Uses-by Rider-Uslan FM I'ransaission ani Reception - by Rider-Uslan Understanding Vectors and Phase - by Rider-Uslan

A-C Calculation Charts - by R. Lorenzen Radar - What It Is - by Rider-Rowe
Understanding Microwaves - by Victor J. Young
Broadcast Operator's Handrook - by H. E. Ennes
'IV Picture Projection anis Enlargement - by Allan Lytel
High Freqlency Measliring Techniques Using Transmission Lines By E. N. Phillips, W. G. Sterns, N. J. Gamara The Business Helper -- by L. C. Rucker
Radio Operator's License Q \& A Mancial - by M. Kaufman TV Installation Techniques - by S. L. Marshal!
Receiving 'lube Substitution Guine Book - by H. A. Middleton 'IV Master Antenna Systems - by Kamen and Dorf
'IV and Other Receiving Antennas (Theory and Practice) - by A. B. Bailey
The servicing data appearing on Philco, RCA and other pages carrying indiridual copyright notices, are copyrighted by the respective companies and are reproduced. herein with their permission. Entire Contents Copyrighted, 1951 by John F. Rider

PAGE

ALIGNMENT INSTRUCTIONS . . . 6-7
INSTALLATION DATA. 1
PARTS LIST 4-5
PRODUCTION CHANGES. 4
schematic 3
top view - tube layout. . . 2
tRimmer locations. 6
Voltage measurements . . . 2,3

TUNE IN A PICTURE

Tune in a picture as instructed in the customer in struction leafet; note illustrations on interference effects.

ADJUST CHANNEL SLUGS

Individual channel oscillator adjustment of every receiver should be checked upon installation or servicing. If this adjustment is properly made, it is possible to tune from one station to another by merely turning the CHANNEL control and if necessary, slightly readjusting the TUNING control. With correct oscillator channel adjustment, best picture and satisfactory sound will be located at the approximate center (half rotation) of the range of the Tuning control.
hassis from the cabinet. Adjust without removing the chassis from the cabinet. Adjust as follows
a. Turn the set on and allow 15 minutes to warm up.
b. Set the CHANNEL knob for a station; set other controls for normal picture and sound.
c. Set TUNING control at center of its range by rotating it approximately half-way.
d. Remove the CHANNEL and TUNING knobs.
e. Insert a $1 / 8^{\prime \prime}$ blade, NON-METALLIC screwdriver in the $1 / 4^{\prime \prime}$ hole (to the right of the channel tuning shaft). For each channel in operation, carefully ad. just the oscillator slug for clearest picture detail. Then check sound, and if necessary readjust for mini mum buzz. Only slight rotation of the slug will be required; turning the slug in too far will cause the slug to fall into the coil. (If an oscillator slug should fall into the channel coil, remove the coil, move the slug retaining spring aside, lightly tap the open end of the coil against a solid object until the slug slips out. Replace slug and set the slug retaining spring into its cut-out slot.)

Control Panel; CHANNEL and TINING Khobs Removed.

ADJUST THE ION TRAP

In order to prolong the life of the picture tube. it is important that this udjustment be made on every receiver upon installation or servicing.

These sets use a 16 TP 4 or 16 RP 4 picture tube. If the set has the 16TP4 tube, locate the ion trap on the neck of the tube with the blue sleeve on top and the magnet to he left (facing rear of chassis). With the 16RP4 tube, locate the blue sleeve to the left and the magnet at the bottom. Starting from a point close to the tube base, very carefully move the ion trap forward or backward, and at the same time rotate it slightly in either direction; djust for the brightest picture possible with the
NHES control set for average brightness.
Note that there may be two locations where the hrightest picture can be produced. The second ion trap location, which is further forward on the tube neck, should not be used
Important: Should the corners of the picture become rounded off or shaded after adjusting the ion trap, forward as possible and then adjusting coil " E " as far ioning lever (or the focus coil if necessary) picture posihelow. Do not try to remove shaded cory as described justment of the ion trap. Be sure to corners with ad. ustme after adjusting the picture positioning ler rap after adjusting the picture positioning lever or re Thening the focus coil
94A15-2; the 16 RP 4 tube uses ion trap. part number part number is stamped on the ion trap magnet. The wrong ion trap may cause shaded corners or insufficient picture brightness.

Chasejs Views Showing Adjustment Locations.

MODELS 36R37, 30R45, 36R46,

CHECK PICTURE TILT

If the picture is tilted, loosen the wing nut " H " on the deflection yoke coil and slighty rotate the picture is straight. Before tightening the wing nut be sure that the yoke is moved as far forward as possible,
 otherwise corners of the picture may become shaded

CHECK PICTURE CENTERING

If the picture is off center, it can be centered by using the picture positioning lever, and when necessary, re-posi. tioning the focus coil around the piclure tube neck. Follow the instructions given below. Note
 that the picture $\quad \begin{gathered}\text { Picture Not Centered; Adjust } \\ \text { Picture Positioning Lever. }\end{gathered}$ positioning lever can be moved sideways, or up and down.

Picture Slightly Off Center

a. Adjust ion trap as instructed on preceding page.
b. Slightly loosen the screw "A" which locks the picture positioning lever to the focus coil, adjust the leve
有 correct picture centering.
Readjust the ion trap.

Picture Greatly Off Center

Adjust ion trap as instructed on preceding page
b. Slightly loosen the two screws "B" which hold the coil round the tube neck; tighten screws.
Loosen the screw " A " and center the picture with the picture positioning lever. If the picture cannot be entered with the lever, it may be necessary to locate the focus coil slightly off center and then center the picture with the picture positioning lever
d. Readjust the ion trap.

Difficulty in Centering Picture or

Eliminating Shaded Corners
a. Loosen screws " G ", then move the yoke suppor bracket forward until rubber grominet " F " is firmly against the flare of the picture tube.
b. Push the deflection yoke coil " E " as far forward possible. In some cases, it may be necessary to loose the two yoke bracket support screws "D" at the side of the upper mounting bracket, move the brack up or down, and then move the deflection yoke coil as far forward as possible
Shaded corners may also result from use of the wrong ion trap. The 161P4 picture tube uses ion trap 94A15-2 the $16 R \mathrm{R} 4$ picture tubes uses ion trap 94A15-1. Th part number is stamped on the ion trap magnet.

SCHEMATIC NOTES

[1.2] [3]. are run numbers and indicate a production change. Run numbers are rubber stamped at rear of chassis, (41), (42), …(1), (2),
elc. indicate alignnumt puints and align ment connections

TV VOLTAGE DATA

(Voltages given on schematic diagram)

- PICTURE control turned fully clockwise. CHANNEL con trol set on an unused channel. Other front controls set a
approximately half rotation. lert. Lin. and Height set approximately half rotation
approximately half rotation
- Voltages marked with an asterisk * will vary widely will control setting
In combination models, B+ voltages in TV chassis will be
slightly higher when set is switched to radio position silghte voltager when set is switched to radio position. Alter atput tube V204ings for radio and TV are shown for sound
- line voltage 117 volt AC
- Voltages measured with a vacuum tube voltmeter between tube
socket terminals and chassis, unless otherw ise indicated. socket terminals and chassis, unless otherwise indicated. Voltages at V101, V102, V306 measured from top of socket

op View of Chassi
- Antenna disconnected from set with terminals shorted
- Under operating conditions, AGC (Automatic Gain Control) approximately - $\mathbf{3}$ volts. This voltage depends on picture signal strength and Picture control setting.

CAUTION

Pulsed high voltages are present on the cap of the 6BQ6GT tube, and on the filament terminals and cap of the 1B3GT tube.
NO ATTEMPT SHOULD BE MADE TO TAKE MEASURE ENTS FROM THESE POINTS UNLESS SUITABLE TEST EQUIPMENT IS AVAILABLE.
Picture tube 2nd anode vollage can be measured from the 2 nd node connector and should be taken only with a high voltage nstrument such as a kilovoltmeter. 2nd anode voltage is ap-
proximately 12.5 KV . Proper filament voltage check of the 1 B 3 GT be may be made by observing filament brilliancy as compare that obtained with a 1.5 volt dry cell battery

RADIO VOLTAGE DATA

(Voltages given on schematic diagram)

Line voltage 117 volts A

- Voltages measured with a vachum tube vulturter. het ween tube
- Voltages measured with band switch on FM position, unles otherwise indicated; an AM reading is given where difference is significant.
- Dial turned col set at minimum.
- Antennas disconnected.
\triangle When R602 is 240 obms, voltage on pin 1 of V601 is 152 volts, pin 2 is -.5 vols, pin 6 is 152 volts and pin 8 is 1.9 volts. When R602 is 1500 ohms, vollage on pin 1 of 6601 is 160 volts,
pin 2 is -3 volts, pin 6 is 160 volts and pin 8 is 3 volts. IMPROVED NCISE IMMUNITY IN THE HORIZONTAL SYNC CIRCUIT OF $21 B 1$ AND 2lCl CHASSIS

In some areas where the noise level is high, the noise peaks may affect the sync sircuit and cause the picture to shake horizontally or lose horizontal sync.

A change in resistor value and an additional filter in the sync circuit has been incorporated in late production to reduce this trouble.

The circuit change began with run 2 of $2 l \mathrm{Bl}$ chassis and run 5 of 2lCl chassis.

Early production receivers may be modified by following the procedure given below:

1. Locate a 9 lug terminal strip adjacent to the vertical output transformer
2. Remove R323 (8200 ohms) from lugs 4 and 6
3. Connect an 18,000 ohm 1/2 watt resistor (part number 60B8-183) between lugs 5 and 6 .
4. Connect a $140 \mu \mu \mathrm{fd}$ condenser (part number 65Bl-26 with a 270 K 1/2 watt resistor, (part number 60B8-274) in parallel between lugs

4 and 5 .

PRODUCTION CHANGES

RUN 1 in $21 \mathbf{C 1}$ CHASSI

 Resistor R430 was changed from 12,000 ohms, 1/2 watt to12,000 hms. 2 watt (part \# 60 B20-123). This change was made
to prevent possible increase in resistance of R430 due to in to prevent possible incre
creased power dissipation.

RUN 2 in 21C1 CHASSIS

In early sets R210 was 270,000 ohms; R211 was 100,000 ohm In early sets R210 was 27,000 ohms; R211 was 100,000 ohms.
In later sets R210 was changed to 100,000 ohms, $1 / 2$ watt (part
$\# 60 \mathrm{Br} \cdot 154$); R211 was changed to 47,000 ohms, $1 / 2$ watt (part
\#60B8-473). This change resulted in improved audio response
on radio operation
 INTERFERENCE TRAP ADDED
Later production sets have a A Adjacent Channel Interference
Trap added between the connector lug (terminal of C113) on Trap added between the connector lug (terminal of C113) on
the TV tuner and pin 1 of lst video IF amplifier V301 (6AU6). the TV tuner and pin 1 of list video IF amplifier V301 (6AU6).
This trap consists of L 307 and C C34; it has part number 72 A 102 .

IMPORTANT

This preliminary service data contains the complete electrical parts list for models using the 21B1, 21C elevision chassis and for the 5D2 (AM-FM) radio chassis. It also includes cabinet parts for models 36R37 6R45, 36R46. It contains alignment data for the television chassis.

This TV chassis uses a $16^{\prime \prime}$ rectangular picture tube. It uses an improved intercarrier sound system (adjacent channel trap and improved sound take-off) and Automatic Gain Control circuits which are similar

Model RC500 or Model RC550 record changer is used

21B1, 2ICI, 502 CHASSIS PARTS

RESISTORS			R312	1,000 ohms, $1 / 2$ watt	
			R313	560,000 ohms, $1 / 2$ watt	60B 8-564
Sym.	Description	Part No.	R314	680,000 ohms, $1 / 2$ watt	.60B 8-684
	3, 900 ohms, $1 / 2$	98A 45-16	R315	4,700 ohms, $1 / 2$ watt, 5%	.60B 7-4
R102	47,000 ohms , $1 / 2$ watt.	98A 45-17	R316	Picture control	
R103	10,000 ohms, $1 / 2$ watt.	.98A 45-18	R317	$47,000 \mathrm{ohms}, 2$ watt	.60B $20-$
R104	2, 200 ohms, $1 / 2$ watt.	.98A 45-19	R318	56,000 ohms, 2 watt	.60B 20-563
R105	4,700 ohms, $1 / 2$ watt	.98A 45-20	R319	3,000 ohms, 15 watt, ca	
R106	220,000 ohms, $1 / 2$ watt	.98A 45-21	R320	33,000 ohms, $1 / 2$ watt.	
R107	10,000 ohms, $1 / 2$ watt .	.98A 45-18	${ }_{\text {R32 }}$	10,000 ohms, $1 / 2$ watt	.60B $20-472$
R108	4,700 ohms, $1 / 2$ watt	.98A 45-20	R22		.60B 8-822
R109	15,000 ohms, $1 / 2$ watt98A 45-67		R324	680,000 ohms, $1 / 2$ watt	.60B 8-684
			R325	560,000 ohms, $1 / 2$ watt	60B 8-564
R201		.60B 8-474	R326	100,000 ohns, $1 / 2$ watt	.60B 8-104
R202			R327	100,000 ohms, Brightness	. 75 B 13-12
	resistor only.	608 28-31	R328	22,000 ohms, $1 / 2$ watt.	.60B 8-223
R203	1,000 ohms, $1 / 2$ watt	60B 8-102			
R204	390 ohms, $1 / 2$ watt	60		22000 hms, $1 / 2$ watl	23
R205	10,000 ohms, $1 / 2$ watt, 5%	.608 7-103	$\begin{aligned} & \text { R401 } \\ & \text { R402 } \end{aligned}$	8.200 ohms, $1 / 2$ watt	60B 8-822
R206	10,000 ohms, $1 / 2$ watt, 5%	608 7-103 .6088873	R402	8,200 ohms, $1 / 2$ watt.	.60B 8-822
R207	47,000 ohms, $1 / 2$ watt.	60B 8-473	R404	1.5 megohms, $1 / 2$ watt.	.60B 8-155
R208A	250,000 ohms , Volume	5B 11-16		1 megohm, Vertical Hold	. 75B 13-14
R208B	1,500 ohms, Picture) ${ }_{\text {(R208 includes switch SW501) }}$	- $11-16$	406	1 megohm, $1 / 2$ watt...	60B 8-105
R209		60B 8-475	R407	8,200 ohms, $1 / 2$ watt	.60B 8-822
R210	150,000 ohms, $1 / 2$ wat	.60B 8-154	R408	2.5 megohms, Height	.75B 13-3
R211	47,000 ohms, $1 / 2$ watt	. .60B 8-473	R409	1 megohm, $1 / 2$ wat	
R212	1 megohm, $1 / 2$ watt.	.60B 14-331	R410	3,000 ohms, Vert. Li	.75B 13-7
R213	330 ohms, 1 watt. .		R411	820 ohms, $1 / 2$ watt.	.60B 8-821
			R412	560 ohms, $1 / 2$ watt	.60B 8-561
			R413	560 ohms. $1 / 2$ watt.	.60B 8-561
R301	10,000 ohms, $1 / 2$ watt, 5%	. .60B 7-103	R414	2.2 megohms, $1 / 2$ wat	60B 8-2
R302	1,000 ohms, $1 / 2$ watt.	. .60B 8-102	R415	820 ohms, 2 watt	60B 20-821
R303	1,000 ohms, $1 / 2$ watt	. .60B 8-102	R416	2.2 megohms, $1 / 2$ watt	60B 8-225
R304	1,000 ohms, $1 / 2$ watt	. .60B 8-102	R417	18,000 ohms, $1 / 2$ watt	.60B 8-183
R305	47 ohms, 1 watt	60B 14-470	R418	47,000 ohms, 1 watt.	.60B 14-473
R306	18,000 ohms, $1 / 2$ watt.	.60B 8-183	R419	2, 200 ohms, $1 / 2$ watt	60B 8-222
R307	1,000 ohms, $1 / 2$ watt	60B 8-102	R420	27,000 ohms, 2 watt.	.60B 20-273
R308	68 ohms, $1 / 2$ watt, carbon		R421	8.2 megohms, $1 / 2$ wat	60B 8-825
	resistor only	. 60B 28-44	R422	15,000 ohms, 1 watt.	.60B 14-153
R309	10,000 ohms, $1 / 2$ watt, 5%	.60B 7-103	R423	1,000 ohms, $1 / 2$ watt	.60B 8-102
R310	1,000 ohms, $1 / 2$.60B 8-102	R424	2,200 ohms, 1/2 watt	.60B 8-222
R311	150 ohms, $1 / 2$ watt	60B 8-151	R425	12,000 ohms, 2 watt	.60B 20-123

OJohn F. Rider

CABINET PARTS for 36 R37 (BIond) 36 R45 (Walnut), 36 R46 (Mahogany) The above model numbers may contain the suffix "N Part No. $\begin{aligned} & \text { Description } \\ & \text { A3060 }\end{aligned} \quad$ Antenna, Built-in TV $\begin{array}{ll}\text { ABC } \\ \text { AB5 } & \text { Antenna, } \\ \text { Antenna, Built-in FM }\end{array}$ ${ }^{43 C}$ 129-1 Back, Radiol-Phono and Record Compt

 $\begin{array}{lll}{ }^{* 35 E} \\ * 35 \mathrm{E} & 124-1 & \text { *Cabinet, } \\ \text { *Cabinet, } & \text { Walnut }\end{array}$

 ${ }^{-11 A \mathrm{~A}}$ 2-6 123 Clamp, Cable
 *35E 124-50 *Doors, TV and Radio-Phono Compt *35E 124-51 *Doors, TV and Radio-Phonc Compt 35E 124-56 Door Catch and Strike plate, for $\begin{array}{ll}\text { 35E 123-59 } & \begin{array}{l}\text { Door Catch and Strike } \\ \text { 23D } \\ \text { Es0-4 }\end{array} \\ \text { Escutcheon, Contre, for Blond }\end{array}$ $\begin{array}{ll}\text { 23D 60-1 } & \begin{array}{ll}\text { Escutcheon Door (Plastic) } \\ \text { 23D } 63.1 & \text { Escutcheon, Radio }\end{array} \\ \begin{array}{ll}\text { Escut }\end{array}\end{array}$
8A 61-8 $\begin{gathered}\text { Casket, Sponge Rubber (includes chipboar } \\ \text { back for picture window) }\end{gathered}$
$\begin{array}{ll}{ }_{36 \mathrm{~B}}^{36 \mathrm{~B}} 16-1 & \begin{array}{c}\text { Gack for picture window) } \\ \text { Grille, Metal, for Blond }\end{array} \\ \text { Crille, Met }\end{array}$

$\begin{array}{ll}\text { B 3-27 } & \text { Grille Cloth (2 (2eces) for Walnut } \& \text { Mahog, } \\ \text { A } 23-1 & \text { Handle, Door (for upper doors) for Blond }\end{array}$ 33A 41-2 Walnut and Mahogany $\begin{gathered}\text { Wandle, Doors (for blond record compe } \\ \text { doog) }\end{gathered}$
35 E 123-57 Hinge, Knife (Pair), for Blond
$\begin{aligned} & \text { 15E } \\ & \text { 124-55 }\end{aligned}$
Hinge, Knife (Pair) for Wallut

$\begin{array}{ll}\text { 3D 55-8 } & \begin{array}{l}\text { Jewel, Pel Pilot Light (Green) } \\ \text { Knob, Radio, 'PH-AM-FM' }\end{array}\end{array}$

$\begin{array}{lll} & \end{array}$
Scew, for mong. picture window
($\because 6 \times 3 / 8$ R.H.W.S.)
1A 7-9-57 Screw, for mit. control escutcheon
${ }^{1}$ A 7-24-71 Screw, for mitg. cabinet back

 $\begin{array}{cl}\text { 18A 43-1 } & \begin{array}{l}\text { Spring, } \\ \text { Spaing, } \\ \text { Si } 43-3\end{array} \\ \text { Spring, TV Knob Te Tension, "Tuning", }\end{array}$ Spring, TV Knob Tension, "Channel"
Tilt-Out Parts
Sce "Parts For Till-Out Mechanism" $\begin{array}{ll}\text { 5A 4-14 } & \text { Washer, Fell, behind "Channel" knob } \\ \text { 5A } 4-15 & \text { Washer, Felt, behind "Picture" knob }\end{array}$ $\begin{array}{ll}\text { SA 4-15 } & \text { Washer, Felt, behind "Picture" kn } \\ 5 \text { A 4-11 } & \begin{array}{l}\text { Washer, } \\ \text { Welt, behind radio knobs }\end{array} \\ \text { W3D } 67\end{array}$ ${ }_{23 D} 67$ Window, Picture

If only mount ing tat is broken on picture
window a new melal tab (part number 15A68
can be installed with a can be installed with a soldering iron. In-
strcutions (Forn $\$ 340$) included with tabs.
To insure proper matching and fit, also specify cabi-
net manufacturer's code letters (usually burned or net manufacturer's code letters (usually burned or
stamped on back rail of cabinet). Wood paris are supplied only if old part cannot be repaired. When
ordering describe condition of old part in detail.

TELEVISION ALIGNMENT PROCEDURE

ALIGNMENT ADJUSTMENT IDENTIFICATION

Adj.	Symbol	Frequency	Function	Adi.	Symbol	Frequency	Function
Al	T303	25.3 MC	3rd IF Transformer	A7	T201	4.5 MC	Secondary of Ratio Detector
A2	T301	25.3 MC	1st IF Transformer				Transformer
A3	T302	23.1 MC	2nd IF Transformer	A8	C102		Trimmer (RF Amplifier)
A4	L103	23.1 MC	Mixer Plate Coil	A9	C104		Trimmer (RF Amplifier)
A5	T201	4.5 MC	Primary of Ratio Detector	Al0	C107		Trimmer (Mixer)
			Transformer	All	C110		Trimmer (HF Oscillator)
A6	L201	4.5 MC	Sound Take-off Coil	A12	1102		Slug, HF Oscillator Coils

IF AMPLIFIER ALIGNMENT

a. Before starting alignment, be sure 1F cover shield
is mounted to chassis. mounced to chassis
Disconnect antenna and connect a jumper across antenna
terminals.
Set receiver to channel 13 or other unassigned high
channel to prevent signal interference during IF alignment.
Set Picture control fully to the right (clockwise). Retain
this setting for all IF adjustments.
Allow about 15 minutcs ior recciver and test equipment to
To service TV chassis with radio disconnected, complete
the heater cirruit by connecting a jumper from pin "L"

Step	Signal Gen. Freq. (MC)	VTVM and Signal Generator Connections	Instructions	Adjust
1	25.3	VTVM high side to test jack "T", common to chassis. Connect generator high side to 6J6 (V102) tube shield; insulate shield from chassis. Connect common to chassis near 6 J 6 tube base.	Use VTVM 3 volt DC scale. When peaking. keep reducing generator output for VTVM reading of approx. 1 volt or less.	Al and A2 for maximum.
2	23.1			A3 and A4 for maximum.
3	To insure correct IF alignment, make the "IF Response Curve Check" given below, or make the "Overall RF and IF Response Curve Check (Step 1)" given later. The overall check should be made after making all other alignments.			

If RESPONSE CURVE CHECK

(Using sweep generator and oscilloscope with sweep input to RF Mixer V102.)

Differences in tube gain and component values affect IF re.
ponse. These differences are not apparent in alignment of ITs When using a signal generator and 1 Tria (single frequency alignment, ; hence it is preferable that an IF response curve
check be made after completion of the IF amplifier alignment. The IF response curve chect can be made as indicated dimade by feeding the sweep signal through the entire RF and IF sytent as inven under OVverall RF and IF Response Curve
Check (Step 11". The overall check should be made after Fheck 'Step 11". The o
naking all other alignments.
Make all control settings and connections as given in the IF amplifier alignment chart; see " a " through " f " above. Connect oscilloscope* between point "'v" and chassis ground
through a decoupling filter; sec fig. 29 . Keep leads away from Connect sweep generator high side to tube shield of 6 J 6
(102) osc-mixer tube. Be sure to insulate tube shield from hassis. Connect sweep generator common to chassis close to 6 J 6 tube base.
$(19$ to 29 MC$)$
Loosely couple marker generator high side to the sweep gen. rator lead connected to tube shield on tuner; common to
chassis ground. chassis goound.
Marker pips should be just kept outputs at a very minimum.
In dealing with RF and IF response curves, it is well to remember that an inverted or mirror image may result When using a wide band oscilloscope for alignment, marker pips will waveform should still be idenical 100 to 1000 mmen using a wide band oscilloscope for alignment, marker pips will be more distinet if condenser from 100 to 1,000
capacity will affect the shape of the response curve. Caution : ise the smallest condenser possible, since too high a
disturtion, set sweep generator output for VTIMM reading of
approximately .5 volt and chassis. Connecting a neasured between test jack "T jack "T", positive to chassis)" will allow greater signal input Chout distorting the response curve
Check curve obtained against the ideal IF response curve
shown in figure 28 . Since it is not always possible to get ideal curves, it should be noted that the height of of opposite peaks
should be within 3db or 30% of each other The dit shoutd be within 3 db or 30% of each other. The dip or valley
in the center of the curve should not be greater thar 3 db or
30 c 30% down from the highest peak of the curve. Check vide
and sound IF carrier points by means of marker generator. I ind sound carrier points by means of marker generator.
is important that marker pips be in the proper location on the
response curve. The 25.75 . IC marker, should be 6 db below response curve. The 25.75 MC marker, should be be db below
the highest peak 150% point on the high frequency side of the highest peak 150% point on the high frequency side of
the curve). The 22 NC marker should be at the opposite side
of the response curve, located approximately 18 db (85%) below thesponse curve, located approximately 18 db (85% orak.
The 21.25 MC marker should be
located at least 2 ddb 95%) below the highest peak, may or may not be visible. Consistent with proper band width and correct location o
markers. the response curve should preferably have maximum markers. the response curve should preferably have maximum
amplitude, symmetry, and flat top appearance. If the procedure given has been carefully followed and the
response curve obtained differs greatly from the curve shown in
figure 28, repeat the IF Amplifier Alignment, naking sure gen. figure 28 . repeat the If Amplifier Alignment, making sure gen
erator frequencies are precise and adjustments are accurately de.

ALIGNMENT HINT

After becoming familiar with alignment procedure, some servicemen simplify subsequent alignment of sets by merely using the essential alignment data given in figures 29 and 30 .

Figure 28. IF Response Curve. V

Figure 30. Top View of Chassis Showing Alignment Adjustment Location

4.5 MC SOUND IF ALIGNMENT

a. Disconnect antenna
b. Set Picture control fully to the right (clockwise)

Connect signal generator high side to point "V" through
a 01 mid. condenser.
a .01 mid. condenser.
d. Allow about 15 minutes for receiver and test equipment to

Step	Signal Gen. Freq. (MC)	$\underset{\text { VTVM }}{\text { Connections }}$
	Since the transmitted video and sound car signal may be used instead of a signal g signal, it may be necessary to use a hig IMPORTANT: When using a signal gen quency standard for accurate frequency	
1	4.5	To test jack "Y"
2	+4.5	To test jack "Z"

Use a NON.METALLIC alignment tool. If Ratio Det.
Transformer (T201) has hollow core slugs, bottom slug ad. Transiormer (201 be has hollow core slugs, bottom slug ad-
justment $A 7$ can be made from top of chassis, if you use justment A7 can be made irom top of chassis, idmiral Dise
alignment tool $\# 98$ A 30.7 obtainable from Adme tributor. Bottom slug (A7) can be re
hole in the core of the upper slug (A5).
To service TV chassis with radio disconnected, complete The service che chassis with radio disconnected, complete
the heater, circuit by connecting a jumper from pin "L"
to pin "K" of sockel M503. See schematic.五
Instructions

Adjust

\qquad correct zero point is located be-
tween a positive and a negative
maximum).

Signal may be unmodulated or $\mathbf{4 0 0}$ cycle AM modulated
** If A7 was far off, repeat steps 1 and 2 .

RF AND MIXER ALIGNMENT

a. Disconnect $11 / 2$ volt battery from rest jack " T " if if used
earier. Connect a wire jumper from test jake " T " (Fik. earlier. Connect a wire jumper from test jack "T" (Fik
30) to chassis. Leave connected for all steps in this alignment
b. Disconnect antenna from receiver

Connect sweep generator to antenna terminals. If sweep
generator does not have a built-in marker generator, loosely generator does not have a built-in marker generator, loosely
couple a marker generator to the antenna terminals. To
avoid distortion of the response curve, keep swep gen-
erator out put at a minimun, marker pips just barely visible.
d. Corator output at a minimunn, marker oscilloscope through a 10,000 ohm resistor to test Connect oscilloscope through a 10,000 ohm resistor to tes
point "W" on tuner (Fig. 30). Keep scope leads away prom chassis.
e. Allow about 15 minutes for receiver and test equipment

To service T
To service TV chassis with radio disconnected, complete
the heater circuit the heater circuit hy connecting a jumper
to pin "K" of socket M503. See schematic.

Step	Marker Gen. Freq. (MC)	Sweep Gen. Frequency	Instructions
1	$\begin{aligned} & * 205.25 \\ & * 209.75 \end{aligned}$	Sweeping Channel 12	Check for curve resembling RF Response Curve shown below. If necessary, adjust A8, A9 and A10 (Figure 30) as required. Consistent with proper band adjust Aa, As and marker location, response curve should have naximum amplitude and flat top appearance.
2	See tals	below.	Check each channcl operating in the service area for curve resembling RF Response Curve shown below. When checking any channel, set the sweep and marker generators for the proper frequencies as indicated in the talif below. In gen In general, the adjustment perforned in step 1 is sufficient to give satisnact ob- response cta response cures oritular channel, (a) check to see that coils have not been intermixed, or (b) try replacing the pair of eoils for that particular channel, or (c) repeat step 1 for the weak channel as a compromise adjusiment onanels (his particular channel. If a compromise adjusiment is made, other channels this particular channevice area should be checked to make certain that they operating in the servich have not been appreciably affected.

Video Carrier Frequency (MC) **Sound Carrier Frequency (MC)

Fulr skirt of curve will not be visible unless
Figure 31. RF Response Curve (see "Oscilloscope Note" below).

OSCILLOSCOPE NOTE

In dealing with RF and IF response curves, it is well o remember that an inverted or mirror image may result, depending on the sweep generator and oscilloscope used. The general waveform should still be identical.
When using a wide band oscilloscope for alignment. marker pips will be more distinct if condenser from 100 to $1,0(0) \mathrm{mmid}$. is connected across the oscilloscope input. Caution: U'se the lowest capacity condenser possible since too high
response curve.

Fig. 32. Fromt View of Tuner.

OVERALL RF and IF RESPONSE CURVE CHECK (Step 1) and
 HF OSCILLATOR ALIGNMENT (Step 2)

(Using sweep generator and oscilloscope.)
b. Disconnect signal generator and ITMM (if used earlier).

Set the Tuning control at hall rotation by rotating it Set the Tuning control at half rotation by roating it
approximately 150° as show in figure 32 . Sel Picture
control fully to the right (clockwise). control fully to the right (clockwise).
. Connect sweep generator 10 antenna terminals. If sweep generator does not have a built-in marker generator. Loosely
couple a marker generator to the antenna terminais. To couple a marker generator to the antenna terminais. To
avoid distortion of the response curve, keep sweep generaior output at a minnimum, marker pips just barely
visible. Counecting a $11 / 2$ volt battery
(negative to test
jack "T"; positive 10 chassis) will allow greater signa input wiout wioring response curve
e. Connect oscilloscope between point " V " and chassis ground
through a decoupling filter (see figure 29). Keep oscillothrough a decouy ing filter (sompe leads a a a from chassis.
s.
f. Allow about 15 minutes for receiver and test equipment to
warm up.
f. W'hen adjus
F. When adjusting A12, use a NON-METALLIC alignment
h. To service TV chassis with radio disconnected, complete To service TV chassis with radio disconnected, complete
the heater circuit by connecting a jumper from pin "L" to
pin "K" of Socket M503. See Schematic.

Step	$\substack{\text { Markèr Gen. } \\ \text { Freq. (MC) } \\ \text { (Mweep Gen. } \\ \text { Frequency }}$	Instructions
1	While sweeping the RF band \mathbf{p} curve obtained against the ide necessary o.repeat he made	ass (channel 13 or other unassigned high channel), check the overall response curve shown below. If shape of curve is not within limits shown, it will be plifier Alignment. The IFs must be accurately aligned before correct oscil-
2	See channel frequency table on previous page.	Check need for oscillator alignment by comparing the response curve obtained (for each channel operating in the service area) with the "Overall RF and IF Response Curve" shown below. With correct oscillator alignment, the video and sound markers should locate at the points shown on the rethe video and sound markers should locate at the points shown on the re- sponse curve. The Tuning control must be at half rotation (see figure 32) when making this check. If a major number of channels are far off in the same direction, make the overall oscillator adjustment Al1. (Touch-up of individual channel slugs A12 may also be required.) If only individual channel adjustment is required, adjust the proper channel slug A12. Make all oscillator adjustments so that the video and sound marker pips appear at the proper points on the response curve. Important: Before making oscillator adjustments, be sure that the Tuning control is set at half rotation; see figure 32. Only slight rotation of the slug (A12) will be required; turning the slug in too far will cause the slug to fall into the coil. (If an oscillator slug should fall into a coil, remove the coil, move the slug retaining spring aside, lightly tap the open end of the coil against a solid object until the slug slips out. Replace slug and set the slug retaining spring into its cut-out slot.)

ig. 33. Overall RF and

- neasured frou misnest peat

5D2 RADIO PRODUCTION CHANGE

SERVICING RADIO SEPARATELY
The radio receives its operating voltages from the power supply on he TV chassis. It is necessary to use a separate power supply if the radio is to be operated without the
TV chassis. The 2PA1 power supply, which is used in radio-phonotelevision chassis and 5B2 radio the $20 \mathrm{Z1}$ ($12^{\prime \prime}$ picture) the 5D2 radio if a $3,000 \mathrm{ohm}$. 5 watt resistor (part num ber $61 \mathrm{~A} 1-15$) is connected between pins M and N of the Pa1 mi-15) is connected

To improve sensitivity of the 5D2 radio, the 1st IF transformers in the AM and FM stages were changed The 1st AM-IF transformer (T604) used in early sets. part 72B97 has been replaced with part 72B97-1 The 1st FM-IF transformer (T601) used in early
sets, part 72B98 has been replaced with part 72B98-1 sets, part 72 B98 has been replaced the IF transformers C608 has been changed from 40 mmfd (part 65B1-65) to $30 \mathrm{mmid}($ part $65 \mathrm{~B} 1-69$); R602 has been changed from 240 ohms. $5 \%, 1 / 2$ watt (part 60B7-241) to 1,500 ohms, $1 / 2$ watt (part 60B8-152).

IMPORTANT: All changes mentioned above must be made when replacing early IF transformers with late IF transformers. MODELS $36 \mathrm{R} 37,36 \mathrm{R} 45$

orm No. S336-2

(1) Additions to the preliminary service data already published on 21B1, 21C1, 5 D 2 chassis
(2) Circuit information on 21D1, 21H1, 21J1 television chassis and 3C1 radio chassis.
(3) Revised instructions on Horizontal Drive and Horizontal Linearity adjustments.
(4) Cabinet parts for models $16 \mathrm{R} 12,26 \mathrm{R} 12,26 \mathrm{X} 55 \mathrm{~A}$ to $26 \mathrm{X} 75 \mathrm{~A}, 26 \mathrm{R} 25 \mathrm{~A}$ to 26 R 37 A , and $39 \times 35,39 \mathrm{X} 36$

21D1, 21 H 1 and 21 J 1 CHASSIS

The 21 BI and 21 Cl chassis use a $16^{\prime \prime}$ rectangular picture tube. The 21 D 1 chassis use a $16^{\prime \prime}$ round picture tube. The 21 H 1 and 21 J 1 chassis use a $19^{\prime \prime}$ round picture tube, which is mounted separately from the chassis.

The $21 \mathrm{B1}, 21 \mathrm{C} 1$ chassis ($16^{\prime \prime}$ rectangular tube) and the $21 \mathrm{H} 1,21 \mathrm{~J} 1$ chassis ($19^{\prime \prime}$ round tube) are the same electrically except for some differences in the deflection yoke. See the schematic and the schematic inset
(for the deflection circuit used in 19 " sets). (for the deflection circuit used in $19^{\prime \prime}$ sets).

The 21D1 ($16^{\prime \prime}$ round) chassis differs in that the vertical and horizontal output circuits have differences in some component values, in the tube complement, and in B+ distribution. The vertical output tube is horizontal output circuit of the $16^{\prime \prime}$ round sets, adjustment of the horizontal drive will be different. See the discussion on the following pages.

3C1 RADIO (AM ONLY)

Combination models $39 \times 35,39 \times 36$ use the 3 C1 radio (AM only). See schematic. The radio receives its operating voltage from the TV chassis. The radio can be operated separately from the television chassis by using the 2PA1 power supply as instructed in 'Preliminary Service Data", Form No. S336-1.

PRODUCTION CHANGES AND SERVICE NOTES

RUN 4 in 21 C 1 CHASSIS and RUN 1 in 21B1 CHASSIS

Adjacent Lower Channel Sound Trap (L307 and C314) Added. Later production sets have an Adjacent Lowe Channel Sound Trap added between the connector lug (terminal of C113) on the TV tuner and pin 1 of this 1st IF amplifier tube V301 (6AU6). The trap (part number 72A102), consisting of L307 and C314, is pre-tuned

This trap will eliminate the herringbone interference pattern produced by the sound carrier of the adjacent lower channel. Close examination of this type of interference will reveal that the fine lines of the herringbone pattern will vary in accordance with the speech or music on the adjacent lower channel.

Since $F M$ interference from other sources will also produce a herringbone pattern, the presence of interference from a station on the adjacent lower channel should be definitely determined before deciding that the trap is required. This can be checked by quickly turning the channel selector to the adjacent lower channel. After installing the trap, realign slug A4 (mixer plate coil L105) as instructed under "IF Amplifier Alignment" in Preliminary Service Data, Form No. S336-1.

All 21D1, 21H1, 21 J 1 chassis have this trap.
RUN 5 in 21 C1 CHASSIS and RUN 2 in 21B1 CHASSIS
Noise Filter Added to Improve Sync Immunity to Noise. In areas where the noise level is high, noise peaks may affect the horizontal or vertical sync and cause the picture to shake horizontally or lose horizontal or vertical sync. A change in value of resistor R323 and an additional filter (R329 and C315) have been incor-
porated in the sync circuit of later production chassis to reduce this trouble. porated in the sync circuit of later production chassis to reduce this trouble. See schematic

This circuit change began with run 2 of 21 B 1 chassis and run 5 of 21 C 1 chassis; all $21 \mathrm{D} 1,21 \mathrm{H} 1,21 \mathrm{~J} 1$ chassis will have this sync circuit. Early production receivers may be modified by following the procedure given below:

1. Locate the 9 lug terminal strip adjacent to vertical output transformer T402.

MODELS 16R12, $26 \mathrm{R} 12,-25 \mathrm{~A},-26 \mathrm{~A},-35 \mathrm{~A},-30 \mathrm{~A}$,
 $-37 \mathrm{~A}, 26 \times 55 \mathrm{~A},-56 \mathrm{~A},-55 \mathrm{~A},-66 \mathrm{~A},-57 \mathrm{~A},-75 \mathrm{~A}$

$-76 \mathrm{~A}, 39 \times 35,-36$, Ch. 21Bl,-Cl,-D1,-H1,-J
2. Remove resistor R323 (8200 ohms) from between lugs 4 and 6 , counting 1 from end of strip near T402
3. Connect a 18,000 ohnis, $\frac{1}{2}$ watt resistor (part number 60B8-183) between lugs 5 and 6 .
4. Between lugs 4 and 5 , connect a 150 mmfd . mica condenser (part number 65B21-151) with a 270,000 ohm $\frac{1}{2}$ watt resistor (part number 60B8-274) in parallel.

RUN 2 in 21D1 CHASSIS - CHANGE in 21J1 CHASSIS

In some 21D1 and 21J1 chassis, condenser C 433 was changed from .002 mfd , to $.0047 \mathrm{mfd}, 600$ volts part number 64B9-15). Some sets having this change use a single . 0047 mfd . condenser; other sets use wo . 002 mfd . condenser in parallel. This change was made to increase sweep width. Condenser C433 is . 002 mfd , in later sets using an improved horizontal output transformer.

R411 in 21D1 CHASSIS CHANGED to INCREASE RANGE of VERTICAL LINEARITY CONTROL (R410)

Resistor R411 was changed from 820 ohms, 1 watt to 680 ohms, 1 watt (part number 60B14-681). Thi change was made to increase the range of the VERT. LIN. control R410.

ALTERNATE VERTICAL OUTPUT TUBE (V402) in $21 \mathrm{~B} 1,21 \mathrm{C} 1,21 \mathrm{H} 1$, and 21 J 1 CHASSIS
Some sets with $16^{\prime \prime}$ rectangular or $19^{\prime \prime}$ round picture tube may use a 6SN7GT tube as an alternate for the 6S4 vertical output tube (V402). The schematic shows the circuit used with the 6S4 tube; the schematic inset shows the circuit used with the 6SN7GT tube.

ALTERNATE IF TUBE (V301, V302, V303)

Some sets may use a 6AG5 tube as an alternate for the 6AU6 tube in the 3rd IF stage (V303); other sets may use a 6AG5 tube for the 1st. 2nd and 3rd IF stages (V301, V302 and V303). When the 6AG5 tube is used tube socket terminal 2 is unused (not grounded) as pins 2 and 7 of this tube are connected internally. A the shield is used in the 1st and 3rd IF stages with the 6AG5 tube
ALTERNATE TUBE USED IN 3 C1 RADIO
Early sets used a 6AV6 tube for V703 (Det-AVC-AF). A few of these early sets used the 6AT6 tube Later production sets use the 6 SQ 7 tube, which is the metal tube equivalent.

ALTERNATE CONTROL ESCUTCHEONS

Two alternate control escutcheons are used with these sets. Although the escutcheons are interchangeable as a complete unit, individual parts for the two alternate escutcheons are not interchangeable. The different escutcheons can be identified by the type of door spring used and the differences in the cutout slot which supports the ends of the door springs.

The parts for the control escutcheon having an "I" shaped slot using a flat (bronze) door spring are:

> Escutcheon, Control (less door)..... 23D 60-3 Escutcheon Door. 23 D 60-2

23D 60-2
The parts for the control escutcheon having a "U" shaped slot using a coil (wire) door spring are:
Escutcheon, Control (less door)...... 23D 60-6
Escutcheon Door Spring, Coil (wire)
right side (facing front). 19A 65-1
right side (facing front)...............19A 65-1
left side (facing front). 19A 65-2

REPAIRING MOUNTING LUGS on PICTURE WINDOW

If only the mounting lugs are broken on picture windows 23D67, 23E62-1, and 23D61-1, a metal replacement lug can be pressed into the plastic by heating it with a soldering iron. Instructions for installing (Form No. S340) are included with the 3 lugs supplied under part number 15A668.

\qquad

© John F. Rider

SERVICE ADJUSTMENTS

The following information on making the Horizontal Drive and Horizontal Linearity adjustment correct No. 41A9-13.

HORIZONTAL DRIVE and HORIZONTAL LINEARITY ADJUSTMENT for $21 \mathrm{~B} 1,21 \mathrm{C} 1,21 \mathrm{H} 1,21 \mathrm{~J} 1 \mathrm{CHASSI}$
If the large circle in the center of the test pattern has a cramped or flattened appearance at one side (non-linear horizontally), turn the HOR. DRIVE adjustment screw in fully (to the right), then slowly turn it out while adjusting for best linearity (circular shape). Note that the Horizontal Drive control also

If horizontal non-linearity can not be completely corrected with the HOR. DRIVE adjustment, furthe correction can be made by adjusting the HOR. LIN. control. Alternate adjustment of the Horizontal Drive and Horizontal Linearity controls may be necessary to obtain best linearity.

HORIZONTAL DRIVE ADJUSTMENT for 21D1 CHASSIS

This adjustment should be made so that the adjustment screw is as far out (to the left) as possibl without producing vertical lines in the picture. Adjust as follows:
a. Turn the CHANNEL control to an unused channel.
b. Set BRIGHTNESS control at a lower than average setting.
c. Turn the HORIZONTAL control (front panel) completely to the left. (If the Horizontal control is恠 when the Horizontal control is rotated to the right.)
d. Turn the HORIZ. DRIVE adjustment screw to the left until a vertical line appear near the center of the raster. Then, turn the screw to the right just far enough to make the lines disappear. If the screw is turned further than required to eliminate the vertical lines, picture width and brightness may be affected

Do not use the Horizontal Drive to correct width or linearity. If necessary, make the Width and Hori zontal Linearity adjustments.

HORIZONTAL LINEARITY ADJUSTMENT for 21D1 CHASSIS

If the large circle in the center of the test pattern has a cramped or flattened appearance at either ide (non-linear horizontally), adjust the HORIZ. LIN. adjustment screw by turning it to the left or rig as required. Note that the Horizontal Drive and the Width adjustments also affect linearity. Be sure djuster ade adjustment.

If vertical lines appear in the center of the picture when making the horizontal linearity adjustment see "Horizontal Drive Adjustment for 21D1 Chassis" above,
Form No. S336-3
C433 INCREASED to OBTAIN SUFFICIENT WIDTH
To obtain sufficient width, C433 may be $.0047 \mathrm{mfd}, 600 \mathrm{~V}$. (part number $64 \mathrm{~B} 8-15$) in some $21 \mathrm{D} 1,21 \mathrm{H} 1$, 21 J 1 chassis. Also, some of the 21 D 1 chassis may use a $.01 \mathrm{mfd}, 600 \mathrm{~V}$. condenser, part number 64B8-13.

GRID RESISTOR REQUIRED WHEN V303 is 6AG5

When a 6AG5 is used at V303, an 18,000 ohms, $\frac{1}{2}$ watt resistor (part number 60B8-183) is required from grid (pin 1) to ground.

DIFFERENT TUBE USED for SOUND AMPLIFIER (V203)
Some sets may use a 6SQ7 tube instead of a 6AV6 tube at V203. There are no part changes necessary with this sub stitution. The pin numbering for the 6SQ7 is shown in the adjacent illustration

DIFFERENT TUBE USED for SYNC SEP. and CLIPPER (V403)
Some sets may use a 6SN7GT tube instead of a 12AU7 tube at V403. There are no part changes necessary with this substitution. The pin numbering for the 6SN7GT is shown in the adjacent illustration.

ALTERNATE CIRCUIT WHEN V402 is 6SN7GT

The schematic (in Form No. S336-2) for the 21B1, $21 \mathrm{Cl}, 21 \mathrm{Hi}$, 21 J 1 television chassis 6SN7GT tube is used in place the whe inset in lower left portion of schematic.)

Cross out this schematic inset and in it hace use the circuit given in the adjacent illustration.

```
R404 1.5 megohms,
R406 2.5 megohms,
W. W. ... 60B 8-155
```


RESISTOR ADDED in VERTICAL OSCILLATOR STAGE

ALTERNATE CIRCUIT WHEN

In sets using a 6S4 or a 6W6GT tube in the vertical output stage (V402), a 150,000 ohms, $1 / 2$ watt reistor (part number 60B8-154) is connected between R404 and the grid (pin 1) of the vertical oscillator V401A, 6SN7GT). This resistor centers the operating point of the Vertical Hold control.

Add this resistor to both schematics. This resistor has been used since the beginning of production.

SUPPLEMENTARY PARTS LIST

This parts list contains corrections and additions to the parts list given in "Preliminary Service Data for models using 21B1, 21C1, 5D2 Chassis" (Form No. S336-1). Use this parts list FIRST, then
use the list in the Preliminary Service Data.

MODELS $10 \mathrm{Rl} 2,-26 \mathrm{Rl} 2,-25 \mathrm{~A},-20 \mathrm{~A},-35 \mathrm{~A},-36 \mathrm{~A}$,
$-37 \mathrm{~A}, \quad 26 \times 55 \mathrm{~A},-56 \mathrm{~A},-65 \mathrm{~A},-66 \mathrm{~A},-67 \mathrm{~A},-75 \mathrm{~A}$,

R701 22,000 ohms, $1 / 2$ walt60B 8 -223	MISCELLANEOUS PARTS for TV Chassis		MODELS 16R12, 20R12, 26R25A, 26R26A, 26R35A, 26R36A, 26R37A, 26X55A, 26X56A, $26 \times 65 \mathrm{~A}, 26 \times 66 \mathrm{~A}, 26 \times 67 \mathrm{~A}, 26 \times 75 \mathrm{~A}, 26 \times 76 \mathrm{~A}$,
	Picture tube mounting parts listed below are for $16^{\prime \prime}$	PARTS for Mounting 19" PICTURE TUBE	39X35, -36, Ch. 21Bl, -Cl, -D1, -H1,-J1
R704 27,000 ohms, 1 watt 60B 14-273		Sym. Description Part No	P PHONO COMPARTMENT LI
	Sym. Description Part No.	M403 Socket, Focus Coil (5 contact wafer). 87A 4-3	and JEWEL LIGHT
R706 \dagger R707	M203 Speaker	M404 Plug, Focus Coil (5 pin).............88A 3-5	M505 Socket and Leads (miniature)........ 82A 11-58
R708 4.7 megohms, $1 / 2$ watt 60B 8-475	5" PM........................ 788 59-1	Cover \& Insulator (for 88A3-5 plug).. 88A 3-4	M506 Plug (4 pin round).................8888 22-1
R709 27,000 ohms, 1/2 watt 60B 8-273		M405 $\begin{gathered}\text { Socket, Deflection Yoke (} 6 \text { contact; } \\ \text { molded)........................... 87A 30-2 }\end{gathered}$	M507 Cover and Insulator for 88B22-1.....888 ${ }^{\text {2 }}$ 22-3
R710A 22 megohms, Tone R7108 2 megohms,	12" PM... . 88 568 56	M406 Plug, Deflection Yoke (6 pin-includes interlock) \qquad	SW502 Switch, Light. 77A 29 Bracket. Switch........................... 15B 502
			Bulb. Light (7 watt candelabra Mazda \#7C7) \square Bulb, Light (miniature \#47 Mazda). Light Assembly, Complete (less bulbs) Shield, Light.
Pscription Part	M406 Plug, Deflection Yoke (6 pin)........ 88A 9-1	for right side facing tube................ 15C 564-1	
		for left side facing tube....................15C 564-2 Bracket, Yoke (upper mtg. bracket)........15C 628-2	CABINET PARTS for 36R37 (Blond) 26R45 (Walnut), 36 R46 (Mahogany)
	only in 19" combination sets)...... 87A 6-3	${ }_{\text {Bracket, }}$ Yoke Base (lower support)..........15C 627	
	Band, Metal Tube (for mtg. 16" round tube). . 28A 40-1 Band, Plastic Insulating (for mounting $16^{\prime \prime}$ round tube). Bracket, Picture Tube Mounting (supports	Connector Lead, 2nd Anode with female plug............................ . 88A 25-1 with male plug and contact spring............ A3200 Ground Wire Assembly. A3209	then see Form No. S338-1 for any parts not listed here. Part No. Description Escutcheon, Control (less door)
	front of rectangular picture tube) Right side (facing tube). \qquad Bracket, Picture Tube Mounting (supports		Escutcheon, Control (less door) with "I" shaped slot, for flat door spring with "U" shaped slot, for coil door spring
	front of $16^{\prime \prime}$ round tube). 15C 576 Bracket, Top and Bottom (for mounting picture tube and focus coil)	Picture Tube 19" TV........................19AP4 Rubber Collar (supports flare of picture tube) 12B 40 Screw, Wing (for deflection yoke)...........1A 101-1-71	
	for rectangular picture tubes	Shim, Focus Coil Mounting.......................32A 134 Spacer Sleeve ($1 / 8^{\text {" }}$ in length)................ . 29A 2-3-71	(mounts with coil door spring) Spring, Escutcheon Door
```C703A 0 to 420 mmid.} gang............68B 32 (Note: Dial drum spot-welded to gang.)```	Bottom..............................15C 614 C 614 for $1 \mathrm{l}^{\prime \prime}$ round tubes	Spring, HV Contact at front of tube............18A 37 Tape, Aluminum Foil (order length needed). . 52A 1-17 Washer, Spring (for mtg. picture	18A 41 flat (bron<e) spring, used with 23D60-1 coil (wire) spring, used with 23D60-5 escutch
C704 50 mmfd , ceramic................ 65B 6-4	Bottom..............................156 15627	positioning lever)...................... 4A 5-10-71	
	Clamp, Picture Tube Front Mtg. Bracket 154616	MISCELLANEOUS PARTS for 3C1 RADIO	fit hinge (facing fr
C707 . 005 mfd . min, ceramic............ 65A 10-1	Clamp, Webbing (for mtg. rectangular tube). 15 A 526	SW701 Switch, Radio-Phono	19A 65-1 for right hinge (facing front)
. 1 mfd , 400 volts, paper........... 64B 5-20	Clip, Tube Cap	SW702 Switch, On-Off ........................ Part of R710	
+C709 100 mmid , ceramic	for 6CD6G tube........................ 88A 16-6	M 701 Socket, Phono Input................... 88 A 1	CABINET PARTS for 16R12 (Mahogany), 26R12 (Mahogany)
	for 6BQ6GT tube.......................... 88A 16-8	M706 Socket, Phono Motor................. 89A 6-1	ve model numbers may have the suffix " N ".
C712 250 mmid, ceramic...............648 64 6-2 6	for 183GT tube.......		Part No. Description
C713 . 01 mfd , 400 volts, paper.......... 64B 5-25	with plug for 16" rectangular tube.........88A 16-7	Cover and Insulator (for plug 88A20-1) . . 88A 20-6	A3131 Antenna, Built-in TV
C714 . 002 mid, 600 volts, paper......... 64B 5-14 COILS and TRANSFORMERS	with contact spring for $16^{\prime \prime}$ round tube...... A3171 with female plug for 19 " round tube. ...... . 88A 25-1 with male plug and contact spring for $19^{\prime \prime}$ round tube. $\qquad$ A3200	Cable ( 12 wire), including 88A20-1 plug and 88A20-6 cover................ AB216 Bracket, Mounting for off-Volume and Tone control. $\qquad$ 15A 409	A3287 Back, Cabinet (includes line cord)   for table model   for console model   A3289   Aafrle Board, Speaker, for table model   A3015
Sym. Description Part No.	Ion Trap	for Radio-Phono Switch..................15A ${ }^{385}$	
L404 Focus Coil	for round picture tubes................ 94A 94-2 15		$\begin{array}{lll}34 \mathrm{E} 36-2 & \text { Cabinet, Plastic, }{ }_{3}^{16 R 12} \text { (Mahogany) } \\ 34 \mathrm{E} 37-2 & " & \text { 26R12 (Mahogany) }\end{array}$
	Nut, Tube Band Mounting (8-32) ........... 2A 2A 1-15-71 Pilot Light (147)................... 81A 1-8	Cover Assembly, Chassis....................... A1880	44B 183 Carton and Fillers, for table model 44 B 187
L701 AM Antenna   Loop Antenna (includes C701, C702). 69C 116-2 Iron Core Ant. (includes C701, C 702) 69C 121-2	Rubber Channel, 1 l long fifor rectangular   picture tube bracket)...................... 12A 9-11   Rubber Insert, $1^{\text {" }}$ diameter (bottom and side		98A 60-7 Caster (for cabinet leg)   Escutcheon, Control (less door)   with "I" shaped slot, for flat door spring   23D 60-1
L702 Oscillator Coil...................69A 52-1	support of rectangular picture tube)....... 12A 16-1	Grommet, Gang Mounting....................12A 1-2	23D 60-5 with "U" shaped slot, for coil door spring
		Hex Nut, Switch Retaining........................ 2A 2-11-7 Knob, 'Radio-Phono', 'Tuning'............... 33D 55-1   Knob, 'Tone' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33D 55-4	23D 60-4Escutcheon, Door   used with 23D 60-1 escutcheon   (mounts with flat door spring)
	Shield Base, Tube............................... 87A 7-6 Socket, Tube   miniature bakelite (7 pin).   87A 3-7	Knob, 'Volume'.................................33D 55-5 Lockwasher, Osc. Coil \& Gang ("6 I.T.)...... 3B 1-25-71   Lockwasher, Osc. Con Gang (.................... 81A 1-8	$\begin{array}{cc}\text { 23D 60-8 } & \begin{array}{c}\text { used with 23D 60-5 escutcheon } \\ \text { (mounts with coil door spring) } \\ \text { Gasket, Sponge Rubber (for back of pic. windo }\end{array} \\ \text { 12A 32-6 }\end{array}$
$\begin{aligned} & \text { T403 Deflection Yoke } \\ & \text { (includes R412, R413, R445, C430) } \\ & \text { for 16" rectangular tube.......A3222 } \\ & \text { for 16" round tube................A3178 } \\ & \text { for 19" round tube............. A3197 } \\ & \text { (A3197 includes connector plug) } \end{aligned}$			
Horizontal Output Transformer   (includes tube cap clips)   for $21 \mathrm{Bl}, 21 \mathrm{Cl}, 21 \mathrm{H} 1,21 \mathrm{~J} 1 \ldots . .79 \mathrm{C} 30-2$   for 21D1, 21E1...................... 79 C 30-3		Socket, Pilot Light (includes 9" lead)... 82A 2-3   Spacer Sleeve (for gang mounting).............. . 29A 2-1-71   Spacer Sleeve ( $31 / 4^{\prime \prime}$ long, for mounting   29A 3-15	89 A 22-1   6 A Line Cord and Interlock Socket   Mounting Rivet, for line cord
	Webbing, Rectangular Picture Tube Mtg. Strap ( $42^{\prime \prime}$ length). . . . . . . . . . . . . . . . . . . . . . 50A 3-4	Spring, Dial Cord Tension.......................19B 1-3   Washer, Vellutex (Oscillator coi' mtg.)....... 5A 1-21	

© John F. Rider

1A $71-3-57 \quad, \quad$ for control escutcheon ( $44 \times 3 / 8,{ }^{\prime \prime}$ ' RH ST


18A $41 \quad \begin{gathered}\text { Spring, Escutcheon Door } \\ \text { flat (bronze) }\end{gathered}$
coil (wire) s.ring, used with 23D60-5 escutcheon
18A 43-2 Spring, TV Knob Tension, for 'Tuning' knob
Washer, Felt, used behind 'Channel' 'Chob '14
5A 4-15 ": ".
CABINET PARTS for $26 \times 55 \mathrm{~A}, 26 \times 56 \mathrm{~A}, 26 \times 57 \mathrm{~A}$
$26 \mathrm{X} 65 \mathrm{~A}, 26 \mathrm{X} 66 \mathrm{~A}, 26 \mathrm{X} 67 \mathrm{~A}, 26 \mathrm{X} 75 \mathrm{~A}, 26 \mathrm{X} 76 \mathrm{~A}$
This parts list applies only to models having the suffix
letters "A" or "AN" and does not apply to nodels with the
suffix " $N$ " only or without any suffix letter.

Part No. $\quad$ Description	
A3132	Antenna, Built-in TV

$\begin{array}{ll}\text { A3132 } & \text { Antenna, Built-in TV } \\ \text { 43D } 102 & \text { Backing, } C \text { Cardboard, for } 23 D 61 \text { picture window }\end{array}$
43D 116 "" for 23D61-1 picture window
${ }_{43}^{43 \mathrm{C}}$ 101-3 $\quad$ Back, Lower TV Compartment


26X56A (Mahogany)
2657A (Blond)
26x65A (Walnut)
26666A (Matogany)
$26 \times 67 \mathrm{~A}$ (Blood)
26X75A (Walnut)
$26 \times 75 \mathrm{~A}$ (Walnut)
26X7A (Malnut)
$26 \times 65 \mathrm{~A}$ (Magy)
${ }_{26 \times 65 \mathrm{~A}}^{26 \times 6 \mathrm{~A} \text { (Walnut) }}$ (Mahogany)
${ }^{26 \times 667 \mathrm{~A}}$ (Mionog)
26X5ㅗ (Wannut)
26X76A (Mahogany)
Carton and Fillers, for $26 \times 55 \mathrm{~A}, 26 \times 56 \mathrm{~A}, 26 \mathrm{X} 57 \mathrm{~A}$
or $26 \times 65 \mathrm{~A}, 26 \mathrm{X} 6 \mathrm{~A}, 2,26 \mathrm{X} 67 \mathrm{~A}$
for $26 \times \mathrm{X} 55 \mathrm{~A}, 26 \times 66 \mathrm{~A}$,

35E 131-50 *Doors, Matched Pair, 26X65A (Walnut)
${ }^{26 \times 66 A}$ (Mahogan
26X67A (Blond)
26X75A (Wainu)
26 Matogany)
$35 \mathrm{E} 131-51$
$35 \mathrm{E} 131-52$
$35 \mathrm{E} 132-50$
35 E 132-51
5 E 132-50
E $132-51$
35E 131-58 **or Catch and Strike Plate ${ }^{\text {fin }}$ 26X65A (Walnut), 26X66A (Mahogany)

23D 60-3 Escutcheon, Control (less door)
$\begin{array}{ll}\text { 23D 60-3 } & \text { with "I" shaped slot, for flat door spring } \\ \text { 23D } 60-6 & \text { with "U" shaped slot, for coil door spring }\end{array}$
23D 60-2 $\begin{gathered}\text { Escutcheon, Door } \\ \text { used with } 23 D 60-3 \text { escutcheon (mounts }\end{gathered}$
used with flat door spring)
with flat door spring)
used with $23 D 60-6$ escu
12A 32-6 $\begin{gathered}\text { With coil door spring) } \\ \text { Gasket, Sponge Rubber (40" long. } \\ \text { used with picture window) }\end{gathered}$
36A 7-11 Grille, Metal, for 26X65A (Walnut),
Grille Cloth
Khog.)
26X67A (Blond)
6B $\begin{aligned} & 3-49 \\ & 3-50\end{aligned}$ for 26X55A (Walnut), 26X56A (Mahogany)


(includes 30 " braided wire)
for grounding 23D61 picture window
Ior grounding 23D61-1 picture window

```
37A 30-1
```

37A 30-1

$$
\begin{aligned}
& \text { Handle, Door } \\
& \text { pair for } 26 \mathrm{X}
\end{aligned}
$$

37 A 3 35E 131-56

$$
\begin{gathered}
\text { pair for 26x75A (Walnut), 26X76A (Mahog.) } \\
\text { Hinge, Knife }
\end{gathered}
$$

```
``` \({ }_{35}\) E 131-57 \(35 E 131-57\)
35 E
\(\mathbf{1 3 2}-53\)
\[
\begin{aligned}
& 33 \mathrm{C} 53-12 \\
& 89 \mathrm{~A} 22-1 \\
& 1 \mathrm{~A} 7-9-57
\end{aligned}
\]
*pair for 26X65A (Walnut), 26X66A (Mahog.)
\[
\begin{array}{ll}
89 A 22-1 & \text { I } \\
\text { 1A } 7-9-57 \\
\text { IA } 6-24-59
\end{array}
\]
\[
\begin{aligned}
& \text { 1A 6-24-59 } \\
& \text { 1A } 22-8-71
\end{aligned}
\]
\[
\begin{aligned}
& \text { 1A } 22-8-71 \\
& \text { 1A } 67-43-71 \\
& 32 \mathrm{D} 127
\end{aligned}
\]
32D 12
78B 47-2
18A
19A 65-2
\(19 \mathrm{~A} 65-1\)
\(18 \mathrm{~A} 43-1\)
\(18 \mathrm{~A} 43-2\)
\(18 \mathrm{~A} 43-2\)
\(18 \mathrm{~A} 43-3\)
33A \(57-1\)
\(33 A\)
\(57-1\)
\(5 \mathrm{~A} 4-14\)
\(5 \mathrm{~A} 4-15\)
23D 61
23D \(61-1\)
\[
\begin{aligned}
& \text { Handle, Door } \\
& \text { pair for 26X65A (Walnut), 26x66A (Mahog.), } \\
& \text { 26X67A (Blond) }
\end{aligned}
\]
```



```
\[
\begin{aligned}
& \text { 'Tuning' } \\
& \text { 'Off-Volume' } \\
& \text { 'Picture' }
\end{aligned}
\]
ine Cord and Interlock Socket
for control escutcheon ( \((4 \times 3,8\) RH WS \()\)
for mtg. back \(\&\) bumper strip ( \(\# 6 \times 2\) ) for micture window ( \(66 \times \frac{1}{2}\) strip ( \(\# 6 \mathrm{RS} \mathrm{x}_{\frac{1}{2}}^{2} \mathrm{RH}\) WS) for picture window (\# \(\# \times \frac{1}{2}\) RH WS)
for mig. TV chassis \(\left(a_{i}^{2}-20 \times 1-1\right)\)
Insulating (mounts
Sheet, Insulating (mounts on cabinet in front
of pictura tube) of picture tube)
Speaker, 10 " PM
Spring, Escutcheon Door
flat (bronze) spring, used
for left or right hinge
coil (wire) sprin for left hinge (facing front)
for right hinge (faci for for
for right hinge (facing front)
Trim, Piclure " ", ". \(\begin{gathered}\text { for 'Off -Volume' kno } \\ \text { for 'Channel' knob }\end{gathered}\) used with 23 Wind picture window) Maroon, for Walnut, Mahogany
Berge, for Blond Washer, Felt Be fond
Kindow, P" used behind 'Picture' knob with round holes, for mtg. with screws
with oblong holes, for 23D only the mounting lugs are broken on picture window 23D61-1, a metal replacenient lug (part number 15A668) ing iron. Instructions for installing (Forn wo a sol derincluded with the 3 lugs furnished under part number
15 A 668 . 15A668.
CABINET PARTS for 39X35 (Walnut), 39X36 (Mahogany) The above model numbers may contain the suffix " N ". A3023
43 C
108-2 43 C 108-2
43 C
\(4107-2\) Antenna, Built-in "Roto-Scope" TY
Back, for Album Compartment \(43 \mathrm{C} 107-2\)
A3193 ". for Cabinet (feloow TV compartment) . for Record Changer Compartment 43 D 105
43 D 119 Backing, Cardboard, for 23 E 62 pic. window
```

```
\(\begin{array}{ll}\text { 15C 620-3 } & \left.\begin{array}{c}\text { Bracket, Slide to Pan Mtg. } \\ \text { Left side facing front of }\end{array}\right)\end{array}\) 15C \(\left.620-4 \quad \begin{array}{c}\text { Right side (facing front of cabinet) } \\ \text { Bracket. Changer Stop }\end{array}\right)\) 15A 624
35 E
35 E
\(136-2\)
*Cabinet. Walnut
Carton and Fillers
\(\begin{array}{ll}\text { 98A 60-7 } & \text { Caster, for cabinet leg } \\ \text { 11B 12-6 } & \text { Clamp, plastic, }\end{array}\) 35E. 136-60 \(\begin{aligned} & \text { Decal, Cabinet Door Refinishing } \\ & \text { for pair of doors, Walnut }\end{aligned}\) 35E 136-60 for pair of doors, Walnut
35E 136-61 for pair of doors, Mahogany
\(98 A\) 11-3 988 \(11-3\)
35 E \(136-53\) \(\begin{array}{lll}35 E & 136-53 \\ 35 E & 136-54\end{array}\) *Do Cement (1 pint) Mahogany *Door, Record Compt. (Complete) Walnut moors. TV and Radio-Phono Compt.
```

``` \(\begin{array}{ll}35 E & \text { matched pair for Walnut } \\ \text { matched pair for Mahogany }\end{array}\)
\(\begin{array}{ll}\text { 35E 136-63 } & \begin{array}{l}\text { Door Catch and Strike Plate } \\ \text { 37A 25-2 }\end{array} \\ \text { Door Handle (for upper doors) }\end{array}\)
23D 60-3 Escutcheon, Control (less door)
\(\begin{array}{ll}\text { 23D 60-3 } & \begin{array}{l}\text { with " "I", shaped slot, for flat door spring } \\ \text { 23D } 80-6 \\ \text { with "U" shaped slot, for coil door spring }\end{array}\end{array}\)
```

To insure proper matching and fit, also specify cabinet manufacturer's code letters (usually burned or stamped on the back
rail of cabinet). Wood parts are supplied only if old part cannot be repaired. When ordering describe condtionof

John F. Rider

Schematic for 21DI Television Chassis (16" round tube).

$$
\xrightarrow[2]{430}
$$

Schematic for 3Cl Radio Circuit

ALIGNMENT INSTRUCTIONS ... 15-17 INSTALLATION DATA........ 14 PARTS LIST 19-20 PRODUCTION GHANGES. 15,20 SCHEMATIC 18 TOP VIEW - TUBE LAYOUT. . . 15 TRIMMER LOCATIONS. 16 VOLTAGE MEASUREMENTS ... 15,18 BUILT-IN "ROTO-SCOPE" ANTENNA The built-in "Roto-Scope" antenna is operated by the antenna control lever which extends from the back of the cabinet (near the top). Set the antenna control lever in that one of its three positions (left, center, or right) which gives the clearest picture. When an external indoor or an outdoor antenna is required, be sure to disconnect the built-in Roto-Scope antenna leads from the antenna terminal board, tape them and place them away from the chassis. INPUT IMPEDANCE and TRANSMISSION LINES The input impedance to the receiver is 300 ohm balanced (between antenna terminals). When using 300 ohm transmission line, connect it across both antenna terminals. Input impedance between one antenna terminal and chassis is approximately 75 ohms. When using 75 ohm coaxial transmission line, connect the outer conductor to the chassis and the inner conductor to either antenna terminal; use the terminal which gives the most satisfactory picture on the weakest station. For best performance, use Admiral transmission line (part number 95A22-1 for 300 ohm line, part number 95A22-2 for 75 ohm line). FUSE LOCATION The horizontal output eircuit is fused with a $1 / 4 \mathrm{amp}$, 250 volt fuse, part \#84A4-2. The fuse is located on top of the horizontal output transformer in the high voltage compartment. CHASSIS NOTES Chassis used in the straight TV and combination models differ in that the combination models have a connector socket for supplying power to the radio. Important: If both the radio and television are turned on at the same time, neither unit will operate. PICTURE TUBE HANDLING PRECAUTION Due to the high vacuum and large surface area of picture tubes, great care must be exercised when handling these tubes. Shatterproof goggles and heavy gloves should be worn while handling or installing a picture tube. The picture tube must not be scratched or subjected to excessive pressure as fracture of the glass will result in an explosion of considerable violence which may cause personal injury or property damage. high voltage warning High voltages are present throughout this receiver. Operation of the set outside of the cabinet or with the cabinet back removed involves shock hazard. Exercise normal high voltage precautions while working with this set. Installing the Teleuisian Receiver After the antenna is set properly, make all checks or adjustments given here to insure best performance and ease in tuning. It is especially important that the Channel Slugs and Ion Trap be adjusted upon installation or servicing of every set. For best results, all checks or adjustments should be made using a transmitted television test pattern. A mirror placed in front of the picture tube screen will be of help in observing the picture while adjusting rear panel controls. Removing the TV back disconnects the interlocking line cord; use a separate line cord (part number 89A22-1) when servicing. NOTE: In combination models, if both radio and television are turned on at the same time, neither unit will operate. Be sure to instruct owner on proper operation. TUNE IN A PICTURE Tune in a picture as instructed in the customer instruction leaflet; note illustrations on interference effects. Be sure to check the setting of the auxiliary controls (behind escutcheon door). ADJUST CHANNEL SLUGS Individual channel oscillator adjustment of every receiver should be checked upon installation or servicing. If this adjustment is properly made, it is possible to tune from one station to another by merely turning the CIIANNEL, con-	trol and if necessary, slightly readjusting the TUNING control. With correct oscillator channel adjustment, best picture will be located at the approximate center of the range of the Tuning control. This adjustment can be made without removing the chassis from the cabinet. Adjust as follows: a. Turn the set on allow 15 minutes to warm up. b. Set the CHANNEL knob for a station in operation. Set all other controls for a normal picture. c. Set TUNING control at center of its range by rotating it approximately half-way. d. Remove the CHANNEL and TUNING knobs. e. Insert a $1 / 8^{\prime \prime}$ blade, NON-METALLIC screwdriver in the $1 / 4^{\prime \prime}$ hole (to the right of the channel tuning shaft). For each channel in operation, carefully adjust the channel slug for best picture with clear detail. Be sure that the Tuning control is set at the center of its range before adjusting cach channel slug. Only slight rotation of the slug will be required; turning the slug in too far will cause it to fall into the coil. (If the slug falls into the coil, remove the coil, move the retaining spring aside, lightly tap the open end of the coil until the slug slips out. Replace slug and re-set retaining spring.) Control Panel; CHANNEL and TUNING Knobs Removed. ADJUST THE ION TRAP To prolong the life of the picture tube, it is important that this adjustment be made on each receiver upon installation, or when servicing. Position the ion trap on the picture tube neck so that the BLACK sleeve faces upward. Turn the BRIGHTNESS control (at front of set) for normal brightness. Starting from a point close to the tube base, very carcfully move the ion trap forward or backward and at the same time, rotate it slightly in either direction until maxinum brightness is produced. Turn the BRIGHTNESS control until normal brightness is obtained. Adjust the FOCUS control for good focus. Readjust the ion trap again for maximum brightness. Care must be exercised in adjustment of the ion trap since there may be two locations on the neck of the tube where maximum brightness can be produced. The second ion trap location, which is further forward on the tube neck, should not be used. Important: If the corners of the picture are shaded, be sure the ion trap has been properly adjusted. Do not sacrifice picture brightness when adjusting the ion trap to remove shaded corners. To eliminate shaded corners, sce the discussion under "Check Picture Centering". Be sure to rcadjust the ion trap after adjusting the picture	MODELS 34R15, 34R15A, 34R16, 34R16A, Ch. 20T1, 20V1 positioning lever or repositioning the focus coil. Tighten the ion trap mounting screw after adjustment. CHECK PICTURE TILT If the picture is tilted, loosen the wing screw " H " on the deffection yoke coil and slightly rotate the yoke "E" until the picture is straight. Before tightening the wing screw, be sure that the yoke is moved as far forward as possible, otherwise corners of the picture may become shaded. CHECK PICTURE CENTERING If the picture is off center, it can be centered by using the picture positioning lever, and when necessary, re-positioning the focus coil around the picture tube neck. Follow the instructions given below. Note that the picture Picture Not Centered; Adjust Picture Positioning Lever. positioning lever can be moved sidevays, and up and down. Centering the Picture a. Adjust ion trap as instructed on preceding page. b. Slightly loosen the screw " A " which locks the picture positioning lever to the focus coil, adjust the lever for correct picture centering. c. Readjust the ion trap. Difficulty in Centering the Picture a. Adjust ion trap as instructed on preceding page. b. Slightly loosen the two screws "B" which hold the focus coil to the yoke bracket. Center focus coil around the tube neck; tighten screws. c. Loosen the screw "A" and center the picture with the picture positioning lever. If the picture cannot be centered with the lever, it may be necessary to locate the focus coil slightly off center and then center the picture with the picture positioning lever. d. Readjust the ion trap.

© John F. Rider

Difficulty in Eliminating Shaded Corners

a. Loosen screws " G ", than move the yoke support bracket forward until rubber grommet " F " is firmly against the flare of the picture tube.
b. Push the deflection yoke coil " E " as far forward as possible. In some cases, it may be necessary to loosen the two yoke bracket support screws "D" at the sides of the upper mounting bracket, move the bracket up or down, and then move the deflection yoke coil as far forward as possible
Adjust the ion trap as instructed on preceding page.

Chassis View Showing Adjustment Locatione. SCHEMATIC NOTES
(1). 2 etc. are run numbers and indicate a production

PRODUCTION CHANGES

RUN 1

Condenser C431, 02 midd, 400 volts (part number 61 (is5-24)
was added across width control L 102 to increase width. SUBSTITUTE TUBE (V703) USED IN $3 C 1$ RADIO In some sets a 6 AA6 tube was used in place of the 6 AV'6
(V703) Det-AVC-AF Amplifier. These tuhes are directly interchangeable.

SERVICING TV CHASSIS or RADIO SEPARATELY

In combination models, to service the television chassis with
the radio disconnected, it will he necessary to complete the heater circuit by connecting a junper wire lortween pins "L" and soeket M503. See schematic.
The radio can be operatell without the elevision chassis if a 1PA2 power supply used with the 4S1 radio) or 2PA1 power ble. Connect a 3,000 ohm 5 watl re sitor (part number 61A1-15) from re M" to " N " on the power supply socket.

Socket, Rear Vie

TV VOLTAGE DAT

(Voltages given on schematic diagram)

- PICTURE control turned fully clockwise. CHANNEL con trol set on an unused channel. Other front controls. set a
approximately half rotation. Vert. Lin. and Height set a approximately half rotation
- Voltages marked with an astrrisk * will vary widely with control setting. In combination models, $\mathrm{B}+$ voltages in TV chassis will le
stightly higher when set is switched to radio position. Alternate voltage readings for radio and TV are shown for sound Line voluge 117 vols AC
- Line voltage 117 volts AC. - Voltages measured with a vacuum tulle voltmetter hetween tube Voltages at V10, V102, V306 measured from top of socke
with tube renioved. with tube renoved
- Antenna disconnected from set with terminals shorted.
- Under operating conditions, AGC (Automatic Gain Control)
voltage developed at test point "T" (see schematic) measure approximately -2.5 volts. This voltage depends on signal strength. CAUTION
Pulsed high voltages are present on the cap of the 6BQ6GT tube, and on the filament terminals and cap of the 1B3GT tube
NO ATTEMPT SHOULD BE MADE TO TAKE MEASURE MENTS FROM THESE POINTS UNLESS SUITABLE TEST EQUIPMENT IS AVAILABLE.
Picture tube 2nd anode voltage can le measured from the 2nd
anode connector and should be takien only with a high voltage instrument such as a kilovoltmeter. 2nd anode voltase
 tulee may be made by observing filament brilliancy as compare.

RADIO VOLTAGE DATA

(Voltages given on schematic diagram)

- Line voltage 117 volts AC.
- Voltages measured with a vacuumi tulie voltmeter, between tube terminals and chassis
- Volume control set at minimum.
- Dial turned to low frequency end.

Top View of Chassis.

IMPORTANT

This preliminary service data contains the complete chassis parts list for models using the 20T1, 20 V 1 4R16. 4R16. It contains alignment data for the television chassis. Model RC550 record changer is used
This TV chassis uses a 14" rectangular tube. The IF and sweep circuits are similar to the circuits in $24 \mathrm{G} 1,24 \mathrm{H} 1$ chassis.
The intercarrier sound has been improved by taking the 4.5 MC sound IF from the video detector through an improved sound take-off coil. Adjacent channel interference has been minimized by the addition of an ad 4.5 MC beat interference

TELEVISION ALIGNMENT PROCEDURE

IF AMPLIFIER ALIGNMENT

a. Before starting alignm
is mounted to chassis.
b. Disconnect antenna and connect a jumper across antenna erminals.
Set receiver to channel 13 or ocher unassigned high
channel to prevent signal interference during IF alignment.
Allow about 15 minutes for receiver and test equipment to warm up.
To service TV chassis with radio disconnected, complete the heater circuit by connecting a jumper from pin "I,"
Io "Kin of socket M503. See schematic.

Step	Signal Gen. Freq. (MC)	VTVM ond Signal Generator Connections
1	25.3	VTVM high side to test point " T ", common to chassis.
2	23.1	Connect generator high side to 6 J 6 (V102) tube shield; insulate shield from chassis. Connect common to chassis near 6 J 6 tube base.

Instructions	Adjust
Use VTVM 3 volt DC scale. When peaking, keep reducing generator output for VTVM reading of ap. prox. 1 volt or less.	Al and A2 for maximum.
	A3 and A4 for maximum.

To insure correct IF alignment, make the "IF Response Curve Check" given below, or make the "Overall RF
and IF Response Curve Check (Step l)" given later. The overall check should be made after making all other andignments.

IF RESPONSE CURVE CHECK

(Using sweep generator and oscilloscope with sweep input to RF Mixer V102.)

Differences in tube gain and component values affect IF re-
sponse. These differences are not apparent in alignment of IFs sponse. These differences are not apparent in alignment of IFs
when wsing a signal Eenerator and VTVM (single frequency when using a signal eenerator and that an IF responsequency
alignment); hence it is preferable the
check be made after completion of the IF amplifer alignment. check be made after completion of the IF amplifier alignment.
The IF response curve check can be made as indicated diThe IF response curve check can be made as indicated di-
rectly belowe however, also note that a better check can be
made by feeding the swieep signal through the entire RF and
 1F systent as given under "Overall RF and IF Response Carve
Check (Step 1)". The overall check should be made after
naking all other alignments.
a. Make all control settings and connections as given in the IF b. Connect oscilloscope between poin " "V" and chassis ground
through a decoupling filter; see fig. 29 . Keep leads away from way from c. Connect sweep generator high side to tube shield of 6 J 6
(V102) occ-mixer tule. Be sure to insulate tube shield from chassis. Connect sweep generator common to chassis close to
6 J 6 tube base. Set sweep generator to sweep the IF band pass (19 to 29 MC).
d. Loosely couple marker generator high side to the sweep gen.
erator lead connected to tube shield on tuner common to chassis ground.
To avoid disto
To avoid distortion of the response curve, keep the sweep
generator and marker generator outputs at a very fenerator and marker generator outputs at a very minimum.
Marker pips should be just kept barely visible. To minimize
distorion, set sweep yenerator output for VTVM reading of and chassis. Connecting a $1 / 2$ volt battery (negative to test point " T " positive to chassis) will allow greater signal input
without distoring the response cure Check curve
shown in fige obre 28ined against the ideal IF response curve
curves. is is not always possible to get ideal curves, it should be noted that the height of opposite peaks
should be wold in the be within 3 db or 30% of each other. The dip or valley
30% of the curve should 30% down from the curve should not be greater than 3 db or
and sound the of the curve. Check video and sound 1 F carrier poingtst beak of theans of curve. Check video
is important that marker pips be in in the perat. It resportant that marker pips be in the properer locanean on the the
rearv. The 25.75 MC marker, should be 6 db below response curve. The 25.75 MC marker, should be 6 db below
the highest peak 150% point on the high frequency side of the curve). The 22 MC mank on the high rrequency side of
of the response curve, located approximately opposite side
side
 may or may not be visible. markers, the response with proper band widd and correct location of mplitude, symmetry, and flat top appearance.
response procedure given has been carefully followed and the Ggure 28 , repeat the IF Amplifer ally from the curve shown in erator
niade. erator
niade.
© John F. Rider

After becoming familiar with alignment procedure, some servicemen simplijy subsequen
alignment of sets by merely using the essential alignment data given in figures 29 and 30

masueso ceor menest pea
Figure 28. IF Response Curve.

© oecoupling flter shown in ootteo lines
Figure 29. Bottom View Showing Test Point "V".

igure 30. Top View of Chassis Showing Alignment Adjustment Locations

4.5 MC SOUND IF ALIGNMENT

a. Disconnect antenna and connect a wire jumper acruss
antenna terminals.

Connect signal penerator high side to point ") through
a .01 mfd . condenser.
d. Allow about 15 minutes for receiver and lest equipment to

Step	Signal Gen. Freq. (MC)	VTVM Connections	Instructions	Adjust
	Since the transmitted video and sound carriers have an accurate 4.5 MC frequency difference, a TV station signal may be used instead of a signal generator for alignment of strps below. When using a television signal, it may be necessary to use a higher scale on the VTVM. IMPORTANT: When using a signal generator, be sure to check it against a crystal calibrator or other frequency standard for accurate frequency calibration at 4.5 MC . Accuracy is required within one kilocycle.			
1	44.5	To test point ' ${ }^{\prime}$ '	lise 3 volt DC seale on VTVM. Keep VTVM leads well separated from signal generator and chassis wiring.	A5 and A6 for maximum (keep reducing generator output to keep VTVM at approx. I volt).
2	+4.5	To test point ' \mathbf{Z} '	Use 3 volt zero center scale on VTVM, if available. Keep VTVM leads well separated fron signal generator and chassis wiring.	**A7 for zero on VTVM (the correct zero point is located between a positive and a negative maximum).

(se a NON METALLIC alignment toor. If Ratio Det.
Transformer (T201) has hollow core slugs, bottom slug ad Tuastment A7 can be made from top of chassis, if you use alignment tool \# $\$ 8$ A30.7 obtainable from Admiral Dis trituror. Butom slug (A7) can be reached through the
To service TV chassis with radio disconnected. complete To service TV chassis with radio disconnected. complete
the heater, circuit ly connecting a jumper from pin "L"
to pin "K" of sorket M503. See schematic.

ALIGNMENT ADJUSTMENT IDENTIFICATION

Adj.	Symbol	Frequency	Function	OSCILLOSCOPE NOTE
AI	T303	25.3 MC	3rd IF Transformer	
A2	T301	25.3 MC	Ist IF Transformer	In dealing with RF and IF response curves, it is well
A3	T302	23.1 Mc	2nd IF Transformer	to remember that an inverted or mirror image may re-
A4	L103	23.1 MC	Mixer Plate Coil	sult, depending on the sweep generator and oscilloscope
A5	r201	4.3 MC	Primary of Ratio Detector Transformer	used. The general waveform should still be identical.
${ }^{46}$	1.201	5 Mc	Sound Take-off Coil	When using a wide band oscilloscope for alignment.
AF^{7}	T201	4.5 Mc	Sccondary of Ratio Detector Transformer	marker pips will be more distinct if condenser from 100 to $1,000 \mathrm{mmfd}$. is connected across the oscilloscope input.
48	C102		Trimmer (RF Amplifier)	Caution: I'se the lowest capacity condenser possible,
49	C104		Trimmer (RF Amplifier)	since too high a capacity will affect the shape of the
A11	$C 107$ $C 110$			response curve.
A12	1.102		Slug, HF Oscillator Coils	
A13	1.306	4.5 Mc	Trap Coil	

OVERALL RF and IF RESPONSE CURVE CHECK (Step 1)

 and HF OSCILLATOR ALIGNMENT (Step 2)(Using sweep generator and oscilloscope.)
a. Disconnect antenna
b. Disconnect signal generator and VTLM (if used earlier) Set the Tuning control at half rotation by rotating it
approximately 150° as shown in figure 32 .
d. Connect sweep generatur to antenna terminals. If sweep couple a marker generator to the antenna terminals. avidid distortion of the responsc curve, keep sweep gen. erator output at a minimumse marker pips just barely
visible. Connecting a $1^{1 / 2}$ volt battery (negative to test

Step	Marker Gen. Freq. (MC)	Sweep Gen. Frequency
1	While sweeping the RF band cure obtained againt the ide necessary in repeat the the Am lator adjustment can be made.	
2	See channel frequency table on	
previous page.		

Check need for oscillator alignment by comparing the response curve ob ained (Ior each channel operating inl service area) with the "Overall the video and sound markers should locate at the points shown on the re. sponse curve. The Tuning control mat be at half roation (see figure 32)
when making this check. If a major number of channels are far off in the same direction, make the
overall oscillatur ad overall oscillator adjustment A11. (Touch-up of individual channel slugs A12
may also be required.) may also be required.)
If only individual chann
lug A12.
Make all oscillator adjustments so that the video and sound marker pips ap. pear at the proper points on the response curve. Important: Before making
oscillator adjustments, be sure that the Tuning control is set at half rotation; see figure 32. Only slight rotation of the slug (A12) will be required; turning
the slug in too far will cause the slug to fall into the coil. (If an oscillator the slug in too far will cause the slug to fall into the coil. (If an ossillator
slug should fall into a coil, remove the coil, move the slug retaining spring
side, lighty tap the open end of the coil against a solid object until aside, lightly tap the open end of the coil against a solid object until the slug
slips out. Replace slug and set the slug retaining spring into its cut-out slot.)

Fig. 32. Front View of Tuner

point "T"; positive to chassis) will all input without distorting response curve.

 input without distorting response curve.Connect oscilloscope between point "V" and chassis ground
through a decoupling filter (see figure 29). Keep oscillo. scope leads away from chassis.
f. Allow about 15 minutes for receiver and test equipment to
warm up.
warm up.
g. When adjusting A12, use a No.
h. To service TV chassis with radio disconnected, complete To service TV chassis with radio disconnected, complete
the heater circuit by connecting a jumper from pin "L" to
pin " K " of Socket M503. See Schematic.

Instructions

4.5 MC TRAP ALIGNMENT

A 4.5 MC trap coil (L306) is used in the cathode circuit of the victure tube to minimize 4.5 MC bea
interference which might appear in the picture. have an accurate 4.5 MC frequency difference, it may be preferable to use a TV station signal instead of a signal generator for this alignment. When using a television signal, it may be necessary to use a high
er scale on the VTVM.

When using a signal generator, be sure to check it against a crystal calibrator or other frequency standard for accurate frequency calibration at 1.5 MC
a. If using a signal generator for this alignment, dis connect antenna and correct a wire jumper across antenna terminals. Set receiver to an unassigned channel to prevent signal interference.

Allow about 15 minules for receiver and test
equipment to warm up.
d. If using a signal generator, connect generato high side to test point " V " through a . 01 mfd . condenser; common to chassis. Signal may be un-
modulated or AM modulated. Full generator outmodulated or AM modulated. Full generator out-
put may be required for this alignment, put may be required for this alignment,
e. Connect a 15 mmfd . condenser from tie point connecting to yellow lead (terminal 11) of V306 to

R201). HORIZONTAI
 CILLATOR ALIGNMENT

This adjustment should not be required unless it is mpossible to obtain horizontal sync with the "Horizontal Frequency and Horizontal Lock-In Range Adjustment" given in the "Installation and Service Notes 149-14, 20 V 1 Television Chassis", Form No.

NOTE: This adjustment requires the use of an os cilloscope, preferably one having a high input resist-
ance and low input capacity. Making this adjustment ance and low input capacity. Making this adjustment without an oscilloscope may result in poor horizontal sweep stability.
Adjust as follows:
a. Allow receiver to warm up for a few minutes
. Sync the picture horizontally with the HORIZONTAL control (on front panel); if necessary, adjust the HOR. LOCK-IN RANGE or HOR. FREQ. adjustments as required. If these adjustments have bee greatly disturbed from the original setting, the
approximate setting for the HOR. LOCK adjustment L401 (underside of chassis) is about onequarter to one-half of its range in from its fullout position; the approximate setting for the HOR. LOCK-IN RANGE is about one-third turn out from its full-in position; the approximate setting of the HOR. FREQ. is about five to fifteen turns in from its full-out position
. Connect oscilloscope high side through a 10 mmfd . condenser to terminal "C" or " 2 " on the HorizonSet oscilloscope to horizontal frequency (15.75 KC) or a sub-multiple of it.
d. Tune in a station (preferably one with a test pattern). While keeping the picture in sync, adjust chassis) for oscilloscope waveform pattern as illustrated. Adjust for equal height of rounded and pointed peaks. Disconnect oscilloscope after adjusting waveform.

Horizontal Oscillator Waveiorm loading effects.
. Connect VTVM high side to test point "Y"; common to chassis. Keep VTVM lead separated from generator and chassis wiring.
g. Using a NON-METALLIC alignment screwdriver carefully adjust slug A13 for minimum VTVM reading.
e. Turn the HORIZONTAL control fully to the left carefully adjust the HOR. LOCK-IN RANGE ad justment until 6 to 10 diagonal bars (of the type
shown in the illustration "Picture zontal Sync") are visible on the screen.

Picture Out of Horizontal Sync

1. Turn the HORIZONTAL control fully to the right: he picture should fall in sync, If it does not fll in sync, repeat adjustment in step " e ". With he Horizontal control set fully to the right, turn he HOR. FREQ. adjustment out (to the left) until ly turn it in (to the right) until the Then very slowsync. If "bending"' appears at top picture falls in illustration), correct by very slowly turning the HOR. FREQ. adjustment to the right until the ending is removed. If bending is excessive and eannot be removed with HOR. FREQ. adjustment, epeat all steps above but in step "d", adjust osilloscope waveform so the rounded peak is from orm or higher than the pointed peak of the wav

When the above adjustments are properly made he picture should hold horizontal sync through at east half-rotation of the Horizontal control.

Bending" At Top of Picture

Schematic for 20T1, 20V1 Television Chassis; 3Cl radio circuit and connections also shown.
RECORD CHANGER: Model RC550, See Pages
RCD.CH.21-9 through RCD.CH.21-16.

PRODUCTION CHANGES
MODELS $34 R 15,34 R 15 A, 34 R 16$
Some brands of $6 S 4$ tubes do not have an internal connection between pins 3 and 6 . When replacing the 654 tube in an early production 20 Vl chassis it may be necessary to connect a wire jumper from terminal 3 to terminal 6 of the tube socket, or the result will be no vertical sweep. This jumper is in all late production 20 ll chassis and in all $20 T 1$ chassis.
RUN 2 IN 2OVI CHASSIS
Sync buzz and plate dissipation in the 20Vl chassis can be reduced by replacing R213, 270 ohm , 1 watt resistor with a 330 ohm , 1 watt resistor (part number 60B14-331) 2OVl chassis having this change are stamped run 2 or higher. All 20 Tl chassis will have this change.

Picture Window and Control Escutcheon Difference in Models $34 R 15$, $34 R 16$, and $34 R 15 \mathrm{~A}$, $34 R 16 \mathrm{~A}$

The picture window and the control escutcheon used in models 34 Rl 5 and 34 Rl 6 are different from those used in models $34 R 15 A$ and 34R16A. Since the different picture windows and the control escutcheons are not interchangeable, it is important that correct replacement be ordered.

Order these parts from the parts list below. To avoid possibility of ordering incorrect replacements, either modify or cross out the listing for these parts in the parts list.

> Escutcheon, Control (less door)
> for 34 Rl 5 , $34 \mathrm{Rl} 6 \ldots23 \mathrm{C}$.........28-1
> for $34 R 15 A, 34 R 16 A .23 D ~ 71-2$
> Escutcheon Door
> for $34 R 15$, $34 \mathrm{Rl} 16 .23 C$. $58-2$
> for 34R15A, 34R16A.....................23D 71-3
> Spring, Escutcheon Door
> for 34R15, 34R16........................18A 41
> for 34R15A, 34R16A
> left side, facing front..........19A 65-2
> right side, facing front.........19A 65-1
> Window, Picture
> for $34 R 15$, $34 R 16$........................ $23 D 69$
for 34R15A, 34R16A......................23D71-1
REPLACING PICTURE TUBES IN 20 V 1 CHASSIS
Due to the difference in manufacturing tolerance between various brands of picture tubes, it may be found that replacing one brand with another will result in too much brightness, even with the brightness control turned fully off.

This may be corrected by connecting a $470 \mathrm{~K}, 1 / 2$ watt resistor (part number 60B8-474) across condenser C308 (.1 mfd).

The resistor places a negative bias on the video amplifier tube V305 and decreases the current through this tube. By connecting the resistor across C308 instead of between the grid of the video amplifier and ground, the DC reinsertion is also improved.

The 470 K resistor is included in current production 20 Vl chassis, commencing with run 3 , code OP.

All $20 T 1$ chassis will have this resistor.

Form 4IA9-14 lists the part number for the video peaking coil L305 as 73A5-6.

INDEX

PAGE

ALIGNMENT INSTRUCTIONS . . .	4
CIRCUIT DESCRIPTION	1
PARTS LIST	7
RESISTANCE MEASUREMENTS .	6
SCHEMATIC	7,9
SPECIFIGATIONS	1
TOP VIEW - TUBE LAYOUT. . .	4
TRIMMER LOGATIONS.	5
TROUBLESHOOTING	5
VOLTAGE MEASUREMENTS . . .	6
WAVEFORMS	6

CHARACTERISTICS

Antenna impedance
300 ohm input

Picture area
150 sq. inches
$141 / 4^{\circ}$ by $103 / 4^{n}$

Speaker
4 by 5 oval PM
Voice coil impedance

Dimensions
3.2 ohms - 400 cycles
$20 \frac{1}{2} "$ high
$23^{\prime \prime}$ wide
$20^{\prime \prime}$ deep
Tube complement
18 tubes - 2 rectifiers
(see parts list for
individual tubes)

Power consumption
I-F frequencies
Video - 25.1 wc.
Sound - 21.5 mc .
Audio strio - 4.5 mc.

Power Supply
117 volts, 50 cycles, AC

180 Watts

The tubes are 5BHS, RF amplifier, SAG5, converter, and SJS oscillator. The 5BH6 RF stage has a grid-cathode 300 ohm balanced input. The RF pass band is achieved by an overcoupled, double-tuned, interstage network uhich feeds the $5 A G 5$ converter. The 5.Js is a push-pull oscillator of exceptional stability.

All oscillator adjustments are available from the front, and with the exception of channel 2 (which must be adjusted first) they are all independent. The vernier tuning mechanisu is extremely rugged and simple. The pass-band of all RF channels is raintained above 75% relative response between picture and sound carriers

The Video System

Three video i-f amplifiers, V-I, $V-5$, and $V-6$, each a $6 A U 6$ tube, sre emnloyed. (The schematic, Fig. 9, should be consulted while reading the rest of the circuit analysis.) Four staggeredtuned iff transformers, L, LK, LQ, and tuned i- transformers, sary bandwidth. Both the video and sound i-i signals are passed through this complete amplifier section which functions as a combined $1-f$ system. There is no separation of the sound i-f signal from the video i-f signal, and they are both fed directly into $V-7$, the video detector. This is the basis upon which the intercarrier system operates. The over-all response of the $1-f$ sec tion is such that the amplitude of the sound $1-f$ carrier is a very small per-
centage of the video $i-f$ carrier when they are both fed to the video detector, which is one half of a GAL5 tube. No sound traps are employed. Response shaping is discussed in the alignment section.

The video detector considers the sound i-f signal as a high-frequency sideband of the video i-f signal and detection occurs in the normal manner. The sound and video i-f carriers can be considered as beating together inside the video detector. The carriers of these two i-f signals are always sepaated by 4.5 mc , so that after detection their difference frequency of 4.5 mc appears in the output of the video detector. This $4.5-\mathrm{mc}$ beat note contains all of the $f-m$ characteristics f the input $f-m$ sound i-f signel and very little a.m. effects. It is the amplitude relationship between the two input i-f signals that determines the character of the $4.5-\mathrm{mc}$ output signal.

The $4.5-\mathrm{mc}$ f-in signal as well as the video signal output from the detector is directly coupled to the grid of V-3, a SAC7 video amplifier, through an L-R high-frequency compensating network. In this manner, the $4.5-\mathrm{mc}$ signal receives additional amplification. In the plate of the video amplifier is the primary parallel-tuned circuit of a double-tuned $4.5-\mathrm{mc}$ transformer, L2, which selects the $\mathrm{f}-\mathrm{m} 4.5-\mathrm{mc}$ signal to be fed to the sound section of the receiver. The video signsl output is fed directiy to the grid of the picture tube V-lo, through peaking coil L3 and capacitor C223.

AGC and Contrast

The video $1-f$ signal output from the third video $1-f$ stage, $V-6$, is fed to the plate, pin 7, of the other half of the 6AL5 tube, V-7, which serves as a delayed AGC rectifier. The AGC voltage is supplied to the $r-f$ and first and second video i-f amplifiers. A small positive voltage on the cathode of this diode prevents rectification of the video i-f signal until the i-f signal voltage on the diode plate exceeds whatever voltage is on the cathode. The contrast control, PD4, which is in the cathode circuit of the video amplifier, V-3, besides controlling the bias and hence the gain of this stage, also controls the amount of delay voltage on the cathode of the AGC tube. The influence of the contrast control is such that the delay voltage will be greatest at the time the gain of the video amplifier is greatest. This makes for a better over-all control of the picture contrast.

The Sweep and Sync Circuits

One half of $V-9$, a $12 A U 7$ tube, serves as the $d-c$ restorer and sync clipper. The sync voltage output from this section is fed to the grid of the other half of V-9, which functions as a sync amplifier to the vertical sync pulses and as a phase splitter to the horizontal sync pulses. The positive sync output signal is taken directly from the plate, pin 6 of $V-9$, and applied to an integrating network which consists of C301, R301, C302, R302, and C303. This integrating network separates the vertical sync pulses from the horizontal and applies the former to the grid circuit, pin 1 , of the vertical sweep osciliator, V-13. This latter circuit utilizes one half of a 6SN7-GT tube as a blocking oscillator. The other half of $V-13$ functions as the vertical sweep output amplifier. The output from this amplifier feeds into the vertical output transformer, T4, and then to the vertical deflection joke.

The l-megohm potentiometer (of dual-control unit PD5) in the grid circuit, pin l, of the vertical sweep oscillator, controls the frequency of operations and is termed the VERT. HOLD control. The VERT. LINEARITY control is the 5000-ohm potentiometer, P2, in the cathode circuit, pin 6 , of the vertical sweep output amplifier. The VERT. SIZE control is a 2.5 -megohm potentiometer, $P 5$, located in the $B-s u p p l y$ lead to the plate of the vertical sweep oscillator.

The type 6SN7-GT uube, $\mathrm{V}-14$, which is the horizontal sweep oscillator, is employed as a combined cathode-coupled sine wave oscillator and multivibrator. The output from the plate, pin 5, of this oscillator is coupled to the grid of $V-15$, a $6 B Q 6 G$ tube serving as the horizontal sweep output amplifier. The output from the plate of this latter tube is fed to tap 2 on the primary of the horizontal output transformer, T5. From the high side of the primary of this transformer, tap 3, the horizontal sweep signal is fed to the plate of V-16, a lB3-GT tube, serving as the high-voltage rectifier. This rectifier is employed in a kick-back type of high-voltage power supply, which supplies voltage for the second anode of the kinescope.

The horizontal deflection cirOuits used in this set are desifned
for a kinescope of 70 depree defiecfor a kinescope of 70 derree deflec-
tion angle. This is a highly efficient systersemploying nem compowith parts used in previous systems.

The secondary of T-5 (ferrite core) consists of taps 4, 5, 5, and tion yoke. A SW4 tube, V-17, serves as the borizontal damoer. From the econdary windine of the horizontal is applied to the cathode and plate (pins 1 and 2) of the horizontal phase detector, V-11, through an inThegrating network of R327 and C322. V $\begin{aligned} & \text { phase splitter are applied to the }\end{aligned}$ other cathode and plate of the horizontal phase detector, and these sync pulses are compared with the
phase of the horizontal sween innut If their phases are different, an
AFC roltage is develoned across R323
and then applied to the gridípin
of the horizontal smeep oscillator.

AR-16-RO, AR-16-TR, AR-17-CD
AR-17-CR, AR-17-RO, AR-17-3D
The 50,000-ohm potentiometer, PDS, in the grid circuit, pin 4 , of $V-14$, regulates the horizontal sweep frequen cy and is called the HOR. HOLD control, and trimmer capacitor C325 between V-1l and $V-15$ is the HOR. DRIVE control. Coil L2l in the cathode circuit of the horizontal damper tube $V-37$ is the HOR. LINEARITY control and coil L20 across taps 5 and 6 of the horizontal output transformer functions as the horizontal WIDTH control.
The Sound Section
The $4.5-\mathrm{mc}$ f-m signal from the secondary of the takeoff transformer L2 is fed to the grid circuit of the ratio detector driver and limiter, $V-3$, a GAUG tube. The output from this driver tube feeds the primary of the ratio detector transformer Ll, which is tuned to 4.5 mc . The double diode section of a 6T8 tube, $V-2$, is used as the ratio detector, and the triode section of this same tube is used as the first audio amplifier. The 500,000-ohm potentiometer P7 in the output circuit of the ratio detector is the VOLUME control. The output from the first audio amplifier is R-C coupled to the grid of $\mathrm{V}-1$, a $G A Q 5$ tube which is the audio output amplifier. The audio signal output from this latter stage is fed to the audio output transformer, Tl , and then to the speaker.
Power Supply and Voltage Regulation
The low-voltage supply incorporates a 5U4-G tube, V-l2, as the rectifier. Coil Ll7 in the output filter system is the focus coil and connected across this coil is the FOCUS control, P6, a 1500-ohm potentiometer. This low-voltage power supply provides a positive 360 -volt B-plus source and a negative $2-1 / 2$ volt bias supply. For the $r-f$ and $1-f$ section of the receiver the 360 -volt output is decreased to 140 volts for the screens and plates of these tubes while the cathodes are returned to chassis ground. The 360-volt
supply is used directly for the deflec tion circuits and olso for the plates and screens of the tubes in the sound section. However, the cathodes of these audio tubes are connected in series with the B supply for the $r-f$ and -f tubes, which means that the cath odes of the audio section are 140 volts positive with respect to ground. Thus, the effective B supply betiveen the plate and cathode of the tubes in the plate and cathode of the tubes in the
sound section is 350 less 140 , or 220 sound
volts.

The interesting thing about the SAQ5 tube circuit, $V-1$, is that it functions as a series automatic voltage regulator for the 140 -volt supply and prevents any current variations in the $r-f$ and $i-f$ circuit from changing this voltage. The grid of the JAQS tube is connected to the 350 -volt supoly through a voltage divider. A
positive voltage of 123 volts is applied to the grid, but since the cathode is 40 volts positive, the grid has an effective bias of -17 volts. Any change in the $1!40$ volts will tend to change the bias of the GAQ5 tube. This, in turn, will cause the tube current to change, which means that the olto change, which the ons that the will ilkewise vary. This voltag load will be such that it will tage drop cathode back to the $1 l_{1} 0$ volts.

For instance, if the voltage in creases beyond 140 volts, the bias on the SAQ5 tube will become more negative. Less current will flow in the tube and a smaller voltage drop will occur across the complete cethode load. This decrease in vcltage drop will be just enough to offset the previous inarease in the cathode voltage.

FUNCTIONING OF CONTROLS

The controls of the receiver are divided into two groups, the front panel operating controls and the rear panel pre-set controls.

FROITT PANEL OPERATING CONTROLS
There are seven front panel operating controls as indicated in Fig. 1, each operating independently of the other. Reading from left to right, the controls and their functions are as follows:

On-Off and Volume

This is a single control. The knob should be turned clockwise, until a click is heard. This supplies a.c. to the receiver. Further clockwise rotation of the control varies the input to the audio amplifier, and, consequently, controls the volume of sound output.

Vertical Hold

This control functions to keep the picture stationary in the vertical direction. Electrically it is a variable resistor which controls the frequency of the vertical sweep oscil. lator.

FIG. I- OPERATING CONTROLS

Horizontal Hold
The function of this control is

Vertical Linearity

o k This control is a variable re to keep the picture stationary in sistor in the cathode circuit of the the horizontal direction. It is a vertical sweep output tube. Manipu variable resistor which affects the lation of this control affects th frequency of the horizontal sweep upper portion of the picture.
ascillator.
Brightness
This control, which is also a variable resistor, affects the cathode oltage on the kinescope, thereby regulating the brightness of the picture.

Contrast

FIG.2-PRE-SET CONTROLS

The contrast control provides a means for varying the relative intensities of black and white in the picture. Advancing this control toward excesisive contrast will intro duce a loud buzz.

Station Selector

This control permits selection
of the channel desired.

Fine Tuning

This control varies the frequency of the $r-f$ heterodyne oscillator. It is adjusted for best picture quality and is not used to tune in the sound.

REAR PANEL PRE-SET CONTROLS
There are six so-called pre-set ontrols at a six so called pre-se as indicated in Fig. 2. They are all screw driver adjustments. Th SOUND DISC. is the alignment screw for the secondary of the ratio de-
tector transformer Ll, and is not considered a pre-set control.
ertical Size
The vertical size control varies he plate voltage of the vertical sweep oscillator. It primarily cause it also interacts with the vertical inearity so that these controls must be used in conjunction with each other.

Horizontal Oscillator Frequency

This control is a slug adjustment for Ll8 which controls the frequency of the horizontal oscillator. To set this control properly, connect an antenna to the receiver and tune in a station, preferably one with a test pattern on the air. Center the horizontal hold control. Adjust the Ll8 slug until the picture locks in et the horizontal hold control in the rull clockwise position and slowl the rull clockise position and slowl otate it in the picture calls int ust before the pleture falls int sync, 3 or 4 black and white bar the right. Repeat the process, but with the horizontal hold control in The rull counterclockwise position. except that the bars will slope downwaid to the left. $A R-14=T R, A R-16-C R$,
MODELS AR-16-RO, AR-16-TR, AR-17-CD,

If the sloping bar effect is as stated, then the picture should remain in sync over 1/4 rotation of the horizontal hold range and drop out of sync on either end of this range.

Horizontal Drive

This trimmer capacitor affects the height of the horizontal pulse, varying the horizontal linearity principally on the left side of the picture.

Focus

A variable resistor which controls

ALIGNMENT PROCEDURE

Test Equipment

The test equipment required for the alignment of this receiver is as follows:

Marker Generator (RCA WR-39A, or equivalent)
Sweep Generator (RCA WR-59A, or equivalent)
Oscilloscope (RCA WO-55A, or equivalent)
VTVM (RCA Junior Voltohmyst, or equivalent)
Volt-Ohmmeter (Simpson 260, or any 20,000 ohm-per-volt meter)

The marker generator is an $r-f$ signal generator used for peaking the i-f coils and also to supply mariker pips on the response pattern. The required frequency range or this generator is approximately from 20 to 30 mc and must also have provision ror a 4.5 mc output. The accuracy of the frequency calibration of this generator is very important. It must also have provision for an amplitude modulated, as :vell as an unmodulated, $r-f$ output.

The sweep generator has its output continually variable in frequency. In this alignment, only one output sweep signal is needed, that sweeping between 20 to 30 mc

The oscilloscope used is a hightain, general purpose type employed for test purposes. The size of the screen is unimportant.

The VTVM is of the standard type with a high input impedance. It should have provision for $a-c$ and $d-c$ measurements. A 20,000 ohm-per-volt neter should be used for $d-c$ indications if the VIVM aan only measure a.c.

Alignment.

For the alignment points refer to the figure indicated in the discussion. Most of the adjustments are located on top of the chassis. The $r-f$ marker generator is used in The ring most of the alifnment adiustmaking most of the alignment adjustnents. it is recommended that the order of alignment in the following procedure be adhered to if alignment is found necessary. The ground leads of the test instruments should be
connected to the receiver chassis.
the current flow through the focus coil on the neck of the tube.
Width
This slug adjustment inside the high-voltage cage affects the right side of the horizontal axis. The secondary winding of the width coil is used to feed back a comparison voltage for synchronizing the AFC horizontal hold circuit.
NOTE: There are no horizontal or vertical positioning controls. Centering of the picture is accomplished by positioning of the focus coil. The deflection yoke should be placed on the neck of the tube as far forward as possible.

26.1 mc is approximately halfway down the right hand slope, and that the Connect the VTVM (a-c scale), sound $1-f$ carrier of 21.6 mc is 20 or oscilloscope to the grid of the times down at the other end of the kinescope at the junction of C223 and curve.
R222. (Do not attempt to take readings with the VTVM at the video detector. Adjust the contrast control about $1 / 8$ turn below its maximum setting. Connect the output of the signal generator (marker) to the nipple on top of the GAG5 mixer tube of either tuner.

Set the generator at 25.5 mc , amplitude-modulated at approximately 400 cycles, and adjust the first and third video i-f coils for maximum response. For those recelvers employing tuner TT-l, the firet video i-f coil is L L as indicated in Fig. 3(A). When tuner TT-3 is used, the first video $1-f$ coil is LV-S and is incorporated in the tuner and not the receiverproper, as shown in Fig. 3(B). output lead to the junction of Ll3 amplitude-modulated, and tune the $V-7$, and video amplifier V-8. Set second and fourth video 1-f coils, L6 the generator to a $4.5-\mathrm{mc}$ unmodulated and Ll2 respectively, for maximum re- signal output. Connect the VTVM (d-c sponse. Repeat the above process for scale) or the 20,000 ohm-per-volt fine adjustments of settings.

Over-all Picture Response

With the sweep generator adjusted or a lo-mc sweep, using a center frequency of about 25 mc , connect the generator to nipple of the GAGS mixer tube of either tuner. Loosely couple the marker generator to the same mixer tube. The oscilloscope should remaln at the grid of the kinescope. Inject individual markers of $26.1 \mathrm{mc}, 25.6$ $\mathrm{mc}, 22.5 \mathrm{mc}$, and 21.5 mc in the order Indicated and note positions of marker pips on response curve. Turning the adjustments very slowly, retune the four video i-f coils again for an over-all picture $1-\mathrm{f}$ response as
indicated in Fig. 4 . indicated in Fig. 4.
NOTE: A 30% variation in amplitude between peaks and from peak to valley, of the response curve is permissible. The most important considerations here FIG. 5-BOTTOM VIEW SHOWING ALIGNare that the video i-f carrier of MENT POINTS FOR LI AND PRIMARY OF L?
of the ratio detector, V-2. (Remember that the negative lead at this point is actually above -140 volts with respect to ground.)

Adjust the following for maximum reading on the meter in the order indicated. The primary of Ll (the ratio detector transformer), the adjustment of which is shown in Fig. 5. Next tune the secondary of Ll; this adjustment, shown in Fig. 5, is
also shown in Fig. 2 and indicated as SCJND DISC. Then adjust the primary L2, the 4.5-mc takeoff transformer; see Fig. 5. Next adjust the secondary of L2, shown in Fig. 3. Decrease the
signal output from the generator tc the minimum required to give a readable deflection on the meter and then repeat the sound alignment process.

After the alignment is complete, remove the generators and meters. Tune in a station. Turn up the contrast control until a buzz is heard. Adjust the secondary of the detector transformer (see Figs. 2 and 5) for minimum buzz.

NOTE: Alignment of the $\mathrm{r}-\mathrm{f}$ and oscillator sections are not recommended and are therefore not included. If any misalignment of these sections is suspected, consult the manufacturer.

SERVICE NOTES

No Raster

Defective picture tube or misadjusted ion trap magnet.
No high voltage. Check tubes. V-14, $\mathrm{V}-15, \mathrm{~V}-16$, and $\mathrm{V}-17$
Check horizontal output transformer, Tlll: and also check C338, R326, and R338.
Check all voltages and waveforms in sweep section. Do not check voltage directly on plate of $V-16$.

Raster Present -- No Sound or Picture
Open transmission line.
Defective tube in $r-f$ unit, or defective r-f unit.
Check B+ supply for sound and picture sections.
Check tubes V-1, V-2, V-3, V-4, V-5, $v-6, v-7$, and $v-8$.

Raster and Sound -- No Picture
Open green lead from picture tube socket.
Check tube V-8 and associated circuit. Jpen C223.

Raster and Picture -- No Sound
Defective sound takeoff transformer, T2, or ratio detector transformer, Tl. Check tubes V-1, V-2, and V-3.
Defective audio output transformer, T 1 , or speaker.

Unatle to Synchronize Vertically or Horizontally
Check tube V-9 and associated circuit.

Unable to Synchronize Vertically Check tube V-13.
Defective vertical oscillator transformer, $T 3$, or vertical output transformer, T4.

Unable to Synchronize Horizontally
Horizontal sweep oscillator coil Li8 misadjusted.
Coil Ll 8 or capacitor C315 defective. Defective tubes $V-11$ or $V-14$, or feedbeck capacitor C330.
Check voltages, resistances, and waveforms in horizontal sync section. onen width coil

MODELS AR-14-TR, AR-16-CR,
AR-16-RO, AR-16-TR, AR-17-CD,
AR-17-CR, AR-17-RO, AR-17-3D
FIG.6-BOTTOM VIEW INDICATING VOLTAGE AND RESISTANCE VALUES

Insufficient Height

Defective vertical oscillator transformer, T3.
R304 and R310 changing in value.

Inability to Center Picture

Blanking on left side may be due to leaky C313
Carefully try ning $C R$ Tube.

DISASSEMBLY

To remove chassis from the cabinet, first pull off all knobs from controls in front of cabinet. Remove the six mounting bolts to be found underneath the cabinet and ilft the chassis from the cabinet. Use care to prevent

(C)John F. Rider

INDEX	
PAGE	PAGE
ALIGNMENT INSTRUCTIONS . . . II	SPECIFICATIONS 10
CIRCUIT DESCRIPTION 10	TOP VIEW - TUBE LAYOUT. . . 12
PARTS LIST 14	trimmer locations. 13
RESISTANCE MEASUREMENTS.. 13	TROUBLESHOOTING. 13
SCHEMATIC 14,16	Voltage measurements . . . i3
14,16	WAVEFORMS 13

Voice-coil impedance
CHARACTERISTICS
Artenna type
Folded dipole with reflector
Antenna impedance 300 ohms input impedance to recelver
requencies
Video, 26.1 mc
Sound, 21.6 mc
Audio strip, 4.5 mc
Power supply
Poner cons volts, 60 cycles, a.c. 18 C Watts
Tube complement See parts list

CIRCUIT ANALYSIS

The R-F Tuner

One of two $r-i$ tuners is used with any of these recelvers. Schematics of each tuner are included. Each tuner is a complete assembly in itseif. Both mplifier

The Video System

Three video $1-f$ amplifiers, V-I, $V-5$, and $V-5$, each a SAU6 tube, sre employed. (The schematic, Fig. 9, should be consulted while reading the rest of the circuit analysis.) Four stazzeredtuned $1-f$ transformers, L_{4}, Ló, LO, and Ll2, are employed to produce the necessary bandwidth. Both the video and this complete amplifier section whinh functions as a combined i-f system. There is no separation of the sound i-f signal from the video $1-f$ signal, and they are both fed directly into V-7, the video detector. This is the basis upon which the intercarrier system operates. The over-all response of the $1-\mathrm{f}$ section is such that the emplitude of the sound $1-f$ carrier is θ very small percentage of the video $1-\frac{f}{c}$ carrier when they are both fed to the video deector, which is one half of a SAL5 tube. No sound trops are employed. all allgnment section.

The video detector considers the sound 1-f signal as a high-frequency sideband of the video $1-\hat{f}$ signal and detection occurs in the normal manner. The sound and video $1-f$ carriers can be considered as beating together inside the video detector. The carriers of these two $1-\mathrm{i}$ signals are always sepaion their difference frequency or mo appears in the output of the 4.5 detector. This $4.5-\mathrm{mc}$ beat note contains all of the $\mathrm{f}-\mathrm{m}$ characteristics of the input $f \rightarrow m$ sound $i-f$ signal and very little a.m. effects. It is the amplitude relationship between the two input $1-f$ signels that determines the character of the $4.5-\mathrm{mc}$ output signal.

The $4.5-\mathrm{mc}$ f-m signal as well as the video signal output from the detector is directly coupled to the grid on L-R high-frequency compensot throubh work. In this manner, the 15 me netnal receives additional amplification. In the plate of the video amplifier is the primary parallel-tuned circuit of a double-tuned 4.5 -mc transformer, 12 which selects the $f-m 4.5-\mathrm{mc}$ signal to be fed to the sound section of the receiver. The video signal output is fed directly to the grid of the picture tube V-10, through peaking coil L3 and capacitor C223. employed as a combined cothode-coupled sine wave oscillator and multivibrator. The output from the plate, pin 5, of this oscillator is coupled to the grid horizontal sweep output amplifier. The output from the plate of thifier. The output from the plate of this latter the horizontal output transformer, T 5 .
rom the high side of the primary of this transformer, tap 3, the horizontal sweep signal is fed to the plate of $V-16$, a lB3-ETT tube, serving as the high-voltage rectifier. This rectifier s employed in a kick-back type of ples voltage for the second anode of the kinescope.

The secondary of T5 consists of taps 4, 5, and 6, and feeds the hor 1 zontsl deflection yoke. A SW4-GT tube, -17, serves as the horizontal damper. From tap 6 of T5, some of the horizonathodeep signal is applied to the are tied together) or the horizontal phose detector $V-11$, through an inte grating network essentially consisting of R327 and C322. The rorizontal sync pulses from the vg phase splitter is applied to the other cathode and plate ections of the horizontal phase detector and these sync pulses are compared ith the phase of the rorizontal sweep nput. If their phases are different, a afc voltage is developed across R323 and then applied to the grid circuit, in l, of the horizontal sweep oscil ator.

The 50,000-ohm potentiometer, PD5 In the grid circuit, pin 4 , of $v-14$, regulates the horizontal sweep frequen cy and is called the HOR. HOLD control, and $V-15$ is the HOR. DRIVE control. Co1l L2l in the cathode circuit of the horizontal damper tube $V-17$ is the HOR. LINEARITY control and cosl L20 across taps 5 and 6 of the horizontal output transformer functions as the borizontal WIDTH control.

The Sound Section

The $4.5-\mathrm{mc} \mathrm{f}-\mathrm{m}$ signal from the secondary of the takeoff transformer L2 1 s fed to the grid circuit of the ratio SAUS tube. The output from this driver tube feeds the primary of the ratio detector transformer Ll, which is tuned to 4.5 mc . The double diode section of a 6T8 tube, V-2, is used as the ratio detector, and the triode section of this same tube is used as the first audio amplifier. The 500,000-0hm potentiometer P7 in the output circuit of the ratio detector is the VOLUME control. The output from the first audio araplifier is R-C coupled to the grid of -1, a GAQS tube which is the audio output rom this . The audio signal the audio output transformer, Tl , and then to the speaker.

Power Supply and Voltage Regulation
The low-voltage supply incorporates a $504-G$ tube, $V-12$, as the rectifier. Coil Lli in the output filter system is the focus coil and connected across this coil is the FOCUS control, P6, a ly00-ohm potentiometer. This low-voltage power supply provides negative $2-1 / 2$ volt bias supply. For the $r-f$ and $1-f$ section of the receiver the 360 -volt output is decreased to 140 volts for the screens and plates of these tubes while the cathodes are returned to chassis ground. The 300-volt tion circuits and olso for the plates and screens of the tubes in the sound section. However, the cathodes of these audio tubes are connected in seles with the B supply for the $r-f$ and i-f tubes, which means that the cathodes of the audio section are 140 volts positive with respect to ground. Thus, he efrective B supply between the sound section of the tubes in the volts.
The interesting thing about the 6AQ5 tube circuit, V-1, is that it rane regulator for the automatic voltand prevents any current variations in the $r-f$ and $1-f$ circuit from changing this voltage. The grid of the OAQS tube is connected to the 360 -volt supply through a voltage divider. A
positive voltage of 123 volts is ap plied to the grid, but since the cathode is 440 volts positive, the grid has an effective bias of -17 volts. Any change in the 1! 40 volts will tend This, in turn, will cause the GAQS tube. rent to change, which the tube cur voltage dropge, which means that the will likewise vary will be such that it will bring the cathode back to the 140 volta

For instance, if the voltage increases beyond 140 volts, the bias on tive. Less current will more negatube and a smaller voltage flow in the occur across the complete cathode load. This decresse in voltage drop will. just enough to in vcltage drop will be crease in the cathode voltage.

FUNCTIONING OF CONTROLS

The controls of the receiver are divided into two groups, the front panel operating controls and the rear panel pre-set controls.

FRONT PANEL OPERATING CONTROLS

There are seven front panel operating controls as indicated in Fig. 1 , each operating independently of the other. Reading from left to right, the controls and their funcions are as follows:

On-Off and Volume

This is a single control. The knob should be turned clockwise, until a click is heard. This supplies a.c. to the receiver. Further clockwise rotation of the control varies the input to the audio amplifier and, consequently, sontrols the volume of sound output.

Vertical Hold

This control functions to keep the picture stationary in the vertical direction. Electrically it is a variable resistor which controls the frequency of the vertical sweep oscilator.

(1) (11)

FIG. I- OPERATING CONTROLS
If the sloping bar effect is as stated, then the picture should remain in sync over $1 / I_{t}$ rotation of the horizontal hold range and drop out of sync on either end of this range.

Horizontal Drive

This trimmer capacitor affects the height of the horizontal pulse, varying the horizontal linearity pincipally on the left side of the picture.

Focus

A variable resistor which controls the current flow through the focus coll on the neck of the tube.

Width.

This slug adjustment inside the high-voltage cage affects the right side of the horizontal axis.
NOTE: There are no horizontal or vertical positioning controls. Centering of the picture is accomplished by positioning of the focus coil. on the neck of the tube as far placed as possible.

ALIGNMENT PROCEDURE

Test Equipment

The test equipment required for the alignment of this receiver is as

Marker Generator (RCA WR-39A, oŕ equivalent
Sweep Generator (RCA WR-59A or equivalent
Oscilloscope (RCA WO-55A, VTVM equivalent)
VTVM (RCA Junior Voltohmyst, or equivalent)
Volt-Ohmmeter (Simpson 260, or any 20,000 ohm-per-volt

The marker generator is an $r-f$ signal generator used for peaking the i-f coils and also to supply marker pips on the response pattern. The required frequency range of this generator is approximately from 20 to 30 mc and must also have provision for a 4.5 mc output. The accuracy generator is very calibration of this also have provision for an. It mus modulated as well as an unodultud odulated, -f output.

The sweep generator has 1 ts output continually variable in frequency In this alignment, only one output sweep signal is needed, that sweepine between 20 to 30 mc .

The oscilloscope used is a highgain, general purpose type employed for test purposes. The size of the sereen is unimportant.

The VTVM is of the standard type with a high input impedance. It should have provision for a-c and d-c measurements. A 20,000 ohm-per-volt meter should be used for d-c indications if the VTVM can only measure a.c.

Alignment.

For the alignment points refer to the figure indicated in the discussion. Most of the adjustments are located on top of the chassis. The r-f marker generator is used in making most of the alignment adjustments. It is recommended that the order of alignment in the following is found necesary of the test instruments ound leads connected to the receiver chassis.

Horizontal Hold
The function of this control is to keep the picture stationary in the horizontal direction. It is a variable resistor which affects the frequency of the horlzontal sweep oscillator.

Brightness
This control, which is also a variable resistor, affects the cathode voltage on the kinescope, thereby picture.

Contrast

The contrast control provides a means for varying the relative intensities of black and white in toward excessive contrast will intro. duce a loud buzz.

Station Selector

This control permits selection of the channel desired.

Fine Tuning

This control varies the frequency of the $r-f$ heterodyne oscillator. It is adjusted for best picture quality
and is not used to tune in the sound.

REAR PANEL PRE-SET CONTROLS
There are six so-called pre-set controls at the rear of the chassis as indicated in Fig. 2. They are all screw driver adjustments. The SOUND DISC. is the alignment screw for the secondary of L, and is not considered a pre-set control.

Vertical Linearity
This control is a variable resistor in the cathode circuit of the vertical sweep output tube. Manipulation or this control affect

FIG. 2- PRE-SET CONTROLS Vertical Size

The vertical size control varies the plate voltage of the vertical aweep oscillator. It primarily causes it also interacts with the vertical innearity so that these controls must be used in conjunction with each other. Horizontal Oscillator Frequency

> This control is a slug adjustment for Li8 which controls the frequency of the horizontal oscillator. To an antenna to the properly, and tune in a station, preferably one with a test pattern on the air. Center the harizontal hold control. Adjust the Ll8 slug until the picture locks in. Set the horizontal hold control in the full clockwise position and slowly rotate it in the opposite direction. sync 3 or 4 black and white bars should appear sloping downward to the right. Repeat the process, but with the horizontal hold control in the full counterclockwise position. The same conditions should be observed except that the bars will slope downard to the left.

Picture I-F Alignment (Fig. 3)
Connect the VTVM (a-c scale), or oscilloscope to the grid of the kinescope at the junction of C223 and with the VTVM at the video detector. With the VIVM at the video detector: $/ 8$ turn below its maximum setting. Connect the output of the signal generator (marker) to the nipple on top of the GAG5 mixer tube of either tuner.

FIG. 3-TOP VIEW OF GHASSIS

Set the generator at 25.5 mc , amplitude-modulated at approximately 400 cycles, and adjust the first and third video i-f coils for maximum response. For those recelvers employing tuner TT-1, the first video i-1 coil is Lif as indicated in Fig. 3(A). When tuner TT-3 is used, the incorporated in the tuner ind and is receiverproper, as shown in Fig. 3(B) Reset the generator to 23.4 mc , stili amplitude-modulated, and tune the second and fourth video $1-\mathrm{f}$ colls, I6 and Ll2 respectively, for maximum response. Repeat the above process for fine adjustments of settings.

Over-all Picture Response

With the sweep generator adjusted. for a lo-mc sweep, using a center Prequency of about 25 mc , connect the generator to nipple of the GAC5 mixer tube of either tuner. Loosely couple tube. The oscilloscope should remain at the grid of the kinescope. Inject individual markers of $26.1 \mathrm{mc}, 25.5$ me, 22.6 mc , and 21.6 mc in the order indicated and note positions of marker pips on response curve. Turning the adjustments very slowly, retune the our video i-f coils again for an over-all picture i-f response as indicated in Fig. 4.
NOTE: A 30\% variation in amplitude between peaks and from peak to valley of the response curve pormis are that the video 1-f corrier of 26.1 mc is approximately halfway dow the right hand slope, and that the sound i-f carrier of 21.6 mc is 20 times down at the other end of the curve.

FIG. 4- OVER-ALL I-F RESPONSE CURVE
© John F. Rider

Sound Takeoff and Detector Transformer Allgnment

Move the signal generator (marker) output lead to the junction of Ll3 and R217, between the video detector, $\mathrm{V}-7$, and video amplifier V-8. Set the generator to a $4.5-\mathrm{mc}$ unmodulated signal output. Connect the VTM (d-c scale) or the 20,000 ohm-per-volt meter across Cl07 in the output circuit

FIG. 5-BOTTOM VIEW SHOWING ALIGNMENT POINTS FOR Li AND PRIMARY OF L2 of the ratio detector, V-2. . (Remember is actually above -14at this point respect to ground.)

Adjust the following for maximum reading on the meter in the order indicated. The primary of Ll (the catio detector transformer), the adjustment of which is.shown in Fig. 5. Next ture the secondary of Ll; this adjustment, shown in Fig. 5, is
also shown in Fig. 2 and indicated as SOUND DISC. Then adjust the primary L2, the $4.5-m \mathrm{c}$ takeoff transformer; see Fig. 5. Next adjust the secondary signal output from the generator to the minimum required to give a readable defloction on the meter und then repeat the sound alignment process.

After the aligrment is complete, remove the generators and meters. rune in a station. Turn up the contrast control until a buzz is heard. Adjust the secondary of the detector transformer (see Figs. 2 and 5) for minimum buzz.

NOTE: Alimment of the $r-f$ and oscil lator sections are not recommended and are therefore not included. If an misalignment of these sections is

SERVICE NOTES

No Raster

Defective picture tube or misadjusted ion trap magnet
No high voltage. Check tubes V-14, -15. V-16, and V-17
Check horizontal output transformer, T211T3; and also check C335, R326, and R336.
Check all voltages and waveforms in sweep section. Do not check voltage directly on plate of $\mathrm{V}-16$.

Raster Present -- No Sound or Picture Open transmission line
Defective tube in r-f unit, or defective r-f unit
Check B+ supply for sound and picture sections.
Check tubes $V-1, V-2, V-3, V-4, V-5$, $V-6, v-7$, and $v-9$.

Raster and Sound -. No Picture
Open green lead from picture tube socket. Check tube V-Y and associated circuit. Open C223.

Raster and Picture -- No Sound
Defective sound takeoff transformer, T2, or ratio detector transformer, Tl. Check tubes $V-1, V-2$, and $V-3$.
Defective audio output transformer, Tl, or speaker.

Unable to Synchronize Vertically or Horizontally

Sheck tube V-9 and associated circuit.

Unable to Synchronize Vertically
Check tube V-13.
Defective vertical oscillator transrormer, T3, or vertical output
transformer, Th.

Unable to Synchronize Horizontally
Horizontal sweep oscillator coil Li8 misadjusted misadjusted

L1S or capacitor C3l5 defective.
Defective tubes V-11 or V-14, or feed back capacitor C330.
Check voltages, resistances, and

FIG.6-BOTTOM VIEW INDICATING VOLTAGE AND RESISTANGE VALUES AND ALSO WAVE FORMS.

Derective vertical oscillator transformer, T3.
C313 increasing in capacity.
R304 and R3io changing in value.

Inability to Center Pictare

Blanking on left side may be due to leaky C313. Carefully try turning CR Tube.

NOTE: Entire audio circuit is at a potential of 140 volts above ground and the grids are hot. Also, V-l, OAQ5, functions as series voltage regulator to this 140 volts, as well as an audio output tube. Proper operation of this tube affects B^{+}, and is, therefore, vital to normal operation of other circuits. A primary check on this

For voltage and resistance analysis and waveforms, see Fig. 6.

DISASSEMBLY

To remove chassis from the cabinet, first pull off all knoks from controls in front of cabinet. Remove the six the cabinet and lift the chassis from the cabinet. Use care to prevent the cablnet.
damage to the kinescope.
The kinescope is mounted on the chassis itself. It is held in place by a strap that is fastened over the
outer rim of the bell of the kinescope.

FIG. 8 - SCHEMATIC OF TT-3 TUNER

motes:-

Cimair m macnomencornaneos
$\mathrm{k} \cdot 1,000$ owns
smitich is in chavinel" 3
Swirch sections srown in
otvelore fon
f. oenss suc

FIG. 7- SCHEMATIC OF TT-I TUNER

© John F. Rider

SCH. LOC.	PART No.
	A5605 A54928 A54929 A54609 A54824
C1	A20144
C2	A20135
C3, C10, C11, C45	A190-133
C4, C5, C7, C8	Al9147
C6	A194-67
C9	A190-7
C12	A555-113-2
C13, C60	A555-100
C14, C 57	A20141
C15	A190-143
C16, C32, C35	A194-155
C17, C62	A194-162
$\begin{aligned} & \mathrm{C} 19, \mathrm{C} 24, \mathrm{C} 26, \mathrm{C} 27, \mathrm{C} 31, \\ & \mathrm{C} 33, \mathrm{C} 38, \mathrm{C} 39, \mathrm{C} 40, \mathrm{C} 61 \end{aligned}$	A194-160
$\left.\begin{array}{l} \mathrm{C} 20, \mathrm{C} 22, \mathrm{C} 60 \\ \mathrm{C} 29, \mathrm{C} 30 \end{array}\right\}$	A194-145
$\left.\begin{array}{l}\text { C21, C25, C28, } \\ \text { C36, C63, C64 }\end{array}\right\}$	A194-150
C23	A20138
C3.4	A192-163
C37	A20130
C41	A194-66
C42	A193-261
C43, C44, C58	Al90-137
C46	A1772
C47, C65	A19146
C50	A20147
C52	A1998-2
C53, C54, C59	A19148
C55, C56	A19106
C66	A20137
C67, C68	A19136
13	A28253
L4, L15	A28276
113	A1406
116	A28282
19	A28292
L5	A28255-1
L11, 116	A28255-2
112	A28255-4
16	A28256-6
110	A28279
L7	A28263
	A55141
Pla, Plb	A24109
P2	A24113
P3	A24110
P4	A24111
P5	A24112
Po	A24114
P7	A24116
P8	A24118

DESCRIPTION
Antenna, Indoor
Bracket, Focus Coil
Bracket, Focus Coil Support
Bracket, Horiz. Freq. Control Coil
Bracket, Tube Mounting
Capacitor, Electrolytic 40-40-20-20 @ 450
Capacitor, Electrolytic 10-10-10 @ 45
Capacitor, Mica $270 \mathrm{mmf} \pm 10 \%$
Capacitor, Ceramic Dual 1500 mmf Disc
Capacitor, Paper, $.25 \mathrm{mfd} 200 \mathrm{v} \pm 20 \%$
Capacitor, Ceramic $22 \mathrm{mfd} 500 \mathrm{v} \pm 20 \%$
Capacitor, Ceramic $47 \mathrm{mmf} \pm 20 \%$ Non Insulated
Capacitor, Ceramic $5 \mathrm{mmf} \pm 20 \%$
Capacitor, Electrolytic 100 mfd 12 v
Capacitor, Mica $680 \mathrm{mmf} 500 \mathrm{v} \pm 10 \%$
Capacitor, Paper $.01 \mathrm{mfd} 600 \mathrm{v} \pm 20 \%$
Capacitor, Paper $.1 \mathrm{mfd} 600 \mathrm{v} \pm 20 \%$
Capacitor, Paper $.005 \mathrm{mfd} 600 \mathrm{v} \pm 20 \%$
Capacitor, Paper $.001 \mathrm{mfd} 600 \mathrm{v} \pm 20 \%$
Capacitor, Paper $.05 \mathrm{mfd} 600 \mathrm{v} \pm 20 \%$
Capacitor, Electrolytic 1 mtd 50 v
Capacitor, Mica $4700 \mathrm{mmf} 500 \mathrm{v} \pm 10 \%$
Capacitor, Electrolytic 100 mfd 25 v
Capacitor, Paper . $1 \mathrm{mfd} 200 \mathrm{v} \pm 20 \%$
Capacitor, Silver Mica $3900 \mathrm{mmf} \pm 5 \%$ 500v
Capacitor, Silver Mica $3900 \mathrm{mmf} \pm 5 \% 5$
Capacitor, Trimmer 25 to 250 mmf
Capacitor, Mica 10 mmf 2500 v
Capacitor, Electrolytic 25 mfd 12 v
Capacitor, Ceramic 500 mmf 15 k
Capacitor, Ceramic; Single Disc 1500 mmf
Capaictor, Moulded Bakelite $.01 \mathrm{mfd} 600 \mathrm{v} \pm 20 \%$
Capacitor, Electrolytic 10 mfd 25
Capacitor, Mica 220 mmf 2500 y
Choke, I.F.
Choke, Filamen
Coil, Focus
Coil,, Focus
Coil, Lineari
Coil; Peaking, Red
Coil, Peaking, Whit
Coil, Peaking, Green
Coil, Peaking, Yellow
Coil, Width Control
Coil, Horizontal Frequency Contro Connector, Anode
Control, Contrast and Volume
Control, Focus 2500 ohm
Control, Brightness 100 k ohm
Control, Height 5 meg ohm
Control, Vert. Speed 1 meg ohm
Control, Vert. Linearity 3000 ohm
lering
Control, Vert. Centering

SCH. LOC.
R1, R40, R44
R2, R4, R5, R7, R8,
R12, R28, R63
R3, R38, R39
R6
R9, R17, R49, R71, R72
R10, R34, R73
R11
R13, R22, R23, R78
R14, R19, R21, R54,
R55, R59
R15
R16
R18, R68, R70
R24, R43, R53, R76, R79
R25, R26, R42, R56, R62
R27
R29
R30
R31
R32, R67
R33, R60, R77
R35, R37, R45, R57, R80
R36, R51, R52, R58
R41
R48
R50
R61
R66
R69
R74
R75
R79
R81
part No.
A551943
A54851
A5494
A54661
A231-1171
A231-1123
A231-1181 A232-1171 A231-1137 A231-1221-1229 A231-1189

A231-1197
A231-1173
A233-1165
A231-1233
A231-1213
A232-1137
A21107
A23151
A231-1155
A231-1155
A231-1207
A231-1159
A231-1223
A233-1161
A21111
A233-1129
A233-122
A232-1157
A232-1201
A232-1201
A231-1249
A18101
A18147
A18155
Al
A18157
A18168
A18171
A18171
A18173
A18160-3
A18160-3
A54828
A28286
Al0104 or A10108
A3392
A10109
A1201-1202
A10106
A1350-2
A28278-2

DESCRIPTION

Cord, Line
older, Anode Lead Hood, Yoke
Ion Trap
Plug, Male, Line Cord
Resistor, Carbon 8200 ohm $1 / 2 w \pm 10 \%$
Resistor, Carbon 82 ohms $1 / 2 w \pm 10 \%$
Resistor, Carbon 22,000 ohms $\pm 10 \%$
Resistor, Carbon 8200 ohms 1w $\pm 10 \%$ Resistor, Carbon 330 ohms $1 / 2 w \pm 10 \%$ Resistor, Carbon 1 meg ohm $1 / 2 \mathrm{w} \pm 10 \%$ Resistor, Carbon 47,000 ohm $1 / 2 w+10 \%$

Resistor, Carbon 100,000 ohm $1 / 2 \mathrm{w} \pm 10 \%$
Resistor, Carbon 10,000 ohm $1 / 2 w \pm 10 \%$
Resistor, Carbon 4700 ohm $1 / 2 w+10 \%$
esistor, Carbon 4700 ohin $2 w \pm 10 \%$
Resistor, Carbon 3.3 meg ohm $1 / 2 \mathrm{w} \pm 10 \%$
Resistor, Carbon 470,000 ohm $1 / 2 w \pm 10 \%$
Resistor, Carbon 330 ohm $1 w \pm 10 \%$
Resistor, Wirewound 60 ohm 10 w
Resistor, Carbon Wire wound $1.2 \mathrm{ohm} 1 \mathrm{w} \pm 10 \%$
Resistor, Wirewound 2500 ohm $15 \mathrm{w} \pm 10 \%$
Resistor, Carbon 270,000 ohm $1 / 2 \mathrm{w} \pm 10 \%$
Resistor, Carbon 270,000 ohm $1 / 2 \mathrm{w} \pm 10 \%$
Resistor, Carbon 2700 ohm $1 / 2 w \pm 10 \%$
Resistor, Carbon 1.2 meg ohm $1 / 2 \mathrm{w}$ 10\%
Resistor, Carbon 3300 ohm $2 \mathrm{w} \pm 10 \%$
Resistor, Wirewound $3250 \mathrm{ohm} 7 \mathrm{w} \pm 10 \%$
Resistor, Carbon 150 ohm $2 w \pm 10 \%$
Resistor, Carbon 1 meg ohm $2 w \pm 10 \%$
解
Resistor, Carbon 47,000 ohm $1 \mathbf{w} \pm 10 \%$
esistor Carbon 1000 ohms $1 / 2 w+20 \%$
Resistor, Wirewound 220 ohms 7w
Socket, Speaker Plug
socket, 7 Pin Wafer
Socket, Octal Moulded
Socket, 9 Pin Water
ocket, Bakelite Octal
Socket, 9 pin moulded
Socket, Hi Voltage Cond. Mtg.
Socket, Kinescope
Strap, Tube Mtg., R.H.
Strap, Tube Mig., L.H.
ransformer, Audio Take Off
Transformer, Horizontal Output
Transformer, I. F.
ransformer, Power
ransformer, Ratio Detector
Transformer, Vertical Oscillator
ransformer, Vertical Output
Yoke, Deflection

[^0]
VL 16 , VL 12 , VL 19 CHASSIS

adjusthent of tuning dial
Turn tuning shaft completely clochwise, Slide lorge dial into
shaft. Engage gears so that line on fiat surface of dial dirshaft. Engage gears so that line on flat surface of dial dir-
ectly under number 131 ines up with Tuning Indcator marking on
cobine cabinet. Silp felt washer onto shart. Now slide small dial onto
shaft. Line up the numeral l or number 108 directly under numeral shaftis Line up the numeral ligh number 108 directly under
1 of is on large dial end tighten set sorew of smalil dial. In very high signal strength areas the jumper between resistors
Rili and R118 should be removed. This is located directly behind
the contrast shtral the contrast control.

Por chassis with A.G.C. observe the following:
These conditions must be met for proper operation. A manual
contrast control contrast control potentiometer must te connected by using a sep-
arate 10,000 Ohm control connecting one end to chassis, the other ond to B- and the arm to the A.G.C. string before proceoding to
align or adjust the VIdeo IF, sound IP, head end and sync. ad just aents as indicated in the regular service notes.
During sync. adjustment the regular contrast centrol in the set
must be set so that the bias at the video output tube is th voits and left at this setting during all sync. adjustment procedure. control r amoved check operation of the A.G.C. on the air. The hold control will lock in signals at a point about 288 rrom clock wise rotation and must hold sync. for about 208 of additional ro
tation. If these conditions are not met the frequency control sl ug must be ad justed until the above conditions aree me
HEAD-EMDALIGMTENT PROCEDURE FOR CHASSIS TYPES:

VL-12, VL-16 \& VL-19

- Intoratage Circuits:
onnect a 220 -ohm resistor to pins 5 and 6 of mixer tube (v3) Connect input of wide-band amplifier to pin 5 of $\mathrm{V3}$. Remove first video I.F. tube from spcket.
. Connet sweep generator to pin 1 of Vl through a suitable cap to cover $4 山-70$ mc range.

7. Sot receiver tuning control to Channel 2.
8. Set contrast control at maximum contrast.

Dosely to the r-f stage.
10. Adjust trimmer clo and Cl, to give the Channel 2 curve shown on INTERSTAGE RESPONSE CURVES, LOW GHANNELS.
11. Be aure that the signai level from the sweep generator is not 11. Be sure that the signal level from the sweep generator is net
too high otherwise the wide-band amplifier may be overloaded and produce a flat-topped response curve only as a result of clipping
and not because proper tuning has been done. 12. Also, be sure that the signal level is not too low, otherwise, the non-ilinear detection of the amplifier will give a response
curve on which the carriers appear to be located further down the
13. Sot recelver tuning control to Channel 13.
14. Ad fust sweep to cover 200 to 226 mc range
14. Ad just swoep to cover 200 to 226 mc range.
15. Adjust end inductors $L 5$ and $L 6$ to produce arve curimar to that shown in INTESTAGE RESPRNSE CURVES, UPER CHANNSES for Chan-
nel 13. The end inductors are ad justed by unsoldering the junction nel 13. The end inductors are ad justed by unsoldering the junction or the crossed wirea and varying the offective wire length in the
circuit by sliding them over each other. When the correct adjustment is found, the junctions are resoldered.
B. Antenna Circuit:

1. Disconnect aweep generator from pin 1 of V 1

Connect aveop generator to antenna input terminals of recelver
 and having a characteristic resistance of 72 ohms.
i. The wide-band amplifier remains connected to pin 5 of V 3 as
berore.
5 . Seceiver tuning control to Channel 2
7. Souple the output of a suitable frequency marker generator, 70 Couple the output of
loosely to the $r-f$ stage.
8. Ad fust trimmer Cl to glve the Channel 2 zero-volt curve snown 9. Repeat items 11, 12, 13 and 14 of part A.

zerover
l1. The other channels should be checked ror proper response cur-
ves. The response curves should also be checked at -3 voltt bias ves. The response curves should also be chocked at -3 volta bias
appiled to the r-r tube.
12. Restore the recelver to its original condition by removing the 12. Restore the receiver to its original
220-onm resistor ind by puting beck V4.
C. Oscillator Circuit:

If the dial of the tuning control does not indicate correctly the
TV channels or the FM frequencies, proceed as follows: VIDEO IF ALIGNIENT

The converted plix carrier is 20.2 MC . and is adjusted to 55% down the slope of the Video I.F. pass band from the average top level.
When adjusted correctly, the pass band extends from 26.2 MC to a point 708 down at 23 MC. see Figure 1. Traps are provided in the video I.F. system to properly attenuate the accompanying and a
facent sound carrier frequencles at 21.7 MC and 27.7 MC . The
 mers. The 27.7 Mc adjacent sound traps are located in the 15 t and
4 th video I.F. transformers. The 21.7 Mc traps and 27.7 MC traps provide a 40 to 50 DB attenuation. All traps are tuned from the top or the chassis while all signal circuits are tuned from the

To align the video I.F., connect the video I.F. sweep generator to the mixer, V3 grid. Disconnect end inductor, Li. Set the
 L7 ind L8 Peaking Coils in the circuit or the video detector, V7A.
Adjust the contrast control for -5.0 volts. If the response curve Adjust the contrast control for -5.0 volts. If the response cur
obtained on the oscilloscope is appreciably different from that shown in Figure 1 , the tuning slugs of the transformers $T 1$, $T 2$,

Bel

The low frequency skirt of the response curve is principally affected by Tl. The high frequency skirt by
central region is determined by T 2 and T 5 .
The sound trap of $T 2, T 3$ and $T 4$ are adjusted to provide maximum attenuation at 21.7. The traps in Tk and T5 are adjusted to pro-
vide maximum attenuation at 27.7 MC .

If T4 is tuned to frequencies above 21.7 Mc , it may cause the vido I.F. amplifier to oscillate. This Is normal and will stop
when the cathode trap is tuned to the correct frequency. 1. Make sure that the dial is oriented correctly on the tuner shar
by turning it to the extreme clockise positioh. In this position
the radial index merk on the dial and the numeral 1 or 108 mc the radial index mark on the dial and the numeral 1 or 108 mc
should be at 12 o'clock, when the recelver is in normal viewing po${ }^{\text {sition. }}$ 2f the dial calibration is still inaccurate, the lower channels
216. If Clil is re-adjusted then L16 will require re-adjustment. But if only Lic is re-adjusted C41 will not need re-adjustment since justed by spreeding or compressing its turns as required. Spreadnusted by spresding or compressing its turns as required. spread-
ing the turns raises the osclilator frequency for a given dial set-
ting in SOUND $1 . F$

Set contrast voltage to 0 blas.
The sound I.F. 1s allgned stage by stage rather than the overall Disconnect the negative side or C88, 2ur condenser. Connect scope to junction or R101 and R103. Connect FM sweep generator to grid of "19, GAU6. Adjust bottom slug of Tlo until pass band approx-

18.
H.

Move scope to junction or R100 and R105. Adjust top slug on T 10
until wave shape approximates Figure 3. This may detune slug slightly. Leaving scope in last position adjust bottom slug of Tho, if necessary, untils s curve, Figure 3, is symmetricel
with respect to center frequency.

Move scope to function of R101 and 103. Connect FM sweep gener-
ator to grid of V18. Adjust primary and secondary, successively, so that wave shape approximates Figure 4

Temporarily ground or disconnect junction of R94 and R1OL. Conside of contrast control through ik Resistor) obtained from high generator to grid of. V4. (Blocking condenser of about 500 uuf must be used in series with sweep generator lead to prevent upsetting of proximates Figure 5.
This corapletes Sound I.F. allgnment.
Be sure to resolder ali disconnected wires
CAUTION: VLI6 HORIZCNTAL SYNC. ADJUSTMENT
Unless synchronization is carried out in the following manner
carefully and accurately, poor Sync. operation will result.
MODELS T-VL12, Saybrook, Ch. VL-12 T-VLl6, Mayfield; C-VLl6, Sutton; CO-VLl6, Fleetwood; Ch. VLl6; COVL19, Caronia, Ch. VLl9

© John F. Rider

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{vL-19 voltage readings tAKBN WITH VOLTOHMYST}

\hline TUBR PIN NO. \& 1. \& 2 \& 3 \& 4 \& 5 \& 0 \& $$
\begin{aligned}
& t \text { Contr } \\
& 11 \mathrm{y} \text { clo }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { ast Con Con } \\
& \text { c kwi se } \\
& 8
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { trol } \\
& 9 \\
& \hline
\end{aligned}
$$ \& CAP

\hline V1-6CBC R.p. \& -3.2 \& +. 2 \& 0 \& ${ }_{5}^{1 . c}$ \& +140 \& +80 \& 0 \& \& \&

\hline v2-6J6 0sc. \& \& \& ${ }^{10}$ \& \& \& \& \& \& \&

\hline V2-6J6 Osc. \& +90 \& 0 \& 5.6 \& 0 \& +105 \& +105 \& +1.4 \& \& \&

\hline v3-6ak5 mizor \& 0 \& +2.5 \& 1.6. \& 0 \& +200 \& +200 \& 0 \& \& \&

\hline \& -8.5 \& +. 2 \& 0 \& \& \& \& \& \& \&

\hline V5-6CB6 (2nd VId 0 \& \& \& \& A.C. \& +200 \& +200 \& 0 \& \& \&

\hline \& -8. 5 \& 0 \& A.C. \& 5.6 \& +210 \& +215 \& 0 \& \& \&

\hline V6-6CB6 (I.F.) \& 0 \& +1.3 \& 5.4 \& 0 \& +105 \& +100 \& 0 \& \& \&

\hline \& \& -1.2 \& S.C. \& 0 \& -1.1 \& 0 \& -2.8 \& \& \&

\hline v8-6a06 (lat vidoo \& -1.3 \& 0 \& 5.4 \& 0 \& +140 \& +135 \& 0 \& \& \&

\hline $\mathrm{v}_{2}-6 \mathrm{~N}_{4} 6$ (A.a.c. \& +125 \& +130 \& 1.c. \& 0 \& -16 \& +255 \& +130 \& \& \&

\hline Diaco out V10-12AU7 (DC Restorer \& +235 \& -7 \& +. 1 \& A.C.
5.4 \& A.C.
5.4 \& +6 \& \& \& \&

\hline V1-6SM7 (Sync. Sep. \& \& \& \& \& \& $+6$ \& 0 \& + ${ }^{+33}$ \& 0 \&

\hline V11-6SN7 (Vert. Osc. \& -1 \& +85 \& 0 \& -26 \& +35 \& 0 \& 0 \& 5.4 \& \&

\hline V21-6s ${ }_{4}$ (0utput \& NC \& +20 \& NC \& 0 \& 5.8 \& 0 \& NC \& NC \& +390 \&

\hline V13-6Sn7 ${ }^{\text {Hamp }}$ Amp. \& -18 \& -18 \& +22 \& -18 \& $+140$ \& \& A.C
5.4 \& \& \&

\hline v44-6SN7 (\%orizerol \& \& \& \& \& \& +. 7 \& 5. ${ }^{5} .4$ \& 0 \& \&

\hline V15-CD6 (Output \& NC \& 0 \& +24 \& -2.3 \& \& +195 \& A.C

5.8 \& +160 \& \&

\hline V16-6以4 (Demper \& NC \& NC \& +479 \& +350 \& +350 \& NC \& $+470$ \& \& \&

\hline V18-183 \& \& \& \& \& \& \& \& \& \&

\hline v19-6BA6 (1st P. Sound \& \& \& \& A.C \& \& \& \& \& \& 13.5 Kv

\hline \& -1.5 \& 0 \& 0 \& 5.6 \& +195 \& +120 \& +. 8 \& \& \&

\hline V20-6A06 (Driver \& 0 \& 0 \& 0 \& 5.6 \& +120 \& +120 \& +1.1 \& \& \&

\hline $$
\begin{aligned}
& \text { Y2l-GAL5 (Ratio } \\
& \text { Ret. } \\
& \text { Det }
\end{aligned}
$$ \& +1.2 \& -1.4 \& \[

$$
\begin{aligned}
& \text { A.C } \\
& 5.6
\end{aligned}
$$
\] \& 0 \& 0 \& 0 \& \& \& \&

\hline V22-6BE6 (M.M. ${ }_{\text {M }}$ Modulator \& -6.2 \& 0 \& \& A.C.
5.8. \& +170 \& +80 \& . 1 \& \& \&

\hline Y23-6.846 (A.M I.F \& \& \& ${ }_{5}{ }^{0} \cdot \mathrm{C}$. \& 5.8 \& +170 \& +80 \& -1.9 \& \& \&

\hline 123-6BA6 (Ans) ${ }^{\text {(A.M. }}$ 2nd \& -1.2 \& 0 \& 5.8 \& 0 \& +180 \& +100 \& +. 6 \& \& \&

\hline V24-6SQ9 (Det; A.V.C. \& 0 \& 0 \& 0 \& -1.1 \& -1.1 \& 0 \& 0 \& A.C.
5.8 \& \&

\hline v25-6SQ7 (Audio \& 0 \& \& 0 \& 0 \& 0 \& \& ${ }_{5}^{\text {A.C. }}$. \& \& \&

\hline v26-6K6. Audio \& \& A.C. \& \& \& 0 \& +90 \& 5.6 \& 0 \& \&

\hline V26-646 . 0 utput \& $\stackrel{0}{\text { A.C. }}$ \& 5.6 \& +250 \& +260 \& +. 1 \& +240 \& 0 \& +20 \& \&

\hline V27-6x4 (Rectifior \& ${ }_{270}{ }^{\text {A }}$ \& NC ${ }^{\text {b }}$ \& $$
5.8
$$ \& 0 \& NC \& ${ }_{270}{ }^{\text {A.C. }}$ \& +280 \& \& \&

\hline V28-504 (Rectifier \& NC \& +375 \& NC \& $$
\begin{aligned}
& A . C . \\
& 380
\end{aligned}
$$ \& NC \& A.C.

380 \& NC \& +375 \& \&

\hline
\end{tabular}

Service Switch
Position
Position \mid Line \mid B+at Cl15A \mid B+at C115B|B+ at Cll6A \mid B+at C116B|Watts

TV	117 V	280 V	260 V			
FM	117 v	290 V	275 V	350 V	370 V	250
AM	117 V	290 V	275 V	340 V	350V	150
PHONO	117 V	290 V	275 V	340 V	350 V	170

uscillator shunt trimmer is ChASSIS---A.M. ALIGNMENT
denser.
service switch.
A signal generator that supplies a modulated carrier of 455 ,
600,1500 and 1650 KC is needed

Step	Connect high side of signal generator to:	tune 81 gnal gen.to	tune radio	Adjust for max. output
1	Grid of 6BE6 through . 01 cond.	455KC	quiet spot near 700 KC	trimmers on lat $\&$ 2nd I.F.T.
2	Terminal "A" on loop through 250 uuf cond.	1650 KC	extreme $r t$. end of disl	oscillator shunt trimmer
3	Terminal $A^{\prime \prime}$ on loop through 240 uur cond.	1500kC	$\begin{aligned} & \text { tune in } \\ & 1500 \mathrm{ki} \text { sig. } \end{aligned}$	$\begin{aligned} & \text { trimmer on } \\ & \text { loop. } \end{aligned}$
4	$\begin{aligned} & \text { Terannal }{ }^{\text {An A }} \text { on loop } \\ & \text { through } 250 \text { uuf cond. } \end{aligned}$	600 KC	$\begin{aligned} & \text { rock in } \\ & 600 \mathrm{KC} \text { sign. } \end{aligned}$	osclilator series trimer
5	$\frac{\text { Repeat steps } 2 \% 3}{}$			

R. F.
Oscillator
Mixer
Ist Video I. F.
2nd Video I.F.
3rd Video I. F.
Video Detector
lst Video
D.C. Restorer --
Video Output
Vertical Oscillator
Vertical Output
Horiz. Amplifier
Horiz. Osc. \& Control
Horiz. Output
Damper
High Voltage Rectifier
1st Sound I. F.
Driver
Ratio Detector
lst Audio Amplifier
Audio Output

Low Voltage Rectifier

ANDREA TV PAGE 6-9

© John F. Rider

SPECIFICATIONS
Power Supply Rating (10 in. $-12 \frac{1}{2} \mathrm{in}$.)
Power Supply Rating (16in.)
Audio Power Rating Max. ($\left.10 \mathrm{in}-.12 \frac{1}{2} \mathrm{in}.\right)$
Audio Power Rating Max. (16 in.)
Antenna Input Impedance
Video Response
Focus
Sweep Deflection
I. F. Frequencie

Adjacent Channel Sound Traps Adjacent Channel Picture Carrier Traps Accompanying Sound Traps
Sound Carrier
Sound Discriminator Band Wi

115 volts, 60 cycles, 225 watts
115 volts, 60 cycles, 250 watts
2.5 watts

300 ohms balanced
To 4 Mc .
To 4 Mc.
Magnetic
er Traps
25.75 Mc .
27.25 Mc .
$\mathbf{1 9 .}$.
19.75 Mc .
21.25 Mc .
21.25 Mc .

With an approximate mid-point setting of the brightness control and the rear pole of the iontrap magnet positioned over the flags on the tube's gun structure rotate the trap. If no raster appears, slide the ion-trap slightly forward or backward and again rotate. Adjust the ion-trap finally for
maximum brilliance with the brightness control set at the maximum position for which good line focus is had. If the ion-trap must be moved more focus is had. If the ion-trap must be movea more
than $1 / 4$ inch away from the flags toward the focus coil, the ion-trap magnet is too weak and should be replaced.
Do not have the brightness control at maxi mum when positioning the ion-trap and do not use the ion-trap to remove side shadows if in so use the ion-trap to remove side shadows if in so
doing the brilliance of the raster decreases (adjust focus coil centering for this purpose.)
SQUARING THE RASTER. The Yoke Mount and Yoke should be positioned properly as follows:

The large front hole in the Yoke Mount Bracket is rimmed with rubber channel. Loosen the two screws in the feet of the Yoke Mount Bracket and push the mount forward so that the cone of channel (neck of fits snugly into the rubber Loosen the top wing-nut and two side screws holding the Yoke within the bracket and slide the Yoke forward onto the cone of the picture tubecenter the Yoke so the tube neck is co-axial and tighten the two side mounting screws. Rotate the Yoke to square the raster and tighten the top wing-nut

CENTERING. No electrical provision in the circuit is made for centering. The focus coil must be positioned properly for centering of the picture. The focus coil of the 10 in . and 12 in . The focus coil of the 16 in. chassis is mounted by three adjustment screws. These screws must be properly adjusted for centering of the picture and removal of picture corner-clipping and side shadows.
HEIGHT AND VERTICAL LINEARITY (Front). The picture should fill the mask and be symmerical from top to bottom. Adjustments of both the Height Control and Vertical Linearity Control will accomplish this if centering of picture by the focus coil is already proper.

HORIZONTAL WIDTH, LINEARITY, AND HOLD. if horizontal adjustments appear necessary, reer to the alignment section for procedure.
FOCUS. Adjust the Focus Control for best definition of the trace lines in the major central area of the picture or raster.

AUTOMATIC GAIN THRESHOLD CONTROL (AGC). The AGC Threshold Control is set at the factory and will seldom have to be readjusted. follows

1. Maximum counter-clackwise position allows the maximum ACC voltage to be developed. It will rarely ever have to be left in this position.
2. Advancing the control clock-wise slowly in a strong signal area will cause the blacks in the picture to get darker--advancing the control "bend" along the top--and even further, the picture in some cases could just blank out. At
the point of rotation where the picture begins to bend is the overload point-- the bending being caused by sync-clipping in the video stage due to overdriving. On weaker signals the clockwise rotation will darken the blacks somewhat and also brighten the snow.
3. The optimum setting for the AGC Control is as follows:
a. Turn AGC Maximum counter-clockwise
b. Turn AGC slowly clockwise while observing very closely the vertical interlace of the scanning lines in the raster.
c. Leave the AGC Control set at the point where interlace is best (least jitter and "pairing" between adjacent scanning lines).
d. Never should the control be left close to the overload point where strong signals could cause the picture to bend
e. Approximately one-eighth of a turn
clockwise is the usual best interlace point.
OSCILLATOR TOUCH-UP. All channels should come in best with the same approximate setting of the Fine Tuning Control.

If necessary, improvement of the setting on any channel can be made by slight adjustment of the oscillator screw for the particular channel. Remove the Station Selector Knob, Fine Tuning Escutch Channel Escute side tofree the Escutcheon) Toder adjustment screws in the tuner can now be seen. Use an insulated screw driver and adjust the desired channel screw

SERVICE TEST EQUIPMENT

R-F SWEEP GENERATOR

To provide center Frequency Range-- 20 Mc . to 30 Mc . with 1 Mc . to 10 Mc . sweep width.
To provide center Frequency Range--50 Mc lo 90 Mc .

To provide center Frequency Range-- 170 Mc . to 225 Mc .

Variable output-at least . 1 volt maximumflat sweep output all ranges.

R-F SIGNAL GENERATOR.
To provide frequencies from 19.75 Mc . to 27.25 Mc -55.25 Mc . to 87.75 Mc.--175.25 Mc. to 215.75 Mic .

ON-TRAP. Proper attention to ion-trap adjustlife and satisfactory operation of the picture tube. Assuming the ion-trap is off to the extent that no raster appears proceed as follows

Variable Output and at least .1 volt maximum HETERODYNE FREQUENCY METER.
With crystal calibrator to check R-f Signal Generator

CATHODE RAY OSCILLOSCOPE.

With wide band vertical deflection and means to calibrate input.

ELECTRONIC VOLT OHMMETER.
With multiplier probe for hi-voltage measure ments to 10 KV .

ALIGNMENT

It is very important that the proper condition of R - ground for the test equipment with respec to the receiver be had before attempting align ment. To accomplish this place the receiver and test equipment on a conductive sheet of metal and bond or by-pass the equipment to it. Touching the lest leads, test equipment, or tecelve hassis should have no effect on the scope attern or meter reading.

SEQUENCE FOR COMPLETE ALIGNMENT.

1. Sound discriminator. 5. R-f oscillator
2. Sound I-f. 6. R-f and converter.
3. Picture I-f Traps. \quad 7. 4.5 Mc . Video Trap.
4. Picture I-f.

SOUND DISCRIMINATOR

1. Signal Generator setting--21.25 Mc.--. volt output--connect to pin 1 of V2, 2nd sound I-f
2. Detune T102 secondary (bottom)
3. Connect voltohmyst through a 1 meg. re sistor to the junction of R109, R108 (Test Poin A).
4. Adjust primary T102 (top) for maximum meter reading.
5. Connect voltohymst to junction of C114 and R109 (pin 5, V3) (Test Point B).
6. Adjusting T102 (bottom) will vary meter eading from a plus voltage to minus voltage Adjust for zero (point where it swings from plus to minus).
7. Connect sweep to pin 1 of V2, 2nd sound I-f, -sweep bandwidth approximately 1 mc . wit enter frequency of $21.25 \mathrm{mc} .,-1$ volt output.
8. Connect oscilloscope to pin 5 of V3 through $33,000 \mathrm{ohm}$ isolating resistor. If pattern is not symetrical, adjust primary of T102 (top). See Fig. 1.

Figure 1
SOUND I-F. Switch Channel Selector to position 14 (kills oscillator).

1. Connect sweep to pin 1 of $\mathrm{V} 1,1$ st sound -f. (Center frequency of 21.25 mc)
2. Connect oscilloscope to point A of T10 hrough a $33,000 \mathrm{ohm}$ isolating resistor-(Test oinal). (if por osciloscope horizontal swe
3. Insert a 21.25 mc . marker from signa enerator into pin 1 of V2. (It is best to coupl the marker signal generator loasely--cor to chassis point near pin 1 of V2)
4. Adjust top and bottom of T101 for maximum 4. Adjust top and bottom of T101

Figure 2
5. Final touch-up of curve should be with sweep input low enough so that the scope reading than .5 volt D-c

PICTURE I-F TRAPS. Switch Channel Selecto to position 14 (Kills oscillator).

1. Connect the voltohymst to junction of R155 nd R156-(Test Point D).
2. Remove V12A, AGC Amplifier
3. Connect a 250,000 ohm potentiometer be tween pins 5 and 6 of the V12A socket (Note-an old tube base with the $250,000 \mathrm{ohm}$ pot soldered its pin 5 and 6 is convenient since it can be 250,000 ohm potentiometer isn't available, connect the minus terminal of a 4.5 V battery to TEST POINT D and the plus terminal to ground)
4. Adjust potentiometer until meter reads (4.5 volts).
5. Remove converter tube and twist one en of a small piece of wire around pin 1 , the grid Place tube back in socket and connect R-f gen (1500 MMFD).
6. Connect voltohmyst across R134, V10B oad resistor (BETWEEN TEST POINTS E AN F). Since both meter leads are nowat about ouch it
7. With a crystal calibrator check the generator setting for each of the following trap frequencies and then adjust each trap for minimum indication on meter:
21.25 mc T108 (top)
27.25 mc . T105 (top)
27.25 mc . T107 (top)
$19.75 \mathrm{mc} . \mathrm{T} 104$ (top)
19.75 mc . T109 (top)

The correct position of the cores is in the outside end of the form. The core can be run down through the coil for another dip, but in this position the coupling is wrong and overall response will be incorrect.

PICTURE I-F. Switch Channel Selector to position 14 (Kills oscillator).

1. Signal generator on converter grid as in trap adjustment.
2. Set generator to following and adjust ransformers for peak reading on meter which is still across R134 (BETWEEN TEST POINTS E AND F).

T109 (1)	9, 4th Pix I-F
24.8 mc. T107 (bottom)	3rd P
21.95 mc . T106 (buttom)	V7. 2nd P

3. Reduce input signal during alignment if overloading is indicated by very broad peak.
4. Overcoupled T1 and T104 (bottom) must be aligned by sweep.
5. Connect 330 ohm resistor (composition) across the primary coils of T105, T106, T107, T109.

MODELS $3100 \mathrm{~TB}, 3100 \mathrm{TM}, 3101 \mathrm{CM}, \mathrm{Ch}$ TE 272-1; 3120cB, 3120CM, 3121TM
6. Connect the oscilloscope to pin 1 of V11A, the 1 st video amplifier plate, through $33,000 \mathrm{ohm}$ isolating resistor (TEST POINT G).
7. Connect voltohmyst to the junction of R155 and RI56 (TEST POINT D), and adjust the potentiometer (step 3 of trap adjustments) to minus 2 volts.
8. Connect a sweep generator (set to sweep from 20 mc . to 30 mc .) to the converter grid, through a 1500 MMFD condenser.
9. Adjust T1 and T104 for the following esponse:

Figure 3
10. Remove the 330 ohm resistors
11. It will be necessary to touch up the I-f djustments to get the shown over-all response (Fig. 4).

NOTE: A defective V10B will cause a bad dip in the curve.

OVERALL RESPONSE

Figure 4

12. Adjust the bias pot for a 15 volt peak to peak signal on the scope (pin 1 of V11A). The measured bias should now be minus 4.5 volts or less.

NOTE: To see the response of any single stage, followsteps $5,6,7,8$ except remove the 330 ohm resistor on the particular stage to be observed.
13. Remove bias potentiomenter and replace 15.
14. Remove clip from converter grid and replace tube in socket
NOTE: Picture I-f oscillation can occur in a receiver that is badly misaligned and will show up as a voltage across R134, the video detector load resistor, that is unaffected by R-1 input. By T106, T107, T108, and T109 as compared to hose in a correctly aligned receiver, the oscilla ion may stop. If still existing try increasing the bias on V6 and V8. If these a ttempts fail, shunt the grids of V8, V7, V6 to ground with a 1,000 MMFD capacitor, connect the signal generator to the grid of V9, and align T109. Progressively remove the shunts and align each I-f stage working back to T104. If oscillation is still present, it is not due to misalignment--therefore, an individual component and voltage check must be made in the I-f section.

AN ALTERNATE METHOD OF SWEEP ALIGNMENT OF T1 AND T104 AND PICTURE I-F.

Figure 5

1. Adjust the bias at the junction of R155 and R156 (TEST POINT D) to minus 1.5 volts. (See bias adjustment of Step 3 on PICTURE I-F Traps).
2. Connect the detector input to pin 1 of V7 (See Figure 5).
3. Connect a sweep generator (sweep from 20 mc to 30 mc .) to the converter grid through 1500 MMFD condenser
4. Adjust T1 and T104 for the response of ig. 3.
5. Remove the detector from the scope-input lead.
6. Connect the oscilloscope to pin 1 of V11A (TEST POINT G).
7. Overall I-f response should be as in Fig. 4. Markers should locate as shown.

NOTE: To see the response of any single stage, connect the sweep generator output to the input of the stage to be observed and the input terminal
of Figure 5 to the output of the following stage.

FREQUENCY TABLE.

$\begin{array}{\|c} \hline \text { Channel } \\ \text { No. } \end{array}$	Band Width (mc.)	$\begin{aligned} & \text { Picture Carrier } \\ & \text { (mc.) } \end{aligned}$	$\begin{gathered} \text { Sound Carrier } \\ \text { (mc.) } \end{gathered}$	$\begin{gathered} \text { R-F Os. } \\ \text { (me.) } \end{gathered}$
${ }^{2}$	54.60 6.66	${ }_{5}^{55.25}$	59.75	
4	60.66 66.72	61.25 67.25	${ }_{71.75}^{65.75}$	${ }_{93}^{87}$
5	${ }_{8}^{76-82}$	7725	81.75	${ }^{103}$
7	(174-180	$\begin{array}{r}8325 \\ \\ 175.25 \\ \hline\end{array}$	887.75 179.75	${ }_{\substack{109 \\ 201}}^{109}$
${ }^{8}$	180-186	181.25	185.75	207
9	${ }^{186-192}$	187.25	191.75	${ }^{213}$
$1{ }_{11}^{10}$		+193.25	-	219 225
12	204-210	${ }^{205} 25$	${ }^{209}$ 20.75	${ }_{231} 23$
13	$210-216$	211.25	215.75	237

R-F OSCILLATOR ALIGNMENT. Use non-metallic screw driver

The oscillator adjustment screws are reached from the front of the tuner through the numbered holes around the channel switch: A ew turns of the alignment screw on any channel other channels, since for slight adjustments the channels are substantially independent. Channels 8 and 7 are affected by large screw displacement on channels 6 and 5

The range of electrical effect for the screws is 7 turns from tight. Further turns may cause is 7 turns from tight. Further turns may cause

The following is for complete $\mathrm{R}-\mathrm{F}$ Oscillator alignment:

1. Set fine tuning trimmer at mid-point as accurately as possible
2. Set all oscillator alignment screws 4 turns rom tight.
3. Align channel 6 as follows
a. Connect a voltohmyst to pin 5 of V3 (discriminator output) (TEST POINT B).
b. Feed channel 6 sound carrier (87.75 mc .) into antenna terminals. (See Frequency Table).
c. Adjust channel 6 oscillator screw for zero voltage on voltohmyst. This actually curve, soobviously the discriminator must first be known to be correctly aligned before R-F oscillator alignment can be made using this method.
4. Follow step 3 for channels 5 through 2 in hat order.
5. Follow step 3 for channels 7 through 13 in order
6. Re-check channels 6 through 2 in that order touch up if necessary.
7. Re-check channels 13 through 2 in that rder-touch up if necessary

NOTE: If on the high channels the adjustment screw has insufficient range, physical movement of the coils can be made with care for increasing or decreasing inductances.
R-F AND CONVERTER ALIGNMENT. Due to very close design these should require no future adjustments so no provisions have been made for such.

HORIZONTAL OSCILLATOR ALIGNMENT,

1. Turn the Channel Selector to a station.
2. Turn the Horizontal Hold Control Maximum clockwise.
3. Turnthe Horizontal Lock Adjustment to almost tight.
4. Connect the oscilloscope to terminal " C " of T112.
5. Turn the T112 Blocking Waveform Adjustment maximum counter-clockwise.
6. Sync the picture by adjusting the Horizontal Frequency Adjustment Screw of T112
7. Turn the Blocking Waveform Adjustment until the waveform is correct as in Figure 6.
8. Adjust the T112 Frequency Adjustment so that the picture just breaks syncs (the ideal is to have a wide vertical black bar representing horizontal blanking showing somewhere in the picure).
9. Turn the Horizontal Hold maximum coun-ter-clockwise. If picture doewn't break sync, furn the Station Selector off-channel and then back. Picture will now be out-of-sync.
10. Turn the Horizontal Hold Control slowly lockwise and count the diagonal black bars just before "pull-in."
11. There should be 3 bars---adjust Horiontal Locking Range until only 3 bars are present before "pull-in"
12. Turn Horizontal Hold Control maximum lockwise. Picture should just break sync as in Step 8.
13. Adjust T112 Frequency Adjustment to obtain condition of Step 8.
14. Repeat steps 8 thru 12 if necessary to obain conditions of Steps 8 and 11 .

igure 6

DRIVE, LINEARITY WIDTH ADJUSTMENTS The Drive Control, C186A, will have greatest effect on the left side of the picture---stretching or compressing.

The Linearity Control, L116, will have great est effect on the right side of the picture

The Width Control L115, adjusts the horizontal width of the raster to compensate for line voltage variations. On the $121 / 2 \mathrm{in}$. and 16 in chassis a switch is provided for disconnecting the Width Control, L115, for the condition of maximum width

4.5 MC. TRAP ADJUSTMENT

1. Tune in a strong station
2. De-tune the Fine Tuning slightly from best sound.
3. Adjust L105 to eliminate any 4.5 Mc . beat pattern that may appear in the picture.

CRITICAL LEAD DRESS ON CHASSIS TE-272-1 AND TE-272-2 AND TE-276.

1. All by-pass condenser leads on the I-f strip as short as possible.
2. Short lead between body of R111 and pin 5 of V 3 .
3. Do not re-route bus wire from pin 2 of V 2
4. Filament leads between V3, V4, V5 keep leads.
5. All leads crossing I-f circuits should be held close to chassis. Movement of such leads could change alignment
6. Pix I-f coupling capacitors must be away ment.
7. All peaking coils should be held away from chassis.
8. Green lead from pin 2 of V11, white-orange lead from pin 8 of V11 away from chassis.
9. Blue lead frompin 5 of V 4 close to chassis
10. C124, C125 away from chassis.
11. R213, R214, R220, R221, R222, R219 should have long leads and held up and away from tube sockets and chassis.
12. Keepleads from L115 (width control) away from transformer frame
13. Dress filament leads from herizontal transformer T113 away from chassis.
14. Dress lead from top cap of 6BG6 tub away from frame of transformer
15. Dress lead from top cap of 1B3GT away from chassis.
16. Dress red lead from lug 4 of T113 down MODELS $3100 \mathrm{~TB}, 3100 \mathrm{TIT}, 3101 \mathrm{CM}$, Ch TE 272-1; 3120CB, 3120CM, 3121TM, TE 272-1; 3120CB, 3120CH, 3121MM,
gainst chassis underneath bus wirefrom chassis o terminal strip to hold it in place
17. C203 leads should be as short as possible (parasitic oscillations canoccur with long leads).
18. White-orange lead from pin 8 of V11 ressed away from the volume control terminals and components.

NOTES ON SERVICING

No Raster.

1. Check ion trap adjustment
2. Check Brightness Control, R120

Check Hi-Voltage.
a. Defective V16, V17, V18, or V19.
b. Open Horizontal Deflection Coils.
c. Defective C181.
d. Defective picture tube.

One Vertical Line Only On Picture Tube. . No horizontal sweep.
a. Defective Horizontal Deflection Coils

Picture Very Narrow ($1 / 2 \mathrm{in}$. wide or so) in the Center of Tube.

1. Defective Horizontal Output Transformer, T113.

One Horizontal Line Only On the Picture Tube.
No vertical sweep.
a. Defective V14 or V15 or circuits.
b. Defective Vertical Deflection Coils

Not Enough Width.
. Low line voltage
3. Check C188.

Horizontal Linearity Poor Beyond Adjustment. 2. Check C183, L116, C182, C184, C185.
3. Check T113.

Vertical Linearity Poor Beyond Adjustment. 1. Check C176B, C17
2. Defective T111.

Vertical Retrace Lines Showing (Brightness Control Does Not Correct.

1. Defective T111.

Bright Horizontal Line In the Picture Which Is Moved By the Height Control.

1. Defective V15

Wide Vertical Black Bar Dividing Picture. 1. High Resistance Short of C167.

No AGC--Possible Negative Picture. 1. Shorted C160.

Very Snowy Picture - No AGC. 1. Shorted C157.

Sound and Raster But No Picture.

1. Check I-F String.

Picture But No Sound.

1. Check T106 Trap.
2. Check V1, V2, V3, V4, V5
3. Check Speaker.

No Vertical Sync.

1. Check R177, C170, R178, C171, R179, C172 2. Check C173.

No Horizontal Sync

1. Check C169.

Poor Resolution.

1. Check L103, L104, L107, L106.
2. Check I-F Alignment.
3. Check C138, C139
4. Check D-C Voltages in Video Circuit.

Black Horizontal Bars Moving With Sound.

1. Microphonic tube in tuner.

No Sync.
$\frac{\text { No Sync. }}{1 . \text { Check V13, V14 }}$
2. Check I-F Alignment.

PICTURE TUBE WARNING

IMPLOSION OF PICTURE TUBE IS DANGEROUS. AVOID SHARP BLOWS-DROPPING - OR FORCING WHEN MOUNTING. DO NOT HANDLE THE PICTURE TUBE BY ITS NECK. WEAR GOGGLES AND HEAVY GLOVES WHEN HANDLING. PLACE UNUSED PICTURE TUBES IN PROTECTIVE CARTONS.

hi-voltage warning

HI-VOLTAGES EXIST WITHIN THE RECEIVER CHASSIS ONLY PERSONS FAMILICIVER CHASSIS. ONLY PERSONS FAMILIAR WITH THE LOCATION OF THESE HI-VOLTAGE
POINTS AND HAVING KNOWLEDGE OF USUAL HI-VOLTAGE PRECAUTIONS SHOULD MAKE CHASSIS INVESTIGATIONS.

16 PICTURE TUBE WARNING

THE METAL CONE OF THE 16 IN. PICTURE TUBE SERVES AS THE HI-VOLTAGE ANODE HAVING 12.5 KV ON IT. USE EXTREME CAUTION WHEN OPERATING OUTSIDE OF CABINET AND DO NOT REMOVE THE PRO'TECTIVE HI-VOLTAGE SLEEVE COVER

REMOVAL OF THE 10 IN. PICTURE TUBE

1. Loosen the screws (don't remove) holding the front picture tube stop bracket.
2. Remove the picture tube socket, ion-trap, and anode connector
3. Free one end of the hold-down strap.
4. Lift up the front of the picture tube to clear the front stop bracket and slide the tube forward and out CAUTION: DONOT EXERT LEVERAGE ON THE TUBE NECK WHICH IS IN THE YOKE AND FOCUS COIL MOUNT
5. PLACE THE TUBE IN AN UNUSED CARTON.

REMOVAL OF THE $12 \frac{1}{2}$ IN. PICTURE TUBE

1. Remove the picture tube socket, ion-trap, and anode connector
2. Free one end of the hold-down strap.
3. Lift up the front of the picture tube to clear the front stop bracket and slide the tube orward and out. C A UTION: DO NOT EXERT HE YOKE AND FOCUS COIL MOUNT.
4. FLACE THE TUBE IN AN UNUSED CARTON.
NOTE: If it is necessary to loosen the bottom-support-bracket, and drop it down to allow the ube to slide out, first mark the fixed position of the bracket on the chassis since this position is correct for proper alignment of the picture tube placed the front-bottom-support-bracket can then be adjusted to the marked position.

REMOVAL OF THE 16 IN. PICTURE TUBE. Follow the procedure for the $121 / 2 \mathrm{in}$. picture tube-... When freeing the hold-down strap, also removethe metal strut mounted between the hold-down strap, and the yoke mount. This will
allow the hold-down strap to be lifted up.

©John F. Rider

SUBJECT: Condition of One Wide Vertical gleck Bar Dividing the Plctur The endition of one wide vertical black bar dividiug the plcture in halr The
with the normal right side of the picture apparing on the 1 ert end left
side on the right can he caused by clop developing a hiph resistance short side on the right
of 3 to 4 megohms
The fault could prove to be difficult to find since normally the 10 efcal location of such a horizontal sync trouble would be in the horizontal osc
lilator and control circuit of $V 16$. $C 167$ connects between fin 2 of vion and pin 2 or Vilfa.
SUBJBCT: Buzz in the Speaker with Volume Control at Minimum
Reoently the vertical output transformer, T111, was changed to an auto

OLD

If C178 1s left with one side hooked to ground vertical buzz will be pro-
 he prellminary service manual

Two other possible sources of a udio buzz are as follows:

1. The white and orange lead from pin o of V11B, the video amplifier being
too loose and dressed close to the volume control terminals. Re-dress this lead. piace such a capacitor.
subject: Focus Control on the $121 / 2^{\prime \prime}$ Chessis
 Crntrol to properly focus the raster. A component change is teing exec
ited in production to eliminate tris possiblify for future production. Any 12 1/2" set in the field can have this fault corrected quickly and
easily by the followne procedure without pulling the chassis from the easily by
cabinet.
2. Remove the bottom cabenet cover exposing a major portion of the chassis wiring. ted in line. One of these terminals strips has on 1 ts end terminal a 330
oha, 2 watt, and a 100 ohm, $1 / 2$ watt tied tc $1 t$ Also, 2 red wires join on this terminal. 4. Viewing the chassis from the bottom, one can see another terminal strip
(6) terminals) mounted on the main chasis below the above two which are on the front rlange.
coming from the focus coll connects to terminal besid the ground lug of the terminal strip.
3. Connect the other end of the 1800 ohm resistor to this point.
This 1300 ohm, 2 watt, shunt resistor across the focus coil will 1 mprove the range of the Pocus Control satisfactorily
SUBJBCT: Buzz in the Audio on Strong Signals
In some locations of strong signal strength "Vertical buzz" is present in
the audio. This buzz can be tuned to minimum by the fine tuning control when tuned carefully for best sound reception. The following change is now incorporated in present production tmproving the ACC characteristic: This greatly reduces the buzz in the audio and makes the fine tuning less

SUBJBCT: Buzz in the Audio on Strong Signals, Models 3100, 3101, 3120 ,
In some locations of strong signal strength "vertical buzz" is present in the adio minimum by the fine tuning control when tuned carefully for best
tuned to mel mind
sound reception. The following change can be made very easily in the field sound reception. The following change can be
for reducing this buzz in strong signal areas,
Change R157-2 from 120 K to 75 K
 ably essier.
SUBJECT: Accentuated white horizontal band near top of raster and touch vert?cal sinc on some bullt thls year
It has heen noted that some if the T110, Vertical Oscillator transformers, used in production since Jaruary 1,1950 develope e parasitic Nr.
superimposes an added spike of witage onto the return sweep part of the vertichl sweep waveform. This results in a "hunching" of retrace lines about $1^{\prime \prime}$ from the top cf the ficture caising an accentuated winte hornz-
ontal portign which car. readily be seen when the briehtness is increased
A 2.2 megohm demping resistor across the primary of Tllo (between the zreen
and yellow leads) is being pdded in production to fcrestall any such parasitic developing
tic in some cases resuls aiso in very couchy vertical sync
SUBJECT: Noted differences in the Chassis TE-272, Model 3100-TM ($10{ }^{\prime \prime}$ Table
Early production receivers used the $6 C 4$ tube for the R-f oscillator. The
ABl tube is now used in preduction. The 6 AB4 cannot replace the $6 C 4$ in ABM tube s now used in preduction. The 6 AB4 cannot replace the $6 C 4$ in
the early production recelvers since the plate of the 641 pin 5 and the Dhate of the GAB4 is pin l. Present production has pin and pin 1 tied to
eether so the tubes can be interchanged. The GAb4 18 preferred find recommended.
2. The reselver chassis does not have a width switch, swiuz in some
fecelvers the width control, Lils, will have been disconnected (for maxim
. A 40 ufd electrolytic by-pass to round an the connection retween R101 3. A Lo uf electrolytic by-pass to round an the connection retween Riol
end he tuner unt does not phow on the prelm! nary Manual circuit diagram. Crcuit connects. to the -120 y supfiy, instead of fround as shown on the
II has been found that hrizontal pulsea, coupled into the envelope of of hy too red horizontal lead from the $t 1-V$ deghcuse toing to socket, Slua

SIRJECT: Regeneration in the sound strip of Mo:el 3100-TM. Chassis TE-272,
 ases causes regeneration. The lead is now being rerouted (down close to o the function of R158 and R159
. The shield can of the discriminator transformer, T102, should have it the bottom of the con could cause regeneration- tightening of the mounting

SUBJECT: Shorted Capacitors Across the Secondary of the Horizontal Output Cranted Capacitors Across the Secondary or
Cransform, Th the $121 / 2^{\prime \prime}$ Chassis.
Earl", production of the $121 / 2^{\prime \prime}$ chassis utilized two 270 mafd condensers
 tube. Breakdown of these condensers resultin, in a short across termin.

1. No Fi-Voltape - therefore no raster

More ontal scan. Only narrow vertical wh.
riaht will appear on the plcture tube.
Present production is visine a . O4 7mfd, 200V, Molded, O11-filled capacit-
 the above breakdown trouble occurs and also on any early production

TUNER UNIT AE 23054.2

SUBJECT: Model TE-2122TM V12, 6AV5GT -- Correcting escessive failure of tris tube.
A kit of parts (per change) will he supplied upon request for any Chassis TE-2\%幆 in the field that has excessive
6AV5GT failure. Kit Part No. A24033-2.
All Chassis TE-209-2 incorporate the accompanying circuit change to devrease the dissipation in the 6AV5GT, V12, Horizontal Cutput, and increase the life of this tube. Model 2122 TM used Chassis TE-339 in which the life of Vli can be
increased by making tris change.
a. R186, $850 \mathrm{ohm}, 10$ watt resistor added between and ground of GAV5GT tube.
b. Ground side of C166 condenser rerouted to cathode of 6AV5GT.
c. Cl77, 122 uf., 400 V . condenser added to cathode cir-
cuit of 6AV5GT tube.
d. Rl67 Resistor chenged to R167-1, 1500 ohm, 10 watt Resistor.
e. Ground side of $\mathrm{Cl} 67(.0015 \mathrm{mfd}$.) Condenser rerouted to 6AV5GT cathode.
f. Rl69-1 (l meg.) Resistor ground side rerouted to 6AV5GT

cathode.

(C) John F. Rider

TUBE COMPLEMENT

V17	${ }_{6 C B 6}$	R. F. Amplifier			
V18	6 Jb	Oscillator-Mixer		GAUG	Vidoo Amplifier
VI	6AU6	Sound I.F. Amplifier	V9b		Sync. Amplifier
V2A	6T8	Sound Discriminator	VIOA	6SN7GT	Vert. Oscillator
V2B		Ist Audio Amplifier	VIIO		Vert. Output
V_{3}	6AS5	Audio Output	VIIA	6SN7GT	Horizontal AFC
V4	bCB6	Ist Pix I.F. Amplifier	VIIB		Horz, Oscillator
V5	6CB6	2nd Pix I.F. Amplifior	V_{12}	6AV5GT	Horr. Output
V6	${ }_{6}$ CB6	3rd Pix I.F. Amplifior	V13	1X2	High-Voltage Rectifie
V7A	6AL5	AGC Rectifier	V14	6W4GT	Damper
V7B		D.C Restorer	V15	${ }_{5 Y}{ }^{\text {GGT }}$	Power-Supply Rectifier
			VI6	8AP4A	Picture Tube ($81 / 2$ ")

SPECIFICATIONS

Power 'Supply Rating	. 117 Volts, 60 Cycles, 135 Watts
Audio Power Rating	1.0 Watt
Antenna Input Impedance.	72 or 300 ohm
Video Response	To 3 MC
Focus	Permanent Magnet (Focalizer)
Swoop Deflection	Magnetic
Picture Carrier.	45.75 MC
Adjacent Channel Sound Trap.	47.25 MC
Sound Carrier	41.25 MC

The ARVIN television receiver will in most cases be ready for installation when unpacked from its shipping carton. However, it is advisable to "air-check" the receiv er before delivery and make any necessary final adjustminimize service calls and prond

ADJUSTMENTS

ION TRAP

Proper attention to ion-trap adjustment must be given t insure satisfactory operation of the picture tube. As suming the ion-trap is off to the extent that no raste appears, proceed as follows:

See that the magnet portion of the ion-trap is over the "top" of the gun with the rear plane of the ion-trap ove the spot welds on the gun structure. (Be sure the trademark notations on the magnet portion of the ion-trap are to the rear of the C-R tube.) Now rotate the ion-trap until raster appears. It may be necessary to slide the iontrap slightly forward or backward for best raster. With the contrast control at minimum (full counter-clockwise) the ion-trap for maxitat the ion-trap for maximum brightness.

focus - CENTERING

No electrical provision in the circuit is made for center ing. The focalizer must be positioned properly for centering of the picture. Both the focus adjustment screw and the ion-trap have an effect on picture centering, but the tated correctly the other the the focalizer is roonly slight adjustments will be necessary.

The permant magnet focalizer has both a "coarse" and "fine" adjustment. The "coarse" adjustment is made by rotation of the focalizer; the "fine" or vernier adjustment is made by movement of the focus adjustment screw mounted on the top of the focalizer.

Tune in any available station and set the contrast conrol to approximately $3 / 4$ maximum clockwise. Turn retrace lines cannot be seen. Turn the focus adjustment screw in (clockwise) until it is approximately $1 / 16^{\prime \prime}$ from shorting the plates of the focalizer. Loosen the two $5 / 16^{\prime \prime}$ focalizer clamp nuts (see "C" on the top chassis view of the schematic diagram). Rotate the focalizer for best focus, centering and absence of side shadows. Turn the focus adjustment screw for touch-up on best definition

height and vertical uneapity (rear)

The picture should fill the mask and be symmetrical from top to bottom. Adjustments of both the Height Control and Vertical Linearity Control will accomplish this if centering of picture by the focalizer is already proper

squaring the raster

The Yoke Mount and Yoke should be positioned properly as follows:

The large front hole in the Yoke Mount Bracket is rim med with rubber channel. Loosen the two screws in the feet of the Yoke Mount Bracket and push the mount forward so that the cone of the picture tube fits snugly into the rubber channel. Loosen the top wing-screw and two side wing-screws holding the Yoke and slide the mount Yorward onto the cone of the picture tube-center the
Yo tube neck is co-axial and tighten the two side mounting wing-screws. Rotate the Yoke to square the raster and tighten the top wing-screw.

HORIZONTAL HOLD

If Horizontal adjustments appear necessary, refer to the alignment section for procedure

SERVICE TEST EQUIPMENT

r-F SWeep generator

To provide center Frequency Range- 40 Mc . to 50 Mc . with 1 Mc. to 10 Mc. sweep width
To provide center Frequency Range- 50 Mc . to 90 Mc . To provide center Frequency Range- 170 Mc . to 225 Mc . ariable output-at least .1 volt maximum-flat sweep output all ranges.

r-F SIGNAL GENERATOR

To provide frequencies from 41.25 Mc . to 47.25 Mc . -55.25 Mc. to 130.5 Mc . -175.25 Mc . to 258.5 Mc .

Variable Output and at least .1 volt maximum

heterodine frequency meter

With crystal calibrator to check R-F Signal Generator

CATHODE RAY OSCILLOSCOPE

With wide band vertical deflection and means to calibrate input.

ELECTRONIC VOLT OHMMETE

ith multiplier probe for hi-voltage measurements to 0 Kv

ALIGNMENT

sequence for complete alignment

1. Video I. F. Trap.
2. Video I. F. Overall.
3. Audio take-off and ratio detector
4. Tuner unit.

VIDEO I. F. ALIGNMENT

1. Connect signal generator to tuner test point. . Set contrast control in approximately middle of its range.
2. Connect DC probe of VTVM between junction of L105 and L106 (across the video detector load resistor, R124.)
3. Set unmodulated generator on 47.25 Mc . and adjust bottom of T103 for minimum VTVM deflection. A large signal input may be required.
4. Set unmodulated generator on 45.3 Mc . and adjust L102 and top of T103 for maximum VTVM deflection. NOTE: Reduce input if VTVM
reading exceeds (4) volts (prevents overload).
5. Set unmodulated generator on 43.1 Mc . and adjust L7 (converter on tuner unit) and L103 input if VTVM reading exceeds (4) we. R input if VTVM reading exceeds (4) volts
Disconnect generator and VTVM. Connect sweep generator to tuner test point.
6. Connect vertical amplifier of scope to junction of L105 and L106.
7. Set the scope for external sweep and connect the "scope" terminals of the sweep generator to the horizontal amplifier input terminals on the oscilloscope.
8. Adjust sweep output and phasing and scope gains to obtain usable I. F. response curve.
9. Retouch L102 and top of T103, L7 and L103 to obtain proper curve as shown in Fig. 1. NOTE: Extreme care must be taken not to overload the I. F. circuit during test.

NOTE: Should great difficulty be noted in aligning redressing locations of I. F. coupling condensers C130, and C125 may be effective in shaping the response curve.

MODEL 4080T

SOUND I. F. ALIGNMENT

Methed A

1. Connect sweep generator of 4.5 Mc . center frequency to pin 1 , of V8. Set sweep width to 500
2. Connect AM modulated 4.5 Mc . signal to pin 1 of V8.
3. Connect horizontal amplifier of scope to "scope" terminals of sweep generator
4. Connect vertical amplifier of scope to junction of output of sweep to abtain usable trace on scope NoTE Exiene NoTE: Extreme care must be taken not to over drive the circuit under test. (See Fig. 2.)
5. Adjust top of. T101 for minimum ripple response on scope.
6. Adjust L101 and bottom of T101 for two equal and maximum curve peaks (See Fig. 2).
7. Disconnect all test equipment and tune in a transmitted signal. Adjust fine tuning and contrast until a low audible buzz is noted in the speaker. Check adjustment of T101 secondary (Top) to be certain it is set for minimum buzz (Maximum AM rejection).

Figure 2

Method B

1. Tune in a transmitted test pattern signal with constant tone
2. Connect DC probe of VTVM between pin 2, V2 and ground.
3. Adjust L101 and bottom of T101 for maximum deflection of VTVM
NOTE: Reduce contrast if meter reading ex cceds 6 volts.
4. Adjust fine tuning and contrast until a low audible buzz is noted in the speaker. Adjust top of T101 carefully for ninimum buzz
NO'TE: An accurate 4.5 Mc . signal generator source could be used for step 1 -step 2 and 3 would remain the same-AM modulate the 4.5 Mc. signal, connect a scope to the junction of minimum ripple on the oscilloscope.

TUNER ALIGNMENT

order of procedure

1. High-band oscillator ranging.
2. Low-band oscillator ranging.
3. I. F. trap adjustment.
4. High-band antenna tuning.
5. Low-band antenna tuning.
6. High-band tracking.
7. Low-band tracking

NOTE:

Tuner alignment should not be attempted until I. F is correctly aligned and set is otherwise operatin correctly. The condenser plates of the tuning condenser should never be bent out of correct alignment. The contrast control should be at mid-range. All fina checks on the above steps should be made with th tuner shield on

high-band oscillator ranging

1. The correct extreme tuning range of the high band oscillator with the fine tuning is 219.5 Mc . to 258.5 Mc .
2. Connect the vertical input of the oscilloscope to the tuner side of C 138 which is the input coupling capacitor to V4, the first I. F. amplifier. (Gree lead from tuner)
3. Connect a signal generator to the antenna ter minals tuned to 258.5 Mc . The signal generator output should exceed 100,000 microvolts.
4. Turn the band switch to the high channe position.
5. Set the tuning maximum clockwise for the high est frequency position and adjust C19 carefully for a zero beat indication on the oscilloscope.
6. Set the fine tuning maximum counter-clockwise and tune the signal generator around 219 Mc hat the zero beat fre quency of the low end is.
7. If the oscillator frequency is above 219.5 Mc . squeeze the turns sligntly together of L9 and then repeat the procedure of steps 5 and 6 .
8. If the frequency of the oscillator is below, the turns of L9 will have to be spread slightly and the steps of 5 and 6 repeated.
9. By this procedure, the right value of inductance for L9 and the correct setting of C19 trimmer can readily be found in order that the oscillator will praperly range from 219.5 Mc . to 258.5 Mc

LOW-band oscillator ranging

1. Test equipment as in High-Band oscillator ranging.
2. The correct extreme tuning range of the lowband oscillator with fine tuning is 99 Mc . to 130.5 Mc
3. Turn the band switch to the low channels position.
4. With the fine tuning maximum clockwise, set the signal generator frequency to 130.5 Mc . an
adjust C24 for zero beat on the oscilloscope.
5. Set the fine tuning maximum counter-clockwise and check the local oscillator frequency with th
Mc., spread the turns slightly of L8 and repeat steps 4 and 5 .
6. Should the local oscillator be below 99 Mc . squeeze the turns slightly together of L8 and epeat steps 4 and 5
7. By this zero beat method, the range of the local scillator in the tuner can be adjusted to cove from 99 Mc . to 130.5 Mc . (low-band).

I. F. TRAP ADJUSTMENT (TUNER)

1. Connect a signal generator to the antenna ter minals tuned to 44 Mc .
2. Connect a VTVM to the junction of L105 and L106 (across video detector load, R124)
3. Adjust C4 for minimum meter deflection

high-band antenna tuning

1. Turn the band switch to the high channels position.
2. Connect the sweep generator to the antenna ter minals to sweep for channel 11 .
3. Adjust the fine tuning until a response curve appears on the scope.
4. Adjust C1A for maximum curve height.

LOW-BAND ANTENMA TUNIMG

1. Turn the band switch to the low channels position.

Connect the sweep renerato to the anter minals to sweep around channel 5 .
3. Connect the oscilloscope to the junction of L105L106
4. Tune the fine tuning until a response curve ap pears on the oscilloscope
5. Adjust C1B for maximum curve height.

high-band r. f. tracking

1. Connect sweep generator to antenna terminals and oscilloscope to the junction of L105 and L106.
2. Set the band switch to the high channels position.
3. Set the fine tuning and sweep for channel 11 Adjust the input for a clean response curve without over-loading
4. Adjust C 11 for maximum response curve height. If the response curve peaks are not level as in setting of C1A. These peaks must be level.
5. Check the overall response on channel 7 and channel 13. These response curves should fall in
6. If the low frequency side of channel 7 curve is low and the high frequency side of channel 13 curve is high, the R. F. section is over-ranging. This condition can be corrected by spreading the turns of L5 slightly and re-adjusting C11 as in step 4.
7. Conversely, squeezing the turns of L5 slightly and re-adjusting C11 as in step 4 will increase the range of the R. F. section.
8. By this procedure it is readily possible to make the R. F. section track with the oscillator, resulting in overall response curves for each channe to fall within the limits as shown in figure 3A and 3 C .

NOTE: When it is necessary to adjust the turns slightly of any of the coils, the tuner cover must be replaced during the checking

LOW-EAND R. F. TRACXING

1. Set the band switch in the low channels position and equipment as in high-band R. F. tracking.
2. Set the tuning and sweep for channel 5 .
3. The overall response curve should be within the limits as shown in figure 3. Check the overall response of all the channels to see that they fall
within the limits as shown in figure 3
A
4. Adjust the turns spacing of L6 for maximum response curve height on channel 5 should re sult in having the response curves for all channels within the limits as shown in figure 3. I the setting of C1B.
tuner adjustment table

C19	Adjust for high-end of oscillotor	258.3 MC
L9	Squeeze furns to lower low-end of oscillotor	219.5 MC
L9	Spreod turns to roise low-end of oscillotor	219.5 MC
C24	Adjust for high-end of oscillotor	130.5 MC
L8	Squeeze turns to roise low-end of oscillotor	99.0 MC
L8	Spread turns to lower low-end of oscillotor	99.0 MC
C11	Adjust to track R.F.	Channel 11
L5	Squeeze turns to lower low-end of R.F.	Channel 7
L5	Spread turns to raise low-end of R.F.	Chonnel 7
L6	Squeeze turns to lower low-end of R.F.	Chonnel 2
L6	Spread turns to raise low-end of R.F.	Channel 2
C4	IF Trap Adjustment	44 MC
C1A	R.F. input circuit-tune for maximum	Channel 1I
CIB	R.F. input circuit-tune for maximum	Chonnel 5

SENSitivity measurement

Since the calibration in micro-volts output for signal generators varies so greatly between different generators used, it is recommended that a "relative-measurement" of sensitivity be taken as follows:

1. Use a model 4080T that is known to be correctly aligned as proven by a qualitative air-check on
available stations.
2. Connect a signal generator to the antenna ter minals set for the picture-carrier frequency of any desired channel.
3. Connect a VTVM to the junction of L105 and L106 (video detector load, R124).
4. Tune the station tuning for maximum meter deflection.
5. Adjust the signal generator output for 1 volt VTVM reading.
6. Record the generator's output attenuator read ing and use this reading as a comparative standard for sensitivity measurement on other model across R124 is too little to take into account)

horizontal oscillator adjustment (COMPLETE)

1. Tune in an available station.
2. Turn the Horizontal Hold Control maximum clockwise
3. Turn the Horizontal Lock Adjustment to almost tight.
4. Connect the oscilloscope to Terminal "C" of T104.
5. Turn the T104 Blocking Waveform Adjustment maximum counter-clockwise (see chassis view).
6. Sync the picture by adjusting the Horizontal Frequency Adjustment Screw of T104.
7. Turn the Blocking Waveform Adjustment until the waveform is correct as in figure 4 (picture must be in sync when adjusting waveform).
8. Adjust the T104 Frequency Adjustment so that the picture just breaks sync (the ideal is to have a wide vertical black bar representing horizontal blanking showing somewhere in the picture).
9. Turn the Horizontal Hold maximum clockwise If picture doesn't break sync, momentarily short antenna terminals. Picture will now be out-ofsync.
10. Turn the Horizontal Hold Control slowly conterclockwise and count the diagonal black bars before "pull-in."
11. There should be 3 bars-adjust Horizontal Locking Range until only 3 bars are present before "pull-in."
12. Turn Horizontal Hold Control maximum counter-clockwise. Picture should just break sync as in Step 8.
13. Adjust T104 Frequency Adjustment to obtain condition of Step 8 .
14. Repeat steps 8 thru 12 if necessary to obtain con
ditions of Steps 8 and

horizontal lock adjustment

The Horzontal Lock can be adjusted without the need of test equipment if the Horizontal Waveform is assumed be correct. Adjustment is available through marked hole in cabinet botbom.

1. Tune in an available station.
2. Turn the Horizontal Hold maximum clockwise. If picture doesn't break sync, momentarily short antenna terminals. Picture will now be out-ofsync.
3. Turn the Horizontal Hold Control slowly counter-clockwise and count the diagonal black bars just before "pull-in,"
4. There should be 3 bars-adjust Horizontal Locking Range until only 3 bars are present before "pull-in."
5. Repeat steps 2 and 3 for the condition of step 4.

HORIZONTAL DRIVE

Slight adjustment of the Drive Trimmer will give an overall width control of the raster. Extreme adjustmen counter clockwise will lower the high-voltage too greatly.

frequency table

Chonnel No.	Bond Width (mc.)	Picture Corrior (mc.)	Sound Conrior (mc.)	R.F Osc. (mc.)
2	54.60	55.25	59.75	101
3	60.66	61.25	65.75	107
4	66.72	67.25	71.75	113
5	76.82	77.25	81.75	123
6	82.88	83.25	87.75	129
7	174.180	175.25	179.75	221
8	180.186	181.25	185.75	227
9	186.192	187.25	191.75	233
10	192.198	193.25	197.75	239
11	198.204	199.25	203.75	245
12	204.210	205.25	209.75	251
13	210.216	211.25	215.75	257

use of marker signals

The illustrated response curves show where marker signals fall. For sweep generators that do not have built-in marker signals, calibrated signals from an R.F. generator must be used. Hooking the generator output lead to the chassis nea the 1st 1.F. input will usually spray enough signal in to be seen on the scope. Marker beats will show best when the sweep-input is low and the scope-gain set high. A . 01 MFD condenser across the vertical input terminals of a wide re sponse oscilloscope will cut the response down so the low frequency marker beat can more easily be seen.

ANTE NNA CONNECTION USING
3OOR TRANSMISSION LINE

© John F. Rider

© John 1. Rider

SPRCIFICATEDNS

Sensitivity at the Antenna Video-100 microvolts Audio-100 microvolts

Power Supply Rating 115 volts, $50-60$ cycles, AC 235 watts.
Audio Power Output Rating Undistorted-3 watts Maximum-41/2 watts
Speaker
5" PM
3.2 ohm voice coil impedance

icture Size

70 square inches
Antenna Impedance Requirements Balanced 300 -ohm

Dimensions

Chassis- $16^{\prime \prime} \times 16^{\prime \prime} \times 21 / 2^{\prime \prime}$ Cabinet-181/2" $\times 153 / 4^{\prime \prime} \times 21^{\prime \prime}$
Tube Complement
6AG5, RF-Amplifier 6J6, Oscillator-Converter 6AL5, Detector, DC Restore
and Sync Separator 12AU7, Video Amplifie 6SL7, Sync-Amplifier A.G.C. Amplifie , Sound IF-Amplifier K6, Audio Detector and Amp. 6SN7 , Yudio Output 6AL5, AFC-Discriminator 6SN7, Horizontal Multivibrator 6BQ6, Pulse Amplifier 6W4. Damper 1X2, High Voltage Rectifier 5U4, Low Voltage Rectifier
10BP4, Picture Tube

GENERAL. DESCRIPTION

The Model M-701 is a 20 tube, AC operated, direct view, 10 -inch television receiver. The set is complete in one unit and features complete coverage of all 12 television channels, automatic gain control, automatic frequency control, intercarrier sound system, permanent magnet focused and magnetically deflected picture tube

On the back of the cabinet is a safety interlock to prevent dangerous electrical shock. As an added safety measure, a fuse is located in the high voltage power supply to protect the set in case of overloading.

Tube Layout

DPERATHDN DF THE RECEIVER

FUNCTIONS OF THE CONTROLS

All the controls normally used in tuning in a program -both picture and sound-are located on the front of the receiver and at the top of the back of the cabinet. On the rear of the set are several controls which are preset at the factory and may need slight readjustment at
the time of installation. After installation, they should not be adjusted further, unless required by replacement or aging of tubes, variations in power-line voltage, or other external conditions. The function of each of the controls is described below.

OPERATOIES CONTROLS

Volume-Off - Turns set on or off and adjusts sound volume.
Contrast-_Varies contrast between light and dark portions of picture.
Brightness-Controls brilliance of picture.
V. Hold-Stops pictures from moring up or down.
H. Hold-Stops pictures from moving left or right

Station Selector Knob-Tunes set to desired channel (station). May be turned in either direction.
Antenna Tuning Knob - Tunes the antenna for maximum signal.
Model M-701 actually requires only three controls when tuning in a program. These controls are located on the front of the receiver. On the left is a dual knob, the large knob controls picture contrast, while the small outer knob is the off-on switch and volume control. The control on the right is the station selector. The three other controls on the front of the set: brightness, horizontal hold, and vertical hold, need only be adjusted periodically. The six operator's controls are shown below.

Three of the seven serviceman's controls; focus, horizontal centering, and vertical centering, are located on the picture tube assembly. The remaining four controls, vertical linearity, vertical size, horizontal size, and coarse horizontal hold are located on the rear of the set. (See tube layout)

TUNING

1. Turn the VOLUME control clockwise to turn the set on. Allow one-half minute for the set to warm up.
2. Rotate the Station Selector knob to the desired channel.
3. Adjust antenna tuning control for the best picture. 4. Turn the CONTRAST control fully counter-clockwise. 5. Turn the BRIGHTNESS control fully clockwise, and then turn it slowly counter-clockwise until the picture tube just becomes dark. For any particular installation

SEIRVICEMAN'S CONTIEOES

Vert. Lin.-Provides vertical distribution of picture. Vert. Size - Changes size of picture vertically. Does not affect horizontal size.
Horiz. Size-Changes size of picture horizontally. Does not affect vertical size.
Focus--Focuses picture on face of picture tube.
H. Centering-Moves entire picture horizontally.
V. Centering-Moves entire picture vertically.

Picture Tube Assembly

PROCEDURE

this adjustment of the BRIGHTNESS control need be made only the first time the set is used, unless required by replacement of tubes.
6. Adjust the CONTRAST control until the proper contrast between blacks and whites is obtained.
7. Adjust the VOLUME control for the desired sound level.
8. When switching from one station to another, it may be necessary to readjust the CONTRAST control.

MODEL M-701

The station selector of your television set has been partially pre-set at the factory, but readjustment of the settings may have to be made at the time of the initiai installation. This should be done by the serviceman.
If at a later time a new station comes on the air, or if the receiver is moved to a locality where other stations can be received, adjust the station selector in the following manner.

1. Turn the set on. Allow the set to warm up for 20 minutes.
2. Turn the contrast control approximately two-thirds of the way toward its full clockwise position.
3. Turn the volume control approximately to its midposition.
4. Set the station selector knob to the desired channel. 5. Turn the antenna tuning knob until maximum sound is heard. (Turn the volume control up if necessary).
5. Grasp the station escutcheon at the upper right edge and slowly push down until the hole above the station selector knob appears.
6. Insert a screwdriver into the hole (see illustration).

Turn the screw slowly counter-clockwise (and then clockwise, if necessary) until maximum sound is heard. This may : equire several turns in one direction or the other. Turn up the volume conrol if necessary. (Do not at any time turn the screw in either direction more than 3 revolutions. Do not force it if turning becomes difficult as the screw has then reached the end of its travel in that direction and its direction should be reversed.)
8. When the sound is at maximum, the picture will appear on the screen but "sound bars" (dark horizontal bars of varying width) will be seen traveling vertically from bottom to top across the picture. With the screwdriver, turn the station selector screw counter-clockwise only far enough to remove the sound bars from the picture.
9. Push the station escutcheon back into place.

> CAUTION!: 11,000 volts on all pins of the 1×2 high voltage rectifier. DO NOT MEASURE this voltage unless a high range voltmeter is used.
> WARNING!: Do not tamper with or attempt to defeat the purpose of the safety interlock.
> FUSE: To replace the fuse in the high voltage power supply, lift off the high voltage shield, remove the old fuse, and replace with the same type $1 / 4$ ampere fuse.

ANTENNA CONNECTIONS

If an outside antenna is used with the receiver, one of the following connections should be made

For those who use separate Hi and Low Band an tennae, with two lead-in cables, connect the Hi-Band leads to the two top terminals marked Hi -Band, connect the Lo-Band leads to the two bottom terminals, marked Lo-Band. See fig. 4, sketch A.
2. For those who use a combined Hi-Lo Band antenna, better known as a "All Wave Antenna" with one lead-in cable, connect as shown in fig. 4, sketch B.
3. In some cases due to location or environment of the Receiving antennae, better results can be had by connecting the lead-in as shown in fig. 4, sketch C.
4. An alternate arrangement for those who receive from Hi-Band stations only (Channels 7 thru 13), the All

Wave Antenna lead-in may be connected to the two top terminals marked Hi -Band, with no strap or connection to the Lo-Band terminals.
5. Use the arrangement which gives the most satisfa tory results.

BUILT-IN TELEVISION ANTENNA

The new Built-In Television Antenna incorporated in the receiver eliminates the need of an outside antenna in many locations. In areas too distant for normal reception with a built-in antenna, provision is made for tenna is used with the set, disconnect the transmission line from the built-in antenna to the antenna terminals.

The antenna is mounted inside the cabinet and is op erated by the use of a knob at the top of the back of the cabinet. Since the antenna is fastened to the cabinet it may be necessary to orient the cabinet to obtain the best reception. It is desirable that either the front or the back of the cabinet face the transmitting station. If however, "ghosts" or multiple images appear, the cabi net may be rotated slightly to minimize this condition. In some cases it may be necessary to face the back or the front of the cabinet toward a window to obtain a television picture. This may be due to walls, water pipes, or a steel structure in the location preventing television reception.

The antenna tuning knob should be used as a fine tuning control and should be adjusted until the best picture is obtained. In order to eliminate "Body effect and reach over the top of the set. If at any time the knob becomes difficult to turn, reverse the direction o rotation. Do not force the knob in either direction.

If the receiver fails to operate satisfactorily with the built-in antenna, check for the following trouble:

1. Check the antenna dipole to make sure it is not touching the chassis or any other object.
2. Check the antenna dipole to make sure it is stapled Check the antenna dipole to make sure it is stapla
3. Check the connections at the coil, transmission line and trimmer capacitor.
4. Check to make sure that all four antenna termina screws are moderately tight. The antenna terminals should be connected in parallel.

PRODICTION CHANGES

As changes were made in the production of Model M-701 chassis, code numbers were assigned to distin guish the differences in the set. The differences between the different code numbers are explained below.

Code 1 Chassis.

Code 1 chassis are wired as shown in the schematic diagram except the grounded end of $\mathrm{C}-117$ is connected to terminal 1 of T6 and a 1000 mmf capacitor is used
in place of the parallel connection of C-109 and C-111 Code 2 Chassis.
Code 2 chassis are wired as shown in the schematic diagram except a 1000 mmf capacitor is used in place of the parallel connection of $\mathrm{C}-109$ and $\mathrm{C}-111$.

Code 3 Chassis.

Code 3 chassis are wired as shown in the schematic diagram.

For test pattern adjustments, alignment procedure, and trouble-shooting charts, refer to the 12 AX 22 service manual.

[^1]
PRODUCTION CHANGES

As changes were made in the production of Model 10AX chassis, code numbers were assigned to dis tinguish the differences in the sets. The differences between the different code numbers are explained below.

CODE 1, 2, 3 CHASSIS.

Code 1, 2, 3 chassis are wired as explained in the service manual.

CODE 5 CHASSIS.
Code 5 chassis are wired as shown in the schematic diagram except resistor $R-73$ is 100 K ohms and capacitor $\mathrm{C}-119$ is not incorporated.

CODE 6 CHASSIS

Code 6 chassis are wired as shown in the schematic diagram except resistor R. 73 is 100 K ohms.

CODE 7 CHASSIS.

Code 7 chassis are wired as shown in the schematic diagram.

©John F. Rider

TELEVISION SPECIFICATIONS

Sensitivity ot the Antennc Video-100 microvolts Audio-100 microvolts
Power Supply Rating 115 volts, $50-60$ cycles, AC 235 watts.
Audio Power Output Rating Undistorted-3 watts Maximum- $41 / 2$ watts

Speaker
$10^{\prime \prime} \mathrm{PM}$
3.2 ohm voice coil impedance

Picture Size
70 square inches
Antenna Impedance Requirements Balanced 300 -ohm

Dimensions

Chassis-16" $\times 16^{\prime \prime} \times 21 / 2^{\prime \prime}$
Tube Complement
6AG5, RF-Amplifier

GAU6's, (4) IF-Amplifier
AL5, Detector, DC Restorer
and Sync Separator 12AU7, Video Amplifier 6SL7, Sync-Amplifier A.G.C. Amplifier GAUb, Sound IF-Amplifier 6TB, Audio Detector and Amp K6, Audio Output
AL5. AFC Disultivibrato
6AL5, AFC-Discriminator
SSN, Horizontal Multivibrato
BQY6, Pulse Amplifier
6 W4, Damper
1 22, High Voltage Rectifier 5U4, Low Voltage Rectifier OBP4, Picture Tube

GENERAL DESCRIPTION

The Model 10AXF44 is a combination television, AM-FM radio, and a 45 RPM record changer.

The Television set is a 20 -tube, AC operated, direct view, 10 -inch television receiver and features complete coverage of all 12 television channels, automatic gain control, automatic frequency control, intercarrier sound system, permanent magnet focused and magnetically deflected picture tube.

On the back of the cabinet is a safety interlock to prevent dangerous electrical shock. As an added safety measure, a fuse is located in the high voltage power supply to protect the set in case of overloading.

Tube Layout

OIPERATION DF THE TELEVISION

FUNCTIONS OF THE CONTROLS

All the controls normally used in tuning in a program -both picture and sound-are located on the front of the receiver. On the rear of the set are several controls which are pre-set at the factory and may need slight readjustment at the time of installation. After instal-

OPERATOR'S CONTROLS

Volume-Off - Turns set on or off and adjusts sound volume.
Contrast-Varies contrast between light and dark portions of picture.
Brightness-Controls brilliance of picture.
V. Hold-Stops pictures from moving up or down.
H. Hold—Stops pictures from moving left or right.

Station Selector Knob-Tunes set to desired channel (station). May be turned in either direction.

Model 10AXF44 actually requires only three controls when tuning in a program. The three controls, off-onvolume, contrast and station selector are located on the front of the receiver. The three other controls on the front of the set: brightness, horizontal hold, and vertical hold, need only be adjusted periodically. The six operator's controls are shown below:

Three of the seven serviceman's controls; focus, horizontal centering, and vertical centering, are located on the picture tube assembly. The remaining four controls, vertical linearity, vertical size, horizontal size, and coarse horizontal hold are located on the rear of the set. (See tube layout).

TUNING PRDCEDURE

1. Turn the VOLUME control clockwise to turn the set on. Allow one-half minute for the set to warm up.
2. Rotate the Station Selector knob to the desired channel.
3. Turn the CONTRAST control fully counter-clockwise. 4. Turn the BRIGHTNESS control fully clockwise, and then turn it slowly counter-clockwise until the picture tube just becomes dark. For any particular installation this adjustment of the BRIGHTNESS control need be
lation, they should not be adjusted further, unless required by replacement or aging of tubes, variations in power-line voltage, or other external conditions. The function of each of the controls is described below.

SERVICEMAN'S CONTROLS

Vert. Lin.—Provides vertical distribution of picture. Vert. Size - Changes size of picture vertically. Does not affect horizontal size.
Horiz. Size-Changes size of picture horizontally. Doe not affect vertical size.
Focus-Focuses picture on face of picture tube.
H. Centering-Moves entire picture horizontally.
V. Centering-Moves entire picture vertically.

Picfure Tube Assembly
made only the first time the set is used, unless required by replacement of tubes.
5. Adjust the CONTRAST control until the proper contrast between blacks and whites is obtained.
6. Adjust the VOLUME control for the desired sound level.
7. When switching from one station to another, it may be necessary to readjust the CONTRAST control.

MODEL IOAXFL

Schematic Diagram of Chassis - (Code 3)

ADJUSTMENT OF STATION SELECTOR

The station selector of your television set has been partially pre-set at the factory, but readjustment of the settings may have to be made at the time of the initial installation. This should be done by the serviceman.
If at a later time a new station comes on the air, or if the receiver is moved to a locality where other stations can be received, adjust the station selector in the following manner.

1. Turn the set on. Allow the set to warm up for 20 minutes.
2. Turn the contrast control approximately two-thirds of the way toward its full clockwise position.
3. Turn the volume control approximately to its mid position.
4. Set the station selector knob to the desired channel.
5. Grasp the station escutcheon at the upper righ edge and slowly push down until the hole above the station selector knob appears.
6. Insert a screwdriver into the hole (see illustration).

Turn the screw slowly counter-clockwise (and then clock-
wise, if necessary) until maximum sound is heard. This may require several turns in one direction or the other. Turn up the volume conrol if necessary. (Do not at any time turn the screw in ueither direction more than 3 revolutions. Do not force it if turning becomes difficult as the becomes difficult as the
the end of its travel in that direction and its direction hould be reversed.)
7. When the sound is at maximum, the picture will appear on the screen but "sound bars" (dark horizontal bars of varying width) will be seen traveling vertically from bottom to top across the picture. With the screwdriver, turn the station selector screw counter-clockwise only far enough to remove the sound bars from the picture.
8. Push the station escutcheon back into place

CAUTION!: 9,000 volts on all pins of the 1×2 high voltage rectifier. DO NOT MEASURE this voltage unless a high range voltmeter is used.

WARNING!: Do not tamper with or attempt to defeat the purpose of the safety interlock.

FUSE: To replace the fuse in the high voltage power supply, lift off the high volt age shield, remove the old fuse, and replace with the same type $1 / 4$ ampere fuse.

ANTENNA CONNECTIONS

. For those who use separate Hi and Low Band an tennae, with two lead-in cables, connect the Hi -Band leads to the two top terminals marked Hi -Band, con nect the Lo-Band leads to the two bottom terminals, marked Lo-Band. See fig. 4, sketch A.
2. For those who use a combined Hi-Lo Band antenna better known as a "All Wave Antenna" with on lead-in cable, connect as shown in fig. 4, sketch B
3. In some cases due to location or environment of the Receiving antennae, better results can be had by connecting the lead-in as shown in fig. 4, sketch C.
4. An alternate arrangement for those who receive from Hi-Band stations only (Channels 7 thru 13), the All

Wave Antenna lead-in may be connected to the two top terminals marked Hi-Band, with no strap or connection to the Lo-Band terminals.
5. Use the arrangement which gives the most satisfac tory results.

Alternate Antenna Connections

TELEVISION IREPLACEABLE PAIRTS LIST

Ref. Symbol	Part No.	Description	Ref. Symbol	Port No.	Description		
	TUNER						
	Capacitors			Chokes, Transformers, Coils			
C3	A-8G-13962	Ceramic, 005 mfd	$\mathrm{cl}^{(1 n c l} \mathrm{Cl}^{2}$	B-201-17143	Antenna transformer assombly		
C4-30-31-32	C-8G-16045	Coramic, $220 \mathrm{mmf}, 20 \%$					
C5-12-15.	C-8G-13201	Ceramic, 1000 mmf		A-16A-17128 B-13E-17140	R.F. choke High band coils, Ose., RF pri, RFs sec.		
C6	C-86-17305	Cormic, 12 mmf f 10%	L4-6-8				
C7-8.14-16. 26-29	B-201-15142	Trimmer capacitor		B-13E-12046 B-13D.12155			
C9.10	A.8G-12495-7	Coramic, .5 mmf	L9-9		Low band coils, RF pri., RF sec Low band coil, oscillator		
Cl_{1}	A-8G-12495-3	Coramic, 1.5 mmf	Miscellaneous				
$\mathrm{Cl}^{13}{ }^{2} 2$	C-8G-11893	Ceramic, 4 , mmf, $\pm 1 / 4 \mathrm{mmf}$					
${ }_{\text {C19 }}^{\text {C1920 }}$ (12-25-28		Ceramic, 51 mmf Ceramic, 2.2 mmf	A-51A.15715A-51AAl7S		Iron core, for $\mathrm{L5}$		
C23	C-8G-15737	Coramic, $2.5 \mathrm{mmf}, 20 \%$			Iron core, for L Iron core, for L 7		
C24-27	C-8G-15224	Ceramic, $7 \mathrm{mmf}, \pm 1 / 2 \mathrm{mmf}$	A. 51 A. 17161 A-51A-17513		Iron core, for L7		
	Resistors		A-15C-10717		Tron corc, for $14.8-8.9$,		
R1	C.981-60	680 ohms, $1 / 2 \mathrm{watt}, 10 \%$	A-2M-16276		Core mounting clip		
R4	C.-981-86	100,000 ohms, $1 / 2$ watt, 10%	${ }_{\text {A-2M-15504 }}$		Tube shield		
R 5	C-981-48	68 ohms, 1/2 watt, 10%	$\stackrel{\text { A-4-4-1-15977 }}{ }$		Coil spring		
R7-9	C-981-13	5000 ohms, $1 / 2$ watt ${ }^{\text {che }}$		C-5M-15487A-49A.15837	Ireasle bar, bakeliteDetent spring		
${ }_{\text {R8-11 }}$	C-981-74	10,000 ohms, $/ 1 / 2$ watt, 10%					
R10	C.981-54	220 ohms, $1 / 2$ watt, 10%					
R12-13	C-981-38	10 ohms. $1 / 2$ watt, 10%					

MAIN CHASSIS

Capacitors			Resistors		
C34-74-75-82	A-8G-13962	. 005 mfd , ceramic disk	R15-17-19-21.	C.981-62	1000 ohms, $1 / 2$ watt, 10%
C35-37-38-40-	C-8G-13201	1000 mmf , ceramic	23-25-27-33		相
41-42-44-45-			R16-24	C-981-73	8200 ohms. $1 / 2$ watt, 10%
46-47-47-50-			R18-22-26	C-981-49	82 ohms, $1 / 2$ watt, 10%
51-54.57-			R20-29.59	C-981-70	4700 ohms. $1 / 2$ watt, 10%
C36	C.8F3-8	100 mmf , mica, 20\%	R28.56	C-981-48	68 ohms,
C39.43-48	C-8F3-109	47 mmf , mica, 10%	R30-34-50-60	C-981-82	47 K ohms, $1 / 2$ watt. 10%
${ }^{\text {c55 }}$	C-8G-12166	5 mmf . ceramic	R31-42-75-	C-981-98	1 megohm, $1 / 2$ watt, 10\%
${ }_{C}^{C 56}$	C-8G-13909	32 mmf , coramic	82.76		
C61-A-B.C-D	A.8C-17844	$30-30 \mathrm{mfd} \times 450$ volts. $125-125 \mathrm{mfd} \times 25$ volts	R32 R36.72-84-85	A-10B-17316 C-9B1-102	8000 ohms, (Contrast)
C62	C-8D-17268	. 02 mfd 200 volts $+30 \%-10 \%$	R37.79	C-981-13	1000 ohms. $1 / 2$ watt, 20
C63	C-8G-13201	1000 mmf , coramic	R38	C. 982.66	2200 ohms, I watt, 10%
C64-6	C.80-17270	. $01 \mathrm{mfd}, 400$ volts	R39.95	C-984-70	4700 ohms, 2 watts, 10%
C65		22 mmf (See L19)	R40.63	C-981-59	560 ohms, $1 / 2$ watt 10%
C67-113	C-8D-10760	. 1 mfd , 400 volts. $+30 \%-10 \%$	R41-58	C.981-74	10 K ohms, $1 / 2$ watt, 10%
${ }_{6}^{68}$	C-80-10813	. 05 mfd, 400 volts, 20%	R44	C.981-34	3.3 megohms, $1 / 2$ watt, 20%
C70	C-8D-10771	. 1 mpd , 200 volts, $+30 \%-10 \%$	R45	C-981.91	270K ohms, $1 / 2$ watt, 10%
C71	C.8Fb-125	1000 mmf , 500 volts, 10%	R46	A.108.17764	50K ohms, (Brightness)
C72.105	C.8D-17785	. 005 mfd . 200 volts, $+50 \%-25 \%$	R47	C.981.72	6800 ohms, $1 / 2$ watt, 10%
${ }^{7} 7$	A-8G-12495-5	3.3 mmf , ceramic	R48.73.93.105	C.981.86	100K ohms, $1 / 2$ watt, 10%
$\xrightarrow[\substack{\text { C77-80.84- } \\ 93.95}]{ }$	C-8D-17958	. $004 \mathrm{mfd}, 400$ volts $+50 \%-25 \%$	R46-78-89-106-92-91-90		220K ohms, $1 / 2$ watt. 10%
	C-8D-17258	. 01 mfd, 200 volts, $+30 \%-10 \%$			
			R53	C.981.95	500K ohms, $1 / 2$ watt, 10%
C78.85 $\mathrm{C79} 88$	C-8D. 17607	. 02 mfd, 400 volts, $+30 \%-10 \%$	R54.65.97.	C-981-94	470K ohms, $1 / 2$ watt 10%
C79-88 C 1.83	A-8C-17183	10 mdd , 50 volts,	100.104		
C85	C-8D. 17258	. 01 mfd. 200 volts, $+30 \%-20 \%$	R61	A.10A-17215	1 megohm , (Volume and Switch)
C86	C.8F3-10	220 mmf , mica, 20%	R62	C-981-37	10 megohms, $1 / 2$ watt, 20%
C87	C-8G-13877	$4.7 \mathrm{mmf}, \pm 1 / 2 \mathrm{mmf}$	R70	A-10B-18240	750 K ohms, (Vertical ${ }^{\text {Size }}$)
C90 $691-99.102$.	C. 8959.119	$6800 \mathrm{mmf}, 300$ volts, 20%	R71	C.981-69	3900 ohms, $1 / 2$ watt, 10%
C91-99.102. 108-110	C-8F3-117	$220 \mathrm{mmf}, 500$ volts, 10%	R74	A-108-17275	100 K ohms. (Vertical Hold)
C92	C-8D-17784	. $25 \mathrm{mfd}, 400$ volts, $+30 \%-10 \%$	R80	C-108-17766	5000 ohms, / Vertical Linea
C93	C-8D-14461	. 05 mfd, 400 volts, $+30 \%--20 \%$	R81	C.981-66	2200 ohmis, $1 / 2$ watt, 10%
C94	A-8C-13453	$8 \mathrm{mfd}, 450$ volts 1 lytic	R83-8	C-981-88	150 K ohms, $1 / 2$ watt, 10%
C98	$\mathrm{C}-8 \mathrm{FF} 3.222$	$75 \mathrm{mmf}, 500$ volts, 5%	R87	C.981-32	1.5 megohms, $1 / 2 \mathrm{watt}$, 20%
C100-101-111	C-8F3.123	$680 \mathrm{mmf}, 300$ volts. 10%	R88	C-981.80	33 K ohms, 1/2 watt, 10%
C103	C-8D-17259	. 1 mfd, 200 volts, $+30 \%-10 \%$	R90	C.981-64	1500 ohms. $1 / 2$ watt, 10%
C104	C-8F3.113	$100 \mathrm{mmf}, 500 \mathrm{valts}, 10 \%$	R91	C.981-71	5600 ohms, 1 watt, 10%
C106	C-8D-10775	. 25 mid, 200 volts , $+30 \%-10 \%$	R94	A-10B-17764	50K ohms, (Horizontal Hold)
C107	C-8F11-132	$3900 \mathrm{mmf}, 500$ volts, 10%	R\%	C.981-54	220 ohms, $1 / 2$ watt, 10%
C109	A-8E-18508	${ }^{80.480 ~ m m f, ~ t r i m m e r ~}$	R98	C-9C12-1115	22 K ohms, 5 watts, 10%
$\mathrm{Cl12}^{1}$	C.8D-10787	. 001 mfd , 600 volts, 20%	R99	C-982-98	1 megohm. 1 watt, 10\%
C114 C 115	C-8D-17260	. 5 mfd. 200 volts, $+30 \%-10 \%$	${ }_{\text {R103 }}^{\text {R102 }}$	C-9C14-1099	
C117	A-8C-17179	500 mmf , 15.000 volts			
C118-A-B-C	A-8C-17845	60-30-10 mfd $\times 450$ volts			

OPERATION OF THE BADUO

Broadcast Band-This is the tuning band in which the standard broadcast stations operate. The left scale on the dial covers the broadcast range of $535-1620 \mathrm{Kc}$., and is calibrated in channel numbers. To obłain the kilocycle reading, multiply the number on the dial by 10 . thus 80 on the dial corresponds to 800 kilocycles.

FM Band-The FM tuning range covers the newly allocated frequency-modulation band of 88 to 108 megacycles into which all FM stations were required to move. Check with your local newspaper to determine the fre quency of your local FM stations.

On-off Switch and Volume Control-The knob second from the bottom is both the on-off switch and the volume control. When this control is turned all the way to the left the set is off. A slight rotation to the right will click the switch and turn the set on. The knob may then be used to regulate the volume. Be sure your set is turned completely off when not in use; otherwise the tubes will wear out unnecessarily.

Tone Control-Rotating the bottom knob gives a full variation of the tonal response from a deep bass to a brilliant treble.

Tuning Knob - The knob second from the top is the tuning knob; rotation of this knob moves the indicator along the dial scales. When selecting a station turn the knob back anc forth until the tone is clearest and loudest. Do not use the tuning knob to regulate volume; the volume control should be used for that purpose after the station has been tuned in properly. It is particularly important in FM reception to tune the station accurately; otherwise the tone is distorted and the background noise not eliminated.

Band Switch-The knob on the top is used to select FM BAND, BROADCAST BAND, or PHONO. When this knob is turned fully clockwise FM programs can be tuned in. In the center position STANDARD BROAD. CASTS can be heard.

Phonograph - Turning the Bandswitch fully counterclockwise allows the radio to be used for the playing of phonograph records in conjunction with the automatic record player mounted in this cabinet. This automatic Record Player accommodates eight of the NEW 45 RPM records, approximately 40 minutes of entertainment without attention. For operation of this unit please refer to. the Automatic Record Changer Operating Instructions
on separate sheet.

HEPLACEMENT OF DIAL CORDS

ALIGNMENT PROCEDURE

Broadcast Band Section I. F. and R. F.
The alignment procedure below includes the sensitivities at the inputs of various stages. All signal input values are based on an output of .50 watts. This may be
measured by disconnecting the speaker voice coil and measured by disconnecting the speaker voice coil and
substituting a 3.2 -ohm resistor across the secondary substituting a 3.2 -ohm resistor across the secondary
winding of the output transformer. A reading of 1.25 volts $A C$ across this resistor will be approximately equivalent to .50 watt output with the speaker connected. The volume control must be set at maximum. The tone control must be set for maximum treble.
The signal source must be an accurately calibrated signal generator capable of supplying the frequencies designated, modulated 30% with a 400 -cycle audio signal. A 400 cycle audio signal is required for the audio measurement. Variations in sensitivities of plus or minus
25% are usually permissable. 25% are usually permissable.

hossis View

ALIGNMENT PROCEDURE

FM Band Section I. F. and R. F.
A non-metallic alignment tool must be used

MPORTANT

No alignment of the FM section of this radio should be attempted unless you are positive that the circuits are in need of adjustment and you have the necessary equipment
All components used in this radio are extremely stable and the tuned circuits should require no adjustment over a long period of time.

NOTE

The following alignment is based on the use of the new impson vacuum tube voltmeter which has a "floating ground". In other words, the meter, when used as a vacuum tube voltmeter, can have both the positive and till give true readings. still give true readings.
A standard $A M$ signal generator is required.
FM-I.F. ALIGNMENT
Band Switch in FM Position. Dummy Antenna . 1 Mfd.

SIGNAL GENERATOR FREQUENCY	CONNECTION TO RADIO	vacuum tube volt METER CONNECTION TO RADIO	ADJUSTMENTS TO BE MADE	ADJUST FOR
10.7 Mc . Use about .1 volt	Pin No. 1 of 12AU6	Pin No. 7 of 12AL5 and B minus	Bottom Core Primary of T9 Ratio Detector	Resonance should be about 3 volts
10.7 Mc . Use about .1 volt	Pin No. 1 of 12AUb	See note "A"	Top Core Secondary of T9 Ratio Detector	Zero. Use zero center scale See note "B"
10.7 Mc. Use about 330 microvolts	Pin No. 1 of 12BA6	Pin No. 7 of 12 AL5 and B minus	Primary and Secondary of T7. FM Driver IF See chassis view.	Resonance should be about 3 volts
10.7 Mc. Use about 600 microvolts	$\begin{aligned} & \text { Top end of } \\ & \text { C2-C } \end{aligned}$	Pin No. 7 of 12AL5 and B minus	Primary and Secondary of T5. Input IF See chassis view.	Resonance should be about 3 volts

NOTES ON FM - I. F. ALIGNMENT

NOTE "A"-Connect two resistors in series, look OHMS oach. rom Pin No. 7 of 12AL5 to B minus (pin no. 5). These cosistors must be matched within 5%. Connect vacuum tube voltmeter between the midpoint of the resistors and point z.
NOTE "B"一If T9 has been tampered with, it is possible that no cossover point will be found at first. Careful adjustment of both primary and secondary is necessary.

NOTE "C"-To use a VTVM which does not have the "floating round" feature, in stop 2 above, connect "ground" side of VTVM midpoint of resistors (Note "A") and "high" side to point zz. EENERAL—|nput signals should be adjusted to give approximately volts. The ratio detector is operating at a reasonable leval at his point and will give the truest indication of correct alignment with the procedure specifiod.

FM-R. F. ALIGNMENT

Check pointer so that the right hand edge of the pointer skirt coincides with the right hand edge of dial marker at the extreme right when gang is closed.

For Adjustment, see dial mechanism illustration.
Check tracking at $1000 \mathrm{Kc}, 600 \mathrm{Kc}$, and 535 Kc to be sure oscillator is set correctly.

	ELECTRICAL
Power Supply	105 to 125 volts, AC, 60 -cycles; Chassis -only 75 watts. With phono operation 100 watts.
Frequency Range	Broadcast Band-535 to 1620 kc . FM Band-88 to 108 mc .
Intermediate Freq. Selectivity	AM-455 kc.; FM-10.7 mc.
	nal, measured at 1000 kc . I.F. FM-250 kc. broad at 2 times down.
	I.F. FM-650 kc. broad at 10 times down.
AM. Sensitivity	(For . 5 watt output with external antenna)-18 microvolts average.

FM Sensitivity
Power Output
For . 5 watt output)- 16 microvolts average.
Power Output 2 watts, 10% distortion. 4 watts
Loud Speaker
$10^{\prime \prime}$ PM. Voice coil impedance 3.2

Tube Complement

 12AT7, FM-RF amp. mixer: 12AL5, FM detector: 12BA7, AM converter, FM 12AV6, AM detector oscillator: 12BA6, IF amplifier 12AU6, FM driver:Automatic Changer See Manual 5084

SIGNAL GENERATOR FREQUENCY	POINTER	CONNECTION TO RADIO	ADJUST	$\begin{gathered} \text { VTVM } \\ \text { CONNECTIONS } \end{gathered}$
108 MC.	108 MC. Marker	FM antenna terminals See Note "B" below	FM Osc C3 for maximum	Pin No. 7 of 12AL5 to B minus
98 MC .	Tune in Gen. Signal		FM Mixer C2-C for maximum	
NOTE "A"-If. a signal generator with the above fundamental fre. quency is not available, it is sometimes possible to use harmonics. Use extreme care in picking harmonics. An alternate procedure is to use a local station carrier of known frequency to align the FM Band and to use the vacuum tube volt-meter as above for resonance indication. A weak carrier, however, will not produce 3 volts. NOTE "B"-Connect 300 ohms in series with "hot" side of generator and connect to left hand screw of external FM Antenna Ter. minals. Connect cold side of generator to right hand screw. MODEL IOAXF44, Radio Ch. 7AF24				

RADIO SCHEMATIC DIAGRAM
RADIO REPLACEMENT PARTS LIST
When ordering, specify part number, model number, and manual issue.

Rot. No.	Part No.	Description	$\begin{gathered} \text { Pis. } \\ \text { Sus.d } \\ \text { in set } \end{gathered}$
CONDENSERS			
C1. ABCD C2, ABC	8.8A. 16592	4 section gang condenser Trimmer on gang	1
		FM Osc. trimmer	
C4,29,31,50,53,	C-8G-11734	100 mmf , ceramic	5
C5, 54	C-8GG-12166	5 mmf , ceramic	1
C6,7,9,11,12. 15	A-8G-13962	. 005 mf , disk ceramic	2
15, 19,38,41,42,			
C8,51	C-8G-14172	33 mmF , ceramic	2
C10	A.8G-12495-4	2.2 mmf , ceramic	1
C14.46	C.8D-10770	. 05 mf , 200 volts, paper	2

© John F. Rider

A soldering lif should be attached to the inside wall of the power supply housing in line with the present hole through which the yoke lead comes out and approximately $2-\frac{1}{4}$ inches from the rear of the chassis. Care should be taken when installing the capacitor tha \ddagger it does not come in contact with either the 1B3 or 6BG6 tube. A wire ground should be installed between the terminal lug and the chassis to provide proper grounding. An easy method of connecting this is to run wire through the vent hole closest to the 6BG6 socket and ground the wire to the saddle of the socket.

I:TMRYAL ARCING IN H.V. CAPACITOR C261 - CX-33 TV CHASSIS

This is the 500 uufd., 20KV high voltage filter capacitor, nart No. 650153B-2.
It is possible that the Jeffers Flectronics H.V. canacitor, part No. 650153B-2, may be subject to failure, possibly carsed by absorption of moisture in the dielectric or to mechanical failure in the event of being abused at time of assembly. This breakdown may not b, apparent at once but may possibly show up over a period of several weeks in operation.

There are two colors of Jeffers capacitors - mistard and tan. Do not confuse these with the Centralab capacitors which will have the trademark CRL stamned on them. We have had reports only of Jeffers capacitor failures although some CRL types might be found similarly defective.

Any of these capacitors found defective should be removed from the CX-33 chassis. These should be held for return to Capehart-Farnsworth on Return Goods Authorization issued by our Field Engineer and not scrapped in the field. We are anxious to receive defective samples for further engineering examination as soon as possible.

The failure of subject capacitors could be the result of a mechanical strain on the solder joint inside the capacitor where the stud is connected to the silver deposit on the ceramic dielectric.
Excessive torque apnlied between the two studs or between the body of the capacitor and a stud during assembly or replacement may break the soldered joint or tear the silver away from the dielectric.

In assemblying the capacitor to the bracket, part No. 450512B-1, the assembly should be held by the bracket, not by the capacitor, as the screw is tightened. The double-D hole in the bracket prevents rotation between the bracket and stud SI.

In mounting the bracket-capacitor assembly on the chassis, stud 52 should be held by a pair of gas pliers as the mounting screw is tightened, so as not to produce any torque between S2 and the body of the capacitor.

Some reports have been reçeived of excessive "snow" in moderate signal areas. This has been found to be calsed, in certain cases, by a variation of resistance in $\mathrm{R}-252$ and/or $\mathrm{R}-248$ resulting in the ANC crossover point occurring at too low a signal level. A test is being incorporated in production wherein a 1000 microvolt signal must produce a relatively snow free picture. R-25.2, 2.4 megohms, $\mathrm{R}-248,24 \mathrm{~K}$, and $\mathrm{K}-250$, 120 k resistors must all be held within their 5\% tolerance. In cases of excessive snow these resistors should be checked for proper values. Since R-248 and R-250 are fairly low values, it is difficult to ascertain a 5% change in their resistance without the use of a bridge. Therefore, it is suggested that where a noticeable resistance change is not found in R-248 or $R-250$, that $R-252$ be changed to 2.2 meg. or, if snow is still excessive, to 2.0 meg . This has been found to remedy the condition in most cases.

INT ERMITTENT DECRFASE IN HORIZONTAL SCAN-CX-33 CHASSIS
A chassis developing the above mentioned trouble will have sufficient scan when first turned on. The width will decrease over a ten to fifteen minute period in most cases to ahont two-thirds original size, then gradually over period of approximately one hour, the width will increase to nomal size.

This trouble has been found to be the result of excessive winding capacity and insufficient baking of isolation transformer in the damper tube heater circuit. This transformer (part no. 650243A-1) is supplied by more than one vendor and this difficulty has been found to exist only in those transformers identified by the code letters "BC" following the part number. All of these transformers so coded shonld be removed from your stock and returneri for credit with approval of your Field Service Representative.

As soon as the vendor in question can correct the above mentioned difficulty his transformer will again be accepted for use. These transformers will bear the code letters "BC", however, they will be identifiable by the code dating which will be 037 or higher.

ADDITIONAL INFORNATION ON GKV CAPACITOR, C-278
The original capacitor is believed to have failed due to heat from the 6BG6 tube. A new capacitor, part \#650310A-2, has a wax coating unaffected by high temperatures. Life tests, and field reports have shown this new capacitor to be entirely satisfactory.

NEW FOCUS COIL MOUNTING FOR SHIPMENT

You were informed in the previous issue of the service bulletin that a special method of mounting the focus coil during shipment would be incorporated shortly.

As of September 12, 1950, the method described of mounting the focus coil under the chassis shelf, was incorporated in all models currently in production with exception of models 320 and 321. This method of mounting the coil is considered temporary and will be superceded, as soon as parts become available, by a second method wherein the coil is mounted on the H.V. Supply Shield. This second method will be applicable to all models including the 320 and 321.

This is an item which should be covered in your Dealer Bulletin specifically stressing the importance of properly installing the focus coil when the receiver is set up. It would be well to have all installation personnel informed of this proper monnting if they are not already familiar with the CX-33 Chassis. By referring to the CX-33 Chassis Maintenance Mamal (Chassis Top View) an inexperienced mar. orr determine the correct mounting of the coil. These men should also be cautione? to properly adjust the ion tren sirce the trap must be removed to install the focus coil.

We expect reports of picture tubes broken in shipment to drop off sharply with the usc of this new mounting. In view of the precautions taken by the factory to avojd breakage, we believe no carrier will refuse to accept responsibility in the comparatively few cases where this may still occur. Please check each incoming shipment for glass rattle (not necessary to open) -- where noted, carrier claim should be filed immediately.

INTERMITTENT VERTICAL SYNC BITZZ--CX-33 CHASSIS
Most reports of "intermittent" sync buzz can be attributed to overmodulation at the TV Transmitter for which, of course, there can be no correction at the receiver end. Always check with the IV transmitter's engineers first upon receiving reports of intermittent sync buzz troubles.

At the receiver, this trouble may be the result of insufficient drive at the ratio detector resulting in lowered AM rejection. Increased drive can be obtained by supplementing the coupling of the sound take-of f transformer (T2OL) with a 3 uuf capacitor. Connect the capacitor between terminals 2 and 4 of T204. After adding this capacitor the primary and secondary of T 204 mast be re-aligned carefully.

In addition to reducing sync buzz, this increased coupling will also provide an increase in sound output. Therefore, on reports of low sound output (where alignment is found to be $0 . \mathrm{K}_{\text {. }}$), the addition of this capacitor is recommended.

REMOVAL OF SHIPPING SCREN ON VARIABLE CAPACITOR IN RADIO CHASSIS C-282 USED IN MODELS 3281% \& 337 M

In order to prevent lead breakage during shipment, a method has been devised to fasten the variable capacitor and prevent vibration. A metal bracket is placed in back of the variable and fastened to the chassis. The variable is then secured to the bracket by means of a small screw. This screw should be removed upon installing of the set so that the variable will be "free floating". If the screen is not removed, it is likely that the set will be very microphonic. It is not necessary to remove the bracket; however, it may be necessary to bend it away from the variable in the event that it is touching the back of the variable and hindering its free mounting.

Produotion Changes

Early Produotion "CX-33" Chassis.
The following differences exist between the ohassis used in early produation of Models 3011 and 3012 only and the sohematio diagram shown in Figure 6b.

1. The junotion of R254 and R253 is conneoted to ohassis ground.
2. R255 is a $22 \mathrm{~K}, 2 \mathrm{~W}$ resistor.
3. R286 is a 150 K resistor.
4. R242 is a 47 K resistor.
5. Terminal "B" on T209 is conneoted direotly to plus 235 volts.
6. R314, C278 and C283 are not used.
7. The Vertioal M. V. and Output Stage is as shown below.

CX-33, Series "-2" and CX-33F Chassis:
The following differenoes exist in the CX-33 Chassis, ooded with a " -2 " and CX-33F Chassis (whioh employs a 16 inoh Round, metal C. R. T.).

In some reoeivers using these ohassis:

1. R286 is a 150 K resistor.
2. R267 is a 22 K resistor.
3. R262 is a 2.2 megohm resistor.

MODELS $321-B, 321-M, 322-M$, CX -33 ; $328-\mathrm{M}$, Ch. C-290 4. R266 is oonneoted to plus 295 voltCX-33M; 337-M, Ch. C-292, 5. c283 is not used. \quad Ch. $\mathrm{C}-286, \mathrm{CX}-33 \mathrm{~F}$

THE CAPEHART CX-33 SERIES " 2 " TELEVISION RECEIVER CHASSIS

CAPEHART MODEL 323M CONSOLE TV RECEIVER
The following changes are being incorporated in the cx-33 Chassis. Instruments including these chassis will be received in the field shortly. For identification, these chassis will be coded with a figure "-2" following the serial number; i.e., Serial No. 888888-2.

A schematic diagram of the Series " -2 " CX-33 Chassis is attached. The changes may be grouped by their corrective purpose.

1. MMPROVED INTERLACE

The vertical sync take-off point is changed from the plate to the cathode of V2lla A few other changes were made in the vertical multivibrator to improve interlace. Refer to the attached schematic diagram for details.
2. INCREASED RANGE - VERTICAL HOLD

R270, Vertical Hold Control, is changed from 500 K pot. to 1.5 meg. potentiometer to increase the "hold" range of this control.
3. IMPROVED SYNC CLIPPING

The junction of R254 and R253 is changed from chassis ground to mimus $90 \mathrm{~V}, \mathrm{R} 242$, plate load resistor for V212, is decreased from 47 K to 33 K . These changes provide improved sync amplification and clipping. R255 in the plate circuit of V2 13 is changed from $22 \mathrm{~K}, 7 W$ to $47 \mathrm{~K}, 1 W$ and R3IL also 47 K , $1 W$ is connected in parallel with it. This change is to provide adequate wattage tolerance.
4. INCREASED HORIZONTAL SCAN

C278, a 30 uuf., 6000 V capacitor has been added between pin 3 of V220 Damper Tube and chassis ground. The schematic shows C278 to be 25 uuf., 5000 V ; however, its correct value as in current use is 30 uuf., 6000 V . The addition of this capacitor provides approximately one inch additional horizontal scan (or width). A later production change to increase Horizontal Scan adds a .1 ufd. 200V capacitor across R291 in the cathode circuit of V219, 6BG6 Horizontal Output.
5. ELTIINATION OF SOUND MODULA'TION IN SYNC

Terminal "B" of T209, Horizontal Oscillator Transformer, is now connected to the junction of R283 and R284 rather than directly to plus 235 Volts. This provides the decoupling action of R284 and C254 for the plate supply to V217. Sound modulation in the horizontal sync circuit resulted in a "wiggle" or "swaying" of the picture horizontally.
6. RE-INCORPORATION OF 5 AMP. FUSE

Coincident with the other changes being incorporated in the Series " 2 " chassis the 5 amp . fuse is also being put back in production. The required type fuse holders are available and will be mounted on the chassis rear panel. The spare fuse and spare fuse holder will also be returned to production. These items were temporarily removed from production at request of "UL" until approved type of fuse holder could be obtained.

This CX-33FChassis is identical with the CX-33 " $-2^{\prime \prime}$ electrically. It differs only with respect to the C.R:T. mounting bracket, deflection and focus coil mounting. These have been modified in order to support the type 16GPL (metal envelopa) picture tube, which is employed in the Model 323 M receiver.

SPECIAL SERVICE INFORMATION CX-33 AND CX-33F CHASSIS

1. IMCREASED VERTTCAL SCAN IN CX-33 AND CX-33F CHASSIS

A production change has recently been incorporated in CX-33 Series "-2" and CX-33F Chassis to increase the size of the picture vertically.

To increase Vertical Scan, R262 has been changed from 2.2 meg . to 3.9 meg. and R266 is being connected to plus 310 V instead of plus 295 V . For an additional increase in Vertical Scan, V215, a 6K6GT tube, is being replaced with a 6V6GT (in production only in those sets which require it. No circuit changes are necessary for this replacement.
2. ADJACENT CHANNEL SOUND TRAP FOR CX-33 CHASSIS

An adjacent channel sound trap tuned to 27.75 mc . will be available shortly for incorporation in the CX-33 Chassis in the field, in those localities in which this type of interference is encountered. The trap is such that it can be easily installed in an already drilled chassis hole near the lst Pix. I-F Amplifier tube. The trap is to be connected electrically to the plate of the list Pix. I-F tube through a 1.5 uuf. capacitor. A sketch showing this trap schematically, follows:

Part number of the trap is 650299A-1; part number of the 1.5 uuf. capacitor is 650030A-9.

A suggested procedure for tuning this trap, after its installation, is to first tune the receiver to the channel on which the interference is obtained (if possible) and then adjust the trap to eliminate the interference. After doing this, check the overall I-f response curve and make adjustment to the I-F transformers, if necessary. The trap then can be re-adjusted slightly if any further interference is noted. In no event should this trap be installed without checking the overall I-F curve. MODELS 321-B, 321-M, 322-M, MODELS $321-\mathrm{B}, 321-\mathrm{M}, 322-\mathrm{M}$,
$324-\mathrm{M}, 325-\mathrm{F}, \mathrm{Ch} . \mathrm{C}-281, \mathrm{CX}-33$ $324-\mathrm{M}, 325-\mathrm{F}, \mathrm{Ch} . \mathrm{C}-281, \mathrm{CX}-33$;
$323-\mathrm{M}$,
$332-\mathrm{B}$,
$332-\mathrm{M}, 334-\mathrm{M}, \mathrm{Ch}$

ADDITIONAL INFORLLATION ON H.V. ARCING

SEE SERVICE BULLETIN VOL. VII - NO. 7 - ISSUED MAY 10, 1950

The following changes have been incorporated in production to eliminate the causes of this difficulty.
A. The heavy red lead in the H.V. Supply section has been shortened in order to maintain proper dress.
B. The H.V. Filter Capacitor mounting nut is being soldered to the chassis to prevent it and hence the 1 B3 socket from rotating and causing arcing between the 1B3 filament leads and the H.V. Winding of T210.
C. A high voltage insulating material is being applied to the 1 B 3 plate cap lead at its connection to the H.V. Winding; this is to prevent corona between this point and the H.V. Supply Shield. Additional transformers purchased will be revised to include sufficient insulation at this point.
D. The IB3 and 6W4 socket terminals and wiring are being coated with a H. V. insulating material to prevent corona.

SHORTING OF POCUS COILS

Several shorted focus coils have been received from the field and examination shows that these coils have developed shorts due to direct contact between the lead-in to one end of the coil and other partions of the winding.

The short may not show up until the coil has been in operation for a period of time depending upon the insulation of the wires and the pressure exerted between them. (This is why such a difficulty is not detected in final test.) The symptom resulting from this short, of course, is inability to focus. A resistance check will usually show a reduction from a standard of 470 ohms to between 30 and 60 ohms.

All shorted coils to date have been those mamfactured by the I.T.E. Circuit Breaker Co. These colls are also supplied by the Guardian Co. This condition has been corrected by the vendor and no receivers are being shipped with the early type coil. This early type can be identified by observing the yellow plastic bobbin. (The bobbin can be seen by looking into the coil through the air gap).
The corrected focus coil, as supplied by I.T.E. can be identified by its use of a gray plastic bobbin.

The Service Department is stocking only the corrected coil with the pray bobbin. It is suggested that you check your stock on this item, and discuss this subject with your Field Service Representative. All focus coils reworderea on the same part number will be of the corrected type.

On a national basis, the percentage of shorted coils has been low. You may be assured that this condition has been corrected.
$323-\mathrm{M}, 332-\mathrm{B}, 332-\mathrm{M}, 334-\mathrm{M}$, Ch.
SPECIAL SERVICE INFORMATION CX -33 AND CX-33F CHASSIS (CONTINUED) C-286, CX-33F (on

5.

SUBSTITUTION OF 12AT7 FOR 12AU7 - V212 ONLY

Due to a shortage of $12 A U 7$ tubes, a l2AT7 tube is temporarily being used for V212, Pre-Sync Separator - A.GoC. Detector。 The 12AT7 should not be used to substitute for V213. When replacing V212, a type 12AU7 tube should be used.
6.

TEMPGRARY REMOVAL OF 5 AMP. FUSE

The 5 amp. fuse, fuse holder and spare fuse and holder were deleted for a short time in production. The fuse, spare fuse and spare fuse holder are now being re-incorporated in production. In the meantime, some chassis have been shipped without the 5 amp. fuse.
7.

FAILURE OF R-258 IN EARLY CX-33 CHASSIS
R-258 is a $2.2 \mathrm{~K} \frac{1}{2} W$ plate load resistor supplying the plate of V2lla Sync Clipper tube in early CX-33 Chassis (before the Series " $-2^{\prime \prime}$ production changes). Some reports have been received stating that this resistor has opened up after a period of operation resulting in a lack of vertical sync. It is suggested, if this resistor is found defective, that it be replaced with a 2.2 K , 1 W resistor for an additional margin of safety.
8.

PROPER SETTING OF THE AGC SET CONTROL
We are receiving reports from dealers' service men and installation personnel Which indicate that they do not understand the function or the proper method for adjusting this control. The adjustment of this control is covered in the
Installation and Set-Up Instructions, which accompany each receiver and also in the CX-33 Maintenance Manual. The control does usually require adjustment in the field when setting the receiver up for operation.

If the control is adjusted to either extreme clockwise or counter-clockwise when the receiver is first placed in operation, it is possible that no picture will be seen. If the control is in the extreme counter-clockwise position, the level of the bias applied to the R-F and I-F stages is very high and these stages are operating at minimum gain. If the control is in the maximum clockwise position, the reverse condition exists; the operating bias would be at a very 70 w level and hence, if the received signal is strong, the receiver will overload causing the picture to be blanked out.

For these reasons, the control should be set to approximately the center of its range, and then the adjustment between it and the shading control can be accomplished, arrixing at a setting for the AGC control which will provide proper operation of the receiver on all available TV signals.

Please see that your dealers ${ }^{\text {i }}$ service and installation men are properly informed on this procedure. Kake it the subject of a Special Bulletin to them。

© John 1. Rider

Taveform Analysis

The following waveforms were obtained from a production run CX－33，Series＂－2＂re－ oeiver，with a standard transmitted pioture signal conneoted to the input of the reoeiver．

The waveforms shown here have been sized for purposes of reproduction and they are not intended to show relative amplitudes．Approximate peak－to－peak voltages are shown on eaoh waveform．These voltages were obtained by aalibrating the osoillosoope used to observe the waveforms．The approximate values of peak－to－peak voltage are those that may be expeoted to be obtained with the AGC Set and Shading oontrols adjusted for op－ timum pioture oontrast and all other oontrols adjusted for normal operation．

Two separate waveforms are shown at those points where it is intended to show both the vertioal and horizontal pulses．For viewing the vertioal syno pulse or waveforms in vertioal and horizontal pulses．For viewing the vertioal syno pulse or waveforms in vertioal sweep rate（ $30 \mathrm{o} . \mathrm{p} . \mathrm{s}$. ）．For viewing the horizontal syno pulse or waverorms in the horizontal sweep oirouits，the osoillosoope sweep is adjusted to one－half the horizontal sweep rate（7875 o．p．s．）．
Slight variations in waveform may be notioed in the symo oirouits when the reoeiver is switohed to different TV stations．This is due to the slight variation whioh is tolerated in the transmitted waveform at the station．Some variation in waveform and in peak－to－peak voltage may also be expeoted due to the response of the partioular osoillosoope used to observe the waveforms．Then using the waveforms in trouble shooting，these faotors should be taken into oonsideration to avoid possible inoorreot oonolusions．CAUTION－No waveforms are shown for points in the Horizontal Output Stage other than the oontrol grid and oathode due to the high pulse voltages whioh exists in the output of this stage．DO NOT attempt to observe waveforms in the horizontal defleotion yoke，Horizontal Damper or H．V．Reotifier oirouits．

SYNC CIRCUITS

Pioture Tube Cathode Pin 11 of V 211 ） Vertioal

Horizontal

Input to Pre－syno Separator
（Pin 7 of V212，表l2AU7） Vertioal

Horizontal

Input to AGC Deteator （Pin 2 of V212，$\frac{1}{2} 12 A U 7$ ） Vertioal Horizontal

Input to Syno Amplifier （Pin 2 of V213，古2aU7）
$\leftarrow \quad$ Vertioal
Horizontal

Output of Syno Amplifier （Pin 1 of V213，$\frac{1}{2} 12 A U 7$ ） \leftarrow Vertioal

Horizontal

Input to Syno Glipper
（Pin 1 of V214A，$\frac{1}{2} 6 S N 7$ ）
Vertioal
Horizontal

Cathode of Syno Clipper （Pin 3 of V214A，$\frac{1}{2} 6 S N 7$ ）

Horizontal

HoRIZONTAL SCAN CIRCUITS
VERT．SCAN CIRCUITS

Input to AFC Deteotor Terminal E of T209）

Plate of AFC Deteotor （Terminal F of T 209 ）

Grid of Horiz．Disoharge （Pin 4 of V 218 ）

Input to Horiz．Output （Pin 5 of V219）

Plate of AFC Deteotor （Terminal D of T209）

Grid of Horiz．Osoillator （Pinl of V 218 ）

Output of Horiz．Disoharge （Pin 5 of V218）

Cathode of Horiz．Output （Pin 3 of V219）
CHASSIS C－281，CX－33
C－286，CX－33F，

© John F. Rider

©John F. Rider

©John F. Rider

Radio Chassis

> Preliminary Servioe Information

Jsed In Models
$337-\mathrm{M} \& 328-\mathrm{M}$

General Information

Service information on the pnono pre-amp
ohassis C-243 can be found in the Capehart P7,9, ilo Waintenanoe Kanual (Serv 128). Information on the Phono pre-amp ohassis C-295 is included herein.
Receivers Used In:

Model	Radio Chassis	Reoord Changer	TV Chassis
$328-\mathrm{M}$	C-282 (with pre- amp C-243 or C-295)	$333 \mathrm{~A}-\mathrm{VR}$	CX-33Mi
$337-\mathrm{M}$	C-282 (with pre-amp C-295)	$333 \mathrm{~A}-\mathrm{VR}$	CX-33K

CHASSIS DESCRIPTION
The C-282 is an 11 tube radio ohassis designed for reoeption of both AM (Broadoast Band) and FM (Frequenoy Modulation) signals. The ohassis oontains push-pull audio output amplifiers which are used for reproduotion of the television sound as well as radio and rhonograph. This ohassis is used in oonjunction with a phono pre-amplifier chassis in the models $328-\mathrm{M}$ and $337-\mathrm{M}$. This is necessary sinoe the reoord ohanger used in these models employs a variable Reluotanoe type fickup. The on-off switoh on the radio ohassis oon trols the power source for all functions of the reoeiver. Volume and Tone Controls on the radio ohassis also function for television and phonograph operation.
NOTE: With the Operation Seleotor (Band Switoh) in the phonograph position, the reoord changer will automatioally shut off the power source to the entire instrument when it has played the last reoord. When the operation Seleotor is then switched to either TV or radio, the power souroe will again automatioally be turned on.

Radio Tuning Range:	Radio IF Frequencies:
AM Band 540 KC to 1620 KC	AM IF 455 KC
FM Band 88 MC to 108 MC	FM IF 10.7 MC

Radio Chassis Tube Complement:

Pre－Amplifier Chassis Tube Complement
Type Desoription

6SC7．．．．．．．．．．．．．．．．．．．．lst \＆2nd Pre－Anplifiers
Speaker（Used for all types of operation）．．．．．．．．．．．． 12 inch PM Audio Output．．．．．．．．．．．．．．．．．．．．．．．．． 12 watts Power Source．．．．．．．．．．．． 105 to 125 volts， 60 oyole AC only

Alignment Instructions

Equipment Required
AM（Broadoast Band）IF \＆RF Alignment
1．Calibrated RF Signal Generator（range， 455 KC to 162 KKC ）．
2．Low Range Output Neter
FM（Frequency Modulation）IF \＆RF Alignment
1．FM Sweep Generator（range 10．7MC to 108．5MC）
2．Osoilloscope
3．RF Sirnal Generator
4．Vaouum Tube Voltmeter

AM Alignment（IF \＆RF）

a．Set Operation selector to AM position．
b．See that the dial pointer coincides with the oalibration marks at the extremes of the dial soale．
－Conneot the Output Meter across the speaker voice ooil．
d．Turn set on and adjust volume to maximum．

Step	Conneot Set Generator Generator At		Set Gang At	Adjust	To Obtain
1.	Grid of AM Conv．， 6BE6（pin 7 of VlO3） Through ol $\mathrm{mf} \mathrm{d}_{\text {．}}$	455KC	Fully Open	$\begin{aligned} & \text { Tl02, Tl04\& Pl06 } \\ & \text { (IF Slugs) } \end{aligned}$	$\begin{array}{ll} \mathbf{M} & \\ \mathbf{A} & 0 \\ X & 0 \end{array}$
2.	Ant．Section of Gang （through ol mfd．）	1620 KC	1620 KC	Cl56，AM OBC．Trim． \＆Cl54，AM RF Trim．	$\begin{array}{ll} \text { I } & \mathbf{T} \\ \mathbf{I} & \mathrm{P} \end{array}$
3.	－Same－	1500KC	1500KC	Cl52．AL Ant．Trim．	0
4.	－Same－	600KC	600KC	Ll03，Loop Loading Coil \＆Llll＊AM 080．Coil	$\boldsymbol{Y} \mathrm{T}$
5.	＂Ant＂Terminal（on rear of ohassis）with Loop a onneoted．	455KC	Quiet Point	Ll02，Wave Trap （on Loop Ant．）	Minimum Output

－Adjust while rooking gang oondenser．

FM Alignment

a．Conneot the osoillosoope and FM or RF generator as shown in the ohart．
b．Set the Operation Seleator in the FM position．
o．Turn the Receiver on．
d．During alignment，reduce the generator output to l：eep the signal just above noise level to avoid overloading．

MODELS $337-\mathrm{M}$ ，Ch．C－292， CX－33K；328－M，Ch．C－290 CX－33M；Radio Ch．C－282

Step	Connect F： Generator	$\begin{array}{\|c\|} \text { Set } \\ \text { Generator } \\ \text { At } \end{array}$	Set GanE At	Connect Oscillosoope	Adjust	Remarks
1.	Grid of 2nd IF 6BA6（pin 1 V105）thru 1000 unf。	$\begin{aligned} & 10.7 \mathrm{NC} \\ & \neq 100 \mathrm{KC} \\ & \text { dev. } \end{aligned}$	Fully Open	Aoross Rl32 （Disconneot Cl41）	Tl05 Ratio Det．Prio \＆ Seo．	Detune $5 e 0 \circ^{\circ}$（top）and oonnect 350uuf．across Sec．adjust Pro．（bottom） for max．Amplitude．Re－ move 350uuf．and adjust seo．for Max．Amplitude Refer to Fig．l below
2.	Grid of lst IF 6BAG（pin 1，V104）thru 1000 unf．	$\begin{aligned} & 10.7 M C \\ & \frac{f 100 \mathrm{KC}}{\mathrm{dev}} \end{aligned}$	Fully Open	－Same－	$\begin{aligned} & \text { Tl03 2nd } \\ & \text { IF Pri。 } \\ & \text { \& Seo. } \end{aligned}$	Adjust for Maximum Amplitude
3.	Grid of FM Mixer 12AT7 （pin 2，Vlo2） thru 1000 uuf。	$\begin{aligned} & \text { 10.7NC } \\ & \text { flookC } \\ & \text { dev. } \end{aligned}$	$\begin{aligned} & \text { FuIly } \\ & \text { Open } \end{aligned}$	－Same－	T101 lst IF Pri。 \＆Seo．	－Same－
4.	－Same－	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \underbrace{}_{\mathrm{dev}} \mathrm{l} 00 \mathrm{KC} \end{aligned}$	$\begin{aligned} & \text { Fully } \\ & \text { open } \end{aligned}$	$\begin{aligned} & \text { Junction of } \\ & \text { R148, R129 } \\ & \text { \& Cl38 (Re- } \\ & \text { connect Cl21) } \end{aligned}$	Tl05 Ratio Det．Secon－ dary	Adjust for symmetriaal Ratio Det．＂S＂curve． Refer to fig． 2 below

RF Seotion

Step	Connect Signal Generator	Set Generator At	Set Gang At	Cunneot VTVM	Adjust	Remarks
1.	High side of FM dipole thru 330 ohms	108．5MC	$\begin{gathered} 108.5 \\ \text { YC } \end{gathered}$	Aoross Rl32	$\begin{aligned} & \text { Cl55,FM } \\ & \text { Oso.Trim。 } \end{aligned}$	Adjust for Maximum
2.	－Same－	105MC	105MC	－Same－	$\begin{array}{\|l\|} \hline \text { Cl53, Fm } \\ \text { Mixer Trim. } \\ \text { \&Cl5l,FM } \\ \text { Ant.Trim. } \end{array}$	Adjust for Maximum

Figure 1 FM IF Curve

Figure 2 Ratio Det．＂ 8 ＂ourve

PARTS LIST RADIO CHASSIS C-282
-Capaoitors-
Ref. no.
Desoription
Part no.
Clol, Cll9
Kica, 4'7 unf, 10\%, 5iOV.
Cl36, Cl37, Cl45
Hioa, 100 unf, $10 \%, 500 \mathrm{~V}$........... 25188

OJohn F. Rider

Step	Conneat Generator	$\begin{aligned} & \text { Set } \\ & \text { Generator } \end{aligned}$ At	$\begin{gathered} \text { Set } \\ \text { Gang } \\ \text { At } \end{gathered}$	Adjust	$\begin{gathered} \text { To } \\ \text { Obtain } \end{gathered}$
1.	Grid of Mixer, 6SA7 (pin 5 of V102) through .1 mfd .	455 KC	Fully Open	$\begin{gathered} \text { IF Slugs T102, T103 \& } \\ \text { T104 } \end{gathered}$	$\begin{aligned} & \text { YAXIMOSA } \\ & \text { OUTPUT } \end{aligned}$
2 。	RF Seotion of Gang through 1. mfd.	162015C	1620KC	Clo2c Oso. Trim. (on gang)	$\begin{aligned} & \text {-MAXIMUM } \\ & \text { OUTPUT } \end{aligned}$
3.		1500kC	1500KC	Cl02A, Ant. Trim. ClO2B, RF Trim. (on gang)	$\begin{aligned} & \text { MAXIMMM } \\ & \text { OUTPUT } \end{aligned}$
4.		600 KC	600KC	$\begin{aligned} & \text { Llo3, Loop Loading } \\ & \text { Coil and L104* } \\ & \text { Oso. Coil } \end{aligned}$	$\begin{aligned} & \text { MAXIMUM } \\ & \text { OUTPUT } \end{aligned}$
5.	Terminal "A" Ant. Termostrip (with Loop oonneoted)	455 KC	Quiet Point	L102, Wave Trap on	$\begin{aligned} & \text { MI NIMOM } \\ & \text { OUTPUT } \end{aligned}$

* Adjust while rocking Gang Condenser.

PARTS LIST RADIO CHASSIS C-284
-Capaoitors -

Ref.no.
Desoription
Part no.
ClO1 Variable (3 gang) tuning Capaoitor...452040A-Gl Assetinbly
Antenna Trimmer)

Cl02A)		
Cl02B) -----	------------ RF Trimmer)-------Part of Assembly	\#452040A-Gl
Cl02C)	Osc. Trimmer)	
Cl44	Ceramio, 3.3 uuf., 20\%, 500V.........650030-5	
Cl03	Ceramio, 240 uuf., 20\%, 500V.......... 25427	
Cl43	Ceranic, 50 uuf., 10\%, 500V........... 25493	
Cl08	Ceramio, luuf., 20\%, 500V.............. 25497	
Cll0)		
Cl41)--------------Ceramio, 10 uuf., 10%, 500V........... 25479		
C142)		
C145	Ceramio, 20 uuf., 10\%, 500V......... 25492	
Cl06, Cl09)		
Cl13, C116)---------Ceramio Disk, 5000 uff., 450 V....... $450469 \mathrm{~A}-1$		
C140, Cl44)		
Cl04	Mica, 47 unf., 10\%, 500V (part of	assy, \#750165A01)
Cl12	Mioa, 47 uuf., 10\%, 500v.............. 25193	
Cl15	Silver Mioa, 1500 uuf., 5\%, 500V...... 25299	
Cl20	Mica, 10 uuf., 10\%, 500V.............. 25049	
Cl21, Cl22)		
Cl26. Cl39)---------Mioa, 100 uuf., 10%, 500V............. 25188		
Cl27	Mioa, 470 uff., 20\%, 500V............ 25285	
Cl05, Cl07)		
Cl19, Cl23)--------OPT., -047 ufd., 20\%, 600V............2248A-4730		
C137, C148)		
C125, C124)		
C128, Cl38)	OPT., . OL ufd., 20\%, 600V.............2248A-1030	
C147)		
Cl18	OPT., . 1 ufd., 20\%, 200V..............2246A-1040	
Cl29, Cl30)--------OPT., . 022 ufd., 20%, 600V...........2248A-2230		
C131, Cl32)--------OPT., . 0033 ufd., 20%, 600V...........2248A-3320		
Cl34, Cl35)--------MOPT., . 0047 ufd., $20 \%, 600 \mathrm{~V}2244 \mathrm{~A}-4720$		
C133	Eleo., 25 ufd., 25V.................... 25158	
Cl36A	Eleo., 30 ufd., 350V)	
Cl36B, Cl36C	Eleo., 20 ufd., 350V)-	--25424

-Resistors-

© John F. Rider

NOTE: For Service Data, See RCA
Model 630TS, Pages *i-76 through
*1-116.

© John F. Rider

In this $A C-D C$ television set, $B-$ of the set is connected directly to one of the AC power lines. If test equipment is connected to chassis, the equipment may be at line voltage potential above ground (depending on how the line plug is inserted). Therefore, contact between equipment and ground may result in severe shock.

Use an isolation transformer between the television AC cord and the power receptacle.
If an isolation transformer is not available, make the following check before any test equipment is connected: Put an AC voltmeter between ground of the set and a good ground connection (radiator, water pipe, etc.). Plug the line cord into the power line. If meter does not read zero, reverse the plug in the receptacle.

Alignment Procedure

Test Equipment
The test equipment required for the alignment of this receiver is as follows:

Marker Generator
R.F. Sweep Generator

Oscilloscope
Electronic Voltmeter
3 Volt bias battery
The Marker Generator is used for peaking the $i-f$ coils and to supply marker pips on the response pattern. The frequency range required of this generator is approximately from 20 to 30 mc . It must also have provision for a 4.5 mc . output. The accuracy of the frequency calibration is very important.

The Sweep Generator must have a continually variable frequency output. Only one output sweep signal is needed, that sweeping signal is needed, that sweeping between 20 to 30 mc .

The Oscilloscope should be a high gain, general purpose type employed for test purposes.

The Electronic Voltmeter is of the standard type.

Video I.F. Alignment

1. Connect the 3 -Volt bias battery, minus to A.V.C. and plus, to chassis.
2. Connect the marker generator, through a 47 mmf . capacitor to the nipple located on the tuner, between V1 and V2. Ground the generator at the nearest convenient ground. The marker generator is used in making most of the alignment adjustments.
3. Connect the electronic voltmeter across R99, diode load re-
sistor. Adjust the contrast control about $1 / 8$ turn below its maximum setting.
4. Set the marker generator to each of the following frequencies and peak the specified adjustments for maximum indication on the voltmeter. During the alignment reduce the input signal to prevent overloading.

$$
\begin{array}{ll}
24.7 & \text { L15 (top) } \\
23.2 & \text { LI4, L12 (top) } \\
26.3 & \text { L13. L11 (top) }
\end{array}
$$

5. Repeat the above process for fine adjustments 01265 shetings. 6. Disconnect the 3 volt bias battery.
6. Disconnect all equipment.

Overall Picture Response

1. With the sweep generator adjusted for a 10 mc sweep, using a center frequency of 26.75 mc , connect the generator to the nipple of the tuner between V1 and V2. Loosely couple the marker gen erator to the same tube.
2. Connect the oscilloscope across R99.
3. Inject individual markers of $26.3 \mathrm{mc}, 24.7 \mathrm{mc}$, and 23.2 mc in order indicated and note positions of marker pips on response curve. Turning the adjustments very slowly, retune the video i.f. coils again for an overall picture response as indicated in fig. coils again The most important considerations are that the video i.f.car. and 20 times down the other end of and that the sound i.f. carriers
the curve.
I.f.RESPONSECURVE

Fia.l
Audio Take-Off and Ratio Detector Alignment

1. Connect the high side of the signal generator, through a 100 $m m f$ cin $m m f$ capacitor, to the grid of the first video amplifier tube, and the low side to ground. Tune the generator to just the output to approximately 10,000 microvolts 2. From either side of capacitor 448 , connect an electronic voltmeter to chassis decoupled through 10,000 ohms.
2. Set the contrast control for maximum gain (clockwise)
3. Peak Tl, top and bottom slug for maximum indication on meter. 5. Peak T2, bottom for maximum reading on meter. 6. Disconnect meter and reconnect it to junction of RlO9 and the lead to the volume control.
lead to the lowest scale on the 7. Ad us meter. This corresponds to tector curve. The symmetry of the curve may be checked produced, the generator $\pm 25 \mathrm{kc}$ from 4.5 mc and noting the voltage produced, reversing the meter connections as necessary. The voltage in each
direction should be equal for proper balance of the ratio detector system.
4. If an accurately calibrated generator for 4.5 mc is not available, it is desirable to align the audio section from an actual station signal, since the 4.5 mc . alignment frequency will then be exact.
exact
Alignment of the $r-f$ and oscillator sections are not recommended Alignment of the $r-f$ and oscilador if any misalignment is suspected, consult the manufacturer.
© John F. Rider

CROSLEY TELEVISION SERVICE INFORMATION
MODELS $\mathbf{1 0 - 4 0 4 \mathrm { MUU }} \mathbf{1 0 - 4 0 4 \text { MIU, } 1 0 - 4 1 2 \mathrm { MU } , 1 0 - 4 1 8 \mathrm { MU }}$
This television receiver is designed to operate from a power source of 117 volts. 60 cycle. a.e.
The average power consumption is 185 watts. The audio vulput system is capabie of delivering 1.75

SYMBOL	TUBE TYPE	function
v_{1}	${ }^{6 \times 84}$	R-F Amplitier
v2	6aks	Mixer
v3	${ }_{6 A B 4}$	V.f.F. Oscillator
v101	baug	1st 1-F Amplifier
v102	6aug	2nd 1-F Amplitier
v103	6aug	3rd 1-F Ampliuier
v104	6acs	4th 1-F Amplifier
v10s	6als	2nd Detector 4 AGC Delay
v106	6ags	Video 1-F Amplifier
v107	$12 \mathrm{AU7}$	DC Restorer, 1st sync Separator AGC Amplifier
v108	$\text { 12LP4 or 12TP4 }\left\{\begin{array}{l} \text { Modele 1s 10-404.MU.10-412 MU } \\ 10-418 \mathrm{MU} \end{array}\right\}$	Picture Tube
v108	120P4 Model 10-404M1U	Picture Tube
v109	6aug	Sound Det. Driver
v110	${ }^{678}$	Sound Det. \& 1st Audio Ampl.
v111	${ }^{6 v 6 G T}$	Audio Output
v112	6SL7GT	Sync Clipper \& Sync Cutput
v113	6SN7CT	Vertical oscillator
v_{114}	6SNTGT	A.F.c. 4 Horizontal Ose.
vi15	${ }^{\text {6BGGG }}$	Horizontal Output
v116	${ }_{6}^{6 W 4 G T}$	Horizontal Damper
v117	${ }_{1} \mathrm{~B} 3 \mathrm{GT}$	H.V. Rectifier
V118	SU46	L.v. Rectifier

Chassis Top View Showing Tube and Alignment Locations

© John F. Rider

This television receiver is designed to operate from a power source of 117 volts
60 cycle, a.c. oycle, ace. The audio output follows:

symbol	tube type	FUNCTION
v1	$6 \mathrm{Ab4}$	R-F Amplifier
v2	6CB6	Mixer
v3	6 Ab4	V.f.F. Oscillator
v101	6 6ab	1st I-F Amplifier
v102	6av6	2nd I-F Amplitier
V103	6 AUG	3rd l-F Amplifier
V104	6 AG5	4th I-F Amplifier
v105	6 als	2nd Detector \& AGC Delay
V106	6ah6	Video Amplifier
v107	12 AUT	DC Restorer, 1st sync Separator
v108	$16 \mathrm{TP4}$	Picture Tube
V109	6aug	Sound Det. Driver
V110	6 T 8	Sound Det. \& 1st Audio Ampl.
V111	6V6GT	Audio Output
V112	6SL7GT	Sync Clipper \& Sync Output
V113	6 C 4	Vertical Oscillator
V114	6K6GT	Vert. Amplifier
V115	6SN7ct	A.F.C. \& Horizontal Osc.
V116	6BP6GT	Horizontal Output
V117	6Bp6GT	Horizontal Output
V118	6W4GT	Horizontal Damper
V119	183GT	H. V. Rectifier
V120	5Y3GT	L. V. Rectifier
V121	5 U 4 G	L. V. Rectifier
V122	6AU6	AGC Amplifier

subject- IMPROVE VENTILATION FOR 6BQ6 AND 6W4 TUBES MODEL 10-421MU

To improve the ventilation of these tubes, remove
and discard the tube shield cover.

In the temporary service information parts list for this model, change the tube shield part number

from 148154 to 148020 .

susject- CAPACITOR (Symbol No. C168) MODEL $10-421 \mathrm{MU}$
The temporary service information shows that symbol C168 is one 500 mmf .,
$20 \mathrm{k} . \mathrm{v}$. capacitor (part No. W-147375). However, some sets were equipped
with two $500 \mathrm{mmf} ., 10 \mathrm{k} . \mathrm{v}$. capacitors connected in series.
When either or both of these capacitors require replacing, replacement should be made with one capacitor (part No. W-147375).

subject- INCREASE HORIZONTAL DRIVE - MODEL 10-421MU

To increase the horizontal drive, some sets are equipped with an 18,000 ohm, $10 \%, 1 / 2$ watt resistor (Symbol No. R210, Part No. 39374-40) connected in parallel with R197.

In some areas, the horizontal drive may be excessive on these sets.
When this condition is experienced, remove R210.

ADJUSTMENTS

1. The DEFLECTION YOKE is positioned as far forward as possible on the neck of the cathode ray tube and rotated so as to make the top of the raster parallel with the top of the CRT.
2. The FOCUS COIL should be adjusted to be approximately perpendicular to the cathode ray tube axis with the front surface of the focus coil housing approximately $15 / 32^{\prime \prime}$ from the rear surface of the deflection and focus mounting bracket.
3. Adjust size of picture to $135 / 8^{\prime \prime} \times 101 / 4^{\prime \prime}$ by the HEIGHT CONTROL, HORIZONTAL DRIVE, VERTICAL LINEARITY and WIDTH CONTROL. The HORIZONTAL DRIVE trimmer should be adjusted to a point wher the vertical white bar across the center of the raster disappears.
4. Center the picture by adjusting the three focus coil mounting nuts.
5. The ION TRAP is positioned for maximum brightness, with low setting of the Brightness Control, and for no cutoff of the picture at high setting of the Brightness Control
6. I-F Alignment (See I-F Alignment).
7. HORIZONTAL HOLD ADJUSTMENT (See Horiz. Blocking Osc. Alignment)
8. HORIZONTAL HOLD CONTROL is adjusted with a weak picture to center of pull in range
9. VERTICAL HOLD CONTROL is adjusted with a weak picture to center of pull in range.
10. Vertical linearity is adjusted by the VERTICAL LINEARITY CONTROL and the HEIGHT CONTROL. Horizontal size is adjusted by the HORIZONTAL LINEARITY and WIDTH adjustments.
11. The FOCUS CONTROL is adjusted for best focus of the vertical and horizontal wedges at center of test pattern. If there is any astigmatism, the focus should be set to favor the vertical wedge. If corner focus is poor, check position of the DEFLECTION YOKE and ION TRAP.

I-F ALIGNMENT

1. Connect a short clip lead from B- (-4 volts) to AGC terminal (white-black lead near V102) of the I-F stages
2. Connect an electronic voltmeter across R118.
3. Connect "hot" lead of signal generator to grid (pin \#1) of V101
*4. Set signal generator to 25.65 mc . and adjust L107 and L103 for maximum meter deflection
*5. Reset signal generator to 23.7 mc . and adjust L105 and L102 for maximum meter deflection.
4. Disconnect the electronic voltmeter and signal generator rom grid of V101. Connect a scope to the CRT grid. Keep cope leads as far away as possible from the IF stages. Connect a video sweep signal to the adjusting screw (top of chassis on tuner) of C'3. Ground lead of sweep signal should be connected to main chassis as close an possible to the hot lead. Remove the uscillatur lutee V3. Tuner from the high end (Channel \#13). Contrast contrul should be set as low as possible and still oblam reasunable deflection on the scope

5. Adjust L101 for 26.4 mc . to fall 6 db duwil from the peak with as flat a curve as possible across the bottom.
6. Disconnect sweep sigual and clip lead from B- to AGC terminal.

* NOTE: In steps 4 and 5 limit DC meter deflection to 3.5 volts maximum by adjusting attenuator of signal input.

SOUND ALIGNMENT

1. Connect "hot" lead of signal generator to grid (pin \#1) of V106. Set signal generator to 4.5 mc . with 400 c. p.s. amplitude modulated 30% or greater.
2. Connect scope to CRT grid through a detector probe.
3. Connect two 100 K ohm resistors (matched within 1%) in series across R139 (pin 2 and 7 of V110A) Connect common lead of electronic voltmeter to junction of the matched 100 K ohm resistors and the DC lead to +150 volt point at junction of C 128 (pin \#4 of V110). $^{2}$
4. Using a high level signal input and with the contrast control set at maximum, tune the sound takeoff transformer (T101) primary adjustment (bottom of chassis) for minimum deflection on the scope.
5. Reduce signal input to below limiting in V107 and adjust sound take-off transformer (T101) secondary (top of chassis), and ratio detector transformer (T102) primary (top of chassis) for peak meter reading.
6. Repeat steps 4 and 5.
7. Transfer DC lead only of electronic voltmeter to junction of R140 and C131
8. Return to high level signal input for limiting in V107 and adjust ratio detector transformer (T102) secondary (bottom of chassis) for minimum buzz. corresponding with undistorted output.
9. Remove the two 100 K ohm resistors, and all test equipment from the receiver.

AGC ADJUSTMENT

Connect scope (direct) to detector load resistor R118. Tune in a station with a strong signal and adjust the Automatic Gain Control on the rear apron of the chassis for 5 volts $+1 / 2$ volt peak to peak (white to sync tip) detector output.

HORIZONTAL DRIVE ADJUSTMENT

Before alignment of the horizontal blocking oscillator and AFC. circuit. Tune in a station with a strong ignal and adjust the HORIZONTAL DRIVE trimmer just below the point where a white line and crowding appears in the center of the picture. Vary CONTRAST CONTROL during this alignment from minimum to maximum.

horizontal blocking oscillator alignment

1. Tune the receiver to a television signal and adjust the Contrast Control below limiting in the video amplifier (V106).
2. Connect scope thru a 10 mmf . capacitor to terminal \#5 of the Horizontal Blocking Oscillator Transformer (T106) and adjust the horizontal BTO Trap (bottom of T106) for the wave form shown at bottom of page. The raster must be kept in sync by means of the Horizontal Hold Control, Horiz. Frequency Control and/ or Horizontal Lock.
3. Remove scope from the receiver and adjust HORIZONTAL LOCK trimmer for mimimum capacity.
4. Set the HORIZONTAL HOLD CONTROL fully clockwise and turn the HORIZONTAL FREQUENCY adjustment (top of T106) out until the picture falls out of sync. (This is indicated by a wide black vertical or diagonal bar sloping to the right from top to bottom). Then turn the HORIZONTAL FREQUENCY adjustment slowly in until picture just falls into sync.
5. The final setting of the HORIZONTAL HOLD CONTROL should be made with the CONTRAST CONTRO turned so as to obtain a very weak picture. Rotate the dial on and off the station, and set the HORIZONTAL HOLD CONTROL so that the picture returns completely in sync.
 top.

Chassis Top View Showing Tube ond Alignment Locations

© John F. Rider

Main Chassis

Chassis Bottom View Showing Tube Socket and Alignment Locations

MODEL 10-421MU
This television receiver is desikned to operate from a power source of 117 wolts,
60 cycle, acc. The average power consumption is 195 watts. The audio output system is capable of delivering 1.5 wats maximum. The tube complement 1 is as

symbol	TUBE TYPE	function
v_{1}	${ }_{6 A B 4}$	R.F. Amplilier
$v 2$	${ }_{6} \mathbf{C B 6}$	mixer
v3	6ab4	v.h.f. Oscillator
v101	6aug	1st I.F. Amplifier
v102	6aug	2nd I.F. Amplititer
vios	${ }_{6 \times \sim}$	3rdi.f. Amplitier
v104	${ }^{\text {6ags }}$	4th I.F. Amplifiter
v105	6als	2nd Detectior \& AGC Delay
viob	6 6ug	Video Amplititer
v107	$12 \mathrm{AU7}$	DC Restorer \& Sync Separator
v108	$14 \mathrm{CP4}$	Picture Tube
v109	baug	Sound Det. Driver
v_{110}	${ }^{678}$	Sound Det. © 1 st Audio Ampl .
vin	${ }^{6 v 6 G T}$	Audio Output
v112	6SL7GT	Sync Clipper \& Sync Output
v113	${ }_{6} 64$	Vertical Oscillator
v114	6SN7GT	AFC \& Horizontal Osclliator
v_{115}	68G66T	Horizontal Output
${ }^{\text {v116 }}$	${ }^{6 W} 4 \mathrm{GT}$	Horizontal Damper
${ }^{1} 117$	${ }^{1 \times 2}$	H.V. Rectitier
V118	$5 \mathrm{54G}$	L.v. Recttier
v119	5U4G	L.v. Rectifier
${ }^{120}$	${ }^{\text {6V6GT }}$	Vertical Amplifier
$\checkmark 121$	6AU6	AGC Amplitier

1. The DEFLECTION YOKE is positioned as far forward as possible on the neck of the cathode ray tube and rotated so as to make the top of the raster parallel with the top of the CRT.
2. The FOCUS COIL should be adjusted to be approximately perpendicular to the cathode ray tube axis with the front surface of the focus coil housing approximately $15 / 32^{\prime \prime}$ from the rear surface of the deflection and focus mounting bracket.
3. Adjust size of picture to $1119 / 32^{\prime \prime} \times 823 / 32$ " by the HEIGHT CONTROL, HORIZONTAL DRIVE, VERTICAL LINEARITY and WIDTH CONTROL. The HORIZONTAL DRIVE trimmer should be adjusted to a poin
4. Center the picture by adjusting the three focus coil mounting nuts.
5. The ION TRAP is positioned for maximum brightness, with low setting of the Brightness Control, and for no cutoff of the picture (neck shadows) at high setting of the Brightness Control.
6. I- F Alignment (see I-F Alignment)
7. HORIzONTAL HOLD ADJUSTMENT (See Horiz. Blocking Osc. Alignment).
8. HORIZONTAL HOLD CONTROL is adjusted with a weak picture to center of pull in range
9. VERTICAL HOLD CONTROL is adjusted with a weak picture to center of pull in range
10. Vertical linearity is adjusted by the VERTICAL LINEARITY CONTROL and the HEIGHT CONTROL Horizontal size is adjusted by the HORIZONTAL LINEARITY and WIDTH adjustments. Picture size as
11. The FOCUS CONTROL is adjusted for best focus of the vertical and horizontal wedges at center of test pattern. If there is any astigmatism, the focus should be set to favor the vertical wedge. If corner focus poor, check position of the DEFLECTION YOKE and ION TRAP.

I-F ALIGNMENT

1. Connect a short clip lead from B- (-4 volts) to AGC terminal (white-black lead near V102) of the I-F stages
. Connect an electronic voltmeter across R118.
Connect "hot" lead of signal generator to grid (pin 1) of V101.
. Set signal generator to 25.65 MC and adjust L 107 and L103 for maximum meter deflection.
2. Reset signal generator to 23.7 MC and adjust L 105 and L 102 for maximum meter deflection.
3. Disconnect the electronic voltmeter and signal generator from grid of V101. Connect a video sweep signal to the lead of sweep signal should be connected to main chassis as closely as possible to the hot lead. Remove the oscillator tube V3. Tuner should be approximately $11 / 2$ turns counterclockwise from the high end (channel No. 13). Co obtain reasonable deflection on the scope
4. Adjust L101 for 26.4 MC to fall 6 db down from the peak with as flat a curve as possible across the bottom.

5. Disconnect sweep signal and clip lead from B- to AGC terminal.

* Note: In steps 4 and 5 limit DC meter deflection to 3.5 volts maximum by adjusting attenuator of signal input.

SOUND ALIGNMENT

1. Connect "hot" lead of signal generator to grid (pin 1) of V106. Set signal generator to 4.5 MC . with 400 c.p.s. amplitude modulated 30% or greater.
2. Connect scope to CRT grid through a detector probe.
3. Connect two 100 K ohm resistors (matched within 1%) in series across R139 (pins 2 and 7 of V110A). Connect common lead of electronic voltmeter to junction of the matched 100 K ohm resistors and the DC lead to +150 volt point at junction of C128 (pin 4 of V110).
4. Using a high level signal input and with the contrast control set at maximum, tune the sound takeoff transformer (T101) primary adjustment (bottom of chassis) for minimum deflection on the scope.
5. Reduce signal input to below limiting in V107 and adjust sound take-off transformer (T101) secondary (top of chassis), and ratio detector transformer (T102) primary (top of chassis) for peak meter reading.
6. Repeat steps 4 and 5
7. Transfer DC lead only of electronic voltmeter to junction of resistor R140 and capacitor C131.
8. Return to high level signal input for limiting in V107 and adjust ratio detector transformer (T102) secondary (bottom of chassis) for minimum buzz corresponding with undistorted output
9. Remove the two 100 K ohm resistors, and all test equipment from the receiver

AGC ADJUSTMENT

Connect scope (direct) to detector load resistor R118. Tune in a station with a strong signal and adjust the Automatic Gain Control on the rear apron of the chassis for 5 volts $\pm 1 / 2$ volt peak to peak (white to sync tip) detector output.

HORIZONTAL DRIVE ADJUSTMENT

Before alignment of the horizontal blocking oscillator and AFC. circuit. Tune in a station with a strong signal and adjust the HORIZONTAL DRIVE trimmer just below the point where a white line and crowding appears in the center of the picture. Vary CONTRAST CONTROL during this alignment from minimum to maximum.

HORIZONTAL BLOCKING OSCILLATOR ALIGNMENT

1. Tune the receiver to a television signal and adjust the CONTRAST CONTROL below limiting in the video amplifier (V106).
2. Connect scope through a 10 mmf . capacitor to terminal 5 of the Horizontal Blocking Oscillator Transformer (T106) and adjust the horizontal BTO Trap (bottom of T106) for the wave form shown at bottom of page. The raster must be kept in sync by means
UENCY CONTROL and/or HORIZONTAL LOCK.
3. Remove scope from the receiver and adjust HORIZONTAL LOCK trimmer for minimum capacity
4. Set the HORIZONTAL HOLD CONTROL fully clockwise and turn the HORIZONTAL FREQUENCY adjustmen (top of T106) out until the picture falls out of sync. (This is indicated by a wide black vertical or diagonal bar sloping to the right from top to bottom). Then turn the HORIZONTAL FREQUENCY adjustment slowly in until picture just falls into sync.
5. The final setting of the HORIZONTAL HOLD CONTROL should be made with the CONTRAST CONTROL turned so as to obtain a very weak picture. Rotate the dial on and off the station, and set the HORIZONTAL turned so as to obtain a very weak picture. Rotate the dial on and
HOLD CONTROL so that the picture returns completely in sync.

© John F. Rider

© John F. Rider

102 Controls

Operating Controls (Front Panel)

SOIJND VOLUME
SOIJND VOLUME
OFF-ON CONTRAST . . . $\}$ Dual Control Knob
TUNING

Auxiliary Controls:
(Front Paral behind Small Door)
VERTICAI HOLD HORIZONTAL HOLD
BRIGH TNESS
FOCUS

Knurled shaft Knurled shaft Knurled shaft Knurled shaft

Non-Operational Controls \& Adiustments
(not including R. F. \& I. F.):
HEIGHT
Front panel behind small door - Screw driver adjustment
VERT. LINEARITY.

WIDTH

HORIZ. FREQUENCY HORIZ. LOCK

HORIZ. DRIVE

HORIZ. B.T.O. TRAP
FOCUS COIL
DEFLECTION COIL
ION TRAP MAGNET
PRECAUTIONS

After being amplified in the video amplifier the 4.5 mc . signal is trapped or "sucked out' of the video signal and fed to the sound driver stage by means of the sound take-off transstage by means of the sound take-off trans-
former. The transformer serves a dual purformer. The transformer serves a dual pur-
pose of providing a 4.5 mc . trap to reduce pose of providing a 4.5 mc. trap to providing a sharp pass band for 4.5 mc . injection to the grid of the sound driver stage. The 4.5 mc signal is amplified and limited in the sound driver which provides sufficient signal to operate the sound detector. FM demodulation of the sound I.F. signal is accomplished by the two diode sections (V110A) of V110, that function as an unbalanced ratio detector which conterts frequency deviations of the I.F. carrier modulation interference. The IF input is applied to the diodes by mutual coupling between the tuned primary and secondary of the ratio detector transformer T102. The applied I.F carrier rectified by the diodes, charges the electrolytic capacitor C135. The bias voltage developed across R142 holds the conduction level of the diodes at a definite value determined by the applied carrier. Any sudden change, such as may be caused by instantaneous noise impulses, cannot change the bias due to the relatively long time constant (approx. : 8 quencies pass through the tertiary winding that quencies pass through the tertiary winding that and the sound volume control to the grid of the and the sound volume control to the grid of the amplifier consists of two stages of amplification, a triode 1 st. stage coupled to a beam power output stage that drives the speaker.

2.02 R. F. Unit:

The incoming signals picked up by the antenna are applied to the tuned antenna circuit, L2A, L3, C4 and C2. This circuit passes the signal to which the tuner dial is set, and attenuates anf other signe input circuit is shunted by the choke inductance L1, which provides additional attenuation to AM Broadcast signals and acts as a high-pass, radio-frequency filter, o suppress broadcast band and other low-frequency, cross-modulation interference that may be encountered when the receiver is located in an extremely intense field of a loca AM Broadcast Station or other radiators.

The plate of the 6CB6 R.F. Amplifier V1, is coupled to the grid of the 12 AT 7 mixer section of V2A by means of the coupling capacitor C8.

The R.F. tuning assembly consists of three variable inductors mounted on a common shaft. conjunction with their associated capacities, tune and 217 mc ., while the third variable inductor circuit covers a range of approximately 77 mc . to 241 mc , and is used as the tuning circuit for the local oscilliator V2B.
lways separated by a fixed difference frequency of 4.5 megacycles that must be mainlained by the transmitting station in accord nce with FCC regulations, both I.F. signals hat appear at the grid of the video detector are separated exactly 4.5 megacycles. The video etector not only functions as a detector, but also as a mixer for the two I.F. signals. In the mixing process of the sound 1.F. Carrig with the video I.F. carrier, a 4.5 mc . beat sig nal is produced. This beat signal is frequency
modulated in unison with the sound I.F. carrier

The manner in which the 4.5 mc . beat sig al is obtained is comparable to the mixer

In place of a local oscillator, the incoming ideo I.F. carrier beats against the incoming sound I.F. carrier to produce the sum and difference frequencies at the output of the detector. As the sum frequency falls outside the lhe dillerence fred nly the difference frequency need be consid-
rcarrier" sound system used in this receiver differs from the "conventional type of television circuit where the video and spective intermediate frequencies in the mixer tube. The video and sound I.F. are usually divided into two separate I.F. channels of different frequencies, separated by 4.5 mc . after leaving the plate of the mixer tube or at implate of the 1st. 1.F. amplimer. As off the picture tube grid, traps must be inserted in the video I.F. and/or video amplifier circuits to absorb the sound frequency

In the "intercarrier" sound system the R.F. carriers are converted to their respective intermediate frequencies in the same video and sound I.F frequencies are not separated after leaving the mixer plate; instead they are amplified together in a common I.F. channel and ooth signals appear at the input to the video

The VHF oscillator utilizes the second riode section of 12AT7, V2B, in a modi fied Colpitts oscillator circuit. The feedbac voltage from the plate to the grid of the os cillator tube is obtained by means of the inter slectrode capacity of the vacuum tube. The the tap on the coil L2C which shovement of the coil. The oscillator circuit is factory aligned to track with the signal circuits locate in the grid and plate of the R.F. amplifier V1.

The oscillator output is coupled to the grid the mixer tube section (V2A) of 12AT7 by means of capacitor C12 and coupling coil L10

Both the incoming signal from the antenna and the local oscillator signal are fed into the grid of the mixer tube. The output of V2A has he video and sound incis. t includes both which are fed into the ductor L6. L7 couples L6 to L101. The secondary of the 1 st. I.F. inductor L101 is coupled o the grid of V101 through capacitor C101
A.G.C. voltage is applied to the gria of the R.F. amplifier tube V1, through R150 and the choke inductance L11. This voltage controls he gain of the tube and tends to keep the conrast constant when tuning to stations of vary ing signal intensity and to minimize fading in areas of low signal strength. It also tends to blocking on very strong signal

2.03 I. F. Amplifier

The I.F. amplifier consists of four stagge tuned stages using three 6AU6 and one 6AG5 or 6BC5 sharp cutoff high gain pentodes V101, Vo2, Vion and 104 . Biable iron core tuned onductance, which, with their respective tube apacities are resonated to the proper frequency. The 4 th and 5 th I.F. coils have a close coupled secondary winding over the primary o he coils. Interstage coupling is obtained by apacitors in the first three stages while the ourth stage and the 2 nd. detector are coupled directly to the secondaries. Stagger tuning o he I.F. system provides a simple means of securing a sufficiently broad pass-band to accept both the video and sound I.F. carrier the intercarrier sound system is receiver. Alignment or hix circuits to sel A.G.C voltage besides being applied to the R.F stage is also applied to the 1 st . and 2nd. I.F tages in order to maintain constant outpu nder varying signal intensity. To provide stabilizing degenerative feedback, the cathod resistors R102 and R109 of V101 and V102 ar unbypassed

© John F. Rider

The plate of the Vertical Output section V113B is coupled to the Vertical Output Auto transformer T105 that matches the impedanc pedance of the vertical output tube

The Vertical Linearity control R169 varie the cathode bias of the Vertical Output tube, so that the position of the applied sawtooth voltage is shifted along its operating characteristic The Vertical Linearity and Height controls hav a considerable amount of interaction and any change in adjustment of one may need to b accompanied by a change in the other
2.13 A. F. C. \& Horizontal Oscillator: (VII4)

Automatic frequency control (A.F.C.) of the horizontal sweep is obtained from the circuit composed of one portion of V114 (pins 4,5, and 6) and its associated components. He operatid is based on what may be descring pulse.

Satisfactory operation of this circuit deends upon the proper wave shape being formed to apply to the grid of the A.F.C. section of the tube.

The synchronizing pulse, appearing across the network R157 and C146 in the cathode of V112B, is attenuated by capacitors C147 and C162A and is applied to the grid of the A.F.C. section of the tube through capacitor C155. The wave form shown in Fig. 3(A) is obtained roction of V 114 , at the juction of R 181 and R182

(A)
Figure 3
(B)

This waveform has the advantage of a steep slope near the peak and a fast fall immediately following the peak, and therefore provides increased gating. It is fed to the and R204. The inductance L111 (delay coil) serves two purposes: (1) It blocks the sharp negative peak and dampens out the rings of the waveform in Fig. 3(A) resulting in the waveform shown in Fig. 3(B): and (2) It delays the arrival of this waveform to the A.F.C grid in order to center the action of its phase relationshipwith the synchronizing pulse, being so phased that a varying portion of the synchronizing pulse will fall atop the positive corner of this waveform while the remaining portitude of the combined wave being essenally constant the control voltage is a function of the width of the pulse atop the positive corner of this waveform. The combined wave which is coupled to the grid of the A.F.C portion of the tube is shown below for three different conditions of the phase relationship between the horizontal oscillator and the syn chronizing signal: (Fig. 4A) when most of the
sync pulse is atop the waveform: (Fig. 4B) hen one-half of the sync pulse is atop the pulse is down the slope
AFC TUBE
$\overline{\text { CUT }}=\mathbf{O F F}$

gure 4

The A.F.C. portion of V114 is biased nea cut-off by the D.C. component of the nscillator grid voltage applied through resistors R177 and Rif8. Its plate ive position of the sync pulse atop the peak of the waveform. The voltage developed across R181 by this average plate current is the confrol voltage injected from the cathode circuit V114 into the grid of the oscillator section f V114 through resistor R182, and thus main ains the phase of the oscillator with respect to he synchronizing signal within very close limits.

The cathode circuit is an integrating net work with the following properties: (1) a fas response as C157 is relatively small, and (2) a slow response as C156, R180 and R181 are pulse of current and also tends to prevent "hunting", while the latter maintains contro ver a longer period of time, and filters out disturbances of greater duration. The Hori zontal Hold Control in the plate circuit not only varies the plate voltage but also function. as a vernier speed control

Capacitor C162A (Horizontal Lock) is made adjustable, so that the grid voltage of the A.F.C. tube can be varied to suit the charact eristics of the individual tube, and thus n
ain the control range at a uniform level.
The second triode portion (pins 1,2 and 3) The Horizontal Oscillator Transformer T106 ses an adjustable powdered iron core, per mitting a certain amount of frequency adjust ment. The tertiary winding (terminals 5 and 6) of T106 shunted by the capacitor C159 and the damping resistor R184 tends to stabilize the horizontal frequency with relation to th line frequency ($15,750 \mathrm{cps}$). The second section of V114 not only functions as the blocking tube oscillator; but also as the discharge tube A sawtooth voltage is developed across C160, sawtooth voltage is then fed to the grid of the output tube V115 through the divider network C161 and C162B. The Horizontal Drive capac tor C162B is made variable to adjust the ampitude of the sawtooth voltage in order to obtain optimum performance from each individua horizontal amplifier tube

2.14 Horizontal Output, Damper \& High

Voltage Rectifier: (V115, V116 \& V117)
The purpose of the Horizontal Output tube V115 is to amplify the output of the Horizontal

Oscillator so that sufficient current of the roper wave form is available to excite the orizontal deflection coils in order to provide ing the return trace of the sweep, the current hich was flowing in the horizontal deflectio coil, reverses. The induced voltage pulse in he primary winding of the Horizontal Outpu Transformer T107 appears in the form of very sharn positive pulse. This pulse is inprimary winding and is rectified by the High poltage Rectifier V117. The rectified energ that is stored in the high voltage capacito C169 is used to accelerate the electron beam in the picture tube. The Damper tube V11 helps to provide a linear trace by damping out oscillations of the energy stored in the hori zontal deflection coil. It critically dampen the ringing in the horizontal deflection yok which occurs just at the end of the line retrac period. Part of the energy so absorbed b utilized to "'B"' supply in series with the volt eeding across C 168 by the Damper Tube V116.

2.15 Low Voltage Power Supply: (VI18)

The low voltage power supply of the tele The la we power supply of the tele wave rectifier with conventional filtering This power supply furnishes all the plate and scree voltages required by the tubes of the receiver The filter choke mounted on the speaker frame is in series with the B+ voltage. Therefore, the speaker plug must be connected in the socke on the chassis at all times. The focus col L113 is in series with the section of the power suply that delivers 350 volts to most of the circuits. The current drain of these circuit provides more than sufficient current for proper focus. Ture tube to precise focus by means of the Focus Control R201 which is in series with the parallel combination of R199 and R200. This series combination is shunted across the Focus Coil
Since several stages of the receiver re quire no more than half of the power supply output voltage for normal operation, thes tages are connected in a series-paralle combination (See Figure 5). Connected in thi manner, dropping resistors are eliminated esulyn in a Co eficient use of the power supply connections, the sound detector drive V109, the ratio detector and firct audio amp ifier V110, the audio output V111, and the sync clipper and sync output V112 are all connected in parallel.

The R.F. amplifier (V1), VHF oscillato and mixer (V2), the I.F. stages (V101, V102 V103 and V104) and Video amplifier (V106) are connected in parallel with the stabilizer circuit of V111 and get their plate supply from the cath odes of V109, V110, V111, and V112. Th vertical amplifier V113B is connected in par-

MODELS 11-4 41 MU , Ch. 320
eceives the full voltage of the power supply. Booster voltage from the cathode of the dampe lube V116, that is added to the power suppl voltage, furnishes the plate voltage for the parallel combination: VII3A the vertical os lhe A.F.C. and horizontal

3. ANTENNAS

3.01 Built-In Antenna

An antenna, that in some localities will liminate the need of an external TV antenna s built into the receiver. The built-in antenn lead that is coded with paint is the ground lead and is connected to the "cre" The built-in an ena serves both the low (channel 2 to 6) and he high (channel 7 to 13) television bands

For the high band, section " A " is the wave folded dipole resonating at 200 mc . Sec ion " B " is the lead-in and section "C, a the low band, A, B, and C resol 20 . 70 mc .

Figure 6. Schematic of Built-in Antenno
The antenna is mounted on a cardboard orm fastened in the cabinet. For proper op ration of the antenna, do not shorten or engthen the leads as this will change the re onating frequencies. The results obtained sing the built-in antenna are limited by th distance between the receiver and the mitter and the location and

Unless the signal transmitted by the tele ision station is of sufficient strength to reach he area where the receiver is located, No elevision receiver can reproduce the picture Due to the high frequencies used for television ransmission, the signals reach only to the "line of sight". This is determined by the height of the transmitting and receiving annnas. in addion, sleelfa the television sig ols als that dint an enna may not function satisfactorily.
In locations where it is impossible to ob ain satisfactory results with the built-in

antenna, due to shielding effects of buildings or mountains or if the receiver is located too far from the television station, it will be necessary to install an external indoor or outdoor antenna

3.02 External Anfenna:

A proper antenna installation is the most important factor in avoiding reflections in a picture, or a weak picture, although, in some localities where there are a number of stations operating, it may be impossible to eliminate all the proper type of antenna to be used in the the prificer typion install and adjust the antenna for the best picture quality.

This television receiver has been designed to operate from a 300 ohm parallel lead transmission line

3.03 Connecting External Antenna to Receiver:

1. Remove the two wires from the built-in antenna fastened to the two screws on the terminal board mounted on the rear apron of the chassis and fasten the leadin from the external antenna under these screws. Tape the loose ends of the wires from the built-in antenna, as noisy reception would result if these wires come in contact with the antenna terminal screws.
NOTE: If a co-axial transmission line is used, see that the shield of the co-axial cable

4. INSTALLATION

4.01 Unpacking:

The cabinet of this receiver is shipped in first class condition with considerable attention given to protecting the finish. Handle tion given to protecting the rinish. fandle
With Care. To remove the cabinet from the shipping container, turn the carton on its side and tear open the carton bottom flaps. Fold the flaps up along the side of the carton and turn the carton back up. Lift the carton up and off the cabinet. Tilt cabinet and carefully knock off the skid that is nailed to the bottom of the cabinet. Remove the screws in the cabine
back and swing back open. Check to see that all tubes are in place and firmly seated in their sockets. Check high voltage lead to see that it is connected to the CRT second anode connector socket on the bell of the tube. After inspection close cabinet back and reinsert and tighten he screws

4.02 Location of the Receiver:

The receiver should be located to permit viewing from the proper distance. For bes viewing from the proper distance. For bes served from a distance of five to ten feet. Locate the receiver where no bright light will fall directly on the picture. Care should be taken not to block the ventilating holes in the back or the bottom of the cabinet. The back of the cabinet should be kept at least two inches away from a wall or other obstructing surfaces.

5. OPERATING INSTRUCTIONS

The receiver is adjusted at the factory and is ready for operation after being connected to a 117 volt, 60 -cycle a.c. outlet. To set the receiver in operation, follow the procedur 5.01 Normal Operation

1. Turn the Off-On Contrast control knob half-way clockwise; this will turn the receiver "On". Wait one minute for the tubes to warm-up to the proper operating temperature.
2. Turn the Tuning control to the desired channel and move the dial slowly over his point until the best quality picture is obtained. The Contrast control might require slight adjustment.
3. Turn the Volume control to obtain the desired sound level. On some stations it may be necessary to make a sligh minimize noise in the sound.
4. Adjust Off-On-Contrast control for desired contrast.
5. To turn the receiver "Off", turn the Off-On-Contrast control completely main controls need Normally, only the rare intervals it may be necessary to adjust the Auxiliary Controls due to the normal ageing of the tubes and other components.

5.02 Auxiliary Control Adjustment:

. Turn the receiver "On" as described in paragraph " 1 " of "Normal Operation".
2. Adjust the Brightness control for moderate brightness, below the point where the raster size increases

NOTE: If normal brilliance is not obtained at this point it may be necessary to adjust the Ion trap on the neck of the picture tube. For Ion trap adjustment, see "Ion Trap Magnet Adjustment" in sec-
tion 6.01.
3. Turn the Brightness control counterclockwise until the raster just becomes invisible
4. Rotate the Tuning control to the desired channel and move the dial slowly over this point until the best quality picture ment of the Contrast control adjustthe proper contrast between the blacks and whites of the picture, or adjustment of the Focus control for greatest clarity of the lines in the center of the raster.
5. Adjust the Volume control to obtain the desired sound level. On some stations, readjustment of the Tuning control may be necessary to minimize the noise in the sound
6. If the picture rolls or jumps vertically urn Contrast control counter-clock he Vertical Hold control until adjust ure remains stationary. Then readjust Contrast control.
7. If the picture pulls to the right or tears adjust the Horizontal Hold control unt the picture remains stationary on the screen then set the control in the cente of the range in which it makes the picure stationary. This adjustment should also be made with the Contrast control
et to obtain a weak picture

6. SERVICE NOTES

All controls are adjustable without remov ing the chassis from the cabinet. The back of he cabinet must be opened for the Width and Horizontal Frequency adjustments that are on e top of the chassis.

WARNING

An A.C.interlock is provided at the rear o
the power is off. Bypassing the interlock in olves a shock hazard from the receiver hig power supply and the anode lead to the icture tube. Work on the receiver should no e attempted by anyone not tho roughly familia the precautions necessary when worki .

6.01 Adjustments \& Operating Check:

Remove the screws in the cabinet back and wing open the back. Connect an back ower cord with suitable socket to the inter ock receptacle on the rear of the receive chassis.
. ION TRAP MAGNET ADJUSTMENT - Whe making this adjustment do not exert pres sure on. the neck of the picture tube. Posion the lon trap for maximum brightness of the raster on the picture tube screen by at the same time lorward or backward and the neck of the tube Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the Focus control until the line structure of the raster is clearly visible. Readjust the Ion trap for maximum brilliance. The final setting should be made with the Brightness control set to maximum position with which good line focus can be maintained.
2. DEFLECTION YOKE ADJUSTMENT - Position the Deflection Yoke as far forward as the rible on the picture tube. If the lines of Deflection Yoke so as to make the top of the raster parallel with the top of the chassis, then tighten the yoke adjusting wing screw
3. FOCUS COIL ADJUSTMENT - The Focus Coil should be adjusted to be approximatel perpendicular to the picture tube axis with the front surface of the focus coil housing approximately $15 / 32$ from the rear sur face of the deflection and focus coil mounting bracket. Center The Picture by adjust ing the three Focus Coil mounting nuts. If Focus Con adjustment is made, the lo trap may need readjustment, see "Ion Trap
. HEIGHT AND WIDTH ADJUSTMENT - Pic ture size is adjusted to slighty overscan the mask both vertically and horizontally by the width adjustment on top of the chassis and the Height Control that is accessible through a hole in the front chassis apron
5. HORIZONTAL OSCILLATOR ADJUSTMENT - The Horizontal Oscillator may re-

MODELS 11-4म1MU,
$11-4 C 1: N U, 11-471 B T$
© John F. Rider
quire adjustment when installing the teleOSCILLATOR ALIGNMENT", Bulletin No. 412.
6. VERTICAL LINEARITY ADJUSTMENT The Vertical Linearity control has the effect of expanding the picture at an increasing rate from the bottom to the top of the picture. Adjustment of this control has the greatest effect on the top portion of the picture, some effect on the middle and very little effect on the bottom of the picture. The Height Control and Focus control may need readjustment as a result of the change
in position of the Vertical Linearity Control.

6.02 Horizontal Drive Adjustment:

The Horizontal Drive is a trimmer adjustment on the rear chassis apron. This Control should normally be all the way out (minimum capacity). In some receivers, a white vertical line may appear in the raster under this condition. If so, turn the trimmer screw in just Width Control may need adjusting to reduce or increase the horizontal size. increase the horizontal size

6.03 Horizontal Lock-in Adjustment:

See "HORIZONTAL OSCILLA TOR ALIGNMENT", Bulletin No. 412.

6.04 Removing Picture Tube Window:

The Picture Tube window may be removed from the cabinet by removing the four wood screws in the border of the window.

6.05 Cleaning Picture Tube Window:

See "Cleaning picture tube WINDOW', page 16
6.06 Removal of the Chassis from the Cabinet: (Be Sure Power is Disconnected)

1. Remove the (slip-on type) knobs from the front panel controls. Remove the metal pointer from the tuning control shaft.
2. Remove the screws in the cabinet back and swing open the back.
3. Remove the built-in antenna leads from the antenna terminal board screws.
4. Disconnect the speaker plug from the dhassis socket on the rear apron.
5. Remove the five hex head machine screws that secure the chassis in the cabinet. These are accessible from the bottom of the chassis shelf.
6. Slide the chassis from the cabinet.
7. To reinsert the television chassis in the cabinet, repeat steps 2 to 6 in reverse order, then proceed as follows:
(a) Replace the large and small knobs o the Volume Control and Off-On-Conrast control shafts
(b) Turn the tuning control completely clockwise to stop.
(c) Push on the metal pointer over knurled portion of shaft so that the pointer is lined-up with the calibration mark of channel 13.
(d) Push the dual knob on the Tuning control shaft.
(e) Place the receiver in operation and tune in a station on a known channel. If the pointer is slightly to one side of the calibration mark, reset the pointer to the correct position.
6.07 Removal and Replacement of the Picture Tube:
HANDLING PRECAUTIONS - Do not remove or handle the picture tube in any manner unless heavy gloves and protective goggles are worn KEEP THE TUBE AWAY FROM THE BODY WHILE HANDLING
8. Remove the television chassis from the cabinet as outlined above.
9. Disconnect the tube socket and high voltage anode lead from the picture tube. Remove the Ion Trap from the neck of the tube.
10. Remove the corrugated paper around the neck of the picture tube within the focus coil.
11. Loosen the Phillips head screw on the picture tube strap, near the top of the tube, sufficiently to unhook the strap from the chassis.
12. Grasp the picture tube firmly with both hands along the outer edge and gently slide it out of the focus and deflection coils.

CAUTION NEVER GRASP THE PIC TURE TUBE BY ITS NECK OR ALLOW PRESSURE TO BE EXERTED ON THE NECK.
6. Place the picture tube face down, on a flat surface covered by a clean cloth, in a location where it will not be disturbed.
7. When the picture tube is ready to be replaced in the receiver chassis, slide the picture tube gently back into the deflection coils and focus coil until the center of its face surface extends $1-3 / 32^{\prime \prime}$ beyond the front edge of the chassis and rotated so that the anode cap is 45° counter-clockwise from top when viewed from the front of the chassis.
8. Bottom of tube should rest on the rubber strips on the two angle brackets on the front of the chassis. Also, see that the coil. This centering must be accomplished by proper seating of the front part of the picture tube. DO NOT ALLOW PRESSURE TO BE EXERTED ON THE NECK OF THE TUBE. Fasten the picture tube strap.
9. Slide the deflection coil bracket forward as far as possible until the rubber cushion fits snugly against the flare of the picture tube and the two grounding springs make that the deflection coils are positioned firmly against the flare of the tube.
10. Replace the corrugated paper around the neck of the picture tube
11. Replace the Ion Trap
12. Connect the anode (high voltage) lead to tube.
13. Connect the tube socket to bace of tube.
6.08 Removal and Replacement of the R. F. Unit:

1. Remove the two screws that hold the antenna suard to the rear chassis apron and unhook shielded antenna leads from clamps on the bottom of the side chassis apron.
2. Unsolder - (a) blue lead to the lug on L101 (b) the ground strap from the the ground strap from the
tuner to the chassis next to L101
(c) the red, brown and black leads from the tuner.

DO NOT CUT THE LEADS: KEEP THEM FULL LENGTH. Record the color coding of the wires and the terminals from which the wires were removed
3. Remove the three hex head screws that fasten the R.F. Unit to the front chassis fasten the R.F. Unit to the front chassis the bottom of the chassis.
4. To remove and replace Gear, Sleeve Assembly and Bracket: -
(a) Remove the "C" washer that holds the gear sleeve to the tuner shaft.
(0) Remove the gear sleeve and the two spring washers behind the gear.
(c) To remove the gear on the bracket, remove the " C ", washer and slide off the gear and the washer behind the gear.
(d) To remove the bracket, remove the two hex head self tapping screws on the front of the tuner.
(e) To replace Gear Sleeve Assembly and Bracket, reverse the removal proced-
ure in steps (a), (b), (c), and (d). Be sure the gears are firmly meshed, but loose enough to prevent linding. This adjustment is made by the hex head of the and lock-nut on the ofr adjusting, tighten locknut.
5. To install the new R.F. TUNER UNIT, reerse steps "1" to "3". Replacement of R.F Unit may also require a slight readjus.
6.09 Critical Lead Dress R. F. Unif:

1. The Blue lead from the tuner to L101 should pass between the tuner ground strap and main chassis
2. The Red and the Black-Yellow lead from the tuner should be dressed around the lance in the main chassis and then doubled strip terminal board
3. The Brown tuner lead should be dressed close to main chassis and directly to terminal socket.

6.10 Test Equipment:

Equipment Nooded

 Cathode-Ray Oscllloscovoltage Calibrato

Electronic Voltmeter

R.F. Sweep Generator
 R.F. Swep Gene or Wobbulator

 thode-RayRequired Charocteristics Very high input impedance. have excellent signequency 10 cycles to at least two capable of passing a 60
cycle square wave without apple square wave wirnour Must not compress inpur
sifnal until a reasunably signal until a reasunably
sized wave form appears. sized wave
Wide rang
ator. ator.
Suitable Suitable for calibrating the
amplitude of the wave amplitude of the wave
shapes on the " Y " axis. of the oscilloscope.
Very high input impedance
for d.c. voltage measureyor d.c. voltage measure
ments. Having at least one megohm of d.c. resist-
ance on the 3 volt scale.

Frequency range 20 to 250
megacycles, sweep width megacycles, sweep width
$10-12$ megacycles (adjust-

 Luency yariable over the
complete television spect rum of channels $2-13$. Out-
put impedance
en

ms
© John F. Rider

High frequency signal genraency range $40-250$ frerequency calibrations relable to better han 100 KC
ttenuator should be adustable and very accurate
modulation up to 30%.

Same as in " A ".
For connecting scope to For connecting scope to
circuits ahead of second
det circuctor. .See Fir. 7
dechematic diagram. schematic diagram). Made of $1 / 4^{\text {fiber }}$ rod
having screwdriver ends.
Non-Capacitive Screwdriver

Figure 7 Probe Detector

6.11 Possible Failure

NOTE: The following fallures and possible
solutions will ald the serviceman to locate and remedy the trouble.

Tubes should be changed first and if this
will not remedy the trouble, check voltages

1. DEAD RECEIVER
a. A.C. interlock not making connection
b. Power cord broken, check cord at
C. Power switch SW 101 contacts open

Primary winding of T108 open
2. NO RASTER OR SOUND BUT TUBES LIGHT UP:
a. $\mathrm{D} \boldsymbol{w}$ voltage rectifier tube VII8.
. Speaker plug disconnected
. Open choke L115.
3. Picture but no sound: a. Sound Det. Uriver tube (Vi09) c. Defective Speaker voice coil.
d. Receiver not tuned properly
e. T103 or T142 defective.
4. NO RASTER WITH SOUND PRESENT: a. Ion trap magnet not set properly.
b. No high voltage cuased by 1 B 3 GT rec No high voltage cuased by 183 GT rec
tifier, T107 Horizontal output trans former, V114, v115 or V116. d. Defective Picture tube.

5. NO PICTURE OR SOUND WITH RASTER

 PRESENT:I.F. tubes
a. I.F. tubes V101, V102, V103 or V104.

2nd. detector tube V105 or Video amp
c. R.F. Unit.
d. Antenna Lead-in
. No Vertical deflection
a. Open Vert. Osc. Transformer T104.
. Vertical Output Translormer T105 ope
e. V113 tube defective or burnt out.
i. C153 open.
g. C152 shorted or R166 open
g. C152 shorted or R160
7. NO HORIZONTAL DEFLECTI
a. Tubes V114, V115 or V118.
b. Fuse F101 burnt out (Replace with same
type and value).
Horizontal B.T.O. Transformer
c. Horizontal B.T.O. Transiorm
d. Open deflection coll L112B.
8. SOUND BARS OR GRAIN IN PICTURE
a. Station not "tuned-In", properly.

Sound ted properly rans. T102 primary not
Microphonic tubes. (V2, V101, V102 V103 or V104)
d. Oscillation in I.F. system due to lead
dress or open by-pass capacitor
e. R.F. or I.F. not aligned properly,
9. signal but no vertical sync:
a. Defective vertical oscillator Trans. T104
b. V113 tube.
c. Resistors R158, R159, or R160 open.
c. Resistors R158, R159, or R160 open.
d. Vertical Hold Control R162 arm not mak

Ing good contact.
e. Capacitors C148, C149 or C150 defective
10. Signal but no horizontal sync:
a. Tube V114.
b. C162A Plates grounded.
c. Capacitors C147 or C155 open
d. L111 or R204 open.
e. Horizontal frequency adjustment of T10 or Horizontal lock trimmer not proper ly adjusted.
f. Horizontal. Hold control R175 or re
sistor R174 open.
11. Signal but no vert. or horiz. Sync: a. Tubes V107 or V112
b. C144 or C14.
c. R155 open.
12. SHADOWS IN CORNERS OF PICTURE a. Ion trap magnet adjustment
b. Misadjusted Focus Coil.
13. "SNOW' IN PICTURE:
"SNOW" IN PLC Thece:
a. Weak signal chek antenna
b. Noisy tube $V 2$ in R.F. Unit.
b. Noisy lube V2 in R.F. Unit c. Corona discharge from High Voltage
power suply due to improper lead power
dress.
14. SMALL PICTURE:
a. Low line voltage
a. Howizontal Dritage trimmer not properly
adjusted.
c. Width Indu
c. Width Inductance L110 shorted.
d. V116 tube.
15. PICTURE WITH VERTICAL LINES: and horizontal non-LINEARITY
16. White vertical bar in center of PICTURE:
a. Horizontal Drive Trimmer not adjusted properly (, (See, "
justment", 6.02).

6.12 Critical Lead Dress:

CIRCUIT OR LEAD

R.F. TUNING UNIT:
. Blue lead from tuner to L101 should pass between tuner ground strap and mat
2. The Red and Black-Yellow lead from the tuner should be dressed a round the doubled back to remove all slack irom ance to I.F. strip terminal board.
The Brown Tuner lead should b dressed close to main chassis and dictly to terminal socket.
I.F. STRIP:

All leads running parallel to the I.F. strip should be dressed away from the
strip as far as possible, and down to chassis.
5. Picture tube grid coupling capacitor and dressed away from the chassis.

DISC CAPACITORS:
6. All composition disc type capacitors
wherever used should be wired with leads as short as possible
peaking coils:
7. All peaking coils should be wired with short leads. Note connections before removing: when replacing, connect in
the same manner.

NEUTRALIZING CAPACITOR C126:
The variable capacitor (transmiss line) C126, should be dressed away
lation
RATIO DET. TRANS. TIO2.
9. The 22 ohm resistor. R143 and the 27

K ohm resistor. R144, connected terminal " B " of T102, the ratio detector transformer, should be wired
with short leads, as should be the 1000 with short leads, as
mmf . capacitor C 133 .
output tube vill:
10. The Blue lead going from pin 3 of the 6V6GT Audio Output tube. V111 to lug 5 of the speaker socket 5101 , should be reasonably free of slack so as to stand
CONTRAST CONTROI.:
11. The White lead from the 22 ohm resistor. R121 on pin 7 of the 6AU6 Video
Amplifier. V106, socket to the contras control. should passunder other wiring and be dressed close to the chassis. The end going to the contrast control should be dressed against the shield away from the audio coupling capac
itors. C138 and C139, on the Volume Control.
vertical integrator:
12. In receivers using separate compon ents in the integrator circuit. capac-
itors C $148, .002 \mathrm{mid} .0600 \mathrm{~V}: \mathrm{C} 149$.005 mfd .600 v : C $150, .005 \mathrm{mfd} .600 \mathrm{~V}$
VERTICAL CIRCUIT:
RTICAL CIRCUIT:
All leads that cross (vertical circuit)
terminal board next to the should be dressed to lay directly over the terminal board mounting foot in
order to assure clearance in mounting order to assure clearance in mountin
shield.
14. The Red and the Red-Black lead in the vertical circuit should be placed unde
the .0047 mdd capacitor lead and deve the terminal board mounting foot. then dressed away from main chassis and
HORIZONTAL OUTPUT:
15. The fiberglass tubing on the 6 BQ 6 GT V115, plate cap lead should be placed inte way up on the lead toward th
16. The 6BQ6 GT, V115, grid lead to the Horizontal Drive trimmer should be ressed away from the chassis. short DEFLECTION YOKE:
. Knots in deflection yoke leads should be loose enough to use up slack and
keep leads under yoke bracket away high voltage:
18. The plate cap lead and the filamen eads of the 1B3 GT tube, V117, should be dressed to assure maximum clear ance between them.
goltage compartment
. Each lead leaving the H.V. compartwith no overlappressed to the chassis with no overlapping of leads to insure
clearance when the H.V. shield is placed in position. H.V. shield is

NODE LEAD:

20. Force anode lead through slot in anode support (W-149322) before doubling over. Do not crease anode support. rhis will secure the a node lead.

6.13 Alignment and Adjustment Notes:

. The sound I.F. and video I.F. carriers of megacycles rese 21.9 megacycles and 26.4 quency 4.5 mc .
. When the television receiver is repaired or aligned, always turn the chassis on its side with I.F. Strip and R.F. Tuning unit up and to prevent the tube from resting on the bench.
3. Never disconnect the speaker while the power is on as the filter choke mounted on the speaker is in the B. circuit.
4. If the television receiver must be operated with the picture tube removed from the
chassis. tape or cover the exposed end of the high voltage anode lead
5. All lead connections from the signal generator and wobbulator must be shielded.
Keep the exposed ends and ground leads as short as possible (about one inch).
6. Always locate the ground lead connections as close as possible to their respective

hot "hot"

The wobbulator, signal generator output and contrast control must be kept low enough to prevent over loading the tele-

The alignment procedure must be followed in the order shown in Bulletin No. 412.

TUBE COMPLEMENT
MODELS 11-441MU,

Symbol	Tube Type	Function	Symbol	Tube Type	Function
11 $V 9$ $V 1010$ $V 102$ $V 103$ $V 104$ $V 105$ $V 106$ $V 107$ $V 108$	6CB6 12AT7 6AU6 6A ${ }^{-1} 6$ 6 AG 5 or 6 BC 5 6AL5 ${ }^{6 A 16} 12$ Al' $^{6}$ 12LP4A	R. F. Amplifier V. H. F. Oscillator \& Mixer 1st. I. F. Amplifier 3rd. I. F. Amplifier 4th. I. F. Amplifier 2nd. Detector \& A. G. C. Delay Tideo Amplifier A. G. C. Ampl Picture Tube	V 109 V 110 V 111 V 112 V 113 V 114 V 115 V 116 V 117 V 118	6AU6 6V6GT 6SLTGT 6 SN 7 GT ${ }_{6}^{6 S N G 6 T}$ 6 W 4 GT ${ }^{183}$ U4GT	Sound Det. Driver Sound Det. \& 1st Audio Ampl. Audio Output Sync Clipper \& Sync Output A. F. C. \& Horiz. Ampl. Horizontal Output Horizontal Damper H. V. Rectifier L. V. Rectifier

SOCKET VOLTAGE TABLE
The following voltages are measured with an electronic voltmeter from socket lugs to ground (chassis) while the set is operating
117 volt, 60 cycle A.C. current. Controls are set to obtain a normal picture with +10 volts D. C. on grid (Pin 2) of the picture on a 117 volt, 60 cycle A. .C. current. Controls are set to obtain
tube. Some A. C. voltages measured between socket lugs as noted.

Voltages may vary depending upon the setting of the various controls.

Symbol	Tube Type	Pin I	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9
V1	$6 \mathrm{CB6}$	${ }^{-0} 1$	09	Gnd.	${ }^{6} 63$	120	115	Gnd.		
$\stackrel{V}{V 101}$	${ }_{6 \text { AU'6 }} 12 \mathrm{ATT}$	140 -3.6	Gnd.	${ }_{* 63}{ }^{\text {and }}$	Gnd.	${ }_{142}$	110 142	$<_{0}^{-5}$	Gnd.	*6.3
$\stackrel{102}{ }$	$6 \mathrm{AL}^{\text {6 }}$	-36	Gnd.	${ }^{6} 63$	Gnd.	138	138	<0.1		
$\checkmark 103$	6AU6 ${ }^{\text {6 }}$	0	Gnd.	${ }^{6} 6$	${ }_{6}$ Gnd.	${ }^{135}$	135	1.1		
V104		${ }_{\text {Gnd }}^{0}$	$\begin{array}{r}1.1 \\ -3.6 \\ \hline\end{array}$	${ }_{*}^{\text {Gnd }}$,	$\stackrel{*}{6.3}$	135 $4-0.7$	- 135	${ }_{-1.1}^{1.7}$		
${ }^{\text {V106 }}$	6 6AL6	Gnd.	${ }_{\text {Gnd. }}$	${ }^{6} 6.3$	Gnd.	- 115	${ }^{125}$	1.9		
V107	$12 \mathrm{Al7}$	74	Gnd.	21	${ }^{\text {© } 6.3}$	*6. ${ }^{6}$	- ${ }^{-20}$	${ }_{\text {- }}-1.7$	2.5	Gnd.
V108	12LP4A	Gnd.	10				${ }_{220}^{(\text {Pin } 10)}$	${ }_{\left(P_{40} 0^{11}\right)}$	$\left.{ }_{* 6.3}^{(\operatorname{Pin}}{ }^{12}\right)$	
V109	6AU6	150	150	3 to	4 to 3	200	200	150		
V110	$6 \mathrm{T8}$	140	135	140	4 to 5	5 to 4	150	150	98	235
V111	6V6GT	N. C.	2 to 7	320	330	135	N. C.	7 to 2	150	\ldots
V112	6SLīGT	130	6.3 300	150	120	345	150	7 to 8	8 to 7	
	6SN7GT							${ }^{6} 6.3$	Gnd.	
V114	${ }^{6 S N T G T}$	${ }_{-95}$	245	Gnd.	-11	185		${ }^{6} 63$	Gnd.	
V116	6BQ6GT 6 W 4 GT	N. C C.	*. W .3 J.		150 N.	-25	W. J.	Gnd. 7 to 8	Gnd.	
								${ }_{* 6} 3$	${ }_{* 6.3}$	
$\begin{aligned} & \text { V117 } \\ & \text { V118 } \end{aligned}$	$\begin{aligned} & 1 \mathrm{BSGG} \\ & 5 \mathrm{U} 4 \mathrm{G} \end{aligned}$	N. C.	375	W. J.	*380	N. C.	*380	N. C.	375	

All voltages plus volts unless otherwise noted.

The following symbols denote:
$\dot{*}=$ A. C. voltage
N. C. $=$ No connection
W. J. $=$ Wiring junction
I.F. ALIGNMFNT:

$$
\begin{aligned}
& <=\text { less than } \\
& =\text { A.C.C. volt }
\end{aligned}
$$

ALIGNMENT PROCEDURE

1. Connect a short clip lead from B- (-4 volts; white wire on C171) to the A.G.C. lead (orange wire) of the I.F. stages on the terminal board mounted to the I.F. strip close to L102.
2. Connect an electronic voltmeter across the 2nd Detector load resistor R117.
3. Set tuner near low frequency end of range, approximately 4 to 5 turns clockwise, at a point where there are no spurious responses.
4. Connect signal generator to the antenna terminals of the receiver (ground lead of generator to ground terminal of antenna terminal board). If when connected in this manner the signal from the generator is not of sufficient strength for indication on the electronic voltmeter, connect "hot"' lead of signal gener-
5. Set signal generator to 24 mc . and adjust L 105 for maximum meter deflection, limiting meter deflection to 2 volts d.c. by adjusting input attenuator.
6. Reset signal generator to 22.2 mc . and tune L104 in a similar manner.
7. Next set signal generator to 26.55 mc . and tune L103.
8. Reset signal generator to 22.9 mc . and tune L102.
9. If signal generator was connected to the junction of L101 and C101 for steps $5,6,7$, and 8 , remove the generator from this point and connect the signal generator to antenna terminals. Set generator to 25.5 mc .
10. Set tuner near low frequency end of range approximately 4 to 5 turns clockwise at a point where there are no spurious responses.
11. Adjust L101 for maximum meter deflection.
12. Disconnect signal generator and electronic voltmeter
13. To check alignment on oscilloscope:
(a) Connect the oscilloscope across the detector load resistor R117.
(b) Connect sweep signal generator to antenna terminals. Set the generator to sweep from 20 mc . to 30 mc . peak to peak signal on the scope,
(c) Connect marker generator to sweep generator output leads and adjust to provide markers at $21.9 \mathrm{mc} ., 22.9 \mathrm{mc}$ 24 mc ., 25.5 mc , and 26.4 mc .
(d) Observe curve and position of markers (See response curve). 21.9 mc . should be approximately 70% down from the down.

14. Disconnect generators, scope and the clip lead from B- to the A.G.C. terminal SOUND ALIGNMENT:
15. Connect "hot" lead of signal generator to grid (pin \#1) of V106. Set signal generator to 4.5 mc . with 400 cps. amplitude modulated 30% or greater.
16. Connect scope to picture tube grid (pin \#2) through a detector probe,
17. Connect two 100 K ohm resistors (matched within 1%) in series across R142. Connect common lead of the electronic voltmeter to junction of the matched 100 K ohm resistors and to D. C. lead to the +150 vol

Using a high ievel sigal idit with 1 or
4. Using a maximum, tune the sound take-off trans former (T101) primary adjustment (bottom of chassis) for minimum deflection on the scope.
5. Reduce signal input to below limiting in V109 and adjust sound take-off transformer (T101) secondary (top Reduce signal input to below limiting in V109 and adjust sound take-off transformer (T101) secondary
6. Repeat steps 4 and 5 .
7. Transfer D. C. lead only of the electronic voltmeter to junction of R144 and C137
8. Return to high level input, for limiting in V109 and adjust ratio detector transformer (T102) secondary (bottom of chassis) for zero meter reading
9. Remove the two 100 K ohm resistors, and all test equipment from the receiver.
A.G.C. NEUTRALIZING CAPACITOR ADJUSTMENT:

Adjust C126 (loop of transmission line under chassis) to neutralize amplifier by changing spacing in center of leads. Adjust with no signal input to the receiver. Remove one of the I.F. tubes from the receiver and set the Contrast control completely counter-clockwise. Neutralization is accomplished when no change in the A.G.C. amplifier D.C. output voltage is noticed (measured between cathode and ground) while an 0.1 mfd . capacitor is intermittently connected between the A.G.C. amplifier grid and ground.
HORIZONTAL OSCILLATOR ALIGNMENT:

1. Tune receiver to a television signal and adjust contrast control for normal picture, below limiting in the video a mplifier (V106).
2. Repeat steps $5,6,7$ and 8 .

OJohn F. Rider

3. Connect scupe to terminal H_{5} of the horizontal blocking osciliator transformer ($T 106$) with a 10 mmf . capacitor in series and adjust the horizontal BTO trap (bottom of T106) for the following wave form: keeping

djust so that the peak of pulse is equal or 10% higher than peak of sine wave.
4. Turn the horizontal hold control fully clockwise. Adjust the horizontal frequency control (top of T106) by turning out until the raster is just out of sync, and then turning the frequency control in slowly until the raster is just ready to fall into sync (indicated by a wide black vertical or diagonal horizontal blanking bar)

5. Turn the horizontal hold control fully counter-clockwise. Picture should normally be in sync. Remove the signal by tuning off the station, then retune to the signal. If more than seven bars are present, adJust the Horizontal Lock trimmer slightly counter-clockwise, until five to seven bars appear before the picture falls into sync when the Horizontal Hold control is set in the extreme counter-clockwise position. effects the horizontal frequency, the adjustments of both the horizontal frequency control and the lock-in trimer must be repeated until the conditions outlined above, in steps 4 and 5 . exist simultaneously at the extreme positions of the Horizontal Hold Control. Check pull-in range. Pull-in range should he 120° inimum and 220° maximum.
6. The final setting of the Horizontal Hold control should be made with a very weak picture Rotate the dial on and off the station, and set the Horizuntal Hold control so that the picture returns completely in sync

Chassis Bottom View Showing Tube Socket and Alignment Locotions

QJohn F. Rider

SOCKET VOLTAGE TABLE

The following voltages are measured with an electronic voltmeter from socket lugs to ground (chassis) while the set is operating The following voltages are measured with an electronic voltmeter from socket lugs to ground (chassis) while the set is operating
on a 117 volt, 00 cycle A. C. current. Controls are set to obtain a normal picture with +15 volts D. C. on grid (Pin 2) of the picture
tube. Some A. C. voltages measured between socket lugs as noted. Voltages may vary depending upon the setting of the various controls.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Symbol \& Tube Type \& Pin 1 \& Pin 2 \& Pin 3 \& Pin 4 \& Pin 5 \& Pin 6 \& Pin 7 \& Pin 8 \& Pin 9

\hline V1 \& ${ }^{6 C B 6}$ \& -0.1 \& 0.9 \& Gnd. \& *6.3 \& 120 \& 115 \& Gnd. \& \&

\hline ${ }_{\text {V101 }}$ \& 12AT7 \& 140 \& -2.7 \& Gnd. \& Gnd. \& Gnd. \& 110 \& -5 \& Gnd. \& ${ }^{6} 6$

\hline V101 \& 6AU6 \& -3.2
-3.2 \& Gnd. \& $* 63$
$* 63$ \& Gnd. \& 140 \& 140 \& $<_{0-2}$ \& \&

\hline V103 \& 6AU6 \& ${ }_{0}$ \& Gnd. \& ${ }_{*}{ }^{6}$ \& Gnd. \& 135 \& 145 \& $\bigcirc 0.9$ \& \&

\hline V104 \& 6AG5 or 6BC5 \& 0 \& N. C. \& Gnd. \& *6.3 \& 135 \& 135 \& 0.8 \& \&

\hline V105 \& 6AL5 \& Gnd. \& -4.8 \& ${ }^{*} 63$ \& Gnd. \& $\triangle 2.3$ \& Gnd. \& - -2.4 \& \&

\hline V106 \& 6AH6 \& 42.3 \& Gnd. \& *6.3 \& Gnd. \& 220 \& 240 \& 2.2 \& \&

\hline V107 \& 12AU7 \& 6.5 \& Gnd. \& 16 \& *6.3 \& *6.3 \& N. C. \& \pm ¢ 3 \& 4.8 \& Gnd.

\hline V108 \& 17BP4 \& Gnd. \& 15 \& \& \& \& ${ }_{(\text {Pin }}^{350}$ 10) \& ${ }_{(\text {Pin }}^{45}$ (1) \& ${ }_{\left(P_{* 6.3}\right.}^{\text {Pin }}$) \& Anode 12.3 KV

\hline V109 \& 6 6U6 \& , \& Gnd. \& \& Gnd. \& 54 \& 58 \& 1 \& \&

\hline V110 \& ${ }_{6}^{678}$ \& -5.2 \& -7.6 \& -5.2 \& Gnd. \& * 63 \& \& \& \& 110

\hline V111 \& 6V6GT \& N. C. \& \[
\begin{array}{r}
2 to 7

* 6.3
\end{array}

\] \& 350 \& 360 \& 135 \& W. J. \& \[

$$
\begin{array}{r}
7 \text { to } 2 \\
* 6.3
\end{array}
$$
\] \& 175 \&

\hline V112 \& 6AU6 \& -2.2 \& Gnd. \& *6.3 \& Gnd. \& -42 \& 130 \& 4.8 \& \&

\hline V113 \& 6SL7GT \& 120 \& 320 \& 155 \& 100 \& 420 \& 160 \& 7 to. 8

$* 6.3$ \& $$
{ }^{8 t 0.0} 7
$$ \&

\hline V114 \& ${ }_{6}^{60} 4$ \& N. C. \& N. C. \& *6.3 \& Gnd. \& 160 \& -36 \& Gnd. \& \&

\hline V115 \& ${ }^{6 \mathrm{CV} 6 \mathrm{GT}}$ 6STGT \& ${ }_{-80}^{\mathrm{N} . \mathrm{C}}$ \& $* 6.3$

270 \& G60 \& - $\begin{gathered}360 \\ -25\end{gathered}$ \& 0.1 \& W. J. \& Gnd. \& 33 \&

\hline V117 \& 6B26GT \& N. C. \& *6.3 \& G. C . \& -25
120 \& -19 \& W. J. \& ${ }^{\text {G } 6 .} 3$. \& Gnd. \&

\hline V118 \& ${ }^{68 \mathrm{BQ}} \mathrm{BGT}^{\text {a }}$ \& N. C. \& *6.3 \& W. J. \& 120 \& -19 \& W. J. \& Gnd. \& Gnd. \&

\hline V120 \& 6 W 4 GT \& N. C. \& w. J. \& 515 \& N. C. \& 350 \& N. C. \& 7 to 8 \& 7 to 8 \&

\hline V121

V122 \& $$
\begin{aligned}
& 5 \mathrm{U} 4 \mathrm{G} \\
& 5 \mathrm{U} 4 \mathrm{G}
\end{aligned}
$$ \& N. C. \& \[

$$
\begin{aligned}
& 400 \\
& 400
\end{aligned}
$$

\] \& W. J. \& \[

{ }_{*}^{* 360}

\] \& \[

$$
\begin{aligned}
& \text { N. C. } \\
& \text { N. C. }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& * 360 \\
& * 360
\end{aligned}
$$
\] \& W. ${ }_{\text {* }}^{\text {W. J. }}$. ${ }^{3}$. \& $* 6.3$

400
400 \&

\hline
\end{tabular}

> All voltages plus volts unless otherwise noted.
> The following symbols denote:

$$
\begin{array}{ll}
*=\text { A. C. voltage } & <=\text { less than } \\
\text { N. C. }=\text { No connection } & \text { =A.G.C. voltage (variable with signal strength) } \\
\text { W. J. }=\text { Wiring junction } &
\end{array}
$$ Note: Models $11-444 \mathrm{MU}$ and $11-474 \mathrm{BU}$ are equipped with a Radio-Yhone Unit (Radio chasgis 332-Phone Unit V-950).

For service information and parts lists refer to Radio Bulletin No. 418 and Record Changer Bulletin No. 408.
adJustments

1. The cathode ray tube should be located so that the center its face is $6-1 / 2$ inches above the chassis surface with the
anode connector on the left when viewed from the front of the anode connector on the left when viewed from the front of th
2. I. F. Alignment (See I. F. Alignment).
3. The DEFLECTION YOKE is positioned as far forward as possible on the cathode ray tube and rotated so as to make
the top and bottom of the raster parallel with the top of the chassis.
4. The FOCUS COIL should be adjusted to be approximatelv per pendicular to the cathode ray tube axis with the front surface rear surface of the deflection and focus coil mounting bracket.
5. The ION TRAP is positioned for maximum brightness, with
low tu meduum serting of the Brightness Control low to medium serting of the Brightness Control. and for no
6. Center the picture by adjusting the three FOCUS coll mount ing nuts.

Adjust size of picture to fill screen (as viewed from face of CRT) by the HEIGHT CONTROL, HORIzONTAL DRIVE, and WIDTH CONTROL.
8. horizontal hold adjustment (See Horiz. Blocking Osc. Alignment).
9. HORIZONTAL HOLD CONTROL is adjusted with a weak picture to center of pull-in range.
10. VERTICAL HOLD CONTROL is alsc adjusted with a weak
picture to center of pull-in range.
11. Vertical linearity is adjusted br the VErTICAL LINEARITY ONTROL and the adjusted by the HORIZONTAL LINEARITY AND KIDTH ad-
12. The FOCUS CONTROL is adjusted for best focus of the vertical and horizontal wedges at center of test pattern. If there
is anvastigmatism, the focus should be set to favor the vertical wedge. If corner focus is poor, check position of DE-

1. To check I. F. alignment on oscilloscope
a. Connect a short clip lead from B-(-6.3 volts, white wire on C141) on the AGC terminal (orange lead) on the terminal board mounted on the I. F. strip close to L102
b. Connect high side of scope to the bare lead on pin 1 of the
Video Amplitier V106, and the low side to ground (chassis).
c. Connect sweep signal generator to the grid (pin 2) of the Mixer tube V2 (see tillustration below) making sure that the leads are as short and direct as possible. connecting ground terminal of generator to the tube shield and the
"hot" terminal through a 5 mmf. capacitor to the grid pin.

d. Set generator to sweep from 20 mc . to 30 mc . and adjus output to provide a 2 volt peak to peak slgnal on the scope.
e. Set tuner near the low frequencv end of the range approx no spurious responses.
2. Connect marker generator to sweep generator output leads and adjust to provide markers at $21.9 \mathrm{mc}, 22.8 \mathrm{mc}, 24 \mathrm{mc}$ 25.5 mc , and 26.4 mc .
g. Observe curve and position of markers (see nominal res ponse curve in column two), 21.9 mc . should be approxi-
mately 70% down from the peak and 26.4 approximatelv 43% down. Slight deviation in shape from the nominal is noted it will be necessary to realign the I. F. Amplifier NOTE: The response curve mav be distorted unless care is used in the method of connection to prevent feedbac and regeneration

h. Disconnect the generators, scope and the clip lead from B- to AGC terminal.
3. Connect a short clip lead from B-(-6.3 volts, white wire on mounted on the I. F. strip close to L102
4. Connect an electronic voltmeter across the 2nd Detector load resistor R117.
5. Connect signal generator as in (c) of "I. F. Alignment Check."
6. Set tuner near low frequency end of range approxim atelv 4 to 5 turns clockwise at a point where there are no spurious res-
7. Set signal generator to 24 mc . and adjust L105 for maximum meter deflection, limiting meter deflection to 2 volts d.c. by adjusting input attenuator
8. Reset signal generator to 22.2 mc . and tune L 104 , in a similar manner.
9. Next set signal generator to 26.55 mc . and tune L103 for maximum meter deflection.
10. Reset signal generator to 22.9 mc . and tune L102
11. Set signal generator to 25.5 mc . and tune L101 for maximum
12. Repeat steps $6,7,8,9$, and 10 .
13. Discornect signal generator, electronic voltmeter and clip MODELS $11-442 M 1 U, ~ 11-444 \mathrm{MU}, 11-453 \mathrm{MU}$ $11-460 \mathrm{MU}, 11-470 \mathrm{BU}, 11-472 \mathrm{BlU}, 11 m$ $474 \mathrm{BU}, 11-483 \mathrm{BU}, \mathrm{Ch} .331$

Sound Take-off Transformer (T101) Secondary (Top of Chassis), and the Ratio Detector Transformer (T102) pri-
Connect "hot" lead of signal generator to grid (pin \#1) of V106
Set signal generator to 4.5 mc. with 400 cps. amplitude modu Set signal generator to 4.5 mc . with 400
lated signal modulated 30% or greater.
2. Connect scope to picture tube grid (pin *2) through detector probe.
3. Connect two 100 K ohm resistors (matched to within 1) in
series across ratio detector load resistor R143 (pin 2 of series across ratio detector load resistor R143 (pin 2 of
V110 to chassis). Connect common lead of the electronic voltmeter to the junction of the matched 100 K ohm resistor
and the D.C. lead of the voltmeter to ground (chassis).
4. Using a high level signal input and with the Contrast control
set at maximum, tune the Sound Take-off Transformer (T101) primary adjustment (bottom of chassis) for minimum deflection on the scope.

Repeat Steps 4 and 5
7. Remove detector probe and scope from the picture tube grid.
8. Transfer D.C. Lead onlv of the electronic voltmeter to junction
of R144 and C133. (lower of T.V. phono switch terminal to ward speaker socket.)
9. Return to high level signal input for limiting V109 and adjust
the Ratio Detector Transformer (T102) *secondarv for zero meter reading.
5. Reduce signal input to below limiting in v109 and adjust the
10. Remove the two 100 K ohm resistors and all test equipment horizontal drive

The setting of the HORIzoNTAL DRIVE trimmer should be hecked to see that no change in linearity in the center of the
picture occurs with change in Contrast setting. When using two river tubes in parallel operation, this setting becomes more
ritical than in ingle tube circuits. In adjusting the HoRIzontal DRIVE trimmer it is necessary to observe the picture width and
set the trimmer to the point of maximum width (toward minimum capacity). To set up this trimmer correctly, turn it counterclockwise until the picture width starts to decrease or until a ompression in the center of the picture is noted. whichever con-
dition occurs first. In the extreme case the compression in the center of the picture will appear as a vertical white line. A check should then be made to see if the horizontal linearity in the center
of the picture changes with Contrast control setting. If it does turn phe drive trimmer slightly clockwise just enough to eliminate this change in linearity.
If the drive trimmer is misadjusted so that insufficient drive is applied to the tubes, they will draw excessive current which
will seriously shorten their life. This condition corresponds to
the drivetrimmer being adjusted too far in the clockwise direction. When it becomes necessary to replace one of the horizonta output tubes, two new tubes, matched to draw equal plate curre
should be chosen and both the driver tubes should be replaced.

After tube replacement, readjust the drive trimmer as outAnter the replacement, read. The best horizontal linearity
lined in the pabiter
coincides with the lowest plate diss ipation of the horizontal driver tubes and this linearity should be btained with he adjusting screw
of the HORIZONTAL LINEARITY inductance as far out of the eoil of the HORIZONTAL LINEARITY inductance as far out of the coil ment makes it necessary to readjust the HORIZONTAL DRIVE

NOTE: In rare cases where low B+ voltage is encountered, it
mav be necessary to change the screen resistor connection of mav be necessary to change the screen resistor connection of
V117 and V 11810 obtain sufficient width (see note 5 on schematic) Do not overdrive the tubes. make this change only if the width of
the raster is not sufficient to cover face of the CRT.

a.g.c. adjustment

Tune in a station with a weak signal and adjust the A.G.C. $\quad \begin{aligned} & \text { trol set at maximum, If the receiver overloads on a strong } \\ & \text { signal. turn the CONTRAST control toward minimum to prevent }\end{aligned}$
hreshold control on the rear apron of chassis toa point where hreshold control on the rear apron of chassis to a point where
the receiver will just begin to overload with the CONTRAST conignal. tur
overload.
horizontal blocking oscillator alignment
Tune receiver to a television signal and adjusi Contrast
control fo." normal picture below limiting in the video ampli contr
fier.
2. Adjust the horizontal hold control and the horizontal .
Connect scope in series with a 10 mmf . capacior to termina
*5 of the HORIZONTAL BTO Transformer (T106) and adjus The HORIZONTAL BTO TRAP (bot tom of T106) for the following wave form; keeping raster in sync by adjusting the HORI-
zONTAL HOLD control. HORIZONTAL FREQUENCY and or horizontal Lock adjustment

4. Turn the HORIZONTAL HOLD control fully clockwise. Adjus the HoRIZONTAL FREQUENCY control (top of T106) by turning out until the raster is just out of svnc. add then turn-
ing the FREGUENCY control slowly in until the raster is just ready to fall into sync (indicated
diagonal horizontal blanking bar)

- Transformers (T102) with a red or green color code have the primarv adjustment on
bottom and the secondary adjustment on top. Transformers without a color code have
the primary adjuscinent on top and the secondary adjustment on bottom.

Turn the HORIZONTAL HOLD control fully counter-clock wise. Picture should normaliy be in svnc. Remove the signal or tuning off the station then retune to the signal. If more
than seven bars are present. ad idust the Horizont trimmer slightlv counter-clockwise until five to seven hir
appear before the picture falls intusvac when the HORIZONTA: HOLD control is set in the extreme counter c'ock wise pasitrimmer clockwise. As the lock-in trimmer adjustmen horizontal frequency" control and the ackiments of both the 5 be repeated until the conditions outlined above in steps 4 and 5 exist sinultaneoush at the extreme positions of the hori-
zontal hold control. Check pull. in range. Pull- in range The final setting of the horizontal hold control should be Rotate the dial on and off the station and set the hor izontal The most important points in the Hor izontal Oscillator and
the AFC AAIgnment for most stable operation are: (1) that the
raster just falls in sunc at the clockwise end of the HORIIONTAL HoLD control, and (2) that the pull-in range is between 120° and raster
HOLD
2200.

REPLACEMENT PARTS
REPLACEMENT PART
Main Chassis
\square

MODELS 11-442M1U, 11-444MU, $11-$ $453 \mathrm{MU}, 11-460 \mathrm{MU}, 11-470 \mathrm{BU}, 11$ $472 \mathrm{BlU}, 11-474 \mathrm{BU}, 11-483 \mathrm{BU}$ h. 331

Part No. \qquad Description
disc ceramic
$\begin{aligned} & \text { a ceramic } \\ & \text { c ceramic }\end{aligned}$
Resistor, 15,000 ohm 500 v., dise
Resistor, $100 \mathrm{ohm}, 1 / 2$
$\begin{aligned} & \text { Resi } \\ & \text { Resi } \\ & \text { Res }\end{aligned}$
Resiswr, 100 ohmm, $1 / 2{ }^{2} \mathbf{w}$.
$\begin{aligned} & \text { Resistor, } 6800 \mathrm{ohm}, 1 / 1 / 2 \mathrm{w} . \mathrm{w} \text {. } \\ & \text { Resistor, } 68 \mathrm{ohh}, 1 / 2 \mathrm{w} . \\ & \text { Resist }\end{aligned}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Resistor, } 100 \mathrm{ohm}, 5 \%, 1 / 1 / 2 \mathrm{w} . \\
\text { Resistor, } 100 \mathrm{ohm}, 1 / 2 \mathrm{w} .1 / 2 \mathrm{w} . \\
\text { Resistor, } 600 \mathrm{om} . \\
\text { Res. }
\end{array}
\end{aligned}
$$

-

©John F. Rider

© John F. Rider

DESCRIPTION

TYPE: Eight-tube, single band, Superheterodyne. FREQUENCY RANGE: 540 to 1600 kc .

INTERMEDIATE FREQUENCY: 455 kc . POWER SUPPLY: 60 cycle, a.c. only. VOLTAGE RATING: $105-125$ volts. POWER CONSUMPTION:

Phono Position. 85 watts		
Phono Motor dnly. TUBE COMPLEMENT:		
Symbol No.	Type	Function
V301	6BA6	R.F. Amplifier
V302	6BE6	Converter
V303	6BA6	I.F. Amplifier
V304	6SQ7GT	Diode Det., AVC, Audio Amplifier
V305	6K6GT	Audio Output
V306	6SQ7GT	Phase Inverter
V307	6K6GT	Audio Output
V308	5Y3GT	Rectifier

$$
\text { DIAL BULB: Type 47, 6.3V., . } 15 \mathrm{amp} .
$$

ALIGNMENTPROCEDURE

1. Turn the tuning capacitor to full mesh against stop and set the dial pointer to the reference point on the dial to the left of " 55 "
2. Connect output meter across speaker voice coil leads.
3. Feed an r.f. signal modulated 30% at 400 cycles to the receiver as indicated in the Alignment chart Connect the signal generator ground terminal to the chassis of the receiver.
4. Turn the volume control to maximum clockwise position and the tone control to maximum treble position. Adjust the signal generator output to produce a noticeable output meter reading, keeping the signal generator output as low as possible to prevent AVC action in the receiver.
5. For all alignments the loop antenna must remain connected.

ALIGNMENT CHART

Alignment adjustment locations are shown on page? "CHASSIS, TOP VIEW"

Alignment Sequence	Signal Generator Output			Position of Tuning Dial or Tun. Cap.	Idjust for Naximum Output	
	Frequency in $\mathbf{k c}$.	In Series with	To			
1	455	. 05 mfd .	Stator plates of C301B (center sect.)	Gang open	A \& B	
2	455	. 05 mfd .	Stator plates of C301B (center sect.)	Gang open	C \& D	
3	1400	200 mmf .	Ext. Ant. Term.	1400	E	(See Note 1)
4	1400	200 mmf .	Ext. Ant. Term.	1400	F	(See Note 1)
5	1400	200 mmf .	Ext. Ant. Term.	1400 1400	G (See Notes 1 \& 2)	
				MEASUREO WITH AN ELE FROM SOCKE LUG TO AGE 117 V .60 N ONNECTION G JUNCTION TAGE oltage tolerance $\pm 10 \%$	(8) (c) round	

SOCKET VOLTAGE CHART

1. Rock gang while adjusting r.f. and antenna trimmers for maximum sensitivity.
2. Antenna trimmer must be realigned at 1400 kc ., after chassis is installed in its cabinet. A weak signal must be used so that the trimmer can be adjusted to maximum receiver sensitivity.

REPLACEMENT PARTS LIST

$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
C301A	B-150007	Capacitor, Variable	L301	AC-150005	Antenna Loop \& Trimmer Assy. (11-474BU)
C3018		Capacitor, Variable $\}$ Three Section		AC-149582	Antenna Loop \& Trimmer Assy. (11-444MU)
C301C		Capacitor, Variable	L302	AW-150151	Transformer, R.F.
С 302	C-137727-25	Capacitor, 100 mmi ., 500 v., ceramic	L303	AW-150150	Coil, Oscillator
С303	39001-17	Capacitor, . 05 mfd., 600 v ., paper	1301	138437-1	Bulb (Dial), Type 47, 6.3 v., . 15 mpp .
C304	39001-17	Capacitor, 05 mid., 600 v ., paper	SW301A	C-150021	Switch, Function
${ }^{\text {c } 305}$	C-137727-24	Capacitor, 180 mmf , $5000 \mathrm{v.}$,	${ }^{\text {SW }} 3018$		Switch, Function
C306	39001-17	Capacitor, . $05 \mathrm{mfd} . .600 \mathrm{v.}$, . paper	SW301C		Switch, Function As
C307	C-137727-25	Capacitor, 100 mmf ., 500 v ., ceramic	SW301D		Switch, Power
C308	C-137727-109	Capacitor, $39 \mathrm{mmf.} 10 \$,$% , 200 \mathrm{v.}$,	SW301E		Switch, Power
C309	39001-17	Capacitor, $.05 \mathrm{mfd} ., 600 \mathrm{v}$., paper	SW302	Part of R326	Switch, ON-OFF
C310	Part of 7301	Capacitor, 106 mmf ., 5%	T301	C-139919-3	Transformer, 1st 1.F.
C311	Part of T301	Capacitor, 131 mmf ., 5%	T302	D-145025-5	Transformer, 2nd I.F.
C312	Part of T302	Capacitor, 330 mmf ., 5\%	T303	B-150028	Transformer, Output
C313	Part of T302	Capacitor, $330 \mathrm{mmf}$. . 5%	T304	B-150029	Transformer, Power
C314	Part of T302	Capacitor, 100 mmf .	${ }^{\text {PH301 }}$	D-149577-1	Record Changer (V950)
C315	Part of T302	Capacitor, 100 mmf .	Ca301	C-132300-10	Cable \& Plug Assy., Power
${ }_{C} 316$	39001-17	Capacitor, 05 mfd ., $600 \mathrm{v.}$,	CA302	B-139727-8	Cable \& Plug Assy. Phono Motor
C317	39001-13	Capacitor, .01 mfd ., 600 v ., paper	CA303	B-139727-1	Cable \& Plug Assy., T.v. Power
C318	39001-13	Capacitor, . 01 mfd ., 600 v ., paper	CA304	AC-143896-10	Cable \& Plug Assy. (Shielded), Phono
C319	39001-13	Capacitor, 01 mid., 600 v ., paper		W-136998	Connector (Female), Phono
C320	39001-13	Capacitor, . 01 mid ., 600 v ., paper	P301	W-47353	Plug, Speaker
C321	B-143686-1	Capacitor, 50 mmf ., 500 v ., molded disc ceramic		$\begin{aligned} & \text { AB-149995 } \\ & \text { W- } 149709 \end{aligned}$	Background, Dial Bracket, Drive Shaft Support
C322	39001-11	Capacitor, . $005 \mathrm{mfd} ., 600$ v. paper		W-149356	Bushing, Chassis Mtg.
C323	39001-13	Capacitor, .01 mfd ., 600 v ., paper		W-136201	Clip, Dial Glass
C324	39001-13	Capacitor, .01 mfd ., $600 \mathrm{v.}$, , paper		W-136999-1	Connector (Male), Shielded Phono Cable
$\mathrm{C}^{3} 25$	39001-13	Capacitor, $.01 \mathrm{mfd} ., 600 \mathrm{v.}$, , paper		W-131154-1	Cotter (External), Drive Shaft
C326	39001-11	Capacitor, . 005 nifd., 600 v ., paper		W-136853	Cushion (Rubber), Dial Glass
C327	39001-11	Capacitor, . 005 mfd.. $600 \mathrm{v.}$, , paper		C-149991	Dial Glass
C328A	B-150035	Capacitor, $30 \mathrm{mld} ., 350 \mathrm{v}$.]		C-148995-1	Escutcheon
C3288		Capacitor, 60 mfd ., 350 v . Four Section		AD-149469-2	Front Panel, Radio-Phono Unit (11-474BU)
${ }_{\text {C3280 }}^{\text {C328 }}$		Capacitor, $10 \mathrm{mld} ., 350 \mathrm{v}$. Electrolytic		AD-149469-1	Front Panel, Radio-Phono Unit (11-444MU) Grommet (3 used), Radio Chassis
C328D		Capacitor, 100 mfd ., 25 v .)		W-148390	Grommet (3 used), Radio Chassis
C329	Part of L301	Capacitor, Trimmer		AW-148865	Knob, OFF-ON-Volume
$\mathrm{R}^{3} 01$	39373-92	Resistor, 1 neegohm, 1/2 w.		AW-148866	Knob, Tone $\quad 11-444 \mathrm{MU}$
R302 R303	39373-33	Resistor, $1000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		AW-149455-1	Knob, Tunning $\}^{\text {Knob }}$ Function ${ }^{\text {a }}$
R303	39373-92	Resistor, 1 megohm, $1 / 2 \mathrm{w}$.		AW-149455-2	Knob, Function
$\begin{aligned} & \text { R304 } \\ & \text { R305 } \end{aligned}$	39373-60 39373-100	Resistor, $22,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$. Resistor, 3.3 megohm, $1 / 2 \mathrm{w}$.		$\begin{aligned} & \text { AW-149852 } \\ & \text { AW-149854 } \end{aligned}$	Knob, OFF-ON-Volume Knob, Tone
R306	39374-215	Resistor, $15,000 \mathrm{ohm} 10 \$,$% , 2 \mathrm{w}$.		AW-150002-1	Knob, Tuning $\}^{11-474 \text { BU }}$
R307	39374-130	Resistor, $27,000 \mathrm{ohm}, 10 \%, 1 \mathrm{w}$.		AW-150002-2	Knob, Function
R308	39373-33	Resistor, $1000 \mathrm{ohm} ,1 / 2 \mathrm{w}$.		C-149431	Pointer, Dial
R309	39373-67	Resistor, $47,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		C-149266	Pull (Handle), Wrap A round
${ }^{\text {R } 310}$	${ }^{39373-80}$	Resistor, $220,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-137170	Retainer, Record Changer
${ }^{\text {R312 }}$	39373-64	Resistor, $33,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		${ }^{39176-57 C L}$	Screw, Front Panel ($11-474 \mathrm{BU}$)
${ }^{\text {R313 }}$	${ }^{39373-64}$	Resistor, 33,000 ohm, $1 / 2 \mathrm{w}$.		39176-57A B	Screw, Front Panel (11-444MU)
${ }^{\text {R314 }}$	39373-107	Resistor, 10 megohm, $1 / 2 \mathrm{w}$.		W-149976	Shaft, Tuning
R316	39374-55	Resistor, 3300000 ohm, 10%, $1 / 2 \mathrm{w}$.		B-149581	Slide, Radio-Phono Unit
R318 R319		Resistor, 10 megohm, $1 / 2 \mathrm{w}$ Resistor, 8200 ohm, $10 \%, 1 / 2$			Socket, Tube (${ }^{\text {Socket, Tube (V304, V305, V306, V307, V308) }}$
R320	39374-56	Resistor, 390,000 ohm, 10%, $1 / 2 \mathrm{w}$.		W-145080-3	Spacer, Record Changer M4.
R321	39374-196	Resistor, $390 \mathrm{ohm}, 10 \%, 2 \mathrm{w}$.		W-145757	Spring, Drive Cord
R322	39374-56	Resistor, $390,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		W-143552	Strip, Pointer
${ }^{\text {R } 323}$	39374-107	Resistor, $330 \mathrm{ohm}, 10 \%, 1 \mathrm{w}$.		W-148248	Trimount Stud, Barrier
${ }^{\text {R324 }}$	${ }^{39373-54}$	Resistor, 10,000 ohm, $1 / 2 \mathrm{w}$.		W-134916	Washer (Spring), Tuning Shaft
R325	39373-1	Resistor, $10 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		AD-149272-1	Wrap Around, Case (11-444MU)
R326A R326B	C-150020	$\left.\begin{array}{l}\text { Control (Volume), } 2.5 \mathrm{Meg} . \text { Tapped } \\ \text { Control (Tone), } 2.0 \text { Meg. }\end{array}\right\}$Two Section		AD-149272-2	Wrap A round, Case (11-474BU)

John F. Rider

© John F. Rider

REPLACEMENT PARTS LIST
Main Chassis

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description	$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Part No.	Description	$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Part No.	Description	$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Part No.	Description
$\mathrm{C}_{1} 1$	C-137727-108	Capacitor, 100 mmf ., 500 v. , ce	$\mathrm{Cl}^{\mathrm{C}} 179$	${ }^{39001-17}$	Capacitor, .05 mfd ., 600 v ., paper				T102	C-146874	Transformer, Ratio Detector
$\begin{aligned} & \mathrm{C} 102 \mathrm{~A} \\ & \mathrm{C} 102 \mathrm{~B} \end{aligned}$	C-144675-6	Capacitor, 004 mfd., 500 v. Two Section Capacitur, 004 mfd., 500 v . "disc ceramic	C170 C171	B-148317-3 C-146434-10	Capacitor, .1 mfd., 600 v. ., paper Capacitor, 15 mfd. 400 v ., paper	R165 R166	${ }^{39373-100}$		T104	C-146842-3	Transformer, Vertical Blocking Osc.
C103	C-144675-2	Capacitor, .005 mfd ,', 500 v., disc ceramic	${ }_{C 172}$	${ }_{\text {C-1 }}$	Capacitor, i1 mfd., 400 v ., paper	${ }^{\text {R16 }} 167$	39374-35	Resistor, $6800 \mathrm{ohm}, 10 \%$, $1 / 2 \mathrm{w}$.	T105	B-148970	Transformer, Vertical Output
${ }^{\text {C104 }}$	${ }^{\text {C-144675-2 }}$	Capacitor, $005 \mathrm{mfd}$.500 v v., disc ceramic	${ }^{\mathrm{C} 173}$	W-147375	Capacitor, 500 mmf ., $20 \mathrm{k} . \mathrm{v}$.	*R168	${ }^{399374-41}$	Resistor, $22,000 \mathrm{ohm}, 1001 / 2 \mathrm{w}$.	T106	AC-146998	
${ }_{\mathrm{C} 105}^{\mathrm{C} 106}$	${ }_{\text {C-1 }}$ C-14727-108	Capacitor, $100 \mathrm{mmf}$. ., 500 v v., ceramic	${ }^{\mathrm{C} 174}$	${ }_{\text {B }}^{\text {B-149488-2 }}$	Capacitor, 2 mid., $200 \mathrm{v}$. ., paper	-R170	${ }^{393774-36}$	Resistor, 8200 ohm, 10	T108	C-14969	Transformer, Power
${ }^{\text {C106 }}$	C-144675-2 C-137727-108	Capacitor, $005 \mathrm{mfd} .0500 \mathrm{v.}$,	C175	${ }_{\text {B-137498-60 }}$	Capacitor, 500 mrd .10 v v., Electrolytic	R171	39374-63	Resistor, 1.2 megohm,	T109	B-149476	Transformer, Output
C108A	C-144675-6	Capacitor, 004 mfd ., 500 v . Two Section	C_{177}	${ }^{\text {C-144675-2 }}$	Capacitor, .005 mfd ., 500 v v., disc ceramic	${ }_{8172}^{\text {R17 }}$	B-149610	Control, Vertical Hold (1.5 megohm)	F101	W-1504311	Fuse, 250 M. A. Asee Note 9 on Schematic
C108B		Capacitor, 004 mfd ., 500 v . disc ceramic	C178	C-144675-2	Capacitor, 005 mfd ., 500 v v., disc ceramic	R173	${ }^{39374-37}$	Resistor, $10,000 \mathrm{ohm}$, 10 c		W-148260	Switch, T. V.-Phono
C109	C-144675-2	Capacitor, . 005 mfd ., 500 v., disc ceramic	C179	C-144675-2	Capacitor, 005 mfd ., 500 v ., dise ceramic	R174 R 175	${ }^{39374-53}$		IC102	W-160426	Switch,
${ }^{\text {C11 }}$	C-144675-2	Capacitor, 005 mfd ., 500 v ., disc ceramic	C180	W-160111	Capacitor, 220 mmf ., 1500 v . ${ }^{\text {mica }}$	R176	$\underset{\text { B-9374-69 }}{ }$	Resistor, $2.2 \mathrm{megohm}, 10 \% / 6,1 / 2 \mathrm{w}$.	IC102	W-160426	Iron Core
${ }_{C} 112$	${ }_{\text {C-1437727-103 }}$		$\stackrel{\text { C181 }}{\text { C182 }}$	${ }_{\text {B-13001-17 }}^{\text {B-137 }}$		R177	39374-36	Resistor, $8200 \mathrm{ohm}, 1090 \%$, $1 / 2 \mathrm{w}$.	IC103	W-160426	${ }^{\text {Iron Core }}$
C 113	C-144675-2	Capacitor, . 005 mfd ., 500 v ., disc ceramic	R101	39375-77	Resistor, $15,000 \mathrm{ohm}, 5 \%, 1 / 2 \mathrm{w}$.	R178 R179	39374-113	Resistor, 1000 ohm, $10 ¢ 0,1 \sim 0$	$\xrightarrow{\text { IC104 }}$	W-160426	${ }_{\text {Iron }}^{\text {Iron Core }}$
${ }^{\mathrm{C} 114}$	C-144675-2	Capacitor, 005 mfd ., 500 v ., disc ceramic	${ }_{\text {R102 }}$	39374-11	Resistor, 68 ohm , $10 \% \%, 1 / 2 \mathrm{w}$.	R180	${ }_{39374-205}^{\text {B-14865 }}$	Resistor, 2200 ohm, 10%, 2 w .	IC106	39012-103	Iron Core
C119	Part of T101		R103 R104	${ }^{39373-14}$	Resistor, 100 ohm Resistor, 100 \% ohm ,	R181	Part of L118A	Resistor, $1000 \mathrm{ohm}, 100 \%$ \% $1 / 2$	IC107	39012-102	Iron Core
C120A	B-149106	Capacitor, 40 mfd ., 475 v .	R105	39373-14	Resistor, $100 \mathrm{ohm}, 1 / 2 \mathrm{w}$.	$\mathrm{R}_{\mathrm{R} 183}$	${ }_{39374-47}$	Resistor, 1000 ohm, 10 Resistor, 68,000 ohm,	IC108 IC109	- ${ }^{39012-96}$	${ }_{\text {Iron }}^{\text {Iron Core }}$
${ }^{\text {C120B }}$		Capacitor, 10 mfd ., 475 v . Four Section	${ }_{\text {R106 }}$	${ }^{39373-54}$	Resistor, $10,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.	R184	B-149609	Control, Horizontal Hold ($50,000 \mathrm{ohm}$)	IC110	39012-97	Iron Core
${ }_{\text {C120 }}^{\text {C120 }}$		Capacitor, $4 \mathrm{mfd} ., 350 \mathrm{v}$. Electrolytic Capacitor, 40 mfd ., 250 v .	${ }_{\text {R107 }}$	${ }_{39375-69}^{39373}$	Resistor, $100 \mathrm{ohm}, 1 / 2 \mathrm{~W} .1 / \mathrm{w}$.	R185	${ }_{39374-137}$	Resistor, $100,000 \mathrm{ohm}, 10 \%$, 1 w .	IC111	39012-97	Iron Core
C_{121}	39001-19	Capacitor, $40 \mathrm{mfd} ., 250 \mathrm{v}$.	R108	${ }^{393754-11}$	Resistor, 6800 ohm, Resistor, 68 ohm, $10^{\circ} \%, 1 / 2 \mathrm{w}$.	R186	39374-71	Resistor, 2.7 megohm, $10770.1 / 2$	${ }_{\text {SP102 }}$	138762-5	Speaker. Less Choke and Tr
$\mathrm{C}^{2} 22$	39001-17	Capacitor, 05 mfd., 600 v v., paper	R110	39373-14	Resistor, 100 ohm,	R187	${ }^{39374-60}$	Resistor, $820,000 \mathrm{ohm}, 10 \%$,		W-147414	Socket, Deflection Y
${ }_{C}{ }^{\text {c }} 23$	${ }_{\text {Cl }}^{39001-19}$	Capacitor, $1.1 \mathrm{mfd}$. . 600 v ., paper	R111	39335-71	Resistor, $8200 \mathrm{ohm}, 5 \%$, $1 / 2 \mathrm{w}$.	R189	${ }_{39374-51}$	Resistor, $150,000 \mathrm{ohm}, 10 \% \% 1 / 2 \mathrm{w}$.	CA101	C-132300-6	Cable \& Plug Assy., Power
${ }_{\mathrm{C} 124}$	C-144675-2	Capacitor, 005 mfd ., 500 v., dise ceramic Capacitor, 005 mmd , 500 v ., disc ceramic	${ }_{\text {R112 }}$	${ }^{39374-13}$	Resistor, $100 \mathrm{ohm}, 10 \%^{\circ}, 1 / 2 \mathrm{w}$.	R190	${ }_{39374-51}$	Resistor, $150,000 \mathrm{ohm}, 10 \% 6,1 / 2 \mathrm{w}$.		G-131500-2	Plug, Speaker
C126A	B-148429	Capacitor, $40 \mathrm{mfd} ., 475 \mathrm{v}$., ${ }^{\text {a }}$,	R_{114}	${ }^{39375-69}$	Resistor, $6800 \mathrm{ohm}, 5 \%$, $1 / 2 \mathrm{w}$.	R191	39375-97	Resistor, $100,000 \mathrm{ohm}, 5 /$ c, $1 / 2 \mathrm{w}$.	${ }_{\text {P102 }}$	W-139900 $\mathrm{W}-147415$	
C126B	-14829	Capacitor, 40 mfd ., 250 v . Three Section	R115	39375-25	Resistor, 100 ohm , $10 \% \% \% 1 / 2 \mathrm{w}$.	$\mathrm{R}_{\mathrm{R} 193}$	39374-37	Resistor, $10,000 \mathrm{ohm}, 10 \% \% \% \mathrm{w}$.		W-136998	Connector, Phono
${ }^{\text {C126 }}$		Capacitor, 100 mfd ., 50 v . Electrolytic	${ }^{\text {R116 }}$	Part of L106	Resistor, $10,000 \mathrm{ohm}, 5 \%, 1 / 2 \mathrm{w}$.	R193	${ }_{39374-51}^{393441}$	$\begin{aligned} & \text { Resistor, } 22,000 \mathrm{ohm}, 10 \mathrm{c}, 1 / 2 \mathrm{w} . \\ & \text { Resistor, } 150,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w} . \end{aligned}$		C-146351-3	Bracket, Deflection-Focus
${ }^{\mathrm{C} 127}$	Part of T102	Capacitor, $10 \mathrm{mmf}$. , 500 v ., mica	R117	${ }^{39375-65}$	Resistor, $4700 \mathrm{ohm}, 5 \%, 1 / 2 \mathrm{w}$.	R194	${ }_{39374-135}^{39374-51}$	Resistor, Resistor, 68.000 ohm, $100_{0}, 1 \mathrm{w}$.		AB-148462	Bracket, Defection Yoke
C128	${ }_{39001-80}$ Part of T102	Capacitor, $100 \mathrm{mmf} ., 500 \mathrm{v}$ v., mica	${ }_{\text {R119 }}$	${ }^{39373-14}$	Resistor, 100 ohm , $1 / 2$	R198	39373-14	Resistor, 100 ohm		54	Bracket, Control Mtg.
C130	W-137398-4	Capacitor, $2.2 \mathrm{mmf}$. , 500 v v. ${ }^{\text {P }}$	R120	Part of L111	Resistor, $22,000 \mathrm{ohm}, 10 \mathrm{c} \%, 1 / 2 \mathrm{w}$.	R199	39373-92	Resistor, 1 megohm, $1 / 2 \mathrm{w}$.		AW-149188	Clip, Corona
${ }^{\text {C131 }}$	C-137727-110	Capacitor, $1000 \mathrm{mmf} ., 10 \% \% 500 \mathrm{v}$., ceramic	R121	39374-9	Resistor, $47 \mathrm{ohm}, 10 \%$,	R201	${ }^{393743-97}$	Resistor, 47 ohm , $10,1 \mathrm{w}$.		W-149316	Cover, Tube (V119)
${ }^{\mathrm{C} 132}$	B-149211	Capacitor, $10 \mathrm{mfd} ., 25 \mathrm{v}$., Electrolytic	${ }^{\text {R122 }}$	39374-136	Resistor, $82,000 \mathrm{ohm}, 10 \%, 1$ w.	R202	39373-14	Resistor, 100 ohm , $1 / 2 \mathrm{w}$.		362-1	Cushion (Rubber ${ }^{9} 96{ }_{6}{ }^{\prime \prime}$), Deffection Yok
${ }_{C 134}$	39001-74	Capacitor, 002 mfd , $600 \mathrm{v}$. ., paper	R123	${ }_{\text {coser }}^{39375-221}$	Resistor, $10,000 \mathrm{ohm}, 5 \%, 1 \mathrm{w}$.	R203	39373-14	Resistor, $100 \mathrm{ohm}, 1 / 2$		12-2	mmet (Rubber, 3 used), Focus Coil
${ }_{C}$	${ }_{39001-13}$	Capacitor, 01 mid., 600 v v., paper	R124	${ }_{\text {39374-35 }}$		R204	39374-217	Resistor, $22,000 \mathrm{ohm}$,		$\mathrm{W}-138090-4$	Insulator, St
C136	39001-13	Capacitor, 01 mfd ., 600 v v,, paper	R126	39374-31	Resistor, $3300 \mathrm{ohm}, 10 \%$ \% $1 / 2 \mathrm{w}$.	${ }_{\text {R206 }}$	39375-71	Resistor, 8200 ohm,		39033-18CL	Nut (3 used), Focus
**C137	39001-73	Capacitor, .00025 mfd., 600 v ., paper	${ }_{8}^{\mathrm{R} 127}$	39374-60	Resistor, 820,000 ohm, 107 \%, $1 / 2 \mathrm{w}$.	R207	${ }_{39374-40}$	Resistor, $18,000 \mathrm{ohm}, 10 \%$ c, $1 / 2$		W-147306	Screw (3 used), Focus Coil
${ }^{\text {C139A }}$	B-149261	Capacitor, $01 \mathrm{mfd.} ,600 \mathrm{v.}$, , paper Capacitor, $40 \mathrm{mfd}, 350 \mathrm{v}$. Two Section	R128 R129	-39374-49	Resistor, $100,000 \mathrm{ohm}$,	R208	39374-41				d, Corona (V1
C139B		Capacitor, 10 mfd., 25 v . Electrolytic	R130	39374-50	Resistor, $120,000 \mathrm{ohm}$,	R209	39374-211	Resistor, 6800 ohm, 10		C-149179	Shield, Tube (V117, V118)
C140	39001-11	Capacitor, 005 mfd ., 600 v., paper	R131	39374-45	Resistor, 47,000 ohm, 10	$\mathrm{R}_{\mathrm{R} 211}$	39303-19	Resistor, $1000 \mathrm{ohm} 1 /$,		W-149059	Shield, Tube (V104, V105)
C141A	B-146633	Capacitor, 40 mfd ., 475 v . Two Section	${ }^{\text {R132 }}$	39374-142	Resistor, $270,000 \mathrm{ohm}, 10 \%$, 1 w.	R212	${ }_{39373-202}$	Resistor, 1 megohm, 1 w. ${ }^{\text {max }}$.		AB-149516-2	Socket and Board Assy. (V119)
${ }_{\substack{\text { C142 } \\ \text { C14 }}}$	B-149262	Capacitor, $40 \mathrm{mfd} ., 475 \mathrm{v}$. Electrolytic	${ }_{\text {R133 }}$	B-149611	Control, Brightness ($40,000 \mathrm{ohm}$)	R213	39374-93	Re			6)
C143	C-144675-2	Capacitor, .005 mfd ., 500 v., disc ceramic	${ }_{\text {R135 }}$	39374-29.	Resistor, 2200 ohm,	R214	Part of T107	Resistor, 55,000 ohm,		W-146439-2	Socket, Tube (V115, V120)
C144	39001-87	Capacitor, .25 mfd ., 600 v ., paper	R136	39374-220	Resistor, $39,000 \mathrm{ohm}, 10 \%, 2 \mathrm{w}$.	R215	39374-217	Resistor, 56,00		39388	cket, Tube (V117, V118, V121, V
${ }^{\text {C145 }}$	${ }^{39001-14}$	Capacitor, 015 mfd ., 600 v ., paper	${ }_{\text {R138 }}$	39374-221	Resistor, 47,000 ohm, $10 \% \% 2 \mathrm{w}$.	L102	AW-146582	Coil, 2nd I. F.		W-146966	cket, Tube (V101, V102, V103, V106,
${ }_{C 146}$	39477-41 B-13749-17	Capacitor, 01 mfd .600 v. , molded paper	${ }_{\text {R139 }}^{\text {R138 }}$	- ${ }^{39374-123}$	Resistor, $6800 \mathrm{ohm}, 10 \%$, 1 w .	L103	AW-146583	Coil, 3rd I. F.			Socket', Tube (V107) V110)
${ }_{C 1}{ }_{C} 148$	${ }_{\text {B-137498-28 }}$		R139 R140	${ }_{3}^{393744-17}$	Resistor, 270 ohm, 10770.2 w .	L104	AW-147974	Coil, 4 th I. F.		W-144732 ${ }^{\text {B-1 }}$	Socket, Tube (V107, V105)
-C149	${ }_{39001-74}^{\text {B-28 }}$	Capacitor, . 002 mfd d, 600 v., paper	${ }_{\text {R141 }}$	-	Resistor, 22 ohm, 10% \% $1 / 2 \mathrm{w}$.	L105	AW-148983	Coil, 5th I. F.		W-14953i	Spring, Capacitor (C173)
${ }^{*} \mathrm{C} 150$	${ }^{39001-11}$	Capacitor, 005 mfd ., 600 v ., paper	R142	${ }_{39374-130}$	Resistor, $27,000 \mathrm{ohm}, 10 \%$, 1 w .	L106	AW-149357	Coil, Video Peaking		W-144668	Spring (Compression, 3 used), Focus Co
${ }^{*} \mathrm{C} 151$	$39001-11$ $39478-39$	Capacitor, $005 \mathrm{mfd}$. . 600 v , , paper	R143	39375-79	Resistor, $18,000 \mathrm{ohm}$	L110	AW-146889	Coil, Video Peaking			Stud (Mtg.), Capacitor (Cl73)
C152	39478-39	Capacitor, $0047 \mathrm{mfd} ., 10 \%, 600 \mathrm{v}$. , molded paper	$\stackrel{\text { R144 }}{\text { R145A }}$	${ }^{39374-42}$	Resistor, $27,000 \mathrm{ohm}, 10 \%$, $1 / 2 \mathrm{w}$.	L111	AW-149242	Coil, Video Peaking			
C 153	C-146434-6	Capacitor, 05 mfd ., $10 \%, 400 \mathrm{v.}$,	R145B		Control (Volume), megohm ${ }^{\text {control (contrast), } 2000 \text { ohm }}$ Section	L112	AW-148440	Coil, Delay			
C154	39001-19	Capacitor, $11 \mathrm{mfd} ., 600 \mathrm{v}$, paper	R146	39374-47	Resistor, $68,000 \mathrm{ohm}, 10 \%$, $1 / 2 \mathrm{w}$.	L113	AW-148452	Inductor, Horizontal Linearit			
${ }_{C}^{C 155}$	${ }_{\text {B-1323 }}$ B-13748-24	Capacitor, $180 \mathrm{mmf}, 10 \%$, 500 v. , mica	R147	39374-75	Resistor, 3.9 megohm, $10 \% \%$, $1 / 2 \mathrm{w}$.	L115	AW-146570	Coil, Choke			
${ }_{C} 156 \mathrm{~B}$		Capacitor, Capacitor, Trimmer Crimmer	$\stackrel{\text {-R148 }}{ }{ }^{\text {R149 }}$	39374-53 39374-42		1117	B-149475	Choke, 50 ohm			
C157	39477-37	Capacitor, .0022 mfd ., 600 v ., molded paper	*R150	39374-57	Resistor, $470,000 \mathrm{ohm}, 10 \%$, $1 / 2 \mathrm{w}$.	L118A	AC-148887-7	Yoke, Deflection			
${ }^{C} 158$	39001-87	Capacitor, .25 mfd ., 600 v v., paper	${ }^{\text {R151 }}$	39374-196	Resistor, 390 ohm, 10%, 2 w .		AW-147430	Coil Assembly, Focus			
C159	39001-80 39001-17	Capacitor, .02 mfd., 600 v., paper Capacitor, 05 mid., $600 \mathrm{v} .$, paper	${ }_{\text {R153 }}$	${ }_{39375-115}^{39373}$		L120	AW-149492	Inductor, Width and A.G.C.			
${ }^{\text {C161 }}$	B137498-47	Capacitor, $200 \mathrm{mmi} ., 5 \%$, 1000 v ., mica	R155	39375-109	Resistor, $330,000 \mathrm{ohm}, 5 \%, 1 / 2 \mathrm{w}$.						
${ }^{\text {C162 }}$	C-148813-2	Capacitor, $01 \mathrm{mfd} ., 10 \%$, 400 v v., paper	R156	39375-97	Resistor, $100,000 \mathrm{ohm}, 5 \%$						
C163	B-137498-53	Capacitor, 1300 mmf ., 5% o 500 v ., mica	R157	39374-36	esistor, 82						
${ }_{C}^{C 164}$	${ }_{\text {C-144675-2 }}$		R158 R159		Resistor, 8200 ohm, 5% \% ${ }^{1 / 2}$ Control, A.G.C. (1000 ohm)	*See Note 7 on Main Chassis Schematic Wiring Diagram. **See Note 8 on Main Chassis Schematic Wiring Diagram. ***See Note 10 on Main Chassis Schematic Wiring Diagram.					
C166	C-144675-2	Capacitor, 005 mfd., 500 v ., disc ceramic	R162	B-149612	Control, Focus (3000 ohm)						
${ }^{\text {C16 }} 16$	B-146944	Capacitor, 5 mfd., 25 v ., Electrolytic	R163	W-148554-2	Resistor, $330 \mathrm{ohm}, 10 \%$, 7 w .						
C168	B-148317-2	Capacitor, 5 mfd., 600 v ., paper	R164	39374-61	Resistor, 1 megohm, 10\%, 1						MODELS $11-43 \mathrm{MU}$
											11-473BU, Ch. 323

(C) John F. Rider

NOTES:

1. ALL VOLTAGES MEASURED WITH AN ELECTRONIC VOLTMETER CONNECTED FROM SOCKET LUG TO CHASSIS.
2. SUPPLY VOLTAGE 117 V .60 CYCLE AC.
3. $K=1000$
. ALL CAPACITANCE VALUES IN MMF. \& ALL RESISTANCE VALUES IN OHMS UNLESS OTHERWISE NOTED.
4. SCREEN VOLTAGE ADJUSTMENT FOR V117 \& V118
NOMINAL - TERMINAL B
HIGH - TERMINAL A
LOW

- TERMINAL C
. SOME SETS ARE EQUIPPED WITH A BARE WIRE SHUNTING R207. IF horizontal DRIVE IS EXCESSIVE, REMOVE THE BARE WIRE ACROSS R207.

7. IN SOME RECEIVERS, C149, C150, C151, R168, R169, and R170 ARE A RESISTOR-CAPACITOR UNIT, (PART NO. W-140878). SEE DIAGRAM ABOVE
8. IN SOME RECEIVERS C137, C138, R148 and R150 ARE A RESISTOR-CAPACITOR UNIT (PART NO. W-149881). SFF DIAGRAM AROVE
9. ON SOME SETS LUG 2 OF V103 IS CONNECTED TO GROUND AND NOT TO LUG 7. THESE SETS ARE E@UIPPED WITH A faus tube. BY CONNECTING LUG 2 TO LUG 7 AS SHOWN BY THE SOLID LINES IN SCHEMATIC, EITHERA6AG5, 6AU6́, or 6BC5 TUBE MAY BE USED IN THE V103 SOCKET. WHEN REPLACING THIS TUBE, RE-ALIGN THE 3rd. I.F. STAGE.
10. EARLY PRODUCTION SETS ARE EQUIPPED WITH C167 AND R200 CONNECTED IN THE CIRCUIT AS SHOWN BY THE DOTTED LINES
11. SOME SETS ARE EGUIPPED WITH A 68 OHM, $10 \%, 1 / 2$ WATT RESISTOR (PART NO, 39374-11).
12. IN EARLY PRODITCTION RECEIVERS, C140 IS CONNECTED AS SHOKN BY DOTTED LINES. IN UATER PRODUCTION SETS, C140 IS CONNECTED AS SHOWN BY SOLID LINES TO PUT TUBE

MODELS: 11-454 MU, 11-458 MU, 11.484 MU
(Chassis 323)
NOTE:- These Models are the same as
Model ll-443MU Except for the following:
REPLACEMENT PARTS LIST

Part No.	Description	Part Nó.	Description
AD-150193 AC-150040 B- 146602 W-149003 W-150069 R-150122 R-150294 R-150213 W-146335 AB-149712- W- 149486 B-160128-24 B-160128-25 C-149153-3 C-148481-4 150325 150329 150291 150330 150292 AB-149300 R-150098-1 R-150098-2 150377 149892 149393 149974 146786 149942	Antenna Assv. Back \& Power Cable Assv. Brace Deflection - Focus Assy. Bracket, Picture Tube Strap Button. Hole Plug Cabinet (11-454 MU) Cabinet ($11-458 \mathrm{MU}$) Cabinet (1L-484 BU) Clamp Cabinet Back Clip. Anode Connector Cover. Controls Cushion. Picture Tube Rest Cushion. Picture Tube Stop (11-454 MU. 11-484 BU) Cushion. Picture Tube Strap Dial Tuning Dial, Volume Doors (1 pair), Cabinet (11-454 MU) Doors (1 pair), Cabinet (11-458 MU) Doors (1 pair), Cabinet (11-484 BU) Door, Control Access ($11-454 \mathrm{MU}$) Door. Control Access (11-458 MU) Door, Control Access (11-484 BU) Foot Assy., Center Chassis Bracket Frame. Window (11-454 MU. 11-458 MU) Frame. Window (11-484 BU) Grille Cloth (11-454 MU. 11-458 MU) Grille Cloth (11-484 BU) Hinge, Control Access Door (11-454 MU, 11-458 MU) Hinge, Control Access Door (11-484 BU) Hinge (Cabinet Door). Upper L \& Lower R (11-454 MU, 11-458 MU) Hinge (Cabinet Door), Upper L \& Lower R (11-484 BU)	146786 149943 148484 AW-147887-1 AW-147887-3 AW-147887-4 AW-147889-1 AW-147889-3 AW-147889-4 AW-147888-1 AW-147888-3 AW-147888-4 R-150099 B-14800-8 B-148080-9 W-150275 150618 150290 AB-149745 W-145391 W-147921-2 $39352-56 \mathrm{XA}$ $39352-56$ XD W-148782 W- 146484 AB-149308 $1393195 B$ 149951 AW-149603 B-150075	Hinge (Cabinet Door), Upper R\& Lower L (11-454 MU, 11-458 MU) Hinge (Cabinet Door), Upper R\& Lower L $(11-484 \mathrm{BU})$ Ion Trap Knob, Off-On-Contrast (11-454 MU) Knob, Off-On-Contrast (11-484 BU) Knob, Off-On-Contrast (11-458 MU) Knob, Tuning (11-454 MU) Knob. Tuning (11-484 BU) Knob, Tuning (11-458 MU) Knob, Volume (11-454 MU) Knob, Volume (11-484 BU) Knob, Volume (11-458 MU) Mask, Picture Tube Medallion (11-454 MU, 11-458 MU) Medallion (11-484 BU) Pad (Composition). Window Pull, Door Handle (11-454 MU) Pull, Door Handle (11-458 MU, 11-484 BU) Rest \& Cushion Assv., Picture Tube Ring (Compression), Tuning Dial Screw (Special), Chassis Mtg Screw. Window (11-484 BU) Screw, Window (11-454 MU, 11-458 MU) Spacer, Antenna Terminal Assy. Spring. Dial Retaining Strap, Picture Tube Strike \& Catch, Doors (11-454 MU, 11-458 MU) Strike \& Catch, Doors (11-484 BU) Terminal Assy., Antenna Window, Safety Glass

$1073 B$ ANT. LOOP
1011 OSCILLATOR COIL
1091B-4 1st I.F. COIL
1091B-1 2nd DETECTOR COIL
2012B CERAMIC CONDENSERS
2005-1 COMB. ELECTROLYTIC 2003-C VAR. CONDENSER

REPLACEMENT PARTS			
2056	TRIMMER CONDENSER	6007	glass dial scale
3029	\% $/ \mathrm{W}$. RESISTOR	7017-2	SPEAKER
3001A	1 W. RESISTOR	8001-1	pilot lamp Socket
3036	2 W. RESISTOR	9109A-2	SHAFT
1005	mave trap coil	9818 C	BUSHING
3013-3	VOLUME CONTROL AND SWITCH	9069-3	DRIVE SPRING
8004	PHONO-RADIO SW ITCH		DIAL CORD
5000	LINE CORD		\#47 PILOT LAMP
4080-4	KNOB	9113A-6	dial Pointer
	TUBES		

2 12ba6 - 1 12BE6 - 1 12AT6 - 1 35B5 - 1 35W4

\section*{RADIO \& 3 SPEED PHONOGRAPH SECTION
 | Superheterodyne | | |
| :---: | :---: | :---: |
| Range: | $525-1700$ | Kilocycles |
| VOLTS | CYCLES | WATTS |
| $105 \cdot 125$ | 60 | 25 |}

A. C. ONLY $\begin{array}{r}\text { VOLTS } \\ 105-125\end{array}$

Caution: pailure to connect the speaker to the chassis bepore

 TURNING THE RECEIVER ON MAY RESULT INEASERIOUS DAMAGE TO THE PIRS SU4 RECTIPIER.note: the hetal envelope of the kinescope picture tube has
high voltage connected to it. ion trap adjusthent:
The ion trap is to be put on "ith the magnet poles approximately
over the kinescope flags. Starting from this position adjust over the kinescope flags. Starting from this position adjust
the ion trap by moving it forward or backmard at the same time rotating it slishtiy around the neck of the tube for the bright-
est raster on the screen. centerimg and focusimg adjustments:
Move the focalizer back $1 / 4^{\text {" }}$ anay from the back of the Deflection
 the. Centering is then performed whithe fing sers on the sides of the focalize and move it in
the direction required to center the picture. When best center-
the diret the direction required to center the picture. Then best center-
ing is obsaned tighten the ing scress. . When the picture 1 is
off center either horizontally or vertically it may be adjusted on some sets with the beamadjuster" and on others mith the
focalizer centering lever. The "beamadjuster" 1s accessible just focalizer centering lever. The "beamadjuster" is accessible Just
in front of the focalizer and movement of the flange nill result in movenent of the picture position. The focalizer centering
lever projects frome the rear of the focus unit and moves the lever projects from the rear of the focus unit and moves the
picture horizontally \& vertically. The focusing procedure is as
 Purther. then turn 1 tout 2 turns. Next adjust the top scren
for best focus. Readjust the for best focus. Readjust the 1 ion trap for max.
and then touch up the focus with the top screm.
Note: If no pattern is on, turn contrast control counterclockTise fully and turn up brightness control so that the raster
ines are visibie. The sadustment of the focalizer adjusting screp can be made by getting the sharpest line detall oeflection yoke ajoustuent:
If the lines of the raster are not horizontal or squared with the picture mask, rotate the de flection yoke until this condi-
tion 18 obtained. Tighten the yoke adjustment scree. placement:
The location in the room for your television receiver should be siven careful consideration. Choose the location:
A Where no bright 11 ght illuaination in the roon is desirable).

- To sive easy access for operation. C - To pernit a convenient connection to an outdoor antenna is it is needed.
D - Convenient to an A-C electrical outlet of the proper voltage and irequency.
E - To allow adequate ventilation.
CAUTion: The receiver is provided ith adequate ventilation apertures, under, in back of, and on the sides of the cabinet
THESE APERTURES SHOLLD NOT BE ALLOVED TO BE COVERED OR VENTIL tion impeded in any may.
Nore: Always keed the rear of this television receiver at least
6 inches anay from the mall to allow for proper ventilation. аитениа:

This television recetver features aself-contained antenna whic alkes use of an external antenna unnecessary in many locations.
For best results rotate the cabinet mhile checking the quility on allstations. Use the recelver in a position which

If an external antenna is necessary, take both leads off the
 replac ement of fuse:

DT-190D, DT-191, ET-140

Use a
essary.
0.2 amp. -250 volt distail fuse when replacement is nec. power supply:
This receiver is designed to operate on 105-125 volts, A.c. 60
cycie power only. cycle poier only. If plugged into an incorrect power supply.
damese to the receiver may result. if in doubt about your supply. call your porer company.
high voltage check:
 place the metal portion of velt insulated screced as follons: Place the metsi portion or anell insulated screvdriver near the
top cap of the B3 tube. Hold only the insulated portion oo the
screndiviver. The metal part of the screadilyer should diat screvdriver. The metal part of the screvdriver should drar ap.
proximately a $1 / 4^{4}$ " spark froe this cap. If a spark is present proximately a $1 / 4^{n}$ spark frou this cap. If a spark is present
and there is still no hish voltage at the anode lead replace the 1 Megohm piliter Resistor underneath the 183 socket.

alignment procedure:

to adjust sound I.f.'s:

1. Set A. M. Signal generator to 4.5 Mc and connect high side of senerator, thrua, 01 MFD condenser, to grid of the video Amplit
fier tube (6 Aht pin 1). Low side of generator to go to chessid 2. Connect a vivy between pins 2 and 7 of the ors sound ratio and B on schematic diagram). Connect the plus side of points 1 to Pin 7 and the negative side in series witha 33 K ohn resistor
to pin 2 . to Pin 2 .
2. Mith
the sound takeoff conl (L8) and ratio detector primary Ti (bot (on slub) for maximum DC voltage on the vTvu.
3. Adjust the takeoff coill before adjust
prinary. Use just enough signal generator output to detector proximately 1 volt on the vivi. Connect the plus side of the
vTVk to the junction of the tro $18 k$ oha res betreen pins 2 sid 7 of the 678 tube (Doint C on schenatic). Connect the an inus side of the vTru to the function point of the
47 K ohe resistor and the. 01 MrD condenser 47 K oha resistor and the. 01 MPD condenser (Doint D on schematic)
soing to the sound volume control. Adjust the ratio detector (T1) secondary (top sluge for zero volitage output. It it illilor be
found that it is possible to procure a plus or aninus voltage on the vivi depending upon the adjustment. obviousiy to pass from The top slug should be adjusted so that the peter indicates zero. 111 be called ratio detector zero plis to minus. This point the 111 be called ratio detector zero adjustinent.
S. Shift the frequency of the signal generato
4.5 Mc and touch up the ration detector primary for approximately qual peaks. Use just enough signal generator output to obtaln
voit peaks for the best results.
 calibrating sound I.P., connect the sweep generator bish side,
 a. 01 MPD condenser and a 40 k ohm resistor) to the point ind in ated slug of the ratio detector (primary) to produce ast the botto sude of the ratio detector (primary) to produce asxiaum smplit
tude and slug secondary) to produce the correct cente point and best 1 inesrity on the response curve. The curve should
be s " shaped. 7. Connect sweep generator to the point indicated in step 1
Connect oscilloscope high side (in series nith a 01 mpd con Connect oscillioscope high side (in series with e. O1 mpo con-
denser ond $40 K$ ohm resistor) to pin 2 of the 678 sound ratio
detector detector and the ground terainal to chassis. Renove minus side Adjust takeoff coll to produce maximum amplitude at 4.5 uc.

Nore: During sound I.p. alignment the common lead of vivu is connected to approximately 140 volts, with respect to chassis. Avoid touching or grounding the vTvM case. Keep Contrast control
fully clocknise.

TO ADJUST PICTURE I.F.' s
Connect the negative terminal of a 3 volt " "A" battery to the
andion of the negohmand. 25 mfo in the AGC bias line. (Doint Junction of the 1 nesohm and. .25 mfd in the AGC bias 11 nee. (Doint E on schematic) and positive terminal to a chassis ground. Set
the contrast control to the fully clockeise position. Set fine tuning control "ith flat in horizontal position.
2.
Set channel snitch to channel 3 or any clear channel 2. Set channel switch to channel 3 or any clear channel.
3. Connect a voltohmyst across the second pleture detector 10
 ing coill L-5 and 4770 oha renistor and minus end to ther side
of load resistor (junction of 4700 obm, 1 K ohe and. 1 Mfd condenser). . Couple the high side of the signal generator to the iner
tube of tuner by siliping a tight fitting insulated tube shield tube of tuner by slipping a tight fitting insulated tube shield
over the tube envelope and connecting the generator lead to it over the the envelope and connecting the generator lead to it.
connect the roond side of the signal generator to the frame of
the turn the tuning unit.
5. Set A.M. Sig
 Voltohmyst. 6. Set A.M. Signal generator to 23 me and peak second I. F. coll
(L-2) and converter I.f. coil on top of tuner for max inum out put (L-2) and conve
on voltohnyst.
7. When using an oscilloscope and a fide band oscillator for calibrating and checking bandidith of the i. F.' s. connect sweep
generator to the oscilloscope high side (ind series with 40 K ohm resistor) to the ground terminal to paking coil L-5 and 4700 ohm resistor, and the ground terninal to chassis. Align the pict
a response curve sinilar to the one shovn.

Nore: During picture I.P. alignent the common lead of Voltonayst 1s connected to approximately ainus 2.5 volts with respect to s connected to approximately ainus 2.5 volts
chassis. Avoid grounding the voltohyst case

TYPICAL OVERALL RESPONSE CURVE OF PICTURE I.F.'S
© John F. Rider

[^2]

© John F. Rider

MODELS RA-112-A1, RA-112-A2, RA-112-A3 RA-112-A4, RA-112-R5, RA-112-R6, RA 113-B1, RA-113-B2, RA-113-B3, RA-113Speaker B4, RA-113-B5, RA-113-B6, RA-113-B7 RA-113-B8
All Models
The che
the same is used in the RA-1l2A and RA-ll3 Telesets is basically the same chassis that was used in the RA-lll models. The horizontal output and high voltage circuits have been modified to supply adequate sweep and high voltage to the larger picture circuit descrin other circuit improvements as outlined in the
circuit description portion of these notes have been made.

Figure 1 - RA-112A - RA-113 Chassis
RA-112A RA-113 TUBE COMPLEMENT
A total of twenty-six tubes, including the cathode-ray tube, the tuning indicator and three rectifiers are incorporated in this chassis.

Tube Symbol	Tube Type	Tube Function
V101	6 J 6	R.F. Amplifier
V102	6AK5	Mixer

V101	6 J 6
V102	6 AK5
V103	6 AB4
V201	6 AU6
V202	6 AU6
V203	$6 T 8$
$V 204$	$6 A Q 5$
V205	$6 A U 6$

R.F. Amplifier

Mixer
V.H.F. Oscilla tor

1st Sound IF
Sound Discriminator, First Sound Amplifier and A.G.C. Clamp Amplifier and A.G.C
Ist Video IF

V206	OAU6	2nd Video IF
V207	6AU6	3 rd Video IF
V208	6BC5	4 th Video IF
V209A	1/2 6AL5	Video Detector
V209B	1/2 6AL5	D.C. Restorer
V210	6AH6	Video Amplifier
V211	19AP4	Picture Tube (Used in RA-112A)
V211	$17 \mathrm{AP4}$	Rectangular Picture Tube (Used in RA-113)
V212	6BA6	Narrow Band Sync Amplifier
V213	6AL5	Sync and A.G.C. Detector
V214	GSN7-GT	Horizontal A.F.C. and Saw Generator
V215	6BG-6	Horizontal Deflection Amplifier
V217	6W4-GT	Damper
V218	$5 \mathrm{U4} \mathrm{G}$	Rectifier
V219	6AU6	lst Sync Clipper
V220A	$1 / 2$ 6SN7-GT	2nd Sync Clipper
V220B	1/2 6SN7-GT	Vertical Saw Generator
V221	6SN7-GT	Vertical Deflection Amplifier
V222	6ALJ-GT	Tuning Indicator
v401	1X2	High Voltage Rectifier
V402	1X2	High Voltage Rectifier

RA-112A RA-113 ELECTRICAL CHARACTERISTICS

Average Power Ratings (Eine Voltage - 117 volts AC) Television and FM positions - 200 watts

$$
\frac{\text { CRT High Voltage (Line Voltage - ll } 7 \text { volts AC) }}{13 \mathrm{KV} \pm 1.5 \mathrm{KV} \text { at zero brightness }}
$$

Audio Power Output (400 cycles)

$$
\text { g. } 6 \text { onnl rosed run in plan ol speaker }
$$

RA-ll2A Picture Size
RA-113 Picture Size

Dimensions: $13^{\prime \prime} \times 173 / 8^{\prime \prime}$
Area: 208 square inches

Dimensions: 11 1/8" X 14 1/2" Area: 150 square inches

RA-112A PHYSICAL CHARACTERISTICS
Cabinet Size

Ardmore
 Westerly

Mt. Vernon

Height	Width	Depth
40"	$311 / 8^{\prime \prime}$	$2211 / 16^{\prime \prime}$
40"	31 1/8"	23 3/4
40 1/2"	$33^{\prime \prime}$	24 1/2"

RA-113 PHYSICAL CHARACTERISTICS
Cabinet Size

	Height	Width	Depth
Brookville	$393 / 8{ }^{\prime \prime}$	26 3/4"	$2015 / 16^{\prime \prime}$
Revere	39 7/8"	26 3/4"	22 1/2"
Burlingame	39 3/8"	26 3/4"	21 7/8"
Tarrytown	39'	35 3/4"	$221 / 1{ }^{\prime \prime}$

2.1 RF Tuning Assembly

The RA-ll2A RA-ll3 Telesets incorporete the latest Du Mont Four

Section Inputuner. Up to and including serial no. 122695 in the RA-ll2A models and serial no. 132211 in the RA-ll3 models, the Inputuner used is electrically the same as that used in the RA-
lila Telesets.

Starting with serial no. 122696 in the RA-ll2A models and serial no. 132212 in the RA-ll 3 models the IF transformer in the plate circuit of the mixer is different than that in the above-mentioned tuner. The Inputuner schematic diagram appearing on the RA-ll2A RA-ll3 Service Sheet includes the new IF transformer in the mixer late circuit.
The essential differences between this transformer and that previously used are as follows:

1. The coupling is fixed in the transformer. (The coupling adjustment now consists of an adjustable coil on the receiver chassis.)
2. An additional trap to attenuate the sound carrier of the lower djacent chennel to which the Teleset is tuned is included in this transformer. This is any absorption type trap and is tuned in the new IF's pr 21. red rel sound nel sound carrier is now 27.75 mc instead of 27.9 mc

All post war Du Mont Telesets normally utilized a 26.4 mc IF for the video carrier and 21.9 mc for sound. In some receivers, this resulted in strong beat interference on channel 7 as a result of the 8 th harmonic (175.2 mc) of the sound IF (21.9 mc) beating against the video carrier of channel 7 , (175.25 mc) and producing a 50 kc beat. The result was a streaking of the picture. Although this condition could be cured by certain modifications, a change to lower IF $(21.75 \mathrm{mc})$ resulted in the complete elimination of the boat.

All RA-112A Telesets beginning with serial no. 12702 and all RA-ll3 Telesets beginning with serial no. 13580 are aligned to the new F's as outlined in the enclosed alignment sheet. The new IF's are 20.25 mc for video and 21.75 mc for sound.

. 2 Video IF Strip

The video IF strip used in the RA-ll2A - RA-ll3 Telesets is basically the same as is used in the RA-llA chassis. The important dif"erences winich can be readily be seen by comparing the two schematics are as follows
A. All RA-ll2A Telesets starting with serial number 122696 and all RA-113 Telesets starting with serial number 132212 utilize a diferent type of transformer at $\mathrm{Z2O4}$, the input to the IF strip. The important difference in this transformer is that the method of couping from the Inputuner output to the IF strip input has been chan ged. This transformer change took place at the same time that the $1 F$ transformer in the plate circuit of the mixer stage was changed. The coupling adjustment in the receiver is now made by adjusting
L213, which is mounted on the receiver chassis proper.
B. The fourth video IF tube (V203) has been changed from a GAU6 to
a $6 B C 5$. The purpose of this change is to improve the overall senMODELS RA-112-A1, -A2, -A3, -A4, -A5 $-A 0 ́, ~ R A-113-B 1,{ }^{2}-B 2,-B 3,-B+,-B 5$,
sitivity and signal-to-noise ratio. In conjunction with this change the cathode resistor R23l was changed from a 120 ohm resistor to a 220 orm order to obtain proper alignment of this stage using a 6BC5, it was necessary to replace the transformer Z208 witha different type.

Other than the changes mentioned above, this strip is identical to the RA-111A.
2.3 Video Detector and Amplifier

The same tube lineup is used in this section as was used in the
R234, the lok resistor that was connected across L202 in the early RA-lilA models, was deleted. (All RA-lllA models effective with chassis serial number ll2214 also contained the same change.) In addition to the deletion of the resi'stor, the coil L202 was changed.

The purpose of these changes is to improve picture quality.

2.4 Sound IF Strip

As in the RA-llla, the sound take-off point is from the plate circuit of the first video IF stage. The coupling capacitor C280 has a value of 2.5 mmf in these models whereas it was 1.7 mmf in the early RAlliA models. The reason for this change is to improve sound attenuation.
The discriminator transformer 2203 has been changed. The purpose of the change is to produce more sound output. Examination of the schematic indicates the following changes:
The secondery winding of the discriminator is not center-tapped. Instead, two capacitors are connected ecross the secondary winding and the tap is taken off at the junction of the se capacitors.
2.5 Audio Amplifier Section

The Audio Amplifier Section is practically identical to the RA-llla circuit.
The triode section of the $6 T 8$ (V203) functions as the voltage amplifier. The output from this tube is then used to drive the sound lifier. The output which uses a 6 aQ5.

This chassis will elso be used in a combination model to be known as the Tarrytown (includes AM radio and three speed record changer). Certain provisions have been made in the audio output stage for use in the Tarrytorm only.

The AM radio used in the Tarrytown will inclucie a tone control. The The AM rad shielded lead s^{2} owm between pin the tone control in the AM tuner back to the to the grid of the audio outpu

The short show across R323 (grid circuit of V204) is not an error. This will be removed when the AM tuner is used. R323 is a new resistor and was not used on the RA-lllA models. C279 (plate circuit of V2O4) will also be removed when this chassis is used in the Tarrytown.

MODELS RA-112-A1, RA-112-A2, RA-112-A3, B1, RA-113-B2, RA-113-B3, RA-113-B4, RAB1, RA-B5, RA-113-B6, RA-113-B7, RA-113-B8 The composite sync section is substantially the same as it was in the RA-Ill Telesets.

The differences in the circuit between the RA-lllA and the RA-112A and RA-ll3 Telesets are as follows:

The video IF signal is coupled from the cathode (pin l) of the video detector (V209A) to the grid of the narrow band sync amplifier
(V212) through a 20 mmf capacitor, c298. In the RA-lllA Telesets, this connection was direct with no capacitor. A coil, identified as L214, is connected from grid to ground in the narrow band syna. amp lifier stage (V212). C298 and Ll24 were added to reduce sync compression. The remainder of the narrow band sync amplifier is identical to the RA-lllA.

The sync detector half of V2l3 remains unchanged but the AGC circuit is slightly different. The change consists or the addition of a "Local-Distant" switch to permit the reduction of AGC voltage when operating the Teleset in fringe areas. This circuit was included in the later RA-lll Telesets.
2.7 Vertical Sweep Section

The vertical sweep circuit is practically identical to that used in the RA-lllA.

The differences in the circuit between the RA-lllA and the RA-112A and RA-ll3 Telesets are as follows:
R288 in the plate circuit of V220A, is changed from 2.7 K to 3.3 K to improve vertical sync.

C271 in the grid circuit of V220B is changed from. 003 to . 01 mf and R? 93 is changed from 1.8 meg to 390 K to reduce the pulse voltage on the vertical deflection amplifier plate.

R296 in the plate circuit of $V 220 \mathrm{~B}$, is changed from 5.1 K to 4.7 K in order to reduce the packing at the top of the raster.
A. 30 mr capacitor (C294) shown below V220B is added in series with C248A to reduce the possibility of C248A breaking down inasanch as this part of the circuit is connected to the boosted B+ line.

The plate circuits of the vertical saw generator (V220B) and vertical deflection amplifier (V22l) are returned to the boosted B+ line from terminal 5 of the flyback transformer (T401). This source of voltage has improved regulation under varying operating conditions. It also provides a higher voltage for the plates of the vertical deflection amplifier than is available from the low voltage supply. This insures adequate vertical size for the larger picture tube sizes.

The vertical output transformer usually used in Du Mont Tclesets had g turns ratio from primary to secondary of 10 to 1 . The vertical output transformer used in these Telesets has a turns ratio of 11 to ed The specirications of the vertical output transformer were chan ged to accomoriate the yoke used with these mocels.
2.0́ Composite Sync Section

A separate filament transformer (T205) insulated for 5000 volts is used for the 6W4 (V217) due to the higher peak voltage found in this circuit.

A look resistor (R324) has been added from one side of the AC line to ground to reduce the shock hazard.

Three dial lamps (I201, I2O2 and I2U3), rather than one, are used and the dial lamp dropping resistor (R309) found in the RA-lllA has been deleted in order to adequately light the different type of dial used in these Telesets.

The values of R280 and R231 have been changed due to the different focus coil (L209) used in these Telesets.

> 3.0 Installation Section

I'he serviceman should encounter no particular difficulty when installing one of the RA-112A or RA-113 Telesets. It is suggested, however, that if these are the first Du Mont Telesets he will in stall, that reference be made to the Installation Section of the RA-lllA Service Notes for further information.

Particular attention should be given to the use of the proper coaxial cable. This will depend upon the signal strengths of the stations at the location where the set is to be installed.

4.0 Service Sheets

Although the basic RA-lllA chassis is used in these models, sufficient changes warranted the issuance of a special schematic diagram.

As indicated on the RA-ll2A - RA-ll3 Alignment Sheet, the procedure will apply to the RA-lllA Telesets as well as these models.
No new block diagram was issued since the llock diagram will be the same as the RA-lllA. except for the additional tubes and, in the case of the 4 th video IF and horizontal deflection amplifier, different tubes.
All a djustments on tris rodel are identical to those in the RAllla end the servicemen should refer to the "Block Diagram, Adjustments end Trounle Shooting Sheet for the model RA-lliA".

> 5.0 Service Procedures and Troubleshooting tints

This section of the service notes for the RA-112A RA-113 Telesets will include inforration pertaining to various servicing and troubwll include nooting procedures that reauire detailed information. Additions to this section will be made whenever necessery.

NOISY INPUTUNER
(See Section 5 of the RA-llla service notes for information on
cleaning the Inputuner.)

INPUTUNER DIAL MECHANISM
(for serial numbers below 126293 and 135323)

1. Remove three pilot lights, with their clips.
2. Remove dial pointer by pulling outward.
3. Twist four tabs (A) holding dial to mounting plate, and remove
4. Remove defective dial cable, taking care to retain cable tension spring (B) If spring is missing, it may be obtained by ordering part \#3001440].
5. Rotate Inputuner tuning shaft (C) full counter-clockwise. This will place the cam assembly (D) in the position shown.

- Flace pointer pulley (E) in position shown.

7. Fasten cable tension spring (B) to loop at end of dial cable. String dial cable as shown, starting by placing cable guard (F) in position. Use both hands and string two halves of cable as illustrated. Make sure that cam follower (G) is not disengaged frome am (D).

Note: If insufficient tension in cable, run cable tension spring (R) around pointer pulley (E) hub in directicn opposite to that shown.
9. Replace dial, fastening by slight twis+ing of four tabs (A). 10. Replace three pilot lights.
ll. Place Teleset in operation, tune in a known high channel station, and place dial pointcr in correct position. Pointer should then fall in proper calibration for lower channels. If, necessary, minor adjustment of pointer position may be made to correct calibraticn. Take care that pointer does not rub against dial at any point.

If dial cable not readily available, make up as follows:

PROCEDURE FOR DIAL CALIBRATION
(RA-112A below serial \#126293 and RA-ll3 below serial \#135323)

1. Remove three pilot lights, with their clips.
. Remove dial pointer by pulling outward.
Slightly twist four tabs (A) holding dial to mounting plate, and remove dial. Care sholild be exercised not to break tabs(A).
. If dial cable requires restringing, follow procedure shown
2. If side (M) of dial mechanism is not parallel with side (N) of bearing bracket (0), loosen screw's (I), (J) and (L) and square dial mechanism by aligning sides (M) and (N). Then tighten screws (I), (J) and (L).
3. Turn tuniner shalt (C) fully counter-clockwise
4. Turn cam (D) one turn clockwise until hole (P). in cam is aligned with hole (Q) in dial plate (R) behind cam (D).
5. Push eear (S) downwards until gears (S) and (T) mesh completely. Back gear (S) off slightly to prevent binding.
6. Re-check alignment of holes (P) end (Q).
7. Tighten screws (H) pnd (K).
8. Cautiously rotate tuning shaft (C) to check for binding of cears (S) and (T). If king occurs, repeat steps 8, 9, 10 and 11.
9. Replace dial, fastening by slight twist of four tabs (A):
10. Replace three pilot lights.
11. Return tuning shaft (C) to fully counter-clockwise position. Replace dial pointer so that it falls on high frequency side of channel 13 box by the width of the pointer.
12. Place Teleset in operation. Pointer should fell in proper calibration on all channels. Minor adjustment of pointer position may be made to correct calibration, if necessary, or four flanges at (A) (not tabs) may be cent slighty downwards; (7-13) and downwards on low channels (2-6). Take care that neither pointer shaft nor pointer rubs against dial at any point.

Note: Calibration has been altered in some cases reported from the field due simply to the pointer sticking against the plastic cial window. To overcome this condition, the bolts holding the chassis mounting roards should be loosened and the chassis moun-RA-112-A4, RA-112-A5, RA-112-A6, RA-113B1, RA-113-B2, RA-113-B3, RA-113-B4, RA-
ting board moved backward es far as possible. The bolts should then be re-tightened. This will provide sufficient clearance between the dial pointer and the plastic window. The pointer should then be reset according to steps 15 and 16 above.

PROCEDURE FOR REPLACEMENT OF DIAL CABLE ON SKIP BAND TUNER 89003911 (used in RA-ll2A above serial \#l26293 and RA-ll3 above serial (\#135323)

1. Remore three pilot lights with their clips.
2. Remove dial pointer by pulling outward.
3. Twist four tobs (A) holding dial to mounting plate and re-
4. Twist four
5. Remove defective disl cable. (It consists of two identical
6. cables. referred to as \#l pnd \#2.)
7. Rotate the Inputuner tuning shaft (B) fully counter-clockwise (extreme high frequency position) end place pointer pulley (G) in position shown in dial stringing sketch.
8. Be sure that idler tension spring (C) is in place. If it is - Be sure that ider tension spring \quad is ing, it may be obtained by ordering part \#30015901.
9. Wedge knotted end of dial cable \#l so thet it is held in place by post on gear behind spiral pulley at. (D).
10. String dial cable (l in direction of arrows shown on dial stringing sketch. Dial cable \#l must ride in idler pulleys al (E) and (H^{\prime}) (E) and (F) and must be strung on inside of groove of pointe (G) towards dial plate (M), making one complete turn around pointer pulley (G). Make sure that idler pulleys (E) and (F) are free to turn and move in and out.
11. Insert loop end of dial cable \#l over lance (H).
O. Fold pointer pulley (G) in position shown in photograph with rubber band (I) placed temporarily between (J) and upper left-
hand tab (A).
. Insert knotted end of dial cable \#2 in hole at (K) and string in counter-clockwise grooves approximately four turns as shown in sketch.
12. String dial cable \#2 in direction of arrows around pointer pulley ((g) approximately one-half turn, as shown. Dial cable \#2 must be strung on outside of groove of pointer pulley (G) away from dial plate (M).
13. Insert loop end of dial cable \#2 over lance (L). Center dial cable \#2 over extrusion(N).
14. Remove rubber band (I).
15. Cement knotted end of dial cable \#2 in plate at (K).
16. Replace dial, fastening by slight twist of four tabs (A).
17. Replace three pilot lights.
18. With tuning shaft (B) fully counter-clockwise, replace dial pointer so that it falls iust inside of high frequency side of channel 13 box by the width of the pointer.
19. Place Teleset in operation. Pointer should fall in proper calibration on all channels. Minor adjustment of pointer position may be made to correct calibration, if necessary. Take care that pointer does not rub against dial at any point. PROPER POSITION OF AGC LOCAL-DISTANT SWTTCH

If a condition is encountered in a strong signal area where the strongest station rolls vertically, whereas other stations hold sync properlv, the trouble may be caused by improper setting of the local-distant switch. If the local-distant switch is set at the distant position in a strong signal area, it is possible that sync compression may result on the strongest stations, thus causing the picture to roll.

RA-112A - RA-113 Section A5, RA-112-A6, RA-113-B1, RA 113-B2, RA-113-B3, RA-113-B4,

SKIP BAND TUNER DIAL MECHANISM (for serial numbers above 126293 and 135323)

Several cases of AM radio interference caused by sweep radiation have been reported. By-passing each side of the AC line at the Teleset with .02 mf , 000 volt capacitors will reduce this interference. The capacitor leads should be kept as short as possible. The part number of these capacitors is 03018570. This change is incorporated in RA-ll2A Telesets beginning with serial number 1211601 and RA-113 Telesets beginning with serial number 1313901.

> IMPROVEMENT OF SOUND SENSITIVITY

In any location where it is found that the sound output is insufficient, it may be substantially increased by making the following simple modificetion:
Connect a 10 mfd (or larger), 25 volt capacitor in parallel with R126 the cathode resistor of the OAQ5 sound output stage. The part number for the 10 mf d, 25 v vit capacitor is 03016730 . This capacitor is being installed in current production.
 (above serial $\mu_{1} 126293$ and $/=135353$) (Skip Band Tuner)
If dial cables are not readily available, make up as follows (two required):

ION TRAP MAGNET ADJUSTMENT

You have probably noticed that on current Telesets it is necessary to place the ion trap magnet over the hase of the cathoderay tube in order to get the correct adjustment for maximum brightness.

Although contrary to the installaticn instryctions, this new pos ition is the result of a slight char e in the diesign of the electron gun in the cathode-ray tube. Duw to this design change, Therefore, the positirn of the mamet indicates that it is too strone to be placed on the glass neck and, therefore, nust be placed back over the bese. Under no conditions should this magnet be placed next to the focus coil.

DEFECTIVE VIDEO IF TRANSFORMERS

Some complaints of breakdown of the ceramic coupline condenser in the video IF transformers have been received. The condition ncruntered was an arc-over between the end or the silvered ceramic tube and the bare wire thet fits in it. These transformers are used in the RA-112A and RA-113 Telesets. The condition was corrected b: the use of a synthetic coated wire. It is not necessary to replace the entire transformer to correct this defect. Instead, the bere wire should be removed from the ceramic tube and a 1.5 mmf 400 volt type GA-3 Stackpole capacitor, or equivalent, should be connected hetween terminals 2 and 4 (grid to plate) of the transformer. After making this change, a slight amount of rephasing of the grid and plate coils of the, respective transformers will usually be necessary.

MODELS RA-112-A1, RA-112-A2, RA-112-A3 RA-112-A4, RA-112-A5, RA-112-AG, RA-113B1, RA-113-E2, RA-113-B3, RA-113-B4, RA

Vides Amplifier substitution Fresent Schematic Circuit

(4811) 1. The tvpe GBA6 tube may be used as a replacement for the type GAUG in the first and second video IF stagos, providing that both GAUG's are replsced by two GBAO's simultaneously. (This substitution may be made in the field in any of the current Telesets.)
(Li912) 2. A type 6CB6 tube may be substituted for the 6AU6 in the second sound IF amplifier of the RA-112A and RA-113. This substitution requires the addition of a tube shiela, part number 42002530, and a shield base, part number 42002540. The latter may bo readily soldered in place in the field, rather than riveted or bolted.
(4813) 3. A $6 C E O$ may be substituted for the OAHO video amplifier, V210, in the RA-112A and RA-113 without any component changes but with a simple wiring change. Pins 2 and 7 must be interchanged and the plate circuit must be tied to a 200 voll point rather than 305 volts, as shown in the sketch following.
(4814) 4. A 6BC5 may be substituted for the GAU6 first sync clipper, v219, in the RA-112A and RA-113. This change does not require the addition of perts or wiring.
(4789) 5. The type GAC7 may be substituted for the GAh6 video amplifier in the RA-ll2A and RA-113 Telesets. This tube is not a direct substitute and several items will have to be changed.
These are as follows:
(a) The socket is to be changed from a miniature (part number (a) 34001220) to an octal (part number 34002380).
(b) R241 is to be changed from 4.3K 5\% 2W (part number 92036631) to $23.9 \mathrm{~K} 5^{\prime \prime} 2 \mathrm{~W}$ (part number 02036620 alternate parts are: 02046620 and 02056620).
Any of the above substitutions that heve been made can be determined by identifying the code number stamped on the back of the chassis and referring to the following table. Normally, you will find a large letter stamped on the rear of the chassis. Alongside of this letter will be a number. The significance of the letter designation will be found in the service notes perteining to the model Teleset in question, providing it has a bearing on the service information. The numerical designation refers to one of those listed below and thus indicates the substitutions that are made.
Obviously. future additional substitutions will result in higher code numbers (5, 6. etc. for example). However, these code numbers will apply each time the substitution is made.

Substitution | Code Stamped Chassis |
| :--- | Model Teleset Serial Numbers

4813
RA-113
$\begin{array}{lll}4813,4814 & 2 & R A-113 \\ 4811,4814 & 3 & R A-112 A\end{array}$
1311027 to 1311736, Incl. 1312719 to 1312999 1311737 to 131271 , 1213901 to 1214650 RA-112A 1214651 - still in effect.
Although any of the above substitutions may be made in the field to Telesets not already incorporatine the se changes, it is important that the combination of substitutions 4811 and 4813 not be made together. The reason is that if both substitutions are applied to one set, a loss of gain will result. This will not be apparent in the strong signal areas. However, in the weak signal
areas, the decrease in sensitivity will be noticed.
The substitution listed below has been incorporated in the chassis designated under the heading "Sericl Numbers". No code number appears on these chassis as this procedure was not in effect at the time the substitution was made.

Substitution
4789

Model
RA-112A
Serinl Numbers
1210824 to 1212823

MODELS RA-112-A1, RA-112 A2, RA-112-A3, RA-112-A), RA-112-A5, RA-112-A6, RA-113-B1, RA-113-B2, RA-113-B3, RA-113-B4, RA-$113-\mathrm{B5}$, RA-113-B6, RA-113-B7, RA-113-B8

Change \# (M-172)

Capacitor C210, 10 mr is added in parallel with R2l6, 270 ohm, cathode resistor of GAQS second sound amplifier.
New pert is listed as follows:

$\frac{\text { Symbol }}{\text { C216 }}$	Part Number 03016730 03014100 03015310	$\frac{\text { Description }}{\text { Cap E 10 mf }} 25 \mathrm{~V}$
Purpose	ange - To in	sound sensiti

Add capacitors C304 and C3U5, . 02 mf condensers from each side of the AC line to ground
New parts are identified as follows:

$\frac{\text { Symbol }}{\text { C304 }}$	$\frac{\text { Part Number }}{03013570}$	$\frac{\text { Description }}{}$
C305 Cap Pa .02 mf	$20 \% 600 \mathrm{~V}$	
	03100230	

Purpose of Change - To reduce sweep radiation.
This change was first incorporated in the followine chassis starting with the serial numbers shown
RA-112A - \#1213901
RA-113 - \#1311795
These chassis are identified by a letter "J" stamped on rear of chassis.

Change \#8 (ECN-4396)
The following changes are made to the RA-112 - RA-113 Schematic Diagram (first edition, July 3, 1950):

Color of peaking coil L201 cranged from red to white. Color of peaking coil L202 changed from white to orange. Color of peaking coil L2OL chanced from yellow to blue.

New parts are Symbol	identified as follows: Part Number	Description
L201	Coil Video Peaking L202	21006627
L204	Same as L201	Coil Video Peaking

Change (ECN-4406)
Delete coupling capacitor C2SS connected from pin 1 of V203 to ground.
Purpose of Change - Psrt is not renuired.
Change H10 (ECN-M19)
Inputuner assemoly is replecec by new Skip Band Irputuner (see liote
Now unit is identified as follows:
$\frac{\text { 01d Part Number }}{89003902} \frac{\text { Ntw Part Number }}{39003911} \frac{\text { Description }}{\text { Inputuner Assembly }}$
The new Skip Band Inputuner was first incorporated in the following chassis starting with the serial numbers shown: RA-113 - \#135323

Note: If the tiner (Part \#89003902) being replaced is in an RAll2A Teleset the serial number of wich is l22096 or later, or if it is in on RA-113, the serial number of which is 132212 or later, the Skip Band Tuner is directly replaceable. However, if the tuner (Part \#'09003901) being replaced is in a Teleset the serial number of which is under those mentioned above, it will bo necessary to remove the IF transformer mounted on the defective Inputuner and substitute it in place of the IF transformer mounted on theplace the with the method of coupling with the new type tuner is different from that n earlier tuner.

Change \#ll (ECN-4428)
Change value of capacitor 6237 (V213-1 to ground) from 150 rmf to .05 mf .
New part
Symbol
vmbol is identified as follows:
Pert Number
03000950
Description
Cap Pa . $05 \mathrm{mf} 20 \% 200 \mathrm{~V}$

Purpose of Change r To reduce tuneable hum.
This chenge was first incorporated in the followinध chassis starting with the serial numbers shown:
RA-112A - \#1214076
RA-113 - \#1312685
These chassis are identified by a letter "K" stamped on rear of chassis.

Change \#12 (ECN-4391)
Specifications for the 19" CRT (V215) used in RA-112 models are changed due tc chenge in color of face plate.
athode ray tube is nor identified as follows:
$\frac{\text { Symbol }}{\text { V211 }}$
part Number
Description
Tube CRT 19APLA

Change \#13 (M-192)
The following changes in fuse connections (F202 are made as shown in sketch. This is done to reduce AC current through the fuse.
Dotted lines indicate old fuse connections. Sclid lines indicete new connec.tigns
7.0 PARTS IIST CHANGES

The following changes of part numbers and additions of alternate part numbers (items - 4) are to be made to the Parts List of the first edition (JuIV 3, 1950) of the Schematic Diagram for the RA-112A, RA-113 (issue \#4 through M-145).

1. Part, number changes in Main Chassis Parts Li: 't (June 17, 1950)

Symbol	$\frac{\text { Part Mumber }}{\text { C216 }} 03016730$	Description
Cap E 10 mf 250		

03010730
13014100
Cap E 10 mf 250

Cap Ce . Col mf 20\% 350y

03015310
03020730

© John F. Rider

Note: Chassis incorporating all changes up to and including change \#13 are stamped "V". on the right-hand side of the power supply Change \#14(FCN-4366)

This chance was made to prevent breakage of the AC interlock; the mounting bracket heing redesigned.

$$
\begin{aligned}
& \text { The parts affected } \\
& \text { 01d Part No. } \\
& 09016450
\end{aligned}
$$

Telesets incornorating this change are stamped with a letter "G" on the back of the chassis starting with the following serial numbers:

$$
\begin{aligned}
& \text { the chassis starting with the following serial } \\
& \text { RA-1l2A - } 127168 \text { RA-113 - } 136278
\end{aligned}
$$

Note: Chassis incorporating all changes up to and including change
\#ll are stamped "W" on the right-hand side of the power supply. Change \#15 (M-198)
he following changes are made to increase the sound sensitivity and improve the limiting action in the RA-ll2, RA-ll3 chassis:

1. Change 7205 and V207 from OAUO's to OBA6's

- Remove R222, the 8.2 K in the screen supply circuit of $V 205$. Connect the junction of R220, (screen dropping resistor of V205) and
R225 (screen dropping resistor of V206) to the +135 volt line
Rcreen dropping resisotr of v207) and replace each with a lok $1 / 2 \mathrm{~W}$ 10\% resistor.

4. Connect a $100 \mathrm{~K} 1 / 2 \mathrm{~W} 20 \%$ resistor between terminals 1 and 2 of Z202. chis will be identified as R278.
5. Connect a $47 \mathrm{~K} 1 / 2 \mathrm{~W} 20 \%$ resistor between terminals 3 and 4 of $Z 201$

This will be identilied as R277.
6. Disconnect Z205 (blue dot) and Z206 (red dot) and exchange the positions of these two transformers.
7. Remove R227 (39 ohm cathode resistor of V2U6) and replace with a 120 ohm 1/2W resistor.
8. Remove C219 (. 005 mfd cathode bypass of V207) and connect from pin 7 of V206 to ground.
9. Remove R228 (120 ohm cathode resistor of V207) and replace with a 68 ohm $1 / 2 W$ resistor.
10. Disconnect terminal \#3 of 2200 from ground.
ll. Disconnect C 217 (.005 mfd) and R223 (10K) from pin \#3 of 2205 and reconnect to pin \#3 of 2206 (see step 10.)
12. Connect terminal \#3 of 2205 to ground.
13. Disconnect $\mathrm{c} 280(2.5 \mathrm{mmfd})$ from terminal 2 of 2205 and reconnect to terminal 2 of Z 206 .
Note: All of the above changes appear in the second edition of the schematic diagram for the RA-112, RA-113, dated October $2,1950$.

After making the above changes $Z 205$ and $Z 206$ should be realigned. Z205 should be aligned for the response curve listed for Z206 and 2206 should, therefore, be aligned for the response curve of 2205 .

New Parts are identified as follows:

$\frac{\text { Symbol }}{\text { C280 }}$	$\frac{\text { Part Number }}{03016898}$	Description Cap Coupling 2.5 mmf
R220	$\begin{aligned} & 02032430 \\ & 02042480 \end{aligned}$	Res F C lok $10 \% 1 / 2 \mathrm{~W}$
	02052480	
R2 24	$\begin{aligned} & 02031660 \\ & 02051660 \end{aligned}$	Ros F C l2u chm lo\% l/2W
R228	02031630°	Res F C 68 ohm 10\% 1/2W
R229	Same os R220	
R277	$\begin{aligned} & 02032520 \\ & 02042520 \end{aligned}$	Res F C $47 \mathrm{~K} 20 \% 1 / 2 \mathrm{~W}$
R278	$\begin{aligned} & 02032540 \\ & 02042540 \\ & 02052540 \end{aligned}$	Res F C look $20 \% 1 / 2 \mathrm{~W}$
V205	25000240	GBAC lst video IF
V207	25000240	CBAG 3rd vidco Ir
7205	20004741	Trans video IF
2206	20004711	Trans video IF

This change was first incorporated in the following chassis starting with the serial numbers as shown:

RA-112A - 1216694
RA-113 - 1314251
These chassis are identified by the letter "L" stamped on the rear of the chassis.
Change \#16 (M-202)
The following changes are made in order to eliminate video smear
in the video amplifier section of the RA-112A - RA-113 chassis.

1. Change value of R235 tetween L201 and rround from 4.3 K to 3.9 K $5 \% 1 / 2 W$.
2. Change value of R24l between 2.04 and +305 V from 4.3 K to 3.9 K 5\% 2W.
3. Change value of R240 between '210-6 and +305 V from 62 K to 68 K
4. Chance value R 305 between L 205 and L 203 from 10% to $10 \mathrm{~K} 5 \% 1 / 2 \mathrm{~W}$. (See change \#3).
5. Disconnect paraliel combination of R305 and L202 and replace with solid connection
6. Add R305 and L202 in series with V210-5 and the junction of R317, c? 85 and L204
. Change value of L2O2 from orange to rea
7. Disconnect C 231 from junction of L204, C285, R317, and connect to v210-5.

New parts are identified os follows

This change was first incorporated in the following chassis starting with serirl numbers as shown:

$$
R A-112 A-1213684 \quad \text { RA }-113-1314090
$$

These chassis are identified by the letter "L" or "N" stamped on the rear of the chassis.
Change $\$ 17$ (M-204)
The following change is made to eliminate video from sync which is occurring in some receivers and causing slight displacement of some parts of the picture. This condition can also cause a "whip" in the picture.
Change value of C298 between V212-1 and V209A-1 from 20 mmfd to 47 $\mathrm{mmfd} 10 \% 500 \mathrm{~V}$ ceramic.

| Symbol | $\frac{\text { Part Number }}{\text { C298 }}$ | 03012730 |
| :--- | :--- | :--- |\quad| Description |
| :--- |
| |

This change wes first incorp
This change was first incorporated in the following chassis starting with serial numbers as shown
RA-112A - 1213684

$$
\text { RA-113 - } 1314090
$$

These chassis are identified by the letter "L" or "N" stamped on the rear of the chassis.

Chance \#l8 (M-208)

The following change is desirable to provide greater surge protection for capacitor C29l.

Change value of $\mathrm{C} 291 \mathrm{from} .02 \mathrm{mfd} 10 \% 400 \mathrm{~V}$ to $.02 \mathrm{mfd} 20 \% 600 \mathrm{~V}$.
New part numbers:

Symbol	$\frac{\text { Part Number }}{03015550}$	\quadDescription 03100230

Chenge \#19 (M-206)
In order to minimize horizontal frequency drift the present capacitor C 246 is to be replaced by an oil impregnated type of the same value.

New part number:

| Symbol | $\frac{\text { Part Number }}{03101540} \quad \frac{\text { Description }}{\text { C246 }} \quad$ Cap .01 5\% 600V |
| :--- | :--- | :--- |

Chance \#20 (M-212)
The following change is made in order to increase the sensitivity of the AM Tuner (in RA-li3 Tarrytown).

Procedure:
Delete RLIO, 270 K resistor replacing it with a wire jumper.

Change \#21 (M-215) The following change is to be made to reduce the possibility of verticol frequency drift.
Frocedure:
Change value of $\mathrm{C} 27 \mathrm{from} .0110 \% 400 \mathrm{~V}$ to . $015 \% 600 \mathrm{~V}$
New part numbers:

Symbol		
C 271	$\frac{\text { Part Number }}{03101540} \quad \frac{\text { Description }}{}$	Cap Pa.01 mfd $5 \% 600 \mathrm{~V}$

All production changes prior to this point are incorporated in the Main Chassis Schematic RA-112A RA-113, second Edition, 10/2/50, and Tarrytown AM Tuner Schematic, First Edition, $8 / 15 / 50$.

Change \#22 (M-222)
The following change was made in order to decrease audio distortion at rated output.

Procedure:

1. Delete R308.
2. Change value of R 307 from 3.9 K to $1 \mathrm{~K} 2 \mathrm{~W} 10 \%$.

Both these resistors are located near V204-6.
New Part numbers:
$\frac{\text { Symbol }}{\text { R307 }}$
Part ITumber
Description
02037770 Resistor F C 1K 2W 10\%

Change "23 (M-239)

The following change should be made to prevent the shrinkage or complete loss of vertical size due to the increasing resistance of R294 caused by overheating.

Procedure:
Change R2o4, near v220B, from 9l0K 5\% l/2W to 910K 5\% lW.
Part Numbers affected:
$\frac{\text { Symbol }}{\text { R294 }} \quad$ Part Number
R294
02034190
Description

Change \#24 (M-213)
Several wiring changes have been made to simplify the manufacturing process and eliminate certain difficulties that existed due to lead dress and component location. None of these changes require new mech anical parts or electrical components.

The most significant change as far as servicemen are concerned is the relocation of R324 and C305. The new location will reduce sweep radiation and improve the audio noise level.

These parts have been removed from the front of the chassis (formerly connected from the terminal of power switch to ground) to a terminal strip at the rear of the chassis near the power transformer.

The chassis containing these changes are identified by a large letter "P" on the rear fold of the chassis. The serial numbers of the
chassis containing these changes are:

$$
\begin{aligned}
& \text { containing these changes are: } \\
& \text { RA-112A-1216706 }
\end{aligned}
$$

The number 5 which follows the letter P signifies that a $6 B C 5$ is substituted for a OAUO in the first sync clipper stage.

PRELIMINARY STEPS

CAUTION: IT IS IMPORTANT THAT ALL NOTES BE READ IN CONJUNCTION WITH ALIGNMENT. The following preliminary steps should be followed:
Remove 6W4 (V217) damper, 6AK5 (V102) mixer, 6AB4 (V103) oscillator, 6AQ5 (V204) AF output (note 1) and 6AU6 (V2 19) first sync clipper.

ALIGNMENT
I. 6 AQ 5 (V204) may be left in position only if speaker is connected
2. Insert 6 AU6 adapter at V219. This is a $6 A U 6$ with pins $3 \& 4$ clipped off and an extension attached to pin 1 . (Pin 1 is not clipped.)
3. If the sweep generator has no internal marker, a signal generator may be connected to the output cable of the sweep generator through a 100 mmf condenser to act as a marker generator.
4. Insert 6AK5 adapter at the mixer, V102. This adapter is a 6AK5 with pin 1 \ll clipped off and an extension attached to the remainder of pin 1 , as shown. 5. Inputuner should be tuned to channel 7, or higher.

L2 13 adjusts the coupling. The bottom adjustment of T202 is reached through top of can with hex head alignment tool. Whenever the Inputuner is replaced, below 122696, and RA-113 below 132212, do not contain L213 a serial number pertains: The bandwidth of the Ist stage of video If is controlled by following loop in the mixer transformer, T202. This is adjusted and sealed in a coupling the factory and should not be touched. However, in case of replacement of the Inputuner, it should be adjusted for the curve shown in Step No. 8. Steps No. 7 and 8 may have to be performed in order to obtain the proper curve. After adjustment, fasten the coupling loop in T202 with Miracle Adhesive C2M55 obtainable from Du Mont Spare iarts Sales).
6. Maximum possible output of the sweep generator should be used, checking for overload.
7. If this curve cannot be obtained, proceed to Step 7, followed by Step 6.
8. If difficulty is encountered obtaining the proper bandwidth, heat the wire protruding from the bottom of this transformer with a soldering iron to soften the adhesive. Then sligh the wire in (for increased bandwidth) or out (for decreased bandwidth) of the sleeve. Seal the wire in place with Miracle Adhesive C2M55 (obtainable from Du Mont Spare Parts Sales).
9. Reference is made in the Alignment Table to the use of a crystal probe. This device is merely a crystal rectifier with the necessary filter. The polarity of the curve will be reversed if the terminals of the IN34 crystal are reversed. This will cause no difficulty. The circuit of the crystal probe detector is as follows:

probe detector
10. Tune by tuning eye to the strongest station. Turn AGC control fully clockwise Then turn this control counter-clockwise until the picture brightens. Finally, turn I. Even though the alignment has been pertor
to correct the phase response of the video IF strip in and ringing from the picture. This is done in the factory by to remove smearing signal modulated by a 100 kc square wave to the front end of the Teleset and displaying the detected square wave (which has passed through the video strip) on an oscillograph after amplifying it by means of a special wideband amplifier The alignment is checked by observation of the square wave and SLIGHTLY re-adjusted, if necessary. If slight re-adjustment does not correct the square wave form, the chassis is completely re-aligned. A practical approach to this method in the shop (after completing the alignment procedure) is to tune in a strong test
pattern known to be of good quality and ghost-free (by observation on several normal Telesets). If smearing or ringing is observed, the following adjustments are recommended. No other adjustments should be made. Limit adjustments only to those absolutely necessary.

SMEAR: Re-adjust Z204 bottom slug not more than 1 turn.
Re-adjust 2208 bottom slug not more than $1 / 2$ turn.
$\begin{array}{ll}\text { RING: } & \text { Re-adjust } Z 205 \text { top slug not more than } 1 / 2 \text { turn. } \\ \text { Re-adjust Z207 top slug not more than } 1 / 2 \text { turn. }\end{array}$

ALIGNMENT SET-UP

I. Keep all coax cables as short and as well shielded as possible.
2. Ground metal bench to a good earth ground.
3. To test set-up feed signal into grid of mixer thru a 100 mmf condenser. If placing hand on any chassis or adding additional grounds at any point affects waveform or if Teleset has a tendency to oscillate, grounding must be added until these effects disappear.

NOTES:
I. Unmodulated and amplitude modulated RF should cover 20 to 30 mc range. Also 4.5 mc . Not necessary if marker is built into sweep frequency generator.
2. Should have center frequency rance from 20 to 30 mc . Sweep should be adjustable up to 6 mc at least.
3. We recommend use of internal saw-tooth sweep. Waveforms shown were taken using this sweep. External sweep from sweep frequency generator may be used if preferred.

MODELS RA-112-Al, RA-112-A2, RA-112-A3, RA-112-A4, RA-112-A5, RA-112-A6, RA-113 B1, RA-113-B2, RA-113-B3, RA-113-B4, RA $113-B 5, R A-113-B 6, R A-113-B 7, R A-113-B 8$

0
$\frac{0}{3}$
0
0
2
-1
$<$
0
0
2
m
0
1

© John F. Rider

© John F. Rider

(c) John F. Rider

lacement of Receiving Trubes

1. The receiving tubes shall be placed in the following sockets: Socket
Horizontal Transformer

5U4G L. V. Rectifier
5V4 Damper
1B3/8016 H. V. Rectifier
GSNT Vertical Osc. \& Amp
GAK5 and 12AT7
GAU6 First Sound I.F
6AU6 Second Sound I.F.
$6 T 8$ Sound Discriminator
6VGGT Audio Output
6AG5 First Video I.F.
GAG5 Second Video I.F.
6AG5 Third Video I.F.
GSN7 Video detector and lst Video Amp.
6SN7 Video Output
SNN7 Separator and Sync. Amp.
SNT Hor. A.F.C. and Oscillator
6AU5 Horizontal Output

- IV2 High Voltage Rectifiers

The picture tube used with this kit is the 16GP4 metal shell, short, wide angle cathode ray tube. Before installing the picture tube be sure that all tubes are in place and firmly seated in their sockets. The picture tubes should be removed from its carton and handled carefully with both hands on the metal portion. Try not to touch the flared glass portion of the tube immediately ahead of the neck as this is an insulating barrier between the charged portion (shell) and the deflection components (yoke, etc.) and finger marks can cause a leakage path for the high voltage to flow to ground. Never handle the tube by the neck unless it is held face down as this is a dangerous way to handle picture tubes. Note that there is a metal lip around the circumference of the tube at the screen end. This serves the purpose of allowing the anode connector to clip on and also serves to engage the plastic insulating ring which should be mounted at this time after snapping connector in place. The connector can be mounted at any point along the lip. The neck of the tube should now be inserted through the deflection yoke and focus coil assembly and pushed back until it is firmly seated against the exposed coils of the yoke. The plastic ring should rest on the thin portion of the tube rest. The beam bender should then be slipped on the neck of the picture tube. The correct adjustment of the beam bender will be determined later when testing or the raster of light, its function being to insure brightest illumination on screen. Do not connect high voltage anode wire to connector or connect picture tube socket to tube yet. CAUTION. DO NOT PLUG SET INTO A. C. OUTLET YET. ALSO ON HIGH VOLTAGE CHECK YOU MUST REALIZE AT ALL TIMES THAT THE METAI SHELL IS HIGHLY CHARGED AND CONTACT WITH ANY PART OF THE SHELL WILL RESULT IN A SHOCK. (STARTLING, BUT NOT DANGEROUS).
Alignment of picture and Sound
Before attempting alignment, be sure that your antenna lead-in is connected.

1. Check with your local television station to find what hours during the day the static test pattern and sound signal is being transmitted. The station provides this service to assist in the alignment of receivers.
2. Procure these items:

One (1) Pair Earphones
One (1) . 1 Condenser at 400 V .
One (1) Tuning Stick (preferably plastic, non-metallic)
3. Proceed to align Receiver as Follows:
(a) Turn set off, connect the .1 condenser to one of the earphone leads. Leave the other lead of the condenser open. Attach an alligator or similar clip to the other earphone lead and another clip to the open lead of the condenser. Clip the earphone lead to the chassis and the condenser lead to the \#2 lug of socket L. Turn the channel selector to the number of your local television station. Turn on set. You can now "listen in" on the picture signal when it comes through. Be sure that volume control and contrast control are at full clockwise setting.
(b) Rotate fine tuning condenser shaft and listen for buzz in earphones. If buzz gets too loud or blocks out reduce contrast control setting slightly. Keep brightness about halfway.
(c) If no buzz is heard on this channel position of tuner, try same procedure on the channel above and channel below the channel number of your local station. If signal is heard there then it indicates that your I.F. Coils
are set too high or too lov. If results are negative then check antenna
connections and positioning. If everything appears normal but still no conne then check wiring and refer to technical section of your service notes.

The following ls a list of possible fallures and an indication of procedure for their corrections:
(d) If buzz is heard picture content should appear on raster but probably will be streaking or jumping. Ad just vertical hold control to keep picture
from jumping or sliding. If picture elements are streaking across screen then try to stop them with horizontal hold control.
(e) If a vertical bright bar appears on the left side of picture then slowly ad Just the horizontal drive trimmer until it disappears. This trimmer
also alds in adjusting for maximum high voltage. Adjust slowly until picture appears brightest. This ad justment should be clockwise.
(f) Adjust focus control until clearest line formation is obtained on picture. not make too bright as it will impair pieture quality. Note: it is sometimes necessary to move focus coll slightly along neck of tube and rotate slightly to secure focus. Before doing this adjust focus control to about mid-setting so that it will take picture through focus point position with shim
(B) Remove earphone clip from set and locate the second sound I. F. coil. This Remove earphone clip from set and locate the second sound I. F. coll. This
is coil in hole $f 12$. Rotate slug until sound 16 heard in speaker. Adjust for maximum volune. Adjust slug on top of discriminator can for maximum
volume. Adjust slug which is mounted in the bottom of the can for best volume. Adjust slug which is mounted in the bottom of the can for best
quality of sound with least incidental noise. For all difficulties enquality of scund with least incidental noise. For all diffic
countered, refer to the technical section for service notes.
(b) A simple and effective means of aligning the picture I.F. colls is by the measuring of the brass tuning shafts from chassis to tip with a ruler. The ekit is properly aligned when the measurements are as follow.

Coll	Inches	
Hole 27 (second video)	3/4	
Hole 12 (second sound)	3/4	
Hole 24 (third video)	3/4	
Hole 31 (fourth video)	7/8	
Hole 23 (sound trap under chassis)		(all way in)
Top of Discriminator	1/2	
Bottom of Discriminator	5/8	

This sould provide pictures and sound of excellent quality. The fine tuning control will enable you to center the sound with the picture. For with Instruments" in technical section. If sound bars are seen in pleture when picture and sound are coming in together turn out sound trap slug
(1) After all adjustments have been made on the I. F. colls, they should be locked with liquid cement or dope. This is important if the set is to be soved about much, as vibration will cause the slugs in the colls to change osit1on.
(y) This television receiver will perform best with a television antenna kit and a 300 ohm lead in line. These ray be purckased for a small cost from may be used. For suburban use, a multi-element antenna kit should be used Antenna installations should be of sufficient height as to clear any "line of sight" obstacles betyeen the transmitter and receiver. In some remote
(k) Alvays locate your television recelver in a part of the room there no da ect sunight or window light falls on screen. After set 16 mounted in abinet, it should be placed in its permanent place and should not be moved about. Always be sure to turn off your set when not in use. This
B. Wrinkles on left side
of raster

Possible Trouble
. No raster on kinescope
No 11 ght
(1) No high voltage - see notes on
(2) Defective Kinescope
C. Trapezoid or non-symetrical raster
open brightness control.
(3) Incorrect adjustment of beam bender
(4) Damper tnoperative. Check heater
(5) Winding.
(5) No plus, shorted electrolytic
or choke open
(6) Open peaking coll or resistor in plate circuit of video output. Check
tor.
(7) Wrong or defective connections on
(8) picture tube socket.
A.F.C. coil slug screved in too tightly.
(1) Resistors on yoke, or condenser in yoke urong value or defective
(2) Defective yoke.
D. $\frac{\text { Bright horizontal 11ne }}{\text { No vertical sveep }}$
(1) Defective 6SN7 vertical tube
(2) Vertical size control 1 mproperly
(3) $\begin{aligned} & \text { set. } \\ & \text { Check for voltages. }\end{aligned}$
g. Poor vertical linearity:
(1) Check value of 40 MPD condenser
on cathode of vertical amplifier.
Check 20 MFD condenser at vertical
output transformer.
Check. 1 condenser in vertical
(4) Check voltage on vertical oscillator
5) Lection of tube.

Low B plus. Check rectipiers
(1) Horizontal drive trimmer adjustment
incorrectly set
Horizontal 11nearity control in
Low B plus or line voltage.
(4) check voltages in horizontal circuit.

Indication
Raster - no image, but accompanying sound:

Possible Trouble
(1) No signal on kinescope grid, check for signal with earphones as ex plained in alignment procedure. Check I. F. amplifier tube, second detector, video amplifier
(2) Bad contact on kinescope tube socket shooting should be used to isolate the defective stage.
H. Signal on kinescope grid, $\frac{\text { Signal on kin }}{\text { but no sync: }}$
(1) Check sync. amplifier tube and circuit. 2) Check sync. separator circult
3) Check voltages on above and ssociated circuits.

Stgnal on kinescope grid and (1) horizontal sync. only:

Check vertical oscillator and assoclated circuit. Vertical osc1llator transformer.
(2) Vertical oscillator grid input
(3) condensers.

Check vertical oscillator input network.
J. Signal on kine scope grid and (1) Check horizontal hold control ad justment.
3) Check value of input network. Check value of horizontal
(4) Check drive control trimper adjustment.
K. Plcture stable, but poor
(1) Check grid loading resistors on
I. F. tubes.
2) Test all peaking colls for
continuity.
Check plate loading resistor on
(4) Metector and amplifier.
(5) Tubes.
(5) Makes.
operates on both sides of proper focus. If not readjust' focus coll If no improvement reverse focus coll wire connections in set.
(6) Realign I. F. Circuits. peeking colls mixed. Change to roper places.
(1) This trouble can originate in either transmitter or signal source. ?ormally, smear can be attributed This cen be caused by improper values of R end C. Check for cpen or leaking electrolytic cordenser in lst video plate circuit.
(2) Open peaking cont. Re-align
(4) Incorrect antenna orientation for observed station.
N. Oacillation or interference in Video output:
Most noticeable when contrast controls are advanced.
0. When detail is milky or not sharp:

NOTE: Before proceeding, make sure focus control is set properly.
P. If focus control is set properly and sympton continues:
Q. If picture is too small horizontally only:
R. If picture is too large both horizontally and vertically:

Possible Trouble

(1) If regular sections at the left of picture are displaced, check
(2) Vertical instability may be due to
(2) loose connections or noise.
(3) Vertical hold control not set
(3) properly.
(4) Horizontal instability may be due to unstable transmitted sync.
(5) Synchro-lock circuit improperly
(6) aligned.
(6) Voltage on plate of separator tube too high.
(7) Signal too strong or I. F. coils peaked instead of being staggered, overloading.
(1) Improper alignment of I. F. coils or cathode trap.
(2) Condenser is open between 30,000 ohm resistor and ground in plate and screen circuits of the I. F., $\stackrel{\circ}{\mathrm{or}}$
(3) Wrong value or defective resistor between grid and ground of video I. F. tubes; or
(4) Outside interference, such as excessive ignition interference, diathermy or beat frequency interference.
(5) Improper lead or parts dress. Instructions not followed properly.
(1) Loss of high video frequencies due to I. F. coils being tuned too sharply. Re-align.
(2) Peaking coils in wrong places
(3) The resistors connected to the plate of the first and second video output tubes may be off value. The resistor to the plate of the first video output tube should be of 2000 ohms; to the plate of second video output tube should be of 5000 ohms.
(4) Poor antenna installation or improper orientation.
(1) Fine tuner improperly set.
(2) Station switch on wrong channel.
(1) Trouble is in horizontal oscillator or amplifier circuit. Check parts.
(2) Screen resistor of GAUS tube too low in value. Increase
(1) Indicates high voltage is not high enough - refer to notes on checking horizontal oscillator and high
Voltage circuit
High voltage le
(2) High voltage leakage due to High voltage wires touching grounded metal. Leaky high voltage conden-
S. If sight and sound do not synchronize
T. If picture is crowded top and bottom and spread in middle:
U. Picture cannot be centered or Shadows exist in corners of picture:
(1) Sight and sound I. F. Prequencies may not be right. The should be THELEKIT tuner set megacycles.
2) Normal for remote or "fringe" or a booster required
(1) Check 40 MFD condenser on cath ode of vertical amplifier tube.
2) Defective yoke.
(3) Check . 25 MFD coupling condenser from vertical oscillator to vertical amplifier.
(4) Check voltage on vertical oscillator.
(1) See that picture tube is pushed into yoke as far as it will go.
2) Manipulate focus coil.
3) After above read just beam bender.

Circuit Description of Horizontal Deflection \& High-Voltage Circuits
A 6AU5 beam deflection tube is used for producing the necessary amplitude of the sawtooth currents in the deflection coils. The high voltage for the second anode supply is also produced from the energy stored in the deflection inductances during each horizontal scan. The sawtooth voltage applied to the grid of the 6AU5 deflection amplifier produces a sawtooth of current in its plate circuit. The plate of this tube is connected to the primary winding of the deflection transformer. A sudden change of current in the primary will produce a high inductive pulse on the plate of the tube 6AU5. The sudden ceasing of plate current caused by the cutoff of the tube during retrace will cause the circuit to oscillate. The voltage across the yoke must be maintained uniformly constant during trace. In order to obtain this uniformity the 5 V 4 damper tube is connected across the deflection coils to remove the oscillation following the retrace pulse. Thus, during the trace period, the volta through the yoke for deflection. The pulse voltage on the plate of 6AU5 is stepped up and rectified, and the rectified voltage is filtered, doubled, and applied to the second anode of the kinescope.

Returning to the 5 V 4 damper, the B plus voltage is supplied to the 6AU5 through this tube which is conducting over the major portion of the trace. The condenser in the cathode circuit (10MFD.) is fully charged during this period and at the time when the damper is not conducting, this charge is sufficient to supply the 6 AU5 plate.

The width control functions to increase or decrease horizontal scanning as required by variations of tube and circuit constants. Capacitor and resistor on the horizontal yoke coil and the resistors across the vertical coil serve to decrease the effects of crosstalk between the horizontal and vertical yoke coils, eliminating the effect of ringing of the horizontal output transformer due to leakage reactance. Checking Horizontal Oscillator and High Voltage

1. Equipment necessary:

1 pair earphones
$1.005-600$ Volt condenser
1 Neon test lamp (readily obtainable - 59ϕ variety)
11000 ohm per volt volt-ohm-meter (volt-meter scale to 600 volts)
2. The neon lamp will be used to test for high A. C. voltage. The lamp will glow because of the high frequency of this voltage (15,750 cycles.). It is only nebecause of the high frequency of this voltage (15,750 cycles.). It is only ne
cessary to hold lamp (glass end, not leads) within inch of the lva tube base
case can be corrected by keeping check tube fllaments for continuity. The second case can be corrected by keeping maximum distance between filament pins on lV2 will provide a path for the high voltage to arc to components. Clean sockets, it thoroughly with carbon tetrachloride. The third trouble, corona effects, will be noticed by turning off all lights in the room with set on and observing a blue glow existing on any of the wires in the high voltage circuits or coming from the filament pins of the lva tubes themselves. Pay particular attention to the filament pins. If the blue glow or corona discharge comes from these points, it can be prevented very simply by resoldering these pins, making sure that the finished pin is round and smooth and has not sharp, projecting points or edges. Corona effects will become apparent at these points if joints are not carefully made. Open or short circuited components can be checked with an ohmeter.
15. This brings you to the final check which includes the picture tube and associated coils. Assuming you have tried to position your beam bender to secure brightest illumination on screen, you should next check the voltages on the picture tube socket. Be sure the pins are connected properly. If you still have no light, remove cover from yoke housing and check wiring. Be sure there are no short
circuits inside, due to burning of the insulation when soldering lugs. circuits inside, due to burning of the insulation when soldering lugs.
16. We are quite sure any trouble originating in the horizontal oscillator, amplifier and high voltage circuits will be found if the above step, by step procedure is followed.

Voltage Analysis

1. Do not attempt to read high voltage on the television receiver unless you are familiar with high tension circuits and have the proper equipment to do so. In order to get accurate readings in the high voltoge circuits, it is essential that an extremely high resistance voltmeter be used (20,000 ohms per volt or more). A vacuum tube voltmeter is preferred. In our laboratories we use a 20,000 ohm per volt movement, in conjunction with a Gemeral Electric high voltage multiplier probe which has an internal resistance of 200 megohms
2. Remember - DO NOT tamper unnecessarily with the high voltage circuits because of the shock and burn hazard involved.
3. A low voltage chart is supplied with each TELEKIT for your convenience in locating trouble.
4. The readings for the voltage chart were taken under certain conditions. Thes conditions should be duplicated if identical results are to be obtained. The readings. All is readily obtainable. The readings are taken from the ohm per volt meter which of chassis. Negative being chassis. The chart has been based on an A. C. Line voltage of 110 volts. Consequently, if the line voltage is different, the ine set of voltages will be higher or lower in proportion to the line voltage enange All variable resistances (controls) should be turned in maximum clockwise direction (on full). No antenna or signal should be connected to the set.

Alignment of TELEKIT

We have found through experience that it is relatively easy to align the video stages to get a preliminary picture as the video I.F. system is sufficiently broad to pass some signal at almost any setting.

It is, however, more difficult to adjust the sound channel because these circuits are sharply tuned. We, therefore, advise that a signal generator be used for this purpose. our sounc channel will be tuned to exactly 21.2 Mc. To simplify this adjustment it is recommended that the former mith either the speaker or output meter.

1. Tune signal generator to 21.25 Mc . (Using a 400 cycle note or tone).
2. Connect hot lead of generator through a .005 MFD . condenser to grid of connect hot lead of generator through a . $\#$ sound I. F. tube (\#l pin). Connect ground lead to chassis. Turn volume control to full clockwise setting. Turn on set and allow a one volume control to fud.
3. Tune primary of F. M. Transformer, which is the upper slug, for
maximum sound in speaker. If too loud reduce generator output.
4. Move generator lead with condenser to grid of first sound I. F. tubep
5. Adjust slug which controls tuning of the sound I. F. coil for maximum intensity of signal.
6. Tune secondary of F. M. Transformer by means of the lower slug of discriminator mounted in the underside of chassis for null point. You will notice in making this adjustment that you will get maximum signal response from loud speaker or output meter on two settings of this slug very close together. Between these two settings there will be a null point; that 18, a point that is considerably lower in intensity than on either side of this adjustment. It is this point that is desired. When this is found the operation is completed. Notice the signal will not completely disappear with this adjustment if the volume control is turned on full. This completes the sound adjustment.
7. Connect signal lead of generator through the .005 MFD . condenser to the grid lug (\#1) of the first video I. F. tube (tube D). Clip the ground lead of the generator to chassis at base of tube D. Advance contrast control to maximum setting. Clip earphone lead through a .01 MFD. to lug \# H 2 of video output tube (tube L). Clip other earphone lead to chassis Ycu can now listen to the modulated signal as jou make coil adjustments. An output meter connected through a .1 MFD. condenser can be connected to the same points in lieu of earphones.
8. Keeping the signal generator'set at 21.25 Mc . proceed to adjust cathode sound trap (hole \#23). Adjust for minimum signal output. Keep signal generator attenuator low for all I. F. ad justments but do not reduce contrast control setting. Also keep signal generato ed at same points throughout video I. F. alignment.
9. Set signal generator to 23.9 Mc . Adjust fourth video I. F. coil (hole fi3l) for maximum output at that frequency. Note that on these adjustments the coil should go through the desided points. Be sure that you can go through these points to be certain that the coils are in the correct frequency range. Then adjust to maximum or minimum as specified.
10. Set signal generator to 26 Mc . Adjust third video I. F. coil for maximum output at that frequency. If signal becomes too loud reduce generator output.
11. Set signal generator at 24.5 Mc . Adjust second video coil for maximum output at that frequency. If signal becomes too loud reduce generator output.
12. The first video coil (mixer output) is in the Telekit tuner. This has been adjusted at the factory to the frequency of 22.8 Mc . The sound take-
off coil is also on the tuner and it has been prealigned to 21.25 Mc . at the factory. The sound coil ad-justment is on the top of the large coil and the video adjustment is on the underside of the coil. Do not make any adjustments to this coil.
13. The above adjustments will produce a broad band frequency response of 4.5 Mc . which will insure pictures of high definition and sound of excellent clarity. If sweep generator and oscilloscope data is required it can be secured by written request

VCITIGE CEART
Controls all set clockwise ohr per volt movement H.C. Voltage - 112 V. A.C.

Tube Type	Purpose	1	2	3	$4^{\text {Tr }}$	$5^{\text {Pin }}$	Number	7	8	9
6AG5	lst Video I. F.	-. 3	. 2	0	$\begin{aligned} & 6.3 \mathrm{~V} \\ & \mathrm{A.C.} \end{aligned}$	90V	90V	. 2		
6AG5	2nd Video I. F.	-. 3	. 2	0	$\begin{aligned} & 6.3 \mathrm{~V} \\ & \mathrm{A.C.} \end{aligned}$	110 V	110 V	. 2		
6AG5	3rd Video I. F.	0	. 8	0	$\begin{aligned} & \text { 6.3V } \\ & \mathrm{A.C.} \end{aligned}$	110V	1158	. 8		
6sm7	Video Det. and lst Video Amp.	-1.8	-1.8	0	-. 1	150V	0	0	$\begin{aligned} & 6.3 \mathrm{~V} \\ & \mathrm{A.C.} \end{aligned}$	
6SN7	and Video Amp.	0	170V	1.5	0	0	0	0	$\begin{aligned} & 6.3 \mathrm{~V} \\ & \mathrm{~A} . \mathrm{C} . \end{aligned}$	
6sN7	Separator and Sync. Amplifier	. 5	11 V	0	. 5	130V	0	0	$\begin{aligned} & 6.3 \mathrm{~V} \\ & \text { A.C. } \end{aligned}$	
6AU6	lst Sound I.F.	0	1.2V	0	$\begin{aligned} & 6.3 \mathrm{~V} \\ & \mathrm{~A} . \mathrm{C} . \end{aligned}$	115V	110 V	1.2 V	0	
GAU6	2nd Sound I.F.	0	1.2 V	0	$\begin{aligned} & \text { 6.3V } \\ & \text { A.C. } \end{aligned}$	115V	110v	1.2 V	0	
6 T 8	Discriminator and lst Audio	-. 4	-. 4	0	0	$\begin{aligned} & \text { 6.3V } \\ & \mathrm{A.C.} \end{aligned}$	-. 4	0	-. 4	90V
6v6	Audio Output	0	0	310 V	340 V	0	0	$\begin{aligned} & \text { 6. } 3 \mathrm{~V} \\ & \mathrm{A.C.} \end{aligned}$	18 V	
6SN7	Vertical Osc. and Amplifier	-22v	80 V	0	-. 5	300 V	5 V	0	$\begin{aligned} & 6.3 \mathrm{~V} \\ & \mathrm{~A} . \mathrm{C} . \end{aligned}$	
6SN7	Horizontal Osc. and A.F.C. Cont.	-. 8	135 V	28 V	-65v	125 V	0		$\begin{aligned} & 6.3 \mathrm{~V} \\ & \mathrm{~A} . \mathrm{C} . \end{aligned}$	
6AUS	Horizontal Output	-19V	0	0	0	${ }_{* *}^{400 \mathrm{~V}}$	0	$\begin{aligned} & 6.3 \mathrm{~V} \\ & \mathrm{~A} . \mathrm{C} . \end{aligned}$	$\begin{gathered} 280 \\ \nabla \end{gathered}$	
5 V 4	Damper	0	$\stackrel{400}{\nabla}$	0	$\stackrel{300}{\nabla}$	0	$\begin{gathered} 300 \\ \nabla \end{gathered}$	0	$\begin{gathered} 400 \\ \nabla \end{gathered}$	
504	Rectifier	0	$\begin{aligned} & 400 \mathrm{~V} \\ & \text { D.C. } \end{aligned}$	$\begin{aligned} & 370 \mathrm{~V} \\ & \mathrm{D} . \mathrm{C} . \end{aligned}$	$\begin{array}{l\|l} 380 \mathrm{~V} \\ \text { D.C. } \end{array}$	0	$\begin{aligned} & 380 \mathrm{~V} \\ & \mathrm{~A} . \mathrm{C} . \end{aligned}$	0	$\begin{aligned} & 400 \\ & \text { D.C. } \end{aligned}$	

All D. C. Voltages unless otherwise indicated.
** A 6000 volt A. C. pulse is present at this point. Do not measure this with your Volt Meter

© John F. Rider

PRELIMINARY SERVICE NOTE
 MODELS 6I4D AND 637A
 CHASSIS MODEL 120095-B

I. ALIGNMENT
a. Equipment Required - A sweep generator, accurate marker generator, oscillo scope, and v.t.v.m. are required for alignment. The marker generator must be very accurate and supply frequencies of 4.5 MC ., and 20 to 28 MC .
b. Response Curves - The i-f response curves for the video i-f stanes are shown in figure 2.
c. Alignment Points - The location of all i-f transformers, tuned circuits, and
trimmers is shown in figure 1.

BOTTOM OF CHASSIS

TOP OF CHASSIS

figure i . Location of al ignment points

d. TV I-F Alignment -

1) Tune receiver to Channel 3
2) Connect 3 volt bias battery negative terminal from junction of C3I and R27 (positive terminal) to B -.
3) Shape overall response curve, after individual peaking of stagger-tuned and over-coupled $i-f s$, as indicated in steps $1-6$ below. See curves A and B.

table 1 . video i-f al ignment

STEP	Signal generator input		INSTRUMENT CONNECTION	ADJUST	PROCEDURE
	connection	freouency			
1	Connect marker generator to pin 1 (grid) of v-1 (6auf) through. 001 mfd. condenser. Low side to chassis.	25.5 MC	Connect d.c. v.t.v.m. to pin 7 (grid of $V 4$ (12AT7). use 3 or 5 volt range.	12	Peak for maximum response. Adjust generator signal level to produce one volt at grid of $V 4$.
2	"	22.9 MC	*	$\left(\begin{array}{c} \text { T3 } \\ \text { (TOD) } \end{array}\right.$	-
3	-	21.25 MC	-		Adjust for minimum response. Repeat step 2.
4	"	23.9 MC	*	14	Peak for maximum response.
5	Connect sweep generator to converter ($V-20$) input, using three turn loop of wire slipped over tupe. Connect marker gen. tube. Connect marker gen. in parallel.	Sweep- 24.5 MC (10 MC sweep) Marker- 21.25 MC and 25.75 MC	Connect vertical input of scope through detector network to pin 1 (grid) of $v-2$ (6 AU) - Low input impedance of about 200 ohms	$\begin{array}{\|l\|} \hline 1 \\ T_{1} \end{array}\binom{A}{B}$	Set markers as shown on response curve A, fig. 2. Note that the markers should be $20 \$$ down for this stage.
6	"	$\begin{aligned} & \text { Sweep- } \\ & 24.5 \mathrm{MC} \\ & (10 \mathrm{MC} \\ & \text { Sweep }) \\ & \text { Marker- } \\ & 22.6 \text { and } \\ & 25.75 \mathrm{MC} \end{aligned}$	```Connect vertical input of scope in series with 10k resistor to min7(grid) of V4```	$\begin{aligned} & \mathrm{T} 2, \\ & \mathrm{T3}, \\ & \text { and } \\ & \text { T4 } \end{aligned}$	Adjust for overall response as shown in curve ${ }^{8}$, fig. ${ }^{2}$. Ad just ${ }^{2} 2$ to position 25.7 . MC marker; adjust T3 (TOp) to set 22.5 MC marker. Do not readjust trap. Equalize peaks of response curve by adjusting T4.

e. TV Sound Alignment -

1) Set receiver to Channel 3.
2) Use accurate, crystal-controlled, marker generator.

STEP	SIGNAL GENERATOR INPUT		MEASURING instrument	ADJUST	PROCEDURE
	CONNECTION	freouency			
1	Marker generator through .001 mf to pin 2 of $\mathrm{V}-4$ low side to 8 -.	Marker4.5 MC.	Connect v.t.v.m. through 10k resistor to pin 1 (grid) of v5.	L6	Peak for maximum response. Adjust generator input to produce one volt at grid of V5. (Above no signal value).
2	Connect sweep generator in parallel with marker gen.	$\begin{aligned} & \text { Sweep- } \\ & 4.5 \mathrm{MC} \\ & \text { (450 kC } \\ & \text { Sweep) } \\ & \text { Marker- } \\ & 4.5 \mathrm{MC} \end{aligned}$	Replace v.t.v.m. with scope connected through 10 k resistor to junction of R21 and C22.	$\begin{gathered} \text { Tsecon- } \\ \text { Sary) } \\ \text { dary } \end{gathered}$	Position 4.5 MC. marker at center of s-curve, by adjusting secondary. (See Fig. 2, - curve c)
3	*	*	*	$\begin{gathered} \text { Pri- } \\ \text { mary } \end{gathered}$	Peak primary for maximum amplitude and inearity. Repeat step 2. (See Fig. 2- curve C)
4	marker generator through .001 mpd. to pin 7 of $V 4$ (12AT7)	$\begin{aligned} & \text { Marker- } \\ & 4.5 \mathrm{MC} \end{aligned}$	A.C. v.t.v.m. or D.C. v.t.v.m. used with a peak detector probe to junction of R52, C47.	19	adjust for min. reading of v.t.v.m. Keep contrast control set for maximum contrast.

table 11 . audio 1.F and disc al ignment
f. TV R-F Alignment -

1) Set fine tuning control to mechanical center. Retain this setting for entire r-f alignment.
2) Use 300 ohm carbon resistor as dummy antenna.
3) Couple marker generator in parallel with sweep generator.

© John F. Rider

CHASSIS PARTS LIST（Continued）

sche． matic loca． tion	Pt．No．	DESCRIPTION				SCHE． MATIC LOCA． TION	PT．NO	DESCRIPTION			
R－6	340732	10.000	ОНM	$\frac{1}{2}$ W	± 108	R－66	340972	100.000	Ohm	$\frac{1}{2} W$	± 108
R－7	340312	180	OHM	$\frac{1}{2} W$	$\pm 10 \%$	R－67	340772	15.000	OHM	2 W	$\pm 10 \%$
R－8	350412	470	OHM	1 W	± 208	R－68	351372		MEGOHM	M $\frac{1}{2}$ W	± 208
R－9	350412	470	OHM	\％W	± 208	R－69	340712	8.200	OHM	\％W	± 108
R－10	340732	10.000	OHM	$\frac{1}{2} W$	$\pm 10 \%$	R－70	340532	1.500	OHM	$\frac{1}{2}$ W	$\stackrel{+108}{+108}$
R－11	PT．OF T－3	10.000	OHM	$\frac{1}{2}$ W	$\pm 10 \%$	R－71	341012	150.000	OHM	$\frac{1}{2} W$	± 108
R－12	340312	180	OHM	$\frac{1}{2} W$	$\pm 10 \%$	R－72	340812	22，000	ОНм	${ }^{\frac{1}{2}} \mathbf{W}$	¢108
R－13	350412	470	OHM	$\frac{1}{2}$ W	$\pm 20 \%$	R－73	341032 340712	180,000 8,200	OHM	$\frac{1}{2} W$	＋108
R－14	340652	4.700	OHM	$\frac{1}{2} W$	± 108	R－74	340712 331192	8,200 820,000	OHM	W w	＋5\％
R－15	340972	100.000	OHM	$\frac{1}{2} W$	$\pm 10 \%$	R－75	331192	820,000 150	OHM	$\frac{1}{2} W$	\pm
R－16	340712	8． 200	OHM	$\frac{1}{2} W$	± 108	R－76 R－77	331012 331012	150,000 150,000	OHM	\％	＋5\％
R－17	340812	22.000	OHM	$\frac{1}{2}$	± 108	R－77	341012	150.000	ОН⿳	$\frac{1}{2}$ W	$\dagger_{\text {¢ }}$ \％
R－18	350572	2.200	OHM	$\frac{1}{2}$ W	± 208	R－78 $\mathrm{R}-79$	390134－1	100.000	OHM H	HOR．Hold	Cont．－rear
R－19	340972	100.000	OHM	$\frac{1}{2} W$	士10\％	R－79 $\mathrm{R}-80$	340952	82.000	OHM	交W	± 108
R－20	340972	100.000	OHM	$\frac{1}{2} W$	± 108	R－80 $\mathrm{R}-81$	3409312	2.7	MEGOH	HM $\frac{1}{2}$ W	± 5 \％
R－21	340932	68.000	OHM	$\frac{1}{2} \mathrm{~W}$	${ }_{\text {cont }}^{ \pm 108}$	R－81	330972	100.000	онм	$\frac{1}{2} W$	± 5
R－22	390074－6	1	MEGOHM	M Vol．	CONT．－FRONT	R－83	340712	8，200	онм	交 W	± 10 \％
$R-23$ $R-24$	351372 351132	470.000	MEGOHM	$\frac{1}{2}$	\pm	R－84	340812	22.000	онм	$\frac{1}{2} W$	$\pm 10 \%$
R－25	351132	470.000	онм	$\frac{1}{2} W$	$\pm 20 \%$	R－85	331012	150.000	ОНM	$\frac{1}{2}$ W	$\pm 5 \%$
R－26	340212	68	OHM	$\frac{1}{2}$ W	$\pm 10 \%$	R－86	330942 340652	75.000 4.700	OHM	$\frac{1}{2} W$	\pm
R－27	340932	68.000	OHM	$\frac{1}{\frac{1}{2}}{ }^{\text {d }}$	± 108	R－87 $\mathrm{R}-88$	340552		1 MEGOH	HM $\frac{1}{2} \mathrm{~W}$	± 208
R－28	351212	1	MEGOHM	M $\frac{1}{2}$ W	$\pm 20 \%$	R－88	350252	100	ОНм	$\frac{1}{2} W$	$\ddagger 20 \%$
R－29	397	2.5	OHM	W．${ }^{\text {ba }}$	allast tu	R－90	341052	220.000	OHM	$\frac{1}{2}$ W	$\pm 10 \%$
R－30	341052	220.000	OHM	$\frac{1}{2} \mathrm{~W}$	± 108	R－91	381132	470.000	онм	1 w	$\pm 20 \%$
R－31	394050－4	55	OHM	7.5 W	$\pm 10 \%$	R－92	390132	100.000	OHM V	vert．lin．	cont．－rear
R－32	394060－3	75	OHM	10 W	$\pm 10 \%$	R－93	381132	470,000	OHM	1w	± 20 \％
R－33	340572	2.200	OHM	$\frac{1}{2}$ W	t108	$\mathrm{R}-94$	350892	47.000	OHM	交 W	$\pm 20 \%$
R－34	340732	10.000	OHM	$\frac{1}{2} W$	$\pm 10 \%$						
R－35	394050－2	1.500	OHM	${ }^{5 W}$	$\pm 5 \%$			TUNE	R ASS＇r	Y－stand	dard
R－36	340092	22	OHM	$\frac{1}{2}$ W	$\pm 10 \%$	tuner	470640－1	tune	R ASS＇r	Y－emers	
R－37	370652	4.700	OHM	1 W	$\pm 10 \%$		470640－1			－	
R－38	351212	1	MEGOHM	M $\frac{1}{2} \mathrm{~W}$	± 208	SP－1	180070	SPEA	ER－6	6＂－EM	
R－39	340652	4.700	OHM	$\frac{1}{2} W$	$\pm 10 \%$	SP－1	180070				
R－40	370832	27.000	OHM	1w	± 108	SW－1	PT．OF R－22	On－	OFF SW	WWITCH	
R－41	340572	2.200	OHM	\％${ }^{\text {W }}$	$\pm 10 \%$						
R－42	340732	10.000	OHM	$\frac{1}{2} W$	f108		720104－1	1St	VIdeo I	I．F．tra	NSFORMER
R－43	351092	330.000	OHM	$\frac{1}{2} W$	$\pm 20 \%$	T－2	720098	2 ND	VIDEO	I．F．tra	nsformer
R－44	341332	3.3	MEGO	$\frac{1}{2} W$	± 108	T－3	720106	3 RD	VIDEO	1．f．TR	nsformer
R－45	341052	220.000	OHM	$\frac{1}{2} W$	± 108	T－4	720098	4 TH	VIdeo	I．F．tra	NSFORMER
R－46	340812	22.000	OHM	$\frac{1}{2} \mathrm{~W}$	$\pm 10 \%$	T－5					
R－47	PT．OF R－22	5.000	OHM CO	COntras	ST CONT．FRNT	T－S	708018	DISC	riminator	tator coil	
R－48	351212	1	MEGOHM MEGOHM		± 208	T－7	134058－1	Soun	D OUTPut	tput trans	FORMER
R－49	351212	1	MEGOHM OHM	M $\frac{1}{2}$ W	± 208	T－8	738029	vert	．Output	dput trans	FORMER
R－50	340572	2．200	OHM	$\frac{1}{2}$ W	± 108	T－9	716052	HORI	2．osc．	C．COIL	
R－51	370672	5.600	OHM	1 w	± 108	T－10	738039	HORI	2．OUTP	tput tran	Sformer
R－52	340772	15.000	OHM	$\frac{1}{2}$	± 108						
R－53	340772	15，000	OHM	$\frac{1}{2}$ W	± 108	V－1	800533	vacu	um tube	－ 6 aub	
R－54	390134－1	100.000	OHM 8	BRTM	CONT．－REAR	V－2	800533	vacu	anum tube	be－ 6 aus	
R－55	340812	22.000	OHM	$\frac{1}{2}$ W	± 108	$\mathrm{v}-3$	800533	vacuur	acum tube	be－faus	
R－56	390132	100.000	OHM F	focus	cont．－re	$v-4$	800047	vacu	um ture	8E－12AT	
R－57	340812	22.000	OHM	${ }^{1} \mathrm{~W}$	± 108	$v-5$	800533	vacuea		8e－saug	
R－58	3.40812	22.000	OHM	$\frac{1}{2} W$	± 108	v－6	800015	vacua	acuum tubt	8E－6S8G	
R－59	340872	39.000	OHM	$\frac{1}{2} W$	$\pm 10 \%$	V－7	800490	vacu	acum tube	8E－ 25 lf	
R－50	340972	100，000	OHM	$\frac{1}{2} W$	± 108	V－8	800026	vacu	俍 tube	8E－ 12 AU	
R－61	340932	68.000	OHM	${ }^{2}{ }^{*}$	± 108	V－9	800025	vacu	acuum tur	8E－12aU	
R－62	390134－1	100，000	OHM V	VERT．HO	OLO COnt．rear	$\mathrm{V}-10$	800039	vacua	ajum tus	$8 \mathrm{e}-12 \mathrm{SN}$	76T
R－63	390138		ME $\mathrm{SOH}_{\text {OH }}$	－vept．	SIze cont．－rear	$v-11$	800039	vacuma	cum tus	$8 \mathrm{e}-12 \mathrm{SN}$	176T
R－64	34：332	3.3	3 MEGOH	M ${ }^{\text {a }}$ W	± 108	$v-12$	800044	vacu	jum tub	BE－ 1986	6－G

sChe． MATIC			SCHE． MATIC		
loca． TION	Pt．No．	DESCRIPTION	LOCA. TION	PT．No．	DESCRIPTION
V －13	800046	vacuum tube－ 1×2	V－17	800535 OR	vacuum tube－6ag5
$\mathrm{v}-14$	800045	vacuum tube－ 25 wag	$\mathrm{v}-17$	800052	VACUUM TUBE－68C5 Suner
V －15	810000	television tube－108pa	$\mathrm{v}-18$	800047	vacuum tube－12aty
V －15			$\mathrm{V}-19$	817000－1	Selenium rectifier－ 15 ma
$\mathrm{V}-17$	800536	vacuum tube－6j6 t．v．	$\mathrm{v}-20$	817015	selenium rectifier－ 250 ma
V －18	800535 OR	vacuum tube－6agst tuner	$v-21$	817015	selenium rectifier－ 250 ma
v －18	800052	vacuum tube－6bcs j stand．			
			$\begin{aligned} & x-1 \\ & x-2 \end{aligned}$	585055 500022	SOCKET－CABLE ASS＇Y－KIMESCOPE SOCKET－SPEAKER
			$x-3$	583206	socket－interlock switch
	CABINE	PARTS LIST			

DESCRIPTION	PART NUMBER	
	$\begin{aligned} & \text { MODEL } \\ & 6 \mathrm{I} 4 \mathrm{D} \end{aligned}$	MODEL
Cabinet	140335	140276－1
	Bakelite	Mahogany
Speaker 6＂	180070	180070
Mask	410805	－－
Tube Protector Bracket	410970	－－
Knob－Off volume	4500415	45004 is
Knob－Fine Tuning	450044	450044
Knob－Contrast	450045	450045
Knob－Selector	4500515	45005 is
Selector Escutcheon Standard Tuner	520103	－－
Twin Conductor Lead－Ant．	580689	580689
Line Cord	583206	583206
Safety Glass	635023	535020
Bakelite Front	－－	450056
Back－Masonite	560133	550134
Plug and Cable－Speaker	585056	585056
Extruded Vinylite－Mask	591014	－－

table iv．cabinet parts list

© John F. Rider

. ALIGNMENT

a. Equipment Required - A sweep generator, accurate marker generator, oscilloscope, and v.t.v.m. are required for alignment. The marker generator must be very accurate and supply frequencies of 4.5 MC ., and 20 to 28 MC .
b. Response Curves - The i-f response curves for the video i-f stages are shown in figure 2.
c. Alignment Points - The location of all i-f transformers, tuned circuits, and trimmers is shown in figure 3.

NOTE: The Tail Piece as shown in Fig. I, will have to be removed so that the deflection yoke and focus coil will remain connected while the set is aligned. In order to do this, the high voltage lead must be removed from the picture tube cup. Plugs $P-5$ and $P-2$ must also be removed from chassis.

Figure 1
NOTE: In order to protect the picture tube, the optical box is shipped with (4) shipping clamps and (2) felt pads. See Figure 1. These must be removed before the set is put in operation. While the Picture Tube is shipped in place, it is disconnected and must be plugged into its socket before set will operate

A- overalli-f response
b- olsc response
figure 2 . IF AND DISC RESPONSE CURVE

1) Tune receiver to Channel 3.
2) Connect 3 volt bias battery from junction of RI7 and Cl7 (negative terminall to ground (positive terminal).
3) Shape overall response curve, after individual peaking of stagger-tuned and over-coupled $i-f s$, as indicated in steps $1-8$ below. See curve A.

STEP	SIGNAL GENERATOR INPUT		measuring instrument	ADJUST	PROCEDURE
	CONNECTION	freouenct			
1	Connect marker generator to pin 1 (grid) of V1 (6ay6). through .001 mfd . condenser. Low side to chassis.	25.75 MC	Connect d.c.probe of v.t.v.m. to (junction of ${ }^{\text {L6 }}$ to chassi ow side s.	L5	Peak for maximum response. Adjust generator signal level to produce approx. 1 volt at junction of L6 and R40.
2	" ${ }^{\text {n }}$	25 MC	"	13	"
3	*	22.3 MC	"		"
4	"	23 MC	n	$\begin{gathered} \mathrm{T}^{\mathrm{T} 2} \\ \hline \end{gathered}$	"
5	"	21.25 MC	(use three or five volt meter scale)	$\begin{gathered} \mathrm{T} 3 \\ \text { (TOP) } \end{gathered}$	Adjust for minimum response. Two peaks may be noted. The correct position is with the core at the outside end of the coil.
6	NOTE: TRAP SHORTED;	no adjustment	T necessary	$\begin{array}{\|c} \mathrm{T}_{2} \\ (\mathrm{Bot}- \\ \text { tom }) \\ \hline \end{array}$	
7	Connect marker generator to pin 1 (grid) of V 1 (5AU6). through .001 mfd . Condenser. Low side to chassis.		```Connect d.c.probe of v.t.v.m. to (junction of LG and R40). Low side to chassis.```	$\begin{array}{ll} L 5, & L 4 \\ T 3, & 12 \end{array}$	Repeat steps 1 through 6. Readjust T3 (Bottom) after adjusting 21.25 MC trap.
8	Connect sweep generator to three turn loop of wire slipped over converter tube vz2. Connect marker gen. in parallel.	Sweep Gen. 23.0 MC (10 MC Sweep) Marker Gen. 21.75 MC and 25.75 MC	Connect vertical input of scope in series with $10 k$ resistor to (junction of L Ls and R40).	$\begin{aligned} & \text { T1 } \\ & \text { Both } \\ & \text { Slugs } \end{aligned}$	adjust to position markers as shown on the overall response curve, figure 2-A. It is essential that the video carrie marker 50% point (6 dD down). Adjust T5 and T4 if necessary to correctly position this marker.

table 1 - VIDEO IF ALIGNMENt

© John F. Rider

e. TV Sound Alignment -
table II। - R.f. tuner alignment
f. TV R-F Alignment -
() Set fine tuning control to mechanical center. Retain this setting for entire r-f alignment.
2) Use 300 ohm carbon resistor as dummy antenna.
3) Couple marker generator in parallel with sweep generator.

Use of 10 MC . sweep for sweep generator. Couple generator to antenna terminals of receiver.
5) Connect vertical input of scope in series with lok resistor to junction of L6 and R40.

STEP	SIGNaL generator input		CHANNEL	ADJUST	Procedure
	Suete gen.	marker gen.			
1	207.0 MC.	209.75 MC.	12	A12	Adjust for placement of 21.25 Mc . marker as per response curve A.
${ }^{2}$	${ }^{*}$	*	12	$\begin{aligned} & \text { A14, } \\ & \text { A15, } \\ & \text { A16 } \end{aligned}$	Adjust shape of response curve A for maximum amplitude and bandwidth.
3	213.0 MC .	215.75 MC.	13	A13	Adjust as in Step 1.
4	201.0 MC .	203.75 MC.	11	A11	"
5	195.0 MC.	197.75 MC.	10	A10	*
6	189.0 MC .	191.75 MC .	9	A9	"
7	183.0 MC .	185.75 MC .	8	A8	-
8	177.0 MC .	179.75 MC .	7	${ }^{\text {A }}$	-
9	85.0 MC .	87.75 MC.	6	A6	"
10	79.0 Mc .	81.75 MC .	5	A5	-
11	69.0 MC.	71.75 MC .	4	A4	*
12	63.0 MC .	65.75 MC .	3	A3	"
13	57.0 MC.	59.75 MC .	2	A2	"

2. OPERATING CONTROLS

Figure 4 - operating controls

CHASSIS PARTS LIST

PT. NO.	DESCRIPTION			26	923071	, 01	MF	Hoov
				c-28	923061	. 01	MF	400 V
928006	1500	MmF	40 CV	c-29	923062	. 05	MF	OOV
928006	1500	MMF	400 V	c-30	923057	. 1	MF	200 V
928006	1500	MMF	40 ck	C-31	925114	8	MF	350 V
910015	270	mmF	$\pm 10 \%$	C-32	923078	. 005	MF	OOV
PT.OF T-2				c-33	923066	. 25	MF	400 V
928006	1500	MMF	400 V	C-34	923056	. 25	MF	400 V
928006	1500	MMF	400 V	c-35	923061	. 01	MF	400 V
910015	270	MMF	$\pm 10 \%$	c-35	923062	. 05	MF	400 V
PT.OF T-3				c-37	910015	270	MMF	$\pm 10 \%$
928006	1500	MMF	400 V	C-38	923073	. 05	MF	600 V
928006	1500	MMF	400 V	C-39	923064	. 1	MF	400 V
910015	270	MMF	$\pm 10 \%$	C-40	923062	. 05	MF	400 V
928006	1500	MMF	40 CV	c-41	923062	. 05	MF	400 V
928006	1500	MMF	400 V	c-42	910027	. 001	MF	500 V
910015	270	MMF	$\pm 10 \%$	C-43	923065	. 25	MF	400
910100	100	MMF	$\pm 10 \%$	C-44	923062	. 05	MF	400
923080	. 25	MF	200 V	C-45	910027	. 001	MF	500
910130	10	MMF	$\pm 10 \%$	c-45	910010	110	MMF	± 20
900044	3-35	MMF		C-47	923077°	. 005	MF	600
928006	1500	MMF	400 V	c-48	910023	780	MMF	± 10
928006	1500	MMF	400 V	c-49	910017	470	MMF	± 10
		MMF	+20\%		923079	. 001	MF	600

©John F. Rider

OJohn F. Rider

VOLTAGE AND RESISTANCE READINGS FOR CHASSIS 120094-A - MODEL 649A

The voltage and resistance measurements listed below are for chassis $120094-A$ with no triangle code number.
(from those given in tables here. Slight variations may also be noticed if chassis is not coded as stated above.

CONDITIONS FOR TAKING VOLTAGE AND RESISTANCE READINGS:

1. Antenna disconnected and antenna terminals shorted.
2. Line voltage 117 volts.
3. All controls in position for normal picture.
4. All measurements taken with a vacuum tube voltmeter and ohmeter.
5. All readings listed in tables were taken between points shown and chassis.
6. Resistance readings are given in ohms unless otherwise noted.
7. N.C. denotes no connection.

RESISTANCE READINGS FOR CHASSIS 120094-A

SYMBOL	tube				P 1	No.			
	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	Pin 7	PIN 8	PIN 9
$\mathrm{V}-1$	500 k	0	0	0	20 K	20 K	80		
$\mathrm{v}-2$	600 k	0	0	0	20 K	20 K	100		
$v-3$	2.5	0	0	0	20 K	15 K	200		
$v-4$	0	0	0	0	18 K	18 K	200		
V-5	0	4.5k	0	0	0	0	30 K		
$v-6$	IM	0	0	0	15k	$15 \mathrm{~K}$	1.0		
$v-7$	2 M	40 K	0	0	20 K	0	N.C.		
V -8	0	500k	25k	25 k	1 M	1 M	0	0	
V-9	60k	0	250 K	0	0	50K	2 M	0	0
$V-10$	INF.	950 K	40k	1 M	6 K	40 K	0	0	
$v-11$	INF.	INF.	0	0	180k	40 K	200 K		
$v-12$	150k	8.0	$35 \mathrm{k}$	150k	500k	50k	0	0	
$v-13$	N.C.	0	$50 \mathrm{~K}$	$1 \mathrm{M}$	$600 \mathrm{~K}$	$40 \mathrm{~K}$	0	30 K	
$v-14$	$20 \mathrm{~K}$	$20 \mathrm{~K}$	N.C.	15k	N.C.	$15 \mathrm{~K}$	20 k	20k	
$v-15$	$2 M$	$1.5 \mathrm{M}$	$50 \mathrm{~K}$	0	$20 \mathrm{~K}$	150k	0	0	
$v-16$	N.C.	0	$20 \mathrm{~K}$	$20 \mathrm{~K}$	$4 M$	$40 \mathrm{~K}$	0	50 K	
$k-17$	4.0	0	0	0	11 K	11 K	70		
$v-18$	$80 \mathrm{~K}$	0	0	0	$13 \mathrm{~K}$	5k	0		
$V-19$	$90 \mathrm{~K}$	$90 \mathrm{~K}$	200 K	0	0	N.C.	0	15 M	500k
$\mathrm{v}-20$	0	0	100 K	150 K	500k	100k	0	0	
$v-24$	20 K	20 K	N.C.	10 K	N.C.	10k	20 K	20 K	

N.C. Denotes "No Connection" INF. Denotes "Infinity"

VOLTAGE READINGS FOR CHASSIS 120094-A

N. C. Denotes "No Connection"

FIL. Denotes "Filament"

INDEX

INDEX			
	PAGE		PAGE
alignment instructions	14,18	Schematic .	17,19
CIRCUIT DESCRIPTION		top View - tube layout.	
PARTS LIST	15	trimmer locations..	15
PRODUCTION CHANGES.	16	Voltage measurements	11

VOLTAGE READINGS FOR CHASSIS 120118-B

symbol	TUBE PIN NUMBER											
	PIN	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9.	PIN 10	PIN 11	PIN 12
$\mathrm{v}-1$	-2.5	1.2	0	6.3 A.C.	100	115	1.2					
V-2	-0.7	0.4	0	6.3 A.C.	110	110	0.4					
v-3	0	0	0	6.3 A.C.	115	115	1.0					
v-4	-175	0	-175	-175	1.0	-175	-175					
V-5	-175	-175	-175	-175	0	0	-175					
v-6	-170	-170	-175	-175	0	-145	-170					
V-7	-0.7	-0.7	0	6.3 A.C.	0	N.C.	0	-0.7	49			
V-8	N.C.	- 22 A.C.	-70	-65	-170	N. C.	-22 A.C.	-170				
V-9	-175	-175	-175	-175	-90	-40	-175					
v -10	-140	-175	-175	-5.6 A.C.	-5.6 A.C.	60	-170	-175	-5.6 A.C.			
V-11	-170	-175	-170	-5.6 A.C.	-5.6 A.C.	-180	-175	-175	-5.6 A.C.			
v-12	-175	-175	-180	-190	-4.5	-180	-12 A.C.	-12 A.C.				
V-13.*	-14	160	1	-70	210	0	-12 A.C.	- 12 A.C.				
$v-14$	N.C.	-18 A.C.	-180	N.c.	-200	-200	-18 A.C.	85				
v-15	N.C.	N.C.	260	N.C.	115	N.C.	-24 A.C.	-24 A.C.				
v -16	do not measure											
v-17	-120	-180	-165	-12 A.C.	- 12 A.C.	215	-160	-150	N. C.			
$\checkmark-18$	0	-160								245	-150	6.3 A.C.
V-19	N.c.	140				310 A.C.	N. C.	140		N.C.	310 A.C.	н.C.

-. All measurements of $v-13$ socket pins taken from points to 8 minus.
RESISTANCE READINGS FOR CHASSIS 120118-B
TUBE PIN NUMBERS

SYm 80 L	TUBE PIN NUMBERS											
	PIN 1	PIM 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9	PIN 10	PIN 11	PIN 12
$\underline{V-1}$	1 M	220	0	0	75K	70k	220					
V -2	1 M	40	0	0	60K	60 K	40					
$\mathrm{v}-3$	3	0	0	0	60K	60 K	150					
$v-4$	20 K	60 K	20k	20k	150	25k	30k					
$\mathrm{v}-5$	20k	20k	20 K	20k	2	0	25k					
v-6	120 K	20 K	20 K	20 K	2	20 K	20k					
$\mathrm{v}-7$	120 K	120 K	220k	0	0	N. C.	0	12 M	500k			
$\mathrm{v}-8$	H.C.	IMF.	70k	70k	600k	N. C.	Imf.	25K				
v -9	1.8 M	20 k	20 K	20 K	30k	10k	25k					
$\mathrm{V}-10$	50k	200k	20k	IMF.	imf.	60k	1 M	20k	inf.			
$v-11$	40 K	22 K	1.2 M	INF.	INF.	60 K	3 M	22 K	imF.			
$v-12$	3 M	15k	22k	1.5 M	12k	22 K	inf.	Inf.				
$v-13$	1.2 M	70k	350 K	300k	15M	22 K	IMF.	INF.				
$v-14$	H.C.	t MF.	20k	H.C.	1.2 M	1.2 M	inf.	50 K				
$v-15$	H.c.	H.C.	20 M	H.C.	50K	N. C.	inf.	INF.				
v-16	N.C.	inf.	N.C.	N.C.	N.C.	H.c.	INF.	N.C.				
v-17	3 M	150k	120k	INF.	inf.	18M	1.2 M	25 K				
V-18	0	1.2 M								17M	130k	0
v-19	N..	50k				20 K	N.c.	50k		N. C.	20 K	N.c.

n.c. Denotes no connection

IMF. Denotes infinity.
c. Video Detector and Amplifiers - The output of the video-detector (V4A), one-half of a type 6AL5, is coupled to the first video amplifier (V9). The output of the second video amplifier (VIOA), feeds the grid of the kinescope (VI8).
NOTE: The 120118 B chassis is also used in some sets on models 644 C and 647 B . See service note covering models 614, 637. 644 and 647 for photographs and cabinet parts list
d. Intercarrier sound - The ($4.5 \mathrm{M} C .1$ heterodyne between video and audio icarriers is taken from the shunt-tuned circuit ($13, \mathrm{C} 16$) at the output of the video detector. The (4.5MC.) signal feeds the sound i-f amplifier (V5), the output stage (V8).
e. AGC - The other half of the 6AL5 (V4B) supplies a delayed AGC voltage to the r-f amplifier (V22) and first and second video i-f amplifiers (V) and V2).
f. Sync and Deflection - The output of the first video amplifier (v9-6AU6 feeds the first sync amplifier (VI|A-|2AU7). The output of this tube is then fed to the sync separator (VI|B-|2AU7) where it is then amplified by a chain of sync amplifiers (VIOB-|2AU7, VI2A-12SN7GT, and VI2B-I2SN7GT). The output of the fourth sync amplifier is then fed by means of an intergrating network to the vertical oscillator (VITA-I2SNTGT) and also by means of a capacity voltage dividing network to the horizontal oscillator control tube (Miracle Picture Lock, VI3A-I2SN7GT)

The horizontal oscillator (VI3B-I2SN7GT) is controlled by the horizontal oscillator control tube (Mi racle Picture Lock, VI3A-I2SN7GT). This is done by properly phasing three wave forms at the input grid of (VI3A, See figure 2). The phasing coil C and D has a fly-wheel effect and helps greatly in stabiis charged through resistor (R72) and is then coupled to the grid of the 198G6-G. The drive padder (C55), adjusts the amount of sawtooth input required for most efficient operation of the 19BG6-G. The damper tube IVI525 W 4 GT) is effectively connected across the horizontal deflection yoke.
NOTE: Care must be taken not to load these circuits too much due to excessive scope input capacity or low resistance, otherwise erroneous adjustments will result.

figure 2
COMPOSITE INPUT WAVEFORM AT CONTROL tUBE GRID OF viba. (obtained by USING A LOW CAPACITY PROBE)

The vertical oscillator (VI7A, VITB-I2SNTGT) is controlled by the vertical sync pulses fed to pin 4 of (VI7A-I2SN7GT). The output of (VI7B) is
fed to the vertical deflection yoke by means of a matching transformer, (T9)
. High-Voltage Supply - The high-voltage supply is the conventional flyback type The high-voltage winding of (T8) is connected to the high-voltage rectifier (vi6), a type $183 G T$, and produces about $9 \frac{1}{2}$ kilovolts for the kinescope.
h. Low-voltage Supply - The low-voltage supply uses a full-wave rectifier ivig5U4G) and transformer (T10). A series arrangement is used to supply.a posifilament windings are used to keep the heater-cathode potentials within
ratings, and the electrolytic filter condensers are not grounded to the 120118 B chassis. (V8, VII, VIO, VI3, VI4, VI5, VI7 and VI2) have their filament connected in series directly across the iine.
i. Chassis Adjustments - These receivers are provided with normal vertical and horizonta! adjustment controls. Vertical and horizontal centering however, is accomplished by mechanically adjusting the focus coil
j. Check of Miracle Picture Lock Alignment - Turn the norizontal hold control to the extreme clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back acain. Normally the picture will be out of sync. Turn the control counter-clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 3 or 4 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pult in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approxi mately 90 degrees of additional counter-clockwise rotation of the control.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Horizontal Oscillator Adjustment"
k. Miracle Picture Lock Adjustmen't - Normally the adjustment of the horizonta oscillator is not considered to de a part of the alignment procedure, dut since the oscillator waveform adjustment requires the use of an oscilloscope, it can not be done conveniently in the field. The waveform adjustment is made at the factory and normaly should not require readjustment in the field. However, the waveform adjustment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper.
. Horizontal frequency Alignment - With a clip lead, short circuit the coil between terminals C and D of the horizontal oscillator transformer (T7). Tune in a television station and sync the picture if possible.
a) Turn the horizontal hold control (R70) to the extreme counter-clockwise position. Adjust the (T7) Frequency Adjustment !under the chassis: so that the picture is just out of sync and the horizontal blanking appears in the picture as a vertical bar. The position of the bar is unimportant See figure 3.
b) Turn the hold control approximately one quarter of a turn from the extreme clockwise position and examine the width and linearity of the picture. picture width or linearity is incorrect, adjust the horizonta! drive control (C55), the width contro! (L8) and the linearity control (L9) unti) the picture is correct. If (C55, L8 or L9) was adjusted, repeat step ial bove.

HOR. BLANKING BAR.

m. Horizontal oscillator Waveform Adjustment - Remove the shorting clip from

terminals C and D of (T7!. Turn the horizontal hold control to the extreme counter-clockwise position. With a thin fibre screwdriver, adjust the Hori zonta: Phasing Slug of IT7 on the rear of the chassis: until the horizontal blanking bar appears in the raster.
a) Connect the vertical input of the scope in series with a 22,000 ohm decoupling resistor to terminal C of (T7) and with the low side to chassis Turn the horizontal hold control one quarter turn from the clockwise pos tion so that the picture is in sync. The pattern on the oscilloscope should be as shown in figure 4. Adjust the Horizontai Phasing Slug of (T7) until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

FIGURE 4 HORIZONTAL OSCILLATOR WAVEFORAS

This adjustment is very important for correct operation of the circuit f the broad peak of the wave on the oscilloscope is lower than the sharo peak, the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator s overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clock-wise position.
Remove the oscilloscope upon completion of this adjustment.
2. TUBE COMPLEMENT (See figure 5)

The tube complement of Chassis 1201188 is listed in the following table:
3. CHASSIS CONTROLS (See figure 6)
a. Front - The front panel of Chassis $120118 B$ is provided with the following four controls: 1. Selector, 2. Fine Tuning, 3. Contrast - R32, 4. Off-Volume-R26-SW-
b. Rear - The rear controls are as follows.

c. Centering - Centering, both vertically and horizontally, is accomplished by positioning of the focus coll which is mounted on a swivel bracket with an adjustment arm protruding from the back cover cf the set. See figure 6 .

4. ALIGNMENT
figure 6 . front and rear controls
. Equipment Required - A sweep generator, accurate marker generator, oscilloscope, and v.t.v.m. are required for alignment. The marker generator must be very accurate and supply frequencies of (4.5MC.), and (20 to 28 MC .).
b. Response Curves - The i-f response curves for the video i-f stages are shown in the alignment tables.
c. Alignment Points - The location of all i-f transformers, tuned circuits, and trimmers is shown in figure 7.
d. Sound I-F Alignment -
(1) Set receiver to Channel 3.
(2) Use accurate marker generator.
(3) Return v.t.v.m. to B minus, not chassis.

STEP	SIGNAL GENERATOR Input		MEASURING instrument	ADJUST	Procedure
	Connection	freouency			
1	Marker generator through .001 mfd . to pin 2 of V 4 low side to B-.	Marker-4.5 MC.	Connect v.t.v.m. to junction of R19 and C17. Low side to B -.	C16	Peak for maximum response. Adjust generator input to produce one volt reading on v.t.v.m.
2	"	Marker-4.5 MC.	"	$\begin{gathered} \text { T4 } \\ \left(\begin{array}{c} \text { Top and } \\ \text { bot tom } \end{array}\right. \end{gathered}$	Peak for max. response.
3	Marker generator through . 001 mfd . to pin one of vs (6aus).	$\begin{aligned} & 4.5 \mathrm{MC} \text { max } \\ & \text { input } \mathrm{molt} \end{aligned}$	vert. input of scope to junction R24, C21, C22. Low side to chassis.	$\begin{gathered} \text { T5 } \\ \text { (Too and } \\ \text { bot tom }) \end{gathered}$	(a) Slightly detune discriminator secondary (T-5 bot tom pt. 708017. T-5 top pt. 7080is) unt il scope shows an increase in vert. deflection. (D) Adjust discriminator primary (T-5 top pt. 708017. T-5 bottom pt. 708018) for max. vertical deflection. (c) Adjust discriminator secondary for minimum vert. deflection.

e. Video l-F Alignment -
(1) Set receiver to Channel 3.
(2) Connect 3 volt bias battery from junction of RI, R6, and RII inegative terminal) to chassis (positive terminal) for step 5 .'

OJohn F. Rider

STEP	Signal generator input		Channel	ADJUSt	Procedure
	SuEEP GEN.	marker gen.			
1	207.0 MC.	209.75 MC.	12	A12	Adjust for placement of 21.25 MC . marker as per overall response curve.
2	-	-	12	$\begin{aligned} & \text { A14, } \\ & \text { A15, } \\ & \text { A15 } \end{aligned}$	Adjust shape of overall response curve for maximum amplitude and bandwidth.
3	213.0 MC.	215.75 MC.	13	A13	Adjust as in Step 1.
4	201.0 MC .	203.75 MC.	11	A11	-
5	195.0 MC.	197.75 MC.	10	A10	-
6	189.0 MC .	191.75 MC.	9	19	-
7	183.0 MC .	185.75 MC.	8	AB	-
8	177.0 MC .	179.75 MC .	7	A7	\cdot
9	85.0 MC .	87.75 Mc .	6	A6	-
10	79.0 MC .	81.75 MC .	5	${ }_{4} 5$	-
11	59.0 MC .	71.75 Mc .	4	A4	-
12	63.0 MC .	65.75 Mc .	3	A3	\cdot
13	57.0 MC.	59.75 Mc .	2	A2	-

CABINET PARTS LIST - MODELS 650 AND 654

description	Part no.		description	PART NO.	
	model 650	MODEL 654		model 650	model 654
Cabinet	140333	140349	Knob - selector	450073	450073
Cabinet Back (chassis $120113 \mathrm{C})$	560121 A	--	Knob - fine tuning	450074	450074
$\begin{array}{\|r\|} \hline \text { Cabinet Back } \begin{array}{c} (c h a s s i s \\ 1201188) \end{array} \\ \hline \end{array}$	5601218	550122	Connector Plug - Speaker	505040	505040
Speaker	180041	180050	Escutcheon - selector	520103	520103
Metal Mask	410911	410911	Glass Panel	520124	520124
Escutcheon-off-vol-contrast	450028	450028	line cord	583205	583206
Knob - contrast	450071	450071	Shielded lead - speaker	580530	. 580108
Knob - volume	450072	450072	Twin Conductor Lead	580589	580689

5. PARTS LIST

1 Item	PT. no.	DESCRIPTION			1 TEM	PT. No.	DESCRIPTION		
C-1	928006	1500	MMF	400 V	C-19	928006	1500	MMF	400 V
C-2	928006	1500	MmF	400 V	C-20	910010	110	MMF	
c-3	928109	. 005	MF	400 V	C-21	910028	220	mmf	
c-4	928006	1500	MMF	400 V	C-22	923079	. 001	MF	600 V
C-5	910015	270	MMF	500 V	c-23	923061	. 01	MF	400 V
c-6	PT.OF T-1				c-24	923077	. 005	$\mu \mathrm{F}$	600 V
C-7	928000	1500	mma	40 CV	C-25	923114	. 02	MF	400 V
C-8	928006	1500	MMF	400 V	C-25	925165	. 80	MF	250 V
C-9	910015	270	MMF	500 V	C-27	PT. OF C-31	25	MF	50 V
C-10	928006	1500	mmf	400 V	C-28	923077	. 005	MF	600 V
C-11	928006	1500	MMF	400 V	C-29	922101	. 05	MF	400 V
C-12	928109	. 005	MF	4 COV	C-30	925166	40	MF	450 V
C-13	910033	47	Mmf		c-31	925161	40	MF	450 V
C-14	923080	. 25	MF	200 V	C-32	PT. Of C-30	40	MF	450 V
C-15	910130	10	MmF	400 V	C-33	PT.OF C-31	40	MF	450 V
C-16	928006	1500	MmF	400 V	C-34	PT.OF C-26	80	MF	250 V
C-17	900064	3-35	MMF		c-35	922025	047	MF	400 V
C-18	910031	68	MMF	500 V	c-36	PT.OF C-32	10	MF	450 V

©John F. Rider

NOTICE:

It will be noted in the service note on Models 650,654 using chassis 1201188, that two tuners are listed in the parts list:

1. Standard Tuner - Part No. 470607

$$
\text { 2. General Instrument Tuner - Part No. } 470606
$$

A third alternative tuner has been added to Models 650,654. Some sets have been made incorporating the new Emerson tuner part no. 470640.
Since this tuner was added to Models 650,654 after the temporary service note on these sets was released, preliminary information on it is given in this addendum

Complete information on the Emerson tuner will be furnished when the final service note on Models 650,654 is released.

TUNER ALIGNMENT

SIGNAL GENERATOR: Frequency range 40 to 225 mc Accuratuled 400 cycie

The Emerson Tuner departs from the conventional type in that the individually tuned coils are replaced with a pretuned, tapped inductance. Channel selection is effected by switching in various values of inductance which combine with stray and tube capacitance to produce a given resonant frequency. Trimmers are provided in the oscillator and RF sections to compensate for the variable stray capacitances.

Assuming the trimmers to be properly set, the only cause of misalignment would be the distortion of the coil sections due to shipping, handling, etc. The coils are be the distortion of the coil sect must be bent considerably before detuning will neither delicate nor critical, and must be bent considerably before detuning will
occur. it follows, however, that should this be the case for a given coil section, all channels of lower frequency will be detuned to varying degrees. For this reason, the high channels are checked first and channel 2 last.

If, for any reason, it becomes advisable to replace a certain section or sections of coil', it is recommended that the entire coil be replaced. This is easily accomplished since the switch soldering lugs are slotted to receive the coll.

CAUTION: Switch lugs should be clean before new coil is installed.
It is possible, though not recommended, to replace individual sections. The sec tion may be clipped from a new coil, or in an emergency, wound from \#l8 solid AWG, double nylon enamel (or similar) wire. Care should be taken to avoid overheating the wire and melting the insulation.

OSCILLATOR ADJUSTMENT

Proceed as follows:

1) If the oscillator has been disconnected during the IF alignment, put it back circuit.
2) Connect the signal generator to the antenna terminal by means of a generator matching network.
3) Connect the vertical input terminals of the oscilloscope from cathode of $V-2 A$ pin 8) to B minus through a shielded lead. Decouple this lead with 4.7K resistor. Set the vertical gain control at maximum. Synchronize the oscilloscope to 60 cycles or a harmonic of 60 cycles.
4) Set fine Tuner to mid-capacity.
5) Set the generator to the oscillator frequency of channel $10(170.35 \mathrm{mc})$ and adjust the oscillator trimmer C-I (see Fig. 3l for zero beat viewed on the oscilloscope. Zero heat is indicated by a sharply defined minimur deflection that appears high channels (7-13) (see Fig. 4) to determine if zero beat occurs with fine tuner within $22 \frac{1}{2}$ degrees of mid-setting. It may be necessary to adjust coil L-I (high band oscillator coil, Fig. 11 to bring channel $1{ }^{-1}$ within this range. Adjustment is made by compressing or spreading the coil with an insulated screwdriver. If L-I is adjusted, it may be necessary to retune trimmer to channel 10 to bring channels 7 to 10 within the $22 \frac{1}{2}$ degree range
6) The low channels $(2-6)$ are adjusted by starting at channel 6 and progressing through channel 2 (see Table l).
7) Touching up a particular coil section is accompiished by spreading or compressing the individual coils. ISee Fig. I for location of various coil sections).

CAUTION: Before checking a given channel, make certain the station selector switch is in the proper position.

To make certain that the trimmer is adjusted correctly, tune through the zero beat point and then back again to obtain the exact setting. Also, it is advisable when close to the zero beat setting, to vary the signal generator input voltage oscilloscope. However, before making the final trimmer setting, reduce the generator input as low as possible so as to reduce the lock-in range and obtain a sharp zero beat setting

ANTENHA AND RF ALIGMMENT PROCEDURE

!) Connect the sweep generator to the antenna terminal by means of a generator 2) Disconnect choke ($L-3$) in cathode of oscillator tube $V-2 B$ at dummy lug.
3) Connect oscilloscope, through a decoupling resistor, across (R-1) in cathode circuit of mixer tube ($V-2 A$).
4) Turn the station selector switch to channel 10 . Set the center frequency of the sweep generator to the center frequency of channel io (195 mc). Adjust the RF trimmer (see fig. 3) to place a (195 mc) marker at maximum amplitude of curve. This is the only RF adjustment and the RF stage of all high channels (7-13) should be properly tuned. Conversely, if channel 10 is not tuned properly, all high channels will be misaligned.
5) Check channels 7 and 13, noting whether the mid-frequencies of these channels produce maximum amplitude on curve. The RF coil for channel $13(\mathrm{~L}-2)$ is a straight piece of wire lfig. I). As its position with respect to the adjacent lead affects the tuning of the high channels, moving it is a simple means of touching up the curve. A slight readjustment of the RF trimmer may be necessary if $(L-2)$ is moved.

NOTE: As the bandwidth of the high channels is very broad, the mid-
frequency marker may not fall exactly at peak of curves for
6) Check the low channels starting at channel 6 and moving downward tochannel 2

NOTE: If channel 6 is not tuned properly, all low channels will be misaligned. Therefore, it is important that a good response curve be obtained from this channel.

Figure 3 alignment adjustment lccations

duce mask, with the tenter frequency of sweep at the channel center frequen ind low (more than σ db down), the curve may be chang on the skirt, but if they are too particular coil section with an insulated screwdriver.

NOTE: The RF coi! is tuned to sound carrier. The antenna coil is tuned to video carrier.
CAUTION: Be sure to turn station selector switch to correct channel before checking band pass of that channel.

IONS

FREQUENCY CHART

CHAMMEL	FREQUENCY	PICTURE	SOUND	OSCILLATOR	Channel	FREquency	PICTURE	SOUMD	OSCILLATOR
2	54-60	55.25	59.75	81 MC	8	180-185	181.25	185.75	159
3	$60-56$ $66-72$	61.25 67.25	65.75 71.75	${ }_{93} 87$ MC		186-192	187.25	191.75	165
5	76-82	77.25	71.75 81.75	93 103	10 11	192-198 $198-204$	193.25 199.25	197.75 203.75	171
6	82-88	83.25	87.75	109	12	204-210	205.25	209.75	183
7	174-180	175.25	179.75	153	13	210-216	211.25	215.75	189

table 1 FREQUENCY CHART

It should be noted that from channels 7 to 13, the oscillator frequency is lower than the incoming signal by the lF frequency, therefore the relative positions of the video and audio carriers reverse themselves on the overall response curve.

© John F. Rider
4) Use 10 MC . sweep for sweep generator. Couple generator to antenna terminals of receiver.
5) Connect vertical input of scope in series with lok resistor to junction of R39 and 18 (pin 7 grid of V4).

STEP	Signal generator input		CHANNEL	ADJUST	Procedure
	Smeep gen.	marker gen.			
1	207.0 MC.	209.75 MC.	12	112	Adjust for placement of 21.25 MC . marker as per response curve 8.
2	*	'	12	$\begin{aligned} & \text { A14, } \\ & \text { A15 }^{15}, \end{aligned}$	Adjust shape of response curve B Por maximum amplitude and bandwidth.
3	213.0 MC.	215.75 MC .	13	A13	Adjust as in Step 1.
4	201.0 MC .	203.75 MC.	11	A11	"
5	195.0 MC.	197.75 MC.	10	A10	*
6	189.0 MC .	191.75 MC.	9	A9	-
7	183.0 MC.	185.75 MC.	8	A8	-
8	177.0 Mc.	179.75 MC.	7	A7	-
9	85.0 MC .	87.75 MC .	6	${ }^{4} 6$	-
10	79.0 MC.	81.75 MC .	5	A5	-
11	69.0 MC .	71.75 MC .	4	A4	-
12	63.0 MC .	65.75 MC .	3	A3	-
13	57.0 MC .	59.75 MC .	2	${ }^{1} 2$	-

table III . R.f. alignment
TUBE LOCATIONS

FRONT
figure 4. TUBE LOCATION DIAGRAM (FOR CHASSIS 120123B)

OPERATING CONTROLS

FIGURE 3. OPERATING CONTROLS (FOR MODELS 650D. 654D AND 655B)

ALIGNMENT OF MIRACLE PICTURE LOCK (Horizontal Sweep Automatic Freq. Control)

This must be done with chassis removed from cabinet and a scope.

1. Short phasing coil by using a clip lead across C-74 $1.01 \mathrm{mf.l}$
2. Turn horizontal hold control counter clockwise when viewed from front of control. (Center tap at lowest B+ voltage).
3. Starting with frequency slug $(T-9)$ all the way out rotate in until picture locks into synchronization.
4. Remove short from phasing coil and adjust in following manner
a) Place scope lead in series with 10,000 ohm resistor to junction R-83, L-15 low side to B neut ral (B-).
b) Set sweep frequency of scope to 8,000 and adjust fine frequency unti pattern on scope is stationary (Note picture should be in synch during this adjustment.)
c) Phasing slug (L-15) should be adjusted so that you have even peaks as shown in Figure 5 below.

5. Switch tuner to off channel then back. Picture should be out of synch and from 4 to 5 black horizontal bars visible. If more or less, adjust horizontal frequency slug (T-9) until the 4 to 5 bars are seen.
6. Turn horizontal hold control slowly clockwise. Picture should synch in at about $1 / 4$ of a turn. The picture should then remain in synchronization over the whole range of the horizontal hold control.

© John F. Rider

FIGURE 6 . SCHEMATIC DIAGRAM (CHASSIS 120123.B)

Subject: Modifications to nullify efrects of intercarrier buzz on models 050D, 054D, U55B-Chass1s 120123B.
I. Remove following components from circuit.
a) C-21 (110 mmf) connected between Pin \#5 and Pin \#2 of V-6

2-100K (R-19, R-20) resistors from lue 5 of discriminator ransformer (T-6).
$\mathrm{R}-\mathrm{CO}, \mathrm{C}-19$ (8200 ohms and 1500 mmf) from Pin to of V-5 (OAU6) R-1, $\mathrm{T}-6200$) resistor from $\mathrm{B}+$ point on terminal strif to lug 4

II Reconnect the following components
a) Fienove pigteil of R-21 (58 K) going to Pin \#5 of osy and con-
 c) Add a jumper wire from lug 納 of T-C to Pin of V-5 (OAVO).

III Add the following components
a) Place a $33 \mathrm{~K} 1 / 2$ watt resistor In parallel with a 4 mf so voit of $v-0$ ($\bar{S} 8 \mathrm{C} T$) to neutral on nearby teralnal board (ina lug rom tuner) with negative side of electrolytic to Fin \#3, v-6
b) Add a . 001 mf ., 400 volt condenser from? in the of V-c (©SuGT) to ${ }^{\text {a }}$ neutral.
yum

With 10 mc sweep ․inth the output froa the sue enerator shou

Note: The above is particilarly hulpful witen nther expedients
far to minimize effects caused by station modilaticn var-

VOLTACE AND RESISTANCI READINGS

FOR CHASSHS 120123-E - MOOELS 6500, 6540, 6538 volamped with code marking triangle 2 .
voltages may vary slightiy from table flgures shown here if chassis is vor coses may vary slightiy from table figures shown here chass abed slightly due to component variations.
Comoltions for taxing yoltage readings: isee table delowl.

1. Antenna disconnected and antenna terminals shorted.
2. Line voltage 117 volts.
3. All controls set for normal picture.
4. All readings taken with R.C.A. Voltonmyst from points to $\begin{aligned} & \text { neutral }\end{aligned}$ (pin θ of vg).
for a quick overull resistance check:

5. A meutral to chassis should read $300 \times$ approx.

COMOITIOMS FOR TAKIME RESISTAMCE REAOINGS: (See table on other side). 1. Wue to nign leakage resistance between 8 plus,
B neutral and 8 minus, these in ree points must be connected to obtain quick readings.
2. Connect pin 6 of $v 2$ and pin θ of vi with a neutral.
3. After taking resistance readings remove shoriling leacs.
voltage readings for chassis 120123-b

resistance readings for chassis i20123-i

HOTE: wave shapes for chassis 120123 - B can be taken from mpreliminary Trouble Shooting Manual on Chassis 120133-日, Covering Models 6600, 6648 and 6738 .
This manual is now being prepared and will be released in the near future

RECEIVER CHARACTERISTICS

1 TEM	description
Voltage Rating	115 volts, 60 cycles A.C.
Power Consumption	All Models - 155 watts
	All Models - 1.4 amps.
Frequency Range	54-88 MC; 174-216 MC.
Intermediate Frequencies	$\left\{\begin{array}{l} \text { Video }-25.75 \mathrm{MC.} \\ \text { Audio }-4.5 \mathrm{MC.} \end{array}\right.$
Antenna Input 1mpedance	300 Ohms, Balanced
Channel Selection	Twelve Position Rotary Turret
Chassis - Models	$\left\{\begin{array}{l} \text { Models - 650F, 654F, 655F } \\ \text { Chassis - 120138-B } \end{array}\right.$

I. ALIGNMENT
a. Equipment Required - A sweep generator, accurate marker generator, oscilloscope, and v.t.v.m. are required for alignment. The marker generator must be very accurate and supply frequencies of 4.5 MC ., and 20 to 28 MC .

BOTTOM OF CHASSIS

TOP OF CHASSIS
figure 1 - LOCATION OF ALIGNMENT POINTS
b. Response Curves - The i-f response curves for the video i-f stages are shown in figure 2
c. Alignment Points - The location of all i-f transformers, tuned circuits, and trimmers is shown in figure 1.
d. TV I-F Alignment -

1) Tune receiver to Channel 3.
2) Connect 3 volt bias battery negative termlnal from junction of C3I and R27 (positive terminal) to B-
3) Shape overall response curve, after individual peaking of stagger-tuned and over-coupled $i-f s$, as indicated in steps $1-6$ below. See curves A and B.

STEP	Signal generator input		INSTRUMENT CONNECTION	adjust	PROCEDURE
	CONNECTION	frequenct			
1	Connect marker generator to pin 1 (grid) of $\mathrm{v}-1$ (6aU6) through. 001 mif. Condenser. Low side to 3 neutral.	25.5 MC	Connect d.c. v.t.v.m. to oin 7 (grid of vs 12aT7). Low side to pin 8 of v8. Use 3 or 5 volt range.	T2	Peak for maximum response. Adjust generator signal level to produce one volt at grid of v8.
2	"	22.9 MC	-	$\begin{gathered} \text { TO } \\ \text { (TOD } \end{gathered}$	
3	-	21.25 MC	-	$\begin{gathered} \mathrm{T3} \\ (80 \mathrm{t} \\ \mathrm{tom}) \end{gathered}$	Adjust for minimum response. Repeat step 2.
4	"	23.9 MC	-	T4	peak for maximum response.
5	Connect sweep, generator to converter icje or 12AT7) input, using three turn loop of wire slipped over tube. Con nect fnarker gen. in parallel.	Sweep- 24.5 MC (10 MC Sweep) Marker- 21.25 MC and 25.75 MC	Connect vertical input of scope through detector network to pin 1 (grid) of $\mathrm{V}-2$ ($6 \mathrm{~A} \cup \mathrm{G}$) Low side to $8+(130 \mathrm{~V}$). - Low input impedance of about 200 ohms	$\left\lvert\, \begin{array}{ll} T 1 \\ T_{1} \end{array}\binom{A}{B}\right.$	Set markers as shown on response curve A_{1} pig. 2. Note that the markers should be 208 down for this stage.
6	'	$\begin{gathered} \text { Sweep- } \\ 24.5 \mathrm{MC} \\ \text { (10 MC } \\ \text { sweep) } \\ \text { Marker- } \\ 22.6 \text { and } \\ 25.75 \mathrm{MC} \end{gathered}$	Connect vertical input of scope in series with lox resistor to pin 7 (grid) of ve (12ary). Low side to pin 8 of v8.	$\begin{aligned} & 12, \\ & 13, \\ & \text { and } \\ & \text { and } \end{aligned}$	adjust for overall response MC marker: adjust i3 (Top) to set $22, \mathrm{~s}$ Wt marker. Do not readjust trap. Equalizo peaks of response curve by adjusting Tu.

table I . video i.f alignment

figure 2 . RESPONSE Curves
e. TV Sound Alignment

1) Set receiver to Channel 3
2) Use accurate, crystal-controlled, marker generator.
f. TV R-F Alignment -
I) Set fine tuning control to mechanical center. Retain this setting for entire r-f alignment.
21 Use 300 ohm carbon resistor as dummy antenna.

table il. AUDIO 1-F AND DISC ALIGNment
3) Couple marker generator in parallel with sweep generator.
4) Use 10 MC . sweep for sweep generator. Couple generator to antenna terminals of receiver.
5) Connect vertical input of scope in series with lok resistor to junction of R39 and L4 (pin 7 grid of V8), low side to pin 8 of V8.

STEP	SIGNAL GENERATOR INPUT		CHANNEL	ADJUST	Procedure
	swetp gen.	marker gen.			
1	207.0 MC.	209.75 MC.	12	112	Adjust for placement of 21.25 MC . marker as per response curve 8.
2	-	-	12	$\begin{aligned} & \text { A14, } \\ & \text { A15, } \\ & \text { A16 } \end{aligned}$	adjust shape of response curve B for maximum amplitude and bandwidth.
3	213.0 MC.	215.75 MC.	13	113	Adjust as in Step 1.
4	201.0 MC.	203.75 MC.	11	111	.
5	195.0 MC .	197.75 MC.	10	110	-
6	189.0 MC .	191.75 MC.	9	A9	*
7	183.0 MC .	185.75 MC.	8	A8	-
8	177.0 MC .	179.75 MC.	7	A7	-
9	85.0 MC .	87.75 MC .	6	A6	"
10	79.0 MC.	81.75 MC.	5	A5	-
11	69.0 MC .	71.75 MC .	4	A4	*
12	63.0 MC.	65.75 MC .	3	${ }^{4} 3$	-
13	57.0 MC.	59.75 MC .	2	A2	'

table ll।. R.f. AL IGNMENT
2. OPERATING CONTROLS

FIGURE 3. OPERATING CONTROLS (FOR MODELS 650F. 654F AND 655F)
3. TUBE LOCATIONS

figure 4. tUBE location diagram (For Chassis 120138B)
4. ALIGMMENT OF MIRACLE PICTURE LOCK (Horizontal sweep Automatic Freq. Control)

This must be done with chassis removed from cabinet and a scope.

1. Short phasing coil by using a clip lead across C-74 $1.01 \mathrm{mf.l}$
2. Turn horizontal hold control counter clockwise when viewed from front of control. (Center tap at lowest B+ voltage).
3. Starting with frequency slug ($T-9$) all the way out rotate in untll picture locks into synchronization.
4. Remove short from phasing coil and adjust in following manner.
a) Place scope lead in series with 10,000 ohm resistor to junction R-83, L-15 low side to B neutral ($B-$).
b) Set sweep frequency of scope to $B, 000$ and adjust fine frequency until pattern on scope is stationary (Note picture should be in synch during this adjustment.
c) Phasing slug (L-15) should be adjusted so that you have even peaks as shown in figure 5 below.

5. Switch tuner to off channel then back. Picture should be out of synch and from 4 to 5 black horizontal bars visible. If more or less, adjust horizontal frequency slug (T-9) until the 4 to 5 bars are seen.
6. Turn horizontal hold control slowly clockwise. Picture should synch in at about $1 / 4$ of a turn. The picture should then remain in synchronization over the whole range of the horizontal hold control.
7. TUBE LOCATIONS

The tube complements of chassis 1201388 are listed in the following table:

SYMBOL	tube type	FUNCTION	SYmbol	tube type	FUNCTION
$v-1$	6 AU6	1 st video I.F. Ampl.	$v-14$	25W4GT	Horizontal Damper
V-2	6 AU6	2nd Video I.F. Ampl.	$v-15$	2LP4	kinescope
$v-3$	6 AUS	3 rd video I.F. Ampl.	$v-16$	1 600	2nd Det. (Video) Germanium
$v-4$	${ }^{6}$ aut	Sound I.F. Amplifier			Crystal
$v-5$	6 AU6	sound 1.F. Limiter	$\checkmark-17$	6 J 6	oscillator a Converter
$v-6$	${ }^{658 G T}$	Sound Discr. \& A.F. Ampl.		[6 CB6 ${ }^{\text {c }}$	
$V-7$ $v-8$	25L6GT	Sound output ${ }^{\text {and }}$ Sync.		$\left\{\begin{array}{c}\text { or } \\ \text { OAG5 }\end{array}\right\}$	
V-9	12447 12207	2nd Sync. Ampl.	V-18	$\left\{\begin{array}{c}\text { 6AG5 } \\ \text { or }\end{array}\right\}$	R.F. Amplifier
$v-10$	$12 \mathrm{BH7}$	vertical 0sc. \& Output		6BC5	
$v-11$	12SNTGT	Horizontal Oscillator	$v-19$		Selenium Rectifier
$v-12$	19 BG6	Hor. Output ampl.	$v-20$		Selenium Rectifier
$v-13$	1×2	High Voltage Rectifier	v-21		Selenium Rectifier

table JV TUBE COMPLEMENTS
6. CHASSIS PARTS LIST (CHASSIS 120138-B)

SYMEOL	PT. No.	description				SYmbol	PT : 10.	DESCHIPTION		
c-1	928006			(M\|M.)		$c-59$ $c-60$	9230880			600 V 500 V
c-2	928006	1500	MMF	(MIN.)	400 V	c-61	923102	. 5	MF	200 V
C-3	928006	1500	MMF	(MiN.)	400 V	C-62	928006	1500	MMF	400 V
C-4	928006	1500	MmF	(Min.)	400 V	c-63	928006	1500	MMF	400 V
C-5	928006	1500	MmF	(M/N.)	400 V	C-64	928006	1500	MMF	400 V
c-6	928006	1500	MMF	(Min.)	400 V	c-65	928006	1500	MMF	400 V
c-7	928006	1500	MMF	(MIN.)	400 V	c-66	910028	220	MMF	
C-9	928006	1500	MMF	(MIN.)	400 V	C-67	$910043-2$	180	MMF	
c-9	928006	1500	MMF	(min.)	400 V	C-68	923088	. 002	MF	600 V
c-10	928006	1500	MMF	(M\|N.)	400 V	C-69	923114	. 02	MF	400 V
C-11	928006	1500	MMF	(MIN.)	400 V	c-70	923091	$\cdot 2$	MF	200 V
C-12	928006	1500	MMF	(MIN.)	400 V	c-71	923062	. 05	MF	400 V
C-13	928006	1500	MMF	(M\|N.)	400 V	C-72	910047	200	MMF	500 V
C-14	928006	1500	MMF	(MIN.)	400 V	c-73	PT.OF C-32	10	MF	400 V
C-15	928002	10	MMF	500 V .		c-74	922041	. 01 M	MF	600 V
c-16	928006	1500	MMF	(MIN.)	400 V	C-75	910212	390	MMF	
C-17	910033	47	MMF	(c-76	910044	1200	MMF	. .
C-18	928006	1500	MMF	(min.)	400 V	C-77	900073	45-400 M	MMF	
C-19	928006	1500	MMF	(MIN.)	400 V	C-78	922024	. 033 M	MF	600 V
C-20	928006	1500	MMF	(MiN.)	400 V	C-79	910045	5 M	MMF	1000 V
C-21	910043	110	MMF		. .	C-80	923015	. 0005 M	MF	10 kV
C-22	923079	. 001	MF	600 V	. .	C-81	922101	. 05 M	MF	400 V
c-23	923061	. 01	MF	400 V	. .	C-82	922023	. 047 M	MF	600 V
C-24	923088	. 002	MF	600 V	. .	C-83	$915000-1$	47 M	MMF	. . .
c-25	928006	1591	MMF	400 V	. .	C-84	928006	1500 M	MMF	400 V
c-26	923061	.01	MF	400 V	. .	C-85	928006	1500 M	MMF	400 V
C-27	925181	40	MF	300 V	.	C-86	928006	1500 M	MMF	400 V
C-28	923061	. 01	MF	400 V	.	C-87	923088	. 002 M	MF	600 V
C-29	922101	. 05	MF	400 V	\cdots	C-88	928054	680 M	MMF	1000 V
C-30	$925166-1$	200	MF	150 V		C-89	900064	3-35 M	MMF
c-31	923201	$?$	MF	50 V	- .					
C-32	925166-3	120	MF	300 V	. .	F-1	808170	fuse		- • .
c-33	PT-OF C-27	120	MF	300 V	. \cdot					
c-34	$925070-1$	30	MF	150 V		1-1	708061	ION TR	Rap	- single.
c-35	$925070-1$	30	MF	150 V	.					
c-36	923091	. 2	MF	200 V			705016	R.F. C	chok	E-3.3 uh
c-37	PT.OF C-27	50	MF	300 V	. -	L-3 L-4	705016	R.F. CHo	CHOK	E-3.3 un
c-38	928023	5	MMF			L-4	708090	Peaking	cha co	OIL-80 un
c-39	928006	1500	MMF	(MIN.)	400 V	L-5	708093	peaking	G c	O1L-35 un
C-40	$925070 \% 2$	4	MF	200 V	. .	L-6	708032-1	Sound	1.5	COIL.
C-41	910047	200	MMF	500 V	. .	-7	708048	focus	COI	- EM-
C-42	923062	. 05	MF	400 V	- -			2250	OH	M . . .
c-43	910047	200	MMF	500 V	- -	L-8				
C-4.4	922032	. 01	MF	600 V	. .	L-9	708032	wave trap	trap	- 4.5 MC .
C-45	PT-OF L-9	47	MMF			L-10	708090	Peaking	NG Co	O1L-80 uh
C-46	923062	. 05	MF	400 V	:	L-11	708114	Peaking	G	COIL-440
C-47	923062	. 05	MF	400 V		L-12	708095	peaking	G CO	1L-180
C-48	923064	. 1	MF	400 V		L-13		¢ DEFLECT	T10	yoke -
C-49	923088	. 002	MF	600 V			708036	VERT.	. CO	ILS
C-50	923079	. 001	MF	600 V		L-14	708036	DEFLECT	Tlo	yoke -
C-51	923088	. 002	MF	600 V				HORIZ	z.	COILS
C-52	923092	. 006	MF	400 V		L-15	738037	HORIZ.	PH	Case coll.
c-53	923079	. 001	MF	600 V		L-16	708052	LInearity	ITY	COIL
C-54	922021	. 001	MF	600 V		L-17	708055	SIZE CO	01 L .	- . . .
C-55	922014	. 1	MF	200 V		L-18	PT.OF SP-1			
C-56	922024	. 033	MF	600 V						
C-57.	922008	. 1	MF	400 V		P-2	585061 PLUG	a cable	-	peaker
C-58	PT.OF C-32	15	MF	400 V				(able model)	L)	. . .

62-9 39४d ^1 NOS\&3W3
'John F. Rider

Subject: Circuit modifications in Models ú50F, 654F, 655F using Chassis l20138B.

Sets coded Triangle l have the following changes incorporated to reduce the effects caused by station modulation variation and to make tuning easier.

1. $R-16$ (8200 ohms), $R-17$ (22K ohms) $R-95$ (lK ohms), C-19 (1500 mmf.) are removed from the circuit.
2. The junction of $C-20, R-13$ and $T-6$ is connected to Pin 6 of V-5 (0AIt) by means of a jumper wire.
3. The value of R-18 has been changed from 2200 ohms to 68 K ohms, $1 / 2$ watt.
4. All leads to junction of $(L-5, C-80), C-39, R-14$, and Pin 2 of V-4 are disconnected from one another and rewired as follows:

Note: L-5 and C-39 are left connected to one another.
a) $\mathrm{R}-14$ (82 ohms) is wired to $\mathrm{B}+(130$ volt line)
b) Pin 2 of $V-4$ (OAUG) is wired to Pin 7 of the same tube. C) C-39 (1500 mmf .) is wired to Pin 7 of V-4.
5. The followiñ components have been caded.
a) A 1 megohm, $1 / 2$ watt resistor from Pin 1 of $V-5$ to junction of $\mathrm{L}-5, \mathrm{C}-89$.
b) A. $01 \mathrm{mf} ., 200$ volt condenser from junction $L-5$, c - 39, 1 meg. to Pin 7 of $V-4$ (6 AUS)
c) A 33 K ohm, 1 watt resistor from Pin 6 of $V-8$ (12AT7) to B+ (265 volt line).

VOLTAGE AND RESISTANCE READINGS

FOR CHASSIS 120138-B - MODELS 650F, 654F, 655F

NOTE: Voltage and resistance measurements listed here are for chassis 120138-B stamped with a triangle but without a number stamped within the triarigle. Voltages may vary slightly from table figures shown here if chassis is not coded as stated above. The peak to peak voltage given may vary slightly due to component variations.

CONDITIONS FOR TAKING VOLTAGE READINGS: (See table below)

1. Antenna disconnected and antenna terminals shorted
2. Line voltage 117 volts.
3. All controls set for normal picture
4. All readings taken with R.C. A. voltohmyst from point to 8 neutral (pin 8 of V).

FOR A QUICK OVERALL RESISTANCE CHECK:

1. B plus (pin 6 of $V 2$) to 8 neutral should read $0.1 M$.
2. B neutral to chassis should read 220 K .
3. B minus (pin 8 of $V 8$) to B neutral should read 120k.

MODELS 650F, 654F
CONDITIONS FOR TAKING RESISTANCE READINGS: (See table)

1. Due to high leakage resistance between B plus, B neutral and B minus, these three points must be connected to obtain quick readings.
2. Connect B plus (pin 6 of $V 2$) and B minus (pin 8 of V_{8}) to B neutral (pin 8 of V9) to obtain resistance readings.
3. After taking resistance readings remove shorting leads.

VOLTAGE READINGS FOR CHASSIS 120138-B

SYMBOL	TUBE P I N No.											
	PIN 1	PIN 2	PIM 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9	PIN 10	PIN 11	PIN 12
V1	-0.3	0	38 A.C.	32 A.C.	115	15	0.8					
V2	120	120	32 A.C.	25 A.C.	245	245	120					
V3	120	120	25 A.C.	19 A.C.	245	245	120					
V4	130	130	12A.C.	18 A.C.	250	250	130					
V5	115	120	18 A.C.	25 A.C.	245	155	120					
V6	-1.2	0	-1.2	-0.3	0.3	86	5.5A.C.	12A.C				
V7	0	48A.C.	98	105	-5.8	-6	74 A.C.	2.5				
v8	110	-0.5	0	5. 5A.C.	5.5A.C.	100	35	36	12A.C.			
v9	215	-6.7	0.2	18 A.C.	18 A.C.	22	-1.7	0	12A.C.			
V10	360	-16	0	37 A.C.	48 A.C.	36	-1.4	8.5	48a.C.			
V_{11}	-84	210	0	-21	180	-11	25A.C.	37A.C.				
V12	N.C.	18A.C.	0	-22	-22	N.C.	56A.C.	270				
V13	HIGH VOLTAGE-DO NOT MEASURE											
$\checkmark 14$	N.C.	N.C.	400	N.C.	260	N.C.	28A.C.	40A.C-				
$\checkmark 15$	0	0								390	29	6A.C.

RESISTANCE READINGS FOR CHASSIS 120138-8

RESISTANCE READINGS FOR CHASSIS 120138-8												
SYMBOL	TU B E					P \| N	N O S			PIN 10	PIN 11	PIN 12
	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9			
$v 1$	1. 2 M	3	22	20	30 K	30k	85					
V2	30 k	30k	20	17	0	0	30k					
V3	30k	30k	17	13	1 K	1 K	30 K					
$\checkmark 4$	30k	30k	10	15	500	500	30k					
v5	120 k	30k	15	18	3500	20k	30k					
v6	90 K	0	90 k	1.2M	180k	0.5 M	2.5	10				
V7	0	28	4 K	3.6 K	450k	22K	36	70				
v8	20 k	1 M	0	2	2	30k	250	0	9			
v9	5.5k	0.8 M	200	14	14	18K	3 M	0	9			
110	INF.	0.8 M	0	22	28	4 M	0.1 M	0.1 M	22			
V11	250 K	inf.	0	0.8 M	60k	0.3 M	16	24				
V12	N.C.	24	0	0.8 M	0.8M	N.C.	30	5.5				
V_{13}	F	1 LA	EN T	INFI	$N 19$	-	A TE	1.	M	6.		
V14	N.C.	N.C.	inf.	N.C.	22	N.C.	30	40				
$\checkmark 15$	0	0.8 M								InF.	50 K	2

NOTE: Wave shapes for chassis $120138-B$ can be taken from "Preliminary Trouble
Shooting Manual on Chassis $120133-B$, Covering Models $650 \mathrm{~B}, 6648$ and 6738.
NOTE: Wave shapes for chassis $120138-B$ can be taken from 'Preliminary Trouble
Shooting Manual on Chassis $120133-B$, Covering Models $650 \mathrm{~B}, 664 \mathrm{~B}$ and 6738.

INDEX

PAGE			PAGE
31	SPECIFIGATIONS	31	
35	TOP VIEW - TUBE LAYOUT. .	32	
33	TRIMMER LOCATIONS......	31	
34	VOLTAGE MEASUREMENTS ...	34	
38	WAVEFORMS	36	

receiver characteristics

1 TEM	description
Voltage Rating	115 volts, 60 cycles A.C.
Power Consumption	All Models - 155 watts
$\begin{aligned} & \text { (urrent } \text { Drain } \\ & \left(\text { at } 115 \text { volts } A_{1}\right) \\ & \hline \end{aligned}$	All Models - 1.4 amps.
Frequency Range	54-88 MC; 174-216 MC.
Intermediate Frequencies	$\left\{\begin{array}{l} \text { Video }-25.75 \mathrm{MC} . \\ \text { Audio }-4.5 \mathrm{MC.} \end{array}\right.$
Antenna Input Impedance	300 ohms, Bal anced
Channel Selection	Twelve Position Rotafy Turret
Chassis - Models	$\left\{\begin{array}{l} \text { Model s }-6608,6648,6738 \\ \text { Chassis }-120133-\mathrm{B} \end{array}\right.$

1. ALIGnMEnt
a. Equipment Required - A sweep generator, accurate marker generator, oscillo scope, and v.t.v.m. are required for alignment. The marker generator must be very accurate and supply frequencies of 4.5 MC ., and 20 to 28 MC

. Response Curves - The i-f response curves for the video i-f stages are shown in figure 2.
c. Alignment Points - The location of all i-f transformers, tuned circuits, and trimmers is shown in figure 1.
d. TV I-F Alignment -
1) Tune receiver to Channel 3.
2) Connect 3 volt bias battery negative terminal from junction of C3I and R27 (positive terminal) to B-
3) Shape overall response curve, after individual peaking of stagger-tuned and over-coupled i-fs, as indicated in steps $1-6$ below. See curves A and B.

STEP	Signal generator input		instrument CONNECTION	ADJUST	PROCEDURE
	connection	freouency			
1	Connect marker generator to pin 1 (grid) of $v-1$ (6au6) through . 001 mifd. Condenser. Low side to B neutral.	25.5 MC	Connect d.c. v.t.v.m. to oin 7 (grid of v8 12ATl). Low side to pin 8 of v8. use 3 or 5 volt range.	T2	Peak for maximum response. Adjust generator signal level to produce one volt at grid of V 8.
2	-	22.9 MC	-	$\begin{gathered} \text { T3 } \\ \text { (Top } \end{gathered}$	
3	-	21.25 MC	-	$\begin{gathered} \text { col } \\ \binom{80 t}{\text { tom }} \end{gathered}$	Adjust for minimum response. Repeat step 2.
4	*	23.9 MC	-	14	Peak for maximum response.
5	Connect sweep, qenerator to converter (bJ6 or 12AT7) input, using three turn loop of wire slipped over tube. Connect marker gen. in parallel.	$\begin{aligned} & \text { Sweep- } \\ & 24.5 \mathrm{MC} \\ & (10 \mathrm{MC} \\ & \text { sweep } \\ & \text { Marker- } \\ & 21.25 \mathrm{MC} \\ & 25.15 \mathrm{MC} \end{aligned}$	Connect vertical input of scope inrcugh odetector network to pin 1 (grid) of $\mathrm{v-2}$ (6Au6) Low side to $8+(130 \mathrm{~V})$. - Low input impedance of about 200 ohms	$\begin{aligned} & T_{1}^{1} \\ & T_{1}\binom{A}{B} \end{aligned}$	Set markers as shown on respunse curve A, fig. 2. Note that the markers should be 20s down for this stage.
6	"	$\begin{gathered} \text { Sweep- } \\ 24.5 \mathrm{MC} \\ (10 \mathrm{MC} \\ \text { Sweep) } \\ \text { Marker } \\ 22.6 \text { and } \\ 25.75 \mathrm{MC} \end{gathered}$	Connect vertica: infut of scope in series with 10 k resistor to pin 7 (grid) of v8 (12at7). Low side to pin 8 of v8.	$\begin{aligned} & T 2, \\ & T_{3} 3, \\ & \text { and } \\ & \text { T4 } \end{aligned}$	Adjust for overa!l response as shown in curve Adjust 12 fo posig. 2. MC marker; adjust to set 22.5 MC marker. Do not readjust trap. Equalize peaks of response curve by adjusting T 4 .

table I - ydoe l-f alignment

40 40 35083

e. TV Sound Alignment

1) Set receiver to Channel 3
2) Use accurate, crystal-controlled, marker generator.

STEP	Signal generator input		measuring instrument	ADJUST	PROCEDURE
	connection	fre ouenct			
1	Marker generator through .001 uf to junction of L-4, C-38. Low side to chassis.	Marker- 4. 5 MC .	Connect v.t.v.m. through 10k resistor to pin 1 (grid of $v-5$). Low side to B^{+}(130V).	C-89	Peak for maximum negative response. Adjust generator input to produce one volt at grid of V5. (Above no signal value.
2	"	"	,	16	"
3	Connect sweep generator in parallel with marker gen.	Sweep- 4.5 MC (450 KC Marker- 4.5 MC	Replace v.t.v.m. with scope connected through 10k resistor to junction of R21 and C22. Low side to B neutral.	$\begin{gathered} \text { Thecon- } \\ \text { dary } \end{gathered}$	Position 4.5 MC. marker at center of S-curve, by ad- justing secondary. (See just ing secondary. Fig. 2- curve c).
4	"	"	"	$\begin{gathered} \text { T6 } \\ (\text { Pri- } \\ \text { mary. } \end{gathered}$	Peak primary for max imum amplitude and linearity.
5	Marker generator through .001 mfd. to pin 7 of V8 (12AT7) low side to pin 8 of v 8.	Marker- 4. 5 MC	A.c. v.t.v.m. or D.c. V.t.v.m. used with a junction of R52, C47. Low side to B neutral	19	Adjust for min. reading of v.t.v.m. Keep contrast control set for maximum contrast.

table II . AUDIO I-F AND DISC AL IGNMENT
f. TV R-F Alignment -
() Set fine tuning control to mechanical center. Retain this setting for entire r-f alignment.
2) Use 300 ohm carbon resistor as dummy antenna.
3) Couple marker generator in parallel with sweep generator.
4) Use 10 MC . sweep for sweep generator. Couple generator to antenna terminals of receiver.
5) Connect vertical input of scope in series with lok resistor to junction of R39 and L4 (pin 7 grid of V8), low side to pin 8 of V8.

STEP	SIGNAL GENERATOR INPUT		Channel	ADJUST	Procedure
	SWEEP GEN.	marker gen.			
1	207.0 MC.	209.75 MC.	12	A12	adjust for placement of 21.25 MC . marker as per response curve 8.
2	"	"	12	$\begin{aligned} & \text { A14, } \\ & \text { A15, } \end{aligned}$	adjust shape of response curve B for maximum amplitude and bandwidth.
3	213.0 Mc.	215.75 MC .	13	A13	Adjust as in Step 1.
4	201.0 MC.	203.75 MC.	11	A11	"
5	195.0 MC.	197.75 MC .	10	110	*
6	189.0 MC.	191.75 MC.	9	49	-
7	183.0 MC.	185.75 MC .	8	48	*
8	177.0 MC.	179.75 MC .	7	A7	-
9	85.0 MC .	87.75 MC.	6	A6	-
10	79.0 MC .	81.75 Mc .	5	A5	-
11	69.0 MC.	71.75 MC .	4	${ }^{4} 4$	*
12	63.0 MC .	65.75 MC :	3	${ }^{1} 3$	-
13	57.0 Mc .	59.75 Mc .	2	A2	

FIGURE 3. OPERATING CONTROLS (FOR MODELS 660B. 664B. 673B)
3.
3. TUBE LOCATION

FIgure 4. tube location diagram (for CHASSIS 120133B)
table \|ll . R.f. AL IGNMENT
4. ALIGMENT OF MIRACLE PICTURE LOCK (Horizontal Sweep Automatic Freq. Control)

This must be done with chassis removed from cabinet and a scope.

1. Short phasing coil by using a clip lead across C-74 1.01 mf .
2. Turn horizontal hold control counter clockwise when viewed from front of control. (Center tap at lowest B+ voltage)
3. Starting with frequency slug ($T-9$) all the way out rotate in unt 11 pictur locks into synchronization.
4. Remove short from phasing coil and adjust in following manner
a) Place scope lead in series with $10,000 \mathrm{ohm}$ resistor to junction R-83, L-15 low side to B neut ral ($B-$)
b) Set sweep frequency of scope to 8,000 and adjust fine frequency until pattern on scope is stationary (Note picture should be in synch during this adjustment.)
c) Phasing slug ($L-15$) should be adjusted so that you have even peaks as shown in figure 5 below.

channel then back. Picture should be out of synch and from 4 to 5 black horizontal bars visible. If more or less, adjust hori zontal frequency slug ($T-9$) until the 4 to 5 bars are seen
5. Turn horizontal hold control slowly clockwise. Picture should synch in at about $1 / 4$ of a turn. The picture should then remain in synchronization over the whole range of the horizontal hold control.
6. TUBE LOCATIONS

The tube complements of chassis 120133 B are listed in the following table:

sYmbol	TUBE TYPE	function	symbol	tube TPPE	function
v -	6AU6	1st video I.F. Ampl.	$v-14$	25w4GT	Horizontal Damper
V -2	6aug	2nd Video I.F. Ampl.	v-15	$3 \mathrm{LP4}$	
$v-3$ $v-4$	6 aub 6 aub	3rd Video 1.F. Ampl. Sound 1.F. Amplifier	v-16	1 N 60	2nd Det. crystal
v-5	6aug	Sound I:F. Limiter	v-17	6.56	oscillator a converter
v -6	6SBGT	Sound Discr. \& A.F. Ampl.		[6CB6	
V-7	$25166 T$	Sound output		$\left\{\begin{array}{l}\text { or } \\ 6065\end{array}\right\}$	R.F. Amplifier
$\mathrm{V}-8$ $\mathrm{~V}-9$	12 at7 12 AU7	2nd Sync. Ampl.	$v-18$	$\left\{\begin{array}{l}\text { 6ab } \\ \text { or } \\ \text { ors }\end{array}\right\}$	R.F. Amplifier
$\mathrm{v}-10$	128 H 7	vertical osc. a Output		(68C5	
$v-11$	12SN76T	Horizontal oscillator	$v-19$ $v-20$		Selenium Rectifier
$\mathrm{v}-12$ $\mathrm{v}-13$	19866 1×2	Hor. Output Ampl. High Voitage Rectifier	$v-20$ $v-21$		Selenium Rectifier

table IV. TUBE COMPLEMENTS

Sets coded Triangle 1 have the following changes incorporated to reduce the effects caused by station modulation variation and to make tuning easier.

1. R-16́ (2200 ohms), R-17 (22K ohms) R-95 (1K ohms), C-19 (1500 mmf.) are remo"ed from the circuit.
2. The junction of $C-20, R-18$ and $T-6$ is connected to Pin 6 of $V-6$ (GAU6) by means of a jumper wire.
. The value of $R-18$ has been changed from 2200 ohms to 68 K ohms, $1 / 2 \mathrm{~W}$. - All leads to junction of (L-5, C-89), C-39, R-14 and Pin 2 of V-4 are disconnected from one another and rewired as follows:

Note: L-5 and C-89 are left connected to one another.
(a) $R-14$ (82 ohms) is wired to $B+(130$ volt line).
(b) Pin 2 of 4 (oada) is wired to Pin 7 the same tube.
(c) C-39 (1500 mmf .) is wired to Pin 7 of $V-4$.
5. The following components have been added.
a) A 1 megohm, $1 / 2$ watt resistor from Pin 1 of $V-5$ to junction of $\mathrm{L}-5, \mathrm{C}-89$.
b) A. Ol mf., 200 volt condenser from junction L-5, c-89, 1 meg. to pin 7 of $V-4$ (OAUO).
c) A 33 K ohm, 1 watt resistor from Pin 6 of $V-8$ (12AT7) to $B^{+}(265$ volt line).
Chassis coded with Triangle 2 have a . 001 mf., 600 volt condenser from Pin 6 of $6 S 8 G T$ to B neutral. The body of this condenser is dressed close to the rear of the tuner unit.

In production, two types of discriminator transformers are used. Electrically these transformers are identical, the difference being in the mechanical layout of the coils.

Chassis using part \#708017 are coded with the letter S inside the code triangle. The secondary slug of this transformer is located underneath the chassis.

CORRECTION OF PRELIMINARY SERVICE NOTE FOR MODELS 6COB, 664B, 673B, Chassis l20133B.

Please refer to overall video I.F. response curve in preliminary note The 25.75 mc picture I.F. marker and the 21.5 mc I.F. bandpass marker should be at the 50% reference point instead of at the 75% point as show

Sets coded Triangle 3 have the following changes incorporated to facilitate sound alignment.

1. C-3 has been changed from 1500 mmf . to .005 mf . ceramic.
2. R-14 has been changed from 82 to 150 ohms $1 / 2$ watt.
3. A 150 ohm $1 / 2$ watt resistor has been inserted between Pin \#2 of V-5 and $\mathrm{B}+130$ volts.
4. A 470 ohm $1 / 2$ watt resistor has been added from B+ 265 volt line to lug where L-6 is connected.

The following wiring changes have been made

1. The 265 volt lines connected between dunny lug near $V-5$ and $L-6$ and also between L-6 and dummy lug near speaker socket have heen removed.
2. A new 265 volt line has been added between dummy lug near $V-5$ and dummy lug near speaker socket.
3. The wire going from Pin \#2 of $V-5$ has been removed from C-37 (50 mt . 300 volt) and connected to $B+130$ volt point on dumy lug near $\mathrm{V}-5$.

Sets coded Triangle 4 have the following changes:

1. C-80 (. $0005 \mathrm{mf} ., 10 \mathrm{KV}$) condenser has been removed.
2. C -87 has been changed from . 002 mf ., 600 volts to .002 mf ., 1600 volts.
3. R-91 (470 K ohms) has been r emoved and the high voltage lead connected directly to Pin \#9 of V-13 (1X2).
4. Figtail of R-93 has been removed from junction.
5. R-93 has been chanced from 470 K ohms to 940 K ohms which is actuallv composed of $R-93$ (470 K ohms) and $R-91$ (470 K ohms) in series.

MODELS O60B, 604B

CONDITIONS FOR TAKING VOLTAGE READINGS: (See table below)

1. Antenna disconnected and antenna terminals shorted.
2. Line voltage 117 volts.
3. All controls set for normal picture.
4. All readings taken with R.C.A. voltohmyst from point to B neutral (pin 8 to v9).

FOR A QUICK OVERALL RESISTANCE CHECK:

1. B plus 1 pin 6 of V 2) to B neutral should read 0.1 M .
2. B neutral to chassis should read 220 K .
3. B minus (pin 8 to V8) to B neutral should read 120 K .
(UNDITIONS FOR TAKING RESISTANCE READINGS: (See table on page 5).
4. Due to high leakage resistance between B plus, B neutral and B minus,
these three points must be connected to obtain quick readings.
5. Connect B plus (pin 6 of $V 2$) and B minus (pin 8 of $V 8$) to B neutra (pin 8 of V9) to obtain resistance readings.
6. After taking resistance readings remove shorting leads.

VOLTAGE READINGS FOR CHASSIS 120133-B

symbol	TUBEP P N NUMBER											
	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9	PIN 10	PIN 11	PIN 12
v -1	-0.3	0	38 A.C.	32 A.C.	115	115	0.8					
V -2	120	120	32 A.C.	25 A.C.	260	260	120					
$\mathrm{v}-3$	120	120	25 A.C.	19 A.C.	265	265	120					
$v-4$	95	120	12 A.C.	18 A.C.	265	265	120					
V -5	115	120	18 A.C.	25 A.C.	150	150	120					
V-6	-3	0	-3	-3	0	95	5.5 A.C.	12 A.C.				
V-7	0	48 A.C.	90	100	-4	-4	74 A.C.	-3				
V-8	110	-0. 5	0	5.5 A.C.	5. 5 A.C.	115	14	14	12 A.C.			
$v-9$	215	-6. 7	2	18 A.C.	18 A.C.	16	-1.7	0	12 A.C.			
V -10	365	-16	0	37 A.C.	48 A.C.	32	-1.4	8.5	48 A.C.			
V-11	-80	210	0	-21	155	-11	25 A.C.	37 A.C.				
V -12	N. C.	18 A.C.	0	-22	-22	N.C.	56 A.C.	270				
$v-13$					00	NOT	MEAS	U R E				
$v-14$	N.C.	N.C.	400	N.C.	260	N.C.	28 A.C.	40 A.C.				
V-15	0	0								390	29	6 A.C.

N.C. Denotes no connection.

RESISTANCE READINGS FOR CHASSIS I20133-B

SYMBOL	TUBE PIN NUMBER											
	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9	PIN 10	PIN 11	PIN 12
V-1	1.2 M	3	22	20	30 K	30 K	85					
V -2	30 K	30 K	20	17	470	470	30 K					
v-3	35k	35 k	17	13	1 k	1 K	30k					
$v-4$	1 M	30 K	10	15	2.5	0	30k					
$\mathrm{v}-5$	120 K	30 K	15	18	65 K	65 K	30 K					
V-6	90 K	0	90 K	1.2 M	180 K	0.5M	2.5	10				
V-7	0	29	4 K	3:6K	450 K	30k	36	70				
K-8	20 K	1 M	0	2	2	30 k	120	0	9			
v-9	5.5k	0.8 M	350	14	14	18K	3 M	0	9			
$v-10$	INF.	0.8 M	0	22	28	3.5 M	0.1 M	0.1 M	23			
$v-11$	250 K	1 NF .	0	0.8 M	60k	0.3 M	16	24				
V -12	N.C.	24	0	0.8 M	0.8M	N.C.	30	0				
$v-13$	PLATE 1.3 MEG. - FILAMENT INFINITY											
$v-14$	N.C.	N.C.	INF.	N.C.	15	N.C.	20	30				
v -15	0	0.8 M								inf.	50k	2

.c. Denotes no connection.
iNF. Denotes infinity.
 stamped with a triangle 2 A .
Voltages may vary slightly from table figures shown here if chassis is not coded as stated above. The peak to peak voltage given may vary slightly due to component variations.

EMERSON LOW CAPACITY PROBE

A low capaclty probe must be used in order to faithfully reproduce high frequency waveshapes (15 kc and higher) and to prevent loading of the circult under observation. Such a probe can be readily constructed with parts on hand.

Mount parts on a small sheet of bakellte, preferably inside a paper or mica tube. A shielded cable must be used because it prevents stray pickup. The length of this cable is very important since its capacity is ised in the design of the probe.

Due to the construction of the probe, the signal at the oscllloscope terminals is approximately $1 / 15$ of its actual value. This means that a scope with at least . 05 RMS volts per inch vertical sensitivity is required. The average scope wlll meet these requirements. Since the iscope is calibrated on a 60 cycle sine wave through the probe, the at tenuation of the probe will not effect the accuracy of the peak to peak voltage readings.

In trouble-shooting, it is of great value to know the peak to peak voltages of the various wave shapes. The oscilloscope can be sasily calibrated to read these voltages. For information on calibrating he oscilloscope, see tems (a to d) listed on next page

TO CALIBRATE THE PROBE:

The probe must be calibrated for the oscilloscope in use due to the differences
in oscilloscope input impedances. The following steps should be taken:
a) Connect probe to the output of the video detector lacross detector load resistorl.
(b) With the scope sweep set at $30 \mathrm{c} . \mathrm{p} . \mathrm{s}$. , adjust $\mathrm{C}-1$ so that the vertical blanking pulses and the horizontal blanking pulses line up as shown in the drawing marked (RIGHT) listed below. The probe is now calibrated for the particular oscilloscope in use and should not be readjusted unless the oscilloscope is changed.

 WRONG

C-I TOO LARGE

WRONG
C-I TOO SMALL

RIGHT
C-I CORRECTLY ADJUSTED

FOR TAKING WAVE SHAPES PROCEED AS FOLLOWS

a）Observe the signal under test on the oscilloscope and set the gain control so that the whole signal is well within the screen limits．
b）Observe different 60 cycle sine wave voltages $112 \mathrm{~V}, 25 \mathrm{~V}, 117 \mathrm{~V}, 350 \mathrm{~V}$ a．c． etc．）on the oscilloscope with the same gain setting as before until one is found that is of the same peak to peak value，or less than the fomerly observed signal．By measuring the 60 cycie voltage with a common a．c． meter，and then comparing the two signals on the oscilloscope，a good es－ timation can be made as to the peak to peak voltage of the signal．
c）An A．C．voltmeter is calibrated to read the R．M．S．value of $1 / 2$ a sine wave and not the peak value．To convert from an R．M．S．value to a
 peak value，use the correction fac－ tor which is 1．4．The peak to peak value will therefore have a correctio factor of 1.4×2 or 2.8 ．
The diagram at right should make this clear．
d）With a square celluloid face mask on the screen it is very easy to obtain accurate measurements．
For example：Take the 6.3 volt filament voltage，set the vertical gain control on the oscilloscope so that the wave covers $17.6(6.3 \times 2.8)$ boxes vertically from peak to peak．If the gain control is not moved the oscillo－ scope will read 1 volt peak to peak per box on any signal．For a very weak signal the calibration on a 6.3 volt $A C$ wave can be made with the vertical distance from peak to peak to 176 boxes instead of 17.6 boxes．The oscillo scope will then read 0.1 volt peak to peak per box instead of 1 volt peak to peak per box．
If a stronger signal is encountered，the 117 V ．A．C．Iine can be used． The peak to peak value of this voltage is 117 V ．$\times 2.8=328$ volts．
It is advisable that the serviceman familiarize himself with the above procedure on a good TV chassis．

6．CHASSIS PARTS LIST（CHASSIS I2OI33－B）

SYMBOL	PT．NO．	description				SYMBOL	Pr．No．	description			
C－1	928006	1500	MMF	（MIN．）	400 V	C－24	923088	． 002	MF	600 V	
C－2	928006	1500	MMF	（MIN．）	400 V	c－25	928006	1500	MMF	400 V	
C－3	928006	1500	MMF	（M／N．）	400 V	c－26	923061	． 01	MF	400 V	
c－4	928006	1500	MmF	（min．）	400 V	C－27	925181	40	MF	300 V	
C－5	928006	1500	MMF	（min．）	400 V	C－28	923061	． 01	MF	400 V	
c－6	928006	1500	MMF	（MiN．）	400 V	C－29	922101	． 05	MF	400 V	
C－7	928006	1500	MMF	（MIN．）	400 V	c－30	925166 －1	200	MF	150 V	
C－8	928006	1500	MMF	（MIN．）	400 V	c－31	923201	2	MF	50 V	
C－9	928006	1500	MMF	（MiN．）	400 V	C－32	925166 －3	120	MF	300 V	
C－10	928006	1500	MMF	（MIN．）	400 V	c－33	PT－0F C－27	120	MF	300 V	
C－11	928006	1500	MMF	（MiN．）	400 V	c－34	925070－1	30	MF	150 V	
c－12	928006	1500	MmF	（MIN．）	400 V	c－35	$925070-1$	30	MF	150 V	
c－13	928006	1500	MMF	（MiN．）	400 V	C－36	923091	． 2	MF	200 V	
c－14	928006	1500	MmF	（M｜N．）	400 V	C－37	PT．OF C－27	50	MF	300 V	
C－15	928002	10	MMF	500 V		C－38	928023	5	MMF		
C－16	928006	1500	MMF	（MIN．）	400 V	c－39	928006	1500	Mmf	（MIN．）	400 V
C－17	910033	47	MMF			C－40	$925070-2$	4	MF	200V	
C－18	928006	1500	MMF	（MIN．）	400 V	c－41	910047	200	MMF	500 V	
C－19	928006	1500	MMF	（MIN．）	400 V	C－42	923062	． 05	MF	400 V	
C－20	928006	1500	MmF	（MIN．）	400 V	c－43	910047	200	MMF	500 V	
c－21	910043	110	MMF			c－44	922032	． 01	MF	600 V	
C－22	923079	． 001	MF	600 V		c－45	PT－0F L－9	47	MMF		
C－23	923061	． 01	MF	400 V		c－46	923062	． 05	MF	400 V	

c－47	923062	． 05 MF 400 V	SYMBOL	Pt．NO．			
c－48	923064	． 1 MF 400 V					
C－49	923088	． 002 MF 600 V					
C－50	923079	． 001 MF 600 V			oescription		
C－51	923088	． 002 MF 600 V					
C－52	923092	． 006 MF 400 V		585061	PLug a Cable－speaker		
c－53	923079	． 001 MF 600 V	P－2				
c－54	922021	． 001 MF 600 V		585062		（able model）．．．．	
c－55	922014	． 1 MF 200 V	P－2		PLug a Cable－Speaker		
c－56	922024	．033 MF 600V		505014	（CONSOLE）．．．．．．． pLuG－INTERLOCK SWITCH．		
C－57	922008	． 1 MF 400 V	P－3				
C－58	PT．OF C－32	15 MF 400 V			5600		
C－59	923088	． 002 MF 600 V	R－1	340672		OHM $\frac{1}{2} W \pm 10 \%$	
c－60	910090	50 MMF 500V	R－2	340232		2 OHM $\frac{1}{2} W \pm 10 \%$	
c－61	923102	． 5 MF 200 V	R－3	350412	470	OHM $\frac{1}{2} W \pm 20 \%$	
c－62	928006	1500 MMF 400 V	R－4	350412	470	OHM $\frac{1}{2} W \pm 20 \%$	
c－63	928006	1500 MMF 400 V	R－5	350412	470	OHM $\frac{1}{2 W} \pm 20 \%$	
c－64	928006	1500 MMF 400 V	R－6	340732	10，000	OHM $\frac{1}{2} W \pm 10 \%$	
c－65	928006	1500 MMF 400 V	R－7	340292	150	OHM $\frac{1}{2} W \pm 10 \%$	
c－66	910028	220 MMF	R－8	350412	470	OHM $\frac{1}{\frac{1}{2} W} \pm 20$ \％	
c－67	$910043-2$	180 MMF	R－9	350412	470	OHM $\frac{1}{2} W \pm 20$ \％	
c－68	923088	． 002 MF 600V	R－10	340732	10，000	OHM $\frac{1}{2} W \pm 108$	
c－69	923114	． 02 MF 400 V	R－11	PT．OF T－3	10，000	OHM $\frac{1}{2} W \pm \pm 10 \%$	
c－70	923091	． 2 MF 200 V	R－12	340292	150	OHM $\frac{1}{2} W \pm \pm 108$	
C－71	923062	． 05 MF 400 V	R－13	350412	470	OHM $\frac{1}{2} W \pm 208$	
C－72	910047	200 MMF 500 V	R－14	340232	82	OHM 交W $\pm 10 \%$	
c－73	PT．OF C－32	10 MF 400 V	R－15	340972	100，000	OHM $\frac{1}{2} W \pm 10 \%$	
c－74	922041	． 01 MF 600 V	R－16	340712	8，200	OHM $\frac{1}{2} W \pm 10 \%$	
c－75	910212	390 MMF	R－17	340812	22，000	OHM $\frac{1}{2} W \pm 108$	
c－76	910044	1200 MMF	R－18	340572	2， 200	OHM $\frac{1}{2} W \pm 10$ \％	
c－71	900073	45－400 MMF	R－19	340972	100，000	OHM $\frac{1}{2} W \pm 108$	
C－78	922024	． 033 MF 600 V	R－20	340972	100，000	OHM $\frac{1}{2} W \pm 10 \%$	
c－79	910045	5 MMF 1000V	$\mathrm{R}-21$	340932	68，000	OHM $\frac{1}{2} W \pm 10 \%$	
C－80	923015	． 0005 MF 10 kV	R－22	390074－6		MEGOHM CONT．－FRo	
C－81	922101	． 05 MF 400 V	R－23	351372		MEGOHM $\frac{1}{2} W \pm 20$ \％	
C－82	922023	． 047 MF 600 V	R－24	351132	470.000	OHM $\frac{1}{2} W \pm 20 \%$	
C－83	$915000-1$	47 MMF	R－25	351132	470，000	OHM $\frac{1}{2} W \pm 20 \%$	
C－84	928006	1500 MMF 400 V	R－26	340212	68	OHM $\frac{1}{2} W \pm 10 \%$	
C－85	928006	1500 MMF 400 V	R－27	340932	68，000	OHM $\frac{1}{2} W \pm 108$	
C－86	928006	1500 MMF 400 V	R－28	351212		MEGOHM $\frac{1}{\frac{1}{2} W} \pm 20$ s	
c－87	923088	． 002 MF 600 V	R－29	397036	2.5	OHM W．W．BALLASt T	
C－88	928054	680 MMF 1000 V	R－30	341052	220.000	OHM $\frac{1}{2} W \pm 10$ \％	
C－89	900064	3－35 MmF	R－31	394060－4		OHM 7．5W ± 108	
C－90	923067	． 1 MF 200 V	R－32	394060－3		OHM 10 W 士10\％	
F－1	808170	fuse	R－33	340572	2.200	OHM ${ }^{\text {¢ }} \mathrm{W}$ 士10\％	
			R－34	340732	10.000	OHM $\frac{1}{2} W \pm 10 \%$	
1－1	708061	ion trap－single．	R－35	394060－2	2 1，500	OHM 5W ± 58	
			R－36	340332	220	OHM $\frac{1}{2} W \pm 10 \%$	
L－2	705016	R．f．CHOKE－ 3.3 Uh．	R－37	370652	4，700	OHM $1 \mathrm{LW} \pm 108$	
L－3	705016	R．F．CHOKE－ 3.3 uh．	R－38	397066	15，000	OHM $2 \mathrm{~W} \pm 10 \%$	
L－4	708090	Peaking coil－bo uh．	R－39	340652	4，700	OHM $\frac{1}{2} W \pm 10 \%$	
L－5	708093	Peaking coil－ 35 uh．	R－40	370832	27，000	OHM $16 \pm 10 \%$	
L－6	708032－1	SOUND I．F．COIL．．	R－41	340572	2，200	OHM $\frac{1}{2} W \pm 108$	
L－7	708048	FOCUS COIL－EM－	R－42	340732	10，000	Онм $\frac{1}{2} \mathrm{~W}$ 士10\％	
		2250 OHM ．．	R－43	3410923	330，000	OHM $\frac{1}{2} \mathrm{~W} \pm 10$ \＄	
L－8			R－44	341332	3.3	MEGOHM $\frac{1}{\frac{1}{2} W} \pm 10 \%$	
L－9	708032	WAVE TRAP－ 4.5 Mc ．	R－45	341052	220,000	OHM $\frac{1}{2} W \pm 10 \%$	
L－10	708090	peaking coil－bo uh．	R－46	340812	22，000	OHM $\frac{1}{2} W \pm 10 \%$	
L－11	708114	Peaking coil－ 440 uh	R－47	PT．OF R－22	2 5，000	ohm contrast cont．	－－FRONT
L－12	708095	Peaking coil－ 180 un	R－48	351212		MEGOHM $\frac{1}{2}$ W $\pm 20 \%$	
L－13		deflection yoke－	R－49	351212		MEGOHM $\frac{1}{2} W \pm \pm 20 \%$	
		VERT．COILS	R－50	340572	2， 200	OHM $\frac{1}{2} W \pm 10 \%$	
L－14	708036	deflection yoke－	R－51	370672	5，600	OHM ${ }^{\text {IW }} \pm 10$ \％	
		HORIZ．COILS	R－52	340772	15，000	OHM $\frac{1}{2} W \pm 108$	
L－15	738037	HORIZ．PHASE COIL．	R－53	340772	15，000	OHM $\frac{1}{2} W \pm 10 \%$	
L－16	708052	SIZE COIL.			MODELS 660B，664B， 673B，Ch．120133－B		
L－17	708055						
L－18	PT．OF SP－1						

John F．Rider

© John F. Rider
2. SYNC. TROUBLES (NO VERTICAL OR HORIZONTAL HOLD, POOR HOLD, JITTER, ETC.)

7. CABINET PARTS LIST (Models 660B, 664B, 673B

Note: Taken with Pin 5 of $\mathrm{V}-12$ shorted to Junction of $\mathrm{R}-33$ and $\mathrm{C}-35$
3. VERTICAL HOLD TROUBLES (NO VERTICAL HOLD, NO VERTICAL SIZE, POOK VERTICAL HOLD, VERTICAL JITTER, POOR VERTICAL LINEARITY, ETC.)

SCOPE SWEEP	PIN 7 OF V-10	PIN 6 OF V-10	PIN 2 OF V-10	PIN I OF V-10*	PIN 6 OF L-13
30C.					
	PEAK TO PEAK 45V.	PEAK TO PEAK SUV.	PEAK TO PEAK 3UV.	PEAK. TO PEAK 280 V .	PEAK TO PEAK 35V.

Note: Taken with Pin 5 of V-12 shorted to Junction of R-33 and C-35
*This wave shape taken with shorting clip removed.
4. HORIZONTAL HOLD TROUBLES (POOR HOLD, TEAR, NO HORIZOMTAL HOLD, NO HIGH VOLTAGE, POOR HORIZONTAL LINEARITY).

SCOPE SWEEP	PIN 4 OF V-11	PIN I OF V-II	PIN 2 OF V-11	PIN C OF T-9	PIN 5 OF V-12
7875C.P.S.		$\int v / V^{r}$			
	PEAK TO PEAK 25 V .	PEAK TO PEAK 400 V .	PEAK TO PEAK I2OV.	PEAK TO PEAK 100V.	PEAK TO PEAK 45 V .

PART NUMBERS			DESCRIPTION
model 660 в	model 66 4B	MODEL $67 \text { 3в }$	
		140384	Cabinet
140368			Cabinet
	140374		Cabinet
520135	520135		Glass Pane!
410982	410982		Mask
		411009	Mask
		635028	Safety Glass
180073		180073	Speaker
	180072		Speaker
585061		585061	Speaker Plug \& Cable
	585062		Speaker Plug \& Cable
560162		560162	Masonite Back
	560163		Masonite Back
583206	583206	583206	Line Cord
		460171	Knob - Contrast
		460172	Knob - Volume
		460173	Knob - Selector
		460174	Knob - Fine Tuning
460175	460175		Knob - Contrast
460176	460176		Knob - Volume
460177	460177		Knob - Selector
460178	460178		Knob - Fine Tuning
			MODELS 650R, US4B, 73B, Ch. 120133-B

OJohn F. Rider

©John F. Rider

GENERAL INFORMATION

Check all shipping instructions, tags and labels carefully. To avoid special handing problems the receiver is shipped complete with the kinescope tube, focus coil and ion trap securely installed.

The receiver is completely adjusted at the factory, so normally none other than the front panel operating instructions need be followed to put the receiver in operation. However, to provide for any misadjustment of the service controls due to handling, the following instructions are in order.

ION TRAP, FOCUS MAGNET AND
 DEFLECTION YOKE ADJUSTMENTS

Before any adjustments can be made to the above, the back will have to be removed from the cabinet.

Remove all screws on sides and top of back, and lift cover back and away from cabinet. Since the power cord circuit is broken by the interlock when the cabinet back is removed, it will be necessary to obtain an extra power cord with the female interlock receptical in order to make a power connection to the receiver. A mirror placed in front of the receiver will help in making the adjustments.

1. ION TRAP ADJUSTMENT

Turn on the receiver and switch to one of the TV channels not in use in your area. With the brightness control in the maximum clockwise position and the picture control fully counter-clockwise, adjust the ion trap by move the brightness control setting until the rister is iust visible on the screen ris on the in ad justment (shown in Firure 1) until the line clearly visle Readjust the ion trap for maximun raster prilliance The final touches of this edjustment should be made with the brightness con trol at the maximum position with which pood line focus con be maintained.

2. FOCUS MAGNET ADJUSTMENT

The focus magnet should re adjusted so that there is approximately threeeighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hold through the focus magnet should be parallel with the axis of the kinescope neck. See Figure 1.

3. DEFLECTION YOKE ADJUSTMENT

If the lines of the raster are not horizontal or squared with the picture mask, loosen the wing screw on the yoke (shown in Figure l) and rotate the yoke until this condition is obtained. Tighten the wing screw.

CENTERING ADJUSTMENTS

No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. See Figure l. The cen tering plate has a locking screw which must be loosened before centering.

Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap Reposition the ion trap within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus centering plate. In no case should the ion trap be adjusted to cause any damage to the kinescope. In some position of the focus magnet in order to it may be necessary to shift the position of the focus magnet in order to eliminate a center shadow.

NON-OPERATING CONTROL ADJUSTMENTS (Figure 2)
With the deflection system of the kinescope in proper mechanical alignment, the "non-opereting" controls may be adjusted. The mechanical adiustments ordinarily will not require further attention until the kinescope tube is replaced. Using a test pattern from a local TV station, make the non-operating control adjustments as解 (ts)
(1) Set the HORIZONTAL and VERTICAL HOLD controls for a steady test pattern. If Horizontal synchronization cannot be effected within the normal range of the HORIZONTAL HOLD control, set this control in the center of it range and adjust the Horizontal Frequency control for a steady clear picture. This screw driver adjustment is reached from the top rear part of the chassis.
(2) Set the PICTURE control at minimum (counter-clockwise) and advance the RRIGHTNES control (clockwise) to the point where the retrace lines (wide spaced lines) on the raster begin to show, then back off the Brightness control slightly to eliminate the lines. Reset the PICTURE control for the desired picture contrast. If necessary, readjust Brightness control or most desirable picture.
(3) Advance the HORIZONTAL DRIVE control (clockwise) as far as possible whout causing fold over of the test pattern, (Vertical white line). In ufficient horizontal drive will cause the raster to fall short of filling the mask horizontally or cause the picture to lack the brilliance normally obtained with a correct adjustment.
(4) Set the WIDTH control so that the test pattern fills the horizontal dimension of the kinescope mask. A minor adjustment of the focus centerng position may be required to recenter the pattern.
(5) Set the HORIZONTAL LINEARITY control so that the test pattern is symmetrical from left to right. A slight readjustment of the HORIZONTAL DRIVE control may be necessery when making this adjustment.
(6) Set the HEIGHT control so that the test pattern fills the vertical dimension of the kinescope mask. A minor adjustment of the focus center(7) position may be required to recenter the pattern.
7) Set the VERTICAL LINEARITY control for a symnetrical test pattern in the vertical dimension. A slight readjustment of the Height control may (8) required when making this ad justment.
8) Set the BRIGHTNESS and PICTURE controls for a normal test pattern and adjust the FOCUSER adjustment for best definition.
IMPORTANT NOTE: If difficulty is experienced in obtaining sufficient picture width, or if the picture lacks brilliance after all of the adjustments have been made, the input line voltage may be lower than llo volts A.C. Carefully check this voltage with a suitable meter.

If the line voltage is lower than llo volts A.C. remove chassis from cabinet. Lay chassis on side, with the power transformer MODELS S4C20,
MODELS S S4C20,
SLT15, S4T30,
five lug terminal strip adjacent to the power transformer. Remove gray wire from the lug stamped No. 4 replace on lug No. 2. Replace chassis in cabinet.

CAUTION: Never change the input connection until it has been accurately determined that the line voltage is less than 110 volts A.C.

BUILT-IN-ANTENNA

The receiver is normally shipped with the built-in-antenna connected. If the installation is located in a "good signal" area, this antenna should bring in the picture satisfactorily without further antenna problems.

To check the operation of the built-in antenna, turn on the receiver and check the reception on all the active high and low channels. Adjust the operating controls as outined under operation. If reception is poor, try other locations in the room, since a few feet may make a big difference in signal strength.

If satisfactory reception cannot be obtained with the built-in antenna, you may assume that it will be necessary to install an outdoor antenna. Disconnect the built-in antenna leads from the terminal board and connect the two transmission line leads from the terminal board and connect the two transmission line leads of the outdoor entenna to the same terminals. It is immaterial which lead is connected to which terminal. It is very important that the built-in antenna be disconnected from the antenna terminals when the outdoor antenna is used.

EQUIPMENT REQUIRED FOR ALIGNMENT
RF sweep generator meeting the following requirements: $\begin{array}{ll}18 \text { to } 30 \mathrm{MC} & 10 \mathrm{MC} \text { sweep width } \\ 40 \text { to } 90 \mathrm{MC} & 10 \mathrm{MC} \text { sweep width }\end{array}$
40 to 90 MC
Signal generator to cover all I.F. frequencies of from 4.5 MC to 28 MC and $\frac{\text { Signal generator }}{\text { all picture and cover all I.F. frequen }}$

CATHODE RAY OSCILLOSCOPE -Electronic Voltmeter of junior voltohmyst type. R.F. UNIT
$\frac{R . F \cdot}{N o r m a l l y}$ the R.F. Tuner will not require any adjustments. If realignment is necessary, refer to attached Service Nctes before attempting to align the Unit.

ORDER OF ALIGNMENT
Sound Radio Detector
Picture I.F'. Transformers. (preliminary and flat topping)

PRECAUTION

Before proceeding with I.F. Alignment the following precautions should be observed:
Disconnect antenna. Set contrast control for minimum (Maximum counter clockwise Position). Adjust channel tuning to non-assigned channel (2-3-4-7-8-9 Depending Lpon Location) to prevent T.V. signal from interfering with alignment.

For all I.F. alignment insert a 47 K ohm resistor in series with the V.T.V.M. probe; also, a 47 K ohm resistor should be inserted between the take-off point and oscilloscope lead for decoupling.

©John F. Rider

SOUND RATIO DETECTUR AND I.F. ALIGNMENT

(1) Connect

(2) Connect signal generator to Pin \#l of GAU6 Ratio Detector Driver Tube
(3) Adjust signal generator (4.5 MC) output so that the V.T.V.M. voltage will not exceed 3 volts during entire alignment.
(4) Adjust Lló (Rottom) for MAXIMUM
(5) Ad just Ll7 (Top) for MAXIMUM.
(7) Adjust attenuator of generator to give exactly 3 volts on the V.T.V.M. 7) Move probe of V.T.V.IT. to junction of R35-C28 \& C29.
(8) Adjust Ll7 (Top) for exactly 1.5 volts.
(9) Move signal generator to Pin \#4 of 6AC7 Video Output Tube and repeat steps \#1 and \#3.
(10) Adjust Ll2 (Bottom) and Ll3 (Top) for MAXIMUM.
(11) Repeat with care steps 1-3-4-5-6-7-8.

ALTERNATIVE PROCEDURE FOR STEPS 6-7-8:
Connect common lead of V.T.V.M. to junction of R33 and R34
Connect probe of V.T.V.M. to junction of R35-C23 and C29
Adjust Ll7 (Top) for zero reading on V.T.V.M

PICTURE I.F. TRANSFORMER

Rough I.F. Alignment:

1. Lift shield of $6 J 6$ converter tube. Use cut down goat shield placed over $6 J 6$ converter tuhe to spray signal into receiver in all of the following alignment procedures. The original tube shield can also be used if care is taken so that the shield does not touch the snield grounding springs.
2. Connect the signal generator to shield
3. Connect probe of V.T.V.M. to junction of Lll and RI6. Connect common lead of V.T.V.I. to ground end of R16.
Set signal generator to 23.4 MC and output of generator is to be kept as low as possible.
4. Align First Video I.F. Ccil (Located cn R.F. Unit "Left Rear Corner") and L((Third Video I.F. Coil) for maximum
set Eenerator to 25.7 MC and adjust L3 (Second Video I.F. Coil) and LG (Fourth Video I.F. Coil) for maximum.

PICTURE I.F. FLATTOPPING:

1. Remove signal generator and V.T.V.M.
2. Connect sweep generator to converter shield.

- Connect scope hetween junction of Lll and Rl6.
. Place signal generator lead near 6J6 tube shield. Groind both leads of fe generator near the rear apron of the R.F. Unit.
For best results the Video I.F. should be aliened on an non-assigned channel (2-3-4-7-8-9). If signal pips are noticed on the curve adjust control. (The chape of the I.F. Curve Should Not Change ?hen tin ro contril Is Adjusted).

6. Adiust signal enerator to zero olitrlut and piace a V.T.V.M. on the A.G.C. uss. Vary the output of the sweep generator until minus 1.5 volts is read on the V.1.....
7. Adiust simnal menerator to 26.1 MC and advance the generator output until a marker pip is visible on the Video I.F. curve. Adjust L3 fnd L9 so that the marker is at the 50% point (SEE CURVE BELOW).
8. Set sicnal enerator to 23.8 MC and flat tor video curve by adjusting I.F. on P.F. Tinner and Li. Marker sholla be close to the end of the curve.
(See Curve
9. Repeat steps 7 \& 8 until an acceptable curve is achieved.
10. Set funerator to 21.6 MC . This marker should appear at the bottom
of the cirve (See Curve Eelow). The exact position oi the 23.3 MC marker
is governed by where the 21.6 MC marker falls. Should the 21.6 marker be nore than 5% up on the curve intercarrier buzz will result and if the mar ker is too low, weak audio will result. The 21.6 MC marker should be kept as low as possible and yet give enough audio signal.

For adjurtment of Horizontal frequency oscillator and non-operating

n
D
0
D
-1
$<$
0
D
0
m
0
1
1
ω

©John F. Rider

©John F. Rider

CONTROL ADJUSTMENT PROCEDURE

Althaugh the Pre-set cantrals have been factary adiusted for aptimum performance, in is usualy neesessary
controls at the time of installation.
There are nine Pre.set contrals, three of which are lacated at the back of the chassis (see Figure 9). Five cantrats are lacated under the Nome Plate on the front panel. This plate can be remaved by grosping it at
its ends and pulling farword. The Auxiliary Fine Tuning Screw can be its ends and pulling forword. The Auxiliary Fine Tuning Screw. can be
reached by remaving the "Channel Selectar" and "Television Fine Tuning" knobs.
A Centering Arm, used to center the pitture an the screen, is accessible of the back of the cabinet. Twa holes are also provided in the cabinet back for odiustment of the Focusing Slugs (see Figure 9).
To goin occess to the ian trap, it will be necessary to remave the bock
caver of the cobinet by first remaving the builts in antenno tuning knob caver of the cobinet by frst remaving the built-in ontenno tuning
ond then toking out the serews oround the rim of the back cover. Remavol of the cobinet bock outomaticolly apens on interlack to disconnect the receiver pawer chard, herefare, on auxiliory pawer cord
assembly will be required when making ian tran assembly will be required when making ian trap odiustment. This card
moy be obtoined by requesting Part $\# 507099$ Do may be obtoined by requesting Part \#507699. Do not attempt to
supply power to the receiver using any other device. The receiver is now ready for an operational check.

TURN SET ON-Ratate the "On OF Switch and Valume" knab op. proximotely $1 / 2$ turn clackwise to turn set an and abtain sufficient oll tubes in the receiver to warm up and far circuits to stobilize before allempling to abtoin a picture on the sereen.
A Channel Lite, located behind the "Channel Selectar" knob, illumi nates the porticular televisian station designatian carrespanding to

ADJUST ION TRAP-If screen remoins dark ar is anly dimly illumi nated when "Brightness" control is furned clackwise, the ion trap may nated when Bright
require adjustment.
The ion trap is lacated on the neck of the picture tube as shawn
Figure 9 and consists of a magnet held in position by metal bands. With "Brightness" control (lacated behind Name Plate) set approximately $1 / 2$ turn clackwise, rotate the entire ian frap assembly while sliding it back and forth until picture tube screen is illuminatod to
maximum brilliance. Reduce "Brightness" contral setting and repeol maximum brilliance. Reduce "Brightness" control setting
this operation to assure accurate positioning of ian trap.
Do not turn "Brightness" control to its maximum clockwise Do not furn "Brightnoss" controctio its maximum clockwise
position until ion trap is correctly adiustod-failure to observe this precaution may result in damage to the picture tube
advance contrast control-Turn the "Cantrost" control cino crantr smictor
POSITION CHANNEL SELECTOR-Set "Chonnel Selector" knob so channel appears in the illuminatod opening. If the call letter tabs wore not proviously inserted in this knob when recoiver was in stalled, you can readily do so by fallowing the procedure given in adjust fine tuning cont
ADJUST FINE TUNING CONTROL-After "Channel Selectar" knob has been set, then use the "Tolevision Fine Tuning" control to obtain
the correct funing point for both picture and sound. Thot is occom plished as follows:
a. Turn "Television Fine Tuning" control in either direction until cound volume is maximum-ir sound cannot be heard, odvance the volume control and repeot fine tuning.
b. When the point of maximum sound volume has been reached appearance or is particlly obscured by "sound bars"
(dark horizontal
(dark horizontal
bars of varying
widh-100 Fig. 2).
the correct strting of the
television fine TELEVISION FINE
TUNING CON. TROL Is now obtainod by furning it away from the maximum only for onough to oliminate the

caus. 2-sound interfernce incorret tuning sound bar" ine picture.
 tuning range of the "Fine Tuning" control is inadequate to permit orrect tuning of o station in its ossigned chonnel, then odiustment of the "Auxiliary Fine Tuning" scrow will be necessory. This speciol screw is accessible after remaval of the "Chonnel Selector" and "Fine
Tuning" knobs. They moy be remaved by meraly pulling then forward. may be under An of he "Auxiliary Fine Yuning seraw

Set "Channel Selectior" to desired channel; then remave this knot. b. Set "Fine Tuning" knob to the center, if its range; then remove
this knob. The flat partion of the main tuning shatt (auter bra this knob. The flat partion of the main tuning shatt (auter bras shaffit should now be in the uppermast positian. Note the location
of the "Auxiliary Fine Tuning" adjustment screw on receiver chasis-see Fig. 4.
Using a thin scrowdriver (preferably nan-metallic), aduust the sel ting of "Auxiliary Fine Tuning" screw far correct tuning of th desirod television statian-CAUTION: Do not attempt to rotata further rotation moy rolease it from she ther direction, a in the rotation moy rolease it from the thread elip with (iocoted in R.F. Tuner Unit) would then have to be romoved in order to restore the serew to the correct position. If a metal screwdriver is used, detuning occurs when of detuning can now be compensated by resetting the "Fine Tuning" control (bross shafl). Thus the range of the "Fine Tun ing" control (after knab is replaced on the shaff) will be ade quate to tune in the station.

This completes the adivstment of the "Auxiliary Fine Tuning" screw for one channel. Identical screws are provided on each channel mechanism as each successively moves into position when the "Chonnel Solectar" knab is rotated.
ADJUST SOUND VOLUME-Reodiust the setting of the "Yolume cantrol until the sound accomp

ADJUST BUILT-IN ANTENNA TUNING CONTROL-If the roceiver built-in telovision antenna system is used, rotote the antenna tuning 1 knob (locoled at rear of cabinet) until the best picture is obtrined. give satisfactory performance for a group of stations. In the event give satisfactany persormance for a group of statimus. in the even
that is not the case, adiust the control for optimum periformance eoch time the Channel Selectar is rotated to a different station. HORIZONTAL HOLD-Should the picture appear to move hori zontally across the behind Nome Plote) unto a series of light the picture re and dark streaks as moins stationary and shown in Figure 3, tal sync when oper. adiust the "Horizontal oting "Channel Selec. Hold" control (located
tor" knob.

fig. 3-HORIZONTAL MOVEMENT ADJUST HORIZ. HOLD CONTROL
10. VERTICAL HOLD-Should the picture oppear to rall by in a vertical
direction ar couse mulifie vericol imoges as shown in Eigure 5, will be necessary to adiust the "Vert. Hold" contral locoted behind the Name Plate (see Figure 4).
After this adiustment is mode, reduce contrast until picture is barely ting of "Vorrical Hold" control for proper piclure synchronizatian.

Fig. S-VERTICAL MOVEMENT;
ADJUST VERTICAL HOLD INITIAL FOCUS-Sel Channel Selector knob to an inactive television channel. Then set the
position and the Con-

The followis

transmitting its circular test pould be

Fig. 4-location of pre-set controls
CENTERING-To center the lest pattern on screen, proceed follows:
a. Pasition Centering Arm (see Figure 9) for correct centering of lest pattern
b. If picture cannat be centered using this orm, change the pasition

in step \# 2 . Pig. a-off Centir;
dJust centering arm

HEIOHT - Cantrol of pleture slze in the vertical direction is acof the "Height" control located behind the Name Plate. Height and width adiussments hauld be checked for ail transmitting sta-
tions to be sure that picture properly fills the viewing areo. It nay be necessary to

Fig. 10-TOO SHORT; ADJUST MEIGHT CONTROL lineority" contral is adjusted
15. WIDTH - Contral picture size in the hor zontral dirsection is oc
complised by mean of the "Width" con trol located on the reor of H. V. powe
supply (see Fig. 9)

If abnormally low line valtage mokes it diffi
cult to abtain cult to abiain sufficient
picture width when us. ing the "Widtb" control, "hen the selting of

ig. UST WIDTM CONTRO contral may be incor.
rect. The method of adiusting this contral is explained in paragraph

© John F. Rider

UBE REPLACEMENT

Some chassis use alternate type tubes in the positions desig. * A type SAG5 tube is used when the letter " A " is included
nated by VI, V12, V10 and V26 in the above chart.
in the series designation, These alternote trpe tubes are not interchangeable sult in domoge to the receiver
When replacing these tubes, check for series designation stamped on rear of chassis adiacent to model number. This
identification may consist of one or more letters following identification may
the word SERIES. \qquad
The following symbo
tube location chart.
in the series designation. A type SAUG tube is used when letter " A " is not included in the series designation,
\ddagger A type $6 B H 6$ tube is used when the letter " B " is included in the series designation. A type GAU6 tube is used when letter " B " is not included in the series designation.
A type OSN7GT tube is used when the letter "C" is included in the series designation. A type 65A tube is used whe

SOCKET VOLTAGES

CAUTION

THE PICTURE TUBE is highly evacuated and if broken, glass fragments will be violently expelled. Scratch ing, chipping, undue pressure, or careless handing such as lifting the lube by irs neck is dangerous and be sure to discharge the voltage developed across the capacitor formed by the inner and outer coating the picture tube. this can be done by connecting the high voltage socket on the tube to the outer coating

HIGH VOLTAGE (11 to 13.5 kilovolts) is produced in a supply circuit of this receiver. Exercise care to avoid the adioining voltage chart. If measurement of voltage at these points is are labeled "CAUTION" below under the note " L "
THE HIGH VOITAGE LEAD, which supplies approximately 11 to 13.5 kilovolits to the picture tube, should be homentarily shorted to the chossis whenover it is disconnected for service purposes. This discharges the een turned off
NTERMEDIATE $8+$ VOLTAGES, 480 and 360, are dangeraus and coution should be observed when the receiver chassis components are exposed for service purposes
the voltages shown in the adjoining chart were MEASURED UNDER THE FOLLOWING CONDITIONS

EXPLANATION OF NOTES

1. Power Supply-117 valts 60 cycle $A C$.
2. All voltoges are measured between socket terminats and chassis unless otherwise indicoted on adioining chart.

*

3. Meosurements made with voltmeter having sensitivity of
20,000 ohms per volt except where indicated by $(*)$ The $(*)$ symbol designates a vacuum tube volticated by (*). The (
4. Channel Selector and Fine Tuning Controls set for normal reception of a local station
5. All controte are tet for normal rocaption of the tranmitted signal unless the valtage shown on the chart is followed by o letter or letters indicating a spocial condition of measurement as explained in subsequent notes.
6. The external or built-in antenna should remin coneted the receiver only when taking voltoge measurements in the sweep ond sync circuits-for all other measurements, discon nect antenna, short antenna terminals together and connect
them to ground.
7. Certain voltages were measured with two different setting in these instancess all controls, with the exceptian of one o Woo. Were set for normal reception-lettors following the
voltage shown on the chort indicate the exceptions and are explained below.

K.	The measurement should be made with a vacuum tube volimeter. The voltage reading will fluctuate in the vicinity of 0.15 volis.
k.	This voltage will vary from 10 to 15 depending upan setting of Horizontal Hold Control.
L.	If you do not have an instrument capable of directly measuring voltages in this range, the voltage can be measured by using a voltage divider network consisting of twenty 2.2 megohm 2 watt resistors and one 1 megohm 2 watt resistor, all connected in series. Avoid using resistors of higher values as their individual volitage rating may be exceeded. It is also important to use resistors of equal wottage. the averall resistance of the entire combination as well as the resistance of the 1 megohm section. With the set turned off, connect the 2.2 megohm end of the resistance voltage divider to the filament of the 183GT/8016 tube, or H . V. terminal of the picture tube, and con- nect the 1 megohm end to chassis. Now, furn the set on and measure the voltage drop across the 1 megohm resistor with a vacuum fube voltmeter. The voltage at the tube terminal can then be calculated as fallows:

NOTE

The socket voltages shown in the three charts below indicate measurements made on certain alternate tubes use of one or more letters following the word "SERIES" stamped on rear surace of chassis. A chassis incorporate only that change indicated by letter designation i.e., chassis stamped "A" " " $C^{\prime \prime}$ " does not include change " ${ }^{\text {" }}$ or " C "
or complete description of these Fhangn in to to Production Chang column on circuit diagram page.

$$
\begin{aligned}
& \text { USED WHEN LETTER "C" IS INCLUDEO } \\
& \text { IN SERIES OESIONATION } \\
& \text { Mm }
\end{aligned}
$$

cell 7
vertical scanning outhit

© John F. Rider
Woild Radio History

ALIGNMENT PROCEDURE

1. Short antenna terminale together with a fumpor wire.
2. Set receiver Channel Selector to any inactive television channel:
other controls may be left at any desized setting.

IF and discriminator transtormers. The blade of a small ecreve.
 hhen insorted in the transtormer can.

Alignment of all AF and IF tuned circuits in this receiver may be accomplishe
ing chartu.
SEQUENCE OF RLIGNMENT: These procedures should preterably be applied in the order in which they are presented, however.
alignment of the Sound Channel or IF Channel may be accom. alignment of the Sound Cha
plished individually it desired
The RF Amplifier and Mixer alignment may also be accomplished independent of Sound or IF Channel alignment, but oscillator cali
bration can only be done after IF Channel has been correctly bration can only be done after if Chanel has been correctly
aligned. Proper IF band pass characteristic is necessary for Oscillator alignment as results of AF circuit tuning are observed by means of
detector stage.
REMOVAL OF CHASSIS: The receiver chassis must be removed from the cabinet in order to accomplizh alignment of all tuned
circuits as there are adjustment points located on the undernide of the unit.
This ean be accomplished by first removing all knobs and dis
connecting the receiver "built-in" sis may then be removed by releasing the hold apeaker. The chas. on the underside of the cabinet.
Removal of the cabinet back automatically opens an in disconnect the raceiver power cord, therefore, an auxiliary powe disconnect the receiver power cord therelore, an auxiliary power
cord assembly will be required when aligning this receiver. Thiz cord may be ordered from Firestone by requesting Part \#507699,
Do not attempt to supply power to the rocelvor by using any othor
device dovice.

CAUTION

The picture tube is highly evacuated and if broken, glass fragments will be violently expelled. Handle with care, using safety goggles and gloves. Avoid contact with high voltage terminal at side of tube even after it has been disconnected from the recelverthis precaution is necessary as inner and outer coatings on the tube form a capacitor which may carry a high voltage charge for an extended period of time after disconnection from the recoiver.
STRUMENTS: The following inetruments will be requed signal sources and output indicators during the alignment proces Since accurate alignment of a television receiver is heavily de pondent upon the performance of your inatrumenta, it is imperativ
hat they meet the easential upecifications described here.
IhTMDAD SIGMAI GEmbaton 10 pocibe hore.
 IMPORTANT
When observing the recelver band pass characteristic on an oscilloscope, it is exceedingly important to avold distortion of that characteristic which would occur when using a large input signal from the sweep generator or standard generator (marker signal). Always set attenuator on swoep generator so that the reading on the vacuum tube voltmeter does not exceed one volt (when meter is connected trom high side of video detector load resistor, symbol 196, to recelver chassis). Standard generator output should also be attenuated so that marker signal does not pull or tecr the band pase characteristic as shown on the 'scope. details of matching and coupling nelworks, for instrument used detcils of matching and coupling neiworks, or instrumenis used sequent pages. Specific instructions for each instrument application
general instructions: When aligning IF and AF circuits it it necessary to apply a fixed bias voltage to the AGC system of the
receiver. This fixed bias is obtained by using a 3 volt battery and
 P Rider

INSTRUMENT CONNECTIONS
FOR
SOUND CHANNEL ALIGNMENT

.
FIG. 1
Generator Connections
Alignment
USE 10,000 OHM
ISOLATING RESISTOR IN

FIG. 3
YTVM Connections
Or Sound Discriminator
Alignment

INSTRUMENT CONNECTIONS
FOR
IF CHANNEL ALIGNMENT

FIG. 4
Generator Connections for IF Channel Alignment

FIG. 5
VTVM and Oscilloscope Connections for IF Channel Alignment

IF CHANNEL ALIGNMENT PROCEDURE
13-G-47
 ment Tool \#507479.
2. Turn roceiver Channol Seleector to television channel \#12 and short
 ot batiory connects
point of connection
4. It the IF channel is bady misaligned and two or more immediatily
adioining IF stages are tuned to the same trequency, oscillation may

STANDARD SIGNAL GENERATOR		SWEEP Generator		$\xrightarrow[\text { VTVM }]{\text { CONNECTIONS }}$	oscilloscope CONNECTIONS	MISCELLANEOUS	TRIMMER OR SLUG	TYPE OF ADIUST. MENT AND OUTPUT INDICATION
CONNEC-	frequency	CONNEC. TIONS	freq.					
Connect as Fig.4.	$\begin{aligned} & 26.3 \mathrm{MC} \\ & 26.1 \mathrm{MC} \\ & \text { or } E^{\prime \prime \prime} \\ & \begin{array}{c} \text { See note } \\ \text { below } \end{array} \end{aligned}$				Not used.		$\underset{\substack{\text { converior } \\ \text { ploter } \\ \text { coil }}}{\# 77}$	Adjusi for maximum Teading on VTVM.
							$\underset{\text { 2nd } 1.5}{\# 8}$	Adjuss for maximum reading on VTVM.
Same as	24.75 MC.	${ }_{\text {S }}^{\substack{\text { Same as ase. } \\ \text { above. }}}$	-	Same as	Not used.		$\underset{4 t h t r}{\# 9}$	Adjust for maximum reading on VTVM.
Same as	23.5 MC.	$\underset{\substack{\text { Same as } \\ \text { above. }}}{ }$		Same as	Not used.	$\underline{\square}$	$\underset{1 s t 10}{\# 10}$	Adjust for maximum reading on VTVM.
							\#ll	Adjust for maximum reading on VTVM
Same as	22.4 MC.	Same as	-	Same as	Not used.	-	$\underset{\substack{\text { stit } \\ \text { Coiltap }}}{\# 12}$	Adjust for minimum reading reading on VTVM.
${ }_{\text {Same as }}^{\substack{\text { Same } \\ \text { above. }}}$	26.75 MC.		$\begin{aligned} & 25 \mathrm{MC} . \\ & \substack{\text { Sweep.ing } \\ \pm \pm \\ \text { Mc. }} \end{aligned}$	Same as above.	(tonnect ass		The IF band pass characteristic now displayed on the scope should be compared with the curve shown in Fig. 6. If top of curve is not propenly shaped. make a slight readjust ment of slug \#9. Should that adjust ment fail to yield the desired result peak on the high or low frequency side. Slugs $\# 7$ and $=8$ control high irequency response slugs ± 10 and $=11$ affect the low ireauency response (23.5 Mc.). by making a small change in the setslugs. it will be possible to obtain correct band pass curve. FIG. 6. The 26.75 Mc . pietare IF ear:ier mark amplitude position on side of the It position of the marker appears too high or too low. slight readjustment	
Same as	22.25 MC.	Same as	${ }_{\text {Same as }}^{\substack{\text { above. }}}$	Same as	Same as ${ }_{\text {S }}^{\text {Sabe. }}$	Same as		rical gain control on order to nagnify the sound IF carrier mark. It the position of the is incorrect, readjusi

NOTE: Chassis which have the letter "E" in the series desiqnation on rear of chassis must be aligned using 26.1 Mc . a
these two points. See circuit diagram page for details of complote change.
these two points. See circuit diagram page for details of complete change.

© John F. Rider

OJohn F. Rider

O John F. Rider

PRODUCTION CHANGES

mechanical parts of r. f. yuner-Continued

509321 Fine Tuning cam ond brass shat
507989 Shield-tube; miniature (fits solid ring trpe elip) 509062 Slug care for converter plate coil 507986 Slug for oss. coil fine tuning adiustment
507987 Socko1-miniature (for 6.16) (includes 507987 Sockel-miniature (for 616) (includes solid ring iype
509065 Socket-miniature (for 6J6) (includes wing type clip
507988 Sockeot-miniature (far GAG5) (includes solid ring iype
509066 Socker-minialure (for GAGS) (ineludes wing iype clip
507966 Spring contactor washer (on front turret shoff).
508709
Spring-detent
507990
507967 Spring-retains osf. fine tunning slug

509322 Tuner turrot and shaft assembly (less cails)
507965 Washer, fiber spacer (an turret shoft)

cabinet parts

509085 Back far cabinet; Stack 13-G.46 (less power cord) 509124 Back for cabinet; Stack 13-G.47 (less power cord) 509100 Cabinet for Stock 13-G-46
509110 Cabinet for Stack 13-G-47
507930 Call letter tabs.
509082 Glass window
502563 Knob-built-in anten
$509088 \mathrm{Knob-}$ "OFF-VOLUME-ON
507916 Knob-Channel Selectar
$\begin{array}{ll}509087 & \text { Knab-"Contrast" } \\ 507917 & \text { Knob-Fine } \\ \text { Tuning }\end{array}$
509079 Mask for picture tub
309117 Name plate
18796 peicture tube
162163 Terminal strip for TV antenna cannectian
509482 Washer, felt for contrast knob.

> YOKE AND FOCUS MAGNET ASSEMBLY
> $\begin{aligned} & \text { Chassis which U:ilize four wing screws for height } \\ & \text { odi iustment (located an both the let inside ond right } \\ & \text { ond }\end{aligned}$ inside of base bracket) have the fallowing paris 508829 Bracket base for suppart of yoke and facus magne 508830 Bracket base far suppart af yake and facus magne $\begin{aligned} & 509005 \text { Bracket far deflectian yoke maunting. } \\ & 508154 \text { Bracket ("U" Shaped) for suoport of }\end{aligned}$ magnet assembibly yoke and focu 170817 Tube and yake bracket between fared nock af picture 170817 Wing screw- $=10.24$, for height adi. af yoke and $\begin{aligned} & 170741 \text { Wing screw- } \mathrm{H} 10.32 \text {; for mounting yoke } \\ & 170195 \text { Wing nut }-48.32 \text { for mounting yake ond }\end{aligned}$
at base bracket) have the following ports:
14045 Bolt-1/4":20 $\begin{gathered}\text { and } \\ \text { and } \\ \text { focus magnt }\end{gathered}$
509389 Bracket base far suppart of yoke and facus magne)
509390 Bracket base for support of yake and facus magne

MOUNTING PARTS-Continued
503391 Bracket bose far support of yoke and focus magne 509392 Brocket bose tor tuphart of yoke and focus magne 509395 Bracket, mounts yoke and focus magnet assembly 007793 Rubber spacer support between flored neck of pictur 509393 Spocer for bose mounting brackels af yoke and facus
50876 Wing nut-1/4"-20; for height adiussment of yoke and
70741 Wing strew- $\mathbf{2} 10.32$; for mounting or forward adjust
miscellaneous parts
$\begin{array}{ll}301270 & \text { Base for mounting electrolytic condenser } \\ 508666 & \text { Brackel for mounting R.F. funer (front). }\end{array}$
508666 Brackel for mounting R.F. tuner (front)
508955
Bracket for mounting R.F. Uuner (rear) 508976 Bracket fot moubting R.F. tuner (rear)..................... 509132 Caill letter tabs.
509007 Center
508881 Clip for mounting electrolytic condenser \#287

507592 Clip for mounting 4 th video IIF. coil
508964 Clip for mounting Horizontal Hold coil
507286 Connector for H.V. terminal af picture tube
28714 Fuse halder Ossembly
508623 Grounding spring for coating on picture tube.
508603 lan trap

57391 Pawer card assembly (includes plugs at both end
508619 Rubber spacer an pifture tube support bracket

62138 Screw-\#10.32 $\times 1 \frac{11 / 2 " ;}{}$ retains tube

162324 Shield-- Hubber, for Contering Arm
509062 Slug core for converter plate coil
507357 Slug core for 1 st , 2nd, 3rd ar 4 th
508963 Slug core far Horizontal Hold coil:
507429 Slug core far Horizontal

08784 Slug core for Width cail
508049 Socket and cable ossembly for pitcture tube
50897
Socket and mounting bracket far TV Channel
$162259 \begin{gathered}\text { Sacket assembly fro } 183 G T / \text { BO16 } \\ \text { ring and mbe (includes carano }\end{gathered}$
507932 Sacket-male, pawer card interlack
507364 Sockel-miniature (7 pin).
508044
Sacket-minatur

508703 Socket-octa

508514 Spring--retains H.V. lead
508838 Strap
lacement item.

The following tabulation furnishes complete details on changes which occurred during receiver production. The re ceivers incorporating these changes are identified by coding stamped on rear surface of chassis. This coding consists of one or more letters following the word SERIES, as SERIES B, SERIES AC, etc., and corresponds to similarly lettered changes shown below. Chassis incorporate only that change indicated by letter designation i.e., chassis stamped "SERIES BE" does not include changes " A " or " C " or " D ".
The circuit shown on this page applies to "SERIES DEF" chassis.

OSCILLOGRAMS

All oscillograms taken with ground lead of 'scope connected to receiver chassis (unless otherwise indicated) and with receiver controls set for normal reception of a station transmitting its standard test patiern.

Number appearing below asterisk specifies setting of horizontal sweep frequency control on 'scope.
*-This symbol on illustration indicates that wave form was observed on a 'scope whose vertical amplifier had very limited high frequency response (50 to 100 Kc).
**-This symbol indicates that wave form was observed on a 'scope whose vertical amplifier frequency response was flat to within $\mathbf{2 0 \%}$ up to $\mathbf{2} \mathbf{~ M c}$.

ELECTRICAL SPECIFICATIONS

Power Supply	105-125 Volts AC 60 Cycles Only
Power Consumption	150 Watts
Power Output	3.5 Watts Maximum 2 Watts Undistorted
Antenna Input Impedance	300 Ohms Balanced
Piciure Area	90 Square Inch
Tuning Range	12 Channel
Intermediate Frequencies	$\begin{gathered} \text {. . . . Picture- } 25.75 \mathrm{MC} \\ \text { Sound-4.5 MC } \end{gathered}$
Loud Speaker	. 5" PM Dynamic
Voice Coil. Impedance	3.2 Ohms 400 Cycle
Video Response	: 3 MC
Focus	. Alagnetic
Sweep Deflection	.Angnetic
Scanning	. Interiaced, 525 Line
Horizontal Scanning Frequ	. . 15,750 CPS
Vertical Scanning Frequen	. . 60 CPS
Frame Frequency	30 CPS

THIS RECEIVER CONTAINS THE

	FOLLOWING:
Symbol	Type

HIGH VOLTAGE WARNING

This television receiver contains high voltages which are dangerous to life. Never operate or service the receiver outside of the cabinet or with the covers removed until all the safety precautions necessary for working with high voltage equipment have been observed.

RADIO FREQUENCY RANGES

Channel Number
 2

Picture Corrier Frequency Mc.
55.25
61.25
67.25
77.25
83.25
175.25
181.25
187.25
193.25
199.25
205.25
211.25

RECEIVER LOCATION-Advise the owner as to the proper location for the television receiver. The following may ed as a guide

1. Choose an area in the home where sunlight or light from lamps do not strike the face of the picture fube and cause glare.
2. Remember the necessity of an electrical cutlet and the location of the point at which tiie antenna leads enter the room
3. The receiver should be placed a short distance from the wall to allow adequate ventilation
4. The receiver should be placed to permit easy access for operation and comfortable viewing from all angles.
5. Try the set in various locations in room for best clarity
ANTENNA-This television receiver contains a built-in antenna, which is sufficient for satisfactory reception in areas where average strength television signals are received. At the rear of the cabinet and on the left side of
he chassis (as viewed from behind) are the terminals for he antenna. There are three wires with spade lugs for onnection. In a given locality one connection may result n better performance than another. Try various combinawhe hree wires, woo at a time, and use the two which give the best picture. Be sure that the line cord is
 your locality is not sufficient to give a satisfactory picure with the self-contained antenna, it is recommended eiver has hm balanced transmission line When an external an enna installation is to be used, disconnect the wires reerred to above and connect the transmission line to the erminals instead. This line must be as short as possible because the longer the line the greater the chances are for picking up electrical disturbances. Stand off insulation should be used to keep the line away from the mast, metal walls. Twist the line about one turn per foot throughout he line to cancel out direct signal and/or noise pickup by Mansmission line. Ir should also be securely anchored postion so that a change in weather will not affect its position.

KINESCOPE (Picture Tube)
 HANDLING PRECAUTION

Shatterproof goggles and heavy gloves must be worn by individuals while handling the kinescope or installing the kinescope into the receiver.
The kinescope encloses a high vacuum and due to the large surface area, is subjected to excessive air pressure. Therefore, care should be taken not to bump or scratch the picture tube accidentally as it may cause the tube to implode resulting in damage to property or injury to an individual.

NON-OPERATING CONTROLS (Rear of Chassis)

Brilliance	R13
Vertical Linearity	R41
Vertical Hold	R43
Height	R45
Focus	.R65
Horizontal Hold	R67
Width Control (H.V. cage).	. 19
Horizontal Drive	C45
Horizontal Osc. Coil (H.V. cage).	
Focus Coil	tment

To turn the receiver on, rotate the ON-OFF-VOLUME control (center knob) about half a furn to the right (clock wise), and allow about thirty seconds for the tubes to
warm up. After the station has been tuned in, turning this knob farther to the right increases the volume, to the left decreases the volume. Turn the left hand control, PICTURE, about half way clockwise. On the right hand there is a dual control, the CHANNEL SELECTOR and FINE TUNING with two knobs. The bar type knob is the CHANNEL SELECTOR. Turn this knob, one step at a time, until the line on the bar is opposite the number of the channel you the FINE TUNING. Rotate this knob in either direction until the best picture is obtained. The left hand control PICTURE, should now be turned in either direction to bring the picture to the proper brightness and contrast level. When the receiver is first furned on and tuned to a sta tion, the picture may not stand still, but keep moving up ward. This is a result of the initial temperature change taking place within the set and preventing the vertical hold from locking the picture in place. After a few mo ments for warm-up this symptom will disappear
INSTALLATION ADJUSTMENTS-The receiver is shipped with the kinescope in place. However, some of the kinescope adjustments may have been jarred loose in shipment. Some adjustments may be necessary. The fol lowing should be used as a guide

1. After the receiver has been unpacked, take off the cabinet back and make sure that all the tubes are properly mounted in their respective sockets.
2. Insert the line cord plug into a convenience outle turn on the receiver and wait about thirty seconds for the tubes to warm up.
3. Turn the channel selector to a station that is transcentered on the screen or

DURE
diustments on the deflection yoke, focus ail
to be replaced, remove the defective kinescope in the Focus Coil $\ldots \ldots \ldots \ldots \ldots \ldots$. Wing nut adjustment
following manner:
Deflection Coils $\ldots \ldots \ldots \ldots$. Wing nut adjustment
KINESCOPE REPLACEMENT-Should the kinescope have Horizontal Osc. Coil (H.V. cage)

1. Reflection Coin

Remove the front panel control knobs by puling them lon trap magne
straight from their shafts. traight from their shafts.
2. Remove the four screws (bottom of cabinet) which take the chassis out of the cabinet.
3. Disconnect the kinescope socket connector at the base of the tube and the high voltage anode lead from the front of the kinescope. WARNING: REMOVE THE STATIC CHARGE FROM THE ANODE LEAD BY GROUNDING IT AGAINST THE CHASSIS.
4. Remove the ion trap magnet, slipping it from the neck of the tube past the socker.
5. Remove the rubber sleeve (under the focus coil) from the neck of the tube
6. Loosen one of the self-tapping screws, and remove the second one, on the front stop bracket and turn the bracket down.
7. Remove the screw from the retaining strap which secures the kinescope at the front and withdraw the kinescope toward the front of the chassis.
8. To install a new kinescope, reverse the above procedure, making sure that the kinescope is fitted closely against the kinescope cushion and that the high voltage well connector is at the top of the kinescope. If the kinescope sticks or fails to slip into place smoonhly, investigate and
KINESCOPE WINDOW-Clean the kinescope window
with a dampened cloth or a soft lint-free cloth if dust or finger marks are present.

Turn on the set and tune to a channel on which a staion is operating.

1. Adjust the Horizontal Hold (R67) to the center of its rotation. With the control in this position adjust the Horizontal Oscillator coil (L8) until a picture appears. fo raster or pattern appears on the screen, leave his control in the center position and continue with the following instructions until a picture does appear then return for this adjustment.
2. Advance the Brilliance control (R 13) in a clockwise direction until a raster appears. Allow this to remain in a clockwise position whether a raster appears or not.

Adjust the ion trap magnet for maximum brightness by moving it forward or backward along the neck of the picture tube, rotating it about the neck of the tube at the same time. The Brilliance should then be reduced to a suitable level by means of control RI3.
4. Adjust the Vertical Hold control (R43) until the test pattern remains stationary. The Contrast (R9, front panel) and Brilliance (R13) should then be adjusted for normal picture contrast.
5. At this point the Focus control (R65) should be adiusted for the sharpest horizontal lines at the center of the pattern.
6. Adjust the Height control (R45) until the proper height is attained. Adjustment of this control may effect the Vertical Hold (R43), in which case, that control will have to be re-adjusted to maintain a stationary pattern.
7. The Vertical Linearity (R41) control should be adjusted to give maximum linearity in the upper portion of the raster.
8. Adjust the Horizontal Drive (C45) to give the best linearity
9. Loosen the wing-nut on top of the yoke housing and square the pattern with the screen escutcheon by rotating the yoke. Be sure that the yoke is pushed as far forward as possible
0. Loosen the wing-nut on top of the focus coil and center the picture horizontally by rotating the coil. ighten the wing-nut to lock the coil in final position. oosen the wing-nuts on the side of the focus coil mounting, and center the picture vertically by rocking the cradle that holds the coil backward and forward. Tighten the wing-nuts to lock the cradle in final position

1. The Width control (L9) is a screw-driver adiustment located on top of the high voltage cage. The width is creased by furning this control in a clockwise direction.

Fig. 3-near View of Chassis

SERVICE SUGGESTIONS

NO RASTER ON KINESCOPE-If raster cannot be ob-

ained, check below for possible causes.

1. Ion trap magnet adjustment is incorrect.
2. Check .25 amp . fuse in plate circuit of V14.
3. No high voltage-check V14 (6BG6-G) and V15 (1B3-GT) tubes and circuits. If the horizontal deflection circuits are operating as evidenced by the correct waveform measured on terminal 4 of horizontal output transformer (T9), the trouble can be isolated to the high voltage rectifier circuit (V15). Either the tube V15 is defective or its filament circuit is open,
4. Damper tube $(V / 6)(6 W 4)$ defective. Plate voltage supply for V14 (6BG6-G) horizontal output tube is obtained through the damper tube. Check tube and heater winding on power transformer (T7).
5. Defective kinescope. Heater open, cathode return circuit open.
6. No plate voltage. Electrolytic capacitor shorted. All B voltages are accessible for measurement underneath the chassis.
HORIZONTAL DEFLECTION ONLY-If only horizontal deflection is obtained as evidenced by a straight line across the face of the kinescope, it can be caused by the
7. Vertical

Vertical oscillator and output tube V9 (6SN7-GT) inoperative. Check voltages on grid and plate.
2. Vertical output transformer (T5) open
3. Yoke vertical coils (L6) open.
4. Vertical blocking transformer (TG) open or shorted.

POOR VERTICAL LINEARITY-If adiustment of the vertical height and linearity controls will not correct this condition, any of the following may be the cause:
. Vertical output transformer (T5), capacitors C30, C31, C32, or resistor R38.
2. V9 (6SN7GT) defective; check voltages.
3. Low plate and bias voltages. Check rectifier tube and capacitors in B supply.

POOR HORIZONTAL LINEARITY-Check the following:

1. V14 (6BG6-G) screen voltage.
2. Horizontal drive (C45) for incorrect adjustment.
3. Horizontal output tube V14 J6BG6-G).

Damper tube $\mathrm{V} 16(6 \mathrm{~W} 4)$.

If the above components are not found to be defective, check the following:
A. Check all potentials in video circuits.
B. Check the kinescope grid for poor or dirty contacts.
C. Check adjustment of focus control R48. It should be effective on either side of proper focus.
D. Check and re-align if necessary, the picture I.F and the local oscillator
E. Check for proper coils in turret switch

ALIGNMENT

TEST EQUIPMENT-To service this receiver properly, it recommended that the following test equipment be available:
R-F SWEEP GENERATOR meeting the following requirements:
(a) Frequency range: 4 to 5 MC ; 1 MC sweep width.
(b) Output adjustable with at least 11 volt maximum. d) Output constant on all ranges.
(d) Flat output in all attenuator positions.

CATHODE RAY OSCILLOSCOPE preferably one with a wide band vertical deflection and an input calibrating source.
SIGNAL GENERATOR to provide the following frequen
on these ranges should be adjustable and a least . 1 volt max.)
(a) Intermediate frequencies:
4.5 MC Sound I.F
21.25 MC Trap (L) 8)
22.8 MC 1st I.F. (L20)
25.3 MC 2nd I.F. (TI)
24.6 MC 3rd I.F. (T2)
23.4 MC 4th I.F. (T3)
(b) Radio frequencies:
to to kinescope or lead to socket
SIGNAL APPEARS ON KINESCOPE CATHODE BUT IMPOSSIBLE TO SYNCHRONIZE THE PICTURE HORI ZONTALLY AND VERTICALLY-A condition of this ,
Defective sync limiter V 11 (12AU7) or phase detecto V10 (6AL5).
2. If tubes are O.K. check voltages and associated circuits.

SIGNAL ON KINESCOPE CATHODE AND HORIZON

 TAL SYNC ONLY-Check1. Vertical integrating network capacitors C18, C19,
C33, and resistors R20, R21, R22.
picture stable but with poor resolutionIf the picture resolution is not up to standard, it may be caused by any of the following:
2. Defective picture detector (crystal 1 N 34) or video amplifier V4 (6AU6).
3. Open video peaking coil. Check coils L1, L2, L3 and L4 for continuity. Note that LI and L3 have shunting resistors.
4. Leakage in V_{4} (6AU6) grid capacitor ClO , or $\mathrm{Cl1}$ on V5 (kinescope).

PICTURE SMEAR:

1. Normally, smear can be attributed to phase shift at the low frequency end of the video characteristic. This can be caused by improper values of resistors This rircuits.
This trouble can also originate at the transmitter Check reception from another station.

PICTURE JITTER:
Vertical instability may be due to loose connections or noise received with the signal.
2. Horizontal instability may be due to unstable trans-

ROCEDURE

SERVICE PRECAUTIONS-To service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the cabinet back and the three chassis mounting bolts (bottom of cabinet). The chassis should normally be serviced without the kinescope. However, if it is necessary side, with the power transformer and high voltage cage side, with the power transformer and high voltage cage
down. In this position the chassis is self-balancing, and down. in this position the chassis is self-balancing, and aljustment or measurement.
CAUTION: Do not permit the kinescope second-anode lead to become shorted to the chassis.
SENSITIVITY CHECK-A comparative sensitivity check can be made by operating the receiver on a weak signa from a television station and comparing the picture and sound obtained to that obtained on other receivers unde the same conditions.
This weak signal can be obtained by connecting the shop antenna to the receiver through an attenuator pad of the type shown in figure 11. The number of stages a the antenna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the maxi mum clockwise position.
Only carbon type resistors should be used to construct the attenuator pad. Since many of the low value moulded resistors generally available are of wire wound construc tion, it is advisable to break and examine one of each type of resistor used in order to determine irs construction OSCILLATOR ADJUSTMENT-The oscillator slug for each channel can be adjusted by removing the chassis from the cabinet. Use only an insulated alignment tool When adjusting the slugs to be sure that the fine tuwn control is at the mid-cap
as illustrated in Fig. 10).

Fig. 4-High Valtoge Transtormer Winding Le

ALIGNMENT TABLE DISCRIMINATOR AND SOUND I-F ALIGNMENT									
$\begin{aligned} & \text { Stepp } \\ & \text { No. } \end{aligned}$	Connect Signal Generator to	Signal Gen. Freq. Mc.	Connect Sweep Generator to	Sweep Gen. Freq. Mc.	$\begin{gathered} \text { Connect } \\ \text { Oscilloscope to } \end{gathered}$	Connecr Voltmeter to	Miscellaneous Connections and Instructions	Adiust	Refer
1	Video Grid (pin 1, V-4)	$\begin{gathered} 4.5 \\ .1 \text { volt output } \end{gathered}$	Not used		Not used	$\begin{gathered} \text { Pin } 2 \\ V-7 \end{gathered}$	Meter on io volt scale	T4 (botiom) and L 5 for max. on meter	Figs. 5 and 9
2	Video Grid (pin 1, V-4)	$.4 .5$	Not used		Not used	See Note 1	Meter on 3 volt scale	T4 (top) for zero on meter	Fig. 9
3	Not used		Video Grid (pin 1, V-4)	$\begin{gathered} 4.5 \\ \text { center } 1 \mathrm{mc} \\ .1 \text { volt output } \end{gathered}$	$\begin{aligned} & \hline \text { Discriminator } \\ & \text { output } \\ & \text { (Junction } \\ & \text { R32-R33) } \\ & \hline \end{aligned}$	Not used	Check for symmetrica (positive and nega T4 (bottom) until th	esponse waveform If not equal, adjust equal. See Note 2	Fig. 5

NOTE 1: Connect two 100 K resistors in series. Connect one end to pin 2 of $V-7$ (6 T 8)
NOTE 2: The peak to peak band width at the discriminator should be approximately 300 KC and should be linear from 4.425 MC to 4.575 MC
ALIGNMENT PROCEDURE
I-F ADJUSTMENTS

Step No .	Connect Signal Generator to	Signal Gen. Freq. Mc.	$\begin{gathered} \text { Connect } \\ \text { Voltmeter to } \end{gathered}$	$\begin{gathered} \text { Miscellaneous } \\ \text { Connections and } \\ \text { Instructions } \end{gathered}$	Adiust	Refer to
4	Wire loop (top of tuner between V17 and V18)	23.4	Junction R7 and L2	Set station selector between channels; meter on 3 volt scale	T3 (top) maximum	Fig. 9
5	Wire loop (top of tuner between V17 and V18)	24.6	Junction R7 and L2		T2 (top) maximum	Fig. 9
6	Wire loop (top of tuner between V17 and V18)	25.3	Junction R7 and L2		$\begin{aligned} & \text { T1 (top) } \\ & \text { maximum } \end{aligned}$	Fig. 9
7	Wire loop (top of tuner between V17 and V18)	22.8	Junction R7 and L2		$\begin{gathered} \mathrm{L} 20 \\ \text { maximum } \end{gathered}$	Fig. 9
8	Wire loop (top of tuner between V17 and V18)	21.25	Junction R7 and L2		$\begin{gathered} \mathrm{L} 18 \\ \text { minimum } \end{gathered}$	Fig. 9

Fig. 5-Boltom Chossis Components

Fig. 7-Botiom Socket View

INDEX

PAG	Page
ALIGNMENT INSTRUCTIONS . . . 14	SPECIFICATIONS 9
CIRCUIT DESCRIPTION....... II	TOP VIEW - TUBE LAYOUT. . . 8
INSTALLATION DATA 8	trimmer locations. 13
PARTS LIST 16	TROUBLESHOOTING. 12
SCHEMATIC 15	Voltage measurements . . 15
	WAVEFORMS 12

Model 05TVI-43-9014A

GENERAL DESCRIPTION

The above models are a 22 tube, AC operated, direct view, 16 -inch rectangular television receivers. The sets are complete in one unit and feature complete coverage of all 12 television channels, automatic gain control, automatic horizontal netically deflected picture tube.
On the back of the cahinot:

On the back of the cabinet is a safety interlock to prevent dangerous electrical shock. As an added safety measure, a fuse is located in the power supply to proshock. As an added safety measure
Located on the rear of the chassis are a phono input plug and phono TV switch for connection of a phonograph.

Television Chassis

FUNCTIONS OF THE CONTIROLS

All the controis normally used in tuning in a program -both picture and sound-are located on the front of the receiver and at the top of the back of the cabinet set at the factory set are several controls which are pre

The receiver actually requires only four controls when tuning in a program. On the left is a dual knob, the large knob controls picture contrast, while the smal outer knob is the off-on switch and volume control. The control on the right is the station selector and the an tenna tuning knob is located at the top of the back of the cabinet.
The three other controls on the front of the set; bright ness, horizontal hold, and vertical hold need only be adThst priodically. The vertical hold need sely be ad justed periodically

Figure 1. Front Controls

The focus and centering controls are located on the picture tube assembly (figure 2). These controls can be operated through the opening provided in the cabine back. The remaining six controls, vertical linearity, ver tical size, horizontal size, horizontal drive, horizontal linearity and coarse horizontal hold are located on the rear arity and coarse horizontal
of the chassis (figure 3).
the time of installation. After installation, they should he time of instalation. After installation, they should not be adjusted further, unless required by replacement other external conditions.

DIPERATOR'S CONTROLS

Volume-Off - Turns set on or off and adjusts sound volume.
contrast-Varies contrast between light and dark portions of picture.
Brightness-Controls brilliance of picture
V. Hold-Stops picture from moving up or down H. Hold-Stops picture from moving left or right
H. Hold-Stops picture from moving left or right. Station Selector Knob-Tunes set to desired
(station). May be turned in either direction.
(station). May be turned in either direction. Antenna Tu
mum signal.
mum signal. Centerin

SERVICEMAN'S CONTIROLS
V. Linearity-Provides vertical distribution of picture. V. Size-Changes size of picture vertically. Does not affect horizontal size.
H. Size - Changes size of picture horizontally. Does H. Size - Changes size

Focus-Focuses picture on face of picture tube.
H. Linearity - Provides horizontal distribution of pic. ture.
H. Drive-Controls the drive to the Pulse Amplifier. Coarse H. Hold - Stops picture from movina left or right. MODELS 05TV1-43-9014 15RA2-43-9105A, Ch.

Figure 2. Picture Tube Assembly

TUBE COMPLEMENT

 6AL5, AFC Discriminator
 6SN7. Horizontal Multivibrator
 6BG6, Pulse Amplifier
 6BG6, Pulse Am
 6W4, Damper
6W4, Damper
1X2, H. V. Rectifie
5U4, L. V. Rectifier
21 6AL5, Audio Detecto
22 16" Retangular Picture Tube

Figure 3. Tube Layout

Power Source.

The receiver should be operated from a 115 Volt, 60 - Cycle A.C. power source. The power consumption is 235 watts.

Location of Receiver.

The set should be so located in the room that no direct light strikes the face of the picture tube. However, some indirect illumination in the room is desirable; it is not necessary to darken the room completely for proper viewing of the picture. Due consideration should be given also to the convenience of the electric outlet, and to the position of the receiver which gives the best reception with the built-in antenna.

Built-In Antenna.

The new Built-In Television Antenna incorporated in the receiver eliminates the need of an outside antenna in many locations. In areas too distant for normal reception with a built-in antenna, provision is made for outside antenna connections. If any other type of antenna is used with the set, disconnect the transmission line from the built-in antenna to the antenna terminals.
The antenna is mounted inside the cabinet and is operated by the use of a knob at the top of the back of the cabinet. Since the antenna is fastened to the cabinet it may be necessary to orient the cabinet to obtain the best reception. It is desirable that either the front or the back of the cabinet face the transmitting station. If however, "ghosts" or multiple images appear, the cabinet may be rotated slightly to minimize this condition. In some cases it may be necessary to face the back or the front of the cabinet toward a window to obtain a television picture. This may be due to walls, water pipes, or a steel structure in the location preventing television reception.
The antenna tuning knob should be used as a fine tuning control and should be adjusted until the best picture is obtained. In order to eliminate "Body effect" when adjusting the antenna tuning knob, stand in front and reach over the top of the set. If at any time the knob becomes difficult to turn, reverse the direction of rotation. Do not force the knob in either direction.
If the receiver fails to operate satisfactorily with the built-in antenna, check the following trouble:

1. Check the antenna dipole to make sure it is not touching the chassis or any other object.
2. Check the antenna dipole to make sure it is stapled to the side of the cabinet and does not vibrate.
3. Check the connections at the coil, transmission line, and trimmer capacitor.
4. Check to make sure that the antenna terminal screws are moderately tight.

Final Adjustments.

The television receiver has been completely assembled and adjusted for operation before shipment. It is recomsection be checked over at the time the set is installed.
While the required adjustments, if any, will probably be slight, the instructions may also be used for receivers which are considerably misadjusted because of replacement parts, etc.

Deflection Yoke.

If the picture seems to be tilted or the edges of the raster are not vertical, loosen the deflection coil adjusting wing nut (located at the top of the picture tube assembly, Figure 2) and using the wing nut as a handle, rotate clockwise or counter-clo
the raster are exactly vertical.
The correct position for the deflection yoke is as far forward on the neck of the picture tube as the shape of an incorrectly positioned deflection yoke.
To correctly position the yoke, loosen the wing nut and push the yoke as far forward as the tube will allow and while keeping the edges of the raster vertical tighten the wing nut.

Ion Trap Magnet.

The initial setting for the lon trap magnet is over the " shape metallic flags inside the glass neck of the rotate the magnet about the neck of the tube and slide forward and backward until the position that gives maximum illumination with minimum tube shadow is found. This adjustment should be made with the brightness control set at slightly less than $1 / 2$ its clockwise rotation.
If the ion trap magnet interferes with the centering control, rotate the magnet 180° and readjust for maximum illumination.
Each time an adjustment of either the centering or
focus control is made, the ion trap magnet should be readjusted.

Centering.

The receiver may require centering at the time of in stallation. To recenter the picture follow the centering instructions on page 5.

ther Adjustments.

Refer to the "Service Adjustments" section and touch up each control following the instructions carefully.

SEIRVICE ADJUSTMENTS

Station Selector.

The station selector pointer should not rub or scrape against the channel indicator plate, and the knob should not rub against the pointer, otherwise the control may corrected either by a fast turn or moving the pointer itself.

Brightness Conłrol (R-46).

The brightness control located behind the front name plate need only be adjusted at the time of installation. control. Tuin the contrast control fully counter-clockwise. Then turn the brightness control clockwise until the picture tube just becomes dark. The contrast control may then be adjusted for proper picture quality.

H. and V. Hold Controls (R-94 and R-74).

For the best results the H. and V. Hold controls should be adjusted at low contrast levals. After a station has been tuned : n_{1} turn the contrast control fully counterclockwise and then turn the brightness control clockwise until the picture reappears. Adjust the H. Hold control (if necessary) for a steady picture. Adjust the . Hold controls should be set mid-way between positions where the picture is effected.
If you cannot obtain a steady picture at minimum co trast, turn the contrast control slightly clockwise.
After the H . and V . Hold controls have been properly After the H. and V. Hold controls have been properly
set, they will not have to be used when tuning in a staset,
tion.

Centering Control

The centering control is located on the picture tube assembly (figure 2). This control is operated through the opening provided in the cabinet back. The control should be operated in the following manner.

1. Place a screwdriver in the centering tube.
2. Observe the face of the picture tube while making the adjustment.
3. Moving the control to the left will move the entire picture (looking at the face of the picture tube) upward.
4. Moving the control to the right will move the picture downward.
5. Moving the control up will move the picture to the left. Down will move the picture to the right.
V. Size and V. Linearity Controls (R-70 and R-80).

The V. Size and V. Linearity controls should both be adjusted at the same time while a test pattern is being transmitted. The Linearity control effects the upper porlower portion of the picture. Adjust both the controls. simultaneously until the test pattern is symmetrical and fills the entire screen vertically. Readjust the V. Hold control if necessary.
H. Size and H. Linearity Controls (L-24 and L-26). The H. Size and H. Linearity controls should be adjusted only when a test pattern is being transmitted. The fills the entire screen horizontally, and the Linearity confrol should be adjusted for a horizontal symmetrical test pattern. The H . Drive control must be readjusted after adjusting either the H . Size or H . Linearity controls.

Coarse and Fine Hold Controls (L-23 and R-94).

The coarse horizontal hold control should be adjusted in the following manner.
Set the Fine H. Hold control to the center of its ange.
Set the contrast control to the normal operating posiion. Adjust the Coarse H. Hold control until there is a steady picture (no horizontal movement)
When the Coarse H. Hold control is adjusted properly, a fast turn of the Fine H. Hold control in either direction (clockwise or counter-clockwise) will make the picture go out of sync (only in low signal areas). Turning the Fine H . Hold control slowly in either direction should not make the picture go out of sync. If the Coarse H. Hold control is not adjusted properly, the horizontal sync will not come in immediately (or not at all) when

Focus Control.

The permanent magnet focus assembly is essentially a magnet within an assembly so designed as to provide a flexible means of adjusting focus and centering on the face of the picture tube. Do not use a steel screwdriver or any magnetic material when adjusting the focus control. A non-magnetic material should be used, as a magnetic material will increase the flux density of the assembly and a correct adjustment cannot be obtained. This control is located on the picture tube assembly and can back. A long adjusting tool is necessary for the adjustment.
There are two focus screws on the focus magnet assembly. The focus screw on the side is preset at the factory and should be all the way in. Only the top screw should be used for the focus adjustment.
Adjust the focus screw for the best focus. Reset the on trap magnet and again re-focus the picture. If the ocus is best at the edge turn the slug in, if best at center turn the slug out. Turn in or out until the best average focus is obtained and then reset the ion trap magnet

H. Drive Control.

The H. Drive control is located next to the A.C. input at the rear of the chassis (figure 3). The control requires small screwdriver for adjustment. The control should be adjusted in the following manner.
. Tune in a station.
2. Turn the drive control counter-clockwise until a foldover (white vertical line) appears at the left side of the picture.
3. Turn the drive control clockwise until the fold-over just disappears.
4. Turn the drive control one-half turn clockwise.

SERVICE IDATA

SPECIFICATIONS

Sensitivity at the Antenna

Video - 100 miciovolts
Audio - 100 microvo
wer Supply Rating
115 volts, $50-60$ cycles, AC, 235 watts.
Audio Oułput Rating
Undistorted - 3 watts.
Maximum - $4^{1 / 2}$ watts.
Speaker
Permanent magnet type, 3.2 ohm voice coil impedance.

Antenna Impedance Requirements Balanced 300 -ohm.
Dimensions
Chassis - $16^{\prime \prime} \times 161 / 4^{\prime \prime} \times 2 \frac{3 / 4^{\prime \prime}}{}$

R. M. A. WIRE COLOR CODE

Listed below is a R. M. A. wire color code chart to aid in circuit tracing

Wire Color	Where used
Black	B- or Ground leads
Brown	Filament leads
Red	B+ leads
Orange	Screen leads
Yellow	Cathode leads
Green	Grid or Control leads
Blue	Plate leads
Violet	Not used
Gray	A.C. leads
White	Bias leads

WARNING.

High voltage on all pins of the 1×2 high voltage rec tifier and the plate cap of the 6BG6. DO NOT MEASURE this voltage unless a high range voltmeter is used.

Replacing $1 / 4$ amp. Fuse.

To check or replace the fuse, first turn off the set Remove the High Voltage shield cover, short the 6BG6 plate cap to chassis, and remove the 6W4 tube and then take out the fuse. Replace fuse and reverse procedure.

Schematic Diagram.

The schematic diagram located at the rear of the manual shows all the values of resistance and capacitance and gives all the proper voltages at the pins of the tube sockets. The voltage readings were taken with a 20,000 ohm/volt voltmeter with normal opera-
tion, no signal input, and line voltage at 117 V . A. C.

Replacing Tubes

Before replacing any tubes the cabinet back mus first be removed. Removing the cabinet back disengages the safety interlock and removes the power to the re ceiver. Do not tamper with or attempt to defeat the purpose of the safety interlock.
Before replacing the High Voltage tubes first be sure the power is turned off and then short the plate caps of the 6BG6 and 1×2 tubes to the chassis.
WARNING: Do not remove any tubes while the receiver is in operation as overloading and component failures may result.
the receiver has been in operation for some time the tubes become hot and gloves should be used when replacing tubes to prevent finger burns.
Phono TV Switch.
The phono TV switch is located on the rear flange of the chassis and should be in the "off" position (up) for sound or raster, and the on position there will utilize sound or raster, and the audio input plug can be utilized
Figure 4. Bottom view of Chassis.
2313-B

COIL DC IRESISTANCE CHART

The DC resistance readings shown in the chart below have been taken with an ohmmeter directly across the coil being measured. Only a few of the coils were disconnected to obtain a correct reading and these are indicated by an asterisk after the coil reference number. All reading of approximately zero ohms.

coils	RESIITANCE	In OHMs	colls	RESIITANCE IN	OHms
13	${ }^{8}$		T1 Pri.	1	
110	10		Sec.	1	
111	2		T2 term 1 to 2	3.8	
112 113	2		term 3 to 4	3.8	
113 114	${ }^{2}$			${ }_{5}^{5}$	
L15	2		T3 Pri.	500	
$\stackrel{L 16}{ }$	2		T4 Pec. (speaker out)	. 4	
L18**	,		Sec. (yoke plug out)	${ }_{8}$	
119	1.5		T5A (yoke plug out)	60	
120 121 1	13 19			11 560	
$\stackrel{123}{ }$	58			560 60	
124^{*}	2			5	
125	35		(term 5 to of	9.5	
${ }_{128}^{126}$ (H. Lin.)	3.5		(term 1 to 2)*	1	
128 130	${ }_{23}^{35}$		(term 1 to 3 (4	
	23		T7 Pri. ${ }_{\text {(term }} 1$ to 4)	7	
			Soc.	65	
			${ }_{\text {T9 }}^{\text {T\% Pri. }}$	1.6 192	
			Sec.	1090	

Figure 5. Block Diagram of the Receiver

GENEIBAL. IDESCIRIPTION

Tuner.
The tuner is composed of a separate sub-chassis using a 6AG5 (pentode) R.F. Amplifier and a $6 \sqrt{ } 6$ tube (twin and low band coils and trimmers are used with a switch ing device to change bands. The tuner selects and am ifies the station signal and converts it to the carrier IF frequencies of 26.75 Mc for video and 22.25 Mc for sound which in turn is then fed to the IF amplifiers for further amplification.

Video IF Amplifiers.

The IF Amplifiers, video detector and DC restorer tages are all mounted on a sub-chassis. The IF amplifier section consists of four (4) stagger-tuned stages using 6AU6 (pentode) tubes with self-resonant slug tuned coils. Since the receiver is of the intercarrier type, both the video and sound IF frequencies are amplified simul the 6AL5. (twin signal is then detected by one half of ifier. The other half of the 6AL5 is used as the DC Res orer.

Sound Section.
The sound section is also mounted on a sub-chassis and consists of a 6AU6 (pentode) IF amplifier, 6AL5 (twin diode) detector, 6AV6 (triode) amplifier and a 6K6 pentode) output tube. Due to the hetrodyne action
 ignal is obtained containing the audio information After the video detector, the audio information is separ ignal is then amplified, detected and further amplifie by the 6AV6 and the 6K6.

Video Amplifier

The video section is a conventional two stage amp lifier using the 12AT7 (twin triode) tube. The parallel resonant video trap coil (L-19 and C-65) is tuned to 4.5 MC to separate the audio from the video. A com bination of shunt and series peaking coils are used with degenerative contrast contral grid of the cathode-ray tube.

DC Restorer.

One half of the 6AL5 tube is used as the DC restorer. Since the video is coupled to the grid of the CRT by inacitor C-64 the DC component of video signal wil picture will vary. A bias voltage proportional to the average video signal level will be developed acros esistor R-31 and maintain the proper brightness level

Sync Separator and V. Sync Amplifier

The sync pulses from the plate of the first video amp lifier are coupled to the sync separator tube ($1 / 2$ of SSN7) thru capacitor C-103. The sync pulses are the separated from the blanking pedestal and due to The low plate voltage sync clipping is accomplished. The horizontal pulses are coupled to the AFC Discriminato
thru capacitor C- 91 and the vertical pulses are couple thru capacitor C-91 and the vertical pulses are coupled
thru capacitor C-121 and amplified by the other hal
of the 6SN7 before being fed to the intergrating net work of the vertical deflection circuit.

Vertical Deflection

The vertical deflection circuit consists of a 6SN7 (twin triode) tube one half used as a blocking oscillator and the other half as a pulse amplifier. The V. Hold contro varies the oscillators operation point thus providing an
adustment for synchronization. The V. Size control varies adustment for synchronization. The V. Size control varies the amplitude of the pulse to the grid of the amplifier \checkmark and controls the amount of vertical deflection. Thus changing the operating sharacteristics of the amplifier tube to obtain a linear sawtooth pulse. Therefore it can be seen that the V . Size and V Linearity controls must be operated in conjunction with one another

AFC Discriminator

The automatic frequency control section utilizes 6AL5 (twin diode) tube. The sync separator feeds the horizontal sync pulses to the AFC tube while at the same time two voltages of opposite polarity are fed phase shift between the horizontal sync pulses and the horizontal multivibrator signal will cause the input volt age applied to one diode section to differ from that of the other. This results in a DC bias voltage applied to the grid of the multivibrator. The output of the AFC discriminator thus synchronizes the horizontal multivibrator to the horizontal pulse of the video signal. This arrangement improves horizontal stability and offers ease of operation.

Horizontal Multivibrator.

The horizontal multivibrator circuit (6SN7 tube) is of the conventional cathode coupled type using a parallel resonant circuit (L-23 and C-107) as a coarse hold adfine hold adjustment R-94 varies the grid resistance thus slightly controlling frequency of oscillation. The horizontal sawtooth pulse is then fed to the grid of the pulse amplifier.

Pulse Amplifier.

The horizontal drive control, C-109 in the grid circuit controls the amount of voltage applied to the pulse amplifier. (Increasing the capacity decreases the drive.) The $6 B G$ is a beam tetrode used to develop the necesflectiow for the flyback pulse and the horiunts a por tion of the horizontal deflection transformer winding. Varying the inductance of the H . size coil varies the high voltage which in turn controls the size of the picture.

Damper.

The damper tubes (6W4) main function is to damp out oscillations which occur over part of the horizontal scanning cycle. The damper tube is connected in such a way as to give an crease in plate supply voltage for the vertical output amplifier. This additional voltage is developed across capacitor C-115 and gives an ading the indults increase in plate supply voltage. Vary the damper tubes operating point and thus controls the linearity of the horizontal sweep.

igh Voltage Supply.

The high voltage is obtained from the auto-transfor mer type primary winding of the horizontal output trans former. When the plate current of the pulse amplifier tube is cut off, the field built up in the primary winding collapses and induces a high voltage surge which is ating by the 1×2 tube, filtered by the aqua-dag cond anode.

Automaicic Gain Contro

Plate voltage for the 6AU6 (pentode) gated AGC

SEIRVICE MINTS

Tuner.
If the receiver is "dead" and the picture tube show nothing but a raster (no snow) first check the l.F. and video amplifier stages before looking into the tuner. the set is dead and snow appears on the face of the picture tube, first determine whether a signal is being transmitted anci then check the antenna or lead-in con ections before suspecting the tuner for trouble.
The tuner can easily be serviced by removing the three (3) hex-head screws holding the bottom cover in place. emoving the bottom cover makes all the tuner com ponents within easy reach and all parts can be serviced When working inside the tune dono in the any comcapacity will result and offset the alignment. When replacing components be sure to obtain the same lead lengths and replace the components in the same position.

A majority of twner troubles are often open and high Aistaner ground or coil solder connections, defective timmers or coils and defective contacts.
Open or high resistance connections can easily be re paired by placing a hot soldering iron at the solder con nection.
Defective contacts may cause an intermittent con dition or the loss of one or both bands. Contact replace ment is easily accomplished by following the simple pro cedure on page 14, figure C . up.

Speaker Leads.

A.G.C

 voltage.ube is obtained from a separate winding on the horiontal deflection transformer. The plate voltage is thus applied at a horizontal rate while the grid signal is obtained from the output of the first video amplifier. The AGC voltage is developed across resistor R-50 and fed to the first three IF amplifiers. Due to the divider network of R-44 and R51 only a portion of this voltage is ed to the RF amplifier. The AGC voltage will vary ed signal but should be in the vicinity of the voltage of the voltage across R-37 (detector output)

The tuner should never be removed from the chassi unless contact replacement is necessary CAUTION:-If the 6AG5 (RF Amp.) is placed in the J.J6 (osc.-con.) socket resistors R-9 and R-10 will burn

To insure minimum video interference, dress the speaker leads away from the 6AL5 (detector tube 7) as showr in figure 3, on page 3.

A defective AGC system will not effect the sound but over-load the video amplifier circuit and the result will be a loss of both horizontal and vertical sync and very weak video. This condition can easily be noticed and checked by measuring the AGC voltage and the voltage across resistor R-37. Under normal operating condinions these two voltages will be approximately in same. A defective AGCO system will cause a arge in-

To determine the cause for trouble check the 6AU6 tube, capacitors C-70 and C-59 and resistors R-44,R-5C R-51 and R-107. To check the AGC winding of the horizontal deflection transformer, place a scope on pin 5 of AGC tube and a horizontal pulse similar to wave shape number 20 , on page 13 , should be obtained with
a peak-to-peak voltage of 400 volts.

CORITESPONDING CATHODE-RAY TBBES

Due to the fact that 16RP4 and 16TP4 Cathode-Ray tubes from various suppliers are not directly interchangeable, different focus or ion trap magnets must be used. A B.R.C. part number sticker will be pasted on the tubes coating This is necessary as a supplier may manufacture two of the same RMA tube types which will differ in construction Listed below is a chart showing the various 16 -inch rectangular tubes used in the 16AY210 chassis.

SUPPLIER	brC number	focus magnet	Ion trap	Maginet
Raytheon	C-55W-19341	A-55P-19336	B-16M	-19337
Sylvania	19344	19336		19343
Martin	" 19345	" 18915	"	18623
Raytheon	" 19362	" 19336	"	18623
Martin	" 19362	'19336	"	18623
Thomas	" 19426	" 18915	"	19343
Arcturus	" 19345	18915		18623
	MODELS 05TV1-43-9014A, 15RA2-			
	43-9105A, Ch. 10AY210			

© John F. Rider

TUNER ALIGNMENT

Preset trimmer screws $C 7,8,14,16,26,29$ to dimensions shown on page 14, figure E.
2. Preset coil cores $L 4,5,6,7,8,9$ in the following manner
(a) In low band position, turn tuner shaft to top of stroke as on page 14, figure B
(b) The switch will be in low band position
c) Adjust coil cores 1.6 " from core to coil mounting strip. (Use core aligning tool if available)
(d) Turn L-9 core (low band oscillator) an additional four (4) turns out of coil.

LOW BAND TRACKING
Turn tuner to channel 6. See page 12, figure B.

NOTE: If trimmer $\mathrm{C}-8$ reaches maximum and additional capacity is needed, turn L-5 core, into coil.

HIGH BAND TIRACKING

Turn tuner to channel 13. See page 12, figure

1			Channel 13	Antenna Terminals	Scope across R-37	C-1	Adjust for maximum response with symmetrical peaks	
2			Channel 13	Antenna Terminals	Scope across R-37	$\begin{aligned} & \mathrm{C} .7 \\ & \mathrm{C}-14 \end{aligned}$	Adjust for maximum response with symmetrical peaks	
83		1.25	Channel 13	Antenna Terminals	Scope across R-37	C-26	Adiust until marker is frequency slope. step 2 if necessary.	
1	(a) (b) (c) (d) (e) (f)	205.25 199.25 193.25 187.25 181.25 175.25	(a) Channel 12 (b) Channel 11 (c) Channel 10 (d) Channel 9 (e) Channel 8 (f) Channel 7	Antenna Terminals	Scope across R-37	$\begin{aligned} & \mathrm{C}-7 \\ & \mathrm{C}-14 \end{aligned}$	Adjust tuner until response curve appear on scope. Adjust trimmers for compromise which will give the best overal response across band.	

VIIDED IF MLIGNMENT
Turn to any high band channel. Connect the generator thru a 1000 mmf capacitor and set the contrast control to maximu

Picture I.F. frequency 26.75 mc - Sound I.F. frequency 22.25 mc .

GOEND R-F MLIGNMENT

Short antenna to ground and connect generator thru a 1000 mmf capacitor.

1	4.5	-	Pin 1 of Tube 11	VTVM junction of R-53 and C-71	T. 8 and T-2 primary (bottom of can)		Maximum Reading
2		4.5	Pin 1 of Tube 11	Scope junction of R-58 and C-77	$\begin{gathered} \text { T-2 } \\ \text { secondary } \\ \text { (top of can) } \end{gathered}$	Sweep approx. 100 kc . Adjust for max linearity	
8		4.5	Pin 1 of Tube 11	Scope junction of R-58 and C. 77	$\begin{gathered} \text { T-2 } \\ \text { (bottom of can) } \end{gathered}$	Sweep approx. 100 kc . Adjust for symmetry of peaks	
1	4.5		Pin 1 of Tube 11	VTVM junction of R-58 and C-77	-	Generator output should be less than .01 volt	.05 watt output

Video trap Coil (L-19) Adjustment.

(a) Tune in a station
(b) Adjust the tuner until sound bars just appear.
(c) Turn L-19 slug all the way out (counter-clockwise)
(d) Turn the slug in (clockwise) until the horizonta) scanning lines are smooth and continuous.

©John F. Rider

INDEX

PAGE			PAGE
ALIGNMENT	Instructions .. . 21	SPECIFICATIONS	17
PARTS LIS 23	top view - tube layout.	22
SCHEMATIC	. . . 25,26	TROUBLESHOOTING..	21
		Voltage measurements	20

ELECTRICAL SPECIFICATIONS

. 105-125 Volts A

$12^{1 / 2^{\prime \prime}}$ Tube Receivers-220 watts watts 2.4 watts Maximum 1.8 watts Undistorted

Antenna Input Impedance. .300 Ohms Balanced
Picture Area ($12 \frac{1 / 21}{2 l}$ Tube). .90 Sq . In.
Tuning Range $\quad 12$ Channel . . $6^{\prime \prime}$ PM Dy Dynamic Voice Coil Impedance3.2 Ohms 400 Cycles

Symbol	TUBE COMPLEMENT	
	Type	Function
	616	R-F Osc. \& Mixer
	6AG5 or	R-F Amplifier
	6AK5	R-F Amplifier
V1	, 6BA6	1st Sound I-F
V2	.6AU6	Sound Limiter
V3	.6AL5	Sound Discriminator
V4	.6AV6	1 st Audio

V5 6 66-GT	Audio Output
V6 6 AG65	1st Pix I-F Amp.
V76AG5	2nd Pix I-F Amp.
V86AG5	3rd Pix I-F Amp.
V9A-9B. . . . 6AL5	Picture Det. and D. C. Restorer
V10A \& B..12AT7	1st Video Amp. and lst Sync Amp.
V11 A \& B..12AU7	Video Output and Sync Separator
V12........6AU6	Automatic Gain Control
*V13A \& B.. 6 SN7-GT	Phase Splitter \& Vert. Os
V13A \& B..6SN7-GT	Sync Output \& Vert. Osc
V14........6K6-GT	Vertical Output
V15....... . 183 -GT	High Voltage Rectifier
V16....... . 5U4-GT	Low Voltage Rectifier
*V17...... . 6 6NT-GT	Horizontal Osc.
V17....... . 6 6N7-GT	Horizontal Osc. \& Sync Guide
*V18 6BQ6-GT	Horizontal Output
V18........ 68 G6	Horizontal Output
V19..... . . 6 W4-GT	Damper
V20........ 12LP4A	Picture Tube $121 / 2^{\prime \prime}$
*V20........ 16 EP4	Picture Tube $16^{\prime \prime}$
*V21....... . . 6BQ6-GT	Horizontal Output
*V22....... . 6AL5	Horizontal Phase Disc.
*V23. 5Y3-GT	Low Voltage Rectifier

RADIO FREQUENCY RANGES

Channel Number

 2 3 5 Frequency
Mc
$54-60$ $60-66$ 66.72 76-82 82-88 174-180 180-186 186-192 192-198 198-204 204-210 210-216

Receiver R-F Osc. ReF Osc.

requency
Mc

Sound Carrier Frequency Mc
59.75
65.75
71.75
81.75
87.75
179.75
185.75
191.75
197.75
203.75
209.75
215.75

Picture
Carrier
Frequenc
Frequency
Me
55.25
61.25
67.25
67.25
77.25
$\begin{array}{ll}83.25 & 81.75 \\ 17.75\end{array}$ $175.25-179.75$ $181.25 \quad 185.75$ 187.25 193.25 199.25
205.25
211.25

RECEIVER LOCATION-Advise the owner as to the proper location for the television receiver. The following may be used as a guide:

1. Choose an area in the home where sunlight or light Choose an area in the home where sunlight or light
from lamps does not strike the face of the picture from lamps does not st
tube and cause glare.
2. Remember the necessity of an electrical outlet and the location of the point at which the antenna leads enter the room.
3. The receiver should be placed a short distance from the wall to allow adequate ventilation.
4. The receiver should be placed to permit easy access for operation and comfortable viewing from all angles.

ANTENNA - This receiver has been designed to use an antenna with a 300 ohm balanced transmission line. This line must be as short as possible because the longer the line the greater the chances are for picking up electrical disturbances. Stand-off insulation should be used to keep the line away from the mast, metal or walls. Twist this line about one turn per foot throughout the line to cancel out direct signal and/or noise pickup by the transmission line. It should also be securely anchored in place so that a change in weather will not affect its position.

HIGH VOLTAGE WARNING

This television receiver contains high voltages which are dangerous to life. Never operate or service the receiver outside of the cabinet or with the covers removed until all the safety precautions necessary for working with high voltage equipment have been observed.

PICTURE TUBE

HANDLING PRECAUTION

Shatterproof goggles and heavy gloves must be worn by individuals while handling the picture tube or installing the picture tube into the receiver.

The picture tube encloses a high vacuum and due to the large surface area, is subjected to excessive air pressure. Therefore, care should be taken not to bump or scratch the picture tube accidentally as it may cause the tube to implode resulting in damage to property or injury to an individual.

Fig. 2-Front Panel Controls

TUNING PROCEDURE

1. To turn the television receiver on, turn the OFF-ON SOUND CONTROL clockwise until a click is heard. Allow approximately 30 seconds for the tubes to warm
up.
2. Turn the STATION SELECTOR CONTROL to the desired channel. This control may be turned in either direction.
3. Turn the CONTRAST CONTROL clockwise until activity or definite form is noted on the screen.
4. Adjust the FINE TUNING CONTROL for best tonal quality and the SOUND CONTROL for desired volume
5. After the receiver has been on for a while it may be necessary to readiust the FINE TUNING CONTROL for best sound quality.
6. To turn off the receiver, turn only the OfF-ON SOUND CONTROL counterclockwise until a click is heard.

OCCASIONAL ADJUSTMENTS TO IMPROVE PICTURE RECEPTION

There are six controls at the front of the chassis. These controls are accessible after the removal of the control panel trols are accessible after the removal of the control panel
cover at the front of the cabinet. (See illustration) The controls are pre-set at the factory and may occasionally need adjustment due to aging of the components in the receiver and the fluctuating line voltages in different areas.

If any adiustments are necessary, follow the instructions under "Controls and Functions."

IMPORTANT-Be sure that the fine tuning control has been set for best tonal quality and clearest picture before adjusting any controls.

CONTROLS AND FUNCTIONS

HORIZONTAL HOLD-Stops horizontal movement (diagonal bars.
VERTICALS-Adjusts for desired picture brilliance.
ERTICAL LINEARITY-Adjusts picture symmetry, top to
HEIGHT-Adjusts picture to fit mask vertically.
VERTICAL HOLD-Stops upward or downward picture movement.
FOCUS-Adjusts picture sharpness and clarity.

Fig. 3-Block Diogram (16" Pix Tube Receivers)

Fig. 4-Block Diogrom ($12^{1} 2^{\prime \prime}$ Pix Tube Receivers)

Fig. 5-Reor Chossis Adiustments

ION TRAP MAGNET ADJUSTMENT - The ion trap magnet should be positioned exactly as shown in Figure 8. Adjust the magnet by moving it back and forth and at the same the magnet by moving it back and forth and at the same
time rotating it slightly around the neck of the picture tube time rotating it slightly around the neck of the picture tube
until the brightest raster is obtained on the picture screen. until the brightest raster is obtained on the picture screen.
Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the Focus Control R-81 (see Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance.

DEFLECTION YOKE ADJUSTMENT - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtaised. Tighten the yoke adjustment wing screw.

FOCUS COIL ADJUSTMENT - If horizontal or vertical centering is required, adjust the three focus coil mounting sarews until proper centering is obtained. See Fig. 8.

PICTURE ADJUSTMENT - For further adjustments, obtain a test pattern on the receiver. Turn on receiver and follow tuning procedure on pagel8. When a test pattern is obtained it may be necessary to slightly re-adjust the focus control for maximum picture detail.

$121 / 2^{\prime \prime}$ PIX RECEIVER ADJUSTMENTS

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT - Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channe and then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal bars will be gradually reduced and when only $3-1 / 2$ to $4-1 / 2$ bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. The pull-in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control.
At the extreme clockwise position the picture should be just starting to pull out of sync. Usually one vertical bar will be seen.
If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned.

ALIGNMENT OF HORIZONTAL OSCILLATOR - If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync for at least 60 degrees of clockwise rotation of the control from the pull in point, it will be necessary to make the following adjustments.

NON-OPERATING CONTROLS

 REAR OF CHASSIS| Focus Coil | Focus Coil |
| :---: | :---: |
| Horizontal Centering | Screw |
| Vertical Centering | Adjustments |

Vontap Mas
Wing Nut Adjustment
Deflection Yoke
Wing Screw
Horizontal Size
. L-23
$\begin{array}{l}\text { Horizcntal Locking Range } \\ \text { Horizontal Drive }\end{array}$ (${ }^{12^{1 / 2} 2^{\prime \prime}}$ Picture Tube $)$.. C. 63 A
Horizontal Drive (16" Picture Tube Receivers). C- 77
Horizontal Wave Form ($12^{1 / 2} 2^{\prime \prime}$ Picture Tube Receivers) Back of Chassis
Horizontal Frequency (16" Picture Tube Receivers). . . L-25
I:orizontal Frequency ($12^{1 / 2 "}$ " Picłure Tube Receivers) Inside Chassis

T-7

FRONT OF CHASSIS

(Accessible After The Removal of Front Panel Control Cover)

بorizontal Hold

Erightness . R-54
Vertical Linearity R-87
HeightR-63
Vertical Hold R-60
Focus ... R-81

WARNING - If a screwdriver with a blade longer than cedure making sure that the picture tube is fitted closely seven inches is used it may accidentally touch a against the picture tube cushion. If the picture tube sticks or portion of the receiver that carries a high potential. fails to slip into place smoothly, investigate and remove the source of the trouble. Never force the tube. It is
4. If adiustments are necessary on the deflection yoke important that all the clips and shims used in mounting or the ion trap magnet, follow the procedures on the tube be replaced, otherwise difficulty may be encoun page 20. tered when horizontal or vertical centering is required
© John F. Rider

HORIZONTAL FREQUENCY ADJUSTMENT - Turn the horizon. counter-clockwise. Turn the horizontal hold control cr untertal hold control to the extreme clockwise position. Tune clockwise, momentarily remove the signal and recheck the in a station and adjust the horizontal frequency control number of bars present at the pull-in point. Repeat this (T.7-See Fig. 17) until the picture is just out of sync and procedure until 3-1 2 to $4-12$ bars are present. Repeat shows one vertical bar. In order to obtain this condition the adjustments under "Horizontal Frequency Adjustment" it may be necessary to slightly re-adjust the horizontal and "Horizontal Locking Range Adjustment" until the conlocking range trimmer ($\mathrm{C}-63 \mathrm{~A}$) on the rear apron. dition specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly
HORIZONTAL WAVE FORM ADJUSTMENT
This is a factory
adjustment and it should not be necessary to re-adjust unless the setting has been disturbed. However, if it is found that re-adjustment is required, follow this pro--dure. With the picture in sync, connect an oscilloscope

16" PIX RECEIVER ADJUSTMENTS

trough about a 10 mmf isolation condenser to Terminal CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT - Tune in a C of T-7. Adjust the horizontal wave form (T-7 See Fig. 5) station and adjust the horizontal hold control until the until the two peaks of the wave form shown in Fig. 9 are picture fallis into sync. Momentarily remove the signal equal. NOTE: Picture must be in sync during this adjust by switching off channel and then back. The picture ment.

CORRECT ADJUSTMENT picts pulls MENT picture pulls into sync. Recheck the "Horizontal Oscillato: PEAKS ARE EQUAL Alignmenf.

Fig. 9-Horizontal Wave Form Adjustment fails to hold sync or the pull-in range is at the extreme end of the control, and is less than 60°, it will be necessary to make the following adjustment.
horizontal frequency adjustment - With the horizontal hold control set to the center of its range of rotation,

He following adjustments are applicable

 TO 12 $1 / 2^{\prime \prime}$ AND 16" PIX TUBE RECEIVERS.
Heght and tiniarit adjustments -Adjust the height

 control ($R-63$) until the picture fills the mask vertically. Adjust the vertical linearity control (R-87) until the picture is symmetrical from top to bottom. Adjustment of either control will require a re-adjustment of the other contrel. Adjust vertical centering (3 focus coil mounting screws) to align picture with the mask. should pull into sync over a range of 90° rotation of the horizontal hold control. If in the above check the recaiverhorizontal size and drive adjustments-Turn the horihorizontal locking range adjustment -- Set the hori- zontal size control L-23 (See fig. $5 \& 6$) to the maximum zontal hold control to the extreme counter-clockwise posi- clockwise position. Vary the horizontal drive trimmer tion. Momentarily remove the signal by switching off (C-63B on 12-1 2 " Pix Tube Receiver) (C-77 on $16^{\prime \prime}$ Pix channel and then back. Slowly turn the horizontal hold Tube Receiver) to yield the best linearity. Re-adjust the control clockwise and note the least number of diagonal horizontal size control L-23 until the picture just fills the bars obtained just before the picture pulls into sync. If mask. Adjust horizontal centering (3 focus coil mounting more than $4-1 / 2$ bars are present just before the picture screws) to align the picture with the mask.
pulls into sync, adjust the horizontal locking range trim- If the horizontal drive trimmer is opened too far countermer C-63A (See Figure 5) slightly clockwise. If less clockwise, a white line may appear to the left of the center than 3-1/2 bars are present, adjust trimmer C-53A slightly of the picture.

CHECK OF R-F OSCILLATOR ADJUSTMENTS

With an accurately calibrated signal generator (crystal calibrated type preferred check to see if the receiver R-F oscillator is adjusted to the proper frequency on all channels. For this check, it will be necessary to remove the chassis from the cabinet. Illustrated on this page are the two types of funers used in these receivers. For switch-type
funers adjust as shown in Fig. 10. When Channel 6 (low and Channel 13 (high) trimmers are adjusted properly, other channels in the high and low frequency band will fall in automatically.
For turret type tuners adjust each channel through the clearance hole as shown in Fig. 11.

CHANNELS
Fig. 10 Switch Type Tuner Adjustment

fig. II Turret Type Tuner Adjustment

© John F. Rider

SERVICE SUGGESTIONS

NO RASTER ON PICTURE TUBE -If raster cannot be obtained

 check below for the possible causes.1. Ion trap magnet adjustment is incorrect.
2. No + B voltage. Check $1 / 4$ ampere fuse (F-1). *Replace if defective. If fuse continually burns out, check (A) Horizontal output tube V-18 (6BG6-G in 12-1/2" pix tube receivers) or $V-18$ and $V-21$ (6BQ6-GT's) in $16^{\prime \prime}$ pix tube receivers. (B) Check damper tube V-19 (6W4-GT). (C) Check horizontal oscillator V. 17 (6SN7GT) for proper operation. In the $16^{\prime \prime}$ pix tube models, connect a jumper wire from the $+B$ side of $F-1$ to the junction of C-79 and R-85. For the 12-1/2" pix tube models use a similar wire from the $+B$ side to the junction of R-70 and R-73. (D) With an ohm-meter check for a short between terminat 2 of the horizontal output transformer T-9 and the chassis. (E) Check capacitors $\mathrm{C}-22 \mathrm{C}$ and $\mathrm{C}-73 \mathrm{C}$.
3. No high voltage. Check $\mathrm{V}-15$ and V - 18 tubes and circuits. If the horizontal deflection circuits are operating as evidenced by the correct voltage measured on terminal 2 of the horizontal output transformer T-9, the trouble can be isolated to the high voltage rectifier V-15 circuit. Either the high voltage winding (points 6 to 7 on $\mathrm{T}-9$) is open, tube $\mathrm{V}-15$ is defective its filament circuit is open, or the high voltage filter capacitor C-86 or C-83 on 12-1/2" models is shorted.
4. Defective picture tube. Heater open or cathode return circuit open.
*This fuse is accessible from bottom of cabinet. Remove wire screen, unsolder old fuse, solder in the new fuse and replace wire screen.
5. Open video peaking coil. Check all peaking coils L-9 L-10, L-11, L-12 and L-13 for continuity. Note that L-10 and $\mathrm{L}-12$ have shunting resistors.
6. Leakage in $\mathrm{V}-11$ (12AU7) grid capacitor C-90. If the above components are not found to be defective, check the following
7. Check all potentials in video circuits
8. Check picture tube grid circuit for poor or dirty contact.
9. Check adjustment of focus control R-81. It should be effective on either side of proper focus.
10. Check and realign, if necessary, the picture I-F and R-F circuits.

PICTURE SMEAR:

1. Normally, smear can be attributed to phase shift a the low frequency end of the video characteristic This can be caused by improper values of resistors and capacitors in the video circuits. Check for grid current on video output tube V. 11 (12AU7).
2. This trouble can also originate at the transmitter Check reception from another station.
3. Check and realign, if necessary, the picture I.F and R-F circuits.

PICTURE JITTER:

1. If regular sections at left of the picture are displaced replace the horizontal output tubes $\mathrm{V}-18$ or $\mathrm{V}-21$.
2. Vertical instability may be due to loose connections or noise received with the signal.
3. Horizontal instability may be due to unstable transmitted sync or to noise.
4. Check receiver AGC system for proper operation
(Output on these ranges should be adiustable and least 1 volt maximum.)
(a) intermediate alignment frequencies

* 17.0 mc adjacent picture trap
20.2 mc adiacent picture trap
$* 24.1 \mathrm{mc}$ third picture If F
25.7 mc second picture l-F coil
27.7 mc adjacent sound trap
21.7 mc sound trap (takeoff)
4.5 mc video trap
* This frequency is not used in receivers with the turre type tuner.
** If turret type tuner is used the frequency will be 23.7 mc .

POOR VERTICAL LINEARITY -If adjustment of the vertical hold, height or linearity controls will not correct this condition, any of the following may be the cause.

1. Vertical output transformer ($\mathrm{T}-8$) defective
2. Capacitors C-73A or C-73B defective
3. V-13 (6SN7-GT) or V.14 (6K6-GT) defective, check voltages.
4. Excess leakage or incorrect value in capacitor C-64
5. Low plate voltages. Check rectifier tubes and cap acitors in $+\mathbf{B}$ supply circuits.
6. Capacitor C-65 defective

POOR HORIZONTAL LINEARITY-If adjustment of the Horizontal drive control does not correct this condition, check the following:

1. Check or replace horizontal output tubes V18 \& V-21
2. Check or replace damper tube $\mathrm{V}-19$ (6W4-GT).
3. Check capacitor C-82 for defects.

rapezoidal or nonsymmetrical raster

1. Improper adjustment of focus coil or ion trap magnet.
2. Defective yoke
3. Open condenser C-85 on horizontal yoke coil L-2

PICTURE STABLE BUT WITH POOR RESOLUTION -if the pic ture resolution is not up to standard, it may be caused by any of the following:

WRINKLES ON LEFT SIDE OF RASTER - This condition can be caused by:
Defective yoke due to C-85 (internal in yoke assembly) being wrong value or open. This component is mounted ab
in rear of yoke assembly.

1. Defective picture detector V-9A (6AL5) or video amp lifier V-10 (12AT7) and V-11 (12AU7).
raster; no image, but accompanying sound - This con dinion can be caused by:

No signal on picture tube grid. Check picture I-F mplifier tubes V-6, 7 and 8 (6 AG5's), second de ector V-9A (6AL5) and video amplifiers V-10 (12AT7) and V-11 (12AU7).

Bad contact to picture tube grid (lead to socket bro ken).

Signal appears on picture tube grid but impossible to SYNCHRONIZE THE PICTURE VERTICALLY AND HORIZONTALIY
-A condition of this nature can be caused by

1. Defective sync amplifier and separator V-11 (12AU7-V-10 (12Ai7) or V-13 (6SN7-GT)
2. If tubes are O.K. check voltages, and associated circuits.
3. AGC system inoperative. Check V-12 (6AU6) AGC tube and associated circuits.

SIGNAL ON PICTURE TUBE GRID AND HORIZONTAL SYNC ONLY
-If this condition is encountered, check:

1. Vertical integrating network capacitors C-55, C-56, and C-57; and resistors R-56, R-57 and R-58.
2. Vertical hold control R- 60 defective

TEST EQUIPMENT - To service this receiver properly, it is
recommended that the following test equipment be avail
R-F SWEEP GENERATOR meeting the following requirements
(a) Frequency ranges:

18 to $30 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
40 to $90 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
70 to $225 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
(b) Output adjustable with at least .1 volt maximum
(d) Futput constant on all ranges.
(d) Flat output in all attenuator positions.
2. Insufficient output from horizontal output tubes V-18 CATHODE-RAY OSCILLOSCOPE preferably one with a wide or V-21. Replace tubes.

SIGNAL GENERATOR to provide the following frequencies:
3. Insufficient output from vertical oscillator V-13 or
vertical output tube V-14. Replace tubes.
(b) Radio frequencies:

Channal Number	Picture Carrier Freq. Mc.	Sound Corrier Freq. Mc.
2	55.25	59.75
3	61.25	65.75
4	67.25	71.75
5	77.25	81.75
6	83.25	87.75
7	175.25	179.75
8	181.25	185.75
9	187.25	191.75
10	193.25	197.75
11	199.25	203.75
12	205.25	209.75
13	211.25	215.75

heterodyne frequency meter with crystal calibrator if the signal generator is not crystal controlled.

ELECTRONIC VOLTMETER and a high voltage probe for use with this meter to permit measurements up to 20 kilovolts.

SERVICE PRECAUTIONS - To service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the cabinet back, the antenna terminal board at rear of cabinet and the 5 chassis mounting bolts. The chassis may be serviced with the picture tube in place provided the chassis is turned on its side with the power transformer on the bottom. The weight of the chassis will be supported against the high voltage housing

CAUTION: Do not permit the kinescope second-anode lead to become shorted to the chassis. To do so will cause a considerable overload on the high voltage filter resistor R-79 on $12^{1 / 2^{\prime \prime}}$ receivers or $R-97$ on $16^{\prime \prime}$ receivers.

「ig. 14-Tube Layout-16" Pix Tube Receivers

ALIGNMENT PROCEDURE
 \section*{PIX I-F}

7-Bottom Chassis

$$
\begin{aligned}
& \text { Fig. 17-Bottom Chassis } \\
& \text { Vidoo ond Audio I.F Adiustme }
\end{aligned}
$$

frequency
ADJUST
4. 24.1 (Switch 3rd pix IF (L-7) (below chassis) for maximum dc at picture de-

$$
23.7 \text { (Turret tector. }
$$

Type Tuner)
5. $27.7 \quad \begin{aligned} & \text { 2nd pix IF (L-24) transformer } \\ & \text { (below chassis) for minimum dc }\end{aligned}$ at picture detector.
6. 21.7 Sound Take-off Coil (L-5) (Ist Sound Take-off Coii (L-S) (isture IF) (top of coil) For minimum de at picture detector
Adjacent pix trap ($T-4$) - (3rd P-IF Cathode Coil) (above chassis) for minimum dc at picture detector.

1st pix IF (L-5) (Sound Take-off Coil) primary (below chassis) for maximum de at picture detector.

2nd pix IF (L-24) (top of chassis) for maximum dc at picture det.

3rd pix IF (L-7) (top of can) adund pix minimum ds at picture detector.
8. $\quad 17 \mathrm{MC} \quad$ Converter plate trap coil (L-3) (2 volts required) for minimum de at pic. detector.

Step 8 omitted in Receivers with turret type funer
B. I-F Sweep Generator into converter grid (through tube shield insulated from chassis) with markers at 21.7 MC and 26.2 MC .
Connect oscilloscope probe to plate of lst l-F tube V-6 (Pin 5 of 6AG5)
Ground A.G-C Line.

Fig. 19-Ossilloscope Connection

SWITCH TYPE TUNERS

Adjust converter plate coil (L-2) and 1st Pic. I-F grid coil (L-4) (top of chassis) to give the response shown below in figure 20
slight re-adjustment of L-3 converter plate trap may be necessary.

TURRET TYPE TUNERS

Adjust converter plate coil (L-2) to give response shown in dotred line in figure 20

Fig. 20-Response Curve
C. With same I-F sweep input, connect scope probe to second detector (junction of peaking coil (L-9) and 4700 ohm resistor (R-31) off Pin 7, 6AL5). Input should be adjusted to give 2 volt P to P output.
Apply 3 V , bias (dc) to AGC line. (battery).

Observe overall I-F response, which should be as shown in Figure 22. Slight touch-up may be required.

D. Sweep generator with balanced 300 ohm output into antenna for each channel. Adjust fine tuning to receive sound and observe overall response at second detector as in C. above.

If 26.2 marker is not at 50% point, a slight touch-up of 2 nd Pix-IF transformer (L-24 on top of chassis) is required.

If there is a noticeable peak near 23 MC , a slight touch-up of ist Pix.lF transformer (L-5 sound take-off coil on bottom of chassis) is required.

If the top of the curve is tilted, a slight re-adjustment of the 3rd Pix-IF transformer L. 7 (bottom of chassis) may be necessary.

AUDIO I-F

With 21.7 CW Carrier into converter grid as in A., and VTVM connected to terminal " C " of sound discriminator transformer, adjust sound I-F transformer (T-1) pri. and sec., and pri. (top of can) of discriminator (T-2) for max. dc. Input should be adjusted for 2 volts out.

Connect VTVM to Pin 1 of 6AL5 discriminator and adjust secondary of discriminator (T-2) (bottom of can) for cross. over. (Zero voliage).

VIDEO

With 4.5 MC CW Carrier from a high impedance source, (10,000 ohms in series with generator), into grid of lst video tube (Pin 7 of 6AL5 second detector) and VTVM on picture tube grid, tune 4.5 MC trap L-8 (top of chassis) or minimum response.

REPLACEMENT PARTS LIST (16" PIX TUBE)

REPLACEMENT PARTS LIST Cont. (16" pIX TUbe)

Ref. No.	description Part No.
C.62A)	Capacitor, Dry Electrolytic; ${ }^{80} \mathrm{mf} 450 \mathrm{~V}$. . 45×376
C.62B)	
c. 84	Capacitor, Tubular; 02 mf 000 VFo5203
c. 65	Capacitor, Tubular; . 25 mf 400 V ${ }^{\text {d }} 56254$
c.68)	Capacitor, Tubular; . 05 mf 600 VF67503
C.71	Capacitor, Molded Mica; 330 mmf 500 V478570
C.73A	40 mf 50 V
C.738	Capacitar, Dry Electrolytic; 10 mf $450 \vee \ldots . .45 \times 375$
C.73C	10 mf 455 V -77571
c. 75	Capacitor, Molded Mica; 390 mmf 500 V 47×571
c. 77	Capacitor, Trimmer; 40.370 mmf174261
c. 78	Capacitor, Tubular; 35 mf 200 V 8653354
C. 79	Capacitor, Molded Mica; 3900 mmf 500 V ..478572
C. 80	Capacitor, Ceramic; 12 mmf 2500 V478574
C.82	Capacitor, Tubular; . 25 mf 200 V B65254
C. 85	Part of Deflection Yoke
C.86	Capacitor, Hi Voltage; $500 \mathrm{mmf} 20,000 \mathrm{~V} \ldots 47 \times 560$
C. 87	Part of Tuner Assembly
C. 94	Caporitor, Dry Electrolytic; 30 mf 450 V 45×379
R.1	RESISTORS
R.2	
R.3	
	Resistor, Corbon: 1 K ohms 0.5 W $\mathrm{B85} 102$
R-24	
R-26	
${ }_{\text {R.27 }}$	
R. ${ }_{\text {R. }}$	Resistor, Carbon; 82 ohms 0.5 W. 884820
R.6	
R-17	
${ }^{\text {R.36 }}$	Resistor, Carbon; 470 K ohms 0.5 W B85474
R.73	
$\begin{gathered} \mathrm{R}-88 \mathrm{~B} \\ \mathrm{R.} .7 \end{gathered}$	
R-23	
R.37	
R.39	Resistor, Carbon; 22 K ohms 0.5 W 884223
R 56	
R.113	
R_{R-10}^{R-10}	
R.53	
R-55	
R.61	Resistor, Carbon; 100 K ohms 0.5 W 884104
$\begin{aligned} & \text { R. } 70 \\ & \text { R. } 72 \end{aligned}$	
R.109	
R.112	
R-11	Resistor, Wirewound; 5.1 ohms $0.5 \mathrm{~W}43 \times 239$
$\begin{aligned} & \mathrm{R}-12, \\ & \mathrm{R}-106 \end{aligned}$	Resistor, Carbon; 68 K ohms $0.5 \mathrm{~W} . \ldots . .$. . ${ }^{\text {B84683 }}$
R.13	Resistor, Variable; 1 megohm On-Of Valume
R-44 1	Resistor, Variable; 3 K ohms Contrast78×4
R. 14	Resistor, Corbon; 10 megohms 0.5 W 885105
$\begin{aligned} & R-151 \\ & R-35 \end{aligned}$	Resistor, Carbon; 270 K ohms $0.5 \mathrm{~W} . \ldots .$. . B85274
R. 16	Resistor, Carbon; 470 ohms 1.0 W.
R-18	Resistor, Carbon; 1 K ohms 2.0 W.
R.19	Resistor, Carbon; 47 ohms 0.5 W ${ }^{\text {B833470 }}$
$\begin{aligned} & \text { R-20 } \\ & \text { R-21 } \end{aligned}$	
R-22	Resistor, Corbon; 12 K ohms 0.5 W 883123
R-25	
R.28	
R.92 R .93	Resistor, Carbon; 150 ohms 0.5 W. 884151
R. 29	Resistor, Carboni 330 ohms 0.5 W. 884331
R.30	
R-80	Resistor, Corbon; 2.2 K ohms $0.5 \mathrm{~W} . \ldots . . . \mathrm{B84222}$
$\begin{aligned} & \text { R. } 88 \\ & \text { R. } 108 \end{aligned}$	

Ref. No.	description	Part No.
R.31		
R.74	Resistor, Carbon; 4.7 K ohms 0.5 W .	. 883472
R.79		
R.32	Resistor, Carban; 5.6 K ohms 0.5 W .	B83562
R.33	Part of L-10	
R. 34	Resistor, Carbon; 2.7 k ohms 1.0 W .	C83272
R.38	Resistor, Carbon; 33 K ohms 0.5 W .	B84333
R-40		
R.45		
${ }_{\text {R. } 62}^{\text {R.5 }}$ R Resistor, Carbon; 1 megohm 0.s W.b84ios		
R-69		
R-41	Resistor, Carbon; 10 K ohms 0.5 W .	884103
R.42R.46 Resistor, Carbon; 12 K ohms $0.5 \mathrm{~W} \mathrm{B84123}$		
$\text { R. } 46$		
R-94		
R.95	Resistor, Corbon; 820 K ohms 0.5 W .	
$\text { R. } 48$		884824
R-49	Resistor, Carbon; 47 K ohms 0.5 W . Part of L .12	
	Resistor, Corbon; 3.9 K ohms 1.0 W .	.c83392
R. 54	Resistor, Variable; 500 k ohms	
R. 58	Resistor, Carbon; 8.2 K ohms 0.5 W	. 884822
R. 64		
R. 59	Resistor, Corbon; 1.5 megohms 0.5 W .	.884155
R. 60	Resistor, Vorioble; 1 megohm (Vert. Hold Control)	98
R.63	Resistor, Variable; 2.5 megohms (Height Control)	
$\begin{aligned} & \mathrm{R} .66 \\ & \mathrm{R} .67 \end{aligned}$	Resistor, Carbon; 3.3 K ohms 0.5 W .	.883332
R.68	Resistor, Carbon; 3.3 megohms 0.5 W .	.885335
R.71	Resistor, Carbon; 4.7 megohms 0.5 W .	B85475
R.75	Resistor, Carbon; 1.5 K ohms 0.5 W .	B84152
${ }_{\text {R-7 }}^{\text {R-76 }}$	Resistor, Carbon; 270 ohms 0.5 W .	.885271
	Port of Deflection Yoke	
R.78	Resistor, Wirewound; 3.9 ohms 0.5 W .	.43×251
R .81R .82	Resistor, Voriable; 6.5 K ohms (Focus Control)	40×302
	Resistor, Wirewound; 500 ohms $10.0 \mathrm{~W} . \ldots$. 43×245
R.83	Resistor, Wirewound; 1 K ohms 10.0 W .	.43×248
R.84	Resistor, Wirewound; 10 K ohms 5.0 W .	.43X247
R.85	Resistor, Carbon; 270 K ohms 0.5 W .	.884274
$\begin{aligned} & \text { K-0J } \\ & \text { R.86 } \\ & \text { R-87 } \end{aligned}$	Resistor, Carbon; 27 K ohms 0.5 W .	.884273
$\text { R. } 87$	Resistor, Variable; 5 K ohms (Vert. Linearity Control)	
$\left.\begin{array}{l} R .90 \\ R-91 \end{array}\right\}$	Resistor, Carbon; 220 ohms 2.0 W .	.D84221
	Resistor, Carbon; 220 ohms 2.0 W.	. 43×253
R. 96	Resistor, Wirewound; 22 K ohms 5.0 W .	$.43 \times 253$.885105
R. 98	Resistor, Carbon; 10 k ohms 1.0 W .	. 884103
R. 99	Resistor, Carbon; 18 k ohms 1.0 W .	C84183
$\begin{aligned} & R-100 \\ & R-101 \end{aligned}$	Resistor, Corbon; 100 k ohms 2.0 W .	D84104
	Resistor, Corbon; 5.6 K ohms 1.0 W .	c84562
$\begin{aligned} & R-1021 \\ & R-103 \end{aligned}$	Resistor, Carbon; 22 ohms 1.0 W 884220
R-107	Part of Tuner Assembly	
R-110	Resistor, Variable; 50 K ohms (Horiz. Hold Control)	.40×299
R-1	Resistor, Carbon; 47 k ohms 0.5 W .	.885473
$\begin{aligned} & \text { R. } 114 \\ & \text { R-115 } \end{aligned}$	Resistor, Corbon; 2.2 megohms 0.5 W .	.884225
	Resistor, Corbon; 3900 ohms 2.0 W .	D84392
	TRANSFORMERS AND COILS	
$\mathrm{L}-1$		
L.17	Filament Choke	9 A 20
L-18)		

121/2 inch PICTURE TUBE MODELS

© John F. Rider

VIDEO I-F ALIGNMENT

to protect test equipment always use an isolation transformer

GENERAL

A complete alignment of the receiver tuned circuits is given alignment. The alignment procedure described follows the sweep method using General Electric test equipment. When other test equipment is used, check that they meet the different require-
ments for proper alignment. Suitable test equipment is essential for proper alignment of the receiver and under no circumstances try to align with inadequate test equipment. For a detailed dis-
cussion of this problem, refer to our publication Television Princission and Practice, Chapter 14. In order to speed up the alignment
ciple procedure, it is advisable to use the service diagram, Figure 29, page 8, and the tube and trimmer location, Figure 22, page 5 . In connecting the test equipment to the points indicated on
the charts, make the leads as short as possible. This is particulary necessary of the ground leads of the test equipment which should be connected to the \mathbf{B} - bus of the receiver.
Always allow test equipment and receiver to warm up for at
east 15 minutes before starting the alignment. It is often advisable to perform the alignment tube removed. The filament circuit can be completed by using a ype 6 SN 7 tube with all pins clipped off except pins No. 7 and No. 8 which must be plugged into No. 1 and No. 12 of the picture

TEST EQUIPMENT

The following test equipment is necessary in order to affect
lignment of the tuned circuits of the receiver:

r. ref swef generator.

(G-E Type ST-4A or Equivalent)
a.) Frequency Requirements:
4.5 MC with 500 KC and 2 MC sweep width. $40-50 \mathrm{MC}$ with approximately 10 MC sweep width.
$50-90 \mathrm{MC}, 170-220 \mathrm{MC}$ with 15 MC sweep width
b.) Constant output in the sweep range.
c.) Minimum output 0.1 volt

. marker generator.

(G-E Type ST-5A or Equivalent)
The marker generator must have good frequency stability,
a.) 41.25 MC for video IF
42.50 MC for video IF
44.20 MC for video IF
44.5 MC for video FF
4500 MC for video IF
45.75 MC for video IF
47.25 MC for video IF
b.) 4.5 MC for sound IF and trap alignment.
c). Picture and sound carrier frequencies for Channel No. 2

3. balanced output adapter.

(G-E ST-8A or Equivalent)
See RF Alignment, note 1.

4. OSCILLOSCOPE

(G-E Type ST-2A or Equivalent)
The oscilloscope should have good sensitivity and preferably a s-inch screen with a good wide-band frequency response n the vertical deflection circuits. Although the high frequency
esponse is not necessary for alignment, it is imperative when response is not necessary for alig,
making waveform measurements.
5. vacuum tube voltmeter

A vacuum tube voltmeter (VTVM) is necessary to measure the
6. detector network.

A crystal detector network as shown in Figure 27 is necessary
when aligning the 4.5 mc trap, L260.
7. Miscellaneous.
a.) One 10,000 ohm resistor to isolate the scope as noted in the charts.
b.) One .01 mf . capacitor for isolation of sweep generator
c.) One 680 ohm resistor for IF coil shunt (RF alignment).
d.) One 400 mf . electrolytic capacitor, 350 volt for reducing
e.) One 100 ohm resistor for reducing hum (RF alignment).
f.) Impedance matching pad for RF alignment as shown in
g.) Bias battery to supply -4 volts as noted for Video IF and RF Alignment.

general electric R-F SWEEP GENERATOR MODEL ST-4A

GENERAL ELECTRIC
marker generator, model st-5a

NOTES:

1. The sweep generator should be properly terminated in its through a .01 mf . capacitor and adjust signal input to give a video response curve of $3 / 4$ volt as shown in Figure 21.
2. Connect a bias battery from junction of C261, R263, and
the picture control R262 to B - with the positive side of the the picture control R262 to $\mathbf{B}-$ with the positive side of the battery connected to B-. Adjust picture control to give a -4
volt bias at the grid pin 1 of tube V4 measured with a VTVM. volt bias at the grid pin 1 of tube $\mathrm{V4}$
Disconnect its leads during alignment.
3. The traps L227 and L253 must be detuned before aligning the video i-f amplifier by turning the cores all the way out of the
coil. When returning these traps to 47.25 mc (s in minimum amplitude, increase scope gain as (as in step 6), fo mc marker point is attenuated, to provide optimum setting.
4. Set channel switch to Channel \#12 or \#13 and check fo
oscillator infurne
curve is affected, switch to another channel where oscillato
influence is absent
5. In general, it is only necessary to perform an over-al alignment of the video i-1, as in step of the Video Alignment When aligning the $\mathrm{i}-\mathrm{f}$ coils, L251 will adjust the audio or low frequency side of the i-f response curve, while L252 will adjust the video or high frequency side of the i.f response curve. L226
and L254 should be adjusted simultaneously to reduce the saddle back at the peak of the curve and to give maximum gain and etain 45.75 mc and 42.50 mc markers at the 50% mark
6. It is necessary to detune the i-f coils by shorting as noted in the alignment chart to prevent the coil preceding the signa fluencing the response curve.
7. It is important that the 45.75 mc marker should fall at th
50% response point to give proper curve of Figure 21-E.
8. After adjustment of the two sound traps, readjust the i curve to obtain the proper response curve as illustrated in
Figure $21-\mathrm{E}$.

Video I-F Alignment Chart						
STEP	MARKER GENERATOR FREQUENCY	SWEEP generator frequency	SIGNAL INPUT POINTS BETWEEN	CONNECT OSCILLOSCOPE between	ADJust	$\begin{gathered} \text { SEE } \\ \text { NOTE } \\ \text { NO. } \end{gathered}$
1	-	-	-	-	Detune L227 and L253 by turning cores out of coil.	3
2	44.50 MC	40-50 MC	V6 grid (pin 1) through .01 mf , cap. and B - on head-end shield. Pins 5-6 shorted on V5.	Junction L256, R265, C268 through 10 K ohms and$\mathrm{B}-$ on V7 socket.	Core of L254 for curve of Fig. 21A.	
3	45.75 MC		V5 grid (pin 1) through 01 mf . cap. and B-on head-end shield. Short L251. Remove short of step 2.		Core of L252 for curve of Fig. 21-B.	$\begin{aligned} & 1,2 \\ & 4, \\ & 6 \end{aligned}$
4	$\begin{aligned} & \text { 42.50 MC, } \\ & 45.75 \mathrm{MC} \end{aligned}$		V4 grid (pin 1) through 01 mf . cap. and $\mathbf{B}-$ on head-end shield. Short L226. Remove short of step 3.		Core of L251 for curve of Fig. 21-C.	
5	44.2 MC		Junction L215 and L216 on second RF switch wafer through .01 mf . cap. and B - on head-end shield. Remove short of step 4.		Core of L226 for curve of Fig. 21-D.	1,2,
6	47.25 MC				Cores of L227 and L253 for min. output at 47.25 MC (Fig. 21-E).	${ }_{7}^{3,} 4,$
7	$\begin{aligned} & 41.25 \mathrm{MC}, \\ & 42.50 \mathrm{MC}, \\ & \text { 45.00 MC, } \\ & 45.75 \mathrm{MC}, \\ & 47.25 \mathrm{MC} \end{aligned}$				Cores of L251, L252, L254 and L226 for curve of Fig. 21-E.	$\begin{aligned} & 1,2, \\ & 4,5, \\ & 7,8 \end{aligned}$

fig. 21. Video l-f Curves

© John F. Rider

1. Feed a 4.5 mc signal with a 500 kc sweep and adjust for
proper response curve as indicated in the chart.
2. Transformer T401 is adjusted for maximum amplitud and symmetry of the response curve about 4.5 mc marke
(Figure $23-\mathrm{A}$).
3. The secondary of T402 is adjusted for curve, Figure 23-B.
This adjustment should give as straight a slope as possible This adjustment should give as straight a slope as possible
between the positive and negative peaks with the center of the between the positive and negative peaks with the
4.5 mc marker falling midway between the peaks.
4. The primary of T402 is adjusted for maximum of the positive and negative peaks. If necessary, readjust the secondary
of T402 so that the marker falls midway between the peaks.
5. Keep the input signal of the sweep generator low enough
so that limiting does not take place, otherwise the response so that limiting does not take place, otherwise the response
curve will broaden out preventing correct adjustment. Check by increasing the output generator: the response curve should
6. As a final check (step 12), readjust the secondary of T402
for minimum buzz on all available stations.
7. An alternate method to the visual alignment is the sound
output method using an operating television station preferably output method using an operating television station, preferably
when transmitting tone modulation during test pattern trans mission.
a. Tune the receiver for best detail.
b. Set the picture control to give reduced contrast or by
c. Adjust transformer T401 and primary of T402 for imum sound output.
d. Adjust the secondary of T 402 for best quality audio
reception and for mininum buzz in the output.

Fig. 22. Tube and Trimmer Location
Audio I-F Alignment Chart

SIGNAL INPUT POINTS BETWEEN	CONNECT OSCILLSCOPE BETWEEN	ADJust	$\begin{gathered} \text { SEE } \\ \text { Note } \\ \text { NO. } \end{gathered}$
Pin 1 of V16 through .01 mid . cap. and $\mathrm{B}-$.	Junction of R404, C404 \& sec. of T401 through 10 K and B -.	Primary and secondary of T401. See Fig. 23-A.	$1,2,$
Pin 1 of V17 through .01 mid . cap. and $\mathrm{B}-$.	Junction of R408, C411 and R411 through 10K and $\mathrm{B}-$.	Secondary of T402. See Fig. 23-B.	1, ${ }^{3}$
		Primary of T402. See Fig. 23-B.	$1,4 \text {, }$
		Secondary of T402. See Fig 23-B.	${ }_{\text {1, }}{ }_{5}{ }^{\text {a }}$
operating station as in note 6 .			6

Notes:

1. Disconnect the transmission line to the antenna from the head-end. Couple the input of the sweep genereator to the head-
end terminals through balanced output adapter G-E ST-8A, or equivalent. Couple this to the head-end terminals through a piece of 300 -hm transmission line. Terminat
line in a pad, as shown in Figure 28.A, page6
If a
If a balanced output is not available for the sweep generator
a matching network as shown in Figure 28 - may be used. A
balanced output is recommended since a matching network as balanced output is recommended since a matching network as
shown in Figure 28-B may introduce frequency shift and cause a misleading tilt to the response curve.
Ro shown in Figure^{28-B} is the ter
Ro shown in Figure $28-\mathrm{B}$ is the terminating resistor. If this
resistor is not already incorporated in the output of the sweep resistor is not aready incorporated in the output of the sweep
generator it should be added to the matching network as shown
2. It is necessary to generator, it should be added to the matching network as shown.
3. It is necessary to connect a bias battery from the junction
of the picture control, C261, and R263 to B-with plus of bias of the picture cond Adjust the picture control to give a -4 volts battery to 1 . Ad min 1 of $V 2$ to the head-end chassis B -
bi. Shunt L226 with a 680 ohm: $1 / 2$ watt resistor durin 3. Shunt $L 226$ with a 680 ohm; $1 / 2$ watt resistor during r-f
alignment to prevent the oscillator from influencing the response alignment to prevent the oscillator from influencing the response
curve. To reduce the effect of hum on the response curve, con nect a 100 ohm resistor between the head-nd $\mathbf{B}+$ and the
chassis $\mathbf{B +}+$ and connect an electrolytic capacitor of approxi-

R-F Alignment Chart							
$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$	MARKER GENERATOR FREQUENCY	$\begin{aligned} & \text { SWEEP } \\ & \text { GENERATOR } \\ & \text { FREOUENCY } \end{aligned}$	SIGNAL INP UT POINT	Connect OSCILIOSCOPE	channel SWITCH	ADJust	$\begin{aligned} & \text { SEE } \\ & \text { NOTE } \end{aligned}$
13	$\begin{aligned} & 211.25 \mathrm{MC}, \\ & 215.75 \mathrm{MC} \end{aligned}$	No. 13 with 15 MC sweep	Antennaterminals athead-end head-end(see Note 1).\qquad	Junction of L226, C217 and R218 through 10K resistor and B- at headend chassis.	No. 13	Screw of L210, screw of L217, for Fig. 24-A.	$\overline{1,2,3},$
14	175.25 MC , 179.75 MC	No. 7 with 15 MC sweep			No. 7	Trimmers C207 and C230 for response curve, Fig. 24-A.	$\begin{aligned} & 1,2,3 \\ & 4,5,8 \end{aligned}$
15	211.25 MC , 215.75 MC	No. 13 with 15 MC sweep			No. 13	Readjust screw of L210 and screw of L217 for curve, Fig. 24-A.	$\begin{gathered} 1,2,3 . \\ 4,5 \end{gathered}$
16	$\begin{aligned} & 205.25 \mathrm{MC}, \\ & 209.75 \mathrm{MC} \end{aligned}$	No. 12 with 15 MC sweep			No. 12	No adjustment.	5
17	$\begin{aligned} & 199.25 \mathrm{MC}, \\ & 203.75 \mathrm{MC} \end{aligned}$	No. 11 with 15 MC sweep			No. 11		
18	193.25 MC, 197.75 MC	No. 10 with 15 MC sweep			No. 10		
19	$\begin{aligned} & 187.25 \mathrm{MC}, \\ & 191.75 \mathrm{MC} \end{aligned}$	No. 9 with 15 MC sweep			No. 9		
20	$\begin{aligned} & \text { 181.25 MC, } \\ & \text { 185.75 MC } \end{aligned}$	No. 8 with 15 MC sweep			No. 8		
21	175.25 MC, 179.75 MC	No. 7 with 15 MC sweep			No. 7		
22	83.25 MC, 87.75 MC	No. 6 with 15 MC sweep			No. 6	Screw of L208 to place 83.25 MC marker and screw of L215 to place 87.75 MC marker as shown in Fig. 24-B.	$\overline{1,2,3,}$
23	77.25 MC, 81.75 MC	No. 5 with 15 MC sweep			No. 5	No adjustments.	6
24	$\begin{aligned} & 67.25 \mathrm{MC}, \\ & 71.75 \mathrm{MC} \end{aligned}$	No. 4 with 15 MC sweep			No. 4		
25	$\begin{aligned} & 61.25 \mathrm{MC}, \\ & 65.75 \mathrm{MC} \end{aligned}$	No. 3 with 15 MC sweep			No. 3	Screw of L205 to place 61.25 MC marker and screw of L212 to place 65.75 MC marker, as shown in Fig. 24-B.	$\begin{array}{r} 1,2,3 \\ 4,7 \end{array}$
26	55.25 MC , 59.75 MC	No. 2 with 15 MC sweep			No. 2	No adjustment.	7

Fig. 24. R-F Alignment Curve
mately 400 mf ., 350 volt from head-end $\mathbf{B}+$ to head-end $\mathrm{B}-$. 4. On all channels the picture carrier marker should not be
ess than 75% of the peak of the r-f response curve. The sound carrier marker should not be less than 50% of the peak of the
response curve. On the high channels the pictire carrier marker response curve. On the high channels the picture carrier marker
should ride up nearer to the top of the curve provided the sound shauld ride up nearer to the top of the curve provided the sound
carrier maker does not go below 50%. On the low channels the picture carrier marker should ride as high up on the curve as
possible and still keep the sound carrier marker above 50%. 5 . Coils for Channels $\$ 12$ through $\$ 7$ are fixed inductances. Check the alignment on these channels as in in steps 16 through 21 for proper response curve. Readjust L210 and L217 on Channel \#13 and C207 and C230 on Channel \#7 if necessary.
6 . Coils for Channels \#5 and \#4 are fixed inductance. Check the alignment on these channels for proper curve. Readjust coils 208 and $L 215$ to give proper curve on Channels $\# 6$, \#5, and \#4.
7. The coil for Channel $\# 2$ is a fixed inductance. Check the alignment on this channel for proper curve. Readjust L205 and 212 to give proper curve on Channels $\# 3$ and ${ }^{2}$.
8. The trimmers C 207 and C230 may be
8. The trimmers C 207 and C 230 may be used to compensate
or differences in tube capacities which affect tracking when it is or differences in tube capacities which affect tracking when it is
eceessary to change the tubes $V 1$ or $V 2$. The variations in tube apacities has normally little effect on the over-all performance

Chart
(©)

© John F. Rider

OSCILLATOR ALIGNMEN

are fixed. The alignment on these channels should be checked to
see that the tuning control. C213 will move the video carrier see that the tuning control. Cnite will move the video carrier
marker up and down the entire high frequency side of the response curve. Readjust L225 if necessary.
5. When adjusting L225 as in step 27 , the tracking on Chan
nels $\# 12$ through 7 should be checked Set C 213 . nels, "12 through "7 should be checked. Set C213 at the center
of its rotation. Adjust L225 so that the video carrier marker falls of its rotation. Adjust $L 225$ so that the video carrier marker falls
as near as possible to the 50% point on the high frequency slope as near as possible to the 50% point on the high frequency slope
as the receiver is 3 witched to each channel from 7 through 13 with as
this setting of C213 for all channels from 7 through 13 .
On Channels $\mathbf{4 6}$ through 2 set the at on Channels \%6 through "2 set the tuning control C213 at the center of its rotation and make the indicated adjustment
so that the video carrier marker falls at the 50% mark on the
high frequency slope of the response curve.

Oscillator Alignment Chan

$\begin{aligned} & \text { step } \\ & \text { No. } \end{aligned}$	marker Generator FrEQUENCY frequency	SWEEP generator frequenct for channel	$\begin{aligned} & \text { SIGNAL } \\ & \text { INPUT } \\ & \text { POINTS } \end{aligned}$
27	211.25 MC	No. 13 with 15 MC sweep	Antenna head-end head-endsee Note 1)\qquad
28	205.25 MC	No. 12 with 15 MC sweep	
29	199.25 MC	No. 11 with 15 MC sweep	
30	193.25 MC	No. 10 with 15 MC sweep	
31	187.25 MC	No. 9 with 15 MC sweep	
32	181.25 MC	No. 8 with 15 MC sweep	
33	175.25 MC	No. 7 with 15 MC sweep	
34	83.25 MC	No. 6 with 15 MC sweep	
35	77.25 MC	No. 5 with 15 MC sweep	
36	67.25 MC	No. 4 with 15 MC sweep	
37	61.25 MC	No. 3 with 15 MC sweep	
38	55.25 MC	No. 2 with 15 MC sweep	

$\begin{aligned} & \text { CONNECT } \\ & \text { OSCILIOSCOPE } \\ & \text { BETWEEN } \end{aligned}$	channel SWITCH SETTING	ADJust	SEE
	No. 13	L225 by squeezing or spreading turns slightly.	$\begin{aligned} & 1,2, \\ & 3,4 \end{aligned}$
	No. 12		

Notes:

This trap is used to remove 4.5 mc audio i-f from the video tern. This trap will vary rarely require adjustment. Adjustment as follows

1. The trap (L260, C271, C270) is adjusted for minimum
amplitude of the 4.5 mc marker. Use a detector network as show
in Figure 27 connected from junction of $L 264$ and $C 275$ to B to detect the signal.
2. Adjust the vertical hold control to remove the vertical
pulses from the response pulses from the response curve.
3. Short horizontal oscillator coil L351 to remove horizontal oscillator interference in the response curve.
4.5 MC TRAP (L260) ALIGNMENT CHART

STEP	MARKER GENERATOR FREQUENCY	sweep generator frequency	SIGNAL INPUY POINT	OSCILIOSCOPE	ADJusy	$\begin{aligned} & \text { SEE } \\ & \text { NOTE } \end{aligned}$
39	4.5 MC	$\begin{aligned} & 4.5 \mathrm{MC} \\ & \pm 1 \mathrm{MC} \end{aligned}$	Junction L256, R265, C268 and B - thru .01 mf .	Across 100 K resistor as shown in Fig. 27. (See Note 1.)	L260 for min. amplitude of 4.5 mc marker. Increase scope gain as amplitude at 4.5 mc is attenuated	1, 2, 3

sweep cable impedance :

Ⓐ

TROUBLE SHOOTING SECTION

Swapp Gencrator Termination

In order to speed up trouble shooting procedure, this trouble shooting section is divided in two parts: Trouble Shooting Charts and
隹 Trouble Shooting Analysis. The charts are subdivided according to the symptoms as they affect the picture or sound so that it is an easy matter to find the symptoms observed on the particular receiver. The second columns of the charts indicate the part or section to be
checked. The third columns refer to the respective paragraphs in the following Trouble Shooting Analysis which describe in detail the possible source of defect or the necessary adjustments to obtain normal operation of the receiver
TROUBLE SHOOTING CHARTS

	Symptom		Chock	Analysis No.	8.	Ghost. (See Fig. 9)	$\begin{aligned} & \text { (a) } \\ & \text { (b) } \end{aligned}$	Antenna orientation. Antenna lead-in. (See page 3)	
	Picture Quality Defects				9.	"Snow." (See Fig. 20)	(a)	Antenna installation. (See page 3)	
	No picture, no raster, no sound.	(a)	Power supply.			Poor detail.	(a) (b)	RF and video IF circuits. Picture control circuit.	$\begin{aligned} & \text { A, } 1 \\ & \text { A, } 4 \end{aligned}$
	No picture, no raster, sound normal.	(a) (c)	Picture tube. High voltage power supply. Ion trap.		11.	Insufficient bright ness.	$\begin{array}{\|l\|} \hline \text { (a) } \\ \text { (b) } \\ \text { (c) } \\ \hline \end{array}$	Ion trap adjustment. Picture tube. Pix tube anode or bus voltage.	G, 2
	No picture, no sound, raster normal.	(a)	RF and video IF circuit.	A, 1	12.	Excessive contrast. (See Fig. 5)	(a)	Sync Section.	F, 1
	No picture, raster and sound normal.	(a)	Video amplifier.	B, 1	13.	Excessive contrast with shaky picture.	(a)	Sync Section.	F, 2
			Focus coil.		14.	Very bright, fuzzy picture.	(a)	Picture tube circuit.	C. 5
	(See Fig. 6)	(b)	Focus coil circuit.		15.	No picture on one channel.	(a)	Channel switch.	A, 6
	Poor focus and picture blooming.	(a)	For gassy picture tube.	C, 3		Distorted picture.		Video amplifer.	B, 1
	Neck shadow. (See Fig. 13)	(a) (b) (c)	Focus coil adjustment. Ion trap adjustment. Yoke assembly adjustment.	$\begin{aligned} & \mathbf{G}, 1 \\ & \mathbf{G}, 2 \\ & \mathbf{G}, 4 \end{aligned}$		Smeared picture.	(a)	Video amplifier.	B, 4

© John F. Rider

© John F. Rider

© John F. Rider

© John F. Rider

MODEL 12T7-REPLACEMENT PARTS LIST (Continued)

specialized replacement parts						
		BACK-Cabinet back	\|*RCY-060	c206	TRIMMER-Trimmer for *11 channel trap	
		INET-Model 1 ?				
			DE.08			
			*RDE.084		ESCUTCHEON-K nob eacutcheon	
		ff., 200	E.085		escutcheon - Picture cutcheon	
					OB-Mah. Brightnes, Vertical H	
		. 05 mf., 200 v., pup	*RDK 190		KNOB-Fawn, Tuning Con	
		trol	\bullet RDK 192		NOB-Mahogany, C	
		CITOR $-30 \mathrm{mf}$. . 450 v ., electrols			KNOB-Mahogany, Volume-OFF.ON	
	$\mathbf{C}_{379} \mathbf{3 7 2 ,} \mathbf{3 5 5},$	CAPACITOR- 10 mf ., $450 \mathrm{v} ., 40 \mathrm{mf}$., 30 v., 10 mf . 150 v ., electrolytic	K. 197		NOB-Mahogany, Focus, Horizontal	
					MASK-Speaker mask	
		ic capacitor	RDW. 041		GLass-Safety glass	
		CAPACITOR- $\mathbf{1 2 5} \mathbf{m f}$., 350 v ., electrolytic capacitor	*RE1-014		TUNING SLUG (BRASS) for head-end	
		CAPACITOR-80 mf., 300 v .	RER-009		IRON CORE-For L25s	
		CAPACITOR- 20 mf ., 300 v., 50 mf ., 100 v., 100 mf ., 75 v., electrolytic			RECTIFIER- 300 ma., zelenium TRAP-Ion trap	
			*REt-005	X451, 452		
RCN-018		CAPACITOR一. 01 mf ., 600 v ., paper CAPACITOR一. 0022 mf ., 1000 v ., paper	${ }^{}{ }^{*}$ RHC-024			
*RCN-019	C372				CLIP-For electrolytic capacitor mount GROMMET-Chassis grommet	
CN-023	${ }^{\text {c3 }}$	CAPACITOK-. 0022 mf ., 1000 v ., paper CAPACITOR- 500 mmf ., 20,000 v.	RHS. 045 RHS-046		GROMMET-Chassis grommet SCREW-Headless screw, $5 / 6$ in.	
${ }^{*} \mathrm{RC}$	c3	CAPACITOR- 500 mmf ., 20,000 v. CAPACITOR-. $01 \mathrm{mff}, 600 \mathrm{v}$. ., paper			SCREW-Headless screw, $1 / \%$ in. SCREW-Headiess screw, 3/6 in.	
-RCN-029	C265	CAPACITOR- 9 mmf ., silver mica CAPACITOR- 1800 mmf ., 600 v. , paper	$\begin{array}{\|l\|l} \text { RHS } 046 \\ * R I I-021 \end{array}$		INSULATOR-For volume control insulator-For deffection yoke	
*RCN-033	C365					
*RCN-034	C362, 3	CAPACITOR-3900 mmf., 500 v ., pa			insulator-For deffection yoke INSULATOR-Hi-voltage insulator	
-RCU-286	C369	OR - 6 mmf , $800 \mathrm{v}$. ., mica	$\left\lvert\, \begin{gathered} \text { RII-026 } \\ \text { RII-041 } \end{gathered}\right.$		INSULATOR-For rectifier	
		CAPACITOR- $\mathbf{1 0 0 0} \mathrm{mmf}$., 1000 v., mica CAPACITOR -680 mmf , $500 \mathrm{v} .$, mica CAPACITOR- 220 mmf ., 1500 v	$\bullet^{\bullet} \text { RJC-008 }$	13	CONNECTOR-Anode connector RECEPTACLE—Power cord receptacle (male)	
$\begin{array}{r} { }^{*} \text { RCU- } 294 \\ \text { RCU- } 295 \end{array}$	${ }^{\text {c }}$					
*RCW-1045 RCW-1076 *RCW-3014	C203, 214 C211, 208	CAPACITOR- 1.5 mmf ., $=.25 \mathrm{mmf}$. 500 v., ceramic CAPACITOR- 3.3 mmf ., $=.25 \mathrm{mmf}$.,	${ }^{*}$ RJS-026		SOCKET-Tube socket, octal, for V19, V9, V10 SOCKET-Tube socket for V20	
	C252. 253.	CAPACITOR-5000 mmf., 450 v., ceramic	*RJS-085		$\underset{\text { and } V 14}{\operatorname{SOCKET}}$ Tube socket, octal, for V13 SOCKET-Tube socket, for V1S	
	254, ${ }_{\text {257, }}^{2585}$			SOCKET-Tube socket, for V15 SOCKET-9-pin tube socket for V3 SOCKET-9-pin tube socket for V18 and V11		
*RCW-3026						
			${ }^{\bullet}$ RJS-133			
					SOCKET-7-pin thielded tube socket for for V5, V6, V17	
			JSS 1		SOcKET-Tube socket, shock mounted, for V 12	
			RJJS-136		KET-Tube tocket, for V1, V2,	
		CAPACITOR-800 mmf., 350 v ., ceramic	${ }^{\text {RJSS }} 1$		CKET \rightarrow-pin tube socket for V 7	
			RJX-04		RF. HEAD-END-Completely aligned	
	${ }_{226}$				RMER-Input traniforn	
		ACITOR- 680 mmf ., ceramic (stand-	*		coil-Horizontal oecillator coil	
-RCY.048	C207, 230	trimmer	*RLC.095	221	coil-Oacillator coil, Channel \#2	
*RCY-059	C213	TOR-Tuning capacitor	c. 096	L207, 214	and 2nd RF, Channel \#5	

specialized replacement parts (Continued)

. 097	L222	COIL-Oacillator coil, Channel \#5	RMC. 049		CLAMP-Tube aling clamp
RLC-098	L2	COIL-Oacillator coil, Channel \#6	MM-134		SHIELD-Corona shield
LC-099	L225	COIL-Oncillator coil, Channel \#13, and channel trap coil	RMM. 143		CUSHION-Tube cuahion, aling and
13	D301, R314, R31, 231,	deflection yokr	M-144		HION-Tube cushion, atrap
	315, c3is		MM. 145		Ho
-RLD. 014	2353	L-Width	RMM 150		S-
-RLD.020	L352	coil-Horizontal lin	RMS-182		P-Tube
*RLF. 024			*RMS 130		uning contra
RLu. 024	256 ${ }^{255}$,	video detector	RMS-215		G-Tube
026	$L 401$	COIL	.oss		Shaft-Extension sha
*RLI-003	L218	KE-Cathode choke, 1.4 mh .	-RMU.058		SHAFT-Tubular
206	L202	coil-Choke coil	RMX-169		pulley and hub assembl
*RLI-038	L257, 263	СНокE-Video comp., 165 mh .			tuning control
RLI 072	L206, 212	COIL-1st RF (Channel \#4), and 2nd RF (Channel \#3)	RRC. 996	R3	$\underset{\text { trol }}{\text { POTENTIOMETER-3 meg., height con }}$
*RLI-07	205	COIL-1st RF, Channel \#3	RRC-127	R311	POTENTIOMETER-4000 ohms, vertical linearity
*RLI-093	$\begin{aligned} & \text { L259, 262, } \\ & \text { R277, } \\ & \text { 267, } \end{aligned}$	CHOKE-Video comp. choke, 165 uh.	28	$\begin{aligned} & \text { R412, 262, } \\ & \text { S451 } \end{aligned}$	ume), 2 meg. (picture control)
RLI. 09	251	COIL-IF coil	RCC. 130	R421, 276	POTENTIOMETER DUAL--FCCUS (100 K) and Brilliance control (500 K)
*RLI.097	T401, C405	COIL-1at audio IP tranaformer	RRC-136	R30S, 365	potential dual- 100 K and 12
*RLI-099	L221	COIL-Oxillator, Channel \#4			Vertical and Horizontal Hold
-RLI-100	$\underset{\text { L260 }}{\mathbf{C 2 7 0}, 271,}$	COIL- 4.5 mc video trap coil	C. 140	R36	POTENTIOMETER-Drive control, 25 000 ohms, $1 / 2 \mathrm{w}$.
-RLI-108	L261, R237	COIL-Video peaking coill 110 uh.	48	R451	RESISTOR-4.6 ohmm, 5
*RLI-109	L264	CHOKE-Video comp. choke, 130 uh.	RRW.04S	R427	RESISTOR-1700 ohms, 3 w .
*RLI 110	L252, 253	COIL-IF coil	RRW-049	R2	RESISTOR-43 ohms, 4 w
-RLI-114	L_{203}	COIL-Channel \#11 trap coil	RRW. 054	R45s	RESISTOR-Globar, 35 ohms, 0.6 mm
-RLI-116	L208, 215	COIL-hat and 2nd RF. Channel \#6	-RSR-002	B451	thermal cut-
RL	L204	COIL-13t RF, Channel \#2	*RSW. 066	S401, 402	SWITCH-Focus awitch
RLI-118	L213	COIL-2nd RF, Channel \#4	*RTD-008	T402,	TRANSFORMER-Ratio detecto
RLI-119	2211	COIL-2nd RF, Channel \#2			
RLI-120	L210	COIL-10t RF, Channel \#13	-RTL.096	L451	REACTOR-Filter reactor
RLI 121	L217	COIL-2nd RF, Channel \#13	RTO. 064	T-301	TRANSFORMER-Vertical Iweep put
-RLI 122	$\begin{array}{r} \text { L258, 402, } \\ 45,2,43, \\ 454,455, \\ 456, \end{array}$ 456	coil-Heater choke, 2 uh.	*RTO-076 RTO. 081	$\begin{gathered} \text { T351, } \\ \text { R373 } \\ \text { T403 } \end{gathered}$	TRANSFORMER-Horizontal sweep output TRANSFORMER-Audio output
LP-016	L226, 227	COIL-Converter plate coil	\bullet RWL. 019	1371	POWER CORD-Interlock fem
*RLX-029		ASSEMBLY-Video detector aueeraly	. 029		SOCKET-Picture tube rocket asemb
	$\begin{aligned} & \mathrm{L2554}, \\ & 255 \end{aligned}$		*1N64th	y 1	DETECTOR-Germanium cryetal detec-

PRODUCTION CHANGES

1. SUPPRESSION OF RF OSCILATION
TO minimize the tendency to occillate on Channel \#12 and
\#13, a ceramic capacitor, C226, 800 mmf, has been added from \#13, a ceramic capacitor, C226, 800 mmf., has been added from is RCW -3026.

2. Increase of horizontal sweep

In order to increase horizontal sweep, the following changes
were incorporated dur were incorporated during production: a capacitor, C380, was
added across the terminala 6 and 8 of the horizontal sweep
transformer.
 with a parts number of RCU-295. At the same time the wiring In case a capacitor 25 WaT . use two capacitors of values 390 mmf . (part number UCU -1042 , or 470 mmf . (part number UCU-1044,) in series
connection.
3. increase of low frequency response To increase the low frequency response of the video amplifier the capacitor C268 was changed frome a .02 mf . to a .05 mf
value. The new number is UCC-045,
4. improvement of horizontal pull.in range

In the biasing network for the horizontal control tube, V12A
the resistor R379 was changed from a 180,000 to a 270,000 value the resistor R379 was changed from a 180,000 to a 270,000 value
with a part number of URD-107.

5. temporary substitution

Because of temporary procurement difficulties, some recelvers were wired with the following changes:
Reaistor R277: a substitution of 180,000 ohms was used instead of the correct value of 200,000 ohms.
Resistor R379: a substitution of was used in
200,000 ohms was used in Resistor R379: a substitution of 220,00
stead of the correct value of 270,000 ohms.

CAUTION

high voltages are used in the operation of this television receiver. the back cover, while in place, prevents ac THE EAKENING OF THE GLASS, AS MAY BE CAUSED BY CHIPPRING, SCRATCHING, OR MORE THAN NORMAL PRESSURE, MAY CAUSE THIS

Fig. 1. Block Diagram

GENERAL INFORMATION

The General Electric Models 14T2, 14T3, 14C102, and 14 Cl 103 provide reception on all the twelve commercial television 14 -inch picture tube
Features of these television receivers include; a two stage r-f mplifer, balanced antenna input circuit, selenium type rectior the picture tube, automatic frequency control for horizontal seep synchronization and electromagnetic defiection
The r-f tuner assembly is mounted on a separate chassis which
is readily demounted from the main chassis. The coils which tune is readily demounted from the main chassis. The coils which tide vidual wafers of the selector swith. The local oscillator V3B
operates on the high frequency side of the incoming $\mathrm{r}-\mathrm{f}$ signal. operates on the high frequency side of the incoming r -f signal.
The picture carrier is converted to a 45.75 mc video i . frequency, While the FM sound carrier ris converted to a 41.25 mc frequency.
The video i-f is stager tuned to pass the video i-f (45.75 mc) The video i-f is stagger tuned to pass the video i.f $(45.75 \mathrm{mc}$)
and the ($(41.25 \mathrm{mc}$) with the proper amplitude relationship beteen the two frequencies. The video information is detected
twe
by the detector Y1 as well as a 4.5 mC FM siznal which is the tween the too frequences. Th as well as 4.5 mc FM signal which is the
by the detector Y Yetwe
beat frequency beteen the video i- $(45.75 \mathrm{mc}$) and (41.25 mc). The 4.5 mc audio FM is amplified and limited by V17 and V18 and detected by the ratio detector V19. The audio is amplified V20. V21 is the audio output tube. The horizontal and vertical sync signals are taken off at the
plate circuit of V7B and amplifed and separated from the video
signal by V11. The vertical sweep is generated by one section of signal by V11. The vertical sweep is generated by one section of
a 12SN7 (V9) and a 12AU7 (V10) connected in a multivibrator circuit. The 12AU7 (V10) also serves as the vertical sweep output ube. The other section of the 12 SN ? (V9) is used to produce the
vertical retrace blanking signal. The horizontal sync signal is vertical retrace blanking signal. The horizontal sync signal is
mixed with a sawtooth signal from the prate of the damper tube
(V16) by the discriminato (V12) A change in phase between (V16) by the discriminator (V12). A change in phase between
these two signals increases or decreases the bias voltage which isese two signals increases or decreases the bas voltage which
is applied to the grid of V13A. V13A is a reactance tube which changes the frequency of the horizontal oscillator V13B. V14, the
horizontal sweep output, is coupled to the horizontal defiection horizontal sw
coils by T 351
V15 is the high voltage rectifier for rectifying the kickback voltage, produced in T351 by the horizontal retrace current. to
supply approximately 12 kilovolts to the picture tube high voltage anode.
These receivers use two selenium rectifiers in a half-wave
voltage doubling circuit to supply the B+ voltage of approxi voltage doubling circuit to supply the B+ voltage of approxi
mately 255 volts. The tube filaments are a series parallel conmately 255 volts. The tube filame
nection across the 117 volt a-c line.
©John F. Rider

UGHTNING PROTECTION-All outdoor antenna installations mus conform to certain standards as set up by the National Electrical code which is usually supplemented by Local Code requirements. In general, some of the requirements are as follows.

1. The metal mast supporting the antenna should be per
manently and effectively grounded. This should be grounded manently and effectively grounded. This
by a wire of size as specified in the codes.
2. An approved lightning arrester must be used with the
antenna lead-in conductors at a point of entrance to the bil the
antenna lead-in conductors at a point of entrance to the building.
If shielded lead-in cable is used, the shield may be permanently
If shielded lead-in cable is used, the shield may be permanently
grounded in lieu of using the lightning arrester.
ANTENNA PLACEMENT AND ORIENTATION-All television antenna systems have directional characteristics and their location may have a pronounced effect upon the results obtained. Therefore,
the antenna should be turned in a horizontal plane for maximum signal pickup. Several antenna locations may have to be tried,
since nearby since nearby objects, especially those of metal, may affect picure quality or even cause dead spots in reception to occur. may produce a better picture.
GHOST RECEPTION-Ghost images are sometimes encountered, appearing as a second picture image in various degrees of con rast and displacement from the main picture. If ghosts are
evident in the received picture, a relocation of the antenna evident in the received picture, a relocation of the antenna
should be made. In many cases this will eliminate reception of
these signals which are received frem these signals which are received from some other than the direct
signal path from the television transmitter. If the ghost images cannot be eliminated in this manner, a compromise in antenna orientation for maximum signal pickup and image rejection

SERVICE CONTROLS AND ADJUSTMENT PROCEDURE
It will be noted that some adjustments react upon each other
and therefore should be adjusted alternately and as a final step and therefore should be adjusted alternately and as a final step
all adjustments rechecked.

Power should not be applied to the receiver for any great
ength of time without the ion trap adjusted for some illumina
The ion trap, deffection yoke, focus coil and the installatior adjustment controls are adjusted in the procedure given below adjustment controls are adjusted in the procedure given below
These are described in greater detail under their respective title:
immediately following this procedure.
Reference is made to Figure 2 for the service adjustments anc
yoke assembly.

1. Adjust ion trap to get brightest raster.
2. Adjust for no tilt of raster and tighten yoke clamp screws
3. Tune in a television signal.
4. Adjust Horizontal Hold controls.
5. Adjust-Drive control.
6. Adjust for good Horizontal and Vertical linearity
7. Adjust Focus coil for certical size controls.
eck shadow and for most uniform focus.
8. Readjust ion trap.
9. Recheck adjustments of steps $6,7,8$ and 9 .
10. Recheck adjustments of steps $6,7,8$ and 9 .
11. ION TRAP——Power should not be applied to the receiver for any
great length of time without the ion trap adjusted for some great length of time without the ion trap adjusted for some
illumination. Set the Brightness control to maximum (clockwise). To adjust ion trap, rotatet the trap on the neck of the tube and
move it forward and backward to give maximum brightness. move it forward and backward to give maximum brightness.
Reduce the picture Brightness during ion trap adjustment, if raster becomes too bright as maximum brightness with the trap
in approached. Always make certain the ion trap is finally set to is approached. Always make certain the
give maximum brightness of the raster

$$
\begin{aligned}
& \text { ive maximum brightness of the raster } \\
& \text { ICTURE TMT-If the picture or raster doe }
\end{aligned}
$$

PICTURE TLIT-If the picture or raster does not lie squarely within the picture tube mask, loosen one of the Yoke Adjustment Clamp
screws and by grasping the Picture Tilt Lever, turn lever to rotate screws and by grasping the Picture Tilt Lever, turn lever to rotate
yoke until picture or raster squares. with the mask. Tighten the yoke clamp screws after squaring picture with mask.
HORIZONTAL HOLO-Set the front panel Horizontal Hold control
(R365) to the center of its range. Adjust the core of the Hori(R365) to the center of its range. Adjust the core of the Hori-
zontal Hold control (L351) at the rear of chassis, until the picture is synchronized and is phased at the center of the raster - a slight rotation of the front panel control in either direction will move
the picture slightly to the left or right without losing synchronization.
The pull-in to synchronization range should be equally dis-
tributed each side of the front panel Horizontal Hold control's center range and may be checked with the control set at center observing the pull-in to synchronization sensitivity as the
Channel Selector switch is fipped alternately back and forth rom the received channel to an adjacent channel having no control, the pull-in to synchronization time will be longer.
HORIZONTAL DRIVE-Adjust the Horizontal Drive control (R369) for optimum drive indicated by a maximum width of picture. If any compression of picture is noted on the right-hand side of drive (clockwise rotation). If a vertical beaded line appears of the picture at this setting, a further clockwise adjustment
in theuld be made to eliminate it.
sher
horizontal unearity-The Horizontal Linearity control (L352) adjusts the picture for correct horizontal proportions. For best adjustment, use a test pattern and adjust the Horizontal Line-
arity control until the distances from the center of the test pattern to the left- and right-hand edges of the test pattern measure approximately the same. The adjustment of this control is very
broad and it should be made simultaneously with the ad justment of the Width control (L353) to get proper picture width and correct horizontal linearity.
VERTICAL UNEARIIY-This control (R311) should be adjusted to
give best symmetry to the test pattern for correct vertical proporgive best symmetry to the test pattern for correct vertical proportions in the picture. The adjustment should be made on a test
pattern so that the distances from the center to the top and pattern so that the distances from the center to the top and
bottom edges of the test pattern measure approximately the same. This adjustment will alter the height of the picture slightly.
WIDTH-Adjust the Width control (L353) so that the edges of the picture extend approximately one-eighth inch past the right-
and left-hand edge of the mask so that raster edges are not

HEGHT-The Height control (R308) changes the picture height
and should be adjusted so that the picture extends approximately $1 / 8$ inch beyond the top and bottom edges of the mask. This adjustment should be made simultaneously with the Vertical
Linearity control (R311). Linearity control (R311).
FOCUS COIL ADSSTMENT-The Focus coil bracket adjustment screws and the swivel wing nuts are loosened in preparation for adjustment of the focus coil. These should not be too loose but
should allow movement of the coil and yet retain each new position of coil adjustment.
The focus coil and brait
The focus coil and bracket may be moved up and down, to the right or left, or the coil may be tilted in any direction by the
swivel mounting. In addition, the coil may be moved forward or backward.
Adjust position of the focus coil to center picture test pattern within picture tube mask and to eliminate neck shadow. The
focus coil should be as far back toward the base of the picture focus coil should be as far back toward the base of the picture
brightness.

MISCELLANEOUS SERVICE DATA

1. Remove knobss from cabinet-
2. Remove knobs and cabinet back

Remove $1 / 4-20$ nuts and washers which hold picture tube
anchor lugs to top inside corners of cabinet.
4. Remove chassis mounting screws.
micture tube and chassis replacement-

1. The deflection yoke clamp screws and focus coil adjustments should be loosened before attempting to install the picture tube-
this will prevent any strain upon the tube neck when positioning this will prevent any strain upon the tube neck when positioning
and fastening the tube later.
2. Install the picture tube as shown in Figure 1. The bottom 2. Install the picture tube as shown in Figure 1. The bottom
rim of tube should be forward against rubber stop on chassis rim of tube
front apron.
3. Place
picture tube anchor lugs between tube rim tube ind inserting the in Figure 1. Center tube approximately with regard to front of chassis and install tube strap mounting nuts to hold tube lightly. ing tube anchor lugs to fit over stud screws in top corners of cabinet.

Fig. 4
Picture 100 light.
 program.
The no
5. Install chassis mounting screws and tighten to fasten hassis securely.
6. Move pictur iewed from front of the cabinet. 7. Tighten tube strap mounting nuts, accessible from bottom 8. Install washer and $1 / 4 \mathrm{inch}-20$ hex nut over picture tube anchor lug screws and tighten to hold lugs securely to cabinet.
9. Push deffection yoke forward to set against bell of picture ube and tighten yoke clamp screws.
10. Place ion trap on picture tube neck as shown in figure 2 .
11. Connect picture tube socket to base of tube and high 11. Connect picture tube socket
voltage lead to anode connection.
voltage lead to anode conn.
12. Install control knobs.
HIGH CHANNEL TRAP-This receiver incorponates a trap circuit C206, L203, S202D) on the head-end unit which is switched be used to eliminate any one of the following high channel interferences on the corresponding lower channel shown.

> Channel \#8 on Channel \#4 Channel \#11 on Channel \#5 Channel \#13 on Channel \#6

The receiver is adjusted at the factory approximately for rejec-
ion of Channel $\# 11$ interference on Channel $\# 5$. It may be necesion of Channel. 111 interference on Channel $\# 5$. It may be necessary to readjust the trap siightly, if Channel , \#11 interfer
experienced when operating the receiver on Channel \#5.
High channel interference manifests itself as horizontal bars, herringbone pattern in the picture, or the high channel station precture superimposed up.
reciver has been tuned.
If none of the above combinations of channels exist in the adjusted.
THERMAL CUT-OUT-This is a protective device, which operates in a similar manner to a fuse, removing line voltage from the A five minute period should be allowed after the cut-out has tripped, before depressing the reset button to restore power to the receiver. If the receiver does not return to normal operation within a reasonable warm-up time after the cut-out has been
reset, an analysis of the receiver circuit should be made to reset, an analysis of the receive
determine the cause of overload.

PICTURE DEFECTS

The following illustrations show picture defects which are caused by incorrect setting of operating controls, the preset controls or
sible remedy is indicated for each defect.
The adjustment of controls is most efficiently accomplished by the use of a test pattern
The normal picture should show good focus and a good contrast between blacks and whites
with intermediate shades of gray. The picture should not with intermediate shades of gray. The picture should not tend to move either vertically or
horizontally and should have good linearity.
remedy

1. Increase Picture control setting and/or reduce brightness.
2. Weak signal. This may be caused by insufficient pickup on

Insufficient pickup at maximum yontrast usually is on antenna or defective lead-in picture.

Reduce Picture control setting and/or increase Brightness control setting Too strong signal. If it is not possible to reduce signal adequately with Picture control install suitable resistor antenna pad.

1. Connect a bias battery from junction of C261, R263 and the Picture control to B-. Connect positive of battery to B-. Adjust the Picture control to give a -2.7 volts bias at the grid,
pin 1, of $V 4$ as measured with a vacuum tube voltmeter. Adjust he signal generator for a $3 / 4$ volt video output response on a
2. The sweep generator should be properly terminated in its characteristic impedance. Couple the signal to the point of input rough a .01 mf . capacitor
3. The traps L227 and L253 must be detuned before aligning
he amplifier by turning the cores all the way out of the coil. These traps are to be retured for minimum amplitude at 47.25
me in step 6 of the procedure. This adjustment is greatly enhanced me in step 6 of the procedure.
by increasing the scope gain.
4. Set the Channel switch to Channel \#12 or \#13. Check for oscillator influence by turning the tuning control. If the shape
of the response curve changes, switch to another channel where of the response curve changes, switch to another channel where
oscillator influence is not noted.

$$
\begin{aligned}
& \text { Fig. 21. Vidoo I.F Curver }
\end{aligned}
$$

5. In most cases it is only necessary to perform an over-al alignment of the video i-f, as in tep 7 of the Video Alignment gure 21-E
When aligning the i.f coils, L251 will adjust the audio or low
frequency side of the i-f response curve, while L 252 will ad just the video or high frequency side of the i-f response curve. L226 and L254 should be adjusted simultaneously to reduce the saddleback at the peak of the curve and to give maximum gain and retain
45.75 mc and 42.50 mc markers at the 50% mark.
6. It is necessary to detune the i.f coils by shorting as noted in the alignmessary chart to to prevent the coil preceding the signal input point from influencing the response curve
7. The 45.75 me marker should fall at the 50% point to give
proper sideband response. See Fig. 21 E .
8. After adjustment of the two adjacent sound traps, make the final adjustments to obtain the proper curve and marke
as illustrated in $\mathrm{Fig}^{21 E}$, in step 7 .
asmortrat

AUDIO I-F ALIGNMENT

1. Audio i-f alignment is performed by putting in a 4.5 mc
$\pm 500 \mathrm{kc}$ sweep and viewing the response curve as noted in the audio i-f chart
2. As a final check, step 12 , the secondary of $\mathbf{T} 402$ adjustment, should be checked on a television signal if possible. Try several
operating television stations and if buzz in the audio is heard the secondary of T 402 should be readjusted as follows. Tune in the station and adjust the contrast control for a weak
ound output. Readjust is a minimum or disappears and the best quality audio is ob
3. Keep the input of the sweep generator low enough so that
imiting does not take place, otherwsie the response curve will miting does not take place, otherwsie the response curve will creasing the output of the sweep generator; the response curve reasing the output of the
hould increase in amplitude
4. T401 is adjusted for maximum amplitude and symmetry
of he response curve about the 4.5 mc marker as shown in Fig. 5. The secondary of T402 is adjusted for the curve of Figure 23.B. This adjustment should give as straight a slope as possible cetween the positive and negative peaks of the curve with the
center of the 4.5 mc marker falling midway between the peaks. 6enter of the 4.5 mc marker falling midway between the peaks.
. The primary of $\mathbf{T} 402$ is adjusted for maximum amplitude 6. The primary of negative peaks with as straight a trace as possible between the peaks. fif necessary, readjust the secondary
of $T 402$ so that the marker falls midway betwen the peaks. 7. An alternate method to the visual alignment is the so 7. An alternat method to the visual alignment is the sound hen transmitting tone modulation during the test patter
(a) Tune the receiver for optimum detail.
treep the input below limiting level by reducing the con-
trase control or by using a resistor pad in
the antenna circuit.
the antenna circuit.
(c) Adjust primary and secondary of T401 for maximum
sound output. Adjust primary of T 402 for maximum audio
output.
(d) Adjust the secondary of T 402 for best quality audio (low
distortion, least noise) and for minimum buzz in the out-

Fig. 22. Tube and Trimmer Locatio

R-F ALIGNMENT

R-F Alignment Notes

1. Disconnect the transmission line to the antenna terminals
the head-end. Couple the output of the sweep generator to he balanced output adapter G-E ST-8A, or an equivarent
dapter for the particular type sweep generator used. Couple the adapter to the head-end terminals through a piecece of 300 -
ohm transmission line and the pad network shown in Figure 20 A ohm transmission line and the pad net work shown in Figure 20A.
If a balanced output adapter is not available for the sweep generator, a matching network as shown in Figure 20 B may be
used. A balanced output is recommended used. A balanced output is recommended, since a matching net-
work as shown in Figure 208 may introduce frequency shift and cause a misleading tilt to the response curve. Ro shown in
Figure 20 B is the terminating resistor . f this resigto Firare an is the terminating respistore. If this. resistor is not
Fiready incorporated in the output of the sweep generator, it
alreat arready incordorated in the output of the sweep generator, it
hould be added to the matching network as shown in the table 2. It is necessary to connect a bias battery from the junction
of the Picture control, C261, and R263 to B-. Connect plus of bias battery to $\mathrm{B}-$. Adjust the Picture control to give a -2.7
volts bias measured from pin 1 of V 2 to the head-end chassis $\mathrm{B}-$.
2. Shunt L226 with a $680 \mathrm{ohm}, 1 / 2$ watt resistor during r-f alignment to prevent the oscillator from influencing the response. curve. In order to reduce the effect of hum on the response curve,
connect a 100 ohm resistor in series with the $B+$ lin $=$ to the headnd chassis and connect an electrolytic capacitor of approximately
$400 \mathrm{mf}, 350$ volt from head-end $\mathbf{B}+$ to head-end \mathbf{B}.
3. On all channels the picture carrier marker should not b
less than 75% of the peak of the r-f response curve less than 75% or the peak of the r -f response curve. The soun carrier marker should not be less than 50% of the peak of the
response curve. However, the two minimum values should not
cceur simultaneusly Oo the high chanels the picture corrier occur simultaneously. On the high channels the picture carrie
marker should ride up nearer to the top of the curve provided marker should ride up nearer to the top of the curve provided
the sound carrier marker does not go below 50%. On the low channels the picture carrier marker should ride as high up on the 50%. 5. Coils for Channel No. 12 through No. 7 are fixed induct
ances. Check the alignment on these channels as in steps ances. Check the alignment on these channels as in steps 11
through 21 for proper response curve. Readjust L210 and L217 through 21 for proper response curve. Readjust L210 and L211
on Channel No. 13 and C 207 and C 220 on Channel No. 7 if
necessary. necessary. Coil
4. Coils for Channels No. 5 and No.4 are fixed inductances.
Check the alignment on these channels for proper curve. Readju Coils L208 and L215 if necessary to give proper curve on Channels
No. 6. No. 5 and No. No. No. 6, No. 5 and No. 4.
7 . The coil for Channel No. 2 is a fixed inductance. Check th alignment on this channel for proper-curve. Readjust L 205 an
L 212 if necessary to give proper curve on Channels No. 3 and
L212 if necessary to give proper curve on hannels
No. . The trimmers C207 and C220 may be used to compensat
5. for differences in tube capacities which affect tracking when it is necessary to change the tubes $V 1$ or $V 2$. The variations in tube
capacities normally have little effect on the over-all performance
of the head-end.

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Marker Generator Frequency	SweepGenerator Frequency	Signal Point	Connect Oscilloscope	Channel Switch	Adjust	See Note
13	$\begin{aligned} & 211.25 \mathrm{MC}, \\ & 215.75 \mathrm{MC} \end{aligned}$	No. 13 with	$\begin{aligned} & \text { Antenna } \\ & \text { terminals } \\ & \text { tat head-end } \\ & \text { (see Note 1). } \end{aligned}$	Fig. 30, point J Junction of L226, C217 and R218 thru 10 K -resistor and B-at chassis.	No. 13	Screw of L210, screw of L217, for Fig. 24-A.	1,2,3,4
14	$\begin{aligned} & 175.25 \mathrm{MC}, \\ & 179.75 \mathrm{MC} \\ & \hline \end{aligned}$	No. 7 with 15 MC sweep			No. 7	Trimmers C207 and C220 for response curve, Fig. 24-A.	$1,2,3,4,$
15	$\begin{aligned} & 211.25 \mathrm{MC}, \\ & 215.75 \mathrm{MC} \\ & \hline \end{aligned}$	No. 13 with 15 MC sweep			No. 13	Readjust screw of L210 and screw of L217 for curve, Fig. 24-A.	1, 2, 3, 4
16	205.25 MC, 209.75 MC	$\begin{aligned} & \text { No. } 12 \text { with } \\ & 15 \mathrm{MC} \text { sweep } \\ & \hline \end{aligned}$			No. 12	No adjustment.	1,2,3,4, 5
17	$\begin{aligned} & 199.25 \mathrm{MC}, \\ & \text { 203.75 MC } \end{aligned}$	No. 11 with 15 MC sweep			No. 11		
18	193.25 MC, 197.75 MC	No. 10 with 15 MC sweep			No. 10		
19	187.25 MC, 191.75 MC	No. 9 with 15 MC sweep			No. 9		
20	$\begin{aligned} & 181.25 \mathrm{MC}, \\ & \text { 185.75 MC' } \end{aligned}$	No. 8 with 15 MC sweep			No. 8		
21	$\begin{aligned} & 175.25 \mathrm{MC}, \\ & 179.75 \mathrm{MC} \end{aligned}$	No. 7 with 15 MC sweep			No. 7		
22	83.25 MC , 87.75 MC	No. 6 with 15 MC sweep			No. 6	Screw of L208 to place 83.25 MC marker and screw of L215 to place 87.75 MC marker as shown in Fig. 24-B.	$\overline{1,2,3,4}$
23	77.25 MC, 81.75 MC 81.75 MC	No. 5 with 15 MC sweep			No. 5		
24	$\begin{aligned} & 67.25 \mathrm{MC}, \\ & 71.75 \mathrm{MC} \end{aligned}$	No. 4 with 15 MC sweep			No. 4	No adjustments.	6
25	61.25 MC , 65.75 MC	No. 3 with 15 MC sweep			No. 3	Screw of L205 to place 61.25 MC marker and screw of L212 to place 65.75 MC marker, as shown in Fig. 24-B.	1,2,3,4
26	55.25 MC, 59.75 MC	No. 2 with 15 MC sweep			No. 2	No adjustment.	$1,2,3,4,$

Bexiniti ion

Fig. 24. R.F Alignment Curves

on the high frequency slope of the curve for step 28. The oscillato
inductance $L 224$ for clannels 12 through $\# 7$ is fixed. The align ment on these channels is checked to see that the picture marker
falls at the 50% point on the high frequency slope of the curve. if the picture marker position does not meet these conditions, it is necessary to reac just
\#13 through \#7. The tuning range of C213 on channels $\# 13$ through \#7 should be sufficient to move the video carrier marker up and down the entire high
Readjust 225 if necessary.
S. On Channel \#6 through \#2 set the tuning control C213 at that the video carrier marker falls at the 50% mark on the high that the video carrier marker falls at
frequency slope of the response curve.
NMENT CHART
oscilator alignment chart
oscuaro
tain that the video i-f stages and r-f stages are properly aligned previously.

1. Disconnect the 300 -ohm line from the r-f head-end terminals sweep generator output cable as shown in Figure 20 . See RF Alignment Note
2. Alignment is
3. Alignment is made by viewing the response curve at the
output of the video i - f detector. 3. Use a video carrier marker as shown in each step of the
Alignment Chart.
4. Set the tuning control C213 at the center of its rotation.
Adjust L 225 to place the video carrier marker at the 50% point

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Marker Generator Frequency	Sweep Generator Frequency for Channel	Signal Input Point Poin	Connect Oscilloscope Between	Channel Switch Setting	Adjust	See Note
27	211.25 MC	No. 13 with 15 MC sweep	$\begin{aligned} & \text { Antenna } \\ & \text { terminals of } \\ & \text { head-end See } \\ & \text { note } 1 \text {. } \end{aligned}$	Fig. 30, point A Junction of C268 through 10 K ohms and B-at V7 socket (pin 3).	No. 13	L225 by squeezing or spreading turns slightly.	1, 2, 3, 4
28	205.25 MC	No. 12 with 15 MC sweep			No. 12	No Adjustment	
29	199.25 MC	No. 11 with 15 MC sweep			No. 11		
30	193.25 MC	No. 10 with 15 MC sweep			No. 10		
31	187.25 MC	No. 9 with 15 MC sweep			No. 9		
32	181.25 MC	No. 8 with 15 MC sweep			No. 8		
33	175.25 MC	No. 7 with 15 MC sweep			No. 7		
34	83.25 MC	No. 6 with 15 MC sweep			No. 6	Screw of L223.	
35	77.25 MC	No. 5 with 15 MC sweep			No. 5	Screw of L222.	
36	67.25 MC	No. 4 with 15 MC sweep			No. 4	Screw of L221.	1, 2, 3, 5
37	61.25 MC	No. 3 with 15 MC sweep			No. 3	Screw of L220.	
38	55.25 MC	No. 2 with 15 MC sweep			No. 2	Screw of L219.	

Fig. 25. Hoad-end Un
fig. 26. Head-ond Unit

ADJUSTMENT OF VIDEO AMPLFIER 4.5 MC TRAP ($\mathbf{2 6 0}$).
This trap is used to remove 4.5 mc audio i-f from the video amplifier which shows up in the picture as a cross-hatch pattern.
This trap will very rarely require adjustment. Adjustment is as 1. The trap (L260, C271, C270) is adjusted for minimum
amplitude of the response curve at the 4.5 mc marker point. Use

a detector network as shown in Figure 27, connected from junc tion of L264 and C275 (Fig. 30, point K) to B-. to detect tion ol signal.
 2. Adjust the vertical hold control to remove the vertical pulses rom the response curve

poor low frequency response (trailung whites after black)-

1. Low value of resistors R269, R272, R265
2. Low capacity of C268, C275
c. LACK OF PICTURE DEEALL, FOCUS SATISFACTORY (SMEARING OF VER-
IICAL WEDGES OF TEST PATIERN). Shorted chokes L259, L261, L
3. Shorted chokes 2 L29, L261, L262.
4. Open chookes L299, L262.
5. High resistance of R272, R269, R265.
. bright picture with black unes
A shorted capacitor C275 will give a very bright picture with
lack lines across the picture. The picture control will have no black lines across the picture. The picture control will have
effet
picture distorted at high setings of picture control.
Check for high resistance of R273.

Defects of the Sync Section

A. no vertical sync, horizontal sync satisfactort

1. Check waveform of sync input, V9 pin 5 .
2. Check C 303 , R301, R302, C301 for leaka
3. Check components C 306, R304, R30S
.
weak vertical sync, horizontal sync and picture normal
4. Leakage or low value of capacitor of C303.
5. Leakage of $\mathrm{C} 301, \mathrm{C} 302$ or incorrect values.
6. Check frequency determining components C306, R304,
weak or no verical and horizontal sync. picture informa. tion present and sound normal.
7. Check waveform at pin 4 of Vil for proper waveform from
8. Imporoper B+
9. Improper B+ voltage on V11.
10. Incorrect value of R354.
11.
12. Open or low capacity of C351.
13. Defective coupling eapacitor C 353 , 354
b. weak or no horizontal sync, vertical stnc satisfactory. 1. Check waveform at pin 2 of V12.

Check sweep frequency determining components L351,
3. Check for leakage in V12 components, C356, C357, C360,
3. Check for leakage in V12 components, C356, C357, C360,
4. Check for proper value of resistors R356, R357, R358, R361.
5. Check C 359 , R359 and R360 in the feedback circuit. Check C359, R359 and R360 in the feedback circuit.
Check coupling between V13A and V13B (C363,
R366).

Defects of the Vertical Swee
A. ketstoning (picture narrows at top or bottom.

1. Defective vertical deflection coil, D301.
2. Check R314, R315.
3. no vertical deflection single white horizontal une on
4. Open deflection coil, D301
5. Defective sweep output transformer, T30

Multivibrator V9 and V10 defective, no $B+$ to V10, open
R312 or shorted 310 . c. INSUFFICIENT HEIGHT.

Open C310.
High resistan
High resistance of R307.
Excessive leakage
4. Defective T301.
5. Incorrect voltage values on V10 linearity).
D. POor vertical unearitr, size normal

1. Leaky or improper value of C309.
2. Check $\mathrm{B}+$ to V 10 (leaky capacitor C 310)
3. Check C303 for leakage.
e. poor vertical inearity, insufficient hechit
4. Defective output tube, V10. 2. Inadequa
5. Low plat
6. Low plate voltage to V9 or V10.
E. excessive vertical size, srnc satisfactort
7. Low value of R307 or defective size control R308.
8. Open or low capacity of C308.
9. Low picture tube anode voltage.
L.
g. no vertical stnc, vertical holo has no effect, insufficien Height 2. Shorted capacitor C306
h. POor vertical unearity, foldover at bottom of picture,
too much helght. 1. Shorted or high leakage of C303.
10. CURTAIN RAISING EFFECT (PICCURE ROLUS UP FROM BOTTOM AS VER
IICAL HOLD IS ADVANCED) 1. Leaky capacitor, C304.
11. Leaky capacitor, C304.
12. Low resistance of R303.

Defects of the Horizontal Sweep
A. inadequate sweep width

1. Low B + boost to plate of V14 or low B+ to screen of V14
2. Shorted turns of width control., L353.
3. Shorted turns or arc-over in $T 351$.

Shorted turns or arc-over in T351.
Parasitic oscillations in V14 (open filament by-pass C462, Parasitic oscilla
or defect $V 14$).
B. TOO GREAT SWEEP WIDTH.
. Open width control, L333.
L. Low value of picture tube anode voltage
Check voltages of V14.
3. Check voltages of V 1
4. High value of C 382 .
c. poor horizontal linearity

Check for shorted, or shorted turns of L352
Leaky capacitor C370 in grid of V 14
Check screen by-pass capacitor C 380
o. single white vertical line on screen.

1. Open deflection coil, D351.
e. black beady vertical line or lines (barkhausen oscillation).
2. Check sweep output tube, V14.
. kerstoning (picture narrows at top or bottom)
3. Check for shorted capacitor, C378.
4. Shorted turns of Horizontal Deflection coil D351.
G. no horizontal sync, bright vertical bar or bars in picture.
5. Shorted, open or leaky C365
h. gear.tooth effect, tearing of picture (huntivg of horizontal srnc).
6. Open or low capacity of C375.
7. Open or high resistance of R362.
8. poor horizontal linearity, bright vertical bars, inadequate horizontal size.
Open or low
M picrue capacity of C374.
DIM PICTURE, POOR HORIZONTAL UNEARITY, INSUFFICIENT WIDTH AND 1. Open or low capacity of C377.

Audio Defects

o Sound, picture normal.

1. This indicates a defect in the circuits of V17, V18, V19, V20
2. Misalignment of T 401 or $T 402$ may also cause no sound to be received.

UZZ OR hUM IN ThE SOUND.

1. Misalignment of T 402 secondary may cause buzz.

Power Supply and Picture Tube Circuits

A. no raster, no sound (no b +).

1. Check power input circuit (cord and interlock).
2. Check rectifier $(X 451, X 452, L 451, C 451, R 451)$.
3. Check thermal cutout

MODELS 14C102
$14 \mathrm{Cl03}, 14 \mathrm{~T} 2,14 \mathrm{~T}$

© John F. Rider

© John F. Rider

Fig. 32. Schatatic Diagram-Models 1472, 14T3, 14C102, 14C103

Cat. No.	symbol	Description
universal replacement part		
-UCC-035	C301. C411	CAPACITOR-. 001 mfd. 600
:uc	${ }^{\text {C302, }} \mathbf{C 4 1 2}$	${ }^{\text {c }}$
-UCC. 040	${ }_{\text {C416, }}$	CAPACCITOR=. 01 l mfd.:
-1LCCO 045		CAPACITOR-.05 mf., 6
-UCC. 048	${ }^{2} 275 . \mathrm{C} 373$. C374.	CAPACITOR-. 1 mf., 600 v., pa
	C421.	
	${ }_{\text {c }}^{\text {c } 2738}$	
		${ }_{\text {chapa }}^{\text {Capa }}$
		mica
-UCG 1012		CAPACITOR-22 mmf., 500
- UCG 1030	C^{408}	
	${ }^{64}$	
-UCG 2010	${ }^{\text {C405, }}$ C270	CAm
- UCUT-002	cict	
	${ }_{4} 456$	CAPa
-UCU. ${ }^{\text {U }}$ U224	${ }^{\text {C201. }}$ C303: C 304.	${ }_{\text {cap }}$
- UCU-1052		capa
U. 1520	${ }^{462}$	cap ${ }^{*}$
		capaci
:UCW 0.032	${ }_{\text {Cl3 }}^{\text {C268, C279 }}$	CAPACITOR-130
\bigcirc		${ }_{\text {TER }}$
		${ }_{\text {TERMINAL STR }}$
RD.015		${ }_{47} 9$
	${ }_{\text {R230 }}^{\text {R25, }} \mathbf{R 2 6 1}$	Resistor-150 oh
*URD.033	R23	RESISTOR-220 oh
-URD.037		RESISTOR-33 ohm
	${ }_{\text {R206 }}^{\text {R219, } 207}$	RESISTOR-470 oh
- URD.047		STOR - 820
		Res
-URD. 051	${ }^{\text {R3377, }}$	RESISTOR-1200
-URD.057		RES
	${ }^{\text {R 309, }}$	RESI
	${ }^{\text {R22 }}$	
-URD. 07	R371	RESI
-URD. 081	${ }^{2} 266$	Resist
-URD-083	${ }_{\text {R364 }}{ }^{\text {R23,R23 }}$	RESİ
*URD.oss	R362. R416	RESISTOR
-URD. 087	202, R40	RESIS
-URD 089	R354, R253,	RESISTOR- 77,000 ohms. $3_{2} \mathrm{w}$ w, car
*URD-091	R404	RES
	R254, R256. R259. R304. R366, R414	bon
. 095	R301	
10	R358	RESISTOR
	R379, R355	RES
105	R217.	${ }^{\text {bes }}$
		${ }_{\text {Ron }}^{\text {Reshlor }}$-40,000 ohma, \% w., car
. 121		resistor
	R361, R456	
:URD ${ }^{\text {URD }} 129$		ReSISTOR-1.5 meq.,
	${ }_{\text {R }}^{\text {R } 278}$	
- URD 1052	${ }_{\text {R211 }}^{\text {R203 }}$	
-UR	R265	R $-3600 \mathrm{ohms}, \pm 5 \%$, \%/ w
RD-10	208	RESISTOR-A300 ohme $=5 \%$

Cat. No.	Symbol	Description	Cat. No .	Symbol	Description	
					CAPACITOR-800 mmf., 500 v., ce	
- UR	R409, R410	RESISTSTOR ${ }^{\text {corbon }}$ - 22,000 ohms, $=5 \%$, \%/				
-URD-1097	R303. R 3001					
- URE. 049	${ }_{\text {R } 313}^{\text {R405, }}$ R320	on				
- UREE.053	${ }_{\text {R422 }}^{\text {R312 }}$			${ }^{\text {che }}$		
*UREPO61	${ }_{\substack{\text { R378 } \\ \text { R215 }}}$					
:URE:071				$\begin{aligned} & \mathrm{C}_{2205} \\ & \mathrm{C}_{203} . \mathrm{C}_{214} . \end{aligned}$		
- UREE093		RESTSTOR- 10.000 ohms ,	$\stackrel{*}{\cdot \mathrm{RCW}} \mathrm{RCW} .3027$		CAPACITOR - 680 mmf .. ceramic CAPACITOR- 1.5 mmf ., 500 v ., cer mic	
- URE-081	R352	Resontor $-22,000$ ohms, 1 w., car	$\left\lvert\, \begin{aligned} & \text { RCY } 048 \\ & \hdashline \text { RCY } \\ & 0 \text { RCY. } 0.065 \end{aligned}\right.$	$\begin{aligned} & \mathrm{C}_{207} \\ & \text { C207 } \\ & \text { C206 } \end{aligned}$	${ }_{C}^{\text {mic }}$ APACITOR-Trimmer. 4.2 .4 mmf	
RE. 085	R367	R				
-URE-087	R218	$\underset{\text { Resistor - } 39.000}{\text { bonms, }} 1 \mathrm{w}$		c_{220}		
-URE 093	R363	RESISTOR 68.000 ohms			CORD-For tuning control	
URE 101	R3	Tor- 150.000 ohm	RDE.091.		PICTURE TUBE MASK-Metal ESCOUCHEON- Picture, ESCUTCHEON-Control knob pane KNOB-Tuning control knob KNOB-Channel selector control knob	
	${ }_{\text {R323 }}{ }^{\text {R322 }}$		RDE.093			
E. 113	${ }^{\text {R376 }}$	Stor 470.00	RDE.095			
-URE 1047	R310	SISTOR-820 ohms.				
-URE 1066	R212, R213	RESISTOR -5100 ohms, $\pm 5 \%$,	223			
*URFF.045	${ }_{\text {R }}^{\text {R452 }}$					
RF-073	R260, R264	RESISTOR- 10,000 ohms, 2 w... car	RK. 226		KNOB-Fous or Horizontal	
-URF-079	R270	RESISTOR-18.000 ohms, 2 w..	DK. 227			
-URF-083	R428	RESISTOR-27,000 oh	RM-023		SK-Speak	
URF-1050	R425	SIStor- 1100	DW-042		FETY GLASS-Glas	
		SPEAKER-Models 14C102, 14 C 103 SPEAKER-Models 14T2. 14 T3	REC. 006		IP-For mounting high voltage pacitor, C376	
Specialized replace			(\%RE1.014	X451. $\times 452$		
RAB. 138					RECTIFIER-Selenium, 350 ma CLIP For mounting electrolytic	
140						
D.os		TRAP DOOR-Door cover over ${ }^{\text {a }}$	RHG-013		GROMMET - Speaker mounting	
*RAP		HEAD END FRONT PLATE-Tex-				
tra			RHG.030		get upply	
tRAV. 135		CABINET- Korina (Blonde) cabinet	RHG. 031		OMME	
$t \mathrm{t}$			RHN. 014		WING NuT-Focus	
trav 137		CABINET- Korina (Blonde) cabinet				
*RCC. 059	C422	CARACITOR-.005 mf., $1000 \mathrm{v}$. .	RHS.050		SCREW-Chassis to cabinet mo	
-RCC. 101	${ }^{2} 308$		RHS.051			
	359		RII-021		INSULATSTOR-For mounting	
	${ }_{\text {cher }}^{\text {C373 }}$		RII.026		INSUUAATOR Grommet in hig	
${ }^{-\mathrm{RCCE}-1095}$		CAPACITOR-i mi. so v., electro	RII 041		1 Insulator-Insu	
-RCE. 092	c310	CAPACLITOR-30 mf., 450 v ., elec-				
*RCE. 110	c451	CAPACITOR-300 mf., 150 v v. elec.				
111	C452	CAPACITOR-125 mf., $350 \mathrm{v.}, \mathrm{elec-}$	RJJ.008		RECEPTACLE-Translator power re	
\bullet RCE 112	C453	CAPACITOR-80 mf., $300 \mathrm{v.}$, elec-	RJJ.010			
${ }^{\text {RCEE }} 115$	C454. C423,	CAPACITOR $\mathbf{2 0} \mathrm{mf}$ f., $300 \mathrm{v.}$,50 mf .	*RJS.003		Solk mer	
-RCE 118	${ }_{C}^{\text {c3729 }}$		RJS. 004		ELECTROLYTIC MOUN	
N 018	${ }_{\text {C354, }}^{\text {chal }}$	CCAPACITOR -01 mf ., 600 v v., paper	RJS 024		Tos	
		CAPACITOR-. $01 \mathrm{mf}$. . 10% \% 600			Plate-Textoite, for 1 inch did	
			*RJS. 026		SoCKET - Tube socket, octal, for V2 SOCKET -Tube socket for V14	
-RCN. 034	C362		- RJJ. ${ }^{\text {Res5 }}$		SOCKET-Tube ocket for vo	
035			${ }^{*}$ RJSS. 132		+2	
		arode yoltagase			SOCKET T Tube sokret. 7 -pin, h	
${ }_{*}^{\text {RCNCP- }} 836$	${ }_{\substack{\text { c338 } \\ \text { c39 }}}$	CAPACITOR-6 mm			Socket - Shocik mounting,	
		CAPACITOR -1000 mmfi , 1000			SOCKET-Tube socket. 9.pin, V7	
-RCU. 294	C360	CAPACITOR -680 mmf ., $\ddagger 20 \%$ $500 \mathrm{v.j}$ mica	\bullet RJS 144		Socker for-Tube socket, 7 -pin, for	
*RCU- 296	${ }^{\text {C382 }}$	CAPACITOR-180 mmf., 1500 v			SOCKET-Tube sockee for V1s	
RCW-105		CAPACITOR-1.5 mmf., $=25 \mathrm{mmf}$,			SOCKET-Tube socket for V1 RF HEAD.END-Complete	
${ }^{*}$ RCW. ${ }^{\text {RCW }} \mathbf{~} 3014$			LA.036	L201		
			*RLC. 091	${ }^{\text {L331 }}$	cornit	
			-RLC-096	${ }^{\text {Len }}$		
				${ }_{\text {L }}^{\text {L23 }}$	coil-Oscillater for Chanel	
					cole	
			${ }_{\text {RLD }}$		CorL-Horizontal linearity	

OJohn F. Rider

The General Electric Model 16 K 1 is a telev ision. radio receiver
and phonograph, console type, 29- -ube instrument providing re
ception of all ception of all 12 commercial television channels, radio reception
in the $A M$ and FM band using a 75 radio chasis, and triple spece phonograph operation (33 r pm, 45 rpm and 78 rpm) using
the new General Electric Variable Reluctance Pickups. The tele vision picture is reproduced on a 16 .inch electromagnetically
deffected picture tube This receiver uses a P P15 record changer
to play 10inch or 12 inch records intermixed or 7 -inch records. the records with speeds of $33 / 3,45$ or 78 rpm cannot be played
intermixed.

The service information on the Model 16 K 1 record changer
P15 is contained in ER-S-P15.
The instrument contains one television chassis, one radio
chassis with lougspeaker which is used for both radio and tele. lision operation, and a record changer chassis with a two styll
pickup head.

Features of this television receiver include a two stage r-f
amplifire, balanced input the trif selenium tye rectifiss, inter.
carrier sound, ratio detector, safe high voltage supply for the carrier sound, ratio detector, safe high voltage supply for the
picture tube, automatic frequency control for horizontal sweep
synchronization and electromagnetic deflection.

The erf tuner assembly is mounted on a separate chassis which
is readity demounted from the main chassis. The coils which tune the 1 st and 2nd r -f stages and the oscillator are mounted on indi
vidual wafers of the selector switch. The local oscillator V3B
operates operates on the high frequency side of the incoming r-f signal.
The picture carrier is converted to a 45.75 me video i-f frequency

The video i-f is stagger tuned to pass the video i-f $(45.75 \mathrm{mc})$ and the sound carrier (41.25 mc) with the proper amplitude re-
lationship between the two frequencies. The video information is detected by the detector Y 1 as well as a 4.5 mc FM signal
which is the beat frequency between the video i.f (45.75 mc) and
41.25 mc. The 4.5 mc
and detected by V20.
The horizontal and vertical sync signals are taken off at the
plate circuit of V 7 B and amplified and separated from the video signal by V11. The vertical sweep is generated by one section of
a $125 N 7$ ((V9) and a 12AU7 (V10) connected in a multivibrator
circuit
 vertical retrace blanking signal. The horizontal sync signal is
mixed with a sawtooth signal from the plate of the damper tube
(V16) by the discriminator (V12). A change in phase between
(Vhese the sit
these two signals increases or decreases the bias voltabe which
is applied ot the riid of V13.A. V13A is a reactance tube which
changes the frequency of the horizontal oscilator V13B. V14 ithe
horizonthe
changes the frequency of the horizontal oscillator V13B. V14 the
horizontal sweep output is coupled to the horizontal deflection
coils by T3S1.

anode.
This receiver uses two selenium rectifiers in a half.wave
voltage recubler circuit tos osuplely the $\mathbf{B}+$ voctiteage of approximately
25s volts. The tube filaments are a series parallel connection
25S volts. The tube filiments are a series parallel connection
across the 117 volt a-c line.
The television chassis and the radio chassis are connected by
a push-button switch. To operate the television receiver, it is a push-button switch. To operate the television receiver, it
necesary to have the
sound portion is coupled from the ton depressed. The television sound portion is coupled from the television chassis the the audio
amplififer of the radio chassis which is used to amplify the tele.
vision sound. To operate the radio receiver it it in vision sound. To operate the radio receiver, it is necessary to
have the television .OFF, button depesesed. The radio may then
be turned on and operated on AM, FM or Phono. To turn this received of completely, the telelevision .or Phono. To turn this
repton must be
depressed and the radio tone switch turned to "OFF."

installation and service adjustments

GENERAL-This receiver is equipped with a buil-in television an
tenna giving good reception within the primary service area Where reception is weak due to less favorable receiving cond
tions, an outdoor antenna is recommended. Since the receiver is tions, an outdoor antenna is recommended. Since the receiver is
designed with a a anced input of
transmission ooms imped ince should be used to 300 ohm transmission line should be used to connect the outdoor antenna
to the receiver. When the external antenan system is connected
to the dipole erminals, the built-in antenna connecting leads must be disconnected.

PREPARATION FOR US-Remove receiver from carton and place
the cabinet on its back and remove the shippin skids from the
base of the eabinet. Remove the two screws ($/ 4 / 28$ and 10.32)

Which hold the record changer in position. Remove the block
pacer underneath the record shelf and unpack turntable and spindle assembies. After the turntable has been put in place, cut he rubber band which is tied around the control knobe the tho shieasing the bolts which hold the motor board titht for shipment.
mall metal snap covers are provided to cover the holes exposed Tall metal snap covers are
when the shipping screws are removed. Ther will be found in a mall envelope in the phono compartment. A metal clip which
clamp over the stylus of the pickup arm should be removed. The receiver is shipped with the picture tube installed in place.
Normally, it is not necessary to make any centering ajjustments ince a positive clam
picture centering.
In case Installation Adjustments must be made, it it only
ecessary to remove the cabinet back, dipole terminals and connect input, power to the interlock receptacle by way of a power cord terminated in a matching plug. Make certain that the deffection yoke sets up against he the bell oke clamp adjustment screw slightly and push yoke assembly

UUTDOOR ANTENNA-The simple folded dipole will suffice in areas with medium signal strength. In fringe areas with weak field These high gain antennas are usually more directive which is deantenna placement and orientation-All television antenna ystems have directional characteristics and their very location
may have a pronounced effect upon the results obtained. Therefore, the antenna (or in casee the builte-in antenna is used, ther e-
fer eiver) should be turnedy obects especially those of metal may
ignal pickup. Since nearby objects. iffect the picture, several antenna locations may have to be tried. sometimest.
provement.
CHOST RECEPTION-This name is given to a second picture image n various degrese of contrast and displacement from the main
picture. A relocation of the antenna might drive out any ghost
ghe mesent. If the ghost images cannot orientation for maximum ignal pickup and image rejection may be made without seriously

onform to the National Electrical Code Standards which are usually supplemented by Local Code requirements. When install,
manenty metal mast supporting the antenna should be per-
the codively grounded by a wire of a size specified in
2. An approved lightning arrester must be used with the anenna lead - in conductors at the point of entrance to the building.
fi a shielded lead-in cable is used, the shield may be permanently grounded instead of using the lightning arrester. and therefore should be ad justed a
all ad justments should be rechecked.
Power should not be applied to the receiver for any great
length of time without the ion trap adjusted for some illumina-
The ion trap, deflection yoke, focus coil and the installation
duistment controls are ad justed in the procedure given below.
 mmediately following this procedure.
Adjust ion trap to get brightest raster.
2. Adjust for no tilt of raster and tighten yoke clamp screws.
3. Tune in a television signal.
4. Ad just Horizontal Hold controls.
5. Adjust Drive control
o. Adjust for good Horizontal and Vertical linearity.
7. Adjust Horizontal and Vertical size controls.
8. Adjust Focus coil for centering of test pattern, removal of
9. Readjust ion trap.
11. Tighten Focus Coil adjustment screws and wing nut
©John F. Rider

ION TRAP-Power should not be applied to the receiver for any
great length of time without the ion trap adjusted fom great length of time without the ion trap adjusted for some il.
lumination. Set the Brightness control to maximum (clokwise) To adjust ion trap, rotate the trap on the neck of the tube and move it forward and backward to give maximum brightness. Re
duce the picture Brightness during ion trap adjustment duce the picture Brightness during ion trap adjustment, if raster
becomes too bright as maximum brightness with the trap is approached. Always make certain the ion trap is finally set to
give maximum brighes give maximum brightness of the raster.
PICTURE THT-If the picture or raster does not lie squarely within
the picture tube mask, loosen the picture tube mask, loosen one of the Yoke Adjustment Clamp
screws and by grasping the Picture Tilt Lever, turn lever to rotate yoke until picture or raster squares with the mask. Tighten
the yoke clamp screws after squaring picture wit
(R381) IAL HOD-Set the front panel Horizontal Hold control (R381) to the center of its range. Adjust the core of the Hori
zontal Hold control (L 351) is synchronized and is phased at the center of the raster-a slight rotetion of the front panel control in either direction will move the picture
tion. The pull-in to synchronization range should be equally dis.
tributed each side of the front panell Horizontal Hold control's
center range and may be checked with the control set and center range and may be checked with the control set at center,
observing the pull-in to synchronization sensitivity as the Che nel Selector switch is fipped alternately back and forth from the received channel to an adjacent channel having no signal. For any other setting of the front panel Horizontal Hold control, the
pull-in to synchronization time will be longer

HORIZONTAL DRIVE-Adjust the Horizontal Drive control (R369)
for optimum drive indicated by a maximum width of picture. If any compression of picture is noted on the right-hand side. of the raster, the condition may be corrected by a slight decrease of drive (clockwise rotation). If a vertical beaded line appears in the picture at this setting,
be made to eliminate it.
HORIZONTAL UNEARITY-The Horizontal Linearity control (L352) adjusts the picture for cortern and adjust the Horizontal Linear
adjustment, use a test pate ity control until the distances from the center of the test pattern
to the left- and right-hand or the ret- and right-hand edges of the test pattern measure ap-
proximately the same. The adjustment of this control is very broad and it should be made simultaneously with the adjustment of the width control (L353) to get proper picture width and cor-
rercal Lxeart
Vive best symmetry to the test pattern for correct adjusted to portions in the picture. The adjustment should be marte on propattern so that the distances from the center to the top and bottom edges of the test pattern measure approximately the same.
This adjustment will alter the height of the picture slightly. WiDTH-Adjust the Width control (L353) so that the edges of the picture extend approximately one-eighth inch past the right- and MEIGHT-The Height control (R308) changes the picture height $1 / 8$ inch beyond the top and bote pit cire extends approximately is inch beyond the top and bottom edges of the mask. This ad-
ustment should be made simultaneously with the Vertical inearity control (R311).

FOCUS COLL ADJUSTMENT-The Focus coil bracket adjustment screws and the swivel wing nuts are loosened in preparation for should allow movement of the coil and yet retain too loose but tion of coil adjustment.
The focus coil and bracket may be moved up and down, to the mounting. In addition, the coil may be moved forward or back-
ward.

Adjust position of the focus coil to center picture test pattern focus coil should be mask and to eliminate neck shadow. The focus coil should be as far back toward the base of the picture
tube as possible, for best focus consistent with maximum picture brightness.
CIURE TUBE AND CHASSIS REPLACEMENT
T. The deflection yoke clamp screws and focus coil adjustments
hould be loosened before attempting to install the picture tube

this will prevent any strain upon the tube neck when positioning and fastening the tube later. and fastening the tube later.

2. Install the picture tube as shown in Figure 2. The bottom
rim of tube should be forward age front apron. 3. Place picture tube strap around rim of tube, inserting the picture tube support bracket between tube rim and strap as
shown in Figure 2. Center tube approximately with front of chassis and install tube strap mounting nuts to hold tube lightly.
3. Place chassis and tube into the receiver cabinet, reposition-
ing tube support bracket to fit over stud screws in ing tube support bracket to fit over stud screws in top corners of
cabinet, making sure that chassis is pushed forward against cabinet. 5. Install chassis mounting screws and tighten to fasten
chassis securely chassis securely
4. Move picture tube if necessary to center tube in mask, as
viewed from front of the 7. Tighten tube stap cabinet. of cabinet. port bracket screws and tighten to notd over picture tube sup ts securely to 9. Push deffection yoke forward to set against bell of picture tube and tightect yoke clamp screws.
5. Connect picture tube socket to base of tube and high
voltage lead to andec connection. II. Install control knobs.

HIGH CHANNEL TRAP-This receiver incorporates a trap circuit (C206, L203, S202D) on the head-end unit which is switchedircuit used to eliminate any one of the following high channel interferences on the corresponding lower channel shown.

The receiver is adjusted at the factory approximately for re-
jection of Channel $\# 11$ interference necessary to readjust the trap slightly if Channel \#1 may be ence is experienced when operating the receiver on Channel \#5.
High channel interference manifests itself as horizontal bars a herring bone pattern in the picture, or the high channel station picture superimposed upon the low channel picture for which the
If none of the above combinations of channels exist in the
locality where the receiver is to be used, the trap need not be adjusted.
in a similar CuUT-This is a protective device, which operates ceiver in case of excessive current drain due to circuit overlogeA five minute period should be allowed after the cut-out has receiver. If the receiver does not return to restore power to the within a reasonable warm-up time after the cut-out has been reset, a check-up of the receiver circuit should be made to deter-
PICTURE DEFECTS

The following illustrations show picture defects which are caused by incorrect setting of operating controls, the preset controls or by interference picked up by the antenna. A pos-
sible remedy is indicated for each defect. sible remedy is indicated for each defect.
The adjustment of controls is most efficiently accomplished by the use of a test pattern,
similar to that illustrated to the left, which is normally transmitted just prior to the scheduled program.
The nor The normal picture should show good focus and a good contrast between blacks and whites
with intermediate shades of gray. The picture should not tend to move either vertically with intermediate shades of gray. The picture should not tend to move either vertically or horizontally and should have good linearity.

1. Increase Picture control setting and/or reduce brightness.

Insufficient pickup at maximum contrast usually is accompanied by "erective lead-in picture.

1. Reduce Picture control setting and/or increase Brightness control setting

绪 install suitable resistor antenna pad.

1. Adjustment of front panel focus control, R435
. Check for uniformity of focus by moving focus coil (see Installation Adjustments, page 3)
. Adjust Horizontal Hold control (front panel control).
2. Check adjustment of rear panel Horizontal Hold control.
3. Signal improperly tuned.

F58 Fig. 8 1. Adjust Vertical Hold control until picture shows no tendency to slide up or down or lock
2. Check the vertical sync circuits.

Adjust Vertical Linearity control. This adjustment may alter the Height control adjustment

© John F. Rider

NOTES:

1. The sweep generator should be properly terminated in its
characteristic impedance. Couple the signal to the input point characteristic impedance. Couple the signal to the input point
through a 1000 mmf. mica capacitor and adjust signal input to give a video response curve of $3 / 4$ volt as shown in Figure 21 .
2. Connect a bias battery from junction of C261, R263, and
the picture control R285 to B-with the positive side of the battery connected to $\mathrm{B}-$. Adjust picture control to give a -2.7 volt bias at the grid pin 1 of tube V4 measured with a VTVM. Disconnect
its leads during alignment.
3. The traps L227 and L253 must be detuned before aligning
the video i-f amplifier by turning the cores all the the video i.f amplifier by turning the cores all the way out of the
ooil. When retuning these traps to 47.25 mc (as in step 6) for minimum amplitude, increase scope gain as amplitude at 47.25 me marker point is attenuated, to provide optimum setting. 4. Set channel switch to Channel 2 or 3 and check for
oscillator infuence by turning the tuning control. If response eurve is affected, switch to another channel where oscillator in-
4. In general, it is only necessary to perform an over-all align
ment of the video i-f, as in step 7 of the Video Alignment Chart, in order to obtain i-f response curve of Figure 21-E.
When aligning the i-f coils, L251 will adjust the audio or low
frequency side of the i -f response curve, while L 252 will adjust frequency side of the i-f response curve, while L252 will adjus
the video or high frequency side of the i-f response curve. L22 and L254 should be adjusted simultaneoously to reduce the saddleback at the peak of the curve and to give maximum gain and re
tain 45.75 mc and 42.50 mc markers at the 50% mark.
5. It is necessary to detune the i.f coils by shorting as noted in the alignment chart to prevent the coil preceding the signal input 7. It is important that the 45.75 mc marker should fall at the
50% response point to give proper curve of 50% response point to give proper curve of Figure 21-E.
6. After adjustment of the two sound traps, readjust the i -
curve to obtain the proper response curve as illustrated in Figre

Step	$\underset{\substack{\text { Marter } \\ \text { Genequator } \\ \text { Frequency }}}{\substack{\text {. } \\ \hline}}$	$\begin{gathered} \text { Sweep } \\ \begin{array}{c} \text { Senerator } \\ \text { Frequency } \end{array} \end{gathered}$	$\begin{aligned} & \text { Signal Input } \\ & \text { Points } \\ & \text { Between } \end{aligned}$	$\begin{aligned} & \text { Connect } \\ & \text { Oscilloscope } \\ & \text { Between } \end{aligned}$	Adjust	Sce
1	-	-	-	-	Detune L227 and L253 by turning cores out of coil.	3
2	44.50 MC	40-50 MC	Point B (Fig. 31) V6 grid (pin i) thru 1000 mmf . mica cap. and B-on head-end shield; short L252.	Point A Junction L256, R265, C268 thru 10 K ohms socket.	Core of L254 for curve of Fig. 21-A.	4. ${ }_{\text {1. }}{ }^{2} .1$.
3	45.75 MC		Point C(Firg 31) Vs grid (pin 1 thru 1000 mmf. mica cap. Remove thort on L 252 .		Core of L252 for curve of Fig. 21-B.	
4	42.50 MC, 45.75 MC		Point D (Figi ${ }^{31}$) V4 arid (pin 1) thru 1000 mmf mica cap. Remove short on L2si.		Core of L251 for curve of Fig. 21-C.	
5	44.2 MC		Point E (Fig; 31) Junction L215 and L216 on second RF switch wafer thru 1000 mmf. mica cap. on L 226 .		Core of L226 for curve of Fig. 21-D.	
6	47.25 Mc				Cores of L227 and L253 for min. output at 47.25 MC (Fig. 21-E).	
7	$\begin{aligned} & 41.25 \mathrm{MC} \\ & 45.5 \mathrm{MC} \\ & 45.0 \mathrm{MC} \\ & 4.5 \mathrm{MC} \\ & 4.25 \mathrm{MCC} \end{aligned}$				Cores of L251, L252, L254 and L226 for curve of Fig. 21-E.	

1. Feed a 4.5 mc signal with a 500 kc sweep and adjust f 2. Transformer symmetry of the response curve about 4.5 mc marker (Figur This adjustment should give as straight a slope as possible be tween the positive and negative peals with the center of the 4.5
2. The primary of T402 is adjusted for maximum of the posi402 so that the marker falls midway between the peaks.
3. Keep the input signal of the sweep generator low enough so that limiting does not take place, otherwise the response curve
will broaden out, preventing correct adjustment. Check by increasing the output generator: the response curve should increase in amplitude.
4. As a final check (step 12), readjust the secondary of T40 7. An alternate method to the visual alignment is the sound output
when trander using an operating television station, preferabl mission
a. Tune the receiver for best detail
b. Set the picture control to give reduced contrast or by using a resistor pad in the antenna circuit.
c. Adjust transformer T401 and primary of $\mathbf{T} 402$ for maximum
sound output. d. Adjust the secondary of T402 for best quality audio rece tion and for minimum buzz in the output.

Fig. 23. Audio l-f Curvo

© John F. Rider
Notes:
This trap is used to remove 4.5 mc audio i-f from the video
amplifer which shows up in the picture as a crosshath pattern.
This trap will very rarely require adjustment. Adjustment is as
follows:

1. The trap (L260, C271, C270) is adjusted for minimum am.
plitude of the e.5 mc marker. Use a detector network as shown
in Figure 27 connected from junction of L264 and C275 to B-
to detect the signal.
2. Adjust the vertical hold control to remove the vertical pulses
from the response curve.

4.5 MC trap (L260) allgnment chart

Step	Marier Genereator Frequency	$\underset{\substack{\text { Sweep } \\ \text { Grenerator } \\ \text { Frequency }}}{ }$	$\begin{gathered} \text { Sienal } \\ \substack{\text { Inpunt } \\ \text { Point }} \end{gathered}$	Oxilloscope	Adjurt	See Note
39	4.5 MC	$\begin{aligned} & 4.5 \mathrm{MC} \\ & { }_{1} \mathrm{MC} \end{aligned}$	${ }^{\text {Point }}$ A (Fieq ${ }^{31)}$ $\underset{R 265, C 268 \text { and }}{ }$ thru 01 mf .	Acroze 100K resistor at shown in Fig. 27. (See Note 1.)	L 260 for min. amplitude of 4.5 mc marker. Increase scope eain tude at 4.5 MC is attenuated.	1,2

(4)
(B)

Fig. 29. Cobling Diagrom, Modol 16K

DEFECTS OF THE SYNC SECTION

A. No Vortica Syme, Horizomat Sync Saristaciory.

1. Check waveform of sinc input, V9 pin 5 .
2. Check C $303, \mathrm{R} 301, \mathrm{R} 302, \mathrm{C} 301$ for leakage or shorted
3. Check C303, R301, R302, C301 for leaka
4. Check components $\mathbf{C 3 0 6}$, R304, R305.
5. Check components $\mathrm{C} 306, \mathrm{R}$
6. Check for leakage of C 305 .
7. Wook Vortical Sync, Horisontal Sync and Picture Normo.
8. Leakage or low value of capacitor of C303.
9. Leakage of C301, C302 or incorrect values. ${ }^{\text {3. }}$ Check frequency determining components $\mathbf{C 3 0 6 ,}$, 304
10. Check frequency determining components C306, R304,

This trouble shooting chart is divided into sections for quick trouble shooting. In most cases a trouble may be localized by noting

In general, the tubes in the defective circuit should be checked first since they are fairly easy to check. When substituting tube placed in the video IF or RF circuits, original tube should be replaced in the socket if it is found not to be defective. When a tube is re The block diagram (Figure 1), the waveforms of the service diagram (Figure 30), and the socket voltage and resistance diagram (Figure 32) may be used to locate troubles. Alignment equipment may
checking for the response curves as given in the alignment procedure.

DEFECTS OF THE R-F AND I-F CIRCUITS

A. No Picturo, No Sound, Restor Normol.

1. Check the R-F head-end circuits of V1 and V2

路
Crly. Check Video I-F amplifier circuits of V4, V5 and V6
4. Check crystal detector, Y_{1}

Snow in Picture.

1. Open input circuit in C278, C279 or L201.
2. Defective antenna installation or transmission line.

Lock of Picture Dotail (Focus Satiffoctory)
2. Misalignment of Video I-F.
3. Mismatch of input impedances at antenna input terminals of receiver.
Overloading of r-f stages.
D. Motorboat or Flutior in Picture

1. Open by-pass, C251

Misaligament by-passes C222, and C458
E. Wiogles in Picture Bockground, Trating

1. Misalignment of R-F and I-F amplifiers.

Sound Bert in Picture (Block Horizontol Bar).

1. Microphonic tubes, V3, V4, V7 or picture tube V8.

DEFECTS OF THE VIDEO AMPLIFIER

A. No Picturo, Sound Setisfoctory, Rositor Satisfoctory

1. Open chokes L261, L263, L264.

Shorted capacitor C268.
4. Open resistors R269, R272.
2. Poor Low Froquency Response (Ireiling Whites ofter Bloct)

1. Low value of resistors R269, R272, R265.
2. Low cappecity or open capacitor C272.
c. Leck of ficture Dotail, Focus Setistoctor

Tost Petrorn).

1. Shorted chokes L259, L261, L262.
2. Open chokes L259, L262. R269, R265.
3. Brigh Ficture with Block Limes.

A shorted capacitor C275 will give a very bright picture with black lines across the picture. The picture control will have no effect.
Picture Distorted or High Sertimas of Picture Control
Check for high resistance of R273.
C. Weak or no Vartical and Horizomal Sync, Picture information Prosant ond Sound Normol.
Check waveform at pin 4 of V 11 for proper waveform from
video amplifier.
Improper + .
2. Improper B+ voltage on V11.
4. Open or low capacity of C351.

D. Wook or no Horizontol Sync, Vortical Sync Sotisfoctorr.

1. Check waveform at pin 2 of V12.
. Check sweep frequency determining components L351,
2. Check for leakage in V12 components, C356, C357, C360
3. Check for proper value of resistors R356, R357, R358, R361
4. Check for proper value of resistors R356, R357, R358, R361.
5. Check C359, R359 and R30 in the feedback circuit.
6. Check coupling between V13A and V 13 (C363, C 365, R366).

DEFECTS OF THE VERTICAL SWEEP

A. Koystoning (Picture Norrows of Top or Bottom).

1. Defective vertical deflection coil, D301.
B. No Vartical Dofection (Sisid

Open deflection
3. Multivibrator V9 and V10 defective, no B+ to V10, open R312 or shorted C310
C. Insufficiont Hoigh.
. High resistance of R307.
. Excessive leakage of C308
5. Incorrect voltage values on V10.
6. Low capacity of C309 (this also results in poor vertical
linearity).
D. Poor Vorticol Lineority, sire Normal.

1. Leaky or improper value of C309.
2. Check B+ to V10 (leaky capacitor C310).
E. Poor Vortical Linoority, masuficiem Heipu
3. Defective output tube, V10.
4. Inadequate drive voltage from V9. Check waveform at pin
5. Low plate voltage to V9 or V10.
6. Open or low capacity of C 309 .
F. Excosive Verticol Sise, Sync Satiifoctory.
7. Low value of R307 or defective size control R308. 2. Open or low capacity of C308.
8. Low picture tube anode voltag
G. No Vertical Sync, Vortical Hold har no Efoct, Insuficient Haigh.
9. Shorted capacitor C306.
H. Poor Vartical Lineority, Fold-over of Bottom of Picturo, Too Much Hoight.
10. Shorted or high leakage of C303.
11. Curroin Raizing Effoct (Picituro Rolls up from Bottom as Vortical Hold in

Advoncod

1. Leaky capacitor, C304. he condition of the picture or test pattern and the presence or absence of sound.

C John F. Rider

general.

The receiver is designed to operate either from the built-in
antenna or from an external FM 300 antenna or from an external FM 300 ohm dipole antenna. The
receiver may be operated on an external FM antenna by disconreceiver may be operted on an external
necting from the antenna terminal strip the wire extending from the rear of the radio chassis. The 300 ohm transmission line sho be connected to the antenna terminals on the radio chassis.
On AM operation, the receiver operates with the signal On AM operation, the recciver operates with the signal fed
directly into the converter grid. On FM , the receiver uses a reflex circuit, the Armstrong type discriminator and a special limiter
circuit circuit. In the reflex circuit V2 (6RAG) works both as an r-f amplifer
and as the Ist i-f amplifier. The FM r-f signal is fed into the grid of the V2 tube through the secondary of transformer T1. It is amplified by the tube and tuned at the converter grid by L4, C1B
and trimmer C6. The converter changes the r-f to 10.7 mc i-f and and trimmer C6. The converter changes the r-f to 10.7 mc i.f and
is fed into the primary of transforner T1 and again applied to the grid of tube V2 which works now as an i.f amplifier. The i.f signal
is fed from the plate of $V 2$ through choke $L 9$ into the second i . is fed from the plate of $V 2$ through choke L9 into the second i.f
transformer. Capacitor C 4 and coil L2 are designed to peak at 98 me to increase the FM rrf sensitiviry. At the FM r-f frequencies, the capacitor C46 offers little series impedance to the r-f signal.
Coil L9 and capacitor C7 form a high-pass filter to pass the FM Coil L9 and capacitor C7 form a high-pass filter to pass the FM
r-f signal into the converter grid and to shunt the FM i-f frer.f signal into the converter grid and to shunt the FM i-
quency into the pimary of the second $F M$ i-f transformer.

StAGE GAIN AND VOLTAGE CHECKS In order to check circuit performance and to facilitate trouble shooting stage gain measurements by vacuum tube voltmeter or
similar measuring device may be used. The gain values listed may similar measuring device may be used. The gain values listed may
have tolerances of $\pm 20 \%$. Readings should be taken with low signal input applied through IRE dummy antenna so that AVC
is not effective.

not effect	.		[C394
Stage Gains	Stage	Stage Gain	Frequency
	Converter grid 6BE6 (V1) to grid of IF amplifer, 6 BA 6 (V3)	40	455 KC
	Dipole terminal to grid of V2	1.0	98 MC
	Converter, 6BE6 (V1) grid to grid of V2 (6BA6)	1.5	10.7 MC
		50	10.7 MC
		22	10.7 MC
$\overline{\text { Audio Gain }}$	Volume Control (R18) to speaker voice coil	$\stackrel{\text { Input. } 07 \mathrm{~V}^{*}}{\text { Output }}$ $0.5 \mathrm{~W}^{* *}$	400 CPS
Oncillator Orid Bias	Voltage acrose R3	($\begin{aligned} & 7 \text { volts } \\ & 3 \text { volts }\end{aligned}$	
$\begin{aligned} & \text { Hum } \\ & \text { Measure- } \\ & \text { ments } \end{aligned}$ments	Measured across voice coil of speaker with volume control at minimum	Maximum 7 millivolts	$\underset{\text { AM }}{ }$
	Measured across voice coil of speaker with volume control at max:; ground limiter grid through . 01 capacitor	Maximum 15 millivolt	FM
$\begin{aligned} & \text { Socket } \\ & \text { Voltages } \end{aligned}$	Fig. 37 shows typical tube pin voltages. AM readings stiould voltages. AM readings shiould be made from tube pin to chassis, unless otherwise in. dicated. dicated		

*Across R18.

CIRCUIT ALIGNMENT

general.

Two methods of alignment may be used: (1) The regular meter alignment as used for standard AM radios and (2) the visual
alignment, which is more exact in aligning the circuits alignment, which is more exact in aligning the circuits, particu-
larly the discriminator where it is positive half cycles of the output wave have equal amplitude and symmetry.

RESISTANGE MEASUREMENTS
SHORT CAPACITOR C453
SHORT PIN 3 OF VI6 TO B-

CONTRAST BREGHTNES VERTCA VERTCAL

equipment

- Tint required for meter allgnment.
to $1620 \mathrm{kc}, 10.7 \mathrm{mc}$ and 88 to 108 mc . 2. Voltmeter, 20,000 ohm $\mathbf{\text { -per-volt or }}$ VTVM. 3. Output Meter.

4. Paper Capacitor, .01 mf .
5. Resistor, $1 / 2$ watt, 200,000 ohms.
6. Loop Antenna, see note 6 .

meter allgnment notes.

1. Use an unmodulated signal.
sistor R26 and capacitor C 27 to chassis use 10 junction of re4 and 5 . 3. Connect a meter (20,000 ohms $/ \mathrm{volt}$) from pin 1 of limiter
tube $V_{4}(6 \mathrm{AU} 6)$ to ground in series with a resistor of 200,000 ohms. The resistor must be connected directly to the grid pin to minimize capacity loading and to isolate the i.f signal from the
meter. Keep input signal so that meter indicates not more that meter. Keep input signal so that meter indicates not more than 1
volt with VTVM or 5 microamps through 200,000 ohms with
standard standard meter.

Fig. 33. Tuning Control Stringing Diaaram
Use 400 cycle modulation.
5. Connect standard output meter across speaker voice coil,
turn volume control full on and keep signal down so that turn volume control full on and keep signal down so that output 6. For alignment of the AM oscillator and RF trimmer, the signal should be inductively coupled to the loop antenna of the receiver by connecting a four turn, six inch diameter loop of wire
across the signal generator terminals, and then locate the loop across the signal generator terminals, and then locate the loop
about one foot from the radio loop antenna which should be kept at the same distance and position (relative to the chassis) as it is mounted in the cabinet. To prevent possible errors in peak read
ings, the position of the loop in respect to the radio loop should ings, the position of the loop in respect to the
not be changed during any set of adjustments.
7. In order to align the first $F M$ id.f transformer $T 1$, it is neces-
sary to disconnect the copper strap from the band switch to sary to disconnect the copper strap from the band switch to pin
of converter tube 6 BE 6 (V1) by unsoldering the strap from the tube pin connection. Resolder the strap after T 1 is aligned.
8. When tuning the secondary of the discriminator 8. When tuning the secondary of the discriminator trans
former T6, three minimum points will be obtained of which the ormer T6, three minimum points will be obtained of which the
center one is the correct setting. As the transformer is tuned center one is the correct setting. As the transformer is
either side of 10.7 mc , the meter reading should increase.
fig. 35. Alignment Connection Points
9. Termination impedance of signal generator should be 300 ohms. When detuning the signal generator in step 4, two maxiprimary of the discriminator transformer T6 should be aligned for maximum when the signal generator is tuned to the smaller of these two peaks.
11. Make all c II. Make all chassis connections for FM i.f alignment as shor as possible. In step 9 connect the ground side of the signal gen-
erator at the chassis ground in the center of the 6BE6 socket ator at the chassis ground in

John F. Rider

Fig. 38. Alignment Diagram 16K1, Radio Chassis

METER ALIGNMENT CHART							VISUAL ALIGNMENT CHART								
Step	$\begin{array}{\|c\|} \begin{array}{c} \text { Signal } \\ \text { Generator } \\ \text { Frequency } \end{array} \\ \hline \end{array}$	Sienal Input Point	$\begin{aligned} & \text { Band } \\ & \text { Switch } \end{aligned}$	Setiting	Adjust	See Note	Step	$\begin{gathered} \text { Sienal } \\ \left.\begin{array}{c} \text { Seneratotor } \\ \text { Frequency } \end{array} \right\rvert\, \end{gathered}$	Signal Input Point	$\underset{\substack{\text { Band } \\ \text { Switch }}}{\substack{\text { and } \\ \text {. }}}$	Dial Setting	$\begin{gathered} \text { Connect } \\ \text { Oncillozacope } \\ \text { Between } \end{gathered}$	Adjust	See	
amif alugment							Am-IF AUGNMENT								
							1	$\begin{aligned} & 455 \mathrm{KC} \\ & =2 \mathrm{KK} \\ & \text { at } 60 \mathrm{cpz} \\ & \text { sweep rate } \end{aligned}$	Grid of V1 (6BE6) pin 1 thru .01 mf cepecitor.	AM		Junction C24 R13 and R14 thru 1 meg. © chasis.			
$\frac{1}{2}$	455 KC	6BE6 grid (Pin 7 of V1) thru .01 mfd .	AM	550 Kc	Primary and zecondary Primaray ynd secondary cores of T 2 for max.	4, 5	2						$\begin{aligned} & \text { Cores of T2 } \\ & \text { for max } \\ & \text { smpl. osy } \\ & \text { metry. } \end{aligned}$		
fm discrimunator allgnment							AM-rf ALIGNment								
							3	$\begin{aligned} & 1620 \mathrm{KC} \\ & \text { AM mod. } \\ & \text { With } 60 \end{aligned}$	Inductively coupled.	AM	Cl com- olotely poten. opin. Min. cap. mor mami. omp. of curve.	Junction C24. R13 and R14 chasais.	$\begin{aligned} & \text { C9 for steep- } \\ & \text { eat glope of } \\ & \text { straight line } \\ & \text { trace. } \end{aligned}$	4	
3	10.7 MC	6BA6 erid (Pin 1 of V3) thru .01 mfd .	FM		T6 secondary core for minimum Detune signal generator to point of max. meter reading. T6 primary for maxi mum.	$\frac{4.5}{\frac{4}{8^{2}}} \frac{1.2,}{10^{2}}$	4	$\begin{aligned} & 1500 \mathrm{KC} \\ & =20 \mathrm{KC} \\ & \text { at } 60 \mathrm{CPs} \\ & \text { sweep } \\ & \text { sotep } \end{aligned}$rate							
${ }_{4}^{4}$	Sere 10.										$\begin{aligned} & \text { For } \\ & \text { For } \\ & \text { maxpi. } \\ & \text { of } \\ & \text { of } \\ & \text { curve } \end{aligned}$		C5 for max ampl. s symmetry.	2, 3, 4	
6	¢						FM-IF ALGMMENT								
								5		Grid of V2 (6BA6), pin 1, thru . 01 mf. cap.	FM		Grid of V_{4} ${ }^{(6 A U G)}$ pin 1 chastis.	$\begin{aligned} & \text { Core of T9 } \\ & \text { for max. } \\ & \text { smpl. } \\ & \text { metry. } \end{aligned}$	${ }^{6}$
	fm-if Augnment														
7	$\underset{\substack{10.7 \mathrm{Mc} \\ \text { untedu- } \\ \text { lited }}}{10 .}$	6BA6 grid (Pin 1 of V3) thru .01 mfd . 6BA6 grid (Pin 1 of V2) thru 01 mfd . 6BE6 grid (Pin 1 of V1) thru 22 K resistor	FM			Core of T9 for max.	${ }_{i 1}^{1,}{ }^{3}$	6						$\begin{aligned} & \text { Cores of T3 } \\ & \text { for maz. } \\ & \text { ampl. \& sym. } \\ & \text { metry. } \end{aligned}$	6, 7
9					Primary and secondary coref of T3 for max Primary and secondary	7		registor				$\begin{aligned} & \text { Corese of T11 } \\ & \text { Cor mof } \\ & \text { smpas sym. } \\ & \text { metry } \end{aligned}$			
					cores of T_{1} for max.		FM Discriminator Alignment								
AM-RF AUGNMENT							${ }^{8}$	$\begin{aligned} & 10.7 \mathrm{MC} \\ & =300 \mathrm{KC} \end{aligned}$sweep	Grid of V3 (6BA6), pin 1 , thru 01 mf. cap.	FM		Junction of C27 and R26 thru 1 meg. and chasesis	Prim. of T6 for max. ampl.		
10	1620 KC	Inductively coupled.	AM	$\stackrel{c}{\mathrm{Cl}} \mathrm{com}$. ciletely cin open.	Adjust C9 for max.	${ }_{6}^{4} .5$.	9						Sec. of 76 Tor equal. metry of pos \star nee. peak:	${ }^{6}$	
11	$\overline{1500 \mathrm{KC}}$			For	rocking generator. Setpointer to 1500 KC .		$\begin{aligned} & 10 \\ & 11 \end{aligned}$						Recheck step 8. Recheck step 9.		
				output.											
fm-rf alugnment							FM-RF ALGNMENT								
							${ }^{12}$	$\begin{aligned} & \begin{array}{l} \text { AM MC } \\ \text { Mod } \\ \text { with } 60 \end{array} \end{aligned}$cps.	Dipole terminals.	Fm	$\left\lvert\, \begin{aligned} & \text { Com } \\ & \text { com } \\ & \text { polety } \\ & \text { opon. } \\ & \text { Min. } \\ & \text { cap. } \end{aligned}\right.$	Grid of V 4 (6AU6), pin 1. chassis.	steepest slope of straigh line trace.	1	
12	108 MC lated.	Dipole terminals	FM	C 1 com. pletely open. For max.	Adjust C12 for max.	1. ${ }^{1} .9$.									
13	$\begin{aligned} & 108 \mathrm{MC} \\ & \text { linmodu- } \\ & \text { lated } \end{aligned}$				Adjust C6 for max. while rocking genera. or.		13	$\begin{aligned} & 98 \mathrm{MC} \\ & =300 \mathrm{KC} \\ & \text { at } 60 \mathrm{cps} \end{aligned}$ sweep rate.			$\overline{\substack{\text { For } \\ \text { map } \\ \text { mmpl. } \\ 0}}$ of curve		C6 for max. ampl. sym. of curve	1, 2, 3	

VISUAL ALIGNMENT

equipment required for visual allgnment.

1. Signal Generator, AM and FM, G-E Type YGS-3, or equiva-
2. Oscilloscope, G-E Type ST-2A, or equivalent
3. Voltmeter, $20,000 \mathrm{ohms} /$ volt.
4. Resistors, $200,000 \mathrm{ohms}, 1 / 2$ watt, and 1 megohm, $1 / 2$ watt. 5. Paper Capacitor, 01 m

notes for visual augnment.

1. The termination resistance of the signal generator should be
300 ohms to match the input impedance of this receiver for $F M$ r-f alignment. 2. In some cases tuning of the converter grid will cause "pull-
ing" of the oscillator producing a change in the oscillator freing" of the oscillator producing a change in the oscillator fre-
quency. 3. If peaking of C 5 on AM alignment or C 6 on FM alignment causes the curve to move off the screen after centering, it will be
necessary to recalibrate the oscillator as in steps 3 and 12 . causes the curve to move of the screen after centering, it
necessary to recalibrate the oscillator as in steps 3 and 12 . 4. For alignment of the AM oscillator and r-f trimmers, the
signal should be inductively coupled to the loop antenna of the signal should be inductively coupled to the loop antenna of the
radio receiver by connecting a four turn, six inch diameter loop radio receiver by connecting a forat turn, six inch diameter loop
of bell wire across the signal generator terminals, and then locate his loop about one foot from the radio loop antenna which should be kept at the same distance and position relative to the chassis
as it is mounted in the cabinet. To prevent possible errors in peak readings, the position of the loop with respect to the radio loop readings, the position of the loop with respect to the radio
should not be changed during any one set of ad justments. 5. When using a sweep signal, it is necessary to apply the same
sweep voltage to the horizontal plates of the oscilloscope which is used to sweep the r-f frequency. It may be necessary to use an RF phase shift network to
properly phase the input to the scope. This may be done by properiy phase the input to the scope. This may be done by
shunting a capacitor of 005 mf . across the horizontal plate terminals of the scope and by using a $1 / 2$ megohm potentiometer in series with the high side of the horizontal sweep voltage line.
Adjust the potentiometer to superimpose the retrace on the trace. 6. Make all chassis connections for $\mathbf{F M}$ i-f alignment as short as possible. In step 7 connect the ground side of the signal gen(V1). V1). To align the 1st i-f FM transformer T 1 , it is necessary to
disconnect the copper strap from pin 7 of converter tube V1 (6BE6) to the band switch by unsoldering it from the tube pin;
resolder strap after aligning T1. 8. If ligh distorio is excoun
2. If slight distortion is encountered on weak FM stations, it
may be necessary to increase the FM-IF bandwidth to a minimay be necessary to increase the FM-IF bandwidth to a mini-
mum of 120 kc or a maximum of 140 kc width at 50% of peak amplitude. This should be done by stagger tuning T3 only. The
amplitude of the video IF response should not be reduced more amplitude of the video
than 20%. Use a signal generator accurately calibrated to supply markers for the bandwidth measurement.
In order to stager tune transformer T3
In order to stagger tune transformer T3, use a sweep voltage as
in step 7. Connect a scope as in note 1, then turn the primy in step . Connect a scope as in note 1, then turn the primary
transformer T3 (bottom core) slightly clockwise and turn the secondary of T3 (top core) counterclockwise to center the 10.7
me marker at the peak of the curve and check bandwidth acmc marker at the peak of the
cording to specification given.

MODELS 16K1 \& 16K2
REPLACEMENT PARTS LIST

Cat. No.	Symbol	Description

RAB-141 RAD-056 RAP-022 RAV-138 \qquad		BACK-Cabinet back, tel. compartment. COVER-Changer par PLATE-Tuner chasiis front plate CABINET-Model 16 KI tess overlay, overlay, safety glass and rubber chan
${ }^{*} \mathrm{RCCC}-102$	${ }_{\text {c }}^{\text {C359 }}$	CAPACITOR-.05
-RCC. 104	${ }_{\text {c }} \mathbf{3 7 3}$	CAPACITOR-1m
		CAPACITOR $^{\text {a }}$ - 1 s
*RCE-092	${ }^{\text {C }} 310$	
E. 100	${ }_{272}^{\text {C379, }} \mathbf{2 5 5}$	CAPACITRR- 10 mf , 450 vat
*RCE-110	C451	CAPACITOR - 300 mf ., 150 v ., electroly
*RCE-111	C452	capac
${ }^{*}$ RCEE-1		CAP
RCE. 118	${ }_{3}{ }_{3} \mathbf{2 7 2}$	CITOR 10 mf.,
*RCN-018	с354,	CAPACITOR-. 01 mf., 600 v., paper,
*RCN-025	C361	CAPACITOR-. $01 \mathrm{mf}=10 \%, 600 \mathrm{v}$

 *URD-1081 R409, 410 RESIISTOR- 22,000 ohma, $=5 \%$, 32 w -URD-1097 R303, 306, REASISTOR-100,000 ohms, 3/5 w., carbo

*RCW. 3037		CAPACITOR- $800 \mathrm{mmf} ., 350 \mathrm{v}$., ceramic CAPACITOR-Trimmer CAPACITOR-Trimmer
		Capacitor Trimmer for high channel
	c22	CAPACITOR-Trimmer (ON-OFF), 16K1 BUTTON-Puenbutton (for 16 KK 2 CORD-For tuning oontrol. ESCUTCHEON-For radio compartment ESCUTCHEON-For television compart.
*RDK. 212		PULL
RDK-213		KNOB-Radio knob
RDK -222		KNOB-Tuning control.
RDK-223		KNOB-Volurne control
RDK ${ }^{\text {R22 }}$		KNOO-Picture control.
(ender		KNOB-For brighneas \% vertical hold
		GLASS-Safety glase
- REI-014		CORE-Brase
**RET.016		Cope iran cor
*RERT-003		TRAP-Ion
RRC-008		CLIP-1.inch for mounting electrolytic.
${ }^{\text {RHC }}$		$\mathrm{CLIP}^{\text {cor }}$ (nob door pin spr
		M
${ }_{\text {RHG }}$		GROMMET-Shock mour
RHG.030		GROMMET- $3 / 5$ inch for voltaze shield
G.014		GROMMET-Chasis
${ }^{\text {S.04s }}$		SCREW-Headieas for
		${ }_{\text {L }}^{1222}$
RHS.050		SCREW-Hex. Head screw SCREW-Round H for television chassis
RHS-052		SCREW-R. H. Philips for phono side
RHS-053		SCREW-Hex H for radio chas is mount
RHS.056		SCRRW-Flat H. for phono mide mount
RHs. osf		SCREW-For cabinet back
RH		
Rhs-059		SCREW-Round head Phili
RHS-060		SCREW-Self tappine for puthbutton
RHY-020		DOWR Puil Smail, for 1661
RHY-21		
-RHY.021		OOOR PULL-Larac, for 16 K2,
*Rİ.023		INSULATOR-For yoke
		INSULATOR-Grommet in high voltage
		GUIDE-Insulating guide
	J3	SUPPORT-For power cord.
-RJC.018		CONNECTOR-High voltage anode con
	Js	Condecrok-(Plue, reme
RJJ.008		RECEPTACLE-Power receptacle.
$\mathrm{RPP}^{\text {RPP.003 }}$		PLUG-AC power
	P4, P5	PLUG-Phono plua
*RJS-003		SOCKET-Octal tube socketior Vii. V9.
${ }^{\text {R RJS-004 }}$		PLATE-For electrolytic cond
-RJJ 026		SoCKET
-RJSS.031		SOCKET-Tube occket for
${ }^{-1}$		SOCKET-Tube socket, 9-pin, for v3
-RJS-132		SOCKET-Tube socket. 7 -pin, for V12.
-RJS-133		SOCKET-Tube socket, 7 -pin, shielded,
*RJS-138		SOCKET-Tube socket, 9 pin, for V_{7}
-RJS-139		SOCKET-Tube socket. 9 Pin, for V_{10}
-RJJ-144		SOCKET-Tube rocket, 7 pin, for V4, V17
RJS. 148		SOCKET-Tube socket for high voltage
RJJS. 149		SOCKET-Tube socket for V_{1} and V_{2} SHELL-Connector shell for P5

© John F. Rider

INSTALLATION AND SERVICE ADJUSTMENTS

note: always wear safety glasses when handing picture tube teparation for use
These receivers are shipped with the picture tube installed In order to prevent damage to the picture tube, all receivers have their focus coil moved close to the yoke assembly and a Loosen all wing nuts on the focus coil bracket, remove the ship ing sleeve and move the focus coil back. Then focus and cent he picture, using a temporary test power cord (see Preset Contr
Ad justment Fig. 2).
It is necessary to remove the speaker to allow the chassis to removed from the cabinet.
When the picture tube is removed from the chassis and re
placed, it is neecssary to replace the tube support brackets, a hown in Fig. 2, to support the picture tube. Secure these two support brackets to the
is replaced in the cabinet.

RECEIVER INSTALLATION

1. If the built-in antenna is used, it is advisable to observe the reception
best results.
2. In case an outdoor antenna has to be used, the antenn lead-in should be as short as possible. The built-in antenna connected to the dipole terminais, therefore, it is necessary to
disconnect the wires of the built-in antenna and connect the transmission line (impedancec 300 ohms) of the outdoor antenna
installation to the dipole terminals. Any type of antenna system may be used as long as it is connected by a balanced transmission may be used
line to the balanced input of 300 ohms of the receiver. The
choice of the antenna depends on the choice of the antenna depends on the operating area of th
eceiver, the number and location of stations to be received. In order to avoid multiple images (ghosts) and interferences, care-
ful experimentation with the antenna system is necessary to ul experimentation with the antenna system is necessary to
obtain satisfactory reception. These problems may be aggravated in fringe areas and sometimes an elaborate installation has to e made to obtain satisfactory results.
LIGHTNING PROTECTION-AI
LIGHTNING PROTECTION-All outdoor antenna instal
ations should conform to standards set by the National Electric lations should conform ostandards set by the National Electric
Code which is usually supplemented by Local Electrical Code
requirements. In general, some of the requirements are as 1. The metal mast supporting the antenna should be pe manently and effectively grounded. Use a ground wire of mini-
mum size as specified in the Electrical Code.
3. An a ppoved television lightning arrester should be used in the antenna lead-in conductors at the point of entrance to th ermanently grounded in lieu of using the lightning arrester. For detailed information on antenna installations, refer to Chapter XIII of the Television Course RSM-4-13
4. A power outlet providing 110 volts at 60 cy
must be in easy reach of the television receiver. 4. Locate so that the room illumination, in daytime or night
time, falling on the screen of the picture tube may be controlled ime, falling on the screen of the picture tube may be controlled iight from a window does not fall directly on the screen of the
picture tube. For nighttime use, it is unnecessary to turn out al lights when viewing.
5. Ventilation of the television receiver is very important
lots are provided in the cabinet back and bottom for ventiataion Slo.s are provided in the cabinet back and bottom for ventilation
Theses slots should not be obstructed. Do not locate the recive
on or too near any heating device.

PRESET CONTROLS

HERMAL CUT-OUT-This is a protective a-c circuit breaker which isconnects the line voltage in case of excessive current drain of
the receiver caused by an internal short circuit or breakdown components. In case this cut-out cuts off, a five minute period
should be allowed to elapse before resetting this cut-out. Depress hould be allowed to elaps
ON TRAP - An ion trap is placed around the neck of the picture tube betwen the focus coil and the picture tube base. It it im portant that the Ion Trap be always adjusted for maximum
brilliance. When adjusing the IIon Trap if the raster gets too
bright, reduce the brilliance control and readjust Ion Trap for bright, reduce the brilliance control and readjust Ion Trap fo
maximum brilliance. maximum brilliance.
To adjust, rotate the Trap on the neck of the tube and
ove it forwards or backwards to give maximum brightness. ocus-The focus switch, $\mathrm{S} 401, \mathrm{~S} 402$ on the rear panel should be the to the position which allows the front control, R421, to focc the picture nearest the center of rotation
uniform focus over the greatest pisture area

Note: The focus coil should be located as near to the picture
tube base as possibe., when centering the picture, to give most
uniform focus. (See Picture Centering.) As the foceus coil is moved near to the base of the picture tube, brilliance will be diminished. I is advisable to sacrifice some brilliance to achieve uniform focus
PICTURE TIIT-If the PICCURE TLIT-If the picture or raster does not square with the
picture tube mask, loosen the wing nut at the top of the yoke
clamping bracket and clamping brackett and rotate the defection yoke in the proper
direction until the picture squares with the mask Clamp the yoke tightly in place.
PICTURE CENTERING-C
PICRURE CENTERING-Centering of the test pattern is accom-
plished by loosening the wing nuts which secure the focus coil and plished by loosening the wing nuts which secure the focus coil and
adjusting the position of the focus coil until the test pattern is centered.
The focu
The focus coil may be moved slightly in various directions
it may be moved vertically by loosening the two side it may be moved vertically by loosening the two side wing nuts:
it may be moved horizontally or rotated about its vertical axis by loosening the top wing nut. Furthermore, it may be tilted
about a horizontal axis by loosening the two side wing nuts. NOTE: The focus coil should be kept as far back towards the base of the picture tube as poss and
over the greatest picture area.
When making the adjustment, it is advisable to loosen all over the making the adjustment, it is advisable to loosen all
three wing nuts and make an approximate adjustment of the three wing nuts and make an approximate adjustment of the
focus coil. Tiphten the three wing nuts enough to maintain the
focus coil lin place but loose enough so it may be moved to a fina focus coil in place the but loose enough so it may be moved to a fina
position. After a final position has been found which gives good position. After a final position has been found which gives good
centering of the picture, tighten the three wing nuts securely.
A slight dimming of the picture may be encountered as the centering of the picture, tighten the three wing nuts securely.
A slight dimming of the picture may be encountered as the
focus coil is moved towards the base of the picture tube. It may focus coil is moved towards the base of the picture tube. . 1 may
be necessary to lose some brightness to obtain good centering
and uniformity of focus, since the brightness may be regained by increasing the brightness control. Deck shadow at one edge of the picture. (Fig. 13.) HORIZONTAL HOLD-Rotate the front panel Horizontal Hold control (R365) to the middle of its range. Adjust the core of the
rear panel Horizontal Hold control (L351) until the picture is synched and is phased at the centrel of the raster. Slight rotation
of the front panel Horizontal Hold control (R365) either way of the front panel Horizontal Hold control (R365) either way
should move the picture slightly left or right without losing shorizontal sync
The pult in
The pull in range should be equally distributed either side
of the front panel horizontal hold control center position. Readjust the rear panel hold control if necessary.
Check pull in sensitivity by switching from an empty channe to a station with the receiver properly tuned to that station. If
the picture snaps into synchronization immediately, the adjustment is satisfactory.
HORIZONTAL UNEARITY-The Horizontal Linearity control (L352) adjusts the picture for correct horizontal proportions. For bes adjustment, use a test pattern and adjust the Horizontal Linearity control until the distance from the center of the test pattern
to the left- and right-hand edges of the test pattern measures approximately the same. The adjustment of this control is very broad and it should be made simultaneously with the adjustment
of the Width control (L353) to get proper picture width and of the Width control (L333) to get proper picture width and
correct horizontat linearity (See Fig 12.) HORIZONTAL DIVE-The Horizental Drive control (R369) should
be set approximately $1 / /$ of its total rotation from the counter be set approximately $1 / 3$ of its total rotation from the counter
clockwise end of its rotation. If white vertical bars appear in the picture, the Drive control should be turned slightly in either
direction to direction to just remove these white vertical bars.
The Drive control R369, on late production
nected as shown in the schematic diagram, should be set to give
maximum width of the picture or raster . maximum whterclockwise to just remove any picture compression
 picture extend approximately one-eighth inch past the right- and left-hand edge of the mask and are not visible (Fig. 11). VERTICAL UNEARIIT-This control (R311) should be adjusted to
give good vertical proportions to the picture. The adjustment give good vertical proportions to the picture. The adjustment
should be made on a test pattern so that the distance from the
center to the top and bottom edges of the pattern measures center to the top and bottom edges of the pattern measures
approximately the same. This adjustment will alter the height of the picture slightly. (See Fig. 9.) HEIGHT-This control (R308) changes the picture height and
should be adjusted so that the picture extends approximately should be adjusted so that the picture extends approximately
$1 / 1 /$ inch beyond the top and bottom edges of the mask. This adjustment should be made simultaneously with the Vert. Linearity control (R311.
HIGH CHANNEL TRAP——This
L203) on
L203) on the head-end unit which is switched into the antenna
ircuit on all low-band channels and will eliminate high-channel ircuit on all low-band channels and will eliminate high-channel
interference on these channels. This interfererice manifests itself as horizontal bars or herringbone pattern or as a picture in the back-
ground. If the receiver is tuned to Channel $\# 5$, a strong station operating on Channel \#11 will beat with the second harmonic of the cal oncillator to form an i-f frequency which will ride through nhindered and appear on the picture screen. In order to prevent
he interfering signal from reaching the converter, a trap conststing of a fixed inductance and a variable capacitance is adype of interference, is also possible on the Channels $\# 4$ and $\# 6$ due to interfering stations on Channel \#8 and \#13, respectively,
The trap is adjusted at the factory approximately for Channel he trap is adjusted at the factory approximately for Channel
11 rejection. It may be necessary to readjust the trap slightly 11 rejection. It may be necessary to r.
or maximum rejection of Channel \#11.

PICTURE DEFECTS

ADJSTMENT OF TRAP-The adjustment of the trap can be made by means of a signal generator and an oscilloscope or an a-c meter
as indicating device. The signal generator must be terminated to match 300 ohms impedance. For elimination of Channel \#8, to match 13
\#11 or interference, feed a strong signal of the picture
carrier of the interfering station modulated with an mid carrier of the interfering station modulated with an audio signal
into the antenna terminals and connect the indicating device to int the antenna terminals and connect the indicating device to
the picture tube grid. Set the band selector to the Channel
$\# 4.45$ or \#4, is or \#6, respectively, and tune local oscillator of receiver
for maximum deflection on indicating device. Then tune trimmer C206 for minimum signal on picture tube grid. The adjustment of the trap can be made without instrument as follows: When the channel interference appears in the picture,
set the tuning control for maximum interference. Then tune set the tuning control for maximum interference. Then tune
trimmer C 206 for minimum interference or maximum rejection.
ECTS
The following illustrations show picture defects which are
caused by incorrect setting of operating controls, the preset caused by incorrect setting of operating controls, the preset
controls or by interference picked up by the antenna. A poss.
sible remed sible remedy is indicated for each defect.
The adjustment of controls is msst efficiently accomplished by the use of a test pattern, similar to that illustrated to the left,
which is normally transmitted just prior to the scheduled
program.
The normal picture should show good focus and a good contrast between blacks and whites with intermediate shades
of gray. The picture should not tend to move either vertically of gray. The picture should not tend to move either vertically
or horizontally and have good linearity.
remeor

Increase Picture control setting and/or reduce brightness. antenna or defective lead-in. Insufficient pickup at maximum contrast usually is accompanied by "snow" on the

Pig. 7
Horizontal arne.
. Adjustment of front panel focus control, R421
. Check for optimum uniformity of focus by moving focus 3. Check coarse focus control at rear of chassis.

Reduce Picture control setting and/or increase Brigh
2. Too strong signal. If it is not possible to reduce signal adequately
antenna pad. antenna pad.
en

Adjust Horizontal Hold control (front panel control). . Check adjustment of rear panel

(

A complete alignment of the receiver tuned circuits is given
the following charts. Read all alignment notes prior to making an alignment. The procedure shown in the charts is based upon he use of the G-E Etest equipment specifeed and if other equip-
hent is used which bas different characteristics, the charts may have to be modifed slightly. A diagrate showing the charts may
hacation of
djustments used in alignment is shown in Figure 22 on page Use the alignment service diagram, Figure 29 on page 42 with the charts.
the \mathbf{B} - bus of the receiver keeping the lead as short as possible. Always permit a 15 minute warm-up period for the receiver and inmen
 used to complete the filament circuit. Plug pins $\# 7$ and $\# 8$ of the
$\operatorname{SSN} 7$ into pins $\# 1$ and $\# 12$ of the picture tube socket. To protect the lest equipment, always use an isolation trans-
Jormer between the power line and the TV reciver. former between the power line and the TV receiver.
TEST EQUPMENT-The following test equipment is necessary
R-F Sweep Generator (G-E Type ST-4A or Equivalent),
a. Frequency Requirements.
4.5 MC with 50 KC and 2 MC sweep width.
$40-50 \mathrm{MC}$ with approximately 10 MC sweep wid
$40-50 \mathrm{MC}$ with approximately 10 MC sweep width.
$50-90 \mathrm{MC}, 170-220 \mathrm{MC}$ with 15 MC sweep width.
b. Constant output in the sweep range.
c. At least 0.1 volt output.

Marker Generator (G-E Type ST-5A or Equivalent)
The marker generator must have good frequency stability,
must be accurately calibrated and must cover the following frequencies.
41.25 MC for video I-F
42.50 MC for video I-F
44.20 MC for video
44.50 MC for $\mathbf{v i d e o}$.
45.00 MC for video I - F
45.75 MC for videc I
47.25 MC for video I
4.5 MC for

Picture and sound carrier frequencies for Channels \#2 through
3. Balanced Output Adapter G-E ST-8A or Equivalent (See
RF Note 1). 4. Oscilloscope (G-E Type ST-2A or Equivalent)-The oscilloope should have good sensitivity and preferably a 5-inch
reen with a good wide-band frequency response on the vertical deflection circuits. Although the high frequency response is not necessary for alignment, it is important when making waveform
5. Vacuum Tube Vollmeter-A vacuum tube voltmeter is neccesary to me
$r-f$ alignments.
6. Detector Network-A crystal detector network as shown in
Figure 27 is necessary to detect the response when aligning $L 260$, he 4.5 mc trap.
7. Miscellaneous-One 10,000 ohm resistor to isolate the scope
noted in the charts.
ior to isolate the sweep generator as noted
Impedarnce matching pad for r-f alignment as shown in Figure
Bias battery to supply -4 volts as noted for video i-f and r-f lignment.
VIDEO I-F ALIGNMENT
nment. characteristic impedance. Couple the sign
through a .01 mf . capacitor. See Fig. 20. the scope gain. or the response curve changes, sw
oscilator influence is not noted.

1. Connect a bias battery from junction of C261, R263 and
he Picture control to \mathbf{B}-. Connect positive of battery to $\mathbf{B}-1$ he Picture control to B-.. Connect positive of battery to \mathbf{B} 1 of V4 measured with a VTVM. Disconnect VTVM leads durin
2. The sweep generator should be properly terminated in its
3. The traps L 227 and L 253 must be detuned before aligni the amplifier by turning the cores all the way out of athe coil mplitude This traps to 47.25 mc (as in step 6) for minimum
4. Set the Channel switch to Channel \#12 or \#13. Check for ocillator influence by turning the tuning control. If the shape
of response curve changes, switch to another channel wher
video i-f alignment chart

Step	$\begin{gathered} \text { Marker } \\ \text { Generator } \\ \text { Frequency } \end{gathered}$	Sweep Generator Frequency	Sisnal Input Points Ben Between	$\begin{gathered} \text { Connect } \\ \text { Occilloscope } \\ \text { Between } \end{gathered}$	Adjust	$\begin{aligned} & \text { See } \\ & \text { Note } \\ & \text { No. } \end{aligned}$
1				Junction L256, R265, C268 and R266 thru 10K ohms V7 socket.	Detune L227 and L253 by turning cores out of coil.	3
2	44.50 MC		V6 grid (pin 1) thru . 01 mf. cap. and B - on head-end shield. Pins 5-6 shorted on V5.		Core of L254 for curve of Fig. 21 -A.	$\begin{aligned} & 1,2,4 . \\ & 6,9 \end{aligned}$
3	45.75 MC		V5 grid (pin 1) thru .01 mf . cap. and B - on head-end shield. Short L251. Remove short on pins 5-6, V5.		Core of L252 for curve of Fig. 21-B.	
4	42.50 MC , 45.75 MC		V4 grid (pin 1) thru 01 mf c cap. and B - on head-end shield. Short L226. Remove short on L251.		Core of L251 for curve of Fig. 21-C.	
5	44.2 MC				Core of L226 for curve of Fig. 21-D.	
6	47.25 MC ,		Junction L215 and L216 on second r -f switch wafer thru .01 mf . cap. and B - on head-end shield. Remove short on L226		Cores of L227 and L253 for min. output at 47.25 MC (Fig. 21-E).	$\begin{aligned} & 1,2,3, \\ & 4,7,9 \end{aligned}$
7	$\begin{aligned} & 41.25 \mathrm{MC}, \\ & 42.50 \mathrm{MC}, \\ & 45.00 \mathrm{MC}, \\ & 45.75 \mathrm{MC}, \\ & 47.25 \mathrm{MC} \end{aligned}$				Cores of L251, L252, L254 and L226 for curve of Fig. 21-E.	$\begin{array}{ll} 1, & 2, \\ 5, \\ 5, & 7, \\ 9 \end{array},$

Fig. 21. Video I-F Curves
S. In most cases it is only necessary to perform an over-all Chart, to obtain i-f response curve of Figure 21-E. When aligning the i-f coils, L251 will adjust the audio or low frequency side of the i-f response curve, while L252 will adjust th
video or high frequency side of the $\mathrm{i}-\mathrm{f}$ response curve. L226 and 254 should be adjusted simultaneously to reduce the saddieback at the peak of the curve and to give maximum gain and retain
45.75 mc and 42.50 mc markers at the 50% mark.
6. It is necessary to detune the i-f coils by shorting as noted in the alignment chart to prevent the coils preceding the signal
input point from influencing the response curve. input point from influencing the response curve.
7. The 45.75 mc marker should fall at the 50% point to give
proper sideband response. See Fig. 21E.
8. After adjustment of the two adjacent sound traps, readjust
the i-f curve to obtain the proper curve and marker as illustrated. 9. Adjust the signal input to give a video response curve of

AUDIO I-F ALIGNMENT

1. Audio i-f alignment is performed by putting in a 4.5 mc
$\pm 500 \mathrm{kc}$ sweep and viewing the response curve as noted in the $\pm 500 \mathrm{kc}$ sweep and viewing the response curve as noted in th
audio i.f chart.
2. As a final check, step 12 , the secondary of T402 adjustmen should be checked on a television signal if possible. Try severa he secondary of T402 should be readjusted as follows. Tune in the station and adjust the contrast control for a weak ound output. Readjust the secondary of T402 until the buzz
on m minimum or disappears and the best quality audio is ob
tained.
3. Keep the input of the sweep generator low enough so th 3. Keep the not take place, otherwise the response curve will imiting does not tate place, otherwise the response crurve will
broaden out, permitting slight misadjustment. Check by increas ng the output of the sweep generator; the response curve should
4. T401 is adjusted for maximum amplitude and symmetry
of the response curve about 4.5 mc marker as shown in Fig. 23 -A 5. The secondary of T402 is adjusted for the curve of Figure between the positive and negative peaks of the curve with the enter of the 4.5 mc marker falling midway between the peak. 6. The primary of T402 is adjusted for maximum of the positive
and negative peaks with as straight a trace as possible between and negative peaks with as straight a trace as possible between the peaks. If necessary, readjust the seconds.
the marker falls midway between the peaks.
5. An alternate method to the visual alignment is the sound utput method using an operating television station, preferably
(a) Tune the receiver for oration during

Keep the input below limiting level by reducing the con-
trast by the Picture control or by using a resistor pad in rast by the Picture
the antenna circuit.
(c) Adjust primary and secondary of T401 for maximum output.
(d) Adjust the secondary of T402 for best quality audio (low
distortion, least noise) and for minimum buzz in the out put.

Fif. 22. Tube and Trimmer Lecation

AUDIO I-F ALCNMENT CHART						
Step	Marker Generator Frequency Frequency	Sweep Generator Frequency	$\begin{gathered} \text { Signal Input } \\ \text { Points } \\ \text { Between } \end{gathered}$	$\begin{aligned} & \text { Connect } \\ & \text { Oscilloscope } \\ & \text { Between } \end{aligned}$	Adjust	See Note No.
8	4.5 MC	$\begin{aligned} & \text { 4.5 MC } \\ & \pm 500 \mathrm{KC} \\ & \text { keep signal } \\ & \text { below limiting } \\ & \text { level of } \\ & \text { receiver. } \end{aligned}$	Pin 1 of V17 through .01 mfd cap. and $\mathrm{B}-$	Junction of R404 and C404 \& sec. of T401 through 10 K and B-	Primary and secondary of T401. See Figure 23-A.	1,3,4
9			Pin 1 of V18 through .01 mfd . cap. and B-	Junction of R408, C411 and R411 through 10K and B-.	Secondary of T402. See Fig. 23-B.	1,3,5
10					Primary of T402. See Figure 23-B.	1,3,6
11					Secondary of T402. See Figure 23-B.	1,3,5
12	Recheck alignment of step 11 on operating station as in note 2.					

R-F ALIGNMENT

Fig. 23. Audie I-F Curve

F Alignment Notes

1. Disconnect the transmission line to the antenna terminals rom the head-end. Couple the input of the sweep generator to
he head-end terminals through balanced output adapter G-E ST-8A, or equivalent. Couple thals to the head-end terminals through a piece of 300 ohm transmission line. Terminate the If a balance output is not available for the sweep generator
a matching network as hown in Figure 20 B may be used. A matching network as shown in Figure 20 B may be used. A balanced output is recommended since a matching network as
shown in Figure 20B may introduce frequency shift and cause a misleading tilt to the reyponse curve.
Ro shown in Figure 20B is the ter
Ro shown in Figure 20B is the terminating resistor. If this esistor is not already incorporated in the output of the sweep
enerator, it should be added to the matching network as shown.
2. It is necessary to connect a bias battery from the junction bias battery to B-. Adjust the Picture control to give a volts bias measured from pin 1 of V2 to the head-end chassis B--
3. Shunt L226 with a $680 \mathrm{ohm}, 1 / 2$ watt resistor during r-i 3. Shunt $L 226$ with a 680 ohm, $1 / 2$ watt resistor during r -
alignment to prevent the oscillator from influencing the response curve. In order to reduce the effect of hum on the response curve, connect a 100 ohm resistor between the head-end $B+$ and the
chassis $B+$ and connect an electrolytic capacitor of approxichassis $B+$ and connect an electrolytic capacitor of approxi
mately 400 mf , 350 volt from head-end $\mathbf{B +}+$ to head-end $\mathrm{B}-$. 4. On all channels the picture carrier marker should not be less than 75% of the peak of the r.f response curve. The sound
carrier marker should not be less than 50% of the peak of the response curve. However, the two minimum values should not occur simultaneously. On the high channels the picture carrier marker should ride up nearer to the top of the curve provided
the sound carrier marker does not go below 50%. On the low the sound carrier marker does not go below 50%. On the low
channels the picture carrier marker should ride as high up on the curve as possible and still keep the sound carrier marker above
50%.

R-f ALGGMENT CHART

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Marker Generator Frequency	Sweep- Generator Frequency Frequency	Signal Input Point	Connect Oscilloscope	Channel Switch	Adjust	$\begin{aligned} & \hline \text { See } \\ & \text { Note } \end{aligned}$
13	$\begin{aligned} & 211.25 \mathrm{MC}, \\ & 215.75 \mathrm{MC} \\ & \hline \end{aligned}$	No. 13 with 15 MC sweep	terminals at head-end (see Note 1.)	Junction of L226, C217 and R218 thru 10K-resistor and B - at head-end chassis.	No. 13	Screw of L210, screw of L217, for Fig. 24-A.	$\overline{1,2,3,4,5}$
14	$\begin{aligned} & \text { 175.25 MC, } \\ & 179.75 \mathrm{MC} \end{aligned}$	No. 7 with 15 MC sweep			No. 7	Trimmers C207 and C230 for response curve, Fig. 24-A.	$\begin{array}{r} 1,2,3,4,5, \\ 8 \end{array}$
15	$\begin{aligned} & \mathbf{2 1 1 . 2 5 \mathrm { MC }}, \\ & 215.75 \mathrm{MC} \end{aligned}$	No. 13 with 15 MC sweep			No. 13	Read just screw of L210 and screw of L217 for curve, Fig. 24-A.	1,2,3,4, 5
16	205.25 MC, 209.75 MC	No. 12 with 15 MC sweep			No. 12	No adjustment.	5
17	$\begin{aligned} & 199.25 \mathrm{MC}, \\ & 203.75 \mathrm{MC} \end{aligned}$	No. 11 with 15 MC sweep			No. 11		
18	193.25 MC . 197.75 MC	No. 10 with 15 MC sweep			No. 10		
19	$\begin{aligned} & 187.25 \mathrm{MC}, \\ & \text { 191.75 MC' } \end{aligned}$	No. 9 with 15 MC sweep			No. 9		
20	181.25 MC .	No. 8 with 15 MC sweep			No. 8		
21	$\begin{aligned} & 175.25 \mathrm{MC} \\ & \text { 179.75 MC' } \end{aligned}$	No. 7 with 15 MC sweep			No. 7		
22	83.25 MC, 87.75 MC	No. 6 with 15 MC sweep			No. 6	Screw of L208 to place $\mathbf{8 3 . 2 5}$ MC marker and screw of L215 to place 87.75 MC marker as shown in Fig. 24-B.	$\overline{6} \overline{1,2,3,4}$
23	77.25 MC, 81.75 MC	No. 5 with 15 MC sweep			No. 5		
24	$\begin{aligned} & 67.25 \mathrm{MC} \\ & 71.75 \mathrm{MC} \\ & \hline \end{aligned}$	No. 4 with 15 MC sweep			No. 4	No adjustments.	${ }^{6}$
25	$\begin{aligned} & 61.25 \mathrm{MC} \text {. } \\ & 65.75 \mathrm{MC} \end{aligned}$	No. 3 with 15 MC sweep			No. 3	Screw of L205 to place 61.25 MC marker and screw of L212 to place 65.75 MC marker, as shown in Fig. 24-B.	$\overline{1,2,3,4,7}$
26	55.25 MC , 59.75 MC	No. 2 with 15 MC sweep			No. 2	No adjustment.	7

5. Coils for Channel No. 12 through No. 7 are fixed induct ances. Check the alignment on these channels as in steps 16
through 21 for proper response curve. Readjust L 210 and L 217 on Channel No. 13 and C 207 and C 230 on Channel No. 7 if necessary. Coil
Check the foils Channels No. 5 and No. 4 are fixed inductances. coils L208 and L215 to give proper curve on Channels No. 6 No. 5 and No. 4.
6. The coil for Channel No. 2 is a fixed inductance. Check the aignment on this channel for proper. Curve. Readjust
L212 to give proper curve on Channels No. 3 and No. 2.
7. The trimmers C 207 and C 230 may be used to compensate
for differences in tube capacities which affect tracking when it is for differences in tube capacities which affect tracking when it is
necessary to change the tubes V11 or V. The variations in tube capacities have normally little effect on the over-all performance capacities haven.
of the head-end.

© John F. Rider

OJohn F. Ridor

(C) John F. Rider

Cat. No.	Symbol	Deacription
*UCC-035	301, 41	CAPACITOR-. 001 mfd., 600
*UCC-036	C302, 412	CAPACITOR-. 002 mf .,
*UCC.037	C418	
*UCC.040	${ }_{4}^{611}$,	CAPACITOR-. 01 mfd . $6000 \mathrm{v.}$, , paper
- ${ }_{-} \mathrm{UCCC}-041$		CAPACITOR-. 02 mf. 600 v .., paper
*UCC-048	$\begin{gathered} { }^{355}, 373, \\ 374,42 i, \end{gathered}$	CAPACITOR-. 1 mf., 600
*U		CAPA
*UCG-1005	$\begin{gathered} \mathbf{c}_{255} 5259, \\ 267.216, \\ 218 \end{gathered}$	CAPACITOR- 5 mmf., 500 v., silver mica
*UCG-1012	C370, 280	CAPACITOR-22 mmf., 500 v ., silver
*UCG-1030	${ }^{\text {C408 }} \mathrm{C}$	CAPACITOR- 120 mmf., silver mic CAPACITOR- 12 mmf ., 500 v., silver
$\begin{aligned} & \text { *UCG-2010 } \\ & * \mathbf{U C G}-2022 \end{aligned}$	C405, 270	$\mathrm{CAPACITOR}_{\text {mica }} \mathbf{1 8} \mathrm{mmf}$, vilver mica CAPACITOR- 56 mmf , silver mica
*	C2	CAPACITOR-6 mmin, $500 \mathrm{v}$. ., Bilver
${ }^{*}$ *UCU. 0238	$\begin{aligned} & \text { C357, } \\ & { }^{3} 4564 \end{aligned}$	CAPACITOR- 100 mmf ., 500 v. , mica CAPACITOR-220 mmf., 500 v., sil
*UCU. 1036	C353, 364 C303	
*UCU-1052	C366	CAPACITOR-1000 mmf., 500 v .
	${ }^{4} 462$	CAPACITOR ${ }^{\text {a }}$
*	${ }^{\text {C407 }}$	
${ }_{*}^{*} \mathrm{UCW}$		
UJB. 001		TEREM
*		M
* JJB-017		TERMINAL STRIP-
*URD-015	${ }_{\text {R25 }}$	RESSISTOR- 47 ohmm, $1 / 2 \mathrm{w}$., carbon
*	${ }^{2} 221$	RESISTOR-150 oh
*URD * 0	${ }^{\text {Ren } 2738}$	RESISTOR-220 ohms,
*URDD.047	R292,	RESISTOR-33 ohms, $1 / 2 w$.
*	R^{2006}	RESISTOR-680
*URD. 0	$\stackrel{\text { R205 }}{\text { R25s, }}$	RESISTOR- 820 ohms . $1 / 5$ w., carbon
*	${ }_{\text {R372 }}$	RESISTOR-1200 ohms, ${ }^{\text {S }}$ W., carbon
*URD.	R214, 314,	RESISTOR-2200 ohms, ${ }^{\text {a }}$ w, , carbon
*URD-065	R309,	RESISTOR-4700 ohms, $1 / 2 \mathrm{w}$., carbon
	${ }_{\text {368 }}$	RESISTOR-10,000 ohms. $1 / 2 \mathrm{w}$., car-
*UR	R371	RESI
*URD	R26	RESISTOR-22,000
*URD. 083	R364	RESIST
*URD	R362, 416	RE
*URD-087	R302, 402	RESISTOR-39,000
*UR		R
*URD-091	R 404	RESISTOR-56,000
*	$\begin{array}{r}\text { R254, } 256, \\ 259, \\ \hline\end{array}$	RESISTOR-68,000 ohms, $1 / 2 \mathrm{w}$ w., carbon
*URD-095	R301.	RESISTOR-82,000 ohms, $1 / 2 \mathrm{w}$ w, car-
-UR	R358	RESI
*URD-103	R379,	RESISTOR-180,000
*URD-105		RESISTOR-220,00
-URD-113	R258, 406, 418.453	RESISTOR - 470,000 ohms, $1 / 2 \mathrm{w}$., car
*UR	R275, 353, 356,357, 316,361,	RESISTOR-1 meg., $1 / 1 /$ w., carbon
*URD. 125	${ }_{\text {R268, }}^{\text {R26 }}$	${ }_{\text {Re }} \mathrm{R}$
	R201, 202	
-URD-137	${ }_{\text {R415 }}{ }^{\text {R201, }}$	RESISTOR-4.7 mez
-URD	R211	RESISTOR-1300 ohms,
URD-1062	R265	

at. No .	Symbol	Dewcription	Cat. No.	Symbol	Dexcription	
-URD-1064	R208	1/3				
-URD. 1073	R216	REsISTOM				
RD-1081	R409, 410					
D. 1	R303,					
REE049	R305	RESISTOR-1000 ohmm, 1 w, carbon				
RE.093	${ }^{\text {Re3 }}$	RESISTOR-1500 ohmm, 1 \%, cerb bon				
-URE-071	${ }_{\text {R22 }}{ }^{\mathrm{R} 32}$	RESISTOR-5600 ohms, 1 w., carbon				
URE-073	R204	RESISTOR ${ }_{\text {bon }}$-10,000				
*URE-081	R352	RESISTOR-22,000 ohm				
-URE 085	R367	RESISTOR-33,000 ohms,	*RCW-3026			
087	R218	RESIS				
RE. 093	R363	RESISTOR-68,000 ohms, ! w.,		$\begin{aligned} & \text { 224, } 225 \\ & \mathrm{C}_{2030} \mathrm{C}_{2} 27,230 \\ & \mathrm{C}_{2} 21,230 \\ & \mathrm{C}_{206} \end{aligned}$	CAPACITOR 680 mmf , ceramic channel trap ORD-FOT	
RE-101	${ }^{\text {R 3 39, }} 31300$	RESISTOR-150,000 ohm	*RCW-3027 *RCY-048 *RCY. 05 *RCY-06			
	${ }^{31}{ }^{31,32}$					
RE-1040	R376	ISTOR-470,000 ohms, 1				
URE 1040	R424	TOR-430 ohms $ 5 \%$, 1	RDE-077 *RDE. 078RDK. 159		channel trap OVERIAY Luning control - Metal Mask	
JRE. 1047	R425, 42	RESISTOR-820 ohms $=5{ }^{\circ} \%$, 1		-	ESCUTCHEON and TRAP DOOR KNOB-Fawn, Models 16T2, 16C111 (Brightness and Vertical Hoid)	
*URE-1066	R212, 21		*RDK-168			
*URF.045	R2	$\mathrm{Re}^{\text {Res }}$	*RDK-188		K NOB (Brighess and Vertical Hoid) KNOB-Brightne sa and Vertical Models 16T1, $16 \mathrm{Cl} 110,16 \mathrm{C} 115{ }^{\text {M }}$	
*URF.079	${ }_{\text {R270 }}^{\text {R22 }}$	RESISTOR-4700 ohms, ${ }^{\text {R }}$ / w., carb	*RDK-189		KNOB-Channe KNOB-VOIUme and ON-OFF, Mod els 16T 2, 16 C 111	
*URF. 083	R428	RESISTOR-27,000 ohms, 2 w., car	*RDK-190*RDK-191*RDK *RDK-192			
1200D7		SPOAKER-Models 16C110, 16C111,			els $16 \mathrm{~T} 2,16 \mathrm{C} 11$ KNOB-Tuning control knob KNOB Picture control KNOB-Channel selector, Models	
*S527D7		SPEAKER-Models 16T1, 16T2	*RDK-193		KNOB-Channel selector, Models KNOB- $16 \mathrm{Cl} 110,16 \mathrm{C} 115 \mathrm{~S}$. OFF , Models $16 \mathrm{~T} 1,16 \mathrm{C} 110,16 \mathrm{C} 115$	
SPECIALIZED		REPLACEMENT PARTS	*RDK-197 RDM-022 RDW-040			
		KNOB 16 Focus and Horizontal Hold MASK- Speaker mask for Models $16 \mathrm{~T} 1,16 \mathrm{~T} 2$ $161,16{ }^{2}$				
*RAB. 117				${ }_{\text {BACK}}^{16 \mathrm{~T} 2} \mathbf{- C a b i n e t ~ b a c k , ~ M o d e l s ~} 16 \mathrm{~T} 1$,		
*RAB.118		K-Cabinet back, Models 16C-	RDW-040 *REI-014 *RER-008		SAFETY GLASS CORE-Brass screw for L210, L217 CORE-Iron core for L254 RECTIFIER-Selenium, 350 ma .	
AB.119		BaCk Cabinet back, Model 16 C				
RAO-031			$\begin{aligned} & \text { *RET-003 } \\ & \text { *RHC-0.044 } \\ & \text { *RHG-004 } \end{aligned}$	X451,452	RECTIFIER-Selenium, 350 ma . ON TRAP CLIP-For mounting electrolytic	
RAV-116					GROMMET- in. chassis GROMMET-Shock mountin RING-Centering ring for shipping pix tube	
RAV. 117			*RHM-066			
Rav. 118		Safety glass and rubber chan	*RHS ${ }^{\text {R }}$ - 045		pix tubeSCREadless, L223, L205, L208SCREW-Headess, L219, L220,L221,	
Rav-119		lay safety lass and rubber chan	*RII-021 *RII-023 *RI- *RII-026			
*RCC-059	C422				INSULATOR-Yoke INSULATOR-Grommet in high voltage shieldINSULATOR	
*RCC-	C308	CAPACITOR-. 025 mfd., 600				
		${ }_{\text {Paper }}{ }^{\text {Pa }}$ (ITOR-. 05 mf ., 600 v : Pap			INSULATOR-For mounting rectifier INSULATOR-For interlock SUPPORT--Power cord CONNECTOR-High voltage anode	
${ }_{\text {RCC. }} \mathrm{RCC} 104$	${ }_{\text {c3306 }}^{\text {C373 }}$					
	(${ }^{\text {C375 }} \mathrm{C} 410$					
*RCE-092	C3	CAPACITOR-30 mf., 450 v., elec	*RJJ-007	1451	 male rivets to chassis	
			*RJS-003		male rivets to chassis SOCKET--Octal tube socket for V11, V9, V20 Octal tube socket for V11,	
CE-11			${ }^{*}$ *RJSS-026 ${ }^{*}$ *RJS-085 ${ }^{*} \mathrm{RJS}$. 132			
E-111		ACITOR -125 mf ., 350		SOCKET Tube socket, octal, for V21 SOCKET-Tube socket for V14 SOCKET-Tube socket, 9 -pin, for V3SOCKET-Tube socket, 7 -pin, for V12, V19		
E. 112	C453	CAPACITOR-80 mf., 300				
*RCE. 115			JS-133			
					SOCKET-Tube socket, 7 -pin, shieldsod. for V5, V6, V18 SOCKET-Thock mounting, V13 SOCKET-Tube socket, 9 -pin, miniature for V10 	
	${ }_{\text {c }}$		*RJS-1			
RCN. 019	C3	CAPACITOR-. 0022 mf m, 1000	${ }_{*}^{*}{ }_{*}^{\text {RJJJS-139 }}$			
RCN-023	C376	CAPACITOR-500 mmf. $20,000 \mathrm{v}$	$\begin{aligned} & { }^{} \text { RJS-1 } 139 \\ & { }^{\text {RJJS-14 }} \end{aligned}$			
*RCN-029 *RCN-03	${ }_{\text {C365, }} \mathbf{C 2 6 5}$	CAPACITOR-9 mmf., ilver mica	$\begin{aligned} & * \text { RJS } 144 \\ & *: R J X-040 \end{aligned}$			
*RCN-034	C362	CAPACITOR-3900 mmf., $\quad \pm 10 \%$			RF MEAD-END-RF tunct COAL-Horizontal oacillator COLL-Oscilltator, for Channel \#2COIL_Oscilator, for Channel COIL-Oscillator, for Channel \#3, COIL-Oscillator, for Channel COLLOOscillator, for Channel \#6 COIL-Width control Channel \#13 COIL-Horizontal linearity	
			${ }^{*}$ *RLC- ${ }^{\text {Re96 }}$			
*RCU-290	c3			${ }_{12}{ }^{2}$		
*RCU-294	C360	TOR-680 mmf, ± 20		${ }_{\text {L223 }}^{\mathrm{L}_{2}^{222}}$		
				${ }^{2} 2253$		
Cu.299		CAPACITOR - 186 mmf ., mica	*RLD.	351, 301		

at. No.	Symbol	Description
${ }^{\text {*RLF. }}$ RLP 24	${ }^{2} 256$	CHOKE COIL-RF coil
*RLIT-003	${ }^{21218}$	COIL-Cathode
${ }^{*}$ RLILI 072	L206, 212	Coil-Channel \#4, 19t RF, Chann
RLI.085	L402	COIL-Choke coil
*RLI-093	L259, T401, R262, 267	COIL-Video choke
	L_{251}	COIL-2nd video IF coil
*RLLI.097	${ }^{\text {T }}$	COLL-First udio 1 F
${ }^{\text {-RLIL-100 }}$	Leren	TRAP-4.5 mc video trap
*RLI-106	L^{202}	COLL-Choke coil
*RLI-108	${ }^{2} 261$	CHOKE-Video cho
*RLI-110	L252, 253	Coil- IF coil
*RLI-114	${ }_{\text {L203 }}$	Coil-Trap
*RLI-116	${ }^{\text {L } 2088}$	COIL-Channel \#6.
${ }^{\text {R RLI-118 }}$	${ }_{\text {L213 }}$	COIL-Channel \# 4, 2nd RF
*RL	11	COIL-Chann
${ }^{*}$ RLLI-121 ${ }^{120}$	17	
${ }_{*}{ }^{\text {RLLIT-122 }}$	L452, 453.	COIL-Heater choke
*RLP-016	${ }^{\text {L226. } 227 .}$	COIL-Converter plate
*RLX-029	L254, 255	VIdeo detector assembl
	C265, ${ }^{\text {c } 267}$	
$\begin{aligned} & \text { *RMC-017 } \\ & \text { RMM-147 } \end{aligned}$		CLIP- 3 in. for electrolytic TUBE CUSHION, under pix tube, 2
8		TUBE CUuired
RMM-149		TUBE CUSHION, top pix tube under
*RMS-130		SPRING-Tension spring for tuning
		Pictur
RMSS.220		CLIP - Spring grounding clip contacts
RMU.055		EXTENSIION SHAFT-For L352 and
M		SHAFT-Tubular shaft on switch
*RMX-169		PULLEY AND mub assembly -
		FOTENTIOMETER-3 meg, height
RRC-127	R311	POTENTIOMETER--Vertical
RRC-128	R412, 258	POTENTIOMETER-Dual 500 K, and ${ }^{2}$ meg; Volun
RRC-130	R421, 276	POTENTIOMETER-Dual, 100 K ,
RRC-13		POTENTIOMMETER-Das, 500 K ,
RRC-136	R305,	POTENTIOMETER Dual, 100K,
RRC-140	R369	POTENTIOMETER-25K, Horizon-
RRW-045	R427	RESISTOR 1700 ohms, 5 w., w.w.
RRW-048	R451	RESISTOR 4.6 ohms, ${ }^{\text {P }}$
RRW-051	R454	RESISTOR-20 ohms, Giobar tem-
RRW-052	R382	RESISTOR - 10.5 K , Globar voltage
		RESISTOR ${ }^{\text {senitive resilitor }} \mathbf{4 0 0 0}$ ohms, 7 w
002		CUT-OUT-Therma
${ }^{\text {RRSWD.066 }}$	${ }_{\text {T }}$	TRANSORMER - Ratio detector
L-096	L451	REACTOR-Filter
RTO.064	T301	TRANSFORMER-Vertical sweep output
*RTO-081	T403	TRANSFORMER-Audio output for
RTO.085		TRANSFORMER-Horizontal sweep
	373,	output
O-086	T403	TRANSFORMER-Audio output for Models $10 \mathrm{C} 110,16 \mathrm{C} 111,16 \mathrm{C} 115$
RWL-019	1452	POWER CORD AND FEMALE
RWL.021	1452	WER CORD AND FEMALE
		PLUG-For 16C110, 16C111, 16C-
RWX-025		SOCKET-Picture tube socket as-

John F. Rider

GENERAL DISCUSSION OF THE ELECTUNER DESIGN

The Electuner Model 45 is a capacity tuned TV Tuner covering Channels 2 through 6 in the first (Lo) range and 7 through 13 in a second (Hi) range. Continuous tuning is provided in each range. In order to facilitate tuning, a certain amount of additional coverage above the highest and below the lowest tunable channel in each range is provided. The extra coverage is referred to as "overtravel" in this text. A two position switch, actuated by a knob concentric with the fine tuning shaft, is used to switch all circuits and will be referred to as the "Range Switch".

Two tubes are employed as follows:

\[

\]

A four section 180° rotation gang condenser is used for tuning. A mechanical drive ratio of approximately 5 to l is provided between the main tuning shaft and the gang condenser shaft.
The following circuits are tuned in both ranges: Antenna, RF Plate, Mixer Grid, and the Oscillator Plate - Grid circuit. A spiit stator design is incorporated in the gang condenser section used for tuning the oscillator. All circuits are designed to track continuously through both the Hi and Lo ranges.
The overall RF response from the antenna terminals to the mixer grid is determined in each range by the combined selectivities of a single tuned antenna circuit and a double tuned overcoupled inter-stage transformer circuit as shown in the sketches below.

The antenna stage transformer consists of a tuned secondary suitably coupled to a primary designed to match a 300 ohm antenna transmission line. In the Lo range, the entire secondary inductance is tuned. In the Hi range, by means of a tap, only a part of the secondary inductance is tuned in conjunction with a suitable inductance shunt. The primary is common to both the Hi and Lo ranges. An electrostatic shield is provided between the primary and secondar y to minimize the asymmetrical capacitance coupling which generally impairs the balance to unbalance response of an antenna input system.

Two overcoupled double-tuned interstage transformers are provided, one for the Lo range, and a second for the Hi range. In each transformer low side mutual inductance is employed to provide the coupling necessary to obtain the required bandwidth. A 0.68 MMF high side coupling condenser is employed to oppose the low side mutual inductive coupling and thereby minimize veriations of bandwidth as a function of operation frequency.

In the Model 45B, which employs a GCB6 RF Amplifier, a slight amount of inductance is intentionally introduced in series with the screen bypass capacitor so as to partially neutralize the input grid conductance in the
high channels, thereby reducing the loading on the antenna transformer secondary. The inductance takes the form of about $3 / 8^{n}$ of wire in each connecting lead of the bypass condenser. Because of the higher input resistance of the grid of the 6AK5, neutralization of input conductance
is not required in the Model 45 A .

The Model 45 A differs principally from the Model 45 B in Hi range performance. The use of the 6 AKS in the Model 45 A results in an increased gain and lower noise factor in channels $7-13$. However, because of the difference in grid loading and interelectrode capacities the tubes are not GCB6 or vice versa will Cab PF tuning and in and RF tuning and in some instances may produce instability in the RF amplifier section.

The oscillator stage utilizes one triode section of the $6 J 6$ in a stable low drift Colpitts circuit. Circuit parameters have been chosen to guaranter satisfactory operation over a wide range of operating voltages. Sufficient oscillator injection is provided to the mixer stage to accomodate power line voltage fluctuations and variations in $+B$ caused by $A G C$ action in normal receiver applications. The oscillator operates above the signal frequency in both ranges.

The mixer circuit uses the second triode section of the 5 J 6 , its grid is tuned by a section of the gang condenser. Its plate circuit may feed either a series IF output coil or some form of double tuned IF transformer, depending on the receiver manufacturer's requirements.

Various sound and picture IF frequencies are used in both the 20 Mc and 40 Mc regions and in every instance the Electuner is tracked to the required IF of the receiver design. For any installation, the receiver manufacturer's service notes should be consulted for the applicable intermediate frequencies, inasmuch as both tracking and frequency coverage are involved.

Either a shunt fed heater system or a series heater connection may be used. Tuners employing either system are not strictly interchangeable since some modification in the heater filter system is generally involved and internal connections which are not readily accessible in the final assembly are encountered.

The normally recommended $B+$ voltage is 125 V . The actual operating value may vary between 90 and 160 volts depending on the receiver application With a B+ voltage of 125 volts and -1 volt on the AGC terminals of the tuner a $+B$ drain of approximately 20 milliamperes is normal.
In accordance with Figure 2, the following tuning adjustments ara available at the top of the tuner chassis:
Antenna trimmer; RF amplifier plate trimmer; mixer grid trimmer; oscillator grid trimmer; oscillator plate trimmer; and IF adjustments. The recommended use of each of the adjustments is discussed in the alignment procedure outines in this text.

EQUIPMENT REQUIRED FOR ALIGNMENT
(1) Sweep Generator
(2) Oscilloscope
(5) Pix and Sound IF Marker Generator
(3) Electronic Voltmeter
(6) Bias supply 2-1.5 volt Dry Cells (7) IN 34 Crystal Detector
(1) Sweep Generator similar to RCA type WR59A, covering frequencies of 54 to 88 Mc , and 174 to 216 Mc with a minimum sweep of 10 Mc in any channel, and a 300 ohm balanced output at least. 1 volt line to line
(2) Oscilloscope equivalent in vertical deflection sensitivity to DuMont type 208-B
(3) Electronic voltmeter similar to the Voltohmyst.
(4) RF marker generator similar to RCA type WR-39A. Pix and sound IF marker generator may be crystal controlly whatever
lators in the vicinity of 25.75 Mc and 21.25 Mc (actually frequency receiver manufacturer lists as the correct pix and sound IF frequency for the particular set in question). As alternates, either a second $W R-39-A$ or an all wave signal generator of suitable accuracy may be used to supply IF markers.

EQUIPMENT SET-UP See Fig. I

DISCUSSION OF EQUIPMENT SET-UP

In reference to figure l, the following precautions should be taken in making the equipment set-up.
(I) The detector circuit should be so constructed as to maintain leads as short as possible. Connection of the detector circuit to the lst IF grid terminal (See Fig. l for location) should also be made with short leads.
(2) Shielded leads should be used in making the following connections to reduce hum and synchronous voltage pick-up.
(A) The lead for observation of the RF response from the scope isolating resistor (10 K ohms located at the tuner "looker point") to the RF output switch position of the scope switch.
(B) The connection from the IF detector circuit output to the IF switch position of the scope switch.
(C) The connection from the sweep generator to the horizontal input of the scope. (Use externally generated sweep instead of internal oscilloscope sweep in order to obtain synchronization).
(3) The single pole double throw "Scope Switch" should be located at the vertical input terminals of the scope. This switching arrangement will permit observation of either the IF response or the overall RF response. The aforementioned positions will be referred to in subsequent text as the "IF" and "RF" positions respectively.
(4) The marker generator coupling condenser should be as small a value as possible to prevent any effect on tuner response, but must be large enough to permit easy observation of markers on either the if response or overall RF response. (Approximately 2 or 3 MMF should be satisfactory in most cases.
(5) For all tuner alignment tests which are outlined in this text, remove the second IF amplifier tube from the receiver, or bypass its plate circuit with approximately 1000 MMF to prevent coupling back from the receiver IF system.
(6) In all of the following tests the oscilloscope vertical gain should be as close to maximum gain as possible, consistent with hum and synchronous voltage interference limitations. This precaution will allow the use of low levels from RF Sweep Generator and increase the visibility of $I F$ and $R F$ markers.

PROCEDURE FOR OSC ILLATOR ALIGNMENT OVERTRAVEL CHART FOR OSCILLATOR COVERAGE

CHANNEL	OVERTRAVEL	MARKER FREQ. MC	OSC END FREQ. MC
13	$+4.5 \mathrm{Mc}$	215.75	(215.75 +Pix IF)
7	-4.5 Mc	175.25	(175.25 + Sound IF)
6	$+1.5 \mathrm{Mc}$	84.75	($34.75+91 \times$ IF)
2	-3.0 Mc	56.75	(56.75 +Sound IF)

REFERENCE DATA - TV ALLOCATIONS

CHANNEL NO.:	PICTURE CARRIER MC	SOUND CARRIER MC
2	55.25	59.75
3	01.25	65.75
4	67.25	71.75
5	77.25	81.75
6	83.25	87.75
7	175.25	179.75
8	181.25	185.75
9	187.25	191.75
10	193.25	197.75
11	199.25	203.75
12	205.25	209.75
13	211.25	215.75

The design of all Electuners is such that the oscillator will automatically track, separated by IF, with the tuning indicator dial calibration in each range when the total oscillator frequency range is adjusted to tune the channel assignments of $7-13$ and $2-6$ plus and minus the additional frequency coverages listed in the overtravel chart above. In other words, it is only necessary to set the oscillator to prescribed end points in each tuning range for proper tuning.

In making adjustments of oscillator tuning it should be noted that any change in the setting of the Hi range oscillator trimmer will also af fect the Lo range oscillator tuning. However, because of the switching arrangements, adjustments of the Lo range oscillator trimmer will not affect the Hi range oscillator frequency adjustment.
A step by step outline of oscillator adjustments based on an equipment set up as shown in Fig. I and related to the tuning elements illustrated In Fig. 2 follows. For purposes of illustration only a sound IF of 21.25 plication consult the set mand are assumed. For any actual receiver application consult the set manufacturer's service notes for the exact IF's.

HI RANGE OSCILLATOR ALIGNMENT

It must be noted that there is a slight shift of the oscillator frequency in the Hi range only when the bottom cover shield is removed from the tuner end of the Hi range with the cover off a correctly adjusted at the low end of the hi range with the cover off, a frequency shift of about .l to place. Therefore, final checks must ber when the cover is mounted place.
(1) Align oscillator frequency at low end of Hi range as follows:

Remove bottom cover. Turn tuner range switch to Hi range. Rotate variable condenser of tuner to maximum capacity (counter clockwise rotation of fine tuning knob). Turn sweep generator to channel 7. Adjust sweep wet to maximum. Feed in an RF marker generator requency marker (l.e. 21.25 Mc). Using a non-metallic alignment tool (bakelite or plastic) vary the spacing of the turns of the Hi range oscill aror coil (See Fig.2) so as to make the RF and IF markers coincide on the IF res ponse curve viewed on the oscilloscope. Replace tuner bottom cover and note any frequency shift between merkers. Remove tuner cover and make a compensating adjustment if necessary, and repeat until proper oscillator setting is obtained. Increasing the separation between turns will raise the oscillator frequency. Conversely pushing turns closer together will lower the oscillator frequency.

OJohn F. Rider

(2) Align Oscillator frequency at high end of Hi range as follows:

With the bottom cover in place, rotate the tuner variable condenser to minimum capacity (maximum clockwise rotation at the fine tuning knob). Turn sweep generator to channel 13. Feed in an RF marker generator freq uency of 215.75 Mc and an IF picture marker (1.e. 25.75 Mc). Adjust the oscillator grid trimmer (Hi range Osc. trimmor Fig.2) to make the RF and IF markers coincide on the IF response curve viewed on the oscilloscope.
(3) Repeat steps (1) and (2) until proper end frequencies are reached at maximum and minimum capacity settings of the variable condenser. This completes the Hi range oscillator tuning.

LO RANGE OSCILLATOR ALIGNMENT

(4) Align oscillator frequency at low end of Lo range as follows:

Remove bottom cover of tuner and turn the range switch to Lo range setting. Rotate variable condenser of tuner to maximum capacity (max. counter clockwise rotation of fine tuning knob). Turn sweep generator to channel 2 . Feed in an RF marker generator frequency of 56.75 Mc and a vary the spacing between turns of the Lo range oscillator coil (See Fig. 2)
 oscilloscope.
(5) Align oscillator frequency at high end of Lo range as follows:

Rotate the tuner variable condenser to minimum capacity (maximum clockwise rotation of the fine tuning knob). Turn the sweep generator to channel 6. Feed in an RF marker generator frequency of 84.35 Mc and an IF picture marker (l.e. 25.75 Mc). Adjust the oscillator plate trimmer (Lo ranze osc. trimmer - Fig. 2) to make the RF and IF markers coincide on the IF response as viewed on the oscilloscope.
(6) Replace cover on tuner and recheck alignment of steps (4) and (5) making slight adjustments if necessary.
(7) Recheck all four oscillator frequencies as per steps (1), (2), (4), and (5) for final recheck.

PROCEDURE FOR RF PASSBAND ALIGNMENT

Since continuous tracking over each entire range (fil and Lo) is functional to the Electuner design, the tracking problem is simplified to the extend that alignment of only four channels, that is 2 and 6 in the Lo range, and 7 and 13 in the $H 1$ range automatically results in alignment of all channels from 2-13 inclusive.

ACCEPTABLE RF PASS BANDS AND TRACKING
Before undertaking RF pass band alignment, it is advisable to check oscillator coverage as per steps (1) through (7).

In order to check alignment of the RF pass bands, an equipment set up as per Fig. 1 is required. Refer to Fig. 2 for location of the various $R F$ coils and trimmer capacitors mentioned in the following alignment procedure.

In checking RF pass bands it is important that all extra capacity at the antenna input terminals be kept at a minimum. Short leads from the sweep generator are necessary and if any form of clips are used, the clips shou be separated as much as possible. The sweep generator should be fed in directly at the antenna terminals of the tuner, and the antenna feed line from the rear of the receiver disconnected from the tuner.

(8) Align Channel 7 RF Pass Band as follows:

Remove the tuner bottom cover and with the tuner range switch set for $\mathrm{H} i$ range reception turn the fine tining knot so that the pointer is at channel 7 on the dial calibration. Set the sweep generator to channel 7 . Feed in a channel 7 RF picture marker signal of 175.25 Mc and an IF picture marker (l.e. 25.75 Mc). With the scope switch (Fig. l) at IF output adjust the fine tuning knob so that the RF and IF markers coincide on the IF response as viewed on the oscilloscope. Leave the fine tuning in the latter setting for the remainder of channel 7 RF pass band alignment. Switch the scope switch to the RF output position. If the RF response differs noticeably from those illustrated under the heading of acceptable RF passbands shown above, proceed as follows:-Adjust the inductance of the Hi range RF plate coil (See Fig. 2) and then the Hi range mixer grid coil for proper bandwidth and the Hi range antenna coil for symmetry. In determining bandwidth, it will be necessary to adjust the RF marker genrator alternately between the channel 7 picture and sound carrier frequencies 175.25 Mc and 179.75 Mc respectively. Proper alignment of the RF coils is attained when a slight variation of the inductance of either the RF plate coll or mixer grid coll results in a requency shift of the entire both response peaks to rock clight is staggered away from the is staggered away from the center of the passband. The inductance of the bress studs. Pushing any coil on to the stud will decrease its inductand (raise the frequency) and conversely pull increses its inductance. The bendwidth of the response in chennel terstage transformer is controlled by the the dressin of the returns of the RF plate coil and mixer orid coil with respect dow in the RF shield plate. If the ground ends of both coils are pulled out so as to cross the window, the cupling incresses ond a greater aration or peaks is encountered. For maximum gain the bandwidth should be adjusted so that the response is no greater than required to keep the sound and picture carrier frequencies on the peaks of the overall RF response. After alignment replace the tuner botom cover and observe RF pass band. It may be necessary to remove the cover and make a slight com pensating adjustment of the coils.
(9) Align Channel 13 RF Pass Band as follows

With the bottom cover on the tuner, turn the fine tuning knob so that the pointer falls on channel 13 on the dial. Turn the sweep generator IF sound marker. (l.e. 21.25 Mc). With the scope switch (Fig.l) at IF output, adjust the fine tuning knob so that the RF and IF markers coin cide on the IF response as viewed on the scope. Leave the fine tuning in the latter setting for the rest of the RF passband alignment procedure which follows. Switch the scope to RF output position. If the RF response differs noticeably from the acceptable RF passbands shown, proceed as follows:

Adjust the antenna trimmer, the RF plate trimmer, and mixer grid trimmer for proper bandpass and maximum amplitude of response. Normally the antenna trimmer oporates in the middle of its range; the RF plate operates toward maximum capscity and the mixer grid trimmer operates toward its minimum capacity setting (least screw engagement). In determining band width, it will be necessary to shift the RF marker generator back and forth between the sound and picture carrier frequencies of channel 13 that is, 215.75 Mc and 211.25 Mc .
(10) After aligning the RF channel 13 with the bottom cover on the tuner, return to channel 7 and examine its pass band, as per step (8). A slight compensating change in inductance may be necessary if the trimmer settings were changed in the adjus Repeat the checks outined in steps (8) and Hi rane PF Hi range RF pass bands are obtained.

(11) Align Channel 2 RF Passband as follows:

With the tuner range switch set for Lo range reception, turn the fine tuning knob so that the pointer is at channel 2 according to the dial calibration. Set the sweep generator to channel 2. Feed in an RF marker signal of 59.75 Mc and an IF sound marker (l.e. 21.25 Mc). With the scope switch (Fig. 1) at IF output, adjust the fine tuning knob so that the RF and IF markers coincide on the IF response as viewed on the oscil Channel 2 RF passbe tuning in the latter setting for the remainder ou put position. If the RF passband does not appear satisfactory, in accordance with the acceptable RF passbands shown, proceed as follows:

Alternate the RF marker generator between channel 2 sound and picture carrier frequencies, that is 59.75 Mc and 55.25 Mc while performing the alignment of the RF so as to simultaneously determine proper bandwidth and tuning. The Lo range RF plate, mixer grid. and antenna transformer secondary inductance are to be adjusted by spacing their respective turns until the desired passband is obtained. The bandwidth of the in terstage overcoupled circuit may be altered by the Lo range mutual coil mixer fin. At proper alignment, slight variations of the RF plate or variations of the antenna transformer secondary inductance should cause a rocking of both peaks of the overall response. If only one peak of the response is affected by a slight change in antenna secondary inductance, the antenna is staggered away from the center of the double tuned circuit response. As regards to the Lo range mutual coil, squeezing the turns together will increase inductence and brosden the response, spacing turns apart will narrow the response. After alignment replace bottom cover and note if any compensating adjustment is necessary.

(12) Align Channel 6 RF Pass Band as follows:

With the bottom cover of the tuner in place, turn the fine tuning knob so that the pointer falls on channel 6 on the dial. Turn the sweep generator to channel 6 . Feed in an RF marker of 83.25 Mc and a picture IF marker (l.e. 25.75 Mc). With the scope switch (fig.l) at IF output, adjust the
fine tuning knob so that the RF and IF markers coincide on the IF response as viewed on the oscilloscope. Leave the tuning at the latter setting as viewed on the oscilloscope. Leave the tuning at the latter setting RF output position. If the RF response is not satisfactory as per the illustrations, proceed as follows

Alternate the RF marker generator between channel 6 sound and picture carrier frequencies, that is 87.75 Mc and 83.25 Mc as required while per forming the alignment so as to simultand
ance of the Lo range RF plate and mixer grid coils and antenna secondary bearing in mind that Channel 2 response will be altered. Therefore, keep the changes at a minimum.
(13) Return to channel 2 and examine its passband as per step (11) and if tiv is excessive, select a compromise tuning of the Lo range coils which gives satisfactory passbands in both channels 2 and 6 with the tuner bot-
tom cover in place. tom cover in place.

SERV ICE NOTES

(I) Tube replacement

In replacing defective tubes in the Electuner, use the same tube type as called for by the receiver manufacturer's Service Notes. Do not attemp to substitute alternate pentode types such as the 6AC5, 6BC5, or 6AK5 for the type 6CB6 RF amplifier in the Model 45-B. Similarly, in the Model $45-\mathrm{A}$, use only type 6 AK 5 tubes in the RF amplifier socket.
In general, RF amplifier tubes may be replaced by the same type without the need of tuner RF realignment. An occasional extreme limit tube may be encountered which will call for a minor correction of the antenna trimmer setting. However, in the latter event, it will undoubtedly be found more expedient to select another tube and avoid the necessity of

In replacing type 6JU tubes, check for injection voltage at the "Looker Point (Fig.l) to determine that adequate oscillator injection voltage is provided to the mixer grid. Use a Voltohmyst or equivalent vacuum Some variations of tube capacity will be encountered from one 6J6 to another. The capacity variations will affect the oscillator cove tracking to some extent. If after replacement of the $\sigma \mathrm{J} 6$ on air age and the receiver indicates that the end channels $2,6,7$ and 13 to be within the tuning range and in agreement with the dial calibration, no oscillator adiustments are necessary. Minor changes of oscillator tuning range due to tube capacity variation may be accommodated by the oscillator grid trimmer. Adjustment should be made with the receiver tuned in the vicinity of channel 13.
(2) Replacement of Parts.

Any component replacement should be made with parts of equivalent physical size and value within the specified tolerance. All Hi rance series pads are specified to be within $+5 \%$ of published values. Replacement of any component in frequency determining circuits should be followed with an electrical check of oscillator coverage and RF alignment as outlined in these notes.

The pang condenser is closely tracked from section to section and also to a prescribed capacity vs. rotation curve. Any attempt to alter the capacity to favor any one channel will disturb other channels in both ranges. In working inside the tuner, every caution should be exercised to avoid bending the gang condenser plates.

(3) Drive Cord Replacement.

Figure 3 illustrates the details of the drive cord arrangement. Details of cord length, stringing and fastening are shown. The details must be The ${ }^{2}$ The cord should be of the fibre glass core, nylon braid variety.
© John F. Rider

© John F. Rider

©John F. Rider

© John F. Rider

VERTICAL - CENTERING, - LINEARITY, AND HEIGHT ADJUSTMENTS HEICHT CONTROL MISADJUSTMENT Figure 7 1. Set the HEIGHT VERTICAL CENTERING MISADJUSTMENT centers in the vertical dimension of the kinescope escutcheon. A minor adjustment of the focus coil position may be required to recenter the pattern. VERTICAL LINEARITY CONTROL MISADJUSTMENT 2. Set the VERTICAL LINEARITYcontrol for a symmetrical test pattern in the vertical dimension. A slight readjustment of the HEIGHT control may be required when making this adjustment. Note - The sequence of 'non-operating' control adjustments outlined above is suggested as a convenient method of approach and not an arbitrary procedure. Variations of the procedure is permitted to obtain the final result. dISMANTLING FOR KINESCOPE REPLACEMENT OR ALIGNMENT ADJUSTMENTS 1. Remove the three front panel control knobs by pulling them straight from their shafts. The dual control knob must be removed in two pieces, removing the center unit first. 2. Remove the back cover disconnecting the cable connector for the phono socket and switch mounted on the back cover. Note that the line cord and half of the interlock connector come along with the back cover. 3. Disconnect the speaker and remove the two wood screws holding the antenna terminal strip bracket to the cabinet. Note that for the table models the speaker will have to be removed to clear the picture tube.	4. Remove the five chassis bolts holding the receiver chassis in the cabinet and slide the entire assembly from the cabinet. The KINESCOPE is now accessible for replacement or adjustment. REMOVING THE KINESCOPE Refer to the warning KINESCOPE HANDLING PRECAUTIONS. Read all warning notices on both tube and carton. Follow the dismantling instructions above to expose the KINESCOPE and proceed as follows: 1. Disconnect the KINESCOPE SOCKET at the base of the kinescope. 2. Disconnect the high voltage anode lead. 3. Slip the ION TRAP from the neck of the tube past the kinescope base connector. 4. Measure the distance from the front edge of the steel band to the face of the tube. Keep this dimension handy for installation of a new tube. 5. Remove the steel band at the front rim of the kinescope and carefully slip the neck of the kinescope out of the FOC US COIL and DEFLECTION YOKE. If the tube fails to slip out smoothly, investigate and remove the cause of the trouble. Do not use, force. Flg. 10. Rinescope mounting detall. INSTALLING AND ADJUSTING THE KINESCOPE 1. Wrap the RUBBER STRIP around the front rim of the kinescope and position the tube so that the znode contrast is located at the left side of the tube as viewed from the screen. 2. Slip the neck of the kinescope through the REAR SUPPORT, DEFLECTION YOKE and FOCUS COIL and seat the tube firmly against the REAR SUPPORT. If it fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube. Check the distance from the face of the tube to the front edge of the steel band. Refer to the measurement made in step 3 above. If this dimension is off; loosen the two REAR SUPPORT MTG. screws, position the tube correctly and fasten the steel band firmly about the rim of the tube. 3. The REAR SUPPORT must seat firmly against the flare of the tube and be securely anchored in place by the two REAR SUPPORT MTG. screws. Check the SPRING CONTACT grounding the outer coating of the kinescope tube. A high potential is developed on the outer coating of the tube if this contact is faulty.	4. The DEFLECTION YOKE must seat firmly against the flare of the kinescope. Check by loosening the single DEFLEC- TION YOKE ADJ. screw and pushing the DEFLECTION YOKE forward as far as it will go. Take up the slack in the screw temporarily to hold the coil in place. 5. Slip the ION TRAP over the neck of the tube; the arrow points toward the face of the tube. 6. Reconnect the KINESCOPE SOCKET and anode connector and turn on the receiver 7. After allowing a few minutes for warm up, turn up the BRIGHTNESS control and set the ION TRAP for maximum raster brilliance, backing off the brightness control adjustment as the maximum point is approached. The ION TRAP must be rotated about the axis of the tube as well as shifted along the neck of the tube to obtain the proper setting. The arrow on the ion trap will generally point at the HV anode connector when properly positioned as far as rotation is concerned, hence a rough setting may be obtained immediately with this type of trap. With the BRIGHTNESS control set for slightly above average brilliance and the PIC TURE control full counter-clockwise, adjust the FOCUS control until the line structure of the raster is clearly visible and reajust the ION TRAP for maximum raster brilliance. The final touches on this adjustment should be made with the BRIGHTNESS control at the maximum position with which good line focus can be maintained, then back off the setting of the BRIGHTNESS control until the retrace lines disappear. 8. Check the position and appearance of the test pattern. If the test pattern is off center or shadowed at the corners (Electron beam striking the neck of the tube), adjust the three FOCUS COIL ADJ. screws for a centered, evenly illuminated raster. Note that the three spring loaded adjustment screws tilt the focus coil to shift the position of the raster on the face of the kinescope. Do not turn all three screws up tight, use them to tilt the FOCUS COIL only. CAUTION - It is not necessary to tilt the focus coil excessively. Excessive tilt may snap the neck of the kinescope if sufficient force is used. The position of the test pattern may also be shifted by rotating the focus coil. To rotate the coil, loosen the two knurled nuts holding the coil to the mounting plate. Tighten the nuts after the adjustment has been made. 9. If the lines of the raster are not horizontal or square with the escutcheon, loosen the DEFLECTION YOKE ADJ. screw and rotate the DEFLECTION YOKE until this condition is obtained. Tighten the adjustment. 10. Follow the procedure under NON-OPERATING CONTROL ADJUSTMENTS and make any minor adjustments of the FOCUS COIL or DEFLECTION YOKE necessary to obtain the desired results. The final adjustment of the focus coil should leave the test pattern approximately centered. MEASUREMENT OF H.V. POTENTIAL ON KINESCOPE ANODE The second anode potential will be approx. $11,000 \mathrm{~V}$. on a receiver that is functioning properly. Since the high potential for the kinescope anode is obtained from the horizontal output transformer, the "non-operating" control adjustments outlined above must be made or be known to be in proper adjustment before the H.V. measurement will have any meaning. Improper operation of the horizontal sweep circuit or circuit faults in the high voltage filter will generally account for an abnormal anode potential. If the anode potential is low, check the HORIZONTAL DRIVE adjustment outlined above. CAUTION HIGH VOLTAGE Do not use hand held flexible test leads when making the following measurement. Keep the hands clear of the circuit during measurement. A 11 KV . potential exists in this circuit. Exercise all normal high voltage precuations. 1. Connect a 50 -megohm resistor string in series with a 300 microampere meter. Connect the free meter terminal to the chassis and the high side of the resistor string to the anode cap of the kinescope. The connection to the anode cap may be cap of the kinescope. The connection to the anode cap may be	$\begin{aligned} & \text { MODELS } 745,747,743,750, \\ & 751,760,761, \text { Ch. D919120 } \end{aligned}$ made with a fine wire slipped under the connector. Make up the resistor string with 5 -negohm one or two watt resistors to provide a safety factor for voltage breakdown. If 5 -megohm resistors are used, a total of ten will be recuired to obtain the 50 megohms. Make the setup self-supporting and allow adequate clearance between the resistor string and chassis parts to prevent high voltage breakdown. 2. Turn on the receiver and set the BRIGHTNESS and PICTURE controls at minimum, The nicroammeter will read approx. 220 microamperes for $11,000 \mathrm{~V}$, at the kinescope anode. The anode TURE and BRIGHTNESS control at minimumis meter current approx. 200 microamperes) to simulate the kinescope load on the high voltage power supply. I-F AMP. ALIGNMENT PROCEDURE Note - The following alignment adjustments do not require the use of the kinescope tube. It is recommended that the tube be removed if extensive alignment adjustments are to be made. CAUTION - Removal of the kinescope tube exposes the HIGH VOLTAGE anode connector contact. Keep this lead and contact clear of personnel servicing equipment and grounded objects on the service bench. Exercise all normal high voltage precautions while working with the exposed units. EQUIPMENT REQUIRED Signal generator covering 4 mc to 30 mc Electronic voltmeter F.M SOUND CHANNEL I-F ALIGNMENT 1. Connect the low frequency signal generator output across resistor ($\mathrm{R}-118$) in the plate circuit of the 12AU7 VIDEO DET. tube (V-104). This resistor is located at the terminal strip near the tube socket. 2. Connect the electronic voltmeter between pin 7 of the 6AL5 FM DET. tube ($\mathrm{V}-109$) and chassis ground. 3. With the signal generator (unmodulated) set at 4.5 mc . set the 4.5 MC LIMITER GRID ADJ. and FM DET PRI. ADJ. (See Fig. 11) for maximum $d-c$ voltage as measured by the electronic voltmeter. Adjust the limiter grid transformer ($\mathrm{T}-105$) before adjusting the $\mathrm{f}-\mathrm{m}$ detector transfor mer ($\mathrm{T}-108$) primary. Use just enough signal generator output to obtain approximately one volt at the electronic voltmeter. 4. Connect the electronic voltmeter across the 1000 mmf condenser ($C-135$) at the output of the $f-m$ detector stage and adjust the FM DET. SEC. ADJ. of the $f-m$ detector transformer ($\mathrm{T}-108$) for the null. 5. Shift the frequency of the signal generator either side of 4.5 mc and touch up the FM DET. PRI. ADJ. for approximately equal peaks. Use just enough signal generator output to obtain one volt peaks for the best results. 6. After completing the alignment procedure and placing the receiver in operation again, carefully tune in a TV test pattern and adjust the 4.5 MC TRAP ADJ. for maximum vertical wedge definition. This adjustment is located on the under side of the chassis and on the same coil form as the 4.5 MC LIMITER GRID ADJ. shown in Fig. 11. NOTE - The primary adjustment of T-108, the coarse frequency adjustment of $T-111$ and the 4.5 mc trap adjustment may all be made through the holes in the cabinet bottom or chassis mtg. board. I-F AMPLIFIER ALIGNMENT 1. Connect the electronic voltmeter across resistor $\mathrm{R}-118$ in the plate circuit of the 12AU7 VIDEO DET. tube (V-104). This resistor is located on the terminal strip near the tube socket. 2. Couple the high side of the signal generator to the OSC./ MIXER tube ($\mathrm{V}-3$) by removing its shield and slipping a tight fitting tube shield or length of copper braid over the bulb of the tube and connecting the generator lead to it. Connect the ground side of the signal generator to the frame of the tuning unit. 3. Set the channel selector at channel 2.

one or two volts at the electronic volt meter and adjust the four
f amplifier coils, act mamplifier coils, according to the following chart, for maxiReadjust the signal generator output as required to maintain
I-F AMPLIFIER ALIGNMENT CHART

Note; After adjusting the 21.75 Mc Sound (Min. Voltage) stiting of the 1st IF Transformer (T101)
5. Check the i-f amplifier frequency response by tuning he signal generator from 21 mc through 26.25 mc and observ he signal generator output is at the electronic voltmeter. If reading of 1.5 volts at the peak $i-1$ amplifier response, the $d-c$ voltage should not drop below one volt between the two peaks nornalyy obtained with his $1-1$ amplifier. If the response is
unsatisfactory, repeat the procedure or try slight modifications the recommended settings to obtain the desired response Avoid resonating the coils with the iron core at the bottom end

File. 12. I- \boldsymbol{H} amplifier responsp
If a sweep type signal generator and oscilliscope is availabl easier. Check the two carrier i-f responses. 21.75 mc and 26.25 mc . The 21.75 mc response will be approximately 20 d d
below the peak response (Approx. 0.15 volt) and the 2625 below the peak response (Approx. 0.15 volt) and the 26.25 m 0.4 volt). Refer to Fig. 12.

The average i-f amplifier sensitivity, when feeding the sig nal generator output through the receiver as described in ste peak measured at resistor R-118. (Receiver's oscillator oper ating on channel 2.)
The 1st if amp coil ($\mathrm{T}-101$) has two iron cores and must be adjusted from both top and bottom for 24.5 mc . response. Since his is an overcoupled transformer with a broad response, it will be necessary with this method of alighmen core) and then

TUNER ALIGNMENT PROCEDURE

GENERAL

25.6 MC F FAD.
nels 2 through 6 in the first (Lo) range and 7 through 13 in the second ($\mathrm{H} i$) range. Continuous tuning is provided in each range In order to facilitate tuning, a certain amount of additional cov-
erage above the highest and below the lowest tunable channel in each range is provided. The extra coverage is refer red to as
"overtravel" in this text. A two position switch, actuated by a "overtravel" in this text. A two position switch, actuated by a
knob concentric with the fine tuning shaft, is used to switch all circuits and will be referred to in this text as a "Range Switch"

$\begin{aligned} & \text { hree tubes are employed as follows: } \\ & \text { 6AG5 or } 6 \mathrm{BC} 5 * \text { first } \mathrm{r} \text { - } \mathrm{f} \text { amplifier }\end{aligned}$
6AG5 or 6BC5 *second r-f amplifie
${ }^{*}$ Field replacement of r-f amplifier tubes should be with tube manufacturers reduced the transconductance ($G m$) , the of 6AG5 tubes and designated the high Gm version as 6BC5. A reduction in receiver sensitivity will result unless 6BC5 tubes changeable with the 6AG5 tube, so no socket wiring changes are involved.
Athree section gang condenser is used for tuning respec tively the 1 st r-f plate circuit, 2nd r - f plate circuit, and the
The antenna input system consists of two band-pass cirEach antenna band-pass circuit is a double tuned circuit consisting of a center tapped primary coil resonated by a conmer capacitor and suitably coupled to a secondary coil resonated by the first r-f grid input capacity. The antenna circuits Sketches of antenna band-pass characteristics are shown
in Fig. 12.

Channel No.	Channel Freq. (me)	Picture Carrier Freq. (mc)	$\begin{gathered} \text { Sound } \\ \text { Carrier } \\ \text { Freq. (mc) } \end{gathered}$	$\begin{gathered} \text { Receiver } \\ \text { Osc. } \\ \text { Freq. (mc) } \end{gathered}$	$\begin{gathered} \text { Picture } \\ \text { IF } \\ \text { Freq. (mc) } \end{gathered}$	$\begin{gathered} \text { Sound } \\ \text { IF } \\ \text { Freq. }(\mathrm{mc}) \end{gathered}$	$\begin{gathered} \text { Picture IF } \\ \text { less } \\ \text { Sound } I F(\mathrm{mc}) \end{gathered}$
2	54-60	55.25	59.75	81.5	26.25	21.75	4.5
3	60-66	61.25	65.75	87.5	26.25	21.75	4.5
4	66-72	67.25	71.75	93.5	26.25	21.75	4.5
5	76-82	77.25	81.75	103.5	26.25	21.75	4.5
6	82-88	83.25	87.75	109.5	26.25	21.75	4.5
7	174-180	175.25	179.75	201.5	26.25	21.75	4.5
8	180-186	181.25	185.75	207.5	26.25	21.75	4.5
9	186-192	187.25	191.75	213.5	26.25	21.75	4.5
10	192-198	193.25	197.75	219.5	26.25	21.75	4.5
11	198-204	199.25	203.75	225.5	26.25	21.75	4.5
12	204-210	205.25	209.75	231.5	26.25	21.75	4.5
13	210-216	211.25	215.75	237.5	26.25	21.75	4.5
				RESPONSE OF IST RF AMP.			

18. 13. Antenna band pass characteristics

Fig. 16. Typlcal r-f pass tand
ovie r-f amplifiers are used as stagger tuned ampiniers provide a band pass circuit of the proper band width. In both vides the low frequency stagger component, and the plate circuit of the second $r-f$ amplifier provides the high frequency

9281054

The oscillator employs a modified Colpitts circuit with one plate of the 6 J 6 tuned by the third section of the variable
condenser. condenser.
In accor
In accordance with Fig. 19, the following tuning elenients Hi i, at at the top the chassis:
Hin an
trimmers
ist and 2 nd
1st and 2nd r-f plate tuning trimmers

equipment required

Sweep Generator
Oscilloscope
Oscilloscope
Electronic Voltmeter
R-F Marker Generator
Pix I-F Marker Generato
Pix I-F Marker Generator
Bias supply 2-1.5 ovelt Dry Cells
IN

EQUIPMENT SPECIFICATIONS

Sweep Generator similar to RCA type WR59A. covering fre-
quencies of 54 to 88 Mc , and 174 to 216 Mc with a minimum quencies of 54 to 88 Mc , and 174 to 216 Mc with a minimum
swep of 10 Mc in any channel, and a $300-\mathrm{ohm}$ balanced output sweep of 0.1 volt line to line.
Oscilloscope equivalent in vertical deflection sensitivity to
Dumont type 208-B. Dumont type 208-B.
Electronic voltmeter similar to the Voltohynist.
RF maker generator similar to RCA type WR-39-A
Pix IF marker generator may be a crystal controlled oscil-
lator in vicinity of 26.25 Mc . As alternates, either a second lator in vicinity of 26.25 Mc . As alternates, either a second
WR-39-A or an all wave signal generator of suitable accuracy WR-39-A or an all wave signal generator
may be used to supply a picture IF narker

equipment setup

In reference to Fig. 16, the following precautions should be aken in making the equipment set up.
(1) The detector circuit should be so constructed as to
maintain leads as short as possible. Connection of the de maintain leads as short as possible. Connection of the de-
tector circuit to the 1 st $\mathrm{i}-\mathrm{f}$ amplifier grid terminal should alto be made with short leads.
alter in making the following connections to reduce hum and synchronous voltage pick up
(a) The lead for observations of the r-f response from
the scope isolating resistor (10,000 ohmis located at the the scope isolating resistor (10,000 ohns located at the
tuner LOOKER POINT) to the RF output switch position
of the scope switch.
(b) The connection from the i-f detector circuit output The comection from the i-f detector circuit outpul
to the IF switch position of the scope switch. (c) The connection from the sweep generator to the
horizontal input of the scope. (Use the externally genhorizontal input of the scope. (Use the externally generated sweep instead of internal
order to obtain synchronization).
(3) The single pole double throw SCOpF SWTTCH should be located at the vertical input terminals of the scope. This
switching arrangement will permit observation of either the i f response or the overall r-f response. The aforementioned positions will be referred to in subsequent text as the
"IF" and "RF" positions respectively. (4) The marker generator coupling co
small a value as pissible to prevent any effect on tuner re sponse, but must be large enough to permit easy observaresponse. (Approximately 2 or 3 mmff should be satisfac-
tory in most cases).
(5) For all tests which are outlined in this text, re move the
. second $i-f$ amplifier tube to prevent coupling back from the
procedure for oscillator alignment

TV CHANNEL VS. PIX AND SOUND CARRIER		
Channel No.	Picture Carrier (Mc)	Sound Carrier (Mc)
2	55.25	59.75
3	61.25	65.75
4	67.25	71.75
5	77.25	81.75
6	83.25	87.75
7	175.25	179.75
8	189.25	185.75
9	187.25	191.75
10	193.25	197.75
11	199.25	203.75
12	205.25	215.75
13	211.25	

overtravel chart for oscillator coverage

Channel No.	Overtravel	RF Overtravel Marker Frequency
13	+1.5 Mc	Pix carrier $+1.5 \mathrm{Mc}=212.75 \mathrm{Mc}$
7	-2.5 Mc	Pix carrier $-2.5 \mathrm{Mc}=172.75 \mathrm{Mc}$
6	+1.5 Mc	Pix carrier $+1.5 \mathrm{Mc}=84.75 \mathrm{Mc}$
2	-1.0 Mc	Pix carrier $-1.0 \mathrm{Mc}=54.25 \mathrm{Mc}$

In all of the following tests the oscilloscope vertical gain should be as close to maximum gain as possible, consistent with precaution will allow the use of low tevels from the r-f sweep precaution will allow the use of low levels from the $r-1$ sweep
generator and increase the visibility of $i-f$ and r-f markers.
hi band oscillator alignment (1) Turn range switch of the tuner to the Hi band (counter-
clockwise rotation of switch knob). rotate variable condenser to minimum capacity (clockwise rotation of tuning shaft), and adjust sweep generator for channel 13 .
(2) With the scope switch in IF posit
(2) With the scope switch in IF position. adjust scope gain, r-i sweep input level, inject required i-1 picture marker
26.25 Mc), and an r - overtravel marker of 212.75 Mc
(3) Adjust OSC. TRIMMER (Fig. 19) so that picture i-f marker and 212.75 Mc overtravel mar.
response characteristic on the scope.
(4) Remove the two self tapping screws used for fastening the tuner shield and slide shield off until a point is reached where coils on switch are exposed and accessible.
(5) Rotate variable condenser to maximum capacity (coun-
ter-clockwise) and adjust sweep generator for channel 7 .
(6) Inject r-f overtravel marker of 172.75 M
(7) With a bakelite alignment tool, adjust the spacing of the turns of the HI BAND OSC. COIL (Fig. 19) so that Pix 1-1 mar
ker and 172.75 Mc markers coincide. Spreading the coils apart will raise the oscillator frequency; squeezing the coils togethe will lower the frequency. After adjustment, slide shield back into its original position and note any frequency shift of mar
kers. Slide shield off and compensate for the frequency shif by a slight readjustment of the Hi band oscillator coil. Slide shield back into original position and note if markers coincide If they do not, repeat this process until proper adjustment is
(8) Repeat steps 1 to 7 inclusive until correct oscillator coverage of entire Hi band is obtained.
lo band oscillator alignment
(9) Remove tuner shield completely, turn tuner range switct to Lo band position (clockwise), rotate variable condenser to
minimum capacity and adjust sweep generator for channel 6 . (10) Inject Pix i-f marker and r-f overtravel marker of ${ }^{84.75 \mathrm{Mc} \text {. }}$ (11) With
(11) With a bakelite alignment tool, adjust LOW BAND OSC. OIL (Fig. 19) so that the Pix i-f marker and 84.75 Mc marke
(12) Rotate variable condenser to maximum capacity (coun (13) Inject and adjust sweep generator for channel
(13) Inject r -f overtravel marker of 54.25 Mc .
(14) Adjust LOW BAND OSC. SERIES PAD (See Fig. 19) unt Pix i-f marker and 54.25 Mc marker coincide. (15) Repeat steps (9) to (14) inclusive for satisfactory cov-
rage of entire Lo band.

procedure for rf pass band alignment

hl band rf pass bands

(16) Repeat step (1).
(17) Replace tuner shield, set scope switch to i-f position, (18) Inject a Pix i-f marker and a channel 13 Pix r-f marker $211.25 \mathrm{Mc})$.
(19) Rotate tuning shaft until Pix i-f marker and 211.25 Mc marker coincide on the i-f response. Do not disturb this setting of the variable condense
of channel $13 \mathrm{r}-\mathrm{f}$ pass band
(20) Set scope switch to BF , adiust scope RF TRIMMER (Fig. 19) for maximum amplitude of first r amplifier response in the region of the r-f Pix marker.
(21) Inject Channel 13 sound $\mathrm{r}-\mathrm{f}$ marker (215.75 Mc) and adjust 2ND RF TRIMMER (Fig. 19) for maximum amplitude of mark $r-f$ amplifier response in the vicinity of the $r-i$ sound
(22) Repeat steps (20) and (21) until desired pass band is shapes. See Fig. 17. for acceptable r-f band pass response
shapes.
(23) Remove tuner shield as in step (4) and repeat step (5). (24) Set sope swith to IF position, adjust scope gain, and
inject required Pix i-f marker and channel 7 Pix r-f marker inject require
of 175.25 Mc .
${ }_{(25)}$ Rotate tuning shaft until Pix i-f marker and channel 7 Pix r-f markers coincide in i-f response. Do not disturb
this variable setting for remainder of alignment of channel 7
-f pass band. (26) Set scope switch to RF position and with a bakelite
alignment tool, adjust iST RF HI BAND COIL (Fig. 19) for maxinum amplitude of 1 st r-f amplifier response in region of he Pix r-f marker
djust 2 ND RF HI BAND COIL (Fig. 19) for maximum mplitude of 2nd $r-f$ amplifier response in the region of the sound $r-f$ $\underset{(28)}{\text { marker. }}$
(28) Repeat steps (26) and (27) until desired pass band is obtained, consistent with shapes shown in Fig. 17 .
(29) Repeat steps (16) to (28) inclusive for satisfactory cov rage of entire $H i$ band $r-f$ response.

LO BAND RF PASS bands
(30) Repeat step (9), set scope switch to IF position, adjust scope gain, and inject a channel 6 Pix r-f marker (83.25 Mc). (31) Rotate tuning shaft until Pix i-f marker and 83.25 Mc
markers coincide. Do not disturb this variable condenser setting for remainder of alignment of channel $6 \mathrm{r}-\mathrm{f}$ pass band.
then (32) Set scope switch to RF position and adjust scope gain. mplitude of 1 ST RF LO BAND COIL (Fig. 19) for maximum nel 6 Pix r-f marker.
(34) Inject channel 6 sound r - f marker of 87.75 Mc and adust 2ND RF LO BAND COIL (Fig. 19) for maximum amplitude sound r-f amplifier.
(35) Repeat step (32) until desired pass band is obtained in
(36) Rotate variable to maximum capacity (co
wise) and adjust sweep generator for channel
wise) and adjust sweep generator for channel (37) Set scope switch to IF position, adjust scope gain, and (inject a channel 2 Pix r-f marker (55.25 Mc).
mc markers fine tuning shaft until Pix i-f markers and 55.25 me markers coincide. Do not disturb this variable condenser (39) Set scope switch to RF position and adjust scope gain.
(40) Adjust 1 ST RF LO BAND CoIL (Fig. 19) for maximum amplitude for 1 st r-f anplifier response in region of channel 2 Pix r-f marker.
(41) Inject channel
(41) Inject channel 2 sound r -f marker (59.75 Mc) and adjust 2 nd r-f amplifier response in region of channel 2 sound $r-f$ $\underset{\text { (42) }}{\text { marker }}$
(42) Repeat step (40) until desired pass band is obtained in accordance with acceptable r-f pass band shown in Fig. 17.
(43) Repeat steps (30) through (42) inclusive for satisfactory coverage of entire Lo band $r-f$ response.
procedure for antenna pass band alignment
The band pass antenna stages are normally aligned in the oscillator and a delay line. The coupling between the primaries and secondaries are carefully adjusted and in general should not be disturbed. Minor cor rections of the primary trimmer luning may be necessary, if they are accidentaly or otherwise antenna primary trimmers is outlined below.
hi band primary antenna trimmer alignmen
With scope switch in RF position and equipment set for obPRIMARY ANT. TRIMMER screw (counter-clockwise) il BAND reduced capacity setting start turning trimmer screw clock wise (increasing capacity) while observing the channel 13 r pass band amplitude and shape. It will be noticed that the am of the response will change as shown in Fig. 18 indicating the antenna to be cutting into the r-f pass band. Back out the trimmer screw to a maximum amplitude and minimum "cutting-in"

Rf response showing
"CUTTING IN" OF
ANTENNA WITH
MPROPER TUNING
trimmer tuning.

RF RESPONSE WITH PRODER
SETTING OF PRIMARY ANTENNA
TRIMMER TUNING

LO band primary antenna trimmer alignment
Procedure for aligning LO BAND PRIMARY ANT. TRIMMER is the same as outlined for Hi band primary antenna trimmer except the tuner should be tuned to channel 6 and adjustment of the Lo band antenna primary trimmer screw should be done winal CAUTION NOTE
Upon completion of tuner alignment, remove crystal detect or in 1st IF grid. Replace tuner shield and fastening screws, reinsert End i-f amplifier tube removed at start of alignment, stations.

© John F. Rider

© John F. Rider

fig. 5. height control

FIG. 6. WIDTH CONTROL

Adjust the HEIGHT and WIDTH controls so that the picture fills out the dimensions of the screen. A slight readjust ment of the CENTERING control may then be necessary.

FIG. 7. HORIZONTAL DRIVE

WARNING

pICTURE TUBE HANDLING PRECAUTIONS

The picture tube envelope encloses a high vacuum and wilh the large surface area of glass involved, the stresses created are considerable. Any accidental blow or rough handling could cause the tube to implode with tube should be handled only by qualified persons protected by heavy gloves and shatterproo goggles.

fig. 10. picture tube mounting detail

TO REMOVE THE CHASSIS FROM THE CABINET

1. Remove the knobs on the front panel by pulling in the forward direction.
2. Remove the slotted cover through which the centering lever protrudes on the cabinet back. This is accomplished Remove the slotted cover through which the centering
3. Unscrew the fastening bolt located directly above the AC cord insert.
4. Remove the screws holding the cabinet back. The back cover may then be set aside
5. Remove the speaker plug at the chassis. On table model remove the speaker mounting nuts and lift out the speaker
6. Remove the leads from the built-in antenna at the terminals on the chassis
7. Damnval of the chassis may now be completed by removing the five chassis mounting bolts

REMOVING THE PICTURE TUBE

1. Remove the chassis from the cabinet by following the above procedure
2. Insure the discharge of the high voltage filter condenser by shorting the ANODE CONTACT (PL-104) to chassis through a well insulated wire or test lead.
3. Disconnect the ANODE CONTACT (PL-104).
4. Disconnect the TUBE SOCKET at the base of the tube
5. Slip the ION TRAP from the neck of the tube.
6. Remove the MOUNTING STRAP at the front rim of the tube.
7. Loosen the four REAR SUPPORT ADJUSTMENT SCREWS and then, while holding the tube near the face, carefully slip the neck of the tube out of the DEFLECTION YOKE and FOCUS COIL. Use a slight twisting pull in order to remove the cause of trouble. DO NOT USE FORCE.

If the tube is to be replaced, remove the rubber band from around the plastic MOUNTING RING. The PROTECTIVE COVER and the MOUNTING RING can now be removed.
© John F. Rider

INSTALLING AND ADJUSTING THE PICTURE TUBE

MODEL 81

1. Slip the PROTECTIVE COVER over the cone of the tube and fit the plastic MOUNTING RING over the edge of the PROTECTIVE COVER at the front rim of the tube. Make sure that the ANODE CONTACT makes a good electrical connection with the metal cone of the tube
2. Adjust the MOUNTING RING and the PROTECTIVE COVER so that the ends of the MOUNTING RING come together approximately 90 degrees counterclockwise from the ANODE CONTACT on the PROTECTIVE COVER, when facing the front of the tube. Place the rubber band in the groove of the MOUNTING RING

Slip the neck of the tube through the RUBBER COLLAR, DEFLECTION YOKE, and FOCUS COIL; seating the groove of the MOUNTING RING on the two rubber channels mounted on the two curved brackets at the front of the chassis. Position the tube so that the joint in the MOUNTING RING is centered at the bottom, next to the chassis.

Place the MOUNTING STRAP in the MOUNTING RING groove and tighten firmly.
5. Move the REAR SUPPORT so that the RUBBER COLLAR rests firmly against and supports the cone of the tube Tighten the REAR SUPPORT ADJUSTMENT SCREWS.
6. Check the ION TRAP for any markings and slip it over the neck of the tube. If the TRAP is stamped with an arrow, the arrow should point towards the face of the tube
. Connect the PICTURE TUBE SOCKET and the ANODE CONNECTOR
8. Turn the receiver on and allow a few minutes for warm up.
9. Turn up the BRIGHTNESS control and set the ION TRAP for maximum raster brilliance, backing off the BRIGHTNESS control as the maximum point is approached. The ION TRAP must be rotated about the axis of the tube as well as shifted along the neck in order to obtain proper setting. With the BRIGHTNESS control set for slightly above normal brilliance and the CONTRAST control full counterclockwise, adjust the FOCUS control until the raster is clearly visible. Readjust the ION TRAP for maximum raster brilliance and set the BRIGHTNESS conrol for normal reception
0. Connect the antenna and tune in a test pattern.
11. Readjust the CONTRAST control until the different shades of the gray scale are clearly visible on the test pattern.
12. Check the position and appearance of the test pattern. If it is off center or shadowed at the corners (electro beam striking the neck of the tube) adjust the centering lever. Set the focus control at the center of its range and adjust the FOCUS COIL ADJUSTMENT, if one is provided, and FOCUS COIL INDUCTANCE RING as necessary so that a clear sharp picture may be obtained well within the range of the focus control

```
CAUTION - It will not be necessary to turn the CENTER
ING LEVER excessively. Excessive force on the CENTER
snap the neck of the tube
```

13. If the lines of the rasfer are not horizontal or square with the escutcheon loosen the DEFLECTION YOKE ADJ screw and rotate the DEFLECTION YOKE until this condition is obtained. Tighten this adjustment.
14. Follow the procedure under the NON-OPERATING CONTROL ADJUSTMENTS and make any minor adjustment of the FOCUS COIL or DEFLECTION YOKE necessary to obtain the desired results

adjustment of the high voltage on the picture tube anode

The second anode potential should be slightly less than 14,000 volts on a receiver that is functioning properly. Since the high voltage is obtained from the horizontal output transformer, the service adjustments must be made, or known to be in proper adjustment, before a high voltage measurement will have any meaning

Improper operation of the horizontal sweep circuit or circuit faults in the high voltage filter will generally account for an abnormal anode potential. If the anode potential is low check the HORIZONTAL DRIVE adjustment outlined above
V.T.V.M.

CAUTION HIGH VOLTAGE
do not use hand held flexible test leads when making the following measurement. keep the hands clear of the circuit during measurement. a $1 /$ to 14 kv . potential exists in this circuit. exercise all normal high voltage precautions.

To measure the second anode potential, set the CONTRAST and BRIGHTNESS controls at minimum. With the controls in this position, the resistance of the test circuit will simulate the load presented to the high voltage power supply of the picture tube. Connect a test circuit as shown in Fig. 11. Make the resistor string sel-supporter sale to dequate clearance between the resistors and chassis parts to prevent high voltage breakdow. A ming by 50 to obtain
 volts.

After it has been determined that the receiver is otherwise in good working order and properly adjusted, the High Voltage adjustment on the rear of the chassis (See Fig 3) should be set for a potential slightly less than 14,000 volts. This adjustment has been provided mainly to compensate for variation in line voltage.

HORIZONTAL OSCILLATOR ALIGNMENT

If the Horizontal Hold control on the front panel
fails to restore synchronization the Horizonta Range and Horizontal Lock adjustments shoul be reset.

Turn the Hold control to the full clockwise position. Adjust the Horizontal Range ment until a vertical bar appears in the pattern.

©John F. Rider

John F. Rider

© John F. Rider

OJohn F. Rider

vertical centering

vertical linearity

2. Set the VERTICAL LINEARITY con-
trol for a symmetrical test pattern in the vertical dimension. A slight readjustment
of the HEIGHT conof the HEIGHT COn
trol may be required when making this
adjustment when mak
adjustment.

1. Set the HEIGHT control so that the test pattern fits and
centers in the vertical dimension of the
kinescopeescutcheon A minor adjustment
of the focus coil posiof the focus coil posi-
tion may be required tion may be require
to recenter the pat to rece
tern.

Note - The sequence of "non-operating" control adjustments outlined above is suggested as a convenient method of
approach and not an arbitrary procedure. Variations of the approach and not an arbitrary procedure. Vare
procedure is permitted to obtain the final result.

DISMANTLING FOR KINESCOPE REPLACEMENT

 OR ALIGNMENT ADJUSTMENTS1. Remove the three front panel control knobs by pulling them straight from their shafts. The dual control knob mus
be removed in two pieces, removing the center unit first 2. Remove the back cover disconnecting the cable co nector for the phono socket and switch mounted on the back cover. Note that. the line cord and half of the interlock con-
nector come along with the back cover. nector come along with the back cover.
2. Disconnect the speaker and remove
holding the antenna terminal strip bracket to the cabinet. Note chat for the table models the speaker will have to be removed to clear the picture tube
3. Remove the five chassis bolts holding the receive chassis in the cabinet and slide the entire assembly from the or adjustment.

REMOVING THE KINESCOPE

Refer to the warning kinescope handling precauTIONS. Read all warning notices on both tube and carton. Fol COPE and proceed as follows:

1. Disconnect the KINESCOPE SOCKET at the base of the
2. Slip the ION TRAP from the neck of the tube past the 2. Slip the ION TRAP
kinescope base connector.
3. Measure the distance from the front edge of the steel stallation of a new tube.
4. Remove the steel band at the frant rim of the kinescope and carefully slip the neck of the kinescope out of the FOCU
COIL and DEFLECTION YOKE. If the tube fails to slip ou smoothly, investigate and remove the cause of the trouble. Do not use force.

5. The DEFLECTION YOKE must seat firmly against the TION YOKE ADJ. screw and pushing the DE SLECTION YOKE lorward as far as it will go. Take up the slack in the screw temporarily to hold the coil in place.
6. Slip the ION TRAP over the neck of the tube; the arrow points toward the face of the tube
7. Reconnect the KINESCOPE SOCKET and anode connect -
8. After allowing a few minutes for warm up, turn up the BRIGHTNESS control and set the ION TRAP for maximum as the maximum point is approached. The ION TRAP must be rotated about the axis of the tube as well as shifted along the eck of the tube to obtain the proper setting. The arrow on the properly positioned as far as rotation is concerned, hence a rough setting may be obtained immediately with this type of trap.

With the BRIGHTNESS control set for slightly above average brilliance and the PICTURE control full counter-clockwise, adjust the FOCUS control until the line structure of the raster is ter brilliance. The final touches on this adjustment should be nade with the BRIGHTNESS control at the maximum position with which good line focus can be maintained, then back off the setting of the BRIGHTNESS control until the retrace lines disappear
8. Check the position and appearance of the test pattern. If the test pattern is off center or shadowed at the corners (Electron beam striking the neck of the tube), adjust the thre raster. Note that the three spring loaded adjustmentscrews tilt the focus coil to shift the position of the raster on the face of the kinescope. Do not turn all three screws up tight, use them to tilt the FOCUS COIL only

> CAUTION - It is not necessary to tilt the focus coil excessively. Excessive tilt may snap the neck of the kinescope if sufficient force is used.

The position of the test pattern may also be shifted by rotating the focus coil. To rotate the coil, loosen the two knurled uts holding the coil to the mounting plate. Tighten the nuts fter the adjustment has been made.
9. If the lines of the raster are not horizontal or square with the escutcheon, loosen the DEFLECTION YOKE ADJ screw and rotate the DEFLECTION YOKE until this condition s obtained. Tighten the adjustment.
10. Follow the procedure under NON-OPERATING CONTROL ADJUSTMENTS and make any minor adjustments of the FOCUS COIL or DEFLECTION YOKE necessary to obtain the esired resuls. The inal adjustment or the focus coil should leave the test pattern approzimately centered.

MEASUREMENT OF H.V. POTENTIAL ON KINESCOPE ANODE

The second anode potential will be approx. $11,000 \mathrm{~V}$. on a receiver that is functioning properly. Since the high potential transformer, the "non-operating" control adjustments outlined above must be made or be known to be in proper adjustmen before the H.V. measurement will have any meaning. Improper the high voltage filter will generally account for an faults node potential. If the anode potential is low, check the HORI ZONTAL DRIVE adjustment outlined above

INSTALLING AND ADJUSTING THE KINESCOPE

1. Wrap the RUBBER STRIP around the front rim of the kinescope and position the tube so that the anode contrast is
2. Slip the neck of the kinescope through the REAR SUPORT, DEFLECTION YOKE and FOCUS COIL and seat the place smoothly, investigate and remore the cause of the trouble. Do not force the tube. Check the distance from the face of the tube to the front edge of the steel band. Refer to the measure ment made in step 3 above. If this dimension is off; loosen
the two REAR SUPPORT MTG. screws, position the tube correctly and fasten the steel band firmly about the rim of the tube.
3. The REAR SUPPORT must seat firmly against the REAR SUPPORT MTG. Screws. Check the SPRING CONTACT grounding the outer coating of the kinescope tube. A high pot ential is developed on the outer coating of the tube if this
contact is faulty.

Ch. L91912,

CAUTION high voltage

Do not use hand held flexible test leads when making the following measurement. Keep the hands clear of the circuit during measurement. cise all normal high voltage precautions.

Connect a 50 -megohm resistor string in series with a 300 microampere meter. Connect the free meter terminal to cap of the kinescope. The connection to the anode cap may be made with a fine wire slipped under the connector. Make up provide a safety factor for voltage breakdown. If 5 -megohm resistors are used, a total of ten will be required to obtain the 0 megolums. Make the setup self-supporting and allow ade quate clearance between the resistor string and chassis part prevent high voltage breakdown
2. Turn on the receiver and set the BRIGHTNESS and PIC TURE controls at minimum. The microammeter will read pprox. 220 microamperes for $11,000 \mathrm{~V}$. at the kinescope node. The anode potential is measuredimum; meter current pprox. 200 microamperes) to simulate the kinescope load on the high voltage power supply.

I-F AMP. ALIGNMENT PROCEDURE

Note - The following alignment adjustments do not require the use of the kinescope tube. It is recommended that the tube CAUTION - Removal of the kinescope tube exposes the High VOLTAGE anode connector contact. Keep this lead and ontact clear of perso precautions while working with the exposed units

EQUIPMENT REQUIRED
Signal generator covering 4 mc to 30 mc
Electronic voltmeter
in-34 crystal detector circuit as shown in Fig. A

-M SOUND CHANNEL ALIGNMENT

1. Connect the low frequency signal generator output through a 005 capacitor, across resistor ($\mathrm{R}-118$) in the plate
circuit of the $12 \mathrm{AU7}$ VIDEO DETECTOR tube $(\mathrm{V}-104)$. This resistor is located at the terminal strip near the tube socket.
2. Connect the detector circuit and V.T.V.M. as shown in fig. A.
3. Set the signal generator to 4.5 mc . using just enough output to give approximately one volt reading at the electronic voltmeter.
4. The LIMITER GRID adjustment on the top side of the chassis see fig. 12 should be set to its top limit. Adjust the
4.5 MC TRAP ADJUSTMENT located on the under side of the chassis for minimunn voltage as shown on the meter.
5. Disconnect the detector test circuit.
6. Connect the V.T.V.M. to pin \#7 of the 6AL5 FM DETECTOR tube (V-109)
7. Adjust the LIMITER GRID adjustment and the primary
of T-108 for maxinum indication on the voltmeter
8. Connect the electronic voltmeter across the 1000 mml condenser (C-135) at the output of the $(-m$ detector stage and
adjust the FM DET. SEC. ADJ. of the $f-m$ detector transiormer (T-108) for the null.
9. Shift the frequency of the signal generator either side of 4.5 mc and ouch up the FM DET. PRI. ADJ. for approximately
equal peaks. Use just enough signal generator output to obtain one volt peaks for the best results.
10. After completing the alignment procedure and placing
the receiver in operation again carefully pattern and adjust the 4.5 MC TRAP ADJ. for maximum vertical wedge definition. This adjustment is located on the under
side of the chassis and on the sme side of the chassis and on the same coil form as the 4.5 MC
LIMITER GRID ADJ. shown in fig.

NOTE - The primary adjustment of T-108, the coarse fre-
quency adjustment of T-111 and the 4.5 mc may all be made through the holes in the cabinet bottom or chassis mtg. board.

I-F AMPLIFIER ALIGNMENT

1. Connect the electronic voltmeter across resistor R-118
in the plate circuit of the 12AU7 VIDEO DET. tube (V-104). in the plate circuit of the 12AU7 VIDEO DET. tube (V-104). This resistor is located on the terminal strip near the tube
socket.
2. Couple the high side of the signal generator to the OSC. MLXER tube (V-3) by removing its shield and slipping a tight
itting tube shield or length of copper braid over the bulb of the fitting tube shietd or length of copper braid over the bulb of the
tube and connecting the generator lead to it. Connect the ground side of the signal generator to the frame of the tuning unit.
3. Set the channel selector at channel 2
4. Set the signal gencrator output (unmodulated) to develop one or two volts at the electronic voltmeter and adjust the four i-f amplifier coils, according to the following chart, for maxi-
mum d-c voltage as measured by the electronic voltmeter. Readjust the signal generator output as required to maintain the two-volt potential at the electronic voltmeter.

I-f ampliflar alignment chart

Signal Generator Frequency (No Modulation)	Adjustment (Refer to Fig. 11)	Stage Adjusted Adjusted
24.5 Mc	*24.5 Mc IF Adj.	1st IF amp.
23.4 Mc	23.4 Mc IF Adj.	2nd !F amp.
24.6 Mc	24.6 Mc IF Adj.	3 rd IF amp.
25.6 Mc	25.6 Mc IF Adj.	Viden Detector
21.75 Mc	21.75 Mc Sound Trap Adj.	*Sound Trap Adj. Adj. for Min. Voltag

*Note: After adjusting the 21.75 Mc Sound Trap recheck the
setting of the 1st IF Transformer (T101).
5. Check the i -f amplifier trequency response by tuning he signal generator from 21 mc through 26.25 mc and observing the change in d -c voltage at the electronic voltmeter. If
the signal generator output is set for an electronic voltmeter reading of 1.5 volts at the peak $i-f$ amplifier response, the $d-c$ voltage should not drop below one volt between the two peaks normally obtained with this i-f amplifier. If the response is
unsatisfactory, repeat the procedure or try slight modifications unsatisfactory, repeat the procedure or try slight modifications
of the recommended settings to obtain the desired response. Avoid resonating the coils with the iron core at the bottom end of the coil form. (Adjustment screw near limit of its travel). If a sweep type signal generator and oscilliscope is available easier. Check the two carrier i-f responses, 21.75 mc and 26.25 mc . The 21.75 mc response will be approximately 20 db below the peak response (Approx. 0.15 volt) and the 26.25 mc response will fall approximately 6 db below the peak (Approx.
0.4 volt). Refer to Fix. (ol). Refer lo Fig. 11
The average i-f amplifier sensitivity, when feeding the signal generator output through the receiver as described in step
2 , will run approx. 2000 to 5000 microvolts for the one volt d-c peak measured at resistor R-118. (Receiver's oscillator operating on channel 2).
*NOTE - The 1st IF amp coil (T-101) has two ron cores and must be adjusted from both top and bottom for 24.5 mc . response Since this is an overcoupled transformer with a broad response, it will be necessary with this method of alignment to connect a 1000 ohm resistor across the primary winding (at the tuner terminals), when tuning the secondary (bottom core) and then connect the same resistor across the secondary winding when adjusting the primary (top) core.

Pie. 12. 1-F amplifiar response

$\begin{aligned} & \text { Channel } \\ & \text { No. } \end{aligned}$	Channel Freq. (mc)	Picture Carrier Freq. (mc)	Sound Carrier Freq. (me)	Receiver Osc. Freq. (mc)	$\begin{gathered} \text { Ficture } \\ \text { IF } \\ \text { Freq. }(\mathrm{mc}) \end{gathered}$	Sound IF Freq. (mc)	$\begin{gathered} \text { Picture IF } \\ \text { less } \\ \text { Sound } I F(\mathrm{mc}) \end{gathered}$
2	54-60	55.25	59.75	81.5	26.25	21.75	4.5
3	60-66	61.25	65.75	87.5	26.25	21.75	4.5
4	66-72	67.25	71.75	93.5	26.25	21.75	4.5
5	76-82	77.25	81.75	103.5	26.25	21.75	4.5
6	82-88	83.25	87.75	109.5	26.25	21.75	4.5
7	174-180	175.25	179.75	201.5	26.25	21.75	4.5
8	180-186	181.25	185.75	207.5	26.25	21.75	4.5
9	186-192	187.25	191.75	213.5	26.25	21.75	4.5
10	192-198	193.25	197.75	219.5	26.25	21.75	4.5
11	198-204	199.25	203.75	225.5	26.25	21.75	4.5
12	204-210	205.25	209.75	231.5	26.25	21.75	4.5
13	210-216	211.25	215.75	237.5	26.25	21.75	4.5
						$\text { MODELS } 332,833$Ch. L919120	

TUNER ALIGNMENT

The tuner is of the turret type employing printed-circuit coils and covering television channels 2 through 13. It has
been carefully aligned and adjusted at the factory using pre cision equipment. Alignnent or replacement of individual
uner components in the field is not reconmended. If the tuner coniponents in ther fails to operate properly by reason of part failure within the unit or in the event it should become badly misaligned. the complete unit should be replaced. The tuner may be ex ment, at very reasonable cost providing it has not been danaged ur abused. In some cases the exchange can be effected without charge under the terms of the warranty
Minor alignment adjustments may be desirable after tube replacement in the $\mathbf{R F}$ or uscillator-mixer stage. For those service tny ineers who are properly equipped, as
below. the following allignment procedure is included.

Equipment Required:
Sweep Generator - Similar to RCA type WR59A, covering frequencies of 54 to 88 Mc and 174 to 216 MC with a minimum sweep oleast 0.1 volt line to line.
put at leal
Cathode Ray Oscilloscope - equivalent to the RCA W060C
Television Calibrator - equivalent to the RCA WR39A.
Electronic Voltmeter - equivalent to the RCA Voltohmyst
Crystal Diode Circuit - for coupling the oscilloscope to the
RF amplifier. (See Fig. 13.)

NOTE: If equipmeht used is not calibrated by television channels, see CARRIER vS IF FREQUENCY CHART (column \#1) for the correct frequencies to use for each channel.
For location of all adjustments see Fig. 12
For response on each channel see Fig. 14.

antenna circuit:

(1) Apply - 1.5 volts fixed bias to the tuner by connecting 1.5 volt cell between tuner terminal number 1 (see Fig. 12.) and chassis ground.
(2) Connect the sweep generator to the antenna terminals, using a $\$ 00$ ohm matching pad if necessary.
(3) Connect the oscilloscope to the plate of the 6CB6 RF amplifier tube (pin \#5) through the crystal diode circuit (see Fig. 13.)
(4) Adjust the antenna circuit trimmer for maximum re sponse on the oscilloscope between the picture and sound carriers of channel $\# 6$
(5) Adjust the antenna circuit adjustment for maximum response on the oscilloscope between the picture and sound carriers of channel \#7.
(6) Observe the response of all channels on the oscillo
ope. Readjust the antenna circuit trimmer for channels \#2
through \#6, and the antenna circuit adjustment for channels \#7 through "13 so that the best compromise is obtained in mak ing
14.

7) Remove the oscilloscope connection

RF ALIGNMENT:
(8) Connect the oscilloscope to the oscilloscope terminal top of the chassis (see Fig. 12.)
(9) Adjust the RF plate adjustment, the high band RF rimmer and the mixer grid adjustment for the proper curve shape of channel \#13
(10) Adjust the RF plate trimmer and mixer grid trimmer for the proper curve shape of channel \#7.
(11) Adjust the Lo band RF trimmer for proper curve shape of channel \#i.
(12) Observe the response of channels \#2 through \#6 on the oscilloscope. Readjust the RF plate trimmer, the Lo band
RF trimmer and the mixer grid trimmer so that the best compromise is obtained in making the response of each chan nel look like that shown in Fig. 14.

(13) Observe the response of channels \#7 through "13 on the oscilloscope. Readjust the high band RF trimmer, the RF plate adjustment and the mixer grid adjust ment so that the best compromise is obtained in making the response of eac
(14) Remove oscilloscope and sweep generator

oscillator alignment:

(15) Connect the electronic voltmeter across C-135 at the output of the discriminator circuit. (see Fig. 16.
$\stackrel{(16)}{ }$
(17) Tune the calibrator to 59.75 Mc and set the tuner to hannel \#2. Set the fine tuning control to mid range
(18) Adjust the oscillator trimmer for zero voltage on the electronic voltmeter
(19) Tune the television calibrator to 215.75 Mc and set the tuner t.
mid range.
(20) Adjust the oscillator coil adjustment for zero voltage on the electronic voltmeter.
(21) Tune the television calibrator to the sound carrier of CHART, column 3). With the fine tuning control set at mid range, adjust the oscillator adjustmert of each band for zero voltage on the electronic voltmeter. These adjustments are accessible through the hole provided in the front of the tuner hassis.

Note: Oscillator adjustments for chanuels $\# 2$ and $\# 13$ have been set by the factory. Their positions have been hosen as reference points in the event that the tuner become
(22) Recheck RF alignment and repeat procedure \#9, \#10,
\#11, \#12 and \#13 where necessary.
(23) Remove the electronic voltmeter, oscilloscope connections, and bias cell.

TYPICAL RF RESPONSE CURVES MEASURED AT THE OSCILLOSCOPE TERMINAL

SERVICE PARTS LIST

Description ELECTRICAL PARTS

TRANSFORMERS AND COILS
L-101,102,
109 $\stackrel{109}{\text { L- } 103,104}$
L-105
$\mathrm{L}-106$
$\mathrm{~L}-107$
$\mathrm{L}-107$
$\mathrm{~L}-108$
L-112
$\mathrm{T}-101$
$\mathrm{~T}-102,103$
T-102,103
104
T-105
$\mathrm{T}-105$
$\mathrm{~T}-106$
Coil, video peaking
Coil, video peaking
Coil, focus
Deflection yoke
Coil, WIDTH control
Coil, HORIZONTAL
LINEARITY control
Coil, 21.75 mc . trap
Transformer, ist i-f amplifier
Coil, 4.5 mc sound trap
Transformer, vertical oscillato Transformer, vertical output Transformer, audio output Transformer, power Transformer, horizontal oscillator.
Transformer, horizontal output

C-101
C-102
C-103
C-102
C $-103,104$,
105,106,
105,106,
107,108,
107,108,
109,130,
132,190

CONDENSERS

$47 \mathrm{mf} 500 \mathrm{~V} .,$. ceramic
$3.3 \mathrm{mmf} .500 \mathrm{~V} .$, ceranic $5,000 \mathrm{mmf}, 450$ V., ceramic

Manufacturer's C-110,168 5 mmf .500 V ., ceramic $47 \mathrm{X} 20 \mathrm{UJO50M}$ Manufacturer's
Part Number

C-110,168 C- 1111,113, C C

 2 mid .200 v., tubular $22 \mathrm{mmf} .500 \mathrm{~V} .$, mica C-114,116.139.141 .01 mfd .600 V ., tubular

5181154
5181155
53 C 195
51 B 1230

$$
\begin{aligned}
166 \\
\mathrm{C}-120
\end{aligned} \quad 270 \mathrm{mmf} .500 \mathrm{v} ., \text { mica }
$$

51B1230
51 B 1232
5181231
50 B 478
50 A 431
50A432
50A432
$55 B 115$
$55 B 128$
5B128
50B406
50 B 406
55134
52 C 199
51 B 1153
55 C 154
191
$\mathrm{C}-119.188,-05 \mathrm{mid} .200 \mathrm{~V}$., tubular, C-121 $\quad 47 \mathrm{mmf} .500 \mathrm{~V}$., mica

$$
\begin{gathered}
\text { C - } 123,152, \\
157
\end{gathered}
$$

C-124,125
.005 mfd .200 V. , tubular 4700 mmf .500 V. , mica $50 \mathrm{mfd} .250 \mathrm{~V} ., 75 \mathrm{mfd}$. 50 V ., electrolytic .1 mfd .600 V. , tubular 5 mid. 50 v., electrolytic 330 mmf .500 V. , ceramic
1000 mmf .500 V ., ceramic
$01 \mathrm{mfd} ., 200 \mathrm{~V}$. , tubula 330 mm .500 v, , mica
$50 \mathrm{mfd} .300 \mathrm{~V} .$, electrolytic $56 \mathrm{mmf} .500 \mathrm{~V} .$, mica .01 mid. 600 V ., molded
7X20SL470K
47A160-5
7A168 * Use exact replacement part only

7x20a20K 47X20A220K
46 AY 103 J 6AY 46A Y503J 46A U503J $47 \times 20 \mathrm{~B} 470 \mathrm{M}$ 46AU502J 47X 35A472M 45 B 165 46AY 104J
46AX254J 45A109 47B20331K5
47B20A102M5

46AU103J 47X20A331M
 ${ }_{4}^{46 B R 159}$ L6 45 B 159

OJohn F. Rider

Ref. No. CONDENSERS (Cont.)
60 mfd .450 V ., electrolytic 200 mmf .500 V ., mica .02 mifd .600 V .. tubular 390 mmf . 500 V ., mica 10.000 mmf .500 V ., ceramic 1500 mmi 500 V ., mica HORIZONTAL DRIVE control 47 mmf .500 V ., ceramic 500 mmf . $20,000 \mathrm{~V}$., ceramic .035 mfd .600 V. , tubular 1000 mmf 500 v mica 100 mfd .10 V ., electrolytic 8 mfd .475 V ., electrolytic 390 mmf .500 V .. mica 2.2 mmif . 500 V. , ceramic .1 mfd . 200 V ., tubular RESISTORS

R-105,110, 47 ohms $1 / 2$ watt, carbon
180
R-106, 109,
R-106, 109,
112,152
R-107
R-108,188 $\mathrm{R}-108,188$
$\mathrm{R}-111$ R-114, 124 , 154,178
$\mathrm{R}-117,122$
143 $\mathrm{R}-117,122$,
143
$\mathrm{R}-118,137$ R-119 $\mathrm{R}-120$
$\mathrm{R}-123$ R-123
\qquad R-127, 131 $\mathrm{R}-128$
$\mathrm{R}-129,159$ $\mathrm{R}-130,161$,
$\mathrm{IT9}, 193$ 179,193
$\mathrm{R}-132,168$ R-132,168
R-133,146 R-135,206 171
R-138,
\qquad
$\mathrm{R}-140$
$\mathrm{R}-141,142$ R-141,142 R-145, 147 R-148 $\mathrm{R}-150$
$\mathrm{R}-151$ *R-156,15 R-156,157
$\mathrm{R}-158,194$
$\mathrm{R}-160$

45B166

$47 \times 20 \mathrm{B221M}$ 46 A Y203J $47 \times 20 \mathrm{~B} 391 \mathrm{~K}$ 47A226 $47 \times 20 \mathrm{B1} 52 \mathrm{M}$ 44A 361 47B20470K5 47A216 46AY353J
$47 \times 20 \mathrm{~A} 102 \mathrm{M}$ 47 X 20 A 102
45 B 170 45 B 170
45 A 103 $47 \times 20 \mathrm{~A} 391 \mathrm{~K}$ 47A160-4 46AU104J

23X20X472K

23X20X470K 23X20X151K 23X20X153K $23 \times 20 \times 101 \mathrm{~K}$ $23 \times 20 \times 332 \mathrm{~K}$ 23 X 20 X 223 K
23 K 20 x 105 K 23X20×103K $23 \times 30 \times 222 \mathrm{~K}$ 23 X 40 X 472 K 25B791
$23 \times 20 \times 273 \mathrm{~K}$ $23 \times 20 \times 222 \mathrm{~K}$ 23X 20 X 682 M 25B897 23X20X474M 23X20x824K $23 \times 20 \times 274 \mathrm{~K}$ $23 \times 20 \times 473 \mathrm{~K}$ 23 X 20 x 822 K 25B710 ${ }_{23 \times 20 \times 561 K}$ 25B857
 23X30BF 105 25B711
$23 \times 20 \times 103 \mathrm{~J}$ ${ }_{23 \times 20 \times 233} 20 \times 5$
Min zero sibat move

-2 Ocearme conr

为
netion

(1000):

MODELS 832, 833

SERVICE PARTS LIST (Cont.)

Ref. No.	Description	Manufacturer's
	RESISTORS (Cont.)	
*R-162	330,000 ohms $1 / 2$ watt, carbon	23x20x334J
*R-i63	4.7 megohms $1 / 2$ watt, carbon	$23 \times 20 \times 475 \mathrm{~J}$
R-164	10,000 ohms 10 watts, WW.	24BG103E
R-165	200 ohms 20 watts, ww	24BH201E
R-167,175	82,000 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 823 \mathrm{~K}$
R-169	180.000 ohms $1 / 2$ watt, carbon	23X20X184K
R-170	50,000 ohms, HORIZONTAL control	25A858
R-172	18,000 ohms 1 watt, carbon	23X30X183K
R-173	120,000 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 124 \mathrm{M}$
R-174,207	330,000 ohms $1 / 2$ watt	$23 \times 20 \times 334 \mathrm{~K}$
R-176	150,000 ohms $1 / 2$ watt, carbon	23X20X154M
*R-177	120,000 ohms 1 watt, carbon	$23 \times 30 \mathrm{BF} 124 \mathrm{~J}$
R-181,182	39,000 ohms 2 watts, carbon	$23 \times 40 \times 393 \mathrm{~K}$
R-183	100 ohms 2 watts, carbon	$23 \times 40 \times 101 \mathrm{~K}$
R-184	10,000 ohms 1 watt, carbon	$23 \times 30 \times 103 \mathrm{~K}$
R-187	1 megohm 1 watt, carbon	$23 \times 30 \times 105 \mathrm{M}$
R-190	560,000 ohms $1 / 2$ watt, carbon	23x20x564M
R-191	3.3 ohms 1/2 watt, carbon	$23 \times 20 \times 033 \mathrm{~m}$
R-195	33 ohms 1 watt, carbon	$23 \times 30 \times 330 \mathrm{~K}$
R-196	400 ohms 2 watts, WW, HORIZONTAL CENTERING	25B713
R-202	390 ohms 1 watt, carbon	23X30x391K
R-205	30,000 ohms 10 watts, WW	24 BG 303 E

Tol. on carbon resistors - M-20\%, K-10\%, J-5\%

tube complement

V-1	Type 6CB6: r-f amp.	$90 \times 6 \mathrm{CB6}$
V-2	Type 6J6: osc./mixer	$90 \times 6 \mathrm{~J} 6$
$\begin{gathered} \text { V-101,102 } \\ 103,108 \end{gathered}$	Type 6AU6: 1st, 2nd and 3rd i-f amp: and audio i-f amp.	$90 \times 6 \mathrm{~A} 46$
$\begin{gathered} \mathrm{V}-104,105, \\ 106 \end{gathered}$	Type 12AU7: video detector and 1st video amp: 2nd video amp. and sync. separator: sync. amp. and 2nd sync. separator	$90 \times 12 \mathrm{AU7}$
V-107	Type 6J5-GT: Vertical osc.	90x6J5-GT
V-109	Type 6AL5: f-m detector	90x6AL5
$\mathrm{V}-110$	Type 6AV6: audio amp.	90x6AV6
V-111	Type 6AQ5: audio output	$90 \times 6 \mathrm{AQ} 5$
$\mathrm{V}-112$	Type 5U4G: low voltage rectifier	$90 \times 5 \mathrm{U} 4 \mathrm{G}$
V-113,117	Type 6SN7-GT: horizontal osc.; and vertical amp.	90X6SN7-GT
V-114	Type 6BQ6-GT: horizontal amp.	90X6BQ6-GT
V-115	Type 1X2: high voltage rectifier	90x1x2
V-116	Type 6W4-GT: damper	90X6W4-GT
V-118	Type 16GP4: kinescope	90X 16GP4
	MISCELLAŃEOUS ELECTRICAL PARTS	
	Tuning unit assembly complete	1 1986
LS-101	Speaker assembly	85A102
PL-101	Line cord and plug PL-102	8781668
PL-103	Plug, speaker (Includes SO-102)	10A287
PL-105	Plug, 16GP4 anode (Part of protective cover 9D1129)	
PL-106	Plug, 4 prong (PHONO/ TELEVISION)	10A302
	Shell, plug (Used on PL-106)	10A305

Figure 1. Hoffman Tuning Unit

CIRCUIT OPERATION

The Hoffman Tuning Unit is a continuous type tuner which covers television channels 2 through 13. The circuit employs a 6 J 6 as a push-pull RF amplifier, and a 6 J 6 as an oscillator and converter.

The tuned circuits are pairs of plates of specially prepared bakelite on which silver has been printed to form a tuned line resonant circuit. Variation of the electrical length of line is accomplished by shorting across the line with a shorting contactor. This variation in electrical length resonates the line to the proper frequency for each channel. Lumped inductance in the form of jump coils are connected between the distributed high and low band lines so that the tuning skips the frequencies between 88 mc and 174 mc . This skip is designed to eliminate all outside frequencies between channels 6 and 7 .

The antenna input circuit has an impedance of 300 ohms, balanced, with center ground. The antenna line is printed on the same plates as the tuned grid circuit for the RF amplifier, which gives inductive coupling between the two circuits. The configuration of the tuned lines are such that the center neutral portion of the antenna line is adjacent to the high band lines of the RF amplifier grid circuit. As the shorting bar contactor is moved up the tuned grid line from channel 2 position, a shorted loop is developed in the low band circuit of the grid lines between the neutral center and

Oscillator Plate Showing
Resonant Line Tuned Circuits
Figure 2. Left Hand Plate
Figure 2. Left Hand Plate
the shorting bar. This shorted loop has the effect of canceling a portion of the antenna lines which in turn reduces the amount of coupling between the antenna and grid lines. This system of varying coupling with frequency maintains a constant bandpass characteristic and input impedance for the tuner

The RF amplifier grid circuit (Z 1 in figure 11schematic) is tuned by distributed capacity plus the trimmer, C1. The amplifier is a push-pull connected 6J6. Cross neutralization is accomplished through C2 and C3, the latter being adjustable to allow for exact neutralization. AGC voltage is applied to the RF amplifier grids through R1, and is fed into the neutral center of the tuned lines. The RF amplifier plate circuit (shown as Z_{2}) is a tuned line similar in configuration to the grid circuit, and tuned to the same frequency as the grid circuit. A metal shield is physically placed between the two sets of plates to prevent any coupling or feedback which would cause oscillation. Plate voltage for the RF stage is applied through the dropping resistor, R2, and associated by-pass capacitors, C19 and C20.

The converter grid circuit tuned line (shown as Z_{3}) is identical to the RF amplifier plate circuit. The circuits are coupled by a combination inductive, capacitive arrangement which provides slight over coupling at all frequencies. High band coupling is achieved through condensers C 6 and $\mathrm{C} 7, \mathrm{C} 7$ being adjustable. Low band coupling is carried out through the coupling loop printed on the plates adjacent to the low band sections, plus mutual coupling between jump coils L8 and L9. It can be observed, as the shorting contactors are moved from the high band toward the low bands and down to the channel 2 position, increased
inductive coupling circuits come into effect. The in creased coupling is required to maintain constant band width as the base frequency is decreased, and the pass band becomes a larger percentage of the base frequency

The converter grid circuit (shown as Z 3) is resonated by distributed capacity plus C 9 and the variable trimmer, C10. Tuning for different channels is ac complished by changing the electrical length of the tuned lines with a shorting bar as in all other sections.

The resistor, R4, serves as a grid leak return for the converter. Condenser C8, 5 mmf , is used to balance the grid-cathode and grid-plate capacity of the 6 J 6 converter section. Balancing is necessary when going from the push-pull $R F$ amplifier to the single ended converter stage. The resistor, R3, is inserted between the ends of the lines to prevent forming a completely shorted loop (as in the antenna-RF section) which would reduce the effectiveness of the coupling loop on the low bands. RF grounding of the neutral center of Z_{3} is provided through C21.

The oscillator circuit is a modified form of the Plerce oscillator, with the tuned circuit forming the feedback path between plate and grid circuits. The tuned lines are resonated by C12 and the variable trimmer, C15. C12 is shown connected directly between grid and plate, and is located physically near the 6 J 6 tube base to reflect heating changes. This capacitor has a negative 750 parts/million temperature coefficient and compensates for variations of inductance in the oscillator line which result from temperature changes. The neutral ends of the oscillator line are not connected together. This is done to avoid leaving a complete loop which would be tuned to channel 2 at any time when the shorting bar is not making contact such as when crossing over jumps between channels. Plate voltage is supplied through R6, the plate dropping resistor.

C14 is used for blocking DC from the oscillator grid and $\mathbf{R 5}$ is the grid leak return for the oscillator section of the 6 J 6 . The oscillator signal is coupled back to the converter through C11.

The converter output circuit forms a mutual inductance coupled circuit with the grid circuit of the 1 st IF amplifier tube. The capacitor, C13, and coil, L17, are resonated at 23 mc . Adjustment of L17 is part of the alignment procedure. The coil, L18, and condenser, C16, and associated distributed capacities are resonant at about 16 mc , and present an inductive reactance of about 100 ohms to the intermediate frequencies. This
inductive reactance forms the mutual circuit between C13-L17 and the input coil and tube capacities of the 1st Ir amplifier. In addition, L18-C16 form a trap circuit which removes part of the adjacent channel signals. However, L18 cannot be adjusted for complete adjacent channel trapping because the mutual inductance would not be correct to provide mutual coupling in the IF pass band.

Converter plate voltage is supplied through R7 The converter output provides a composite video-sound IF signal of 26.1 mc video and 21.6 mc sound. This output is suitable for use directly in the intercarrier IF system of the Hoffman 21 tube TV receiver chassis.

FIELD SERVICE

Field service of the Hoffman Tuner is limited primarily to maintenance and sub-assembly replacement. If a tuner requires major servicing, it should be removed from the TV receiver and returned to the Hoffman distributor for replacement. The exploded view diagram is for the purpose of location of parts and explanation. tUBE REPLACEMENT.

Replacement of tubes in the Hoffman Tuner will have an effect on the alignment or tracking characteristics. However, this effect can be minimized until the changes are negligible if replacement is made with a tube by the same manufacturer as the original tube, and with a tube designed for TV use. The RF amplifier, being cross neutralized, may oscillate if a tube with different inter electrode capacities is used.

Replacement of the oscillator tube may require retrimming of C 15 to bring the tuning into the middle of the channel.

Selection of tubes may be made by trying several tubes until one is obtained which has approximately the same interelectrode capacity as the original tube. SHORTING BAR CONTACT MAINTENANCE

The shorting bars for the tuned lines are in the form of solid silver leaf springs with a small detent on each tip which rides on the silver surface of the printed distributed line.

Smooth and silent operation of the tuner requires proper oiling of the contact surfaces. Contact noise usually shows up as black streaks across the raster during tuning.
©John F. Rider

Figure 3. Top View

Figure 4. Shorting bar
A special oil for use in high frequency circuits which has no effect on the Q of the circuit or will not disturb the electrical properties of the tuned lines must be used. Factory production uses \#7059 Solidified Switch Oil manufactured by the Viscosity Oil Co. of Chicago, III.

A soft, non-shedding brush, such as camel's hair, should be used to apply the oil to the outer surface of each tuned line around the entire circumference where the contactor shorting bar rides on the silver surface. Turn the contactor shorting bar to the opposite side of the plates being oiled to avoid bending or springing the contactor with the oil brush. Make sure that brush hairs or other particles are completely removed from the plates after oiling.

The small loop and slide bar used for high band inductance adjustment do not require oiling.

SHORTING BAR CONTACTOR REPLACEMENT

The detent contact of the shorting bar is subject to the greatest amount of wear of any portion of the tuner. If the contactor becomes noisy and cannot be corrected by oiling, the entire shorting bar should be replaced. Refer to the exploded view diagram, and follow these steps for replacement:

1. Loosen the shaft-holding setscrew. This is a 6-32 Allen head screw and uses a No. 6 Allen wrench.
2. Grasp the metal tuner shaft through the access hole in the back plate of the tuner and pull it straight out, or part way out until the desired shorting bar drops loose.
3. Replace the noisy contactors with new parts. The hole through which the shaft passes is flat on one side so that misalignment of the contactor is impossible. The hole size tolerance is $+.00-.001$ so that the hole must be lined up squarely with the shaft before the shaft will pass through. The bakelite material forming the hole is split so that a snug fit will result when the shaft is pushed through.

A small hole is molded in the bakelite material just above the flat portion of the shaft assembly hole. (See drawing of shorting bar contactor.) Insert the contactor between the plates with the small hole facing toward the back of the tuner.
4. Slide the shaft into the oscillator section (rear plates), line up the contactor hole, and lightly force the shaft through the contactor. Proceed to each successive pair of plates, lining up the contactor and forcing the shaft through one at a time.

Figure 5. Rear View
5. Press the shaft into the brass drive collar. The setscrew must set against the flatted side of the shaft. The shaft will slide forward until the rear end of the
shaft is approximately flush with the metal back plate of the tuner. Tighten the setscrew.

ALIGNMENT PROCEDURE

RF AMPLIFIER - CONVERTER INPUT ALIGNMENT SETUP.
Using a 300 ohm source, insert signal into the antenna erminals. Loop one wire lead of a 100 K isolating resistor around the screw adjustment of C10, converter tuning. Connect the other end of the resistor through Ground the shielded lead to the tuner chassis and scope round.
Load L17 by soldering an 1800 ohm, $1 / 2$ watt, composition resistor across the coil terminals.

Since the chassis has been removed from the cabinet, here is no index mark for the channel dial. A suitable
index can be fashioned from a piece of stiff wire soldered to the main TV chassis, and set to a point directly above the tuning shaft center.
sound carrier frequency. If only one marker is available, it can be swung back and forth to the two frequencies during alignment. Using the dial knob, set Channel 6 pposite the index. This should place the shorting bar contactor approximately in the center of the Channel 6 plate), and C10 (converter grid circuit) to give maximum overall response with a symmetrical waveform. Do not tune for a maximum peaked response, but develop a ymmetrical waveform. This is a preliminary adjustment of the trimmers; so, exact shaping of Channel 6 is not required at this point. Adjust C3 for proper neutralizacause oscillation in the RF amplifier which shows as grass" on the scope waveform. Lesser degrees of mproper neutralization will produce a peak on one side or the other of the waveform. See figure 7 for example of improper neutralization
Set the tuner to Channel 13. Set sweep generator carrier). Set second marker, if available, to 215.75 mc .

Filder a $1-1 / 2$ volt battery in 6. Connection Diagram
etween ground and the tie point near main TV chassis between ground and the tie point near tor the tuning unit during which will

DETAILED PROCEDURE.

The alignment of the Hoffman continuous tuner is a process of compatibly adjusting the three variables of each section of tuned plates; i. e., trimmer capacitor high-band loop sliders and low-band jump coils. Adjustment of coupling and neutralization are another important part of alignment. The general procedure to be followe
is:
a. Preliminary adjustment of trimmers
b. Adjustment of slide bars
. Final adjustment of trimmers
e. Recheck of all channels and compromis retrimming of all adjustments.
Exact details of the alignment procedure are given below, and are outlined in a step by step process in the alignment chart. Alignment of the RF and converter input section is completed first; then alignment and tracking of the oscillator section is accomplished
Set the sweep generator to Channel $6,85.5 \mathrm{mc}$ center, with 10 mc sweep width. The input signal level should be .02 to .05 volt. Insert a marker signal at 83.25 mc (picture carrier frequency). If a second marker signal is available, it should be set to 87.75 mc

Adjust the high band loop slide bars to obtain a maximum symmetrical waveform. Adjustment order, although not critical, should be antenna section, RF plate section, and converter grid section, in that order. At final in approximately the same position, Usually, the antenna section will be set for nearly maximum inductance, and the RF and converter sections will be at about $3 / 4$ of maximum inductance. A band pass of 6 to 7 mc can be obtained. C7 (coupling) may be adjusted to obtain coupling to produce greater than the minimum
of 6 mc . The picture carrier marker should on or just outside the maximum amplitude point of the high frequency side of the waveform. The band pass dec reases as the frequency is reduced to Channel 7, so widest bandpass is required on Channel 13.

Set tuner to Channel 7. Set the sweep generator to 177.5 mc with 10 mc sweep. Set marker generators
to 175.25 and 179.75 mc . It may occur that the markers to 175.25 and 179.75 mc . It may occur that the markers
do not lie on the most desirable portions of the pass band (on each side of the peak), when the knob is set with 7 exactly at the index. Reset the knob slightly to move the pass band to the proper position relative to the markers. The new knob position should be within
3 or 4 tenths of the exact position. The condition where this rotation is excessive will be taken up later.

Adjust C3. To Bring Peak
Down To Dotted Line

High Band Channels
Figure 9. Typical Band Pass Characteristic
The waveform and bandpass response curves shown in this manual are illust rated in the conventional manner, with amplitude
upward and frequency from left to right, pow frequency being on the left. In actual practice, depending on polarity of scope and signal generators, the waveforms may en inverted or reversed from right to left quickly orient the waveforms for practical use.

With the markers in best position, adjust C1, C5 an C10 to produce a symmetrical waveform with greates amplitude. It may be necessary to slightly retrim C the setting of C 5 and C 10 , so that the thre influences should be adjusted alternately. If considerable readjust ment of the trimmers was required on Channel 7, then Channel 13 should be rechecked as described above obtin for all the high band channels. II rotation of the channel
knob for proper placement of the markers on Channel set exactly at the index on Channel 7, and the trimmers C1, C5 and C10 adjusted to bring the waveform as close as possible to the best positioned symmetrical hape. As inen imperative o repeat shide bar adjust for final retrimmi
Set tuner to Channel 6. Set sweep generator to $85 \mathrm{mc}, 10 \mathrm{mc}$ sweep. Set markers to 83.25 mc (picture) and 87.75 mc (sound). Reset tuner knob until markers essary that 6 be set exactly at the index, but should be within 3 or 4 tenths of the exact position. Inspection of the position of the shorting contactor will indicate
its position which should be within approximately the its position which should be within approximately the center third of the Channel 6 segment. If the knob
calibration is excessively in error, or the shorting contactor is near the edge of the segment, adjustment of the jump coils is required. The inductance of the coils can be decreased or inc reased by spreading or
squeezing the coil. Use a nonmetalic alignnient tool for spreading the turns, or a long nose pliers insulated with tape for squeezing the coils. Set the tuning knob to place Channel 6 opposite the index. Start with the anterna section coils L1 and L4. Next adjust the outside
coils (L5 and L12) of the RF and converter sections. Adjust the coupling coils L8 and L9 for best band-width Observing the curves of Figure 9, the coupling on Channel 6 provides a band-width of 7 to 8 mc . This wide pass band is necessary to give sufficient coupling coils should result in a smooth symmetrical double peaked curve.

Set tuner to Channel 2 (approximately). Set the weep generator to $57.5 \mathrm{mc}, 10 \mathrm{mc}$ sweep. Set markers the waveform on Channel 2. The picture marker should be located just outside the maximum peak. and the sound marker will fall at a lower point on the pposite side of the curve. The difference between amplitudes at marker points should not exceed 3 db . f the waveform is not acceptable, retrim C3 and C1 slightly. This is a compromise adjustment and it will deterioration of waveforms on the other channels may be tolerated to allow better performance on 2 . The verage overall perio oscillator section adjustment
setup
The oscillator adjustment should be made after the RF section is aligned. Tracking of the oscillator is accomplished by accurately marking the 26.1 mc icture IF output point, and then adjusting the oscillator the reference 26.1 mc parker. mark concide with Input isolation marker
converter grid circuit too heavily. A network consisting of a 1000 ohm composition resistor and a 220 mmf condenser in series with the signal lead will give
sufficient isolation and transmit enough signal to prosufficient isolation and transmit enough signal to proing of the converter grid circuit will distort the RF waveform, so it is desirable to use a larger resistor The 26.1 mc reference marker should be derived
rom a source which will allow the signal to be injected into the circuit separately from the sweep signal Any unmodulated C.W. signal which can be accurately calibrated to 26.1 mc will be satisfactory. The output hould be 0.1 volt or greate

The sweep generator and scope are connected as The circuit at the scopet the 26.1 mc source into the metal screw of C 10 .
if sufficient signal amplitude is available from the 26.1 mc source. Distortion of the RF waveform is not
serious, because the oscillator adjustment is for frequency only, and does not affect the waveform.

procedure

Set the sweep generator to $85 \mathrm{mc}, 10 \mathrm{mc}$ sweep. Set the RF narker to 83.25 mc . Turn the tuning knob to approximately the center of Channel 6 so that the RF
marker is in a suitable position on the waveform. If may be desirable to remove the extra loading of the 26.1 mc marker during this adjustment. Insert the 6.1 mc marker, and adjust the oscillator trimmer coincide.

Set the sweep generator to $213 \mathrm{mc}, 10 \mathrm{mc}$ sweep. Set RF marker at 211.25 mc . Turn tuning knob to

Adjust the oscillator section high band loop sliders to make markers coincide.
Set sweep generator to $177.5 \mathrm{mc}, 10 \mathrm{mc}$ sweep Set RF marker to 175.25 mc . Turn tuning knob to further adjustment is required. If necessary, readjust C 15 , then repeat Channel 13 adjustments.
©John F. Rider

[^3]| PAGE | PAGE |
| :---: | :---: |
| ALIGNMENT INSTRUCTIONS ... 6 | SCHEMATIC 10 |
| PARTS LAYOUT 8 | SPECIFICATIONS 5 |
| PARTS LIST 9,11 | TOP VIEW - TUBE LAYOUT. . . 8 |
| PRODUCTION CHANGES. 14 | TROUBLESHOOTING 12 |
| | VOLTAGE MEASUREMENTS . . 9 |

MODEL 633
Mahogany Cabinet

SPECIFICATIONS

Line Voltage
Number of Tubes
Picture Tube Size
Power Consumption
TV Channels
Audio Power Ouput

115 V AC 60 cps
21
16" Rect.
205 Watts
2 through 13
3 Watts

Figure 1. Chassis 159

Figure 2. Chassis 160

Speaker Type	$6^{\prime \prime} \times 12^{\prime \prime}$ Oval PM
Cabinet Height	$183 / 8^{\prime \prime}$
Cabinet Width	$22^{\prime \prime}$
Cabinet Depth	$181 / 2^{\prime \prime}$

Circuit connections are built into these models for attaching an external phonograph. A crystal pickup type record player must be used. A 45 rpm 7 " record changer, a Long Playing changer, or a sto a socket marked AC PHONO located directly below the AC line cord lock at the left rear portion of the chassis. The phono audio lead goes into an audio jack marked INPUT PHONO located at the right rear portion of the chassis. The audio amplifier system of the TV receiver is controlled by the slide switch located adjacent to the INPUT PHONO jack. When this switch is placed in the PHONO position, the output of the record player pickup is amplified through the TV audio system. The
volume is controlled in the normal manner with the volume control at the left front of the chassis. The slide switch marked TV-PHONO has no effect on the picture circuits of the receiver. The CONTRAST control may be turned full off to remove the picture. (Brightness should have been previously set so that light just begins to appear at minimum contrast setting.) All power to the phonograph is turned off when the TV receiver is turned off.

MAJOR COMPONENTS ELECTRICAL AND MECHANICAL DATA

Cabinet
$\begin{array}{ll}\text { Model 632 } & 7580 \\ \text { Model 633 } & 7581\end{array}$
V Chassis
Models 632, 633
160

Tube, Picture
16 TP 4
Glass, Window Protective
743
Frame, TV Glass 2387
Mask, Frame Liner 2388
Speaker
9074
Antenna Assembly
Loop, Antenna
Azimutrol
Knob, Antenna Tuning

| |
| :--- | :--- |
| |

Plate, Contrast-Off-On-Volume 2446
Plate, Channels-Tuning 2448
Knobs
Channel Selector 33502

Fine Tuning
If-On-Volume
Contrast
Vertical Hold

Power Requirements: Operating Voltage Watts	$115 \mathrm{~V} \mathrm{AC}_{205} 60 \mathrm{cps}$
Tuning Range: TV	Channels 2 through 13
Audio Power Output	3 Watts
Output Impedance (Audio)	3.2 ohms at 400 cps
Video Bandpass	3 MC
Intermediate Frequencies: Video Carrier Intercarrier Sound	$\begin{array}{r} 26.1 \mathrm{MC} \\ 4.5 \mathrm{MC} \end{array}$
Antenna Input Impedance	300 ohms, balanced
Picture Tube:	
Chassis 159	148P4
Chassis 160	16TP4

Chassis 159 and 160 are 21 tube TV receivers. An intercarrier sound system is used with the 4.5 mc sound IF being taken off atter the video second detectrare used. The interstage IF transformers are double-tuned, overcoupled type. The high voltage and deflection circuits are designed mounted directly on the chassis on specially designed support brackets.

Servicing of the receiver without removal from the cabinet is facilitated by the easily removable meta bottom plate. The metal plate forms the bottom of the receiver cabinet, and is held in place by four screws.

Chassis 159 and 160 are identical except for the
andle either the 14BP4 tube for variations required to handle either the 14BP4 tube for
chassis 159 or the 16 TP 4 tube for chassis 160 . The parts which are different are the tube holddown strap,
the focus coil mounting bracket, the deflection yoke mounting bracket, and the metal bracket for supporting the front of the picture tube. The screen resistor, R162, of the 6 BG 6 G , is increased from 8.2 K to 15 K ohms to
decrease the horizontal drive and high voltage for the 14 inch tube. Alternate part numbers are shown in the parts list. All other electrical and mechanical components are the same for both chassis.

TUNING UNITS
Two types of tuning units are used interchangeably
in the chassis 159 and 160 . The turret tuner, RF6, used in the chassis 159 and 160 . The turret tuner, RF6, used production of chassis 160 . The Hoff man continuous type tuner is used in production of both 159 and 160 chassis, although the two tuners are operationally interchangeable

Separate mounting plates are used in conjunction with each type tuner, so that direct mechanical interhangeability is possible.

The style of knobs for the front panel controls are diffe rent for the two types of tuners, and each tuner must TUBE COMPLEMENT

TUNING UNTT

1 6J6 RF Amplifier
1 6J6 Oscillator, Converte
SUMMARY OF TUBE COMPLEMENT

1 X 2	1	6 K 6 GT	1
5U4G	1	6 S 4	1
6 AU 6	4	6 SN 7 GT	2
6 BG 6 G	1	6 T 8	1
6 CB 6	4	6 W 4 GT	1
6 J 5	1	14 BP 4 or	
6 J 6	2	16 TP 4	1

installation and operating instructions FRONT PANEL CONTROLS

The front panel operating controls consist of the
NTING control, the OFF-VOLUME control, and the TUNING control, the OFF-VOLUME control, and the
CONTRAST control. With the AGC system used for maintaining constant signal level, the contrast control becomes primarily useful in setting background level for best viewing under various room lighting levels or
different average program contr
The single magnet type beam bender is used with either the 14 inch or 16 inch tube. The rated flux
density is 60 gauss, which is higher than previously density is 60 gauss, which is higher than previousty
used magnets. There is no indication to show a forward or back direction for the installation of the magnet on the tube neck. The direction of installation is immaterial, except that if the magnet is the tube.
rotated 180° on the neck of

The method of installation is to slip the beam bender tube face until it approaches a space over the "flags" of the first anode. Set the brightness control about midway of its range, never full on, to avoid damaging the tube's electron gun prior to proper adjustment or the tube
bender. Rotate the magnet 180° or more on the neck until light appears on the screen. After initial light has been obtained, move the beam bender forward or back, and further rotate it to obtain the brightest raster. With the strong, 60 gauss magnet, there are
two positions which will give screen illumination. One occurs near the tube base as the magnet approaches a position over the "flags" and the second occurs as the magnet is pushed beyond the "flags" and near the focus
coil. The first position is preferred because it allows greater space for adjustment range. The strong magnet also allows a wider adjustment range and the setting will affect the centering and focus. A last check should be made on beam bender adjustment after focus and deflection adjustments
BRIGHTNESS CONTROL

The brightness control provides adjustment of control grid bias voltage. Automatic retrace elimination cironly at maximum setting of the brightness control. Proper setting of the brightness is such that light is just visible on the screen when the contrast control is set at minimum with a sign
HORIZONTAL CONTROLS

The horizontal hold and horizontal drive controls are interdependent and should be adjusted
simultaneously. Tune in a test pattern and set the tuning simultaneously. Tune in a test pattern and set the tuning
so that sound and picture are both present. Set the HORIZONTAL DRIVE to the middle of its range. Turn
the HORIZONTAL HOLD until the picture is properly in sync. Approach from either clockwise or counterclockwise direction is permissible. There will be a range of 2 or 3 turns of the L108 tuning slug which will
hold the picture in sync. Adjust to approximately the hold the picture in sync. Adjust to approximately the
center of this range. From these preliminary adjustments, final adjustments can be made, if required. One, or several picture discrepancies may appear which can be corrected by slight readjustment of the Drive control are: are:
of the a vertical white line or band through the center
(2) thin vertical black lines on either left or right side of picture; (3) vertical wedges of test pattern or vertical lines
of picture are crooked or bent over at the top of the picture;
(4) sync at edge of range, evidenced by failure of picture to immediately come into sync horizontally when
the tuner is turned away from and back on channel;
(5) horizontal non-linearity of test pattern. Al of these discrepancies can be corrected by simulaneous readjustment of the Drive and Hold controls.

The HORIZONTAL SIZE, or width cont rol, L109, provides a wide range of linear width adjustment. Clock-
wise rotation (slug moving into coil) increases the width wise rotation (sl
of the picture.
focus Control and raster centering ADJUSTMENTS

Electromagnetic focusing is used, with the focus coil being used as a choke in the B+ supply circuit. The Focus control, R195, shunts the focus coil. Adjust he Focus control until clear, well-defined horizontal
sweep lines can be observed.

Vertical and Horizontal Centering controls are mechanical type which operate by positioning the focus coil. The vertical centering is operated by a spring-
loaded screw on the right of the focus coil, and horizontal centering is operated by a similar screw on the left. If difficulty is encountered in focusing or centering, or eck shadows appear, a reversal of the leads to the focus coil will often remedy the situation.
vertical controls
The VERTICAL HOLD control has a "hold-in" range of adjustment over which the picture will stay in sync.
The control should be set in about the middle of the The control should be set in about the middle of the 'hold-in" range.

The vertical size and vertical linearity operate together to aujust the vertical height and pro-
portion of the picture. The Size control affects the portion of the picture. The Size control affects the vertical size of the entire picture, but not in a linear
manner. The bottom portion of the picture is expanded manner. The bottom portion of he picture is expanded the tube. The linearity control operates to expand the
upper portions of the picture, and compensate for nonupper portions of the picture, and compensate for non-

ALIGNMENT

This alignment procedure describes alignment of the double, the procedure for the RF tuning unit is described in separate bulletins on the tuning units. The general order of alignment should be as follows:

Sound Takeoff Coil
Sound IF and Ratio Detector Primary
Ratio Detector Secondary
4.5 MC Video Trap

Adjacent Channel IF Traps
Picture IF Transformers
Converter Output Coils
The detailed alignment procedure deals with methods used and precautions to be observed during the alignment table be followed after reading the detailed procedure.

SOUND IF ALIGNMENT

Equipment Setup

Set the sweep generator at 4.5 mc center fre quency with approximately 400 kc .
a marker signal of exactly 4.5 mc .

Connect the signal to the short wire leading to the grid, pin 1, of V108. This is shown as point "C" o the schematic diagram. Use shielded lead from the
sweep generator, and connect a 50 ohm, composition sweep generator, and connect a 50 hm , composition
resistor from point C to ground. This resistor is no required if the generator has a low impedance output.

Unsolder one end of C11
Connect the scope from pin 2 of the 6 T 8 to ground. Use a 10 K ohm, isolating resistor betwee making the scope connection.

procedure

Adjust L100, T101 primary (bottom), T101 secondary (top), and T102 primary (bottom) to obtain a flat-topped, symmetrical band pass with the 4.5 mc See Figure 3. It is essential that the slugs be moved rom the outer ends of the coil form toward the center, by turning the slugs clockwise. If the slug has been run past the center, so that resonance is reached with the
slug coming out of the coill, then the slug must be backed out, counter-clockwise, completely through the coil and the tuning procedure started over again. If the slugs are run into the center of the double-tuned coils, alignment will be impossible. This applies to all double uned transformers.

RATIO DETECTOR ALIGNMENT

Equipment Setup
The sweep and marker generators remain connected as above.

Reconnect C113.

Connect the scope, with isolating resistor, to
he junction of R105, R106. Procedure

Adjust the secondary (top) of T102 for an "S" curve which is symmetrical, and has the 4.5 mc marker in the center of the linear or straight line portion of the
curve. Inasmuch as the certer of the "S" curve is a zero curve. Inaimuch as the center of the "S" curve is a zero
or null point, very little 4.5 mc marker will come through. However, the marker does produce a series of irregular traces which appear on opposite sides of the linear portion of the curve. These traces may be evenly T102 secondary.

alternate sound alignment

If no 4.5 mc sweep gerterator is available, the sound may be peak aligned using an unmodulated 4.5 mc
source and a 20,000 ohm $/$ volt DC meter. Connect the source and a $20,000 \mathrm{ohm} /$ volt DC meter. Connect the generator to pin 1, V108 as with the sweep generator.
Leaving C113 in the circuit, connect Leaving C113 in the circuit, connect the DC meter across
R107. Tune all 4.5 mc sound coils as a peak reading on the meter.

Adjustment of the ratio detector secondary may be accomplished by connecting one terminal of the DC
meter to the junction of R105, R106, and the other terminal to the junction of two 10 K ohm resistors connected in series and soldered in the circuit across is produced.

If no equipment is available, the sound may be aligned on a station signal without the use of a signal
generator or scope. Tune in a station normally, and white listening to the sound output from the speaker, tune L100, T101 primary (botom), T101 secondary (top) and T102 primary (bottom) to obtain maximum sound best quality, and minimum buzz. It may be necessary to go through the series twice to obtain the best perform-

©John F. Rider

Figure 3. Sound Alignment Curves
TUNING 4.5 MC VIDEO TRAP
Equipment Setup
Connect an unmoctulated 4.5 mc signal to pin 1 V108. Connections are the same as for sound aligmment.
Use a detector and isolating network as shown in Figure 4, connected to the output side of video peakin in Figure 4, connected to the output side of video peaking
coil, L105. The 2.5 V scale of a volt-ohmmeter or a 50 microamp meter with a limiting resistor in series may be used for the indicator.

Procedure

Adjust the slug of L106 for minimum reading on the meter. Increase the input signal to produce greate output as the trap is tuned.

Alternate Procedure

If the service man is familiar with the appear ance of 4.5 mc beat pattern as produced on the picture signal generator or meters.

Tune in any channel, and then mis-tune to a point that would be equivalent to placing the sound IF carrier indicated by a maximum 4.5 mc beat pattern in the picture. Tune L106 for minimum beat note. This will minimize the beat pattern when the station is properly tuned.

Figure 4. 4.5 MC Beat Pattern Detector Circuit TUNING ADJACENT CHANNEL TRAPS

Equipment Setup

Connect a voltmeter to the short wire between the output of the picture 2nd detector circuits and pin of V108. This is shown as point "C" on the schematic
Set meter to 10 V DC scale. The scale may be reduced later.

Connect a signal generator, through an isolation network, to the grid, pin
is shown in Figure 5 .

Use composition resistors and a disc type ceramic condenser

Figure 5. Input Isolation Network

Procedure

Apply an unmodulated, 28.1 mc signal to the grid of V107. Use sufficient output from the generato to produce an appreciable reading on the DC meter. Tune L103 to produce a minimum on the meter. This dip may be only a small change of reading if the IF amplifiers are misaligned, but will be located properly the meter scale and increase signal as L103 is tuned.

Move the signal generator and isolation network the grid, pin 1, of V106. Set the unmodulated signal 28.5 mc . The tuning procedure for L 102 is the same as described for L103.

PICTURE IF A LIGNMENT
The picture IF aligument procedure is a process of separately adjusting a series of double-tuned, overin itself and provides a band pass of about 3 mc for each stage. The cascading of three amplifiers and the equivalent of four double-tuned transformers produces a high gain broad band amplifier. The band pass waveform
is the conventional, double-humped characteristic of the over-coupled circuit.

Equipment Setup

Connect a scope between point " C " and ground through a 10 K series resistor as shown in Figure 6 . The scope should have a sensitivity of .1 volt RMS/inch
or better

Figure 6. Scope Connection Network

Connect the negative terminal of a 3 V battery to the junction of R124 and C122, and connect the positive AGC voltage for aliznont procedure
generator through the network shown in Figure sweep of V107. For successive stages, move the 5 to pin and network to each grid in succession

Procedure

Set the sweep generator to a center frequency 24 mc with 10 mc sweep.

Insert a marker signal set to 24.3 mc .
For alignment of the 3 rd picture IF, adjust the primary (bottom) and secondary (top) of T106 to obtai a pass band whose flat top is symmetrical about metrical. See Figure 7. Correct alignment of the
overcoupled, double-tuned stages is indicated by a curve having a nearly flat top with equal amplitude peaks The bandwidth of each stage is predetermined by design of the transformers and is not controlled by alignmen
A dip may be noticed as indicated by a dotted line i

Figure 7. This condition may be eliminated by shorting The primary of the transformer in the plate circuit sweep generator is connected to the secondary of the transformer whose primary will be shorted.

Figure 7. I.F. Alignment Wave Form

Figure 8. Rear Chassis Controls

Figure 9. Strap Installatiot

Move sweep generator and isolation network

 Move sweep generator and isolation networkto pin 1 of V106, 2nd picture IF. Alignment of T105 is accomplished by tuning the primary and secondary to give a symmetrically topped curve as previously de scribed. It is imperative that T105 only be adjusted The previously alligned T106 must not be touched because a false alignment can be obtained even though the overall primary was shorted for previous alignment, the short must be removed prior to alignment of this stage.

Move the pror pin 1 of V105, 1st picture IF. Align T104 as nas wor in previous stages. Do not readjust T105 or T106. Se Figure 7 for approximate shape of the overall band pass.

It can be noted that the center dip is greater, and the total band pass is slightly less than that of a single stage. Note also the position of the dips caused by the 28.1 and 28.5 mc traps.

Connect the signal generator and isolation network to the converter grid in the RF tuning unit. The converter output coil and the picture IF peaking coil L101, form an over-coupled circuit comparable to the IF transformers. Using the converter output coil as the primary, and L101 as the secondary, align the IF inpu in Figure 7. Again, it is emphasized that previously aligned stages must not be touched

ALIGNMENT TABLE

This alignment table is for quick reference during alignment. Detailed instructions beginning on page 4. should be studied before alignment by use of the table is attempted.

$\begin{gathered} \text { Step } \\ \text { No. } \end{gathered}$	Connect Signal To	Sweep Gen. Freq.	Marker Gen. Freq.	Output Indicator	Adjust	Instructions
1	Point "C"	4.5 mc 400 kc sweep	4.5 mc	Scope to Pin 2 of 6T8	$\begin{aligned} & \text { L100 } \\ & \text { T101 Pri, Sec } \\ & \text { T102 Pri } \end{aligned}$	Disconnect C113. See Fig. 3 for waveform.
2	"	"	"	Scope to junction R105, R106	T102 Sec	Reconnect C113. Adjust for " S " curve.
3	"	None	"	Detector Network and Meter to L105	L106	Adjust for minimum reading on meter.
4	$\begin{aligned} & \text { Pin } 1 \\ & \text { V107 } \end{aligned}$	None	28.1 mc	Meter to Pin 1 of V108	L103	Use isolation net on input. Adjust for dip on meter.
5	$\begin{aligned} & \text { Pin } 1 \\ & \text { V106 } \end{aligned}$	None	28.5 mc	"	L102	Adjust for dip on meter.
6	$\begin{aligned} & \text { Pin } 1 \\ & \text { V107 } \end{aligned}$	24.3 mc 10 mc sweep	24.3 mc	Scope to point "C"	T106 Pri, Sec	Adjust for symmetrical waveform. See Fig. 7.
7	$\begin{aligned} & \text { Pin } 1 \\ & \text { V106 } \end{aligned}$	"	"	"	T105 Pri, Sec	"
8	$\begin{aligned} & \operatorname{Pin} 1 \\ & \text { V105 } \end{aligned}$	"	"	"	T104 Pri, Sec	"
9	Converter Grid	"	"	"	Converter Output and L101	"

Use -3 V battery connected to AGC line for alignment bias
ee text for isolation networks

BOTTOM VIEW PARTS LAYOUT
 CHASSIS 160

PARTS LIST

SYMBOL	value	TOL.	WATTS OR VOLTS	TYPE	PART NO.
C100	22 mmf	10\%		GA4	4069
C101	. 005	GMV		Ceramic	4029
C102	. 005	GMV		Ceramic	4029
C103	Part of T101				
C104	Part of T101				
C105	. 005	GMV		Ceramic	4029
C106	. 005	GMV		Ceramic	4029
C107	. 005	GMV		Ceramic	4029
C108 C 109	Part of T102 .0047				
C110	Part of T102	20\%	400 V	Paper	4127
C111	180 mmf	20\%		Ceramic	4070
C112	. 005	GMV		Ceramic	4029
C113	5		50V	Electrolytic	4209
C114	. 0005	20\%		Ceramic	4017
C115	47 mmf	20\%		Ceramic	4009
C116	. 01	20\%	600 V	Paper	4105
C117	. 0047	20\%	600 V	Paper	4128
C118 C119	20 20		25 V 475 V	Electrolytic) 4230
C120	. 005			Electrolytic Ceramic	-4029
C121	. 005			Ceramic	4029
C122	. 005			Ceramic	4029
C123	. 005			Ceramic	4029
C124	$2 \times .004$			Ceramic	4036
C125	1.0 mmf	10\%	500 V	GA2	4063
C126	. 005			Ceramic	4029
C127	. 22	20\%	200 V	Paper	4131
C128	. 005			Ceramic	4029
C129 C 130	1.2 mmf 2×004	10\%	500 V	GA	4074
C131	10 mmf	Part of L102		Ceramic	4036
C132	1.0 mmf	10\%	500 V	GA2	4063
C133	$2 \times .004$		500 V	Ceramic	4036
C134	. 005		500 V	Ceramic	4029
C135	2.2 mmf	10%	500 V	GA4	4069
C136 C 137	10 mmf	Part of L103 20%			
C138	Part of L106 4.5 mc trap	20\%	500 V	Ceramic	4064
C139	. 005		500 V	Ceramic	4029
C140	330 mmin	10\%	500 V	Mica	4010
C141	. 0047	10\%	1000V	Paper	4140
C142	. 0047	20\%	400 V	Paper	4127
C143	. 0047	20\%	400 V	Paper	4127
C144	. 1	20\%	200 V	Paper	4143
C145 C146	10 .0039		475 V	Electrolytic	Part of 4228
C146	. 2703 mmf	10\%		Mica	4037 .
C148	. 0047	20\%	600 V	Paper	4
C149	220 mmf	20\%	500 V	Ceramic	4026
C150	220 mmf	20\%	500 V	Ceramic	4026
C151 C 152	5		50 V	Electrolytic	Part of 4228
C152 C 153	. 045	20\%	600 V	Paper	4133
C154	. 47 mmf	10\%	600 V 1500 V	Paper Mica	4129
C155	. 001	20\%	600 V	Paper	4146

Figure 11. Voltage Chart
All voltages measured with set receiving picture and sound adjusted for normal
operation, medium signal, medium volume and contrast level.

6-9 39Vd ^1 NVW』』OH

PARTS LIST

REGENERATION IN I.F. AMPLIFIERS

SYMPTOMS: Regeneration in the I.F. amplifiers, particularly at low signal level where little AGC bias lines on sets produced prior to Serial No. D035142. Two effects may be produced, one when a station is tuned in and another on unused channels when no signal is present.

The effect on a picture is production of a vertical, $1 / 8$ to $1 / 4$ inch wide band, spaced about $1 / 4$ inch from the left edge of the raster. The band contains variadle width diagonal stripes, alternate dark and light, which produce a "barber pole" effect

The effect when no signal is present, is known as "Christmas tree". The white raster, with brightness turned up, will appear with several variable width sections, giving it an appearance of a Christmas tree of bright horizontal lines filling approximately the center 50% of the raster area. The lines are accompanied by a loud singing of the horizontal output transformer. This latter effect disappears when a station 'is tuned in.

The Christmas tree condition is associated with horizontal sync and is covered further in Servic Bulletin No. 132.

REMEDY: The following changes can be made in the wiring layout of chassis 159 and 160 to aid in reducing regeneration. Schematically, no changes have been made in the circuit

1. Remove the co-ax lead running from the Tuning Unit video output to coil L101.
chassis.
2. Remove two red +265 V wires (in some sets thes wires are orange) from the $80 \mathrm{mf}, 475 \mathrm{~V}$, electrolytic condenser (shown as present C171 on schematic)
3. Remove orange +345 V wire from the $80 \mathrm{mf}, 475 \mathrm{~V}$ electrolytic condenser (shown as present C170 on schematic). Remove one end of R193 (150 ohms) from same electrolytic
4. Reconnect one +265 V red wire (from R195, focus control) to the electrolytic condenser formerly occupied by +345 V orange wire.
5. Reconnect orange +345 V wire to electrofytic formerly occupied by two red wires.
6. Reconnect free lead of R193 to new position of +345 V
wire as in step 6 above.

The steps 3 through 7 are for the purpose of exchanging the physical locations of C170 and C171 Schematically, no changes have been made.
8. Disconnect one blue wire (going to R197 voltage divider) from the +140 V point at C 173
9. Reconnect blue wire to +140 V tie-point in sound F. strip (junction of R102, R104)
10. Reconnect red wire (+265 V . lead from R196, pre viously disconnected in step 3) to junction of pins 4 and 6 at tube socket of V109, 6AU6, AGC keyer.

If heater leads of V109 are connected directly to the tube socket, the following change should be made.
11. Remove V109 heater wires (black, twisted leads rom power transformer) from tube socket pins Leave all other wires in place. Connect one wire to +265 V string at junction of R195, L113, on focus potentiometer. Connect other black wire to tie-point junction of brown wires running to heater of cathode-ray tube and heater
of V.109.

These changes have been made on all sets produced after Serial No. D035142

On early production receivers, prior to Serial No. C023200, one additional change is required. A white wire, carrying AGC voltage, runs along the front of the I.F. Strip, between the adjacent channel traps, should be rerouted so that it lies outside the IF strip and against the main chassis, under the lip of the I.F. strip subchassis.

An easy way to make the wiring changes is to obtain a recent production chassis and follow the new wiring layout.

To realize full benefit from the wiring changes to reduce regeneration, the chassis should be realigned after completion of the rewiring.

The metal bottom plate for the chassis may provide an additional feedback path in some cases particularly in fringe areas where the signal is low be characterized and aggravated by the 3rd I.F. stage being "hot" or regenerative. To alleviate this situation, a non-metallic bottom plate has been developed and is available on order from the Hoffman distributor under Part No. 3735.

ADJACENT CHANNEL TRAP ADJUSTMENTS

The adjacent channel traps, L102 and L103, may require adjustment to a different set of irequencies to give optimum operation in some locations. Alignment data in Service Data No. 125 shows 28.1 mc for
L 103 and 28.5 mc for L102. Factory production is L103 and 28.5 mc for L102. Factory production is
aligning to 27.6 mc for L103 and 28.1 mc for L102.

The frequency 27.6 mc represents the adjacent channel carrier and more efficient trapping is obtained, particularly in fringe areas.

Setting the traps to the lower frequencies tends o st and may result in a sharper sound tuning characteristic.

In setting the adjacent channel traps, two positions f the iron slug will produce resonance. The trap will be most effective if the slug is set in a position going "hoottom" is the grounded end of the coil. The electrical the "bottom" end is opposite from the end held in the chassis by the tinnerman nut. In practice, the slug may protrude out of the coil form by an amount of one
or two threads. This slug position is most effective for either set of trap frequencies.

The trar settings materially affect the I.F alignment, so it is suggested that no adjustments be made on the traps unless complete realignment can be completed.

ALTERNATE CRYSTAL TYPES

The crystal used as the picture second detector is shown as a Sylvania type 1N60 in Service The crystal used as the picture second detector is shown as a Sylvania type 1 N 60 in Service
Data No. 125 . Several alternate types listed below may be used interchangeably for replacement

Raytheon	CK703 CK704 CK705
Sylvania	1N34

LETTERING SYSTEM ON SECOND DETECTOR COMPONENT CAN
The can in which the picture second detector crystal and components are housed has its bottom terminals identified by letters. On present production, the lettering on connections A and C is interchanged as compared to the lettering shown on the schematic diagram. If field replacemen of the can is required, it is desirable to check the D.C. resistance to ground from each point befor ring in Service Data No. 125

high Voltage rectifier filament

The chassis 159, with 14 inch picture tube, has a 4.7 ohm resistor in series with the 1×2 high voltage rectifier, filament. This resistor drops the filament operating temperature below the most desirable condition for long tube life. Reduce this resistor, R164, to 2.2 ohms, $10 \%, 1 / 2$ watt Part No. 4735.

The corresponding part in the 160 chassis should remain at 4.7 ohms. The reason for the difference between the two chassis is that the 14 inch tube requires less high voltage and horizonta weep than the 16 inch tube. As a result, the 6BG6-G screen resistor, R162 59, which reduces the drive to the horizontal output transformer, T107, and in turn reduces the available 1 X 2 filament voltage.

NO CONTROL OF BRIGHTNESS
The failure of $\mathrm{C} 166, .005 \mathrm{mf}$, Part No. 4069 , causes the brightness control to have no effect Shorting of C166 places a constant positive voltage on pin 2 of the picture tube, and the scree remains lighted at all times. Replacement of the condenser affords temporary correction, but the condenser may fail again due to voltage spikes in the vertical deflection circuit, temporary arc in the picture tube, or shorting of R145 to ground. This condition can be permanently remedied by physically and schematically interchanging the positions of C166 and R145 ($1 \mathrm{meg}, 1 / 2$ watt). The two components form a series circuit, so that the operation of the receiver is not affected. However the 1 megoh 14 . Cl 66 is ne changed whenever replacem

FOCUSING OF VARIOUS PICTURE TUBES
Rectangular picture tubes, $1^{\prime \prime}$ and $16^{\prime \prime}$, of various manufacturers require different focus coil field strengths. The present focus coil is suitable for use with all types, provided that circuit arrangements are made to give the proper amount of current flow through the focus coil

Hytron and G.E. tubes require less current and a 5 K ohm, 5 watt resistor must be shunted Hytron and G.E. Lube
across the focus coil, L113.

Sylvania tubes require more current, and a 56 K ohm, 2 watt resistor should be shunted across C171 to increase the current through the focus coil. These changes are illustrated schematically below.

The appropriate circuit modification for the tube used is made in the factory. However, if a tube is changed in the field for any reason, circuit modifications may be necessary. These circuits apply in most cases. Occasionally a tube will require slightly different resistance values.

FICTURE TUBE COATING TO BE GROUNDED
On some picture tubes, the aqua-dag coating is not formed down far enough to contact the ground springs attached to the deflection yoke bracket. Most tubes are satisfactory. The Hoffman production department will paint extra coating on initial equipment tubes which require this treatment. However, the length of coating must be considered if tube replacement or change is made by the service man. The coating can be extended with a paint formed of graphite held in a lacquer vehicle su spension.

BUZZ IN SOUND

A buzz of basically 60 cycle frequency may appear on some stations and not on others in the same area. The buzz is different from a 60 cycle hum in that it is rough or raucous sounding. The cause of the buzz is in the transmitting station characteristics, and may result from excessive video amplitude modulation, or phase modulation of the video carrier in the final stages of the transmitter.

Three things may be done which will materially aid in eliminating buzz reception by the receiver.

1. Retrim the tuning of the ratio detector secondary. Tune the receiver to the station which gives the greatest buzz. Tune the top slug of T 102 for minimum buzz. This slug may be reached from the top of the chassis. The results obtained by tuning the slug for minimum buzz while listening
to an offending station will be better than those obtained when aligning to a 4.5 mc signal generator. to an offending station will be better than those obtained when aligning to a 4.5 mc signal generator.
2. Change the value of R107, ratio detector load resistor, from 12 K ohms to 6.8 K ohms. This change affords a considerable improvement in the buzz rejection, and has been made on all sets change affords a considerable imp
produced after Serial No. E040192.
3. Increase the capacity of C 109 , from .0047 mf to .01 mf . A 200 V paper condenser is suitable for use. This change has been made on all sets produced after Serial No. C023200 and will aid the previously described changes in reducing buzz.

VERTICAL SIZE CONTROL RANGE
The vertical output is sufficient to more than fill the entire tube screen. In some cases, particularly on the 159 chassis, the vertical size control will not decrease the size of the picture to 2.2 megohms will reduce the vertical output to within normal range of the vertical size control. In extreme cases it may be necessary to increase R181 to 3.3 megohms.

A convenient arrangement for changing to 2.2 megohms is to interchange the resistors, R181 and R166. This will result in values of 2.2 megohms for R181 and 1.5 megohms for R166. This change has been made on all sets produced after Serial No. E040192.

The horizontal synchronizing and sweep circuits are designed to be an integrated and controlled system, using a feedback circuit from the horizontal output to provide a comparison voltage for the horizontal oscillator control tube. Therefore, it is necessary when making any changes in the circuit, to consider an overall viewpoint and determine what effect the change will have on any other operating characteristic of the receiver.

The various conditions and changes will be discussed separately, but any interlocking effects will be pointed out.

HORIZONTAL SYNC INSTABILITY

Horizontal jitter, or sync instability is very often caused by noise upsetting the sync circuits, particularly in weak signal areas.

Several modifications of the original circuit, as shown in Service Data No. 125, have been made on different production runs of the chassis 159 and 160 to aid in stabilizing the horizontal sync.

The correct modified values are listed below, along with serial numbers indicating when the change was made. Sets produced after the listed serial number will have the modification included.

Symbol	Part	Serial No.
C144	$.1 \mathrm{mf} \mathrm{20} \mathrm{\%} \mathrm{200} \mathrm{V} \mathrm{paper}$	D034300
C144	Outside foil grounded (See below)	D034738
C179	47 mmf $20 \% 500$ V ceramic or mica (In parallel with R166, pin 1 V115 to ground)	D033610
R148	68 K ohms $20 \% 1 / 2$ watt	C023576
C143	$.01 \mathrm{mf} 20 \% 200 \mathrm{~V}$	D 037401

Sync instability in sets with the proper constants, produced prior to Serial No. D034738, may be caused by the inversion of C144. This condenser is a molded phenolic, paper dielectric type It is imperative that the outside foil be connected to ground. If this condenser is inverted, with the outside foil connected in the grid circuit, stray pulses will be picked up which cause severe instability In construction of this condenser, one of the leads has a solder bump located just outside the phenolic case. This lead is connected to the outside foil and must be connected to ground. Careful contro of the polarity of this condenser has been exercised in sets produced after Serial No. D034738. Leads should be kept short and the condenser mounted close to the chassis.

horizontal sync pull-in range

When tuning from station to station, or when the receiver is first turned on, there may be a momentary delay before the picture will pull into horizontal sync. To increase the pull-in range and improve the pull-in characteristics of the receiver, a modification has been made on all receivers produced after Serial No. D037401. The changes are:

C143 changed from .0047 to $.01 \mathrm{mf}, 20 \%, 200 \mathrm{v}$, Part No. 4142
C141 changed from .0047 to $.022 \mathrm{mf}, 20 \%, 1000 \mathrm{v}$, Part No. 4135 MODELS 630,631, Ch.
$159 ; 632,633, \mathrm{Ch} .16$

An additional result of changing C141 is that a different phasing relationship is obtained between the horizontal sweep voltage and the sync signals in the horizontal oscillator control tube neck shadows. When this change is made, check the values of R147, R149, and C140 to make sur they are the correct values as shown on the schematic for chassis 159, 160.

The pull-in range is controlled by the setting of the horizontal hold control (L108). The pull-in range should be checked and the control adjusted according to the following sequence.

1. Set horizontal drive control (R154) at minimum resistance (full counterclockwise) or as close as possible. See instructions on setting drive under the section on "Christmas tree effect."
2. Turn hold control counterclockwise (slug coming out of coil) while turning channel selector on and off station until sync is lost.
3. Turn control clockwise (slug going in) and check the number of bars (picture segments) before pull-in. There should be a snap-in from at least one bar (60 cycles).
4. Continue turning control clockwise while turning channel selector until sync is lost as in step 2 above.
5. Turn control counterclockwise (slug coming out) and check number of bars before pull-in, as in step 3 above.
6. Turn slug an additional $1 / 4$ turn counterclockwise if one-bar pull-in occurs, or approximately $1 / 2$ turn if two-bar pull-in occurs. This setting provides best operating characteristics for sync pull-in and drift, and is approximately correct for the least amount of "hook.

The amplified AGC system used in this receiver is very positive in its action. When the receiver is first turned on and warming up, it may be possible for the AGC action to lock and hold he picture out of sync as well as in sync. In this case, all that is required is to turn the channe into correct sync.

DRIFT

Coupled with pull-in range is long term frequency stability of the horizontal multivibrator, V111. Actually, the oscillator operates at a frequency of $15,750 \mathrm{cps}$ at all times when in sync. How ever, as the natural, or uncontrolled frequency of the horizontal oscillator tends to drift due to of V111. Eventually, if enough drift thes ap, more control voltage is required at the grid, pin 1 , the receiver will lose sync.

To aid in eliminating drift, the condenser C149, 250 mmf , Part No. 4086, must be a ceramic NPO (zero temperature coefficient). In sets produced prior to Serial No. E047496, C149 has been a GP type ceramic, with no rated temperature characteristic. In some instances, a 330 mmf condenser may be found as C149. The 330 mmf should be replaced with the proper 250 mmf NPO ceramic. The capacity 250 mmf is critical, and no other value should be used. If a ceramic NPO condenser is not
available, a silver mica type with a low temperature characteristic is suitable. vailable, a silver mica type with a low temperature characteristic is suitable.

The change of C 149 will eliminate most drift problems. However, further stabilization may be obtained by changing C146, . 0039 mf , from its present ordinary mica type to a silver mica type th low temperature characteristic

CHRISTMAS TREE EFFECT (Improper Horizontal Multivibrator Operation)
The Christmas tree effect, with symptoms as described in Service Bulletin No. 128, will appear on unused channels, when no signal is present, such as when switching from channel to inging in addition to evidences on the picture tube, the effect is characterized by loud frying or harm, it is annoying and sounds destructive.

The primary cause of Christmas tree effect is regeneration, and this should be eliminated on sets requiring wiring changes

Abstract

A second cause is excessile R154, at minimum resistance (maximum counterclockwise rotation). This position can be used rizol picture. In this case, the control can be set to eliminate whe thit potentiometer may be 250 K ohms instead of tho rated nate the white bar. In some receivers, the hem with a fixed 220 K ohm to bring the total resistance to the proper value

A third possible cause is too high capacity value of C149. Too much capacity in this componen tends to cause Christmas tree effect and poor sync hold-in.

\section*{CURVATURE IN VERTICAL LINES (Hook)}

Curvature in vertical lines in the top portion of the picture is commonly called "hook." This curvature is particularly apparent on a test pattern, or a picture with distinct vertical lines, such as the sides of a door or folds in a drapery. The curvature is normally in the form of a bow or a bend to the right in the top portion of the picture.

The hook can be materially decreased by addition of a 12 K ohm, $20 \%, 1 / 2$ watt, composition resistor (R 198) and a .005 mf ceramic capacitor (C 180) in the grid circuit of the horizontal oscillator control tube, V110A. Refer to the schematic diagram with this bulletin for location of these comC 142 from .0047 mf to $.01 \mathrm{mf}, 400 \mathrm{~V}$, paper type capacitor. However, this change reduces the horizontal sync hold-in range, and it is imperative that C146 and C149 be changed to a zero temperature oefficient type as described under "Drift", if the change of C142 is made.

REVISED HORIZONTAL CIRCUIT

bolts and front control knobs may be removed and the chassis pulled about two-thirds of its length out of the
cabinet. In this position the chassis may be conveniently serviced throughout most of its entirety. Chassis 170 , 171 and 173 side brackets run in horizontal slides on each side of the cabinet and are held in place by bolts which fit through the brackets and into the threaded slides. Chassis 170,171 and 173 are covered by metal bottom plates which may be removed easily.

The deflection systems of the four chassis are the same with the exception that the 6BG6 G screen resistor is increased from 8.2 K to 15 K in the chassis 170 . This change is made to decrease the horizontal drive and high voltage on the 14 inch tube. Otherwise the sweep care of by adjustment of the horizontal and vertical size controls. In the case of the Chassis 175, the 6BG6 G horizontal output tube is mounted outside of the high voltage cage so that better ventilation is affected, and R 167, 470 K resistor, is not used because the picture ube is of the metal type. Also a heat shield is placed rectifier. TUNING UNITS

Two types of tuning units are used interchangeably in chassis $170,171,173$ and 175 . The turret tuner, the Hoffman continuous type tuner are each being used in production of the above chassis. The two tuners are operationally inter-changeable and may be used alter nately at any time. Separate mounting plates are used mechanical interchangeability is possible. The styl of knobs for the front panel controls are different for the two types of tuners, and each tuner must be use with the set of knobs specifically designed for it
Present unit does have a modified converter output circuit and is known by Part No. 9684. The modification onsist. of eliminating L6, Part No. 5311 and changing values of L5 (. $8 \mu \mathrm{~h}$) and C14 (135 mmf).

TUBE COMPLEMENT

2	6AU6	Sound IF	V101, V102
1	6AL5	Ratio Detector	V103
1	6AV6	Audio Amplifier	V104
1	6K6GT	Audio Output	V105
3	6CB6	Picture IF	$\begin{aligned} & \text { V106, V107 } \\ & \text { V } 108 \end{aligned}$
1	6CB6	Video Amplifier	V109
1	6AU6	AGC Keyer	V110
1	6SN7GT	Horizontal Oscillator Control \& Sync Amplifier	V111
1	6SN7GT	Horizontal Oscillator	V112
1	6BG6G	Horizontal Output	V113
1	1 X 2	H.V. Rectifier	V114
1	6W4GT	Damping Diode	V115
1	5U4G	Low Voltage Rectifier	V116
1	6AU6	Sync Separator	V117
1	12BH7	Vertical Oscillator \& Vertical Output	V118

HOFFMAN CONTINUOUS TUNER UNIT

$$
\begin{array}{lll}
1 & 6 \mathrm{~J} 6 & \text { RF Amplifier }
\end{array}
$$

6 J 6
Oscillator, Converter

TURRET TUNER, RF6
6AG5* RF Amplifier
${ }^{6} \mathrm{JJ6}$ Oscillator Converter
SUMMARY OF TUBE COMPLEMENT

6AU6	4	6SNTGT	2
6AL5	1	$6 \mathrm{BG6G}$	1
6AV6	1	1×2	1
6K6	1	6 K 4 GT	1
6AG5			
6J6**	1	12 BH 7	1
6U6	1	5 U 4 G	1
6CB6	4		

* 6BC5 or 6CB6 interchangeable in this application ** 6AG5 or equivalent used in turret type tuner, and 6 J 6 used in continuous type tuner. OPERATING INSTRUCTIONS

FRONT PANEL CONTROLS

The front panel operating controls consist of the TUNING control, the OFF-VOLUME control, and the CONTRAST control. With the AGC system used for maintaining constant signal level, the contrast contro becomes primarily useful in setting background level for best viewing under various room lighting levels or

BEAM BENDER ADJUSTMENTS

The single magnet type beam bender is used with all the picture tubes. The rated flux density is 60 gauss There is no indication to show a forward or back direction direction of installation is immaterial, except that if the magnet is turned over, it must be rotated 180° on the neck of the tube.

The method of installation is to slip the beam bender on the neck of the tube and move it forward toward the tube face until it approaches a space over about midway of its range, never full on, to avoid damaging the tube's electron gun prior to proper adjust ment of the beam bender. Rotate the magnet 180° or more on the tube neck until light appears on the screen. bender forward or back, and further rove the beam the brightest raster. With the strong, 60 gauss magnet, there are two positions which will give screen illumination. One occurs near the tube base as the magnet approaches a position over the "flags" and the second near the focus coil. The first position is preferred because it allows greater space for adjustment range The strong magnet also allows a wider adjustment range and the setting will affect the centering and focus. A last check should be made on beam bender adjustments BRIGHTNESS CONTROL

The brightness control provides adjustment of picture tube control grid bias voltage. Automatic re race elimination circuits are incorporated, so that retrace lines are visible only at maximum setting of is such that light is just visible on the screer whtness contrast control is set at minimum with a signal tuned

The design of the chassis covered in this bulletin s such that no horizontal linearity control is needed, and no horizontal linearity control will be found on the
chassis.

Sretch as shown to approxi
mate total length required

Immediately hook one end of the strap to chassis and restretch to required length

When adjusting the horizontal and vertical controls is necessary to have a test pattern or program tuned the sor. Set the tuning of the tuner unit s sond and picture are both present.

Maintain tension on the strap, bring it over the tube, and hook the free end while holding top.

Figure 4. Strap
The HORIZONTAL DRIVE control (R156) should be adjusted for minimum resistance (full counter-clockwise or as close as possible. In some instances the minimum setting will permit a vertical white bar to appear in the be rotated clockwise until the white bar disappears Once the drive control is adjusted as described, it should not be changed in order to vary the horizontal width or frequency. The HORIZONTAL SIZE control (L110) has a large range of width control, and it should be used to vary the picture width. Minimum resistance of the
drive control is recommended so that the ward regeneration ("Christmas tree effect") will be reduced.
out) and check the number of segments that appear before pull-in. Turn the slug an additional $1 / 4$ turn counter clockwise if one-segment pull-in occurs, or turn slug
approximately $1 / 2$ turm counter-clockwise if two-segmen approximately $1 / 2$ turn counter-clockwise if two-segment
pull-in occurs. This setting of the hold control provides best operating characteristics the hold control provides of the correct for least amount of "hook".

The amplified AGC system used in the receivers covered in this bulletin is very positive in its action When the receiver is first turned on and warming up, picture out of sync as well as holding it in sync. In this case, all that is required is to turn the channe selector off and on channel, momentarily releasing the AGC, and the picture will lock into correct sync. The hold control should be adjusted as described above for best horizontal sync stability, and any hori with the HORIZONTAL CENTERING control.

VERTICAL CONTROLS

The VERTICAL HOLD control has a "hold-in" range of adjustment over which the picture will stay in sync in" range

The VErtical size and VERTICAL LINEARIT operate together to adjust the vertical height and pro portion of the picture. The Size control affects th vertical size of the entire picture, but not in a linear and the picture center tends to move toward the top of the tube. Counter-clockwise rotation of the VERTICAL SIZE control increases the vertical size. The linearity control operates to expand the upper portions of the picture, and compensate for non-linearity created by he size contro. Clockwise rotation of VRTICA LINEARITY control expands the upper portions of the picture.

FOCUS CONTROL AND RASTER CENTERING ADJUST MENTS

Electromagnetic focusing is used, with the focus The Focus control, R196, shunts the focus coil circuit the Focus control until clear, well-defined horizonta sweep lines can be observed.

Vertical and Horizontal Centering controls ar mechanical type which operate by positioning the focu loaded screw on the right of the focus coil, and horizontal centering is operated by a similar screw on th left. If difficulty is encountered in focusing or centering or neck shadows appear, a reversal of the leads to the focus coil will often remedy the situation.

ALIGNMENT

The following alignment procedure describes alignment of the double-tuned video and sound IF circuits used in the chassis dealt with in this bulletin. The procedure for the RF tuning unit is described in separate bulletins, bulletin number 80 covering the turret typ tuner unit and bulletin number 124 covering the conwith recommended methods and equipment to be used and precautions to be observed during the alignmen procedure. For actual alignment procedure, it is suggested that the alignment table be followed after reading the nore detailed procedure

For best results it is important that alignment be performed on a metal topped bench with all instruments and equipment securely bonded together and to ground. larly in thould be as short as is practicable, particlarly in the input grid circuits. Isolation circuits will It is important that composition resistors, preferably the half watt size, and disc type ceramic condensers e used in making up these isolation networks, so tha the tuned circuits being adjusted.

A sweep signal generator with a frequency range which includes 24.25 MC , and a sweep width of 10 MC will be required. A marker generator whose fixed frequencies 26.1 MC and 27.6 MC will be needed if not already combined with the sweep generator. A voltmeter with sensitivity of 20,000 ohms per volt or higher and with voltage scale ranges from 50 volts on down as low as 2.5 volts or lower must be on hand. Also included in the instrument list is an oscilloscope with at least a moderlevel from the signal generator should be kept as low as the output indicator being used will permit if overdriving of the receiver stage (s) with its adverse results is to be avoided. In general, too, the RF tuner unit should be tuned to the vicinity of the channel 12 frequency range, but individual circumstances may require that the uner be set on one of the low channels, depending upon he alignment bench. A 3 volt battery should be connected with negative terminal to the AGC bus and positive terminal to ground for the alignment procedure. This is done to establish a circuit gain reference standard which approaches the average value found in the field. It will also reduce any interference pick-up since the Where receivers are known to be operated in weak signals areas, a lower value of fixed bias voltage may prove more desirable.

ORDER OF ALIGNMENT

The general order of alignment should be as follows:
ound IF and Ratio Detector Primary
Ratio Detector Secondary
.5 MC Trap
27.6 MC Adjacent Channel Sound Traps
0.1 MC Adjacent Channel Video Trap

Converter Output Coil

SOUND IF ALIGNMENT

Equipment:

Set the signal generator to 21.6 MC . Connect the signal to the gria, pin 1 of Vi01. If the generator does not have a low impedance output, it is suggested that a 75 ohm resistor be shunted across the output terminals. Connect the voltmeter in series with a 10 K ohm, isolating resistor to pin 7 of V103.

Procedure:
Adjust T101 primary (bottom), T101 secondary (top), and T102 primary (buttom) to obtain a maximum reading on the meter. The maximum voltage reading
should be kept below 3 volts by decreasing the generator
output as the windings are tuned to resonance. It is essential that the slugs be moved from the outer ends of clockwise if thward the center, by turning the slugs that resonance is reached with the slug coming out of the coil, then the slug must be moved out, counter-clock-wise completely through the coil and the tuning procedure coupling will be adversely affected and proper alignment will be impossible if the slugs are run into the center of the double-tuned coils
RATIO DETECTOR ALIGNMENT
Equipment:
Generator and input circuit remain as connected above. Meter should be switched to one of its higher scales, and in the case of a VTVM the zero point can be set up scale to the center position. No isolation resistor R 107 and R 108 and the other lead to the junction of R 106 and C 114. Temporarily short the grid pin 1 , of $V 102$ to ground.

Procedure:

Adjust the secondary of T 102 for a zero reading on the voltmeter. The polarity of the reading will depend upon which side of resonance the secondary winding is tuned. As the resonant position is approached, the voltmeter scale should be reduced so that a more ensitive zero indication is available. Do not increase the generator output beyond the level which produced the maximum reading above, however.

alternate ratio detector alignment

The following procedure is considered less desirable than the one described above because the zero point btained is not always a true indication of balance due o slight production variations of ratio detector transformers.

The input equipment remains the same as in the irst procedure with the addition of a sweep signal of 400 KC width and a 21.6 MC marker signal being added. The voltmeter is replaced by an oscilloscope and isolation network shown in Figure 8. Connect the

Figure 5

Figure 6

Figure 7.
solating resistor to the junction of R 106 and C 114 Adjust the secondary (top) of T 102 for an "S" curve hich is symmetrical, and has the 21.6 MC marker in center of the linear or straight line portion of the urve as indicated in Figure 11. Because the center of the "S" curve is a zero or null point, very little 1.6 MC marker will come through. However, the marker on opposite sides of the linear portion of the curve These traces should be evenly distributed about the center for correct adjustment of T 102 secondary

alternate sound if and ratio detector align

 MENTThis alternate procedure offers the advantage of equiring less time to perform, and the results obtained from its employment are independent of whether or no R 107 and R 108 are identical in value. If this unbalance does exist, the zero adjustment determined by the meter ethod would be slightly in error

SOUND IF
Equipment:
Connect the sweep generator to pin 1, V101, using he network shown in Figure 7. Set the generator cente requency at 21.6 MC and use a sweep of about 400 KC The blanking control should be in the on position, so that cope to the junction of R 106 and C 114 , using the network shown in Figure 8.

- 10 K

Figure 8.

Figure 10.

Procedure:
Figure 11.

With the equipment connected as described, some sort of "S" curve will be seen on the scope if the alignment is not too far off from the correct condition. Adjust the primary and secondary of T 101 and the primary of T 102 , so that the " S " curve appears symmetrical on both sides of the baseline, so that it has maximum amplitude, and so that it has best linearity over the straight portion.

RATIO DETECTOR SECONDARY
Equipment:
Same as used in sound IF alignment but with the addition of injecting a 400 cycle modulated, 21.6 MC marker signal into the sweep signal
Procedure:
Now a sine wave should appear along the baseline of the " S " curve as shown in Figure 12.

Figure 12
The 400 cycle signal will not remain stationary, but will appear as a wiggle about the baseline. Adjust the and finally disappears. When this is done, the ratio detector offers the maximum amount of AM rejection.

Equipment:

Connect an unmodulated 4.5 MC signal to pin 1 V 109, using network shown in Figure 7. Use a detector and isolating network with the voltmeter as shown in C 145, and the picture tube cathode lead.

Set the contrast control to mid-range. Adjust the slug of L 108 for minimum reading on the voltmeter As the null reading is approached, the voltmeter range should be reduced and the input signal increased somewhat to produce a more sensitive indication. If the output level of the generator is less than .25 volts, it will be necessary to connect the 5000 mmf condenser side of the 100 ohm esistor

Alternate Procedure:

If the service man is familiar with the appearance of 4.5 MC beat pattern as produced on the picture tube then adjustment may be made without external signal generator or indicating device. Tune in a channel, and then mis-tune to a point that would be equivalent to placing the sound IF carrier "up" on the IF response curve. This will produce and be indicated by a relatively
weak 4.5 MC beat pattern in the picture. Tune L 108 for minimum beat pattern. This will minimize the beat pattern when the station is properly tuned.

TUNING SOUND TAKEOFF COIL
Equipment:
The equipment complement remains the same as for the 4.5 MC trap procedure, but the signal generator is set at 21.6 MC and moved to pin 1, V 106. The do $\operatorname{pin} 1, \mathrm{~V} 109$. Procedure:

Adjust the slug of L 104 for minimum reading on the voltmeter. Contrast control should be left at midrange. The voltmeter range should be progressively reduced and the signal increased slightly as L 104 is tuned to resonance.
TUNING ADJACENT CHANNEL SOUND TRAPS Equipment:

Equipment complement remains as above, the signal generator unmodulated frequency is set at 27.6 MC . Input and output connections are left undisturbed.

Procedure:

L 105 and L 103 are tuned to give a null indication as above. While tuning one trap, the other trap can be de-tuned by touching the winding with the fingers, giving
a more sensitive null for either trap.

TUNING ADJACENT CHANNEL VIDEO TRAP
There are two alternate video input circuits which
circuit which includes an adjacent channel video trap.

Figure 13.

Equipment:
Figure 14.
Equipment complement remains unchanged, (see fig. 6877). and the unmodulated signal frequency is set of the converter tube, pin 5 of the 6 J 6 in the to hing gid

Procedure:

L 102 is tuned for a minimum reading on the voltmeter.

PICTURE IF ALIGNMENT

The picture IF alignment procedure is a process of separately tuning a series of double-tuned, overcoupled and provides a band pass of about 3.8 MC for each stage No attempt should be made to re-adjust the tuning of an IF transformer once it has been aligned and the signal generator has moved on to the next stage. An erroneous alignment can result even though the overall response may appear satisfactory.

Equipment:

Connect a scope between pin 1, V 109 and ground through the isolating network shown in Figure 8. For the isolation netwerk connect in Figure to pin V 108

CHASSIS 170

For successive stages, move the generator to each grid n succession. The input signal should be kept low enough so that the stage (s) are not overdriven, but the level should not be so low that the gain of the vertical amplifiers in the scope have to be increased to a point that gives a distorted waveform and overemphasis of any "hash" that may be present

Procedure:

Set the sweep generator to a center frequency of about 24 MC with 10 MC sweep. Insert a marke signal at 24.25 MC

For alignment of the 3 rd picture IF, adjust the primary (bottom) and secondary (top) of T 106 to obtain a pass band whose top is symmetrical about the marker pip. Skirt positions and slopes will not be symmetrical See Figure 9. Correct alignment of the stages is indicated by a curve having nearly flat top with equal amplitude peaks. The band-width of each stage is predetermined by design of the transformers and is not varied to any appreciable extent by alignment. A dip may be noticed may be eliminated by shorting figure 9. This condition former in the plate circuit of the stage of the transstage under alignment. The sweep generator is connected to the secondary of the transformer whose primary will be shorted. When alignment of a particular stage is completed, remove the short just mentioned.

Next, move sweep generator and isolation network o pin 1, V 107, 2nd picture IF. Alignment of T 105 is accomplished by tuning the primary and secondary described. described

Move the sweep generator and isolation network to pin 1, of V 106, 1st picture IF. Align T 104 as wa s in previous stages. Response curve should begin a appear approximately as shown in Figure 10. It can pass is slightly lens rap is greater and the total Note also the effect of the dips caused by the 27.6 MC adjacent channel sound traps, 21.6 sound trap, and 20.1 MC adjacent channel picture trap.

Connect the signal generator and isolation network to the converter grid in the RF tuning unit. Insert a 26.1 marker. The converter output coil and the pictur e F peaking coil, L 101, form a circuit comparable to the he primary and L 101 as the secondary align the IF input circuit to produce an overall response curve as shown in Figure 10. At the same time, tuning of these wo coils will position the 26.1 MC point near the 50% (picture carrier) should never be. The 26.1 MC point video pass band to more than the 40% point. If th is condition is permitted to exist, the sound and picture will not tune to a maximum together, and the low frequency response will be adversely affected. Again, it is emphasized that previously aligned stages must not be touched.

BOTTOM VIEW TUBE LAYOUT
CHASSIS 170, 171, 173, 175

All voltages measured with set receiving picture and sound adjusted for normal operation, medium signal, medium volume and contrast level.
Line Voltage $=115 \mathrm{~V}$ AC
All bus voltages run about 10 to 20 volts higher than shown on circuit schematic.
Slight variations in voltage values are to be expected due to variations in line voltage and variations from component nominal values.

A - Varies with signal level.	E - No connection on chassis 175.
B - Pin used as tie point only.	F - About 40 V. less on chassis 170.
C - Contrast set at minimum.	G - Depends upon setting of hold control.
D - Measured to other heater pin.	V - Measured with V.T.V.M.

A - Varies with signal level.

- Contrast set at minimum

Figure 16. Voltage Chart

MODEL 867 Traditional Style Mahogany Cabinet
Note: Models $866,867,868$ are all similar except for cabinet style and finish and Models $876,877,878$ are all similar except for cabinet style and finish.

MODEL Traditional Style
Mahogany Cabinet

Cabinet Model 866
Model 867
Model 867
Model 868 Model 868
Model 876 Model 876
Model 877 Model 878 TV Chassis
Tube, Picture
Glass, Window Protective
Mask, TV Glass
Speaker
Antenna Assembly
Loop, Antenna
CHASSIS 170,
Cord AC
Plate

MODEL 876 Modern Styl Oak Cabinet

MAJOR COMPONENTS

Models 866, 867, 868
Controls Escutcheon Models 876, 877, 878 Contrast-Off-On-Volume Channels - Tuning
Channel Selector Assembly Contrast-Off-On-Volume Assembly Vertical Hold

OJohn F. Rider

© John F. Rider

MPROVEMENT IN DEFLECTION CIRCUITS
A .047 mf capacitor has been added across the vertical deflection coils of the high impedance yoke only. The purpose of this addition was to reduce light vertical bars in the raster due to internal deflection yoke coupling. Since this internal coupling varies among deflection yokes, only a relatively few sets contain yoxes that give noticablars need be serviced regarding this addition. The change was added to all current production as an insurance measure. The physical location of the capacitor is under the chassis. One side is connected to the black vertical deflection the green other side is connected to a red plastic-covered jumper wire that is in turn connected to the gree vertical deflection coil lead.
Old Part
$\frac{\text { New Part }}{C 193(4148)}$
Difference $.047,400 \mathrm{~V}, 20 \%$ added acros
vertical deflection coils
change
A recent change in the internal structure of some 6BG6G horizontal output tubes has brought about condition of beam modulation in the 6BG6G. This condition shows up in the raster as a 120 cps horizontal wave of about a quarter inch peak to peak amplitude in extreme cases. This condition will be made negligible by changing the .047 mf screen by-pass capacitor for the 6BG6G to a 4 mf electrolytic or greater. Anything between 4 mf and 20 mf is recommended. Procurement difficulties have delayed the use of the 4 mf electrolytic, and an alternate modification is being used for a short thme service man in recognizing the modification at such time as he may be called upon to service a set that employs the modification. A brief description is as follows: R164 was replaced by two 3.3 K , 2 watt in series. R154 was eliminated, and the junction of C153, L109, C154, and R156 was connected to the screen of the $6 B G 6 G$.

$$
\begin{aligned}
& \frac{\text { Old Part }}{\text { C159 (4133) }} \quad \frac{\text { New Part }}{\text { C159 (4236) }} \quad \begin{array}{c}
\text { Difference }
\end{array} \\
& \text { C159 (4133) C159 (4236) } \quad \begin{array}{l}
\text { 6BG6G screen by-pass } \\
\text { capacitor increased to }
\end{array} \\
& 4 \text { mf, } 450 \mathrm{~V} \text {. } \\
& \text { PRODUCTION CHANGES IN VERTICAL CIRCUIT }{ }^{4}
\end{aligned}
$$

The following production change has been made in order that the vertical circuit be made more xible for shifting to different types of vertical oscillator-vertical output amplifier tubes as prolexible for shiring to differ

Old Part	New Part	Difference
R181 (4571)	--	100 K resistor between Vertical Hold potentiometer is deleted, potentiometer being connected directly to ground.
R182 (4604)	--	6.8 meg resistor between Vertical Hold potentiometer and plate circuit of blocking oscillator deleted.
--	R206 (4724)	A $5 \mathrm{~K}, 3$ watt wire-wound resistor added between vertical defiection coil and R189.

Production is now using a single unit pertical ine units are available. Because the supply is sporadic, the single unit network will be used interchangeably with the previously used network

Old Part R176(4628)	New Part	Difference
R177 (4515)		
R178 (4515)	Z7(9695)	Single unit network with C169 (4145)
inree leads replaces six		

REVISED SCHEMATIC DIAGRAM
PARTS LIST
NOTE: All values of capacity are microfarads unless otherwise noted. All resistors are $1 / 2$ watt composition type with values given in ohms unless otherwise noted.

SYMBOL	PART NO.	value	TOL.	WATTS OR vOLTS	TYPE
C101	4029	. 005	GMV		HI-K, Ceramic
C102	4029	. 005	GMV		HI-K, Ceramic
${ }_{\text {C1 }} 103$	4090	1500 mmf	GMV		Ceramic
C104	Part of T101				
C105	Part of T101				
C106	4029	. 005	GMV		HI-K, Ceramic
C107	Part of T102				H-K, Сеганic
C108 C 109	Not Used 4090				
C110	44043	1500 mmf	$\begin{aligned} & \text { GMV } \\ & 10 \% \end{aligned}$		Ceramic
C111	Part of T102				Ceramic
C112	4029	. 005	GMV		HI-K, Ceramic
C113	4209			50V	Electrolytic
C114	4127	. 0047	20\%	400 V	
C115	4029	. 005	GMV		HI-K, Ceramic
C116	4009	47 mmf	20\%		Mica or ceramic
C117	4105 4128	. 01	20\%	600 V	Paper
${ }_{\text {C118 }} \mathbf{C} 119$	4128 Part of 4230	${ }_{20} .0047$	20\%	${ }_{250}^{600 V}$	Paper Electrolytic
C120	Part of 4230	20		475 v	Electrolytic
C121	4029	. 005	GMV		HI-K, Ceramic
C122	4029	. 005	GMV		HI-K, Ceramic
${ }^{\text {C123 }}$	4082	1.5 mmf	10\%	Stack pole	GA-3
${ }^{\text {C124 }}$	4027 4029	${ }_{005}^{10} \mathrm{mmf}$	10\%		Ceramic NPO
C126	4029	. 005	GMV		${ }_{\text {HI-K, }}$
C127	4074	1.2 mmf	10\%	Stack pole	
C128	4036	$2 \times .004$	GMV		HI-K, Ceramic
C129	Part of L103	10 mmf			

100 K resistor in 1st anode cir cuit of CR tube deleted, and 1 s anode connecte
R189 and R206
$0.1 \mathrm{mf}, 600 \mathrm{~V}, 20 \%$ added between ground and junction of R189 and R206
hree unt network with individual components.
C170 (4128
C171 (4128)

Model 630 - Blonde Oak Cabinet

Model 634 - Blonde Oak Cabinet

Model 631 - Mahogany Cabinet

Model 635 - Mahogany Cabinet

SPECIFICATIONS

Line Voltage
Number of Tubes
Picture Tube Size Models 630,631
Models 634,635

Power Consumption
TV Channels
Audio Power Output

115 V AC 60 cps 21

> 14" Rect. $16^{\prime \prime}$ Rect. 205 Watts 2 through 13

3 Watts

Speaker Type
Models 630,631 Models 634, 635
${ }^{8 \prime}$ Round PM $6^{\prime \prime} \times 12^{\prime \prime}$ Oval PM

Cabinet Heigh Models 630,631 Models 634, 635

Cabinet Width
Cabinet Depth
$163 / 8^{\prime \prime}$
$183 / 8^{\prime \prime}$
22^{\prime}
$181 / 2^{\prime \prime}$

PHONOGRAPH CONNECTIONS

Circuit connections are built into these models for attaching an external phonograph. A crystal pickup type record player must be used. A 45 rpm 7 " record changer, a Long Playing changer, or a standard changer will produce good results. The phono AC power cord may be conveniently plugged into a socket marked AC PHONO located directly below the AC line cord lock at the left rear portion of the chassis. The phono audio lead goes into an audio jack marked INPUT PHONO located at the
right rear portion of the chassis. The audio amplifier system of the TV receiver is controlled by the slide switch located adjacent to the INPUT PHONO jack. When this switch is placed in the PHONO position, the output of the record player pickup is amplified through the TV audio system. The volume is controlled in the normal manner with the volume control at the left front of the chassis. The slide switch marked TV-PHONO has no effect on the picture circuits of the receiver. The CONTRAST control may be turned full off to remove the picture. (Brightness should have been previously set
so that light just begins to appear at minimum contrast setting.) All power to the phonograph is turned off when the TV receiver is turned off.

MAJOR COMPONENTS

Service information on chassis 170 and 171 is given in Service Data No. 136, and should be referred to when chassis servicing is required.

It may happen that chassis 173 with the $17^{\prime \prime}$ picture tube will be found in cabinets similar to those used with Models 634 and 635 . Such sets will be designated as Models 634 A and 635 A , and are identical to Models 634 and 635 respectively except for picture tube and associated hardware.

PRODUCTION CHANGES

CHASSIS 170, 171, 173, 175

SAFETY FACTOR FOR CATHODE RAY TUBE

An additional safety factor on the cathode ray tube heater-cathode potential has been provided in the above listed chassis. This has been accomplished by tying the CR tube filament to $\mathrm{a}+180 \mathrm{v}$ potential instead of the +265 v potential formerly used

The following wiring changes have been made in production in order to achieve the above objective. At the AGC keyer tube, V110, the jumper between pins 4 and 6 has been removed. The red (orange in some chassis) wire that formerly was connected to pin 4 of V110 has been moved to pin 6 of V110 so
that both red (and/or orange) wires are connected to the same pin. In some early receivers only the jumper need be removed since both wires are already connected to pin 6 . A jumper has been run be-
tween pins 2 and 4 of V110. So far, then, the result has been to change the filament connection from the +265 v string to the +180 v string. This was necessary because the V 110 filament shares its filament winding with the CR tube, and the B+ string leads included in the wiring change serve the dual function of completing the filament circuit of these two tubes and of providing the correct B+ potential to the filament. Continuing the wiring change detail, the transformer filament lead that formerly connected
to the +265 v side of the focus control, R196, was moved to pin 3 of the $5 \mathrm{U4}$, V116. Formerly, pin 3 , had not been used. An additional orange wire 8 inches long was connected to this same pin 3 and to the tie lug on C183. The black CR tube filament lead was removed from the +265 v string tie lug and wired to the +180 v side of the brightness control (R142). The final result was to change the $\mathrm{B}+$ leads that made up part of the filament circuit shared by the CR tube and AGC keyer tube so that the filament potential the

IMPROVED TUNING CHARACTERISTIC

A production change involving the audio IF section of the TV receiver has been made in order to make the point of optimum sound reproduction less critical when the head end is tuned. This objective of the video IF stages makes it possible for the RF oscillator to be detuned slightly, giving a higher or lower center IF frequency without serious changes in picture reproduction, so the broader bandpass of the sound IF stages permits a less critical tuning of the RF oscillator

In order to increase the bandpass, the following circuit and part changes were made.

Old Part	New Part	Difference
C103, C109 (4029)	C103, C109 (4090)	V101, V102 Screen bypass condensers reduced from .005 mfd to 1500 mmfd .
C108 (4029)	---	Remove from circuit.

REDUCTION OF PICTURE SMEAR

A production change concerning the retrace line elimination circuit has been made in order to educe picture Smear present when the CR tube draws grid current. A study of the schematic diagram,
of chassis $170,171,173$ and 175 will reveal that the retrace line elimination circuit can act as a grid leak biasing circuit for the CR till reveal hat the grid draws grid current as it will wh as a Brid leak biasing circuit for the CR tube grid. When the grid draws grid current as it will when the cathode Note: Dotted lines indicate wiring and components before change was made. Heavy black lines is dris to bring the CR grid to its cut-off potential. This negative bias remains on the grid until it has indicate wiring and components changed. has time to leak off via the RC path of the circuits involved. By reducing the RC time constant of the effective grid leak, the grid is not held near cut -off for so long a time, relatively speaking, and the faster recovery makes it possible for the grid to follow the transmitted video information

The RC time constant was reduced by making the following cırcuit and part changes
Old Part

R145 (4513)

C146 (4149)
C146 (4029)

C185 (4029)

The circuit changes are indicated in figure 1 below.

Figure 1

RODUCTION CHANGE

IN DEFLECTION YOKE

CHASSIS 170 SERIES*

A production change involving the deflection yoke assembly has been made in production. The horizontal windings in the yoke assembly used just prior to this change have an inductance of 10.3 millihenries. This value of inductance offered a higher resonant frequency han does the new 25 millihenry winding. The change the screen of some early production chassis. meg resistor deleted educe time constant Coupling capacitor value hange from .0047 mid t 005 mid and voltage rating chang
V to 500 V .

005 mfd capacitor added to complete capacity voltage divider.

Symbol	Value	Tol.	Volts	Type	Part No.
L111,L112	-	-		-	5389
R166	2.7 K	20\%	1/2 W	Comp.	4673
R203	100 K	20\%	1 W	Comp.	4558
C164	82 Mmfd	20\%	1500 V	Mica	4087

The above change will appear on all sets produced after Serial No. H074558
*The term "170 Series" includes Chassis $170,171,172,173,174,175,176$, and any possible MODELS 630, 631, 870,871 future chassis that are closely related to those listed here. The term will be used in all futur bulletins dealing with these chassis.

Figure 1 shows the revised portion of the circuit nder discussion. Attention is directed to the error in Figure 8, Service Bulletin No. 139. The junction of, L111 and R166 should be shown connected to lug 5 of he horizontal output transformer. The only wiring change made, external to the yoke, is that of moving on the $6 \mathrm{~W} 4, \mathrm{~V} 115$, tube socket. In effect, this change, places the horizontal deflection coils between lugs 1 and 5 instead of between lugs 1 and 4 of the horizontal, output transformer. The reason for moving the yoke ead from lug 4 to lug 5 lies in correct impedance, matching b
tion coils).

The circuit changes require the change in deflection yoke (L111 and L112), R166, C164, and an addition of

ALIGNMENT IMPROVEMENT

CHASSIS 170 SERIES

This service note deals with production changes which result in simplification of the alignment procedure and a more nearly ideal video IF bandpass characteristic.

Figure 1 shows identification of parts, and may be used in conjunction with previous schematic diagrams of chassis 170 series in order to accentuate what changes were made. The changes result in an approximately flat topped IF response curve by introducing more resistance loading into the first two video IF transformers and by decreasing the coupling in the second video IF transformer. The loss in gain brought about by these changes is more than balanced by eliminating the by-passed portion of the cathode resistance in the first two video IF stages. The resulting decrease in bias in no way causes the operating ratings of the tubes to be exceeded.

$\frac{\text { Old Part }}{}$	$\frac{\text { New Part }}{}$
R117, R122 (4671)	R117, R122 (4648)

Difference
Decreased from 3.9 K to
$\mathrm{R} 120, \mathrm{R} 126$ (4616)
$\mathrm{C} 126, \mathrm{C} 132$ (4029)

R119 (4639)
R119 (4620)

C133 (4082)
C133 (4074)

50 ohm portion of cathode resistance and associated by-pass capacitors not used
esistance reduced from 7 ohms to 39 ohms. No change in rating.

Capacitance reduced from 1.5 mmf to 1.2 mmf .

The wiring of the two 3.3 K resistors and the 1.5 mmf capacitor should duplicate the old components, regarding position and lead length. However, the new R119 resistor and previous R125 resistor should be returned to the suppressor grid ground point rather than returning the resistors to the grounded tie lugs of the tie point strips. The latter connection would introduce unwanted in-
ductance into the IF circuits.

These changes have been made on all sets produced after Serial No. G067626.
*R117 should be reduced to $1.8 \mathrm{~K}(4640)$ in those chassis which employ the alternate adjacent hannel sound trap shown in figure 14, Service Bulletin No. 136. This alternate trap may be eas: dentified by the ceramic trimmer capacitor mounted on the lip of the IF sub-chassis near the first video IF stage.

Figure 1. Portion of schematic diagram, TV chassis 170 series, showing component changes for improved alignment. Only changed components have been labeled with numerical values.

PRODUCTION CHANGES
 ELIMINATION OF "CHRISTMAS TREE" EFFEC SHADING AT TOP OF PICTURE ELIMINATION OF SMEAR CONTRAST IMPROVEMENT
 MODELS 630, 631, 870, 871 $872, \mathrm{Ch}, 170 ; 632,633$, $634,635,866,867,868$, $876,877,378, \mathrm{Ch} .171 ;$ $866 \mathrm{~A}, 867 \mathrm{~A}, 868 \mathrm{~A}, 376 \mathrm{~A}$, $877 \mathrm{~A}, 878 \mathrm{~A}, \mathrm{Ch} .173 ; 890$, $391,892, \mathrm{Ch} .175$

CHASSIS 170 SERIES

elimination of "Christmas tree" effect

There are some receivers in the field that are troubled by "Christmas tree" under certain operating conditions, such as occurs during between-channel tuning or tuning to one particular channel. This condition may be remedied by reducing the resistance value of R157, the 220 K resistor that is in series with the HORIZONTAL DRIVE potentiometer.

Old Part	New Part	Difference
R157(4618)	R157(4589)	Value of R157 reduced from 220K to 150K. No change in rating.

This change has been made on all sets produced after Serial No. G067626

Shadng at top of picture

In order to eliminate the dark shading at the upper portion of the picture that occurs on some receivers at low contrast settings, the following changes are recommended:

Dotted lines indicate wiring and components before shading change was made on those sets in which the smear change of Bulletin No. 143 was made. Heavy black lines indicate wiring and components changed.

Case I - Sets containing smear change indicated in Figure 1.

Remove C185 and reduce the resistance value of R143 to 100K ohms. Change C146 to a higher voltage rating and rewire as indicated in figure 1.

Case II - Sets that do not contain smear change shown in Figure 1. Move C146 lead to other side of R145, eliminating R145 from the circuit. Reduce resistance value of R143 to 100 K ohms.
$\frac{\text { Old Part }}{\text { C185 (4029) }}$
New Part

- --

R143 (4513)
R143 (4511)

C146 (4029) C146 (4149)

This change has been made on all sets produced after Serial No. G067626.
NOTE: C146 and C185 shown in Figure 1 have their "C" numbers erroneously interchanged in the circuit schematic, Figure 8, Service Bulletin No. 139. This must be kept in mind if reference is made to this schematic concerning the change described above. ELIMINATION OF SMEAR

Smear, as exemplified on the screen by trailing shades from black toward white after large dark objects and white toward black after large white objects, and a general fuzzy appearance throughout the picture, is still present in some sets incorporating the smear change covered in Service Bulletin No. 143. The remaining smear is caused by insumcient low frequency response ofplish this, the coupling capacitor between the video amplifier and the CR tube should be increased in value.

Old Part	New Part	Difference
C145 (4029)	C145 (4131)	C145 increased from .005 mfd, 500 v to .22 mfd,
		200 v.

This change has been made on all sets produced after Serial No. G067626.

CONTRAST IMPROVEMENT.

Field reports have indicated that more picture contrast is desirable at high level settings of the CONTRAST control. The condition shows up as a washed out appearance of the picture. The effect has been due to the linear relationship between increase in contrast and increase in brightness. In order to obtain a picture that appears to have more contrast at high contrast levels, the relationship can be made non-linear by the following change. Increase the resistance value of R141. When this has been done the picture brightness will increase at a slower rate than the rate of increase in picture contrast.

Old Part	New Part	Difference
R141 (4511)	R141 (4677)	R141 increased from
		100 K to 330K. No rating

change.

No. G067626.

CONTRAST CHANGE

All 170 Series chassis are being produced with a $680-$ ohm resistor connected in shunt across the contrast potentiometer. The physical location of the new resistor is from pin 2 of $\mathrm{V109}$, the video amplifier, to ground. The maximum resistance in the cathode circuit of the video amplifier is lowered, and the minimum contrast level previously obtained is raised. This means that the seldom used lower third of the contrast range is dispensed with, and the more useful range that remains is spread out over a greater scale. It is important to note that the recommendations for setting the
brightness control are now different. The recommended procedure for setting the brightness control is to set the control for medium brightness at minimum contrast setting. This will produce a picture with ave rage background characteristics at about three-quarters contrast setting. For individual tastes that vary from this recommendation, the brightness control may be set so that it is most pleasing to the observer.

Old Part	New Part
$-\ldots--$	R207 (4514)

Difference
680 ohms, $1 / 2$ watt,
208 resistor added in parallel with con
trast potentiometer.

Figure 2.

DEFINITION IMPROVEMENT
 \section*{CHASSIS 170 SERIES}

Closely associated with the smear effect as far as picture appearance is concerned, is the general lack of contrast which shows up in the picture as a reduction of fine detail. This effect is caused by a falling off of the high frequency end of video response in the video amplifier circuit. The response may be improved by making the following changes which may be identified in Figure 1. be kept as long as possible during its removal so that it may be used to replace R138. Remove R138 and connect a 47 K resistor between the junction of L106, L107 and the tie lug previously used for connecting R138 to C166. Change C166 to 220 mmf . Change R168 to 10 meg. Remove C167. These hanges will introduce less loading on the video amplifier without changing the noise immunity going into the 1st sync separator.

Old Part	New Part	Difference
R139 (4504)	---	R139 replaced by direct connection.
R138 (4515)	R138 (4504)	R138 increased from 10 K to 47 K . No rating change.
C166 (4146)	C166 (4026)	C166 decreased from . 001 mfd. to $220 \mathrm{mmf}, 20 \%$, ceramic.
R168 (4605)	R168 (4505)	R168 increased from 1.5 meg. to 10 meg . No change in rating.
C167 (4009)	---	C167 removed from circuit.

These changes have been made on all sets produced after Serial No. H070169.

Figure 1
Portion of circuit schematic for chassis 170 series. Only those Portion of circuit schematic for chassis 1 iabled with numerical values.

INCREASE 21.6 MC TRAPPAGE

CHASSIS 170 SERIES
MODELS 630, 631, $370,871,872, \mathrm{Ch}$
$170 ; 632,633,634,635,866,867$,
$868,876,877,878, \mathrm{Ch} .171 ; 366 \mathrm{~A}$,
$867 \mathrm{~A}, 868 \mathrm{~A}, 876 \mathrm{~A}, 877 \mathrm{~A}, 878 \mathrm{~A}, \mathrm{Ch}$.
$173 ; 390,891,892, \mathrm{Ch} .175$

Figure 1 may be used as an aid in identifying the following changes. The additional 21.6 mc trap is obtained by converting $\mathrm{Z4}$, at present one of the two 27.6 adjacent channel sound traps. Z is converted by increasing the capacitance in the parallel tuned circuit to 15 mmf . This is accomplished by shunting 21.6 mc ractits in less 27.6 mc trappage, so the connections on $\mathrm{Z2}$, the other Converslon or disconnect the bare lead from the tap on the trap inductance. The tap connection is the one that is not connected to either side of the 10 mmf parallel condenser. Reconnect the bare lead to the trap lug that also has the 330 ohm resistor and .005 mfd condenser connected to it. Connect a 1.5 mmf condenser between pin 1 of the second video IF amplifier, V107, and the lug on the trap inductance to which only the parallel condenser C129 is connected, keeping the leads as short as possible. Peak Z2 for 27.6 mc .

Old Part	New Part	Difference
---	C190 (4081)	Shunts C143 with 5 mmf .
---	C189 (4082)	Add 1.5 mmf condenser between high side of trap and grid of V107.
Wiring change		Bare lead moved from tap on trap to low side of trap

It is recommended that this change be made at the time the alignment change (bulletin No. 145) is made.

The additional 21.6 mc trappage has eliminated the need for the 4.5 mc trap, and factory produc tion has eliminated its usage. It is recommended that the slug for the 4.5 mc trap be removed in all sets so that there will be no possibility of this trap causing a dip in high requency

These changes have been made on all sets produced after Serial No. H069463
There are several hundred sets with serial numbers lower than the given number which also inThere are several hundred sets these sets the 4.5 mc trap is present, but the slug has been removed.

Figure 1.
Portions of circuit schematic for chassis 170 series showing trap changes Only components included in change have been given numerical values.

REFERENCES. Circuit Diagram E-585
EQUIPMENT: Component Location Label 33D-583

1. Sweep generator, 23.5 mc . center frequency, 10 mc . sweep width. 1. Marker generator, 21.25 mc . , 22.0 mc ., and 25.75 mc .
2. Crystal oscillator, variable output, 4.5 mc . unmodulated.
3. Oscilloscope.
4. 20,000 ohm per volt meter.

PROCEDURE, VIDEO I.F.:

1. Connect oscilloscope to Jl test point.
. Move tuner between channels to disconnect coils.
2. Short circuit the two component mounting lugs next to detector socket (V6) which are (1) the junction of R21 and C2O, and (2) the junction of R26, C26, and R25. This places fixed bias on the A.F.C. line
3. Connect sweep generator, decoupled with 1000 uff., to pin 1 of V5. Turn the slug on Liß until it is centered in the coil. (This narrows the band pass of this stage.) Adjust Ll9 and Ll7 until the pass appears as below:

Now adjust Li3 until pass is as pictured:

. Move sweep generator to pin l of V4. Adjust Ll6 until pass balances, adjust LlL until pass balances. When properly adjusted, pass will look as pictured below:

6. Move sweep generator to pin 1 of V3. Adjust Ll3 and Lll as in above step. Pass will now be as pictured.

- Move sweep generator to test point on tuner chassis) ; adjust L\& (square can on tuner) until the pass rocks through a tilt and eave adjusted with a 10% tilt in the pass, as pictured below:
The viden I.F. is now correctly aligned.
INTERCARRIER SOUND SYSTEM:

1. Connect voltmeter, set on 10 volt scale across C42, cbserving polarity.
2. Insert 4.5 mc . generator, capacity decoupled, in Jl.
3. Reduce signal so that voltmeter reads a maximum of 3.0 volts, and continue to reduce as adjustments are made so as not to exAdjust in the order given, the following transformer slugs for maximum cutput:

$$
\begin{aligned}
& \text { a. Rottom slug, T3. } \\
& \text { b. L23. } \\
& \text { c. Top slug, T3. }
\end{aligned}
$$

Repeat to insure accurate setting.

OJohn F. Rider

Top View Of High Voutage Can

OLD CIRCUIT

© John F. Rider

4. Sound ok, no plicturo, no rastor

Indicates possible trouble in high voltage circuit:

1) Open i mf condenser from grid (pin 4) horiz osc to 2) Onound (in some cases).
pin 3 to ground) of horizontal output tubes.
2) Open cathode resistor (100 ohm , pin 3 to ground) of
3) Leaky coupling condenser (330 mmf , pin 5 to pin 1) of
S) Either of two 1 meg resistors in voltage doubling high

Voltage circuit may have changed value
Either or several of these tubes: $6 S N 7$ horiz osc, OAUS
horizontai output, IV2 HV rect, $\delta W 4$ damper, OALS horizontal oulput, CR tube.
3. Rostor ok, no plicture, no sound:
Tuner, 12AU7 video out, any 6CB6 If
shorted screen bypass condenser in If stages. open If coils.
Plature rolls vertically, horiz ok:
Leaky integrator, $12 A U U$ sync separator, leaky .05 sync coup.
ler to pin 3 of $12 A U$ sync separator open or leaky. . 1 mf cond to pin 6 of 654 vert out, open or leaky. 05 mf cond joining above mentioned. 1 mf and 8200 ohm resistor connected
io pin 2 of vert out $\delta S 4$.
Dlagonal bars (horix freq), vertical ok:
Adiust horiz hold control, replace σ SNT horiz osc, 12 AU7 sync sep, leaky. 05 sync coupling cond connected 10 pin 3 of
12AU7 sync sep, 6 ALS horiz phase, leaky 1000 mmf cond
. Vortical and horizontal roll:
. Vortical and horizontoi roli:
Shorted integrator block, $12 A U$ sync sep, shorted or open .05
connected to pin 3 of $12 A U 7$ sync sep, leaky. 1 mf connectied connected to pin 3 of $12 A \cup 4$ sync sep, eleaky . 1 mf conneceted
to grid of $C R$ tube, physical shorting at base pins of $12 A U 7$ to grid of CR
sync separator
9. Sound bars:

Volume control at zero:
2) check setting of 20.5 mc trap
3) check setting of
B. Sound bars only with advance

1) replace oKo audio output
2)
3) replace ©ALS rotio det tube and $\sigma A V O$ first audio tube in extreme cases, remove all leads from screen grid
of $\delta K 6$ audio out (pin 4) and reconnect these leads to of
the same grid through a a 1000 ohm, 1 watt resistor, and place an 8 mf 450 volt electrolytic from pin 4 to ground.

10. Miscollaneous troubles:

Intermittent blowing of fuses- $6 W 4$ damper or OAUS horiz
B. out. If screen voltage-shorted screen cond in funer.
B. Cownit cut down brightness in CR tube-short in CR tube
replace. Yuner fine funing changes horiz freq-trouble in horiz phase
circuit. Suggest check for shorts, change OAL5 horiz phase; circuit Suggest check for shorts, change 6Al5 horiz phase;
or either of two 1000 mmf coupling cond to OALS phose tube leaky.
Picture shakes in hariz motion when contrast control is ad.
vanced-cut out and remorev 10 mmf condener connected vonced-cui out and remore 10 mmf condenser connected
between pins $1 \& 9$ of $12 A U T$ sync sep, if cond is in circuit. Sound and picture not together-may be weak antenna. Weak signal of any sort can exaggerate this condition.
Realign sound focus pot and parallel 1200 ohm resistor burn-focus coil
4. "Pien. Crust" effect-may be one of two types:

1) Change 6 SNT horiz osc.
2) Dress green lead from grid of CR tube away from
3). 1 mf cond beiween pin 4 and ground of 6 SN7 horiz osc open.
Picture weave-electrolytic open. Also see modification
sheet for weave linvolves changing filter network from 40
mf input and 80 mf output to 80 mf input and 40 mf output).
J. Raster looks like an ancient "scroll"- electrolytic open.
K. Corona of HV trans-look for sharp pointed solder ioin Corona of HV trans-look for sharp pointed solder ioints,
especially near final IV2 filament.

BEND
Bend can be caused by unbalance of the horizontal sync pulse to the GALS Horizontal phase fube or the fube itself. To check bal ance, Iune in a slatoth conneci by connecting pins 1 and 2 of the 6 ALS Horizontal phase tube to ground. The VTVM will then read the sync unbalance voltage. It should be no more than plus o minus .5 volts. To balance temporarily, ploce approximately 33 K
ohms across $R-46$ or R-43 (12AU7 phase inverter) whichever improves the balance.
After determining whether R-46 or R-43 needs correcting, select a value of resistor which brings the balance voltage within toler ance, then solder in place. Sometimes bend can be compens

BUZZ AND HUM

Buzz can be traced to many sources. Some of the most common will be mentioned. The first source of both buzz and hum may be
the station. Station technique may not always be perfect. The station may also cause buzz in intercarrier sets by too muc modulation of the video carrier. This results in the tips of the syn
pulses cutting off or nearly cutting of the video carrier. MC intercarrier is formed by the beat between the sound carrie and the picture carrier. If one becomes zero, the intercarrier also becomes zero. Sync occurs at a 60 cycle rate (frame) so the is characterized by a sharp wave front containing high frequency components, as compared to hum. This type of buzz may chang as cameras are changed at the studio, due to the video level of one camera being set at a slightly different value than the others.
Buzz occurring in the receiver has been experienced by not having the If curve and the cathode trap aligned to produce very low response at the 20.5 MC sound carrier; not having the ratio detector correctly tuned, especially by being on the wrong The latter can usually be corrected by connecting a 330 Mmf condenser from the iunction of C-4, R-5 and R-4 to ground. Re-peak the $41 / 2$ MC If coil also. Be sure the fine funing control is tuned correctly. A slight buzz can be obtained on strong station by furn clipping sync with the same effect as previously described. This effect is normal and at normal contrast selting may not be noticed Another type of buzz is caused by the vertical sweep coupling
into the audio. As the vertical has a sharp wave front and fairly high omplitude, a very slight coupling may pick it vi. Test for by furning the volume control completely of and listen. A shield installed between the 615 vertical oscillator and the $6 A V O$ (o
$O S N 7)$ will remve it OSNT) will remove
filter on the 290 V bus.

I. F. ALIGNMENT

Equipment Required

1 VIVM.
1 Oscilloscop
Oscilloscope.
Sweep generator, 10 MC sweep centering about 23 MC . RF channels desirable but not necessary. The sweep gen
erator should have very low harmonic content or it will pro duce signal in the $R F$ while the If is being aligned.
Markers, preferably crystal control, at $4.5 \mathrm{MC}, 20.5 \mathrm{MC}, 25$ and 21.4 MC markers at the same time to tacilitate atignment 25 MC and ditional frequencies of $23.4,24.3,21.8$ and 24.2 may be obtained from a variable signal generator. If an accurate
signal generator is available o 25 MC marker used with it $\stackrel{\text { will }}{ }$
Loosen the tube shield from ground of the 816 in the Standard tuner (front fube). Connect the output of the sweep generator ot this tube shield and ground. Connect the horizontal terminals of the scope 10 the sweep sync. Terminals. Connect the verica
terminals of the scope across ground and the picture detector load resistor $(R-27)$. If the scope has a Z terminal, 110 VAC through a 2.2 M ohm resistor may be conected to it to blank
out the return trace. Reverse the plug if necessary. Be sure the
sweep generator is connected to the receiver chassis by a short ground wire. If at any time the curve shape changes due to rouching the equipment or changing leads around, check all
grounds and do not proceed until corrected. It is not necessary that the set-wp be poreted to an are that it be connected together by short ground leads. In an extreme case it may be necessary to place the equipment on a sheet of metal.

Procedure
Ser the tuner on Channel 12 and obtain the IF response curve on the scope. Adiust scope height, width, centering and perhaps,
phase. Set the sweep amplitude for medium output. Turn the tuner on two or three adjacent channels; the curve should remain substantially the same. If it does not, pick a channel which
hos the same curve as two or three others. Note any superfluous response or extra markers. The tuner oscillator may produce a marker. Tune the fine tuning control to identify it and place in signals. The If may be oscillating if improperly aligned. Place a finger on an If coil or put in an iron or brass slug to identify or move. Do not try to align before stopping any oscillation.
This can also be done by turning the coil slug but is not recom. mended for those aligning for the first time as the slug position may be lost. Turn the sweep generator amplitude down and then up. and note how the curve follows. If a station is on the channel being used, try another channel or reduce the signal
from the station. Remove the antenna to remove noise and other signals. Set the contrast control about one-half on. In receivers using keyed AGC, connect -3 volt of battery bias to the AGC bus and ground before sweeping. Connect the markers loosely receiver chassis, tuner chassis or between tuner chassis and receiver chassis.
Note how the markers appear on the scope if curve. Run the marker attenuators up and down. Always use the minimum
amount of marker signal possible as it will distort the curve. amount of marker signal possible as it will distort the curve.
When it is necessary to use a large amount of marker in the first steps of alignment, reduce it later and check curve.

Alignment:

Introduce 23.4 MC marker and adiust last IF slug (3rd IF) for scope and adjusting for maximum excursion from zero axis. An alternate method is to shut of the sweep and use a VIVM of the picture detector load resistor. Change marker to 24.3 and peak 2nd IF. Set marker to 21.8 and peak 1 st IF. Set marker
ic 24.2 and peak funer converter. Set marker to 20.5 and null cathode trap. When the If coils are set to frequency, a rough curve, approximating the If curve, will appear on the scope.
Then turn the If slugs, watching the scope, to obtain the curve shape and marker position desired. (This curve is reproduced on the circuit diagram. It will result in a full resolution 350 line picture. Band width is measured at 50% points.) A considerable amount of skill is required to perform this operation quickly. Here are some hints to help. Never furn any one slug too far.
Don't try to do it all on one If coil but pick up a little bit on each one. Sometimes turning a slug to obtain a desired portion of the surve will apparently make the curve worse but it may
be compensated for in be compensated for in another If stage. If you get too far from
the desired result, re.peak the IF's on marker frequencies and start over. While aligning, note the gain by the amplitude on the scope as it is possible to get a good looking curve with low gain. In this ccse one or more of the if stages will have gain off to one side of the curve. This is sometimes evidenced by con-
siderable "suck out" of the cathode trap. The 20.5 MC sound carrier (cathode trap frequency) should be very low and very little response will be noted on the other side of the trap. If the
trap is incorreclly aligned or not working, buzz may occur in trap is incorrectly aligned or not working, buzz may occur in
the sound and $41 / 2 \mathrm{MC}$ beat in the picture. Usually, but not the sound and $4 / 2 \mathrm{MC}$ beat in the picture. Usually, but not
always, the 3 rd If rocks the curve; the 2nd If moves the 25 MC marker and broadens the curve; the 1st If broadens the curve on the 21.4 MC .

OJohn F. Rider

Sound Alignment:
Turn off the sweeep and connect the VTVM to the ratio detector
Tol load (marked "maximum" on the circuit). Iniect 4.5 MC and
peak sound take off coil and primarily of ratio detector transpeak sound take off coil and primarily of ratio detector trans-
former (bottom). Null $41 / 2$ MC trap if one is used, by placing VTVM on picture tube grid and ground. Adjust the secondary of the ratio detector for zero. There are three responses to the
ratio detector transformer. The correct one is in the middle. At the correct zero a slight furn of the slug will move the VIVM -needle rapidly positive or negative. Reset to zero. If the secondary slug was moved appreciably, recheck the tuning of
the primary slug. the primary slug.

TUEE LOCATION CHART

©John F. Rider

© John F. Rider

© John F. Rider

CHECKING A. G. C. THRESHOLD CONTROL
 BOTTOM VIEW OF THE CHASSIS

1. Tune in a strong signal

2. Sync the picture, then turn PICTURE control to maximum CW, and note that there is sufficient contrast.
3. Turn BRIGHTNESS until retrace lines are just invisible. Remove signal by switching momentarily to another channel.
4. If picture returns immediately, the control is properly set. If an appreciable part of a second is required for picture return the receiver is overloading and the threshold control should be readjusted.

CHASSIS CT 232, CT 236,
CT 239, CT 240, CT 244, CT 245, CT 246
d. Adjust the AGC control for a 70 volt peak to peak video pattern on the scope.
If a calibrated scope is not available, a convenient way to calibrate one is to conpin, and set the vertical gain control so the sine wave pattern is $1 / 2$ inch high. Without changing the vertical gain control, move the probe to the picture tube grid and set the AGC control to obtain a pattern 2 inches high. This is equal to 70 volts peak to peak. (Explanation: The peak voltage is 1.4 times the RMS voltage, therefore 1.4 $x 6.3=8.82$ volts, the peak value of the filascope pattern shows both positive and negative half cycles, so $2 \times 8.82=17.64$ volts. Therefor 6.3 volts RMS $=17.65$ volts peak to peak $=1 / 2$ inch vertical deflection on the scope. A 70 volt calibration is required, so $4 \times 17.65=70.6$ volts $p-p=2$ inches vertical deflection).
e. As a precaution, turn the AGC control so the p-p voltage is higher than the required 70 volts, and examine the pattern for signs of overload. If overloading occurs at or control so the signal is slightly below that value.
2. WHEN NO OSCILLOSCOPE IS AVAILABLE.
a. Tune in a television signal for maximum clarity.
b. Turn the contrast control to mid-range, half way between maximum and minimum rotation.
c. Without changing the contrast control, adjust the brilliance control and the AGC control for a medium brilliance and medium contrast picture
d. As a precaution, turn the AGC control farther than necessary in step c, and examine the picture for signs of overload. If overloading occurs at or very near the setting just established, advance the contrast control a quarter of an inch, and adjust the brilliance and AGC controls for the best obtainable picture.

ADJUSTING THE ANTENNA TRAPS

In some instances interference may be encounered from FM stations that are on the image frequency of a television station.
The CT 232-239-244-245-246 incorporates a series resonant trap across the R-F amplifier grid circuit to eliminate this type of interference.

To adjust the trap, tune in the station on which the interference is observed, tune both cores of the trap for minimum interference in the picture. Keep both cores approximately the same by visual original position and repeak the second for maximum refection. Repeat this process until the best rejection is obtained. The R-F unit of the CT 236 and 240 having greater selectivity, no traps are, as a rule, necessary

PART IV

I-F R-F ALIGNMENT

In aligning the amplifiers, it must be remembered that feedback between output and input circuits leads to regeneration and, if feedback be appreciable, to oscillation. It may be determin
whether the amplifiet is oscillating as follows:

Increasing signal generator output by a actor of (for example) two should result in a rise in output voltage in approximately the same degree. If, instead, a decrease in output
with increased input is noted and if there be a steady output voltage as indicated on the VTVM even without input signal the cir V.T.V.M. even wit.
cuit is oscillating.

Regeneration insufficient to cause oscillation gives rise to distortion of the reproduced response curve, and proper alignment is not possible in such event.
Regeneration may be caused by poor bonding between the chassis of the receiver and of test equipment being used. Connection should be made by short, heavy leads. Many service organizations tory) atop the bench which affords good R-F grounding between chassis, even though they ar ot conductively connected thereto

After the several connections of equipment are made and a pattern being reproduced, it must be posuipment chassis and along the interconnecting cables, with no visible change in output potential or wave form. Failure to attain this probably means that regeneration is present, better ground ing is necessary and subsequent alignment adjust ments are questionable
It may be necessary, to realize such a condition in the absence of a metal-topped bench, to employ two or more short bonding wires between chassis connected at different points.

SOUND DISCRIMINATOR ALIGNMEN

1. Connect the marker generator to the grid of the converter tub
exactly 21.25 MC
2. Connect the Electronic Voltmeter to the dis criminator output. Audio output terminal block may be used for this purpose. Set voltmeter to a low scale.
3. Detune the discriminator secondary (bottom adjustment transformer (3)) and then adjust dis criminator primary (top adjustment) for maximum indication on the voltmeter. Adjust I-F transtom adjustment for maximum output.
4. Connect sweep generator to converter grid to a center frequency of 21.25 MC with a 1 MC sweep. Loosely couple marker generator at this point. Connect oscilloscope through 22 K isolating
resistor to high end of resistor (108) 3rd I-F grid Retouch I-F adjustments so that output is maxi mum and symmetrical about the 21.25 MC marker as shown. SOUND I-F AMPL.

RESPONSE

5. Adjust the discriminator transformer (3) secondary for a balanced condition as indicated by proper balance is obtained, positive and negativ peaks will be observed as the marker generator is tuned to either side of the 21.25 MC sound I-F frequency. Keep \mathbf{P} / \mathbf{P} scope deflection at about one volt.
6. Observe the response curve at the output of the discriminator by connecting oscilloscope to the discriminator output. Connect the sweep gen erator to the converter grid and loosely couple the marker generator into the converter grid circuit The marker generator 21.25 MC pip should occur at the midpoint of the linear portion of the dis at this point.

VIDEO I.F ALIGNMENT

1. Remove the A. G. C. rectifier and sync amplifier tube (V15) and connect a variable resistor as shown in the accompanying sketch. Using this cuatiol
volts.

Control for setting I-F bias. Use Plug Adaptor to plug
into AGC tube socket.
2. Connect AM signal generator to mixer grid through a small capacitor. Connect oscilloscope V12A) and chassis ground. Set the signal generator to the 19.75 MC position with modulation and adjust the 2nd video I-F trap for minimum response (top adjustment). If the signal generator has no AM, use the VTVM across the detecto load resistor as an indicating device
3. Set the signal generator to the 21.25 MC po sition. Adjust the cathode trap (top adjustment) and then the converter trap ontment).
4. Set the signal generator to the 27.25 MC position and adjust the trap to the 1 st video I-F transformer (top adjustment) for minimum response. This completes the preliminary adjust ments of the trap circuits.

Note: A VTVM may be used as an indi cating device, when connected across the vide detector load rime 100 volts points are approximately at minus 100 volt below ground.

I-F TRANSFORMERS

1. Set the signal generator to the 21.8 MC position and adjust the converter transformer pri mary (bottom adjustment) for maximum output overload the circuit With the signal generator set up for the appropriate frequencies, tune the plate coils of the 1 st video I-F transformer to 25.3 MC 2nd video I-F transformer to 22.3 MC (after making this adjustment it will be necessary to realign the trap circuit to 19.75 MC) 3rd video I-F coil to 25.2 MC and 4 th video $\mathrm{I}-\mathrm{F}$ coil to 23.4 MC for maximum response.

RETOUCHING VIDEO I-F ALIGNMENT

1. Connect the sweep generator to the receiver antenna terminals. Set the channel selector and sweep generator to channel 13. Loosely couple the marker generator into the grid circuit of the con verter stage. Sufficient coupling may be obtained py connecting the high side of the generator out put to the R-F unit sub chassis to form a ground of the 1 st video amplifier (pin 2, V12A) and ground. The A. G. C. circuit should be inoperative as has been indicated and the I-F bus voltage se to -3 volts.
2. Observe the response curve obtained. The response will not be ideal and it will be necessary to retouch the I-F adjustments in order to obtain the desired curve as shown. The most important fac I-F in the retouching procedure is that the video the response curve. If the video carrier operates too low on the curve, loss of low frequency video response, of picture brilliance, of blanking and of sync may occur. If the video carrier operates too high on the response curve the picture defini tion is reduced by lack of high frequency video response. In making these adjustments care should to same frequency or I-F oscillation may occur.

OVERALL VIDEO RESPONSE

R-F UNIT OF THE CT 236-240 CHASSIS

OSC 6C4, MIXER 6AG5, R-F AMP 6BH6
 \section*{R-F UNIT OF THE CT 232-239 CHASSIS}

R-F unit having tuned input physically similar to above, but oscillator is adjustable on all channels by means of slugs accessible from front of tuner. May be adjusted without reosc., 6Ă G 5 mixer, 6AK5 R-F ampl.

SECTION 4-FRONT
section 5- rear
the receiver antenna terminals and a terminating resistor equal in value to the erator output. The value of the resistors is such that the sum of their resistance plus the terminating resistor equals ap proximately 300 ohms.
(3) Tune the signal generator to each side of the 215.75 MC Sound Carrier until its modulation is heard in the speaker. The signal generator should be tuned for a minimum signal located between two maximum points.
(4) Observe whether the signal generator reading obtained is above or below the而. signal generator about the correspongling sound carrier frequency in each case. See table page 4 for these sound carrier fre quencies.
(5) If all of the high band oscillator coils or the majority of them are off in the same irection as shown by the signal gener tor dial reading they may usually be brought into alignment by adjusting the or which turns the fine tuning capaci , or by changing oscillator tube
. Readjusting the Fine Tuning Wheel
a. Reset the channel selector switch to chan nel 13 and set the signal generator to the sound carrier for that channel. Tune the fine tuning control until the receiver is precisely tuned to the sound carrier.
b. Loosen the Allen set screws which fasten the wheel to the shaft of the fine tuning mechanically in the center of its tuning range and tighten the set screw. When making this adjustment be sure that the fine tuning control does not move from its center position.
Recheck the settings of the channels as has been shown. Channels which are no
properly aligned must be adjusted individually. This procedure would also be followed in cases where the adjustments are off in random fashion and present no def fine tuning control
4. Individual Adjustments of the Oscillator Coils, 12 Channel Unit
a. Having determined the direction in which the oscillator is misaligned on any high R-F unit and adjust the oscillator coil for that channel.
b. Coils having a one turn loop (Channels 13, 8 and 7) may be tuned higher by spreading the loop apart or making it smaller. They may be tuned lower by squeezing the loop closer, making the loop as large as possible and making the adjacent parts of the loop as parallel as possible.
(Channels $12,11,10$ and 9) may be adiuste (Channels 12, 11, 10 and 9) may be adjusted
from minimum to maximum inductance by adjusting them as shown below.
adjusting them as shown below.
Care should be taken to prevent any coil Care should be taken to prevent any coil
from touching an adjacent one and to prevent a part of the coil from touching the switch stator contact in any place except where it is soldered to that contact.
d. To adjust the low band coils turn the brass slugs in and out as required with a small screwdriver, reheating the wax around them after the final adjustment.
e. In order to avoid repeated removal and replacement of the R-F unit shield during oscillator adjustment the fine tuning control may be set 120 degrees away from its mid point position in the direction of less capacity. (Corresponding to cock . It will be found that when the coils are adjusted in this manner with the shield removed, the fine tuning control will be in the center of its range when the shield is in place.

MAXIMUM INDUCTANCE

LOW BAND

a. Connect the sweep generator and marker signal generator to the antenna terminals as has been shown for the high band alignment. Set the channel selector switch to channel 6. Set sweep generator to sweep channel 6 and the marker generator to the channel 6 sound carrier frequency.
b. Connect the oscilloscope between the plate of the first video amplifier and chassis ground.
c. Set the fine tuning control to the center of its range. Observe the response and adjus the R-F amplifier plate coil (P6) and the converter grid coil (G6) for maximum response. Set the marker generator to the just these coils for proper bandpass with optimum gain. The video carricr marker should be at the 50% point on the response curve.
d. Align channels 5, 4, 3 and 2 in a similar fashion. The difference between peaks on any channel should be no more than 30% of the total height of the response curve.
e. It should be noted that maximum heigh and symmetry of the response curve should occur at the mid range of the fine tuning control where it will properly tune in the sound carrier frequency.
The AGC circuit should be made inoperative as has previously been shown.

R-F UNIT ALIGNMENT, TYPE "S" WITH TUNED INPUT

OSCILLATOR ALIGNMENT

The oscillator coils in this R-F unit are all tunable by slug adjustments, and alignment of one does not appreciably effect the tuning of the other coils. The order of alignment is from channel 6-2, 13-7, 6-2 and 13-7. The rep and by the apacity change due to slug adjustments of adjacent coils.

1. Set the sweep generator and channel switch to No. 6 channel. Adjust as outlined in instructions for untuned input tuner.
2. Proceed through channels $5-2$ in the same manner
3. Align channels 13-7.
4. Proceed as above through channels $6-2$ and 13-7, and retouch if necessary.

ANTENNA, R-F AMPLIFIER AND CONVERTER

ALIGNMENT

There are three variables which will give the desired pattern. If the antenna coil (wafer nearest the rear of the tuner is first expanded, then the grid coil and finally the plate coil is expanded, the very carefully adjusted with only slight movement, particularly the plate coil. The final pattern is obtained by working back and forth between these three coils.

Remove the AGC rectifier-amplifier tube and connect bias control
2. Connect sweep generator to antenna terminals, using a balanced resistor network if generator has unbalanced output cable. Connect 'scope to terminal provided on the tuner.
3. Set the sweep generator and channel switch to No. 13 channel. If the coils are very badly aligned, the pattern on the scope will probably be either of these :

The meaning of " A " is that some coils must The meaning of " A " is that some coils must some coils should be closed or squeezed together.
4. When they are far off from their proper tuning, all three coil circuits have their main fr height of the pattern

As a coil is changed, one
will get higher and then side of the picture to move across the screen

If the first pattern was like " A ", the next will be " B " and then " C " as the coil is opened. If the first pattern was like "M" the next will be " N " and then " O " as the coil is closed. When the hump, due to the tuning of that coil, is between the markers, it indiit should be So leave it and immediately to another coil.
6. The side of the picture which is higher indicates what to do to the next coil. In "C", the left hand side is higher, which indicates that said coil should be opened. In "O", the right side is higher, indicating inat said "D" or "P" should be then obtained.

號 The fact that there are now two humps in and $R-F$ wafer are tuned nearly right. If picture height is near what it should be with the scope settings unchanged, the antenna wafer is near correct. It should be adjusted a bit to see if pattern height improves.
7. When all three coils are nearly tuned, the antenna wafer controls the tilt, the RF wafer controls the left hand hump, and the converter wafer controls the right hand hump. Adjust them for a perfect flat pattern on channel 13 as below.

8. Proceeding through channels $12,11,10$, etc The pattern will change slightly as shown below. In general, three things occur: (1) right. right.

hump too Righ
CT 236 236,
244, 4,, $\left\lvert\, \begin{gathered}0 \\ 1 \\ 1 \\ -1\end{gathered}\right.$

For right tilt as in＂F＂，press down the loops on the antenna wafer．For left tilt as in＂G＂， pull up the loops on the antenna wafer．For hump to left as in＂ H ＂，push down on the loops＂n the R－F wafer．For hump to right out channel 12 or channel 7 loops on con－ verter wafer．
9．Combinations of detuning also occur．

In these cases，two wafers must be adjusted to bring in the best picture．For a case like ＂J＂，R－F wafer must be adjusted to bring in the hump and antenna wafer to correct the tilt．In a case like＂Q＂，the converter wafer should be adjusted to bring in the hump and the antenna wafer to correct the tilt．In combination cases like these where the an－
tenna wafer and one of the other two must be adjusted，always adjust the antenna wafer for tilt correction after all adjustments have been made on the other two wafers．

10．It is best to prevent the left hump from go－ ing so far to the left that it cannot be brought back，or the tilt to become so bad sible pattern is obtained on each successive channel，then proper adjustment of the next one will always be within its range．
11．When both coils are near to proper tuning a slight adjustment of either R－F or con－ verter wafer will give a flat pattern，with markers；but only the correct coil will give this correct pattern shape plus best pattern height． height．

When the pattern is like＂ S ＂on a low band， opening a coil on either wafer will move the pattern to the right，but try both slightly and make the final adjustment by opening that coil which causes the pattern to become higher as it moves toward the right．

R－F UNIT ADJUSTMENT，TYPE＂R＂TUNER

1．Oscillator Alignment
a．The criteria of proper alignment using this method is that the assigned sound carrier and the local oscillator produce a signal criminator characteristic（ 21.25 MC ），when the fine tuning control is in the center of its tuning range．The sound I－F and Dis－ criminator circuits must be in alignment before making any adjustments to the os－ cillator circuit．
2．High Band Alignment
a．Set the fine tuning control in the center of its tuning range．Set the selector switch to channel 13.
b．Connect the signal generator to the an－ tenna terminals and set to the channel 13 sound carrier frequency（ 215.75 MC ）．This signal should be amplitude modulated．
c．Adjust L77 and L78 for a minimum signal located between two maximum points． Note：When making these adjustments al－ low for the change in circuit capacity which occurs when the alignment tool is brought into the vicinity of the oscillator tuning circuit．
d．Switch the channel selector to channel 12 and set the signal generator to the channel Tune the channel frequency（209．75 MC）．
as has been indicated．Repeat for channel 1 to 7 ，in each case switching the channel nal generator to the corresponding sound carrier frequency．
3．Low Band Alignment
a．Set the channel switch to channel 6．Adjust the signal generator to the channel 6 sound carrier frequency（ 87.75 MC）．Adjust L63 high band alignment．Set the signal gener－ ator to channel 5 and switch the channel selector to channel 5 ．Tune the channel 5 oscillator tuning slug as has been shown． Repeat for channels 4 to 2 ，in each case， changing the selector switch to the correct hannel and the signal generator to the corresponding sound carrier frequency．

R－F AMPLIFIER AND CONVERTER
 ALIGNMENT

1．Set I－F bias line to－ 3 V as previously out－ lined．
（1）Set channel selector switch to channel 13. Connect sweep generator to the antenna terminals using a balanced resistor net work for those generators having an balanced output．Set the sweep ge oscillo－
to sweep channel 13．Connect the scope between the plate of the 1st video amplifier and chassis ground．The marker generator should be loosely coupled into the grid circuit of the converter stage，this can best be done，without placing a load

R－F UNIT ALIGNMENT，TYPE＂R＂
on the converter grid circuit，by connect－ ing the high side of the generator output to the R－F unit chassis and increasing the output of the marker generator until the
marker signal is visible on the response curve．
（2）Set the fine tuning control in the center of its range where it will correctly tune ator sound carrier．Set the sweep gener－ overall video response and adjust L25， overall video response and adjust L25，
L26，L51，and L52 for proper bandpass with optimum gain．The overall response figure 4 ．L25 and L26 are of R－F amplifier plate coil adjustments and the stud extensions of these cores should be kept equal．The same applies to L51 and L52 which are the secondary or converter grid coil adjustments．When channel 13 is properly adjusted channels 12 to 7 inclusive should be checked for proper overall video response．It may be necessary to compromise between chan－ nels 7 and 13 to get the response within the desired limits．

3．Low Band Alignment w Band Alignment

a．Channel 6 can now be aligned in the same manner as channel 13．Inductances s11 and L12 being the primary adjustments and L37 and L38 the secondary adjustment． Again the stud extensions of the adjust－ able cores are maintained equal．Channels 5 to 2 should now be checked for proper response，again it may be necessary to com－ promise between channels．
 ecessary to com－

號號 都

＇R＇

TABULATED ALIGNMENT
ALIGNMENT, SOUND I-F, DISCRIMINATOR

CONNECT SIG. GEN.		CONNECT SWEEP	GENERATOR FREQUENCY	CONNECT 'SCOPE	CONNECT V. T. METER	tune	FOR	COMMENTS
SOUND TAKEOFF, MIXER I. OUTPUT TRANS. (TAP)	$\mid v$		STEP (I) MAKES frequenct SAME AS TRAPS THEREFORE, TRAPS SHOULD SET	$\begin{aligned} & \text { VIOEO DET. } \\ & \text { LOAD OETS } \\ & \text { RESISTOR } \end{aligned}$		generator	$\begin{array}{\|l\|} \hline \text { MIN. } \\ \text { NEAR } \\ 21.25 \mathrm{mc} \end{array}$	$\underbrace{4}_{8} \frac{4}{4}=\frac{\sum_{2}^{2}}{2}$
2. SAME	v			GRID RESIS- TOR, LAST I-F AMP. (LIMITER)	Same as 'scope	$\begin{array}{\|l\|} \hline \text { SOUND I-F } \\ \text { TRANSFORMERS } \end{array}$	max.	
3.						$\begin{aligned} & \text { RETOUCH I-F } \\ & \text { TRANSFORMERS } \end{aligned}$	PROPER. curve	
4. Same	\checkmark	WITH GEN. AT SOUND TAKEOFF, mixER TRANS.		audio takeoff, discriminator	SAME AS 'scope	o. Detune sec. (BOT TOM) SLUE of disc. TRANS b. PRI. (TOPISLUG. c. SEC.SLUG.	max. MIN.	
USE AS MARKER, coosely COUPLE	\checkmark	same				retouch disc. trans., pri. and sec.as REQUIRED.	SYMmE GURVE marker at CENTER	

ALIGNMENT, VIDEO I-F
SET BIAS ON GRID RETURN BUS TO NEGATIVE 3 VOLTS

ALIGNMENT, R-F UNITS
if all stations tune near one end of dial, change oscillator tube or adjust fine tune drive o ADJUST BIAS LINE TO NEGATIVE TYE "S"

"ADJUST OSC OF TYPE "R" UNIT ON CH. 2 ANDT. OTHERS ShOULO FALL INTO LINE.

+ adjustment for channels 5.2 is only on type " S " unit. on others
COMPR
LIMITS.
PART V
VOLTAGES AND WAVEFORMS

INPUT 1st VIDEO AMPL. PIN 1, V14 'SCOPE AT 30 C.P.S. 2 V , P-P

INPUT OF SYNC. AMPL. PIN 1
V15B 'SCOPE AT 30 C.P.S. 14 V '
P-P

input, 2nd Video ampl. pin 5, V14 'SCOPE AT 30 C.P.S. 15 V P-P

P.P

OUTPUT OF SYNC. AMPL. PIN 80V. P-P

[^4]| | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { TuBie } \\ & \text { No. } \end{aligned}$ | $\begin{gathered} \text { TVRE } \\ \text { TYEE } \end{gathered}$ | Fugction | PIATE | | SCREEN | | Catzode | | GRD | | hotes on measurbuent
 Measurements made vith receiver operating on 117 volts 60 cycles a-c and no sigrail input. Voltages betveen indicated terminal and chasis ground except where otherwise noted. voltage and current readings are nominal values. |
| | | | $\frac{\overline{\mathrm{PRIR}}}{\mathrm{PO}}$ | voits | $\begin{aligned} & \text { PIT } \\ & \text { no. } \end{aligned}$ | voits | $\begin{aligned} & \text { PIVIT } \\ & \text { No. } \end{aligned}$ | voits | $\begin{aligned} & \begin{array}{l} \text { PINT } \\ \text { mox. } \end{array} \end{aligned}$ | volts | |
| 4 | 6846 | $\underset{\mathrm{I}-\mathrm{F}}{\text { lst Sound }}$ | 5 | 100 | 6 | 100 | 7 | . 6 | 1 | . 0 | |
| 5 | 6896 | $\begin{aligned} & \text { 2nd Sound } \\ & \mathrm{I}-\mathrm{F} \end{aligned}$ | 5 | 120 | 6 | 105 | 7 | . 8 | 1 | -. 2 | |
| 6 | 6av6 | 3rd Sound | 5 | 43 | 6 | 43 | 7 | 0 | 1 | -. 3 | |
| 7 | 6aL5 | A-F Disc | $\begin{aligned} & 7 \\ & 2 \end{aligned}$ | -. 5 | | | 1 5 | 0 | | | |
| 8 | 6AC5 | 1st Video | 5 | 125 | 6 | 120 | 7 | . 4 | 1 | $\begin{aligned} & -1.7 \mathrm{to} \\ & -4.4 \end{aligned}$ | Variation with threshold control |
| 9 | 6465 | 2nd Video | 5 | 125 | 6 | 120 | 7 | . 4 | 1 | $\begin{aligned} & -2.2 \mathrm{t} \\ & -4.4 \end{aligned}$ | variation with threshold control |
| 10 | $6 \mathrm{Ac5}$ | $\begin{aligned} & \text { 3rd Video } \\ & \text { I-F } \end{aligned}$ | 5 | 110 | 6 | 120 | 7 | . 4 | 1 | $\begin{aligned} & -2.8 \mathrm{to} \\ & -4.4 \end{aligned}$ | Veriation with threghold control |
| 11 | 64.5 | 4 th Video | 5 | 100 | 6 | 140 | 7 | 1.2 | 1 | - | |
| 12A | 6smer | $\begin{array}{\|l\|} \text { 1st Video } \\ \text { Ampl. } \end{array}$ | 2 | -25 | | | 3 | -100 | 1 | -100 | |
| 13 | 6v6GT | 2nd Video
 Ampl. | 3 | 190 | 4 | 200 | 8 | $\begin{aligned} & 0 \text { to } 0 \\ & 3.6 \end{aligned}$ | 5 | -25 | variation with threshold control |
| 128 | 6snmer | $\begin{gathered} \text { 18t syncc } \\ \text { Ampl. } \end{gathered}$ | 5 | 88 | | | 6 | -16 | 4 | -23 | |
| 14 | 16AP4 | Pix. Tube(ChasisSacket) | Stell | 13.3 kV | 3 | 360 | 4 | $\begin{aligned} & 45 \text { to } \\ & 100^{2} \end{aligned}$ | | | Variation with brightness control |
| | | | | | | | | | 5 | $\begin{aligned} & 0 \text { to } \\ & -23 \\ & \hline \end{aligned}$ | Variation with contrast control |
| | | $\begin{aligned} & \text { Pix. Tube } \\ & \text { (Tube Sock) } \end{aligned}$ | Shell | 13.3ky | 10 | 360 | 11 | ${ }_{110}^{45} \text { to }$ | | | Variation with brightness control |
| | | | | | | | | | 2 | $\begin{aligned} & 0 \text { to } \\ & 23 \end{aligned}$ | Variation with contrast control |
| 15 A | 6smior | AOC Rect. | 5 | 86 | | | 6 | -14 | 4 | -23 | |
| 16A | 6sinior | AOC Ampl. | 5 | $\begin{aligned} & -4 \text { to } \\ & -18 \end{aligned}$ | | | 6 | -49 | 4 | -49 | variation with threebold control |
| 198 | Gsinger | $\begin{array}{\|c} \begin{array}{c} \text { 2nd sync } \\ \text { Amplopl. } \end{array} \\ \hline \end{array}$ | 2 | 91 | | | 3 | 1.2 | 1 | $\begin{aligned} & -6 \text { to } \\ & -1.9 \end{aligned}$ | Variation with threehold control |
| 17A | 6smet | Sync.levele | 5 | $\begin{aligned} & -34 \text { to } \\ & -67 \end{aligned}$ | | | 6 | gnd | 4 | $\begin{aligned} & \text { tied to } \\ & \text { plate } \end{aligned}$ | Variation with threshold control |
| 178 | 6singer | Sync.elippey | 2 | 200 | | | 3 | 1.5 | 1 | $\begin{aligned} & -34 \text { to } \\ & -67 \end{aligned}$ | Variation with threshold control |
| 168 | $68 \mathrm{~m} / \mathrm{c}$ | Vert.0sc. | 2 | $\frac{28-115}{-34-160}$ | | | 3 | -100 | 1 | -150 | Variation with vertical speed control Variation with beight control |
| 18 | 6v6er | Vert.Out. | 3 | 190 | 4 | 190 | 8 | -72 | 5 | -86 | |
| 19A | Gstrat | Hor.A.F.c. | 2 | 15-50 | | | 3 | $\begin{aligned} & -70 \text { to } \\ & -81 \end{aligned}$ | 1 | $\begin{aligned} & -66 \text { to } \\ & -76 \end{aligned}$ | Variation with horizontal hold control |
| 198 | 6SNTGT | нor. Osc. | 5 | 90 | | | 6 | -100 | 4 | -160 | |
| 21 | 68c6G | Hor. Out. | cap | 375 | 8 | 200 | 3 | -87 | 5 | -117 | |
| 22 | 6B66 | Hor. Out. | cap | 375 | 8 | 200 | 3 | -87 | 5 | -117 | V22 used only on chasesis 244,245 and 246 |
| 23 | 183GT | g.v. Rect. | cap | 6.8kv | | | 2-7 | 7.5 NV | | | Measured with electrostatic voltmeter |
| 24 | ${ }^{183} 3 \mathrm{CT}$ | \#.v.Rect. | cap | Pulse | | | 2-7 | 14.7nv | | | Measured with electrostatic voltmeter |
| 25 | ${ }^{6} \mathrm{WH} 4 \mathrm{CT}$ | Damper | 5 | 280 | | | 3 | 380 | | | |
| 26 | 5046 | Rectifier | 4.6 | 375 Ac | | | 2-8 | 295 | | | |
| 27 | 5046 | Rectifier | 4-6 | 375 Ac | | | 2-8 | 295 | | | |

©John F. Rider

TABLE OF CONTENTS

PART I

DESCRIPTION AND SPECIFICATIONS
Description Page
Tube Complement 15
General Description 15
15
16
Layout Diagrams 16
.16
Receiver Operating Instructions 16
16

PART II

PARTS IDENTIFICATION

Top View of CT 247-249 Chassis. .. 17
Bottom View of CT 247-249 Chassis.
Bottom View of the Chassis. 18
PART III

TECHNICAL SPECIFICATIONS

Chassis Differences 18
.18
-F Ampli 18
18
Detector 18
.19
.19
Video Amplifier 19
Sync Circuits 19
19Vertical Deflection
19
.19
Automatic Gain Control 19
Horizontal Deflection 19
PART IVPRELIMINARY ADJUSTMENTS
Setting Up for Operation. 19
20
PART V
ALIGNMENT

Video I-F Alignment.20R-F Unit, Oscillator Alignment20
R-F Unit, Antenna, R-F Amplifier and Converter Alignment 21
PART VI
VOLTAGE CHARTS, WIRING DIAGRAMS AND PARTS LISTVoltage Chart, with No Signal Input22
23
R-F Unit Wiring Diagram23
.22
CT 247-249 Main Chassis Wiring Diagram22
24
25
CT 248 Main Chassis Wiring Diagram
Parts List24
2326

PART I DESCRIPTION

Magnavox Television chassis number CT 247, 248 and 249 are direct view chassis with self contained power supplies. All include an intercarrier I-F system. Their differences are outlined in Part III of this manual.

The advanced design of these receivers provides equivalent or better performance comparing to any existing television receiver regardless of the tube complements involved. Technical features include :

- Direct-coupled video amplifier, which eliminates the need for D-C reinsertion and provides better noise immunity.
- Intercarrier I-F amplifiers for ease of alignment, simplified tuning, increased stability, reduced phase discrepancies, and freedom from the effect of oscillator drift.
- Discriminator-type horizontal automatic frequency control.
- Ratio-detector type sound detector.
- Cathode modulation of the picture tube
- Minimum number of operating controls.
- MAGNALOK horizontal AFC circuit. Frequency control is accomplished by comparing the sine wave oscillator frequency with the sync pulses. The result is applied to a reactance tube, which in turn controls the oscillator frequency.

TUBE COMPLEMENT

${ }^{\text {a R -F Amplifier .6AK5 }}$	12AU7	. AGC Det. and Pre Sync Sep.
	12 AU 7.	. AGC Ampl. and Sync Ampl.
Oscillator 6AB4	6AN7GT	Vert. Sync Clipper and Multi-Vib.
I-F Amplifier . 6AG5	6SN7GT.	Vert. Sync. Clipper and Multi-Vib.
I-F Amplifier . 6AG5	$6 \mathrm{AL5}$.	AFC Detector
I-F Amplifier .6AG5	6AU6.	AFC Reactance
Video Det. and Sync Leveler 6AL5	6SN7GT.	Hor. Sine Wave Osc. and Disch.
Video Amplifier .6AU6	6BG6G.	Hor. Output
Sound I-F Amplifier 6 . ${ }^{\text {AU6 } 6}$	6W4GT	Damper
Ratio Detector6AL5	1B3GT	H. V. Rectifier
${ }^{\text {c-d }}$ 1st Audio Ampl. and AGC Clamp..........6AV6	5U4G.	L. V. Rectifier
${ }^{\text {d A Audio Output .6K6GT/G }}$	${ }^{\text {e } 12 L P 4 ~}$	Picture Tube
	${ }^{1} 12 \mathrm{KP} 4$	Picture Tube

Note A 6AK5 used in early models only. 6BC5 used in later models may not be used as replacement for
6 AK 5 .
Note B 6AGs used in early models only. 6BC5 used in
Note C 6 C 4 used in C-r-248 as AGC clamp
Note D 6AV6 and 6K6GT/G not used in CT-248
Note E Used in CT-247 chassis only.
Note F Used in CT-248 and CT-249 chassis.

GENERAL DESCRIPTION

300 Ohm -Antenna Input

IMPEDANCE.

POWER
SIZE.

PART II
PARTS IDENTIFICATION

TOP VIEW OF CT 247-CT 249 CHASSIS

©John F. Rider
is approximately 25 db down on the curve, and the video carrier is 6 db down on the curve

DETECTOR

The detector operates in the conventional manner, and also detects the 4.5 Mc . beat between the video I-F and sound I-F carriers. As these carriers result from crystal controlled carrier frequencies at the television transmitter, their resultant 4.5 Mc . beat is much mo:e stable than if it were produced by beating the sound carrier with a local oscillator

VIDEO AMPLIFIER

The video amplifier is direct coupled, and elimin tes the necessity for DC reinsertion. As the output from the detector is negative, noisc pulses drive the video amplifier tube beyond cut-off, so it also acts as a noise limiter. The output from the amplifier is in a positive direction, so the signal is applied to t'ae picture tube cathode. This is identical to grid modulation with a negative signal. The DC bias on the picture tube governs the brightness of the tube, and is adusted by the PICTURE CONTROL.

SYNC CIRCUITS

The Pre Sync Separator provides a boost of vertical pulses, and the triode section of the AGC Detector provides a boost of horizontal pulses. The combined output from these stages is amplified by the Sync Amplifier, held at a predetermined level by the Sync Leveler, and the desired pulses are accepted by the Sync Clipper.

VERTICAL DEFLECTION

The vertical pulses are separated by the integrating network, and used to synchronize the Vertical Multivibrator and Output stages, which provides the necessary vertical deflection

AUTOMATIC GAIN CONTROL

A rectified DC voltage is taken from the cathode of the AGC Detector, amplified by the AGC Amplifier, and used to bias the first and second I-F amplifiers and the R-F amplifier. The operating range of this bias is controlled by the AGC SET CONTROL.

AUTOMATIC FREQUENCY CONTROL

When "free running." the Horiznntal Sine Wave Oscillator operates at a frequency approximately correct for horizontal scanning. The sine wave is applied through T105, to the plates of the AFC Detector 180° out of phase. The horizontal sync pulses are applied to the center tap of the plate winding of the transformer, and appear at the plates of the AFC Detector in phase. When the oscillator operates in synchronism with the transmitter, the pulses appear on the sine waves as one plate goes through zero voltage in the negative direction, and as the other plate goes through zero voltage in a positive direction. Because the sync pulses appear when both plates are at zero voltage, there is no change in the
operation of the circuit. However, if the oscillator changes in frequency, the sync pulses at the detector plates do not appear when the oscillator voltage is zero, but at a point on each sine wave either before or after it goes through zero. As the sine wave on one plate is of opposite polarity from the other, and as the sync pulse on one plate is of the same polarity as the other, the sync pulse will add to the sine wave that is positive, and subtract from the one that is negative. This condition will produce a voltage unbalance in the cathode circuit of the AFC Detector. This voltage is applied to the grid of the Horizontal Reactance tube, thereby controlling the variable reactance in shunt with the horizontal oscillator tank circuit. This causes the Horizontal Sine Wave Oscillator to change frequency in such a direction so as to come back into exact synchronism.

$$
\begin{aligned}
& \text { PLATE I PLATE } 2 \\
& \text { OSCILATOR SINE WAVE IN PHASE WITH STMC PuLSE }
\end{aligned}
$$

HORIZONTAL DEFLECTION

The horizontal sine wave oscillator has in its plate circuit an inductance that is shock excited. This inductance is damped so that its natural frequency of oscillation is damped out in considerably less than one horizontal line. The initial positive excursion is applied to the grid of the discharge tube. This tube then draws heavy current for a very short period. The plate potential decays very abruptly. Because of The plate potential decays very abruptly. Because of
the peaking resistor in its plate circuit, the discharge the peaking resistor in its plate circuit, the discharge condenser does not discharge as much as the plate
potential decays. When the tube stops drawing current, its plate potential returns to the potential of the discharge condenser. This condenser then proceeds to charge at the rate determined by the circuit time constant. This saw-tooth wave, with its peaking, is then applied to the horizontal output grid.

SOUND

As previously mentioned, the Video Detector produces, in addition to its conventional function, a 4.5 mc . beat between the sound I-F and the video I-F carriers. This is amplified by the video amplifier and removed from its plate circuit by T108. It is again amplified by the Sound I-F, and its audio component removed by the Ratio Detector, which is essentially immune to amplitude modulation. The resultant audio frequencies are applied to the 1st Audio Amplifier in the CT-247 and CT-249, or to the audio amplifier of the associated radio receiver for the CT-248. The Audio Output stage of CT-247
and CT-249 is a conventional power pentode, operat-
ing into an output transformer and speaker.

PART IV

PRELIMINARY ADJUSTMENTS

The CT-247, CT-248 and CT-249 television instruments are shipped completely assembled, with the picture tube installed. All that is necessary for installation is the proper location, adjustment of the various controls, and removal of the back cover for adjustment of the ion trap on the 12LP4 (the 12 KP 4 requires none) and adjustment of the cabinet antenna. A check should be made that all tubes are properly seated, and the red shipping bracket removed from the focus coil and deflection yoke assembly.

The safety glass, mask, filter and frame constitute an assembly, which is easily removed for access to the picture tube by removal of the two angle brackets above the control panel.
The chassis is held in the cabinet by six mounting screws through the bottom.

SETTING UP FOR OPERATION

(a) Tune in a television station and adjust the fine tuning control for best picture quality. At this point, tuning should be for the best detail or clearest picture. It is possible to tune for maximum audio output, but such an adjustment is incorrect for this type of receiver.
(b) Adjust the AGC Set Control on the rear panel and the Picture Control on the front panel alternately for proper contrast. A standard test pattern is necessary for this adjustment in order to observe correctly the various degrees of black, grey, and white. It is also necessary to switch to all available channels in order to arrive at a good average contrast. Once set, only the front panel control need be sed.
(c) If horizontal linearity is unsatisfactory, turn the Horizontal Drive Control as far as possible without causing crowding of the right side of the picture. This position provides maximum high voltage to the picture tube. Too much drive will cause a bright vertical line about $1 / 3$ from the left side of the raster. Then adjust the Horizontal Linearity Ccil to improve linearity.
(d) Height and Vertical Linearity Adjustment Adjust the Height Control until the picture just fills the mask vertically. Adjust the Vertical Linearity Control until the test pattern is symmetrical from top to bottom. Adjustment of either control will require readjustment of the other.
(e) Rotate the Vertical Hold Control, located on the rear panel, until the picture slowly moves in a downward direction (A). Then reverse the rotation of the control slowly until the picture falls into sync (direction B). Switch off channel and then switch back on the channel. The picture should fall into sync immediately. It is possible that the picture may pull into sync slowly. If this occurs, rotate the Vertical Hold Control a bit more in direction (B) noted above. Switching from channel to channel should now produce immediate vertical synchronism.
(f) Functions of the Sound, Focus, and Horizontal Centering controls are conventional. Vertical centering is accomplished by tilting the focus coil Earlier models had no Width Control, but it was later added, inside the high voltage compartment. It should be adjusted so that the picture just fills the mask horizontally
(g) Horizontal Hold Adjustment. If the receiver does not snap into horizontal sync immediately on being switched to a picture channel, but instead it slowly pulls in as indicated by diagonal blanking bars which slowly reduce in frequency until the picture snaps into synchronism, the following adjustment should be made. Remove the horizontal AFC Discriminator tube (type 6AL5, V108) and adjust the Horizontal Hold Control until the picture slowly moves back and forth with the blanking bar vertical. Now replace the horizontal AFC Discriminator tube The picture should then fall into horizontal sync immediately on switching from channel to channel.
(h) Horizontal Phasing. If step G does not provide immediate horizontal synchronism, it is possible that the horizontal phasing is incorrect. The bottom jurer must be removed from the cabinet for thi zontal AFC and oscillator transformer, front of transformer, until there is $1 / 4$ inch of blanking visible on the right hand edge of the picture. This adjustment is located inside the chassis, at the opposite end of the coil from the Horizontal Hold Control.

CHASSIS CT 247,
CT 248, CT 249 ,

If the adustment (H) resulted in any great adjust ment of the phasing core, repeat the procedure cov ered in (g)
(i) Cabinet Antenna Adjustment. An indoor an tenna is built into the television cabinet for use in areas where receiving conditions are favorable. In some models the antenna is rotatable, and has a switch on the back cover. On some stations, reception will be better with the switch in one position, and on others it will be better in the other position, due to the direction of the television stations from the receiver.
The antenna can be rotated by the serviceman and should be set for best all around performance. The switch provides a shift in the main pickup lobe of as much as 30° on some channels, and is the only an tenna adjustment to be used by the customer. The serviceman should so orient the antenna so that with one switch position or the other, all signals are received with maximum clarity. The customer should then be instructed, for example, to have the switch pushed to the left for channel 2,7 and 9 , and to the right for 5 and 11 , or whatever the case may be.
The suggested procedure for antenna adjustment is as follows:

1. Tune in a station and rotate the antenna through 360° for maximum signal and minimum ghosts
2. Snap the antenna switch and re-orient the an tenna through 360° for best picture. Compare th results of each of these tests and make a mental note of antenna position and switch positions for bes performance.
3. Repeat these tests for each of the other channels, making note of the antenna and switch positions for best results on each channel.
4. The final position for the antenna shall be that compromise which receives the majority of stations with best picture. regardless of switch position. The customer then can change the switch for various channels in order to get the best possible picture.
In other models, the cabinet antenna consists of a fixed antenna in the top of the cabinet and a powe
line antenna. The fixed portion is primarily designed for use on high channels, and the power line anten is for low channels. However they may be used separately or together, depending on local conditions Each should be tried on all available chanels, and that antenna or combination siving best resuls should be selected should be selected.
5. Connect the power line antenna lead (the grey wire extending from the rear of the chassis) to firs one and then the other terminal on the antenna ter minal board, tune for all local stations, and not which gives the better result
6. Remove the power line antenna lead from the terminal board, connect the cabinet antenna lead to first one and then the other antenna terminal, tune for all stations, and note the results.
7. Connect the power line antenna and the cabine antenna leads to the terminal board, tune for al

PICTURE TUBE REPLACEMENT

Should it become necessary to replace the picture tube, it should be done in the following manner. Re move the chassis from the cabinet. Then remove the tube socket and the ion trap from the rear of the tube. Loosen the lock nut that secures the support strap over the bell of the tube, and loosen the clamp ing screw. Remove the high voltage anode connec tor. Remove the tube supports at the bottom front of the tube, and lift out the tube.
Replace with another tube. Replace the tube sup ports at the bottom front of the tube. Loosen the wing nuts on the yoke mounting bracket and push this assembly as far forward on the picture tube as possible. The end result should have the tube up against the bottom front tube supports, the yok against the bell of the tube, the grounding spring on the yoke assembly making contact with th grounding coating on the picture tube, and the neck of the tube parallel to the deck of the chassis. The wing nuts should now be tightened, as should the tube clamp. Replace the chassis in the cabinet.

PART V ALIGNMENT
 I-F ALIGNMENT

TEST EQUIPMENT

For proper television alignment, it is recommended that the following test equipment be available

1. R-F Sweep Generator meeting the following
a. Frequency range

18 to 30 Mc .
40 to 90 Mc .
170 to 225 Mc .
b. Sweep width adjustable from 1 to 12 Mc
c. Output at least 1 volt maximum
2. Cathode Ray Oscilloscope-wide band vertical eflection
3. Electronic Voltmeter with high voltage probe
4. 500 K potentiometer with clip leads
5. Signal generator to cover the following fre quency ranges
I-F range from 19.75 Mc . to 27.75 Mc .
R-F range from 45.25 Mc to 215.75 Mc

Channel No.	Band Width (Mc.)	Picture Carrier	Sound Carrier	Local Oscillator
2	$54-60$	55.25	59.75	81
3	$60-66$	61.25	65.75	87
4	$66-72$	67.25	71.75	93
5	$76-82$	77.25	81.75	103
6	$82-88$	83.25	87.75	109
7	$174-180$	175.25	179.75	201
7	$180-186$	181.25	185.75	207
8	$186-192$	187.25	191.75	213
9	186			
10	$192-198$	193.25	197.75	219
11	$198-204$	199.25	203.75	225

10\% TILT NOMINAL

VIDEO I-F ALIGNMENT

For proper alignment, the bias on the first and second 1-F grids must be maintained at - 4 volts. This may be accomplished by either of two approved methods.
(a) A battery with a potentiometer across it may be connected from the grid return of either tube to ground, and adjusted to - 4 volts.
(b) A potentiometer of 500 K ohms may be connected across the AGC amplifier tube V121 from plate (pin 6) to cathode (pin 8), and adjusted to give a -4 volt reading at the I-F grid return

A convenient method for injection of the signals necessary for alignment is to place a tight-fitting ungrounded tube shield over the converter tube (middle tube on the R-F Unit), and connect the signal generator or sweep generator to it.

1. Connect oscilloscope to the high side of the detector load resistor R-109, 3300 ohms (junction of R-109 and L-102), and to chassis ground. A 10 K resistor in series with the scope probe will
prevent radiation and feedback.
2. Tune the converter plate transformer for maximum at $22 . i 5 \mathrm{Mc}$., using a modulated signal.
3. Tune the first I-F transformer T-101 for maximum at 23.4 Mc .
4. Tune the second I-F transformer T-102 for maximum at 25.2 Mc .
5. Tune the third I-F transformer T-103 for maxi-
6. Remove the I-F signal generator and tube shield and connect the R-F Sweep Generato to the antenna terminals
7. Set the receiver and R-F Sweep Generator to a high channel, because those are more broad and flat topped.
8. The I-F transformers can now be retouched if necessary in order to obtain a standard re sponse curve, with the picture carrier at 50 'r of maximum response, and the 3 Mc . marke (22.75 Mc .) also at 50%.
The converter coil will correct the low fre quency side, as will T-103 correct the high frequency side when necessary. Proper position ing of the markers on the response curve is important since no traps are used. T-101 wil control the tilt of the response curve.
9. All twelve channels should be checked for alignment. The nominal curve shall have a tilt of $10 ;$; with respect to the base line of sweep. The low limit of tilt is shown in the above curve

SOUND I-F ALIGNMENT

Test equipment required
4.5 Mc. Signal Generator, A-M Modulated
4.5 Mc. Sweep Generator

Oscilloscope
VTVM (Voltohmist type)
Crystal Detector (Assembly diagram shown below) Tapped Resistor and Clip Assembly (two $22,000 \mathrm{ohm}$
$5 \% / \%$ resistors in series with a clip lead at each end) 1. Connect the signal generator to pin 1 of V-104 and chassis, and set frequency at 4.5 Mc .
2. Connect XTAL detector to the kinescope end of L-105 and chassis. Connect Scope or VTVM across output of XTAL detector. Adjust bot tom 108 for minimum respons
3. Clip tapped resistor from pin 7 of V-114 to
chassis. Connect VTVM minus lead to the echassis. Connect VTM minus lead to the reand R-150. Align slugs top of T-108 and bottom of T-109 for maximum response.
4. Adjust top slug of T-109 for approximately for $^{1 / 2}$ volt, then readjust bottom slug of $\mathrm{T}-109$ for maximum reading
5. Adjust top slug of T-109 for zero
6. Remove signal generator and apply sweep generator to pin 1 of $\mathrm{V}-104$ and ground. Re-
move tapped resistor and connect scope to move tapped resistor and connect scope to

OSCILLATOR ALIGNMENT

The criteria of proper oscillator alignment is that the combination of the assigned video carrier and the local oscillator produce a signal that falls at
25.75 Mc . marker point on the overall I-F curve.
Adjustment should be made only when the fine tuning control tunes in the extreme clockwise or counterclockwise position from its center, or if it will not tune at all within its tuning range. Such a condition may be brought about by changes in the inductance of the oscillator coils or changes in the circuit capacitance which might occur when the oscil-

The oscillator coils are tunable by means of slugadjustments, accessible from the front of the chassis. Alignment of one does not appreciably effect the tuning of the other coils
Alignment may be accomplished by two approved methods. By the first, a video carfier frequency is coupled to the antenna, which produces an I-F signal, and another I-F signal is coupled to the first I-F tube. If the oscillator is properly aligned, the two will produce a zero beat visible at the video detector. By the second method, television signals are tuned

in, and the oscillator coil for each channel is adjusted so tuning occurs at mid-range of the tuning control The detailed procedures follow
FIRST METHOD

Remove the 1st I-F tube
(1) Connect an oscilloscope across the video de tector load resistor
(2) Loosely couple an unmodulated signal to th first I-F, and set the frequency at 25.75 Mc
(3) Connect another signal generator to the an tenna leads, and tune it to the video carrier frequency of the channel to be aligned. Rotate the channel se lector to the correct position. Rotate the fine tuning control until a zero beat is noticed. If the zero beat does not occur at the mid-range of the fine tuning control, adjust the oscillator tuning slug for that channel.

SECOND METHOD

(1) Connect the television antenna to the antenna terminals of the receiver.
(2) Tune in the signal on all available channels If the best picture does not occur at mid-range of the fhannel.
chanin
and

OSCILLATOR ALIGNMENT

The oscillator coils in this R-F unit are all tunable cy slug adjustments. The order of alignment is from
ment is necessary to correct any detuning caused by the capacity change due to slug adjustments of adjacent coils.

1. Set the sweep generator and channel switch to No. 6 channel. Adjust as outlined in instrucions for untuned input tuner
2. Proceed through channels $5-2$ in the same manner.
3. Align channels 13-7.
4. Proceed as above through channels $6-2$ and 13-7, and retouch if necessary

ANTENNA, R-F AMPLIFIER AND CONVERTER ALIGNMENT

There are three variables which will give the desired pattern. If the antenna coil (wafer nearest the ear of the tuner) is first expanded, then the grid coil and finally the plate coil is expanded, the proper pattern will appear. These coils must be very carefully adjusted with only slight movement, particularly the plate coil. The final pattern is obtained by working back and forth between these three coils.

1. Remove the AGC rectifier-amplifier tube and connect bias control.
2. Connect sweep generator to antenna terminals, using a balanced resistor network if generator to terminal provided on the tuner.
3. Set the sweep generator and channel switch to No. 13 channel. If the coils are very badly aligned, the pattern on the scope will probably
be either of these:

The meaning of " A " is that some coils must be opened up. The meaning of " M " is that some coils should be closed or squeezed together.
4. When they are far off from their proper tuning, all three coil circuits have their main affect on pattern height, so tune for increasing height of the pattern.
5. As a coil is changed, one side of the picture will get higher and then a hump will start to move across the screen.

If the first pattern was like "A", the next will be " B " and then " C as the coil is opened. If "He first pattern was like " M ", the next will be " N " and then " O " as the coil is closed. When the hump, due to the tuning of that coil, is between the markers, it indicates that this coil is
very close to where it should be. So leave it and mmediately go to another coil
. The side of the picture which is higher indicates what to do to the next coil. In " C ", the left hand side is higher, which indicates tha said coil should be opened. In " O ", the right side is higher, indicating that said coil should should be then obtained.

The fact that there are now two humps in the pattern shows that both converter wafer and height is near what it should be with the scope settings unchanged, the antenna wafer is nea correct. It should be adjusted a bit to see if pattern height improves.
When all three coils are nearly tuned, the an tenna wafer controls the tilt, the RF wafer con wafer controls the right hand hump converter them for a perfect flat pattern on chanel 13 as below.

8. Proceeding through channels $12,11,10$, etc., the pattern will change slightly as shown below, hump too far left, or (3) hump too far right.

For right tilt as in " F ", press down the loop on the antenna wafer. For left tilt as in " G " pull up the loops on the antenna wafer. For hump to left as in " H ", push down on the loop on the R-F wafer. For hump to right as in "I use ii iin and scicwitiver and puii out chann
12 or channel 7 loops on converter wafer.
9. Combinations of detuning also occur.

In these cases two wafers must be adjus In these cases, two wafers must be adjusted to R-F wafer must be adjusted to bring in the hump and antenna wafer to correct the tilt. In

© John F. Rider

a case like " Q ", the converter wafer should be adjusted to bring in the hump and the antenna wafer to correct the tilt. In combination cases the other two must be adjusted, always adjust the antenna wafer for tilt correction after all adjustments have been made on the other two wafers.
10. It is best to prevent the left hump from going so far to the left that it cannot be brought back or the tilt to become so pad that it cannot be tained on each successive channel, then prope adjustment of the next one will always be within its range.
11. When both coils are near to proper tuning, a slight adjustment of either R-F or converter tilt, and the humps right on the markers; but only the correct coil will give this correct pattern shape plus best pattern height.

When the pattern is like " S " on a low band, opening a coil on either wafer will move the pattern to the right, but try both slightly and which causes the pattern to become higher as it moves toward the right.

The pattern on all channels
is approximately as shown

PART VI

CT 247, 248, 249 VOLTAGE CHART NO SIGNAL INPUT

Measurements made with receiver operating on 117 volts. 60 cycles AC. with "Voltohmist" type VTVM, between indicated

Tube	Tube	Function	Plate		Screen		Cathode		Grid		Notes
			$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	
1	6AK5	RF Ampl.	5	125	6	115	2.7	0	1	-. 25	*1
2	6AG5	Mixer	5	185	6	107	2-7	0	1	-1.6	*2
3	6AB4	Oscillator	1	185			7	2	6	-4.3	*2
101	6AG5	1st IF Ampl.	5	124	6	124	7	. 15	1	-. 7	
102	6AG5	2nd IF Ampl.	5	123	6	123	7	. 55	1	-. 7	
103	6AG5	3rd IF Ampl.	5	122	6	122	7	1.25	1	0	
119A	6AL5	Video Det.	7	-105			1	-105			
104	6AU6	Video Ampl.	5	-37	6	34	7	-105	1	-105	*3
105	12L(K)P4	Kinescope	x	9.0 KV	10	235	11	-37	2	$\begin{array}{r} 0 \text { to } \\ -105 \end{array}$	${ }^{4}$
106A	12AU7	AGC Det.	1	226			3	-14	2	-37	*5
121A	12AU7	AGC Ampl.	6	-3.6			8	-51	7	-73	
106B	12AU7	Pre Sync Sep.	6	221			8	-13.7	7	-37	*5
121 B	12AU7	Sync Ampl.	1	100			3	1.9	2	0	
119B	6AL5	Sync Lev.	2	-26			5	0			
107B	6SN7	Sync Clip.	2	234			3	-18.5	1	-24	
107A	6SN7	Vert. MV.	5	15			6	-105	4	-130	
120	6K6	Vert. MV. \& Output	3	218	4	218	8	-64	5	-84	
108	6AL5	AFC Det.	2\&7	-19.5			1-5	0			
109	6AU6	Reactance	5	240	6	124	7	2.6	1	0	*6
117A	6SN7	Horiz. Osc.	2	222			3	. 1	1	-14	
117B	6SN7	Horiz. Disch.	5	109			6	-109	4	-143	
110	6BG6	Horiz. Output	x	do not meas.	8	168	3	-96	5	-125	${ }^{7}$
111	6W4	Damper	5	do not meas.			3	390			*7
113	6AU6	Sound IF	5	124	6	124	7	-1.2	1	0	
114	6AL5	Ratio Det.	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\text { -. } 8$			$\begin{aligned} & 1 \\ & 5 \end{aligned}$	-. 0			
115	6AV6	1st Audio	7	-97			2	0	1	-. 6	*8
116	6K6	Audio Output	3	180	4	210	8	-80	5	-100	*
115	6 C 4	AGC Clamp	5	. 3			7	0	6	. 3	*9
118	5U4	Rectifier	6-4	$\begin{array}{r} 385 \\ \text { RMS } \\ \hline \end{array}$			2-8	290			*10

Note ${ }^{*}$ All voltages vary with AGC.
Note ${ }^{*}$ A 2 All voltages vary with selector switch setting
Note *3 Plate voltage varies with different tubes.
Note *4 Bias varies with picture control setting.
Note *5 Cathode varies with different video amplifier tubes.
Note *6 Cathode varies with horizontal oscillator tuning.
Note *7 Do not measure Horiz. Output plate or Damper plate with VTVM. Pulses cause grid rectification in meter so Note *8 Used only in CT 248 and 249
Note *9 Used only in CT 248
Note *10 AC plate voltage measured from - 100 volt tap.

TYPE "S" R-F UNIT, CT 247-248-249

CT 247, 248, 249 VOLTAGE CHART NORMAL SIGNAL INPUT

Measurements made with receiver operating on 117 volts, 60 cycles AC, with "Voltohmist" type VTVM, between indicated
terminal and chassis ground, unless otherwise noted. terminal and chassis ground, unless otherwise noted.

Tube	TubeType	Function	Plate		Screen		Cathode		Grid		Note
			$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	
1	6AK5	RF Ampl.	5	125	6	115	2-7	0	1	-9.3	*1
2	6AG5	Mixer	5	190	6	115	2-7	0	1	-1.6	*2
3	6AB4	Oscillator	1	190			7	2.6	6	-4.4	*2
101	6AG5	1st IF Ampl.	5	170	6	170	7	0	1	-5.3	
102	6AG5	2nd IF Ampl.	5	169	6	169	7	0	1	-5.3	
103	6AG5	3rd IF Ampl.	5	168	6	168	7	1.7	1	0	
119A	6ALS	Video Det.	7	-91			1	-90			
104	6AU6	Video Ampl.	5	-5	6	63	7	-90	1	-90	*3
105	12L(K) P4	Kinescope	x	9.0 KV	10	274	11	-5	2	$\begin{aligned} & 10 \text { to } \\ & -90 \end{aligned}$	*4
106A	12AU7	AGC Det.	1	259			3	41	2	-4.4	* 5
121 A	12AU7	AGC Ampl.	6	-27.5			8	-45	7	-45	
106B	12AU7	Pre Sync Sep.	6	250			8	40	7	-4.4	*
121 B	12AU7	Sync Ampl.	1	130			3	1.95	2	-2.8	
119B	6AL5	Sync Lev.	2	-83			5	0			
107B	6SN7	Sync Clip.	2	273			3	-40	1	-84	
107A	6.SN7	Vert. MV.	5	36			6	-90	4	-115	
120	6K6	Vert. MV. \& Output	3	230	4	230	8	-60	5	-90	
108	6ALS	AFC Det.	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 28.4 \end{aligned}$			$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{array}{r} .15 \\ 0 \end{array}$			
109	6AU6	Reactance	5	267	6	170	7	3.8	1	-. 1	*6
117A	6SN7	Horiz. Osc.	2	252			3	. 1	1	-16.5	
117B	6SN7	Horiz. Disch.	5	133			6	-90	4	-130	
110	6BG6	Horiz. Output	x	do not meas	8	190	3	-80	5	-105	*7
111	6W4	Damper	5	do not meas.			3	420			*7
113	6AU6	Sound IF	5	170	6	170	7	1.65	1	0	
114	6AL5	Ratio Det.	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{array}{r} -1 \\ -1.9 \\ \hline \end{array}$			$\begin{aligned} & 1 \\ & 5 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.1 \\ 0 \end{array}$			
115	6AV6	1st Audio	7	-93			2	0	1	-. 6	*8
116	6K6	Audio Output	3	195	4	225	8	-68	5	-90	*8
115	6C4	AGC Clamp	5	-6. 5			7	0	6	-6.5	*
118	5U4	Rectifier	6-4	$\begin{array}{r} 385 \\ \text { RMS } \end{array}$			2-8	290			*10

Note *1 All voltages vary with AGC.
Note All voltages vary with selector switch setting.
Note *4 Bate voltage varies with different tubes.
Note *5 Cathode varies with different video amplifier tubes.
$\begin{array}{lll}\text { Note *6 } & \text { Cathode varies with horizontal oscillator tuning. } \\ \text { Note *7 } & \text { Do not measure Horiz }\end{array}$
Note *7 $\begin{aligned} & \text { Do not measure Horiz. Output plate or Damper plate with VTVM. Pulses cause grid rectification in meter so } \\ & \text { reading is meaningless. Pulses may damage meter. }\end{aligned}$ Note *8 Used only in CT 248 and 249.
Note *9 Used only in CT 248
Note *10 AC plate voltage measured from -100 volt tap.

PARTS LIST

$\begin{aligned} & \text { Ref. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { Ref. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	DESCRIPTION
T 101	360461-1	Transformer, 1st video I-F	C 135	250201-1	Capacitor, paper, . 00
T 102	360461-1	Transformer, 2nd video I-F	C 133	250088-46	Capacitor, ceramic, 1000 mmf ., 350 V .
T 103	360461-1	Transformer, 3rd video I-F	C 136	270027-10	Capacitor, electrolytic, 4 mfd
T 104	320040-1	Transformer, vertical output	C 137	250176-13	Capacitor, ceramic. 5 mmf .
T 105	360435-1	Transformer, horizontal oscillator	C 138	250201-11	Capacitor, paper. . $047 \mathrm{mfd} . .600 \mathrm{~V}$
T 106	3200	Transformer, horizontal scanning	C 139	250	Capacitor, ceramic, $500 \mathrm{mmf} ., 450 \mathrm{~V}$.
T 107	30	Transformer, power	C 14	250175	Capacitor, paper, $5000 \mathrm{mmf} ., 450 \mathrm{~V}$.
T 108	360440-1	Transformer, 4.5 mc . trap and take off	$\begin{aligned} & \text { C } 141 \\ & \text { C } 143 \end{aligned}$	$\begin{aligned} & 250176-13 \\ & 270027-13 \end{aligned}$	Capacitor, ceramic. 5 mmf.. 500 V . Capacitor, electrolytic, 20 mid.
T 109	360434-1	'Transformer, ratio det.	C 144	270027-12	Capacitor, electrolytic, 80 mfd .
L 101	360332-9	Coil, peaking-white	C 145	270027-13	Capacitor, electrolytic, 20 mfd .
L 102	.360332-17	Coil, peaking-violet	C 146	270021-33	Capacitor, electrolytic, $40-45 \mathrm{mfd}$.
L 103	360	Coil, peaking-brown	C 148	250201-11	Capacitor, paper, $.047 \mathrm{mfd} ., 600 \mathrm{~V}$.
L 104	360443-2	Coill peaking-red	C 150	250201	Capacitor, paper, . $001 \mathrm{mfd} ., 600 \mathrm{~V}$.
L 105	360443-3	Coil, peaking-orange	C 151	250175-2	Capacitor, paper, . $01 \mathrm{mfd} ., 450 \mathrm{~V}$.
L 106	320041-1	Coil, filter reactor	C 152	250201-11	Capacitor, paper, . $047 \mathrm{mfd} ., 600 \mathrm{~V}$.
L 107	360332-8	Coil, R-F choke	C 153	250201-11	Capacitor, paper, . $047 \mathrm{mfd} . .600 \mathrm{~V}$
L 108	360443-4	Coil, peaking-yellow	C 154	250173-2	Capacitor, ceramic, $500 \mathrm{mmf} ., 10 \mathrm{KV}$.
L 109	360372-4	Coil. R-F choke insulated 6.8 uh	C 155	250088-31	Capacitor, ceramic, 500 mmf ., 500 V .
L 110	360455-1	Coil, R-F choke insulated 4 uh	C 156	250151-12	Capacitor, paper, 25 mid., 200 V .
L 111	360334-1	Coil, linearity	C 157	270023-11	Capacitor, electrolytic, 20 mfd .
L 112	360451-1	Coil. peaking	C 158	250175-3	Capacitor, ceramic, 1500 mmf ., 450 V .
L 113	360341-788	Focus coil assembly	C 159	270021-35	Capacitor, electrolytic 80, 40, 40, 50
L 114	360331-2	Horiz. size control	C 160	270021-34	Capacitor, electrolytic 40-10-35
L 115	360330-9	Deflection yoke assembly	C 161	250175-3	Capacitor, ceramic, $1500 \mathrm{mmf} ., 450 \mathrm{~V}$.
RC 191	250186-1	Printed circuit	C 162	250175-3	Capacitor, ceramic, 1500 mmf ., 450 V .
	180157-9	Fuse. 5 A., 250 V .	C 163	250175-3	Capacitor, ceramic, 1500 mmf ., 450 V .
	180475-1	Fuse, 1/4 A., 250 V . (pigtail)	C 164	250175-3	Capacitor, ceramic, 1500 mmf ., 450 V .
C 1	250	Capacitor, ceramic, 1500 mmf . 450 V .	C 165	250175-1	Capacitor, ceramic, $5000 \mathrm{mmf.}$,450 V .
C	250175-3	Capacitor, ceramic, 1500 mmf ., 450 V .	C 166	250159-102	Capacitor, mica, 470 mmf., 500 V .
C 103	250175-3	Capacitor, ceramic, 1500 mmf ., 450 V .	R 101	230104-76	Resistor, carbon, 15K, 1/2 W.
C 104	250175-3	Capacitor, ceramic, $1500 \mathrm{mmf}$. . 450 V .	R 102	230104-40	Resistor, carbon, 15K, 1/2 W.
C 105	250175-3	Capacitor, ceramic, 1500 mmf ., 450 V .	R 103	230104-50	Resistor, carbon, $100 \mathrm{~K}, 1 / 2 \mathrm{~W}$.
C 106	250175-3	Capacitor, ceramic, 1500 mmf ., 450 V .	R 104	230104-73	Resistor, carbon. $82 \mathrm{~K}, 1 / 2 \mathrm{~W}$.
C 107	250176-12	Capacitor, ceramic, 10 mmf ., 500 V .	R 105	230104-48	Resistor, carbon, $68 \mathrm{~K}, 1 / 2 \mathrm{~W}$.
C 108	270027.4	Capacitor, electrolytic, 10 mfd .	R 106	230104-71	Resistor, carbon, $5600 \mathrm{~K}, 1 / 2 \mathrm{~W}$.
C 109	250176-17	Capacitor, ceramic, 100 mmf ., 500 V .	R 107	230104-52	Resistor, carbon, 150K, 1/2 W...
C 110	250201-13	Capacitor, paper. . 1 mfd.. 600 V.	R 108	230094-200	Resistor, carbon, $22 \mathrm{~K}, 5 \%$
C 111	250201-10	Capacitor, paper, $0.33 \mathrm{mfd} ., 600 \mathrm{~V}$.	R 109	230104-68	Resistor, carbon, $3300 \mathrm{~K}, 1 / 2 \mathrm{~W}$.
C 112	250201-13	Capacitor, paper, . 1 mid., 600 V .	R 111	230104-82	Resistor, carbon, $47 \mathrm{~K}, 1 / 2 \mathrm{~W}$.
C 113	250201-7	Capacitor, ceramic, . 01 mfd., 600 V ...	R 1112	220076-26	Potentiometer, AGC setting
C 114	250176-13	Capacitor, ceramic, . 5 mmf., 500 V ..	R 114	230105-76	Resistor, carbon, 15K, 1 W.
C 115	250160-62	Capacitor, mica, 680 mmf ., 500 V .	R 115	230104-77	Resistor, carbon, 18 K
C 1	250151-41	Capacitor, paper, . $005 \mathrm{mfd} . .600 \mathrm{~V}$. .-.	R 116	220076-3	Potentiometer, picture control
C 117	250201-11	Capacitor, paper, $047 \mathrm{mfd} ., 600 \mathrm{~V}$.	R 117	230104-78	Resistor, "carbon, 22K, $1 / 2 \mathrm{~W}$.
C 118	250201-13	Capacitor, paper, .1 mfd., 600 V .	R 118	230105-54	Resistor, carbon, $220 \mathrm{~K}, 1 \mathrm{~W}$.
C 119	250201-3	Capacitor, paper, $.002 \mathrm{mfd} . .600 \mathrm{~V}$.	119	230094-24	Resistor, carbon, 2.7 megohm,
C 120	250151-12	Capacitor, paper, 25 mfd ., 200 V .			$5 \%, 1 / 2 \mathrm{~W}$.
C 121	250159-82	Capacitor, mica, 100 mmf ., 500 V .	R 120	230104-102	Resistor, carbon, 2.2 megohm, 1/2 W
C 122	250185-9	Capacitor, mica, . $005 \mathrm{mfd} ., 600 \mathrm{~V}$.			
C 123	250185-10	Capacitor, paper, $.015 \mathrm{mfd} .5 \%, 600 \mathrm{~V}$.	$\text { R } 122$	$\begin{aligned} & 230104-62 \\ & 230105-65 \end{aligned}$	Resistor, carbon, $1000 \mathrm{~K}, 1 / 2 \mathrm{~W}$. Resistor, carbon, 1800, 1 W
C 124	250201-5	Capacitor, mica, . $004 \mathrm{mfd} ., 600 \mathrm{~V}$.	R 123	230104-79	Resistor, carbon, $27 \mathrm{~K}, 1 / 2 \mathrm{~W}$.
C 125	250201-11	Capacitor, paper, $047 \mathrm{mfd} ., 200 \mathrm{~V}$.	R 124	230094-200	Resistor, carbon, 6800.5%, 1/2 W.
C 12	250159-82	Capacitor, mica, $100 \mathrm{mmf} ., 500 \mathrm{~V}$.	R 125	230104-82	Resistor, carbon, $47 \mathrm{~K}, 1 / 2 \mathrm{~W}$.
C 127	250201-5	Capacitor, paper, $.004 \mathrm{mfd} ., 600 \mathrm{~V}$.	R 126	230104-69	Resistor, carbon, 3900, $1 / 2 \mathrm{~W}$.
C 128	250151-44	Capacitor, paper, . $002 \mathrm{mfd} ., 600 \mathrm{~V}$.	R 127	230104-88	Resistor, carbon, 220K, $1 / 2 \mathrm{~W}$.
C 129	250151-38	Capacitor, paper, . $01 \mathrm{mfd} . .600 \mathrm{~V}$.	R 128	220076-27	Potentiometer, vertical hold
C	250159-98	Capacitor, mica, $100 \mathrm{mmf} ., 500 \mathrm{~V}$.	R 1219	230104-97	Resistor; carbon, $820 \mathrm{~K}, 1 / 2 \mathrm{~W}$.
C 131	250175-2	Capacitor, ceramic, . 01 mfd., 450 V ...	R 130	220076-28	Potentiometer, vertical height
C 132	250175-2	Capacitor, ceramic, . 01 mfd., 450 V .	R	230104-71	Resistor, carbon, 5600, 1/2 W.
					$\begin{aligned} & \text { CHASSIS CT } 247, \\ & \text { CT } 248, \text { CT } 249 \\ & \hline \end{aligned}$

[^5]

CHASSIS CT 247, CT 243, CT 249

ADDENDA

The vertical circuit was changed twice in order to improve linearity. The following paragraphs will indicate the original component values used, and the first and second changes in the order in which they were made. The chassis schematic includes these improvements :

1. Add R-120, 8200 ohms, $10 \%, 1 / 2$ watt resistor (230104-73) in series with discharge condenser $\mathrm{C}-117$. (See following paragraph, item 1.)
2. Add R-211, 27 K ohms, 10%, $1 / 2$ watt resistor (230104-79) in series with C-178.
3. Replace R-129 (1 megohm) with one 820 K ohm, 10%, $1 / 2$ watt resistor (230104-97).
4. Replace R-197 (1500 ohm) with one $2200 \mathrm{ohm}, 10 \%$, $1 / 2$ watt resistor (230104-66).
5. Replace R-210 (8200 ohm) with one $10 \mathrm{~K}, 10 \%$, $1 / 2$ watt resistor (230104-74).
6. Replace R-120 (2.2 megohm) with one $3.9 \mathrm{megohm}, 10 \%$, $1 / 2$ watt resistor (230104-105).
7. Add R-213, 100 K ohm, $10 / / 1 / \mathrm{I} / 2$ watt resistor (230104-86).
8. Add C-183, $.033 \mathrm{mfd} ., 20 \%, 600 \mathrm{v}$. capacitor (250201-10).
9. Replace C-118 (. 047 mfd .) with one $.1 \mathrm{mfd} ., 20 \%, 600 \mathrm{v}$. capacitor (250201-13).

MAGNAVOX MODEL "M" TUNER

Most CT 247, 248 and 249 chassis use the Model " S " tuner No. 700333 as described herein. However some current production chassis use the Model " M " tuner No. 700340. This tuner is capable of increased sensitivity and selectivity, and has low noise factors. It uses a 6BC5 RF Amplifier and a 6J6 Oscillator and Converter. If all channels tune toward the same side of the fine tuning control, they may be brought in by adjusting the trimmer which extends through the front of the tuner. Individual channel oscillator alignment is accomplished by knifing the coils. The antenna, RF Amplifier and Converter coils are over-coupled for the necessary passband, and adjustment is different from that outlined for the type " S " tuner, and will be included in a subsequent service manual.

CHASSIS CT 247
CT 243, CT 249 CT 243,
TUNER NO. 700337 ALIGNMENT INSTRUCTIONS

SECTION 3-FRONT

SECTION 4-FRONT

OSCILLATOR ALIGNMENT

1. TOUCH-UP
a. If some low channels do not tune at all, or not near enough the center of the fine tuning range, adjust the oscillator tuning slug for those channels
b. Check all other channels to determine if their tuning has been affected enough to warrant further touch-up.
c. If the tuning on some channels is unsatisfac tory, proceed with complete oscillator align ment as follows

2. COMPLETE OSCILLATOR ALIGNMENT

a. Connect an unmodulated signal generator to the antenna terminals and tune it to channe 13 video carrier frequency.
b. Connect a sweep generator to the antenna terminals and set it on channel 13.
c. Loosely couple an unmodulated signal gener ator to the 1st I-F grid and tune it to 25.75 mc .
d. Connect an oscilloscope across the video detector load resistor.
e. Turn the receiver on and set the fine tuning control at mid range. After the receiver has warmed up, and if there are two markers on the scope, adjust the oscillator coil until the markers merge.

Coils having a 1 turn loop (channels 13, 8 and 7) may be tuned higher by spreading the loop apart or making it smaller. They may be apart or making it smaller. They may be
tuned lower by squeezing the loop closer, making the loop as large as possible and making the adjacent sides of the loop as parallel as possible.

Coils consisting of a single bent wire (channels 12, 11, 10 and 9) may be adjusted by adjusting them as shown below.

Care should be taken to prevent any coil from touching the switch stator contact in any place except where it
is soldered to that contact.

MINIMUM INDUCTANCE

MEDIUM INDUCTANCE

MAXIMUM INDUCTANCE
© John F. Rider

R-F AMPLIFIER \& CONVERTER ALIGNMENT

a. Set the channel selector on channel 13. Con nect the sweep generator to the antenna terminals using a balanced resistor network for those generators having an unbalanced output. Set the sweep generator to sweep channel 13 . Connect an oscilloscope across the video detector load resistor
b. Set the fine tuning control to mid-range. Loosely couple a signal generator to the an-
tenna terminals, and tune it to the channel 13 picture carrier frequency, and tune the receiver to that frequency. Adjust the sweep in. put in such a manner as to avoid overload in the R-F amplifier. Adjust the R-F amplifier plate coil (P13) and the converter grid coil (G13) for maximum response. Set the marker generator to the channel 13 sound carrier frequency and adjust these coils for proper band pass with optimum gain.
c. Set the channel selector and sweep generator successively to channels 12 through 7. If the R-F amplifier plate coil and the converter grid coil are correctly tuned, channels 12 to 7 will give symmetrical bandpass patterns and the height of the pattern will not vary by more than 3 to 1 between channels 13 and 7.
d. Set the channel selector and the sweep generator to channel 6 , and set the marker generator to the channel 6 picture carrier frequency.
e. Adjust the R-F amplifier plate coil (P6) and the converter grid coil (G6) for maximum re sponse. Set the marker generator to the chan nel 6 sound carrier frequency and adjust thes coils for proper bandpass with optimum gain
f. Align channels $5,4,3$ and 2 in a similar fashion The difference between peaks on any channel should be no more than 30% of the total height of the response curve

©John F. Rider

INDEX

SLCTIUN I

FEATURES \＆SPECIFICATION

Magnavox Series 103 chassis are all direct view units with self contained power supplies．They provide a wide choice of picture tubes，and a selec－ tion of types for use in models which feature television only，or which include a radio chassis and record changer．Special features are：
＊RF tuner having tuned input；gives improved signal to noise ratio， sensitivity。
＊Four stages of video I－F amplification，stagger－tuned for reduced phase distortion，for increased stability and for ease of alignment
＊Four stages of high gain sound I－F amplification，including the lst video IF which amplifies both the video IF and sound IF．
＊Direct coupled video amplifiers，eliminating the necessity for $D C$ re－insertion。
＊Separate audio amplifier chassis，which may be omitted when TV chassis is used in combination with a radio，or used in models which feature TV only．In straight IV models，the audio anaplifier nay be operated alone，for use with a record player，etc．
＊Magnalok horizontal AFC system．Frequency control is accomplished by comparing the sine wave oscillator frequency with the sync pulses． The result is applied to a reactance tube，which in turn controls the oscillator frequency．
＊Amplified autoratic gain control．Affords maximum uniformity of re－ production when switching between stations and reduces fading．Less necessity for adjusting picture and brightness controls．
＊De－energizing circuit which eliminates a bright spot on the picture tube when the power is turned off．
＊Facilities for connection of an external phonograph on models which feature TV only

GLNERAL DLSCRIPTION
300 ohms，antenna input－－－－IMPEDANCL－－－－－－－－－－－－－－－Speaker Coil， 127 Amp． 32 ohms

Chassis 15＂wide，17＂deep，11＂high－－－－－SIZE
Five picture tube sizes

© John F．Rider

SECTION III

OPERATION AND INSTALLATION
All Series 103 television instruments are shipped completely assembled, with the picture tube installed. All that is necessary is the proper location, connection to a suitable antenna, adjustment of the various controls, and removel of the back cover for adjustment of the ion trap and focus magnet, and orientation of the cabinet antenna if an adjustable one is used. A check should be made that all tubes are properly seated.
The safety Elass and mask constitute an assembly, which is easily removed for access to the picture tube by removal of the two screws securing the glass support bracket.
The chassis is held in the cabinet by six mounting screws through the bottom.

1. Plug the receiver power cord into the power outlet.
2. Set the TV-Phono switch on the rear panel of the chassis to TV.
3. Turn on the radio chassis and set the selector switch to TV in combination models. For IV, the AC switch on the PICTURE control. Turn it to the right.
4. Set the STATION SELECTOR to the desired channel number.
5. Adjust the FINE TUNING control for the best volume and quality sound. Select the desired sound volume by turning the VOLUME control.
6. Hdvance the BRIGHTNESS control until the picture tube screen is only slightly illuminated. If no light appears, it may be limited by incorrect adjustment of the ion trap magnet. Proper procedure for correct adjustment follows:
Advance the brightness control and adjust the ion trap until light appears on the screen. Then reduce the brilliance to a point near extinction by turning the brightness control counter-clockwise. Then readjust the ion trap until maximum brilliance is obtained. It may be necessary to turn the brightness control still further counter-clockwise.
7. Adjust the PICTULE control for the proper degree of contrast
8. If the picture "rolls" up or down, turn the VERTICAL control knob to the lef't so the "roll" is downward, then turn it to the right until the picture stops moving. Switching from channel to channel will not cause the picture to lose sync if the control is properly set.

CHASSIS CT $262,263,264,265,266$
$267,269,283,234,285,286,287$, $267,269,283,234,285,286, ~ 287$,
$288,289,290,291,293,294,297$
9. If the picture does not snap into horizontal sync immediately on being switched to a picture channel, but instead it slowly pulls in as indicated by diagonal blanking bars which slowly reduce in frequency until the picture snaps into synchronism, the following adjustments should be made. Remove the Horizontal $A F C$ Discriminator tube (type 6al5, VII6) and adjust the HORIZONTAL SPELD coil until the picture slowly moves back and forth with the blanking bar vertical. Now replace the $A F C$ discriminator tube. The picture should then fall into horizontal sync inmediately on switching from channel to charnel
10. If horizontal linearity is unsatisfactory, adjust the linearity coil so that $1 / 2$ to $5 / 8$ inch of the adjusting screw is above the tinerman clip. adjust the drive control for maximun width and high voltage. Both occur simultaneously. Maximum high voltage can be detected by a minimum height. Adjust the linearity control for best inearity. A slight readjustment of the drive control may be necessary, but always use the maximum possible drive comparable with good linearity
11. HEIGHT and VERTICiL LINLARITY adjustment. Adjust the heiEht control until the picture just fills the mask vertically. Adjust the vertical linearity control until the test pattern is symmetrical from top to bottom. It is difficult to adjust linearity with a picture on the screen didustment of \in ither control will require reacjustment of the other
12. The FOCLS MAGIII has an adjustable shunt ring that governs the amount of magretic flux which controls the size of the electron strean. Set the FOCUS CONTROL at about mid-range, and adjust the shurt ring so proper focus occurs at that point. finy subsequent focusing can then be accomplished with the focus control. It will probably be necessary to readjust the ion trap after the shurt ring has been moved.
13. To center the picture: Loosen the screw on each side of the focus coil and move the coil about the neck of the tube until proper centerine is accomplished. If this adjustment does not provide proper centering, refer to PICTURE TUBE R $\mathrm{H} P \mathrm{P}$

USING THL AUDIO AMPLIFIER FOR ANOTHER PURPOSE

1. Siet the TV-RHONO switch to PHONO.
2. PluE the reproducer to be used into the PHONO JACK.
3. Turn the PICTURL, OFF-ON control to the right until a snap is heard This applies power to the audio amplifier, but not to the TV chassis.
4. Put the reproducer into operation.
5. Adjust the VOLUME control for the desired sound volume.

PICIURU TUBE REPLACENENT, HORIZOM'AL CHASSIS
If it becomes necessary to replace the picture tube, it should be done in the following: manner.

1. Remove the tube socket from the rear of the picture tube, then remove the ion trap.
2. Kemove the safety glass assembly by taking out the screws which hold the glass rail ir position.
3. Loosen the nuts that secure the tube strap over the rim of the tube, and remove the strap.
4. Slip the high voltage anode connector from beneath the insulating ring and lift out the tube.
5. Transfer the insulatine ring to the replacement tube.
6. Install the FV connector, replace the support strap, and fasten it down securely with the nuts removed in step 3.
7. Loosen the thumbscrew on top of the deflection yoke, so the yoke moves freely. Lcosen the two hex-head screws on each side of the deflection yoke mounting bracket, and push the top section forward until the rubber bumper fits against the bell of the tube, all the way around. Then tighten the screws. If the screw heads on the left side are difficult to reach, use a right-angle spintite, an end wrench, or remove the FN compartment cover. Ther press the deflection yoke forward as far as possible, and tighten the thumbscrew.
8. Tighten the three focus coil plate adjustment screws until the plate is near the deflection yoke, perpendicular to the neck of the tube.
9. Loosen the two screws which secure the focus coil, and move it so the neck of the tube is properly centered in it. Then tighten the screws and adjust the ion trap.
10. If centering is not satisfactory, move the focus coil around the neck of the tube until the picture is properly centered in the mask. It may be necessary to readjust the ion trap each time the focus coil is moved.

NOTICL: in the evert that proper centerine cannot be accomplished, remove the ion trap, turn the front edge to the rear, install and readjust it. Then proceed with the centering adjustment. If proper centering still cannot be accomplished, remove the focus coil and reverse the right and left sides on the chassis.

PICTUR TUBE REPLACEMENT, VERTICAL CHASSIS

In models wherein the chassis is mounted in a vertical position, the following procedure is recommended.

1. Remove the safety glass and mask assembly by takine out the screws which hold the Elass rail in place.
2. Lay the cabinet on its side on a clean piece of felt or other soft material, with the chassis side down.
3. Remove the two metal wedges that brace the rim of the picture tube top and side. Two wood screws hold each in place.
4. Two $1 / 4-20$ screws secure each side of the chassis to the mounting rails of the rabinet. Kemove these screws, all connections to the amplifier, and pull the chassis out of the cabinet. Then proceed through steps 1 to 10 in the preceeding section. Then replace the chassis.

CABINET ANTENNA ADJUSTMENT
Two types of cabinet antennae may be used. One is fixed and the other may be adjusted.

The first consists of a power line antenna and one mounted in the cabinet top. They may be used separately or together, depending on local conditiors. Each should be tried on all available channels, and that antenna or combination thereof giving the best results would be selected.

1. Connect the power line antenna lead (erey wire extending from the rear of the chassis) to first one and then the other terminal of the antenna terminal board, tune for all local television stations and note which gives the better results.
2. Remove the power line antenna lead from the terminal board, connect the cabinct antenna leads first one way and then reversed, tune for all available stations, and note the results.
3. Leave the cabinet antenna leads connected, then try the power line antenna to first one side of the terminal board and then the other. Reverse the cabinet antenna leads and repeat the two power line connections. Tune for all available stations in each condition (4) and note the results.
4. Select the one connection as described in 1,2 or 3 that gives the best overall performance for all available stations.
5. Disconnect the power line antenna and cabinet antenna when an outside antenna is used.
The latter antenna can be rotated and should be set for best all around performance. The switch provides a shift in the main pickup lobe of as much as 30° on some channels and is the only antenna adjustment to be
6. Tune in a station and rotate the antenna through 360° for maximum signal and minimum ghosts.
7. Snap the antenna switch and re-orient the antenna through 360° for best picture. Compare the results of each of these tests and make a mental note of antenna position and switch positions for best performance
8. Repeat these tests for each of the other channels, making note of the antenma and switch positions for best results on each channel.
9. The final positior for the antenna shall be that compromise which receives the majority of stations with best picture, recardless of switch position.

SECTION IV

CIRCUIT DESCRIPTION
The Magnavox 700351 tuner consista basically of three tubes, four sets of coils, and a four section wafer switch having twelve activa and six inactive positions.
The antenna input transformer $T l$ is provided to match a balanced 300 ohm antenna to the tuner. The ANTENNA COILS A-13 to A-2 are in the grid circuit of the RF Amplifier stage, and are grouped around the rear wafer of the unit. The RF Amplifier PLATE coils P-13 to P-2 are mounted on the second wafer from the rear. The converter GRID coils $G-13$ to $G-2$ are on the third wafer from the rear. The OSCILLATOR coils $0-13$ to $0-2$ are on the front wafer. In each, coil 13 is tuned for channel 13 , coils 13 plus 12 are for channel 12, coils 13 plus 12 and 11 are for channel 11, etc. The following diagram outlines its design and operation.

Antenna coils $A-13$ to $-1-2$ are tuned to their respective channeis, a band pass sufficiently wide to accept all the information therein, and with sides of the pattern sufficiently steep so as to reduce signals on adjacent channels. The same applies to P-13 to P-2. Under weak signal con ditions, the RF amplifier stage is capable of a gain of 15 times its input. In the presence of a strong signal, the automatic gain control bias on the Erid limits its output to a fraction of its input.
The oscillator is tuned to a frequency 25.75 mc . hicher than the video carrier, and when hetrodyned with the carriers in the converter, produces a modulated video Ir signal of 25.75 mc . and a modulated sound IF signal of 21.25 mc . These are applied to the first IF amplifier through C-19. L-3 in the converter plate circuit is the converter plate $I F$ transformer.

The fine tuning control, a variable dielectric capacitor, shifts the oscillator frequency about 0.5 mc . on channel 2 , and relatively more on
the other channels up to 13 , where it is about 2.0 mc . Individual oscillator adjustments for each channel, accessible from the front of the chassis by re-
John F. Rider

The first stage accomodates both the sound and video IF signals and the sound portion is then removed by T105.

AGC bias is applied to V106, V107 and V108 and controls their gain inversely proportional to the applied signal strength. V109 operates at fixed bias. The output of the IF system is essentially constant despite variations of the input signal level.
Complete alignment instructions are included in a later chapter.
The 1 N60 crystal detector conducts on negative cycles, and current flows through its load resistor. This develops a voltage which varies with modulation of the IF carrier. The high frequency IF component is bypassed to ground through a 10 mmf capacitor and C-137, . 0015 mmf .

V-ll0A, the first video amplifier is conventional and has a gain of about 6.5 times. It is direct coupled to the next stage, and presents a posiThe vertical and horizontal sync pulses appear on the video carrier, through the IF amplifiers, detector and video amplifiers, between scanning lines of video modulation. Their appearance at the picture tube grid is always during retrace time, and cuts the beam to blanking level at those intervals.

A portion of the positive going signal is removed from the plate of the first video amplifier, and applied to the grid of the first sync amplifier V-ll2A. This tube is biased so the video portion of the signal falls below the knee of its characteristic curve, and receives but little amplification, and the sync pulses appear on the linear portion of the curve, and are greatly accentuated.

The negative signal that is fed to the second sync amplifier grid V-112B is again amplified. This tube is also biased so that any noise on the crest of the pulses is removed, and any noise between the sync pulses is reduced to their amplitude.

The signal is in a positive direction at the sync clipper grid V-113A, and in that stage the lower half of the signal is removed, leaving only clean, square sync pulses.

These are applied to the vertical oscillator stage V-113B, through RC-101, a filter network which passes only the low frequency vertical pulses. The vertical blocking oscillator and discharge stage, V-113B, is $1 / 2$ of a $6 S N 7$. During non-conduction, the grid voltage is negative with respect to the cathode. The plate draws current during discharge at a rate determined by the setting of the height control R-239. Due to the coupling of the oscillator transformer, there is a corresponding voltage rise on the grid, A to B on the following curve. When the grid becomes more positive than the cathode, it draws grid
current. This quickly charges $\mathrm{C}-205$, which drives the grid negative and cuts off the plate current, see B to C. Then the charge on C-205 is slowly discharged through the verticalspeed control, R-218 and R-216, which allows the grid voltage to slowly rise to its normal bias, see C to A. Then plate current begins to flow again and the cycle is repeated at a frequency depending on the rate of C-205 discharge, which is
 controlled by the setting of $\mathrm{R}-218$.
The frequency is adjusted at slightly slower than 60 cps . During the charging period of C-205 (C to A), the vertical sync pulse is applied just before it would "trip" in its free-running cycle. The magnitude of the sync pulse is sufficient to drove the tube into conduction, and therefore controls the frequency of the blocking oscillation.
The sync clipper output signal is also used to synchronize horizontal scanning. When free running, the Horizontal Oscillator V-117A operates at a frequency approximately correct for horizontal scanning. The resultand sine wave output is applied through T-ll2 to the plates of the Horizontal Discriminator V-116 180° out of phase. The horizontal sync pulses are applied to the center tap of the plate winding of the transformer, are applied to the center tap of the plate winding of the transfor
and appears at the plates of the Discriminator in phase. When the and appears at the plates of the Discriminator in phase. When the oscillator operates in synchronism with the transmitter, the pulses negative direction and as the other plate goes through zero voltage in a positive direction.
Plate I

$$
\begin{aligned}
& \text { PLATE } 1 \\
& \text { OLCILATOR SIME } 2
\end{aligned}
$$

Because the pulses appear when both plates are at zero voltage, there is no change in the operation of the circuit. However if the oscillator changes in frequency, the sync pulses at the detector plates do not appear when the oscillator voltage is zero, but at a point on each sine wave either before or after it goes through zero.

As the sine wave on one plate is of opposite polarity from the other, and as the sync pulse on one plate is of the same polarity as the other, the sync pulse will add to the sine wave that is positive, and subtract from the one that is negative. This condition will produce a voltage unbalance in the catnode circuit of the Discriminator.

This voltage difference, applied to the grid of V-115, the 6AU6 Horizontal Control stage, controls the variable reactance in shunt with the horizontal oscillator tank circuit, and causes the oscillator to change frequency in such a direction so as to come back into exact synchronism with the sync pulses.

CHASSIS CT $262,263,264,265,266$,
$267,269,283,284,235,286,287$,
$283,289,290,291,293,294,297$
© John F. Rider

© John F. Rider

2. Connect the IT signal generator to the converter grid wafer (through the hole provided in the boitom of the tuner shield) and chassis ground. Short the primary of the first IF transformer, TlOl, to ground.

Crystal Detector
3. Connect the oscillosmope across the first video plate through an isolating resistor of loK. Adjust the signal generator to 19.75 megacycles and adjust the trap coill Llol for minimum response. The purpose of the oscilloscope is to obsermo demodula+ signal and to thus make sure that no overload condition develops because of too much signal input.
4. Ndjust the signal generator to 21.25 megacycles. Adjust the trap Li03 and then the sound pick-off coil Tl05 for minimum response.
5. Adjust the signal generator to 27.25 megacycles and adjust the trap Ll02 for minimum response.
6. Adjust the signal generator to 21.8 and adjust the first I.F. trans-
former T104 for maximum output. Again, caution should be observed that the signal does not overloaz thr ruciver.
7. Adjust the signal generator to 23.8 megacycles. Adjust transformer $M 106$ for maximum response.
8. Adjust the signal generator to 22.3 megacycles. Adjust transformer Tl08 for maximum response.
9. Adjust the signal generator to 25.2 megacycles. Adjust transformer $T 109$ for maximum response.
10. Adjust the signal generator to 21.25 megacycles and readjust the trap L103 and the sound pick-off coil Tl05 for maximum response.

SOUND IF ALIGMENT PROCEDURE

1. Remove the short from TlOl to ground. Adjust the bias on the tuner AGC lead to -2 volts by use of the variable resistor and plug assembly described in the Picture IF Alignment Procedure. Connect the signal generator to Pin 1 of VlOl (grid of the GAU6 lst sound IF), and ground. Connect oscilloscope to terminal 1 of Tlo2 through a 470 K . resistor. Align both slugs of $T l$ and $T 2$ for maximum output at 21.25 megacycles. Connect sweep generator to the converter grid wefer (through the hole provided in the bottom of the tuner shield) and chassis ground. Set the Channel Selector to channel 2, and check for symmetrical response about 21.25 megacycles.
2. Connect oscilloscope to Cl26. Align bottom slug of discriminator transformer for minimum output, at 21.25 megacycles. Connect sweep generator to the converter grid wafer and align top slug of discriminator transformer for symmetrical output. The alignment should produce, when limiting, a symetrical discriminator sharacteristic with a peak separation of $300 \pm 50 \mathrm{kC}$. The average slope sensitivity is .08 volts per KC.

OVERALL RESPONSE OF THE RECEIVER

A. Check the overall RF alignment with the sweep generator connected to the antenna terminals through a suitable balancing network. The picture inter-mediate-frequencies can now be retouched if necessary to obtain the standard overall frequency response curves with the picture carrier at approximately 50% of maximum response. In making the final touch-up adjustmentis, it should be remembered that the converter stage and the first picture intermediate stage use relatively high Q circuits and tend to control the response at the high and low freguency ends of the poss band. The third and fourth picture intermediate frequencies are relatively low Q circuits and they control the response over the center of the passband. The second intermediate frequency circuit controls the tilt. The limits shown represent the position of the markers which determine acceptable selectivity. All twelve channels should be checked for alignment.

1. After acceptable curves are obtained, each channel is to be checked for proper tuning. The null should occur more than 30 ccerces rotation from either end of the tuning vernier.
2. Average Sensitivity Characteristics.

Input signal required at antenna terminals to produce one volt DC rise across Pins $1 \& 3$ of V110A first video amp.

Channel	Midband
	Input Microvolts
6	32
7	30
13	22
	26

Input required at sound carrier frequency for one volt above contact potential across Rl07 (limiter grid return) shall be 30 microvolts.

4.5 Mc Trap Alignment

A 4.5 Mc Signal modulated approximately 400 cycles, 50% should be connected to the grid of the first video amplifier. Turn CONTRAST control maximum counter-clockwise. Connect a crystal detector to the picture tube grid lead. Observe the signal at the crystal detector load resistor on an oscilloscope and adjust the trap for minimum output at the scope.

CHASSIS CT $262,263,264,265,266$
$267,269,283,284,285,286,287$,

SERIES 103 VOLTAGE CHART

Measurements made with receiver operating at 117 volts 60 cycles $A C$, with a strong signal input. Measurements made with Voltohmist type VIVM, between indicated terminal and chassis ground unless otherwise noted.

$\begin{gathered} \text { TUBE } \\ \text { NO. } \end{gathered}$	$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	FUNCTION	PLATE		SCREEN		CATHODE		GRID	
			$\begin{aligned} & \hline \text { PIN } \\ & \text { NO. } \end{aligned}$	VOLTS	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	VOLTS	$\begin{aligned} & \text { PIV } \\ & \text { NO. } \end{aligned}$	VOLTS	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	VOLTS
V-101	6AU6	1st Sound IF	5	121	6	121	7	1.5	1	0
V-102	6aU6	2nd Sound IF	5	120	6	120	7	1.6	1	0
V-103	6AU6	3rd Sound IF	5	61	6	61	7	0	1	-5.8
V-104	6AL5	Discriminator	$\begin{aligned} & 7 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & -4.5 \\ & -3.5 \end{aligned}$			$\begin{aligned} & 1 \\ & 5 \\ & \hline \end{aligned}$	$\begin{gathered} 1.42 \\ 0 \\ \hline \end{gathered}$		
V-105A	$\frac{1}{2} 6 \mathrm{SN} 7 \mathrm{GT}$	AGC Ampl.	5	-18			6	-38	4	-39
V-105B	$\frac{1}{2} 6 \mathrm{SN} 7 \mathrm{GT}$	AGC Rect.	2	92			3	4.7	1	-3.7
V-106	6CB'	lst Video IF	5	139	6	139	2	. 22	1	-4.8
V-107	$6 \mathrm{CB6}$	2nd Video IF	5	139	6	139	2	. 22	1	-4.2
V-108	6cB6	3rd Video IF	5	139	6	139	2	.36	1	-4.2
V-109	$6 \mathrm{CB6}$	4th Video IF	5	139	6	139	2	2.3	1	0
V110A	$\frac{1}{2} 6 \mathrm{SN} 7 \mathrm{GT}$	lst Video Ampl.	2	-16			3	-80	1	-88
V-110B	$\frac{1}{2} 6$ SN7GT	AGC Clamp	5	0			6	0	4	-2.2
V-111	6AQ5	2nd Video Ampl.	5	170	6	200	2	2.7	7	-16
V-112A	$\frac{1}{2} 6$ SN7GT	lst sync. Ampl.	2	99			3	4.8	1	-3.7
V-112B	$\frac{1}{2} 6$ SN7GT	2nd Sync. Ampl.	5	96			6	1.12	4	-. 9
V-113A	$\frac{1}{2} 6 S N 7 G T$	Sync.Clipper	2	f200			3	8.3	1	-17
V-113B	$\frac{1}{2} 6 S N 7 \mathrm{CT}$	Vertical Osc.	5	+138			6	-80	4	-138
V-114	6V6GT	Vertical Output	3	$f 280$	4	280	8	-47	5	-65
V-115	6AU6	Horiz. Control	5	+200	6	150	7	+3.6	1	.24
V-116	6AL5	Horiz.Discr.	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$			7 2	$\begin{aligned} & -27 \\ & -28 \\ & \hline \end{aligned}$		
V-117A	$\frac{1}{2} 12 A U 7$	Horiz. Osc.	1	170			3	-1	2	-8.6
V-117B	$\frac{1}{2} 12 A U 7$	Horiz. Disch.	6	142			8	-80	7	-110
$\mathrm{V}-118$	6BG6G	Horiz. Output	Cap	Do not meas.	8	205	3	-80	5	-110
V-120	6 W 4 GT	Damper	5	Do not meas.			3	. 450		
V-121	5046	LV Rectipier	4/6	*365			8/2	'300		
V-122	(See Chart Picture Thabe			"13KV	10	400	11	$70-120$	2	$\begin{aligned} & -5 \text { to } \\ & \hline \end{aligned}$

rAc voltage, measured Irom - 100 volt tap
'DC voltage, measured from -100 volt tap.
"Measured with electrostatic voltmeter.
Do not measure Horizontal Output plate or Damper plate with VIVM. Pulses cause grid rectification in meter so reading is meaningless, and HV pulses may damage meter.

REF. NO.	PART NO.	DESCRTPTION
T101	360332-12	Sound IF Transformer
T102	360332-12	Sound IF Transformer
T103	360332-13	Sound Discriminator Transformer
? 104	360461-2	lst Video IF Transformer
T105	360461-2	2nd Video IF Transformer
1406	360461-2	3rd Video $1 F$ Transformer
T108	360461-2	4th Video IF Transformer
T109	360476-1	Video Detector Transformer
T110	320030-6	Vertical Blocking Oscillator Trans.
Tlil	320056-3B	Vertical Output Transformer
Tll2	360435-1	Magnalok Transformer
T113	320055-1	H. V. Transformer
T114	300060-1	Power Transformer
L101	360484-1	Video I.F. Trap
Ll02	360484-1	Video I.F. Irap
L103	360484-1	Video I.F. Trap
L104	360372-4	R. F. Choke
L106	360443-9	Peaking Coil, green
L107	360483-1	4.5 Me. Trap
L108	360443-7	Peaking Coil, red
L109	360443-12	Peaking Coil, yellow
Lll0	360443-11	Peaking Coil, orange
Llll	360462-5	Deflection Yoke Assembly
L112	360477-2	Focus Coil
Lll3	360451-1	Peaking Coil
L114	360357-1	Horiz. Size Coil
L115	360358-1	Horiz. Linearity Coil
Lll6	320041-2A	Filter Reactor
	180475-1	Fuse, 1/4 Amp.
	180475-2	Fuse, 5 Amp.
R101	230104-94	Res. Carb. 470K, 1/2W
R102	230104-50	Res, Carb, 100 Ohm, 1/2W
R103	230104-81	Res, Carb, 39K Ohm, 1/2W
R104	230104-62	Res, Carb, $1000 \mathrm{Ohm}, 1 / 2 \mathrm{~W}$
R105	230104-50	Res, Carb, 100 Ohm, 1/2W
R106	230104-62	Res, Carb, 1000 Ohm, 1/2W
R107	230104-78	Res, Carb, 22 K Ohm, 1/2W
R108	230105-74	Res, Carb, 10K, 1W
R109	230105-74	Res, Carb, 10K, 1W
R110	230104-81	Res, Carb, 39K Ohm, 1/2W
Rlll	230104-86	Res, Carb, 100K Ohm, 1/2W
R114	230104-86	Res, Carb, 100K Ohm, 1/2W
R116	230104-84	Res, Carb, $68 \mathrm{~K} 0 \mathrm{hm}, 1 / 2 \mathrm{~W}$
R117	230104-76	Res, Carb. $15 \mathrm{~K} 0 \mathrm{hm}, 1 / 2 \mathrm{~W}$ CHASSIS CT 263, 263, 264, 265, 266
		267, 269, 283, 284, 285, 286, 287,
		288, 289, 290, 291, 293, 294, 297

REF.	PART WO.	DESCRIPPTION	REF. NO.	PART NO.	DESCRIPTION		CHAS CT 2 CT 2 CT 2 CT 2	65, CT 262, CT 263, CT 264, 33, CT 286, CT 267, CT 269, 7, CT 288, CT 285, CT 286, 1, CT 290,
R118	230104-48	Res, Carb. 68 Ohm, 1/2W	R190	230104-74	Res, Carb, 10K, 1/2W	C126	$250175 \cdot 2$	Cap. ceramic, . $01 \mathrm{mpd}$.
R119	230104-62	Res, Carb. 1000 Ohm, 1/2W	R191	230104-94	Res, Carb, 470K, 1/2W	C128	250206-1	Cap. ceramic, 5 mfo 500 V
R120	230104-74	Res. Carb, l0K Ohm, 1/2W	R192	230104-94	Res, Carb, 470K, 1/2W	Cl29	250206. 3	cap. ceramic, 10 mmf .500 V
R121	230104-48	Res, Carb, 68 Ohm, 1/2W	R193	230104-98	Res, Carb, 1 Meg, 1/2W	C130	250206-5	Cap. ceramic, 15 mmf .500 V
R122	230104-50	Res, Carb, 100 Ohm, 1/2W	R194	230104-94	Res, Carb, 470K, 1/2W	C131	250201-1	Cap. paper, . 001 mfd .600 V
R123	230104-68	Res, Carb, 3300 Ohm, 1/2W	R195	230104-82	Res, Carb, 47 K ohm, $1 / 2 \mathrm{~W}$	C132	250175-3	Cap. ceramic, 1500 mmf .450 V
R124	230104-48	Res, Carb, $630 \mathrm{hm}, 1 / 2 \mathrm{~W}$	R196	230104-78	Res, Carb, $22 \mathrm{~K} 0 \mathrm{hm}, 1 / 2 \mathrm{~W}$	C133	250175	Cap. corrmic, 1500 mmf .450 V
R125	230104-50	Res, Carb, 100 Ohm, 1/2W	R197	230105-69	Res, Carb, 3900 0hm, 1W	C134	250175-3	Cap. ceramic, 1500 mmf .450 V
R126	230104-69	Res, Carb, 3900 Ohm, 1/2W	R198	230104-102	Res, Carb, $2.2 \mathrm{Meg} .1 / 2 \mathrm{~W}$	C135	250175-2	Cap. ceramic, . 01 mfd. 450 V
R127	230104-52	Res, Carb, 150 Ohm, 1/2W	R199	230104-86	Res, Carb, 100K 0 hm, 1/2W	C136	250175-3	
R128	230104-50	Res, Carb, 100 Ohm, 1/2W	R200	220076-35	Control, Horiz. Disc	C137	250175-3	Cap. ceramic, 1500 mmP .450 V
R129	230104-50	Res, Carb, 100 Ohm, 1/2W	R202	230104-98	Res, Carb, 1 Meg, 1/2W	C150	250201-11	Cap. papes, 047 mfd. 600 V
R130	220076-19	Control, Volume	R203	230104-50	Res, Carb, 100 Ohm, 1/2W	C151	250201-11	Cap. paper, .047 mpd .600 V
R132	230104-44	Res, Carb, $33 \mathrm{Ohm}, 1 / 2 \mathrm{~W}$	R214	230104-76	Res, Carb, 15 K Ohm, 1/2W	C152	250201-11	Cap. paper, .047 mfd .600 V
R149	230106-77	Res, Carb, 18K Ohm, 2 W	R215	230104-106	Res, Carb, 4.7 Meg, 1/2W	C153	250201-11	Cap. paper, 0.047 mfd .600 V
R150	220076-43	Control, Picture	R217	230104-98	Res, Carb, $1 \mathrm{Meg}, 1 / 2 \mathrm{~W}$	C154	270027-7	Cap. electrolytic
R151	230104-69	Res, Carb, 3900 Ohm, l/2W	R216	230104-86	Res, Carb, $100 \mathrm{~K} 0 \mathrm{hm}, 1 / 2 \mathrm{~W}$	C155	250201-7	Cap. paper, . 01 mfd .600 V
R152	230104-55	Res, Carb, 270 Ohm, 1/2W	R218	220076-12	Control, Vertical Speed	C157	250129-15	Cap. paper, . 05 mfa .400 V
R153	230104-74	Res, Carb, 10K Ohm, l/ 2 W	R223	230104-102	Res, Carb, 2.2 Meg.	C158	250129-15	Cap. paper, .05 mid. 400 V
R154	230105-71	Res, Carb, 5600 Ohm, 1W	R224	230105-61	Res, Carb, 820 Ohm, 1W	C180	250151-21	Cap. paper, . 25 mfd .400 V
R155	230105-71	Res, Carb, 5600 Ohm, 1W	R225	220076-20	Control, Vertical Linearity	C181	250201-11	Cap. paper, . 047 mfd .600 V
R156	230104-102	Res, Carb, 2.2 Meg, 1/2W	R228	230105-98	Res, Carb, 1 Meg, 1 W	C182	250159-98	Cap. mica, 100 maf. 500 V
R158	230104-83	Res, Carb, 56 K Ohm, 1/2W	R232	230104-74	Res, Carb, 10K Ohm, 1/2W	C183	250159-98	Cap. mica, 100 mme .500 V
R159	220076-44	Control, Brightness	R:233	240057-3	Res, Carb, 28.3 Ohm, 5\%, 5W	C184	$250<01-5$	Cap. paper, . 0047 mpd .600 V
R160	230105-85	Res, Carb, 100K, 1/2W	R234	230104-90	Res, Carb, $220 \mathrm{~K} 0 \mathrm{hm}, 1 / 2 \mathrm{~W}$	C185	250185-9	Cap. paper, . 005 mfd .600 V
R161	230104-95	Res, Carb, 560K, l/2W	R237	230104-69	Res, Carb, 3900 Ohm, 1/2W	C186	250185-10	Cap. pap=r, . 015 mpd. 600 V
R162	230104-94	Res, Carb, $470 \mathrm{~K}, 1 / 2 \mathrm{~W}$	R238	230104-91	Res, Carb, 270 K Ohm, 1/2W	C187	250201-5	Cap. paper, . 0047 mf d .600 V
R163	220076-39	Control, AGC Set	R239	220076-5	Control Vertical	C188	250201-11	Cap. paper, .047 mfd .600 V
R164	230104-101	Res, Carb, 1.8 Meg. l/2W	RCl01	250186-1	Printed Circuit	C189	250201-7	Cap. paper, . 01 mpd .600 V
R165	230104-86	Res, Carb, 100 K ohm, 1/2W	C104	250175-3	Cap. ceramic, 1500 mmf .450 V	C190	250201-13	Cap. paper, 11 mfd .600 V
R167	230104-77	Res, Carb, 18K Ohm, 1/2W	Cl05	250207-11	Cap. ceramic, 47 mmf . 500 V	C191	250201-7	Cap. paper, . 01 mfd. 600 V
R168	230104-62	Res, Carb, 1000 Ohm, 1/2W	C107	250175-3	Cap. ceramic, 1500 mmf .450 V	C192	250160-64	Cap. mica, 1000 mmf .500 V
R171	220076-38	Control, Focus	C108	250207-20	Cap. ceramic, 270 mmf. 500 V	C193	250201-11	Cap. paper, . $047 \mathrm{mP}{ }^{\text {m }}$. 600 V
R173	240035-8	Strip Resistor	Clll	250206-1	Cap. ceramic 5 mmf. 500 V	C194	270027-9	Cap. electrolytic
R174	240035-13	Strip Resistor	Cll2	250201-1	Cap. paper . 001 mfg .600 V	C195	250201-10	Cap. paper, . 033 mfd .600 V
R175	230105-70	Res, Carb, 4700 Ohm, 1W	C113	250164-13	Cap. ceramic, 2.2 mmp .500 V	C196	250201-13	Cap. paper, .1 mfd. 600 V
R176	230166-73	Res, Carb, 3200 Ohm, 2W	C114	250175-3	Cap. ceramic, 1500 mmf. 450 V	C198	250151-21	Cap. paper, . 25 mfd. 400 V
R178	230104-54	Res, Carb, 220 Ohm, 1/2W	C115	250175-3	Cap. ceramic, 1500 mmf. 450 V	C199	250201-13	Cap. paper, 11 mfd. 600 V
R179	240069-1	Strip Resistor	C116	250175-3	Cap. ceramic, 1500 mmf. 450 V	C201	250159-98	Cap. mica, 100 mmp .500 V
R180	230104-74	Res, Carb, 10K, 1/2W	C117	250175-3	Cap. ceramic, 1500 muf. 450 V	C205	250161-24	Cap. mica, 4700 mmf. $5 \% 500 \mathrm{~V}$
R181	230104-72	Res, Carb, 6800 Ohm, 1/2W	C118	250175-3	Cap. ceramic, 1500 mmf. 450 V	C207	250201-13	Cap. paper, .1 mfd. 600 V
R182	230104-96	Res, Carb, 680K, l/2W	C119	250206-1	Cap. ceramic, 5 mmf. 500 V	C209	250201-12	Cap. paper, . 068 mfd. 600 V
R184	230104-98	Res, Carb, $1 \mathrm{Meg}, 1 / 2 \mathrm{~W}$	C120	250175-3	Cap. ceramic, 1500 mmf .450 V	C216	250201-11	Cap. paper, . 047 mfd .600 V
R185	230104-54	Res, Carb, $220 \mathrm{Ohm}, 1 / 2 \mathrm{~W}$	Cl21	250175-3	Cap. ceramic, 1500 mmf. 450 V	C218	270021-33	Cap. electrolytic
R186	230105-78	Res, Carb, 22 K Ohm , 1 W	Cl22	250206-5	Crap. ceramic, 15 inar. 500 V	C219	270021-24	Cap. electrolytic
R187	230104-105	Res, Carb, 3.9 Meg. 1/2W	Cl23	250206-3	Cap. ceramic, 10 mmf . 500 V	C220	270021-40	Cap. electrolytic
R188	230104-66	Res, Carb, 2200 Ohm, 1/2W	Cl25	2501.75-3	Cap. ceramic, 1500 mmf. 450 V			
R189	230104-62	Res, Carb, 1000 Ohm, 1/2W						

SERVICE ADJUSTMENTS

Below is given a description of the steps required in adjustment of the Beam Bender, Deflection Yoke, Foousing. Vertical and Horizontal Peaking and Horizontal A.F.C. How-
ever it should be remernberedt that these adjustments are to be made only whe picture
auality is such that service adjustment is wartanted. Use this description as a check-list and if a particular phase of guality is cood, leave it alone and go on to the next operation Refer to firule
panel controls.

fig. 1-front panei service adjustments
fore proceeding. tune in a station transmittiny a test pattern
beam bender (ion trap) adjuistment
. Advance the BRIGHTNESS control almost fully clockwise
2. Position the Beam Bender over the "flags" or kink in the gun st uccure. Starting
from this position, adfust the Beam Bender by movink it fordward or back and at the same time rotating it slightly around the neck of the tube until the brightest raster appears on the screen. If two maximum brightness positions are found, the one nearest the tube base is the corvect se
be done quickly to awoid damaring the gun structure
3. Adjust the BR!GHTNESS control setting until the raster is slightly above average

4. Re-hdjust the Beam Bender carefully for maxmum rand
B. DEFLECTION YOKE ADJUSTMENT

1. Loosen the wing thumb screw locited at the top of the deflection yoke frame 2. Rotate the yoke until the raster-lines are squared with the picture mask
2. Make sure the yoke presses firmly against the flare of the tube and tighten the
wing screw.
C. FOCUSING ADJUSTMENTS
3. Adjust BRIGHTNESS and CONTRAST controls so that the raster brilliance cor-
4. If the corner of the raster is shadowed. loosen the Focus Coil Wing Nuts and screws slifhtly, and cirefully twist the focus coil in such a direction that the
shatow is linininated. The focus coil should be positioned close to, but not neces-
sarily touching the back of the deflection yoke Tiphten the wing nuts and screws
 while the focus coit
slight readjustment
5. Adjust the focus control (see fig. 1) so that the lines of the raster are sharp and
distinct over the greatest screen arcal

. Picture centering, size, and line hrity
Horzontal or Vortical Centering is accomplished mechanically. To center the pic-
ture. loosen the Focus Coil Wing Nuts sulficiently to twist the Focus Coil slightly about its herizontal or vertical axis. Make sure the corners of the rasters are not
 Adjust the VERTICAL. SIZE, and VERTICAL LINEARITY controls (see fig. 1)
until the test patturn is vertically linwal and symmetrical, and fills the mask. adjusiment of cither control may require readiustment of the other. If vertical synchoonzation "falls out," veadiust the VERTICAL HOL.D control.
6. Adjust the HORIZONTAL. SIZE control for correction of horizontal width.
 center of picture.
Adjust the HORIZONTAL LINEARITY control (see fig. 2) for central alignment
of the inner circles of the test pattern.
hobizovtai af.c adoustar
If dificulty is encountryed in locking the picture horizontally, or if it locks-in on
whell the HORIZONTAL HOI.I) control is counterclockwise, adjust the HORIZONT A.F.C. control as follows:
7. Turn Contrast down about half way
8. Turn HORIZONTAL. HOLI cont ol fully clockwise.
9. If the picture is not locked-in, turn the HORIZONTAL A.F.C. control till it does
lock-in. Turn the HORIZONTAL, A.F.C. control counterclockwise till it just tends to fall
put of sync. This is the correct position of the HORIZONTAL A.F.C. control for out of s.ne. - This is the correct pesition of the Ho
optimuin range of the HONIZONTAL HOLD Control
fic. 2 - rear panel adjustments

MODELS

$12 \frac{1}{2} 2^{\prime \prime}$ Round	$14^{\prime \prime}$ Rect.
120	141
121	141 B
121 B	142
	1400
1400 B	

sef note on
schematic

ELECTRICAL SPECIFICATIONS

Power Supply

Power Consumptio
Antenna Input Impedance
Tuning Range
I.F. System
I.F. Frequencies

117 Volis A.C 60 Cycles Only 175 Watts
300 Ohms, Balanced Channels 2 to 13 Intercarrier Picture-24.75 Mc Sound-20.25 Mc
Sound I.F. Aligned at 4.5 Mc
Loud Speaker
Voice Coil Impedance

5" P.M. or 10" P.M
3.2 Ohms@ 400 c.p.s

TUBE COMPLEMENT AND VOLTAGE READINGS - SERIES 99 AND 100											
$\begin{gathered} \text { Hom } \\ \substack{\text { No. }} \end{gathered}$	function	$\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9
v1	R.F. AMPLIFER	${ }^{6 C B 6}$	-0.6	0.4	0	6.3 A.C.	110	110	0	-	-
v_{2}	oscillator-Converter	656	120	85	0	6.3 A.C.	${ }^{-3}$	-5	0	-	-
v3	aUdio output	$6 \mathrm{K6}$	N.c.	0	263	275	0	N.c.	6.3 A.c.	19	-
v4	ratio det.-avdio amp.	6T8	-0.6	-1.3	-0.8	6.3 A.C.	0	-0.8	0	-0.7	53
vs	ratio detector driver	GAU6	-0.1	0	0	6.3 A.c.	265	85	-0.6	-	-
v6	181 VIDEO I.F.	${ }^{\text {bBCS }}$	-0.5	N.c.	0	6.3 A.C.	130	130	0.7	-	-
v7	2nd VIDEO I.F.	68 C 3	-1	N.c.	0	6.3 A.C.	130	130	0.7	-	-
ve	3rd VIDEO I.F.	6AU6	0	0	0	6.3 A.C.	130	130	1.1	-	-
v9	VIDEO AMPLIFIER	$12 \mathrm{AU7}$	100	-0.7	0.2	6.3 A.C.	6.3 A.C.	150	-1	0	0
vio	SYNC. AMPLIFIER	$12 \mathrm{AU7}$	135	0	3.8	6.3 A.c.	6.3 A.c.	285	-23	4	0
vil	A.G.C.-SYNC. Leveler	${ }^{6} \mathrm{ALS}$	2.6	-23	0	6.3 A.c.	0	-	-0.2	-	-
V12	vert. oscillator	${ }_{6} \mathrm{Ca}_{4}$	105	0	0	6.3 A.c.	105	-29	0	-	-
V13	VERT. OUTPUT	6K6	N.C.	0	270	270	0	270	6.3 A.c.	33	-
V14	Hor. oscillator	6SN7	\rightarrow	175	10	-65	170	0	0	6.3 A.c.	-
vis	hor. OUTPUT	6avs	5.8	6.3 A.C.	28	-	360	-	0	175	-
V16	HOR. DAMPER	6W4	230	N.C.	365	285	230	365	${ }^{270}$	A.C. 270	-
v17	m.v. RECTIFER	+1×2	9 KV	9 KV	-	9 KV	9 kv	9 KV	-	9 KV	9KV
v18	POWER RECTIFIER	5U46	N.c.	290	N.c.	295 A.c.	270	295 A.c.	270	290	-
V19	picture fube	$\begin{gathered} \text { See } \\ \text { Diagram } \\ \hline \end{gathered}$	$\begin{aligned} 270 \\ 6.3 \text { A.C. } \end{aligned}$	150		$\inf _{320} 10$		$\begin{array}{\|c\|} \hline \text { Pin } 11 \\ 175 \end{array}$		Pin 12 :	${ }^{270}$

ALIGNMENT INSTRUCTIONS
 I-F and Sound Alignment Procedure

TV I-F ALIGNMENT

1. Tune receiver to quiet portion of TV High Band
2. Set contrast control fully counterclockwise

Connect TV I-F Signal Generator through a 1500 MMF condenser to Test Point (A) tuner unit: (See Fig. 4) low side to ground

Connect negative lead of V.T.V.M. (or meter of 20,000 ohms-per-volt, or better) to 8.2 k iode load resister TEST POINT (B); positive lead to ground. See schematic diagram
Feed $24.9 \mathrm{MC}(\pm .05 \mathrm{MC})$ from Signal Generator, and adjust T4 for maxinum deflec tion on meter.
1.5 colts at pead.
6. Feed $24.1 \mathrm{MC}(\pm .05 \mathrm{MC})$ from Signal Generator, and adjust T3 as above

Feed $22.3 \mathrm{MC}(\pm 05 \mathrm{MC})$ from Signal Generator, and adjust T2 as above
Feed $23.0 \mathrm{MC}(\pm .05 \mathrm{MC})$ from Signal Generator, and adjust T 1 as above.
9. Replace the meter with the vertical input of an Oscilloscope; low side to ground
0. Replace Signal Generator with a video I-F Sweep Generator.

Loosely couple high side of a TV I-F Marker Generator to the high Sweep Generator Lead; low side to ground.
. Feed I-F Sweep, and observe response on scope
3. If response does not approximate that shown in Fig. 5, repeat steps 3 to 8 , making sure that frequencies are precise, and that the Signal Generatol output voltage is kept low. Continue with steps 9 to 12. A slight touch-up of individual slugs may be

SOUND ALIGNMENT

Connect a 4.5 MC Signal Generator ($\pm 01 \mathrm{MC}$) through a 1500 MMF condenser to the 8.2 K video diode load resistor-TEST POINT (B) ; low side to ground. See schematic diagram.
Obtain two resistors of approximately 100,000 ohnis each, whose resistances have bee natched accurately with an ohmu
R19) at the 6 T8 tube socket (V4)
Connect negative lead of V.T.V.M. to junction of matched resistors of step 2; positive lead to ground.
Feed 4.5 MC ($\pm .01 \mathrm{MC}$) from Sismal Generator, and adjust L15 and bottom slug of for maximum deflection on V.T.V.M.
Sonnect positive lead of V.T.V.M. to junction of C25, C26, and R17-TEST POINT (C), Connect positive lead of V.T.V.M. to junction of is in step 4. See schematic diagram for TEST POINT (C)
Adjust top of T5 for zero output on VTVM. between two opposite polarity peaks

R.F. AND OSCILLATOR ALIGNMENT PROCEDURE

The oscillator adjustments are readily accessible from the front panel. If the picture out of range of the Fine Tuning control, slight readjustment of L7 and/or L8 (see Fig. 4) can be accomplished without an elaborate test set-up

The perforated bottom cover is removable, permitting access to the important align If prope test ecuipment is available, alignment may be performed, pa cicularly on table model receivers, without taking the chassis out of the cabinet

R.F. ALIGNMENT

1. Connect TV Sweep Generator to Antenna Terminals.
2. Couple R.F. Marker Generator loosely to Antenna Terminals.
3. Connect vertical amplifer of Oscilloscope throurh a 10,000 ohm $1 / 2 \mathrm{~W}$. resistor to TEST POINT (A), Figs. 3 and 4
. Short the A.g.C. Buss to ground on the TV chassis (across C34A 5000 MMF Single Section of Dual Discap condenser).
4. Set Station Selector to channel 13

MODELS 120, 121, 121B, Ch. 99 Ch. 100
rator, and 211.25 MC and 215.75 MC fixed frequencies from R -F Marker Generatol

Observe response curve on 'scope. If necessary, adjust L1, L3, or L4 (see Fig. 3) so the coupling between V 1 and l " 2 can be adiusted by bringing the wire "gimmic" (se schematic diagram) either further from, or closer to the .25 MMF condenser, C4. Caution. Do Not short "Gimmic" Wires.
8. Set Station Selector. Sweep Generator and Marker Generator at frequencies which correspond to channel 12 (see Table 1) and adjust wire-loop inductances on switch afers 2 and 3 which tune to channel 12 . so that observed curve approximates that Fig. 6
To adiust these inductances, carefully bend the wire lonps closer to, or furthe from the switch wafers. Sequence of waters 1 to 4 is from front to back of tuner
Repeat, as above, on channels $11,10,9,8$, and 7 (in that order) setting Station Selector, and test equipment at corresponding frequencies (see Tabie 1). Adjust cor wanding wire-lonp matamees on switch wafers $\underline{2}$ and 3 as above.
. If the tops of the response curves of channels 12 to 7 tilt in one direction, repea steps 5 and 6 and adjust 1.1 so that the response curve tilts in a direction which wil compensate for the tilt of the offending channels.
A compromise nust be reached where no channel is badly adjusted
Note: If uny individual channel is adiustel, all remaining high band channels which are lover in frequency must be re-adjusted.
Set Station Selector, Sweep Generator and Marker Generator at frequencies which correspond to channel 6 (see Table 1) and adjust inductances on switch wafers 2,3 and 4 which tune channel 6, so that observed response curve approximates that shown
in Fig. G. Caution: ADJUST ONLY IHEAVY-WIRE SECONDARY WINDING OF in Fig. fi. Caution:
12. Set Station Selector, Sweep Generator and Marker Generator at frequencies which correspond to channels 5, 4, 3, and \sum (in that order-see Table 1) and adjust corres ponding inductances on switch wafers 2,3 , and 4 so that observed response curve approximate that shown in Fig. 6
Vote: If uny individual low-band chumel is alifisted, all remeining channels lower in trequency must be re-adiusted.

OSCILLATOR ALIGNMENT

1. Connect TV Sweep Generator to Antenna Terminals
2. Couple R-F Marker Generator loosely to Antenna Terminais
3. Connect vertical amplifier of Oscilloscope across the video amplifier grid and ground (Pin 2 of 12AU7, V9).
Couple 24.75 mc . Video I.F. Marker Generator loosely to first I.F. grid (pin 1 of $6 \mathrm{BC} 5, \mathrm{~V} 6)$. This frequency remains fixed throughout oscillator alignment
Rotate Fine Tuning Control to center of range
4. Set Station Selector to channel 13 .
5. Set Sweep Generator to 213 MC at 10 MC sweep and Marker Generator to 211.25 MC (Video Carrier).
6. Observe response curve, and adjust L8 (see Fig. 4) for zero-beat with 24.75 MC marker. The zero-beat is indicated by an unmistakable break-up of the observed esponse curv
Note: Suality of response curve does not affect uccuracy of oscillator alignment, so long as zero-beat is obtained.
7. Set Station Selector, Sweep Generator, and Video Carrier R-F Marker Generator to channels $12,11,10,9,8$, and 7 (in that order) adjusting at the same time the corresponding inductances on wafer 1 for zero-beat with 24.75 MC marker. If zero-beat is within central range of the Fine Tuning control, alignment is satisfactory
8. Set Station Selector, Sweep Generator, and Video Carrier R-F Marker Generator at channel 6 frequenties (see Table 1) and adiust L7 (see Fig. 4) for zero-beat as above.
9. Set Station Selector, Sweep Generator, and Video Carrier R-F Marker Generator at frequencies of channels $5,4,3$ and Z (in that order) and ardust corresponding induct-

CHANNEL NUMBER	SWEEP GEN CENTERFREQ. (1OMC.SWEEP)	MARKER GENERATOR FREQUEVGIES	
		VIDEO CARRIER	SOUND CARRIER
2	37 Mc	55.25 MC	59.75 MC .
3	63 Mc	61.25 Mc .	65.75 mc .
4	69 mc	67.25 Mc .	71.75 MC.
5	79 mc .	77.25 Mc .	8175 mc .
6	95 mc	83.25 Mc	87.75 MC
7	177 Mc .	175.25 mc .	179.75 mC
-	183 mc .	181.25 mc .	185.75 Mc
9	189 mc .	187.25 MC	19.75 Mc .
10	195 mc .	193.25 mc .	197.75 mC .
11	201 mc .	199.25 mC .	203.75 MC .
12	207 MC	205.25 Mc	209.75 Mc .
13	213 mc .	21	215.75 Mc .

Below is given a description of the steps reauired in adjustment of the Beam Bender,
Defection Yoke, Focusing, Vertical and Horizontal Peaking and Horizontal A.F.C. How-

 panel controls.

fig. 1-front panel service adjustments
Before proceeding, tune in a station transmitting a test pattert
Re-adjust the Beam Bender carefully for maximum raster brilliance.
DEFLECTION Yoke adJustment

1. Loosen the wing thumb screv located at the top of the defection yoke frame 2. Rotate the yoke until the raster-lines are squared with the picture mask.
2. Make sure the yoke presses firmly against the flare of the tube and tighten the
wing screw.
C. FOCUSING ADJUSTMENTS
3. Adjust BRIGHTNESS and CONTRAST controls so that the raster brilliance cor-
4. If the corner of the raster is shadowed, loosen the Focus Coil Wing Nuts and shadow is eliminated. The focus coil she fould be positioned close to, but not necessarily touching the back of the deffection yoke. Tighten the wing nuts and screws
while the focus coil is held in this position. The Beam Bender may now require
slight readjustment. slight readjustment.
5. Adjust the focus control (see fig. 1) so that the lines of the raster are sharp and
distinct over the greatest screen area.

teremma	00			
8	117 V.AC 3 AMP PHONO PHONO MOTOR LHEFUSE JACK OUTLET			

Fig. 2 - rear panel adjustments
BEAM BENDER (ION TRAP) ADJUSTMENT

1. Advance the BRIGHTNESS control almost fully clockwise
D. PICTURE CENTERING, SIZE, AND LINEARITY
2. Horizontal or Vertical Centering is accomplished mechanically. To center the pic-
ture, loosen the Focus Coil Wing Nuts sufficiently to twist the Focus Coil slightly about its horizontal or vertical axis. Make sure the corners of the rasters are not
3. Adjust the VERTEPC-2. SIZE and VERTICAL LINEARITY controls (see fig. 1) Adjustment of either control may require readiustment of the other. If vertical synchronization "falls out," re-anjust the VERTICAL HOLD control.
4. Adjust the HORIZONTAL, SIZE control for correction of horizontal width.
5. Adjust the HORIZONTAL
6. Adjust the HORIZONTAL PEAKING control trimmer (see fig. 2) for a horizon center of picture.
7. Adjust the HORIZONTAL LINEARITY control (see fig. 2) for central alignment
of the inner circles of the test pattern.
E. HORIZONTAL A.F.C. ADJUSTMENT

If difficulty is encountered in locking the picture horizontally, or if it locks-in only
when the HORIZONTAL HOLD control is counterclockwise, adjust the HORIZONTA A.F.C. control as follows:

1. Turn CONTRAST down about half way.
2. Turn HORIZONTAL HOLD control fully clockwise.
3. If the picture is not locked-in, turn the HORIZONTAL A.F.C. control till it doe
4. Turn the HORIZONTAL A.F.C. control counterclockwise till it just tends to fal
out of sync. - This is the correct position of the HoRIZONTAL A.F. control for out of sync. - This is the correct position of the HOR
optimum range of the HORIZONTAL HOLD control.
5. Position the Bean Bender over the "flags" or kink in the gun structure. Starting
from this position, adjust the Beam Bender by moving it forward or backward,
and at the same tine rotating it slightly around the neck of the tube until the and at the same time rotating it slightly around the neck of the tube until the
brightest raster appears on the screen. If two maxinum brightness positions are found, the one nearest the tube base is the corrrect setting. This adjustment should
6. Adjust the BRIGHTNESS control setting until the raster is slightly above average

$16^{\prime \prime}$ Rectangular	$16^{\prime \prime}$ Round
160	1605
$160 B$	$1605 B$
162	1610
1600	$1610 B$
$1600 B$	

ELECTRICAL SPECIFICATIONS

Power Su
Power Consumption
Antenna Input Impedance
Tuning Range
I.F. System
I.F. Frequencies

117 Volts A.C.
60 Cycles Only
175 Watts
300 Ohms, Balanced
Channels 2 to 13
Intercarrier
Picture-24.75 Mc
Sound-20.25 Mc
Sound I.F. Aligned at 4.5 Mc
Loud Speaker
$5^{\prime \prime}$ P.M. or $10^{\prime \prime}$ P.M.
Voice Coil Impedance 3.2 Ohms @ 400 c.p.s.

$\begin{aligned} & \text { Hemm } \\ & \text { No. } \\ & \text { No. } \end{aligned}$	function	$\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$	Pin I	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9
v_{1}	R.F. AMPLFIER	Cags/becs	-0.7	0	6.3 AC	0	115	115	0	-	-
v2	OSCILIATOR.CONVERTER	6.6	103	75	6.3 AC	0	-3 to-4.5	$-410-9$	0	-	-
v3	audio output	$6 \mathrm{K6}$	N.c.	0	263	275	0	N.c.	6.3 A.C.	19	-
va	ratio det.-audio amp.	678	-0.8	-1.5	-0. 0	6.3 A.c.	0	-0.8	0	-0.7	53
vs	RATIO DEtector driver	GAU6	-0.1	0	0	6.3 A.c.	265	85	-0.6	-	-
v6	Ist VIDEO I.F.	$6 \mathrm{CC5}$	-0.5	N.c.	0	6.3 A.c.	130	130	0.7	-	-
v7	2nd VIDEO 1.5 .	$6 \mathrm{BC5}$	-1	N.C.	0	6.3 A.C.	130	130	0.7	-	-
vs	3rd VIoEO I.f.	6AU6	0	0	0	6.3 A.C.	130	130	1.1	-	-
v9	VIDEO AMPLFIER	$12 \mathrm{AU7}$	100	-0.7	0.2	6.3 A.c.	6.3 A.C.	150	-1	0	0
v10	SYNC. AMPLIFER	$12 \mathrm{AU7}$	135	0	3.8	6.3 A.C.	6.3 A.c.	285	-23	4	0
vil	A.G.C.-SYNC. LEVELER	6ALS	2.6	-23	0	6.3 A.C.	0	-	-0.2	-	-
VI2	Vert. oscillator	6C4	105	0	0	6.3 A.c.	105	-29	0	-	-
V13	VERT. OUTPUT	6V6/6W6	N.c.	0	270	270	0	270	6.3 A.C.	33	-
V14	hor. oscillator	6SN7	\rightarrow	175	10	-65	170	0	0	6.3 A.C.	-
V15	Hor. OUTPUT	6avs	5.8	6.3 A.C.	28	-	360	-	0	175	-
V16	HOR. DAMPER	$6{ }_{6}{ }^{\text {d }}$	230	N.c.	365	285	230	365	${ }_{*}^{270}$	27.c.	-
vir	h.v. RECTIFIER	+1×2	lıkv	likv	-	likv	11 kv	11 kv	-	11 kv	IIkv
vis	POWER RECTIFER	5046	N.c.	290	N.c.	295 A.C.	270	295 A.c.	270	290	-
v19	Picture tube	$\begin{array}{\|c} \text { Soe } \\ \text { Diagram } \end{array}$	$\begin{array}{\|c\|} \hline 270 \\ \hline-6.3 \text { A.C. } \\ \hline \end{array}$	150		$\begin{aligned} & \ln 10 \\ & 320 \end{aligned}$		$\begin{gathered} \text { Pin } 11 \\ 175 \end{gathered}$		Pin 12:	270 6.3.

1. Tune receiver to unued chonnel-no signol applied.
2. All frot ponel controls set ot maximum colchpile positions.
3. Mointain line voltoge of 117 volts A.c.

Values shown nore D.C volitages, meo.
to ground, unless otherwise stoted.

NOTES

measured with V.T.V
Use high voltoge insulted pobe
Top volue in D.C (voltoge to ground; bottom volue meosured
ocross filoment (Y-M.).
tuae location dacram - top vew

ALIGNMENT INSTRUCTIONS

I-F and Sound Alignment Procedure TV I-F ALIGNMENT

1. Tune receiver to quiet portion of TV High Band
2. Set contrast control fully counterclockwise
3. Connect TV I-F Signal Generator through a 1500 MMF condenser to Test Point (A) of tuner unit; (See Fig. 3) low side to ground.
4. Connect negative lead of V.T.V.M. (or meter of 20,000 ohms-per-volt, or better) to 8.2 K diode load resister TEST POINT (B) ; positive lead to ground. See schematic diagram.
5. Feed $23.0 \mathrm{MC}(\pm .05 \mathrm{MC}$) from Signal Generator, and adjust T4 for maximum deflection on meter. Maintain Signal Cienerator output so low that meter reads no more than
1.5 volts at penk.
6. Feed 22.3 MC ($\pm .05 \mathrm{MC}$) from Signal Generator, and adjust T3 as above.
7. Feed $24.1 \mathrm{MC}(\pm .05 \mathrm{MC})$ from Signal Generator, and adjust T2 as above
8. Feed $24.9 \mathrm{MC}(\pm .05 \mathrm{MC})$ from Signal Generator, and adjust T1 as above.
9. Replace the meter with the vertical input of an Oscilloscope; low side to ground
10. Replace Signal Generator with a video I-F Sweep Generator
11. Loosely couple high side of a TV I-F Marker Generator to the high Sweep Generator Lead; low side to ground.
12. Feed I-F Sweep, and observe response on 'scope.
13. If response does not approximate that shown in Fig. 5, repeat steps 3 to 8, making sure that frequencies are precise, and that the Signal Generator output voltage is kept low. Continue with steps 9 to 12. A slight touch-up of individual slugs may be required to approximate the recommended curve of Fig. 5

SOUND ALIGNMENT

1. Connect a 4.5 MC Signal Generator ($\pm .01 \mathrm{MC}$) through a 1500 MMF condenser to the 8.2 K video diode load resistor-TEST POINT (B); low side to ground. See schematic iagram
2. Obtain two resistors of approximately 100,000 ohms each, whose resistances have been matched accurately with an ohmmeter. Connect them in series across the 18 K resistor (R19) at the 6 T8 tube socket (V4)
3. Connect negative lead of V.T.V.M. to junction of matched resistors of step 2; positive lead to ground.
4. Feed $4.5 \mathrm{MC}(\pm .01 \mathrm{MC})$ from Signal Generator, and adjust L15 and bottom slug of T5 for maximum deflection on V.T.V.M
5. Connect positive lead of V.T.V.M. to junction of C25, C26, and R17-TEST POINT (C) leaving negative lead of V.T.V.M. connected as in step 4 . See schematic diagram fo
TEST POINT (C).
6. Adjust top of T5 for zero output on V.T.V.M., between two opposite polarity peaks.

R.F. AND OSCILLATOR ALIGNMENT PROCEDURE R.F. ALIGNMENT

1. Connect TV Sweep Generator to Antenna Terminals.
2. Connect R.F, Marker Generator loosely to Antenna Terminals.

RECORD-PLAYEROR
A Phono-Jack and a 117V. A.C. outlet are provided at the rear of the chassis (Sec g. 2) for connection of a record-player or changer. A TV-Phono transfer switch is con cealed behind the trap door on the front of the cabinet (See fig. I).

Connect vertical amplifier of Oscilloscope through a 10,000 ohm $1 / 2 \mathrm{w}$. resistor to Test Point (A) fig. 3.
. Short A.G.C. Bus to ground on TV chassis (across C34A 5000 MMF Discap condenser).
5. Set Station Selector switch to Channel 12
6. Feed 207 mc at 10 mc sweep from Sweep Generator, and $205.25 \mathrm{mc} \& 209.75 \mathrm{mc}$ fixed frequencies from R.F. Marker Generator
7. Observe response curve on Scope. If necessary adjust $\mathrm{C} 2, \mathrm{C} 3$, or C 4 (See fig. 3) so that response curve corresponds approximately to that shown in fig. 6 and has maximum gain
8. Check markers on response curve of all remaining channels, setting Sweep and Marker Generators at corresponding frequencies for each channel. See Table I for convenient tabulation of proper frequencies. If the R.F. Markers do not fall in automatically in their proper places on all channels, a compromise must be made by slight
readjustment of $\mathrm{C} 2, \mathrm{C} 3$, cr C 4 .

OSCILLATOR ALIGNMENT

1. Connect TV Sweep Generator to Antenna Terminals.
2. Couple R.F. Marker Generator loosely to Antenna Terminals.
3. Connect verticle amplifier of Oscilloscope across the video amplifier grid and ground (Pin 2 of 12AU7, V9)
4. Couple 24.75 mc video I.F. Marker Generator loosely to first I.F. grid (Pin 1 of 6BC5, V6)
5. Rotate Fine Tuning control to center of range.
6. Set Station Selector switch to Channel 12
7. Set Sweep Generator to 207 mc at 10 mc sweep and Marker Generator to 205.25 mc (video carrier).
8. Observe response curve and adjust C5, (figs. 3 \& 4) for Zero-beat with 24.75 mc marker.
NOTE: Quality of response curve does not affect accuracy of oscillator alignment. so long as a zero-beat is obtained.
9. Check for zero-beat on all channels in this manner, setting the Station Selector, Sweep Generator and Marker Generator at corresponding frequencies. (See Table I). it is not usually necessary to make any further adjustments. However, if the inaividual oscillator coils must be touched-up, the following procedure should be ,
a) Rotate Fine Tuning control to center of range.
b) Set Station Selector to desired channel, Sweep Generator to its center frequency with 10 mc sweep, and Marker Generator to the corresponding video carrier fre-
quency iSee Tabie i).
c) Place a non-metallic screwdriver through the opening marked 'Recessed Individual Osc. Adjustment', fig. 4, and adjust oscillator coil zero-beat with 24.75 mc marker on response curv
d) This adjustment can be repeated on any single channel, or, if necessary, on all channels.
e) If difficulty is encountered in tuning any particular channel well within limits of Fine Tuning control after these adjustments are made, readjust C5 slightly (as in Step 8) shifting the whole range of frequencies in the desired direction.
HANGER OPERATION
To operate phonograph, switch should be thrown to "phono" position. Sound volume is regulated by means of volume control as in the case of TV operation. (See main schematic diagram for circuit details).
R.ETUNER ADJUSTMENT POINTS

FIG.3-TOP VIEW

table I - alignment frequencies			
Channel NUMBER	SWEEP gen. centerfreq. (IOMG.SWEEP)	MARKER GENERATOR FREQUENCIES	
		VIDEO CARRIER	SOUND CARRIER
2	57 mc .	55.25 Mc	59.75 mc
3	63 Mc	61.25 Mc .	65.75 mc .
4	69 mc .	67.25 Mc .	71.75 Mc .
5	79 mc .	77.25 Mc .	81.75 mc .
6	85 mc	83.25 mc .	87.75 mc
7	177 Mc .	175.25 mc .	179.75 Mc
8	183 mc .	181.25 mc .	185.75 Mc .
9	189 mc .	187.25 Mc .	19.75 mc .
10	195 mc.	193.25 mc .	197.75 mc .
11	201 mc .	199.25 Mc .	203.75 Mc .
12	207 mc	205.25 Mc .	209.75 mc
13	213 Mc .	21.25 Mc .	215.75 Mc .

MODELS 160, $160 \mathrm{~B}, 162,1600$ 1600B, Ch. 101; 1605, 1605B, 1610, $1610 \mathrm{~B}, \mathrm{Ch} .102$

OJohn F. Rider

	OF APPROKIMATELY 100,000 OUMS EACH, WHICH HAVE BEEN MATCHEO ACCURATELY WITH OHMBETER. CDMMECT THEM IN SERIES, ACROSS IAK RATIO OETECTO RESISTO (') (9). USE JUnCTION OF mATCMED RESISTONS AS TEST MONT. 个 CTS AS SHOWH, WI SERIES IOA WECEIVERS Crisidmect io	- K". - Kllowns ALL CERAMC AHD MCA CAMMCITONS ARE m ALL messtons ane he mat ano nll meer sfinno.

John F. Rider

© John F．Rider

© John F. Rider

SYMPTOMS

Excessive Raste Brilliance; Brill. Cont. has little or no effect.

Trapezoidal Raster
Light and Dark Vertical Bars Left Side of Raster

Light and Dark Vertical Bars Right Side of Picture

Improper Focus or No Control of Focus

Brill CHECK
C.R.T cathode short;
C.R.T.

Deflection Yoke.
Horz. drive adjustment;
Horz. damper tube, 6W4 and associated circuit.

Last section of triple 40 mfd . input filter (CL 10039) for open or low capacity.

Focus coil; focus control circuit; picture tube; horz. drive setting.

Smeared Effect in Picture

6AC7; Video peaking
chokes for open.
Sound Bars in Picture Setting of fine tuning control; Incorrect slope on low freq. side of IF curve; 40 mfd . lytics in 140 V . line.

REMARKS
$12 A U 7$ and associated components;
No Vertical Sync. $\quad 12 A U 7$ and associated components
6SN7 and associated components.
No. Horz. Sync.

6AL5 and horz. phase detector circuit; horz. osc. control circuit.
0

For best results set horz. hold control in the center of its range and with weak signal input adjust A.
coil for horz. lock.

Can be caused by too much or too little Bf current
drain, shorted turns in
ocus coil, or gassy
picture tube.

SYMPTOMS

No Horz. or Vertical Sync.

Horiz. Syncs. in Center of Raster

Raster Very Rough on both Edges

Horizontal Nonlinearity.

Vertical Nonlinearity.

Weak Picture and Sound in Strorg
Signal Area

CHECK

12AU7; . 1 mfd . to C.R.T. grid for leakage; grid current in C.R.T.

6SN7; 6AL.5; improperly
connected Horizontal output
transformer.
Parasitics in 6BG6 horz amp; $10 \mathrm{mmf} \quad 1.5 \mathrm{KV}$ from damper plate; horz. drive; Horz. output trans; 6W4.

Horz drive and horz linearity controls; 6SN7 horz. osc; 6W4 damper, damper resistor.
Vert. size and linearity con-
trols; 6SN7 and associa circuit and voltages.
Weak RF, If, or video det. and amp. tubes; Check all voltages; Check for malfunctioning antenna system.

Sync. Buzz
Sound Alignment;

F Alignment;
4 mfd . Electrolytic
condenser in 6 T 8 circuit.
half $12 a t 7$

Too high a setting of the contrast control maycause the pictare to distort.

Leaking . 25 rafd. condenser on Pin \#4 6SN7 will cause foldover at bottom of raster
The R.F. and I.F. tuned circuits are precisely aligned at factory. Alignment should not be necessary except whencomponents directly connected with these

Improper Setting of fine tuning and contrast controls will cause sync. buzz.

© John F. Rider

The controls on the panel are: two ivory plastic wheels whose rims extend out on either side of the dial, two pointer knobs, the one on the right being dual purpose, two dual purpose knobs, and one single purpose
knob. This last knob has the same appearance as the dual knobs but is in one piece, being used to operate the TONE control and OFF-ON switch.
The HOR HOLD \& VERT HOLD and the BRILLIANCE \& CONTRAST controls are actually two knobs in one. There is a small krob in the center of the larger knob and these two can be turned separately. In the small window above each control is a legend describing the center knob whereas the circle refers to the larger pari of the knob.
Until you have used the receiver enough to know what each control does it will be best to follow a step by step procedure. This is given in skeleton form on the card which is attached to the receiver. These same steps
are described here in greater detail, with suggestions are described here in greater detail, with suggestions Your Midwest Radio-Television receiver provides radio reception, phonograph reproduction and television programs. Radio reception includes the standard American Broadcast band and the FM Broadcast band.
The three speed automatic record changer will play welve 10 inch records or ten 12 inch records or ten
intermixed sizes, either all standard, all long play microgroove, or all 45 rpm 7 inch, and stops after the last record is played. The receiver, on and must be turned off manually.
The television programs may be chosen from any of he television stations in your area.

The first step to select the type of entertainment you wish is to turn the SELECTOR lever. This lever has four positions where the following letters appear: TV phonograph, and radio bands AM-Standard American Broadcast and FM-FM Broadcast
To turn the receiver ON rotate the TONE control knob clockwise. The OFF-ON switch is operated by the firs few degrees of rotation of the TONE control after which it serves to change the tone, reducing bass and boosting high frequencies as it is rotated clockwise. Since th best fidelity is obtained when this control is at the intermediate point, it is best to leave it in this position
until all adjustments are completed after which it may be returned to the setting most pleasing to you. This will depend somewhat upon the kind of program being received.
Having selected one of the radio bands, preferably the American Broadcast band A for first trial, roll th VOLUME control wheel up to increase volume unti some sound or signal is heard.
To tune to any station roll the radio TUNING contro wheel up or down, upwards motion moves the dial TUNING drum moves the pointer to the left. TUNING drum moves the pointer to the leti.
The dial calibration for the A band, Standard Broadcast is from 55 to 160 , if you add a zero to these number cycles, WLW, appears on the dial as 70 .
Your FM Broadcast band is calibrated in channel numbers, these channel numbers were assigned by the Federal Communications Commission for the con venience of the general public. However, in many parts of the country FM stations use a frequency des ignation so that we repeat the calibration in megacycie

Adjust VOLUME for a comfortable level. You should be able to hear the TV program at this point. If you
do not hear it, turn the TV TUNING control full left and then slowly right until you do hear the program. The TV TUNING control knob is the round, brown knob behind the CHANNEL SELECTOR pointer knob The CONTRAST and BRILLIANCE controls are a dual concentric pair, the center knob is used to control picture brightness and the outer ring knob is used to adjust picture contrast. First turn the CONTRAST control full left, then turn BRILLLANCE control to the right only as much as is necessary to make a bright screen
The BRILLIANCE control should not be turned past the point at which the picture begins to grow larger, since detail is lost due to loss of focus.
Now advance the CONTRAST control, if necessary, to produce a visible pattern in black and white on the creen. It may be necessary to turn the BRILLIANCE control back so that the picture does not grow. will much contrast, even after everything is adjusted cause flickering and distortion or complete loss of holding so that it moves sidewise. The pattern then will probably be unintelligible because of rapid motion and down and sidewise, and there may be multiple patterns.
Before the HOLD controls are adjusted these motions are combined on the screen. The result is an appearance or iolent motion. You must first stop the vertical motion ill cou Vert hold control. Beginning with it in the ull counter clockwise position turn it slowly to the to be seen. Then proceed carefully to turn the control urther until it stops altogether. At this setting you will otice that the bar has been pulled into the oes not set it in motion again.
he HOR HOLD may now be rotated towards the posiwhere horizontal motion slows down. The first ffect will be a reduction in the number of diagonal lines, nearer to correct setting results in an upright he proper setting is reached a vertical black bar, much larger than the one observed in adjustment of the VERT HOLD, may be seen. This black area will slip into the left or right side of the picture screen. Further adjustment should then stabilize the picture so that no licker or bending occurs.
IT there is trouble reaching a steady picture, reduce the CONTRAST control again until the screen is dim and advance the BRILLANCE for visibility. During the he picture and require readjustment but the new seting will be close and much more easily found. Once hey are set and the receiver has been on for some time neither hold control should need further adjustment, since both the vertical and horizontal circuits ock in with the transmitter
he TV TUNING Control is primarily for tuning the picture to the very best detail. Starting from full left the the control is furned right there is first a point, fairly critical, where a herringbone pattern begins to show ver the entire picture. Turn slightly more and this pattern disappears. Further rotation to the right results in the herringbone pattern again. Past this second "patern" point the picture rapidly becomes weak and streaked. The best position is right between the "pattern" points and at this point the picture is best. There
may also be a buzz in the sound if the TV TUNING is mot set at this critical point

You have, of necessity, become familiar to some degree with the purpose of the CONRASI and BRLLIANCE CONTRAST is turned clockwise the BRILLIANCE control may need adjustment counter-clockwise, as this direc. ion of adjustment is continued, in small steps, the picure becomes more black and white with less of the grey nes which give you details in shadow and highlight reas. Note again that if too much contrast is used the cture will bend and distor. You must choose, by repeated wial serrings of de Bract for and CON NAST, istance, if you become lost or confused in this step art all over by turning the CONTRAST completely counter-clockwise.
his initial adjustment may seem involved at first Actually it involves only these steps

1. Turn receiver ON by turning the TONE control clockwise.
2. Select the Channel on which the desired television program is being broadcast.
3. Turn CONTRAST full counterclockwise

Advance the VOLUME control and tune in the sound with the TV TUNING control
the picture screen glows, then advance the CON. TRAST control until the picture appears.
o. Stop movement of the picture with the HOLD
7. Tune TV TUNING for sharpest picture

Adjust CONTRAST and BRILLIANCE for the desired shading.
After this, adjustments, necessary when the receiver is
ased again need only involve

1. Turn the receiver ON
2. Select the desired CHANNEL

Adjust VOLUME and TV TUNING for sharpest picture since
The HOLD
There is sufficient brightness available on the screen for comfortable viewing inside the home during daylight, unless in direct sun or skylight, and in the usual home ights the picture will appear much brighter and in hat case the panel lamps might be too noticeable, the ANEL LAMP switch is provided so that these may be furned OFF.
In the section following are described various controls not on the front panel which you can adjust to cure certain faults or failure

NON-OPERATING ADJUSTMENTS

There are a number of seldom used adjustments for entering the picture, correcting distortion in the piche picture to line up square on the screen. Some of these controls may never be needed but they must be available when aging of the parts, tube changes or some actual physical change is caused by violence (as may occur in shipment) makes it necessary to correct any of the things mentioned above.

MODELS $\mathrm{K}-19, \mathrm{KR}-19$, Ch.
$\mathrm{DJ}-19$; $\mathrm{P}-16$, $\mathrm{PR}-16$, Ch.

WARNING

It is here nacessary to warn you against reaching into the receiver past the rear apron. It is necessary to use voltages which can be deadly if contacted and in any case would result in an unpleasant shock, every precaution has been taken for your safety by enclosing the high voltage, 14,000 volts, in a metal cage, using low regulation of voltage and by using high safety-factor wire
for the lead to the kinescope. This is a bright red for the lead to the kinescope. This is a bright red
wire which is plugged into the side of the picture tube, if it has come loose the open end, although hooded by a rubber cup, may be dengerous. Other voltages do not exceed 400 volts but will supply considerable current and can also be dangerous these voltages are carried in the cables connecting the two chassis together and in the speaker cable.

The metal chassis and the controls on the rear apron of the chassis may be adjusted in complete safety if you do not at the same time handle any of the cables or wiring connected to the chassis, or when the receiver is disconnected or turned off.
HORIZONTAL SYNC. The horizontal hold control on the front panel is a vernier control and is not too critical in adjustment. The HOR SYNC control on the rear apron of the chasis is critical and some care should be used in its adjustment. As long as the panel control, HOR HOLD, can be used, do not touch the HOR SYNC but when the panel control must be turned full left or righ then, in small adjustments, rotate the HOR HOLD towards a center position and follow it with compensating adjustments of the HCR SYNC needed to keep the picture steady.

To obsorve the seroon whilo adjunting the controlt on the roar of th
chausis you will find the une of a mirror is vory holptal.
WIDTH. When the picture is too small or too large, both width"and height can be adjusted within limits. When the picture is too small because of low line voltage
weak tubes or mechanical reasons there may not be enough adjustment. The WIDTH control is a threaded screw and as it is screwed out the picture will slowly increase in width.
HEIGHT. To increase or decrease the size of the picture vertically rotate the HEIGHT control. Although the width and height are adjusted separately the final ad justment must result in a ratio of 4 units wide to 3 units high, or there will be distortion of the picture.
LINEARITY. Distortion of the picture proportions may still occur even with the correct aspect ratio in use. This this you can check if there is more than one television transmitter in your locality by comparing the test pat terns to see if the same sort of distortion occurs on both When this distortion is determined to be in the re ceiver, and is pronounced, correction may be undertaken, the work must be done when there is a pattern being transmitted. Each station has a variation of the fundamental pattern, one of these is shown below bul any pattern having a large circle will provide a picture where non-linearity is easily noticed in the distortion of the circle

VERT LIN control interacts with the HEIGHT adjustmen so that each control affects both height and linearity You will find that with increased height caused by a slightly more at the bottom bottom.
The VERT LIN control actually has most effect on the top half of the pattern, as this control is turned to increase the height, the top half of the pattern is stretched done most easily by reducing one of these controls for minimum height and then setting the other for correct height. Now advance the first control in small steps, at each step reducing height with the second control, as the pattern approaches good vertical linearity the adjustments should be made in still smaller steps. You must use your judgment as to the best relative setting of HEIGHT and VERT LIN.

There is no adjustment of horizontal linearity. This is held to the commercial limits of plus or minus 10%, this being evenly distributed. There is also a commercial limit of plus or minus 2% on trapezoid, pin cushion and barrel effects.
The only control over rotation of the picture is a mechanical one, and as a corollary, if the picture is not square in the frame there has been a disturbance of the mechanical adjustments. Besides this mechanical conol, ion rap adjustments are made with mechanically ary to concols. To make these changes it is neces additional hazard is encountered in addition to the additional hazard is

FURTHER WARNING

The kinescope (picture tube) being a large glass bottle with the inside evacuated, has a few tons of pressure over its surface because of atmospheric pressure. The face is thick but if a fracture of the sudden collapse occurs, the force of the resulting implosion may throw all sizes of pieces of glas with dangerous violence and in every direction The violence of the implosion can not be pre dicted and it may result merely in no more damage than would occur when a small lamp bulb is broken, further, the amount of abuse that the kineszope will withstand is likewise not predictable. Some of these large tubes have collapsed even when no visible or known force was used. To be safe, never hold the tube against the body or
handle it without gloves and eyeglasses or goggles. handle it without gloves and eyeglasses or goggles.

Here are the mechanical adjustments that can be used to rotate the picture in the frame, correct corner cutting the receiver is in the cabinet, you may remove the wood strip holding the paper tube over the small end of the kinescope.
FOCUS: Midwest uses an all PM focus unit, to change the effect of this device, there are two FOCUS ADJUSTthe effect of this device, there are illustration.
MENT SCREWS as shown in the ill
The screws are magnetic material so that they will provide a variable, alternate path for the magnetic field screw driver is used, it also distorts the magnetic field so that you should use a copper penny or a non-ferrous screw driver to adjust these screws.

This aspect ratio is transmitted by oll stations.

The same ratio must be "ised in
the receiver.

Otherwise -

© John F. Rider

At one certain position there will appear very fine horizontal lines in the picture screen, at a viewing distance of several feet these would not be visible and this may be the best setting. If you prefer, however, a small amount of rotation in either direction will cause the picture to smooth out and appear slightly better in you are going to w

CENTERING: To center the picture on the face of the kinescope, there is a sliding aperture plate in the focus unit, this plate is moved by the CENTERING CONTRO SICK so that the axis of the magnetic field in the gun

UP and DOWN motion MOVES piclure SIDEWAYS -

 SIDEWAY motion MOVES picture UP or DOWNPICTURE CENTERING STICK

FOCUS ADJUSTMENT Turn these screws in or out as needed to sharpen the fine horizontal lines which moke up the picture. USE ONIY BRASS OR NONMETALIC SCREWORIVER, OR COPPER COIN
of the kinescope is tilted. Because of the way the plate is held, the movement of the CENTERING STICK combines the vertical and horizontal movement of the picture, if you ser up a mirror in front of the receiver and watch the picture in the mirror while adjusting the CENTERING, this is not a diffcult adjustment. The illus tration above shows roughly the relation between the motion of the picture and the motion of the CENTERING STICK.

TO ROTATE the picture in the frame you simply loosen the WING BOLT one half turn and, using it as a handle rotate the DEFLECTION YOKE in the metal tube to straighten up the picture. The receiver must be oper ating for you to observe the correction being made otherwise you will need to make a number of tria adjustments. Each time the WING BOLT is loosened the yoke must be pushed forward, using the paper collar which is exposed between the metal yoke between the rotation of the picture ond the yoke is direct, being in the same direction and amount, be sure to tighten the bolt only after the yoke has been pushed forward against the kinescope
THE ION TRAP is a device for removing ions from the electron beam generated in the gun of the kinescope The ions removed are molecules of mafter which have a negative charge and if allowed to remain in the electron beam will eventually cause a dark spot in the center of the kinescope tube face since they continually strike a small area, not being as easily bent from thei path by the magnetic fields used to bend the electron beam. This function is not demonstrable but you may be sure it is operating if there is a picture on the screen, since wrong placement of the ion trap, or no rrap, on tubes designed for them resulis in no picture or light on the screen or in a corner of the picture being cut off. The aluminized kinescope and hard vacuum kinescopes do not use ion traps.

There are numerous types of ion traps, all differing in appearance but identical in action. Two types are illustrated here, showing approximate location on the gun of the kinescope.
The principle involved is the same one used by the mass spectograph where isotopes are separated. If the on trap is placed on the kinescope as shown here, only slight movement will be needed to give you the desired results. First, rotation will show that light intensity is peaked at one point and second, longitudinal move ment will show a cutting of picture corners except a one point, by combining the back and forth motion with rotation side to side will quickly show you the optimun setting.

Note: If polarity of the magnets are reversed these traps would be up instead of down, as shown. Either position is OK .

There are no more corrective adjustments unless the chassis is removed from the cabinet and these adjustments must then be moved only when service equipment is used to make and check them. However, you will find some information of interest to you in the following section on service and we suggest that you should finish reading this manual
of black areas, this is the result of loss of all low video frequency detail. To correct this trouble insert an attentuator pad in the 300 ohm line to the receiver antenna terminals. The values shown here are recommended, using only carbon resistors and adding sections until detail is obtained in the picture.

Interference from unwanted signals, such as the image of an FM station or high frequency diathermy and automatic control devices should be eliminated as far as possible with relocation of the antenna.
To reduce interference from shortwave stations, parallel tuned traps may be installed, one in each lead of the strong short wave interference additional RF filter may be necessary in the power line, your Midwest receiver has two .01 mfd . condensers from the lines to chassis. Interference from VHF stations may be attenuated by an open stub wave trap. Cut a length of twin lead which is $1 / 4$ the wave length of the interfering station (reduce length by the V. P. factor), connect one end across the antenna terminals and leave the other end open. This effectively shorts the lead-in at the interfering fre-

Black dashes - caused by ares or ignitions systems
quency only. If using 300 ohm twin lead with a V. P of 82% divide 201 by the station frequency in MC for the answer in feet. In fringe areas a directional narrow band antenna will discriminate against inter ference, a tuned "booster" would also increase the selective characteristics of the receiving set-up. Adjustment of the controls, both operating and concealed non-operating is described in detail in the two sections of this manual immediaily precedig. Falen to slight non-linearity in the picture can be caused by

Herringbone effect
caused by radio frequency only

Sound bars -
caused by modulated carrier

Loss of detail. caused by excessive signal

$$
\begin{aligned}
& \text { MODELS K-19, KR-19, Ch. } \\
& \text { DJ-19; P-16, } \mathrm{PR}-16 \text {, } \mathrm{Ch} . \\
& \mathrm{D}-\mathrm{w} \\
& \mathrm{DR}-16
\end{aligned}
$$

(5) a. Accurate CW marker signals at 21.25 and 25.75 .
b. Accurate CW marker signals for RF alignment at

Channel	Video MC	Sound MC	Oscillator MC
2	55.25	59.75	81
3	61.25	65.75	87
4	67.25	71.75	93
5	77.25	81.75	103
6	83.25	87.75	109
7	175.25	179.75	201
8	181.25	185.75	207
9	187.25	191.75	213
10	193.25	197.75	219
11	199.25	203.75	225
12	205.25	209.75	231
13	211.25	215.75	237
(6)	Crystal	probe for detection of resonant response	

(6) Crystal probe for detection of resonant response Aor display on the oscillograph.
7) Accurate CW signal at 4.5 MC for Picture Sound IF. (8) Accurate CW signals from 20 to 26 MC for Pix IF point alignment.
(1) $156 \mathrm{KC} \pm 250 \mathrm{KC}$ deviation for FM IF
(10) 456 KC AM modulated for AM IF.

Radio Band	Coil Adj.	Trimmer Adj.
AM	560 KC	1500 KC
FM	-	

is combined in the RCA WR-59A 105 MC ator but there is no objection to separate generators and the 0-10 MC video sweep is not necessary unless the components in the video amplifier are replaced with physically or electricall Y different components. Complications caused by this sort of repair are very difficult Tem (5),
Hem (5), (7) and (8) is combined in the RCA WR-39A
calibrator and in the Kay Electric megamarkers, but calibrated generator or crystal calibrator which you have ohecked against some frequency standard may be used, the markers should provide 1 or 2 volts so that the coupling may be very loose, and ideally should be by radiation.
The television RF response is shown here, the frequency of the markers for Pix carrier and sound carrier were given previously with the list of marker frequencies needed.
The schematic shows the frequencies for the Pix IF The Pixt together with the procedure and final curve schematic.
The television RF circuits are overcoupled and only appropriate alignment techniques may be used, unless you are sure of your equipment do not touch the RF circuits.
The alignment points are shown on the top and bottom Views of the chassis as well as certain part numbers. transformers and six adjusiments, the transformers are coupled with less than critical coupling and there is only one peak. Couple the generator into the mixer grid and use either AVC or audio for the output meter. FM IF should be aligned at 10.7 MC . There are four transtormers and eight adjustments, the transformers are over-coupled and must be aligned with a scope and sweep generator.

1. Connect generator to 3rd IF grid and vertical input of scope to the audio of the receiver at any point be properly adjusted.
2. Adjust the top screw for greatest length of straight line. This is the secondary winding, the bottom screw should give improvement in signal level. doestor has a preater deviction the detector capability.

capablity

with the audio output of the receive
C is preferred because it shows the limits of deviation and you obtain it simply by adjusting the deviation (sweep width) control on the signal generator. Approximately 150 KC is normal
3. Connect generator to 2nd IF grid and adjust the 2nd IF slugs for maximum signal and band width. This You can be sure of by the amount of hook at the
ends of the line on the scope. Repeat this procedure for 1 st IF grid and mixer grid. Adjust for greatest signal without appreciable loss of band width. Alternate Method: The 1 F response of the 1st, 2nd and 3rd transformer may be observed more directly if you use a crystal detector at the plate of the tube following the transformer and feed the vertical plates of the scope from that point. Feed signal into grid of tube preceding transformer. Use a CW marker at 10.7 to be sure the double peaked response each stage separately. Notice: Do not use AM
transformers. Regeneration may result and bandwidth and noise rejection will be poor, although signal strength will increase.
FM RF should be trimmed at 105 MC. There should not be any reason to adjust the low end but if this is necessary it can be done by distorting the FM coils on the tuning gang.
AM RF should be peaked at the high end with the trimmer and at the low end by core adjustment.
Notice: Use as low signal input as possible for readable through 150 ohms in each lead to "A-A." Use 400 ohms in lead from AM RF generator and connect to either

Oscillator Realignment Instructions

1. Set fine tuning $1 / 8$ way.
2. Align channel 13 oscillator by means of screw.
3. Check frequency of channel 13 thru 7. They all should fall within $1 / 3$ of the range of the fine tuning.
4. Align channel 6 oscillator by means of screw.
5. Check frequency of channel 6 thru 2. They all should fall within $1 / 3$ of the range of the fine tuning
Note: After replacement of parts, if the original L/C ratio in the oscillator has been altered, it may be necessary to re-align the incremental loops in the switch, to obtain correct frequency for every channel. Pushing the loops in increases the frequency. This must be done in order, from 12 to 7. For the will increase the frequency. This operation must be done in order from 5 to 2.

Band Pass Realignment Instructions

1. Use R.F. Sweep \& Oscilloscope to the test point
2. The oscillator must be operating at nearly the correct frequency for each channel.
3. Align channel 13 R.F. plate and mixer grid by spreading or pushing together the turns. Use hould be increased or dether the inductance should include both or decreased. The band pass Align the antenna coil by spreading or pushing the last turn to obtain flat response, usually then the frequency of the antenna coil falls at the center channel frequency or nearly so.
4. Align the incremental loops of the plate and grid rom 12 to 7 in that order. Pushing the loops in increases the frequancy.

Align channel 6 R.F plate, mixer grid and antenna to obtain a flat response, with maximum gain. Use tuning wand to determine what change is necesary. Band pass
and have steep sides.
6. Align incremental coils of R.F. plate, mixer grid and antenna from 5 to 2, in that order. Spreading coils increases the frequency.

For dial stringing use a light weight dial cord such as Bevin-Wilcox 6-18 Imperial silk cord.
If replacement parts of identical manufacture and rating are not available for service repairs these should be
ordered from Midwest Radio \& Television Corporation, giving model number and serial number of the chassis and name of the part. Repair data for the recor
Repair data for the record changer mechanism is avail

, sarately, please specity Mode

REVISIONS -- October 25, 1950

1. The 1 K 1 W resistor in the 6 AQ 5 video tube plate should be changed to $1.5 \mathrm{~K} 1 \mathrm{~W} 10 \%$; this will make a total of 3 K in the plate load for better low frequency response.
2. To reduce regeneration on the FM band, . 01 mfd ceramic condensers may be used to bypass heaters at the 2nd and 3rd 6BA6 IF tubes.
3. To make trimming less critical 10 or 15 mmfd may be added across the FM oscillator gang section. Use zero temperature co-efficient ceramic condensers.
4. Grid resistor of the 3 rd Pix IF should be changed from $12 \mathrm{~K} 10 \%$ to 22 K , and Pix IF aligument frequencies revised as follows

The 1st Sound Trap should be adjusted to slightly less than 21.25 MC to reduce the response below that frequency. This will improve the tuning characteristics.
5. The tuning gang should be grounded at the division plate between RF and and Mixer sections to the mounting screw of the Mixer Coil Plate. A ground lug may be used under the Mixer Coil Plate mounting nuts and bent over to touch the gang division plate where it should be soldered. This will reduce FM RF regeneration.
6. To improve both sync and sensitivity a 5000 ohm 10 watt resistor should be put in parallel with the end section of the "Candohm," from the terminal supplying 215 V to the 100 V terminal. This will increase the " B " on the Pix IF tubes and on the tuner.

MODELS K-19, KR-19, Ch.
DJ-19; P-16, PR-16, Ch.

These models use 20 Tubes (Including Picture Tube and Rectifiers) and employ an inter-carrier sound circuit. e picture Tube in both receivers is the $16 \mathrm{TP4}$. Both receivers use ratio detector for the sound SAFETY PRECAUTIONS: The kinescope should be handled
gloves and protective goggles as an added precaution.
When the poweris connected, care must be taken in servicing the High Voltage Supply of these receivers. The interlock pens one side of the line only leaving one side of the lite.
chassis out of the cabinet the interlock-socket can be shorted.

VOLTAGE READINGS: The voltage readings to be obtained at various locations in the receiver have been indicated on the chematic diagram. These voltages will be very advantageous when trouble shooting. Check voltages, tubes, fuse and sortom-montiz 11 voltages were taken with a 117.5 V . Ine and with no signal Inpul. The contrazt control set at the maximum clockwis position; the brightness control at 50% rotation and all other controls in normal operal position. The tuner set for Chanel 2 All voltages are positive with respect to ground unless otherwise indicated.

frequemcy chart									
CHNWEL	CHNWEL FREQ.MC.	PICTURE CARRIER M.C.	$\begin{gathered} \text { somion } \\ \text { CARRIIER } \\ \text { M.C. } \end{gathered}$	RECEIVER RF. OSC.	CHANEL	OUWNEL freq.mc.	PICTURE CARRIER	$\begin{gathered} \text { SOXND } \\ \text { CARRIER } \\ \text { M.c. } \end{gathered}$	$\begin{aligned} & \text { RECEIVER } \\ & \text { RF. osc. } \\ & \text { M.c. } \end{aligned}$
2	54.60	55.25	59.75	81.35	${ }^{8}$	180.186	181.25	185.75	${ }^{207.35}$
3	60.66 66.72	¢61.25	${ }^{65.75}$	-87.35	${ }_{10}$	188.192 192.198 1208	187.25 193.25 1	19, 197.75	219.35
5	76.82	77.25	81.75	${ }^{103.35}$	11	198.204	199.25	203.75	${ }^{225.35}$
${ }_{7}$	82.88 174.180	87.25 175.25	87.75 179.75	109.35 201.35	12 13	(10.216	-	215.75	237.35
if. fric. m.c.									
Plic	Reamar		$\begin{aligned} & 26.1 \\ & 21.6 \end{aligned}$						

These receivers use a permanent magnet (PM) type of focusing. This focalizer is attached to a plate which is mounted behind the Yoke

ENTERING OF PICTURE: The picture may be centered in relationship with the opening of the glass panel at the face the receiver by shifting the brass centering stud at the rear of the focalizer. (See top view of chassis on Page 2). FCUS ADJUSTMENT: (The focus adjustment must be made with a screw-driver of non-magnetic material.) The focus adjustment (the large slotted screw) is located at the rear or the focalizer. The picture focus is adjusted either increasing or decreasing the amount of screw insertion to either decrease or increase the magnetic flux as quired.

CONTROL OPERATION

HEIGHT CONTROL (Rear Apron of Chassis) To increase the vertical size of the picture; turn this control in a counter HEIGHT CONTROL (Rear Apron of Chassis) To increase the vertical size or the picture, ERTICAL LINEARITY: (Rear Apron of Chassis) As this knob is turned to the left
op half of the picture is increased vertically; as it is turned.clockwise, it is reduced.
Horizontal line.arity: (Top of Chassis - See Layout on page 2) moving the slug out of the coll increases the left hand side of the picture and moving the slug in decreases the left and increases the right hand side.
WIDTH CONTROL: (Top of Chassis - See Layout on page 2) Screw slug in to increase width and out to decrease width
HORIZONTAL FREQUENCY: (Top of Chassis - See Layout on page 2) Locate the horizontal hold control (located on front apron) in the center of its rotation. Adjust horizontal frequency screw to lock in picture. When properly adjusted
the horizontal hold control should hold in the picture when the picture is turned approximately equal amounts from the center position.
HORIZONTAL DRIVE: (Screw Driver Adjustment on rear apron of chassis) Turn counter-clockwise to increase drive and clockwise to decrease drive. Drive should be as high as possible without producing a bright vertical line on the raster.
CAUTION: INSUFFICIENT DRIVE WLLL OVERLOAD HORIZONTAL DRIVER (BBQGGT).

TUNER ALIGNMENT

The tuner should normally retain its alignment and need no realignment in the field. However, if it is tampered with or a condenser or resistor is replaced due to failure, realignment may be necessary but should not be attempted until the video I.F. is aligned. If a part is replaced be careful not to disturb any other parts and the replacement part should be placed in the same position as the previous part and with the same length of leads.

This tuner employs a gang condenser which retains its alignment. The adjusting is accomplished at the high and low ends of the two bands; channels 6 and 2 , and 13 and 7 .

The oscillator trimmers act independently, but the R.F. and mixer trimmers must be aligned first on the low channels as they are in parallel with high band trimmers.

Connect the antenna lead to the sweep generator which must terminate in 300 ohm. Connect signal generator to piece of wire and wrap around 300 ohm antenna lead. (If sweep generator has sound and picture markers the signal generator is not necessary.)

Adjust channel 6 first. Set the tuner to the center of channel 6 and set the signal generator to the picture carrier (83.25 MC). Adjust the low band oscillator trimmer (C10) to bring the marker approximately 60% up from the base of the curve. As this trimmer is increased in capacity the marker should move towards the top of the curve. If this is not the case, the marker is on the audio side of the curve. Reduce the trimmer until the marker is on the other side of the curve. Next adjust the low band R.F. (C5) and Mixer trimmers (C6) to give maximum sensitivity on the oscilloscope being careful to have sufficent width on the audio side of the curve. Check channel 2 with a marker frequency of 55.25 MC .

Adjust channel 13 in the same manner as for channel 6 except using the High Band trimmers (RF-C15, Mixer C16, and Oscillator C19) and the picture marker frequency which is 211.25 MC. Check channel 7 with a marker frequency of 175.25 MC .

ae complement and		no voltage rea		Adings - For receners using				ST'0. TUNER			
itemmo	function		PINI	PIN2	PIN 3	PIN4	Pins	Ping	Pin7	PINB	Ping
v_{1}	Picture tube	OLIEARAm	-	2	PINTIO:	245v;	Pinl:	16 V ;	PIN 12:	6.3 AC	
${ }^{2}$	R.E AMPLIFIER	${ }_{6 A G 3}$	-0.7	0	6.34 C	0	118	118	0	-	-
$\checkmark 3$	OSCLl Lator-converter	6 6 6	105	77	6.3AC	\bigcirc	t-30-4s	${ }^{\text {P/4 }} 100-9$	-	-	-
v4	avoio output	* 6 v 6	N.a	6.3AC	190	200	-9	0	0	0	-
vs	RATIO Det. - AVOIO AMP	-678	-0.3	-0.7	-0.3	6.3 Ac	-	-	-	-1.3	100
v6	ratio detector oriver	* 6 aug	4	5	-	6.3ac	200	35	4	-	-
$v 7$	Ist video i.f.	gaug	-1.5	-	-	6.3 AC .	130	130	0.6	-	-
ve	2 No viceo i.f	6463	-1.5	0.8	0	6.3 AC	130	130	0.8	-	-
v9	3 RD VIDEO I.F.	6463	-	1.2	-	6.34 C	130	130	1.2	-	-
vio	VIDEO Det. - a.c.c.	6als	2	-3	-	6.3 AC	-3	-	-0.5	-	-
v11	VIOEO AMPLIFIER	6act	-	-	0.2	-3	0.2	130	6.3 AC	120	-
vi2	OC REST.-CLIP-SEP-AMP.	6 Sn7	-	120	5	0	7	2	6.34 C	-	-
vi3	hor.phase oettector	6als	3	-1.7	-	6.3AC	-	\bigcirc	\bigcirc	-	-
$v 14$	Vert sweep oschllator-output	6snt	-35	125	\bigcirc	-	340	13	6.3AC	-	-
vis	Hor. swe ep oscillator	6SNT	0.4	250	10	-7	110	10	${ }_{6.3}{ }^{\text {ac }}$	0	-
vi6	Hor. SWEEP OUTPUT	68660	-7.9	0	0.5	N.c.	-7.5	N.C.	6.3AC	260	-
vir	HIGH VoLtage rectifier	- 183	-	$\phi_{8.5}^{10 \mathrm{kV}} \mathrm{kV}$.	-	-	-			-	-
V18	horizontal damper	6 wa	0.6	130	420	n.c.	350	N.c.	130	130	-
vis	power rectifier	3046	N.c.	400	N.c.	385 Ac	N.C	з85ac	n.c.	400	-
 Vin UML SS OTHERME SEAMED. - t-varies with chammel se ttimg											

Although each receiver is correctly adjusted at the factory, rough handling during transit and aging of components may cause misalignment of the critical circuits. If picture and/or sound defects indicate that re-alignment is warranted, carefully follow the of the receiver which is defective, avoiding for example, re-alignment of the r-f stages if "touching-up" the i -f section clears the trouble.
SERVICE EQUIPMENT-The quality of your test equipment is second in importance only to the manner in which it is used. To perform satisfactory alignment, the calibration of the r-f and i-f generating equipment should be within the limits specified below, or uniform resettability as well as for individual dial reading. The signals generated by these instruments, and shaped by the or Scope to test, must be faithfully recorded on the V.F. equipment which meets the following specifications:

R-F SWEEP GENERATOR
a) Frequency Range: 18 to 30 mc ., 50 to 90 mc ., and 170 to 225 mc
b) Sweep Width: Variable up to 10 mc
c) Output: Constant over sweep width at any center fre quency, and "flat" on all ranges and all attenuator positions, with maximum output of at least .1 volt.
d) Output Impedance: $\mathbf{3 0 0}$ ohms balanced to ground.

2. R-F MARKER GENERATOR

a) Frequency Range: 18 to 30 mc ., 50 to 90 mc ., and 170 to 225 mc .
b) Calibration: Accurate to within +05 mc at any freqency c) If marker generator output voltage is sufficient, it may also be used as a signal generator; if not, a separate sig nal generator is required whose frequency may be accurately checked with the marker generator.
3. I.F. MARKER GENERATOR:

This piece of equipment is required in addition to the r-f marker generator for proper alignment of the H.F. Oscil lator section of the R-F tuner unit.
a) Frequency: 24.75 mc
b) Accuracy: Within $\pm .05 \mathrm{mc}$.
4. 4.5 MC SIGNAL SOURCE:
a) Accuracy: Within $\pm 0.25 \%$, or $\pm 10,000 \mathrm{cps}$.
5. CATHODE-RAY OSCILLOSCOPE:
a) Vertical Sensitivity: .07 volts-per-inch if r-f sweep generator provides .1 volt output.
b) Vertical Response: A wide-band scope is not necessary for r-f, osc., or i-f alignment, so long as the low-frequency response is satisfactory and does not cause excessive phase shift.
6. VACUUM TUBE VOLTMETER
a) Response: To 4.5 mc with a detector probe.
b) Range: As low as 3 volts d-c., zero-center scale.
c) Accuracy: Extreme accuracy not essential for alignment.

TELEVISION RECEIVER ALIGNMENT CHART

CIRCUIT ALIGNED	STEP	SIGNAL GENERAT CONNECTIONS	$\begin{aligned} & \hline \text { TOR } \\ & \hline \begin{array}{l} \text { FREO. } \\ \pm .05 \mathrm{MC.} \end{array} \end{aligned}$	CONNECT d.C. V.t.V.M	ADJUST	REMARKS
	1	tune receiver to quiet portion of tr high gand SET CONTRAST CONTROL AT MIN. (COUNTERGLOCKWISE) FOR TVI-F ALIGNMENT				
$\begin{aligned} & \text { TV } \\ & 1 .{ }^{2} \end{aligned}$	2	$\begin{aligned} & \text { THROUGH ISOOMMNF } \\ & \text { CONONSERTO CONV } \\ & \text { GRIO ANO GROUNO } \\ & \text { SEE NOTE *। } \end{aligned}$	24.0 Mc .	ACROSS VIDEO DIOEE LOAD - MGG SIDE TO JUNCTION OF LS L 6 AIOA -LO SIDE TO GROUND. I IN LATEST MODELS. THE PEAKING COILS AAE DESIGNATED LIS ANO LIG INSTEAD OF LS	T4	ADJUST FOR MAXIMUM OEFLECTION ON VTTVM OUTPUT VOLTAGE AT A MINIMUM TO AVOD OVERLOAD.
	3	"	22.0 mc .	" n "	T3	" " -
	4	*	24.3 mc.	" " -	T2	" •"
	5	"	22.9 MC	" " "	TI	VISUAL CHECK-UP DESIRABLE FOR TOUCH-UP OF GANDPASS CIRCUIT. SEE NOTE *2
$\begin{aligned} & \text { SOUND } \\ & \text { TAKE-OFF } \end{aligned}$	6		4.5 Mc	negative lead to junction of rz2 a R23 (LOCATEO AT GTE RATIO DET.) POSITVE CEAD TO EITHER SIDE OF C4I 4 MF CONDENSER	$\begin{aligned} & \hline \text { TS TOP } \\ & \text { TS BOT. } \\ & \text { TS TOP OR BOT. } \\ & \text { SEE NOTE } 3 \text {. } \end{aligned}$	$\begin{aligned} & \text { ADJUST FOR MAXIMUMM } \\ & \text { OEFLECTION ON V.T.V.M. } \end{aligned}$
$\begin{aligned} & \text { RATIO } \\ & \text { OETECTOR } \end{aligned}$	7	"	4.5 Mc .	NEGATIVE LEAD TO JUNCTION OF R 22 a h23 (located at gte ratio det.) R2TiTiVE LEAD TO JUNCTION OFC43,C45 a R24 (OUTPUT OF DEEMPHASIS NETWORK)	T6 BOTOR TOP SEE NOTE*3	ADJUST FOR ZERO OUTPUT ON V.TV.M. GET WEEN A PLUS and a minus peak.

JJohn F. Rider

Video I-F and Sound Alignment

NOTE \# 1-The following description will aid in locat- low that the v.t.v.m. reads only about 1.5 v.d.c. at peak ing the signal injection point for each of the two types adjustment. During visual re-inspection, a slight touch-
of tuners used:
up of the individual slug adjustments may be necessary
a. G.I. Tuner-Physically at Point (A) in Fig. 11 ; (across R5 and C27, see Fig. 10).
b. Standard Coil Tuner-Physically at Point (A) in Fig. 12; (across $\mathrm{R} 4-220 \mathrm{~K}$ resistor, see main schematic diagram).

Where the available signal generator output voltage is sufficient, it is preferable to couple directly around the converter tube. This method has the advantage of causing less loading, less de-tuning, and less wave-form distortion; and where the signal injection point is difficult to reach, it may be more convenient. To couple in this manner, slip a tight-fitting conductive shield over the converter tube, being careful not to ground the shield
to the tuner chassis. Connect the signal generator high to the tuner chassis. Connect the signal generator high
output end to the shield, the low end to ground. output end to the shield, the low end to ground. NOTE \#2ponent values, it is highly recommended that a visual three types, depending upon the period of production. In alignment of the i-f response be performed after align- some receivers, transformer types "A" and " B " are ment has been completed by the signal generator- used, having the primary slug (adjustment for maxiv.t.v.m. method. If, after the procedure given below is mum voltmeter deflection) on bottom, and the secondary followed, it is found that the response curve differs slug (adjustment for zero output between plus and greatly from that shown in Fig. 11, repeat alignment minus peaks) on top. In other receivers, transformer using the signal generator-v.t.v.m. method, making type " C " is used, having the slugs reversed; primary on
certain that the frequencies are precise, adjustments are top and secondary on bottom. Table 1 will aid in disaccurate, and that signal generator output voltage is so tinguishing between the three types.

R.F. and Oscillator Alignment

Alignment of the radio-frequency and oscillator stages II. OSCILLATOR ALIGNMENT PROCEDURE (See involves adjustment of the "front end" tuner unit. This Fig. 9).
up of the individual slug adjustments may be necess
to approximate the recommended curve of Fig. 6. tion. Marker pips should be kept barely visible. portion of the receiver is the most critical, hence re-alignment should be resorted to only after its need has been definitely determined.
a) Maintain the Contrast control at minimum setting.
b) Replace the v.t.v.m. with the vertical input of the oscilloscope; across the video diode load resistor. Keep the leads away from the receiver.
c) Replace the signal generator with a sweep generator which has been set to sweep the i-f frequencies over a range of about 8 mc . Use the preferred method of direct tube coupling described in Note \#1.
d) Loosely couple the high side of the marker generator to the high sweep generator lead; low side to ground.
IMPORTANT: Keep the sweep generator and marker generator outputs at minimum to avoid curve distor fre which represents the the oscilloscope screen a pattern fier. The r-f marker generator, which is loosely coupled the antenna terminals, serves to accurately locate represented fequency (video carrier or sound carrier deally type of tuner tested. Bhown in Fig. 7 regardess of the ent, the A G.C buss is shorted to ground at the low end of the 1st i-f grid resistor, R53. If the output im pedance of the sweep generator is neither 300 ohms nor 150 ohm to ground, a dummy antenna, consisting of two of the output cable of the sweep generator.

Fig. 9).

s in r-f alignment, the TV sweep generator and r-f marker generator are connected to the antenna termia the sweep generator set to the center frequenc carefully adjusted to the r-f video carrier frequency of hat channel. Differing from the r-f set-up however, the oscilloscope is now connected directly across the video diode load impedance while an additional i-f marker genadjusted to 24.75 mc , the correct i-f frequency of the video carrier. On the scope, which is swept horizontally at the same rate as the r-f sweep generator, is seen the verall response curve of the receiver-from the antenna to the diode detector. If the oscillator is correctly adjusted, the "beat" between the oscillator voltage and he incoming video r-f signal will be exactly 24.75 mc . In turn, this 24.75 mc signal resulting from conversion will zero-beat with the 24.75 mc i-f marker, causing ripresponse curve. If, on the other hand, the oscillator is incorrectly adjusted, the frequency of the converted video i-f signal will be something other than 24.75 mc , and there will be no zero-beat. Therefore, by adjusting he oscillator for zero-beat on the response curve, a simle and highly accurate means of alignment is achieve
Note that the quality of the response curve does not affect the accuracy of the oscillator alignment so long control, set it to the center of its range before proceeding with the alignment.

On the following pages are presented two sets of alignment information, giving special instructions for aligntuners.

FIG. 6-Recommended I.F Response Curve

TABLE I-DISTINGUISHING FEATURES BETWEEN TYPES ' A ', ' B ' \& ' C '

	TYPE ' A^{\prime}	TYPE 'B'	TYPE ' C '
ADJUSTMENT	$\underset{\text { SEC-TOP }}{\substack{\text { PRI-BOTTOM }}}$	$\underset{\text { SEC-TOP }}{ }$	PRI-TOP SEC-BOTTOM
CAN HEIGHT	1-15/16"	$21 / 2^{\prime \prime}$	$3^{\prime \prime}$
TINNERMAN	NONE	\%/80 DIA.	1/2" DIA.
SOLDERING TERMINALS	$\begin{gathered} \text { STRAIGHT } \\ \text { LUGS } \end{gathered}$	$\begin{gathered} \text { STRAIGHT } \\ \text { LUGS } \end{gathered}$	$\begin{gathered} \text { WIRE } \\ \text { LOOPS } \\ \text { OR LUGS } \end{gathered}$
$\text { on } \begin{aligned} & \text { To Plate } \\ & \text { of } 6 \mathrm{AU} 6 \end{aligned}$	3	A	F
Z To B-Plus	4	C	D
	5	E	E
$\left\lvert\, \begin{array}{ll} Z_{Z} & \text { To Pin } 1 \\ \text { of } 6 T 8 \end{array}\right.$	1	D	C
$\begin{array}{\|l\|l\|} \hline \text { To Pin } 3 \\ \text { of } 6 \mathrm{~T} 8 \end{array}$	2	F	A

FIG. 7-Recommended R.F Response Cure

© John F. Rider

Alignment Charts - General Instrument Tuner

DUMMYantemna	STEP	SIGNAL GENERATOR		MARKER generator frequency	CHANNEL	COMNECT SCOPE	ADJust	remarks
		CONMECTIONS	FREQUENCY (10 MC SWEEP)					
$\begin{array}{\|l} \text { ONE ISO } \Omega \\ \text { CARBN } \\ \text { RESISTOR } \\ \text { IN SERIES } \\ \text { WITH EACH } \\ \text { LEAD. } \end{array}$	1	$\begin{aligned} & \text { antenna } \\ & \text { terminals } \end{aligned}$	213 mc	$\begin{array}{r} 211.25 \mathrm{MC} \\ \mathrm{a} \\ 215.75 \mathrm{MC} \end{array}$	13	VERT, AMPLIFIER ACROSS CENTER TAP OF MIX. GRID COILS E GNO. POINT (4) IN FIGG	$\underset{\substack{c 11, C 13, c \\ \text { c20 }}}{ }$ (SEE FIGGII)	AOJUST FOR RESPONSE APPROX AS SHOWNONFIG. 7, WITH MARK ERS mORE THAN 70% of peak AMPLITVDE. KEEP THE RF AND MIXER TRIMMER PAIRS IN APPROX the same relative position.
*	2	-	177 Mc	$\begin{aligned} & 175.25 \mathrm{mc} \\ & \mathrm{~B} \\ & 179.75 \mathrm{mc} \end{aligned}$	7	*	Lila	adjust rings for waveform as shown onfig.
*	3	"	183 mc	181.25 Mc $\mathrm{B} \mid 85.75 \mathrm{Mc}$ 19.25 M	8	*		check response on all
*	4	-	${ }^{189} \mathrm{mc}$	$\begin{aligned} & 187.25 \mathrm{MC} \\ & \hline 19.75 \mathrm{MC} \end{aligned}$	9	*		channels. slight adjustMENT OF C11, C2O, C13, OR C22
*	5	-	195 mc	$\begin{aligned} 193.25 \mathrm{Mc} \\ \text { \& } 197.75 \mathrm{Mc} \end{aligned}$	10	*		may be required to obtam optimum response on all
-	6	-	201 mc	$\begin{array}{r} 199.25 \mathrm{Mc} \\ \therefore \quad 203.75 \mathrm{MC} \end{array}$	1	*		channels.
-	7	"	207 Mc	$\begin{aligned} & 205.25 \mathrm{mC} \\ & \mathrm{~B} \quad 20975 \mathrm{MC} \end{aligned}$	12	"		
*	8	"	85 mc	$\begin{array}{r} 83.25 \mathrm{mC} \\ \mathrm{~B} \quad \mathrm{B7775MC} \\ \hline \end{array}$	6	-		ADUUST. FOR RESPONSE APPROX. AS SHOWN ON FIG?
-	9	-	79 nc	$\begin{aligned} & 77.25 \mathrm{Mc} \\ & \text { a } 8.75 \mathrm{Mc} \end{aligned}$	5	-		check response on all
-	10	-	69 mc	$\begin{gathered} 57.25 \mathrm{mc} \\ a \quad 7.75 \mathrm{mc} \end{gathered}$	4	*		CHANMELS. SLIGHT ADJUST-
-	11	*	63 mc	$\begin{array}{r} 61.25 \mathrm{NC} \\ \text { a } \quad 65.75 \mathrm{mC} \end{array}$	3	*		may be required to obtain optimum response on all
-	12	-	57mc		2	*		channels.

Alignment Instructions - Standard Coil Tuner

R.F. ALIGNMENT

1. Connect TV Sweep Generator to Antenna Terminals.
2. Connect R.F. Marker Generator loosely to Antenna Terminals.
ohm $1 / 2 \mathrm{w}$. resistor to Test Point (A) Fig. 12.
3. Short A.G.C. Bus to ground on TV chassis (across C58, 5000 MMF Discap condenser)
4. Set Station Selector switch to Channel 12
5. Feed 207 mc at 10 mc sweep from Sweep Generator, and 205.25
$\mathrm{mc} \& 209.75 \mathrm{mc}$ fixed frequencies from R.F. Marker Generator.
6. Observe response curve on Scope. If necessary adjust C2, C3, or C4 (see Fig. 12) so that response curve corresponds ap-
proximately to that shown in Fig. 7 , and has maximum aain
proximately to that shown in Fig. 7, and has maximum gain.
7. Check markers on response curve of all remaining channels,
setting Sweep and Marker Generators at corresponding fresetting Sweep and Marker Generators at corresponding fre-
quencies for each channel. See Table II for convenient tabulation of proper frequencies. If the R.F. Markers do not fall in
automatically in their proper places on all channels, a com. automatically in their proper places on all channels, a com-
promise must be made by slight readjustment of $\mathrm{C} 2, \mathrm{C} 3$, or C 4 .

oscillator alignment

1. Connect TV Sweep Generator to Antenna Terminals.
2. Couple R.F. Marker Generator loosely to Antenna Terminals.
3. Connect vertical amplifier of Oscilloscope across the video amplifier grid and ground ($\operatorname{pin} 4$ of $6 \mathrm{AC7}, \mathrm{~V} 11$).
4. Couple 24.75 mc video I.F. Marker Generator loosely to first
I.F. grid (pin 1 of 6 AU 6 , V7). 5. Rotate Fine Tuning control to center of range.
5. Set Station Selector switch to Channel 12.
. Set Sweep Generator to 207 mc at 10 mc sweep and Marker Generator to 205.25 mc (viden carrier).
6. Observe response curve and adjust C5, (Fig. 12) for Zero-beat not affect accuracy of oscillator alignment, so long as a zeronot affect accuracy of oscillator alignment, so long as a zero-
beat is obtained.
7. Check for zero-beat on all channels in this manner, setting the Station Selector, Sweep Generator and Marker Generator at corresponding frequencies. (See Table in. It is not usually
ndividual oscillator coils must be touched up, the following acedure should be employed:
a) Rotate Fine Tuning control to center of range
b) Set Station Selector to desired channel, Sweep Generator to its center frequency with 10 mc sweep, and Marker
Generator to the corresponding video carrier frequency Generator to the
(see Table II).
c) Place a non-metallic screwdriver through the opening marked "Recessed Individual Osc. Adjustment," Fig. 12, marker on response curve.
d) This adjustment can be repeated on any single channel, or if necessary, on all channels.
If difficulty is encountered in tuning any particular channel well within limits of Fine Tuning control after these adjustments are made, readjust C5 slightly (as in Step 8) shifting the whole range of frequencies in the desired direction.

CHANNEL NUMBER	SWEEP GEN. CENTER FREO (1OMC.SWEEP)	Matker generator freouencies	
		VIDEO CARRIER	SOUND CARRIER
2	57 mc .	55.25 mc	59.75 Mc
3	63 mc	61.25 mc .	65.75 mc .
4	69 mc .	67.25 mc .	71.75 mc .
5	79 mc .	77.25 mc .	81.75 mc .
6	85 mc .	${ }^{3} \mathbf{3 7 . 2 5 \mathrm { mc } \text { . }}$	87.75 mc
7	177 mc .	175.25 mc .	179.75 mc
-	183 mc .	181.25 mC .	185.75 mc .
9	189 mc .	187.25 mc .	19.75 mc .
10	195 mc.	193.25 mc .	197.75 mc .
11	201 mc .	199.25 mc .	203.75 mc .
12	207 Mc	205.25 MC	209.75MC.
13	213 mc .	211.25 mc .	215.75 mc .

Service Notes

For additional information, be sure to see the section entitled II
"PRODUCTION CIRCUIT CHANGES" on pages 11, 12 and 13 . The Television Serviceman can usually save considerable time
by combining his training and experience to deduce the origin of by combining his training and experience to deduce the origin of
the trouble from the appearance of the defective picture oo the screen. Detailed instruction of the application of this technique is
beyond the scope of this manual. Rather than repeat this information, which can be fund in most good general service litera--
ture this section presents special service notes and hints which apply mainly to these receivers.

ELIMINATION OF PICTURE TWIST
a) If twist occurs mainly upon advancing the brightness
control, see (and perform if necessary) the production IV change entitled "Twist Due to Brightness."
b) If twist is apparent even at low settings of the brightness

1. Proximity of 6.3 volt filament wires to Horizontal A.F.C.
Coil. If wires run close, reroute the filament wires further from the A.F.C. circuit.
2. Wire from Horizontal Hold control to R77, 100 K resistor:
at grid (pin 4) of 6 SN 7 Horizontal Sweep Oscillator. If unshielded, replace with shielded wire
3. Horizontal Sweep Oscillator 1.5K Cathode Resistor
(R76). Slight increase of resistance value may reduce
4. See PRODUCTION CHANGE \#6 entitled, "HORI-
5. See Production change \#12 entitled, "A.F.C.
BALANCE".

STANDARD COIL R-F TUNER: The antenna, R-F and
Oscillator Coils of the Standard Coil Tuner are retained by
bronze spring clips Defective coils may be removed and re bronze spring clips. Defective coils may be removed and re-
placed by identical sections which are supplied by the manuplaced by identical sections which are supplied by the manu-
facturer. Re-alignment of the particular channels will probably be necessary after this change is made. See the Parts List for identification numbers. Do not tamper
tuner assembly; replace as a complete unit.
III
RATIO DETECTOR TRANSFORMER, T6: Three types of transfrmers are used. See Note $\# 3$ under Alignment Pro
cedure (page 5) if identification is required. (See PRODUC cedure (page 5) if identific
TION CHANGE \# 10).
INCREASE PICTURE SIZE IN LOW LINE-VOLTAGE AREA: If greater picture size is required, shunt the ter-
minals of the Horizontal Deflection Yoke with a 470 mmfd 2000 volt (or equivalent) $\begin{aligned} & \text { minals ondenser. }\end{aligned}$

SOUND-AND-PICTURE COINCIDENCE: See (and perform
if necessary) PRODUCTION CHANGE $\# 9$ entitled "Sound if necessary) PRODUCTIO
and-Picture Coincidence"
I MINIMIZING "INTERCARRIER BLZZ": SEE PRODUC TION CHANGE \#1. This type of buzz is usually more notice
able on a able on a test pattern with a 400 or 1000 cycle tone modula
tion. If, however, it is determined that the buzz is objection able on a live program, when contrast is not advanced to
far clockwise, the following corrections are-suggested far clockwise, the following corrections are-suggested:

1. Check filter condenser C38 ($40 \mathrm{MF}-350 \mathrm{~V}$.) for leakage or
an open condition.
2. If possible, align video I.F. visually (see Alignment Pro-
cedure), making sure that 24.75 MC and 22.0 MC markers are cedure), making sure tha
both at the 50% points.

Production Circuit Changes

1. "INTERCARRIER BUZZ." To minimize "intercarrier buzz" on earlier receivers, the circuit revision described below is recom-
mended. This revision has been performed on Model $05 G C B 3019 \mathrm{~A}$.

Note: All reference to the 6AU6 Ratio Detector Driver (V6) will be indicated here as merely "6AU6"
13 for identification of components.
a) Remove the .02 MF 400 V . paper condenser. (At junction of 1 K (R34) and 47\%
b) Remove the 33 K 6AU6 screen bleeder resistor. (Located at d) Coll 6 AU6 pins 2 and 7. d) Carefully unsolder the lead of the 5000 mmf disc condenser
(C48) which connects to 6 AU 6 pin 7 , and re-solder this lead to 6AU6 pin 2. Do not clip this lead or it will be too short. e) Insert an 82 ohm $1 / 2 \mathrm{w}$. resistor (R26) and a 5000 mmf disc conInsert a 5000 mmf disc condenser (C55) between junction of 1 K (R34) and 47 K (R25) located at the Ratio Det. Trans., and
6 AU 6 pin 7 , keeping leads as short as possible.
 (C49) and insert from that junction (R28 and C49) a 100 ohm $1 / 2 \mathrm{w}$. resistor (R10) to 6AU6 pin 1
h) Remove from a terminal on the ratio det. trans. the lead of 15 K and C42) a $220 \mathrm{ohm} 1 / 2 \mathrm{w}$. resistor (R11) to the same terminal on the ratio det. trans.
) Remove jumpers between terminals 5,6 , and 7 of the 6 T8 (V5). Remove the 8.2K resistor (R22) from 6 T 8 pin 6 and
Rect re-connect to 6 TB pin 7. Insert jumper between 6 T 8 pins 5 and
7. Insert jumper (with spaghetti) between 6 T 8 pins 6 and 1 .

Align the sound circuit. (See Alignment Procedure.)
Note: In absence of alignment equipment, the above
ments can usually of alignment equipment, the above adjust-4. TWIST DUE TO BRIGHTNESS: If required, the D-C Restorer uning-in an offending TV channel and and acceptable accuracy by Circuit should be altered on Models 94GCB3023A and 94GCB3023B difference frequency as the signal source. While tuning T5 as follows: (See Fig. 15)
and T6, listen for maximum audio signal with corresponding minimum buzz. An
coil may be helpful.
Check sound on all channels. If, after careful alignment, insta
bility is encountered, (tendency toward regeneration) insert bility is encountered, (tendency toward regeneration) insert a
47 K (approx.) screen bleeder resistor between 6 AU 6 pins
and 6 .
) Add .1 mfd 400 V capacitor (C 11) in series with an $8.2 \mathrm{~K} 1 / 2 \mathrm{w}$. esistor (R108) connected from the cathode (pin 6) of the Note: R108 is 7 K in earlier production receivers

Production Circuit Changes

(CONTINUED

2. 1/4 AMP. FUSE: To provide additional protection to the flycathode cinsformer, the $1 / 4 \mathrm{amp}$. fuse was removed from the 6BG6 of the fly-back transformer on Model 05GCB3019A
3. EARLY 16" CONSOLETTES: In Models 94GCB3023A and 94 GCB 3023 B a $10^{\prime \prime}$ electrodynamic speaker is used and a separate selenium rectifier power supply is employed to furnish the
60 volts required for the speaker field low. In addition the following variations will. See Fig. 14 be eceivers
By-pass condenser (C36) across output transformer primary is .003 mfd
) Resistor (R58) across focus control is 1.8 K 2 wat
c) Model 94GCB3023A uses a $16^{\prime \prime} 60^{\circ}$ Picture Tube, and in some cases a 52 Picture Tube
d) Model 94GCB3023B uses a $16^{\prime \prime} 52^{\circ}$ Picture Tube.

FIG. 14-10" Speoker Field Supply Used on $16^{\prime \prime}$ Consolette Modelis 94GCB3023A \& 94GCB3023 B.

. PICTURE "BLOOMING": To reduce picture "blooming" Models 94 GCB 3023 A and 94 GCB 3023 B , drop the screen voltage on the picture-tube irom 360 volts to 250 volts as follows: (Refer to
a) Change resistor (R32) at picture-tube screen from 1 K to A
(R115) from picture-tube screen to ground.
6. HORIZONTAL "PARASITICS": If "parasitics" is the hor zontal sweep circuit are encountered in Models 94GCB3023A or , , (Reer to main diagram).
a) Change R75, located at pin 2 of the Horizontal Sweep Oscillator (V15) from 5.6 K to $4.7 \mathrm{~K}, 1 / 2 \mathrm{w}$. (Some receivers may
b) Reverse the leads on the Horizontal A.F.C. Coil (L9)
c) If necessary, relocate the Horizontal A.F.C. Coil.
7. Variations in video peaking coils are as fol Lows:

EARLY PRODUCTION

PART NUMBER	DOT COLOR CODE	ITEM NUMBER	INDUCTANCE
C-1.503-1	RED	L15	$120 \mu \mathrm{~h}$
C-1.503-2	GREEN	L16	$419 \mu \mathrm{~h}$
C-1.503-3	BLUE	L17, L18	$169 \mu \mathrm{~h}$

LATE PRODUCTION

PART NUMBER	DOT COLOR CODE	ITEM NUMBER	INDUCTANCE
C-1.522-1	GRAY	L16	$760 \mu \mathrm{~h}$
C-1.522-2	GREEN	L18	$419 \mu \mathrm{~h}$
C-1.522-3	BLUE	L15, L17	$169 \mu \mathrm{~h}$

6BC5 TUBE: The 6BC5 Tube is an exact replacement for the 6AG5 which has been used in earlier receivers. When replacement of the 6AG5 is required, use the $6 B C 5$, whos transconductance is held to closer tolerance. Slight realignment may be required when this change is made
9. SOUND-AND-PICTURE COINCIDENCE: If sound-and-picture are not coincident on weak signals on early production reeivers, change R26 screen voltage divider on 6AU6 Ratio DeCHANGE \# 1

FIG. 13-Portiol Schemotic Diogrom Showing Buzz Chonges.

Production Circuit Changes

10. RATIO DETECTOR TRANSFORMERS: As a result of use b) Interrating Network Condensers (C70 and C71) may be either
of types " B " and "C" ratio detector transformers in later produc.
4700 nifd or 5000 mmfd "discaps". of types "B" and "C" ratio detector transformers in later produc-
tion receivers (employing Standard Coil Tuners), the Ratio Detector Driver Grid Resistor (R28) and by-pass condenser across the output transformer primary (C36) were changed from 470 K ion of these transformers, see main schematic diagram and Note \#3 in ALIGNMENT section.
11. FILTER CONDENSERS: For increased voltage safety factor the triple-section $40-40-40 \mathrm{mfd}$; $450-450-450$ Volt single-can elect rolytic filter condenser was replaced by two units (C80 and C81),
of higher voltage ratings (475 volts each section). See main schematic diagram.
12. A.F.C. BALANCE: To minimize picture twist due to unbal ance of positive and negative sync voltage at 6AL5 A.F.C. diodes,
the following revisions were made: (See main schematic diagram.)
a) Plate resistor (R98) of $1 / 26$ SN7 Sync Amp.-Split. (V12B)
b) Plate resistor (R.99) of above tube changed from 3.9 K to
2.2 K .
c) Vert. integ. resistor (R97) changed from 22 K to 33 K .
d) Saw-tooth feedback resistor (R94) changed from 4.7 K to 3.9 K . 13. MISCELLANEOUS CHANGES: In addition to those changes given above, the following variations will be found in these re-
a) High Voltage Filter Condenser (C95) is rated at 10 KV when used with Fly-Back Transformer \#9.236-1; ; it is rated at 20 KV
when used with Fly-Back Transformer
) Picture Tube grid resistor (R55) may be either $2.2 \mathrm{~K}, 18 \mathrm{~K}, 22 \mathrm{~K}$ or 1. meg (depending upon period of production). See PRO
DUCTION CHANGE $\# 4$.
d) De-emphasis Condenser (C45) changed from 3900 mmfd to 1500 mmd in later production receivers.
e) First Video I.F. Grid Resistor (R35) changed from 8.2 K to 4. K in receivers with Standard Coil Tuner
f) Voice-Coil By-Pass Condenser (C35) may be either 1000 mmid, 1500 mmfd , or omitted on earher receivers.
g) Audio Output Transformer (T7) was \#9.238 on earlier table
model receivers and is $\# 9.241$ on all later production receivers) A $10^{\prime \prime}$ Permanent Magnet Speaker is used in Model TION CHANGE \#3.

Indoor Antenna: An indoor antenna is used in Model.
$16 \mathrm{~K} 1 / 63-3019$ and 05 GCB 3019 A .
j) Video Amplifier Plate Load: Video Amplifier plate load re sistors R52 and R53 as follows:
. $56 \mathrm{~K}, 2$ watts each; connected in parallel in all receiver: using the General Instrument Tuner
2. R52 is $11 \mathrm{~K}, 2$ watt; R53 is $15 \mathrm{~K}, 2$ watts in early receiver using Standard Coil Tuner.
3. R52 is $12 \mathrm{~K}, 2$ watts; R53 is $15 \mathrm{~K}, 2$ watts in latest produc
tion receivers using Standard Coil Tuner:

FIG. 16-Tube Plocement Chort-Top View.

PICTURE TUBE REPLACEMENT GUIDE

$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { RESIST. } \\ & \text { ACROSS } \\ & \text { FOCUS } \\ & \text { POT. } \end{aligned}$	$\begin{aligned} & \text { MFG. LIST } \\ & \text { FOCCUS } \\ & \text { CURENT, } \\ & \text { MA. } \end{aligned}$	TUBE DEFL. ANGLE AND DEFL. YOKE PART NO.	H.V. CONTACT	BEAM BENDER	MAX. BULB DIA.	$\begin{aligned} & \text { OVER- } \\ & \text { ALL } \\ & \text { LENGTH } \end{aligned}$	DIRECT REPLACEMENT
16CP4		115	$\begin{gathered} 52^{\circ} \\ \mathrm{C}-9.209 \end{gathered}$	Recess	Single Double	15\%/;"	223/4.	None
16DP4		115	$\begin{aligned} & 60^{\circ} \\ & \mathrm{C}-9.242 \end{aligned}$	Recess	Single or Double	15\%/3'	203/4"	
16JP4		110	$\begin{gathered} 60^{\circ} \\ \mathrm{C}-9.242 \end{gathered}$	Recess	Single or Double	161/8"	203/4"	
16LP4 Amer. Tel.		110	$\begin{gathered} 52^{\circ} \\ \text { C-9.242 } \end{gathered}$	Recess	$\begin{gathered} \text { Single } \\ \text { or } \\ \text { Double } \end{gathered}$	157/3"	221/4'	
16HP4		110	$\begin{gathered} 60^{\circ} \\ \mathrm{C}-9.242 \end{gathered}$	Recess	Single Double	157/:"	211/4'	
16FP4 Dumont	None	140	$\begin{gathered} 62^{\circ} \\ \text { C- } 9.242 \end{gathered}$	Pin	Single	161/8"	201/4"	None

TO REPLACE A TUBE NOT GIVEN ON THIS CHART, PROCEED AS FOLLOWS:

1. Check physical dimensions, socket connections, anode connector. Allow for physical variations.
. Assemble tube in receiver, turn on receiver and observe picture.
2. If variation of focus control is not sufficient to focus tube-
a) If more current is required, increase resistance of either or both R58 \& R59. Try placing them in series.
3. If swes current is required, decrease resistance of either or both R58 \& R59. Shunt them with other resistors.
4. If sweep is not sufficient on wide angle tubes, a change of deflection yoke or circuit values may be required.

STANDARD COIL
R-F TUNER

to that of valtage charts; page 3.

FIG. 17-Tube Placement Chart-Botiom View.
MODELS O5GCB-3019A, 16KI/63 $3019,24 \mathrm{GCB}-3023 \mathrm{~A}, 94 \mathrm{GCB}-$

To turn the television receiver on, turn the ON-OFF VOLUME CONTROL on the radio panel until a click is heard. Allow approximately 30 seconds for the tubes to warm up.
2. Turn BAND SWITCH CONTROL on the radio pane fully counterclockwise to the TV position.
Turn the STATION SELECTOR CONTROL to the desired channel. This control may be turned in either direc tion.
the CONTRAST CONTROL fully counterclock wise
Turn the BRIGHTNESS CONTROL fully counterclock wise and then very slowly clockwise until light is readily visible on the screen.
Turn the CONTRAST CONTROL clockwise until activity or definite form is noted on the screen.
Adjust the FINE TUNING CONTROL for best tona quality and the VOLUME CONTROL for desired vol
8. Turn the VERTICAL CONTROL until the picture stops moving up or down.
9. Adjust the HORIZONTAL CONTROL until the picture is obtained and centered.
10. Adjust the CONTRAST CONTROL until the best picture is obtained and if necessary make a slight readjustment of the BRIGHTNESS CONTROL.

1. After the receiver has been on for a while it may be necessary to readjust the FINE TUNING CONTROL for best sound quality
2. When switching from one channel to another, it may be necessary to repeat steps number 7 and 10 .
3. To turn off the receiver, furn the ON - OfF VOLUME CONTROL counterclockwise until a click is heard.
4. When the receiver is turned on again and the positions of the controls have not been changed, no further adjustments will be necessary except for the FINE UNING CONTROL and VOLUME CONTROL for the desired volume.
5. If the positions have been disturbed since the last time the receiver has been used it may be necessary to follow steps 1 to 11.

KINESCOPE - The receiver is shipped with the kinescope in place, however some of the kinescope adjustments may have been jarred loose in shipment. If adjustments are necessary, the following should be used as a guide:

1. After the receiver has been unpacked and the cradle removed, take off the cabinet back and make sure all the tubes are properly mounted in their respective sockets.
2. Remove the tape from the kinescope socket base and the corrugated cardboard lock holding the focus coil in place.
3. Connect an antenna to the antenna terminals at the rear of the radio chassis and insert the line cord plug into a convenient outlet.
4. Turn on the receiver and wait about 60 seconds for the receiver to warm up. Turn the channel selector to a station that is transmitting and check the picture. If the picture is not centered on the screen, or visible at all, make the adjustments on the deflection yoke, focus coil and ion trap magnet assemblies as outlined

KINESCOPE REPLACEMENT - Should the kinescope have to be replaced, remove the defective kinescope in the following manner:

1. Remove the front panel control knobs by pulling them straight from their shafts.
2. Remove two ornamental screws holding the front pariel to the cabinet (see figure 5) and lift out panel.
3. Remove the cabinet back.
4. Disconnect the kinescope socket connector at the base of the tube and the high voltage anode lead from the front of the kinescope.
WARNING-REMOVE STATIC CHARGE FROM THE anode lead by grounding it against the CHASSIS.
5. Remove the ion trap magnet, slipping it from the neck of the kinescope past the socket.
6. Loosen the wing nuts and wing screws on the deflection yoke and focus coil.
7. Loosen the strap holding the front of kinescope in place and withdraw the kinescope toward the front of the chassis
8. To install a new kinescope, reverse the above procedure making sure that the kinescope is fitted closely against the kinescope cushion and that the high voltage well connector is at the top of the kinescope. f the kinescope sticks or fails to slip into place smoothly, investigate and remove the source of the trouble. Never force the tube
KINESCOPE WINDOW - Clean the kinescope window with a dampened cloth or a soft lint-free cloth if dust or finger marks are present.

Fig. 4-lon Trop flags

NON-OPERATING CONTROLS

(Rear Of Chassis)

Fig. 6-Reor Chossis Adjustments

© John F. Rider

Fig．7－Yake，Facus and Ion Irap Magnet Adjustment

DEFLECTION YOKE ADJUSTMENT－If the lines of the raster are not horizontal or squared with the picture mask，rotate the deflection yoke until this condition is obtained．Tighten the yoke adiustment wing screw．
focus coil adjustment－Turn the horizontal cen． TERING（R－106）and VERTICAL CENTERING（R－105）CON－ TROLS to the halfway position．（See Figure 6）．If a corner of the raster is shadowed，it indicates that the electron beam is striking the neck of the tube．Loosen the focus coil adjustment wing nuts and rotate the coil about its vertical and horizontal axes until the entire raster is visible， approximately centered and with no shadowed corners Tighten the focus coil adjustment wing nuts with the coil in this position．

ION TRAP MAGNET ADJUSTMENT－The ion trap magnet should be positioned exactly as shown in Figure 7．Adjust the magnet by moving it back and forth and at the same time rotating it slightly around the neck of the kinescope until the brightest raster is obtained on the picture screen． Reduce the brightness control setting until the raster is slightly above average brilliance．Adjust the Focus Control R－104（see Figure 6）until the line structure of the raster is clearly visible．Readiust the ion trap magnet for maximum raster brilliance．The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained．

PICTURE ADJUSTMENT－For further adjustments，obtain a test pattern on the receiver．Turn on receiver and follow tuning procedure

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT－Turn the horizontal hold control to the extreme counter－clockwise position．The picture should remain in horizontal sync． Momentarily remove the signal by switching off channe and then back．Normally the picture will be out of sync． Turn the control clockwise slowly．The number of diagonal bars will be gradually redused and when only $3-12$ to 4－1 2 bars sloping downward to the left are obtained，the picture will pull into sync upon slight additional clockwise rotation of the control．The pull－in should occur when the control is approximately 90 degrees from the extreme counter－clockwise position．The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control．At the extreme clockwise position， the picture should be out of sync and should show from $3-1 / 2$ to $4-1 / 2$ bars sloping downward to the right．

If the receiver passes the above checks and the picture is normal and stable，the horizontal oscillator is properly aligned．Skip＂Alignment of Horizontal Oscillator＂and proceed with＂Focus＂adjustment．

ALIGNMENT OF HORIZONTAL OSCILLATOR－If in the above check the receiver failed to hold sync with the hold control at the extreme counter－clockwise position or failed to hold sync for at least 60 degrees of clockwise rotation of the control from the pull in point，it will be necessary to make the following adjustments．

HORIZONTAL FREQUENCY ADJUSTMENT－Turn the horizontal hold contrcl to the extreme clockwise position．Tune in a television station and adjust the rear apron horizontal frequency trimmer C－55B（see Figure 6）until the picture is out of sync and shows $3-1 / 2$ to $4-1 / 2$ bars sloping downward to the right．If the trimmer has insufficient range，set the trimmer to mid－position（1 turn out from maximum capacity）and adjust the L－14 horizontal fre－ quency adjustment until this condition is obtained．See Figure 9 for the location of L－14．
horizontal locking range adjustment－Set the hori－ zontal hold control to the extreme counter－clockwise posi－ tion．Momentarily remove the signal by switching off channel and then back．Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync．If more than $4-1 / 2$ bars are present just before the picture
pulls into sync，adjust the horizontal locking range trim－ mer C－55A（See Figure 6）slightly clockwise．If less than 3－1 2 bars are present，adjust trimmer C－55A slightly counter－clockwise．Turn the horizontal hold control counter－ clockwise，momentarily remove the signal and recheck the number of bars present at the pull－in point．Repeat this procedure until 3－1 2 to 4 －1 2 bars are present．Repeat the adjustments under＂Horizontal Frequency Adjustment＂ and＂Horizontal Locking Range Adjustment＂until the con－ dition specified under each are fulfilled．When the hori－ zontal hold operates as outlined under＂Check of Hori－ zontal Oscillator Al：gnment＂the oscillator is properly adjusted
height and vertical linearity adjustments－adjust the height control R－86（See Figure 6）until the picture fills the mask vertically．Adjust the vertical linearity control R－93（See Figure 6）until the picture is symmetrical from top to bottom．Adjustment of either control will require a readjustment of the other．Adjust vertical centering control R－105（See Figure 6）to align the picture with the mask．

WIDTH，DRIVE AND hORIZONTAL LINEARITY ADJUSTMENTS

－Turn the width control L－15（at top of power supply cover）to the maximum clockwise position．Vary the hori－ zontal drive trimmer C－55C（See Figure 6）to yield the best compromise between brightness and linearity．Ad－ just the horizontal linearity control L－16（See Figure 6）for best linearity of the right half of the picture．Readjust the width control L－15，until the picture just fills the mask． Adjust horizontal centering control R－106（See Figure 6）to align the picture with the mask．
FOCUS－Adjust the focus control R－104（see Fig．6）for maxi－ mum definition of the vertical wedge of the picture．Check to see that all cushion，yoke and focus coil thumb screws are tight．Replace the cabinet back making sure that the back is on tight，otherwise it may rattle at high volume．

CHECK OF R－F OSCILLATOR ADJUSTMENTS－With a crystal calibrated test oscillator or heterodyne frequency meter，
check to see if the receiver R－F osciliator is adjusted to the proper frequency on all channels．The adjustments for all channels are available from the front of the cabinet by removing the front panel as shown in Figure 5. Tune in all available television stations．

video peaking link－a video peaking link is provided to permit changing the video response．This link is connected at the factory with the peaking in．However，if transients are produced on high contrast pictures，or picture is smeared or fuzzy，or if the receiver is operated in areas where the signal strength is weak，open the video peaking link connecting L－13 and R－52．

VENTILATION CAUTION－The receiver is provided with ade quate ventilation holes in the bottom and back of the cabinet．Care should be taken not to allow these holes to be covered or ventilation to be impeded in any way．

MODEL $94 W G-300$

SERVICE SUGGESTIONS

NO RASTER ON KINESCOPE -If raster cannot be obtained

 chack below for the possible causes.1. Ion trap magnet adjustment is incorrect.
2. No high voltage, check $\mathrm{V}-17$ ($6 \mathrm{BG} 6-\mathrm{G}$) and $\mathrm{V}-18$ (1B3-GT/8016) tubes and circuits. If the horizontal deflection circuits are operating, as evidenced by the correct wave form measured on terminal 4 of horizontal output transformer ($T-8$), the trouble can be isolated to the high voltage rectifier ($\mathrm{V}-18$) circuit. Either the high voltage winding (points 2 to 3 on $T-8$) is open, tube V - 18 is defective, its filament circuit is open, or the high voltage filter capacitor (C-76) is shorted.
3. Damper tube V-19 (5V4-G) defective. Plate voltage supply for V-17 (6BG6-G) horizontal output tube is obtained through the damper tube. Check tube and heater winding on power transformer ($T-9$). If the tube is alright, check the horizontal linearity coil (L-16) for continuity and check capacitors C. 69 and C-75 for short circuit.
4. Defective kinescope. Heater open, cathode return circuit open.
5. No plate voltage. Electrolytic capacitor shorted. $\mathrm{All}+\mathrm{B}$ measurements are accessible for measurement by removing cover from bleeder box
6. Horizontal oscillator and control tube V-16 (6SN7-GT) defective. Check for sawtooth on grid of horizontal output tube V-17 (6BG6-G). If not present, check voltages and components in the V-16 (6SN7-GT) circuits.
horizontal deflection oniy -if only horizontal deflection is obtained as evidenced by a straight line across the face of the kinsscope, it can be caused by the following:
7. Vertical oscillator and output tube V-15 (6SiN7-GT) inoperative. Check voltages on grid and plate.
8. Vertical output transformer (T-7) open
9. Yoke vertical coils open. caused by

Defective yoke due to R-97, R-98 or C-86 (internal in yoke assembly) being wrong value or apen. These components are mounted in rear of yoke assembly.

SMALL RASTER - This condition can be caused by:

1. Low +B or line voltage.
2. Insufficient output from horizontal output tube V-17 (6BG6-G). Replace tube
3. Insufficient output from vertical output tube V-15 (6SN7-GT). Replace tube.

SERVICE SUGGESTIONS (Confinued)

RASIER; NO IMAGE, BUT ACCOMPANYING SOUND-This condition can be caused by:

1. No signal on kinescope grid. Check picture I-F amplifier tubes V-9, 10 and 11 (6AG5's), second detector V-12 (6AL5) and video amplifier $\mathrm{V}-13$ (12AU7).
2. Bad contact to kinescope grid (lead to socket broken).

SIGNAL APPEARS ON KINESCOPE GRID BUT IMPOSSIbLE TO SYNCHRONIZE THE PICTURE VERTICALLY AND HORIZONTALLY
-A condition of this nature can be caused by:

1. Defective sync amplifier and separator V-14 (6SN7GT).
2. If tube is O.K. check voltages, and associated circuits.

SIGNAL ON KINESCOPE GRID AND HORIZONTAL SYNC ONLY If this condition is encountered, check

1. Vertical integrating network capacitors C-71, C.72, $\mathrm{C}-73$ and $\mathrm{C}-74$; and resistors R-79, R-80 and R-81.

PICtURE Stable but with poor resolution -if the picture resolution is not up to standard, it may be caused by any of the following:

1. Defective picture detector V-12 (6AL5) or video amplifier V - 13 (12AU7).
2. Open video peaking coil. Check all peaking coils L-8, L-9, L-10, L-11 for continuity. Note that L-9 and L-11 have shunting resistors.
3. Leakage in $\mathrm{V}-13$ (12AU7) grid capacitor C -42. If the above components are not found to be defective, check the following:
4. Check all potentials in video circuits.
5. Check kinescope grid circuit for poor or dirty contact.
6. Check adjustment of focus control R-104. It should be effective on either side of proper focus.
7. Check and realign, if necessary, the picture I-F and R-F circuits.

PICTURE SMEAR:

1. Normally, smear can be attributed to phase shift at the low frequency end of the video characteristic. This can be caused by improper values of resistors and capacitors in the video circuits. Check for grid current on video amplifier tube V-13 (12AU7).
2. This trouble can also originate at the transmitter. Check reception from another station.

PICture jitier:

1. If regular sections at left ft the pisture are displaced, replace the horizontal output tube $\mathrm{V}-17$ (6BG6-G).
2. Vertical instability may be due to loose connections or noise received with the signal.
3. Horizontal instability may be due to unstable transmitted sync or to noise.

ALIGNMENT PROCEDURE

© John F. Rider

ALIGNMENT TABLE

Fig. 9-8ottom Chassis Components

Fig. 10-Tube Layout Diagram

Step No.	Connect Signal Generator to
1	2nd sound i-f grid (pin 1, V-5)
2	2nd sound i-f grid (pin 1, V-5)
4	2nd sound i-f grid (pin 1, V-5)
Trap winding on T-1 (top of chassis)	

Signol Gen. Freq. Mc.	Connect Sweep Generator to	Sweep Gen. freq. Mc.	$\begin{gathered} \text { Connect } \\ \text { Oscilloscope to } \end{gathered}$
$\begin{gathered} 21.25 \\ .1 \text { volt output } \end{gathered}$	Not used		Not used
$\begin{gathered} 21.25 \\ .1 \text { volt output } \end{gathered}$	Not used		Not used
$\begin{gathered} 21.25 \\ .1 \text { volt output } \end{gathered}$	2nd sound i-f grid (pin 1, V-5)	$\begin{gathered} 21.25 \\ \text { center } 1 \mathrm{mc} \\ .1 \text { volt output } \end{gathered}$	Discriminator output (pin 1 of V-6)
21.25 reduced output	$\begin{aligned} & \text { Trap winding } \\ & \text { on } \mathrm{T}-1 \end{aligned}$	$\begin{gathered} 21.25 \\ \text { reduced output } \end{gathered}$	Terminal A, T-2 in series with 33,000 ohms. See Note 2.

$\begin{gathered} \text { Connect } \\ \text { Voltmeter to } \end{gathered}$	Miscellaneous Connections ond Instructions	Adjust	Refer to
In series with 1 meg. to junction of R-14 and R-13	Meter on 10 volt scale	Detune T-3 (bottom) Adjust T-3 (top) for max. on meter.	$\begin{aligned} & \text { Fig. } 11 \\ & \text { Fig. } 12 . \end{aligned}$
Discriminator output (pin 1 of V-6)	Meter on 3 volt scale	T-3 (bottom) for zero on meter.	Fig. 12
Not used	Check for symmetrical response waveform (positive and negative). If not equal adjust T.3 (top) until they are equal. See Note 1.		$\begin{aligned} & \text { Fig. } 11 \\ & \text { Fig. } 12 \end{aligned}$
Not used	Sweep output reduced to provide .3 volt p-to-p on scope. See Note 3.	T-2 (top and bottom) for max. gain and symmetry at 21.25 mc .	$\begin{aligned} & \text { Fig. } 11 \\ & \text { Fig. } 12 \\ & \text { B } \end{aligned}$

NOTE: 1: The peak to peak bandwidth of the discriminator should be approximately 350 kc . and should be linear from 21.175 mc . to 21.325 mc .
NOTE 2: If a 60 cycle sweep rate is used, it will be necessary to reduce the time constant in the 2 nd sound i-f grid circuit in order to reproduce the desired response curve. To do this, shunt R-10 (Terminal " A " of T-2 to chassis) with 5600 ohms.
NOTE 3: The sweep generator output should be set to produce approximately 0.3 volt peak-to-peak at the second sound i-f grid return (Terminal " $\mathrm{A}^{\prime \prime}$ of T -2) for final touch-up on this adjustment. Signal voltage in excess of 0.3 volt will tend to broaden the response curve-permitting misadjustment to pass unnoticed.

fig. 11-Too Chassis Audio I.F Adiustments

ALIGNMENT PROCEDURE (Continued)

(b) Radio frequencies:

Channel Number	Picture Corrier Freq. Mc	Sound Corrier Freq. Mc	$\mathbf{8}$	187.25	191.75
2	55.25	59.75	10	193.25	197.75
3	61.25	65.75	11	199.25	203.75
4	67.25	71.75	12	205.25	209.75
5	77.25	81.75	13	211.25	215.75

83.25 HETERODYNE FREQUENCY METER with crystal calibrator if the
175.25
signal generator is not crystal controlled

fig. 12-Bottom Chassis Audio :- and

ELECTRONIC VOLTMETER and a high voltage probe for use with this meter to permit measurements up to 10 kilovolts.

SERVICE PRECAUTIONS - To service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the front panel, the cabinet back, disconnect all leads to the radio chassis and then the 5 chassis mounting bolts. The chassis normally should be serviced without the kinescope. However, if it is necessary to view the raster during servicing, the kinescope should be inserted only after the chassis is furned on end. The kinescope should never be allowed

Fig. 13-Bottcm Socket View
to support its weight by resting in the deflection yoke. A bracket should be used to support the tube at its viewing screen. By turning the chassis on end with the power transformer up, all adjustments will be conveniently available. Since this is the only safe position in which the chassis will rest and still leave adjustment accessibla, the trimmer location drawings are oriented similarly for ease of use.

CAUTION: Do not permit the kinessope second-anode lead to become shorted to the chassis. To do so will cause a considerable overload on the high-voltage filter resistor R-82.

© John F. Rider
DRIVE CORD REPLACEMENT Replacelish of drive cord may be accomplished as shown in the illustra cord assembly listed in the Replacement Parts List. Turn the gany conmeshed. Then install the striny as shown, winding three turns clockwise around the tuning shaft with the turns progressing away from the chassis, After the cord is installed, rotate the luning shaft several times in order to

take up any slack in the cord.
tube layout
MODEL $94 W G-3003 \mathrm{~A}$
R A D I O
MENT PROC

ALIGNMENT PROCEDURE

The following is required for aligning: An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed. Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas $-.1 \mathrm{mf}, 200 \mathrm{mmf}$.					Volume Control-Maximum all Adjustments. Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead. Allow Chassis and Signal Generator to "Heat Up" for Several		
SIGNAL GENERATOR		CONNECT generator OUTPUT TO	THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	GANGCONDENSERSETTING	adjust	$\begin{gathered} \text { ADJUST } \\ \text { FOR } \end{gathered}$
	frequenct SETTING						
I-F	455 kc	$\begin{gathered} \text { 12AT7 } \\ \text { Pin } 7 \text { and Chassis } \end{gathered}$. 1 mf	Broadcast	Rutor Fully Open	2nd I-F Pri. \& Sec. 1 \& 2 1st I-F Pri. \& Sec. 3 \& 4	Maximum
Broadcast	1620 kc	Dipole Antenno Terminal and Ground	200 mmf	Broadcast	Rotor Fully Open	Broadcast Oscillator C-33	
	1400 kc	Dipole Antenna Terminal and Ground	200 mmf	Broadcast	Turn Rotor to Max. Output Set painter to 1400 kc See Note A	Broodcast Interstage C-29	
	1400 kc	Dipole Antenna Terminal and Ground	200 mmf	Broadcast		AM Trimmer C-48	

FM STAGES

© John F. Rider

SUPPLEMENTARY MANUAL

All service information applicable to models 94WG-3016A, B and C is contained in service manual 3008A, and this Supplementary Service Manual. The differences between the models are as follows:

1. Models 94WG-3016A and 94WG-3016B are identical to model 94WG-3008A, except for the use of a $12^{1 / 2} 2^{\prime \prime}$ picture tube and minor resistor, condenser, and mechanical part changes that are required for a large tube. A new schematic diagram and a new replace ment parts list is incorporated in this Supplementary manual. For all other service and replacement parts information, refer to manual 3008A.
2. Model 94WG-3016C is a Model 94WG-3008A converted by a field modification to use a $12^{1 / 2 \prime \prime}$ picture tube. This was accomplished by the use of a kit, part number 26A503, now no longer available. An illustration of the few circuit changes is in this manual. For a complete parts list and other service information, refer to manual 3008A.

CIRCUIT CHANGES

MODEL 94WG-3016C

The changes shown in the illustration applies +265 volts to the primary of the vertical deflection transformer instead of +225 volts as shown in Manual No. 3008A.

In addition, a .05 mf 400 V condenser (part no. D67503) was installed between pin No. 6 of the 6BG6 horizontal output socket and the yellow wire connected to the upper end of the horizontal size control. Then a black wire ($91 / 2^{\prime \prime}$) was connected between pin No. 6 of the 6BG6 horizontal output socket and terminal No. 6 of the horizontal output transformer. This procedure connected the .05 mf 400 V condenser across the width control L-15.

PARTS LIST

MODELS 94WG-3016A\&B

The partial parts list shown below constiture the changes that were made on the $94 W \mathrm{~W}-3008 \mathrm{~A}$ so that a $12 \frac{1}{2} \mathbf{2}^{\prime \prime}$ picture tube cauld be used. This necessitoted the changing of the madel number to 94 WG 3Olba\&b. for all other service and replacement parts infarmatia refer to manual 3008A.

CAPACITORS

Removed	C. 67	47×544	100 mmf	1000 V	Molded Mica.
Removed	C. 70	D67503	. 05 mf	403 V	Tubular
Added	c. 70	47×534	270 mmf	1000 V	Molded Mica.
Removed	C.71	47×535	390 mmf	1003 V	Molded Mico.
Added	c. 88		Part of	10	
Added	C. 89	D66104	. 1 m	400 V	Tubul
Added	C. 90	47×516	20 mmf		Ceramic

Removed	R.73	32C5153	15k	1.0	Carbon. .
Added	R.73	884155	1.5 meg.	0.5	Corban. .
Removed	R.74	3285105	1 meg.	0.5	Carban.
Added	R. 74	B84473	47 K	0.5	Carbon..
Removed	R. 77	3284395	3.9 meg .	0.5	Carbon.
Added	R. 77	885225	2.2 meg .	0.5	Carbon.
Removed	R. 78	3283682	6800	0.5	Carbon.
Added	R.78	C84103	10 K	1.0	Carbon..
Added	R. 108	885103	10 K	0.5	Carbon.
Added	R. 109	B85474	470 K	0.5	Carbon..
Added	R.110	885222	2200	0.5	Carbon.

miscellaneous

Added	$3 A 428$	rube Socket (miniafure)	$\ldots \ldots \ldots$	
Added	$3 A 447$	Tube	Socket (Octal)	$\ldots \ldots \ldots \ldots$

PICTURE TUBE REPLACEMENT - Should the picture tube have to be replaced, remove the defective picture tube in the following manner

1. Remove the frent panel control knobs by pulling them straight from thsir shafts.
2. Remove two ornamental screws holding front panel to the Cabinet (see figure 5) and lift out panel
3. Remove the cabinet back.
4. Disconnect the picture tube socket connector at the base of the tube and the high voltage anode lead from the front of the picture tube.
WARNING-REMOVE STATIC CHARGE FROM THE ANODE LEAD BY GROUNDING IT AGAINST THE CHASSIS.
5. Remove the ion trap magnet, slipping it from the neck of the picture tube past the socket.
note: lan trap magnets not used with 12 KP 4 tubes.
6. Loosen the wing nuts and wing screws on the deflection yoke and focus coil.
7. Loosen the strap holding the front of the picture tube in place and withdraw the picture tube toward the front of the chassis.
8. To install a new picture tube, reverse the above procedure making sure that the picture tube is fitted closely against the picture tube cushion and that the high voltage well connector is at the top of the picture tube. If the picture tube sticks or fails to slip into place smoothly, investigate and remove the source of the trouble. Never force the tube.

Fig. 4-Ion Jrap Flags

Fig. 6-Reor Chossis Adjustments

PICTURE TUBE WINDOW - Clean the picture tube window with a dampened cloth or a soft lint-free cloth if dust with a dampened cloth or
or finger marks are present.
PICTURE TUBE - Some receivers are shipped with the picture tube in place. However, some of the picture tube adjustments may have been jarred loose in shipment. If adjustments are necessary, the following should be used

Aiter the receiver has been unpacked and the cradle removed, take off the cabinet back and make sure all the tubes are properly mcunted in their respective
2. Connect an antenna to the antenna terminals at the rear of the radio chassis and insert the line cord plug into a convenience cutlet.
3. Turn on the receiver and wait about 60 seconds for the receiver to warm up. Turn the channel selector If the picture is not centered on the screen, or visible at all, make the adiustments on the deflection yoke, focus coil and ion trap magnet assemblies as outlined on page 5 .

fig. 3-Frant Panel Control

TUNINGPROCEDUR

. To turn the television receiver on, turn the ON-OFF sheard. Allow approximaly 30 seconds for the tub is heard. Allow approximarely 30 seconds for the fubes To warm up. fuily counterclockwise to the TV position.
3. Turn the STATION SELECTOR CONTROL to the desired chan
tion.
4. Turn the CONTRAST CONTROL fully counterclock. wise.
5. Turn the BRIGHTNESS CONTROL fully counterclock wise and then very slowly clockwise until light is readily visible on the screen.
6. Turn the CONTRAST CONTROL clockwise until activity
or definite form is noted on the screen
7. Adjust the FINE TUNING CONTROL for best tonal quality and the VOLUME CONTROL for desired vol ume.
8. Adjust the HORIZONTAL CONTROL until the picture is obtained and centered
9. Turn VERTICAL CONTROL clockwise until the picture rolls slowly downward, then turn control counter clockwise until picture stops moving up.
10. Adjust the CONTRAST CONTROL until the best picture is obtained and if necessary make a slight readjustment of the BRIGHTNESS CONTROL.

1. After the receiver has been on for a while it may be necessary to readiust
2. When switching from one channel to another, it may be necessary to repeat steps number 7 and 10 .
3. To turn off the receiver, turn the ON. OFF VOL UME CONTROL counterclockwise until a click is heard.
4. When the receiver is turned on again and the positions of the controls have not been changed, no further adjustments will be necessary except for the FINE UNING CONTROL and VOLUME CONTROL for the desired volume.
5. If the positions have been disturbed since the last time the receiver has been used it may be necessary to follow steps 1 to 11

OJohn F. Rider

NON-OPERATING CONTROLS

(Rear Of Chassis)

DEFLECTION YOKE ADJUSTMENT - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.
focus coil adjustment - Turn the horizontal cenTERING (R-106) and VERTICAL CENTERiNG (R-105) CONTROLS to the halfway position. (See Figure 6). If a corner of the raster is shadowed, it indicates that the electron eam is striking the neck of the tube. Loosen the focus coil adjustment wing nuts and rotate the coil about its vertical and horizontal axes until the entire raster is visible, approximately centered and with no shadowed corners. tighten the focus coil adjustment wing nuts with the coil in this position.

ION TRAP MAGNET ADJUSTMENT - The ion trap magnet should be positioned exactly as shown in Figure 7. Adjust the magnet by moving it back and forth and at the same time rotating it slightly around the neck of the picture tube
until the brightest raster is obtained on the picture screen. Reduee the brightness control selting until the raster is slighily above avarage brillience. Adjust the Focus Contro R. 104 (sate figure o) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maxinum raster brilliance. The final touches on this adjustment should be made with the brizhtness control at the maxinum position with whith scod line focus can be maintained.

PICTURE ADJUSTMENT For further adjustments, obtain a test pattern on the receiver. Turn on receiver and follow tuning procedure on page 24

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT -TUrn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync Momentarily remove the signal by switching off channe and then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal bars will be graduclly redused and when only $3-1 / 2$ to 4-1 2 bars sloping downward to the left are obtained, the picture will pull into syn: upon slight additional clockwise rotation of the control. The pull-in should occur when the central is approximately 90 degrees from the extreme counter-clackwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position the picture should be out of sync and should show from $3-1 / 2$ to $4-12$ bars sleping downward to the right.
If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus" adjustment.

ALIGNMENT OF HORIZONTAL OSCILATOR - If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync for at least 60 degrees of clockwise rotation of the control from the pull in point, it will be necessary to make the following adjustments.
horizontal frequincy adjustment -Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the rear apron horizontal frequency trimmer $\mathrm{C}-55 \mathrm{~B}$ (see Figure 6) until the picture is out of sync and shows $3-1 / 2$ to $4-1 / 2$ bars sloping downward to the right. If the trimmer has insufficient range, set the trimmer to mid-position (1 turn out from maximum capacity) and adjust the L-14 horizontal fre. quency adjustment until this condition is obtained. See Figure 9 for the location of L-14.

HORIZONTAL LOCKING RANGE ADJUSTMENT -Set the horizontal hold control to the extreme counter-clockwise position. Momentarily remove the signal by switching off channel and then bask. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync. If more than $4-1 / 2$ bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C-55A (See Figure 6) slightly clockwise. If less than $3-1 / 2$ bars are present, adjust trimmer C-55A slightly counter-clockwise. Turn the horizontal hold control counterclockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until $3-1 / 2$ to $4-1 / 2$ bars are present. Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the condition specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.
height and vertical linearity adjustments - Adjust the height control R-86 (See Figure 6) until the picture fills the mask vertically. Adjust the vertical linearity control R-93 (See figure o) until the picture is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust vertical centering control R-105 (See Figure 6) to align the picture with the mask. See note on page 13

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS

 -Turn the width control L-15 (at top of power supply cover) to the maximum clockwise position. Vary the horizontal drive trimmer C-55C (See Figure 6) to yield the best compromise between brightness and linearity. Adjust the horizontal linearity control L-16 (See Figure 6) for best linearity of the right half of the picture. Readjust the width control L-15, until the picture just fills the mask Adjust horizontal centering control R-106 (See Figure 6) to align the picture with the maskFOCUS -Adjust the focus control R-104 (see Fig. 6) for maxiinum definition of the vertical wedge of the picture. Check to see that all cushion, yoke and focus coil thumb screws are tight. Replace the cabinet back making sure that the back is on tight, otherwise it may rattle at high volume.

Check of r-f oscillator adjustments - With an accu CHECK OF R-F OSCILLATOR ADJUSTMENTS - With an accupreferred), check to see if the receiver R-F oscillator is adjusted to the proper frequency on all channels. The adjustments for all channels are available from the front of the cabinet by removing the front panel as shown in Figure 5. Tune in all available television stations.

OJohn F. Rider
raster; no image, but accompanying sound-This condition can be caused by:

1. No signal on picture tube grid. Check picture I-F amplifier tubes V-9, 10 and 11 (6AG5's), second detector V-12 (6AL5) and video amplifier V-13 (12AU7).
2. Bad contact to picture tube grid (lead to socket broken).

SIGNAL APPEARS ON PICTURE TUBE GRID bUt impossible to SYNCHRONIZE THE PICTURE VERTICALLY AND HORIZONTALLY
-A condition of this nature can be caused by:

1. Defective sync amplifier and separator V-14 (6SN7GT).
2. If tube is $O . K$. check voltages, and associated circuits.

SIGNAL ON PICTURE TUBE GRID AND HORIZONTAL SYNC ONLY -If this condition is encountered, check:

1. Vertical integrating network capacitors C-71, C-72, C-73 and C-74; and resistors R-79, R-80 and R-81.

PICTURE STABLE BUT with POOR RESOLUTION -If the picture resolution is not up to standard, it may be caused by any of the following:

1. Defective picture detector V - 12 (6AL5) or video amplifier V-13 (12AU7).
2. Open video peaking coil. Check all peaking coils $\mathrm{L}-8$, $\mathrm{L}-9, \mathrm{~L}-10, \mathrm{~L}-11$ for continuity. Note that $\mathrm{L}-9$ and $\mathrm{L}-11$ have shunting resistors.
3. Leakage in V-13 (12AU7) grid capacitor C-42. If the above components are not found to be defeciive check the following:
4. Check all potentials in video circuits.
5. Check picture tube grid circuit for poor or dirty contact.
6. Check adjustment of focus control R-104. It should be effective on either side of proper focus.
7. Check and realign, if necessary, the picture I-F and R-F circuits.

PICTURE Smear:

1. Normally, smear can be attributed to phase shift at the low frequency end of the video characteristic. This can be caused by improper values of resistors and capacitors in the video circuits. Check for grid current on video amplifier tube V-13 (12AU7).
2. This trouble can also originate at the transmitter. Check reception from another station.

PICTURE JITTER:

1. If regular sections at left נf the picture are displaced, replace the horizontal output tube V-17 (6BG6-G).
2. Vertical instability may be due to loose connections or noise received with the signal.
3. Horizontal instability may be due to unstable transmitted sync or to noise.

ALIGNMENT PROCEDURE

TEST EQUIPMENT - To service this receiver properly, it is recommended that the following test equipment be avail able:
R-F SWEEP GENERATOR meeting the following requirements: (a) Frequency ranges:

18 to $30 \mathrm{mc}, 1 \mathrm{mc}$ sweep width
40 to $90 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
170 to $225 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
(b) Output adjustable with at least 1 volt maximum.
(c) Output constant on all ranges.
(d) Flat output in all attenuator positions.

CATHODE-RAY OSCILLOSCOPE preferably one with a wide band vertical deflection and an input calibrating source.
SIGNAL GEMERATOR to provide the following frequencies:
(Output on these ranges should be adjustable and at least . 1 volt maximum.)
(a) Intermediate frequencies:
21.25 mc sound i-f and sound traps
22.8 mc converter transformer
23.9 mc first picture i-f coil
24.5 mc third picture i-f coil
26.0 mc second picture i.f coil
27.5 mc adjacent channel trap

ALIGNMENT PROCEDURE (Continued)

(b) Radio frequencies

Chonnel Number	Picture Corrier Freq. Mc	Sound Corrier Freq. Mc
2	55.25	57.75
3	61.25	65.75
4	67.25	71.75
5	77.25	81.75
6	83.25	87.75
7	175.25	179.75
8	181.25	185.75
9	187.25	191.75
10	193.25	197.75
11	199.25	203.75
12	205.25	209.75
13	211.25	215.75

HETERODYNE FREQUENCY METER with crystal cal:brator if the signal generator is not crystal calibrated.

ELECTRONIC VOLTMETER and a high voltage probe for use with this meter to permit measurements up to 10 kilovolts.

SERVICE PRECAUTIONS - To service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the front panel, the cabinet back, disconnect all leads to the radio chassis and then the 5 chassis mounting bolts. The chassis normally should be serviced without the picture tube However, if it is necessary to view the raster during servic ing, the picture tube should be inserted-only after the chassis is turned on end. The picture tube should neve be allowed to support its weight by resting in the deflection yoke. A bracket should be used to support the tube at its viewing screen. By turning the chassis on end with the power transformer up, all adjustments will be con veniently available. Since this is the only safe position in which the chassis will rest and still leave adjustments ac cessible, the trimmer location drawings are oriented sim ilarly for ease of use.

CAUTION: Do not permit the picture tube second-anode lead to become shorted to the chassis. To do so will cause a considerable overload on the high-voltage filter resistor R-82.

Fig. 9-Bottom Chassis Components

$\begin{aligned} & \text { Ssep } \\ & \text { No. } \end{aligned}$	Connect Signal Generator to	Signal Gen. Freq. Mc.	Connect Swoep Generator to	Sweep Gen. Freq. Me.	$\begin{gathered} \text { Connoct } \\ \text { Oscilloscope to } \end{gathered}$
1	2nd sound i-f grid (pin 1, V-5)	$\begin{gathered} 21.25 \\ .1 \text { volt output } \end{gathered}$	Not used		Not used
2	2nd sound i-f grid (pin 1, V-5)	$\begin{gathered} 21.25 \\ .1 \text { volt output } \end{gathered}$	Not used		Not used
3	2nd sound i-f grid (pin 1, V-5)	$\begin{gathered} 21.25 \\ .1 \text { volt output } \end{gathered}$	$\begin{aligned} & \text { 2nd sound } \\ & \text { i-f grid } \\ & \text { (pin 1, v-5) } \end{aligned}$	$\begin{gathered} 21.25 \\ \text { center } 1 \mathrm{mc} \\ .1 \text { volt output } \end{gathered}$	$\begin{aligned} & \text { Discriminator } \\ & \text { output (pin } 1 \text { of } \\ & \text { V-6) } \end{aligned}$
4	$\begin{aligned} & \text { Trap winding } \\ & \text { on T-1 } \\ & \text { (top of chassis) } \end{aligned}$	$\begin{gathered} 21.25 \\ \text { reduced output } \end{gathered}$	Trap winding on T-1	$\begin{gathered} 21.25 \\ \text { reduced output } \end{gathered}$	Terminal A, T-2 in series with 33,000 ohms. See Note 2.

Connost Voltmeter to	Miscollaneous Connections and Instructions	Adjust	Refor to
In series with 1 meg. to junction of R-14 and R-13	Meter on 10 voit scale	Detune T-3 (bottom) Adjust T-3 (top) for max. on meter.	Fig. 11 Fig. 12 Fig. 13
Discriminator output (pin 1 of V-6)	Meter on 3 volt scale	T-3 (bottom) for zero on meter.	$\begin{aligned} & \text { Fig. } 12 \\ & \text { fig. } 13 \end{aligned}$
Not used	Check for symmetrical response waveform (positive and negative). If not equal adjust T-3 (top) until they are equal. See Note 1 .		$\begin{aligned} & \text { Fig. } 11 \\ & \text { Fig. } 12 \\ & \text { Fig. } 13 \end{aligned}$
Not used	Sweep output reduced to provide 3 volt p-to-p on scope. See Note 3.	T-2 (top and bottom) for max. gain and symmetry at 21.25 mc .	$\begin{array}{ll} \text { Fig. } & 11 \\ \text { Fig. } & 12 \\ \text { Fig. } & 13 \end{array}$

NOTE: 1: The peak to peak bandwidth of the discriminator should be approximately 350 kc . and should be linear from 21.175 mc . to 21.325 mc .
NOTE 2: If a 60 cycle sweep rate is used, it will be necessary ta reduce the time constant in the 2 nd sound i-f grid circuit in order to reproduce the desired response curve. To do this, shunt R-10 (Terminal "A" of T-2 to chassis) with 5600 ohms.
NOTE 3: The sweep generator output should be set to produce approximately 0.3 volt peak-to-peak on the oscilloscope at the second sound i-f grid return (Terminal "A" of T-2) for final touch-up on this adjustment. Signal voltage in excess of 0.3 volt will tend to broaden the responsive curve-permitting misadjustment to pass unncticed.

Fig. 11-Top Chassis Audia l.F Adiustments

Fig. 12-BoHam Chassis Audia I.F and

© John F. Rider

picture i-f and trap adjustment

$\begin{aligned} & \text { Stop } \\ & \text { No. } \end{aligned}$	Connect Signal Generator to	Signal Gen. Freq. Mc.	Connect Sweep Generator to	Sweep Gen. Freq. Mc.	$\begin{gathered} \text { Connect } \\ \text { Oscilloscope to } \end{gathered}$	$\begin{gathered} \text { Connect } \\ \text { Voltmeter to } \end{gathered}$	Miscellaneous Connections and Instructions	Adjust	Refer to
5	Not used		Not used		Not used	Junction R-41 and R-43	Set "Station Selector" switch to channel 13	Adjust "Picture" control for -3 volts reading on Voltmeter	Fig. 15
6	Junction R-6 and R-7	21.25	Not used		Not used	Junction of L-8 and R-51	Meter on 3 volt scale	T -1 (top) for min. on meter	$\begin{array}{ll} \text { Fig. } & 14 \\ \text { Fig. } & 15 \end{array}$
7	Junction R-6 and R-7	21.25	Not used		Not used	Junction of L-8 and R-51	Meter on 3 volt scale	T. 5 for min.	$\begin{array}{ll} \text { Fig. } & 14 \\ \text { Fig. } & 15 \end{array}$
8	Junction R-6 and R.7	27.25	Not used		Not used	Junction of L-8 and R-51	Meter on 3 volt scale	T-10 (bottom) for min.	Fig. 9 Figs. 14-15
9	Junction R-6 and R-7	22.8	Not used		Not used	Junction of L-8 and R-51		T-1 (bottom) for max.	Fig. 15
10	Junction R-6 and R-7	23.9	Not used		Not used	Junction of L-8 and R-51		L-5 (top chassis) for max.	Fig. 14 Fig. 15
11	Junction R-6 and R-7	26.0	Not used		Not used	Junction of L-8 and R-51		T- 10 (top chassis) for max.	$\begin{aligned} & \text { Fig. } 14 \\ & \text { Fig. } 15 \end{aligned}$
12	Junction R-6 and R-7	24.5	Not used		Not used	Junction of L-8 and R-51		L-7 (top chassis) for max. for max.	$\begin{aligned} & \text { Fig. } 14 \\ & \text { Fig. } 15 \end{aligned}$

NOTE: Oscillation may occur if the i-f section is badly out of alignment. This will be evidenced by a meter reading in excess of 3 volts and is caused by the "staggered" i-f stages being tuned to approximately the same frequency. If this condition is encountered, adjust the core studs of $\mathrm{T}-1$ (bottom) $\mathrm{L}-5 \mathrm{~T}, \mathrm{~T}-10$ and $\mathrm{L}-7$ until oscillation ceases. Oscil lation may not be encountered until proceeding with steps 9,10 , or 11

RETOUCHING OF PICTURE I-F ADJUSTMENTS - The picture i-f RETOUCHING OF PICTURE I-F ADJUSTMENTS - The picture iresponse curve varies somewhat with change of bias and
for this reason it should be aligned with approximately the same signal input as it will receive in operation.
If the receiver is located at the edge of the service area, it should be aligned with approximately -1 volt i-f grid bias. However, for normal conditions, (signals of 1000 microvolts or greater), it is recommended that the picture
i-f be aligned with a grid bias of -3 volts. Set the picture i-f be aligned with a grid bias of -3 volts. Set the pictur control for -3 volts at the junction of R-41 and R-43.
Connect the r-f sweep generator to the junction of R-6 and R-7. See Figure 14
Loosely couple the signal generator to the sweep gen rator leads and teed in the 25.75 megacy 23 megacycles marker
Connect the oscilloscope across the picture detector load resistor R-51.
Set the channel switch to channel (between 1 and 6) Set the channel switch to ch
found to have the best response.

15-Botiom Chassis Video I.F Adiustents

Set the sweep output to produce approximately 3 volt peak to peak across the picture detector load resistor. On final adjustment the picture carrier marker must approximately flat topped and with the 23 mc marker at 10% down.

16-Transtormer Windima Leod
SENSITIVITY CHECK -A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.
This weak signal can be obtained by connecting the shop antenna to the receiver through an attenuator pad of the type shown in Figure 17. The number of stages in the pad depends upon the signal strength available at the antenna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the maximum clockwise position

Only carbon type resistors should be used to construct the attenuator pad. Since many of the low value molded , tion, it is advisable to break and examine one of each type of resistor used in order to determine its construction.

RESPONSE CURVES - The R-F response curves shown in Figure 18 were taken from a production set. Although these curves

$$
\mathrm{d}^{1 ? 0}
$$

The response curves are shown in the classical manne of presentation, that is with response up and low frequenc to the left. The manner in which they will be seen in 0 the oscilloscope and the sweep generator. These curves may be observed by connecting the sweep and marker generators to the antenna input and connecting the oscillescope between the test point (see figure 14) and chassis.
CHAC

CRITICAI LEAD DRESS-

1. Do not permit any strains to be placed on the leads of R-68, R-59, R-63, R-62, R-58, R-61, R-67 and R-64 Do not permit these resistors to be exposed to the hea of a sol sary.
2. Dress the temperature compensating resistor R-64 ap proximately one quarter inch from the power trans. former and the chassis.
3. Dress all video coupling ca

Dress all video coupling capacitors and peaking coils up and oway from the chassis.
Contact between the R-F oscillator frequency adjust outlets must be avoided.
5. Dress T-8 winding leads as shown in Figure 16

©John F. Rider

REPLACEMENT PARTS INFORMATION

MODEL 94WG-3028
HOW TO ORDER PARTS - Should it be necessary to write us or to order any repair parts, it is important that the cum

RADIO
ALIGNMENT PROCEDURE
AM STAGES

M													
The following is required for aligning:					Volume C								
Output Indicating Mefer, Non-Metallic Screwdriver, Dummy Antennas$-.1 \mathrm{mf}, 200 \mathrm{mmf} .$													
signal generator		connect generator oUtPut to	through DUMMY ANTENNA	BANDSWITCHSETING	GANGCONDENSERSETTNG setting	adjust	$\begin{gathered} \text { ADJUST } \\ \text { FOR } \end{gathered}$						
	frequenct												
I-F	455 kc	Pin 7 and Chassis	. 1 mt	8roadcast	Rotor Fully Open	2nd I-F Pri. \& Sec. 182 1st I-F Pri. 8 Sec. 3 \& 4	Maximum						
Broadcast	1620	Antenna Lead and Ground	200 mm	Broadcast	Rotor fully Open	Broadkast Osciliator C. 33							
	140	Antenna Lead and Ground	200	8roadcost	Turn Rotor to Max. Output Set pointer to 1400 kc See Note A	Broadcost Interstage C. 29							
	1400 kc	$\begin{aligned} & \text { Antenna } \\ & \text { Lead and Ground } \end{aligned}$	200 mmf	Broadcast		Loop Trimmer C. 48							
Note A-If the pointer is not at 1400 KC on dial, resel pointer of the 1400 KC mark on the dial scale.													
FM STAGES													
signal generato			through DUMMY ANTENNA	BAND $\underset{\text { SETTICH }}{\text { SWI }}$ SETTIN		adjust	$\begin{gathered} \text { ADJUST } \\ \text { FOR } \end{gathered}$						
			$\begin{gathered} \text { GANG } \\ \text { CONDERSER } \\ \text { SETTING } \end{gathered}$										
	frequency SETTING	CONNECT generator OUTPUT TO											
Discriminatar	$10.7 \mathrm{MC}$	6BAG 2nd I-F Pin and Chassis	01 mf	FM	Rotor Fully Open	Disc. Pri. 5 Note A	${ }_{\text {Moximum }}^{\text {Mater }}$						
	$10.7 \mathrm{MC}$	6BA6 2nd I-F Pin 1 and Chassis	01 mf	FM	Rotor Fully Open		Zero Conter						
1.F	10.7 Mc Note F	6BA6 1st I.F Pin 1 and Chassis	01 mf	FM	Rotor Fully Open		Maximum Defilection						
Discrim. inator	10.7 MC	6BA6 1st I-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	$\text { Disc. Pri. } 5$ Note A	Maximum Deflection						
	$10.7 \text { MC }$	6BA6 lat I.F Pin 1 and Chassis	01 m	FM	Rotor Fully Open	$\begin{gathered} \text { Disc. Sec. } 6 \\ \text { Note } C \end{gathered}$	Zero Center						
	10.7 MC Note F	FM-RF $\underset{\text { terminal }}{\text { Gang Condenser }}$. 01 mf	FM	Rotor fully Open	1st 1-f Pri. 9 ist I.f Sec. 10 Notes A, D \& E	Maximum Deflection Deflectio						
Recheck l-F Adiustments in order given													
R.F \& Ose	$\begin{aligned} & 108.4 \\ & \text { Note } \mathrm{H} \end{aligned}$	Disconnect dipole and connect generator to dipole terminals with resistor in series connected to terminal No. 1.	300 ohms	fM	Rotor Fully Open	$\begin{aligned} & \text { Ossillator c. } 35 \\ & \text { Note } G \end{aligned}$	Maximum Deflection						
	104.5		300 ohms	FM	Tune Rotor for Max. AVC voltage	$\underset{\text { FM Interstage }}{\text { C. } 32}$	Maximum Deflection						
	104.5		300 ohm	FM	Tune Rotor for Max. AVC voltoge	Ant. C.47	$\underset{\substack{\text { Maximum } \\ \text { Deflection }}}{ }$						
Recheck R-F and Osc. Adiustments in order given													
NOTE A-Test Equipment connections are as given in the table. The zero center scale DC vacuum tube voltmeter is to be connected between chassis ground and the AVC line of the junction of resistor R-22 and condenser C. 18 for all adiustments except the discriminator secondary adjustment, for which See Note C. NOTE B-A signal of .1 volt must be fod into the receiver for this adiustment. NOTE C-Disconnect zero center DC vacuum tube voltmeter from AVC and connect to junction of R-18 and C-62. Adiust for zero voltage indication. NOTE D-8efore adjusting Pri. core connect 1000 ohm load resistor across the 2nd I.F. secondary terminals. Input may have to be increased to . 1 volt if receiver is badly mig-aligned. NOTE E-Disconnect 1000 ohm load resistor from secondary ter Input may have to be increosed to . 1 volt if receiver is badly mis-aligned. NOTE F-Input can be reduced to 10,000 microvolts. NOTE G-Oscillotor frequency above signal frequency. NOTE H-Remove the 1000 ohm load resistor before attempting to check the R-F and oscillator adjustments.													

REPLACEMENT PARTS LIST

© John F. Rider

There are two dual controls, consisting of a small and a large knob each, on the front panel of the receiver. The

FIGURE 1. operating controls

SERVICE ADJUSTMENT CONTROLS

The receiver is completely adjusted at the factory, so normally none other than the front panel control operating instructions need be followed in putting the receiver in oper
ation. However, to provide for any misadjustment of the service controls, due to handling, the following instructions are in order. See Figure 2 for location of the service adocus control

The FOCUS control should be adjusted until the fine horizontal line structure of the raster is clearly visible over the picture area. The control should be tuned through the cor -

FIGURE 2. SERVICE ADJuStMEnt CONTROL Ch. TS-53

FIGURE 3. PICTURE TUBE ADJUSTMENT LOCATIONS CONNECTION
the CONTRAST control for the most pleasing picture. Keep the brilliance slightly below maximum, however, in order prevent poor picture detail.

ADJUSTMENT OF ION TRAP
Under conditions of rough shipment, it is possiblefor he ion trap to become misalign. To prevent serious dam age to the picture tube. the following method of adjustment

The magnet should be placed on the neck of the tube in the direction indicated by the marking on the magnet (usu-
ally an arrow which points toward the picture tube screen) so that the stronger magnet of the double magnet type or the only magnet in the single magnet type is positioned over the internal pole pieces which are mounted on the gun struc re. Adjust the brightness control for low intensity an e same time rotating it to obtain the brightest raster. If inobtaining the brightest raster, the ion trap magnet has to be moved more than $1 / 4^{\prime \prime}$ frorn the gun pole pieces the maget is probably weak and a new magnet should be tried. Nevcorrect for a shadowed raster with the ion trap magnet if taph correction results in decreased brightness. The ion ness and if shadows occur at this setting they should be eliminated by adjusting the focus and deflection coils as explained under "Focus Coil and Deflection Yoke Adjustment"

CAUTION: Keep brightness control at low intensity until ion trap is properly set.

A mirror placed in front of the receiver will aid in making this adjustment.

deflection yoke adjustment

If the deflection yoke shifts, the picture will be tilted. To correct, loosen the thumb screw on top of the deflection yoke and rotate yoke until the picture is straight. Before
tightening the thumb screw, make certain that the deflec tion yoke is as farmorward as possible.

If the yoke support and the picture tube have shifted in transit, or if for any reason these parts have been removed ing. See Figure 3. The starting point is the position of the picture tube. It should be adjusted so that the tube fits snugIy up against the tube positioning bracket on the front edge of the chassis. The clamp on the front of the tube should then be tightened. The picture tube support bracket posi-
tioning adjustment screws should be loose enough to perit then
sliding the bracket forward until the rubber cushion fits snug ly up against the flare of the tube. Loosen the yoke adjustment thumb screw and push the yoke up against the flare of the tube. CAUTION: Do not use force in sliding the bracket up. If too much force is used, a strain will be placed on
the neck of the tube when the support bracket positioning ad-
justment screws are tightened. Also the yoke may be forced out of position. The opening in the yoke should be concen. with the neck of the tube.
focus coil
The focus coil bracket positioning screw nuts should now be loosened and the focus coil bracket moved up so that when etween them is parallel with the deflection yoke the space positioning screw nuts, tighten the first one so that the spring washers will have enough tension to hold the bracket picture centering adjustment. Then tighten the second nu to act as a lock to prevent loosening of the tension.

TEST SOCKET

A test socket is provided on the rear of the chassis which Alows adjustment of the horizontal oscillator and checking Figure 2 for socket removing chassis from cabinet. See igure 2 for socket connections.

general

The chassis should be mounted on angle iron bracket Motorola Part No. 7 7 700210) so that all connections and adjustments may be made easily.

Since the power cord circuit is broken by the interlock when the cabinet back is removed, it will be necessary to obtain an extra power cord with the female interlock recep-
tacle in order to make a power connection to the receiver. Order Motorola Part No. 30B470756.

It is recommended that an isolation transformer be used between the receiver and the AC line whenever any test equipment is attached to the chassis. This precaution is NEVER GROUND THE RECEIVER CHASSIS DURING TESTing operations or installation unless an isola. TION TRANSFORMER IS USED.
ORDER OF ALIGNMENT
A complete receiver alignment can be most conveni-
wing order

1. Audio Take-Off \& Ratio Detector
2. 4.5 Mc Trap
3. IF coils \& Mixer Transformer
4. Osc \& RF Sections

AUDIO TAKE-OFF \& RATIO DETECTOR ALIGNMENT

Equipment Required:

AM Signal Generator: (Optional)	Accúrately calibrated at 4.5 mc
	Adjustable output
DC Meter:	Low range electronic meter

Procedure:
Refer to Figure 4 for location of adjustment

1. If possible, it is desirable to align the audio section Iroman actual station signal, since the 4.5 mc align mer should be turned off the station slightly, to prevent overloading the ratio detector.
2. If a signal generator is used, tune it accurately to 4.5 mc , and adjust the output to approximately 10,000 erator through a 1000 mmf capacitor to the grid (pin 1) of the video amplifier tube V-7 (6AH6), and the low side to B-. The following applies whether
. From either side of capacitor C-60 (10 mf), conne an electranic voltmeter to B- decoupled thru 10 K

Set the contrast control for maximum gain (fully clockwise).
. Peak L-23 for maximum reading on meter
6. Peak t-3 primary (top core) for maximum reading on meter
. Move the meter and decoupling resistor from C-60 to junction of R-42 (33 K) and lead to volume control.
8. Adjust T-3 secondary (bottom core) for zero re Adjust T-3 secondary (bottom core) for zero re-
sponse on 2.5 V scale of meter. This corresponds
to the cross-over point on the FM detector curve. If desired, the symmetry of the curve maybe checked by tuning the signal generator 25 Kc above and below 4.5 mc and noting the plus and minus voltage produced, reversing the meter connections as neces
sary. For proper balance of the ratio detector sy sary. For proper balance of the ratio detector sys
tem, the voltage ineach direction should be approxi mately equal. If not, check the tuning of L-23 and
he primary and secondary of T-3, the ratio detec or. If necessary, replace the ratio detector tube or on a station signable to calibrate the genera the secondary on a station signal and then connecting the generator and tuning it to produce the same null
, As in a the trimmers in the set.
NOTE: As the adjustments are brought to resonance, put to prevent overloading.

With a 10,000 microvolt signal into the grid of the video mplifier tube, with the contrast control turned fully clock wise, and the focus control at center of its range, the voltgreater than 5 . OV.

4. 5 MC TRAP ALIGNMENT

1. Connect the high side of the signal generator through a 1000 mmf capacitor to the grid (pin 1) of the video

Connect the voltmeter and germanium crystal recConnect the voltmeter and germanium crystal rec-
tifier, as shown in Figure 5, between the cathode of
 est voltage scale on the meter.
3. With the signal generator accurately set at 4.5 mc and maximum output, adjust trap L-2l for minimum reading on the meter.

F amplifier alignment

Equipment Required:

IF
ments
8 to 30 mc , approximately 12 mc sweep width utput constant and adjustable it least 1 vo ibrated, adjustable

Cathode Ray Oscilloscope: preferably one with a alibrated input attenuator.

NOTE: If there is no built-in marker in the sweep gen erator, loosely couple the output of an accuately calibrated AM signal generator to the IF trip. At all times, keep the marker output low no response curve. the response curve.

If a wide band scope is used, the marker will be more distinct if a capacitor of 100 to 1000 inmf is placed acros the scope input. Use the smallest size possible, since to
large a value will affect the shape of the curve.

Procedure:

1. Remove high voltage generator tube V-17 (6BQ6GT rom its socket to eliminate horizontal pick-up in

By means of an external battery, apply a negativ 3.0 volt bias from the bottom of the 1 st IF tube grid esistor R-11 (6800) to B-
3. Using leads as short as possible, connect the ho

1st IF tube V-3 (6AU6) through a 5000 mmf capacito (do not use the loose or "spraying" method of cou
pling). The low side is connected to B. center frequency of the sweep to about 24.6 mc and adjust initially for a sweep deviation of approximate ly 12 mc . However, a sweep of from 8 to 10 mc may
be found better for overall alignment
Using Rcope to pin 4 of tost sockling resistor, connec put is desired, connect the scope between the pictur tube cathode and B-. The curve seen at this positio
5. Will be the reverse of the polarity shown in Figure

NOTE: If a distorted or unstable picture is seen on the oscilloscope during alignment, it may be neces ary to stop the oscillator by disconnecting re istor R-10 (1000) from the plate (pin 6) of the nother tube with pin 6 removin or by substitutin
CAUTION

1. Do not reduce the oscilloscope gain and increas ignal input so that the top of the curve is flattene
2. Thedress of plate and grid components in the affects tuning. Do not move indiscriminately
3. On the IF coils and on the traps the resonanc point will be found at two settings of the slug he greater part of the adjusting screw out of the coil.
NOTE: The 1 st \& 2 nd IF traps are tuned from bottom chassis, while IF cores are adjusted from the chas
top.
. Tune the low frequency trap L-17, located on the 2 n if coil, for maximum attenuation on the curve 21.9
4. Tune the high frequency trap L-13, located on the 1 st IF coil, for maximum attenuation on the curve a 27.3 mc
5. Adjust the 1st IF coil, L-12, to place a 26.6 m marker on the high side of the response curve 60% marker on the high side of the response curv
down from maximum response. See Figure 6 .
. Adjust the 2nd IF coil, L-16, to place a 22.7 mc marker on the low side of the response curve 60% down from maximum response.
6. Adjust the 3rd IF plate transformer T-2 to provide a flat top or symmetrical response curve.
7. Reset the traps (steps 6 \& 7) and again check the 1 for proper response.

NOTE: It is suggested that the bias be removed for accurate resetting of the traps.
12. With bias applied, connect the sweep between th grid (pin 2) of the mixer tube V-2A (12AT7) and B.
13. Disconnect the trimmer, C-16, in LC circuit in the grid of the mixer tube, or short the trimmer through MODELS 12K1, $12 \mathrm{KIB}, 12 \mathrm{~K} 2$, $12 \mathrm{~K} 2 \mathrm{~B}, 12 \mathrm{~K} 3,12 \mathrm{~K} 3 \mathrm{~B}, 12 \mathrm{Tl}$, 12T1B, l2T2, l2T3, Ch. TS

Figure 4. tUbe and alignment adjustment locations

Figure 5. electronic voltmeter connections

FIGURE 6. if response curve
14. Bring both cores of the mixer transformer, $T-1$, simultaneously from the outside towards the center. The half-way markers should be 26.4 mc and 22.9 mc . See Figure 7

NOTE: In aligning the three IF coils, each coil is ad justed individually, but when adjusting the pri the adjustments should be made simultaneously The important point to keep in mind is to obtain a flat response curve with as much gain as pos sible. The sides of the curve should be straigh and as steep as possible. Simultaneous adjust

ing of the primary and secondary is the easiest way to obtain this result. The transformer by
itself is, ineffect, tuned for the same pass band as the three staggered circuits. See Figure 7. The only difference in the overall waveform should be that the sides of the overall wave are steeper. Constant use of the 50% markers (22.9 $\mathrm{mc} \& 26.4 \mathrm{mc}$) should be resorted to, since it
is absolutely necessary to obtain the proper curve. A slight dip (not exceeding 10\%) is permissible in the mixer transformer response curve

BANDWIDTH

The bandwidth may be determined by connecting an AM generator to the mixer grid. With the generator frequency at 24.6 mc , adjust the output for 1 volt reading on a VTVM
connected at the plate (pin 2) of the video detector tube $\mathrm{V}-6$ connected at the plate (pin 2) of the video detector tube V-6
(6 AL 5) and B-. Double the output of the generator. Now by tuning either side of 24.6 mc and noting the frequencies at which the VTVM again reads 1 volt, the 6 db bandwidth points are indicated.
REGENERATION CHECK
After the above IF and mixer transformer alignment has been made, a check for regeneration in the IF amplifier stripshould be made. This is done by removing the battery bias and observing the output response curve on the oscillo-
scope, as taken between the picture tube cathode and $B-$. The bandwidth may change with the bias removed but should not change more than 0.2 mc . Set the contrast control to shows a marked decrease. Any regeneration present will be indicated by sharp peaks on the overall response curve. The oscillator should be stopped, as described above, during this procedure

CAUTION: Do not inject too much marker signal.
mixer le adjustment
Reconnect bias removed for regeneration check. Re place trimmer C-16 in LC circuit of mixer grid or remove trimmer so it is tuned to the center of the mixer response curve. This is indicated by observing the effect of the LC circuit on the mixer response. Increasing the capacity of the trimmer and bringing the LC circuit from above the $I F$
range into the IF range, it will be noted that the mixer range into the IF range, it will be noted that the mixer
curve will pull down on the high side, then straighten out as the LC circuit approaches the middle of the range, and pull down on the low side as the LC circuit approaches the low end of the IF range. The proper tuning point is that point at which the mixer curve straightens out. In effect. the LC circurt is similar to a jack coil when it is within the
IF

CAUTION: Tuning the LC circuit very low will cause oscillation.
If SENSITIVITY MEASUREMENTS

IF Stages Only

1. Remove the battery bias from 1 st $I F$ tube grid
2. Connect an AM signal generator, set at 24.6 mc , through a blocking capacitor of 5000 mmf , between
$\mathrm{B}-$ and the grid (pin 1) of the lst IF tube $\mathrm{V} .3(6 \mathrm{AUG})$
. Connect an electronic voltmeter across the video detector load resistor R-26 (5600). Both leads from the meter should be decoupled with 100 K ohm resis -

MODELS 12K1, 12K1B, l2K2

$12 \mathrm{~K} 2 \mathrm{~B}, 12 \mathrm{~K} 3,12 \mathrm{~K} 3 \mathrm{~B}, 12 \mathrm{Tl}$
12T1B, 12 T 2, l2T3, Ch. TS-5
4. Set the contrast control for reaximum sensitivity.
5. Stop the oscillator tube by disconnecting resistor R-10 (1000) from the plate (pin 6) of tube V-2B (12AT7) or by substituting another tube with pin 6 removed.
6. The signal required to produce 1 volt (negative) above contact potential on the meter should be less than 700 microvolts.

Mixer \& IF Stages

The preliminary preparations are the same as for checkthe sensitivity of the IF stages except:

1. Connect the AM signal generator, set at 24.6 mc hrough a 5000 mmf capacitor, between B - and the grid (pin 2) of the mixer tube $\mathrm{V}-2 \mathrm{~A}(12 \mathrm{AT} 7$)
2. The signal required to produce 1 volt (negative) above contact potential on the meter should be less than 125 microvolts.
cillator, antenna and rf alignment
NOTE: The IF must be aligned before the RF section can be properly phased.

Equipment Required

Sweep Generator: Frequency range $40-220 \mathrm{mc} ; 10 \mathrm{mc}$ sweep width
Output constant and adjustable Adjustable markers (markers Illy by checking againstasioncurate signal generator).

Oscilloscope: Preferably one with a calibrated input attenuator
Signal Generator: Frequency range 40 to 220 mc Accurately calibrated AM modulated, 400 cycle
-contact potential on the meter should be less than 125Frequency ranshould be calibrated occasionally by checking against
curate signal generator).

CRUENCY CHART

Chan	Frequency	Picture	Sound	Oscillator
2	$54-60$	55.25	59.75	81.65
3	$60-66$	61.25	65.75	87.65
4	$66-72$	67.25	71.75	93.65
5	$76-82$	77.25	81.75	103.65
6	$82-88$	83.25	87.75	109.65
7	$174-180$	175.25	179.75	152.45
8	$180-186$	181.25	185.75	158.45
9	$186-192$	187.25	19.75	164.45
10	$192-198$	193.25	197.75	170.45
11	$198-204$	199.25	203.75	$176.45(225.65 *)$
12	$204-210$	205.25	209.75	$182.45(231.65 *)$
13	$210-216$	211.25	215.75	$188.45(237.65 *)$

[^6]

FIGURE 9. ANTENNA, RF AND OSCILLATOR COIL LOCATION
. Set the contrast control at minimum (counterclockwise).

Remove the fine tuning knob and turn shaft until the slot is in a horizontal position. This represents the mid-capacity position.
. Turn station selector switch to channel 12 .
Set the sweep generator on channel 12 with a center frequency of 207 mc and at least a 12 mc sweep. Keep the output low enough to show no
ing in the overall response curve.
NOTE: Before aligning the oscillator section, make certain the 3.3 microhenry choke ($L-9$) in the mixer grid is dressed away from the $\langle\mathrm{mmf}$ capacitor ($\mathrm{C}-17$) tied to the same grid
B. Introduce a marker corresponding to the sound carrier of channel $12(209.75 \mathrm{mc}$).
. Adjust oscillator ceramic trimmer (C-14) so that the response curve.
. Turn generator and station selector to channel 9 with the fine tuning shaft slot still in the horizontal position.
11. Spread or compress the 3 -turn coil located in the center of the oscillator plate (L-4M, Figure 9) so that the sound marker for channel 9 falls into the 27.3 mctrap dip in the response curve. As the os cillator is tuned below the carrier on channels 7,8 , 9 , and 10 , the 27.3 mc traf will be in the same
2. Repeat steps 6, 7, 8 and 9
3. Turn generator and station selector to channel 13

CHANNELS 2 TO 6

- SOLID LINE INDICATES OPTIMUM

RESPONSE

- DOTTED LINES INOICATES

figure 10. rf response curves channels 2-6
CHANNELS 7 TO 13

FIGURE 11. RF RESPONSE CURVES CHANNELS 7-1
4. Turn fine tuning trimmer so that the sound marke for channel 13 falls into the 21.9 mc trap dip of response curve. The slot in the fine tuning shaft should not have moved more than 30 degrees from number on the station selector knob represents 30 degrees).
5. If more than a 30 degree change in fine tuning trimmer was needed in step 14, adjust channel 13 oscillator coil ($\mathrm{L}-8$) by spreading or co
til the 30 degree requirement is me
NOTE: Each adjustment of channel 13 oscillator coil (L-8) will necessitate a rechecking of the oscil-
lator trimmer (C-14) on channel 12 as per steps lator trimmer (C-14) on channel 12 as per steps $6,7,8$, and 9
16. Check channels $12,11,10,9,8$, and 7 , by noting whether the fine tuning trimmer can drop the sound
marker for each channel in the trap dip by a 30 degree rotation. If one of the channels does not meet the 30 degree requirement, a compromise must be closer to the channel in question.

Example: 1) If channel 11 does not meet the 30 degree requirement, return station selector and and generator to channel 12 and tune cer-
amic trimmer (C-14) toward channel 11 (trimmer frequencies lowered by tightening screw). This will tend to move chanhel 12 sound marker out of the trap dip, tuning trimmer. Do not adjust trimmer any more then is necessary to get the channel in question back within the 30 degree requirement.
Example: 2) If channel 10 does not meet the 30 degree requirement, move station selector and generator to channel 9 and tune the 3 -turn coil freq raised will also tend to move channel 9 sound marker out of the trap dip, but this can be mer. Again, do not adjust the coil any more than is necessary to bring the channel in question back within the 30 degree re quirement
17. Turn sweep generator and station selector switch to channel 6 .
8. Adjust channel 6 oscillator coil (L-4E, Figure 9)

CIRCUIT DESCRIPTION

LOW VOLTAGE POWER SUPPLY
The low voltage power supply (Figure 12) provides plate oltage for all tubes except the high voltage applied to the second anode of the picture tube. The heater transformers which is energized by horizontal sweep current

One low voltage secondary of $\mathrm{T}-7$, the step-down filaent transformer. supplies filament voltage to all tubes exept the audio driver-he (V - 20), and

MODELS l2K1, l2KlB, 12 K 2,
l2K2B, $12 \mathrm{~K} 3,12 \mathrm{~K} 3 \mathrm{~B}, 12 \mathrm{Tl}$, l2T1B, l2T2, l2T3, Ch. TSthat the sound marker for channel 6 falls into the
21.9 mc trap dip with the fine tuning trimmer a mid-capacity (shaft slot in horizontal position). Always spread or compress channel \#6 oscillator coil
in units of 3 turns. Compressing turns will move curve toward sound marker, while spreading will move curve toward video marker.

IMPORTANT: Since the coils are in series, the proper alignment of channel 6 will simplify the phasing of the channels to follow.
19. Adjust channels 5 and 4 so that the sound marker for each channel falls into the 21.9 mc trap dip in the curve with the fine tuning trim. 15 degrees from mid-capacity.
20. Channels 3 and 2 should be adjusted so that the sound marker falls into the 21.9 mctrap dip with the fine city.
overall receiver sensitivity measurement
An overall measurement of sensitivity is made as fol-

Connect an AM signal generator to the input termi nals of the receiver chassis after removing the short 300 ohm lead which connects to the antenna input trip on the back of the cabinet. To match the gennetwork should be used. In the case of a generator 50 ohm output impedance, for example, place a 100 ohm resistor in series with the output terminal of the generator and a
with the ground terminal.
2. From cathode of picture tube to B - connect a cali brated oscilloscope.

NOTE: To calibrate scope, connect it across 6.3 volt thament supply. The peak-to-peak amplitude (6.3×2.8).
. Set contrast control for maximum sensitivity
4. Tune signal generator to the videocarrier frequency of the channel being checked. Generator signal hould be 30% modulated at 400 cycles. The signal from the generator to produce 20 volts peak-to-peak volts on channels 2 to 6 and less than 75 microvolts
diode ($\mathrm{V}-18$). Since the damping diode ($\mathrm{V}-18$) develops a high voltage pulse at its cathode, and its cathode is tied to the flament to prevent breakdown in the tube, it is necessary to provide a separate, low-capacity, well-insulated trans-$\mathrm{V}-14$ (25L6GT) requires a 25 volt filament supply and, hence is provided with a separate 25 volt tap on the transformer. $\mathrm{V}-8$ and $\mathrm{V}-20$ are supplied by an additional winding which, inlater sets, is connected series opposing with the primary to increase 6 . 3 illamer supply voltage slightly to in-

Figure 12. Simplified schematic of low voltage power supply

The B plus plate supply uses a voltage doubler. R-105 is a limiting resistor to protect the rectifiers from initial current surges and also serves as a fuse in case of B plus
shorts. When the polarity of the applied 117 volt $A C$ is such as to make the side of the line connected to R-105 negative $\mathrm{E}-2$ will conduct and charge $\mathrm{C}-108(140 \mathrm{mf})$ to peak line voltage. On the next alternation, E-1 will conduct and the voltage applied to it is now the peak line voltage plus the peak charge stored in $\mathrm{C}-108$. This results in a charge of about
260 volts on $\mathrm{C}-63 \mathrm{C}$ 260 volts on $\mathrm{C}-63 \mathrm{C}(100 \mathrm{mf})$. The speaker field is used as a controls the current thru it, act also as a voltage dividerto supply plate and screen voltages to several tubes, as shown in Figure 12.

Another voltage diwider from B plus to B - consisting of 76 (1 meg) and the potentiometer, R-75 (1 meg) provides
a variable bias on the c
as a brightness control.

THE RF TUNER

Antenna Input

Figure 13 is a simplified schematic of the tuner.
The antenna input coil, L-1, couples the balanced line the single ended input circuit for the RF tube, V-1. Opti mum antenna coupling for all channels is obtained by the
coupling coils L-5A, L-5B, L-5C, and the coupling lead on channel positions 8,10 and 12 of switch wafer $\mathrm{S}-1 \mathrm{~A}$. These can be considered the primary of the antenna trans former. The secondary, or tuned grid circuit, include also the continuous, tapped coil mounted on wafer S-1B for

FIGURE 13. SIMPLIFIED SCHEMATIC OF RF TUNER

the low channels (2-6) and the stamped metal plate in serie with the coil for the high channels (7-13). The purpose o the antenna coil, coupling leads, and the secondary circuit, from the antenna to the input impedance of the RF amplifie grid circuit and to tune this circuit for the channel selected Referring to Figure 13, it will be seen that the switch in pro gressing from channel2 to channel 13, shorts out the unused portion of the secondary winding or stamped metal plate.
The bandwidth of channels 7 thru 13 is about 8 mc . The stamped metal plate is carefully designed so that with this bandwidth no alignment adjustment is needed on the hig thanne1s. The individual coil sections on the low channels however. may be tuned by spreading or compressing them as outlin in

RF Amplifier

The grid of the RF amplifier $V-1$ (6CB6) is returned the AGC bus thru L-6 and a bypass capacity (C-5). Th plate load of this tube consists of another tapped coil for the nels mounted, in this case, on switch wafer S-1C. Her again, the switch progressively shorts out the unused sections of the inductance in tuning from channel 2 to 13 . In this case, however, a trimmer C-7 and a choke L-7 are provided to center the high channel response while the lo

The Mixer

The mixer uses $1 / 2$ of V-2 (12AT7). C- 15 (8 mm) couples the RF amplifier output to the mixer grid. Oscil $\mathrm{C}-16$ form a series resonant circuit tuned to the center the IF response, to prevent interaction between the IF and the mixer input.

The Oscillator

The oscillator uses the other half of $\mathrm{V}-2$ (12AT7) in Colpitts circuit. Here again, the tuning inductance con sists of the tapped coil for the low channels and the stamped
metal plate for the high channels mounted on wafer S -iE. L-8 and C-14 are provided to set the center frequency on the high channels while the low channcls are aligned by is proviced as a fine tuning control for customer use. Th
oscillator operates above the RF on the low channels and be low the RF on the high channels except that in later producting the oscillator on the high side for channels 11, 12 and 13 . THE IF AMPLIFIER

The IF amplifier uses two 6AU6 tubes and one 6AG5 tube. Figure 14 is the schematic of the IF amplifier. T-1 couples the mixer plate to the first IF grid. Coupling between primary and secondary, which are individually slug tuned, is fixed and is designed for proper band ivith. The to the grid coil, of the the tube V (bAUb). is coupled $\mathrm{C}-30(220 \mathrm{mmf})$. At IF frequencies, the impedance of C-30 is negligible and for all practical purposes, L-11 and L-12 can be considered as being in parallel, L-12 being slug tuned. A similar method is used between the 2nd and 3rd IF tubes. The 3rdif plate is coupled to the detector by T-2, a unity coupled transformer. The IF circuits are stagger structions. L-13 and L-17 are separately tuned trap wind ings on IF coil forms L-12 and L-16, respectively. To gether with C-31 and C-38, they form absorption type trap circuits which steepen the high and low skirts of the IF re sponse for better picture quality and to stabilize the audi response with intercarrier sound

Decoupling has been used not only'in the plate supply and AGC circuits
vent regeneration
the video detector
One -half of V-6 (6AL5) is used as the video detecto Figure 15 is a schematic of the video detector. Since for niselimiting purposes it is desirable to apply a signal with ne gative going sync pulsest to the grid of the video amplifier of the diode. L-18, L-19, and C-42, form a low pass filter to keep IF frequencies uff the grid of the video amplifier.

Since this chassis operates on the intercarrier sound system, the detector heterodynes the video and sound li becomes the new audio IF frequency. The negative DC volt age developed at the high side of the detector load R-26

FIGURE 15

SIMPLIFIED SChEMATIC OF VIDEO DETECTOR
(5600) will be a function of carrier level. This voltage is fed to the AGC bus thru R-28 (1.5 meg) and controls the gain
of the RF and list and Ind IF amplifiers. the video amplifier

The video amplifier v-7 (6AH6) not only amplifies the video signal but also the 4.5 me gacycle audio IF beat. Fig circuit, this beat is separated from the video signal and fed to the grid circuit of the audio driver-limiter tube V-8 6AU6) by C-49 (2.2 mm) and L-23, the sound take-off coil The $4.5 \mathrm{mctrap}, \mathrm{L}-21$ and C-50, is a parallel resonant cir
cut which, when properly tuned, offers a high impedance this frequency. to prevent its reaching the picture tube.

By applying a negative signal to the grid of the video amplifier, a noise limiting action is achieved because noise pulses of amplitude greater than the sync level will drive
the tube to cut off and, therefore, will not be present in the the tube to cut off and, therefore, will not be present in the

FIGURE 16.
SIMPLIFIED SCHEMATIC OF THE VIDEO AMPLIFIER
prate circuit. Since a single video amplifier tube is used, the signal at its plate will be positive and, as might be ex pected, is used to modulate the cathode of the picture tube rather than the grid, because the blanking pulses must cu
the picture tube off and the polarity of the video informalion must be such that dark picture elements result in making the grid more negative with respect to the cathode.
L-20 and L-22 are peaking coils to extend the high ire R-31A, is placed in the cathode circuit of the video amplifi erandcontrols the bias and, therefore, the gain of this tube The network of resistors and condensers across taps on the quencies and, therefore, helps to extend the high frequency quencies and, therefore, helps to extend the high frequency tube cathode thru coupling condenser C-80 (.1).
the agc
The negative DC voltage developed across the detector load resistor, R-26 (5600), is the AGC voltage. It will be noted that the low side of this resistor is connected to the
arm of the contrast control potentiometer, R-31A. R-29 (47) is shunted across the arm of the contrast control and B-. In weak signal areas, this arrangement results in de-
lay in the AGC action. For a weak signal, minimum bias is desired on the video amplifier, therefore, the arm of the contrast control will be closest to the cathode end of the potentiometer. Because R-29 is then shunted across the entire contrast control, most of the plate current will flow
thru it and develop a positive voltage of approximately one volt at the arm with respect to B-. Since the low side of the detector load is tied to this positive voltage, no AGC voltage will develop until the signal is strong enough to overcome the controlled tubes under weak signal condition. strong signal area, however, where the arm of the contrast control approaches the B-end of the control, R-29 is shorted out and full AGC voltage is developed.

HE AUDIO SYSTEM

The audio system employs a driver-limiter. V-8 (6AU6) (6J5), and an V -9 (6AL5); a first audio amplifier. V-10 schematic of the audio system. The driver-limiter is open ated at low plate and screen voltages to act as a partial him ratio detector and audio amplifier are used.

THE CLIPPER

The clipper uses a 6 SN 7 GT tube. The clipper schema tic is shown in Figure 18. The composite video signal with positive going sync is applied thru R-55 (10K) and C-66 (.005) to the grid of the first clipper from the plate circuit
of the video amplifier. Under no signal conditions, the tube of the video amplifier. Under no signal conditions, the tube is unbiased. The positive signal, however, will cause the
tube to draw grid current and the voltage drop across R-54 (1 meg), negative at the grid, will charge $C-66$ to such a value that only the most positive part of the signal, which is the sync pulse, will cause plate current to flow. Therefore, the video information and the blanking pulses are clipped off and only the sync pulses, now negative in polar-
ity, appear in the plate circuit. The second clipper is so biased that the peaks of the sync pulses will drive the tube to cut-off, which results in squared pulses of positive polar ty in the plate circuit of this tube. A slight increase in age applied to the grid of the second by a small positive volt-

MODELS $12 \mathrm{Kl}, 12 \mathrm{KlB}, 12 \mathrm{~K} 2$,
$12 \mathrm{~K} 2 \mathrm{~B}, 12 \mathrm{~K} 3,12 \mathrm{~K} 3 \mathrm{~B}, 12 \mathrm{Tl}$
12T1B, $12 \mathrm{~T} 2,12 \mathrm{~T} 3, \mathrm{Ch} . \mathrm{TS}-5$

FIGURE 18. SIMPLIFIED SCHEMATIC OF CLIPPERS AND PHASE DETECTOR
the vertical scanning system
Figure 19 is a schematic of the Vertical Scanning Syst
The integrating network, shown in Figure 18, compose of $\mathrm{R}-60, \mathrm{C}-70, \mathrm{R}-61$, and $\mathrm{C}-71$, changes the vertical group of sync pulses into a single pulse of suitable amplitude to
trigger the vertical oscillator . The vertical oscillator is an asymmetrical multivibrator using two tubes V-13 (6J5) and $\mathrm{V}-14$ (25L6). V-14 also serves as the output tube

A multivibrator can be considered as a resistance coupled amplifier in which the output of the second tube is matic switch which charges and discharges the sawtooth
forming condenser C-74 (. 05), connected in its plate cir chit. The circuit components of the multivibrator are che tire cycle, to insure that retrace time of the scan will have the proper relationship with the trace time. This circuit is modified from the conventional resistance coupled multivi brator in that the plate of the output stage, which is also th second multivibrator tube, has a fairly large value of inducyoke inductance. When the tube is cut off, a positive pulse of several hundred volts is developed across this inductance A portion of this pulse, obtained by means of the feedback network, R-72, R-73, R-74 and C-76, C-77 and C-78, is ied to cause the discharge tube $\mathrm{V}-13$ to go into heavy con used to
duction.
duction.

ए
© John F. Rider

FIGURE 19. Simplified schematic of vertical scanning system

For purposes of explaining the circuit action, assume a time has been reached in the cycle when the trace period is almost completed. During this trace period, V-13 is cut
off and $V-14$ is conducting. C- 73 has been discharging thru the grid resistors of $V-13, R-62(680 \mathrm{~K})$ and $R-63$ (the vertical hold control) and resistors R-74 and R-72. This discharge circuit makes the grid end of R-62 negative and biases the tube beyond cut-off. When the energy stored in the condenser has decreased sufficiently, the grid of $\mathrm{V}-13$
reaches the threshold of conductance and the reaches the threshold of conductance and the tube begins to
draw current. Condenser $\mathrm{C}-75$, which has been charged to nearly the B plus voltage, now starts to discharge thru $V-13$ and $\mathrm{R}-68$ (3.3 meg) and this discharge current makes the grid end of R-68 negative tending to cut off V-14, and initiates the retrace. With the sudden change of plate cur-
rent in $V-14$ developed across the plate inductance, a positive pulse is applied to the grid of $V-13$ through the feed-
red back network driving this tube into heavy conduction. C-74 will then discharge thru V-13. The voltage developed at the plate of V-13 will be the combination sawtooth and pulse voltage shown in Figure 22(1). The pulse is formed by the
peaking resistors R-64 and R-65. When V-13 goes into conduction, the voltage at the plate of $\mathrm{V}-13$ drops suddenly to a value determined by the relationship of the plate resistance of $\mathrm{V}-13$ to the total resistance in the discharge circuit of C-74, which consists of R-64, R-65 and the plate resistance of V-13. After this initial instant, the charge on C-74 de-
creases, causing the voltage decrease at the plate shown cretween , points " c " and " d " of Figure 22(1). When the
betwer positive pulse on the grid of $V-13$ has decreased to the value where the negative charge on C-73 becomes operative and cuts off V-13, the voltage on the plate of V-13 and correspondingly on the grid of -14 , rises quickly to point "a" on '

The negative pulse shown between points "b" and "a" of
Figure $22(1)$ acting on the grid of $V-14$, tends to cut the tube Figure $22(1)$ acting on the grid of $V-14$, tends to cut the tube
off and raises its plate resistance to the larger value reoff and raises its plate resistance to the larger value re-
quired todissipate the energy in the platecircuit inductance quired todissipate the energy in
during the short retrace period.

Since the plate circuit of the vertical output stage V-14 has inductance, and as the time constant of an inductive cir-
cuit decreases with an increase of resistance, just the opcuit decreases with an increase of resistance, just the opposite of an RC circuit, the increase in plate resistance of quired for proper retrace time.

By returning the grid of the picture tube to the junction of the two peaking resistors, R-64 and R-65, a negative pulse of suitable amplitude to cut the picture tube off during
retrace is obtained, resulting inelimination of retrace lines on the screen.

The feedback network to the grid of $\mathrm{V}-13$ also serves to filter out horizontal pulses which are present in the plate of $V-14$ due to coupling in the yoke and which are coupled to the plate thru the output transformer. The windings of the verwhich reduces the step-down ratio and, hence, the inducance in the plate of $\mathrm{V}-14$ in order to shorten the retrace time.

The controls found in this circuit are:

1. The Vertical Hold Control R-63 (1 meg). This conTrol varies the resistance in the discharge circuit of C-73(.006) and, hence, provides a means of varying the frequency of the multivibrator. In practice, this
control is adjusted so that the incoming positive sync pulses, whichare of constant amplitude, will fire the tube in exact synchronization with the transmitting station's vertical scan.
2. The Vertical Size Control R-67(5meg). This control varies the charging current into C-74 (.05) and, hence, the amplitude of the voltage developed across
it. Variation of this voltage varies the drive on the grid of V-14 and controls vertical size.
3. Vertical Linearity $\mathrm{R}-71$ (5000). This control, by bleeder action thru resistor $\mathrm{R}-69$ (150 K) and the out-
put tube's plate current, sets the bias and determines put tube's operating point on its plate current curve. Since this curve is not linear, some distortion can be introduced to counteract any non-linearity in the sawtooth grid voltage.
Since all of these controls are also in the multivibrator circuit and have an effect also on its frequency, there will of size or linearity will require readjustment of the hold control.

HORIZONTAL SCANNING SYSTEM
The horizontal scanning system comprises a phase detector $V-15$ (6AL5), and a cathode coupled multivibrator
$\mathrm{V}-16$ (6SN7), the output tube $\mathrm{V}-17$ (6BO6) and a damping $\mathrm{V}-16$ (6 SN 7), the output tube $\mathrm{V}-17$ ($6 \mathrm{BQ6}$) and a damping
diode $\mathrm{V}-18$ (6 W 4). Figure 20 is a simplified schematic of diode V-18 (6

Horizontal Oscillator

In order to see how the phase detector automatically
corrects for maltivibrator frequency change, it will be ne-

FIGURE 20. SIMPLIFIED SChEmATIC OF HORIZONTAL SCANNING AND HIGH VOLTAGE SYSTEM

It will be noted that this circuit differs from C-87 and R-93, the peaking resistor, will produce the ser is used but that the two tubes have a common cathode ure 22(1). This action was explained in the vertical circuit resistor. This arrangement is known as a cathode coupled
multivibrator.

The operation is as follows. Assume that the trace peducting, tube " B " is cut off. C-86 is discharging thru tube "A", R-92(150 K) and R-91 (the hold control). The discharge current of $\mathrm{C}-86$ is still high enough to keep the grid of tube By negative and cut oif. Bias is being applied to both tube tor. When the energy stored in C-86 is reduced to resiswhere its discharge current no longer holds the grid of tube "B"below conductance, tube "B" starts to pass current and this current causes a greater voltage drop across R-89, the common cathode resistor, which increases the bias on tube voltage at the plate of tube " A " begins to charge C-86 and this charging current applies positive voltage to the grid of tube " B ". The resulting heavier conduction of tube " B " de velops a pulse of voltage across $R-89$ which cuts tube "A off and results in a positive puise at the plate of tube "A C -87, the saw-forming condenser to discharge thru tube "B" and R-93. When C-86 becomes charged the charging current thru R-92 and R-91 decreases and the positive voltage on the grid, which has far exceeded the bias developed across $\mathrm{R}-89$, is reduced. This results in reducing the plate tube "A" by the voltage drop across R-89. Tube "A" starts to conduct and condenser C-86 starts to discharge, cutting tube " B "off. C -87 begins to charge, starting the next trace.
$\mathrm{L}-25$ and C -84 in the plate circuit of tube "A". form resonant circuit which is tuned to the horizontal frequency ($15,750 \mathrm{cps}$). The 15,750 cycle sine wave generated by this circuit, if properly phased, will insure that the positive conduction, will be more frequery B " in conduction, will be more frequency stable.

The Phase Detector

The foregoing explanation is based on the assumption that "A's" grid is returned to a fixed potential point It can be seen that if this grid is returned to a point which varies in potential with frequency of the multivibrator, it would be prol Assume make this variation a means of frequency conmore positive. This causes the bias of "B" to increase be cause of the increased drop across the common cathode re sistor R-89. Capacitor C-86 will then discharge for a longer time before " B " conducts, thereby decreasing the Arequency of oscillation. If the grid were made more nega less and C-86 would discharge for less time before "B" started to conduct, thereby increasing the frequency.

Figure 18 is a simplified schematic of the clipper and phase detector circuits. The phase detector V-15 (6AL5) is sync pulses and a sawtooth derived from the horizontal out put systemis made. A positive sync pulse from the plate of the 2nd clipper $V-12$ ($6 S N 7$) is fed thru C-82 (.001) to the plate of diode "A" of V-15. A negative sync pulse from the cathode of V-12 is applied thru C-68(.001) to the cathode of tion of a pulse in the horizontal output circuit, at the goke by the integrating network, composed of R-86 (150K), R-85 (150 K), and $\mathrm{C}-81(.005$) is applied to the cathode of diode " A " and the plate of diode "B", which are tied together and re"B"consists of resistors R-83 (100K) and R-81 (100 "A" and junction returns to the high side of the grid resistor R-82 of the first horizontal multivibrator tube $\mathrm{V}-16$ (6SN7). The voltage applied to the two diodes will be a function of the amplitude of the sawtooth, the amplitude of the symc puises and the phase relationship between the pulses and the saw-
tooth. MODELS 12K1, 12K1B, 12K2,
$12 \mathrm{~K} 2 \mathrm{~B}, 12 \mathrm{~K} 3 \mathrm{l} 12 \mathrm{~K} 3 \mathrm{~B}$ 12T1,
l2T1B; $12 \mathrm{~T} 2,12 \mathrm{~T} 3, \mathrm{Ch}$. TS-53

FIGURE 21. WAVEFORMS AT PHASE DETECTOR
If the sawtooth, whose phase and frequency are a func ion of the multivibrator's phase and frequency, is operaoccur in the center of the retrace time. See Figure 21(1). The sync pulses have an amplitude of from 6 to 8 volts while he sawtooth amplituce is about two volts. The RC time constant in the pulse input circuit to the diodes is long enough or three horizontal lines, which means that in the "on" frequency condition shown in Figure 21(1), the diodes conduct only on the pulses and since these are equal in amplitude and develop voltages of opposite polarity across R-82 in the first voltage is applied to the grid of $V-16$. Figure 18, no control

If the oscillator tends to increase in frequency, with respect to the sync pulses, the phase relationship shown in Figure $21(2)$ exists at the diodes. The phase of the sawpulse is applied to the plate of diode "A" the positive saw is
pat alsoapplied toits cathode, so that only the shaded portion of the pulse causes conduction of diode "A". Diode "B", however, still conducts on the total amplitude of the negative pulse applied to its cathode aided by the positive saw applied
to its plate at the same time. Since current flow thru diode "A" makes the grid end of R-82 negative, with respect to B-, the decreased current flow caused by the sawtooth voltage bucking the pulse voltage at diode "A" results in a more positive voltage across $\mathrm{R}-82$ applying a more positive voltage to the grid of $V-16$ which, as we have seen, results in
decreasing the oscillator's freque ecr

If the oscillator tends to decrease in frequency, with respect to the sync pulses, the phase relationship shown in
Figure $21(3)$ exists at the diodes. At the same instant that Figure $21(3)$ exists at the diodes. At the same instant that
the negative pulse is applied to the cathode of diode " B ", the Che negative pulse is applied to the cathode of diode " B ", the
negative saw is applied to its plate so that only the negtion of the pulse causes conduction. Diode "A", how.
por
through the output inductance produces a positive voltage pulse which makes the caihode of the damping diode ($\mathrm{V}-18$) positive, with respect to its plate; therefore, it cannot con-
duct. C-91 (100) is placed across the diode to provide a low impedance for the oscillatory current. If the damping diode V- 18 were not present, this oscillation would continue and
current would flow in the output transformer as shown in Figure 22(2). In order to insure a linear trace, however, this oscillation must be stopped and the damping diode serves this purpose. When the current nears its maximum
negative value, the polarity and amplitude of the voltage negative value, the polarity and amplitude of the voltage
pulse on the damping diode is such that its plate becomes pulse on the damping diode is such that its plate becomes
positive, with respect to its cathode, so that the tube conducts heavily and loads the circuit sufficiently to prevent continuation of the oscillation. The current then follows the
decay curve shown at "c" in Figure 22(3). At the time ["d" in Figure 22(3)] the voltage at the grid of the output tube has become less then cut off [point "a" in Figure 22(1)] and the esults in superimposing the waveform "e" of Figure 22(3) on the current flow already in the output transformer due to the decaying current which resulted from the damped oscildation. Combination of these two currents results in the inear trace current indicated at " f " in Figure 22(4), which
is a composite waveform of the entire action. During the peak conduction of the damping diode, C-92(.1) charges and its polarity is such that when the output tube calls for current the charge on the condenser will be in series with the B plus supply so that the voltage at the output tube plate is raised from the 250 volt B plus supply to about 475 volts by
this so-called "bootstrap"" voltage. When the grid voltage waveform of the output tube again reaches point "b" of Fig ure 22(1), the tube is cut off and another cycle starts.

In order to properly match the yoke inductance to the required output inductance for the tube, the yoke is connected
to a tap on the winding which effectively makes an auto to a tap on the winding which effectively makes an auto
transformer of this section. The positive pulse of voltage atansformer of this section. The positive pulse of voltage
at this tap is coupled to the yoke thru C-94 (.1) and results

MODELS $12 \mathrm{Kl}, 12 \mathrm{KlB}, 12 \mathrm{~K} 2$ $12 \mathrm{~K} 2 \mathrm{~B}, 12 \mathrm{~K} 3,12 \mathrm{~K} 3 \mathrm{~B}, 12 \mathrm{Tl}$, in a sawtooth of current thru the yoke. It will be remembered that a portion of this pulse is also fed to
tector for the AFC action thru R-86 and R-85.

The small additional winding, one terminal of which is connected to chassis while the other terminal is connected
to $\mathrm{B}-\mathrm{thru} \mathrm{C}-93(.03)$ is used to cancel the pulse of voltage which is placed on the chassis by induction from the output plarmer. By connecting this winding in such a way as rees out pulse of suitable amplitude on the chassis 180 dethe induced voltage will take place

High Voltage
To take advantage of the large voltage pulse developed cross the output inductance by the heavy current flow caused primary of an auto-transformer whose winding is made the as to develop pulses of about 12 Kv at its high end. These pulses are rectified by V-19 (1B3) and the resulting DC is applied to the second anode of the picture tube. The filament voltage for the lB3 rectifier is obtained from an addinal winding on the output transformer.

Controls
L-25 is the coil of the sine wave generating circuit in the horizontal multivibrator circuit and should be tuned to 15,750

R-91 is the horizontal hold control which can be adLer frequency operation of the multivibrator.
ever, conducts on the full amplitude of the positive pulse applied to its plate aided by the negative saw applied to its makes the grid end of R-82 positive, with respect to B-, the decreased current thrudiode "B" results in applying a more negative voltage to the grid of $V-16$ which, as we have seen,
results in increasing the oscillator frequency, esults in increasing the oscillator frequency. C-83, R-87 nd C-85 provide two time constam flers which are neces-

The Horizontal Output System

The combination sawtooth and pulse waveform developed cuit, is fed (680) and R-93 (3300) by the multivibrator cir(6BQ6). Figure 20 is a simplified schematic of the horizontal output system. It will be noted that in this system an auto-transformer is used. In the horizontal scan it is necessary that retrace be completed in about 7 microinductance of the output transformer and the yoke in this short a time, it is necessary to make this circuit resonant at such a frequency that the half cycle time will equal 7 microseconds, because only by shock exciting such a circuit into oscillation will retrace be accomplished in the time the output transformer and yoke, the distributed capacity and the tube capacity. Bearing this in mind, the operation can be explained as follows. Referring to Figure 22(1), as sume that the voltage on the grid of the output tube is inincreasing, point "a". The grid is now being made less
negative and the output tube starts to draw current which is negative and the output tube starts to draw current which is
supplied from B plus thru the damping diode. " b " is reached on the grid voltage waveform, the output tube is suddenly cut off because its grid has been made highly negative, (point "c" on the grid voltage waveform). With the tube cut off, the resonant plate load is undamped and the

REPLACEMENT PARTS LIS

Ref.
 Ref. Part No. No.
 Description

CYassis
Capacitor

C-1 $21 K$

RELACEMENT PARTS LIST

© John F. Rider

Ref. No.	Part No.	Description
C-63	238790147	Electrolytic: 3-sectio
A, B,		mf/250V, $\mathrm{B}-60 \mathrm{mf} / 250 \mathrm{~V}, \mathrm{C}-100$
		mf/3000.
C-64	214470789	Ceramic disc: 5000
C-65	2186642	Mica: 68 munf 5000
c-66	8R9869	Paper: 005 mf 600 V
C-67	21 K 470322	Molded: 20 mmf 500
C-68	8 89866	Paper: . 001 mf 600V
c-69	8R9873	Paper: . 05 mf 600 v
C-70	8R9869	Paper: . 005 mp 600 V
c-71	8R9869	Paper: . 005 mf 6000
c-72	889869	Paper: 005 mf 600
c-73	8K790026	Paper: . 006 mf 600 v
C-74	${ }^{37} 9873$	Paper: . 05 mP 600v.
c-75	8R9875	Paper: .15 mf 600
c-76	8 89866	Paper: . 001 mr 600 v .
	8 R 9867	Paper: . 002 mp 600 V (suggested replacement value).............
c-77	8189869	Paper: . 005 mf 600v.
C-78	8R9867	Paper: . 002 mf 600 V
c-79	21A470789	Ceramic disc: 5000 mm
C-80	${ }^{\text {8R987 }} 74$	Faper: . 1 mf 6000.
C-81	889869	Paper: . 005 mf 600
C-82	8R9966	Paper: . 001 mp 600 V
c-83	8R9866	Paper: . $001 \mathrm{mf} \mathrm{600V}$
C-84	8R9869	Paper: . 005 mf 600
c-85	8R9870	Paper: . 01 mf 600 v
c-86	2115400037	Ceramic tubular: 27
C-87	21R2741	Miea: 680 mmf 500 v .
C-88	214470789	Ceramic disc: 5000 m
C-89	8R9854	Paper: . 1 mf 200v.
C-91	21×792438	Ceramic tubular: 100
C-92	$8 \mathrm{P9874}$	Paper: . 1 mf 600 V
C-93	889872	Paper: 03 mf 600 V
C-94	889875	Paper: . 15 mp 600 V
	889874	Paper: 11 mf 600 V (sugge
c-95	21×790574	Ceramic tubular: 60 mmf 1500 V (in deflection yoke)
C-96	214470790	Ceramic disc: 1500 muf 500
C-97	214470790	Ceramic disc: 1500 mmf 500
C-98	214470790	Ceramic disc: 1500 .mmf 500 V
C-99	214470790	Ceramic disc: 1500 mmf 500V
C-100	212470790	Ceramic disc: 1500 mmr 500 V
C-101	214470790	Ceramic disc: 1500 mmf 500 V
C-102	214470790	Ceramic disc: 1500 mmf 500
C-103	21×77975	Ceramic tubular: 220 mmf 500 V
C-104	21 K 7375	Ceramic tubular: 220 mmf 500
c-105	218482295	Ceramic tubular: 250 mmf 500
c-106	218482295	Ceramic tubular: 250 mim 500 V
C-107	214470790	Ceramic disc: 1500 mmf 500v
C-	238484097	Electrolytic: 1-section; 140 mf

Rectifiers
E1,2 483700555 Rectifier, selenium: 300 ma
Colle

L-1	249790033	Antenna 1 m
L-2		(See TT-11 \& TT-13 partb list
L-3		(See TT-11 \& TT-13 parto 11
L-4		(See TT-11 \& TT
L-4M		(See TT-11 \& TT-13 parts ligt)
L-5		(See TT-11 \& TT-13 parte list
L-6	24×79	RF Choke: molded; 10 microhen
L-7	24×792825	RF Coil: channel 13.
L-8		(See TT-11 \& TT-13
L-9	24 K 792577	RF Choke: molded; 3.3
10	24×780128	RF Choke: molded; 2.2
11	24 K 790035	RF Choke: molded; 5.6 microhenr
L-12	248792586	1st IF: complete with trap L C-31, cores, and mtg nuts..
13		27.3 mc trap (part

© John F. Rider

© John F. Rider

John F. Rider

RECEIVER LOCATION
The receiver may be placed anywhere in the room, but
for greatest satisfaction it should be located

1. Away from any bright light that may fall directly on the screen or be reflected from it: this includes winto one side, is desirable, however, to prevent eyestrain
2. To provide comfortable viewing and ease of operation.
3. Atlease one-inch away from a wall to allow for cabinet ventilation. This is very important.

ANTENNAS
The choice of a television antenna depends entirely on the location of the receiver with respect to all television up is obtained when the receiving antenna is directly in line of sight with the transmitting antenna.
"Bilt-In-Tenna." All receivers using the TS-115 series Tenna", masted inside the cain for Tenna". mounted inside the cabinet, for use in good signal

When this antenna is used, the following precautions should be observed for best reception:

1. In order to get maximum performance and satisfactory pictures from the "Bilt-In-Tenna", ample signals from the television station must be present at the location of the receiver. Normally, the strength of the signals will vary throughout the room in which
the receiver is located. For this reason, better picthe receiver is located. For this reason, better pic-
tures will be obtained if the receiver is tried in all possible locations in the viewing room and is then placed where the clearest pictures are received from all stations. Avoid large metallic objects, such as
radiators, metal panels, etc.
2. Lamps, vases and metallic objects, when placed on top of the receiver, may affect the efficiency of the "Bilt-In-Tenna".

Indoor Antenna. If additional pick-up is necessary an indoor antenna, placed on or near the receiver, maybe used. The antenna should be rotated and he arss sheflections. Normally, the arms should be extended on the low channels (2-6) and telescoped on the high channels (7-13).
Outdoor Antenna. The Motorola "Bilt-In-Tenna" or the indoor type antenna will give satisfactory reception in strong signal areas; but, if the receiver is located in a fringe
weak signal area, an outdoor antenna is recommended.
Inareas free of obstructions and reflections, within reasonable proximity to television transmitters, a dipole and a relatively small band coverage, a special antenna covering all twelve television channels should be used if it is desired oreceive stations on channels of widely separated frequen cies.

Location of the antenna should be decided from the stand-
point of maximum signal pick-up. In general, the antenna should be broadside to the transmitting antenna and should be as high as possible. If a reflector is used, the antenna the station and the reflector farthest away.

Locating the antenna and lead-in as far away as possible from highways, hospitals, doctors offices, electrical masources. Also, it is desirable to keep the antenna at least six feet away from other antennas, metal roofs, gutters, or other metal objects to prevent unwanted reflections and shielding.

Lead-In. Since the TS-115 chassis is designed for 300 ohm input. the standard 300 ohm twin lead line should be used for connecting the outside antenna to the receiver. Twisting the line one complete turn per foot of running iength helps to reduce noise pick-up on the line. The lead-in should be supported on stand-off insulators and kept tight enough to the lead-in close to metal gutters, iron standpipes. etc.

In areas of very strong signals, or where severe local electrical interference is encountered, 300 ohm shielded twin lead is recommended. The shield braid should be grounded.

An approved lightning arrestor should be used.
RECEIVER ANTENNA CONNECTION
The antenna lead-in to the receiver is connected to the two screws of the terminal strip on the rear of the cabinet. Disconnect the "Bilt-In-Tenna" leads from the terminal trip before altaching an external adena the receiver may improve picture quality and overall performance.

perating controls

There are two dual controls, consisting of a small and large knob each, on the front panel of the receiver. The function of each control is marked on the front panel, the circle" indicating the large knob, and the "dot" indicating the small knob. See Figure 1 for front panel control fun tions.

Operation of this receiver, outside its cabinet or with covers removed, involves a shock hazard from the powe anyone not thoroughly familiar with the precautions necessary when working on high voltage equipment.

CATHODE RAY PICTURE TUBE RANDLING PRECAUTIONS

Extreme care must be usedin handling the picture tube. This tube is highly evacuated and, due to its large size, is subjected to a considerable atmospheric pressure. The handler should wear safety gopgles and gloves for protec-
tion. Avoid nicking or scratching the glass by rough con. tact with other objects.

Before removing glass tubes, discharge the capacito formed by the inner and outer aquadag coatings on the tube by shorting the anode contact on the side of the tube to th

The receiver is completely adjusted at the factory, so normally none other than the front panel control operating instructions need be followed in putting the receiver in op-
eration. However, to provide for any misadjustment of the service controls, due to handling, the following instructions are in order. See Figure 2 for location of the service adjustment controls.

FOCUS CONTROL
The FOCUS control should be adjusted until the fine hor izontal line structure of the raster is clearly visible over the picture area. The control should be tuned through the tained.

CEntering

By means of a lever extending from the focus coil, thru

vertical size and vertical linearity
Adjust the VERTICAL SIZE control until the picture fills the mask vertically. Adjust the VERTICAL LINEARITY control for best overall vertical linearity. Adjustment of the ERTICAL SIZE Control will require a readjustment of the hold control. Center picture with the centering lever on the focus coil.

horizontal size

Adjust the HORIZONTAL SIZE lever until the picture ills the mask
ing lever.
horizontal hold adjustment
The HORIZONTAL HOLD control should have a sync range of approximately 180°. If the control is too critical, adjust as follows:

1. Short out horizontal oscillator coil L-23. This may be done with the chassis in the cabinel rear.
2. With the centering lever, move the picture to the left so that the right edge of the raster can be seen. Ad-
just the HORIZONTAL HOLD control to about the middle of its range and note the width of the blanking pulse. (The blanking pulse appears as a gray bar at the right edge of the picture).
3. Remove short from HORIZONTAL OSCILLATOR coil.
4. Adjust horizontal oscillator coil until the same amount of blanking pulse can be seen as was noted in step 2 .

VERTICAL HOLD ADJUSTMENT
Adjust the VERTICAL HOLD control for the center of the ertical sync lock-in range.

brightness

Adjust the BRIGHTNESS control, in combination with the CONTRAST control for the most pleasing picture. Keep the brilliance slightly below maximum, however, in order protect the fluorescent screen of the picture tube and to prevent poor picture detail.

ADJUSTMENT OF ION TRAP
Under conditions of rough shipment, it is possible for

Figure 3. picture tube adjustment locations
the ion trap to become misaligned. To prevent serious damthe ion trap to become misaligned. To prevent serious tam-

The magaet should be placed on the neck of the tube in the direction indicated by the marking on the magnet (usually an arrow which points toward the picture tube screen) only magnet in the single magnet type, is positioned over the internal pole pieces which are mounted on the gun structure. Adjust the brightness control for low intensity and move the magnet a short distance forward and backward at the same me rotating it to obtain the brighest raster. If. in obtainmore than $1 / 4^{\prime \prime}$ from the gun pole pieces, the magnet is probably weak and a new magnet should be tried. Never correct for a shadowed raster with the ion trap magnet if such correction results in decreased brightness. The ion trap magnet must always be adjusted for maximum brighteliminated by adjusting the focus and deflection coils as expainedunder "Focus Coil and Deflection Yoke Adjustment".

CAUTION: Keep brightness control at low intensity until ion trap is properly set.

A mirror placed infront of the receiver will aid in making this adjustment.

DEFLECTION YOKE ADJUSTMENT
If the deflection yoke shifts, the picture will be tilted. To correct, loosen the thumbscrew on top of the deflection yoke and rotate yoke until the picture is straight. Before tightening the thumbscrew, make cer
is as far forward as possible.

If the yoke support and the picture tube have shifted in ransit or, if for any reason, these parts have been removed and replaced, it is best to do a complete job of repositioning

See Figure 3. The starting point is the position of the picfure tube. It should be adjusted so that the distance from he center of the tube face to the front edge of the chassis is 11. The clamp on the front of the tube should then be ing adjustment screws should be loose enough to permit sliding the bracket forward until the rubber cushion fits nugly up against the flare of the tube. Loosen the yoke adjustment thumbscrew and push the yoke up against the flare of the tube. CAUTION: Do not use force in sliding the brackhe neck of the tube when the support bracket positioning ad justment out of position. The opening in the yoke should be concen-

FOCUS COIL ADJUSTMENT
The focus coil should be positioned so that it is spaced /4" from the deflection yoke when parallel with the yoke. The opening in the yoke should be concentric wa before the front of the picture tube is clamped down, because it is necessary to remove the tube to change the position of the focus coil. Its position is changed by choice of location of bottom of the coil mounting bracket. The opening in the coil can be made concentric with the neck of the tube by loosening the nuts on the studs which support the focus coil bracket and turning the studs with a screwdriver in the slots prodided. The studs are eccentric and move he connly to center the neck of the tube in the opening of the coil.
test socket
A test socket is provided on the rear of the chassis hich allows adjustment of the horizontal oscillator and hecking of sensitivity without removing chassis from cab net. See Figure 2 for socket connections

MODELS 14 KlBH ,
© John F. Rider

OJohn F. Rider

Figure 5.
ELECTRONIC VOLTMETER CONNECTIONS
from maximum response. See Figure 6
Adjust the 2 nd IF coil, L-15, to place a 22.7 mc marker on the low side of the response curve 60% down from maximum response.
10. Adjust the 3 rd IF plate transformer, T-2, to provide a flat top or symmetrical response curve.
11. Reset the traps (steps 6 \& 7) and again check the IF for proper response.

NOTE: It is suggested that the bias be removed for ac curate resetting of the traps.
12. With bias applied, connect the sweep between the grid (pin 2) of the mixer tube $V-2 A(12 A T 7)$ and chassis.
13. Disconnect the trimmer, C-14, in LC circuit in the rid of the mixer tube, or short the trimmer through
14. Bring both cores of the mixer transformer, $\mathrm{T}-1$, simultaneously from the outside towards the center. The half-way markers should be 26.4 mc and 22.9 mc. (Figure 7).

NOTE: In aligning the three IF coils, each coil is ad justed individually, but when adjusting the primary and secondary of the mixer transformer the adjustments should be made simultaneously The important point to keep in mind is to obtain sible. The sides of the curve should be straigh and as steep as possible. Simultaneous adjust ing of the primary and secondary is the easiest way to obtain this result. The transformer by as the three staggered circuits. See Figure 7 . The only difference in the overall waveform should be that the sides of the overall wave are steeper. Constant use of the 50% markers $(22.9 \mathrm{mc}$ and 26.4 mc) should be resorted to,
since it is absolutely necessary to obtain the proper curve. A slight dip (not exceeding 10%) is permissible in the mixer transformer response curve

BANDWIDTH

The bandwidth may be determined by connecting an AM generator to the mixer grid. With the generator frequency . mc , addust the output for 1 volt reading on a VTVM

Figure 6. if response curve

Figure 7. overall response curve from mixer connected at the plate (pin 2) of the video detector tube V-6 (6AL5) and chassis. Double the output of the generator. quencies at which the VTVM again reads 1 volt, the 6 db bandwidth points are indicated.
regeneration check
After the above IF and mixer transformer alignment has been made, a check for regeneration in the IF amplifier should be made. This is done by removing the battery bia and observing the output response curve on the oscilloscope. as taken between the picture tube cathode and chassis. The bandwidth may change with the bias removed but should not change more than 0.2 mc . Set the contrast control to max
imum gain. Decrease the input until the output signal shows a marked decrease. Any regeneration present will be indicated by sharp peaks on the overall response curve. The oscillator should be stopped, as described above, during this procedure

CAUTION: Do not inject too much marker signal.

MIXER LC ADJUSTMENT

Reconnect bias removed for regeneration check. Re place trimmer C-14 in LC circuit of mixer grid or remove 10, 000 mmf ceramic between trimmer and chassis. Adjust the trimmer so it is tuned to the center of the mixer re-
sponse curve. This is indicated by observing the effect of the LC circuit on the mixer response. Increasing the ca pacity of the trimmer and bringing the LC circuit from above the IF range into the IF range, it will be noted that the mixer

6I-9 39甘d $\wedge 1$ V10801OW
the LC circuit approaches the middle of the range, and pull down on the low side as the LC circuit approaches the low end of the IF range. The proper tuning point is that poin circuit is similar to a jack coil when it is within the range.

CAUTION: Tuning the LC circuit very low will caus

if SENSTTIVITY MEASUREMENT

IF Stages Only

1. Remove the battery bias from the 1 st $I F$ tube grid.
2. Connect an AM signal generator, set at 24.6 mc thru a blocking capacitor of 5000 mmf , between gric (pin 1) of the 1st IF tube V-3 (6AU6) and chassis.
3. Connect an electronic voltmeter across the video de tector load resistor R-28 (5600). Both leads from the meter should be decoupled with 100 K ohm resis

Set the contrast control for maximum sensitivity.
5. Stop the oscillator tube by disconnecting resisto R-9 (1500) from the plate (pin 6) of the tube V-2B (12AT7) or by substituting another tube with pin 6 re moved.
6. The signal required to producel volt (negative) above contact potential on the meter should be less than 700

Mixer \& IF Stages
The preliminary preparations are the same as for check ing the sensitivity of the IF stages except:

1. Connect the AM signal generator, set at 24.6 mc . through a 5000 mmf capacitor, between the gri (pin 2) of the mixer tube $\mathrm{V}-2 \mathrm{~A}$ (12 AT 7) and chassis.
2. The signal required to producel volt(negative) abov ntact potential on the meter should be less tha 125 microvolts.
oscillator, antenna and rf alignment
NOTE: The IF must be aligned before the RF section can be properly phased.
Equipment Required:
Sweep Generator: Frequency range $40-220 \mathrm{mc} ; 10 \mathrm{mc}$ sweep width
Output constant and adjustable Adjustable markers(markers should be calibrated occasionally by check ing against an accurate signal gen-
erator).

Oscilloscope: Preferably one with a calibrated input attenuator.
Signal Generator: Frequency range 40 to 220 mc
Frequency range 40 to 2
Accurately calibrated
FREQUENCY CHART

Chan	Frequency	Picture	Sound	Oscillator
2	$54-60$	55.25	59.75	81.65
3	$60-66$	61.25	65.75	87.65
4	$66-72$	67.25	71.75	93.65
5	$76-82$	77.25	81.75	103.65
6	$82-88$	83.25	87.75	109.65
7	$174-180$	175.25	179.75	152.45
8	$180-186$	181.25	185.75	158.45
9	$186-192$	187.25	191.75	164.45
10	$192-198$	193.25	197.75	170.45
11	$198-24$	199.25	203.75	225.65
12	$204-210$	205.25	20.75	231.65
13	$210-216$	211.25	215.75	237.65

antenna \& RF alignment procedure

1. Remove high voltage generator tube $\mathrm{V}-17$ (6 BQ 6 GT) from its socket and replace with a dummy load of 2500 ohms 25 watts connected from B plus side of ing R-9 (1500) from plate (pin 6) of V-2B (12AT7).
2. Connect the sweep generator across the antenna terminals on the chassis with the antenna lead-in rebe as short as possible.
3. Connect the oscilloscope through a decoupling resigtor of 150,000 ohms, between the cathode (pin 3) of the mixer tube V-2 (12AT7) and chassis.
4. Short out the AGC circuit with a clip lead from the AGC bus to chassis.
5. Refer to Figure 4 for the RF trimmer location and to Figure 9 for the locations of the antenna and RF the channel and alignment frequencies.
6. The antenna coils are tuned to the video carrier fre quency and the RF coils are tuned to the sound ca
riers. Figure 10 shows the shape of the curve which should appear on the scope for channels 2-6 and Figure, 11 the curves for channels 7-13.
7. Turn the station selector switch to channel 10. Set the center frequency of the sweep generator to the center frequency of channel $10(195 \mathrm{mc})$.
8. Adjust ceramic trimmer, C-6, so that picture and sound markers are as in Figure 11 .
. Check channels 7 to 13 for proper response and necessary, tune the coil L-6. These coils may be tuned by spreading them to decrease inductance or compressing them to increase their inductance. See Figure 9 for location of coils. This will have more justed, it may be necessary to readjust RF trimmer C-6, and recheck the high channels.
NOTE: As the bandwidth of the high channels is ver broad, a slight variation is permissible.
9. Move bandswitch to channel 6 .
10. With the center frequency of sweep generator at the center frequency of channel $6(85 \mathrm{mc})$, introduc riers and compare with curve of Figure 10

figure 9. antenna, rf and oscillator coil locations

- SOLID LINE indicates optimum Response
DOTTED LINES INDICATES
PERMISSIBLE VARIATION.
FIGURE 10.
RF RESPONSE CURVES CHANNELS $2-6$

FIGURE 11.

NOTE: A convenient method of determining whether coil is tuned correctly is to insert a brass or iron increases the inductance.
12. After channel 6 has been aligned, progress downward through channel 2.

CAUTION: Make certain the station selector switch on the correct channel before checking band pass.
oscillator adjustment

1. Put oscillator back in circuit
2. Remove the short from the AGC circuit and apply 3 volt battery bias to the AGC bus.
3. Move the scope to the test socket on the chassis rea with the high side connected to pin 4 and the low side to pin 5 (chassis).
4. Set the contrast control at minimum (counterclock wise).
5. Remove the fine tuning knob and turn shaft until the fiot is in a horizontal position. This represents the mid-capacity position
6. Turn station selector switch to channel 12 .
7. Set the sweep generator on channel 12 with a center frequency of 207 mc and at leasta 12 mc sweep. Keep the output low enough to show no evidence of limiting in the overall response curve

NOTE: Before aligning the oscillator section, make

RF RESPONSE CURVES CHANNELS 7-13 certain the 3.3 microhenry choke ($\mathrm{L}-8$) in the mixer grid is dressed away from the
pacitor (C-16) tied to the same grid.
8. Introduce a marker corresponding to the sound car rier of channel 12 (209.75 mc).
9. Adjustoscillator ceramic trimmer so that the sound markerfalls into the 21.9 mctrap dip in the response curve.
10. Turn generator and station selector to channel 9 with the fi
tion.
11.

Spread or compress the 3 -turn coil located in the center of the oscillator plate (L-4M, Figure 9) so that the sound marker for channel 9 falls into the
27.3 mc trap cillator is tuned in the response curve. As the os9 \& 10 , the 27.3 mc trap will be in the same position as the 21.9 mc trap in step 9 .
12. Repeat steps 6, 7, \& \& 9 .
13. Turn generator and station selector to channel 13.
14. Turn fine tuning trimmer so that the sound marker for channel 13 falls into the 21.9 mc trap dip of response curve. The slot in the fine tuning shaft should not have moved more than 30° from the horizontal tion selector knob represents 30°).
15. If more than a 30° change in fine tunng trimmer was needed in step 14, adjust channel 13 oscillator coil
(L-7) by spreading or compressing until the $30^{\circ} \mathrm{re}$ quirement is met.

NOTE: Each adjustment of channel 13 oscillator co: (L-7) will necessitate a rechecking of the oscil8 \& 9 .
6. Check channels $12,11,10,9,8$, and 7 by noting whether the fine tuning trimmer can drop the sound markerfor each channel in the trap dip by a $30^{\text {ro }}$ ro-
tation. If one of the channels does not meet the 30° requirement, a compromise must be made by re setting channel 9 or 12 , whichever is closer to the channel in question.
Example: 1) If channel 11 does not meet the 30° requirement, return station selector and generamer toward channel 11 (trimmer frequencies lowered by tightening screw). This will tend to move channel 12 sound marker out of the trap dip. but this can be comDo not adjust trimmer any more than is necessary to get the channel in question back within the 30° requirement.
Example: 2) If channel 10 does not meet the 30° requirement, move station selector and generator to channel9 and tune the 3-turn coil
(L-4M, Figure 9) toward channel 10 (coil freq raised by spreading turns.) This will out of the trap dip, but this can be comout of the trap dip, but this can be com-
pensated for by the fine tuning trimmer. Again, do notadjust the coil any more than is necessary to bring the channel in ques
tion back within the 30° requirement.
17. Turn aweep generator and station selector switch to channel 6 .
18. Adjust channel 6 oscillator coil (L-4E. Figure 9) so 21.9 me trap dip with the fine tunnel 6 falls into the capacity (shaft slot in horizontal position). Always spread or compress channel 6 oscillator coil in units of 3 turns. Compressing turns will move curve
toward sound marker, while spreading will move
curve toward video marker.
IMPORTANT: Since the coils are in series, the proper alignment of cha phasing of the channels to follow.
19. Adjust channels 5 and 4 so that the sound marker for each channel falls into the 21.9 mc trap dip in the an with finc unne trimmer set no more tha

Channels 3 and 2 should be adjusted so that the soun marker falls in'o the 21.9 mc trap dip, with the fin tuning trimmer within 15° of maximum capacity.
overall receiver sensitivity measurement
An overall measurement of sensitivity is made as fot

1. Connect an AM signal gencrator to the input termi nals of the receiverchassis after removing the shor 300 ohm lead which conncits to the antenna inpu strip on the back of the cabinet. To match the generator to the receiver input, a resistor matching net-
work should be used. In the case of a generator with a 50 ohm output impedance, for example, place a 100 ohmresistor inserics with the output terminal of the generator and a 150 ohm resistor in series with
the ground terminal. the ground terminal
2. From cathode of picture tube to chassis, connect calibrated oscilloscope.

NOTE: To calibrate scope, connect it across 6.3 voll filament supply. The peak-to-peak amplitude on the screen will then be approximately $18 \mathrm{~V}(6,3$
$\times 2,8)$.
3. Set contrast control for maximum sensitivity
4. Tune signal generator to the video carrier frequency of the channel being checked. Generator signa
should be 30% modulated at 400 cycles. The signal from the generator to produce 20 volts peak-to-peak at picture tube cathode should be less than 25 microvolts on channels 2 to 6 and less than 75 microvolts on channels 7 to 1

CIRCUIT DESCRIPTION

LOW VOLTAGE POWER SUPPLY

The low voltage power supply (Figure 12) provides plat oltage for all tubes except the high voltage applied to the econd anode of the picture tube and heater voltage to all

Since the damping diode ($V-18$) develops a high voltage pulse at its cathode, and its cathode is tied to the filamen o prevenate, low-capacity, well-insulated transformer (T-7), to heat this filament.

The plate supply is a conventional full wave rectifier using a 504 tube $(V-21)$. The speaker field serves as th filter choke. The focus coil, and its current adjusting re plate current to several tubes as shown in Figure 12.

Another voltage divider from this network to chass consisting of R-76 (1 meg) and the potentiometer R-75 (1 meg) to serve as a brightness contro,

The rf tuner
Antenna input
Figure 13 is a simplified schematic of the tuner.
The antenna input coil, L-1, couples the balanced line to the single ended input circuit for the RF tube, V-1. Opcoupling coils Laupling for all channels is obtained by th on channel positions 8,10 , and 12 of switch wafer S-lA These can be considered the primary of the antenna trans former. The secondary, or tuned grid circuit, includes also

FIGURE 12. SIMPLIFIED SCHEMATIC OF LOW VOLTAGE POWER SUPPLY
the continuous, tapped coil mounted on wafer S-IB for the low channels ($2-6$) and the stamped metal plate in series with the coil for the high channels (7-13). The purpose of he ane mand coupling leads, and secondary circuit, is rom the antenna to the input impedance of the RF amplifier gridcircuit and to tune this circuit for the channel selected Referring to Figure 13, it will be seen that the switch, in progressing from channel 2 to channel 13, shorts out the un ased portion of the secondary winding or stamped metal plate. stamped metal plate is carefulty designed so that with this bandwidth no alignment adjustment is needed on the high hannels. The individual coil sections on the low channels however, may be tuned by spreading or compressing them as outlined in the alignment procedur

RF Amplifier

The g rid of the RF amplifier $\mathrm{V}-1$ (6 CB 6) is returned to the AGC bus thru R-1 (22 K) and the decoupling resistor R(47K) is bypassed by capacitor C-3. The plate load of this tube consists of another tapped coil for the low channels and case, on switch wafer S-IC. Here again, the switch pro in tuning f rimmer C-6 and a choke L- 6 are provided to center the high channel response while the low channel coils may be tuned
by expansion or compression.

The Mixer

The mixer uses $1 / 2$ of $\mathrm{V}-2$ (12 AT 7). C-17 (8 mmf) cuuples the RF amplifier output to the mixer grid. Oscillato injection is accomplished by C-16 (2 mmf). L-8 and C-14 response, to prevent input.

The Oscillator

The oscillator uses the other half of V-2 (I2AT7) in Colpitts circuit. Here again, the tuning inductance con plate for the high channels mounted on wafer S-1D C-12 are provided to set the center frequency on the high channels while the low channels are aligned by spreading o compressing the individual coilsections. C-ll is provided as a fine tuning control for customer use. The oscillato 13 and below the RF on channels $7,8,9$ \& 10 . This choice of oscillator frequencies eliminates interference due to os cillator radiation on the high channels.

THE IF AMPLIFIER

The IF amplifier uses two 6AU6 tubes and one 6AG5 tube Figure 14 is the schematic of the IF amplifier. T-1 couples the mixer plate to the firstif grid. Coupling between primary and secondary, which are individually slug-tuned, is $\mathrm{L}-10$, of the 1 st IF tube $\mathrm{V}-3(6 \mathrm{AU6})$, is coupled to the grid coil, L-11, of the 2nd IF, tube V-4 (6AU6) thru C-27 (220 mm). At IF frequencies, the impedance of $\mathrm{C}-27$ is negli conside for all practical purposes, L-10 and L-11 can b considered as being in parallel, L-1l being slug-tuned. A The 3 rd IF plate is coupled to the detector by T-2, a unity oupled transformer. The IF circuits are stagger-tuned fo proper bandwidth as explained in the Alignment instruction L-12 and L-14 are separately tuned trap windings on IF coll orms L-11 and L-15, respectively. Together with C-28 and the high and low skirts of the IF response for better picture quality and stabilize the audio response with intercarrie sound.

Decoupling is used in the plate supply and AGC circuits oprevent regeneration.

© John F. Rider

FIGURE 18. SIMPLIFIED SCHEMATIC OF CLIPPERS AND PHASE DETECTOR

THE CI.JPPER
The clipper uses a 6 SN7CT tube. The clipper schematic is shown in Figure 18. The composite video signal with posi tive going sync is applied thru R-50 and C-56(.005) to the
grid of the first clipper from the plate circuit of the video amplifier. R-33 (470 K) and C-40 (100) provide a short tim constant circuit to minimize noise at the clipper grid. Under no signal conditions, the tube is unbiased. The positive signal, however, will cause the tube to draw grid curren and the voltage drop across $R-51(2.2$ meg), negative at the
grid, will charge C -56 to such a value that only the most grid, will charge C-56 to such a value that only the most
positive part of the signal, which is the sync pulse, will cause plate current to flow. Therefore, the video information and the blanking pulses are clipped off and only the sync pulses now negative in polarity, appear in the plate circuit. The second clipper is so biased that the peaks of the sync pulses
will drive the tube to cut-off, which results in squared pulses of positive polarity in the plate circuit of this tube. A slight increase in sync pulse amplitude is obtained by a small positive voltage applied to the grid of the second clipper by
$\mathrm{R}-54(330 \mathrm{~K})$. R-54 (330K).
the vertical scanning system
Figure 19 is a schematic of the Vertical Scanning Sys tem.

The negative sync pulses are fed from the cathode circuit of the second clipper, V-12B, to the integrating network
composed of $\mathrm{R}-59, \mathrm{C}-60, \mathrm{R}-60$ and $\mathrm{C}-61$ where the serra-
tions of the vertical group are changed to a single negativ pulse totrigger the vertical scanning oscillator. C-59 (. 005) and R-58 (100K) form a differentiating network which helps to stabilize the vertical scanning system by eliminating
frequency disturbances such as line fluctuations, etc.

The vertical scanning oscillator is an asymmetrical, cathode coupled multivibrator using the dual triode $V-13$ (12AU7). The circuit component values are chosen so that $\mathrm{V}-13 \mathrm{~B}$'s conductance time is about 7% of the entire cycle to insure that retrace of the s.can will have the proper rela C-66 (.05) is placed in the plate circuit of $V-13 \mathrm{~B}$ while the sync pulses are applied to the grid of V-13A. For the purpose of explaining the free-running action of the circuit, as sume that the end of the trace period has almost been
reached. At this time, $\mathrm{V}-13 \mathrm{~A}$ is conducting, $\mathrm{C}-63(.01)$ is discharging thru V-13A, R-63 (330 K) and $\mathrm{R}-64$ (the vertical hold control). This discharge current makes the gridend of R-63 negative and, together with the plate current of, V-13A thruR-62(2700), the common cathode resistor, biases V-13B beyond cut-off. The energy stored in C-63 is finally
reduced to the point where the voltage drop across $\mathrm{R}-63$ and reduced to the point where the voltage drop across $\mathrm{R}-63$ and
$\mathrm{R}-64$, due to the discharge current of $\mathrm{C}-63$, is no longer sufficient to keep the grid of $V-13 \mathrm{~B}$ below cut-off and the tube begins to conduct current. The increased current thru the common cathode resistor R-62, increases the bias on V-13A
and reduces its plate current. The rise in voltage at the plate of V-13A starts to charge C-63, and this charging current applies a positive voltage to the grid of $\mathrm{V}-13 \mathrm{~B}$. This pulse of voltage throws V-13B into heavy conduction and develops a pulse of voltage across the common cathode resis.

figure 19. Simplified schematic of Vertical scanning system
tor R-62, which drives V-13A beyond cut-off. C-66, the saw-forming condenser, discharges suddenly thru the virtual
short circuit caused by the heavy conduction of V-13B This short circuit caused by the heavy conduction of V-13B. This
corresponds to the retrace time in the scanning cycle. As C-63 approaches full charge, the charging current thru the grid circuit of $V-13 \mathrm{~B}$ decreases and the positive voltage ap-
plied to the grid of $\mathrm{V}-13 \mathrm{~B}$ is reduced, which results in a replied to the grid of $V-13 \mathrm{~B}$ is reduced, which results in a re-
duction of plate current and, therefore, a reduction of bias on the grid of V-13A. Eventually, this tube starts to conduct and C-63 begins to discharge and again this discharge current thru R-63 and R-64 cuts V-13B off. C-66 begins to charge from B plus, initiating the tracetime of the scan and
the beginning of another cycle.

The frequency of the multivibrator is adjusted by means of the hold control R-64, so that the sync pulse from the transmitting station, negative in polarity, arrives at the lime when -138 is beginning to conduct which, as we have
seen, causes the grid of V-13A to go negative. The added negative voltage of the sync pulse insures that $\mathrm{V}-13 \mathrm{~A}$ will be driven to cut-off at sync pulse rate for each cycle, thus initiating the retrace inexact step with the transmitting station's vertical scan. The voltage developed at the plate of
$\mathrm{V}-13 \mathrm{~B}$ will be the combination sawtooth and pulse voltage shown in Figure 22(1). The pulse is formed by the peaking resistors R-65 and R-66. When V-13B goes into conduction, the voltage at the plate of $\mathrm{V}-13 \mathrm{~B}$ drops suddenly to a value determined by the relationship of the plate resistance of $\mathrm{V}-13 \mathrm{~B}$ to the total resistance in the discharge circuit of $\mathrm{C}-66$ which consists of R-65, R-66 and he pharge on C-66 decreases, causing the voltage decrease at the plate shown between points " c " and " d " of Figure 22(1). When the positive pulse on the grid of $V-13 \mathrm{~B}$ has decreased to the value where
the negative charge on $\mathrm{C}-63$ becomes operative and cuts off the negative charge on $\mathrm{C}-63$ becomes operative and cuts off
$\mathrm{V}-13 \mathrm{~B}$, the voltage on the plate of $\mathrm{V}-13 \mathrm{~B}$ and, correspondingly, on the grid of $V-14$, rises quickly to point "a" on the curve, the start of the trace.

By returning the grid of the picture tube to the junction of the two peaking resistors R-65 and R-66, a negative pulse trace is obtained, resulting in elimination of retrace lines on the screen.

The negative pulse shown between point " b " and " a " of Figure $22(1)$, acting on the grid of $V-14$, tends to cut the tube
off and raises its plate resistance to the larger value required todissipate the energy in the plate circuit inductance during the short retrace period.

Since the plate circuit of the vertical output stage V-14 has inductance and, as the time constant of an inductive cirposite of an RC circuit, the increase in plate resistance of the tube is used to obtain the short time constant circuit required for proper retrace time. The windings on the vertical output transformer are connected series opposing which the plate of $\mathrm{V}-14$ in

The controls found in this circuit are

1. The Vertical Hold Control R-64 (1 meg). This con-C-63 (.01) and, hence, provides a means of varying the frequency of the multivibrator. In practice, this control is adjusted so that the incoming negative sync pulses, on the grid of V-13A, which are of constant
amplitude, will cut $\mathrm{V}-13 \mathrm{~A}$ off and throw $\mathrm{V}-13 \mathrm{~B}$ into amplitude, will cut $\begin{gathered}\text { conduction in exact synchronization with the trans - }\end{gathered}$ mitting station's vertical scan.
2. The Vertical Size Control R-68 (5 meg). This con-
trol varies the charging currentinto C-66 (.05) and hence, the amplitude of the voltage developed acres it. Variation of this voltage varies the drive on the grid of $\mathrm{V}-14$ and controls vertical size
3. Vertical Linearity R-71 (2000). This control, thru resistor $R-70(470)$, sets the bias on the grid of the erical output tube and determines the tube's operating point on its plate current curve. Since this duced to counteract any non-linearity in the sawtooth grid voltage.

Since the size control is part of the multivibrator cir cuit and has an effect also on its frequency, there will be some interaction between the ilze and hold controls. Usu ally, readju hold control
HORIZONT

The horizontal scanning system comprises a phase de (SN7) -15 (6AL5), a cathode coupled multivibrator -16 $V-18\left(6 W_{4}\right)$ Figure 20 is a system.

The Horizontal Oscillator
In order to see how the phase detector automatically corrects for multivibrator frequency change, it will be ne multivibrator metrical cathode coupled multivibrator

The operation is as follows. Assume that the trace pe riod is almost completed. At this time, tube "A" is con"A" R-88 (120K) and R-89 (the hold cotrol) thru tube charge current of $\mathrm{C}-76$ is still high enough to keep the grid of tube " B " negative and cut off. Bias is being applied to both tubes by current flow thru the common cathode resisor R-86 (1000). When the energy stored in C-76 is reduced grid of tube "B" below conductance, tube "B" starts to pass urrent and this current causes a greater voltage drop across R-86, the common cathode resistor, which increases the has on tube "A" reducing its plate current. The resulting C-76 and this charging current applies positive voltage to the grid of tube "B". The resulting heavier conduction of tube "B" develops a pulse of voltage across $\mathrm{R}-86$ which cuts tube "A" off and results in a positive pulse at the plate of allows $C-77$, the saws turming " B " into heave conduction. This allows C-77, the saw-forming condenser, to discharge thru
tube "B" and R-91. When C-76 becomes charged, the charg ing current thru the grid circuit of tube "B" decreases and the positive voltage on the grid, which has far exceeded the bias developed across R-86, is reduced. This results in bias applied to tube "A" by the voltage drop across R-86 Tube "A" starts to conduct and condenser C-76 starts to discharge, cutting tube " B " off. $\mathrm{C}-77$ begins to charge, starting the next trace.

L- 23 and C-75 in the plate circuit of tube " A ", form a ($15,750 \mathrm{cps}$). The 15,750 cycle sine wave generated by this circuit, if properly phased, will insure that the positive pulse at the plate of tube " A ", which throws tube " B " into onduction, will be more frequency stable.
C-77 and R-91, the peaking resistor, will produce the
MODELS 14 KlBH ,
1!KIH, Ch. TS-115
© John F. Rider

Figure 20. Simplified schematic of horizontal scanning and high voltage system
same combination pulse and sawtooth voltage shown in Fig22(1). This action was explained in the vertical circuit.

The Phase Detector

The foregoing explanation is based on the assumption tube "A's" grid is returned to a fixed potential point. It can be seen that if this grid is returned to a point which
varies in potential with frequency of the multivibrator, waries in potential with frequency of the multivibrator, it quency control. Assume that the grid of "A" in Figure 20 is made more positive. This causes the bias of "B" to incathode resistor $\mathrm{R}-86$. Capacitor $\mathrm{C}-76$ will then discharge for a longer time before " B " conducts, thereby decreasing the frequency of oscillation. If the grid were made more negative, the bias across the common cathode resistor would started to conduct, thereby increasing the frequency.

Figure 18 is a simplified schematic of the clipper and phase detector circuits. The phase detector V-15 (6AL5) is so connected that a comparison of the phase of the incoming
sync pulses and a sawtooth derived from the horizatal put system is made. A positive sync pulse from the plate of the 2nd clipper V-12 (65N7) is fed thru C-72 (.001) to the plate of diode "A" of V-15. A negative sync pulse from the cathode of V-12 is applied thru C-71(.001), to the cathode of diode "B" of V-15. A sawtooth, derived from the integration
of a pulse in the horizontal output circuit, at the yoke, by the integrating network, composed of R-95 (150K), R-96 (150K), and C-70 (.005), is applied to the eathode of diode "A" and the plate of diode "B". which are tied together and returned to chassis thru R-80 (15K). The load for diodes
"A" and "B". consists of resistors. $\mathrm{R}-81(100 \mathrm{~K})$ and $\mathrm{R}-82$ (1 " and "B". Consists of resistor.s R-81 (100K) and R-82
(100K) whose junction returns to the high side of the grid re sistor $\mathrm{R}-83$ (4.7 meg) of the first horizontal multivibrator tube V-16 (6SN7). The voltage applied to the two diodes will be a function of the amplitude of the sawtooth, the amplitude of the sync pulses and the phase relationship between the pulses and the sawtooth.

If the sawtooth, whose phase and frequency are a func
ion of the multivibrator's phase and frequency, is operating in the middle of the lock-in range, the sync pulse will occur in the center of the retrace time. See Figure 21(1). The ync pulses have an amplitude of from 6 to 8 volts while the who in the pulse input circuit to the diodes is long enough maintain an average pulse voltage of 6 to 8 volts for two or three horizontal lines, which means that in the "on" frequency condition shown in Figure 21(1), the diodes conduct only on the pulses and since the se are equal in amplitude and develop voltages of opposite polarity across R - 03 in the firs trol voltage is applied to the grid of V-16.

If the oscillator tends to increase in frequency, with resect to the sync pulses, the phase relationship shown in has now shifted so that at the same instant that the pulse is applied to the plate of diode "A", the positive saw is also applied to its cathode, so that only the shaded portion of the pulse causes conduction of diode "A". Diode "B". however, still conducts on the total amplitude of the negative pulse applied to its cathode aided by the positive saw applied to its
plate at the same time. Since current flow thru diode "A" makes the grid end of R-83 negative, with respect to chassis, the decreased current flow, caused by the sawtooth voltage bucking the pulse voltage at diode "A", results in a more positive voltage across $\mathrm{R}-83$, applying a more posiive voltage to the grid of V-16 which, as we have seen, re-
in
If the oscillator tends to decrease in frequency, with resect to the sync pulses, the phase relationship shown in geneg $1(3)$ exists at the diodes. Al the same instant that egative saw is applied to its plate so that only the shaded portion of the pulse causes conduction. Diode "A", however, conducts on the full amplitude of the positive pulse applied to its plate, aided by the negative saw applied to its cathode the same time. Since current flow thru diode " B " makes the gridend of R-83 positive, with respect tochassis, the
decreased current thrudiode "B"results in applying a more negative voltage to the grid of $V-16$ which, as we have scen, results in increasing the oscillator frequency. C-73, R-84

figure 21. Waveforms at phase detector
and C-74 provide two time constant filters which are neces sary to obtain "fly-wheel" action of this AFC sync circuit.

The Horizontal Output System

The combination sawtooth and pulse waveform developed cross C-77 (680) and R-91 (1500) by the multivibrator cir (6BQ6). Figure 20 is a simplified schematic of the horizonal output system. It will be noted that in this system an auto-transformer is used. In the horizontal scan, it is neIn order to accomplish reversal of current in the inductance of the output transformer and the yoke in this short a time it is necessary to make this circuit resonant at such a fre quency that the half cycle time will equal 7 microseconds because only by shock exciting such a circuit into oscilla ircuit is made resonant by the inductance of the output ransformer and yoke, the distributed capacity and the tube capacity. Bearing this in mind, the operation can be explained as follows. Referring to Figure 22(1), assume tha the voltage on the grid of the output tube is increasing, poin "a". The grid is now being made less negative and the outthru the damping diode. When point " b " is reached on the grid voltage waveform, the output tube is suddenly cut of because its grid has been made highly negative, (point "c on the grid voltage waveform). With the tube cut off, the resonant plate load is undamped and the circuit is shocked inductance produces a positive voltage pulse which make the cathode of the damping diode (V-18) positive, with respect to its plate; therefore, it cannot conduct. C-82 (180) is placed across the diode to provide a low impedance fo the oscillatory current. If the damping diode V-18 were not flow in the output transformeras shown in Figure 22(2). In order to insure a linear trace, however, this oscillation must be stopped and the damping diode serves this purpose.

waveforms in horizontal scanning system When the current nears its maximum negative value, th polarity and amplitude of the voltage pulse on the damping diode is such that its plate becomes positive, with respect the circuit sufficiently to prevent continuation of the oscil lation. The cirrent then follows the decay curve shown "c" in Figure 22(3). At the time ["d" in Figure 22(3)] the oltage at the 3 rid of the output tube has become less tha cut off point $["$ " in Figure 22(1)], the tube again demands mposing the w veform "e" of Figure 22(3) on the current low already in the output transformer due to the decayin current which resulted from the damped oscillation. Com ination of these two currents results in the linear trac current indicated at "f" in Figure 22(4), which is a com uction of the damped diode, $\mathrm{C}-83$ (1) charges and its po arity is such that when the output tube calls for current the charge on the condenser will be in series with the B plu supply so that the voltage at the output tube plate is raise rom the 250 volt B plus supply to about 47 volts by this so arm of the output tube again reaches point "b" of Figure 22(1), the tube is cut off and another cycle starts.

In order to properly match the yoke inductance to the required output inductance for the tube, the yoke is connect-
ed to a tap on the winding which effectively makes an auto-保 at this tap is coupled to the yoke thru C-81 (.1) and results in a sawtooth of current thru the yoke. It will be remem bered that a portion of this pulse is also fed to the phase de tector for the AFC action thru R-95 and R-96.

High Voltage

To take advantage of the large voltage pulse developed across the output inductance by the heavy current flow caused by the retrace oscillation, the plate winding is made
© John F. Rider
such as to develop pulses of about 14 kv at its high end.
These pulses are rectified by V -19 (183) and the resulting
DC is applied to the second anode of the picture tube. The
filament voltage for the 183 rectifier is obtained from an
additional winding on the output transformer. dditional winding on the output transformer. Controls

1. Horizontal Oscillator Adjustment. $\mathrm{L}-23$ is the coil

REPLACEMEMT PARTS LIST

Ref.	Part Number	Deacription	Rer. Mo.	Part Number	Dacriptice
			c-68	238700160	trolytic: 4-aection; 80 - $/$
chassis parts - Elbctrical					
Capacitor:			c-69	238700159	Electrolytic: 4 -acection; 80 -
c-1		Soe Tuning Unit Pur			$400{ }^{\text {a }}$
c-2	$21 \mathrm{KT7375}$	cerante tubular: 220			Papar: . -
C-3	214470789	Ceranic diac: 5000 200 45000.	c-70	ER99666	Paper: . 001
	21×7375		-72	889866	Paper: . 001 ± 600
-5	21×470322	lided: 0 ar		889866	Paper: . 001 uf 6000
C-6	1×790189		C-74	889870	Paper: . 01.10860
C-7	214470790	Ceranic disc: $1500=5$	c-75	889969	Paper: . 005 wr 6000
-	214470790	Ceranic disc: 1500 mor 500%	c-76	21 K 400037	Ceranic tubular: 270
C-9.	$21 K 482726$	Ceramic dioc: 10,000 450 V	c-77	21R2741	Mica: 680
c-10		See Tuning Unit Parta List...	c-78	8 R 9869	Paper: . 005 mf 600
C-21	- P	Fine Tuning Trimer (part	c-79	8R9854	Paper: . 1 mf 2000.
		tation aclector)	C-80	8 R 9874	Paper: in 1 P 600 V
C-12	1x790189	Trimmer, ceramic: ${ }^{\text {5-3 }}$	C-81	8R490263	Molded paper: . 1 ar
		coaplete with screm \& meg. nut....	C-82	21×700883	Cermalc tuburar: 180
C-13		See Toming unit parts Liat.	C-83	829874	
C-14	18792784	Trimer, ceramic: 3-13 \quad; Tr	C-84	21×790574	(in derflection yoke)........
c-15		See Tuming Unit Parto List...	$\mathrm{c}-85$	8R9874	Papar: . 1 uf
${ }_{c}^{\text {c-16 }}$	21×478280	Moldod: 2 mar (teap coap)...........			
	21×478234	Molded: 8 mmf 500 v	A, B8C	238700613	Blectrolvtic: $3-800$ tion; 80 ur $/ \mathrm{v}$.
C-18	214470789	Ceramic disc: 5000 mar 40.			
	21×73375	Ceramic tuburr: 200	C-8	238700614	
C-20	21×478280	Molded: 2 mar 5000.	A, BaC	238700614	$400 \mathrm{v}, 40 \mathrm{vi} / 300 \mathrm{v}, 20 \mathrm{~m} / 2$
c-21	214470789	Ceranic diac: 5000 mor 450 V	c-88	238700615	Electrolytic: 2-section;
c-23	2214470790	Ceramic dioc: 1500 - 500			$400 \mathrm{v}, 100 \mathrm{xf} / 50$
	22A470989	Ceramic dioc: 5000 - 4500 ..	c-89	8R9810	Paper: . 25 af 100V...
c-25$\mathrm{c}-26$	214470789	Ceramic disc: 5000 mor 4500	Puea		
	214470989	Ceranic divc: 5000 \#ir 550.			
C-27	$21 \mathrm{KT7375}$	Ceranic tubular: 220 min 500 V)	P-1	654700851	Puse, 1/4 amp: glase; with loma
C-28	21×470329	Molded: ${ }^{\text {ceranic diac: } 5000}$ =f 450 V	Cothe		
	2144700789				
c-30	214470789		L-1	244790033	Antemne Impodance matching Coill
c-31	21177375	Cerantc tubular: $2200{ }^{\text {ceramic disc: } 5000} 450 \mathrm{~V}$.	L-2		Soe Tuning Unit Parte Liat.........
C-32	21×470789	Ceramic d1ec: 5000 or 4500	L-3		
	2144770789	Ceremic d1sc: $5000=4500$........	L-4		See Muing vait forts Lit..........
c-34 $\mathrm{c}-35$	214470789	Ceramic disc: 5000 mor 45000	L-6	24×792825	$\mathrm{RP}^{\text {coll }}$ cochennol 13.......
$\mathrm{c}-35$ $\mathrm{c}-36$	21K470329	molded: 30 rr 500 V (tasp. comp.)			Soe Tuming unit Purts Lid
c-38	21×470324		L-8	2k×792577	
		Paper: 11 ur 2000	L-9	24×180128	RP Chake: 2.2 nicrohenri
C-39c-40	$8 \mathrm{EP9} 545$	Paper: $\mathbf{- 1}^{1} \mathbf{0} 2000$.	L-10	24×1990035	RP Chake: 5.6 nicrohenr1es.
	22186554	mica: 10000000	11	248792586	lat Ir: couplet
c-40	${ }_{2144780274}$	molded: 2.2 r 5000			${ }_{6}$ wits mute...........
$\xrightarrow[c]{c-43}$	2144788274	molded: 60 mor $500 \mathrm{~V}$.	L-12		27.3 me trap (part of L-Li)
	21×19068	Moldod: 60 mf 5000.	L-13	245790035	RP Choke: 5.6 microbenr
$\begin{gathered} c-45 \\ c-45 \\ c \end{gathered}$	214470789	ceranc disc: ceranic disc: 5000 ar	L-14		$21.9=$ trap (part of L-15)........
	214470789	Sllver mica: 25 maf (part of T-3	15	24×792587	and IF: complete vith LC trap, cores
${ }_{c}^{\text {c-4, }}$		base	L-16	24 k 79271	RP Chake: yedlow dot...............
c-48	82989660131	Caperaic tubular: 150 -	L-17	24×19277	RF choke: yollow dot
	218145990	Mica: 500 mo 500 V	L-18	248792735	4.5 me trap: leas care 4 mteg nut
C-50	21286590	Mica: 500 ma 500才	L-19	24K701652	Compenentipe coll: bleck dot ..
	23190205	Electrolytic: 10 of	L-20	244670159	Sound Take-orf: heat cart \& mits
C-52	21×482726	Ceramic disc: 10,000 mar 450 V			
c-54	889669	Paper : 0005 nf 6007.	L-21	24×701651	cocm
	21P66; 0	Mica: $68=500 \mathrm{~V}$	L-23	24×190059	
C-55	889669			-409059	
C-57	21×470322				
	\&R9873	Paper: 005 mm 600 V .		24K70076	
c-59 c-60	${ }_{\text {ER99669 }}$	Papar: ${ }_{\text {Paper }}$. $0005{ }^{\text {mox }} 600 \mathrm{~V}$		or 24r79eli ${ }^{\text {a }}$	
C-61	ER9070	Paper: 0101 a 600 V .		241770077^{8}	
	8robs	Papar: 0 ¢ ${ }^{\text {coov }}$		ar 24C792506	
C-63	889670	Paper: . 01 ur 6000		ar 241700694	
	889066	Papers: . 001 mf 600 V		ar 24k79e508	
c-65	2116590	Mica: 500 mis 5000		cor 24K7007 ${ }^{\text {a }}$	
	$8 \mathrm{P9} 973$	Paper: 005 mf 600N		or 24c7000s0	
C-67	889875	proer : 15 uf $6000 . .$.		or 24r70074	Deflection yoke: completo..........

2. Horizontal Hold Control. R-89 is the horizontal hold
3. Heration of the multivibrator. paralleling a smal $\frac{\text { Horizontal Size Control. L-27, paralleling a small }}{\text { portion of the output choke controls, to a small de- }}$ portion of the output choke controls, to a small de

speaker
 Realstor:

$$
\begin{aligned}
& \text { Note: All res1stors are inalated } \\
& \text { unleas otherwise apecified. }
\end{aligned}
$$

${ }^{6 R 6397}$ 6 6R6056 6R6229 6R5659
686320 686038 686217
686393
686030 686428
6R5550
682036 686069
${ }_{6}^{6863994}$
6R6229
6 6 5550
${ }_{6}^{62036}$
${ }_{6}^{686069}$
$6864+28$ $6 R 2035$
682035 686038
6R6031
6 6 3966
6 6 6127
6R6004
6R5550

contract 8 Volues Control, dual:
2000 tappod \& 1 men rempectively,

or 6R63n1		22,000 10\% IV (for 6CB6 rideo
R-36		12,000 (not replaceable; part of $\text { L-191: }: \text {........................... }$
R-	6R5671	4700 109 2,
R-38	683933	220000 1/21...........
R-39	6 m 2000	8200 108 1/2w
R-40	6R5660	180 10\% $1 / 2 \mathrm{zk}$
4	6n6012	33,000
R-42	686428	$680010081 / 2$
R-43	676428	6800 10\% $1 / 2 \mathrm{z}$
R-44	689122	4.7 meg 20\% $1 / 2$
R-45	${ }^{676414}$	270,000 105 1/2
${ }^{8-46}$	${ }_{6}^{646032}$	470,000 20\% 1/21
R-47	${ }_{6}^{6866032}$	470,000 300
R-48	686022	33010%
R-49	68476004	1000208
50	6R6320	10,000 10\% 1/2
R-51	6R3927	
B-52	686004	1 mog $2081 / 24$.
R-53	686397	23,000 100
R-54	68208	330,000
R-55	6 m 6428	$6800010 \% 1 / 2$
R-56	6R5583	3300 109 1/2N
R-57	6 R 5581	3300 10\% 1/24.....
R-58	6R6031	100,000 10\% 1/21.
R-59	6 6 6031	100,000 10\% 1/2w...............
R-60	686397	22,000 108-1/21................
R-61	${ }^{686031}$	100,000 10\% $1 / 2$
R-62	685577	2700 10\% $1 / 2 \mathrm{x}$
R-63	682096	330,000 10\% 1/2w
R-64	18490147	Vertical hold Contro
65	6R6428	6800 10\%
R-66	6R5577	2700 10\% 1/2

No.	Part No.	Deacription
R-67	686032	470,000 209 1/2w
R-68	18490145	Vertical Size control: 5 meg....
R-69	6 R 2118	3.3 meg $2081 / 24$.
R-70	6R3949 184790146	
R-72	686291	560 10\% 1/2w (in defiection
		yoke)......................
R-73	6 6 6291	560 10\% $1 / 2 w$ (in deflection yoke) \qquad
R-74	6R6056	47,000 20\% 1/2w..............
R-75	18490147	Brightness control: 1 meg......
R-76	686004	1 meg 20\% 1/2u...............
R-77	175790840	Wre vound: 1000 lox 10w.....
R-78	18 K 70114	Pocus control: 500.
R-79	17 K 92705	Wire vound: 2000 10\% 10w.....
R-80	686477	15,000 10\% 1/24...
R-81	6 66031	100,000 10\% 1/2u.............
R-82	6R6031	100,000 101 1/2w.............
R-83	682122	
R-24	${ }_{6}^{642122}$	4.7 meg $2081 / 2{ }^{1 / 2}$
R-85	6R6428	6800 10x, 1/24............
R-86	686229	1000 10\% $1 / 21$.
R-87	6R3949	470 200\% 1/24................
R-88	6R5631	120,000 10\% 1/21..........
R-89	184791574	Horizontal Hold: 100,000.......
R-90	${ }^{686074}$	
R-91	$6 \mathrm{R6} 638$	1500 10\% 1/28................
R-92	6R6032	470,000 20\% 1/2w.............
8-93	6R5583	47 10\% 14.
R-94	6R5690	6800 10\% 2n..................
H-95	685721	150,000 10\% 1H...............
R-96	6R5721	150,000 106 14.....
R-96	685721	150,000 10\% 1H...............
R-97	6 F 577	2700 10\% 1/2w...
R-98	6 R 6328	100,000 10\% 14.
R-99	17 K 71353	W1re wound: 1500 20\% 5w......
R-100	686032	470,000 20\% 1/2w............
R-101	686018	100 20\% 1/21...........
R-102		2700 (not replaceable; part of L-21).
Traneforreor		
T-1	24×792578	Mixer IP: lens cares \& Mter nuts....
T-2	248792585	3rd IF: less core, 㫙g nut, \& colored leads.
T-3	248790125	Ratio Dotector: complete 1sas shield
T-4	258790686	Audio output....................
T-5	25K701619	Vertical output.....................
T-6	24×700588	High Voltage Tranoformer
T-7	258790140	Filament tranoformer: 1801ating.
T-8	25c700261	
	[256700169	
		Power Trana
Tubee		
v-1	${ }_{6086}$	Re Amplifier
$\mathrm{v}-2$	120177	M1xer-Oaccillator
v-3	6×106	1at IP Amplif1er....................
v-4	6406	2nd IP Amplifier...................
v-5	60.5	3rd IP Amplifier....................
v-6	6als	video Detectar......................
v-7	6×186	
or 6CB6		video Amplifier.
v-8	6 aub	Audio Driver-Lunter
--9	6 6als	Ratio detoctar....................
V-10		Audio Amplifier...............
- 21	6v6or	Avdio output.......................
V-12	6eritar	10t \% 2nd clippars.................
V-13	12 AUT	Vartical sweep Gematot...........
- -14	6w6	Vertical svoep output.........
v-15	60.5	Phase Detector.
v-16	6gitcr	Horizontal Decilistor.............
$\nabla-17$	6806cr	Borisontal Output a Bigh Voltage Gemerator
V-18	6whar	Deipling Diode.
	28309	High Voltage Rectifier.............
V-20 ${ }^{\text {v-2 }}$	14 Brb	
		Pletura Tube: 14^{14} rectanguiar....... Low Voltage Rectifior.
		MODELS 14 KlBH ,
		$14 \mathrm{~K} 1 \mathrm{H}, \mathrm{Ch} . \mathrm{TS}-115$

OJohn F. Rider

INDEX

	PAGE		PAGE
ALIGNMENT INSTRUCTIONS	33	SCHEMATIC	29,30
CIRCUIT DESCRIPTION	36	SPECIFICATIONS	31
Installation data.	31	top view - tube layout.	34
PARTS LAYOUT	34	trimmer locations.	34
.PARTS LIST	40	Voltage measurements	29,30
		WAVEFORMS	29,30

POWER CONSUMPTION - TV: 170 watts
TV AUDIO OUTPUT - 4 watts
tV Chassis tube complement

$\begin{aligned} & \text { Ref. } \\ & \text { No. } \end{aligned}$	Tube	Function
V-1	6CB6	RF Amplifier
V-2	12:AT7	Mixer-Oscillator
V-3	6AU6	1st if Amplifier
V-4	6AU6	2nd IF Amplifier
V-5	6AG5	3rd IF Amplifier
V-6	6AL5	Video Detector
V-7	6AH6	Video Amplifier
V-8	6AU6	Audio Driver-Limiter
V-9	6AL5	Ratio Detector
V-10	6J5GT	Audio Amplifier
V-11	6V6GT	Audio Output
$\mathrm{V}-12$	6SN7GT	1 st \& 2nd Clippers
V-13	6J5GT	Vertical Sweep Generator
V-14	25L6GT	Vertical Sweep Output
v-15	6AL5	Phase Detector
V-16	6SN7GT	Horizontal Oscillator
V-17	6BQ6GT	Horizontal Output \& High Voltage Generator
v-18	6w4GT	Damping Diode
V-19	183GT	High Voltage Rectifier
v-20	148P4	Picture tube: rectangular

high voltage warning

Operation of this receiver, outside its cabinet or with covers removed, involves a shock hazard from the power supplies. No work should be attempted on this receiver by
anyone not thoroughly familiar with the precautions neces sary when working on high voltage equipment.

CATHODE RAY PICTURE TUBE

HANDLING PRECAUTIONS

Extreme care must be used in handling the picture tube.
his tube is highly evacuated and, due to its large size, is This tube is highly evacuated and, due to its large size, is
subjected to a considerable atmospheric pressure. The handler should wear safety goggles and gloves for protection. Avoid nicking or scratching the glass by rough contact with er

Before removing glass tubes, discharge the capacitor formed by the inner and outer aquadag coatings on the tube
by shorting the anode contact on the side of the tube to the outer surface with a well insulated piece of wire.

RECEIVER LOCATION
The receiver may be placed anywhere in the room,
for greatest satisfaction it should be located

Away from any bright light that may fall directly on dhe screen or be reflectedfrom it; this includes win o one side, is desirable, however, the room, of strain.
2. To provide comfortable viewing and ease of opera tion.
3. At least one-inch away from a wall to allow for cab inet ventilation. This is very important.

antennas

The choice of a television antenna depends entirely on the location of the receiver with respect to all television sta
tion transmitting antennas in the area. Maximum pick-um is obtained when the receiving antenna is directly in line of
sight with the transmitting ander sight with the transmitting antenna
"Bilt-In-Tenna". All receivers using the TS-88 series Tenna", mounted inside the cabinet, for use in good signal areas.

When this antenna is used the following precaution should be observed for best reception:

In order to get maximum performance and satisfac ory pictures from the "Bilt-In-Tenna", ample sig nals from the television station must be present a
the location of the receiver. Normally, the strength of the signals will vary throughout the room in which the receiver is located. For this reason, better pichures will be obtained if the receiver is tried in all possible locations in the viewing room and is then from all stations. Avoid large metallic objects such as, radiators, metal panels, etc.
2. Lamps, vases and metallic objects, when placed on op of the receiver, may affect the efficiency of the

Indoor Antenna. If additional pick-up is nececessary, an indor antenna, placed on or near the receiver, may be extended on the low channels (2-6) and telescoped on the be channels (7-13).

Outdoor Antenna. The Motorola "Bilt-In-Tenna", or the ndoor type antenna will give satisfactory reception in strong signal areas; but, if the receiver is located in a fringe

In areas free of obstructions and reflections, within reasonable proximity to television transmitters, a dipole and reflector will prove satisfactory. Since such an antenna has ing all twelve television channels should be used if it is de sired to receive stations on channels of widel; separated requencies.

Location of the antenna should be decided from the stand
should be broadsice to the transmitting antenna and should be as high as possible. If a reflector is used, the antenna should be oriented so that the driven element is closest to tain and the reflector farthest away.
Locating the antenna and lead-in as far away as possible from highways, hospitals, doctors' offices, electrical machinery. etc., will help to reduce noise pick-up from such sixfeet away from other antennas, metal roofs, gutters, or shielding.
$\frac{\text { Lead-ln. }}{\text { S }}$ Since the TS- 88 chassis is designed for 300 used for connecting the 300 ohm twin lead line should be Twisting the line one complete turn per foot of thnning length helps to reducenoise pick-up on the line. The lead-in should be supported on stand-off insulators and kept tight enough to prevent mechanical damage through swaying. Avoid running

In areas of very strong signals, or where severe local electrical interference is encountered, 300 ohm shielded twin lead is recommended. The shield braid should be grounded.

An approved lightning arrestor should be used.
receiver antenna connection
The antenna lead-in to the television receiver is con nected to the two screws of the terminal strip on the rea
of the cabinet. Disconnect the "Bilt-In-Tenna" leads from the terminal strip before attaching an external antenna lead in. Sometimes, reversing the lead-in connections at the receiver may improve picture quality and overall performance.
operating controls
There are two dual controls, consisting of a small and a large knob each, on the front panel of the receiver. The "circle" indicating the large knob and the "dot" indicating small knob. See Figure 1 for front panel control functions.

FIGURE 1. OPERATING CONTROLS

SERVICE ADJUSTMENTS

The receiver is completely adjusted at the factory, so normally none other than the front panel control operating instructions need be followed in putting the receiver in operation. However, to provide for any misadjustment of the
service controls, due to handling, the following instructions are in order. See Figure 2 for location of the service adjustment controls.
Focus control
The FOCUS control should be adjusted until the fine hori zontal line structure of the raster is clearly visible over the picture area. The control should be tuned through the cor CEntering

By means of a lever extending from the focus coll, thr rear screen, the focus coil can be shifted to center th picture in its mask.
vertical size and vertical linearit
Adjust the VERTICAL SIZE control until the picture fills the mask vertically. Adjust the VERTICAL LINEARITY con-
trol for best overall vertical linearity. Adjustment of the VERTICAL SIZE control will require a readjustment of the VERTICAL LINEARITY control and possibly of the VERTICAL HOLD control. Center picture with the centering lever on the focus coil.
horizontal size
Adjust the horizontal size lever until the picture fills the mask horizontally. Center picture with the center ing lever.

HORIZONTAL HOLD ADJUSTMENT
The HORIZONTAL HOLD control should have a sync ange of approximately 180°. If the control istoo critical adjust as follows:

FIGURE 2. SERVICE ADJUSTMENT CONTROLS
Short out Horizontal oscillator coil L-23 This may be done with the chassis in the cabinet by
shorting pins 3 and 8 of the test socket on chassis shorting pins 3 and 8 of the test socket on chassis
2. With the centering lever, move the picture to the lef so that the right edge of the raster can be seen. Ad Just the HORIZONTAL HOLD control to about the middle of its range and note the width of the blanking
pulse. (The blanking pulse appears as a gray bar at the right edge of the picture).
3. Remove short from HORIZONTAL OSCILLATOR coil
4. Adjust horizontal oscillator coil until the ame amount of blanking pulse can be seen as was noted in step 2.
vertical hold adjustment
Adjust the VERTICAL HOLD control for the center of the Vertical sync lock-in range.
brightness
Adjust the BRIGHTNESS control, in combination with the CONTRAST control for the most pleasing picture. Keep the brilliance slightly below maximum, however, in order to protect the fluorescentscreen of the picture tube and to pre vent poor picture detail.
adjustment of ion trap

Under conditions of rough shipment, it is possible for the ion trap to become misaligned. To prevent serious dam age to the picture tube, the following method of adjustmen
should be used. See Figure 3 .

The magnet should be placed on the neck of the tube in the direction indicated by the marking on the magnet (usually an arrow which points toward the picture tube screen) so
that the stronger magnet of the double magnet type or the only magnet in the single magnet type is positioned over the

Figure 3. picture tube adjustment locations
internal pole pieces which are mounted on the gun structur the magnet a short distance forward and bacity and mov same time rotating it to obtain the brightest raster. If, in obtaining the brightest raster. the ion trap magnet has to be moved more than $1 / 4$ from the gun pole pieces the magne correct for a shadowed raster with the be tried. Neve such correction results in decreased brightness. The ion trap magnet must always be adjusted for maximum bright ness and, if shadows occur at this setting, they should b eliminated by adjusting the focus and deflection coils as ex

CAUTION: Keep brightness control at low intensity until ion trap is properly set.

A mirror placed infront of the receiver will aid in mak deflection yoke adjustment

If the deflection yoke shifts, the picture will be tilted o correct, loosen the thumbscrew on top of the deflection ightening the thumbscrew, make certain that the deflection yoke is as far forward as possible.
If the yoke support and the picture tube have shifted in and replaced, it is best to do a complete job of reposition ing. See Figure 3. The starting point is the position of the picture tube. In 5 hr . It be adjusted so that the distance from the center of the tube face to the front edge of the chassis is ". The clamp on the front of the tube should then be tight
justment screws should be loose enough to permit sliding against the flare of the the rer cushion has snugly thumbscrew and puah the yoke up against the flare of the tube. CAUTION: Do not use force in sliding the bracket up If too much force is used, a strain will be placed on the neck of the tube when the support bracket positioning adjustmen position. The opening in the yoke should be concentic the neck of the tube.

FOCUS COIL
The focus coil should be positioned so that it is spaced $1 / 4$ " from the deflection yoke when parallel with the yoke. The opening in the focus coil should be concentric with the neck of the tube. The spacing should be adjusted before the cessary to remove the tube to change the position of the focu coil. Its position is changed by choice of location of the coil mounting studs in the scalloped holes on the top and bottom of the coil mounting bracket. The opening in the focus coil int the nuts on the studs which support the focus by loosen et and turning the studs with a screwdriver in the slots pro vided. The studs are eccentric and move the coil both ver tically and horizontally. They should be used only to cente test socket

Atest socket is provided on the rear of the chassis which allows adjustment of the horizontal oscillator and checking Figure 2 for without removing chassis from cabinet. Se Figure 2 for socket connections.

general

The chassis should be mounted on angle iron bracketg (Motorola Part No. 7X700210) so
adjustments may be made easily,

Since the power cord circuit is broken by the interlock when the cabinet back is removed, it will be necessary to
obtain an extra power cord with the female interlock receptacle in order to make a power connection to the receiver. Order Motorola Part No. 30B470756
It is recommended that an isolation transformer be used between the receiver and the $A C$ line whenever any test equipment is attoched to the chassis. This precaution is
especially important if grounded test equipment is used. NEVER GROUND THE RECEIVER CHASSIS DURING TESTNG OPERATIONS OR INSTALLATION UNLESS AN ISOLA-

ORDER OF ALIGNMENT
A complete receiver alignment can be most conveniently erformed in the following order

1. Audio Take-Off \& Ratio Detector
2. 4.5 Mc Trap
3. IF Coils \& Mixer Transformer
4. Osc \& RF Sections

UDIO TAKE-OFF \& RATIO DETECTOR ALIGNMENT
Equipment Required:
AM Signal Generator: Accurately calibrated at 4.5 mc (Optional)

> Adjustable output

DC Meter: Low range electronic voltmeter

Procedure

Refer to Figure 4 for location of adjustments.

1. If possible, it is desirable to align the audio section from an actual shain signal, since the 4.5 mc align mer should be turned off the station slightly, to prevent overloading the ratio detector.
2. If a signal generator is used, tune it accurately to microvolts. Connect the high side of mately 10,000 erator through a 1000 mmf capacitor to the grid (pin 1) of the video amplifier tube V-7 (6AH6), and the low side to $\mathbf{B}-$. The following applies whether the sta

From either side of capacitor C-60 (10 mf), connect an electronic voltmeter to B - decoupled thru 10 K ohms.
4. Set the contrast control for maximum gain (fully clockwise).
5. Peak L-20 for maximum reading on meter
6. Peak T-3 primary (top core) for maximum reading on meter.
7. Move the meter and decoupling resistor from C-60 to junction of R-44 (35 K) and lead to volume control.
8. Adjust T-3 secondary (bottom core) for zero response on 2.5 V scale of meter. This corresponds to the sired, the symmetry of the curve may be checked by tuning the signal generator 25 kc above and below 4.5 mc and noting the plus and minus voltage produced, reversing the meter connections as necessary.
For proper balance of the ratio detector system, the voltage in each direction should be approximately equal. If not, check the tuning of $\mathrm{L}-20$ and the primary \& secondary of T-3, the ratio detector. If necessary, replace the ratio detector tube V-9 (6AL5).
It is desirable to calibrate the generator on a station signal. This may be done by nulling the secondary on a station signal and then connecting the generator and tuning it to produce the same null with out touching the trimmers in the set,

NOTE: As the adjustments are brought to resonance, it is advisable to reduce signal generator output to prevent overloading.
With a 10,000 microvolt signal into the grid of the video mplifier tube, with the contrast control turned fully clockage read from one side of capacitor C-60 should be greater than 5, ov.

4. 5 MC TRAP ALIGNMENT

1. Connect the high side of the signal generator through a 1000 mmi capacitor to the $\mathrm{grid}(\operatorname{pin} 1)$ of the vide , and the low side to B-.
2. Connect the voltmeter and germanium crystal recti fier, as shown in Figure 5, between the cathode of the picture tube (yellow lead) and B-. Use the low-
est voltage scale on the meter.
3. With the signal generator accurately set at 4.5 mc and maximum output, adjust trap L-18 for minimum reading on the meter.

if AMPLIFIER ALIGNMENT

Equipment Required:

IF Sweep Generator meeting the following requirements
19 to 30 mc , approximately 12 mc sweep width. Output constant and adjusfable to at least . 1 yolt maximum with accurately calibrated, adjustable markers.
Cathode Ray Oscilloscope: preferably one with a cali -
NOTE: If there is no built-in marker in the sweep gen erator, loosely couple the output of an accurately calibrated AM signal generator to the IF strip. At all times, keep the marker output ing the respone curve.

If a wide band scope is used, the marker will
e more distinct if a capacitor of 100 to 1000 mmf is placed across the scope input. Use the will affect the shape of the curve

Procedure:

1. Remove high voltage generator tube $\mathrm{V}-17$ (6 BQ 6 GT) from its socke
oscilloscope.
2. By means of an external battery, apply a negative resistor $\mathrm{R}-9(6800)$ to B -
3. Using leads as short as possible, connect the hot side of the sweep generator to the grid (pin 1) of the 1st IF tube V-3 (6AU6) through a 5000 mmf capacitor (do The low side is connected to $B-$. Set the center frequency of the sweep to about 24.6 mc and adjust initially for a sweep deviation of approximately 12 mc . However, a sweep of from 8 to 10 mc may be found
better for overall alignment.
4. Using R-27 (100 K) as a decoupling resistor, connect the scope to pin 4 of test socket. If a stronger output is desired, connect the scope between the picposition will be the reverse of curve seen al this position wit
Figure 6.
5. Set the contrast control at minimum

NOTE: If a distorted or unstable picture is seen on the oscilloscope during alignment, it may be necessary to stop the oscillator by disconnecting resistor $\mathrm{R}-10$ (1000) from the plate (pin 6) of the
oscillator tube $\mathrm{V}-2 \mathrm{~B}$ (12 AT 7). or by substituting oscillator tube $V-2 \mathrm{~B}$ (12AT7). or
another tube with pin 6 removed.

CAUTION

1. Do not reduce the oscilloscope gain and increase signal input so that the top of the curve is flat tened due to limiting in the video or scope am plifiers.
2. The dress of plate \& grid components in the IF
affects tuning. Do not move indiscriminately
3. On the IF coils and on the traps the resonance point will be found at two settings of the slug. The greater part of the adjusting screw out of the coil
NOTE: The 1st \& 2nd IF traps are tuned from bottom of chassis, while IF cores are adjusted from the top.
4. Tune the low frequency trap L-14, located on the 2nd F coil, for maximum attenuation on the curve at 21.9 mc.
5. Tune the high frequency trap L-12, located on the lst IF coil, for maximum attenuation on the curve at 27.3 mc .
6. Adjust the 1 st IF coil, L-11, to place a 26.6 mc marker on the high side of the response curve 60% down er on the high side of the response curve
from maximum response. See Figure 6 .
7. Adjust the 2 nd IF coil, L-15, to place a 22.7 mc darker on the low side of the response curve 60% down from maximum response.
8. Adjust the 3 rdif plate transformer, $\mathbf{T}-2$, to
9. Reset the traps (steps 6 \& 7) and again check the for proper response.
NOTE: It is suggested that the bias be removed for ac curate resetting of the traps
10. With bias applied, connect the sweep between the (pin 2) of the mixer tube $\mathrm{V}-2 \mathrm{~A}(12 \mathrm{AT} 7$) and $\mathrm{B}-$
11. Disconnect the trimmer, C-14, in LC circuit in the grid of the mixer tube, or short the trimmer throus a $10,000 \mathrm{mmf}$ ceramic disc type to B -.
12. Bring both cores of the mixer transformer, T-1, si multaneously from the outside towards the center mc (Figure 7).
NOTE: In aligning the three iF coils, each coil is ad justed \cdot individually, but when adjusting the prithe adjustments should be made simultaneously. The important point to keep in mind is to obtai a flat response curve with as much gain as po sible. The sides of the curve should be straig of the primary and secondary is the easiestway to obtain this result. The transformer by itself, is in effect, tuned for the same pass band as the three staggered circuits. See Figure 7. The only that the sides of the overall wave arm shoula Constant use of the 50% markers (22.9 mc and 26.4 mc) should be resorted to, since it is absolutely necessary to obtain the proper curve A slight dip (not exceeding 10%) is permissib

BANDWIDTH

The bandwidth may be determined by connecting an AM generator to the mixer grid. With the generator frequency at 24.6 mc , adjust the output for 1 volt reading on a VTVM connected at the plate (pin 2) of the video detector tube $\mathrm{V}-6$
(6AL5) and B-. Double the output of the generator by tuning either side of 24.6 mc and noting the frequencies which the VTVM again reads 1 volt, the 6 db bandwidth points are indicated.

Regeneration check

After the above if and mixer transformer alignment has been made, a check for regeneration in the IF amplifier strip hould be made. This is done by removing the battery bias and observing the output response curve on the oscilloscope
as taken between the picture tube cathode and B -. The bandwidth may change with the bias removed but should not change more than 0.2 mc . Set the contrast control to maximum gain. Decrease the input until the output signal shows a marked decrease. Any regeneration present will be indica illator should be stopped, as described above, during this procedure.

CAUTION: Do not inject too much marker signal.

MIXER LC ADJUSTMENT

Reconnect bias removed for regeneration check. Re-

if Sensitivity measurements

IF Stages Only

Remove the battery bias from lst IF tube grid.
2. Connect an AM signal generator, set at 24.6 mc , through a blocking capacitor of 5000 mmf , between
B - and the grid (pin 1) of the 1st IF tube $\mathrm{V}-3$ (6AU6).
3. Connect anelectronic voltmeter across the video delector load resistor R-2h (5600). Both leads from the meter should be decoupled with 100 K ohm resis.

Set the contrast control for maximum sensitivity
5. Stop the oscillator tube by disconnecting resistor $\mathrm{R}-10$ (1000) from the plate (pin 6) of tube $\mathrm{V}-2 \mathrm{~B}$ (12AT7) or by substituting another tube with pin 6 removed
6. The signal required to produce 1 volt (negative) a bove contact potentia.
125 microvolts.

Mixer \& IF Stage

The preliminary preparations are the same as for check ig the sensitivity of the IF stages except

1. Connect the AM signal generator, set at 24.6 mc . rough a 5000 mmf capacitor, between B-and the

The signal required to produce 1 volt (negative) above ontact polential on the meter should be less than 125 microvolts.

OSCILLATOR, ANTENNA AND RF ALIGNMENT
NOTE: The IF must be aligned before the RF section can be properly phased

Equipment Required:
Sweep Generator: Frequency range $40-220 \mathrm{mc} ; 10 \mathrm{mc}$ sweep width
Output constant and adjustable
djustable markers (markers should
be calibrated occasionally by be calibrated occasionally by
checking against an accurate signal generator).
Oscilloscope: Preferably one with a calibrated input attenuator.

Signal Generator: Frequency range 40 to 220 mc
Accurately calibrated
AM modulated, 400 cycle
FREQUENCY CHART

Channel	Frequency	Picture	Sound	Oscillator
2	$54-60$	55.25	59.75	81.65
3	60.66	61.25	65.75	87.65
4	$66-72$	67.25	71.75	93.65
5	76.82	77.25	81.75	103.65
6	$82-88$	83.25	87.75	109.65
7	$174-180$	175.25	179.75	152.45
8	$180-186$	151.25	185.75	158.45
9	$186-192$	187.25	191.75	164.45
10	$192-198$	193.25	1977.75	170.45
11	$198-204$	199.25	203.75	225.65
12	$204-210$	205.25	209.75	231.65
13	$210-216$	211.25	215.75	237.65

ANTENNA \& RF ALIGNMENT PROCEDURE

1. Remove high voltage generator tube V-17 (6 BQ 6 GT) romits socket and stop the os cillator by disconnect-
2. Connect the sweep generator across the antenna terminals on the chassis with the antenna lead-in removed. The line from the sweep generator should e as short as possible.
3. Conmect the oscilloscope through a decoupling resis tor of 150,000 ohms, between the cathode (pin 3) of the mixer tube V-2 (12AT7) and B-
4. Short out the AGC circuit with a clip lead from the AGC bus to B-
5. Refer to Figure 4 for the RF trimmer location and to Figure 9 for the locations of the antenna and RF coils. The frequency chartlisted previously gives the chan-
6. The antenna coils are tuned to the video carrier and the RF coils are tuned to the sound carrier. Figure 10 shows the shape of the curve which should appear on the scope for channels 2-6 and Figure 11 the curves
7. Turn the station selector switch to channel 10. Set he center frequency of the sweep generator to the enter frequency of channel $10(195 \mathrm{mc})$
8. Adjust ceramic trimmer, C-6, so that picture and sound markers are as in Figure 11.
9. Check channels 7 to 13 for proper response and, if necessary, tune the coil L-6. These coils may be
tuned by spreading them to decrease inductance or compressing them to increase their inductance. See Figure 9 for location of coils. This will have more effect on channels 10 to 13 than 7 to 9. If L-6 is adjusted, it may be necessary

NOTE: As the bandwidth of the high channels is very broad, a slight variation is permissible
10. Move bandswitch to channel 6 .
11. With the center frequency of sweep generator at the enter frequency of channel $6(85 \mathrm{mc})$ introduce markerscorresponding to sound and picture carriers and
compare with curve of Figure 10 .

NOTE: A c.onvenient method of determining whether a coil is tuned correctly is to insert a brass or
iron slug into the coil. Brass decreases and iron slug into the coil. Brass decreases and fter channel 6 h
aAura Make the pass.

oscillator adjustment

1. Put oscillator back in circuit.
2. Remove the short from the AGC circuit and apply a
-3 volt battery bias to the AGC bus.
3. Move the scope to the test socket on the chassis rear to pin $5(\mathrm{~B}-)$.
4. Set the contrast control at minimum (counterclockwise).
5. Remove the fine tuning knob and turn shaft until the slot is in a horizontal pontion. This represents the mid-capacity position
6. Turn station selector switch to channel 12.
7. Set the sweep generator on channel 12 with a cente requency of 207 mc and al least a 12 wiweep. Kee in the overall response curve.

NOTE: Before aligning the oscillator section, make cer tain the 3.3 microhenry choke in the mixer grid s dressed away from the 2 mmf capacitor tie
o the same grid.
. Introduce a marker corresponding to the sound car rier of channel 12 (209.75 mc).
9. Adjust oscillator ceramic trimmer so that the sound markerfalls into the 21.9 mc trap dip in the response
10. Turn generator and station selector to channel with the fine tuning shaft slot still in the horizontal position.
11. Spread or compress the 3 -turn coil located in the center of the oscillator plate (L-4M, Figure 9) so 27.3 mc trap dip in the response curve. As the os cillator is tuned below the carrier on channels 7,8 \& 10 the 27.3 mc trap will be in the same position as the 21.9 mc trap in step 9.
12. Repeat steps $6,7,8, \& 9$
13. Turn generator and station selector to channel 13 .
14. Turn fine tuning trimmer so that the sound marker for channel 13 falls into the 21.9 mc trap dip of re not have moved more than 30 degrees from the horizontal position to accomplish this (each number on the station selector knob represents 30 degrees
15. If more than a 30 degree change in fine tuning trim mer was needed in step 14, adjust channel 13 oscil
lator coil (L-7) by spreading or compressing until the 30 degree requirement is met.
NOTE: Each adjustment of channel 13 oscillator coil L-7) will necessitate a rechecking of the oscil ator trimmer on channel 12 as per steps 6,7
. Check channels 12, 11, 10, 9, 8, and 7 by noting whether the fine tuning trimmer can drop the sound
marker for each channel in the trap dip by a 30 degree rotation. If one of the channels does not mee the 30 degree requirement, a compromise must be made by resetting channel 9 or 12 , whichever is clos er to the channel in question

Example: 1) If channel 11 does not meet the 30 degree
requirement, return station selector and generator to channel 12 and tune ceramic trimmer toward channel 11 (trimmer freThis will tend to by tightening screw). marker out of the trap dip but his caun compensated for by the fine tuning trim mer. Do not adjust trimmer any more than is necessary to get the channel in question

If channel 10 does not meet the 30 degree requirement, move staticn selector generator to channel 9 and tune the 3 -turn (cill (L-4M, Figure 9) toward channel 10 will also tend to move channel marker out of the trap dip, but this can be compensated for by the fine tuning trim mer. Again, do not adjust the coil any nel in question back wion bring the chan requirement.
7. Turn sweep generator and station selector switch to channel 6 .
18. Adjust channel 6 oscillator coil (L-4E, Figure 9) so that the sound marker for channel 6 falls into the 21.9 mc trap dip with the fine tuning trimmer at midapacity (shaft slot in horizontal position). Always turns. Compressing 6 oscillator coil in units oward sound marke, while spreading will move curve toward video marker.

IMPORTANT: Since the coils are in series, the proper ignment of are in 6 wint simplify the hasing of the channels to follow.
19. Adjust channels 5 and 4 so that the sound marker for each channel falls into the 21.9 mc trap dip in the 15° f with the fine tuning trimmer set no more than
. Channels 3 and 2 should beadjusted so that the sound marker falls into the 21.9 mc trap dip with the fine funing trimmer within 15 of maximum capacity.
OVERALL RECEIVER SENSITIVITY MEASUREMENT
An overall measurement of sensitivity is made as fol-

1. Connect an AM signal generator to the input terminals of the receiver chassis after removing the short strip on the back of the cabinet to the antenna input erator to the receiver input, a resistor matching network should be used. In the case of a generator with a 50 ohm output impedance, for example, place 100 ohm resistor in series with the output terminal of the generator and a 150 ohm resistor in series with
. From cathode of picture tube to B - connect a calibrated oscilloscope flament supply. The peak-to-peak amplitude on the screenwill then be approximately $18 \mathrm{~V}(6.3 x$
2.8). MODELS $14 \mathrm{Kl}, 14 \mathrm{KlB}$,

Figure 9. antenna, rf and oscillator coil locations

- SOLID LINE INDICATES OPTIMUM - Dires live wicirs FIGURE 10. RF RESPONSE CURVE CHANNELS 2-6

FIGURE 11. RF RESPONSE CURVES Channels 7-10 \& 11-13
3. Set contrast control for maximum sensitivity.
4. Tune signal generator to the video carrier frequency be 30% modulated at 400 cycles. The signal from the

CIRCUIT DESCRIPTION

LOW VOLTAGE POWER SUPPLY
The low voltage power supply (Figure 12) provides plate voltage for all tubes except the high voltage applied to the
second anode of the picture tube. The heater transformers second anode of the picture tube. The heater transiormers which is energized by horizontal sweep current.

One low voltage secondary of T-7, the step-down fila ment transformer, supplies filament voltage to all tubes except the audio driver-limiter ($\mathrm{V}-14$), and the horizontal damping diode ($\mathrm{V}-18$). Since the damping diode ($\mathrm{V}-18$) develops a high voltage pulse at its cathode, and its cathode is tied to the filament to prevent
breakdown in the tube, it is necessary to provide a separate
low-capacity, well-insulated transformer (T-8) to heat this filament. The vertical output tube $V-14$ (25 L 6 GT) requires
a 25 volt filament supply and, hence, is provided with a separate 25 volt tap on the transformer. In earlier production chassis, the audio driver-limiter (V-8) had its cathode keep the heater tocathode difference of potential low, it was necessary to provide a separate filament winding for this tube. This tube's cathode is now returned to B - but, since ransformers, it is still used for $\mathrm{V}-8$ and in late sets also or $\mathrm{V}-20$.

The B plus plate supply uses a voltage doubler. R-103 is a limiting resistor to protect the rectifiers from initial

FIGURE 12. Simplified schematic of heater and low voltage power supply

generator to produce 20 volts peak-to-peak-at picture tube cathode should be less than 25 microvolts on

FIGURE 13. SIMPLIFIED SCHEMATIC OF RF TUNER
current surges and also serves as a fuse in case of B plus as to make the side of the line connected to R-103 negative E-2 will conduct and charge C-109 (300 mf) to peak line volt age. On the next alternation, E-1 will conduct and the voltage applied to it is now the peak line voltage plus the peak
charge stored in C-109. This results in a charge of about 270 volts on C-63C (200 mf). The speaker field is used as a filter choke. The focus coil and the resistor network, which controls the current thruit, act also as a voltage di as shown in Figure 12.

Another voltage divider from B plus to $\mathrm{B}-$, consisting of $\mathrm{R}-76(1 \mathrm{meg})$ and the potentiometer, $\mathrm{R}-77(1 \mathrm{meg})$ provide a variable blas on he

THE RF TUNER
Antenna Input
Figure 13 is a simplified schematic of the tuner.
The antenna input coil, L-1, couples the balanced line to the single ended input circuit for the RF tube, V-1. Opti mum antenna coupling for all chanc and the coupling lead con channel positions 8, 10, and 12 of switch wafer S-1A These can be considered the primary of the antenna trans former. The secondary, or tuned grid circuit, includes also the continuous, tapped coil mounted on wafer $\mathrm{S}-1 \mathrm{~B}$ for the the coilfor the high channels ($7-13$). The purpose of the antenna coil, coupling leads, and secondary circuit, is to match the 300 ohm impedance of the transmission line from the antenna to the input impedance of the RF amplifier grid
circuit and to tune thiscircuit for the channel selected. Re-
ferring to Figure 13, it will be seen that the switch, in progressing from channel 2 to channel 13, shorts out the unused
portion of the secondary winding or stamped metal plate The bandwidth of channels 7 thru 13 is about 8 mc . The stamped metal plate is carefuly designed so that whis bandwidth no alignment adjustment is needed on the his channels. The be tuned by spreading or compressing them as outlined in the alignment procedure.

RF Amplifier

The grid of the RF amplifier V-1 (6CB6) is returned to the AGC bus thru L-5 and a bypass capacitor (C-5). The high channels mounted, in this case, on switch wafer S-IC Here again, the switch progressively shorts out the unused this case, however, a trimmer C-6 and a choke L-6 ar provided to center the high channel response while the 10

The Mixer

The mixer uses $1 / 2$ of V-2 (12AT7). C-13 (8 mmf) cou ples the RF amplifier output to the mixer grid. Oscillation
injection is accomplished by $\mathrm{C}-15(2 \mathrm{mmf})$. $\mathrm{L}-8$ and $\mathrm{C}-14$ orm a series resonant circuit tuned to the center of the 1 response, to prevent interaction between the IF and the

The Oscillator
The oscillator uses the other half of $\mathrm{V}-2$ (12AT7) in a of the tapped coilfor the low channels and the stamped meta plate for the high channels mounted on wafer S-1E. L-7 and C-12 are provided to set the center frequency on the hig

FIGURE 18. SIMPLIFIED SCHEMATIC OF CLIPPERS \& PHASE DETECTOR

THE CLIPPER
The clipper uses a 6SN7GT tube. The clipper schematic is shown in Figure 18. The composite video signal with positive going sync is applied thru R-56 (10K) and C-66 (. 005) to
the grid of the first clipper from the plate circuit of the video amplifier. Under no signal conditions, the tube is unbiased. The positive signal, however, will cause the tube to draw grid current and the voltage drop across R-55 (1 meg), negative at the grid, will charge C-66 to such a value that only
the most positive part of the signal, which is the sync pulse, the most posiave parrent to flow. Therefore, the video in-
will cause plate current formation and the blanking pulses are clipped off and only the sync pulses, now negative in polarity, appear in the plate circuit. The second clipper is so biased that the peaks of the sync pulses will drive the tube to cut-off, which results
in squared pulses of positive polarity in the plate circuit of this tube. A slight increase in sync pulse amplitude is obtained by a small positive voltage applied to the grid of the by R-104 (390K).
the vertical scanning system
Figure 19 is a schematic of the Vertical Scanning System.
The integrating network, shown in Figure 18, composed of R-61, C-70, R-62, and C-71, changes the vertical group
of sync pulses into a single pulse of suitable amplitude to trigger the vertical oscillator. The vertical oscillator is an asymmetrical multivibrator using two tubes $\mathrm{V}-13$ (655),
and V-14 (25L6). V-14 also se'rves as the output tube.
A multivibrator can be considered as a resistance coupled amplifier in whic.: the output of the second tube is coupled back to the input of the first tube. V-13 is the automatic switch which charges and discharges the sawtooth form-
ing condenser C-75(.05), connected in its plate circuit. The circuit components of the multivibrator are chosen so that $\mathrm{V}-13$'s conductance period is about 7% of the entire cycle, to insure that retrace time of the scan will have the proper relationship with the trace time. This circuit is modified
from the conventional resistance coupled multivibrator in that the plate of the output stage, which is also the second multivibrator tube, has a fairly large value of inductance, introduced by the output transformer stepping up the yoke inductance. When the tube is cut off, a positive pulse of A portion of this pulse, obtained by means of the feedback network R-73, R-74, R-75 and C-78, C-79 and C-80, is used to cause the discharge tube $\mathrm{V}-13$ to go into heavy conduction.

For purposes of explaining the circuit action, assume that a time has been reached in the cycle when the trace period is almost completed. During this trace period V-13 is cut off and $V-14$ is conducting. $C-73$ has been discharging thru the grid resistors of V -13 , R-63 (470 K) and R-64 (the
vertical hold control) and resistors R-75 and R-74. This vertical hold control) and resistors R-75 and R-74. This biases the tube beyond cut-off. When the energy stored in

FIGURE 19. SIMPlified SChematic of vertical sCanning system
the condenser has decreased sufficiently, the grid of V-13 reaches the threshold of conductance and the tube begins to draw current. Condenser C-76, which has been charged to and R-69 (3.3 meg) and this discharge current makes the grid end of R-69 negative tending to cut off V-14, and initiates the retrace. With the sudden change of plate current in $\checkmark-14$ developed across the plate inductance, a positive pulse sapplied to the grid of $V-13$ thru the feedback network driving this tube into heavy conduction. $\mathrm{C}-75$ will then discharge
thru $\mathrm{V}-13$. The voltage developed at the plate of $\mathrm{V}-13$ will be the combination sawtooth and pulse voltage shown in Figure 22(1). The pulse is formed by the peaking resistors R-65 and $\mathrm{R}-66$. When $\mathrm{V}-13$ goes into conduction, the voltage at the plate of V-13 drops suddenly to a value determined by the relationship of the plate resistance of $\mathrm{V}-13$ to the total
resistance in the discharge circuit of $\mathrm{C}-75$, which consists of R-65, R-66 and the plate resistance of V-13. After this initial instant, the charge on $\mathrm{C}-75$ decreases, causing the voltage decrease at the plate shown between points " c " and d" of Figure 22(1). When the positive pulse on the grid of on C-73 becomes operative and cuts off V-13, the voltage on the plate of V-13 and, correspondingly, on the grid of $\mathrm{V}-14$, ises quickly to point "a"on the curve, the start of the trace.
The negative pulse shown between point " b " and "a" of Figure 22(1), acting on the grid of V-14, tends to cut the equired and raises its plate resistance to the larger value ance during the short retrace period.

Since the plate circuit of the vertical output stage V-14 has inductance, and as the time constant of an inductive circuit decreases with an increase of resistance, just the opposite of an RC circuit, the increase in plate resistance of quired for proper retrace time.

By returning the grid of the picture tube to the junction of the two peaking resistors, R-65 and R-66, a negative pulse of suitable amplitude to cut the picture tube off during retrace is obtained, resulting in elimination of retrace

The feedback network to the grid of $\mathrm{V}-13$ also serves to ilter out horizontal pulses which are present in the plate of -14due to coupling in the yoke and which are coupled to the ical output transformer are connected series opposing which reduces the step-down ratio and, hence, the inductnce in the plate of $V-14$ in order to shorten the retrace time.

The controls found in this circuit are

1. The Vertical Hold Control R-64(1 meg). This control varies the resistance in the discharge chary the frequency of the multivibrator. In practice, sync pulses, which are of constant amplitude, will fire the tube in exact synchronization with the transmitting station's vertical scan.
2. The Vertical Size Control R-68 (5 meg). This control varie's the charging current into C-75(.05) and, it. Variation of this voltage varies the drive on the grid of $\mathrm{V}-14$ and controls vertical size.
3. Vertical Linearity R-72 (2000). This control, by beeder action thru resistor $\mathrm{R}-70$ (150 K) and the outthe tube's operating point on its plate current curve.

Since this curve is nothinear, some distortion can be

ODELS $14 K 1$ introduced tocounteract any non-linearity in the saw tooth grid voltage
Since all of these controls are also in the multivibrator ircuit and have an effect also on its frequency, there will ef some interaction between them. Usually, readjustment trol.
ORIZONTAL SCANNING SYSTEM
The horizontal scanning system comprises a phase delector $\mathrm{V}-15$ (6AL5), a cathode coupled multivibrator $\mathrm{V}-16$ 6SN7), the output tube $V-17$ (6BO6) and a damping diode
$\mathrm{V}-18$ (6W4). Figure 20 is a simplified schematic -18 (6W4). Figure 20 is a simplified schematic

The Horizontal Oscillator

In order to see how the phase detector automatically corects for multivibrator frequency change, it will be necesary to understand how the correction voltage affects the multivibrator. It will be noted that this circuit differs from位tical multivibrator in that only one coupling condenesistor. This harrangement is known a cathode coupled multivibrator.

The operation is as follows. Assume that the trace pe iod is almost completed. At this time, tube " A " is conducting, tube "B" is cut off. C 87 is discharging thru tube A". R-92 (150K) and R-91 (the hold control). The discharge "B" negative and cut off. Bias is being applied to both tubes by current flow thru R-89 (1000), the common cathode resislor. When the energy stored in C-87 is reduced to the point Where its discharge current no longer holds the grid of tube this current causes a greater voltage.drop across R-89, the ommon cathode resistor, which increases the bias on tube "A" reducing its plate current. The resulting increase in voltage at the plate of tube "A" begins to charge C-87 and tube "B". The resulting heavier conduction of tube "B" develops a pulse of voltage across $\mathrm{R}-89$ which cuts tube "A" off and results in a positive pulse at the plate of tube "A" which throws tube "B" into heavy conduction. This allows -88, the saw-forming condenser, to discharge lur tube B" and R-93. When C age on the grid, which has far exceeded the bias developed across R-89, is reduced. This results in reducing the plate current thru tube "B" and, therefore, the bias applied to ube "A" by the volage drop across C . to. discharge, cutting tube "B" off. C-88 begins to charge, starting the next trace.

L- 23 and C-85 in the plate circuit of tube "A", form a resonant circuit which is tuned to the horizontal frequency ircuit, if properly phased, will insure that the positive pulse at the plate of tube A ", which throws tube " B " into conduction, will be more frequency stable.
C-88 and R-93, the peaking resistor, will produce the解 ure 22(1). This action was explained in the vertical circuit.

The Phase Detector

The foregoing explanation is based on the assumption

Figure 20. Simplified schematic of horizontal scanning \& hy system

It can be seen that if this grid is returned to a point which varies in potential with frequency of the multivibrator, it
would be possible to make this variation a means of frequency control. Assume that the grid of "A" in Figure 20 is made more positive. This causes the bias of "B" to increase because of the increased drop across the common cathode resistor R-89. Capacitor C-87 will then discharge for a
longer time before "B" freqer time before " " $^{\prime}$ conducts, thereby decreasing the
frequency of oscillation. If the grid were made more negative, the bias across the common cathode resistor would be less and C-87 would discharge for less time before "B" started to conduct, thereby increasing the frequency.
Figure 18 is a simplified schematic of the clipper and phase detector circuits. The phase detector V-15 (6AL5) is so connected that a comparison of the phase of the incoming
sync pulses and a sawtooth derived from the horizontal output system is made. A positive sync pulse from the plate of the 2nd clipper V-12 (6SN7) is fed thru $\mathrm{C}-83(.001)$ to the cathode of $\mathrm{V}-12$ is applied thru C-68 (.001) to the cathode of diode " B " of V-15. A sawtooth, derived from the integration of a pulse in the horizontal output circuit, at the yoke by the integrating network, composed or
$(150 \mathrm{~K})$, and $\mathrm{C}-82(.005)$, is applied to the cathode of diode " A " and the plate of diode " B ", which are tied together and returned to B- thru R-83 (15K). The load for diodes "A" and "B" consists of resistors R-84 (100 K) and R-81 (100K) whose
 voltage applied to the two diodes will be a function of the amplitude of the sawtooth, the amplitude of the sync pulses and the phase relationship between the pulses and the sawboth.
If the sawtooth, whose phase and frequency are a function of the multivibrator's phase and frequency, is operating
in the middle of the lock-in range, the sync pulse will occur in the center of the retrace time. See Figure 21(1). The sync pulses have an amplitude of from 6 to 8 volts while the
sawtoothamplitude is about two volts. The RC time constant in the pulse inputcircuit to the diodes is long enough to maintain an average pulse voltage of 6 to 8 volts for two or hree horizontal lines, which means that in the "on" frequency condition shown in Figure 21(1), the diodes conduct and develop voltages of opposite polarity equal in amplitude first multivibrator grid circuit, as shown in Figure 18, no

ontrol voltage is applied to the grid of V-16.

If the oscillator tends to increase in frequency, with repect to the sync pulses, the phase relationship shown in Figure $21(2)$ exists at the diodes. The phase of the sawtooth has now shifted so that at the same instant that the pulse is applied to the plate of diode "A" the positive saw is also applied to its cathode, so that only the shaded portion of the still conducts on the total amplitude of the negative pulse applied to its cathode aided by the positive saw applied to its plate at the same time. Since current flow thru diode "A" makes the grid end of $\mathrm{R}-82$ negative, with respect to $\mathrm{B}-$, bucking the pulse voltage at diode "A", results in a more positive voltage across $\mathrm{R}-82$, applying a more positive voltage to the grid of V-16 which, as we have seen, results in

If the oscillator tends to decrease in frequency, with respect to the sync pulses, the phase relationship shown in Figure $21(3)$ exists at the diodes. At the same instant that
the negative pulse is applied to the cathode of diode "B", the negative saw is applied to its plate so that only the shaded portion of the pulse causes conduction. Diode "A", however, onducts on the full amplitude of the positive pulse applied the same aided by the negative saw applied to its cathode the grid end of R-82 positive, with respect to B-, the dereased current thru diode "B" with results in applying a more egative voltage to the grid of $V-16$ which, as we have seen, and $\mathrm{C}-86$ provide two time constant filters which are neces sary to obtain "fly-wheel" action of this AFC sync circuit

The Horizontal Output System

The combination sawtooth and pulse waveform developed across C-88 (680) and R-93 (1500) by the multivibrator circuit, is fed to the grid of the horizontal output tube V-17 (6BQ6). Figure 20 is a simplified schematic of the horizon-
tal output system. It will be noted that in this system an auto-transformer is used. In the horizontal scan, it is necessary that retrace be completed in about 7 microseconds. In order to accomplish reversal of current in the inductance of the output transformer and the yoke in this short a time, quency that the half cycle time 7 mill

(2) OUTPut Transformer cunrent mave form

FIGURE 21. WAVEFORMS AT PHASE DETECTOR
because only by shock exciting such a circuit into oscill tion will retrace be accomplished in the time allowed. This ircuit is made resonant by the inductance of the output transformer and yoke, the distributed capacity and the tub plained as follows. Referring to Figure $22(1)$ can be ex the voltage on the grid of the Figure $22(1)$, assume tha point "a". The grid is now being made less negative and the output tube starts todraw current which is supplied from B plua thru the damping diode. When point "b" is reached on the grid voltage waveform, the output tube is suddenly "c" on the grid voltage waveform). With the tube cut off the resonant plate load is undamped and the circuit is shocked into oscillation. The reversal of current through the outpu inductance produces a positive voltage pulse which make spect to its plate; therefore, it cannot conduct. C-92 (100) placed across the diode to provide a low impedance fo the oscillatory current. If the damping diode V-18 were no present, this oscillation would continue and current would order the output transformer as shown in Figure 22(2). must be stopped and the damping diode serves this purpose. When the current nears its maximum negative value, the polarity and amplitude of the voltage pulse on the dampin tode is such that its plate becomes positive, with respec the circuit sufficiently to prevent continuation of the oscil lation. The current then follows the decay curve shown a "c" in Figure 22(3). At the time ["d" in Figure 22(3)] the voltage at the grid of the output tube has become less tha cut off [point "a" in Figure 22(1)]. the tube again demand imposing the waveform "e" of Figure 22(3) on the current flow already in the output transformer due to the decaying current which resulted from the damped oscillation. Com bination of these two currents results in the linear trac corrent indicated at "f" in Figure 22(4). Which is a com duction of the damping diode, C-93 (.1) charges and its polarity is such that when the output tube calls for current the charge on the condenser will be in series with the B plus

FIGURE 22. WAVEFORMS IN HORIZONTAL SCANNING SYSTEM
called "bootstrap" voltage. When the grid voltage waveform of the output tube again reaches point "b" of Figure 22(1) the tube is cut off and another cycle starts.

In order to properly match the yoke inductance to the re quired output inductance for the tube, the yoke is connected transformer of this section. The positive pulse of voltag at this tap is coupled to the yoke thru C-95 (.1) and result in a sawtooth of current thru the yoke. It will be remem bered that a portion or this pulse is also fed to the phase de

The small additional winding, one terminal of which is connected to chassis while the other terminal is connected to B- thru C-94 (.03) is used to cancel the pulse of voltage transformer. By the chassis by induction from the outpu to place a pulse of suitable amplitude on the chassis 180° out of phase with the induced voltage, cancellation of the in duced voltage will take place

High Voltage

To take advantage of the large voltage pulse developed across the output inductance by the heavy current flow the primary of an auto-transformer whose step-up ratio is such as to develop pulses of about 14 kv at its high end These pulses are rectified by V-19 (183) and the resulting DC is applied the second anode of the picture tube. Th filament voltage for the IB3 rectifier is obtained from

Controls

- 23 is the coil of the sine wave generating circuit in the horizontal multivibrator circuit and should be tuned to 15, 750 cycles as explained in the service instructions.

R-91 is the horizontal hold control which can be adjusted for correct frequency operation of the multivibrator.

L-24, paralleling a small portion of the output choke controls, to a small a acts as a size control. MODELS $14 K 1,14 K I B$,

REPLACEMENT PARTS LIST

spoakert

Realatare

$$
\begin{aligned}
& \text { Nota: All reorstare are in in } \\
& \text { othervise apecified. }
\end{aligned}
$$

6R5550

$$
\begin{aligned}
& \text { 6R5671 } \\
& 17 \times 792705
\end{aligned}
$$

$$
\begin{aligned}
& 17 \times 1927 \\
& 686373 \\
& 68629
\end{aligned}
$$

$$
\begin{aligned}
& \text { GR5551 } \\
& 6 R 5551 \\
& 6 R 6638 \\
& 6 R 6400
\end{aligned}
$$

/zu 1.
volume Contr
 4700
2700
k1re

$$
\begin{aligned}
& \text { 14rewound } \\
& 18,000 \\
& 150 \\
& 1000 \\
& 1000 \\
& 180 \\
& 100
\end{aligned}
$$

Tubes

- -1	${ }^{6086}$	RF Amplificar
v-2	12477	M1xer-0scillato
v-3	6 6ab	1 et IF Amp]
V-4	6406	2nd IF Amm
v -5	6 ac 5	3 rd IP Amplifier
V-6	6 GL5	video Detect
V-7	6ан6	Video Amplifter..
v-8	6406	Audio Driver-Limita
V-9	6ax	Rat1o Deto
v -10	6.jSGT	Audio Amplifi
V-11	6VGOT	Audio Output ..
$\mathrm{v}-12$	gentot	1 st \& and Clippe
v-13	655 CT	Vertical Sveep Genera
	2516GT	vertical sweep
15	6ail	Phase Detect
V-16	6sntot	Horizontal Of
v -17	6896ct	
v -18	${ }^{6} \mathbf{4} 4 \mathrm{CT}$	Damping Diode
V-19	${ }^{18369}$	H1gh voltage
	$14 \mathrm{BP4}$	

TUNDNG UNTT - TT-13

1×700100 TT-13 Tuning Unit: ccopplete vith otation selector gutich, pine
tuning trimper, and the following
$\begin{array}{ll}\mathrm{C}-3 & 21 \mathrm{~K} 478234 \\ \mathrm{c}-10 & 21 \mathrm{~K} 42726\end{array}$
C-16 21×400173
c-29 21K482726
L-2 24C792764

L-4M $24 \times 7001155^{L-4 L}$ are part of guitch)

©John F. Rider

INDEX			
	Page		PAGE
ALIGNMENT INSTRUCTIONS	44	SPECIFICATIONS	42
CIRCUIT DESCRIPTION	46	TOP VIEW - TUBE LAYOUT.	44
installation data.	42	TRIMMER LOCATIONS.	44
PARTS LIST	46	Voltage measurements	49,50
SCHEMATIC	49,50	WAVEFORMS . .	49,50

GENERAL INFORMATION
receiver model breakdown

Mode1	Type of Set	Chassis Used
14 T 3	Table, molded plastic: walnut	TS-114

CHASSIS - Television chassis TS-114 contains 20 tubes plus a 14 " rectangular picture tube. The picture sound, and scanning circuits, together with a full-

TUNING RANGE - Channels 2 through 13
if FREOUENCy
Channels 2, 3, 4, 5, 6, 11, $12 \& 13$: sound -21.9 mc
Channels 7, 8, 9 \& 10: sound -27.3 mc

ANTENNA - TA-6 "Bilt-In-Tenna". Provision for connec tion of an external antenna

ANTENNA IMPEDANCE - $\mathbf{3 0 0}$ ohms
POWER SUPPLY - 117 volts, 60 cycle AC current only
POWER CONSUMPTION - 205 watts
AUDIO OUTPUT - 4 watts

CHASSIS TUBE COMPLEMENT

$\begin{aligned} & \text { Ref. } \\ & \text { No. } \end{aligned}$	Tube	Function
v-1	6Сb6	RF Amplifier
v-2	12AT7	Mixer-Oscillator
v-3	6AU6	1st IF Amplifier
V-4	6AU6	2nd IF Amplifier
v-5	6AG5	3rd IF Amplifier
v-6	6AL5	Video Detector
V-7	6АН6	Video Amplifier
v-8	6AU6	Audio Driver-Limiter
v-9	6AL5	Ratio Detector
V-10	6J5GT	Audio Amplifier
v-11	6V6GT	Audio Output
v-12	6SN7GT	1st \& 2nd Clippers
V-13	6SN7GT	Vertical Sweep Generator
V-14	6W6GT	Vertical Sweep Output
v-15	6AL5	Phase Detector
v-16	6SN7GT	Horizontal Oscillator
v-17	6BQ6GT	Horizontal Output \& High Voltage Generator
v-18	6W4GT	Damping. Diode
V-19	183GT	High Voltage Rectifier
v-20	$14 \mathrm{BP4}$	
	14CP4	Picture Tube: rectangular Low Voltage Rectifier
v-211	5U4G	Low Voltage Rectifier

HIGR VOLTAGE WARNING

Operation of this receiver, outside its cabinet or with covers removed, involves a shock hazard from the power supplies. No work should be attempted on this receiver by anyone not thoroughly familiar with the precau

CATHODE RAY PICTURE TUBE HANDLING PRECAUTIONS
Extreme care must be usedin handling the picture tube This tube is highly evacuated and, due to its large size, is subjected to a considerable atmospheric pressure. The andler should wear safety goggles and gloves for protection. Avoid nicking or
tact with other objects.

Before removing glass tubes, discharge the capacito ormed by the inner and outer aquadag coatings on the tube by shorting the anode contact on the side of the tube to the outer surface with a well insulated piece of wire

INSTALLATION AND OPERATING INSTRUCTIONS

RECEIVER LOCATION
The receiver may be placed anywhere in the room, but or greatest satisfaction it should be located:

Away from any bright light that may fall directly on Ahe screen or be reflected from it; this includes win dows and lamps. Sorne illumination in the room, of strain.
2. To provide comfortable viewing and ease of opera tion.
3. At lease one-inch away from a wall to allow for cab inet ventilation. This is very important

antennas

The choice of a television antenna depends entirely on the location of the receiver with respect to all television station transmitting antennas in the area. Naximum pick up is obtained when the receiving ante
of sight with the transmitting antenna.
"Bilt-in-Tenna." All receivers using the TS-114 serie elevision chassis are equipped with the Motorola "Bilt-In Tenna", mounted inside the cabinet, for use in good signa
.

When this antenn is used, the following precaution should be observed for best reception:

1. In order to get maximum performance and satisfac tory pictures from the "Bilt-In-Tenna", ample sigthe location of the receiver. Normally, the strength of the signals will vary throughout the room in which the receiver is located. For this reason, better picures will be obtained if the receiver is tried in al possible locations in the viewing room and is then all stations. Avoid large metallic objects, such as radiators, metal panels, etc.
2. Lamps, vases and metallic objects, when placed on top of the receiver, may affect the efficiency of the Bilt-In-Tenna

Indoor Antenna. If additional pick-up is necessary a indoor antenna, placed on or near the receiver, may be used The antenna should be rotated and the arms should be ad justed for the best signal, with no ghosts or reflections.
Normally, the arms should be extended on the low channels (2-6) and telescoped on the high channels (7-13).

Outdoor Antenna. The Motorola "Bilt-In-Tenna" or the indoor type antenna will give satisfactory reception in strong weak signal area, an outdoor antenna is recommended

In areas free of obstructions and reflections, within rea sonable proximity to television transmitters, a dipole an reflector will prove satisfactory. Since such an antenna ha a relatively small band coverage, a special antenna covering to receive stations on channels of widely separated frequen cies.
point of maximum signal pick-up. In general, the antenn should be broadside to the transmitting antenna and should be as high as possible. If a reflector is used, the antenn should be oriented so that the driven eler
the station and the reflector farthest away.

Locating the antenna and lead-in as far away as possible from highways, hospitals, doctors' offices, electrical ma chinery, etc., will help to reduce noise pick-up from such sources. Also, it is desirable to keep the antenna at leas six feet away from other antennas. mela roofs. gutters, or other metal objects to prevent unwanted reflections and shielding

Lead-In. Since the TS-114 chassis is designed for 300 ohm input, the standard 300 ohm twin lead line should be used for connecting the outside antenna to the receiver Twisting the ine one complete to reduce noise pick-up on the line. The lead-in should be supported onstand-off insulators and kept tight enough to prevent mechanical damage through swaying. Avoid running the lead-in close to metal gutters, iron standpipes, etr In areas of very strong signals, or where severe local
electrical interference is encountered, 300 ohm shielded In areas of very strong signals, or where severe local
electrical interference is encountered, 300 ohm shielded grounded.

An approved lightning arrestor should be used

The antenna lead-in to the receiver is connected to the wo screws of the terminal strip oin thear of the cabine Disconnect the "Bilt-In-Tenna" leads from the terminal strip before attaching an external antenna lead-in. Some times, reversing the lead-in connections at the rec.
operating controls
There are two dual controls, consisting of a small and a large knob each, on the front panel of the receiver. The "circle" indicating the large knob, and the "dot" indicating the small knob. See Figure 1 for front panel control func tions. ${ }^{\text {twin }}$ lead is recommended. The shield braid should be -

RECEIVER ANTENNA CONNECTION

The receiver is completely adjusted at the factory, so normally none other than the front panel control operating
instructions need be followed in putting the receiver in op eration. However, to provide for any misadjustment of the service controls, due to handling, the following instructions are in order. See Figure justment controls.

Focus centrol
The FCCUS control should be adjusted until the fine hor izontal line structure of the raster is clearly visible over
the picture area. The control should be tuned through the correct point several times so that optimum focus is ob tained.

CEntering
By means of a lever extending from the focus coil, thr the rear screen, the focus coil can be shifted to center the Vertical size and vertical linearit

Adjust the VERTICAL SIZE control until the picture fill the mask vertically. Adjust the VERTICAL LINEARITY control for best overall vertical linearity. Adjustment of the
VERTICAL SIZE control will require a readjusiment of the VERTICAL LINEARITY control and possibly of the vertical hold control. Center picture with the centering lever on the focus coil.
horizontal size
Adjust the HORIZONTAL SIZE lever until the picture fills the mask horizontally. Center picture with the center ing lever.

FIGURE 2. SERVICE ADJUSTMENT CONTROLS

Figure 3. picture tube adjustment locations
he ion trap to become misaligned. To prevent serious damage to the picture tube the following method of adjustment hould be used. See Figure 3.

The magnet should be placed on the neck of the tube in the direction indicated by the marking on the magnet (ususo that the stronger magnet of the double magnet type or the only magnet in the single magnet type, is positioned over the internal pole pieceswhich are mounted on the gun structure. Adjust the brightness control for low intensity and move the magnet a short distance forward and backward at the same ing the brightest raster, the ion trap magnet has to be moved more than $1 / 4^{\prime \prime}$ from the gun pole pieces, the magnet is probably weak and a new magnet should be tried. Never orrect for a shadowed raster with the ion trap magnet if rap magnet must always be adjusted for maximum brightness and, if shadows occur at this setting, they should be eliminated by adjusting the focus and deflection coils as explained under "Focus Coil and Deflection Yoke Adjustment".

CAUTION: Keep brightness control at low intensity until ion trap is properly set.

A mirror placed infront of the receiver will aid in making this adjustment.

DEFLECTION YOKE ADJUSTMENT
If the deflection yoke shifts, the picture will be tilted. To correct, loosen the thumbscrew on top of the deflection yoke ing the thumbscrew, make certain that the deflection yoke s as far forward as possible.

If the yoke support and the picture tube have shifted in ransit or, iffor any reason, these parts have been removed and replaced, it is best to do a complete job of repositioning.

See Figure 3. The starting point is the position of the pic ure tube. It should be adjusted so that the distance from is $1^{\prime \prime}$. The clamp on the front of the tube should then be ightened. The picture tube rear support bracket positioning adjustment screws should be loose enough to permit snugly up against the flare of the tube. Loosen the yoke ad ustment thumbscrew and push the yoke up against the flare of the tube. CAUTION: Do not use force in sliding the brackt up. If too much force is used, a strain will be placed on justment screws are tien thened. Also bracket positioning adout of position. The opening in the yoke should be concen ric with the neck of the tube.
FOCUS COIL ADJUSTMENT

The focus coil should be positioned so that it is spaced $1 / 4^{1 "}$ from the deflection yoke when parallel with the yoke of opening in the yoke should be concentric with the neck ront of the. The spacing should be adjusted before the cessary to remove the tube to change the position of the ocus coil. Its position is changed by choice of location of he coil mounting studs in the scalloped holes on the top and bottom of the coil mounting bracket. The opening in the co ag the nuts on the studs which support the focus coil brackt and turning the studs with a screwdriver in the slots proided. The studs are eccentric and move the coil both ver ler the neck of the tube in the opening of the coil. TEST SOCKET
A test socket is provided on the rear of the chassis which allows adjustment of the horizontal oscillator and hecking of sensitivity without removing chassis from cab inet. See Figure 2 for socket connections.

MODEL $14 T$
John F. Rider

ALIGNMENT

General
desired, the symmetry of the curve may be checked by tuning the signal generator 25 kc above and below duced, reversing the meter connections as neces sary. For proper balance of the ratio detector sysem, the voltage in eachdirection should be approximately equal. If not, check the tuning of L-20 and or. If necessary, replace the ratio detector tub $\mathrm{V}-9(6 \mathrm{AL5})$. It is desirable to calibrate the genera for on a station signal. This may be done by nulling he secondary on a station signal and then connecting he generator and tuning it to produce the same nul mers in the set.

NOTE: As the adjustments are brought to resonance, is advisable to reduce signal generator output to prevent overloading.
With a 10,000 microvolt signal into the grid of the video mplifier tube, with the contrast control turned fully clock wise, and the focus control at center of its range, the volt age read from one side of capacitor C-52 should be greate than 5.0 V
4.5 MC TRAP ALIGNMENT

1. Connect the high side of the signal generator throug 1000 mmf capacitor to the grid (pin 1) of the vide mplifier tube V-7 (6AH6), and the low side to chas sis.
2. Connect the voltmeter and germanium crystal rec tifier, as shown in Figure 5, between the cathode o he picture tube (yellow lead) and chassis. Use the lowest voltage scale on the meter.
3. With the signal generator accurately set at 4.5 m and maximum output, adjust trap L-18 for minimum reading on the meter

if Amplifier alignment

Equipment Required

F Sweep Generator meeting the following requirements:
18 to 30 mc , approximately 12 mc sweep width. Out put constant and adjustable to at least . 1 volt maxi-

Cathode Ray Oscilloscope: preferably one with a calirated input attenuator.

NOTE: If there is no built-in marker in the sweep generator, loosely couple the output of an accurately calibrated AM signal generator to the IF strip. At all times, keep the marker output low enough to prevent the marker from distorting th response curve.

If a wide band scope is used, the marker will be more distinct if a capacitor of 100 to 1000 mm is placed across the scope input. Use the smallest size possible, since too large a value will affect the shape of the curve.

procedure:

1. Remove high voltage generator tube V-17 (6BQ6GT)
sponse on $2.5 V$ scale of meter. This corresponds

FIGURE 4. TUBE AND ALIGNMENT ADJUSTMENT LOCATIONS
scilloscope. Replace 6BQ6 tube with dummy loa use to chassis.
2. By means of an external battery, apply a negative 3 volt bias from the bottom of the lst IF tube gric resistor R-13 (6800) to chassis.
3. Using leads as short as possible, connect the hot sid of the sweep generator to the grid (pin 1) of the 1st IF tube V-3 (6AU6) through a 5000 mmi capacitor (do The low side is connected to chassis. Set the center frequency of the sweep to about 24.6 mc and adjust initially for a sweep deviation of approximately 12 mc . However, a sweep of from 8 to 10 mc may
be found better for overall alignment.
4. Using R-26 (100 K) as a decoupling resistor, connec the scope to pin 4 of test socket. If a stronger out put is desired, connect the scope between the pic ure tube cathode and chassis. The curve seen a in Figure 6 .
5. Set the contrast control at minimum

NOTE: If a distorted or unstable picture is seen on the the oscilloscope during alignment, it may be ne cessary to stop the oscillator by disconnecting
resistor R-9 (1500) from the plate (pin 6) of the oscillator tube V-2B (12AT7), or.by substituting
another tube with pin 6 removed.
CAUTION: 1. Do not reduce the oscilloscope gain and increase signal input so that the top of in the video or scope amplifiers.
2. The dress of plate \& grid components in the IF affects tuning. Do not move indiscriminately.
3. On the iF coils and on the traps, the resonance point will be found attwo settings of the slug. The correct setreater part of the adjusting win the of the coil.

NOTE: The 1st \& 2nd IF traps are tuned from bottom of chassis, while IF cores are adjusted from the top.
6. Tune the low frequency trap L-14, located on the 2nd iF coil, for maximum attenuation on the curve at 21.9 mc .
7. Tune the high frequency trap L-12 located on the 1 st IF coil for maximum attenuation on the curve at 27.3 mc .
8. Adjust the 1 st IF coil, L-11, to place a 26.6 mc mark er on the high side of the response curve 60% down

Figure 5.
ELECTRONIC VOLTMETER CONNECTIONS
from maximum response. See Figure 6.
9. Adjust the 2nd IF coil, L-15, to place a 22.7 mc
marker on the low side of the response curve 60% marker on the low side of the response curve 60%
down from maximum response. -
10. Adjust the 3rd IF plate transformer, T-2, to provide a flat top or symmétrical response curve.
11. Reset the traps (steps $6 \& 7$) and again check the IF for proper response.
NOTE: It is suggested that the bias be removed for ac curate resetting of the traps.
12. With bias applied, connect the sweep between the grid ($\operatorname{pin} 2$) of the mixer tube $\mathrm{V}-2 \mathrm{~A}(12 \mathrm{AT} 7$) and chassis.
13. Disconnect the trimmer, C-14, in LC circuit in the grid of the mixer tube, or short the trimmer through
14. Bring both cores of the mixer transformer, $T-1$, simultaneously from the outside towards the center.
The half-way markers should be 26.4 mc and 22.9 mc. (Figure 7).

NOTE: In aligning the three IF coils, each coil is ad justed individually, but when adjusting the primary and secondary of the mixer transformer, The important point to keep in mind is to obtain a flat response curve with as much gain as possible. The sides of the curve should be straigh and as steep as possible. Simultaneous adjusting of the primary and secondary is the easiest
way to obtain this result. The transformer by itself is, in effect, tuned for the same pass band as the three staggered circuits. See Figure 7 .
The only difference in the overall waveform The only difference in the overall waveform
should be that the sides of the overall wave are should be that the sides of the overall wave are
steeper. Constant use of the 50% markers steeper. Constant use of the 50% markers
$(22.9 \mathrm{mc}$ and 26.4 mc$)$ should be resorted to since it is absolutely necessary to obtain the proper curve. A slight dip (not exceeding 10\%) is permissible in the mixer transformer re
sponse curve.

BANDWIDTH

The bandwidth may be determined by connecting an AM generator to the mixer grid. With the generator irequency at 24.6 mc , adjust the output for 1 volt reading on a VTVM

FIGURE 6. IF RESPONSE CURVE

FIGURE 7. OVERALL RESPONSE CURVE FROM MIXER
connected at the plate (pin 2) of the video detector tube V-6 6AL5) and chassis. Double the output of the generator, Now, by tuning either side of 24.6 mc and noting the frebandwidth which the VTVM again reads 1 volt, the 6 db points are indicated.

REGENERATION CHECK

After the above IF and mixer transformer alignment has been made, a check for regeneration in the $1 F$ amplifier should be made. This is done by removing the battery bias and observing the outpul response curve on the oscilloscope. as taken between the picture tube cathode and chassis. The change more than 0.2 mc . Set the contrast control to maximum gain. Decrease the input until the output signal shows a marked decrease. Any regeneration present will be indi cated by sharp peaks on the overall response curve. The oscillator should be stopped as described above, during this procedure.

CAUTION: Do not inject too much marker signal.

MIXER LC ADJUSTMENT

Reconnect bias removed for regeneration check. Replace trimmer C-14 in LC circuit of mixer grid or remove $0,000 \mathrm{mmf}$ ceramic between trimmer and chassis. Adjust
the trimmer so it is tuned to the center of the the trimmer so it is tuned to the center of the mixer re-
sponse curve. This is indicated by observing the effect of the LC circuit on the mixer response. Increasing the capacity of the trimmer and bringing the LC circuit from above
the IF range into the IF range, it will be noted that the mixer
curve will pull down on the high side, then straighten out as the LC circell approaches the midale of the range, and pul end of the IF range. as he circulh approaches the lo at which the mixer curve straightens out. In effect, the $L C$ circuit is similar to a jack coil when it is within the IF range.

CAUTION: Tuning the LC circuit very low will cause oscillation.

IF SENSITIVITY MEASUREMENTS
IF Stages Only

1. Remove the battery bias from the 1 st if tube grid.
2. Connect an AM signal generator, set at 24.6 mc thru blocking capacitor of 5000 mmf , between gr (Pin 1) of the 1 st iF tube $\mathrm{V}-3$ (6AU6) and chassis.
3. Connect an electronic voltmeter across the video de tector load resistor R-28 (5600). Both leads from
he meter should be decoupled, with 100 K ohm resis tors.
4. Set the contrast control for maximum sensitivity
5. Stop the oscillator tube by disconnecting resisto R-9 (1500) from the plate (pin 6) of the tube V-2B (12AT7) or by substituting another tube with pin 6 re moved.
6. The signal required to produce I volt (negative) above contact potential on the meter should be less than 700 microvolts.

Mixer \& IF Stages

The preliminary preparations are the same as for check ing the sensitivity of the IF stages except:

1. Connect the $A M$ signal generator, set at 24.6 mc hrough a 5000 mmf capacitor, between the gric
pin 2) of the mixer tube V-2A (12AT7) and chassis.
2. The signal required to produce 1 volt (negative) above meter should be less tha 125 mic rovolts.
oscillator, antenna and rf alignment
NOTE: The IF must te aligned before the RF section can be properly phased.

Equipment Renuired

Sweep Generator: Frequency range $40-220 \mathrm{mc} ; 10 \mathrm{mc}$ sweep width
Output constant and adjustable Adjustable markers(markers should be calibrated occasionally by check ing againstan accurate signal gen erator)

Oscilloscope: Preferably one with a calibrated input attenuator.

Signal Generator: Frequency range 40 to 220 m Accur

Chan	Frequency	Picture	Sound	Oscillator
2	54-60	55.25	59.75	81.65
3	$60-66$	61.25	65.75	87.65
4	66-72	67.25	71.75	93.65
5	76.82	77.25	81.75	103.65
6	82-88	83.25	87.75	109.65
7	174-180	175.25	179.75	152.45
8	180-186	181.25	185.75	158.45
9	186-192	187.25	191. 75	164.45
10	192-198	193.25	197. 75	170.45
11	198-204	199.25	203.75	225.65
12	204-210	205.25	209.75	231.65
13	210-216	211.25	215.75	237.65

ANTENNA \& RF ALIGNMENT PROCEDURE
. Remove high voltage generator tube V-17 (6BQ6GT) from its socket and replace with a dummy load of 2500 ohms 25 watts connected from B plus side of fuse to chassis. Stop the oscillator by disconnect-
ing R-9 (1500) from plate (pin 6) of V-2B (12AT7).

Connect the sweep generator across the antenna ter minals on the chassis with the antenna lead-in re moved. The line from or of 150,000 ohms, between the cathode (pin 3) of the mixer tube $\mathrm{V}-2$ (12AT7) and chassis.
4. Short out the AGC circuit with a clip lead from the AGC bus to chassis.

Refer to Figure 4 for the RF trimmer location an to Figure 9 for the locations of the antenna and RF coils. The frequency chart listed previously give the
6. The antenna coils are tuned to the video carrier fre quency and the RF coils are tuned to the sound carers. Figure 10 shows the shape of the curve which ure 11 the curves for channels $7-13$.
7. Turn the station selector switch to channel 10. Set he center frequency of the sweep generator to the center frequency of channel 10 (195 mc).
8. Adjust ceramic trimmer, C-6, so that picture and sound markers are as in Figure 11.
9. Check channels 7 to 13 for proper response and, if necessary, tune the coil L-6. These coils may be uned by spreading them to decrease inductance or Figure 9 for location of coils. This will have more effect on channels 10 to 13 than 7 to 9 . If L-6 is adjusted, it may be necessary to readjust RF trimmer -6, and recheck the high channels.

NOTE: As the bandwidth of the high channels is very broad, a slight variation is permissible.
10. Move bandswitch to channel 6 .
11. With the center frequency of sweep generator at the center frequency of channel $6(85 \mathrm{mc})$, introduce iers and compare with curve of Figure 10.

MODEL IUT3, MODEL IMT3
Ch. TS-114

rf response curves channels 7-1

NOTE: A convenient method of determining whether a coil is tuned correctly is to insert a brass or
iron slug into the coil. Brass decreases and iron slug into the coil. Brass decreases and iron increases the inductance.
12. After channel 6 has beenaligned, progress downward through channel 2.

CAUTION: Make certain the station selector switch is on the correct channel before checking bandpass.

OSCILLATOR ADJUSTMENT

1. Put oscillator back in circuit.
2. Remove the short from the AGC circuit and apply a -3 volt battery bias to the AGC bus.
3. Move the scope to the test socket on the chassis rear with the high side connected to pin 4 and the low side to pin 5 (chassis)
4. Set the contrast control at minimum (counterclockwise).
5. Remove the fine tuning knob and turn shaft until the slot is in a horizontal position. This represents the mid-capacity position.
6. Turn station selector switch to channel 12
7. Set the sweep generator on channel 12 with a center frequency of 207 mc and at least a 12 mc sweep.
Keep the output low enough to show no evidence of limiting in the overall response curve.
NOTE: Before aligning the oscillator section, make
certain the 3.3 microhenry choke ($L-8$) in the mixer grid is dressed away from the 2
pacitor ($\mathrm{C}-16$) tied to the same grid.
8. Introduce a marker corresponding to the sound carrier of channel $12(209.75 \mathrm{mc})$.
9. Adjust oscillator ceramic trimmer so that the sound markerfalls into the 21.9 mc trap dip in the response curve.
10. Turn generator and station selector to channel 9 with the fine tuning shaft slot still in the horizontal posi-
tion.
11. Spread or compress the 3 -turn coil located in the center of the oscillator plate (L-4M, Figure 9) so hat the sound marker for channel 9 falls into the 7.3 mc trap dip in the response curve. As the os-
cillator is tuned below the carrier on channels 7,8 \& 10 , the 27.3 mc trap will be in the same position as the 21.9 mc trap in step 9.
12. Repeat steps 6, 7, $8 \& 9$.
13. Turn generator and station selector to channel 13 .
14. Turn fine tuning trimmer so that the sound marker for channel 13 falls into the 21.9 mc trap dip of response curve. The slot in the fine tuning shaft should position to accomplish this (each number on the station selector knob represents 30°). 5. If more than a 300 change in fine tuning trimmer was
needed in step 14 , adjust channel 13 oscillator coil Ch. TS-114

NOTE: Each adjustment of channel 13 oscillator coil L-7) will necessitate a rechecking of the oscil ator trimmer on 12 per steps 6 , 7 89
6. Check channels $12,11,10,9,8$, and 7 by notin whether the fine tuning trimmer can drop the sound
marker for each channel in the trap dip by a 30° romarkerfor each channel in the trap dip by a 30° rotation. If one of the channels does not meet the 30°
requirement, a compromise must be made by resetting channel 9 or 12 , whichever is closer to the channel in question.
Example: 1) If channel 11 does not meet the 30° require ment, return station selector and genera-
tor to channel 12 and tune ceramic trimmer toward channel 11 (trimmer frequen cies lowered by tightening screw). This will tend to move channel 12 sound mark er out of the trapdip, but this can be comDo not adjust trimmer any more than is necessary to get the channel in question back within the 30° requirement.
Example: 2) If channel 10 does not meet the 30° re quirement, movestation selector and gen L-4M, Figure 9) toward channel 10 (coil req raised by spreading turns.) This will also tend to move channel 9 sound marke out of the trap dip, but this can be com Again, do not adjust the coil any more tha is necessary to bring the channel in ques tion back within the 30° requirement.
17. Turn sweep generator and station selector switch to channel 6.
18. Adjust channel 6 oscillator coil (L-4E, Figure 9) so that the sound marker for channel 6 falls into the 21.9 mc trap dip with the fine tuning trimmer at mid
capacity (shaft slot in horizontal position) spread or compress channel 6 oscillator coil in unit of 3 turns. Compressing turns will move curve toward sound marker, while spreading will mov curve toward video marker.
IMPORTANT: Since the coils are in series, the prope of channel 6 will simplify th phasing of the channels to follow.
19. Adjust channels 5 and 4 so that the sound marker for each channel falls into the 21.9 mc trap dip in the
curve with the fine tuning trimmer set no more than curve with the fine tuning
15° from mid-capzeity.
20. Channels 3 and 2 should be adjusted so that the sound marker falls into the 21.9 mc trap dip with the fin tuning trimmer within 15° of maximum capacity
OVERALL RECEIVER SENSITIVITY MEASUREMENT
An overall measurement of sensitivity is made as fol lows:

Connect an AM signal generator to the input terminals of the receiverchassis after removing the short 300 ohm lead which connects to the antenna input trip on the back of the cabinet. To match the gen work should be used. In the case of a generator with 50 ohm output impedance, for example, place 00 hm resistor inseries with the outputterminal of the generator and al.

From cathode of picture tube to chassis, connect calibrated oscilloscope.
NOTE: To calibrate scope, connect it across 6.3 vo filament supply. The peak-to-peak amplitude o $\times 2.8$)
3. Set contrast control for maximum sensitivity

Tune signal generator to the videocarrier frequenc of the channel being checked. Generator signal rom the 30% modulated at 400 cycles. The signa t picture tube cathode shouce 20 volts peak-to-peak olts on channels 2 to 6 and less than 75 microvis on channels 7 to 13 .

CIRCUIT DESCRIPTION

Chassis TS-114 and TS-115 are electrically identical exept for the Vertical Sweep Generator (V-13). The TS-114 uses a 6 SN7GT instead of the 12AU7 of the TS-115. This change necessitated changing grid resistor R-63 from 330 K o 100 K . The circuit description of the TS-115, as foand in TS-114 except for the differences noted above.

REPLACEMENT PARTS LIST
NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

Ref. Part No. No.

tassis ts-114 Eiectrical pars
Capecitors

odel numbT PARTS

© John F. Rider

Ref. No.	Part lio.	Description	$\begin{aligned} & \text { Ref. } \\ & \text { Hoge } \end{aligned}$	Part No.	Deacription	Ref. Fo.	Part No.	Description			
											Video Amplifi
	21×470324	Molded: 6 mmf 500v	L-16	24K79277	RF choke: yellow dot.	R-55	6r6428	6800 10\% 1/2u..		6406	Audio Driver-Limit
C-38	8R9854	Paper: .1 mif eoov..................	L-17	24×792771	RF choke: yellow dot.	R-56		3300 10\% 1/21...............	$\mathrm{V}-9$	${ }_{6 \text { GLJ }}$	Rat1o Detectar..
c-39	8R9854	Paper: . 1 mf 200V.................	L-18	248792735	4.5 mc trap: less core $\frac{8}{\text { mutg nut.. }}$	R-57	${ }_{6 R 6031} 68581$	3300 10% 1/2N.................	$\stackrel{\text { v-10 }}{\mathrm{v}-12}$	6J5	Audio Amplifiex
C-40	2186554	Mica: 100 mmf 500 V	-19	24 K 01652	compensating coil: bik dot	R-59	6 6 6031	100,000 10\% 1/2w,..............	v-12	GSNTCT	1st \& 2nd clipper
C-42	21×470329	Molded: 30 mar	L-20	24A470159	Audio tako-orf:	8-60	6R6397	22,000 10\% 1/2N..............	v-13	6smpat	Vertical Sweep Generato
C-43	${ }_{21 K 490806}^{21474874}$	Molded: 2.2 mr...................			witg nut......	R-61	${ }^{686031}$	100,000 10\% $1 / 2 \mathrm{~W}$.	V-14		Vertical Swoep output..
c-45	214470789	Ceramic disc: 5000 maf $450 \mathrm{~V} . . .$.	L-21	24×701651	Compengating coil: ern dot	${ }_{\text {R }}^{\text {R-62 }}$	${ }_{686031}$	100,000 10\% 1/2w.....	v-16	${ }_{\text {GSNTGT }}$	Phage Detoctor.......
c-46	21.4470789	Ceranic disc: 5000 muf 450 V	L-22	24K701512	Focus coll...	R-64	18490147	vertical hold control: carbon;	v-17	6896CT	Horizontal Output \& Hi-Voitage
C-47	21×790439	Silver nica: 15 mf (part of T-3 base)	L-23	24×790059	Horizontal oociliator: less care			$1{ }^{1 \text { mog }} 1 /$ /4.1............			Generator....
c-48	8R9866	Paper: 001 wf 6006.........	L-24		\& clip	R-65	GR6428		$\begin{aligned} & v-18 \\ & v-19 \end{aligned}$	${ }^{64} 1836 T$	Damping Diode...
C-49	214790131	Ceremic tubular: 150 mp......		24K701136		R-67		470,000 20\% 1/2v..	v -20	$14 \mathrm{BP4}$	
C-50	2182659590			24K701141		R-68	18490145	Vertical aize control: carbon;		14CP4	Plcture Tube: ${ }^{14 \%}$ Rectangula
C-52	23490205	Electrolytic: 10 mf 50 V		[$24 \times 7 \times 01238$				5 mer 1/4.			Low Voitage Rectifies.
C-53	21×482726	Ceramic dice: $10,000 \mathrm{mr}$ 450V....	L-25	24×70142	Derleetion yoke: complete.........	R-69	GR2118	3.3 meg 470	TUNER	- MODEL TT-	
C-54	${ }^{812896950}$	Papar: ${ }_{\text {M1ca: }} 68$ nes nf 500 v	L-26	24×790145	RF choke: molded; 0. 477 microhenries	R-71	189790146	vartical 1inoar ity control: wive			
C-56	${ }_{8 R 9669}$	Preper: . 005 mf 600 v	L-27	24K701349	Horizoatal size coll: lesa care			Mound; 2000 2v..............		12701444	TT-16 Tuner: coaplete with tubes..
C-57	21×470322	Molded: 20 mp.....				R-72	6R6291	560 10\% 1/2W (in derliction	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{C}-2 \end{aligned}$		
C-58	-8R98699	Paper: ${ }_{\text {Paper }} .005 \mathrm{mf}$ m 6000	Speak			R-73	6R6291	560 100\% i/zw (in derlection	C-3	214470789	Ceramic dinc: 5000 monf $4500 . .$.
c-60	889896	Paper: . 005 wr 600v................	LS-1	500701808	Speakar: 5" electrodynamic; 3.2			yoke)..........................		21×77375	Ceramic tubular: 220 mmt 500 V
C-61	889870	Papar: .01 mf 600v...............			chem voice coll; 100 ohm field	R-74	686056	47,000 $20 \% 1 / 2 \mathrm{l}$..............	C-5	21x470322	Molded: 20 emr 500 y
C-62	8R9872				(hot)........................	R-75	18490147	Brightness control: carbon; 1 meg 1/4N.			.5-3 mant with
c-64	${ }_{8} 8$ R989666	Ppper: .001 mo 600 V ..	Reale			R-76	6R6004	$1{ }^{\text {mog }} 20 \% 1 / 20$.	C-7	214701029	Ceramic d1sc: 1500 m
C-65	2186590	M1ca: 500 mf 500 V				77	17×790040	W1re vound: 1000 10\% 15w......		214701029	Ceramic disc: $1500 \mathrm{mar}$.
c-66	${ }_{8}^{8 R 98973}$	Paper: 005 af 600 V	R-12		See Tuner Parta List.	R-78	18 187929705		C-10	21×482726	
c-67	8R9875 238700160	Paper: .15 uf 600 l	R-13	6R6428	$6800{ }^{10 \%}$ 1/2N................	R-80	6 R 6477	15,000 10\% 1/2v................	c-11		Fine Tuning trimer (part or ewitch)
		450V; $40 \mathrm{mf} / 300 \mathrm{~V}$; $20 \mathrm{mf} / 300 \mathrm{~V}$;		6R5550	47 108 1/2w..................	${ }^{\mathrm{R}-81}$	${ }^{686031}$	100,000 10\% 1/2N.....	12	1×701662	Trimmer, ceramic: .5-3 maf; with
		$10 \mathrm{nr} / 3000 .9$	${ }_{\text {R-1 }}$	${ }_{686069}$	2300 10\% 1/21...................	${ }_{\text {R-82 }}^{\text {R-83 }}$	686031 $6 R 2122$	100,000 10\% $1 / 2 \mathrm{Na}$..............	c-1	21×482726	- screw \& mrg nut.................
C-69	238700159		R-17	${ }_{6}^{686394}$	12,000 108 1/24.................	R-84	6R2122	4.7 meg $20 \% 1 / 2 \mathrm{~N}$...............	c-14	1×792784	Trimer, ceramic: 3-13 umf; with
		20 mf/25v..........................			1000 10\% 1/24...............	R-85	6 6 6428	6800 10\% 1/2x................			screw and mitg nut
c-70	${ }^{8798969}$	Paper: . 005 nf 6000	$\stackrel{\text { R-19 }}{\mathrm{R}-20}$	6R5250	${ }_{33}^{47} 1081$ 1/2w.................	R-86	${ }^{686229}$	1000 10\% $1 / 2 \mathrm{~N} . \ldots$.	C-15	${ }_{21 K 478280}^{2110050}$	Molded: 10 maff 500 v
c-71	8R99066 889866		${ }_{\text {R-21 }}^{\text {R-20 }}$	$6 R 2636$ 686069	33 10\% 1 1/2N1...................	R-87 $\mathrm{R}-88$	6R3949 685631		C-17	21×478280 21×47823	
c-73	889866	Paper: . 001 wf 600v................	${ }_{\text {R-22 }}^{\text {R-23 }}$	${ }_{6 R 6428}^{682}$		R-89	18A791574	Horizontal hold control: carbon;	C-18	214470789	Ceramic disc: 5000 mmf 450V......
c-74	879870	Paper: . 01 nf 600V...............	$\stackrel{\text { R-23 }}{\text { R-24 }}$	${ }_{686038} 6$					C-19	21×77375	Ceramic tubular: 2200 mar 500 V ...
c-75	889869	Paper: . 005 时 600	R-25	686075	100,000 20\% $1 / 2 \mathrm{~N}, \ldots$.	R-90	${ }_{686038}^{66}$	1500 108 1/2wn...............	C-20	${ }^{21 K 4} 4788280$	Molded: 2 mut 5001.
C-76	2114400037 2182741		R-26	6 6 6075		R-91	6860032 6863	470,000 20\% 1/2x...............	C-22	221470799	
c-78	889869	Paper: . 005 mf 600 V	${ }_{\text {R-27 }}^{\mathrm{R}-28}$	${ }_{6}^{683966}$		R-93	$6 \mathrm{6R5583}$	47 10\% 14...................	L-1	240790033	Antenna 1upedance metching coil.....
c-79	8R9854	Paper: 1 mf 200 v	${ }_{\text {R-28 }}^{\text {R-28 }}$	${ }_{686000}$	$560010081 / 2 \mathrm{~L}$.	R-94	6 F 5690	6800 10\% 2N.........	L-2	$24 C 792764$	Antenna coil: channels 2 thru 6;
C-80	${ }^{889874}$	Paper: 11 mf 600v................	$\stackrel{\mathrm{R}-29}{\mathrm{R}-30}$	$\begin{aligned} & \text { 6R6004 } \\ & \text { GR5550 } \end{aligned}$	17 घeg $10 \% 1 / 2 \mathrm{~N}$.	R-95	6R5721	150,000 10\% 1 W			includes L-2A thru L-aE (high
$\begin{aligned} & c-81 \\ & c-82 \end{aligned}$	889874 21×700883	Paper: 1 mi $600 V \ldots$. Ceramic tubular: 180 man 3000 O ...	${ }_{\text {R-32 }}$			R-96	6R5721	150,000 10\%	L-3	24×790536	
C-83	889874		$A \& B$	184	Contrast volume control: dual; car						ncludes L-3A thru L-
C-84	21×790574	Ceramic tubular: 60 mf 1500 V (in deflection yoke).............			reapectively (with power evitch).		$6 R 5577$	2700 1 10% 1/2W (in deflection yoke)	L	$24 C 700114$	channel coils are part of ewitch): oucillator coll: channels 2 thru 6;
c-85	889874	Paper: . 1 mf 600v.................	R-32			98	6328	100,000 10\% 1 w (in deflection			includee L-4A thru L-tz (hich channel
c-86	238700613	Electrolytic: 3 -section; $80 \mathrm{nf} /$	R-34	${ }_{6} 66018$					L-4x	24×700115	coils are part of cwitch) Oactilator coll:
c-87	238700614		R-35	6R6400	33,000 10\% 1W (in 6af6 rideo emp)....................	-99	17K701353	Wire wound: 1500	L-5	24×792765	Antenne primary: low frequency
		400v; $40 \mathrm{mf} / 300 \mathrm{~V}$; $20 \mathrm{mf} / 25 \mathrm{~V} . . .$.				Trane	ormers			24×701839	Re colles channel 13................
c-88	238700615	Electrolytic: 2-dection; $35 \mathrm{mr} /$ 400V; 100 rr/50V.....................		686341					L-7	24×700116	Oscillator coll: channel 13.......
c-89	8R9810	Paper: . 25 mf 100v................				T-2	248792585	Srd IF: less care, mitg nut, \&	L-8	24×792577 24×180028	RF choke: molded; 3.3 microhenries. RF choke: molded; 2.2 microhenries.
			R-36		12,000 (not replaceable; part			colored leads.	L-25	24×190145	RF choke: molded; 0.47 microhenries
Fusee						T-3	125	Rat10 detector: complete less	H-1	686397	22,000...........................
F-1	65A700851	Fuse, $1 / 4$ amp: glase tubular;	R-37 $\mathrm{R}-38$	6R56713 68393	4700 $200{ }^{10 \%}$ 1/2w.....................	T-4	258790686	Audo output.	R-2	${ }_{686048}^{685614}$	${ }_{56}^{47,000} 10 \% 1 / 2 w$.
		with leads.....................	R-39	6R2004	$820010 \% 1 / 2 \mathrm{~W}$	T-5	25×701143	vertical output.......................	R-3	GRS2036	
			R-40	6R5660	180 10\% $1 / 2 \mathrm{~N}$.	T-6	$24 C 701334$	H1gh voltage transformer	R-5	6 6 6229	1000 10\% 1/2x..................
Corls			${ }_{\text {R-41 }}^{\text {R-42 }}$	6R6012	33,000 6800 100% $1 / 201 / ~$	T-7	25B790140	Filament isolation transforme	R-6	6 6 5659	3990 108 1/21.................
L-1 th			R-43	6R6428	$6880010 \% 1 / 24 . .$.	т-8	250700161		R-7 $\mathrm{R}-8 \mathrm{C}$	6R6069	
L-9		See Tuner Farta list...............	R-44	$6 \mathrm{6R212}$	4.7 meg 20\% 1/2N..............		25×700882		R-9	6R6038	1500 10\% 1/2w...................
L-10	24×790035	RF choke: molded; 5.6	R-45	${ }^{686414}$	270,000 10\% 1/24.............		$25 C 700169$		R-10	6 66117	5600 10\% 1/2w..................
L-11	248701343	mist If: complete with ic ic.....	R-46	6R6032	470,000 20\% 1/2W..		$25 C 701025$	Power t_{1}	R-11	$6 \mathrm{R6} 393$	1200 10\% 1/2w.................
		core, \& mitg nut..................	$\begin{aligned} & R-47 \\ & R-48 \end{aligned}$	6R6032 6R6022		Tubes			${ }_{\text {R-1 }}^{\text {R-12 }}$	24×701135	
L-12		Trap (part of L-11).................	R-49	68476004	1000 20\% 2w....................	v-1	6 Cb 6	RF Amplifier.			Mixer IF: less cores a mitg nut
L-13	24×790035	RF choke: molded: 5.6	R-50	6R63220	10,000 $10 \% 1 / 2 \mathrm{~N}, \ldots0$	v-2	${ }^{12497}$	Mixer-oscillator		NOTE: Tuner mechanical parts are included in following list. MODEL 14T3. Ch. TS-114	
L-14		Trap (part of L-15).	R-51	6R3927 686004		V-3 $\mathrm{v}-4$	6 6av6	18t IF Amplifier.................			
L-15	24×701344	and IF: complete with ic trap,	${ }_{\text {R-53 }}$	6R6397	22,000 10\% 1/2N................	v-5	Gacs	3 dd IF Amplif			
		core, \& mtg nut....	R-54	6R2096	330,000 10\% 1/2W..............	v-6	6als	Video Detector..			

Part No.	Description	Part No.	Deecription	$\begin{aligned} & \text { Port } \\ & \text { Ho. } \end{aligned}$	Deacription		$\begin{aligned} & \text { MODEL ILT3, } \\ & \text { Ch. TS-114 } \end{aligned}$	
CBASSIS TS-114 Mechanical parts		648701162	Plate, chasele covor (removeble plate on chaseis side).....................	31147564	Strip, terminal: 3 ins \#2 and; 3/8" apacing. Strip, terminal: 5 ins \#3 gnd; $1 / 2^{\prime \prime}$	PartNo.		
$\begin{aligned} & 7 A 791965 \\ & 7 \text { 7A701393 } \end{aligned}$	Bracket, interlock eafety............ Bracket, transforserr cut-out: Lerge (beneath 250700161 or $25 K 700882$ power trane)	$\begin{aligned} & 9254664 \\ & 587770 \end{aligned}$	Receptecie, female (teet jack).... Rivet: .088 $\times 5 / 32$ etl; pol nkl ($\mathrm{V}-2$ socket mets).	314791402			Description	
				31×4608				
		587728	Rivots . $122 \times 5 / 16$ atl; pol nkl	3114602		457650	Lockwasher, 1nternal: 46; cad pl	
7A701396	Bracket, tranaformer cut-out: onall (beneath 25C700169 or 25C7010e5 powar trans)	$\begin{aligned} & 9225367 \\ & 587703 \end{aligned}$		314470164	Strip, terminal: 8 ins $\# 2$ \& 7 god; $3 / 8^{n}$ spacing.	1×701526 287003	(hi-volt insulator mtg)............ Mask, picture tube: with retainer clipa. Nut, hex: $8-32 \times 5 / 16$ (spler mtg)	
18701407	Aracket, rear tube support: with tube roundine	586842	(ext tube eroumding spring mig)...	414700563	Spring, tube grounding (grounds outer plcture tube coating	351700799		
				1×701157 31A21990	picture tube coating).......................	35×792501	Pad, cuabion (on vindow mtg brit)....	
7 T 992568	Braciet, yoke edjustment (ecroes top of defl yoke)	587700			Strip, terminal: ...e..............	351471282 644792052	Pad, asbestos............	
TB700194	Bracket, focue coil atg: bottcm ("U" bracket around focus conl)	$5 \mathrm{K7} 246$	(1ine cord mut)....................	97701449	tocket, picture	5 K 791856	Rivet, shoulder: annealed (1ine cord	
			Rivet, ehoulder: nkl pl (V-14 \& V-16		-		区tg).................................	
35×700532	Braper, rubber (circular buriper in large rear suppart brkt)	552815		9×701451	Socket, picture	557751		
7A700196	Bracket, focus coil mitg: top (across top of focus coil)	588497	($9 \mathrm{K7} 704 \mathrm{~h} 2 \mathrm{E} 9 \mathrm{~K} 484167$ socket Itg)... Rivet: . $088 \times 1 / 8 \mathrm{et1}$; pol akl	9×701324	Socket, tube: noval (v-2)................	557703	R1vet: $122 \times 7 / 32 \mathrm{st1}$; ant cop	
$7 K 700153$$42 A 72609$ 351792757 39127396				9к701456	Socket, tuba: miniature (V-1)...........	58168		
	C11p, grounding ($\mathrm{V}-10$ tube shicla)...... cuabition, focus co11 (betwoen coil \& tube) contact, pin terminal (in spler receptacle	557707	Rivet: $122 \times 5 / 32$ etl; pol akl (mounts 9×471270 cocket \& terminal	311792459			Rivet: . $122 \times 3 / 16$ brs; pol nkl (mask clip wtg) \qquad	
				314701497	Strip, terminal: 3 ins \#2 mitg; 1/4" spacing.	5577	R1vet: $122 \times 1 / 8$ stl; pol nkl	
		35490822	etripe). ${ }^{\circ}$ head; cad pl (ceranic trimer			35488098	(hi-volt insulator metg)	
425701443	Cap, plate: with lead (for 6896)			314	strip terninal: 2 ins		25 plain hex head; cad pl (window	
424700147	Clamp, lead retainer (on hi-volt rect	35490508	Screw, wheet metal: $16 \times 3 / 4$ PMa plain hex head; cad pl.................	24×700585	or trap, lon:	3×791825	Screv, insulated head: statuary bronze (aple wtg)	
				24×700586	Trap, 10n: PM,			
42 K 477342 46440302	Cap, plate (hi-volt rect)............... Core, iron, \& screw ($\mathrm{T}-3$ eecondary)...	387467	Screv, shoet metal: $18 \times 3 / 8$ PKA plain hex hoad; cad pl ($\mathrm{T}-7$ mitg)....			357467	Screv, sheet metal: $f 0 \times 3 / 8$ PKZ plain hex heed; cad pl (mask mtg)...........	
42870721	C11p, co11 ntg ($\mathrm{T}-3$ secondary	387163	screw, menine: $8-32 \times 1 / 4$ plain hex hoed; cad pl (yoke adj. bracket	24×700587 1×701482	Trap, 1on: PM............................	344002e	Screw, sheet metal: \#10 $x 3 / 4$ PKA plain hex head; cad pl (bottom cover	
46470023 46478242					(hi-voit rect).........................	358126	Screw, sheet metal: \#8 $\times 11 / 4$ PKA plain hex head; cad pl (cabinet feet	
46×791756	Care, brase, \& screv (L-11 \& L-15)........	34700198	Screw, eccentric: cad pl (mounte botto focue coil tig brkt)...............	114490387 457596	Wax, b1-wax (on hi-volt transformer).... Washer; flat: $1 / 2 \times .203 \times .033$ st1; cad p1 (retainer strip)...........			
4684880256 46470310		34470369				35	Screv, abeet metal: $46 \times 3 / 8$ PKA slotted acron head; ant cop (back cover mtg)	
	primary)...............................	357467		$\begin{aligned} & 4 A 77577 \\ & 451720 \end{aligned}$	Waeher, 1 nsulating ($\mathrm{L}-27 \mathrm{mtg}$).......... Washer, flat: $3 / 8 \times .156 \times .030 \mathrm{st1}$; cad pl (pix tube rear support brkt			
46 K 47143 42476244461700090 54790684	care, iron, sescrev (L-23).............		plain hex head; cad pl (mounte top focus coil mitg brkt) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. hex hoad; cad pl (test socket cover			35490819	Screu, sheet metal: \# $\times 7 / 8 \mathrm{PKA}$	
		357454		451719			alotted acron head; ant cop (back	
	Gromet, tube socket ($\mathrm{V}-14$ \& $\mathrm{V}-16$ socket				Washer, flat: $3 / 8 \times .40 \times .030$; cad (pix tube grounding apring mtg)....	35A701524	cover mtg)	
	met	388146		$4 A 791447$$457569$			((upports" B11t-1n-Tienns" $^{\text {) }}$...........	
149780284	Invilatar, antem inad (inoulater 300 ohen line fro chassis).............		Screw, sheet metal: \#8 $\times 1$ PKZ plain hex head; cad pl (tube retainer strap		Washer, flat: $5 / 16 \times .145 \times .027 ;$ cad $p 1$ ($\mathrm{V}-14_{\text {\& }} \mathrm{V}-16$ socket mtg)...........			
14×791892 14×87179 457655	Tnsulator, coll (in T-2 can)........ inculator, coil (1n T-3 can)........ Lockmeher, intermal: $3 / 8 ; \mathrm{cad}$ pl (front controle wig)................	35490459	round hex head; brase (secures hi-volt trans plates) \qquad		Description	$\begin{aligned} & 4 K 780040 \\ & 457566 \end{aligned}$		
				Part No.			Washer, felt (under control knoba)... Washer, flat ($3 / 8 \times 5 / 32 \times .033 \mathrm{stl}$;	
							Washer, flat: $1 / 2 \times 3 / 16 \times .048$ et1;	
459751	Lockwaeher, int-ert: *o; cad pl (T-0 \& focua coil atg) \qquad	26426283 26A90301 420701181	Shield, tube (for glass $6 \sqrt{5}$ audio amp)...			457629		
452640	Lockwaher, internal: $1 / 2$ thin; ced pl (mounts botton focue coil witg brkt).		Shiold, tube: miniature.................. Strap, tube retainer: with pl (around plcture tube front). \qquad	Model 14 T3 Cabinet parts		451720	Washer, flat: $3 / 8 \times .156 \times .030 \mathrm{st1}$;	
457688	Lockwacher, int-ext: $1 / 4$; cad pl (mounte botton focue coil etg brkt). Nut: epecial: cad pl (mounts ceranic trimera)	414471379 268700835	Spring, tension (picture tube support).... Shield, IP (between audio \& video IP	1X792494 168700099	Bracket, window mtg: with pad........... Board, baffle: with grille cloth.......	451767	Washer, flat: $5 / 16 \times .130 \times .025$ brs; pol nkl (mank clip utg)......	
24790191		260701345 31K4573	Shield, tumer chassis. Strip, terminal: 3 ins \#3 gnd; $1 / 2^{\prime \prime}$ spacing	1×771529	Bumper, rubber: vith bushing	619701152	brs; pol nki (mank clip mtg)...... Window, picture tube: rectangular.	
24791404 2A470049	Nut, co11 \& core mtg (L-27)........... L-12, $工-14, L-15, L-18, \&$ L-20)...... Nut, palnut; apecial (T-3 primary coil				Back cover: complete with picture tube			
		94480274			rear cover, antema recept its plage, antenna support bracket, centering			
2870703					adjustment cover, and line cord......	Part So.		
		314791613	Strip, teruinal: epecial (on hi-volt trans).	7A701358 16701061	Bracket, antenna support.		Deacription	
287093	wtg)	41470705	trans)......................................		Cabinet, table model: molded plastic; walnut; less window \& grille cloth...			
237082	Nut, hex: $1 / 4-20 \times 7 / 16$; cad pl (wounts bottom focus coill mes brxt.... Nut, hax: $8-32 \times 5 / 16$ at1; cad P1 (T-8 \& focue coil atg)	26 K 485936	Shield, co11 (T-3).....................	424792502	C11p, mask retainer....................	T-TH-TENTA MODEL TA-6		
		$9 \times$	Socket, tubs: octal (all octal sockets	1×701527	Cover, chassis bottom with hi-volt			
287003		9047343	except V-14, v-16, \& V-19)...........		1nsulator........................	12791900	TA-6 Single Loop Antemna: complete..	
287051	Nut, hex: painut; $3 / 8-32 \times 9 / 16$;		(v-5),............................	308470756	Cord, line: with plug \& receptacle..	2182764		
	cad pl (rear controle mtg).....	9×780442	Socket, tube: miniature 7-prong	15 K 792068	Cover, centering ad justment: rubber	24 A 791748	Coil, antenna loading (on terminal	
287004	Nut, hex: $3 / 8-32 \times 9 / 16 ;$ cad P1		(V-3, v-4, \& V-6)		(on back cover).............		trip).	
640700690	(rront controis mrg)...........	9×484167	Socket, tube: miniature 7 -prong	553139		24 2791989	Coils, high frequency coupensat ing....	
	electrolytics uned).................	94990685	Socket, tube: octal (V -14 \& V-16)	148792069	Insulator, high voltage (on bottom cover)	31 K 44326		
28×477323 64×700748	Plug, ${ }^{\text {Pline }}$ cord: 2 -pin; vaxed........... Plate, socket cover (covers unused hoie	31K9004		364485457	Knob, control (hold controls on chassie rear).			
	when only two olectrolytics are used)	314374944	Strip, terainal: 4 1ne \#3 gnd; 3/8	360700732	Knob, control: brn (fine tuning \&			
6atcons	Plate, 240700161 \& $25 \mathrm{K7} 700888$ power trans	31K471568	Strip, terminal: 4 ins \#2 end; $3 / 8 \bar{B}^{\prime}$	36K700734	Knob, controi (contrast)...			
355700379	Pad, cuabion (maer picture tube).......			$36 C 700733$	Knob, control (station selector)..			
35K700166	Pad, cushion (on picture tube retainer trap).	31K51513	Strip, terminal: 3 ins \#3 gnd; $3 / 8^{n}$ spacing.	457651	Lockuasher, internal: \#8; cad pl (spkr mtg)			

© John F. Rider

©John F. Rider
(

INDEX			
-	PAGE		Page
ALIGNMENT INSTRUCTIONS	55	SCHEMATIC	51,52
CIRCUIT DESCRIPTION.	58	SPECIFICATIONS	53
INSTALLATION DATA.	53	top view - tube layout.	56
PARTS LAYOUT	56	TRIMMER LOGATIONS.	56
PARTS LIST	62	VOLTAGE MEASUREMENTS	51,52
		WAVEFORMS	51,52

general information
RECEIVER MODEL BREAKDOWN CHART

Model	Type of Set	TV Chassis Used
$16 \mathrm{K2}$	Console, red-brn mahogany	TS-74

TV CHASSIS - Television chassis TS-74 contains 19 tubes plus a $16^{\prime \prime}$ picture tube. The picture, sound, and scanning circuits, together with a seleni contained on a single chassis. supply, ar

V tuning range - Channels 2 through 1

TV IF FREQ -
Channels 2 to 6: sound - 21.9 mc

NOTE: In late chassis, using TT-14 tuner channels 11,12 , and 13 : sound 21.9 mc , picture 26.4 mc

ANTENNAS - TV: console; TA-4 "Bilt-In-Tenna'. Provision for connection of an external antenna

TV ANTENNA IMPEDANCE - 300 ohms
POWER SUPPLY - 117 volts, 60 cycle AC current only
POWER CONSUMPTION - TV: 170 watts
TV AUDIO OUTPUT - 4 watts

TV CHASSIS TUBE COMPLEMENT

$\begin{aligned} & \text { Ref. } \\ & \text { No. } \end{aligned}$	Tube	Function
v-1	6CB6	RF Amplifier
V-2	12AT7	Mixer-Oscillator
v-3	6AU6	1st IF Amplifier
V-4	6AU6	2nd IF Amplifier
V-5	6AG5	3 rd IF Amplifier
V-6	6AL5	Video Detector
V-7	6AH6	V Video Amplifier
V-8	6AU6	Audio Driver-Limite
V-9	6AL5	Ratio Detector
V-10	6J5GT	Audio Amplifier
V-11	6V6GT	Audio Output

(TV Chassis Tube Complement - cont'd)

Ref.		
No.	Tube	Function
V-12	$6 \mathrm{SN7GT}$	1st \& 2nd Clippers
V-13	655 GT	Vertical Sweep Generator
V-14	25 L 6 GT	Vertical Sweep Output
V-15	6AL5	Phase Detector
V-16	6SN7GT	Horizontal Oscillator
V-17	6BQ6GT	Horizontal Output \& High Voltage
V-18	6W4GT	Generator
Damping Diode		
V-19	1B3GT	High Voltage Rectifier
V-20	16GP4	Picture Tube

HIGH VOLTAGE WARNING

Operation of this receiver, outside its cabinet or with covers removed, involves a shock hazard from the power supplies. No work should be attempted on this receiver by sary when working on high voltage equipment.

CATHODE RAY PICTURE TUBE
 HANDLING PRECAUTIONS

Extreme care must be used in handling the picture tuble. The tube is highly evacuated and, due to its large size, is subjected to a considerable atmospheric pressure. The tion. Avoid nicking or scratching the glass by rough contact with other objects.

INSTALLATION AND OPERATING INSTRUCTIONS

receiver location
The receiver may be placed anywhere in the room, bu
for greatest satisfaction it should be located:

1. Away from any bright light that may fall directly on the screen or be reflected from it; this includes win解s and lamps. Some illuminatios in the room, of strain.
2. To provide comfortable viewing and ease of opera tion.
3. Atleast one-inchaway from a wall to allow for cabi net ventilation. This is very important.

antennas

The choice of television antenna depends entirely on the location of the receiver with respect to all television station ransmitting antennas in the area. Maximum pick-up is ob tained when the rith
"Bilt-In-Tenna". All rece
"Bilt-In-Tenna". All receivers using the TS-74 series elevision chassis are equipped with the Motorola "Bilt-In Tenna", mounted inside the cabinet, for use in good signa reas.

When this antenna is used, the following precaution should be observed for best reception:

1. In order to get maximum performance and satisfac tory pictures from the "Bilt-In-Tenna", ample sig the location of the receivers. Normally, the strength of the signals will vary throughout the room in which the receiver is located. For this reason, better pictures will be obtained if the receiver is tried in all possible locations in the viewing room and is then all stations. Avoid large metallic objects, such a radiators, metal panels, etc.
2. Lamps, vases and metallic objects, when placed o top of the receiver, may affect the efficiency of th

Indoor Antenna. If additional pick-up is necessary, an indoor antenna, placed on or near the receiver, may be used
The antenna should be rotated and the arms should be ad justed for the best signal, with no ghosts or reflections. Nor ally, the arms should be extended on the low channels ($2-6$) and telescoped on the high channels ($7-13$)

Outdoor Antenna. The Motorola "Bilt-In-Tenna" or the indoor type antenna will give satisfactory reception in strong signal areas; but, if the receiver is located in a fringe

In areas free of obstructions and reflections, within rea nable proximity to television transmitters, a dipole and eflector will prove satisfactory. Since such an antenna has relatively small band coverage, a special antenna cover ired to receive stations on channels of widely separate sired to rece
frequencies.

Location of the antenna should be decided from the standpoint of maximum signal pick-up. In general, the antenn
should be broadside to the transmitting antenna and should be as high as possible. If a reflector is used, the antenn the station and the reflector farthest away.

Locating the antenna and lead-in as far away as possibl rom highways, hospitals, doctors' offices, electrical machinery, etc., will help to reduce noise pick-up from such
sources. Also, it is desirable to keep the antenna at leas six feet away from other antennas, metal roofs, gutters, or other metal objects to prevent unwanted reflections and shielding.

Lead-In. Since the TS -74 chassis is designed for 300 ohm input, the standard 300 ohm twin lead line should be Twisting connecting the outside antenna to the receiver helps to reduce noise pick-up turn per foot the lead-in should be supported on stand-off insulators and kept tight enough ing the lead-in close to metal gutters, iron standpipes,

In areas of very strong signals, or where severe local electrical interference is encountered, 300 ohm shielded grounded.

An approved lightning arrestor should be used.

RECEIVER ANTENNA CONNECTION

The antenna lead-in to the television receiver is connect ed to the two screws of the terminal strip on the rear of the
cabinet. Disconnect the "Bilt-In-Tenna" leads from the ter minal strip before attaching an external antenna lead-in Sometimes reversing the lead-in connections at the receive may improve picture quality and overall performance.
OPERATING CONTROLS

There are two dual controls, consisting of a small and a large knob each, on the front panel of the receiver. The function of each control is marked on the front panel; the the small knob. See Figure 1 for front panel control functions.

The receiver is completely adjusted at the factory, so normally none other than the front panel control operating instructions need be followed in putting the receiver in operation. However, to provide for any misadjustment of the are in order. See Figure 2 for location of the service ad aretment controls.

FOCUS CONTROL
The FOC US control should be adjusted until the fine hori picture area. The control should be tuned through the cor
por rect point several times so that optimum focus is obtained.

Centering

By means of a lever extending from the focus coil, thry the rear screen, the
picture in its mask.
vertical size and vertical linearity
Adjust the VERTICAL SIZE control until the picture fills the mask vertically. Adjust the VERTICAL LINEARITY con trol for best overall vertical linearity. Adjustment of the VERTICAL SIZE control will require a readjustment of the VERTICAL LINEARIMY control and possibly on the focus coil.

Horizontal size

Adjust the horizontal size lever until the picture fills the mask horizontally. Center picture with the center ing lever.

HORIZONTAL HOLD ADJUSTMENT
The HORIZONTAL HOLD control should have a sync range of approximately 180°. If the control is too critical adjust as follows.

1. Shortout horizontal oscillator coill-23. This may be done with the chassis in the cabinet by shor ing pins $3 \& 8$ of the test socket on chassis :ear.
2. With the centering lever, move the picture to the left so that the rightedge of the raster can be seen. Ad
just the HORIZONTAL HOLD control to about the middle of its range and note the width of the blanking pulse. (The blanking pulse appears as a gray bar at the right edge of the picture).
3. Remove short from Horizontal oscillator coil
4. Adjust horizontal oscillator coil until the same amount of blanking pulse can be seen as wa noted in step 2 .

VERTICAL hold adjustment
Adjust the VERTICAL HOLD control for the center of the vertical sync lock-in range.

BRIGHTNESS

Adjust the BRIGHTNESS control, in combination with the CONTRAST control for the most pleasing picture. Keep the brilliance slightly below maximum, however, in order
protect the fluorescent screen of the picture tube and to pre vent poor picture detail.

ADJUSTMENT OF ION TRAP
Under conditions of rough shipment, it is possible for the ion trap to become misaligned. To prevent serious damage to the picture tube, the following method of adjustment should Figure 3.
The magnet should be placed on the neck of the tube in the direction indicated by the marking on the magnet (usually an arrow which points toward the picture tube screen) so that the stronger magnet of the double magnet type or the only magnet in the single magnet type is positioned over th

FIGURE 2. SERVICE ADJUSTMENT CONTROLS

Figure 3. picture tube adjustment locations
internal pole pieces which are mounted on the gun structure Adjust the BRIGHTNESS control for low intensity and move same time a short distance formard it to obtain the brightest raster. If, in obtaining the brightestraster, the ion trap magnet has to be moved more than $1 / 4$ " from the gun pole pieces, the magnet is probably weak and a new magnet should be tried. Never orrect for a shadowed raster with the ioh trap magnet if uch correction results in decreased brightness. The ion hess and if shadows occur at this setting, they should be eliminated by adjusting the focus and deflection coils as ex plained under "Focus Coil and Deflection Yoke Adjustment"

CAUTION: Keepbrightness controlat low intensity until ion trap is properly set.

A mirror placed infront of the receiver will aid in mak ing this adjustment
deflection yoke adjustment
If the deflection yoke shifts, the picture will be tilted. To correct, loosen the thumbscrew on top of the deflection yoke and rotate yoke until the picture is straight. Before yoke is as far forward as possible.

If the yoke support and the picture tube have shifted in ransit or, if for any reason these parts have been removed and replaced, it is best to do a complete job of reposition-
picture tube. This is fixed by the front tube mounting. The picture tube rear support bracket positioning adjustmen forward until the loose enough to permit sliding the bracke flare of the tube. CAUTION: Do not use force inginst the bracket up. If too much force is used, a strain will be placed on the neck of the tube when the support bracket posi ioning adjustment screws are tightened. Also the yoke ma be forced out of position. The opening in the yoke should b concentric with the neck of the tube

FOCUS COIL

The focus coil bracket positioning screwnuts should now be loosened and the focus coil bracket moved up so that now the focus coil is parallel with the deflection yoke the space between them is $1 / 4^{\prime \prime}$. In tightening the focus coil bracket positioning screw nuts, tighten the first one so that the spring washers will have enough tension to hold the bracke firmly, but not so tighly as to cause dicuty in making act as a lock to prevent loosening of the tension.
TEST SOCKET
A test socket is provided on the rear of the chassis which allows adjustment of the horizontal oscillator and checking of sensitivity without removing chassis from cabinet. See Figure 2 for socket connections.
general
The chassis should be mumnted on angle iron brackets Motorola Part No. 7×700210) so that all connections and adjustments may be made easily.

Since the power cord circuit is broken by the interlock When the cabinet back is removed. it will be necessary to tain an extrapower cord with the female interlock recep-
tacle in order to make a power connection to the receiver. Order Motorola Part No. 30B470756.

It is recommended that an isolation transformer be used between the receiver and the AC line whenever anytest
equipment is attached to the chassis. This precaution is esecially important if grounded test equipment is used. NEER GROUND THE RECEIVER CHASSIS DURING TESTING TRANSFOKMER IS USED.

ORDER OF ALIGNMENT
A complete receiver alignment can be most conveniently Aormed in the following order:

1. Audio Take-Off \& Ratio Detector
2. 4.5 Mc Trap
3. IF Coils \& Mixer Transformer
4. Osc \& RF Sections
aUdio take-off \& RATIO detector alignment

Equipment Required:

AM Signal Generator: Accurately calibrated at 4.5 mc
(Optional)
Adjustable output
DC Meter: Low range electronic voltmeter

Procedure:

Refer to Figure 4 for location of adjustments.

1. If possible, it is desirable to align the audio section from an actual station signal, since the 4.5 mc alignmer should be lurned off the station slightly, to pre vent overloading the ratio detector
2. If a signal generator is used, tune it accurately to 4.5 mc , and adjust the output to approximately 10,00 erator throughan 1000 mmf capacitor to the grid (pin 1) of the video amplifier tube $\mathrm{V}-7$ (6AH6), and the low side to B.. The following applies whether the station signal or signal generator is used.
3. Fromeither side of capacitor $\mathrm{C}-60(10 \mathrm{mf})$, connect an electronic voltmeter to B - decoupled thru 10 K ohms.
4. Set the contrast control for maximum gain (fubly
clockwise). clockwise)
5. Peak L-20 for maximum reading on meter
6. Peak t-3 primary (top core) for maximum reading on meter
7. Move the meter and decoupling resistor from C-60 to junction of R-44 (33 K) and lead to volume control.
8. Adjust T-3 secondary (bottom core) for zero response on 2.5 V scale of meter. This corresponds
to the cross-over point on the FM detectorcurve. If desired, the symmetry of the curve may be checked by tuning the signal generator 25 Kc above and below 4.5 mc and noting the plus and minus voltage produced, reversing the meter connections as necessary. For proper balance of the ratio detector system, the
voltage in each direction should be approximately equal. If not, check the tuning of L-20 and the primary \& secondary nf $\mathrm{T}-3$, the ratio detector. if necessary, replace the ratio detector tube V-9 (6AL5). It is desirable to calibrate the generator on a station
signal. This may be done by nulling the secondary signal. This may be done by nulling the secondary
on a station signal and then connecting the generator and tuning it to produce the same null without touching the trimmers in the set.
NOTE: As the adjustments are brought to resonance, it it is advisable to reduce signal generator output it is advisable to reduce
to prevent overloading.

With a 10,000 microvolt signal into the grid of the video amplifier tube, with the contrast control turned fully clockage read from one side of capacitor C-60 should be greater than 5.0V.
4. 5 MC TRAP ALIGNMENT
. Connect the high side of the signal generator through a 1000 mmf capacitor to the grid (pin 1) of the video
amplifier tube $\mathrm{V}-7$ (6 AH 6), and the low side to B -.
2. Connect the voltmeter and germanium crystal rectifier, as shown in Figure 5, between the cathode of voltage scale on the meter.
3. With the signal generator accurately set at 4.5 mc and maximum output, adjust trap L-18 for minimum reading on the meter

IF AMPLIFIER ALIGNMEN

Equipment Required:

IF Sweep Generator meeting the following requirements:
to 30 mc , approximately 12 mc sweep width. Out pur constant and adjustable to at least . 1 volt maxi

Cathode Ray Oscilloscope: preferablyone with a calibrated input attenuator.

NOTE: If there.is no built-in marker in the sweep generator,loosely couple the output of an accuratey calibrated AM signal generator to the IF strip. At all times, keep the marker outputlow enough sponse curve.
distinct if a capacitor of 100 to 1000 mmf is placed across the scope input. Use the smallest size possitle, since too large a value will affect the shape of the curve

Procedure:

1. Remove high voltage generator tube $\mathrm{V}-17$ (6BQ6GT) from its socket to eliminate horizontal pick-up in the ofrilloscope
2. By means of an external battery, apply a negative 3. 0 volt bias from the bo
resistor R-9 (6800) to B-
3. Using leads as short as possible, connect the hot side of the sweep generator to the grid (pin 1) of the
1 stif tube $V-3$ (6AU) through 5000 mmf (do not use the loose or "spraying" method of coupling). The low side is connected to B-. Set the cen-
ter frequency of the sweep to about 24.6 mc and adter frequency of the sweep to about 24.6 mc and adjust initially for a sweep deviation of approximately
12 mc . However, a sweep offrom 8 to 10 mc may be found better for overall alignment.
4. Using R-27 (100K) as a decoupling resistor, connect the scope between the top of the detector load resisquired, connect the scope between the picture tube cathode and B -. The curve seen at this position will be the reverse of the polarity shown in Figure 6.
5. Set the contrast control at minimum.

NOTE: if a distorted or unstable picture is seen on the oscilloscope during alignment, it may be necessary to stop the oscillator by disconnecting re-
sistor R-10 (1000) from the plate (pin 6) of the sistor R-10 (1000) from the plate (pin 6) of the ascillator tube with in 6 removed substituting

AUTION:

1. Do not reduce the oscilloscope gain and increase signal input so that the top of the curve is flatplifiers.
2. The dress of plate \& grid components in the $1 F$ affects tuning. Do not move indiscriminately.
3. On the $1 F$ coils and on the traps, the resonance point will be found at two settings of the slug. The correctsetting is the one which is found with the
greater part of the adjusting screw out of the coil.

NOTE: The $1 \mathrm{st} \& 2 \mathrm{nd} \mathrm{IF}$ traps are tuned from bottom of chassis, while IF cores are adjusted from the top.
6. Tune the low frequency trap L-14, located on the 2nd 1 IF coil, for maximum attenuation on the curve at
7. Tune the high frequency trap L-12, located on the 1st IF coil, for maximum attenuation on the curve at 27.3 mc .
8. Adjust the 1 st IF coil, $\mathrm{L}-11$, to place a 26.6 mc marker on the high side of the response curve 60% down er on the high side of the response curve
from maximum response. See Figure 6 .
9. Adjust the 2nd IF coil, L-15, to place a 22.7 mc marker on the low side of the response curve 60%
down from maximum response.
10. Adjust the 3rd IF plate transformer T-2 to provide flat top or symmetrical response curve.
11. Reset the traps (steps $6 \& 7$) and again check the $1 F$ for proper response.

NOTE: It is suggested that the bias be removed for ac curate resetting of the traps.
12. With bias applied, connect the sweep between the grid (pin 2) of the mixer tube V-2A (12AT7) and B-
13. Disconnect the trimmer. C-14, in LC circuit in the grid of the mixer tube, or short the trimmer throug $10,000 \mathrm{mmf}$ ceramic disc type to B
14. Bring both cores of the mixer transformer, $\mathrm{T}-1$, simultaneously from the outside towards the center. T hali-way mar
Sce Figure 7.
usted individut three IF coils, each coil is ad mary and secondary of the mixer transforme the adjustments should be made simultaneously The important point to keep in mind is to obtain sible. The sides of the curve should be straight and as steep as possible. Simultaneous adjust ing of the primary and secondary is the easies way to obtain this result. The transformer by s the three staggered circuits. See Figure 7 the only difference in the overall waveform should be that the sides of overall wave are steeper. Constant use of the 50% markers (22.9 $\mathrm{mc} \& 26.4 \mathrm{mc}$) should be resorted to, since it is A slight dip (not exceeding 10%) is permissible in the mixer transformer response curve.

BANDWIDTH

The bandwidth may be determined by connecting an A enerator to the mixer grid. With the generator frequen connected at the plate ($\operatorname{pin} 2$) of the video detector tube V 6 AL 5) and B-. Double the output of the generator. Now unich eilher side of 24.6 mc and noting the frequencies which the VTVMagain reads 1 volt, the 6 db bandwidth points are indicated.

After the above $1 F$ and mixertransformer alignment ha been made, a check for regeneration in the IF amplifier terybias and observing the output response curve on the os cilloscope, as taken between the picture tube cathode and BThe bandw:dth may change with the bias removed but should not change more than 0.2 mc . Set the contrast control to shows a marked decrease. Any regeneration present will be indicated by sharp peaks on the overall response curve The oscillator should be stopped, as described above, dur ing this procedure.

CAUTION: Do not inject too much marker signal MIXER LC ADJUSTMENT

Reconnect bias removed for regeneration check. Re
MODELS 16K2
$16 \mathrm{~K} 2 \mathrm{~B}, \mathrm{Ch} . \mathrm{TS}-74$

© John F. Rider

f SENSITIVITY MEASUREMENTS

IF Stages Only

1. Remove the battery bias from 1 st IF tube grid.
2. Connect an AM signal generator, set at 24.6 mc , through a blocking capacitor of 5000 mmf , between
$\mathrm{B}-$ and the $\mathrm{grid}($ pin 1) of the 1 st IF tube $\mathrm{V}-3$ (6AU6).
3. Connect anelectronic voltmeter across the video dethe meter should be decoupled with 100 K ohm resis tors.
4. Set the contrast control for maximum sensitivity.
5. Stop the oscillator tube by disconnecting resistor $\mathrm{R}-10$ (1000) from the plate (pin 6) of tube V-2B (12AT7)
6. The signal required to produce 1 volt (negative) above contact potential on the meter should be less than 700 microvolts.

Mixer \& IF Stages

The preliminary preparations are the same as for check g the sensitivity of the IF stages except:

1. Connect the AM signal generator, set at 24.6 mc , hrough a 5000 mmf capacitor, between B-and the grid ($\operatorname{pin} 2$) of the mixer tube $V-2 A(12 A T 7)$.
2. The signal required to produce 1 volt (negative) above ontact potential on the meter should be less than 125 microvolts.
oscillator, antenna and rf alignment
NOTE: The IF must be aligned before the RF section can be properly phased.

Equipment Required:
Sweep Generator: Frequency range $40-220 \mathrm{mc} ; 10 \mathrm{mc}$ sweep width
Output constant and adjustable Adjustable markers (markers should
becalibrated occasionally by check be calibrated occasionally by checktor).
Oscilloscope: Preferably one with a calibrated input Signal Generator: Frequency range 40 to 220 mc Accurately calibrated AM modulated, 400 cycle
FREQUENCY CHART

Chan	Frequency	Picture	Sound	Oscillator
2	$54-60$	55.25	59.75	81.65
3	$60-66$	61.25	65.75	87.65
4	$66-72$	67.25	71.75	93.65
5	$76-82$	77.25	81.75	103.65
6	$82-88$	83.25	87.75	109.65
7	$174-180$	175.25	179.75	152.45
8	$180-186$	181.25	185.75	158.45
9	$186-192$	187.25	191.75	164.45
10	$192-198$	193.25	197.75	170.45
11	$198-204$	199.25	203.75	$176.45(225.65 *)$
12	$204-210$	205.25	209.75	$182.45(231.65 *)$

ANTENNA \& RF ALIGNMENT PROCEDURE
. Remove high voltage generator tube V-17 (6BQ6GT) fromits socketand stop the oscillator by disconnect-
ing R-10 (1000) from plate (pin 6) of V-2B (12AT7).
. Connect the sweep generator across the antenna ter minals on the chassis with the antenna lead-in rebe as short as possible
3. Connect the oscilloscope through a decoupling resis tor of 150,000 ohms, between the cathode (pin 3) of the mixer tube $\mathrm{V}-2$ (12AT7) and B
4. Short out the AGC circuit with a clip lead from the AGC bus to B-.
5. Refer to Figure 4 for the RF trimn.er location and to Figure 9 for the locations of the antenna and $R F^{\circ}$ coils. The frequency chart and alignment frequencies.
6. The antenna coils are tuned to the video carrier fre quency and the RF coils are tuned to the sound car riers. Figure 10 shows the shape of the curve which should appear on the scope for channels 2-6 and Fig -
ure 11 the curves for channels 7-13.
7. Turn the station selector switch to channel 10. Se the center frequency of the sweep generator to the center frequency of channel $10(195 \mathrm{mc})$.
8. Adjust ceramic trimmer, C-6, so that picture and sound markers are as in Figure 11 .
9. Check channels 7 to 13 for proper response and, if necessary, tune the coil L-6. These coils may be tuned by spreading them to decrease inductance or
compressing them to increase their inductance. See Figure 9 for location of coils. This will have more effect on channels 10 to 13 than 7 to 9 . If L-6 is adjusted, it may be necessary to readjust RF trimmer $\mathrm{C}-6$, and recheck the high channels.
NOTE: As the bandwidth of the high channels is very broad, a slightvariation is permissible as shown in Figure 11 .
0. Move bandswitch to channel 6
11. With center frequency of sweep generatorat the center frequency of channel $6(85 \mathrm{mc})$ introduce markcompare with curve of Figure 10.

NOTE: A convenient method of determining whether a coil is tuned correctly is to inserta brass or iron increases the inductance.
2. After channel 6 has been aligned, progress down ward through channel 2.
CAUTION: Make certain the station selector switch is on the correct channel before checking band pass.

OSCILLATOR ADJUSTMENT

1. Put oscillator back in circuit.
2. Remove the short from the AGC circuit and apply -3

Move the oscilloscope to the video detector output. row provide decoupling, it is best to connect to the low side, of R-27 (100K) which is connected thru hokes L-32 and L-16 to the plate ($\operatorname{pin} 2$) of the deector tube V-6 (6AL5).
4. Turn station selector switch to channel 10 .
5. Set the contrast control at minimum (counterclockwise).
6. Set the center frequency of the sweep generator to 195 mc and keep the output low enough to show no evidence of limiting in the overall response curve.
7. Introduce a marker corresponding to the sound carrier of channel $10(197.75 \mathrm{mc})$.
8. With the fine tuning trimmer at mid-capacity, adjust the oscillator trimmer, C-12, to move the response
to the point where the sound marker drops into the to the point where the sound ma
9. Check channels 7 to 13 to note whether the sound marker will drop into the trap on the sound side of the response with the fine tuning trimmer within plus or minus $22-1 / 2$ degrees of mid-capacity. If this is not possible, adjust L-7. This coil has more effect
on channels 10 to 13 than 7 to 9 . It may have to be adjusted toobtain proper tracking on the high channels.
10. Move to channel 6 and progress downward through channel 2 ,' spreading or compressing the coil sections to make the sound marker drop into the trap on
the low side with the fine tuning trimmer within $22-1 / 2$ degrees of mid-setting (each number on the station selector switch knob represents 30 degrees).

NOTE: Overall response should be substantially flat and of proper bandwidth.
REVISED OSCILLATOR ADJUSTMENT
Following is the oscillator alignment procedure for the revised tuners appearing in later production TS-74 chassis. Whereformerly the oscillator was tuned beneath the carrier on all high channels, it has been raised above the carrier on channels 11,12 , and 13 . This places the oscillator outside the TV spectrum on all high channels and, the refore, elim
inates the possibility of its interfering with neighboring television receivers.

The new tuner may be identified by the additional coil in the oscillator section. The new coil is across the cut-out section of the stamped plate bn the oscillator deck (see Fig
ure 9). In addition, the switch shaft is color coded (red for TS 74 chassis).
OSCILLÁATOR ADJUSTMENT
NOTE: The Antenna \& RF Alignment Procedure is the same as in previous TS-74 chassis. The os cillator adjustment is revised as follow

1. Put oscillator back in circuit.
2. Remove the short from the AGC circuit and apply a
-3 volt battery bias to the AGC bus. -3 volt battery bias to the AGC bus.
3. Move the scope to the test socket on the chassis rear with the high side connected to pin 4 and the low side to pin 5 ($\mathrm{B}-$).
4. Set the contrast control at minimum (counterclock-
. Remove the fine tuning knob and turn shaft until the slot is in a horizontal position. This represents the
mid-capacity position.
5. Turn station selector switch to channel 12 .
6. Set the sweep generator on channel 12 with a center frequency of 207 mc and at least a 12 mc sweep. Keep in the overall response curve. evidence of limiting

NOTE: Before aligning the oscillator section, make certain the 3.3 microhenry choke in the mixergrid is dressed away from the 2 mmf capacitor tied
8. Introduce a marker corresponding to the sound carrier of channel 12 (209.75 mc).
9. Adjust oscillator ceramic trimmer so that the sound marker falls into the 21.9 mc trap dip in the response
curve.
10. Turn generator and station selector to channel 9 with the fine tuning shaft slot still in the horizontal posi-
11. Spread or compress the 3 -turn coil located in the center of the oscillator plate (L-4M, Figure 9) so that the sound marker for channel 9 falls into the 27.3 mc trap dip in the response curve. As the os9810 the 27.3 mc trap will be in the sannels 7 , 8 . as the 21.9 mc trap in step 9 .
12. Repeat steps $6,7,8 \& 9$.
13. Turn generator and station selector to channel 13.
14. Turn fine tuning trimmer so that the sound marker for channel 13 falls into the 21.9 mc trap dip of response curve. The slot in the fine tuning shaft should nave moved more than 30 degrees from the horithe station selector knob represents 30 degrees).
15. If more than a 30 degree change in fine tuning trimmer was needed in step 14, adjust channel 13 oscillator coil ($\mathrm{L}-7$) by spreading or compressing until

NOTE: Each adjustment of channel 13 oscillator coil (L-7) will necessitate a rechecking of the oscil lator trimmer on channel 12 as per steps 6,7 , $8 \& 9$
16. Check channels $12,11,10,9,8$, and 7 by noting whether the fine tuning trimmer can drop the sound
marker for each channel in the trap dip by a 30 degree rotation. If one of the channels does not meet the 30 degree requirements, a compromise must be made by resetting channel9 or 12 , whichever is closer to the channel in question

Example: 1) If channel 11 does not meet the 30 degree requirement, return 5 tation selector and
generator to channel 12 and tune ceramic trimmer toward channel 11 (trimmer fre-

MODELS 16 K 2 ,
16K2B, Ch. TS-

O John F. Rider

Figure 9. antenna, rf and oscillator coil locations
quencies lowered by tightening screw).
This will tend to move channel 12 sound This will tend to move channel 12 sound
marker out of the trap dip, but this can be compensated for by the fine tuning trimmer. Do not adjust trimmer any more than is necessary to get the chan-
nel in question back within the 30 degree requirement.
2) If channel 10 does not meet the 30 degree requirement, move station selector and generator to channe19 and tune the 3 -turn
coil (L-4M, Figure 9) toward channel 10 (coil frequency raised by spreading turns). This will also tend to move channel 9 sound marker out of the trap dip, but this can becompensated for by the fine tuning trimmer. Again, do not adjust the coil
any more than is necessary to bring the channel in que stion back within the 30 de gree requirement.
Turn sweep generator and station selector switch to channel 6
18. Adjust channel 6 oscillator coil (L-4E, Figure 9) so that the sound marker for channel 6 falls into the 21.9 mc trap dip with the fine tuning trimmer at midcapacity (shaft slot in horizontal position). Always
spreador compresschannel $\#$ oscillator coil in units of 3 turns. Compressing turns will move curve toward sound marker, while spreading will move curve toward video marker.
MPORTANT: Since the coils are in series, the proper alignment of channel 6 will simplify the phasing of the channels to follow.

Adust channels 5 and 4 so that the sound marker for
each channel falls into the 21.9 mc trap dip in the
R Pider
curve with the fine tuning trimmer set no more than 15° from mid-capacity.
20. Channels 3 and 2 should be adjusted so that the sound marker falls into the 21.9 mc trap dip with the fine tuning trimmer within 15° of maximum capacity.
overall receiver sensitivity measurement
An overall measurement of sensitivity is made as follows:
. Connect an AM signal generator to the input terminals of the receiver chassis after removing the short
300 ohm lead which connects to the antenna input strip on the back of the cabine? To match the generator to the receiver input, a resistor matching network should be used. In the case of a generator with a 50
ohm output impedance, for example, place a 100 ohm
resistor in series with the output terminal of the generator and a 15
ground terminal.
2. From cathode of picture tube to B, conect a brated oscilloscope.
NOTE: TO calibrate scope, connect it across 6.3 volt filament supply. The peak-to-peak amplitude on the screen will then be approximately $18 \mathrm{~V}(6.3 \times$ 2.8)
3. Set =ontrast control for maximum sensitivity.
4. Tune signal generator to the video carrier frequency of the channel being checked. Generator signal
should be 30% modulated at 400 cycles. Thesignal from the generator to produce 20 volts peak-to-peak at picture tube cathode should be less than 25 microvolts on channels 2 to and less than 75 microvolts

CIRCUIT DESCRIPTION

LOW VOLTAGE POWER SUPPLy
The low voltage power supply (Figure 12) provides plate voltage for all tubes except the high voltage applied to the second anode of the picture tube. The heater transformers which is energized by the horizontal sweep current.

One low voltage secondary of T-8, the step-down filament transformer, supplies filament voltage to all tubes except the audio driver-limiter ($V-8$), the vertical output tube ($\mathrm{V}-14$). and the horizontal damping diode ($\mathrm{V}-18$). Since the damping diode ($\mathrm{V}-18$) develops a high voltage pulse at its cathode, and its cathode is tied to the filament to prevent breakdown in the tube, it is necessary to provide a separate, filament. The vertical output tube $\mathrm{V}-14$ (25L6GT) requires a 25 volt filament supply and, hence, is provided with a separate 25 volt tap on the transformer. In earlier production chassis, the audio driver-limiter (V-8) had its cathode con-
nected to a B plus point of about 120 volts. In order to keep nected to a B plus point of about 120 volts. In order to keep
the heater to cathode difference of potential low, it was necessary to provide a separate filament winding for this tube.

This tube's cathode is now returned to B-but, since the separate winding is still supplied on present production transformers, it is still used for $\mathrm{V}-8$.

The B plus plate supply uses a voltage doubler. R-104 is a limiting resistor to protect the rectifiers frominitial current surges and also serves as a fuse in case of Bplus shorts. When the polarity of the applied if volt AC is such $\mathrm{E}-2$ will conduct and charge $\mathrm{C}-106(300 \mathrm{mmf})$ to peak line voltage. On the next alternation, E-1 will conduct and the voltage applied to it is now the peak line voltage plus the peak charge stored in C -106. This results in a charee of about 260 volts on C-63C (200 mf). The speaker tield is used as a filter choke. The focus coil and the resistor network,
which controls the current thru it, act also as a voltage divider to supply plate and screen voltages to several tubes. as shown in Figure 12.

Another voltage divider from B plus to B-, consisting oi R-76 (1 meg) and the potentiometer, $\mathrm{R}-77$ (1 meg) provides a variable bias on the cathode of the picture tube, to scrve as a brightness control.

- SOLID LINE INDICATES OPTIMUM RESPONSE.
DOTTED LINES INDICATES
PERMISSIBLE VARIATION.
Figure 10. rf response curves - channels 2-6

Figure 11.
RF RESPONSE CURVES - CHANNELS $7-10 \& 11-13$

FIGURE 12. Simplified schematic of heater and low voltage power supply

FIGURE 13. SIMPLIFIED SCHEMATIC OF RF TUNER

THE RF TUNER

Antenna Input
Figure 13 is a simplified schematic of the tuner.
The antenna input coil, L-1, couples the balanced line to the single ended input circuit for the RF tube, V-1. Optimum antenna coupling for all channels is obtained by the
coupling coils L-33A. L-33B, L-33C, and the coupling leads on channel positions 8,10 and 12 of switch wafer S-1A. These an be considered the primary of the antenna transformer. The secondary, or tuned grid circuit, includes also the con-
tinuous, tapped coil mounted on wafer S-1B for the low channels (2-6) and the stamped metal plate in series with the coil for the high channels $(7-13)$. The purpose of the antenna coil, coupling leads, and the secondary circuit, is to match the 300 ohm impedance of the transmission line from
the antenna to the input impedance of the RF amplifier grid circuit and to tune this circuit for the channel selected. Reierring to Figure 13, it will be seen that the switch. in progressing from channel 2 to channel 13, shorts out the unused portion of the secondary winding or stamped metal plate. The bandwidth of channels 7 thru 13 is about 8 mc . The
stamped metal plate is carefully designed so that with this bandwidth no adjustment is needed on the high channels. The individual coil sections on the low channels, however, may be tuned by spreading or compressing them as outlined in

RF Amplifier

The grid of the RF amplifier V-1 (6 CB 6) is returned to the AGC bus thru L-5 and a bypass capacity (C-5). The plate load of this tube consists of another tapped coil for the
low channels and a stamped metal plate for the high channels mounted, in this case, on switch wafer S-IC. Here again, the switch progressively shorts out the unused sec-
tions of the inductance in tuning from channel 2 to 13. In this case, however, a trimmer C-6 and a choke L-6 are provided coils may be tuned by expansion or compression.

The Mixer

The mixer uses $1 / 2$ of $V-2$ (12AT7). C-13 (8 mmf) couples the RF amplifier output to the mixer grid. Oscillator injection is accomplished by C-15 (2 mmf). L-8 and C-14
form a series resonant circuit tuned to the center of the $1 F$ form a series resonant circuit tuned to the center of the 1 F . er input.

The Oscillator

The oscillator uses the other half of $\mathrm{V}-2$ (12AT7) in a Colpitts circuit. Here again, the tuning inductance consists
of the tapped coil for the low channels and the stamped metal plate for the high channels mounted on wafer S-1E. L-7 and C-12 are provided to set the center frequency on the high channels while the low channels are aligned by spreading or compressing the individual coil sections. C-11 is provided a a fine tuning control for customer use. The oscillator oper-
ates above the RF on the low channels and below the RF on the high channels except that in later production the circuit was modified to avoid interference by operating the oscillator on the high side for channels 11,12 and 13 .

THE IF AMPLIFIER
The IF amplifier uses two 6AU6 tubes and one 6AG5 tube. Figure 14 is the schematic of the IF amplifier. T-1 couples the mixer plate to the first IF grid. Coupling between pri-
mary and secondary, which are individually slug-tuned mary and secondary, which are individually slug-tuned,
fixed and is designed for proper bandwidth. The plate choke L-10, of the 1st $1 F$ tube $\mathrm{V}-3$ (6AU6), is coupled to the grid

FIGURE 14. Simplified sChematic of if amplifier
coil, L-11, of the 2nd IF tube V-4 (6AU6) thru C-27 (220 mmf) At IF frequencies, the impedance of C-27 is negligible and for being inparallel, purposes, L-10 ang tuned. A similar method is used between the 2 nd and 3 rd IF tubes. The 3 rd IF plate is coupled to the detector by $\mathrm{T}-2$, a unity coupled transformer. The IF circuits are stagger-tuned for proper bandwidth as explained in the Alignment Instructions. L-12 and L-14 are $\mathrm{L}-15$, respectively. Together with $\mathrm{C}-28$ and $\mathrm{C}-36$, they from absorption type trap circuits which steepen the high and low skirts of the IF response for better picture quality and to stabilize the audio response with intercarrier sound

Decoupling has beenused notonly in the plate supply and AGC circuits, but also in the filament circuits to preven regeneration.

THE VIDEO DETECTOR
One-half of $\mathrm{V}-6$ (6AL5) is used as the video detector. Figure 15 is a schematic of the video detector. Since for noise limiting purposes it is desirable to apply a signal with negative going sync pulses to the grid of the video amplifier the detector load R-26 (5600) is placed in the plate circuit
of the diode. L-16, L- 32 and C-42, form a low pass filter to keep $I F$ frequencies off the grid of the video amplifier.
Since this chassis operates on the intercarrier sound system, the detector heterodynes the video and sound IF fre-
quencies, and produces the 4.5 mc beat frequency which bequencies, and produces the 4.5 mc beat frequency which be developed at the high side of the detector load R-26 (5600) will be a function of carrier level. This voltage is fed to the AGC bus thru R-28(1.5 meg) and controls the gain of the RF
the video amplifier
The video amplifier V-7 (6AH6) not only amplifies the video signal but also the 4.5 megacycle audio IF beat. Fig-
ure 16 is a schematic of the video amplifier. In its plate circuit, this beat is separated from the video signal and fed to the gridcircuit of the audio driver-limiter tube $\mathrm{V}-8$ (6AU6)
by C-49 (2.2 mmf) and L-20, the sound take-off coil. The which, when, L-18 and C-50, is a parallel resonant circuit which, when properly tuned, offers a high impedance
frequency, to prevent its reaching the picture tube.

Byapplying a negative signal to the grid of the video plifier, a noise limiting action is achieved because nois pulses of amplitude greater than the synclevel will drive the circuit. Since, therefore, will not be present in the plate signal at its plate will be positive and, as might be expected is used to modulate the cathode of the picture tube rather than the grid, because the blanking pulses must cut the pic ture tube off and the polarity of the video information mus more negative with respect to the cathode.
L-17 and L-19 are peaking coils to extend the high fre quency response of the amplifier. The contrast control R-31A, is placed in the cathode circuit of the video amplifi The network of resistors the refore, the gain of this tube contrast control decreases degeneration at the higher fre

FIGURE 15.
Simplified schematic of video detector

quencies and, therefore, helps to extend the high frequency response. The composite video signal is fed to the picture response. The composite video signal is fed to
tube cathode thru coupling condenser C-81 (.1).
the agc
The negative DC voltage developed across the detector load resistor, R-26 (5600), is the AGC voltage. It will be
noted that the low side of this resistor is connected to the
rm of the contrast control potentiometer, R-3LA. R-30 47) is shunted across the arm of the contrast control and BIn weak signal areas, this arrangement results in a delay in he AGC action. For a weak signal, minimum bias is desired on the video amplifier, therefore, the arm of the contrast control will be closest to the cathode end of the poten-
tiometer. Because R-30 is then shunted across the entire contrast control, most of the plate current will flow thruit and develop a positive voltage of approximately one volt at the arm with respect to B-. Since the low side of the detector load is tied to this positive voltage, no AGC voltage will
develop until the signal is strong enough to overcome this positive voltage and, therefore, no AGC bias is applied to the controlled tubes under weak signal conditions. In a strong signal area, however, where the arm of the contrast con-
trol approaches the B- end of the control, R-30 is shorted trol approaches the B - end of the co.
out and full AGC voltage is developed.

THE AUDIO SYSTEM

The audio system employs a driver-1imiter, V-8 (6AU6); a ratio detector $\mathrm{V}-9$ (6 AL 5); a first audio amplifier, $\mathrm{V}-10$ (655), and an audio output tube, V-11(6V6). Figure 17 is a
schematic of the audio system. The driver-limiter is operated at low plate and screenvoltages to act as a partial limiter to minimize any amplitude modulation. A convention ratio detector and audio amplifier are used.

THE CLIPPER

The clipper uses a 6SN 7GT tube. The clipper schematic is shown in Figure i8. The composite video signal with posithe grid of the firstclipperfrom the plate circuit of the video amplifier. Under no signal conditions, the tube is unbiased. The positive signal, however, will cause the tube to draw ative at the grid, will charge $C-66$ to such a value that only the most positive part of the signal, which is the sync pulse,

FIGURE 18. SIMPLIFIED SCHEMATIC OF CLIPPERS \& PHASE DETECTOR
ill cause plate current th flow. Therefore the video in to insure that retrace time of the scan will have the proper ormation and the blanking pulses are clipped off and only he sync pulses, now negative in polarity, appear in the plate ircuit. The second clipper is so biased that the peaks of in squared pulses of positive tularity in off. Which results this tube. A slight increase in sync pulse amplitude is obtained by a small positive voltage applied to the grid of the and clipper by R-106 (390K)
the vertical scanning system
Figure 19 is a schematic of the Vertical Scanning System.
The integrating network, shown in Figure 18, composed R-61, C-70, R-62, and C-71, changes the vertical group rigger the vertical oscillator. The vertical oscillator is an asymmetrical multivibrator using two subes V-13 (6J5) and V-14 (25L6). V-14 also serves as the output tube.

A multivibrator can be considered as a resistance coupled amplifier in which the output of the second tube is coupled back to the input of the first tube. V-13 is the automatic switch which charges and discharges the sawtooth forming condenser C-75(.05), connected in its plate circuit. The circuit components of the multivibrator are chosen so that

driving this tube into heavy conduction. C-75 will then dis -
charge thru $\mathrm{V}-13$. The voltage developedat the plate of $\mathrm{V}-13$ will be the combination sawtooth and pulse voltage shown in Figure 22(1). The pulse is formed by the peaking resistors R-65 and R-66. When V-13 goes into conduction, the voltage at the plate of $\mathrm{V}-13$ drops suddenly to a value determined
by the relationship of the plate resistance of $\mathrm{V}-13$ to the total by the relationship of the plate resistance of V-13 to the total
resistance in the discharge circuit of C-75, which consists of R-65, R-66 and the plate resistance of V-13. After this initial instant, the charge on C-75 decreases, causing the voltage decrease at the plate shown betwecn points "c"and
"d" of Figure 22(1). When the positive pulse on the grid of
俍 "d" of Figure 22(1). When the positive pulse on the grid of
$\mathrm{V}-13$ has decreased to the value where the negative charge on C-73 becomes operative and cuts off $\mathrm{V}-13$, the voltage on the plate of $V-13$ and, correspondingly, on the grid of $V-14$,
rises quickly to point "ar" on the curve, the start of the trace.

The negative pulse shown between point "b" and "a" of Figure 22(1) acting on the grid of V-14, tends to cut the tub quiredto dissipate the energy in the plate circuit inductance during the short retrace period

Since the plate circuit of the vertical output stage $\mathrm{V}-14$ has inductance, and as the time constant of an inductive cirposite of an RC circuit, the increase in plate, resistance of the tube is used to obtain the short time constant circuit required for proper retrace time.
By returning the grid of the picture tube to the junction of the two peaking resistors, R-65 and R-66, a negative
pulse of suitable amplitude to cut the picture tube offduring retrace is obtained, resulting inelimination of retrace lines on the screen.

The feedback network to the grid of V-13 also serves to filter out horizontal pulses which are present in the plate of -14 due to coupling in the yoke and which are coupled to the
plate thru the output transformer. The windings of the ver tical output transformer areconnected series opposing, which
the reduces the step-down ratio and, hence, the inductance in the plate of $\mathrm{V}-14$ in order to shorten the retrace time.

The controls found in this circuit are:
$\frac{\text { The Vertical Hold Control R-64 (} 1 \mathrm{meg} \text {). This con- }}{\text { trol varies the resistance in }}$ $\mathrm{C}-73(.006)$ and, hence, provides a means of varying the frequency of the multivibrator. In practice, this control is adjusted so that the incoming positive sync pulses, which are of constantamplitude, will fire the tation's vertical scan

The Vertical Size Control R-68 (5 meg). This con trol varies the charging current into $\mathrm{C}-75$, (.05) and. hence, the amplitude of the voltage developed across
it. Variation of this voltage varies the drive on the it. Variation of this voltage varies the
grid of $V-14$ and controls vertical size.

Vertical Linearity R-72 (2000). This control, by $\frac{\text { berdal action thru resistor } \mathrm{R}-70}{}(150 \mathrm{~K})$ and the out put tube's plate current, sets the bias and determines the tube's operating point on its plate current curve. Since this curve is not linear, some distortion can e introduced to counteract any non-linearity in the sawtooth grid voltage.

Since all of these controls are also in the multivibrator circuit and have an effect also on its frequency, there will be some interaction between them. Usually readjusiment of size or linearity will require readjustment of the hold con

horizontal scanning system

The horizontal scanning system comprises a phase detector $\mathrm{V}-15$ (6AL5), a cathode coupled multivibrator $\mathrm{V}-16$
(6 SN 7), the output tube $\mathrm{V}-17$ (6BQ6) and a damping diode V -18(6W4). Figure 20 is a simplified schematic of this system.

The Horizontal Oscillator

In order to see how the phase detector automatically corrects for multivibrator frequency change, it will be necessary to understand how the correction voltage affects the
multivibrator. It will be noted that this circuit differs from the vertical multivibrator in that only one coupling condenser is used but that the two tubes have a common cathode resistor. Thisarrangement is known as a cathode coupled multi-

The operation is as follows. Assume that the trace peThe operation is as follows. Assume that the trace pe-
riod is almost completed. At this time, tube "A" is conducting, tube "B" is cut off. C-87 is discharging thru tube
"A", R-92(150K) and R-91(the hold control). The discharge "A", R-92(150K) and R-91 (the hold control). The discharge
current of C-87 is still high enough to keep the grid of tube current of C-87 is still high enough to keep the grid of tube
" B " negative and cut off. Bias is being applied to both tubes " ${ }^{\prime \prime}$ negative and cut off. Bias is being applion cathode resis-
by current flow thru $\mathrm{R}-89$ (1000) the common tor. When the energy stored in C-87 is reduced to the point where its discharge current no longer holds the grid of tube
"B" below conductance, tube " B " starts to pass current and "B" below conductance, tube " B " starts to pass current and
this current causes a greater voltage drop across $\mathrm{R}-89$, the this current causes a greater voltage drop across R-89, the

common cathode resistor, which increases the bias on tube | common cathode resistor, which increases the bias on |
| :--- |
| "A "reducing its plate current. The resulting increase in | this charging current applies positive voltage to the grid of tube " B ". The resulting heavier conduction of tube " B " develops a pulse of voltage across R-89 which cuts tube "A" off and results in a positive pulse at the plate of tube "A"

which throws tube "B" into heavy conduction. This allows C-88, the saw-forming condenser to discbarge thru tube " B " and R-93. When C-87 becomes charged, the charging current thru R-92 and R-91 decreases and the positive voltage on the grid, which has far exceeded the bias developed across $\mathrm{R}-89$. is reduced. This esults in reducing the plate current
thru tube " B " and, therefore, the bias applied to tube " A " by the voltage drop across R - 89 . Tube " A " starts to conduct and condenser $\mathrm{C}-87$ starts to discharge, cutting tube "B" off. $C-88$ begins to charge, starting the next trace.

L-23 and C-85 in the plate circuit of tube "A", form a resonant circuit which is tuned to the horizontal frequency
(15,750 cps). The 15,750 cycle sine wave generated by this circuit. if properly phased, will insure that the positive pulse at the plate of tube "A", which throws tube "B" into conduction, will be more frequency stable

C-88 and R-93, the peaking resistor, will produce the same combination pulse and sawtooth voltage shown in F_{1} ure 22(1). This action was explained in the vertical circuir

The Phase Detector

The foregoing explanation is based on the assumption that tube "A's" grid is returned to a fixed potential point. It can in potential with frequency of the multivibrator, it would be possible to make this variation a means of frequency con trol. Assume that the grid of "A" in Figure 20 is made more of the increased drop across the common cathode because R-89. Capacitor C-87 will then discharge for a longer time before " B " conducts, thereby decreasing the frequency of oscillation. If the grid were made more negative, the bias across the common cathode resistor would be less and C-8 would dischargefor less time before "B" started to conduct

FIGURE 20. SIMPlified SChematic of horizontal scanning \& hV System

thereby increasing the frequency.

Figure 18 is a simplified schematic of the clipper and phase detector circuits. The phase detector v-15 (6AL5) is so connected that a comparison of the phase of the incom output system is made. A positive sync from the horizontal of the 2nd clipper V-12 (6SN7) is fed thru C-83 (.001) to the plate of diode "A" of V-15. A negative sync pulse from the
cathode of $\mathrm{V}-12$ is applied thru $\mathrm{C}-68(.001)$ to the cathode of diode "B" of V-15. A sawtooth, derived from the integration of a pulse in the horizontal output circuit, at the yoke, by the integrating network, composed of R-86 (150 K), R-87 (150K), and C-82 (.005) is applied to the cathode of diode "A"
 "B" consists of resistors R-84 (100K) and R-81 (100 K) whose junction returns to the high side of the grid resistor R-82 of he first horizontal multivibrator tube $\mathrm{V}-16$ (6 SN 7). The viltuge applied to the two diodes will be a function of the amthe phase relationship between the pulses and the sawtoth

If the sawtooth, whose phase and frequency are a func ion of the multivibrator's phase and frequency, is operating in the middle of the lock-in range, the sync pulse will occur sync pulses have an amplitude of from 6 to 8 volts while the sawtooth amplitude is about two volts. The RC time constant in the pulse inputcircuit to the diodes is long enough to maintain anaverage pulse voltage of 6 to 8 volts for two or three horizontallines, which means that in the "on frequency"conpulses and since these are equal in amplitude and develop voltages of opposite polarity across R-82 in the first multivibrator grid circuit as shown in Figure 18, no control volt age is applied to the grid of $\mathrm{V}-16$.

If the oscillator tends to increase infrequency, with respect to the sync pulses, the phase relationship shown in at the diodes. The phase of the sawtooth hasplied to the plate of diode "A" the positive saw is also ap
plied to its cathode, so that only the shaded portion of the pulse causes conduction of diode "A". Diode "B", however still conducts on the total amplitude of the negative pulse applied to its cathode aided by the positive saw applied to it makes the grid end of R-82 negative, with respect to B the decreased current flow caused by the sawtooth voltage bucking the pulse voltage at diode " A " results in a more positive voltage across $R-82$ applying a more positive voltage othe grid of V-16 which, as we have seen, results in descillator's frequency.

If the oscillator tends to decrease in frequency, with re spect to the sync pulses, the phase relationship shown in Figure $21(3)$ exists at the diodes. At the same instant that the negative pulse is applied to the cathode of diode " B ". the negative saw is applied to its plate so that only the shaded
portion of the pulse causes conduction. Diode "A", however, conducts on the fullamplitude of the positive pulse ap plied to its plate aided by the negative saw applied to its cathode at the same time. Since current flow thru diode "B makes the grid end of $R-82$ positive, with respect to B-, the negative voltage to the grid of $\mathrm{V}-16$ which, as we have seen results in increasing the oscillator frequency. C-84, R-85 and C-86 provide two time constant filters which are neces sary to obtain "fly-wheel" action of this AFC symc circuit.

The Horizontal Output System
The combination sawtooth and pulse waveform developed across C-88 (680) and R-93 (1500) by the multivibrator circuit, is fed to the grid of the horizontal output tube V-17 6BQ6). Figure 20 is a simplified schematic of the horizonal output system. It will be noted that in this system an
auto-transformer is used. In the horizontal scan, it is ne cessary that retrace be completed in about 7 microseconds. in order to accomplishreversal of current in the inductance of the output transformer and the yoke in this short a time. quency that the half-cycle cime will resonant at such a frebecause only by shock exciting such a circuit into oscillation, will retrace be accomplished in the time allowed. The cir -

REPLACEMENT PARTS LIST

FIGURE 21. WAVEFORMS AT PHASE DETECTOR
cuit is made resonant by the inductance of the output transformer and yoke, the distributed capacity and the tube ca-
pacity. Bearing this in mind, the operationcan be explained as follows. Referring to Figure 22(1), assume that the voltage on the grid of the output tube is increasing, point "a ". The grid is now being made less negative and the output tube starts to draw current which is supplied from B plus thru
the damping diode. When point "b" is reached on the grid voltage waveform, the output tube is suddenly cut off because its grid has beenmade highly negative, (point "c" on the grid voltage waveform). With the tube cut off, the resonant plate oad is undamped and the circuit is shocked into oscillation The reversal of current through the output inductance pro-
duces a positive voltage pulse which makes the cathode of the damping diode ($\mathrm{V}-18$) positive, with respect to its plate; herefore, it cannot conduct. C-92 (100 mmf) is placed across the diode to provide a low impedance for the oscillatory current. If the damping diode $\mathrm{V}-18$ were not present, this os-
cillation would continue and current would flow in the output ransformer as shown in Figure 22(2). In order to insure a inear trace, however, this oscillation must be stopped and he damping diode serves this purpose. When the current nears its maximum negative value, the polarity and ampli is plate becomes positive, with respect to its cathode so hat the tube conducts heavily and loads the circuit sufficiently to prevent continuation of the oscillation. The current then follows the decay curve shown at "c" in Figure 22(3), the output tube has become less than cut off the grid of Figure $22(1)]$ and the tube again demands current. The ris ing current in the tube results in superimposing the waveform "e" of Figure 22(3) on the current flow already in the output transformer due to the decaying current which rewo currom the damped oscihation. Combination of these "f" in Figure 22(4), which is a composite waveform of the entire action. During the peak conduction of the damping the output tubecalls for current the charge on the condenser will be inseries with the B plus supply so that the voltage at ply to about 475 volts by this so-called "bootstrapl" viltage When the grid voltage waveform of the output tube again eaches point "b" of Figure 22(1), the tube is cut off and

i1) output ives grio watace waveform

(2) OUTPUT TRANS GORMER CURRENT, mave Form

(4) COMPOSITE CURRENT WAVEFORM IN OUTPUT TRANSFORMER

FIGURE 22. Waveforms in horizontal scanning system
another cycle starts.
In order to properly match the yoke inductance to the required output inductance for the tube, the yoke is connect-
d to a tap on the winding which effectively makes an autoransformer of this section. The positive pulse of voltage at this tap is coupled to the yoke thru C-95 (.1) and results in a sawtooth of current thru the yoke. It will be remem fector for the AFC action thru R-86 and R-87.

The small additional winding, one terminal of which is onnected to chassis while the other terminal is connecte which is placed on the chassis by induction from the output ransformer. By connecting this winding in such a way as o place a pulse of suitable amplitude on the chassis 180 de rees out of phase with the induced voltage, cancellation of

High Voltage

To take advantage of the large voltage pulse developed across the output inductance by the heavy current flow caused by the retrace oscillation, the plate winding is made the prio develop pulses of about 14 Kv at its high end. These pulse are rectified by $\mathrm{V}-19$ (183) and the resulting DC is applied to the second anode of the picture tube. The filament voltage the 1 B 3 rectifier is obtained from an additional winding on the output transforme

Controls

L-23 is the coil of the sine wave generating circuit in he horizontal multivibrator circuit and should be tuned t

R-91 is the horizontal hold control which can be adjust ted for correct frequency operation of the multivibrator.

L-25, paralleling a small portion of the output choke controls, to a small d

NOTE: When ordering parts, specify model number

-	Part Mo.	Description
$\begin{gathered} C-63 A \\ B \& C \end{gathered}$	238791721	Electrolytic: 3 -section; $20 \mathrm{mf} / 250 \mathrm{~V}$, $60 \mathrm{mf} / 250 \mathrm{v}, 200 \mathrm{ar} / 300 \mathrm{v}$. .
c-64	8R9869	Paper: . 005 mp 600 V .
c-65	2186650	Mica: 68 uni 500v...
c-66	8R9869	Paper: . 005 mf 600%.
c-67	21×470322	Molded: 20 ump 500 V
c-68	8R9866	Paper: . 001 mf 600 V .
c-69	8 8 9873	Paper: . 05 mf 600 V .
c-70	8R9869	Paper: . 005 mf 600 v
c-71	${ }^{8 R 9869}$	Paper: 0005 mp $600 \mathrm{~V} \ldots \ldots \ldots \ldots \ldots .$.
c-72	889869 8×790026	
c-74	214470790	Ceramic disc: 1500 mar 500 V
c-75	${ }^{8198873}$	Paper: . 05 mf 600 v
c-76	8R9875	Paper: . 15 mr 600 V
c-78	8 8 9867	Paper: . 002 mf 600 V .
C-79 $\mathrm{c}-80$	889869 889867	
C-81	$8 \mathrm{8R974}$	Paper: . 1 mf $6000 .$.
C-82	${ }^{88} 88869$	Paper: $005{ }^{\text {mp }} 600 \mathrm{l}$...............
C-83	8R98666 8R9866	
c-85	8R9869	Paper: . 005 mf 600v.....
c-86	8 R 9870	Paper: . $01 \mathrm{mp} 6000 . .$.
C-87	${ }_{21 K}^{2157300037}$	
	21 K400037	(euggested replacement value).....
c-88	2182741	Mica: 680 naf 500 V .
C-89	8R9869	Paper: . 005 mf $6000 . . .$.
C-90	8R9854	Paper: .1 mf 200 V
c-91	$8 \mathrm{R987} 4$	Paper: . 1 mf 600 V
C-92	$\begin{aligned} & 21 K 792438 \\ & 21 K 700620 \end{aligned}$	Ceramic tubulam: 150 minf 3000 V (suggested replacement value).....
c-93	$8 \mathrm{R9874}$	Paper: . 1 mp 6000 ..
C-94	8R9872 889874	Paper: 03 mf 600v....................
C-96	21×790574	Ceramic tubular: 60 mmf (in derl yoke).
c-97	214470790	Ceramic disc: 1500 mut Souv.
c-98	211577375	Ceramic tubular: 220 mmp $500 \mathrm{v}$.
C-99 $\mathrm{c}-100$	$21 K 77375$ 218482295	Ceramic tubular: 250 mf $500 \mathrm{~V}$.
c-101	218482295	Ceramic tubular: 250 mmf 500 V .
C-103	214470790	Ceramic disc: 1500 mmp soov........
${ }_{c}^{\text {c-104 }} \mathrm{C-105}$	214470790	Ceramic dise: 1500 umf $500 \mathrm{l}0$.
c-105	214470790	Ceramic disc: 1500 mp S ${ }^{\text {a }}$
c-106	238791692	Electrolyt1c: l-8ection; 300 mP / 150v.....................................
c-107	214470790	Ceramic disc: $1500 \mathrm{mmp} 500 \mathrm{~V}$.
c-109	214470790	Ceramic disc: $1500 \mathrm{mmf}^{\text {f }}$ S00V........
c-110	214470790	Ceramic disc: 1500 mmf 500 V
c-111	21K482726	Ceramic disc: 10,000 mmf 450 V
c-112	214470790	Ceramic disc: $1500 \mathrm{mmf} 50001$
c-113	214790833	High voltage: 500 mmf $20,000 \mathrm{~V}$ (on V -19 mtg plate)........................
C-114	21R400099	Mica: 1000 mmp 1500 V (between bezel mtg and chase1s)
Rectifiers		
		Selenium rectifie
Cot18		
L-1	244790033	Antenna mpedance matching coil.
L-2		See tuning unit parts 118t.........
		See tuning unit parts list.........
L-4	-	See TT-12 \& TT-14 tuning unit parts 11st.
$\mathrm{L}_{\text {L-4 }}$		See TT-14 tuning unit paris list...
	24×791446	RF choke: molded; 10 microhenries..

© John Y. Rider

$\begin{aligned} & \text { Part } \\ & \text { Number } \end{aligned}$	Deacription	Part Number	Deacription	$\begin{aligned} & \text { Part } \\ & \text { Number } \end{aligned}$	Deacription		$\begin{array}{ll} \hline \hline \text { MODELS } & \text { 16K2, } \\ \text { 16K2B, } & \text { Ch. TS-74 } \end{array}$
46 K 791756	Core, brase \& acrew (L-11 \& L-15)..	557700				Number	Deacription
464478242 464470310		557100	Rivet: $1222 \times 1 / 4$ st1; por nki (11ne	or		148700174	Insulator, picture tube base (in pictur
	L-20)....	S7703	R1vet: .122 $\times 7 / 32$ st1; pol nkl	24A7	Trap, 1on: PM; with collar...		tube rear cover).
46×480256	Core, 1 ron \& screw (T-1 secondary, L-12).	7728	(electrolytic wafer mtg)..........	1×79185	Tube mig plate: with mounting bracket and	368790505 368790506	Knob, control (contr
46670023 46440302			cket mtg)....................	457569	Weaher, flat: $5 / 16 \times .145 \times 0.027$; cad pl	36 K 7920	Knob, control: wal-mahog (fine tuning is
46 K 471143	Core, 1 ron $\&$ screw (L-23)..........	586846	R1vet: . $145 \times 5 / 32$ atl; pol nkl (vert \&		(V-14 \& V-16 socket mtg).........		off-volume).
464700090	Core, 1ron: with ellde adjustment (L-25).	¢K71246		45490366		364485457	Knob, contro
158791111	Cover, test socket.... Cushion, focus coil...		socket mtg)		${ }_{\text {rect }{ }_{\text {mtg }} \text {) } \ldots \text {...................e. }}$	457650	Lockwasher: \#6 int; cad pl (hi-volt
358792739	Cushion, yoke mtg......................	35490354	Screw, machine: $6-32 \times 5 / 8$ slotted hex	S756	Waeher, Plat: $7 / 16 \times .187 \times .033$ stl; cad		1nsulator mtg).....................
320790946	Gagket, plicture tube 区tg: plastic	35490822		451722		457657	Lockwabher: \#8 ext; cad pl (apkr
SK470916	Cromet, insulating		head; cad pl ($\mathrm{C}-14$ trimmer adj)......		pl (picture tube front support plate	452639	Lockwasher, internal-external: $5 / 16$;
5A790684	Groumet, rubber ($\mathrm{V}-14 \& \mathrm{~V}-16$ socket mtg)	35490459	Screw, machine: $6-32 \times 1-1 / 8$ slotted round head; brase (fastens high volt	457596		62K790672	
14A791787	Insulator, anode lead (dresses high voltage lead from chass1s).........	35488195	transformer plates together $) \ldots$. Screw, machine: $6-32 \times 2$ plain hex head;	4×470939		$13 A 790824$ 257003	Medallion ("M" on grille cloth)..... Nut, hex: $8-32 \times 5 / 16$ steel cad pl
14A780184	Insulator, antenna lead (under input		cad P1 (488700074 selenium rect. mtg)	4A7757	lectrolytic mtg)		
1487279	terminal atrip)...	357163	Screw, machine: 8 -32 $\times 1 / 4$ plain hex head			257007	Nut, hex: $8-32 \times 1 / 4$; cad pl (apkr
14 ко7179	Insulator, coil (1n ratio detector can)...................	357257	Screw, machine: $8-32 \times 5 / 8$ plain hex	4 4791447	Washer, insulating (18olating fil trans	257028	Nut, hex: 1/4-20 $\times 7 / 16$ steel; cad pl
9 K 471267	Insulator, electrolytic mtg: 4-1ug;	42	head (mounts Screw, machine coill bracket)...		Washer		(chasals mtg)
23K791892	Impregnated....................		head; cad pl (picture tube retalner	610790865	Window, plicture tube: 16"; safety glass	557751	R1vet: $-122 \times 1 / 8$ sti; Pol nki (hi-v insulator mtg $)$.............
457657	Lockwasher, external: \#8; cad pl (48 B791694 selenium rect1fier mtg).	397454	Strap, mtg).........................			55770	R1vet: . $122 \times 1 / 4 \mathrm{st1}$; ant cop (picture tube rear cover mtg
457652	Lockwasher, external: \#10; cad pl (picture tube retainer atrap mtg)..	353	hex head: cad pl (fil trans mtg)... Screw, sheet metal: \#8 $\times 5 / 16$ PKZ plain	insulating	сомpo	5 K 790011	Rivet, shoulder: annealed (line cord plug)
457655	Lockwabher, internal: 3/8; cad pl (mounts front controls)		hex head; cad pl (chassis mtg brkt.e).	1114900423	Coating, h1-volt insulating: red-brn (on hi-volt rectifier socket).......	352226	screv, mach1ne: $1 / 4-20 \times 1-1 / 4$ plain hex head; stl; cad pl (chass18 mtg).....
457650	Lockwasher, internal: \#6; cad pl (48 B 700074 \& 48 B 700139 вelenium rect mtg).	387467	Screv, sheet metal: \#8 $\times 3 / 8$ PKZ plain hox head; cad Pl (180lating trans mtg).	111490387 31K76184	Wax, biwax (on hi-volt trans.)............ Strip, terminal: 2 ins \#1 gnd; 3/8" spacing.	357205 357374	Screw, machine: $8-32 \times 1 / 4$ slotted lock hex head; cad $\mathrm{pl} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
459751	Lockwasher, internal-external: \#8; cad pl (focue co1l mtg).............	357512	Screw, sheet metal: \#8 $\times 1 / 2$ PKZ plain hex head; cad pl (picture tube front	31421990	Strip, terminal: 2-8crew (on antenna cable)	357536	
29R5242	Lug, soldering: \#6L; ET (on hi-voltage capacitor).	358153	(expport plate mtg)..................	314792450	Strip, terminal: 2 ins \#3 mtg 3/8 spacing.		acorn head; ant cop finish (back cover mtg)
$\begin{aligned} & \text { 29R5239 } \\ & \text { 13D790936 } \end{aligned}$	Lug, soldering: \#8 HT. Mask, picture tube.		hex head; cad pl (mounte atrap mtg brkt).	31K471564	Strip, terminal: 3 ins \#2 gnd; 3/8" spacing.	357509	Screw, sheet metal: \#6 $\times 5 / 8$ PKA slotted acorn head; ant cop finish (back cover
24470049	Nut, coll \& core metg (L-11, L-12, L-14, L-15, T-2, T-1, L-20 \& L-18)..........	3 K 790107	Screw, thumb: 8-32; cad pl (defl yoke adj)	31 K 51511	Strip, terminal: 3 ins \#3 end; 3/8 spacing.	35490819	
22791404	Nut, coil a a core mtg (L-25)..........	1x792785	Shield, coll: with spade bolts (r-2 shield)...................................	31×471565	Strip, terminal 3 ins end; 3/8" spacing.	98	acorn head; ant cop (back cover mte
277005	Nut, hex: $6-32 \times 1 / 4$; cad Pl (H1-Volt capacitor mig)	${ }_{26 K 485936}$	Shheld, coil (ratio detector)...........	31×37494	Strip, terminal: 4 ins \#3 gnd; $3 / 8{ }^{\text {in }}$	825	hex head; cad Pl (back cover mtg) ...
57003	Nut, hex: $8-32 \times 5 / 16 \mathrm{st1}$; cad Pl (focus coll mtg)		Shield, pleture tube: plastic (around metal cone)	314790122	spacing.. Strip, terminal: 4 ins \#3 gna; $1 / 2^{\prime \prime}$	358253	Screw, sheet metal: \#8 $x 3 / 4$ PKA plain hex head; cad pl (bottom cover mtg)..
257004	Nut, hex: $3 / 8-32 \times 9 / 16$ st1; cad pi (station selector \& cont-vol mtg).	26426283	Shield, tube (for V-10 when elass 655 used)	31K22174	spacing Strip, terminal: 4 ins 抽 mtg; 3/8"	$\begin{aligned} & 3 \times 653 \\ & \text { 35A791581 } \end{aligned}$	Screw, speaker mtg...................... Strip, lead (dresses leads to side of
7051	Nut, hex palnut: $3 / 8-32 \times 9 / 16$; cad pl (rear controls mtg)	$\begin{aligned} & 26490301 \\ & 26 A 990508 \end{aligned}$	Shield, tube: miniature (V-S)............. Shield, video: cad pl (shidelde video amp	314780089	spacing..........................	4 K 780040	cabinet).............................
${ }_{2}^{287050}$	Nut, hex palnut: 6-32 (T-2 can mtg).		Prom HV trans).......................		spacing........................7. ${ }^{\text {a }}$	451720	Waoher, plat: $3 / 8 \times .156 \times .030$ steel; cad P1 (1ine cord mig)
${ }^{2870703}$	Nut, painut: opecial (T-3 primary core	9×7780442	Socket, picture tube: 5-pin; with leade.. Socket, tube: miniature ($\mathrm{V}-3, \mathrm{~V}-4 \& \mathrm{~V}-6$).	31 K 26658	Strip, terminal: 5 1ns \#3 end; 3/8 spacing.	45488234	cad pl (line card mtg).............. Washer, flat: $7 / 8 \times 3 / 8 \times .060 \mathrm{etl}$;
24790191	Nut, spectal: cad pl (mounts ceramic trimpers)......................		Socket, tube: miniature 7 -prong (V-7, V-8, v-9, \& v-15).................................	$31 \mathrm{K9} 9046$	Strip, terminal: 5 1ne \#4 gnd; 3/8' spacing	457562	
35K700799	Pad, cushion (inaide mask when Reulend	${ }_{9}^{9 A 7429167}$		314791402	Strip, terminal: 6 1ns Wh end; $^{2} / 8^{\prime}$	457629	
64 K 791818	pleture tube used).....................	9 9 K 4848816	Socket, tube: noval; molded ($\mathrm{V}-2)$......	314780091			cad pl (bottom cover mtg).
	plate on chassis side)..................	9A790685 94480274			pacing.	57563	Washer, flat: $5 / 8 \times .203 \times .033$ stl;
64 D791722	Plate, front tube support: flbre (supports picture tube front).		rectifier)	MODEL 16K2	BINET PARTS	DEL 16	CabINET PARTS - Same as
64×792464	Plate, socket cover (covers unused sxeket hole next to v-17).................	9 K 471270	Socket, tube: octal; molded (all octal sockete but V-14, V-16 \& V-19).....				
28A790978	Plug, high voltage lead (plugs in high	41470705 $42 A 700143$	Spring, coil (ratio det)...........	1×7001	Back Cover Assembly: camplete with line cord, picture tube rear cover, and	1313791084	Cloth, grille: blonde...
28K472323	voltage receptacle)	414791727	${ }_{\text {Spring, }}$ grounding (grounds window to		centering ad juas ment cover......		Knob, control: ${ }^{\text {tan (}}$ (1ne tuning \& off- volume).....................
9422367	Receptacle, 5 -prong (on spkr leade).		chasis).....................	$16 \mathrm{F7} 00006$	Cabinet, conoole: red-brn mahos;	BLLT-IN-TET	
9 A 990977	Receptacle, kV lead: plastic (insulates hi-volt lead from chasels)	41	Spring, voltage plugert (receptacle for high		bezel..........................	MODEL TA-4	Evision double Loop b
558497	Rivet: . $088 \times 1 / 8$ atl ; white nki (V-1,	41 K 791768	Spring, tension (picture tube support)	308470756			
	V-2, v -5 socket mtg		Strap, tube retainer: cop p1 (secures picture tube front).............	151792068	Cover, centering ad justment: rubber (on	2×791759	TA-4 Television Double Loop Anterna: coumpete (B11t-In-Tenna).........
		3147000	Strip, contect (receptacle for plus-in	1×792546	back cover)............................. Cover, chasals bottox: with high voitage	21×70720	Capactitor, molded: 5 mmf 500
552815	R1vet: $088 \times 7 / 32$ st1; pol nki (mounts $9 K 780442$ and $9 K 484167$ socket).....	314700077			Cover	${ }^{2186993}$	pacitor, mica: 15 mmp 300
557707	Rivet: . $122 \times 5 / 32$ stl; pol nkl (mounts 9K471270 socket).	314791613	Strip, terminal: special (on IVV transformer)	$\begin{aligned} & 15 \mathrm{B790987} \\ & \text { 5S3139 } \end{aligned}$	Cover, plcture tube rear (on back cover) Eyelet: . $202 \times .475$ brass (on back	31×471564	Strip, terminal: 3 ins ${ }^{2} 2$ gnd; $3 / 8^{\text {" }}$ spacing
557701	Rivet: . $122 \times 3 / 16$ stl; pol nkl ($\mathrm{R}-104$ receptacle mtg).	31A21990	Strip, terminal: 2-acrew (on antenna cable).	148792069	Insulator, high voltage (on chassis bottom cover)		

INDEX

PAGE

ALIgNmENT instructions . . . 5	SPECIFICATIONS
InSTALLATION DATA. 1	top view - tube layout.
PARTS LIST 3	TRIMMER LOCATIONS.
PRODUCTION CHANGES. II	Voltage measurements
SCHEMATIC 7,8	WAVEFORMS 7,8

M33

SPECIFICATIONS

OPERATING VOLTAGE - 105 to 125 Volts - 60 Cycles.
CHANEL COVERAGE - 2 to 13 inclusive. CHANNEL COVERAGE - 2 to 13 inclusive
POWER CONSUMPTION - 160 Watts.
AUDIO POWER OUTPUT - 1.5 Watts undistorted - Maximum 2.5
watts.
LOUDSPEAKER - $5^{\prime \prime}-8^{\prime \prime}-10^{\prime \prime}$ - depending on cabinet.
VOICE COIL VOICE COIL- 3.2 ohms - 400 cycles.
RECEIVER INPUT -300 ohms balanced -72 ohms unbalanced.
OTHER ADVANTAGES ARE - One-knob picture control - Very
High Frequency tuner assembly - R.F. stage on all bands -
Snap-in antenna and oscillator coils - Electronic coupled Snap-in antenna and oscillator coils- Enectrontc couple Synchroguide type of AFC - "EVE SAVER" picture tube Alnico Five P.M. Speaker - Inter-carrier picture and
sound - High fidelity FM sound - Improved fly-back high sound - High fidelity FM sound - Improved fly-back high
voltage supply for picture tube - Four I.F. coils Isolated filament winding for important audio tubes I.F. plate voltage regulation - Very moderate temperature rise - Convenient service adjustments - All wood cabinets Anti-glare picture mask - Safety glass protection.

high voltage warning

The dangar accompanying shock is always present when the receiver is operated outside the cabinet or when the rear cover is removed from the operated outside the cabinet or when the rear cover is removed from the
cabinet. Only a person familiar with the precautions to be observed when
working with high-voltage equipment should service this receiver.
block circuit diagram

INSTALLATION INSTRUCTIONS

unpacking the ty

1. Place the carton on the floor in an upside down position with the large red arrows downward
2. Break the carton seals and fold back all flaps over the sides.
3. Give the carton a $1 / 4$ turn, resting it on the MUNTZ side.
4. Support the TV set with one hand on the ing the flaps from moving barton, prevent
5. Lift the carton free from the television set. It will then be resting on the filler the knobs or cabinet.

TO PREPARE THE RECEIVER FOR OFERATION
MUNTZ Television sets leave the factory with the chassis bolted tight to the cabinet, but not in proper position. This is done to pre-

1. Remove the back of the cabinet.
2. Inspect the face of the CRT and the glass window for dust or smudges. If the face of the CRT or the inside of the glass window is smudged, it will be necessary to remove
the chassis to clean the smudged surface.
3. Loosen the 4 chassis mounting bolts (table model, beneath the set; consolette style forward in the cabinet until the picture forward in the cabinet until the pic
tube rests snugly against the mask.
4. Tighten the mounting bolts securely.
5. Check the adjusting screws of the deflection yoke. The rubber cushion at the fron of the yoke must rest tight against the curved surface of the picture tube. If the cushion is not tight against the tube
loosen the 4 bolts at the base of the yok and push the entire yoke assembly forward until the rubber cushion is tight against
the CRT. See Fig. No. 1, Point b. CABINET TY ANTENNAS
Coming forth from the side of the chassis near the rear antenna terminals are red and
blue wires tipped with spade lugs. A third wire runs across the inside top of the cabinet and down the cabinet side, terminating near the red and blue wires. It also is tipped with a spade lug. These three wires can be connected in various two-wire combinations to the two
antenna terminals. Fasten in a combination that will give the best picture reception on all
channels.
If the built-in antenna provides good reception no outside antenna is required, but never
hesitate to recommend an outside aerial wherever necessary.
If an outside antenna is desirable, disconnect the built-in antenna wires. Cover the ends with tape and dress in such a position that they do
MODELS M3l, Ch. TV17A2; M3lR
M32, M32R, Ch. TV17A3; M33, M34, Ch. TV17A4; M41, M42, Ch. TV17A3A; M46, M49, Ch. TVI7A?

TO CHECK OPERATION OF RECEIVER

All MUNTZ TV sets are adjusted during the
inal test procedure at the factory, but wil require an adjusting and touch-up job in the

1. Connect the AC plug ($105-125$ volts) to a 60 cycle wall socket. Turn the allow a set on and

Advance the volume control $1 / 2$ turn to the right.
3. Turn the channel selector knob to a local station.
4. Turn the picture control to the right until the screen of the picture tube is illuminated. The set should now operate, picture and sound, with the following provisions: (a) a station operating on the air, (b) the
oscillator adjustment tuned to the station, (see paragraph "Oscillator Alignment") and (c) tube and service adjustments are not too
far out of alignment.

PICTURE TUBE ADJUSTMENTS

The picture tube adjustments are on the neck with the service controls and need a touch-up job in the customer's home at time of installation. Function of these controls is as fol-

Never move the ION TRAP to remove a SHADOW from the edge of the raster as by so doing the
intensity of the raster is decreased. In such a case the shadow should have been eliminated by moving the deflection coil forward and then re-
adjusting the focus coil, focus adjustments, and adjusting the focus coil, focus adjustments, and
finally the ion trap. The ion trap should always be in the position to give MAXIMUM raster

Too much care cannot be taken in making the ion trap magnet adjustment. $\begin{gathered}\text { Remember the pic- } \\ \text { ture tube is still the most expensive part of }\end{gathered}, ~$ the TV receiver. Take a little extra time and check the ion trap setting carefully.

CATHODE RAY TUBE CUSHION The rubber cushion must fit snugly against the
flare of the cathode ray tube in order that the
rar of the tube will be supported firmly. Loosen rear of the tube will be supported firmly Loosen
the 4 cushion adjusting boots and press the enthe 4 cushion adjusting bolts and press the en
tire assembly forward. Fig. No. 1, Point B.

VIEW OF C.R.T.-PICTURE TUBE ADJUSTMENTS

B 4 CRT. CUSHION (E)ADJ. HR
ADJ. BOLTS
PLANE-FOCUS COIL
NOTE: The 4 nuts "E" on Fig. No. 1 are welded positions on the 19 " nodel and not
adjustable.

FIG. NO. 1
Before giving the proper instructions for Ion Trap adjustment, we must call to your a
the seriousness of a mis-adjusted trap.
Improper positioning of the magnet may result in circular areas of discoloration devely the picture screen, even though the ions developed properly "trapped." when the tube have been the correct position, the electron beam, instead of going through the aperture in the anode disc, bombards the edge of the opening.
The heat thus produced vaporizes the metal of the 2 nd anode disc, releasing gases which have a harmful effect on the operation of the tube.
Some of this vaporized material is deposited on the screen of the tube, causing darkened areas in the center of the screen.

Since it is possible to destroy a picture tube with a mis-adjusted ion trap in a matter of the set is turned on and the last adjustment before restoring the back of the cabinet.

TO PROPERLY ADJUST AN ION TRAP DO THE FOLLOKING Move the trap assembly back and forth with a
slight rotary motion; adjust for maximum bright ness of the screen. Reduce fhe brilliance control until the pattern is barely visible and again adjust ion trap for maximum brightness eck of the picture tube as possible (over or . No. l, Point A
The ion-adjustment MUST BE RESET AFTER EVERY
MOVEMENT OF THE FOCUS COIL OR FOCUS ADJUSTMENT

CATHODE RAY TUBE HANDLING PRECAUTION

Shat terproof goggles and heavy gloves should be worn at all times when handling the cathode ray tube. The tube should not be handled in the vicinit of any person not so equipped
keep it away from the body.

The cathode ray tube bulb, due to its large surface area and hirh vacuu contained within, is subjected to high air pressure. More than ordinary care
is required to prevent shattering the tube. The large end of the bulb particularly the rim of the viewing surface, must not be struck, scratched, or subjected to more than moderate pressure at any time. If the tube sticks or falls to slip smoothly into place during replacement, remo
determine the cause of the trouble - - DO NOT FORCE THE TUBE.

YERTICAL DEFLECTION YOKE ADJUSTMENT. The raising or lowering the metal strap which supports the horizontal deflection yoke. To raise and float the yoke coils around the neck of the picture tube. Adjust in a way to avold all

THE HORIZONTAL DEFLECTION YOKE ADJUSTMENT COD rols the angle of the picture with respect to the horizontal. If the picture is not squared nove it to the left or right so as to rotate the deflection yoke. The picture will tilt to the eft or right with the deflection yoke rotation ore tightening the wing nut, the mask and becoil forward as far as possible to the flare of the picture tube. Fig. No. 1, Point C

FOCUS COIL: To protect the neck of the pic ture tube during transit, a cardboard band is
put inside the focus coil. The purpose of the focus coil is to center the picture on the screen in its entirety with the best possible Point E) to centralize the focus coil on the neck of the picture tube. To properly position the coil along the neck of the picture tube,
adjustments as shown in Fig. No. provided. Before adjusting these, setgthe focus ontrol Fig. No. 3 at midpoint. Now move the coil back and forth along the neck of the tube ture. Reset the focus control for best line de tail in center of picture. In general, the focus coil should be positioned as far forward as consistent with good line detail. The focus

MODELS M31, Ch. TV1?A2; M31R, M32, M32R, Ch. TV17A3; M33, M34, Ch. TV17A4; M41, M2, Ch. TV17A3A; M46, M4, Ch. TV17A7
of the cabinet. It has a universal joint action final setting of all of picture centering. A nd vertical a picture with straight horizontal tail. Reset Ion Trap.
PICTURE CENTERING LEVER. If the picture is ot centered in the mask or shadows appear at ocus coil, it will be necessary to adjust the lever" which extends through the backboard of ne set. See Fig. No. 1A. The picture centeruniversal joint action the focus coile of easily centerng the picture to the proper position. ALWAYS

DESCRIPTIVE OPERATION OF SERVICE CONTROLS

FRONT CHASSIS SERVICE ADJUSTMENTS

FIG. NO. 2
The most necessary service controls are con-
veniently located under the MUNTZ TV name plat on the front of the set between the name plat To remove this panel place the fingertips on both ends and pull gently toward you. On the back of the panel you have just removed is a
diagram naming the controls in their order v. HCLD: The vertical hold control locks th p. HCLD: The vertical hold control locks the
picture into position on the surface of the pic-
ture tube so that it no ture tube so that it no longer moves up or down.

BRILLIANCE: The brilliance control must be adjusted simultaneously with the front panel picture control. Too much brilliance will have the same effect as too little contrast, making it advisable to strike a proper balance between They are to be adjusted when the set is installed and should receive consideration on
ing lever.

H. HCLD: Tnis control locks the circuits of the receiver in horizontal synchronization with the transmitting station. If heavy diagonal
lines run across the picture, moving the control will snap the picture into view. Fig.
No. 2 . Like photography, the final setting of the bril
liance control should be left at a point where the picture displays a really dark black, a ver brilliant white, and many shades of grey. Fig.
No. 2.

OSCILLATOR ALIGNMENT

An important adjustment that must be made in the oscillator alignnent tuning slug adjustment While they are accurately set at the factory, a touch-up job is necessary to bring the TV

The tuning slugs may be reached through an pening located behind the channel selecto
(a) Turn the TV set on and allow a 10 minute warm-up period.
(b) Set the channel selector to the desired station on the air in your locale.
©John F. Rider
(c) Turn up the volume control and picture
control to a normal operating position
(d) The TV station on the air is better suited for making the oscillator adjust-
ment than a signal generator.
(e) Use a non-metallic screw driver so the
coil inductance will not be affected.
(f) Tune adjusting slug for most efficient

CAUTION: Take care that the oscillator slug is not screwed in beyond its thread limitations as it will drop into iie oscillator coll, which the drum assembly so that the threads may again be engaged. This amounts to a good deal of work. To prevent this, always start by turning
the adjusting screw in a counterclockwise direc the ad
tion.

REAR CHASSIS SERVICE ADJUSTMENTS
The remainder of the service controls are found on the back of the chassis and can be seen just below the back plate of cabinet. See Fig. No.

FIG. No. 3
V. LINEARITY: The vertical linearity control gives the proper vertical proportions to the
picture. Movement of the control affects the top half of the picture much more than the lower half. For this reason the V. Linearity and the

V. Size must be adjusted simultaneously for proper proportions of picture height. Fig. | proper |
| :--- |
| No. |
| |

V. SIZE: This control changes the overall picture height. When adjusted to correct
height, the picture should extend for approxi-
nately $1 / 4$ inch beyond the edge of the picture tube mask so that the top and bottom edges of
the picture are not visible. Fig. No. 3 .

FOCUS: The focus control clarifies line detail throughout the entire picture. It works in conjunction with the focus coll. Watch the cen ter of the test pattern for sharp detail when trol at point of optimum. Readjust Ion Trap.
H. DRIVE: (Cô5B) Adjustment expands and contracts the picture irom midpoint to the left.
CAUTION: Trimer screw will fall out if turned too far to the left.
H. LINEARITY: (Ll3) Adjustment expands and contracts the picture from midpoint to the right. Alternate readjustment of C65B and L13 will obtain good horizontal linearity. When the proper setting of controls V. LiN. and . SIZE is completed the test pattern circle Should appear round. NOTE: If a white vertical can appears on the left side of the picture, it horizontal drive. In some cases a compromise adjustment for linearity must be made to elimnate the white line
All the stations do not send perfect linear making the linearity size and centering adjustments, to check the stations on the air and make your adjustments to fit all stations as well as possible
H. RANGE: For particulars, read the HORIZONphono jack
When using a phono attachment the picture conMove the station selector The volume control of the receiver now acts as he volume control for the phono unit.

During the history of production on the TV17A chassis the phono jacks were not always con-
nected. If you desire to use this part follow he wiring as given on the schematic diagram. The phono
PR-0174.
. Turn both $\frac{\text { HORIZ. OSC. SLUGS out of coil can }}{}$
CAUTION: For manufacturing convenience both of the osc. adjustments are within the can
$\#$ LO-0035. If slugs are turned too far in. then a coupled condition is reached which is undesirable.
3. Pre-set H . RANGE trimmer $1 / 8$ turn out from the H. HOLD H RANGE and TOP H OSC. SLO the $\frac{\mathrm{H} . \mathrm{HOLD}, \mathrm{H} . \text { RANGE, }}{}$ and TOP H. OSC. SLUC
Connect scope having a 10 mmf . condenser in (Fig. No. 4). Adjust bottom H, OSC. SLUG KEEPING PICTURE SYNCED AT ALL TIMES, unt il broad and sharp peaks are of equal height (Fig. No. 4A). Remove scope
5. Set $\frac{H, \text { HOLD }}{}$ to extreme clockwise position adjust TOP H. OSC. SLUG until complet
BENEATH CHASSIS

FIG. NO. 4

6. Re-set H. HOLD to extreme counterclockwise ync. by on, station.
7. Slowly rotate $\frac{H,}{}$ HOLD control clockwise uninto sync.
8. While repeating step No. 6 as required, re adjust the H. RANGE trimmer and the TOP ${ }_{\text {H. }}$ SC. SLUG Until a condition is reached wherein there appears 3 or 4 diagonal bars

CAUTION: The H. RANGE trimmer and the TOP H. OSC. SLUG are interactive and there are the picture will sync. but only ONE combina the picture will sync. but only 0 NE
tion where the 3 or 4 diagonal bars appear just before snapping into sync.
9. Now recheck the clockwise position of H. HOL during the last 45 degrees of rot of sync. during the last 45 degrees of rotation. If
not, slightly readjust the TOP B. HOLD SLUG only until this condition is reached.
10. Repeat any of the above steps as necessary specifications as required informs to specifications as required in paragraph
"Checking need for H. Osc. Adjustment".

PARTS LIST

Description and Chassis Number which is located on the rear of the chassis you are part Number,

CABINET PARTS

HORIZONTAL OSC. SET-UP PROCEDURE - SYNCHROGUIDE CIRCUIT

CHECKING NEED FOR HORIZ. OSC. ADJUSTMENT

Tune in a good signal (preferably a test pattern) and allow receiver to warm up for a few minutes. When the Horiz. Osc. adjustments
are properly set, the horiz. hold control will act as per the following: Rotate the horiz. hold control (beneath MUNTZ name plate) fuliy counterclockwise. The picture should remain
in horiz. sync., but fall out of sync. if the in horiz. sync., but fall out of sync, if the back to channel. This action is correct with
the H. HOLD fuliy counterclockwise. Slowly rotate B . HOLD control in a clockwise
direction. The number of diagonal blanking bars will gradually decrease, until only 3 or 4 diagonal blanking bars can be seen. At this point slight additional rotation will snap the
picture into sync. The point where the pictur falls into sync. should occur when the H. Hold control is approximately 45 degrees from full

Further rotation of control should find the picture falling out of sync. in the opposite CLOCKWISE position. In this position it should fall out of sync. without rotation of selector

If the horiz. osc. does not fill the above re quirements, readjustment of these circuits is, in order and can usually be done in the customer's the TOP HORIZ. SLUG, H. RANGE, AOL H. DRIVE, TRIMMERS set to posit $\frac{\text { ions that }}{}$ and fill the above equirements. If these conditions cannot be ob justment. Follow procedure listed under
"Complete Alignment of Horizontal Oscillator"

$$
\begin{aligned}
& \text { COMPLETE ALIGNMENT OF } \\
& \text { HORIZONTAL OSCILLATOR (AFC }
\end{aligned}
$$

- Tune in known good signal (test pattern) and adjust contrast control well below an overcontrast condition.

CABINETS

TS			
Part No.	Description		Chassis No
CW-0023-1	Table Model	Walnut	(M31 TV17A2
-3	Table Model	Mahog.	(M31 TV17A2)
-4	Table ilodel	Blond	(M31 TV17A2)
CW-0023R-1	Table Model	Walnut	(m31R TV17A3)
-3	Table Model	Mahog.	(M31R TV17A3)
-4	Table Model	Blond	(M31R TV17A3)
CW-0024-1A	Consolette	Walnut	(m32 TV17A3)
-3A	Consolette	Mahog.	(M32 TV17A3)
-4A	Consolette	Blond	(M32 TV17A3)
	or chassis	17A2 (angular)
$\begin{array}{r} \mathrm{CW}-0026-1 \\ -3 \\ -4 \end{array}$	Consolette	Waln	(M33 TV17
	Consolette	Mahog.	(M33 TV17A4)
	solette	Blond	(M33 TV17A4)
	CABINET ACCESSORIES		
Part No.	Description		
ES-0016-1B	Cover Plate MUNTZ - bronze		
ES-0017	Dial Plate (Pic. Control) - bronze		
ES-0018-A			
ES-0021	Mask $16^{\prime \prime}$ rectangular - alum.		
ES-0023	Escutcheon Bezel 16" - bronze		
ES-0024	Mask 16" round - alum.		
ES-0025	Mask 19" round - alum.		

Mask 19 " round - alum.

ES-0026
$\mathrm{BP}-0120 \mathrm{~A}$
$\mathrm{BP}-0121 \mathrm{~A}$
$\mathrm{BP}-0121 \mathrm{~A}$
$\mathrm{BP}-0122 \mathrm{C}$
$\mathrm{BP}-0122 \mathrm{C}$
$\mathrm{GW}-0008$
$\mathrm{GW}-0008$
$\mathrm{GW}-0009$
$\mathrm{~KB}-0029$
$\mathrm{CW}-0009$
$\mathrm{~KB}-0029$
$\mathrm{~KB}-0030$ $\mathrm{KB}-0030$
$\mathrm{~KB}-0031$ $\mathrm{KB}-0031$
$\mathrm{~KB}-0032$
KB $\mathrm{KB}-033$
$\mathrm{~KB}-0033$
$\mathrm{MP-0442}$
PR PR-0170 PR-0170 Compression Ring for Knob
PR-0171
Spacer Sleeve for Knob WF-0028 Washer Knob 2" Felt
WF-0029 Washer Knob 1-1/4" Felt $\begin{array}{ll}\text { WG-0009A } & \text { Glass } 16^{\circ}-\text { Safety } \\ \text { WG-0010 } & \text { Glass } 19^{\prime \prime}-\text { Safety }\end{array}$ SPEAKERS $\begin{array}{lll}\text { SK-0012 } & \text { Speaker } & \text { 5" P.M. } \\ \text { SK-0014 } & \text { Speaker } & \text { (LSI }{ }^{\prime \prime} \text { P.M. }\end{array}$ MODELS M3i, Ch. TVITA2; M3IR, M32 M32R, Ch. TVL7A3; M33, M34, Ch. TV17A4; M1, M42, Ch. TV17A3A: M 6 , M, Ch. TVITA7 TV17A3A M46, ML9, Ch. TVI7A?
scutcheon Bezel 19" - bronze ack Board (14-7/16"×20-5/16") (19 " cabinet) rille M32 - brass rille M33-brass nob (On/Off Vol.) - brass Knob (Selector) - brass nnob (Vol. Control - molded Knob (Pic. Control - molded Spring Catch - Holds MUNTZ Name

The following list of parts can be identified from the schematic diagram, Tuner Section Zl

OJohn F. Rider

QJinn Tr Rtiat

©John F. Rider

John F. Rider

© John F. Rider

©John F. Rider

The position of the fuse from beneath the chassis is being moved to up in
side the high voltage compartment. The fuse may now be reached by simply removing the inter-lock assembly.
The practice of holding a screw driver close to the high voltage winding of the high voltage transformer should be discontinued. This was done by men in the field to see if the high voltage winding was working, but this is what takes place. A light corona condition exists between the high voltage winding and the screw driver blade. The corona breaks down the insulatIon on the high voltage winding (although it cannot be seen by eye) and a
week or two later the transformer must be changed. TO TEST THIS PART, USE week or two later the transformer must be changed. TO TEST
A CONTINUITY METER AND CHECK BETWEEN TERMINALS $1-2$ AND $2-3$.
The following parts are to be used only in the \#TVI7A7 chassis, all other parts are the same as in the main parts list:

Backboard for M4, M44, M46
Spacer Bracket - Tube Mtg. 20" rect.
Bracket for Pix Tube Band
Bracket Tube stop
Kinescope Cable Assy. H.V.
Capacitor - $5 \mu \mu \mathrm{fd}$. - $.5 \mu \mu \mathrm{fd}$. Zero Temp. Coeff. Capacitor - . $001 \mu \mathrm{fd} ., \mathrm{min}$. Ceramic \qquad -750 Capacitor - 120 uhrd., 5% Cerac - 750 Temp. Coef. Capacitor - $100 \mu \mu \mathrm{fd}$., Ceramic Capacitor - $10 \mu \mu \mathrm{fd} ., 5 \%$ Ceramic -750 Temp. Coeff.cC-0085 Capacitor - 5 to 3 , Ceramic Tuning Capacitor - io $\mu \mu \mathrm{fd} ., 5 \%$ Ceramic Zero Temp. Coeff. CC-0089 Capacitor - $500 \mu \mu \mathrm{fd} .$, Ceramic - HiV. 20KV - DC
Capacitor - Mica -120 fd. $10 \% 000$
CM-0042 Capacitor - Paper -. $05 \mu \mathrm{fd} .1000 \mathrm{~V}$. DC Cabinet - Consolette - $20^{\prime \prime}$ Walnut Cabinet - Consolette -20" Blonde
Cabinet - Console 19^{n} Walnut
Cabinet - Console 10" Mahog
Cabinet - Console 19" Blonde
Crystal, Germanium (1N60)
Bezel - $19^{\prime \prime}$ Rd. Fixed M44, M45 Bezel Fixed M45 Mask, Plastic - 19" Rd. Fixed - M
Mask 20" rect. M46
Felt Strip - $16^{\prime \prime}$ rect. or $16^{\prime \prime}$ round
Felt Strip - 17" rect. or $19^{\prime \prime}$ round Felt Strip - 20" rect.
Insulator - Mtg. HiV. Socket
Focus Coil - I7A7 20" rect. Band - Pix Tube - 20" rect. Nut - \#10-32x3/8 - 20n rect. Packing Carton - Console Packing Carton - Chassis TVI7A4 Knob, Ring, Compression Strip - Pix Tube Band - 20 Resistor - 68,0002 2 W Resistor - 470,000 $1 / 2 \mathrm{~W}$. Resistor - Candohm, 32,000S 10 W . Screw - \#10-32x3/8 Hex Hd Spring - Tube Mtg. $20^{\prime \prime}$

PART NO.
BP-0122-1
BR-0127
BR-0128
BR-0129
CA-0107-1
CC-0079
CC-0081
CC-0082
CC-0083
-0084 CM-0042 CW-0030-1 CW-0030-3 CW-0027-1A CW-0027-1A CW-0027-4A CX-0028 ES-0028 ES-0031 ES-0031
ES-0032 ES-0033 ES-0033 ES -0034
FB-0007 FB-0007-1 FB-0007-2 IN-0098 LC-0054-1 LC - 0052 MP - $0 \mathrm{LH}_{4} 8$ NT-0034 PC-0026 P8-0027 PR-0170 PR-0171 RB-0043 RC-5802-12 RC-4703-21 RW-0037 SC-7503
SC-2030 SP-0049

PART NO.

TO-0024

17 BP 4 A
17AP4A
20DP4
WE-0148
WE-014
$\mathrm{WE}-0144$
$\mathrm{WG}-0011$

THE FOLLOWING CHANGES MAY BE FOUND IN CHASSIS MODELS \#17A2 - \#17A3 \#17A4 - \#l7A7. THEY BRING THE ATTACHED DIAGRAM UP-TO-DATE.

On Chassis Models \#l7Al - \#l7A7, an 820 ohm resistor 2 watt is in parallel with Rl2 focus circuit; in other words, only used on the 19 and $20^{\prime \prime}$ tubes.
schematic pertains to the chassis employing a 6AG5, 6BC5, 6CB6 the lst I.F. Amp.

This schematic pertains to the chassis employing a 6F8G tube instead of a 12 AT 7 Sync. Separator.

MODELS M31, Ch. TV17A2; M31R, M32 M32R, Ch. TV17A3; M33, M34, Radio M32R, Ch. TVI7A3; M33, M34, Radio

With reference to MUNTZ chassis models loA or 17 A early series.
COMPLAINT No. 1: Fold over at bottom or raster.
. No. 2: Lack of vertical height.
n \quad No. 3: Pear shaped test pattern.
Any one of these three conditions can exist in the wax impregnated trans former. In getting the feel of doing the following work, we suggest you use a TV with a waxed transformer.
PARTS AFFECTED - Vertical output transformers part numbers T0-0018 A, B, or TO-0023, A, B, C.

TOOLS NECESSARY - Pair of Vige gripping pliers of the type generally used
TBCHNICAL - The technical reason for these difficulties is the variations in the tiny air gap between the I \& E section of the laminated Late chassis models 17A have a fixed gap.
OPERATION: Tune in a test pattern, use a crayon pencil and mark a refernce line at the top and bottom of the test pattern. The reo correct complaints No. band No. 2, squeeze the laminations very tightly, particularly at the sides of th channel shell container to permanently hold the laminations a little closer together. (tight stack) See Fig. A. Squeeze at pattern and correct V. Height and V. Linearity control settings. Repeat above until best results are obtained.
To correct complaint No. 3, it will be necessary to unsolder the wires and remove the transformer from the chassis. Place a heavy weifht tene ath position C. This will reduce the air gap between the I \& E lamination stack.
Another way, is to place the transformer in a bench vise and squeeze it. Fig. D. Restore the transformer to the chassis by means of $6-32$ hy $1-4$ " light stiff cardboard (such as used on back of a paper tablet) between the transformer and the chassis pan. When tightening the kolts, the lit tle piece of cardboard will act as a uttress and permanently held the stack tightly togethe
\#l. Adding resistor R83 to the circiit permits us to use filter condThe 450 volt condensers are ore copon instead or foo volts.
 Imporan: Whan you have an
IMPORTANT: When youl have an occasion to use a 450 volt filter condenser for repair purposes on a chassis that previously had 500 vol
filter condenser, be sure to add the resistor R\&3.
\#2. As a temporary deviation due to the scarcity of no. cavc tubes on the market, for the next 5000 chassis the factory will use a No. GAG5 tube in place or a No, UAUG at the 1 st I.F. Amplifier stage. ged they are in the chessis, the tube layout sticker will he chan marker positions. A slight improvement will be noticeable in in sensitivity amounting to arcut 2 db . Otherwise everything is equal. We have drawn an (x) on the wire necessary to eliminate when the No. GAG5 tube is present. In other words, we have removed the buss ground wire from pin \#2 to ground when installing the 6AG5 tube. You
\#3. This pertains only to chassis Models l7A4 end l7ALA which are the $10 n$ round glass picture tube chassis. Across resistor Rl2 (820 ohm 2 watts $1 s$ soldered a 2 nd (320 ohm 2 watts) resistor 884 in parallel.
So doing improves the focus on the 10^{n} model.
\#4. Isolation resistors R30-R32 \& R35 (old schematic) will be replaced M32R, Ch. TVI7A3; M33, M3, M32, with choke coils Ll4-L15 ent Lle and in production in the near fut-M32R, Ch. TV17A3; M33, M34, Ch ure. Please watch for them. The new choke coll looks like a res-TVI7A4; Ch. TVI7Al4A istor as it is housed in the resistor type of coating. The DC re-
sistrnce will measure . 3 ohms. The part number for this choke is
LC-0054-1 and is a 1 microhenry choke

FIG-A

The 2 Watt resistor Rl2 in series with the focus control has been moved away from beneath the transformer T6 (Foriz. Osc. from the resistor was rising into the condenser and Horizont al oscilletor coil - affecting the stability or those parts.

Early production receivers may be modiried by moving the
resistor as shown in the following sketch

SPECIFICATIONS
CIRCUIT DESCRIPTION
SWEEP FAILURE PROTECTION CIRCUIT
DESCRIPTION OF THE PROTELGRAM UNITS
HIGH VOLTAGE POWER SUPPLY (170 B)
H.V. POWER SUPPLY-SCHEMATIC
H.V. POWER SLPPLY-DIMENSIONS
H.V. POKER SEPPLY-COMPONENT PARTS IAYOUT 3NP4 PICTURE TUBE
OPTICAL UNIT
INSTALLATION INSTRUCTIONS
HOW TO REVOVE THE CHASSIS
ALIGNMENT PROCEDLRE
SCHEMATIC
PARTS LOCATION
ELIMINATION OF ALDIO BUZZ
3NP4 TUBE INSTALLATION \& POSITIONING ADJUSTMENTS
SERVICE HINTS
PARTS LIST

MODEL PT 200

MODEL PT 300

MODEL PT200 THE IRVINGTON"

SERVICE NOTES

CHASSIS PT200
The NORELCO PT300 employ a television chassis of the most advanced design, in conjunction with the new MODEL 170 NORELCO PROTELGRAM TELEVISION SYSTEM. 19 tubes, 3 rectifiers, 1 picture tube and germanium diode are used.

SPECIFICATIONS

PICTURE $\quad 133^{1 / 2} \times 18^{n}$ (235 Square inches) with rounded corners, on a flat, trans slucent screen.

INPUT IMPEDANCE

FREQUENCIES IF-21.25 Mc., Intercarrier sound - 4.5 Mc.
POWER The High Voltage for the anode of the 3NP4 picture tube SUPPLY is obtained from a Norelco H.V. Unit Model 170B.

PROTECTION To prevent accidental damage to the screen of the 3NP4 picture tube in CIRCUIT the event of deflection circuit failure, a special protection circuit is incorporated in the chassis. (See sheet 3)
OPERATING 110-120 volts, 60 cycles

MAX. POWER 225 Watts
CONSUMPTION
MAX.
3.0 Watts

SPEAKER $\quad 8^{n} \mathrm{PM}$
TUNING Commercial television channels 2-13, inclusive.
RANGE
TUBE
V2
V2
V3
V4
V5
V5
V 6
V7
V8
$1 / 2$ V9
$1 / 2$ V9
$1 / 2 \mathrm{Vl}$
$1 / 2 \mathrm{~V} 10$
$1 / 2 \mathrm{~V} 10$

RF Amplifier	6AG5
Oscillator - Mixer	6J6
lst IF	6CB6
2nd IF	6CB6
3rd IF	6CB6
Video Detector \& AGC	6AL5
Video Amplifier	6AG7
Picture Tube	3NP4
DC Restorer \& Sync. Separator	12AU7
	or
Sync. Phase Inverter	6SN7
Horizontal Sweep Failure Protector	12AU7
	or
Vertical Sweep Failure Protector	6SN7 Irvington
	MODELS PT200, The Irving Ch.
	PT300, The Mt. Vernon; Ch.

[^7]The tubes employed are:

1) 1 - 6L6G	Oscillator
2) 2 - 1B3GT	Rectifiers
3) $1-6 V 6 G T$	Regulator

The 6L6G operates as a normal continuous oscillator at a frequency of approximately 28 kc . The plate winding of the oscillator forms a section of an auto-transformer winding which steps up the oscillator output voltage 10 the order of 12.5 Kv peak. The two lB3GT rectifiers are used in a voltage-doubling arrangement so that the output voltage at no load with the regulator tube in operation is about 24.5 Kv and drops to 23.5 Kv at 200 Microamperes.

The output voltage regulator tube is a type 6 V 6 GT . Its plate and screen are electrically connected, and are supplied from an additional winding on the high voltage transformer. Bias on its grid is dependent on the amount of beam current drawn by the $3 \mathrm{NP}_{4}$, since it is developed across a 300,000 ohm resistor in series with the plate of one of the 1B3GT tubes. The regulator operates as a variable load on the oscillator. Higher beam current generates higher negative bias on the regulator tube. Therefore it absorbs less power, so that the output voltage of the oscillator/voltage doubler system tends to remain more nearly constant.

As the regulator tube approaches cutoff, its effect continues to decrease until the output voltage of the system begins to follow an unegulated curve, and the output voltage starts to fall. This arrangement provides a safety device for the $3 N P 4$ which prevents injury due to severe overloads at high voltage, forms a protection agairst external short circuit, and also reduces the shock hazard to personnel. There is also a protective resistor in series with the anode lead at the connector. This has a value of 1.5 megohm.

Extreme care, however, must be exercised when working on the high voltage circuits. A good practice when working with such circuits is to keep one hand in a pocket while working only with the other.

3MP4 CATHODE-RAY TUBE
GENERAL CHARACTERISTICS ELECTRICAL

Heater Voltage:
Heater Current:
Focusing Method:
Deflecting Method:
Maximum Deflection Angle
Gun:
Phosphor:
Fluorescence:
Persistence:

SPECIFICATIONS
6.3 volts
0.30 amperes

Electromagnetic
Electromagnetic
42°
Triode
No. 4 aluminized
White 6000° - 8000° Kelvin
Medium
Cathode to all others: $\quad 6 \mathrm{mmf}$

Grid to all others:
Anode to external coating:
maximum design ratings
Anode Voltage:
Grid Voltage Negative Bias
Grid Voltage Positive Peak:
Maximum Heater to Cathode
Voltage:
(heater positive or negative) Grid Circuit Resistance:
Heater/Cathode Resistance:
TYPICAL OPERATING CONDITIONS Anode Voltage: Anode Current Normal:
Normal Anode Current Peaks Grid Voltage for Visual

Extinction of Undeflected
Focused Spot:
Focusing Current:

Pin No
Grid
Heater
Spark Trap (Must be grounded) Heater Anode: Cup contact

6 mmf

450 mmf

25,000 volts D.C
150 volts D.C.
2 volts D.C.
125 volts D.C.
Not to exceed 1.5 megohms Not over 20,000 ohms.

24,000 volts D.C. $\pm 1 \mathrm{Kv}$ 90 Microamperes
 150 Microamperes

$40-90$ volts negative
290 ohm Coil-125 milliamperes nominal
1,000 ohm coil-2l milliam peres nominal

OPTICAL UNIT AND TUBE MOUNT
TUBE MOLNT
The Tube Mount includes the Focus Coil, the Deflection Yoke and the Tube Clamp Assembly.

The Focus Coil used in the PT200 receiver has a DC resistance of 290 ohms $\pm 10 \%$ and a nominal current of 125 milliamperes. The Tube Mount is assembled to the Optical Box by means of the Mounting Frame which contains the 3 adjustments used for mechanical focusing. These adjustments should be made when the set is installed and when the $3 N P 4$ Picture Tube is replaced. They are described under "Installation Instructions" on sheet 8 . OPTICAL UNIT

This unit contains a concave mirror, a flat mirror and a corrector lens. These elements are precisely assembled at the factory and no attempt should be made to adjust or replace them in the field. The corrector lens should be cleaned with a adjust or replace them in the field. The corrector
soft rag.
PROTELGRAM CONNECTIONS

The following socket and plug and jack connections are provided for easy connection of the Protelgram units to the chassis:

J2 - 3NP4 Picture Tube Socket.

1. Red	Grid		
2. Yellow	Heater	6.3 volts, 0.30 amps.	
3. Blue	Spark Trap	ground	
4. Black	Heater	ground	
5. Green	Cathode		

J6 - Deflection Yoke and Focus Coil

J5 - 170B H. V. Power Supply Connections

Ground
B minus
B plus
Filament

350 V.
6.3 V.A.C.

1. Yellow
2. Yell
3. Orange-Black

4-6 Jumper
5. Orange-White Horiz Dection Yoke
7. Blue-White
8. Blue-White

Focus Coil
Focus Coil Horiz. Deflection Ycke

Horiz. Deflection Yoke Vert. Deflection Yoke-ground Vert. Deflection Yoke

HIGH VOLTAGE WARNING: The back of the receiver is equipped wath an interlocking power cord which removes power from the set when the back is removed. Operation of the receiver outside its cabinet or with the back removed involves a shock hazard. Therefore no work should be attempted on the receiver by anyone who is not familiar with the precautions necessary when working on high-voltage equipment.

1. SERVICE ADJUSTMENTS: The service adjustments are readily accessible by removing the grillecloth panel, which is held in place by bullet catches. The panel can be easily removed by a slight pull at the top.
2. REMOVAL OF SHIPPING CLAMP AND OPTICAL ADJISTMENTS:
a) Remove the speaker baffle. This is held in place by 2 wing nuts which can be reached through the bark of the catinet.
b) The Optical Box is located directly behind the speaker baffle. To prevent accidental damage during transit a red shipping clamp is attached (1) the optical box. Remove this shipping clamp by unscrewing 4 screws holding it. Keep the shipping clamp by unscrewing 4 screws holding it. Keep
clamp and screws for possible future use in shipment.
c) Connect $A C$ line to outlet.

3. Connect sweep generator, capacitively decoupled with 1000 uuf., to Pin 1 of V5. Turn the slug on Ll7 until it is centered in the coil (this narrows the band pass of this stage). Adjust Ll 6 and Ll 2 until the pass appears as below.

4. Move sweep generator to Pin lof V3. Adjust L9 and L1 as in above step. Pass will now be as pictured.

5. Move sweep generator to test point on tuner (can be located as a loop of wire between V1 and V2 on top of tuner chassis.) Adjust L8 (square can on tuner) until the pass rocks through a tilt and leave adjusted with 10% tilt in the pass, as pictured below:

MOTICE: - THIS APPARATUS USES IMVEMTIOMS OF UMITED STATES PATEMTS LICEMSED BY RADIO CORPORATION OF AMERICA. PATEMT MUMBERS SUPPLIED UPOM REQUEST.

(0)John F. Rider

Under certain conditions a buzz may be heard in the sound. This may be caused by:
a) Mis-adjustment of the fine tuning control. This control should be tuned for most clearly defined picture with best sound. If no definite sound peak is obtainable with rotation of the fine tuning control, it eay be necessary to radust the tuner oscillator (See Channel Selector Adjustments - sheet 9)
b) Contrast Control too far clockwise thas overloading the Video Amplifier.
c) Misalignment of the Intercarrier Sound System. If this condition exists it may be corrected by the following procedure:

1) Connect VTVM across R55. Observe polarity.
2) Set VTVM on 10 volts scale and tune in channel.
3) Make the following adjustments for manimum voltage in the order stated:
a) Adjust slug L23 for maximam voltage.
b) Adjust bottom slug of $T 3$ for maximum voltage
c) Adjust top slug of T3 for maximum.
d) Repeat these adjustments.
d) Overloading of the video stages due to very strong television signal. Such a strong signal can be attenuated by shunting a 10-100 ohm resistor across the secondary of the tuner antenna coil. This is the snap-in type and can be easily removed.

NOTE: Station buzz may be due to the transmission of a non-standard picture signal by the station. This condition is usually monentary.

dressing grid lead to 3np4 picture tube socket

When attaching the socket to the 3NP4 Picture Tube, the Red-Grid lead should be dressed at least 1 inch away from the other leads in the $J 2$ cable.

3NP4 TUBE INSTALLATION
POSITIONING ADJUSTMENTS
(A) 1.- Loosen the 3 screws " M^{n} which hold the Tube Mount to the Optical Box (Diagram A)
2.- Turn the Tube Mount clockwise until the 3 cutouts clear the screws ${ }^{n} \mathrm{M}^{n}$
3.- Pull out the Tube Mount

NOTE: This operation should be done with care to pre vent the tube from hitting the 45 -degree Plane Mirror.
(B) 1.- Loosen the Tube Clamp Screw ${ }^{n J n}$ (Diagram A)
2.- Insert the 3NP4 tube through the Deflection Yoke keep ing the glass Anode Cup down (opposite the word "top" on the Tube Mount).

DIAGRAM A

NOTE: The fiber light shield and neoprene band packed with the 3NP4 tube should not be used with the Model 170 Tube Mount described here
3.- Push the tube as far as it will go into the Deflection Yoke and tighten the screw ${ }^{n} \mathrm{~J}^{n}$ in the Tube Clamp. The Clamp should be tight enough to prevent the Tube from moving out of the Deflection Yoke. Be sure that the 2 spring clips from the Deflection Yoke make firm contact with the aquadag coating on the 3NP4 Tube
If the Tube neck is not centered in the Focus Coil, loosen the 2 screws " T^{n}, center the neck in the Focus Coil and retighten 2 screws " T^{\prime},

CAUTION: In this operation or in any subsequent operation, do not hold the Tube Mount assembly by grasping the Deflection Yoke. This can result in breaking the cantilever-supported yoke form.
(C) 1.- Insert the H.V. Cable Connector in the glass Anode Cup on the tube. Be sure that the Connector is making good contact with the metal button in the Anode
2.- Tighten the plastic clamp around the neoprene Cable Connector. Carefully insert the Tube Mount in the Optical Box. Be sure that the Tube correctly enters the dust shield and clears the opening in the 45 -degree Plane Mirror. It is essential that the position of he Tube in the Tube Mount 3. - Turn thet disturbed. The Tube must remain firmly seated in the Deflection Yoke. top scre p screw "M" (Diagram A). (Be sure that the bottom edge of the Tube Mount
4. - Tighten the 3 screws n^{n} n
5.- Connect the Tube Socket to the Tube. While doing this, hold the neck so as avoid pushing the Tube out of its position in the Deflection Yoke
6.- If the edges of the projected picture are not in line with the edges of the viewing screen, loosen $3^{n} M^{n}$ screws and rotate the Tube Mount slight ly to the right or to the left of the above-mentioned position. Retighten $3^{n} \mathrm{~m}^{\mathrm{n}}$ screws.

NOTE: Be sure to dress the red (grid) lead in the J2 Cable to the 3NP4 Tube Socket at least $]^{n}$ away from the rest of the leads in this cable.
(D) ELECTRICAL ADJUSTMENTS
1.- Properly tune receiver to transmitted test pattern. Look down into Optical Box at pattern reflected from 45 -degree mirror.
2. - Adjust electrical controls of receiver to obtain normal and properly Aocused pattern on tube face as described under Installation Instructions.
3.- Adjust size of pattern and center so that each corner just touches edge of tube face as shown on Diagram C
4. - If the picture cannot be centered by means of the receiver centering controls, proceed as follows: (see Diagram A)
a) Loosen the locking nut " O " and loosen the screw " ${ }^{\prime \prime}$ " which locks the Focus Coil in position.
b) Adjust the 2 screws " H^{n} until the pattern is properly centered on the tube face.

c) Tighten the screw "P" and the locking nut " O ".

To make the following adjustments, look at the projected pattern on the viewing screen. When the screen is in a cabinet it may be more convenient to cover the outside of the screen with a piece of dark paper or cardboard so that the pattern can be seen from the inside of the cabinet.

DIAGRAM C
) CENTERING PATTERN ON VIEW Ing SCREEN
1.- Loosen 3 bolts "R" (Diagram B).
2.- Center the projected picture on the viewing screen by adjusting the 3 screws "S".
3.- Tighten 3 bolts " R^{\prime}.

DIAGRAM D

1.- DIAGPAM D

DIAGRAM B

Before making these adjustments, be sure to remove the 4 screws "K" (Diagram B) which secure the red shipping clamp to the Optical Box.
a) Loosen the 3 locking nuts "L".
a) Loosen the 3 locking nuts "L". No Vertical Sync
b) Adjust the electrical focus on the receiver.
c) Focus a point " A " on the right side of a horizontal line through the center of the pattern on the viewing screen - by adjusting pattern on the
the knob "An.
d) Focus point " B " on the left side of a horizontal line through the center of the pattern on the viewing screen - by adjusting the knob "B".
e) Repeat operations c, d alternately until points A and B are both in focus.

No Sound or Picture

Sound But No Picture
) Focus a vertical line through the center of the pattern on the viewing acreen - by ad: the pattern on the vie
justing the knob "C".
g) Hand-tighten the 3 locking nuts "L".
(G) 1.- If necessary, clear the top of the Corrector Lens with a soft cloth.
2.- When a black shroud is provided, tie it around the Corrector Lens being sure that it does not encroach the light path.

SERVICE HIMTS

TROUBLE
Dead Receiver

Low B Plus Voltage

No Raster

al Sync

CHECK

a) Be sure thst power is being delivered to the receiver.
b) Check interlock.
c) Check fuse Fl
d) Check V13
e) Check low-voltage rectifier tube 5U4G
f) Check filter capacitors C39, 40, 41
a) Check low-voltsge rectifier tube 5U4G
b) Check filter capacitors C39, 40, 41
a) Check V17, V18, V19
b) Check plate lead dress on V18
c) Check fuse F2
d) Check T7
e) Check C81
f) Check L24, 25
g) Check Protelgram H.V. Supply 170B
h) Defective focus control
) C89 open
i) Check jack J6 and plug
k) Check leads to Protelgram tailpiece

1) Check V16, T5, T6, C72, C73, R90
a) Check V9, V60, R28 and associated circuit components.
b) Check V1 and V3 for gassy condition
a) Check V16, C72, C74 and associated circuit components.
b) Check V1 and V3 for gassy condition
a) Check V15, V17, V18, V9, and associated cir cuit components.
a) Make complete check of tuner and IF circuits b) Check V1, V2, V3, V4, V5, V6, V7.
a) Check 3NP4 picture tube, V7, V9, V10 and associated circuit components.
b) Protelgram H.V. Unit

O John F. Rider

Poor Horizontal Linearity
Poor Vertical Linearity
Insufficient Horizontal Size

Inaufficient Vertical Size
a) V11, V12, V13, and associated circuit components.
b) Loudspeaker
a) V17, V18, V19 and adjustment of L25.
a) Check for low line voltage
c) Check V14, V17, V18, V19, C68, C84 and associated circuit componenta
a) Check V16 and aseociated circuit componenta Check Protelgram Deflection Yoke

PARTS LIST

When ordering parts, give the nodel number of the receiver the description of the parts and their code number.

RESISTORS

PART NO.
2-5 Resistor, 1.8K, 2-6 Resistor, 2.2K, 2-9 Resistor, 6.8 K 2-1] Resistor, 47 K, 2-12 Resistor, 47k,

2-13 Resistor, 3.3K, 2-14 Resistor, 470K,

2-16 Resistor, 1 meg.
2-18 Resistor, 2.2meg 2-20 Resistor, 27K, 2-21 Resistor, 47 ohm, 2-24 Resistor, 1.5K 2-29 Resistor, 270K 2-31 Resistor, 18K, 2-34 Resistor, JK

2-36 Resistor, 33K,
2-37 Resistor, 22K,
2-38 Resistor, 56K,
2-39 Resistor, 6.8 meg . 2-40 Resistor, 330 meg. 2-47 Resistor, 2.7K
2-48 Resistor, 4.7K,

DESCRIPTION

10% tolerance, $1 / 2 W$, composition 10% tolerance, $1 / 2$ W, composition 10% tolerance, $1 / 2 \mathrm{~W}$, composition 10% tolerance, $1 / 2$ W, composition 10% tolerance, $1 / 2 \mathrm{~W}$, composition
10% tolerance, $1 / 2 W$, composition 10% tolerance, $1 / 2 W$, composition 10% tolerance, $1 / 2$ W, composition
10% tolerance, $1 / 2 W$, composition 10% tolerance, $1 / 2 \mathrm{~W}$, composition 10% tolerance, $1 / 2 W$, composition 10\% tolerance, $1 / 2$ W. composition 10% tolerance, $1 / 2 \mathrm{~W}$, composition 10% tolerance, $1 / 2 W$, composition 10% tolerance, $1 / 2$ W, composition

10\% tolerance, $1 / 2$ W, composition 10% tolerance, $1 / 2 W$, composition 10% tolerance, $1 / 2 \mathrm{~h}$, composition 10% tolerance, $1 / 2 W$, composition 10% tolerance, $1 / 2 W$, composition 10% tolerance, $1 / 2 w$ womposion 10% tolerance, $1 / 2 \mathrm{~W}$, composition

CIRCUIT SYMBOL

	$2-214$
R44	$2-215$
R112,	$2-222$
R24, R117	
R34, R59, R81	
R41, R48, R61,	
R69, R70, R86, R98	$1-39$
R74, R5, R64,	$1-44$
R52, R54, R64,	$1-46$
R76, R93, R94	
R21, R33, R68,	$1-48$
R83, R84	
R88, R56, R62	$1-49$
R43, R56,	$1-54$
R10, R15	$1-68$
R87, R102	$1-69$
R35, R102	$1-78$
R96, R63,	
R25, R63,	
R89, R92	
R40, R72	
R27, R111	$3-2$
R60, R99	$3-5$
R80	
R12	
R36, R42	

RESISTORS (con't.)

PART NO.

-49

2-53

2-60
2-61
2-65
-86
2-103
2-108
$2-108$
$2-118$
$2-118$
$2-126$
$2-126$
$2-127$
$2-133$
$2-134$
2-134
2-135
2-136
$2-137$
$2-138$
2-138
2-141
2-145
2-144
2-152
2-158
2-171
2-175
2-214
2-215
2-222

1-39
1-44

1-46
1-48
1-49
1-54
1-68
$1-78$

DESCRIPTION
Resistor, 680 ohm. \pm Resistor, 470 ohm. \pm Resistor, 10K, Resistor, 15 K , Resistor, 47 K Resistor, 39K, Resistor, 22 K Resistor, 2.2 K , Resistor, 47 K , Resistor, 47 K, +
Resistor, 120 ohm, \pm Resistor, 120 ohm, Resistor, 56 ohm, Resistor, 560 , Resistor, 10 K esistor, 12 K , Resistor, 180 K , Resistor 820 , Resistor, 4.7 meg., Resistor, 2.5 K Resistor, 10K, Resistor, 300 K , Resistor, 43 K
Resistor, 680K,
Resistor, 100 ohm
Resistor, 390 ohm

CIRCUITS SYMBOL

R95
R3], R47
R113, R114
R115
R105, R106
R29, R30
R120
R109, R110
Rll8, R119
R9, R16, R18, R19
R45
R13, R17, R23, R2
R20, R103
R91
R11, R14, R32
R38, R67
R50
R5!
R101
R75
R116
R107
R49
R55
R22
R104
B47

Potentiometer, $5 \mathrm{~K}, 2 \mathrm{~W}$, W.W. Linear R90
Potentiometer, 2.5 meg., $1 / 2 \mathrm{~W}$, linear, com-
position 500 K tapped $1 / 2 \mathrm{w}$ audi
otentiometer, with AC switch
Potentiometer, l meg. l/2 W, linear com position
Potentiometer, $50 \mathrm{~K}, 1 / 2 \mathrm{~W}$, linear
Potentiometer, $100 \mathrm{~K}, 1 / 2 \mathrm{~W}$, linear
Potentiometer, 750 ohm, 2 W. W.W. linea
Potentiometer, 100 ohm, 2 W, W.W.
Potentiometer, 1500 ohm, linear, 4 K, W.W.

CAPACITORS

Capacitor, 47 uuf., $\pm 5 \%$ tolerance, 500 WV, silver mica C33, C57
Capacitor, 330 ưf., $\pm 10 \%$ tolerance, 500 WV , mica
Capacitor, 1000 uuf. $\pm 10 \%$ tolerance, 500 WV ,
insulated, ceramicon

© John P. Ridor

[^8]

Ion Trap Magnet - On neck of picture tube. ALIGNMENT
(4) Speaker plug from rear of chassis $766 \mathrm{U}, 75 \mathrm{U}, 704,704 \mathrm{U}, 766$,
(5) Knobs from front of cabinet
(6) Four mounting screws and washers from bottom of cabinet

In sliding chassis out of cabinet be careful that the kinescope tube does not strike against cabinet or any other obstruction

Order of Alignment

When complete receiver alignment is necessary it should be performed in the following sequence.
(1) Pix IF Traps
(2) Sound IF Transformers
(3) Sound Discriminator,
(4) Pix IF Coils
(5) Retouch Pix IF Transformers
(6) 4.5 MC Trap

After removing chassis from cabinet, connect power and speaker plugs.
If a local station is not operating on channel \#9 set the tuner to this channel, turn on power switch and proceed as follows: (If \#9 is a local station channel use channel \#8 or \#10).

Picture I-F Trap Adjustment
Insert $100,000 \mathrm{ohm}$ resistor in series with hot lead of electronic voltmeter and connect to Pin \#7 of V11 with meter range switch set to lowest scale and observing polarity for negative readings

Couple hot lead of RF SignalGenerator to converter tube V2 by means of a oop consisting of two turns of insulated hook-up wire. Connect ground lead of RF Signal Generator to chassis.

Note: If the converter tube $\mathbf{V} 2$ is shielded - remove shield
Set the generator frequency accurately to 21.25 MC , and adjust L 7 cathode sound trap (see tube and trimmer layout drawing) for minimum reading on voltmeter

By means of a clip lead, short circuit condenser C26 on cathode trap.
Increase generator output to maximum (recheck 21.25 MC generator setting) and adjust L5 for minimum reading of voltmeter.

Sound IF Transformer Adjustment

Change hot lead connection of electronic voltmeter (with 100,000 ohm resistor connected in series) to terminal marked " C " of sound discriminator transformer. Re duce output of the signal generator to give approximately 2 volts reading on voltmeter cale

Adjust L1 and L2 for maximum reading.
Sound Discriminator Adjustment
Change hot lead connection of voltmeter to pin \#1 of V5 and adjust L3 for zero reading on voltmeter. This zero setting is very critical and the adjustment must be made with extreme care.

Repeat adjustments for L2 and L3 in the same manner indicated above
(1) Line cord from power outlet
(2) Masonite back
(3) Antenna Lead-in from terminal posts
2) Electronic Voltmeter
3) Cathode Ray Oscilloscope, $3^{\prime \prime}$ minimum screen
4) RF Sweep Generator, meeting the following requirements:
(a) Frequency Ranges

18 to $30 \mathrm{MC}$.1 MC . sweep width
40 to 90 MC., 10 MC . sweep width
170 to 225 MC., 10 MC . sweep width
(b) Output adjustable to .1 volt.

The chassis may be removed from the cabinet with the kinescope tube in place and servicing and alignment work can be accomplished without removing the kinescope tube. This work is most conveniently performed by placing the chassis on its left side (power supply cage resting on work bench) and the controls facing the operator
To remove chassis from cabinet remove

Sound Carrier
Freq. MC
59.75
65.75
71.75
71.75
81.75
81.75
87.75
87.75
179.75
179.75
185.75
191.75
203.75
209.75
215.75
(d) Output on these ranges should be adjustable and capable Output on these ranges shou
of providing at least .1 volt.
r

Pix IF Coil Adjustment

Connect hot lead of voltmeter to pin \#7 of V11 and adjust the following slugs for maximum output at frequencies indicated:

If oscillation occurs during alignment, temporarily lower frequency of L 8 by turning screw clockwise until screw projects approximately $\frac{1}{4}$. After properly adjusting L301, L4 \& L6 then set L8 to proper frequency. Oscillation is evidenced by high reading on voltmeter (-10 v to -20 v) with signal generator OFF and no signal coming in through the antenna terminals.

Retouch Pix IF Transformer Adjustment

Disconnect RF signal generator leads and connect hot lead of sweep generator to coupling loop on converter tube and ground lead to chassis.

Connect vertical input terminal of oscilloscope to pin \#7 of V1l (Pix Dectector) and connect ground lead of scope to chassis.

Connect $1 \frac{1}{2} \mathrm{~V}$ flashlight battery with positive terminal to chassis and negative erminal to \#2 pin of V11

Set tuner to channel 9 unless local station is operating on this frequency, in which case an adjacent channel should be used.

Set sweep generator frequency to IF sweep on the 20 to 30 MC range.
Adjust sweep generator output to produce a curve on the scope which is approximately $2 / 3$ of the screen diameter.

Loosely couple output of RF signal generator to hot lead of sweep generator and set frequency of RF signal generator to 25.75 MC (marker).

Curve shown on scope should be similar to the standard response curve shown below. For proper setting of the pix carrier the 25.75 MC marker should appear on the curve at a point approximately 50% to 60% of the vertical height of the curve.

To obtain this setting retouch L6 and L8.
Reset RF signal generator frequency to $22.5 \mathrm{~N} . \mathrm{C}$ and retouch L301 and L4 for correct positioning of marker on shoulder of curve.

The curve may now be flat topped by retouching L8 \& L4.
Recheck setting of 25.75 MC marker to make sure that position has not shifted on curve.

Disconnect bias battery.

Note: If the curve cannot be made to appear as above due to a local station or other interference, or multiple markers appear, remove (V1) 6BC5 RF tube from tuner.

Tuner Adjustments for Models using Tuner Part \#CL-2262
Note: Before making a complete tuner adjustment it is essential that the Sound I.F. and discriminator circuits be aligned at their proper frequencies as described above. WHEN CHANGING THE CONVERTER TUBE IT IS NECESSARY TO REALIGN THE OSCILLATOR ADJUSTMENT ON ALL CHANNELS WITII TIIE V2 TUBE. SHIELD IN PLACE.

RF and Converter Alignment

1) Set channel selector switch to \#12
2) Connect oscilloscope through 10,000 ohms to test point on tuner (bare tinned copper loop wire located between V1 and V2)
3) Set fine tuning control at approximate mid-point of its tuning range. Temporarily connect jumper wire from pin \#7 of V11 to chassis.
4) Feed Sweep generator into antenna terminals, sweeping channel 12.
5) Adjust C 301 , C 302 , and C 304 for flat top response curve. Check pic ture and sound carrier markers corresponding to frequencies shown on Page 2 for all respective channels.
6) Remove jumper from pin \#7 of V1l to chassis.

Oscillator Alignment

1) Set channel selector switch to \#12
2) Connect signal generator to one antenna terminal and ground. Set to sound carrier frequency 209.75 MC .
3) Connect electronic voltmeter to pin \#l of V5 (6AL5) sound discriminator
4) Adjust C303 for zero reading on electronic voltmeter between a positive and negative peak
5) Check all channels for zero reading on voltmeter. It is usually no necessary to make any further adjustments. If it is found necessary to touch up the oscillator coils, the following procedure should be observed.
Oscillator Coil Touch-up
(a) Center fine tuning control, as described in Note A below.
(b) Place a non-metallic screwdriver through opening, and adjust oscillator coil on channel 12 (L312)
(c) Turn channel selector switch to channel 13 and adjust L313
(d) This adjustment can be repeated for all channels or if necessary on any single channel.

ADJUSTMENTS

Ion Trap Magnet Adjustment:
Turn the brightness control fully clockwise and the contrast control fully counter-clockwise. Adjust the ion trap magnet by moving it forward or backward and at the same time rotating it slightly around the neck of the kinescope until the raster on the screen is brightest. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust focus control until the line structure of the raster is clearly visible (sharp). Readjust the ion trap magnet again for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained MODELS 752, 752U, 753, 753U, $755,755 \mathrm{U}, 764,764 \mathrm{U}, 766,700 \mathrm{U}, 767,76$

The focus coil is mounted within a frame to permit movement about its horizontal and vertical axis. The four wing nuts holding the focus coil to the frame are tightened at the factory to prevent movement during shipment. Upon installation of the receiver these wing nuts should be loosened and then adjusted finger tight. Centering of the picture within the mask is accomplished by gently moving the lever welded to the focus coil up and down or from left to right until the entire raster or
picture is visible on the screen.

Deflection Yoke Adjustment:

If the lines of the raster are not horizontal or squared with the picture mask, loosen the deflection yoke adjustment screw and rotate the deflection yoke until this condition is obtained, and retighten the yoke adjustment screw.

If neck shadow is evident or the corners of the raster are dark, the deflection yoke must be moved forward as far as possible and the wing screw retightened. After observing that the picture tube is brought forward as far as possible to rest against the two tube stop brackets, loosen the four screws holding the rear tube support bracket to he chassis and move the entire bracket forward so that the rubber cup presses firmly against the cone of the picture tube. Where an additional reinforcing bracket is used to hold the rear tube support to the high voltage power supply cage it will be necessary to remove the pow supply cover and remove the mounting screws in the bracket prior to making the above adjustment. After the rear tube support bracket has been properly adjusted and the screws retightened the reinforcing bracket can be reassembled using another set of mounting holes on the side of the power supply cage which will maintain a firm pressure of the rubber cup against the cone of the picture tube.

Note A - The mid-point of the fine tuning range is attained when the point of the bakelite
cam (which is attached to the fine tuning control) faces directly downward.)

Check of Horizontal Oscillator Alignment
(Any adjustments or check of horizontal oscillator alignment should be made after a fifteen to thirty minute chassis warm-up period.)

Obtain a test pattern and turn the horizontal hold control to the extreme clockwise position. The picture should remain in synchronization or shift slightly to the right with the blanking bar becoming visible. The blanking bar may be unstable and move from side to side. Turn hold control counter-clockwise and the picture should remain in synchronization unless the signal is weak and in which case 3 or 4 bars may be seen sloping downward to the left.

If the receiver behaves in this manner and the test pattern is normal and stable, the horizontal oscillator is properly adjusted. Skip the "Adjustment of Horizontal Oscillator" and proceed with Height and Vertical Linearity adjustments.

The horizontal oscillator is adjusted at the factory 767, 769
shape shown on the following page and normally can fe adjusted provide the wave shape shown on the following page and normally can be adjusted by means of the horizontal frequency threaded brass screw (L16) at rear of chassis, and by means of
the horizontal lock trimmer (C57).
(a) Turning the horizontal lock trimmer (C57) clockwise decreases the range of the horizontal hold control, and turning the trimmer counter-clockwise increases the range of the hold control. Normal setting is about one turn counter-clockwise from the tight position. In "Fringe" or weak signal areas the trimmer may be set two turns counter-clockwise from the tigh
(b) Turning the horizontal frequency screw (L16) clockwise lowers the frequency (bars sloping downward to left). Turning the screw counter-clockwise increases frequency (bars sloping downward to right).
Adjustment of Horizontal Oscillator (with the use of an oscilloscope
Allow set to warm up to operating temperature. Select station operating normally
2) Connect vertical input lead of oscilloscope to terminal "C" of horizontal oscillator transformer (TR-2294) and ground oscilloscope to chassis. Se frequency of scope to approximately 5 KC
3) Set horizontal lock trimmer (C57) one turn from tight
5) Short terminals "C" \& "D" on TR-2294 by means of clip lead.
6) Set horizontal hold control at maximum clockwise rotation.
6) Adjust horizontal frequency screw (L16) until picture falls into sync. Then turn screw slightly counter-clockwise until blanking bar shows,
or three or four bars show sloping downward to right.
7) Remove short from terminals " C " \& " D " of TR-2294 and adjust screw (L17) at terminal end of TR-2294 (under chassis) until wave shape as observed on scope is like that shown in sketch.

NOTE: Due to variations in oscilloscope input characteristics it may be necessary to insert a 50,000 ohm resistor in the vertical input lead. This will prevent the loading of the scope from affecting the frequency of
8) Some further adjustment of horizontal frequency screw (L16) may be necessary to keep picture in sync while L17 is being adjusted for proper wave shape.
9) Remove scope from terminal "C"
10) Turn horizontal hold control through entire range. Picture should remain in sync except in clockwise position when "blanking bar" will appear, or two or three bars will show sloping downward to the right.
11) If picture falls out at left or condition described in " 10 " is not obtained adjust horizontal frequency screw (L16) slightly. Observe paragraphs "a" \& "b" under "Horizontal Oscillator"

NOTE: Some manufacturers types of 6SN7GT may perform better than others in the horizontal oscillator socket and excessive drift of the horizontal oscillator circuit may be caused by a weak or defective 6SN7GT tube.

After the horizontal oscillator circuit has been adjusted in the manner out lined above, any subsequent touch-up may be made. with the horizontal requency screw L16
Caution: It is important that the picture be centered in the mask properly with the horizontal hold control in the mid-position, otherwise the set user may attempt to center the picture by means of the hold control. Under this condition the control may be on "edge" and impulse noise or change of camera will cause the picture to fall out of synchronization.

\qquad

若

웅

\qquad
\qquad
tal
tal
©John F. Rider

BROAO (ROUND) | AOJUST LIT FOR |
| :--- |
| EQUAL HEIGHTS OF |
| ROUND AND SHARP |
| PORTIONS OF PULSE. |

Height and Verlical Linearity Adjustments:
Adjust the height control until the picture fills the mask vertically. Adjust vertical linearity until the test pattern is symmetrical from top to bottom

Adjustment of one control will require readjustment of the other. Then adjust focus coil lever to align the picture within the mask.

Width, Drive and Horizontal Linearity:
Turn the width control L19 (accessible through a hole in the rear of chassis) clockwise until the picture fills the entire width of the tube. Adjust the trimmer "hori zontal drive" C67 (rear of chassis) to give the best degree of brightness and linearity Adjust the horizontal linearity control L18 (rear of chassis) for best linearity of the right half of the picture. Readjust the width control until the picture fills the mask and again adjust the focus coil lever to align the picture within the mask.

NOTE: It is advisable to adjust both the height and width of the
picture to a size slightly larger than the mask opening so
that during periods of low line voltage or subsequent aging of tubes adequate deflection to fill the mask opening is obtained.

IMPORTANT:
The horizontal oscillator frequency must be checked for proper range of horizontal hold control after any adjustment of horizontal drive (C67) and horizontal lock (C57) trimmers Some interaction is present between these trimmers and any adjustment of either one will usually require resetting of the horizontal frequa cy adjustment screw (L16).

FOCUS:

Adjust the focus control for maximum definition of the vertical wedge of the test pattern and uniform focus over face of picture tube.

Sensitivity Switch (Used only on Models 764 \& 767) 762,
A two-position switch is provided at the rear of the chassis for increasing the gain of the receiver which may be required for proper operation in fringe areas Where sound and picture reception is weak with the sensitivity switch set in LOCAL position, switching to "FRINGE" position will improve the performance of the receiver.

Phono-Television Switch (Used only on Models 764 \& 767)
A two-position slide switch is provided at the rear of the chassis together with a pick-up socket for plug-in of an external record changer.

Built-In Antenna
All models are equipped with a built-in antenna which will provide satisfactory reception in many locations. In areas of weak reception an outside antenna will substantially improve the performance of the receiver. An antenna post is provided at the rear of the chassis and is accessible through the opening in the masonite back to permit the connection of an outside aerial. The built-in antenna is normally connected to the antenna posts and must be disconnected when attaching the outside aerial. To prevent the lead-in wires of the built-in antenna from contacting chassis parts and tubes it is recommended
that the lead-in wire be folded and held in place by tape or a rubber band. In some cases reception can be improved by changing the location of the receiver in the room

Note: \quad he with enclosed schematic diagram DG-2346-1.

© John F. Rider

Trouble: Fuse blows on line voltage surge, etc. resulting in small picture fold over on both sides and damping bars.
Remedy: Remove fuse from present circuit and then remove green lead from terminal \#l on TR-2293 horizontal output transformer and connect \# \#8. Connect fuse between \#8 and \#1. Remove yellow wire from \#8 and connect to \#7. Dress fuse away from high voltage terminals.

Trouble: Insufficient width.
Remedy: Connect an . 05-400 volt condenser across width control (terminals \#5 and \#6 on transformer). In severe cases of low line voltage, \#tc. a .1-400 condenser may be used. Change 6BQ6GT.

Trouble: Vertical retrace lines visible at low contrast. May be due to low transmitter sync level, or variations in picture tube characteristics.
Remedy: Connect. 05-600 volt condenser from green lead of vertical output transformer (TR-2189) to yellow lead (pin \#ll V13 Kinescope). These leads run to adjacent tie points on terminal strip near vertical output transformer.

Trouble: Beat interference, hash in picture or sound, or separation of Remedy: Ground cathode resistor (R1 150 ohms) directly to center shield of V3 socket lst sound IF amplifier, instead of terminal strip ground. Connect 1500 mmf ceramic condenser between pin \#7 cathode and socket center shield. Check alignment of sound IF, sound traps, and distriminator.

SUBJECT: Modifications and Notes Applying to Models 752, 753, 755, 764, 760 and 767. Refer to schematic drawing DG-2346-1. All refer ences to changes end symbol numbers in this service bulletin are with respect to Olympic's schematic wiring diagrams supplied with Instruction Manual IB-2405.

1. Tube Changes

Due to the critical shortage of l2AU7 tubes, the first and second video amplifier V12 will at times be replaced by a USN7GT tube. Due to inability to obtain adequate supplies of l2BH7 tubes, the vertical oscillator tube V15 is now being replaced by a 6 SN7GT and all further production will use the latter type of tube.
2. Circuit Change

Condenser No. Cl8. $01 / 600$ volts is being returned to the 6 V 6 screen, pin \#4 instead of ground to reduce possibility of voltage breakdown
Resistor No. R50, 6.8 Meg . going to the vertical hold control is not being used in all sets. It is of ten eliminated for better range of the vertical hold control
3. Horizontal Tearing (Defective Parts)

If tearing occurs, especially in fringe areas resulting in a distorted picture, when contrast control is advanced, check for a short, leaky or open ture, when contrast control is advanced, chen .05 condenser (C37) and low capacity in 220 MMF condenser (C38).
4. Color Converter
4. Color Converter color converter socket is now being wired in on the rear of the chassis for use with color converters -- when available.
5. Underwriters' Changes

In accordance with U/L requirements, a $120,000 \mathrm{ohm} 1$ watt resistor is
being placed across condenser C48 in the primary of the power transformer connecting one side of the A.C. line to ground.
6. Picture Width

MODELS $752,752 \mathrm{U}, 753,753 \mathrm{U}, 755$,
$755 \mathrm{U}, 764,764 \mathrm{U}, 766,766 \mathrm{U}, 767,769$
To increase plcture width for low line voltage areas, a .056000 W. V. paper condenser is now used on all models across terminals 5 and 6 of the flyback transformer TR-2293.

7. Vertical Height

To improve vertical height, try replacing the veriical output tube V15 which may be either a 6SN7GT or a l2BH7. As noted in paragraph one, both OSNTGT and l2BH7 have been used in V15 socket.
Due to resistor shortages, $R 55$ and $R 56,3300$ ohms each respectively in series have been replaced on some receivers by one 6500 ohm 5 watt wire wound resistor. To obtain increased height where R55 and R56 are used, short out either one of them. Where a 6500 ohm resistor is used, shunt another 6500 ohm 2 to 5 watt resistor across the present one or replace it
by a 3300 ohm 2 watt resistor.
8. Width Control

Due to the scarcity of power transformers, Olympic Part No. TR-1966, it has been necessary to sibstitute another specification TR-1688 giving slightly lower B to secure sufficient width, the width control has been removed from the circuit by connecting both width control leads to terminal \#l of the 6BQ6GT
tube. (Vl7 socket). tube. (Vl7 socket)
If it is necessary tc reduce the width of the picture, restore connections of the width control by re-wiring to terminals 5 and 6 of the flyback trans former.
9. Vacuum Tubes

It appears that component parts manufacturers standards ha've been appreciably lowered lately. Therefore -- always check tubes first in case of performance and operation troubles. Some manufacturers types are better than others especially in 6BQ6 and 6SN7 types.

10. Resistors

Because of the critical shortage of this item, we and other manufacturers are compelled to develop new sources of supply even using resistors of wattage and resistance, the majority of them are of the un-insulated type In production, these resistors are dressed away from contact with other parts. Transportation shock may cause them to shift, causing shorts. In case of trouble. check for short circuits and re-dress resistors so that they do not touch adjacent perts or components.
11. Horlzontal Tearing (Modification)

When tearing of picture occurs at high or medium contrast control setting, R36 1000 ohm should be reduced to 700 or 800 ohms. When tearing or distortion occurs at low contrast setting R3ú is too low and should be increased to 1200 ohms.
BULIETIN NO. 51-4
SUBJECT: Insufficient height and width in areas of low line voltage Models $752,753,755,764,766$ and 767 .

Production Changes Starting November 24, 1950
Pix Width: R76 56,000 ohm 1 watt resistor changed to 22,000 ohm $\pm 20 \%$ 1 watt.

Pix Height: R55 and R56 3,300 ohm 2 watt, (actually 6500 ohm 10 watt in production) replaced by one 3300 ohm 2 watt. A parallel resistor combinetion may be used as an equivalent of a 3300 ohm 2 watt resistor.

© John F. Rider

$\frac{\text { OLYMPIC TV MODELS } 752,}{\text { SERIAL NUMBERS STARTING }}$

With oeflection yoke part no el-20bt a cl-20B7.1 -1 terminal (olack leao)
HIGH YOLTAGE TRANSFORMER.
WITM OEFLECTION YOKE PART NO. CL-23 BB eI TERMINAL (ELACK LEAO)

DG-2346


```
NOTE:-For Service Data of Television
Ch. for Modol DK-C2l, See Volume 5
Pages 5-1 through 5-7.
```

Frequency Range: A.M. $535-1700 \mathrm{kc}$. and F.M. $88-108 \mathrm{mc}$.

Power Requirement: 105 - 125 Volts a-c 60 cycle

Power Consumption: Receiver on a-m: 95 watts. Receiver with Record Changer: 115 watts

IMPORTANT NOTICE:

This AM-FM-TV receiver and automatic 3 -speed record changer console is for use on alternating current ONLY and hould never be used on direct current.

Before operating the radio receiver and record changer it will be necessary to remove the two shipping screws (which e identified with tags) holding radio receiver to its mounting board and loosen the three record changer mounting screws completely as described in separate accompanying Record Changer Instruction Sheet.

This instrument is equipped with two separate chassis; one a 10 tube (including rectifier) AM-FM chassis and another 20 tube (including rectifiers) television chassis. Built-in antennas are provided for both the AM and FM.TV sections of the ceiver which will providestion aperating conditions. For AM reception an outside antenna will seldom be will provide satisfactory

AM-FM RECEIVER CONTROLS: (see separate folder for television controls and operation)
The AM-FM rean leat to right as

follows:	1. VOLUME	2. OFF-ON-TONE	3. FM-AM-PH-TV 4. TUNING
NOTE: The power switches for operating the television and radio sections of this instrument are interconnected and there-			

NOTE: The power switches for operating the television and radio sections of this instrument are interconnected and ther
fore it is necessary that the power switch of the unit which is not in operation be turned to the "OFF" position.

TUNING:

To place receiver in operation turn the OFF-ON knob clockwise until a click is heard. The tubes require a warm-u period of about one-half minute before the set is ready to function.

A.M.

For AM reception turn FM-AM.PH-TV knob to the position where AM faces the indicator dot. The tuning knob should now be turned until the dial pointer is at the frequency of the desired station. Use part of dial calibrated from 55 to 170 . Dial numbers are converted to kilocycles by adding one zero. For example, 70 on the dial is 700 kilocycles. With volume control set to LOW volume level turn the station selector knob until the desired station is received loudest. Now adjust vo ume to the desired level and the tone control to the desired tone.
BY TUNING OFF STATION AS THIS WILL RESULT IN POOR TONE QUALITY.

F.M.

As supplied, the built-in television antenna is connected to both the TV and FM section of the receiver. Where no outside television aerial is used this arrangement will in most cases assure satisfactory FM reception. Where an outside tele vision aerial is used, this internal connection will automatically connect the FM section to the outside aerial and no additional FM antenna should be required. Where an independent FM aerial is desired the connecting line between the television receiver and the radio receiver should be disconnected on both ends and the aerial connected to the post on the rear of the radio receiver marked "FM-Dipole.

For FM reception turn FM-AM-PH-TV knob to the position FM facing indicator dot. Use the part of the dial calibrated in megacycles and channel numbers and tune carefully at medium volume level to the desired station. The tuning is done by the same knob as on $A M$. It is important to tune accurately to the center of the station as incorrect tuning will result in poor tone quality. The correct tuning point is the position of loudest response.

Tone and volume may be adiusted by the same two knobs as for AM reception.
NOTE: When operating this console as a Radio Receiver be sure that the motor switch on the record changer is in the OFF position.

RECORD CHANGER OPERATION:

To operate the record changer, turn the FM-AM-PH-TV knob so that PH faces indicator dot, leave the "OFF-ON' knob in the "ON" position and adjust volume and tone with the same knob as used in receiver operation.

TELEVISION RECEPTION:

To use the television receiver on this instrument it is IMPORTANT that the FM-AM-PH-TV knob be set in the position where TV faces indicator dot. If this is not observed the sound section of the television receiver will be inoperative. For instructions how to use television receiver read the separate instructions accompanying this instrument.

SERVICE AND ALIGNMENT INSTRUCTIONS

To remove the chassis from the console, it is first necessary to disconnect all plugs and sockets between the rear of the receiver chassis, the speaker, the television set and the record changer, respectively. Then remove the four knobs and the four screws holding the chassis to its mounting panel. (On Model 766 it will also be necessary to remove the wood screw holding the broadcast loop to the side of the cabinet.)

CAUTION: WHEN REMOVING THE CHANGER BE SURE TO PLACE IT IN A POSITION IN WHICH THE CHANGER MECHANISM WILL NOT BE DAMAGED.

ALIGNMENT:

Equipment Required: Modulated a-m, r-f signal generator; modulated f-m signal generator covering the range from 88 to 108 megacycles; vacuum tube voltmeter; output meter; insulated screw driver; radiation loop (1 turn of about $6^{\prime \prime}$ to $8^{\prime \prime}$ diameter of $\# 12$ or $\# 14$ wire connected across output of signal generator and placed parallel to receiver loop about $8^{\prime \prime}$ or $10^{\prime \prime}$ away); one 11 mfd 400 volt condenser; two 150 ohm resistors.

With the receiver removed from the cabinet, connect output meter, or vacuum tube voltmeter and signal generator as indicated in the alignment procedure chart and keeping the output of the generator as low as possible, proceed exactly in the sequence as shown on the chart.

Before aligning, close the variable condenser fully counter-clockwise (plates fully closed) and check that pointer coincides with the referencel line on the dial.

block diagram of interconnections

TUBE \& TRIMMER LAYOUT

REPLACEMENT PARTS LIST

Part No	Description
BU 187	Pilot Light Bulb-6.3 V.
CK 1127	Choke-R. F. Plate Choke
CK 1058	Choke-1.5 Microhenry Filament Choke
CK 1346	Choke-Filter Choke
CK 1452	Choke-F. M. Oscillator Cathode Choke
CL 1466	Coil-Oscillator Coil (B. C.)
CL 2178	Coil-Antenna Coil (FM)
CL 2179	Coil-R. F. \& Oscillator Coil (FM)
CO 1056	Condenser-4 MFD. - 450 W. V. Elect. Condenser
CO 1083	Condenser-4.7 MMF $\pm 20 \%$ Fixed Condenser
$\begin{array}{ll} \text { CO } & 2350 \\ \text { CT } & 1036-1 \end{array}$	Condenser-30/400 W.V. $+50 / 400$ W.V. $+4 / 400$ Elect. Cond. Trimmer-1-8 MMF. Oscillator Trimmer (FM)
CV 2165	Condenser-2 Gang Var. Condenser (AM/FM)
DL 2187	Dial-Glass Dial Scale "OLYMPIC"
KN 422	Knob-Walnut "Volume" Knob
KN 423	Knob-Walnut 'Off-On Tone.' Knob
KN 425	Knob-Walnut "Tuning" Knob

LIST OF ILLUSTRATIONS

figure 1

Model 2801-TV

Model 2801-TV, shown in figure 1, is a console television -
AM-FM radio phonograph combination. AM-FM radio-phonograph combination. It employs 23 tubes
plus 4 rectifiers and a.l6-inch rectangular picture tube using plus 4 rectifiers and a.
electro-magnetic deflection.
tuning frequency range:

V-6	6AU6	2nd Pix I-F Amplifier
V. 7	GAUG	3rd Pix l-F Amplifier
V.8	6AL5	Pix Detector, A.G.C.
V. 9	$12 \mathrm{AU7}$	1st \& 2nd Video Amplifier
V. 10	12AU7	Sync. Amplifier, Sync. Separator \& D.C. Restorer
V. 11	6AL5	A.F.C. Discriminator
V. 12	6SN7-GT	Horizontal Oscillotor
V. 13	615	Horizontal Dischorge
V. 14	6CDO-G	Horizontal Output
V. 15	183.GT	High Voltage Rectifier
V. 16	183.GT	High Voltage Rectifier
V. 17	6SN7.GT	Vertical Oscillotor \& Discharge
V. 18	654	Verticol Output
V. 19	SU4.GT	Damper
V. 20	5U4.G	Low Voltage Rectifier
V. 21	16TP4	16" Rectangular Picture Tube (2801.TV)
V. 21	16GP4	16" Round Picture Tube (2801 A.TV)
- V -22	OAG5	R.F Amplifier
- V-23	6 J 6	R.F Oscillator, Converter
AM-FM RADIO		
V. 24	GBEG	AM Converter, FM Oscillotor
V. 25	6BAG	I.F Amplifier
V. 26	6AU6	FM Driver, AM Detector
V-27	6Al5	FM Ratio Detector
V. 28	12 AT 7	FM R-F Converter

* V .22 and V .23 are contained in the television R-F tuner. When replacing tubes, refer to tube layout label on rear of cabinet.

INSTALLATION INSTRUCTIONS
Madel 2801A-TV, shown in Figure 2, is the same as the 2801-TV with the exception that it employs a 16 -inch round picture tube.
Cabinet styling is in walnut, mohogany, blonde oak, and maple.

GENERAL INFORMATION

Two chassis comprise the overall chassis assembly: the television chassis and the AM-FM chassis. The audio amplifier and TUBE COMPLEMENT: power surs
chassis.

Both models feature the Webster Model 100.11 three-speed outomatic record chonger. Service Instructions pertaining to this unit will occompany this service manual.

SPECIFICATIONS

OVERALL DIMENSIONS:

OVERALL Height Widht

© John F. Rider

© John F. Rider

© John P. Rider
c. Set marker generator to 24.0 MC and, following the pro-
cedure outlined in the preceeding step, adiust $\mathrm{S}-20 \mathrm{l}$ st Pix I-. Set marker generator to 23.0 MC and adjust $\mathrm{S}-21,2 \mathrm{nd}$ Pix

Set marker generator to 21.8 MC and adjust S 22, 3rd Pix I-F, as above.
. INTER-CARRIER SOUND, RATIO DETECTOR
AND 4.5 MC TRAP ALIGNMENT:
a. Connect marker generator to "Point D" and ground and set
b. Connect R-F vacuum tube voltmeter to "Point $\mathrm{E}^{\prime \prime}$ and ground If such a meter is not available, connect Germanium Diode Detector (Crystal) in series with positive probe of D.C. vacuum tube voltmeter. Connect negative probe to ground
c. Adjust S -23 for minimum reading on VIVM.
e. Adjust S.1, Sound I.F Driver, to 4.5 MC observing VTVM for maximum output.
Adjust S-2, Ratio Detector Primary, to 4.5 MC , observir 3 VTVM for maximum output.
g. Connect VTVM to "Points A \& B" (negative probe to "Point Adiust
Adiust S-3, Ratio Detector Secondary to zero, between pos.啹

Figure 17
I-F Response Curve
3. Picture i-f alignment (final):
a. Remove converter tube shield and loosely couple sweep generator to converter tebe. Connect marker geners.
*b. Set sweep generator to center picture I-F frequency, sweep
10 MC . Set marker generators to provide markers at 21.8 MC and 25.0 MC .
c. Observe and analyze the response curve obtained on the
oscilloscope; compare it with the curve as shown in Figure oscilloscope; compare it with the curve as shown in Figure
17. In all probability, the two will not be alike. This indicates 17. In all probability, the two will not be alike. This indicates
that the: Picture l-F adjustments must be retouched. Careful study of the curve and the position of the markers thereo
will indicate which adjustments are in need of attention.

1. The curve should be essentially flat-topped.
2. The picture carrier, 25.0 MC , should be at the 50%
3. The 21.8 MC marker should be at approximately 100% response.
The most important point to consider in making final l-F adjust ments is to get the picture carrier al the 50% response point.
the picture carrier operates too high on the curve, there will be a loss of picture detail.
a
If the picture carrier operates 100 low on the curve, loss of low
frequency video response will result and loss of picture brightness, frequency video response will sesur and lass of picture brightnes
of blanking and of sync will occur. * NOTE-To provide two reren
wo marker generators. If two are not available, one is sufficient. Simply observe the position of the markers one at a time.

SPECIAL PIX I-F ALIGNMENT FOR WEAK SIGNALS OR In order to gain
in order to gain added sensitivity, necessary in some "fringe
areas", it is recommended that the Picture l.F be aligned as shown in Figure 18 .
It will be n
It will be noted that the band width has been reduced to
approximately 2.5 MC . This reduction in band width will resull approximately 2.5 MC . This reduction in band width will result
in some loss of horizontal resolution, which with inadequate sigin some loss of horizontal resolution, which with inadequate sigs resultant loss in resolution is more than compensated by the in
creased sensitivity creased sensitivity.

4. R-F OSCILLATOR ALIGNMENT

It has been noted that the maiority of service technicians prefer
align the channel oscillator slugs by ear and picture quality thereby eliminating the use of a marker generator and a vacuum tube voltmeter. While it is true, this method is not
100% accurate, it has proven to be more than satisfactory. 00% accurate, it has proven to be more than satisfactory.
Since this receiver employs inter-carrier sound, the oscillator is not tuned to the maximum sound level. It is tuned for maximum p:cture quality. The sound will be slightly below maximum at this point. point during these adjustments.
In the event it is desired f. if it aligned at such a time when all stations, are off the air, the fol owing method which employs a heterodyne frequency meter may
be used. Turn Selector to channel 13 and set Fine Tuning Control at
a.
b. Loosely couple heterodyne frequency meter to the R-F oscillator tube. Set meter to to 236.25 MC (receiver R-F oscill.
ator frequency, channel 13). ator frequency, channel 13),
Adiust channe 13 oscillator slug observing heterodyne fre
d. Follow the above procedure on all channels, making certain the heterodyne frequency meter is set to the receiver R-F
oscillotor frequency corresponding to the channel being oscillator frequency corresponding to the thannel bein
adjusted. (See "R-F Frequency Ranges."). 5. R-F TUNER ALIGNMENT (CONVERTER, OSCILLATOR With the exception):
With the exception of S-5, converter I-F trimmer, no field adjustments should in necessary where the R-F Tuner is con-
cenned. However, in the remote event these trimmers, $S-4 \mathrm{~A}, \mathrm{~S}$
S $\mathrm{4B}$, S. 18 and S-19, should be found out of adjustment, the following is the correct procedure for readiusting them.
a. Oscillator Alignment:
Align the oscillator by adiusting S-19 in the manner prescribed
for adiusting the channel oscillator slugs" (.See "R-F Oscillo
for adiusting the channel oscillator slugs (.See "R-F Oscilla D. RESISTANCE MEASUREMENTS:
Aliznment - heterodyne frequency m
b. R-F and Mixer Alignment:

1. Turn Selector to Channel 12 and set Fine Tuning Control
at its approximate mid-point. at its approximate mid-point.
2. Connect oscilloscope to "Point C."
3. Adjust S-4A, S-4B and S-18 alternately, observing oscillo4. Adjust $\mathrm{S}-4 \mathrm{~A}, \mathrm{~S}-4 \mathrm{~B}$ and $\mathrm{S}-18$ alternately, observing os
scope for the following.
a Response curve should be essentially flat-topped.
b. Check position of sound and picture carrier mark on all channels; they should not be more than 3 DB
down from the top of the curve
c. At 6 DB down, the baid width should not be more than 11 MC .

5-24

S-26

Ist fM I-f:

Primary (Terminals $1 \& 2$) $\quad .6$ ohms
2nd FM I-F:
$\begin{array}{lll}\text { Primary (Terminals } 1 \& 2) \\ \text { Secondary (Terminals } & \text { \& }\end{array}$ \& 4) $\quad .47$ ohms
Ist AM I-F:
$\begin{array}{ll}\text { Primary (Terminals 1 \& 2) } & 17.4 \text { ohms } \\ \text { Secondary (Terminals } 3 \text { \& 4) } & 16.2 \text { ohms }\end{array}$

AM - FM - PHONO

2nd AM I-F:
Primary (Terminals $1 \& 2)$
Seconct
16.0 ohms
14.7 ohms

Ratio Detector:
Primary (Terminals A \& E) $\quad 2.0$ ohms Secondary (Terminals B \& D) $\quad .1$ ohms Each side to tertiary (Term-
inal F)

Oscillator Coil AM: Start to Finish
Start to Tap Start to Tap 8.0 ohms

SOCKET VOLTAGES FM:
6BE6 (V-24) FM Oscillator

© John F. Rider

©John F. Rider

OJohn F. Rider

INTRODUCTION

The Philco 12-Position Turret Tuner consists of a turret having 12 aerial-r-f snap-in coils and 12 mixerterminals of the appropriate aerial-r-f and mixer-oscillator coils are brought into contact with the two contact panels which provide connections to the aerial, r-f, mixer, and oscillator circuits.
This type of channel switch insures the low contact resistance and inductance which is so essential to high frequency reception. A 6AG5 tube is used as an r-f amplifier, and a 6 J 6 is used as an oscillator-mixer. The tuner is built into a well-shielded subchassis, thereby providing high gain with stability.
The aerial input circuit is designed for 300 -ohm line balanced to ground, or unbalanced 72 -ohm line.

SERVICING

The majority of the electrical parts of the 12-Position Turret Tuner can be replaced with the Tuner in the receiver chassis. The parts are made accessible by re moving the component cover plate.

REMOVING THE TURRET

Refer to figure 1, exploded view of Turret Tuner. 1. Remove the bracket holding the rotor of the ine-tuning condenser.
2. Remove the rotor of the fine-tuning condenser.
3. Remove the pressure spring and fiber washer.
4. Remove the two turret-securing springs.
5. Remove the turret

When replacing the turret, reverse the procedure given below, then index the turret as directed under given betow, then index the turret
TURRET INDEX ADJUSTMENT.

REMOVING THE 12-POSITION TURRET TUNER
 FROM THE CHASSIS

1. Unsolder the connecting wires, recording their onnections.
2. Remove the four screws holding the turret-tuner mounting bracket.
3. Remove the three screws securing the turret tuner to the mounting bracket, then remove the tuner from he mounting bracket.
The turret tuner should be replaced in the chassis by
eversing the procedure given reversing the procedure given above.

REPLACING THE CONTACT-PANEL
 ASSEMBLY

1. Carefully unsolder all the connections to the contact panels, recording their connections.
2. Remove the two screws holding the contact panel.
3. Using a heavy-duty soldering iron, unsolder the solder bonding between the contact-panel assembly and he tuner.
4. Remove the contact-panel assembly by spreading the end of the tuner slightly, and pulling the assembly outward.
5. Install the new contact-panel assembly by reversing the procedure given above.

TURRET INDEX ADJUSTMENT

The position of the turret index spring (item 8 in figure 1) determines the indexing of the turret, and should be adjusted to obtain proper indexing. To adjust, loosen the index-spring holding screw, and move the spring upward or downward until the snap-in coils re making maximum contact with the contacts on the ontact-panel assembly. Tighten the holding screw.

LUBRICATION

Proper lubrication of the Philco 12-Position Turre Tuner is an important part of the servicing of the unit. Remember that too much lubrication can be as detri mental as too little. It is very important that only the points shown in figure 1 be lubricated.

Use a good grade of light grease, such as Philco Special Lubricant, Part No. 45-8611.

TUBE REPLACEMENT

Whenever a tube is replaced, it is suggested that several be tried, to obtain a tube which has interelectrode capacitance similar to the original tube, to avoid changng the tuner alignment. The picture quality and osci ing tubes.
If a tube having similar interelectrode capacitance
cannot be obtained, the Turret Tuner should be aligned.

1. Bracket, fine-tuning condenser

Contact-panel assembly
Rotor, fine-tuning condenser
4. Turret
. Roller, turret indexing
. Spring, fine-tuning pressure

TURRET TUNER ALIGNMENT

When the Tuner has been serviced, or when a suitable replacement tube cannot be obtained, as described should be aligned according to the Turret Tuner should b

Equipment Required

1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or the equivalent
2. Aerial-matching dummy; see figure 2. These reand should be of carbon-composition construction, lose to e to those indicated.

Procedure

1. Remove the Channel 10 aerial-r-f coil, and turn Channel Selector to Channel 10
2. Spring, turret grounding
3. Spring, turret indexing
4. Spring, turret securing (2 used)
5. Stator plate, fine-tuning condenser
6. Washer, rotor pressure
7. Short the v-i-f output lead of the tuner to ground.
8. Connect the vertical input of the oscilloscope to the tuner test jack, J1-T; refer to figure 4.
9. Remove the component cover plate, and connect the alignment generator to the grid of the r-f tube, pin 1 (terminal 7 of the contact-panel assembly)
10. Set the FM generator to the frequency of Channel 0 (195 mc .), $\pm 6 \mathrm{mc}$. deviation.
11. Set the AM generator (unmodulated) to 192 mc . and 198 mc ., respectively, and observe the marker pips on the response curve.
12. Tune C8-T and C3-T (see figure 4) to obtain maximum and symmetrical response.
13. Disconnect the alignment generator, then replace the Channel 10 aerial-r-f coil and the component cover plate.
© John F. Rider

Figure 2. Aerial-Matching Dummy

9. Connect the alignment generator to the aerial input terminal board through the aerial-matching dummy.
10. Tune C2-T (see figure 4) for maximum and symmetrical response within the limits shown in fig ure 3.

NOTE: The tuner response on any one of the 12 channels should fall within the limits shown in fig ure 3.
11. Remove the short from the tuner v-i-f output lead.
12. Remove the input of the oscilloscope from J1-T, and connect it to pin 3 of the FM TEST jack. Set the

Figure 4. Top View of 12-Position Turret Tuner, Showing Trimmer Locations

REPLACEMENT PARTS LIST

Figure 3. Turret-Tuner Response Limits for

 the Twelve Television ChannelsThe 12 -Position Turret Tuner is repairable in the be accepty the individual replaceable components will At pred under warranty.
AM marker generator (unmodulated) to 197.75 mc . Tuners used, there are two types of 12 -Position Turret Use low signal-generator output, and high oscilloscope Type 1 has preducion. gain, and adjust C11-T for minimum indication on the snap-in coils in black and numbers stamped on the oscilloscope.
nap-in coils in black and red. Part numbers 76.5411 or 76-5411-2 may be stamped on the assembly.

NOTE: Part numbers identified by an asterisk (${ }^{\circ}$) are general replacement items. These numbers may not be
identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are chosen that the operation will either be unchanged or improved. When ordering replacements, use only the
"Service Part No."

ELECTRICAL PARTS

Reference Symbol	Description	Service Part No.	
		Type 1 Tuner	Type 2 Tuner
Cl-T	Condenser, fixed padder, $5 \mu \mu \mathrm{f}$.	30-1224.5	30-1224.5
${ }^{\text {C2-T }}$	Condenser, trimmer, . $5 \mu \mu f$. to $3 \mu \mu f$.	45-1696	45-1696
${ }^{\text {C3. }}$ T	Condenser, trimmer, r-f amplifier plate	45-1696	45-1696
${ }^{\text {C4, }}$ T	Condenser, filament by-pass, . $001 \mu f$. ..-	62.210001011	62-210001011
${ }_{\text {C5-T }}$	Condenser, screen by-pass, $120 \mu \mu f$.	30-1224.69	30-1224.69
C6. ${ }^{\text {f }}$	Condenser, decoupling, . $001 \mu \mathrm{f}$. . ${ }^{\text {anm }}$	62.210001011	62.210001011
C7. ${ }^{\text {c }}$	Condenser, r-f by-pass, $100 \mu \mu f$.	30-1224-1	30.1224.1
C8.T	Condenser, trimmer, mixer grid	45-1696	45.1696
C9.T	Condenser, fixed trimmer, $10 \mu \mu f$. .-.	30-1224-51	30.1224-51
C10.T	Condenser, d.c blocking, $20 \mu \mu f$.	30-1224-43	30-1224.43
C11.T	Condenser, trimmer, oscillator grid	45.1697	45.1697
C12.T	Condenser, filament by-pass, . $001 \mu \mathrm{f}$.	62-210001011	62-210001011
C13.T	Condenser, fixed trimmer, $10 \mu \mu f$. \ldots	30-1224-51	30-1224.51
C14.T	Condenser, FINE TUNING control	See rotor, fine-tuning condenser	See rotor, fine-tuning condenser
C15-T	Condenser, d.c blocking, $120 \mu \mu f$.	30-1224.69	30-1224.69
${ }^{\text {Il. }}$ T	Jack, TUNER TEST ...	Part of 76.5411-3 \dagger	Part of 76-5411-3†
LIA.t	Coil, aerial	Part of 71-T	Part of $21 . \mathrm{T}$
Lib-T	Coil, r-f amplifier grid ...	Part of $\mathrm{ZI} . \mathrm{T}$	Part of 21 -T
L2.T	Coil, filament choke .-. \quad -	45-6579	45.6579

Type 2 has the channel numbers stamped on the nap-in coils in green, with the letter " F " following the number. The contacts on the snap-in coil are on a raised section, and the contacts on the contact panel are kidney-shaped. Part numbers 76-5411-1, 76-5411-3, or 76-5411-4 may be stamped on the assembly. Parts carrying the same part numbers under type 1
and 2 in the following list are directly interchangeable.

TELEVISION CARRIER FREQUENCIES

CHANNEL	CHANNEL LIMITS (me.)	VIDEO CARIER FREPUENCY (me.)	SOUND CARRIER FREPUENCY (me.)
2	$56-60$	55.25	59.75
3	$60-66$	61.25	65.75
4	$66-72$	67.25	71.75
5	$76-82$	77.25	81.75
6	$82-88$	83.25	87.75
7	$174-180$	175.25	179.75
8	$180-186$	181.25	185.75
9	$186-192$	187.25	191.75
10	$192-198$	193.25	197.75
11	$198-204$	199.25	203.75
12	$204-210$	205.25	209.75
13	$210-216$	211.25	215.75

REPLACEMENT PARTS LIST (Cont'd)

Electrical parts (Cont'd)

Reference Symbol	Description	Service Part No.	
		Type 1 Tuner	Type 2 Tuner
L3A.T	Coil, r.f amplifier plate	Part of 22.T	Part of 22-T
${ }_{\text {L3C-T }}^{\text {L3B }}$	Coil, mixer grid	Part of $22 . \mathrm{T}$	Part of $22 . \mathrm{T}$
L4-T		Part of 22-T	Part of $22 . \mathrm{T}$
L5.T	Coil, mixer plate	45.6580 45.1695	45.6580 45.1695
R1-T	Resistor, grid retum, 3900 ohms	${ }_{66.2398340}$	${ }_{66-2998340}$
${ }^{\text {R2-T }}$	Resistor, a-v-c filler, 47.000 ohms	66.3478340°	66-3478340-
${ }_{\text {R3-T }}^{\text {R }}$	Resistor, plate load, 10,000 ohms ...	66.3108340*	66-3108340*
R4.T	Resistor, decoupling. 2200 ohms	66.2228340.	66-2228340-
${ }_{\text {RS }}^{\text {R }}$ T	Resistor, grid, 4700 ohms .	66-2478340 ${ }^{\circ}$	66-2478340
R6.T	Resistor, grid return, $220,000 \mathrm{ohms}$.	66.4228340*	66.4228340*
R7-T	Resistor. grid return, 10,000 ohms	66-3108340*	66.3108340°
${ }^{88}$		66.3158340 ${ }^{\circ}$	66-3158340*
	Resistor, decoupling, 4700 ohms	66-2478340.	66.2478340°
${ }_{\text {TCIT }}$	Tuning core, oscillator .-x>	Part of 22-T	Part of 22.T
${ }_{\text {21. }}$	Tuning core, mixer plate coil	Part of L5.T	Part of L5.T
	Channel 2 and	32.4428.2	32.4436.2
	Channel 3 .-w	32.4428.3	32.4436.3
	Channel 4 -	32-4428-4	32-4436-4
	Channel	32-4428-5	32-4436-5
	Channel 6	32-4428.6	32.4436-6
	Channel	32-4428.7	32.4436-7
	Channel 9 -	32.442888 32.428 .9	${ }_{\text {32 }}$
	Channel $10 \times \square \times$	32-4428.10	32.4436.10
	Channel 11	32.4428.11	32-4436.11
	Channel $12 \times$	32.4428.12	32-4436-12
22-T	Coil Cassembly, mixer and oscillator	32.4428.13	32.4436.13
	Channel 2 -	32.4429.2	32.4437.2
	Channel Channel 3	32.4429.3	32-4437.3
	Channel $5 \cdots$	32.4429.4 32.429.5	${ }^{32-4437-4}$
	Channel 6	32-4429-6	${ }_{32-4437-6}$
	Channel 7	32.4429.7	32-4437.7
	Channel ${ }^{\text {Channel }}$	32.4429.8	32.4437.8
	Channel 10	${ }_{\text {32.4429-10 }}$	${ }_{\text {32-4437-10 }}$
	Channel 11 .	32.4429-11	32.4437.11
		- $\begin{aligned} & \text { 32-4429.12 } \\ & \text { 32-4429-13 }\end{aligned}$	32.4437.12
	Channel 13 ‥xतx	32.4429-13	32.4437.13

\dagger Turret tuner assembly, with coils

MECHANICAL PARTS

Description	Service Part No.	
	Type 1 Tuner	Type 2 Tuner
Contact-panel assembly (stator) .-.	45.1693	45.1694
Roller, turret indexing,	45.6570	45.6571
	45.1690 456573	45.1690 5.657
Spring, turret grounding- -	- 45.65581	45.6574 5.6582
Spring. turret indexing	45.6577	45.6578
Spring, turret securing (2 used) ... ${ }_{\text {Tube shield }}$ (6I6)	${ }^{45.6575}$	45.6576
Tube shield (6 AGS)	${ }_{\text {56-3979 }}$	56.3979.7 $\mathbf{5 6 - 3 9 7 9}$
. Turret (rotor) and shaft assembly. less coils	45.1691	45.1692
- Turret tuner assembly, with coils Washer (fiber), rotor pressure	${ }_{\text {7 }}^{\text {76.54.5472.3* }}$	76.5411.3*
Washer (fiber), rotor pressure --1.	45.6572	45.6572

"NOTE: Turret tuner assombly, Part No. 76-5411-3, is to be used as a replacement for both types of tuners
whenover a complete tuner is replaced.

Figure 5. Schematic Diagram of 12-Position Turret Tuner
TP9.512.

TUBE REPLACEMENT

Whenever a tube is replaced, it is suggested that, if possible, several be tried, to obtain a tube which has interelectrode capacitance similar to the original tube,
to avoid changing the tuner alignment. The picture quality and oscillator fine-tuning range should be observed while selecting tubes.

CHECKING OSCILLATOR INJECTION VOLTAGE

After a tuner has been serviced, the performance of the oscillator should be determined by checking the level of the oscillator voltage that is injected into the mixer. The procedure is as follows:

1. Connect a vacuum-tube voltmeter to the grid of the mixer tube, with a 1 -megohm resistor in series with the probe.
2. Tuning through Channels 2 to 6 , the voltage should be at least -2 volts.
3. Tuning through Channels 7 to 13 , the voltage should be at least -1 volt.
If the voltage indications are below the minimum values given above, the oscillator and mixer stages should be checked.

TURRET TUNER, PART NO. 76-5411-SERIES

The detailed service information given in manual PR-1803 applies to this tuner, together with the information contained in this manual.
Since the printing of PR-1803, the following changes
have been made in this tuner:

1. To prevent the oscillator voltage from appearing in the first v-i-f grid circuit, the mixer plate coil was tapped, as shown in figure 1.

The part number of the mixer coil, L5-T, given in PR-1803, is for the tapped type. The part number of the earlier type is $45-1711$. These coils are not inter hangeable, because of the effect of the mixer plate eload on the mixer grid tuning; therefore, before procuring a
replacement coil, it should be determined by inspection replacement coil, it should be determined by inspection which type is used. In conjunction with the change in the mixer plate coil, an additional decoupling network also shown in figure 1 .
was in
2. An additional $100-\mu \mu$ f. filament by-pass condense was added, between ground and the junction of L2-7 and L4-7. The part number is 30 -1224-1.
3. In later production of some turret tuners, $\mathrm{C} 1-\mathrm{T}$ fixed trimmer and C2-T trimmer were replaced by a ingle trimmer having a capacitance equal to chese 45-1710. Tuners having this change are identified by
4nater the absence of the fixed trimmer across C -T.
4. The use of the turret tuner in new models neces sitated different shaft lengths for the turret and fine-

Figure 1. Changes in Mixer Plate Circuit, Turret Tuner, Part No. 76-5411-Series
tuning rotor. The part numbers of the turrets and rotors for various models are given below, along with the part numbers of the complete replacement turre
tuners.

Turret Tuner Part No.	Used in Models	Fine-Tuning Rotor Part No.	$\begin{gathered} \text { Turret } \\ \text { (drumm ass'y.) } \\ \text { Part } \end{gathered}$	Replacement Turret Tuner (complete) Part No.
76-5411	50-T1476 through 50-T1482; 50-T1484, and 50-T1630	45-1690	45-1691	76-5411-3
76-5411-1	50-T1402, 50-T1406, and 50T1432, all Code 122	45-1690-1	45-1692-1	76-5411-1
76-5411-2	50-T1476 through 50-T1482; 50-T1484, and 50-T1630	45-1690	45-1691	76-5411-3
76-5411-3	50-T1476 through 50-T1482; 50-T1484, and 50-T1630	45-1690	45-1692	76-5411-3
76-5411-4	50-T1476 through 50-T1482; 50-T1484, and 50-T1630	45-1690	45-1692	76-5411-3
76-5411-5	$\begin{aligned} & 50-\mathrm{T} 1600,50-\mathrm{T} 1632 \text {, and } 50- \\ & \mathrm{T} 1633 \end{aligned}$	45-1690-2	45-1692-2	76-5411-5

WAFER-SWITCH TUNERS

The table below gives the part numbers of the Wafer- ceivers, and also the part numbers of the complete re Switch Tuners used in various Philco Television Re- placement tuners.

Wafer-Switch Tuner Part No.	Used in Models	Replacement Tuner (complete)
76-4402	49-702	76-4402-7
76-4402-5	50-T1443, Code 122	76-4402-7
76-4402-6	50-T1400, 50-T1401, 50-T1402, 50-T1403, 50-T1404, 50-T1406, 50-T1430, and 50-T1104, Code 123	*76-5433-1
76-4402-7	50-T702, Code 122	76-4402-7
76-5433	$\begin{array}{lll} 50-\mathrm{T} 1400, & 50-\mathrm{T} 1401, & 50-\mathrm{T} 1402, \\ 50-\mathrm{T} 1403, & 50-\mathrm{T} 1404, & 50-\mathrm{T} 1406, \\ \text { and } 50-\mathrm{T} 1430 & \end{array}$	*76-5433-1
76-5433-1	50-T1400, 50-T1401, 50-T1402, 50-T1403, 50-T1404, 50-T1406, and 50-T1432	76-5433-1

*Used in conjunction with mounting bracket kit, Part No. 45-9591, when substi tuted for 76-4402-6 or 76-5433.

WAFER-SWITCH TUNER, PART NO. 76-4402-SERIES

The components of this tuner are made accessible by removing the tuner from the chassis, and then removing the perforated cover.

CLEANING AND LUBRICATION

Erratic operation or noise may be caused by dirty wafer-switch contacts, in which case, the contacts should be cleaned and lubricated. Clean the contacts carefully with a contact cleaning fluid, and lubricate with a con tact lubricant, such as Philco All Purpose Lubricator, Part No. 45-2806. Remember that too much lubrication can be as detrimental as too little. Lubricate only the switch contacts.

PARTS REPLACEMENT

The parts given in the following list are those which are readily accessible, and which may be replaced without disturbing the tuning of any individual channels; however, the over-all alignment should be checked after servicing.

IMPORTANT: The lead dress and lead lengths of some components are critical. When replacing components, duplicate the original wiring as closely as possible.

PARTS REPLACEABLE IN WAFER-SWITCH TUNER,

 PART NO. 76-4402-SERIES| Reference |
| :--- |
| Symbol |

C3
C6
C7
C10
C10
C12
C13
C15
C16

C19
C20
C21
C22
C24
$C 25$
C26
C27
C 27
L 23
124
L 25
Condenser, d.c blocking, $39 \mu \mu f$. $\quad 62.039409011$$\begin{array}{lll}\text { Condenser, d.c blocking, } 220 \mu \mu f \text {. } \quad & \quad 30-1225.11 \\ \text { Condenser, cathode by-pass, } 220 \text { u } f \text {. } & 30-1225-11\end{array}$ondenser, screen by-pass, $220 \mu \mu f$. (clipped
free and replaced from pin 6 to ground.
\qquad Condenser, filament by-pass, $220 \mu \mu f$.30-1225-11 Coil, Coil, oscillator, Channel $4+\square \quad$ 32.4357.4

Reference Symbol

L26

L27| 129 |
| :--- |
| |L 32

L 33| 1234 |
| :--- |
| L35 |
| L_{2} |R1

R2
R2
R

,

 ain. oschator, Channel 5 Coil. oscillator, Channel 6 Coil. oscillator. Channel 7 Coil, oscillator. Channel 8Coil. oscillator. Channel 9 Coil, oscillator, Channel 10 Coil, oscillator, Channel 11 Coil. oscillator, Channel 12 Coil, oscillator, Channel 13 Coil. choke.
Coil. 1st v -
 Resistor, cathode bias. 330 ohms Resistor, grid decoupling, 3300 ohms Resistor, grid return, 100.000 ohm Resistor, grid return 10,000 ohms Resistor, grid return, 1 megohm Resistor, a.g-c decoupling, 330 ohms $\quad 66 . . \quad 66-5108340$ Resistor, plate feed, 4700 ohms $\quad \square \quad$ 66-2478240 Resistor, plate feed, 3300 ohms $\quad 6 \quad . \quad 66-2338240$ +Changed in later production to the value indicated. Replace with $2.2-\mu \mu f$. condenser, and rewire from pin 6 to

WAFER-SWITCH TUNER, PART NO. 76-5433-SERIES

The components of this tuner are made accessible by removing the tuner from the chassis, and then removing the perforated cover

CLEANING AND LUBRICATION

Refer to the information given above for the Part No. 77.4402 -series tuner.

PARTS REPLACEMENT

The parts given in the following list are those which are readily accessible, and which may be replaced with
out disturbing the tuning of any individual channels; however, the over-all alignment should be checked afte servicing. All parts are interchangeable in these tuners, except as noted.
IMPORTANT! The lead dress and lead lengths of some components are critical. When replacing com ponents, duplicate the original wiring as closely a possible.

PARTS REPLACEABLE IN WAFER-SWITCH TUNERS,

PART NOS. 76-5433 AND 76-5433-1

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C1-T	Condenser, fixed trimmer, $5 \mu \mu$ f.	L45-T	Coil, osciilator, Channel $9 \times \rightarrow$ - ${ }^{\text {a }}$ 32.4357-8
		L46-T	Coil. oscillator, Channel 10×3... 32.4357.10
C1.T	Condenser. fixed trimmer, $20 \mu \mu f$.	47.I	Coil. oscillator, Channel $11 \times \square \quad 32.4357 .11$
		48	Coil, oscillator, Channel $12 \times \quad 32.4357 .12$
C3-1		L49-T	Coil, oscillator, Channel 13×3 - ${ }^{\text {a }}$
C6.T		150.T	
C12.T		1.7	Coil, tapered line .-.
C14.T	Condenser, r-f by-pass, $1500 \mu \mu f$. .-. ${ }^{\text {a }}$ 30-1225-19	-T	Resistor, input loading. 1200 ohms - \quad 66-2128340*
C 18		R2.T	Resistor, grid return. $1 \mathrm{megohm} \mathrm{.-}. 66.5108340^{\circ}$
C20	Condenser, d.c blocking, $20 \mu \mu f$.	R3.T	Resistor, a-g-c decoupling, 330 ohms 66-1338340*
L2-T	Coil, FM trap ($76-5433$)	${ }^{\text {R4 }}$	Resistor, plate feed, 10.000 ohms --. 66.3108340^{*}
L2-T	Coil, FM trap (76-5433-1) .-x	R5-T	Resistor, screen dropping. 39.000 ohms ...66-3398340*
136	Coil, 1st vi.t tank		Resistor, B plus decoupling. 330 ohms66-1338340*
L37.T	Coil, choke, r.f-plate feed	R8.T	
L38.T	Coil, oscillator, Channel $2 \times \cdots$	R9.T	Resistor, B plus decoupling, 330 ohms66-1338340 ${ }^{\circ}$
139-T	Coil. oscillator, Channel $3 \times$ 32-4357-3	R10.T	Resistor, grid return, 100,000 ohms66-1108340
L40-T	Coil. oscillator, Channel 4×3 32.4357.4	R11-T	Resistor. grid retum, 10,000 ohms .-- 66.3108340°
$141 . \mathrm{T}$	Coill oscillator, Channel $5 \times \square$	\dagger In later production tuners, this resistor was replaced by an r-f choke, Part No. $32-4112-22$. At the same time. a $6800-\mathrm{ohm}$ resistor was added. across L31-T, the mixer grid coil for Channel 5. and a 10,000 ohm resistor was added, across L29.T, the	
142.T			
143.T			
144.T	Coil, oscillator, Channel 8 .-x]		

TUNER ALIGNMENT

After the tuner has been serviced, or if it is necessary to use a replacement tube that does not exactly meet the requirements described under TUBE REPLACEMENT, the tuner alignment should be checked. If realignment is necessary, it should be done according to the procedure given below.
The alignment may be made satisfactorily with the tuner out of the receiver chassis, hy using an external
power supply. This power-supply circuit may be similar to that shown in figure 2. If desired, B batteries and a 6.3 -volt filament transformer may be used, or a EQUIPMENT REQUIRED television receiver may be conveniently set up to supply power to the tuner. In all cases, there should be good 1. Philco Precision Visual Alignment Generator for bonding between the alignment generator and the tuner. Television and FM, Model 7008, or the equivalent This may be done by placing the generator and tuner equipment. on a metal plate.

Figure 2. Power Supply for Tuner Alignment with Tuner Removed from Receiver Chassis
2. Aerial-matching dummy; see figure 3. These resistors should be of carbon-composition construction, and should be chosen from a group to obtain values close to those indicated.
3. A power supply, as described above.

Figure 3. Aerial-Input Matching Network

CHANNEL	CHANNEL LIMITS (mc.)	VIDEO CARRIER frequency (me.)	SOUND CARRIER FREQUENCY (mc.)	LOCAL OSCILLATOR FREQUENCY (mc.)
2	54-60	55.25	59.75	81.85
3	60-66	61.25	65.75	87.85
4	66-72	67.25	71.75	93.85
5	76-82	77.25	81.75	103.85
6	82-88	83.25	87.75	109.85
7	174-180	175.25	179.75	201.85
8	180-186	181.25	185.75	207.85
9	186-192	187.25	191.75	213.85
10	192-198	193.25	197.75	219.85
11	198-204	199.25	203.75	225.85
12	204-210	205.25	209.75	221.85
13	210-216	211.25	215.75	237.85

Figure 4. Wafer-Switch Tuner, Part No. 76-4402-Series,
Top View, Showing Trimmor Locations
MODELS $76-5411$, MODELS 76-5411,

Figure 5. Tuner Response Limits for the
Twelve Television Channels

TURRET TUNER, PART NO.

76-5411-SERIES

For the detailed alignment procedure, refer to manual PR-1803, and include corrections and additions as ollows
. All references to figure 3 should read "figure 2."
2. All references to figure 4 should read "figure 3."
3. All references to figure 5 should read "figure 4."
4. In step 2 of the alignment procedure, the v-i-f output lead should be connected to ground through a 470-ohm resistor.
5. Delete step 12, and replace by the following: electrode capacitance onsate for differences in the interthe FINE TUNING control is incorrect on all channels, due to replacement of the 6J6/S tube, C11-T should be adjusted for best sound while receiving a high channel station. If the tuner is out of the chassis, or if repairs have been made, C11-T should be set midway in its re, and each oscillator core should be adjust. 6. In reference to the adjustment of C8-T, C3-T, local area which is weak, these adjustments may be made on that channel, to improve the response, provided that the response on the other channels is not sacrificed too much.

Local-Oscillator Adjustments

When making the tuner alignment with the tuner in the receiver chassis, the local oscillator tuning cores should be adjusted as follows:

1. Remove the chassis from the cabinet.
2. Connect a 20,000 -ohms-per-volt voltmeter to the shown in figure 6 .

Figure 6. FM TEST Jack Adapter
3. Turn the CHANNEL SELECTOR to Channel 2 .
4. Set the FINE TUNING control to the middle of its range.
5. Connect an accurately calibrated AM signal gen erator (unmodulated) to the aerial input of the re ceiver, and set the generator to the sound-carrier frequency of Channel 2. See table of TELEVISIO
6. Adjust the oscillator tuning core for a zero reading on the voltmeter
7. Repeat the above steps for Channels 3 through 13, in order.
When making th out of the receiver chassis (using a separate power upply, as described previously), the local oscillator uning cores should be adjusted as follows:

1. Connect the oscilloscope to J1-T. If the signalgenerator output or the scope gain is insufficient, a larger beat indication may be had by connecting a 3300 ohm resistor in series with the red lead, then connecting he oscilloscope to the junction of the red lead and the 3300 -ohm resistor
2. Set the CHANNEL SELECTOR to Channel 2 .
3. Set the FINE TUNING control to the center o its range.
4. Connect an accurately calibrated AM signal gen erator (unmodulated) to the aerial input.
5. Set the signal-generator to the oscillator frequency for Channel 2. See table of TELEVISIO
6. Adjust the Channel 2 oscillator tuning core for zero-beat indication on the oscilloscope.
7. Repeat the above steps for Channels 3 through setting and CHANNEL SELECTOR setting and apene ato the proper oscillator tuning core for the channel.

WAFER-SWITCH TUNER, PART

NO. 76-4402-SERIES

Local-Oscillator Adjustments

When making the tuner alignment with the tuner in the receiver chassis, adjust the local oscillator tuning cores according to the first procedure given unde LOCAL-OSCILLATOR ADJUSTMENTS for the Tur ret Tuner, Part No. 76-5411-Series.

When making the tuner alignment with the tuner out of the receiver chassis (using a separate power sup ply, as described previously), the local oscillator tuning cores should be adjusted as follows:

1. Connect the oscilloscope to the tuner test point at the 150 -volt output of the power supply (see figure 2).
2. Follow steps 2 through 7 of the second procedure given under LOCAL-OSCILLATOR ADJUSTMENTS for the Turret Tuner, Part No. 76-5411-Series.

Bandwidth and R-F Response

Adjustments
This information supersedes the procedures given in manuals PR-1672, PR-1771, and PR-1793. Trimmer locations are shown in figure 7. The alignment pro-

1. Turn the CHANNEL SELECTOR to Channel 2, and remove the ist vi-i-f tube. Connect a 470 -ohm resistor from the green (v-i-f output) lead to ground. If the alignment is being made with the tuner out of the receiver chassis (using a separate power supply, as
described previously), ground the white (a-g-c) wire.
2. Connect the vertical input of the oscilloscope to he tuner test jack, J2, or if using a separate power supply, to the red lead on the tuner side of a 3300 -ohm stor, as shown in figure 2
3. Connect the outputs of the AM and FM signal generators to the aerial input leadin through the aerial-

NOTE: In cases where an installation uses two aerials, and the single leadin has been clipped off, it is necessary to connect the signal generator to the appropriate aerial-input terminals of J1.
4. Set the FM signal generator for Channel 2 (55 mc .), with sufficient sweep to give the complete response curve.
5. Establish the channel limits by using the AM signal generator (unmodulated) to produce marker pips then to 60 mc .
6. Adjust C3 and C20 for symmetrical response within the channel limits. See figure 5 .
7. Check the response on Channels 3 through 13, using the appropriate sweep and marker frequencies. See table of TELEVISION CARRIER AND OSCILLATOR FREQUENCIES. If the response is consistently out of the proper bandpass in one direction, C3

MODELS 76-5411, 76-4402 76-4433, Series Tuners

Figure 7. Wafer-Switch Tuner, Part No. 76-5433-Series Top View, Showing Trimmer Locations and C20 should be readjusted to obtain the best compromise response on all of the channels used in the date the weakest station, provided that the performance on the other channels is not sacrificed too much.
8. Turn the CHANNEL SELECTOR to Channel 6.
9. Set the FM signal generator to 85 mc ., with sufficient sweep to give the complete response curve. Establish the channel limits by means of appropriate marker signals from the AM signal generator.
10. Adjust C 17 for maximum output and symmetry of curve
11. Check the response on Channel 2, and readjust C17 to obtain the best response on low channel stations in the local area.
12. Turn the CHANNEL SELECTOR to Channel 13.
13. Set the FM signal generator to 213 mc ., with sufficient sweep to give the complete response curve. Establish the channel limits by means of appropriate marker signals from the AM signal generator.
14. Adjust C18 for maximum output and symmetry of curve.
15. Check the response on Channel 7, and readjust C18 to obtain the best response on high channel stations n the local area.
16. Recheck the local-oscillator adjustments.

WAFER-SWITCH TUNER PART

NO. 76-5433-SERIES

Local-Oscillator Adjustments
When making the tuner alignment with the tuner in the receiver chassis, adjust the local oscillator tunin cores according to the first procedure given unde LOCAL-OSCILLATOR ADJUSTMENTS for the Tur ret Tuner, Part No. 76-54́11-Series.
When making the tuner alignment with the tuner out of the receiver chassis (using a separate powe supply, as described previously), the local oscillato tuning cores should be adjusted as follows:

1. Connect the oscilloscope to the tuner test point at the 150 -volt output of the power supply (see figure 2).
2. Follow steps 2 through 7 of the second procedur given under LOCAL-OSCILLATOR ADJUSTMENT

Bandwidth and R-F Response

Adiustments

This information supersedes the procedures given in manuals PR-1823 and PR-1844. Trimmer locations are shown in figure 7 . The alignment procedure for band width and r-f response is as follows

1. Connect the outputs of the AM and FM signal generators through the aerial-matching network (figure 3) to terminals 1 and 2 of Z1-T. Terminals 3 and 4 of $\mathrm{Z} 1-\mathrm{T}$ should be connected together, for a $300-\mathrm{ohm}$
2. Connect a 3300 -ohm resistor in series with the 150 -volt (red) B + lead to R9-T. Connect the vertical input of the oscilloscope to the junction of the 3300 ohm resistor and R9-T. When making the tuner alignment with the tuner out of the receiver chassis (using separate power supply), connect the oscilloscope to he tuner test point at the 150 -volt output of the power supply (see figure 2).
3. Turn the CHANNEL SELECTOR to Channel 10, and remove the 1st \mathbf{v}-i-f tube. If the alignment is being made with the tuner out of the receiver chassis, ground the white (a-g-c) wire. Connect a 470 -ohm resistor from the green (v -i-f output) lead to ground
4. Set the FM signal generator to 195 mc ., with suf ficient sweep to give the complete response curve.
5. Set the AM signal generator (unmodulated) to roduce marker pips at the video and sound carriers for Channel 10.
6. Adjust $\mathrm{C} 8-\mathrm{T}$ and $\mathrm{C} 11-\mathrm{T}$ for maximum symmetrical response within Channel 10. If there is one weak station in the local area, the adjustment of C 8 -T and C11-T may be made on that channel, to improve the esponse provided that the response on other channels is not sacrificed too much.

Figure 9. Wafer-Switch Tuner, Part No. 76-5433-Series, Schematic Diagram

ALL MODELS USING 76-5411 SERIES TURRET TUNER

Reduction of Modulation Hum

Modulation hum in the reception of high-frequency channels may be reduced by adding an additional 100 $\mu \mu$. filament by-pass condenser (Part No. 30-1224-1) This condenser should be wired from the junction of L2-T and L4-T to ground. Physically, the condenser should be connected between the terminal holding the filament feed wire and the adjacent ground knockout.
With the tuner in the chassis, the parts are made accessible by simply removing about half of the snap in coils.

Part No. 76-5433 - Series Tuner Additional Replacement Part

The FINE TUNING condenser for the above tuners is available for replacement purposes. The part number is 31-6517-1. This condenser is made accessible by firs moving L38-T (Channel 2) and L39-T (Channel 3) oscillator coils. This may be done by compressing the coil mounting clips, then carefully pushing the coil back into the tuner. out of the way

SUBSTITUTING PART NO. 76-5433-1 TUNERS FOR PART NO. 76-4402-6 AND PART NO. 76-5433 TUNERS

Tuner Part No. 76-5433-1 is built only to be shockmounted; therefore, when using it to replace other tuners, mounting brackets are required. These brackets, including installation instructions, may be ordered by Part No. 45-9591,

Figure 3. Breakdown Dlagram of Control Cirenit
leadin is connected to the two-terminal board, TB1 which is mounted at the left-hand rear corner of the chassis (facing the rear of the chassis).
To adapt the receiver for dual-aerial operation, it is only necessary to clip the parallel conductor extending from TB1 into the tuner chassis (cut as close to the tuner chassis as possible); this prevents the length of parallel conductor from acting as a trap on the higher frequency channels. Using plug Part No. 27-4788, connect the low-frequency aerial leadin to the two widely spaced pins, and the high-frequency aerial leadin to the input receptacle, J1, which is located near the 7F8 tube

Figure 4C shows the quiescent, or operating, condition A tendency to change frequency in either direction will oscillator in sync.
Two filter networks, as shown in figure 5 , are used to filter out nois.
sync voltages.

AERIAL CONNECTIONS

The aerial-input circuit has provisions for either single aerial or dual-aerial installation. The receiver is normall wired for single-aerial installation; in this case, the aeria

Figure 5. Filter Circaits

The aerial-input circuit is switched by means of a cam operated switch, S2. The cam is operated by the shaf of the station-selector switch, and is so constructed tha it places the switch in one position for Channels through 6, and in another position for Channels through 13. The action of S2 is as follows:

SINGLE-AERIAL OPERATION

1. Connects the aerial to the primary of the lowfrequency aerial-input transformer, T3, or the highfrequency aerial-input transformer, T4, depending upon the channel selected
. Connects the control grid of the r-f amplifier to the depending upon the channel selected.
2. Grounds the primary winding of low-frequency aerial-input transformer when the high-frequency aerial input transformer is in use.
Caldial OPERATION
Connects the control grid of the r-f amplifier to the proper secondary of either aerial-input trans
Grounds the primary winding channel selected
Grounds the primary winding of the low-frequency aerial-input transformer is in use.
3. The separate aerial leadins are permanently connected to the primaries of their respective transformers; therefore, no switching of the primaries is required.

ALIGNMENT PROCEDURE

TEST EQUIPMENT REQUIRED FOR ALIGNMENT

 The following test eqcipment is recommended for aligning the receiver:1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008; this instrument has the following features:

Figure 4. Sawtooth and Sync neloWonship
a. FM signal generator with ranges of $4-120 \mathrm{mc}$ of 15 mc
b. AM (marker) signal generator with ranges of 3.2-7.5 Mc., $6.4-15 \mathrm{mc}$., $14.5-36 \mathrm{mc}$., 69125 mc. , and $138-250 \mathrm{mc}$.
c. Built-in oscilloscope with sensitivity of 25 millivolts, 3 -inch cathode-ray tube, and crosshatch screen.
D-c vacuum-tube voltmeter or 20,000 -ohms-per-
If separate sig
If separate signal generators and oscilloscope are used, these instruments should have the following
a. FM signal generator-Deviation: $\pm 4 \mathrm{mc}$.; center-frequency range: 20 mc . to 30 mc .; sweep-sync output with either built-in or sepa-
b. AM shase corrector. 20 mc . to 30 mc .; dial should be suitable for setting and reserting accurately to frequencies
sp illo io Alibred vertical
I volt (peak-to-peak) per inch or better NOTE: When using a separate AM r-f signal genera to obtain a marker "pip," couple the output lead of this generator to the output lead of the FM generator, using just sufficient coupling to obtain a suitable pip.
The following jigs are recommended for correctly Oupling the signal generators to the various circuits where input signals are required for alignment.

I-F JIG
Figure 6 shows a jig which is recommended for The following parts are necessary for the construction of this jig.

1. 3 -incb length of $1 / 4$-inch-diameter tubing.
2. $31 / 2$-inch length of $1 / 8$-inch-diameter spaghetti
3. 4-inch length of \#12 or \#14 bus wire.
4. Clamp, Philco Part No. 56-3545FA3.

To construct this jig, follow the procedure given

1. Insert the spaghetti into the tubing. Allow $1 / 8$ inch to extend from one end of the tubing.
2. Insert the bus wire into the spaghetti. Allow $1 / 8$ inch to extend from one end of the spaghetti.
. Crimp one end of
Sold wire
3. If Model 7008 Visual Alignment Generator is uscd, solder a short piece of bus wire to the tubing to provide a convenient ground connection for the output-cable terminating box.
The connections to the video-i-f amplifier grids are accessible from the top of the chassis through small holes near the tube shields. To use the jig, slide the clamp over the tube shield, and insert the probe end of the jig
into the hole; adjust the height to insure good contact with the grid connection

MIXER JIG (See figure 7)
1 piece of $1 / 4$-inch-diameter copper tubing, $11 / 2$ inches long.
1 piece of $1 / 8$-inch-diameter spaghetti, $13 / 4$ inches long.
1 piece of heavy bus wire, $21 / 2$ inches long.
piece of flat metal, $3 / 4$ inch wide, 2 inches long, and $1 / 32$ inch thick.

Procedure:

Drill a $1 / 4$ inch hole in one end of the metal piece. With a grindstone or file, taper the other end. Insert the and solder the tubing so that one end is flush with the
urface of the metal strip. Insert the spaghetti into the tabing, and fasten with glue. Allow some spaghetti to xend from each end. Insert the bus wire into the he tubin. Solder the ground connection to the side of
How to Use the Mixer Alignment Jig
Looking at the chassis from the side with the operating of the r-f the left, two holes will be seen on the side which connects directly to the mixer grid Scratch an

STEP	OUTPUT-INDICATOR CONNECTION	SIGNAL-GENERATOR CONNECTION	SIGNAL-GENERATOR SETTING	ADJUST
1	Connect vertical input of scope to ALIGN TEST jack J4.	Connect output of AM generator through i-f jig to grid (pin 1) of 3rd v-i.f amplifier.	22.1 mc . (modulated).	TC13 and TC22 for minimum indication.
2	Connect vertical input of scope to FM detector jack J3 (see Note 1).	Connect outputs of AM and FM generators through i-f jig to grid (pin 1) of 3rd v-i-f amplifier.	FM generator to 22.1 mc ., with $\pm 4 \mathrm{mc}$. deviation; AM generator (modulated) to 22.1 mc .	TC1s for minimum amount of AM indication (see Note 2). TC14 for symmetrical pattern within limits shown by curves in figure 8 .
3	Same as step 2.	Same as step 2.	FM generator to 22.1 mc ., with $\pm 4 \mathrm{mc}$. deviation; AM generator off.	C27A and C27B for maximum peaks and symmetrical pattern.
4	Same as step 1.	Same as step 2.	FM generator to 25 mc ., with $\pm 4 \mathrm{mc}$. AM generator (unmodulated) to 26.6 mc ., to produce marker pip on response curve.	TC21 for curve 1.
5	Same as step 1.	Connect outputs of AM and FM generators through i-f jig to grid (pin 1) of 2nd v-i-f amplifier.	FM generator to 25 mc ., with $\pm 4 \mathrm{mc}$. deviation. AM generator (unmodulated) to 24.5 mc ., to produce marker pip on response curve.	TC20 for curve 2.
6	Same as step 1.	Connect outputs of AM and FM generators through i-f jig to grid (pin 1) of 1st v-i-f amplifier.	FM generator to 25 mc ., with $\pm 4 \mathrm{mc}$. deviation. AM generator (unmodulated) to 24.5 mc ., to produce marker pip on response curve.	TC 19 for curve 3.
7	Same as step 1.	Connect output of AM generator through mixer jig to grid (pin 1) of mixer tube.	AM generator (modulated) to 28.1 mc.	TC17 for minimum indication.
8	Same as step 1.	Connect outputs of AM and FM generators through mixer jig to grid (pin 1) of mixer tube.	FM generator to 25 mc . with $\pm 4 \mathrm{mc}$. deviation. AM generator (unmodulated) to $23.6 \mathrm{mc} ., 24.25$ mc., 26.25 mc ., and 26.6 mc ., to produce marker pips on response curve.	Channel selector to Channel 2. TC16 and TC18 for curve 4. It may be necessary to readjust TC21, TC20, and TC19 to obtain this curve.

FINAL I-F CHECK

9	Connect vertical input of scope to ALIGN TEST jack J4. Connect a v.t.v.m. ($0-10 \mathrm{v}$. scale) to FM detector jack 13. Use adapter shown in figure 12.

Same as step 1.	AM generator (modulated) to 22.1 mc.

When indication on scope is mini-
mum the vit.v.m. should read zero.
If this reading is not zero, adjust
TC15. If this reading requires more
than one-half tura, repeat step 2.

©John F. Rider

© John F. Rider

The waveforms in the chart are sized for clarity and are not intended to illustrate relative amplitudes. Approximate peak-to-peak voltages are given for each waveform. The peak-to-peak voltages in the sync cir
cuits are the values obtained with approximately one cuits are the values obtained with approximately one the controls are set to give a normal picture.

A calibrated test oscilloscope is required for viewing and measuring the waveforms.
For viewing the waveforms in the vertical sync and sweep circuits, adjust the oscilloscope sweep for 30 c.p.s. (half the vertical-sweep rate). For viewing the wave the oscilloscope sweep for $7875 \mathrm{cps}$. . (half the hori zontal-sweep rate).

Pin 3 Sync Inverier

Pin 2 Vert. Sweep Osc.

Pin 7 Horiz. Sweep Osc.
. 19 VOLTS

Pin 3 AFC Sync

Pin 2 Vert Sweep Osc.

Pin 5 Vert. Sweep Output

Pin 4 Vert. Sweep Output

Pin 3 Vert. Sweep Output

Pin 2 Horiz. Sweep Output

Pin 1 Horiz. Sweep Outpu

Pin 5 AFC Sync

Pin 4 AFC Sync -

Pin 6 AFC Sync
Figure 14 Sync and Sweep Waveforms

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the receiver will be either unchanged or improved. When ordering replace

In the only the Service Part No. hrough your Philco Distributor. Only tuners found to be defective by the Philco Distributor will be accepted or exchange.

The part number of the r-f tuner assembly is 76-4402-7.

Reference
Symbol

Description	Service
Condenser, d.c blocking, $1.5 \mu \mu$ f. Condenser, d-c blocking, $22 \mu \mu$.	
Condenser, mixer trimmer, .5-5	
Condenser, 1-f aerial input	Part of $76-4$
Condenser, h-f aerial inpu	Part of 76-4402.7
Condenser, h.f derial, $27 \mu \mathrm{ff}$.	Part of 76-4402.7
Condenser, d.c blocking. 220μ	Part of 76-4402.7
Condenser, r-f by-pass, $220 \mu \mu \mathrm{f}$.	
Condenser, cathode by-pass, 220 $\mu \mu \mathrm{f}$.	
Condenser, r-f plate trimmer, .5-5 $\mu \mu$.	
Condenser, cathode by-pass, 220 $\mu \mu \mathrm{f}$.	
Condenser, d-c blocking, 39	Part of 76-4402.7
Condenser, screen by-pass, 220	Par
Condenser, oscillator injection, 5	
	Part of 76
Condenser, r-t by-pass, $220 \mu \mathrm{l}$	Part of 76-4402.7
Condenser, d-c blocking, 220μ	Part of 76-4402.7
Condenser, d.c blocking, $10 \mu \mu \mathrm{f}$	Part of 76-4402.7
Condenser, r-f by-pass, $220 \mu \mathrm{f}$	Part of 76-4402-7
Condenser, fixed padder, $10 \mu \mathrm{f}$	Part of $76-4402.7$
Condenser, trimmer, fine tuning	Part of 7¢-44
Condenser, fixed padder, $27 \mu \mu \mathrm{f}$.	Part of 76-4402.7
Condenser, fixed padder, $39 \mu \mathrm{ll}$	Part of 76-4402.7
Condenser, filter, 10μ f.	30-2417-6
Condenser, r-f by-pass, 220	Part of 76-440
Condenser, fixed trimmer, 56μ	62.056409001 ${ }^{\text {- }}$
Condenser, d-c blocking, $01 \mu \mathrm{f}$.	61-0120
Condenser, trimme	Part of Zl
Condenser, trimme	Part of Zl
Condenser, r-f by-pass. 1500 !!	62-215001011*
Condenser, grid, 56	60-056409001 ${ }^{\text {- }}$
Condenser, d.c blocking, $3.3 \mu \mathrm{f}$.	30-1224-30
Condenser, r-f by-pass, 1500μ	62-21500101
Condenser, balancing, $2.2 \mu \mu \mathrm{t}$	30-1221
Condenser, r-f by-pass, $1500 \mu \mu$	62-215001011 ${ }^{\circ}$
Condenser, r-f. by-pass, $1500 \mu \mu \mathrm{f}$.	62.215001
Condenser, r-f by-pass, $1500 \mu \mu \mathrm{f}$.	62-2150010
$\underset{50 \mathrm{v}}{\mathrm{C}} \underset{\mathrm{Condenser}}{\mathrm{C}}$ etector filter, $2 \mu \mathrm{f}$.,	
Condenser, d-c blocking, . $02 \mu \mathrm{f}$., 200v61-0108	
Condenser,400 v	
Condenser, r-f by-pass, $1500 \mu \mu$	62.21500101
Condenser, d-c blocking, . $047 \mathrm{\mu f}$	$6^{61-0122}{ }^{\text {. }}$
Condenser, r-f by-pass, 470	62-147001001
Condenser, cathode by-pass, $40 \mu \mathrm{f}$.,	
50v	Part of Cl06
Condenser, filter, 10μ f., 450v	Part of C106
Condenser, tone compensator, 0068$\mu \mathrm{f}$.	
Condenser, r.f by-pass, $1500 \mu \mu \mathrm{I}$	62-215001011 ${ }^{\text {* }}$
Condenser, d-c blocking. $470 \mu \mathrm{f}$.	62.147001001
Condenser, fixed trimmer, $22 \mu \mu \mathrm{f}$.	62-022009001.
mer, 22	62.022009001 ${ }^{\text {. }}$
Condenser, r.f hy-pass, $1500 \mu \mu$	62.215001011
Condenser, screen by-pass, 1500	

Description
$\underset{\text { Part No. }}{\substack{\text { Service }}}$
Condenser, d-c blocking, $470 \mu \mu \mathrm{f}$. . 62-147001001 Condenser, r-f by-pass, $1500 \mu \mu \mathrm{f} . \quad 62-215001011$
Condenser, screen by-pass, 1500

 Condenser, screen by-pass,
$\mu \mu \mathrm{f}$.62-215001011. Condenser, d-c blocking, 470 «4f. $\quad 62-147001001$. Condenser, cathode by-pass, $2 \mu \mathrm{\mu f}$. . $30-2417.7$.

 Condenser, d-c blocking. . 05 uf.
Condenser, h.f compensation, 100 $\mu \mu \mathrm{f}$. $. .62-110009001$.

 Condenser, integrating, 0015 . μ. $\ldots 62-215001011$.
Condenser, integrating, $0015 \mu \mathrm{f}$. $\ldots 62$.215001011.

 Condenser, d-c blocking, il μ f.61-0113
Condenser, filter, 0068μ. Condenser, voltage divider, 100 Muf. . Condenser, voltage divider, 004μ f. $45-3500-17$
Condenser, d.c blocking. $0047 \mu \mathrm{~F} .30-4661.2^{\circ}$

 Condenser, differentiating, $100 \mu \mu \mathrm{f} .62-110009001^{*}$
Condenser, differentititing, $820 \mu \mu \mathrm{f} .60-10825401^{*}$

 Condenser, sweep charging, 015 Condenser, d-c blocking, 0047μ i. Condenser, d-c blocking, . 0047 uf. . Condenser, screen by-pass, $15 \mu \mathrm{f}$. Condenser, fixed trimmer, $02 \mu \mathrm{f}$. Condenser, filter, . 0047μ. condenser, filter, $0047 \mu \mu \mathrm{f}$.
Condenser, filter, $50 \mu \mathrm{Lf}$. , 250 v Condenser, filtrer, $50 \mu \mathrm{ff}$. . 250 v
Condenser, filter, $80 \mu \mathrm{v}$

REPLACEMENT PARTS LIST (Cont.)

© John F. Rider

PRE-PRODUCTION CHANGES

These changes were made between the time the manual was printed and the time the first production started. A 3300 -ohm resistor and a 220 - $\mu \mu \mathrm{f}$. by-pass condenser connected in parallel were added between the cathode (pin 4) of the 7F8 mixer and ground.

1 R 1 was changed to $\mathbf{1 0 , 0 0 0}$ olms
R7 was changed to 4700 ohms.
A $220-\mu \mu f$. condenser was added between the cath ode (pin 4) of the 6AG. 5 r-f tube and ground.
L. 35 was removed.

L36 should be: Choke, plate, Part No. 33-506tor
R63 should be: Resistor, potentiometer, VERT. HOLD control, R108 should hr: Resi-tor, potentiometer, FOC:S control, 3 T: mhould be: Transformer, vertical oscillator, Parı No. $32 \cdot 8304.3$

Th =hould be: Transformer, herizontal osecilator,
Z2 should he: Transformer, Fly detector Part No. 32.8307 .3 Cabinct should be: 50 - 0102 , l'art No. 10-33
Hollow shaft is part of tunir, and is not replaceable. Should
be part of is. $41412-:$ of tuner, and is not replaceable. Should

PRODUCTION CHANGES

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	description of change	NEW OR ADDED PART NO.	old or removed PART NO.	REASON FOR CHANGE
2	R51 changed to a 2 -watt resistor.	6 6-2565340*	66.2564340	To provide for high line voltager.
2	R亏3 changed to a l-watt resistor.	66.24i4340*	66.2488340	To provide for high lize voltages.
2	R26 and 189 replaced with a 5100 . ohm, 5-watt resistor.	33.1335-18	$\begin{gathered} 66 \cdot 3108340 \\ \text { and } \\ 66 \cdot 3128340 \end{gathered}$	To provide for high line voltages.
2	C82 changed to .00ti $\mu \mathrm{f}$.	31.-4601-2	45-3500-17	To use a low-leakage condenser.
2	C8i changed to . $22 \mu \mathrm{f}$.	30-46-50-49	61.0120	To use a low leakage condenser.

CORRECTION IN ALIGNMENT PROCEDURE

The last sentence of the note should read:
In cases where an installation uses two aerials, it will be necessary to connect the generator to the appropriate aerial-input terminals of Jl .

CORRECTIONS AND ADDITIONS TO

NENT PARTS LIST

C24 should be: Condenser, r.f by-pass, 1500 Par

John F. Rider

MODEL 50-T1104, CODE 121, and

MODEL 50-T1104, CODE 122

Philco Models 50-T1104, Code 121, and 50-T1104, Code 122, are table-type television receivers in plastic cabinets. Model 50-T1104, Code 122, incorporates a built-in aerial, and also has provisions for the connec tion of an external aerial, if necessary. The chassis o 50-T1105, Code 121 .
The built-in aerial of Model 50-T1104, Code 122, consists of a broad-band dipole of metal foil, mounted inside the cabinet on the top, and a tuning and im-pedance-matching network. This aerial covers all channels, and is tuned for each channel by adjusting the AERIAL TUNING control, which is located on the ure 1 shows the schematic diagram of the new aerial and aerial-tuning network.

A 300 -ohm line couples the tuning network to the A ared from the arminals when an external aerial is used.
For additional service information pertaining to Models 50-T1104, Code 121, and 50-T1104, Code 122, refer to Philco Service Manual PR-1771, which covers Models 50-T1105 and 50-T1106, and to the information in this manual, which supplements PR-1771. However, the Miscellaneous section of the Replacement Part List in PR-1771 does not apply to Models 50-T1104 Code 121, and $50-\mathrm{T} 1104$, Code 122. The following list of miscellaneous items should be used.
WARNING: Before removing the chassis, it will be necessary to remove the built-in dipole aerial, to Pr ent it from being damaged. Prom rnob using the setsce in the AL 45-9270. 45-9270
2. Remove the two nuts holding the rear of the place.
3. Free the two brackets from the screws, and draw the aerial toward the rear until the shaft is free of the hole.
4. Loosen the two screws holding the aerial trans mission line to the aerial terminal.
5. Remove the chassis in the usual manner.

MISCELLANEOUS PARTS LIST MODEL 50-T1104, CODE 121, AND MODEL 50-T1104, CODE 122

Description

Bolt, wing, adjusting bracket
(rear)
(rear) Cabinet ($50-\mathrm{T1104-M}$, Code 121) 76-5190FA3
Cabinet (50-T1104-M, Code 121)
Cabinet ($50-\mathrm{T} 1104-\mathrm{M}$, Code 122)
Back-and-cup assembly
Coupler, rubber, AERIAL TUNING shaft
(50-T1104, Code 122)

Description Dipole foil (50-T1104, Code 122) two used	Service Part No.
	- 56-7635
Knob, AERIAL TUNING control (50-T1104, Code 122)	54-4750
Knob, BRIGHTNESS control ($50-\mathrm{T} 1104-\mathrm{M}$)	54-4659-1
Knob, BRIGHTNESS control (50-T1104-E)	54-4659
Knob, CHANNEL SELECTOR (50-T1104-M)	56-6596-1
Knob, CHANNEL SELECTOR (50-T1104-E)	56-6596-2
Knob, CONTRAST control (50-T1104-M)	54-4664-1
Knob, CONTRAST control (50-T1104-E)	54-4664
Knob, FINE TUNING control ($50-\mathrm{T} 1104-\mathrm{M}$)	54-4662-1
Knob, FINE TUNING control (50-T1104-E)	54-4662
Knob, HORIZ. HOLD control (50-T1104-M)	54-4664-3
Knob, HORIZ. HOLD control (50-T1104-E)	54-4664-2
Knob, VERT. HOLD control (50-T1104-M)	54-4659-3
Knob, VERT. HOLD control (50-T1104-E)	54-4659-2
Knob, VOLUME control (50-T1104-M)	54-4661-1
Knob, VOLUME control (50-T11	04-E) . $54-4661$
Loop assembly, AERIAL tuning (50-T1104, Code 122)	76-5413
Mask	56-7143
Panel assembly, AERIAL TUNING (50-T1104, Code 122)	control $75-5399$
Shaft, AERIAL TUNING control (50-T1104, Code 122)	54-4747
Strap, mask	56-6848-1
Window	...54-7595-5
Cable assembly, high-voltage	41-3771-7
Cord, drive, 25 -foot spool	45-8750
Insulator, high-voltage	54-7573-5
Shield, Loktal tube	56-2731
Shield, miniature tube	56-5629FA3
Socket, Loktal tube	27-6207
Socket, miniature tube	27-6226
Socket, octal tube	27-6174-6
Socket, octal tube, 1B3GT	27-6174-5
Socket, 9-pin, 12AU7	27-6203-5
Spring, fine tuning, hairpin type	56-6552
Strap assembly, picture-tube support (fronder	front) - 76-5191
Support, picture tube	76-5192

Figure 2. Change in Sound-I-F Take-off

PRE-PRODUCTION and PRODUCTION CHANGES

PRE-PRODUCTION CHANGES

NOTE: The following changes should be considered when relerring to Philco Service Manual PR.1771. These changes which were made in the design of the sets were effective beginning with lirst production.

description of change	REmoved PART NO.	ADDED PART NO.
Tone circuit, consisting of 47,000 - ohm resistor (R127) and $.0047 . \mu$. condenser (C110). added in series between tap of VOLUME control and ground.		$\begin{aligned} & 66.3478340 \\ & 45.3505 .56 \end{aligned}$
Sound i.f take-off polnt moved trom plate of third video.i-f amplifier to cathode of same stage. C29 removed. First soundi-it autotransformer changed. $470-\mu \mu f$. condenser (C111) added in parallel with R13. See figure 2. (This change was incorporated into first production of Model 50-T1105 only.)	C29. 30-1224-30 L37. 32-4373-1	62.147001001 32.4303.1
22,000-ohm resistor (R128) added across primary of $\mathrm{Z1}$ in Model $50 . \mathrm{T} 1106$ only.		66.3228340
130-volt B+ lead from pin 8 of audio-output tube disconnected from junction of S2A, R14, and R11, and connected to junction of L45, C34, and R11.		
R10 disconnected from junction of L45, C54, and R11, and connected to screen (pin 6) of first videoil.f amplifier.		
Lead between junction of R30 and R7 and junction of C59 and R23 removed. Junction of R30 and R7 connected to junction of R33 and R34.		
1500- $\mu \mu \mathrm{f}$. condenser (C112) added between junction of R30 and R7 and ground.		62.215001011
Reslstor R39 changed to 15.000 ohms.	66.3478340	66-3158340
$1500-\mu \mu f$. condenser (C113) added in parallel with C4.		62-215001011
1500- $\mu \mu \mathrm{f}$. condenser (C114) added in parallel with C27.		62-215001011
1500- $\mu \mu \mathrm{f}$. condenser (C115) added in parallel with Cil.		62-215001011
Condenser C28 disconnected from junction of L35 and R67, and ungrounded end con. nected to junction of R67 and R68.		
Connections to 7N7 sync preamplifier and sync separator changed so that pin numbers are as follows:		
Hexistor R96 changed to 82.000 ohms.	66.4108340	66-3828340

DESCRIPTION OF CHANGE	REMOVED PART NO.	ADDED PART NO.
Resistor R101 changed to 120,000 ohms.	66.4108340	66.4128340
Condenser C1n4 removed. TELEYISION termincl of S2B disconnected from junction of R82 and R109, and connected to pin 3 of horizontal-output tube.	30.2417.1	
Additional section of S 2 connected so that, in PHONO position, the junction of C 40 and C41 is connected to the ungrounded end of C45. The TELEVISION terminal of this section of the switch is left open.		
Connection to FM TEST jack J3 changed so that: 1. Pin 1 is grounded 2. Pin 2 is connected to ungrounded (negative) end of C42. 3. Pin 3 is connected to junction of C40 and C41.		
This change necessitates a corresponding change to the connections of the FM TEST jack adaptor shown in figure 4 of PR-1771. The FM TEST jack adaptor should be constructed as shown in figure 3 of this bulletin. The 100,000 -ohm resistors used for this adaptor should be selected from a group. to obtain values as close to each other as possible. In the I-F ALIGNMENT CHART, all references to connecting the oscilloscope to pin 1 of J 3 should be disregarded, and the oscilloscope should be connected to pin 3 instead.		

PRODUCTION CHANGES

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	description of change	REMOVED PART NO.	ADDED PART NO.	REASON FOR CHANGE
2	FM detector (7X7) shielded.		Shield-mounting clip, 56-1567-1. Tube shield, 56 . 2731.	To eliminate harmonic beat.
2	R.f choke added in series with ungrounded lead to filament of FM detector (7X7).		32.4112-15	To eliminate har monic beat.
$2 \cdot$	Soundilif takeoff point moved from plate of third videai-f amplifier to cathode of same stage. C29 removed. First sound i.f autotransiormer changed. $470-\mu \mu f$. condenser edded in parallel with R13. R128 removed. See figure 2.	C29. 30-1224-30 L37. 32.4373.1 R128. 66-3228340	62.147001001 32.4303.1	To improve pad. ding.
3	R118 changed to 15.000 ohms.	66-3188340	66-3158340	To improve adja cent-sound attenu ation.
4	Ground connection of C31 is changed to same ground connection that grounds 137.			Improve sound-i-f stability.

- This change was incorporated in first production of Model 50.T1105 and Run 2 of Model 50.T1106

Figure 3. FM TEST Jack Adaptor

Figure 4. Partial Top View, Models 50-T1104, Code 121, 50-T1104, Code 122. 50.T1105, and 50-T1106, Showing Components Mounted on Top of Chassis

CORRECTIONS TO SERVICE MANUAL PR-1793

1. FM TEST jack J3 should be wired as shown in figure 1 .
2. In the schematic diagram, the video-output screen In the schematic diagram, the video-output
by-pass condenser, C108, should be deleted.
3. In figure 2 of PR-1793, the wording "PLUG IS
SHOWN WITH PRONGS POINTING AWAY" SHOWN WITH PRONGS POINTIN"
4. The PHONO switch, $\$ 2$, should be wired as shown in figure 2 .
5. The caption for figure 10 should read "Philco Television Receiver Models 50-T1400; 50 -T1402; $5(0)$ T1104, Code 123; Complete Schematic Diagram."
6. Pins 2 and 7 of the high-voltage rectifier tube should be reversed
7. The following changes should be made in the part numbers in the Replacement Parts List:

Reference Symbol or Description	Published	New or Correct Part No.
C43	30.4650 .56	45.3509.56
${ }^{\text {c48 }}$	30.4650.91	45.3505.91
C71	30.4650.49	45-3505.49
C78	30.4650.49	45-3505.49
C104	62.215001001	62-215001011
C108	62-215001001	62.215001011
${ }^{2} 3$	32.4302.3	32.4303.2
R21	33.5586-16	33.5564.4
RS1	33.5563.22	33.5563.10
R97	33.5663.23	33.5663.6
R119	66.2518340	66.2508340

Figure 1. Connections to FM TEST Jack Models 50-T1400; 50-T1402; 50-T1 104, Code 123 Tp9.680 Reference Symbol
or Description
Bolt, wing, dellection yok
Cabinet (50-T1 402)
Cable assembly, high voltage
Knob. BRIGHTNESS control
ISO
Knob. CHANNEI SELECTOR (50-T1400) Screw, window rail All references to 76 -4402-9 (the tuner wanfil should read 76.4402 -6,
PREPRODUCTION CHANGES IN MODELS 50-T1400 AND 50-T1402

The following changes were made in Models 50 T1400 and 50 -T1402 between the time of printing of Service Manual PR-1793 and the time of first produc tion of Models 50-T1400 and 50-T1402:

Figure 2. Preproduction Connections to Phono Switch, Models 50-T1400:
$50-\mathrm{T} 1402 ; 50-\mathrm{Tl} 104$, Code 123

description of change	removed part no.	added part no.
L55 changed to difterent coil.	32.4234.4	32.4234.8
R118 changed from 5100 ohms to 5600 ohms.	66.2518340	66-2568340
C68 and Ce0 changed trom $18 \mu \mu \mathrm{f}$. $1051 \mu \mu \mathrm{f}$.	60.00185317	30-1224.62
$100 \cdot \mu \mu \mathrm{f}$. candenser (E115) added betwoen scroen (pin 8) of horizontal output tube and socondary tap of T 7 .		80.10105407
Lead to screen (pin 8) of horizontal-output tube remored. Pin recon nected to plin of T7 through a 250 -microhenry choke (172) and a 4700 ohm reshater (R127) in series.		32.4143 .7 66.2475340

NOTE:- For additional information, See
Philco Model $50-T 1400$, Pes. $4-27$ to $4-34$

description of change	removed part no.	added part no.
R121 removed. R28 changed from 10.000 ohms to 5000 ohms.	33.1335.47	33-3435.30
R94 changed from 6800 ohms to 5100 ohms.	66.2688340	66-2518240
L.68 removed; L69 connected across R29.	32-4112.15	
iunction of L5S and C68.		66.1478340
R116 removed. R115 connected to junction of R114 and CSI.	66.4685340	
J8 and $\mathbf{S} 2$ removed. Leads to S 2 rewired so that connections are same as when 32 was swliched to TELEVISION position. R109 removed. Zathode (pin 3) ot horizontal-output tube grounded.	${ }_{42}^{27.6126}$ 66.2105340	
Ungrounded end of C_{28} disconnected and reconnected to junction of R67 and R68.		
$1500-\mu \mu f$. condenser (C117) added in parallel with C 27 .		62-215001011

Figure 3. Location of Fuse, Runs IF, 2F, and 3F
of Models $50-\mathrm{T} \mid 400$ and $50-\mathrm{T} 1402$

PREPRODUCTION CHANGES IN MODEL 50-T1104,

 CODE 123The following change, were made in Model 50-T1104,

Figure 4. Location of Fuse, Run 4

Code 123, between the time of printing of Service Manual PR-1793 and the time of first production of Model 50-T1104, Code 123:

description of change	removed part no.	added part no.
470 .ohm resistor (R128) added in series with lead between 26 and junction of 555 and 268 .		66.1478340
$2.2-\mu \mu)$. condenser (5116) added between ground and junction of ≈ 6 and R128.		30.1221.4
C111 removed.	45.3505.60	
C79 changed from $15 \mu \mathrm{f}$. to $47 \mu \mathrm{f}$.	45.3505.48	$61-0133$
R121 removed. R28 changed from 10.000 ohms to 5000 ohms.	33-1335.47	33.3435.30
R108 changed from 270.000 ohms to 390.000 ohms.	66-4278340	26.4398340
R72 changed from 5100 ohms to 1500 ohms.	33.5546.28	66.2155340
$1530-\mu \mu \mathrm{f}$. condonsar (E117) added in parallel with 227.		62.215001011

OJohn F. Rider

Figure 10. Philco Televisian Receiver Madel 50-T1104. Code 123 (Run 4). Complete Schematic Diagram

PRODUCTION CHANGES IN MODELS 50-T1400; 50-T1401; 50-T1402; 50-T1430

MODELS $50-$ T1400, $50-\mathrm{T1} 401,50-\mathrm{Tl} 402$,

RUN NO.	DESCRIPTION OF CHANGE	REMOVED PART NO.	ADDED PART NO.	REASON FOR CHANGE
6	R94 changed from 5100 ohms to 5600 ohms.	$66-2518340$	$66-2568340$	To reduce vertical foldover.
6	R66 changed from 180 ohms to 100 ohms.	$66-1184340$	$66-1104340$	To center range of FOCUS control.
7^{*}	L72, C111, and Cl15 removed. Screen (pin $8)$ of horizontal-output tube connected through R127 to secondary tap of T7. L43 changed to improved type width coil.	$32-4143-7$ $45-3505-60$ $60-1005407$ $32-4419$	$32-4419-2$	To improve hori- zontal deflection.
7^{*}	R108 changed from 270,000 ohms to 180,000 ohms.	$66-4278340$	$66-4188340$	To improve hori- zontal deflection.

* Other runs incorporating this change have " Y " stamped after the run number.

MODELS 50-T1400, 50-T1401, 50-T1402, 50-T1430

RUN No.	description of change	Removed PART NO.	ADDED part no.	reason for change
x	"X" after run numbers 1 through 7 indicates that a short wire jumper is connected across R67.			To improve performance with low line voltage.
8	R67 removed. R68 connected to junction $66-2564340$ of L35 and C11.			To improve performance with low line voltage.
$\begin{gathered} 7 \mathrm{~A} \\ \text { or } \\ 9 \end{gathered}$	Tuner No. 76-4402-6 replaced with TaperedLine Tuner No. 76-5433. R29 changed from 15,000 ohms to 10,000 ohms. R68 changed from 56,000 ohms to 1000 ohms. R69 changed from 56,000 ohms to 6200 ohms.	$\begin{aligned} & 76-4402-6 \\ & 66.3158340 \\ & (2) \\ & 66-2568340 \end{aligned}$	$76-5433$ 66-3108340 $66-2108340$ 33-1335-19	To incorporate new tuner.
10	C91 changed from . $0082 \mu f$ to $.015 \mu f$. R87 removed. Pin 2 of vertical-blocking-oscillator tube connected to junction of C91 and R88. R88 changed from 820,000 ohms to 470,000 ohms. R94 changed from 5100 ohms to 6800 ohms.	$\begin{aligned} & 61-0174 \\ & 66-3108340 \\ & 66-4828340 \\ & 66-2518340 \end{aligned}$	$\begin{aligned} & 30-4651-8 \\ & 66-4478340 \\ & 66-2688340 \end{aligned}$	To reduce vertical fold over.

PHILCO TELEVISION RECEIVER MODELS 50-T1403, 50-T1404, AND 50-T1406

The chassis of Philco Models $50-\mathrm{Tl} 1403$, $50-\mathrm{T} 1404$, and $50-\mathrm{Tl} 1406$ are similar to that used in Model 50
T 1400 . All are table models with different type T1400. All are table models with different type
cabinets. Model 50 -T1403 has a functional-style walnut cabinet; Model 50-T1404 has a modern-style mahogany cabinet; and Model 50-T1406 is housed in Georgian-style cabinet with mahogany finish. Al three models incorporate a 12 -inch picture tube, a wid mask, and a built-in aerial

For service information pertaining to the above models, refer to Philco Service Manual PR-1793, which covers Models $50-\mathrm{T} 1400,50-\mathrm{T} 1402$, and $50-\mathrm{T} 1104,4$
Code 123 $50-\mathrm{T} 1400$ also apply to Models $50-\mathrm{Tl} 403$, 50 -T140 and 50 -T1 406. However, the Miscellaneous section of the Replacement Parts List in PR-1793 does not apply to these models, hecause of the difference in cabinets should be used.

\section*{MISCELLANEOUS
 $50-\mathrm{Tl} 403,50-\mathrm{Tl} 404,50-\mathrm{Tl} 430 ; 50-$

Tl 402 , 50-T1406, $50-\mathrm{T1} 432$, Code 122
MISCELLANEOUS (Cont.)
\qquad

Tuner assembly, complete

MODELS 50-

The chassis of the above models are similar to that
used in Model 50.T1400, Code 121, Run 13, except that hese models use Philco 12 -position turret tuner, Part
No. 76.5 fl 1.3 , and have minor circuit changes, as follows:

The $\mathbf{B}+$ line from the tuner is connected through a 10,000 -ohm resistor, Part No. $66-3104340$, instead of through R67, R68, and R69.
2. C 28 is connected between ground and the junction of the tuner $\mathbf{B}+$ lead and the added $10,(0) 0$ ohm resistor
3. An r-f choke, Part No. 32-4112-11, is added, in
series with the filament lead to the tuner.
4. A $1500-\mu \mu$ f. condenser, Part No. 62-215001011, is connected between ground and the junction of
the tuner filament lead and the added r.f choke
50 T1 2 , C ,
Model $50-\mathrm{T} 1402$, Code 122 , and 50 -T1406, Code 122,
re table models. Model 50 -T1432, Code are table models. Model 50-T1432. Code 122, is a inch speaker, Part No. 36-1610-6, which is mounted in the cabinet.
Models $50-\mathrm{T} 1402$, Code 122, and 50-T1432, Code 122, have modern-style mahogany-finish cabiners. Model 50 -T1406, Code 122, has a Georgian-style
cabinet with mahogany finish. abinet with mahogany finish.
models, refer to Philco Service Manual PR-1793, which covers Models 50 -T1 400.50 -T1 02 , and 50 -T1104, Code 123. For service information pertaining to the tuner, refer to Service Manual PR-1803. A list of replacethese models is given below. habe models is given belo

Cup, back (50-T1432. Code 122) Escutcheon (50.T1402. Code 122, 50.T1432. Code 122) ...56.7854 Knob, AERIAL TUNING control. Knob, BRIGHTNESS control (50-T1402, Code 122)54.4699.3 Knob, BRIGHTNESS control (50.T1406, Code 122 .
S0.T1432. Code 122) Knob. CHANNEL SELECTOR (50.T1402, Code 122)
Knob. CHANNEL SELECTOR (50.T1406, Code 122 . 50.T1432. Code 122)

Knob. CONTRAST control (50.T1402, Code 122) \quad 56.6596.6FCP Knob, CONTRAST control (50.T1406, Code 122. \quad S4.4703.2
Knob, FINE TUNING control (50-T1402, Code 122) Knob. FINE TUNING control (50.T1406, Code 122 . 50.71432. Code 122).

Knob, HORIZ. HOLD control (50-T1402. Code 122) ${ }^{12}$. 54.4662 .2 Knob, HORIZ. HOLD control (50.T. 1406. Code 122 ,
SO-T1432, Code 122)
Knob, vERT. HOLD control (50.T1402. Code 122)...
Knob, VERT. HOLD control (50-T1402. Code 122)54-4699-3

Knob, VOLUME control (50 T14002. Code 122)
VOLUME control (50.T1406. Code 122 .
$\begin{array}{r}54.4703 \\ \hline 54.477 .6\end{array}$
50.T1432. Code 122)

50.T1432. Code 122)	54.4747-9
Window (50.71402, Code 122)	.54.7983
Window (50.71406, Code ${ }^{122}$)	8
Window (50.T1432. Code 122)	54.7943.8
Cable assembly, high vollage	41.3771-2
Cable assembly, picture tube	41.3772 .2
Insulator, high voltage	54.7573 .5
Insulator, standoff	.54.7309.6
Mounting.fra...e assembly, picture tube	76.3938
Shield, Loktal tube	56.2731
Shield, minature tube	.56.5629FA3
Socket, Loktal tube	.27.6207
Sockel, miniature tube	27.6226
Socket, octal tube	27.6174 .6
Socket, octal tube (1B3GT)	27.6174.5
Socket, 9.pin (12AU7)	27.6203.5

MODELS 50-T1400, 50-T1401, 50-T1402, 50-T1403, 50-T1404, 50-T1406, AND 50-T1430, ALL CODE 121

RUN NO.	DESCRIPTION OF CHANGE	REMOVED PART NO.	ADDED PART NO.	REASON FOR CHANGE
w	W" stamned after run number indicates that R101 is changed from 82,000 ohms to 68,000 ohms.	66.3828340	66.3688340	To extend range of horizontal. oscillator tank circuit.
v	" V " stamped after run number indicates that R101 is 82,000 ohms, and that an $8(60,000-\mathrm{ohm}$ resistor is added, across it.		66.4828340	To extend range of horizontal. oscillator tank circuit.
11	Tuner unit shock-mounted.			To reduce microphonics.
11	R69 changed from 6200 ohms to 5100 ohms.	33-1335-19	33-1335-18	To increase tuner $\mathrm{B}+$ voltage
12	C83 changed from $22 \mu \mu f$ to 12 $\mu \mu \mathrm{f}$.	62-022009001	30-1223-2	To improve interlace and reduce jitters.
13	T9 changed to transformer with hum shield.	32-8411-1	32-8423-2	To reduce picture weave.

PRODUCTION CHANGES

MODELS 50-T1400, 50-T1401, 50-T1402, 50-T1403, 50-T1404, 50-T1406, AND 50-T1430 ALL CODE 121

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	description of change	REMOVED PART No	$\begin{aligned} & \text { ADDED } \\ & \text { PART NO. } \end{aligned}$	reason for change
14	C101, $270 \mu \mu f$., changed to 220 $\mu \mu$ i.	60-10275407*	69-10225317*	To center range of horiz. osc. coil slug.
15	L43 (width coil) changed.	32-4419-2	32-4419-3	To increase width.
16	1B3 socket and wiring changed. Wiring removed from pin 5 and placed on pin 4.	27-6174-5	27-6174-7	To prevent shorting of components due to internal connections on pins 1,3, and 5 of some 1B3GT tubes.
17	Extensive changes were made in physical location of sound detector parts.			To reduce harmonic beat.
18	R130 removed. R56, 2500 ohms, changed to 1800 ohms.	$\begin{aligned} & 66-3108340^{*} \\ & * 33-1335-87 \\ & \hline \end{aligned}$	66-2185340*	
19	Vertical-output transformer (T6) changed to smaller size.	32-8405	32-8425-1 (For replacement purposes, use 32-8405*.)	
20	Fuse added, in series with ground lead of filament winding of power transformer.		Length of $\# 26$ copper wire.	To provide protection against filament shorts.
21	$820-\mu \mu$ i. condenser added, to screen of horizontal output tube (GBG6G).		60-10825001*	To reduce parasitic oscillation in 6BG6G tube.
22	B supply fuse changed to $1 / 2$. amp. delayed-action type, and wired in series with B-lead of power transformer.	45-2656-8	$\begin{aligned} & 45-2656-17 \\ & (1 / 2 \mathrm{amp} . \text { delayed } \\ & \text { action.) } \end{aligned}$	To provide additional protection.

*The part number g.ven for R56 (2500 -ohnin plate load resistor) in the Service Manual is incorrect. The correct

MODELS 50-T1400, 50-T1402, 50-T1403, 50-T1404, AND 50-T1406, ALL CODE 122

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	description of change	REMOVED PART NO.	$\begin{aligned} & \text { ADDED } \\ & \text { PART NO. } \end{aligned}$	reason for change
2	IB3 socket and wiring changed. Wiring removed from pin 5 and placed on pin 4.	27-6174-5	27-6174-7	To prevent shorting of components due to internal connection on pins 1,3 , and 5 of some 1B3GT tubes.
3	R130 removed: R56, 2500 ohms, changed to 1800 ohms.	$\begin{aligned} & 66-3108340 * \\ & * 33-1335-87 \end{aligned}$	66-2185340*	
4	Vertical-output transformer (T6) changed to smaller size.	32-8405	32-8425-1 (For replacement purposes, use 32-8405*.)	
5	Fuse added, in series with ground lead of filament winding of power transformer.		Length of $\#^{26}$ copper wire.	To provide protection against filament shorts.
6	$820-\mu \mu f$. condenser added, to screen of horizontal output tuhe (6 BGG G).		60-10825001*	To reduce parasitic oscillation in 6BG6G tube.

*The part number given for R56 (2500-ohm plate load resistor) in the Service Manual is incorrect. The correct part number is $33-1335-87$.

RUN NO.	DESCRIPTION OF CHANGE	REMOVED PART NO.	ADDED PART NO.	REASON FOR CHANGE
6	Fuse added, in series with ground lead of filament winding of pow- er transformer.	Length of $\# 26$ cop- per wire.	To provide protection against filament shorts.	

MODEL 50-T1104, CODE 123

Correction to Parts List

The correct part number of the back-and-cup as The cosed part number of the back-

MODEL 50-T1400

Tables

To make the $50-\mathrm{T} 1400$ cabinet fit properly into the rable, either the front or rear cabinet feet should be emoved

MODELS 50-T1104, CODE 123; 50-T1400 SERIES
Horizontal Sync and Drive Padder Identification
Future production of the above models will not have the horizontal sync and drive padder function stamped adjacent to the padder.
The relative position of the padders will remain the ame, and the applicable service manual should be re ferred to for the specific location.

MODELS 50-T1400, 50-T1401

New Cabinets

The cabinets for the above models have been changed so that the oscillator tuning cores may be adjusted with the chassis in the cabinet. This may now be done by simply removing the CHANNEL SELECTOR and FINE TUNING knobs. A physical hange was also made in the windows.

Model	Cabinet Part No.	Window Part No.
$50-T 1400$	$10785-3$	54.4755
$50-T 1401$	$10784-3$	$54-4755$

CORRECTIONS TO MODELS 50-T1400,

 50-T1402, AND 50-T1104, CODE 123The corrections given below should be made to the Replacement Parts List.

Reference Symbol	Published Part Na.	New or Correct Part No.
R56	66.2254340*	33.1335-87
R72	33.5546.28	33-1335-18
25	54.4661	76.5413

MISCELLANEOUS

Description	Published Part No.	New or Correct Part No.
Mask (50-T1 104-M)	$56.7144-2$	56.7143

The horizontal-output transformer for the above models has been changed. The new part numbers are given below:

Model	New Transformer Part No.
50.T1104 through 50.T1432 50.T1476 through 50-T1482; $50 . \mathrm{T} 1484$	$\begin{aligned} & 32-8437 \\ & 32.8421-2 \end{aligned}$

The above transformer should be used for all replacements in these models.

CORRECTIONS

The corrections given below should be made to
the Replacement Parts List for Models 50-T1400, 50-T1401, 50-T1402, and 50-T1430 (all Run 5).

Reference Symbol	Published Part No.	New or Correct Part No.
C109	62.245001001 ${ }^{\text {• }}$	62.215001011*
C110	31.6518	45-9570*
R46	66-2248340*	66.2248240*
R54	66-0108340*	66.0103340°
R56	66-2254340*	33.1335.87
R72	33.5546.28	33-1335-18
R94	66.2519240	66.2518240*
T9	32-8411-1	32.8423.2
R119	66.2508340	66-2518240*
TB1	38.8688	38.8689

MODELS 50-T1104, CODE 123, 50-T1400, 50-T1401, 50-T1402, 50-T1403, 50-T1404, 50-T1406, 50-T1430, 50-T1432;

—NEW HORIZONTAL-OUTPUT TRANSFORMER

Description	Published Part No.	New or Correct Part No.
Item 9-Bolt, mask (50-T1401)	1W8038FE11	1W18038FA3
Item 11-Brace, picture tube	56.5581-39FA3	56.5581.34FA3
Item 23-Knob, SELEANEL SELECTOR (50-T1400. 50.T1401)	56.6596.1	56.6596-3

The corrections given below should be made to the Replacement Parts List for Model 50-T1104, Code 123 (Run 4)

Reference Symbol	Published Part No.	New or Correct Part No.
C43	30-4650.56	45-3505-56*
C48	30.4650.91	45.3505-91*
C71	30.4650.49	45.3505.49*
C104	62.215001001*	62.215001011.
C108	62.215001001*	62-215001011*
C109	62.245001001 ${ }^{\text {- }}$	62-215001011*
C110	31.6518	45-9570*
L37	32.4302.3	32.4303.2
R113	66.0473340°	66.1478340.
R125	66.2258340°	66.2253340°
T9	32-8411-1	32-8423.2*
TB1	38.8688	38.8689

miscellaneous
MISCELLANEOUS

Description	Published Part No.	New or Correct Part No.
Item 9-Knob, CHANNEL SELECTOR	56.6596 .1	56.6596 .3

MODELS 50-T1104, CODE 123, 50-T1400, 50-T1401, 50-T1402, 50-T1403, 50-T1404, 50-T1406, 50-T1430, AND 50-T1432PLACEMENT OF IB3GT ANODE CAP

It is possible to place the anode cap on the 1 B3GT tube, in the above Receivers, so that it is too close to the top of the high-voltage cage. When placing the anode cap on the tube, make sure that it is placed as illustrated belo

Placement of 1B3GT Anode Cap
MODEL 50-T1400 SERIES, RUNS 1 AND 2 - REDUCTION OF VERTICAL JITTER

Vertical jitter in the picture due to line voltage fluctu ations in the above models may be greatly reduced or eliminated, in the special cases where necessary, by adding an extra filter network to the B supply feeding the vertical oscillator and discharge tube. This network consists of a $10,000-\mathrm{ohm}$ resistor and a $10-\mu$ f. condenser

Addition of Filter Network, Model 50-T1400 Series, Runs 1 and 2
MODEL 50-T1400 SERIES
PREVENTING HORIZONTAL-SYNC
TEAR AT MINIMUM CONTRAST

CONTROL SETTING

Horizontal tear at the top of the picture may be caused by a horizontal damper lead radiating energy into the sync separator circuit

The effect of this radiation may be reduced by redressing these leads (refer to figure 7, page 5, of Service Bullutin 49T3, PR-1822) as follows

Redress the blue lead on B3-3 to the mounting jack of the high-voltage condenser, under C46, and under 6 to the condenser mounting jack. This wire connects 51 to C79, and radiates some horizontal nutput signal to the lead connected from B3-2 to B8-3, which is in the sync separator grid circuit. Also redress this wire (from $\mathrm{B} 3-2$ to $\mathrm{B} 8-3$) on the 6SN7GT side of B 8 , under R76 to B8-3.
Model 50-T1400 Series, 50-T1404 and 50-T1105

Correction of Part Number

The correct part number of C74, the $500-\mu \mu f$., 25 -volt hiter condenser across the 15 -ohm resistor in the negaive return of the low-voltage power supply, is 30 -2570-40.
Model 50-T 1403
Additional Replacèment Part
A securing clip for the oscillator adjustment cover escutcheon plate is now available for replacement purposes. The part number is 1 W57058FA22. It is referred to as a speed clip

NoTE: - For additional informaEion, Model $50-T 1404$, Code 1403 , Pages $5-7$
 5-16.

PRODUCTION CHANGES IN MODELS 50-T1404, CODE 123, AND 50-T1406, CODE 123; 50-T1404, 50-T140C, AND 50-T1432, ALL CODE 124

Corrections to Service Manual

1. Figure 5, page 6 , caption should read, "Top View of Chassis (without Tuner), etc.'
2. Figure 6, page 7, caption should read, "Top Vien of Chassis, Showing Locations of Adjustments."
3. The Bandpass and R-F Response Adjustment Procedure for Tapered Line Tuner (Code 123), page 12, is superseded by the following procedure (refer to PR-1858 for complete tuner information):
4. Connect the outputs of the AM and FM signal generators through the aerial-matching network (fig ure 1) to terminals 1 and 2 of Z1-T. Terminals and 4 of $\mathrm{Z1}-\mathrm{T}$ should be connected together, for a 300 ohm input.
5. Connect a 3300 -ohm resistor in series with the
150 -volt (red) $\mathbf{B +}$ 150 -volt (red) B+ lead to R9-T. Connect the verti cal input of the oscilloscope to the junction of th
6. Turn the CHANNEL SELECTOR to Channel 10, and remove the 1 st v-i-f tube. Connect a 470 -ohm 4 Set the FM signal (ground sufficient sweep to give the complete response curve 5. Set the AM signal generator (unmodulated) to produce marker pips at the video and sound carrier for Channel 10.

Adjust C - -T and C 11 - T for maximum symmetrical response within Channel 10 . If there is cal response within Channel 1. If there is one weak
station in the local area, the adjustment of $\mathrm{C} 8-\mathrm{T}$ and C11-'I' may be made on that channel, to improve its performance, provided that the response on other channels is not sacrificed too much.
4. The Bandpass and R-F Response Adjustment Procedure for 12-Position Turret Tuner (Code 124), pag cedure for 12 -Position Turret Tuner (Code 124), page the tuner to ground through a 470-ohm resistor."
5. The connection of C15-T and L17.T, R10-T should be interchanged in figure 13, page 13.
6. In figure 14 , pages 16 and 17 , terminal 4 of the tapered line input terminals should be grounded.
7. In figure 14, pages 16 and 17 , the connections to pins 1 and 3 of the 6 T8 (Code 124) should be reversed 8. In figure 14, pages 16 and 17 , the value of R94 should be 82,000 ohms.
9. In figure 14, pages 16 and 17, and in the Replace ment Parts List, the values of R3-T and R2-T should be interchanged.
10. In figure 14, the peak-to-peak voltage on the grid of the 6BG6G tube should be 35 v .
11. The correct part number of C 24 is 62.01049001 12. The correct part number of R26 is 33-5563-22.

PRODUCTION CHANGES IN MODELS 50-T1404, CODE 123, AND 50-T1406, CODE 123

RUN NO.	DESCRIPTION OF CHANGE	REMOVED PART NO.	NEW OR ADDED PART NO.	REASON FOR CHANGE
2	R85 changed to 1.5 megohms.	$66-5108340$	$66-5158340$	To center range of VERT. HOLD control.
3	R68 removed. Pin 6 of video output tube was connected directly to the 135- volt source.	$66-2565340$		To simplify wir- ing.
4	L17 and R24 removed. Plate of 1st video amplifier was connected directly to L18.	$32-4143-14$ $66-3158340$		To improve video response.

PRODUCTION CHANGES IN MODELS 50-T1404, 50-T1406, 50-T1432, ALL CODE 124

RUN NO.	DESCRIPTION OF CHANGE	REMOVED PART NO.	NEW OR ADDED PART NO.	REASON FOR CHANGE
2	R85 changed to 1.5 megohms.	$66-5108340$	$66-5158340$	To center range of VERT. HOLD control.
3	R68 removed. Pin 6 of video output tube was connected directly to the 135- volt source.	$66-2565340$		To simplify wir. ing.

4	L17 and R24 removed. Plate of 1st video amplifier was connected directly to L18.	$32-4143-14$ $66-3158340$	
4	A 3.3- $\mu \mu \mathrm{f}$. condenser was added, from pin 1 of FM detector, 6T8, to ground.	To improve video response.	

MODEL 50-T1403

The chassis used in the above models is similar to the chassis used in Models 50-T1404 and 50-T1406, Code 123. The differences are as follows:

1. A 7N7 tube is used in place of a 6SN7GT in the vertical-sweep-output stage.
2. A 7 N 7 tube is used in place of a 6 SN 7 GT as a phase comparer and horizontal oscillator.
3. The 7 N 7 phase comparer and horizontal-oscillator tube is shock-mounted
4. The phase comparer and horizontal-oscillato circuits are changed, as show n in figure 3
5. The 47,000 -ohm loading resistor (R 116) across the video detector series peaking coil (L15) is removed.
6. The series peaking coil (L17) in the plate circuit of the lst video amplifier is removed, and the plate is connected ditectly to the shunt peaking coil (L18).
7. The 1 -megohm resistor (R 85) shunting the VERT. HOLD control is changed to 1.5 meg ohms.
8. 'The B supply for Philco Television Booste Model TB-2, on pin 6 of the video-output tube is obtained directly from the 135 -volt bus.
For complete service information on Models 50 T1403, 50-T1404, and 50-T1406, all Code 125, refer to this supplement, and to Service Manual PR-1844, covering Models 50-T1404, Code 123, and 50-T1406 Code 123; Models 50-T1404, 50-T1406, and 50-T1432 all Code 124.

HORIZONTAL-SWEEP ADJUSTMENTS

The changes made in the horizontal-sweep circui necessitate a new adjustment procedure, which is given below.
The range of the horizontal-hold control potenti ometer is sufficient to compensate for normal varia tions in the frequency of the horizontal oscillator and no other adjustments are ordinarily required. However, if the tube or other components are replaced in the horizontal-oscillator circuit, it may be necessary to make the following adjustments, to obtain proper synchronism and deflection:

1. Preset the adjustments as follows:
a. Lockin trimmer, C65A, one turn counter clockwise from the maximum clockwise position. See figure 1.
b. Stabilizing core, TC-15, maximum counter clockwise.
c. Drive trimmer, C65C, 1 turn counterclockwise from the maximum clockwise position. d. HORIZ. HOLD control, center of its range. 2. Tune in a station, and adjust TC12 until the picture is brought into sync:
2. Connect an oscilloscope to pin 3 of the HOR. OSC. TEST socket, J6, and adjust the scope sweep until two complete cycles of the pattern are stationary. MODELS 50-T1403, Code $125 ; 50-\mathrm{Tl} 404$
$50-T 1406$, Codes 123 , 124; $50-\mathrm{Tl} 432$,
© John F. Rider
3. Adjust the stabilizing core, TC15, until the two peaks (see figure 2) are of equal amplitude, readjusting TC12, if necessary, to keep the picture in sync.
4. Connect the oscilloscope to pin 1 of J 6.
5. Adjust the drive trimmer, C65C, to obtain 8600 volts on the picture-tube second anode, with the BRIGHTNESS control fully counterclockwise, or the picture-tube second-anode lead disconnected. The second-anode voltag, should be measured with a Philco Electronic Circuit Master, Model 7001 , or an equivalent instrument which has 100 -megohm input resistance. Rein sync. If a meter capable of reading high voltage is not available, the horizontal drive may be adjusted as follows: Starting with C65C in the preset position, turn counterclock. wise until variation of the BRIGHTNESS control just affects the horizontal linearity of the picture.
6. Turn the HORIZ. HOLD control maximum clockwise. Adjust TC12 so that the blanking bar appears at the left edge of the picture.
7. Turn the HORIZ. HOLD control counterclockwise until the picture comes in, then goes out of sync. Then turn the HORIZ. HOLD control slowly clockwise again, counting the number
of black bars sloping down to the left before the picture pulls into sync. If there are more than $31 / 2$ bars, turn the lockin trimmer, C65A, slightly clockwise; if there are less than $21 / 2$ bars, turn C65A slightly counterclockwise. If the Receiver does not lose sync when the HORIZ. HOLD control is maximum counter clockwise, remove the signal momentarily.
8. Repeat steps 7 and 8 until the picture pulls into sync when from $21 / 2$ to $31 / 2$ bars appear, sloping down to the left.
9. Turn the HORIZ. HOLD control maximum clockwise. Adjust TC12 to obtain between 4 and 6 bars, sloping down to the right.
10. Turn the HORIZ. HOLD control slowly counterclockwise, and note whether the picture goes in and out of sync again. Now, turn the
HORIZ. HOLD control slowly clockwise until the picture comes into sync. If this sequence is not obtained, repeat steps $7,8,9$, and 10 .

TPO-366

TPO-274
Figure 2. Horizontal-Sync Pulses-Horizontal Stabilizing Core Properly Adjusted

Figure 1. Locations of Horizontal-Sweep Adjustments

Figure 3. Circuit Variations in Code 125 of Models 50-T1403, 50-T1404, and 50-T1406

REPLACEMENT PARTS LIST

A supplementary parts list for Models 50-T1403, 50-T1404, and 50-T1406, all Code 125, is given below. A part identitiod by \dagger has the same function as in Code 123. but its value is different. A part that has been added in Code 125 is identified by $د$. and has a new symbol. All other parts have the same symbole, values, and funclions as in Code 123. and are repeated in this list tor convanience in the we of the supplementary schematic diagram.
in any case whare a part is not used in Code 125, or where ite function is changed, the original symbol is not uned. and. therefore, is not listed.

NOTE: Part numbers identified by an asterisk (${ }^{\circ}$) are general replacement items. These numbers may not be identical with those on factory parth. Also. the electrical values of some replacemont items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

PREPRODUCTION AND PRODUCTION CHANGES IN MODELS 50-T1403, 50-T1404, AND 50-TI406, ALL CODE 125

Corrections to Service Manual

(PR-1846)

1. Delete step 5 of Horizontal-Sweep Adjustment
2. The correct part number of the horizontal-blocking oscillator transformer, T7, is 32-4470-3.
3. For corrections to Tuner Alignment Procedure, see Corrections to Service Manual (PR-1844),

PREPRODUCTION CHANGES

The following changes were made between the printing of PR-1846 and first production.

1. Resistor R118 was changed to 390,000 ohms, Part No. 66-4394240*.
2. Condenser C83 was changed to . $001 \mu f$., Part No. 45-3505-52.
3. The blocking condenser (C71) in the horizontaloutput circuit was rewired as shown in figure 1 .

PRODUCTION CHANGES

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	description of change	REMOVED PART NO.	NEW OR ADDED PART NO.	REASON FOR CHANGE
2	R108 changed to 56,000 ohms. C73 changed to $390 \mu \mu f$.	$\begin{aligned} & 66-3824240 \\ & 60-10685401 \end{aligned}$	$\begin{aligned} & 66-3564240 \\ & 30-1220-35 \end{aligned}$	To increase width and reduce interaction be tween width and linearity controls.
3	C67 increased in voltage rating.	60-00105407	30-1224	To reduce possibility or breakdown.
4	Video amplifier, sync take-off point, and sync separator changed as shown in figure 2.	Refer to following Parts List.	Refer to following Parts List.	To improve sync performance, and to improve picture quality with weak signal input.
4Z	A $33-\mu \mu f$. condenser was added, across R32, and L19 was shorted out.		62-033009001	An inductive resistor was used for R32 (see note below.)
$\begin{gathered} 5 \text { and } \\ 4 \mathrm{X} \end{gathered}$	R32 changed to 2000 ohms, non-inductive. The $33-\mu \mu f$. condenser and the short across L19 were removed.	62-03330001		Circuit changed to use non-inductive resistor.
6	C74 changed to 0047μ.	60-01825401	45-3505-90	To reduce parasitic oscillations in the 6BG6G.
7	A 680,000 -ohm resistor was added, in series with R113.		66-4684340*	To increase width, and reduce squeeze on right side.

NOTE: When Part No. 33-1335-94 (220 ohms, non-inductive) is used as a replacement, the circuit should be wired as shown in figure 2.

Figure 1. Change in Horizontal-Oułpuł Circuit Models 50-T1403, 50-T1404, and 50-T1406, All Code 125

Figure 2. Schematic Diagram, Models 50-T1403. 50-T1404, and 50-T1406, All Code 125 Run 7
INDEXALIGNMENT INSTRUCTIONS ..34
CIRCUIT DESCRIPTION 33
PARTS LIST 38
schematic 37

SPECIFICATIONS

CABINET-Modern style, consolette type, mahogany or blonde finish

CIRCUIT-26-tube superheterodyne
TUNING-12-position manual tuner; fine-tuning control for local oscillator
AUDIO OUTPUT- 2.5 watts
FREQUENCY RANGE-Television Channels 2 through 13
NTERMEDIATE FREQUENCY
Video Carrier- 26.6 mc .
Sound Carrier- 22.1 mc .
AERIAL-Built-in broad-band dipole and provisions for external single-aerial or dual-aerial installations
TRANSMISSION LINE— 300 -ohm, twin-wire leadin (balanced), or 72 -ohm coaxial cable (unbalanced) in areas of high interference
OPERATING VOLTAGE-110-120 volts, 60 cycles, a.c.

POWER CONSUMPTION-250 watts
TUBE COMPLEMENT

LOKTAL	OCTAL	MINIATURE	C.R.T.
$1-7 \mathrm{Z4} 4$	2-1B3GT	$5-6 \mathrm{AG} 5$	$1-12 \mathrm{LP} 4$
$1-7 \mathrm{~F} 8$	$1-6 \mathrm{BG} 6 \mathrm{G}$	$2-6 \mathrm{AL5}$	
$3-7 \mathrm{~N} 7$	2-6K6GT	$3-6 \mathrm{AU} 6$	
$1-7 \mathrm{~F} 7$	$1-5 \mathrm{U} 4 \mathrm{G}$	$1-6 \mathrm{BA} 6$	
$1-7 \mathrm{C} 5$	$1-6 W 4 \mathrm{GT}$		

CIRCUIT DESCRIPTION

Philco Model 50-T1443, Code 122, is a consolettetype television receiver employing a 12 -inch picture tube and a built-in aerial. Provision is made for the connection of an external record player.
The built-in aerial is mounted inside the cabinet, on the top. This aerial consists of a broad-band dipole of metal foil and a tuning and impedance-matching network. The aerial covers all channels, and is tuned
for each channel by adjusting the AERIAL TUNING for each channel by adjusting the AERIAL TUNING control located on the front of the receiver, near the top of the cabinet.
A 300 -ohm line couples the tuning network to the aerial input terminals of TB1. This line may be disconnected from the aerial terminals so that an external aerial may be used, if required.
The radio-frequency section is built on a sub-chassis, and incorporates a 6AG5 tube as an r-f amplifier and a 7 F8 tube as a mixer and oscillator
Four 6AG5 tubes are used as video-i-f amplifiers, and a GAL5 tube is used as a video detector and $\mathrm{a}-\mathrm{v}-\mathrm{c}$ rectifier. The rectified video signal is amplified by a 6AU6 video-amplifier stage and a 7C5 video-output stage.
The sound-i-f signal is taken from the cathode of the third video-i-f stage, and further amplification is obtained with a 6BA6 and a 6AU6. A 6AL5 tube is used as an FM detector, and a 6AU6 tube is employed as an audio amplifier, which drives a 6 K 6 GT audiooutput stage. Pin 6 of the socket for the audio-output tube supplies 160 volts which may be used for Philco
Television Booster TB-2.

A porion of
A portion of the composite video signal is taken from the video-output stage and is amplified by a sync pre-amplifier. A sync separator separates the sync pulses from the rest of the composite video signal. Another amplifier inverts these pulses to a positive polarity. The vertical-sync pulses are separated from the horizontal-sync pulses in an integrating network, oscillator to control its frequency. The horizontal sync pulses are applied to the grid of the phase sync pulses are applied to the grid of the phase

The vertical-sweep circuit consists of a conventional blocking oscillator and vertical output stage.
Horizontal-sweep voltage is generated by a blocking oscillator, the frequency of which is determined by the phase relationships of the horizontal-sync pulses and the horizontal sawtooth at the phase-comparer grid. A 6BG6G amplifies the horizontal sweep voltage, which is applied across a 6W4GT damper tube to the horizontal deffection coils.

Two 1B3GT rectifier tubes are used as a voltage doubler, to supply high voltage for the second anode of the picture tube. A 5U4G and a 7 Z 4 are employed as full-wave rectifiers, to supply plate and screen volt ages for the entire chassis.
A 5 -ampere fuse in the a-c power input and a 3.8 ampere $\mathrm{B}+$ protective fuse are located in the highvoltage cage.

EXTERNAL-AERIAL CONNECTIONS

The external-aerial input circuit has provisions for either a single-aerial or a dual-aerial installation. For single external aerial installations, the aerial leadin is connected to the two-terminal terminal board, TBi, which is mounted at the left-hand rear corner of the chassis (facing the rear of the chassis).
To adapt the receiver for external dual-aerial operation, it is only necessary to clip the parallel conducto extending from TBI into the tuner chassis (cut as close to the tuner chassis as possible); this prevents he lengt of paralel conductor from acting as a trap on the higher frequency channels. Using plug Part No. 27-478, connect the low-rrequency-aerial leadin to the two widely spaced pins, and the high-frequency aerial leadin to the two closely spaced pins. Inser the plug into the aerial input receptacle, J1, which is located near the 7F8 tube
The aerial input circuit is switched by means of a cam-operated switch, S2. The cam is operated by the shaft of the station-selector switch, and is so constructed that it places the switch in one position for Channels 2 through 6, and in another position for channels 7 through 13.

HORIZONTAL HOLD ADJUSTMENT

Ordinarily, the range of the HORIZ. HOLD contro potentiometer is sufficient to compensate for normal variations and provide horizontal hold control. If for some reason, such as replacement of tubes or components, it becomes necessary to make further hold

1. Preset the adjustments as follows
a. Lockin trimmer C98A $1 / 2$ turn counterclockwise from the maximum clockwise position.
b. Range trimmer C98B $11 / 2$ turns counterclock. wise from the maximum clockwise position.
c. HORIZ. HOLD control to approximate cen HORIZ. HOLD
ter of its range.
2. Tune in a station, and adjust TC26 until the picture is brought into sync
3. Adjust the CONTRAST control for normal contrast.
4. 'Turn the HORIZ. HOLD'control fully clockwise 5. Adjust TC26 until 8 to 10 stationary bars appear sloping downward from the left side of the picture tube. If this cannot be accomplished, turn C98B another full turn counterclockwise, and repeat this step.
5. Turn the HORIZ. HOLD control counterclock wise until the picture is brought into sync; continu to rotate this control until the picture falls out of sync In some cases, the picture will not go out of sync, even though the HORIZ. HOLD control is turned to its extreme counterclockwise position. If this is the case momentarily short the aerial terminals. When the picture reappears, it will be out of sync.
6. Slowly turn the HORIZ. HOLD control clockwise, and note the change in the number of blanking bars a bars should decrease as sync is theror the picture falls in ance is approached. Just before bars sloping upward from, hhe 1 ide be $1 / 2$ whe If u ? noter $1 / 4$ are $1 / 2$ bars, curn Cos ind 7 If turn clockwise, and repeat steps $4,5,6$ another $1 / 4$ turn counterclockwise, and repeat steps $4,5,6$ and 7.

DEFLECT. CONTROL ADJUSTMENT

The DEFLECT. control, R128, is adjusted for optimum performance of the horizontal-sweep circuits, and normally requires no adjustment. If tubes or components in the horizontal-sweep circuit are re placed, however, it may be necessary to adjust the DEFLECT. control to obtain sufficient width.

REPLACEMENT OF

7F8 MIXER-OSCILLATOR TUBE

Whenever it becomes necessary to replace the 7F8 mixer-oscillator tube, several different tubes should be tried until one is found that will permit the FINE TUNING control to be set near the center of its range when the high-frequency channels are properly tuned. Otherwise it will be necessary to remove the chassis, whenever the tube is replaced, and adjust the oscillator cuning cores as directed in the R-F-TUNER ALIGN MENT procedure

MODEL $50-\mathrm{T144} 3$

WAVEFORMS OF SYNC and SWEEP CIRCUITS

The waveforms in figure 1 are sized for clarity, and are not intended to illustrate relative amplitudes. Approximate peak-to-peak voltages are given in each
case. These voltages are the approximate values when the CONTRAST control is adjusted to give 35 volts
peak-to-peak, at the grid of the picture tube, and when all other controls are in their normal positions.
For viewing wavcforms in the vertical sync and sweep circuits, adjust the oscilloscope sweep to 30 c.p.s. (one-half the vertical-sweep rate).

For viewing waveforms in the horizontal sync and sweep circuits, adjust the oscilloscope sweep to 787 c.p.s. (one-half the horizontal sweep rate).
(Remove vert. blk.
osc. tube)
osc. tube)
$\mathrm{TP}_{\text {TP-8229-1 }}$

ACROSS C98A
(Remove horiz. blk osc. tube)

IN ${ }^{4}$ AMPL. SYNC

V
 280 V

GRID, PIN 5
VERT. OUTPUT 280 V
TP-8232-1
PIN 4 OF J8, DE FLECTION-CABLE SOCKET
(Remove horiz. blk osc. tube)

$$
70 \mathrm{~V}
$$

TP-8232.

GRII), PIN 5
HORIZ. BLK. OSC 170 V

TP-8233-

GRID, PIN 4 PHASE COMP 10 V

TP-8234-1

GRID, PIN 5 HORIZ. OUTPUT 60 V

TP-8235-1

PIN 1 OF J8, DE. FLECTION-CABLE SOCKET 290 V

ALIGNMENT

WARNING! Dangerous potentials are present in the receiver when it is operating and for a short time after it has been turned off

I-F ALIGNMENT

GENERAL

The intermediate frequencies for the receiver are 22.1 mc . for the sound channel and 26.6 mc . for the video channel. Alignment of circuits operating at these high frequencies requires careful workmanship and good equipment. The following precautions musi be observed:

1. The top of the work bench must be metallic and the test equipment and receiver chassis must make a good metal-to-metal contact with the bench top
2. Never disconnect the picture tube, picture-tube yoke, or speaker while the receiver is turned on
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. When aligning the receiver, it is possible to achieve optimum adjustment of all tuning cores when the tops of the adjusting screws are approximately tops of the adjusting screws are approximately $3 /$ inch above the coil mounts. The tuning cores should be adjusted so that the tops of the adjusting screws are approximately $3 / 4$ inch above the coil mounts.

TEST EQUIPMENT REQUIRED

The following test equipment is recommended for aligning the i-f stages of the receiver:

1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent.
2. A vacuum-tube voltmeter or a 20,000 -ohms-per volt voltmeter
If separate signal generators and oscilloscope are used in place of Model 7008, these instruments should have the following characteristics:
FM Signal Generator
Deviation: $\pm 4 \mathrm{mc}$
Center-frequency range: 20 mc . to 30 mc .
Sweep-sync output with either built-in or separate phase corrector.

AM Signal Generator
Carrier-frequency ranges: 4.5 mc . and 20 mc . to 30 mc .
Dial: Suitable for setting and resetting accuratel to the frequencies specified in the I-F ALIGNMENI CHART.

Oscilloscope

Calibrated.
Vertical sensitivity: 1 volt (peak-to-peak) per inch, or better.
When using a separate AM r-f signal generator to obtain marker pips, couple the output lead of this generator to the output lead of the FM signal gen erator, using just sufficient coupling to obtain a suit able marker pip.

JIGS REQUIRED

Mixer Jig
Figure 2 shows a jig that is recommended for coupling the signal generator to the mixer grid, to provide short connections and good grounding. The provideshorts are necessary for the consruction this jig:

1. Hairpin (commonly called "bobby pin"), straight type, approximately $13 / 4$ inches long.
2. 1 -inch length of $1 / 8$-inch-diameter spaghetti.
3. 2 -inch length of No. 12 or No. 13 bus wire.

Referring to figure 2, construct the jig as follows:

1. File the enamel from the inside of the prongs of the hairpin (point B).
2. Bend the tips of the prongs (point A) out at a slight angle.
3. Form the prongs at a point $3 / 8$ inch from the tips as shown at point B .
4. Slightly pinch the end of the hairpin at point C.

Figure 1. Sync and Sweep Waveforms

I-F ALIGNMENT CHART					5. File the enamel from the end of the hairpin at point C. 6. Slip the spaghetti over the hairpin. 7. Bend the bus wire as shown at point D. Looking at the chassis from the side, with the operating controls to the left, two holes will be seen on the side of the r-f tuner. The top hole is opposite the plate of Cl 3 , which connects directly to the mixer grid. To use the jig, insert the prong end into the hole opposite C13 until it snaps over the trimmer plate.
STEP	SIGNAL-GENERATOR CONNECTION	OUTPUTINDICATOR CONNECTION	SIGNAL-GENERATOR SETTING	ADJUSTMENT INSTRUCTIONS	
1	Connect output of AM signal generator through i.f jig to grid (pin 1) of 4th widen. i-f tube.	Connect vertical input of oscilloscope through AIIGN TEST jack adaptor (figure 4) to ALIGN TEST jack J4.	Set AM signal generator (modulated) to 25.5 mc .	Adjust TC21 for maximum indication on oscilloscope.	the plate of Cl 3 , which connects directly to the mixer grid. To use the jig, insert the prong end into the hole opposite C13 until it snaps over the trimmer plate. Loosen the self-tapping screw which holds the front oscilloscope lead. 2. If additional attenuation of the marker signal is required when using Visual Alignment Generator Model 7008, insert a 10,000 -ohm resistor in series with the output lead.
2	Connect output of AM ignal generator through t-f ing to grid (pin 1) of 3rd video-i-f tube.	Same as step 1.	Set AM signal generator (modulated) to 24.5 mc .	Adjust TC20 for maximum indication on oscilloscope.	Loosen the self-tapping screw which holds the front end of the tuner shield. Slip the hook end of the bus wire under the screw head and retighten screw. Connect the ground lead of the signal generator to the short length of bus wire, and the hot lead to the end of the hairpin. I-F Jig It is recommended that Philco I-F Alignment Jig, Part No. 45-1670, be used to couple the signal generator to the various video-i-f grids. The connections to these grids are accessible from the top of the chassis through small holes near the tube shields. To use the jig, slip the clamp over the tube shield, and insert the probe end into the hole. Slide the jig downward until good contact is made with the grid connection. Philco Cable, Part No. 45-1635, provides a convenient method of connecting the signal generator to the i-f jig.
3	Same as stcp 2.	Same as step 1.	Set AM signal generator (modulated) to 25 mc .	Adjust TC18 for maximum indication on oscilloscope.	
4	$\begin{aligned} & \text { Connect output of } A M \text { signal } \\ & \text { generator through i-1 jig to } \\ & \text { grid (pin 1) of ind video- } \\ & \text { i-f tuhe. } \end{aligned}$	Same as step 1.	Set AM signal generator (modulated) to 26.6 mc .	Adjust TCI7 for maximum indication on oscilloscope.	
5	Connect vutpur of AM signal generator through i-f jig to grid (pin i) of lst video-i-f tube.	Same as step 1.	Set AM signal generator (modulated) to 23.25 mc .	Adjust TC16 for maximum indication on oscilloscope.	
6	Connect output of AM signal generator through mixer jig to grid (pin 1) of mixer tube.	Same as step 1.	Set AM signal generator (modulated) to 28.1 mc . (See Note 1.)	Turn CHANNEL SELEC. TOR to Channel 3. Adjust TC14 for minimum indica. tion on oscilloscope.	
7	Same as step 6.	Same as step 1.	Set AM signal generator (modulated) to 22.1 mc . (See Note 1.)	Turn Channel selec. TOR to Channel 3. Adjust TC23 for minimum indication on oscilloscope. If no minimum is apparent, turn TC23 counterclockwise until the response increases rapidly. Turn TC23 clockwise to the point just before the response increases; then adjust TC19 for minimum indication on oscilloscope.	
8	Same as step 6.	Same as step 1.	Set AM signal generator (modulated) to 24.25 mc .	Adjust TC13 for maximum indication on oscilloscope	
9	Connect outputs of AM and FM signal generators through mixer jig to grid (pin 1) of mixer tube.	Same as step 1.	Set FM signal generator to 25 mc ., $\pm 4 \mathrm{mc}$. deviation. Set AM signal generator (unmodulated) to 23.25 mc ., 23.5 mc., 25.75 mc ., and 26.6 mc., as required, to produce marker pips.	Turn CHANNEL SELECTOR to Channel 3. Adjust TC15 for response curve within limits of curve in figure 5. It may be necessary to readjust TC13, TC15, TC16, TC17, TC20, TC18, and TC21 in order to obtain this curve. (See Note 2.)	
\qquad					

© John F. Ridar

© John P. Rider

OJohn F. Rider
2. Connect a 20,000 -ohms-per-volt voltmeter, through
the FM TEST jack adaptor (figure7), to the FM TEST jack.
3. Connect an accurately calibrated AM signal genthe signal generator for a modulated signal at the frequency of the sound carrier of Channel 2 .
4. Adjust the oscillator tuning core for zero reading on the voltmeter. The tuning cores may be adjusted, with the chassis in the cabinet, hy removing the CHANNEL SELECTOR and FINE TUNING knobs and inserting a long thin screwdriver, such as Philco Part No. $45-6354-2$, through the siot in the cabinet. DO
NOT TURN THE TUNING CORE IN TOO FAR or it will be turned bevond the limit of the threads of the coil form and be lost.
5. Repeat steps 1 through 4 for Channels 3 through 13, in order.

REPLACING TUBES IN THE TUNER UNIT

Whenever it becomes necessary to replace a tube in the tuner unit, it is suggested that several be tried in

Oder to obtain one which has similar interelectrode capacity, to prevent a change in tuner alignment. The picture quality and oscillator fine tuning range should be observed while selecting the tube.

ALIGNMENT

The tuner alignment procedure in PR-1774 is not applicable to Model 50 -T1443, Code 123
The i-f alignment procedure in PR-1774 is applicable to Model 50-T1443, Code 123, except for the following changes:

1. TC2-T should be adjusted wherever TC13 is mentioned.
2. The grid of the 6 f 6 mixer tube is pin 5 instead of pin 1.
3. $\mathbf{C 8}-\mathbf{T}$ connects directly to the mixer grid of Model 50-T1443, Cude 123, and the mixer jig snaps over this trimmer. Shape the mixer jig, described in PR-1774, so that it fits C8-T, which is smaller in diameter than C13 in Model 50-T1443, Code 122.

REPLACEMENT PARTS LIST

Reference Symbol	Description Port No.
Cl	ser, fixed padder, $5 \mu \mu$ f. $\quad 30.1224 .5$
C2	Condenser, trimmer. $.5 \mu \mu f$. to $3 \mu \mu i$. Part of 76-5411-3
C3.T	Condenser, trimmer, r-t amplifier plate \qquad
C4. ${ }^{\text {P }}$	Condenser, filament bypass, $001 \mu \mathrm{f}$. 45-3505-522 $^{\text {\% }}$
C5.T	Condenser, screen by-pass, $120 \mu \mu f$.
C6.T	Condenser, decoupling. .001 $\mu \mathrm{f}$. 45-3505.522.
C7.T	Condenser, ret by-pass. $100 \mu \mu f$. \quad. $62-215001011^{\text {. }}$
C8. ${ }^{\text {c }}$	Condenser, trimmer, mixer grid Part of 76-5411.3
T	
C10.T	Condenser, d.c blocking. $20 \mu \mu \mathrm{f}$. $\times \quad$ - 60.00205307
C11-T	Condenser, trimmer, oscillator grid Part of
C12-T	
C13.T	Condenser, fixed trimmer. $10 \mu \mu f$. $62.010009901{ }^{\circ}$
C14.T	Condenser, FINE TUNING control Part of 76.5411 .3 .
C15.T	Condenser, d.c blocking, $120 \mu \mu f . \quad 60.10125237^{\circ}$
I1-T	Jack, TUNER TEST . $>$ - \times Part of 76 -5411-3
LiA.t	Coil, aerial + + Part of 21-T
Lib.T	Coil, r.t amplifier grid \quad Part of 21-T
L2-T	Coil, filament choke $\square \quad 33$ 3.4112.15
L3A-T	Coil. r.f amplifier plate ...x
L3B-T	Coil, mixer grid + + $+\quad$ Part of 22-T
L3C-T	Coil, oscillator
L4.T	Coil, filament choke $+\times \quad 3$ - ${ }^{32.4112 .15}$
${ }^{2} 5$	Coil, mixer plate .-. Part of 76.5411-3
R1-T	Resistor, grid return, 3900 ohms $\quad 66.2398340^{\circ}$
R2.T	Resistor. a.v.c filler. 47.000 ohms $\quad 66.3478340^{\circ}$
R3.T	Resistor, plate load, 10.000 ohms $\quad 66.3108340^{\circ}$
R4.T	Resistor, decoupling, 2200 ohms - $\quad 66.2228340^{\circ}$.
	Resistor, grid, 4700 ohms
R6.T	

Reference Symbol	Descripfion	
R7.T	Resistor, grid retur	urn, 10.000 ohms \quad 66-3108340.
R8-T	Resistor, damping	g. 15.000 ohms \quad - $\quad 66.3158340^{\circ}$
R9.T	Resistor, decoupli	ling. 4700 ohms ... \quad 66-2478340*
${ }_{\text {TCl- }}$	Tuning core, oscil	llator $-\quad$ Part of 22.T
TC2. ${ }^{\text {T }}$	Tuning core, mix	er-plate coil \quad Part of L5.T
${ }^{21 . T}$	Coil assembly, ae	erial and r -f
	Channel 2	32.4428-2
	Channcl 3	- $\begin{array}{r}32.4428 .3\end{array}$
	Channel 4	- $\quad 32.4428 .4$
	Channel 5	- 32.4428 .5
	Channel 6	${ }_{32-4428.6}$
	Channel 7	${ }_{32.4428 .7}$
	Channel 8	- 32.4428.8
	Channel 9	32.4428.9
	Channel 10	32.4428-10
	Channel 11	. 32.4428 .11
	Channel 12	32.4428.12
	Channel 13	32-4428-13
22.T	Coil assembly, mi	ixer and oscillator
	Channel 2	32.4429.2
	Channel 3	- 32.4429.3
	Channel 4	- 32-4429.4
	Channel 5	- 32.4429.5
	Channel 6	.32.4429.6
	Channel 7	$\bigcirc \quad 32.4429 .7$
	Channel 8	- 32.4429.8
	Channel 9	32.4429.9
	Channel 10	${ }^{32} .4429 .10$
	Channel 11	32.4429.11
	Channel 12	.32.4429.12
	Channel 13	$\cdots \quad 32.4429 .13$
	Tuner assembly,	coils \quad 76-541

CORRECTIONS TO SERVICE MANUAL PR-1774
In figure 4 of Service Manual PR-1774, the wording "PLUG IS SHOWN WITH THE PRONGS POINTING AWAY" should read "PRONG-ENI) VIEW.'
2. In the Replacement Parts List, the description for C85 should read "Condenser, electrolytic, 4 -section." The Service Part No. should be 30-2570-10.
3. In the schematic diagram, the following changes should be made:
a. R61 should be connected across C41 instead of between pins 5 and 7 of the FM detector.
b. The reference symbol for the CONTRAST control should be R136 instead of R134.
c. The power socket should be J 7 instead of J 1 .
d. The reference symbols for C32 and C35 should be reversed

REPRODUCTION CHANGE IN MODEL 50-T1443, CODE 123

Between the time of the printing of Service Manual PR-1800 and the time of first production of Model 50-T1443, Code 123, L71 was removed and reconnected in series with the lead between C15T and the junction of C21 and L45. The junction of C22 and L45 was hen connected directly to pin 1 of the first video-i-f amplifier.

Partial Top View of Models 50-T1443,
Code 122, and 50-T1443, Code 123, Showing
Components Located in High-Voltage Cage

PRODUCTION CHANGE IN MODEL 50-T1443, CODE 122

RUN No.	description of change	reason for change
12	In early production of run 12, the unused (triangle) section of CBO and the unused (halli-moon) section of C85 were added in parallel across R51. In later production of run 12 , the unused (triangle) section of C80 and the unused (square) section of ≈ 70 were added in parallel across F 51 .	To reduce vertical-sweep.generator feedback into B+ supply.

PRODUCTION CHANGES IN MODEL 50-T1443, CODE 123

run no.	description of change	reason for change
2	Pin 6 of audio-output tube disconnected from 160 -volt $B+$ supply and re. connected to pin 4 of audio-output tube.	To supply higher $\mathrm{B}+$ voltage for Philco Booster TB-2.
$\begin{aligned} & 12 \\ & 2 Z \\ & 3 \end{aligned}$	Two unused (triangle and plain) sections of $\mathbf{C 8 0}$ were connected in parallel across 851 . Runs $2 Z$ and 3 also incorporate the change made in run 2. Run 12 does not incorporate the change made in run 2.	To reduce vertical-sweep-generator feedback into B+ supply.
4	292B disconnected and replaced with unused (hall-moon) section of C85.	To provide condenser with higher voltage rating in HEIGHT.control circuit.

Bottom View of Models 50-T1443, Code 122, and 50-T1443, Code 123, Showing Locations of Components

PRODUCITION CHANGES IN I-F STRIP FOR MODELS
50-T1443, CODE 122; 50-T1443, CODE 123

RUN NO.	description of change	REMOVED PART NO.	$\begin{aligned} & \text { ADDED } \\ & \text { PART NO. } \end{aligned}$	REASON FOR CHANGE
2	2200.0 hm resistor (R135*) added in series with lead betwoen junction of C41 and pin 2 of 13 and junction of C42 and pin 7 of FM-detector tube.		66. 2228340	To reduce harmonic beat.
${ }_{3}^{27}$	R135* changed trom 2200 ohms to 330 ohms.	68-2228340	66.1358340	- To lacilitate sound-i-f alignment.

 PRODUCTION CHANGES IN MODEL 50-T1443, CODE 123

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	DESCRIPTION OF CHANGE	REMOVED PART NO.	ADDED PART NO.	REASON FOR CHANGE
5	180-microhenry peaking coil added in series with lead between R40 and junction of L56 and R44.		32-4143-5	To improve picture quality.
5	$6800-\mathrm{ohm}$ resistor added between ground and junction of R136 and R36.		66-2688340	To improve picture quality.
5	R36 changed from 47 ohms to 10 ohms.	66-0478340	66-0108340	To improve picture quality.
;	S2, who ohm resistor added between screen (pin 3) of vides rouspur tuhe and ground.		66-3824340	To improve picture quality.
5	15,000 -ohm resistor added across R40 and R41.		66-3154340	To improve picture quality.

PRODUCTION CHANGES IN MODEL 50-T1443, CODE 123 (Cont.)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	DESCRIPTION OF CHANGE	REMOVED PART NO.	ADDED PART NO.	REASON FOR CHANGE
5	C69 changed from . $0033 \mu \mathrm{f}$. to $680 \mu \mu f$.	45-3505-55	60-10685401	To improve picture quality.
6	R-f choke added in series with lead between R60 and junction of R47 and C32.		32-4061-2	To reduce beat interference.
6	R32 removed. 153 removed and replaced with 10 -microhenry choke. L53 connected in series with lead to ungrounded end of R29, between R29 and junction of L69 and pin 3 of J4. $100-\mu \mu f$. condenser added between pin 2 of J4 and ground. These changes were incorporated by replacing the entire i-f strip with another strip.	66-3478340	$\begin{aligned} & 62-110009001 \\ & 32-4143-10 \end{aligned}$	To reduce beat interference.
6	$470-\mu \mu f$. condenser added between ground and junction of R136 and R130.		62-147001001	To reduce beat in. terference.

MODEL 50-T1443, CODE 123

RUN NO.	DESCRIPTION OF CHANGE	REMOVED PART NO.	PADDED PART NO.	REASON FOR CHANGE
GZ and 7	R1114 changed from 100,000 ohms 10828.000 ohms.	$66-4108340$	$66-3828340$	To center HORIZ. HOLD control.

CORRECTIONS AND CHANGES IN REPLACEMENT PART NUMBERS MODEL 50-T1443, CODE 122

The following changes should be made in the Replacement Parts List

REFERENCE SYMBOL OR DESCRIPTION	PUBLISHED PART NO.	NEW OR CORRECT PART NO.
C81	$45-3505-36$	$45-3505-30$
C101	$61-6108$	$61-0108$
C105	$60-20155314$	$60-20155014$
J4	$27-3772-6$	$27-6180$
J8	$27-6180$	$27-6174.4$
J9	$41-3860-1$	41.3860
R23	$66-2518340$	$66-2518240$
RI23	$33-1342-2$	$33-1343-2$
Frame, picture, blond	$45-6547$	$45-6549$
Hinges, knife (one pair)	$56-5765-1$	$56-5765$

50-T1443, CODE 122 AND 123

Correction of Part Number

Four-section electrolytic condenser, $40-20-10-10 \mu \mathrm{f}$., all 475 working volts, used in the above models, should have the part number of $30-2570-41$ instead of
$30-2570-8$.

MODEL 50-T1443, CODE 123
TB2 Booster Connections
Early production receivers of the above model did not have the audio-tube socket wired to supply B voltage to $\{1.3963$ booster adaptor. If a booster is required in one of these receivers, pin 6 and pin 4 of the audio-output (6 K 6 GT) tube should be wired together. It may be determined whether this jumper is necessary by taking a voltage reading from pin 6 to ground.

MODELS 50-T1443, ALL CODES

A-C Line Fuse Failure

Under certain operating conditions, the 5 -ampere ine fuse may blow, due to line surges, although the reeiver may be operating normally
Investigation has revealed that a 3.2 -ampere, delayedaction fuse will provide the required protection, and

If the receiver blows the
If the receiver blows the 3.2-ampere, delayed-action use, trouble-shoot the receiver before trying another

The Philco Part No. of the delayed-action fuse is 45-2656-14.

SUPPLEMENTARY ALIGNMENT INFORMATION FOR MODELS 50-T1443, CODE 123
When the video-i-f stages of the above matels are being aligned, better results may be obtained if bias is applied to the a-v-c bus only during the adjustment
of the tuning core of the mixer-plate coil and during of the tuning core of the mixer-plate coil and during the adjustments that affect the over-all video-response furi
furing alignment, the ALIGN TEST jack adapter, shown in the service manuals should not be used. The vertical input of the oscilloscope should be connected directly to pin 3 of the ALIGN TEST jack. When adjusting the tuning core of the mixer-plate coil and when making adjustments to obtain the over-all response 2 curve, connect a short piece of wire between pins 1 and a bias of -3 volts to the a-v-c bus.
To facilitate connections to the ALIGN TEST jack, 3 -prong plug, Philco Part No. 27-4787, with a short wire soldered in each prong, may be used.

John F. Rider

sync. In some cases, the picture will not go out of sync, even though the HORIZ. HOLD control is turned to its extreme counterclockwise position. If this is the case, momentarily short the aerial terminals. When the picture reappears, it will be out of sync.
7. Slowly turn the HORIZ. HOLD control clockwise, and note the change in the number of blanking bars appearing on the picture tube. The number of bars should decrease as sync is approached. Just before the picrure falls into synr, there should be $31 / 2$ to $41 / 2$ bars sloping upward from the left side of the picture another $1 / 4$ turn clockwise, and repeat steps $4,5,6$, and 7. If there are less than $31 / 2$ bars, turn C80A another $\dot{1 / 4}$ turn counterclockwise, and repeat steps 4, 5, 6, and 7.

CHECKING AND ADJUSTING THE

BUILT-IN-AERIAL TUNING NETWORK

By rotating the AERIAL TUNING control, it should be possible to tune the built-in aerial system to resonance with the video carrier frequency of each channel except Channel 6. For Channel 6 a resonant condition should be approached.
To check the built-in aerial system follow the procedure given below:

1. Connect a dipole through a 72 -ohm coaxial cable to the output of an AM signal generator which has a band range covering the television channels.
2. Connect a 20,000 -ohms-per-volt voltmeter to pin 3 of the ALIGN TEST jack, J5.
3. Set the CHANNEL SELECTOR to Channel 2, and the FINE TUNING control to the middle of its range.
4. Place the dipole near the back of the receiver, and set the signal generator for a modulated output the signal-generator attenuator for an output that will just give an indication on the meter.
5. Turn the AERIAL TUNING control for a maximum reading on the voltmeter. When maximum should not be in either its maximum clockwise or maximum counterclockwise position.
6. Repeat the above steps for Channels 3 through . For all channels, except Channel 6, naximum readings should be obtained on the meter when the AERIAL TUNING control is set at positions other than its maximum clockwise or maximum counterclockwise position. For Channel 6, a peak reading
should be approached.
If a peak reading cannot be obtained on each channel (except Channel 6) in the low-frequency band the long section of the loop assembly, to which the bowed out to obtain peaking. bowed out to obtain peaking.
If a peak reading cannot be obtained on each channel in the high-frequency band, the two loops adjacent to the AERIAL TUNING condenser may be peaking.
After the above adjustments have been made, it still may not be possible to obtain maximum meter read ings when the AERIAL TUNING control is set ax positions other than its maximu. If this is the case it is suggested that the AERIAL TUNING condenser be replaced.

TELEVISION CARRIER FREQUENCIES

CHANNEL	CHANNEL LIMITS (mc.)	VIDEO CARERER FREVENCY (me.)	SOUND CRARRIER (m..)
2	$54-60$	55.25	59.75
3	$60-66$	61.25	65.75
4	$66-72$	67.25	71.75
5	$76-82$	77.25	81.75
6	$82-88$	83.25	87.75
7	$174-180$	175.25	179.75
8	$180-186$	181.25	185.75
9	$186-192$	187.25	191.75
10	$192-198$	193.25	197.75
11	$198-204$	199.25	203.75
12	$204-210$	205.25	209.75
13	$210-216$	211.25	215.75

TELEVISION ALIGNMENT

WARNING! Dangerous potentials are present in the receiver when it is operating and for a short time after it has been turned off.

TELEVISION I-F ALIGNMENT

GENERAL

The intermediate frequencies for the television receiver are 22.1 mc . for the sound channel and 26.6 mc .
for the video channel. Alignment of circuits operating at these high frequencies requires careful workmanship and good equipment. The following precautions must be observed:

1. The top of the work bench must be metallic and the test equipment and television-receiver chassis must make a good metal-to-metal contact with the
2. Never disconnect the picture tube, picture-tube yoke, or speaker while the receiver is turned on. 3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment
3. When aligning the receiver, it is possible to achieve optimum adjustment of all tuning cores when the tops of the adjusting screws are approximately $1 / 4$ inch above the coil mounts, and also when the tops of the adjusting screws are approximately $3 / 4$ inch
above the coil mounts. The tuning cores should be adjusted so that the tops of the adjusting screws be approximately $3 / 4$ inch above the coil mounts.

TEST EQUIPMENT REQUIRED FOR TELEVISION I-F ALIGNMENT

The following test equipment is recommended for aligning the television i-f stages of the receiver:

1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent equipment.
2. A vacuum-tube voltmeter or a 20,000 -ohms-pervolt voltmeter.
If separate signal generators and oscilloscope are used in place of Model 7008, these instruments should have the following characteristics:
FM signal generator
Deviation: $\pm 4 \mathrm{mc}$.
Center-frequency range: 20 mc . to 30 mc .
Sweep-sync output with either built-in or separate phase corrector.
AM signal generator

Dial: Suitable for setting and reserting accurately to the frequencies specified in the TELEVISION I-F ALIGNMENT CHART.
Oscilloscope
Calibrated.
Vertical sensitivity: 1 volt (peak-to-peak) per
Vertical sensit
inch, or better.

When using a separate AM r-f signal generator to obtain marker pips, couple the output lead of this generator to the output lead of the FM signal generator, using just sufficient coupling to obtain a suit able marker pip.

JIGS REQUIRED FOR TELEVISION

 I-F ALIGNMENT
1-F Jig

It is recommended that Philco I-F Alignment Jig Part No. 45-1670, be used to couple the signal generator to the various video-i-f grids. The connections to these grids are available from the top of the chassis through small holes near the tube shields. To use this jig, slip the clamp over the shield, insert the probe end into the hole, and slide the jig downward until a good contact is made with the grid connection. In order to use the jig on the first video-i-f tube, it is necessary to remove the dial-light shield plate. Philco Cable, Part No. 45-1635, provides a convenient method of connecting the signal generator to the jig.
Mixer Jig
Figure 1 shows a jig that is recommended for coupling the signal generator to the mixer grid to provide short connections and good grounding. This jig (common constructed from a straight-type hairpin $1 / 8$-inch diameter 14 bus wire. bus wire
Referring to figure 1, construct this jig as follows: 1. File the enamel from the inside of the prongs and from the end of the hairpin.
2. Bend the tips of the hairpin out at a slight angle and form the prongs at a point $3 / 8$ inch from the tips as shown in figure 1.
3. Slightly pinch the end together and slip the spaghetti over the hairpin.
4. Bend the bus wire as shown in figure 1.

When the chassis is viewed from the side with the operating controls to the left, two holes will be seen on the side of the r-f tuner. The top hole is opposite the plate of C 7 which connects directly to the mixer the pl
grid.

Figure 1. Mixer Jis

Figure 2. ALIGN TEST Jack Adaptor

Figure 3. FM TEST lack Adaptor
To use this jig, insert the prong end into the hole opposite C7 until it snaps over the trimmer plate Loosen the self-tapping screw which holds the front end of the tuner component cover plate. Slip the hook end of the bus wire under the screw head, and required additional attenuation of the marker signal is tighten the screw. Connect the ground lead of the Model 7008, insert a 10,000 -ohm resistor in series with signal generator to the bus wire, and the "hot" lead the output lead.
o the end of the hairpin

TELEVISION I-F ALIGNMENT PROCEDURE

Before proceeding with the television i-f alignment the following preliminary instructions should be observed.
a. CONTRAST control fully counterclockwise.
b. VOLUME control for an audible signal.
c. BRIGHTNESS control to give a dim raster
d. FINE TUNING control to the center of its range.
4. Preset the tuning cores and trimmer condensers as follows:
a. C21A and C21B fully clockwise.
b. TC4 fully counterclockwise
c. TC7, TC8, and TC3 so that the top of the adjusting screw is approximately $5 / 8$ inch from the top of the coil mount.
5. During alignment, attenuate the signal-generato output to keep the output at the ALIGN TEST jac below 2 volts, peak-to-peak, and the output at the FM TEST jack below .5 volt, peak-to-peak.
6. Dusing the $v-i-f$ and $s-i-f$ alignment, index the urret tuner between channels.
The television i-f stages of the receiver should be aligned according to the instructions given in the TELEVISION I-F ALIGNMENT CHART.

TELEVISION I-F ALIGNMENT CHART

STEP	SIGNALGENERATOR CONNECTION	OUTPUTINDICATOR CONNECTION	SIGNALGENERATOR SETTING	ADJUSTMENT INSTRUCTIONS
1	Connect output of AM signal generator through i-f jig to grid (pin 1) of 4th video-i-f tube.	Connect vertical input of oscilloscope through ALIGN TEST jack adapter (figure 2) to ALIGN TEST jack J5.	Set AM signal generator (modulated) to 25.5 mc .	Adjust TC10 for maximum indication on oscilloscope.
2	Connect output of AM signal generator through i-f jig to grid (pin 1) of 3rd video-i-f tube.	Same as step 1.	Set AM signal generator (modulated) to 24.5 mc .	Adjust TC9 for maximum indication on oscilloscope.
3	Same as step 2.	Same as step I.	Set AM signal generator (modulated) to 25 mc .	Adjust TC7 for maximum indication on oscilloscope.
4	Connect output of AM signal generator through i.f jig to grid (pin 1) of 2nd video-i-f tube.	Same as step 1.	Set AM signal generator (modulated) to 26.6 mc .	Adjust TC6 for maximum indication on oscilloscope.
5	Connect output of AM signal generator through i-f jig to grid (pin 1) of 1st video-i-f tube.	Same as step 1.	Set AM signal generator (modulated) to 23.25 mc .	Adjust TC5 for maximum indication on osciiloscope.
6	Connect output of AM signal generator through mixer jig to grid (pin 5) of mixer tube.	Same as step 1.	Set AM signal generator (modulated) to 28.1 mc . (See Note 1.)	Adjust TC3 for minimum indication on oscilloscope.
7	Same as step 6.	Same as step 1.	Set AM signal generator (modulated) to 22.1 mc . (See Note 1.)	Adjust TC11 for minimum indication on oscilloscope. If no minimum is apparent, turn TC11 counterclockwise until the response increases rapidly. Turn TC11 clockwise to the point just before the response increases; then adjust TC8 for minimum indication on oscilloscope.
8	Same as step 6.	Same as step 1.	Set AM signal generator (modulated) to 24.25 mc	Adjust TC2 for maximum indication on oscilloscope.

TELEVISION I-F ALIGNMENT (Cont.)

STEP	SICNAL. GENERATOR CONNECTION	OUTPUTINDICATOR CONNECTION	SIGNALGENERATOR SETTINC	ADIUSTMENT INSTRUCTIONS
9	Connect outputs of AM and FM signal generators through mixer jig to grid (pin 5) of mixer tube.	Same as step 1.	Set FM signal generator to 25 mc ., $\pm 4 \cdot \mathrm{mc}$. deviation. Set AM signal generator (unmodulated) to 23.25 mc ., 23.5 mc ., 25.75 me., and 26.6 mc ., as required to produce marker pips.	Adjust TC\{ for response curve within limits of curve in figure 4. It may Le necessary to readjusi TC2, TC4, TC5, TC6, TC7, TC9, and TC10 in order to obtain this curve. (See Note 2.)
10	Same as step 9.	Connect vertical input of oscilloscope to pin 1 of EM TEST jack J3.	Set FM signal generator to $22.1 \mathrm{mc} ., \pm 1-\mathrm{mc}$. deviation. Set $\mathbf{A M}$ signal generator (modulated) to 22.1 mc .	Adjust C21A and C21B slightly counterclockwise until indication is observed on oscilloscope.
11	Same as step 9.	Same as step 10.	Same as step 10.	Adjust TC13 for minimum amount of AM indication. (See Note 3.) Adjust TCl2 for symmetrical pattern (equal peaks) within limits of curve in figure 5.
12	Connect output of FM signal generator through mixer jig to grid (pin 5) of mixer tube.	Same as step 10.	Set FM signal generator to 22.1 mc ., ± 1-mc. deviation.	Adjust C21A and C21B for maximum peaks and symmetry of pattern.
13	Connect output of AM signal generator through mixer jig to grid (pin 5) of mixer tube.	Connect vertical inpur of oscilloscope through ALIGN TEST jack adap. ter (figure 2) to ALIGN TEST jack J5. Connect v.t.v.m. \quad (0 - $10 \cdot \mathrm{volt}$ range) through FM TEST jack adapter (figure 3) to FM TEST jack J3.	Set AM signal generator (modulated) to 22.1 mc (minimum indication on oscilloscope).	When indication on oscilloscope is minimum, $\mathrm{v}-\mathrm{t}$-v-m reading should be zero. If reading is not zero, adjust TC12. If adjustment requires more than one half turn, re peat step 11 .

NOTE 1: When adjusting TC3, TC11, and TC8, the vertical gain of the oscilloscope should be high and the input signal
should be as weak as possible.
NOTE 2: If readjustment of the tuning cores is necessary to obtain a response curve within the limits of figure $\mathbf{4}$, the foilowing information may be used to find the adjustment required:

TC2 affects the low-frequency slope.
TC4 affects the high-frequency slope.
TCS affects the amplitude and low-frequency slope
TC6 affects the bandwidth and carrier position.
TC7 affects the amplitude of the high-frequency slope.
TC9 affects the flat-top response.
TC10 affects the high-frequency slope.
TC3, TC11, and TC8 should not be readjusted.
NOTE 3: The AM signal will appear as a series of sine waves superimposed on the FM-detector curve.
WAVEFORMS OE SYNC AND SWEEP CIRCUITS
The waveforms in figure 7 are sized for clarity, and proximate peak-to-peak voltages are given under the are not intended to illustrate relative amplitudes. Ap- waveforms in each case. These voltages are the ap-
proximate values when the CONTRAST control is adusted to give 30 volts, peak-to-peak, at the grid of the picture tube, and when all other controls are in their normal positions.
For viewing waveforms in the vertical sync and sweep circuits, adjust the oscilloscope sweep to 30 c.p.s. (one-half the vertical-sweep rate).

For viewing waveforms in the horizontal sync and For viewing waveforms instilloscope sweep to 7875 c.p.s. (one-half the horizontal sweep rate)

GRID, PIN 5 VERT. OUTPUT (30 c.p.s. sweep)
$T_{T P-8232-1}^{2}$

GRID, PIN 5 PHASE COMP. (7875 c.p.s. sweep)
TP-8234-1

GRID, PIN 5 HORIZ. OUTPUT (7875 c.p.s. sweep) 80 V
TP-8235-2

PIN 1, DEFLECTIONCABLE SOCKET (7875 c.p.s. sweep) 290 V
TP-8236-2

© John F. Rider

Figure 5. FM-Detector Curve
757
Figura 4. Over-all Video-l-F Response Curve
Ir AMPL
AND AM DET
FMMAER-OSC ANDAMDET TNTHORIZ DCRESTAND

TWO TUNING CORES EACH. ADJ
Figure 6. Tuning Core, Trimmer, and Tube Location

RADIO ALIGNMENT

GENERAL

The television section should be properly aligned be The radio alignment is made. W'hen complete AM and rion alignment of the radio is necessary, the AM required, FM alignment alone may be made after the ele vision-i-f stages have been aligned.
Before starting the radio alignment, allow the re eiver and test equipment to warm up for 15 minutes.

TEST EQUIPMENT REQUIRED FOR

RADIO ALIGNMENT

The following equipment is recommended for alignor

1. Philco Precision Visual Alignment Generator, .
volt voltmeter

RADIO ALIGNMENT PROCEDURE

Before proceeding with the radio alignment, the fo lowing preliminary instructions should be observed. generator lead.
2. Preset the VOLUME control fully clockwise Set switch WS1 to AM during AM-radio alignment,
3. During alignment of th the signal generator to keep the output indication be FM radits, peak-to-peak. During alignment of the output at the FM TEST jack below 5 volt, peak-to
4. For radio alignment use a non-metallic align ment tool.
The radio section should be aligned according to the instructions given in the AM-RADIO ALIGN CHART.

AM-RADIO ALIGNMENT CHART

STEP	SICNAL GENERATOR CONNECTION	OUTPUTINDICATOR CONNECTION	SICNALGENERATOR SETTINC	RADIODIAL SETTING	ADJUSTMENT INSTRUCTIONS
1	Connect AM signal generator through $1-\mu \mathrm{f}$. condenser to grid (pin 1) AM mixer tube.	$\begin{aligned} & \text { Connect vertical in- } \\ & \text { put of oscilloscope } \\ & \text { to widely spaced } \\ & \text { terminals of speak- } \\ & \text { er socket J4. } \\ & \hline \end{aligned}$	Set AM signal gen erator (modulated) to 455 kc .	540 kc .	Adjust TC20* and TC18* for max mum indication on oscilloscope.
2	Connect AM signal generator through . 1 -lif. condenser to T7.	Same as step 1.	Set AM signal gen erator (modulated) to 1620 kc .	$\begin{aligned} & \hline 1620 \mathrm{kc} . \\ & \text { (See figure 9.) } \end{aligned}$	
3	Same as step 2. (See Note below.)	Same as step 1.	Set AM signal gen erator (modulated) to 1500 kc .	Tune receiver to signal.	

NOTE: The final adjustment of C135 should be made with the chassis in the cabinet and the loop connected. The signa from the signal generator should be coupled by means of a radiating loop. This radiating loop should be made po of six to eight turns of insulated wire in abou

* TC18 and TC20 consist of two tuning cores each. Make adjustments from both top and bottom of chassis.

FM-RADIO ALIGNMENT CHART

1	Connect FM signal generator through $.1-\mu \mathrm{ff}$.condenser across C105B.	Connect vertical in put of oscilloscope 	Set FM signal gen erator to 22.1 mc . \pm I-mc. deviation.	Gang fully closed.	Adjust TC19* and TC17* for maxi $\underset{\text { symmetry }}{\text { mum }}$ of $\begin{array}{ll}\text { peaks } & \text { and } \\ \text { pat }\end{array}$ tern.
2	$\begin{aligned} & \text { Connect FM signal } \\ & \text { generator through } \\ & \text { I-lef. condenser to } \\ & \text { aerial input termi- } \\ & \text { nals of TBI. } \end{aligned}$	Same as step I .	Set FM signal gen erator to 105 mc . $\pm \mathrm{l}$-mc. deviation	105 mc . (See figure 9.)	Adjust C133, C132, and CI 34 for maxi mum peaks and symmetry of tern.

FM-RADIO ALIGNMENT CHART (Cont

STEP	SICNAL. CENERATOR CONNECTION	OUTPUTINDICATOR CONNECTION	SICNAL. CENERATOR SETTING	RADIODIAL SETTINC	ADIUSTMENT INSTRUCTIONS
3	Same as step 2.	Same as step 1.	Set FM signal gencrator for 92 mc ., $\pm 1-\mathrm{mc}$. deviation.	$\begin{aligned} & 92 \mathrm{mc} \text {. } \\ & \text { (See figure 9.) } \end{aligned}$	Check resonence of L48, L47, and L45 by placing each end of a tuning core, such as Philco Part No. 56-6100, near the coils. If the the coils. If when the iron end is placed near the coil, compress the turns slightly. If the output increases is placed near the $\begin{array}{lll}\text { coil, } & \begin{array}{l}\text { spread } \\ \text { turns } \\ \text { slightly. }\end{array} & \text { If } \\ \text { If }\end{array}$ output decreases when either end is placed near the coil, no adjustment is necessary.
4	Repeat steps 2 and 3 until no further improvement is obtained.				

UNING
Fizure 8. Drive-Cord Installation Details

REPLACEMENT PARTS LIST

NOTE: Part numbors marked with an asterisk (\cdot) are general replacement items. These numbers may not be iden-
tical with those on factory assemblies: also. the electrical values of some replacement items may ditter tom the tical with those on factory assemblies; also. the electrical values of some replacement items may diter from the
values indicated in the schematic diagram and parts list. The values substituted in ony case are so chosen that values indicated in the schematic diaqram and parts list. The values substituted in any case are so chosen that
the operation will be elther unchanged or lmproved. When ordering replacementa, use only the "Service Part No."

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part }\end{gathered}$	$\begin{aligned} & \text { Reference } \\ & \text { Symbol } \end{aligned}$	Description $\begin{gathered}\text { Serrice } \\ \text { Part No. }\end{gathered}$	
AD1	Aerial, broad.band dipole, foil (2 used)		Condenser, r.f by.pass, 1500 ulf.62-215001014.	
${ }^{\text {BB1 }}$	Beam bender, permanent magnet76-3913.4	${ }_{664}$	Condenser, d.c blocking. . 22 Mi.45-3505.49-	
C1	Condenser, aerial trimmer.	css	Coudense, 4-section iiller30-2570.10	
C2		C65A	Condenser. 1.f compensation,	
	Condenser, rif byppass, 001 uit45-3505.52.	C65B	Condenser, decoupling. 10 ut. 475 y ,Part of C65	
${ }^{\text {C4 }}$	Condenser, rit by-pass, $120 \mu \mu \mathrm{~L}$.60-10125237*	C65C	Condenser, decoupling, $10 \mu \mathrm{f}$., 475v Part of C65	
C5	Condenser, r-f plate trimmer.	C65D	Condenser, decoupling. $10 \mu \mathrm{tI}$, 475vPart of C65	
C6	Condenser d.c blocking towne....... Part of 76.5411 .3 .	${ }_{6} 66$	Condenser, cathode by-pass, . 5 ut.15-3500.4*	
C7	Condenser, mixer grid trimmer.	C67	Condenser. 3.section filter	
	$5103 \mu \mu \mathrm{f}$.		Condenser, screen by-pass,	
	Condenser. d.c blocking. $20 \mu \mu \mathrm{~L}$	С67B		
$\mathrm{Cs}^{\text {c }}$	Condenser. fixed trimmer, $10 \mu \mu \mathrm{LI}$.62.010009001 ${ }^{\text {- }}$		10 ut., 475v Part of C67	
C10	Condenser, oscillator trimmer, .5 to $3 \mu \mu$. Part of 76-5411-3	C68		
C11	Condenser. fine tuningPart of 26.5411 .3		Condenser, d.c blocking. 680 M.14.66:10685401.	
$\mathrm{Cl2}$	Condenser, r-f by-pass, 001 uf.	C71		
Cl^{3}	Condenser, fixed trimmer, $10 \mu \mu \mathrm{~L}$.62-010009001 ${ }^{\circ}$	C72		
C14		c73	Condenser, input filter. 30μ f., 475 v ….....30.2568.19	
C15	Condenser. d.c blocking. 120 mut.60-10125237*	C74		
C16	Condenser, fixed trimmer, 51 muf.30-1224.62.	C74A	Condenser, filter, $40 \mu \mathrm{ft}$.475 v Part of C 74	
${ }^{C 17}$	Condenser, fixed trimmer, 51 upf.30-1224.62.	C748	Condenser, filter, 10μ mi., 475vPart of C74	
C18	Condenser, d.c blocking, $01 \mu \mathrm{f}$.45-3505.41 ${ }^{\text {. }}$	C74C	Condenser, filter, $20 \mu \mathrm{ft}$.475 vPart of C 74	
${ }^{\text {c19 }}$	Condenser, fixed trimmer, 56 mut.62.056409001 ${ }^{\text {- }}$	C74D	Condenser, cathode by.pass, $10 \mu \mathrm{f}$.Part of C74	
C20	Condenser, cathode by-pass, 470 und....62-147001001 ${ }^{\text {- }}$	5		
${ }^{\text {C21A }}$	Condenser. trimmerPart of 23	C76	Condenser, video filter, 220 上 $\mu \mathrm{L}$.62.122001001.	
C21B	Condenser. trimmerPart of 23	C77	Condenser, d.c blocking, . 047 Mf.45-3505.62	
	Condenser, r.f by-pass. $1500 \mu \mu \mathrm{f}$.62-215001011.	C78	Condenser, de blocking, 150 nufi6010155407*	
C23	Condenser, d.c blocking. $56 \mu \mu \mathrm{~L}$.62.056409001*	C79	Condenser, voltage divider, 180 uuf.30-1220.30*	
C24	Condenser, r.f by-pass, 1500 mut.62-215001011 ${ }^{\text {. }}$	C80	Condenser, 3-section trimmer -..................31.6477.2	
C25	Condenser, r.f by-pass, $1500 \mu \mathrm{mi}$.......62-215001011 ${ }^{\circ}$	C80	Condenser, lock-in trimmer Part of CB_{8}	
${ }^{\text {c26 }}$	Condenser, fixed trimmer, $18 \mu \mathrm{ufi}$.62018300001 ${ }^{\text {. }}$	С80B	Condenser, horizontal-oscillator-range	
C27	Condenser, r.f bypass, $100 \mu \mu \mathrm{~L}$..........62-110009001*		trimmerPart of C 80	
C28	Condenser. r.f by.pass. $1500 \mu \mu \mathrm{~L}$.......62-215001011 ${ }^{\text {- }}$	C80C	Condenser, drive trimmerPart of CBO^{0}	
C29	Condenser, filter. 2 uf.. 50v30-2417-7	C81	Condenser, d.c blocking, . 0022 uf.45-3505.54*	
C30	Condenser, d.c blocking, .0033 $\mu \mathrm{f}$.45-3509.55*	C_{82}	Condenser, cathode by.pass, . 022 uf.45-3505.43.	
${ }^{\text {C31 }}$	Condenser, r.f by-pass, $47 \mu \mu \mathrm{f}$.30-1224.2*	С83	Condenser, filter, . 22 uf.45-3505.49*	
C^{2}	Condenser, tone compensation, 47 mufi.30.1224.2.	$\mathrm{CB4}^{4}$	Condenser, plate by-pass, . $047 \mathrm{\mu t}$. .-.......45.3505.45	
${ }^{\text {c33 }}$	Condenser, tone compensation. $0068{ }^{\text {at....45-3505.57 }}$	C85	Condenser, d.c blocking, 270 ب14.60-10275407-	
${ }^{\text {c34 }}$		C86	Condenser, sweep charging. 1500 u14 $62.215001011^{\text {- }}$	
C35 C36		C87	Condenser, d.c blocking. 390 uut .-.....60.10395407.	
${ }_{C 3}$		C88	Condenser, screen by.pass, 047 ml45-3505.62 ${ }^{\circ}$	
C38	Condenser. 3 -section filter .-1 μ..............30-2570.16	C89	Condenser, horizontal shaping. . $047 \mathrm{\mu t}$. ...45-3505.62 ${ }^{\circ}$	
${ }^{\text {C38A }}$	Condenser, screen by-pass, $10 \mu \mathrm{~L}$, 450v ..Part of C 38	C90	Condenser, horizontal shaping, . 082 \%1.61.0174 ${ }^{\text {a }}$	
С398	Condenser, cathode by.pass. 40 \%t., 50 v . Part of C 38	C91	Condenser, d.c blocking. it uf.45.3505.31.	
C38C	Condenser, filter, 10 m., 450 vPart of C^{38}	C92	Condenser, high-voltage filter, 500 uri. ...30-1229.2.	
${ }^{\text {c39 }}$		${ }^{\text {c93 }}$	Condenser, d.c blocking, . 047 \%f.45.3505.62.	
C40	Condenser, av-v.c by-pass. $1500 \mu \mathrm{ut}$. ...62-215001011 ${ }^{\text {- }}$	C94	Condenser. d.c blocking, $330 \mu \mathrm{pfi}$.......62.133001001 ${ }^{\text {. }}$	
${ }^{\text {c13 }}$		c9s	Condenser, d.c blocking, . 0047 mi.45-3505-56.	
${ }^{\text {c42 }}$		C96	Condenser, video filter, $22 \mu \mu \mathrm{fi}$..........62-022009001.	
Cl_{4}	Condenser, r.f by-pass. 1500 mut.62-215001011 ${ }^{\text {. }}$	C97		
Cl_{4}	Condenser, d.c blocking, $470 \mu \mu \mathrm{~L}62 .147001001^{\circ}$	C98	Condenser, integrating, .0047 $\mu \mathrm{fl}$.............. 45-3505.56	
$\mathrm{CH}^{\text {c }}$	Condenser, a.v.c by-pass, 1500 met. ...62-215001011 ${ }^{\text {a }}$	c99	Condenser, integrating, .0047 m4.45-3505.56.	
${ }^{\text {C46 }}$	Condenser, r.f bypass. $1500 \mu \mu \mathrm{f}$.62215001011 ${ }^{\text {- }}$	${ }^{C 100}$		
C47	Condenser, r.f by.pass, $10 \mu \mu \mathrm{f}$.62010409001*	${ }^{\text {c } 101}$	Condenser, d.c blocking. . $015 \mu \mathrm{f}$.45.3505.42.	
C48	Condenser, d.c blocking, $470 \mu \mathrm{\mu uf}62 .147001001^{\text {- }}$	Cl^{102}	Condenser, sweep charging, .047 $\mu \mathrm{f}$.45.3505.62.	
Cl_{4}	Condenser, $\alpha \cdot \mathrm{v} \cdot \mathrm{c}$ by-pass, $1500 \mu \mu \mathrm{~L}$....62-215001011 ${ }^{\text {- }}$	C1	Condenser, d.c blocking. . ${ }^{\text {mf.45.3505.47* }}$	
C50		Cl		
C51	Condenser, d.c blocking, $470 \mu \mathrm{~m}^{\text {.62.147001001 }}$	C105	Condenser. 5 -section tuning condenser -........31-2743	
$\mathrm{C}^{\text {c5 }}$	Condenser, fixed trimmer, 51 unt.30-1224.2.	C10	Condenser, FM aerial tuningPart of C10s	
C53		${ }^{\text {ClosB }}$	Condenser. FM mixer tuningPart of C10s	
C54	Condenser, r.f by-pass, $10 \mu \mu \mathrm{f}$.62.010409001*	${ }^{\text {Cl05C }}$	Condenser, FM oscillator tuningPart of C10s	
C55	Condenser, cathode by-pass, $1500 \mu \mu \mathrm{f}$. 62.215001011^{*}	${ }^{\text {C105D }}$	Condenser. AM aerial tuningPart of C105	
C56		C105E	Condenser. AM oscillator tuningPart ot C105	
C57	Condenser, de blocking, $470 \mu \mu \mathrm{f}$.62.147001001*	${ }^{\text {C106 }}$	Condenser, d.c blocking, 100 !uf.62-110009001 ${ }^{\text {P }}$	
C58	Condenser, d.c blocking, $100 \mu \mu \mathrm{~L}$.62-110009001*	C107	Condenser, x.f by-pass, 220 uufi.62-122001001 ${ }^{\text {. }}$	
C59	Condenser, a.v.c by-pass, 1500 mpit ...62-215001011.		MODELS 50-T1477,	
C60	Condenser, r.t by-pass, $1500 \mu \mu \mathrm{~L}$.			
C_{61}			T1478, $50-11479$,	
C62	Condenser, d.c blocking, . 047 Mf.45-3505.45*		$T 1481,50-T 1482$	

© John F. Rider

© John F. Rider

©John F. Rider

Bottom View of Subchassis (AM-FM Radio),
Models $50-\mathrm{T} 1477$ to $50-\mathrm{Tl} 482$

ADDITIONAL REPLACEMENT PART

50-T1482 (PR-1787)

Dial backplate and rivet assembly
76-4858

Model 50-T1481

New Part
A new fiberboard baffle-and-cloth assembly is available for the above model. Its part number is $40-7860-1$, and it may be used as a direct replacement for the old type baffle and cloth

MODELS 50-T1476

THROUGH 50-T1482; 50-T1484-NEW

 HORIZONTAL-OUTPUT TRANSFORMERThe horizontal-output transformer for the above models has been changed. The new part numbers are given below

Model	New Transformer Port No.
	$\begin{aligned} & 32.8437 \\ & 32.8421 .2 \end{aligned}$

The above transformer should the used for all replacements in these models.

MODELS 50-T1476, 50-T1477, 50-T1478, 50-T1479, 50-T1481, 50-T1482, AND 50-T1484

RUN NO.	DESCRIPTION OF CHANGE	REMOVED PART NO.	ADDED PART NO.	REASON FOR CHANGE
5	L43 (width coil) changed.	$32-4419-2$	$32-4419-3$	To increase width.
6	1B3 socket and wiring changed. Wiring removed from pin 5 and placed on pin 4.	$27-6174-5$	$27-6174-7$	To prevent shorting of components due to in ternal connections on pins 1, 3, and 5 of some 1B3GT tubes.
7	Fuse added in series with ground lead of filament winding of pow- er transformer.		Length of \#26 cop- per wire.	To provide protection against filament shorts.
$\mathbf{8}$	Vertical-output transformer changed to smaller size.	$32-8405-1$	$32-8425 \quad$ (For re- placement purposes, use 32-8405*.)	

PHILCO TELEVISION-RADIO-PHONOGRAPH MODELS
 50-T1476
 50-T1476 AND 50-T148

 are similar to the one used in Models $50-\mathrm{T} 1477$, $50-$ ence being in the cabinet style.All of the above models incorporate a 12 -inch picture tube, a wide mask, a built-in aerial, and an M-20 autonatic record changer which has three turntable speeds, for playing $33-1 / 3,45$, and 78 r.p.m. records.
For service information pertaining to Models 50 T1476 and 50-T1484, refer to Philco Service Manual PR-1787 and to the supplementary information in this
bulletin. All of the production changes given for Models 50-T1477, 50-T1478, 50-T1479, 50-T1481, and $50-\mathrm{T} 1482$ also apply to Models 50-T1476 and 50-T1484. However, the miscellaneous section of the Replacemen Parts List in PR-1787 does not apply to Models 50 T1476 and 50-T1484, because of the difference in cabi nets. For miscellaneous parts, therefore, refer to the following miscellaneous Replacement Parts List
miscellaneous replacement parts list

Description	Service Part	No.

©John F. Rider

HORIZONTAL OUTPUT AND HIGH VOLTAGE SUPPLY

The horizontal output amplifier (6CD6G) and "flyback" type power supply uses standard components and is conventional except that no electrical centering means is provided. Centering of the raster is accomplished by manipulating the mechanical adjustments of the focus magnet and ion magnet. The correct centering procedure is outlined in the OPERATING
INSTRUCTIONS booklet.

The function of the output tube (6CD6G) is to supply sufficient current of the proper waveform to the horizontal deflection coil in order to pro vide horizontal scanning for the cathode ray tube. The function of the damper tube (6W4GT) is to stop oscillation and thus help provide a linear trace. It also recovers some of the energy from the yoke kickback and uses it to help supply additional power to the horizontal and vertical sweep circuits.

The width of the picture is controlled by adjusting slug 222 which varies the amount of inductance shunted across a portion of the secondary of the horizontal output transformer. Clockwise rotation of the adjustment increases picture width.

Adjustment of the horizontal drive control located on the rear apron of the chassis determines otpimum linearity and maximum high voltage and, therefore, crispness of picture. Before setting Horizontal Size, advance Dive Control until white vertical lines appear near the center of picture. Then turn back slightly to make lines disappear. The Horizontal Size of the picture should now be set by use of the Horizontal Size Control.

After changing tubes or re-locating the receiver in different location, the Horizontal Size may have to be readjusted due to change in tube characteristics or line voltage, it is always advisable to readjust the Drive Control as mentioned above to maintain maximum high voltage.

Rotation of the horizontal linearity control, S20, will affect the center portion of the picture and should be adjusted for best horizontal linear ty as follows:
A.) Rotate slug in counter-clockwise direction until it is completely out of the coil.
B.) Slowly rotate sluy in clockwise direction until good linearity is indicated by observation of the test pattern.
NOTE: If this operation is carried too far, a second point will be noticed where, apparently, good linearity is obtained. With this setting however, the center of the picture is distorted and therefore the adustment should not be left in this position. The correct setting is the one where good linearity is ortained with the slug in the "out" position
The high voltage power supply is a "kickback" type where the power is obtained from the energy stored in the deflection inductances during each pulse, a pulse appears on the primary of the cutput transforme due to the pulse, a pulse appears on the primary of the cutput transformer due to the up , ap a

LCW VOLTAGE FOWER SUPPLY

Although the low voltage power supply is a conventional circuit delivering about 360 volts at 200 ma . in Models TV-164, TV-167A, and TV-191 and 300 volts at 190 ma . on Model TV-l27, the voltage distribution circuit through the receiver is unique. Those circuits which operate at lower
voltages are connected in series with each other and placed across the higher voltage required for other circuits. The RF-IF cathodes return to chassis and the plates and screens are at +140 volts. The cathode operates on the difference between +1 and +140 volts. This tube then Mer +140 and +360 volts or +220 volts on Models TV-104, TV-167A and TV-191. On Model TV-127, the tube operates on he difference between +140 and +300 volts or plus 160 volts. Resistance ith the 0 or oep its current keep its current variations from modulating the B supply voltage

The audio output tube also operates as a series regulator tube to maintain the +140 volts relatively constant. Because its grid is connected to a divider running from +360 volts (300 volts for Model TV-127) to ground, any change in the +140 volts, due to current variations in the RF-IF circuits, changes the effective grid - cathode voltage of the audio output tube thereby providing a substantial amount of automatic voltage regulat-

FM TUNER

The FM tuner section of this receiver consists of a 6BA6 RF amplifier, a 6BE6 first converter and a l2AT7 second converter. The RF and first con 10.7 mc . at the output of the first converter intermediate frequency of dual triode, one section operating as a mixer and the other section is ating as an oscillator. The lo. 7 mc TF tube of the first soction oper heterodyned with a fixed oscillator operating at 15.2 mc in the mixer triode section. The 15.2 mc . sional is tion of the l2AT7 tube. The difference frequency of 5 mcilators sec the mixer plate and is coupled into the video detector. From this poin the signal is handled in the same manner as the sound component.of the TV signal.

ALIGNMENT PROCEDURE

TEST EQUIPMENT

To properly service this receiver, it is necessary that the following test equipment be available

1. RF Sweep Generator - Frequency ranges:

20 to 27 Mc . b) 50 to 90 Mc . (at least 10 Mc . sweep width) 170 to 225 Mc. (at least 10 Mc. sweep width) Output must be adjustable to a maximum of 1 volt.
2. Cathode Ray Oscilloscope

Preferably one with a wide band vertical deflection, an input calibrating source and a low capacity probe.
3. Sjenal Generator to provide frequencies in the following ranges d) 4.4 to 4.5 Mc . b) $10.7 \mathrm{Mc} \quad$ c) 20 to 27 Mc .
4. Vacuum Tube Voltmeter and High Voltage Multiplier Probe for use with this meter to permit measurements up to 15,000 volts.

ADJUSTMENTS REQUIRED (Refer to Figure 1 for location of alignment adjustments)
Front end - Normally only the RF oscillator coils will require the attention of the service technician. All other circuits are verybroad and will therefore only rarely require readjustment. If a realignment should

MODELS TV-127, TV-164

OJohn F. Rider

be needed, only those thoroughly familiar with very high frequencies and sweep generators should attempt it. The oscillator coll adjustments high band oscillator, are aligned by a trimmer and padder like a normal AM recel ver.
A.) Low Eand

Switch band selector to the low band, engage variable condenser completely. Then, tune slug $\$ 1$ until the frequency of the oscillator equals
80 Mc . Disengage variable condenser completely and adjust trimmer T2 for an oscillator frequency of 110 Mc . Repeat this procedure several times to check accuracy.
B.) High Band

Throw the band selector switch to high band. Encaze the variable condenser fully and adjust slug S3 until the osciliator frequency equals 200 Mc. Disengage condenser completely and adjust trimme
frequency of 23 , Mc. Repeat procedure several times.

The detailed alignment procedure which follows is intended primarily as a discussion of the method used, precautions to be taken and the reasons for these precautions. Then, for more convenient reference during alignment alignment is given in the table. However, alignment by the table should not be attempted before reading the detalled instructions.

ORDER OF ALIGNMENT

When a complete receiver alignment is necessary, it should be performed in A.) Align ratio detector as indicated in alienment table at 4.5 Mc .
B.) Set 4.5 Mc. trap with slug Sll.
C.) Align all I.F. transformers following procedure and ¿able.
D. Set sound treps to 21.25 Mc . with slug S10 anc to 27.25 with slue S2l. has per aliemment
F.) Align FM section as per alignment procedure in table.
G.). Connect receiver to an antenna and tune for a test pattern if possible. H.) Fay special attention to the proper setting of the HORIZONTAL HOLD CCN instelletion to "hold" a picture. The gental HOLD CCNTROL at the time of in". To make this check, the TUNING CONTROL shotild be tuned rapidy on and off a station. Find the point of adjustment for the HORIZONTAL HOLD CONTRCL, where the picture will fall into fratit, without hesitation
I.) Adiust other size and hold controls as outlíned in OPERATING INSTRUCTIONS booklet.

FICTURE I.F. OSCILLATION

If the receiver is badly misaligned and two or more of the I.F. coils are tuned to the same frequency, or if the sound traps are not set properly, as a voltage in excess of a few tenths of a volt at the picture detector load resistor. If such a condition is encountered, it is sometimes possible to stop oscillation by adjusting the coils approximately by setting the adjustment screws tc be nearly equal to those of another receiver known to te in proper alignment.
There is little likelihood of any oscillation occurring if the 21.25 Mc . trap (adjusted by slug slo) is at its proper freauency, and the third picture I.F. (slug Si) is set at 21.6 Mc . or lower. If oscillation persists heck for open by-pass condenser in I.F. strip.

RATIO DETECTOR ALIGNMENT

Set the signal generator for approximately l volt output at 4.5 Mc . and connect it to the grid of the ratio detector drivar. To align the pri mary of the Ratio Detector, connect the vacuum tube voltmeter to pin No. secondary of the ratio detector, connect the vacume. To balance the the phono input jack to pround. Adjust si4. It will be found that it is possible to produce a positive or negative voltage depending on this advoltage must fo through zero. Sll should be adjusted for zero output. It is possible to use any television station for this alignment since the 4.5 mc .

SOUND I.F. ALIGNMENT

Connect the signal penerator to terminal \#4 of the video detector assembly and maintain it at 4.5 Mc . Connect the vacuum tube voltmeter to pin No. 2 of the OALS Ratio Detector and adjust slug Sl2 for maximum DC reading.
Reduce output of signal generator to a very low lev land readjust siz.

ALIGNMENT CHART

SERVICE SUGGESTIONS

FUNCTION	NOTES	CONNECT R.F. SIGNAL GENERATOR T0:	$\begin{gathered} \text { CONNECT OUTPUT } \\ \text { INDICATOR (V.T.V.M.) } \\ \text { TO: } \end{gathered}$	SET R.F. SIGNAL GENERATOH and DIAL POINTER TO:	ADJUST Ind	OUTPUT indication
3) FM RF Alignment	Switch to FM Contrast Control to Kaximum \qquad Before dligning Check Zero Set of FM Dial Pointer	Antenna Terminals Through 2	Pin \#2 of 6 AL5 Ratio	90 MC .	$\begin{aligned} & \text { Oscillator } \\ & \text { Disc (PI) } \\ & \text { and } \\ & \text { R.F. Padde } \\ & \text { P2 } \end{aligned}$	$\begin{aligned} & \text { Maximum } \\ & \text { on } \\ & \text { V.T.V.M.M } \end{aligned}$
		150 ohm Resistors (Dumay)	Detector	Set Generator to 106 MC . and locate Signal on FM Dial. Note amount of error.	Set Tuner Pointer to the other side of 105 MC. Ey 1/2 the Error Found Then Adjusp	$\begin{aligned} & \text { Maximum } \\ & \text { to } \\ & \text { V.T.V.M. } \end{aligned}$
			106 MC.	$\begin{aligned} & \text { Oscillator } \\ & \text { Disc (P1) } \end{aligned}$	```Oscillator Disc (Pl) and Antenna Trimmer (T7)```	$\begin{gathered} \text { Maximum } \\ \text { on } \\ \text { V.T.V.M. } \end{gathered}$

I. $\frac{\text { NO RASTER ON C.R.T. }}{\text { A. SOUND NORMAL }}$
IF ALSO NO HIGH VOLTAGE

1. Check $1 / 4$ amp. fuse. Refore replacing blown fuse check the follow-
a.) Deflection yoke colls - check for grounded windings and shorts between Vertical and Horizontal windings.
b.) Defective horizontal output transformer.
c.) Defective ÓCDGG, 1B3GT's or CW4GT.
d.) Shorted yoke series condenser.
2. Check GSN7GT horizontal oscillator tube and associated circuit components. No horizontal drive.
3. Check 500 imff . high シoltage filter capacitors.

4: Open high voltage filter resistor.

B.) IF FIGH VOLTAGE IS NORMAL

1. Ion trap magnet set incorrectly or reversed.
2. Defective C.R.T.
3. Wrong operating voltages at C.R.T. socket.

解
II. NO VERTICAL DEFLECTION

If Necessary, Repeat.
.) Check CC4 (6SN7 in TV-127) vertical oscillator and associoted circuit
2.) Check GS4 (OSN7 in TV-127) vertical amplifier and associated circuit components.
3.) Check vertical deflection colls.
4.) Check vertical output transformer.
. Check for $\mathrm{P}+$ supply voltage.

FUNCTION	CONNECT SWEEP GENERATOR TO: T0:	CONNECT R.F. SIGNAL GENERATOR TO:	SET R.F. SIGNAL GENERATOR TO:	$\begin{aligned} & \text { CONNECT } \\ & \text { SCOPE } \end{aligned}$ TO:	ADJUSTMENTS
4) VIDEO I.F. SWEEP ALIGNMENT	Loosely coupled to 12 AT 7 mixer tube by means of a metal sleeve $1^{\prime \prime}$ wide. A miniature tube shield may be used. NOTE: Switch to Channels 2-6	Loosely coupled to Sweep Generator Output Cable.	Signal Generator is used as marker. Set from 20-28 Mc. as needed for markers.	Terminal \#4 of Video De tector Coil Assembly 279-63 (Scope is synchronized to Sweep Generator.)	NOTE: Keep input signal at low level to avoid overloading. Ktep contrest control at center setting.

1.) If adjustments do not correct, change 6 C 4 and/or $6 S 4$ vertical sweep tubes. (6SN7 in TV-127)
3.) Defective vertical output transformer
IV. UNSTABLE VERTICAL HOLD (JITTER)
1.) If adjustments do not correct, change 6 C 4 and/or 6 S 4 vertical sweep tubes. (OSN7 in TV-127)
2.) Check as in sections II and III for intermittent operation.
3.) Check 4700 mmfd . vertical oscillator grid capacitor.
poor receptinn or misulignmentions combined with weak signals due to
5.) Contrast control operated at excessive level.
.) Excessive input signal causing overloed. Attenuate antenna input.
V. NO VERTICAL SYNC. (ROLLING)
1.) Check $1 / 212 A U T$ vertical sync. emplifier, and associated components. Check components associated with timer grid (fin 4) of 6SN7 vert.

VI. TRAPEZOIDAL OR NON-SYMMETRICAL RASTER

1.) Improper setting of focus magnet or ion trap magnet. This will also cause shading at the sides or corners of the raster.
.) Defective yoke.
4.) Defective focus magnet.

VII. POOR HORIZONTAL LINEARITY

1.) If adjustments do not correct, change 6SN7GT, 6CDOG or 6W4GT tubes in horizontal sweep circuit.
.) Horizontal output transformer defective.
3.) Defective deflection yoke.
4.) Check horizontal linearity control associated components.
5.) Broken slug inside linesrity coil.
6.) Check circuit components coupling GSN7GT horizontal oscillator tube to 6CD6G.
7.) Check D.C. operating voltages at tube sockets.
.) Raster may be off center due to
a.) Focus magnet set wrong.
b.) Shorted or leaky . 25 mfd . capacitor returning horizontal deflection coil to $\mathrm{B}+$.
VIII. NO HORIZONTAL SYNC. (PICTURE TEARING)
1.) Slo improperly adjusted - readjust for sync. with horizontal hold control at center of rotation.
2.) Check $1 / 212 A U 7$ phase inverter and $6 A L 5$ phase detector tubes and associated circuit. components.
.) Horizontal output transformer defective
4.) Check horizontal oscillator coil, part \#772-66.
) Check tubes and components in horizontal oscillator circuit. Check D.C. operating voltages
6.) Dress C.R.T. cathode lead (yellow) away from deflection yoke cable. If too near, will cause horizontal jitter.
IX. NO HORIZONTAL OR VERTICAL SYNC. (SIGNAL NORMAL AT C.R.T.)
1.) Check GAU6 sync. clipper and associated circuit components.
2.) Check $1 / 2$ 6AL5 D.C. restorer
3.) Check 1 N 60 germanium crystal video detector.
4.) Defective deflection yoke.
) Defective $100 \mathrm{mfd} ., 25 \mathrm{~V}$. cathode by-pass capacitor on 0.54. (úsN7 in TV-127)
X. RASTER AND SIGNAL ON C.R.T. BUT NO SOUND
1.) Check GAU6 ratio detector driver, GAL5 ratio detector and audio amplifier tubes and circuit components.
.) Check shielded audio leads for grounds
3.) Defective loudspeaker.
4.) Check phono input jack for bad contacts.

XI. SOUND DISTORTED

1.) Sheck alignment and balance of ratio detector
2.) Check operating bias on GAQ5 tube (at ll7 volt A.C. line and with no signal, should be between 6 and 10 volts).
3.) Defective audio tubes
4.) Defective loudspeaker.
XII. HUM OR BUZZ IN SOUND-VOLUME CONTROL MINIMUM
1.) Dress . 05 mfd . coupling condenser to 6 AT 6 grid away from high band oscillator coil.
2.) Check main power supply filter capacitors.
3.) Check 80 mfd., l50V., GAQ5 cathode by-pass capacitors.

XIII. PICTURE STABLE - POOR RESOLUTION

1.) Check video detector coil assembly and $1 N 00$ germanium crystal.
2.) Check 6CB6 Video Amplifier tube.
3.) Check peaking coils in video amplifier.
4.) Check alignment of 4.5 Mc . trap.
.) Check setting of focus magnet.
.) Defective C.R.T.
7.) R.F. - I.F. circuits improperly aligned.

XIV. PICTURE SMEARY, TRAILERS

1.) Video amplifier overloaded by excessive input. Reduce contrast control setting.
NOTE: In strong signal areas, excessive input at the antenna terminals $\overline{\text { will }}$ produce smear, picture jitter, etc. An attenuator network at the antenna terminals will remedy this condition.
.) Check for open 500 microhenry choke (75-26) in video detector can
3.) Check video coupling capacitors and grid resistors.
XV. RASTER BUT NO SOUND, PICTURE OR SYNC.
1.) Defective \&ntenna or transmission line.
2.) R.F. oscillator not operating or off frequency.
3.) R.F. unit completely inoperative. Check tubes and voltages.
4.) I.F. section inoperative. Check tubes and voltages.
5.) Check video detector coil assembly and crystal.
6.) Video amplifier inoperative. Check tubes and voltages.
XVI. PICTURE AND SOUND NOT TUNING TOGETHER
1.) Complete realj.gnment.
2.) Extremely weak signal conditions due to location or poor antenna. 3.) Set being tuned improperly.
XVII. DIFFICULTY IN TUNING ACCOMPANIED BY BUZZ
1.) Check alignment of 21.25 mc . trap (Sl0)
2.) Check ratio detector alignment.
3.) Complete realignment.
4.) Weak or poor signal conditions due to location or antenna
5.) Everything normal, hut set is heing tuned improperly.
6.) Contrast control turned up too far, overloading video amplifier.

VOLTAGE CHART TV-164, TV-167A, TV-191

Measurements made with receiver operating on 117 volt 60 cycle line, no signal input.
Volume control, brightness control, and contrast control set at minimum (counter clockwise position) except where noted.
Band Switch in Channel 2-6 position except where noted. Measurements made at low freq. end of bands (gang closed).
Voltages measured with vacuum tube voltmeter. to chassis

$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	FUNCTION	PLATE		SCREEN		CATHODE				NOTESONMEASUREMENTS
		PIN	VOLTS	PIN	VOLTS	PIN	VOLTS	PIN	VOLTS	
12AT7	High Band R.F.	1	140	-	-	3	0	2	-3.0	Band Switch Sent on TV Ch. 7 to 13 Gang Closed
12AT7	High Band Mixer	1	140	-	-	3	2.5	2	-2.5	
12AT7	$\begin{gathered} \text { High Band } \\ \text { Osc. } \end{gathered}$	1	140	-	-	3	0	2	-3.0	
12AT7	$\begin{gathered} \text { Low Band } \\ \text { R.F. } \end{gathered}$	6	140	-	-	8	0	7	-3.25	Band Switch Set on TV Ch. 2 to 6 Gang Closed
12AT7	$\begin{aligned} & \text { Low Band } \\ & \text { Mixer } \end{aligned}$	6	140	-	-	8	0	7	-1.5	
12AT7	Low Band Osc.	6	140	-	-	8	0	7	-1.0	
GAU6	Ist I.F.	5	140	6	140	7	. 1	1	-3.5	
6AUS	2nd I.F.	5	140	6	140	7	. 1	1	-3.5	
6AUG	3 rd I.F.	5	140	6	140	7	. 1	1	-3.5	
6AF6	4th I.F.	5	256	6	140	7	1.5	1	-1.5	
6AU6	Ratio Det. Driver	5	140	6	140	7	1.25	1	-1.25	
6aL5	Ratio Det.	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	$\begin{gathered} -.1 \\ 0 \end{gathered}$		-	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{gathered} \hline 0 \\ -.1 \end{gathered}$	-	-	These voltages vary with sig nal and noise
6ATC	Ist Audio	7	30	-	-	2	0	1	-1	
OAQ5	Audio Output	5	340	6	350	2	140	7	-10	Cont. Grid to Gnid - l30V varies with signal.
6CB6	Video Amp.	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 190 \\ & 210 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 140 \\ & 130 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & -1.7 \\ & -1.9 \end{aligned}$	Contrast Min. Contrast Max.
${ }_{\sim}^{6 A L 5}$	$\begin{aligned} & \text { D.C. Rest. } \\ & \text { A. G.C. } \end{aligned}$	$\begin{aligned} & 7 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & -.25 \\ & -3.5 \\ & 2.25 \end{aligned}$		$-$	$\begin{aligned} & 1 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & .75 \\ & -2.75 \\ & 4.0 \end{aligned}$	-		Contrast Min Contrast Max
$6 \mathrm{Cl}_{4}$	Vert.0sc.	1	115	-	-	7	0	6	-40	Vert Controls set for normal picture
6. 54	Vert.Output	9	440	-	-	2	25	6	-25	
5SN7	Hor. Osc.	2	260	-	-	3	10	1	-8	Hor. controls set for normal picture
		5	180	\square		6	10	4	-20	
6CDÓa	For. Out- put	Cap	see Mote 1	8	140	3	12	5	-30	
6W4at	Damper	5	360	-	-	3	550	-	-	
1B3GT	HV Rect.		-	-	-	2	7.2 KV	-	-	
1B3GT	HV Rect.	-	-	-	-	2	14 KC	-	-	

TUBE	FUNCTION	PLATE		SCREEN		CATHODE		GRID		$\begin{aligned} & \text { NOTES } \\ & \text { ON } \end{aligned}$ MEASUREMENTS
		PIN	VOLTS	PIN	VOLTS	PIN	VOLTS	PIN	VOLTS	
$\begin{aligned} & 15 \mathrm{TP} 4) \\ & 16 \mathrm{KP} 4) \\ & 19 \mathrm{AP} 4) \end{aligned}$	Picture tube	Cap Cap	$\begin{array}{ll} 14 & \mathrm{KV} \\ 12.8 \mathrm{KV} \end{array}$	10	$\begin{aligned} & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{array}{r} 140 \\ 30 \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & -100 \\ & -25 \end{aligned}$	Min. Brightness Max. Brightness
6BA6	$\begin{aligned} & \text { FM - RF } \\ & \text { Amp. } \end{aligned}$	5	135	6	95	7	1	1	-1	Band Switech
б́ве'ర	$\begin{aligned} & \mathrm{FM}-\text { lst } \\ & \text { Conv. } \end{aligned}$	5	140	6	90	2	0	1	-2	in FM- Phono
12AT7	$\begin{aligned} & \text { FM - 2nd } \\ & \text { Osc. } \end{aligned}$	1	140	-	-	3	0	2	-5	Position
12AT7	$\begin{aligned} & \text { FM - } 2 \text { nd } \\ & \text { Mix. } \end{aligned}$	6	140	-	-	8	0	7	-1	
5049	Rect.	4	370 AC			2	360			Band switch in
$5 \mathrm{U4G}$	Rect.	6	370 AC							FM-l'hono posit.
5 U 4	Rect.	4	380 AC			2	360			Band Switch in
5049	Rect.	6	380 AC							TV Ch. 2-6 Pos.

Note $1+520$ V. at + end of 20 mf 250 V. Booster Electrolytic 5500V. Pulses at 6CD6G Plate. Do Not Measure at this Point.

VOLTAGE CHART TV-127

MEASUREMENTS MADE WITH RECEIVER OPERATING ON 117 volt 60 cycle line, no signal input.
Volume control, brightness control, and crintrast control set at minimum (counter clock"ise position) except where noted.
Band Switch in Channel $2-6$ position except where noted. Measurements made at low freq. end of bands (Eang closed).
Voltages measured with vacuum tube voltmeter.
frid voltages measured between grid and cathode. Other voltages measured to chassis

TUBE	FUNCTION	PLATE		SCREEN		CATHODE		*GRID		NOTES ON MEASUREMENTS
TYPE		PIN	VOLTS	PIN	VOLTS	PIN	VOLTS	PIN	VOLTS	
$\begin{gathered} 12 \mathrm{AT} 7 \\ (\mathrm{a}) \end{gathered}$	$\begin{aligned} & \text { High Band } \\ & \text { R.F. } \end{aligned}$	1	145	-	-	3	0	2	-4	Band switch set on TV Ch. 7-13 Gang closed
$\begin{gathered} 12 \mathrm{AT7} \\ (\mathrm{~b}) \end{gathered}$	$\begin{aligned} & \text { High Banc } \\ & \text { Mixer } \end{aligned}$	1	145	-	-	3	2.5	2	-2.5	
$\begin{gathered} 12 \mathrm{AT} 7 \\ (\mathrm{c}) \end{gathered}$	$\begin{aligned} & \text { High Band } \\ & \text { Osc. } \end{aligned}$	1	145	-	-	3	0	2	-4	
$\begin{gathered} 12 \mathrm{AT} 7 \\ (\mathrm{a}) \end{gathered}$	$\begin{gathered} \text { Low Band } \\ \text { R.F. } \end{gathered}$	6	145	-	-	8	0	7	-4	Band switch set on TV Ch. 2-6 Gang closed
$\begin{gathered} 12 \mathrm{AT7} \\ (\mathrm{~b}) \end{gathered}$	Low Band Mixer	6	145	--	-	8	0	7	-1.5	
$\begin{gathered} 12 \mathrm{AT7} \\ (\mathrm{c}) \end{gathered}$	$\begin{aligned} & \text { Low Band } \\ & \text { Osc. } \end{aligned}$	6	145	-	-	3	0	7	-2. 5	
GAUU	1st I.F.	5	15	6	145	7	. 1	1	-4	Band switch to
GAU6	2nd I.F.	5	290	6	145	7	. 1	1	-4	
GAUS	3rd I.F.	5	290	6	145	7	. 1	1	-4	
GAH6	4 th I.F.	5	290	6	145	7	2	1	-2	
6AU6	Ratio Det. Driver	5	$1: 45$	6	145	7	1.5	1	-1.5	Cn. 2-6

TUBE	FUNCTION	PIA TE		SCREEN		CATHODE		\% FR ID		NOTESONMíASUREMENTS
TYPE		PIN	VOLTS	PIN	VOLTS	PIN	VOLTS	PIN	VOLTS	
GAL5	Ratio Detector	7	$\begin{gathered} 0 \\ -.1 \end{gathered}$			5	$0^{.1}$		-	These voltages will vary with different signal or noise conditions.
6at6	$\begin{aligned} & \text { 1st oudio } \\ & \text { amplifier } \end{aligned}$	7	75	-	-	2	0	1	-. 9	
6AS5	Audio power amp.	7	280	6	275	1	145	2.5	-13	
6CB6	$\begin{aligned} & \text { Video } \\ & \text { amplifier } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 190 \\ & 210 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 145 \\ & 135 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.7 \\ & -1.9 \end{aligned}$	Contrast Min Contrast Max
$\begin{aligned} & 1 / 2 \\ & \text { SAL5 } \end{aligned}$	D.C. Restorer	7	-. 3	-	1.5	1	. 4	-		
	A.G.C.	2	-4	-	-	5	-3.5	-	-	Contrast Min.
		2		-	-	5		-	-	Contrast Max.
6aU6	Sync.clipper amp.	5	55	6	35	7	0	1	-1	
$\begin{aligned} & 1 / 2 \\ & 12 \mathrm{AUV} \end{aligned}$	Vertical sync. amp.	6	100	-	-	8	55	7	-1	
$\begin{aligned} & 1 / 2 \\ & 1 \geq \mathrm{AUT} \end{aligned}$	Fhase inverter	1	110	-	-	3	55	2	1	
6ALS	Horizontal. Phase det.	$\begin{array}{r} 12 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & -15 \\ & .1 \\ & \hline \end{aligned}$	$\overline{-}$	-	5 1	20	-	-	
$\begin{aligned} & 1 / 2 \\ & 6 \operatorname{SN} 7 \end{aligned}$	Vert. osc.	5	120	-	-	6	0	4	-50	All vertical controls set
$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 6 \mathrm{sNn} \end{aligned}$	Vert. output	2	410	-	-	3	15	1	-15	at normal picture setting
$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 6 \mathrm{SN} 7 \end{aligned}$	Hor. osc.	2	270	-	-	3	12	1	-10	Ail horizontal
$\begin{aligned} & \text { l/2 } \\ & \text { ESN } \end{aligned}$		5	140	-	-	0	12	4	-25	controls set at normal pic-
GAUS	Horiz. output	5	$\begin{array}{\|c\|} \hline \text { See } \\ \text { Note } 1 \\ \hline \end{array}$	8	200	3	${ }^{7}$	1	-30	ture setting
$5 \mathrm{SW}_{4} \mathrm{GT}$	Damper	5	300	-	-	3	440	-	-	
1V2	$\begin{aligned} & \text { H.V. Rect. } \\ & \text { (a) } \end{aligned}$	-	-	-	-		12 KV	-	-	
1 V2	H.V. Rect. (b)	-	-	-	-	4	6 KV	-	-	
12 LP 4 A	$\begin{array}{\|l} \text { A } \end{array} \begin{aligned} & \text { Picture } \\ & \text { tube } \end{aligned}$	$\begin{aligned} & \text { Cap } \\ & \text { Cap } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 12 \mathrm{KV} \\ 10.1 \mathrm{KV} \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 400 \\ & 390 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{array}{r} 150 \\ 40 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & -110 \\ & -30 \\ & \hline \end{aligned}$	Brightness inin Brightness max
-bab	$\begin{array}{\|l} F M-R F \\ \text { Ampifier } \end{array}$	5	145	0	100	7	1.2	1	-1.2	
OBE6	FM - 1st Converter	5	145	6	100	2	0	$\frac{1}{7}$	0^{-3}	
$\begin{gathered} 1 / 2 \\ 12 \text { ATT } \end{gathered}$	$\begin{gathered} \text { FM - 2nd } \\ \text { Mixer } \end{gathered}$	6	145	-	-	3	0	7	-2.5	FM position
$\begin{aligned} & 1 / 2 \\ & 12 \mathrm{AT} 7 \\ & \hline \end{aligned}$	$\begin{gathered} \text { FM - 2nd } \\ 0 \mathrm{sc} . \end{gathered}$	1	145	-	-	3	0	2	-2	(gang closed)
504 G	Rect.	4	290 AC	-	-	2	300	-	-	
504 G	Rect.	6	290 AC	-	-			-	-	
504 G	Rect.	4	290 AC	-	-	2	315	-	-	Band switch
5046	Rect.	6	290 AC	-	-			-	-	$\begin{aligned} & \text { to TV Ch. } 2-6 \\ & \text { position } \end{aligned}$

$$
\begin{aligned}
\text { Note } 1--- & +440 \text { V. at }+ \text { end of } 21 \mathrm{mr} 250 \mathrm{~V} \text {. Broster } \\
& \text { Electrolvtic, } 4000 \mathrm{~V} \text {. Pulses at CAU5 Flate. } \\
& \text { not measure at this point. }
\end{aligned}
$$

OJohn F. Rider

weight Model	Chassis with Tubes in Cabinet $\left.\begin{array}{c}\text { Shipping } \\ \text { Weight }\end{array}\right)$	
T164.	96 115	
TC165.	101 123	
TC166.	106 130	FRAME FREQUENCY (Picture Ropetilion Rate) . 30 cps
TC167.	123 148	frame frequency (Picture Ropetition Rato)......... 30 cps
TC168.	117 141	OPERATING CONTHOLS (front panol)
PICTURE INTERMEDIATE FREQUENCIES		Channel Selector \} Dual Control Knobe
Picture Carrier Frequency....................... 25.75 Mc.		
Adjacent Channel Sound Trap........................27.25 Mc. Accompanying Sound Traps21.25 Mc.		Picture $\}$.................... Dual Control K nobe
		Brightness
Adjacent Channel Picture Carrier Trap............19.75 Mc.		Picture Horizontal Hold Picture Vortical Hold \qquad
SOUND INTERMEDLATE FREQUENCIES		Sound Volume and On-Ot1 Switch
Sound Carrier Frequency....................... 21.25 Mc.		Tone
Sound Discriminator Band Width between peakz 350 kc		NON-OPERATING CONTROLS (not Lneluding f and $\mathrm{i} \cdot \mathrm{f}$ adjuatments)
VIDEO RESPONSE. To 4 Mc.		Horizontal Centering.cabinet adjustment Vertical Centering...........................cabinet adjustment
FOCUS....................................... Magnetic		Widthrear chassis adjustment Height $. \ldots \ldots \ldots$. rear chassis adjustment
		Horizontal Linearityrear chassis screwdriver adjustment
SWEEP DEFLECTION.......................... Magnetic		Vertical Linearityrear chassis adjustment
		Horitontal Driverear chassis screwdriver adjustment
SCAnNing.......................... Interlaced, 525 line		Horizontal Oscillator Frequency. . . . bottom chassis adjustment Horizontal Oscillator Wavelorm. side chassis adjustment
HORIZONTAL SWEEP FREQUENCY............. 15.750 cps		Horizontal Locking Range............rear chassis adjustment
		Focusear chassis adjustment Ion Trap Magnet.cabinet adjustment
VERTICAL SWEEP FREQUENCY.................... 60 cps		Deflection Coilcabinet adjustment AGC Threshold Control.................rear chassis adjustment
HIGH VOLTAGE WARNING		
OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED INVOLVES		
A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD		
NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS		
NECESSARY WHEN WORKING ON HIGH-VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER		
WITH THE HIGH-VOLTAGE COMPARTMENT SHIELD REMOVED.		
KINESCOPE HANDIING PRECAUTIONS		
DO NOT REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.		
The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For this reason, kinescopes must be handled with more care than ordinary receiving tubes.		
The large end of the kinescope bulb - particularly that part at the rim of the viewing surface - must not be struck, scratched or subjected to more than moderate pressure at any time. In installation. if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA replacement kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carton for possible future use.		
MODELS T164, Ch. KCS40; TC165, TCl66, TCl67, TCl68, Ch. KCS40		

The following adjustments
eceiver on for the first time

1. See that the TV.PH switch on the rear apron is in the position
2. Tum the receiver "ON" and
advance the SOUND VOUME control to approximately mid position
3. Set the STATION SELECTOR to the desired channel. 4. Adjust the FINE TUNING
control for best sound fidelity and the SOUND VOLUME control for suitable volume
4. Turn the BRIGHTNESS control fully counter.clockwise, the
clockwise until a light pattern clockwise until a ligh
appears on the screen.
5. Adjust the VERTICAL hold
control until the pattern stops control until the pattern stops
vertical movement. 7. Adjust the HORIZONTAL hold control until a
obtained and centered.
6. Turn the BRIGHTNESS con trol Counter-clockwise until the re
trace lines just disappear.

Figure 1-Receiver Operating Controls
9. Adjust the PICTURE control for suitable picture contrast. 10. After the receiver has been on for some time, it may be
necessary to readjust the FINE TUNING control slightly for necessary to readjust
improved sound fidelity

Ion in switching from one station to another, it may be neces-
sary to repeat steps 4,8 and 9. 12. When the set is turned on again after an idle period, it
should not be necessary to re. peat the adjustments it the positions of the controls have not
been changed. if any adjustbeen is neced. It any adjust. ment is necessary, step
4 is generally sufficient.
13. If the positions of the con. rols have been changed, it may
be necessary to repeat steps 2 through 9 .
14. To use the instrument with record player, plug the recordplayer output cable into the HONO jack on the rear apron, and set the TV.PH switch on
"PH." Set the TV.PH switch back O TV on completion of the record program

INSTALLATION INSTRUCTIONS

These receivers are shipped complete in cardboard cartons.
UNPACKING.-To unpack the TI64, tear open the carton flaps, pick up. the receiver from under the botom of the cabiuet, and lift it out of the shipping carton.
The receiver may now be placed on a stand, table or other
appropriate support. If a table or piece of furniture other than appropriate support. If a table or piece of furniture other than
the regular stand is used for support, care must be taken to the regular stand is used for support, care must be taken to
see that the receiver is siting on the cabinet feet. If the bottom of the cabinet is permitted to touch a table top, the table could become badly scratched.
To unpack the console receivers, turn the shipping carton on
its side and tear open the carton bottom flaps. Fold the flap its side and tear open the carton bottom flaps. Fold the flaps
up along the side of the carton and turn the carton back up.
Lift the carton up and off the cabinet.
To remove the skid attached to the bottom of the console
cabinets, take off the nuts from the two bolts that hold the cabinets, take off the nuts from the two bolts that hold the
cabinet on the skid. With a man at each end of the cabinet, lift the cabinet off the skid.
Take off the cabinet back. The operating control knobs are
packed in a bag which is tied on top of the chassis Renove packed in a bag which is tied on top of the chassis. Renı
the bag and install the knobs on the proper control shatts. Make sure that all tubes are in place and are firmly seated in their sockets.
Check to see that the high voltage lead clip is in place be
tween the rim of the kinescope and the kinescope mask. tween the rim of the kinescope and the kinescope mask Connect the antenna transmission line to the receiver an
tenna terminals. Plug the receiver power cord into a 115 vol $\alpha-c$ power source. Turn the receiver power switch to the "on position, the brightness control fully clockwise, and the picture
control counter-clockwise.

WARNING. - The high voltage supply in this receiver de livers 12,000 volts! A.C. interlocks are provided at the back
the set so that when the back is removed - so is the power.

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap mag net approximately in the position shown in Figure 2, and with the part number on magnet towards the rear of the chassis.
Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it
slightly around the neck of the kinescope for the brightest

aster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure
of the raster is clearly visible. Readjust the ion trap magnet or maxinum raster brilliance. The final touches of this adjustnent should be made with the brightness control at the max

DEFLECTION YOKE ADJUSTMENT.-If the lines of the raster re not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke djustment wing screw.

PICTURE ADJUSTMENTS.- lt will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 3 through 9 of the receiver operating in-
If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC Chreshold control is misadiusted. and the
receiver is overloading, it may be impossible to sync the receiver
picture.
If the receiver is overloading, turn R138 on the rear apron the picture can be synced.

Figure 3-Rear Chassis, Adjustments
Check of horizontal oscillator alignment.-Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momen posilion. The picture should remain in horizontal sync. Momen.
tarily remove the signal by switching oft channel then back.
Usually the picture will remain in sync. Turn the control clock. Usually the picture will remain in sync. Turn the control clock
wise slowly. It the picture did fall out of sync upon removal of the signal. the number of aiagonal black bars will be gradually reduced and when only 2 bars sloping downward 10 the left are obtained. the picture will pull into sync upon
slight additional clockwise rotation of the control. The picture
 tional clockwise roitation of the control. At the extreme clock wise position, the picture should be out of sync
show 1 vertical or diagonal black bar in the raster.
If the receiver passes the foregoing checks and the picture is normal and stable, the horizontal olloscillator is properly
aligned. Skip "Alignment of Horizontal Oscillator" and pro. aligned. Skip "Alignnent of Horiz
ceed with "Focus Coil Adjustment."
alignment of horizontal oscillator. - if in the ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the
above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 180 degrees of clockwise rotation of the con trol from the pullin p
following adjustments: Horizontal Frequency Adjustmen!.-Turn the $T 109$ sine wave
core (on the outside of the apron) all the way out of the coil. Set the locking range trimmer C153A one-half turn out from maximum capacity.
position. Tune in a television station and turn the frequency position. core of ilog under the chassis until the picture syncs
wave and the sync bar just begins 10 move into the picture. Note--Occasionally, a tube may be found which does not
respond to this alignment procedure since it may not be pos. sible to sync the picture by means of the frequency core when the sine wave core is all the way out of the coil. Yet, the tube
may work perfectly well when the circuit is properly aligned. may work perfectly well when the circuit is properly aligned.
In such a case, it may be necessary to turn the sine wave core in slightly, and readjust the frequency core to obtain sync. Turn the sine wave core of T109 in untia the blanking bar
begins to move oft to the left of the picture. Alternately turn the sine wave core in and the frequency out, keeping the picture in sync and the blanking bar showing in the picture. Contirue alternate adjustments until the picture falls from
sync into a parasitic oscillation as indicated by a non-synchro sync into a parasitic oscillation as indicated by a non-synchro-
hized pattern which flickers in width and centering with pos. mized pattern which flickers in width and centering with pos-
sibly a light ragged vertical bar through the center of the creen.
Turn the sine wave core out $1 / 2$ turn. Adjust the trequency appears as a vertical bar in the picture. Check of Pull-in Range.- -Turn the horizontal hold control fully
counter-clockwise. Connect a 270 K ohm resistor across C156 counter-clockwise. Connect a 270 K ohm resistor across C1s6.
Momentarily switch off channel and back: the picture will then be out of sync. Turn the hold control clockwise slowly and observe the minimum number of bars obtained just betore the picture pulls into sync.
The picture should
The picture should snap in from two complete blanking bars.
If two bars are not oblained, turn the locking range trimmer 1f wo bars are not oblained, turn the locking range trimmer
C153A in to obtain less bars or out to obtain more bars.

If C.153A was adjusted, remove the 270 K resistor, turn the
horizontal hold control fully clockwise and adjust the Tiog horizontal hold control fully clockwise and adjust the Tl 09 requency core until horizontal blanking appears as a vertica
bar in the synced picture. Then repeat the entire check of pull-in range to this poin
Repeat the adjustments under "Check of Pullin Range"
until the conditions specitied ate until he conamons specified are fulked. When the horizonta Alignment" the oscillator is properly adjusted
If the oscillator does not hold sync properly at this point and the AGC system is in proper adjustment it will be necessary to adiust the Horizontal Oscillator by the method outlined in the FOCUS COIL ADJUSTMENTS.-T
justed so that there is approximately one.quarter inch of space between the rear cardboard shell of the yoke and the flat of
the front face of the focus coil. This spacing gives best a jarage the front face of the focus coil. This spacing gives best aperage
tocus over the face of the tube. The axis of the hole through the focus coil should be parallel with axis axis of the kinescope neck.
The focus coil is provided with a magnetic shunt in the form of a metal sleeve as shown in Figure 2. It the receiver locuses
with the focus control near the end of tis range losen whunt locking screw and slide the shunt backward or forward until focus occurs in the center range of the focus control. CENTERING ADJUSTMENT. - No electrical centering concus coil mounting Centering is obtained by loosening the two rom side to side. II the focus coil was appreciably changed in osinion or if a corner of the raster is shadowed, check the pe range of maximum raster brightness the magnet within shadow and recenter the picture by stiding the coil. In no case hould the magnet be adjusted to cause any loss of brightness ince such operation may cause immediate or eventual dam. ust one or more of the three focus coil compression spring WIDTH. DRIVE AND HORIZONTAL LINEARITY ADJUST ENTS.-Adjustment of the horizontal drive control affects the highest possible voltage hence the brightest and best foused cture, adjust horizontal drive counter-clockwise as tar as sssible without losing tension on trimmer,
Set the width control to minimum picture width
Turn the horizontal linearity coil out until appreciable loss
in width occurs. then in until nearly maximum width and the best linearity is obtained. Do not run the core in beyond the point of maximum linearity charge, as the current drawn by 68G6G then becomes excessive
the proper picture width Readjust linearity, but again not beyond the point of maxi
mum linearity change. It necessary adjust the drive contro for best linearity
If at very high line voltage. the picture width is excessive coil out to obtain the proper width. On high line voltage, ex cessive width generally will be accompanied by good linearity without retouching the drive
Adjustments of the horizontal drive control aftect horizontal
oscillator hold und locking range. If the drive control was adjusted, recheck the oscillator alignment.

FOCUS.-Adjust the focus control (R191 on chassis rea "wedqe" and best focus in the white areas of pattern vertica HEIGHT AND VERTICAL LINEARITY ADJUṠTMENTS. - A just the height control (R155 on chassis rear apron) until the picture fills the mask verically. Adjust vertical linearity (R162 on rear apron) until the lest pattern is symmetrical from top
10 bottom. Adjustment of either control will require a readjus ment of the other. Adjust the focus coil to align the picture with the mask.
Check to see that the cushion and yoke thumbscrews and

© John F. Rider

AGC THRESHOLD CONTROL.-The AGC threshold contro R138 is adjusted at the tactory
quire readjustment in the field.
To check the aajustment of the AGC threshold control, iune rol to the maximum clockwise position Turn the brighten control counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching off channel and then back. If the picture reappears immediately
the receiver is not overloading due to if the picture requires an appreciable portion of a second to

Set the picture control at the maximum clockwise position. Turn R138 fully clockwise. The top one-half inch of the picture
may be bent slightly. This should be disregarded. Turn counter clockwise until there is a very, very slight bend or change of bend in the top one-hall inch of the picture. Then change of bend. If the signal is
as it may be impossible to the above method may not work case, turn R138 counterclockwise until the snow in the picture secomes more pronounced, then clockwise until the best signal
to noise ratio is obtained. AGC control adjust
signal it possible. It the control is set too far counter-clockwise n a weak signal. then the receiver may overload when a
and reral
CHECK OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all usted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined n the alignment procedure on page 10 . The adjustments for
channels 2 through 5 and 7 through 12 are available from he front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment tor channel 13 is on top of the chassis and channel 6 adjustment is in
kinescope well. See Figures 8 and 9 to their loction 9 for their local

-To remove escutcheon, slue

OSCILLATOR AOJUSTMENT
for CHANMEL NUMBER

Figure $1-R . F$ Oscillator Adjustment.
Replace the cabinet back and make sure that the screws are ight in order to prevent rattling at high volume.
WEAK SIGNAL AREA OPERATION.-Since the vast majority aligned to produce the cleanest pictures in those areas. Howver, it the receiver is to be operated in a weak signal area. etter performance can be obtained by peaking the $\mathrm{r}-\mathrm{u}$ unit. To peak the r.f unit in these receivers. disconnect the 390
ohm resistor R14 which is on top of the rit unit chassis. Aduus 66 to obtain the best possible picture on the weakest low hannel station received.
If the peaked receiver is subsequently taken to a strong 66 adjusted for "llat" response on the lownected in place and adjusted for lar response on the low channels. etissis nim or installation of a new kinescops from the cabi ontrol knobs, the cabinet back, unplug the speaker cable. the kinescope socket, the antenna cable, the pilot light cable the yoke and focus coil cable. Remove the yoke frame ground ing strap and the interlock switch Take out the six chassis
bollts under the cabinet. Withdraw the chassis from the back

KINESCOPE HANDLING PRECAUTION.-Do not install, re proot goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. The To remove the kinescope from the cabinet, take out the tour
screws and one wing screw which hold the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and locus coil as an assembly.
INSTALLATION OF KINESCOPE.-Handle this ber etal rim at the edge of the screen. - Do nol cover the by the of the tuke with fingermarks as it will produce leakage paths ha inadvertently bith reception. If this portion of the tube loth moistened with "dry" carbon tetrachloride.
Wipe the kinescope scroen surface and front panel safety glass clean of all dust and tingermarks with a
moistened with "Windex" or similar cleaning agent.
Turn the tube so that the key on the base of the tube
will be down and insert the neck of the kinescope he deflection and tocus coils. If the tube kinescope through slip into place smoothly, investigate and remove the cause the trouble. Do nol force the tube
Replace the kinescope and yoke frame assembly in the
cabinet. Insert the four screws and wing screw and tighten. Slip the kinescope scope cushion firmiy up against the flasise of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be because of shadows on the corner of the raster
Slide the chassis into the cabinet. then insert and tighte he six chassis bolts.
Slip the ion trap magnet over the neck of the kinescope. high voltoge lead clip between the the tube base and slip the the mask. Reconnect all other cables. Do not forget to replace the yok rame grounding strap. Perform the entire setup procedure
antennas.-The finest television receiver built may be said to be only as good as the antenna design and installation It is theretore important to select the proper antenna to sul
local conditions, to install it properly and orient it correctly, RCA Television Antenna, type No. 225A1 is designed eception of all twelve television channels. The designed for The andenna. a dipole with rellect television transmission line nels antenna, a dipole with reflector, is unidirectional on chan mum signal is obtcined when the antenna cods are broadsid toward the transmitting antenna, with the antenna elemen between the reflector and the transmitting antenna.
216 Mc), the antenna has side lobes through thirteen (174 to moximum sianal will be oblained when these channels, the moximum signal will be obtained when the antenna is rotated
approximately 35 degrees in either direction from its broadside position toward the transmitting antenna. In many instances this effect may not cause any difficulties and it may be pos factory reception on all high and low channels. In some in stances, however, this will not be the case due to reflections to insufficient signal strength from one or more stations.
RCA antenna type 204A1 is available for use in locations
in which it is desirable to eliminate side lobes and to have the antennas $7-13$ directivity the, same as its $2-6$ directivity. For use in cases where it is desirable to have adjustable 7.13 directivity difterent from 2-6. RCA antenna type 206 A 1 is
provided. in weak
In weak signal areas it is possible to "stack" the type 204A
antenna to obtain increased signal strength by the antenna to obtain increased signcl strength by employing on
1ype 204A1 antenna and one type 208A1 stacking kit.
CABINET ANTENNA.-A cabinet antenna is provided whic may be employed in strong signal areas is which no reflec
tions are experienced. The antenna leads are brought the receiver antenna terminal board.

-9 ヨ9Vd ^1 VDI\&ヨWV JO NOIIV8OdyOS OIOV8

OJohn F. Rider

© John F. Rider

ALIGNMENT PROCEDURE

ALIGNMENT PROCEDURE

PICTURE I．F TRAP ADJUSTMENT．－Connect the＂Volt
Ohmyst＂to the junction of RI35 and C190．
Remove the 6 SN7GT AGC Amplifies tube V107．Connect a
250,000 oohm potentiometer between pins 5 and 6 of the V107 250,000 ohm potentiometer between pins 5 and 6 of the V107
sockel．Adjust the potentiometer until the＂VoliOhmyst reads approximately -12 volts．
Set the channel switch to the blank position between chan number 2 and 13 ．
Connect the＂VoltOhmyst＂across the picture detector load resistor R119．Under this condition．both leads of the mete care at approximately -120 volts．In making this connection， permit the meter case to become grounded．
Connect the output of the signal generator to the grid of the and fashion a clip by twist，remove the tube from the socke ire around pin number 1 Replace the tube in the sock leaving the end of the wire protruding from under the tube Connect the signal generator to this wire through
capacitor keeping the leads as short as possible．
Set the generotor to each of the following frequencies and inimum indication on the＂Voltohmyst．＂In each instance th enerator should be checked aqainst a crystal calibrator to
（1） 21.25 mc －-Tl 103 （top）
（2） $21.25 \mathrm{mc}-\mathrm{T105}$（top）
（3） 27.25 mc ．-T 102 （top）
（4） $27.25 \mathrm{mc} .-\mathrm{Tl} 104$（top）
（5） $19.75 \mathrm{mc}$. T106（10p）
（6） $19.75 \mathrm{mc}-\mathrm{T} 101$（top）

In the above transformers using threaded cores．it is possible To run the cores completely through the coils and secure two outside ends of the coils．If the cores are not in the correct position，the coupling will be incorrect and it will be impossible secuie the correct response．

PICIURE I．F TRANSFORMER ADJUSTMENTS．－Set the sig al generator to each of the tollowing frequencies and peak e specified adjustent for maximum indication on the＂Vo ohmyst．During alignment，
sary to prevent overloading

T1 and T101 are coupled by a link and in combination con titute an overcoupled transtormer．The characteristics of suc
transtormer are such that it is impossible to adjust it to a transtormer are
single frequency．
To sweep align T and $\mathrm{T101}$ ，connect a 330 －ohm composition
resistor across the primary coils of T 102 ． T 103 ．T104 and T 106 ． Connect the＂VoltOhmyst＂io the junction of R135 and C190．
Adjust the 250.000 －ohm variable resistor for -2.0 volts on the Adjust
meter．
Connect the oscilloscope 10 the plate of the first video ampl er，pin 1 of V106．

Connect a sweep generator to the converter grid through
1.500 mmf capacitor．Set the generator to sweep from 20.0 mc．to 30.0 mc ．and adjust the
topeak signal on the scope．
Connect the signal generator loosely to the converter grid
and tune it to provide markers at 22.05 me．and 24.75 mc ． id Adjust T 1 （top）and T 101 （bottom）to obtain the respons lerminal－board end of the coil in order to obtain the correct esponse．
Remove the 330 －ohm resistors from across T102，T103，T10
and T106． and T 106
Adjust the 250.000 －ohm potentiometer for a 15 －volt peak－to eak signal at the plate of the first video amplifier．The bia
s measured by the＂Voltohmyst＂should be -12 volts or less，

Observe and analyze the response curve obtained．The re sponse will not be ideal and the i．f adjustments must be te
touched in order to obtain the desired curve．See Figure 15 ． On final adjustment the picture carrier marker must be a approximataly 45% response．The curve must be approxi－
mately flat topped．with the 22.1 mc．marker at approxi－ approxim tlat topped．with the 22.1 mc ．marker at approxi
mately
mately 95% response and the 25.0 mc．marker below 900 mately 95% response and the 25.0 mc．marker below 90%
response．A 26.5 mc．marker must tall between 5 and 10% response．
The most important consideration in making the i．t adjust ments is to get the piclue caniet ul the 45% tesponse point loss of low frequency video response．of picture brilliance．of blanking，and of sync may occurs．il the picture carrier op erates too high on the response curve．the picture becomes smeared．In making these adjustments．care should be take quency as i －t oscillation may result． Remove the converter tube and tak

Pisture I．F Oscillation．－ 1 t the receiver will operate withou oscillating with the test equipment disconnected but breaks into oscllation or becomes unstable with the equipment con
nected，it may become necessary to establish a qround plane Cover the test bench with a sheet of copper and set the chas sis on the sheet．Set all the test equipment except the＂Voll Ohmyst＂on the sheet and bond or bypass them to it．A
Junior＂VoltOhmyst＂should not be bonded to the sheet since the negative test probe is not always connected to ground during alignment．If the receiver is bady misaligned and two
or more of the j it transtormers are tuned to the same tre or more of the i －t transtormers are tuned to the same tre tion shows up as a voltage across the picture detector load resistor that is unaffected by r ．t signal input．It such a condi tion is encountered．it is sometimes possible to stop oscillation setting the adjustment cores of T101．T102．T103．T104，T105 and T106 to be approximately equal to those of another re ceiver known io be in proper alignment．If this does not have by increasing the grid bias．If so，it should then be possible to align the transtormers by the usual method．Once aligne in this manner，the i－f amplitier sith be stable with It If the oscillation cannot be stopped in the above manner shunt the grids of the first three pix i．f amplifiers to ground
with 1.000 mmf ．capacitors．Connect the signal generator to the fourth pix i．t grid and align T106 to frequency．Progres sively remove the shunt from
coil of that stage to frequency
If this does not stop the oscillation，the difficulty is not due to i．f misalignment as the i．i．section is stable when properly
aligned．Check all i．f by．pass condensers，transformer shunting aligned．Check all i．f by．pass cond
resistors，tubes，socket voltages，
antenna．b－F and converter line adjustment．－ order to align the r．f tuner，it will lirst be necessary to set the
channel－13 oscillator to frequency．The shield over the bottom channel－13 oscillator to frequency．The shield over the bottom
of the r f unit must be in place when making any adjustments． The channel 13 oscillator may be making any adjustments． The channel． 13 oscillator may be aligned by adjusting it to
beat with a crystal－calibrated heterodyne frequency meter，or by feeding a signal into the receiver at the r－4 sound carrie frequency and adjusting the oscillator for zero output from the must first have been aligned to exact frequenct discriminato of adjustment will produce the same results．The method used will depend ur on the type of test equipment available．Regard less of which method of oscillator alignment is used，the tre
quency standard must be crystal controlled or calibrated．
If the receiver oscillator is to be adjusted by the heterodyne frequency meter method．couple the meter probe loosely to the receiver oscillator．
If the receiver oscillator is adjusted by teeding in the r． sound carrier signal．connect the signal generator to the re ceiver antenna terminals．Connect the＂Voltohmyst＂to the
sound discriminator output（junction of C183 and R203）． Set the receiver switch to 13 ．

Adjust the frequency standard to the correct frequency（237 mc．for heterody
signal generator）．
Set the fine tuning control to the middle of its range．
Adjust C 6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator．
Now that the channeli． 3 oscillato：is set to frequency，we
may proceed with the $r \mathrm{f}$ alignment．
Connect the＂Voltohmys＂＂to the junction of R135 and L117．
Adjust the 250 K pot．for -3.5 volts on the meter． Remove the first pix it amplifier ub viol
Remove the first pix i －f amplifier tube V101．
Connect the oscilloscope to the test connection at R13 in Connect the osel
Connect the r－f sweep oscillator to the receiver antenna erminals．The method of connection depends upon the output mpedance of the sweep．The P102 connections for 300 －ohm
balanced or 72 －ohm single－ended input are shown in the circuit balanced or 72 －ohm single－ended input are shown in the circuit
diagrams in Fiqure 78 ．If the sweep oscillator has a 50 ohm single－ended output． 300 －ohm balanced output can be obtained y connecting as shown in Figure

Figure ：－L＇nbalanced Sweep Cable Termination
Connect the signal generator loosely to the receiver antenna
Since channel 7 has the narrowest response of any of the igh frequency channels，it should be adjusted first．
Set the receiver channel switch to channel 7
Set the sweep oscillator to cover channel 7.
Insert markers of channel 7 picture carrier and sound carrie
175.25 mc．and 179.75 mc．
Adjust C10 and C14 until the curve falls symmetrically be ive the proper band width．Roughly peak 16 in conjunctio with slight adjustments of C10 and C14 for a flat－opped re ponse curve with the sound and picture carriers at 90% to
5% response points on this curve．See Fiqure 16 ，channel 7 ． fich to b 12 and adjust 16 tor maximum respo Switch to channel 12 and adjust
and minimum top slope of the curve．
Check the response of channels 7 through 13 by switching he receiver channel switch．sweep oscillator and marke scillator to each of these channels and observing the respons blained．See Figure 16 for typical response curves．It should ponse with the markers above 80% response．If the markers do not fall within this requirement on one or more high fre quency channels，since there are no individual channel adjus and possibly compromise some channel slightly in order to et the markers up on other channels．Normally，however，no dificulty of this type should be experienced since the highe equiency channels are comparaill within the required range．
easily
Channel 6 is next aligned in the same manner
Set the receiver to channel 6 ．
Set the sweep oscillator to cover channel 6 ．
Set the marker oscillator to channel 6 picture and sound
Adjust L9，L13，L66，and $\mathrm{Cl2}$ to an apprimaty Adjust
topped response curve and located symmetrically between then topped response curve located symmetrically between the
markers．L．L13 and LL6 are the center frequency adjust
ments．C12 is the band－width adjustment

Check channels 5 down through channel 2 by switching th and observing the response obtained．In all cases，the markers hould be above the 80% response point．If this is not the case 9．L13．L66 and C12 should be retouched．On tinal adjustmen channels must be within the 80% specification．
Disconnect the 250 K pot．，and replace V 107 and V 101
Following an r－f alignment，the oscillator alignment must be
h． F OSCILLATOR LINE ADJUSTMENT．－The r－f oscillato ine may be aiigned by adjusting it to beat with a crystal into the receiver at the r－f sound carrier frequency and adjus ing the oscillator for zero output from the sound discriminato this latter case the sound discriminator must first have been aligned to exact frequency．Either method of adjustment will
poduce the same results．The method used will depend upon he type of test equipment available．
Regardless of which method of oscillator alignment is used The frequency standard must be crystal controlled or calibrated
 R－F Ouency meter method．Heq．must be available．
It the receiver oscillator is adjusted by feeding in the r．f
sound carrier frequency，the frequencies listed under Sound Carrier Freq．must be available．

| Channel | Receiver
 R－F Osc．
 Freq．Mc． |
| :---: | :---: | | R－F Sound |
| :---: |
| Carriier |
| Freq．M． | | Channel |
| :---: |
| Oumberlllator |
| Adiustment |

If the heterodyne frequency meter method is
ha meter probe loosely to the receiver oscillator．
If the r－f sound carrier method is used，connect the＂Volt－ hmysi＂to the sound discriminator output（junction of C183 and R203）and connect the signal generator to the receive antenna terminals．The order of alic，
If the r－f unit is removed from the receiver for service and is
aligned separately，the shield over the bottom of the r．f uni ust be in place when making adjustments．
Since the lower frequencies are obtained by adding steps of
aductance，it is necessary to align channel 13 first and con－ nductance，it is necessary to al
inue in reverse numerical order．
Set the receiver channel switch to 13
Adjust the frequency standard to the correct frequency（23） ．
antrol to the middle of its range whil making the adjustmen
Adjust C 6 for an audible beat on the heterodyne frequenc eter or zero voltage from sound discriminator．Oscillator ad ustments L 1 and L 2 shown on the schematic are factory contro Switch the receiver to channel 12 ．
Set the frequency standard to the proper frequency as listed nnnent table
Adjust L 14 for indications as above
Adjust the oscillator to frequency on all channels by switch ing the receiver and the frequency standard to each channe adjusting the appropriate oscillator trimmer for the speci－

ALIGNMENT PROCEDURE

fied indication. It should be possible 10 adjust the oscillator to the correct frequency on all channe
control in the middle third of its range.

Atter the oscillator has been sel on all channels, start back
at channel 13 and recheck to make sure that all adjusiments at channel 13 and recheck to make sure that all adjusiments

AGC THRESHOLD ADIUSTMENT. - The AGC threshold adjustment can be made by the method oullined in the Installa-
tion Instructions. However. a more accurate adjustment can be tion Instructions. However, a more accur
oblained by the use of an oscilloscope.
Tune in a station and advance the picture control to the maximum clockwise position. Connect the low capacity probe rom the oscilloscope to the plate of the first video amplitier. pin 1 of vio.
Turn the AGC threshold control R138 fully clockwise, then
slowly counterclockwise. As the control is turned counterclock wise, the receiver gain will incirease slowly, increansing
the size of the pattern on the oscilloscope. . 138 should be the size of the pattern on the oscilloscope. R138 should be
turned counter-clockwise until the receiver begins to overload as indicated by clipping of the sync. The control should be
left in the maximum gain position in which no clipping of $\& / \mathrm{mc}$ left in the maximum gain position in which no clip
is observed. See Figure 17 for proper wavelorms. HORIZONTAL OSCLLLATOR ADJUSTMENT. - Normally the
adiustment ot the horizontal oscillator is not considered ot be
a part of the alignment procedure but since the oscillator a part of the olignment procedure, but since the oscillator wavelorm adjustment requires the use of an oscilloscope, it
can not be done conveniently in the field. The wavetorm adcan not be done conveniently in the field. The wavetorn ad-
jusment is made at the faclory and normally should not require readjusument in the field. However, the wavelorm adjust-
ment should be checked whenever the receiver is aligned or ment should be checked whenever the receiver is aligne
whenever the horizontal oscillator operation is improper.
Horizontal Frequency Adjustment-Set the locking range trimmer one half turn out from maximum capacity. With ${ }^{\text {a }}$
clip lead, short circuit the coil between terminals C and D
D of the horizontal oscillator cranstormer Tlog. Tune in a television station and sync the picture it possible.
A.- Turn the horizontal hold control R173 to the extrome
dockwise position. Adjust the Ti09 Frequency Adjustment clockwise position. Adjust the T109 Frequency Adjustment
(under the chassis) so that the picture is just out of sync and The horizontal blanking appears in the
Noto--Occasionally a tube may be found which does not
respond to step "A. above, since it may not be possible to sync the picture by means of the irequency core when the sine wave coil is shorted out. Yet, the tube may work per-
fectly well when the circuit is paoperly aligned. In such a ectly well when the circuit is pooperly aligned. In such a
case it may be necessary to remove the short then turn the sine wave core out then in until it is possible to obtain sync
by adjustment of the frequency core. y adjustment the frequency cor
B. - Turn the hold control approximately one.quarter of a
turn from the extreme clockwise position and examine the width and line extity ot ol clockwise posture. position and and oxamine whe widt or linearity
is incorrect. adjust the horizontul drive control C153B, the width is incorrect. adjust the horizontal drive control C153B, the width
control R192 and the linearity control L111 until the picture is controct. If C153B was adjusted. repeat step " A " pind note
above. bove

Horizontal Oxcillator Wavelorm Adjustmont. - Remove the shorting clip from terminals C and D of Tio9. Turn the horizontal hold control to the extreme clockwise position. With a
thin tibre screwdriver, if necessary, adjust the Oscillator Wave orm Adjustment Core of TIIS ion the outside of the chassis) until the borizontal blanking bar appears in the raster. The
wavelorm adjustment core will wavelorm adjustment core will sync the picture in two posi-
tions. The core should be in the position nearest the outside of lions. The ec
A. - Connect the low capacity probe of an oscilloscope to
terminal C of $T 109$. Alternately adjust the wavetorm and fre quency cores of Tiog until the peak of the sine wave is equal is amplitude to the peak of the saw tooth, on the oscilloscope
as shown in Figure 18, while maintaining the picture in

ALIGNMENT TABLE
synchronization. Then adjust the trequency core until hor blanking shows as a vertical bar in the picture.
This adjustment is very important for correct operation ot the
circuit. It the broad peak of the wave on the oscilloscope is wer than the sharp pathe the noise immunity oorer. the slabilizing effect of the tuned circuit is reduced and. it of the broad peak is higher more serious. On the other scillator is overstabilized, the pull-in range becomes inade oscillator is overstabilized, the pull-in range becomes inade
quate and the broad peak can cause double triggering of th quatil and the broad peak can cause double triggering ot the
oscillator when the hold control approaches the clockwise sition.

Creck Orllor Putin Check of Oscillator Pullin Range.-Set the horizontal hold Connect a 70 K

Momentaniy swin out channel and back. The picture will hen be out of sync.
Turn the hold control clockwise slowly and observe the
minimum number of bars obtained just betore the picture pult into sync. The picture should snap in from two complet into sync. The picture should snap in ind itwo complet
blanking bars. It two bars are not obtained turn the locking range trimmer C153A in to obtain less bars or out to obtai

After adjustment of C153A, remove the 270 K resistor, turn
the horizontal hold frequency core of Tlog untill the pickure is in sync and the horizontal blanking bar begins 10 move in the picture. Then
repeat the entire "Check of Pullin Range" procedure to this repeat the entire "Check of Pull.in Range" procedure to this
point. Repeat this procedure until two bar pull-in is obtained. Turn the horizontal hold control to the maximum clockwise position. The picture should be just out of sync to the exten
 or diagonal bar in the picture. Adjust
Adjustment until this condition is fulfiled.
4.5 MC. VIDEO TRAP. - With a strong input from a station, detune the receiver from the correct tine tuning point. With very short clip lead, short the trap winding of T103. Observe
the piciure tor the appearance of a 4.5 mc. beat. It the bead appears in the picture, adjust $L 110$ until the beat is eliminated.

SENSITIVITY CHECR. - A comparative sensitivity check can
em made by operating the receiver on a weak signal from be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained
to that obtained on other receivers under the same conditions. This weak signal can be obtained by connecting the sho antenna to the receiver through a ladder type attenuator pad The number of stages in the pad depends upon the signal strength available at the antenna. A sutticient number
stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture contro is at the maximum clockwise position. Only carbon type re
sistors should be used to construct the pad.

RESPONSE CURVES. - The response curves shown on pag 14 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical.
variations can be expected. variations can be expected.
The response curves are shown in the classical manner of
presentation. that is with "response up" and low frequency presentation. that is with "reaponse up". and low frequence
to the lett. The manner in which they will be seen in a give
test set-up will depend lest set-up will depend upon the characteristics of the oscillo scope and the sweep generator. The curves may be see
inverted and/or switched from left to right depending on th inverted andor swith ind from ieft to right depending on the
deflection polarity of the oscilloscope and the phasing of the swweep generator.

ALIGNMENT TABLE. - Both methods of oscillator alignmen are presented in the alignment table. The service tochnicia
may thereby choose the method to suit his test equipment. may thereby choose the method to suit his test equipment.

the detalled alignment procedure beginning on page a should be read before alignment by use of the table is attempted.

5	Not used		Not used

ANTENNA, R-F AND CONVERTE

antenna, r.f and converter in					
${ }^{18}$	Antenna	215.75	Not used		Not used
19					
20	$\begin{aligned} & \text { Antenna } \\ & \text { forminal } \\ & \text { (lomsily) } \end{aligned}$	$\begin{aligned} & 175.25 \\ & 179.75 \end{aligned}$		$\begin{gathered} \text { Swoep. } \\ \text { ing } \\ \text { channol } \end{gathered}$	$\begin{aligned} & \text { Tost } \\ & \text { Connection R13 } \end{aligned}$
${ }^{21}$	"	${ }_{2099.75}^{205.25}$	"	$\begin{gathered} \text { channel } \\ 12 \end{gathered}$	"
22	"	$\begin{gathered} 175.25 \\ 179.75 \end{gathered}$	"	channol	"
${ }^{23}$	"	$\begin{gathered} 181.25 \\ 185.75 \end{gathered}$	"	channel	"
24	"	$\begin{gathered} 187.25 \\ 191.75 \end{gathered}$	"	$\underset{9}{\text { channel }}$	"
25	"	199.25 197.25	"	$\begin{aligned} & \text { ehennel } \\ & 10 \end{aligned}$	"

© John F. Rider

SERVICE SUGGESTIONS

Following is a list of symptoms of possible tailures and an indication of some of the possible faults:

No RASTER ON KINESCOPE:

(1) Incorrect adjustment of ion trap magnet. Magnet reversed either front to back or top to bottom.
(2) V112 or V113 inoperative. Check waveforms on grids and plates.
(3) No high voltage - 11 horizontal deflection is operating as evidenced by the correct waveform on terminal 4 of
Illo6, the trouble can be isolated to the 8016 circuit. Either The Th10 high voltage winding is open, the 8016 tube is efective, its filament circuit is open, or C168 is shorted.
(4) V111 circuil inoperative - Refer to schematic and waveform chart.
(5) Damper tube (V114) inoperative.
(6) Defective kinescope.
(7) R131 open.
(8) No receiver plaie voltage-filter capacilor shorted-bleeder 8) No recelver plaie vol
or filter choke open.

no vertical deflection:

(1) V107B or V110 inoperative. Check voltage and waveforms on grids and plates.
(2) T 107 or T 108 open.
(3) Vertical deflection coils open.

smiall raster:

(1) Low Plus B or low line voltage.
(2) V112 defective.
(3) Defective yoke.

poor vertical linearity

(1) If adjustments cannot correct, change V110.
(2) T107 or T108 transformer defective
(3) V107B defective - check voltage and waveforms on grid and plate.
(4) C150, R164, C1468, C147C, C148-C or C166 delective.
(5) Low bias or plate voltage - check rectiiiers and capacitors in supply circuits.

POOR HORIZONTAL LINEARITY:

(1) If adjustments do not correct, change V112 or V114
(2) T110 or L111 defective
(3) C 164 or C 165 defective
wrinkies on left side of raster:
(1) C169 defective or incorrectly connected.
(2) C 141 or C 191 defective
(3) Defective yoke.

PICTURE OUT OF SYNC HORIZONTALLY
(1) T109 incorrectly tuned.
(2) R172, R173 or R174 defective.

TRAPEZOIDAL OR NON.SYMMETRICAL RASTER:
(1) Improper adjustment of focus coil or ion trap magnet. (2) Defective yoke.

RASTER AND SIGNAL ON KINESCOPE BUT NO SOUND: (1) R-F oscillator off frequency
(2) Sound i-f. discriminator or audio amplifier inoperative-
check V116, V117, V118, V119, V120 and their socket voltages.
3) T114 or C186 defective.
(4) Speaker defective

SIGNAL AT KINESCOPE GRID bUt NO SYNC:
(1) AGC threshold control R138 misadjusted.
(2) V105B. V107A, V108 or V109 inoperative. Check voltage and waveforms at their grids and plates.
signal on kinescope grid but no vertical sync: (1) Check V1078 and associated circuits-C145, T107, etc. (2) Integrating network inoperative-Check.
(3) R154, R155, R157, R158 or R159 defective.

SIGNAL ON EINESCOPE GRID bUT NO hORIzONTAL SYNC:
(1) T109 misadjusted-readjust as instructed on page 11
(2) V111 inoperative-check socket voltages and waveforms.
(3) T109 defective.
(4) C134, C140, C146C, C153A, C154, C155, C156 or C157 defoctive.
(5) If horizontal speed is completely off and cannot be ad-
justod check C158, C159, R172, R173, R174, R179 and R182.

SOUND AND RASTER BUT NO PICTURE OR SYNC:
(1) Picture i.f., delector or video amplifier inoperative - check
V103, V104, V105 and V 106 -check socket voltages. (2) Bad contact to kinescope grid.
picture stable but poor resolution:
(1) V105A or V106 defective.
(2) Peaking coils defective - check for specitiod resistance.
(3) Make sure that the focus control operates on both sides of proper focus.
(4) R-F and $1 \cdot \mathrm{~F}$ circuits misaligned.

PICTURE SMEAR:

(1) R-F or I-F circuits misaligned.
(2) Open peaking coil.
(3) This trouble can originate at the transmitter -check on another station.

PICTURE MITER:

(1) AGC threshold control R138 misadjusted.
(2) If regular sections at the left picture are displaced change
V112.
(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be due to unstable transmitted Horizo
sync.
raster but no sound, picture or sync:
(1) Defective antenna or transmission line.
(2) R-F oscillator off frequency.
(3) R-F unit inoperative - check V1, V2, V3.

PICTURE I-F RESPONSE. - At times it may be desirable to observe the individual i.f stage response. This can be achieved by the following method:

Shunt all i.f transformers and coils with a 330 ohm carbon resistor except the one whose response is to be observed.
Connect a wide band sweep generator to the converter grid and adjust it to sweep from 18 mc . to 30 mc .
dark vertical line on left of picture:
(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Replace V112.
light vertical line on left of picture:
(1) C169 defective
(2) V114 defective

Connect the oscilloscope across the picture detector load esistor and observe the overall response. The response obtained will be essentially that of the unshunted stage. The
effects of the various traps are also visible on the stage esponse.
Figures 27 through 31 show the responses of the various tages obtained in the above manner. The curves shown are ypical although some variation between receivers can be expected. Relative stage gain is not shown.

Figure 27-Response of Con verter and First $P i x$
ILFTransiormer

Figure 30-Response of Fourth Pix I-F Transformer

Figure 33-Overall Pix
I-F Response

Figure $28-$ Response of Second
Pix I-F Transforner Pix I-F Transformer

Figure 31-Response of Fifth Pix I.F Transformer

Figure 34-Video Response at Average Contrast

Figure 29-Response of Third
Pix I.F Transformer

Figure 32-Response from First Pix I.F Grid to Pix Det.

Figure 35-Video Response at Minimum Contrast
© John F. Rider

© John F. Rider

Figure 67-Grid of Horizontal Oscil.
lator (480 Volts PP) $($ Pin 4 of VIll) lator (480 Volts PP) (Pin 4 of V111) $\stackrel{(6 S N 7 G T)}{\Longrightarrow}$ Figure 68-Plate of Horizontal Oscil.
lator (270 Volts $P P)(P$ Pin 5 of Vllil)
$(6 S N \bar{T} T)$ $\stackrel{(6 S N T G T)}{\leftarrow}$
 $\xrightarrow{\longrightarrow}$
Figare 70-Input to Horizontal Ou put Tube (42 Volts PP) (Junction
of C160, R183 and C153B)

Figure 71-Plate of Horizontal Output
(Approx. 6.500 Volts PP) (Measured (Approx. 6,500 Volts PP) (Measured Through a Capacity Voltage Divider
Connected from Top Cap of Connected
Vll 112 to Ground) Figure $\underset{(200 \text { Terminal } 1 \text { Volts PP) of T110 }}{ }$
 \Longrightarrow
Figure 74-Input to Horizontal Deflec $\stackrel{(3,000}{\leftarrow} \mathrm{Volts}^{\text {PP }}$

Figure 75-Horizontal Deflection Coil Current (0.5 Amp. PP) Measured by Inserting a S-ohm Resistor in series
with the yoke and observing the wave. with the yoke and observing the wave-
form across the resistor.

R-F UNIT WIRING DIAGRAM
MODELS Tl64, Ch. KCS40; TCl65, TCl66, TCl67, TCl68, Ch. KCS40

Figure $76-$ R.F Unit Wiring Diagram

CRITICAL LEAD DRESS:

. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the by. pass capacitors in the picture or sound i.f circuits. The filloment leads between V117, V118 and V119 should be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the 1500 mmt capacitors in the picture i.f circuit, the lead length must be kept as short as possible.
4. Picture i-f coupling capaciors $\mathrm{C} 106, \mathrm{C} 111, \mathrm{C} 115$ and C 121 should be up and away from the chassis and should be clear of the pix i-f translormer adjustments by at least
$1 / 4$ inch. If the dress of any of these capacitors is changed, the i.f alignment should be rechecked
5. Dress black lead from terminal C of $T 106$ down next to chassis.
6. Leads to L102 and L103 must be as short as possible.
7. Dress peaking coils L105, L106, L107 and L114 up and away from the chassis.
9. Dress C183 across tube pins 5 and 6 with leads not exceeding $3 / 8$ inch.
9. Dress body of R215 as close to tube pin as possible.
10. Dress C 129 and C 130 up and away from the chassis.

1. Dress the yellow lead from the picture control away from the chassis and away from the volume-control leads. Dress the yellow lead from pin 8 of V106 away from the chassis.
2. Dress the green lead from pin 2 of V106 away from the chassis.
3. Dress R168, R176 and R178 up and away from the chassis.
4. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
5. Contact between the r-f oscillator frequency adjustment crews and the oscillator coils or channel switch eyelets must be avoided.
6. Dress three a-c leads to Sl01 under clamp and away from
7. Dress black lead from power translormer and red lead fom 10 terminal boadd, on top side of lour potentiometers.
8. Dress all leads from V115 to V122 on power transformer side of terminal board.
9. All solder joints in the high voltage section should be free of sharp edges.
10. The lead side of the V113 plate cap should be turned away from the lixed high voltage shield and the lead should be dressed away from all objects.
11. All leads under the horizontal plate in the high voltage section should be kept reasonably short and dressed away from the V113 corona ring.
12. The red.black lead from terminal 2 of the deflection yoke should be dressed around the green and yellow leads and away from the red lead. The loose end of the red-black wire should be heavily taped.

voltage chart

© John F. Rider

REPLACEMENT PARTS

$\begin{aligned} & \text { STOCX } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	r-F UNIT ASSEMBLIES KRK 5B	71475	Screw-No. $4-40 \times 15 / 32^{\prime \prime}$ adjusting screw for coils L21, L22, L23, L24
	Bell Divell Mat	745	Screw-No. $4.40 \times 17 / 32^{\prime \prime}$ adjusting screw for L 6
46s	Board---F-F unit power connection terminal board	73437	Shaft-Channel selector shaft complete with pawl and stud
5067	Bracket-Vertical bracket for holding r-f oscillator tube shield	73438	Shatt-Fine tuning control shatt and pulley
73478	Cable-I-F transmission cable (W1)	73439	Shaft-Actuating shaft for fine tuning control
73441	Cam-Fine tuning adjustment	7544	Shield-"U" shaped shield for bottom of r-f u
74035	Capacitor-Ceramic. 5 mmf ((C4, C5)	73454	
53511	Capacitor-Ceramic, 10 mmf . (C3)	73632	
5420	Capacitor-Ceramic. 18 mmi . (C20)	71494	Socket-Tube
73449	Capacitor-Ceramic trimmer comprising 1 section of $150-190 \mathrm{mmf}$. and l section of $65-95 \mathrm{mmf}$. (C11. C12)	73450	mounted Socket—Tube socket. ceramic. 7 prong. bottom mounted
730	Capacitor-Ceramic. 270 mmf ((C21)	74576	Spacer-Insulating spacer for front plate (4 re.
71501	Capacitor-Ceramic. 1.500 mmi (C2, C7. C8, C9. C13. C15, C17, C18. C19)		quired)
73	Capazitor-Ceramic. $5,000 \mathrm{mmf}$ ($(\mathrm{C} 16)$	75068 73457	Spring --Retaining spring for r-f oscillator tube shield Spring--Return spring for fine tuning control core
7346	Coil--r-F plate coil for channel 6 (L13)		Spring--Return spring for fine tuning control core
73461	Coil-Rear section-Oscillator plate coil for channel 6 (L20)	74188	Spring-Retaining spring for adjustable core RCA 74187
73462	Coil-Coupling inductance coil (L4)	74578	Spring-Retaining spring for adjusting screws RCA 73640 and RCA 74575
7347	Coil-Antenna filter shunt coil (C67)	73468	Stator-Front oscillator section stator complete with
73476	Coil		rotor, segment. coils and adjusting screws (S1.
73477	Coil-Choke coil (L10. L11, L12)		L14. L15, L16, L17. L18, L19, L21, L22, L23, L24)
73874 74108	Coil-Front section-Oscillator plate coil for chan. nel 6 (L31)	73469	Stator-Rear oscillator section stator complete with rotor, segment and coils (S2, L25, L26, L27. L28. L29. L30, L32. L33, L34, L35)
74108	Coil-Fine tuning coil ($1 / 2$ turns) with adjustable inductance core and capacitor stud (plunger adjustment) (L1. Cl)	73633	Stator-Antenna stator complete with rotor and coils (SS, L6, L56, L57, L58, LS9. L60, L61, L62. L63. L64, L65, L66, C21)
74109	Coil Trimmer coil ($11 / 2$ turns) with adjustable in ductance core and capacitor stud (screw adjust. ment for oscillator section or converter section (L2, L3, C6, C10)	73470	Stator-Converter stator complete with rotor and coils (S3. L9. L36. L37, L38, L39. L40, L41, L48, L49. L50. LS1)
74110	Coil-Trimmer coil (3 turns) with adjustable in ductance core and capacitor stud (screw adjustment) for r-f amplifier section (L5, C14)	73471	Stator \cdots R.F amplifier stator ccmplete with rotor and coils (S4, L13, L42, L43, L44, L45, L46, L47. LS2. L53. L54. L55. C15, C16, R10;
73455	Core-sliding core for fine tuning control trimmer	734	ance Converter transformer (TI. R6)
74	Core-Adjustable core for coil L9	73466	Washer - Insulating washer for front shield (1) sed
71493	Connector-Oscillator segment connector	2917	Washer-"C" washer for channel selector shaft or
73440	Detent --P-F unit detent mechanism and fibre shaft		fine tuning shaft and cam
71487	Form		
73453	Form Coil form assembly for L9. L13		
73	Link-Link assembly for fine tuning		HASSIS ASSEmblie
71462	Loop-Oscillator to converter trimmer loop connector		KCS40-T164 KCS40A - TC165, TC166, TC167, TC168
73634	Nut-Speed nut for drive belt shield		
73436	Plate-Front plate and bushing	74946	Capacitor Mica trimmer comprising 1 section of
464	Pulley-Idler pulley		4.70 mmf . and 1 section of 10.160 mmi . (ClS3A. Cl53B)
	Resistor-Fixed, composition:	04	Capacito-Mica. $10 \mathrm{mmi} .(\mathrm{Cl26}$)
	150 ohms, $\pm 200^{\circ} \mathrm{O}, 1 / 2$ watt (RS, R9, R12)	741	Capacitor-Mica. 33 mml . (C111)
	390 ohms, $\pm 10^{\circ} \mathrm{O}$, $1 / 2$ watt (R14)	640	Capacior-Ceramic. 82 mmf . (C120
	1.000 ohms, $\pm 20 \%$, $1 / 2$ watt (R7)	73090	Capacitor-Mica, 82 mml . (C140, C1
	2.700 ohms. $\pm 10 \%$, $1 / 2$ watt (R10)	39396	Capacitor Ceramic. 100 mmf ((C175)
	100.000 ohms. $\pm 20 \%$, $1 / 2$ watt (R2. R3. R8. R13)	75	Capacitor Mica. 100 mmf ((C138)
14343	Retainer-Channel selector shatt retaining ring	73921	Capacitor-Ceramic. 120 mmf ((C129)
30340	Retainer-Retainer ring for fine tuning stud	73102	Capacilor-Mica. 180 mmf . (C158)
70881	Screw-No. $4-40 \times 1 / 4$ " binder head screw for adjusting coils L14, L15, L16, L17, L18. L19	$\begin{aligned} & 73922 \\ & 73091 \end{aligned}$	Capacitor-Ceramic, 270 mmi (C183. C194, C198 Capacitor-Mica. 270 mmf (C106.C115. C121)
73640	Screw-No. $4-40 \times{ }^{5}{ }^{\prime \prime}$ " adjusting screw for L66	39644	Capacitor-Mica, 470 mmf . (C181)

$\begin{aligned} & \text { stock } \\ & \text { No. } \end{aligned}$	description	$\begin{aligned} & \text { stock } \\ & \text { Noo. } \end{aligned}$	description
74947	Capacitor-Ceramic. 500 mmf ., 20.000 volts (C168)	71526	Coil-Peaking coil (250 muh) (L106, L114)
74250	Capacitor-Mica, 560 mmf ((C160)	75252	Coil-Peaking coil (500 muh) (L107)
71501	$\begin{aligned} & \text { Capacitor-Ceramic. } 1.500 \text { mmi. (C101, C103, C104, } \\ & \text { C10. C108, C109, C110. C113. C114, C117, C118, } \\ & \text { C122, C125, C127, C132, C171, C172, C176, C177, } \\ & \text { C188, C192, C193, C196) } \end{aligned}$	31027	Connector-4 contact female connector for focus coil (1108) Connector-8 contact female connector for deflection yoke (J106)
28417	Capacitor-Electrolytic, 5 mid, 450 volts (C166)	74594	Connector-Male conniector for power cable
71432	Capacitor-Electrolytic, comprising 2 sections of 40 mfd. 450 volts and 1 section of $10 \mathrm{mid}, 450$ volts (C148A, C148B, C148C)	5040	Connector - 4 contact female connector for speaker cable (P101)
73582	Capacitor-Electrolytic, comprising 1 section of 40 mid. 450 volts, 1 section of 10 mid , 450 volts, and 1 section of 80 mid .200 volts (C170A, C170B, C170C)	$\begin{aligned} & 74967 \\ & 72734 \\ & 74047 \end{aligned}$	Connector-Anode coinnector Control- Horizontal and vertical hold control (R158, R173) Control - Brightness and picture control (R122. R131)
73583	Capacitor-Electrolytic, comprising 1 section of 40 mid, 450 volts. 1 section of 90 mid, 150 volts and 1 section of 50 mid, 150 volts (C147A, Cl47B. C147C)	74048	Control Volume control, tone control and power switch (R205, R233, S101) Control Vertical linearity control (R162)
73581	Capacitor Electrolytic. comprising l section of 60 mid. 450 volts. 2 sections of 10 mid .450 volts and 1 section of 20 mid, 150 volts (C146A. Cl46B. C146C. C146D)	$\begin{aligned} & 71440 \\ & 74597 \\ & 74475 \\ & 74945 \end{aligned}$	Control Height control (R155) Control. Focus control (R191) Control - AGC threshold control (R138) Control Width control (R192)
73801	Capacitor -Tubular, moulded paper, oil impreg. nated, .001 mfd .1 .000 volts (C137. C161)	71457 71437	Cord Power cord and plug Cover Insulating cover for electrolytics Nos. 71432
73802	Capacitor-Tubular, paper, oil impregnated, . 0015 mid. 600 volis (Cl99)	74956	$73581 \text { and } 73582$
73595	Capacitor- Tubular, paper, oil impregnated, . 0022 mid. 600 volts (C142, C184, C186, C195)	74956	Cushion -Rubber cushion for deflection yoke hood (2 required)
73920	Capacitor-Tubular, paper, oil impregnated. . 0047 mfd. 600 volts (C143, C144, C202)	$\begin{aligned} & 73600 \\ & 71799 \end{aligned}$	Fuse 0.25 amps.. 250 volts (F101) Grommet-Rubber grommet for horizontal yoke
73561	Capacitor-Tubular, paper, oil impregnated. . 01 mid. 400 volts (C135, C182)	37396	Grommet-Rubber grommet for mounting ceramic lube sockel
73594	Capacitor-Tubular, moulded paper, oil impregnated, .01 mtd, 600 volts (C145. Cl59)	75445	tube socket Hood Deflection yoke hood less rubber cushions
73565	Capacitor-Tubular, paper, oil impregnated, . 01 mid. 1.000 volts (C151, C152. C185)	357	Jack-Phono input jack (J103) Magnet--Ion trap magnet (P.M.)
74727	Capacitor-Tubular, paper, oil impregnated, . 018 mid. 1.000 volts (C165)	$\begin{aligned} & 18469 \\ & 75444 \end{aligned}$	Plate-Bakelite mounting plate for electrolytics Plate-Bakelite plate complete with tube socket for
73562	Capacitor Tubular, paper, oil impregnated, . 022 mfd, 400 volts (C155, C167)	72067	high voltage rectifier Resistor-Wire wound, S.i ohms, $1 / 2$ watt (R202)
73810	Capacitor Tubular, paper, oil impregnated. . 022 mid. 1.000 volts (C164)	1847	Resistor-Wire wound, 10 ohms, $1 / 2$ watt (R190)
73553	Capacitor Tubular, paper. oil impregnated, . 047 mfd, 400 volts (C130, C134)	74955	Resistor Voltage divider comprising 1 section of 1.200 ohms, 16 watts, and 2 sections of 700 ohms. 5 '2 watts (R193A. R193B, R193C)
73592	Capacitor Tubular. paper. oil impregnated, . 047 mid, 600 volts (C139. C156)		Resistor Fixed, composition--
73597	Capacitor-Tubular, paper, oil impregnated, . 047 mid. 1.000 volts (C141, C1S0. C163. C191)		$\begin{aligned} & 10 \mathrm{ohms}, \pm 20 \%, 1 / 2 \text { watt (R120) } \\ & 10 \mathrm{ohms}, \pm 10 \%, 1 / 2 \text { watt (R225) } \end{aligned}$ $47 \text { ohms. } \pm 5 \%, 1_{2} \text { watt (R111) }$
73557	Capacitor Tubular. paper, oil impregnated, 0.1 mid. 600 volts (C131)		47 ohms. $\pm 20 \%$, $1 / 2$ watt (R183) 68 ohms. $\pm 100^{\circ}, 12$ watt (R105)
73794	Capacitor-Tubular, paper, oil impregnated, 0.22 mid. 400 volts (C136, Cl62)		$\begin{aligned} & \left.68 \text { ohms. } \pm 20^{\circ}{ }^{\circ} 1_{2} \text { watt (R12 }\right) \\ & 82 \text { ohms, } \pm 10 \%,_{2} \text { watt (R195) } \end{aligned}$
74957	Capacitor Tubular, paper, oil impregnated, 0.22 mid. 600 volts (C149)		100 ohms, $\pm 10 \%$. 2 watts (R184) 150 ohms. $\pm 5 \%, 1 / 2$ watt (R102)
73787	Capacitor Tubular, paper, oil impregnated, 0.47 mid. 200 volts (C133, C1S7. Cl90, C197)		$\begin{aligned} & 150 \text { ohms, } \pm 10^{\circ} \mathrm{o}, 1_{2} \text { watt (R11S. R223) } \\ & 150 \text { ohms, } \pm 20 \% 1_{2} \text { watt (1061 R109, R214) } \\ & 220 \text { ohms, } \pm 10^{\circ} \% 1_{2}^{2} \text { wat (R121) } \end{aligned}$
73154	Choke Filler choke (L104)		1.000 ohms . $\pm 20 \%$, $1 / 2$ watt (R103, R107, R108.
71449	Coil Horizontal linearity control coil (L111)		R113, R116. R118, R165, R199)
749	Coil Focus coil (L118. P108)		$1,200 \mathrm{ohms}, \pm 10 \%$, $1 / 2$ watt (R196) 1.200 ohms. $\pm 10^{\circ}$. 1 wall (R160, R206)
73477	Coil Filament choke coil (L101)		1.500 ohms : $\pm 10 \%$, 1_{2} watt (R161)
74170	Coil Peaking coil (36 muh) (L117, R110)		1.800 ohms, $\pm 10 \%$, 2 watts (R194) 2.200 ohms, $\pm 10 \%$, 1/2 watt (R219)
71527	Coil Peaking coil (93 muh) (L102)		2.700 ohms . $\pm 10 \%$, $1 / 2$ watt (R217)
74214	Coil Peaking coil (180 muh) (L103, L105)		2.700 ohms , $\pm 10 \%$, 2 watts (R208)

REPLACEMENT PARTS (Continued)

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	description	$\begin{aligned} & \text { sTOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
74602 74601 71456 75083 73584 74937 73117 72927	3.900 ohms, $\pm 5 \%, 1 / 2$ watt (R)	31251	Socket--Tube socket, octal, water
	3.900 ohms . $\pm 10 \%$, $1 / 2$ watt (R171)	732	Socket-Tube socket, octal. ceramic
	4,700 ohms, $\pm 10 \%, 1 / 2$ watt (R144)	71508	Socket-Tube socket for 1B3GT/8016
		74834	Socket-Kinescope socket
	5.600 ohms, $\pm 10 \%, 1 / 2$ watt (R218)	31364	Socket-Pilot lamp socket for KCS40A
	$\begin{aligned} & 5.600 \text { ohms, } \pm 10 \%, \text { I watt (R127; R167) } \\ & 6.800 \text { ohms, } \pm 5 \%, 1 / 2 \text { watt (R136) } \end{aligned}$	74936	Spring-Suspension spring (coil type) for kinescope socket leads
	$\begin{aligned} & 6,800 \text { ohms } \pm 10 \%, 1 / 2 \text { watt (R150) } \\ & 6.800 \text { ohms, } \pm 10 \%, 2 \text { watts (R177. R210) } \end{aligned}$	74954	Spring-Compression spring for hood and yoke assembly (3 required)
	8.200 ohms. $\pm 5 \% .1 / 2$ watt (R175)	74944	Support-Rubber support for 2nd anode lead
	$8.200 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R152, R153) 8.200 ohms. $\pm 5 \%$, l watt (R117. R128)	74948	Support-Bakelite supports (1 set) for mounting hivoltage plate
	10,000 ohms. $\pm 5 \%$, $1 / 2$ watt (R104)	46760	Switch-"TV - Phono" switch (\$103)
	12,000 ohms $\pm 5 \%, 1 / 2$ watt (R164)	74157	Swith-Cabinet interlock switch (S105)
	12.000 ohms . $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R209)	73569	Transformer-Vertical oscillator transformer (T107)
	$\begin{aligned} & 12,000 \text { ohms, } \pm 10 \%, \text { I watt (R186) } \\ & 12,000 \text { ohms, } \pm 10 \% \text {, } 2 \text { watts (R124) } \end{aligned}$	74589	Transformer-First pix I-F transformer (T101, C102. R101)
	$\begin{aligned} & 15,000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R235) } \\ & 15,000 \text { ohms, } \pm 10 \% \text {, I watt (R146) } \end{aligned}$	74590	Transformer-Second pix I-F transformer (T102. C107)
	22.000 ohms. $\pm 10 \%$, $1 / 2$ watt (R134, R197)	74591	Transformer-Third pix lF transformer (T103, Cl12)
	$22,000 \mathrm{ohms}, \pm 20 \%, 1 / 2 \mathrm{watt}($ R198, R215 $)$ 27.000 ohms. $\pm 10 \%$, $1 / 2$ watt (R143. R151)	74592	Transformer-Fourth pix I.F transformer (T104, C116)
	$\begin{aligned} & 39,000 \text { ohms, } \pm 5 \%, 1 / 2 \text { watt (R135) } \\ & 47,000 \text { ohms. } \pm 10 \%, 1 / 2 \text { watt (R145) } \end{aligned}$	73575	Transformer-Fifth pix I.F transformer (T106, C123. C124)
	47,000 82.000 ohms, $\pm 5 \%$. 1 watt (R179)	71424	```Transformer-Sound I-F translormer (T112, Cl73. C174)```
	$\begin{aligned} & 82.000 \text { ohms, } \pm 10 \% \text {, I watt (R168) } \\ & 100.000 \text { ohms, } \pm 5 \% \text {, 1/2 watt (R203. R204) } \end{aligned}$	71427	Transformer-Sound discriminator transformer (T113. Cl78. Cl79. Cl80)
		73576	Transformer - Horizontal ocscillator transformer (T109)
	$\begin{aligned} & 100.000 \text { ohms } \pm 20 \%, 2 \text { watts (R222) } \\ & 120.000 \text { ohms } \pm 10 \% \text {, I watt (R172) } \end{aligned}$	73578	Transformer-Antenna transformer complete with socket (T115, J102)
	```M R187) R187)```	74949	Transformer-Power transformer, 115 volts. 60 cycles (T111)
	150.000 ohms. $\pm 20 \%$, $1 / 2$ watt (R142)	74951	Transformer-High voltage transformer ( T 110 )
	150.000 ohms. $\pm 5 \%$. 1 watt (R176)   220,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R156, R166)	74950	Transformer-Vertical output transformer ( 7108 )
	270.000 ohms, $\pm 10 \%$, 1/2 watt (R154)	73577	Trap-4.5 me trap (LIl10, C128)
	330,000 ohnls. $\pm 10 \%$, $1 / 2$ watt (R140, R170, R200)	71778	Trap-Sound trap (T105, C119)
	330,000 ohms, $\pm 5 \%$, 1 watt (R178)	3476	Trap-1-F trap (L116, C189)
	470,000 ohms. $\pm 10 \%$, $1 / 2$ watt (R137. R139, R188. R224)   470,000 ohms, $\pm 20 \%, 1_{2}$ walt (R207)	74952	Yoke-Deflection yoke (L108, L109, L112, L113. C169. C187. P106)
	680.000 ohms, $\pm 10 \%, 1 / 2$ watt (R133. R212)   820.000 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R169)		SPEAKER ASSEMBLIES FOR MODEL T164
	$1 \mathrm{megohm}, \pm 10 \%, 1 / 2$ watt (R147, R181)		580.3 W
	1 megohm, $\pm 20 \%, 1 / 2$ watt (R189)		MA. 274
	1.2 megohm, $\pm 5 \%$, $1 / 2 \mathrm{watt}$ (R157, R213)		RLI05C5
	2.2 megohm. $\pm 10 \%$, $1 / 2$ watt (R130, R132, R163)	75023	Cap-Dust cap
	3.3 megohm , $\pm 5 \%$, $1 / 2$ watt (R159)	75024	Cone-Cone and voice coil assembly
	3.9 megohm, $\pm 10 \%$, $1 / 2$ watt (R149)   $6.8 \mathrm{megohm}, \pm 10 \%, \frac{1 / 2}{2}$ watt (R125)   10 megohm, $\pm 10 \%$, $1 / 2$ watt (R148)	5039	Connector-4 contact male connector for speaker (J101)
	10 megohm , $\pm 20 \%$, $1 / 2$ watt (R201)	75025	Gasket-Speaker cone gasket
	Screw-No. $10.32 \times 13 / 4^{\prime \prime}$ cross recessed round head screw for focus coil adjustments ( 3 required)	2	Speaker-8" P.M. speaker complete with cone and voice coil ( 3.2 ohms) less output transformer and connector
	Screw-No. $8.32 \times 3 .{ }^{\prime}{ }^{\prime \prime}$ cross recessed pan head screw for focus coil mounting (2 required)	75034	Transformer-Output transformer (T114)
	Screw No. $8-32 \times \overline{7} / 1 ; "$ wing screw for fastening support and bracket		SPEAKER ASSEMBlies for models tcibs,
	Screw-No. 8.32 wing screw for mounting deflection yoke		TC166, TC167, TC168 Stamped 92569-10W
	Shield-Tube shield		RL 111 -16
	Sleeve-Rubber sleeve for focus coil		RMA 274
	Socket-Tube socket, 7 pin, miniature	13867	Cap-Dust cap
	Socket-Tube socket, 9 pin, miniature.	74901	Cone Cone and voice coil assembly ( 3.2 ohms)


$\begin{aligned} & \text { sTOCR } \\ & \text { No. } \end{aligned}$	DESCRIPTION	STOCK No.	DESCRIPTION
5039	Connector-4 contact male connector for speaker (J101)	73542	Escutcheon-Channel marker escutcheon for mahogany or walnut instruments
75035	Speaker--12" P.M. speaker complete with cone and voice coil less output transformer and plug	73740	Escutcheon-Channel marker escutcheon for oak or maple instruments
75036	Transiormer-Output transformer	721	Foot-Rubber foot (4 required) for Model T164
		7497	Glass-Safety glass for M
	not agree with above speaker number, order replacement parts by referring to model number of instrument, number stamped on speaker and full	74606	Glass-Safety glass for Models TC165, TC166. TC167 and TC168
	instrument, number stamped on speaker and full description of part required.	37396	Grommet-Rubber grommet to mount speaker (4 re quired) for Models TC165, TC167 and TC168
	MISCELLANEOUS	73200	Hinge-Drop panel hinge ( 2 required) for Model $T 164$
74958	Back-Cabinet back for Model T164	74308	Hinge-Cabinet door hinge ( 1 set ) (4 required for Model TC167 and 2 required for Model TC168)
75019	Back-Cabinet back for Model TC165	74959	Knob-Fine tuning knob-dark-for mahogany or
75026	Back-Cabinet back for Model TC166		walnut instruments (outer)
74972	Back-Cabinet back for Model TC167	73995	Knob-Fine tuning knob-tan-for oak or maple instruments (outer)
75020	Back-Cabinet back for Model TC168	74960	Knob-Channel selector knob-dark-for mahogany
7285	Board-"Ant	74960	or walnut instruments (inner)
71599	Bracket-Pilot lamp bracket for Models TC165. TCl66. TCl67. TCl68	74961	Xnob-Channel selector knob-tan-for oak or maple instruments (inner)
13103	Cap--Pilot lamp cap for Models TC165, TC166. TC167. TCl68	74962	Knob-Tone control, brightness control or vertical hold control knob-da. k -for walnut or mahogany instruments (outer)
71892 $\times 1917$	Catch-Bullet catch and strike for doors (1 set) (4 required for Model TC167 and 2 required for Model TC168)	73999	hogany instruments (outer)   Knob-Tone control, brightness control, or vertical hold control-tan-for oak or maple instruments (outer)
X1917	ments for Model T164   Cloth-Grille cloth for oak instruments for Model T164	74963	Knob-Picture control, horizontal hold control or volume control and power switch knob-darkfor mahogany or walnut instrumenis (inner)
X3074	Cloth-Grille cloth for mahogany or walnut instruments for Models TC165, and TC168, and maple instruments for Model TCl68	74001	Knob-Picture control, horizontal hold control or volume control and power switch knob-tan-for oak or maple instruments (inner)
X3089	Cloth-Grille cloth for oak instruments for Model TC165	11765	Lamp-Pilot lamp-Mazda 51-for Models TC165. TC166. TCl67 and TC168
X3088	Cloth-Grille cloth for mahogany or walnut instruments for Model TC167	$\begin{aligned} & 74162 \\ & 74450 \end{aligned}$	Plate-Mounting plate for interlock switch   Plate-Back plate for door pull ( 4 required) for Model TCl 67
X3101	Cloth-Grille aloth for mahogany and walnut instruments for Model TC166	74451	Pull-Door pull (4 required) for Model TC167
X3090	Cloth-Grille cloth for oak instruments for Models TC166 and TC167	75021 74113	Pull-Door pull (2 required) for Model TC168   Screw-No. $9.32 \times 1^{\prime \prime}$ trimit head screw for door
39153	Connector-4 contact male connector for antenna cable (P102)	74269	pulls for Model TCl67   Screw-No $8.32 \times 3 / 4$ trimit head screw for door
30568	Connector-4 contact male connector, part of focus coil (P108)	73643	pull for Model TC168   Spring-Spring clip for channel marker escutcheons
35383	Connector-8 contact male connector, part of deflec. tion yoke (P106)	72845	$\underset{74959}{\text { Spring-Retaining spring for knobs Nos. } 73995 \text { and }}$
74607	Decal-Control panel function decal for mahogany or walnut instruments	14270	Spring-Retaining spring for knobs Nos. 73999. 74960. 74961 and 74962
74608	Decal-Control panel function decal for oak or maple instruments	30330	$\underset{74963}{\text { Spring-Retaining spring for knobs Nos. } 74001 \text { and }}$
71984	Decal-Trade mark decal (RCA Victor) for Model T164	74966	Spring-Formed spring for kinescope masking panel (8 required)
71768	Decal-Trade mark decal (RCA Victor) for Models TC167 and TC168	72936	Stop-Door stop ( 2 required for Model TC167 and 1 required for Model TC168)
74809	Emblem-"RCA Victor" emblem	74161	Stud-Locating stud for back (2 required)

## © John F. Rider



Model TA128 - W'alnut, Mahogany or Oak
ELECTRICAL AND MECHANICAL SPECIFICATIONS
PICTURE SIZE. . . . . . . . 87 square inches on a 12LP4 kinescope

TELEVISION R-F FREQUENCY RANGE
An 12 television channels. 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc . Fine Tuning Range . . $\pm 250 \mathrm{kc}$. on chan. 2 . $\pm 650 \mathrm{kc}$. on chan. 13 Picture Carrier Frequency ............................. 25.75 mc . 21.25 mc .

Broadcast   Frequency Modulation		540-1,60\% kc.	
		88.108 mc .	
Intermediate Frequency-AM		455 kc .	
Intermediate Frequency-FM			
POWER SUPPLY RATING..... 115 volts, 60 cycles. 230 watts			
AUDIO.POWER OUTPUT RATING. .............. . 6 watts max. chassis designations			
Radio Chassis . ...................................RK13			
331/3/78 RPM Record Changer ...................... 960282			
45 RPM Record Changer...........................R168			
Refer to Service Data 960282 or RP168 for information on the record changers.			
LOUDSPEARER 92569-8.................. 12 inch PM Dynamic Voice Coil Impedance ................... . 3.2 ohms at 400 cycles			
WEEGHT			
Chassis with Tubes in Cabinet. ................................. 180 lbs.Shipping Weight.................................. . . 207 lbs.			
DIMENSIONS (inches)	Width	Height	Depth
Cabinet (outside).		$34^{1 / 2}$	$23^{1 / 2}$
Chassis (overall).		17	181/2

© John F. Rider

ELECTRICAL and mechanical specifications $\begin{aligned} & \text { Radio Ch. RK135D }\end{aligned}$ (Continued)

PICTURE 1-F FREQUENCIES	OPERATING CONTROLS (front panel)
Picture Carrier Frequency . . . . . . . . . . . . . . . . . 25.75 mc .	1 Selector
Adjacent Channel Sound Trap ................... 27.25 mc.	Fine Tuning
Accompanying Sound Traps ................... 21.25 mc .	
Adjacent Channel Picture Carrier Trap ............. 19.75	Sound Volume and On.Ofl Switch\} ........Dual Control Knows
	$\left.\begin{array}{l}\text { Picture Horizontal Hold } \\ \text { Picture Vertical Hold }\end{array}\right\} \ldots . . . . .$. ......Dual Control Knobs
SOUND I-F FREQUENCIES	Picture
Sound Carrier Frequency ................................ 21.25 mc . Sound Discriminator Band Width between peaks . . ...... 350 kc .	Brightness
	Function Switch . . . . . . . . . . . . . . . . . . Single Control Knob
	Radio Tuning ......................... Single Control Knob
	NON.OPERATING CONTROLS
FOCUS ...................................... Magnetic	Horizontal Centering ..................rear chassis adjustment Vertical Centering .....................rear chassis adjustment Width
SWEEP DEFLECTION ............................Magnetic	Width Selector Switch ......rear chassis screwdriver adjustment Height $\qquad$ rear chassis adjustment
SCANNING ...........................interlaced, 525 line	Horizontal Linearity ........rear chassis screwdriver adjustment Vertical Linearity ..........................rear chassis adjustment
	Horizontal Drive . . . . . . . . rear chassis screwdriver adjustment
horizontal scanning frequency . . . . . . . 15.750 cps	Horizontal Oscillator Frequency ..... bottom chassis adjustment Horizontal Oscillator Wavelorm .......side chassis adjustment
tical scanning frequency ................. 60 cps	Focus ........................rear chassis adjustment
	Ion Trap Magnet ..........................top chassis adjustment
FRAME FREQUENCY (Picture Repelition Rate) . . . . . . . . 30 cps	Focus Coil . . . . . . . . . . . . . top chassis screwdriver adjustment

## high voltage warning

operation of this receiver outside the cabinet or with the covers removed, in. volves a shock hazard from the receiver power supplies. work on the receiver SHOULD NOT BE ATtEMPTED bY anYone Who is not thoroughly familiar with the preCautions necessary when working on high voltage equipment. do not operate the receiver with the high voltage compartment shield removed.

## KINESCOPE HANDLING PRECAUTIONS

do not open the kinescope shipping carton, install, remove or handle the kineSCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGles AND hEAVY GLOVES ARE WORN. people not so equipped should be kept away while handling kinescopes. keep the kinescope away from the body while handling

> The kinescope bulb encloses a high vacuum and, due to its large surlace area, is subiected to considerable air pressure. For these reasons. kinescopes must be handled with more care than ordinary receiving tubes.
> The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or subjected to more than moderate pressure at any time. In installation, if the tube sticks or fails to slip smoothly into its socket, or dellecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Rofer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the cartion for possible future use.

The following adjustments are necessary when turning the re
ceiver on for the first time.

1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR
to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suitable volume.
5. Turn the BRightness control fully counter-clockwise, then pears on the screen.
6. Adjust the VErtical hold control until the pattern stops ve tical movement.
7. Adjust the HORIZONTAL hold control until a picture is ob. tained and centered.
8. Turn the BRIGHTNESS control counter-clockwise until the re. trace lines just disappear.
9. Adjust the PICTURE control for suitable picture contrast.


Figure 1-Receiver Operating Controls
10. After the receiver has been on for some time. it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
11. In switching from one station to another, it may be necessary to repeat steps numbers 4 and 9.
12. When the set is turned on again after an idle period, it should not be necessary to repeat of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
13. If the positions of the controls have been changed, it may be necessary to repeat steps numbers 1 through 9 .
14. For radio operation turn the FUNCTION switch to AM or FM and tune in station with the radio TUNING control.
15. For phono operation, turn the FUNCTION switch to PH for operation of the $331 / 3 / 78 \mathrm{rpm}$ rec. ord changer, or to XPH for operation of the 45 rpm record changer.

## INSTALLATION INSTRUCTIONS

UNPACKING.-The TA128 receiver is packed complete with kinescope in a cardboard cartun. To unpack, turn the shipping
carton on its side and tear open the carton bottom flaps. Fold the filaps up along the side of the carton and turn the carton back up. Lift the carton up and off the cabine

A flat skid is attached to the bottom of the receiver cabinet Which will permit the cabinet to be moved about without stress.
ing the cabinet joints. To remove the skid, take off the nuts from ing the cabinet joints. To remove the skid, take off the nuts from
the two bolts that hold the cabinet on the skid. With a man at each end of the cabinet lift the cabinet off the skid.

The operating control knobs are packed in a bag and tied to a cabinet back rail. Remove the bag and install the knobs on he proper control shafts.
From the rear of the cabinet remove the single wood screw
which holds the RPI 68 record which holds the RPI68 record cnanger drawer in the closed remove the three filler plugs from over the motorboard mounting screws. Loosen these three screws to permit removal of two wooden shipping strips under the edge of the motorboard. Tighten the screws just enough to keep the molorboard springs
rom ratling and replace the filler plugs.

Remove the bracket which holds the 960282 changer drawer in the closed position. Open the drawer and from the front of the cabinet remove all of the changer packing material. Take sert two plugs from the bag with knobs into the holes in the motorboard.

Make sure that all tubes are in place and are firmly seated in
heir sockets. heir socket

Check to see that the high voltage lead is attached to the

Connect the antenna transmission line to the receiver a
Plug the receiver power cord into a 115 voll a-c power source.
Turn the receiver power switch to the "on" switch to "tel." the brightness control three-quarters clockwise, and the picture control counter-clockwise.
ION TRAP MAGNET ADJUSTMENT.-Set the ion trap magnet


Figure 2-Yoke and Focus Coii Adjustments
this position adjust the magnet by moving it forward or back ward at the same time rotating it slighty around the neck of brightness control setting until the raster is sligeen. Reduce the ge brilliance. Adjust the focus control (R191 on the chassis rea apron) until the line structure of the raster is clearly visible
Readjust the ion trap magnet for maximum raster brilliance Th Readjust he ion trap magnet for maximum raster brilliance. Th ness control at the maximum position with which good line focus

DEFLECTION Yoke ADJUSTMENT.-lif the lines of the raster DEELECTION YOKE ADJUSTMENT.--1I the lines of the raster
are not horizontal or squared with the picture mask, rotate the
deflection Yoke until this condition is obtained. Tighten the yoke deflection yoke until this
adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order te make further adjustments. See
steps 3 through 9 of the receiver operating instructions. teps 3 through 9 of the receiver operating instructions.
If the Horizontal Oscillator and AGC System are operating
properly, it should be possible to sync the picture at this foint. properiy, it should be possible to sync the picture at this foint.
However, it the AGC threshold control is misadjusted and the receiver is overloading, it may be impossible to synct the picture. It the receiver is overloading, turn R138 on the rear apron
(see Figure 3) clockwise until the set operates normally and the (see Figure 3) clockwise until the set operates normally and the
picture can be synced. picture can be synce

Figure 3-Rear Chassis Adjustments

CHECK OF hORizontal osclllator alignment.-Tutn position The hold control to the extreme counter-clockwis arily remove the signal by switching off channel then back Normally the picture will be out of sync. Turn the coutrol clock
wise slowly. wise slowly. The number of diagonal black bars will be grad ually reduced and when only 3 bars sloping downward to the
left are obtained, the picture will pull into sync upon sligh additional clockwise rotation of the control. Pull in should occur
and when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync
for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position. the picture should be out of sync and should show 1 vertical or diagonal If the receiver passes
If the receiver passes the foregoing checks and the picture is
normal and stable, the horizontal oscillator is properly aligned normal and stable. the horizontal oscillator is properly aligned
Skip "Alignment of Horizontal Oscillator" and proceed with
"Focus Coil Adjustmenta."

ALIGNMENT OF HORIZONTAL OSCILLATOR-II in the
above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point. it will be necessary to make the following ,
Horizontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in a television
station and adjust the Tlog horizontal frequency adjustment station and adjust the Thag horizontal frequency adjustment
(under the chassis) until the picture is just out of sync and the horizontal blanking appears as $\alpha$ vertical or diagonal black
bar in the raster

$$
\because
$$

Horizontal Lock in Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily reconvel the signal by swirching off channel then back. Slowly
move turn the horizontal hold control clockwnese and note the least
number of diagonal bars obtained just before the picture pulls
into sync. If more than 3 bars are present just before the picture pulls
 slightly clockwise. If less than 3 bars are present. adjust
C153A slightly counterclockwise. Turn the picture control coun. Cl53A slightly counter-clockwise. Turn the picture control coun-
ter-clockwise, momentarily remove the signal and recheck the number of bars present at the pullin in point. Repeat this pro-
cedure unili 3 bars are present

Repeat the adjustments under "Horizontal Frequency Adjust conditions specified under each are fulfilled. When the the zontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.
If it is impassible to sync the picture at this point and the
AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the "A." under Horizontal Oscillator Wavelierm purposes paragrap omitted. FOCUS COIL ADJUSTMENTS.-The focus coil should be ad the rear cardboard shell of the yoke and the flat of the front face of the focus coil. This spacing gives best average focus over
the face of the tube. However. it may to the face of the tube. However. it may be necessary to change
this distance slightly in order to compensate for small differences in strength of the permanent magnets in the coil. If the receiver focuses with the focus control towards the clock wise end of its
range. the focus coil should be moved toward the yoke and if range, the focus coil should be moved toward the yoke and if
focus is obtained towards the counter-clockwise end of the control, the coil should be moved away from the yoke. In order to prevent the beam from striking the neck of the kinescope. it is
important that the axis of the hole through the focus coil should be kept in accurate alignment with the axis of the neck of the kinescope.
CENTERING ADJUSTMENTS.-Centering is obtained by loos ening the two focus coil mounting screws and sliding the coil up
or down or from side to side. If a corner of the raster is shad owed, check the position of the ion trap magnet. In extreme cases it may be necessary to adjust one or more of the focus
coil compression screws to eliminate a corner
Recheck the position of the ion trap magnet to insure that
maximum brilliance is obtained.
WIDTH, DRIVE AND HORIZONTAL LINEARITY ADIUST. MENTS.-Adjustment of the horizontal drive control affects the
high voltage applied to the kinescope. In order to obtain the highest possible voltage, hence the brightest and best focused picture, turn the horizontal drive control counter-clockwise unti]
the left side of the picture begins to stretch


Adjust the horizontal linearity control L111 to provide bes
linearity. Adjust the width control until the picture just fills the mask.
Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was ad-
justed, recheck the oscillator ocus Adur

FOCUS.-Adjust the focus control (R191 on chassis rear apron) for maximum definition in the test pattern vertical
"wedge" and best focus in the white areas of the pattern.
height and vertical linearity adjustments.-Ad just he height control (Rtiss on chassis rear apron) until the
picture fills the mask vertically. Adjust vertical linearity (R162 on rear apron), until the lest pattern is symmetrical from top to bottom. Adjusimen of either control will require a readjust. ment of the
the mask.
Check to see that the cushion and yoke thumb SCREWS AND the focus Coil mounting screws are tight.
RI3GC is THRESHOLD CONTROL.-The AGC threshold control R138 is adjusted at the factory and normally should not require

To check the adjustment of the AGC Threshold Control, tune in a strong signal, sync the picture and turn the picture concontrol counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching off
channel and then back. It the pictur channel and then back. It the picture reappears immediately. the receiver is not overloading due to improper setting of R138.
It the picture requires an appreciable portion of a second to reappear. R138 should be readjusied.

MODEL TAl28, Ch. KCS42

Set the picture control at the maximum clockwise position Turn R138 fully clock wise. The top one han lif inch of the picture
may be bent slightly. This should be disregarded. Turn R138 counter-lockwise until there is a very, very slight bend or
change of bend in the top one-half inch of the picture Then change of bend in the top one-hall inch of the picture. Then
turn R138 clockwise just sufficiently to remove this bend or change of bend.
If the signal is very weak, the above method may not work
as it may be impossible to get the piclure to bend. In this care as it may be impossible to get the picture to bend. In this case.
turn R138 counterclockwise until the snow in the picture becomes more pronounced, then clockwise until the best signal to
noise ratio is obtained. noise ratio is obtained.
The AGC control adjustment should be made on a strong
signal if possible. It the control is set too tar counter-clockwise on a weak signal, then the receiver may overload when a
strong signal is received.

CHECK OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see it the receiver r-f oscillator is adjusted to the proper trequency on all channels. If adjustments are re-
quired. these should be made by the method oullined in the quired. hese should be made by the method outlined in the
alignment procedure on page 10 . The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as
shown in Figure 4 . Adjustment for channel 13 is on top the shown in Figure 4. Adjustment for channel 13 is on top of the
chassis and channel 6 adjustment is in the kinescope well. See Figures 9 and 10 for their location.


TO REMOVE ESCUTCHEON, SLIOE
SPRETMG CLIS TO LEFT


Figure 4-R-F Oscillator Adjustments
RECORD CHANGER OPERATION.-Turn the receiver funcion switch to each phono position and check each record

AMADIO OPERATION.-Turn the receiver function switch to AM and FM positions and check the radio for proper cperation. point to the correct spot on the dial, slip the dial pointer on the dial cord until the proper indication is obtained.
Replace the cabinet back and make sure that the screws are
tight in order to prevent ratting at high volume
tear
WEAK SIGNAL AREA OPERATION.-Since the vast majority of receivers are sold in strong signal areas. the chassis are
aligned to produce the cleanest pictures in those areas. However, if the receiver is to be operated in $a$ weak signal area. To peak the r-f unit in these receivers. disconnect the 390 ohm resistor which is on top of the r-t unit chassis. Adjust L66 to obain the best possible picture on the weakest low channel sta-
tion received. By this action, the r-f gain is increased $50 \%$ at the expense of r -f bandwidth and an improvement in the weak signal picture results.
If the peaked receiver is subsequently taken to a strong sig-
nal area, the resistor R14 should be connected in place and nal area. the resistor response on the low channels.
adjusted tor "flat" rester

CHASSIS REMOVAL.-To remove the chassis from the cabinet and the knobs, unplug all cables and remove the chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet. The kinescope is held on the chassis by means of a special strap. so that the chassis and the kinescope can be
handled together, as $a$ unit.

Kinescope handung precaution.-Do not install, re proot goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope.
Keep the kinescope away from the body while handling.
To remove the kinescope, reve Ton-trap magnet. and the second-anode connector. Loosen the cross-recessed head screw on the kinescope strap. as shown
in Figure 6 . Withdraw the kinescope toward the front of the

INSTALLATION OF KINESCOPE.--Slide the kinescope cushion oward the rear of the chassis. Loosen the deflection yoke a ighten. Th
The kinescope second anode contact is a recessed metal his contact is up but bulated The tube must be installed so tha he high-voltage compartment.
he kinescope through the deflection and investigate and tube sticks, or fails to slip into place smoothly e tube. Slip the ion trap magnet assembly over the neck of the kin Connect the kinescope socket to the tube base.
Connect the high voltage lead to the kinescope second anode ocke
W. lass clean of all dust and finger marks and front panel safely lass clean of all dust and finger marks.
Tighten the cross-recessed head screw on the kinescope As may be seen by inspection, the radio dial lights and dial pointer are attached to the cabinet front panel. The dial cord attlached to the receiver chasis. The method attachme
Slide the dial pointer to the stop on the high frequency end of the dial. Turn the radio tuning shaft until the gang is comletely unmeshed.
Slide the chassis into the cabinet until there is sufficient slack the pilot light cable, then attach the pilot light sockets Insert the chassis to its proper position, then install the six hassis bolts and tighten. Loosen the kinescope strap from the the tube is aqainst the mask. Push the yoke cushion to ward against the kinescope flare, then tighten the cushio djusting screws. Push the yoke torward and tighten. Tighte


Figure 5-Dial Cord and Pointer As sembly
To hook up the dial pointer, reach over the television chassis Tu rado and press the dial cord well into the coil spring. ing is correct. If it is not, adjust the dial lights and shields. Tune in a station of known calibration and check the dial calibration Perform the entire television set-up procedure beginning with Ion Trap Magnet Adjustment.

CAbINET ANTENNA.-A cabinet antenna is provided which are experienced. The antenna leads are brought out near the eceiver antenna terminals.
The link on the antenna terminal board on the back of the A. band antenna in case it is desirable to connect a separat



## ALIGNMENT PROCEDURE

PICTURE I-F TRAP ADJUSTMENT,-Connect the "VoltOhmyst the junction of R135 and C190.
Remove the 6SN7GT AGC Amplifier tube V107. Connect a
250.000-ohm potentiometer between pins 5 and 6 of the V107 $250.000 \cdot$ ohm potentiometer between pins 5 and 6 of the V107
socket. Adjust the potentiometer until the "Voltohmyst" reads ackel. Adjust the poten
approximately -12 volts.
Set the channel switch to the blank position between chan
nels numbers 2 and 13
Connect the "Voltohmyst" across the picture detector load resistor RIII. Under this condition. both leads of the mete
are at pproximately -12 C volts. In making this connection, care should be taken not to touch the case of the meter or to permi meter case to become grounded.
Connect the output of the signal generator to the grid of the
converter tube V . To do this, remove the tube from the socke: and fashion a clip by twisting one end of a small piece o wire around pin number 1 . Replace the tube in the socket
leaving the end of the wire protruding from under the tube. leaving the end of the wire protruding from under the tube
Connect the signal generator to this wire through a 1.500 mm Connect the signal generator to this wire through
capacitor keeping the leads as short as possible.
Set the generator to each of the following frequencies and with a thin fiber screwdriver tune the specitied adjustment fo minimum indication on the "VoliOhyst.". In each instance the
generator should be checked against a crystal calibrator to generator should be checked against a crystal calibrator to
insure that the generator is exactly on frequency.
(1) $2125 \mathrm{mc}-\mathrm{T} 103$ (top) $\quad$ (4) $2725 \mathrm{mc}-\mathrm{T} 104$ (2) 21.25 mc -Tlos (10p) (5) 19.75 mc -T106 (top $\begin{array}{ll}\text { (3) } 27.25 \mathrm{mc} \text {--T102 (top) } & \text { (6) } 19.75 \mathrm{mc} \text {--T101 (top) }\end{array}$
In the above translormers using threaded cores. it is possible to run the coies completely through the coils and secure two
peaks or nulls. The correct position is with the cores in the oulside ends of the coils. If the cores are not in the correc position, the coupling will be incorrect and it will be impossibl
to secure the correct response.

PICTURE I.F TRANSFORMER ADJUSTMENTS.- Set the sig. nal generator to each of the following trequencies and peak specified adjustment for maximum indication on the "Vol
the
Dpst." During alignment. reduce the input signal if neces sary to prevent overloading
22.5 mc - T 106 (bottom)
24.6 mc .-T104 (bottom)
$22.0 \mathrm{mc},-\mathrm{T} 103$ (bottom)
25.9 mc .-T102 (botiom)

Tl and T 101 are coupled by a link and in combination con stitute an overcoupled transiormer. The characteristics of such
a transtormer are such that it is impossible to adjust it to $a$ a transformer are
single frequency.
To sweep align Tl and T 101 , connect a 330 ohm composition
resistor across the primary coils of 102 , T103. T104 and T 106 . Connect the "Voltohmyst" to the junction of R135 and C190, Adjus
meter.
Connect the oscilloscope to the plate of the first video ampli Connect a sweep
Connect a sweep generator to the converter grid through a
1.500 mmt capacitor. Set the generator to sweep from 20.0 ml 1.500 mmt capacitor. Set the generator 10 sweep from 20.0 mc
to 30.0 mc . and adiust the output to provide a 4 volt peak- 10 peak signal on the scope.
Connect the signal generator loosely to the converter gric
and tune it to provide markers at 22.05 mic. and 24.75 mc. Adjust TI (top) and T101 (bottom) to obtain the response
shown in Fiaure 15 . The Tl core must penetrate io the ierminal board end of the coil in order to obtain the correct respons Remove the 330 ohm resistors from across T102. T103. T104 ndius.
Adjust the 250.000 ohm potentiometer for a 15 .volt peak-to.
peak signal at the plate of the fitst video amplitier. The bias peak signal at the plate of the fist video amplitien. The bias
as measured by the "Voltohmyst" should be 12 volts or less.

Observe and analyze the response curve obtained. The re-
sponse will not be ideal and the i if adjustments must be re. sponse will not be ideal and the i.f adjustments must be te-
touched in order to oblain the desired curve. See Figure 16 .
On tinal adjustment the picture carrier marker must be at approximately $45^{\circ}$ response. The curve must be approximately
flat topped, with the 22.1 mc . marker at approximately $95 \%$ response and the 25.0 mc. marker below $90 \%$ response. A 26.5 mc . marker must fall between 5 and $10 \%$ response

The most important consideration in making the i.f adjust-
ments is to get the picture carrier at the $45 \%$ response point. ments is to get the picture carrier at the $45 \%$ response point.
It the picture carrier poerates too low on the response curve If the picture carrier operates too low on the response curve,
loss of low frequency video response. of picture brilliance, of blanking. and of sync may occur. It the picture carrier operates too high on the response curve, the picture becomes
smeared. In making these adiustments. care should be taken smeared. In making these adjustments. care should be taken
to see that no two transiormers are tuned to the same frequency as if oscillation ray result.
Remove the converter tube and take of the clip to pin number 1 . Replace the tube in the socket.
Picture I.F Oscillation. If the receiver will operate without oscillating with the test equipment disconnected but breaks
into oscillation or becomes unstable with the equipment con into oscillation or becomes unstable with the equipment con-
nected. it may become necessary to establish a ground plane Cover the test bench with a sheet of copper and set the chas. sis on the sheet. Set all the test equipment except the "Volt"Voltohmyst" should not be bonded to the sheet since the negative test probe is not always connected to ground during more of the i.f transiormers are tuned to the same frequency. the receiver may tall into i.f oscillation. I.F oscillation shows
up as a voltage across the picture detector load resistor that up as a voliage across the picture detector load resistor that
is unaffected by $\mathrm{r} . \mathrm{s}$ signal input. If such a condition is en counterec. it is sometimes possible to stop oscillation by adjusting the translormers apppoximately to frequency by betting the
adjustment cores of T101. T102. T103. T104, T105 and T106 to be approximately equal to those of another receiver known to be in proper alignment If this does not have the desired
eflect, it may now be possible to stop oscillation by increasing $\epsilon$ Hect. it may now be possible to stop oscillation by increasing
the grid bias. If so, it should then be possible to align the the grid bias. If so. it should then be possible to align the
transiformers by the usual method. Once aligned in this manner.
the if a mplititer should be stable with reduced bias.
If the oscillation cannot be stopped in the above manner.
shunt the grids of the first three pix i . f amplifiers to ground shunt the grids of the first three pix i.f amplifiers to ground
with 1.000 mmf capcitors Connect with 1.000 mmf capacitors. Connect the signal generator to
the fourth pix i.f grid and align T106 to frequency. Progressively remove the shunt from each grid and align the plate coil of
that stage to frequency that stage to frequenc
If this does not stop the oscillation, the difficulty is not due
to $\mathrm{i} \cdot \mathrm{f}$ misalignment as the $i . \mathrm{i}$ section is stable when properly to i.f misalignment as the i.f section is stable when properly
aligned. Check all i-f by.pass condensers, transtormer shunting aligned. Check all i-f by pass condensers, transformer shurting
resistors. tubes, socket voltages, etc.
antenna, r-f and converter line adjustment.-In order to align the rit tuner, it will first be necessary to set the order
chanel. alig oscillator to frequency The shield over the boteom
of the $r . f$ unit must be in place when making any adjustments. The channel-13 oscillator may be aligned by adjusting it to by feeding a signal into the receiver at the r. 1 sound carrier frequency and adjusting the oscillator lor zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact tiequency. Either method
of adjustment will produce the same results. The method used will depend upon the type of test equipment available. Re
gardless of which method of oscillator alignment is used. the gardless of which method of oscillator alignment is used. the
frequency standard must be crystal controlled or calibrated. If the receiver oscillator is to be adjusted by the heterodyne
frequency meter method couple the meter probe loosely to the receiver oscillator. It the receiver oscillator is adjusted by feeding in the rsound carrier signal. connect the signal generator 10 the re
ceiver antenna terminals. Connect the "Voitohmyst" to the sound discriminator output (junclion of C183 and R203),
Set the receiver switch to 13 .

Adjust the frequency standard to the correct frequency (23 mc. tor heterod

Set the fine tuning control to the middle of its range
Adjust C 6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator
Now that the channel. 13 oscillator is set to frequency, we Connect the "VoltOhmyst" to the junction of R135 and C197. Adjust the 250 K pot. for -3.5 volts on the meter
Hemove the first pix i.f amplifier tube V101.
Connect the oscilloscope to the test connection at R13 in the $f$ tuning unit.
Connect the r-f sweep oscillator to the receiver antenna ter minals. The method of connection depends upon the outpu impedance of the sweep. The P102 connections for $300 \cdot \mathrm{hm}$ bait diagram in Figure 74. If the sweep oscillator has a 50 ohm single ended output. 300 ohm balanced output can be obtaine


Fisure : - - 'nbulanced Surep, Cable 1 ermination Connect
terminals.
Since channel 7 has the narrowest response of any of the high frequency channels, it should be adjusted first.
Set the receiver channel switch to channel 7 .
Set the sweep oscillator to cover channel 7 .
Insert markers of channel 7 picture carrier and sound carrier 25 mc . and 179.75 mc .
Adjust C10 and Cl4 until the curve falls symmetrically be
tween the sound and picture carrier markers. Adjust C11 to
 sponse curve with the sound and picture carriers at $90 \%$ sponse curve with the sound and picture carriers at $90 \%$ to
$95 \%$ response points on this curve. See Figure 17, channel 7 Switch to channel 12 and adjust L6 for maximum response and minimum top slope of the curve.
Check the response of channels 7 through 13 by switching
he receiver channel switch, sweep oscillator and marker oscil lator to each of these channels and observing the response obtained. See Figure 17 for typical response curves. It should be found that all these channels have the proper shaped re
sponse with the markers above $80^{\circ}$, response. 11 the marker do not fall within this requirement on one or more high fre quency channels, since there are no individual channel ad C14, and possibly compromise some channel slightly in orde to get the markers up on other channels. Normally. however irequency channels are comparatively broad and the markers easily fall within the required range
Chamnel 6 is next aligned in the same manner
Set the receiver to channe! 6 .
Set the sweep oscillator to cover channel 6 .
Set the marker oscillator to channel 6 picture and sound
Adjust L9. L13. L66, and C12 for an approximately fiat
opped response curve located symmetrically between the ropped response curve located symmetrically between the
markers. LI L13 and L66 are the center frequency adjust.
ments. C 12 is the band-width adjustment ments. C12 is the band-width adjustmen
Check channels 5 down through channel 2 by switching
the receiver, sweep oscillator and marker oscillator to each
hannel and observing the response obtained. In all cases. the markers should be above the $80 \%$ response point. If this is not the case. L9. L13. L66 and Cl' 2 should be retouched.
On tinal-adjustment. all channels must be within the $80 \%$ specification.
Disconnect the 250 K pot., and replace V107 and V101.
Following an rif alignment the oscillator alignment must
r-f OSCILLATOR-LINE ADJUSTMENT.-The r.f oscillator lin may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by feeding a signal
into the receiver at the $r$. 1 sound carrier frequency and ad justing the oscillator for zero output from the sound discrimi nator. In this latter case the sound discriminator must first justment will produce the same results. The method used will epend upon the type of test equipment available.
Regardless of which method of oscillator alignment is used the trequency standard must be crystal controlled or calibrated. If the receiver oscillator is to be adjusted by the heterddyne
frequency meter method, the calibration frequency listed under R-F Osc. Freq. must be available.
If the receiver oscillator is adjusted by feeding in the $r$-f sound carrier rirequency, the fre
Carrier Freq. must be available.

| Channel | Receiver <br> R.F Osc. <br> Freq. Mc. |
| :---: | :---: | | R.F Sound |
| :---: |
| Carrier |
| Freq. Mc. | | Channel |
| :---: |
| Oscillator |
| Odjustment |

If the heterodyne frequency meler method is used. couple If the rff sound carrier method is used, connect the "VoltOhmyst" to the sound discriminator oulput (junction of C183
and $\mathrm{A203}$ ) and connect the signal generator to the receiver and R 203 ) and connect the signal generator to the receiver regardless of which method is used.
If the $r \cdot f$ unit is removed fiom the receiver for service and is If the r.f unit is removed fiom the receiver for service and is
aligned separately, the shield over the bottom of the r.t unit
must be in place when making adjustments.
Since lower frequencies are obtained by adding steps of
indictance it is necessary to align channel 13 first and conin ${ }^{n}$ actance, it is necessary to alic
iit:- in reverse numerical order.
St the :eceiver channel switch to 13
Adjust the frequency standard to the correct frequency ( 237
jur heterodyne frequency meter or 215.75 me . for the sig. Set the fine tuning control to the middle of its range while naking the adjustmen
Adjust $\mathrm{C6}$ for an audible beat on the helerodyne frequency meter or zero voliage from sound discriminator. Oscillator ad adjustments and should not be touched in the field.
Switch the receiver to channel 12 .
Set the frequency standard to the proper frequency as listed in the alignment table.
Adjust Lld for indications as above
Adjust the oscillator to frequency on all channels by switch. and adjusting the appropriate oscillator trimmer for the speci-

## ALIGNMENT PROCEDURE

hed indication．In should be possible to adjust the oscillato to the correct fequency on all channels with the fine tuning athannel 13 and has been sel on all channels，start back are correct．

AGC THRESHOLD ADJUSTMENT．－The AGC threshold ad justment can be made by the method oullined in the Installa tion Instructions．However，a more accurate adjustment can be Tune in a station and advance the picture control to the from the oscilloscope to the plane of the live capacity probe pin 1 of V106．Adjust the oscilloscope to observe the horizontal sync pulse．
Turn the AGC threshold control R138 fully clockwise，then解 size of the pattern on whe increase slowly．increasing turned counter．clockwise until the receiver begins to overload indicated by clipping of the sync．The control should be left in the maximum gain position in which no clipping of sync is bserved．See Figure 18 for proper waveforms．
horizontal oscillator adjustment．－－Normally the adjustment of the horizontal oscillator is not considered to be form adjustment requires the use of an oscilloscope，it can not be done conveniently in the field．The waveform adjustmen is made at the factory and normally should not require read－ justment in the field．However，the waveform adjustment should
be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper．

Horizontal Frequency Adjustment．－With a clip lead，shori circuit the coil between terminals $C$ and $D$ of the horizontal sync the picture if possible．
A．－Turn the horizontal hold control R173 to the extreme （under the chassis）so that the picture is just out of sync and the horizontal blanking appears in the picture as a vertical bar The position of the bar is unimportant．
B．－Turn the hold control approximately one quarter of turn from the extreme clockwise position and examine the
width and linearity of the picture．If picture width or linearity width and linearity of the picture．If picture width or linearity
is incorrect，adjust the horizontal drive control C153B，the width is incorrect，adjust the horizontal drive control C153B，the width
control Lils and the linearity control L111 until the picture is correct．If C153B was adjusted，repeat step $\AA$ above．

Horizontal Locking Range Adjustment－Turn the horizontal
hold control fully counterclockwise．Momentarily remove the hold control fully counter－clockwise．Momentarily remove the
signal by switching off channel then back．Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync． II more than 9 bars are present just before the picture pulls
into sync，adjust the horizontal locking range trimmer Clis3A slightly clockwise．If less than 7 bars are present．adjust C153A slightly counter－clockwise．Turn the horizontal hold con－
trol counter．clockwise，momentarily remove the signal and re． trol counter－clockwise，momentarily remove the signal and re－
check the number of bars present at the pull－in point．Repeat the procedure until 7 to 9 bars are present．
Horizontal Oscillator Waveform Adjustment．－Remove the shorting clip from terminals C and D of T109．Turn the hori－
zontal hold control to the extreme clockwise position．With a thin fibre screwdriver，adjust the Oscillator Waveform Ad jusiment Core of T109（on the outside of the chassis）until the horizontal blanking bar appears in the raster．

A－－－Connect the low capacity probe of an oscilloscope to
erminal Cof Tlog．Turn the horizontal hold control one equarter furn from the clockwise position so that the picture is in sync． The pattern on the oscilloscope should be as shown in Figure
19．Adjust the Oscillator Wavelorm Adjustment Core of T109 until the two peaks are at the same height．During this ad ustment，the picture must be kept in sync by readjusting the old control if necessary
This adjustment is very important for correct operation o is lower than the sharp peak，the wave on the oscilloscope poorer，the stabilizing effect of the tuned circuit is reduced and and．if the broad ber bemes more serious．On the other scillator is overstabilized higher than the sharp peak，the quate and the broad peak can cause double triges inade position Remove the oscilloscope upon completion of this adjustment Check of Horizontal Oscillator Adjustments．－Set the hori mentarily remove the signal by switching off channel then back．Slowly turn the horizontal hold control clockwise and te the least nimber of diagonal bars obtained just befor If
If more than 3 bars are present just before the picture pulls
into sync，adjust the horizontal locking range trimmer Cis3A slightly clockwise．If less than 3 bars are present．adjus Cl53A slightly counter－clock wise．Turn the horizontan hold con trol counter－clockwise，momentarily remove the signal and re
check the number of bars present at the pullin point．Repeai check the number of bars present at the
this procedure until 3 bars are present．
Turn the horizontal hold control to the maximum clockwise hat the horizontal blanking bar appeats as sync to the exten diagonal bar in the picture．Adjust the $T 109$ Frequen Adjustment until this condition is fulfilled．

4．5 MC VIDEO TRAP．－With a strong input from a station detune the receiver from the correct fine tuning point．With
a very short clip lead，short the trap winding of T103．Ob serve the picture for the appearance of a 4.5 mc．beat．if the beat appect
eliminated．

SENSITIVITY CHECK．－A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound abtained to that obtained on other receivers under the sam

This weak signal can be obtained by connecting the shop The number of stages in the pad depends upon the signal
strength available strength available at the antenna．A sufficient number o Stages should be inserted so that a somewhat less than normal
contrast picture is obtained when the picture maximum clockwise position．Only carbon type resistors should e used to construct the pad．
$\qquad$ RESPONSE CURVES．－The response curves shown on page 14 and referred to throughout the alignment procedure were taken from a production set．Alth
cal．variations can be expected．
The response curves are shown in the classical manner of presentation，that is with＂response up＂and low frequency
to the left．The test sel－up will depend upon the characteristics of the oscillo scope and the sweep generator．The curves may be seen in verted and／or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator

ALIGNMENT TABLE．－Both methods of oscillator alignmen are presented in the alignment table．The service technic
may thereby choose the method to suit his test equipment．

## ALIGNMENT TABLE

the detalled alignment procedure beginning on pace o should be head before alignment by use of the table is attempted


Gohn F．Rider

ALIGNMENT PROCEDURE										
	$\begin{gathered} \text { CONNECT } \\ \text { SIINAL } \\ \text { GENEAATOR } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GREN. } \\ & \text { FREQ. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { SWEEPP } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { SWEEP } \\ & \text { GENE. } \\ & \text { FRC. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { OSCLLIOSCOPE } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS insthuctions	adjust	$\underset{\text { Refer }}{\text { R }}$	
Antenna, r-F And Converter line alignment (Conta)										
26	"	${ }_{20395}^{19.75}$	"	$\begin{gathered} \text { channel } \\ 11 \end{gathered}$	"		Receiver on channel 11		${ }_{\text {Fig, }}{ }_{\text {(1i) }}{ }^{17}$	
27	"	${ }_{2095}^{205.75}$	"	$\begin{gathered} \text { channel } \\ 12 \end{gathered}$			$\begin{array}{\|l} \text { Receiver on chan- } \\ \text { nel } 12 \end{array}$			
28	"	$\underset{ }{211.25}$	"	$\underset{13}{\substack{\text { channel }}}$			Receiver on chan- nel 13	"	$\underset{\substack{\text { Fig. } \\(13)}}{\text { 17 }}$	
29	If the response on any channel (steps 22 through 28) is below $80 \%$ at either marker, switch to that channel and adjust L6, C10, C11 \& C14 to pull response up on that channel. Then recheck sleps 22 through 28 .									
30	Antenna terminals (100sely)	${ }_{87}^{83} 8.25$	$\begin{array}{\|l} \text { Ant. terminals } \\ \text { (see text ior } \\ \text { precaution) } \end{array}$	$\begin{gathered} \text { Sweep- } \\ \text { ing } \\ \text { inan. } \end{gathered}$	$\begin{aligned} & \text { Test } \\ & \text { Connection R13 } \end{aligned}$	Not used	Receiver on channel 6		${ }_{\text {Fig. }}^{(6)}{ }^{17}$	
31	"	${ }_{817.75}^{77.25}$	"	$\underset{5}{\text { channel }}$	"	"	Receiver on channel 5	Check to see that Cesponse is as respo above	$\mathrm{Fiq}_{(5)}{ }^{17}$	
32	"	${ }_{71.75}^{67.25}$	"	$\underset{4}{\text { channel }}$		"	Receiver on channel 4		${ }_{\text {Fig. }}^{4}{ }_{\text {(4) }}{ }^{17}$	
${ }^{33}$	"	61.25 65.75	"	$\begin{gathered} \text { channel } \end{gathered}$	"	"	Receiver on channel 3		${ }_{\text {Fig. }}^{\text {(3) }} 17$	
34	"	55.25	"	$\underset{2}{\text { channel }}$	"		Receiver on channel 2		${ }_{\text {Fig. }}^{\text {(2) }} 17$	
35	If the response on any channel (steps 31 through 34) is below $80 \%$ at either marker, switch to that channel and adjust L9, L13, L66 \& C12 to puil response up on that channel. Then recheck steps 30 through 34. Disconnect the bias pot. and replace V101 and V107.									
h.F OSCILlator alignment										
$\begin{gathered} \text { STEP } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENARATOR } \\ & \text { TO } \end{aligned}$	$\begin{gathered} \text { SIGNAL } \\ \text { GENEL. } \\ \text { FRMC. } \\ \text { MM. } \end{gathered}$	CONNECT HETERODYNE FREQ. METER TO	$\begin{aligned} & \text { MET. } \\ & \text { MEEERER } \\ & \text { FAEE. } \end{aligned}$		"VOLTOHMYST TO	MISCELLANEOUS CONNECTIONS instructions	adjust	${ }_{\text {Refer }}^{\text {TO }}$	
${ }^{36}$	Antenna	215.75	Loosely coupled to $r-1$ osc.	237	Not used		Fine tuning centered. Receiver on channel 13	C6 for zero on meter or beat on het. freq. meter		
37	"	209.75		231	"	."	Rec. on chan. 12	L14 as above	Fig. 12	
38	"	203.75	"	225		"	Hec. on chan. 11	L15 as above		
39	"	197.75	"	219	"	"	Rec. on chan. 10	L16 as above	"	
40	"	191.75	"	213	"	"	Hec. on chan. 9	L17 as above	"	
41	"	185.75	"	207	"		Rec. on chan. 8	L18 as above	"	
42	"	179.75	"	201	"		Hec. on chan. 7	L19 as above	"	
43	"	87.75	"	109	"	"	Rec. on chan. 6	L31 as above	Fig. 10	
44	"	81.75	"	103	"	"	Hec. on chan. 5	L21 as above	Fig. 12	
45	"	71.75	"	93	"	"	Rec. on chan. 4	L22 as above	"	
46	"	65.75	"	87	"	"	Hec. on chan. 3	L23 as above	"	
47	"	59.75	"	81	"	"	Hec. on chan. 2	124 as above		
48										
agc thatshold adjustment										
49	Not used		Not used		Pin 1, V106	Not used	Tune in station. clock without Adus gain without clipp	turn pix control ing sync on scope.	\|lic	Fig. 11   Fig. 18
HORIZONTAL OSCILLATOR ADJUSTMENT										
50	Short circuit terminals C and D of T109. Tune in a station.									
51	Turn hold control fully clockwise. Adjust T109 Frequency Adjustment until horizontal blanking bai appears in the picture.									
52	Turn hold control $1 / 4$ turn from clockwise to sync picture. Adjust widh (L115), linearity (L111) and drive (C153B) controts until picture is correct. Hepeat step 51 .									
53	Turn hold control fully counter-clockwise. Momentarily ramove signal. Turn hold control slowly clockwise. Note least number of bars betore puli-in. Adjust Locking Range Control (C153A) for 7 to 9 bar pull-in.									
54	Remove clip from terminals C and D of T109. Turn hold control fully clockwise. Adjust T109 Oscillator Waveform Adjustment until horizontal blanking bar appears in picture.									
55	Connect low capacity probe of ascilloscope to terminal C of Tl09. Turn hold control $1 / 4$ turn from clockwise. Adjust Tlog Oscillator Waveform Acijust ment until broad and sharp peaks of wave on oscilloscope are same height. Keep picture in sync with hold control during adjustment. Remove oscilloscope.									
56	Turn hold control fully counter-clockwise. Momentarily remove signal. Turn hold control slowly clockwise. Note least number of bars before pull-in Adjust Locking Range Control (C153A) tor 3 bar pull-in.									
57	Turn hold control fully clockwise. Adjust Tlog Freq. Adjustment until horizontal blanking appears as single vertical or diagonai bar in pix.									
4.5 MC Video trap adjustment										
${ }^{58}$ Tune in a strong station. Short T103 urap. 11 a 4.5 mc . beat appears in picture adjust 4.5 mc . trap (L110) until beat is eliminated.										
SENSITIVITY CHECK										
59	Connect antenna to receiver through attenuator pad to provide weak signal. Compare the picture and sound obtained to that obtained on other receivers under the same conditions.									



igure 12-R.F Oscillator Adjustments.

## © John F. Rider

If any lead dressing is necessary, it should be done belore aligning the receiver. When making a complete alignment follow
he table below in sequence. If only a portion of the circuit is to be aligned select the portion required and follow with the re maining steps in the section. Any adjustments made on the 455 kc . I.F's make it necessary to adjust the and follow with the re 10.7 mc. I.F's. "AM" R-F-I-F ALIGNMENT
Test-Oscillator.-For all alignment operations, connect low side of the test-osc. to the receiver chassis. and keep the osc. output
as low as possible to avoid a.v.c. action. Output Meter.-Connect the meter across the speaker voice coil. and turn the receiver as low as possible to
volume control to max.

Steps	Connest the High Side of the Test Osc. to-	$\begin{aligned} & \text { Tune Test Osc. } \\ & \text { to- } \end{aligned}$	Function Switch	Turn Radio Dial to	Adjust the following
1	Antenna terminal in series with 01 mid .	455 kc. Modulated	AM	Low Freq. end of Dial	${ }^{\dagger}$ Top and bot. cores of T301 and T302. (For max. voltage across voice coil.)
2	Ant. terminal through dummy ant. of 200 mmis .	$1,620 \mathrm{kc}$.	AM	Min. capacity	Osc. С308 for maximum output.
3		1.400 kc .	AM	Tune to signal	Ant. C304 for maximum output.
4		600 kc .	AM	600 kc .	Osc. L306 and Ant. L303.
5	Repeat steps 2, 3 and	um			

I Use alternate loading. Connect an $18.000 \cdot$ ohm resistor across the primary to load the plaie winding while the grid winding o RATIO DETECTOR ALIGNMENT

Steps	Connest the High Side of the Test Osc. to-	$\begin{aligned} & \text { Tune Test Osc. } \\ & \text { to- } \end{aligned}$	Function Switch	Radio Dial Tuned to-	Adjust
6	Pin No. 1 of 6AU6 (V303) in series with .01 mid .	10.7 mc.$30 \% \mathrm{AM}$ Modulated	FM	-	Top of T303 for maximum DC on 'voliOhmyst.'
7	Pin No. 1 of 6AU6 (V303) in series with .01 mid .		FM	--	Bottom of T303 for minimum audio output on meter.
8	Repeat steps 6 and 7 as necessary making final adjustment with r - f input level set to give approximately 3.0 volts d -c on "VoltOhmyst."				

FM" R-F-I-F ALIGNMENT

Steps	Connest the High Side of the Test Osc. to-	$\begin{aligned} & \text { Tune Test Osc. } \\ & \text { to- } \end{aligned}$	Function Switch	Radio Dial Tuned to-	Adjust
9	Terminal 3 of $\mathrm{S} 301-2$ rear through 270 ohms.	10.7 mc .	FM	88 mc .	- T301 and T302 for max. with r-f input set to give -3 volts on "VoltOhmyst."
10	Terminal 3 of $\mathrm{S} 301-2$ rear through 270 ohms.	106 mc .	FM	106 mc .	Set C302 to max. capacity. Squeeze L307 and adjust C302 for maximum.
11	$\begin{aligned} & \text { Terminal } 3 \text { of S301-2 rear } \\ & \text { through } 270 \text { ohms. } \\ & \hline \end{aligned}$	90 mc .	FM	Tune to signal	Squeeze L301 and rock gang for maximum output.
12	eat steps 10 and 11 as required.				

Use a 680 -ohm resistor to load the plate winding while the grid winding of the same transiormer is being peaked. Then the gric


Figura $2 n$-Chussis, Top View, Shouing Aldustmemes


Figur." 21-Dial und Drive Cord Assembly

## CRITICAL LEAD DRESS:

1. Ground lead on pin 2 of V 302 and V 303 should be dressed
down flat on chassis 2. Dual .005 mid, capacitors and diode filter should be dressed bottom of the
2. Dress C329 across V302 sockets with short and direct leads. 4. Dress V 302 plate lead from pin 5 down to the chassis.
3. Dress AVC lead from R321 to switch down to chassis and against back of gang mounting plate.
4. Dress lead from pin 6 of V305 down to chassis and against back of gang mounting plate
5. Dress AVC lead from Is I-F to switch against chassis and
against gang mounting plate.
6. Dress lead from switch to pin 1 of V301 against plate sup.
porting gang.
7. Dress all insulated F-M leads down to chassis
8. Connect C309 with short lead to pin 6 of V301 keeping
body of cap away from plate lead and switch terminals.
9. The coupling between L301 and L307 should be adjusted to give proper injection voltage to the mixer grid. This has
 form.
10. Dress cabled leads away from antenna transmission lines.
11. Dress all uninsulated bus wire so as to avoid short circuits.

Following is a list of symptoms of possible failures und an ind cation of some of the possible faults:

## NO RASTER ON KINESCOPE:

(1) Incorrect adjustment of ion trap magnet. Magnets reversed either front to back or top to bottom: front magnet incor rectly oriented.
(2) V112 or V113 inoperative. Check waveforms on grids and plates.
(3) No high voltage-If horizontal deflection is operating as ev denced by the correct waveform on terminal 4 of hori zontal output transformer, the trouble can be isolated to the 8016 circuit. Either the T110 high voltage winding is open
the 8016 tube is defective, its filament circuit is shorted, or R187 or R189 are open.
(4) Vill circuit inoperative-Refer to schematic and waveform chart.
(5) Damper tube (V114) inoperative.
(6) Defective kinescope
(7) R131 open
(8) No receiver plate voltage-filter capacitor shorted-bleede or filter choke open.

## no vertical deflection

(1) V107B or V110 inoperative. Check volhage and waveforms on grids and plates.
(2) T107 or T108 open.
(3) Vertical deflection coils open.

## SMALL RASTER:

(1) Low Plus B or low line voltage.
(2) V112 defective.

## poor vertical linearity

(1) If adjustments cannot correct, change V110.
(2) Vertical output transformer defective.
(3) V107B defective-check voltage and waveforms on grid and plate
4) C150, R164, C147B or C148C defective.
(5) Low bias or plate voltage-check rectifiers and capacitors in
supply circuits. supply circuits.

## POOR HORIZONTAL LINEARITY:

(1) If adjustments do not correct, change V112 or V114.
(2) T110 or Ll11 defective.
(3) C164 or C165 defective.

## Wrinkles on left side of raster:

1) R166, R167 or C169 defective.
(2) Defective yoke.
picture out of sync horizontally:
(1) T109 incorrectly tuned.
(2) R172, R173 or R174 defective.
trapezoidal on non.symmetrical raster:
(1) Improper adjustment of focus coil or ion trap magnet. (2) Defective yoke.
raster and signal on kinescope but no sound:
(1) R.F oscillator off frequency.
(2) Sound if. discriminator or audio amplifier inoperativecheck V116. V117, V118, V119, V120 and their socket voltages.
(3) T114 or C186 defective.
(4) Speaker defective.

Signal at kinescope grid but no sync:
(1) AGC threshold control R138 misadjusted.
(2) V105B, V107A. V108 or V109 inoperative. Check voltage and waveforms at their grids and plates.

Signal on kinescope grid but no vertical sync: (1) Check V107B and associated circuit-C145, T107, etc. (2) Integrating network inoperative-Check.
(3) R154. R155, R157, R158 or R159 defective.
signal on kinescope grid but no horizontal sync: (1) T109 misadjusted-readjust as instructed on page 11. (2) V111 inoperative-check socket voltages and waveforms. (3) T109 defective.
(4) $\mathrm{C} 140, \mathrm{C} 153 \mathrm{~A}, \mathrm{C} 154, \mathrm{C} 155, \mathrm{C} 156, \mathrm{C} 157$ or C 166 defective.
(5) If horizontal speed is completely off and cannot be adjusted check C158, C159, R172, R173. R174, R179 and R182.

SOUND AND RASTER BUT NO PICTURE OR SYNC:
(1) Picture i.f. detector or video amplifier inoperative-check V103. V104. V105 and V106-check socket voltages. (2) Bad contact to kinescope grid.
picture stable but poor resolution:
(1) V105A or V106 defective.
(2) Peaking coils defective-check for specified resistance.
(3) Make sure that the focus control operates on both sides of proper focus.
(4) R.F and I.F circuits misaligned.

## Picture smear

(1) R-F or I-F circuits miscligned
(2) Open peaking coil
(3) This trouble can originate at the transmitter-check on another station.

## PICTURE IITTER:

(1) ACC threshold control R138 misadjusted.
(2) If reqular sections at the left picture are displaced change

V112.
Iregular sections at the left picture are displaced change
.
（3）Vertical instability may be due to loose connections or noise．
（4）Horizontal instability may be due to unstable transmitted sync．
raster but no sound，picture or sync：
（1）Defective antenna or transmission line．
（2）R－F oscillator off frequency
（3）R－F unit inoperative－check V1，V2，V3
dark vertical line on left of picture：
（1）Reduce horizontal drive and readjust width and horizontal linearity
（2）Replace V112．
light vertical line on left of picture：
（1）C169 defective．
（2）V114 defective．

Conet te osilose acre the pinte detar load
Connect the oscilloscope across the picture detector load re－ sistor and observe the overall response．The response oblained will be essentially that of the unshunted stage．The effects of various traps are also visible on the stage response．
Figures 22 through 26 show the responses of the various stages obtained in the above manner．The curves shown are typical al－ though some variation between receivers can be expected．Rela－ live stage gain is not shown．


Figure ${ }^{\text {l＇ix }}$ 24－F Response of Thinsformer


Figure 27 －Response from Firs


Figure
Minimum Contrast

## 量少定

## $\frac{1}{2+1 i o}$

ideo Signal Input to lst Video Am plifier（Pin 2 of V106）（12AV7） Figure $31-V$ ertical（Oscilloscope
Synced to $1 / 2$ of Vertical Sweep Rate）${ }^{\prime 2}(5.4$ Volts PP） $\longleftarrow$
Figure $32-$ Horizontal（Oscilloscope Synced to $1 / 2$ of Horizontal
Sweep Rute）$(5.4$ Volts PP）

Sync Fied（Junction of L104，

Figure 33－Vertical（28 Volts PP）

Igure 34－Horizontal（28 Volts PP）

Input to 2nd Video Amplifier
$($ Pin 7 of V106）$(12 A L 7)$

Figure $35-$ Vertical（17 Volts PP）

Figure $36 \rightarrow$ Horizontal（ 17 Volts PP）

## 



## $\overline{\square 94 y}$

Output of 2nd Video Amplifier
（Junction of L105 and R127）


Figure $37-$ Vertical（96 Volts PP）

Figure 38 －Horizontal（96 Volts PP）

Input to Kinescope（Junction of R127 and R128）（Picture Max．）

Figure 39－Vertical（65 Volts PP）
， 4

Figure $40-$ Horizontal（ 65 Volts PP）




© John F. Rider

Circuit schematic diagram


## O John F. Rider



${ }_{\substack{\text { STOCK } \\ \text { No. }}}$	deschiption	$\underset{\substack{\text { STOCx } \\ \text { No. }}}{ }$	deschiption
	Capacitor-Tubular, paper, oil inpregnated, .0033 mid. Colts (C194)   Capacitor-Tubular, paper, oil impreqnated, $.0047 \mathrm{mid} .$, 600 volts (C143, C144, C145, C202)   Capacitor-Tubular. paper, oil impregnated, $.01 \mathrm{mld} ., 400$ volls (C135, C182, C195)   volis (C135, C182, C195)   Capacior-Tubular, moulded paper, oil impregnated, 01   mid., 600 volts (C159)   Capacitor-Tubular, moulded paper, 01 mfd.. 1000 volts   (C151. C152, C185)   Capacitor-Tubular, paper, oil impregnated. .015 mid .   600 volts (C204)   Capacitor-Tubular, moulded paper, oil impregnated, . 018 mid., 1000 volis (C164)   Capacitor-Tubular, paper, oil impreqnated,, $022 \mathrm{mid} ., 400$ volts (C15S)   Capacitor-Tubular, moulded paper, oil impreqnated, . 039   mid.. 1000 volts (C165)   Capacitor-Tubular, paper, oil impreqnated, $.047 \mathrm{mid} ., 400$ volis (C130, C139, C201, cl67)   volts (C130, C139, C201, Ć167)   Capacitor-Tubular, paper, oil impregnated. $.047 \mathrm{~m} / \mathrm{d} ., 600$   volis (C150, C156)   Capacitor-Tubular, paper, oil impregnated, $.047 \mathrm{mid} .$, 1000 volts (Cl63)   1000 volts (C163)   Capacitor-Tubular, paper, oil impregnated, $0.1 \mathrm{mid} ., 400$ volts (C149)   volts (C149)   Capacitor-Tubular, paper, oil impregnated, $0.1 \mathrm{mid} ., 600$ volis (C131) volis   Capacitor-Tubular, paper, oil impregnated, $0.22 \mathrm{mid} ., 200$ volts (C136. C157, C162)   Capacitor-Tubular. paper. oil impreqnated. $0.47 \mathrm{mid} ., 200$ volts (C133, C190. C197)   Choke-Filter choke (L104)   Coil-Focus coil (L118)   Coil-Horizontal linearity control coil (L111)   Coil-Width control coil (L115)   Coil-Peaking coil ( 36 muh) (L117, R110)   Coil-Peaking coil (93 muh) (L102)   Coil-Peaking coil ( 180 muh ) (L103. L105)   Coil-Peaking coil ( 250 muh ) (L106. L107, L114)   Coil-Filament choke coil (L101)   Connector-7 contact female connector (1103)   Connector- 2 contact male connector for power cord   Connectior- 3 contact female connector for cbangers cable   (1108)   Connector-4 contact female connector for speaker cable   (P101)   Connector-Anode connector   Connector-Hi-voltage capacitor connector   Connector-5 contact male connector (P107)   Control-Horizontal hold and vertical hold control (R158, R173)   Control-Picture and brightness control (R122, R131)   Control-Tone control, volume control and power switch (R205. R233. S101)   (R20S. R233. S101)   Control-Vertical linearity control (R162)   Control-Height control (RISS)   Control-Focus control (R191)   Control-AGC threshold control (R138)   Cord-Power cord and plug   Cover-Insulating cover for electrolytics Nos. 71432, 73581 and 73582 and 73582   Cushion-Rubber cushion for deflection yoke hood (2 re. quired)   Cushion-Rubber cushion for kinescope mounting   Fuse-0.25 amp. 250 volts (F101)   Grommet-Rubber grommet tor yoke horizontal lead exit   Grommet-Rubber qrommet for mounting ceramic tube socket (2   Grommet-Rubber grommet for mounting radio chassis (3 required)   Magnet-Ion trap magnet   Nut-Speed nut for mounting hi-voltage capacitor	$\begin{aligned} & 18469 \\ & 33514 \\ & 74598 \\ & 72067 \\ & 18471 \\ & 74049 \\ & 73588 \end{aligned}$	Plate-Bakelite mounting plate for electrolytics   Receptacle -2 contact female receptacle for audio cable and switching cable ( 1105,1106 )   Resistor-Wire wound, 2.7 ohms, $1 / 3$ watt (R187)   Resistor-Wire wound. 5.1 ohms, $1 / 2$ walt (R202)   Resistor-Wire wound, 10 ohms, $1 / 2$ watt (R190)   Resistor-Wire wound, 500 ohms, 20 watts (R230)   Resistor-Voltage divider, comprising 1 section of 850   ohms, 12 watts and 2 sections of 650 ohms, 6 watts R193A, R193B. R193C)   Resistor-Fixed, composition:   10 ohms. $\pm 20 \%, 1 / 2$ watt (R120)   10 ohms, $\pm 10 \%, 1 / 2$ watt (R225)   39 ohms, $\rightarrow 10 \%, 1 / 2$ walt (R120)   47 ohms. $\pm 50 \%, 1 / 2$ wall (R111)   47 ohms. $\pm 20 \%$, $1 / 2$ watt (R183)   68 ohms, $=10 \%, 1 / 2$ watt (R105)   68 ohms, $\pm 20 \%, 1 / 2$ walt (R123)   82 ohms, $\pm 10 \%, 1 / 2$ watt (R195)   100 ohms, $\pm 10 \%, 2$ watts (R184)   150 ohms. $\pm 5 \%, 1 / 2$ watt (R102)   150 ohms, $\pm 10 \%$, $1 / 2$ watt (R115)   150 ohms, $\pm 20 \%$, $1 / 2$ watt (R106, R109, R114, R214)   220 ohms. $\pm 10 \%, 1$ watt (R223)   270 ohms, $\pm 10 \%$, 1 watt (R206)   1000 ohms, $20 \%, 1 / 2$ watt (R103, R107, R108, R113, R116. R118, R165, Rly9)   R118, R165, Rly9)   1200 ohms. $\pm 10 \%$. $1 / 2$ watt (R196)   1800 ohms. $\rightarrow 10 \%, 2$ watts (R194, R208)   2200 ohms, $\pm 10 \%, 1 / 2$ watt (R219)   2200 ohms, $\pm 10 \%$, 1 walt (R192)   2700 ohms. $=10 \%$, $1 / 2$ watt (R161, R217)   3900 ohms. $\pm 5 \%$, $1 / 2$ watt (R112)   4700 ohms, $\pm 5 \%, 1 / 2$ watt (R126)   4700 ohms. $\pm 10 \%$, $1 / 2$ watt (R144)   5600 ohms, $\pm 5 \%, 1 / 2$ watt (R119)   5600 ohms. $\pm 10 \%$, $1 / 2$ watt (R141, R218)   5600 ohms, $\pm 10 \%$. I watt (R127)   6800 ohms. $\pm 5 \%$, $1 / 2$ watt (R136)   6800 ohms, $\pm 10 \%$, $1 / 2$ watt (R150)   6800 ohms, $45 \% .1$ walt (R128)   6800 ohms, $\pm 10 \%, 2$ watts (R177, R186, R210)   8200 ohms. $\pm 5 \%, 1 / 2$ watt (R164, R175)   8200 ohms. $\pm 10 \%$. $1 / 2$ watt (R152. R153. R171)   8200 ohms, $\pm 5 \% .1$ watt (R117)   10.000 ohms, $\pm 5 \%, 1 / 2$ watt (R104)   12,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R134, R209, R226)   12,000 ohms, $\pm 10 \%, 2$ watts (R124)   15,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R182, R211)   15.000 ohms, $\pm 10 \%, 1$ watt (R146)   22,000 ohms. $=10 \%, 1 / 2$ watt (R151, R156, R197, R220)   22,000 ohms, $\pm 20 \%$, $1 / 2$ walt (R198. R215)   27,000 ohms. $\pm 10 \%, 1 / 2$ watt (R143. R234)   39,000 ohms. $=5 \%, 1 / 2$ watt $\{$ R135\}   47,000 ohms, $\pm 10 \%, 1 / 2$ watt (R145)   47,000 ohms. $20 \%$. $1 / 2$ walt (R221)   $68.000 \mathrm{ohms} . \pm 10 \%, 1 / 2$ watt (R172)   100,000 ohms. $+5 \%$, 1/2 watt (R203, R204)   100,000 ohms, $-10 \%$, $1 / 2$ watt (R160, R216)   100.000 ohms, $\pm 10^{\circ}$. 1 watt (R179)   100,000 ohms, $20 \%$, 1 watt (R222)


$\underset{\substack{\text { STOCK } \\ \text { No. }}}{ }$	description	$\underset{\substack{\text { STOCK } \\ \text { No. }}}{ }$	description
	120,000 ohms, $\pm 5 \%$, 1 watt (R176)   120,000 ohms, $\pm 10 \%$, 1 watt (R174)   150,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R168)   150,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R142)   180,000 ohms, $\pm 10 \%, 1 / 2$ watt (R232)   180,000 ohms, $\pm 5 \%$. 1 watt (R178)   220,000 ohms, $\pm 10 \%, 1 / 2$ wall (R129, R154)   330,000 ohms, $\pm 10 \%, 1 / 2$ watt (R140, R200)   $470,000 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R137, R139, R180, R224,   R231)   470,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R207)   680,000 ohms, $\pm 10 \%, 1 / 2$ watt (R133, R212)   $820,000 \mathrm{ohms}, \pm 5 \%, 1 / 2$ watt (R169)   1 megohm, $\pm 10 \% \%$, $1 / 2$ wall (R247)   1 megohm, $\pm 20 \%, 1$ watt (R189, R227)   1.2 megohm, $\pm 5 \%, 1 / 2$ watt (R213)   1.5 megohm, $\pm 5 \%, 1 / 2$ watt (R157)   2.2 megohm, $\pm 10 \%$, $1 / 2$ wall (R130, R132, Ris9, R163)   2.7 megohm, $\pm 5 \%$, 1 watt (R170)   3.9 megohm, $\pm 10 \%, 1 / 2$ watt (R149)   6.8 megohm, $\pm 10 \%, 1 / 2$ watt (R125)   10 megohm, $\pm 10 \%, 1 / 2$ watt (R148)   10 megohm, $\pm 20 \%$, $1 / 2$ watt (R201)	71105   74017   73866   39044   39042   73867   33379   39396   48125   71922   39640	Trap-I-F trap (L116, C189)   Yoke-Deflection yoke (L108, L109, L112, L113, C169, R166, R167)   RADIO CHASSIS ASSEMBLIES RK 135D   Board-"Telv-Ant" terminal board (TB301)   Bracket-Drive cord bracket complete with two pulleys -R.H.   Bracket-Drive cord bracket complete with pulley-L.H.   Cable-Shielded cable complete with female connector (W307, W311)   Cable-Shielded cable complete with pin plug (W301, W302) W302)   Capacitor-Variable funing capaciter (C301, C302, C303, C3C4, C305, C307, C308)   Capacitor-Ceramic, 2 mmf . (C306)   Capacitor-Ceramic, 15 mmf (C312)   Capacilor-Ceramic, 47 mmf (C330)   Capacitor-Ceramic, 56 mmi . (C313)   Capacitor-Ceramic, 68 mml . (C310)   Capacitor-Ceramic, 100 mmf . (C322, C323)   Capacitor-Ceramic, 150 mmf . (C314)   Capacitor-Ceramic, 180 mmif. (C334, C338)   Capacitor-Mica, 330 mmi (C325, C326)
74416	Screw-No. $10-32 \times 13 / 4^{\prime \prime}$ cross recessed round head screw for kinescope retaining strap	$\begin{aligned} & 73748 \\ & 74009 \end{aligned}$	Capacitor-Ceramic, 1500 mmf . (C309)   Capacitor-Ceranic, dual, 4000 mmi ( (317, C319, C321)
$\begin{aligned} & 71456 \\ & 74601 \end{aligned}$	Screw-No. 8.32 wing screw for defiection yoke   Screw-No. $8-32 \times 3 / 8$ " cross recessed binder head screw for focus coil mounting (2 required)	$\begin{aligned} & 73473 \\ & 73747 \end{aligned}$	Capacitor-Ceramic, 5000 mmf ( (C318, C329)   Capacitor-Electrolytic, 2 mid., 50 velts (C328)
7602	Screw-No. $10-32 \times 11 / 4^{\prime \prime}$ cross recessed binder head screw for focus coil adjustment (3 required)		Capacitor-Electrolytic, 15 mid., 300 volts (C333)   Capacitor-Tubular, paper, .0025 mld , 400 volts (C332)
73388	Shield-Tube shield   Sleeve-Rubber sleeve	73961	Capacitor-Tubular, paper, $.003 \mathrm{mfd} ., 200$ volts (C327, C331)
73117	Socket-Tube socket, 7 pin, miniature	71553	Capacitor-Tubular, paper, C320, $\mathbf{C} 324$ ) Cas mid., 400 volts (C315,
729	Socket-Tube socket, 9 pin, miniature Socket-Tube socket, octal, water	71923	Capacitor-Tubular, paper, $.01 \mathrm{mid} ., 200$ volts (C335)
73249	Socket-Tube socket, octal, ceramic, plate mounted	71925	Capacitor-Tubular, paper, 01 mfd ., 400 volts (C311)
71508	Socket-Tube socket for 183GT/8016	71928	Capacitor-Tubular, paper, 02 mfd ., 200 volis ( ${ }^{\text {(C337) }}$
31364	Socket-Pilot lamp socket	72596	Capacitor-Tubular, paper, 05 mfd ., 200 volis ( C 336 )
74834	Socket-Kinescope tube socket	74455 74020	Capacitor-Tubular, paper, . 05 mid., 400 volts (C316)
73586	Spring-Compression spring used under centering control screws (3 required)		Coil-Oscillator coil-AM (L304, L305, L306)
74936	Spring-Suspension spring (coil type) for kinescope tube socket leads	$\begin{aligned} & 74024 \\ & 74025 \end{aligned}$	Coil-Antenna coil-FM (L301)   Coil-Oscillator coil-FM (L307)
745	Spring-Anode lead spring		Connector-7 contact male connector (P103)
74893	Strap-Kinescope retaining strap	12493	Connector-5 contact female connector (P107B)
74596	Supports-Bakelite supports ( 1 set) for mounting hi-voltage rectifier tube mounting plate	39153	Connector-4 prong male connector (P102)
741	Switch-Width selector switch (S104)	72953	Cord-Drive cord (approx. 42" overall)
741	Switch-Cabinet interlock switch (\$105)	74011	Filter-Diode filler, dual 200 mmt und 47,000 ohms (DF301)
749	Transiormer-Power transiormer, 115 volt, 60 cycles (T111)	74023	Resistor-Wire wound, 0.51 ohms, 1 watt (R323, R324)
74587	Transiormer-Vertical output transiormer (T108)		Resistor-Fixed, composition:
73569	Transtormer-Vertical oscillator transformer (T107)		10 ohms, $\pm 20 \%$, $1 / 2$ watt (R311)
74588	Transformer-Horizontal output and hi-voltage transformer (T110)		68 ohms, $\pm 20 \%$, $1 / 2$ watt (R308) 100 ohms, $\pm 20 \%, 1 / 2$ watt (R305, R317)
745	Transtormer-First pix, i-f transtormer (T101, C102, R101)		120 ohms, $\pm 10 \%$, $1 / 2$ watt (R314)
745	Trantiormer-Second pix, i.f transiormer (T102, C107)		680 ohms, $\pm 20 \%, 1 / 2$ watl (R310, R312)
74591	Transformor-Third pix, i-f transtormer (T103, C112)		1200 ohms. $\pm 5 \%$, $1 / 2$ watt (R319)
74592	Transtormer-Fouth pix, i.f transtormer (T104, C116)		3300 ohms, $\pm 5 \%$, $1 / 2$ wall (R320)
${ }^{7357}$	Transiormer-Filth pix, i.f transiormer (T106, C123, C124)		4700 ohms, $\pm 10 \%, 1 / 2$ watt (R333)
714	Transtormer-Sound i.f transiormer (T112, C173, C174)		10.000 ohms , $\pm 20 \%$, $1 / 2$ watl (R306)
71427	Transiormer-Sound discriminator transiormer (T113, C178, C179, C180)		15,000 ohms, $\pm 10 \%, 1 / 2$ watt (R304)
735	Transtormer-Horizorital oscillator transtormer (T109)		15,000 ohms, $\pm 20 \%$, $1 / 2$ wall (R315, R318)
735	Transformer-Antenna transformer complete with socket and bracket (T115, J102)		18,000 ohms, $\pm 10 \%, 1 / 2$ watt (R302)   27,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R307, R309)
735	Trap-4.5 mc trap (L110, C128)		39,000 ohms, $\pm 10 \%, 1 / 2$ watt (R322)
717	Trap-Sound trap (T105, C119)		68.000 ohms, $\pm 10 \%$, $1 / 2$ watl (R328)


$\begin{aligned} & \text { STOCR } \\ & \text { No. } \end{aligned}$		$\underset{\substack{\text { STOCK } \\ \text { No. }}}{ }$	description
	100,000 ohms, $\pm 10 \%, 1 / 2$ watt (R334)   150,000 ohms, $\pm 10 \%, 1 / 2$ watt (R325, R326, R329)   270,000 ohms, $\pm 10 \%, 1 / 2$ watt (R330)   470,000 ohms, $\pm 10 \%, 1 / 2$ walt (R331)   470,000 ohms, $\pm 20 \%, 1 / 2$ watt (R321)   1 mèqohm, $\pm 10 \%, 1 / 2$ watt (R327, R332)   2.2 megohm، $\pm 20 \%, 1 / 2$ watt (R303)   $3.9 \mathrm{megohm}, \pm 10 \% .1 / 2$ watt (R301)   22 megohm, $\pm 20 \%, 1 / 2$ watt (R316)   Shaft-Tuning knob shaft   Shield-Tube shield   Socket-Tube socket, 7 pin, miniature for V301, v304, V305   Socket-Tube socket, 7 pin, miniature for V302, V303   Socket-Dial lamp socket   Spring-Drive cord spring   Switch-Selector switch (S301)   Transformer-First i-f transtormer, dual (T301)   Transformer-Second i.f transtormer, dual (T302)   Transformer-Ratio detector transformer (T303)   Washer-" C " washer for tuning shaft (rear)   Washer-Spring washer for tuning shaft (iront)   Washer-Fibre washer to prevent drive cord slippage   speaker assemblies   92569-8W   RL-111-10   RMA-\#274   Cap--Dust cap   Cone-Cone complete with voice coil ( 3.2 ohms)   Connector-4 prong male connector (J101)   Speaker-12" P.M. speaker complete with cone and voice coil ( 3.2 ohms) less transformer and plug coil ( 3.2 ohms) less transformer and plug   Transiormer-Output transiormer (T114)   NOTE: 11 stamping in instruments does not agree with chove specker number, order replacement parts by referring to model number of instruments, number stamped on speaker and full description of part required.   miscellaneous   Back-Cabinet back   Bracket-Dial lamp bracket (2 required)   Bracket-Pilot lamp bracket   Button-Plug button for shipping bolts holes in $33 / 78$ changer motorboard (2 required)   Cablo-Shielded pickup cable complete with pin plug Cap-Pilot lamp cap   Capacitor-Tubular, paper, 002 mid., 400 volts (C402)   Catch-Bullet catch and strike   Cloth-Grille cloth for mahogany or walnut instruments   Cloth-Grille cloth for oak instruments   Connector-3 contact male connector for record changer power cable   Connector- $\mathbf{2}$ contact female connector for record changer power cable power cable   Cover-Mounting screw cover for required $\mathrm{S}_{\mathrm{S}}^{\mathrm{RPM}}$ changer ( 3 required)   Decal-Trade mark decal (RCA Victor)   Decal-Trade mark decal (Victrola)   Docal-Control panel function decal for mahogany or walnut instrumente   Decal-Control panel function decal for oak instruments Dial-Dial scale and bezel   Edging-Vinylite edging for metal mask		
			Glass-Satety
			Hinge-Lower hinge ior center
			Hinge-Upper hing
			Indicator-Station selector indicator
			Knob-Fine tuning knob-dark-for mahogany or walnu instruments (outer)
			Knob - Fine tuning
			Knob-Channel (inner)
			${ }^{\text {(inner) }}$ ( ${ }^{\text {a }}$
			Knob-Vertical hold control, brightness control or
			Knob-Vertical hold control, brighness control knob-lan-for oak instruments (outer)
			Knob-Tuning or seiector swit
			Knob-Tuning struments or selector switch knob-tan-
			Knob-Horizontal hold control, picture con control and power switch knob-dark-
			(inner)
			der) power switch knob-tan-for
			liot lamp-Mazda
			Nut-Toe nut to mount 45 RPM changer (3 required)
			(R402)
			Screw-No. $8.32 \times 1 / 2 "$ trimit head for door pull
			$\mathrm{S}_{\mathrm{F}}$
			${ }^{\text {Spring }} 74959$-Retaining spring for knobs
		3033	Spring-Retaining spring for knobs Nos. 74001
			$\underset{\text { quired) }}{\text { Spring-Spring clip }}$
			Spring-Conical
			Spring-Conical spr -L.H. (2 required
		7442	
			Stop-Door stop
			Stud-Locating stud for back cover (2 requirod)

obtain resistors lor which no slock number is given, order by stating type, value of resistance, tolerance and wattage.
The system of employing an asterisk before the stock number of new items has been discontirued.


The following adjustments are necessary when turning the
receiver on for the first time.
receiver on for the first time.

1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOL
UME control to approximately mid-position. 3. Set the STATION SELECTOR to the desired chan nel.
3. Adjust the FINE TUN. ING control for best sound
fidelity and SOUND VOLUME for suitable volume
4. Turn the BRIGHTNESS control fully counterclockwise pattern appears on the screen.
5. Adjust the VERTICAL hold control until the patte
Etope vertical movement.
6. Adjust the HORIZON TAL hold control until a pic ture is obtained and centered. 8. Turn the BRIGHTNESS control counterclockwise until
the retrace lines just disappear.
7. Adjust the PICTURE control for suitable picture con
trast.


Figure 1-Receiver Operating Control INSTALLATION INSTRJCTIONS
10. After the receiver has been on for some time. it may be necessary to readjust the FINE TUNING control slightly for
improved sound fidelity. mproved sound hidelizy.
11. In switching from one station to another, it may be
necessary to repeat steps numbers 4 and 9 .
tic Magniterate the Elec tric Magnifier, push the but-
ton on the remote cable on on the remote cable
13. When the set is turned on again after an idle period. it should not be necessary to
repeat the adjustments if the repeat the adjustments if the
positions of the controls have not been changed. If any adjustment is necessary. step number 4 is generally suffi-
14. If the positions of the it may be necessary to repeat it may be necessary to repeat
steps numbers 1 through 9 . 15. For radio operation 15. For radio operation
lurn the FUNCTION switch to AM or FM and tune in station with
control.
16. For phono. operation, urn the function switch to PH
or operation of the 78 rpm for operation of the
changer or to XPH for opera-
tion of the 45 rpm changer.

UNPACKING.-The TA129 receiver is packed complete with kinescope in a cardboard carton. To unpack, turn the shipping
carton on its side and tear open the carton bottom flaps. Fold the flaps up along the side of the carton and turn the carton back up. Lift the carton up and off the cabinet.
which will permit the cabinet to be moved about withou which will permit the cabinet to be moved about withou
stressing the cabinet joints. To remove the skid. take off the stressing the cabinet joints. To remove the skid, take off the
nuts from the two bolts that hold the cabinet on the skid With a man at each end of the cabinet. lift the cabinet of the skid.
The operating control knobs are packed in a paper bag and
tied to a crossmember in back of the cabinet. Remove the tied to a crossmember in back of the cabinet. Remove
bag and install the knobs on the proper control shatts.
From the rear of the cabinet remove the red bracket which From the rear of the cabinet remove the red bracket which
holds the RP168C record changer drawer in the closed position Slide the drawer out. From the top of the changer, remove the three filler plugs from over the motorboard mounting
screws. Loosen these three screws just enough to permit re screws. Loosen these three screws just enough to permit re
moval of two wooden shipping strips under the edge of the motorboard. Tighten the screws just enough to keep the moto
board springs trom rattling and replace the filler plugs.
Remove the red bracket which holds the 960282 changer
drawer in the closed position. Open the drawer and from the top of the changer. Remove the two shipping screws from the record changer motorboard. Insert two plugs from the bag of knobs into the holes in the motorboard
Remove the television compartment back.
Make sure that all tubes are in place and are firmly seated in their sockets.
Check to see that the high voltage lead is attrached to the
kinescope second anode connector socket on the bell tube.
Connect the antenna transmission line to the receiver anConnaect the terminals.
Plug the receiver power cord into a 115 volt a-c power
ource. Turn the power switch to the "on" position, the func-
tion switch to Tel, the brightness control three-quarters clock-
wise, and picture control counterclockwise.
ION TRAP MAGNET ADJUSTMENT.- Set the ion trap magnet approximately in the position shown in Figure 2 . Starting
trom this position immediately adjust the magnet by moving


Figure 2-Yoke and Focus Coil Adjustments it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the
raster is sighty above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure of the raster is clearly visible. Headjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maxi.
mum position with which good line focus can be maintained. deflection yore adjustment.-If the lines of the raster DEFLECTION YOKE ADJUSTMENT.- If the lines of the raster
are not horizontal or squared with the picture mask, rotate are not horizontal or squared with the picture mask. rotare
the effiection yoke untit this condition is obtained. Tighten the
yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to o lain a test pattern picture in order to make further cadjus
nents. See steps 3 through 9 of the receiver operating in tructions.
If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC threshold control is misadjusted, and the
roceiver is overloading, it may be impossible to sync the receiver
picture.
If the receiver is overloading, turn R138 on the rear apron see Figure ${ }^{\text {a }}$ ) clockwise
the picture can be synced.


Figure 3-Rear Chassis Adjustments
ChECK OF HORIZONTAL OSCILLATOR ALIGNMENT.-Turn he horizontal hold control to the extreme counter-clockwis position. The picture should remain in horizontal sync. Mo-
mentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clock wise slowly. The number of diagonal black bars will be gradually reduced and when only 3 bars sloping down-
ward to the left are obtained, the picture will pull into sync ward to the left are obtained, the picture will pull into sync
upon slight additional clockwise rotation of the control. Pull n should occur when the control is approximately 90 degrees from the extreme counter.clockwise position. The picture
should remain in sync for approximately 90 degrees of addishould remain in sync for approximately at the extreme clock-
tional wise position, the picture should be out of sync and should
show 1 vertical or diagonal black bar in the raster.
If the receiver passes the foregoing checks and the picture normal and stable, the horizontal oscillator is properly
aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Coil Adjustments.
ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold Control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the con-
rol from the pull-in point, it will be necessary to make the roll from the pull-in $p$ p
ollowing adjustments:
Horizontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the T109 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanki
bar in the raster
Horizontal Lock in Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momen-
arily remove the signal by switching off channel then back. Sowly turn the horizontal hold control clockwise and note the least number of d
picture pulls into sync.
If more than 3 bars are present just before the picture pulls If more than 3 bars are present just before the picture pulls
into syyc. adjust the horizontal locking range trimmer Cis3A slightly clockwise. If less than 3 bars are present. adjust
C153A slightly counter-clockwise. Turn the picture control C153A slightly counter-clockwise. Turn the picture control
counter-clockwise, momentarily remove the signal and recheck counter-clock wise, momentarily remove the signal and recheck
the number of bars present at the pull in point. Repeat this procedure until 3 bars are present.
Repeat the adjustments under "Horizontal Frequency Ad-
justment" and "Horizontal Locking Range Adjustment" justment". and "Horizontal Locking Range Adjustment" until
horizontal hold operates as outlined under "Check of Horiontal Oscillator Alignment" the oscillator is properly adjusted. If it is impossible to sync the picture at this point and the
AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment
graph " $A$ " procedure on page
under Horizontal Oscillator Wavertorm $A$ Adjustment may be omitred. FOCUS COIL ADJUSTMENTS.-The tocus coil should be ad-
justed so that there is approximately $1 / 4$ inch of space between justed so that there is approximately $1 / 1 /$ inch of space between
the rear cardboard shell of the yoke and the flat of the front lace of the locus coil. This spacing gives best average focus over the face of the tube. However, it may be necessary to hange this distance slightly in order to compensate for small
differences in strength of the permanent magnets in the coil. In order to prevent the beam from striking the neck of the kinescope. it is important that the axis of the hole through the
cous coil should be kept in accur axis
CENTERING ADJUSTMENTS.-Centering is obtained by loosening the two tocus coil mounting screws and sliding the
coil up or down or from side to side. If a corner of the raster shadowed check the position of the ion trap magnet. is shadowed, check the position of the ion trap magnet.
Slightly reposition it to eliminate the shadow and recenter the picture by sliding the coil. In extreme cases it may be necessary to adjust one or more of the focus coil compression ,
Recheck the position of the ion trap magnet to insure that naximum brilliance is obtained. It is important that the kine-
cope not be operated with the ion trap magnet adjusted for less than maximum brightness. To do so may cause injury to the tube.
PICTURE SIZE AND LINEARITY.-Connect the "Electronic Magnitier" switch to its socket on the rear apron of the chassis. Set the switch 10 the large (expanded) pitcture posi-
ion. Set the Expanded Width Selector Swith S104 to hon. Sel the Expanded Width Selector Switch S104 to the
counter-clockwise position and adjust the Expanded Width Control L120 so that the test pattern outer circle normally langent to the top of the picture is now tangent to the side of he picture. (If the width is not sufficient, set the Expanded
Width Selector Switch to the center or the clockwise end posi. tion.) Adjust the Horizontal Drive and the Horizontal Linearity Control until the pattern is symmetrical from left to right. In general, the core of the Linearity Control Coil should be be
tween $1 / 2$ to all the way out of the coil. Set the "Electronic Magnite" switch
Set the "Electronic Magnifier" switch to the normal size
position. Observe to see it the picture width is correct. It it is not. adjust either the series Width Control Coil L121. or
post She Shunt Width Control Coil LII15 until the picture is the
correct width. If the Series Width Coil core is out too tar the correct width. If the Series Widh Coil core is out too far, the
pitture will "ring" on the left half. This ring will be shown as one or more faint light or dark vertical bars somewhere on the left half of the picture with resulting poor horizontal
linearity. inearity
When the proper width is obtained, switch to the expanded
picture position, wait for a tow seconds picture position, wait for a lew seconds then switch back to
the normal position. Observe it the top of the picture immediately assumes its final position or if it takes several seconds to come to a stop. If the picture requires more than a second
to become still, adjust the core of L115 or L121 in and the othecome still, adjust the core of L115 or Lidh in and the
other out while maintaining the proper width. Repeat the above test and observe it the picture immediately comes to
rest when switched to the normal size position Continue to est when switched to the normal size position. Continue to
adjust L115 and L121 until this condition is satisfied and the adjust $L 115$ and 121 until this condition is satistied and the
picture is the proper width. Observe the picture horizontal pinerrity and if neceessary retouch Horizontal Drive, Linearity
and Width Controls L115 and L121.
With the "Electronic Magnifier" switch in normal position, ad-
just the Height (R155) and the Vertical Linearity control (R162) as usual in order to obtain good vertical linearity. In addition. if difficulty is experienced in obtaining good vertical linearity at the top one-half inch of the picture, slightly adjust
the Vertical Peaking Control L119.
Switch to the expanded picture position and note if the
proper aspect ratio is obtained. If not, adjust Lll2 and/or proper
S104. oscillator hold and locking range. If the
justed, recheck the oscillator alignment.

FOCUS.-Adjust the locus control (R191 on chassis rear epron) for maximum definition in the test pattern vertica AGC ThRESHOLD CONTROL. The AGC threshold control R138 is adjusted at the factory
quire readjustment in the field.
To check the adjustment of the AGC Threshold Control, tune in a strong signal. sync the picture and turn the picture con trol to the maximum clockwise position. Turn the brightness
control counter-clockwise until the vertical retrace lines are ust invisible. Momentarily remove the signal by switching oft hannel and then back. If the picture reappears immediately.
he receiver is not overloading due to improper setting of R 138 B . If the picture requires an appreciable portion of a second to eappear, R138 should be readjusted.
Set the picture control at the maximum clockwise position Turn RI38 fully clock wise. The top one-half inch of the picture
nay be bent slightly. This should be disreqarded. Turn R138 counter-clockwise until there is a very very slight bend change of bend in the top one-half inch of the picture. Then lurn R138 clockwise just sufficiently to remove this bend or覑
If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R138 counter-clockwise until the snow in the picture
becomes more pronounced, then clockwise until the best signal to noise ratio is obtained.
The AGC control adjustment should be made on a strong signal if possible. If the control is set too far counter.clockwise on a weak signal, then the receiver may overload when a
strong signal is received. chect of
CHECK OF R-F OSCILLATOR ADJUSTMENTS. Tune in all available stations to see if the receiver r . f oscillator is ad-
justed to the proper frequency on all channels. If adjustments are required. these should be made by the method outlined in the alignment procedure on page 10. The adjustments for
channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selectior escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kine-
scope well. See Figures 9 and 10 for their location.

~~~~


Losclilator qoustment
Figure 4 R-F Oscillator Adjustments
Replace the cabinet back and make sure that the screws are .
WEAK SIGNAL AREA OPERATION.-Since the vast majority of receivers are sold in strong signal areas. the chassis are
aligned to produce the cleanest piclures in those areas. How. ver, if the produce the cleanest pictures in those areas. How ever, if the receiver is to be operated in a weak signal area
better periormance can be obtained by "peaking" To peak the r-f unit in these receivers. disconnect the 390 ohm resistor which is on top of the r. 1 unit chassis. Adjust L66 to obtain the best possible picture on the weakest low channel It the peaked
signal area, the resistor R14 should isuently taken to a strong L66 adiusted for "flat" response on the low channels.

ChASSIS REMOVAL. To remove the chassis from the cabinet for repair or installation of a new kinescope, remove
he back and the knobs. unpluq all cables and remove the hassis bolts under the cabinet. Withdraw the chassis the the back of the cabinet. The kinescope is held on the chassis by means of a special strap. so that the chassis and the
KINESCOPE HANDLING PRECAUTION.-Do not install, re move, or handle the kinescope in any manner. unless shatter
prool gogqles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope Keep the kinescope away from the body while handling. To remove the kinescope. remove the kinescope socket, the
ion-trap magnet, and the second-anode connector. Loosen the cross-recessed head screw on the kinescope strap. Withdraw he kinescope toward the front of the chassis.
INSTALLATION OF KINESCOPE.-Slide the kinescope ushion loward the rear of the chassis. Loosen the deflectio yoke adjustment, slid
and tighten. and ilqen
The kinescope second anode contact is a recessed metal
well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees toward hig thage bon
Insert the neck of the kinescope through the deflection and
ocus coils. If the tube sticks. smoothly, investigate and remove the cause of the trouble. Do not iorce the tube
Slip the ion trap magnet assembly over the neck of the kinescope.
Connect the kinescope socket to the tube base socket.
Wipe the kinescope screen surface and front panal safety ass clean of all dust and finger marks.
As may be seen by inspection, the radio dial lights and dia pointer are attached to the cabinet firnt panel. The dial cord
is attached to the receiver chassis. The method of attachmen may be seen in Figure 5 .
Slide the dial pointer to the stop on the high frequency end of the dial. Turn the radio tuning shaft until the gang is com pietey unmeshed.
To replace the chassis in the cabinet, first tighten the cross ecessed head screw on the kinescope strap. Slide the chassis cable then attach the pilot light sockets to the pilot light bracket.
Insert the chassis to its proper position, then install the six chassis bolts and tighten. Lossen the kinescope strap
rom the rear of the chassis. Push the kinescope forward until the face of the tube is against the mask. Push the yoke cushion forward against the kinescope flare then tighten th cushion adjusting screws. Push the yoke forward and tig
Tighten the kinescope strap. Replace the control knobs.


Figure 5. Dial Cord and Pointer Assembly
To hook up the dial pointer, reach over the television chassis to the radio and press the dial cord well into the coil Turn the set on and to radio position to see that the dial lighting is correct. If it is not. adjust the dial lights and shields Tune in a station of known trequency and check the dial

CAbinet antenna. A cabinet antenna is provided which may be employed in strong signal areas in which no reflections are experienced. The antinna leads are brought out
near the receiver antenna terminal board. near the receiver antenna terminal board.
The link on the antenna terminal board
it is desirable to connect a separate " \(A\) " band antenna.


Figure 6 Chassis Tap View

TEST EQUIPMENT.-To service properly the television chas sis of this receiver, it is recommended that the following tes R-F Sweep Generator meeting the following requirements (a) Frequency Ranges
\[
20 \text { to } 30 \mathrm{mc} \text {.. } 1 \mathrm{mc} \text {. and } 10 \mathrm{mc} \text {. sweep wid }
\] 50 to 90 mc .. 10 mc . sweep width
70 to 225 mc ., 10 mc . sweep width
(b) Output adjustable with at least 11 volt maximum. (c) Outpul constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope.--For alignment puiposes. The os. cilloscope employed must have excellent low frequency and
phase response. and should be capalo of pasing phase esponse. and should be capable of passing a 60 -cycle
square quirement in not met by many commercial instruments. RCA
Oscilloscopes, types WO. 55 A WO . 58 A. W. Oscilloscopes. types WO-55A. WO-58A, WO. 79 A . and WO. 60 C fill the requirement and any of these may be employed. For video and sync wavelurm observations. the oscilloscope
must have excellent frequency and phase response from 10 cycles to at least two megacycles in all positions of the gain
contiol. The RCA ypes WO.58A and WO.79A are ideally control. The RCA types WO.58A and WO. 79 A are ideally
suited for this purpose. suited for this purpose
Signal Generator to provide the following frequencies with crystal accuracy
(a) Intermediate frequencies
19.75 mc . adjacent channel picture trap
21.25 mc . sound i - and sound traps
22.05 and 24.75 mc . conv. and first pix i.f trans.
25.9 mc . second picture i.f transformer
24.6 mc . fourth picture iff transformer
22.0 mc . third picture i.f transformer
22.5 mc . fifth picture i-f
25.75 mc . picture carrier
27.25 mc . adjacent channel sound trap
\begin{tabular}{|c|c|c|}
\hline & \({ }^{\text {Picture }}\) & Sound \\
\hline Number & Carrier
Freq. Mc. & Carrier \\
\hline 2. & .... 55.25 & 59.75 \\
\hline 3. & .... 61.25.... & 65.75 \\
\hline 4. & .... 67.25. & 71.75 \\
\hline & ... 77.25 & 81.75 \\
\hline \(6 . .\). & .... 83.25 & 87.75 \\
\hline 7. & . 175.25 & 179.75 \\
\hline 8 & .181.25 & 185.75 \\
\hline & . 187.25 & ...191.75 \\
\hline 10. & ...193.25 & ... 197.75 \\
\hline 11. & ...199.25 & ...203.75 \\
\hline 12. & ..205.25 & 209.75 \\
\hline 13. & . 211.25 & 215.75 \\
\hline
\end{tabular}
(c) Output on these ranges should be adjustable and at least
.1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the
signal generator is not crystal controlled. Electronic Voltmeter of Junior "Volloh voltage multiplier probe for use with this meter to permit
measurements up to 10 ky . measurements up to 10 kv .
Service Preccutions. -If possible, the chassis should be
serviced without the kinescope. However, if it is necesser serviced without the kinescope. However. if it is necessary
to view the raster during servicing. make sure the kinescop retaining strasp is secure. and the yoke cushion is up firmly against the flare of the tube.
CAUTION: Do not short the kinescope second-anode lead. Its short circuit current is approximately 3 ma. This represents
approximately 9 watts dissipation approximately 9 watts dissipation and a considerable over
load on the high voltage filter resistor H189.
wail circuits are the attention of the service technician. All othe require re.adjustment

The oscillator line is relatively non-critical. When oscillator tubes are changed, in all probability it will be necessary
ORDER OF ALIGNMENT.-When a complete receiver align ment is necessary, it can be most conveniently pertormed in (1) Sound discriminator
(2) Sound i-f transtormers (5) R-F and converter line
(3) Picture i.f traps (6) R-F oscillator line \(\begin{array}{ll}\text { (4) Picture if transiormers } & \text { (8) Sensitivily check }\end{array}\)
SOUND DISCRIMINATOR ALIGNMENT.-Set the signal gen erator for approximately .1 volt output at 21.25 mc . and con dir sound 1.1 grid.
Delune 1113 secondary (botom).
Set the "Voltohmyst" on the 3 -volt scale.
Connect the meter, in series with a one-megohm resistor, to the junction of diode resistors R203 and R204.
Adjust the ptimary of T 113 (top) for maximum output on th meter.
Connect the "Voltohmyst" to the junction of C183 and R203 Adjust T113 secondary (bottom). It will be found that it is
possible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage must go through zero. T113 (bottom) should be adjusted so that the meter in dicales zero output as ihe voliage swings from positive
Connect the sweep oscillator to the grid of the second sound 1 amplifie

Adjust the sweep band width to approximately 1 mc . with the center frequency at approximately 21.25 mc . and with
an output of approximately 1 volt. Connect the oscillo sold be
Connect the oscilloscope to the junction of \(\mathrm{Cl}_{1} 3\) and R203.
The pattern obtained should be similar to The pattern obtained should be similar to that shown in Figure
13. If it is not, adjust T113 (top) until the wave form is symmetrical.
The peak to peak band width of the discriminator should be approximately 350 kc . and the trace should be linear from 21.175 mc . to 21.325 mc

SOUND L-F ALIGNMENT.-Connect the sweep oscillator to the first sound i-f amplifier grid.
Connect the oscilloscope to the second sound i.f qrid return (terminal A of T112) in series with a 33,000 ohm isolating resistor.
Insert a 21.25 mc . marker signal from the signal generator into the first sound i-f grid.
Adjust T112 (top and bottom) for maximum gain and symmetry about the 21.25 mc . marker. The

The output level from the sweep should be set to produce approximately 3 volt peak-to-peak of the second sound igrid return when the final touches on the above adjustmen
are made. It is necessary that the sweep outpul voltage should not exceed the specified values otherwise the response curve will be broadened, permitting slight misadjustment to
pass unnoticed and possibly causing distortion on weak pass
signals. The band width at \(70^{\circ}\) or response from the first sound i-
grid to the second i.f grid should be approximately 200 kc .

PICTURE L.F TRAP ADJUSTMENT.-Connect the "Volt-
Ohmyst" to the junction of R135 and C190. Remove the 6SN7GT AGC Amplifier tube V107. Connect a
250,000 ohm potentiometer between pins 5 and 6 of the \(V 107\) 250,000 ohm potentiometer between pins 5 and 6 of the V107
socket. Adjust the potentiometer until the "VoltOhmyst" reads socket. Adjust the poten.
approximately -12 volts.
Set the channel switch to the blank position between chan
nels number 2 and 13 Connect the "VoltOhmyst" across the picture detector load
resistor R119. Under this condition. both leads of the meter are at approximately -120 volts. In making this oconnection. care should be taken not to touch the case of the meter or to

Connect the output of the signal generator to the grid of the
converter tube V2. To do this, remove the tube from the socket and fashion a clip by twisting one end of a small piece of leaving the end of the wire protruding from under the tube. leaving the end of the wire protruding from under the tube.
Connect the signal generator to this wire through a 1.500 mml
capacitor keeping the leads as short as possible.

Set the generator to each of the following frequencies and
with \(a\) thin fiber screwdriver tune the specified adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked agyinst a crystal calibrator
(1) 21.25 mc . - T103 (top) (4) 27.25 mc .-T104 (top)
2) 21.25 mc . T 105 (top) \(\quad\) (5) \(19.75 \mathrm{mc},-\mathrm{T} 106\) (top)
\(\begin{array}{lll}\text { (3) } 27.25 \mathrm{mc}-\mathrm{T} 102 \text { (top) } & \text { (6) } 19.75 \mathrm{mc}-\mathrm{T} 101 \text { (top) }\end{array}\)
In the above transformers using threaded cores. it is possible
to run the cores completely through the coils and secure two peaks or nulls. The correct position is with the cores in the outside ends of the coils. If the cores are not in the correct
position, the coupling will be incorrect and it will be impossible o secure the correct response.

PICTURE I.F TRANSFORMER ADJUSTMENTS.-Set the sig nal generator to each of the following frequencies and peak
he specified adjustment for maximum indication on the "Volt Ohmyst." During alignment, reduce the input signal if neces
.
22.5 mc .- 1106 (bottom)
\(24.6 \mathrm{mc}\). . T104 (bottom)
\(22.0 \mathrm{mc} .-\) T103 (botom
25.9 mc - - 1102 (bottom)
T1 and T101 are coupled by a link and in combination con-
stitute an overcoupled transformer. The characteristics of such a transformer are such that it is impossible to adjust it to \(a\) single trequency.
To sweep align T 1 and T 101 , connect a 330 ohm composition
resistor across the primary coils of T 102 . T103. T104 and T 106 . Connect the "Voltohmyst" to the junction of R133 and C190,
Adjust the 250.000 -ohm variable resistor for -2.0 volts on the Adjust
meter.
Connect the oscilloscope to the plate of the first video ampli-
fier, pin 1 of V106. Connect a sweep generator to the converter grid through a
1.500 mmi capacitor. Set the generator to sweep from 20.0 mc. to 30.0 mc . and adjust the geutput to provide a 4 .volt peak. ignal on the scope
Connect the signal generator loosely to the converter grid
and tune it to provide markers at 22.05 mc . and 24.75 mc . Adjust T 1 (top) and Tl 101 (botom) to obtain the response
shown in Figure 15 . The Tl core must penetrate to the shown in Figure the 1 il core must penetrate to the
erminal-board end of the coil in order to obtain the correct esponse.
Remove the 330 ohm resistors from across T102, T103. T104
and T106. Adjust the 250.000 -ohm potentiometer for a 15 -volt peak.topeak signal at the plate of the first video amplifier. The bias
as measured by the "Voltohmyst" should be -12.0 volts or as measured by the "VoltOhmyst" should be -12.0 volts or
less.

Observe and analyze the response curve obtained. The re
sponse will not be ideal and the i-f adjustments must be re sonse will not be ideal and the i.f adjustments must be re-
buched in order to obtain the desired curve. See Fiqure On final adjustment the picture carrier marker On final adjustment the picture carrier marker must be al
approximately \(45 \%\) response. The curve must be approxi. natel flat opped, with the 22.1 mc. marker at approxi.
mately \(95 \%\) response and the 25.0 mc. marker bexow mately \(95 \%\) response and the 25.0 me. marker below
\(30 \%\) response. A 26.5 mc . marker must fall between 5 and \(10 \%\) response. The most important consideration in making the i-f adjust-
ments is to get the picture carrier at the \(45 \%\) response point.
If the picture carrier operates too low on the response curve. Ioss of low frequerncy video response. of picture brilliance, of blanking, and of sync may occur. If the picture carrier op-
erates too high on the response curve, the picture becomes rates too high on the response curve, the picture becomes
meared. In making these adjustments, care should be taken one se that ma two transionmers are tuned to the same fre.
ouency as i.t oscillation may result. quency as i . 1 oscillation may result.
Remove the converter tube and take off the clip to pin num.
ber 1. Replace tine tube in the socket.
Picture I-F Oscillation. If the receiver will operate without in oscillation or becomes unstable with thened but breaks nected, it may become necessary to establish a ground plane. over the lest bench with a sheet of copper and set the cha himysl" on the sheet and bond or bypass them to it. unior "Voltohmyst" should not be bonded to the sheet since he negative test probe is not always connected to ground during alignment. If the receiver is badly misaligned and two
or more of the i -f transformers are tuned to the same fre quency. the receiver may fall into iit oscillation. IT.- oscilla-
tion shows up as a voltage across the picture detector load ion shows up as a voltage across the picture detector loa
esistor that is unaffected by \(r\) rf signal input. If such \(a\) cond tion is encountered. it is sometimes possible to stop oscillation by adjusting the transformers approximately to frequency by
setting the adjustment cores of T101. T102. T103. T104. T105 and T106 to be approximately equal to those of another re-
ceiver known to be in proper alignment. If this does not have ceiver known to be in proper alignment. II this does not have edesired effect, it may now be possible to stop oscillation align the transtormers by the usual method. Once aligned this manner, the i.t amplifier should be stable with reduced

If the oscillation cannot be stopped in the above manner. shunt the grids of the first three pix i.f amplifiers to ground
with \(1.000 \mathrm{mmf}\). . capacitors. Connect the signal generator to
the fourth pix i .f grid and align T106 to trequency Propres. he lourth pix i.f grid and align T106 to frequency. Progres.
ively remove the shunt from each grid and align the plate sively remove the shunt from e.
coil of that stage to frequency.
If this does not stop the oscillation, the difficulty is not due i. if misalignent as the i.f section is stable when properly
aligned. Check all i.f by-pass condensers. transformer shuntaligned. Check all i.f by-pass condensers, transiormer shunt
antenna. b-f and converter line adjustment. order to align the r -f tuner, it will first be necessary to set the
channel-13 oscillator to frequency. The shield over the bottom of the rf unit must be in place when making any adjustments. The channel-13 oscillator may be aligned by adjusting it to
beat with a crystal-calibrated heterodyne frequency meter, or beat with a crystal.calibrated heterodyne frequency meter, or
by feeding a signal into the receiver at the r-f sound carrier requency and adjusting the oscillator for zero output from the
requer sound discriminator. In this lattere care the sound discriminator
must first have been aligned to exact frequency. Either method must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used
will depend upon the type of test equipment available. Re. gardless of which method of oscillator clignment is used. the If the receiver oscillator is to be adjusted by the heterodyne
frequency meter method. couple the meter probe loosely to the eceiver oscillator.
If the receiver oseillator is adjusted by feeding in the r-1
sound carrier signal. connet the signal generator to the reeiver antenna terminais. Connect the "Voltohmyst" to the
ound discriminator output (junction of C183 and R203). Set the receiver switch to 13

Adjust the frequency standard to the correct frequency
(237 mc. for heterodyne frequency meter or 215.75 mc . for the signal generato
Set the fine tuning control to the middle of its range Adjust C 6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator,
Now that the channel-13 oscillator is set to frequency, we may proceed with the r- alignment
Connect the "Voltohmyst" to the junction of R135 and C197. ene
Remove the first pix i.f amplifier tube V10
Connect the oscilloscope to the test connection at R13 in the r -f tuning unit.
Connect the \(r\)-f sweep oscillator to the receiver antenna terminals. The method of connection depends upon the out
put impedance of the sweep. The P102 connections hor 300 put impedance of the sweep. The Plo2 connections for 300
ohm balanced or 72 -ohm single-ended input are shown the circuit diagram in Figure 74 . If the sweep oscillator has 50 -ohm single-ended output. 300 -ohm balanced output can be
obtained by connecting as shown in Figure 8 .


Figure 8-Unbalanced Sweep Cable Termination
Connect the signal generator loosely to the receiver antenna erminals.
Since channel 7 has the narrowest response of any of the ed first.
et the receiver channel switch to channel
Set the sweep oscillator to cover channel 7 .
Insert markers of channel 7 picture carrier and sound carrier 175.25

Adjust C10 and C14 until the curve falls symmetrically to give the proper bandwidth. Roughly peak L6 in conjunction with slight adjustments of C10 and C14 for a flat-topped response curve with the sound and picture carriers at \(90 \%\) \(1095 \%\) rem Switch minimum top slope of the curve. and minimum top slope of the curve.
Check the response of channels 7 through 13 by switching
the receiver channel switch, sweep oscillator and marke oscillator to each of these channels and observing the response obtained. See Figure 17 for typical response curves. It should be found that all these channels have the proper shaped
response with the markers above \(80 \%\) response. If the
markers do not fall within this requen response win the markers at fall within this requirement on one. or more
mark frequency channels, since there are no individual channel
hith high frequency channels, since there are no individual channel
adjustments, it will be necessary to readjust L6. C10, C11 and C14, and possibly compromise some channel slightly in order to get the markers up on other channels. Normally.
however. no difticulty of this type should be experienced since the higher trequency channels are comparatively broad and
the markers easily fall within the tequird rand the markers easily fall within the required range.
the
Channel 6 is next aligned in the same manner
Set the receiver to channel \(b\).
Set the sweep oscillator to cover channel 6 .
Set the marker oscillator to channel 6 picture and sound Ader 29.
Adjust L9, L13, L66, and C12 for an approximately flat
topped response curve located symmetrically between the opped response curve located symmetrically between the ments. C12 is the band-width adjustment.

Check channels 5 down through channel 2 by switching the receiver. sweep oscillator and marker oscillator to each the markers should be above the \(80 \%\) response point. If his is not the casse, L. L9. L13, LL6 G and C12 should be retouched.
On final adjustment. all channels must be within the \(80 \%\) specification.
Disconnect the 250 K pot., and replace V107 and V101
Following an r-f alignment, the oscillator alignment must be
checked. hecked.
R-F OSCILLATOR LINE ADJUSTMENT. The r-f oscillator calibrated he heterodyne by adjequency meting it or beat with a crystal feeding a signal into the receiver at the r-f sound carrier frequency and odjustIn this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon
he type of test equipment available.
Hegardless of which method of oscil
Regardless of which method of oscillator alignment is used,
the frequency standard must be crystal controlled or calibrated. the frequency standard must be crystal controlled or calibrated.
the receiver oscillator is to be adjusted by the heterodyne frequency meter method, the calibration frequency listed under

If the receiver oscillator is adjusted by feeding in the r-1
sound carrier frequency, the frequencies listed under Sound
Carrier Frea must bequale Carrier Freq. must be available.
\begin{tabular}{|c|c|c|c|}
\hline Channel Number & \begin{tabular}{l}
Receiver \\
R-F Osc. \\
Freq. Mc.
\end{tabular} & R-F Sound Carrier Freq. Mc. & Channel Oscillator
Adjustment \\
\hline & .... 81. & . 59.75.. & L24 \\
\hline \multicolumn{4}{|l|}{3.................. 87.................65.75................L23} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline & . 201 & 179.75 & \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline
\end{tabular}

If the heterodyne frequency meter method is
the meter probe loosely to the receiver oscillator.
If the r-i. sound carrier method is used, connect the "Volt-
Ohmyst" to the sound discriminator output (junction of C183 and R203) and connect the signal generator to the receiver antenna terminals. The order of alignment remains the same It the \(r\) r.f unit is removed from the receiver for service and is
aligned separately, the shield over the bottom of the \(x-1\) unit
must be in place when making adjustments. must be in place when making adjustments.
Since lower frequencies are obtained by adding steps of
nductance, it is necessary to align channel 13 first and connductance, it is necessary to alit,
linue in reverse numerical order.
Set the receiver channel switch to 13.
Adjust the frequency standard to the correct frequency \({ }^{237}\)
nc. for heterodyne frequency meter or 215.75 mc. for the mc. for heterodynn
signal generator).

Set the fine tuning control to the middle of its range while ang the adjustmen.
Adjust C6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator. Oscillator ontrol adjustments and shown on the schematic are fo touched in the field. Switch the receiver to channel 12 .
Set the frequency standard to the proper frequency as sted in the alignment table.
Adjust L14 for indications as above.
Adjust the oscillator to frequency on all channels by switch ing the receiver and the frequency standard to each channel
and adjusting the appropriate oscillator trimmer tor the speci-
fied indication. It should be possible to adjust the oscillato to the correct frequency on all channels with the fine tunin

After the oscillator has been set on all channels, start back at channel 13 and recheck to make sure that all adjustments
agC threshold adjustment.-The agC threshold ad justment can be made by the method outlined in the Installa tion Instructions, However, a more accurate adjustment ca

Tune in a slation and advance the picture control to the maximum clockwise position. Connect the low capacity probe pin 1 of Vloc. Adjust the oscilloscope to observe the horizontal sync pulse.
Turn the AGC threshold control R138 fully clockwise, then slowly counter-clockwise. As the control is lurned counter
clockwise, the the size of the pattern on the oscilloscope. R138 should be furned counler-clockwise until the receiver begins to overload as indicated by clipping of the sync. The control should be sync is obmerved. See Figure 18 for proper waveforms.

HORIZONTAL OSCILLATOR ADJUSTMENT.-Normally, the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator waveform adjustment requires the use of an oscilloscope, it
can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not re quire readjustment in the field. However, the waveform ad justment should be checked whenever the receiver is aligned

Horizontal Frequency Adiustment-With a clip circuit the coil between terminals \(C\) and \(D\) of the horizontal oscillator transtormer T109. Tune in a television station and sync the picture if possible.
A.-Turn the borizontal hold control R173 to the extreme clockwise position. Adjust the T109 Frequency Adjustment (under the chassis) so that the picture is just out of sync and The position of the bar is unimportant.
B.-Turn the hold control approximately one quarter of a furn from the extreme clockwise position and examine the is incorrect, adjust the horizontal drive control C153B, the width controls, and the linearity control L111 as outlined on page 4 until the picture is correct. If CIS3B was adjusted. repeat step \(A\) above.
Horizontal Locking Range Adjustment--Turn the horizontal hold control fully counter-clockwise. Momentarily remove the horizontal hold control chackwise then back. Slowly turn the of diagonal bars oblained just before the picture pulls into sync.
It more than 9 bars are present just before the picture pulls into sync. adjust the horizontal locking range trimmer Clis3A slighty clockwise. If less than 7 bars are present, adjust
C153A slightly counter-clock wise. Turn the horizontal hold C153A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and Repeat the procedure until 7 to 9 bars are present.
Horizontal Oscillator Wavelorm Adjustment.-Remove the horting clip from terminals C and D of T109. Turn the horia thin fibre screwdriver, adjust the Oscillator Waveform Adustment Core of T109 (on the outside of the chassis) until the horizontal blanking bar appears in the raster.

ALIGNMENT PROCEDURE
A.- Connect the low capacity probe of an osciloseope to rerminal C of T109. Turn the horizontal hold control one quarter turn from the clockwise position so that the picture
is in sync. The pattern on the oscilloscope should be as shown in Fiqure 19. Adjust the Oscillator Wavetorm Adjustment Core of T109 until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by eadjusting the hold control if necessary.
This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the
other hand, if the broad peak is higher than the sharp peak. the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clock wise position.
Remove the oscilloscope upon completion of this adjustment. Check of Horizontal Oscillator Adiustments.-Set the hori zontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then
back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just betore the picture pulls into sync.
If more than 3 bars are present just betore the picture pulls
into sync, adjust the horizontal locking range trimmer Clis3A slighty clockwise. If less than 3 bars are present. adjust Cli53A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and
recheck the number of bars present at the pull-in point. Repeat this procedure until 3 bars are present.
Turn the horizontal hold control to the maximum clockwise position. The picture should be just out of sync to the extent
that the horizontal blanking bar appears as a single vertical diagonal bar in the picture. Adjust the T109 Frequency Adjustment until this condition is fulfilled.
4.5 MC VIDEO TRAP.-With a strong input from a station very short clip lead short the trap winding of TlO3 With serve the picture for the appearance of a 4.5 mc . beat. If the beat appears in the picture, adjust L110 until the beat is

SENSITIVITY CHECK.-A comparative sensitivity check can made by operating the receiver on a weak signal from atelevision station and comparing the picture and sound conditions.
This weak signal can be obtained by connecting the shop The number of stages in the a ladder type attenuator pad. trength available at the antenna. A sufficient the signal stages should be inserted so that a somewhat less than ormal contrast picture is obtained when the picture control at the maximum clockwise position. Only carbon type
,
RESPONSE CURVES.-The response curves shown on page and referred to throughout the alignment procedure were aken from a production set. Although these curves are

The response curves are .shown in the classical manner o the left. The manner in which they will be seen in \(\alpha\) given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be
seen inverted and/or switched from lift to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator
ALIGNMENT TABLE.-Both methods of oscillator alignment are presented in the alignment table. The service teccnici
may thereby choose the method to suit his test equipment.


Figure 10-Bottom Chassis Adjustments


Figure 11-Test Connection Points


Figure 12-R.F Oscillator Adjustments

\(\underset{\text { Discriminator }}{\substack{\text { Figure } 13}}\) Discriminator
Response

Figure 15
Ti and Tli01
Response

Figure 14
Sound I.F Sound I.F
Response

Fizure
Overall I-F Overall I.F
R-F Response


Figure 17-R.F Response


Figure 18-AGC Threshold Adjustment Waveforms
\[
\begin{aligned}
& \text { C } \underbrace{\text { CORRECT }}_{\text {CVBB }}
\end{aligned}
\]

Figure 19-Horizontal Oscillator Waveforms


RADIO ALIGNMENT PROCEDURE
If any lead dressing is necessary, it should be done before aligning the receiver. When making a complete alignment follow maining sleps in the section. Any adjustinents made on the 455 kc . I-'s make it necessary to adjust the and follow with the 10.7 mc. I . F 's.
"AM" R-F-I-F ALIGNMENT
Test.Oscillator.-For all alignment operations, connect low side of the test-osc. to the receiver chassis, and keep the osc. output Test.Oscillator.-For all alignment operations, connect low side of the test.osc. to the receiver chassis, and keep the osc. outpur
as low as possible to avoid av-c action. Output Meter.-Connect the meter across the speaker voice coil. and turn the receive volume control to max.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Connect the High Side of the Test. Osc. to-- & Tune Test Osc. & Function Swith & Turn Radio Dial to- & Adjust the following \\
\hline 1 & Antenna terminal in series with 01 mid. & \begin{tabular}{l}
455 kc. \\
Modulated
\end{tabular} & AM & Low Freq. end of Dial & †Top and bot. cores of T301 and T302. (For max. voltage across voice coil.) \\
\hline 2 & \multirow{3}{*}{Ant. terminal through dummy ant. of 200 mmfs .} & 1.620 kc . & AM & Min. capacity & Osc. C308 for maximum output. \\
\hline 3 & & 1.400 kc . & AM & Tune to signal & Ant. C304 for maximum output. \\
\hline 4 & & 600 kc . & AM & 600 kc . & Osc. L306 and Ant. L303. \\
\hline 5 & \multicolumn{5}{|l|}{Repeat steps 2,3 and 4 for maximum output.} \\
\hline
\end{tabular}
+ Use alternate loading. Connect an 18,000 - ohm resistor across the primary to load the plate winding while the grid winding of the RATIO DETECTOR ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Connect the High side of the Test. Osc. to- & Tune Test Osc. & Function Switch & Radio Dial Tuned to- & Adjust \\
\hline 6 & \multirow[t]{2}{*}{Pin No. 1 of 6AU6 (V303) in series with .01 mld . Pin No. 1 of 6AU6 (V303) in series with .01 mfd .} & \multirow[t]{2}{*}{10.7 mc.
\(30 \% \mathrm{M}\) Modulated} & FM & - & Top of T303 for maximum DC on "VoliOhmyst." \\
\hline 7 & & & FM & - & Bottom of T303 for minimum audio output on meter. \\
\hline 8 & \multicolumn{5}{|l|}{Repeat steps 6 and 7 as necessary making final adjustment with r-f input level set to give approximately -3.0 volts d-c on "VoltOhmyst."} \\
\hline
\end{tabular}
"FM' R-F-I-F ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Connect the High Side of the Test. Osc. to- & \[
\begin{aligned}
& \text { Tune Test Ose. } \\
& \text { to- }
\end{aligned}
\] & Function Switch & Radio Dial Tuned to & Adiust \\
\hline 9 & Terminal 3 of S301-2 rear through 270 ohms. & 10.7 mc . & Fm & 88 mc . & -T301 and T302 for max. with r-f in put set to give -3 volts on "Volt Ohmyst.' \\
\hline 10 & Terminal 3 of S301-2 rear through 270 ohms. & 106 mc & FM & 106 mc . & Set C302 to max. capacity. Squeeze L307 and adjust C302 for maximum. \\
\hline 11 & Terminal 3 of 5301.2 rear through 270 ohms. & 90 mc . & FM & Tune to signal & Squeeze L301 and rock gang for maximum output. \\
\hline 12 & \multicolumn{2}{|l|}{Hepeat steps 10 and 11 as required.} & & & \\
\hline
\end{tabular}

Use \(a 680\)-ohm resistor to load the plate winding while the grid winding of the same transtormer is being peaked. Then the
grid winding is loaded with 680. ohm resistor while the plate winding is being peaked.


Figure 20-Chassis, Top View, Showing Adjustments


Figure 21-Dial and Drive Cord Assembly

\section*{CRITICAL LEAD DRESS}

Ground lead on pin 2 of V302 and V303 should be dressed
down flat on chassis. down lat on chassis.
Dual 005 midd. capacitors and diode filter should be Dress C329 across V302 of the cabinet
Dress V302 plaie lead sockets with short and direct lead.
Dres AVC
5. Dress AVC lead from R321 to switch down to chassis and
against back of gang mounting plate.
6. Dress lead from pin 6 of \(v 305\) down to chassis and against back of gang mounting plate.
7. Dress AVC lead from 1 st I.F to switch against chassis and
against gang mounting plate.
8. Dress lead from switch to pin 1 of V301 against plate sup porting gang.
9. Dress all insulated F.M leads down to chassis.
10. Connect C309 with short lead to pin 6 of V301 keeping

The coupling between L301 and L307 should be adiut to give proper injection voltage to the mixer grid. This has been found to be correct when the distance between ad
jacent end turns is \(3 / a^{\prime \prime}\) to \(\overline{7} / \mathrm{sin}^{\prime \prime}\) measured at top of the jacent
form.
2. Dress cabled leads away from antenna transmission linet

\section*{SERVICE SUGGESTIONS}

Following is a list of symptoms of possible failures and a
no raster on kinescope
(1) Incorrect adjustment of ion trap magnet. Magnets reversed either front to back or top to bottom; front magnet inco
(2) V112 or V113 inoperative. Check waveforms on grids and
plates
(3) No high voltage-1t horizontal deflection is operating as
evidenced by the correct waveform on terminal 4 oo horizontal oulput transtormen, the trouble can be isolated
to the 8016 circuit. Either the T110 high voltage winding to the 8016 circuit. Either the T110 high voltage winding is open, the 8016 tube is defective, its filament
open. C168 is shoried, or R187 or R189 are open.
(4) V111 circuit inoperative-Reeer to schematic and wavetorm chart.
(5) Damper tube (V114) inoperative.
(6) Defective kinescope.
(7) R131 open.
(8) No receiver plate voltage-filiter capacitor shoried-bleede or filter choke open.
no vertical deflection:
(1) V107B or V110 inoperative. Check voltage and wave forms on grids and plates.
(2) T107 or T108 open.
(3) Vertical deflection coils open.

\section*{Small raster}
(1) Low Plus B or low line voltage.
(2) V112 defective.
poon vertical linearity
(1) If adjustments cannot correct. change V110
(2) Vertical output translormer defective.
(3) V107B defective-check voltage and wavetorms on grid and plate.
(4) C150, R164, C147B or C148-C defective
(5) Low bias or plate vollage-check rectifiers and capacitors
in supply circuits.

\section*{POOR horizontal linearity}
(1) It adjustments do not correct, change V112 or V114
(2) T110 or L111 defective
(3) C 164 or C 165 defective

Wrinkles on left side of raster
(1) R166, R167 or C169 defective.
(2) Defective yoke.

PICTURE OUT OF SYNC hORIZONTALLY
(1) T109 incorrectly tuned.
(2) R172. R173 or \(\mathrm{F} 174^{\circ}\) defective.
thapezoidal or non.symmetrical raster
(1) Improper adjustment of focus coil or ion trap magnet. (2) Defective yoke.
haster and signal on kinescope but no sound:
(1) R-F oscillator off frequency.
(2) Sound i.f. discriminator or audio amplifier inoperative-
check V116, V117, V118, V119, V120 and their socket Check V1
voltages.
(3) T114 or C186 defective.
(4) Speaker defective.
signal at kinescope ghid but no sync:
(1) AGC threshold control R138 misadjusted.
(2) V105B, V107A, V108 or V109 inoperative. Check voltage and wavelorms at their grids and plates.
signal on kinescope grid but no vertical sync: (1) Check V107B and associated circuil-C145. T107, etc. (2) Integrating network inoperative-Check.
(3) R154, R155, R157, R158 or R159 defective.

SIGNAL ON KINESCOPE GRID but No horizontal sync: (1) T109 misadjusted-readjust as instructed on page 11 (2) V111 inoperative-check socket voltage and waveforms. (3) T109 defective.
(4) C140, C153A, C154, C155, C156, C157 or C166 defective. (5) It horizontal speed is completely, off and cannot be ad-
justed check C158, C159, R172. R173. R174, R179 and R182.

\section*{SOUND and ras"er but no picture or sync:}
(1) Picture i.f, detector or video amplifier inoperative-check
V103, V104, V105 and V106-check socket voltages. 2) Bad contact to kinescope grid.
picture stable but poop resolution
(1) V105A or V106 defective
(2) Peaking coils defective-check for specified resistance,
(3) Make sure that the focus control operates on both sides of proper focus.
(4) R-F and I.F circuits misaligned

\section*{picture smear:}
1) R.F or I.F circuits misaligned.
(2) Open peaking coil
(3) This trouble can originate at the transmitter-check on

\section*{PICTURE JITTER:}
(1) AGC threshold control R138 misadjusted
(2) If regular sections at the left picture are displaced change
(3) Vertical instability may be due to loose connections or DARK VERTICAL line on left of picture:
noise
(4) Horizontal instability may be due to unstable transmitted
sync. sync.

RASTER BUT NO SOUND, PICTURE OR SYNC:
(1) Defective antenna or transmission line.
(2) \(\mathrm{R}-\mathrm{F}\) oscillator off frequency.
(1) Reduce horizontal drive and readjust width and horizontal
linearity.
(1inearity.
(2) Replace V112
light vertical line on left of picture:
(1) C169 defective.
(2) V114 defective

PICTURE I.F RESPONSE.-At times it may be desirable to
observe the individual i.f stage response. This can be achieved observe the individual i.t.
by the following method:
Shunt all i-f transiormers and coils with a 330 -ohm carbon resistor except the one whose response is to be observed.

Connect a wide band sweep generator to the converter grid and adjust it to sweep from 18 mc .1030 mc .


Figure 22-Response of Converter and First Pi
I-F
Transformer


Figure 25-Response of Fourth


Figure \(28-\) Overall Pix
1.F Response


Figure 23-Response of Second
Pix l-F Transformer


Figure
Pix
26-F
Response of
Transformer


Figure \(\begin{gathered}\text { 29-Video Response at } \\ \text { Average Contrast }\end{gathered}\)


Figure \({ }^{24-\text { Response of Third }}\) Pl-F Transformer


Figure \({ }_{\text {Pix }}^{27-F}\) - Response grid to Pix Det.



Video Signal Input to 1st Video Am.
plifier (Pin 2 of plifier (Pin 2 of V106) (12AU7) Figure \(31-V\) ertical (Oscilloscope
Synced to \(1 / 2\) of Vertical Sweep Synced to \(1 / 2\) of V Vrtical Sweep
Rate) \((5.4\) Volts PP) Rate) (5.4 Volts PP) Figure \(32-\) Horizontal (Oscilloscope
Synced to \(1 / 2\) of Horizontal Synced to \({ }^{1 / 2}\) of Horizontal
Sweep Rate) (5.4 Volts PP) \(\xrightarrow{\Longrightarrow}\)

Sync Feed (Junction of L104,

Figure 33-Vertical (28 Volts PP)
Figure 34-Horizontal (28 Volts PP)
Input to 2nd Video Amplifier
(Pin 7 of V106) \((\) (I2AU7 \()\)

Figure \(35-\) Vertical (17 Volts PP)
Figure 36-Horizontal (17 Volts PP)


Output of 2nd Video Amplifier
(Junction of L105 and R127) ( 26 Vole PP)
Figure \(37-\) Vertical (96 Volts \(P\) P)
Figure 38-Horizontal (96 Volts PP)


Input to Kinescope (Junction of R127
\[
\text { Figure } 39-\text { Vertical (65 Volts PP) }
\]

Figure 40-Horizontal (65 Volts PP)




Figure 59-Input of Vertical Deflec.
tion Coils 75 Vols PPP Junction
of Green Lead of Tlos and Green


Figure 61-Junction of R168, R176
and R178 (150 Volts PP)
Figure 62-Grid of Horizontal Ossil.
lator (480 Volts PP) (Pin 4 of Vlll) \(\xrightarrow{(6 S N 7 G T)}\)



Figure f8--Plate of Damper (125 Volts
PP) \((\) Pin 5 of \(V 144)\left(6 W^{4 G T)}\right.\)

Figure 69- Input to Horizontal Deflec.
tion Coils \((1,130\) Volis \(P P)\)
Figure 70-Horizontal Deflection Coil
Current
Current ( 0.6 amp. PP) Measured by
Inserting a 5 .ohm Resistor in series Inserting a a.ohm Resistor in series
with the yoke and observing the wave.
form across the resistor.


The following measurements represent two sets of conditions. In the first condition a 2200 microvolt test pattern signal was ted into the receiver.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tube
No.} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \mathrm{T}_{\text {P }}
\end{aligned}
\]} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operating
Condition} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|r|}{E. Screen} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Plate } \\
\text { Plat) }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\underset{\substack{\text { Scroon } \\ \text { (ma.) }}}{\text { in }}
\]} & \multirow[b]{2}{*}{Notes on Measurement} \\
\hline & & & & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \mathrm{Pin} \\
& \text { Po } \\
& \text { No. }
\end{aligned}
\] & Volu & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volu & \[
\begin{aligned}
& \mathrm{Pin} \\
& \text { No }
\end{aligned}
\] & Vols & & & \\
\hline \multirow[t]{2}{*}{V109} & \[
\begin{gathered}
\text { GTN } 7
\end{gathered}
\] & Sync Separator & \[
\begin{array}{|c|c|}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{array}
\] & 5 & 230 & - & - & 6 & -51 & 4 & -106 & . 4 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 215 & - & - & 6 & -59 & 4 & -80 & 35 & - & \\
\hline \multirow[t]{2}{*}{v110} & \[
\begin{gathered}
\text { 6KG- } \\
\hline \mathrm{GK}
\end{gathered}
\] & Vertical & \[
\underset{\substack{2200 \text { Mu. V. } \\ \text { Signal }}}{ }
\] & 3 & 223 & 4 & 223 & 8 & -67 & 5 & -91 & & \(\cdot 7.85\) & \multirow[t]{2}{*}{-Screen connected to plate} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 3 & 208 & 4 & 208 & 8 & -79 & 5 & -101 & & -7.7 & \\
\hline V111 & \[
\begin{gathered}
\text { GSN7 } \\
\text { GT }
\end{gathered}
\] & Horizontal Osc. Control & 2200 Mu V. & 2 & \(\stackrel{48}{ }\) & - & - & 3 & -110 & 1 & -92 & . 2 & - & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { - Variation } \\
& \text { of hold gives } \\
& -2.19+56 \\
& \text { volts on platate }
\end{aligned}
\]} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & \({ }^{3} 3\) & - & - & 3 & -120 & 1 & -108 & . 2 & - & \\
\hline \multirow[t]{2}{*}{V111} & \[
{ }_{\mathrm{GT}}^{6 \mathrm{GT} 7}
\] & Horizontal Oscillator & \(\underset{\substack{2200 \mathrm{Mu} \\ \text { Siqnal }}}{\mathrm{V} .}\) & 5 & 70 & - & - & 6 & -111 & 4 & -185 & 2.4 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 54 & - & - & 6 & -120 & 4 & -192 & 2.4 & - & \\
\hline \multirow[t]{2}{*}{V112} & 6BG6G & Horizontal Output & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & Cap & \[
\begin{aligned}
& \text { Do Not } \\
& \text { Mear. }
\end{aligned}
\] & 8 & 180 & 3 & -90 & 5 & -110 & 68 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & Cap & \[
\begin{aligned}
& \text { Do Not } \\
& \text { Meas. }
\end{aligned}
\] & 8 & 170 & 3 & -100 & 5 & -115 & 67 & - & \\
\hline \multirow[t]{2}{*}{v113} & \[
\begin{aligned}
& \text { 183GT } \\
& / 8016
\end{aligned}
\] & H. V. Rectifier & \(\underset{\substack{\text { Mrightness } \\ \text { Min }}}{\text { Brent }}\) & Cap & Do Not Mocs. & - & - & 287 & 9500 & _ & - & 0 & - & \\
\hline & & & Brightness Average & Cap & \[
\begin{aligned}
& \text { Do Not } \\
& \text { Mears }
\end{aligned}
\] & - & - & 267 & 9000 & - & - - & . 1 & - & \\
\hline V114 & 6W4GT & Damper & \[
\underset{\text { Siqnal }}{2200 \mathrm{Mu} .}
\] & 5 & \[
\begin{aligned}
& \text { Do Not } \\
& \text { Meot }
\end{aligned}
\] & - & - & \({ }^{3}\) & 290 & - & - & 66 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & \[
\begin{aligned}
& \text { Do Not } \\
& \text { Mear. }
\end{aligned}
\] & - & - & 3 & 280 & - & - & 65 & - & \\
\hline \[
\begin{aligned}
& \mathrm{v}_{11} 15 \\
& \mathrm{v}_{2}
\end{aligned}
\] & 5U4G & Rectifier & \[
2200 \mathrm{Mu} . \mathrm{V} .
\]
Signal & 486 & 335 & & & 286 & 250 & - & - & 210 & - & \multirow[t]{2}{*}{-A.C measured from plate to trans. center tap} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 486 & 335 & & & 288 & 245 & - & - & 215 & - & \\
\hline \multirow[t]{2}{*}{V116} & 6AU6 & lst Sound I-F Amplifier & \(\underset{\text { Signal }}{2200 \mathrm{Mu} .}\) & 5 & 134 & 6 & 134 & 7 & . 9 & 1 & 0 & 8.2 & 3.3 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 110 & 6 & 110 & 7 & . 7 & 1 & 0 & 5.7 & 2.6 & \\
\hline \multirow[t]{2}{*}{V117} & 6AU6 & 2nd Sound I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 148 & \({ }_{6}\) & 90 & 7 & 0 & 1 & -9 & 1.6 & . 8 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 115 & 6 & 60 & 7 & 0 & 1 & -.65 & 3.35 & 1.15 & \\
\hline \multirow[t]{4}{*}{V118} & 6AL5 & \[
\begin{aligned}
& \text { Sound } \\
& \text { Discrim. }
\end{aligned}
\] & \[
{ }_{\text {Signal }}^{2200 \mathrm{Mu}}
\] & 2 & -8.4 & - & - & 5 & 5.8 & - & - & - & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & -2.0 & - & - & 5 & . 41 & - & - & - & - & \\
\hline & & & \({ }^{2200 \mathrm{Mu} \text { V. }}\). & 7 & -3.7 & - & - & 1 & 0 & - & - & - & - & \\
\hline & & & \[
\begin{gathered}
\mathrm{No} \\
\text { Signal }
\end{gathered}
\] & 7 & -1.08 & - & - & 1 & 0 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{V 119} & 6Av6 & \[
\begin{aligned}
& \text { Ist Audio } \\
& \text { Amplifier }
\end{aligned}
\] & \[
2200 \mathrm{Mu} . \mathrm{V} .
\]
Signal & 7 & 85 & - & - & 2 & 0 & 1 & -. 89 & 49 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 7 & 83 & - & - & 2 & 0 & 1 & -. 89 & 4 & - & \\
\hline \multirow[t]{2}{*}{V120} & \[
\begin{aligned}
& \text { 6K6- } \\
& \text { GT }
\end{aligned}
\] & Audio Output & 2200 Mu . V. Signal & 3 & 102 & 4 & 113 & 8 & -99 & 5 & -108 & 19.3 & 3.3 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 3 & 72 & 4 & 80 & 8 & -111 & 5 & -114 & 18 & 3 & \\
\hline V121 & 12LP4 & Kinescope & \[
2200 \mathrm{Mu} . \mathrm{V} .
\] & Cap & 9000 & 10 & 339 & 11 & 51 & 2 & 20 & . 1 & - & - Average Brightness \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & Cap & - & 10 & 322 & 11 & 42 & 2 & 14 & - & - & Average Brightness \\
\hline V301 & \({ }^{676}\) & Mixer and Oscillator & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & \[
1
\] & \[
\begin{gathered}
110 \\
95
\end{gathered}
\] & - & - & 7 & 0 & \[
\begin{aligned}
& 6 \\
& 5
\end{aligned}
\] & \[
{ }_{-5.0}^{-2.0}
\] & - & - & \multirow{5}{*}{Function
\[
\underset{\substack{\text { in } \\ \text { position }}}{ }
\]} \\
\hline v302 & 6BA6 & Radio I-F Amplifier & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 210 & 6 & 105 & 7 & . 8 & 1 & -0.2 & - & - & \\
\hline v303 & 6Av6 & \begin{tabular}{l}
Radio F-M \\
Driver
\end{tabular} & \[
\begin{gathered}
\text { No } \\
\text { Sianal }
\end{gathered}
\] & 5 & 205 & 6 & 135 & 7 & 1.5 & 1 & 0 & - & _ & \\
\hline v304 & 6als & Radio Radio Det. & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2
7 & \[
\begin{aligned}
& -0.2 \\
& -0.2
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 5 \\
& 1
\end{aligned}
\] & \[
{ }_{-0.2}^{-0.2}
\] & - & - & = & = & \\
\hline v305 & 6BF6 & \[
\begin{aligned}
& \text { Radio } \\
& \text { A-M Det. }
\end{aligned}
\] & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & \[
\begin{gathered}
6 \\
\text { Diode }
\end{gathered}
\] & -0.2 & - & - & 2 & 0 & - & - & - & - & \\
\hline
\end{tabular}



\section*{RING DIAGRAM}


\section*{TELEVISION CRITICAL LEAD DRESS}
1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i.f circuits. The filament leads between V117, V118 and V119 should be down against the chassis and away from grid or plate eads.
3. If it is necessary to replace any of the 1500 mmf capacitors in the picture i-f circuit. the lead length must be kept as short as possible.
4. Picture i-f coupling capacitors \(\mathrm{C} 106, \mathrm{C} 111, \mathrm{C} 115\) and C 121 should be up and away from the chassis and should be clear of the pix if transiormer adjustments by at leas \(1 / 4\) inch. If the dress of any of these capacitors is changed
5. Leads 10 L102 and L103 must be as short as possible.
6. Dress peaking coils L105, L106 and L107 up and away from the chassis.
7. Dress C183 across tube pins 5 and 6 with leads not exceeding \({ }^{3 / 8}\) inch.
8. Dress C 129 and C 130 up and away from the chassis
9. Dress the yellow lead from the picture control away from the chassis and away from the volume control leads. Dress the yellow lead from pin 8 of V106 away from the chassis.
10. Dress the green lead from pin 2 of V106 away from the chassis.
11. Dress R169, R169, R170, R176 and R178 up and away from the chassis.
12. The leads to the volume control should be dressed down aqainst the chassis and away from V117 and V118.
13. Contact between the r-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.
14. Dress leads from the width control coils away from the transformer frame
15. Dress Tllo winding leads as shown in Figure 72.


Figure 7?-T110 Lead Dress


RADIO CHASSIS

Function switch S301 viewed from front and shown in Number
witch position 1-Television.
Switch position 2-AM.
Switch position 3-FM.
Switch position 4-Phono 45 RPM.
Switch position 5-Phono 78 RPM.
All
1,000 .
All capacitance values less than 1 in
MF and above 1 in MMF unless noted

Coil resistance values less than 1 ohm are not shown.
Direction of arrows at controls indi cates clockwise rotation.

In some receivers, substitutions have caused changes in component lead color codes, in electrolytic capacitor values and their lug identification markings.

All voltages measured with "VoltOhm st." no signal input with 117 v . a-c supply yst. no signal input with 117 V . a-c supply brightness control set for average brigh ness.



REPLACEMENT PARTS (Continued)


ceiver on for the fitsl time. Turn the radio FUNCTION switch to Tel. 2. Turn the receiver "ON" and
advance the SOUND VOLUME position. 3. Set the STATION SELECTOA to the desired channe 4. Adjust the FINE TUNING
control for best tound fidelity control for best sound fidelity and
SOUND VOLUME for suitable SOUND
volume.
5. Turn the BRIGHTNESS con.
trol fully counter-clockwise the clockwise until a light pattern cars on the screen. 6. Adjust the VERTICAL hold
control until the pattern stops contical movement.
7. Adjust the HORIZONTAL
hold control until a picture is obtained and centered.
8. Turn ihe BRIGHTNESS con. retrace lines just disappear. 9. Adjust the PICTURE conta
for suitable picture contrast.

The following adjustments are necessary when turning the re- 10. Aftel the receiver has been on for some time, it may be
ceiver on for the fitsl time. improved sound fidelity


\section*{INSTALLATION INSTRUCTIONS}
11. In switching from one station to another, it may be neces.
sary to repeat steps numbers 4 and 9 . When the set is turned on 12. When the set is turned on
again after an idle period, it again after an idle period, it
should not be necessary to re. peat the adjustments if the posibeen changed. It any adjustment is necessary. step number 4 is generally sufticien
13. It the positions of the con-
trols have been changed it may
 be necessary 10 re
numbers 1 through 9.
14. For radio operation turn The FUNCTION switch to AM or FM and tune in station with the radio TUNING control.
15. For phono operation, turn
he FUNCTION swith to PH for peration of the \(33^{1} \ldots / 78 \mathrm{Pm}\) for ord changer, or to XPH for operaion of the 45 rpm record changer.


ION TRAP MAGNET ADJUSTMENT- Set the ion trap magnet approximately in the position shown in Figure 2. Starting
from this position adjust the magnet by moving it forward or backward a the same time rotating it slighlyly around the neck the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R191 on the
chassis rear apron) until the line structure of the raster is chassis rear apron) until the line structure of the raster is
clearly visible. Readjust the ion trap magnet for maximum clearly visible. Readjust the ion trap magnet for maximum
raster brilliance. The final touches on this adjustment should we nade with the brighnness control at the maximum position - good line lous can be maintained.

DEFLECTION YOKE ADJUSTMENT-If the lines of the raster are not horizontal or squared with the picture mask, rotate the
deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.
PICTURE ADIUSTMENTS.-It will now be necessary to obtain test pattern picture in order to make further adjustments. See If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point.
However. if the AGC threshold control is misadjusted. and the However. if the AGC
receiver is overloading, it may be impossible to sync the picture. If the receiver is overloading. turn R138 on the rear apron
(see Fiqure 3) clockwise until the set operates normally and (see picture can be synced.


Check of horizontal oscillator alignment.-Turn the horizontal hold control to the extreme counter-clockwise
position. The picture should remain in horizontal sync. Momentarily remove the signal by switching oft channel sync. Momen Uarily remove the signal by switching of Thamel hen back
Usually the picture will remain in sync. Turn the control clock wise slowly. If the picture did fall out of sync upon removal of the signal. the number of diagonal black bars will be
gradually \(\tau\) educed and when only 2 bars sloping downward o the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. The picture should remain in sync for approximately 180 degrees of addi wise position, the picture should be out of sync and should how 1 vertical or diagonal black bar in ihe raster.
If the receiver passes the foregoing checks and the picture
is normal and stable. the horizontal oscillator is properly is normal and stable, the horizontal oscillator is properly
aligned. Skip "Alignment of Horizontal Oscillator" and proeed with "Focus Coil Adjustments."
ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the bove check the receiver failed to hold sync with the hold ontrol at the extreme counter-clockwise position or failed to rol from the pull-in point. it will be necessary to make the bllowing adjustments:
Horizontal Frequency Adjustment.-Turn the T109 sine wave
core (on the outside of the apron) all the way Here (on the outside of the apron) all the way out of the coil
Set the locking range trimmer Cl53A one-half turn out fro maximum capacity. Turn the horizontal hold control to the extreme clockwise
position. Tune in a television station and turn the irequency position. Tune in a television station and turn the irequency
wave core of T109 under the chassis until the picture syncs and the sync bar just begins to move into the picture.
NOTE.-Occasionally, a tube may be found which does not respond to this alignment procedure since it may not be pos sible to sync the picture by means of the frequency core whe
he sine wave core is all the way out of the coil. Yet, the fube may work perfectly well when the circuit is properly aligned In such a case, it may be necessary to turn the sine wave cor
in slightly and readjust the frequency core to obtain sync. Turn the sine wave coe of Tiog in until the blanking bar begins to move off to the left of the picture. Alternately turn he sine wave core in and the frequency out. keeping the pic Continue alternate adjustments until the picture falls fro sync into a parasitic oscillation as indicated by a non-synchro nized pattern which flickers in width and centering with po the center of the Treen core in until the picture is in sync and horizontal blanking ppears as a vertical bar in the pictu:
Check of Pull.in Range.-Turn the horizontal hold control C156. Momentarily switch off channel and back; the picture will then be out of sync. Turn the hold zontrol clockwise slowly and observe the minimum numb The picture should snap
If two bars are not obtained, turn the locking range etrimme two bars are not obtained, turn the locking range irimmer
C153A in to obtain less bars or out to , btain more bars.
If C153A was adjusted, remove the 270 K resistor. turn the
horizontal hold control fully clockwise and adjust the Tlos
trequency core until horizontal blanking appears as a vertical bar in the syriced picture. Then repeat the entire check Repeat the this point. until the conditions specified are fultilled. When the horizontal hold operates as oullined under "Check of Horizo If the oscillator does not hold sync properly at this point and the AGC system is in proper adjustment it will be necessary
to adiust the Horizontal Oscillator by the method outlined in to adjust the Horizontal Oscillator b
the alignment procedure on page 11
FOCUS COIL ADJUSTMENTS.-The focus coil shald be ad justed so that there is approximately one.quarter inch of spac between the rear cardboard shell of the yoke and the flat of
the front face of the tocus coil. This spacing ives best average the front face of the locus coil. This spacing gives best average
focus over the face of the tube. The axis of the hole though the focus over the face of the tube. The axis of the hole through the
focus coil should be parallel with the axis of the kinescope neck. The focus coil is provided with a magnetic shunt in the form of a metal sleeve. It the receiver focuses with the focus
control at or near the end of its range. loosen the shunt lock. control at or near the end of its range, loosen the shunt lock-
ing screw and slide the shunt forward or backward until focus is obtained with the focus control in the middle of its
thand CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is obtained by loosening the two focus side to side. If the focus coil was appreciably changed in position or it a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within
ine ronge of maximum raster brightness to eliminate the shadow and recenter the picture by sliding the coil. In no case should the magnet be adjusted to cause any loss of brightness aqe to the tube. In extreme cases it may be necessary damjust one or more of the three focus coil compression spring
width. drive and horizontal linearity adjust MENTS.-Adjustment of the horizontal drive control affects the high voltage applied 10 the kinescope. in order to oblain the
highest possible voltage hence the brightest and best focused picture, adjust horizontal drive counter-clockwise as far as possible without losing tension on irimmer.
Set the width control to minimum picture width
in width occurs. then in until nearly maximum width and the best linearity is obtained. Do not run the core in beyond the point of maximum linearity change, as the current drawn
the \(6 B G 6 G\) then becomes excessive. Adiust the width control forsive.
Readjust linearity, but again not beyond the point of maxi mum linearity change. If necessary adjust the drive control If at very hig
even with the width voltage, the picture width is excessive coil out to obtain the proper width. On high line voltage, ex cessive width generally will be accompanied by good linearity, ouching the drive.
oscillastmenis of the horizontal drive control affect ho. zontal justed, recheck the oscillator alignment
focus. - A
FOCUS. - Adjust the focus control (R191 on chassis rear "wedge" and best focus in the white areas of the pattern. HEIGHT AND VERTICAL LINEARITY ADIUSTMENTS, just the height control (R155 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R162 on rear apron) until the test pattern is symmetrical from top
to bottom. Adjustment of either control will require a readiust. ment of the other. Adjust the focus coil to align the picture with the mask
Check to see that the cushion and yoke thumbscrews and
the focus coil mounting screws are tight. he locus coil mouning screws are tight.
AGC IGRESHOLD CONTROL.-The AGC threshold control
RI38 is adjusted at the factory and normally should not re. quire readjustment in the field.
To check the adjustment of the AGC threshold otrol, une
MODEL TAI69 ch KCS

\section*{INSTALLATION INSTRUCTIONS}
in a strong signal, sync the picture and turn the picture control to the maximum clockwise position. Turn the brightness control counter-clockwise until the vertical retrace lines are
just invisible. Momentarily remove the signal by switching oft channel and then back. If the picture reappears immediately. If the pictures not overloading due to improper setting of R138, If the picture requires an appreciable
reappear. R138 should be readjusted.
Set the picture control at the maximum clockwise position Turn R138 fully clockwise. The top one-half inch of the pictur may be bent slightly. This should be disregarded. Turn R138 counter-clockwise until there is a very, very slight bend or
change of bend in the top one-half inch of the picture. Then change of bend in the top one
turn R138 clockwise just sufficiently to remove this bend or change of bend.
If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this
case, turn R138 counter-clockwise until the snow in the picture becomes more pronounced, then clockwise until the best signal to noise ratio is obtained.
The AGC control adjustment should be made on a strong signal if possignal then the receiver may overload when strong signal is received.
CHECK OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see it the receiver r-f oscillator is ad justed to the proper frequency on all channels. If adjustments
are required. these should be made by the method outlined are required, these should be made by the method outlined
in the alignment procedure on page 10 . The adjustments for in the alignment procedure on page 10. The adjustments tor
channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment tor channel 13
is on top of the chassis and channel 6 adjustment is in the kinescope well. See Figures 9 and 10 for their location.




Adjustments

RADIO OPERATION.-Turn the receiver function swith to Tune in a station of known freckuency. If the dial pointer does not point to the correct spot on the dial, slip the dial pointer on the dial cord unll he proper

RECORD CHANGER OPERATION.-Turn the receiver func tion switch to each phono position and check each record player tor proper operation.
Replace the cabinet back and make sure that the screws are thit in the totling at high volume.
WEAK signal area operation.-Since the vast majority of receivers are sold in strong signal areas, the chassis ar
aligned to produce the cleanest pictures in those areas. How ever, if the receiver is to be operated in a weak signal area better performance can be obtained by "peaking" the r.f unit. To peak the r.f unit in these receivers. disconnect the 390
ohm resistor R14 which is on top of the rif unit chassis. Adjust Lc6 to obtain the best possible picture on the weakest low channel station received.
If the peaked receiver is subsequently taken to a strong sig.
nal area, the resistor R14 should be connected in place and nal area, the resistor . 1 R14 should be connected in ple
CHASSIS REMOVAL.-To remove the chassis from the cabi net for repair or installation of a new kinescope, remove the
control knobs, the cabinet back, unplug the speaker cable,
the kinescope socket, the antenna cable, the pilot light cable, the Yoke and tocus coil cable. Remove the yoke frame ground-
ing strap and the interlock switch. Take out the six chassis boits under the cabinet. Withdraw the chassis from the back

Kinescope handling precaution,-Do not install re move, or handle the kinescope in any manner, unless shatterproof qoggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope.
Keep the kinescope away from the body while handling To remove the kinescope from the cabinet take out the screws and one wing screw which hold the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and
tocus coil as an assembly nstiuntion or
INSTALLATION OF KINESCOPE.-Handle this tube by the of the tube with hingermarks as it will produce leakage paths which may intertere with reception. It this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth
moistened with "dry" carbon tetrachloride. Wipe the kinescope screen sutace and
glass clean of all dust and tingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.
Turn the tube so that the key on the base of the tube will
be down and insert the neck of the kinescope throug de down and insert the neck of the kinescope through the
deflection and tocus coils. It the tube sticks. or tails to slip into place smoothly, investigate and remove the cause of the rouble. Do not torce the tube.
Replace the kinescope and yoke frame assembly in the Slip the kinescope as far forward as wing screw and tighten. scope cushion firmly up against the flare of the tube and yoke as far forward as possible and tighten. If this is not done. difficully will be encountered in adjusting the ion trap magnet and fociss coil because of shadows on the corner of the raster. the six chassis bolts.
Slip the ion trap magnet over the neck of the kinescope. Connect the kinescope socket to the tube base and slip the the mask. Reconnect all other cables. Do not forget to replace the yoke frame grounding strap.
As may be seen by inspection, the radio dial lights and dial pointer are attached to the cabinet front panel. The dial cord
is attached to the receiver chassis. The method of atal may be seen in Figure 5.


Figure 5-Dial Cord and Pointer Assembly
Reach over the television chassis to the radio and slip the adio pilot lights on the cabine
To hook up the dial pointer, turn the tuning shaft until the gang is fully meshed. Slip the dial pointer to the low frequency
end of the dial and press the dial cord well into the coil spring. Turn the set on and to radio position to see that the dial lighting is correct. II it is not. adjust the dial lights and shields. Tune Perlorm the entire television set.up procedure beginning with
lon Trap Magnet Adjustment.
CABINET ANTENNA.-A cabinet antenna is provided for use in strong signal areas in which no reflections are experienced. antenna terminal board. To connect the cabinet antenna. attach the leads to the terminal board. It reception is satistactory, no ather antenna is necessary. However, if reception is unsatis-
actory, it will be necessary to employ an outdoor antenna or an indoor antenna which can be oriented.

CHASSIS TOP VIEW Power coro


Figure 6-Chassis Top \(V_{\text {Viet }}\)

\section*{© John F. Rider}

\section*{ALIGNMENT PROCEDURE}

TEST EQUIPMENT. - To properly service the television chassis of this receiver. it is
test equipment be available:
R.F Sweep Generator meeting the following requirements
(a.) Frequency Ranges

20 to \(30 \mathrm{ninc}\)..1 mc . and 10 mc . sweep width
50 to 90 mc .10 50 to \(90 \mathrm{mc}\). .. 10 mm . sweep width
170 to 225 mc .10 mc . sweep width
(b) Output adjustable with at least 11 volt maximum
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode.Ray Oscilloscope. - For alianment purposes, the os. cilloscope employed must have excellent low frequency and
phase response, and should be capable of passing a 60 cycle square wave wilhout appreciable distortion. While this re quirement is nol met by many commercial instruments. RCA
Oscilloscopes. types WO.55A. WO.58A. WO.79A and WO.60C Oscilloscopes. types WO. 55 A , WO. 58 A . WO. 79 A . and Wh.
fill the requirement and any of these may be employed.
For video and sync waveform observations, the oscilloscope
must have excellent frequency and phase response from 10 must have excellent frequency and phase response fiom 10
cycles to at leatst two megacycles in all position of the gain
control The RCA types WO.58A and WO. 79 are ideally control. The RCA types
suited for this purpose.
Signal Generator to provide the following frequencies with rystal accuracy.
(a) Intermediate frequencies
19.75 mc . adjacent channel picture trap
21.25 mc . sound i.f and sound traps
22.05 and 24.75 mc . conv. and first pix i.f trans.
25.9 mc . second picture i.f transtormer
22.0 mc . third picture i.f transformer
2.5 mc. fith picture i.f transformer
25.75 mc . picture carries
27.25 mc . adjacent channel sound trap
(b) Radio frequencies
\(\left.\begin{array}{c}\text { Channel } \\ \text { Number }\end{array} \begin{array}{c}\text { Picture } \\ \text { Carrier } \\ \text { Freq. Mc. }\end{array} \quad \begin{array}{c}\text { Sound } \\ \text { Cartirer } \\ \text { Freq. Mc. }\end{array}\right\}\)

Heterodyne Frequency Meter with crystal calibrator if the Electronic Voltmeter of Junio "Voliohmys" type and a high
voltage multiplier probe nor use with this meter to mermit
measurements up to 15 kv .

Service Precautions. - It possible, the chassis should be serviced, without the kinescope. However, if it is necessary
to view the raster during servicing, it would be a great con to view the raster during servicing, it would be a great con
venience to have a set of yoke focus coil, kinescope socket, venience to have a set of yoke, focus coil,
high voltage and speaker extension cables.

CAUTION: Do not short the kinescope second anode lead. Its short circuit current tepresent
the high voltage rectifier V 113 .

Adjustments Required. - Normally, only the r.f oscillator He will require the attention of the service techniciar. AU
ther circuits are either broad or very stable and hence will seldom require readjustment

The oscillator line is relatively non critical. When oscillator ubes are changed, in all probability it will be necessary to

ORDER OF ALIGNMENT. - When a complete receiver alignment is necessary, it can be most conveniently periormed in
1) Sound discriminator
1) Sound dis criminator
3) Picture if traps
(5) R-F and converter lines
7) 4.5 oscillator line
(8) Sensitivity check

SOUND DISCRIMINATOR ALIGNMENT. - Set the signal generator tor approximately. 1 volt output at 21.25 mc . and conneet it to the second sound \(i \cdot f\) grid.
Detune T 113 secondary (bottom).
Set the "Voltohmyst" on the 10 volt scale.
Connect the meter in series with a one megohm resistor to he junction of diode resistors R 203 and R204.
Adjust the primary of Tll3 (top) for maximum output on the meler
Connect the "Voltohmyst" to the junction of C183 and R203. Adjust T113 secondary (bottom). It will be lound that it is pos.
sible to produce a positive or negative voliage on the meter dependent upon this adjustment. Obviously to pass from a
positive 10 a negative voltage, the voltage must go through positive to a negative voltage, the voltage must go through
zero. T113 (bottom) should be adjusted so that the meter indicates zero output as the vollage swings from positive to nega-
tive. This point will be called discriminalor live. This point will be called discriminator zero outpuit
Connect the sweep oscillator to the grid of the second sound
amplitier. i. amplifier:

Adjust the sweep band width to approximately 1 mc . with output of approximately 11 volt. proprons
the junction of C 183 and R203. The pattern obtained should be similar to that shown in Fig-
ure 13. If it is not, adjust the T113 (top) until the waveorm is
symmetrical ymmetrical.
The peak-to-peak band width of the discriminator should be
approximately 350 kc . and it should be linear for approximately
to 21.325 mc .

SOUND I.F ALIGNMENT. - Connect the sweep oscillator to he first sound i-f amplifier grid.
Connect the oscillossope to the second sound if grid return (lemminal A Mi2) in senes win a 3.000 hm isolating resistor. Insert a 21.25 mc. marker signal from the signal generator
into the second sound if grid.

Adjust T 112 (top and bottom) for maximum gain and sym-
metry about the 21.25 mc. marker. The pattern obtained should metry about the 22.25 mc. marker. The \(p\)
be similar to that shown in Figure 14 .

The output level from the sweep should be set to produce return when the final touches on the above adjustment are made. It is necessary that the sweep oulpul voltage should not exceed the specified values otherwise the response curve will
be broadened. permitting slight misadjustment to pass un. be broadened, permitting silight misadjustment to pass
noticed and possibly cousing distortion on weak signals.

The band width at \(70 \%\) response from the first sound i-f grid
the second itf grid should be approximately 200 kc

PICTURE I.F TRAP ADJUSTMENT. - Connect the "Volt PICTURE I.F TRAP ADUSSTMENT. - - C
Ohmyst to the junction of R135 and C190.
Remove the 6 SN7GT AGC Amplifier tube V107. Connect a
250.000 ohm potentiometer between pins 5 and 6 of the V107 250.000 ohm potentiometer between pins 5 and 6 of the V107
socket. Adjust the potentiometer until the "Vollohmyst" reads approximately -12 volts.
Set the channel switch to the blank position between channel Set the channe
mbers 2 and 13 .
Connect the "Vollohmyst" across the picture detector load at approximately -120 volts. In making lhis measurement. car should be taken not to touch the case of the meter or to permi the meter case to become grounded
Connect the output of the signal generator to the grid of the
converter tube V2. To do this, remove the tube from the socket and fashion a clip by twisting one end of a small piece of wir round pin number 1. Replace the tube in the socket leaving
he end of the wire protruding from under the tube. Coanect the end of the wire protruding irom under the tube. Canned eeping the leads as short as possible.
Set the generator to each of the following trequencies and
with \(a\) thin fiber screwdriver tune the specitiod adiustment for minimum indication on the "VoltOhmyst." In each instomce tho generator should be chected against a crystal calibratior to
insure that the generator is exactly on irequency.

\(\begin{array}{ll}\text { (2) } 21.25 \mathrm{mc}-\mathrm{Tl} 105 \text { (top) } & \text { (5) } 19.75 \mathrm{mc}-\mathrm{T} 106 \text { (top) } \\ \text { (3) } 27.25 \mathrm{mc}-\mathrm{T} 102 \text { (top) } & \text { (6) } 19.75 \mathrm{mc} .-\mathrm{T} 101 \text { (top) }\end{array}\)
In the abova transformars using threaded corres. it is possible
to run the cores completely through the coils amd secure two to run the cores compteotily hirough the cills amd secure two
peaks or nulle. The correct position is with the cores in the outside endz of the coils. If the cores are not in the correc
position, the couping will be incorrect and it will be impossible

\section*{PICTURE I.F TRANSFOMmER ADJUSTMENTS. - Set the sig he generator to each of the following frequencies and peak} he spacilied adjusiment for maximum indication on the "Voll
Ohmyst. During alignment., reduce the input signal it neces

\section*{22.5 mc . T 106 (botiom)}
24.6 mc . - T104 (bottom)
22.0 mc .- T103 (bottom)
25.9 mc - -T 102 (bottom)

T1 and T101 are coupled by a link and in combination con transformer are such that it is impossible 10 adiust is a transtormer are such that in is impossith to acrat in to
single frequency.
To sweep align TI and T 101 , connect a 330 ohm composi-
tion resistor across the primary coils of T102, T103. T104 and T106.
Connect the "VoliOhmyst" to the junction of R135 and C190
Adust the 250.000 ohm potentiometer for -2.0 volts on the
meter. Connect the oscilloscope to the plate of the first video ampli.
ier, pin 1 of V106. Connect a sweep generator to the converter grid through 1.500 mmi capacitor. Set the generator to sweep from 20.0 m .
to 30.0 mc . and adjust the output to provide a 4 volt peak-to peak signal on the scope
Connect the signal generator loosely to the converter grid
and adjust to provide markers at 22.05 mc . and 24.75 mc . Adjust Tl (i) an \(\mathrm{Til1}\) (bil) me and 24.75 mc . Adjust T1 (top) and T101 (boltom) to obtain the response
shown in Figure 15 . The Tl core must penetrate to the terminal
board end of the coil in order to obtain the correct response. heard end of the coil in order to oblain the correct response.
Remove the 330 ohm resistors from across T102, T103. T104
and T106.
Adjust the 250.000 ohm potentiometer for a 15 volt peak-10 peak signal at the plote of the first video amplifier. The bias as
meacured by the "Voltohyyst" should be -12 volts or less.

Observe and analyze the response curve obtained. The re-
sponse will not be ideal and the i - adjustments sponsed in order to oblain the desired curve. See Figure be re

On final adjustment the picture carrier marker must be at approximately \(45 \%\) response. The curve must be approximately flat lopped, with the 22.1 mc. marker at approximately \(95 \%\)
response, the 25.0 mc . marker below \(90 \%\) and the 26.5 mc . \begin{tabular}{l} 
response, the 25.0 mc. marker below \(90 \%\) a \\
marker at \(5 \% ~ t 0 ~\) \\
\hline
\end{tabular}
The most important consideration in making the i.f adjust ments is \(\mathbf{t}\) gel the picture carrier at the \(45 \%\) response point.
If the picture carrier operates to low on the response curve. loss of low frequency video response, of picture hrilliance, of blanking, and of sync may occur. If the picture carrier operates too high on the response curve, the picture becomes smeared. In making these adjustments, care should be taken
that no two transtomers are tuned to the same frequency as if occillation may result
Remove the converter tube and take off the clip to pin num-
ber 1 . Replace the tube in the socket.

Pictare I.F Oscillation. - If the receiver will operate without oscillating with the test equipment disconnected but breaks
into oscillation or becomes unstable with the equipment conrecled, it may become necessary to wstablish a ground plane.
Cover the tast bench with a sheet Cover the test bench with a sheet of copper and set the chassis
on the sheet. Set all the test equipment except the "Volt. on the sheet. Set all the test equipment except the "Volt
Ohmys." on the sheet and bond or bypass them to it. A Junior
"Volto Voltohmyst" should not be bonded to the sheet since the negative tes
alignment.
It the receiver is badly misaligned and two or more of the i.f transformers are funed to the same frequency, the receiver may tall into 1.1 oscillation. \(1 . F\) oscillation shows up as a vollt
age across the picture detector load resistor that is unatected by r.t signal input. It such a condition is encountered. it is sometimes possible to stop oscillltion by increasing the grid
bias. If so, it should then be positile by the usual method. Once oligned and the transtormers by the usual method. Once aligned
should be stabie with reduced bias.
If the oscillation cannot be stopped in the above manner. shunt the grids of the first three pix i.t amplifiers \(t 0\) ground
with 1.000 mmif. capacitors. Connect the signal generator to the fourth pix i.f grid and align T106 to trequency. Progressively
remove the shunt from each grid and align the plate coil of remove ste shunt from
If this doos not stop the oscillction the difficulty is not due To this doos not stop the oscillction, the dificulty is not due
aligned. Check allit its the thepass seation is standensers. transtormen properly shunting aligned. Check all if by-pass conden
resistors, tubes, socket voltages, etc.
antenna. r-f and converter line adjustmentIn order to align the \(r\).f tuner, it will first be necessary to see
the channel 13 oscillator to frequency. The shield over the botlom of the rit unit must be in place when making any
adjustments. adjustmen
The channel 13 oscillator may be aligned by adjusting it to
beat with a crystal calibrated heterodyne frequency meter, or beat with a crystal calibrated heterodyne frequency meter, or
by feeding a signal into the receiver at the rit sound carrier frequency and adjusting the oscilllotor tor zero output from the
sound discriminator. In this latter case the sound distiminalor sound discriminator. In this latter case the sound discriminatior
must first have been aligned to exact frequency. Either method must first have been aligned to exact frequency. Either method
of adjustment will produce the same results. The method used
will depend upon the type of test equipment will depend upon the type of est equipment Mave melle. Regard-
less of which method of oscillator alignment is used the less of which method of oscillator alignment is used, the
quency standard must be crystal controlled or calibrated.
If the receiver oscillator is to be adjusted by the heterodyne
frequency meter method. couple the meter probe loosely to the frequency meter
receiver oscillator.
If the receiver oscillator is adjusted by feeding in the r-f sound carrier signal. connect the signal generator to the re
ceiver antenna terminals. Connect the "Voltohmys" to the ceiver antenna terminals. Connect the "Voliohmyst")
sound discriminator ouput (junnction of C 183 and R 203 ).
Set the receiver channel switch to 13.

Adjust the frequency standard to the correct frequency (23)
for heterodyne frequency meler or 215.75 mc . for the si nal generator)
Sel the fine tuning control to the middle of its range while
making
Adjust \(C 6\) for an audible beat on the helerodyne frequency Now that ehe che to Now that the channel 13 oscillator is set to frequency, we
may procede with the r.4 alignment. Remove the first pix i.f amplitier tube V101
Connect the oscilloscope to the test connection at R13 in the C197. Adjust the bias potentiometer for -3.5 volts on the meter. Connect the r-f sweep oscillator to the receiver antenna te
minals. The method of connection depends upon the outpult impedance of the sweep. The P102 connection for 300 ohr balenced or 72 ohm single.ended input are shown in the cir single-ended output, 300 ohm balanced output can be obtained by connecting as shown in Figure 8 .


Figure 8-Unbalanced Suceep Cable Terminatio

Connect the signal generator loosely to the receiver antenna Since channel 7 has the narrowest response of any of the
high frequency channels, it should be adjusted first ted first.
Sol the rociver channel swich to channel
Sot the sweep oscillator to cover channel 7 .
Insert markors of channel 7 picture carrier and sound carries
175.25 mac. and 179.75 me.
Adjust C10 and C14 until the curve falls symmetrically be tween the sound and picture carrier markers. Adjust C11 to give the proper bandwidth. Roughly peak L6 in conjunction
with slight adjustments of Clo and C14 for a flat-topped, re sponse curve with the sound and picture carriers at \(90 \%\) it
\(95 \%\) response points on this curve. See Figure 17, channel 7 , and adjust \(L 6\) for maximum respons and minimum top slope of the curve
Check the response of channels 7 through 13 by switching lator to each of these channels and observe the response ob tained. See figure 17 for typical response curves. It should be with the markers above \(80 \%\) response. If the markers do no fall within this requirement on one or more high frequency channels, since there are no individual channel adjustments
it will be necessary to readjust L6, C10. C11 and C14, and it will be necessary to readjust LL6. C10. C11 and C14, and
possibly compromise some channel slightly in order to get the
markers up on other channels. Normally however markers up on other channels. Normally, however, no difficully
of this type should be experienced since the higher frequency of this type should be experienced since the higher frequency
channels become comparatively broad and the markers easily channels become comparative
fall within the required range.
Channel 6 is next aligned in the same manner
Set the receiver to channel 6 .
Set the sweep oscillator to cover channel 6 .
Set the marker oscillator to channel 6 picture and sound
Adjust L9, L13, L66 and C12, for an approximately flat-topped
response curve located symmertically between the markers,
L9. L13 and \(L 66\) are the center frequency adjustments. \(C 12\) is
the band width adjustment.

ODEL TAI
Ch. KCS4 3 Check channels 5 down through channel 2 by switching the
receiver. sweep soscillaror and marker oscillator to each channel and observing the response obtained. In all cases. the
narkers should be above the \(80 \%\) response point. If this is not

Disconnect the bias pot. and replace V107. Replace vio1. Following an r-f alignment, the oscillator alignment must be
checked.
h.F OSCILLATOR LINE ADIUSTMENT. - The rif oscillator line may be aligned by adjusting it to beat with a rerystal cali.
brated heterodyne frequency meter, or by feeding a aignal brated helerodyne frequency meter. or by feeding a signal
into the receiver at the \(r-4\) sound cartier trequency and adjustinto the receiver at the \(\mathrm{r}^{-4}\) sound cartier frequency and adjust.
ing the oscillator for 2 ero output from the sound discriminator. In this later casce the suound discriminator suust first have been
aligned to exat fiequency. Either method of adiusment will aligned to exact frequency. Either method of adjustment will
produce the same results. The method used will depend upon produce the same results. The method
the type of test equipment available.
Hegardless of which method of oscillator alignment is used.
the frequency standard must be crystal controlled or calibrated. The frequency standard must be crystal controlled or calibrated. If the receiver oscillator is to be adjusted by the heterodyne
frequency meter method, the calibration frequency listed under frequency meter method, the calibr
\(\mathrm{R} \cdot \mathrm{F}\) Osc. Freq. must be available.
If the receiver oscillator is adjumted by feeding in the r.f
ound carrier frequency, the frequencies listod under Sound Sound carrier frequency, the
Creq. must be available.
\begin{tabular}{|c|c|}
\hline Channal & Recoiver
R-F Osc. \\
\hline Number & Freq. Mc. \\
\hline 2 & 81 \\
\hline 3 & 87 \\
\hline 4 & 93 \\
\hline 5 & 103 \\
\hline 6 & 109 \\
\hline 7 & 201 \\
\hline 8 & 207 \\
\hline 9 & 213 \\
\hline 10 & 219 \\
\hline 11 & 225 \\
\hline 12 & 231 \\
\hline 13 & 237 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline R.F Sound Carrior \\
\hline Froq. Mc. \\
\hline 59.75 \\
\hline 65.75 \\
\hline 71.75 \\
\hline 81.75 \\
\hline 87.75 \\
\hline 179.75 \\
\hline 185.75 \\
\hline 191.75 \\
\hline 197.75 \\
\hline \({ }^{203.75}\) \\
\hline 209.75 \\
\hline 215.75 \\
\hline
\end{tabular} Channol Adjustmont \({ }_{\substack{124 \\ 122 \\ 122}}\)

If the hetorodyne frequency moter method is ued. couple If the r.t sound carrier method is used, connect the "Volt-
Ohmyst" to the sound discriminator output (junction of C183 and R203).
Connect the signal generator to the receiver antenna tor.
minals. The order of alignment remains the same regardless of which method is used.
If the rf unit is removed from the receiver for service and is aligned separatily the shield over the bottom
must be in place when making adust
Since lower frequencies are obtained by adding steps of inductance, it is necessary to align channel 13 first and continue in reverse numerical order.

Adjust the frequency standard to the correct frequency ( 237
c. for heierodyne frequency meter or 215.75 mc . for the mc. for heterodyn
signal generator).

Set the fine tuning
making the adjustmen meter or zero voltage from sound discriminator Oscillator ad ustments \(L 1\) and \(L\) Le shown on the schematio are factory con-
rol adjustments and should not be touched in the field. Switch the receiver to channel 12 .
Set the frequency standard to the proper frequency as listed the alignment table.
Adjust L14 for indications as above
Adjust the osillator to frequency on all channels by switch. ing the receiver and the frequency standard to each channel
and adjusting the appropriate oscillator trimmer for the speci-

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{the detalled alignment procedure beginning on page b should be read before alignment by use of the table}} & \multicolumn{8}{|l|}{TABLE} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { MODEL TA169, } \\
& \text { Ch. KCS } 43
\end{aligned}
\]} \\
\hline & & & & & & & & & & \multirow[t]{2}{*}{\(\underset{\substack{\text { STEP } \\ \text { No. }}}{ }\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CONNECT } \\
& \text { SENERALL } \\
& \text { GENETOR }
\end{aligned}
\]} & SIGNAL & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { CONNECT } \\
\text { SWNEPEP } \\
\text { GENEATOR } \\
\text { TOTOR }
\end{gathered}
\]} & \multirow[t]{2}{*}{SWEEP GEN. MC.} & \multirow[t]{2}{*}{\[
\underset{\substack{\text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO }}}{\substack{\text { Col }}}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { "voLTOHMYST" } \\
\text { TO } \\
\hline
\end{gathered}
\]} & MISCELLANEOUS Connections & ADJust & ER \\
\hline \multirow[b]{2}{*}{\({ }_{\text {STEP }}^{\text {No. }}\)} & CONAECT & SIGNAL & CONNEET & & & & MISCELANEOUS & & & & &  & & & & & instruditions & ADJUST & \\
\hline & \[
\begin{aligned}
& \text { SNGNAL } \\
& \text { GENERATOR } \\
& \text { TO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { GEN. } \\
& \text { FREO. } \\
& \text { MRC. }
\end{aligned}
\] & GENERATOR
TO & \[
\begin{aligned}
& \text { GEN. } \\
& \text { FRC. } \\
& \text { MRC. }
\end{aligned}
\] & \({ }_{\text {OSCILLOSCOPE }}^{\text {To }}\) & "VOLTOHMYST" \({ }_{\text {TO }}\) & \[
\begin{aligned}
& \text { inNentions } \\
& \text { instructions }
\end{aligned}
\] & ADJUST & \({ }_{\text {ReFER }}^{\text {TO }}\) & \multicolumn{10}{|c|}{r-f And converter line alignment (Cont'd)} \\
\hline \multicolumn{10}{|c|}{discriminator and sound l-f alignment} & \({ }^{26}\) & " & \({ }_{2039.75}^{19.25}\) & \(\cdots\) & channel & " & " &  & " & \({ }_{\text {Figis }} 17\) \\
\hline 1 &  &  & Not ueed & & Not ured &  & & Detune T113 (bot.) Adjust Til3 (top)
for max. on meter & \[
\begin{array}{|l|l|}
\hline \text { Fiz. } \\
\text { Fiz } \\
\text { Figi } \\
\hline
\end{array}
\] & 27 & " & 205.75 & " & \({ }_{\text {chan }}^{\substack{\text { chanel } \\ 12}}\) & " & " & \begin{tabular}{|l|l|}
\hline Receiver on chan- \\
nat 12
\end{tabular} & " & \(\underset{\text { Fis, }{ }^{17} \text { (12) }}{(12)}\) \\
\hline 2 & " & \(\cdots\) & " & & " & \[
\begin{array}{|l|}
\hline \text { Junction of C183 } \\
\text { R203 } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Meter on } 3 \text { volt } \\
\text { ccale }
\end{gathered}
\] & Tll3 (bottom) for
zero on meter & Fig. \({ }_{\text {Fig. }}^{\text {Fig }} 10\) & \({ }^{28}\) & " & 211.25
215.75 & " & \(\underset{\text { channel }}{\substack{\text { chel }}}\) & " & " & |l|l| & " & \(\underset{\text { Fit. }}{(13)}\) \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{2nd sound i-f grid
(pin 1, Vilit) (pin 1, V117)} & \multirow[t]{2}{*}{\[
\begin{gathered}
21.25 \\
\text { center } \\
1 \text { me. } \\
\text { wide } \\
\hline 1 \text { v. out }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\underset{\text { R203 }}{\substack{\text { Junct. of } \\ \hline \\ \text { C183 } \\ \hline}}
\]} & \multirow[t]{2}{*}{Not used} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Check for symmerrical response \\
 they are equal
\end{tabular}}} & \multirow[t]{2}{*}{\(\underset{\substack{\text { Fig. } \\ \text { Fig } \\ 18 \\ 18}}{ }\)} & 29 & \multicolumn{9}{|l|}{If the response on any channel (stepa 22 through 28 ) is below \(\mathbf{8 0 \%}\) at either marker, switch to that channel and adjust L6, C10, C11 \(\& \mathbf{C l 4}\) to pull response up on that channel. Then recheck steps 22 through 28.} \\
\hline & & & & & & & & & & 30 & \[
\begin{aligned}
& \text { Antenra } \\
& \text { terminals } \\
& \text { (loosely ) }
\end{aligned}
\] & \({ }_{8}^{83.25}\) & Ant. terminals (see text for precaution & \[
\begin{gathered}
\text { Swep- } \\
\text { cing }
\end{gathered}
\] & \begin{tabular}{|l|l|}
\hline Tent \\
Connection R13 \\
\hline
\end{tabular} & Not used & (年eceiver on chan- &  & \(\mathrm{FizF}_{(6)}{ }^{17}\) \\
\hline 4 &  & \[
\begin{aligned}
& 21.25 \\
& \text { 21.2. } \\
& \text { duced } \\
& \text { output }
\end{aligned}
\] & 18t sound i-f erid & \[
\begin{array}{|c|c|c|c|c|}
\hline 21.25 \\
\text { reduced } \\
\text { output }
\end{array}
\] &  & " &  & \[
\begin{aligned}
& \text { T112 (top \& bot.) } \\
& \text { for max zain and } \\
& \text { symmetry at } 21.25 \\
& \text { mc. }
\end{aligned}
\] &  & 31 & (1)385) & ¢ \begin{tabular}{l}
77.75 \\
81.75 \\
\hline
\end{tabular} & " & \({ }_{\text {channel }}^{\text {cher }}\) & & , &  & Check to see that
repponee
it above &  \\
\hline \multicolumn{10}{|c|}{Picture l-F and trap adjustment} & 32 & " & 87.25
71.75 & " & channel & " & " & \begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Receiver on chan- \\
nel \\
\hline
\end{tabular} \\
\hline
\end{tabular} & " & \(\mathrm{FiF}_{(4)}{ }^{17}\) \\
\hline 5 & Not used & & Not ured & & Not used &  & Remove Vio7
Comnect potenti-
ometer between & Adjust potentiometer for -12 volts on mete & Fig. 11 & 33 & " & ¢ \begin{tabular}{c}
61.25 \\
65.75 \\
\hline
\end{tabular} & " & \(\underset{\substack{\text { chanel } \\ \text { chel }}}{ }\) & " & " & \begin{tabular}{|l|}
\hline \begin{tabular}{l} 
Receitiver on chan- \\
nel \\
\\
\hline
\end{tabular}\(|\) \\
\hline
\end{tabular} & " & \({ }^{\text {Fitis }}\) (3) \({ }^{17}\) \\
\hline & & & & & & &  & & & 36 & " & 年58.25 & " & \({ }_{\text {channel }}\) & - & " &  & " & \({ }_{\text {Fitit }}{ }^{17}{ }^{17}\) \\
\hline - &  & 21.25 & " & & " & Across R19 &  & \[
\begin{aligned}
& \text { T103 (top) for } \\
& \text { min. on meter }
\end{aligned}
\] & \(\underset{\text { Fig. }}{\text { Fig. }}\) & \({ }^{35}\) & \multicolumn{9}{|l|}{ to pull responte up on that channel. Then recheck stept 30 throuzh 34. Dicconnect bite pot and replace Viot and V107.} \\
\hline 7 & " & 21.25 & " & & " & " & " & (tios (top) for & Fig. 11 & \multicolumn{10}{|c|}{r-f osclllator alicnment} \\
\hline - & " & 27.25 & " & & " & " & " &  & * & \multirow[t]{2}{*}{STEP} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CONNECT } \\
& \text { SENGNALTOR } \\
& \text { CENOTOR }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SIGNAL } \\
\text { SENE. } \\
\text { GREQ. } \\
\text { MC. }
\end{gathered}
\]} & \multirow[t]{2}{*}{CONNECT HETERODYNE FREQ. METER TO} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MET. } \\
& \text { METER } \\
& \text { FREQRE. } \\
& \text { MC. }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { CONNECT } \\
\text { OSCOLLOSCOPE } \\
\text { To }
\end{gathered}
\]} & \multirow[t]{2}{*}{"VOLTOHMYST"} & \multirow[t]{2}{*}{miscellaneous instructions} & \multirow[t]{2}{*}{ADJUST} & \multirow[t]{2}{*}{\(\underset{\text { cefer }}{\text { To }}\)} \\
\hline \({ }^{-}\) & " & \({ }^{27.25}\) & " & & " & " & " & \(\underset{\substack{\text { Tio4. } \\ \text { min. }}}{\text { (top) }}\) (tor & " & & & & & & & & & & \\
\hline 10 & " & 19.78 & " & & " & " & " &  & " & \({ }^{36}\) & \({ }_{\text {a }}^{\text {Antenna }}\) & 215.75 & Loosely coupled to r-fosc. & \({ }^{237}\) & Not used &  & Fine tuning centered. Rece
channel 13 &  & \[
\begin{aligned}
& \text { Fig: } 11 \\
& \text { Fitiz: } 10 \\
& \text { Fiz: }
\end{aligned}
\] \\
\hline 11 & " & 19.75 & " & & " & " & " & \(\mathrm{T}_{\text {Tin. }}^{\text {mine }}\) (top) for & " & 37 & " & 209.75 & " & 231 & " & & Rec. on chan. 12 & L14 as shove & Fiz. 12 \\
\hline & " & & " & & " & " & " & \multirow[t]{2}{*}{\begin{tabular}{l}
T106 (bottom) for \\
max. on met
\end{tabular}} & \multirow[t]{2}{*}{Fig. 10} & 38 & " & 203.75 & " & 225 & " & " & Rec. on chan. 11 & Lis as above & " \({ }^{1}\) \\
\hline 12 & & 22.5 & & & & & & & & \multirow[t]{2}{*}{38} & " & 197.75 & " & 219 & " & " & Rec. on chan. 10 & L16 as above & " \\
\hline 13 & " & 24.8 & " & & " & " & " & Tlo4 (bottom) for & " & & " & 191.75 & " & 213 & " & " & Rec. on chan. \(\theta\) & L17 asabove & " \\
\hline 14 & " & 22.0 & " & & " & " & " & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { T103.(bottom) for } \\
& \text { max. }
\end{aligned}
\]} & " & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline 41 \\
\hline 42 \\
\hline 1 \\
\hline
\end{tabular}} & " & 185.75 & " & 207 & " & " & Rec. on chan. B & 118 as abovo & " \\
\hline & & & & & & & & & & & " & 179.75 & " & 201 & " & " & Rec. on chan. 7 & L19 as abve & \({ }^{\prime}\) \\
\hline 15 & " & 25.9 & " & & " & " & " & \[
\begin{array}{|l|l|}
\hline \begin{array}{l}
\text { max. } 102 \text { (bottom) for } \\
\hline
\end{array} \\
\hline
\end{array}
\] & \multirow[t]{5}{*}{} & \multirow[t]{2}{*}{4} & " & 87.75 & " & 109 & " & " & Rec. on chan. 6 & L31 as abovo & Fis. 10 \\
\hline \multirow[t]{4}{*}{16} & \multirow[t]{4}{*}{"} & \multirow{4}{*}{\({ }_{\substack{28.75}}^{22.05}\)} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Converter } \\
& \text { grid } \\
& \text { (pin } 1, \text { V2) }
\end{aligned}
\]} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{Pin 1, V108} & \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\hline \text { Junction of R135 } \\
\text { CC190 }
\end{array}
\]} & \multirow[t]{4}{*}{Shunt 300 ohm crose pri. T102 Set bies -2 v. Set swp. sen. for 4
\(P=P\) on scope. \(P-P\) on scope} & \multirow[t]{4}{*}{} & & & " & 81.75 & " & 103 & " & " & Rec. on chan. 5 & L21 as above & Fis. 12 \\
\hline & & & & & & & & & & 45 & " & 71.75 & " & 93 & " & " & Rec. on chan. 4 & L22 as abovo & . \\
\hline & & & & & & & & & & 46 & " & 65.75 & " & 87 & " & " & Rec. on chan. 3 & L23 as above & " \\
\hline & & & & & & & & & & 47 & " & 59.75 & " & 81 & " & " & Rec. on chan. 2 & L24 at above & " \\
\hline \multirow[t]{2}{*}{17} & \multirow[t]{2}{*}{"} & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{" \({ }^{\prime}\)} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Adjuat T1 (top), T104, T106 (bot.) for proper resp.} & \multirow[t]{2}{*}{} & 48 & \multicolumn{9}{|l|}{Repeat teps 36 through 47 as a check.} \\
\hline & & & & & & & & & & \multicolumn{10}{|c|}{agc threshold adjustment} \\
\hline \multicolumn{9}{|c|}{antenna, r-f and converter line alignment} & & \multirow[t]{2}{*}{48} & \multirow[t]{2}{*}{Not used} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Not used}} & \multirow[t]{2}{*}{Pin 1، V100} & \multirow[t]{2}{*}{Not used} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Tune in station, \({ }^{\text {turn }}\) pix control without clipping aync on scopa}} & \multirow[t]{2}{*}{Fir. 11} \\
\hline \multirow[t]{3}{*}{18} & \multirow[t]{3}{*}{\(\underset{\substack{\text { Antenna } \\ \text { terminals }}}{ }\)} & \multirow[t]{3}{*}{215.75} & \multirow[t]{3}{*}{Not used} & & \multirow[t]{3}{*}{Not used} & \multirow[t]{3}{*}{Junction of Clis3
d RR23 for fingal
zen. method only} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { C6 for zero on } \\
& \text { meter or beat on } \\
& \text { het. frea. mater }
\end{aligned}
\]} & \multirow[t]{3}{*}{\({ }_{\text {Fize }}^{\text {Fig }}\) [ 11} & & & & & & & & & & \\
\hline & & & & & & & & & & \multicolumn{10}{|c|}{horizontal oscillator adjustment} \\
\hline & & & & & & & & & & 50 & Short circuit ter & innele C and & d D of T109. Tune it & In a station & . Set locking range & trimmer C153A \(1 / 2\) & \(1 / 2\) turn out from max & ximum. & \\
\hline 19 & & & & & & \({ }_{\substack{\text { Junction of R135 } \\ \text { \& Cip7 }}}\) & Remove V101 & \({ }^{\text {Potentiometer for }}\) & Fiple & 51 & Turn hold contro & fully cloct & kwise. Adjust T109 & Frequency & Adjustment until & horizontal blanking & bar appears in the & picture. & \\
\hline 20 & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\text { Antennal } \\
\text { (erminal } \\
\text { (loosely) }
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 175.25 \\
& 179.75
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Sweep } \\
\text { shap } \\
\text { chang } \\
7
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Test \\
Connection R13
\end{tabular}} & \multirow[t]{2}{*}{Not used} & \multirow[t]{2}{*}{Receiver on chan-
nel 7} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Fig. 11
Fiz
Fir
Fir
Fin
(i)} & \multirow[t]{2}{*}{52} & \multicolumn{9}{|l|}{ is correct. Repeat step 51 , then proceed with step 53 .} \\
\hline & & & & & & & & & & & \multicolumn{9}{|l|}{Remove clip from terminals \(C\) and \(D\) of Tiog. Turn hold control fully clockwise. Adjust Tios Oscillator Waveform Adjustment until horizontal blanking bar appears in picture with core in outer of two posible positions.} \\
\hline \multirow[t]{2}{*}{\({ }^{21}\)} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{\({ }_{209.75}^{205.25}\)} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{\({ }_{\substack{\text { channel } \\ 12}}\)} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{Receiver on channel 12} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Fig. } 16 \\
& \text { Figit } \\
& (12)^{2}
\end{aligned}
\]} & 54 & \multicolumn{9}{|l|}{Connect low capacity probe of oscilloscope to terminal C of T109. Alternately adjust Tios Oscillator Waveform Adjustment and frequency adjustment until broad and sharp peaks of wave on oscilloscope are same height while keeping picture in aync. Remove oscilloscope.} \\
\hline & & & & & & & & & & \({ }^{53}\) & \multicolumn{9}{|l|}{Connect a 270 K resistor across Cis6. Turn hold control fully counter-clockwise. Momentarily remove signal. Turn hold control slowly clockwise. Note least number of hars before pull-in. Adjust Locking Range Control (Cis3A) for 2 bar pull-in.} \\
\hline 22 & " & \({ }_{1759.75}^{175 .}\) & " & channel & & &  &  & \[
\mathrm{Fig}_{(i)^{17}}{ }^{17}
\] & 56 & \multicolumn{9}{|l|}{\multirow[t]{2}{*}{Turn hold control fully clockwise. Adjust Tiog Freq. Adjustment until horizontal blanking appeare as single vertical or diagonal bar in pix. 4.5 MC video trap adjustment}} \\
\hline \multirow[t]{2}{*}{23} & \multirow[t]{2}{*}{"} & (181.25 & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \(\cdots\) & \(\cdots\) & & \multirow[t]{2}{*}{,} & \multirow[t]{2}{*}{\({ }_{\text {Fiz }}^{\text {(i) }}{ }^{17}\)} & \multicolumn{2}{|r|}{4.5 MC video trap adjustment} & & & & & & & & \\
\hline & & & & & & & & & & 57 & Tune in \& stron & station. Sl & Short T103 trap. If a & 4.5 mc . b & beat appears in pic & ture adjuct 4.5 mc . & trap (L110) until b & beat is ellminated. & \\
\hline 24 & " &  & " & channel & " & " & Receiver on chan. nel 9 & " &  & \multicolumn{10}{|c|}{SEnsitivity check} \\
\hline 25 & " & \({ }_{1}^{193.75}\) & " & \(\underset{\substack{\text { channel } \\ 10}}{ }\) & " & " & Receiver on channel 10 & " &  & 58 & \multicolumn{9}{|l|}{Connect antenna to receiver through attenuator pad to provide weak signal. Compare the picture and sound ohtained to that obtained on othor receivers under the same conditions.} \\
\hline
\end{tabular}

\section*{ADIO ALIGNMENT PROCEDURE}

If any lead dressing is necessary, it should be done before aligning the receiver. When making a complete alignment follow the table below in sequence. If only a portion of the circuit is to be aligned select the portion required and follow with the re maining steps in the section. Any adjustments made on the 455 kc. 1.F's make it \(n\)
"AM" R-F-I-F ALIGNMENT
Test-Oscillator.-.For all alignment operations, connect low side of the test-osc. to the receiver chassis, and keep the osc. output
as as low as possible to avoid a.v.c action. Output Meter.-Connect the meter across the speaker voice coil, and turn the receiver
volume control to max.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Connect the High Side of the Test Osc. 10 - & \[
\begin{aligned}
& \text { Tune Test Osc. } \\
& \text { to }
\end{aligned}
\] & Function Switch & Turn Radio Dial io- & Adjust the following \\
\hline 1 & Antenna terminal in series with .01 mid . & 455 kc . Modulated & AM & Low Freq. ent of Dial & \(\dagger\) Top and bot cores of T301 and T302. (For max. voltage across voice coil.) \\
\hline 2 & \multirow{3}{*}{Ant. terminal through dummy ant. of 200 mmfs .} & 1.620 kc . & AM & Min. capacity & Osc. C308 for maximum output. \\
\hline 3 & & 1.400 kc . & AM & Tune to signal & Ant. C304 for maximum output. \\
\hline 4 & & 600 kc . & AM & 60 kc . & Osc. L 1305 and Ant. L303. \\
\hline 5 & & , & & & \\
\hline
\end{tabular}

Repeat steps 2.3 and 4 for maximum output.
t Use alternate loading. Connect an 18.000 ohm resistor across the primary 10 load the plate winding while the grid winding of
the same transtormer is being peaked. Then load the grid winding with the 18.000 -ohm resistor while the plate winding is being peaked. RATIO DETECTOR ALIGNMENT
Connect probe of "Voltohmyst" to negative side of C328 and low side to chassis. Connect output meter across speaker voice coil.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Connect the High Side of the Test Osc. to- & \[
\begin{aligned}
& \text { Tune Test Osc. } \\
& \text { to }
\end{aligned}
\] & Function Switch & Radio Dial Tuned to- & Adiust \\
\hline 6 & Pin No. 1 of 6AU6(V303) in series with .01 mid . & \multirow[t]{2}{*}{\[
\begin{gathered}
10.7 \mathrm{mc} . \\
30 \% \mathrm{AM} \\
\text { Modulated }
\end{gathered}
\]} & FM & -- & Top of T303 for maximum DC on "VoltOhmyst." \\
\hline 7 & Pin No. 1 of 6AU6 (V303) in series with .01 mid . & & FM & - & Bottom of T303 for minimum audio output on meter. \\
\hline
\end{tabular}
epeat steps 6 and 7 as necessary making final adjustment with r-4 input level set to give approximately -3.0 volts d.c on "Voltohmyst."

FM" R-F-I-F ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Connect the High Side of the Test Osc. to- & \[
\begin{aligned}
& \text { Tune Test Osc. } \\
& \text { to }-
\end{aligned}
\] & Function Switch & Radio Dial Tuned to- & Adjust \\
\hline 9 & Terminal 3 of S301-2 rear through 270 ohms. & 10.7 mc . & FM & 88 mc . & -T301 and T302 for max. with r.f input set 10 give -3 volts on "VoltOhmyst." \\
\hline 10 & Terminal 3 of S301-2 rear through 270 ohms. & 106 mc . & FM & 106 mc . & Set C302 to max. capacity. Squeeze L307 and adjust C302 for maximum. \\
\hline 11 & Terminal 3 of S301-2 rear through 270 ohms. & 90 mc . & FM & Tune to signal & Squeeze L301 and rock gang for maximum output. \\
\hline 12 & Repeat steps 10 and 11 & & & & \\
\hline
\end{tabular}
- Use a \(680 \cdot\) ohm resistor 10 load the plate winding while the grid winding of the
winding is loaded with 680 -ohm resistor while the plate winding is being peaked


Figure 20-Chassis, Top Viex, Showing Adjustments


Figure 21-Dial and Drive Cord Assemblv,

\section*{CRITICAL LEAD DRESS}
1. Ground lead on pin 2 of V302 and V303 should be dressed
down flat on chassis. down hlat on chassis.
2. Dual 005 mid. capacitors and diode filter should be dressed to clear the botiom of the cabinet
3. Dress C329 across V302 sockets with short and direct leads. 4. Dress V 302 plate lead from pin 5 down to the chassis
5. Dress AVC lead from R321 to switch down to chassis and 5. Dress AVC lead from R321 to switch
against back of gang mounting plate.
6. Dress lead from pin 6 of \(V 305\) down to chassis and against
for 10 switch against chassis and 1. Dress AVC lead from 1 st \(1 . F\).F
8. Dress lead from switch to pin 1 of V301 against plate supporting gang.
9. Dress all insulated F.M leads down to chassis.
10. Connect C309 with short lead to pin 6 of V301 keeping
II.
1. The coupling between L301 and L 307 should be adjusted
to give proper injection voltage to the mixer grid. This to give proper injection voltage to the mixer grid. This
has been found to be correct when the distance between adjacent end turns is \(3 \%^{\prime \prime}\) to \(\overline{1} / 16^{\prime \prime}\) measured at top of the
2. Dress cabled leads away from antenna transmission lines.
13. Dress all uninsulated bus wire so as to avoid short circuits.

Following is a list of symptoms of possible failures and an indication of some of the possible faults

\section*{NO RASTER ON KINESCOPE:}
(1) Incorrect adjustment of ion trap magnet. Magnets reversed either front to back or top to bottom.
(2) V112 or V113 inoperative. Check wavetorms on grids and plates
(3) No high voliage-1t horizontal deflection is operating as evidenced by the correct waveform on terminal 4 of 1106 , T110 high voltaye winding is open, the 8016 tube is de fective, its filament circuit is open, or C168 is shorted.
(4) V111 circuit inoperative-Refer to schematic and waveform chart
(5) Damper tube (V114) inoperalive.
(6) Detective kinescope.
7) R131 open.
or filler choke open.
no vertical deflection:
1) V107B or V110 inoperative. Check voltage and wavelorms on grids and plates.
(2) T107 or T108 ope
(3) Vertical dellection coils open

\section*{small Raster:}
1) Low Plus B or low line voltage
2) V112 defective
(3) Defective yoke.

\section*{POOR VERTICAL LINEARITY:}
(1) If adjustments cannot correct, change V110.
(2) T107 or T108 transtormer delective
(3) V107B defective-check voltage and wavetorms on grid and plate.
(4) C150, R164, C146B, C147C, C14BC or C166 defective
(5) Low bias or plate voltage-check rectifiers and capacitors in supply circuits.

\section*{poor horizontal linearity:}
1) II adjustments do not correct, change V112 or V11

T110 or L111 defective
(3) C164 or C165 defective

\section*{WRINKLES ON LEFT SIDE OF RASTER:}
(1) C169 defective or incorrectly connected
2) C 141 or C 191 defective
3) Defective yoke.

PICTURE OUT OF SYNC HORIZONTALLY:
1) T109 incorrectly tuned
(2) R172, R173 or R174 detective
(3) Vertical instability may be due to loose connections or DARR VERTICAL LINE ON LEFT OF PICTURE:
noise.
(4) Horizontal instability may be due to unstable transmitted
sync.
(1) Reduce horizontal drive and readjust width and horizonta linearity.
(2) Replace V112.
light vertical line on left of picture:
raster but no sound, picture on sync:
(1) Defective antenna or transmission line.
(2) R-F oscillator off frequency.
(3) R-F unit inoperative-check V1, V2, V3.
(1) C169 defective.
(2) V114 defective.

Connect the oscilloscope across the picture detector load re sistor and observe the overall response. The response obtained
will be essentially that of the will be essentially that of the unshunted stage. The effects of the various traps are also visible on the stage response. Figures 22 through 26 show the responses of the various stages
obtained in the above manner. The curves shown are typical although some variation between receivers can be expected.
Relative stage gain is not shown Relative slage gain is not shown.
PICTURE I-F RESPONSE.-At times it may be desirable to observe the individual i.f stage response. This can be achieved
by the following method: Chut an if trand
histor ancep insformers and coils with a 330 -ohm carbon resistor except the one whose response is to be observed. Connect a wide band sweep generator to the converter grid
and adjust it to sweep from 18 mc . to 30 mc .


Figure 22-Response of Con. verter and First \(P i_{x}\)
I-F Transformer I-F Transformer


Figure 25-Response of Fourth Pix I-F Transformer


Figure 23-Response of Second Pix I-F Transformer


Figure 26-Response of Fifth
Pix I.F Transformer


Figure 24 -Response of Third
Pix l. F Transformer


Figure
Pix I.F
27
Grid to Pix. Det.
Rate) (s.tolts PD)
Sueep Rate) (5.4Volts PP)
\[
\begin{gathered}
\text { Sync Feed (Junction of L104, } \\
\text { R219 and C194) }
\end{gathered}
\]

Figure 33-Vertical (28 Volts PP)

Figure \(3 \_\)Horizontal (28 Volts PP)


Input to 2 2nd Video Amplifier
(Pin 7 of V106) (12AU7)

Figure 35-Vertical (17 Volts PP)

Figure 36-Horizontal (17Volts PP)



Figure 28-Overall Pix
I.F Response

Figure 29-V'ideo Response at
Average Contrast
Average Contrast


Figure 30-Video Response at


Input to Kinescope (Junction of R127
and R128) (Picture Max.)
Figure 39-Vertical (65 Volts PP)

Figure \(40-\) Horizontal ( 65 Volts PP)
\(\#\)
© John F. Rider

Output of Sync Amplifier (Pin 2 of
Figure \(51-\) Vertical ( 115 Volts PP)

Figure 52-Horizontal ( 105 Volts PP) Cathode of 2nd Sync Separator (Pin 6 Figure 53-Vertical (17 Volts PP)

Figure 54-Horizontal (ll Voles PP)

Figure
work
(Junction of C1
C144, Cl45
and unction of Cl4s,
R153 ( 4 Vols \(P P\) )

Fisure 56-Grid of Vertical Oscillator
(720 Voles PP) (Pin 1 of V107) \(\xrightarrow{\text { PSNNGT) }}\)

Figure \(57-\) Grid of Vertical Output
\((160\) Volts PP) \((\) Pin 5 of Vulio)
\((160\) Volts PP) (Pin 5 of Vilo)
\((6 \mathrm{KKGGT)}\)
\(\longleftrightarrow\)

Figure 58-Plate of Vertical Outpu
(750 Voles PP) (Pin 3 of V110) \(\xrightarrow{(6 K 6 G T)}\)

Figure 59-Input of Vertical Deflec. tion Coils (75 Vreen ols Pp) (Junction of Green Lead of T108 and Green Lead of Yoke)

Figure 60-Input to Horizontal Oscil lator ( 17.5 Volts \(P\) P \()\) ( Junction of
CI53A and C154) \(\xrightarrow{\rightleftarrows}\)



VOLTAGE CHART
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { No. }
\end{aligned}
\]} & \multirow{2}{*}{Tube
Type} & \multirow[b]{2}{*}{Function} & \multirow{2}{*}{Operating Condition} & \multicolumn{2}{|l|}{E．Plate} & \multicolumn{2}{|l|}{E．Screon} & \multicolumn{2}{|l|}{E．Cathode} & \multicolumn{2}{|l|}{E．Grid} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Plate } \\
\text { (ma.) }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\underset{\substack{\text { Scroon } \\ \text { (ma.) }}}{ }
\]} & \multirow[b]{2}{*}{Notes on Measure mente} \\
\hline & & & & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volta & & & \\
\hline \multirow[t]{2}{*}{v1} & 6AG5 & \[
\begin{gathered}
\mathrm{R}-\mathrm{F} \\
\text { Amplifier }
\end{gathered}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 130 & 6 & 132 & 2\％ 7 & 0 & 1 & －2．2 & 5 & 2 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Siynal }
\end{gathered}
\] & 5 & 67 & 6 & 111 & 2\＆ 7 & 0 & 1 & 0.0 & 14.0 & 5.0 & \\
\hline \multirow[t]{2}{*}{v2} & 6AG5 & Converter & \[
\underset{\substack{2200 \mathrm{Mu} . \mathrm{V} \\ \text { Signal }}}{\substack{\text { Ninat } \\ \hline}}
\] & 5 & \[
\begin{array}{|r|}
\hline \cdot 130 \\
\text { to } 140 \\
\hline
\end{array}
\] & 6 & \[
\begin{array}{r}
131 \\
\hline 130 \\
10140
\end{array}
\] & 2 \＆ 7 & 0 & 1 & \[
\begin{array}{r}
\because-3.0 \\
\text { to }-7.0
\end{array}
\] & \[
\begin{array}{r}
7.1 \\
\text { to } 7.7
\end{array}
\] & \[
\begin{array}{r}
2.3 \\
\text { to } 2.3 \\
\hline
\end{array}
\] & \multirow[b]{2}{*}{－Depending upon channel} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & \[
\begin{aligned}
& .107 \\
& \text { to } 109
\end{aligned}
\] & 6 & \[
\begin{aligned}
& \because 107 \\
& 10109
\end{aligned}
\] & 2\＆ 7 & 0 & 1 & \[
\begin{aligned}
& \because-2.0 \\
& 10-60
\end{aligned}
\] & \[
\begin{array}{r}
5.3 \\
\text { to } 5.9
\end{array}
\] & \[
\begin{gathered}
9.8 \\
101.0
\end{gathered}
\] & \\
\hline \multirow[t]{2}{*}{v3} & 6 J 6 & \[
\begin{gathered}
\text { R-F } \\
\text { Oscillator }
\end{gathered}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 182 & \[
\begin{array}{r}
88 \\
\text { to } 95 \\
\hline
\end{array}
\] & － & － & 7 & ． 19 & 5\＆6 & \[
\begin{gathered}
\cdot-5.1 \\
\text { to }-7.3
\end{gathered}
\] & \[
\begin{array}{r}
9.19 \\
\text { to } 2.7 \\
\hline
\end{array}
\] & － & \multirow[b]{2}{*}{－Depending upon channel} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal } \\
\hline
\end{gathered}
\] & \(1 \& 2\) & \[
\begin{array}{r}
68 \\
\text { to } 81 \\
\hline
\end{array}
\] & － & － & 7 & ． 16 & 5\＆ 6 & \[
\begin{gathered}
-4.5 \\
\text { to }-6.6 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
1.8 \\
\text { to } 2.1 \\
\hline
\end{array}
\] & － & \\
\hline \multirow[t]{2}{*}{V101} & 6BA6 & 1st Pix．I－F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 128 & 6 & 128 & 7 & ． 4 & 1 & －11．0 & 1.9 & ． 8 & \\
\hline & & & \(\stackrel{\text { No }}{\text { Nignal }}\) & 5 & 95 & 6 & 95 & 7 & 1.73 & 1 & ＋． 2 & 8.1 & 3.4 & \\
\hline \multirow[t]{2}{*}{V102} & 6AG5 & 2nd Pix．I－F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 119 & 6 & 119 & 2\＆7 & ． 78 & 1 & 0 & 8.8 & 2.4 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 100 & 6 & 100 & 2\＆7 & 62 & 1 & 0 & 7.4 & 1.6 & \\
\hline \multirow[t]{2}{*}{V103} & 6BA6 & 3d Pix．I－F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 81 & 6 & 119 & 7 & 52 & 1 & －2．2 & 11.1 & 3 & \\
\hline & & &  & 5 & 55 & 6 & 96 & 2\＆ 7 & ． 62 & 1 & ＋． 2 & 13.2 & ． 3 & \\
\hline \multirow[t]{2}{*}{V104} & 6AG5 & 4th Pix．I－F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 159 & 6 & 135 & 2\＆ 7 & 1.5 & 1 & 0 & 7.2 & 2.2 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 165 & 6 & 118 & 2\＆7 & 1.35 & 1 & 0 & 6.8 & 2.4 & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V} 105 \\
& \hline
\end{aligned}
\]} & 6AL5 & Picture 2d Det． & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 7 & －116 & － & － & 1 & －127 & － & － & ． 3 & － & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 7 & －131 & － & － & 1 & －135 & － & － & \(<0.1\) & － & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{V} 105 \\
\mathrm{~B}
\end{gathered}
\]} & 6ALS & \[
\begin{aligned}
& \text { Lync } \\
& \text { Limiter }
\end{aligned}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 2 & －117 & － & － & 5 & －58 & － & － & － & － & \\
\hline & & & \(\xrightarrow[\text { Signal }]{\substack{\mathrm{No} \\ \text { S }}}\) & 2 & －83 & － & － & 5 & －60 & － & － & － & － & \\
\hline \multirow[t]{2}{*}{V106} & 12AUT & \[
\begin{aligned}
& \text { 1st Video } \\
& \text { Amplifier }
\end{aligned}
\] &  & 1 & －18．7 & － & － & 3 & －125 & 2 & －129 & 2.6 & － & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 1 & －28．0 & － & － & 3 & －133 & 2 & －135 & 6.6 & － & \\
\hline \multirow[t]{2}{*}{V106} & 12AU7 & 2d Video Amplitio & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 6 & \(\cdot 120\) & － & －－ & 8 & －-11.0 & 7 & －－13．2 & 9.2 & － & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { At minimum } \\
& \text { contrast }
\end{aligned}
\]} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal } \\
\hline
\end{gathered}
\] & 6 & \({ }^{\text {－127 }}\) & － & － & 8 & \(\cdot-17.0\) & 7 & －－21．0 & 8.5 & － & \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \mathrm{V}_{\mathrm{A}} 107 \\
\hline
\end{array}
\]} & \[
\begin{gathered}
6 \text { GN } 7 \\
\text { GT }
\end{gathered}
\] & \[
\begin{gathered}
\text { AGC } \\
\text { Amplifier }
\end{gathered}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & －11．0 & － & ＿ & 6 & －58 & 4 & －61 & ． 12 & － & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & ＋0．2 & － & － & 6 & －60 & 4 & －66 & 0 & － & \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{|c}
\hline \text { V107 } \\
\hline
\end{array}
\]} & \[
\begin{gathered}
6 \text { SN7 } \\
\hline \text { GT } \\
\hline
\end{gathered}
\] & Vertical Oscillato & \[
\begin{gathered}
2200 \mathrm{Mu} \text { V. } \\
\text { Signal } \\
\hline
\end{gathered}
\] & 2 & 125 & － & － & 3 & －127 & 1 & －170 & ． 31 & － & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & 120 & － & － & 3 & －135 & 1 & －175 & ． 30 & － & \\
\hline \multirow[t]{2}{*}{V108} & 6SN7 & AGC Rectifier & \[
\begin{array}{|c|}
\hline 2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{array}
\] & 5 & 87 & － & ＿ & 6 & －2 & 4 & －19．5 & ． 3 & － & \\
\hline & & & \[
\begin{gathered}
\mathrm{No} \\
\text { Signal }
\end{gathered}
\] & 5 & 75 & － & － & 6 & －22 & 4 & －28．0 & ＜．1 & － & \\
\hline \multirow[t]{2}{*}{V 108} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \hline \text { GT } \\
& \hline
\end{aligned}
\] & lst Sync Separator & \[
\begin{array}{|c|}
\hline 2200 \mathrm{Mu} \mathrm{~V} . \\
\text { Signal } \\
\hline
\end{array}
\] & 2 & 87 & － & － & 3 & －3 & 1 & －18．5 & ＜．1 & － & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & 73 & － & － & 3 & －22 & 1 & －28．0 & ＜．1 & － & \\
\hline \multirow[t]{2}{*}{V109} & \[
\begin{gathered}
6 \text { GT } 7 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Sync } \\
& \text { Amplifier }
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 2200 \mathrm{Mu} . \mathrm{V} . \\
\mathrm{S} \text { gnal } \\
\hline
\end{array}
\] & 2 & 153 & － & － & 3 & 0 & 1 & －5．7 & 5.8 & － & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal } \\
\hline
\end{gathered}
\] & 2 & 160 & － & － & 3 & 0 & 1 & －5．6 & 5.4 & － & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { No. }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { Type }
\end{aligned}
\]} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operating Condition} & \multicolumn{2}{|l|}{E．Plate} & \multicolumn{2}{|l|}{E．Screen} & \multicolumn{2}{|l|}{E．Cathode} & \multicolumn{2}{|r|}{E．Grid} & \multirow[b]{2}{*}{\[
\left\{\begin{array}{c}
1 \\
\text { Plate } \\
\text { (ma.) }
\end{array}\right.
\]} & \multirow[b]{2}{*}{\[
\underset{\substack{\text { Screon } \\ \text { (ma.) }}}{\text { I }}
\]} & \multirow[b]{2}{*}{\begin{tabular}{l}
Notes on \\
Measure－ \\
ments
\end{tabular}} \\
\hline & & & & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & Pin
No． & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volte & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & & & \\
\hline \multirow[t]{2}{*}{V109} & \[
\underset{\text { GT }}{\text { 6SN7 }}
\] & \[
\begin{gathered}
\text { Sync } \\
\text { Separator }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 2200 \mathrm{Mu} . \\
\text { Signal } \\
\hline
\end{array}
\] & 5 & 241 & － & － & 6 & －58 & 4 & －117 & 22 & － & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 240 & － & － & 6 & －57 & 4 & －65 & ． 21 & － & \\
\hline \multirow[t]{2}{*}{V110} & \[
\begin{aligned}
& \text { 6K6. } 6 . \\
& \text { GT }
\end{aligned}
\] & Vertical & \[
\begin{array}{|c|c|}
\hline 2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal }
\end{array}
\] & 3 & 240 & 4 & \(\cdot 240\) & 8 & －78 & 5 & －107 & 10 & 2.0 & \multirow[t]{2}{*}{\[
\begin{gathered}
\text {-Screen } \\
\text { connected to } \\
\text { plate }
\end{gathered}
\]} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 3 & 235 & 4 & ． 235 & 8 & －83 & 5 & －111 & 10 & 1.9 & \\
\hline \multirow[t]{2}{*}{V111} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \hline \text { GT } \\
& \hline
\end{aligned}
\] & Horizontal Osc．Control & \[
\begin{array}{|c|}
\hline 2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal } \\
\hline
\end{array}
\] & 2 & \(\stackrel{48}{ }\) & － & － & 3 & －136 & 1 & －127 & ． 11 & － & \multirow[t]{2}{*}{Variation
of haid gives
（ 1.9 to +56
volts on plate} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Nignal } \\
\hline
\end{gathered}
\] & 2 & ＊33 & － & － & 3 & －140 & 1 & －140 & 10 & － & \\
\hline \multirow[t]{2}{*}{V111} & \[
\underset{\text { GT }}{\text { 6SN7 }}
\] & Horizontal Orcillator & \[
\underset{\text { Signal }}{2200 \mathrm{Mu} . \mathrm{V}}
\] & 5 & 86 & － & － & 6 & －127 & 4 & －193 & 2.0 & － & \\
\hline & & & \(\stackrel{\mathrm{No}}{\text { Signal }}\) & 5 & 80 & － & － & 6 & －135 & 4 & －205 & 1.7 & － & \\
\hline \multirow[t]{2}{*}{V 112} & 6BG6G & Horizontal & \[
\begin{array}{|c|}
\hline 2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal } \\
\hline
\end{array}
\] & Cap & \[
\begin{array}{|c|}
\hline \text { Do Not } \\
\text { Meas. } \\
\hline
\end{array}
\] & 8 & 152 & 3 & －117 & 5 & －145 & 67.9 & 8.1 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & Cap & Do Not Meas． & 8 & 150 & 3 & －126 & 5 & －157 & 66.0 & 8.0 & \\
\hline \multirow[t]{2}{*}{V113} & \[
\begin{array}{|r|}
\hline 1 \text { B3GT } \\
8016 \\
\hline
\end{array}
\] & \[
\underset{\text { Rectifier }}{\text { H. V. }}
\] & Brighiness & Cap & \[
\begin{array}{|l|}
\hline \text { Do Not } \\
\text { Meas. } \\
\hline
\end{array}
\] & － & － & \(2 \& 7\) & 12，300 & － & － & 0 & － & \\
\hline & & & Brightness Average & Cap & \[
\begin{array}{|l|}
\hline \text { Do Not } \\
\text { Meas. }
\end{array}
\] & － & － & 2\＆7 & 11，700 & － & － & 1 & －－ & \\
\hline \multirow[t]{2}{*}{V114} & 6W4GT & Damper & \[
\begin{array}{|c}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal }
\end{array}
\] & 5 & \[
\begin{array}{|l|l|}
\hline \text { Do Not } \\
\text { Mose } \\
\hline
\end{array}
\]
Meas. & － & － & 3 & 498 & － & － & 86 & －－ & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Si } \mathrm{ar}
\end{gathered}
\] & 5 & \[
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Do Not } \\
\text { Meas. }
\end{array} \\
\hline
\end{array}
\] & － & － & 3 & 496 & － & － & 70 & － & \\
\hline \multirow[t]{2}{*}{V115} & 5U4C & Rectitier & \[
\begin{gathered}
2200 \mathrm{Mu} . \\
\text { Signal }
\end{gathered}
\] & 4\＆6 & 385 & & & 2\＆8 & 267 & － & － & 225 & － & \multirow[t]{2}{*}{－A－C meas－ ured from plate otrans．center tap} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 4\＆6 & 385 & & & 2 \＆ 8 & 260 & － & －－－ & 226 & － & \\
\hline \multirow[t]{2}{*}{V116} & 6AU6 & \[
\begin{array}{|c|}
\hline \text { lst Sound } \\
\text { I-F Amplifier } \\
\hline
\end{array}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 124 & 6 & 124 & 7 & ． 87 & 1 & －0．1 & 7.0 & 3.0 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 107 & 6 & 107 & 7 & ． 75 & 1 & －0．15 & 6.4 & 2.3 & \\
\hline \multirow[t]{2}{*}{V117} & 6AU6 & \[
\begin{array}{|l|}
\hline \text { 2nd Sound } \\
\text { I-F Amplifier } \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal } \\
\hline
\end{array}
\] & 5 & 130 & 6 & 67 & 7 & 0 & 1 & －9 & 4.3 & 1.5 & \\
\hline & & & Signal & 5 & 120 & 6 & 60 & 7 & 0 & 1 & －0．37 & 3.7 & 1.6 & \\
\hline \multirow[t]{2}{*}{V118} & 6AL5 & Sound Discrim & \[
\begin{array}{|c}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal } \\
\hline
\end{array}
\] & 2 & -8.4
-3.7 & － & － & 5
1
1 & \({ }^{5} 8\) & 二 & 二 & － & － & \\
\hline & & & \(\stackrel{\text { No }}{\text { Nignal }}\) & 2
7 & \[
\begin{aligned}
& -0.4 \\
& -0.4 \\
& \hline
\end{aligned}
\] & － & － & 5
1
1 & 0 & － & － & － & － & \\
\hline \multirow[t]{4}{*}{V119} & 12AX7 & \[
\begin{aligned}
& \text { Ist Audio } \\
& \text { Amplifier }
\end{aligned}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal }
\end{gathered}
\] & 1 & 100 & － & － & 3 & 0 & 2 & －． 9 & － & － & \\
\hline & & & \(\stackrel{\mathrm{No}}{\text { Nignal }}\) & 1 & 100 & － & － & 3 & 0 & 2 & －． 9 & － & － & \\
\hline & & Phase Inverter & \[
\underset{\substack{2200 \mathrm{Mu} . \mathrm{V} \\ \text { Signal }}}{ }
\] & 6 & 130 & － & － & 8 & 0 & 7 & －． 9 & － & － & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 6 & 130 & － & － & 8 & 0 & 7 & －． 9 & － & － & \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \mathrm{V} 120 \\
\mathrm{~V} 123 \\
\hline
\end{array}
\]} & 6V6. & Audio Output & \[
\underset{\text { Signal }}{2200 \mathrm{Mu} .}
\] & 3 & 230 & 4 & 85 & 8 & －113 & 5 & －127 & 22 & 5 & －Per tube \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 3 & 230 & 4 & 85 & 8 & －120 & 5 & －135 & 22 & 5 & \({ }^{\text {Per tube }}\) \\
\hline \multirow[t]{2}{*}{V121} & 16GP4 & Kinescope & \[
\begin{array}{|c|}
\hline 2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal } \\
\hline
\end{array}
\] & Cap & 12，300 & 10 & 250 & 11 & 77 & 2 & 35 & ． 06 & － & ＊Average Brightness \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & Cap & 11，700 & 10 & 250 & 11 & 73 & 2 & 48 & ． 18 & ＿ & Average Brightness \\
\hline V301 & 616 & Mixer and Oscillato & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & \(\frac{1}{2}\) & \[
\begin{aligned}
& 110 \\
& \hline 95 \\
& \hline
\end{aligned}
\] & 二 & 二 & 7 & 0 & － 6 & \[
\begin{aligned}
& -2.0 \\
& -5.0 \\
& \hline
\end{aligned}
\] & 二 & 二 & \multirow[t]{5}{*}{\[
\begin{gathered}
\text { Function } \\
\text { swith } \\
\text { in } \\
F M \\
\text { position }
\end{gathered}
\]} \\
\hline V302 & 6BA6 & Radio I－F Amplifier & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 210 & 6 & 105 & 7 & ． 8 & 1 & －0．2 & － & － & \\
\hline V303 & 6AV6 & Radio F－M Driver & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 205 & 6 & 135 & 7 & 1.5 & 1 & －0．2 & － & －－ & \\
\hline V304 & 6AL5 & \[
\begin{gathered}
\text { Radio } \\
\text { Ratio Det. }
\end{gathered}
\] & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & \({ }_{7}^{2}\) & \[
\begin{aligned}
& -0.2 \\
& -0.2
\end{aligned}
\] & － & － & \({ }_{1}^{5}\) & -0.2
-0.1 & － & － & － & 二 & \\
\hline V305 & 6BF6 & \[
\begin{array}{|l|}
\text { A-M Det. and } \\
\text { Phono Preamp }
\end{array}
\] & \[
\begin{gathered}
\mathrm{No} \\
\text { Signal }
\end{gathered}
\] & 7 & －0．2 & － & － & 2 & 0 & － & － & － & － & \\
\hline
\end{tabular}

\footnotetext{
In nome rocoivrit. a obur coior coramic capacitior color code it - toioranct tuise is onited.


}

\section*{O John F. Rider}

\section*{CIRCUIT SCHEMATIC DIAGRAM}


Swith poition 2-MM



Coil ronistance
aro not thown. aro not hown.
inirction ot arrowa at controls indicaten
clock wise rotation.
no signal input mith i11 with vocito sumply with


In ome: fociver: Rinio war ommod





\section*{( John F. Rider}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\underset{\substack{\text { stock } \\ \text { No. }}}{ }\) & description & \(\underset{\substack{\text { stock } \\ \text { No. }}}{ }\) & description & \({ }_{\substack{\text { Stock } \\ \text { No. }}}^{\text {cos }}\) & description & stock & description \\
\hline 73465
75069
75067
73478
73441
74035
53511
54207
73449
73091
71501
73473
73460
73461
73462
73475
73476
73477
73874
74108
74109 & \begin{tabular}{l}
R.F UNIT ASSEMBLIES KRK 5B \\
Belt-Drive belt \\
Board-R-F unit power connection torminal board (s contact) \\
Bracket-Vertical bracket for holding r-f oscillator tube shield \\
Cable-l-F transmission cable (Wi) \\
Cam-Fine tuning adjustment \\
Capacitor-Ceramic, 5 mmi . (C4, CS) \\
Capacitor-Ceramic. 10 mm . (C3) \\
Capacitor-Coramic, 18 mmf (C20) \\
Capacitor-Coramic trimmor, compriaing 1 section of 150 .
190 mml . and 1 section of 65.95 mmf ( \(\mathrm{C} 11, \mathrm{C} 12)\) \\
Capacitor-Ceramic, 270 mmi . (C21) \\
Capacitor-Ceramic. \(1,500 \mathrm{mmi}\) (C2, C7, C8, C9, C13, C15,
Ci7, C18. C 19 ) Ci7. Cl8. C19) \\
Capacitor-Ceramic, 5.000 mm . (C16) \\
Coil-R-F plate coil for channel 6 (LI3) \\
 \\
Coil-Coupling inductance coil (L4) \\
Coil-Antenna filter shunt coil (C67) \\
Coil-l-F trap (L7, C22) \\
Coil-Choke coil (L10, L11, Ll2) \\
Coil-Front section-Oscillator plate coil for channel 6
\((L 31)\) \\
Coil-Fine tuning coil (It/2 turns) with adjustable in. \\
ductance core and capactior stud (plunger adjustment)
(LI, Cl) \\
Coil-Trimmer coil ( \(11 / 2\) turns) with adjustable inductance \\
core and capacitor stud (scrow adjustment for oscilla. socion or converter section) (L2, L3, C6, C1O) \\
Coil-Trimmor coil (3 turns) with adjustable inductance cort and capacitor stud (scrow adjustment) for r-i section (L3. Cla) \\
Connector-Oscillator 80 gment connector \\
Core-Sliding core for fine tuning control trimmer \\
Core-Adjustable core for coil L. \\
Detent-R.F unit detent mechanism and fibre shaft \\
Form-Coil form for coil L31 \\
Form-Coil form assembly for L9, 113 \\
Link-Link assembly for fine tuning \\
Loop-Oscillator to converter trimmer loop connector \\
Nut-Speed nut for drive belt shield \\
Plate-Front plate and bushing \\
Pulley-Ider pulley \\
Resistor-Fixed, composition: \\
47 ohms, \(\pm 20 \%\). \(1 / 2\) walt (R4) \\
150 ohms. \(\pm 20 \%\), \(1 / 2\) watt (R5, R9, R12) \\
390 ohms, \(\pm 10 \%, 1 / 2\) watt (R14) \\
1.000 ohms, \(\pm 20 \%\), \(1 / 2\) watt (R7) \\
2.700 ohms, \(\pm 10 \%\). \(1 / 2\) watt (R10) \\
10,000 ohms, \(\pm 20 \%\), \(1 / 2\) watt (R1, RII) \\
100,000 ohms, \(\pm 20 \%\). \(1 / 2\) watt (R2, R3, R9, R13) \\
Retainer-Channel selector shaft retaining ring \\
Retainer-Retainer ring for fine tuning stud \\
Scrow-No. 4.40 \(x\) 1/4". binder head screw for adjusting
coils L14, L15, L16, L.17. L18, Lig \\
Screw-No. \(4.40 \times 5 / \mathbf{m}^{\prime \prime}\) adjusting screw for L66 \\
Screw-No. \(4.40 \times 15\) 32" adjusting screw for coils L21,
L22. L23. L24 \\
L22. L23. L24 \\
Screw-No. \(4.40 \times 17\) 32" adjusting screw for L6 \\
Shat-Channel selector shaft complete with pawl and
stud \\
Shaft-Fine tuning control shatt and pulley \\
Shaft-Actuating shaft for fine tuning control \\
Shield-"U" shape shield for bottom of r-f unit \\
Shield-Metal tube shield for V3 \\
Shield-Metal shield for drive belt
\end{tabular} & 73632
71949
73450
74575
73457
74188
74578
75068
73688

73469
73633
7 & \begin{tabular}{l}
Shield-Metal tube shield for V 1 \\
Socket-Tube socket, moulded, 7 prong, saddle mounted \\
Socket-Tube socket, ceramic, 7 prong, bottom mounted \\
Spacer-lnsulating spacer for front plate ( 4 required) \\
Spring-Return spring for fine tuning control core \\
Spring-Retaining spring for adjustable core RCA 74187 \\
Spring-Retaining spring for adjusting screw: RCA 73640
and RCA
74575 \\
Spring-Retaining spring for R.F oscillator tube shield \\
 \\
rotor, seqment coils and adjusting screwi
L15, L16, L17, L18, L19, L21, L22, L23, L24) \\
 \\
Rotor, \({ }^{\text {segment and coils }} \mathrm{L} 30\), L32, L33, L34, L3S) \\
Stator-Antenna
(S5,
L6,
L56,
s57,
L5 \\
 \\
 \\
Stator-R-F amplifier stator complete with fotor and coils \\
(S4, L13, L42, L43, L44, L45, L46, with fotor and coils
L55, C15, C16, R10), LS3, L54, \\
 \\
364 " screwdriver slot for trimmer coils 74109 and
74110 , uncoded or coded "ER" \\
 3.64" serowdriver slot ior trimmer
74110, coded numerically or "HiQ" \\
Transtormer-Convertor transformer (TI, R6) \\
Washer-insulating washer for front shield (1 set) \\
Washer--"C" washer for channel selector shaft or line
tuning shaft and cam \\
tuning shaft and cam \\
Chassis assemblies \\
KCS 43 \\
Bracket-Mounting bracket (upper) tor focus coil \\
Bracket-Mounting bracket (lowor) for tocus coil \\
Cable-Shieldod cable complete with fomale connector
(W101, W103, 1104, 1105 ) \\
(W101, W103, 1104, 1105) \\
 \\
Capacitor-Mica, 10 mmi . (C126) \\
Capacitor-Mica. 33 mmi . (CHIl) \\
Capacitor-Ceramic, 82 mmi (C120) \\
Capacitor-Mica, 82 mml ( \((140, \mathrm{C} 154\) ) \\
Capacitor-Ceramic. 100 mml . (C175) \\
Capacitor-Mica, 100 mml . (Cl38) \\
Capacitor-Ceramic. 120 mml . (C129) \\
Capacitor-Mica, 120 mmi . (Clal) \\
Capacitor-Mica, 180 mmf . (C158) \\
Capacitor-Mica, 270 mml ( C 106 , C115, C121) \\
Capacitor-Ceramic, 270 mmi ( \(\mathrm{Cl} 183, \mathrm{C} 194, \mathrm{Cl} 98\) ) \\
Capacitor-Ceramic, 500 mm i. 20.000 volts (C168) \\
Capacitor-Mica, 560 mmf ( C 160 ) \\
 \\
C108, C109, C110. C113, C114, C117, C118, C122, C152,
C127, C132, C171, C172, C176, C177, C188, C192. C193, \\
C196) \\
Capacitor-Electrolytic, \(5 \mathrm{mfd} ., 450\) volts (C166) \\
Capacitor-Electrolytic, comprising 1 section of 40 mid .
450 volts, and 1 section of 10 mid., 450 volts, and \(i\) \\
 \\
Capacitor-Electrolytic. comprising 1 soction of 40 mid ., \\
450 volts. 1 section of 90 mid.. 150 volts, and
of \(50 \mathrm{mld} ., 150\) volts (C147A. C147B. C147C) \\
Capacitor-Electrolytic, comprising 2 sections of 40 mfd .,
450 volts, and 1 section of 10 mfd ., 450 volts \((\mathrm{C} 148 \mathrm{~A}\). \\
450 rolts. and
C148B. C148C) \\
Capacitor-Electrolytic, comprising 1 section of 60 mid ., \\
450 volis. 2 sections of 10 mid., 450 volts, and 1 section
of \(20 \mathrm{mid} ., 150\) volts \((\mathrm{C} 146 \mathrm{~A}, \mathrm{C} 146 \mathrm{~B}, \mathrm{Cl} 14 \mathrm{C}, \mathrm{C} 146 \mathrm{D})\) Capacitor-Tubular, moulded paper, oit impregnated.
.001 mid., 1,000 volts (C137, C161, C203) \\
Capacitor-Tubular, paper, oil impregnated. \(0015 \mathrm{mid} .\),
600 volts
(C199) \\
Capacitor-Tubular, paper, oil impregnated, \(.0022 \mathrm{mid} .\),
600 volts \((C 142)\)
\end{tabular} & 73803
73795
73920
73561
73594
73565
73797
74727
73582
73553
73592
73997
73557
73794
74957
73787
7 & \begin{tabular}{l}
 \\
Capacitor-Tubular, paper, oil impregnated, . 0033 mtd., 600 volts (C184) \\
Capacitor-Tubular, paper. oil imprognated, .0047 mfd ., \\
500 volts (C143, C144, C202) \\
Capacitor-Tubular, paper, oil impregnated, \(01 \mathrm{~m}\{\mathrm{~d} ., 400\)
volts (C135, C182. C204) volis \\
Capacitor-Tubular, paper, oil impreqnated, . 01 mid., 600
vals (C145, C159, C205) olis iclas. \\
Capacitor-Fubular, paper, oil impregnated, . 01 mid.,
1,000 volts (C151, C152. C185, C206) \\
Capacitor-Tubular, papor, oil impregnated, . 01 s mid., \\
600 voltu (C195) \\
Capacitor-Tubular, papor, oll impreqnated, 018 mid.,
1,000 volts (C165) \\
 \\
 \\
 \\
600 volts (C139. C \\
Capacitor-Tubular, paper, oil impreqnated. . 047 mtd. .,
\(\mathrm{L}, 000\) volts (C141, C150, C 163 . C191) \\
Capacitor-Tubular, paper, oil imprognated, 0.1 mid.. \\
500 volts (C131) \\
Capacitor-Tubular, paper, oil impregnated, 0.22 mid.. \\
Capacitor-Tubular, paper, oil imprognated, 0.22 mid.,
600 volts (Cl49) \\
 \\
Choke-Filter choke (L104) \\
Coil-Focus coil (L118, Plos) \\
Coil-Horizontal linearity control coil (LIH1) \\
Coil-Filament choke coil (LIOI) \\
Coil-Poaking coil ( 36 muh (L117, RHO) \\
Coil-Peaking coil (93 muh) (LIO2) \\
Coil-Peaking coil ( 180 muh ) (L103. L105) \\
Coil-Peaking coil ( 250 muh ) (L106, L114) \\
Coil-Peaking coil ( 500 muh ) (L107) \\
Connector-3 contact female connector (1107A) \\
Connection-4 contact fomale connector for focus coil leads
\((1108)\) \\
(J108) \\
Connector-7 contact temale connector (Jlo3) \\
Connector-Male connector for power cable \\
Connector- 8 contact temale connector for deflection yoke
liads
( 106 ) \\
leads (J106) \\
Connector-4 contact male connector-part of tocus coil
\((\) P10 \\
(P108) \\
 \\
Connector-Anode connector \\
Connector-4 contact female connector for speaker cable (P101) \\
Connector- 5 contact male connector for motor switching cable (J107B) \\
Control-Horizontal and vertical hold control (R158, RI73) \\
Control-Picture and brightness control (R122. R131) \\
Control-Tone control. volume control and power switch
(R20S, R233, S101) \\
Control-Vertical linearity control (R162) \\
Control-Height control (R155) \\
Control-Focus control (R191) \\
Control-AGC threshold control (R138) \\
Control-Width control (R192) \\
Cord-Power cord and plug \\
Cover-Insulating cover for electrolytics No. 71432 and
No. 73581 No. 73381 \\
Cushion-Rubber cushion tor yoke hood (2 required) \\
Fuse-0.25 amp.. 250 volts (F101) \\
Grommet-Rubber grommet tor yoke horizontal lead exit \(\underset{\text { Gocket (2 } 2 \text { required) }}{\text { Grommet for mounting ceramic tube }}\)
\end{tabular} & \[
\begin{aligned}
& 74030 \\
& 75445 \\
& 74953 \\
& 18469 \\
& 75444 \\
& 72067 \\
& 78471 \\
& 1847 \\
& .75085 \\
& 74955 \\
& \\
& \hline 88207
\end{aligned}
\] & \begin{tabular}{l}
Grommet-Rubber grommet for mounting radio chassis Hood-Deflection yoke hood less rubber cushions \\
Magnet-lon trap magnet (PM type) \\
Plate-Bakelite mounting plate for electrolyties \\
Plate-Bakelite plate complete with tube sockets for high voltage rectifier \\
Resistor-Wire wound, 5.1 ohms. \(1 / 2\) watt (R202) \\
Resistor-Wire wound. 10 ohms. \(1 / 2\) watt (R190) \\
Resistor-Wire wound, 270 ohms, 20 watts (R230) \\
Resistor-Voltage divider, comprising 1 section of 1,200 \\
ohms, \({ }^{16}\) watts and \({ }^{2}\) (C193K, C193B, C193C) \\
Resistor-Wire wound, 3.300 ohms, 10 watts (R177) \\
Resiator-Fixed. composition: \\
10 ohms, \(\pm 20 \%, 1 / 2\) watt (R120) \\
10 ohms, \(\pm 10 \%, 1 / 2\) wall (R225) \\
47 ohms. \(\pm 5 \%, 1 / 2\) watt (RIII) \\
47 ohms, \(\pm 20 \%, 1 / 2\) watt (R183) \\
68 ohms. \(\pm 10 \%\). \(1 / 2\) watt (R105) \\
68 ohms, \(\pm 20 \%, 1 / 2\) watt (R123) \\
82 ohms, \(\pm 10 \%, 1 / 2\) wall (R195) \\
100 ohms. \(\pm 10 \%, 2\) watts (R184) \\
150 ohms. \(\pm 5 \%, 1 / 2\) watt (RI02) \\
150 ohms. \(\pm 10 \%\). \(1 / 2\) watt (R115) \\
150 ohms, \(\pm 20 \%\), \(1 / 2\) watt (R105, R109, R114, R214) \\
220 ohms, \(\pm 10 \%\). \(1 / 2\) watt (R121) \\
330 ohms, \(\pm 10 \%\). 2 watts (R206) \\
1.000 ohms, \(\pm 20 \%, 1 / 2\) walt (R103, R107, R108, R113.
R116.. R118, R165, R199) \\
1.200 ohms, \(\pm 10 \%, 1\) watt (R160) \\
1,200 ohms, \(\pm 10 \%, 1 / 2\) watt (R196) \\
1.500 ohms. \(\pm 10 \%\), \(1 / 2\) watt (R161) \\
2.200 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R219) \\
2.700 ohms, \(\pm 10 \% .1 / 2\) watt (R217) \\
3,300 ohms, \(\pm 10 \%\). 2 watts (R231) \\
3,900 ohms, \(\pm 5 \%, 1 / 2\) watt (R112) \\
3,900 ohms. \(\pm 10 \%, 1 / 2\) watt (R171) \\
3.900 ohms, \(\pm 10 \% .2\) watts (R194) \\
4.700 ohms, \(\pm 10 \%\). \(1 / 2\) watt (R144) \\
4,700 ohms, \(\pm 10 \%\). 2 watts (R239) \\
5,100 ohms, \(\pm 5 \%, 1 / 2\) watt (R126) \\
5,600 ohms, \(\pm 5 \%, 1 / 2\) watt (RII9) \\
\(5.600 \mathrm{ohms}, \pm 10 \%, 1 / 2\) watt (R218) \\
5.600 ohms, \(\pm 10 \%\). I watl (R127. R167) \\
6,800 ohms, \(\pm 5 \%\). \(1 / 2\) watl (R136) \\
6,800 ohms. \(\pm 10 \%, 1 / 2\) watt (R150) \\
8.200 ohms, \(\pm 5 \%, 1 / 2\) watt (R175) \\
8.200 ohms, \(\pm 10 \%, 1 / 2\) watt (R152, R153) \\
8,200 ohms. \(\pm 5 \%\), 1 watt (R117, R128) \\
10.000 ohms, \(\pm 5 \%\), \(1 / 2\) watt (R104) \\
10.000 ohms, \(\pm 10 \%\), \(1 / 2\) walt (R141, R182, R220) \\
10.000 ohms. \(\pm 10 \%, 2\) watts (R237, R240) \\
12,000 ohms, \(\pm 5 \%\). \(1 / 2\) watt (R164) \\
12,000 ohms. \(\pm 10 \%\). \(1 / 2\) wall (R209) \\
12.000 ohms. \(\pm 10 \%\), I watt (R186) \\
12,000 ohms, \(\pm 10 \%\), 2 watts (R124, R238) \\
15.000 ohms. \(\pm 10 \%\), 1 watt (R146) \\
15.000 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R235) \\
18,000 ohms, \(\pm 10 \%\). \(1 / 2\) watt (R234) \\
22,000 ohms, \(\pm 10 \%\). \(1 / 2\) wall (R134, R197) \\
22,000 ohms, \(\pm 20 \%\). \(1 / 2\) watt (R198, R215) \\
27.000 ohms, \(\pm 10 \%, 1 / 2\) watt (R143, R151, R211) \\
39,000 ohms, \(\pm 50^{\circ}\), \(1 / 2\) watt (R135) \\
47,000 ohms. \(\pm 5 \%\), \(1 / 2\) walt (R228) \\
47,000 ohms, \(+10 \%\). \(1 / 2\) watt (R14S) \\
47,000 ohms, \(\pm 20 \%\). \(1 / 2\) wall (R221)
\end{tabular} \\
\hline
\end{tabular}
© John F. Rider

REPLACEMENT PARTS (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \({ }_{\substack{\text { stock } \\ \text { No. }}}\) & description & \(\underset{\substack{\text { stock } \\ \text { No. }}}{ }\) & description & \(\underset{\substack{\text { STock } \\ \text { No. }}}{ }\) & deschiption & \(\underset{\substack{\text { STock } \\ \text { No. }}}{\text { con }}\) & description \\
\hline \multirow[b]{48}{*}{} & 82,000 ohms. \(\pm 5 \%\), 1 watt (R179) & 73576 & Transiormor-Horizontal oscillator transiormer (T109) & & & & \\
\hline & 82.000 ohms, \(\pm 10 \%\), 1 wall (R168) & & Transformer-Antenna transtormer complete with socket (T115, J102) & & \(15,000 \mathrm{ohms}\), \(=10 \%\), \(1 / 2\) watt (R304) & \[
74273
\] & Decal-Trade mark decal (Victrola) \\
\hline & 100.000 ohms, \(\pm 5 \%\), \(1 / 2\) wall (R203, R204) 100,000 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R216, R226) & 73577 & Trap-4.5 mc trap (L110. Cl28) & & \begin{tabular}{l}
15,000 ohms, \(\pm 20^{\circ}\) o, \(1 / 2\) wall (R315, R318) \\
18.000 ohms, \(=100 \%\), \(1 / 2\) watl (R302)
\end{tabular} & & Decal-Control panel function deca walnut instruments \\
\hline & 100,000 ohms, \(\pm 10 \%\). 1 watt (R174) & 7179 & Trap-Sound trap (T109, Cl19) & & 2000 ohms, \(=100^{2}, 1 / 2\) wall (R307, R309) & 99 & \begin{tabular}{l}
Decal-Control panel function decal \\
Dial-Dial scale and bezel assembly
\end{tabular} \\
\hline & 100.000 ohms, \(=20 \%\). 2 watts (R222) & 952 & Yok-Deflection yoke (L108, & & \(39,000 \mathrm{ohms}\), \(=10 \% 0,1 / 2\) watt (R322)
68,000 ohms \(=10 \%\) \% \(1 / 2\) watt (R328) & \({ }_{74809}\) & Emblem-"RCA Victor" •mblom \\
\hline & \begin{tabular}{l}
120.000 ohms. \(\pm 10 \%\), 1 wall (R172) \\
150,000 ohms. \(\pm 10 \%, 1 / 2\) watt (R12
\end{tabular} & & & & 100,000 ohms, \(=10 \%\). \(1 / 2\) wall (R334) & & Escutcheon-Channel marker escutcheon tor mahogan or walnut instruments \\
\hline & 150.000 ohms, \(\pm 20 \%\), \(1 / 2\) wall (R142) & & o chassis assembles RK 135 D & & 150.000 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R325, R326, R329) & 73740 & Escutcheon-Channel marker escutcheon lor ock lnstru* ments \\
\hline & 150,000 ohms. \(\pm 5 \%\), 1 wat & 74039 & "Tolv-Ant" torminal b & & 470,000 ohms, \(\pm 10 \%, 1 / 2\) watt (R331) & 74606 & Glass-Saity glant \\
\hline &  & 74026 &  & & 470.000 ohms \(\pm 20 \%\), \(1 / 2\) watt (R321) & 37396 &  \\
\hline & 270.000 ohms, \(\pm 10 \%\), \(1 / 2\) watl (R154) & & Drive cord bracket complote with pulloy-L.s. & & \(1 \mathrm{mogohm}, \pm 10 \%\), \(1 / 2\) watt (R327, R332) & 70166 & Hinge-Cablnot door hinge tor conter door-upper \\
\hline & \begin{tabular}{l}
330,000 ohms, \(\pm 10 \%\), \(1 / 2\) watt ( \(\mathrm{R} 140, \mathrm{R} 170, \mathrm{R} 200\) ) \\
330,000 ohms \(=5 \%, 1\) watt (R178)
\end{tabular} & 74911 & Cable-Shioldod cable complote with female connector (W307, W311) & & ham, \(=10 \%, 1 / 2\) watl (R301) & 73200 & Hinge-Cabinat door hinge for conter doar-lowar \\
\hline & 470.000 ohms, \(=10 \%\), \(1 / 2\) watt (R137, R139, R188, R224) & 71105 & Cablo-Shiolded cable complote with pin & & walt (R316) & 74051 & Indicator-Station soloctor indicator \\
\hline & 560.000 ohms. \(\pm 10 \%\), \(1 / 2\) watt (R207, R236) & & w302) & 74028 & Shatt-Tuning knob shatt & & Knob-Fine tuning knob-maroon-tor mahogany walnut instruments (outor) \\
\hline & 680 & & 4, C305, C307, C308) & & & 73995 & Knob-Fing tuning knob-tan-tor oak instrumonts (outor) \\
\hline & \({ }^{82}\) & 73866 & Capacitor-Cor & & Sockee V 305 & 4960 & Knob-Channel selector knob-maroon-ior mahogany or walnut instruments (inner) \\
\hline & gohm, \(\pm 10 \%, 1 / 2\) watl (R147) & 39044
39042 & Capacitor-Cor & 156 & Socket-Tube socket, 7 pin, miniature tor v302, v3 & 2961 & Knob-Channel selector knob-tan-ior oak instruments \\
\hline & \begin{tabular}{l}
1 megohm, \(\pm 20 \%, 1 / 2\) watt (R189) \\
1.2 megohm, \(\pm 5 \%, 1 / 2\) watt (R157, R213)
\end{tabular} & 738 & Capacitor-Coramic. \(47 \mathrm{mml} .(C 330)\)
Capacitor-Coramic. 56 mml (C313) & 31364 & Socko-Dial lamp sockot
Spring-Drive cord spring & \({ }^{4962}\) & Knob-vortical hold control, brightnoss control or tone \\
\hline & 2.2 mogohm, \(=10 \%\), \(1 / 2\) wall (R130, R132, R163) & 33379 & Capactior-Ceramic, 68 mmf . (C310) & 78994 & Swith-Soloctor switch (530) & & \begin{tabular}{l}
ments (outer) \\
control knob-maroon-tor mahogany or walnut instru-
\end{tabular} \\
\hline & 2.7 mogohm.. \(\pm 5 \%, 1\) watt (R227) & 39396 & capa & 73745 & Transtormer-First i.f transtormer, dual & 3999 & Knob-Vertical hold control, brightness control or tone control knob-tan-ior oak instruments (outer) \\
\hline & 3.3 megohm, \(\pm 5 \%, 1 / 2\) watt (R159)
\(3.9 \mathrm{megohm} .10 \%, 1 / 2\) watt (R149) & 48 & Capacior-Coramic. \(150 \mathrm{mmt}\). ( \(C 314\) )
Capacitor-Coramic, 180 mmI (
(334, & 19 & Transformer-Second i-f transformer. dual (T302) Transformer-Ratio detector transformer (T303) & 74978 &  \\
\hline & 6.8 mogohm. \(\pm 10 \%\), \(1 / 2\) watt (R125) & 39640 & Capacitor-Mica, \(330 \mathrm{mmf}\). ( \({ }^{\text {c325, }}\) C326) & \({ }^{33726}\) & Washor-"C" washer tor tun & 249 & Knob-Tuning \\
\hline & \(12 \mathrm{mogohm}, \pm 10 \%, 1 / 2\) watt (R148) & & Capacitor-Coramic, 1.500 mmt . (C309) & 34457 & Washor-Spring washer for turing shat & & instruments \\
\hline & \(10 \mathrm{mogohm}, \pm 20 \%\), 1/2 watl (R201, R229) & 74009
73473 & Capacitor-Coramic, dual, 4.000 mml . (C317, C319. C321) Capacitor-Ceramic. \(5,000 \mathrm{mml}\) ( C318, C329) & 1.72 & Washer-Fibre washer to prevent drive cord stippa & \({ }^{4963}\) & Xnob-Horizontal hold control. picture control or volume nob-Honizna powor switch knob-maroon-for maconfrol and powd stind
hogany or walnut instruments \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
Screw-No. \(8-32 \times 1 / 4^{\prime \prime}\) wing screw tor deflection yoke mounting \\
Screw-No. \(8-32 \times 3 / 8^{\prime \prime}\) cross recessed pan head screw for focus coil mounting ( 2 required)
\end{tabular}} & \multirow[t]{2}{*}{7374} & \multirow[t]{3}{*}{Capacitor-Electrolytic, 2 mid., so volts (C328) Capacitor-Electrolytic, 15 mid., 300 volts (C333) Capacitor-Tubular, paper, .0025 mid., 400 volts (C332)} & &  & 74001 & \\
\hline & & & & & \begin{tabular}{l}
92569-5 W \\
RL 111-8
\end{tabular} & & control and power switch knob-tan-for oak instruments (inner) \\
\hline & & \[
\begin{aligned}
& 70602 \\
& 79961
\end{aligned}
\] & & & RMA 274 & \begin{tabular}{l}
11765 \\
\\
\hline 4208
\end{tabular} & Lamp-Dial or pilot lamp-Mazda 51 \\
\hline & Shiold- & \multirow[b]{2}{*}{21553} & Capacitor-Tubular, paper, .0025 mid., 400 volts (C332) Capacitor-Tubular, paper, .003 mid., 200 volts (C327. C331) & 13867
74901 & Cap-Dust cap
Cono-Cone and voice coil assembly ( 3.2 of & & Nut-Tee nut to mount 45 RPM changer (3 roquir \\
\hline & Sloeve-Rubber sloove for tocus coil & & Capacitor-Tubular, paper, 005 mid., 400 volts (C31s, C320. C324) & 74901
5039 & Cona-Cone and voice coil assembly ( 3.2 o
Connector- 4 contact male connector ( 1101 ) & \({ }_{75037}^{7462}\) & Plate-Mounting plate lor cabinot interiock
Pull-Door pull \\
\hline & Socket-Tube socket, 7 pin, miniature Socket-Tube socket, 9 pin, miniature & 21923 & \begin{tabular}{l}
C320. C324) \\
Capacitor-Tubular, paper, 01 mid, 200 volts (C335)
\end{tabular} & 73636 & Transtormer-Output transtormer (T114) & & Resistor-Fixed, composition, \(47,000 \mathrm{ohms}, \pm 10 \%, 1 / 2\) (R401) \\
\hline & Sockot-Tube socket, octal & 71925
71923 & Capacitor-Tubular, papor, 01 mid., 400 volis (C311) & 3635 & Speaker-12" P.M. speaker somplete with cone and vois
coil less output transiormer and plug & 74582 & Scrow-No. \(8.32 \times 13 /{ }^{\prime \prime}\) spocial scrow \\
\hline & Socket-Tube sockot, octal, coramic, plate mountod & \({ }_{72596}\) & \multirow[t]{2}{*}{Capacitor-Tubular, paper, .02 mid.., 200 volis (C337)
Capacitor-Tuibular, paper, \(.05 \mathrm{mid} ., 200\) volts (C336)} & & NOTE:-li stamping in instruments does not agree with & & \\
\hline & Sockot-Tube sockot, 8 contact for lB3 GT, 8016 & \multirow[b]{2}{*}{74020} & & & above speaker numbet, ordor inplacement parts hy ve- & &  \\
\hline & Socket-Kinescope sockot & & Coil-A.M antenna coil (1302, L303) & & on speaker and full description & 2038 & Screw-No. \(8.32 \times 1 / 2^{\prime \prime}\) trimit head scrow for door pull \\
\hline & Sockot-Pilot lamp socket & 20 & \multirow[t]{2}{*}{\begin{tabular}{l}
Coil-A-M oscillator coil (1304, 1305, 1306) \\
Coil-F-M antenna coil (1301)
\end{tabular}} & & & So & Slide-Station indicator slide \\
\hline & Spring-Comprossion
scrows ( 3 (
requing & 74024 & & & & 236 & Slido-Slide mechanism tor changor carriagos \\
\hline & Spring-Suspension spring (coil type) tor kinescope
socket & \multirow[t]{2}{*}{74025
36395} & \begin{tabular}{l}
Coil-F-M antenna coil (L301) \\
Coil-F-M oscillator coil (L307)
\end{tabular} & \({ }_{7}^{71054}\) & Bracke1-Dial lamp bracket (2 required) & & Spring-Spring clip for dial and betol assombly (2 ro.
quired) \\
\hline & Support-Rubber support tor 2nd anode leas & & \multirow[t]{4}{*}{} & 71599 & Bracke1-Pilot lamp bracket & 72845 & \({ }_{\text {Spring }}^{4959}\)-Retaining spring for knobs \(\mathrm{No}\).73995 and No. \\
\hline & Support-Bakelite support (1 sol) for mounting hivoltage
plato & 39153 & & 74296 & Cable-Shielded pickup cable comploto with pin plug for 45 RPM changer & 14270 & Spring-Rotaining spring tor knobs 73999, 74960, 74961
and 74962 \\
\hline & Switch-Cabinot intoriock switch (s 105) & & & & Cable-Shielded pickup cablo completo with pin plug t
3378 RPM changer & 330 & Spring-Retaining spring for knobs 74001 and 74963 \\
\hline & Transiormer-Power transiormer, 115 volts, 60 cycles
(T111) & & & 103 & Cap-Pilot lamp cap & 73643
7421 & Spring-Spring clip tor channel marker escutchoon
Spring-Conical spring to mount 45 RPM changor-uppor \\
\hline & Transtormer-Vertical output transtormer (T108) & \multirow[t]{8}{*}{} & \multirow[t]{8}{*}{Resistor-Wire wound, 0.51 ohms, 1 walt (R323,} & 73803 & Capacitor-Tubular, paper, 002 mid., 400 volts (C401) & &  \\
\hline &  & & & 71892
\(\times 3092\) & Cloth-Grille cloth for mahogany or walnut cabinets & 24422 & Spring-Conical spring to mount 45 RPM changer-uppor L.H. (2 required) \\
\hline &  & & & 3090 & Cloth-Grille cloth for oak cabinots & \({ }^{4} 423\) & Spring-Conical spring to mount 45 RPM changor-lowor \\
\hline & Transtormer-Second pix, if transtormer (T102. cloz) & & & 30868 & Connector- -2 contact female connector for 45 RPM motor
extension cable & 49 & Spring-Formed spring for kinoscope masking panal (8 \\
\hline &  & & & 30870 & Connector-2 contact male connector for 45 RPM motor extension cable & 7293 & Stop-Door stop \\
\hline &  & & & 4782 & Connoctor-3 conta & 74161 & Stud-Locating stud for back cover (2 requirad) \\
\hline & Transtormer-Sound i.f iranstormer (T112, C173, C174) & & & & \begin{tabular}{l}
power cable \\
Cover-Mounting screw cover for 45 RPM changer
\end{tabular} & 75146 &  \\
\hline & Transformer-Sound discriminator transformer (T113, C178, C179, C180) & & & & & & \\
\hline
\end{tabular}

MODEL TA16
Ch. KCS43

© John F. Rider

 counter.clockwise
ION TRAP MAGET ADJUSTMENT.-Imediately adjust
 time roationg in slightly oround the neck of the kinescopene for
the brighest raster on the screen. Reduce the brightness control seting until the raster is slightly above average
brilliaince. Adius the focus control (R199 on the chassis rear apron until the line structure of he raster is clearly visible.
Readiust the ion trap magnet for maximum roster brilionce. The final tounes on mais adiustment shumuld raser be madiane with the brighthess control at the maximum position with which
good line focus can be maintained. Kiviscoio


Fizure 2 Yoke and Focus Coil Ad justments
DEFLECTION YOKE ADJUSTMENT. II the lines of the ras
 ddiustment wing screw.
PIn cin \(\alpha\) test patiern picture in order to make further adiustments.
See stens
It herough 9 of the reeceiver operating instuctions. It tel Horizontal Oscillator and AGC SYstem are operating properly, it should be possible to sync the piture at this
point However, if the AGC threshold control is misadjusted. and the receiver overloading, it may be impossible to sync
the picure he picture.
if the
the
Hi the receiver is overlooding, turn R138 (on the rear of
the chassis. see Figure 3 ) clockwise until the set operates nor-
natly nally ant the picture can be synced.

 nentarily remove the signal by switching oft channel then
back. Normolly the picture will be out of sync. Turn the con. orl clockwise slowiy. The number of diagonal black bants will be gradually reduced and when only 3 bars soping
downward to the left are obtained. the picture will pull into sync upon slight additioncl clock wise rotation of the control.
Pullin should occur when the control is approximately 90 Pullin should occur when the control is approximately 90
degrees trom the exxreme counterclockexise position. The pic.
The ture should remain in sync for appoximately 90 degrees of
cdditional llockwise rotation of the control. Ai the extreme clockwise position the tipture should be out of sync ond
should show 1 vertical or diagonal black bar on should show 1 veritecl or diagonal black bar in the raster.
II the receiver passes the above checks ond the picture is

 above check the receiver tailed to hold s.s.c. with the hold
antrol hat the extreme counleclockwise position tor toiled contiol ot the extreme counterclockwise position or failed too
hold sync over 90 degrees of clockwise rotation of the control trom the pull in point, it will be necessary to make the following adjustments.
Horizontal Frequency Adjustment. -Turn the horizontal hold
 under the chassis) until the picture is iust out of sync and the bar in the raster.
Horizontal Lock in Range Adiustment--Set the horizontal femove the signal by switching offichennenel then back Slowly Iurn the horizontal hold control clockwise and note the least inmber of diagonal bars obtained just belore the picture pulls
int sync.
II mere than 3 bars are present iust betore the picture pulls

slighty counterclockwise. Turn the picture control counter.
clockwise, momentarily remove the signal clockwise. momentarily remove the signal and recheck the
number of bars present at the pullin point. Repeat this pro. cedure until 3 bars arr, rrisent.
Repeat the adiusire Repeat the adis intrefis under "Horizontal Frequency Ad.
jusment and
und Uustmen." and "Hoirizntal Locking Range Adiustment" until
the conditions specified
under each are fuliiled. When the
 zontal Oscillator Alignment" the oscillatoro is property adiusted
If it is impossibile to sync the picture at this point and the AGG system is is in proper adiostment it will be necessary to adiuss the Horizontal Oscillator by the method oullined in the
alignment \(p\) procedure on page 68 . For field purposes paragtap alignment procedure on page 68. For field purposes paragraph
"A" under Horizontal Oscillator Wavelorm Adjustment may be Focus coil ADusturyts. The ioces cill Yocus coil ADJUSTMENTS. - The focus coil should be ad.
usted so that there is approximately onequarter inch of space

 locus ove the the distance slighly in order to compensate for
to chang

 loward the yoke and if focus is oblained at or near the counterclockwise end or the control. the coil should be moved
cway trom the yoke. The trom the yoke
rough the focus col should be paralle CENTEMING ADUSTMENT. -No electrical centering controls are provided. Centering is obtained by llosening the two
locus coil mouning screws and stiding the coil up or down of trom side to side. It tha focus coil was appreciably changed in
position or it \(a\) comer of the raster is shadowed, check the posilion or it corner of the raster is is shadowed. check the
position of the ion trap magnel. Reposition the magnel within the fange of maximum raster brighness to eliminate the shadow and receneret the pititure by sliding the coilit In no case
should the magnet be adiusted to cuuse any loss of bright should ine magnet be
ness since such operaion mated touse icase any limedias of bright damgee to the tube. In exterene cases it may be neeassary
to adiust one or more of the three tocus coil compression spring

 MENTS. - Adjust the horizontal dive control C153B - 10 give
picture of maximum width within the limits of good linearity
 linearity
the mask.


A width control coil and \(\alpha\) width selector switch are pro vided. With the swith ind position 1 thelly counterclockepise)
adjust the width coil until the picture fills the mask. On low
 adidustment of the widht coil. In this these turn the width selec
tor swith clockwise to position 2 . In this position the width coil tor switch clockwise to position 2 . In this position the widh coil
is disconnected, and adjustment of the width coil will have no effect. For still greater width, turn the widh selector swith fully clock wise to position 3. In this position, the high vollag
Is reduced slighty thus permiting greater dellection
 iusted, recheck the ossillator alit he
vertical lineahity aduutments.-a justure fills the consk (R1tss on chassis rear apron) until the on rear apron) until the test patern is symmetricical fert (Rici on rear apron), until the test pattern is symmetrical from top 1 to
bottom. Adjustment of either control will require \(a\) readius ment of the other. Adjust centering to align the picture wilh
the mask. he mask
apron) tor Adiust the focus control (H191 on chassis rea apron) tor maximum definition in the test pattern vericical
wedge" and best tocus in the white areas of the pattern.

Structions
light reposition of the ion trapstie to mprove locus by a imum brightress.
Check to see bat the cushion and yok
agc thieshoing cowto AGC THRESHOLD CONTROL.-The AGC hreshold control
A138 is adusted at the factory and normally should not re. quire readjustment in the field. To check the adjustment of the AGC Threshold Control, tune
a strong signal. sync the picture and turn the picture rol to the maximum clockwise position. Turn the brightness Control counterclockwise until the verical retrace lines are just Invisile, Momentarily remove the signal by swithing of eceiver is nol overloading due to improper setting of R138. The picture requires an appreciable portion of a second to eappea
urn fl38 fully clockwise. The maximum clockwise position nay be bent slightly. This should one-half inch of the picture hange of bwise until there is a very very slight bend or Change of bend in the top one-half inch of the picture. Then
urn R138 clockwise just sufficiently to remove this bend or hange of bend.
If the signal is
as it may be impossible to get the picture to bend. In this case urn R138 counterclockwise until the snow in the picture be to noise ratio is obtained.
The AGC control adjustment should be made on a strong signal if possible. If the control is set too far counterclockwise
on \(\alpha\) weak signal, then the receiver may overload when \(a\) trong signal is received.
Replace the
Reppace the cabinet back and make sure that the screws he receiver is operated at high volume.


 CHECK OF R.F OSCILLATOA ADJUSTMENTS.-Tune in all to the eroper frequency on all channels. If dajustments ar required, these should be made by the method outlined in the
clignent procedure on page 10 . The cadusiments for chat

 shown in Figure 4. Adjustment for channel 13 is on top of the
chassis
Chas channel 6 odiusiment is in in the kinescope well Seesigures 8 and 9 for their location.
CHASSIS
REMOVAL - To
remven
CHASSIS AEMOVAL.-To remove the chassis for reacir or
 six chassis solts. under the cobinet. Withdrawe the chassis trom
the back of the cabinet. The kinescope is held on the chassis
 kinescope can be handled of sether as a a unit.
To remove the kinescope. remove the kinesco
To remove the kinescope, e, remove the kinescope socket, the
ion-trap magnel., and the second.anode connectior. Loosen the
 the kinescope loward the fron on the chasesis.
INSTALIATION OF KINESCOPE. -The
INSTALLATTION OF KINESCOPE. - The kinescope second anode contact is \(\alpha\) recessed metal well in ihe side of the
bulb. The tube must be installed so that this contiact is us un but rotated approximately 30 degrees toward the high.voltag comparment
Insert
the neck of the kinescone through the deflection and
and focus coils. It the tube sticks. or tairs so slipi into place s.moohly
 toosen ine deilection yoke adiustm
the rear of the chassis ond tighten.
She rear the the chassis and trap magnet assembly over the neck of the kinescope.

Connect the high voilage lead to the kinescope second anode Wipe the kinescope screen surface and front panel saiety glass clean of ail dust and finger marks.
To replace the chassis in the cabinet first tighen the cross. Teessed head screws on the kinescope strap. slide the cl.. Sit into the cabinet. then insert and tighten the six chassis bolts
Loosen the kinescope strap trom the rear of the cabinet. Push the kinescope forward unil the face of the tube is against the
mask. Push the yoke cushion torward against the kinescope
 kinescope strap. Then replace the knobs, and he cabinet back.
WEAK SIGN AL AREA OPERATON Since the vast WEAK SICNAL AREA OPERATION.-Since the vast ma jortiy or reeeivers ade sold in titong signal areas the chassis
are oligned to produce the cleanest pictures in those areas. However, it the reeeiver is to be operatied in a weak signal area, be
of unit To peak the fr unit in these receivers, disconnect 144: he 390 Ohm resisior which is on top of the r.f. unit chassis. Adjust L6
0 obtain the best possible oicture on the weakest
ow chane station received. By this action. the r.f gain is increased \(50 \%\) weak signal picture results If the peaked receiver
 ANTENNAS.-The finest television theeever channels.
Auill may be saic ANTENNAS.- The finest television receiver built may be saic
to be only as qood as the antenna design and installation. It is herefore imporant 1o select the proper antenna to suit the
particular local conditions. to instal it properly and orient ii orrectly
RCA Television Anterna, ivpe No. 225A1 is designed tor eception of all twelve television channels. The antenna uses
he 300 ohm HCA "Brinht Picture television transmision line. The antenna. a dipole with reflector, is unidiriectional on channels two through six. When used on these channels. brodside toward the transmiting whitenna with the antenna element between the reflecioror and the transmiting antenna. nd six ord more stations are avaiabie between channels iw be possible to make-a compromise orientation which will pro. vide \(a\) satistactory signal on all such channels
When operated on channels seven through thirteen ( 174 to maximum signal will be obtained when the antenna is rotated approximately 35 degrees in either ditection from its broadside his effect may not cause any difficulties and it may be pos. sible to make a compromise orientation which will permit sat stactory reception on all high and low channels. In some in-
stances, however, this will not be the case due to reflections or 1o insufficient signal strength from one or more stations. RCA antennas tyoe 204A1 is available for use in locations in which it is desirable to eliminate side lobes and to h have For use in cases where it is desirable to have adjustable 13 directivity difterent from 2.6 , RCA antenna type 206A1 is provided.
If it is impossible to obtain satis:actory results on one o
mer more channels. it may become necessary eilher to provid means for turing the antenna when switching channels or to
install a separate antenna for one or more channels and to switch antennas when switching channels.
In weak signcl areas it is possible to "stack" the type 204A In weak signal areas it is possie to stack the type
antemna to obtain increased signal strength by employing on
and type 204A1 antenna and one type 208A1 stacking kit. or ghosts, are caused by the signal arriving at the antenna curs when more rot at the antenna after being reflected oft a building. a hill or other obiect. In severe cases of refle reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture Depending upon the circumstances. it may be possible eliminate the reflections by rotating the antenna or by moving
it to a new location. In extreme cases, it may be impossible to eliminate the reflection.
CABINET ANTENNA.
these receivers and the leads are brought out near the antenna terminal bourd. The cabinet antenna may be employed in place outhe ouldoor antenici in areas where the signals are

©John F. Rider

TEST EQUIPMENT.-To properly service the television chassis TEST EQUIPMENT, equipment be available:
R-F Sweep Generator meeting the tollowing requirements:
(a) Frequency Ranges

20 to \(30 \mathrm{mc} . .1 \mathrm{mc}\). and 10 mc . sweep width 50 to \(90 \mathrm{mc}\). .. \(10 \mathrm{mc}\). sweep width
170 to \(225 \mathrm{mc} . .10 \mathrm{mc}\). sweep width
(b) Output adjustable with at least .1 volt maximum
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope.-For alignment purposes, the os cilloscope employed must have excellent low frequency and
phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion. While this
quirement is not met by many commercial instruments. RCA Oscilloscopes. types WO- 55 A , WO-58A. WO-79A. and \(W O-60 \mathrm{C}\) fill the requirement and any of these may be employed. For video and sync wavelorm observations, the oscilloscope
must have excellent frequency and phase response from 10 cycles to at least two megacycles in all positions of the gai cycles
control. The RCA types WO.58A and WO.79A are ideall
suited tor suited for this purpose.

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate .frequencies
19.75 mc. adjacent channel picture trap
21.25 mc . sound i.t and sound traps
22.05 and 24.75 mc . conv. and first pix i. 4 trans.
25.9 mc . second picture i.f transformer
24.6 mc . fourth picture i.f translormer
22.5 mc . thith picture i.f transtormer
25.75 mc . pitture carrier
27.25 mc . adjacent channel sound trap
(b) Radio frequencies


Heterodyne Frequency Meter with crystal calbrator it the
signal generator is not crystal controlled.
Electronic Voltmeter of Junior "VoliOhmyst" type and a high
voltage multipier measurements up to 10 kv .

Service Precautions.-If possible, the chassis should be
serviced without the kinescope. However, it it is necessary to view the raster during servicing, make sure the kinessary retaining strap is secure. and the yoke cushion is up firmly
against the flare of the tube.

CAUTION: Do not short the kinescope second anode lead.
short circuit current is approximately 3 ma. This represents It short circuit current is approximately 3 ma. This represents
approximately 9 watts dissipation and a considerable overbad on the high voltage filter resistor R18

Adjustments Required.--Normally, only the r.f oscillator line Adustments Required.--Normally, only the r.f oscillator line
will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom equire readjustment.
The oscillator line is relatively non critical. When oscillator
tubes are changed, in all probability it will be necessary to adjust only C6 in order to bring the entire line into adjustment

ORDER OF ALIGNMENT.-When a complete receiver align ment is necessary, it can be most conveniently performed in (i) Sound
2) Sound discriminator
(5) R-F and converter lines (6) R-F oscillator line (7) 4.5 mc . video trap

SOUND DISCRIMINATOR ALIGNMENT.- Set the signal generator tor approximately 11 volt output at 21.25 mc . and con. eat it the second sound i.f grid
Detune T113 secondary (bottom).
Set the "VoliOhmyst" on the 10 volt scale.
Connect the meter in series with a one megohm resistor to
Adjust the primary of T113 (top) for maximum output on the neter
Connect the "VoliOhmyst" to the junction of C183 and R203. Adjust T 113 secondary (bottom). It will be found that it is pos.
sible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to on the meter positive to a negative voltage. the voltage must go through ero. T113 (bottom) should be adjusted so that the meter indiates zero output as the voltage swings from positive to nega-
ive. This point will be called discriminato
Connect the sweep oscillator to the grid of the second sound ampline
Adjust the sweep band width to approximately 1 mc. with the center frequency at approxim
output of approximately .1 volt.
Connect the oscilloscope to the junction of C183 and R203. The pattern obtained should be similar to that shown in Fig.
ure 12. If it is not, adjust the T113 (top) until the wavetorm is ymmetrical
The peak-to-peak band width of the discriminator should be approximately 350 kc . and it should be linear from 21.175 mc .

SOUND I.F ALIGNMENT
SO first sound i -f amplifier grid.-Connect the sweep oscillator to
Connect the oscilloscope to the second sound i.f grid return
(terminal A T112) in series with a 33.000 ohm isolating resistor. Insert a 21.25 me. marker signal from the signal generator he second sound in gnd.
Adjust T112 (top and bottom) for maximum gain and sym. be similar to that shown in Figure 13.
The output level from the sweep should be set to produce approximately. 3 volt peak-to-peak at the second sound i.f grid made. Wh is necessary that the sweep output voltage should not bead specitied values otherwise the response curve will noticed and possibly causing distortion on weak signals.
The band width at \(70 \%\) response from the first sound i.f grid
the second i - grid should be approximately 200 kc .

PICTURE I.F TRAP ADJUSTMENT.-Connect the "Voll Ohmyst" to the junction of R135 and C190.
Remove the 6SN7GT AGC Amplifier tube vi07. Con Remove the 6SN7GT AGC Amplifier tube V107. Connect a
250,000 ohm potentiometer between pins 5 and 6 of the V107 socket. Adjust the potentiometer until the "Voltohmyst" reads
approximately -12.0 volts. approximately -12.0 volt
Set the channel switch to the blank position between channe
numbers 2 and 13 .
Connect the "VoliOhmyst" across the picture detector load
resistor R119, Under this at apsistor R19.malely - 120 volts ition, both leads of the meter are at approximalely -120 volts. In making this measurement, care
should be taken not to toach the case of the meter or to permit the meter case to become grounded.
Connect the output of the signal generator to the grid of the
converter tube \(V 2\). To do this, remove the tube from the socket converter tube V2. To do this. remove the tube from the socket
and fashion a clip by twisting one end of \(a\) small piece and fashion a clip by twisting one end of a small piece of
wire around pin number 1 . Replace the tube in the socke: wire around pin number 1 . Replace the tube in the socke:
leaving the end of the wire protruding from under the tube Connect the signal generator to this wire through a 1.500 mm .
capacitor keeping the leads as short as possible.
Set the generator to each of the following frequencies and
with a thin fiber screwdriver tune the specitied adjustment for with a thin fiber screwdriver tune the specified adjustment for
minimum indication on the "Voltohmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on trequency

\section*{\(\begin{array}{ll}\text { (1) } 21.25 \mathrm{mc} \text { - }-\mathrm{T} 103 \text { (top) } & \text { (4) } 27.25 \mathrm{mc},-\mathrm{T} 104 \text { (top) }\end{array}\) \\ \(\begin{array}{ll}\text { (2) } 21.25 \mathrm{mc},-\mathrm{TlO5} \text { (top) } & \text { (5) } 19.75 \mathrm{mc},-\mathrm{T} 106 \text { (top) }\end{array}\)} (3) \(27.25 \mathrm{mc}-\mathrm{T} 102\) (top) \(\quad\) (6) 19.75 mc - -T 101 (top)

In the above transtormers using threaded cores, it is possible 1o run the cores completely through the crils and secure two
peaks or nulls. The correct position is with the cores in the peats or nulls. The correct position is with the cores in the
outside ends of the coils. If the cores are not in the correct position, the coupling will be incorrect and it will be impossible secure the correct response.

PICTURE I.F TRANSFORMER ADIUSTMENTS.-Set the signal generator to each of the following frequencies and peak
the specitied adjustment for maximum indication on the the specified adjustment for maximum indication on the
"Voltohmyst." During alignment. reduce the input signal vecessary to prevent overloading.
22.5 mc . - T106 (bottom)
24.6 mc - - T104 (bottom)
22.0 mc .-T103 (bottom)
25.9 mc .-T102 (bottom)

T1 and T101 are coupled by a link and in combination con. a transformer are such that it is impossible to adjust it to a single frequency.
To sweep align Tl and T 101 , connect a 330 ohm composi-
ion resistor across the primary coils of T 102 . T 103 , T 104 and tion \({ }^{\text {tion }}\) Ti06.
Connect the "VoltOhmyst" to the junction of R135 and C190. Adjust the 250.000 ohm potentiometer for -2.0 volts on the mete
Connect the oscilloscope to the plate of the first video am.
plifier. pin 1 of V106. C. pin 1 or vioc.

Connect a sweep generator to the converter grid through a 1.500 mml . capacitor. Set the generator to sweep from 20.0 mc.
030.0 mc . and adjust the output to provide a 4 volt peak-10peak signal on the scope.
Connect the signal generator loosely to the converter grid
Adjust Tl (top) and T 101 (bottom) to oblain the response shown in Figure 14. The T1 core must penetrate to the terminal Remove the 330 ohm resistors from across T102. T103, T104 and 110

Adjust the 250,000 ohm potentiometer for a 15 volt peak-to peak signal at the plate of the first video amplifier. The bias
as measured by the "Voltohmyst" should be -12 volts or less.

Observe and analyze the response curve obtained. The re sponse will not be ideal and the i-f adjustments must be re.
touched in order to obtain the desired curve. See Figure 15 .
On final adjustment the pieture carrier marker must be at approximately \(45 \%\) response. The curve must be approximately liat topped, with the 22.1 mc . marker at approximately \(95 \%\) response, the 25.0 mc. marker below \(90 \%\) a,
marker at \(5 \%\) to \(10 \%\) on the response curve.
The most important consideration in making the i.t adjust The most important consideration in making the i-f adjust-
ments is to get the picture carrier at the \(45 \%\) response point. if the picture carrier operates too low on the response curve. loss of low frequency video response, of picture brilliance, of
blanking. and of sync may occur. If the picture carrier operandes too high on the response curve, the picture becomes
ates the meared. In making these adjustments, care should be taken hat no two transiormers are tuned to the same frequency as oscillation may result.
Remove the converter tube and take off the clip to pin numPi. Replace the lube in the socket Picture 1 .F Oscillation.- 1 l the receiver will operate without
sscillating with the test equipment disconnected but breaks into oscillation or becomes unstable with the equipment con. nected. it may become necessary to establish a ground plane
Cover the test bench with a sheet of copper and set the chassis on the sheet. Set all the test equipment except the "Volt"hmyst", on the sheet and bond or bypass them to it. A Junior "Voltohmyst" should not be bonded to the sheet since the alignment.
If the receiver is badly misaligned and two or more of the if transformers are tuned to the same trequency, the receiver may fall into i.f oscillation. I.F oscillation shows up as a voltby r-f signal input. If such a condition is encountered. it is sometimes possible to stop oscillation by increasing the grid
bias. It so, it should then be possible to align the ias. It so. it should then be possible to align the transtormers by the usual method. Once aligne
should be stable with reduced bias.
If the oscillation cannot be stopped in the above manner,
shunt the grids of the first three pix i.f amplifiers to ground shunt the grids of the first three pix i.f amplifiers to ground
with 1.000 mmt. capacitors. Connect the signal generator to the with 1.000 mmI . capacitors. Connect the signal generator to the
fourth pix i -t grid and align 1106 to frequency. Progressively ourth pix i.t grid and align T106 to frequency. Progressively
remove the shunt trom each grid and align the plate coil of that stage to frequency
It this does not stop the oscillation, the difficulty is not due i.t misalignment as the i-t section is stable when properly ligned. Check all i.f by-pass condensers, transtormer shun ANTENNA A. AND CONVERT, etc.
order to align the r-f tuner, it will firs he channel 13 oscillator to trequency. The shield over the bottom of the unit must be in place whe shield over the djustments.
The channel 13 oscillator may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or bequency a a signal anto the receiver at the \(r\) - sound carrier frequency and adjusting the oscillator for eero output from the
sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available. Re
gardless of which method of oscillator alignment is used the gardless of which method of oscillator alignment is used, the
Irequency standard must be crystal controlled or calibrated.
If the receiver oscillator is to be adjusted by the heterodyne If the receiver oscillator is to be adjusted by the heterodyne
trequenecy meter method. couple the meter probe loosely to the receiver oscillator.
If the receiver oscillator is adjusted by feeding in the r. sound carrier siqnal. connect the signal., generator to the re
ceiver antenna terminals. Connect the "Volohmyst" to the ceiver antenna terminals. Connect the "VoliOhmyst" to
sound discriminator output (junction of C183 and R203).
Set the receiver channel switch to 13 .
Adjust the frequency standard to the correct frequency (23) mc. for heterodyne frequenc nal generator). MODELS TCI24, TCl MODELS TCl24, TCl
TCl27, Ch. KCS 34 B

Set the fine tuning control to the middle of its range while making the adjustment.
Adjust C6 for an audible beat on the heterodyne frequency
meter or zero voltage from sound discriminator.
Now that the channel 13 oscillator is set to frequency. we
may proceed with the \(\mathrm{r}: \mathrm{i}\) alignment.
Remove the first pix i-f amplifier tube V101.
Connect the oscilloscope to the test connection at R13 in the \(t\) tuning unit.
Connect the "Voltohmyst" to the junction of R135 and L117
Adjust the bias potentiometer for -3.5 volts on the Connect the r.t sweep oscillator to the receiver antena Connect the r- sweep oscillator to the receiver antenna ter.
minals. The method of connection depends upon the output mimpedance of the sweep. The P102 connection for 300 ohm
talanced or 72 orm kalanced or 72 ohm single-ended input are shown in the cir-
cuit diagram in Figure 79 . It the sweep oscillator has a 50 ohm cuit diagram in Figure 99 . If the sweep oscillator has a 50 ohm
single-ended output. 300 ohm balanced output can be obtained by connecting as shown in Figure 7 .


Figure 7-Unbalanced Sweep Cable Termination
Connect the signal generator loosely to the receiver an-
tenna terminals.
Since channel 7 has the narrowest response of any of the
high frequency channels, it should be adjusted first. Set the receiver channel swich is channal 7.
Set the sweep oscillator to cover channel 7 .
Insert markers of channel 7 picture carrier and sound car-
ier 175.25 mc . and 179.75 mc .
Adjust Cl 10 and \(\mathrm{Cl4}\) until the curve falls symmetrically be-
tween the sound and picture carrier markers. Adjust C11 to give the proper bandwidth. Roughly peak \(L 6\) in conjunction with slight adjustments of C10 and C14 for a flat-opped, response curve with the sound and picture carriers at \(90 \%\) to
\(95 \%\) response points on this curve. See Figure 16, channel 7 . Switch to channel 12 and adjust L6 for maximum response Switch to channel 12 and adjust L6
and minimum top slope of the curve.
Check the response of channels 7 through 13 by switching
the receiver channel switch, sweep oscillator and marker oscillator to each of these chamnels and observe the respons oblained. See Figure 16 for typical response curves. It should besponse with the markers above \(80 \%\) response. If the mark
ress ers do not tall within this requirement on one or more high frequency channels. since there are no individual channel
adjustments, it will be necessary to readjust L6, C10, C11 and adjustments, is will be necessary to readjust \(\mathrm{L6}\), \(\mathrm{ClO}, \mathrm{Cl1}\) and to get the markers up on other channels. Normally, however.
no difficulty of this type should be experienced since the no difficulty of this type should be experienced since the
higher frequency channels become comparatively broad and higher frequency channels become comparatively b
Channel 6 is next aligned in the same manner.
Set the receiver to channel 6 .
Set the sweep oscillator to cover channel 6
Set the marker oscillator to channel 6 picture and sound
carrier frequencies. Adjust L9, L13, L66 and C12, for an approximately flat-topped response curve located symmetrically between the markers.
L9. I 13 and L66 are the center frequency adjustments. Cl is he band width adjustment
Check channels 5 down through channel 2 by switching the
eceiver, sweep oscillator and marker oscillator to each channel and observing the response obtained. In all cases
markers should be above the \(80 \%\) response point. It this is no
the case, L9, L13, L66 and C12 should be retouched. On fina the case. L9, Lll channels must be within the \(80 \%\) el . On fina Disconnect the bias pot. and replace V107. Replace V101 Following an r-f alignment, the oscillator alignment must be
h-F OSCILLATOR LINE ADJUSTMENT.-The r- oscillato line may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by feeding a signal
into the receiver at the r -t sound carrier frequency and adjusting the oscillator for zero oupdirimater must first have bee In this latter case the sound discriminator must first have been
aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon e of test equipment available
Regardless of which method of oscillator clignment is used If the receiver oscillator is to be adjusted by the heterodyn riequency meter method. the calibration frequency listed unde

If the receiver oscillator is adjusted by feeding in the r-f
sound carrier frequency the frequencies listed under Sound Carrier Freq. must be available.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Channel} & \begin{tabular}{l}
Receiver \\
R-F Osc
\end{tabular} & R-F Sound Carrier & Channel \\
\hline & R-F Osc . & Carrier & Oscillator \\
\hline Number & Freq. Mc. & Freq. Mc. & Adjustment \\
\hline & -.... 81. & 59.75... & . 24 \\
\hline 3 .... & -.... 87. & .... 65.75.. & \\
\hline 4...... & .... 93. & .... 71.75.. & L22 \\
\hline 5. & ..103........ & .... 81.75. & .21 \\
\hline 6. & ..... 109 & .... 87.75.. & ...... 231 \\
\hline 7. & .201.. & ...179.75. & ....L19 \\
\hline 8. & ....207.. & ...185.75... & L18 \\
\hline & ..... 213 & ....191.75 & -.....L17 \\
\hline 10......... & ..... 219 & ...197.75.. & ........L16 \\
\hline 11......... & ......225....... & ....203.75. & ........ L 15 \\
\hline & ...... \(231 . . . . . .\). & ....209.75..... & ........L14 \\
\hline & .237. & ...215.75... & \\
\hline
\end{tabular}

If the heterodyne frequency meter method is used, couple
If the r-f sound carier method is used, connect the "Volt If the r-i- sound carrier method is used, connect the "Volt
Ohmyst to the sound discriminator output (junction of C183
and R203).
Connett the signal generator to the receiver antenna ter minals. The order of alig
which method is used.
It the r - unit is removed from the receiver for service and is aligned separately the shield over the bottom of the r-4 unit be in place when making adjustments.
Since lower frequencies are obtained by adding steps of in
ductance, it is necessary to align channel 13 first and continue ductance, it is necessary to
Set the receiver channel switch to 13
Adjust the frequency standard to the correct frequency (237 Adjust the frequency standard to the correct frequency (237
mc. for heterodyne frequency meter or \(215.75 \mathrm{mc}\). for the
signal generator).

Set the fine tuning control to the middle of its range while making the adjustment.
Adjust C6 for an audible beat on the heterodyne frequency justments L 1 and L 2 shown on the schematic justmenjs trol adjustments and should not be touched in the field.
Switch the receiver to channel 12 .
Set the frequency standard to the proper frequency as listed
Adjust L14 for indications as above

Adjust the oscillator to frequency on all channels by switch and the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the speci-
fied indication. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning conrol in the middle third of its range.
After the oscillator has been set on all channels. start back
at channel 13 and recheck to make sure that all adjustments at channel

AGC THRESHOLD ADJUSTMENT.-The AGC threshold ad. ustment can be made by the mehod ounined in the Installaobtained by the use of an oscilloscope
Tune in a station and advance the picture control to the maximum clockwise position. Connect the low capacity probe from the oscilloscope to the plate of the first video amplifier.
Adjust the oscilloscope to observe the horizontal sync pulse.

Turn the AGC threshold control R138 fully clockwise, then lowly counterclockwise. As the control is turned counterthe size of the pattern on the oscilloscope. R138- should be curned counterclockwise until the receiver begins to overload s indicated by clipping of the sync. The control should be left in the maximum gain position in which no clipping
observed. See Figure 17 for proper wavelorms.

HORIZONTAL OSCILLATOR ADJUSTMENT.-Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator wavee done conveniently in the field, The wavetorm adjustment is made at the factory and normally should not require readjustment in the field. However, the waveform adjustment should echecked whenever the receiver is aligned or whenever the

Horizontal Frequency Adiustment.-With a clip lead, short
circuit the coil between terminals \(C\) and \(D\) of the horizontal dircuit the coil between terminals \(C\) and \(D\) of the horizontal sync the picture if possible.
A.-Turn the horizontal hold control R173 to the extreme lockwise position. Adjust the Tli09 Frequency Adjustment he horizontal blanking appears in the picture as a vertical bar. The position of the bar is unimportant.
B.-Turn the hold control approximately one quarter of a hurn from the extreme clockwise position and examine the
width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control C153B, the width control L115 and the linearity control L111 until the picture is
correct. If C153B, L115 or L111 were adjusted, repeat step \(A\) above.
Horizontal Locking Range Adjustment.-Turn the horizontal hold control fully counterclockwise. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of
diagonal bars obtained just before the picture pulls into sync.
If more than 9 bars are present just belore the picture pulls
 slightly counterclockwise. Turn the horizontal hold control counterclockwise, momentarily remove the signal and recheck
the number of bars present at the pullin point. Hepeat this procedure until 7 to 9 bars are present.
Horizontal Oscillator Waveform Adjustment.-Remove the ontal hold control to the extrend D of T109. Tum the horihin fibre screwdriver. adjust the Oscillator Waveform Adjustnent Core of T109 (on the outside of the chassis) until the hori-A.-Cone bar appears in the raster
A.--Connect the low capacity probe of an oscilloscope to
erminal C of TIO9. Turn the horizontal hold control
turn from the clockwise position so that the picture is in sync The pattern on the oscilloscope should be as drawn in FigT109 until the two peaks are at the same height. During this adjustment, the picture mus
the hold control it necessary
This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope
is lower than the sharp peak, the noise immunity become is lower than the sharp peak, the noise immunity becomes
poorer. the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the othe hand, it the broad peak is higher than the sharp peak, the
oscillator is overstabilized, the pullin range becomes inade oscallator is overstabilized. the pullin range becomes
quate and the broad pead can cause double triggering of the oscillator when the hold control approaches the clockwise sinon.
Remove the oscilloscope upon completion of this adjustmen zontal hold control to the full counterclockwise position. Momen tarily remove the signal by switching of channel then back
Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.
It more than 3 bars are present just betore the picture pulls into sync, adjust the horizontal locking range trimmer Cis3A slightly clockwise. If less than 3 bars are present, adjust C153A
slightly counterclockwise. Turn the horizontal hold control slighty counterclockwise. Turn the horizontal hold control
counterclockwise, momentarily remove the signal and recheck counterclockwise, momentarily remove the signal and recheck
the number of bars, present at the pull-in point. Repeat this procedure until bars are present.
Turn the horizontal hold control to the maximum clockwise position. The picture should be just out of sync to the extent
that the horizontal blanking bar appears as a single vertical or diagonal bar in the picture. Appars as a single vertical
Adiust the
Tlog or diagonal bar in the picture. Adjust
Adjustment until this condition is fulfilled.
4.5 MC. VIDEO TRAP ADIUSTMENT.-Tune in a strong in put from a station, and with a very short clip lead, short the trap winding of TiO3. Observe the picture for the appearance
of a 4.5 mc. beat. It the beat appears in the picture, adjust of a 4.5 mc. beat. If the beat appears in the
L110 until the beat is eliminated or minimized.

SENSITIVITY CHECK.-A comparative sensitivity check can be made by operaing the receiver on a tained to that obtained on other receivers under the same conditions.
This weak signal can be obtained by connecting the shop The number of stages in the pad depends upon the signal should be inserted at the antenna. A sufficient number of stag ast picture is obtained when the picture control is at the maxi num clockwise position. Only carbon type resistors should be RESPONSE CURVES.-Th
14 and reterred to throughout the alignment procedure were taken from a production set. Although these curves are typical.
some variations can be expected.

The response curves are shown in the classical manner of presentanion, that is win response up and lim inequency to set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the deflection
polarity of the oscilloscope and the phasing of the sweep polarity or
ALIGNMENT TABLE.--Both methods of oscillator alignment may thereby choose the method to suit his test equipment.


\section*{OJohn F. Rider}

(3) Vertical instability may be due to loose connections or DARK VERTICAL LINE ON LEFT OF PICTURE:
(4) Horizontal instability may be due to unstable transmitted (1) Reduce horizontal drive and readjust width and horizontal (1) Reduce ho
linearity.
(2) Replase V112.
raster but no sound, picture or sync:
(1) Defective antenna or transmission line.
(2) R.F oscillator off trequency
(3) R.F unit inoperative-check V1, V2, V3

PICTURE I-F RESPONSE.-At times if may be desirable to ob serve the individual i.t stage response. This can be achieved by the following method:
Shunt all i.f transtormers and cails with a \(33 n\) ohm carrman re.
sistor except the one whose response is sistor except the one whose response is to be observed. Connect a wide band sweep generator to the converter grid
and adjust it to sweep trom 18 mc . to 30 mc .
light vertical line on left of picture:
(1) C169 defective.
(2) V114 defective.

Connect the oscilloscope across the picture detector load re sistor and observe the overall response. The response obtained
will be essentially that of the unshunted stage. The effects of the various traps are also visible on the stage response.
Figures 27 through 31 shuw the response of the various stages oblained in the above manner. The curves shown are typical
although some variation between receivers can be expected. although some variation between receivers can be expected
Relative stage gain is not shown.


Figure \(27-\) Response of Con
verter and First Pix
I-F
Transformer


Figure 30 Response of Fourth
Pix I-F Transformer


Figure 33 Overall Pix


Figure \({ }^{28}\) Response of Second
Pix I.F Transformer


Figure \({ }_{\text {Pix }}^{\text {3I }}\) I.F Response of Fifth


Figure 34-Video Response at Average Contrast


Figure \({ }^{24-\text { Response of Third }}\)


Figure 32-Response from First


Figure 35 J'ideo Response at

\section*{WAVEFORM PHOTOGRAPHS} Video Signal Input to lst Video Am
plifier (Pin 2 of Vl06) (12AL'?) Fisure 30 - Vertiral Wscilloscope Synced to \(1 / 2\) of Vertical Sweep
Rute) 15.4 Volts \(P P\) ) \(\longleftarrow<\)

Fipure 37 -Horizontal (Oscilloscope
Synced to
Synced to \(1 / 2\) of Horizontal Sseepp
Rate)( 5.4 Volts PP)
Rate) ( 5.4 Volts PP)

Sync Feed (Junction of LIIO.

Figure 3 V'ertienl (in Volis (T)

Figure \(\xrightarrow{34 \longrightarrow \text { IIorizontal }(28 \text { Volts IPP) }}\)

Input to 2nd Video Amplifier
(Pin : of V'106)

Figure 40-Vertical (17 Volts PP)

Figure 41-Horizontal (17 Volts PP)


Output of 2nd Video Amplifier
(Junction of L10.5 and R12í) Picture Max.)

Figure 42-V'ertical (96 Volts PP)

Figure \(43-\) Horizontal ( 96 Vohs PP)
Input to Kinescope (Junction of R12i and R128) (Picture Max.)
and

Figure 44 Vertical (65 Volts PP)
\(\longleftarrow \leftarrow\)
Figure \(45 \longrightarrow\) Horizontal ( 65 Volts PP)


MODELS TCl24, TCl25

© John F. Rider
Figure 23-Plate of Damper
(125 Volts PP) (Pin 5 of V114) ( \(6 \mathrm{~W} 4 G T\) )

Figure 75-Horizontal Deflection Coil Current ( 0.6 amp. PP) Measured by Inserting a 5.ohm Resistor in Series
with the Horizontal Deflection Coil the Horizonzal Deflection
and the Voltage across the
Resistor Observed.
\[
\begin{aligned}
& \text { the Voltage across th } \\
& \text { Resistor Observed. }
\end{aligned}
\]

\section*{KINESCOPE HANDLING PRECAUTIONS}

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE KINE. SCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES, AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE RINESCOPE AWAY FROM THE BODY WHILE HANDLING
The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. Fo reason, kinescopes must be handled with more care than ordinary receiving tubes.
The large end of the kinescope bulb. particularly that part al the rim of the viewing surtace-must not be struck, scratched or subjected to more than moderate pressure at any time. In installation, it the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the eartons until ready for installation in the receiver. Keep the carton for. possible future use,

Figure \(76-\) R-F Unit Wiring Diagram

\section*{CRITICAL LEAD DRESS}

The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i.f circuits. The fila-
ment leads between V117, V118 and V119 should be down ment leads between V117, V118 and V119 should be down
3. If it is necessary to replace any of the 1500 mmf capacitors in the picture \(i\) i- circuit, the lead length must be kept
4. Picture i.f coupling eapaciors C106, C111, C115 and C121 should be up and away from the chassis and should be clear of the pix \(1.1 /\) transtormer adjustments by at least
\(1 / 4\) inch. It the dress of any of these capacitors is changed. the i-f alignment should be rechecked.
5. Leads to L102 and L103 must be as short as possible.
6. Dress peaking coils L105. L106 and L107 up and away 7. Dress Cl 83 across tube pins 5 and 6 with leads not ex ceeding \(3 / 8\) inch.
8. Dress C129 and C130 up and away from the chassis.
9. Dress the yellow lead from the picture control away from the chassis and away from the volume-control leads.
Dress the yellow lead from pin 9 of Vlos away from the chassis.
0. Dress the green lead from pin 2 of V106 away from the chassis.
1. Dress R168, R169, R170, R176 and R178 up and away
12. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
13. Contact between the \(r\)-t oscillator frequency adiustment screws and the oscillator coils or channel switch eyelets

Dress leads from Lll5 (width control coil) away from the transformer frame.
15. Dress T110 winding leads as shown in Figure 77. Figure 77-T110 Lead Dress


MODELS TCl24, TCl2




QJohn F. Rider

REPLACEMENT PARTS

\begin{tabular}{|c|c|c|c|}
\hline STOCK & description & \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTIO \\
\hline 74250 & 160 & & Coil-Peaking coil (250 muh) (1106. L107. L114) \\
\hline \multirow[t]{3}{*}{71501} & \multirow[t]{3}{*}{Capacitor-Ceramic, 1500 mmf . (C101. C103. C104 C105. C108. C109. C110. C113. C114. C117. C118. C122. C125. C127. C132. C171, C172. C176. C177. C188. C192. C193. C196)} & & \\
\hline & & 7459 & Connector-2 contact male connector for power
cable \\
\hline & & 511 & Connector-3 contact female connector for speaker cable \\
\hline 71432 & Capacitor-Electrolytic comprising 2 sections of 40 mid. 450 volts and 1 section of 10 mld .450 volts (C148A. C148B, C148C) & 71789 & \begin{tabular}{l}
cable \\
Connector-A node connector
\end{tabular} \\
\hline \multirow[t]{3}{*}{73582} & \multirow[t]{3}{*}{Capacitor-Electrolytic comprising 1 section of 40 mid. 450 volts, 2 sections of \(10 \mathrm{mfd}, 450\) volts and 1 section of 80 mid. 200 volts (C170A. C170B. C170C)} & & \\
\hline & & & C \\
\hline & & 7273 & Control-Horizontal and vertical hold co R173) \\
\hline \multirow[t]{2}{*}{73583} & \multirow[t]{2}{*}{Capacitor-Electrolytic comprisina 1 section of 40 mid. 450 volts. 1 section of 90 mid, 150 volts and 1 section of \(50 \mathrm{mid}, 150\) volis (C147A. C147B. C147C)} & & Control-Brightness and picture control (R122. R131) \\
\hline & & 38408 & Control-Sound volume control and power switch (R205. S101) \\
\hline \multirow[t]{3}{*}{73581} & \multirow[t]{3}{*}{Capacitor-Electrolytic comprisina 1 section of 60 mid. 450 volts, 2 sections of \(10 \mathrm{mld}, 450\) volts and 1 section of \(20 \mathrm{mid}, 150\) volts (C146A. Cl46B. Cl46C. Cl46D)} & & Control-Vertical linearity control \\
\hline & & & \\
\hline & & & \\
\hline 73801 & Capacitor-Tubular, paper, oil impregnated. . 001 mid. 600 volts (C137) & & C \\
\hline \multirow[t]{2}{*}{73802} & \multirow[t]{2}{*}{Cabacitor-Tubular. paper, oil impregnated, . 0015 mid. 600 volts (C181)} & & Cord-Power c \\
\hline & & 7143 & Cover-Insulating cover tor electrolytics \#71432. 73581 and 73582 \\
\hline 73595 & ```
Capacitor-Tubular. moulded paper, oil impreg.
    c
``` & & Cushion-Rubber cushion tor kinescope \\
\hline \multirow[t]{2}{*}{73795} & \multirow[t]{2}{*}{Capacitor-Tubular, paper. oil impregnated, . 0033 mid. 600 volts (C186)} & & Cushion-Rubber cushion for deflection yoke hosd (2 req'd) \\
\hline & & & Fuse-0.2 \\
\hline 73920 & Capacitor--Tubular. moulded paver, oil impregnated. 0047 mid. 600 volts (C143. C144. C145. C195) & & Grommet-Rubber grommet for yoke horizontal lead exit \\
\hline 73561 & Capacitor-Tubular, paper, oil impregnated, . 01 mid .400 volts (C135, C182) & 3739 & Grommet-Rubber qrommet for mounting ceramic tube socket (2 required) \\
\hline 73594 & Capacitor-Tubular. moulded paper, oil impregnated, .01 mid, 600 volts (C159) & & Magnet-Ion trap magnet (P.M. type) Nut-Speed nut to mount hi-voltage \\
\hline & Capacitor-Tubular. paper, oil impregnated. . 01 mid, 1000 volts (C151, C152, C185) & 1846 & Plate - Bakelite mounting plate for electrolytics \\
\hline 74727 & Capacitor-Tubular, moulded paoer, oil impregnated, 018 mid. 1000 volts (C164) & & Resistor-Voltage divider comprising l section of 850 ohms, and 2 sections of 650 ohms. 6 watts (R193A. R193B, R193C) \\
\hline 73562 & Capacitor-Tubular, paper, oil impregnated, . 022 mild. 400 volis (C155) & & Re \\
\hline 7472 & Capacitor-Tubular. moulded paper. oil impregnated, 039 mtd, 1000 volts (C165) & \[
72067
\]
\[
18471
\] & Resistor-Wire wound. 5.1 ohms , \(1 / 2\) watt (R202)
Resistor-Wire wound, 10 ohms, \(1 / 2\) watl (R190) \\
\hline 7355 & Capacitor-Tubular, paper, oil impregnated. . 047 mid. 400 volts (C130. C139. C167) & & Resistor-Fixed. composition:10 ohms. \(\pm 20 \%, 1 / 2\) walt (RI20) \\
\hline 7359 & Capacitor-Tubular, moulded paper, oil impreqnated. .047 mid. 600 volts (C150. C156) & & 18 ohms. \(\pm 10 \%\). \(1 / 2\) watt (R225) \\
\hline 73597 & Capacitor-Tubular, paper, oil impregnated, . 047 mid, 1000 volts (C163) & & \[
\begin{aligned}
& 39 \text { ohms. } \pm 10 \% \text {, } 1 / 2 \text { wall (R121) } \\
& 47 \text { ohms. } \pm 5 \% \text {, } 1 / 2 \text { watl (R111) }
\end{aligned}
\] \\
\hline 73 & Capacitor-Tubular. paper, oil impreqnated. 0.1 mid. 400 vol's (Cl49) & & \begin{tabular}{l}
47 ohms. \(\pm 20 \%\). \(1 / 2\) watt (R183) \\
68 ohms. \(+10 \%\), \(1 / 2\) watl (R105)
\end{tabular} \\
\hline 7355 & Capacitor-Tubular. paper. oil impregnated. 0.1 mfd. 600 volis (C131) & & 68 ohms. \(\pm 20 \%\), \(1 / 2\) watl (R123) \\
\hline 73794 & Capacitor-Tubular. paper, oil impregnated, 0.22 mid. 400 volts (C136, Cl57, C162) & & \begin{tabular}{l}
82 ohms. \(\pm 10 \%, 1 / 2\) watt (R195) \\
100 ohms. \(\pm 10 \%\), 2 watts (R184)
\end{tabular} \\
\hline 73787 & Capacitor-Tubular. paper. oil impregnated. 0.47 mid. 200 volts (C133. Cl90, C197) & & \begin{tabular}{l}
150 ohms. \(\pm 5 \%\), \(1 / 2\) wall (R102) \\
150 ohms, \(\pm 10 \%\), \(1 / 2\) watl (R115)
\end{tabular} \\
\hline 73154 & \multirow[t]{2}{*}{\begin{tabular}{l}
Choke-Filter choke (1104) \\
Coil-Focus coil (L118)
\end{tabular}} & & 150 ohms. \(\pm 20 \%\), \(1 / 2\) watt (R106, R109, R114. R21 \\
\hline \[
74585
\] & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 71429 \\
& 71449
\end{aligned}
\]} & Coil-Focus coil (L118) & & 00 ohms. \(\pm 20 \%\), \(1 / 2\) watl (R103. R107. R \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
Coil-Horizontal linearity control coil (Lll1) \\
Coil-Peaking coil (36 muh) (L117. R110) \\
Coil-Peaking coil (93 muh) (L102) \\
Coil-Peaking coil (180 muh) (L103, L105)
\end{tabular}} & & R116, R118, R165, R199) \\
\hline & & & 1200 \\
\hline 71527 & & & 94. F \\
\hline 742 & & & 200 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R21) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\text { sTOCK } \\
\text { No. }
\end{gathered}
\] & DESCRIPTION \\
\hline & \begin{tabular}{l}
SPEAKER ASSEMBLIES \\
92569.7W \\
RL111.9 \\
RMA. 274
\end{tabular} \\
\hline 13867 & Cap-Dust cap \\
\hline 74901 & Cone--Cone and voice coil assembly \\
\hline 5118 & Plug-3.prong male plug for speake: \\
\hline 73635 & \begin{tabular}{l}
Speaker-12" PM speaker complete with cone and voice coil less plug \\
NOTE: If stamping on speaker in instrument does not agree with above speaker number, order replacement parts by referting to model number of instruments. number stamped on speaker and full description of part required. \\
MISCELLANEOUS
\end{tabular} \\
\hline 74982 & Back-Cabinet back for Model TC124 \\
\hline 74968 & Back-Cabinet back for Model TC125 and Model TC127 \\
\hline 72857 & Board-"Ant" terminal board \\
\hline 71599 & Bracket-Pilot lamp bracket \\
\hline 13103. & Cap-Pilot lamp cap \\
\hline 71892 & Catch-Bullet catch and strike for doors (2 required) for Model TCl27 \\
\hline X3092 & Cloth-Grille cloth for mahogany or walnut instru. ments for Model TCl24 \\
\hline X3093 & Cloth-Grille cloth for oak instruments for Model TC124 \\
\hline X3094 & Cloth-Grille cloth for mahogany or walnut instruments for Model TCl25 \\
\hline X3089 & Cloth-Grille cloth for oak instruments for Model TC125 \\
\hline X3074 & Cloth-Grille cloth for mahogany or walnut instruments for Model TC127 \\
\hline X3075 & Cloth-Grille cloth for oak instruments for Model TC127 \\
\hline 39153 & Connector-4.contact male connector for antenna cable \\
\hline 74891 & Cushion-Vinylite cushion for metal kinescope mask \\
\hline 74731 & Decal-Control panel function decal for mahogany or walnut instruments \\
\hline 74732 & Decal-Control panel function decal for oak instruments \\
\hline 71768 & Decal-Trade mark decal for Model TC127 \\
\hline 74809 & Emblem-"RCA Victor" emblem \\
\hline 73642 & Escutcheon-Channel marker escutcheon for mahogany or walnut instruments \\
\hline 73740 & Escutcheon-Channel marker escutcheon for oak instruments \\
\hline 74755 & Glass-Salety glass for Models TC124 and TC127 \\
\hline 749 & Glass-Salety glass for Model TC125 \\
\hline 37396 & Grommet-Rubber grommet for speaker mounting (4 required) \\
\hline 74308 & Hinge-Cabinet door hinge (l set) (2 required) for Model TC127 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\text { STOCK } \\
\text { No. }
\end{gathered}
\] & description \\
\hline 74959 & Knob-Fine tuning control knob-dark-louter) for mahogany or walnut instruments-Models TC125 and TC127 \\
\hline 73995 & Knob-Fine tuning control knob-tan-(outer) for oak instruments \\
\hline 75027 & Knob-Fine tuning control knob-chocolate brown(outer) for mahogany or walnut instrumentsModel TC124 \\
\hline 74960 & Knob-Channel selector knob-dark-(inner) for mahogany and walnut instruments-Models TC125 and TC127 \\
\hline 74961 & Knob-Channel selector knob-tan-(inner) for oak instruments \\
\hline 75028 & Knob-Channel selector knob-chocolate brown(inner) for mahogany or walnut instruments for Model TC1 24 \\
\hline 74962 & Knob-Brightness control or vertical hold control knob-dark-(outer) for mahogany or walnut in-struments-Mcdels TCl25 and TCl27 \\
\hline 73999 & Knob-Brightness control or vertical hold control knob-tan-(outer) lor oak instruments \\
\hline 75029 & Knob-Brightness control or vertical hold control knob-chocolate brown-(outer) for mahogany or walnut instruments for Model TC124 \\
\hline 74969 & Knob-Volume control and power switch knob-dark-for mahogany or walnut instruments for Models TC125 and TCl27 \\
\hline 74003 & Knob-Volume control and power switch knob-tan-for oak instruments \\
\hline 75030 & Knob-Volume control and power switch knobchocolate brown-for mahogany or walnut in struments lor Model TC124 \\
\hline 74963 & Knob-Picture control or horizontal hold control knob -dark-(inner) for mahogany or walnut instru-ments-Models TC125 and TC127 \\
\hline 74001 & Knob-Picture control or horizontal hold control knob-tan-(inner) lor oak instruments \\
\hline 75031 & Knob-Picture control or horizontal hold control knob-chocolate brown-(inner) for mahogany or walnut instruments for Model TC124 \\
\hline 11765 & Lamp-Pilot lamp-Mazda 51 \\
\hline 74730 & Nail-Decorative head nail for grille bars \(\mathbf{1 4}^{\text {re- }}\) quired) tor Model TC127 \\
\hline 7416 & Plate-Mounting plate for interlock switch \\
\hline 74971 & Plate-Back plate for door pulls (2 required) for Model TC127 \\
\hline 74970 & Pull-Cabinet door pull (2 required) for Model TC127 \\
\hline 74113 & Screw-\#8.32 \(\times 1\) " trimit head screw for door pulls for Model TC127 \\
\hline 72845 & Spring-Retaining spring for knobs \#73995, 74959
and 75027 \\
\hline 14270 & Spring-Retaining spring tor knobs \#73999, 74003. 74960, 74961. 74962. 74969. 75028. 75029 and 75030 \\
\hline 30330 & Spring-Retaining spring for knobs \(\begin{aligned} & \text { and } 75001,74963\end{aligned}{ }^{75031}\) \\
\hline 73 & Spring-Spring clip for channel marker escutcheon \\
\hline 72936 & Stop-Door stop for Model TC127 \\
\hline 74161 & Stud-Locating stud ior back covers \\
\hline
\end{tabular}

\section*{ELECTRICAL SPECIFICATIONS}
\begin{tabular}{|c|c|c|c|}
\hline Power Supply \(\qquad\) & \multicolumn{3}{|r|}{FOLLOWING:} \\
\hline Power Supply 60 Cycles Only & Symbol & Type & 1st IF \(\begin{aligned} & \text { Function } \\ & \text { Amplifier }\end{aligned}\) \\
\hline Power Consumption 230 Watts & & .6CB6 & 1 st I.F. Amplifier \\
\hline Power Output 3.5 Watts Maximum & V3 & 6CB6 & 3rd I.F. Amplifier \\
\hline 2 Watts Undistorted & V4. & . 6 AH6 & Video Amplifier \\
\hline Antenna Input Impedance. . . . 300 Ohms Balanced & V5 & & Kinescope \\
\hline Picture Area 130 Square Inch & V7 & 6T8 & FM Detector and 1st Audio \\
\hline Tuning Range 12 Channel & V8 & 6AU6 & Sound I.F. \\
\hline Loud Speaker PM Dynamic & V9. & 6SN7GT & Vertical blocking oscillator \\
\hline Voice Coil Impedance. 3.2 Ohms 400 Cycles & V11 & 12AU7 & Sync limiter and DC restorer \\
\hline Video Response 3.5 MC & V13. & 6SN7GT & Horizontal oscillator \\
\hline Focus . Magnetic & V16 & 6W6 & Horizontal outp
Diode damper \\
\hline Sweep Deflection Magnetic & V17 & 6AG5 or & R.F. Amplifier \\
\hline Scanning Interlaced, 525 Line & V18 & \(6 J 6\) & Oscillator and Mixer \\
\hline Horizontal Scanning Frequency. . . . 15,750 CPS & V19. & . 654 & Vertical Output \\
\hline Vertical Scanning Frequency. 60 CPS & V12 & 5U4G & Low Voltage Rectifie \\
\hline Frame Frequency 30 CPS & V15 & 1 B3 & High Voltage Rectifier \\
\hline
\end{tabular}
this receiver contains thf FOLLOWING:

1 st I.F. Amplion \(\begin{array}{r}\text { Amier }\end{array}\) 2nd I.F. Amplifier 3rd I.F. Amplifier
Video Amplifier Kinescope FM Detector and 1 st Audio Vertical blocking oscillator Phase detector Sync limiter and DC restorer Horizontal oscillato Diode damper Low Voltage Rectifier High Voltage Rectifier

Turn on the set and tune to a channel on which a station is operating.
1. Adjust the Horizontal Hold (R66) to the center of its rotation. With the control in this position adiust the Horizonal Oscillator coil (L10) until a picture appears. If no raster or pattern appears on the screen, leave R66 in the center position and continue with the following instructions unil a raster does appear then return for this adjustment.
2. Advance the Brilliance control (220) in a clockwise direciion until a raster appears. Allow this to remain in a clock wise position whether a raster appears or not.
3. Adjust the ion trop magnet for maximum brightness by moving it forward or backward along the neck of the picture tube, rotating it about the neck of the ube at the same time. The Brilliance should then be reduced to a suitable level by means of control R20.
4. Adjust the Vertical Hold control (R42) until the test pattern remains stationary. The Contrast (R16, front panel) and Brilliance (R20) should then be adjusted for normal picture contrast.
5. At this point the Focus control (R58) should be adjusted for the sharpest horizontal lines at the center of the pattern.
6. Adjust the Height control (R39) until the proper height is attained. Adjustment of this control may effect the Vertical Hold (R42), in which case, that control will have to be re-adjusted to maintain a stationary pattern.
7. The Vertical Linearity (R35) control should be ad fusted to give maximum linearity in the upper por tion of the raster.
8. Adjust the Horizontal Drive (\(C 56\)) until a white vertical line appears on the left side of the screen. Then reduce the drive by turning the trimmer clockwise until his line just disappears. This can best be seen at reduced contrast. Now adjust the Horizontal Linearity (LI3) control for best linearity.
9. Loosen the wing-nut on top of the yoke housing and square the pattern with the screen escutcheon by rotating the yoke. Be sure that the yoke is pushed as far forward as possible.
10. Adiusl the focus coil to center the picture by turning the three wing-nuts on the coil mounting bolts.
11. The Width control (LII) is a screw-driver adjustment located on top of the high voltage cage. The width is increased by turning this control in a clockwise direction.

NO RASTER ON KINESCOPE-If raster cannot be ob-
tained, check below for possible causes.
I. Ion trap magnet adjustment is incorrect.
2. Check. 25 amp . fuse in plate circuit of V 14 .
3. No high voltage - check V14 (6CD6) and V15 (183-GT) tubes and circuits. If the horizontal deflection circuits are operating as evidenced by the correct waveform measured on terminal 4 of horizonta output transformer (T9), the trouble can be isolated to the high voltage rectifier circuif (VIS). Either the high voltage winding (between red and blue leads) on T9 is open, tube V15 is defective or its filament circuit is open.
4. Damper tube V16 (6W4) defective. Plate voltage supply for V14 (6CD6) horizontal output tube is ob tained through the damper tube. Check tube an heater winding on power transformer (T7)
5. Defective kinescope. Heater open, cathode return circuit open.
6. No plate voltage. Electrolytic capacitor shorted. All B voltages are accessible for measurement under neath the chassis.

HORIZONTAL DEFLECTION ONLY-If only horizonta deflection is obtained as evidenced by a straight line across the face of the kinescope, it can be caused by the following:
1. Vertical oscillator V9 (6SN7-GT) inoperative. Check voltages on grid and plate.
2. Vertical output transformer (T5) open.
3. Yoke vertical coils (L7) open.
4. Vertical blocking transformer (T6) open or shorted
5. Vertical output tube V19 (6S4) defective.

POOR VERTICAL LINEARITY-If adjustment of the vertical height and linearity controls will not correct this condition, any of the following may be the cause:
. Vertical output transformer (T5), capacitors C30, C3 C32, or resistor R38.
3. Low plate and bias voltages. Check rectifier tube and capacitors in B supply.
POOR HORIZONTAL LINEARITY-Check the following:
1. V14 (6CD6) screen voltage.
2. Horizontal drive (C56) for incorrect adiustment.
3. Horizontal output tube V14 (6CD6).
4. Damper tube V16 (6W4).

TRAPEZOIDAL OR NON-SYMMETRICAL RASTER Check for:
1. Improper adjustment of focus coil or ion trap mag-
2. Defective yoke.

WRINKLES ON LEFT SIDE OF RASTER-This condition can be caused by incorrect adjustment of the horizontal drive C56.
SMALL RASTER-This condition can be caused by:
1. Low \(B\) or line voltage
2. Insufficient output from horizontal output tube (V14) (6CD6). Replace tube.
3. Insufficient output from vertical output tube V19 (6S4) or V9 (6SN7GT). Replace tube.

RASTER; NO IMAGE, BUT ACCOMPANYING SOUND -This condition can be caused by:

No signal on kinescope cathode. Check for open coupling condenser C13.
2. Bad contact to kinescope or lead to socket broken

SIGNAL APPEARS ON KINESCOPE CATHODE BUT IMPOSSIBLE TO SYNCHRONIZE THE PICTURE HORIZONTALLY AND VERTICALLY-A condition of this nature can be caused by:
1. Defective sync limiter V11 (12AU7) or phase detector V10 (6AL5).
2. If tubes are O.K. check voltages and associated circuits.

\section*{SIGNAL ON KINESCOPE CATHODE AND HORIZON-} AL SYNC ONLY-Check
1. Vertical integrating network capacitors C31, C34 C35, and resistors R44, R45, R46.

PICTURE STABLE BUT WITH POOR RESOLUTION -
If the picture resolution is not up to slandard, it may bo caused by any of the following:
1. Defective picture detector (crystal IN34) or video amplifier V4 (6AH6).
2. Open video peaking coil. Check coils L1, L2, L3, L4 and L 5 for continuity. Note that L 3 and L 5 have shunting resistors. 14 is 4.5 MC trap.
3. Leakage in V 4 (6 AH 6) grid capacitor C 11 , or Cl 3 on V5 (kinescope).

If the above components are not found to be defective, check the following
A. Check all potentials in video circuits.
B. Check the kinescope grid for poor or dirty contacts
C. Check adiustment of focus control R48. It should be effective on either side of proper focus.

\section*{ALIGNMENT TABLE}

DISCRIMINATOR AND SOUND I-F ALIGNMENT
D. Check and re-align if necessary, the picture I.F ond the local oscillator.
E. Check for proper coils in turret switch.

\section*{PICTURE SMEAR:}
1. Normally, smear can be attributed to phase shift at the low frequency end of the video characteristic This can be caused by improper values of resistors and capacitors in the video circuits.
2. This trouble can also originate at the transmitter Check reception from another station.

\section*{PICTURE JITTER:}
1. Verlical instability may be due to loose connections or noise received with the signal.
. Horizontal instability may be due to unstable transmitted sync or to noise.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Step & Connéct Signol Generotor to & Signol Gen. Freq. Mc. & Connect Sweep Generotor to & Sweep Gen. Freq. Mc. & Connect Oscilloscope to & \[
\begin{gathered}
\text { Connect } \\
\text { Volimeter to }
\end{gathered}
\] & \begin{tabular}{l}
Miscelloneous \\
Connections and instructions
\end{tabular} & Adjust & \[
\begin{gathered}
\text { Refer } \\
\text { to }
\end{gathered}
\] \\
\hline 1 & \begin{tabular}{l}
Video Grid \\
(pin 1, V-4)
\end{tabular} & \begin{tabular}{l}
4.5 \\
. 1 volt output
\end{tabular} & Not used & & Not used & \[
\begin{gathered}
\text { Pin } 2 \\
v-7
\end{gathered}
\] & Meter on 10 volt scale & T4 (bottom) and L6 for max. on meter. L4 for min. & Figs. 5 \\
\hline 2 & \begin{tabular}{l}
Video Grid \\
(pin 1, V-4)
\end{tabular} & \[
\begin{gathered}
4.5 \\
.1 \text { volt output }
\end{gathered}
\] & Not used & & Not used & See Note 1 & Meter on 3 volt scale & T4 (top) for zero on meter & \\
\hline 3 & Not used & & \begin{tabular}{l}
Video Grid \\
(pin 1, V-4)
\end{tabular} & \[
\begin{gathered}
4.5 \\
\text { center } 1 \mathrm{mc} \\
.1 \text { volt output }
\end{gathered}
\] & & Not used & Check for symme (positive and neg T4 (bottom) until th & response waveform If not equal, adjust re equal. See Note 2. & Fig. 5 \\
\hline
\end{tabular}

NOTE 1: Connect two 100 K resistors in series. Connect one end to pin 2 of \(\mathrm{V}-7\) (6 T 8) and the other end to ground. Connect the hot side of the VTVM to center of the two 100 K : Connect two gron resistors in series. Connect one end to pin 2 of -7 (6 T8)
resistors and ground side to junction of R29 (150 ohms) and R28 (47 K ohms).
NOTE 2: The peak to peak band width at the discriminator should be approximately 300 KC and should be linear from 4.425 MC to 4.575 MC .
ALIGNMENT PROCEDURE I-F ADJUSTMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Step No. & Cannect Signal Generator to & SIgnal Gen. Freq. Mc. & \[
\begin{gathered}
\text { Connect } \\
\text { Voltmeter to }
\end{gathered}
\] & Miscelloneous
Connections and
Instructions & Adjust & Refer to \\
\hline 4 & Wire loop (top of tuner between V17 and V18) & 24.6 & Junction R13 and L2 & \multirow{5}{*}{Set station selector between channels; meter on 3 volt scale} & T3 (top) maximum & Fig. 5 \\
\hline 5 & Wire loop (top of tuner between V17 and V18) & 23.3 & Junction R13 and L2 & & T2 (top) maximum & Fig. 5 \\
\hline 6 & Wire loop (top of tuner between V17 and V18) & 25.6 & Junction R13 and L2 & & Tl (top) maximum & Fig. 5 \\
\hline 7 & Wire loop (top of tuner between V17 and V18) & 22.2 & Junction R13 and 12 & & \[
\underset{\text { maximum }}{\text { L15 }}
\] & Fig. 5 \\
\hline 8 & Wire loop (top of tuner between V17 and V18) & 21.25 & Junction R13 and L2 & & \[
\underset{\text { minimum }}{\mathrm{Ll} 4}
\] & Fig. 5 \\
\hline
\end{tabular}

\section*{ALIGNMENT PROCEDURE}

TEST EQUIPMENT-To service this receiver properly, it is recommended that the following test equipment be available:
R-F SWEEP GENERATOR meeting the following require ments:
(a) Frequency range: 4 to \(5 M C_{i} 1 M C\) sweep width. (b) Oulput adjustable with at least . 1 volt maximum
(c) Output constant on all ranges.
(d) Flat output in all attenuator positions.

CATHODE RAY OSCILLOSCOPE preferably one with a wide band vertical deflection and an input calibrating source.
SIGNAL GENERATOR to provide the following frequencies:
Output on these ranges should be adjustable and at least. 1 volt max.)
(a) Intermediate frequencies
4.5 MC Sound I.F.
\(21.25 \mathrm{MC} \operatorname{Trap}(\mathrm{L} 14)\)
22.2 MC I st I.F. (Ll 5)
25.3 MC 2nd IF. (T)
24.6 MC 4th IF. (T3)
(b) Radio frequencies:
\begin{tabular}{ccc}
\begin{tabular}{c}
Channei \\
Number
\end{tabular} & \begin{tabular}{c}
Picture \\
Carrier \\
Freq. Mc
\end{tabular} & \begin{tabular}{c}
Sound \\
Crarrier \\
Freq. Mc
\end{tabular} \\
2 & 55.25 & 59.75 \\
3 & 61.25 & 65.75 \\
4 & 67.25 & 71.75 \\
5 & 77.25 & 81.75 \\
6 & 83.25 & 87.75 \\
7 & 175.25 & 179.75 \\
8 & 181.25 & 185.75 \\
9 & 187.25 & 191.75 \\
10 & 193.25 & 197.75 \\
11 & 199.25 & 203.75 \\
12 & 205.25 & 209.75 \\
13 & 211.25 & 215.75
\end{tabular}

HETERODYNE FREQUENCY METER with crystal cali brator if the signal generator is not crystal controlled. ELECTRONIC VOLTMETER and a high voltage probe for use with this meter to permit measurements up to 10 kilovolts.

SERVICE PRECAUTIONS-To service the receiver re move the chassis from the cabinet. To do so, remove the bolts (bottom of cabinet). The chassis should normally be serviced without the kinescope. However, if it is necessary to view the raster during servicing, turn the chassis on its side, with the power transformer and high voltage cage down. In this position the chassis is self-balancing, and all controls and components are readily accessible for adjustment or measurement
CAUTION: Do not permit the kinescope second-anode lead to become shorted to the chassis.
SENSITIVITY CHECK-A comparative sensitivity check can be made by operating the recelver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers unde

This weak slgnal can be obtained by connecting the shop antenna to the receiver through an attenuator pad of the type shown in figure 9. The number of stages in the pad depends upon the signal strength available at the antenna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast pic-
ture is obtained when the picture control is at the maxiture is obtained when the

Only carbon type resistors should be used to construct he attenuator pad. Since many of the low value moulded tion, it is advisable to break and examine one of each ype of resistor used in order to determine its construction. OSCILLATOR ADJUSTMENT-The oscillator slug for each channel can be adjusted by removing the chassis from the cabinet. Use only an insulated alignment tool When adjusting the slugs to be sure that the fine tuning ontrol is at the mid-capacity position (tip pointing down, as illustrated in Fig. 6).

\section*{REPLACEMENT PARTS LIST FOR MODELS 616,6161 \& 1116}

When ordering parts, specify part number, model number and any ofher pertinent information.

© John F. Rider

© John F. Rider

models 616 , 6161 and 1116 rectangular tube chassis.
1. Substitute 30,000 (30 K) ohm resistors in place of a single \(15,000 \mathrm{ohm}\) resistor now in use, as shown below.
2. Dress the AC choke on lst video I.F. away from any sharp edges on the I.F. shield.
3. Dress the High Voltage lead to the anode connection away from the \(5 U_{4}\) tube.
4. Dress the blue plate lead to the GCDO tube away from the width coil. 5. Check all magnets and replace double magnet with single magnet on ail bent gun tubes.
6. It has come to our attention that many of these units had been misadjusted as to the setting of the horizontal drive screw in the field by various technicians. The following is an outline of the procedure which must be properly adhered to, to gain the utmost from this unit.
a. The horizontal drive screw should be tightened and then turned counter clockwise until the white bar apprears on the screen. When this bar ap pears the screw shovid then be turned clockwise approximately \(1 / 4\), turn until izontal dider chassis will be adequate to make any such adjustments.

IT IS IMPERATIVE THAT THIS HORIZONTAL DRIVE SCREW IS NOT TO BE USED TO ADJUST THE LINEARITY OR WIDTH.

SUBJECT: REPLACEMENT OF HIGH VOLTAGE TRANSFORMER T-9 (80-263)
The following are the methods proposed to substitute the new type trans former for the old in models 616, 6161, and 1116.
l. Present transformer to be removed from the chassis, disconnecting all leads.
2. The screen resistor on \(6 C D 6\) (\(R 70\)) to be removed from chassis.
3. Place black lead from unmarked terminal to the same point where the
previous black lead was connected.
4. Place green lead from lug \#6 to same point as previous green lead was connected. (Pin 6 of GCDO).
5. Place orange lead from lug \#7 to same point as previous orange lead B+ supply.
6. Place red lead from lug \#4 to pin \#5 on 6W4 only. (remove wire from yoke previously connected to pin \#5 and place on empty pin \#4 on 6W4) 7. Place white and black lead from lug \#5 to the pin \#4 (6W4) on which you had previously connected the red wire from yoke.
8. Install a resistor (82,000 to 100,000 ohm 3 w) from the boosted \(B\) supply (yellow lead coming out from the fuse to the terminal strip) to the screen on the 6 CD6 (before the 100 ohm resistor) pin 1 being used as a tie point.
9. Place a \(470,0001 / 2 \mathrm{w}\) resistor across the 8 mfd . 500 volt condenser (C55) on the vertical height control.

MODELS C-6161, T-616, lll6, 58 the base of the bracket placed down in the high voltage compartment as
shown: shown:

The you longer leads. The top winding is to be soldered to lug \#6. The bottom winding to lug \#7. Be extremely careful to dress these leads away from the blue plate of the GCDO and the Carona ring. ll. Place yellow lead from lug \#l to the fuse.

\section*{ALTERNATE TUBES FOR VIDEO AMPLIFIER STAGE}

The 6AH6 Video Amplifier tube (V4) may be replaced by either a 6AC7 or a 6CB6. When either tube substitution is made, coils L3 and L5 must be changed as well as the socket wiring. When the GCB6 is used, resistor Rl5 must be changed in addition to the coil. The 6AC7 requires a tube socket change.

SUBSTITUTION OF THE GAC7
Remove:
L3
\(10-559\)
\(10-548\) \(10-548\)
\(68-49\)

Coil, peaking, 230 uh (black)(on 18 K resistor) Soil, peaking, 650 uh (white) (on loK resistor) Socket, miniature, 7 pin

Add:
L3 10-566 Coil, peaking, 186 uh (gray) (on l2K resistor)
L5 10-565 Coil, peaking, 380 uh (purple) (on lok resistor)

Remove
L3. \(10-559\)
L5 10-548
R15 60-776
Coil, peaking, 230 uh (black) (on 18 K resistor) Resistor

Add:
L3 10-567 Coil, peaking, 210 uh (brown) (on 15 K resistor)
L5 10-558 Coil, peaking. 375 uh (red)
R15 60-752 Resistor, carbon. 100 ohm, \(1 / 2 \mathrm{w}\). \(10 \%\)
\[
\begin{aligned}
& \text { ALTERNATE TUBES FOR No. } 3 \text { I F STAGE } \\
& \text { Tube may be replaced by a } 6 \text { AG5. Whe }
\end{aligned}
\]

The 6CB6 I F Amplifier Tube may be replaced by a GAG5. When this substitution is made, the ground connection on pin 7 of the socket will be removed.

\section*{© John F. Rider}

MODELS 17T22, 1708,
\(22 D 17,2217,22 D 19\),
2219

© John F. Rider

© John F. Rider

© John F. Rider

(C) John F. Rider
INDEX

\section*{GENERAL DESCRIPTION}

The information contained in this service RL covers the catalog 133 except for the record changer. Refer to 57 RL 539 for service information on the 100.211-20 intermix model recerd changer.
The catalog 133 is a combination, a console type television using Chassis 100.107, AM -FM radio 20 Television Chassis 100 record changer 100.211 tubes solely for reproduction of the visual two aural portions of the television broadcast The AM-FM tuner chassis 100.043 employs 5 tubes in specially designed, high sensitivity AM-FM receiver circuits. A heavy duty transformer and three rectifiers tubes, located on the 101.107 chassis, provide power for operation of all stages.

The circuit features of this receiver include a high gain R. F. tuner which is noted for its stability and rugged mechanical construction, an intercarrier sound system which is free from distortion normally caused by osciliator drift, automatic freutomatic gain sion. Exceptional sensitivity is ace line suppresoughly stable and A. G.C. controlled R F y antif and four stages of I. F. amplification followed by two stage broad-band video amplifier. Another important feature is the compactly designed and tunable built-in antenna.

Remarkable picture stability and immunity to exRnal interference are achieved by use of the new keyed type of A.G.C. system which also minimizes the "flutter"effect caused by passing airplanes.

Suppression of retrace lines by an ingenious cirtion of the mance feature permits a wide variety of perforbrightness and contrast control settings without ap pearance of retrace lines.

\section*{SPECIFICATIONS}

\section*{POWER REQUIREMENTS}

117 Volts 60 Cycles

Th Fider

Anther feature provides for illumination of in dicator lights to indicate the section of the receiver that is in use. The light above the channel number cutcheon is illuminated when receiver is tein sed for TV operation. When using the AM radio a light below the dial scale turns on and when th ill radio is in use the light above the dial scal net glow. Another light located at the base of cab in always on whenever any part of the receive changer is being used.

Orderly and well spaced arrangement of all components on a generously proportioned chassis pa permits easy access to all circuits for measureents and analysis FREQUENCY RANGE
Television---channels 2 through 13. For channel frequencies, see table on page 3.
Radio

PICTURE SIZE
\begin{tabular}{ccc}
Height & \begin{tabular}{c}
Width \\
\(9^{\prime \prime}\)
\end{tabular} & \begin{tabular}{c}
Viewing Area \\
(at widest point)
\end{tabular} \\
(sq. inches)
\end{tabular} SPEAKER
\(\begin{array}{lc}\text { Type } & \text { Size } \\ 6^{\prime \prime} \times 0^{\prime \prime} & \text { V.C. Imped. }\end{array}\) 3.2 ohms

ANTENNA INPUT IMPEDANCE
72 ohms
BUILT-IN ANTENNA
High "Q " dipole with tunable matching stub.

\section*{R. F. TUNER}

Fixed coil and selector switch type construction. All components are easily accessible for servicing
"KEYED"AUTOMATIC GAIN CONTROL
Outstanding new development; minimizes "airplane flutter "; reduces contrast variation when changing from one channel to another; increases
immunity of sync system to external interference.

INTERMEDIATE FREQUENCIES

I. F. SYSTEM

AM--- One stage (two tuned transformers)
FM--- Two stage (three tuned transformers)
TV .-. Four stage (stagger tuner) for composite signal and two additional stages for inter-
HORIZONTAL SYNCHRONIZATION
Automatic frequency control and "keyed"A.G. C provide excellent picture stability and noise immunity.
VIDEO AMPLIFIER
Two Stage - broad bano.
RETRACE LINE SUPPRESSOR
Eliminates retrace lines thruout the normal range
FOCUS DEFLECTION
Magnetic Magnetic
high voltage power supply
"Fly-back"type. Completely enclosed in a shielded compartment. Removal of H. V. compartment cover automatically opens interlock to disconnect receiver power cord.
SENSITIVITY
Antenna to Picture Tube Grid Sensitivity - To make this measurement, connect negative terminal of \(1 \frac{1}{2}\) of battery to chassis. Also, set Contrast control to
maximum clockwise position. Connect an A.C. acuum-tube voltmeter betwen picture tube grid and ground, and place a .005 microfarad condenser cross the same points
nject R. F. signal (modulated \(30 \%\) at 400 cycles)at antenna terminals, using signal whose frequency corresponds to the center frequency of the selected channel, and adjust Fine Tuning control for maximum output. Generator must be connected to anenna terminals with a 22 ohm carbon resistor in high sid

Input signal required to produce standard output of 7.07 volts A. C. (r.m.s.) at picture tube grid is inicated in the following table. Since a fixed bias of \(\frac{1}{2}\) volts has been applied to the A.G.C. system in order to provide a reference level for these meaities specifled here are not intended to indicate the full capability of the receiver, but merely serve as convenient basis for determining proper operation.
\(\begin{array}{ll}\text { Low Band } & \begin{array}{l}\text { Average }-25 \text { microvolts } \\ \\ \text { Range }\end{array} \quad 10 \text { to } 40 \text { microvo }\end{array}\)
High Band Average - 40 microvolts
Range - 20 to 80 microvolts
Detector to Picture Tube Grid Sensitivity - To make this measurement, remove 6AU6, 4th Video mum clockwise position. Inject a 400 cycle (audio) signal across 6800 ohm video detector load resist or. In order to produce the standard output of 7.07 volts A C. (r.m.s.) at the picture tube grid, the input signal at the detector load resistor will be approximately . 07 volts A. C An A. C. vacuum-tube voltmeter must be used for these voltage measure-
elevision Sound System Sensitivity -Inject 4.5 megacycle frequency modulated signal (400 cycle modulation with \(7 \frac{1}{2} \mathrm{Kc}\). deviation) across video detector load resistor and measure output at speaker voice coil. An input of 2200 microvolts will produce approximately 500 milliwatts or 1.26 volts a-
cross speaker voice coll.
A.M. Sound System Sensitivity - Inject a 1000 Kc . signal (modulated \(30 \%\) at 400 cycles) at (high side) connection lug on antenna section of gang condenser crofarad condenser. Tune recelver to a 1000 Kc . signal. An input of 75 microvolts will produceapproximately 500 milliwatts or 1.26 volts across the speaker voice coil
F.M. Sound System Sensitivity-Inject 298 megacycle frequency modulated signal (400 cycle modulation with \(22 \frac{1}{2} \mathrm{Kc}\). deviation) at pin 8 of 12AT7,
F.M. R.F. Amplifier tube (\(\mathrm{V}-26\)). Connect generator to this point through a 300 ohm resistor. Tune receiver to 98 Mc . signal. An input of 35 microvolts will produce approximately 500 milliwatts or 1.26 volts across speaker voice coll.

MODEL 1.33, Ch. 100.107

\section*{TUBE COMPLEMENT}

\begin{tabular}{|c|c|c|c|c|}
\hline Channel NO. & FREQ. MC. & PICTURE CARRIER MC & SOUND CARRIER MC & HETERODYNE OSC. FREQ. MC \\
\hline 2 & 54-60 & 55.25 & 59.75 & 82.00 \\
\hline 3 & 60-66 & 61.25 & 65.75 & 88.00 \\
\hline 4 & 66-72 & 67.25 & 71.75 & 94.00 \\
\hline 5 & 76-82 & 77.25 & 81.75 & 104.00 \\
\hline 6 & 82-88 & 83.25 & 87.75 & 110.00 \\
\hline 7 & 174-180 & 175.25 & 179.75 & 202.00 \\
\hline 8 & 180-186 & 181.25 & 185.75 & 208.00 \\
\hline 9 & 186-192 & 187.25 & 191.75 & 214.00 \\
\hline 10 & 192-198 & 193.25 & 197.75 & 220.00 \\
\hline 11 & 198-204 & 199.25 & 203.75 & 226.00 \\
\hline 12 & 204-210 & 205.25 & 209.75 & 232.00 \\
\hline 13 & 210-216 & 211.25 & 215.75 & 238.00 \\
\hline
\end{tabular}

\section*{CIRCUIT DESCRIPTION}

This receiver is a complete bome entertainment unit featuring television, AM and FM reception and equipped with a three-speed intermix record changer capable of playing all of the latest type re-

The television chassis (100.107) incorporates 24 tubes (Including three rectifiers), plus a \(12 \frac{1}{2}\) "cath-ode-ray tube (type 12LP4), and the auxillary AMFM tuner chassis (100.043) contains 5 additional tubes. Electrical connections of the AM-FM tuner to the TV chassis are effected by a 3 prong plug for the power supply and a single prong plug for output
to the audio system of the TV chassis.

Selection of the desired type of reception is accomplished by properly positioning the Band Switch This switch is composed of two separate sections, joined by a lever and link assembly. One switch
section is located in the TV chassis and the other section is in the AM-FM tuner. The section in the TV chassis switches \(\mathrm{B}+\) and filament voltages, and also switches the audio amplifier on the TV chassis into the appropriate circuit. The section in the AM FM tuner switches circuits in that tuner for elther AM or FM reception.

With the Band Switch in the "TV "position, \(\mathrm{B}+\) vol
only those tubes in the TV chassis.
With the Band Switch in the PEONO position, filament voltage is appliedto alltubes \(\ln\) the TV chassis only, with the exception of the GAGS R.F. Am plifier tube (\(V-5\)), 656 Mixer-Oscillator tube (\(V-6\)) and 6BGBG Horizontal Scanning Output tube (\(\mathbf{V}-20\)). Certain B+ voltages have been removed from ciramplifier circuit is switched to the output of the record changer.

With the Band Switch in the "AM"position, filamen voltage is applied to all tubes in the AM-FM tuner
and all tubes in the TV chassis with the exception of the 6AG5 R.F. Amplifier tube (\(V-5\)), 6 J 6 Mixer\(O\) scillator tube (\(V-6\)), and 6BG6G Horizontal Scanning Output tube (V-20). B+ voltages have been removed from certain circuits in the TV chassis and piate roltage is appllied effectively to only those tubes or ections of tubes in the AM-FM tuner used for AM operation.

With the Band Switch in the "FM"position, filament roltages are the same as with Band Switch in "AM" rom circuits in the TV chassis and plate voltage is applied to all tubes in the AM-FM tuner.

FIG. 1 BLOCK DIAGRAM

\section*{CIRCUIT DESCRIPTION - AM-FM TUNER}

This tuner utilizes all 5 tubes for reception of standard FM broadcast signals and 3 tubes for reception of AM signals.

\section*{FM RADIO CIRCUPI}

With the Band Switch set to the "FM"position, the received frequency modulated signal is fed into the recelved frequency modulated signal sed ine inAT7 tube (\(V\)-26A) which acts as a grounded grid F.M. R.F. Amplifier. The other triode section it grid cir(\(\mathrm{V}-26 \mathrm{~B}\)) is used for the FM Mixer and is tuned by one section of the gang condenser. cult is tuned by one section of the gang of the 6BE6 \((V-27)\) are now tied the FM oscillator circult. FM signal is then fed through 2 transformer-cou-
© John F. Rider
grid of the 6BE6 tube (\(\mathrm{V}-27\)) through a tuned antenna coupling coil. This tube acts as a Mixer-O scillator or AM operation, the osciliator section being of the modiffed Hartley type. The I.F. signal is then fed plification using a 6BA6 tube (\(V-28\)). The grid and cathode of the second 6BA6 \((\mathbb{V}-29)\) are used as a diode for AM detection and development of A.V.C. voltage. A.V.C. is applied to the mixer grid and developed the I.F. amplifter stage. Audio \(\$ 400\) is ed to the audio system in the TV chassis where it is amplified in the same manner as was the deteced FM signal.

CIRCUIT DESCRIPTION - TV CHASSIS
his television R.F. CIRCUITS \(\begin{aligned} & \text { Receiver is equipped with }\end{aligned}\) built-in antenna which is capable of providing satisfactory television reception in areas of adequate present an abnormal problem. The antenna has een designed so that it may be tuned through the entire television broadcast band by means of trimmer condenser placed at the end of a stub in
 na terminal strip provides a ready means of connactionof transmission line from an outdoor antenhe inductance and amount of coupling a input coils is changed by switch sections \#282A B, C and D as the Channel Selector switch is rotated in order to maintain a constant input impedance to the receiver of 72 ohms. This provides maximum energy transfer to the R. F. amplifier outdoor antenna and the antenna terminal strip is made with coaxial cable of the 72 ohm type.

A type 6AG5 tube (\(V-5\)) is used for R.F. amplifica tion and the plate circuit of this stage is tuned by varying its inductance. When the Channel Selector are connected in series, but each time R.F. coils Selector is advanced to the next channel higher in frequency, one coil is shorted out by \(s\) witch section \#282F.
A similar tuning arrangement is used in the grid circuit of the mixer stage, which utilizes one triode section of a 6 J 6 tube (\(V-6 \mathrm{~B}\)). The other half of the bJ6 \((V-6 A)\) is connected as a modified Hartley os-
cillator which injects osclllator voltage into the mixer stage thru capacity coupling between adjacent terminals of switch sections \#282G and \#282J. Oscillator tuning is accomplishec' in the same manner as R.F. plate and mixer grid tuning, with the addition of a fine tuning control condenser in the oscillator plate circuit.

\section*{COMPOSITE PICTURE AND SOUND IF CIRCUITS}

The I.F. picture and sound signals are taken off at the plate of the mixer stage and pass thru 4 stages of wide-band I.F. amplification using four type 6AU6 tubes (V-7, V-8, V-9, and V-10). A staggertuned I.F. system is utilized in this receiver and correct response is obtained by properly positioning in the cathode circult of the 1st IF amplifier stage
(cotl \#103 and condenser \#105) and is used to cor rectly shape the

All I.F. stages contain plate and grid decoupling networks to prevent interaction between stages, and all cathode resistors are unbypassed to improve
stability of the I.F. system.

\section*{DETECTOR CIRCUIT}

Both plcture and sound I.F. signals are injected at the cathode of one diode sectlon of a 6AL5 tube (\(\mathrm{V}-11 \mathrm{~A}\)). This stage detects the video signal and develops a negative-going video voltage across the detector load resistor 1139 . It also acts as a cony been the 2675 Mc video carrier and the 22.25 Mc . sound carrier. VIDEO CIRCUITS

The video detector output is directly coupled to the grid of the 1 st wide-band Video Amplifier, which uses a \(6 A U 6\) tube \((V-12)\). This stage amplifies the composite video signal and also acts as a nolse imiter. Nolse peaks on the negative-going video signal drive the 6AU6 beyond cutoff, and are there fare not present in the plate circuit of this stage.

The composite video signal is coupled to the grid of a \(6 C 4(V-13)\) connected as a Cathode Follower. The output is taken off the cathode of this stage and pro horizontal and vertical sweep circults.

A second stage of wide-band video amplification provides a video signal of sufficient strength to control is located in the cathode circult of the BKBGT (V-14) video output stage and effectively regulates the amount of degeneration of this stage.

\section*{KEYED A.G.C. CIRCUIT}

Che plate of the GAU6 Keyer A.G.C. tube (V-16) returns to ground thru a winding of the Width coil \#225 and the A.G.C. load resistor \#151, a horizontal output pulse. During the interval of this pulse, an amount of plate current will flow thru the keyer tube determined by the grid voltage being applied to the tube. Since the grid is direct\(y\) coupled to the lst video amplifier plate circuit, he negative voltage developed across the A.G.C. vary directly with the amplitude of the signal across the video detector load resistor \#139. The ime constant of the A.G.C. filter network is approxmately 01 seconds, which is high enough to compensate for signal strength fluctuation or "beating" action caused by passing alrcraft.

Noise immunity of the circuit is further improved y keeping the grid of the keyer tube blased beyond utoif at all times except during a positive-going sync pulse.

Filtered A.G.C. voltage is used to control the gain of the R.F. amplifler stage and the flrst three I.F amplifter stages.

\section*{D.C. RESTORER CIRCUIT}

The output of the 1st Video Amplifier contains both a.c. and d.c. components of the composite video signal, but a.c. coupling between thls stage and the cathode follower stage results in a loss of the d.c. component. Restoration of this d.c. component is fed into the picture tube in order to malntain the black elements of the picture at a constant level.

One diode section of a 6als tube (\(\mathrm{V}-11 \mathrm{~B}\)) is used as a D.C. Restorer to develop a positive voltage across resistor \(\$ 170\) which varies with the average evel of the negative-going video signal. This blas he proper level of picture brightness.

\section*{TV SOUND CIRCUITS}

The 4.5 Mc . difference frequency between the 20.75 Mc. video carrier and the 22.25 Mc . sound carrier s separated from the composite video signal at the output of the video detector and fed thru two trans-

 rolts to improve power supply regulation. The 2nd ound IF. Amplifier also acts as a grid leak limiter to clip unwanted AM interference.

Further limiting action of the positive portion of the .5 Mc. sound signal is accomplished using one dide section of a type 6T8 tube (\(V-3)\). The two othe lode sectons o-tions Sound Discriminator circult. This circuit performs the function of converting the constant amplitude FM signal to a varging amplitude audio output. Sound output is thus obtained from an appropriate coupling network connected to tertiary winding of discriminator transformer *26.
The audio signal is fed thru section \#43A of the Band Switch and is coupled to the triode section of the 6T8 tube thru the Volume control. This secthe audio 6T8 acts as a Sound Ampirier and feeds stage. The output of this stage drives the P.M. dy namic speaker.

COMPOSITE SYNC CIRCUTTS
A portion of the composite video signal is removed athe output of the cathode follower stage to conignal is first injected into the prid of one triode section of a \(12 A U 7(\mathrm{~V}-17 \mathrm{~A}\)) acting as a Sync Clipper. The tube is operated at low plate voltage and is self-biased by grid resistor \#188. Plate current nows only when the most positive portion of the ing the horizontal and vertical sync pulses. Plate
current saturation is reached with a further inrease in signal, thus clipping the tops of the sync

The sync pulses are directly coupled to the grid of he other triode section of the 12AU7 (-17 B) which cts as a Phase splitter. Positive-going sync ulses are removed at the plate of this tube an negative-going pulses are removed at the cathode. Both types of horizontal sync pulses are used for ical pulses are used in the vertical swop circuit.

\section*{VERTICAL SWEEP CIRCUITS}

Posttive-going vertical sync pulses from the output of the Phase Splitter are integrated in the Inegrator Coupling Unit \(\$ 262\) and are used to conrol the frequency of a conventional type Blocking scillator. This osclllator utilizes one triode secton of a 6SN7GT tube (\(V-25 A\)) and its free-running equency is determined by the condenser and re istar components (including the Vertical Hold Con rol) in its grid circuit. The sync pulses are impressed at the tube grid just before the osciliator would normally trigger and are of sufficient amplide lo drive the tube to conduction and cause the utput of this stage is controlled by the Height po entiometer.

The Blocking Oscillator drives the other section of the ESN7GT (\(\mathrm{V}-25 \mathrm{~B}\)) which is connected as a vercal scanning output stage. Adjustment of vertical linearity is accomplished in the cathode of this circurrent operating point on the portion of the tube 's non-linear characteristic curve. Sawtooth current wave output is applied to the vertical deflection coils thru the Vertical Output transformer \#278.

RETRACE LINE SU PPRESSOR CIRCUTT
portion of the voltage pulse across the vertical deflection coll is reshaped and coupled to the cathde of the picture tube to insure cutoff of the tube during the vertical retrace interval. In this maner, vertical retrace lines ordinarlly seen with low Contrast and high Brightness control settings are o longer visible.
HORIZONTAL A.F.C. CIRCUIT

An automatic frequercy control arrangement is tillized in this receiver to improve stability of the orizontal sweep system. The two \(180^{\circ}\) displaced sync pulses from the Phase Splitter are fed to the 6AL5 (V-18) Horizontal A.F.C. Phase Detector. At he same time, a pulse of horizontal output voltage Is taken off one side of the Width coll, is reshaped, and its a.c. component is injected into the Phase ment bet ween the feedback sawtooth and the horizontal sync pulses will cause the voltages across the wo diode sections to differ. This will result in a d.c. control voltage injected at the Horizontal Scan ning Multivibrator grid which will change Multivi

MODEL 133,
Ch. 100.107
ratur speed in a direction to bring its frequency "in step" with the incoming horizontal pulses. This bhase shift between the comparison voltage and phe sync pulses and its polarity will depend on whether the sawtooth voltage leads or lags the sync pulses.

DORIZONTAL SWEE P CIRCUITS
The d.c. control voltage from the output of the Horizontal A.F.C. Phase Detector controls the frequency of a conventional cathode-coupled Horizontal Scanning Multivibrator, using a 12 AU 7 tube
\(\nabla-19)\). Coarse frequency adjustment of the multi--19). Coarse frequency adjustment of the multislug in the Horizontal Lock coll \(* 202\), while fine requency control is accomplished using the froat panel Horizontal Hold potentiometer \(\$ 208\).

Horizontal Multivibrator output is used to drive a 6BG6G (V-20) borizontal scanning output stage ransformer \(\# 222\) and kill high voltage in the event the 6BG6G or the high voltage rectiffer circuli draws excessive carrent. Signal level to the horicontal output tube is controlied by means of Hori current wave output of this tube is applied to the horizontal deflection coils thru the impedance matching Horizontal Output transformer. A portion

Width coll which adjusts picture width by control ing horizontal output current waveshape
The 6W4 Horizontal Damping tube (V-22) is conected across the transformer secondary to damp out oscillations created during rapid retrace of the sawtooth current wave. This circuit provides control of borizontal linearity and also uses some of the inductive kickback voltage to supply additiona

\section*{HIGH VOLTAGE POWER SUPPLY CIRCUIT}

High voltage is obtained by using the inductive kick back voltage induced in the Horizontal Output trans former during the retrace period. This kickback transformer and is increased by autotransforme action before being applied to the plate of the 1B3GT/8016 High Voltage Rectifier tube (V-21). Filament voltage is obtained by a loop of wire a round the transformer. The output of the rectifie to the him voltage anode of the pleture tube.

LOW VOLTAGE POWER SUPPLY CIRCUIT
The low voltage power supply provides heater plate voltages for all stages except those portions supplied by the high voltage rectifier and horizontal damping circuits. A sturdy power transformer \#239 supplies plate voltage to a \(6 \times 5 \mathrm{GT}\) Rectifier
RECEIVER CONTROLS
AM-FM
FINE TUNING
CONTROL
(outer knob)

Use to tune receiver to desired station afset to elther "AM"or " \(\mathrm{FM}^{\prime}\) " position.

tains a 5 volt fllament winding for the 504 G plus a 6.3 volt winding for the adequately fintered paralle
section RC filter supplies the 160 volt \(B+\) buss while the output of the 5U4G pi-section LC filter supplies the 350 volt B+ buss. A 290 volt B+ buss is fed from the low side of the Focus coil. Focus coil current is obtained from the 350 vol + supply and the current is regulated by changing the s
The various controls on the receiver may be divided into two classes, Operating and Pre-set. operating controls are those which control proram selection as well as sound and picture qual-
ity. All but one of these controls are located o Figure 2. The built-in television are indicated condenser is accessible at the rear of the receiver The Pre-set controls are those which require adjustment at the time the receiver is installed and they rarely need attention thereafter. There are eight of these controls, four of which are located at the back of the chassis (see Figure 4). Four controls are accessible by removing the Name
CONTROL ADJUSTMENT PROCEDURE
Although the pre-set controls have been factory adjusted for optimum performance, it is usually necessary to make some fine adjustments of these controls at the time of installation.

To gain access to the centering adjustments and ion trap, it will be necessary to remove the back

\section*{ntenna tuning knob and then taking out the screws} round the rim of the back cover.
Be sure that locking device (see Fig. 5) used to bold the focus coil in position during shipment is removed before attempting to reposition that coil removed beiore attempling to procedure.
The receiver is now ready for an operation check.

TO ADJUST CONTROLS FOR RECEPTION OF STANDARD BROADCAST OR FREQUENCY MODULATION STATIONS:
1. TURN SET ON - Rotate "On-Off Switch and Volume "knob clockwise to turn receiver on.
2. POSITION BAND SWITCH - Set "Band Switch"
to either its "AM"or "FM"position. Small to either its "AM"or "FM"position. Small
red indicator lite adjacent to corresponding dial scale will become illuminated.
3. TUNE - Use "AM-FM Fine Tuning" control to select desired station.
4. ADJUST VOLUME - Select "Volume"control setting for desired sound intensity.
5. ADJUST TONE - Select "Tone" control setting for most pleasing tone.

TO ADJUST RECEIVER FOR RECEPTION OF TELEVISION STATIONS:
1. TURN SET ON - Rotate the "On-Off Switch and Volume" knob approximately \(\frac{1}{2}\) turn clockwise to turn set on and obtain sufficien sound volume during the tuning process. Allow several minutes for all tubes in the re-
ceiver to warm up and for circuits to stabil ize before attempting to obtain a picture on the screen.
2. POSITION BAND SWITCH - Set "Band Switch " to "TV" position. Small red indi-
cator light above channel numbers will becator light above channel numbers will become illuminated.
3. ADVANCE BRIGHTNESS CONTROL - TUI "Brightness"control clockwise until picture screen is moderately illuminated. The
screenmay remain dark or dimly illuminated until ion trap is adjusted as described in next step. Should it be noted that a semi-circular portion of the raster is not illuminated, that condition may be disregarded as it will bsequent adjustments.
4. ADJUST ION TRAP - The ion trap is located on the neck of the picture tube as shown in Figure 5 and consists of a magnet held in position by metal bands. The magnet identified by the black band must be in the rear position.

Loosen the clamp screw which secures the ion trap to the tube neck. Then rotate the entire trap assembly while sliding it back and forth until picture tube screen is illuminated oontrol setting billance. Reduce "Brightness assure accurate positioning of ion trap.
5. ADVANCE CONTRAST CONTROL - Rotate the "Contrast"control knob fully clockwise.
6. SET CHANNEL SELECTOR TO DESIRED CHANNEL - The "Channel Selector"knob designates the channel to which the television re
ceiver is tuned. Set the "Channel Selector"
knob to a channel on which a local television station is known to be broadcasting at the time.
7. FINE TUNING CONTROL - Use the "Tele vision Fine Tuning " control (lllustrated in Fig ure 3) to obtain the correct tuning point for oth pleture and sound. That is accomplished as follows
a. Turn "Television Fine Tuning" control in elther direction untll sound volume is maximum - if sound cannot be heard, ad tuning.
b. When the point of maximum sound volume has been reached it will be noted that the picture has a "ragged"or "sawtooth"ap"sound bars" (dark horizuntal bars of varying width).
THECORRECTSETTING OFTHE is now obtained by turning it "CONTROL the maximum volume position only far enough to eliminate the "sound bar"interference and permit sharp reproduction oi the picture. If an image is slitghtly distorted or tears into a series of black and white streaks, reduce the setting of the "Contrast"control and opuntil picture appears stable and undistorted.
8. BUILT-IN ANTENNA ADJUSTMENT - If the receiver's built-in television antenna system is used, rotate the antenna tuning knob (located tained. It may be possible to find a single setting for this knob which will give satisfactory performance for a group of stations. In the event that is not the case, adjust the control or optimum performance each time the Channel Selector is rotated to a different station.
9. SOUND VOLUME - Adjust the setting of the "Volume"control by rotating it clockwise unbroadcast is received at a satisfactory level.
10. TONE - Adjust "Tone"control setting for most pleasing tonal quality.
11. HORIZONTAL HOLD - Should the picture appear to move horizontally across the screen or break up into a series of light and dark streaks, adjust the "Horizontal Hold" control until the picture remains stationary.

If this control must be rotated to the end of its range for proper "locking"action, then it will be necessary to reset the position of the "Horizontal Lock"control (see Figure 5) for locating the "Horizontal Hold"control in the middle of its range and then changing the setting of the "Horizontal Lock" contro! until picture locks in horizontally.

FIG. 4 PRE-SET CONTROLS
12. VERTICAL HOLD - Should the picture roll in a vertical direction or appear as multple vertical images, it will be necessary to adjust the "Vert. Hold control located behin (the

After this adjustment is made, reduce contrast until picture is barely visible and check setting of "Vertical Hold"control for proper picture synchronization.
13. INITIAL FOCUS - Adjust the "Focus"con trol, located behind Name Plate, until picture is clearly defined.

Fuzzy picture may also be due to reproduction of poor quality film when station is televising a motion picture. Incorrect tuning of receiver, produces a similar effect. Check fo
14. STRAIGHTENING TILTED RASTER - If the pattern should appear on the screen in a tiltd position, loosen the deflection yoke locking
screw (see Figure 5) and rotate the yoke sufficiently to correct this condition. Be sure to re-tighten the screw securely.

The following adjustments should be made while th station is transmitting its circular test pattern.
15. CENTERING - Before attempting to center the test pattern on the screen, be sure that the focus coil locking device has been removed. This device is used only for clamping during shipment; see Figure 5. The patly position be readily centered by properby turning the coil in the coil. This is done hand. If coil does not move freely, loosen wing nuts labeled \(A\) and \(B\) in Figure 5 .
16. WIDTH - Control of picture size in the horizontal direction is accomplished by means of the "Width" control located on the rear of H. V. power supply (see Fig. 5). If abnormally low line voltage makes it difricult to obtain sufficient picture width when using the "Width "control, then changing the setting of ful. The "Drive"contron is located at the rear of the chassis and its setting will affect
horizontal linearity as well as picture width. Therefore, after adjusting this control for desired width, it may be necessary to re-adjust the "Horizontal Linearity" control as described in paragraph \#19
17. HEIGHT - Control of picture size in the vertical direction is accomplished by means of the "Height" control located behind the Name Plate. Height and width adjustments should be checked for all transmitting stations to be sure that picture properly fills the viewing area.
18. VERTICAL LINEARITY - Improper vertical linearity causes the circular test pattern to appear condensed on the upper edge of the screen and extended on the lower edge or vice versa. Adjust for proper linearity by using "Vert. Lin. "control located behind Name Plate. It may be necessary to re-adjust the made in the linearity control setting.
19. HORIZONTAL LINEARITY - Improper horizontal linearity causes the circular test pattern to appear condensed on the right edge of vice versa. Adjust for proper linearity by. using "Horiz. Lin. "control located on rear of chassis (see Figure 5). In event that proper horizontal linearity cannot be obtained by adjusting this control, then change the setting of "Horiz. Drive "control (also located at rear of chassis). As width and linearity of the picDrive control, it will be necessary to adjust this control in conjunction with the Horiz. Linearity and Width controls to obtain desired picture width and linearity.
20. ELIMINATING SEMI-CIRCULAR SHADOW This shadow is caused by the electron stream striking the neck of the tube and it can generally be corrected by applying one or a combination of the following procedures:
a. Reposition the focus coll to the extent permitted by the bracket assembly which coil ass this coil. Shift entire focus coll assembly forward or backward by

MODEL 133
loosening wing nuts labeled \(B\) in Figure 5.
b. Shift position of deflection yoke forward as far as possible against neck of pic ture tube. Yoke is held in position by a
wing screw as illustrated in Figure 5 .
c. In event neck shading cannot be elimin inated by the above procedures, release
and raise or lower entire yoke and focus coil assembly so that focus coll can be repositioned vertically with rese
21. FINAL ADJUSTMENTS - Recheck settings of "Brightness," "Contrast" and "Focus"controls for best picture quality. Proper adjustment of all Pre-set and Operating controls on this receiver should result in a clear and sta ble picture.

FIG. 5 ChASSIS AND PICTURE TUBE ASSEMBLY

\section*{SOCKET VOLTAGES}

\section*{CAUTION}

THE PICTURE. TUBE is highly evacuated and if broken, qlass fragments will be violently expelled Scratching. chipping. undue prossure. or careless handling such as lifting the tube by its neck
dangerous and should be avoided. If it is necessary to handle the picture tube use safety and heavy gloves. Be sure to discharge the voltage developed acrose the capacitor formed by the inner and outor coating of the picture tube. This can be done by connecting the high voltage
socket on the tube to the outer coating with a well insulated metal conductor.有
HIGH VOLTAGE (approximately 9.0001 is produced in a supply circuit of this receiver. Exercis care to avold contact with elements of this circuit and particularly the tube terminala which are
labeled "CAUTION" in the adioining voltage chart. If measurement of voltage at these points is
necessary necessary, spe procedure qiven below under note "S".
THE HIGH VOLTAGE LEAD. which supplies approximately 9.000 volts to the picture tube, should be momentarily shorted to the chassis whenever it it disconnected for service purposes. This dis.
charges the high voltage filter condensers and prevents a shock hazard charges the high voltage filter con
ceiver ofter it has been turned off.
intermediate b + VOLTAGES are dangerous and caution should be obeorved when the receiver chassis components are exposed for service purpoios.

\section*{THE VOLTAGES SHOWN IN THE ADJOINING CHART WERE MEASURED UNDER THE FOLLOWING CONDITIONS}

EXPLANATION OF NOTES
\begin{tabular}{|ll|}
\hline A. & Vert. Hold max. counter-clockwise \\
\hline B. & Brightness max. counter-clockwise \\
\hline C. & Contrast max. clockwise \\
\hline D. & Horiz. Drive max. clockwise \\
\hline E. & Horiz. Hold max. clockwise \\
\hline F. & Focus Control max. clockwise \\
\hline G. & Width max. counter-clockwise \\
\hline H. & Height max. clockwise \\
\hline J. & Horiz. Hold set for normal picture \\
\hline K. & Horiz. Lock set for normal picture \\
\hline L. & Channel Selector set to channel \#9 \\
\hline M. & Vertical Linearity max. counter-clockwise \\
\hline N. & Channel Selector set to channel \#5 \\
\hline
\end{tabular}
P. This measurement should NOT be made with a conven tion due to coupling as circut may break into oscill uum tube voltmeter with short leads.
Q. This voltage will vary from -13 to -17 depending
upon setting of Horizontal Hold Control and Horizontal upon setting
R. \(\quad \begin{aligned} & \text { Do not attempt to measure the voltage at the tube cap } \\ & \text { There is a high R. F. potential at this point }\end{aligned}\)
S. II you do not have an instrument capable of directly measured by using a voltage divider network consisting
of twenty 2.2 megohm 2 watt resistors and one 1 meg ohm 2 watt resistor, all connected in series. Avoid using rating may be exceeded. It is also important to use resistors of equal wattiage. Solder all connections be ance of the entire combination as well as the resistanc of the 1 megohm section.
the resistance voltage divider the 2.2 megohm end of the resistance vol or H.V. terminal of the picture tube and connect the 1 megohm end to chassis. Now, turn megohm resistor with' a vacuum thbe vacterer voltage at the tube terminal can then be colculated a

T. Grounding of center stud on tube socket is necessary to reduce capacity coupling between other pins. Oscilla
U. This voltage will vary from +4 to -4 depending upon senting
Control.
V. This voltage measured with antenna disconnected and
no signal input to receiver.
W. This voltage will vary from -6 to -12 depending upon Control.
X. Band Switch set to "AM" position, dial tuned to 540 Kc .
and AM loop antenna leads grounded.
Y. Band Switch set to "FM" position. dial turned to 88 Mc .

Band Swich st10 "PH"

DIAL POINTER DRIVE
ORD ARRANGEMENT

To string dial cord, first rotate "AM-FM" Coarse Tuning Control (pointer shaft) fully counter-clockwise until stop on drum contacts ear on mounting
frame. Now, with gang set to fully meshed position, string dial cord using the following parts.

> W114955 Clip on end of cord W117057 Cord (2 ft. required) W505161 Spring

© John F. Rider

\section*{ALIGNMENT PROCEDURE}

Aignment of all RF and IF tuned circuita in this recoiver may be
coccomplimbed by utilizing the procedures described in the following charts.
SEQUENCE OF RLIGNMENT: Thene proceduras ahould proferably be applied in the order in which they are presented, however,
clignment of AF or IF channele for seither AM. FM or TV may be accomplished individually if denired.
The Television hF Amplifior and Mixer alignment may allo be ac complished independent of the Tolevision IF Channel alignment, bu
oselllator calibration can only be done after IF Channel has bee correctly aligned. Proper IF band pasas characterittic is neaceseary for osciliator alignmentaz reunls of circut tuning are obearved by
means of an oscilloscope connected to the output of the video moans of an
detector atage.
REMOVAL OF CHASSIS: The recoiver chassie must be removed from the cabinet in order to accomplish alignment of all tuned circuits as there are adjustment points located
of the unit and at the front of the AM-FM Tuner.
This can be accomplished by firat removing all knobs and reloating This can be accomplished by firat remoring all knobs and relesaing
the four holddown screws located on the underside of the cabinat.
The Then disconnect "phoni" pick-up ond motor leads. speaker leods
and all three "builtin"" antenne (TV AM and FM). Also relogse andicator lamp from bracket at base of cabinet.

\section*{CAUTION}

The picture tube is highly evacuated and if broken, glass fragments will be violently expelled. Handle with care, using safety goggles and gloves. Avoid contact with high voliage terminal at side of tube even after it this precaution is necessary as inner and outer coatings on the tube form a capacitor which may carry a high voltage charge for an extended period of time after disconnection from the receiver.
INSTRUMENTS: The following instruments will be required at signal sources and output indicalors during the alignment processe.
Since accurate alignment of a television receiver is heavily deSince accurate alignment of a television recoiver is hecvily de
pendent upon the parifrmance of y your instruments. it is imporative
that they meet that they meet the essential apecifications described here.
1. STANDARD SIGNAL GENERATOR to provide signals at the
following frequencies. Maximum output on all ranges ahould following frequencies. Maximum output on all ranges ahoulc
be at least 1 l volt with provision for attenuation as desired. This instrument must have good frequency stability and be
accurately calibrated. Generaiors which incorpore accuratily colibrated. Generaiors which incorporate a sep.
arata cryatal controlled oscillator and hetorodyne circuit are arate crysal controlled oscillator and hetorodyne circuit are
self calibrating and therefore capable of providing the accu-
racy of froquency calibration required for television circuil
A. IF Frequencies:

455 Kc. (400 cycle modulared) for AM IF
4.5 Mc. (Unmodulated) for TV Sound.
4.5 Mc (400 cycle modulated) for TV Sound.
10.7 Mc . (Unmodulated) for FM IF.
22.25 Mc . (Unmodulated) marker for TV Sound IF
22.4 Mc corrier.
22.4 Mc. (Unmodulated) for TV IF Trap.
23.5 Mc. (Unmodulated) for TV ist and 3rd IE.
23.5 Mc. (Unmodulated) for TV ist and 3rd IF
24.6 Mc. (Unmodulated) for TV Converter and 2nd IF
26.75 Mc. (Unmodele
26.75 Mc. (Unmodulated) marker for TV Picture IF
B. RF Fie

550 to 1600 Kc . (400 cycle modulated) for AM RF.
54 to 88 Mc . (Unmodulated) for TV RF.
8日 to 100 Mc . (400 cycle modulutad) for FM RF.
174 to 216 Mc . (Unmodulated) for TV RF.
174 to 216 Mc. (Unmodulated) for TV RF.
2. RF SWEEEP GENERATOR to provide frequency modulated sig10.7 Mc . with 300 Kc . sweep width
10.7 Mc . with 300 Kc . swoep width.
201030 Mc . with 10 Mc . ew wep widh
\(541088 \mathrm{Mc}\). with \(10 \mathrm{Mc}\). , sweep widh.
174 to 216 Mc . with 10 Mc . sweep width.
74 to 216 Mc. with 10 Mc . sweep wid
Output adjuatable with at least .1 volt maximum.
Output should be "ilat" (no amplitude variation) for all set-
tings of the sweep width control. ungs of ihe sweep widih control
Provision for connection of generalor awoep modulating volt
age to horizontal deflection syatem of an oscilloscope
Provision for blanking the output signal on each return swoep so that oscillogram will not show retrace.
3. CATHODE RAY OSCILLOSCOPE, prelerably a unit with verti-
cal amplifier having wide range frequency reaponse and low cal amplifier having wide range frequency reaponse and low
capacity pick-up probe. pick-up probe.
VACOUM YBE VOLTMETER. The lowest vollage range of this instrument should preferably permit a 1.0 volt reading to be
indicated at not leas than one third of full scale deflection.
5. OUTPUT METER, praferably a unit equipped with an imped-
ance matching network that will present a 3.2 ohm load when ance matching network that will present a 3.2 ohm load when
connected to mecondary of audio output transtormer. INSTRUMENT CONNECTIONS: The method of connection, including nNSTRUMENT CONNECTIONS: The method of connection, including
detais of matching and coupling networks, for instruments used
in this alignment procedure in given in several illustrations on subin this alignment procedure is given in everaral illustrations on subsequent pages. Specific instructions for oach instrument applit.
will also be found in various sections of the alignment charts.

\section*{IMPORTANT}

AVOID EXCESSIVE INPUT SIGNAL WHEN USING OSCILLOSCOPE AS ALIGNMENT INDICATOR.

When observing the receiver band pass character istic on an oscilloscope, it is exceedingly important to avoid distortion of that characteristic which would occur when using a large input signal from the sweep generator or standard generator (marker signal). Always set attenuator on sweep generator so that the reading on the vacuum tube voltmeter does not exceed one volt (when meter is connected from high side of video detector load resistor, sym bol 139, to receiver chassis). Standard generator output should also be attenuated so that marker signal does not pull or tear the band pass character istic as shown on the 'scope.

CHECKING SYNCHRONIZATION OF BAND SWITCHES ON AM-FM TUNER AND TV CHASSIS.

Note that the band switch on the AM-FM Tuner chassis is mechanically coupled (by a link arm and ever clamp arrangement) to the band switch on the TV chassis. Do not operate these switches by direct pressure on the link arm-always use a control knob attached to the TV switch shaft. If the mechancal linkage is forced or slips at the clamp on the TV they can be re-synchronized as follows:
1. Loosen screw in actuating lever clamp on TV band switch shaft.
2. Turn both switches to extreme clockwise position and be sure that they detent properly at that position.
3. Retighten screw in actuating lever clamp on
TV band switch shaft.

\section*{TELEVISION SOUND CHANNEL ALIGNMENT PROCEDURE}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { VTVM } \\
& \text { CONNECTIONS }
\end{aligned}
\]} & \multirow{2}{*}{MISCELLANEOUS} & \multirow{2}{*}{TRIMMER OR SLUG} & \multirow[t]{2}{*}{TYPE OF ADIUSTMENT AND OUTPUT INDICATION} \\
\hline CONNEC TIONS & frequency & & & & \\
\hline \multirow{6}{*}{\(\underset{\text { connect as }}{\substack{\text { Chown in Fig. } \\ \hline}}\)} & \multirow{6}{*}{} & \multirow{6}{*}{Connoct as shown in Fig. 3.} & \multirow{6}{*}{\begin{tabular}{l}
mpoatant \\
Unsolder lead connected \\
to terminal "T" of Horizon- \\
1). This will make the \\
of the receiver inoperative so that the swreep voltage will not be picked up by instruments used during Such coupling would other. wise result in spurious ofeillation.
\end{tabular}} & \[
\underset{\substack{\text { TVEriminator } \\ \text { Discound } \\ \text { Secondary }}}{\text { IV }}
\] & \({ }^{\text {Adjust for maximum }}\) on \({ }^{\text {VTVM. }}\) (eading \\
\hline & & & & \begin{tabular}{l}
\#2 \\
TV Sound Primary
\end{tabular} & Adjust for \({ }_{\text {on }}\) maximum. \({ }^{\text {VTVM. }}\) \\
\hline & & & & \[
\begin{gathered}
\text { \#3 } \\
\text { 2nd TV Sound IF } \\
\text { Secondary }
\end{gathered}
\] & Adjust for \({ }_{\text {on }}\) maximum \({ }^{\text {VTVM. }}\) reading \\
\hline & & & & \[
\underset{\substack{\text { 2nd } \\ \text { Primaryd IF }}}{\text { P4 }}
\] & Adjust tor maximum reading \\
\hline & & & & \begin{tabular}{l}
\#5 \\
lat TV Sound IF Secondary
\end{tabular} & Adjust tor maximum reading \\
\hline & & & & \[
\begin{gathered}
\text { \#6 } \\
\text { Ist TV Sound IF } \\
\text { Primary }
\end{gathered}
\] & Adjust tor maximum reading \\
\hline \(\underbrace{\substack{\text { Samove. }}}_{\text {Same as }}\) & Same as as & & Same as & \[
\begin{gathered}
\text { \#1 } \\
\text { Discrimind } \\
\text { Sivitor } \\
\text { Socondary }
\end{gathered}
\] & Note that as slug \#1 is rotatod a Point will be found where the
voltueter will swing rather ghrtply from a positive to a negot.:rect solting of slug \#1 is obtainod When the meter reads zero adt. \\
\hline
\end{tabular}

REDUCTION OF INTERCARRIER BUZZ

\begin{tabular}{|c|c|c|c|c|c|}
\hline Same as above & 4.5 MC. 400 cycle ampli-
tude \(\left.\begin{array}{l}\text { modulated }\end{array}\right)\) & Not used. & & \[
\underset{\substack{\text { Tivcriminund } \\ \text { Discondaror }}}{\text { SI }}
\] & \\
\hline \multicolumn{6}{|c|}{Resolder lead previously disconnected from terminal "T" ot. Horizontal Linearity coil (see Fig. 1).} \\
\hline \multicolumn{6}{|l|}{Disconnect all instruments and then connect an antenna to the receiver sound. Note that program sound will be clear and free from distortion to obarin program reception from a local station. If intercarrier buzz slug (\#1) should be made to obtain the "dip" point for the buzzing at Mis point. Buzz should no
transmission is not at faut.} \\
\hline
\end{tabular}

\section*{© John F. Rider}

© John F. Rider

INSTRUMENT CONNECTIONS
FOR
TELEVISION IF CHANNEL ALIGNMENT PROCEDURE

FIG． 6
Generator Connections for Television IF Channel Alignment

FIG． 7
VTVM and Oscilloscope Connections for Television IF Channel Alignment

TELEVISION RF CHANNEL ALIGNMENT PROCEDURE
1．Turn the band switch to the＂TV＂position
negative terminal of battery connects to AGC line and positive 2．Remove botion cover shield of the Television RF Tuner unit． convenient point of connection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multicolumn{2}{|l|}{SWEEP GENERATOR} & \multirow[t]{2}{*}{CONNECTIONS} & \multirow[t]{2}{*}{oscilloscope CONNECTIONS} & \multirow[b]{2}{*}{MISCELLANEOUS
instructions} & \multirow[b]{2}{*}{coil} & \multirow[t]{2}{*}{TYPE OF ADJUST． MENT AND OUTPUT indication} \\
\hline \[
\begin{aligned}
& \text { CONNEC } \\
& \text { TIONS }
\end{aligned}
\] & FREQUENCY & CONNEC－ TIONS & FREQ． & & & & & \\
\hline \multicolumn{9}{|c|}{RF AMPLIFIER AND MIXER ALIGNMENT} \\
\hline Connect as Fiq． 11 ． & \(\stackrel{-215.75}{\mathrm{t}} \mathrm{t} 11.25 \mathrm{Mc}\) Mc． & & \[
\left\lvert\, \begin{array}{cc}
\text { CHANNEL } \\
\# 15
\end{array}\right.
\] & Not used． & Connect as
shown in Fig． 12 & important： Kopportput of Gonorator，ot a a reciable marlaer tort the curve ihat is being obserfoc on the＇acope & & Adjust spacing of the turns orly shaped RF band pass
ent characteristic as shown in
Fig． 8 ．To determine whether the turns have to be spread or compressed，use a tuning
wand having a brass slug in one end and a powdered iron slug in the
If the brass slug is placed
near ior into）a coil and causes the response curve to
approach that shown in Fig． 8．then the turns would have to be spread．On the other
hand．if the powdered iron slug is similarly positioned
and produces a correctly shaped response curve，then pressed．Repeat these adjust－ Amp．Plate and Mixer Grid coils for Channel 13 to obtain teristic．Do not overly broad． result in a loss of sensitivity
IMPORTANT：After the Chan－ nel \(\# 13\) coils have been wax around the furns or ap－ ply a small amount of high Winding to assure that spac
ing will be maintained． \\
\hline \multirow{11}{*}{Same as above．} & － 209.75 Mc. & \multirow{11}{*}{\[
\begin{aligned}
& \text { Same as as } \\
& \text { above. }
\end{aligned}
\]} & \[
\underset{\# 12}{\text { CHANNEL }}
\] & \multirow{11}{*}{Not used．} & \multirow{11}{*}{Same at above．} & Set Channel Selec． tor to \＃12 & \multicolumn{2}{|l|}{\multirow[t]{11}{*}{}} \\
\hline & & & \[
\begin{array}{|c|}
\hline \text { CHANNEL } \\
\# \\
\# 11
\end{array}
\] & & & Set Channel Selec－
tor to \(\# 11\) & & \\
\hline & & & \[
\begin{array}{|c|}
\hline \text { CHANNEL } \\
\# 100 \\
\hline
\end{array}
\] & & & \[
\begin{array}{|c}
\hline \text { Set Channel Selec. } \\
\text { tor to } \# 10
\end{array}
\] & & \\
\hline & （1891．75 MC． & & \[
\begin{gathered}
\hline \text { CHANNEL } \\
\# \\
\hline
\end{gathered}
\] & & & Sot Channel Solec－ & & \\
\hline & & & \[
\begin{array}{|c|}
\hline \text { CHANNEL } \\
\# \# \\
\hline
\end{array}
\] & & & \[
\begin{gathered}
\hline \text { Set Channel Solec- } \\
\text { tor to } \# 8
\end{gathered}
\] & & \\
\hline & & & \[
\begin{array}{|c|}
\hline \text { CHANNEL } \\
\# 7 \\
\hline
\end{array}
\] & & & \[
\begin{array}{|c|}
\hline \text { Set Channel Selec- } \\
\text { toz to } \# 7 \\
\hline
\end{array}
\] & & \\
\hline & & & \[
\begin{gathered}
\text { CHANNEL } \\
\hline \mathbf{6}
\end{gathered}
\] & & & \[
\begin{gathered}
\hline \text { Set Channel Solec- } \\
\text { tor to } \# 6
\end{gathered}
\] & & \\
\hline & & & \[
\begin{array}{|c|}
\hline \text { CHANNEL } \\
\# 5 \\
\hline
\end{array}
\] & & & \[
\begin{array}{|c}
\hline \text { Set Channel Selec- } \\
\text { tor to \#5 } \\
\hline
\end{array}
\] & & \\
\hline & & & \[
\begin{gathered}
\text { CHANNEL } \\
\# 4
\end{gathered}
\] & & & \[
\begin{array}{|c|}
\hline \text { Set Channel Solec- } \\
\text { tor to } \# 4 \\
\hline
\end{array}
\] & & \\
\hline & & & \[
\begin{gathered}
\text { CHANNEL } \\
\# 3 \\
\hline
\end{gathered}
\] & & & \[
\begin{gathered}
\hline \text { Set Channel Selec. } \\
\text { tor to } \# 3 \\
\hline
\end{gathered}
\] & & \\
\hline & & & \[
\left\lvert\, \begin{array}{|c|c|}
\hline \text { CHNNNEL } \\
\# 3
\end{array}\right.
\] & & & Set Channel Selec-
tor to \#2 & & \\
\hline
\end{tabular}

FIG． 9 Front view of
TV Tuner Unit

MODEL 133,

\section*{© John F. Rider}

\section*{BROADCAST BAND-"AM"-ALIGNMENT PROCEDURE}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{BROADCAST BAND-"AM"-ALIGNMENT PROCEDU} \\
\hline \multicolumn{4}{|l|}{After the entire chassis ansembly has been removed from to cabinet. remove the AM loop antena and reche chassis. Then wind one turn of insulated wire around frame of loop antenna so as to provide a means of coupling it to
the signal generator. Connect one end of coupling turn to the signal generator. Connect one end of coupling turn to
receiver chassis and allow other end to remain open until receiver chassis and alle the following chart. Space loop antenna same distance away from the chassis as when
assembled in the cabinet.} & \multicolumn{3}{|r|}{} \\
\hline \multicolumn{4}{|l|}{2. Reconnect the speaker to the two audio output leads extending from the main chassis. IMPORTANT: Do not confuse these leads with the two loop antenna leads.} & \multicolumn{3}{|r|}{\begin{tabular}{l}
6. Connect output meter across the speaker voice coil. \\
7. Connect ground lead of signal generator to the receiver chassis.
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{Place the AM-FM dial scale escutcheon on the AM-FM tuning shaft and install the AM-FM pointer knob and fine knobs to the extreme counter-clockwise position. At this setting, the gang condenser should be fully meshed; if it is not, loosen the set screws in the hub of the dial drum on he gang condenser and close gang pistes manually. Then tighten set screws in hub of dial drum.} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
8. Set volume control to the maximum volume position and use a weak signal from the signal generator. \\
9. Set tone control to its extreme clockwise position. \\
10. Set band switch to the "AM" position. \\
11. After alignment procedure is completed and chassis and loop have been reinstalled in cabinet, arrange leads to loop so that they are separated from each other as much as possible avoid twisting,taping or extending these leads.
\end{tabular}}} \\
\hline \multicolumn{4}{|l|}{4. When aligning the RF circuits and calibrating the oscillator it is necessary to hold the AM.FM dial escutcheon in its} & & & \\
\hline DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR & CONNECT
HIGH SIDE OF
SIGNAL GENERATOR TO & SIGNAL generator FREQUENCY & & TRIMMER OR SLUG NUMBER & TRIMMER
DESCRIPTION & type of adjustment \\
\hline \multirow{2}{*}{\[
\begin{aligned}
& .1 \mathrm{MFD} \\
& \text { condenser }
\end{aligned}
\]} & \multirow[t]{2}{*}{Lug on trimmer \#2 at bottom of gang cation of trimmer)} & \multirow{2}{*}{455 KC} & \multirow[t]{2}{*}{Any point where aftect the signal.} & 19 and 20 & 2nd 1.F. & \multirow{2}{*}{djust for maximum output. en repeat adjustment.} \\
\hline & & & & 21 and 22 & \(18 t\) I.F. & \\
\hline \multirow{2}{*}{\begin{tabular}{l}
200 MMF
Mica \\
Condense
\end{tabular}} & \multirow{2}{*}{\[
\begin{aligned}
& \text { Coupling } \\
& \text { ontry } \\
& \text { ontop } \\
& \text { antenn }
\end{aligned}
\]} & 1500 KC & 1500 KC & 23 & \[
\begin{aligned}
& \text { AM Oscillator } \\
& \left.\begin{array}{l}
\text { This trimmer is acessi- } \\
\text { ble thru small hole } \\
\text { botom of } \mathrm{TV} \text { chassis. }
\end{array} \right\rvert\,
\end{aligned}
\] & Adjust for maximum outph \\
\hline & & 1500 KC & Tune to
Kc.
generator signal. & 24 & \(\underset{\text { Antenna }}{\text { AM }}\) & Adjust for maximum outp \\
\hline 200 MMF.
Mica
Condenser & Coupling on loop antenna. & 600 KC & \[
\begin{aligned}
& \text { Tune to } 600 \\
& \text { Kc. generctor } \\
& \text { signal. }
\end{aligned}
\] & 25 & \[
\begin{gathered}
\text { Adjustable } \\
\text { coro } \\
\text { AM } \\
\text { Antenna } \\
\text { Coin. }
\end{gathered}
\] & Adjust for maximum output \\
\hline
\end{tabular}

\section*{After the entire chatsia has been removed from the cabinet.
replace the AM.FM dial escutcheon on the AM-FM tuning thaft replace the AM-FM dial escutcheon on the AM-FM tuning ahaft
and install the AM.FM pointer knob and fine tuning knob on
their respective shafts. Then rotate these knobs to the extreme}

TOP VIEW
FIG 16
AM-FM Tuner Chassis

> \begin{tabular}{lc} 16 & \multicolumn{1}{l|}{ FIG. 17} \\ er Chassis & AM-FM Tuner Chassis \\ FREQUENCY & MODULATION-'FI \end{tabular}

BOTTOM YIEW
FIG. 17

FIG. 18
VTVM Connections VTVM and Oscilloscope for FM Sound Connections for FM Sound for FM Sound Connections for FM Sound
If Alignment
Discriminator Alignment ILIGNMENT PROCEDURE
counter-clock wise position. At this seting, the gang condonser
should be fully meshed; if it is not. loosen the set screws in the should be fully meshed; if it is not. 100 osen the set screws in the
hub of the dial drum on the gang condenser and close gann
plates manually. Then tighten set screws in hub of dial drum.

When aligning the RF circuits and calibrating the oscillator it
is necessary to hold the AM.FM dial escutcheon in its normal is necessary to hold the AM. FM dial escutcheon in its normal
mounting position so that the heavy lines below 88 and 108
are in are in a horizontal plane. Nooe that the pointer knob must
-point to the heavy line below 88 on the dial when tuning knob -point to the heavy line below 88 on the dial when tuning knob
is unned fully counter-lockwise and gang plates are com-
pletely meshed.
Reconnect the speaker to the two audio output leads extending
Reconnect the speakes to the two audio output loads extionding
from the main chassis. IMPORTANT: Do not confuse these
f. from the main chassis. IMPORTANI: Do
leads with the two AM loop antenna leads.
4. Remove bottom plate from AM.FM tuner during IF alignment
but replace it betore starting alignment of RF circuits. DO but replace it betore starting alignment of RF circuits. DD
NOT REMOVE the AM.FM tuner chassis from the TV chausis
during dignment
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{but replace it before starting olignment of RF circuits. DO NOT REMOVE the AM.FM tuner chassis from the TV chasel during alignment.} & \multicolumn{4}{|l|}{Dress FM circuit leads as short and straight as possible, par ticularly those in the oscillator circuit. IF plate and grid lead should also be kept short and straight.} \\
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL
GENERATOR} & \multicolumn{2}{|l|}{SWEEP GENERATOR} & \multirow[t]{2}{*}{\(\square\)} & \multirow[t]{2}{*}{OSCILLOSCOPE
CONNEC.
TIONS} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { RECEIVER } \\
& \text { DIAL } \\
& \text { SETIING }
\end{aligned}
\]} & \multirow[t]{2}{*}{TRIMMER OR SLUG NUMBEP} & \multirow[t]{2}{*}{TYPE OF ADJUST.
MENT AND OUTPUT indication} \\
\hline \[
\begin{aligned}
& \text { CONNEC- } \\
& \text { TIONS }
\end{aligned}
\] & FREQUENCY & CONNECTIONS & FREQ. & & & & & \\
\hline \multirow[b]{4}{*}{} & \multirow{4}{*}{10.7 MC . Unmodulated} & \multirow{4}{*}{Not used.} & & \multirow{4}{*}{} & \multirow{4}{*}{Not used.} & \multirow{4}{*}{Any position does not signal.} & \[
\begin{gathered}
\# 26 \\
\begin{array}{c}
\text { Discriminator } \\
\text { secondary }
\end{array} \\
\hline \text { sin }
\end{gathered}
\] & \multirow{4}{*}{} \\
\hline & & & & & & & \[
\underset{\substack{\text { Discriminator } \\ \text { primary }}}{\# 27}
\] & \\
\hline & & & & & & & \[
\#_{2 \text { nd IF }}^{28-29}
\] & \\
\hline & & & & & & & \[
\#_{\text {lat IF }}^{30-31}
\] & \\
\hline Same as as
above. & Same as \({ }_{\text {above. }}\) & Not used. & & \[
\begin{gathered}
\text { Conne } \\
\text { cot } \\
\text { cis fib } \\
\text { in Fig } \\
\hline
\end{gathered}
\] & Not used. & \({ }_{\substack{\text { Same } \\ \text { above. }}}^{\text {as }}\) & \[
\underset{\substack{\text { Discriminator } \\ \text { secondary }}}{\# 26}
\] & \\
\hline & & & \[
\left|\begin{array}{c}
10.7 \mathrm{MC} \\
\text { Swaoging } \\
\pm 300 \mathrm{Kc} .
\end{array}\right|
\] & Not used. & & Same as & \[
\underset{\substack{\text { Disecriminator } \\ \text { secondary }}}{\# 26}
\] & \\
\hline \multicolumn{9}{|l|}{} \\
\hline Connect high side in sones with a
270 ohm carbon resistor to FM an
tenna terminal near gang conden-
ser (see Fig. 16). Connect ground chassis. & 108 MC. 400 cycle \(\underset{\text { Modulation. }}{\text { RM }}\) & Not used. & - & & Not used. & 108 Mc . & \[
\underset{\substack{\text { MM } \\ \text { Osillator }}}{\# 32}
\] & \\
\hline Same as & & Not used. & - & Same as, & Not used. & & \[
\underset{\mathrm{FM}}{\mathbf{\# N F}}
\] & \[
\begin{aligned}
& \text { Adjust trimmer for } \\
& \text { maximum meter read- } \\
& \text { ing. }
\end{aligned}
\] \\
\hline \multicolumn{9}{|l|}{} \\
\hline
\end{tabular}

MODEL 133
Ch. 100.10
notice: some parts isisted below have specicl charcacteristica. Do nol use substitues tor replacement purpones.

PARTS LIST FOR CHASSIS (Cont.)

\section*{PARTS LIST FOR CHASSIS}

\section*{GENERAL DESCRIPTION}

This RL covers Television Receiver, Catalog 149 Receiver, Catalog 149, Chassis 100.107-1. The chassis is essentially the same as Television Chassis 100.107 which is covered by 57 RL 545 . The differences, consisting of slight modifications in the Horizontal Sweep Circuit and a change in Cabinet stylRL.

In addition to the above television chassis, Catalog 149, is also equipped with \(100.043^{\prime \prime}\) that is identical to the AM-FM Tuner Chassis described in 57 RL 545.

A combined total of 31 Abes are provided in both chassis of this receiver. Tele-
vision Chassis 100.107-1 contains 26 tubes, 23 of which are used solely for reproduction of the visual and aural portions of a three other rectifier tubes plus a heavy duty power plus a heavy duty power
transformer to provide necessary power for operation of all stages.

The AM-FM Tuner Chassis 100.043 employs 5 additional tubes in a compactly designed, high sensitivity circuit that provides recep casts. Audi casis. Audio output from audio amplifier and out put stages located on the television chassis thereby permitting use of a single, high fidelity, audio system for all functions.

\section*{SPECIAL INSTRUCTIONS}

The following special instructions should be observed when ordering new repair parts or refurning defective parts:
. Order new repair parts per "HOW TO ORDER PARTS" instructions on nexi page
. Return defective parts, within warranty period, to source 100 for no charge replacement. SEE DIV. 57 STANDARD NOMENCLATURE INDEX FOR SOURCE NAME AND ADDRESS.

\section*{HOW TO ORDER PARTS}
1. Use Correct Order Form
2. On the Purchase Order always give the following information
(a) PART NUMBER (number printed on the part if different from that shown in this list) and DESCRIPTION for each part ordered. When no part number is assigned, order by description and rating. Also give PRIC of part (indicate if no selling).
(b) The CHASSIS NUMBER, which is \(100.107-1\) or 100.043 , will be found on a metal plate (pictured on previous page) at the rear of the chassis.
3. ORDERING INSTRUCTIONS: Send Purchase Orders DIRECT TO SOURCE No. 100 . See "DIV. 57 STANDARD NOMENCLATURE INDEX" for source, name and address
4. MARK-UP: Selling Prices in the following list produce a mark-up of A5, unless otherwise noted in the M.U Code Column.
5. In all correspondence relating to cabinets, always mention the source code letter stamped into the bottom o rable models, and the CATALOG NUMBER shown on the sticker on the back, bottom or inside of cabinet.

REPAIR PARTS LIST SUPPLEMENT
For a complete list of repair parts, refer to 57 RL 545
\begin{tabular}{|ccl|}
\hline \begin{tabular}{c}
SCHEMATIC \\
LOCATION
\end{tabular} & \begin{tabular}{c}
PART \\
NO.
\end{tabular} & \multicolumn{1}{c|}{ DESCRIPTION }
\end{tabular}

\section*{CIRCUIT DIFFERENCES}

The components which are encircled in the above diagram represent the only electrical difference between the 100.107-1 chassis and the 100.107 chassis as shown in 57 RL 545 . These differences are listed below.
1. Resistor 190 in the cathode circuit of V178
(12AU7) Phase Splitter stage was changed in tol

2. Resistor 191 in the plate circuit of V17B (12AU7) Phase Splitter stage was changed from 2700 Spliter stage was changed

\section*{OSCILLOGRAMS}

All oscillograms taken with ground lead of 'scope connected to receiver chassis (unless otherwise indicated) and with receiver controls set for normal reception of a station transmitting its standard test pattem

Number appearing below asterisk specifies setting of horizontal sweep frequency control on 'scope.
*- This symbol on illustration indicates that wave form was observed on a 'scope whose vertical amplifier had very limited high frequency response (50 to 100 Kc).
**- This symbol indicates that wave form was observed on a scope whose vertical amplifier frequency response was flat to within \(20 \%\) up to 2 Mc .

OSCILLOGRAMS
All oscillograms taken with ground lead of scope con- \(\quad *\) - This symbol on illustration indicates that wave form wos nected to receiver chassis (unless otherwise indicated) and with receiver controls set for normal reception of a station transmitting its standard test pattern

Number appearing below asterisk specifies setting of horizontal sweep frequency control on 'scope
observed on a 'scope whose vertical amplifier had very limited high frequency response (50 to 100 Kc).
**- This symbol indicates that wave form was observed on a scope whose vertical amplifier frequency response was flat to within \(20 \%\) up to 2 Mc .

1sirations cortrospond to

© John F．Rider

CONTROL ADJUSTMENT PROCEDURE

TO ADJUST CONTROLS FOR RECEPTION OF STANDARD BROADCAST OR FREQUENCY MODULATION STATIONS:
. Turn "On-Of Switch and Volume" knob clockwise to furn set on.
2. Set "Bond Swith" to either its "AM" or "FM" position. Small red
indicator light adiacent to corresponding dial scale will become indicator light adiacent to corresponding dial stale
illuminated.
Use "AM-FM Fine Tuning" control to select desired stotion
3. Use "AM-FM Fine Tuning" control to select desired stotion.
4. Adjust "Volume" control setting for desired sound intensity.
5. Adiust "Tone" control setting for most pleosing tone
to adjust receiver for reception of television stations
Although the Pre-set controls have been factory adiusted for optimum per-
formance, it is usually necessary to to make some fine adius formance, it is usually necessary to, make some fine adiustments of these
controls at the time of installation.

To gain access to the centering adiustments and ion trap, it will be nocessary to remove the back cover of the cabinet by first removing the built-in antenna tuning knob and then taking out the screws oround the rim of the
back cover.
Removal of
Removal of the cobinet back automolically opens an interlock to dis-
connect the receiver power cord, therefore, an auxiliary power cord connect the receiver power cord, therefore, an auxiliary power cord
assembly will be required when making centering and ion trap adiustments. This cord may be obluined by requesting Port \#W507699. Do
not attempt to supply power to not attempt to supply power to the receiver using any other
device. device.

CONNECTION OF TRANSMISSION LINE TO RECEIVER-This television receiver has an input circuit which can accommodate either 75 ohm or connect the two built-in antenna leads connected to terminals labeled " 75 oh \(\mathrm{m}^{\prime \prime}\) on the Antenna Terminal Strip (located at the left renr of the

cabinet). If 300 ohm line is installed between the outdoor antenna and the receiver, connect the transmission line to the two terminals labeled
" 300 ohm"" on the Antenna Terminal Strip; if low impedance line is in stalied, connect the transmission line between the two antenna terminals ed " 75 ohm .
The receiver is now ready for an operational check TURN SET ON-Rolate the "On-OA Switch and Volume" knob ap.
proximately \(1 / 2\) furn clockwise to turn set on ond oblain suficient ound volume during the tuning process. Allow several minutes for all fubes in the receiver to worm wp and for circcaits min stobilize
before attempting to obtoin a picture on the screen.
2. POSITION BAND SWITCH-Set "Band Switch" io "TV"" position.
Small red indicator light above channel numbers will become Small red in
illuminated.
3. ADVANCE BRIGHTNESS CONTROL-TUTn the "Brightness" control 3. ADVANCE SRIGHINESS CONTROL-Turn the "Brightness" control 4. ADJUST ION TRAP-If screen remains dark or is only dimly illumiADJUST ION TRAP-lf screen remains dark or is only dimly ilumi-
noted when "Brightnesss" control is turned clockwise, the ion trap may require adiustment.
The ion trap is located on the neck of the picture tube as shown in Figure 14 and consists of a magnet held in position by metal bands. Rotate the entire trop assembly while sliding it back and forth until
picture tube screen is illuminated to maximum brilliance Reduce picture tube screen is illuminated to maximum brilliance. Reduce
"Brightness" control setting and repeat this operation to assure accurate pasitioning of ion trap.

ADVANCE CONTRAST CONTROL-Turn the "Contrast" control knob to its maximum clockwise position.
POEITION CHANNEL "Channel Solector" knob so that it points oo the desited tele on channel. ADJUST FINE TUNer "Channel Selector" ter "Channel Selector",
knob has been set, then use the "Fine
Tuning" control to obYuning" control to ob-
tain the correct tuning
point for both picture and sound. That is acecomplished as follows:

Fig. 2 -SOUND interference;
CAUSED BY
a. Turn "Television Fine Tuning" control in either direction until the volume control and repeat found cannot be heard, advance We volume control and repeat fine tuning.
b. When the point of maximum sound valume has been reached in pearance or is partially obscured by "sound bars" "sark hortizontal bars of varying width-see Fig. 2).
THE CORRECT SETTING OF THE FINE TUNING CONTROL THE CORRECT SETYING OF THE FINE TUNING CONTROL is now obsained by turning it away from the maximum
volume position only far enough to eliminate the "sound bar" interference and permit sharp roproduction of the picture.
If image is slightly distorted or tears into a series of black and
white streaks as shown in Fig. 3 , reduce the setting of the Contrast white streaks as shown in Figg. 3, reduce the settigg of the Contrast
control and operate the "iorizontal Hold" control knob until pie. conirol and operate the "Horizontal
8. ADJUST SOUND VOLULIE-Readiust the setting of the "Volume",
control until the sound accompanying the television broodcast is control until the sound accompanying the television broadcast is
received at a satisfactory level.

ADJUST BULLT-IN ANTENNA YUNING CONTROL-if the recoiver's built-in televisision antenna system is used, rotote the antena tuning
knob (located at rear of cabinet) until the best picture in obtained.
It knob (located at rear of cabinet) unitithe best picture is obtained.
It may be possibie to find a single setting for this knob which will
give sotisfactory performance for a group of stations. In the ovent give sotisfactory performance for a group of stations. In the event.
thot is not the case, adjust the control for optimum porformance that is not the case, adjust the control for optimum porformance
each time the Channel Selector is rotaled to a different station.

HORIZONTAL HOLD-Should the picture appear to mote horizon-
tally across the screen or break up into a series of light and dark tally across the screen
streaks as shown in Figure \({ }^{3}\), odiust the
"Horizontal Hold" con trol until the pieture remains strationary. If this control must be
rotated to the end of its range for proper "locking" action, then roset, "the peossition of of
the "Horizental Lock" hent "Horizontal Lock"
control (see Figure 14 tor location). Adiust.
ment is accomplished by first setting, the

"Horizontal Hold" con- Fig. 3-HORIZONTAL MOVEMENT; trol in the middle of
its range and then changing the setting of the "Horizantal control until picture locks in horizontally.
1. VERTICAL HOLD-Should the picture appear to roll by in a vertical
direction or cause multiple vertical images as shown in figure will be necausary to will be necessary to control located behind the Name Plate (see Figure 6).
After this adjusiment is made, reduce contrast until picture is barely visible and check set. ting of "Vertical Hold" control for proper pic ture synchronization.

NItal focus-Adjust the "Focus" control, located behind Name Plate, until pictur
clearly defined. Fuzzy picture may al-
so be due to reporoduc. tion of poor quality film when station is televising a motion picture. Incorrect tuning of receiver produces a similar effect. Check for proper tuning point os described in step of this section..

The following adjustments should be
transmitting its circular test pattern.

14. CENTERING: To center the test partern on the screen, proceod a follows:
a. Make sure focus coi meunting plate is perpendicular to neck of pifturuen tube three nuts labeled \(A\) in Figure 14.
b. Rotate the two magnets in the center.
ing magnet asseming magnet assem-
bly (soe Fig. 14). These magnets may be adiusted by board "ears" at ached to each magnot and rotating the magnets with respa magnet position with respect to the picture tube. Adiust the magnet position for best centering of the test pattern.
© John F. Rider
c. If picture is still not centered, loosen four focus coil wing nuts labeled B in Fig. 14 and rotate focus coil for best centering of test pattern.
d. Readjust ion trap for maximum brightnoss on picture tube sereen as exploined in step \#4.
-. If picture is still not centered, position focus coil by adjusting the three nuts labeled \(A\) in Fig. 14.
In event picture cannot be centered by above procedures, reloase the four wing nuts labeled D in Fig. 14 and raise or lower entire verically with respect to the tube neck.

WIDTH - Control o picture size in the hort
zantal direction is ac complished by mean of the "Width" control located on the if abnormaily low line voltago makes it diffi cult to obtain sufflicient picture width when us ing the "Width" con
trol, then changing the trot, then changing the
zetting of the "Hori
zontol Drive"

Fig. , 9-TOO NARROW; may be helpful. The "Drive" contral is locoted of the rear of the chassis and its setting will affoct horizantal linearity as well a picture width. Therefore, after adusing this contril for dosire cantrol as described in paragraph \#18.
7. HORIZONTAL DRIVE - The "Horizontal Drive" control located of roar of chassis (nee Fig. 14) should be. rotated clockwise to the point where any white (ar black) verticol lines near the left ide of the picture are eliminated. As width and linearity of the picture are
affected by the setting af "Horiz. Drive" control, it will be necessary to adjust this control in coniunction with the Horiz. Linearity and Width controls ta obtain desired picture width and linearity.
8. horizontal lineARITY - Imprope causes the circular test pattern ta appear condensed on the righ edge of the screen and extended on the This effect is illustrated in Figure 11. Adjus for proper linearity by using "Horiz. Lin.
control
located a rear of chassis (see figure 14). In event

Fig. 11 -HORIZONTAL DISTORTION, FIg. II -HORIZONTAL DISTORTION;
ADJUST HORIZONTAL IINEARITY CONTROL
that proper horizonta
ained by adiusting this control, then change the setting of the "Horiz. Drive" control.

\section*{VERTICAL LINEAR
ITY - Improper ver ITY - Improper ver tical linearity causes the circular test pat tern to appear con-
densed an the upper edge of the screen and extended on the lower edge or vice
versa. This effect is versa. This effect is
illustrated in Figure illustrated in Figure
12. Adjust for proper linearity by using "Vert. Lin." control lo. contad bohind Name CONTROL
cole appreciable change is made in the linearity control setting}
20. Eliminating semi-circular shadow - This shadow is coused by the electron stream striking the neck of the tube and it can
generally be corrected by applying one or a combination of the following procedures:
a. Make sure defection yoke is positioned as for forward as poe sible by loosening the three wing nuts labeled \(C\) in Fig. 14 .

and focus coil as
sembly so that
focus coil can be repositioned vertically with respect to the
tube neck.
trast" ADJUSTMENTS - Recheck settings of "Brig

Fig. 14-chassis and picture tube assembly

MODEL 142

THE PICTUPE TUBE CAUTION ing, chipping, undue pressure, or careless handling such as lifting the will be violently expelled. Scratching, chipping, undue pressure, or carr ta handing so ch as lifting the tube by its neck is dangerous and Be sure to discharge the voltage devaloped across the capacitor formed by the inner and outer coating of the picture tube. This can be done by connecting the high voltage socket on the tube to the outer coating
with a well insulated metal conductor. with a well insulated metal conductor
HIGH VOITAGE (10 to 12 kilovolts) is produced in a supply circuit of this recelver. Exercise care to avoid
contact with elemenits of this circuit and particularly the the terminals contact with elemeits of this circuit and particulorly the tube terminals which are labeled "CAUTION" in
the adjoining voltage chart. If measurement of voltage at these points is necessary, see procedure given below under the note " E .

\section*{TUBE LOCATIONS \& FUNCTIONS}

THE HIGH VOITAGE LEAD, which supplies approximately 10 to 12 kilovolts to the picture tube, should be momentarily shorted to the chassis whenever it is disconnected for service purposes. This discharges the
high voltage filter condenser and prevents a shock hazard when working on the receiver after it ha high voltrge furned off.
INTERMEDIATE \(B+\) vOLTAGES, 475 and 365 , are dangerous and caution should be observed when the receiver chassis components are exposed for service purposes.
be SURE TO CHECK FOR PROPER POSITIONING OF BAND SWITCH SECTIONS ON AM-FM and TV chassis when interconnecting link arm has been disengaged and bottom cover of the AM.FM chassis is remove
for voltage measurements. DO NOT furn on the recaiver untii you have first determined that the respective switch sections are correctly synchronized or positioned. Failure to observe this precaution can result in subject, see text shown adioining AM-FM socket voltage chart on page 10 .
the voltages shown in the adjoining chart wer MEASURED UNDER THE FOLLOWING CONDITIONS

© John F. Rider

© John F. Rider
If piture "fears" horizontally and cannot be synchronized by operating
the Horizontal Hold control on front panel of receiver, this action may be the Horizontal Hold control on front panel of receiver, this action may be due ta incorrect setting of the slug in the Horizontal Lock Coil

\section*{REDUCTION OF INTERCARRIER BUZZ}

If a prominent humming or buzzing sound is noted in the sound receptian
of a television broadcast, it may be duve to a falt ti tronsmission from the
stotion or incorrect adjustment of the discriminator tronsformer (tuning of
secondary circuit) in the receiver. stotion, or incorrect adiustment
secondary circuit) in the receiver.
This type of disturbonce, which is only present when reeciving a statian
signol, is known os "Intercarrier Buzz" ond it should not be confused with

HIGH VOLTAGE POWER SUPPLY SERVICING
The High Voltage Power Supply used with this receiver is of the "fly.back"
ype ond is locoted in the shielded compartment mounted at the eff rear horizontol sweep output transformer plus a \(1 B 3 G T / 8016\) high voltage the power supply in 0 dork room. Several conditions the operation of
hertifier tube and onse The plote circuit af the Horizontal Scanning Output stage is fused to pro- POOR CONNECTIONS tect the transformer ond kill high voltage in the event the \(6 B Q 6 G T\) tube or
the high voltoge rectifier circuit draws excessive current.

\section*{CAUTION}
\[
\begin{aligned}
& \begin{array}{l}
\text { The heovily insulated red leod, which supplies extremely } \\
\text { high voltage "10 o } 12 \text { kilovolts) to the picture tube, should } \\
\text { be momentarily shoted }
\end{array} \\
& \text { e momentarily shorted to the chossis whenever it is dis } \\
& \begin{array}{l}
\text { been turned off). This discharges the high voltage filter } \\
\text { condenser ond prevents a shock hazard when working on }
\end{array} \\
& \begin{array}{l}
\text { condenser ond prevents a shock hazard when working on } \\
\text { the set. }
\end{array}
\end{aligned}
\]

Access to the horizontal output transformer, high voltage rectifier fube, fuse section of the H.V. shield. This compartment shield is held in place by five
s. To replace the fuse, depress the cap of the fuse holder (locoted next to
 REMOVAL OF THE CABINET BACK AUTOMATICAILY OPENS AN interlock to disconnect the receiver power cord.
power supply hum that would occur upon failure of a filter condenser. The procedure for correct adjustment of the television sound discriminator
circuit is presented in the lost section of the Television Sound CCane arrcuit is presented in the lost section of the Television Sound Channel
alignment instuutions. When the diseriminator secondory slug \(\# 1\) is properly odiusted, intercarrier b buzz will be reduced to an acceptable
minimum, provided that the-trorsmission from the station is
© John F. Rider

\section*{ALIGNMENT PROCEDURE}

\section*{Alignment o! all RF and IF tuned circuirs in this receiver may
accomphisheci by uilizing the procedures described in the follow} accomplish
ing charts.
SEQUENCE OF ALIGNMENT: These procedures should prefeabl be applied in the order in which they are presented. bowever,
alignment of AF or if channels for either AM. FM or TV may be if desired
The Telovision RF Amplifier and Mixer alignment may also be accomplished indenendent of the Television IF Channel alignment but oscilitar catibration can only be done after If Channel has
been cortectly clligned. Proper if band pass characteristic is necessary for oscillalor aligrment as results of crrcuit tuning are observed by means of an oscilloscope connected to the output of the video detector stage.
REMOVAL. OF CHASSIS: The receiver chassis must be removed from the cabinet in order to accomplish alignment of ald tuned circuirs as there are adjusiment points
of both the main chassis and the AM.FM Tuner.
This can be accomplished by first removing all knobs and releasing the holddown screws located on the underside of the cabinel Then disconnect speaker leads and all hree built-in antenna
TV. AM and FM). Release indicator lamp from bracket at bas of cabinet.

\section*{CAUTION}

The picture tube is highly evacuated and if broken, glass fragments will be violently ex pelled. Handle with care. using salely gogvoltage terminal at side of tube even after i has been disconnected from the receiverhis precaution is necessary as inner and outer coatings on the tube form a capacito which may carry a high voltage charge fo an extended period of time after disconnec ion from the receiver
INSTRUMENTS: The following instruments will be required a signal sources and output indicators during the alignment process
Since accurate alignment of a television receiver is heavily de pendent upon the performance of \(y\) our instruments, it is imperative pendent upon the pertormance of your instruments.
that they meet the essential specifications described here.

STANDARD SIGNAL GENERATOR to provide signals at the dollowing frequencies. Maximum output on all ranges should be at least. I volt with provision for attenuation as desired
This instrument must have good frequency stability and be This instrument must have good frequency stability and be
accurately calibrated. Generators which incorporate a sep accurately calibrated. Generators which incorporate a sep
arate crystal controlled oscillator and heterodyne circuit are
self calibrating and theretore capable self calibrating and therefore capable of providing the accu
racy of frequency calibration required for television circul racy of frequency calibration required for television circuit
alignment.

\section*{IMPORTAN}

\section*{AVOID EXCESSIVE INPUT SIGNAL WHEN USING CHECKING SYNCHRONIZATION OF BAND} OSCILLOSCOPE AS ALIGNMENT INDICATOR. SWITCHES ON AM-FM TUNER AND TV CHASSIS
When observing the receiver band pass character. Note that the band switch on the AM-FM Tune istic on an oscilloscope, it is exceedingly important chassis is mechanically coupled by a link arm and to avoid distortion of that characteristic which chassis. Do not perate these switches by dire would occur when using a large input signal from pressure on the link arm-always use a direct the sweep generator or standard generator (mark- knob attached to the TV switch shaft. er signal). Always set attenuator on sweep gener- If the mechanical linkage is forced or slips at the ator so that reading on the vacuum tube voltmeter lever on the TV switch shaft, or the bottom cove does not exceed one volt (when meter is connected of the AM-FM tuner is removed for service purfrom high side of video detector load resistor, sym- poses, it is possible for the respective switch sec bol 139 to receiver chassis) Standard generator tions to get out of slep. The receiver can be dam output should alo aged if the switch sections lose synchronization, output should also be attenuated so that marker or are indiscriminately set to random positions.
signal does not pull or tear the band pass charac- In order to check for proper synchronization of the teristic as shown on the 'scope. band switches, refer to procedure on page 10

455 Kc . (400 cycle amplitude modulated) for AM 1
455 Kc. (400 cycle amplitude modulat
4.5 Mc (Unmodulated) for TV Sound.
4.5 Mc. (Unmodulated) for TM Sound.
10.7 Mc. (Unmodulated) for FM IF.
22.25 (Unmodulated) marker for TV Sound
carrier
22.4 Mc . (Unmodulated) for TV 1st If Trap.
\(\begin{array}{ll}22.8 & \text { Mc. (Unmodulated) for TV 3id IF Trap. } \\ 23.5 & \text { Mc. (Unmodulated) for TV 1st and 3rd }\end{array}\)
24.5 Mc . (Unmodulated) for TV 4 th 1 F .
26.3 Mc . (Unmodulated) for TV Converter and 2nd IF
26.75 Mc . (Unmodulated) marker tor TV Picture IF
B. RF Frequencies

550 to 1600 Kc . (400 cycle amplitude modulated)
54 to 88 Mc . (Unmodulated) for TV RF.
88 to 108 Mc . \(\begin{gathered}(400 \text { cycle amplitude modulated) } \\ \text { for FM RF. }\end{gathered}\)
174 to 216 Mc . (Unmodulated) for TV RF.
FF SWEEP GENERATOR to provide stequency modulated sig nals at the following frequencies:
10.7 Mc. with 300 Kc . sweep width.

20 to 30 Mc . with 10 Mc . sweep width.
54 to 88 Mc . with 10 Mc . sweep width
Output adjustable with at least 1 volt maximum
Output should be "flat" (no amplitude variation) for all set-
provision for connection of generator sweep modulating lage to horizonial deflection system of an oscilloscope. Provision for blanking the output signal on each return

CATHODE RAY OSCILLOSCOPE. preferably a unit with vertical amplifier having wide range frequency response and low vactur
VACUUM TUBE VOLTMETER. The lowest voltage range of this instrument should preferably permit a 1.0 volt reading to

OUTPUT METER, preferably a unit equipped with an imped connected to secondary of audio output transformer.
ISTRUMENT CONNECTIONS: The method of connection, including details of matching and coupling networks. for instruments used in this alignment procedure is given in several illustrations on
subsequent pages. Specific instructions for each instrument applica-解
- John F. Rider

BROADCAST BAND-"AM"-ALIGNMENT PROCEDURE

After the entire chassis assembly has been renioved from the cabinet. remove the AM loop antenna and reconnect it
to the A. animnna leads extending from the Ara-FM funer chassis. Then wind one turn of insulated wire around frume
of loop antenna so os to provide a means of cupling it to of loop antenna so as to provide a means of coupling turn to receiver chassis and allow other end to remcir. open unti otherwise instructed in the following chart. Space loop
antenna same dis:ance away from the chassis as when antenna same dis:ance
assembled in the cabinet.
2. Reconnect the speaker to the two curcio oulp ut leads extend ing from the main chassis. IMPORTANT: DC not confuse these leads with the two !oop antenna leacis.
Place the AM-FM dial scaie escutcheon on the AM-FM tuning shaft and instal! the AM-FM pointer knob and fine
tuniag knob on their respective shafts. Then rotate thes tuning knob on their respective shatis.
knobs to the extreme counter-clockwise position. At this setting. the gand condenser should be fully meshed. if it is the gang condenser and close gang plates manually. Then the gang condenser and close gang plat.
tighten set screws in hub of dial drum
When aligning the RF circuits and calibrating the oscilla
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DUMMY ANT in SERIES WITH SIGNAL generator & \(\qquad\) & SIGNAI. GENERATOR FREQUENCY & \[
\begin{aligned}
& \text { RECEIVER } \\
& \text { DIAL } \\
& \text { SETTING }
\end{aligned}
\] & TRIMMER OR SLUG NUMBER & TRIMMER
DESCRIPTION & type of Adjustment \\
\hline \multirow{2}{*}{\[
\begin{aligned}
& \text {. } 1 \text { MFD. } \\
& \text { Condenser }
\end{aligned}
\]} & \multirow[t]{2}{*}{Lug on trimmer \#23 at bottom of gang cation of trimmer).} & \multirow{2}{*}{455 KC} & \multirow[b]{2}{*}{Any point where it does not.
aftect the signal.} & 18 and 19 & 2nd I.F. & \multirow{2}{*}{Adjust for maximum output. Then repeat adjustment.} \\
\hline & & & & 20 and 21 & 1 1st 1.5 & \\
\hline \multirow{2}{*}{200 MMF.
Mica
Condenser} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Coupling } \\
\text { ourn } \\
\text { ontoop } \\
\text { ontennap. }
\end{gathered}
\]} & 1500 KC & 1500 KC & \#22 & AM Oscillator. & Adjust for maximum output. \\
\hline & & 1500 KC & \[
\text { Tune to } 1500
\]
signal. & \#23 & \(\underset{\text { Antenna }}{\text { AM }}\) & Adjust for maximum output. \\
\hline 200 MMF.
Mica
Condenser & \[
\begin{aligned}
& \text { Coupling } \\
& \text { on tur } \\
& \text { ontop } \\
& \text { antenna. }
\end{aligned}
\] & 600 KC & \[
\begin{aligned}
& \text { Tune to } 600 \\
& \text { Kc. generator } \\
& \text { signal. }
\end{aligned}
\] & \#24 & \[
\begin{gathered}
\text { Adjustable } \\
\text { core of } \\
\text { AM } \\
\text { Antenna } \\
\text { Cin }
\end{gathered}
\] & Adjust for maximum output. \\
\hline
\end{tabular}

Repeat adjustment of trimmers 23 and 24 until one no longer detunes the other.

\section*{FREQUENCY MODULATION_"FM"-ALIGNMENT PROCEDURE}

After the entire chassis has been removed from the cabinet, replace the AM-FM dial escutcheon on the AM-FM tuning shaft
and install the AM-FM pointer knob and fine tuning knob on heir respective shafts. Then rotate these knobs to the extreme counter-clockwise position. At this setting, the gang condenser should be fully meshed; if it is not, loosen the set screws in he hub of the dial drum on the gang condenser and close gang plate
2. When aligning the RF circuits and calibrating the oscillator it necessary to hold the AM-FM dial escutcheon in its normal
are in a horizontal plane. Note that the pointer knob must point to the heavy line below 88 on the dial when tuning knob is turned fully counter-clockwise and gang plates are com-

Reconnect the speaker to the two audio output leads extending rom the main chassis. IMPORTANT: Do not confuse these leads with the two AM loop antenna lead.
Set band switch to the "FM" position
. Remove bottom cover from AM-FM tuner during IF alignmen but replace it betore starting alignment of RF circuits

FREQUENCY MODULATION-"FM"ALIGNMENT PROCEDURE
IMPORTANT: Carefully follow procedure for removal and re- 7. Set volume control to the maximum volume position and use placement of this plate. as well as synchronization of band switches on AM-FM tuner and TV chassis. as explained on in serious falure to correchy insanl bollom cover may resull

FM chassis from the TV chassis during alignment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multicolumn{2}{|l|}{SWEEP GEnerator} & \multirow[t]{2}{*}{vtvm or OUTPUT
METER connec. TION} & \multirow[t]{2}{*}{OSCILLOSCOPE
CONNEC.
TIONS} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { RECEIVER } \\
\text { DIAL } \\
\text { SETTING }
\end{gathered}
\]} & \multirow[t]{2}{*}{IRIMMER OR SLUG NUMBER} & \multirow[t]{2}{*}{TYPE OF ADJUST. MENT AND OUTPUT INDICATION} \\
\hline CONNEC. TIONS & FREQUENCY & CONNECTIONS & FREQ. & & & & & \\
\hline \multirow[t]{4}{*}{} & \multirow{4}{*}{10.7 MC. Unmodulated} & \multirow{4}{*}{Not used.} & & \multirow{4}{*}{\[
\begin{gathered}
\text { Connect } \\
\text { VTVM } \\
\text { as shown } \\
\text { in Fig. } 3 .
\end{gathered}
\]} & \multirow{4}{*}{Not used.} & \multirow{4}{*}{Any position where it affect the signal.} & \[
\underset{\substack{\text { Discriminator } \\ \text { secondary }}}{\# 25}
\] & \multirow{4}{*}{Adiust these trimmers reading - the output
voltage will be ol neqative polarity} \\
\hline & & & - & & & & \[
\begin{array}{|c|}
\hline \text { \#26 } \\
\text { Discriminalor } \\
\text { primary }
\end{array}
\] & \\
\hline & & & & & & & \[
\begin{array}{|c}
27 \text { and } 28 \\
\text { 2nd IF } \\
\hline
\end{array}
\] & \\
\hline & & & & & & & \[
29 \underset{1 s t \text { IF }}{\operatorname{and}} 30
\] & \\
\hline \({ }_{\text {Same as }}^{\substack{\text { Same } \\ \text { above. }}}\) & Same as & Not used. & - & \[
\begin{gathered}
\text { Connect } \\
\text { VTMM } \\
\text { is shown } \\
\text { in Fiq. 4. }
\end{gathered}
\] & Not used. & Same as above. & \[
\underset{\substack{\text { Discriminator } \\ \text { secondary }}}{\# 25}
\] & \\
\hline \({ }_{\text {Same as }}^{\substack{\text { Same ase. }}}\) & & & & Not used. & \begin{tabular}{l}
Connect as \\
shown in
\(\qquad\) \\
Set vertical amplifier of 'scope plification. \\
Synchronize oscilloscope with
sweep generator by connecting put" terminals of scope to source sweep modulating voltage on
the sweep gen. erator.
\end{tabular} & Same as above. & \[
\underset{\substack{\text { Discriminator } \\ \text { secondary }}}{\# 25}
\] & \begin{tabular}{l}
A pattern similar
that stown
in
Fig.
5 should appear on the Check tor symmelty about he 10.7 Mc . arity of he slope. \\
FIG. 5 \\
If the characteristic is not shaped properly metry by changing the Should that fail to produce the desired readjustment of slugs
\(\$ 26,27,28,29\) and 30 should be undertaken.
\end{tabular} \\
\hline
\end{tabular}
 weak signal from the signal generator
8. Set tone control to its extreme clockwise position.
9. Dress FM circuit leads as short and straight as possible, par ticularly those in the oscillator circuit. If plate and grid lead
\begin{tabular}{|c|}
\hline \\
\hline \begin{tabular}{l}
Same as \\
above.
\end{tabular} \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Same as } \\
& \text { above. }
\end{aligned}\left|\begin{array}{c}
\text { 100 wivh } \\
\text { ancoctl AM } \\
\text { Modulation. }
\end{array}\right| \quad \text { Not }
\]
\begin{tabular}{|c|c|c|c|c|}
\hline & Not used. & 108 Mc. & \[
\underset{\substack{\text { FM } \\ \text { Oscill'or }}}{\# 31}
\] & as indicated by max
imum meter recaing. \\
\hline Same as & Not used. & \[
\begin{aligned}
& \text { Tune to } \\
& \text { to Mc. } \\
& \text { generato } \\
& \text { signal. }
\end{aligned}
\] & \[
\underset{\text { FM R }}{\# 3 \cdot}
\] & Adjust irimmer for max. Ing \\
\hline
\end{tabular}

TRIMMER AND SLUG LOCATIONS

\section*{FOR}

AM-FM TUNER ALIGNMENT

TOP VIEW
FIG. 1
AM-FM Tuner Chassis

BOTTOM VIEW
FIG. 2
AM-FM Tuner Chassis

INSTRUMENT CONNECTIONS

\section*{FOR}
fM ALIGNMENT PROCEDURE

FIG. 3
VTVM Connections for FM Sound

FIG.
VTVM and Oscilloscope Connections for FM Sound Discriminator Alignment
 Generator Connections
or Television Sound Channel Alignment

FIG. 9 Generator Connections for Television IF Channel Alignment

IF CHANNEL ALIGNMENT

VTVM Connections
for Television Sound IF Alignment

FIG. 8
VTVM Connections
for Television Sound Discriminator

FIG. 10
VTVM and Oscilloscope Connections

\section*{TELEVISION SOUND CHANNEL ALIGNMENT PROCEDURE}
1. Short antenna terminals together with a jumper wire.

No spectal aligning tool is required to adjust the cores in the Sound
If and discriminator transtormers. The blade ot a smali screw

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multirow[b]{2}{*}{\(\underset{\text { VTVM }}{\text { CONNECTIONS }}\)} & \multirow[b]{2}{*}{miscellaneous INSTRUCTIONS} & \multirow[b]{2}{*}{TRIMMER OR SLUG} & \multirow[b]{2}{*}{TYPE OF ADJUSTMENT and output indication} \\
\hline CONNECTIONS & frequency & & & & \\
\hline \multirow{6}{*}{Connect as
shown in Fig. 6.} & \multirow{6}{*}{} & \multirow{6}{*}{Connect as
Fig. 7 .
7.0 .} & \multirow{6}{*}{} & \begin{tabular}{l}
\#1 \\
Discriminator Secondary
\end{tabular} & Adjust for \({ }_{\text {on }}\) maximum \({ }^{\text {VTVM. }}\) (eading \\
\hline & & & & \[
\underset{\substack{\text { Discriminator } \\ \text { Primary }}}{\text { \#2 }}
\] & Adust tirs moximum reading \\
\hline & & & & \[
\begin{aligned}
& \text { \#3 } \\
& \text { 2nd Sound If } \\
& \text { Secondary }
\end{aligned}
\] & Adjust tor \({ }^{\text {on }}\) muximum \({ }^{\text {VTVM. }}\) (eading \\
\hline & & & & \[
\underset{\substack{\text { 2nd sound IF } \\ \text { Primary }}}{\text { \#4 }}
\] & Adjust for maximum reading
on VTVM. \\
\hline & & & & \[
\underset{\substack{\text { ist Sound IF } \\ \text { Secondary }}}{\text { S5 }}
\] & Adjust ior maximum reading \\
\hline & & & & \[
\underset{\substack{\text { 1sit Sound IF } \\ \text { Primary }}}{\text { \#6 }}
\] & Adjust for maximum reading \\
\hline Same as & \begin{tabular}{l}
Same as \\
above.
\end{tabular} & & Same as above. & \[
\underset{\substack{\text { Discriminator } \\ \text { Secondary }}}{\# 1}
\] & Note that as slug \(\# 1\) is rotated, a point will be found where the If from a positive to a neqative reading or vice versa, ithe cor-
rect setting of slug \(\# 1\) is obtained when the meter reads zero as
the slug is moved thru this point. \\
\hline
\end{tabular}

\section*{REDUCTION OF INTERCARRIER BUZZ}

Slight "dynamic" unbalance of the discriminator secondary can em. to obtain program reception from a local station. If intercarrier buzz phasize intercarrier buzz due to incomplete amplitude modulation re. is prominent, a slight readiustment of the discriminator se buzing lection. Therefore it is vilally important to obtain an accurate seting sound. Note that program sound will be clear and free from distorion Disconnect all instruments and then connect an antenna to the receiver transmission is not at fault.

\section*{TELEVISION IF CHANNEL ALIGNMENT PROCEDURE}

2. Turn receiver Channel Selector 10 tele evision channel \(\# 12\) and short
antenna terminals together with a jumper wire.
3. Turn the band switch to the "TV" position
4. Connect a \({ }^{3}\) yolt battery to the receiver \(A G C\) system so that nega. of battery connects to receiver chassis. See Fig. is ior convenient of battery connects
point of connection.
5. Note location of 1 Trap Coils \(=12\) and \(\# 13\) by referting to Fig. 19 .

 Coils can cause the
venting alignment.
6. II the IF channel is bady misaligned and two or more immediately accur. Such oscination shows as as voliage across the vid detectior load resistor symbol 139, and is indicated by the VTVI
that is connected to his point during alignment. It should be noted

TELEVISION IF CHANNEL ALIGNMENT PROCEDURE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
that voltage due to if oscillation is unatfected by strength of signal trom the generutor. \\
Where if oscillation is encountered. it is generally possible to correct the condition by detuning the IF colls in different directions. If that does not have the desired effect. inctease tixed bias on AGC line by using a \(41 / 2\) volt battery instead of the 3 volt battery referred to in
\end{tabular}}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{instruction 4. After stopping the oscillation in this manner it will then be possible to align all if s!ages using the following procedure. however. the AGC bias battery must be changed back to 3 volts when using the oscilioscope to observe band pass characteristic. Once all stages have been chigned using the \(4 \frac{1}{2}\) volt bias. the IF channel should be siable with reduced bias.}} \\
\hline & & & & & & & & \\
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multicolumn{2}{|l|}{SWeEp generator} & \multirow[b]{2}{*}{VTVM
CONNECTIONS} & \multirow[b]{2}{*}{OSCILLOSCOPE
CONNECTIONS} & \multirow[b]{2}{*}{MISCELLANEOUS
INSTRUCTIONS} & \multirow[b]{2}{*}{TRIMMER
OR SLUG} & \multirow[t]{2}{*}{TYPE OF ADJUST. MENT AND OUTPUT indication} \\
\hline CONNEC
TIONS & frequency & CONNECtions & FREQ. & & & & & \\
\hline \multirow{2}{*}{Connect as
shown in Shown.
Fig.} & \multirow{2}{*}{26.3 MC.} & \multirow[t]{2}{*}{} & & \multirow{2}{*}{Cunnect as shown
in Fig.
io.} & \multirow{2}{*}{Not used.} & & \[
\underset{\substack{\text { converter } \\ \text { ploter } \\ \text { coill }}}{\# 77}
\] & Adjust for maximun
reading on VTVM. \\
\hline & & & & & & & \[
\stackrel{\text { 2nd I.F. }}{\# 8}
\] & Adjust for maximum
reading on VTVM. \\
\hline Same as & 24.5 Mc . & Same as & - & \[
\begin{aligned}
& \text { Same as } \\
& \text { above. }
\end{aligned}
\] & Not used. & - & \[
\underset{4 t h i . F}{\mathbf{9}}
\] & Adjust for maximum reading on VTVM. \\
\hline \multirow[t]{2}{*}{\({ }_{\text {Same }}\) Sabes.} & \multirow[t]{2}{*}{23.5 MC.} & \multirow[t]{2}{*}{\(\xrightarrow{\text { Same as as }}\) above} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{Same as \({ }_{\text {above. }}\)} & \multirow[t]{2}{*}{Not used.} & \multirow[t]{2}{*}{\(\square\)} & \[
\begin{aligned}
& \# 10 \\
& \hline 151.5 \\
& \hline
\end{aligned}
\] & Adiust for maximum reading on VTVM. \\
\hline & & & & & & & \[
\# 11
\] & Adjust tor maximum
reading on VTVM. \\
\hline (Same as & 22.4 MC. & Same as
above. & - & Same as & Not used. & - & \[
\underset{\substack{\text { ist } \\ \text { Hoil } \\ \text { Coitrap }}}{\# 12}
\] & \[
\begin{aligned}
& \text { Adjust the spacing of } \\
& \text { 星e Trap Coil wind } \\
& \text { ings for MINMNM } \\
& \text { reading on VTVM. }
\end{aligned}
\] \\
\hline Same as & 22.8 MC. & \(\underset{\substack{\text { Same as } \\ \text { above. }}}{ }\) & - & \(\underbrace{\substack{\text { above. }}}_{\text {Same as }}\) & Not used. & & \[
\underset{\substack{\text { 3rd } d \text { Trap } \\ \text { Coil. }}}{\# 13}
\] & \\
\hline \multirow[t]{2}{*}{\({ }^{\text {Same as }}\) above.} & \multirow[t]{2}{*}{26.75 MC.} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
25 \mathrm{MC.} \\
\left.\begin{array}{c}
\text { Sweeping } \\
\pm \\
5 \mathrm{Mc.}
\end{array} \right\rvert\,
\end{gathered}\right.
\]} & \multirow[t]{2}{*}{Same as above.} & \multirow[t]{2}{*}{Connect as
shown in Fig. 10.} & \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & \\
\hline Same as & 22.25 MC. & Same as & \({ }_{\substack{\text { Same as } \\ \text { above. }}}\) & Stice \(\begin{gathered}\text { Same as } \\ \text { above. }\end{gathered}\) & Same as & & Adjust the
the sco sound portio
The 22.25 Mc er should ap. sound marke and \(\# 13\). & ertical gain control on of the response curve sound IF carries mark. 11. If the position of the is ineorrect readjust
ng of Trap Coils \(\# 12\) \\
\hline
\end{tabular}

TELEVISION RF CHANNEL ALIGNMENT PROCEDURE

Turn the band switch to the "TV" position.
2. Remove botlom cover shield of the Television RF Tur.er unit.
negative terminal of battery connects to AGC line and positive 3. Connect a 3 volt battery to the receiver AGC system so that
erminal of batter oll to receiver chassis. (See fig. 19 fo
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multicolumn{2}{|l|}{SWEEP GENERATOR} & \multirow[b]{2}{*}{\(\xrightarrow[\text { VTVM }]{\text { CONNECTIONS }}\)} & \multirow[b]{2}{*}{OSCLLLOSCOPE
CONNECTONS} & \multirow[b]{2}{*}{MISCELLANEOUS
instructions} & \multirow[b]{2}{*}{coil} & \multirow[t]{2}{*}{TYPE OF ADJUSTMENT AND OUTPUT indication} \\
\hline CONNEC TIONS & frequency & CONNEC TIONS & FREQ. & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{RF AMPLIFIER AND MIXER ALIGNMENT} \\
\hline Connect as Fig. 15. & 215.75 Mc .
t 211.25
MC . & & \[
\underset{=13}{\text { Channel }}
\] & Not used. & Connect as shown in Fig. 16 & & & \\
\hline \multirow{11}{*}{\[
\begin{gathered}
\text { Same az } \\
\text { above. }
\end{gathered}
\]} & \(\underbrace{-209.75} \mathbf{}\) & \multirow{11}{*}{Same as
above.} & \[
\underset{\# 12}{\text { CHANNEL }}
\] & \multirow{11}{*}{Not used.} & \multirow{11}{*}{Same as above.} & Set Channel Selector to \#12 & \multicolumn{2}{|l|}{\multirow[t]{11}{*}{}} \\
\hline & & & \[
\begin{gathered}
\text { CHANNEL } \\
\# 11 \\
\hline
\end{gathered}
\] & & & Set Channel Selec. tor to \#11 & & \\
\hline & (197.75 Mc: & & \[
\begin{gathered}
\text { CHANNEL } \\
\# 10 \\
\hline
\end{gathered}
\] & & & Set Channel Selec-
tor to \(\# 10\) & & \\
\hline & - & & \[
\overline{\substack{\text { CHANNEL } \\ \# 9}}
\] & & & Set Channel Selector to \#9 & & \\
\hline & (1855.75 Mc: & & \[
\begin{array}{|c|}
\hline \text { CHANNEI } \\
\# 8 \\
\hline
\end{array}
\] & & & \[
\begin{gathered}
\text { Set Channel Selec. } \\
\text { tor to } \# \boldsymbol{\beta} \\
\hline
\end{gathered}
\] & & \\
\hline & & & \[
\underset{\substack{\text { CHANEEL } \\ \# 7 \\ \hline \\ \hline}}{ }
\] & & & \[
\begin{aligned}
& \text { Sel Channel Selec. } \\
& \text { tor to \#7 }
\end{aligned}
\] & & \\
\hline & & & \[
\begin{gathered}
\text { CHANNEL } \\
\# 6
\end{gathered}
\] & & & \[
\begin{aligned}
& \text { Set Channel Selec. } \\
& \text { tor to } \# 6
\end{aligned}
\] & & \\
\hline & & & \[
\begin{gathered}
\text { CHANNEL } \\
\# 5 \\
\hline
\end{gathered}
\] & & & Set Channel Selactor to \#S & & \\
\hline & & & \[
\begin{array}{|c|}
\hline \text { CHANNEI } \\
\# 4
\end{array}
\] & & & \[
\begin{aligned}
& \text { Sel Channel Selec- } \\
& \text { tor to } \# 4
\end{aligned}
\] & & \\
\hline & - & & \[
\underset{\substack{\text { CHANNEL } \\ \# 3}}{ }
\] & & & Set Channel Selector to \#3 & & \\
\hline & & & \[
\underset{\# 2}{\text { CHANNEL }}
\] & & & \[
\begin{aligned}
& \text { Set Channel Selec. } \\
& \text { tor to } \# 2
\end{aligned}
\] & & \\
\hline
\end{tabular}

FIG. 13 Front view of
RF Tuner Unit

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline STANDARD SIGNAL
GENERATOR & \multicolumn{2}{|l|}{SWEEP GENERATOR} & \multirow[t]{2}{*}{VTVM CONNECTIONS} & \multirow[t]{2}{*}{OSCILLOSCOPE CONNECTIONS} & \multirow[t]{2}{*}{MISCELLANEOUS} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { COLL } \\
\text { OR SLUG }
\end{gathered}
\]} & \multirow[t]{2}{*}{TYPE OF ADJUST. MENT AND OUTPU indication} \\
\hline \begin{tabular}{c|c|}
CONNEC \\
TIONS
\end{tabular} & CONNEC- & FREQ. & & & & & \\
\hline
\end{tabular}

\section*{OSCILLATOR ALIGNMENT}
1. IMPORTANT: Before undertaking oscillator alignment be sure IF 2. During oscillator alignment, it is necessary to set the Fine Tuning circuits are correctly aligned for band pass characteristic illus. control in the center of is range.

FIG. 15
Generator Connections for Television RF Channel Alignment

FIG. . 16
Oscilloscope Connections

FIG. 17
TM and Oscilloscope Connections
for Television Oscillator Alignmen

© John F. Rider

© John F. Rider

\section*{INDEX}
PAGE
ALIGNMENT INSTRUCTIONS . . . 39
CIRCUIT DESCRIPTION 38
PARTS LAYOUT 42
PARTS LIST 44
RESISTANCE MEASUREMENTS.. 42

ChEMATIC
SPECIFICATIONS 37
top View - tube layout. . . 41
TRIMMER LOCATIONS. 41
VOLTAGE MEASUREMENTS . .. 42
WAVEFORMS 43

Power Consumption 220 Watts
Input Impedance
72 Ohms, Co-axial
Power Output (Audio) 2 Watts (Undistorted) Picture Size
\(63 / 8^{\prime \prime} \times 81 / 2^{\prime \prime}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{FREQUENCY CHART} \\
\hline CHANNEL & FREQUENCY & PICTURE FREQUENCY & SOUND FREQUENCY & RF OSCILLATOR FREQUENCY \\
\hline 2 & 54-60 & 55.25 & 59.75 & 92.55 \\
\hline 3 & 60-66 & 61.25 & 65.75 & 98.55 \\
\hline 4 & 66-72 & 67.25 & 71.75 & 104.55 \\
\hline 5 & 76-82 & 77.25 & 81.75 & 114.55 \\
\hline 6 & 82-88 & 83.25 & 87.75 & 120.55 \\
\hline 7 & 174-180 & 175.25 & 179.75 & 212.55 \\
\hline 8 & 180-186 & 181.25 & 185.75 & 218.55 \\
\hline 9 & 186-192 & 187.25 & 191.75 & 224.55 \\
\hline 10 & 192-198 & 193.25 & 197.75 & 230.55 \\
\hline 11 & 198-204 & 199.25 & 203.75 & 236.55 \\
\hline 12 & 204-210 & 205.25 & 209.75 & 242.55 \\
\hline 13 & 210-216 & 211.25 & 215.75 & 248.55 \\
\hline
\end{tabular}

Picture Tube
A \(10^{\prime \prime}\) direct view tube.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{TUBE COMPLEMENT} \\
\hline 1. & \(6 J 6\) & V20 & RF Amplifier \\
\hline 2. & 6AG5 & V19 & Mixer \\
\hline 3. & \(6 J 6\) & V18 & RF Oscillator \\
\hline 4. & 6AG5 & V5 & Ist Video IF Amplifier \\
\hline 5. & 6AG5 & V6 & 2nd Video IF Amplifier \\
\hline 6. & 6AG5 & V7 & 3rd Video IF Amplifier \\
\hline 7. & 12AU7 & V9 & 1 st and 2nd Video Amp'fier \\
\hline 8. & 6AU6 & V1 & 4.5 Mc. Sound Take-off Amplifier \\
\hline 9. & 6AL5 & V2 & Ratio-Detector \\
\hline 10. & 6AT6 & V4 & Ist Audio Amplifier \\
\hline 11. & 6K6 & \(V 3\) & Audio Output \\
\hline 12. & 6AL5 & V10 & Sync Limiter and AGC \\
\hline 13. & 6SN7 & V11 & Sync Sep. and Amplifier \\
\hline 14. & 6SN7 & V12 & Vertical Oscil. and Amp. \\
\hline 15. & 6SN7 & V14 & Horizontal Oscillator (Sync (Guide) \\
\hline 16. & 6BG6G & V15 & Horizontal Output \\
\hline 17. & 1B3 8016 & V13 & High Voltage Rectifier \\
\hline 18. & 5V4-G & V16 & Damper \\
\hline 19. & 5U4-G & V17 & Low Voltage Rectifier \\
\hline 20. & 10BP4 & V21 & Picture Tube \\
\hline & 1N34 & V8 & Crystal Video Detector \\
\hline
\end{tabular}

Speaker
Antenna Equipment:
The antenna input is designed to operate with maximuri afficioncy on a dual channel dipole antenna using 72 ohm concentric coaxial lead in.

© John F. Rider

\section*{controls}

\section*{FRONT PANEL}

1- PICTURE - The Picture or contrast control varies the video IF gain through the AGC diode. Due to the use of \(A G C\) the picture control should not require readjustment when channets are switched except where the signal received from different stations varies greatly.

2 - BRIGHTNESS - The Brightness control op. erates by varying the D.C. voltage on the cathode of the Picture Tube, thereby controlling the light on the face of the tube.
3 - HORIZONTAL - The horizontal control on the front panel is a fine frequency regulator for the horizontal sweep oscillator. Its setting is not critical and is used to restore sync when necessary.
4 - Vertical - The Vertical Control regulates the frequency of the vertical oscillator. Misadjustment of this control will cause the picture to "roll" up or down. The setting is not normally critical.

5 - VOLUME - ON-OFF - The volume control varies the input to the audio system. It controls the sound only and should have no effect on the picture. The ON-OFF switch is activated by rotating the control in clockwise direction until a click is heard.

6 - STATION SELECTOR -This control selects the channel desired for viewing.

7 - FINE TUNING—This control varies the local R.F. Oscillator Frequency. Correct adjustment will result in a picture with maximum definition. This is not a control for tuning the sound.

fig. 2

\section*{CHASSIS (See Note)}

1 - HEIGHT CONTROL - Varies the input to the vertical sweep amplifier. Since changes in height will effect picture linearity this control should be used in conjunction with the:

\section*{2 - VERTICAL LINEARITY CONTROL - Ad-} justs the vertical sweep waveform and should be used with the height control

3 - FOCUS CONTROL - Varies the current flowing through the focus coil

4 - HORIZONTAL LOCKING RANGE - Ad
justs the sensitivity of the front panel Horizontal Hold control.

5 - HORIZONTAL FREQUENCY CONTROL -A coarse frequency control for the horizontal sweep oscillator.

6 - HORIZONTAL DRIVE CONTROL _-Varies
the input to the horizontal sweep amplifier and affects picture brightness and linearity.

\section*{7 - WIDTH CONTROL - This control permits} variation of the picture width without affecting the high voltage.

8 - HORIZONTAL LINEARITY CONTROL Adjusts the horizontal sweep waveform.
NOTE: - FOR PROPER ADJUSTMENT OF CHASSIS CONTROLS SEE 'PIC. tURE ADJUSTMENTS"

FIG. 3

\section*{BRIEF CIRCUIT RNALYSIS}

This Television Receiver uses the Inter-Carrier Sound System. The basic difference between this and conventional systems is that in the use of Intercarrier, the sound and the picture information are both fed through a single I.F. and video channel. The sound is separated after the second video amplifier and is then fed through an amplifier to the ratio detector (discriminator). The picture components of the received signal are split up into sync and pix components, the former being applied to the appropriate sweep circuits and the video intelligence to the grid of the Picture tube. The main advantages of the use of a system of this type are that duplication of I.F. amplifiers is avoided and that drift in the local oscillator does not distort or cut off "sound" reception.

The horizontal sweep circuits employ an improved type of AFC which minimizes picture disturbances caused by ignition and similar types of interference. The sync circuits for the vertical oscillator provide sufficient control to avoid "rolling" in high interference or fringe areas.
R. F. Amplifier - The antenna is fed between the grid and cathode of the R.F. amplifier. The input circuit of this stage is not tuneable. The R.F. stage is tuned by what is, electrically speaking, a single tapped inductance. Mechanically, this coil takes the form of séveral individual coils which are cut in or out of the plate circuit by the band switch. These coils, as well as the mixer coils, will rarely need touching.

MIXER - The output of the R.F. amplifier and the local oscillator are condenser fed into the control grid of the mixes stage. This circuit is tuned in much the same manner as the output of the R.F. Amplifier, previously described.

OSCILLATOR - The R.F. Oscillator is fairly straightforward in operation. Its main peculiarity is that the coil for Channel 2 is permanently parallel to all other Oscillator coils from 3 to 13. It is there fore necessary, when aligning the oscillators to ALIGN CHANNEL 2 FIRST and the rest of the coils in any order thereafter. They are tuned by brass slugs accessible from the outside of the cabinet by removing the Station Selector knob and the channel Escutcheon. Channel two is found at the top of the right hand slot and the others follow in regular order in a clockwise direction finishing with
channel thirteen at the top of the left hand slot See figure 4). The oscillators in the receiver have fine tuning control which is operated from the front panel. This control should be set at an approximate mid point when oscillator slugs are being ad justed.

NOTE: THE CHANNEL NUMBERS ON THE ESCUTCHEON DO NOT CORRESPOND TO THE LOCATION OF THE OSCILLATOR COILS.

VIDEO I.F. - Each Video I.F. transformer has one adjustment, a powdered iron slug accessible from the top of the chassis. The Video I.F. string is stagger tuned to two frequencies. The first and third .F. transformers are tuned to 34.45 Mc . and the second and fourth are tuned to 37.00 Mc . In addiion there is a sound trap which should be tuned for minimum output at the Sound Carrier Frequency of. 32.8 Mc . The response curve is broad enough o produce good definition.

VIDEO DETECTOR - A crystal detector is used in this receiver. The use of a crystal in this circuit improves the detector sensitivity of the receiver.

\section*{VIDEO AMPLIFIERS - FIRST AND SECOND} - A 12AU7, dual triode is used in this section of the receiver. The output of the crystal detector is fed to the grid of the first section (pin 2) and ultimately taken off plate of the second section of the tube (ain 6) It is at this point the three basic com mbents of the received signal are separated components of the received signal are separated and ff and sent throch Cuits. The sound is taken Audio sent through the Driver, Ratio Detector and Audio Amplifiers to the speaker. The picture intelli-
© John F. Rider

\section*{BRIEF CIRCUIT RMALYSIS（Continued）}

\section*{hlicnment procedure}
gence is fed to the grid of the picture tube and the synchronization pulses to the grid（pin 1）of the Sync Separator and from there to the Horizontal and Vertical oscillators．

D．C．COMPONENT－The D．C．component of the transmitted signal（which controls the back－ gound brightness）is substantially duplicated in the receiver by direct coupling from the plate of the second video amplifier to the Picture tube grid．

SOUND SYSTEM－The sound Carrier is taken off the plate of the Video Amplifier by a 4.5 Mega－ cycle trap and fed through a 4.5 MC Amplifier to the Ratio Detector，and then to the sound amplifier， audio output and speaker．

SWEEP SYSTEM－VERTICAL — One tube a 6SN7，dual triode serves as the Vertical oscillator， discharge and amplifier tube．The first section used as the oscillator and discharge tube is fed into the second section of the tube which in turn feeds through the vertical output transformer to the Ver－ tical windings of the deflection yoke．

SWEEP SYSTEM－HORIZONTAL－The Horizontal Oscillator is essentially of the Blocking Oscillator type．The operation of the AFC system depends upon a correcting voltage developed in the control tube when the oscillator output and the incoming pulses differ in either phase or frequency． The control tube is maintained at cut－off until such time as the sync pulse is either ahead or behind the oscillator sawtooth peak．When either case occurs the control tube develops a voltage which is applied as a bias to the oscillator grid and alters the oscilla－

NOTE：Many of the components in the Hori－ zontal circuits are of critical value and therefor should only be replaced by the ex－ act replacement part．Care should also be act replacement part．Care should also be
taken in dressing leads and parts when re－ taken in dressing leads and parts when re－
placed．This can be accomplished by care－ fully noting parts positions before removal．
tor frequency to coincide with the frequency of the incoming pulses．The horizontal oscillator trans－ former has an adjustable core which is a coarse con－ trol of the oscillator frequency．The Horizontal Fre－ trol of the oscillator requency．The Horizontal Fre－
quency Control（rear）is a fine adjustment in the quency Control（rear）is a fine adjustment in the
same sense．The front panel Horizontal Hold Con－ same sense．The front panel Horizontal Hold Con－
trol permits slight adjustment of the frequency by trol permits slight adjustment of the frequency by
adjusting the \(B\) voltage applied to the control tube adjusting the B voltage applied to the control tube
plate．The Horizontal Locking range control affects the sensitivity of the control tube thus varying the range over which the AFC circuit will function．

A．G．C．－The receiver uses an AGC circuit op－ erating on the first 2 IF stages．While it is quite ef－ fective in most locations，the receiver may over－ load in regions of very high field intensity．The con－ trast can generally be adjusted for a normal picture under such conditions but spurious beats，jagged vertical lines（i．e．poor resolution）and a＂Moire pattern may appear．These effects can be elimina ted by the use of a resistor network of 3 to 10 db attenuation in series with the antenna lead at the point where it is connected to the receiver．

HIGH VOLTAGE POWER SUPPLY－The energy stored in the horizontal windings of the de－ flection yoke during the forward sweep produces high voltage surges during retrace．This is＂stepped high voltage surges during retrace．This is stepped
up＂by an＂auto winding＂on the horizontal output up＂by an＂auto winding＂on the horizontal output
transformer and then rectified by a \(183 / 8016\) ，to transtormer and then rectified by a \(183 / 801\) ，to
provide approximately 8500 volts for the Picture Tube 2nd anode．

B VOLTAGE POWER SUPPL！Y－The B Supply of this receiver utilizes a standard type of trans－ former－rectifier circuit．It should be noted that there is a separate filament winding for the Picture tube（ 6.3 volts）and a separate 5 volt winding for the 5 V4 Damper tube．The return of the B voltage developed by this supply is NOT grounded．Volt ages are developed through a bleeder network of plus 225 ，plus 150，minus 3.5 ，minus 14，minus 17.5 and minus 85 volts WITH RESPECT TO GROUND （chassis）．

\section*{A－TEST EQUIPMENT}

CATHODE RAY OSCILLOSCOPE－The main requirement in a Cathode Ray Oscilloscope is that it should have a good high frequency response up to 1 Mc ．The tube size is relatively unimportant however，anything under \(5^{\prime \prime}\) usually makes fine ad． justment quite difficult．A Hickok Model 195B Os cilloscope is recommended．

SWEEP GENERATOR－The sweep generator used should have linear coverage of a center range from 30 to 220 megacycles．The output should be fairly flat over wide frequency variation of the sweep．It should be capable of an output of 0.1 volt with attenuation down to about 50 microvolts．It is preferable that the generator have a deflection output for the test oscilloscope．This is included in the Hickok model 610A Television Signal Generator

AM SIGNAL GENERATOR－This generator should have a frequency of from 4.5 to 220 mega－ cycles．As this generator is used occasionally as a marker generator，accuracy is an important factor． It should be capable of 0.1 volt output with atten－ uation down to about 50 microvolts and should be linear through the range．These requirements are met in the Hickok model 610A．

VACUUM TUBE YOLTMETER－Almost any standard make VTVM will do．It should have rever－ sible polarity switch．A Sylvania Polymeter is recommended．

\section*{B－VIDEO IF ALIGNMENT}

An adequate signal may be fed through the I．F string by feeding the output of the signal generator into a tube shield placed over the mixer tube 6AG5．Care should be taken that this shield is NOT grounded．The ground side of the generator output can be conveniently grounded to the shield of the adjacent oscillator tube．

The contrast control should be set to produce minus 2 volts on the AGC bus（Pin 7 6AL5－AGC tube）．

The vacuum tube voltmeter should be connected across the 5600 ohm detector load resistor，（R43） and should be set on the minus 3 Volt scale．Set channel selector to an unused low band channel．

The Signal generator should be set to a frequency of 34.45 Mc ．The output of the generator should be adjusted to the point where the reading on the VTVM is between minus 1 to minus 1.5 volts．

The First \((A)\) and Third（B）I．F．Coils should be peaked for a maximum reading on the VTVM．As the voltage reading increases with tuning，the gen－ erator should be attenuated to maintain a maximum of minus 1.5 volts．

Set the Signal Generator to a Frequency of 37.0 Mc and tune the Second（C）and Fourth（D）I．F coils in the same manner as above．

Set the Signal Generator to a frequency of 32.8 and tune the trap \((E)\) for a MINIMUM reading on the VTVM．

The third（B）I．F．coil should then be readiusted as described previously．

The Generator shouid now be shut off（or tuned to different band）and the VTVM should read no more than minus 0.20 volts．If there is a higher volt－ age reading，check for regeneration in the I．F． stages．

By shunting the signal generator with a sweep generator（ 30 to 40 Mc ）and substituting a Cathode Ray Oscilloscope for the Vacuum tube Voltmeter in the above procedure the actual pass band of the Video I．F．circuits may be studied．Ideally the re－ sponse curve should appear on the face of the os－ cilloscope in the form indicated in Figure（5）A．A slight slope of the top of the curve in either direc． tion or a small dip in the center are acceptable as indicated in Figure（5）B，and C．

\section*{dLIGImEIT PROCEDURE (Continued)}

FIG. 5

\section*{C - RF ALIGNMENT}

In the alignment of the RF section of this receiver three pieces of test equipment are necessary: a sweep generator, a signal generator and a cathode Ray Oscilloscope. For specifications see "Test Equipment" above.

The output of the Sweep Generator should be fed into the antenna. The signal generator (C.W.) -should be connected to the antenna terminals of the receiver. The sweeper will provide the overall response curve with the oscilloscope properly connected. The signal generator is used as a marke as described below. Some Sweep generators made today contain their own marker oscillator. In cases where a generator of this type is used the Signal Generator may be eliminated.

The "hot" or "high" side of the Oscilloscope input should be connected to the junction point of put should be connctor load resistor and the peak-
the 5600 ohm detect the 5600 ohm detector load resistor and the peak-
ing coil. The "low" or ground side should be connected to the nearest convenient ground point on the receiver chassis. Care shoud be taken that the generator and the scope leads are well separated to avoid regeneration.

The R.F. section of the receiver is tuned channel by channel. The proper frequency settings for any given channel can be determined by consulting the Frequency Chart on Page (2). For example in aligning channel 2 the sweep generator should be set to some mid frequency between 54 and 60 megacycles. This adjustment is not a fine one. After setting the sweeper in the general vicinity of the desired frequency it should be tuned to center the response curve on the Oscilloscope face. For pic-
ture and sound markers the signal generator should carefully be adjusted to the frequencies indicated in the Frequency chart. For example in the case of channel 2 the picture marker frequency is 55.25 Mc . and the Sound 59.75 Mc .

It is important to note at this point that the oscillator coil for channel 2 is in parallel with every other oscillator coil from 3 to 13 . It is therefor imperative that channel 2 be aligned first and the others in any desired order thereafter.

Starting with channel 2 and applying the proper frequencies as indicated above, the output of the sweeper should be attenuated to the point where further attenuation will not affect the wave shape.

The Oscillator should then be adjusted to bring the sound carrier into the 32.8 Mc . trap valley. With the oscillator so adjusted the picture carrier should fall at a point approximatey \(50 \%\) up on the slope of the opposite side of the band pass curve Certain variations in the waveshape and the location of the picture carrier are acceptable. The picture carrier may vary in position from a point between \(45 \%\) and \(60 \%\) of the slope and the overall waveshape may differ from the ideal, flat-topped response by being either slightly rounded or slightly dipped in the center. See figure (6).
If the position of the picture carrier varies beyond the \(45 \%\) to \(60 \%\) points on all channels correction may be made by turning to channel 6 , applying the proper input signals and slightly realigning the I.F. transformers.

Care should be used not to push slug through coil form. If slug is pushed through, it may be replaced by reinserting slug through bottom of coil form and carefully threaded back to its normal position.

FIG. 6

\section*{D - SOUND ALIGNMENT}

Sound alignment of the receiver is best accomplished with the AM Signal Generator and a vacuum tube volt meter. By feeding a 4.5 Megacycle signal thru a .01 mfd blocking condenser into the grid (pin 7) of the second section of the 12AU7 Video amplifier and placing the vacuum tube voltmeter between pin 2 of the ratio detector (6AL5) and ground, the primary (F) (Fig. 10) of the ratio detector and the 4.5 megacycle trap (\(G\)) (Fig. 10) may be adjusted. The signal generator should be atter:uated so that the VTVM does not read more than minus 3 or minus 4 volts. These two slugs should be tuned for maximum deflection of the VTVM and the generator attenuated as needed to keep the above mentioned level. The VTVM (set for zero center operation) should then be placed at the junction of FIG. 7
the 47,000 ohm resistor (R19) and the .0015 con denser \((\mathrm{C} 22)\) and the secondary \((\mathrm{H})\) of the ratio de. tector should be tuned through a sharp dip between positive and negative voltage. Adjust secondary for exact setting at lowest point of dip.

FIG. 8 A
FIG. 8 B
The Tuner assembly is a self contained unit utiliz- axial transmission line as the down lead, a 300 ohm ing a grounded-grid RF amplifier with 72 ohm un- lead-in may be used in installations where the sigbalanced line input impedance. This mode of opera- nal strength is low. A method of matching the 300 ting the RF amplifier (6 J 6) results in higher gain be- ohm transmission line to the 72 ohm input impeding delivered by the first amplifier stage with low. ered noise and consequent improved receiver operation. ance of the tuner is shown in the Fig. 8B.

The length of the co-axial cable used as a match-
Though the tuning unit is designed to operate at ing stub shown in Fig. 8B may have to be altered optimum efficiency with the use of a 72 ohm co- slightly at different frequencies.

\section*{pIcture Rojustments}

\section*{A - ION TRAP, FOCUS AND YOKE}

To properly adjust the Ion Trap, Focusing coil and the Deflection Yoke the following procedure should be followed.

The Deflection Yoke should be placed in position closest to the "bell" of the Picture Tube as far forward on the neck of the tube as is possible. Be sure the wire loops on the mounting make positive contact with the coating of the picture tube. The Focus Coil is next in line and the lon Trap last. The arrow on lon Trap should point toward picture face and center over flags in tube neck.

The antenna should NOT be connected to the receiver, the set should be turned on, the brilliance control turned to MAXIMUM and the picture contrast control at MINIMUM.

The lon Trap should be moved forward and backward and at the same time rotated to achieve the brightest raster on the face of the Picture Tube.

Reduce the brilliance control to a point slightly over normal brightness and adjust the Focus Con trol on the rear of the chassis for clearest and sharp est horizontal sweep lines. The Ion Trap should then be readjusted slightly for the brightest response on the face of the tube at which good focus is maintained.

The Focus Coil itself should be moved to secure a complete raster, approximately centered and with no corners cut off. This being accomplished the lon trap should be secured by the screws provided.
Finally the Deflection Yoke should be rotated to "square" the raster with the chassis as a reference. The thumb screws on the yoke brackets should then be set.

FIG. 9

For oscilloscope view of ratio detector alignment connect scope hot lead at junction of R19 and C22 and ground lead to nearest point on chassis. Set signal generator for 4.5 meg . center frequency with 100 KC deviation on each side of center. The curve should appear as in Fig. 10 above.

\section*{B - HORIZONTAL OSCILLATOR}

\section*{ALIGNMENT}

To adjust the Horizontal oscillator and its control circuits it is necessary to first connect a working antenna to the receiver. It is preferable to use a test pattern as the incoming signal rather than a picture.

With the receiver turned on and the brightness and picture (contrast) adjusted to a normal position the Horizontal Frequency trimmer (J) (Fig. 12) and the Horizontal Locking trimmer (K) (Fig. 12) (rear of chassis) should be turned clockwise all the way and then backed off to about one turn (counter clock wise).

The Horizontal Hold Control (front panel) should be turned to a maximum clockwise position.
The core of the Horizontal Oscillator Transformer (L) (Fig. 12) should then be adjusted. Variation of this core will cause the pattern to resolve into a series of black and white bars sloping either to the right or the left depending upon the degree of adjustment. The transformer should be adjusted to the point where the picture resolves into a series of from \(31 / 2\) to \(41 / 2\) bars sloping downwards. to the right.
The Horizontal Hold Control (front panel) should now be rotated to a full counter-clockwise position and the incoming signal momentarily interrupted This can be done most easily by shorting the anten na terminals for a moment.

The Horizontal Hold Control (front panel) should now be rotated slowly in a clockwise direction. As now be rotated slowly in a clockwise direction. As
the control is turned the number of bars sloping the control is turned the number of bars sloping
downward to the left should decrease. At approximately 90 degrees of rotation there should remain between \(31 / 2\) and \(41 / 2\) bars just prior to the time that the picture "'falls into" sync. The picture should remain in sync for an additional 90 degrees of rotation. If MORE than \(4 \frac{1}{2}\) bars are evident just before the picture syncs the Horizontal Locking Range trimmer (K) (Fig. 12) (rear of Chassis) should be tightened slightly. If LESS than \(31 / 2\) bars the same trimmer should be loosened.

\section*{C - HEIGHT, WIDTH AND LINEARITY}

To adjust the overall size and linearity of the pic ture it is almost mandatory that a pattern trans mitted from a local station be used. Linearity ad

©John F. Rider
ustments, particularly, cannot be accurately made on moving transmissions. It should also be remembered that in areas where more than one station is being received, that pictures transmitted from different stations will vary slightly in size. The smallest transmitted picture should be made to fill the area delineated by the mask.

The first step in linearity and size adjustmen is to turn the Width control (M) (Fig. II) (rear of chassis), Fig.II, all the way in. (clockwise).
The Width Control (M) (Fig.II) should now be readjusted to achieve a picture \(81 / 2^{\prime \prime}\) wide.
The Horizontal Drive trimmer (N) (Fig. 12) should then be adjusted for the best compromise between maximum brightness and good horizontal linearity. This control will affect the left side of the picture primarily. The Horizontal Linearity control (0) (Fig. 2) (top rear of chassis) should then be adjusted for linearity of the right side of the picture.

The high voltage measurement made with a suitble kilo voltmeter with Brightness Control set to minimum should be at least 7500 volts from picture tube anode to ground. (A meter which draws more than 100 micro amperes will disturb the high voltage circuit and give erroneous reading).

The Height (P) (Fig. 12) and Vertical Linearity (Q) (Fig. 12) controls (both rear of chassis) should then be adjusted for a linear picture \(63 / 8\) high.

Picture centering is accomplished by positioning focus coil mechanically by means of (4) hexagon head adjusting screws accessible from rear of chassis as shown in Figure (9). At this point the Focus control (R). (Fig. 12) previously set, should be readjusted for maximum definition of the lines in the vertical wedge of the test pattern. Proper adjustment and alignment of the receiver should result in clear and sharp definition.

FIG. 11 top view-high voltage supply-parts location

(1)

OJohn F. Rider

\section*{WAVEFORM PHOTOGRAPHS}

© John F. Rider

© John F. Rider
\begin{tabular}{|c|c|c|}
\hline SCHEMATIC LOCATION & \begin{tabular}{l}
PART \\
NUMBER
\end{tabular} & DESCRIPTION \\
\hline & & Mica \& Ceramic (cont.) \\
\hline C 82 & TCM 501-SP & 500 mmf High Voltage Capacitor \\
\hline C 22,31,33, \(34,37,44\) & TCC 152-10 & 1500 mmf 600 Volts Ceramic \\
\hline C 77 & TCM 222-15 & 2200 mmf 1000 Volts Mica 5\% \\
\hline C 59 & TCM 472-9 & 4700 mmf 500 Volts Mica 5\% \\
\hline C 32,36,42,43,45,52 & TCC 502-SP & 5000 mmf 600 Volts Ceramic - 10\% + 100\% \\
\hline C 48 & TCC 050-11 & 5 mmf 600 Volts Ceramic 10\% \\
\hline C 49 & TCC 2.2-11 & 2.2 mmf 600 Volts Ceramic 10\% \\
\hline C 38 & TCC 1.5-11 & 1.5 mmf 600 Volts Ceramic 10\% \\
\hline C 83 & TCM 056-24 & 56 mmf 800 Volts Mica 5\% (yoke) \\
\hline C 47 & TCC 471-10 & 470 mmf 600 Volts Ceramic \(20 \%\) \\
\hline C 39 & TCC 030-11 & 30 mmf 600 Volts Ceramic 10\% \\
\hline C 20 & TCC 2-1 & 2X . 002 Ceramic Herlac \\
\hline \multirow[t]{2}{*}{C 88} & TCC 472-10 & 4700 mmf 600 Volts Ceramic \\
\hline & & Trimmers \\
\hline \multirow[t]{2}{*}{C \(69 \mathrm{~A}, 69 \mathrm{~B}, 69 \mathrm{C}\)} & TAS 501-D & Trimmer Strip Assembly (Hor. Locking, Hor. Drive, Hor. Frequency) \\
\hline & & INDUCTANCES (MAIN CHASSIS) \\
\hline T 4 & TTR 152 & Vertical Oscillator Transformer \\
\hline T 5 & TTR 153 & Vertical Output Transformer (With electrostatic shield) \\
\hline T 6 & TTR154 & Horizontal Output \& H.V. Transformer \\
\hline T 7 & TTR 105 & Power Transformer \\
\hline T 3 & TTR 156 & Audio Output Transformer \\
\hline L 17 & TTR 157 & Horizontal Oscillator Transformer \\
\hline L 6 & TTR 158 & Sound Trap \\
\hline L 13-A, 13-B & TTR 159-D & Deflection Yoke \\
\hline L 14 & TTR 106-D & Filter Choke \\
\hline L 4, 7 & TLF 146-D. & I. F. Choke \\
\hline L 3 & TLF 517-D & I. F. Coil \\
\hline L 5 & TLF 148-D & I. F. Coil \\
\hline L 8 & TLF 149-D & I. F. Coil \\
\hline L 1, 10 & TLF 502 & Peaking Coil (On 22K Resistor R 40,41) \\
\hline L 2, 11 & TLF 503 & Peaking Coil \\
\hline L 15 & TLF 505 & Width Control Coil \\
\hline L 16 & TLF 506 & Hor. Linearity Control Coil \\
\hline L 12 & TLF 521-D & Focus Coil \\
\hline T 1 & TLF 114-D & Sound Take-off Trap \\
\hline \multirow[t]{10}{*}{T 2} & \[
\begin{aligned}
& \text { TLF } 115-\text { D } \\
& \text { TLF } 500
\end{aligned}
\] & Ratio Detector Coil Ion Trap Assembly \\
\hline & & HARDWARE (MAIN CHASSIS) \\
\hline & TFA 2 & CRT Anode Connector and Lead \\
\hline & TFA 3 & High Voltage Capacitor Connector \\
\hline & TMS 127 & Miniature Tube Shield \\
\hline & TMS 532 & Bottom CRT Clamp \\
\hline & TSP 462 & 4" x 6" Oval PM Speaker \\
\hline & TLD 101 & Interlock Cord \\
\hline & TMS 121-D & Escutcheon \\
\hline & TSG 106 & Escutcheon Mtg. Spring \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{INDEX} \\
\hline \multicolumn{4}{|c|}{PAGE} & PAGE \\
\hline ALIGNMENT INSTRUCTIONS & 50 & SCHEMATIC & & 54,55 \\
\hline CIRCUIT DESCRIPTION & 47 & SPECIFICATI & ATIONS & 47 \\
\hline InStallation data. & 49 & top View & - tube layout. & 56 \\
\hline PaRTS LAYOUT & 56 & TRIMMER & LOCATIONS. & 51 \\
\hline PARTS LIST & 57 & voltage & MEASUREMENTS & 55 \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The 102 television receiver is a direct view table model receiver employing the new rectangular type picture tube. Full twelve channel station coverage is provided by a rotary type chantwo selector employing condenser tuning over to frequency ranges. A stagger tuned inter both picture and sound intermediate frequencies, using the inter-carrier sound system. Power is supplied to the receiver through a switch ganged to the Picture control. The audio sound and picture brightness levels are established by the Volume and Brightness controls respectively. Picture brilliance is set by adjustment of the pld cons. The Vertical and Horizontal horizontal and vertical components of the the ture. Other picture adjustments which are normally made by the operator are located on the rear of the receiver chassis.

\section*{POWER SUPPLY}

All models operate from a 105-125 volts 60 cycle AC source unless otherwise specified. Power consumption is 200 watts.
FREQUENCY RANGE
Channels 2 through 13. For specific channel frequencies see table on page 2 .

\section*{ANTENNA EQUIPMENT}

A dual antenna input is provided on the receiver o accommodate either 72 -ohm shielded type lead in or 300 -ohm ribbon type lead-in. The cabinet antenna lead, normally shipped connected to the 300 -ohm terminals, must be disconnected if an outside antenna lead-in is connected. When connecting the antenna lead-in, connect the 72 -ohm "72 \(\Omega\) " type lead-in to the terminals marked " \(72 \Omega\) " or connect the 300 - ohm ribbon type

\section*{SPECIFICATIONS}
lead-in to the terminals marked "300 \(\Omega\)." Note that the shield braid on the shielded type leadin must be connected to the terminal marked "GND". When 72 -ohm shielded type lead-in is used, the two red coded leads at the back of the cabinet must be connected to the " 300 " terminals. When connecting 300 -ohm balanced type lead-in, either wire may be connected to either 300 -ohm
terminal without affecting the quality of reception.

TUBES (21, including rectifiers)

television channel vs Carrier and i-f amplifier frequencies
\begin{tabular}{cccccccc}
\hline \begin{tabular}{c}
Channel \\
No.
\end{tabular} & \begin{tabular}{c}
Channel \\
Freq. (mc)
\end{tabular} & \begin{tabular}{c}
Picture \\
Carrier \\
Freq. (mc)
\end{tabular} & \begin{tabular}{c}
Sound \\
Carrieq. \\
Freq.
\end{tabular} & \begin{tabular}{c}
Receiver \\
Osc. \\
Freq. (mc)
\end{tabular} & \begin{tabular}{c}
Picture \\
IF \\
Freq. (mc)
\end{tabular} & \begin{tabular}{c}
Sound \\
IF \\
Freq. (mc)
\end{tabular} & \begin{tabular}{c}
Picture IF \\
less \\
Sound IF (mc)
\end{tabular} \\
\hline 2 & \(54-60\) & 55.25 & 59.75 & 81.5 & 26.25 & 21.75 & 4.5 \\
3 & \(60-66\) & 61.25 & 65.75 & 87.5 & 26.25 & 21.75 & 4.5 \\
4 & \(66-72\) & 67.25 & 71.75 & 93.5 & 26.25 & 21.75 & 4.5 \\
5 & \(76-82\) & 77.25 & 81.75 & 103.5 & 26.25 & 21.75 & 4.5 \\
6 & \(82-88\) & 83.25 & 87.75 & 109.5 & 26.25 & 21.75 & 4.5 \\
7 & \(174-180\) & 175.25 & 179.75 & 201.5 & 26.25 & 21.75 & 4.5 \\
8 & \(180-186\) & 181.25 & 185.75 & 207.5 & 26.25 & 21.75 & 4.5 \\
9 & \(186-192\) & 187.25 & 191.75 & 213.5 & 26.25 & 21.75 & 4.5 \\
10 & \(192-198\) & 193.25 & 197.75 & 219.5 & 26.25 & 21.75 & 4.5 \\
11 & \(198-204\) & 199.25 & 203.75 & 225.5 & 26.25 & 21.75 & 4.5 \\
12 & \(204-210\) & 205.25 & 209.75 & 231.5 & 26.25 & 21.75 & 4.5 \\
13 & \(210-216\) & 211.25 & 215.75 & 237.5 & 26.25 & 21.75 & 4.5 \\
\hline
\end{tabular}

\section*{CIRCUIT DESCRIPTION}
he 549.100-2 television receiver chassis operates with eighteen tubes plus one high voltage rectifier, one low voltage rectifier and one 16RP4 rectangular picture tube. The operating controls as viewed from the front left to right are the vertical \& horizontal hold (dual), power, switch \& picture, volume \& brightness (dual) and range selector \& station tuning (dual).

For convenience in tracing the circuit, a block diagram of the complete receiver is shown in Fig. 2.

The antenna input circuit of the receiver's tuner is designed to match a 300 -ohm impedance. However, a matching transformer and antenna terminals are provided to permit the use of either 72 -ohm shielded type lead-in or 300 -ohm ribbon type lead-in from an outside anterna system.
ine cabinet antenna system permits satisfactory ocal reception without additional external antenna facilities. It is very important that the cabinet antenna leads be disconnected when an outside antenna system is installed.
combination of the stagger responses in any dhannel appears as shown below:

\subsection*{20.03}

FIG. 5 - TYPICAL OVERALL RESPONSE

The oscillator employs a modified Colpitts circuit with one plate of the \(6 J 6\) tuned by the third section of the variable condenser.
In accordance with Fig. 14, the following tuning elements are brought out at the top of the tuner chassis:

Hi and Lo band antenna band-pass primary
tuning trimmers.
trimmer
Oscillator plate tuning trimmer
The unity coupled, stagger tuned IF amplifier stages amplify both video and sound carriers. At the video detector stage the video intermediis the differies and 4.5 mc beat frequency, which termediate frequency (26.25 mc) and the sound carrier intermediate irequency (21.75) mc), are detected and passed on to the two video amplifier stages. Note that the 4.5 mc beat still contains the FM modulation at this point.
At the second video amplifier plate, the 4.5 mc signal containing the FM carrier is taken off and fed to one stage of IF amplification before being detected at the FM detector stage. The audio requency signal is then fed through one stage of voltage amplification to the power output stage and speaker.
The second video amplifier plate also carries the video signal which is fed to the grid of the picture tube.
Automatic gain control voltage is obtained from the rectified diode current flowing in the video detector stage. This negative voltage which is a function of signal level is applied to the grids of the 1st RF amplifier in the tuner and to the first and second IF amplifier stages to control the over-all gain over large variations in received signal levels.
The synchronizing pulses transmitted by the TV transmitter are carried along through the IF amplifier, video detector and first video amplier stages where they are separated from the video signals by a two stage sync. separator.

The output of the second sync. separator is fed to the vertical and horizontal oscillators through filter networks designed to separate the horizontal and vertical sync. pulses supplied by the TV transmitter.
Vertical synchronizing pulses from the sync. separator are applied to the vertical sweep oscillator to hold this oscillator in step with the scanning equipment at the TV transmitter. The vertical sweep oscillator produces a saw-tooth voltage which is amplified on a second tube and picture tube.

Horizontal synchronizing pulses from the sync separator are fed to the horizontal sweep oscilator stage to control closely the horizontal sweep rate.
The horizontal sweep oscillator stage employs a twin triode tube, one section of which operates as "saw-tooth" oscillator and the other oper as as a frequency controlling device by con trolling the DC bias on the grid of the oscillato section. To exercise control over the frequenc of the sweep oscillator, the control section ewin trioie samplesthe integrated "kick-back" ulsefrom the secondary of the horizontal output ransformer as well as the synchronizing pulse rom the TV transmitter via the sync. separa tor. The results of this sampling action proides control over the horizontal oscillator fre uency for the three possible conditions of nor mal control, sync, too e

The output of the horizontal oscillator stage is amplified by the horizontal amplifier stage and coupled to the horizontal deflection coils of the picture tube by the horizontal output transformpose of matching the output of the horizontal amplifier tube to the horizontal deflectioncoils of the picture tube and supplying high voltage for the second anode potential required by the pic the second
ture tube.
The pulses generated in the transformer windin are rectified by the high voltage rectifier tub separate winding on this transformer.

Focusing is accomplished magnetically by a combination permanent and electro-magnet. The load current of the receiver flows through the focusing control and focus coil winding such that the smount of the coin current is coil contains a permanent magnet, the fields of the permanent magnet and focus coil winding must work together, hence the lead coding of the focus coil winding must be observed. Reversing the leads weakens the magnetic field so that focusing is not possible when this condition exists

\section*{PICTURE TUBE INSTALLATION}

\section*{DISMANTLING}

Remove the four front panel control knobs by pulling them straight from their shafts. The dual control knobs must be removed in two pieces, removing the center unit first.
Remove the back cover. Note that the line cord and half of the interlock connector comes along with the back cover.
Unfasten and remove the speaker to clear the picture tube. Remove the wood screws holding the antenna terminal bracket and matching transformer to the cabinet.
Remove the five chassis bolts holding the receiver chassis in the cabinet and slide the entire assembly from the cabinet.

\section*{REMOVING THE PICTURE TUBE}

Read all warning notices on both tube and carton.
Disconnect the picture tube socket at the base of the picture tube.
Slip the ion trap from the neck of the picture tube past the picture tube base connector.
Measure the distance from the front edge of the steel band or front edge of the chassis apron to the face of the picture tube. Keep this dimension handy for the installation of the new tube.
Remove the steel band at the front rim of the picture tube and carefully slip the neck of the picture Remove the sta tube out of the focus the trouble. Do no use force.

\section*{INSTALLING THE PICTURE TUBE}

Wrap the dust seal around the front rim of the picture tube and position the tube so that the anode Wrapt is located on the left as viewed from the screen
Slip the neck of the picture tube through the rear support, deflection yoke, and focus coil and seat the tube firmly against the rear support. If it fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.
Check the distance from the face of the tube to the front edge of the steel band or chassis apron as measured above. If the dimension is off; loosen the two rear support mtg. screws, position the tube correctly and fasten the steel band firmly about the rim of the tube. As a second check at this point correctly and fasten the steer bell to slip the chassis into the cabinet to check the installation before proceeding with the remaining adjustments.
Check the rear support. It must seat firmly against the flare of the tube and be securely anchored in place by the two rear support mounting screws. Check the spring contact grounding the outer coating of the picture tube. A high potential is developed on the outer coating of the tube if this contact is faulty.
The deflection yoke must seat firmly against the flare of the picture tube. Check by loosening the single deflection yoke adjusting screw and pushing the deflection yoke forward as far as it will go. ake up the slack in the screw temporarily to hold the coil in place.
Slip the ion trap over the neck of the tube. The arrow points toward the screen of the picture tube. Reconnect the picture tube socket and anode connector.
Make the adjustments outlined under "Television Service Adjustments" before reassembling the chassis in the cabinet.

\section*{TELEVISION SERVICE ADJUSTMENTS}

\section*{ION TRAP MAGNET ADJUSTMENT}

Turn on the receiver and turn up the brightness control. Set the ion trap for maximum raster brillian trap must be rotated about the axis of the tube as well as shifted along the neck of the tube to obtain the proper setting. The arrow on most ion traps points to the second anode connector when properly adjusted, hence a quick initial setting may be made as far as rotation is concerned.

FOCUS AND BRIGHTNESS CONTROL ADJUSTMENT
With the brightness control set for slightly above average brilliance and the picture control full counter-clockwise, adjust the focus control until the line structure of the raster is clearly visible.

FIG. 6.- PICTURE TUBE MOUNTING DETAIL
Readjust the ion trap, if necessary, for maximum raster brilliance. The final touches on the focus entron the control adjustment should be made with the brightness control the brightness control until the white; wide spaced, retrace lines just disappear.

\section*{DEFLECTION YOKE ADJUSTMENT}

If the lines of the raster are not horizontal or square with the escutcheon, loosen the deflection yoke adj. screw and rotate the deflection yoke until this condition is obtained. Tighten the adjustment screw.

\section*{PICTURE ADJUSTMENTS}

A test pattern is desirable when making the following adjustments. Maintain normal picture contrast and brilliance when making these adjustments.

\section*{FOCUS COIL ADJUSTMENT}

Check the position and appearance of the test pattern. If the test pattern is off center or shadowed at the corners (electron beam striking the neck of the tube) set the horizontal centering control in the隹 raster. Note that the three spring loaded adjustment screws tilt the focus coil to shift the position of the raster on the face of the picture tube. Do not turn all three screws up tight, use them to tilt the focus coil only.
It is not necessary to tilt the focus coil excessively. Excessive tilt may snap the neck of the picture tube if sufficient force is used. The focus coil may be shifted around the axis of the picture tube, if necessary, by loosening the two knurled nuts holding the coil to the mounting plate. The position of解 one. Tighten the nuts aster ach coil position each time.
A slight adjustment of the ion trap while making the focus coil adjustments may be found effective in obtaining the desired results.

\section*{HORIZONTAL OSCILLATOR ADJUSTMENT}

Check the action of the horizontal hold control on the front panel. If the control is excessively off center when sync. is established or fails to sync. at all, the horizontal oscillator transformer (See Fig. 9) requires adjustment.
To reset the horizontal transformer, set the horizontal hold control in the center of its range, tune in TV station and sync, the picture by adjusting the bottom screw adjustment on the horizontal oscillator transformer. Note that the TV station must be carefully tuned for best picture when making this adjustment.
heck the horizontal hold control action on all TV channels and touch up the oscillator transformer adjustment if necessary.
NOTE: The top screw adjustment on the horizontal oscillator transformer has been arbitrarily set at its top limit. This adjustment should not be disturbed unless it is obvious that the adjustment has been tampered with. If this screw has been turned, reset it to the top limit of its travel

2261021

\section*{HORIZONTAL DRIVE ADJUSTMENT}

Advance the HORIZONTAL DRIVE control (Fig. 7) as far as possible without causing fold over of the test pattern. (Vertical white line.) Insufficient horizontal drive will cause low second anode voltage with consequent loss of picture brilliance.

HORIZONTAL LINEARITY ADJUSTMENT
Set the HORIZONTAL LINEARITY control for a symmetrical pattern from left to right. A slight readjustment of the HORIZONTAL CENTERING control may be necessary when making this adjustment.

\section*{WIDTH ADJUSTMENT}

Set the WIDTH control so that the test pattern fits the horizontal dimension of the picture tube escutcheon. A minor adjustment of the HORIZONTAL CENTERING control may be required to recenter the pattern.

\section*{HEIGHT ADJUSTMENT}

Set the HEIGHT control so that the test pattern fits the vertical dimension of the picture tube escutcheon. A minor adjustment of the focus coil position may be required to recenter the pattern.

VERTICAL LINEARITY ADJUSTMENT
Set the VERTICAL LINEARITY control for a symmetrical test pattern in the vertical dimension. A slight readjustment of the height control may be required when inaking this adjustment.

HORIZONTAL CENTERING ADJUSTMENT
When the picture is not centered horizontally, adjust the HORIZONTAL CENTERING control until the picture is centered left to right. Slight readjustment of the WIDTH control may be necessary.

\section*{FOCUS}

Carefully adjust the receiver for best picture definition and set the picture and brightness controis for normal picture brilliance. Adjust the FOCUS control for maximum picture definition watching the wedges of the test pattern. An alternate method for focusing consists of switching to an unused TV channel and with the brightness control turned up so that the raster is illuminated, set the focus control ior well defined scanning lines.

RESTRINGING CONDENSER PULLEY DRIVE
Wrap drive cord assembly 1-1/2 turns on drive pulley (Fig. 8) and slip other end over pulley on rotor shaft, keeping prong clip in center of slot, hook one end of spring over cord, and the other end over tab on pulley.

\section*{RESTRINGING POINTER PULLEY DRIVE}
ith condenser at maximum capacity and hole in pointer sleeve pulley in position shown, press prong clip on pointer cord assembly into hole and wrap end of loop around end of condenser rotor shaf (Fig. 8.) making certain that cord is seated in groove in rotor shaft. Loop loose end of cord assembly ver anti-backlash pulley as shown. Apply a drop of "Duco" household cement over cord seated groove in rotor shaft to prevent cord from slipping.

\section*{}

If pointer cord breaks, it may be necessary to reset the pointer sleeve ferrule after restringing, in order to maintain coincidence of pointer and dial escutcheon.
1. Tune unit to channel 13 (station or signal generator).
2. Unsolder pointer sleeve ferrule and rotate until pointer registers on number 13 of dia escutcheon
3. Solder pointer sleeve extension to pointer sleeve (Fig. 8.)

\section*{TELEVISION ALIGNMENT PROCEDURE}

PRELIMINARY
This dlignment is an exacting procedure and should be undertaken only when necessary. Before fully deciding that alignment is necessary and before removing the chassis from the customer's house
1. Be sure of the antenna installation.
2. Check all operating controls and adjustments including the station tuning control.
3. Check reception on all channels
4. Check tubes by substitution of known good tubes.

In the repair shop.
5. Substitute a known good picture tube
6. If picture definition is still inadequate, observe the overall IF response curve of the receiver.

\section*{TEST EQUIPMENT REQUIRED FOR IF ALIGNMENT}

Signal generator covering 4 mc to 30 mc .
Electronic voltmeter.

\section*{TEST EQUIPMENT REQUIRED FOR TUNER ALIGNMENT}
\[
\begin{aligned}
& \text { Sweep Generator } \\
& \text { Oscilloscope } \\
& \text { Electronic Voltmeter } \\
& \text { RF Marker Generator }
\end{aligned}
\]

Pix IF Marker Generato
Bias Supply \(2-1.5\) volt Dry Cells IN-34 Crystal Detector (See Fig. 11.).

\section*{SPECIFICATIONS FOR TUNER TEST EQUIPMENT}

Sweep Generator similar to RCA type WR59A, covering frequencies of 54 to 88 Mc , and 174 to 216 Mc with a minimum sweep of 10 Mc in any channel, and a 300 -ohm balanced output at least 0.1 volt line to line.

Oscilloscope equivalent in vertical deflection sensitivity to Dumont type 208-B.
Electronic voltmeter similar to Voltohmyst.
RF marker generator similar to RCA type WR-39-A.
Pix IF marker generator may be a crystal controlled oscillator in vicinity of 26.25 Mc . As alter nates, either a second WR-39-A or an all wave signal generator of suitable accuracy may be used to supply a picture IF marker.

\section*{FM SOUND CHANNEL I-F AMP. ALIGNME NT}
1. Connect the low frequency signal generator output across resistor \(\mathrm{R}-118\) in the plate circuit of 12AU7 VIDEO DET. tube (V-104). This resistor is located at the terminal strip near the tube socket
2. Connect the electronic voltmeter between pin 7 of the 6AL5 FM DET. tube (V-109) and chassis ground.
3. With the signal generator (unmodulated) set at 4.5 mc . set the 4.5 MC LIMITER GRID ADJ (Top side of chassis) and FM DET PRI. ADJ. (Under side of chassis) (See Fig. 9) for maximum d-c voltage as measured by the electronic voltmeter. Adjust the limiter grid transformer (T-105) before adjusting the \(\mathrm{f}-\mathrm{m}\) detector transformer (\(\mathrm{T}-108\)) primary. Use just enough signal generator output t abtain approximately one volt at the electronic voltmeter.
4. Connect the electronic voltmeter across the 1000 mmf condenser (\(\mathrm{C}-135\)) at the output of the \(\mathrm{f}-\mathrm{m}\) detector stage and adjust the FM DET. SEC. ADJ. (top side of chassis) of the \(\mathrm{f}-\mathrm{m}\) detector transformer (T-108) for the null.
5. Shift the frequency of the signal generator either side of the 4.5 mc and touch up the FM DET PRI. ADJ. (under side of chassis) for approximately equal peaks. Use just enough signal generator output to obtain one volt peaks for the best results.
6. After completing the alignment procedure and placing the receiver in operation again, carefully tune in a TV test pattern and adjust the 4.5 MC TRAP ADJ. for maximum vertical wedge definition This adjustment is located on the under side of the chassis and on the same coil form as the 4.5 MC LIMITER GRID ADJ. shown in Fig. 9.

NOTE - The primary adjustment of T-108, the coarse frequency adjustment of T-111 and the 4.5 mc trap adjustment may all be made through the plugged holes in the cabinet bottom if desired.

FIG. 9 - TOP VIEW - ALIGNMENT POINTS

\section*{I-F AMPLIFIER ALIGNMENT}
1. Connect the electronic voltmeter across resistor \(\mathrm{R}-118\) in the plate circuit of the 12 A VIDEO DET. tube (\(\mathrm{V}-104\)). This resistor is located on the terminal strip near the tube socket.
2. Couple the high side of the signal generator to the MIXER tube (V-3) by removing its shield and slipping a tight fitting tube shield or length of copper braid over the bulb of the tube and connecting the generator lead to it. Connect the ground side of the signal generator to the frame of the tuning unit
3. Position the station tuning control at channel 2
4. Set the signal generator output (unmodulated) to develop one or two volts at the electronic voltmeter and adjust the four i-f amplifier coils, according to the following chart, for maximum de voltage as measured by the electronic voltmeter. Since the first IF stage employs an overcoupled input transformer (\(\mathrm{T}-101\)), it is necessary during the adjustment of this transformer to shunt the winding not being aligned with a 1,000 ohm resistor (i.e. shunt the secondary when aligning the primary and vice-versa). Readjust the signal generator output as required to maintain the two-volt potential at the electronic voltmeter.
\begin{tabular}{ccc}
\hline \begin{tabular}{c}
Signal Generator \\
Frequency \\
(No Modulation)
\end{tabular} & \begin{tabular}{c}
Adjustment \\
(Refer to Fig. 9)
\end{tabular} & \begin{tabular}{c}
Stage \\
Adjusted
\end{tabular} \\
\hline 24.5 mc & 24.5 MC IF ADJ. * & 1st IF amp \\
23.6 mc & 23.6 MC IF ADJ. & 2nd IF amp \\
24.6 mc & 24.6 MC IF ADJ. & 3rd IF amp \\
25.6 mc & \(25.6 \mathrm{MC} \mathrm{IF} \mathrm{ADJ}\). & Video detector \\
\hline
\end{tabular}
* Note - Use 1000 ohm shunt resistor when making this adjustment.

See step 4 above
5. Check the i-f amplifier frequency response by tuning the signal generator from 21 mc through 26.25 mc and observing the change in d-c voltage at the electronic voltmeter. If the signal generator output is set for an electronic voltmeter reading of 1.5 volts at the peak i-f amplifier response, the d-c voltage should not drop below one volt between the two peaks normally obtained with this i-f amplifier. If the response is unsatisfactory, repeat the procedure or try slight modifications of the recommended settings to obtain the desired response. Avoid resonating the coils with the iron core at the bottom end of the coil form. (Adjustment screw near limit of its travel).

If a sweep type signal generator and oscilloscope are available the problem of making the final adjustments will be mucheasier, Check the two carrier i-f responses, 21.75 mc and 26.25 mc . The 21.75 mc response will be approximately 20 db below the peak response (Approx. 0.15 volt) and the 26.25 mc response will fall approximately 6 db below the peak (Approx. 0.4 volt). Refer to Fig. 10.

The average i-f amplifier sensitivity, when feeding the signal generator output through the receiver as described in step 2, will run approx. 2000 to 5000 microvolts for the one volt d-c peak measured at resistor R-118 (receiver's oscillator operating on channel 2).

\section*{FIG. 11 - RECOMMENDED TEST EQUIPMENT CIRCUITS}

Test Equipment Set Up - With reference to Fig. 11, the following precautions should be taken in making the equipment set up.
1. The detector circuit should be so constructed as to maintain leads as short as possible. Con ection of the detector circuit to the 1st IF amplifier grid terminal should also be made with shor leads.
2. Shielded leads should be used in making thr following connections to reduce hum and synhronous voltage pick up.
(a) The lead for observations of the RF response from the scope isolating resistor (10,000 ohms located at the tuner LOOKER POINT) to the RF output switch position of thesscope
(b) The connection from the IF detector circuit output to the IF switch position of the scone switch.
(c) The connection from the sweep generator to the horizontal input of the scope. (Use the externally generated sweep instead of internal oscilloscope sweep in order to obtain synchronization).
3. The single pole double throw SCOPE SWITCH should be located at the vertical input terminals of the scope. This switching arrangement will permit observation of either the IF response or the overall RF response. The aforementioned positions will be referred to in subsequent text as the "IF" and "RF" positions respectively.
4. The marker gencrator coupling condenser should be as small a value as possible to prevent any effect on tuner response, but must be large enough to permit easy obs ivation of markers on either the IF response or overall RF response. (Approximately 2 or 3 mmf should be satisfactory in most cases).
5. For all tests which are outlined in this text, remove the second IF amplifier tube to prevent coupling back from the receiver IF system
6. In all of the following tests the oscilloscope vertical gain should be as close to maximum gain as possible, consistant with hum and synchronous voltage interference limitations. This precaution will allow the use of low levels from the RF sweep generator and increase the visibility of IF and RF markers.
Procedure For Oscillator Alignment
OVERTRAVEL CHART FOR OSCILLATOR COVERAGE
\begin{tabular}{ccl}
Channel No. & Overtravel & RF Overtravel Marker Frequency \\
\hline 13 & +1.5 Mc & Pix carrier \(+1.5 \mathrm{Mc}=212.75 \mathrm{Mc}\) \\
7 & -2.5 Mc & Pix carrier \(-2.5 \mathrm{Mc}=172.75 \mathrm{Mc}\) \\
6 & +1.5 Mc & Pix carrier \(+1.5 \mathrm{Mc}=84.75 \mathrm{Mc}\) \\
2 & -1.0 Mc & Pix carrier \(-1.0 \mathrm{Mc}=54.25 \mathrm{Mc}\)
\end{tabular}

\section*{Etoh Band Osclllator Altenment}
1. Turn range selector of the tuner to the Hi band (counter-clockwise rotation of switch knob), rotate variable condenser to minimum capacity (clockwise rotation of tuning shaft), and adjust sweep generator for channel 13
2. With the scope switch in IF position, adjust scope gain, RF sweep input level, inject required IF picture marker (i.e. 26.25 Mc), and an RF overtravel marker of 212.75 Mc .
3. Adjust OSC. TRIMMER (Fig. 14) so that picture IF marker and 212.75 Mc overtravel markers coincide on the IF response characteristic on the scope
4. Remove the two self tapping screws used for fastening the tuner shield and slide shield off until a point is reached where coils on switch are exposed and accessible.
6. Inject RF overtravel markers of 172.75 Mc .
7. Nith a bakelite alignment tool, adjust the spacing of the turns of the HI BAND OSC. COIL (Fig. 14) so that Pix IF marker and 175.75 Mc markers coincide. Spreading the coils apart will raise the oscillator frequency; squeezing the coils together will lower the frequency. After adjustment, slide shield back into its original position and note any frequency shift of markers. Slide shield off and compensate for the frequency shift by a slight readjustment of the Hi band oscillator coil. Slide hield back into original position and note if markers coincide. If they do not, repeat this process until proper adjustment is made and markers coincide.
8. Repeat steps 1 to 7 inclusive until correct oscillator coverage of entire Hi band is obtained. I. o Band Oscillator Alignment
9. Remove tuner shield completely, turn tuner range selector to Lo band position (clockwise), rotate variable condenser to minimum capacity and adjust sweep generator for channel 6
10. Inject Pix IF marker and RF overtravel marker of 84.75 Mc .
11. With a bakelite alignment tool, adjust LOW BAND OSC. COIL (Fig. 14) so that the Pix IF marker and 84.75 Mc marker coincide.
12. Rotate variable condenser to maximum capacity (counter-clockwise) and adjust sweep genera hannel 2.
13. Inject RF overtravel marker 54.25 Mc .
14. Adjust LOW BAND OSC. SERIES PAD (See Fig. 14) until Pix IF marker and 54.25 Mc marker coincide.
15. Repeat steps 9 to 14 inclusive for satisfactory coverage of entire Lo band.

Procedure For RF Pass Band Alignment

Band RF Pass Bands -
16. Repeat step 1.
17. Replace tuner shield, set scope switch to IF position, and adjust scope gain.
18. Inject a Pix IF marker and a channel 13 Pix RF marker (211.25 Mc).
19. Rotate tuning shaft until Pix IF marker and 211.25 Mc marker coincide on the IF response Do no disturb this setting of the variable condenser for the remainder of alignment of channel 13 RF pass band.
20. Set scope switch to RF, adjust scope gain and turn 1ST RF TRIMMER (Fig. 14) for maximum amplitude of first RF amplifier response in the region of the RF Pix marker.
21. Inject channel 13 sound RF marker (215.75 Mc) and adjust 2ND RF TRIMMER (Fig. 14) for maximum amplitude of second RF amplifier response in the vicinity of the RF sound marker.
22. Repeat steps 20 and 21 until desired pass band is obtained. See Fig. 12 for acceptable KF band pass response shapes.
23. Remove tuner shield as in step 4 and repeat step 5.
24. Set scope switch to IF position, adjust scope gain, and inject required Pix IF marl \(r\) and channel 7 Pix RF marker of 175.25 Mc .
25. Rotate tuning shaft until Pix IF marker and channel 7 RF Pix RF markers coincide in IF response. Do not disturb this setting of the variable condenser for remainder of alignment of channel \(i\) RF pass band.
26. Set scope switch to RF position and with a bakelite alignment tool, adjust 1ST RF HI BAND COIL (Fig. 14) for maximum amplitude of 1 st RF amplifier response in region of the Pix RF marker.
27. Inject a channel 7 RF sound carrier of 179.75 Mc and adjust 2 ND RF HI BAND COIL (Fig. 14) for maximum amplitude of 2 nd RF amplifier response in the region of the sound RF marker.
28. Repeat steps 26 and 27 until desired pass band is obtained, consistent with shapes shown in 29. Repeat steps 16 to 28 inclusive for satisfactory coverage of entire Hi band RF response Lo Band Rp Pass Bands -
30. Repeat step 9 set scope switch to IF position, adjust scope gain, and inject a channel 6 Pix RF marker (83.25 Mc).
31. Rotate tuning shaft until Pix IF marker and 83.25 Mc markers coincide. Do not disturb this setting for remainder of channel 6 RF pass band.
32. Set scope switch to RF position and adjust scope gain.
33. Adjust 1ST RF LO BAND COIL (Fig. 14) for maximum amplitude of 1 st RF amplifier response in the region of channel 6 Pix RF marker.
34. Inject channel 6 sound RF marker of 87.75 Mc and adjust 2ND RF LO BAND COIL (Fig 14) for maximum amplitude of 2 nd RF amplifier response in the region of the LO BAND COIL (Fig. 14) for
35. Repeat step 32 until desired pass band is obtained in accordance with acceptable RF pass bands shown in Fig. 12
36. Rotate variable condenser to maximum capacity (counter-clockwise) and adjust sweep genera tor for channel 2.
37. Set scope switch to IF position, adjust scope gain, and inject a channel 2 Pix RF marker
\((55.25 \mathrm{Mc})\). (55.25 Mc)
38. Rotate tuning shaft until Pix IF markers and 55.25 Mc markers coincide. Do not disturb this variable condenser setting for remainder of alignment of channel 2 RF pass band.
40. Adjust 1 ST RF LO BAND COIL (Fig. 14) for maximum amplitude for 1 st RF amplifier response in region of channel 2 Pix RF marker.
41. Inject channel 2 sound \(R F\) marker (59.75 Mc) and adjust 2ND RF LO BAND COIL (Fig. 14) for maximum amplifier response in region of channel 2 sound RF marker.
42. Repeat step 40 until desired pass band is obtained in accordance with acceptable RF pass band shown in Fig. 12.
43. Repeat steps 30 to 42 inclusive for satisfactory coverage of entire Lo band RF response. Procedure For Antenna Pass Band Alignment -

The band pass antenna stages are normally aligned in the factory for minimum standing waves, with a wide range sweep oscillator and a delay line. The coupling between the primaries and secondairies are carefully adjusted and in general should not be disturbed.

Minor corrections of the primary trimmer tuning may be necessary, if they are accidentally or otherwise varied after leaving the factory. The procedure for resetting antenna primary trimmer outlined be

With scope switch in RF position and equipment set for observation of channel 13 RF pass band (see step 1) turn HI BAND PRIMARY ANT. TRIMMER screw (counter-clockwise) i.e. to a reduced hannel 13 RF pass certain point and thereafter the shape of the response will change as shown in Fig windicase to antenna to be cutting into the RF pass band. Back out the trimmer screw to maximum amplitud nd minimum "cutting-in" position.

MODEL IO2,

\section*{© John F. Rider}

FIG. 13 - EFFECT OF PRIMARY ANTENNA TRIMMER ON RF PASS BAND RESPONSE

Lo Bant Primary Antenna Trimmer Alignment
Procedure for aligning LO BAND PRIMARY ANT. TRIMMER is the same as outlined for Hi band primary antenna trimmer except the tuner should be tuned to channel 6 and adjustment of the Lo band antenna primary trimmer screw should be done while observing the RF response characteristic of channel 6.

Final Caution Note -
Upon completion of tuner alignment, remove crystal detector in 1st IF grid. Replace tuner shield and fastening screws, reinsert 2 nd IF amplifier tube removed at start of alignment, and check performance of receiver with all available local stations.

\section*{Tuner Service Notes}

Oscillator Injection Voltage-The oscillator injection voltage is specified as 2 volts minimum with normal B+ applied and is measured from the LOOKER POINT (Fig. 14) to ground with a Voltohmyst through a 10,000 ohms isolating resistor. In the event of a failure to meet these specifications, it is necessary to replace the 6 J 6 tube

Tube Replacement-If the oscillator tube (6J6) is changed, it may be necessary to realign the tuner o compensate for the difference in tube characteristics. A slight adjustment of the oscillator trimmer (Fig. 14) will correct for any change of tube capacitance. Follow instructions for alignment of Hi Band and Lo Band oscillator alignment. Low oscillator injection voltage will reduce conversion gain with resulting loss in picture sensitivity

If either RF tube is replaced, it may be necessary to realign tuner to compensate for a variation of tube characteristics. A slight adjustment of the RF trimmers (Fig. 14) will compensate for this. Follow. instructions for alignment of Hi Band and Lo Band RF pass band alignment.
Variable Condenser
Do Not Attempt to bend variable condenser plates, as they have been calibrated in the factory on special equipment.

FIG. 14 - LOCATION OF TUNER ALIGNMENT ADJUSTMENTS

NOTE-TWO POSITION RANGE SWTITH (ISU) SHOWN

Voltages show were measuafo with an electronic voltmeter
controls set for normal victure

\(\underset{\substack{v_{1} \\ \text { ninescor } \\ \text { n }}}{ }\)

\section*{6G－9 39Vd＾1 Yつก8ヨOd＇SyシヨS}
（C）John F．Rider

© John F. Rider

\section*{NDEX}

\section*{PAGE the photo below identifies the controls on front of cabinet and shows the function of each control}

\author{
ALIGNMENT INSTRUCTIONS ... 4 TOP VIEW - TUBE LAYOUT. . . 5 \\ SCHEMATIC 6 \\ SPECIFICATIONS 1 \\ TROURLESHATIONS........ 2 TOLTAGE MEASUREMENTS ... 7 WAVEFORMS 8
}

The "Contrast" and "Brightness", controls may be adjusted at any time there is picture or test pattern on the air. Because it is easier to adjust the controls with a test pattern picture, of and sometimes between, the regularly scheduled programs The test pattern, used below to illustrate "Correct Pattern,"
"Too Light Pattern" and "Too Much Con it Pattern" is one telecast by a station for this purpose. Whi ne type of pattern the same - to permit the television owner to ond, its purpose is efore the start of the regular program.

POWER SUPPLY
I.F. CIRCUIT
R.F. STAGE
I.F. STAGES
I.F. FREQ.

ELECTRICAL SPECIFICATIONS 225 Watts
Inter-Carrier Sound
One
"Combined Picture and Sound" and one "Sound" 21.0 M.C. Sound Carrier 25.5 M.C. Video Carrier
4.5 M.C. Inter-Carrier Sound

Channels 2-13, inclusive 3.2 Ohm at 400 Cycles Undistorted 2.2 Watts Maximum 4.0 Watts 00 Ohms Balanced TUNING RANGE VOICE COIL IMPEDANCE POWER OUTPUT

ANTENNA INPUT

\section*{TUBE COMPLEMENT}

1-6AL5 Video Detector Tube
1-6CB6 Video Amplitier Tube
1-6AU6 Sound I.F. Amplifier Tube
ound Detector and \(A\)
Amplifier Tube
1-6K6GT Audio Output Tube
1-12AU7 Sync Separator, D.C. Restorer and Phase Splitter Tube

1-6SN7GT Horizontal Oscillator Tube
1-6BQ6GT Horizonial Output Tube 1-1X2A H.V. Rectifier Tube 1-6W4GT Damper Rectifier Tube 1-6K6GT Vertical Oscillator Tube 1-6S4

GK6GT Vertical Amplifier Tube
6K6GI
1-16RP4
OR
16 KP Power Rectifier Tube
Picture Tube

When picture is TOO LIGHT and/or has retrace lines, adjust BRIGHTNESS CONTROL. A slight readjustment of the Contrast Control may also be necessary. NOTE: When the control is turned to the right, the picture will

\[
\begin{aligned}
& \text { TURN CHANNEL SELECTOR KNOB to desired } \\
& \text { channel. }
\end{aligned}
\]

\footnotetext{
C John F. Rider
}

\section*{SUBJECT: ELIMINATING SEMI-CIRCULAR SHADOW AROUND CORNER OF PATTERN}

REASON: Metal ring inside Focus Magnet shifting position during shipment. REMEDY: I. Adjust the HEX STUD, located to the left of the focus adjustment screw, with a circular motion until semi-circular shadow is eliminated.

NOTE: The HEX STID should be adjusted with a brass, copper, or a nonmagnetic tool.
2. Adjust ION TRAP for maximum brightness.

CAUTION: DO NOT USE ION TRAP TO ELIMINATE SEMI-CIRCULAR SHADOW AROUND CORNER OF PATTERN, IF BY SO DOING THE INTENSITY OF THE RASTER IS DECREASED.

If necessary, after completing the above procedures, re-center picture withh the centering controls on the back of the chassis. DO NOT USE THE HORIZONTAL HOLD CONTROL TO CENTER PICTURE.

SUDJECT: FOLD OVER ON LEFT HAND SIDE OF PICTURE - SHOWING UP AS EITHER A WHTTE POTNTTNG TOWADDS THE CENTER OF THE PICTURE OR A FAINT MILKYWHITE POTNTTNG TOWA ARS THE EXTENDING BETWEEIN THE LEFT HAND EDGE AND CENTER OF THE PICTURE.
WHITE

REASON: Horizontal hold control out of adjustment. The extent of the area covered by fold-over depends upon the setting of the Fiorizontal fiold Control.
REMEDY: 1. Turn the Horizontal Centering Control until the left hand edge of the picture becomes visible.
2. Adjust the HORIZONTAL HOLD CONTROL TO THE POINT WHERE the foldover just disappears. If the extreme top of the picture starts bending or jitter is noticed then adjust HORIZONTAL HOLI CONTROL for minimum foldover with acceptable stability. To find this setting it may be necessary to readjust the HORIZONTAL LOCK CONTROL.
3. Center picture with HORIZONTAL CENTERING CONTROL-DO NOT AT ANY TIME USE THE HORIZONTAL HOLD CONTROL TO CENTER PICTURE.
don't disturb the rear panel controls unnecessarily - if the picture is cood leave them alone.
IMPORTANT: Interference caused by electrical equipment, flashing signs, auto ignition systems, electric razors and medical short-wave diathermy machines may cause white streaks or herringbone bands across the pic-
ture. Aircraft in the immediate vicinity can cause fuctuation in ound volume and picture brightness. Double
images on the screen can be caused by reflections from buildings, mountains. etc. NONE OF THESE DISTURBimages on the screen can be caused by reflections from buildings, mountains. etc. NONE OF THESE DISTURB
ANCES CAN BE ELIMINATED BY ADJUTMENT OF THE FRONT OR REAR CONTROLS. Illustrations of these types of ANCES CAN BE ELIMINATED BY ADJUSTMENT OF THE,"
disturbances are shown in "Interference Patterns"

\section*{

}

\footnotetext{
NOTE: IF PATTERN IS FUZZY, insert a screwdriver (non-magnetic preferably) into the hole in the cap on the cabinet back and adjust FOCUS CONTROL SCREW for sharpest definition.
}

VERTICAL SIZE VERTICAL Linearity

REAR PANEL CONTROL ADJUSTMENTS

Normally, after the receiver has been properly installed, only
the front panel controls need be adjusted by the owner. ONLY when the picture is too high or too low or too far to center of the screen, or is egg-shaped or very fuzzy, will it be necessary to adjust one of the rear controls.
If you experience a poor quality television picture, do not im-
mediately assume that the difficulty is in your receiver. The mediately assume that the difficulty is in your receiver. The
cause may be duc to temporary station transmitter difficulties If a poor picture is noticed when a motion picture is being telecast, the difticulty may be due to the quality of the film be-
ing used by the station. Turn the "Channel Selector" knob to ing used by the station. Turn the "Channel Selector kne movie program. If there is no noticeable improvement in the picture. then adjustment of one or mor
the cabinet may be necessary.
Before adjusting any of the rear controls, study the picture you are receiving and compare it with one of the illustrative patterns having similar characteristics. If you find one
similar to the picture you are receiving, ADJUST ONLY THE CONTROL INDICATED AS TIIE ONE TO BE USED to correct that particular type of mis-adjustment.
By placing a mirror in front of the cabinet it is possible to ad-
just the required control and still look at the screen while just the required control and still look at the screen while
naking the adjustment. Turn the proper control slowly to the right or left until the picture is centered on the screen, stops
rolling, becomes clear, etc.

\section*{SERVICE NOTES}

\section*{high Voltage warning}

This television receiver contains high voltages which are dangerous to life or may result in serious burns. Never operate or service the receiver outside of the cabinet or with the high voltage shield cover removed until all the safety precau tions necessary for working with high voltage equipment have been observed.

PICTURE TUBE

\section*{HANDLING PRECAUTION}

Shatterproof goggles and heavy gloves must be worn by individuals while handling or installing the picture tube into the receiver. The picture tube encloses a high vacuum and is subjected to excessive air pressure. HANDLE WITH EX TREME CARE-do not strike or scratch the tube nor subject it to more than moderate pressure when inserting into or individual.

CHECKING CHANNEL ADJUSTMENTS
WHILE EACH RECEIVER IS CORRECTLY ALIGNED ing, drift, etc., MAY THROW THE RECEIVER OFF, so we suggest that the proper oscillator trimmers and the discrimina tor secondary adjustment-be checked for correct adjustmen with a transmitted television station pattern, in the customer's ating for one-half to one hour before making these adjustment checks
TO CHECK OSCILLATOR TRIMMER ADJUSTMENTS:
(A) Remove the Channel Switch Knob and Contrast Control Knob. This will expose the Oscillator Trimmer adjustnient screws located around the Channel Selec-

The channel number is marked alongside of each
Oscillator Trimmer adjustment screw.
The extra adjustment screw located above the Channel 13 adjustment screw is to be used only in case there is not enough range to any oscillator adjustment screw
in the Channel 7 to 13 range. If this screw is touched, then all channels from 7 to 13 will have to be rechecked.
(B) Turn receiver Channel Selector Switch to channel on which TV station is transmitting its modulated test trol for best definition of pattern. IMPORTANTThere are 14 rositions on the Channel Selector Switch. The MAXIMUM RIGHT and LEFT positions are NOT USED.
(C) Turn proper Oscillator Trimmer adjustment Screw clockwise until sound appears on pattern-indicated
by bars across pattern and/or the lower vertical lines in pattern becoming wavy-then turn SAME Oscillator Trimmer adjustment screw counter-clockwise just
to the point where the sound bars and/or wavy lines in pattern disappear.

IF STATION BUZZ is excessive and is NOT DUE to "Contrast" control being too far advanced in clockwise direction adjust Discriminator Secondary adjustment screw for MINIMUM buzz. MAKE SURE THAT THIS POSITION IS BEwhen adjusting screw is turned to the right and left of the MINIMUM buzz position. This screw is located on top of the Discriminator Coil Shield Can which is mounted between 6 TB

RADIO FREQUENCY RANGES
\begin{tabular}{|c|c|c|c|}
\hline Channel
Number & \[
\begin{aligned}
& \text { Channel } \\
& \text { Freq. (Mc) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Picture Carrier } \\
& \text { Freq. (Mc) }
\end{aligned}
\] & \begin{tabular}{l}
Sound Carrier \\
Freq. (Mc)
\end{tabular} \\
\hline 2 & 54-60 & 55.25 & 59.75 \\
\hline 3 & 60-66 & 61.25 & 65.75 \\
\hline 4 & 66-72 & 67.25 & 71.25 \\
\hline 5 & 76-82 & 77.25 & 81.75 \\
\hline 6 & \(82-88\) & 83.25 & 87.75 \\
\hline 7 & 174-180 & 175.25 & 179.75 \\
\hline 8 & 180-186 & 181.25 & 185.75 \\
\hline 9 & 186-192 & 187.25 & 191.75 \\
\hline 10 & 192-198 & 193.25 & 197.75 \\
\hline 11 & 198-204 & 199.25 & 203.75 \\
\hline 12 & 204-210 & 205.25 & 209.75 \\
\hline 13 & 210-216 & 211.25 & 215.75 \\
\hline
\end{tabular}

FIG. I
MODELS IU420, 1U423,

\section*{ALIGNMENT TABLE}

Required equipment:
VACUUM TUBE VOLTMETER having a 5 volt and a 10 volt range.

SIGNAL GENERATOR supplying 4.5 M.C. (within \(.25 \%\)), 20 to 30 M.C. and 50 to 216 M.C. (within \(1 \%\)) signals.
MODULATOR TUBE ADAPTER (Part No. AD6AG5) using \(1 / 2\) volt battery as shown in Figure 7.
DISCRIMINATOR AND SOUND I-F ALIGNMEN
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Stop } \\
& \text { No. }
\end{aligned}
\] & Connect Signal Generatorto & Signal Gen. Freq. MC & Connect Sweep Generotor to & Sweep Gen Freq. MC & \[
\begin{gathered}
\text { Connect } \\
\text { Oscilloscope to }
\end{gathered}
\] & \[
\begin{gathered}
\text { Connect } \\
\text { Voltmeter to }
\end{gathered}
\] \\
\hline 1 & In series with .01 Mfd . to junction of L-5 and C-20. See Fig. 5 & 4.5 & Not used & & Not used & \begin{tabular}{l}
In series with 47,000 ohm resistor and across \\
C-39. See Fig. 5
\end{tabular} \\
\hline 2 & In series with .01 Mfd . to junction of L-5 and C-20. See Fig. 5 & 4.5 & Not used & & Not used & Center of R-14 and R-23 and to tie lug strip end of R-33. See Fig. 5 \\
\hline
\end{tabular}

SWEEP GENERATOR capable of covering 20 to 30 M.C. and 50 to 216 M.C. with a 10 M.C. sweep. 4.5 VOLT "A" BATTERY to provide fixed bias during video I.F. alignment.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Miscellaneous Connections \\
and Instructions
\end{tabular} & \multicolumn{1}{c|}{ Adiust } \\
\hline \begin{tabular}{c}
Meter on 5 volt scale and \\
maintain 3 volt reading
\end{tabular} & \begin{tabular}{c}
T-6 (top) and T-7 (bot- \\
tom) for max. on meter. \\
See Figs. 4 and 5
\end{tabular} \\
\hline Meter on 10 volt scale & \begin{tabular}{c}
T.7 (top) for zero on \\
meter. See Fig. 4
\end{tabular} \\
\hline
\end{tabular}

Adiust
T-6 (top) and T-7 (botSee Figs. on meter. -7 (top) for zero on meter. See Fig. 4

PICTURE I.F. RESPONSE CURVE WITH PICTURE AND SOUND CARRIER MARKER PIPS.

FIG. 3

NOTE I: For minimum buzz always adjust T-7 adjustment screw with the sound carrier of a TV station.

PICTURE OVERALL RESPONSE CURVE WITH PICTURE AND SOUND CARRIER MARKER PIPS.

FIG. 2

\section*{ALIGNMENT CURVES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Step } \\
& \text { No. }
\end{aligned}
\] & Connect Signal Generator to & Signal Gen. Freq. MC & Connect Sweep Generotor to & Sweep Gen. Channel & Connect
Oscilloscope to & \[
\begin{gathered}
\text { Connect } \\
\text { Volimeter to } \\
\hline
\end{gathered}
\] \\
\hline 3 & Adapter and connect adapter to pin \#l on Mod. Tube. See Fig. 7 & 25.75 & Not used & & Not used & In series with 47,000 ohm resistor and across R-43 diode load. See Fig. 5. Contrast controi at minimum position. \\
\hline 4 & Adapter and connect adapter to pin \#l on Mod. Tube. See Fig. 7 & 24.9 & Not used & & Not used & In series with 47,000 ohm resistor and across R.43 diode load. See Fig. 5. Contrast control at minimum position. \\
\hline 5 & Adapter and connect adapter to pin \(\# 1\) on Mod. Tube. See Fig. 7 & 23.4 & Not used & & Not used & In series with 47,000 ohm resistor and across R-43 diode load. See Fig. 5. Contrast control at minimum position. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Miscellaneous Cannections and Instructions & Adiust \\
\hline Connect a 4.5 volt battery, positive side to ground, across C. 44. & T-5 for maximum read. ing. See Fig. 4 \\
\hline \multicolumn{2}{|l|}{Meter on 5 volt scale and maintain 1 volt reading.} \\
\hline Connect a 4.5 volt battery, positive side to ground, across C. 44. & T-3 for maximum reading. See Fig. 4 \\
\hline \multicolumn{2}{|l|}{Meter on 5 volt scale and maintain 1 volt reading.} \\
\hline Connect a 4.5 volt battery, positive side to ground, across C-44. & T- 4 and T-2 for maximum reading. See Fig. 4 \\
\hline Meter on 5 volt scale and maintain I volt reading. & \\
\hline
\end{tabular}

NOTE 2: For visual check of I.F. curve (see fig. 3) connect Sweep Generator to adapter and Oscilloscope across R-43.
PICTURE R-F OSCILLATOR ADJUSTMENT - VISUAL
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Step & Connect Signal Generator to & Signal Gen. Freq. MC & Connect Sweep Generator to & Sweep Gen. Channel & \[
\begin{gathered}
\text { Connect } \\
\text { Oscilloscope to }
\end{gathered}
\] & Connect Voltmeter to \\
\hline 6 & Loosely couple to sweep Gen. leads & \[
\begin{gathered}
55.25 \text { see } \\
\text { fig. I }
\end{gathered}
\] & 300 ohm ant. terminals & 2 & Accoss R-43 diode load. See Fig. 5 & Not used \\
\hline 7 & Loosely couple to sweep Gen. leads & \[
59.75 \text { see }
\] fig. 1 & 300 ohm ant. terminals & 2 & Across R-43 diode load. See Fig. 5 & Not used \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Miscelloneous Connections
and Instructions & Adiust \\
\hline Channel switch on channel 2 Adjust Sig. Gen. output for min. distortion of sweep curve & \#2 rimmer(fig. 6) so that marker pip is \(6 \mathrm{DB}(50 \%)\) down from top of curve. See Fig. 2 \\
\hline Check pip. Should be 26DB (\(95 \%\)) down on opposite side of curve. See Fig. 2 & Repeat step 5 if pip position is not correct \\
\hline
\end{tabular}

NOTE 3: This trimmer (see fig. 6) is to be used only in case there is not enough range to any oscillator screw from channels 7 to 13 . If this screw is touched, then all channels from 7 to 13 will have to be rechecked. If insufficient range is still encountered, proceed as outlined in Note 4
NOTE 4: Oscillator Padder adjustment screw (see fig. 6) should be used when there is not enough range to any one oscillator trimmer. Adjusting the Padder will necessitate
the realignment of all the Oscillator Trimmers.
PICTURE R-F OSCILLATOR ADJUSTMENT - ALTERNATE (USING T.V. STATION TEST PATTERN)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Step
No. & Connect Signal Generator to & Signal Gen. Freq. MC & Connect Sweep Generator fo & Sweep Gen Freq. MC & \[
\begin{gathered}
\text { Connect } \\
\text { Oscilloscope to } \\
\hline
\end{gathered}
\] & Connect
Voltmeter to & Miscelloneaus Connections and Instructions & Adiust \\
\hline 9 & Not used & & Not used & & Not used & Not used & Turn channel switch to channel needing alignment & Proper osc. trimmer clockwise until sound bars appear on pattern; then lack-off trimmer until sound bars disappear and best resolution is obtained. See Fig. 6 \\
\hline 10 & \multicolumn{5}{|l|}{REPEAT STEP 9 FOR ANY OTHER CHANNELS NEEDING ALIGNMENT} & & & \\
\hline
\end{tabular}

\section*{PARTS LIST}
R.F. TUNER UNIT
\(20 E 519\) Complete Tuner-Using R.F. Amp. Tube, Mod. Tube \& Osc. Tube-

\section*{RESISTORS}

Carbon, 1000 Ohm Carbon, \(10,000 \mathrm{Ohm}\) ..Carbon, \(82,000 \mathrm{Ohm}\) Carbon, 82,000 Ohm Carbon, 6800 Ohm Carbon, 4700 Ohm Carbon, 1 Megohm Carbon, \(33,000 \mathrm{Ohm}\) Carbon, \(18,000 \mathrm{Ohm}\) TRANSFORMERS R.R. Choke Filament Transformer, Antenn

\section*{MAIN CHASSIS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \({ }_{\text {Part }}^{\text {Our }}\) No. & escription & Ho. & Part No. & description \\
\hline & & CAPACITORS & C.54 & 23 E2012 & Fixed Ceramic, . 001 MFD 500 V . \\
\hline C. 18 & 23E2027-2 & Fixed Ceramic, 100 MMF 500 V . & C-55 & \(23 E 4\) & Tubular, 05 MFD 400 V . \\
\hline C-19 & 23 E25 & Fixed Ceramic, 10 MMF 500 V . & C.56 & 23E2030-11 & Fixed Ceramic, 56 MMF 1000 V . \\
\hline C-20 & 23E2I & Fixed Ceramic. 2 MMF 500 V . & C-5 & 23 E222 & Tubular, 25 MFD 200 V . \\
\hline C-21 & \(23 E 413\) & Tubular, 02 MFD 400 V . & C-5 & 23E2030-3 & Fixed Ceramic, 250 MMF 500 V \\
\hline C-22 & 23E216 & Tubular, . 05 MFD 200 V . & C.61 & 23 E616 & Tubular, 05 MFD 600 V . \\
\hline C-23 & \(23 E 608\) & Tubular, 005 MFD 600 V .. & C. 62 & 23E206 & Tubular, 003 MFD 200 V . \\
\hline -24 & 23E2027-2 & Fixed Ceramic. 100 MMF 500 V . & C. 63 & \(23 E 86\) & Fixed Silver Mica, . 004 MFD \\
\hline C-25 & 23E2027-2 & Fixed Ceramic, 100 MMF 500 V . & C-64 & \(24 E 16\) & Padder, 340-460 MMF. \\
\hline C. 26 & 23E2027-2 & Fixed Ceramic, 100 MMF 500 V . & C-65 & \(23 E 416\) & lar, 05 MFD 400 V .. \\
\hline C-27 & 23E208 & Fixed Tubular, 005 MFD 200 V .. & C. 66 & \(23 E 418\) & ular, .I MFD 400 V .. \\
\hline C-28 & \(23 E 13\) & Fixed Ceramic, 3 MMF 500 V . & C. 67 & 23E2 & Tubular, 005 MFD 200 V . \\
\hline C. 29 & 23 E28 & Fixed Ceramic, 5 MMF 500 V... & C-68 & 23E208 & Tubular, 005 MFD 200 V . \\
\hline C-30 & 25EI2 & Dry Electrolytic, 100 MFD 10 V . & C. 69 & 23 2216 & Tubular, 05 MFD 200 V . \\
\hline C.31A & 23E2037 & Fixed Ceramic, Dual . 004 MFD 350 V. (Disc) & C.71 & \(23 E 208\)
\(23 \mathrm{E} / 8\) & Tubular, . 005 MFD 200 V .
Tubular, .I MFD 600 V ... \\
\hline C-32 & 23 E & Fixed Ceramic, 005 MFD 350 V . (Disc) & C.73 & 23E6 18 & Tubular, . 1 MFD 600 V . \\
\hline C. -33 A
\(\mathrm{C}-33 \mathrm{~B}\)
C & 23E2037 & Fixed Ceramic, Dual . 004 MFD 350 V. & C. 74 & \(25 E 50\) & Dry Electrolytic, 1000 MFD 3 V . \\
\hline & & (Disc) & C-75 & 23E2035-3 & Tubular, . 01 MFD 400 V . \\
\hline C-348 & \(23 E 2037\) & Fixed (Dise) & \[
\begin{gathered}
-10 \\
\mathrm{C}
\end{gathered}
\] & 23E2035-3 & Tubular, 01.01 MFD 400 V......... \\
\hline C-35A & 23 E2037 & Fixed Ceramic. Dual . 004 MFD 350 V . & C- & \(25 E 47\) & Dry Electrolytic, 40 MFD 450 V \\
\hline C-358 & \(23 E 2037\) & (Disc) & C. & 25 E47 & Dry Electrolytic, 40 MFD 450 V . \\
\hline \[
\begin{aligned}
& \text { C-36A } \\
& \text { C-368 }
\end{aligned}
\] & \(23 E 2037\) & Fixed Ceramic, Dual . 004 MFD 350 V. (Disc) & C. 80 & 23 E205 & Tubular, 002 MFD 200 V . \\
\hline \[
\begin{aligned}
& \left.\begin{array}{l}
C .37 A \\
C-37 B
\end{array}\right]
\end{aligned}
\] & 23 E2037 & Fixed Ceramic, Dual . 004 MFD 350 V. (Disc) & C.82 & \(25 E 44\) & Dry Electrolytic, 40 MFD 450 V., 50 MFD \(150 \mathrm{~V} ., 100\) MFD 50 V . \\
\hline C. 38 & 23E2025 & Fixed Ceramic, . 005 MFD 350 V . (Disc) & C-83 & 25E36 & Dry Electrolytic, \(40-60\) MFD 450 V . \\
\hline C-39 & 25E8 & Dry Electrolytic, 10 MFD 25 V . & C-84 & 23E216 & Tubular, 05 MFD 200 V . \\
\hline C. 40 & \(23 \mathrm{E2O12}\) & Fixed Ceramic, . 001 MFD 500 V ... & C-85 & 23E213 & Tubular, 02 MFD 200 V . \\
\hline C. 41 & 23E216 & Tubular, 05 MFD 200 》... & C. 86 & 23E213 & Tubular, 02 MFD 200 V . \\
\hline C. 42 & 23 E 2025 & Fixed Ceramic, . 005 MFD 350 V. (Disc) & C-87 & \(23 E 414\) & Tubular, 03 MFD 400 V . \\
\hline C.43 & 23 E 2025 & Fixed Ceramic, . 005 MFD 350 V . (Disc) & C.88 & \(23 \mathrm{E} / 8\) & Tubular, 11 MFD 600 V . \\
\hline C. 44 & 23E226 & Tubular, 1.0 MFD 200 y . & C. 89 & \(23 E 616\) & Tubular, . 05 MFD 600 V . \\
\hline C. 45 & \(23 E 418\) & Tubular, .I MFD 400 V . & & & \\
\hline C-46 & 23 E2012 & Fixed Ceramic, . 001 MFD 500 V . & & & RESISTORS \\
\hline C. 47 & 23 E205 & Tubular, 002 MFD 200 V . & R-12 & 27E101-2 & Carbon, \(100 \mathrm{Ohm} \mathrm{l} / 2 \mathrm{~W}\). \\
\hline C.48 & 23 E2012 & Fixed Ceramic, . 001 MFD 500 V . & R-13 & 27E334-2 & Carbon, 330,000 Ohm l/ 2 W . \\
\hline C-50 & 23E211 & Tubuiar, 01 OL MFD 200 V . & R-14 & 27E682-2 & Carbon, 6800 Ohm l/ \(/ 2 \mathrm{~W}\). \\
\hline C.51 & 23E2030-4 & Fixed Ceramic, 400 MMF 500 V . & R-15 & 27E224-2 & Carbon, \(220.000 \mathrm{Ohm} \mathrm{1/2} \mathrm{W}\). \\
\hline C.52 & 23E2030-9 & Fixed Ceramic, 500 MMF 500 V . & R-17 & 27E101-2 & Carbon, \(100 \mathrm{Ohm} \mathrm{l} / 2 \mathrm{~W}\). \\
\hline C.53 & 23E2039 & Fixed Ceramic, 500 MMF \(20,000 \mathrm{~V}\). & R-18 & 27E101-2 & Carbon, \(100 \mathrm{Ohm} \mathrm{1/2} \mathrm{W}\). \\
\hline
\end{tabular}
© John F. Rider

OJohn F. Rider

Remove knobs on Brightoess and Contrast Dials by pulling
toward you. Remove plate (imprinted with Setchell-Carlson name) toward you. Remove plate (imprinted
This is the TV Adjustment Panel:

All controls turn clockwise and counter-clockwise.
For best results, adjust during test pattern time.
9. HORIZONTAL hOLD-When properly adjusted, picture will come 10. lock-in position from botom, not frome eiither side. Rootate locks in. page. Vertical unearity-Spreads or contracts up purtion of picture. Adjust during test pattern time
12. FOCUS-Betore adjusting focius conerol. set hrightness and contrast to normal onerating condition, then adjunt ior sharpest picture.
13. HEIGHT CONTROL-Varies the overall height of the pirture. Adjust in connection with No., 11 (Vertical linearity) during tert pattern
time. Be sure contering control (rear of chassis) is property adjusted before adjusting height.
14. VERTICAL Hoto-Stups up or down muvement of picture. Runtate
changel selectur off and un station, and adjust for favert lonk-in. channel selectur off and on station, and

\section*{WARNING:}

High voltage in
chassis. Do not touch
anything but col
trols shown here.

\section*{IMPORTANT}

If using the Fine Tuning l.ever materially dituorbs your
picture on any thannel, or if bour wond is note clear, it may he necessary to adjust the fine
cuning. Turn the channcl elec. tuning. Turn the channel selec
tor to the affected thannel. Re nowe the channel selector dial and tine tuning lever hy pulling tward you. Then ren
the channel selector plate.

\(\leftarrow\) This is what you see Turn tine cuning raxl ") left or right until the vernice plate is in the position homn, which
uncevers the adjuament wpening. Place a snaall screw drener
through opening and adjus through opening and adjust
sectew slightly clackwise ur screw shiblyy, dockwise ir cleare CaUTION: 1) NOT TIRN MORE THAN \(11 / 2\)
TIIRNS FITHER WAY. Remove wrew driver and morn tine tuning rod andil
vernier plate is in dored ponivernier plate is in clowed poni-
tion. If picture show, a dight sparkle at thic puint, adpustment is correct. This operation should he repeated for all chan-
nels being used for Telecasting in your locality.

O John F. Rider

TV PAGE 6-4 SETCHELL-CARLSON

IMPORTANT: SATISFACTORY OPERATION OF YOUR MASCO BOOSTER DEPENDS UFON YOUR READING AND FOLLOWING THESE INETRUCTIONS CAREFULLY。
The Masco Sky Chief Booster operates from llo-120 volts, 60 cycles

\section*{INSTALLATION}
1. Remove the antenna lead-in wire from the antenna terminals of your television receiver.
2. Note the pre-tuned length of 300 ohm twin-lead wire wrich is supplied attached to terminals \(A\) and \(B\) (TV Receiver terminals). Connect the unused end of this wire to the antenna terminals of your television set.
If your set uses a 75 ohm coaxial lead-in wire, cut off a threefoot length and connect it to terminals B and C Oi the Booster (connect shield to the grounded terminal C). Remove the length of 300 ohm line supplied.
3. Attach the 300 ohm twin-lead antenna lead-in wire to terminals \(D\) and \(E\) (TV ANTENNA) of your MASCO BOOSTER.
If you have a 75 ohm coaxial lead-in, attach it to terminals \(C\) and \(D\) of the booster. The shield is connected to the ground terminal C.
4. DO NOT ALLOW INPUT AND OUTPUT LEADS TO CROSS.
5. Twist the bare strands of lead-in wire tightly when making connections to avoid shorting between terminals.

\section*{OPERATION}
6. Remove the \(A C\) power cord of your television receiver from the wall receptacle and insert it into the AC receptacle of your MASCO SKY CHIEF TV BOOSTER. Insert the Booster line cord into the wall receptacle.
(Note: The magnetic switching relay in your MASCO Booster is designed to handle the power requirements of TV sets rated at up to 350 watts -- see the manufacturer's label at the rear of the receiver, in models not containing the relay then the continuously clockwise-rotating switch in your Booster turns hoth booster and

TV set on end off. The pilot light next to the switch will glow when the booster and TV set are ON. If your TV receiver uses more than 350 watts, as TV-Radio-Fhonograph consoles sometimes do, plug the AC cord of the TV section only into the Booster receptacle. This plug may be easily located inside the console. In this instance, the \(A C\) power plug of the Booster then is inserted into the socket of the TV section just vacated.

© John F. Rider

© John F. Rider
ALIGNMENT INSTRUCTIONS . .

RADIO FREQUENCY RANGES
\begin{tabular}{c|c|c|c|c}
\hline \begin{tabular}{c}
Channel \\
No.
\end{tabular} & \begin{tabular}{c}
Channel \\
Freq. \\
Mc.
\end{tabular} & \begin{tabular}{c}
Picture \\
Carrier \\
Freq. Mc.
\end{tabular} & \begin{tabular}{c}
Sound \\
Crrrier \\
Freq. Mc.
\end{tabular} & \begin{tabular}{c}
Receiver \\
R.F. Osc. \\
Freq. Mc.
\end{tabular} \\
1 & - & - & - & - \\
2 & 54.60 & 55.26 & 59.75 & 81 \\
3 & 60.66 & 61.25 & 65.75 & 87 \\
4 & 66.72 & 67.25 & 71.75 & 93 \\
5 & 76.82 & 77.25 & 81.75 & 103 \\
6 & 83.88 & 88.25 & 87.75 & 109 \\
7 & \(174-180\) & 175.25 & 179.75 & 201 \\
8 & \(180-186\) & 181.25 & 185.75 & 207 \\
9 & \(186-192\) & 187.25 & 191.75 & 213 \\
10 & \(192-198\) & 193.25 & 197.75 & 219 \\
11 & \(198-204\) & 199.25 & 203.75 & 225 \\
12 & \(204-210\) & 205.25 & 209.75 & 231 \\
13 & \(210-216\) & 211.25 & 215.75 & 237 \\
\hline
\end{tabular}

POWER SUPPLY RATING 115 volts, 60 cycles, 220 watts aUdIo POWER OUTPUT RATING
\begin{tabular}{ll}
Undistorted & 2 watts \\
Maximum & 3 watts
\end{tabular}

PICTURE INTERMEDIATE FREQUENCIES
\begin{tabular}{ll}
Picture Carrier Frequency & 25.75 MC \\
Accompanying Sound Traps & 21.25 MC
\end{tabular}

SOUND INTERMEDIATE FREQUENCIES
Sound Carrier Frequency
Sound Discriminator Width between peaks Fideo Response
Focus Sweep Deflection
Scanning
Horizontal Scanning Frequen
Vertical Scanning Frequency
Frame Frequency Picture Repetition Rate

\section*{\(21-25 \mathrm{MC}\)
350 KC}

To 3 MC
T
mon operating controls (at includig RF and IF
Adjustments)
Horizontal Centering Rear Chassis Adjustment
Vertical Centering
Height
Horizontal Linearity
Vertical Linearity Horizontal Drive
Horizontal Frequency, Fine
Horizontal Oscillato
Frequency Coarse
Horizontal Locking Range
Focus

Focus Coil (or magnet) Ion Trap Magnet Deflection Coil Rear Chassis Adjustment
Top Chassis Screw Driver Adjustment
Rear Chass
Rear Chassis Adjustment Screw Driv Rear Chassis Adjustment Bottom Chassis Screw Driver Adjustment
Rear Chassis
Adjustment Screw Driver Rear Chassis Adjustment (on
early production) early production)
Screw on focus magnet on later
sets
Top Chassis Screw Adjustment Top Chassis Screw Adjustment

\section*{RECEIVER OPERATING INSTRUCTIONS}
The following adjustments are necessary when turning the receiver on for the first time.
1. Turn the receiver \(O N\) and advance the volume control to approximately mid-position.
2. Set the RAPID TUNING to the desired channel
3. Turn the CONTRAST control fully counter clockwise Turn the BRIG, until a faint glow just appears on the Screen. Turn the CONTRAST control approximately threefourths cloc
Adjust the FINE TUNNG control for best sound fidelity
and the Sound control for suitable volume. the patter
. Adjust the VERTICAL hold control until the patter
B. Adjust the HORIZONTAL hold control until the picture apears horizonta
9. Adjust the CONTRAST control for suitable picture contrast.
10. After the receiver has been on for some time it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
2. When the set is turned on again
should not be necessary to repeat the an idle period, it positions of the controls have not been chants if the adjustment is necessary, step number 6 is geneany sufficient.
13.. If the positions of the controls have been changed it may be necessary to repeat steps Number 2 through 9 .

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHET OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS
DO NOT OPEN THE KINESCOPE SHPPING CARTON, IN STALL, REMOVE, OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED KEEP THE KINESCOPE AWAY FROM THE BODY WHILE
ANDLING.
The kinescope bulb encloses a high vacuum and due to its large surface area is subjected to considerable air pressure. For these reasons, kinescopes must be handled with more care than ordinary receiving tubes. The large end of
the kinescope bulb - particularly the rim of the viewing surface - must not be struck, scratched or subjected to more than moderate pressure at any time. In installation, if the tube sticks or fails to slip smoothly through the deHecting yoke, investigate and remove the cause or stallation section for detailed instructions on kinescope installation. All kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carton for possible future use

MODELS TV-116-A, TV-116-B, TV-
117-A, TV-117-B, Ch. CTV-219-A; CTV-215-A.
© John F. Rider

UNPACKING - To unpack the receiver, tear open the carton flaps, pick the receiver up from the bottom of the cabine knobs are packed in a paper bag which is tied to the focus coil mounting bracket inside the cabinet. Remove the bag,
Remove the protective cardboard shield from the 504 G Remove the protective cardboard shield from the 5 U 4 C rectifier. Make sure all tubes are in place and are firmly seated in their sockets.

INSTALLATION OF KINESCOPE - The kinescope second INSTALLATION OF KINESCOPE - The kinescope second
anode contact is a recessed metal well in the side of the anode contact is a recessed metal well in the side of the
bulb. The tube must be installed so that this contact is ap proximately on top. The final orientation of the tube will be determined by the position of the ion trap flags. Looking a
the kinescope gun structure it will be observed that the the kinescope gun structure it will be observed that the
second cylinder from the base inside the glass neck is provided with two small metal flags as shown in Figure 2. The kinescope must be installed so that when looking down on the chassis, the two flags will be seen as shown in Figure 2.

Figure 2. Ion Trap Flags
Slip the ion trap magnet on the neck of the kinescope with the small fingers toward the base of the tube. Connect the kinescope socket to the tube base. Install the control knobs
on the proper control shafts. Determine that the deflection yoke is as far forward as possible. See that the high voltage lead to the kinescope second anode socket

The antenna and power connections should now be made Turn the power switch to the "ON" position, the brightness control fully clockwise and contrast control counter-clock
wise. wise.
ION TRAP MAGNET ADJUSTMENT - The ion trap rear magnet poles should be placed over the ion trap flags as shown in Figure 2. Starting from this position adjust the
magnet by moving it forward or backward at the same time rotating it slightly a round the neck of the kinescope for the ment thumb screw sufficiently to hold it in this position but still free enough to permit further adjustment. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control R129 on the clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.

FOCUS COIL ADJUSTME NTS - Turn the centering controls R152 and R166 to mid position. See Figure 3 for location of these rear apron controls.

It co corner of the raster is shadowed it indicates that the electron beam is striking the neck of the tube. Loosen the rocus coil adjustment nuts and rotate the coil about its vertical and horizontal axes until the entire raster is visible, Tighten the focus coil adjustment nuts with the coil in this position.

Figure 3. Rear Chassis Adjustmen

DEFLECTION YOKE ADJUSTMENT - If the lines of the raster are not horizontal or squared with the picture mask rotate the deflection yoke until this condition is obtained. he yoke adjustment screw.

PICTURE ADJUSTMENT - It will now be necessary to obain a test pattern picture in order to make further adjust ments. See steps 2 through 9 of the receiver operating
-
CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT Turn the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off chan-
nel and then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagona bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull in should occur when the control is position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show from 3-1/2 to 4-1/2 bars sloping downward to the right.

If the receiver passes the abpve checks and the picture is normal and stable the horizontal osciilator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus" adjustment.
ALIGNMENT OF HORIZONTAL OSCILLATOR - If in the above check the receiver failed to hold sync with the hold to hold sync at least 60 degrees of clockwise rotation of the control from the pull in point it will be necessary to make the following adjustments.
If the trimmer has insufficient range, set the trimmer to mid-position (1 turn out from max. capacity) and adjust the T106 horizontal frequency adjustment until this condition is HORIZONTAL horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel and then back.

Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.
If more than \(4-1 / 2\) bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C137A slightly clockwise. If less than \(3-1 / 2\) bars are present adjust C137 slightly counterclockwise.

Turn the picture control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until 3-1/2 to \(4-1 / 2\) bars are present.
Repeat the adjustments under "Horizontal Frequency Adjust ment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment," the oscillator is properly adjusted.
height and vertical linearity adjustments Adjust the height control R168 on chassis rear apron until
the picture fills the mask vertically. Adjust vertical linearity (R177 on rear apron) until the test pattern is symmetical from top to bottom. Adjustment of either control will ering to align the picture with the mask.
MIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS - Vary the horizontal drive trimmer C137B to yield Adjust the horizontal linearity control of L108 for best linearity of the right half of the picture. Adjust horizontal cenering to align the picture with the mask.
FOCUS - Adjust the focus control R192 for maximum definiion of the vertical wedge of the test pattern.

Check to see that all cushion, yoke, focus coil and ion trap magnet thumb screws are tight. Replace the cabinet back rille. Make sure that the back is on tight, otherwise it may rattle at high volume.

CHECK OF R.F. OSCILLATOR ADJUSTMENTS - With a rystal calibrated test oscillator or heterodyne frequency meter, check to see if the receiver of oscillator is adjusted required these should be made by the method outlined in the alignment procedures on Page 8 .

Tune in all available Television Stations. Observe the picre for detail for proper interlacing and for the presence interference or reflections.

RECEIVER LOCATION - The owner should be advised of the mportance of placing the receiver in the proper location in the room.

The location should be chose:
To give easy access for operation and comfortable
To permit convenient connection to the antenna
an electrical outlet
To allow adequate ventilation.

VENTILATION CAUTION - The receiver is provided with adequate ventilation holes in the bottom, sides and back of he cabinet. Care should be taken not to allow these holes
o be covered or ventilation to be impeded in any way.

ANTENNAS - The finest television receiver built may be aid to be only as good as the antenna design and installaantenna, and to use care in its installation. We recommend Amphenol \#114-005 or equivalent, on all twelve television channels. This antenna uses the 300 ohm television transmission line.
In most cases the antenna should not be installed permanerved on a quality of the pic

MODELS TV-116-A, TV-116-B, TV-117-A, TV-117-B, Ch. CTV-219-A CTV-215-A

A temporary transmission line can be run between receiver and the antenna allowing sufficient slack to permit moving the antenna. Then, with a telephone system connecting an observer at the receiver and an assistant at the antenna the antenna can be positioned to give the most satisfactory
results on the receiver signal. A shift of direction or a few eet in antenna position may affect a tremendous difference in picture reception.

REFLECTIONS - Multiple images sometimes known as echoes or ghosts are caused by the signal arriving at the antenna by two or more routes. The second or subsequen image occurs when a signal arrives at the antenna atter severe cases of reflections, even the sound may be distort ed. In less severe cases, reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.
Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extre
sible to eliminate the reflection.
Under certain extremely unusual conditions, it may be possible to rotate or position the antenna so that it received the cleanest picture over a reflected path. If such is the case, may give variable results as the nature of reflecting surfaces may vary with weather conditions. Wet surfaces have been known to have different reflecting characteristics than dry surfaces.

INTERFERENCE - Auto ignition, street cars, electrica machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible the antenn location should be removed as far as possible from high interference. In mounting the antenna care must be taken o keep the antenna rods at least \(1 / 4\) wave length (at least feet) away from other antennas, metal roos, guters or other metal objects.

Short-wave radio transmitting and receiving equipment ma cause interference in the picture in the form of moving ripples. In some instances it may be possible to ena transmission line. However, if the interfering signal is on the same frequency as the television station, a trap will provide no improvement.

WEAK PICTURE - When the installation is near the limit o the area served by the transmitting station, the picture may be speckled, having a snow effect and may not hold steady on the screen. This condition is due to lack of signa strength from the transmitter

INFORMATION REFERENCES - In short, a televisio receiving antenna and its installation must conform to muc national Short Wave and Standard Broadcast signals. For further information on antennas and antenna installation see your dealer.

\section*{SERVICE SUGGESTIONS}
(1) Check or replace horizontal output tube (V18,

Check or replace damper tube (V20, 5V4-G).
(3) Check waveform on grid of V18.
(4) Check linearity coil L1 08 for short circuit.
(5) Check capacitors C157 and C159 for defects.

TRAPEZOIDAL OR NON-SYMMETRICAL RASTER - This condition can be caused by; Defective yoke.
WRINKLES ON LEFT SIDE OF RASTER - This condition can be caused by: Defective yoke due to R101, R151, or C141 These components are mounted in rear of yoke assembly.
SMALL RASTER - This condition can be caused by;
(1) Low plus B or line voltage.
(2) Insufficient output from horizontal output tube V18 (6BG6-G). Replace tube.
RASTER - NO IMAGE, BUT ACCOMPANYING SOUND - This condition can be caused by;
(1) No signal on kinescope grid. Check picture i.f. amplifier tubes V4 (6AG5), V5 (6AG5), V6 (6AG5),
second detector V7A (6AL5) and video amplifier second dete
V8 (12AU7).
(2) Bad contact to kinescope grid. (Lead to socket broken).
SIGNAL APPEARS ON KINESCOPE GRID BUT IMPOSSIBLE TO SYNCHRONIZE THE PICTURE VERTICALLY AND HORIZONTALLY - A condition of this nature can be caused by:
(1) Defective sync amplifier and separator (V14,
(2) If tube is O.K. check voltages, waveforms and associated circuits.
SIGNAL ON KINESCOPE GRID AND HORIZONTAL SYNC ONLY - If this condition is encountered, check:

Vertical integrating network capacitors C148, C151, C152, C154 and resistors R161, R163, R165.
picture stable but with poor resolution - if the picture resolution is not up to standard, it may be caused by picture resolution is
(1) Defective picture detector (V7A 6AL5) or video amplifier (V8, 12AU7)
(2) Open video peaking coil. Check all peaking coils L104, L105, L106, L107) for continuity. Note that L105 and L106 have shunting resistors.
(3) Leakage in V8 grid capacitor C134.

If above components are not found to be defective, check the following:
(1) Check all potentials in video circuits.
(2) Check kinescope grid circuit for poor or dirty contact.
(3) Check adjustment of focus control (R192). It should effective on either side of proper focus.
(4) Check and realign, if necessary, the picture i-f and r-f circuits.
PICTURE SMEAR -
(1) Normally, smear can be attributed to phase shift a the low frequency end of the video characteristic This can be caused by improper values of \(R\) and \(C\) in the video circuits. Check for grid current on
video amplifier tube \(V 8\).
(2) This trouble can originate in either the trans mitter or the receiver. Check reception from another station

PICTURE JITTER
(1) If regular sections at the left of the picture ar displaced, replace the horizontal output tube (V18, 6BG6-G).
(2) Vertical instability may be due to loose connections or noise received with the signal.
(3) Horizontal instability may be due to unstable trans mitted sync or to "noise.

TEST EQUIPMENT - To service this receiver properly, it is recommended that the following test equipment be available.

R-F SWEEP GENERATOR meeting the following requirements.
(a) Frequency ranges

18 to \(30 \mathrm{mc}, 1 \mathrm{mc}\) sweep width 170 to \(225 \mathrm{mc}, 10 \mathrm{mc}\) sweep width
(b) Output adjustable with at least 1 volt maximum.
(c) Output constant on all ranges
(d) Flat output in all attenuator positions.

CATHODE-RAY OSCILLOSCOPE - Preferably one with a wide band vertical deflection and an input calibrating source.

SIGNAL GENERATOR - To provide the following frequencies: utput on these ranges should be adjustable and at least olt maximum.
(a) Intermediate frequencies;
21.25 mc sound i-f and sound trap 22.8 mc converter transiorm
23.9 mc first picture if 24.5 mc third picture i-f coil 26.0 mc second picture i-f primary 27.25 mc second picture i-f secondar
(b) Radio frequencies
\begin{tabular}{ccc}
Channel & \begin{tabular}{c}
Picture \\
Carrier \\
Number
\end{tabular} & \begin{tabular}{c}
Sound \\
Creqrier Mc.
\end{tabular} \\
Freq. Mc.
\end{tabular}

ETERODYNE FREQUENCY METER with crystal calibrato the signal generator is not crystal controlled Lectronic voltmeter of "Junior VoltOhmyst" type號 a high voltage probe for use with this meter to permit
possible the chassis should then be serviced without the kinescope. However, if it is necessary to view the raster during servicing, the kinescope should be carefully mounted. resting in the defle ing allow to suppory its weig to support the tube at its viewing screen.
By turning the chassis on end with the power transforme UP," all adjustments will be made conveniently available cot and is the only safe position in which the chassis wil ocation drawings are orien similarly, the trimmer

AUTION: Do not permit the kinescope second anode lead become shorted to the chassis. To do so will cause R167.
did ADO trimmers will require the attention of the service stable and hence will seldom require adjustment.
the r-f oscillator adjustment is critical receiver operates by a tube change. The trimmers can be adjusted to the proper frequency on channel 6 and channel 10 with prac tically any 6 J 6 tube in the socket.
In replacing, if the old tube can be matched for frequency by rying several new ones, this practice is recommended. At oscillator trimmers completely after changing the tube

The detailed alignment procedure which follows is intended primarily as a discussion of the method used, precaution more convenient reference during alignmaut a Then for the i.f. alignment method is given. All the information nec essary for alignment is given in the table; however, alignment by the table should not be attempted before reading the detailed instructions.

When a complete receiver align ary, it can be most conveniently performe in the following order:

Sound discriminator
Sound \(i\)-f transformers
Picture i-f traps
Picture i-f coils
Picture i-f coils
R-F and converter trinmmer
Retouch picture i-f transformers
Sensitivity check
SOUND DISCRIMINATOR ALIGNMENT - Set the signal gen erator for approximately 1 volt output at 21.25 mc and

Detune T102 secondary (bottom)
Set the "VoltOhmyst" on the 10 volt scale.
Connect the meter in series with a one megohm resistor to the junction of diode resistors R106 and R108.

Adjust the primary of T102 (top) for maximum output on the meter.

MODELS TV-116-A, TV-116-B, TV-\(117-A, T V-117-B\), Ch. CTV-219-A
CTV-215-A

Connect the "VoltOhmyst" to pin 1 of V11 and set on the 3 djust T102 secondary (bottom). It will be found that it is possible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass rom a positive to a negative voltage, the voltage must go meter indicates zero output as the voltage swings from positive to negative. This point will be called discriminator zero output.
Connect the sweep oscillator to the grid of the second sound -f amplifier.
Adjust the sweep band width to approximately 21.25 and with an output of approximately, 1 volt.
Connect the oscilloscope to pin 1 of V11.
The peak to peak bandwidth of the discriminator should be approximately 350 kc . and should be linear from 21.175 mc o 21.325 mc .

SOUND I-F ALIGNMENT - Connect the sweep and signal SOUND I-F ALIGNMENT - Connect the sweep and signal
generator to the top end of the trap winding (on top of chassis).
Connect the oscilloscope to the second sound i-f grid return (terminal A T101) in series with a 33,000 ohm isolating resistor

Connect a 5600 ohm resistor from terminal A T101 to ground. Insert a 21.25 mc marker signal from the signal generator into the first sound i-f grid.
Adjust T101 (top and bottom) for maximum gain and symmetry about 21.25 mc . marker. The band width at \(80 \%\)
response from the first sound i-f grid to the second i-f grid should be approximately 250 kc .
The output level from the sweep should be set to produce grid return when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values, otherwise the re adjustment to pass unnoticed and possibly causing distortion on weak signals.

PICTURE I-F TRAP ADJUSTMENT - Connect the "Volt PICTURE I-F TRAP ADJUSTMENT - Connect the "Volt-
Ohmyst" to the junction of R118 and R120, and adjust the picture control for 3 volts on the meter.
Set the channel switch to channel 13.
Connect the "Voltohmyst" across the picture second detecto load resistor R132 and set it on the 3 volt scale.

Connect the output of the signal generator to pin \#1 of the
6AG5 converter tube. 6AG5 converter tube.
Set the generator to 21.25 mc and check it against a crystal calibrator to insure that the generator is exactly on freAdjust Trap and T105 for minimum indication on the "Volt Ohmyst."
Set the generator to 27.25 mc . and adjust T104 secondary for minimum indication on the "VoltOhmyst."

PICTURE I-F COIL ADJUSTMENTS - Set the Signal generator to each of the following frequencies, and peak the specified adjustment for maximum indication on the "Volt ohmyst."

> 22.8 mc T3 (bottom) \(23.9 \mathrm{mc} \mathrm{L101}\) (top of chassis) \(26.0 \mathrm{mc} \mathrm{L104} \mathrm{(top} \mathrm{of} \mathrm{chassis)}\) \(24.5 \mathrm{mc} \mathrm{L102}\) (top of chassis)

PICTURE I-F OSCILLATION - If the receiver is badly mis aligned and two or more of the i-f coils are tuned to the same frequency, the receiver may fall into i-f oscillation I-F oscillation shows up as a voltage in excess of 3 volts a ed by \(r\)-f signal input and sometimes is independent of pic ture control setting.
If such a condition is encountered it is sometimes possible to stop oscillation by adjusting the coils approximately to L101, T104 and L102 to be approximately equal to those of another receiver known to be in proper alignment. If this does not have the desired effect, it may be possible to stop oscillation by increasing the grid bias. If so, it should be possible to align the coils by the usual method. Once aligned

If the oscillation cannot be stopped in the above manner shunt the grids of the first two i-f amplifiers to ground with 1800 mmf capacitors. Connect the signal generator to the third i-f grid and adjust L 102 to frequency

Remove the shunting capacitor from the second i-f grid, connect the signal generator to this grid and align T104 Remove the shunting capacitor from the first i-f grid, con nect the signal generator and align L101.

Connect the signal generator to pin \#1 of the 6AG5 converter (in the \(r\)-f tuning unit) and align T 3 to frequency.
If this does not stop the oscillation the difficulty is not due to \(i\)-f misalignment as the i-f section is very stable when properly aligned.

Check all i-f by-pass condensers, coil loading resistors, tubes, socket voltages, etc.
R-F AND CONVERTER TRIMMER ADJUSTMENT - Connect the r-f sweep oscillator to the receiver antenna terminals If the sweep oscillator has a 50 ohm single-ended output it will be necessary to obtain balanced output by connecting as shown in Figure 4.

Figure 4. Unbalanced Sweep Cable Terminals Connect the oscilloscope through a 47,000 ohm resistor to Pin 1 of the 6AG5 converter tube.

By-pass the first picture i-f grid to ground through 1000 mmid capacitor.
Keep the leads to this by-pass as short as possible. If this is not done lead resonance may fall in the \(r\) - \(f\) range and Connect the "VoltOhmyst" to the junction of R115 and R116 and adjust the picture control for 3 volts on the meter. Connect the signal generator loosely to the receiver antenna erminals
and adjust the position of the pointer to the arrow on the back side of the dial plate.
Rotate the tuner knob until the pointer is aligned with the " 6 " mark on the back side of the dial plate
Set the sweep oscillator to cover channel 6
Insert markers of channel 6 picture carrier and sound car-
djust the low band converter trimmer and low band R.F. rimmer
Check the response of channels 2 through 5 by first setting
 cilloscope screen.
Rotate the tuner knob until the pointer is aligned with the \(10^{\prime \prime}\) mark on the back side of the dial plate

Set the sweep oscillator to cover channel 10
nsert markers of channel 10 picture carrier and sound
Adjust the high band converter trimmer, and high band R.F. rimmer, for the " \(W\) " shaped response centered about the marker
Check the response of channels \(6,7,9,11,12\) and 13 by djusting the tuner knob until the pattern appears.
Remove the 1000 mmf capacitor from the first picture i-f grid.
R.F. OSCILLATOR TRIMMER ADJUSTMENT - The r-f.osillator may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter or by feeding a sigdjusting the oscillator for zero output from the sound disriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method us
Regardless of which method of oscillator alignment is used, he frequency standard must be crystal controlled or calibrated.
If the receiver oscillator is to be adjusted by the heterodyne requency meter method, the frequencies listed under " \(\mathrm{R}-\mathrm{F}\) Carrier" in the table must be available.
If the receiver oscillator is adjusted by feeding in the \(r\)-f ound carrier signal the frequencies listed under "R-F sound Carrier" must be available.
\begin{tabular}{ccc}
\begin{tabular}{c}
Channel \\
Number
\end{tabular} & \begin{tabular}{c}
Receiver \\
R-F Osc. \\
Freq. Mc.
\end{tabular} & \begin{tabular}{c}
R-F Sound \\
Carrier \\
Freq. Mc.
\end{tabular} \\
2 & 81 & 59.75 \\
3 & 87 & 65.75 \\
4 & 93 & 71.75 \\
4 & 103 & 81.75 \\
5 & 109 & 87.75 \\
6 & 201 & 179.75 \\
7 & 207 & 185.75 \\
8 & 213 & 191.75 \\
9 & 219 & 197.75 \\
10 & 235 & 203.75 \\
11 & 237 & 209.75 \\
12 & 235.75
\end{tabular}

If the heterodyne frequency meter method is used, couple the meter probe loosely to the receiver oscillator.

\section*{ALIGNMENT PROCEDURE}

Connect the signal generator to the receiver antenna terminals.
The order of alignment remains the same regardless of which method is used.

Rotate the tuner knob until the pointer is aligned with the " 6 " mark on the back side of the dial plate.

MODELS TV-116-A, TV-116-B, TV-
M17-AV TV-17, CTV-210-A CTV-215-A
Adjust the frequency standard to the correct frequency (109.0 mc . for signal generator)
Adjust the low ba.ıd oscillator trimmer, C19, for an audible beat on the heterodyne frequency meter of zero voltage cross the discriminator varies + and - as the tuner knob is rotated slightly to either side of the channel 6 position.
Set the frequency standard to the proper frequency for channel 2 as listed in the alignment table.

Rotate the tuner knob toward the channel 2 position and see hat the discriminator voltage goes through zero or that an meter.

Rotate the tuner knob until the pointer is " 10 " mark on the back side of the dial plate

Adjust the high band oscillator trimmer, for an audible beat note on the heterodyne frequency meter or zero volt age from the sound discriminator.

Adjust the frequency standard to the correct frequency \((219.0 \mathrm{mc}\). for the heterody
for the signal generator).

Set the frequency standard to the proper frequency for Set the frequency standard to the prop
channel 7 as listed in the alignment table.

Rotate the tuner knob toward the channel 7 position and see that the discriminator voltage goes through zero or that an audible beat note is heard from the heterodyne frequency meter
Check the tuner coverage of channel 13 following the same

If the receiver is located at the edge of the service area, it should be aligned with approximately -1 volt i-f grid bias
However, for normal conditions, (signals of 1000 microvolts or greater), it is recommended that the picture i-f be aligned with a grid bias of -3 volts. Set the picture control for -3 volts at the junction of R118 and R120

Connect the r-f sweep generator to the receiver antenn terminals.

Connect the signal generator to the antenna terminals and feed in the 25.75 mc . i-f picture carrier marker and a 2 mc. marker.
general procedure as outlined for channel 7 .

RETOUCHING OF PICTURE I-F ADJUSTMENT - The pic ture i-f response curve varies somewhat with the change of
bias and for this reason it should be aligned with approximately the same single input as it will receive in operation.
© John F. Rider

Connect the oscilloscope across the picture detector load resistor, R132.
Set the channel switch to channel (between 1 and 6) found to have the best response during the \(r-f\) and converter trimmer adjustment.
Set the sweep output to produce approximately . 3 volt peak
to peak across the picture detector load resistor.
Observe and analyze the response curve obtained. The response will not be ideal and the i-f adjustments must be retouched in order to obta in the desired curve. In making these adjustments care should be taken that no two trans-
formers are tuned to the same frequency as i-f oscillation may result.
On final adjustment the picture carrier marker must be at approximately \(50 \%\) response. The curve must be approxi-
mately flat topped and with the 23 mc . marker at approximately \(90 \%\) response.
The most important consideration in making the i-f adjustments is to get the picture carrier at the \(50 \%\) response
point. If the picture carrier operates too low on the response curve, loss of low frequency video response, of picture brilliance, of blanking, and of sync may occur. If the picture carrier operates too high on the response curve,
the picture definition is impaired by loss of high frequency video response.
SENSITIVITY CHECK - A comparative sensitivity check can be made by operating the receiver on a weak signal from a
television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.
This weak signal can be obtained by connecting the shop antenna to the receiver through an attenuator pad of the type shown in Figure 5. The number of stages in the pad depends upon the signal strength available at the antenna.
sufficient number of stages should be inserted so that sufficient number of stages should be inserted so that a
somewhat less than normal contrast picture is obtained when the picture control is at the maximum clockwise position.

Figure 5. Attenuator Pad
Only carbon type resistors should be used to construct the attenuator pad. Since many of the low value moulded reresistors generally available are of wire wound construction, is advisable to break and examine one of each type of reistor used in order to determine its construction.
alignment table - Both methods of oscillator alignment are presented in the alignment table. The service echnician may if is found that the dual list ing is confusing quipment. If it is found that the dual his CRTICAL LEAD DRESS
(1) Dress all video coupling capacitors and peaking coi Critical lead dress
(1) Dress all video coupling capacitors and peaking coils up and away from the chassis.
(2) Contact between the R-F Oscillator frequency adjust ment screws and the oscillator coils or channe switch eyelets must be avoided.

If any tuner troubles develop which indicate the need for
realignment, the tuner should be returned to the factory. should be noted that normally replacement of tubes should not necessitate realignment of the tuner.

© John F. Rider

These models use 20 Tubes (Including Picture Tube and Rectifiers) and employ an inter-carrier sound circuit.
The picture Tube in both receivers is the 16 TP4. Both receivers use ratio detector for the sound.
SAFETY PRECAUTIONS: The kinescope should be handled with extreme care. The person handling this tube should wear gloves and protective goggles as an added precaution.
When the poweris connected, care must be taken in servicing the High Voltage Supply of these receivers. The interlock opens one side of the line only leaving one side of the line connected when the back is removed. For servicing with chassis out of the cabinet the interlock-socket can be shorted.
vOLTAGE READINGS: The voltage readings to be obtained at various locations in the receiver have been indicated on the schematic diagram. These voltages will be very advantageous when "trouble shooting. Check voltages, tubes, fuse and the high voltage circuit of the receiver.
All voltages were taken with a 117.5 V . line and with no signal input. The contrast control set at the maximum clockwise Channel 2. All voltages are positive with respect to ground unless otherwise indicated.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{frequency chart} \\
\hline CHNNNEL & \begin{tabular}{l}
CHANEL \\
FREO.MC
\end{tabular} & \[
\begin{aligned}
& \text { PICTURE } \\
& \text { CARRIER } \\
& \text { M.C. }
\end{aligned}
\] & \[
\begin{gathered}
\text { Cown } \\
\text { CARRIER } \\
\text { M.c. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RECEIVER } \\
& \text { RF. OSC. }
\end{aligned}
\]
m.c. & CHNWEL & CHWNEL freq.mic. & PICTURE CARRIER & \[
\begin{gathered}
\text { SONUD } \\
\text { CARRIER } \\
\text { M.C. } \\
\hline
\end{gathered}
\] & \\
\hline \({ }^{2}\) & 54.60 & 55.25 & 59.75 & 81.35 & - & 180.186 & 181.25 & 185.75 & 207.35 \\
\hline 3 & 60.66 & 61.25
88.725 & \({ }^{65.75}\) & \({ }^{87} 98.35\) & 10 & 186.192
192.198
1 & 187.25 & 191.75 & 213.35
2195
21, \\
\hline 5 & \({ }_{76.82}\) & \({ }_{77.25}\) & 81.75 & -103.35 & 11 & (198.204 & 193.25
199.25 & 197.75
203.75 & - \(\begin{aligned} & 219.35 \\ & 225.35\end{aligned}\) \\
\hline \({ }^{6}\) & \({ }^{82} 8.88\) & \({ }^{83.25}\) & 87.75 & 109.35 & 12 & 204.210 & 205.25 & 209.75 & \({ }^{231}\). 35 \\
\hline \multicolumn{10}{|l|}{if. frcu.m.c} \\
\hline (1) & & & 6.1
1.6 & & & & & & \\
\hline
\end{tabular}

FOCUS ADJUSTMENT AND CENTERING
These receivers use a permanent magnet (PM) type of focusing. This focalizer is attached to a plate which nounted behind the Yoke

CENTERING OF PICTURE: The picture may be centered in relationship with the opening of the glass panel at the fac. of the receiver by shifting the brass centering stud at the rear of the focalizer. (See top view of chassis)
FOCUS ADJUSTMENT: (The focus adjustment must be made with a screw-driver of non-magnetic material.) The focus adjustment (the large slotted screw) is located at the rear of the focalizer. The picture focus is adjusted

Main Gan

\title{
COII
}

\section*{Antenna Coil}

Hily Band R.F. Coil
High Band Oscillator Coil
I.F. Coil
I.F. Coil
R.F. Choke Coill - 1.8 Microhenries
\(\begin{array}{cr}\text { T1 } & \text { TRANSFORMERS } \\ \text { T2 } & \text { Antenna Transformer } \\ \text { Low Band Coil Assembin }\end{array}\)
Maln Chassis
schematic location partno. description CONTROIS Control I ayout "A")
 CONTROLS (Control Layout " \(B\) ')

N-8158 (Contrast Control-2500 Ohms)
-8160 (Volume Control withon-off switch- 0.5 Megohm
N-8160 \(\quad\) Brightness Control - 50,000 Ohms
N-8159 Horizontal Hold Control - 50,000 Ohms

WREWOUND RESISTORS
\(\begin{array}{cc}\mathrm{N}-8035 \\ \mathrm{~N}-8036 & 8,200 \text { Ohms } 5.0 \text { Watts } 10^{\prime \prime \prime} \\ 13,000 \text { Ohms } 40 \text { Watts } 7.5 \%\end{array}\)
Carbon resistors

HEIGHT CONTROL (Rear Apron of Chassis) To increase the vertical size of the picture; turn this co
clockwise rotation. To reduce the size of the picture vertically, turn this control clockwise. VERTICAL LINEARITY: (Rear Apron of Chassis) As this knob is turned to the left (counter-clockwise) the size of the
top half of the picture is increased vertically; as it is turned clockwise, it is reduced.
horizontal Linearity: (Top of Chassis - See Layout
side of the picture and moving the slug in decreases the le
moving the slug out of the coil increases the left hand \({ }_{\mathrm{C12}}^{\mathrm{C11}}\)
WIDTH CONTROL: (Top of Chassis - See Layout)
Screw slug in to increase width and out to decrease width. \({ }_{C 18}^{\mathrm{C} 17}\)
HORIZONTAL FREQUENCY: (Top of Chassis - See Layout)
Locate the horizontal hold control (located on \({ }^{2} 2\) front apron) in the center of its rotation. Adjust horizontal frequency screw to the horizontal hold control (icture. When properly adjusted the horizontal hold control should hold in the picture when the picture is turned approximately equal amounts from the
center position.
HORIZONTAL DRIVE: (Screw Driver Adjustment on rear apron of chassis) Turn counter-clockwise to increase drive and clockwise to decrease drive. Drive should be as highas possible without producing a bright vertical line on the
raster.

CAUTION: INSUFFICIENT DRIVE WILL OVERLOAD HORIZONTAL DRIVER (6BQ6GT)
c7,C8,c9,c14

\section*{©John F. Rider}

\section*{INDEX}

Page 1 Model Photo
Page 1 Index for Bulletin 2
Page 1 Unpacking Instructions
Page 1 Electrical \& Mech. Specifications
Page 2 Constructing a Channel Trap
Page 2 Operating Control Positions(Fig 1
Page 3 Circuit Description\& Functional Block -Diagram Fig. 2.
Page 3 Circuit Description Contrd.
Page 4 Circuit Description Cont'd.(Fig. 3)
Page 4 Circuit Description Cont'd(Fig.4)
Page 5 Circuit Description Cont'd.
Page 6 Circuit Description Cont'd.
Page 7 Circuit Description Cont'd.
Page 4 Circuit Description Cont'd.
Page 7 Voltage Test Specifications using Volt Chart, Fig. 5, Page 2-16.

UNPACKING INSTRUCTIONS
observe the following procedure:
The receiver chassis has been blocked and tightened down for shipment
and must be loosened as follows
1. Remove the drive screw that hold the inter-lock plug and the wood screws that fasters the back cover to the cabinet.
2. Remove the wing nut, washer and plate that fastens the focus coil 2. Remove the wing nut, washer ard plate that sast in case re-shipment is necessary).
3. Remove the socket from base of picture tube.
4. Remove Ior Trap from neck of picture tube.
5. Reassemble washer ard wing nut to focus coil, loosen wing nut or opposite side and slip focus coil over neck of picture tube so that slide coil towards yoke assembly until the mounting studs engage the mountirg slots in yoke frame. Assemble coil with dished washers between yoke bracket and focus coil housing.
6. Replace ION trap or neck of tube.
7. Attach socket to pix.tuke base.
8. Loosen the (4) hex-head chassis mounting screws and pull out th shippirg strips. Tighten the (4) mounting screws enough to prevent rattle.
9. Refer to Service Nanual and adiust Ior. Trap and Focus Coil.
10. Tune in a statior and set the horizontal hold control to approximately the Center of its rotation. Adiust the horizontal oscillator coil until the picture is synchrorized horizontally. For detailed. instructions on this adjustment refer to Service Bulletin 2-33, Manual 7.
11. Replace hack cover.
12. This receiver is eouipped with a built-in dipole antenna which is ooked up for operation when shipped from the factory. A label or the hack cover contains instructions for connecting an outside antenna.
13. NOTE: In the event this receiver is to be re-shipped, the chassis must be blocked and tightened down, the focus coil and Ior Trap remove from picture tube neck and fastened in their shipping positions, otherwise the shipper will assume ransit and will stand LIABLE for breakage charges.

ELECTRICAL AND MECHANICAL SPECIFICATIONS
R.F. FREQUENCY RANGE

AUDIO POWER OUTPUT RATING Receiver

Freq.Mc.

\section*{LOUD SPEAKER}

Models 5006X and 5007X Table
5 X 7-Inch Oval Perm. Magnet (3.2 Ohms At 400 Cycles

\section*{PICTURE I.F. FREQUENCIES}

Picture Carrier Frequency............26.25 Mc Ad,jacent Channel Sound Trap.............27.75 Mc Accompanying Sound Traps..............21.75 Mc R.F. Oscillator Trap....................9.9.9 Mic

MODELS 5006X, 5007X Ch. 25TK10A

\section*{© John F. Rider}

© John F. Rider

\section*{CIRCUIT DESCRIPTION}

GENERAL: The following circuit description for Sparton Television Models provides all pertinent information necessary for proper servicing of these receivers. In the
compliatior of this data it is assumed trat the service engineer is familiar with the hasic electronic principles of modern television.

Fig. 2(below) shows a fundamental block diagram breakdown of the receiver circuits The description for these circuits follows in the same order as the blocks appear or the diagram.

13
POWER SUPPLY 5U4G M.V.Rectifier
V 24 6AX5GT L.V. Rect.
circuit with the input capacity of V1 the 6BH6 R.F. amplifier. The inductances of the secondaries of the transformers Tl through T , tuned to channels 2 to 6 respectively are ces L2,LB, and L4 are added in series with within these coils. Incremental inductanT6. T7 and T8, tuned to channels 8 , 10 and 12 respectively, to form the transformers for channels 7, 9, and 11 . Thus the secondary of T6 tuned to channel 8 with an added series inductance L2 forms the tuned circuit for channel 7 and so on with channels 9-10 7 trrough il small secondary of transformer T9 is slug tuned for chanrel 13. On channels of transformers T6 through T9. Ir this way, the effective shunt with the secondaries these coils resonate is decreased, ard the use of larger inductance values is permitted
CONVERTER Each of the inductances L5 through L16 forms a tured pi-network with the irput capacity of the corverter (V2) and the output capacity of V1. These resonarit of V2. Since the oscillator cutput arc the R.F. signal are hoth fed energy to the grid \(\checkmark 2\) the heterodyne products (I.F. frequencies) will appear at the corverter grid of

The inductance of coils L5 through LG, tured to channels 2 through \(\epsilon\) respectively is adjustable hy means of individual slugs placed within these coils. Incremental incuctarces are added to the slug tured coils for channels 8 , 10 and 12 to form tuned

In the plate of the converter there are two tuned curcuits. They are the following FIRST: L32 with C21 forms a paralled resonant circuit tuned to 94 Mc . that acts as a series trap preventing the oscillator voltage injected or the converter plate from developing bias or the grid of \(V 4\), the first video I.F. stage.
SECOND: L34 in cor,junction with the output capacity of V2 and the input capacity of V4 forms a parallel resorart curcuit tuned to 22.4 Mc . This is the first stage of
R.F. OSCTLLATOR: The local oscillator is a Colpitts type. The inductances Ll7 through thegeche ank circuits ard are tuned above the R.F. frequencies at channels a to 13 respectively. Fine tuning is accomplished by means of Cl4, which has a capacity rarge sufficient to tior. of approyimately 2.5 .ic. orchannel output frequency or channel 2 and a variathe grid of the corverter by means of capacitor ClO. The oscillator requency ahove trat of the received signal.
\(\frac{\text { SOUND I.F. AND RATIO DETECTOR (BLOCK \#2) }}{\text { to stages } V L \text { ard V5. The sound and picture I.F. signals are common }}\) loon, which is part of L4? the 21.75 Mc . cathode trap medras of the sound take off fed to the first scund I.F. stage Vi2. Two stages of sound I.F. amplificatiorgy is employed in order to secure adequate gain. Inductors L56 and L59 are 1 " pieces of V13 ight, tinned copper wire. They are employed in the cathode circuits of V12 and arce between

Tis ir cor, iurction with V14A forms a corventional ratio detector system that operates or. a center frequency of 21.75 mc . and has a peak-to-peak band width of

AUDIO AMPLIFIER AND SPEAKER(BLOCKS \#3 AND \#4) Tubes V14B and V15 form a corventiona cortrol \(\mathrm{R} \in 1 \mathrm{~A}\) is amplifier that feeds a permanent magnet speaker. A compensated volume its associated circuit. Maximum power output of the system is approximately 3. watts

PICTURE I.F. ANPLIFIER AND SEC. DET (BLOCK \({ }^{\circ} 5\)) The primary requirements of the picture I.F. System are wide overall response and adequate overall gain. To meet the se require ments four stages of stagger tuned video I.F. amplification are employed.

As noted or the schematic diagram (page 19) these stages are V4, V5, V6 and V7 the four successive stages. Starting withe plate circuit of the corverter and each of the ccils L36, L4O, L4 , L47 in the following stages are tuned to a different frequency. Thus hy virtue of stagger tuning the several stages, wide band picture I.F. response

MODELS 5006X, 5007X

\section*{CIRCUIT DESCRIPTION (CONT'D)}

Figure (3) Pix. I.F. Response
In order to obtain a band pass as pictured in Figure (3), the I.F. coils are peaked to approximately the following fixed frequencies:
\begin{tabular}{llll}
L34 & Plate of the Conv. & (V2) & 22.4 Mc. \\
L36 & 1st Pix. I.F. & (V4) & 22.5 Mc . \\
L40 & 2nd Pix. I.F. & (V5) & 25.9 Mc. \\
L44 & 3rd Pix. I.F. & (V6) & 24.1 Mc. \\
L47 & 4th Pix. I.F. & (V7) & 26.0 Mc.
\end{tabular}

In addition the trap 137 for the adiacent channel sound I.F. carrier, 27.75 Mc ., and the traps \(L 43\) and L48 for the sound I.F. carrier, 21.75 Mc., are peaked for minimum output at the pix detector load. The overall response of the picture I.F. is observed with the aid of an I.F. sweep and an oscilloscope. Deviations in the variations in the tuning of the pix. I.F. coils.

Under normal conditions replacement of any of the tubes in the picture I.F. strip will have little effect or. the shape of the overall pass band. The information on physical location of the various transformers and traps will be found in the section on alignment.

TRAPS Referring to figure (4) it is evident that the I.F. frequency of the ad are ouite close to the frequencies passed by the picture I.F. system. If some means of attenuating these sound carriers is not provided in the picture I.F. they will pass through the pix detector where they will be demodulated and passed on to th kinescope grid as video information. Once there, these signals would appear as interference in the observed picture.

Adj. Higher Frequency

Figure 4

Note that with the R.F. oscillator operating above the channel being received the I.F. relation of the pix to sound carriers is the reverse of their R.F. relation.

In order t.o prevent this interference, trap circuits L37, L 43 and \(L 48\) are provided to attenuate the undesired sound carriers. L37 functions as a series trap in the
plate circuit of \(V 4\) and is tuned to 27.75 Mc ., the I.F. frequency of the adjacent channel sound carrier as noted in figure 4 . The trapping action of this stage is LL3 and LL\& are tuned traps inserted in the cathode circuits of VU\& V7 respectively.

VOLTAGE CHART AND ALIGNMENT TEST POINTS

\section*{CIRCUIT DESCRIPTION (CONT’D)}

These traps are tuned to 21.75 Mc. , the sound I.F. frequency. At this frequency, opposing the 21.75 Mc . sound I.F. signal at the grids of the respective stages. The combined attenuation offered by stages V6 and V7 is sufficient to suppress the 21.75 Mc . sound carrier before it reaches the pix detector. Inductors LLZ and L46
are used to minimize changes in input impedance of stages 6 and V7. The neutralized are used to minimize changes in input impedance of stages V6 and V7. The neutralized changes in input impedance occur with frequency and are due to the respective cathode
traps.

PIX DETECTOR The pix second detector is a conventional diode, V8A. It is D.C. coupled to the video ampl
polarity across its load.
VIDEO AMPLIFIER BLOCK \#6 The video amplifier is a D.C. coupled 6AH6 stage V10 having a maximum gain of approximately 35. The frequency response of the amplifier extends from DC. to 4 megacycles. A 4.5 megacycle trap (L52,C45) seems to prevent
the beat note set up by picture and sound carriers from appearing in the picture a fine interference pattern. L51, L53, L54 and L55 are peaking coils inserted in the circuit to get the desired frequency response.
The gain of the stage is varied by changing the screen grid voltage by means of the contrast control R40. The 6AH6 is a sharp cut-off high gain tube with the operating conditions adiusted in such a manner that noine pulses of sync. polarity are clippe circuit.

Due to the fact that the video system is D.C. coupled from the picture detector to the kinescope cathode, no D.C. restorer is necessary in the receiver.
KINESCOPE BLOCK \#7 The kinescope utilized in the receiver is a conventional l2" tube, This tuhe employs magnetic focus and deflection systems. An ion trap is used to prevent the ion beam from forming a dark spot on the kinescope screen. The flaring portion of the kinescope bulb has a metallic coating on both the inside and outside surfaces. The coating on the inside of the bulb forms the kinescope second anode and has the high voltage connected to it. The outside coating is grounded so that the capacity between the outside and inside coating acts as a filter for the high voltage power supply. The outside coating also serves as an electrostatic and
A.G.C. AMPLIFIER BLOCK \#8 A keyed A.G.C.amplifier tube V9 is used in order to get the best possible A.G.C. characteristic and to minimize the effects of noise
in the \(A . \bar{G}\). C.circuit. the A.G.C.circuit.
In a receiver using a conventional A.G.C. circuit any noise signals present at the Picture Detector will develop A.G.C. voltage and reduce the gain of the receiver case in weak signal areas the video signals will be so reduced by the A.G.C.voltag developed by noise that the pictures will become very unsteady and drop out of sync. entirely.
In the keyed A.G.C.system, the plate voltage for the A.G.C.amplifier tube is a high narrow positive pulse of about 300 volts taken from a winding on the horizontal width coil. This pulse is synchronized with the incoming horizontal sync. pulses and no plate voltage is applied to the tube except at the time a sync. pulse is present on its grid. Any noise pulses arriving between sync. pulses cannot generate Therefore, the A.G.C.system is

Full A.G.C. is appled the
s app.G.C. is applied to the 1.F.tubes but only approximately \(1 / 3\) of the A.G.C. is applied to the R.F.amplifier tube This allows the R.F. stage

SYNC. STRIPPER, AMPLIFIER AND CLIPPER(BLOCK \#9) Synchronizing signals of positive polarity are taken from the plate load resistor of the video amplifier tube and fed that only the synchronizing pulses appear in the plate circuit. These sync. pulses are then amplified and partially clipped by the second section of V18 and applied to the grid of the phase splitter Vl7B and the plate of the sync.limiter diode V8B.
The limiter diode (VBB) clips off the sync. and holds the level essentially constant

TRIMMER AND SLUG LOCATIONS

over a wide range of input signals. The phase splitter Vl7B further clips the sync. signals and provides both positive and negative sync.pulses in its output which are required for the horizontal AFC system.

HORIZONTAL DEFLECTION CIRCUITS (BLOCK \#10) The horizontal deflection system is incorporated to provide a stable, Iinear, scanning current in the horizontal winding of the deflection yoke. This results in accurate horizontal reproduction of the transmitted picture

\section*{CIRCUIT DESCRIPTION (CONT'D)}

MODELS 5006X, 5007X Ch. 25TKIOA

HORIZONTAL OSCILLATOR AND AFC SYSTEM The horizortal oscillator V22 is a composite circuit incorporating a cathode coupled multivibrator and a tark circuit (L65 and Cl00) resorant at approximately 15,750 cycles per second to produce a stabilizing sine wave voltage. This circuit possesses the RC time constand and grid bias frequency control characteristics of a typical multivibrator; but it achieves some of the operational frequency stability of a sine wave system. The free-running frequency of the oscillator is controlled primarily by the horizontal hold control
R83B. This control is set for approximately 15,750 cycles per second. The oscillator is then locked into synchronism with the incoming signal by means of an autoator is then locked voltage bias applied to one grid (pin \(\# 1\)) of the oscillator.

This D.C. voltage is developed by the horizontal A.F.C. rectifier V23. This circuit is a conventional duo-diode phase comparitor whick compares the phase of the former secondary, the sawtooth being fed through C103 and Rill. Any discrepancy in the exact phase relationship of these two voltages produces a change in D.C. voltage across ClO2 (at the oscillator grid). This changes the oscillator frequency to assure exact phase and frequency cotncidence between the output sawtooth and the incoming sync.pulses from the signal. In this manner, the horizontal scanning of the receiver is locked in to synchronism with the signal sync.pulses.

The output of the horizontal oscillator is a aswooth voltage developed by the RC tal uutput) across R107). The peaking component is sufficient to produce adequate high voltage and fast retrace time. The amount of this drive to the grid of the horizontal output tube V21 is controlled by a capacity divider consisting of C97 and a variable mica trimmer C96. This trimmer is adjusted for optimum horizontal linearity of picture
HORIZONTAL OUTPUT AND DAMPER The horizontal output tube and the damper tube V19 produce the required linear sawtooth scanning current in the horizontal deflection coil. The two tubes plus the horizontal output transformer also produce a high voltage pulse which is used to obtain the kinescope high voltage supply. The output system is a conventional c92 is employed to isolate direct current from the yoke. Centering is therefore accomplished by actual physical motion of the focus coil.
The output transformer as far as deflection is concerned, is an impedance matching device for the output tube and yoke

The width control L64 is provided to vary the output and hence the picture width. This is accomplished by shunting a portion of the secondary winding to change the effective transformation ratio.
inductance and hence the width.

Because the horizontal transformer, deflection coil, and associated circuits are designed to resonant at a high frequency (period \(=14\) microseconds) for fast retrace retrace. To prevent continued oscillatory currents in the deflection yoke, the damper diode, V19 is incorporated. Durig the first half cycle (7 microsecond) of retrace resonance, the circuit oscillates freely to insure rapid retrace time. During the occurs. This puts a very heavy load on the deflectinn coil so that it cannot oscillate.

The 6BG6G plate voltage is supplied through the 6W4G which is conducting over the major portion of the trace. Capacitor C93 is charged during this period and this

The charge is placed on this capacitor by the receiver \(d-c\) supply and by the current from the collapse of the field in the horizontal deflecting coil. The a-c to the receiver, 350 V volt bus. The charge placed on this capacitor by the coil kick-back is therefore in addition to that from the d-c supply and thus the capacitors are charged to a voltage greater than the d-c supply. This permits operation of the 6BG6G at a higher voltage than is obtainable from the receiver power supply and produces an increase in the system efficiency by salvaging energy that would otherwise have been wasted.

VERTICAL DEFLECTION SYSTEM(BLOCK \#ll) This section of the receiver functions to supply vertical scanning for the kinescope. A conventional system is utilized. Stage V17A operates as a field frequency oscillator whose output signal is used to drive the vertical output stage V16. The combined action of these stages and their associated circuits provides a linear deflection current of proper polarity and frequency in the

VERTICAL INTEGRATING NETWORK The integrating network composed of R79,R80,R81 and C82 \(\overline{A-B-C}\) functions to separate the horizontal from the vertical sync.and to pass the vertical sync. pulse developed on to therield frequency oscillator. in operation the network can be considered as a low pass filter that by-passes the horizontal sync. pulses and permits the low frequency vertical sync.to pass on through to the grid of V17A.

TRIMMER AND SLUG LOCATIONS

© John F. Rider

\section*{CIRCUIT DESCRIPTION (CONT'D)}

FIELD FREQUENCY OSCILLATOR The field frequency oscillator VI7A is a conventional blocking oscillator system. In actual operation the free running frequency of the is locked in sync.at field frequency by means of the vertical sync. pulses which are injected into its grid circuit by the integrator network. The cut off and conduc tion action of the oscillator charges and discharges capacitor C86 and the resulting sawtooth output is used to drive the output stage.V16.
VERTICAL OUTPUT The peaked sawtooth output of the blocking oscillator system is used to drive the grid of the vertical output stage. An impedance matching transformer, height is controlled by means of \(R 87\) which varies the Bfvoltage supplied to the vert ical system. Vertical trace linearity is adjustable by means of \(R 91\) in the cathode circuit of the output stage. In operation, adjustment of this control varics the bias and consequently the operating point of the stage.

HIGH VOLTAGE POWER SUPPLY(BLOCK \#12) The kinescope high voltage supply is obtained from the energy stored in the deflection inductances during each horizontal scan appears on the Tlis primary due cut of pulse of voltage is stepped up, rectified by V20, filtered and applied to the second anode of the kinescope (Vll). Since the frequency of the supply voltage is high (15, 750 C.P.S.), relatively little filter capacity is necessary. Since the filter less dangerous.

LOW AND MEDIUM VOLTAGE POWER SUPPLY (BLOCK \#13) This part of the receiver supplies the heater and plate supply voltages for all tubes. A \(544 G\) rectifier \(V 25\) supplies 350 volts at 170 ma. which is filtered by the speaker field and the focus coil and their associated capacitors ClllA, CllOA, CllOB.

The focus control Rl26 allows adjustment of the amount of current flowing thru the focus coil in order that correct focusing of the electron beam in the kinescope is obtained.
A 6 AX5GT rectifier V24 supplies 140 volts at 120 Ma. which is filtered by a choke L67 and its associated capacitors C11B and C46D
\(\frac{\text { BUILT-IN DIPOLE ANTENNA }}{\text { Both MOdels } 5006 \mathrm{X}}\)
Both Models, 5006X and 5007X are equipped with a built-in Dipole antenna which is hooked up for operation when shipped from the factory.

The antenna proper consists of two copper plates in the top of the cabinet. The dipole tuning is accomplished by capacitor C19 which is a \(2-80\) MMF. trimmer the right-hand side of the cabinet for individual station tuning.

This type of antenna is designed for operation on local stations only, and in locations where it will give satisfactory results. This antenna is not designed to work in conjunction with another antenna and must be disconnected when another antenna is attached.

\section*{VOLTAGE TEST SPECIFICATIONS}
1. Line Voltage \(=117\) Volts A.C
2. Channel Switch Position = Channel \#2.
3. Brightness Control Position \(=\) Average Brilliance on Picture Tube.
4. Contrast Control Position = Maximum (Clockwise).
5. Horizontal and Vertical Hold Control Positions = Set correct position to lock in picture.
6. Horizontal Width and Vertical Size Controls Positions a Set for Correct Size Raster \(=\) Height \(83 / 4^{\prime \prime}\), Width \(111 / 2^{\prime \prime}\).
7. Horizontal and vertical Linearity Control Position \(=\) Set for Best Linearity.
. Focus Control Position = Properly focused
9. Volume Control Position= Maximum Counter-Clockwise.
10. Tone Control Position Maximum Counter-Clockwise.
11. Instrument (Meter) Used \(=\) (V.T.V.M.) Vacuum Tube Vott Meter.
12. Unless Otherwise Designated All Voltages Measured In Respect To Chassis Ground. NOTE: The Points indicated by the letters A, B, C. E \& F are the alignment test points referred to in the following alignment procedure. These points indicate the terminals for attaching Generator Leads.

\section*{ALIGNMENT PROCEDURE}

TEST EQUIPMENT: In order to align and service Sparton television receivers properly the following test equipment should be available:

FIRST: AN R.F. SWEEP GENERATOR of reliable quality that performs the following functions:
A. Provides sweep outputs in the following frequency ranges
\[
\begin{array}{ll}
19 \text { to } 30 \mathrm{Mc} . & 10 \mathrm{Mc} . \text { sweep width } \\
40 \text { to } 90 \mathrm{Mc} . & 10 \mathrm{Mc} . \text { sweep width } \\
170 \text { to } 225 \mathrm{Mc} . & 10 \mathrm{Mc} . \text { sweep width }
\end{array}
\]
B. Provides an output signal that can be varied by means of an attenuator
up to a maximum of at least.l volt.

SECOND: AN R.F. SIGNAL GENERATOR that will provide an adjustable output signal up to \(\frac{\text { AN R.F. }}{\text { a maximum of at least } \cdot 1}\) volt on the following fixed frequencies:
A. I.F. Frequencies
21.75 Mc.
22.4 Mc.
22.5 Mc.
24.1
25 Mc.
26.9
Mc.
26.25 Mc.
27.75 Mc.

Sound I.F. and sound traps
1st video I.F. coil
4 th video I.F. coil
3rd video I.F. coil
5th video I.F. coil
Adjacent channel sound traps
B. R.F. Frequencies

Channel No.

A CATHODE-RAY OSCILLO vertical amplifier and a Iow capacity input probe.
FOURTH: AN ELECTRONIC VOLTMETER on which the input probes are all insulated from the meter case.

FIFTH: A CRYSTAL CALIBRATOR that can be used for checks on the accuracy of the output
GENERAL INSTRUCTIONS: Practically all servicing with the exception of some tube replacement will require removal of the receiver chassis from the cabinet.
A convenient arrangement that makes both the top and bottom of the chassis accessible a manner that it rests on its side and on the horizontal output shield can
ALIGNMENT REQUIREMENTS: Under normal conditions complete receiver reai」gnment will seldom be necessary in the field. However, a detailed description of the overall alignment procedure is included to provide all necessary information if it should be required.
In general it is not recommended that the R.F. and converter circuits of the R.F. tuner be realigned by the service engineer unless absolutely necessary. In cases where tuner components have been damaged, or where complete realignment is indicated, factory in exchange for a new unit which will be shipped complete with tubes.
When the new R.F. unit is assembled to the chassis it will be necessary in all cases to realign L34 which is located on the receiver chassis. Normally this is the only adjustment that will be required with tuner change but a check on overall receiver customer satisfaction.

EFFECTS OF TUBE REPLACEMENT ON THE ALIGNMENT OF R.F. TUNER CIRCUITS: The alignment o the R.F. and converter circuits of the R.F. tuner is critical and may be affected by a tube change in chation operation. realignment is indicated it can usually be avoided by selection of replacement tubes until receiver operation is realized.

Replacement of the \(6 C 4\) local oscillator can usually be made with little or no effect on the alignment and operation of the oscillator circuits. However, when a capacitor range is sufficient to tune in the sound carriers on all channels.
ORDER OF ALIGNMENT: When complete receiver realignment is indicated it should be performed in the following order:

\section*{Sound traps
Picture I.F.}

Sound I.F.
Ratio Detector Transformer
Retouch Picture I.F.
Sound and Picture I.F. Sensitivity Check
8. R.F.and Converter Circuits (not recommended)
9. Overall Sensitivity Check

PRELIMINARY ADJUSTMENTS: Before alignment the receiver controls should be adjusted to the approximated operating positions specified in the table below. The controls should remain in these positions for all checks unless otherwise specified.

> Contrast Control - to center position rightness Control - to position where
rightness Control - to position where raster is visible on
ocus Control - to position where focus is obtained
Focus Control - to position where focus is obtained Vertical Linearity - to center position
Vertical Size - adjusted to give normal raster height
Horizontal Hold - to center position
Horizontal Size - adjusted to give normal raster width
TEST EQUIPMENT SET UP: A certain amount of experimentation must be employed to secure a stable test set up before alignment or service of the receiver is attempted. It is recommended that the top of the test bench be covered with a sheet of aluminum to chassis. In general all test signal input leads should be kept away from output leads as much as possible.
PICTURE I.F. INSTABILITY: If the picture I.F. strip is badly out of alignment it may
become unstable and fall into oscillation. When this condition occurs a comparatively large voltage is developed across the picture detector load resistor. This voltage is independent of I.F.signal input at the converter grid.
the iron usually possible to stop I.F. oscillation due to misalignment by adjusting the iron cores in the various picture I.F. coils and traps according to the information given in the table below:
\(\begin{array}{ll}\text { L34 } & \text { Slug in } \\ \text { L37 } & \text { Slug out } \\ \text { L36 } & \text { Slug in } \\ \text { L40 } & \text { Slug out } \\ \text { L44 } & \text { Slug out } \\ \text { L43 } & \text { Slug in } \\ \text { L47 } & \text { Slug out } \\ \text { L48 } & \text { Slug in }\end{array}\)
The actual physical location of the various coils and traps is shown in Figure 6 and 7. As soon as the oscillation has been stopped, continue with the alignment as outlined in the following sections.

SOUND TRAP ALIGNMENT: FIRST, remove VI (6BH6 R.F. amplifier) and V-3 (6C4 local Osclllator tubes)from the \(R F\). tuner, connect the R. F . signal generator to the grid of
\(V-2\) by means of the I.F. input adapter as shown in Fig. 9. .

\section*{ALIGNMENT PROCEDURE (CONT'D)}

Figure 9 I.F. Input Adapter
SECOND: Set the R.F.tuner to channel \#2.
THIRD: Connect a 3 volt bias battery between the A.G.C. buss (point E, Fig. 5) and chassis ground so that the voltage on the A.G.C. buss is-3 volts in respect to the ohassis.
FOURTH: Connect the electronic voltmeter across the picture detector load resistor R37, Point AFIg. 5 and set the voltmeter on the low DC.volt scale.

FIFTH: Set the R.F. signal generator to each of the frequencies shown in the table below and in each case tune the specified adjustment for minimum indication on the voltmeter. It is advisable to check the output of the generator with the crystal calibrator to make certain that it is exactly on frequency in each case.
\[
\begin{array}{lll}
27.75 \mathrm{Mc} . & \text { L37 } & \text { (Top of chassis as shown in Fig. } 6 \\
21.75 \mathrm{Mc} . & \mathrm{L} 43 & \text { (Top of chassis as shown in Fig. } 6 \\
21.75 \mathrm{Mc} \text {. } & \mathrm{L} 48 & \text { (Top of chassis as shown in Fig. } 6
\end{array}
\]

PICTURE I.F. ALIGNMENT: FIRST: Connect the R.F. signal generator, voltmeter and bias battery to the receiver as described in steps \(1,2,3\) and 4 of the sound trap alignment instructions.
SECOND: Set the signal generator to each of the following frequencies and peak the specified adjustments for maximum indication of the voltmeter.

NOTE: On some receivers it is possible to tune through resonance on L-40 and set detector load in oscillation. When this occurs the voltage across the picture may be mistaken for the actual resonance peak of \(\mathrm{L}-40\). If trouble of this nature is encountered tune L-40 to the point where I. F.oscillation ceases and go on to peak

SOUND I.F. ALIGNMENT: FIRST: Connect the R.F. signal generator and bias battery to (frop instruction
SECOND: Connect the electronic voltmeter across C-69 (from point B to ground) as shown in Fig. 5. Set the voltmeter on the low D.C. volt scale.

THIRD: Set the R.F.signal generator to 21.75 Mc . and peak the following coils for maximum indication on the voltmeter

T-12 (Top of chassis as shown in Fig. 6)
T-13 (Primary (Ratio Det.) top of chassis as shown in Fig. 6)

RATIO DETECTOR TRANSFORMER ALIGNMENT: FIRST: Connect the R.F. signal generator and bias battery to the receiver as described in steps 1,2 and 3 of the sound trap aligra

SECOND: Connect the electronic voltmeter from the junction of R63 and R64, Point F to the Junction of R59,C62 and C65. Point C as shown in Figure 5.
THIRD: Set the signal generator output to 21.75 Mc ; Adjust the secondary of Tl 3 (Bottom view of chassis as shown in Fig.7 ;. Notice that it is possible to produce a positive or negative voltage indication on the meter by varying this
zero output as indicated by the voltmeter. This point is called zerc ratis detector output and indicates correct alignment of T13 transformer. of the primary as described in the preceeding sectio sound I.F.alignment. PICTURE I.F. TOUCH UP: Connect the R.F. Sweep generator output
of \(V-2\) by means of the I.F. input adapter shown in Figure 9 .
SECOND: Remove V-1 and V-2 from the R.F. tuner. Set R.F. Selector to channel \#2.
THIRD: Connect the oscilloscope across the picture detector load resistor R37(point, A, Fig. 5) by means of the shielded cable and the filter system shown in Fig.

Vert.

Fig. 10 FILTER SYSTEM FOR SCOPE CONNECTION
FOURTH: Set the R.F. sweep genterator so that it sweeps from approximately 20 to 30 Mc .
FIFTH: Adjust the oscilloscope so that the swept I.F. response is visible on the
SIXTH: Loosely couple the output of the R.F. signal generator to the grid of \(V-2\) so that marker signals of proper frequency can be mixed in with the R.F. sweep signal.
SEVENTH: Observe the band width, relative position of the picture carrier, and flatness of the overall. I.F. response curve. If necessary slightly vary the tuning of the picture I.F. coils L-34, L-36, L-40, L-44 \& L-47 until the picture I.F. the ideal I.F. response while the dotted curves show permissable variations

Fig. 11 IDEAL I.F. RESPONSE WITH PERMISSABLE VARIATIONS
The picture I.F. carrier should appear approximately half way down the I.F. response curve as shown in Figure Il. Variation in the pix carrier position should not exceed PICTURE I.F. SENSITIVITY CHECK: FIRST: Connect the R.F. signal generator to the receive as specified in steps 1 and 2 of the sound trap alignment instructions. (When making COND

Point A the electronic voltmeter across the picture detector load resistor R37 Point A, Fig. 5, and set the meter on the low D.C. volts scale.
THIRD: Set the generator output frequency at approximately 23 Mc . Adjust the generator output until the voltmeter reads approximately l.0 volt. Record the R. F.signal input in microvolts. Repeat the procedure with the generator output frequency set at 24.2 and 25.4 Mc . In all cases the I.F. input voltage should be 100 Microvolts or less. The sensitivity at the \(1 . F\). picture carrier 26.25 Mc .

\section*{ALIGNMENT PROCEDURE (CONT'D)}

MODELS 5006X, 5007X
Ch. 25TK10A
should be approximately half of the I.F. sensitivity between 24.2 Mc . (Maximum of 200 microvolts.) measurements can be made by using another receiver that is known to be in good operating condition as a standard. This applies to all sensitivity measurements and good results can be obtained if sufficient care is used.
SOUND I.F. SENSITIVITY: FIRST: Connect the R.F. signal generator to the receiver chassis

SECOND: Connect the electronic voltmeter across C67 (from point B to ground) as shown in Figure 5. Set the meter on the low D.C. volts scale.
THIRD: Set the generator output frequency at 21.75 Mc . Adjust the output signal level until the voltmeter indicates 8 volts across C67. The generator output signal should then be 250 microvolts or less.
R.F. OSCILLATOR ALIGNMENT: The R.F. oscillator circuits may be aligned by feeding signals at the R.F. sound carrier frequencies into the receiver antenna terminals and adjusting the oscillator frequency on each channel for zero output from the ratio detector. The ratio detector should

Since incremental inductances are placed in series with the tuned circuits for channels 8, 10 and 12 to form the tuned circuits for channels 7,9 and 11 , the order in which the se channels are aligned becomes important. In these cases it is necessary channel is attempted. For example, L22 forms the tuned circuit for channel 8 but with the additional series inductance L23 also forms the tuned circuit for channel 7 . Not that the tuning of L22 not only affects oscillator operation on channel 8 but also 7 channel since 222 is common to both circuits. reasons it is necessary to first tune L22 for correct oscillator frequency on channel 8 , and then to adiust L23 for correct oscillator frequency on channel 7 . In practice the inductance of the incremental
the incremental coils themselves.
the incremental coils themselves. circuit alignment

FIRST: Insert V-1 and V-3 in the R.F. tuner. Connect the signal gererator to the receiver antenna terminals.

SECOND: Set the oscillator vernier capacitor (fine tuning) at approximately the center of its effective capacity range. This can best be determined by finding the maximum and minimum capacity settings of the vernier and then interpolating between the two extremes for the center position.
THIRD: Connect the electronic voltmeter from the junction of R63 and R64, Point \(F\).
Figure 5 to the Junction of R59, C62 and C65. Point C as shown in Fig. 5 .
FOURTH: Set the R.F. signal generator to each of the following sound R.F. carrier frequencies, thetuner to the corresponding R.F. channel, and peak the specified adjustment for zero output of the ratio detector as observed on t on ratio detector alignment.)

GENERATOR FREQUENCY TO 215.75 Mc.
209.75 Mc.
203.75 Mc.
197.75 Mc.
191.75 Mc.

ADJUST R.F.
GENERATOR FREQUENCY TO
185.75 Mc.
179.75 Mc.
87.75 Mc .
81.75 Mc .
71.75 Mc
65.75 Mc.
59.75 Mc.

The physical location of all coils and adjustments
The output of the the output of the R. F. generator should be checked by means

ADJUST INDUCTANCE
OF COIL NO.
L28 (Slug tuned)
L26 (Slug tuned)
L27 (Incremental)
L27 (Incremental)
L24 (Slug tuned)
L25 (Incren
24 (Incremental)
ADJUST INDUCTANCE
L22 (Slug tuned)
L23 (
Incremental)
L21 (Slug tuned)
19 (Slug tuned)
18 (Slug tuned)

John F. Rider

CAUTION: In manufacture the slugs in the R.F. tuner coils are firmly held in place by means of wzx which is put into the forms anter alignment. This wax must be remove completed.
R.F. AND COVBRTER CIRCUIT ALIGNMENT: The alignment of the R.F. and converter circuits of the tuner is a difficult and tedious task when it must be performed without benefit of special factory test equipment. For this reason it is not recommended that
The information provided in the paragraphs below is intended primarily for
descriptive purposes and cases where only one or two of the coils may require readjust ment. In general, where complete tuner re-alignment is indicated, it is recommended the the complete tuner assembly be removed and returned to the factory for a replace On chan tuned to obtain wide band R.F. response. In alignment the R.F. transformers Tl through Th are peaked to the R.F. sound carrier frequencies on their respective channel while the converter coile L5 through L9 are peaked at the corresponding R.F. picture carrier frequencies. Slight deviations in the tuning of

On the high channels, 7 through 13, the R.F. and converter coils are synchronously tuned to the center of each band. At these frequencies the tuned circuits are broad enough to provide an essentially broad, flat, pass band without stagger tuning.

FIKǘT: Make certain all tubes are in place.
SECOND: Connect the R.F. signal generator to the receiver antenna terminals. If the R.F. generator has an unbalanced output it must be converted to a balanced tors whose output impedance is approximately \(50 \Omega\). All specified resistors should be of the non-inductive type.

UNBALANCED OUTPUT CONVERSION SYSTEM
THIRD: Perform the operations indicated in the following table and in the order tha they are shown. In all cases keep the R.F. signal input as low as possible circuit action. (Shorting of the A.G.C. buss to chassis ground is recommended when aligning these circuits).
SET R.F. TUNE
SET R.F. GEN. ADJUST OSC. VERNIER
CONNECT
OLP CONNECT ADJUST THESE COILS

FOURTH: Replace the R.F. signal generator by the R.F. sweep generator. (If the sweep Replace the r.f. signal generator by it to a balanced system as described in step
\(\# 2\)).

\section*{ALIGNMENT PROCEDURE (CONT'D)}

FIFTH: Connect a cathode-ray oscilloscope across R37 as described in step \#2 of the picture I.F. touch up instructions (Page 26).

SIXTH: Perform the operations indicated in the following table. In each case adjust the specified coils for flat wide band overall response with maximum gain as indicated on the oscilloscope screen. The oscillator vernier capacitor must he correctly adjusted (as indicated by zero ratio detector output) for the sound R.Fucarrier on
The shape of the overall response curve on all channels should be approximately the same as that of the video I.F. response curve shown in Figure 11. Marker pulses of proper frequency should be mixed in with the R.F. sweep input to check overall bandwidth and relative position of the picture carrier on each channel. Always keep the R.F.input signal low so that slight variations in the tuning of the various coils are easily discernable on the oscindoscope screen. The
adjustments is show in Figure 6 and 7 , page 17 and \(2 \delta\).

SET TUNER
TO CHANNEL
13
12 CHANNEL NO

SET TUNER SET SWEEP GENERATOR SET SWEEP WIDTH SET SWEEP GENERATOR SWEEP W'IDTh
SET SWEEP GENERATOR
\[
\begin{aligned}
& 213 \mathrm{Mc} . \\
& 207 \mathrm{Mc} .
\end{aligned}
\]

SET SWEEP GENERATOR
\[
10 \mathrm{Mc} \text {. }
\]
\begin{tabular}{l}
AT APPROX. \\
10 Mc \\
\hline
\end{tabular}
10 Mc.
10 Mc.
10 Mc.
10 Mc.
10 Mc.
10 Mc.
10 Mc.
10 Mc.
10 Mc. 201 Mc .
195 Mc .
189 Mc .
183 Mc .
177 Mc .
177 Mc.
85 Mc.
79 Mc.
69 Mc.
63 Mc.
57 Mc.

SLIGHTLY ADJUST FOLLOWING WHERE NECESSARY
T9 and Ll6 (Slug tuned)
SLIGHTLY ADJUST FOLLOWING WHERE NECESSARY

L 4
\(\mathrm{T7}\) and L15 (Incremental)
Ll2(Slug tuned)
7 and L12(Slug tuned)
3 and L13 (Incremental)
2 and Llo(Slug tuned) T6 and Llo(Slug tuned)
L2 and L11 (Incremental)
L9 and T5 (Slug tuned) 9 and T5 (Slug tuned) \(\begin{array}{lll}\text { L8 and T4 } & \text { (Slug tuned) } \\ \text { L6 and }{ }^{\text {T3 }} & \text { (Slug tuned) } \\ \text { L5 and T1 } & \text { (Slug tuned) }\end{array}\)

NOTE: If the output of the sweep generator cannot be adjusted to a satisfactory low level, an attenuator pad, (as shown in Figure 13) should be used in series with the
receiver antenna terminals and the output connections of the sweep. (Several sections receiver antenna terminals and the output connections of

\section*{ATTENUATOR PAD} The same type of pad can be used in series with the receiver antenna terminals
and the antenna lead in areas where the R.F. signal level is high enough to overload the receiver.
OVERALL PICT. SENSITIVITY CHECK: After alignment of the various sections of the receiver has been completed the following overall sensitivity checks should be made. (in cases where the signal generator output is not calibrated in microvolts comparative sensitivity measurements can be made by usi.

FIRST: Connect the R.F. signal generator to the receiver antenna terminals as described in step \#2 of the R.F. and converter circuit alignment data.
SECOND: Connect the D.C. voltmeter across R37 as previously described. Set the
voltmeter on the low D.C. volts scale.
THIRD: Perform the operations indicated in the following table. In each case the oscillator vernier should be tuned for zero detector output at the sound R.F. frequency of the channel being checked before any measurements are made.
SET R.F.TUNER SETR.F. GENERATOR ADJUST R.F. INPUT LEVEL GENERATOR ST FREQUENCY TO SHOULD BE 150 UV or les
150 W or less

150 UV or less
150 UV or les
150 UV or less
150 WV or less
150 UW or less
150 UV or less
150 WW or less
150 UV or less

OVERALL SOUND SENSITIVITY CHECK: After proper circuit operation and alignment has been eallzed, with volume and tone controls set at maximum, the vernier capacitor (fine cuning properly adjusted on each channel, the overall sound sensitivity can be checked SET R.F. TUNER SET R.F. GENERATOR TO CHANNEL NO. FREQUENCY OUTPUT TO SET GENERATOR ADJUST GEN. GENERATOR OUTPUT \begin{tabular}{cccc}
2 & FREQUENCY O MPU TO MODULATION TO & OUTPUT TO GIVE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 2 & 59.75 Mc. & \(400 \sim\) & . 5 Watts \\
\hline 4 & 65.75 Mc. & + 7.5 Kc . & in speaker \\
\hline 5 & 81.75 Mc . & deviation & In speaker \\
\hline 6 & 87.75 Mc. & & Voice Coil \\
\hline 7 & 179.75 Mc . & & \\
\hline 8 & 185.75 Mc . & & (Approx. \\
\hline 9 & 191.', Mic. & & 1.25 V . \\
\hline 10 & 197.75 Mc . & & A.C. \\
\hline 11 & 203.75 Mc . & & Across \\
\hline 12 & 209.75 Mc . & & Voice \\
\hline 13 & 215.75 Mc . & & coil \\
\hline
\end{tabular}

200 UV or less 200 UV or less 200 UV or less 200 WV or less 200 WV or less
200 WV or less
200 UV or COMPLETE HORIZONTAL OSCILLATOR AND DEFLECTION CIRCUIT ALIGNMENT 200 UV or less FIRST: Remove the safety-back on the receiver and by means of a separate line cord place the set in operation.
SECOND: Tune in a television station that is transmitting a test pattern and adjust the fine tuning control for best sound quality.

THIRD: With the horizontal hold control at the center of rotation, adjust the slug in the horizontal oscillator tank coil(L65 as shown in Fig. 7 Page 18)
 of the picture and not curved to the right or left. Picture must be synchronized vertically when making this adjustment.

FOURTH: Adjust the horizontal drive control (Trimmer C96 as shown in Fig. 7 Page 18) by turning the adjusting screw counter clockwise until one or more
white innes appear in the picture. Then back off the adjustment till the whit white lines appear in dis picture. Then back off the adjustment thay affect the frequency of the horizontal oscillator in which case readjust as in Step 3.
FIFTH: Adjust the width control (I64 available through hole in H.V. case as shown in
Fig. 6 , Page 2-17).) until the picture just fills the mask horizontally.
SIXTH: Tune the receiver to channel No. 13 and check the raster for Barkhausen oscillations.
receiver fhe fyback type of horizontal output and high voltage circuits used in this tions are at television R.F. frequencies and can be picked up by the . These oscillaas vertical black ilnes or smudges on the left hand side of the raster, particularly when a weak or no television is being received.
control These oscillations can be minimized by adjustment of the horizontal drive ions are stronge the plate current of the horizontal output tube (6BG6) beyond safe limits. With the trimmer open(maximum drive) a vertical white bar or shading can occur in the left hand side of the roster accompanied by a linearity distortion at the white area. The conditions and sht of the horizontal drive (C96) control lies between these two

After making the final adjustment check all channels to make sure that optimum operating condition for all channels has been realized.

SEVENTH: Recheck and touch up all adjustments as may be necessary.

© John F. Rider

\section*{© John F. Rider}

© John F. Rider

\section*{ELECTRICAL AND MECHANICAL SPECIFICATIONS}

\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline NUMBER & FREQ.MC. & CARRIER & CARRI & R.F.-OS \\
\hline & & FREQ.MC. & FREQ.M & \\
\hline 2 & 54-60 & 55.25 & 59.75 & 81.5 \\
\hline 3 & 60-66 & 61.25 & 65.75 & 87.5 \\
\hline & 66-72 & 67.25 & 71.75 & 93.5 \\
\hline 5 & 76-82 & 77.25 & 81.75 & 103.5 \\
\hline 6 & 82-88 & 83.25 & 87.75 & 109.5 \\
\hline 7 & 174-180 & 175.25 & 179.75 & 201.5 \\
\hline 8 & 180.186 & 181.25 & 185.75 & 207.5 \\
\hline 9 & 186-192 & 187.25 & 191.75 & 213.5 \\
\hline 10 & 192-198 & 193.25 & 197.75 & 219.5 \\
\hline 11 & 198-204 & 199.25 & 203.75 & 225.5 \\
\hline 12 & 204-210 & 205.25 & 209.75 & 231.5 \\
\hline 13 & 210-216 & 211.25 & 125.75 & 237.5 \\
\hline
\end{tabular}

117 Volts. \(\frac{\text { POWER SUPPLY RATING }}{\ldots .60 \text { Cycles.......... }} 185\) Watts AUDIO POWER OUTPUT RATING Maximum Undistorted............. 5 watts LOUD SPEAKER
Models \(501050115014 \& 5015\) uses \(5^{\text {nRound }}\) Models \(505650575071 \& 5072\) uses \(10 "\) Round

PICTURE I.F. FREQUENCIES
Picture Carrier Frequency........26.25 Kc.
SOUND I.F. FREQUENCIES

Sound Carrier Frequency..........21.75 Mc Inter-Carrier Sound I.F. Freq.....4.5 Mc

 Focus. \({ }^{\text {Sueepiection.. }}\) Scanning..................................agntericed. 525 Lines Horizontal Scanning Frequency...is.750 Cps. Vertical Scanning Frequency..........60 Cps
Receiver Antenna Input Impedance. 300 Cps .
Note: Rauland Picture Tubes have an internal ion trap built-in: therefore an external ion trap is not used.
They may be identified by the aluminum
back.

*CONSTRUCTING A channel trap

Constructed of a piece of 300 ohm transmission line, shorted on one end to serve as a \(1 / 2\) wave length shorting stub, Cut a piece of line slightly longer than given under the "Half-wave Shorted Channel Trap", column and connect the two leads of one end across the receiver antenn

TUBE COMPLEMENT
\begin{tabular}{|c|c|c|}
\hline TUBE & E TYPE & FUNCTION \\
\hline & CCB6/ ठAG5 & R. F. Amplifier \\
\hline V2 & \(12 \mathrm{AT7}\) & Osc. and Mixer \\
\hline V3 & 6aub & lst Pix. I.F.Amplifier \\
\hline V4 & 6AU6 & 2nd Pix. I.F.Asplifier \\
\hline V5 & 6AG5 & 3rd Pix. I.F.Amplifier \\
\hline V6 & 6AL5 & Pix. 2nd Detector \\
\hline V7 & 6AU6 & Video Amplifier \\
\hline V8 & *108P4 & Picture Tube \\
\hline v9 & 6 aub & Sound I.F.Amplifier \\
\hline V10 & \(6 \mathrm{T8}\) & Ratio Det.and Audio Amp. \\
\hline V11 & 6AQ5 & Audio Power Amp. \\
\hline V12 & 6AU6 & Sync. Sep.,Stripper and D.C. Restorer \\
\hline V13 & 6SN7GT & Sync. Clipper, Separator, Phase splitter Vert Osc \&Disc. Tube \\
\hline V14 & 6V6GT & Vertical'Output \\
\hline V15 & 6W4GT & Damper Tube \\
\hline V16 & 1 X 2 & H.V. Rectifier \\
\hline V17 & 6BQ6GT & Horiz.Sweep Amplifier \\
\hline V18 & 6SN7CT & Horiz.Osc. \& Discharge Tube \\
\hline V19 & 6al5 & Horiz. Phase Detector \\
\hline V20 & 5 ULG & Low Voltage Rectifier \\
\hline
\end{tabular}

*Type 10BP4 Pix. Tube used in Model 5011 Type 12LP4 Pix. Tube used in all other Models operating controls logated on
Volume \(\frac{\text { FRONT PANEL }}{\text { ard }}\)..................................... 1

NON-OPERATING CONTROLS

 Deflection Coil

This tuner is
.F. TUNER (BLOCK \#1) continuously variable and tunes the 12 TV channels in two ranges, channels range is automatically selected by means of a cam operated switch on the tuning shaft. Turing is accomplished by means of ganged tuning capacitors. The tuner serves to sands. It amplifies the selected R.F. signals and provides at the converter plate a picture I. F. carrier of 26.25 Mc . and a sound I. F. carrier of 21.75 Mc .
R.F. AMPLIFIER

The antenna input is fed to VI the GAG5 R.F. amplifier tube through fixed tuned The antenna input is fed to V1 the 6AG5 R.F. amplifier tube through

\section*{CONVERTER}

The plate circuit of the R.F. amplifier and the grid circuit of V-2 the 12AT7 converter tube are coupled by means of overcoupled tured circuits which are tuned by the ganged variable capacitor sections C8A and C8B.
In the plate circuit of the converter coil L-6 in conjunction with the output capacity of \(V-2\) and the input capacity of V-3 forms a parallel tuned circuit tuned to 24.0 Mc . This is the first stage on the stagger tuned video I.F.system. OSCILLATOR
The local oscillator uses one triode section of V-2. The l2AT7 in a Colpitts oscillator circuit tuned by the ganged capacitors C8C in the low band and C8D in the high band., Oscillator injection to the converter grid takes place through mutual inductance between coils in transformer T-2. The oscillator operates at a frequency above that of the received signal in all channels. PICTURE I.F. \& SECOND DETECTOR (BLOCK \#2)
Thie primary requirements of the picture I.F. system are wide overall response and The primary requirements of the picture I.F. system are wide overall response
adequate overall gain. To meet these requirements three stages of video I.F. amplification are empioyed.
As noted on the schematic diagram these stages are V-3, V-4 and V-5. Single tuned I.F. coils are utilized in the plate circuit of the converter and each of the three successive stages. Starting with the coil L-6 in the converter plate each of the coincy. Thus by virtue of stagger tuning the several stages, wide band picture I.F. response is obtained.

FIG. 3
PICTURE I.F.RESPONSE

In order to obtain a band pass as pictured in Fig. 3 the I.F. coils are peaked In order to obtain a band pass as
\[
\begin{array}{llll}
\text { L-6 } & \text { Plate of the converter } & \text { (V-2) } & 24.0 \mathrm{Mc} . \\
\text { L-11 } & \text { 1st picture I.F. } & \text { (V-3) } & 25.7 \mathrm{Mc} \\
\text { L-13 2nd picture I.F. } & \text { (V-4) } 23.7 \mathrm{Mc} \\
\text { L-15 3rd picture I. F. } & \text { (V-5) } & 26.0 \mathrm{Mc} .
\end{array}
\]

Under normal conditions replacement of any of the tubes in the picture I.F. strip will have little effect on the shape of the overall pass band. The information on physical location of the various coils will be found in the section onalignment. The picture I.F. must amplify both picture and sound
carriers, however the sound carrier must be attenuated below the picture carrier to prevent sound interference in the picture. For this reason th sound carrier is placed approximately 30 DB down from the top of the I.F. response curve.

PICTURE DETECTOR AND A.G.C. RECTIFIER
V-6 is a type 6AL5 double diode rectifier. One diode section is used as the video detector and is connected so as to provide an output signal of negative
polarity across its output load. The other diode is used as an A.G.C. rectifier connected so as to produce a negative A.G.C. voltage across its load resistance. This voltage is applied to the grids of V-1, V-3, and V-4. It's action on these stages is such that it effectively varies the gain of the receiver to
compensate for changes in R.F. input level to the antenna terminals. A positiv compensate for changes in R.F. input level to the antenna terminal.s. A positive delay voltage is applied to the cathode of the A.G.C. rectifier from the contrast
control so that full delay is present at maximum contrast settings and zero delay at minimum contrast position. This delay action is suck that full contrast must be attained before any A.G.C. voltage is developed.

\section*{VIDEO AMFLIFIER (BLOCK \#3}

A single 6AU6 (V-7) video amplifier stage is fed from the output of the video detector. The frequency response extends to 3.5 Mc . while the overall gain is approximately \(20 x\).
The video signal at the kinescope grid must be of such polarity that the syng. and blanking pulses will drive the grid in the negative direction. For this reason with a single v
Since the sync. is negative from the picture detector any large noise pulses above sync. level will drive the grid beyond cut-off. This results in a improves the overall signal to noise ratio of the receiver. Contrast cortrol takes place by cathode circuit degeneration which controls gain without disturbing grid bias conditions most favorable to noise clipping.
SOUND I.F. AND RADIO DETECTOR
The picture I.F. carrier at 26.25 Mc . and the sound I.F. carrier at 21.75 Mc . are 4.5 Mc. apart. This is determined by the transmission standards and detector, the sound carrier being approximately 30 DB down as previously shown. (Under picture I.F. \& 2nd. Det.) Due to non-linearity in the detecting diode a 4.5 Mc . beat frequency is produced. The picture carrier is amplitude
modulated by the video signal while the sound carrier is frequency modula by the sound. The 4.5 Mc . beat is therefore frequency modulated by sound and also carries amplitude modulation from both sound and picture.
4.5 Mc . SOUND TRAP

The 4.5 Mc . beat frequency containing the frequency modulated sound and incidental amplitude modulation is applied to the video amplifier grid along with the detected video and sync. signals. A trap circuit in the video amplifier series trap which prevents the 4.5 Mc . signal from reaching the kinescope.

The 4.5 Mc . signal across the trap coil \(\mathrm{L}-20\) is fed to the GAU6 sound I. F. amplifier V-9. T-4 and V1OA constitutes a conventional ratio detector operating at 4.5 Mc . The ratio detector has sufficient A.M. rejection to remove the
incidental A.M. component. The detected F.M. sound modulation is then fed to the volume control.
SYNC. SEPARATOR, STRIPPER \& DC RESTORER (BLOCK \#8)
The video signal containing the sync. pulses is taken from across the video is of the proper magnitude to place all picture information beyond cut-off and only the sync. pulses appear in the plate current. The sync. pulses are then applid only to the grid of \(V-13 A\) where further amplification takes place and vertical sync. pulses of proper phase are applied to the vertical deflection system.
\(V-13 A\) also acts as a phase splitter and sync. pulses of opposity phase are taken from plate and cathode load resistors to feed the horizontal deflection system. not clipped in the grid is operating near cut-off positive noise pulses which were the grid of V13A thus the sync. pulses have been clipped on both sides and are relatively free from noise pulses.

\section*{CIRCUIT DESCRIPTION (CONT'D)}

AUDIO AMPLIFIER \& SPEAKER (BLOCKS 6 \& 7)
approximately 1.5 watts in conventional two-stage audio amplifier which develops control is used which provides increased bass compensation at low volume setting VERTICAL DEFLECTION SYSTEM (BLOCK \#9)
kins section or kinescope. A conventional system is utilized. V-13B operates as a field frequency The combined action of these stages and to drive the vertical output stage V-14. linear deflection current of proper poritr associated circuits provides a yoke.
The integrating network composed of R-73, R-74, R-76 and C-81 A- B-C functions to separate the horizontal from the vertical sync, and to pass the vertical sync. can be considered as a low pass filter that by-passes the operation the network permits the low frequency vertical sync. to pass on through to the grid of pulses and FIELD FREQUENCY OSCILLATOR
The field frequency oscillator V -13B is a conventional blocking oscillator system. In operation the free running frequency of the oscillator is adjusted by means of . frequency by means of the vertical sync. pulses which are injected into fitis grid circuit from the integrator network. The cut-off and conduction action o the oscillator charges and discharges capacitor C-B3and the resulting sawtooth output drives the output stage \(\mathrm{V}-14\).

\section*{VERTICAL OUTPUT}

The peaked sawtooth output of the blocking oscillator system drives the grid of the vertical output stage. An impedance matching transformer T-6 couples V-14 to the varies the \(B \not \subset\) voltage supplied to the vertical sys controlled by means of R-82 which adjustable by means of R-86 in the cathode circuit of V-14. Adjustment of this is control varies the bias and consequently the operating point of the tube this

\section*{HORIZONTAL DEFLECTION CIRCUITS (BLOCK \#10)}

The horizontal deflection system provides a stable, linear scanning current in the horizontal winding of the deflectior yoke. This results in accurate horizontal HORIZONTAL OSCILLATOR AND A F
. SYSTEM
The horizontal oscillator \(\mathrm{V}-18\) is a composite circuit incorporating a cathode 15,750 cycles per second to produce a stabilized sine wave voltant at approximately possesses the RC time constant and grid bias frequency control charat This ctrcuit of a multivibrator; but it achieves some of the frequency stability of a sine wave system. The free running frequency is controlled by the horizontal hold control R-78B. This control is set for approximately 15,750 cycles per second. The oscillator is then locked into synchronism with the incoming signal by means of an automatic D.C.
control bias voltage applied to one grid (Pin \#4) of the oscillator.
This D.C. voltage is developed by the horizontal A.F.C. rectifier V-19. This circuit is a conventional duo-diode phase comparitor which compares the phase of the incoming horizontal output transformer secondary. The sawtoon the width control on the R-111 and clo7. Any discrepancy in the exact phase relationshipeing fed through produces a change in D.C. voltage across ClO5 (at the oscillator grid). This changes the oscillator frequency to assure exact phase and frequency coincidence between the output sawtooth and the incoming sync. pulses from the signal. In this manner the pulses. pulses
The output of the horizontal oscillator is a sawtooth voltage plus a peaking component to produce adequate high voltage and fast retrace The peaking component is sufficient grid of the horizontal output tube V-17 is controlled by a capacity divider to the of c99 and a variable mica trimmer Cl00. This trimmer is adjusted for optimum horizon tal linearity of picture.

\section*{HORIZONTAL OUTPUT AND DAMPER}

The horizontal output tube V-17 and the damper tube V-15 produce the required linear sawtooth scanning current in the horizontal deflection coil. The two tubes plus the horizontal output transformer also produce a high voltage pulse which is used to hack type except that no electrical horizontal centering is provided. Capacitor Cg2 is employed to isolate direct current from the yoke. Centering is therefore accomplished by actual physical movement of the focus coil and, to some degree, the ion trap The output transformer, as far as deflection is concerned, is an impedance matching and yoke.
The width control L-23 is provided to vary the output and hence the picture width effective transformation rationg a portion of the secondary winding to change the inductance and hence the width. Clockwise rotation of L-23 increases the shunting

Because the horizontal transformer (T-8), deflection coil and associated circuits time, they are shocked into resonance when the madn \(=14\) microseconds) for fast retrace To prevent continued oscillatory currents in the deflection yoke thapses during retrace. \(\mathrm{V}-15\) is used. During the first. half cycle of retrace resonance, the damper diode freely to insure rapid retrace time. During the next half cycle the damper olate thates positive and conduction occurs. This puts a heavy load on the deflection coil so that it cannot oscillate.
The 6BQ6GT plate voltage is supplied through the 6W4GT which is conducting over the maior portion of the trace. Capacitor C96 is charged during this period and ducting.
The charge is placed on capacitor \(C 96\) by the receiver D.C. supply and by the current of the sweep voltage is 330 vid in the horizontal deflecting coil. The A.C. axis to the receiver 330 volt bus. The charge on capacitor C 96 by the coil kick-back charged to a voltage greater than the D.C. supply. supply and so the capacitor C96 is 6BQ6GT at a higher voltage than is obtainable supply. This permits operation of the produces an increase in the system efficiency by salvaging would be wasted.

\section*{HIGH VOLTAGE POWER SUPPLY}

The kinescope high voltage supply is obtained from the energy stored in the deflection inductances during each horizontal scan. When the 6BQ6GT plate current is cut off by field in the deflection coil. This pulse of voltage is primary due to the collapsing filtered and applied to the second anode of the kinescope (V8). Since the frequency of the supply voltage is high(\(15,750 \mathrm{C} . \mathrm{P}\). S.), relatively little filter the frequency necessary. Since the filter capacity is small, the stored energy is small and the KINESCOPE \& D.C. RESTORER (BLOCK \#4)
A sync, positive video signal is applied to the kinescope cathode. The brightness control R-4l is part of a voltage divider from \(f 140\) volts to ground which permits retrace lines are just ext.inguished). The kinescope grid returns to ground through R67 and R68 in the cathode circuit of vi2. Since the video amplifier is an A.C. coupled system, the D.C. component of the video signal which represents the averag background brightness of the televised scene is lost. If a white signal or a black signal is applied to the grid of V12, the D.C. voltage developed across the cathode his potential is applied to the kinescope grid to re-insert the value of the signal.

The kinescope is a conventional \(1^{\prime \prime}\) or \(12^{\prime \prime}\) tube. These tubes employ magnetic focus and deflection systems. An ion trap prevents the ion beam from forming a dark spot

MODELS 5010, 5011, 5014, 5015, 5056, 5057, 5071, 5072, Ch. 19TS10, 19TS10A 19TWIO, 19TW10A

\section*{LOW VOLTAGE POWER SUPPLY (BLOCK. \#11)}

The low voltage power supply provides the fllament and plate voltages for the receiver. The unit employs a single 5U4G rectifier (V20) to supply 330 volts at 160 Na electrolytic condensers to ground.
The deflection circuits are supplied from +330 volts to grourd. The audio output tube VII ard the sound I.F. amplifier V-9 operate with their plates at \(\neq 330\) volts from 140 volts tc ground. This system is self regulating since a change in the \(\not \ddagger 40\) volts tc ground results in a bias change in VII which increases or decreases he cathode current of VII in a mariner to oppose the change

LINE CORD ANTENNA
All of the television models listed in this bulletin are equipped with a built-in line cord antenna which is hooked up for operation when shipped from the factory.
This type of antenna is designed for operation on local statiors only, and in locations where it will give satisfactory results. Line cord antennas are not designed to work in conjunctior. with other type antennas and must be disconnected when another antenna is to be attached to the receiver.
A-point terminal strip on the back of the cabinet has been provided with a jumper connection which must be used when changing from line cord tc outside antenna or vice-versa.
When the line cord ar.tenna is to be used the lead wire from the chassis should be placed nder the rie cord ar.tenna is to be used the lead wire from link or terminal "G" must be connected to the center terminal "A".

When an cutside antenna is to be connected the jumper link between terminals "G" and "A" must be disconnected.
The line cord antenna is composed of components L-27 choke coil and capacitor C115 (:MF)

\section*{ALIGNMENT EQUIPMENT AND TEST SET UP}

In crder to align and service Sparton television receivers properly the following test equipment should be available:
FIRST: AN R.F. SWEEP GENERATOR of reliable quality that performs the
A. Provides sweep outputs in the following frequency ranges
\[
\begin{array}{ll}
19 \text { to } 30 \mathrm{Mc.} & 10 \mathrm{Mc} \text {. sweep width } \\
40 \text { to } 90 \mathrm{Nc} & 100 \mathrm{Mc} \text {. Sweep width } \\
170 & \text { to } 225 \mathrm{Mc} .
\end{array}
\]
P. Provides an output signal that can be varied by means of an attenuator up to a maximum of at least . 1 volt.

SECOND: AN R.F. SIGNAL GENERATOK that will provide an ad iustatle output signal A. I. F. Frequencies

B. R.F. Frequencies Channel No. \(\begin{array}{r}\text { Picture Carrier } \\ 55.25 \mathrm{Mc.} \\ 61.25 \\ 67.25 \mathrm{Mc} . \\ 77.25 \mathrm{Mc.} \\ 83.25 \mathrm{cc} \\ 175.25 \mathrm{Mc.} \\ \hline 18125 \mathrm{Mc} .\end{array}\)

Sound Carrier
\begin{tabular}{|c|c|c|}
\hline nnel No. & Picture Carrier & Sound Carrier \\
\hline 2 & 55.25 Fic . & 59.75 Mc . \\
\hline 3 & 61.25 Mc. & 65.75 Mc . \\
\hline 4 & 67.25 Mc. & 71.75 mc . \\
\hline 5 & 77.25 lc . & 81.75 ilc. \\
\hline 6 & 83.25 : c . & 87.75 .c. \\
\hline 7 & 175.25 ic. & 179.75 Mc . \\
\hline ¢ & 181.25 Jic . & 185.75 mc . \\
\hline
\end{tabular}

FIFTH:
A CATHODE-RAY OSCILLOSCOPE of good quality that has a fairly wide band

FOURTH: AN ELECTRONIC VOLTMETER on which the infut probes are all insulated CRYSTAL CALIBRATOR that can be used for checks

GENERAL INSTRUCTIONS. Practically all servicing with the exception of some tube re placement will require removal of the receiver chassis from the cabinet.
A convenient for alignment and servicing can be realized by orienting the receiver chassis in suct. a manner that it rests on its side ard on the horizontal output shield can.

TRIMMER AND SLUG LOCATIONS

ORDER OF ALIGNMENT: When complete receiver realignment is indicated it should be
performed in the following order:
2. Picture I.F.
3. Ratio Detector Transformer
4. Sound and Picture I.F.Sensitivity Check

6. R.F. and Converter Circuit

PRELIMINARY ADJUSTMENTS: Before alignment the receiver controls should be adjusted to the approximated operating positions specified in the table below. The controls should remain ir these positions for all checks.unless otherwise specified.

Brightness Control - to position where raster
Focus Control - to position where fon the kinescope
Focus Control - to position where focus is
Vertical Hold - to center
Vertical Linerity - to center positio
Vertical size - adiusted to give normal raster
Horizontal Hold - to center position
Horizontal Size - adjusted to give normal raster width
TEST EQUIPMENT SET UP: A certain amount of experimentation must be employed to secure stable test set up before alignment or service of the receiver is attempted. It is recommended that the top of the test hench he covered with a sheet of aluminum to
insure good grounds between the various pieces of test equipment and the receiver chassis. In general all test signal input leads should be kept away from output leads as much as possible.

PICTURE I.F. INSTABILITY: If the picture I.F. strip is badly out of alignment it may become unstable and fall into oscillation. When this condition occurs a comparatively large voltage is developed across the picture detector load resistor This voltage is independent of I.F. signal input at the converter grid. the iron cores in the various picture I.F. coils and traps according to the information given in the table below:
\[
\begin{aligned}
& \text { L-6 } \text { Slug in (Max. L.) } \\
& \text { L-11 Slug out } \\
& \text { L-13 Slug in } \\
& \text { L-15 Slug out }
\end{aligned}
\]

The actual physical location of the various coils and traps is shown in Figure and 5 , pages 15 \& 16 . As soon as the oscillation has
the aigignment as outined in the following sections.
PICTUAE I.F. ALIGNMENT: First: Connect the R.F. signal generator to the grid of V-2
\#Z pin. by means of the I.F. input adapter as shown in Fig. 7 .

Figure 7 I.F. Input Adapter
SECOND: Set the R.F. tuner to channel \#2.
THIRD: Connect a 3 volt bias battery between the A.G.C. buss (point D Fig. 6 and chassis ground so that the voltage on the A.G.C. buss is -3 volts in respect chassis ground
to the chassis.
FOURTH: Connect the electronic voltmeter across the picture detector load resistor R30, point A Fig. 6 and set the voltmeter on the low D.C. volt scale.

FIFTH: Set the R.F. signal generator to each of the frequencies shown in the table below and in each case tune the specified adjustment for maximum indication on the voltmeter. It is advisable to check the output of the generator with the crystal calibrator to make certain that it is exactly on frequency in
\[
\begin{aligned}
& \begin{array}{lll}
26.0 \mathrm{Mc} . & \text { L.15 } & \text { (Top of chassis as shown in Fig. } 14 \text {) } \\
23.7 \mathrm{Mc} & \text { LI3 } & \text { (Top of chassis as shown in Fig. } 14 \text {) } \\
25.7 \mathrm{Mc} & \text { Lll } & \text { (Top of chassis as shown in Fig. } 14 \text {) }
\end{array} \\
& 25.7 \mathrm{Mc} \text { Lll } \\
& \begin{array}{r}
\text { (Top of chassis as shown in in Fig. } 14 \text {, } \\
\text { (On Tuner) }
\end{array}
\end{aligned}
\]

PICTURE I.F. TOUCH UP: FIRST: Connect the R.F. sweep generator output to the grid of SECOND: Set R.F. Selector to channel \#2.
THIRD: Correct the oscilloscope across the picture detector load resistor R-30 (point A, Fig. 6 by means of the shielded cable and the filter system

Vert.

Fig. 8 FILTER SYSTEM FOR SCOPE CONNECTION
FOURTH: Set the R.F. sweep generator so that it sweeps from approximately 20 to 30 Mc FIFTH:

SIXTF: Ad de-ray tube screen.
Loosely couple the output of tre R.F. sigral generatcr to the grid of V-2 so that marker sigrals of proper frequency can be mixed in with tre R.F. sweep
SEVENTH:
of the the hand width, relative position of the picture carrier, and flatness the picture I.F. coils L- 6 , Lll, Lil and if necessary slightily vary the tuning of shown in Figure 9 is obtained. The solid curve in Figure 9 depicts the ideal I.F. response while the dotted curves show permissable variations.

Fig. 9 IDEAL I.F. RESPONSE VITTH PERRISSABLE VARIATIONS

\section*{ALIGNMENT PROCEDURE (CONT'D)}

The picture I.F. carrier should appear approximately half way down the I. F. response curve as shown in Figure 9. Variation in the pix carrier position should not exceed \(t 10\) from the half way point.
PICTURE I.F. SENSITIVITY CHECK: FIRST: Conrect the R.F. signal generator to the recelver as specified in steps 1 and 2 of the sound trap alignnent instructions. (When raking sensitivity checks no bias battery is connected to the A.G.C. buss.
SECOND: Correct the electronic voltmeter across the picture detector load resistor Correct the electronic voltmeter across the picture
\(\mathrm{R}-30\) and set the meter on the low D.C. volts scale.

THIRD: Set the generator output frequency at approximately 23 Mc . Adjust the generator input in the voltmeter reads approximately lo voit. Record the R.F. signal set at 24.2 and 25 . Repeat the procedure With the generator output frequency microvolts or less. The sensitivity at the I. F. picture carrier 26.25 Nc should be approximately half of the I.F. sensitivity between 24.2 Nc. (vaximu
of 400 microvolts.). feasurements can be made by using ancther receiver that is known tc be in good operating condition as a stardard. This applies to all sensitivity measurements ard good results can be obtained if sufficient care is used.
SOUND I.F. ALIGNMENT: FIRST: Connect the R.F. signal generator to the grid of V-7 point E) Fig. 6.
SECOND: Conrect the electronic voltmeter across C-64 (Point P) Fig. 6 . Set the voltmeter on a low D.C. scale

THIRD: Set the R.F. signal generator to 4.5 Mc . and adjust L-20 and T-4 (both top of chassis) for maximum reading on meter. Repeat both adjustments.
NOTE: The 4.5 N.c. signal must be as accurately calibrated as possible, since alignment of the sound channel at an improper frequency may cause distortion or even complete loss of sound.

FOURTh: Connect the electronic voltmeter from the junctior of R55 and R56 to the
junction of R51, C59 and C61 (Point \(C\) as shownin Fig. 6). junction the signal generator still accurately set at 4.5 Mc . adjust the secondary of T-4 (bottom view of chassis as shown in Fig. 5). Notice that it is possible to produce a positive or negative voltage indication on the negative, adjust T-4 for zero output as indicated by the voltmeter. This point is called zero ratio detector output and indicates correct alignment of transformer T-4.
TUNER ALIGNMENT: The alignment of the R.F. circuits of the tuner is a difficult and tedious task when it must be performed without benefit of special factory test circuits be attempted by the service engineer. The information provided in the paragraphs below is intended primarily for descriptive purposes and cases where slight adjustments may be necessary.

An cvercoupled tuned circult is used between the R.F. plate and the converter arid gang condenser tuned and shunt trimmer cordensers are used. The capacity curves of the gang condenser sections ard the righ frequency series tracking condensers have been carefully chosen to guarartee a minimum of tuning condenser mistracking. It should never be necessary to adjust the gang condenser capacity by knifing the plates.

In order to correctly track the R.F. and mixer coils to achieve maximum tuner gain and to obtain best resporse curve symmetry, a system of padding double tuned, be achieved by using a small blade screw driver, and adding additional capacity by touching the screw driver shank with one or more of the fingers. This additional capacity severely detunes one side of the double tuned, overcoupled transformer so that the single peaked, resonant response of the other side may be observed.

TO ALIGN THE TUNER PROCEED AS FOLLOWS: FIRST: Picture I.F. must be properly aligned.
SECOND: Connect R.F. sweep generator to antenna Terminals through 300 ohm balanced dummy antenna. Dumm artenna may consist of two 150 ohms carbor resistcrs,

THIRD: Connect oscilloscope across the picture detector load resistor R-30(point A Fig. 6) by means of the shielded cable and the filter system shown in Fig. 8 .

FOURTH: Perform the operations listed below. In each case adjust for flat wide band The shape of the overall imately the same as that of the video I.F. response curve shown be approx Marker pulses of proper frequency should be mixed in with the R.F. sweep input to check overall band width and relative position of the picture carrier on each channel. Always keep the R.F. input signal low so that slight variations in the tuning of the circuits are easily discernable is shown in Fig. \(11,12 \& 13\). The physical location of all the adjustments

FIRST:
Rotate the tuner to the channel 6 index position.
Capacity load the R.F. coil(first stator plate) and adjust the low band mixer trimmer so that the single peaked response curve falls midway between the R.F. carrier markerso(See Figure 10 below)
THIRD:
Rapacity load the mixer coil(second stator plate) and adjust the low band R.F. trimmer, so that the single peaked response curve falls midway be-

MODELS 5010, 5011, 5014, 5015, 5056, 5057, 5071, 5072, Ch. 19TS10, 19TSIOA, 19TW10, 19TW1

\section*{ALIGNMENT PROCEDURE (CONT’D)}

FOURTH: With no loading on the double tuned circuits adjust the low band oscillator trimmer so that the channel 6 picture carrier marker falls at the \(50 \%\) symmetrical double humps, the valley between them not being more than \(30 \%\) down from the peaks.
FIFTH: Turn station selector to channel 2 and adjust the low band antenna trimmer ClA and pad for maximum gain and symmetry.

SIXTH: Check all low band channels. The response curve should remain substantially unchanged through all channels.

HIGH BAND ALIGNMENT: FIRST: Rotate the tuner to the channel 13 index position.
SECOND: Capacity load the R.F. coil (\(\# 7\) switch lug) and adjust the high band mixer trimmer so that the single peaked response curve falls midway between the R.F. carrier markers.

THIRD: Repeat step 2, loading the mixer coil(\#4 switch lug) ard adjust the high
FOURTH: With no loading on the double tuned circuits adjust the high band oscillator trimmer so that the channel 13 picture carrier marker falls at the \(50 \%\) trimmer so that the chan
voltage reference level.

FIFTH: Turn station selector to channel \#7 and adjust the high band antenna trimmer CIB for maximum gain regardless of the shape of the response curve. At channel 13, because of the relatively large grid-plate capacity of the GAG5 and the R.F. coil padding, (i.e.) large detuning of the antenna causes padding detuning of the R.F. This action will be indicated by a sharply peaked response curve. A slight readjustment of the R.F. padder will restore symmetry.
SIXTH: Check all high band channels. The response curve should remain substant ially unchanged through all crannels.

OVERALL PICTURE SENSITIVITY CHECK:
After alignment of the various sections of the receiver has been completed, the following overall sensitivity checks should he made. (In cases where the signal generator output is not calibrated in microvolts comparative sensitivity measure-
ments can be made by using another receiver which is known to be in good operating ments can be made by using

FIRST: Connect the R.F. signal generator to the receiver antenna terminals through 300 ohm balanced dummy antenna as described in step \# 2 of tuner alignment.
SECOND: Connect the D.C. voltmeter across R30 as previously described. Set the voltmeter on the low D.C. volts scale.

THIRD: Set the signal generator at the center frequency of the channel to be measured and tune receiver dial for maximum reading of the D.C. meter. Adjust R.F. level until meter reads 1.5 volts (contrast control in maximum clockwise position). Generator output should be 250 microvolts or less in the low bands and 350 microvolts or less in the high bands.
SOUND SENSITIVITY CHECK:
Two R. F. signal generators are required, one of which shall be frequency modulated \(\neq 7.5 \mathrm{Kc}\). at 400 cycles.
FIRST: Connect both R.F. signal generators to the receiver antenna terminals through separate dummy antenna resistors, doubling the resistance value used for the picture sensitivity test.
SECOND: Open speaker voice coil and connect a 3.0 hm audio output meter across out-
put transformer secondary.
THIRD: Connect the D.C. voltmeter across R-30 as previously described.

FOURTH: Set the unmodulated signal generator at the picture carrier frequency of the channel desired. Set the F.f. modulated signal generator at the sound carrier frequency. Keep the two generator outputs equal at all times. Tune receiver for maximum reading of the D.C. meter and then detune toward a lower frequency until the D.C. meter reading is reduced to half. Rock Set signal generator outputs for \(1 / 2\) watt reading on audio meter. Divide generator microvolts by two since there is a 6 DB insertion loss due to the dummy antenna used. This sensitivity reading should be 150 microvolts or less in all channels.

NAXIMU: AUDIO OUTPUT:
With signals applied as in the sound sensitivity check above, and the output of each generator set at 10,000 microvolts, tre audio power output should be 2 watts or more.

TOP VIEW

DESCRIPTION

\section*{REPLACEMENT PARTS}

Condenser -

PART NO.
PA4334-1

HK36M-271
HK36M-101
PC4OGL-103
PA4328-11
PA4328-13
PC4OHK-104
\({ }^{\text {MC60F-271 }}\)
PC4OHL- 104
PA4326-1
PA4332-3
MC62F-121
HK36M-102
PA4326-4
PA4326-4
PC4OHL-203
PC4OGK-303
PA4308-2
PA4308-2
PCLOHL-10
PC40GM-102
PA4307-15
PA4307-13
PA4303-13
PC4OGL-503
PC4OHI-254
PC4OGL-104
PA4339-4
MC61F-472
PC40FL-503
PA4 \(340-9\)
PA4340-2
PA4340-2
PA4342
PC4OHL-503

**Deflection yoke supplied only as complete assemblies. MODELS 5010, 5011, 5014, 5015 5056, 5057, 5071, 5072, Ch 19TSio, 19TSl0A, 19TW10, 19TW10A

ADJUSTING LIGHT SHROUD - Note the black shroud which is sus- Optical Box. Untie the cord ot the bottom edge of the shroud ond lift pended from the shelf beneath the front surface mirror and extends ght fromicat Rox. The purpose of this shroud is to prevent spurious ight from entering into the optical poth of the projection system and
also to prevent dust from settling on the face of corrector lens of the Optical Box. Untie the cord at the bottom adge of the shroud and lift sary, wipe this lens gently with a soft clean cloth to remove all foreign matter from its sufface. Re-tie the shroud securely around the four pright studs on the Optical Box and make sure that it does not sag into the optical path.

\section*{RECEIVER CONTROLS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \[
T 5
\] & & & & \\
\hline & ON.OFF SWITCH
AND VOLUME CONTROL (small knob) Use to turn receiver on or
ch and to adjust for dech and to adjust for
sired sound volume
\(\qquad\) & HORIZONTAL HOLD CONTROL Adjust so that picture is
stationary and does no move horizontally or break streaks & & & & CONTRAST
CONTROL
(large knob)
Adjust to receive
picture and obtain
correct contrast be
tween light and
dazk shades \\
\hline
\end{tabular}

FIG. 2

\begin{abstract}
The various controls on the receiver may be divided into two classes,
Operating ond Pre-set. Operating controls are those which contro
program selection as program selection as well as sound and picture quality. All but one
of these controls are located on the front panel and their functions are indicated in Figure 2. The built-in television antenna tuning con-

The Pre-set controls are those which require adiustment of the time
the receiver is installed and thay rarely need attention thereafter, There are nine of these controls, four of which are locoted at the back of the chassis (see Figure 1). Four controls are accessible by remov ing the Name Plate located directly above the Operating controls. Access to the "Auxilary Fine Tuning" screw can be goined by remov
\end{abstract} ing the "Channel Selector" and "Fine Tuning" knobs.

CONTROL ADJUSTMENT PROCEDURE
MODEL 9105-

Power interlocks are provided on the half of the cabinet back located
behind the picture screen and on the speaker grille panel (see Figures behind the picture screen and on the speaker grille panel (see Figures
1 and 7). Should either the cabinet back or speaker qrille panel be opened. the power supply to the receiver. will be interrupted and a special power cord (Stewart-Warner part No. 507699) will be required to supply power to the receiver. If the speaker grille panel is removed, power must be supplied to the receiver through the interlock locate ot the front. If only the cabin. back is opened, power can be sup-

\section*{CAUTION}

When by-passing the power interlocks through the use of a special power cord, extreme care should be exercised to avoid contact with the high voltage components used for operation of this receiver.

Although the pre-set controls have been factory adiusted for optimum performance, it is usually necessary to make some fine adjustments

To gain access to the centering adiustments and optical focusing it will be necessary to open the cabinet back, behind the picture screen panel must olso be removed by grasping the grille frame of the upper edge and pulling outward.
Be sure that the locking brackets used to hold the Tailpiece Assembly o the Optical Box during shipment (see Figure 7) are removed before undertaking any optical adiustments as described in the following pro
cedure. In addition, the felt block between the focus coil housing and picture tube clamp plate must be removed.
The receiver is now ready for an operational check
TO ADJUST CONTROLS FOR RECEPTION OF STANDARD BROAD. CAST OR FREQUENCY MODULATION STATIONS:
I. TURN SET ON - Rotate "On-Off" Switch and Volume knob
clockwise to furn receiver on
POSITION BAND SWITCH-Set "Band Switch" to either its AM or "MM position. "Dial scale of corresponding band wil
be illuminated on face of "AM-FM Fine Tuning" knob. If the Chonnel Lite behind either the AM or FM dial scale does
not light, and receiver otherwise operates satisfactorily, then not light, and receiver otherwise operates satisfactorily, then
that Channel Lite may be burned out and replacement should that Channel \({ }^{\text {ite }}\), may be burned out and replacement should
be undertaken. Too gin access to Lites, remove oll knobs on
front of receiver (pull each knob forward) and remove Nome front of receiver (pull each knob forward) and remove Name
Plate by grasping its upper edge and pulling it away from the Plote by grasping its upper edge and pulling it away from the
cabinet. The Control Panel Escutcheon must then be removed by taking out the four wood screws which hold it in place.
Replace Channel Lite with Stewart-Worner part \# 118921 . Be Replace Channel Lite with Stewart-Warner part
sure to replace sleeving over new Channel Lite.
Sure to replace sleeving over new Channel Lite.
3. TUNE-Use "AM-FM" Fine Tuning" control to select desired
station.
ADJUST YOLUME - Select "Volume" control setting for desired
ADJUST TONE — Select "Tone" control setting for most pleas
to adjust receiver for reception of television stations 1. TURN SET ON - Rotate the "On-Off Switch ond Volume" knob approximately \(1 / 2\) turn clockwise to turn set on and obtain suffi-
cient sound volume during the tuning process. Allow several cient sound volume during the tuning process. Allow severol
minutes for oll tubes in the receiver to worm up ond for circuit to stabilize before attempting to obtain a picture on the screen. 2. POSITION BAND SWITCH - Set "Band Switch" to "TV" positor" knob, illuminates the particular television station designation tor knob, illuminates the particular television station
corresponding to the setting of the Channel Selector.
If the TV Channel Lite does not light, and receiver otherwise
operates satisfactorily, then the Lite may be burned out and operates sotisfoctorily. then the Lite may be burned out ond replacement should be undertaken. Follow the same procedure
previously indicated for removal of AM-FM Channel Lites.
. ADVANCE BRIGHTNESS CONTROL - Turn "Brightness"
trol clockwise until picture screen is moderately illuminoted.
The screen may remain dark or dimly illuminated until the "Coorse Brightness remain control is or dimusted illuminated until the step. If it should be found that the picture "blooms" or grows in size as the "Brightness" control is advanced, this condition
con be corrected by odiustment of the "Coarse Brightness"
control

ADJUST COARSE BRIGHTNESS CONTROL-This control which can be removed by grasping it at the uperer edge and
pulling forward. With the "Brightness" control on the fron panel set to its maximum clockwise position, adiust the "Coarse
Brightness" control for maximum brightness. The point of mum brightness will occur iust before the picture "blooms" grows in size.
Since maximum light transfer through the picture screen takes
place perpendicular to its foce, this odiustment should be un place perpendicular to its face, this odiustment should be
dertaken with the operator looking diractly into the screen. . ADVANCE CONTRAST CONTROL - Rotate the "Contrast" control knob fully clockwise.
. SET CHANNEL SELECTOR TO DESIRED CHANNEL - The "Channal Selector" knob designates the channel to which the
television receiver is tuned. (NOTE: Call letter or channel numtelevision receiver is tuned. (NOTE: Call letter or channel num-
ber tabs must be inserted into the "Channel Selector" knob for proper station identification-see paragraph \#23 of this sec-
tion of Installation Instructions for method of inserting these tabs.) Numbered positions indicated by the knob correspond to
 broadcasting of the time
7. FINE TUNING CONTROL - Use the "Televisio Fine . cogtrol (illustrated in Figure 2) to obtain the correct tuni point for both picture and sound. That is accomplished as follows:
Turn "Television
Fine Tuning" Fine Tuning
control in either direction until sound volume is moximum - io heard, advance the volume con-
trol and repeat fine tuning. If
sound still can-
 not be heard, then refer to
step
FIG. 3 - SOUND INTERFERENCE FIG. 3 - SOUND INTERFERENCE
CAUSED BY INCORRECT TUNING When the point of maximum sound volume has been reach ed it will be noted that the picture has a "ragged" o bars" (dark horizontal bars of varying width - see Figure 3) the correct seting of the "TELEVISION fin TUNING" CONTROL is now obtained by turning it away fon the maxid inate the sound bar" interference and permit sharp repro tears into a series of black and white streaks as shown in Figure b, reduce the setting of the "Contrast" control and
operate the "Horizontal Hold" control knob until pictur operate the "Horizontal Hold
appears stable and undistorted.
AUXILIARY FINE TUNING ADJUSTMENT -- If it is found tho the tuning range of the Television fine Tuning control is odequate to permit correct tuning of a station in its assigne will be necessary. This special screw is accessible fter scre of the "Channel Selector" and "Television Fine Turino" knobs They may be removed by merely pulling them forward.
Adjustment of the "Auxiliary Fine Tuning" screw may undertaken in accordance with the following procedure. . Set "Chonnel Selector" to desired channel; then this knob.
b. Set "Television Fine Tuning" knob to the center of its range; then remove this knob. The flat portion of the main permost position. Note the location now be in the up Fine Tuning" adiustment screw on receiver chassis - se Figure 5.

© John F. Rider

\section*{CAUTIONS}

HIGH VOITAGES are used in the operation of this receiver. The back cover, while in place, prevents accidentat contact with this voltage and therefore should not be opened by anyone except a qualified television serviceman.
THE HIGH VOLTAGE LEAD, which supplies approximately 25,000 volts to the picture tube, should be momentarily shorted to the chassis whenever it is disconnected for service purposes. This discharges the high voltage filter condenser and prevents a shock hazard when working on the recoiver after it has been turned off.

THE PICTURE TUBE is highly evacuoted and if broken, glass fragments will be violently expelied. Scratching, chipping, undue pressure, or careless handling such as lifting the tube by its neck is dangerous and should be avoided. If it is necessary to handle the picture tube, use safety goggles and heavy gloves.

Do not operate the picture iut
The plate lead of the \(6 B G 6 G\) tube in the high Voltage power supply must be dressed to clear all objects by \(1 / 4^{\prime \prime}\) to prevent corona discharge. When replacing the cover on this unit, the high voltage lead must go directly up through the cover and not cross over inside the box. Severe arcing may result if the cover is reversed.
Extreme core should be exercised in handling the refecting mirror. Organic matter deposited on the front surface of this mirror by hondling may cause permanent stains.

The Tailpiece Assembly should not be handled by grosping the Deflection Yoke. Undue strain on this yoke moy cause breokage or distortion which cannot be compensoted for through normal odjustments.

\section*{SERVICING THE OPTICAL BOX}

The Optical Box contoins a concove mirror, o plane mirror mounted at a \(45^{\circ}\) ongle and the ospherical corrector lens. Optical alignment of thase elements requires o special fixture and such adjustment should not be underiaken in the field. In the event that adiustment of these elements
is required, the Opticol Box should be refurned to Stewort-Warner Elec. tric. Do nat return the Tailpiece Assembly (contoining Picture Tube, Focus Coil and Deflection Yoke) as those components are not needed when making this adjustment.
The Opticol Box is a dust-proof unit ond the mirrors should seldom require cleaning. In cases where dust or grease conditions are unusually severe, a deposit an the optical surfaces may cause decreased picture
brightness. Under those circumstances, cleaning of the optical surfaces should be undertaken as follows:

Remove Tailpiese Assembly from Optical Box as indicated in section
entilled "REPLACEMENT OF 3NP4 PICTURE TUBE" an page 5. Untie the light ond dust shroud from around the studs on top of the Optical Box.
The Opticol Box con now be removed from the cabinet by releasing the three locking screws which fosten it to the boltom. The two sides of the box may now be removed by taking out the screws around the edges. This will expose all optical surfoces for cleaning. Do not touch the mirrors as they are front surface mirrors and orgonic deposits from the fingers will cause permanent stains. Remove all dust from the optical surfaces with a camel's hair brush and then polish with lens tissue. Where dust deposit or discoloration is excessive, use a commercial spray such as "Windex." The top surface of the corrector lens is covered with a glass plate and accordingly may be cleaned with a soft cloth without scratching.

Replacement of the Focus Coil or Deflection Yoke ontails partial disas sembly of the Tailpiece and this should be done in accordance with the applicable instructions. Care should be exercised in undertaking this
disossembly and particular attention should be given to correct placement

\section*{REPLACEMENT OF FOCUS COIL ASSEMBLY}
1. Remove 3 NP4 picture tube fram Tailpiece Assembly as indicated on Page 5.
2. Remove triangular Tube Clamp Plate (518 in Fig. 2).
3. Unsolder red and black-white wires from defection yoke and focus coil plua dosen cable clamp and withdraw these wires which lead to focus coil.
4. Remove two centering screws " \(G\) " (See Fig. 1).
5. Remove " C " washer an spring-loaded stud at flange of Focus Coil. (Exercise care in doing this since spring is still under tension.) A

Focus Coil, must also be remored the Coil mav now be lifted free from the Tailpiece Assembly.
6. Place new Focus Coil Assembly on studs and replace spring and washers removed in Step 5 .
7. Replace centering screws " G ", thread focus Coil wires through cable clamp and tighten clamp. Resolder wires into correct pins on cable plug (see circuit diagram Page 19,20). Replace triangular Tube Clamp Plate on end of Tailpiece Assembly
8. Replace Picture Tube and Tailpiece Assembly as indicated on Page
9. Re.focus, re-center and straighten raster as indicated on Pages

optical adjustment controls

\section*{REPLACEMENT OF DEFLECTION YOKE}
1. Remove Focus Coil as indicated above.
2. Remove rubber ring oround Defection Yoke (diagram \#500 in Fig. 2) by merely pulling it forward.
3. Note the exact mounting pasition of the Deflection Yake with respect to the mounting plate. This is very important because the replace ment yoke must be installed in the some position.
4. Remove three thumbscrews " N " and completely unscrew thumbscrew " H " (see Fig. 1). The Deflection Yoke and mounting plate can now be removed for convenient servicing.
. Remove the screw which grounds the Deffection Yoke shield lug to the mounting plate.
The Deflection Yoke can now be released from the mounting plate by removing the four screws which hold it in position. Before moving the roke, again check its position with respect to the mount ing plate. Unsolder all cable wires from yoke connection lugs. It is not necessary to remove the two 560 ohm resistors since the replacement yoke is supplied with those components.
7. Resolder the cable leads to the correct luas on the new Deflection Yoke. For correct connection of all wires, see the circuit diagram on page io, 20 .
8. Place the Deflection Yoke Insulator (521 in Fig. 2) in position on the mounting plate and then properily locate the yoke in the same relative position as the original one. Be sure that the extrusions The yoke should now be secured in position by the four mounting screws.
9. Properly dress the coble teads and then replace the screw which Properly dress the coble leads an then replace the
10. Re-insent this assembly into the front section of the Tailpiece and engage thumbscrew " \(H\) " in the threaded hole in bracket. Replace three thumbscrews "N" (see Fig. 1).
1. The focus Coil should now be replaced as indicated in the previous section ontitiled "REPLACEMENT OF FOCUS COIL ASSEMBLY.
12. Re-focus, re-center and straighten raster as indicated on pages 3 and 4.

\begin{tabular}{|c|c|}
\hline 1. & Power Supply-117 volts 60 cycle AC. \\
\hline 2. & All voltages are measured between socket terminals and chassis unless otherwise indicated on adjoining chart. \\
\hline 3. & Measurements made with voltmeter having sensitivity of 1000 ohms per volt except where indicated by ('). The (') symbol designates a vacuum tube voltmeter measurement. \\
\hline 4. & Band Switch set to "TV" position unless otherwise indicated by the letters " X ". " \(Y\) ". or " \(Z\) " following voltages shown in adjoining chart. \\
\hline 5. & Antenna connected for reception of a television broadcast. \\
\hline 6. & Channel Selector and Fine Tuning Controls set for correct reception of a local station. \\
\hline 7. & All other controls set for "normal" reception of the transmitted signal unless the voltage shown on the chart is followed by letters indicating a special condition of measurement as outlined in step 8. \\
\hline 8. & Certain voltages were measured with two different settings of specific controls. It should therefore be understood that in these instances all controls, with the exception of one or two, were set for "normal" reception-
letters following the voltage shown on the chart indicate the exceptions and are explained below. \\
\hline
\end{tabular}

\section*{EXPLANATION OF NOTES}
\begin{tabular}{|cl|}
\hline A. & Vert. Hold max. counter-clockwise \\
\hline B. & \begin{tabular}{l}
Brightness max. counter-clockwise \\
Brightness control fully clockwise).
\end{tabular} \\
\hline C. & Contrast max. clockwise \\
\hline D. & Horiz. Drive max. clockwise \\
\hline E. & Horiz. Hold max. clockwise \\
\hline F. & Focus Control max. clockwise \\
\hline
\end{tabular}

REAR OF PROJECTION SYSTEM CHASSIS

© John F. Rider

\section*{ALIGNMENT PROCEDURE}

Aliment of all RF and IF tuned circuits in this receiver may be
accomplished by utilizing the procedures described in the follow. ing charts.
SEQUENCE OF ALIGNMENT: These procedures should preferably
be applied in the order in which be applied in the order in which they are presented, however.
alignment of RF or IF channels for either AM. FM or TV may be accomplished individually if desired.
The Television RF Amplifier and Mixer alignment may also be ac.
complished independent of the Television IF Channel alignment, but oscillator calibration can only be done after IF Channel has been correctly aligned. Proper
for oscillator alignment as results of circuit tuning are observed by
means of an oscilloscope connected to the output of the video Kor oscillation on
means of an
detector stage.
REMOVAL OF CHASSIS: The TV receiver chassis must be re. moved from the cabinet in order to accomplish alignment of all underside of the chassis and adjustment points located on the
front of the AM. FM Tuner. polished without interconnection to any of the other units --do not remove other chassis unnecessarily
To remove TV chassis, disconnect auxiliary power supply cable, deflection yoke and focus cable, phon motor cable. speaker
leads. AM loop antenna leads. phone pickup plug. picture tube grid lead. picture tube socket and builtin TV antenna leads cato lamp socket from bracket at base of cabinet. Also unscrew external FM antenna clio and external TV antenna terminal
strip from cabinet frame. Remove back of shielded compartment on TV chassis by taking out 5 screws on rear surface.
All control knobs on front panel of receiver must be pulled off and the Th chassis can then be released by removing he four
hold down screws. Two of these screws are accessible from inside the record storage compartment and the other two are ac.
cessible from the rear. Before removing the chassis, be sure that all leads have been dressed so that they can be freely withdrawn rom the cabinet with the chassis.
INSTRUMENTS: The following instruments will be required as signal sources and output indicators during the alignment process.
Since accurate alignment of a television receiver is heavily de. pendent upon the performance of your instruments, it is imperative
that they meet the essential specifications described here.

STANDARD SIGNAL GENERATOR to provide signals at the
following frequencies. Maximum output on all ranges should he at least It il volt with provision tor attenuation res should be at least . 1 volt with provision for attenuation as desired.
This instrument must have good frequency stability and be accurately calibrated. Genenaooiss which inch itabporate a sep.
orate crystal controlled oscillator and heterodyne circuit are alate crystal controlled oscillator and heterodyne circuit are
self! calibrating and therefore capable of providing the accuracy of frequency calibration required for television circuit racy of ire
alignment.

45S Kc. (400 cycle amplitude modulated) for AM IF.
4.5 Mc. (Unmodulated) for TV Sound.

IMP
IMP O

\section*{AVOID EXCESSIVE INPUT SIGNAL WHEN USIA
OSCILLOSCOPE AS ALIGNMENT INDICATOR.}

When observing the receiver band pass characteristic on an oscilloscope, it is exceedingly important o avoid distortion of that characteristic which would occur when using a large input signal from the sweep generator or standard generator (marker signal). Always set attenuator on sweep generator so that the reading on the vacuum tube voltmeter does not exceed one volt (when meter is connected from high side of video detector load resistor, symbol 139, to receiver chassis). Standard generator output should also be attenuated so that marker signal does not pull or tear the band pass characteristic as shown on the scope

\section*{5 Mc . 4000 cycle
TV Sound.}

22.25 Mc . (Unmodulated) marker for TV Sound IF
22.4 Mc. (Unmodulated) tor TV IF Trap.
23.5 Mc. (Unmodulated) tor TV lIst and 3 .
24.75 Mc . (Unmodulated) for TV 4 th IF (on chassis
25.0 Mc . (Unmodulated) for TV 4 th IF (on chassis
26.1 Mc . (Unmodulated) tor TV Converter and 2 nd IF
26.6 Mc (Unmodusiled) for TV Converter 508 RF Tuner)
26.6 Mc. (Unmodulated) for TV Converter and and IF \(\begin{gathered}\text { (on chassis equipped with } 508075 \mathrm{RF} \text { Tuner). }\end{gathered}\)
26.75 Mc . (Unmodulated) marker tor TV Picture IF
B. RF Frequencies:

550 to 1600 Kc . (400 cycle amplitude modulated)
54 to 88 Mc . (Unmodulated) tor TV RF.
88 to 108 Mc . (400 cycle amplitude modulated)
74 to 216 Mc . (Unmodulated) for TV RF.
2. RF SWEEP GENERATOR to provide frequency modulated sig
nails at the following frequencies: ais at the following frequencies. 10.7 Mc . With 300 Kc . sweep width.
20 to \(30 \mathrm{Mc}\). with 10 Mc . sweep width. 54 to 88 Mc . with \(10 \mathrm{Mc}\). sweep width
17410216 Mc . with 10 Mc . sweep width.
Output adjustable with at least . 1 volt maximum. Output should be "flat" (no amplitude variation) for all set
tings of the sweep width control. tings of the sweep width control.
Provision for connection of generator sweep modulating volt
provision fo blanking the output signal on each return
revision for blanking the output signal on each
sweep so that oscillogram will not show retrace.
. CATHODE RAY OSCILLOSCOPE. preferably a unit with vert cal amplifier having wide range frequency response and low capacity pickup probe.
VACUUM TUBE VOLTMETER. The lowest voltage range of this
instrument should preferably permit a 1.0 volt reading to be instrument should preferably permit a 1.0 volt reading to be
S. OUTPUT METER. preferably a unit equipped with an imper nance matching network that will present a 3.2 ohm load when INSTRUMENT CONNECTIONS: The method of connection, including in this alignment procedure is given in several illustrations on sub sequent pages. Specific instructions for each instrument application
will also be found in various sections of the alignment charts.

CHECKING SYNCHRONIZATION OF BAND SWITCHES ON AM-FM TUNER AND TV CHASSIS.

Note that the band switch on the AM-FM Tuner chassis is mechanically coupled (by a link arm and ever clamp arrangement) to the band switch on the TV chassis. Do not operate these switches by direct pressure on the link arm-always use a control ital linkage is forced or slips at the clamp on the TV switch shaft so that both switches get out of step
they can be resynchronized as follows
Loosen screw in actuating lever clamp on \(\mathrm{T} V\) band switch shaft
2. Turn both switches to extreme clockwise posit ion and be sure that they detent properly a that position
3. Retighten screw in actuating lever clamp on TV band switch shaft.

BROADCAST BAND__"AM"-_ALIGNMENT PROCEDURE

After the entire chassis assembly has been removed from
the cabinet. remove the AM loop antena and reconnect it the cabinet. remove the AM loop antena and reconnect it
to the \(A M\) antenna leads extending from the \(A M \cdot F M\) tuner chassis. Then wind one turn of insulated wire around frame of loop antenna so as to provide a means of coupling it to the signal generator. Connect one end of coupling turn to
receiver chassis and allow other end to remain open until receiver chassis and allow other end to remain open until
otherwise instructed in the following chart. Space loop antenna same distance away from the chassis as when
assembled in the cabinet.
Reconnect the speaker to the
Reconnect the speaker to the two audio output leads extend.
ing from the main chassis. IMPORTANT: Do not confuse ing from the main chassis. IMPORTANT:
these la ads with the two loop antenna leads.
3. Replace AM-FM Coarse and Fine Tuning knobs and rotate
Fine Tuning knob to its extreme counterclockwise position. Fine Tuning knob to its extreme counter -clock wise position.
At this setting, the gang condenser should be fully meshed and the heavy line next to 5.5 on the dial scale should be pointing straight up; it they are not, loosen the set screws in the hub of the dial drum on the gang condenser and close gang plates manually; also, position the dial
The Control Panel Escutcheon at the front of the cabinet
normally provides a "position indicator" for the AM.FM dial normally provides a "position indicator" tor the AM. FM dial
scale, however, when the chassis is remold tron scale, however, when the chassis is removed from the cab-:
net it becomes necessary to install a "temporary pointer." int it becomes necessary to install a "temporary pointer."
That can be readily accomplished by binding a piece of heavy wire around the planetary drive support brackets
and shaping the free end of the wire so that it can be
placed in a vertical position (pointing down ard) between placed in a vertical position (pointing downward) between
he dial knob and the lamp behind it (wire will then cast shadow on the dial scale and show the frequency to which he receiver is tuned.
With the gang condenser fully meshed, the "temporary pointer should appear dire
ceding s .5 on the dial scale.
5. IMPORTANT: Do not remove the metal bottom plate AM.FM tuner chassis. Holes are provided for access to IF transformer tuning slugs. Removal of the bottom plat when the plate is replaced.
6. Connect output meter across the speaker voice coil.

Connect ground lead of signal generator to the receiver
8. Set volume control to the maximum volume position and use
a weak signal from the signal generator.
9. Set tone control to its extreme clockwise
10. Set band switch to the "AM" position.
11. After alignment procedure is completed and chassis and
loop have been reinstalled in cabinet, arrange leads loop have been reinstalled in cabinet. arrange leads to
loop so that they are separated from each other as much loop so that they are separated from each other as much
as possible avoid twisting. taping or extending these leads

FREQUENCY MODULATION-_"FM"- ALIGNMENT PROCEDURE

After the entire chassis has been removed from the cabinet replace AM.FM Coarse and Fine Tuning knobs and rotate Fine Tuning knob to its extreme counterclockwise position. At this
setting. the gang condenser should be fully meshed and the selling. line next to 88 on the dial scale should be pointing
heavy straight up: it they are not. loosen the set screws in the hub
of the dial drum on the gang condenser and lowe gang plates of the dial drum on the gang condenser and close gang plates
manually: also, position the dial scale correctly. Then tighten set screws in hub of dial drum.
2. The Control Panel Escutcheon at the front of the cabinet nor
molly provides a "position indicator" for the AM.FM dial scale.
however, when the chassis is removed from the cabinet it becomes necessary to install a "temporary pointer." That can be readily accomplished by binding a piece of heavy wire
around the planetary drive support brackets and shaping the around the planetary drive support brackets and shaping the
free e end of the wire so that it can be placed in a vertical poss-
timon tron (pointing upward) between the dial knob and the lamp
behind it (wire will then cast a shadow on the dial scale and behind it (wire will then cast a shadow on the dial scale
show the frequency to which the receiver is tuned). With the gang condenser fully meshed, the "temporary pointer"
should appear directly behind the heavy line next to 88 on the dial scale.

AM-FM TUNER ALIGNMENT

\section*{TOP VIEW}

FIG. 1
AM-FM Tuner Chassis

BOTTOM VIEW
FIG. 2
AM-FM Tuner Chassis

FOR
FM ALIGNMENT PROCEDURE

FIG. 3
VTVM Connections for FM Sound IF Alignment

FIG. 4
VTVM and Oscilloscope Connections for FM Sound

FREQUENCY MODULATION_"FM"-_ALIGNMENT PROCEDURE
3. Reconnect the speaker to the two audio output leads extending 5. Set band switch to the "FM" position from the main chassis. IMPORTANT: Do not confuse thes leads with the two AM loop antenna leads.
4. Remove bottom plate from AM-FM tuner during IF alignment but replace it before starting alignment of RF circuits. DO
NOT REMOVE the AM.FM tuner chassis from the TV chassiz during alignment.
6. Sel volume control to the maximum volume position and use
7. Set tone control to its extrame clockwise position.
8. Dress FM circuit leads as short and straight as possible, par should also be kept short and straight
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multicolumn{2}{|l|}{sweep generator} & \multirow[t]{2}{*}{VTVM OR OUTPUT - METER CONNEC
TION} & \multirow[t]{2}{*}{OSCILIOSCOPE
CONNEC.
TIONS} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { RECEIVER } \\
\text { DIARL } \\
\text { SETIING }
\end{gathered}
\]} & \multirow[t]{2}{*}{TRIMMER OR SLUG NUMBER} & \multirow[t]{2}{*}{type of adjust. MENT AND OUTPUT indication} \\
\hline \begin{tabular}{l}
CONNEC. \\
TIONS
\end{tabular} & Frequency & CONNECTIONS & freq. & & & & & \\
\hline \multirow[b]{4}{*}{} & \multirow{4}{*}{10.7 MC. Unmodulated} & \multirow{4}{*}{Not us} & & \multirow{4}{*}{\[
\begin{aligned}
& \text { Connect } \\
& \text { VTVM } \begin{array}{c}
\text { s. shown } \\
\text { in Fig. }
\end{array} .
\end{aligned}
\]} & \multirow{4}{*}{Not used.} & \multirow{4}{*}{Any position where it does not signal.} & \[
\left.\begin{array}{|c|}
\hline \text { Discriminator } \\
\text { secondary }
\end{array} \right\rvert\,
\] & \multirow{4}{*}{} \\
\hline & & & & & & & \[
\begin{array}{|c|}
\hline \text { Discriminator } \\
\text { primary } \\
\hline
\end{array}
\] & \\
\hline & & & & & & & \[
\underset{\text { 2nd } 1 \mathrm{~F}}{28-29}
\] & \\
\hline & & & & & & & \[
\# 30-31
\] & \\
\hline Same as & Same as \(\begin{gathered}\text { Sobe. }\end{gathered}\) & Not used. & - & \[
\begin{gathered}
\text { Connect } \\
\text { VTVMM } \\
\text { as shown } \\
\text { in Fic. } 4 .
\end{gathered}
\] & Not used. & Same as & \[
\begin{gathered}
\text { Discriminator } \\
\text { secondary }
\end{gathered}
\] & \\
\hline Same as above. & & & \[
\left|\right|
\] & Not used. & & Same as above. & \[
\underset{\substack{\text { Discriminator } \\ \text { secondary }}}{=26}
\] & \\
\hline IMPORTANT: \({ }^{\text {In }}\) & Tore starting alt & ligment of the RF & and Oscill & ator cir.
chassis. & lure to obscive th re replaced after & \[
\begin{aligned}
& \text { is requireme } \\
& \text { alignment is }
\end{aligned}
\] & \[
\begin{aligned}
& \text { would resul } \\
& \text { ompleted. }
\end{aligned}
\] & n detuning it plate \\
\hline & \[
\begin{gathered}
108 \text { MC. } \\
\text { with } \\
400 \mathrm{cycle} \\
\text { AM } \\
\text { Modulation. }
\end{gathered}
\] & Not used. & - & \[
\begin{gathered}
\text { Connect } \\
\text { OMPUT } \\
\text { METEGET } \\
\text { across seager } \\
\text { voice coil. }
\end{gathered}
\] & Not used. & 108 Mc . & \[
\underset{\substack{\text { FM } \\ \text { Oscllator }}}{=32}
\] & Set trimmer \#32 10 re-
ceive lior Mc.
asignal
as indicated by max. as indicated by max.
imum meter reading. \\
\hline \[
\begin{aligned}
& \text { Same as } \\
& \text { ghove }
\end{aligned}
\] & \[
\begin{gathered}
106 \text { MC. } \\
\text { Mith } \\
\text { 400 cyyle AM } \\
\text { Modulation. }
\end{gathered}
\] & Not used. & - & Same as & Not used. & Tune to
ro6 Mc. generato signal. & \[
\underset{\mathrm{FM} \text { RF }}{\# 33}
\] & Adjust trimmer for maxi
ing. \\
\hline
\end{tabular}

 ticularly those in the oscilltotor circuit. IF plate and grid leads

\section*{TELEVISION SOUND CHANNEL ALIGNMENT PROCEDURE}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL
GENERATOR} & \multirow[b]{2}{*}{\(\xrightarrow[\text { VTVM }]{\text { CONNECTIONS }}\)} & \multirow[b]{2}{*}{miscellaneous INSTRUCTIONS} & \multirow[b]{2}{*}{TRIMMER OR SLUG} & \multirow[b]{2}{*}{type of aduustment and output indication} \\
\hline CONNECTIONS & frequency & & & & \\
\hline \multirow{6}{*}{Connect as
shown in Fiq. 7.} & \multirow{6}{*}{\begin{tabular}{l}
4.5 MC . unmodulated important \\
 rale
roithin
ral
0 \(\stackrel{\text { Check genera: }}{ }\) tor cal caibration
against
crys. tal controlled
signal source by "ere boectin" with harmonics trequency.
\end{tabular}} & \multirow{6}{*}{Connact as shown in Fiq. 8.} & \multirow{6}{*}{\begin{tabular}{l}
mpoatant \\
Unsolder lead connected to terminal "T" of Horizon
tal Linearity coil fsee Fig. 6). This will make the horizontal sweep system so that the sween voltage will not be picked up by instruments used during Sound Channel aliqnment Such coupling would other cillation.
\end{tabular}} & \[
\begin{gathered}
\text { \#I } \\
\text { TV Sound } \\
\text { Discriminator } \\
\text { Secondary }
\end{gathered}
\] & Adjust tor maximum reading \\
\hline & & & & \[
\underset{\substack{\text { Tv Sound } \\ \text { Discriminator } \\ \text { Primary }}}{\# 2}
\] & Adjust for maximum reading \\
\hline & & & & \[
\begin{gathered}
\text { \#3 } \\
\text { 2nd TV Sound IF } \\
\text { Secondary }
\end{gathered}
\] & Adjusi for maximum reading \\
\hline & & & & \[
\underset{\substack{\text { \#4 } \\ \text { 2nd } \\ \text { Primary }}}{\text { Sit }}
\] & Adjust tor maximum reading \\
\hline & & & & \begin{tabular}{l}
\#5 \\
ist TV Sound IF Secondary
\end{tabular} & Adjust tor maximum reading \\
\hline & & & & \[
\underset{\substack{\text { Ist } \\ \text { Primary } \\ \text { PV IF }}}{\text { P6 }}
\] & \\
\hline Same as
above. & \[
\begin{aligned}
& \text { Same as } \\
& \text { above. }
\end{aligned}
\] & Connect us shown in Fig. 9. & Same as
above. & \[
\begin{gathered}
\text { \#l } \\
\text { TV Sound } \\
\text { Discrimindor } \\
\text { Secondary }
\end{gathered}
\] & Note that as slug \#1 is rotated a point will be found where the ly from a positive to a neqative reading or vice versa. The correct selting of slug \#l is obrined the slug is moved thru this point. \\
\hline
\end{tabular}

REDUCTION OF INTERCARRIER BUZZ
 jection. Therefore it is vitally important to obtain an accurate setting
\begin{tabular}{|c|c|c|c|c|c|}
\hline Same as above. & \[
\begin{gathered}
\text { 4.5 MC. } \\
\begin{array}{c}
400 \\
\text { tude } \\
\text { tucle ompli- } \\
\text { modulated }
\end{array}
\end{gathered}
\] & Not used. & & \[
\underset{\substack{\text { TVF Sound } \\ \text { Discrimincor } \\ \text { Secondary }}}{\text { IN1 }}
\] & \\
\hline
\end{tabular}

Resolder lead previously disconnsctid Irom terminal \(T\) " of Horizonial Linearity coil (see Fig. 6).

o oblain proqram receph
is stul prominent. a slight readus a ment of the discial

FIG. 6
UNSOLEER THIS LEAD AT
TERMINALTY OF HORIZONTAL
LINEARITY COIL WHEN

\section*{INSTRUMENT CONNECTIONS}

FOR SOUND CHANNEL ALIGNMENT
STANDARD
SIGNAL GEN.
SET TO 4.5 MC.
NO MODULATION
(PURE R.F.)

FIG. 7
Generator Connections
for Television Sound Channel Alignmen
USE 10.000 OH
isolating
RESISTOR IN
SERIES WITH
SERIES WITH
meter probe.

FIG. 10
Generator Connections for Television IF Channel Alignment

FIG. 1
TVM and Oscilloscope Connection for Television IF Channel Alignment
INSTRUMENT CONNECTIONS
FOR
IF CHANNEL ALIGNMENT

 VTVM Connections
for Television Sound IF Alignment

FIG. 9
VTVM Connections ion Sound Discriminator Alignment

© John F. Rider

O John F. Rider

\section*{PARTS LIST}

NOTICE: Some parts listed below have special characteristics. Do not use substitutes for replacement purposes.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { DIA. } \\
& \text { GRAM } \\
& \text { NO. }
\end{aligned}
\] & PART & description & \[
\begin{gathered}
\text { DIA. } \\
\text { GAKA. } \\
\text { GAO. }
\end{gathered}
\] & PART & dEsCRIPTION \\
\hline & \multicolumn{2}{|r|}{CONDENS} & & \multicolumn{2}{|r|}{CONDENSERS-Continued} \\
\hline & \multirow[t]{2}{*}{\({ }_{508061}^{51301}\)} & Condenser-coramic 2.2 Mmfd . 500 volt.... & & & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Condenser-. } 25 \mathrm{Mdd} . \pm 10 \% 200 \text { volt.. } \\
& \text { Condenser-. } 05 \mathrm{Mdd} .200 \text { volt................. } \\
& \text { Condenser- } 25 \mathrm{Mfd} .10 \%{ }^{200} \text { volt. }
\end{aligned}
\]} \\
\hline 12-A, B & & Condenser-ceramic 51 Mmid. (part of 1 st TV sound I.F. transformer) & & 512027
512045 & \\
\hline & \multirow[b]{2}{*}{513013} & Condenser-ceramic 5000 Mmid .450 volt........ & & 5130 & \\
\hline & & \multirow[t]{2}{*}{Condenser-ceramic 5000 Mmfd .450 voll Condenser-ceramic 51 Mmfd . (part of 2nd TV sound I.F. transformer).} & & 5120 & Condenser-. 1 Mfd. 200 vol \\
\hline 18. & 513013
508061 & & & 51202 & Condenser-. 05 Mfd. 200 vol \\
\hline & \multirow[t]{2}{*}{513013
51333} & \multirow{3}{*}{Condenser-ceramic 5000 Condenser-ceramic \(47 \mathrm{Mmid} . \pm 10 \% 500\) volt (Temperature compensating)} & 167. & 512 & Condenser-. 05 Mdd. 600 volt \\
\hline & & & & 512019
512031 & Condenser-. \(02 \mathrm{Mld}\).600 volt
Condenser-. \(05 \mathrm{Mld}\). . 600 volt \\
\hline & & & & 5130 & Condenser-Coramic 220 Mmfd . \\
\hline & \multirow[t]{2}{*}{} & Condenser-coramic 5000 Mmld .450 volt & & 512045 & Condonser-. \(25 \mathrm{Mcd}. \pm 10 \% 200 \mathrm{vol}\) \\
\hline 26-A & & \multirow[t]{2}{*}{Condenser-ceramic 1000 Mmfd. 500 volt Condenser-ceramic 110 Mmid . (part of TV discriminator transformer)} & 192. & 13009 & Condensor-coramic 1000 Mmild .500 \\
\hline & 51252 & & & & Condenser-. \\
\hline & 513010 & Condenser-coramic 1500 Mmfd. 350 volt........ & & 5120 & Condenser-. 05 Mid. 200 vol \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
Condenser-. 05 Mfd .200 volt \\
Condenser-. 005 Mid .600 volt \(\qquad\)
\end{tabular}} & & 5125 & Condenser-mica 3300 Mmid . \\
\hline & 512007 & & & 5130 & Condenser-ceramic 330 Mmidd 500 \\
\hline & 512007 & & & 5125 & Condenser-mica \(390 \mathrm{Mmid} . \pm 10 \%\) \\
\hline & 50 & & & 512536 & Condenser-mica 270 Mmfd . \(\pm 10 \%\) \\
\hline & & Condenser-ceramic 1500 Mmfd .350 volt Condenser-electrolytic 4 Mid 150 volt & 212. & & \\
\hline & 50 & Condenser-olectrolytic 4 Mid. 150 volt............. & & & \\
\hline & 50471 & Condenser-electrolytic 50 Mfd .25 volt Condenser-electrolytic 4 Mfd. 450 volt. & & & \\
\hline & 51200 & Condenser-olectrolytic 4 Mid. 450 volt.............. & & & C-100 Mid. 25 volt \\
\hline 52.A & & \multirow[t]{2}{*}{\begin{tabular}{l}
Condenser-. 002 Mid. 600 volt \\
Condenser-lectrolytic
\[
\left.\begin{array}{l}
\text { A- } 40 \text { Mid. } 450 \text { volt } \\
\mathrm{B}-40 \text { Mid. } 450 \text { volt } \\
\mathrm{C}-40 \mathrm{Mfd} . ~
\end{array}\right\}
\]
\end{tabular}} & & & Cor \\
\hline & & & & 51203 & Condenser-. 05 Mta .600 vo \\
\hline \multirow[t]{4}{*}{} & \multirow[t]{2}{*}{\({ }_{5090934}^{5084}\)} & \multirow[t]{2}{*}{Condenser-trimmer 4.70 Mmsd -} & & & Condenser-mica \(10 \mathrm{Mmfd} . \pm 10 \%\) \\
\hline & & & & & Condenner-. \(02 \mathrm{Mld}\).200 volt
Condenser-. \(05 \mathrm{mld}\). . 600 volt \\
\hline & \multirow[t]{2}{*}{507968} & Condenser-trimmer
chassis which do not have Condenser 70). chassis which do not have Condenser
Condenser-trimmer \(0.5-3 \mathrm{Mmld}\). (used only in (hass which her C Misser 70) & & & Condenser-. 15 Mfd. \(\pm 10 \% 200\) \\
\hline & & \multirow[t]{2}{*}{chassis which have Condenser 70)................
Condenser-ceramic. 5 Mmid. \(\pm 10 \%\). 500 volt
(Temperature compensating) (used in some} & & & Condenser-. \(25 \mathrm{Mfd} . \pm 10 \% 600\) \\
\hline & & & & 512 & Condenser-. 05 Mid. 200 volt. Condenser-. \(25 \mathrm{Mfd} . \pm 10 \% 600\) \\
\hline & \multirow[t]{2}{*}{513439} & \multirow[t]{2}{*}{Condenser-ceramic 120 Mmid . \(\pm 5 \% 500\) voll Temperalure compensating} & & 5122 & Condenser-. 01 Mld .400 vo \\
\hline & & & & 513 & Conder:ser-ceramic 5000 Mmld . \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
507968 \\
513442
\end{tabular}} & & & & Condenser-coramic 100 \\
\hline & & \begin{tabular}{l}
Condenser-trimmer 0.5-3 Mmfd. \\
Condenser-ceramic \(10 \mathrm{Mmfd} . \pm 10 \% 500\) volt (Temperature compensating)
\end{tabular} & \[
\text { 245. } 246
\] & 513009 & Condenser-ceramic 1000 Mm \\
\hline & \multirow[t]{2}{*}{* 340} & \multirow[t]{2}{*}{\begin{tabular}{l}
Condenser 3-5 Mmid. (Fine Tuning). \\
Condenser-ceramic \(100 \mathrm{Mmid} . \pm 10 \% 500\) volt (Temperature compensating)
\end{tabular}} & & & A-20 Mid. 300 volit
\(B-60\) Mid. 300 volt \\
\hline & & & & 513018 & Condenser-ceramic 220 \\
\hline & \multirow[t]{2}{*}{507968
51344} & \multirow[t]{2}{*}{Condenser-ceramic 20 Mmid. \(\pm 10 \% 500\) volt (Temperature compensating)} & & S13009 & Condenser-coramic 1000 Mmid. 500 \\
\hline & & & & 5130 & Condenser-coramic 1000 Mmid . 500 \\
\hline & \multirow[t]{2}{*}{\({ }_{5}^{509063}\)} & \multirow[t]{2}{*}{Condensor-trimmer 0.5.3 Mmid....0.0.0.........} & & 513009 & Condenser-coramic \(1000 \mathrm{Mmfd}\). \\
\hline & & & \[
\begin{aligned}
& 260 . \\
& 262 .
\end{aligned}
\] & & Condensor-coramic 5000 Mmida . \\
\hline & 513009 & Condenser-ceramic 1000 Mmld .500 volt...........
Condenser-ceramic 1000 Mmld .500 volt........ & & & \\
\hline & \({ }_{5113532}\) & Condenser-mica \(240 \mathrm{Mmid} . \pm 5 \% 500\) volt...... & \(262-\mathrm{C}\) & 508022 & Condenser-ceramic \\
\hline & \multirow[t]{2}{*}{513009
513016} & & 262.E & 508062 & Condenser-ceramic \\
\hline & & Condenser-ceramic 82 Mmfd. \(\pm 10 \% 500\) volt & & & Integrator unit \\
\hline & \[
\begin{aligned}
& 513009 \\
& 513009
\end{aligned}
\] & & 262.G. & 508062 & ondenser-ceramic 5000 \\
\hline & \begin{tabular}{l}
5130016 \\
\hline 1
\end{tabular} & \begin{tabular}{l}
Condenser-ceramic 1000 Mmfd. 500 volt.......... \\
Condenser-ceramic \(82 \mathrm{Mmfd} . \pm 10 \% 500\) volt
\end{tabular} & & & Condenser-mica \(4700 \mathrm{Mmid} . \pm 5 \%\) \\
\hline & \multirow[t]{2}{*}{513009
513009} & \multirow[t]{2}{*}{Condenser-ceramic 1000 Mmfd. 500 volt.......... Condenser-ceramic 1000 Mmid. 500 volt} & 273. & 512306 & Condenser-. 1 Mid. \(\pm 10 \%\) \\
\hline & & & 274 & 51203 & Condenser-. 1 Mid. 600 voll..... \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& 513016 \\
& 513009
\end{aligned}
\]} & Condenser-ceramic 1000 Mmld .500 volt. Condenser-ceramic \(82 \mathrm{Mmid} . \pm 10 \% 500\) volt & 353
355 & & \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
Condenser-ceramic 1000 Mmid. 500 volt. \\
Condenser-ceramic \(47 \mathrm{Mmfd} . \pm 10 \% 500\) volt (Temperature compensating)
\end{tabular}} & & & Condenser-. 01 Mid. 600 volt \\
\hline & \[
\begin{aligned}
& 513009 \\
& 513433
\end{aligned}
\] & & & & Condenser-olectrolytic 40 mid. 300 volt........... \\
\hline & 513432 & Condenser-ceramic 5 Mmid. \(\pm 10 \% 500\) volt (Temperature compensating) & 362. \(366-A\) to \(D\). & \[
\begin{aligned}
& 513002 \\
& 508186
\end{aligned}
\] & \begin{tabular}{l}
Condenser-ceramic 47 Mmfd. 500 volt \\
Condenser-variable gang
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { DHA. } \\
& \text { GAKM } \\
& \text { NAO. }
\end{aligned}
\] & PART
NO. & deschiption & & PRART. & description \\
\hline \multicolumn{3}{|r|}{DENSERS-Continued} & \multicolumn{3}{|r|}{RESISTORS-Continued} \\
\hline 367 & 51 & Condenser-ceramic 1000 Mmld . 500 voll & & 510 & rbon 10 Meg. \(1 / 2\) \\
\hline & 507940 & Condenser-trimmer \(1.5-12 \mathrm{Mmfdd}\)........ & \({ }^{39}\) 39... & 510159 & Resistor-carbon 18,000 \(0 \mathrm{hms} \pm 10 \% \mathrm{~L} / 2 / \mathrm{w}\) \\
\hline & 513 & & & 510 & Penistor-carbon \(330 \mathrm{Ohms} \pm 1\) \\
\hline & 513 & Condenser-ceramic 1.0 Mmld . 500 volt. & & 510153 & \\
\hline & 513002 & Condenser-ceramic 47 Mmld .500 volt & & 510167 & Resistor-carbon 47.000 Ohms \(1 / 2 \mathrm{wa} 1 / 1.1\) \\
\hline & 02 & mic 47 Mmid. 500 & & 510143 & Resistor-carbon 2200 Ohms \(1 / 2 \mathrm{wath}\). \\
\hline & 513436 & Condenser-ceramic 2.5 MmId .500 volt (Tem- & & 510155 & Rosistor-carbon 10.000 Ohms \(1 / 2\) wat \\
\hline & \multirow[b]{2}{*}{506080} & Condenser-ceramic 2.2 Mmid .500 & & & \\
\hline 7.A. B.. & & Condenser-ceramic 33 Mmfd . (part of 1at FM 1F. transformer) & & 510179
510155 & Resistor-carbon 220,000 Ohms \\
\hline 388-A........ & \multirow[t]{2}{*}{505867} & \multirow[t]{2}{*}{Condenser-coramic in
translormer)} & & 510149 & Resistor-carbon 4700 Ohms \\
\hline \multirow[t]{2}{*}{388-в.........} & & & & 510158 & Resistor-carbon \({ }^{15}\) \\
\hline & 50586 & Condenser-ceramic 66 Mmid . (part of lst AM 1.F. transformer) & & & Resistor-carbon 6800 Ohms \(\pm 10 \% ~\)
Resistor-carbon 1000 Ohms \(1 / 2\) watt. \\
\hline & 513013 & \multirow[t]{2}{*}{Condenser-ceramic 5000 Mmfd .450 volt Condenser-ceramic 5000 Mmfd .450 volt....} & & 5101 & Redistor-carbon \(82 \mathrm{Ohms} \pm 10 \% 1 / 2\) \\
\hline & & & & 5101 & Reuistor-carbon 1000 \\
\hline \({ }^{393}\) & \({ }_{5}^{513013}\) & & & 510153 & Resistor-carbon \({ }^{\text {a }} 2\) \\
\hline & \multirow[t]{2}{*}{513013
505905} & & & 5101 & Resistor-carbon 100 \\
\hline & & Condenser-ceramic 83 Mmfd . (part of 2nd FM I.F. (transformer).. & & 51 & Resistor-carbon \(82 \mathrm{Ohms} \pm 10 \%\) 1/2 \\
\hline 398-A..... & & Condenser-ceramic 83 Mmid . (part of 2 nd AM I.F. transtormer) & & 510137
510148 & Ronistor-carbon \({ }^{\text {Hesistor-carbon } 4700} \mathrm{Ohms} \pm 10\) \\
\hline 39 & 505867 & \multirow[t]{2}{*}{} & & 510 & Resititor-carbon 1000 O \\
\hline & & & & 17 & Renistor- \\
\hline & & Condenser-ceramic 100 Mmid .400 volt (part of diode filter unit).. & & 510153 & Resistor-carbon 8200 Ohms \(\pm 10 \%\) \\
\hline 39 & 506338 & Condenser-ceramic 100 Mmid .400 volt (part of diode filter unit) & & & Resistor-carbon 68 Ohms \(\pm 10 \% 1 / 2\) \\
\hline & 512028 & \multirow[t]{2}{*}{Condenser--. 05 Mld .400 volt............................
Condenser-ceramic 5000 MmId. 450 volt........} & & 510153 & Resistor \\
\hline 403. & 513013 & & & 510 & Resistor-carbon 1000 Oh \\
\hline & 513007 & Condenser-coramic 3300 Mmidd . 500 volt. & & 5101 & Resistor-carbon \(68000 \mathrm{hms} \pm 101 / 2\)
Resistor-carbon \(10,000 \mathrm{hmm} \pm 10 \% 1\) \\
\hline & & Condensor-. 01 Msd. 400 volt...................... & & 51025 & Resistor-carbon 8200 Ohms \(\pm 10 \% 1\) wc \\
\hline 409.A.... & 18179 & Condenser-ceramic 5000 Mmid .450 valt. Condenser-ceramic 47 Mmfd . (part of FM discriminator) & & 510166 & \\
\hline & 513013 & Condenser-ceramic 5000 Mmid. 450 volt & & & Renistor-carbon 10.000 Ohms \(1 / 2\) wal \\
\hline & & & & 510150 & henistor-carbon 5600 Oh \\
\hline & 513007 & & & 510173 & Resiztor-carrbon 100,000 Ohms \(1 / 2 \mathrm{~W}\) \\
\hline & 507946 & Condenser-electrolytic 3 Mcd . 50 volt........... & & 510150 & Resistor-carbon 5600 Ohms \(\pm 10 \%\) \\
\hline & 51302 & Condenser-coramic 10 Mmfd . \(\pm 10 \%\) 500 volt & & 510191 & Renistor-carbon 1 Meg. \(1 / 2\) watt. \\
\hline & 513009 & \multirow[t]{2}{*}{} & & 510356 & Hosislor-carbon 12,000 Ohms \(\pm 10 \%\) \\
\hline & 507386 & & & 510191 & hesidor-carb \\
\hline 429 & 51200 & Condensor-.001 Mid. 600 volt................... & & 510126 & Rosistor-carbon 270 Ohms \(\pm 10 \%\) \% \(1 / 2\) \\
\hline & 50515 & Condenser-olectrolytic 16 Mfd. 400 volt .-...... & & 51072
5103 & Resistor-carbon 12,000 Ohms \(\pm 5 \% 1 / 2\) wat \\
\hline & 512013 & & & S10179 & Resistor-carbon 220,000 Ohms \(1 / 2\) \\
\hline & 504719 & \multirow[t]{4}{*}{Condenser-electrolytic} & 169 & 510 & Resistor-carbon 1 Meg . \\
\hline 439.A. B, & 508072 & & & 510173 & Resistor-carbon 100,000 Ohms 1/ \\
\hline & & & & 510171 & Resistor-carbon \(82.000 \mathrm{Ohms} \pm 10 \% ~ 1 / 2\) \\
\hline & \multirow[b]{2}{*}{507386
508915} & & & & Resistor-carbon 22,000 \\
\hline & & Condenser-trimmer \(110-560 \mathrm{Mmfd}\). & & 510180 & Resistor-carbon 270,000 Ohms \(\pm 10 \% 1 / 2 \mathrm{w}\) \\
\hline 448 & 5088 & \multirow[t]{2}{*}{} & & 510181 & Resistor-carbon 3300000 Ohma \(\pm 10 \%\) \%/2 \\
\hline & S120 & & 190. 19 & Stio39 & Resistor-carbon 1800 Ohms \(\pm 5 \% 1 / 2 \mathrm{w}\) \\
\hline & 508895 & & 194, 195 & 510172 & Resistor-carbon \(100.0000 \mathrm{Omms} \pm 10 \%\) \\
\hline & 512035 & \multirow[t]{2}{*}{} & & 510162 & Resistor-carbon 27,000 Ohms \(\pm 10 \%\) \\
\hline & 512037 & & & \({ }_{5} 510195\) & Rosistor-carrbon \(4.7 \mathrm{Meg} .1 / 2\) watt... \\
\hline & 508916
512023 & Condensor-mica 2700 Mmfd . \(\pm 10 \%\) s00 volt & & 510185
510150 & Renistor-carbon 470,000 Ohms \(1 / 2\) watt \\
\hline & 512023 & Condenser- .03 Mfd .400 volt Condenser-mica 100 Mmid .500 volt. \(\qquad\) & & 510150 & Renistor-carbon 5600 Ohms \(\pm 10 \% 1 / 2\)
Resistor-carbon 1500 Ohms \(\pm 10 \% ~\) \\
\hline & \multirow[t]{2}{*}{9789} & \multirow[t]{2}{*}{Condenser- 2500 Mmid. 20KV (part of High Voltage rectifier \(\delta\) transformer assy.)} & & & Resisior-carbon \({ }_{\text {Hesistor-carbon }} 150,000 \mathrm{Ohms} \pm 10 \%\) \% \(1 / 2\) watt \\
\hline & & & & Stor & Hesistor-carbon 270.000 Ohms \(\pm 10 \% 1 / 2 \mathrm{w}\) \\
\hline & 785 & Condenser- 5000
Voltage
Mectitier
\(\delta\) & & \({ }^{510191}\) & Hoisistor-carbon 1 Meg. \(1 / 2\) \\
\hline & \multirow[t]{2}{*}{508785} & \multirow[t]{2}{*}{Condenser- 2500 Mmfd . 20 KV (part of High Voltage rectitier \& transformer assy.)} & & 510116 & Hasistor-carbon 68 Ohms \(1 / 2 \mathrm{wa}\) \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 470 \\
& 471 \ldots \ldots \\
& \cdots
\end{aligned}
\]} & & & & & \\
\hline & \multirow[t]{3}{*}{\(\underset{512542}{51344}\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
Condenser-ceramic \(10 \mathrm{Mmfd} . \pm 5 \% 500\) volt. Condenser-mica \(120 \mathrm{Mmfd} . \pm 10 \% 500\) volt.... \\
RESISTORS
\end{tabular}} & & 510248 & Resistor-carbon 4700 Ohms \(\pm 10 \% 1\) w \\
\hline & & & & 510254 & Resistor-carbon 10.000 Ohms \(\pm 10 \%\) \\
\hline & & & & & Resistor-wire wound 15.000 Ohms \\
\hline 14. 17. & \multicolumn{2}{|l|}{} & & & on 100 \\
\hline & 510137
510185 & \begin{tabular}{l}
Resistor-carbon 1000 Ohms \(1 / 2\) watt \\
Resistor-carbon 470,000 Ohms \(1 / 2\) watt..............
\end{tabular} & & 5102 & Resistor-wire wound 850 Ohms \\
\hline & \multirow[t]{2}{*}{510117
510137} & 7 hesistor-carbon 82 Ohms \(\pm 10 \% 1 / 2\) watt & 262. B & 508062 & Resistor-carbon 22.00 \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
Hesistor-carbon 1000 Ohms \(1 / 2\) watt \\
Resistor-carbon 22,000 Ohms \(\pm 10 \% ~ 1 / 2\) walt \\
Resistor-carbon 68.000 Ohms \(1 / 2\) watt.
\end{tabular}} & & & \\
\hline & 510137 510170 & & & & \\
\hline
\end{tabular}

\section*{OJohn F. Rider}

transmitting its standard to

Number appearing belov horizontal sweep frequenc

\section*{OSCILLOGRAMS}
h ground lead of scope con-
* - This symbol on illustration indicates that wave form was inless otherwise indicated) and r normal reception of a station st pattern.
asterisk specifies setting of
 observed on a 'scope whose vertical amplifier had very limited high frequency response (50 to 100 Kc).
**- This symbol indicates that wave form was observed on a 'scope whose vertical amplifier frequency response was flat to within \(20 \%\) up to 2 Mc .

,

© John F. Rider
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
and they are all accessible thru the same opening in the tuning mechanism as eash succeseively meves inte position when the "Channal Selector" knob is rotated. \\
3. HORIZONTAL HOLD-Should the picture appear to move horizontally across the screen or break up into a series of light and dark streaks os shown in Figure 3, adjust the "Horizontal Hold" control until the picture remains stationary. \\
If this control must be rotated to the end of its range for proper "locking" action, then it will be necessary to reset the position of the "Horizontal Lock" control (see Figure 18 for location). Adjustment is accomplished by first setting the "Horizontal Hold" control in the middle of its range and then changing the setting of the "Horizontal Lock" control until picture locks in horizontally. \\
4. VERTICAL HOLD-Should the pieture appear to roll by in a verticol direction or cause multiple vertical images as shown in Figure 15, it will be necessary to adjust the "Vert. Hold" control located behind the Name Plate (see Figure 14). \\
After this adjustment is made, reduce contrast until picture is barely visible and check setting of "Vertical Hold" control for proper picture synchronization. \\
Fig. IS-VERTICAL MOVEMENT; ADJUST VERTICAL HOLD CONTROL \\
5. INITIAL FOCUS-Adjust the "Focus" control, located behind Name Plate, until pic. ture is clearly defined. \\
fuzzy picture may also be due to reproduction of poor quality film when station is televis. ing a motion pieture. Incorrect tuning of receiver produces a sim. \\
Fig. 16-BLURRED APPEARANCE; ADJUST FOCUS CONTROL ilor effect. Check for proper tuning point as described in step 6 of section enfitled "How To Tune the Receiver." \\
6. STRAIGHTENING TILTED RASTER-If the pattern should appear on the screen in a tilted position as shown in Figure 17, loosen the deflection yoke locking screw (see Fig. ure 18) and rotate the yoke sufficiently to correct this condition. Be sure ta re-fighten the \\
Fig. 17-TILTED PICTURE; screw securely. ADJUST YOKE POSITION
\end{tabular} & \begin{tabular}{l}
The following odjustments should be made while the station is tronsmitting its circular test pattern. \\
7. CENTERING: Ta center the lest pattern on the screen, proceed as follows: \\
a. Make sure focus coil mounting plote is perpendicular to neck of picture iube by adjustment of three nuts labeled A in Figure 18. \\
b Rotate the iwo mog. nets in the centering mognet ossembly (see Fig. 18). These mognels may be odiusted by attached to each \\
Fig. 19-OFF CENTER: ADJUST FOCUS COIL POSITION magnet ond rotot- \\
ing the magnets with respect to each other and with respect to the picture tube. Adjust the magnet position for best centering of the test pattern. \\
c. If picture is still not centered, loosen four focus coil wing nuts labeled B in Fig. 18 and rotate facus coil for best centering of test pattern. \\
d. Readjust ion trap for maximum brighiness on picture tube screen as explained in step \#1. \\
e. If picture is still not centered, position focus coil by adjusting the three nuts labeled \(A\) in Fig. 18. \\
In event picture cannot be centered by above procedures, release the four wing nuts labeled D in Fig. 18 and raise ar lower entire yoke and focus coil assembly so that focus coil can be repositioned vertically with respect to the tube neck. \\
8. WIDTH - Control of picture size in the horizontal direction is accomplished by means of the "Width" con. trol located on the rear of \(H\). V. power supply (see Fig. 18). If abnormally low line voltage makes it diff. cult to obtain sufficient picture width when using the "Width" control, then changing the setting of the "Hori- \\
Fig. 20-TOO NARROW; ADJUST WIDTH CONTROL zontal Drive" control \\
may be helpful. The "Drive" control is located at the rear of the chassis and its setting will affect horizontal linearity as well as picture width. Therefore, after adjusting this control for desired width, it may be necessary to re-adjust the "Horizontal Linearity" control as described in paragraph \#12. \\
9. HEIGHT - Control of picture size in the vertical direction is accomplished by means of the "Height" control located behind the Name Plate. Heighi and width adjustments should be checked for all transmitting sta. tions to be sure that picture properly fills the viewing area. It may be necessary to \\
Fig. 21-TOO SHORT; ADJUST HEIGHT CONTROL change the setting of the "Height" control after the "Vertical Linearity" control is adjusted.
\end{tabular} & \begin{tabular}{l}
10. VERTICAL LINEARITY - Improper vertical linearity causes the circular test pattern to appear condensed on the upper edge of the screen and extended on the lower edge or vice versa. This effect is illustrated in figure 22. Adjust for proper linearity by using "Vert. Lin." control lo. cated behind Name Plate. It may be nec- \\
Fig. 22-VERTICAL DISTORTION; ADJUST VERTICAL LINEARITY CONTROL essary to readiust the "Height" control if an appraciable change is made in the linearity control setting. \\
11. HORIZONTAL DRIVE - The "Horizontal Drive" control located of rear of chassis (see fig. 18) should be rotated clockwise to the point where any white (or black) vertical lines near the left side of the picture are eliminated. As width and linearity of the picture are affected by the setting of "Horiz. Drive" control, it will be necessary to adjust this control in conjunction with the Horiz. Linearity and Width controls to obtain desired picture width and linearity. \\
12. HORIZONTAL LINEARITY - Improper horizontal linearity causes the circular condensed on the right edge of the screen and extended on the loft edge or vice versa. This effect is illustrated in Figure 23. Adjust for proper linearity by using "Horiz. Lin." control located at \\
FIg. 23-MORIZONTAL DISTORTION; rear of chassis (see figure 18). In event ADJUST HORIZONTAL LINEARITY that proper horizontal CONTROL linearity cannot be obtained by adjusting this control, then change the setting of the "Horiz. Drive" control. \\
13. ELIMINATING SEMI-CIRCULAR SHADOW - This shadow is caused by the electron stream striking the neck of the tube and it can generally be corrected by applying one or a combination of the following procedures: \\
a. Make sure deflection yoke is positioned as far forward as possible by loosening the three wing nuts labeled C in Fig. 18. \\
b. Reposition the focus coil by readjusting the three nuts labeled A in Fig. 18 to shift the coil forward. \\
c. In event neck shading cannot be eliminated by the above procedures, release the four wing nuts lobslad D in Figure 18 and raise or lower entire yoke and focus coil ar- \\
FIg. 24 \\
SEMI-CIRCULAR SHADOW sembly so that focus coil can be repositioned vertically with respect to the tube neck. \\
14. FINAL ADJUSTMENTS - Recheck settings of "Brightness," "Contrasp" and "Focus" controls for best picture quality.
\end{tabular} \\
\hline
\end{tabular}
©John F. Rider

\section*{GENERAL SPECIFICATIONS}

\section*{REDUCTION OF INTERCARRIER BUZZ}

If a prominent humming or buzzing sound is noted in the sound reception
of a television broadeast, it may be due to a foult in tronsmission from the of a television broadcast, it may be due to a foult in tronsmission from the
station, or incorroct odiustment of the discriminator transformer (tuning of
secondary ciccuit) in the coceivest secondary circuit) in the receive.
This ype of disturbance, which is only prasent when receiving a station
signol, is known as "Intercarrier Buzz" and it should not be confused with

\section*{HIGH VOLTAGE POWER SUPPLY SERVICING}

The High Voltage Power Supply used with this reeciver is of the "fly-back"
type and is located in the shielded compartment mounted at the left rear type and is locoted in the shielded compartment mounted at the leff rear
corner of the chassis. In consists of a sturdily constructed and well insulated horizontal sweep output ronsformer plus a \(183 G T / 8016\) high valtago
rectifier tube ond rectifier tube ond associoted filter components.
The plate circuit of the Horizontal Sconning, Output stoge is fused to pro.
tect the transiormer and kill high voltoge in the event the ob lect the transtormer and kill high voltoge in the event the
the high voltage rectifier circuit draws excessive current.

> The heavily insulated red leod, which supplies extremely
high voltage \((10\) to 12.5 k ilovolts) to the pictur high voltage (10 to 12.5 kilovolts) to the picture tube, should connected for service purposes (thot is, after receiver has been furned off). This discharges the high voltage filter condenser and prevents a shock hazard when working on
the set.

Access to the horizontal output transformer, high voltage rectifier tube, fuse and high voltage filter condenser is aceomplished by removing the rear
section of the \(\mathrm{H} . \mathrm{V}\), shield. This compartment shield is held in place by five scrows.
To replace the fuse, depress the cap of the fuse holder (located next to
\(6 B Q 6 G T\) tube) and furn the cap counter 68QbGT tube) and turn the cap coonter.clock kwise. Install new fuse of the
same type ('A amp., 250 volt, part 508713); do not use any othe size. same type ('a amp., 250 volt, part 508713); do not use any other size. interlock to disconnect the receiver power cord.

\section*{PICTURE TUBE REPLACEMENT}

INTERCHANGEABLE TYPES-Two types of pieture tubes are used inter.
changeably in all model 9109 receivers ond they differ only in the manner changeably in all model 9109 receivers and they differ only in the manne
in which their electron guns are constructed. The 14 CPA tube utilizes bent gun, while the 14BP4 tube contains a straight gun.
"t is preferable to use a replacement tube of the same type as that
originally furnished with the porticular receiver originaly furnisead wirh the porticular receiver on which you are work
ing. Substitution of a \(148 P 4\) for a \(14 C P 4\) or vice versa cos well ing. Substitution of a \(14 \mathrm{BP4}\) for a 14 CP 4 or vice versa (os well as slight
manufacturing variances between fubes produced by different suppliers) can occasionally give rise to a focusing or contering problem. Suggested
remedies for those conditions are discused in a subsequet parger rom
REPLACEMENT PROCEDURE-When replacement of a picture tube is nocessary, proceod as follows:
1. Disconnect power cord from wall outlet.
2. Remove chassis from cabinet.

Remove high voltage lead from side of picture tube and momentar-
ily short this lead to chossis to discharge high voltage filter condonser.
4. Discharge the valtage devoloped across the copocitor formed by the inner and outer coatings of the picture fubb by cun-
necting the high voltage socket on the tube to the outer coating.
5. Remove the tube socket at base of picture tube.
6. Disengage ion trap from neck of the
6. Disengage ion trap from nock of tube.

Release three nuts labeled \(A\) in Fig. 18 and carefully remove Focus
wor supply hum that would occur upon failure of a filtor condenser. The procedure for correct adiustment of the tolevision sound discriminator
sircuit is presented in the last section of the Television Sound Chaniel alignment instructions. When the discriminotor secondary slug \(\# 1\) is proporly adiusted, inlercarrier buzz will be reduced to an acceptable

\section*{CORONA AND ARC-OVER} Corono or or--vorer can best be detected by observing the operation of
the power supply in a dark room. Several conditions may cause these phenomena

POOR CONNECTION
Arcing or corona may be due to poorly 801 defective twbe soche sonnation if the leads or connectors to the high voltage filter ondenser do not grasp this component securely, cing wil
sspect solder connections and resolder those re firmly positioned in tube sockets and that high voltage filter condenser is held securely in
place.

CLOSELY SPACED
COMPONENTS
Arcing or corona may occur when H.V. components or leads are placed too close together. Make sure there is sufficient spacing between al
ports and wiring. If necessary, the insulation ports and wiring. If necesary, the insulation
betwoents of the circuit may be im. provad by coating both obiects with a quick-
drying liquid polystyrene or polyethylene. The socket assembly for the \(1836 T / 8016\) rec.
tifier tube includes a " onts corona from the tube socket" which pre The sufface of this ring should be smooth and free of scratches, nicks, or sharp protrusions.
studs on the Deflection Yoke Mounting Brackel
8. Remove Centering Magnot Assombly.
. Loosen the two bolts on the ends of the Strap Assembly that encirclen the front rim of the tube.
10. Carefully remove picture tube by pulling it forward.
17. Install the now tube and be sure that it has the same type number as
 word.
special focusing and centering instructions-lf correct focusing or centering of the pisure cannot be accomplished after inslalling a replacement picture fube, then the following recommendations should prove effective.
1. Slide Centering Magnet Assembly as close to Deffection Yoke as pos-

If picure rill will
its position in front of the focus Coil cond then reinstal Assombly from
 proper focus can only be obtained by completely removing the Cen
toring Magnet Assembly.
.
3. If pitture cannot be centered by odiusting the pasition of the Focus
Coil it so that the high voliage socket is on the loft side of the tube when viewed from the rear

© John F. Rider

World Padionision

REPAIR DATA FOR 508805 RF TUNER UNIT

SERVICE PRECAUTIONS
\begin{tabular}{|c|c|}
\hline subirct & precautions \\
\hline & \begin{tabular}{l}
 \\

\(\qquad\)
\end{tabular} \\
\hline tuses & \begin{tabular}{l}
Replacement of tubes in the Tuner Unit may cause slight detuning of RF circuits due io inherent differences in inter
plect:ode capacitancas. When replacing tubes (espenally \(V 6,616\) mixer-oscillator tube) make suse that Fine Tuning con \\
 the individual oscillator coil slugs tor some channels to accomplish thi
\end{tabular} \\
\hline \(\underset{\substack{\text { CHANNEL coins } \\ \text { AND Slucs }}}{ }\) & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & Rubbing of the bakelite Fine Tuning Cam against the Fine Tuning Condenser Flate is intentional in order fo avoid vibration with resulting microp,
on the body of the tuner. \\
\hline
\end{tabular}

REMOVAL AND REPLACEMENT OF PARTS
\begin{tabular}{|c|c|}
\hline rTEM & procedure \\
\hline mf TUNER UNIT & \begin{tabular}{l}
To remove the Tuner Unit from receiver chassis, proceed as follows: \\
1. Remove metal plate which covers side of RF Tuner Unit nearest edge of chassis. This plats is held in place by two \\
2. Remove channel selector dial lamp socket. \\
3. Ramove support bracket which positions front of Tuner Unit and also remove screws which held tuner to rear
support bracket. \\
4. Disconnect the leads from the tuner to the main chassis. See illustration on page 21,22 (circuit diagram page) show
ing tuner connections. \\
After the Tuner Unit is replaced, make sure that channel selector dial lamp socket is corsectly nositioned so that channel
selector knob will be properly illuminated.
\end{tabular} \\
\hline channel cours & \begin{tabular}{l}
 Itom tune: \\
 \\
 \\

\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ITEM & PRocedure \\
\hline & \begin{tabular}{l}
To remove turet from RF Tuner Unit, proceed as follows: \\
1. Remove tuner from receiver chassis. \\
2. Remove rear Turret Shaft Retaining Spring by disengaging straight end of spring trom projection on tuner. \\
3. Remove Fine Tuning Condenser slate from front of Tuner Unit. This plate forms one side of Fine Tuning control
condenser and is held in place by one screw. \\
4. Slide Fine Tuning Cam and Brass Shaft off of main Channel Selector Shaft. \\
5. Ramove Contactor Washer Spring and Fiber Spacer Washer from Channel Selector Shaft. \\
6. Remove Shaft Retaining Spring at iront of tuner by dis sngaging straight end of spring from projection on case. \\
7. Remove turret assembly from case. \\
To replace turret, reverse the above procedure. Tooth on bakelite Fing Tuning Cam should point downward during asserr.
bly so that it does not become locked between the stops on the Finn Tuning Condenser Plate.
\end{tabular} \\
\hline \(\underset{\substack{\text { Stator contact } \\ \text { ASEMMLY }}}{\text { ater }}\) & \begin{tabular}{l}
To remove this assembly, proceed as follows: \\
1. Remove the two screws at the tront and rear of the Sator Contact Assembly \\
2. Unsolder all electrical connections to contact plate. \\
3. Unsolder tive soldered joints between Stator Contact Assembly and Tuner Unit. \\
4. Contact Assembly may now be withdrawn trom case. \\
To reinstall this assembly: \\
1. Place Stator Contact Assembly in position and replace, but do not tighten, the two screws at the front and rear of \\
2. Remove 3 consecutive pairs of Channel Cails from the turret (for example, the antenna and rfosc. coils for channels
\(\# 5,6\) and 7). \\
3. Position Tuner Turret so that the edges of the noxt highost Channel Coils (in this case, the coils for channel \#8) just
pass the row of 11 contacts on the Siator Contact Assembly. \\
4. Adjust position of the Stator Contact Assembly so that there are a few thousandths of an inch spacing between the
contacts on the contact plate and the molded body of the Channel Coils. \\
5. The Contact Assembly is now correctly positioned and screwa at front and rear may be tightened. \\
6. Solder Stator Contact Assembly to tuner frame at same points that were used previously. \\
7. Make all electrical connections to contact plate. \\
. Replace Channel Coils
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
CHANNEL \\
NUMBER
\end{tabular} & \begin{tabular}{c}
ANTENNA \\
COIL \\
PART \\
NUMBER
\end{tabular} & \begin{tabular}{c}
RF \& OSC \\
COII \\
PART \\
NGMER
\end{tabular} \\
\hline 2 & 507952 & 507972 \\
\hline 3 & 507953 & 507973 \\
\hline 4 & 507954 & 507974 \\
\hline 5 & 507955 & 507975 \\
\hline 6 & 507956 & 507976 \\
\hline 7 & 507957 & 507977 \\
\hline 8 & 507958 & 507978 \\
\hline 9 & 507959 & 507979 \\
\hline 10 & 507960 & 507980 \\
\hline 11 & 507961 & 507981 \\
\hline 12 & 507962 & 507982 \\
\hline 13 & 507963 & 507983 \\
\hline
\end{tabular}
© John F. Rider

\section*{ALIGNMENT PROCEDURE \\ MODELS 9109-A \& 9109-B}

Aignment of all RF and If tuned circuits in this receiver may be
accomplished by utilizing the procedures described in the follow accomplish
ing charts.
SEQUENCE OF RLIGNMENT: These procedures should preferably be applied in the order in which they are presented, however
alignment of the Sound Channel or IF Channel may be accom plished individually if desired.
The RF Amplifier and Mixer alignment may also be accomplished independent of Sound or IF Channel alignment, but oscillator cali bration can only be done after If Channel has been correctly
aligned. Proper IF band pass characteristic is necessary for aligned. Proper
Oscillator alignment as results of hF circuit tuning are observed means of an oscilloscope connected to the output of the

REMOVAL OF CHASSIS: The receiver chassis must be removed from the cabinet in order to accomplish alignment of all tuned
circuits as there are adjustment points located on the underside circuits as
of the unit.
This can be accomplished by first removing all knobs and dis is may then be removed by releasing the holddown screws located on the underside of the cabinet.
Removal of the cabinet back automatically opens an interlock to
disconnect the receiver power cord, theretore, an auxiliary power cord assembly will be required when aligning this receiver. This ord may be ordered from Stewart-Warner by requesting Par \# 507699 . Do not attempt to supply power to the receiver by usin ny other device.

\section*{CAUTION}

The picture tube is highly evacuated and if broken, glass fragments will be violently expelled. Handle with care, using safety gog gles and gloves. Avoid contact with high voltage terminal at side of tube even after it has been disconnected from the receiverouter coatings on the tube form a capacitor which may carry a high voltage charge for an extended period of time after disconnection from the receiver

STANDARD SIGNAL GENERATOR to provide unmodulate (pure RF) signals at the following frequencies. Maximum out-
put on all ranges should be at least. I volt with provision for attenuation as desired. This instrument must have good fre.
quency 3lability und be accurately callbrated. Generators which incorporate a separate crystal controlled oscillator and helerodyne circuit are self calibrating and the refore capable
of providing the accuracy of frequency calibration required of providing the accuracy of frequency calibration require
for television circuit alignment
a. IF Frequencies:
4.5 Mc. Sound Channel
22.25 Mc. Sound
22.25 Mc. Sound IF marker
22.4 Mc. Ist IF Trap Coil
22.4 Mc. 1 Ist If Trap Coil
22.8 Mc. 3 rd IF Trap Coil
\(23.5 \mathrm{Mc}\). . st I and 3 rap IF itages
24.5 Mc . 4 th IF stage
24.5 Mc. 4th IF stage
26.3 Mc. Converter and 2 nd IF stages
26.75 Mc. Picture IF marker
b. RF Frequencies

54 to 88 Mc.
174 to 216 Mc.
RF SWEEP GENERATOR to provide frequency modulated si 9 als at the following frequencies
20 to 30 Mc . with 10 Mc . sweep width
54 to 88 Mc . with 10 Mc sweep width
174 to 216 Mc . with 10 Mc sweep width.
Output adjustable with at least . 1 volt maximum,
Output should be "flat" (no amplitude variation) for all set tings of the sweep width control
Provision for connection of generator sweep modulating voltProvision tor blanking the output signal on each return Provision for blanking the output signal on each retur
sweep so that oscillogram will not show retrace.
3. CATHODE RAY OSCILLOSCOPE. preferably a unit with vert cal amplifier having wide range frequency response and low
capacity pick-up probe. capachy pick-up probe.
4. VACUUM TUBE VOLTMETER. The lowest vollage range of this instrument should preferably permit a 1.0 volt reading to be
indicated at not less than one third of full scale deflection. The metal plate which covers the side of the RF tuner unit musi INSTRUMENT CONNECTIONS: The method of connection, including be removed for IF alignment as IF signal injection is accomplished details of matching and coupling networks. for instruments used
at a terminal located behind this plate (see Fig. 4). That plate in this alignment procedure is given in several illustrations on subust be replaced when RF alignment is underagen. sequent pages. Specific instructions for each instrument application
INSTRUMENTS: The following instruments will be required as
Since accurate alignment of a television receiver is heavily de necessary to apply a fixed bias voligning IF and \(\operatorname{AF}\) circuits it is pendent upon the performance of your instruments, it is imperative necessary to apply a fixed bias voltage to the AGC system of the at they meet the essential specifications described here.

\section*{IMPORTANT}

When observing the receiver band pass characteristic on an oscilloscope, it is exceedingly im portant to avoid distortion of that characteristic which would occur when using a large input signal from the sweep generator or standard generator (marker signal). Always set attenuator on sweep generator so that the reading on the vacuum tube voltmeter does not exceed on volt (when meter is connected from high side of video detector load resistor, symbol 139, to re ceiver chassis). Standard generator output should also be attenuated so that marker signa does not pull or tear the band pass characteristic as shown on the 'scope.

\section*{SOUND CHANNEL ALIGNMENT PROCEDURE}

Short untenna terminals together with a jumper wire.
Set recenver Channel Selector to any inactive television channel:
other controts may be left at any desired seting.
3. No special aligning tool is required to adjust the cores in the Sound

If and discriminator transtormers. The blade of a small screwdriver will fit the slot in these cores, however, the screwdriver when inserted in the transtormer can.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multirow[t]{2}{*}{\(\underset{\text { CONNECTIONS }}{\text { VTVM }}\)} & \multirow[t]{2}{*}{Miscellaneous INSTRUCTIONS} & \multirow[t]{2}{*}{TRIMMER OR SLUG} & \multirow[t]{2}{*}{TYPE OF ADJUSTMENT and output indichtion} \\
\hline CONNECTIONS & frequency & & & & \\
\hline \multirow{6}{*}{Connect as shown in Fig. 1} & \multirow{6}{*}{} & \multirow{6}{*}{Connect as as.
Fig. 2.} & \multirow{6}{*}{A "swishing" sound may
be heard in the speake during Sound Channel Alignment. is is spur bus
oscillation is cused by horizontal sweep yoitage
being picked
up in the audio system thru stray
coupling of instrumen leads; it should be disre. entitet on alityment of the
sound chanel. sound channel.} & & Adjust for \({ }_{\text {on }}^{\text {maximum }}\) VTVM. \({ }^{\text {ateading }}\) \\
\hline & & & & \[
\underset{\substack{\text { Discriminatior } \\ \text { Primary }}}{\text { 2 }}
\] & Adjust tor \({ }_{\text {on }}\) maximum \({ }^{\text {VTVM. }}\) \\
\hline & & & & & Adjust tor maximum reading \\
\hline & & & & \[
\underset{\substack{\text { 2nd } \\ \text { Primary }}}{\text { \#4 }}
\] & Adjust for \({ }_{\text {on }}\) maximum \({ }^{\text {VTVM. }}\) (eading \\
\hline & & & & \begin{tabular}{l}
\#5 \\
1st Sound IF \\
Sondary
\end{tabular} & Adjust for maximum reading \\
\hline & & & & \[
\underset{\substack{\text { ist Sound IF } \\ \text { Primaxy }}}{\text { \#6 }}
\] & Adjust tor maximum reading \\
\hline Same as & Same as above. & Connect as shown in Fig. 3. & Same as
above. & \[
\underset{\substack{\text { Discriminator } \\ \text { Secondary }}}{\text { li }}
\] & Note that as slug \#1 is rotated,
a point will be found where the a point will be found where the
voltmeter will swing rather sharpIy from a positive to a neqative. rect sating of slug \#1 is obtained whon the melor reads
the slug is moved thru this point. \\
\hline
\end{tabular}

\section*{REDUCTION OF INTERCARRIER BUZZ}

\section*{Slight "dynamic" unbalance of the discriminator secondary can om to obtain program reception rrom a local station. It intercarrier buzz} phasize intercarrier buzz due to incomplete amplitue moduation of the discriminator secondary slug under actual reception conditions slug (\#1) should be made to obtain. the "dip" point for the buzzing
sound. Note that program sound will be clear and free from distortion Disconnect all instruments and then connect an antenna the restar at this point. Buzz should now be at an ceceptable minimum it station transmission is not at fault.

\section*{IF CHANNEL ALIGNMENT PROCEDURE}

Turn receiver Channel Selector to television channel \#12 and short
antenna lerminals together with \(a\) jumper wire.
3. Remove metal plate which covers sida of RF tuner unit noarest edge
of chassis
of the chassis.

5. Note location of if Trap Coils \#12 and \#13 by relerring to Fig, 14,
Betore undertaking the alignment of any of the IF stages. Trap Coils \#12 and \#13 must be dotuned so that they do not resonate in the if
poss band. Detuning is acomplished by merely comprosing the
windings so that they are closely windings so that they are closely spaced. Failure to detune the Trap
Coils can cause the IF system to become regenerative, tharoby pre
6. If the IF channel is badly misaligned and two or moro immodiately
adjoining IF
IF stages are tuned to the same trequency, oscillation may
 MODELS 9109-A MODELS \(9109-A, ~\)
\(9109-B\)

© John F. Rider

\section*{RF CHANNEL ALIGNMENT PROCEDURE}

©John F. Rider

© John F. Rider

PRODUCTION CHANGES
The following tabulation furnishes complete details on changes which occurred during production. Sequence of these changes is indicated by coding in alphabetical order; that is "SERIES A" "SERIES B", etc. stamped on back surface of chassis.

The circuit shown on this page applies to "series \(A\) " chassis
CHANGE DESIGNATION
STAMPED ON STAMPED ON
CHASSIS

UNCODED
INITIAL PRODUCTION-All uncoded chassis utilized a hod zontal scanning output circuit as shown beiow. Conversion oo
this circuit arrangement to the type used in "Series \(A\)." chassis (illustroted in complete wiring diagrame was undertiaken so as
to permit use of a Horizonial Sweep Transiormer produced by to permit use of a
a different supplier
Identification of the two alternate type Sweep Transtormers
can be accomplished by means of the two illustrations at the botiom of this pag.
I: should be understood that there is no pertormance advantage
of a "Series \(A\) " chassis over an "Uncoded" chassis-the sweep of a "Series A" chassis over an "Uncoded" chassis-the sweep
circuit and associated transtormer in either chassis pertorms equally well.

\section*{\(\xrightarrow[\square]{\text { Bult-inannenna }}\)}

508805 R.F. TUNER ASSEMBLY

\section*{\(\xrightarrow[\substack { \text { mint } \\ \begin{subarray}{c}{54{ \text { mint } \\ \begin{subarray} { c } { 5 4 } }\end{subarray}]{\substack{51}}\)}

\begin{tabular}{|c|c|c|}
\hline Page & & PAGE \\
\hline 42 & SPECIFICATIONS & \\
\hline 35 & top view - tube layout. & 37 \\
\hline 50 & TRIMMER LOCATIONS. & 46 \\
\hline 47,48 & VOLTAGE MEASUREMENTS & 38,39 \\
\hline 47,48 & WAVEFORMS & 47,48 \\
\hline
\end{tabular}

INSTALLATION INSTRUCTIONS

HIGH VOLTAGES are used in the operation of this roceiver. The back cover, whilo in place, provents accidental contact with this valtage and therefore should not be removed by anyone THE HIGH VOLtage Lead, which supplies 10 to 12 kilovaits to the picture tube, should be momontarily sharted to the chassis whenever it is disconnected for service purposes. This discharges the high voltage filter condenser and provents a shock hazard when working on THE PICTURE TUBE is highly evacuared and if broken, glass fragments will be violently expelled. Scratching, chipping, undue pressure, or careless handling such as lifting the tube by its neck is
dangerous and should be ovoided. If it is nocessery to handie the pieture tube, use safety goggles and heavy gloves. Ee sure to discharge the voltage developed across the capacitor
formed by the innor and outer coating of the picture tube. This can be done by connecting the high voltage socket on the tube to the outer coating.

\section*{RECEIVER OPERATING CONTROLS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & RMFM Inse TUNING COMTHOL same effect as M Fire Tuning" except that ta fatar & & & & & \\
\hline & & & \begin{tabular}{l}
BMOHTNESS COMTHOL \\
Adjust for picture brilh \\
ance. Re-adjust after eat \\
ting Contrasi control
\end{tabular} & & & must commol (large knob) to recolve pleture bledn correct conbetween ligbt and haden. \\
\hline
\end{tabular}

fig. 14-LOCATION OF PRE-SET CONTROLS

\section*{CONTROL ADJUSTMENT PROCEDURE}

The various controls on the receiver may be divided into twa classes, Oper ating and Pro-set. Operating cantrols are those which control program
selection as well as sound and picture quality and their functions are in selection as well
dicated in Fig. 1.
The Pre-set contrals are those which require adjustment at the time the receiver is inslalled and they rarely need attention thereafter. Although they have been foctory adjusted for optimum performance, it is usually
necessary to make some fine adiusiments of these controls at the time of necessary to
installation.
There are nine Pre-set cantrals, four of which are located at the back of the chaisis (see Figure 18). Four controls are accessible by removing the
Name Plate located directly above the Operating contrals. Access to the "Auxiliary Fine Tuning", screw can be gained by removing the "Channel To
To gain access to the centering adiustments and ion trap, it will be necessary to remove the back cover of the cabinet by first removing the built-in antenna tuning knob and then taking out the screws around the rim of the emoval of
onnect the receiver power cord. Centering and ion trap adiustments dill require access to circuit components while the receiver is in operation, may be ordered from Stewart-Warner by requesting Part \#507699. Operate the receiver according to the instructions given in the section of this manual entitled "How To Tune The Receiver". and make the following
adjusments as required.

ADJUST ION TRAP-If screen remains dark or is only dimly illumi nated when "Brightness" control is turned clockwise, the ion trap may quire adjustmen.
The ion trap is lacated an the neck of the picture tube as shawn in The magnet identified by the black band musil be in the rear position. Ratate the entire trap assembly while sliding it back and farth
"Brightness" cantrol setting and repeat this aperatian to assure accurate positionning of ion trap.
auxiliary fine tuning adjustment-lf it is found that the to permit carret the "Television Fine Tuning" control is inadequafe iustment of the "Auxiliary Fine Tuning" screw will be necessary. This speciol screw is accessible ofter removal of the "Chacnel Sele and "Telovition Fine Tuning" knobs. Thoy may be removed by mare ly pulling them forword.
Adjustment of the "Auxiliary Fine Tuning" screw may now be under taken in occordance with the following procedure.
a. Set "Channel Selector" to desired channel; then remove this knab.
b. Set "Television Fine Tuning" knob to the conter of ith range; the remove this knob. The flat partion of the main tuning shatt (outer brass shaft) shauld now be in the uppermost position. Note the
location of the "Auxlllary Fine Tuning" odiusiment screw on re coiver chossis-seo Fig. 14.
c. Using a thin screwdriver (preferably non-metallic), adjust the satting of "Auxiliary Fine Tuning" screw for correct funing of the
desired lelevision station-CAUTION: Do not attempt to rotate this screw mare than two full turns in either direction, as further rotation may release it from the thread clip within the funing mechanism and the coil for that channel
(iocated in R.F. Tuner Unit) would then have to be (iocated in R.F. Tuner Unit) would then have to be
removed in order to restore the serew to the correct position. If a metal scrowdriver is used, detuning occurs when the screwdriver is remaved but it will be noted that this degree of deluning can now be compensated by reselting the "Fine

Tuning" cantral (brass shaff). Thus the range of the "Fine Tun ing" cantrol (after knob is replate
This campletes the odivetment of the "Auxiliar Fine Turing" screw for one channel. Identical screws are provided on each channel and they are ail occessible thru the same opening in the tuning "Channel Solector" knob ib rotated
3. HORIZONTAL MOLD-Should the picture appear to move harizon tolly acrous the scroon ar broak up into a sories of light and dark until the pleture remaina totionar.
this control must be rotorod to the end of ith range for proper "ocking" oction, then it will be noccossary to resot the pasition of the Herizontil Lock controt (wee pigure is for location). Adjustment is iddi of it by firs roming the Horizonial Hold control in the lock" control unge and men changing the zotting of the "Horizontol

VERTICAL HOLD-Should the pieture appear to rall by in a vertical direction or cause mut Chown in Figure 15, it will be necessary to adiust the "Vort. Hold" control bocated bahind Figure 14).
Aftor this adjustment is mode, roduce contront until picture is baroly visible and chock wotting of "Yarticol Hold" control for propor pi--

fig. 15-VERtical mOVEment; adjust vertical hold control
5. initial focus-ad jut the "Focus" control, loctod behind Nam. Mra, UMI ple rer Fuzy pidture may obo be due to reproduction of poor quality fine when wation is televis ing a motion picture. Incorrast tuning of ro

fig. 16-BLURRED APPEARANCE;
 of ection entirled "How To Tune the Peccirer"

ure to ra-lighten the crow socuroly.

Fig. 17-TITTED PICTURE, ADJUST YOKE POSITION ADJUST YOKE POSITION The following adjustments should be
follows:

be adiusted b
grasping the "ears"
altached to each
magnet and ratat
ing the magnets with respect la each ather and with respect ta the picture tube. Adjust the magnet position for best centering af the lest pattern.
If picture is still not centered, loosen four focus coil wing nuts
labeled B in Fig. 18 and rotate focus coil for best centering of lest paltern.
d. Readiust ion rop for maximum brighiness on picture tube screen
as explained in step \# 1 .
e. If picture is still not cenlered, pasition focus coil by adiusting the
-

In event picture cannol be centered by above proceduros, releas the faur wing nuts labeled D in Fig. 18 and raise or lower entire yoke and focus coil assembly so that facus coil can be repositioned
vertically with respect to the tube neck.
B. WIDTH - Cantrol of plecture sizz in the hori-
zontal direction is ac. complished by mean of the "Width" con trol located on the
rear of H. Y. power rear of H. V. power
supply (see fig. 18). If abnormally low line voltage makes it diffcult to obtain sufficient
pieture width when un pieture width when us ing the "Width" co
trol, then changing the cetting of the "Hari zantal Drive" cantrol may be helpful. The "Drive" cantrol is lacated at the rear of the chassis and its setting will affect horizantol linearity as wall a
picture width. Therefore, after adiusting this cantral far desired width, it may be necessary to reodiust the "Harizantal Linearity" cantral as described in paragraph \#12.
 picture properly fills the viewing aroc. It ADJUST HEIGHT CONTRO change the retting of the "Height" control after the "Vortical
Linearity" control is adjusted.
o. vertical limear ITY - Improper ver \(\underset{\text { tical }}{\text { ITY }}\) - Inearity causer the circular test pattern to appear con-
densed an the uppor densed on the upper and extended on the lower edge or vice versa. This offect is illustrated in Figure 22. Adiust for proper
linearity by using "Vort. Lin." control located behind Name essary to readiust the "Height" control if a arity control setting.

HORIZONTAL DRIVE - The "Harizontal Drive" control localed at rear of chassis (see Fig. 18) should be rotated clockwise to the the picture are eliminated. As width and linearity of the picture are affected by the setting of "Horiz. Drive" cantrol, it will be necessany
to adiust this cantrol in coniunction with the Hariz. Linearity and to adjust this cantrol in coniunction with the Hariz. Linearim
Width controls to obtain desired picture width and linearity
2. horizontal lineARITY - Improper
horizontal linearit causes the circular lost pattern to appeo candensod an the righ and extended on the loft edge or vice versa. This effect is illustrated in Figure 23. Adius
for proper linearity using "Hariz. Lin." control located at rear of chosis (rees Figure
that proper herizontal linearity cannot be obtained by adjusting this control, then change the selting of the "Hariz. Drive" contral.
13. ELIminating SEmi-circular shadow - This shodaw is caused by the slectron stroam striking the neck of the tube ind it can generally be corrected by applying one ar a combination of the following procedures:
a. Make sure deflectian yoke is positioned as far forward as poe sible by laasening the three wing nuts labeled C in Fig. 18 .

Fig. 23-hORIZONTAL DISTORTION;

Fig. 2 18 and raise or lower entire yoke and focus cail ar
sembly so that hacus coil can tube neck.

POWER REQUIREMENTS
117 valts \(\quad 60\) cycles
Televisian- 230 waths AM-FM Radia-145 watl

PICTURE SIZE

\section*{SPEAKER}

Type
P.M. Dyna P.M. Dynamis ANTENNA INPUT IMPEDANCE . FInAL ADJUstments - Recheck sottings af "Brigh

\section*{GENERAL SPECIFICATIONS}

\section*{DIMENSIONS}

Madel
Height
\(36{ }^{3} / 4^{\prime \prime}\)
Width
\(266^{\prime} 4^{\prime \prime}\)
Depth
\(203 h^{\prime \prime}\) acked)

 YOKE LOCKING WING SCREW
Loosen this screw it repon hiss scrow
if rioning of
yoke is necessary CENTERING MAGNET

DEF 508675

POWER ANSFORM 508702
"KEYED" AUTOMATIC GAIN CONTROL
Oussianding new del variation when changing from one channel to another;
BUILT-IN ANTENNA

\section*{TUNER}
 Thrret type canstruction; individualiy remavable cail assembily ceases immunity of sync system to external interference.

John F. Rider

\section*{INTERMEDIATE FREQUENCIES}

AM Sound-455 Kc.
FM Sound-10.7 Mc.
TV Sound
IV Sound Carrier-22.25 Mc.
Picture Carrier- 26.75 Mc .

\section*{I.F. SYSTEM}

AM-One stoge (1wo tuned tronsformers)
FM-Two stage (three tuned transformers)
TV-Four stoge (stagger funed) for composite signal,
and two odditional stages for inter-carrier sound

\section*{VIDEO AMPLIFIER \\ Two Stage-broad band.}

\section*{RETRACE LINE SUPPRESSOR}

Eliminotes retrace lines thruout the normal range of pieture brighness
fOCUS
Magnetic
Magnetic
HORIZONTAL SYNCHRONIZATION
Automotic frequency control and "keyed" A.G.C. provide excellon
HIGH VOLTAGE POWER SUPPLY
"Fly-back" type. Completely enclosed in a shielded camportment.

\section*{SENSitivity}

Antenna to Picture Tube Grid Sensitivity - To make this meosure
ment, cannect negative Menitivennect negotive terminal of \(1 / 1 /\) volt battery 10 A.G.C. line, and
posite teminal of botrery to chassis. Also. set Controst control to moximum clackwise position. Connect an A.C. vocuum-tube voltmeter
between picture fube grid ond ground, ond ploce a .005 microforad berween picture twbe grid ond
condenser across the same points.
Iniect R.F. signal (400 (ycle modulated) at antenna torminals, using
signal whoso froquency corresponds to the center froquency of the selected chonnel, and odiust Televisian Fine Tuning control for maximum output, Generotor must be connected to antenna terminols with o 15
ahm corbon resistar in series with each lead to simulate proper imped ohm corbon,
ance moteh.
Input signal required to produce standord output of 7.07 volts A.C. (r.m..s.) ot pisture iube grid is indicated in the following toble. Sichne.
a fixed bios of \(1 / 2\) volts hos been applied to the A.G.C. system in order a fixed bios of \(1 / 2\) volts has been applied to the A.G.C. system in order
to provide a reference level for these measurements, it will be under: to provide a reference level for these meosurements, it will be under
stood thot the sensitivities specified here are not intended to indicote stood that the sensitivities specified here orrel not intended to indicote
the full copobility. of the receiver, but merely serve as o convenient bosis for determining proper operation.
\[
\begin{aligned}
& \text { Low Eand }\left\{\begin{array}{l}
\text { Average-50 microvolts } \\
\text { Ronge-25 to } 100 \text { misrovalts }
\end{array}\right. \\
& \text { High Band }\left\{\begin{array}{l}
\text { Averoge-80 microvalts } \\
\text { Range-40 to } 160 \text { microvolts }
\end{array}\right.
\end{aligned}
\]

Dostector to Picture Tube Grid Sonsitivity - To make this measuro.
 to maximum clockwise position. Iniect a a 400 cycle (audio) signol ocrons
6800 ohm video detector load resintor. In order to produce the stand. 6800 ohm video detector load resistor. In order 10 produce the stand.
ard output of 7.07 volts A.C. (r.m.s.) of the picture tube grid, the inpul ard
signol put the detector lood resistor will be opproximataly. 07 . 07 volts A.C.
An \(A . C\). An A.c. vocuum-tube voltmeter must be used for these voltage moos
urements. urements.
Tele evision Sound System Sensitivity-Iniect 4.5 megocycle frequency
moduloted signol (400 cycle modulotion with \(71 / 2 \mathrm{Kc}\) devition moduloted signol (400 cycle modulotion with \(71 / 2 \mathrm{Kc}\). deviation) across
video detector lood resistor and measure output ot speaker voice coil An input of of 2200 microvilts will produce approximotely 500 milliwatts or ocross speoker voice coil
F.M. Sound 5 sstem Sensitivity-Iniect a 98 megocycle frequency mod
uloted signol (400 cycle modulotion with \(221 / 2 \mathrm{~K}\). deviotion) of pin 8 . vioted signol (400 cycle modulotion with \(221 / 2 \mathrm{Kc}\). deviotion) ot pin 8 o
12AI7. F.M. R.F. Amplifier tube (V.27). Connect generator to this poin through a 300 ohm resistor. Tune receiver to 98 Mc signol. An input
of 35 microvalts will produce opproximotely 500 milliwotts or 1.26 vols ocross speoker voice coil.
A.M. Sound System Sensitivity-Iniect o \(1000 \mathrm{Kc}\). signal (modulated
\(30 \%\) ot 400 cycles) \(30 \%\) ot 400 cycles) of (high side) connection lug on ontenna section af gong condenser. Cannect generator to this paint through o. 01 micra-
forod condenser. Tune receiver to 1000 Kc . signol. An input of 75 microvolts will produce opproximotely 500 milliwatts or 1.26 volts across speok-

\section*{er voice coil.}

\section*{REDUCTION OF INTERCARRIER BUZZ}

If o prominent humming or buzzing sound is noted in the sound reception
of o relevision broodcost, it moy be due to ofoult in tronsmission from the of o relevision broodcost, it may be due to of oult in thensmission from the
station, ur incorrect odiustment of the discriminotor tronsformer (tuning of secondory circuit) in the receiver.
This type of disturbonce, which is only present when receiving o stotion
signal, is known os "Intercorrier Buzz" ond it should not be coll signal. is known os "Intercorrier Buzz" ond it should not be confused with
power supply hum that would occur upon foilure of a filter condenser The procedure for correct odjustment of the television sound discriminator circuit is presested in the last section of the relevision Sound Channel
olignment instructions. When the discciminoter sind olignment instructions. When the discriminotor secondary slug \#1 is
properly odiusted, intercarrier buzz will be reduced to an acceptoble
minimum, provided that the tronsmission from the sation is not at fout
HIGH VOLTAGE POWER SUPPLY SERVICING The High Voltoge Power Supply used with this receiver is of the "fy.bock"
ype ond is locoted in the shielded comporment mounted of the left rear
corner of the chossis. It consists of o studdily consteuted ond
 horizontol sweep output torssfor orer plus ons. 1 B3GT/8016 high voltoge
rectifier tube ond oussoiated filter components. rectifier tube ond osssociated filter components.
The plote circuit of the Horizontol Sconning Output sloge is fused to pro-
tect the tronsformer ond kill high voltoge in the event the \(O B Q 6 G T\) tube or the high voltoge rectifier circuit drows excessive current.

Access to the horizontal output transformer, high volioge rectifier tube, fuse ond high voltoge fitter condenser is occomplished by removing the reer
section of the H.V. hhield. This comporment shield is held in place by five screws.
To reploce the fuse, depress the cop of the fuse holder (located next to
\(6 B Q 6 G T\) tube) and turn the ©BQGGI tube) and furn the cap counner-clockwise. Install new fuse of the
some type (\((1+\) omp., 250 volit, part 508113 ; do not use any other size. some type ('4 omp., 250 volt, part 508713); do not use any other size.

\section*{CORONA AND ARC-OVER}

Corona ar orcover can best be detected by observing the aperation of
the power supply in o dark room. Severol conditians may couse these phenomeno.

POOR CONNECTIONS-Arcing or corono may be due to poorly soldered connections (rosin ioints or shorp points), ar defective tube socket connec.
tions. If the leods or connectars to the high voltage filter condenser do tions. The teods or connectars to the high voltoge filter
not grosp this component securely, arcing will olso result.
Inspect solder connections ond resolder those points which ore unsatisfoctory. Make sure tubes ore firmly positioned in tube sockets and thot
high voltoge filter condenser is held securely in place.

COSEY SPACEO COMPONITSS Aring
CLOSEIY SPACED COMPONENTS-Arcing or corono may occur when H.V. components ar leads are placed too close together. Make sure there
is sufficient spocing between oll parts ond wiring. If necessary, the insulation between two elements of the circuit moy be improved by coat. The socket assembly for the \(1 B 3 G T / 8016\) rectifier tube includes a "coro.
The socket assembly for the \(1 B 3 G T / 8016\) rectifier tube includes a "coro-
no ring"" which prevents corono from the tube sockel connections. The no ring" which prevents corono from the tube sockel connections. The
surfoce of this ring should be smooth ond free of scratches, or sharp surface of this ring should be smooth and free of scratches, or shar
protrusions.

\section*{TUBE LOCATIONS \& FUNCTIONS MODEL 9113-A}

\section*{SOCKET VOLTAGES \\ MODEL 9113-A}

\section*{CAUTION} THE PICTURE TUBE is highly evocuoted and if broken, gloss frogments will be violently expelled. Scratch.
ing, chipping, undue perssure, or coreless hondling such os lifing the tube by its eneck is dongerous and ing, chipping, undue pressure, or careless hondling such os lifting the tube by
should be ovoided. If it is necessory to hondie the picture tube, use sofety goggles and heovy gloves.
Be sure to dischorge the voltage developed accoss the capocitor formed by the inner ond outer cooting of the picture tube This can be done by connecting the high voltage socket on the tube to the outer coating with o well insuloted metal conductor
HIGH VOLTAGE 10 to 12 kilovits) is produced in a supply circuit of this receiver. Exercise care to avoid
contact with elements of this circuit and particularly the tube terminals which are labeled "CAUTiON" the odioining voltoge chart. If meosurement of valtage at these points is necessory see procedure given the oot under the note "E."
THE HIGH VOLTAGE LEAD, which supplies approximotely 10 to 12 kilovolits to the picture tube, should be momentarily shorted to the chassis whenever it is disconnected for setvice purposes. This dischorges the
high valtage filter condenser and prevents a shock hazord when working on the receiver after it hos been turned off
INTERMEDIATE B + VOLTAGES, 475 ond 365 , are dangerous receiver chossis components are exposed for service purposes.
BE SURE TO CHECK FOR PROPER POSITIONING OF BAND SWITCH SECTIONS ON AM-FM and IV Chassis when interconnecting link orm has been disengoged ond bottom caver of the \(A M\).FM chassis is remaved
for voltoge meosurements. DO NOT turn on the receiver until you have first determined that the respective switch sections ore correctly synchronized or positioned. Foilure to observe this precoution con result in domage to the receiver, as well os erroneous voltage measurements. For mo
subiect, see text shown adioining AM.FM socket voltoge chort on page 40

THE VOLTAGES SHOWN IN THE ADJOINING CHART WERE MEASURED UNDER THE FOLLOWING CONDITIONS

\section*{XPLANATION OF NOTES}
\begin{tabular}{|c|c|}
\hline 2. & All voltoges ore measured between socket terminals and chossis uniess otherwise indicoted on odjoining chart. \\
\hline 3. & \begin{tabular}{l}
\(\qquad\) \\
Measurements made with valtmeter hoving sensitivity of 1000 ohms per valt except where indicated by (*). The (*) symbol designates a vacuum rube voltmeter meosurement.
\end{tabular} \\
\hline 4. & Bond Switch set to "TV" position unless otherwise indicoted by letters "P", "m" or " \(n\) " follawing voltoges shown in adjoining chart. \\
\hline 5. & Channel Selector ond Fine Tuning Controls set for narmal reception of o locol stotion. \\
\hline & Focus control set to maximum counter.clockwise position. Setting of this control will affect \(\mathrm{B}+\) valtoge on the 265 volt supply line. This voltage is obtoined when control is at moximum counter.clockwise position and increases to 320 os control is rotated to clockwise position. \\
\hline 7. & All other controls (with exception af focus control) ore set for narmal reception of the tronsmitted signal unless the voltoge shown on the chart is followed by a letter or letters indicating a special condition of measurement as exploined in subsequent notes. \\
\hline 8. & Certain voltages were measured with two different settings of specific contrals. It should therefore be understood that in these instances all controls, with the exception of one or two, were set for narmal reception-letters following the valtage shown on the chort indicate the exceptions and ore exploined below. \\
\hline 9. & The external or build-in antenna should remain connected to the receiver only when taking voltage measurements in the sweep ond sync circuits-for all ather measurements, disconnect antenna, short ontenna terminals tagether and connect them ta ground. \\
\hline
\end{tabular} \begin{tabular}{l}
\(\substack{\text { setting } \\
\text { Control. }}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline e. & This voltage will vory from -2.7 to +5.8 depending upon setting of Horizontal Hold Centrol ond Horizontal lock Control. \\
\hline F. & Height Control max. counter-clockwise \\
\hline f. & Controst Control max. counter-clockwise \\
\hline G. & Width Control max. counter-clockwise \\
\hline g. & This voltage will vary from 8 to 15 depending upon setting of Horizontal Hold Control and Horizontal Lock Cantrol. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline H & Height \\
\hline h. & This voltoge will vary from 10 to 20 depending upon setting of Horizontal Hald Control and Horizontal Lack Con. trol. \\
\hline J. & Horiz. Hold Control set for norm picture. \\
\hline K. & Horiz lock Control set for norma picture. \\
\hline k. & This voltage will vary from -5 to -11 depending upon setting of Horizontal Hald Control and Harizontal Lack Control. \\
\hline L. & \[
0
\] \\
\hline
\end{tabular} depending upon setting of Horizantol
Hold Control and Horizontal Lock ConHol.
arity Control mox. caunterclockwise.
Bond switch set to "AM" position; dial
m.
funed ta 540 Kc. ond AM loop ontenno leads grounded.
N. Channel Selector set ta channel \#4
n. Bond switch set to "FM" position; dial tuned to 88 Mc.
minol grounded.
P. Band switch set to "PHO" position,
R. Da not attempl to measure the voltoge Da not ottempt to mea
ot the tube cop. There
potentiol at this paint.

This vocuum tube voltmeter measure.
ment will fuctuate in the vicinity of ment will fluctuate in the vicinity of
0.9 volis.
5. Channel Selector set to channel \#10
T. Grounding of center stud an tube socket is necessory to reduce copacity
coupling between other pins. Oscillo. coupling between other pins. oscillo.
tion may result if this ground is omitted.
t. This valloge will vary from -0.04 to to..0o depending upan setting of Har-
izontol Hold Control ond Horizontal izontol Hold
U. Verticol Hold Control max. clockwise
V. Before measuring this valtage, first con. nect external ontenna ond odiust con.
trals for normal receptian of stotion ignal; then set Focus Control to

MODEL 9113- oupled by a link arm and lever arrangement to the band switch on the chsmis. Do noplal tot atter the therth that
 If the mechanical linkoge is forces or slips at the lever on the TV switch haft or the bottom cover of the AM.FM. Tuner is removed for service purposes, it is possible for the respective switch sections to get out of rep. As one foncion of he band swi if the respective switch sections lose synchronism or are indiscriminately sot to tondom pasitions. order to check for correct synchronization of the band swicches proceed os follows:

REAR OF Chassis

\section*{}

\section*{REMOVING BOTTOM COVER OF AM-FM CHASSIS}
it will be necessory to remove the botiom cover of the AM. Mem corer may be accomplished as follows:
1. Make sure receiver is turned of by removing power cord plug from wall outlet.
2. Loasen screw in upper actuating lever on AM.FM band switch exe disengoged from the AM.FM band switch.

Release the screws holding the bottom cover in position and care fully remove cover.
METHOD OF MAINTAINING BAND SWITCH SYNCHRONIZATION DURING VOLTAGE MEASUREMENTS OR OTHER SERVICE OPERATIONS ON AM-FM TUNER

After the bottom cover of the AM.FM chassis hos been removed, it should
be noted that the link arm is disengoged from the AM.FM band switch be noted that the link arm is disengoged from the \(A\) M. FM band switch hatt thereby removing mecthonical switch, For proper operotion of the eceiver while servicing the AM-FM Tuner, these switches must eoch be
manually positioned so as to mointain correct synchronizotion. Positioning manually positioned so as to mointain coirect synchroin
of these switches may be occomplished os follows:
1. Make sure receiver is furned of by removing power cord plug from wall outhet. IMPORTANT: - Do hot artempt ro
sections of band swith while power is on
2. Before attempting to select a specific setting (FM, AM, PHONO, o 2. Before attempting to select o specifics setting (FM, AM, PHONO, or both sections stort ot their correct position. That is done by setting the
swirch section on the AM-FM chassis to its fully clockwise switch section on the AM-FM chassis to
position ond then setting the switch section on the IV chassis position ond tounter-clock wise position. Both switch sections on now in their correct position for "FM" Operation of the receiver. 3. To set switch sections for AM, PHONO or TV operation, Position
them on follows: NOTE THAT AS SWITCH SECTON ON AM.FM them os follows: NOASED IS ADVANCED COUNTER-CIOCKWISE, THE TV CHASSIS switch section must be advanced in a clockwise direc. TION.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
RECEIVER \\
FUNCTION
\end{tabular} & \begin{tabular}{c}
SWITCH POSITION \\
ON TV CHASSIS
\end{tabular} & \begin{tabular}{c}
SWITCH POSIFION \\
ON AM-FM CHASSIS
\end{tabular} \\
\hline FM & Fully counter-clockwise & Fully clockwise \\
\hline AM & \begin{tabular}{c}
2nd position, furning \\
clockwise
\end{tabular} & \begin{tabular}{c}
2nd position, furning \\
counter-clockwise
\end{tabular} \\
\hline PHONO & \begin{tabular}{c}
3rd position, furning \\
clockwise
\end{tabular} & \begin{tabular}{c}
3rd position, furning \\
counter-clockwise
\end{tabular} \\
\hline TV & Fully clockwise & Fully counter-clockwise \\
\hline
\end{tabular}

SERVICE PRECAUTIONS
\begin{tabular}{|c|c|}
\hline SUBJECT & Precautions \\
\hline ELECTRICAL
COMPONENTS & \begin{tabular}{l}
The high frequencies used in the \(R F\) section of a television receiver make it necessary that considerable care be exercised in servicing the tuner. Lead dress and location cf components are very critical at these frequencies. \\
When replacing parts, it is important to use components of identical electrical characteristics and physical size. Always reconnect the replacemert item in the same location and position in the tuner as the oiginal component.
\end{tabular} \\
\hline tubes & Replacement of tubes in the Tuner Unit may cause slight detuning of RF circuits due to inherent differences in inter eleet:ode capacitaness. When replacing tubes (especally V6. 616 mixer.oscillator tube) make sure that Fine Tuning control will tune in television stations at approximatery the midap or ish this.
the individual oscillator coil slugs for some channels to accomplish \\
\hline & Charnel Coils must be handled with care. Do not disturb coil windings. If an oscillator slug "falls into" its coil torm dur ing adustment, remove the Channel Coil from the turret assembly and lift the Slug Reaining Spring aside. By tapping the coll form it should be possible to make the slug move toward the end so that its threads will be engaged by the Slug re
taining Spring when that spring is returned to its normal position. \\
\hline Fine tuning CONTROL & Rubbing of the bakelite Fine Tuning Cam against the Fine Tuning Condenser Flate is intentional in order to avoid vibration with resulting microphonics. However, the Fine Tuning Cam should not rub or contact the small circular plate located on the body of the tuner. \\
\hline
\end{tabular}

\section*{REMOVAL AND REPLACEMENT OF PARTS}
\begin{tabular}{|c|c|}
\hline ITEM & procedure \\
\hline af tuner unit & \begin{tabular}{l}
To remove the Tuner Unit from receiver chassis, proceed as follows: \\
1. Remove metal plate which covers side of RF Tuner Unit nearest edge of chassis. This platz is held in place by two screws at side of chassis. \\
2. Remove channel selector dial lamp socket. \\
3. Remove support bracket which positions front of Tuner Unit and aiso remove screws which held tuner to rear support bracket. \\
4. Disconnect the leads from the tuner to the main chassis. See illustration on page 1950-216 (circuit diagrar. page) show ing tuner connections. \\
After the Tuner Unit is replaced, make sure that channel selector dial lamp socket is cortectly positioned so that channel selector knob will be properly illuminated.
\end{tabular} \\
\hline channel coils & \begin{tabular}{l}
Insert a screwdriver blade between Coil Retainer Spring and the end of the Tuner Turret. Twist the blade to pull spring Insert a screwdriver blade between
away fiom the molded body of Channel Coil. Lift this end of coil body upward and remove individual coil assembly from tuner. \\
When replacing Channel Coils, be sure they are reinstalled in their correct positions. Coil numbers should increase consecutively in a counter-clockwise direction when tuner is viewed from the front. \\
If all the Chann=1 Coils have been removed from the Tuner Turret. rotate turret until filat surface on end of tuner shaft points down. Install \(=3\) Chonnel Coils into botiom position on turret. Then follow the correct sequence indicated above to replace other coils.
\end{tabular} \\
\hline
\end{tabular}
4. When replacing bottom cover of AM-FM chossis ond mechonitool link
orm between switch sections, refer to diagram above for re-ossembly orm between

REPAIR DATA FOR 508080 RF TUNER UNIT

\section*{procedure}

To remove turret from RF Tuncr Unit, proceed as tollows:
l. Remove tuner from receiver chassis.
2. Remove rear Turret Shatt Retaining Spring by disengaging straight end of spring from projection on tuner.
3. Remove Fine Tuning Condenser Plate from front of Tuner Unit. This plate torms one side of Fine Tuning control
4. Slide Fine Tuning Cam and Brass Shatt off of main Channel Selector Shaft.
5. R-move Contactor Washer Spring and Fiber Spacer Washer from Channel Selector Shaft.
6. Remove Shatt Retaning Spring at front of tuner by dissngaging straight end of spring from proiection on case 7. Slide turret assembly out of case and remove Detent Roller

To replace turret, reverse the above procedure. Tooth on bakelite Fine Tunng, Cam should point downward during asserr.
biy so that it does nol become locked detween the stops on the Fins Tuning Condenser Plate.
\begin{tabular}{|c|c|}
\hline \(\underset{\substack{\text { STATOR CONTACT } \\ \text { SSEMELY }}}{\text { ctict }}\) & \begin{tabular}{l}
To remove this assembly. proceed as follows: \\
1. Remove the two screws at the front and rear of the Siator Contact Assembly, \\
2. Unsolder all electrical connections to contact plate. \\
3. Unsolder four soldered joints between Stator Contact Assembly and Tuner Unit. \\
4. Contact Assembly may now be withdrawn from case. \\
To reinstall this assembly: \\
1. Place Stator Contact Assembly in position and replace, but do not tighten, the two screws at the front and rear of the assembly. \\
2. Remove 3 consecutive pairs of Channel Coils from the turret (for example, the antenna and rfosc. coils for channels \#5, 6 and 7). \\
3. Position Tuner Turret so that the edges of the noxt highest Channel Coils (in this case, the coils for channel \#8) just pass the row of 11 contacts on the Stator Contact Assembly. \\
4. Adjust position of the Stator Contact Assembly so that there are a few thousandths of an inch spacing between the contacts on the contact plate and the molded body of the Channel Coils. \\
5. The Contact Assembly is now correctly positioned and screws at front and rear may be tightened. \\
6. Solder Stator Contact Assembly to tuner frame at same four points that were used previously. \\
7. Make all electrical connections to contact plate. \\
8. Replace Channel Coils. \\
9. Reset Detent Spring as indicated in next section of this chart.
\end{tabular} \\
\hline detent spring & \begin{tabular}{l}
When servicing the Detent Spring, or when replacing Stator Contact Assembly, it will be necessary to correctly set the position of this spring so that coil contacts will properly engage stator contacts. \\
To release the Detent Spring, loosen mounting screw. Then, position the Detent Spring and Roller so that the contacts on the Stator Conlact Assembly engage coil contacts (proper contact position is indicated when contact springs on stator on center plate of turret.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
CHANNEL \\
NUMBER
\end{tabular} & \begin{tabular}{c}
ANTENNA \\
COLL \\
PART \\
NUMBER
\end{tabular} & \begin{tabular}{c}
RF \& OSC \\
COIL \\
PART \\
NUMBER
\end{tabular} \\
\hline 2 & 507952 & 507972 \\
\hline 3 & 507953 & 507973 \\
\hline 4 & 507954 & 507974 \\
\hline 5 & 507955 & 507975 \\
\hline 8 & 507956 & 507976 \\
\hline 7 & 507957 & 507977 \\
\hline 8 & 507958 & 507978 \\
\hline 9 & 507959 & 507979 \\
\hline 10 & 507960 & 507980 \\
\hline 11 & 507961 & 507981 \\
\hline 12 & 507962 & 507982 \\
\hline 13 & 507963 & 507983 \\
\hline
\end{tabular}
DIAL POINTER DRIVE CORD ARRANGEMENT
To string dial cord. first rotate "AM.FM" Coarse Tuning Contro'.
fully counter clockwise until stop on drum contacts ear on mount. ully counter.clockwise until stop on drum contacts ear on mount-
ing frame. Now. with gang set to fully meshed position, strin't dial cord using the following parts:
114955 Clip on end of cord 117057 Cord
S05161 Spring

\section*{ALIGNMENT PROCEDURE}

MODEL 9113

\section*{MODEL 9113-A}

Alignment of all RF and IF tuned circuits in this receiver may be
accomplished by utilizing the procedures described in the tollow. accomplished by utilizing the procedures described in the follow-
ing charts. SEQUENCE OF ALIGNMENT: These procedures should preferably be applied in the order in which they are presented, however,
alignment of AF or IF channels for either AM. FM or TV may be accomplished individually in desired.
The Television RF Amplifier and Mixer alignment may also be
accomplished independent of the Television If Channel alignment. acomplished independent of the Television II Channel alignment.
but oscillator calibration can only be done atfer IF Channel has
 necessary for oscillator alignment as results of circuit tuning are
observed by means of an oscilloscope connected to the output of observed by means of
REMOVAL OF CHASSIS: The receiver chassis must be removed
from the cabinet in order to accomplish alignment of all tuned rom the cabinet in order to accomplish olignment of allt tuned circuits as there are adjustment points located
of both the main chassis and the AM.FM Tuner.
This can be accomplished by first removing all knobs and releasing
the hold.down screws located on the underside of the cabinet. Then disconnect speaker leads and all three built-in antennae
TV. AM and FM). Release indicator lamp from bracket at base
of cabinet.

\section*{CAUTION}

The picture tube is highly evacuated and if broken, glass fragments will be violently expelled. Handle with care, using satety gog gles and gloves. Avoid contact with high voltage terminal at side of tube even after it has been disconnected from the receiver-
this precaution is necessary as inner and outer coatings on the tube form a capacitor which may carry a high voltage charge for an extended period of time after disconnection from the receiver
INSTRUMENTS: The following instruments will be required as signal sources and output indicators during the alignment process.
Since accurate alignment of a television receiver is heavily dependent upon the pertormance of your instruments, it is imperative
that they meet the essential specifications described here.

STANDARD SICNAL GEMERATOR DEVA
STANDARD SIGNAL GENERATOR to provide signals at the
tollowing frequencies. Maximum output on all ranges should be at least I volt with provision for attenuation as desired. This instrument must have good trequency stability and be
accurately calibrated. Geneators which incorporate a sep. arate crystal controlled oscillator and heterodyne circuit are self calibrating and therefore capable of providing the accuracy of frequency calibration required for television circuit alignment.

455 Kc. (400 cycle amplitude modulated) for AM IF 4.5 Mc . (Unmodulated) for TV Sound.
10.7 Mc . (Unmodulated) Ior FM IF,
\(22.4 \mathrm{Mc}\). (Unmmodulated) for TV 1 st IF Trap.
22.8 Mc. (Unmodulated) for TV 3 rd IF Trap.
23.5 Mc . (Unmodulated) for TV 1st and 3rd

\(26.75 \mathrm{Mc}\). (Unmodulated) marker for TV Picture IF
B. RF Frequencies:

550101600 Kc . (400 cycle amplitude modulated)
54 to \(88 \mathrm{Mc}\). (Unmodulated) for TV RF.
88 to 108 Mc (400 cycle
88 to 108 Mc . (400 cycle amplitude modulated)
174 to 216 Mc . (Unmodulated) for TV RF
2. RF SWEEP GENERATOR to provide frequency modulated sig
encies:
201030 Mc . with 10 Mc . sweep width.
54 to 80 M. winh it 10 . sweep width.
Output adjustable with at least I volt maximum.
Output should be "flat" (no amplitude variation) for all se
tings of the sweep width control.
Provision for connection of generator sweep modulatin
Provision for blanking the output signal on each retur
3. CATHode ray oscilloscope. preterably a unit with vert cal amplitier having
capacity pick-up prob

VACUUM TUBE VOLTMETER. The lowest voltage range this instrument should preferably permit a 1.0 volt reading to
5. OUTPUT METER. preterably a unit equipped with an imped ance matching network thct will present a 3.2 ohm load when
connected to secondary of audio output transtormer. instrument connections: The method of connection, including details of matching and coupling networks, ofor instriments used in this alignment procedure is given in several illustrations on
subsequent pages. Specific instructions tor each instrument applica-

\section*{MPORTANT}

A VOID EXCESSIVE INPUT SIGNAL WHEN USING OSCILLOSCOPE AS ALIGNMENT INDICATOR. When observing the receiver band pass characteristic on an oscilloscope, it is exceedingly important to avoid distortion of that characteristic which would occur when using a large input signal from he sweep generator or standard generator (marker signal). Always set anenuarior on sweep gener bes nol reading on he vacuum tube volmeler does not exceed one volt (when meter is connected bol 139 to receiver chassis) Standard generator bol 139. to receiver chassis). Standard generato output should also be attenuated so that marker signal does not pull or tear the band pass charac teristic as shown on the scope

CHECKING SYNCHRONIZATION OF BAND SWITCHES ON AM-FM TUNER AND TV CHASSIS Note that the band switch on the AM-FM Tuner chassis is mechanically coupled by a link arm and chassis. Do ment to the band swwithes by direc pressure on the link arm-always use a control knob attached to the TV switch shaft. If the mechanical linkage is forced or slips at the lever on the TV switch shaft. or the bottom cover of the AM.FM tuner is removed for service pur
poses, it is possible for the respective switch sec tions to get out of step. The receiver can be dam aged if the switch sections lose synchronization or are indiscriminately set to random positions In order to check for proper synchronization of the band switches, refer to procedure on page 40.

\section*{BROADCAST BAND- AM"-ALIGNMENT PROCEDURE}

Aher the entire chassis assembly has been removed from to the AM antenna leads extending from the AM.FM tune chassis. Then wind one turn of insulated wire around frame of loop antenna so as to provide a means of coupling it to
the signal generator. Connect one end of coupling turn to receiver chassis and allow other end to remain open until otherwise instructed in the following chart. Space loop
antenna same distance away from the chassis as when ansenna same distance
assembled in the cabinet.
Reconnect the speaker to the two audio output leads extend-
ing from the main chassis. MMPOATANT: Do not confuse ing from the main chassis. IMPORTANT: Do not contuse
these leads with the two loop antenna leads.
Replace AM-FM Coarse and Fine Tuning knobs and rotate
Fine Tuning knob to its extreme counter.clockwise At this setting, the to its extreme counter.clock wise position and the heary tine nexit to 5.5 on the dial scale should be pointing straight up; if they are not, loosen the set screws the hub of the dial drum on the gang condenser and
close gang plates manually; also, position the dial scate correctly. Then tighten set screws in hub of dial drum.
The Control Panel Escutcheon at the front of the cabine
normally provides a "position indicator" for the AM-FM dial scale, however, when the chassis is removed from the cab inet it becomes necessary to install a "temporary pointer."
That can be readily accomplished by binding a piece of
heavy wire around the planetary drive support brackets
and shaping the free end of the wire so that it can be and shaping the free end of the wire so that it can be he dial knob and the lamp behind it (wire will then cast a shadow on the dial scale and show the frequency to which
With the gang condenser tully meshed, the "temporary Pointer" should coppearser directly behind the heavy line pre ceding 5.5 on the dial scale.
IMPORTANT: Do not remove the metal botiom plate of
AM.FM tuner chassis. Holes are provided tor ranstormer tuning sluzs. Removal of the bottom plate duning alignent of the AF circuits will result in detuning
when the plate is replaced.
when the plate is replaced.
Connect outpur meter rcross the speaker voice coil. Chassis. ground lea of signal generator to the receiver
Sel volume control to the maximum volume position and use
a weak signal from the signal generator.
9. Set tone control to its extreme clockwise position
" position
Atter alignment procedure is completed and chassis and
loop have been reinstalled in cabinet, arrange leads oop so that they are separated from each other as much
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DUMMY ANT in SERIES WITH SIGNAL generator & CONNECT HIGH SIDE OF SIGNAL GENERATOR TO & SIGNAL
GENERATOR
FREQUENCY & \[
\begin{aligned}
& \text { RECEIVER } \\
& \text { SIIAL } \\
& \text { SETTNG }
\end{aligned}
\] & \begin{tabular}{l}
TRIMMER \\
OR SLUG \\
NUMBER
\end{tabular} & \(\underset{\text { DESCRIPTION }}{\text { TRIMMER }}\) & type of adiustment \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \mathrm{MFD} \\
& \text { Condenser }
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multirow{2}{*}{455 XC} & \multirow[t]{2}{*}{Any point where it does not
affect the signal} & 18. and 19 & End I.F. & \multirow{2}{*}{} \\
\hline & & & & 20 and 21 & 1st I.F. & \\
\hline \multirow{2}{*}{\(\underset{\substack{200 \mathrm{MMF} \\ \text { Micar } \\ \text { Condenser }}}{ }\)} & \multirow{2}{*}{Coupling
on lith
on loop antenna} & 1500 KC & 1500 Kc & \#22 & AM Oscillator. & Adjust for maximum output. \\
\hline & & 1500 KC & \[
\begin{aligned}
& \text { Tune to } 1500 \\
& \text { Kc. generator } \\
& \text { signal. }
\end{aligned}
\] & \#23 & \(\underset{\text { Antenna }}{\text { AM }}\) & Adjust tor maximum output. \\
\hline 2n0 MMF.
Mica
Condenser & \[
\begin{gathered}
\text { oupling } \\
\text { ontritap } \\
\text { ontenna. }
\end{gathered}
\] & 600 KC & \[
\begin{aligned}
& \text { Tune } 10.600 \\
& \text { Re, gener } \\
& \text { Signal. }
\end{aligned}
\] & \#24 & Adjustable core of
Antenna Antenn
Coil. & Adjust tor maximum oulput. \\
\hline
\end{tabular}

\section*{FREQUENCY MODULATION_-_'FM"-_ALIGNMENT PROCEDURE}

After the entire chassis has been removed from the cabinet
replace AM.FM Coarse and Fine Tuning Tuning knob Coarse and Fine Tuning knobs and rotate Fine setting. the gang condenser should be bully position. At this heavy line next to 88 on the dial scale should be point the straight up; it they are not. loosen the set screws in the hub the dial drum on the gang condenser and close gang plates manually. aiso. position the dial scale correctly. Then tighten set screws in hub of dial drum
The Control Panel Escutcheon at the front of the cabinet nor mally providus a position indicator" for the AM-FM dial scale.
however, when the chassis is removed from the cabinet it becomes necessary to install a "temporary pointer." That can be readply accomplished by binding a piece of heavy wire
fiee end of the wire so that it can be placed in a vertical posi. tion (pointing upward) between the dial knob and the lamp
behind it (wire will then cast a shadow on the dial scale and show the trequency to which the receiver is tuned). With the gang condenser fully meshed, the "temporary poiner shourd apea dial scale
to 88 on the dial Reconnect the speaker to the two audio output leads extending
from the main chassis. IMPORTANT: Do not confuse these teads with the two AM loop antenna leads.
Set band switch to the "FM" position
Remove botrom cover from AM.FM luner during 1 IF alignme
but replace it belore starting alignment of RF circuits.
TRIMMER AND SLUG LOCATIONS INSTRUMENT CONNECTIONS
FOR
AM－FM TUNER ALIGNMENT

TOP VIEW
FIG．I
AM－FM Tuner Chassis

BOTTOM YIEW

FIG． 2
AM－FM Tuner Chassis

FIG． 3
VTVM Connections for FM Sound
IF Alignmen

FIG． 4
VT VIE -2 scilloscope Connections for FM Sound

FREQUENCY MODULATION－＂FM＂ALIGNMENT PROCEDURE
IMPORTANT：Carefully follow procedure for removal and re． placement of this plate．as well us synchronization of band page to．AM．FM tuner and TV chassis，as explained on
Failure to correctly install bottom cover may Failure to correctly
damage to receiver．
6．Do not remove the KM－FM tuner chassis from the TV chassti
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multicolumn{2}{|l|}{SWEEP GENERATOR} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{OSCILLOSCOPE
CONNEC．
TIONS} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\text { RECEIVER } \\
\text { DIAL } \\
\text { SETTING }
\end{array}
\]} & \multirow[t]{2}{*}{trimmer OR SLUG NUMBER} & \multirow[t]{2}{*}{TYPE OF ADIUST MENT AND OUTPU indication} \\
\hline CONNEC．
TIONS & FREQUENCY & CONNECTIONS & FREQ． & & & & & \\
\hline \multirow[t]{4}{*}{} & \multirow{4}{*}{\begin{tabular}{l}
10．7 MC． \\
Unmodulated
\end{tabular}} & \multirow{4}{*}{Not used．} & \multirow{4}{*}{\(\square\)} & \multirow{4}{*}{\[
\begin{gathered}
\text { Connect } \\
\text { vTvict } \\
\text { as shown } \\
\text { in Fig. } 3 .
\end{gathered}
\]} & \multirow{4}{*}{Not used．} & \multirow{4}{*}{} & \[
\begin{array}{|c|}
\hline \# 25 \\
\begin{array}{c}
\text { Discriminator } \\
\text { secondary }
\end{array} \\
\hline
\end{array}
\] & \multirow{4}{*}{} \\
\hline & & & & & & & \[
\begin{gathered}
\text { Discriminator } \\
\text { primary }
\end{gathered}
\] & \\
\hline & & & & & & & \[
\begin{gathered}
27 \text { and } 28 \\
\text { 2nd } 1 F
\end{gathered}
\] & \\
\hline & & & & & & & \[
29 \operatorname{and}_{181} 30
\] & \\
\hline \({ }_{\text {Same os }}^{\substack{\text { Same } \\ \text { above．}}}\) & Same as
above． & Not used． & － & \[
\begin{gathered}
\text { Connect } \\
\text { vTVM } \\
\text { os shown } \\
\text { in Fig. }
\end{gathered}
\] & Not used． & \({ }_{\text {Same as }}^{\text {above．}}\) & \[
\underset{\substack{\text { Discriminator } \\ \text { secondary }}}{\# 25}
\] & \\
\hline Same os & & & & Not used． & & Same as & \[
\underset{\substack{\text { Discriminator } \\ \text { secondary }}}{\# 25}
\] & \\
\hline \multicolumn{9}{|l|}{} \\
\hline & \[
\begin{gathered}
108 \mathrm{MC} \\
\text { with } \\
\text { 40 chcle } \mathrm{AM} \\
\text { Modulation. }
\end{gathered}
\] & Not used． & － & & Not used． & 108 Mc ． & \[
\begin{gathered}
=31 \\
\text { Fscillator }
\end{gathered}
\] & Set trimmer \(=31\) to re ceive 108 Mc signal
cos indicated by
max imum meter reading． \\
\hline Same as
above． & \[
\begin{array}{|c|}
\hline 106 \mathrm{MC} \\
\text { with } \\
\text { 400 cycle AM } \\
\text { Modulation. }
\end{array}
\] & Not used． & － & Same as & Not used． & Tune 10
106 Mc． generator & \[
\underset{\mathrm{FM} \mathrm{RF}^{+32}}{ }
\] & Adjust trimmer for ma ing． \\
\hline
\end{tabular}
\(\begin{aligned} & \text { Adijustent of FM s．scillatior coil．} 33 \text { will require removal of botiom } \\ & \text { cover Betore rechecking calibration，follow procedure on page } 1950.198\end{aligned}\)

Set volume contol the maximum voluterition and use weak signal from the signal generator．
8．Set tone control to its extreme clockwise position．
9．Dress FM circuit leads as short and straight as possible，par licularly those in the oscillator circuit．If plate and grid leads
为
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { OSCILLOSCOPE } \\
& \text { CONNEC. } \\
& \text { TIONS }
\end{aligned}
\] & \[
\begin{gathered}
\text { RECEIVER } \\
\text { DIAL } \\
\text { SETTING }
\end{gathered}
\] & TRIMMER OR SLUG NUMBER & TYPE OF RDIUST MENT AND OUTPU indication \\
\hline \multirow{4}{*}{Not used．} & \multirow{4}{*}{} & \[
\begin{array}{|c|}
\# 25 \\
\begin{array}{c}
\text { Discriminator } \\
\text { secondary }
\end{array} \\
\hline
\end{array}
\] & \multirow{4}{*}{} \\
\hline & & \[
\begin{array}{|c|}
\hline \text { Discriminator } \\
\text { primary } \\
\hline
\end{array}
\] & \\
\hline & & \[
\begin{array}{|c}
27 \text { and } 28 \\
\text { 2nd } 1 F \\
\hline
\end{array}
\] & \\
\hline & & \[
29 \operatorname{cand}_{181 \text { If }} 30
\] & \\
\hline Not used． & Same as & \[
\underset{\substack{\text { Discriminator } \\ \text { secondary }}}{\# 25}
\] & \\
\hline Connect a hown in Fig． 4. & & & \\
\hline & & & \\
\hline & \({ }_{\text {Same as }}^{\substack{\text { Sameve．} \\ \text { abo }}}\) & Discriminator secondary & \begin{tabular}{l}
FIG． 5 \\
It the characteristic not shaped properly
attempt to obtain sym metry by changing th Should that fail produce the desired readjusiment of sluqs
\(226,27,28,29\) and 30 should be undertaken．
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Not used． & 108 Mc ． & \[
\underset{\substack{\text { FM } \\ \text { Oscilator }}}{=31}
\] & Set ximmer \(=31\) to re ceive 108 Mc．signal
cos indicated by max
coser imum meter reading． \\
\hline Not used． & & \[
{ }_{\mathrm{FM}}^{\mathbf{\# N F}}
\] & Adiust trimmer for ing． \\
\hline
\end{tabular}

TELEVISION IF CHANNEL ALIGNMENT PROCEDURE
hat voltage due to IF oscillation is unaffected by atrength of signal trom the generator Where IF oscillation is encountered. it is generally possible to correct
he condition by detuning the IF coils in different directions. If that
 using a \(4 / / 2\) volt battery instead of the 3 volt battery referred to in
instruction \#S. After slopping the oscillation in this manner it will then be possible to align all If slages using the eollowing procedure
however, the AGC bias battery must be changed back to 3 volts whe using the oscilloscope to observe band pass characteristic. Once a stages have been aligned using the \(41 / 2\) voit bias. the if channe should be stable with reduced bias.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL
GENERATOR} & \multicolumn{2}{|l|}{SWEEP GENERATOR} & \multirow[b]{2}{*}{VTVM
CONNECTIONS} & \multirow[b]{2}{*}{OSCILLOSCOPE
CONNECTIONS} & \multirow[b]{2}{*}{miscellaneous INSTRUCTIONS} & \multirow[b]{2}{*}{tRIMMER OR SLUG} & \multirow[t]{2}{*}{TYPE OF ADJUST. MENT AND OUTPUT indication} \\
\hline CONNEC & FREQUENCY & CONNEC & FREQ. & & & & & \\
\hline & & & & \multirow{2}{*}{Connet as shown in Fig. 10.} & \multirow{2}{*}{Not used.} & \multirow[t]{2}{*}{} & \[
\underset{\substack{\text { converter } \\ \text { plater } \\ \text { coil }}}{\# 7}
\] & Adjust for maximum
reading on VTVM. \\
\hline & & \[
\left|\begin{array}{l}
\text { surlit ch } \\
\text { turned oft } \\
\text { during this } \\
\text { step. }
\end{array}\right|
\] & & & & & \[
\underset{\text { nnd I.F. }}{\# 8}
\] & Adjust for maximum
reading on VTVM. \\
\hline Same as & 24.5 MC. & Same as above. & - & Same as above. & Not used. & - & & \[
\begin{aligned}
& \text { Adjust tor maximum } \\
& \text { reading on VTVM. }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{\({ }_{\text {Same as }}^{\text {Sabe. }}\)} & \multirow[t]{2}{*}{23.5 MC.} & \multirow[t]{2}{*}{Same as} & & \multirow[t]{2}{*}{\(\underset{\substack{\text { Same as } \\ \text { above. }}}{ }\)} & \multirow[t]{2}{*}{Not used.} & \multirow[t]{2}{*}{\(\underline{\square}\)} & \[
\underset{\text { Ist I.F }}{\# 10}
\] & Adjust for maximum
reading on VTVM. \\
\hline & & & & & & & \#ll & \[
\begin{aligned}
& \text { Adjust for maximum } \\
& \text { reading on VTVM. }
\end{aligned}
\] \\
\hline Same as & 22.4 MC. & Stice \(\begin{gathered}\text { Same as } \\ \text { above. }\end{gathered}\) & - & \({ }_{\text {Same as }}^{\substack{\text { Same } \\ \text { above. }}}\) & Not used. & - & \[
\begin{gathered}
\text { \#12 } \\
\begin{array}{c}
\text { Ist } \\
\text { Hoil } \\
\text { Coirap }
\end{array}
\end{gathered}
\] & \\
\hline Same as \({ }_{\text {S }}^{\text {Sabove. }}\) & 22.8 MC. & \({ }_{\text {Same as }}^{\substack{\text { Sabove. }}}\) & - & Same as
above. & Not used. & - & \[
\underset{\substack{\text { 3rd Tr Trap } \\ \text { Coil. }}}{\# 13}
\] & \\
\hline \(\underset{\substack{\text { Same as as } \\ \text { above. }}}{ }\) & 26.75 MC. & & \[
\left|\begin{array}{c}
25 \mathrm{MC} . \\
\left.\begin{array}{c}
\text { Sweeping } \\
=5
\end{array} \right\rvert\,
\end{array}\right|
\] & Same as above. & Connect ass
shown in Fig.
. & & \begin{tabular}{l}
The IF band displayed on Fig. 11. It ment of slug ment fail to peak on the side. Slugs slugs \(\pm 10\) frequency tings of the slugs. it wl \\
The 26.75 Mc er should band pass c If position o of slugs \#7.
\end{tabular} & \\
\hline Same as
above. & 22.25 MC . & \({ }_{\substack{\text { Same as } \\ \text { above. }}}\) & \({ }_{\text {Same as }}^{\substack{\text { Sabove. }}}\) & \({ }_{\text {S }}^{\text {Same as }}\) above. & Same as & \({ }_{\text {Same as }}^{\text {Sabove. }}\) & & ertical gain control on of the response curve sound IF cartiee mark. 11. It the position of the ing of Trap Coils \(=12\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{(Continued from preceding page)} \\
\hline \multicolumn{2}{|l|}{STANDRRD SIGNRL
GENERATOR} & \multicolumn{2}{|l|}{SWEEP GENERATOR} & \multirow[b]{2}{*}{\(\xrightarrow[\text { VTVM }]{\text { CONNECTIONS }}\)} & \multirow[t]{2}{*}{OSCHLOSCOPE CONNECTIONS} & \multirow[t]{2}{*}{misceilaneous instructions} & \multirow[t]{2}{*}{TRIMMER OR SLUG} & \multirow[t]{2}{*}{TYPE OF RDIUST. MENT AND OUTPUT INDICATION} \\
\hline \[
\begin{array}{c|}
\hline \text { CONNEC. } \\
\text { TONS }
\end{array}
\] & frequency & CONNEC. TIONS & FREQ. & & & & & \\
\hline & & & & OSCILLAT & R ALIGNMEN & & & \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
1. IMPORTANT: Before undertaking oscillator alignment be sure if circuits are correctly aligned for band pass characteristic illus. trated in Fig. 11. \\
2. During oscillator alignment, it is necessary to set the Fine Tuning control so that the tooth on the bakelite fine tuning cam points downward (correct position for this control is shown in Fig. 13).
\end{tabular}} \\
\hline \multirow{10}{*}{connect an
\[
\left\{\begin{array}{c}
\text { sown } \\
\text { Fig. } \\
\text { Fin }
\end{array}\right.
\]} & \multirow{10}{*}{-209.75 MC.} & \multirow{10}{*}{} & \multirow{10}{*}{\[
\underset{\# 12}{\text { CHANNEL }}
\]} & \multirow{10}{*}{Connect as
own in Fiq .19} & \multirow{10}{*}{Connect as
hown in Fig. 17} & \multirow{10}{*}{} & \multirow{10}{*}{\[
\underset{\text { Oscillator }}{\# 17}
\]} & \multirow[t]{10}{*}{} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline \multirow{11}{*}{Same an
above.} & - 215.75 Mc . & \multirow{11}{*}{Same as above.} & \(\mathrm{Channel}_{\# 13}\) & \multirow{11}{*}{\[
\begin{aligned}
& \text { Same as } \\
& \text { above. }
\end{aligned}
\]} & \multirow{11}{*}{Same as
above.} & Set Channel Selec. & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Adjust the RF sweep generator and } \\
& \text { marker generator for operation on } \\
& \text { the other television channels: set } \\
& \text { marker generator to sound carrier } \\
& \text { frequency. After selting Channel } \\
& \text { Selector to corresponding channel, } \\
& \text { adjust oscillator slug thru hole on } \\
& \text { front of RF Tuner Unit (see Fig. 13). } \\
& \text { This permits response curve to be } \\
& \text { shifted so that sound carrier marker } \\
& \text { EACH DIVISION }=1 \mathrm{MC} \text {. }
\end{aligned}
\]}} \\
\hline & (& & \[
\overline{\text { CHANNEL }}
\] & & & Set Channel Selec. & & \\
\hline & & & CHANNEL & & & Set Channel Selec. & & \\
\hline & & & \[
\underset{\substack{\text { CHKNNEL } \\ \# 9}}{ }
\] & & & \[
\begin{aligned}
& \text { Set Channel Selec. } \\
& \text { tor to } \# 9
\end{aligned}
\] & & \\
\hline & & & Channel & & & Set Channel Selec. & \multicolumn{2}{|l|}{\multirow[t]{7}{*}{}} \\
\hline & & & \[
\underset{\# 7}{\text { CHANNEL }}
\] & & & \[
\begin{aligned}
& \text { Set Channel Selec- } \\
& \text { lor to \#7 }
\end{aligned}
\] & & \\
\hline & & & \[
\underset{\neq 6}{\text { CHANNEL }}
\] & & & Set Channel Selee. & & \\
\hline & (& & \[
\underset{\# S}{\text { CHANNEL }}
\] & & & Set Channel Selee
tor to \(\# 5\) or 10 & & \\
\hline & (& & \[
\overline{\text { CHANNEI }}
\] & & & Set Channel Selec tor \(10 \neq 4\) & & \\
\hline & & & \[
\underset{\# 3}{\text { CHANEL }}
\] & & & Set Channel Selec
tor \(10 \# 3\) tor 10 & & \\
\hline & & & \(\underset{\text { Channel }}{ \pm 2}\) & & & Set Channel Selec. & & \\
\hline \multicolumn{5}{|l|}{It an oscillator slug "falls into" its coil form during adjustment. re move the Channel Coil from the turret assembly and lift the Slug Retaining Spring aside. By tapping the coil form it should be pos} & \multicolumn{4}{|l|}{sible to make the slug move toward the end so that its threads will be engaged by the Slug Retaining Spring when that spring is returned to its normal position.} \\
\hline \multicolumn{5}{|l|}{It an unsatistactory overall response is oblained for a particular channel, observe RF Amp. and Mixer response curve for that chan nel (as described on page 45.) If characteristic does not con-
torm reasonably well within the typical curve shown in Fig. 12, then form reasonably well within the typical curve shown in Fig. 12, then} & \multicolumn{4}{|l|}{(1) attempt to obtain a better compromise for RF response on all channels by realigning AF Amp. and Mixer circuits. or (2) try replacing Antenna, RF and Oscillator coils for the particular channels.} \\
\hline
\end{tabular}

FIG. 15
Generator Connections
for Television RF Channel Alignment

FIG. 16
Oscilloscope Connections
for Television RF Amp. and Mixer Alignment

FIG. 17
VTVM and Oscilloscope Connections
for Television Oscillator \(A^{1}{ }^{\text {f }}\), nment

TOP VIEw OF Chassis
FIG. 18

BOTTOM VIEW OF CHASSIS

FIG. 19

© John F. Rider

\begin{tabular}{|c|c|c|}
\hline V－8 & 6AC7 & Video Amplifier． \\
\hline V－9 & 6AL5 & Video Detector and limiter． \\
\hline V－10 & 6 BH 6 & 3rd Video I．F．Amplifier． \\
\hline V－11 & 6BH6 & 2nd Video I．F．Amplifier． \\
\hline V－12 & 6BH6 & 1 st Video I．F．Amplifier． \\
\hline V． 13 & GAU6 & Ratio Delector Driver． \\
\hline V． 14 & 6 68 & Ratio Detector and Audio Anmplifier． \\
\hline V－15 & 6V6．GT G & Audio Oulput． \\
\hline V－16 & 616 & Hi－Band Converter und Oscillator． \\
\hline V． 17 & 616 & Lo－Band Converter and Oscillator． \\
\hline V－18 & 6BC5 & Hi－Band R．F．Amplifier． \\
\hline V－19 & 6 6HO & Lo－Band R．F．Amplifier． \\
\hline V－20 & \[
\begin{gathered}
5 U 4-G \\
(12 K P 4)
\end{gathered}
\] & Power Rectifier． \\
\hline V－21 & \[
\left\{\begin{array}{l}
12 \mathrm{P} 4 \\
12 \mathrm{QP} 4
\end{array}\right\}
\] & Kinescope． \\
\hline V－22 & \(12 \mathrm{AU7}\) & Vertical Sweep Oscillator and Sync Clipper． \\
\hline V－23 & 6AH6 & 4th I．F．－Video I．F．Amplifier． \\
\hline V－24 & GAU6 & A．G．C． \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ¢ \({ }_{\text {¢ }}\) & ¢ \({ }_{\text {¢ }}\) & \(\sum^{m}{ }^{\text {² }}\) \\
\hline べす。 & 号家 & 它言 \\
\hline Description & － & ¢ \\
\hline Cabinet Assembly ．．．．．．．．．．．．．．．108155 & 108160 & \\
\hline Speaker－－－－－－．．．．．．．．－－．．．－－－－－－155154 & 155154 & 155154 \\
\hline Escutcheon－Tube Ring－－．－－－．－－125049 & 125048 & 125048 \\
\hline Mask Assembly ．－．－－－．．．．．．－．．－174016 & 174014 & 174014 \\
\hline & 138028 & 138028 \\
\hline Back Panel Assembly－－．．．－．－．．．－101131 & 101133 & －101131 \\
\hline Knob－Tuning ．－．－．．．－．．．－．－－－．－ 134132 & 134115 & 134115 \\
\hline Knob－7－13，2－6（Range）－．．． 134131 & 134117 & 134117 \\
\hline Knob－－Brightness－．．．．－．．－－－－－134130 & 134120 & 134120 \\
\hline Knob－Opera Glass－－．－－－．． 134134 & 134134 & 134134 \\
\hline Knob－Picture（Contrast）－． 134129 & 134118 & 134118 \\
\hline Knob－Valume－－－－－－－．．－－．．．． 134128 & 134121 & 134121 \\
\hline Knob－Horizontal．．．－－．．．．．．．．．． 134127 & 134116 & 134116 \\
\hline Knob－Vertical ．－．．．－－．．．．．．．．．． 134126 & 134119 & 134119 \\
\hline \multicolumn{3}{|l|}{Name Plate－－} \\
\hline Stromberg－Carlson ．－－－－．．．．．．－－－121054 & 121049 & 121049 \\
\hline Tel Atenna－loop Support－－．．－． 103018 & 103018 & 103018 \\
\hline Tel Atenno－loop Assembly．．．．． 139037 & 139037 & 139037 \\
\hline
\end{tabular}

\section*{2．ALIGNMENT PROCEDURE}

\section*{General．}

All precautions for aligning high frequency devices should be observed．Signal generators and oscillo－ scope leads should be well shielded and as short as possible．If necessary to reduce regeneration，a metal plate should be placed on the bench where the align－ ment work is done．
The video I．F I．F Alignment．
The video I．F．system consists of a double tuned con－ verter plate transformer followed by four single tuned stages．These four are the 1st，2nd，3rd，and 4th I．F． Stages．They are aligned as a＂quadruple＂unit pre－ vious to the adjustment of the double－tuned stage Alignment of the＂Quadruple＂
1．Set the contrast control at the maximum contras position．

2．Apply an external bias of approximately 3 V D．C．to the AGC line at the junction of R－119 100 ohms，R－73， 27,000 ohms，and C－7， 10 MF ．
3．Connect the oscilloscope to the grid of the video amplifier，pin 4 of V－8（6AC7）．The lead used for this connection should be a low capacity type shielded cable．A \(47,000 \mathrm{ohm}\) isolating resistor at the input end of the cable is advisable to mini－ mize disturbances caused by I．F．energy pickup on the cable．Failure to observe this precaution may result in incorrect alignment of the receiver．
4．Connect the output of the sweep generator to the grid of the 1 st I．F．amplifier \(V-12\)（ \(6 B H 6\) ）thru

The 47 ohm and 10 ohm resistor network is recommended to give proper terminaton to the generator output cable and also to provide a low grid to ground impedance to minimize feed－ back from other receiver circuits．
5．Adjust the gain of the scope and the signal input to produce a 2 volt peak to peak output on the oscilloscope screen．This level of output should be maintained throughout the alignment pro cedure by re－adjusting the bias and／or the input．
6．Adjust the 21.9 mc ．trap \(\mathrm{L}-2\) so that the 21.9 marker is coincident with the valley of the trap as shown below．
7．The 21 mc ．L－ 5 trap may then be adjusted（with－ out using a marker）to give the response curve the approximate shape as shown below．The response between the 21.9 mc ．and 21 mc ．should be kept at a minimum．
8．The tuning slugs are identified in accordance with their approximate frequency settings as follows： No． 1 － 1 st I．F．Plate coil，T－9 hi－hi frequency． No． 2 －2nd I．F．Plate coil，T－10 hi－lo frequency． No． 3 －3rd I．F．Plate coil，T－11 lo－lo frequency． No． 4 －4th I．F．Plate coil，T－12 lo－hi frequency．

Refer to the circled numbers on the response curve shown below for the relative positions．

Maintaining these relative frequency positions， the slugs should be set to produce a curve ap－ proximately as shown below with 26.4 mc ．and 22.7 mc ．markers at the \(70 \%\) response．

9．It is suggested the traps be checked to insure correct frequency setting after finishing Step No． 8.

\section*{Alignment of the Double－Tuned Stage．}

1．The band switch is turned to the Lo Band position and the external bias is still applied to the AGC bus．
2．The output from the sweep generator is coupled into the plate of the Lo Band converter tube V－17，6J6，by means of the special tube shield． This special shield is constructed by cutting tube shield SC No． 151036 in two， \(3 / 4^{\prime \prime}\) from the base Separate the two pieces by \(1 / 8^{\prime \prime}\) and secure by soldering 4－1 meg．ohm \(1 / 2\) watt carbon resistors to each part as shown below

TUBE SHIELD S．C．PART NO 151036

3．Adjust the primary \(\mathrm{L}-26\) and secondary \(\mathrm{T}-8\) of the double－tuned pair until the 26.4 mc ．and 22.7 mc．markers are at \(50 \%\) response as shown below．
4．It may be necessary to make slight adjustments on the＂Quadruple＂in order to achieve the de－ sired response，but caution should be exercised to prevent complete mis－alignment．

\section*{Sound I．F．Alignment}

1．Apply a modulated 4.5 mc ．signal to the grid of the video amplifier，pin 4 of V－8（6AC7）．Con－ nect the input of the oscilloscope thru the crystal detector shown below to the grid of the kinescope tube．

OJohn F. Rider

© John F. Rider

\section*{SERVICE INSTRUCTIONS FOR TH}

\section*{1. DESCRIPTIVE SPECIFICATIONS}

Power Supply - 117 volts, 60 cycle, 240 watts
Kinescope - 16GP4, 16KP4, 16RP4, or 16TP4, kine scope, magnetic, deflection, mechanical picture entering, and magnetic focus. (Focus coil permanent magnet with electromagnetic vernier.)
Sweep Circuits.
Horizontal - Oscillator and driver tube, sweep am plifier tube, damper, and 2 H.V. rectifier tubes Sweep frequency is automatically controlled.
Vertical-Oscillator and sweep amplifier tubes. Frequency is manually controlled.
Radio Frequency and Intermediate Frequency Circuits. AM Picture - Superhetrodyne, tuned RF stage, converter and 4 I.F. stages. 2nd Detector and Video Amplifier. (Sound traps in 1 st and 3rd I.F. stages M Sound - Intercarrier system, limiter, ratio
M Sound - Intercarie sysem, limiter, ratio de plifier.
Number of Tubes - 26 including kinescope and recti fiers.
requency Ranges - Low Band, 54 mc . thru 88 mc . High band 147 mc . thru 210 mc .
Intermediate Frequencies.
Picture Carrier - 26.4 mc., 3.7 bandwidth at \(50 \%\) response points.
Sound Carrier - 21.9 mc . Beat with picture carrier at 2 nd detector to produce 4.5 mc .
Front Controls.
Top-Dual Control
Center Knob - Vertical Hold.
Outside Knob-Morizontal Hold
nd from Top - Dual Control Center Knob - Off-On-Volume.
Outside Knob - Pisture Control
3rd from Top - Dual Control.
Center Knob - Brightness Control.
Outside Knob - Hi-Lo Channel Switch
Bottom - Dual Control.
Center Knob - Fine Tuning Control.
Out Sonde Kno
1 - Horizontal Linearity
2 - Horizontal Linearity
3 - Horizontal Size.
4 - Vertical Size.
5 - Vertical Linearity.
7-Focus.
Speaker Equipmen
116-C - RP - \(12^{\prime \prime}\) Permanent Magnet - 3.2 ohm impedance.
\(116 . \mathrm{T}\) - \(51 / 2^{\prime \prime}\) Permanent Magnet - 3.2 ohm im. pedance
Audio Power Rating.
2.0 watts at 400 cycles with \(10 \%\) distortion

Tubes - Types and Function.
 V- 2 OSNT-GT Horizontal Sweep Oscillator. -3 6BG6-G 4 6W4.G V. \(5\left\{\begin{array}{l}16 \mathrm{KP4} 4 \\ 16 \mathrm{RP} 4 \\ 16 \mathrm{TP} 4\end{array}\right\} \quad\) Kinescope
\begin{tabular}{lll}
V-6 & 6AL5 & Horizontal Phase Detector. \\
V-7 & 12AU7 & Sync Splitter and DC Re-
\end{tabular}

\section*{2. ALIGNMENT PROCEDURE}

All precautions for aligning high frequency devices should be observed. Signal generators and oscilloscope leads should be well shielded and as short a possible. If necessary to reduce regeneration, a metal plate should be placed on the bench where the align ment work is done.

\section*{Video I.F. Alignment.}

The video I.F. system consists of a double tuned con verter plate transformer followed by four single tuned stages. These four are the \(1 \mathrm{st}, 2 \mathrm{nd}, 3 \mathrm{rd}\), and 4 th I.F Stages. They are aligned as a "quadruple" unit pre vious to the adjustment of the double-tuned stage

\section*{Alignment of the "Quadruple"}
1. Set the contrast control at the maximum contrast position.
2. Apply an external of approximately -3V D.C. to the AGC line at the junction of R-119, 100 ohms, R-73, 27,000 ohms, and C-7, 10 MF .
3. Connect the oscilloscope to the grid of the video amplifier, pin 4 of V-8 (6AC7). The lead used for this connection should be a low capacity type shielded cable. A 47,000 ohm isolating resistor at the inout end of the cable is advisable to minimize disturbances caused by I.F. energy pickup on the cable. Failure to observe this precaution may result in incorrest alignment of the receiver
4. Connect the output of the sweep generator to the grid of the 1st I.F. amplifier V - 12 (68 BH 6) thru the network

The 47 ohm and 10 ohm resistor network is recommended to give proper terminaton to the generator output cable and also to provide a low grid to ground impedance to minimize feedback from other receiver circuits.
5. Adiust the gain of the scope and the signal input to produce a 2 volt peak to peak output on the oscilloscope screen. This level of output should be maintained throughout the alignment pro cedure by re-adjusting the bias and/or the input.
6. Adiust the 21.9 mc . trap L- 2 so that the 21.9 marker is coincident with the valley of the trap a shown in Fig. 1.
7. The 21 mc . L-5 trap may then be adjusted (with out using a marker) to give the response curve the approximate shape as shown in Fig. 1. The response between the 21.9 mc . and 21 mc . should be kept at a minimum.
8. The tuning slugs are identified in accordance with their approximate frequency settings as follows No. 1 - 1 st I.F. Plate coil, T. 9 hi-hi frequency. No. 2 - 2nd I.F. Plate coil, T-10 hi-lo frequency. No. 3 - 3rd I.F. Plate coil, T- 11 lo-lo frequency. No. 4 - 4th I.F. Plate coil, T-12 lo-hi frequency. Maintaining these relative frequency positions, the slugs should be set to produce a curve approximately as shown below with 26.4 mc . and 22.7 mc . markers at the \(70 \%\) response.
9. It is suggested the traps be checked to insure correct frequency setting after finishing Step No. 8.

\section*{Alignment of the Double-Tuned Stage.}
1. The band switch is turned to the Lo Band position and the external bias is still applied to the AGC bus.

. The output from the sw. 1 into the plate of the Lo Band converter tube V-17, 6J6, by means of the special tube shield. This special shield is constructed by cutting tube shield SC No. 151036 in two, \(3 / 4\) "from the base. Separate the two pieces by \(1 / 8^{\prime \prime}\) and secure by
soldering 4-1 meg. ohm \(1 / 2\) watt carbon resistors to each part as shown below.

TUBE SHIELD C. PART NO 151036

3. Adjust the primary \(\mathrm{L}-26\) and secondary \(\mathrm{T}-8\) of the Adjust the primary \([-26\) and secondary \(\mathrm{T}-8\) of the
double-tuned pair until the 26.4 mc . and 22.7 mc. markers are at \(50 \%\) response as shown in Fig. 2.
4. It may be necessary to make slight adjustiments on the "Quadruple" in order to achieve the de sired response, but caution should be exercised

\section*{FIG.}

Sound I.F. Alignment.
Apply an unmodulated 4.5 mc . signal to the grid of the video amplifier, pin 1 of V - 9 (6AL5)

Adjust T-5, L-7 and the primary of the ratio de tector transformer \(T-6\) for maximum \(A G C\) voltage. This voltage is measured across the 5.0 MF electrolytic capacitor \(\mathrm{C}-56\) in the ratio detector diode circuit.
3. Adjust the secondary of the ratio detector transformer for zero voltage from the junction of R-79, 22 K and \(\mathrm{R}-80,22 \mathrm{~K}\) to the junction of \(\mathrm{C}-58, .047\) MF and \(\mathrm{R}-78,18 \mathrm{~K}\). This voltage in adjustment should pass thru zero between positive and negative swings on the VTVM.

MODELS \(116 \mathrm{CA}, 116 \mathrm{CD} 2,116 \mathrm{CF}, 116 \mathrm{CM}\), Ch. 112109; 116RPM, Ch。 112111 ;

© John F. Rider

© John F. Rider

©John F. Rider

\section*{CIRCUIT DESCRIPTION}

The Sylvania television receiver chassis 1-271 -290 operate with twenty tubes plus two high voltage rectifiers, two low voltage rectifiers and one picture tube. The operating control on the front panel have been reduced to minimum: Brightness, Volume, and Tuning The remaining controls, which are seldom ad usted, are located at the rear of the chassis Special features of this receiver are as follows:

\section*{Rotary Channel Selector}

A compact, low drift, 12 channel rotary tuner \(s\) provided in these chassis for simplicity of peration. Continuous tuning eliminates the need of a fine tuning control.

\section*{Built-In Antenna}

Eliminating the cost and inconvenience of an external antenna a Sylvania tuned dipole type antenna is built-in to provide satisfactory reception in most locations. The antenna is peaked for resonance to the individual channe by rotating the trimmer knob on the top of the receiver.

\section*{Automatic Gain Control}
implified customer operation is provided by very flat AGC system which has a high degree of noise immunity. Very little, if any readjustment of controls is required in going from one station to another.
Direct-Coupled Video System
A direct coupled video system eliminates al
ideo coupling capacitors and D.C. Restorer This reduces the visible effects of noise.

Horizontal Automatic Frequency Control
A sine wave Horizontal AFC is employed, providing excellent picture stability, even in the presence of noise and weak signals.

For convenience in tracing circuits a block diagram is shown in Figure 1. The antenna is connected to the input of the RF tuner. This uner functions to select the desired television channel by continuous tuning. The output of the tuner is at intermediate frequency and of sufficient band width to pass both picture and sound carriers of the desired signal.

The output of the tuner is then applied to the video IF Amplifier consisting of 3 stagger uned stages and one bandpass stage. The diacent "channel carriers and co-sound car rier are attenuated by this IF Amplifier.

The video signal out of the video detector is amplified by a single stage and impressed on the picture tube.

Automatic gain control is obtained from the AGC Rectifier, amplified by the AGC Amp ifier and applied to the RF and IF Amplifiers The AGC Line Clamper prevents the Tuner AGC Line from going positive under weak signal conditions.

The sync pulses are separated from the video signal, amplified, and clipped and then fed to the Horizontal Discriminator and Vertical In tegrator plate. The Vertical Sync information
from the vertical integrator plate is applied to Vertical Oscillator to keep this oscillator in step with the vertical sync pulses from the peaked saw-tooth Vertical Output stage energizing the Vertical Deflestion coils.

Horizontal Sync information from the Sync clipper is supplied to the Horizontal Discriminator. A voltage from the Horizontal Oscillator is also supplied to the Horizontal Discriminator. The output of the Horizontal Discriminator is then applied to the Horizontal Control tube which functions to hold the Horizontal Oscillator in synchronism with the incoming horizontal. sync pulses.

The Horizontal Oscillator actuates the Horizontal Discharge tube through the Horizontal Ringing Coil producing a peaked saw-tooth wave. Approximately one-half of the saw-tooth component of this wave causes current to flow in the plate circuit of the Horizontal Output tube. This current energizes the Horizontal Deflection Coils through the Horizontal Scanning Transformer an provide the right hall of the horizontal scan. During the right half of the ing through the Damper tube. At the end of the saw-tooth the inverse pulse component acts on the grid of the Horizontal Output Tube to

\section*{ANTENNA}

The 1-271, 1-290 chassis models are shipped with a built-in antenna connected to the two terminal antenna board. For most receiver installations the built-in antenna will provide satisfactory reception.

A variable capacitor controlled from above the picture tube screen adjusts the antenna circuit to resonance. At each individual channel this

6140W, Ch. 1-271, 1-290
cut off plate current flow. When this occurs the energy in the Horizontal Deflection circuit transfers rapidly from the inductive branch of the circuit to the capacitive branch resulting in a voltage peak of approximately 2000 Volts across the Horizontal Deflection Colls. 76 olts by the turns ratio of the Horizortal Scan oing transormer and fed the voltage doublin ectifier circuit to provide approximately 13,500 Volts for the picture tube H.V. anode.

The damper tube does not conduct during the high voltage pulse period because of the polarity of the pulse. During this pulse period, when the energy transfers from the inductive branch of the horizontal deflection circuit to the capacitive branch and back again to the inductive branch, the electron beam in the pic ure tube is moved rapidly from the right to he left edge of the raster to accomplish re trace.

At the completion of retrace, energy again fows out of the inductive branch of the cuit. The horizontal output tube is still cut off during this time and a strong current flows hrough the damper tube. This current de reases to zero linearly to provide the scan. As the entire cycle is repeated
INSTALLATION
capacitor should be adjusted for best picture quality.
f an external antenna is desirable for satis actory reception, the Sylvania Hideaway An enna, Part 580-0005, gives optimum periorm ance where an indoor installation is indicated, and the Sylvania Conical Fan Television Antenna part 580-0001, is available in one, two and

TELEVISION CHANNELS \& FREQUENCIES
\begin{tabular}{l|c|c|c|c}
\hline \begin{tabular}{c}
CHANNEL \\
NO.
\end{tabular} & \begin{tabular}{c}
FREQ. \\
MC.
\end{tabular} & \begin{tabular}{c}
PICTURE CARRIER \\
MC.
\end{tabular} & \begin{tabular}{c}
SOUND CARRIER \\
MC.
\end{tabular} & \begin{tabular}{c}
HETERODYNE \\
OSC. FREQ. MC.
\end{tabular} \\
\hline & & & & \\
2 & \(54-60\) & 55.25 & 59.75 & 81.65 \\
3 & \(60-66\) & 61.25 & 65.75 & 87.65 \\
4 & \(66-72\) & 67.25 & 71.75 & 93.65 \\
5 & \(76-82\) & 77.25 & 81.75 & 103.65 \\
6 & \(82-88\) & 175.25 & 87.75 & 109.65 \\
7 & \(174-180\) & 181.25 & 179.75 & 201.65 \\
8 & \(180-186\) & 187.25 & 185.75 & 207.65 \\
9 & \(186-192\) & 193.25 & 191.75 & 213.65 \\
10 & \(198-198\) & 199.25 & 207.75 & 219.65 \\
11 & \(204-210\) & 21.25 & 203.75 & 225.65 \\
12 & \(210-216\) & 21.25 & 209.75 & 231.65 \\
13 & & & 215.75 & 237.65 \\
\hline
\end{tabular}
four bay arrays, providing superior performance in an outside installation. When using the Sylvania Hideaway Antenna or the Sylvania Conical Fan Ananna Aremov the leads to the built-in antenna from the antenna terminal and then connect matching 300 Ohm twin lead from the antenna installation in its place. A 300 Ohm lead is especially recommended where the lead-in is in excess of 100 feet.

75 Ohm shielded coaxial input may be used with the 1-271, \(1-290\) chassis if impedance matching coils, Sylvania Part No. 111-0007 are wired between the lead-in and the antenna erminals. A coaxial lead-in may be the only solution in those areas where high noise sig nals prevail.

\section*{OPERATING INSTRUCTIONS}
A. To adjust and tune this receiver, proceed as follows:
1. Turn Volume Control (3) clockwise until it clicks.
2. Allow several minutes warm-up period.
3. Turn band switch (5) either way to the appropriate band (i.e. channels 2-6 or channels 7-13).
4. Rotate the Channel Selector (4) until the channel number of the desired
5. Turn Brightness Control (2) to mid position.
6. Adjust the Channel Selector (4) for best picture quality.
7. Adjust Volume Control (3) for desired volume.
8. Adjust Brightness Control (2) for best picture.
B. To change from one station to another:
1. Turn Band Switch (5) to the appropriate band (i.e. channels 2-6 or channels 7-13).
2. Rotate the Channel Selector (4) until

FIGURE 2 - FRONT OF CABINET CONTROLS the channel number of the desired station appears in the dial opening.
3. If necessary, adjust the Brightness Control (2) for best picture. Only slight adjustment of this control should be necessary.
C. To turn on the dial light:
1. Push the dial light switch to the left.

\section*{INSTALLATION AND SERVICE INSTRUCTIONS}

\section*{Picture Tube Handling}

All Sylvania Television receivers incorporating chassis 1-271, 1-290 are shipped complete with picture tube installed on the chassis and connected for operation. However, if it becomes necessary to re-install a picture tube due to replacement or servicing, the following precautions should be observed.
. Do not open the picture tube carton unti ready to install the picture tube.
2. Do not handle the picture tube unless prolective goggles and gloves are worn. People not so equipped with safety devices should be kept at a distance while the picture tube is being handled.
3. Keep the picture tube as far from the body as possible while handling.

\section*{Picture Tube Replacement}

For Model 271 (16 " rectangular tube)
To remove the picture tube from the chassis, remove the picture tube socket, high voltage anode connector, and ion trap magnet. Remove the tube holddown strap by removing the two screws on either side. When the rim of the tube is free of the strap, carefully pull the picture tube out through the focus magnet and deflection coils.

1-290

For Model 290 (19" round tube)
To remove the picture tube from the chassis, remove the picture tube socket, high voltage anode connector, and ion trap magnet. Loosen the \#10-32 bolt on the holddown strap at the upper right of the tube. Remove the holddown strap. Pull the tube braces away from the sides of the tube. Lift the tube clear of the front edge of the chassis and move it forward gently until the tube base is clear of the focus tagne and yoke. The plastic rim around the face of the tube may then be removed.

To replace the 16 " rectangular tube, reverse the removal procedure, being careful not to
force the tube if the neck binds. Be sure the tube is properly placed before securing the holddown strap

To replace the \(19^{\prime \prime}\) round tube, replace the plastic rim and reverse the removal procedure, being careful not to force the tube if the neck binds. There is no specified angle of rotation for the picture tube although the opening in the plastic rim must be in the lower right and the anode clip fastened at the lower left. Be certain the tube is properly placed before tightening the holddown strap. There is no specified angle of rotation for the approximate initial setting of the ion trap. (See "Adjustment of Ion Trap Magnet, Focus Magnet, and Centering Shutter").
On all chassis dress the yellow picture tube cable lead away from the H.V. scan box and the other leads in the cable

\section*{Chassis Removal}

To remove the chassis from the cabinet, proceed as follows:
1. Remove all panel control knobs from the front of cabinet.
2. Remove the holddown screws from the underside of the chassis shelf. Access to these screws is from the rear of the cabinet.
3. Disconnect the built-in antenna, remove the interlock cover screws and remove interlock cover.
4. Remove speaker plug from socket on chassis.
5. Slide the chassis all the way out the back of the cabinet.
To replace the chassis, reverse the above procedure.

\section*{Presef Controls Adjustments}

All preset controls are located at the rear of the receiver and are readily available without removing the interlock cover.

\section*{AGC - See AGC Control Adjustment}

Horizontal Hold - See "Adjustment of Horizontal AFC Operation".

FIGURE 4 - REAR PANEL CONTROLS

Contrast - Adjust contrast control to obtain Contrast - Adjust contrast control to obtain
best contrast with a good picture or test pattern.

Vertical Linearity and Height - Adjust the height control until the picture fills the screen vertically. Adjust the Vertical Linearity control until the pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other.

Vertical Hold - Rotate the Vertical Hold control until the pattern is slowly moving downward. Back off on the control to a point just beyond where the vertical motion stops.
Horizontal Drive - Turn the horizontal drive control clockwise as far as possible without crowding of center of the picture.
Horizontal Size - Adjust the horizontal size control until picture fills the mask horizontally.

Horizontal Linearity - Adjust the horizontal linearity control until the picture is symmetrical left to right. Re-check Horizontal Drive after adjusting Horizontal Size and Horizontal Lin earity.

Adjustment of Ion Trap Magnet, Focus Magnet, and Centering Shutter

These adjustments are interdependent and therefore, it is necessary to check all three at the same time.

Before making any adjustments, the function of each magnet should be noted.

The ion trap magnet is used to obtain maximum brilliance of the raster or picture and should be adjusted to obtain maximum brilliance as described below.

The focus magnet is used to obtain correct focus of the picture.

The centering shutter is an integral part of the focus magnet assembly. Its function is to position the picture, both horizontally and vertically.
Before making any adjustments, check that the deflection yoke is positioned so that it is pressing against the flare of the picture tube Toted this, ide of the thumb-screws loyoke as far forward as it will go. If the pic ure is not square with the screen mask ro tate the yoke.

Next, check that the focus magnet is held firmly by both brass screws against the yoke; there should not be any gap between the yoke and the focus magnet.

When adjusting the focus of the receiver it is to be noted that optimum focus of the picture does not necessarily result when either the vertical or the horizontal is adjusted for maxi mum definition. Optimum focus is frequently a compromise between these two settings. It is highly desirable, therefore, that a transmitted picture, containing both vertical and orizontal lines, be available for correc focusing of the receiver.

Before proceeding with the adjustment of the focus of the receiver, first ensure that the ion trap magnet is correctly adjusted.

Set the contrast control at minimum and the brightness control at maximum. The ion trap magnet should first be positioned so that ther is approximately 1 inch for \(1-271\) and \(11 / 4\) inch for 1-290 between the ion trap magne and the focus magnet. The ion trap magne should be slowly rotated until a picture (or raster, if the receiver is not yet tuned to station) is visible on the screen. The bright-
ness should now be reduced by means of the brightness control and the ion trap magnet carefully twisted and moved a small amount backwards and forwards on the neck of the tube,
to obtain maximum brightness.

Finally, adjust the brightness control to obtain maximum brightness on the screen and then carefully adjust the ion trap magnet. It may be possible to increase the brightness still more by turning the contrast control towards maximum and again adjusting the ion trap magnet. The correct position of the ion trap magnet is that which ensures the greatest possible brightness of the raster of picture before it enlarges and "blooms" as the setting of the brightness control is increased. Do not leave the brightness control in this position as the condition causes overload of the picture tube.
A preliminary adjustment of the screw on the focus magnet should now be made to obtain a raster or picture which is focused - this prenecessary if the raster or picture is already in focus (Note: Use a non-magnetic screw driver to adjust the focus screw.)

If the picture is not centered on the screen, either horizontally or vertically, properly position it by adjustment of the centering shutter. This centering adjustment will move the picture up, down, left or right as required to center the picture. With the brightness control at a low level, check the horizontal size and height of the picture to insure that when the picture
is properly positioned it just fills the mask with is properly positioned it just fills the mask with no corner cutting.

Carefully make final adjustments of the focus screw for optimum focus in both horizontal and vertical directions. Best focus of the picture does not necessarily result when either the final setting should, therefore, be a com promise between the two. A test pattern with both vertical and horizontal lines is, therefore highly desirable when making focus adjust ment.

Finally, check that the adjustment of the ion trap magnet is such that the brightest possible picture is obtained, as previously mentioned.

Since all these adjustments are interdependent, recheck the adjustment of all three until the best possible picture is obtained.

\section*{ADJUSTMENT OF HORIZONTAL AFC CIRCUIT}

\section*{Check of Operation}

The operation of the AFC circuit should be checked as follows:
A. Tune the receiver to a channel on which no signal is received and return to the original channel. The picture should immediately fall into synchronization.
B. Switch off the power to the receiver for about five minutes and then switch back on. picture should immediately fall into sync.
C. Check for correct phasing of Horizonta AFC circuit oy noting that there is approximately \(1 / 8^{\circ}\) of blanking visible on the right hand edge of the picture. It will
be necessary to turn the contrast control almost to minimum, readjust the brightness control and reduce picture size slightly to see the blanking.

NOTE: Before making check \(C\) above, be sure the horizontal drive control is be sure the horizontal drive control is
correctly adjusted. Refer to "Preset correctil adjusted.
Controls Adjustment," page 8 . If the Controls Adjustment, page 8. If the receiver passes the above checks, no ad-
justments to the horizontal AFC circuits need be made.
f the receiver cannot pass checks "A," "B," or "C" the adjustment of the Horizontal Hold Control as noted under "Horizontal Hold Adjustment' should be made.

Horizental Hold Adjustment
(A) Tune in a station and adjust the tuning control for best picture quality. Adjust the contrast and brightness controls for normal picture.
(B) Remove V16 - 6AL5 - Horizontal Discriminator tube.
(C) Turn the Horizontal Hold Control until the picture moves back and forth across
the screen with blanking bars vertical.
(D) Replace the Horizontal Discriminator tube and repeat \(A, B\), and \(C\) under "Check of Operation".
(E) If receiver still will not pass these checks, it will be necessary to proceed with "Phase Adjustment".

\section*{Phase Adjustment}
(A) Turn the core in the horizontal "ringing" coil all the way out (counterclockwise). Short out the 4700 ohm horizontal charge circuit peaking resistor R226.

With the horizontal size coil set for approximately the correct picture width, and with the horizontal linearity coil adjusted for best linearity, rotate the horizontal drive control fully counter clockwise. Slowly turn the drive contro clockwise until crowding is visible in the center of the picture. Now carefully turn the control back (counterclockwise) only sufficient to remove the crowding in the picture or pattern. On some cliassis, it may not be possible to obtain crowding of the picture. In such cases the control
should be set to the fully clockwise position.
the hor ,Do not operate the receiver with.
(B) Remove the 6AL5 horizontal discriminator tube from its socket
(C) Carefully turn the frequency adjustment screw (top of discriminator transformer T62) until the picture moves back and forth across the screen of the picture tube with the blanking bar vertical.
(D) Insert the 6AL5 horizontal discriminator tube back into its socket.

OJohn F. Rider
(E) Adjust the phase adjustment screw (underside of discriminator transformer T62) until approximately \(1 / 8\) " of "blanking" is visible on the right-hand edge of the picture. In order to see the blanking, control almost to minimum re-adjust the control almost
(F) Check the "free-running" of the horizontal oscillator as described under parazontal oscillator as described under paraessary, readjust the frequency adjustment screw on top of horizontal discriminator transformer.
(G) Make a final check of the phasing as described in paragraph " \(E\) " above. It is important that both the "free-running" and the phasing are correct.
(H) Remove the short from across the 4700 ohm resistor R226 and readjust the horizontal drive control as described in (A) Turn the core in the horizontal "ringing" coil clockwise until approximately \(1 / 8^{\prime}\) of "blanking" is again visible on the right hand edge of the picture.
(I) Before the horizontal synchronization circuit is adjusted to the final position, it will be necessary to check the operation as follows:

Slowly turn the oscillator frequency adjustment screw (top of transformer T62) in either direction until the picture suddenly falls out of synchronization as indicated by the presence of a number of diagonal bars. The total number of bars visible must not be less than six. These
bars may consist or either several full bars and two half bars for the total number or they may be all full bars for the same total number. Slowly turn the adjustmen bars and note the total number of bars visible just before the picture again falls into synchronization. The last number of bars visible must not be less than three, or more than four. The adjustment screw must be turned very slowly and carefully after the number of bars has been reduced to four or five in order to get an accurate indication of the minimum number of bars it is possible to obtain.

Turn the adjustment screw in the opposite direction until the picture suddenly falls out of synchronization in the opposite direction and repeat the foregoing procedure. Again, the total number of bars visivle when the picture falls out of synchronization must not be less than six and not less than three or more than four bars must be visible just before the picture falls into synchronization.
(J) After checking the operation as in I, it is necessary to repeat the procedure described in paragraphs "B," "C," and "D."
(K) Remove the signal by tuning to a "free" channel, then retuning to the original channel. The picture should immediately fall into synchronization.
(L) Switch "off" the power to the receiver for about five minutes and then switch receiver "on" and check that the picture pulls into synchronization.

\section*{AGC CONTROL ADJUSTMENT}

This control has been correctly adjusted at the factory and should require no further adjustment. If adjustment becomes necessary as evidenced by poor horizontal or vertical sync poor video signal (poor contrast). Adjust as
1. Connect a good antenna installation to the receiver.
2. Tune the receiver to a channel on which no picture is received
3. Set the contrast control to mid-position.
4. Turn the AGC control fully clockwise The AGC control is located on the rear panel of the chassis.
5. Connect a VTVM from the AGC Amplifier plate to ground (V13, 12AU7, pin 6) and set the AGC control to obtain a negative 0.1 volt reading.

Note: On some receivers the closest approacn to this reading will be the fully clockwise position.
6. With the AGC Control set as above, turn the contrast control to almost maximum (about 7/8) and tune in the strongest station available in the area.
7. Again read the AGC Amplifier plate voltge, if reading is less than a negative 2.0 volts leave the control as set.

MODELS 5130B, 5130M, 5130W Ch. I-271, 1-290

FIGURE 6 - CHASSIS BOTTOM LAYOUT
8. If the AGC Amplifier plate voltage is more than 2 volts negative, slowly turn the AGC control counterclockwise observing the pic ture.
9. The picture will get darker and then finally start to fall out of sync as evidenced by a sudden shift or jittering of the picture in either the horizontal or vertical direction. Do not turn beyond this point
10. Back off (clockwise) slowly on the contro until the picture holds in sync without flutter and turn slightly beyond. (Experience will dictate how far beyond to turn).
11. Rock the tuning control slightly either side of the best tuning point to insure picture stays in sync; if not, turn slightly further clockwise and check again
12. As a final check, turn the volume control up to normal level. Intercarrier buzz should be negligible.
13. Remove objectionable intercarrier buzz by turning the AGC control slightly further clockwise. (Note: The intercarrier buzz is merely a reference for correct adjustment of the AGC control and only a slight touch-up should be necessary. If much adjustment is required to remove intercarrier buzz, the sound section is maladjusted and requires realignment)
14. Rock the tuning control slightly either side of the best tuning point and turn the AGC control slightly more clockwise as necessary to remove objectionable intercarrier buzz.

The intent of the above AGC control adjustment is to provide a maximum of AGC action consistent with proper sync and minimum intercarrier buzz on strong signals.

\section*{TEST EQUIPMENT REQUIREMENTS}
1. RF sweep generator or generators with frequency range from \(4-220 \mathrm{Mc}\). having sweep width adjustable from 50 Kc . to 10 Mc . with an output of at least 0.1 volt a marker system, either built-in or external type and flat within +1 Db .
2. Signal generator or generators with a frequency range from \(4-222 \mathrm{Mc}\). and an adjustable output of at least 0.1 volt.
3. Sylvania cathode ray oscilloscope type 132 or equivalent capable of passing a 60 cycle square wave.
4. Sylvania Polymeter type 221 or equivalent

\section*{ALIGNMENT PROCEDURE}

Should any chassis under service require complete realignment the alignment procedure should be carried out in the following listed order.

PRE-ALIGNMENT INSTRUCTIONS - READ CAREFULLY BEFORE ATTEMPTING ALIGNMENT.

Lay chassis on left side for alignment. Ground all equipment to receiver chassis. Use specia alignment tool service Part No. 898-0003.

VIDEO IF ALIOMMENT
1. Connect signal generator to the jig shield on the 6 J 6 Oscillator-Mixer. Allow set to warm-up for 15 minutes.
2. Connect the negative lead of a 3 volt battery to the AGC Line, positive lead to ground.
3. Connect D.C. VTVM across the diode load resistor R145-3300 Ohm.
4. Adjust the cores of the IF traps in the following order. Keep Voltmeter reading between 1 and 2 volts by reducing Generator Output as required.
Set Signal
Generator At:
Adjust:
21.9 Mc . Core on 4th IF Trap L68 for min-
. 9 imum outpu
27.9 Mc. Core on 3rd IF Trap L55 for min-
mum output
Core on 1st IF Trap \(L 54\) for minimum output
. Adjust the cores of the Video IF Transformers in the following order. Reduce generator output to keep voltmeter reading between 1 and 2 volts.

\section*{Set Signal}

Generator At: Adjust
26.0 Mc. Core on 3 rd Video IF Transformer T57 for maximum output
22.7 Mc. Core on 2nd Video IF Transformer T 56 for maximum output
25.3 Mc. Core on 1st Video IF Transformer

T55 for maximum output
23. 5 Mc . Core on Converter Coil L8 for maximum output

Repeat tuning of cores on Trap Coils as described in step 4 above
6. Disconnect Signal Generator and VTVM

FIGURE 8 - IF RANDPASS RESPONSE
7. Connect sweep generator (frequency 24 Mc . sweeping 10 Mc .) using a . 105 Md . cap-
8. Connect oscilloscope to junction of diode load R145-3300 Ohm - and coil L58.
9. Adjust primary (top core) and then secondary (lower core) of IF Bandpass T58 to obtain curve shown in Figure 8. (Both adjusted from bottom of Transformer with hex end of special alignment tool.)
10. Disconnect Sweep Generator from 4th IF Grid and connect it to the Jig Shield on Converter 6J6. Loosely couple signal generator at this point for markers.
11. Observe IF Response Curve and if necessary adjust IF transformer cores slightly to obtain response curve shown in Figure 9. Keep oscilloscope gain high enough to prevent overload of the receiver which will distort the curve

FIGURE 9 - OVERALL IF RESPONSE MODELS 5130B, 5130M, 5130W, 5140B, MODELS 5130B, 5130M, 5130W, 5140B,
\(5140 \mathrm{M}, 6140 \mathrm{M}, 6140 \mathrm{~W}, \mathrm{Ch} .1-271,1-290\)

\section*{SOUND TAKE OFF 4.5 MC. TRAP ALIENMIMT}
1. Connect a 4.5 Mc . Signal Generator through .005 Mfd . to pin. 1 of Video Amplifier Tube - 6BF5. Loosely couple signal generator for use as markers.
2. Connect probe of High Frequency Vacuum Tube Voltmeter at the junction of peaking coil L59 and R148-39,000 ohms.
3. With enough output from signal source to give a readable indication on the VTVM, adjust the core on Sound Take-Off Trap L56 - For a sharp dip.

\section*{MTERETABE TRAMSFORMER}

\section*{ALISNMEMT}
1. Disconnect the 4.5 Mc . signal from the Video Amplifier. Connect a 4.5 Mc . sweep oscillator having a 250 Kc . deviation through a .005 Mfd. capacitor to pin 1 of Video Amplifier - 6BF5. Connect oscilloscope input across the limiter grid resistor R102 4,000 Ohms - using a 10,000 ohm carceiver chassis.
2. Adjust the primary and secondary of the Interstage Transformer T51 so that the 4.5 Mc. marker appears in the exact center of the response curve and so the curve has the greatest attainable amppear as shown in Figure 10

FIGURE 10 - SOUND IF RESPONSE
1. With the 4.5 Mc . Sweep Oscillator con nected as described in step 1 of "Inter stage Transformer Alignment, " disconnec sistor and connect the oscilloscope acros the volume control.
2. Adjust cores of the Discriminator Trans formers T52 and T53 until the discriminator curve corresponds to that in Figure
11. Note especially that: 11. Note especially that:
(a) 4.5 Mc . marker is exactly in the center of the curve.
b) The curve is linear between the two adjacent markers.
c) The amplitude is the greatest obtainable.

\section*{RF TMNER ALIEMMAMT}

NOTES ON TUNER ALIGNMENT SETUP
In reference to Figure 12, the following precautions should be taken in making the equipment setup.
1. The detector circuit should be so con structed as to maintain leads as short as possible. Connection of the detector cir12 for location) should also be (see Fig, short leads.
2. Shielded leads should be used in making the following connections to reduce hum and synchronous voltage pick-up.
(a) The lead for observation of the RF

FIGURE 11 -SOUND DISCRIMINATOR RESPONSE
response from the scope isolatin resistor (10 K ohms located at the tuner "looker point") to the RF out-
(b) The connection from the IF detecto circuit output to the IF switch position the scope switch
of the scope switch
c) The connection from the sweep genrator to the horizontal input of the scope. (Use externally generated sweep instead of internal oscilloscope sweep in order to obtain synchronization).
3. The single pole double throw'Scope Switch' should be located at the vertical input ter minals of the scope. This switching ar angement will permit observation of either he IF response or the overall RF response. The aforementioned positions will be re erred to in subsequent text as the "IF" and "RF" positions respectively.
4. The marker generator coupling condenser should be as small a value as possible prevent any effect on tuner response, observation of markers on either the IF response or overall RF response. (Approximately 2 or 3 MMF should be satis factory in most cases).
5. For all tuner alignment tests which are outlined in this text, remove the second IF amplifier tube or bypass its plate circuit with approximately 1000 MMF to prevent coupling back from the receiver IF system.
6. In all of the following tests the oscilloscope ertical gain should be as close to maximum gain as possible, consistent with hum and synchronous voltage interference imitations. This precaution will allow the use of low levels from RF sweep Generator and increase the visibility of IF and RF markers.

High Band Oscillator Alignment
1. Remove the bottom cover and rotate the band switch to the high band position
2. Rotate variable condenser io maximum capacity position (fully counterclockwise position of tuning control knob).
3. Tune sweep generator to channel 7 and set scope switch to IF output position.
4. Inject 175.25 Mc . and 21.9 Mc . markers.
5. With a non-metallic pick vary the turns spacing on the high band oscillator coil coil lowers the coscillator (squeezing the concing the turns farther requency and scillator frequency. oscillator frequency.
In making adjustments of the oscillator alignment it should be noted that any change in the setting of the high band oscillator trimmer will ever because of baitching the adjustment of the low band oscillator trimmer all not affect high band oscillator tuning Also, there is a slight shift of oscillator frequency in the high band shirt of oscillator frequency in the high band position only when the bottom cover is removed.

MODELS \(5130 \mathrm{~B}, 5130 \mathrm{M}, 5130 \mathrm{~W}\),
\(5140 \mathrm{~B}, 5140 \mathrm{M}, 6140 \mathrm{M}, 6140 \mathrm{~W}\), Ch. l-271, I-290

\section*{OSCILLATOR ALIGNMENT} rillator fre

6．Replace bottom cover and check for shift of markers．If there is a shift remove he bottom cover and compensate by re－ adjusting L9 as necessary．Repeat until markers coincide with bottom cover in place
7．Rotate variable condenser to minimum capacity（fully clockwise position of tuning control knob）．
8．Tune sweep generator to channel 13
9．Inject 215.75 Mc ．and 26.4 Mc ．markers． 0．With bottom cover in place，adjust oscillator grid trimmer C23 to make markers coin－ cide．

11．Repeat steps one through ten until proper end frequencies are reached at maximum and minimum capacity settings．

\section*{Low Band Oscillator Alignment}

12．Remove bottom cover，turn band switch to low band position and rotate variable ondenser to maximum capacity（tuning control knob fully counterclockwise）．
13．Tune sweep generator to channel 2.
14．Inject 56.75 Mc ．and 21.9 Mc ．markers．
15．Using a non－metallic pick adjust the spacing between turns on the low band oscillator coil L9 until the markers coincide．

16．Rotate the variable condenser to minimum capacity（tuning control knob fully clock wise）．
17．Tune sweep generator to channel 6
18．Inject 84.35 Mc ．and 26.4 Mc ．markers．
19．Adjust oscillator plate trimmer C26 to make markers coincide．

20．Replace bottom cover and recheck in steps 12－19．
21．Recheck all four oscillator frequencies as in－ steps 1－19．

\section*{R．F．PASSBAND ALIGNMENT}

1．If only the RF Passband is being aligned it is advisable to check oscillator cover－ age as noted under Oscillator Alignmen step 21 above．
2．Remove bottom cover and turn band switch to high band position．
3．Rotate tuning control so that pointer is a channel 7 on the dial calibration．
4．Tune sweep generator to channel 7．Se scope switch to the IF output．
5．Inject 175.25 Mc ．and 26．4 Mc．marker and adjust tuning control so the marker coincide．Leave tuning control at this setting for the remainder of channel 7 ad－ justment．
6．Change scope switch to the RF output
Check that the RF response curve is similar to those shown in Figure 14.
8．If the response curve differs much from those shown in Figure 14，the inductance and coupling of the high band RF plate coil the the high band mixer grid coil L4 and he high band antenna coil L 1 lor proper band widh and symmetry．in determining switch the marker generator alternately be twien chan 7 picturecarrier（ 175.25 Mc ） and sound carrier（179，75）

9．The high band RF plate
high band mixer grid coil L4 are and the adjusted when a slight variation in the in－ ductance of either coil will result in

Note：This RF tuner has been thoroughly tested at the factory and should provide trouble－free reception thrgughout the life of the chassis．However，if service other than alignment is re－ quired，return the complete tuner to the factory for replacement．

FIGURE 13 －TUNER LAYOUT
MODELS 5130B，5130M，5130W，
\(5140 \mathrm{~B}, 5140 \mathrm{M}, 6140 \mathrm{M}, 6140 \mathrm{~W}\)
Ch．1－271 1－200
frequency shift of the entire response with frequency shift of the entire response with
no noticeable narrowing of the band width.
10. The high band antenna coil L1 is properly adjusted when a slight variation of its inductance will cause both peaks to rock slightly. If only one peak moves, the high band antenna coil L1 is staggered away from the center of the passband.
11. The inductance of these coils (\(\mathrm{L} 1, \mathrm{~L} 3, \mathrm{~L} 4\)) is varied by pushing the coil on or off the brass stud. Pushing the coil on the stud will raise the frequency and pushing the coil off the stud will lower the frequency.
12. The band width of channel 7 interstage transformer (L3, L4) is controlled by dressing the ground leads of these coils past the cut out in the RF shield plate (see Fig. 13). When both leads cross the cutout the greater separation of peak occurs. For maximum gain the band width should be adjusted so that the response is no greater than that required to keep the sound and picture carrier frequency markers on the peaks of the overall RF curves.
3. Replace tuner bottom cover and check RF passband response.
4. If necessary, remove bottom cover and make slight compensating adjustments.
Replace bottom cover and recheck.
Wuning control knob so in place, rotate the tuning control knob so that the pointer in-
6. Tune sweep generator to channel 13 and 6. Tune sweep generator to chann
change scope switch to IF output.
17. Inject 215.75 Mc . and 21.9 Mc . markers and adjust tuning control so markers coincide. Leave tuning control as set for remainder of channel 13 adjustments.
18. Change scope switch to RF output position. If RF response differs noticeably from the curves in Figure 14, the antenna trimmer (C5), the RF plate trimmer (C10) and mixer grid trimmer (C15) must be adjusted for proper passband and maximum amplitude of response.
19. Return tuner and sweep generator to channel 7 and check response as in part 13 above. A slight compensation of coils Recheck passband on both
20. Recheck passband on both channel 7 and channel 13, compromising adjustments for Band RF passband responses are obtained.

\section*{Low Band RF Alignment}
21. Rotate band switch to Low Band position. 22. Turn the tuning control knob so that the pointer indicates channel 2 on the dial.
23. Set the scope switch to the IF output position and inject 59.75 Mc . and 21.9 Mc .
markers. Adjust the tuning control so the markers coincide. Leave the tuning con-
trol as set for the remainder of the channel 2 adjustments.
24. Change the scope switch to the RF output position.
25. If the desired passband response is not obtained (as shown in Fig. 14) the Low Band RF coil L5, the low band mixer coil (L6), and the low band antenna transformer (T1) secondary must be adjusted until the desired passband is obtained.
26. When the low band RF coil (L5) and the low band mixer coil are aligned slight variation in the inductance of either should cause no noticeable narrowing of the passband.
27. When the secondary of the low band antenna transformer is properly adjusted, a sligh yariation in its inductance should cause both peaks to rock slightly. If only one peak moves, the T1 secondary is staggered away from the center of the double tuned circuit response.
28. The low band mutual coil (L7) varies the band width of the interstage coupling circuit. Squeezing the turns together broaturns narrows the band width. The band width should be adjusted so that it is not greater than that required to keep both the picture carrier and sound carrier markers at the peaks of the response curve.
29. Replace the tuner bottom cover and check passband response.
30. Remove bottom cover and make any compensating adjustments as needed.
31. With the bottom cover in place, rotate the tuning control knob to align the pointer with channel 6 on the dial.
32. Tune the sweep generator to channel 6 and change the scope output switch to the IF output position.
33. Inject 83.25 Mc . and 26.4 Mc . markers and adjusting tuning control to make the markers coincide. Leave the tuning control at this setting for the remainder of the channel 6 adjustments.
34. Change the scope switch to the RF output position.
35. Check the response curve. If not as desired, remove the bottom cover and slightly coil L5, the low band mixer coil (L6), the low band mutual coil (L7) and the secondary of the low band antenna transformer (T1) of the low band antenna transformer (T1) as necessary, keeping in mind that these those made for channel 2 in steps 21-30 above.
36. Recheck passband on channel 2 and channel 6 and re-adjust as necessary to obtain acceptable passband on both channel 2 and 6.

FIGURE 14 - ACCEPTABLE RF RESPONSE CURVES FOR TUNER
waveporms
Note 1: The terms "Horizontal," "Vertical" or "60 cps sine wave" refer to the oscilloscope sweep employed.
Note 2: All waveforms are aken with the oscilloscope horizontal sweep direction from left to right and with upward deflection correspondin o positive polarity.
waveforms obtained will nes the identical with those whown be to the electrical characteristics of the oscilloscope used. of the oscilloscope used.
Note 4: All waveforms measured with respect to chas sis unless otherwise indicated. Note 5: Contrast maximum unless otherwise indicated.
*The peak to peak (\(\mathrm{P} / \mathrm{P}\)) volages of these waveforms ar depend the transmitted signal. voltages shown are obained when modulation is ap proximately 90 percent.

6BL7GT (V15) Vertical Oscil lator Control Grid (Pin 1) 600 Volts P/P Vertical

12AX7 (V14) Hor. Sync. Sep and AGC Rectifier Cathode
(Pin 8) 2.6 Volts P/P Vertical

*6BF5 (V8) Video Amplifier Control Grid (Pins 1 and 7) 3. 5 Volts \(P / P\) Vertical

6BF5 (V8) Video Amplifier Vertical

6BL7GT (V15) Vertical Oscillator Plate (Pin 2) 235 Volts
\(\mathbf{p} / \mathbf{P}\) Vertical P/P Vertical

12AX7 (V14) Hor. Sync. Sep. Horizontal

*6BF5 (V8) Video Amplifier Control Grid (Pins 1 and 7) 3. 5 Volts \(\mathrm{P} / \mathrm{P}\) Horizontal

*6BF5 (V8) Video Amplifier Plate (Pin 5) 55 Volts P/P Horizontal

12AX7 (V14) Hor. Sync. Sep. and 1 C 6 Volt P/P (Pin 8) 2. 6 Volts P/P Horizontal

12AX7 (V14) Hor. Sync. Sep. Vertical

12AX7 (V14) Sync Separator
Plate (Pin 1) 25 Volts \({ }^{\prime} P / P\) Vertical

12AX7 (V14) Sync Separator 60 cps sine wave

12AU7 (V13) Sync Amp. and Clipper Plate (Pin 1) 100 Volts \(\mathbf{P} / \mathbf{P}\) Horizontal 12AU7 (V13) Sync Amp. and Clipper Plate (Pin 1) 110 Volts P/P 60 cps sine wave

6BL7GT (V15) Vertical Output Plate (Pin 5) 830 Volts \(\mathbf{P} / \mathbf{P}\)

6al5 (V16) Hor. Discriminator Plate (Pin 7) 70 Volts P/P
Horizontal Vertical Horizontal

6AU6 (V17) Hor. Control Plate
12AU7 (V18) Hor. Oscillator Plate (Pin
Horizontal

6BL7GT (V15) Vertical Output
 6AL5.(V16) Hor. Discriminator

12AU7 (V18) Hor. Discharge Horizontal

12AU7 (V13) Sync. Amp. and Clipper Plate (Pin 1) 110 Volts \(P / P\) Vertical
 Control Grid (Pin 4) 95 Volts Scope ground to pin 7-23 Volts P/P Horizontal
 105 Volts P/

SCHEMATIC LOCATION

\section*{REPAIR PARTS LIST}

SERVICE PART NUMBER

\section*{DESCRIPTION}

168-0003D
166-1000P 166-1000D
166-0250p \(166-0050 \mathrm{~N}\) 168-0009N \(166-0010 \mathrm{P}\) \(168-0008 \mathrm{~N}\)
168-0004P 163-0750 163-0680 163-0100 \(160-14350\)
\(160-14350\)

174-1200 174-1200 160-02147 169-02010 199-0006

196-0003 196-0013 415-0007 582-0005 714-0001 411-0013 416-0008 \(417-0005\)
\(417-0008\) 417-0008 162-0201 162-0202 62-0402 162-0602 \(162-0401\)
\(162-0601\) \(162-0601\)
\(162-0615\) 162-0615 \(162-0613\)
\(162-0611\) 162-0625

162-0623 \(162-0623\) S \(168-0002 \mathrm{~N}\)

166-5000D

Capacitor - Ceramic
004 - Dual - 450 V .
Capacitor - Ceramic
001 Mfd . -500 V Capacitor - Ceramic

001 Mfd. -600 V .
. 00025 Mfd. -500 V Capacitor - Ceramic - \(.00005 \mathrm{Mfd} .-500 \mathrm{~V}\). Capacitor - Ceramic - .00005 Mfd - 500 V Capacitor - Ceramic - . 00001 Mfd. - 500 V

Capacitor - Ceramic - . 00000068 Mfd. - 500 V Capacitor - Mica - \(\quad .00075 \mathrm{Mfd}\) - 500 V . Capacitor - Mica - \(\quad .00068\) Mfd. - 500 V Capacitor - Molded Paper - . 0005 Mid - \(10,000 \mathrm{~V}\) Capacitor - Molded Paper - . 0005 Mfd. - 10, 000 V .

Capacitor - Molded Paper - \(0012 \mathrm{Mfd}-1,000 \mathrm{~V}\)
Capacitor Molded Paper 047 Mfd -200 V
Capacitor - Molded Paper . 047 Mrd - 200 V
Capacitor - Molded Polystyrene - 015 Mfd. - 400 V
Capacitor - Resistor Combination MODELS 5130B, 5130 M \(4,700 \mathrm{Ohms}-1 / 2 \mathrm{~W} .5130 \mathrm{~W}, 5140 \mathrm{~B}, 5140 \mathrm{M}\) 6140M, 6140W,

Anode Connector and Lead Assembly (1-271) Anode Connector and Lead Assembly (1-290) Anode Connector Assembly (1-290) Antenna Assembly - Built-in Bezel - 16 Rectangular (6140M, 6140W) Board - Pilot Light Mounting Assembly Board - Antern Terminal
Cable and Socket Assembly (1-290)
Capacitor - Paper - \(\quad .1 \mathrm{Mfd} .-200 \mathrm{~V}\).
Capacitor - Paper - \(\quad 1\) Mfd. - 200 V . \(\begin{array}{ll}\text { Capacitor - Paper - } & .2 \text { Mfd. - } 200 \mathrm{~V} . \\ \text { Capacitor - Paper - } & 2 \mathrm{Mfd}-400 \mathrm{~V} .\end{array}\) \(\begin{array}{ll}\text { Capacitor - Paper - } & .2 \text { Md. - } 400 \mathrm{~V} .\end{array}\) \(\begin{array}{ll}\text { Capacitor - Paper - } & .2 \text { Mfd. - } 600 \mathrm{~V} . \\ \text { Capacitor - Paper - } & 1 \text { Mfd. - } 400 \mathrm{~V} .\end{array}\) 1 Mid. - 600 V . Capacitor - Paper Capacitor - Paper - 03 Mfd . -600 V . Capacitor - Paper - .01 Mfd . -600 V . Capacitor - Paper - . 005 Mfd. - 600 V . Capacitor - Paper Capacitor - Ceramic -

003 Mfd. -600 V .01 Mfd . 500 V .

005 Mfd. - 450 V .

© John F. Rider

\footnotetext{
© John F. Rider
}

\footnotetext{
©John F. Rider
}

© John F. Rider

\section*{FIGURE 1 - BLOCK DIAGRAM}
justed, are located at the rear of the chassis. Special features of this receiver are as follows:

Rotary Channel Selector
A compact, low drift, 12 channel rotary tuner is provided in these chassis for simplicity of operation. Continuous tuning eliminates the need of a fine tuning control.

\section*{Built-In Antenna}

Eliminating the cost and inconvenience of an external antenna a Sylvania tuned dipole type antenna is built-in to provide satisfactory reception in most locations. The antenna is peaked for resonance to the individual channel by rotating the trimmer knob on the top of the receiver.

\section*{Automatic Gain Control}

Simplified customer operation is provided by a very flat AGC system which has a high deree of noise immunity. Very little, if any readjustment of controls is required in going from one station to another.

Direct-Coupled Video System
A direct coupled video system eliminates al ideo coupling capacitors and D.C. Restorer This reduces the visible effects of noise.

Horizontal Automatic Frequency Control
A sine wave Horizontal AFC is employed, providing excellent picture stability, even in he presence of noise and weak signals.
For convenience in tracing circuits a block diagram is shown in Figure 1. The antenna is connected to the input of the RF tuner. This
tuner functions to select the desired television channel by continuous tuning. The output of the tuner is at intermediate frequency and of sufficient band width to pass both picture and sound carriers of the desired signal.

The output of the tuner is then applied to the video IF Amplifier consisting of 3 stagger tuned stages and one bandpass stage. The adjacent channel carriers and co-sound carrier are attenuated by this IF Amplifier

The video signal out of the video detector is amplified by a single stage and impressed on the picture tube.

Automatic gain control is obtained from the AGC Rectifier, amplified by the AGC Amplifier and applied to the RF and IF Amplifiers The AGC Line Clamper prevents the Tuner AGC Line from going positive under weak sig nal conditions.

The sync pulses are separated from the video signal, amplified, and clipped and then fed to the Horizontal Discriminator and Vertical Integrator plate. The Vertical Sync information from the vertical integrator plate is applied to Vertical Oscillator to keep this oscillator in step with the vertical sync pulses from the station. The Vertical Oscillator produces a peaked saw-tooth wave which is applied to the Vertical Output stage energizing the Vertical Deflection coils.

Horizontal Sync information from the Sync clipper is supplied to the Horizontal Discriminator. A voltage from the Horizontal Oscilcriminator The supplied to the Horizontal Dis criminator is then applied to the Horizontal Control tube which functions to hold the Hori contal Oscillator in synchronism with the in coming horizontal sync pulses.

The Horizontal Oscillator actuates the Horizontal Discharge tube through the Horizontal Ringing Coil producing a peaked saw-tooth

TELEVISION CHANNELS \& FREQUENCIES
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { CHANNEL } \\
& \text { NO. } \\
& \hline
\end{aligned}
\] & FREQ. MC. & PICTURE CARRIER MC. & SOUND CARRIER MC. & HETERODYNE OSC. FREQ. MC. \\
\hline 2 & 54-60 & 55.25 & 59.75 & 81.65 \\
\hline 3 & 60-66 & 61.25 & 65.75 & 87.65 \\
\hline 4 & 66-72 & 67.25 & 71.75 & 93.65 \\
\hline 5 & 76-82 & 77.25 & 81.75 & 103.65 \\
\hline 6 & 82-88 & 83.25 & 87.75 & 109.65 \\
\hline 7 & 174-180 & 175.25 & 179.75 & 201.65 \\
\hline 8 & 180-186 & 181.25 & 185.75 & 207.65 \\
\hline 9 & 186-192 & 187.25 & 191.75 & 213.65 \\
\hline 10 & 192-198 & 193.25 & 197.75 & 219.65 \\
\hline 11 & 198-204 & 199.25 & 203.75 & 225.65 \\
\hline 12 & 204-210 & 205. 25 & 209.75 & 231.65 \\
\hline \multirow[t]{2}{*}{13} & 210-216 & 211.25 & 215.75 & 237.65 \\
\hline & & & & TODELS 7150M, lóob, Ch. 1- \\
\hline
\end{tabular}
wave. Approximately one-half of the saw-tooth component of this wave causes current to flow in the plate circuit of the Horizontal Output tube. This current energizes the Horizontal Deflection Coils through the Horizontal Scanning Transformer to provide the right half of the horizontal scan. During the right half of the scan, a small amount of current is alsa flowing through the Damper tube. At the end of the saw-tooth, the inverse pulse component acts on the grid of the Horizontal Output Tube to cut off plate current flow. When this occurs, the energy in the Horizontal Deflection circuit transfers rapidly from the inductive branch of in a voltage peak across the Horizontal Deflection Coils. This across the Horizontal Deflection Coils. 6750 Volts by the turns ratio of the Horizontal Scanning Transformer and fed to the voltage doubling rectifier circuit to provide approximately 13,500 Volts for the picture tube H.V. anode.

The damper tube does not conduct during the high voltage pulse period because of the pol arity of the pulse. During this pulse period when the energy transfers from the inductive branch of the horizontal deflection circuit to the capacitive branch and back again to the inductive branch, the electron beam in the picture tube is moved rapidly from the right to the left edge of the raster to accomplish retrace.

At the completion of retrace, energy again flows out of the inductive branch of the circuit. The horizontal output tube is still cut off during this time and a strong current flows through the damper tube. This current decreases to zero linearly to provide the lef zero, the horizontal output tube again begins to conduct and the entire cycle is repeated.

\section*{ANTENNA INSTALLATION}

\section*{Television}

The 1-357 chassis model is shipped with a builtin antenna connected to the antenna board. For mast installations the built-in antenna will provide satisfactory reception.

A variable capacitor controlled from the top of A variable capaiver adjusts the antenna circuit to res onance. At each individual channel the capacitor should be adjusted for best picture quality.

If an external antenna is desirable, the Sylvania Hideaway Antenna, Part 580-0005, gives optimum performance where an indoor installation is indicated, and the Sylvania Conical Fan Television Antenna, Part 580-0001, is available in ne, two and four bay arrays, providing superior

\section*{AM-FM Radio}

AM RECEPTION - Excellent local reception may be obtained by the use of only the built 'in oop which is installed on all \(1-357\) chassis is desirable, connect the antenna lead-in to is desirable, connect the antenna
the terminal provided at back of loop.

FM RECEPTION - Provisions are also made on this chassis for FM reception without the on this chassis for FM reception without the use of an external antenna. For this circuit operation, connect the metal jumper 2 and 3 as shown in Figure 2. In this manner, one side of the AC power line is used as an FM antenna. If reception is not satisfactory and an external installation is desirable, remove the jumper from terminals 2 and 3 and connect antenna lead-in to terminals 1 and 2.
performance in an outside installation. When using the Sylvania Hideaway Antenna or the Sylvania Conical Fan Antenna, remove the leads to the built-in antenna from the antenna terminal and then connect matching 300 Ohm twin lead from the antenna installation in its place. A 300 Ohm lead is especially recommended where the lead-in is in excess of 100 feet.

A 75 Ohm shielded coaxial input may be used with the chassis if impedance matching coils, Sylvania Part No. 111-0007, are wired between the lead-in and the antenna terminals. A coaxial lead-in may be necessary in those areas where high noise signals prevail.

\section*{- SESO}

USING LINE CORD ANTENNA
FIGURE 2 - ANTENNA HOOKUP
The FM antenna terminal board, shown in Figure 2 is located at the right on the rear of the television chassis.

\section*{TELEVISION RECEPTION}
A. To adjust and tune this receiver for television reception, proceed as follows:
1. Turn On-Off, Tone Control (18) to On.
2. Turn the Function switch (19) to TV.
3. Allow several minutes warm-up period.
4. Turn band switch (5) either way to the appropriate band (i.e. channels 2-6 or channels 7-13).
5. Rotate the Channel Selector (4) so that the desired channel number is seen in the window and until you can see the picture.
6. Turn the Brightness control (2) fully counterclockwise, and then slowly clockwise until activity is clearly visble on the screen.
7. Adjust the Channel Selector (4) and Antenna Trimmer (1) for best picture quality.
Note: Adjustment of the Antenna Trimmer is not necessary if an external antenna is used.
8. Adjust the Volume control (3) for desired volume and Tone control (18) for desired tone.
9. Slight adjustment of the Brightness control (2) may be necessary to obtain the best possible picture.
B. To change from one television station to another:
1. Turn the Band switch (5) fully clockwise to tune any channel from 2 through 6 or fully counterclockwise to tune any channel from 7 through 13.
2. Rotate the Channel Selector (4) so that the desired channel number is seen in the window and adjust for best picture quality.
3. If necessary, adjust the Brightness control (2) for best picture. Only slight adjustment of this control should be necessary.
C. To turn on dial light, push dial light switch to left.

FIGURE 3 - FRONT OF CABINET CONTROLS

AM-FM A PHONO OPERATION

For AM, FM, or Phonograph operation, proceed as follows:
1. Turn On-Off, Tone Control (18) to On.
2. Turn Function Switch (19) to AM, FM, or Phono position. Starting at counterclockwise position, settings of this switch are FM, AM, Phono, TV.
3. Select desired AM or FM station by turn ing AM-FM Radio Station Selector (17) until the approximate frequency of the depointer Read bottom dial scale for AM top scale for FM band. Tune carefully for clearest reception.
4. If phonograph operation has been selected, follow the record changer operating instructions given on Page 2 of Bulletin 9-14
5. Radio or phonograph volume may be adjusted by turning the Volume Control (16) Tone may be changed to individual taste by turning the Tone Control (18).

\section*{INSTALLATION AND SERVICE INSTRUCTIONS}

\section*{Picture Tube Handling}

\section*{Preset Controls Adjustments}
ating chassis \(1-357\) aren receivers incorporpicture tube ins \(1-357\) are shipped complete with nected for installed on the chassis and connecessary to re-install However, if it becomes replacement or servicing picture tube due to cautions should be observed
. Do not open the picture tube carton until ready to install the picture tube.

Do not handle the picture tube unless pro tective goggles and gloves are worn. pro ple not so equipped with safety devices should be kept at a distance while the Keep the picture tube handled. as possible while handling.

\section*{Picfure Tube Replacement}

To remove the picture tube from the chassis, remove the picture tube socket, a node connecholddown strap by magnet. Remove the tube either side. When the rim the tho screws on is free of the strap, carefully pull the picture tube out through the focus magnet the picture tion coils.

To replace picture tube follow the above procedure in reverse order being careful not to
force the picture tube if neck binds. Be sur he tube is properly held by the lips of th holddown.straps before tightening the holddown

\section*{Chassis Removal}

To remove the chassis from the cabinet, pro ceed as follows:

Remove all panel control knobs from the front of cabinet
2. Remove the holddown screws from the underside of the chassis shelf. Access cabinet. screws is from the rear of the
3. Disconnect the built-in antenna, remove the interlock cover screws and remove interlock cover.
4. Remove plugs from the power, speaker, indicator light, and audio sockets on the TV chassis.
5. Slide the chassis all the way out the back of the cabinet.

To replace the chassis, reverse the above
procedure.

All preset controls are located at the rear of emovinger and are readily available withou removing the interlock cove

\section*{AGC - See AGC Control Adjustment}

Horizontal Hold - See "Adjustment of Horizontal AFC Operation".

Contrast - Adjust contrast control to obtain best contrast with a good picture or test pat-

Vertical Linearity and Height - Adjust the height control until the picture fills the screen vertically. Adjust the Vertical Linearity conto bottom. pattern is symmetrical from top require a Adjustment of either control will require a readjustment of the other.

Vertical Hold - Rotate the Vertical Hold control until the pattern is slowly moving downward. Back off on the control to a point just beyond where the vertical motion stops

Horizontal Drive - Turn the horizontal drive control clockrise as far as possible without crowding of center of the picture.

Horizontal Size - Adjust the horizontal size con rol until picture fills the mask horizontally.

Horizontal Linearity inearity control until the picture is symmetrica Idjustight. Re-check Horizontal Drive afte earity. Horizontal Size and Horizontal Lin-

FIGURE 4 - PICTURE TUBE INSTALLATION

FIGURE 6 - CHASSIS TOP LAYOUT

\section*{Adjustment of Ion Trap Magnet, Focus Magnet, and Centering Shutter}

These adjustments are interdependent and therefore, it is necessary to check all three at the same time.

Before making any adjustments, the function of each magnet should be noted.
The ion trap magnet is used to obtain maximum brilliance of the raster or picture and should be adjusted to obtain maximum bril liance as described below.

The focus magnet is used to obtain correct locus of the picture.

The centering shutter is an integral part of the focus magnet assembly. Its function is tc position the picture, both horizontally and vertically.

Before making any adjustments, check that the deflection yoke is positioned so that it is pressing against the flare of the picture tube To ensure this, loosen the thumb-screws lo cated at each side of the yoke and push the yoke as far forward as it will go. If the picture is not square with the screen mask, rotate the yoke.

Next, check that the focus magnet is held firmly by both brass screws against the yoke; there should not be any gap between the yok and the focus magnet.

When adjusting the focus of the receiver it is to be noted that optimum focus of the picture does not necessarily result when either the vertical or the horizontal is adjusted for maximum definition. Optimum focus is frequently a compromise between these two settings. It is highly desirable, therefore, that a transmitted picture, containing both vertical and horizontal lines, be available for correct focusing of the receiver.

Before proceeding with the adjustment of the focus of the receiver, first ensure that the ion trap magnet is correctly adjusted.

Set the contrast control at minimum and the brightness control at maximum. The ion trap magnet should first be positioned so that there is approximately one inch between the ion trap magnet and the focus magnet. There is no specific angle of rotation for the initial setting of the ion trap. The ion trap magnet should be slow receiver is not yet tuned to a
station) is visible on the screen. The brightness should now be reduced by means of the brightness control and the ion trap magnet carefully twisted and moved a small amount backwards and forwards on the neck of the tube to obtain maximum brightness.

Finally, adjust the brightness control to obtain maximum brightness on the screen and may carefully adjust the ion trap magnet. It still more by turning the contrast control towards maximum and again adjusting the ion trap magnet. The correct position of the ion trap magnet is that which ensures the greatest possible brightness of the raster or picture before it enlarges and "blooms" as the setting of the brightness control is increased Do not leave the brightness control in this position as the condition causes overload of the picture tube.

A preliminary adjustment of the screw on the locus magnet should now be made to obtain raster or picture which is focused - this pre liminary adjustment will not, of course, be necessary if the raster or picture is already in focus. (Note: Use a non-magnetic screw driver to adjust the focus screw.)
If the picture is not centered on the screen, either horizontally or vertically, properly po This contering adjustment will move the picture up, down left or right as required to center the picture. With the brightness control at a low level, check the horizontal size and height of the picture to insure that when the picture is properly positioned it just fills the mask with no corner cutting.

Carefully make final adjustments of the focus screw for optimum focus in both horizontal and vertical directions. Best focus of the pic ture does not necessarily result when either the vertical or horizontal focus is optimum and the final setting should, therefore, be a compromise between the two. A test pattern with both vertical and horizontal lines is, therefore, highly desirable when making focus adjust ment.
Finally, check that the adjustment of the ion trap magnet is such that the brightest possible picture is obtained, as previously mentioned.

Since all these adjustments are interdependent, recheck the adjustment of all three until the best possible picture is obtained.

\section*{ADJUSTMENT OF HORIZONTAL AFC CIRCUIT}

\section*{Check of Operation}

The operation of the AFC circuit should be checked as follows:
A. Tune the receiver to a channel on which no signal is received and return to the original channel. The picture should immediately fall into synchronization.
B. Switch off the power to the receiver for about five minutes and then switch back on. Picture should immediately fall into sync.
C. Check for correct phasing of Horizontal AFC circuit by noting that there is apthe right hand edge of the picture. It will

\section*{Horizontal Hold Adjustment}
A. Tune in a station and adjust the tuning control for best picture quality. Adjust the contrast and brightness controls for normal picture.
B. Remove V16 - 6AL5 - Horizontal Dis cr:minator tube
C. Turn the Horizontal Hold Control unti the picture moves
be necessary to turn the contrast control to minimum and readjust the brightness control and reduce picture size to see the blanking.

NOTE: Before making check C above, be sure the horizontal drive control is correctly adjusted. Refer to "Preset Controls Adjustment," page 8. If the receiver passes the above checks, no adjustments to the horizontal AFC circuits need be made.

If the receiver cannot pass checks " \(A\)," "B," or "C" the adjustment of the Horizontal Hold Control as noted under "Horizontal Hold Adjustment" should be made
essary, readjust the frequency adjustmen screw on top of horizontal discriminator transformer.
G. Make a final check of the phasing as de scribed in paragraph "E" above. It is important that both the "free-running" and the phasing are correct
H. Remove the short from across the 4700 ohm resistor R226 and readjust the hori zontal drive control as described in (A). Turn the core in the horizontal "ringing" co "blanking" is a hand edge of the picture.
I. Before the horizontal synchronization circuit is adjusted to the final position, it will be necessary to check the operation as follows:

Slowly turn the oscillator frequency adjustment screw (top of transformer T62) in either direction until the picture suddenly falls out of synchronization as indicated by the presence of a number of diagonal bars. The total number of bars visible must not be less than six. These bars may consist of either several full bars and two half bars for the total number or they may be all full bars for the same total number. Slowly turn the adjustment screw so as to decrease the number of bars and note the total number of bars
visible just before the picture again falls into synchronization The last number of bars visible must not be less than three, or more than four. The adjustment screw must be turned very slowly and carefully after the number of bars has been reduced to four or five in order to get an accurate indication of the minimum number of bars it is possible to obtain.

Turn the adjustment screw in the opposite direction until the picture suddeniy falls out of synchronization in the opposite direction and repeat the foregoing procedure. Again, the total number of bars visible when the picture falls out of synchronization must or mere than six and less than isible just before the picture falls into synchronization.
J. After checking the operation as in " \(I\)," it is necessary to repeat the procedure "described in paragraphs " \(B\)," "' \(C\)," and
K. Remove the signal by tuning to a "free" channel, then retuning to the original channel. The picture should immediately fall into synchronization.
L. Switch "off" the power to the receiver for about five minutes and then switch receiver "on" and check that the picture pulls into synchronization.

\section*{Phase Adjustment}
A. Turn the core in the horizontal "ringing" coil all the way out (counterclockwise) Short out the 4700 ohm horizontal charge circuit peaking resistor R226.

With the horizontal size coil set for approximately the correct picture width and with the horizontal linearity coi adjusted for best linearity, rotate the horizontal drive control fully counterlockwise. Slowly turn the drive contro center of the picture. Now carefully tur the control back (counterclockwise) only sufficient to remove the crowding in th picture or pattern. On some chassis, it may not be possible to obtain crowding of may not be possible to obtain crowding o he picture. In such cases the control sition.

NOTE: Do not operate the receiver with the horizontal drive control mis-adjusted
B. Remove the 6AL5 horizontal discriminator tube from its socket
C. Carefully turn the frequency adjustment screw (top of discriminator transformer T62) until the picture moves back and forth across the screen of the picture tube with the blanking bar vertical.
D. Insert the 6AL5 horizontal discriminator tube back into its socket
E. Adjust the phase adjustment screw (underside of discriminator transformer T62) until approximately \(1 / 8^{\prime \prime}\) of "blanking" picture. In order to it will be necessary see the blanking, control almost to minimum readjust the brightness control and reduce picture size.
F. Check the "free-running" of the horizontal oscillator as described under paragraphs "B," "C," and "D," and, if nec-

\section*{AGC CONTROL ADJUSTMENT}

This control has been correctly adjusted at the factory and should require no further adjust factory and should require no further adjust ment. If adjustment becomes necessary as poor video signal (poor contrast). Adjust as follows:
1. Connect a good antenna installation to the receiver.
2. Tune the receiver to a channel on which no picture is received
3. Set the contrast control to mid-position.
4. Turn the AGC control fully clockwise The AGC control is located on the rea panel of the chassis.
5. Connect a VTVM from the AGC Amplifier plate to ground (V13, 12AU7, pin 6) and plate to ground (V13, 12AU7, pin 6) and 0.1 volt reading.

Note: On some receivers the closest approach to this reading will be the fully clockwise position.
6. With the AGC Control set as above, turn the contrast control to almost maximum about \(7 / 8\)) and tune in the strongest station available in the area.
7. Again read the AGC Amplifier plate voltage; if reading is less than a negative 2.0 volts leave the control as set.
8. If the AGC Amplifier plate voltage is more than 2 volts negative, slowly turn the AGC control counterclockwise observing the picture.
9. The picture will get darker and then finally start to fall out of sync as evidenced by a uther she or jutering orthe picture in Do not turn beyond this point.

MODELS 7150M,
10. Back off (clockwise) slowly on the control until the picture holds in sync without flutter and turn slightly beyond. (Experienc will dictate how far beyond to turn).
11. Rock the tuning control slightly either side of the best tuning point to insure picture stays in sync; if not, turn slightly further clockwise and check again.
12. As a final check, turn the volume control up to normal level. Intercarrier buzz should be negligible.
13. Remove objectionable intercarrier buzz by turning the AGC control slightly further clockwise. (Note: The intercarrier
buzz is merely a reference for correct adjustment of the AGC control and only a slight touch-up should be necessary. If much adjustment is required to remove maladjusted and requires realisument).
14. Rock the tuning control slightly either side of the best tuning point and turn the AGC of the best tuning point and turn the AGC
control slightly more clockwise as neccontrol slightly more clockwise as neccarrier buzz.

The intent of the above AGC control adjustment is to provide a maximum of AGC action consistent with proper sync and minimum intercarrier buzz on strong signals.

\section*{TEST EQUIPMENT REQUIREMENTS}
1. RF sweep generator or generators with frequency range from \(4-220 \mathrm{Mc}\). having sweep width adjustable from 50 Kc . to 10 Mc . With an output of at least 0.1 volt, a marker system, either built-in or ex-
ternal type and flat within \(\pm 1 \mathrm{Db}\).
2. Signal generator or generators with a fre quency range from 4-222 Mc. and an adjustable output of at least 0.1 volt.
3. Sylvania cathode ray oscilloscope type 132 or equivalent capable of passing a 60 cycle square wave.
4. Sylvania Polymeter type 221 or equivalent
vacuum tube voltmeter
5. Sylvania High Voltage Probe Adapter type 225 or equivalent with \(0-30 \mathrm{KV}\) DC range (not shown)
6. Sylvania tube tester type 220 or equivalent capable of testing shorts with proper voltages and performance under dynamic conditions.
7. Jig Tube Shield - made by cutting off or insulating the tube shield used on the 656 converter tube on the tuner so that the shield does not ground when in place on the tube.

FIGURE 7 - CHASSIS BOTTOM LAYOUT

SYLVANIA OSCILLOSCOPE

TYPE 132

SYLVANIA
POLYMETER
TYPE 221

SYLVANIA UBE TESTER
TYPE 220

© John F. Rider

\section*{ALIGNMENT PROCEDURE}

Should any chassis under service require com plete realignment, the alignment procedure should be carried out in the following listed order.

PRE-ALIGNMENT INSTRUCTIONS - READ CAREFULLY BEFORE ATTEMPTING ALIGNMENT.

Lay chassis on left side for alignment. Ground all equipment to receiver chassis. Use special alignment tool Service Part No. 898-0003.

\section*{VIDEO IF Alocmment}
1. Connect signal generator to the jig shield on the 6J6 Oscillator-Mixer. Allow set to warm-up for 15 minutes.
2. Connect the negative lead of a 3 volt battery to the AGC Line, positive lead to ground.
3. Connect D. C. VTVM across the diode load resistor R145-3300 Ohm.
4. Adjust the cores of the IF traps in the following order. Keep Voltmeter reading between 1 and 2 volts by reducing Generator Output as required.

\section*{Set Signal}

Generator At: Adjust
21.9 Mc. Core on 4th IF Trap L68 for min-
27.9 Mc. Core on 3rd IF Trap L55 for min-
21.9 Mc. Come
21.9 Mc. Core on 1st IF Trap L54 for minimum output
5. Adjust the cores of the Video IF Trans formers in the following order. Reduce generator output to keep voltmeter reading between 1 and 2 volts.

\section*{set Signal}

Generator At:
Adjust:
26.0 Mc. Core on 3rd Video IF Transformer 2. \(7 \mathrm{Mc} \quad \mathrm{T} 57\) for maximum output
Mc. Core on 2nd Video IF Transformer 25.3 Mc. Core on 1 st Video IF Tr

T55 for maximum output ransformer
23.5 Mc . Core on Converter Coil L8 for maximum output

Repeat tuning of cores on Trap Coils as described in step 4 above.
6. Disconnect Signal Generator and VTVM
7. Connect sweep generator (frequency 24 Mc . sweeping 10 Mc .) using a . 005 Mfd . cap acitor to pin 1 of the 4th Video IF 6BC5.
8. Connect oscilloscope to junction of diode load R145-3300 Ohm - and coil L58.
9. Adjust primary (top core) and then secondary (lower core) of IF Bandpass T58 to obtain curve shown in Figure 8. (Both adjusted hex end of special alignment tool.)

FIGURE 8 - IF BANDPASS RESPONSE
10. Disconnect Sweep Generator from 4th IF Grid and connect it to the Jig Shield on Converter 6J6. Loosely couple signal generator at this point for markers.
11. Observe IF Response Curve and if necessary adjust IF Transformer Core slightly to obtain response curve shown in Figure 9. Keep oscilloscope gain high enough to prevent overload of the receiver which will distort the curve.

FIGURE 9 - OVERALL IF RESPONSE
1. Connect a 4.5 Mc . Signal Generator through .005 Mfd . to pin 1 of Video Amplifier Tube - 6BF5. Loosely couple signal generator for use as markers
2. Connect probe of High Frequency VTVM at junction of coil L59 and R148
3. With enough output from signal source to
give a readable indication on the VTVM adjust the core on Sound Take-Off Trap L56 - For a sharp dip. The dip should have an output 4 to 1 less than the output obtained when the signal source is tuned to 2 Mc . (Note: The above tests shall be made with the picture tube removed and a VTVM having an input capacity of \(5 \mathrm{Mmfd} .+2 \mathrm{Mmfd}\).

\section*{INTERSTAGE TRANSFORMER ALIGMMEMT}
1. Disconnect the 4.5 Mc . signal from the Video Amplifier. Connect a 4.5 Mc . sweep oscillator having a 250 Kc deviation. sweep a. 005 Mfd . capacitor to piation through Amplifier - 6BF5. Connect oscilloscope input across the limiter grid resistor R102 47,000 Ohms - using a \(10,000 \mathrm{Ohm}\) carbon resistor between scope lead and receiver chassis.
2. Adjust the primary and secondary of the Interstage Transformer \(T 51\) so that the 4.5 Mc. marker appears in the exact center of the response curve and so the curve has the greatest attainable ampitude. The response curve should appear as shown in Figure 10.

FIGURE 10 - SOUND IF RESPONSE

\section*{SOUND DISGRIMINATOR ALIGMMEMT}
1. With the 4.5 Mc . Sweep Oscillator connected as described in step 1 of "Inter stage Transformer Alignment," disconnect the oscilloscope from the limiter grid re sistor and connect the oscilloscope acros the volume control
2. Adjust cores of the Discriminator Transformers T52 and T53 until the discriminator curve corresponds to that in Figure 11. Note especially that:
(a) 4.5 Mc . marker is exactly in the center of the curve.
(b) The curve is linear between the two adjacent markers.
(c) The amplitude is the greatest obtainable.

FIGURE 11 - SOUND DISCRIMINATOR RESPONSE

\section*{) John F. Ridar}

\section*{F tuner aligmment}

FIGURE 12 －TUNER ALIGNMENT SETUP

NOTES ON TUNER ALIGNMENT SETUP
In reference to Figure 12，the following pre－ cautions should be taken in making the equip－ ment setup．

1．The detector circuit should be so con－ structed as to maintain leads as short as possible．Connection of the detector cir－ cuit to the 1st IF grid terminal（see Fig． 12 for location）should also be made with short leads．

2．Shielded leads should be used in making the following connections to reduce hum and synchronous voltage pick－up．
（a）The lead for observation of the RF response from the scope isolating resistor（ 10 K ohms located at the tuner＂looker point＂）to the RF out－ （b）The connection from the IF detector circuit output to the IF switch position of the scope switch．
（c）The connection from the sweep gen－ erator to the horizontal input of the erator（Use externally penerated sweep instead of internal oscilloscope sweep in order to obtain synchroni－ zation）．

3．The single pole double throw＇Scope Switch＇ should be located at the vertical input ter－ minals of the scope．This switching ar－ rangment will permit observation of either the IF response or the overall RF response． The aforementioned positions will be re－ ferred to in subsequent text as the＂IF＂ and＇RF＂positions respectively．
4．The marker generator coupling condenser
should be as small a value as possible o prevent any effect on tuner response but must be large enough to permit easy response or overall RF response（Ap－ proximately 2 or 3 MMF should be satis factory in most cases）．

5．For all tuner alignment tests which ar outlined in this text，remove the second IF amplifier tube or bypass its plate circuit coupling back from the receiver IF system．

6．In all of the following tests the oscilloscope vertical gain should be as close to maxi－ mum gain as possible，consistent with hum and synchronous voltage interference limitations．This precaution will allow the use of low levels from RF sweep Gen－ erator and increase the visibility of IF and RF markers．

\section*{OSCILLATOR ALIGNMENT}

In making adjustments of the oscillator align－ ment it should be noted that any change in the setting of the high band oscillator trimmer will also effect the low band oscillator tuning，how－ ever，because of switching the adjustment of the low band oscillator trimmer will not affect high shift of oscillator frequency in the high band position only when the bottom coveris removed．

High Band Oscillator Alignment
1．Remove the bottom cover and rotate the band switch to the high band position．
2．Rotate variable condenser to maximum capacity position（fully counterclockwise position of tuning control knob）．

3．Tune sweep generator to channel 7 and set scope switch to IF output position．
4．Inject 175.25 Mc ．and 21.9 Mc ．markers． With a non－metallic pick vary the turns spacing on the high band oscillator coil L9 until markers coincide（squeezing the coil lowers the oscillator frequency and spacing the turns farther apart raises oscillator frequency．

6．Replace bottom cover and check for shift of markers．If there is a shift remove the bottom cover and compensate by re－ markers coincide with bottom cover in place．
7．Rotate variable capacitor to minimum capacity（fully clockwise position of tuning control knob）
8．Tune sweep generator to channel 13.
9 ．Inject 215.75 Mc ．and 26.4 Mc ．markers．
10．With bottom cover in place，adjust oscillator grid trimmer C23 to make markers coin－ cide．

11．Repeat steps one through ten until proper end frequencies are reached at maximum and minimum capacity settings．

16．Rotate the variable capacitor to minimum capacity（tuning control knob fully clock－ wise）．
17．Tune sweep generator to channel 6
18．Inject 84.35 Mc ．and 26.4 Mc ．markers．
9．Adjust oscillator plate trimmer C26 to make markers coincide．

20．Replace bottom cover and recheck in steps 12－19．
21．Recheckall four oscillator frequencies as in steps 1－19．

\section*{Low Band Oscillator Alignment \(\begin{gathered}\cdot 7150 \mathrm{~B}, \mathrm{Ch} \\ 1-357\end{gathered}\)}

12．Remove bottom cover，turn band switch to low band position and rotate variable capacitor to maximum capacity（tuning control knob fully counterclockwise）．
13．Tune sweep generator to channel 2.
14．Inject 56.75 Mc ．and 21.9 Mc ．markers．
5．Using a non－metalic pick adjust the spacing betreen turns on the low band oscillator coil L9 until the markers coincide．

（）John F．Rider

Note: This RF tuner has been thoroughly tested at the factory and should provide trouble-free reception throughout the life of the chassis. However, if service other than alignment is required, return the complete tuner to the factory for replacement.

\section*{R. F. PASSBAND ALIGNMENT}
1. If only the RF Passband is being aligned it is advisable to check oscillator coverage as noted under Oscillator Alignment step 21 above.
2. Remove bottom cover and turn band switch to high band position.
3. Rotate tuning control so that pointer is at
channel 7 on the dial calibration.
4. Tune sweep generator to channel 7. Set
5. Scope switch to the IF output.
5. Inject 175.25 Mc . and 26.4 Mc . markers and adjust tuning control so the markers coincide. Leave tuning control at this setting for the remainder of channel 7 adjustment.
6. Change scope switch to the RF output.
7. Check that the RF response curve is similar to those shown in Figure 14.
8. If the response curve differs much from

\section*{FIGURE 13 - TUNER LA YOUT}
those shown in Figure 14, the inductance and coupling of the high band RF plate coil L3, the high band mixer grid coil L4 and the high band antenna coil L 1 for proper band width and symmetry. In determining the band width, it will be necessary to switch the marker generator alternately between channel 7 picture carrier (175.25 Mc .) and sound carrier (179.75 Mc .).
9. The high band RF plate coil L3 and the high band mixer grid coil L4 are properly adjusted when a slight variation in the inductance of either coil will result in a frequency shift of the entire response with no noticeable narrowing of the band width.
10. The high band antenna coil L 1 is properly adjusted when a slight variation of its inductance will cause both peaks to rock slightly. If only one peak moves, the high band antenna coil L 1 is staggered a way from the center of the passband.
11. The inductance of these coils (L1, L3, L4) is varied by pushing the coil on or off the brass stud. Pushing the coil on the stud will raise the frequency and pushing the coil off the stud will lower the frequency.
12. The band width of channel 7 interstage transformer (\(\mathrm{L} 3, \mathrm{~L} 4\)) is controlled by dressing the ground leads of these coils past the cut out in the RF shield plate (see Fig. 13). When both leads cross the cutout the greater separation of peak occurs. For maximum gain the band width should be adjusted so that the response is no greater than that
required to keep the sound and picture carrier frequency markers on the peaks of the overall RF curves.
13. Replace tuner bottom cover and check RF passband response.
14. If necessary, remove bottom cover and make slight compensating adjustments.
Replace bottom cover and recheck.
15. With the bottom cover in place, rotate the tuning control knob so that the pointer indicates channel 13.
16. Tune sweep generator to channel 13 and change scope switch to IF output.
17. Inject 215.75 Mc . and 21.9 Mc . markers and adjust tuning control so markers coincide. Leave tuning control as set
remainder of channel 13 adjustments.
18. Change scope switch to \(R F\) output position, if RF response differs noticeably from trimmer(C5) the RF plate trimmer (C10) and mixer grid trimmer (C15) must be and mixer grid trimmer (Clis) maxiadjum amplitude of response.
onse.
19. Return tuner and sweep generator to channel 13 able. A sli may be necessary coils Lle, passband on both chann
20. Recheck passband on both channel 7 and channel 13, compromising adjustments for tilt as necessary until satisfactory High Band RF passband responses are obtained. Low Band RF Alignment
21. Rotate band switch to Low Band position.
22. Turn the tuning control knob so that the pointer indicates channel 2 on the dial.
23. Set the scope switch to the IF output position and inject 59.75 Mc . and 21.9 Mc markers. Adjust the tuning control so con-
markers coincide. Leave the tuning con trol as set for the remainder of the channel 2 adjustments.
24. Change the scope switch to the RF output position.
25. If the desired passband response is not obtained (as shown in Fig. 14) the Low Band RF coil L5, the low band mixer coil (L6), and the low band antenna transformer (T1) secondary must be adjusted until the desired passband is obtained.
26. When the low band RF coil (L5) and the low band mixer coil are aligned, slight variation in the inductance of either should

FIGURE 14 - ACCEPTABLE RF RESPONSE CURVES FOR TUNER
cause no noticeable narrowing of the passband.
27. When the secondary of the low band antenna transformer is properly adjusted, a slight variation in its inductance should cause both peaks to rock slightly. If only one peak moves, the T1 secondary is staggered away from the center of the double tuned circuit response.
28. The low band mutual coil (17) varies the band width of the interstage coupling circuit. Squeezing the turns together broadens the band width and separating the turns narrows the baind width. The band greater than that required to keep both the picture carrier and sound to keep both ers at the peaks of the response curve
9. Replace the tuner bottom cover and passband response.
pensating adjustments as needed.
With the bottom cover in place, rotate the tuning control knob to align the pointer with
channel 6 on the dial
32. Tune the sweep generator to channel 6 and change the scope output switch to the IF output position.
33. Inject 83.25 Mc
and adjust the tuning 26.4 Mc . markers markers coincide. trol at this setting for the remainder of the channel 6 adjustments.
34. Change the scope switch to the RF output position.
35. Check the response curve. If not as desired, remove the bottom cover and slightly readjust the inductance of the low band RF coil L5, the low band mixer coil (L6), the low band mutual coil (L7) and the secondary of the low band antenna transformer (T1) as necessary, keeping in mind that these adjustments must be compromised with those made for channel 2 in steps 21-30
36. Recheck passband on channel 2 and channel 6 and re-adjust as necessary to obtain acceptable passband on both channel 2 and

WAVEFORMS

Note 1: The terms "Hori zontal," "Vertical" or "60 cps sine wave" refer to the oscilloscope sweep employed.
Note 2: All waveforms are taken with the oscilloscope taken with the oscilloscope horizontal sweep direction from left to right and with upto positive polarity.

Note 3: In some instances the waveforms obtained will not be identical with those shown, due to the electrical characteristics of the oscilloscope used.

Note 4: All waveforms are measured with respect to chassis unless otherwise indicated.
Note 5: Contrast maximum unless otherwise indicated
*The peak to peak (\(\mathrm{P} / \mathrm{P}\)) voltages of these waveforms are dependent on the depth of are ulation of the transmitted modnal; voltages shown are obtained when modulation is approximately 90 percent

*6BF5 (V8) Video Amplifier *6BF5 (V8) Video Amplifier \(\begin{array}{ll}\text { Control Grid (Pins 1 and 7) } & \text { Control Grid (Pins 1 and 7) } \\ \text { 3.5 Volts P/P Vertical } & 3.5 \text { Volts P/P Horizontal }\end{array}\)

*6BF5 (V8) Video Amplifier *6BF5 (V8) Video Amplifie Plate (Pin 5) 55 Volts \(\mathrm{P} / \mathrm{P}\) Plate (Pin.5) 55 Volts \(\mathrm{P} / \mathrm{P}\) Vertical

12AX7 (V14) Sync Separator Plate (Pin 1) 25 Volts \(P / P 1\)
Vertical

12AU7 (V13) Sync Amp. and Clipper Plate (Pin 1) 110 Volts \(\mathrm{P} / \mathrm{P} 60 \mathrm{cps}\) sine wave Plate (Pin 5) 830 Volts P/P Vertical

6BL7GT (V15) Vertical Oscillator Control Grid (Pin 1) 600 olts \(P / P\) Vertical

2AX7 (V14) Hor. Sync. Sep and AGC Rectifier Cathode (Pin 8) 2.6 Volts P/P Vertical

6BL7GT (V15) Vertical Oscillator Plate (Pin 2) 235 Volts P/P Vertical

12AX7 (V14) Hor. Sync. Sep Plate (Pin 6) 37 Volts \(P / P\) Horizontal
 Vertical

12AX7 (V14) Sync Separator Plate (Pin 1) 25 Volts P/P 0 cps sine wave

12AU7 (V13) Sync Amp. and 2AU7 (V13) Sync Amp. and /P Horizontal

6AL5 (V 16) Hor. Discriminator Plate (Pin 7) 70 Volts \(\mathrm{P} / \mathrm{P}\) Horizonta

MODELS 7150M, 7160B, Ch. 1-3

12AX7 (V14) Hor. Sync. Sep. and AGC Rectifier Cathode (Pin 8) 2. 6 Volts P/P Horizontal

12AX7 (V14) Hor. Sync. Sep. Plate (Pin 6) 37 Volts P/P Vertical

12AU7 (V13) Sync. Amp. and Clipper Plate (Pin 1) 110 Volts /P Vertical

6BL7GT (V15) Vertical Output Control Grid (Pin 4) 95 Volts P/P Vertical

AL5 (V16) Hor. Discriminato Plate to Plate (Pin 7 to Pin 2 Scope ground to pin 7-23Volts \(\mathrm{P} / \mathrm{P}\) Horizontal
© John P. Rider

6AU6 (V17) Hor. Control Plate (Pin 5) 68 Volts \(\mathbf{P} / \mathbf{P}\) Horizontal

12AU7 (V18) Hor. Oscillator Plate (Pin

Vertical Yoke Coils(Test Point 1) 55 Volts \(\mathbf{P} / \mathbf{P}\) Vertical

6W4GT Damper Cathode (Pin 3) 2000 Volts P/P Horizontal

12AU7 (V18) Hor. Discharg Plate (Pin 1) 105 Volts P/P Horizontal

\section*{AM-FM RADIO}

\section*{APPROXIMATE FM IF AIIGNMENT}
1. Connect vacuum tube DC voltmeter (with a high input resistance) across 33,000 ohm 6 T8 cathode resistor (R70).
2. Connect generator ground lead to rečeiver chassis and generator positive lead to oscillator-mixer grid (pin 1) using a . 1 Mfd. dummy antenna
3. Set generator modulation to off position and generator frequency to 10.7 Mc .
4. Set Function Switch to FM position, vol-

\section*{AM AL}
1. Connect an output meter across loudspeaker voice coil terminals.
2. Connect signal generator "ground" lead to tuner chassis. the "high" lead through a 1 Mfd. capacitor to grid (pin 1) of OscillatorMixer 7F8, V 26.
3. Set generator to 455 Kc . with 400 cycle modulation. Allow tuner and generator to warm up for several minutes.
4. Disconnect any external antenna and set receiver Function Switch to A M position. Turn volume and tone controls fully clockwise.
5. Rotate Tuner variable capacitor to maximum capacity position (plates fully in mesh).
ume and tone controls fully clockwise and Tuner fully closed. (With the tuner fully losed, the pointer should be at the last ine below the 88 Mc . calibration mark on the dial).
5. Adjust the IF cores for maximum reading on the voltmeter in the following order: on the voltmeter in the following order: As cores are adjusted decrease the output of the generator to maintain approximately 2.5 volts.

\section*{abremment}
6. With the least usable generator output, adjust I.F. transformer cores in this sequence just I.F. transformer cores in this sequence T29 - Bottom, T28 - Top, T28-Bottom, T26 - Top, T26 - Bottom.
7. Connect generator output to a Hazeltine Loop to radiate a signal into the Tuner Loop antenna.
8. Set Tuner and generator to 1600 Kc .
9. Adjust oscillator trimmer, C79 (on rear section of variable capacitor front gang), for maximum output reading.
10. Set generator and Tuner to 1400 Kc .
11. Adjust antenna trimmer, C51 (on loop antenna), for maximum output.

\section*{PNAL FM AHIONMTMT}
A. Repeat APPROXIMATE FM-IF ALIGNMEN to obtain exact maximum on DC voltmete connected across 33,000 ohm 6 T 8 cathode resistor R70.
B. If a 10.7 Mc . frequency modulated gen erator is available, connect to oscillator mixer grid (pin 1) through a 270 to 500 ohm resistor and proceed to Section D.
C. If a \(\mathbf{1 0 . 7} \mathbf{~ M c}\). frequency modulated generator is not avallable, connect an RF-F'M generator to antenna terminals through two 120 ohm resistors, one in series with each terminal of the generator
D. Connect the sweep output of the generator to the X -axis (horizontal) amplifier of the oscilloscope.
. Connect the Y -axis (vertical) amplifier of the oscilloscope across 100,000 ohm re sistor R72 through 10, 000 to 100,000 ohms at receiver end of one lead.
F. Adjust the generator for 300 Kc . deviation Use full gain of the oscilloscope \(Y\)-axis amplifier and only as much output from the generator as is necessary
G. Adjust T29-Top for maximum output, vertically.
Adjust T30-Top and T30-Bottom until the center of the pattern becomes a straight ine diagonally across the oscilloscope Repeak these thr aintical pattercilloscope pat tern in Figure 15 .
H. Connect an RF-FM generator to antenna terminals through two 120 resistors, one in series with each terminal of the gen erator. Adjust the generator for 22.5 Kc. deviation.
I. Remove the dial background. Set the pointer to 108 Mc . on the dial. Tune the generator to 108 Mc . Adjust C57 to maximum output meter reading. If two such points are found by tuning C57, use the higher frequency. (Lowest capacity setting of C57).
J. Tune the generator and receiver to 106 Mc . and peak C53 for maximum output meter reading.
K. Remove the signal generator, oscilloscope and resistors, restoring receiver to nor mal operating condition.

FIGURE 15 - FM DISCRIMINATOR RESPONSE

© John F. Rider

(C)John F. Rider

© John F. Rider
\begin{tabular}{|c|c|c|c|c|c|}
\hline R200 & 181-0681 & Resistor - 680 Ohm - \(1 / 2 \mathrm{~W}\). & R234 & & MODELS 715 \\
\hline R200 & 181-0821 & Resistor -
Resistor -
d & R117 & 181-0152 & Resistor - 1,500 Ohm - 1/2 w. 7160B, Ch. \\
\hline R103,R120,R134, & 181-0102 & Resistor - \(1,000 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & R145 & 181-03325 & Resistor - \(\quad 3,300 \mathrm{Ohm}-1 / 2 \mathrm{~W}\).
Resistor -
3,300 \\
\hline R138,R143,R220, & & & R197 & 181-04725 & Resistor - 4, \(700 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). \\
\hline R234 & 181-0152 & Resistor - 1,500 Ohm - \(1 / 2 \mathrm{~W}\). & R73, R67, R144, R226 & 181-0472 & Resistor - 4,700 Ohm - \(1 / 2 \mathrm{~W}\). \\
\hline R145 & 181-03325 & Resistor - 3, \(300 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & R135 & 181-0562 & Resistor - 5,600 Ohm - 1/2 W. \\
\hline R127 & 181-0332 & Resistor - 3,300 Ohm - \(1 / 2 \mathrm{~W}\). & R128 & 181-0682 & Resistor - 6,800 Ohm - \(1 / 2 \mathrm{~W}\). \\
\hline R197 & 181-04725 & Resistor - 4, \(700 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & R219 & 181-0822 & Resistor - 8, \(200 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). \\
\hline R73, R67, R144, R226 & 181-0472 & Resistor - 4,700 Ohm - \(1 / 2 \mathrm{~W}\). & R176, R177, R184 & 181-0103 & Resistor - 10,000 Ohm - 1/2 W. \\
\hline R135 & 181-0562 & Resistor - 5,600 Ohm - \(1 / 2 \mathrm{~W}\). & R185 & 181-0123 & Resistor - 12,000 Ohm - \(1 / 2 \mathrm{~W}\). \({ }_{\text {- }}\) - Molded \\
\hline R128 & 181-0682 & Resistor - 6, \(800 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & & 412-0017 & Socket - Tube - 8 prong - Miniature \\
\hline R219 & 181-0822 & Resistor - 8, \(200 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & & & Socket - Tube - 12 prong - AM-FM - Power Female Connector \\
\hline R176, R177, R184 & 181-0103 & Resistor - \(10,000 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & & 411-0012 & Socket - Pilot Lamp \\
\hline R185 & 181-0123 & Resistor - 12,000 Ohm - \(1 / 2 \mathrm{~W}\). & & 539-1202 & Speàker - 12" P.M. with Transformer \\
\hline R179 & 153-0009 & Control-AGC & & 496-0023 & Spring - Tension Dial Cord \\
\hline R110, R153 & 154-0002 & Control-Brightness and Volume & & 573-0003 & Switch - 4 position - FM, AM, Phono \& TV \\
\hline R167 & 153-3007 & Control - Contrast & & 473-0002 & Switch Arm Assembly - Pilot Light \\
\hline R225 & 153-0007 & Control - Horizontal Drive & T54 & 143-0017 & Transformer - Speaker - Output \\
\hline R193, R198 & 153-0001 & Control - Vertical Hold - Height & T52 & 128-0004 & Transformer - Sound Discriminator - Primary \\
\hline R201 & 153-0010 & Control - Vertical Linearity & T53 & 128-0005 & Transformer - Sound Discriminator - Secondary \\
\hline R54 & 153-0013 & Control - Volume - AM-FM & T60 & 242-0001 & Transformer - Vertical oscillator \\
\hline R74 & 152-0010 & Control - On-Off and Tone & T51 & 120-0001 & Transformer - IF Sound - 4.5 Mc . \\
\hline & 195-0004 & Cord - Line TV & T62 & 128-0006 & Transformer - Horizontal Discriminator \\
\hline & 195-0003 & Cord - Line AM-FM Tuner & T59 & 240-0001 & Transformer - Heater Isolation \\
\hline & 760-0011 & Cover - Interlock Assembly & T55, T56, 757 & 125-0002 & Transformer - IF Interstage \\
\hline & 498-0014 & Cover - H.V. Case & T58 & 120-0002 & Transformer - IF Bandpass \\
\hline & 760-0013 & Cover - Album Compartment \({ }^{\text {dial }}\) \& Escutcheon Assembly - AM-F & T61 & 241-0004 & Transformer - Vertical Scan \\
\hline & 400-0007 & \begin{tabular}{l}
Dial \& Escutcheon Assembly - AM-FM \\
Focalizer and Centering Unit - H.V.
\end{tabular} & T50 & 141-0016 & Transformer - Power \\
\hline & 191-0005 & Fuse - \(1 / 4 \mathrm{Amp}\). -250 V . (clip type) & T63 & 121-0010 & Transformer IF \#1-AM \\
\hline & 476-0002 & Insulator - Electrolytic Capacitor Mounting & T28 & 122-0010 & Transformer IF \#2-AM \\
\hline & 740-0011 & Knob - Center & T25 & 121-0011 & Transformer IF \#1-FM \\
\hline & 744-0011 & Knob - Outer - Brightness & T27 & 122-0011 & Transformer IF \#2-FM \\
\hline & 740-0013 & Knob - Plain - Antenna & T29 & 119-0001 & Transformer - Discriminator - Primary - FM \& 3rd IF AM \\
\hline & 743-0006
\(743-0002\) & Knob - TV Tuner - (Band) & T30 & 128-0003 & Transformer - IF Discriminator - \(\mathrm{r}^{\prime} \mathrm{M}\) \\
\hline & 743-0002
\(611-0047\) & Knob - Function & V23,V24 & 633-0003G & Tube - 5U4G \\
\hline & 591-0015 & Leaflet - Customer Instruction & V7,V16 & 623-0003G & Tube - 6AL5 \\
\hline & 400-0009 & Magnet - Ion Trap & V6 6 V9 V10 V17 & \({ }^{623-0011 G}\) & Tube - 6BC5 \\
\hline & 716-0203 & Mask \& Gasket Assembly (7150M) & V4, v5, v27, v28 & 623-0004G & Tube -6BA6 \\
\hline & 716-0103 & Mask \& Gasket Assembly (7160B) & & 623-0017G & Tube - 6BF5 \\
\hline & 415-0002 & Plug - 2 prong - Interlock & V15 & 622-0011G & Tube - 6BL7GT \\
\hline & 417-0009 & Plug - 2 prong-Female - TV and Phono & V1 & 623-0022G & Tube -6CB6 \\
\hline & 415-0001 & Plug - 4 prong-Speaker & V19 & 623-0013G & Tube - 6CD6GT \\
\hline & 196-0011 & Plug and Cable - Power & v2 & 623-0002G & Tube - 6J6 \\
\hline & 792-0004 & Pointer, Assembly - TV & V12 & 622-0012G & Tube - 6L6G \\
\hline & 792-0005 & Pointer and Slide Assembly - AM-FM & V11,V29 & 623-0010G & Tube - 6T8 \\
\hline R171 & 189-0007 & Resistor - \(4.30 \mathrm{hm}-1 / 2 \mathrm{~W}\) - W & V20 & 633-0004G & Tube - 6W4GT \\
\hline R56 & 181-0120 & Resistor - \(12 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & V26 & \(621-0007 \mathrm{G}\) & Tube - 7F8 \\
\hline R169 & 181-04705 & Resistor - \(47 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & V13,V18 & \({ }_{623-0008 \mathrm{G}}^{623}\) & Tube - 12AX7 \\
\hline R116 & 181-0470 & Resistor - 47 Ohm - \(1 / 2 \mathrm{~W}\). & V21, 222 & 636-0001G & Tube - 5642 \\
\hline R57, R65 & 181-0680 & Resistor - 68 Ohm - \(1 / 2 \mathrm{~W}\). & V25 & 642-0008G & Tube - 17BP4A \\
\hline R136, R139 & 181-0820 & Resistor - \(82 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & & 323-0002 & Tuner Unit \\
\hline \[
\begin{aligned}
& \text { R75, R101, R146, } \\
& \text { R228, R230 }
\end{aligned}
\] & 181-0101 & Resistor - 100 Ohm - \(1 / 2 \mathrm{~W}\). & L61,L62,L64, & 100-0003 & Yoke - Deflection \\
\hline R104 & 181-0121 & Resistor - \(120 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & & CHAS & 1-357 C01 \\
\hline & & Resistor - \(150 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & & & \\
\hline R131, R142 & 181-0221 & Resistor - 220 Ohm - \(1 / 2 \mathrm{~W}\). & Under chassis code & C01, R183 & 92 have been changed in value as follows: \\
\hline R61, R119 & 181-0471 & Resistor - \(470, \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & & & \\
\hline R202,R203 & 181-0561 & Resistor - 560 Ohm \(-1 / 2 \mathrm{~W}\). & SChematic & & \\
\hline R200 & 181-0681 & Resistor - 680 Ohm - \(1 / 2 \mathrm{~W}\). & LOCATION & PAR & MBER DESCRIPTION \\
\hline R133 & 181-0821 & Resistor - \(820 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). & & & \\
\hline R103,R120,R134, & 181-0102 & Resistor - 1,000 Ohm - \(1 / 2 \mathrm{~W}\). & R183
R192 & & \(05 \quad\) Resistor - 1.0 Megohm - 1/2 W. \\
\hline
\end{tabular}
© John F. Rider

©John F. Rider

© John F. Rider

© John F. Rider

OJohn F. Rider

(9) John F. Rider

\section*{INDEX}
\begin{tabular}{|c|c|c|}
\hline & PAGE & PAGE \\
\hline ALIGNMENT INSTRUCTIONS & 3 & SPECIFICATIONS 1 \\
\hline INSTALLATION DATA. & 1 & TOP VIEW - TUBE LAYOUT. . . 2 \\
\hline Schematic & 7,8 & TRIMMER LOCATIONS. 2
TROUBLESHOOTING. 2 \\
\hline
\end{tabular}

\section*{SERVICE DATA FOR THE TELEQUIP TELEVISI ON RECEI VERS}

\section*{LECTRICAL SPECIFICATICNS}

105-125 Volts 60 Cyole AC only 200 Watts

\section*{RF FREQUENCY RANGE}

Channels 2-13. 54-88 MC and 174-216 MC.

\section*{IF FREZUENCY}

Video Carrier - 26.1 UC
Audio Carrier - 21.6 MC
Intoroarrier Audio Beat - 4.5 MC
TUBE COMPIEMENT

> TV 138, 238, or 279 Tuners
> V1-6AG5-RF Amplifier
> V2-6J6-Mixer osoillator

Chassis \(14 \mathrm{~T}, 16 \mathrm{~T}, 19 \mathrm{~T}, 14 \mathrm{TR}\),
16 TR , and 19 TR
V4-6AU6 - IF Amplifier
V5-6aU6 - IF Amplifier
V6-6AU6 - IF Amplifior
V7-6AL5 - Video Deteotor and \(A G C\)
V8-6AU6 - Video Amplifier
V9-12AU7 - Syno Clipper - DC Reaturer
V10-6AU6 - Ratio Doteotor Driver
N1-6T8 - Ratio Deteotor, First Audio
V12-6A05 - Audio Output
V13-6J5 - Vortioal Blooking Osoillator
V14-6SN7 - Horizontal Osoillator and AFC
V25-6BG6 - Horizontal Output
V16-504 - Damper
V17-1B3 - High Voltage Reotifier
V18-5U4 - Low Voltage Reotifier
V19-Kinescope
v3-6v6 - Vortioal Output

Chassis l2TR

V4-6AU6 - IF Amplifior
V5-6AU6 - If Amplifier
V6-6AU6 - IF Amplifior
V7-6AL5 - Video Deteotor and AGC
v8-6AU6 - Video Amplifier
V9-12AU7 - Syno Clipper - DC Restorer
V10-6AU6 - Ratio Deteotor Driver
V1-6T8 - Ratio Deteotor, First Audio
v12-6AQ5 - Audio Output
V13-63N7 - Vortioal Blooking Osoillator and Output
V14-6SN7 - Horizontal Osoillator and \(4 F C\)
V15-6BG6 - Horizontal Output
V16-504 - Dampor
V17-1B3 - High Voltage Reotifior
V18-504 - Low Voltage Reotifior
V19-EInescope

KINESCOPE I NSTALLATI ON
1. Remove the knobs.
2. Remove the four ohassis retaining sorews from the bottom of the oabinet.
3. Remove the ohassis from the oabinet.
4. Loosen the strap holding braoket sorews, the yoke mounting hood sorews, and the foous ooil wing nut.
5. Insert the kinesoope with the high voltage oonneot oap toward the power transformer. 6. Insert the high voltage oonneotor.
7. Plaoe the kinescope strapping over the tube and tighten.
8. Tighten the yoke mounting hood sorews suoh that the rubber bumpers are tight against the kinesoope.
9. Put on the ion trap, attaoh the kinesoope suoket, and prooeed with the adjustments as given below.

\section*{ION TRAP ADJUSTMENTS}

The ion trap magnet should be approximately over the ion trap flago. Rotate the ion trap silightly and move it back and forth until a full raster is obtained. Adjust the ion trap in this manner for greatest brililianoe.

\section*{FOCUS COIL ADJUSTMENT}

Rotate the foous ooil on its vertioal and horizontal axis until a full raster is visible.

\section*{CENTERING}

Centering is aoomplished both vertioally and horizontally by oareful manipulation of the foous ooil. This inay be bettor aoocaplished by noting that the rastor noves at right angles to the direotion that the foous 0011 points. The defleotion yoke should be as far forward as possible.

\section*{DEFLECTION YOKE ADJUSTMENT}

Adjust the pioture to the proper horizontal plane by loosening the defleotion yoke wing nut and rotating the goke.

\section*{SHEEP ALIGMENT}

VERTICAL: Set the hoight and linearity oontrols to approximately full olookwise position, and slowly rotate the vertioal hold oontrol until the pioture looks vertioally. After the pioture is looked, adjust the height oontrol for the proper vertioal soan, and the linearity oontrol for proper pioture symmotry. Adjustment of any of these three oontrols may require readjustment of one or both of the other oontrols.
HORIZONTAL OSCILLATOR ALIGMAENT CHECK; Allow five minutes for the reooiver to warm up. Turn the horizontal hold oontrol fully olookwise; then fully oounter-olooicwise. The pioture should remain looked exoept at the fully olookwise position. With the horizontal hold control fully oounterolookwise, momentarily remove the signal by 8 witohing to another ohannel and baok again. The pioture should then be out of look. As the hold oontrol is turned slowly olookwise, the number of diagonal bars on the pioture tube soreen will reduce to four or five. At this point more rotation should pull the pioture into look.
HORIZONTAL OSCILLATOR ALIGNAENT: If the above oonditions do not ooour, set the horizontal bold oontrol fully olookwiso, sot tio horizontal looking range trimmor to approximatoly three turns of maximum tightness. Tune to the may be poossary to alternately readjust the horizontal pulls into loak. It so that the pioture reduces to four or five harizontal looking range trimmer o that the pioture reduces to four or five bars before pulling into look. Repeat the horizontal alignment oneok.
HORIZONTAL LI NEARITY: Adjust the horizontal drive oontrol so that there is no exoessive soan. adjust the horizontal linearity oontrol for the best horizontel
inearity.

CHASSIS \(12 \mathrm{TR}, 14 \mathrm{~T}, 14 \mathrm{TR}\)
1. No rastor.
(a) Improperly adjusted brightness oontrol.
(b) Check for proper setting of the ion trap.
c) No high voltage. Cheok 6BG6 (V15):, 1B3 (V17), 5 U4 (V16) tubes, and the high voltage oirouit oomponents. Cheok the \(\{\) A fuse, and the 400 bdar ooupling condenser at the grid of the \(6 B G 6\).
(d) No "B" supply.
(e) Defeotive horizontal osoillator and AFC tube \(6 S N 7\) (V14) or oirouit components.
(f) Defective kinesoope or kinesoope oirouit.
2. No video.
(a) Cheok IF and RF oirouits and tubes. Chook video ooupling oirouit to kinescope.
3. No sound.
(a) Cheok IF and RF oircuits and tubes. Cheok 6AU6 (V10), 6T8 (VII). 6AO5 (V12), and the speaker and oonnootions.
4. Raster too sinall horizontally.
(a) Improper horizontal drive adjustment.
(b) Line voltage too low.
(a) Replace 6BG6 (V15).
(d) Replaoe GSN7 (V14).
(e) Low "B" supply. Cheok 5U4 (V18), and for shorts.
(f) Cheok .2 mfd isolating oondenser of the horizontal defleotion ooils for open.
(g) Chock the flybaok transformer and the yoke.
5. Vertioal jittoring.
(a) Reset vertioal hold for the least jitter.
(b) Replace 6SN7 or 6J5 (V13), vertioal blooking osoillator.
(o) Roplace 12A07 (V9) syno olipper.
(d) Cneok sync olipper for proper olipping.
6. Lack of height
(a) Replace 6SN7 or 6J5 (V13) vertioal blooking oscillator.
(b) Replace 6V6 (V3) Vortioal output tubo.
(o) Cheok "B" supply.
(d) Cheok blooking osoillator transformor for short or open.
(e) Check integrating oiroult for short.
(f) Check oathode oapaoitor (100 mfd) for open.
(g) Chook vertical defleotion ooil.
7. Elimination of Audio Buzz
(a) Set the fine tuning oontrol properly.
(b) Set the oontrast oontrol for a normal contrast.
(o) Readjust the tuning slug on top of the ratio deteotor transformer (T8) for minimum buzz and maximum audio signal.
(d) Replace 6T8 (VIl) and retune T8.
(e) Readjust the RF osoillator tuning slug for any partioular station oonoerned.
8. Station not tuning properly.
(a) Remove the chanrel marker plate.
(b) Retune the FF Oscillator tunirg slug for the ohannel ooro erned.

TUBE AND ADJUSUTMENT LAYOUT
FOR CHASSIS \(14 \mathrm{~T}, 16 \mathrm{~T}, \mathrm{\&} 19 \mathrm{~T}\)
14 TR, \(16 T R, \&\) I \(19 T R\)
I2TRAS NOTED

(O) O- \(\begin{gathered}\text { OSCIILATOR } \\ \text { ADIUSTMEN } \\ \text { A12-A23 }\end{gathered}\)

block diagram
The following test equipment is necessary for proper alignment of the TELEQUIP recolver: RF SWEEP GENERATOR:
\begin{tabular}{rl}
\(18-30 \mathrm{NC}\) range & 10 NC swe ep width \\
\(50-90 \mathrm{KC}\) range & 10 KC sweep width \\
\(170-225 \mathrm{KC}\) range & 10 KC sweep width
\end{tabular}

OUTPUT IMPEDANCE: 300 Chms balanoed to ground for RF ranges.
OUTPUT VOLTAGE: Adjustable
MARKER GENERATOR:

3. Conreot voltmeter (3 volt scale) between junotion of 10 K and 500 NMF and ohassis ground.
4. With TV 138 tuner, oonneot signal generator hot side to point \#9, loop on top of the tuner ohasis, ground side to ohassis ground. With TV 100 tuner di soonreot 100 NNF ooupling oondenser for grid of 6AU6-V2 mixer tube from switoh and conrieot hot side of signal generator to 100 was.
5. Set signal generator frequenoy for 25.3 BC unmodulated, adjust seoond and fourth IF ooil for maximum deflection on the voltmeter.
6. Set signal generator frequenoy for \(23.1 \amalg C\) unnodulated, adjust \(L 9\) and 3 rd IF for maximum deflection on the viltmeter.
7. Disoonneot signal generator and conneot sweep generator between point \(D\) and ground. Set sweep to IF band \(20-30 \mathrm{LCC}\).
8. Disoonneot voltmeter and conneot input of soope between junotion of 10 K and 500 MMF and ground.
9. Loosely oouple the marker generator to the high side of the sweep generator 10. To avoid distortion it is important to keep the sweep generator and marker generator outputs as low as possible.
11. Cheok the response ourve obtained against the ideal overall IF response ourve and retouch the IF coils as required.
12. It is important that the marker pips be in the proper looation as shown on the ideal response ourve.

6．Connect voltmeter using \(3 V\) zero oenter sole across（B）and tune top slug of T8 for a zero point．A correct zero center point is between a positive and negative maximum point．

7．Retouch，if necessary，as outlined in l above．

TV 138 RF TUNER ALIGN LENT REQUIREMENTS
With normal use or operating conditions，tuner alignment is seldom necessary． The RF mixer coils have been designed for stable band pass operation，and under normal operating conditions will seldom need realignment．The high frequency oscillator cols may require some slight readjustment，if th osolllator mixer tube has been replaced．
RF and mixer oils are self tuned by distributed and tube oapaoitios．Since the tuner features replaceable channel snap－in coil，individual RF and mixer 0011 adjustments are not provided．Overall adjustment covering all channels can be made with oapaoitors C2，C3，and C7．These adjustments should be made on a higher channel，preferably channel 12.

TURRET SWITCH SETTING SELECTS
COILS FOR CHANNEL DESIRED
（2）：
6 AG 5
RF AMP．

TV 138 TUNER
－

\section*{V 138 RF AMPLIFIER ALIGNMENT}

\section*{RF MI XES ALI GNMENT：}

1．Connect sweep generator to antenna terminals．
2．Loosely couple marker generator to antone terminals．Marker generator output should be kept at a minimum，such that the marker pips are just barely visible．

3．Connect osolllosoope through a 10,000 ohm resistor to point 9，the loop on top of the tuner onassis．

（6）Johal F．Rider

TV 138 H. F. OSCILLATOR ALIGNEENT
1. Conneot sweep generator to antenna terminals.
2. Loosely couple marker generator to antenna terminal.
3. Connect oscilloscope between function of 10 K and 500 MiF network and ground. 4. Set vernier oontrol to the center of its range.
5. Use a non-metallic sorewdriver for all H.F. osoillator adjustments.

HIGH FKEQUENCY ALI GNAENT
\begin{tabular}{lll}
Step & \begin{tabular}{l}
Marker Generator \\
Frequenoy (MC)
\end{tabular} & \begin{tabular}{l}
Sweep Generator \\
Frequency
\end{tabular}
\end{tabular}\(\quad\) Adjustment

Before aligning the HF osoillator, oheok the IF response ourve. Retouoh if necessarye
_ Cheok to see if the oideo oarrior markor appears at the \(50 \%\) point on the response ourve when the sharp tuning oontrol is tuned to the conter of its range. If adjustmont is nooded, ohook to soe if tiae misalignuent is apparent on ohannel 13 only, or also exists onannel all ohannels. If overall adjustinent is neoded, adjust ClO ; otherwise Al2.

Cheok all ohannols individually for proper marker looation; if overall adjustment has been made. it may not be neoessary to make any further adjustments. If neoessary, however, make individual HF osoil. lator adjustments (A 12 to A23) for individual ohannols.

IDEAL IF RESPONSE CURVE

RF RESPONSE CURVE

OVERALL RF MIXER AND IF
RESPONSE CURVE

\section*{9 30Vd A1 dino3731}

OJohn F. Rider

\footnotetext{
© John F. Rider
}

\section*{WARNING}

This receiver is designed for use on 105 to 125 Volt 60 cycle AC only. Do not connect to Direct Current (DC) power supply. If in doubt, check your local power supply company.

GENERAL - For best results this Tele-tone receiver should be installed by a competent television serviceman who is properly equipped to make necessary adjustments to the receiver and determine the most suitable type of antenna installation.

OUTDOOR ANTENNA - For best results with your Tele-tone Television Receiver an outdoor antenna is recommended. In areas where both Low (Chamnels 2 to 6) and High (channels 7 to 13) are received a separate antenna should be used for each band.

In areas where both high band and low band reception is available, these antennas may be used in the form of a stacked array.

Where a stacked array is used, it may prove advantageous in some locations to connect separate down leads from each antenna and connect a suitable switch at the receiver as shown in figure 1 .

TO RECEIVER
FIG. 1

INDOOR ANTENNA - Indoor antennas, although acceptable in many cases, are subject to many disturbing
factors. For example; viewers approaching the antenno electrical appliances within the home, defective lighting tixtures, etc., all of which will affect the receiver where an indoor antenna is used and would probably be eliminated with an outdoor installation. However, in cases where an indoor antenna is acceptable, or becomes a necessity because of local restrictions, etc., we recommend the adjustable type indoor antenna.

TRANSMISSION LINE - In non-critical locations, satisfactory results may be obtained with a 300 ohm down lead connected directly to the receiver antenna terminals. In more critical locations (insufficient signal) increased pick-up may be obtained by using the 300 ohm down lead in conjunction with a suitable matching transiormer at the receiver. (See figure 2). In unusually noisy locations considerably improved performance may be obtained by the use of 72 ohm co-axial transmission line.

\(60^{\circ} \mathrm{OF} 720 \mathrm{MM}\)
co-axial cable RG59U

OJohn F. Rider

\section*{RECEIVER FRONT PANEL CONTROLS \\ RECEIVER REAR CHASSIS CONTROLS}

FIG. 3
CONTROLS IDENTICAL ON
MODELS F-24. 286, 287, 288
VOLUME - ON - OFF - The volume control is an audio control only and has no effect on the picture. It is connected in the grid circuit of the audio amplifier V-11). The power on and of switch is combined with the volume control.

HORIZONTAL HOLD - The Horizontal Sweep Oscillator uses Automatic Frequency control. As a result the Horizontal Hold Control will only be used if the picture should resolve into a series of heary, oblique, black and white lines. A slight readjustment of the knob will then cause the picture to correct itself.

VERTICAL HOLD - The vertical hold control should be adjusted in the event of picture roll. Slight readjustment will cause the picture to lock verticall y . It is found in the grid circuit of the vertical oscillator (V-15).

PICTURE - This control is primarily \(\alpha\) picture control. It operates in the cathode circuit of the video amplifier. It controls the picture strength by varying the gain of this stage.

BRIGHTNESS - This control operates by varying the DC potential on the cathode of the Kinescope.
STATION SELECTOR - The (inner) bar keob this TATION SELECTOR - The (inner) bar knob of this ontrol will op circular knob will activate the Fine Tuning cont

\section*{RECEIVER REAR CHASSIS CONTROLS} WIDTH - The Horizontal Sweep is determined by the current flowing through the Horizontal Yoke Coil. The current through this coil (L23) is controlled by Width Control (L21) which is a variable reactor having the effect of changing the turns ratio of this winding of the Horizontal Output and H.V. Tramsformer (T6). This is a screwdriver adjustment.

\section*{BRIEF CIRCUIT ANALYSIS}

The Tele-tone Television Receiver Models TV-284. 286. 287. 288 uses the Inter-Carrier sound system. In this system the RF section of the receiver receives both the
picture and sound picture and sound carriers which are converted by
mixer (V-2) into the IF. This IF is fed through \(\alpha\) single mixer (vnel. int the ir. This if is fed through a single
Find video amplitier (V-8) and fed through a 4.5 Megacycle Trap into a Ratio Detector Driver (V-9) and to the Ratio
Detector (V-10). Detecior (V-10)

slugs accessible through two slots in the front of the receiver chassis. Channel 2 is found at the top of the right hand slot and the others follow in regular order in a clockwise direction tinishing with Channel 13 at the top of the left hand slot.

NOTE: The channel numbers on the escutcheon do not correspond to the location of the oscillator coils.

FIG. 6

VIDEO IF - Each Video IF transformer has only one adjustment, a powdered iron slug accessible from the top of the chassis. The Video IF String is stagger tuned are tuned to 34.45 Megacycles and the second and fourth are tuned to 36.8 Megacycles. The response curve is fairly flat topped and should produce a picture with good definition.
VIDEO AMPLIFIER - A 6AC7 pentode is used in this section of the receiver. The ouput of the detector i plate (pin 8). It is at this point that the three basic com ponents of the received signal are separated and ted to their respective circuits. The sound is picked oft by the Sound-Take-off Trap and sent through the Ratio Detector Driver (V-9), the Ratio Detector (V-10) and Audio Amplitiers (V-11 and 12) to the speaker. The picture in telligence is fed to the grid of the Picture Tube, and the sync pulses are fed into the sync seperator and from here to the Vertical oscillator and the horizonta sync. guide.
SOUND SYSTEM - The sound Carrier is taken off the plate of the Video Amplitier (V-9) by a 4.5 Megacycle trap and fed through a Ratio Detector Driver (V-9) udio ampli ,
D. C. COMPONENT - D. C. restoration is accom plished through the use of one hali of a bALS (V-13A) fed to the grid of the Cathode Ray Tube to maintain a constant blanking level and to restore the origina background illumination.
SWEEP SYSTEM - VERTICAL - The Vertical Sync pulses are fed by an integrating network into th lator trequency. The output of the oscillator is oscil amplified by the output stage (V-16). The plate of the Vertical Output stage is transformer coupled to the Vertical windings of the Deflection Yoke.
SWEEP SYSTEM - HORIZONTAL - The Horizontal Oscillator is essentially of the Blocking Oscillator type The operation of the AFC system depends upon a cor recting voltage developed in the control tube when the
oscillator output and the incoming pulses differ in either phase or frequency. The control tube, first secion (V-17), is maintained at cut-off until such time as he sync pulse is either ahead or behind the oscillator. (second section V-17), sawtooth peak. When either asse occurs the control tube develops a voltage which oscillator frequency to coincide with the frequency of he incoming pulses. The horizontal oscillator transformer has an adjustable core which is a coarse control of the oscillator frequency. The Horizontal Frequency Control (rear) is a fine adjustment in the same sense. The front panel Horizontal Hold Control permits slight adjustment of the frequency by adjusting the B voltage applied to the control tube plate. The Horizontal Locking range , control affects the sensitivity of the control
tube thus varying the range over which the AFC circuit will function.
NOTE: Many of the components in the Horizontal circuits are of critical value and therefor should only be replaced by the exact replacement part. Care when replaced. This can be accomplished by carefully noting parts positions before removal. For complete alignment procedure on these circuits see page 8.
A.G.C. - The receiver uses an AGC circuit operating on the first 2 IF stages (V-4) (V-5). While it is quite effective in most locations, the receiver may overload in regions of very high field intensity. The contrast can generally be adjusted for a normal picture under such conditions but spurious beats, jagged vertical lines (i.e. poor resolution) and a "Moire" pattern may appear. These effects can be eliminated by the use of a resistor network of 3 to 10 db attenuation in series ed to the receiver.
HIGH VOLTAGE POWER SUPPLY-The energy stored in the horizontal windings of the deflection yoke during the forward sweep produces high voltage surges during retrace. This is stepped up by the "auto-transformer" winding of the Horizontal Output Transformer and then rectified by the IB3 (V-20) (and doubled in the TV286 by the second 1B3 (V-21) to provide approximately 12.500 volts for the anode of the Cathode Ray Tube.)
B VOLTAGE POWER SUPPLY - The B Supply utilizes a conventional Transiormer-rectifier circuit. The only feature of this section which might be considered slightly unusual is that the Focus Coil is used as a part of the Filter system. The focus Control shunts the coil and thereby varies the current flowing through the coil itseli. The use of a bleeder is eliminated by placing the tubes in series with the tubes in the IF and tuner stages as far as B plus supply is concerned.

\section*{ALIGNMENT PROCEDURE}

\section*{The alignment of this Receiver can be broken down} into three basic parts.

1 - Video IF Alignment 2 - RF Alignment 3 - Sound Alignment
CATHODE RAY OSCILLOSCOPE - The tube size is relatively unimportant. however, mything usually makes tine adjustment quite ditficull SWEEP GENERATOR - The sweep generator used to 220 megacycles. The output should be fairly flat
over wide frequency variation of the sweep. It should be capable of an output of about 0.1 volt with attenuation. It is preferable that the generator have a deflection output for the test oscilloscope.
AM SIGNAL GENERATOR - This generator should have a frequency range of from 4.5 to 220 megacycles. As this generator is used occasionally as a marker generator, accuracy is an important factor. It should e capable of 0.1 volt output with attenuation and hould be linear through the range.
VACUUM TUBE VOLTMETER - Almost any standard make VTVM will do. It should preferably have a reersible polarity switch.

\section*{VIDEO IF ALIGNMENT}

An adequate signal can be fed through the video IF tring by feeding the output of the sweep geperator into a tube shield placed over the mixer tube (6AG5) (V-2). Care should be taken that this shield is NOT grounded. The ground side of the generator output can be conveniently grounded to the shield of the adjacent oscillator tube.

A vacuum tube voltmeter should be connected just Ather the first series peaking coil (L-6) with the Gnd. lead to the junction of R45 and R46 it should be set to he plus 3 Volt scale. Set channel selector to an undow band channel
The Signal generator should be set to a frequency of 3.45 Mc. The output of the generator should be ad-解 plus 1.5 volts.
The first and third IF coils should be peaked for a maxireases with tuning, the generator voltage reading inated to maintain a maximum of plus 1.5 volts.
Set the Signal Generator to a Frequency of 36.8 Mc . and tune the second and fourth IF coils in the same manner as above.
Set the Signal Generator to \(\alpha\) frequency of 32.8 and une the trap for a MINIMUM regding on the VTVM. The third IF coil should then be readjusted as described previously.
The Generator should now be shut off (or tuned to ditterent band) and the VTVM should read no more 0.50 volts. If there is \(\alpha\) higher voltage reading heck for regeneration in the \(\mathbb{I F}\) stages.
By shunting the signal generator with a sweep generator (30 to 40 Mc.) and substituting a Cathode Ray Osprocedure the actual pass band of the Video IF circuits may be studied. Ideally the response curve should appear on the face of the oscilloscope in the form indicated in Figure (7). A slight slope of the top of the urve in either direction or a small dip in the center are acceptable as indicated in Figure (8).
 three pieces of test equipment are necessary. A sweep generator, a signal generator and a cathode Ray
cilloscope. For specifications see "Test Equipment" above.
The output of the Sweep Generator should be fed into the antenna. The signal generator (C.W.) should The sweeper will provide the overall response curve with the oscilloscope properly connected. The signal generator is used as a marker as described below. Some Sweep generators made today contain their own marker oscillator. In cases where a generator of this type is used the Signal Generator may be eliminated. The "hot" or "high" side of the Oscilloscope input should be connected to the junction point of the 8200 ohm detector load resistor and the peaking coil. The est convenient ground point on the receiver chassis. Care should be taken that the generator and the scope leads are well separated to avoid regeneration.
The R.F. section of the receiver is tuned channel by channel. The proper frequency settings for any given chamnel can be determined by consulting the Frequency Chart on Page (2). For example in aligning channel 2 the sweep generator should be set to some mid frequency between 54 and 60 megacycles. This in the general vicinity of the desired frequency it should be tuned to center the response curve on the Oscilloscope face. For picture and sound markers the signal generator should carefully be adjusted to the frequencies indicated in the Frequency chart. For example in the case of channel 2 the picture ma
quency is 55.25 Mc . and the Sound 59.75 Mc
It is important to note at this point that the oscillator lator coil from 3 to 13. It is therefor imperative that channel 2 be aligned first and the others in any desired order thereafter.
Starting with channel 2 and applying the proper irequencies as indicated above, the output of the sweeper should be attenuated to the point where ther attenuation will not affect the wave shape.
The Oscillator should then be adjusted to bring the sound carrier into the 32.8 Mc. trap valley. With the
oscillator so adjusted the picture carrier should fall at a point approximately \(50 \%\) up on the slope of the opposite side of the band pass curve. Certain variations in the waveshape and the location of the picture carrier are acceptable. The picture carrier may vary in position from a point between \(45 \%\) and \(60 \%\) of the slope and the overall waveshape may differ from the ideal. ilat-topped response by benter. See Figure (8). If the position of the picture carrier varies beyond the \(45 \%\) to \(60 \%\) points on all channels correction may be made by turning to channel 6, applying the proper input signals and slightly realigning the I.F. transformers.

SOUND ALIGNMENT
Sound alignment of the receiver is best accomplished with the AM Signal Generator and Vacuum Tube Volt meter. By feeding a 4.5 Megacycle signal through a . 01 mid blocking condenser into the grid of the video amp lifier and placing the vacuum tube voltmeter probe on pin (7) of the ratio detector and the ground lead at the junction point of the two 15,000 ohm resistors in the and the 4.5 megacycle trap may be adjusted. The sig nal generator should be attenuated so that the VTVM does not read more than minus 3 or minus 4 volts. The two slugs should be tuned for maximum deflection of the VTVM and the generator attenuated as needed to keep the above mentioned level. The VTVM probe (set for zero center operation) should then be placed at the junction of the 47,000 ohm resistor and dhe and the secondary of the ratio detector should be tuned for zero reading on the VTVM. This adjust ment is very sharp between a plus and minus swing For oscilloscope view of ratio detector alignment con nect scope hot lead at junction of 47000 ohm resisto and the 1500 MMF condenser and the ground lead connected to nearest point on chassis. Shown in Fig ure (9A). Set signal generator for 4.5 meg. center quency with 1001 C devian as in Figure (9B).

-ionc fisuc .e.ionc
FIG. 9B

\section*{PICTURE ADJUSTMENTS}

\section*{ION TRAP, FOCUS AND YOKE}

To properly adjust the Ion Trap. Focusing coil and he Deflection Yoke the following procedure should be followed.
The Deflection Yoke should be placed in position closest to the "bell"" of the Picture Tube as far forward on the neck of the tube as is possible. Be sure the wire loops on the mounting make positive contact with the coating of the picture tube. The Focus Coil is next in line and the Ion Trap last.
Turn the set on. The antenna should NOT be connected to the receiver and
should be set at MINIMUM.

With the brilliance control set at about one-quarter urn back from maximum, the Ion trap should be adjusted to achieve the brightest raster on the face of ated and moved back and forth on the neck of tube until exact setting is obtained.
Adjust the brilliance control to a point slightly ovet normal brightness and adjust the Focus Control on the rear of the chassis for clearest and sharpest horizontal sweep lines. The Ion Trap should hen be readjusted be at which good tocus is maintained

The Focus Coil itself should be moved to secure a complete raster, approximately centered and with no corners cut off. This being accomplished it should be secured by the screws provided.
Finally the Deflection Yoke should be rotated to "square" the raster with the chassis as a reference. the thumb screws on the yoke brackets should then be set.

\section*{HORIZONTAL OSCILLATOR}

\section*{ALIGNMENT}

HORIZONTAL OSCILLATOR ALIGNMENT - To ad just the horizontal oscillator and its control circuits it is necessary to first connect a working antenna to the coming signal rather than a picture. The following steps should then be taken:
- With the receiver turned on and the brightness and picture controls adjusted to a normal position the Horizontal Frequency trimmer and the Horizontal Locking rimmer (both rear of chassis) should be turned clockwise all the way and then back
(counter-clockwise).

2 - The Horizontal Hold Control (front panel) should be turned to \(\alpha\) maximum clockwise position.
3 - The core of the Horizontal Oscillator Transformer see figure 11 parts location) should then be adjusted. ariation of this core will cause the pattern to resolve the right or to the left depending upon the degree of adjustment. The transformer should be adjusted to the point where the picture resolves into a series of from \(31 / 2\) to \(41 / 2\) bars sloping downwards to the right.
4 - The Horizontal Hold Control (front panel) should now be rotated to a full counter-clockwise position and the incoming signal momentarily interrupted. (This can be done most easily by shorting the antenna terminals for a moment). This should cause the picture to again resolve into a series of bla
slanting now downward to the left.
5 - The Horizontal Hold Control (front panel) should now be rotated slowly in a clockwise direction. As the control is turned the number of bars sloping downward rotation there should remain between \(31 / 2\) and \(41 / 2\) bars just prior to the time that the picture "falls into" sync. The picture should remain in sync for an additional \(90^{\circ}\) of clockwise rotation. If MORE than \(41 / 2\) bars are evident just before the picture syncs the Horizontal Locking Range trimmer (rear of chassis) should be tightened slightly. If LESS tham \(31 / 2\) bars, the same trimmer should be loosened.

\section*{MODELS TV-284, TV-287,}

\section*{TV-288, Ch. TT; TV-286,}

\section*{HEIGHT, WIDTH AND LINEARITY}

To adjust the overall size and linearity of the picture it is necessary that a pattern transmitted from a loca station be used. Linearity adjustments, particularly It should also be remembered that in areas where mor than one station is being received, pictures transmitted by different stations will vary slightly in size and linearty. In view of this the smallest transmitted picture should be made to fill the area of the Picture tube delineated by the mask.

Following is the recommended procedure for complet height, width and linearity adjustment; (see Fig. 4 fo location of controls).

1 - Turn the Width Control coil screw all the way in (clockwise).
2 - Adjust Horizontal Drive Trimmer for the best com zontal linearity. This control will primarily goodect the overall width and the left side of the picture
3 - Adjust the Horizontal Linearity Coil, (and the Horizontal Linearity control in Model 286) for bes Horizontal Linearity Coil will have most effect on the center of the picture while the Control will adjust th center and right half. These two adjustments will in teract and the setting of one will affect the range and effect of the other.
4 - The width control coil should now be adjusted to give a picture that will fill the mask horizontally.

5 - The Height and Vertical Linearity controls should be adjusted for a linear picture that will fill the mask vertically.
6 - Picture centering is accomplished by positioning he locus coil mechanically by means or tour 4 hex head adjus screw (3 h Model 286) acc. he rear of the chassis as shown in Fig. 10

7 - Adjust the Focus Control for clearest delineation be made with a picture rather tham with a raster.
© John F. Rider

PARTS LIST
\begin{tabular}{|c|c|c|c|c|c|}
\hline part number & \(\underset{\substack{\text { schematic } \\ \text { Location }}}{\text { a }}\) & descraption & part number & & description \\
\hline & & Slstors & TTP 52 & & Trimmer.issembly
.002 MFD 600 V Paper Tubular \\
\hline & \({ }_{\text {R }}^{\mathrm{R}} \mathrm{R}\) 10, 105 & & ¢TCPM-103-10-4 & & \({ }_{0}^{01}\) MFD \({ }^{\text {a }}\) \\
\hline & & & TTPP-203-4-
TCPM-203-10 & & (tay \\
\hline & & & & \({ }^{\text {c }}\) & \\
\hline (tactiole & & ler & (tcpeso & \({ }_{\text {c }} \mathrm{C} 9314\) & \\
\hline \({ }_{\text {TRC- } 2211-1}^{\text {Tren }}\) & & & TCPM-104.4 & & \\
\hline \(\xrightarrow{\text { TRCC-31-1 }}\) TRC-391-5 & \({ }_{\substack{R \\ R \\ R \\ 10 \\ 10 \\ 10}}\) & & & \({ }_{c}^{\mathrm{c}} \mathrm{c}_{\mathrm{c} 53,9}\) & \({ }_{21}^{15}\) \\
\hline \(\xrightarrow[\substack{\text { TRC- } 561-2 \\ \text { TRC } 1020-1}]{ }\) & & & & c
\(\substack{83,103 \\ c 102,88}\) & \\
\hline & & & & & electrolytics \\
\hline \({ }_{\text {TRCC-152-8 }}^{\text {TRC-272-5 }}\) & & (1, & & & cectrolytics \\
\hline & \(cR75
R37\) & & (TCEE-108-D & \({ }_{C}^{C 62,63}\) & \({ }_{\substack{\text { a }}}^{40-40} \mathrm{MFD}\) \\
\hline & & \({ }_{\substack{4.7000}}^{\text {Onms }}\) & TCE & \({ }_{\substack{c \\ C \\ C 812}}\) & \({ }_{\text {cosem }}^{\text {Sod }}\) \\
\hline & \({ }_{\substack{\text { R } \\ \mathrm{R} \\ \mathrm{R} \\ \mathrm{R}, 6,67,7,7,92}}\) & \(\underbrace{\text { onms }}_{\substack{6,200 \\ 8,200}} \mathrm{omms}\) & \(\underbrace{\text { TCE- } 212-\mathrm{D}}_{\text {TCEE-12-D }}\) & & \\
\hline \(\xrightarrow{\text { TRCC- }}\) TRC-103-3 & & & & & \\
\hline & & & E-130-D & c 21 & (10) \(10 \times 5\) \\
\hline & & & & & controls \\
\hline & & & & ¢ \({ }_{\text {R } 78}\) & Verrcal Size 2.5 eneghms \\
\hline & & & & \({ }_{\text {R }}^{\text {R }} 17\) & \\
\hline & & \({ }_{\text {cosem }}\) & & & Hor \& Vert. Hold 50 K \& 1.5 M Onm \\
\hline & & & & \({ }_{\text {R }}^{\text {R } 110.42}\) & \\
\hline & - & & & & ANsFormers \\
\hline 隹 & & & & \({ }_{\text {L22 }}^{\mathrm{L} 21}\) & Wiath contral Coil \\
\hline & & & \({ }_{\text {TLF- }}^{\text {TLe }}\) & & \\
\hline & & & & \({ }_{\text {L }}^{1} 20\) & \\
\hline & & & \({ }_{\text {TLLF-147-D }}^{\text {TLP }}\) & \(\underset{\substack{L \\ L \\ L, 8,10,15}}{\text { c, }}\) & Fi. F. Coill \\
\hline & \(\underset{\substack{8 \\ 8 \\ R \\ 14}}{ }\) & & & \({ }_{\substack{\mathrm{L} \\ \mathrm{L} \\ \hline 1 \\ \hline 11}}\) & \\
\hline & & \({ }^{2200 \mathrm{k}}\) Omms \(1 / 2 \mathrm{w} .100\) & \({ }_{\text {cter }}^{\text {TLF-5-14-D }}\) & & \\
\hline (tac- & \({ }_{\text {R }}^{\text {R }}\) 87 & & & \({ }_{\text {L }}^{2}\), 1 & 1.5 \\
\hline & & & & \(L^{3}\) & 18 K Resistor \\
\hline & \(\underbrace{}_{\substack{\text { R } \\ \mathrm{R} \\ \mathrm{R} 12,10,16,49}}\) & & & \({ }_{T}\) & Power Transormer \\
\hline & & & \(\xrightarrow{\text { TTPR-14-1 }}\) & \({ }_{T 4}\) & \\
\hline & & & & & Vert. Outuut Trans.
Rato
detector Trans. \\
\hline & & & & & \\
\hline & & (ex & & \({ }_{17}^{L 17}\) & Filter choke \\
\hline тес-395-1 & & 3.94 oms \(1 / 2 \mathrm{w}\). \(30 \%\) condenser & & & Hor. Output Trans.
Audio Output Trans. HARDWARE \\
\hline & & & & & Puse - 1/4^250V \\
\hline & & \({ }_{88}{ }_{8}^{5}\) & \({ }_{\text {TPL }}^{\text {TPL- } 101}\) & & 1nterlock Pusg \\
\hline & & \({ }^{180}\) & & & Essutheon \\
\hline \(\substack{\text { Tceceielile } \\ \text { TCC-15-10 }}\) & & (tas & Tokeremed & & \\
\hline TCC-152-10 & & 1,500 MMF Ceramic 20\% 800V
5,000 MMF Ceramic Disc cove & \({ }_{\text {TKN- }}^{\text {TKN-116-D }}\) & & \begin{tabular}{l|l}
\(\substack{\text { Inside Krob } \\
\text { Dual Knob }}\) & TV-287
\end{tabular} \\
\hline TCC-502-sp & c \(20,20,2,37,4,4\),
44,51 & ,000 mıF Cer & & & \\
\hline & & & & & Smask \\
\hline & \({ }_{\text {c }}^{\text {c } 95}\) & & TCB-267-D & & caminet \\
\hline & & (en & & & \({ }_{\text {Escutcheon }}^{\text {Back }}\) \\
\hline & & & \(\substack{\text { TKN- } 1124-\mathrm{D} \\ \text { TKN-15-D }}\) & & Soter \\
\hline & & & ¢ & & \\
\hline & & & & & \\
\hline \({ }_{\text {TCM }-222-14}\) & \({ }^{\mathrm{C}} 87\) & 2,200
4
4 & \(\underset{\substack{\text { TMS-850-D } \\ \text { TSP-80 }}}{ }\) & & \\
\hline \({ }_{\text {ctem-501-SP-(5) }}^{\text {T }}\) & c 966 ¢7,98 & 4,500 MMF Mica & \({ }_{\text {TCB }-2655}\) & & Cabinet \\
\hline
\end{tabular}

\section*{PARTS LIST NOTES}

\section*{ \\ }
(3) -R 98 is 47 Ofme in model 288 and 88 Ohms in models 284, 287, 288
(4)-R 102, 109 are \(27 \times 2 \boldsymbol{W}\) in model 288
(5) - In models 284, 287, 288, C 97 is. \(25-400 \mathrm{~V}\) and C 98 is \(.1-1000 \mathrm{~V}\)
(6)- In models 284, 287, 288, C 100 is 56 MMF in yoke
(7)-In models 284, 287, 288, C 99 is . 035 - 600
(8)- In models 284, 287, 288, C 101 is 10 MMF - 1500 V Mica.
(9)-R 111 - 500 ohm Lin. Control not used in models 284, 287, 288
(1) - TLF - 505 is used in models 284, 287, 288
(11) - TLF - 508 is used in models 284, 287, 288
(38) - TLF - 545 - D is used in models \(284,287,288\)
(19) - TTR - 183 - \(D\) is used in models 284, 287, 288

TV 301

TV 305

\section*{SPECIFICATIONS}

POWER SUPPLY 105 to 125 Volts - 60 Cycle AC POWER CONSUMPTION 220 Watts
POWER OUTPUT (AUDIO) 2 Watts (undistorted)
INPUT IMPEDANCE 72 Ohms

PICTURE TUBE SIZE TV \(300-301 \quad 10\) inch TV \(304-305 \quad 12\) inch
S P E A K ER
\(4^{\prime \prime}\) X \(6^{\prime \prime}\) oval PM — Voice coil 3 ohms
DIMENSIONS
TV \(300-301\)
\(20^{\prime \prime}\) Wide X \(19^{\prime \prime}\) Deep X 121/2" High
TV 304-305
21 \(1 / 2^{\prime \prime}\) Wide X \(18^{\prime \prime}\) Deep X \(16^{\prime \prime}\) High
SHIPPING WEIGHT
TV \(300-301\) App. 81 lbs . TV 304 - 305 App. 79 lbs
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{TUBE COMPLEMENT} \\
\hline 1. & 6J6 & V20 & RF Amplifier \\
\hline 2. & 6AG5 & V19 & Mixer \\
\hline 3. & 6 J 6 & V18 & RF Oscillator \\
\hline 4. & 6AG5 & V5 & 1st Video IF Amplifier \\
\hline 5. & 6AG5 & V6 & 2nd Video IF Amplifier \\
\hline 6. & 6AG5 & V7 & 3rd Video IF Amplifier \\
\hline 7. & 6AL5 & V10-A & Video Detector \\
\hline & & V10.B & A.G.C. \\
\hline 8. & 12AU7 & V 9 & 1st and 2nd Video Amplifier \\
\hline 9. & 6AU6 & V1 & 4.5 Mc . Amplifier \\
\hline 10. & 6AL5 & V2 & Ratio Detector \\
\hline 11. & 6AT6 & V4 & 1st Audio Amplifier \\
\hline 12. & 6K6 & V3 & Audio Outpur \\
\hline 13. & 6SN7 & V11 & Sync Separator \\
\hline 14. & 6BF6 & V8-A & Limiter \\
\hline & & V8-B & Vertical Sweep Oscillator \\
\hline 15. & 6K6 & V12 & Vertical Sweep Amplifier \\
\hline 16. & 6SN7 & V14 & Horizontal Sweep Oscillator and Sync Guide \\
\hline 17. & 6BG6 & V15 & Horizontal Sweep Output \\
\hline 18. & 6W4 & V16 & Damper \\
\hline 19. & 1 B 3 & V13 & High Voltage Rectifier \\
\hline 20. & 5 U 4 & V17 & Power Rectifier \\
\hline 21. & I0BP4́ & V21 & Picture Tube TV 300-301 \\
\hline & 12LP4 & V21 & Picture Tube TV 305 \\
\hline
\end{tabular}

\section*{FREQUENCY CHART}

IF FREQ. - SOLND - 32.8 MC
PICTURE - 37.3 MC
\begin{tabular}{|ccccc|}
& IF FREQ. - SOUND -32.8 MC & PICTURE -37.3 MC \\
\hline \hline & & PICTURE & SOUND & RF OSCILLATOR \\
CHANNEL & FREQUENCY & FREQUENCY & FREQUENCY & FREQUENCY \\
2 & 54.60 & 55.25 & 59.75 & 92.55 \\
3 & 60.66 & 61.25 & 65.75 & 98.55 \\
4 & 66.72 & 67.25 & 71.75 & 104.55 \\
5 & 76.82 & 77.25 & 81.75 & 114.55 \\
6 & 82.88 & 83.25 & 87.75 & 120.55 \\
7 & 174.180 & 175.25 & 179.75 & 212.55 \\
8 & 180.186 & 181.25 & 185.75 & 218.55 \\
9 & 186.192 & 187.25 & 191.75 & 224.55 \\
10 & 192.198 & 193.25 & 197.75 & 230.55 \\
11 & 198.204 & 199.25 & 203.75 & 236.55 \\
12 & \(204-210\) & 205.25 & 209.75 & 242.55 \\
13 & 210.216 & 211.75 & 215.75 & 248.55 \\
\hline
\end{tabular}
©John F. Rider

VOLUME - \(\overline{\mathrm{ON}-\mathrm{OFF}}\) - The volume control is an udio control only and has no effect on the picture. It is connected in the grid circuit of the audio amplifier (V-4). The power on and off switch is combined with the volume control.
HORIZONTAL HOLD - The Horizontal Sweep Oscillator uses Automatic Frequency control. As a result the Horizontal Hold Control will only be used if the picture should resolve into a series of heavy, oblique, back and white lines. A fast twist of the knob will then cause the picture to correct itself
VERTICAL HOLD - The vertical hold control is not a critical control. This control is in the grid circuit of the first half of the vertical oscillator (\(\mathrm{V}-8 \mathrm{~B}\)).
PICTURE - Controls video gain through the AGC diode cathode (V-10A). It should be remembered that this receiver uses AGC and therefore will rarely overload despite contrast setting.
BRIGHTNESS - This control operates by varying the DC potential on the cathode of the Kinescope (V-21). STATION SELECTOR - The inner (bar) knob of this control will operate the station selector. The outer (circular) knob will activate the Fine Tuning control, a corrector for the R.F. Oscillator.

WIDTH - The Horizontal Sweep is determined by the current flowing through the Horizontal Yoke Coil. The current through this coil (L13 \(\dot{\mathrm{B}}\)) is controlled by Width Control (L15) which is a variable reactor having the effect of changing the turns ratio of this winding of the Horizontal Output and H.V. Transformer (T6). HEIGHT - This control is a voltage dropping rheosat operating in the plate circuit of the Vertical Sweep Oscillator (V8B). It changes the voltage delivered to (V-12) Vertical Amplifier feeding current to transormer coupled Vertical Yoke Coil (L13A). Since changes in height will affect picture linearity, this Height Control must be adjusted in conjunction with Vertical Linearity Control.
VERTICAL LINEARITY CONTROL - This is a variable resistor control (R69) in the cathode of (V-12) which provides inverse feedback variation affecting the linearity of the Vertical Sweep Wave form. To be adjusted as height control is adjusted.

FOCUS CONTROL - This is a Variable Resistor (R80) which varies the current through focus coil (L-12).
HORIZONTAL AND VERTICAL CENTERING Centering of the picture area is accomplished in this receiver by finding that position for the focus coil in the horizontal and verrical planes that produces this result. The focus coil bracket is adjusted so that if the four hexagon-head screws are loosened it can be shifted up and down and from side to side enabling the centering position to be found by trial.

\section*{brief circuit analysis}

The Tele-tone Telcvision receivers Models, TV 300, 301, 304 and 305 use the Intercarrier sound systems. In this system the \(\mathbf{R F}\) section of the receiver receives both the picture and the sound carriers which are converted by the mixer (V19) and then fed into the IF. No separa tion takes place until after the Video Amplifier (V9) At this point the sound component of the dual signal is picked off by the 4.5 trap (T1) and fed through the Ratio Detector, the sound Amplifier and the Audio out put stages. The Picture IF frequency is 37.3 Mc and the Sound IF is 32.8. For individual stage frequencies see "Video IF Alignment". (Page 7)

TUNER - In the initial runs of this model a 12 coil uner, much the sanne as previous Tele-tone tuners is used. In later runs a new type 7 coil tuner is employed. The ternis " 12 coil" and " 7 coil" refer to the variable oscillator coils only. The RF and Mixer sections remain essentially the same.
RF AMPIIFIER - The antenna is fed between cathode and grid of the grounded grid RF amplifier (\(V-20\)). The input circuits of which are untuned. Double tuned interstage coupling is used between the plate of the RF Amplifier (V-20) and the grid of the mixer (V-19) Hechanically, the series inductances used take the form of sereral individual coils which are cut in or out of their respective circuits by means of the band switch. These coils will rarely need adjustment.
MIXER - The output of the RF Amplifier (V-20) and the Local Oscillator are condenser fed into the Control Grid Mixer Stage (\(V-19\)). This circuit is tuned in nuch the same namner as the output of the R1: Amplifier, previously described.

OSCILLATOR-12 COIL TUNER-The RF Oscillator (V-18) is fairly straight-forward in operation. Its main peculiarity is that the coil for Channel 2 is permanently parallel to all other Oscillator coils from 3 to 13. It is therefore necessary, when aligning the oscillators to ALIGN CHANNEL 2 FIRST and the rest of the coils in any order thereafter: They are tuned by brass slugs accessible through two slots in the front of the receiver chassis. Channel 2 is found at the top of the right hand slot and the ochers follow in regular order in a clockwise direction finishing with Channel 13 at the top of the left hand slot.
OSCILLATOR-7 COIL TUNER-As stated above, in later runs of these models a new type, 7 coil tuner is employed. In these tuners the only change is in the arrangement of the Oscillator coils. Where, previously 12 individual coils were used (one for each channel) 7 coils are now substituted. The coils for Channels 2 and 13 will remain substantially as before. The other channels will be paired with one variable and two smal fixed coils, as shown in Fig. 6B. Typically, channels 3 and 4 have only one adjustment. This adjustment may be made on either station and the other will be found to be properly tuned. Any slight variations will be more than compensated for by the fine tuner. A study of Fig 6B will show that, as previously, channel two must be tuned first, if at all, and the remaining channels in any order thereafter. The seven adjustments are for the fol lowing groups of channels; - Channel 2 - Channels 3 and 4 - Channels 5 and 6 - Channels 7 and 8 Channels 9 and 10 - Channels 11 and 12 - Channel 13
NOTE: The channel numbers on the escutcheon do not correspond to the location of the oscillator coils.

FIG. 6B
IDEO IF - Each Video IF transformer has only one adjustment. a powdered iron slug accessible from the wp of the chassis. The Video If String is stagger tuned o two frequencies. The first and third \(1 F\) transformers are tuncd to 34.9 Megacyeles and the second and fourth re tuned to 30.8 megacycles. The response curve is fairly fat copped and should produce a picture with

\section*{MODELS TV300, TV3}

VIDEO AMPLIFIERS - FIRST AND SECOND A 12AU7 (V-9), dual triode is used in this section of the receiver. The outpur of the detector is fed to the grid of the first section (pin 2) and ultimately taken of plate of the second section of the tube (pin 6). It is at this point the three basic components of the received signal are separated and fed to their respective circuits. The picture intelligence is fed to the grid of the Picture Tube (\(\mathrm{V}-21\)) and the synchronization pulses to th grid (pin 1) of the Syne Scparator (\(V-11\)) and from (V-8B), the Horizo "Soul Syst") Werical oscillators V.8B), also sce 'Sound System" below.
D. C. COMPONENTS - The D.C. component of the ransmitted signal (which controls the background brightness) is substantially duplicated in the receiver by direct coupling from the plate of the second video amplifier to the Picture Tube grid
SOUND SYSTEM - The sound Carrier is taken off the plate of the Video Amplifer (V-9) by a 4.5 Mcga cycle trap and fed through a 4.5 MC Amplifier (\(\mathrm{V}-1\)) to the Ratio Detector (\(\mathrm{V}-2\)), and then to the sound amplifier (\(\mathrm{V}-4\)), audio output (\(\mathrm{V}-3\)) and speaker
SWEEP SYSTEM - VERTICAL - The triode section of a 6BF6 (V8B) serves as the Vertical oscillator and discharge tube. A \(6 \mathrm{KG}\left(\mathrm{V}_{12}\right)\) is utilized as the Vertical Sweep Amplifier. The plate circuit of the 6K6 (V12) isansformer coupled to the vertical windings of the Deflection Yoke (L13-A)
SWEEP SYSTEM - HORIZONTAL - The Hori zontal Oscillator is essentially of the Blocking Oscillator sype. The operation of the AFC system depends upon correcting voltage developed in the control tube when he oscillater output and the incoming pulses differ in cither phatse or frequency. The control tube, first sec boon (V-14), is maintained at cut-off until such time a. he sync pulse is either ahead of or behind the oscillator, (second section V-14). sawtooth peak. When either dase occurs the control cube develops a voltage which is pplied as a bias to the oxcillator grid and alters the ascillator frequency to coincide with the frequency of the incoming pulses. The horizontal oscillator transformer has an adjustable core which is a coarse contro of the oscillator frequency. The Horizontal frequenc. Control (rear) is a fine adjustment in the same sense The front panel Horizontal Hold Control permits sligh djustment of the frequency by adjusting the \(B\) voltage applied to the control tube plate. The Horizontal Lock ing Range Controlaffects the sensutity of the contro tube thus varying the range over which the AFC circuit will function
NOTE: Many of the components in the Horizontal cir cuits are of the critical value and thercfore should only be replaced by the exact replacement part. Care should also be taken in dressing leads and parts when replaced This can be accomplished by carefully noting parts positions before removal. For complete alignmeat pro cedure on these circuits see page (8)
A.G.C. - The receiver uses an AGC circuit operating TEST SOCKET
on the first \(21 r\) stages (V-S) (V-6). While it is quite in regions of locations, the receiver may overload generally be adjusted for a normal picture under such conditions but spurious beats, jagged vertical lines (i.e. poor resolution) and a "Moire" pattern may appear. These effects can be eliminated by the use of a resistor network of 3 to 10 db attenuation in series with the an eenna lead at the point where it is connected to the receiver.
HIGH VOLTAGE POWIER SUPPLY - The energy stored in the horizontal windings of the deflection yoke during the forward sweep produces high voltage surges during retrace. This is "stepped up" by the "auto-transformer" winding of the horizontal outpu transformer (\(\mathrm{T}-6\)) and then rectified by a 1B3/8016 (V-13) to provide approximately 9000 volts for the picture tube (V-21) anode.
B VOITAGE POXIER SUPPLY - The B Supply of these models utilizes a standard type of transformer rectifier circuit. It should be noted that the transformer contains a separate filament winding (6.3 volts) to heat the Cathode Ray Tube (V21) and the Dampe (\(\mathrm{V}^{\prime} 16\)). The use of a center-grounded bleeder network provides a B Supply with the following voltages mea sured with respect to ground; plus 240 volts, plus 140 volts, plus 4 volts, minus 3.5 volts, minus 14 volts, and inus 90 volts.

\section*{ALIGNMENT PROCEDURE}

The alignment of this Receiver can be broken down into three basic parts.
I - Video IF Alignment 2 - RF Alignment

> 3 - Sound Alignment
> TEST EQUIPMENT

CATHODE RAY OSCILLOSCOPE - The tube size is relatively unimportant, however, anything under 5" usually makes fine adjustment quite difficult.
SWIEEP GENERATOR - The sweep generator used should have linear coverage of a center range from 30 to 220 megacycles. The output should be fairly fla oner wide frequency variation of the sweep. It should be capable of an output of about 0.1 volt with attenuation. It is preficrable that the generator have a deflection output for the test oscilloscope.
AM SIGNAL GENERATOR - This generator should have a frequency range of from 4.5 to 220 megacycles. As this generator is used occasionally as a market generator, accuracy is an important factor. It should be capable of 0.1 volt output with attenuation and should be linear through the range.
VACLLM TLBE VOLTMETER - Almost any standard make VTVM will do. It should preferably have a reversible polarity switch.

In each of these models a Test Socket is provided which gives convenient access to the various points where either a vacuum tube voltmeter or an oscilloscope must be inserted for proper alignment. A letter diagram in the margin of the schematic will locate these points by meants of corresponding letters in the schematic proper. A typical Octal socket is used and it should be noted that the diagram shows an UNDERSIDE VIEW. Two ground points are supplied on separate pins of the test socket for easy metering. Reference is made, in the following Alignment Procedures, to the pins on this Test Socket

\section*{VIDEO IF ALIGNMENT}

An adequate signal can be fed through the video IF string by feeding the output of the signal generator into a tube shield placed over the mixer tube (6AGS) (V-19). Care should be taken that this shield is NOT grounded. The ground side of the generator output can be conveniently grounded to the shield of the ad jacent oscillator tube.
The contrast control should be set to produce minus volts on Pin 7 GAL5-AGC tube. (V-10A).
The vaco the 8200 ohm detector load resistor (Pin B Test Sock et) and should be set on the minus 3 Volt scale. Set channel selector to an unused low band channel.
The Signal generator should be set to a frequency of 34.9 Mc. The output of the generator should be ad usted to the point where the reading on the VTVM is between minus 1 to minus 1.5 volts.
The First and Third I.F. coils should be peaked for a maximum reading on the VTVM. As the voltage read ing increases with tuning, the generator should be at tenuated to maintain a maximum of minus 1.5 volts.
Set the Signal Generator to a Frequency of 36.8 Mc and tune the Second and Fourth I.F. coils in the same manner as above.
Set the Signal Generator to a frequency of 32.8 and tune the trap (L6) for a MINIMUM reading on the VTVM.

The Third I.F. coil should then be readjusted as described previously.
The Generator should now be shut off (or tuned to different band) and the VTVM should read no more than minus 0.20 volts. If there is a higher voltage reading, check for regeneration in the I.F. stages.
By shunting the signal generator with a sweep genera tor (30 to 40 Mc) and substituting a Cathode Ray Os cilloscope for the Vacuum tube Voltmeter in the abov procedure the actual pass band of the Video I.F. cir cuits may be studied. Ideally the response curve should appear on the face of the oscilloscope in the form in dicated in Figure (7A). A slight slope of the top of the curve in either direction or a small dip in the center are acceptable as indicated in Figure (\(7 \mathrm{~B} \& \mathrm{C}\)).

a point approximately \(50 \%\) up on the slope of the opposite side of the band pass curve. Certain variations in the waveshape and the location of the picture carrier are acceptable. The picture carrier may vary in position from a point between \(45 \%\) and \(60 \%\) of the slope and the overall waveshape may differ from the ideal, flattopped response by being either slightly rounded or slightly dipped in the center. See Figure (8).

If the position of the picture carrier varies beyond the \(45 \%\) to \(60 \%\) points on all channels correction may be made by turning to channel 6 , applying the proper input signals and slightly realigning the I.F. transformers.

\section*{SOUND ALIGNMENT}

Sound alignment on these receivers is best accomplished by using an actual transmission received on an antenna and fed in the normal manner to the antenna terminals. A Vacuum Tube Voltmeter should first be inserted be tween the output plate of the Ratio Detector Diode (pin 2 V2) and ground. This point may be reached through pin \(C\) of the Test Socket. The meter should be set on the minus 10 volt scale. With the equipment so placed the 4.5 Mc trap (\({ }^{2} \mathrm{C}\)) and the primary of the Ratio Detector Transformer (bottom adjustmrnt, T2) should be adjusted for a maximum deflec...n of the meter. The hot lead of the meter should now be moved to the junction point of R19, C22 and C23 (Pin A Test Socket), and the secondary of the Ratio Detector Transformer should be adjusted for a ZERO reading. (Note: There are 3 points at which the meter will zero. Only one of these is correct. At the proper setting the meter should swing negative on one side and positive on the other side of zero). In cases where it is necessary to aign the sound section when no station transmission is available a Single frequency signal generator tuned to 4.5 megacycles may be fed into the output circuit of the Video Detector (Pin B Test Socket). The receiver should then be aligned in the same manner as described above. The disadvantage of this method is that any inaccuracy in your signal generator will show up as misalignment when the set is in actual operation, since proper adjustment is very critical

MODELS TV300, TV301,
TV304, TV305, Ch. TW, TX

©John F. Rider

RESISTANCE CHECK CHART
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Tube} & \multicolumn{9}{|c|}{Pin Numbers} \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 4.5 Mc A mp. & 6AU6 & 1.5 & 0 & 0 & 0 & 29K & 29K & 200 & & \\
\hline Rat. Det. & 6AL5 & 15K & 15K & 1.8 & 0 & Inf. & 0 & Inf. & & \\
\hline Aud. Output & 6V6 & 29K & 0 & 29.4K & 29K & 470K & - & 0 & 150 & \\
\hline Aud. Amp. & 6AT6 & 10Meg & 0 & 0 & 0 & 0 & 0 & 450K & & \\
\hline 1st IF & 6AG5 & 700K & 39 & 0 & 0 & 30K & 30K & 39 & & \\
\hline 2nd IF & 6AG5 & 700K & 39 & 0 & 0 & 30K & 30K & 39 & & \\
\hline 3rd IF & 6AG5 & . 1 & 100 & 0 & 0 & 30K & 30K & 100 & & \\
\hline Vid. Amp. & 12AU7 & 32K & 8.2 K & 0 & 0 & 0 & 33K & 1 Meg & 47 & 0 \\
\hline Det.-AGC & 6AL5 & 0 & 120K & 0 & 0 & \(2.7 \mathrm{~K}^{*}\) & 0 & 8.2 K & & \\
\hline Ver. Osc. - Lim. & 6SR7 & 0 & \({ }^{1} \mathrm{Meg}{ }^{+}\) & 0 & 3.9Meg & 3.9Meg & \(2.5 \mathrm{Meg}{ }^{++}\) & 0 & 0 & \\
\hline Syn. Sep. & 7N7 & 0 & 0 & 46 K & 1 Meg & 3.9Meg & 30K & 6.8K & 0 & \\
\hline Vert. Amp. & 6V6 & - & 0 & 140K & 140K & 2.2Meg & 30K & 0 & 1K & \\
\hline Hor. Osc. & 6SN7 & 750K & 140K** & 300K & 220K & 220K & 0 & 0 & & \\
\hline Hor. Output & 6BQ6 & 28K & 0 & - & 32K & 220K & 45 & 0 & 140 & \\
\hline Damper & 6 W 4 & 100K & - & 120K & 28K & 28K & - & 28K & 28 K & \\
\hline Rectifier & 5U4 & - & 29K & - & 72 & - & 72 & - & 29K & \\
\hline
\end{tabular}

Conditions:-
A - All Measurements to ground (chassis)
B - All controls fully clockwise except Focus control fully counter-clockwise.
C - Line cord disconnected - switch off.
Notes:-
- Reading will vary with setting of picture control.
** Reading will vary with setting of horizontal hold control.
++ Reading will vary with setting of height control.
voltage check chart
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Tube} & \multicolumn{9}{|c|}{Pin Numbers} \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 4.5 Mc Amp. & 6AU6 & 0 & 0 & & & 140v & 140v & 1.4 v & & \\
\hline Rat. Det. & 6AL5 & 0 & 0 & & & 0 & 0 & 0 & & \\
\hline Aud. Output & \({ }^{606}\) & 230v & 0 & 185v & 200v & 0 & & & \(7 v\) & \\
\hline Aud. A mp. & 6AT6 & 1 v & 0 & & & 0 & 0 & 52v & & \\
\hline 1 st IF & 6AG5 & -7v & 0 & & & 150 v & 150v & & & \\
\hline 2nd IF & 6AG5 & -7v & \({ }_{1}\) & & & \({ }_{150 \mathrm{v}}^{150}\) & 150 v
140 v & & & \\
\hline 3rd IF & 6AG5
12AU7 & 0
100 v & 1 v
-.3 v & 0 & & 140v & 140 v
150 v & 0 & 1v & 0 \\
\hline Det. AGC & 6AL5 & 0 & -7.5v** & 0 & & -7.5v* & 0 & -.3v & & \\
\hline Ver.Osc.-Lim. & 6SR7 & 0 & 70v+ & 0 & -3.1v & -3.1v & \(330 v^{++}\) & & 0 & \\
\hline Syn. Sep. & 7N7 & 0 & 0 & 100v & -.5v & -3v & \(230 v\) & 7.5v & & \\
\hline Vert. Amp. & \({ }^{6 \mathrm{~V} 6}\) & & \(0{ }^{* *}\) & 360 v & 360 v & -1v & 150v & & 45 v & \\
\hline Hor. Osc. & 6SN7 & -15v & \(90 \mathrm{v}^{* *}\) & -7v & -70v & 170v & 0 & & & \\
\hline Hor. Output & 6886 & \({ }^{150 \mathrm{v}}\) & & & \({ }^{120 \mathrm{v}}\) & \(-18 \mathrm{v}\) & -7.5v & \({ }_{230}^{0}\) & \({ }_{230 \mathrm{v}}^{.7 \mathrm{v}}\) & \\
\hline Damper Rectifier & 6W4
504 & 340v & 255v & 380v & 260v & 255v & & 230v & \[
\begin{aligned}
& 230 \mathrm{v} \\
& 255 \mathrm{v}
\end{aligned}
\] & \\
\hline
\end{tabular}

Conditions:
A - Line Voltage 117 Volts 60 cycle A.C.
B - All Measurements to ground, (chassis) taken with a Vacuum Tube.Voltmeter
C - Switch on and all controls at minimum (counterclockwise)
D - Tuner set to Channel 3 with no antenna or signal applied.
Notes:-
Reading will vary with setting of picture control.
** Reading will vary with setting of horizontal hold control
+ Reading will vary with setting of vertical hold con
\begin{tabular}{|c|c|c|}
\hline part nunbir & \(\underset{\substack{\text { schenurtc } \\ \text { Locatrow }}}{\text {. }}\) & pescriprion \\
\hline & \multicolumn{2}{|r|}{Resserons} \\
\hline & R16 & \\
\hline & \({ }^{\text {R 3 3, }}\), 3 & \\
\hline & \({ }_{\text {R }}^{\text {R }}\) & \({ }_{47}^{47}\) Ommams \({ }^{\text {che }}\) \\
\hline & & \\
\hline \(\underset{\substack{\text { TRC } \\ \text { TRC } \\ \text { 231-1-1 }}}{ }\) & & \\
\hline & \({ }_{\text {R }}^{\text {R }}\) & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline \(\xrightarrow{\text { recter }}\) & & \\
\hline & \({ }_{\text {R }}\) & t,700 Oomms \({ }^{\text {comen }}\) \\
\hline \(\underset{\substack{\text { Trc } \\ \text { TRC } 8282-1}}{\text { 822-1 }}\) & & \\
\hline & \({ }_{\substack{R \\ R \\ R 109}}^{\text {Reg }}\) & \\
\hline & & \\
\hline & R 55 & \\
\hline & \({ }_{\text {R }}^{\text {R }}\) R 40.58 & \\
\hline & & 3ok omme Temp. Compones \\
\hline & & \\
\hline & & \\
\hline & & 退 \\
\hline & \({ }_{\text {R R }}^{\text {R }}\) & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & soik omms \\
\hline \({ }_{\text {cta }}^{\text {Trac }}\) & & \({ }^{1}\) \\
\hline \({ }_{\text {Trem }}^{\text {Trc }}\) & & \\
\hline & cien & \\
\hline \({ }_{\text {TRP }}^{\text {TRO }}\) & \({ }_{\mathrm{R} 75}^{\mathrm{R} 22}\) & ,000 Ohme 20 Watt Pigtall CONTROLS \\
\hline \multirow[t]{5}{*}{} & & \multirow[t]{3}{*}{Hetght (2.5 Meg)
Vert. (1.5) Mog Bor. Hold (50 \()\) Brightness (500 K) \& Contrant (11.5 K) Vert. Linearity (5,000 WW) Focus (\(2,250 \mathrm{ww}\))} \\
\hline & & \\
\hline & & \\
\hline & \multicolumn{2}{|r|}{cowornssrs} \\
\hline & \multicolumn{2}{|r|}{nica} \\
\hline & & \multirow[t]{4}{*}{} \\
\hline - & & \\
\hline & - & \\
\hline \(\underset{\substack{\text { TCH } \\ \mathrm{TCM} \\ \text { 202-14 }}}{ }\) & & \\
\hline & \multicolumn{2}{|r|}{ceramic} \\
\hline \({ }_{\text {TCC }}\) & & \\
\hline (TcC & & \\
\hline & & 1,500 \\
\hline (tate & & \\
\hline & \multicolumn{2}{|r|}{Paper} \\
\hline & \multicolumn{2}{|l|}{} \\
\hline & & \multirow[t]{8}{*}{} \\
\hline & & \\
\hline & \({ }_{\text {c }}\) & \\
\hline ¢ & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & , & Electrofuc \\
\hline & & \\
\hline & cosic & \\
\hline TCE-151-D & & \\
\hline & coic & \\
\hline
\end{tabular}

\section*{© John F. Rider}

© John F. Rider

NOTE: - When using 72 ohm co-axial down lead, it is important that its outer lead be connected to the shield side of the receiver transmission line. Check antenna terminal connections to determine shield side.

\section*{CONTROL FUNCTIONS}

RECEIVER FRONT PANEL CONTROLS

VOLUME - ON-OFF - The volume control is an audio control only and has no effect on the picture. It is connected in the grid circuit of the audio amplifier (V-4). The power on and off switch is combined with the volume control.
HORIZONTAL HOLD - The Horizontal Sweep Oscillator uses Automatic Frequency control. As a result the Horizontal Hold Control will only be used if the picture should resolve into a series of heavy, oblique, black and white lines. A fast twist of the knob will then cause the picture to correct itself.

VERTICAL HOLD - The vertical hold control is not a critical control. This control is in the grid circuit of the first half of the vertical oscillator (\(\mathrm{V}-8 \mathrm{~B}\)).

PICTURE - Controls video gain through the AGC diode cathode (V-10A). It should be remembered that this receiver uses AGC and therefore will rarely overload despite contrast setting.
BRIGHTNESS - This control operates by varying the DC potential on the cathode of the Kinescope (V-21).
STATION SELECTOR - The inner (bar) knob of this control will operate the station selector. The outer (circular) knob will activate the Fine Tuning control, a corrector for the R.F. Oscillator.

RECEIVER REAR CHASSIS CONTROLS

WIDTH - The Horizontal Sweep is determined by the current flowing through the Horizontal Yoke Coil. The current through this coil (L13B) is controlled by Width Control (L15) which is a variable reactor having the effect of changing the turns ratio of this winding of the Horizontal Output and H.V. Transformer (T6).
HEIGHT - This control is a voltage dropping rheostat operating in the plate circuit of the Vertical Sweep Oscillator (V8B). It changes the voltage delivered to (V-12) Vertical Amplifier feeding current to transformer coupled Vertical Yoke Coil (L13A). Since changes in height will affect picture linearity, this Height Control must be adjusted in conjunction with Vertical Linearity Control.
VERTICAL LINEARITY CONTROL - This is a variable resistor control (R69) in the cathode of (V-12) which provides inverse feedback variation affecting the linearity of the Vertical Sweep Wave form. To be ad justed as height control is adjusted.
FOCUS CONTROL - This is a Variable Resistor (R80) which varies the current through focus coil (L-12).
HORIZONTAL AND VERTICAL CENTERING Centering of the picture area is accomplished in this receiver by finding that position for the focus coil in the horizontal and vertical planes that produces this result. The focus coil bracket is adjusted so that if the four hexagon-head screws are loosened it can be shifted up
and down and from side to side enabling the centering position to be found by trial.

\section*{brief circuit analysis}

The Tele-tone Television receivers Models, TV 300, 301, 304 and 305 use the Intercarrier sound systems. In this system the RF section of the receiver receives both the picture and the sound carriers which are converted by the mixer (V19) and then fed into the IF. No separation takes place until after the Video Amplifier (V9). At this point the sound component of the dual signal is picke off by the 4.5 trap (T 1) and fed through the Ratio Detector, the sound Amplifier and the Audio output stages. The Picture IF frequency is 37.3 Mc and the Sound IF is 32.8. For individual stage frequencies see "Video IF Alignment". (Page 7).

TUNER - In the initial runs of this model a 12 coil tuner, much the same as previous Tele-tone tuners is used. In later runs a new type 7 coil tuner is employed. The terms " 12 coil" and " 7 coil" refer to the variable oscillator coils only. The RF and Mixer sections remain essentially the same.
RF AMPLIFIER - The antenna is fed between cath ode and grid of the grounded grid RF amplifier (V-20) The input circuits of which are untuned. Double tuned interstage coupling is used between the plate of the RF Amplifier (\(\mathrm{V}-20\)) and the grid of the mixer (\(\mathrm{V}-19\)) Mechanically, the series inductances used take the form of several individual coils which are cut in or out of their respective circuits by means of the band switch these coils will rarely need adjustment.
MIXER - The output of the RF Amplifier (V-20) and the Local Oscillator are condenser fed into the Con trol Grid Mixer Stage (V-19). This circuit is tuned in much the same manner as the output of the RF Amplifier, previously described.
OSCILLATOR-12 COIL TUNER-The RF Oscillator (V-18) is fairly straight-forward in operation. Its main peculiarity is that the coil for Channel 2 is permanentl parallel to all other Oscillator coils from 3 to 13. It is therefore necessary, when aligning the oscillators to ALIGN CHANNEL 2 FIRST and the rest of the coils in any order thereafter. They are tuned by brass slugs accessible through two slots in the front of the receiver chassis. Channel 2 is found at the top of the right hand
slot and the others follow in regular order in a clock wise direction finishing with Channel 13 at the top of the left hand slot.
OSCILLATOR-7 COIL TUNER-As stated above, in later runs of these models a new type, 7 coil tuner is employed. In these tuners the only change is in the arrangement of the Oscillator coils. Where, previously 12 individual coils were used (one for each channel) 7 coils are now substituted. The coils for Channels 2 and 13 will remain substantially as before. The other channels will be paired with one variable and two small fixed coils, as shown in Fig. 6B. Typically, channels 3 and 4 have only one adjustment. This adjustment ma be made on either station and the other will be found to be properly tuned. Any slight variations will be more than compensated for by the fine tuner. A study of Fig 6B will show that, as previously, channel two must b tuned first, if at all, and the remaining channels in any order thereafter. The seven adjustments are for the fol lowing groups of channels; - Channel 2 - Channels 3 and 4 - Channels 5 and 6 - Channels 7 and 8 Channels 9 and 10 - Channels 11 and 12 - Channel 13. NOTE: The channel numbers on the escutcheon do not correspond to the location of the oscillator coils.

FIG. 6A

VIDEO IF - Each Video IF transformer has only one adjustment, a powdered iron slug accessible from the op of the chassis. The Video IF String is stagger tuned to two frequencies. The first and third IF transformers are cuned to 34.8 Megacycles and the second and fourth are tuned to 36.9 Megacycles. The response curve is fairly flat topped and should produce a picture with good definition.

MODELS TV306, TV316,
MODELS TV306, TV; TV307, Ch. TY

\section*{OJohn F. Rider}

VIDEO AMPLIFIERS - FIRST AND SECOND A 12AU7 (V-9), dual triode is used in this section of A 12AU7 (V.9), dual triode is used in this section of the receiver. The output of the detector is fed to the grid of the first section (pin 2) and ultimately taken off plate of the second section of the tube (pin 6). It is at this point the three basic components of the received signal are separated and fed to their respective circuits. The picture intelligence is fed to the grid of the Picture Tube (V-21) and the synchronization pulses to the grid (pin 1) of the Sync Separator (V-11) and from there to the Horizontal (V-14) and Vertical oscillators (\(\mathrm{V}-\mathrm{BB}\)), also see "Sound System" below.
D. C. COMPONENTS - The D.C. component of the transmitted signal (which controls the background brightness) is substantially duplicated in the receiver by direct coupling from the plate of the second video amplifier to the Picture Tube grid.
SOUND SYSTEM - The sound Carrier is taken off the plate of the Video Amplifier (V-9) by a \(4.5 \mathrm{Mega-}\) cycle trap and fed through a 4.5 MC Amplifier (V-1) to the Ratio Detector (V-2), and then to the sound amplifier (V-4), audio output (V-3) and speaker.
SWEEP SYSTEM - VERTICAL - The triode section of a 6BF6 (V8B) serves as the Vertical oscillator and of a 6BF6 (V8B) serves as the Vertical oscillator and
discharge tube. A \(6 \mathrm{~V} 6(\mathrm{~V} 12)\) is utilized as the Vertical Sweep Amplifier. The plate circuit of the 6V6 (V12) is transformer coupled to the vertical windings of the Deflection Yoke (L13-A).
SWEEP SYSTEM - HORIZONTAL - The Horizontal Oscillator is essentially of the Blocking Oscillator type. The operation of the AFC system depends upon a correcting voltage developed in the control tube when the oscillator output and the incoming pulses differ in either phase or frequency. The control tube, first section (V-14), is maintained at cut-off until such time as the sync pulse is either ahead of or behind the oscillator, (second section V-14), sawtooth peak. When either case occurs the control tube develops a voltage which is case occurs the control
applied as a bias to the oscillator grid and alters the oscillator frequency to coincide with the frequency of the incoming pulses. The horizontal oscillator transformer has an of the oscillator frequency. The Horizontal Frequency Control (rear) is a fine adjustment in the same sense. The front panel Horizontal Hold Control permits slight adjustment of the frequency by adjusting the B voltage applied to the control tube plate. The Horizontal Locking Range Control affects the sensitivity of the control tube thus varying the range over which the AFC circuit will function.
NOTE: Many of the components in the Horizontal cirNOTE: Many of the components in the Horizontal cir-
cuits are of the critical value and therefore should only cuits are of the critical value and therefore should only
be replaced by the exact replacement part. Care should be replaced by the exact replacement part. Care should
also be taken in dressing leads and parts when replaced. also be taken in dressing leads and parts when replaced.
This can be accomplished by carefully noting parts This can be accomplished by carefully noting parts
positions before removal. For complete alignment propositions before removal. For comple
cedure on these cernits see page (9).
A.G.C. - The receiver uses an AGC circuit operating on the first 2 IF stages (V-5) (V-6). While it is quite effective in most locations, the receiver may overload in regions of very high field intensity. The contrast can generally be adjusted for a normal picture under such conditions but spurious beats, jagged vertical lines (i.e. poor resolution) and a "Moire" pattern may appear. poor resolution) and a Moire pattern may appear.
These effects can be eliminated by the use of a resistor These effects can be eliminated by the use of a resistor
network of 3 to 10 db attenuation in series with the annetwork of 3 to 10 db attenuation in series with the an-
tenna lead at the point where it is connected to the tenna lead at the point where it is connected to the
receiver. receiver.
HIGH VOLTAGE POWER SUPPLY - The energy stored in the horizontal windings of the deflection yoke during the forward sweep produces high voltage surges during retrace. This is "stepped up" by the "auto-transformer" winding of the horizontal output transformer (T-6) and then rectified by a \(1 \mathrm{~B} 3 / 8016\) (V-13) to provide approximately 12,000 volts for the (V-13) to provide approxim
picture tube (V-21) anode.*
B VOLTAGE POWER SUPPLY - The B Supply of these models utilizes a standard type of transformer rectifier circuit. It should be noted that the transformer contains a separate filament winding (6.3 volts) to heat the Cathode Ray Tube (V21) and the Damper (V16). The use of a center-grounded bleeder network provides a B Supply with the following voltages measured with respect to ground; plus 235 volts, plus 140 volts, plus 4 volts, minus 3.5 volts, minus 14 volts, and minus 90 volts.

\section*{alignment procedure}

The alignment of this Receiver can be broken down into three basic parts: 1 - Video IF Alignment 2 - RF Alignment 3 - Squand Alignment

\section*{TEST EQUIPMENT}

CATHODE RAY OSCILLOSCOPE - The tube size is relatively unimportant, however, anything under 5" usually makes fine adjustment quite difficult.
SWEEP GENERATOR - The sweep generator used should have linear coverage of a center range from 30 to 220 megacycles. The output should be fairly flat over wide frequency variation of the sweep. It should be capable of an output of about 0.1 volt with attenuation. It is preferable that the generator have a deflection output for the test oscilloscope.
AM SIGNAL GENERATOR - This generator should have a frequency range of from 4.5 to 220 megacycles. As this generator is used occasionally as a marker generator, accuracy is an important factor. It should be capable of 0.1 volt output with attenuation and should be linear through the range.
VACUUM TUBE VOLTMETER - Almost any standard make VTVM will do. It should preferably have a reversible polarity switch.

\section*{TEST SOCKET}

MODELS TV306, TV316,
In each of these models a Test Socket is provided which gives convenient access to the various points where either a vacuum tube voltmeter or an oscilloscope mus be inserted for proper alignment. A letter diagram in the margin of the schematic will locate these points by means of corresponding letters in the schematic proper A typical Octal socket is used and it should be noted that the diagram shows an UNDERSIDE VIEW. Two ground points are supplied on separate pins of the tes socket for easy metering. Reference is made, in the following Alignment Procedures, to the pins on this rest Socket.

\section*{VIDEO IF ALIGNMENT}

An adequate signal can be fed through the video IF string by feeding the output of the signal generator into a tube shield placed over the mixer tube (GAGS) (V-19). Care should be taken that this shield is NOT grounded. The ground side of the generator output can be conveniently grounded to the shield of the adjacent oscillator tube.

The contrast control should be set to produce minus 2 volts on Pin 7 6ALS-AGC tube. (V-10A).

The vacuum tube voltmeter should be connected across the 8200 ohm detector load resistor (Pin B Test Socket) and should be set on the minus 3 Volt scale. Set channel selector to an unused low band channel.

The Signal generator should be set to a frequency of 34.8 Mc. The output of the generator should be adjusted to the point where the reading on the VTVM is between minus 1 to minus 1.5 volts.

The First and Third I.F. coils should be peaked for a The First and Third I.F. coils should be peaked for a
maximum reading on the VTVM. As the voltage readmaximum reading on the VTVM. As the voltage read-
ing increases with tuning, the generator should be ating increases with tuning, the generator should be a
tenuated to maintain a maximum of minus 1.5 volts.

Set the Signal Generator to a Frequency of 36.9 Mc and tune the Second and Fourth I.F. coils in the same manner as above.

The Generator should now be shut off (or tuned to different band) and the VTVM should read no more than minus 0.20 volts. If there is a higher voltage reading, check for regeneration in the I.F. stages.

By shunting the signal generator with a sweep genera tor (30 to 40 Mc) and substituting a Cathode Ray Os. cilloscope for the Vacuum tube Voltmeter in the above procedure the actual pass band of the Video I.F. circuits may be studied. Ideally the response curve should appear on the face of the oscilloscope in the form indicated in Figure (7). A slight slope of the top of the curve in either direction or a small dip in the center are acceptable.

RF ALIGNMENT
In the alignment of the RF section of this receiver three pieces of test equipment are necessary. A sweep gencrator, a signal generator and a cathode Ray Oscilloscope. For specifications see "Test Equipment" above. The output of the Sweep Gencrator should be fed into the antenna. The signal generator (C.W.) should be connected to the antenna terminals of the receiver. The swecper will provide the overall response curve with the oscilloscope properly connected. The signal generator is used as a marker as described below. Some Sweep generators made today contain their own marker oscillator. In cases where a generator of this type is used the Signal Generator may be eliminated.
The "hot" or "high" side of the Oscilloscope input should be connected to the junction point of the 8200 ohm detector load resistor and the peaking coil. (Pin B Test Socket). The "low" or ground side should be connected to the nearest convenient ground point. Care should be taken that the generator and the scope leads are well separated to avoid regeneration.
The R.F. section of the receiver is tuned channel by channel. The proper frequency settings for any given channel can be determined by consulting the Frequency Chart on Page (2). For example in aligning channe 2 the sweep generator should be set to some mid fre quency between 54 and 60 megacycles. This adjust ment is not a fine one. After setting the sweeper in the general vicinity of the desired frequency it should b tuned to center the response curve on the Oscilloscope face. For picture and sound markers the signal generato should carefully be adjusted to the frequencies indicated in the Frequency chart. For example in the case of channel 2 the picture marker frequency is 55.25 Mc and the Sound 59.75 Mc.
It is important to note at this point that the oscillator coil for channel 2 is in parallel with every other oscillator coil from 3 to 13. It is therefor imperative that channel 2 be aligned first and the others in any desired order thereafter.

Starting with channel 2 and applying the proper fre quencies as indicated above, the output of the sweeper should be attenuated to the point where further atten uation will not affect the wave shape.

OJohn P. Rider

The Oscillator should then be adjusted to bring the sound carrier into the 32.8 Mc trap valley. With the oscillator so adjusted the picture carrier should fall at a point approximately \(50 \%\) up on the slope of the opposite side of the band pass curve. Certain variations in the waveshape and the location of the picture carrier are acceptable. The picture carrier may vary in position from a point between \(45 \%\) and \(60 \%\) of the slope and the overall waveshape may differ from the ideal, flattopped response by being either slightly rounded or slightly dipped in the center. See Figure (8).
If the position of the picture carrier varies beyond the \(45 \%\) to \(60 \%\) points on all channels correction may be made by turning to channel 6 , applying the proper input signals and slightly realigning the I.F. transformers.

FIG. 8

\section*{SOUND ALIGNMENT}

Sound alignment on these receivers is best accomplished by using an actual transmission received on an antenna and fed in the normal manner to the antenna terminals. A Vacuum Tube Voltmeter should first be inserted between the output plate of the Ratio Detector Diode (pin 2 V 2) and ground. This point may be reached through pin C of the Test Socket. The meter should be set on the minus 10 volt scale. With the equipment so placed the 4.5 Mc trap (T1) and the primary of the Ratio Detector Transformer (bottom adjustment, T2) should be adjusted for a maximum deflection of the meter. The hot lead of the meter should now be moved to the junction point of R19, C22 and C23 (Pin A Test Socket), and the secondary of the Ratio Detector Trans former should be adjusted for a ZERO reading (Nos There are 3 points at which the meter will zero. Only one of these is correct. At the proper setting the meter should swing negative on one side and positive on the other side of zero). In cases where it is necessary to
and other side of zero). In cases where it is necessary to
align the sound section when no station transmission is align the sound section when no station transmission is
a vailable a Single frequency signal generator tuned to available a Single frequency signal generator tuned to
4.5 megacycles may be fed into the output circuit of the 4.5 megacycles may be fed into the output circuit of the Video Detector (Pin B Test Socket). The receiver
should then be aligned in the same manner as described should then be aligned in the same manner as described
above. The disadvantage of this method is that any inaccuracy in your signal generator will show up as mis. alignment when the set is in actual operation, since proper adjustment is very critical.

FIG. 9A

FIG. 9 B

\section*{PICTURE ADJUSTMENTS}

\section*{ION TRAP, FOCUS AND YOKE}

To properly adjust the Ion Trap, Focusing coil and the Deflection Yoke the following procedure should be followed.

The Deflection Yoke should be placed in position closest to the "bell" of the Picture Tube as far forward on the neck of the tube as is possible. Be sure the wire loops on the mounting make positive contact with the coating of the picture tube. The Focus Coil is next in line and the Ion Trap last.

Turn the set on. The antenna should NOT be connected to the receiver and the picture contrast control should be set at MINIMUM.

With the brilliance control set at about one-quarter turn back from maximum, the Ion trap should be adjusted to achieve the brightest raster on the face of the Picture Tube. Trap should be simultaneously rotated and moved back and forth on the neck of tube until exact setting is obtained.

Adjust the brilliance control to a point slightly over normal brightness and adjust the Focus Control on the rear of the chassis for clearest and sharpest horizontal sweep lines. The Ion Trap should then be readjusted slightly for the brightest response on the face of the tube at which good focus is maintained.

The focus Coil itself should be moved to secure a com plete raster, approximately centered and with no cor ners cut off.

Finally the Deflection Yoke should be rotated to square" the raster with the chassis as a reference. The thumb screws on the yoke brackets should then be set.

\section*{HORIZONTAL OSCILLATOR ALIGNMENT}

To adjust the Horizontal oscillator and its control cir cuits it is necessary to first connect a working antenna to the receiver. It is preferable to use a test pattern as the incoming signal rather than a picture.

With the receiver turned on and the brightness and the picture contrast controls adjusted to a normal position the Horizontal Frequency trimmer and the Horizontal Locking trimmer (rear of chassis) should be turned clockwise all the way and then backed off to about one turn (counter-clockwise).

The Horizontal Hold Control (front panel) should be turned to a maximum clockwise position.

The core of the Horizontal Oscillator Transformer should then be adjusted. Variation of this core will cause the pattern to resolve into a series of black and white bars sloping either to the right or the left depending upon the degree of adjustment. The trans former should be adjusted to the point where the pic ture resolves into a series of from \(31 / 2\) to \(41 / 2\) bars sloping downwards to the right.

The Horizontal Hold Control (front panel) should now be rotated to a full counter-clockwise position and the incoming signal momentarily interrupted. This can be done most easily by shorting the antenna terminals or a moment.

The Horizontal Hold Control (front panel) should now be rotated slowly in a clockwise direction. As the control is turned the number of bars sloping downward to the left should decrease. At approximately 90 degrees of rotation there should remain, between \(31 / 2\) and \(41 / 2\) bars just prior to the time that the picture "falls into" sync. The picture should remain in sync for an additional 90 degrees of rotation. If MORE than \(41 / 2\) bars are evident just before the picture syncs the Horizontal Locking Range trimmer (rear of Chassis) should be tightened slightly. If LESS than \(31 / 2\) bars the same trimmer should be loosened.

\section*{HEIGHT, WIDTH AND LINEARITY}

To adjust the overall size and linearity of the picture it is almost mandatory that a pattern transmitted from a local station be used. Linearity adjustments, particu larly, cannot be accurately made on moving transmis sions. It should also be remembered that in areas where more than one station is being received, that pictures ransmitted from different stations will vary slightly in ize. The smallest transmitted picture should be made to fill the area delineated by the mask.

FIG. 10
The first step in linearity and size adjustment is to turn the Width control (rear of chassis Figure 4) all the way in (clockwise).

The Horizontal Drive trimmer should then be adjusted for the best compromise between maximum brightness and good horizontal linearity. This control will affect the left side of the picture primarily. The Horizontal Linearity control (top rear of chassis) should then be adjusted for linearity of the right side of the picture.

The Width Control should now be readjusted to achieve a picture that will fill the mask horizontally. If necessary the width coil may be removed entirely by use of a switch on rear of chassis.
The Height and Vertical Linearity controls (both rear of chassis) should then be adjusted for a linear picture that will fill the mask vertically.

Picture centering is accomplished by positioning focus coil mechanically by means of 4 hexagon-head adjusting screws accessible from rear of chassis as shown in Figure (10). At this point the Focus control, previously set, should be retouched for maximum definition of the lines in the vertical wedge of the test pattern. Proper djustment and alignment of the receiver should result in clear and sharp definition.

© John F. Rider

\section*{RADIO PHONO BASE \\ PARTS LIST}

\section*{\(115 V-602\)
SUPPLY}
\(128 A .6\)
A. 6

L3
1250
12507
5026

\begin{tabular}{|l|l|l|}
\hline PART NUMBER & \begin{tabular}{l}
SCHEMATIC \\
LOCATION
\end{tabular} & DESCRIPTION \\
\hline
\end{tabular}

CABINET AND HARDWARE
TCB 282D
MO 6
DL 30
EP 2
KN 34
KN 20
IB 28
SP 40-10B

\section*{Cabinet}

Record changer VM Model 406
Radio Dial Plate
Escutcheon Pin
Pointer Knob
Knobs
Radio Instruction Sheet
4" P.M. Speaker with Trans.

\section*{RADIO CHASSIS}

\section*{Resistors}
\begin{tabular}{ll}
RC 180-1 & R 9 \\
RC 151-1 & R 7 \\
RC 271-2 & R 2 \\
RC 222-5 & R 8 \\
RC 223-2 & R 1 \\
RC 274-1 & R 5 \\
RC 474-1 & R 6 \\
RC \(335-1\) & R 3 \\
RC 106-1 & R 4
\end{tabular}

18 Ohm 1/2 Watt 20\% 150 Ohm 1/2 Watt 20\% 200 Ohm 1 Watt \(10 \%\) \(22 \mathrm{~K} \mathrm{Ohm} 1 / 2\) Watt \(10 \%\) \(270 \mathrm{~K} \mathrm{Ohm} 1 / 2\) Watt \(20 \%\) \(\begin{array}{lll}270 \mathrm{~K} \text { Ohm } & 1 / 2 \text { Watt } 20 \% \\ 470 \mathrm{~K} \text { Ohm } & 1 / 2 \text { Watt } 20 \%\end{array}\) 470K Ohm \(1 / 2\) Watt \(20 \%\)
\(\begin{array}{cccc}3.3 \mathrm{Meg} & 1 / 2 & \text { Watt } & 20 \% \\ 10 \mathrm{Meg} & 1 / 2 & \text { Watt } & 20 \%\end{array}\)

VC 11
CM 101-1
CP 202-2
CP 502-2
CP 203-1
CP 503-4
CP 104-2
CV 19

VC 1

C 7,8
C 9
C 10
C 11,12
C 6
C 5
C 5
CV 1

C 13,14

CONTROLS
Volume Control CONDENSERS
\begin{tabular}{llll}
100 & MMF & 500 & Volts 20\% Mica \\
.002 & MFD & 400 & Volt Paper \\
.005 & MFD & 400 & Volt Paper \\
.02 & MFD & 400 & Volt Paper \\
.05 & MFD & 200 & Volt Paper \\
. & MFD & 200 & Volt Paper \\
Variable Condenser (tuning) \\
LECTROLYTICS \\
30/50 MFD & 150 & Volt \\
LS AND TRANSFORMERS
\end{tabular}

Antenna Loop
Oscillator Coil
I. F. Transformers

Phono-Radio Switch
6 FT. Line Cord
© John F. Rider

\section*{PART 等}

Vecuupls required:
1. Vacuum Tube Volt Meter (similer to RCA 75A)
2. Swoop Generator with markor (similar to Philco 7008)
. Scope aimilar to Phil
Insulatod Scrowdriver

\section*{PART\#2}
1. Connect all associated components of T.V. recelver together, making 2. Sure speaker plug is making good contect.
2. Set contrast control in full counter-clockwise position and brilliance
3. Adjust ion Trap (Beam Render) for brightest raster.

PaRT \#3 Front End Aligrment
1. Set contrast to 1.5 voits negative. The terminals at wrich you take 2. Vour reading are in the rear of the front end.
2. Setting channel selector at chennel \#l2, connect sweep generator to antenna terminals and sot marker generator for 204 . OMc to 210.0 Mc .
Connect scope with lok ohm resistor in series with hot lead to \(\# 1\) of Fig. 1.
4. Ad just peaks for symmetricel waveform at 204. OMc and 210.0 Mc
5. Adjust screws 2 and 4 for 204. OMc ond \(210,0 \mathrm{Mc}\).
\(\xrightarrow{\text { PART \# }}\)
1. Remove all test leads from set and get channel selector awltch betwern any two channels. Set contrest so thet you do not distort waveform when plifning Video I.F..

 between GAC7 and UALS for 26 . OMc. Remove sweep lead ind conrect to pin 44 of preceding OAC7, adjusting coll betwe n these two UAC7, tubes
for 23.5 Mc . Remove sweep lead and connect to pin 41 of CAGS. odjust-
 not touch chassis. Align top slug of converter can for waveform, as shown in Pig. 4.

\section*{PART \#S}
1. Remove all test leads. Connect VTMM for 10 volt scale with seilector switch set at positive. Take hot leed of VTVM end connect to pin tube.
2. Connect signal generator to points "A" and " \(B\) " in Fig. 3, setting gen3. Adjust top and bottom slugs of sound teke-off for maximum voltage read-
4. Remove VTVM leads and connect VTVM leads between points "A" and ground, as shown in Pig. 5. Set VTVM ot zero center.
. Adjupt bottom slug of discriminator transformer for maximum positive or 6. Adjust top slug for zero center.

\section*{PART \#6}

\section*{Final Check}
. Remove all test leads and connect entenne to ontenna posts
. Ad just Ion Tror best picture.
- Put rine tuning control in center and take insulated screwdriver and insert in hole next to chennel selector and adjust for best picture on all channels, belng careful to remove insulated screwdriver when switch.
\(\frac{\text { PaRT \#7 }}{1 . \text { USIn }}\)
- Using lov. scele on VTVM. connect hot lead to pin \#5 of gbcon diagrams for aligname procedure 2. Adjust trimmer on pin 45 Hor. Block. Osc.
(pert \%17), in maximum counter-clockwinjunction with Hor. drive contro
. Voltece s.
mer Cond.
4. Then adjust Hor. drive Control so that this voltage reads between \(4-5\)
5. This Trimmer Cond width on Cathode-Ray Tube.
constants are changed.
LOCATION OF FRONT CONTROLS-MODEL 1621 W

LOCATION OF REAR CONTROLS

TIPE FUNCTIONS

8016/1R3GT-H.V. Rect.

6sni7GT-Vert.0sc. \& Discharge
OSNTGT-Hor. Osc. \& Discharge
GKCGT-Power Amp.
(1) GAG7-Videog Output
(1) GAG5-1st Video I.F.
(1) 6AC7-2nd Video I.F.
(1) GAC7-3rd Video I.F.
(1) 6AC7-Sound
1) GAC7-Sound I.F.
1) GAL5-A.G.C.Rec.-Viden 2nd Det
1) GAL5-Sync Clipper
1) 6 J6-Sync. Amp. \& Separator
1) 6AG5-R F \(\& 0 \mathrm{sc}\)

TUBE LAYOUT-1621W

\section*{}

\section*{ALIGMMENT PROCEDURE}

If turning on the set for the first time check all controls
front and rear to he sure they are not more than half advan front and rear to to sure they are not more than half advan brightness control which should be turned towards the the position and the volume control which may be adjusted to give a comfortable volume level.
The brightness and contrast controls also operate a switch at the counter clockwise end. Be sure that these switches
are not in the off position before attempting the following adjustments.
Ad just the brightness control and ion trap. The fon trap
should be adjusted for maximum light output in the plcture tube So the Set the station selector to the desired channel, the strong
est end most reliable station in vour locality should be est
used. Advance the contrast control until a pleture or horizontal streaks appear.
If picture fram
If picture frame is in motion or if it tears, synchronize it adjusting the horizontal hold or vertical hold controls. Adjust the focus control for best focus.
Ad fust the rine tuner or the tuner on deluxe models for best After the picture has boen locked, adjust the height control and vertical linearitv enntrols for proper picture propor-
Adjust the horizontal linearity control, horizontal linear1ty coll, end horizontal drive control for proper horizontal Again check the focus centrol for best definition of the Again check the focus centrol for
vertical wedges of a test pattern.

\section*{I.F. ADJUSTMENT} Observe carefully theresolution of the vertical wedges and
other fine detail. In the case of the deluxe model, rotate the tuner in the clockwise direction very slowly, meanwhile panied by sharp resolution of the vertical wedge. In eithe case, when the sharpest detail has beon achieved, desist from further tuning and do not aga in adjust elther the sound have been made.

On hoth types of tuners the adjustment on the top of the tuner should be set to about 25.75 Mc , or for a maximum o plate should be set to about 22 mc or for a high level of sound.
The tuner adjustment may te made by observing the AGC voltage on a TVM with areceived signal and settine the coil to
a frequency just slightly below that which gives a maximum on a frequency

\section*{ALIGIMENT OF SOUND IF AND DETECTCR TRANSFORMERS}

Turn volume control full on. A slight hiss only may be heard. Adjust top and bottom slug of can \#317 for maximum of peak indicates proper operation.
Connect a high resistance D.C. Voltmeter between the AVC line and ground.
Ad fust the trap on transformer \#175 for maximum deflection
of meter.
Adfust first the top slug and then the bottom slug of tran-

Recheck the adjustment of the top and bottom slug of sound detector justment.
Tighten trinmer of video I.F. trap on transformer \#174 and back off slightly for best picture. Look for a decrease and
final ellmination of sound bars, beads, dark streaks and striations from the picture.

\section*{AUTOMATIC GAIN CONTROL}

The A.G.C. In this set consists of a fllter network afte the video detector and individual decoupling filters to sup
ply the A.G.C. voltage to the tuner, the 6AG5 and the first ply the A.G.C. voltage to the tu
two GAC7 video I.F. ampliflers.

In the event that the A.G.C. does not function, trouble may be expected in a defective 2.2 meg resistor or 0.1 conden-

Under extreme strong signal conditions, the deluxe set may
develop a silight buzz in the sound which is the result of develop silght buzz in the sound which is the result of an overload in the tuner. Padding or the antenna
signal to the set wili help in this condition.

\section*{A.F.C. CIRCUIT}

PRINCIPLE OF OPERATION:
The TRANSVISION A.F.C. CIRCIIT is basicly a phase converter horizontel sync pulse end the horizontal flyback pulse to D.C. of the correct polarity and applying this voltage to control the frequency of the horizontal oscillator.
The TRANSVISION set uses a conventional blocking oscillator the time constant of the grid blocking condenser and the by grid resistor. In the A. F.C. circuit an additional element of control has been added. This is the blas voltage applied
by the cathode follower to the bottom end of the Erid resistor and is derived from the A.F.C. converter.
With no signal input, it should be possible to go complete-
ly through the hold frequency by turning the hold control ly through the hold frequency by turning the hold contro
end to end. The frequency ran e should roughly be from 10,000 to 20,000 cycles. A rough check can be made by watching the size or width of
the raster. A frequency too high will give a small dim raster. A rrequency too low will qive a wide bright raster
and mey he accompanied by on audible whistle from the horand may he accompanied
izontal transformer.

A-If the voltage reading is different from the normel reading; check the following
2. 100K resistors connected to pins 5 \& 7 or 6 als tube.
3. Peaking coll (\#77) for continuity, approximately 50
4. \(47 \mathrm{~K} \dot{2}\) watt resistor from \(6 \times 5\) tube plates and .001 con denser to pins \(1 \& 2\) of 6 ALS tube
5. 500 mmfd condenser from the junction of \(47 \mathrm{k} \& .001\) to
ping \(5 \% 7\) of 6 ALS tube.

If sync 18 orratic or unstable, but the hold control can obviously carry sweop frequency oither side of sync, the
trouble will be with the GAL5 tube or its associated-cir trouble
cuits.

B- Severe hacking at the eages of the picture and sharp
displacement of sections of the picture may be caused
by of the following:
2. Open .Ol condenser.

C- Picture locks pood but wavers cr : s unsteadj:
structions. - Stendard and deluxe sets - Interaction between rorizonta output leads and other circuits. Dress both leads to th They may be pulled away from the chassis and rur lesect to hold control.
Plcture locks good but jumps out of sync with chence of
D- \(\frac{\text { Picture locks good but jumps out of sync with chenee of }}{\text { contrast control. }}\) - Poor limiting action in sync erpilifiere. Check s.nc condensers for leakage.
Whislance to sync input diodes. Check plate sind cethode . Check values of sync coupling condensers .0005 .
5. Check diode resistor look.

E- Frld over cn right side of picture,
May be caused by poor adjustment at
cther stations... Defective 6 EGO 6 a tube
. Too much inductance in diode outpit. filter
3. Slug a few turns.

F- Lateral ripples at top of picture or large lateral waves

G- Slow s nc recovery when changing stations.
l. Improver
edjustment of hold control.
2. Re-ad fust hold control after \(s=t\) hes been runring about an
hniar. Turn hold control till sync is lost on low frequenhnur. Turn hold controi till sunc is lost on low frequen-
sy side, (large hright raster) then turn control back
slowly till picture

H- Sync locks at helf frame or with black vertical bars some
1. Cutput filter coll slug out too far.

\section*{\(\frac{\text { VERTICAL SYNC AND SWEEP CIRC: ITS }}{\text { Insufficient or eratic }}\)}

Check for:
1-Tubes V20, V21
2 - Voltages on above tubes
3- All condensers and resistors used in above tube circuits 4-Vertical oscillator and output transformers
6 - Vertical, size, linearity and hoid controls
\(\frac{\text { HORIZONTAL SYNC CIRCUITS }}{\text { Insurficient or erratic }}\)
1-Tubes V11, V12, V13, V14
- Condensers, resistors and slug coils in above circuits
- Condensers, resistors and slug colls in abov
- Horizontal oscillator tr isformer
Horizontal size, linearity and hold controls
\[
\frac{\text { HORIZONTAL SWEEP CIRCUITS }}{\text { Insurflclent or erratic }}
\]

Tubes V14, V15. V16, v17
- Condensers and resistors in above ciral

Horizontal oscillator transformer \#307 and horizontal
- Horizontal inearity coll slug
- Horizontal ilnearity, size, and hold controls.

\section*{SOUND AND PICTURE CIRCUITS}

Plcture OK - No Sound
1 - Check tubes V2, V3, V4, V5, V6
3 - All condensers and resistors in the above tube circuits
- I.F. Transformers \#175, \#317, and \#318
- Audio output transformer, part \#21

6 - Speaker
7 - Shorts in shielded leads
- Open volume control or defective switch section on phono-contrast switch

No Picture - Sound OK
1 - Tubes V7, VY, V9, V10
2 - Voltages on the above tube
3 - All condensers and resistors in the above tube circuits
4 - All peaking coils for open circuits
- I.F. Transformers \#174, \#175. pnd \#176

6 - Open contrast control
\(\frac{\text { No picture or sound - Raster OK }}{\text { - Tubes V1, V22 and tuner tubes }}\)
2 - Voltespes on above tubes
- All condensers end resistors in above tube circuits
- All coils in above circuits
- Antenna system

\section*{No raster or sound}
- Make sure set is plugged in and turned on

2 - Check fuse
3 - If fuse is open check for shortei filter condensers, CFi CF2 and CF3
- Open focus coil, centerine control or filter choke
- p plug voltage

> Mo raster - Sound OK 1 - Check for proper ion trap placement 2 - Tubes V10, Vil, Vly, Ylo, Vl7, CRT

3 - Voltages on the above tubes. CAUTION CRT 2nd anode is approximately l2K.V.
- Horizontal oscillator and output transformers
- Horizontal drive, Horizontal size and brifhtness controls - Condensers and resistors on tubes \(\mathrm{Vl}, \mathrm{Vl}, \mathrm{V} 16, \mathrm{Vl7}, \mathrm{V10}\) - Open voke or linearity coil

8 - Opne HV fuse MISCELLANEOUS
Poor righ voltage regulation is evident by varying the bightness control which causes the screen to become very dim or extineuished. Replase the lB3 tube.
A hissing or cracking noise is sometimes due to arcing between the focus coll end ion trap. A short wire connected between the trap and focus coil will prevent this.

In some cases the rightness drops when the set has been placed in the cabinet. This may re due to the cup on the cabinet elther becoming magnetized or distorting the magnetic field of the ion trap. Try to center the cup with reference to the axis of the tube neck or replace cup with one \(-f\) non-magne-ic material.
orizontal tearing is sometimes due to break down of the resistor in series with the anode cap lead.

MODEL A CHASSIS VOLTAGE READINGS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Tube & Pin 1 & Pin 2 & Pin 3 & Pin 4 & & & & \\
\hline V21 & \[
\begin{aligned}
& \text { Vert.Amp } \\
& \text { 6v6 }
\end{aligned}
\] & & 0.3 AC & 310 & Pin 4
310 & Pin 5 & Pin 6 & Pin 7 & Pin 8 \\
\hline V20 & \[
\begin{aligned}
& \text { Vert.0sc. } \\
& \text { 6SN7 }
\end{aligned}
\] & -100\% & 100\% & 310 & -100\% & 280 & NC & 0 & Appx. \\
\hline & Forz. Damp. & & & 0 & -100\% & 280 & 0 & 6.3 AC & 0 \\
\hline V17 & \(6 \times 5\) & 0 & -100 & 370 & 370 & 370 & 0 & \[
0-100 \mathrm{DC}
\] & 500 \\
\hline Y15 & Korz.Amp.
\[
6 B G 6
\] & 0 & 0 & 7.5\% & 370 & -10 & & & \\
\hline V15 & L.V. Rect. & & & & & & 370 & 0.3 AC & 260 \\
\hline 019 & 5 U 4 & NC & 400 & NC & 387 & NC & 387 & NC & 400 \\
\hline V14 & \[
\begin{aligned}
& \text { Forz.0se. } \\
& \text { osN } 7
\end{aligned}
\] & -40* & 155 & 0 & -40* & 225 & 0 & & \\
\hline V10 & VIdeo Amp. & & & & Mod.sig & & & 0.3 AC & 0 \\
\hline V10 & 6AG7 & - & 0 & 0 & & 0-6 & 170-240 & 0.3 AC & 310 \\
\hline V11 & 1st yn.Amp USN7 & \[
\begin{aligned}
& -5 \\
& \text { Mod.sig }
\end{aligned}
\] & 40 & 0 & -8\% & 220 & 10 & 6.3 AC & 0 \\
\hline V12 & \({ }_{\text {Ond }}^{\text {2nd }}\) Cyn.Amp & & & & -18 & & & 0.3 AC & 0 \\
\hline & OSN7 & 0 & \(\frac{180}{-5}\) & 6 & Mod.Sie & 320 & 11 & 0.3 AC & 0 \\
\hline v9 & CAL5 & 0 & Cor.Sig & 0 & 0.3 AC & 0 & 0 & & \\
\hline YB & 4th Video IF UAC7 & 0 & 0 & 0 & & & & & \\
\hline & 3rd 1/deo IF & & & & 0 & 2 & 160 & 0.3 AC & 310 \\
\hline V? & 6AC7 & 0 & 0 & 0 & 0-1 & 1 & 300 & 0.3 F.C & 310 \\
\hline V1 & 2r.d Video IF ©AC7 & 0 & 0 & 0 & & 1 & & & \\
\hline & 1st Vireo IF & & & & & 1 & 220 & 0.3 AC & 300 \\
\hline V22 & OARS 5 & 0-1 & 0.5 & 0 & 6.3 AC & 210 & 180 & 0.5 & x \\
\hline ve & Alldio Amp. 6VO & 0 & 0 & & & & & & \\
\hline & Sound IF & & 0 & 230 & 280 & 0 & 0 & 0.3 AC & 15\% \\
\hline V2 & UAC7 & 0 & 0 & 0 & 0 & 0.2 & 300 & 6.3 AC & 310 \\
\hline v3 & SAC7 & 0 & 0 & 0 & 0 & 1.5 & co & & \\
\hline & Sound Det. & & & & & & 9 & 6.3 AC & 230 \\
\hline V4 & 6AL5 & 0 & 0 & 0 & 0.3 Ac & 0 & 0 & 0-15 & X \\
\hline V5 & Andio Amp. 6SL7 & 0 & 80 & & & & & & X \\
\hline & 6ल & & 80 & 0 & 0 & 90 & 0 & 0 & 0 \\
\hline V13 & OAL5 & 0-20 & 0-20 & 0 & 0.3 A. & 35 & 0 & -35 & X \\
\hline 110 & \({ }_{\text {H. }}^{\text {M. }} \mathbf{~ R e c t . ~}\) & H.V. & NOT MEAS & & & & & & \\
\hline
\end{tabular}
*Approximate. depending upon control settings
All readinos t-ground with 20,000 OFM per volt meter.

\section*{IMPROPER FOCUS}

1- Check focus coil (Ma; heve shorted turn. Try substitute if in doubt
2- Check focus control
4- Check for leaky filter condenser, CFl. CF2, or CF3.
5- Focus coil may he set acement of ion trac. ray tube.

MAKE THE FOLLOWING CFANOTES
- Cn volta e chart on V17 pin 2, the readine shol.1a be - 0-100 volts.

On resistance chart \(V 22\) pin 4 , readint should be
ohms.
© John F. Rider

© John F. Rider

\section*{INDEX}
\begin{tabular}{|c|c|}
\hline PAGE & PA \\
\hline 7 & SPECIFICATIONS \\
\hline 4 & TOP VIEW - TUBE LAYOUT. . . 2 \\
\hline 2 & TRIMMER LOCATIONS. 2 \\
\hline 4 & TROUBLESHOOTING. 6 \\
\hline 9 & Voltage measurements . . . 10 \\
\hline 10 & WAVEFORMS 6 \\
\hline
\end{tabular} PAGE
ALIGNMENT INSTRUCTIONS . . . 7 CIRCUIT DESCRIPTION 4 INSTALLATION DATA. 2 PARTS LAYOUT 4 PARTS LIST 9 SCHEMATIC 10

WAVEFORMS 10
TOP VIEW - TUBE LAYOUT
trimmer locations. 2
VOLTAGE MEASUREMENTS ... 10

16 AY210 Television Chassis

\section*{FUNCTIONS OF THE CONTROES}

All the controls normally used in tuning in a program
-both picture and sound-are located on the front of
the receiver and at the top of the back of the cabinet. the receiver and at the top of the back of the cabinet.
At the rear of the set are several controls which are preset at the factory and may need slight readjustment at

The receiver actually requires only four controls when The receiver actually requires only four controls when
tuning in a program. On the left is a dual knob, the tuning in a program. On the left is a dual knob, the
large knob controls picture contrast, while the small large knob controls picture contrast, while the small control on the right is the station selector and the antenna tuning knob is located at the top of the back of the cabinet.
The three other controls under the name plate; brightness, horizontal hold, and vertical hold need only be adusted periodically. The six front controls are shown below in figure 1.

\section*{Figure 1. Front Controls}

The focus and centering controls are located on the picture tube assembly (figure 2). These controls can be operated through the opening provided in the cabinet back. The remaining six controls, vertical linearity, verarity and coarse horizontal hold are located on the rear of the chassis (figure 3).
the time of installation. After installation, they should not be adjusted further, unless required by replacement or aging of tubes, variations in power-line voltage, or other external conditions.

\section*{OPERATOR'S CONTROLS}

Volume-Off - Turns set on or off and adjusts sound volume.
Contrast-Varies contrast between light and dark portions of picture.
Brightness-Controls brilliance of picture.
V. Hold-Stops picture from moving up or down. H. Hold-Stops picture from moving left or right. Station Selector Knob-Tunes set to desired channel (station). May be turned in either direction. Antenna Tuning Knob-Tunes the antenna for maxis mum signal.
Centering-Moves entire picture both horizontally and vertically.

\section*{SERVICEMAN'S CONTROLS}
V. Linearity-Provides vertical distribution of picture V. Size-Changes size of picture vertically. Does not affect horizontal size.
H. Size - Changes size of picture horizontally. Does not affect vertical size. Focus-Focuses picture on face of picture tube H. Linearity - Provides horizontal distribution of pic ture.
H. Drive_Controls the drive to the Pulse Amplifier. Coarse H. Hold - Stops picture from moving left or
right.

\section*{TUBE COMPLEMRNT}

\section*{6AG5, RF Amplifie}

6J6, IF Amplifier 3-4-5.6 6AU6, IF Amplifier
7 6AL5, Detector, D.C. Restore 12AT7, Video Amplifier 6SN7. Sync Amp.- Sync Sep 6AUb, AGC Amplifier 6AUb, Sound IF Amplifier 6AV6, Audio Amplifier 6K6, Audio Output 6SN7, Blocking Osc. Pulse Amp. 6AL5, AFC Discriminator 6SN7, Horizontal Multivibrator 6BG6, Pulse Amplifier
6W4, Damper
1X2, H. V. Rectifier
1X2, H. V. Rectifie
5U4, L. V. Rectifier
6AL5, Audio Detector
16" Retangular Picture Tube

\section*{INSTALLATION}

Power Source.
The receiver should be operated from a 115 Volt, 60 -Cycle A.C. power source. The power consumption is 235 watts.

\section*{Location of Receiver}

The set should be so located in the room that no direct light strikes the face of the picture tube. However, some indirect illumination in the room is desirable; it is not necessary to darken the room completely for proper viewing of the picture. Due consideration should be given also to the convenience of the electric outlet, and to the position of the receiver which gives the best reception with the built-in antenna.

\section*{Built-In Antenno}

The new Built-In Television Antenna incorporated in the receiver eliminates the need of an outside antenna in many locations. In areas too distant for normal reception with a built-in antenna, provision is made for outside antenna connections. If any other type of antenna is used with the set, disconnect the transmission line from the built-in antenna to the antenna terminals.
The antenna is mounted inside the cabinet and is operated by the use of a knob at the top of the back of the cabinet. Since the antenna is fastened to the cabinet it may be necessary to orient the cabinet to obtain the best reception. It is desirable that either the front or the back of the cabinet face the transmitting station. If however, "ghosts" or multiple images appear, the cabinet may be rotated slightly to minimize this condition. In some cases it may be necessary to face the back or the front of the cabinet toward a window to obtain a television picture. This may be due to walls, water pipes, or a steel structure in the location preventing television reception.
The antenna tuning knob should be used as a fine tuning control and should be adjusted until the best picture is obtained. In order to eliminate "Body effect" when adjusting the antenna tuning knob, stand in front and reat one the the of the setion to turn, reverse the dime the knob becomes diff of rotation. Do not force the knob in either direction.
If the receiver fails to operate satisfactorily with the built-in antenna, check the following trouble
1. Check the antenna dipole to make sure it is not touching the chassis or any other object.
2. Check the antenna dipole to make sure it is stapled to the side of the cabinet and does not vibrate.
3. Check the connections at the coil, transmission line, and trimmer capacitor.
4. Check to make sure that the antenna terminal screws are moderately tight.

\section*{Final Adjustments.}

The television receiver has been completely assembled and adjusted for operation before shipment. It is recommended, however, that the adjustments discussed in thi While the required adjustments, if any, will probably be slight, the instructions may also be used for receivers which are considerably misadjusted because of replace ment parts, etc.

\section*{Deflection Yoke.}

If the picture seems to be tilted or the edges of the raster are not vertical, loosen the deflection coil adjusting wing nut (located at the top of the picture tube
assembly. Figure 2) and using the wing nut as a handle assembly, Figure 2) and using the wing nut as a handle.
rotate clockwise or counter-clockwise until the edges of the raster are exactly vertical.

The correct position for the deflection yoke is as far forward on the neck of the picture tube as the shape o the that allow. Tube shadow ma
To correctly position the yoke, loosen the wing nut and push the yoke as far forward as the tube will allow and while keeping the edges of the raster vertical tighten the wing nut.

\section*{Ion Trap Magnet.}

The initial setting for the lon trap magnet is over the "L" shape metallic flags inside the glass neck of the picture tube. See figure 2. From this starting position rotate the magnet about the neck of the tube and slide forward and backward until the position that gives maximum illumination with minimum tube shadow is found This adjustment should be made with the brightness con trol set at slightly less than \(1 / 2\) its clockwise rotation.
If the ion trap magnet interferes with the centering control, rotate the magnet num illumination.
Each time an adjustment of either the centering or
 readjusted.

\section*{Centering.}

The receiver may require centering at the time of in stallation. To recenter the picture follow the centering instructions on page 5.

\section*{Other Adjustments.}

Refer to the "Service Adjustments" section and touch up each control following the instructions carefully.

\section*{SERVICE ADJUSTMENTS}

\section*{Station Selector.}

The station selector pointer should not rub or scrap against the channel indicator plate, and the knob should slip between channel 6 and 13 . This condition can be corrected either by a fast turn or moving the pointer itself.

\section*{Brightness Control (R-46).}

The brightness control located behind the front name plate need only be adjusted at the time of installation. The control is adjusted in conjunction with the contras control. Turn the contrast control fully counter-clockwise. Then turn the brightness control clockwise until th picture tube iust becomes dark. The contrast control may then be adjusted for proper picture quality.

\section*{H. and V. Hold Controls (R-94 and R-74)}

For the best results the H. and V. Hold controls should be adjusted at low contrast levels. After a station has been tuned in, turn the contrast control fully counter clockwise and then turn the brightness control clockwise until the picture reappears. Adjust the \(H\). Hold control (if necessary) for a steady picture. Adjust the V. Hold controls should be set mid-way between positions where the picture is effected.
If you cannot obtain a steady picture at minimum con. trast, turn the contrast control slightly clockwise.
After the H . and V. Hold controls have been properly set, they will not have to be used when tuning in a sta-
tion.

\section*{Centering Control.}

The centering control is located on the picture tube assembly (figure 2). This control is operated through he opening provided in the cabinet back. The control should be operated in the following manner
1. Place a screwdriver in the centering tube
2. Observe the face of the picture tube while making the adjustment.
3. Moving the control to the left will move the entire picture (looking at the face of the picture tube) upward.
4. Moving the control to the right will move the pic ture downward.
5. Moving the control up will move the picture to the left. Down will move the picture to the right.
V. Size and V. Linearity Controls (R-70 and R-80). The V. Size and V. Linearity controls should both be adiusted at the same time while a test pattern is being transmitted. The Linearity control effects the upper por tion of the picture while the Size control effects the simultaneously until the test pattern is symmetrical and fills the entire screen vertically. Readjust the \(V\) Hold control if necessary.
H. Size and H. Linearity Controls (L-24 and L-26). The H. Size and H. Linearity controls should be adiusted only when a test pattern is being transmitted. The fills the entire screen horizontally, and the Linearity con trol should be adjusted for a horizontal symmetrical test pattern. The H. Drive control must be readjusted after adjusting either the H . Size or H . Linearity controls.
Coarse and Fine Hold Controls (L-23 and R-94).
The coarse horizontal hold control should be adjusted in the following manner range. ion. Ade contrast control to the normal operating posisteady pust the Coarse H . Hold control until there is steady picture (no horizontal movement).
When the Coarse H. Hold control is adjusted properly, a fast turn of the Fine H. Hold control in either picture go out of sync (only in low signal areas). Turning the Fine \(H\). Hold control slowly in either direction should not make the picture go out of sync. If the Coars . Hold control is not adjusted properly, the horizontal ync will not come in immediately (or not at all) when he tuner is switched from one station to another.

\section*{cus Control.}

The permanent magnet focus assembly is essentially a magnet within an assembly so designed as to provide a flexible means of adjusting focus and centering on th face of the picture tube. Do not use a steel screwdriver or any magnetic material when adjusting the focus con trol. A non-magnetic material should be used, as a magnetic material will increase the flux density of the assemcontrol is located on the picture tube be obstained. This be operated through the hole provided in the cabinet back. A long adjusting tool is necessary for the adjustment.
There are two focus screws on the focus magnet assem bly. The focus screw on the side is preset at the factory and should be all the way in. Only the top screw should Adjust the focus
ion trap magnet and again re-focus the picture Reset the focus is best at the edge turn the slug in, if best at cen ter turn the slug out. Turn in or out until the best average focus is obtained and then reset the ion trap
magnet.

\section*{H. Drive Control.}

The H. Drive control is located next to the A.C. input at the rear of the chassis (figure 3). The control requires a small screwdriver for adjustment. The control should be adjusted in the following manner.
1. Tune in a station
2. Turn the drive control counter-clockwise until a foldover (white vertical line) appears at the left side of the 3 .
3. Turn the drive control clockwise until the fold-over
just disappears. ust disappears.
4. Turn the drive control one-half turn clockwise.

\section*{SPECIFICATIONS}

\section*{Sensitivity at the Antenne}

Video - 100 microvolts
Power Supply Rating 115 volts, \(50-60\) cycles, AC, 235 watts.

\section*{Audio Output Rating}

Undistorted - 3 watts.
Maximum - 41/2 watts.
Speaker
Permanent magnet type,
3.2 ohm voice coil impedance.

Antenna Impedance Requirements Balanced 300 -ohm.
Dimensions
Chassis \(-16^{\prime \prime} \times 16 \frac{1}{4} \times 2 \frac{1}{4} 4^{\prime \prime}\).

\section*{WARNING}

High voltage on all pins of the \(1 \times 2\) high voltage rectifier and the plate cap of the 6BG6. DO NOT used.
used.
To check or replace the fuse, first turn off the set. Remove the High Voltage shield cover, short the 6BG6 plate cap to chassis, and remove the 6 W 4 tube and then take out the fuse. Replace fuse and reverse procedure.

\section*{Schematic Diagram.}

The schematic diagram located at the rear of the manual shows all the values of resistance and capacitance and gives all the proper voltages at the pins with a \(20,000 \mathrm{ohm} /\) volt voltage readings were taken tion, no signal input, and line voltage at 117 V . A. C
R. M. A. WIRE CDLOR CDDE Listed below is a R. M. A. wire color code chart to aid in circuit tracing.
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Wire Color } & \multicolumn{1}{c|}{ Where used } \\
\hline Black & B- or Ground leads \\
\hline Brown & Filament leads \\
\hline Red & B+ leads \\
\hline Orange & Screen leads \\
\hline Yellow & Cathode leads \\
\hline Green & Grid or Control leads \\
\hline Blue & Plate leads \\
\hline Violet & Not used \\
\hline Gray & A.C. leads \\
\hline White & Bias leads \\
\hline
\end{tabular}

\section*{Replacing Tubes}

Before replacing any tubes the cabinet back must first be removed. Removing the cabinet back disengages the safety interlock and removes the power to the roceiver. Do not tamper with or attempt to defeat the purpose of the safety interlock.
Before replacing the High Voltage tubes first be sure the power is turned off and then short the plate caps Of the 6BG6 and \(1 \times 2\) tubes to the chassis.
is in operation as overloading and component failures may result.
If the receiver has been in operation for some time, the tubes become hot and gloves should be used when replacing tubes to prevent finger burns.
hono TV Switeh.
the chassis and should be in the "of"" position flange of the chassis and should be in the "off" position (up) for ound or raster, and the audio position there will be no
and the
The DC resistance readings shown in the chart below have been taken with an ohmmeter directly across the cated by an asterisk after the coil reference were disconnected to obtain a correct reading and these are indicated by an asterisk after the coil reference number. All the coils not listed in the chart have a DC resistance
read

Figure 4. Bottom view of Chassis

TELEVISION FREQUENCY RANGES
(All figuros represent megocycles)
\begin{tabular}{|c|c|c|c|c|}
\hline Channel & Channel Frequencies & Picture Carrier Frequency & Sound Carrier Frequency & \[
\begin{gathered}
\text { Receiver RF } \\
\text { Oscillator Frequency }
\end{gathered}
\] \\
\hline \multicolumn{5}{|l|}{Low Bond} \\
\hline \({ }_{3}^{2}\) & 54.60
60.66 & \begin{tabular}{l}
55.25 \\
6.25 \\
\hline 1725
\end{tabular} & 59.75
65.75 & \({ }_{88}^{82}\) \\
\hline & \({ }^{66.72}\) & \begin{tabular}{l}
67,25 \\
\hline 17.25
\end{tabular} & & \({ }^{104}\) \\
\hline \({ }_{6}\) & & 71.25
83.25 & 81.75
8.75 & \({ }_{110}^{104}\) \\
\hline \multicolumn{5}{|l|}{High Band 1202} \\
\hline 7 & \({ }^{174} 8.180\) & (175.25 & \({ }_{1}^{1995.75}\) & \({ }_{208}^{202}\) \\
\hline ; & (1800.1188 & -1887.25 & - 185.75 & 2214 \\
\hline 10 & \({ }^{1982.198}\) & \begin{tabular}{l}
193.25 \\
1989 \\
\hline 1825 \\
\hline
\end{tabular} & \({ }_{\text {203, }}^{197}\) & \({ }_{226}^{220}\) \\
\hline 11 & 198.204 & \({ }^{20525}\) & 209.75 & \({ }_{232}\) \\
\hline 13 & \({ }_{2}^{210.216}\) & 211.25 & 215.75 & 238 \\
\hline
\end{tabular}

\section*{GENEIRAL DESCRIPTION}

The tuner is composed of a separate sub-chassis using 6AG5 (pentode) R.F. Amplifier and a 6 Jb tube (w win triode) for the Oscillator and Converter. Separate high and low band coils and trimmers are used with a switching device to change bands. The tuner selects and amplifies the station signal and converts it to the carrier IF
frequencies of 26.75 Mc for video and 22.25 Mc for sound which in turn is then fed to the IF amplifiers for further amplification.

\section*{Video IF Amplifiers}

The IF Amplifiers, video detector and DC restorer stages are all mounted on a sub-chassis. The IF amplifier section consists of four (4) stagger-tuned stages using 6AU6 (pentode) tubes with self-resonant slug tuned coils. Since the receiver is of the intercarrier type, both the videously. The signal is then detected by one half of the 6AL5 (twin diode) and coupled to the video amplifier. The other half of the 6AL5 is used as the DC Restorer.

\section*{Sound Section.}

The sound section is also mounted on a sub-chassis and consists of a 6AU6 (pentode) IF amplifier, 6AL5 (twin diode) detector, 6AV6 (triode) amplifier and a 6K6 (pentode) output tube. Due to the hetrodyne action signal is obtained containing the audio information After the video detector, the audio information is separ ated from the video signal by the pick-off coil T8. The signal is then amplified, detected and further amplified by the 6AV6 and the 6K6.

\section*{Video Amplifier}

The video section is a conventional two stage amplifier using the 12AT7 (twin triode) tube. The parallel resonant video trap coil (Lis and C-65) is bination of shunt and series peaking coils are used with a degenerative contrast control to vary the signal to the grid of the cathode-ray tube

\section*{DC Restorer.}

One half of the 6AL5 tube is used as the DC restorer Since the video is coupled to the grid of the CRT by capacitor C-64 the DC component of video signal will not be passed, therefore the background level of the picture will vary. A biage video signal level will be developed across resistor R. 31 and maintain the proper brightness level.

Sync Separator and V. Sync Amplifier.
The sync pulses from the plate of the first video amp lifier are coupled to the sync separator tube \((1 / 2\) of 6SN7) thru capacitor C-103. The sync pulses are the separated from the blanking pedestal and due to the low plate voltage sync clipping is accomplished. The horizonal putser C. 91 and the vertical pulses are coupled thru capacitor C. 121 and amplified by the other hal
of the 6SN7 before being fed to the intergrating net work of the vertical deflection circuit.
Vertical Deflection.
The vertical deflection circuit consists of a 6SN7 (twin triode) tube one half used as a blocking oscillator and the other half as a pulse amplifier. The V. Hold control varies the oscillators operation point thus providing an adustment for synchronization. The V. Size control varies the amplitude of the pulse to the grid of the amplifier \(\checkmark\) linearity control varies the cathode resistance this changing the operating characteristics of the amplifier tube to obtain a linear sawtooth pulse. Therefore, it can be seen that the \(V\). Size and \(V\). Linearity controls must be operated in conjunction with one another

\section*{AFC Discriminator.}

The automatic frequency control section utilizes a 6AL5 (twin diode) tube. The sync separator feeds the horizontal sync pulses to the AFC tube while at the same time two voltages of opposite polarity are fed back from the horizontal deflection transformer. Any phase shift between the horizontal sync pulses and the horizontal multivibrator signal will cause the input voltage applied to one diode section to difter frem the results in a DC bias voltage applied to the grid of the multivibrator. The output of the AFC discriminator thus synchronizes the horizontal multiv brator to the horizontal pulse of the video signal. This arrangement improves horizontal stability and offes ease of operation.

\section*{Horizontal Multivibrator.}

The horizontal multivibrator circuit (6SN7 tube) is of the conventional cathode coupled type using a parallel resonant circuit (L-23 and C-107) as a coarse hold adjustment to control the frequency of oscillation. The ine hold adjustment R-94 varies the grid resistance horizontal sawtooth pulse is then fed to the grid of the pulse amplifier.

\section*{Pulse Amplifier}

The horizontal drive control, C -109 in the grid circuit controls the amount of voltage applied to the pulse mplifier. (Increasing the capacity decreases the drive.) The 6BG6 is a beam tetrode used to develop the necessary power for the flyback pulse and the horizontal de ion of the deflection transformer winding. Varying the inductance of the H . size coil varies the hish altage which in turn controls the size of the picture.

\section*{Damper.}

The damper tubes (6 W 4) main function is to damp out oscillations which occur over part of the horizontal canning cycle. The damper tube is connected in such a way as to give an increase in plate supply voltage for he vertical output amplifier. This additional voltage is developed across capacitor C-115 and gives an ad-
ditional 90 volts increase in plate supply voltage. Varying the inductance of the H . Linearity coil, L-26 changes the damper tubes operating point and thus controls the linearity of the horizontal sweep

Figure 5. Block Diagram of the Receiver

\section*{GENEIRAL IDESCRIPTION}

\section*{High Voltage Supply}

The high voltage is obtained from the auto-transfor mer type primary winding of the horizontal output transtube is cut off, the field built up in the primary winding collapses and induces a high voltage surge which is ectified by the \(1 \times 2\) tube, filtered by the aqua-dag coating of the Cathode-ray tube and applied to the second anode.

\section*{Automatic Gain Control.}

Plate voltage for the 6AU6 (pentode) gated AGC ube is obtained from a separate winding on the hori zontal deflection transformer. The plate voltage is thus applied at a horizontal rate while the grid signal is ob ained from the output of the first video amplifier. The AGC voltage is developed acioss resistor \(R-50\) and fed to the first three IF amplifiers. Due to the divider netfed to the RF amplifier. The AGC voltage will vary considerably according to the strength of the transmitted signal but should be in the vicinity of the voltage across R-37 (detector output).

Tuner
If the receiver is "dead" and the picture tube shows nothing but a raster (no snow) first check the I.F. and video amplifier stages before looking into the tuner. If the set is dead and snow appears on the face of the picture tube, first determine whether a signal is being transmitted and then check the antenna or lead-in con nections before suspecting the tuner for trouble.
3) The tuner can easily be serviced by removing the three (3) hex-head screws holding the bottom cover in place ponents within easy reach and all parts the tuner com When working inside the tuner do not me serviced ponent a great distance as a change in the distributed capacity will result and offset the alignment. When replacing components be sure to obtain the same lead lengths and replace the components in the same position.

\section*{CORRESPONDING CATHODE-RAY TLBE}

Due to the fact that 16RP4 and 16TP4 Cathode-Ray tubes from various suppliers are not directly interchangeable, different focus or ion trap magnets must be used. A B.R.C. part number sticker will be pasted on the tubes coating in 16AY210 chassis. When replacement is necessary be sure to state the B.R.C. part number of the picture tube This is necessary as a supplier may manufacture two of the same RMA tube types which will differ in construction. Listed below is a chart showing the various 16 -inch rectangular tubes used in the 16AY210 chassis

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TRDUBLE-SHDDTING} \\
\hline Trouble & Probable Location & Trouble & Probable Location \\
\hline \multirow[t]{2}{*}{No Raster No Sound} & \multirow[t]{2}{*}{\begin{tabular}{l}
1. Fhono TV switch dafective or in "ON" position. \\
2. Defective 5 U 4 tube (20). \\
3. Defective power transformer (T-7). \\
4. Defective filter choke (L-25 or L-28). \\
5. Defective filter condenser (C-61 or C-94) \\
6. Defective fuse.
\end{tabular}} & No Horiz. Sync Picture otherwise normal & \begin{tabular}{l}
1. Defective tubes 15, 16. \\
2. Defective resistors R-81-82-83-84-85-8687, and capacitors C.91-98-99-100-101. 102-105-125. \\
3. Defective Horizontal transformer T-6.
\end{tabular} \\
\hline & & \multirow[t]{2}{*}{No Vertical Sweep} & \multirow[t]{2}{*}{\begin{tabular}{l}
1. Dofective tube 14. \\
2. Defective transformers T-9, T-4, T-5A. \\
3. Defective capacitors C.92, 95, 116 and resistors R.75, 78.
\end{tabular}} \\
\hline \multirow[t]{2}{*}{No Raster Sound Nermal} & \multirow[t]{2}{*}{\begin{tabular}{l}
1. High voltage lead disconnected. \\
2. Ion trap magnet incorrectly positioned. \\
3. Yoke plug not in place or loose. \\
4. Insufficiont or no high voltage, (rofor to "No high voltage section"). \\
5. Defective resistors R46-47-48-100 and capacitor C. 67 . \\
6. Defective picture tube.
\end{tabular}} & & \\
\hline & & Picture cannot be Centered & \begin{tabular}{l}
1. Defective ion trap magnet. \\
2. Defective focus magnet. \\
3. Dafective pieture tube. \\
4. Defective capacitor C-114.
\end{tabular} \\
\hline & \multirow{4}{*}{\begin{tabular}{l}
1. Defective entenna or lead-in. \\
2. Defective tubes 1 through 7 . or associated circuits. \\
3. Improper voltages or resistances at sockets of tubes 1 through 7. \\
4. Improper alignment.
\end{tabular}} & \multirow[t]{3}{*}{Picture cannof be Focused} & \multirow[t]{3}{*}{\begin{tabular}{l}
1. Focus magnot not properly located or centerad on the pieture tube neck. \\
2. Ion trap magnet not proporly adjusted or dafectivo. \\
3. Defective picture tube. \\
4. Improper high voltage.
\end{tabular}} \\
\hline \multirow[t]{3}{*}{No Picture No Sound Raster Normal} & & & \\
\hline & & & \\
\hline & & \multirow[t]{2}{*}{No High Voltage} & \multirow[t]{2}{*}{\begin{tabular}{l}
1. Defective tubes 16, 17, 18, 19. \\
2. Defective transformer T-6, yote T.5B. \\
3. Defective capacitors C-108, 112, 113. 114 or resistors R-90 through R-98 and R-112-118-119-120.
\end{tabular}} \\
\hline No Sound Picture Normal & \begin{tabular}{l}
1 Defective tubes 11, 12, 13, and 21 or associated circuits. \\
2. improper voltages or resistances at sockets of tubes 11, 12, 13 and 21.
\end{tabular} & & \\
\hline & 4. Impropor alignment of transformer \(\mathbf{T 2}\). T8 (see page 14). & \multirow[t]{2}{*}{Bunching or folding at side of Pitture} & \multirow[t]{2}{*}{\begin{tabular}{l}
1. Improper adiustment of horizontal drive control C-109. \\
2. Defective tubes 17, 18. \\
3. Defective C-115 or H. Linearity coil.
\end{tabular}} \\
\hline \multirow[t]{2}{*}{No Picture Raster Normal Sound Normal} & \multirow[t]{2}{*}{\begin{tabular}{l}
1. Defective tubes 7, 8, 10. \\
2. Improper voltages or resistances at sockets of tubes 7. 8, 10. \\
3. Defective capacitors C-64-70, and L-20-21-30.
\end{tabular}} & & \\
\hline & & Audio in Picture & 1. Improper alignment and ratio of video carrier to sound response lsee page 14). \\
\hline No Sync & \begin{tabular}{l}
1. Defective tubes 8, 9, 10. \\
2. Defective capacitors C-103, 121 and resistors R-45, 114.
\end{tabular} & \multirow[t]{2}{*}{Snow or poor Signal} & \multirow[t]{2}{*}{\begin{tabular}{l}
1. Improper adjustment of antenna funing knob (see page 6). \\
2. Cabinet (built-in antenna) not properly oriented. \\
3. Check alignment of C-1 and C-2 (see page 15). \\
4. Insufficient signal input. \\
5. Defective capacitors C.59, C-62 or peating coil L-21.
\end{tabular}} \\
\hline No Vertical Sync Picture otherwise normal & \begin{tabular}{l}
1. Defective capacitors C-71, C-90, C-95. \\
2. Defective tube 9. \\
3. Defective resistors R-73, R-77, R-88.
\end{tabular} & & \\
\hline
\end{tabular}

The drawings in this section illustrate the wave shapes at various positions within the set. These wave shapes are not theoretical but exact copies of the oscilloscope wave shapes taken with a transmitted signal.

The peak-to-peak voltage indicated was measured by a calibrated oscilloscope under typical operating conditions. When analyzing a particular wave shape, the peak-to-peak voltage may vary somewhat depending upon the setting of the contrast control and the strength of the signal. The wave shapes may vary somewhat in video section depending on the picture being transmitted. When checking these wave shapes connect the ground lead from the oscilloscope to the chassis and the hot lead the position shown in the chart.
The chart below lists the test point, peak-to-peak voltage and the corresponding wave shape number. Under each drawing is the type of wave shape referring either to a Horizontal (15,750 cycles) or Vertical pulse (60 cycles).
\begin{tabular}{|c|c|c|c|}
\hline Test Point & Taken At & Peak-to-peak Voltage & Wave Form Number \\
\hline 1 & Pin 7 of Tube 7 & 8 & 1 and 2 \\
\hline 2 & Pin 7 of Tube 8 & 8 & 1 and 2 \\
\hline 3 & Pin 6 of Tube 8 & 42 & 3 and 4 \\
\hline 4 & Pin 2 of Tube 8 & 12 & 3 and 5 \\
\hline 5 & Pin 1 of Tube 8 & 32 & 1 and 2 \\
\hline 6 & Pin 4 of Tube 9 & 26 & 3 and 5 \\
\hline 7 & Pin 5 of Tube 9 & 11 & 6 \\
\hline 8 & Pin 1 of Tube 9 & 11 & 6 \\
\hline 9 & Pin 2 of Tube 9 & 40 & 7 \\
\hline 10 & Pin 5 of Tube 10 & 410 & 20 \\
\hline 11 & Junction of R77 and C90 & 13 & \\
\hline 12 & Junction of C90 and C95 & 27 & 9 \\
\hline 13 & Pin 1 of Tube 14 & 40 & 10 \\
\hline 14 & Pin 2 of Tube 14 & 76 & 11 \\
\hline 15 & Pin 4 of Tube 14 & 28 & 12 \\
\hline 16 & Pin 5 of Tube 14 & 650 & 13 \\
\hline 17 & Pin 5 of Yoke Socket & 42 & 13 \\
\hline 18 & Pin 1 of Tube 15 & 8 & 14 \\
\hline 19 & Pin 2 of Tube 15 & 7 & 22 \\
\hline 20 & Pin 7 of Tube 15 & 11 & 21 \\
\hline 21 & Pin 4 of Tube 16 & 1 & 15 \\
\hline 22 & Pin 5 of Tube 16 & 48 & 16 \\
\hline 23 & Pin 1 of Tube 16 & 32 & 17 \\
\hline 24 & Pin 2 of Tube 16 & 45 & 18 \\
\hline 25
26 & Pin 5 of Tube 17
Pin 5 of Tube 18 & 50
1500 & 18
19 \\
\hline
\end{tabular}

1. Vertical Pulse

4. Vertical Pulse

Horizontal Pulse

5. Vertical Pulse

3. Horizontal Pulse

6. Horizontal Pulse

\section*{TUNER ALIGNMENT}
1. Preset trimmer serews \(C 7,8,14,16,26,29\) to dimensions shown on page 14, figure \(E\).
2. Preset coil cores \(\mathbf{L 4}, 5,6,7,8,9\) in the following manner
(a) In low band position, turn tuner shaft to top of stroke as on page 14, figure B.
(b) The switch will be in low band position.
(b) Ahe switch will be in low band position.
(d) Turn L-9 core (low band oscillator) an additional four (4) turns out of coil.

LOW BAND TRACEING
Turn tuner to channel 6. Soe page 12, figure B.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{|l|l|}
\text { Step } \\
\text { No. }
\end{array}
\] & signal
Gemerator
Froq. (me.) & \[
\begin{aligned}
& \text { Swoep } \\
& \text { Generator } \\
& \text { Freq. (m.) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Signal } \\
& \text { Input } \\
& \text { Point }
\end{aligned}
\] & Output Point & Adjust & Remarks & Response \\
\hline 1 & & Channel 6 & Antenna Terminals & Scope across R-37 & C-2 & Adjust for maximum response with symmetrical peaks & \\
\hline 2 & & Channel 6 & Antenna Terminals & Scope across R-37 & \[
\begin{aligned}
& C-8 \\
& C-16
\end{aligned}
\] & Adjust for maximum response with symmetrical peaks & \\
\hline 3 & 83.25 & Channel 6 & Antenna Terminals & Scope across R-37 & C-29 & Adjust until marker is \(50 \%\) down on low frequency slope. Repeat step 2 if necessary. & \\
\hline 4 & \begin{tabular}{l}
(a) 61.25 \\
(b) 67.25 \\
(c) 77.25 \\
(d) 55.25
\end{tabular} & \begin{tabular}{l}
(a) Channel 3 \\
(b) Channel 4 \\
(c) Channel 5 \\
(d) Channel 2
\end{tabular} & Antenna Terminals & Scope across R. 37 & \[
\begin{gathered}
C-8 \\
C-16
\end{gathered}
\] & \begin{tabular}{l}
Adjust tuner until response curve appears on scope. \\
Adjust trimmers for compromise which will give the best overall
response ecross band. response across band.
\end{tabular} & \\
\hline
\end{tabular}

NOTE: If trimmer C-8 reaches maximum and additional capacity is needed, turn L-5 core, into coil.

HIGB BAND TRACXING
Turn tuner to channel 13. See page 12, figure B.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & & Channel 13 & Antenna Terminals & Scope across R-37 & C-1 & Adjust for maximum response with symmetrical peaks & \\
\hline 2 & & Channel 13 & Antenna Terminals & Scope across R-37 & \[
\begin{gathered}
\text { C-7 } \\
\text { C-14 }
\end{gathered}
\] & Adjust for maximum response with symmetrical peaks & \\
\hline 3 & 211.25 & Channel 13 & Antenna Terminals & Scope across R-37 & C-26 & Adjust until marker is \(50 \%\) down on low frequency slope. Repeat step 2 if necessary. & \\
\hline 4 & \(\begin{array}{ll}\text { (a) } & 205.25 \\ \text { (b) } & 199.25 \\ \text { c) } & 193.25 \\ \text { (d) } & 187.25 \\ \text { (e) } & 181.25 \\ \text { (f) } & 175.25\end{array}\) & \begin{tabular}{l}
(a) Channel 12 \\
(b) Channel 11 \\
(c) Channel 10 \\
(d) Channel 9 \\
(e) Channel 8 \\
(f) Channel 7
\end{tabular} & Antenna Terminals & Scope across R-37 & \[
\begin{aligned}
& \text { C-7 } \\
& \text { C-14 }
\end{aligned}
\] & \begin{tabular}{l}
Adjust tuner until response curve appear \\
on scope. \\
Adjust trimmers for compromise which will give the best overall response across band.
\end{tabular} & \\
\hline
\end{tabular}

Turn to any high band channel. Connect the generator thru a 1000 mmf capacitor and set the contrast control to maximum
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Step } \\
& \text { No. }
\end{aligned}
\] & Signal Generator Freq. (mc.) & Sweep Generator Freq. (mc.) & \begin{tabular}{l}
Signal \\
Input \\
Point
\end{tabular} & Output Point & Adjust & Remarks & Response \\
\hline 1 & 26.4 & - & Converter Grid & VTVM across R-37 & \[
\begin{aligned}
& \mathrm{L}-11 \\
& \mathrm{~L}-13
\end{aligned}
\] & Adjust generator output approx. 1 volt & Maximum Reading \\
\hline 2 & 23.4 & - & Converter Grid & VTVM across R-37 & \[
\begin{aligned}
& \text { L. } 12 \\
& \text { L. } 14
\end{aligned}
\] & Adjust generator output approx. 1 volt & Maximum Reading \\
\hline 3 & 25.0 & - & Converter Grid & VTVM across R-37 & T-1 & Adjust generator output approx. 1 volt & Maximum Reading \\
\hline 4 & 25.0 & - & Converter Grid & VTVM across R-37 & - & \begin{tabular}{l}
SENSITIVITY \\
Generator output should be less than 100 microvolts. (If not, repeat alignment).
\end{tabular} & 1 volt VTVM Reading \\
\hline 5 & \[
\begin{gathered}
26.75 \\
23.0
\end{gathered}
\] & 25.0 & Converter Grid & Scope across R. 37 & & \begin{tabular}{l}
SELECTIVITY \\
Markers should be as shown in response column. (If not, repeat alignment).
\end{tabular} & \\
\hline 6 & - & \(\underset{6-8-10-12}{\text { Channels 2-4- }}\) & Antenna Terminal & Scope across R-37 & T-1 for flat response & Check channels for band width (3.5 to 4 mc . at 6db points). & \\
\hline
\end{tabular}

Picture I.F. frequency 26.75 mc - Sound I.F. frequency 22.25 mc .
SOUND I-F ALIGNMENT
Short antenna to ground and connect generator thru a 1000 mmf capacitor.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 4.5 & - & Pin 1 of Tube 11 & VTVM junction of R-53 and C-77 & T-8 and T-2 primary (bottom of can) & & Maximum Reading \\
\hline 2 & - & 4.5 & Pin 1 of Tube 11 & Scope junction of R-58 and C-77 & T-2 secondary (top of can) & Sweep approx. 100 kc . Adjust for max linearity & \\
\hline 3 & - & 4.5 & Pin 1 of Tube 11 & Scope junction of R-58 and C-71 & T-2 primary (bottom of can) & Sweep approx. 100 kc . Adjust for symmetry of peaks & \\
\hline 4 & 4.5 & - & Pin 1 of Tube 11 & VTVM junction of R-58 and C-77 & - & Generator output should be less than .01 volt & .05 watt output \\
\hline \multicolumn{8}{|c|}{\begin{tabular}{l}
(a) Tune in a station. \\
(b) Adjust the tuner until sound bars just appear. \\
(c) Turn L-19 slug all the way out (counter-clockwise). \\
(d) Jurn the slug in (clockwise) until the horizontal scanning lines are smooth and continuous.
\end{tabular}} \\
\hline
\end{tabular}
© John F. Rider

\section*{IREIPIACEMENT PARTS LIST}

When ordering parts or writing. always mention model number, series, serial number and RMA date code number.

\section*{INSTALLATION AND SERVICE INSTRUCTIONS}

Service and adjustment controls are located on both the ront and rear aprons of the chassis. (See Fig. \#l \& \#2.) The front controls are accessible by removing the two round control knobs. It will not be necessary to remove the push buttons. Lift the control panel straight up so that the bottom of the panel comes out of the bottom groove in the cabinet. Pull the control panel down at an angle at the bottom so that the top of the panel comes out of the top groove. When reinstalling the panel reverse the foregoing procedure.

\section*{HORIZONTAL FREQUENCY:}

Turn the horizontal hold control to the center of its rota tion. Turn the picture control all the way to the left. Adjust the horizontal frequency until the picture is stationary. Push different buttons to select other channels. Each channe should lock in. If the picture does not lock in, readjust the horizontal frequency until it does. This adjustment should only be made after the receiver has warmed up for about 15 minutes.

\section*{HORIZONTAL DRIVE:}

Adjust for best balance of brightness and linearity. If this adjustment is turned too far to the left a vertical white line will appear near the center of the picture.

\section*{HORIZONTAL WIDTH:}

The horizontal width should be turned in until the picture covers the full width of the picture opening.

\section*{HORIZONTAL LINEARITY:}

The horizontal linearity control should be adjusted for best horizontal linearity after the horizontal drive and width controls have been properly adjusted.

\section*{CENTERING:}

If the picture is not centered in the picture opening, it may be centered by removing the cabinet back and adjust ing the mechanical position of the focus coil. The coil can be moved in any direction after its mounting screws have been loosened. If the picture is tilted at an angle, it may be straightened by loosening the deflection yoke locking screw and adjusting the deflection yoke.

Make sure that all screws and nuts are well tightened after adjustment.
ION TRAP AND FOCUS CONTROL
If the picture tube does not appear to be bright enough or if the tube dims when the brightness control is turned all the way to the right, the ion trap must be adjusted. Remove the cabinet back, turn the picture control all the way to the right. Turn the brightness control all the way to the right. Move the ion trap forward or backward very slowly and at the same time turn it to the right or left until the brightest picture is obtained.

\section*{OSCLLLATOR AND FINE TUNING:}

The fine tuning control is set at our factory so that the picture just begins to appear and the sound is at maximum when the fine tuning control is turned all the way to the left If it is necessary, each push button may be adjusted individually so that practically all transmitting channels may be received with the same picture and sound. The oscillator trimmers for channels \#7 through \#13 are located above their corresponding switch shaft. The trimmers for channels \#2 through \#6 are located below their corresponding switch shafts.

A non-metallic screw driver with a \(3 / 16^{\prime \prime}\) wide tip and about 8 inches long should be used for oscillator alignment. Select a transmitting channel and push the corresponding button. Set the fine tuning control in the center of its range. Insert the screw driver into the trimmer adjustment for the button that has been pusned. Turn the screw driver very slowly to the right until the fine grainey appearance just disappears from the picture. With the fine tuning control still set, push another button and adjust its oscillator trimmer. Continue to do this until all buttons have been adjusted. It will now be possible to push each button and receive each channel, that is transmitting, within normal receiving range, without resetting the fine tuning condenser for each station. After the receiver has warmed up thoroughly it will be possible to adjust the receiver, on one channel, then select any other channels without having to readjust the hold, fine tuning, contrast or brightness controls.

MODELS
\(14 C 50\)

FIGURE 2

\section*{INSTALLATION AND SERVICE INSTRUCTIONS}

Service and adjustment controls are located on both the front and rear aprons of the chassis. (See Fig. \#l \& \#2.) The front controls are accessible by removing the two round control knobs. It will not be necessary to remove the push buttons. Lift the control panel straight up so that the bottom of the panel comes out of the bottom groove in the cabinet Pull the control panel down at an angle at the bottom so that the top of the panel comes out of the top groove. When reinstalling the panel reverse the foregoing procedure.

\section*{HORIZONTAL FREQUENCY:}

Turn the horizontal hold control to the center of its rota tion. Turn the picture control all the woy to the left. Adjust the horizontal frequency until the picture is stationary. Push different buttons to select other channels. Each channe should lock in. If the picture does not lock in, readjust the horizontal frequency until it does. This adjustment should only be made after the receiver has warmed up for about 15 minutes.

\section*{HORIZONTAL DRIVE:}

Adjust for best balance of brightness and linearity. If this adjustment is turned too far to the left a vertical white line will appear near the center of the picture.

\section*{HORIZONTAL WIDTH:}

The horizontal width should be turned in until the picture covers the full width of the picture opening.

\section*{HORIZONTAL LINEARITY:}

The horizontal linearity control should be adjusted for best horizontal linearity after the horizontal drive and width controls have been properly adjusted.

\section*{CENTERING:}

If the picture is not centered in the picture opening, it mary be centered by removing the cabinet back and adjust ing the mechanical position of the focus coil. The coil can be moved in any direction after its mounting screws have been loosened. If the picture is tilted at an angle, it mary be straightened by loosening the deflection yoke locking screw and adjusting the deflection yoke.

Make sure that all screws and nuts are well tightened after adjustment.

\section*{ION TRAP AND FOCUS CONTROL:}

If the picture tube does not appear to be bright enough or if the tube dims when the brightness control is turned all the way to the right, the ion trap must be adjusted. Remove the cabinet back, turn the picture control all the way to the right. Turn the brightness control all the way to the right. right. Turn the brightness control all the way to the right.
Move the ion trap forward or backward very slowly and at Move the ion trap forward or backward very silowly and at the same time turn picture is obtajned.

The fine tuning control is set at our factory so that the picture just begins to appear and the sound is at maximum.
when the fine tuning control is turned all the way to the left If it is necessary, each push button may be adjusted indi vidually so that practically all transmitting channels may be received with the same picture and sound. The oscillator trimmers for channels \#7 through \#13 are located above their corresponding switch shaft. The trimmers for channels \#2 through \#6 are located below their corresponding switch shafts.

A non-metallic screw driver with a \(3 / 16^{\prime \prime}\) wide tip and about 8 inches long should be used for oscillator alignment. Select a transmitting channel and push the corresponding button. Set the fine tuning control in the center of its range Insert the screw driver into the trimmer adjustment for the button that has been pusined. Turn the screw driver very slowly to the right uniil the fine grainey appearance jus disappears from the picture. With the fine tuning contro stull set, push another button and adjust its oscillator trimmer Continue to do this until all buttons have been adjusted. It will now be possible to push each button and receive each channel, that is transmitting, within normal receiving ramge without resetting the fine tuning condenser for each station. After the receiver has warmed up thoroughly it will be possible to adjust the receiver, on one channel, then select any other channels without having to readjust the hold, fine tuning, contrast or brightness controls.

MODELS: T16030, TFM16031, C16030 CMM16031, T19031, TFM19032, CFM19032, DFM19032 and CKFM19032

\section*{I OENERAL DESCRIPTION}

Subject models are direct-viewing receivers using \(10^{\prime \prime}\) and \(19^{\prime \prime}\) all-glass cathoderay tubes. The receivers are complete in one unit. Features o the recelvers include U.S.T. FM sound, syncrolok system for horizontal raming, one 1 imiter, one high power stage, video amplifier, non-hazardous high voltage supply using a voltage doubler circuit.
```
POWER SUPPLY RATING
ANTENNA INPUT IMPEDANCE
    72 ohms or 300 ohms on F.M. models
```
 \# Note: When 300 ohm tape is used for antenna downlead to FM models, the
 When 300 ohm tape is used for antenna downead to feme remed from the tuner and the 300 ohm down-
 TUBR COMPLEMENT
 \(\frac{\text { TUBE FUNCTION }}{\text { RF amplifier }}\)
 RF amplifi
 Convertor
Oscillator
 RF amplifier
 Converter
Oscillator
 1st sound IF amplifier
 2nd sound IF amplifier
 Sound IF 11 miter
 lst audio amplifier
 Audio output
 lst video IF amplifier
 2nd video IF amplifier
 3rd video IF amplifler
 th video IF amplifier
 Video detector
 A.G.C. detector
 DC restorer
 Sync clipper
 Sync anplifie
 AGC amplifier
 Sync leveler
 Horizontal discharge
 Vertical Scanning Oscillator
 Vertical Output
 Horizontal Sync Phase Discrimin
 Horizontal scanning oscillator
 control
 Horizontal scanning oscillator
 Horizontal \({ }_{n}\) output (19"recelvers
 Horizontal damper
 High voltage rectifier
 High voltage rectifle
 Low voltage rectifier
 Zetka Picture Tube (use with \(16^{\prime \prime}\)
 Zetke Picture Tube \(\begin{gathered}\text { recelvers) } \\ \text { use with 19" } \\ \text { recelvers) }\end{gathered}\)

PICTURE I-F FREQUENCIES
Adjacent Channel Soquency
accompanyine Sound
25.75 Mc
27.25 Mc
Accompany ing Sound Traps
Carrier Tra

SOUND I-F FREQUENCIES
Discriminator Band Width
(between peaks)
VIDEO RESPONSE
FOCUS
SWEEP DEFLECTION

SCANNING
HORIZONTAL SCANNING FREQUENCY
FIELD FREQUENCY
Picture repetition rate \(\begin{gathered}60 \mathrm{cps} \\ 30 \mathrm{cps}\end{gathered}\)
opfrating Contricls (Front Panel)
1. Tuner Control
2. Sound, volume and on-off switch
3. Contrast
5. Frightness sketch (FM, TV and phono) on all models having FM

CONTROLS ON REAR OF CHASSIS (not including RF \& IF adjustments
Horizontal drive
Horizontal Linearity
He 1 ght
Syncrolok (horizontal speed)
Vertical Linearity
ocus
Horlizal Centering
Vertical spenterin
Vertical speed
Horizontal
CCNTRCLS TOP SIDE OF CHASSIS -- FRONT \& CENTER
ADDITIONAL CONTROLS
Focus coll above chassis - wing nut adjustments Ion trap magnet - adjusted on tube neck
Deflection yoke above chassis - thumb screw adjustments Horizontal width accessible underneath chassis rear slug on A.F.C.c an

PICTIRE: MASK SIZE
\(\begin{array}{ll}16^{\prime \prime} \text { Models } \\ 19^{n} \text { Models } & 14^{7 / 8^{n}} \times 11^{\mathrm{x}} \times 14^{\text {n }} \\ 17^{n}\end{array}\)
II MAINTENANCE
A. WARNING

Operation of this equipment outside of the overall enclosure invol ves a shock hazard from the 400 volt supply and an explosion hazard in handing the kinescope. The second anode supply does not involve a dangerous shock hazard, but lack of caution may result in an unpleasant shock or burn. Be MODELS C16030, C19031, CFM16031

\section*{B. TEST EQUIPMENT}

To properly service the television receiver, it is recommended that the 1. R-F
a. Frequency ranges
requi rements
13 to 30 Mc
13 to 30 Mc.
40 to 00 Mc
170 to 225 Mc .
b. Sweep width adjustable from 1 to 12 Mc
2. Cethoderray oscillograph, preferably one with a wide band verticaldeflection and a calibrating inrut source.
3. Electronic voltmeter with high-voltage probe, such as RCA Junior Volt4. An accurate R.F. signal generator covering the following frequency ran ges with can be used to set traps, local oscillators, and for frequency
markers.
\(\begin{array}{ll}\text { Intermediate frequencies. } & (21.25 \mathrm{Mc} . \\ & (25.75 \mathrm{Mc} . \\ \text { Trap frequencies } & (19.75 \mathrm{Mc} .\end{array}\)
Trap frequeacies
19.75 Mc.
(27.25 Mc.
\begin{tabular}{|c|c|c|c|c|}
\hline CHANNEL NOMBER & MC. & \[
\begin{aligned}
& \text { PIX } \\
& M C y \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { SOUND } \\
& \mathrm{MCE} \\
& \hline
\end{aligned}
\] & HETERODYNE OSC. FREQ. MC. \\
\hline 2 & 54-60 & 55.25 & 59.75 & 31 \\
\hline 3 & 60-66 & 61.25 & 65.75 & 47 \\
\hline 4 & 60-72 & 67.25 & 71.75 & 03 \\
\hline & 76-82 & 77.25 & 81.75 & 103 \\
\hline 6 & 82-88 & 83.25 & 87.75 & 109 \\
\hline 7 & 174-180 & 175.25 & 175.75 & 201 \\
\hline 8 & 180-186 & 181.25 & 185.75 & 207 \\
\hline 9 & 186-192 & 187.25 & 191.75 & 213 \\
\hline 10 & 192-198 & 193.25 & 197.25 & 219 \\
\hline 11 & 198-204 & 190.25 & 203.75 & 225 \\
\hline 12 & 204-210 & 205.25 & 209.75 & 231 \\
\hline 13 & 210-216 & 211.25 & 215.75 & 237 \\
\hline
\end{tabular}

III INTERMEDIATE FREQUE:CY ALIGNMENT PROCEDURE: The signal generator should be calibrated with the crystal at 21.25 and
25.75 . If the frequency stability of the signal generator is known to be poor, a check should be made with the crystal each time one of these fre quencies is used.
1. SOUND DISCRIMINATOR ALIGNMENT

Connect output of the signal generator to the third i-f grid, pin 1 of V 6 , and set output of signal generator for af proximately one volt at 21.25 Mc . Connect Junior Voltonmst in series with one megohm resistor to junction for maximum d-c output. Move Junior Voltohnyst to output of discriminator for maximum d-c output. Move Junior (bottom) of TS for zero d-c output. Readjust TS primary for symmetrical plus or minus d-c output on either side of 21.25 Mc .

The sweep, in conjunction with marker signals, can also be used to align the discriminator but the center pos.
The peak to peak bandwidth of the discriminator should be approximately
350 Kc . and it should be linear from 21.75 Mc . to 21.325 Mc .
2. SOUND INTERMEDIATE FREQUENCY ALIGNMENT

Connect sweep output to first I-f orid, pin 1 of V4. Connect oscilloscope and ad just T3 and T4 for max imum gain at 21.25 Mc . and symmetry about 21.25 Mc . The output level from the sweep should be set to produce approximately 0.3 volt peak-to-pak at the third sound \(i-f\) grid return. The bandwidth at \(70 \%\) response from the first sound i-f grid to the third sound i-f grid should be approximately
necessery to reduce the time constant in the second sound \(1-\mathrm{f}\) grid circuit
in order to reproduce the response curve. To do this, shunt R 7 with apin order to reproduce the response curve. To do this, shunt Rh7 with apto iunction of CUC and RU3 and compare to curve in Fi:ure 7 .
3. PICTURE INTERMEDIATE FREQUENCY ALIGNMENT

Cpen fumper on tie point there C98 is located. This disables the A.G.C. feed th the R.F.-I.F. gain cintrol stages. Apply minus three volts, d-c, where cys is wired to the tie point. Connect oscilloscope vertical ampvideo detector loed resistor. Connect VTVM to the same point. The meter needle is the indicetin' means for the alignment and the oscilloscope's primary function is to :ndicate over-load of the circuits under test. When this is indicated, the sienal source level should be reduced. Cap acity couple A.M. sienal generator to tuner converter tube bilpping connect gener Cel gional aenerator to 19.75 ,
Set sienal penerator to 19.75, audio modialated, and adjust T8 secondary for minimum reading on VTVM. Ce signal generator to 21.25 Mc ., avio modulated, and adjust Tl5 secondary and T ? secondary for minimi-a indication on VTVM. Set signal generator to 27.25 Mc ., audio modulated, and adjust T7 secendary for minimum indication on VTVM.
For proper indicstion of these trap adjustments, high level output is required from sifnal generator. Mc . end edjust T 15 primare: for maximum indSet sipnal gener
icption on VTVM.
Set sienel generator to 25.3 Mc , and adifust T7 primary for maximum indication on VTVM.
spt sianal penerator to 22.3 Mc . and adjust T 8 primary ror maximum in lication on VTVM.
Sty aignal generator to 25.2 Mc . and adjust L 5 for maximum indication on Set signal penerator to 23.4 Mc . and edjust \(L\) for maximum indicetion on

Disconnect signsl penerator from shield and apply sweep generator output to stield. Allust sweep aenerator to give an I. F. amplitude frequency re sponse curve on the oscilloscope. The picture intermediate frequency can now be retouched. If necessary to secure the standard 1 -f response curve with the picture carrier at approximately \(55 \%\) on the response curve. For
curve comparison refer to Figure 0 .

In making any final touch-up adjustments on the picture i-f amplifier, it should be remembered that the converter stage and second picture intermed late frenuency are relatively high \(Q\) circuits and tend to control, the I-f response at the high and low frequency ends of the pass-band respectively circuits and tend to control the response of the center portion of the pass-band.
The picture I.F. amplifiers can also be aligned without first peaking the Individual stages to the specified single frequencies, but by using the sweep and markers only. If the receiver is completely mis-aligned, this method is not recommended.
Since there is some shift in response in both the picture and sound i-f amplifiers with bias, the recomended bias levels should always be used when aligning these circuits.

IV ALIGNMENT OF STRAIGFT T.V. STANDARD COIL TUNER
Open jumper on tie point where C98 is located. (Refer to Figure 2.) This disables the A.G.C. bias feed to the RF and IF \(q\) gin controlled stages. Apply minus three volts \(d-c\) where \(C 98\) is wired \(t\) the tie point

V CONVERTER COIL I.F. \& TRAP ALIGNMENT (if adjusted in I.F. alignment, pro-
Connect VTVM to second detector video load resistor R105 on main chassis. Remove tube shield from 6JC on tuner. Capacity couple A.M. signal connect generator to ungrounded shield. Set frequency of generator to 21.25 Mc. Tune L12 for minimum voltage on VTVM. Set generator to 21.8 Mc . and tune Lll for maximum voltage on VTVM. Use high output on signal generator at 21.25 Mc . and low output on 21.8 Mc. for above alignment procedure.
VI RF \& MIXER ALIGNMENT
1. Having first aligned PIX I.F. section set station selector switch to channel 12.
2. Connect oscilloscope through 10,000 ohms to second detector video output on main chassis.
3. Feed sweep generator into entenna terminals, sweeping channel 12. channels. They should fell in automatically on all channels.
OSCILLATOR ALIGNMENT
1. Turn station selector switch to channel 12. Flat on fine tuning facing upwards to 12 o'clock.

Connect signal generator ueing A.M. or F.M. modulation to one antenna terminal and ground. Set to sound carrier frequency 209.75 Mc .
3. Connect vacuum tube voltmeter to D.C. output of discriminator in main
4. Adjust C5 for zero reading on VTVM between a positive and negative peak for A.M. modulation or maximum reading for F.M. modulation.
5. Check all channels for zerof or maximum reading on VTVM. It is usually ary to touch up the oscillator colls, the following procedure is recommended.

\section*{OSCILLATOR COIL TOUCH-UP (usually not necessary)}
a. Fine tuning control in mid-position. coll on channel 12.
c. Turn channel selector switch to channel 13 and repeat adjustment.

This adjustment can be repeated for all channels or, if necessary, on any single channel.

\section*{VII ALIGNMENT OF HORI ZONTAL CIRCUITS}

The horizontal drive control should be kept at or close to maximum clockwise position. Syncrolok speed control on rear of chassis should be adjusted so that for either extreme position of the horizontsl hold control, horizontally when the station is returned from either frequency side. The phasing slug, located underneath the chassis on the rear of the hor zantal discriminator can, should be adjusted so thet for either extreme position of the horizontel hold control there is no squeezing at either end of the
picture and no white line smears. The horizontal hold control should then picture and no white 11
be set at mid position.
It is important that the AFC bias measured with a vacuum tube voltmeter at It 18 important that the AFC bias measured with a vacuum tube vol tmeter
pin 5 on v22 socket does not exceed minus 2.4 volts, d-c. This voltage pin 5 onced the specified value if the drive control is not advanced far enough in the clockwise direction. This will limit the pull-in range of
the horizontal scanning oscillator.
VIII ION TRAP, YOKE \& FOCUS COIL ADJUSTMENT
The brightness control should be gradually advanced clockwise as ion trap
motions about the kinescope gun internal flags are made. When the raster
appeara, the ion trap sholld be adjusted for maximum brightness. Dark coll. At all times check that the yoke flair as far as it can go. Any adjustment, of the focus coill scope neck control, should be followed hy a readjustment of the ion trap. Insofar as wide angle kinescope deflecticn is used, the adjustments of yoke, focus

IX A.G.C. THRESHOLD CONTROL SETTING
The picture must first be framed with proper size, linearity and focus. The channel selector must be set to the station having the strongest signal. Cnntrast control should be sat to mid-position. The A.G.C. is to be advanced clockwise to the point where the picture is over dri) and then very slightly backed down. The service man must carefullyswitch through on all channels with the contrast fully clockwise to make certain that the picture pulls in without going out of synchronizetion.
Another means of making this adjustment is by putting the vertical amplifle ed clockscope on the kinescope cethode. The threshold control tract.

\section*{\(x\) Line voltage variations}

The synchronizing circuits will hold the visible picture regardless of the ine voltape. When the horizontal size is not sufficient due to low ine voltage (between 10\% and 109 R.M.S. volts), the following changes can be

\section*{16" Receivers}
1. Wire in one 01 to 027 microfarad 000 volt capacitor as shown in figure 5. This places the capacitor electrically across 5 and 6 terminals tical dimensicns and the focusformer. Reset the horizontal and ver

\section*{19" Receivers}
1. Add a capacitor from .003 to .005 microfarads 600 volts as shown in Figure which is in the receiver.

\section*{I PERFORMANCE SUMMARY}

These receivers are by design and components used, high quality receivers. The synchronizing circuits heve the ereatest degree of noise immunity aycuits ore entirely independent of the contrast control. The horizontal canning oscillator system is very stable with respect to temperature and ime. It is decidedly the most superior type system used. All of this

The A.G.C. circitt is a gated, fast, high gain type system. As a result the noise figure is very good and anplitude changes of input signal introadditional advantage is that the defares are definitely controlled. An selected with no necessity of brightness and contrast readjustments unless equired by personal taste. These features make the recelvers extremely simple to operate. For marginal area application these models will give the finest performance obtainarle, due to their high sensitivity and high

The models with F.M. have a function switch for selection of F.M., T.V. or Phono. Features of this circuit are the switching out of possible interfering circuits with the function switch stting and instantaneous action
of any of the selected functions.

MODELS Cl6030, Cl9031, CFM16031,
CFM19032, CKFM19032, KFM19032, T16030,
T19031, TFM16031, TFM19032, Rev.

© John F. Rider

PR \(-5=750158\)
- John F. Rider

\section*{-}

\section*{SURJECT: Proper Operation of the Syncrolok}

General: Proper adjustment of the Syncrolok becomes an increasingly important factor in the proper operation of the receiver, since the keyed AGC action is entirely dependent upon the relative phase between the sync pulse and the keying pulse.

Although careful and complete adjustment of the Syncrolok is made at the factory before each receiver is shipped, vibration in shipment may cause the syncrolok to become out of optimum adjustment when the set arrives at its installation point. The following procedure is recommended for checking the operation of the syncrolok and adjusting it if necessary.
I. Checking the Syncrolok for Normal Frequency and Phasing.
a. Rotate the horizontal hold control to its extreme clockwise position.
b. Then adjust the vertical hold cintrol to a point where the ver tical is just about to jump a frame upwards, but doesn't quite tear out.
c. Then rotate the horizontal hold control to its extreme counterclockwise position.
d. If the vertical should lose a frame, jump, or go out of frequency then the Syncrolok is out of adjustment with respect to proper phasing.
e. Frequency may be checked in the normal Syncrolok manner by rotating the horizontal hold control to its extreme clockwise and coun-ter-clockwise positions while switching the tuner from a picture channel to an off-channel and determining whether the horizontal will lock in.
2. Adjustment of the Syncrolok When Not in Normal Frequency. To adjust the Syncrolok in frequency, the normal procedure is followed. Should the picture break at either end of the hold control, adjust the Syncrolok control, located at the rear of the chassis, and then recheck in the manner outlined above in Paragraph 1.
3. Adjustment of the Syncrolok When Phasing is Out of Adjustment.

If the phasing is found to be out of adjustment, the normal phasing procedure is used except that the right-hand edge of the picture is used as the guide rather than the left. The phasing adjustment is a slotted screw control on the inside of the Syncrolok coil and can only be reached from underneath the chassis. If unfamiliar with the proper Syncrolok phasing procedure, then proceed with the following steps.
a. Move the picture to the left by means of the horizontal centering control until the right hand edge of the picture is exposed from the mask.
b. Reduce the contrast and advance the brightness until the blanked out raster appears behind the picture.
c. Then, with the horizontal hold control in its extreme clockwise position, adjust the phasing screw so that the end of the picture and the end of the sweep lines almost coincide.
d. When performing step \(C\), note that a \(s_{i}\) ont cramping will appear at the extreme right-hand edge, indicating the start of a fold-over.

The optimum adjustment of the phasing control is liok, l40KB before such cramping occurs.
e. After these adjustments hrve been made, recheck for normal oper ation \(\cap f\) the syncrolok as described in Paragraph 1. .

\(\square\)
IMPORTANT * Dress Kinescope Socket Leads away from Deflection Yoke Leads. Do Not
Permit Yoke Plug to touch any part of chassis. MODELS 140 K and 140 KB

SUBJECT: Adjustments for Optimum Width and Brightness
A. With Width Switch in Normal Position (down):
1. Adjust Width Coil in cage with slug completely out.
2. Ad just Horizontal Drive Control fully clockwise, then readjust slightly for good linearity.
3. Adjust Horizontal Linearity Coil for proper Linearity (Located on top of chassis next to High Voltage Cage)
4. Width coil on rear apron of chassis is adjusted for proper width.
B. In Low Line Voltage areas or whenever picture Width isn't suff icient, place Width Switch in E X P A N D E D (up) position and:
1. Adiust Width Coil in cage for proper width.

\section*{- John F. Rider}

through 㥢-ll6.
\[
\begin{aligned}
& \begin{array}{l}
\text { NOTE:- For Service Data, See } \\
\text { RCA Model 630TS, Pages } \because 1-76
\end{array}
\end{aligned}
\]

\section*{General Description}

The 600 and 900 series television receivers are 18 tube direct view types featuring clear, bright pictures. The circuit is of adcoverage, Automatic Gain Control, high sensitivity, excelle nt horizontal frequency stability,
Plakron Conpensator circuit.
The recelver operates from a 115 volt 60 cycle power source and consumes 180 vatts.

\section*{Tube complement}

The receiver operates with a 300 ohm balanced antenna input, The The receiver operates with a 300 ohm balanced antenna input.
audio output is 2.5 watts undistorted, with a maximum output of

Operating Controls (Front of Receiver)
Horizontal Hold - Stops sideways wotion of picture Vertical Hold --- Stops up or dowa rolling action of picture. Volume-off _-_- Adjusts sound volume; turns set on and off. Contrast --- Varies contrast between light and
Brightness -- - Varies overall picture brightness.
Brightness - - - - Varies overall pict.
Bandswitch - - Selects TV Channel.
NOTE: Sets employing the intercarrier sound system, such as this one, are tuner,
clearest picture.

\section*{Non-Operating Controls}

Vertical Size---- Varies height of picture
Vertical Linearity Adjusts ratio between top and bottom of
Horiz. Linearity .-. Victure. Vatio between right and left side Horiz. Drive - . - - Varies width and linearity.
Horiz. Waveform - - - Maintains horizontal synchronization.
Width Control - - - Varies width of picture.
Focus - -- - - - Focuses picture on screen.
Horiz. Centering OPERATING INSTRUCTIONS
The following adjustments are necessary when turning the receiver on The following adjus
for the first time.
1. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position. Walt a few moments.
2. Set the STATION SELECTOR to the desired channel
3. Adjust the FINE TUNING control for sharpest, clearest picture. 4. Turn the BRIGHTNESS control fully counterclockwise, then clockwis until a light pattern appears on the screen.
5. Adjust the VERTICAL hold control until the picture stops vertical
6. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
7. Turn the BRIGHTNESS control counterclockwise until retrace lines just disappear.
8. Adjust the PICTURE control for suitable picture contrast.
9. After the recelver has been on for some time, it may be necess-
ary to readjust the FINE TUNING control for improved picture clearary to
10. In switching from one station to another, it may be necessary to repeat steps numbers 3 and 8 .
11. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary,
12. If the positions of the controls have been changed, it may be necessary to repeat step numbers 1 through 8 .

\section*{INSTALLATION INSTRUCTIUIIS}

Receivers are shipped complete in one carton except for the kinescope. The kinescope is shipped in a spectal carton and should

\section*{UNPACKING}

The table models are shipped in an a ir cushioned carton. To open the carton, tear open the carton top flaps, remove the cardboard side packing material and with men on either side of the cabinet,
lift it out of the carton.

Console models are also shipped in cartons. To unpack, turn the Fold the flaps up along the side of the carton and turn the carton back on its base. Lift the carton up and off the cablnet. Remove the cabinet back grille. Next, remove the speaker plug located Remove the envelope containing the door handles. Make mare all
Rumprials tubes are in place and are firmly seated in their mackets. Remove all knobs and the four bolts on the bottom of the cabinet, strap in the slot near the front apron on the chassis large tube case of the 19 inch metal CRT, screw the bracket into sides of chassis. The tube mounting straps are usually shipped in the carton with the kinescope. Plug the deflection assembly into

\section*{Cnescope Handling Precautions}

Do not open the kinescope shipping carton, install, remove or and heavy gloves are worn. People not so equiteped should bogies, kept away while handling kire scopes. Keep the kinescope away from the body while handling. The Kinescope bulb encloses a considerable air pressure. For these reasons, is subjected to handled with more care than ordinary receiving tubes. The large
end of the kinescope bulb--particularly that part at the rim of the viewing surface--must not be struck, scratched or subjected to more than moderate pressure at any time. In installation, deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Recelver Installation sec-
tion for detailed instructions on kinescope tion for detailed instructions on kinescope installation. All
kinescopes are shipped in special cartons and shold the carton until ready for installation in the receiver. Keep the carton for possible future use.

\section*{KINESCOPE INSTALLATIOA}

Turn the tube so that the key on the base of the tube will be and focus colls so that the rim of the viewing gurface deflection the rubber cushions. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. slots and tighten with the wint the kinescope straps in the chassis cushions just begin to compress.

The focusing unit is shipped separately and must be inment. Inspection will reveal a mechanical centering arrangeith an opening slightly smaller than that of the focusing unt enter these two opening by hand. Slip the focusing unit unit. justment and focusing slug toward the base of the centering adhe unit to the CRT brackets placing the unit approximately ne- half inch behind the deflection yoke. Slip the ion trap magnet over the neck of the kinescope with the large magnet

Wipe the kinescope screen surface and front panel safety glas or mask clean the Drackett coinger marks with a soft cloth agent.
Slide the deflection yoke as far forward as possible. If this ion trap magnet and focus coil because of shadows on the corner of the raster.

Replace the chassis with CRT in cabinet being careful to properly center all controls. Slide the chassis up as far as possiboperly that the CRT fills the mask and is properiy centered. Replace the the chassis. stall the front panel control knobs.

\section*{WARNING}

The high voltage supply in this receiver delivers 14,000 volts been operating, short the kinescope lead to the chassis before at tempting removal of or adjustments to tod to the chassis before atterlocks are provided so that when the back of the high voltage cage is removed--so is the power.

\section*{Ion Trap Magnet Adjustment}

Looking at the kinescope gun structure, it will be observed that vided with two small metal flags as shown in Figure?

Turn the power switch to the "on" position, the brightness con
trol fully clockwise, and contrast control counterclockw1se. The ion trap rear magnet poles should be approximately over the
ion trap flags. Starting from this position adjust the magnet ion trap flags. Starting from this position adjust the magnet by moving it forward or backward at the same time rotating
slightly around the neck. of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust
the focus control until the ine structure of the raster is clearly brilliance. The final touches on this magnet for maximum raster with the brightness control at the maximum position with which good line focus can be maintained.

\section*{DEFLECTION YOKE ADJUSTIUNT}

If the lines of the raster are not horizontal or squared with the picture mask, rotate the derlection yoke until this co
tion is obtained. Tighten the yoke adjustment wing screw.

\section*{Picture Ad.justment}

It will now be necessary to obtain a test pattern picture in order
to make further adjustments. See steps 2 through of the reto make further adjustments. See steps 2 through 8 of the re-
ceiver operating instructions on page 3 . fr he har
If the horizontal oscillator is operating properly, it should be
possible to sync the picture at this point.

\section*{Check of Horizontal Oscillator Allgoment}

Turn the horizontal hold control to the extreme counterclocikise position. The plecure Normally the picture will be out of sync. Turn the control wise slowly. The number of diagonal black bars will be gradually reduced and when only 3 bars sloping downward to the left are ob tained, the picture will pull into sync upon slight additional
clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counterclockwise position. The plicture should remain in sync for ap-
proximately 90 degrees of additional clockwise rotation of the prontrol. At the extreme clockwise position, the picture should be out or synce and should show 1 vertical or diagonal black bar
in the raster.
If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. stip
nalignment of Horizontal 0scillator" and proceed with ncentering "Alignment
Adjustment"

\section*{ALIGNMENT OF HORIZONTAL OSCIALLATOA}

If in the above check the recelver falled to hold sync with the hold control at the extreme counterclockwise position or falled
to hold sync over 90 degrees of clockuise rotation of the contro to hold sync over 90 degrees of clockwise rotation of the control
from the pull in point, it will be necessary to make the following adjustments:

\section*{Horizontal Frequency Adjustment}

Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust T 7 horizontal frequency
adjustment (under the chassis) until the picture is just out of adjustment cunder the chassis) unct sync and the horizontal.
black bar in the raster.

Horizontal Lock-1n Range Adjustment
Set the horizontal hold control to the full counterclockwise positio Momentarily remove the signal by switching off channel then back.
Slowly turn the horizontal hold control clockwise and note the leas slowly turn the horizontal hold control clockwise and note the leas
mamber of diagonal bars obtained just before the picture pulls into mamber
sync.

If more than 3 bars are present just before the picture pulls slightly clockwise. If less than 3 bars are present, adjust 062 slightly counterclockwise. Turn the picture control counterclock \(\forall 1\) se, momentarlly remove the signal and recheck the number of bars
present at the puli in point. Repeat this procedure until 3 bars present at the present.
Hereat the adjustments under whorizontal Frequency Adjustment \({ }^{n}\) and ifled under each are fulfilled. When the horizontal hold operate as outlined under "Check of Horizontal Oscillator Alignment" the
oscillator. is properly adjusted.
If it is possible to sync the picture at this point and the AGC system is operating properly it will be necessary to adjust the procedure on page 23. For field purposes paragraph nan under procedure on page_23 For fleld purposes para
Oscillator Waveform Adjustment may be omitted.

\section*{CENTERING ADJUSTIENTS}

Centerine is accomplished by mechanically orienting the focus colv. Moving the focus coli up and down, causes the plicture to move sideways, and a sideward movement of the coll causes the
picture to move up or down. The focus coil is supported on a set of brackets provided with slots which allow for its proper orientation. An additional amount of centering is provided by a centering adjustment screw on the rear of the focusing unit. The focusing unit should be installed as outlined under
"Installation Instructions" and centered without the use of
this auxiliary centering device except for final "fine" adjust this au
ment.

In some cases the electron gun of the kinescope is not properly centered and the picture tends to pull to one side making hor-
izontal centering difficult. To overcome this diflicult, a izontal centering difficult. To overcome this difficulty, a horiuntal centering potentiometer has ben provided. The prothen an additional sideward movement as may be necessary, is prov-
tded for by this coll 1ded for by this control.

After the centering has been a ccomplished, readjust the ion trap

\section*{Focus Adjustments}

In most cases, the focus coil is placed approximately a half-inch away from the deflection coil. The contrast zontrol should be until the desired viewing brightness is on the screen. Adjust the focus control screw using a brass screwdriver for maximum definition in the test pattern vertical "Wedge" and best focus in the white areas of the pattern. Readjust the position of the ion trap magnet to insure that maximum brinilance is obtained. For adjust the shorting slug to prevent inter-action between focus unit and 1on trap.

\section*{Height and vertical linearity}

Adjust the vertical size control until the picture fills the mask vertically. Adjust the vertical linearity control until the test

Adjustment of either control will require a readjustment of the other.
mask.

IORIZONTAL DRIVE, WIDTH AND LINEARITY
adjustments
Adjust the horizontal drive control to give a picture of maximum width is too great and must be reduced by turning out the width control slug. Adjustments of the horizontal drive control affect the horizontal oscillator hold and locking range. If the drive ontrol was adjusted, recheck the oscillator alignment.

\section*{eck of Reve oscillator}

Tune in all avallable stations to see if the recelver r.f. oscillato 1s adjusted to the proper frequency on all channels. The fine tuning control should be adjusted for the sharpest, clearest picture-but if so, these should be made by the method outlined in the alignment procedure.

\section*{CIRCUIT DESCRIPTION}

It is assumed in this description that the reader is familiar conventional circuits used in radio receivers.

\section*{Low Voltape Power Supply}

The power supply has been designed to eliminate all high wattage bleeders thus reducing onsiderably the amount of heat generated circuits operating at circuits operating at lower voltages, inseri.
voltages necessary for the deflection system.
The deflection circuit operates at the higher voltage (360 volts) the deflection circuits, thus saving a substantial amount of current.
Referring to the schematic diagram, the RF and If plates and acreens are at 140 volta while the cathodes return to ground.
The audio cathodes are at the same 140 volts while the audio plates are at 360 volts or 220 volts with respect to their cathodes. filter, preventing the current variations from modulating the \(B\) voltage.
Automatic voltage regulation of the 140 volts 1 s accomplished by
 effective grid cathode voltage of the 676 since its grid is connected to the divider going from 360 volts to ground. Thus the
change in the 140 volt system is only about 10 the change in the 140 volt system is only about \(10 \%\) with AGC bias
360 volts at 175 ma . is obtained from a conventional transformer power supply circuit using a 5 V4G full wave rectifier. The 8016 /ib3G the horizontal damper tube.
ReF. Unit
The R.F. unit covers all 12 channels, (2 to 13 inclusive), and
operates from a balanced input of 300 ohms. The local oscillato operates from a balanced input or 300 ohms. The local oscillator
is tuned to the high side of the channels and provides a picture s tuned to the high side of the channels and provides a picture
.F. of 25.75 mc and a sound \(\bar{I} . F\). of 21.25 mc .

\section*{I.F. Amplifier} ?his amplifier consists of 3 6AU6 tubes in a simple but sensitive
:ircuit. Alignment is also simple since only two frequencies are
itilized. Since the intercarrier sound system is used no sound itilized. Since the intercarrier sound system is used, no sound
-raps in the video I. F. are necessary, further simplifying align
© John F. R'der
ment The tubes are operated at aslightly higher voltage than is usually found in regular I．F．amplifiers resulting in a substan－ tial increase in gain yet not affecting the life of the tubes． Automatic Gain Control
two video I．F．stages．

\section*{Automatic Gain Contro}

The function of the AGC circuit is tomaintain a constant signal at the kinescope grid in the presence of fading and to reduce the amount the contrast control must be rota．
a weak to a strong signal or vice versa．
The slide arm of the contrast control R40 and the 39 K resistor oltage on the cathode of the \(\mathbb{S C C}\) diode（ pin ））The I．F．signal is coupled to the AGC diode through C34 and appears across R36 and the diode in parallel．In order for the diode to conduct
the peak amplitude of the I．F．signal mast exceed the d．c．voitag n the cathode of the AGC diode．When this occurs，the rectifica iltered by R35 and C35 and utilized as blas．For a weak signal the contrast control is rotated to give maximum gain from the ideo amplifier and a higher positive voltage is applied to the
AGC diode cathode，thus reducine the bias on the I．F．video am－ plifier and increasing its gain．The contrast control，then，
has performed two functions：（1）increased the gain of the video mplifier（2）increased the increase the \(\mathcal{F}\) video amplifier

\section*{Videe Amplifier}

A 6AC7 is used as a d．c．coupled video amplifier and its output and good noise clipping action that is independent of picture content．
The video amplifier grid bias of 2.5 volts is developed across （C51）resistor R55 in the B minus circuit．A filter capacitor his with low 1mpedance to all video frequencies is used acros noise pulses that draw grid current

The screen voltage 1 s t aken from a bleeder connected between 360
rolts and ground（R41 and R42）．The internal nous and ground（R41 and R42）．The internal impedance is low over a normal operating range，yet hi ah enough to keep screen over a normal operating range，yet high enough to keep screen
dissipation within limits even if the set is improperly operated． The Video amplifier plate load consists of two resistors，R4？ connected from plate to 140 volts and the other f45 from plate to 360 volts．The are effectively in paralle
an effective plate supply voltage of 190 volts．
In order that the clipping level and maximum output may be ob－ control provides variable AC degeneration and bias for the video amplifier．It controls the gain of the video amplifier stage and at the same time provides the proper cathode bias to offset he positive voitaze e be applied to the control grid of the \(6 \mathrm{AC7}\)

\section*{lakron Compensator}
ests and experience have shown that a crisper picture results if the overall video circuit response is not plat but rises with irequency．camera tubes fall of f with frequency and in addition even a perfect picture may appear better when viewed from tne normal iewing distance if the high frequencies are bjosted．The re－ sult is a transient which sharpens up all \(\mathrm{v}^{\text {ideo detail．}}\)

However，boosting the high frequencies would increase apparent picture noise but in this case，the boost is varied with the are srong control setting so that it is present when signals
he 750 ohm contrast control is tapped as in fige 4 we th a 680 mm capacitor from the tap to the 6AC7 cathode a 480 mmf capacitor rom the tap to ground．with the contrast control set at full in the cathode circuit and all frequencies are amplified equally． n a stronger signal，the fain is reduced and by－passed resistance \(s\) introduced in the cathode circuit．Since the capacitor is of ircuit becomes degenerate at the low frequencies．thus the higher frequencies receive more amplification than the lover ones．

D．C．Restorer－Sync Clipper－Sync Amplifier

The first half of the 12AU7，serves the dual purpose of \(d\) ．\(c\) ． estorer and sync clipper．The cathode and grounded g a ditare s applied to the plate d．C．restorer resistor，R 49，is ad usted so that little or no plate current flows except when the sync pulses drive the cathode sufficiently negative so as to
cause conduction．The sync pulses then appear across R50，and are coupled to the horizontal and vertical oscillators after further amplification in the second half of the laAU？

\section*{ertical Deflection Circuit}

One triode of the 6SN7 is used as a blocking oscillator and sawtooth generator，while the other triots eection is the core reliable interlace than most other types of oscillators he frequency is varied by the potentiometer R58 in the front of the receiver，Vertical linearity is varied with the 5 K potentiometer R61，while height is varied with the 2.5 megohm
potentiometer R63；both located in the front of the set．

\section*{HORIZONTAL OSCILLATOR AND SAWTOOTH GENERATOR}

The first section of V12 is used as a control tube to maintain the frequen
oscillator．

Referring to the schematic diagram，（Fig．6），T7 is seen to have three windings．The windings from \(A\) to \(C\) and \(C\) to \(F\) from the blocking oscillator transformer．C67，R77 and R78 are the
frequency determining elements as in ordinary blocking oscilia－ irequency determining elements as in ordinary blocking oscilla across R78 instead of varying the resistance of this element which is usually the method employed

The blocking oscillator grid bias is about -85 volts and a portion of this negative voltage is applied through R76 to to the negative voltage and the high value of cathode resist ance，this tube is normally cut off in the absence of sync
pulses．

A sawtooth voltage，an integrated square wave，and the sync pulse appear across c62 and are coupled to the and the sync grid by C63．The sawtooth is derived from the sawtooth gener－ horizontal output transformer T8，through R89 and C79 from the the sync pulse from the sync amplifier through C61．The three voltages combine to produce a wave shape as shown in Fig．7．

FlGURF 7－WIVF SHAAF AT PIN

C62 is adjusted so that the amplitude of the wave shape of Fig． only on the to cause the control tube section of 12 to condace place only for the time of duration of the sync pulses as shown in Fig． 8 which depends upon the phase relation of the sync pulse conducts，the average current produced by the pulse develops a voltage drop across R78 which subtracts from the negative voltage the average current increases，and the the sync pulses increases， less negative．With less bias on the blocking oscillator tube grid，the frequency increases and the 中hase relation between the sync pulses and feed－back voltages change in such a direction as to shorten the conduction time．Normal operation produces a

\section*{GIGURF O－VPRIATION IN SYNC．}

PULSF DUPATION
WHEN THE HOLD CONTROL（R74）is in mid－position，so that the con－ duction tise may vary in both directions and compensate for fre－ liminates hunting，C66 and R72 provide a filter network which to \(D\) in \(T 7\) is a resonant circuit which impresses wine from
 synchronization of the blocking oscillator．\(C 65\) is the charging
capacitor and the sawtooth output is coupled to the grid of V13
 The horizontal sweep output circuit is of popular design and should require no explanation．

\section*{Sound System}

The intercarrier sound system is employed in this receiver．The mplific sound 1．F．frequency is taken from the plate of the vide The 4.5 me signal is then fed through an \(I\) ．F．amplifier to the
ratio detector and audio amplifier．

An important advantage of this type of sound system is that even if the local oscillator drifts，the difference between the sound and picture carrier remains at 4.5 me so that the sound is un－

\section*{ALIGNMENT PROCEDURE}

\section*{Test Equipment}

To properly service this receiver it is recommended that the
R, F, Sweep Generator
Specifications:
(a) Frequency Ranges
18 to 30 mc., 1 mc. sweep width
40 to \(90 \mathrm{mc}, 10 \mathrm{mc}\). sweep widt
170 to \(225 \mathrm{mc}, 10 \mathrm{mc}\). sweep width
(b) Output adjustable with at least 0.1 volt maximum
(c) Output adjustable with at least 0.1 volt attenuator positions. \(\frac{\text { Cathode Ray Oscllloscope }}{\text { tical deflection, an input calibrating source and a low sapacity }}\) probe.
Signal Generator - To provide the following frequencies
(a) I.F. Frequencies
23.3 mc., First and Third I.F. Transformer
25.36mc., Second and Fourth I. F. Transformer 21.25mc., S Sound carrier Marker
25.75 mc ., Picture Carrier Marker
(b) R.F. Frequencies
\begin{tabular}{|c|c|c|}
\hline Channel Number & Picture Carrier Freq. Mc. & Sound Carrier Freq. Mc. \\
\hline 2 & 55.25 & 59.75 \\
\hline 3 & 61.25
67.25 & 65.75
71.75 \\
\hline 5 & 77.25 & 81.75 \\
\hline 6 & 83.25 & 87.75 \\
\hline 8 & 175.25 & 179.75 \\
\hline 9 & 187.25 & 191.75 \\
\hline 10 & 193.25 & 197.75 \\
\hline 11 & 199.25
205.25 & 203.75 \\
\hline 13 & 211.25 & 215.75 \\
\hline
\end{tabular}
(c) Output on these ranges should be adjustable and at least 0.1 volt maximum.
Heterodyne Frequency meter with Crystal calibrator if the signal generator is not crystal controlled ilectronic Voltmeter of for use with this meter to permit measurements up to 15 KV . hdjustments Required

Normally, only the RF oscillator will require a slight "touching
up". ili other circuits are either broad or very stable and up". All other circuits are either broad or very stable and
hence will seldom require attention. It is recommended hence will seldom require attention. It is recommended that
when making replacements the oscillator tube be selected for this service to make the "touching up" as easy as possible or, in some cases, to eliainate it.
Order of Alignment
When a complete receiver a lignment is necessary, it can be most
conveniently performed in the following order:
\begin{tabular}{lll}
1. Ficture I.F. & transformer \\
2. & Sound I.F. & transformer \\
3. & Sound I.F. & transformer \\
4. & R. F. Tuner \\
5. & Sensitivity check
\end{tabular}

Picture I, F. Transformer Adjustment
Remove all tubes from the tuner leaving only the \(6 J 6\) converter Place a miniature tube shield cut in half over the glass en-
velope of the \(6 J 6\) and connect the signal generator to this cap. The cap forms a low capacity coupling to the plate of the converter and loosely couples the signal generator into the I.F. amplifier. Connect the low side of the generator to ground as possible. Connect the electronic voltmeter (VTVM) across the opposite ends of R38 in the video detector circuit.
Set the generator to 23.3 mcs and the contrast control to maxim Adiust coils LI and L3 for maximum d.c. voltage reading on the readin Decrease the generator output so that the maximum voltage mes and adjust coils \(\mathrm{L}_{2}\) and \(\mathrm{L}_{4}\) as outlined above. (LI is locate in the tuner.) Tune the sound tran coil to minumum response at 21.25 mes.

It is necessary to use a sweep penerator for a more accurate It is necessary to use a sweep penerator for a more accurate
alignment. Replace the signal generator with the sweep generato
Disconnect the VTVM and connect an oscilloscope to the junction Disconnect the VTMM and connect an oscill onsope to the junction
of \(L_{5}\) and \(L_{6}\). Adjust the sweep generator output to a point be-

as shown In Fig. \(\frac{2}{21.25} \mathrm{~m}_{6}\)

The 22.9 me marker must be at the \(50 \%\) response point to insur \(50 \% z\)-ree sound. Similarly, the 25.75 mcs marker must be at \(50 \%\) response point on the right side of the curve to insure good end of the response curve, replace C22, C26 or C30. Check all round connections.

\section*{ound I,F, Ad,justment}
2. Set the signal generator to 4.5 mc and the output to approx
 (V8). control grid and ground.
2. Connect the VTVM in series with a 10,000 ohm decoupling 2. Cistor across R9 with ground lead to p1n 7, V2.
resis
3. Peak the primary and secondary of TI for maximum reading on the ViM.
4eak the primary of \(T 2\) (bottom of chassis) for maximum
reading on VTVM.
. Remove the meter and decoupling resistor from across R9. Connect two well matched 150 K resistars in series across R9.
Connect the high side of the meter to the junction \(\boldsymbol{f}\) the 150 K Connect the high side of the meter to the junction f the 150 K
6. Adjust secondary of \(T 2\) for zero reading on the VTVM.

IMPORTANT: As the adjustments are brought to resonance, reduc the signal inpat to prevent overloading. Inasmuch as using to mudio output, use as low a signal input amplitude as possible.

If desired, the symmetry of the curve may be checked by tuang age secondary to both sides of zero and noting the maximum volt maximum voltapes in each direction should be equal. If, the and the primary of T2 should be returned.

\section*{ReF. Tuner Alignment}

The present series includes four different styles of tuners, three
of which are of the turret type and the remaining one -- the R-C tuner -- is of the continuous tunding variety. The circuit diag of all four are included below, along with the alignment procedure othermended for the Standard Coll Co's., and the RCA tuners. The other tuners are not treated separately. The remaining turret type to the Standard Coil Co. tuner for alignment purposes. The R-C tuner alignment procedure requires special equipment and it is not recommended that the Service Man make these adjustments. However, should such information be desired, it may be obtained by writing

Standard TV Tuner
For circuit diagram refer to Fig. 10 . The location of the trimmer capacitors is given in Fig. 13 .

RF and Mixer Alignment
1. Set station selector switch to channel 12.
2. Connect oscilloscope through 10,000 ohms to test point 9
(ire loop on top of tuner).
3. et sharp tuning control at approximately mid point of its
4. Feed sweep generator into antenna terminals (properly matched)
sweeping channel 12 . ,
5. Adjust C2, C3, and C4 for flat top response curve. Check marker all hannels. They should fall in automatically on all channels.

\section*{Oschliator Alignment}
1. Turn station selector switch to channel 12
2. Connect R.F. Sweep generator marker generator and oscilloscope so as to boserve overall band pass characteristics.
3. Set marker generator to channel 12 video carrier frequency,
205.25 mes.
+ With the fine tuning control in its center position, adjust 5 until the marker is \(50 \%\) or half way up the left side of the curve,
A 1000 mnf capacitor connected across the oscilloscope input will解
i. Check all channels for above result. It is usually not
6. If some channels are off, place a non-metallic screw driver channels where needed. RCA Type TV Tuner

For circuit diagram refer to fig. \(\frac{12 \text {. The location } f \text { trimaer }}{\text { Symbols used }}\) capacitors is given in fig. 13 . Symbols used refer to circuit
diagram.

\section*{Antenna Allanment}
1. Connect sweep generator to terminals of Tl .
2. Connect scope through crystal diode unit to pin 5 of V1.
3. Adjust \(C 7\) for required response curve of channel 6 on scope.
4. Adjust L 8 for required response curve of channel 7 on ssope.
5. View channels 2 to 6 and readjust \(C 7\) if a compromise is necessary.
6. View channels 7 to 13 and readjust \(L 18\) if a compromise is
7. Remove scope from pin 5.

\section*{H.F. Allgnment}
1. C nnect scope to oscilloscope connection "Y".
2. Adjust Lll, ClO, Ll3, for required response curve of channel
3. Adjust C9 and C22 for required response curve of channel 7
4. Adjust Ci 3 for required response curve of channel 6 on scope.
5. View channels 2 to 6 and readjust C9, Cl3, C22, if a com-
6. Vromise is necessary; channels 7 to 13 and readjust Lil, Cla, Lh3, if a
7. Compronise is necessary,

2scillator nlignment
1. Connect sweep generator to terminals of Tl .
2. Connect "narker" frequency generator to terminals of Tl .
3. Connect oscilloscope to junction of \(L 5\) and \(L 6\).
4. Set sweep generator to Channel 2 and marker frequency to 55.25 mcs
5. With the fine tuning control in its center position, adjust c19 until the marker is \(50 \%\) or half-way up the left side of the
(A 1 000 mmf capacitor connected across the oscilloscope input (A 1030 mmf capacitor connected across
will facilitate observing the marker.
6. Switcil tuner and sweep generator to channel 13 and marker to
7. Adjust Ll2 for same result as in step 5 above.
8. Check channels 3 to 12 and set individual strip oscillator adjustment screws.
If necessary. Channel 2 and 13 strip adjustments have been made
it the factory, and resetting C19 and L12, makes readjustment of at the factory, and reset
chese strips unnecessary.
recheck RF Allgnment for curve shape as outlined above and repeat Recheck RF Alignent for curvo shape as out 5 or RF Alignment if ne cessary.

\section*{Horizontal Frequency Adjustment}

With a clip lead, short circuit the coil between terminals \(C\) and \(D\)
of the horizontal oscillator transformer T7. Tune in a television station and sync the picture if possible.
A. Turn the horizontal hold control to the extreme clockr1se pos ition Adjust the Frequt of sync and the horizontal blanking appears in the picture as a vertical bar. The position of the bar is unimportant.
B. Turn the hold control approximately one quarter of a turn from
the extreme clockwise position and examine the width and linearity the extreme clockwise position and examine the width and linearity
of the picture. If picture width or 11 near ity \(1 s\) incorrect, adjust the horizontal the picture is correct. If c71, or either control, was adjusted, repeat Step A above.
circuit If the is very 1mportant for correct operation of the circuit than the sharp peak, tree noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and
drift of the oscillator be comes more serious. On the other drift of the oscillator be comes more serious. On the other
hand if the broad peak is higher than the sharp peak, the oscillator is overstabilized, tre pull-in range becomes inadequate and the broad peak can cause double triggering of the
oscillator when the hold control approaches the clockwise position

Remove the oscilloscope upon completion of this adjustment
Check of Horizontal Oscillator Adjustments
Set the horizontal hold control to the full counterclockwise position. Momentarily remove the signal by switching off chan
nel then back. slowly turn the horizontal hold control clock-
Horizontal Oscillator Allznvent wise and note the least number of diagonal bars obtalned just before the picture pulls into sync.
If more than 3 bars are present just be fore the picture pulls
into sync, adjust the horizontal locking range trimner cb2 slightly clockwise. If less than 3 bars are present, adjust trol counterclockwlse momentarily renove the signal and reche the number of bars present at the pull-1n point. Repeat tr.1s procedure until 3 bars are present.
Turn the horizontal hold control to the maximum clockwise posthat the horizontal blanking bar appears as a single extent that the horizontal blanking bar appears as a single vertical ncjustment until this condition is fuifilled.
If more than, 9 bars are present just before the picture pulls into sys ass Turn the horizontal hold control counterclockwise, momentarily remove Repeat this procedure until 7 to 9 bars are present.

\section*{Horizontal Oscillator Waveform idjustment}

Remove the shorting clip from terminals \(C\) and \(D\) of T7. Turn the
horizontal hold control to the extreme clockwise position. With a horizontal hold control to the extreme clockwise position. With a thin fibre screwdriver, adjust the oscillator Waveform Core of \(T 7\)
(on the outside of the chassis) until the horizontal blanking bar appears in the raster.
A. Connect the low capacity probe of an oscilloscope to terminal Che clockwise position so that the picture is in sync. The pattern n the oscilloscope should be as shown in F1g. 15. Adjust the Oscil lator Waverorm Adjustment Core of T? unt1l the two peaks are at the
same height. During this adjustment, the plcture must be kept in sync by readjusting the hold control if necessary.

\section*{SE:SIITVITY CHECK}
a comparative sensitivity che ck can be made by operating the rethe picture and sound obtained to that obtained on other recoivers under the same conditions.
This weak signal can be obtained by connecting the shop antenna to the recelver through a ladder type attenuator pad. The number of stages in the pad depends upon the signal strength available at the anterna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast plcture 1 is
obtained when the picture control is at the maximum clockwise position. Only carbon type resistors should be used to contruct the pad.

© John F. Rider

(C) John F. Rider

© Johm I. Rider

CHASSIS BOTTOM VIEW - TRANS., INDUCT., AND RESISTOR IDENTIFICATION

CHASSIS BOTTOM VIEW-CAPACITOR IDENTIFICATION

\section*{INDEX}
\begin{tabular}{|c|c|c|c|c|}
\hline & & PAGE & & PAGE \\
\hline ALIGNMENT & INSTRUCTIONS & 6 & TOP VIEW - TUBE LAYOUT. & 6 \\
\hline PARTS LIST & & 7 & TRIMMER LOCATIONS. & 6 \\
\hline SCHEMATIC & -•••••••• & 10,11 & TROUBLESHOOTING & 5 \\
\hline SPECIFICATIO & ONS & & VOLTAGE MEASUREMENTS & 4,5 \\
\hline
\end{tabular}

MODEL 201088 (12 \(1_{2}^{\prime \prime}\) PIX TUBE) MODEL 201089 (\(16^{\prime \prime}\) PIX TUBE)

\section*{ELECTRICAL SPECIFICATIONS}

Power Consumption 121/2" Tube Receivers-220
watts
\(16^{\prime \prime}\)
Tube Receivers - 250 watts
Power Output
2.4 watts Maximum
1.8 watts Undistorted

Antenna Input Impedance . . 300 Ohms Balanced Picture Area (\(12^{1 / 2^{\prime \prime}}\) Tube). .90 Sq . In.
Picture Area (16" Tube).... 144 Sq. In.
Tuning Range 12 Channel
Intermediate Frequencies ... Picture-26.20 MC Sound-21.70 MC

ELECTRICAL SPECIFICATIONS--continued
\begin{tabular}{|c|c|}
\hline Loud Speaker12" PM Dynamic & Channel \\
\hline \multicolumn{2}{|l|}{Voice Coil Impedance3.2 Ohms 400 Cycles Number} \\
\hline Video Response To 3.9 MC & \\
\hline Focus Magnetic & 2 \\
\hline Sweep DeflectionMagnetic & 3 \\
\hline Scanning Interlaced, 525 Line & 4 \\
\hline Horizontal Scanning Freq... .15,750 CPS & 5 \\
\hline Vertical Scanning Freq.....60 CPS & 6 \\
\hline Frame Frequency 30 CPS & 7 \\
\hline Anode Voltage (\(121 / 2^{\prime \prime}\) Tube) \(11,000 \mathrm{~V}\). & 8 \\
\hline (16" Tube). . \(12,500 \mathrm{~V}\). & 9 \\
\hline Mask Size (\(121 / 2^{\prime \prime}\) Tube)... \(10-7 / 8^{\prime \prime} \times 9-3 / 8^{\prime \prime}\) & 10 \\
\hline (16" Tube).....14-5/8" \(\times 11^{\prime \prime}\) & 11 \\
\hline & 12 \\
\hline TUBE COMPLEMENT & 13 \\
\hline
\end{tabular}
Vertical Output
High Voltage Rectifier
Low Voltage Rectifier
Horizontal Osc.
Horizontal Osc. \& Sync
Guide
Horizontal Output
Horizontal Output

\section*{RADIO FREQUENCY RANGES}
\begin{tabular}{cc}
\begin{tabular}{c}
Channel \\
Frequency \\
Mc
\end{tabular} & \begin{tabular}{c}
Piefure \\
Carrier \\
Frequency \\
Mc
\end{tabular} \\
54-60 & 55.25 \\
\(60-66\) & 61.25 \\
\(66-72\) & 67.25 \\
\(76-82\) & 77.25 \\
\(82-88\) & 83.25 \\
\(174-180\) & 175.25 \\
\(180-186\) & 181.25 \\
\(186-192\) & 187.25 \\
\(192-198\) & 193.25 \\
\(198-204\) & 199.25 \\
\(204-210\) & 205.25 \\
\(210-216\) & 211.25
\end{tabular}
\begin{tabular}{c}
Sound \\
Corrier \\
Frequer \\
Mc
\end{tabular}
ce
59.75
65.75
71.75
81.75
87.75
179.75
185.75
191.75
197.75
203.75
209.75
215.75
\begin{tabular}{c}
Receiver \\
R-f Ose. \\
Frequency \\
Mc
\end{tabular}
81.45
87.45
93.45
103.45
109.45
201.45
207.45
213.45
219.45
225.45
231.45
237.45

RECEIVER LOCATION-Advise the owner as to the proper location for the television receiver. The following may be used as a guide.
1. Choose an area in the home where sunlight or light from lamps does not strike the face of the picture tube and cause glare.
2. Remember the necessity of an electrical outlet and the location of the point at which the antenna leads enter the room.
3. The receiver should be placed a short distance from the wall to allow adequate ventilation.
4. The receiver should be placed to permit easy access for operation and comfortable viewing from all angles.

ANTENNA - This receiver has been designed to use an antenna with a 300 ohm balanced transmission line. This line must be as short as possible because the longer the line the greater the chances are for picking up electrical disturbances. Stand-off insulation should be used to keep the line away from the mast, metal or walls. Twist this line about one turn per foot throughout the line to cancel out direct signal and/or noise pickup by the transmission line. It should also be securely anchored in place so that a change in weather will not affect its position.

\section*{high voltage warning}

This television receiver contains high voltages which are dangerous to life. Never operate or service the receiver outside of the cabinet or with the covers removed until all the safety precautions necessary for working with high voltage equipment have been observed.

Shatterproof goggles and heavy gloves must be worn by individuals while handling the picture tube
or installing the picture tube into the receiver.
The picture tube encloses a high vacuum and due to the large surface area, is subjected to excessive air pressure. Therefore, care should be taken not to bump or scratch the picture tube accidentally as it may cause the tube to implode resulting in damage to property or injury to an individual

Fig. 2-Front Panel Controls

\section*{TUNING PROCEDURE}
1. To turn the television receiver on, furn the OFF-ON SOUND CONTROL clockwise until a click is heard
up
2. Turn the STATION SELECTOR CONTROL to the de sired channel. This control may be turned in eithe direction.
3. Turn the CONTRAST CONTROL clockwise until activity or definite form is noted on the screen
4. Adiust the FINE TUNING CONTROL for best tonal quality and the SOUND CONTROL for desired volume.
5. After the receiver has been on for a while it may be necessary to readjust the FINE TUNING CONTROL for best sound quality.
6. To turn off the receiver, turn only the OFF.ON SOUND CONTROL counterclockwise until a clirt is heard.

\section*{OCCASIONAL ADJUSTMENTS TO IMPROVE PICTURE RECEPTION}

There are six controls at the front of the chassis. These con trols are accessible after the removal of the control pane cover at the front of the cabinet. (See illustration) The controls are pre-set at the factory and may occasionally receiver and the fluctuating line voltages in different in the

If any adjustments are necessary, follow the instructions under "Controls and Functions."
IMPORTANT-Be sure that the fine tuning control has been set for best tonal quality and clearest picture before adjusting any controls.

Fig. \(\begin{aligned} & \text { 6-Roor Chossis Adiustments } \\ & \text { (16") Pix Tube Receivers) }\end{aligned}\)

Fig. 7-Removal of Picture Tube

PICTURE TUBE - All receivers are shipped with the picture tube in place. However, to prevent picture tube breakage in \(16^{\prime \prime}\) pix tube receivers the three focus coil mounting screws were drawn up tight. To place the receiver in operation the following must be performed:
1. Remove the interlocked cabinet back. Make sure that all the tubes are firmly seated in their respective sockets and note the location of the focus coil mounting screws. Back out the focus coil mounting screws until there is approximately a \(3 / 8\) inch space between the focus coil and the deflection yoke. Replace the cabinet back.
2. Connect the receiver to a power outlet and turn the receiver on. Turn the channel selector knob to a channel that you know is operating.
3. Observe the picture and adjust the three focus coil mounting screws (through the openings in the cabinet back with a screwdriver which has a seven inch blade) until proper horizontal and vertical centering is obtained.

WARNING - If a screwdriver with a blade tonger than seven inches is used, it may accidentally touch a portion of the receiver that carries a high potential.
4. If adjustments are necessary on the deflection yoke or the ion trap magnet, follow the procedures on page 20.
picture tube replacement - To replace the picture tube it is necessary to remove the chassis from the cabinet. This may be accomplished in the following manner:
1. Remove the front panel control knobs by pulling them straight from their shafts.
2. Remove the cabinet back. Ycu will note that the interlocked line cord disconnects the power when the cabinet back is removed.
3. Disconnect the leads to the speaker, remove the antenna terminal board at rear of cabinet, remove the five chassis mounting bolts and pull the chassis CAREFULIY out of the cabinet.

WARNING - Before handling the picture tube, it will be necessary to remove the static charge. In receiv is with glass picture tubes, ground the anode lead to chassis, and insert an insulated wire from the well in the tube to chassis. In receivers with metal picture tubes, remove the static charge by grounding an insulated wire from the chassis to the metal portion of the tube.
4. Remove the picture tube as shown and outlined in the illustration. To install a new picture tube, reverse the procedure making sure that the picture tube is fitted closely against the picture tube cushion. If the picture tube sticks or fails to slip into place smoothly, investigate and remove the source of the trouble. Never force the tube. It is important that all the clips and shims used in mounting the tube be replaced, otherwise difficulty may be encoun tered when horizontal or vertical centering is required.

\section*{NON-OPERATING CONTROLS REAR OF CHASSIS}

\section*{ocus Coil \\ Horizontal Centering \\ Vertizal Centering}

Ion Trap Magnet
Focus Coil Screw

Wing Nut Adjustment
Deflection Yoke
Wing Screw
Horizontal Size
Horizental Locking Range . \(12 \frac{1}{2} 2^{\prime \prime}\) Picture Tube \()\). C. 63 A Horizontal Drive Receivers
Horizontal Drive (\(16^{\prime \prime}\) Picture Tube Receivers). C- 77
Horizontal Wave Form (\(12 \frac{1}{2} 2^{\prime \prime}\) Picture Tube Receivers) Back of Chassis

Horizontal Frequency (\(16^{\prime \prime}\) Picture Tube Receivers)...L-25
Horizontal Frequency (\(121 / 2^{\prime \prime}\) Picture Tube Receivers) Inside Chassis

\section*{FRONT OF CHASSIS}
(Accessible After The Removal of Front Panel Contro Cover)

Horizontal Hold R-110

Brightness
Vertical Linearity .R-87
Height
Vertical H.old
R-60

Focus
R-8

Fig. 8-Ion Trap, Focus and Yoke Adjustments.
ION TRAP MAGNET ADJUSTMENT - The ion trap magne should be positioned exactly as shown in Figure 8. Adjusi the magnet by moving it back and forth and at the same time rotating it slightly around the neck of the picture tube until the brightest raster is obtained on the picture screen until the brightest raster is obtained on the picture screen.
Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the Focus Control R-81 (see Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance.

DEFLECTION YOKE ADJUSTMENT - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.
focus coil adjustment - If horizontal or vertical cen tering is required, adjust the three focus coil mounting screws until proper centering is obtained. See Fig. 8.

PICTURE ADJUSTMENT - For further adjustments, obtain a test pattern on the receiver. Turn on receiver and follow uning procedure on page 3. When a test pathen is tained it may be necessary to slightly re-adjust the focus control for maximum picture detail.

\section*{121/2" PIX RECEIVER ADJUSTMENTS}

\section*{CHECK OF HORIZONTAL OSCILIATOR ALIGNMENT - Turn the} osiz control to the extreme counter-clockwise pinture should remain in horizontal sync. Momentarily remove the signal by switching off channe

MODELS 2D1088A 2D1089A

Turn the control clockwise slowly. The number of diagonal bars will be gradually reduced and when only \(3-1 / 2\) to \(4-1 / 2\) bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. The pull-in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control.
At the extreme clockwise position the picture should be just starting to pull out of sync. Usually one vertical bar will be seen.
If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned.

\section*{ALIGNMENT OF HORIZOMTAL OSCILLATOR - If in the above} chack the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync for at least 60 degrees of clockwise rotation of the control from the pull in point, it will be necessary to make the following adjustments.

\section*{HORIZONTAL FREQUENCY ADJUSTMENT}

Turn the horizon tal hold control to the extreme clockwise position. Tune in a station and adjust the horizontal frequency control (T-7 See Fig. 17) until the picture is just out of sync and shows one vertical bar. In order to obtain this condition it may be necessary to slightly re-adjust the horizonta locking range trimmer (\(\mathrm{C}-63 \mathrm{~A}\)) on the rear apron.

HORIZONTAL WAVE FORM ADJUSTMENT - This is a factory adjustment and it should not be necessary to re-adjus unless the setting has been disturbed. However, if it is unless the semingustment is required, follow, this pro found that re-adjustment is required, follow this pro-
cedure: With the picture in sync, connect an oscilloscope cedure: With the picture in sync, connect an oscilloscope
through about a 10 mmf isolation condenser to Terminal through about a 10 mmf isolation condenser to Terminal
C of \(\mathrm{T}-7\). Adjust the horizontal wave form (\(\mathrm{T}-7\) See Fig. 5) until the two peaks of the wave form shown in Fig. 9 are equal. NOTE: Picture must be in sync during this adjustment.

INCORRECT SETTING OF HORIZONTAL
WAVEFORM
ADJUSTMENT

CORRECT ADJUSTMEN PEAKS ARE EQUAL

Fig. 9-Horizontal Wave Form Adjustment

\section*{horizontal locking range adjustment - Set the hori-} zontal hold control to the extreme counter-clockwise posinion. Momentarily remove the signal by switching off channel and then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync. If more than \(4-1\) / 2 bars are present just before the picture pulls into sync, adiust the horizontal locking range trim mer C-63A (See Figure 5) slightly clockwise. If less than 3-1/2 bars are present, adjust trimmer C-53A slightly counter-clockwise. Turn the horizontal hold control ccunterclockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until \(3-1 / 2\) to \(4-1 / 2\) bars are present. Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the condition specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

\section*{16" PIX RECEIVER ADJUSTMENTS}
heck of horizontal oscillator alignment -Tune in a station and adjust the horizontal hold control until the picture falls into sync. Momentarily remove the signal by switching off channel and then back. The picture should pull into sync over a range of \(90^{\circ}\) rotation of the horizontal hold control if in the above check the receiver foils to hold sync or the pull-in rance is at the receiver end of the control, and is less than \(60^{\circ}\), it will be necessary to make the following adjustment.

MORIZONTAL FREQUENCY ADJUSTMENT - With the horizontal hold control set to the center of its range of rotation adjust the horizontal frequency control (L-25) until the picture pulls into sync. Recheck the "Horizontal Oscillator Alignment."

THE FOLLOWING ADJUSTMENTS ARE APPLICABLE TO 121/2" AND 16" PIX TUBE RECEIVERS.

HEIGHT AND LINEARITY ADJUSTMENTS -Adjust the height control (R-63) until the picture fills the mask vertically. Adjust the vertical linearity control (R-87) until the picture is symmetrical from top to bottom. Adjustment of either control will require a re-adjustment of the other control. Adjust vertical centering (3 focus coil mounting screws) to align picture with the mask.

HORIZONTAL SIZE AND DRIVE ADJUSTMENTS-Turn the horizontal size control L-23 (See Fig, 5 \& 6) to the maximum clockwise position. Vary the horizontal drive trimme (C-63B on 12-1 \(2^{\prime \prime}\) Pix Tube Receiver) (C.77 on \(16^{\prime \prime}\) Pix Tube Receiver) to yield the best linearity. Re-adjust the horizontal size control \(\mathrm{L}-23\) until the picture just fills the mask. Adjust horizontal centering (3 focus coil mounting screws) to align the picture with the mask.
If the horizontal drive trimmer is opened too far counterclockwise, a white line may appear to the left of the cente of the picture.

\section*{CHECK OF R-F OSCILLATOR ADJUSTMENTS}

With an accurately calibrated signal generator (crystal calibrated type preferred check to see if the receiver R-F oscillator is adjusted to the proper frequency on all chan nels. For th's check, it will be necessary to remove the chassis from the cabinet. Illustrated on this page are the wo types of tuners used in these receivers. For switch-type

fig. 10-Switch Type Tuner Adjustment
tuners adjust as shown in Fig. 10. When Channel 6 (low) and Channel 13 (high) trimmers are adjusted properly, other channels in the high and low frequency band will fall in automatically.
For turret type funers adjust each channel through the clearance hole as shown in Fig. 11.

Fig. 11-Turret Type Tuner Adjustmont

Fig. 12-16" Pix Receiver Voltages

\section*{© John F. Rider}

\section*{SERVICE SUGGESTIONS}

NO RASTER ON PICTURE TUBE -If raster cannot be obtained check below for the possible causes.

\section*{1. Ion trap magnet adjustment is incorrect.}
2. \(\mathrm{No}+8\) voltage. Check \(1 / 4\) ampere fuse (\(\mathrm{F}-1\)). *Replace if defective. If fuse continually burns out, check (\(A\)) Horizontal output tube V-18 (6BG6-G in 12-1/2" pix tube receivers) or \(\mathrm{V}-18\) and \(\mathrm{V}-21\) (6BQ6-GT's) in \(16^{\prime \prime}\) pix tube receivers. (B) Check damper tube V-19 (6W4-GT). (C) Check horizontal oscillator V-17 (6SN7 GT) for proper operation. In the \(16^{\prime \prime}\) pix tube models, connect a jumper wire from the +B side of \(\mathrm{F}-1\) to the junction of C-79 and R-85. For the \(12-1 / 2^{\prime \prime}\) pix tube nodels use a similar wire from the \(+B\) side to the junction of R-70 and R-73. (D) With an ohm-meter, check for a short between terminal 2 of the horizontal output transformer T-9 and the chassis. (E) Check capacitors \(\mathrm{C}-22 \mathrm{C}\) and C-73C.
3. No high voltage. Check \(\mathrm{V}-15\) and \(\mathrm{V}-18\) tubes and circuits. If the horizontal deflection circuits are opera ing as evidenced by the correct voltage measured on terminal 2 of the horizontal output transforme T-9, the trouble can be isolated to the high voltage rectifier V-15 circuit. Either the high voltage winding (points 6 to 7 on T-9) is open, tube V-15 is defective, its filament circuit is open, or the high voltage filter capacitor \(\mathrm{C}-86\) or \(\mathrm{C}-83\) on 12-1/2" models is shorted.
4. Defective picture tube. Heater open or cathode return circuit open.
*This fuse is accessible from bottom of cabinet. Remove wire screen, unsolder old fuse, solder in the new fuse wire screen, unsolder old

HORIZONTAL DEFLECTION ONLY -If only horizontal deflec tion is obtained as evidenced by a straight line across the face of the picture tube, it can be caused by the following:
1. Vertical oscillator V-13 (6SN7-GT) or vertical output tube V-14 (6K6-GT) inoperative. Check voltages' on grid and plate.
2. Vertical output transformer (T-8) open
3. Yoke vertical coils open.
4. Vertical hold, height or linearity controls may be defective.

POOR VERTICAL LINEARITY -If adjustment of the vertical hold, height or linearity controls will not correct this condition, any of the following may be the cause.
1. Vertical output transformer (\(T-8\)) defective.
2. Capacitors C-73A or C-73B defective.
3. V-13 (6SN7-GT) or V-14 (6K6-GT) defective, check voltages.
4. Excess leakage or incorrect value in capacitor C-64
5. Low plate voltages. Check rectifier tubes and capacitors in \(+B\) supply circuits.
6. Capacitor C-65 defective.

POOR HORIZONTAL LINEARITY-If adjustment of the Horizontal drive control does not correct this condition, check the following:
1. Check or replace horizontal output tubes V18 \& V-21.
2. Check or replace damper tube V - 19 (6W4-GT).
3. Check capacitor \(\mathrm{C}-82\) for defects.

TRAPEZOIDAL OR NONSYMMETRICAL RASTER
1. Improper adjustment of focus coil or ion trap magnet.
2. Defective yoke.
3. Open condenser C-85 on horizontal yoke coil L-21.

WRINKLES ON LEFT SIDE OF RASTER - This condition can be caused by:

Defective yoke due to C-85 (internal in yoke assembly) being wrong value or open. This component is mounted in rear of yoke assembly.

SMALL RASTER -This condition can be caused by:
1. Low \(+B\) or line voltage
2. Insufficient output from horizontal output tubes V. 18 or V-21. Replace tubes.
3. Insufficient output from vertical oscillator V-13 o vertical output fube V-14..Replace tubes.

\section*{raster; no image, but accompanying sound -This con-} dition can be caused by:
1. No signal on picture tube grid. Check picture I-F amplifier tubes V-6, 7 and 8 (6AG5's), second detector V-9A (6AL5) and video amplifiers V-10 (12AT7) and V-11 (12AU7).
2. Bad contact to picture tube grid (lead to socket broken).

SIGNAL APPEARS OK PICTURE TUBE GRID BUT IMPOSSIBLE TO SYNCHRONIZE THE PICTURE VERTICALLY AND HORIZONTALIY

\section*{-A condition of this nature can be caused by:}
. Defective sync amplifier and separator V-11 (12AU7-V-10 (12AT7) or V-13 (6SN7-GT).
2. If tubes are O.K. check voltages, and associated circuits.
3. AGC system inoperative. Check \(V-12\) (6AU6) AGC tube and associated circuits.

SIGMAL ON PICTURE TUBE GRID AND HORIZONTAL SYNC OMLY -If this condition is encountered, check:
1. Vertical integrating network capacitors C-55, C-56, and C-57; and resistors R-56, R-57 and R-58.
2. Vertical hold control R-60 defective

PICTURE STABLE BUT WITH POOR RESOLUTION -If the picture resolution is not up to standard, it may be caused by any of the following:
1. Defective picture detector V-9A (6AL5) or video amplifier V-10 (12AT7) and V-11 (12AU7).
2. Open video peaking coil. Check all peaking coils \(L-9\), L-10, L-11, L-12 and L-13 for continuity. Note that L-10 and \(L-12\) have shunting resistors.
3. Leakage in \(\mathrm{V}-11\) (12AU7) grid capacitor C-90. If the above components are not found to be defective check the following
1. Check all potentials in video circuits.
2. Check picture tube grid circuit for poor or dirty contact.
3. Check adjustment of focus control R-81. It should be effective on either side of proper focus.
4. Check and realign, if necessary, the picture I.F and R-F circuits.

\section*{PICTURE SMEAR:}

Normally, smear can be attributed to phase shift at the low frequency end of the video characteristic. This can be caused by improper values of resistors and capacitons in the video circuits. Check for grid current on video output tube V-11 (12AU7).
2. This trouble can also originate at the transmitter. Check reception from another station.
3. Check and realign, if necessary, the picture I-F and R-F circuits.

\section*{PICTURE JITTER}
1. If regular sections at left of the picture are displaced, replace the horizontal output tubes V-18 or V-21.
2. Vertical instability may be due to loose connections or noise received with the signal.
3. Horizontal instability may be due to unstable transmitted sync or to noise.
4. Check receiver AGC system for proper operation

\section*{© John F. Rider}

OJohn Y. Rider

ALIGNMENT PROCEDURE (continued)
frequency
adjust
4. 24.1 (Switch 3rd pix IF (L-7) (below chassis) Type Tuner) for maximum de at picture de23.7 (Turret tector.

Type Tuner)
5. 27.7

2nd pix IF (L-24) transformer (below chassis) for minimum dc at picture detector.
6. 21.7

Sound Take-off Coil (L-5) (1st picture IF) (top of coil) For minimum de at picture detector.
7. 21.7 3rd pix IF (L-7) (top of can) adjust for minimum dc at picture detector.
*8. 17 MC Converter plate trap coil (L-3) (2 volts required) for minimum de at pic. detector.
*Step 8 omitted in Receivers with furret type tuner
B. I-F Sweep Geherator into converter grid (through tube shield insulated from chassis) with markers at 21.7 MC and 26.2 MC
Connect oscilloscope probe to plate of list I-F tube V-6 (Pin 5 of 6AG5).
Ground A-G-C Line.

Fig. 19-Oscilloscope Connection

\section*{SWITCH TYPE TUNERS}

Adjust converter plate coil (L-2) and 1st Pic. I-F grid coil (L-4) (top of chassis) to give the response shown below in figure 20
A slight re-adjustment of L-3 converter plate trap may be necessary.

\section*{TURRET TYPE TUNERS}

Adjust converter plate coil (L-2) to give response shown in dotted line in figure 20.

C. With same I-F sweep input, connect scope probe to second detector (junction of peaking coil (L-9) and 4700 ohm resistor (R-31) off Pin 7, 6AL5). Input should be adjusted to give 2 volt \(P\) to \(P\) output.
Apply 3 V , bias (dc) to AGC line. (battery).

Fig. 21-Oscilloscape Connection

Observe overall I-F response, which should be as shown in Figure 22. Slight touch-up may be required.

Fig. 22-Overali Respone Curye
D. Sweep generator with balanced 300 ohm output into antenna for each channel. Adjust fine tuning to receive sound and observe overall response at second detector as in C. above.

If 26.2 marker is not at \(50 \%\) point, a slight touch-up of 2 nd Pix-IF transformer (\(\mathrm{L}-24\) on top of chassis) is required.

If there is a noticeable peak near 23 MC , a slight touch-up of lst Pix-IF transformer (L-5 sound toke-off coil on bottom of chassis) is required.

If the top of the curve is tilted, a slight re-adjustment of the 3rd Pix-IF transformer L-7 (bottom of chassis) may be necessary.

\section*{AUDIO I-F}

With 21.7 CW Carrier into converter grid as in A., and VTVM connected to terminal " C " of sound discriminator transformer, adjust sound I.F transformer (T-1) pri. and

\section*{REPLACEMENT PARTS LIST}

\section*{16" PICTURE TUBE}

NOTICE: There is a model number label an the chassis. This label
identifies the receiver as to chassis and issue lettor. When ordering parts
or writing, give All infarmation on this label.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& c-1 \\
& c-2 \\
& c-3
\end{aligned}
\] & & & CITOR & & \[
\left.\begin{array}{l}
\mathrm{C}-20 \\
\mathrm{C} 59 \\
\mathrm{C}-72
\end{array}\right\}
\] & B65103 & . 01 mf & 200 V & Tubular..... \\
\hline C.4 & & & & & c-21) & 865503 & . 05 mf & 200 V & Tubular...... \\
\hline C.7 & & & & & c. 69) & B65503 & . 05 mf & 200 V & Tubular...... \\
\hline c. \({ }_{\text {c-12 }}\) & & & & & \[
\left.\begin{array}{l}
\mathrm{C}-22 \mathrm{~A} \\
\mathrm{C}-22 \mathrm{~B}
\end{array}\right\}
\] & 45×375 & \[
\begin{aligned}
& 40 \mathrm{mf} \\
& 10 \mathrm{mf}
\end{aligned}
\] & & \\
\hline C-15 & & & & & c-22C \({ }_{\text {c }}^{\text {c-22 }}\) c & \(45 \times 375\) & 10 mf
10 mf & 450 V & Dry Eloctrolytic \\
\hline C-27 & & & & & C.23 & f65502 & . 005 mf & 600 V & Tubular...... \\
\hline C.28 & & & & & C. 25 & & Port of L-5 Sound & Take-off C & \\
\hline \(\mathrm{C}_{\mathrm{C}}^{\mathrm{C} 32}\) & & & & & C30 & & Part of 1-24-2nd & Pix Trans. & \\
\hline \begin{tabular}{l}
c.33 \\
C .35 \\
\hline
\end{tabular} & \(47 \times 519\) & 1000 mmf & & Ceramic.... & C.31
C.36 & 47X565 & Part of mm . 7 -3rd & Pix Trons. & Malded Mica. . \\
\hline c. 46 & & & & & C.37 & \(47 \times 562\) & 5 mmf & 500 V & Ceramic...... \\
\hline C. 47 & & & & & C.38 & \(47 \times 568\) & 360 mmf & 500 V & Malded Mica.. \\
\hline C. 48 & & & & & C.39 & 47×563 & 43 mmf & 500 V & Ceramic...... \\
\hline c. 49 & & & & & C. 40 & \(45 \times 378\)
F 65104 & 5 mf & 25 V
600 V & Dry Electrolytic
Tubular..... \\
\hline C.50 & & & & & c. 44 & 065104 & . 1 mf & 400 V & Tubular....... \\
\hline C. 66 & & & & & C. 45 & B65104 & . 1 mf & 200 V & Tubular...... \\
\hline C.67 & & & & & C.52 & & & & \\
\hline C.88 & 47X501 & 68 mmf & & Ceramic. & & B65504 & . 5 mf & 200 V & Tubular... \\
\hline C.6 & & & & & C.54 & 47X569 & 1000 mmf & 1000 V & Molded Misa . . \\
\hline C.19 & & & & & C-55 & 865202 & . 002 mf & 200 V & Tubular...... \\
\hline C.29 & 47X445 & 270 mmf & & Molded Mica.. & C-58 & 47X543 & 4700 mmf & & Molded Mico. \\
\hline \[
\left.\begin{array}{l}
c .34 \\
c .76
\end{array}\right]
\] & & & & & \[
\left.\begin{array}{l}
C-61 A \\
C-61 B
\end{array}\right\}
\] & \(45 \times 376\) & \[
\begin{aligned}
& 80 \mathrm{mf} \\
& 30 \mathrm{mf}
\end{aligned}
\] & \[
\begin{aligned}
& 450 \mathrm{~V} \\
& 450 \mathrm{~V}
\end{aligned}
\] & Dry Electrolytic \\
\hline c. 97 & & & & & c-60 & \(46 \times 410\) & . 01 mf & 400 V & Molded Paper \\
\hline C.17) & 47807 & 5000 mmf & & Ceramic...... & C.62A & & 80 mf & 450 V & \\
\hline c.16 & & & & & c. 628) & \(45 \times 376\) & 30 mf & 450 V & Ory Electrolytic \\
\hline \(\left.\begin{array}{l}\text { C.56 } \\ \text { C. } 57\end{array}\right\}\) & B65302 & . 005 mf & 200 V & Tubular.... & C.64 & \[
\begin{aligned}
& \text { F65203 } \\
& \text { D6525 }
\end{aligned}
\] & \[
.02 \mathrm{mf}
\] & \[
\begin{aligned}
& 600 \mathrm{~V} \\
& 400 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Tubular. \\
Tubular.
\end{tabular} \\
\hline c. 18) & & & & & C.68) & F67503 & . 05 mf & 600 V & Tubular. \\
\hline C.41 & & & & & C-81) & & & & \\
\hline C. 43 & & & & & C.71 & 47×570 & 330 mmf & 500 V & Molded Mica. . \\
\hline c. 53 & & & & & C.73A & & 40 mf & 50 V & \\
\hline & D67503 & . 05 mf & 400 V & Tubular... & \[
\begin{aligned}
& C .73 B \\
& c .73 C
\end{aligned}
\] & \(45 \times 375\) & \[
\begin{aligned}
& 10 \mathrm{mf} \\
& 10 \mathrm{mf}
\end{aligned}
\] & 450 V & Ory Electrolyric \\
\hline C.90 & & & & & C.75 & \(47 \times 571\) & 390 mmf & 500 V & Molded Mico. \\
\hline C.91 & & & & & C-77 & 174261 & 40.370 mmf & & Trimmer \\
\hline
\end{tabular}

\section*{DJohn F. Rider}

REPLACEMENT PARTS LIST Cont.
121⁄2" PICTURE TUBE

REPLACEMENT PARTS LIST Cont.
12½" PICTURE TUBE

MODEL 201088B (\(12 \frac{1}{2} \mathbf{2}^{\prime \prime}\) PIX TUBE)

tube layout

\section*{SUPPIEMENTARY MANUAL}

All service information applicable to the issue " B " series of Model 201088 is contained in Service Manual No. \(69 \times 2092\) and this Supplementary Service Manual.

The differences between issue " \(A\) " and " \(B\) " series receivers are as follows.
1. A 6 AL5 horizontal Phase Discriminator Tube (V-22, see illustration) was added to the circuit to improve receiver performance.
2. The synchro-guide transformer (T-7) was removed and replaced with a horizontal frequency coil (L-25).
3. Because of various electrical changes that have been made in the receiver, it was necessary to include in this supplement a complete parts list and a schematic diagram

When ordering parts, for the issue " \(B\) " receivers, use the part numbers listed in this Supplementary Manual.
4. For test patterns, alignment procedure and other service information, refer to Manual No. 69×2092 and use all data pertaining to the \(16^{\prime \prime}\) picture tube receiver.

\section*{REPLACEMENT PARTS LIST}

\section*{121/2" MODEL 2D1088B}

NOTICE: There is a model number lobel on the chossis, This label identifies the receiver as
to chossis and issue letter. When ordering parts or writing, give complete model number.

\begin{tabular}{|c|c|c|c|}
\hline Ref. No. & Part No. & \multicolumn{2}{|l|}{Description} \\
\hline C. 58 & \(47 \times 543\) & 4700 mmf & Molded Misa...... \\
\hline c.59 \(\begin{aligned} & \text { C. } 60 \\ & \text { c }\end{aligned}\) & \(46 \times 410\) & .01 mf 200 V & Molded Paper \\
\hline C. 61 A) & \(45 \times 376\) & 80 mf 450 V & Dry Electrolytic \\
\hline C.61B) & \(45 \times 376\) & 30 mf 450 V & Dry Electrolytic \\
\hline \[
\begin{aligned}
& \mathrm{C}-62 \mathrm{~A} \\
& \mathrm{C} .62 \mathrm{~B}
\end{aligned}
\] & \(45 \times 376\) & \(\begin{array}{lll}80 \mathrm{mf} & 450 \mathrm{~V} \\ 30 \mathrm{mf} & 450 \mathrm{~V}\end{array}\) & Dry Electrolytic...... \\
\hline C. 64 & F65303 & . 03 mf & 600 V Tubular. \\
\hline \[
\left.\begin{array}{l}
C .65 \\
c .78
\end{array}\right\}
\] & D65254 & . 25 mf & 400 V Tubular \\
\hline C.68 & F67503 & . 05 mf & 600 V Tubular \\
\hline c-81) & \(47 \times 570\) & 330 mmf 500 & \(\checkmark\) Molded Misa...... \\
\hline c.73A & & 40 mf 50 V & \\
\hline C.73B & \(45 \times 375\) & 10 mf 450 V & Dry Electrolytic \\
\hline C.73C) & & 10 mf 450 V & \\
\hline c. 775 & \(47 \times 571\) & 390 mmf 500 & V Molded Mica...... \\
\hline C. 77 & 174261 & 40.370 mmf & Trimmer...... \\
\hline C.79 & + \({ }_{47 \times 572}\) & 3900 mmf 500 & V00 Moided Mica \\
\hline C. 85 & & Part of Deflectio & Coil \\
\hline C.86 & \(47 \times 560\) & 500 mmf 20 & ,000 V \\
\hline \multirow{4}{*}{C. 94} & & Part of Tuner A & sembly \\
\hline & \(45 \times 379\) & 30 mf 450 V & Dry Electrolytic \\
\hline & & \multicolumn{2}{|l|}{RESISTORS} \\
\hline & \multicolumn{2}{|c|}{R.1} & Watts \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{R}-2 \\
& \mathrm{R}-3
\end{aligned}
\]}} \\
\hline & & & \\
\hline R 8 & 884102 & 1000 & 0.5 Carbon...... \\
\hline \multicolumn{4}{|l|}{R-24} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{R} .27 \\
& \mathrm{R} .65
\end{aligned}
\]}} \\
\hline & & & \\
\hline R-4 & B84820 & 82 & 0.5 Carbon \\
\hline \multicolumn{4}{|l|}{R-17} \\
\hline R.73 & 885474 & 470 K & 0.5 Carbon \\
\hline \multicolumn{4}{|l|}{\[
\text { R. } 100
\]} \\
\hline \multicolumn{4}{|l|}{R-7} \\
\hline \[
\begin{aligned}
& \text { R-37 } \\
& \text { R-39 }
\end{aligned}
\] & B84223 & 22 K & 0.5 Carbon...... \\
\hline \multicolumn{4}{|l|}{R.56} \\
\hline \[
\begin{aligned}
& \begin{array}{l}
R-9 \\
R-10
\end{array}
\end{aligned}
\] & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(\left.\begin{array}{l}\text { R.70 } \\ \mathrm{R} 72\end{array}\right\}\) B8,}} \\
\hline & & & \\
\hline & \(43 \times 329\) & 5.1 & 0.5 Wirewound... \\
\hline \[
\begin{aligned}
& \text { R-12 } \\
& R-1061
\end{aligned}
\] & \({ }^{184483}\) & ¢8 K & 0.5 Carbon \\
\hline & \(78 \times 4\) & \[
\begin{aligned}
& 1 \\
& 3 \\
& 3
\end{aligned} \text { meg. }
\] & On-Off Volume \\
\hline \multirow[t]{2}{*}{R.14,
R.15} & 885106 & 10 meg . & 0.5 Corbon \\
\hline & 685274 & 270 K & 0.5 Carbon...... \\
\hline \multirow[t]{2}{*}{R.16} & C84471 & 470 & 1.0 Carbon \\
\hline & D84102 & 1000 & 2.0 Carbon. \\
\hline R-19 & 883470 & 47 & 0.5 Carbon....... \\
\hline R-20 & \({ }^{883822}\) & 8.2 K & 0.5 Carbon....... \\
\hline R-21 & 883330
883123 & 33
12 K & 0.5
0.5
0.5
Corbon,
Corton \\
\hline \multicolumn{4}{|l|}{} \\
\hline R-28 & 884151 & 150 & 0.5 Carbon \\
\hline R.93 & & & \\
\hline
\end{tabular}

\section*{REPLACEMENT PARTS LIST (Continued)}

121/2" MODEL 2D1088B

\begin{tabular}{|c|c|}
\hline Ref. No. & Port No. Description \\
\hline & TRANSFORMER AND COILS-Cont. \\
\hline L-2 & Part of Tuner Assembly \\
\hline L.3 & 9 92059 Converter Plate Trap \\
\hline L-4 & 942072 1st I.F. Grid Coll \\
\hline L.5 & 9 92076 Sound Take-Off Coil \\
\hline L.6 & 9 Al 1979 Plate Choke \\
\hline L.7 & 9 92071 3rd Pix Trans. \\
\hline L.8 & 9 A2074 4.5 M.C. Trap \\
\hline 1.9 & 9 A2090 Peaking Coil \\
\hline L. 10 & 9A2086 Peaking Coil \\
\hline L-11 & 9A2088 Peaking Coil \\
\hline \({ }^{\text {L-12 }}\) & 9A2089 Peaking Coil \\
\hline L.13 & 9 92087 Peaking Coil \\
\hline L.14 & \(52 \times 88\) Filter Choke \\
\hline L.15 & 9A2107 Focus Coil \\
\hline L.19 & \\
\hline L-20 & Part of 9A2009 Deflection Coil \\
\hline L-21 & \\
\hline L-24 & 9A2055 2nd Pix I.F. Coil \\
\hline L-25 & 9A2096 Horizontal Frequency \\
\hline T-1 & 9 91986 Sound I-F Trans. \\
\hline T.2 & 9A2049 Sound Disc. Trans. \\
\hline T. 3 & \(51 \times 146\) Audio Output Trans. \\
\hline T.4 & \({ }^{\text {9A2073 }}\) Cathode Trap \\
\hline T.5 & 53X298 Power Trans. \\
\hline T. 6 & \(54 \times 5\) Vert. Osc. Trans. \\
\hline T.8 & \(51 \times 147\) Vert. Output trans. \\
\hline \multirow[t]{2}{*}{T.9} & \(53 \times 307\) Horiz. Output Trans. \\
\hline & MISCELLANEOUS \\
\hline 12 A 490 & 12" P.M. Speaker \\
\hline 2541071 & R.F Tuner Assembly (Turret Type) \\
\hline 25A1075 & R-F Tuner Assembly (Switch Type) \\
\hline 9A2069 & Deflection Yoke Assembly \\
\hline 2A382 & Ion Trap Magnet \\
\hline 3 A 428 & Tube Socket (miniature) \\
\hline 3 A 455 & Tube Socket (12AU7-12AT7) \\
\hline \({ }^{34303}\) & Tube Socket (Octal) \\
\hline 3A454 & Tube Socket (H.V. Rectifier) \\
\hline 13x751 & Tube Socket (Pix. Tube) \\
\hline \(32 \times 390\) & Tube Shield \\
\hline \(32 \times 401\) & Tube Shiold (12AT7) \\
\hline \(17 \times 104\) & Plix Crysal \\
\hline 4x1076 & Pix Mask \\
\hline \(8 \times 218\) & Rubber Cushion \\
\hline \(25 \times 1654\) & Support Bracket (Mtg. Rear of Tube) \\
\hline \(28 \times 589\) & Ground Spring \\
\hline S.25x60 & Tube Strap \& Mig. Bracket Assembly \\
\hline \({ }^{25 \times 1658}\) & Tube Mtg. Bracket (Front Right) \\
\hline \(25 \times 1659\) & Tube Mrg. Bracket (Front Leff) \\
\hline \(20 \times 1646\) & Eyelet (Screwdriver Guide) 1 Mtg. \\
\hline \(28 \times 578\) & \\
\hline \(20 \times 1558\) & Wing Screw (Mrg. Def. Yoke) \\
\hline \(16 \times 147\) & Fuse (1/4 Amp.) \\
\hline S.14×20 & Cabinet Back \& Power Cord Assembly \\
\hline \(14 \times 485\) & Ventiator Grille \\
\hline \(4 \times 1065\) & Escutcheon (Channel Selector) \\
\hline 4×1029 & Esciutcheon (Oft-Volume \& Contrast) \\
\hline 10A741 & Knob (Channel Selector) ... \\
\hline 104742 & Knob (Fine Tuning) \\
\hline 10A752 & Knob (Contrast) \\
\hline 10A753 & Knob (Off.Volume) \\
\hline 4×1072 & Front Panel Cover \\
\hline 6A314 & Anode Connector \\
\hline
\end{tabular}

BOTTOM SOCKET VOLTAGES

SUPPLEMENTARY MANUAL
Model 2D1089B is similar to Model 2D1089A except for minor mechanical and electrical changes. Because of these changes, it was necessary to include in this supplementary service manual a complete parts list and a schematic diagram. For test patterns, alignment procedure and other service information, refer to Manual \(69 \times 2092\) and use all data pertaining to the \(16^{\prime \prime}\) picture tube receiver.

NOTE: When ordering pafts for the issue " \(B\) " receivers, use the part numbers listed in this Supplementary Service Manual.

\section*{TUBE COMPLEMENT}

\section*{121/2" MODEL 2D1088B}

\section*{TEEEVINION}

SIPECIFICATIDNS

\section*{Sensitivity at the Antenna}

Video-100 microvolts
Audio-100 microvolts
Power Supply Rating 115 volts, \(50-60\) cycles, AC 235 watts.
Audio Power Output Rating Undistorted-3 watts Maximum-4 \(1 / 2\) watts

\section*{Speaker
\(10^{\prime \prime}\) PM}
3.2 ohm voice coil impedance

\section*{Picture Size}

70 square inches
Antenna Impedance Requirements
Balanced 300 -ohm
Dimensions
Chassis-16" \(\times 16^{\prime \prime} \times 21 / 2^{\prime \prime}\)
Tube Complement 6AG5, RF-Amplifier 6AG5, RF-Amplifier 6AUb's, (4) IF-Amplifier 6AL5, Detector, DC Restorer and Sync Separator 12AU7, Video Amplifie
6SL7, Sync-Amplifier AU6, A.G.C. Amplifier 6AU6, Sound IF-Amplifier 6T8, Audio Detector and Amp 6K6, Audio Output
6A15' Vertical Multivibrato
6AL5, AFC-Discriminator
6BO6, Pulse Amplifier
6W4, Damper
1X2, High Voltage Rectifier 5U4, Low Voltage Rectifier 10BP4, Picture Tube

\section*{GENEIRAL DESCIRIPTIGN}

The Model 10AXF44 is a combination television, AM-FM radio, and a 45 RPM record changer.

The Television set is a 20 -tube, \(A C\) operated, direct view, 10 -inch television receiver and features complete coverage of all 12 television channels, automatic gain control, automatic frequency control, intercarrier sound system, permanent magnet focused and magnetically deflected picture tube.

On the back of the cabinet is a safety interlock to prevent dangerous electrical shock. As an added safety measure, a fuse is located in the high voltage power supply to protect the set in case of overloading.

\section*{DIPEIRATION DF THE THEEVISIDN}

\section*{FUNCTIONS OF THE CONTROLS}

All the controls normally used in tuning in a program -both picture and sound-are located on the front of the receiver. On the rear of the set are several controls which are pre-set at the factory and may need slight readjustment at the time of installation. After installation, they should not be adjusted further, unless required by replacement or aging of tubes, variations in power-line voltage, or other external conditions. The function of each of the controls is described below.

\section*{OPERATOR'S CONTROLS}

Volume-Off - Turns set on or off and adjusts sound volume.
Contrast-Varies contrast between light and dark portions of picture.
Brightness-Controls brilliance of picture.
V. Hold-Stops pictures from moring up or down.
H. Hold-Stops pictures from moving left or right.

Station Selector Knob-Tunes set to desired channel (station). May be turned in either direction.

Model 10AXF44 actually requires only three controls when tuning in a program. The three controls, off-onvolume, contrast and station selector are located on the front of the receiver. The three other controls on the front of the set: brightness, horizontal hold, and vertical hold, need only be adjusted periodically. The six operator's controls are shown below:

Three of the seven serviceman's controls; focus, hori zontal centering, and vertical centering, are located on the picture tube assembly. The remaining four controls, vertical linearity, vertical size, horizontal size, and coarse horizontal hold are located on the rear of the set. (See tube layout).

\section*{SERVICEMAN'S CONTROIS}

Vert. Lin.-Provides vertical distribution of picture. Vert. Size - Changes size of picture vertically. Does not affect horizontal size.
Horiz. Size-Changes size of picture horizontally. Does not affect vertical size.
Focus-Focuses picture on face of picture tube. H. Centering-Moves entire picture horizontally. V. Centering-Moves entire picture vertically.

- Turn the VOLUME control clockwise to turn the s on. Allow one-half minute for the set to warm up. 2. Rotate the Station Selector knob to the desired channel.
3. Turn the CONTRAST control fully counter-clockwise. 4. Turn the BRIGHTNESS control fully clockwise, and then turn it slowly counter-clockwise until the picture tube just becomes dark. For any particular installation this adjustment of the BRIGHTNESS control need be made only the first fime the set is used, unless required by replacement of tubes.
5. Adjust the CONTRAST control until the proper contrast between blacks and whites is obtained.
6. Adjust the VOLUME control for the desired sound level.
7. When switching from one station to another, it may be necessary to readjust the CONTRAST control.

\section*{ADJUSTMENT DF}

STATION SELECTOR

The station selector of your television set has been partially pre-set at the factory, but readjustment of the settings may have to be made at the time of the initial installation. This should be done by the serviceman.
If at a later time a new station comes on the air, or if the receiver is moved to a locality where other stations can be received, adjust the station selector in the following manner
1. Turn the set on. Allow the set to warm up for 20 minutes.
2. Turn the contrast control approximately two-thirds of the way toward its full clockwise position.
3. Turn the volume control approximately to its midposition.
4. Set the station selector knob to the desired channel. 5. Grasp the station escutcheon at the upper right edge and slowly push down until the hole above the station selector knob appears.
6. Insert a screwdriver into the hole (see illustration) Turn the screw slowly counter-clockwise (and then clock-

HEPLACEABLE PARTS LIST

\section*{PIBADECTIGN CHANGES}

As changes were made in the production of Model 10AXF44 chassis, code numbers were assigned to distinguish the differences in the set. The differences between the different code numbers are explained below.

\section*{Code 1 Chassis.}

Code 1 chassis are wired as shown in the schematic diagram except the grounded end of C-117 is connected
to terminal 1 of T 6 and a 1000 mmf capacitor is used
in place of the parallel connection of C-109 and C-111

\section*{Code 2 Chassis.}

Code 2 chassis are wired as shown in the schematic diagram except a 1000 mmf capacitor is used in place parallel connection of C 109 and C111.

\section*{Code 3 Chassis.}

Code 3 chassis are wired as shown in the schematic diagram.

\section*{SERVICE NOTE}

Lubrication - The automatic record changer leaves the factory oiled and lubricated. Under normal conditions further lubrication will not be required for at mend periodic lubrication thereafter by. We recomserviceman.

If Needle Skips Groove—Check the following points: 1. Record Changer not level.
2. Foreign matter in record groove.
3. Badly worn record groove.
4. Badly worn or bent needle.

\section*{©PEIRATION OF THE RADIO}

Broadcast Band-This is the tuning band in which the standard broadcast stations operate. The left scale on the dial covers the broadcast range of \(535-1620 \mathrm{Kc}\) and is calibrated in channel numbers. To obtain the kilocycle reading, multiply the number on the dial by 10 ; thus 80 on the dial corresponds to 800 kilocycles.

FM Band-The FM tuning range covers the newly allo cated frequency-modulation band of 88 to 108 mega cycles into which all FM stations were required to move Check with your local newspaper to determine the frequency of your local FM stations.

On-off Switch and Volume Control- The knob second from the bottom is both the on-off switch and the volume control. When this control is turned all the way to the left the set is off. A slight rotation to the right will click
the switch and turn the set on. The knob may then be used to regulate the volume. Be sure your set is turned completely off when not in use; otherwise the tubes will wear out unnecessarily.

Tone Control-Rotating the bottom knob gives a ful variation of the tonal response from a deep bass to a brilliant treble.

Tuning Knob - The knob second from the top is the tuning knob; rotation of this knob moves the indicator along the dial scales. When selecting a station turn the knob back and forth until the tone is clearest and loudest. Do not use the tuning knob to regulate volume; the volume control should be used for that purpose after the station has been tuned in properly. It is particularly important in FM reception to tune the station accurately; otherwise the tone is distorted and the background noise not eliminated.

Band Switch-The knob on the top is used to select FM BAND, BROADCAST BAND, or PHONO. When this knob is turned fully clockwise FM programs can be tuned in. In the center position STANDARD BROAD. CASTS can be heard.

Phonograph - Turning the Bandswitch fully counterclockwise allows the radio to be used for the playing of phonograph records in conjunction with the automatic record player mounted in this cabinet. This automatic Record Player accommodates eight of the NEW 45 RPM records, approximately 40 minutes of entertainment with.

AM-I. F. ALIGNMENT
Band Switch in AM Position, Gang Open, Dummy Antenna . 1 Mfd.
\begin{tabular}{|c|c|c|c|}
\hline SIGNAL GENERATOR FREQUENCY & CONNECTION TO RADIO & ADJUSTMENTS 10 8E MADE & ADJUST \({ }^{\text {FOR }}\) \\
\hline \[
\begin{aligned}
& 455 \text { Kc. Use } \\
& 2500 \\
& \text { microvolts }
\end{aligned}
\] & Pin 1 of 12BA6 I.F. Amp. and \(B\) minus & Primary and Secondary of T8. See chassis view. & Maximum output should be .5 watts \\
\hline 455 Kc . Use 75 microvalts & Pin 7 of 12BA7 Converter and \(B\) minus & Primary and Secondary of T6. See chassis view. & Maximum output should be .5 watts \\
\hline 400 cycles. Use 45 millivolts & High side of Volume Control and B minus & None & Maximum output should be .5 watts \\
\hline
\end{tabular}
out attention. For operation of this unit please refer to the Automatic Record Changer Operating Instructions on separate sheet.

\section*{ALIGNMENT PROCEDURE}

Broadcast Band Section I. F. and R. F.
The alignment procedure below includes the sensitivities at the inputs of various stages. All signal input measured by disconnecting the speaker voice coil .50 wed substituting a 3.2 -ohm resistor across the secondary winding of the output transformer. A reading of 1.25 volts AC across this resistor will be approximately equivalent to .50 watt output with the speaker connected. The volume control must be set at maximum. The tone control must be set for maximum treble.
The signal source must be an accurately calibrated signal generator capable of supplying the frequencies
designated, modulated \(30 \%\) with a 400 -cycle audio nal. A 400 cycle audio signal is required for the sudio measurement. Variations in sensitivities of plus or minus \(25 \%\) are usually permissable.

Chassis View

Schematic Diagram of Chassis - (Code 3)

© John F. Rider

OJohn F．Rider

© John F. Rider

©John F. Rider

OJohn F. Rider

© John F. Rider

\footnotetext{
FINE TUNING RANGE:
Plus or minus 400 kc . on Channel 2;
Plus or minus
OPERATING VOLTAGE:
Plus or minus 2 mc . on Channel 13 .
105 to 120 volts, 60 cycles.
}

POWER CONSUMPTION: 300 watts
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{AUDIO POWER OUTPUT:} \\
\hline Undistorted Maximum ... & 3.5 watts
4.5 watts \\
\hline \multicolumn{2}{|l|}{LOUDSPEAKER:} \\
\hline \begin{tabular}{l}
Type \\
Voice Coil Impedanc
\end{tabular} & \[
\begin{array}{r}
12^{n} \text { P.M. } \\
\text { hms at } 400 \\
\text { cycles }
\end{array}
\] \\
\hline
\end{tabular}

RECEIVER ANTENNA INPUT IMPEDANCE:
300 ohms balanced or 72 ohms unbalanced
TUBE COMPLEMENT:

1 6W4/GT Horizontal Damper 12AAV . Symp. \& Sync. Separator \(12 A U 7\).............. Vertical Multivibrato 12UV …..... Horizontal Multivibrato 12 LP 4 or 12 LP 4 A Cathode Ray Tube

VIDEO CARRIER INTERMEDIATE
FREQUENCY: 26.1 mc
VIDEO RESPONSE: 3.6 mc.
AUDIO CARRIER INTERMEDIATE
FREQUENCY: 4.5 mc
AUDIO DISCRIMINATOR BAND WIDTH:
(between peaks) 150 kc

FOCUS: Magnetic
SWEEP DEFLECTION: Magnetic

SCANNING:............... Interlaced 525 line
HORIZONTAL SCANNING
FREQUENCY:
\(15,750 \mathrm{CPS}\)
VERTICAL SCANNING FREQUENCY:
.....

FRAME FREQUENCY
(picture repetition rate): 30 CPS

\section*{CATHODE RAY TUBE HANDLING PRECAUTIONS}
Shatterproof goggles and heavy gloves should be worn at all times when handing the cathode ray tube. The tube should not be handled in the viciaity of any person not so equipped. When handling the cathode ray tube, always keep it away from the body.
The cathode ray tube bulb, due to its large surface area and high vacuum contained within, is subjected to high air pressure. More than ordinary care is required to prevent shattering the tube. The large end of the bulb, particularly the rim of the viewtube. The large end of the bulb, particularly the rim of sube, motithed to more than moderate pressure at any time. If the tube sticks or fails to slip smoothly into place during installation, remove the tube and determine the cause of the trouble - - DO NOT FORCE THE TUBE.

\section*{HIGH VOLTAGE WARNING}

The danger accompanying shock is always present when the receiver is operated outside the cabinet or when the rear cover is removed from the cabinet. Only a person familiar with the precautions to be observed when working with high-voltage equipment should service this receiver.

\section*{INSTALLATION INSTRUCTIONS}

TO PREPARE THE RECEIVER FOR OPERATION
1. Remove the screws that secure the rear cover to the cabinet.
2. Remove the rear cover by pulling it straight out from the cabinet.
3. Check the operation of the Electronic the control. Re-position the chassis to he control. Re-position the chassis to the shutters still bind remove the chassis from the cabinet as outlined under CHASSIS REMOVAL to determine the cause of the binding.
4. Models \(\mathrm{H}-606 \mathrm{Kl} 2\) and \(\mathrm{H}-607 \mathrm{Kl} 2\) contain built-in antenna for use in areas of normal antenna provides good reception, no antenna connections are required. However, in weak signal areas or under adverse conditions, it may be necessary to use an external antenna. In this event, the antenna lead-in can be connected to the antenna terminals on the back of the receiver after disconnecting the built-in antenna wires that normally connect to these terminals. The lugs on the built-in antenna should be insulated and dressed in such a position that they do not touch the chassis or components. The clamp cabinet may be used to hold the built-in antenna feeder out of the way.
5. Apply power to the receiver by connecting a temporary line cord between the receptacle on the chassis and a 105 to 120 volt 60 cycle A-C outlet.

\section*{TO CHECK THE OPERATION:}
1. Turn the magnifier switch to the clockwise (magnified) position.
2. Rotate the brightness and contrast controls completely counterclockwise.
3. Turn on the receiver by rotating the off-on-volume control clockwise.
4. Rotate the channel selector to the channel number of the desired station.
5. Rotate the brightness control clockwise until the screen is well lighted.
6. Rotate the contrast control clockwise until a picture appears on the screen.
7. If the built-in antenna is in use adjust the television antenna control fol maximum picture contrast. If an external antenna is in use, this step is not required.
8. If the picture is moving up or down or quivering adjust the vert
trol to stabilize the image.
9. If vertical or diagonal bars or a folded over picture appears on the screen, adjust the horizontal hold control to obtain a stable picture.
10. Adjust the fine tuning control for best picture detail.
11. Readjust the brightness and contrast controls until pleasing shades ranging from clear white to intense black are attained.
12. If shadows appear on the face of the tube or the picture is not properly centered, adjust the ion trap magnet and for
13. Adjust the volume control for the desired sound volume.
14. Turn the magnifier switch to the counterclockwise (normal) position.
15. If vertical or diagonal bars appear on the screen, adjust the width control as described under ADJUSTMENTS. Do not re adjust ihe horizontal hold control.
16. If necessary, adjust the height, height magnifier, vertical linearity, vert ical linearity magnifier, and focus con trols as explained under ADJUSTMENTS.
17. Check the operation on all available television stations. Note that if the builtin antenna is in use, the television antenna control must be readjusted for maximum picture contrast each time the receiver is tuned to a different channel.
18. Turn off the receiver, disconnect the temporary line cord and external antenna (if used), and replace the rear cover.
19. Re-connect the external antenna (if used) to the antenna terminals on the rear

fig. 1 - Crt adjustments
of the chassis, and connect the A-C plug to a 105 to 120 volt 60 cycle power outlet.
20. Re-check the operation on all available stations.

The picture adjustments are located on the rear of the chassis and are accessible through cut-outs in the back cover.

An insulated, long shank screwdriver is preferred for making the ringing coil and H.V. oscillator adjustments.

\section*{ION TRAP MAGNET}

CAUTION: When adjusting the zon trap magnet, care must be exercised to avoid breaking the neck of the C.R.T.

The ion trap magnet must always be adjusted for maximum picture brightness. With the magnet oriented approximately as shown in Fig. 1, rotate it around the neck of the tube and move it forward and backward until the position is found where the brightest raster is obtained.

\section*{FOCUS COIL}

If a shadow falls on one corner of the picture or if the picture is not centered, adjustment of the focus coil will be necassary. To adjust, loosen the focus coil adjustment wing screws and slightly rotate the coil about its vertical and horizontal axis until a position is found where the picture is centered and there are no shadowed corners. Tighten the wing screws with the coil in this position.

\section*{CATHODE RAY TUBE CUSHION}

The cushion must fit snugly against the

\section*{heicht and vertical linearity (macnified)}

The height magnifier adjustment controls the overall height of the magnified picture, while the vertical linearity magnifier adjustment governs contraction or expansion of the upper portion only. For this reason, a balance between the two controls is necessary to make the picture symmetrical and fill the mask vertically. These controls must be reset if governing the normal picture are changed

\section*{WIDTH}

The width adjustment must alwavs be made with the magnifier control set for a normal size picture. The correct adjustment is made as follows:
1. Rotate the magnifier control to the magnified position, and adjust the horizontal hold control until magnified picture hold holds horizontal sync.
2. Set the magnifier control for a normal size picture, and without re-adjusting the
horizontal hold control adjust the width control until the picture holds horizontal sync and fills the mask horizontally.

\section*{HORIZONTAL RINGING COIL}

To adjust the horizontal ringing coil.
1. Turn the magnifier switch to the clockwise (magnified) position.
2. Tune in the weakest station in your area.
3. Set the horizontal hold control at approximately the center of its range.
4. Adjust the ringing coil (L403) until the picture is properly \({ }^{\text {n }}\) locked-in".

\section*{HIGH VOLTAGE OSCILLATOR}
l. Turn off the receiver and disconnect the high voltage lead from the CRT.
2. Connect 18 one megohm, one watt resistors 111 series between the high voltage lead and the chassis.
3. Connect a kilovoltmeter across the 18 megohms of resistance.
4. Turn on the receiver and adjust C507 (location shown on Fig. 8) for maximum voltage indication on the meter. When C507 is across the load should be 9.3 kilovolis (approximately). should be gilovolts
(
5. Turn off the receiver, disconnect the kilovoltmeter, remove the 18 megohms of lead to the CRT. Note that when the 18 meg ohm load is removed and the high voltage lead is connected to the CRT, the output voltage of the H.V. power supply will rise because of the higher"load resistance of fered by the CRT

\section*{CATHODE RAY TUBE REPLACEMENT}
1. Remove the chassis from the cabinet as explained under CHASSIS REMOVAL.
2. Back off the screw locking the shutter actuating link to the magnifier control shaft
3. Remove the two self-tapping screws that secure the shutter assembly frame to the chassis.
4. Remove the two self-tapping screws that secure the shutter assembly frame to the brace bars.
5. Remove the wing nut and lock washer from the stud on top of the CRT strap.
6. Remove the shutter assembly by lifting the bronze strap over the stud and sliding the complete assembly forward
7. Remove the ion trap magnet and the

CRT socket.
8. Loosen the CRT cushion screws, the focus coll wing screws, and remove the screw from the CRT strap.
9. Remove the defective CRT and insert the replacement through the deflection yoke and focus coil, exercising the caution necessary when handling cathode ray tubes.
10. Replace the screw in the CRT strap and tighten the strap about the tube just enough to hold the tube in place.
11. Replace the shutter assembly and tighten the self-tapping screws only. Do not tighten the CRT strap wing nut or the set screws on the magnifier control shaft.
12. Position the CRT so that the clearance between the tube and the mask is approx-
13. Tighten the CRT strap and the wing nut on the stud at the top of the CRT strap.
14. Adjust the CRT cushion and tighten the CRT cushion screws
15. Replace the ion trap magnet and the CRT socket.
16. Adjust the ion trap magnet and focus coil as outlined under ADJUSTMENTS.

\section*{CHASSIS REMOVAL}

To remove the chassis from the cabinet:
1. Remove the control knobs from the front of the cabinet.
2. Remove the wood screws that hold the rear cover to the cabinet, and remove the rear cover.
3. Remove the two red-headed wood screws from the block located on the top (inside) of the cabinet, and remove the block.
4. Disconnect the built-in antenna feeder from the antenna terminals.
5. Release the antenna stub from the top of the cabinet by pulling out the thumbtack.
6. Remove the two screws that secure the antenna trimmer assembly to the top of the cabinet.
7. Remove the trimmer assembly and rubber coupling sleeve by carefully pulling the
17. Turn the magnifier switch to the clockwise (magnified) position. Open the shutters completely and tighten the set screw to lock the shutter actuating link to the cont.rol shaft.
18. Check the operation of the shutters to make certain there is no binding.
19. Replace the chassis in the cabinet.
coupling sleeve off the drive shaft
8. Temporarily tape the drive shaft to the top of the cabinet to avoid breakage.
9. Remove the bracket that clamps the shutter frame to the bottom of the cabinet This bracket is located near the front (inside) of the cabinet and can be released by the cabinet.
10. Remove the hex-head chassis bolts from the under side of the cabinet.
11. Remove the chassis by pushing the front of the chassis against the left side of the cabinet and then easing the chassis the chassis gradually toward the right. The chassis must leave the cabinet at an angle so that the shutter mechanism will clear the antenna drive pulleys. This step must be performed cautiously to prevent scratching the plastic front plate

\section*{ALI GNMENT}

TEST EQUIPMENT-To properly service this chassis, the following test equipment should be available:
1. R-F sweep generator which meets the following requirements:
a. Frequency range from 18 to 30 mc . with a sweep width of 10 mc .
b. Output adjustable with at least 100,000 microvolts maximum anda very low minimum.
c. Output "flat" on all attenuator positions.
2. Cathode-ray oscilloscope, preferably one with a wide band vertical deflection amplifier and a low-capacitance input probe.
3. Signal generator capable of providing output frequencies listed below.

MODELS H-606K12, H607 Kl 2 , Ch. V-2150-1

NOTE - The R-F output level on all the above frequencies should be adjustable with above frequencies should be adjustable with
at least 100,000 microvolts maximum and a very low minimum.
4. Heterodyne frequency meter with crystal calibrator (if the signal generator crystal calibrator (if the signal generat
5. Electronic voltmeter (vacuum tube voltmeter), with a high voltage multiplier probe for measurements up to 15,000 volts
and an R-F probe for measuring R-F voltages.

GENERAL INFORMATION-All test equipment and the chassis should be bonded together by short lengths of heavy (\(1 / 1\) inch) braided copper ribbon. The interconnecting cable) and should be as short as possible cable) and should be as short as possible
consistent with ease of making connections. The effectiveness of the bonding can be checked during alignment by placing the hand on the metal chsssis or test equipment case. If the response pattern or meter reading changes visibly, the bonding must be improved before the circuits are aligned.

\section*{COMMON I-F ALIGNMENT PROCEDURE}
1. Rotate the channel selector switch to channel 3.
2. Connect the signal generator to the mixer tube through the coupling device shown in Fig. 4. The device is constructed by squeezing together a miniature tube shield until it fits the tube snugly and does not ground to the chassis. A . 005 mfd capacitor is then soldered to the side of the shield. By sliding the tube shield up or down on the tube, the capacitance between the shield and the tube elements can be varied to obtain additional control of the coupling over that provided by the attenuator in the generatior output cable should be connected to the receiver chassis.
3. Connect a vacuum tube voltmetèr to the video test jack on the receiver chassis, and set the meter to its 5 volt scale.
4. Set the signal generator to 21.6 mc. (unmodulated), and adjust C329 for minimum voltage on the VIVM. Use a strong signal for this adjustment.
5. Set the signal generator to 22.6 mc. (unmodulated), and adjust L306 for maximum voltage on the VTVM. During this
adjustment, keep the signal generator outadjustment, keep the signal generator out-
put adjusted so that the VTVM reading does not exceed 2 volts.
6. Set the signal generacor to 25.9 mc. (unmodulated), and adjust L307 for
maximurn voltage on the VTVM. During this adjustment, keep the signal generator out put adjusted so that the VTVM reading does not exceed 2 volts.
7. Set the signal generator to 25.6 mc. (unmodulated), and adjust L308 for maximum voltage on the VTVM. During this adjustment, keep the signal generator output adjusted so that the VTMM reading does not exceed 2 volts.
8. Set the signal generator to 23.8 mc . (unmodulated), and adjust L309 for maximum voltage on the VTVM. During this adjustment, keep the signal generator output adjusted so that the VTVM reading does not exceed 2 volts.
9. Set the signal generator to 23.0 mc . (unmodulated), and adjust L313 for maximum voltage on the VTVM. During this adjustment, keep the signal generator outpu exceed 2 volts. exceed 2 volts.
10. Connect the sweep generator to the mixer tube through the coupling device prevmixer tube through the signal generator will be used in the following steps to provide marker indications at various frequencies on the response curve. In this application, the signal generator input to the set must be lo in amplitude to avoid distorting the response
curve. To reduce the signal generator input curve. To reduce the signal generator input
accordingly, the signal generator should be accordingly, the signal generator should
loosely coupled to the set by wrapping a few turns of insulated wire around the coupling capacitor "pigtail" and connecting th signal generator to this wire.
11. Connect the vertical input of the oscilloscope to the video test jack through the de-coupling network shown in Fig. 5. The oscilloscope horizontal input should be connected to the sweep output from the sweep generator; turn the sweep control on the oscilloscope to the " X " or " OFF " position.
12. Adjust the sweep generator for a center frequency of 25.3 mc . with a 10 mc . deviation. Adjust the sweep generator output until a setting is found where there is very little noise on the oscilloscope pattern.

The oscilloscope pattern obtained should be similar to that shown in Fig. 6. Use the signal generator as a marker to check at the frequencies indicated. If the pattern obtained is not similar to Fig. 6, L306, L307, L308, L309, and L313 should be re-adjusted to produce the correct pattern. The aff
of the adjustments will be as follows:

MODELS H-606K12, H-
\(607 \mathrm{Kl2}, \mathrm{Ch} \cdot \mathrm{V}-2150-11\)

L306 affects the low frequency side of the curve
L307 affects the high frequency side of the curve and the position of the video I-F carrier.
L308 affects the center of the curve. L309 affects the tilt of the "shelf" of the curve.
L313 affects the center and the low frequency side of the curve.
SOLND I-F AND 4.5 MC . TRAP ALIGNMENT PROCEDURE
1. Connect the "high" side of the signal generator to the video test jack through a .001 mfd capacitor, and ground the "low" side to the chassis.
2. Connect the vacuum tube voltmeter to the points indicated on the bottom view of the chassis, Fig. 8. The common lead should connect to point "C", and the "high" meter on its 5 volt (-DC) scale.
3. Adjust the signal generator to 4.5 mc. (unmodulated). The accuracy of this frequency is very important. If a crystal controlled signal generator is not available, the frequency should be checked using a frequency meter with a crystal calibrator.
4. Adjust T201 and the primary of T202 for maximum voltage on the VTMM. Dur ing this adjustment keep the signal generator output adreed 5 solts the VIVM does no exceed 5 volts.
5. Connect the common lead from the VTM to point "A" (Fig. 8), and connect the "high" lead to point "B". Here it is important that the case and components of the chassis; otherwise, point ne receiver \(A^{n}\) would be shorted to the chassis through the common lead.
6. Using the same signal generator amplitude and frequency as in step 4, adjust the secondary of T202 for zero voltage on resonance, the voltage will rapidly change from one polarity to the opposite polarity. The point where the voltage is zero is the correct setting.
7. Connect the common lead from the VTVM to the chassis, and connect the \(R-F\)
probe from the VTVM to the junction of R332
and R326. This point is shown as point "D on Fig. 8. Note that this point is 150 volts must contain a blocking capacitor.
8. Using a strong 4.5 mc . signal applied as in step 1 , adjust C32l for minimum in dication on the meter.
H. F. OSCILLATOR ALIGNMENT PROCEDURE

If the \(6 \mathrm{C} 4 \mathrm{H}-\mathrm{F}\) oscillator tube is replaced the different inter-electrode capaci tance of the new tube may change the oscilla alignment of the oscillator.

The oscillator adjusting screws are located on the front of the tuner assembly and this procedure should be followed for their adjustment:
1. Remove the channel selector and fine tuning knobs. Remove the selector escutcheon plate and escutcheon mounting plate by rethem to the cabinet. The adjustments are accessible through the hole in the cabinet.
2. Set the fine tuning control to the middle of its range, and leave it in this position during the following adjustments.
3. Set the channel selector switch to the highest of the low band (channels 2 through 6) stations operating in your ocality.
4. Peak the appropriate oscillator slug for the best picture detail.
5. Repeat step 4 for each progressively lower channel on which a station transmit in your area.
6. Set the channel selector switch to the highest of the high band (channels? through l3) stations operating in your locality.
7. Peak the appropriate oscillator slug for the best picture detail
8. Repeat step 7 for each progressively ower channel in the high band on which a nearby station transmits.
9. Check the previously made low band adjustments, and if the tuning has changed repeat steps 3 through 8 .
\begin{tabular}{|c|c|c|c|c|c|}
\hline Step & Sweep Gen. Frequency & Marker Gen. Frequency & Remarks & Indicator Connection & Adjust \\
\hline 1. & Not used & 21.6 mc . unmodulated & Use a strong signal & Connect VTVM to video test jack & C-329 for minimum voltage \\
\hline 2. & Not used & 22.6 mc . unmodulated & Keep marker output adjusted so VTVM reading does not exceed 2 v . & Same as step 1 & L-306 for maximum voltage \\
\hline 3. & Not used & 25.9 mc. unmodulated & Same as step 2 & Same as step 1 & L-307 for maximum voltage \\
\hline 4. & Not used & 25.6 mc . unmodulated & Same as step 2 & Same as step 1 & L-308 for maximum voltage \\
\hline 5. & Not used & 23.8 mc . unmodulated & Same as step 2 & Same as step 1 & L-309 for maximum voltage \\
\hline 6. & Not used & 23.0 mc . unmodulated & Same as step 2 & Same as step 1 & L-313 for maximum voltage \\
\hline 7. & 25.3 mc. with 10 mc . deviation & \begin{tabular}{l}
check at: \\
21.6 mc . \\
22.5 mc . \\
23.5 mc . \\
25.3 mc.
26.1 mc . \\
26.1 mc .
\end{tabular} & Keep sweep output low enough so that very little noise appears on the oscilloscope trace & Connect oscilloscope to video test jack. See Fig. 5. & If necessary, adjust L-306, L-307, L-308, L-309, and L-313 to obtain correct re-
sponse curve. See Fig. 6. \\
\hline
\end{tabular}

\section*{SOUND I-F SECTION AND 4.5 MC . TRAP}

Connect the signal generator to the video test jack through a .001 mfd mica capacitor.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Signal Gen. Frequency & VTVM Connection & Remarks & Adjust \\
\hline 1. & \[
\begin{aligned}
& 4.5 \mathrm{mc} \text {. } \\
& \text { unmodulated }
\end{aligned}
\] & See Fig. 8. Common lead to point "C', and high lead to point " \(A\) ". & Use 5 v . (-DC) scale on meter. Set sig. gen. output accordingly. & T. 201 and pri. of T-202 for maximum voltage \\
\hline 2. & \[
\begin{aligned}
& 4.5 \mathrm{mc} \text {. } \\
& \text { unmodulated }
\end{aligned}
\] & See Fig. 8. Common lead to point " \(A\) " and high lead to point " \(B\) ". & Use same sig. gen. output as in step 1. & Sec. of T- 202 for zero voltage \\
\hline 3. & \[
\begin{gathered}
4.5 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & See Fig. 8. R-F probe to point " \(D\) " and common lead to chassis. & Use strong signal from generator. & C. 321 for minimum voltage \\
\hline
\end{tabular}

FIG. 7-TOP VIEW OF CHASSIS
 of part.

Part No.
V-9485-1
V-9485-2
V.1197-1

V-1197-2
V. 5522
V. 3219 S .
V.3219S-1

V-9255-1
-6146-5
V-6146-5
V-6146-1
V.6146-1
V.6146-6

V-9104-4
V-6284-2
V-6284-3
V-9491-2

\section*{PARTS LIST FOR MODELS H-606K12 AND H-607KI2 (Continued)}
fig. 8-BOTTOM VIEW OF Chassis

\section*{PARTS LIST FOR MODELS H-606K12 AND H-607K12}

When ordering parts, specify model number of set in addition to part number and description

\section*{CABINET}

\section*{Description}

Baffle and grille cloth assembly (mahogany)
Baffle and grille cloth assembly (blond)
Cabinet (mahogany)
Cabinet (blond)
Cord, AC.
Cover assembly, ...
Glide, furniture
Knob, television antenna (mahogany)
Knob, television antenna (blond)
K nob, contrast, horizontal hold, volume on-off (mahogany)
Knob, contrast. horizontal hold, volume on-off (blond)..
Knob, brightness, vertical hold (plastic).
Knob, fine tuning (plastic).
Knob, channel selector (mahogany
Knob, channel selector (blond)
Plate, front glass (mahogany)

Part No. V.9491.3 V-9323-1 V-9324-1 V. 6059 V.6063-1 V-4057 V. 5421.5 V. 3752 S

V-5948-2
V-6974-1
V-5860-8
V-5426
V-3254S
V-5906-1
V-9014
V-9234
V-5977
V.6573-

V-6518-1
V-9478-2
\(V-9478-2\)
\(V-6602-2\)
V-4169-2
V-9175.8
V. 5979

V-9440-2
V-9166-1
V. 5929
V .3299

V-6295.1
V.5s56-1
V. 4514
V.4514
\(\mathrm{V} .4315-2\)
V.4315-2
\(\mathrm{V} .4292 \mathrm{~S}-1\)

V-6089.1
V-6878-1
V.6997-1
V.6072-3
V. 9431
V. 6908
V. 5406

Plate, front glass (blond) Pulley assembly (driver). Pulley assembly (trimmer)
Spring, knob (fine tuning
Spring, knob (selector)..
Spring, knob (select
Spring, dial drive...
Washer, felt (knobs)
Washer, "C" (celevion antenna knob)

\section*{MISCELLANEOUS}

Adapter plate, RF tuner
Antenna assembly, television
.....................
Base, miniature tube (12 AU 7 vertical MV)
Description Bracket, focus control
Bracket assembly, deflection yoke
Cable assembly, speaker.
Clip, I-F mounting
Connector, phono.
Connector assembly, hi-voltage
Fastener, hi-voltage lid
Hood, yoke mounting.
Jack, test (video)
Magnet, ion trap Plug, AC male.
Plug assembly, yoke
Ring, mask.
Shield, miniature tube (i2AUY7 vertical MV)
Shield, miniature tube (6BH6, 6AL5, 6BJ6).
Shutter assembly.
Sleeve, rubber (focus coil)
Socket assembly, CR T
Socket, molded octal (1B3GT) Socket, speaker.
Socket, miniature wafer (6BH6, 6AU6)
Socket, miniature molded (12AU7, 12AU7 2nd sync)....
Socket, molded octal (5U4G, 6Y6, 6W4).

Socket, miniature (12AU7 vertical MV).
Socket, miniature wafer (6ALs horizontal AFC)
Socket, miniature (6AH6).
Socket, miniature (12AU7 horizontal MV)
Speaker, \(12^{\prime \prime}\) PM. Strap assembly, CR Switch, phono.

\section*{V-2150-111 CHASSIS ELECTRICAL PARTS}

\section*{Section 1-RF}
\begin{tabular}{lll}
\multicolumn{1}{c}{ Part No. } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Function } \\
V. 5596 & Capacitor, hi-kap .005 mfd & Filament \\
V. 5596 & Capacitor, hi-kap .005 mfd & Filament \\
V- \(4886-2\) & Coil, 1.1 microhenries & RF filament choke \\
V-8209 & Tuner assembly, RF & \\
\hline
\end{tabular}

PARTS LIST FOR MODELS H-606K12 AND H-607K12 (Continued)

©John F. Rider

© John F. Rider

\section*{ADJUSTMENTS}

\section*{INSTALLATION INSTRUCTIONS}

TO PREPaRE THE RECEIVER FOR OPERATION
Model H-609Tl0 is shipped in operating condition. There is no shipping material to be removed. Simply remove the receiver from its carton, and connect the A-C plug to a 105 to 120 volt 60 cycle A-C outlet.

However, it is desirable that the adjustment of the ion trap magnet be checked receiver. A check of this adjustment will also avoid the possibility of C.R.T. damage resulting from prolonged operation with an incorrectly adjusted ion trap magnet. To check the adjustment, proceed as follows:
1. Remove the screws that. secure the rear cover to the cabinet.
2. Remove the rear cover by pulling it straight out from the cabinet.
3. Apply power to the receiver using a temporary line cord connected between the A-C receptacle on the chassis and an A-C outlet.
4. Adjust the ion trap magnet as explained under ADJUSTMENTS.

Model H-609Tl0 contains a built-in antenna for use in areas of normal reception. In such areas whe the built-in antenna proare required. However in weak signal areas or under adverse conditions, it may be nec essary to use an external antenna. In this event, the antenna lead-iu can be connected to the antenna terminals on the back of the receiver after disconnecting the built-in antenna wires that normally connect to these terminals. The lugs on the built-in antenna should then be insulated and dressed in such a position that they do not touch the chassis or components. If desired, the clamp located on the left side (facing the rear) of the cabinet can be used to hold the built-in antenna feeder out of the way.

TO CHECK THE OPERATION OF THE RECEIVER:
1. Rotate the BRIGHTNESS and CON-

TRAST controls completely counterclockwise.
2. Turn on the receiver by rotating the OFF-ON-VOLCME control clockwise.
3. Rotate the CHANNEL SELECTOR to the channel number of the desired station.
4. Rotate the BRIGHTNESS control clockwise until the screen is well lighted.
5. Rotate the CONTRAST control clockwise until a picture appears on the screen.
6. If the built-in antenna is in use, adjust the 1ELEVISION ANTENNA control for maximum picture contrast. If an external antenna is in use, this step is not required.
7. If the picture is moving up or down or quivering, adjust the VERTICAL HOLD control to stabilize the image.
8. If horizontal or diagonal bars or a folded-over picture appears on the screen, adjust the HORIZONTAL HOLD control to obtain a clear picture.
9. Adjust the FINE TUNING control for the best picture detail.
10. Readjust the BRIGHTNESS and CONTRAST controls until pleasing shades ranging from clear white to intense black are attained.
11. Adjust the VOLLME control for the desired sound volume.
12. Check the operation on all available television stations. Note that if the built-in antenna is in use, the TELEVISION ANTENNA control must be readjusted for maximum picture contrast each time the receiver is tuned to a different channel.
13. If necessary, adjust the vertical linearity, height, width, and focus controls as explained under ADJUSTMENTS.

FIG. 1 - TOP VIEW OF C.R.t.
The picture adjustments are located on the rear of the chassis and are accessible through cut-outs in the back cover.

\section*{ION TRAP MAGNET}

CAUTION: When adjusting the ion trap magnet, care must be exercised to avoid breaking the neck of the C.R.T

The ion trap magnet must always be adjusted for maximum picture brightness. With the magnet oriented approximately as shown in Fig. l, rotate it around the neck of the the position is found where the brightest raster is obtained.

\section*{FOCUS COIL}

Incorrect centering of the picture or shadow on one corner of the picture may indicate that the focus coil is in need of adjustment. If only a slight adjustment is repured, it can be made by turning the focus coil adjustment screws in or out as required.

If a major adjustment of the focus coil is required, the procedure is as follows:
1. Turn the focus coil adjustment screws in or out until the focus coil is positioned at right angles to the neck of the C.R.T. and there is a slight separation between the deflection yoke and the focus coil.
2. Loosen the lock nuts located under the heads of the adjustment screws and slide the focus coil up or down or sideways until the picture is correctly centered. Large holes in the focus coil brackets permit this movement of the coil.

\(\overline{\text { FOCUS ADJ. WIOTH ADJ }} \overline{\text { HEIGHT ADJ. }}\)

\section*{fig. 2 - rear viey of chassis}
3. Tighten the lock nuts while taking care that the screws do not turn during the process.
4. Fine centering adjustments can be made by turning one or more of the screws in or out.

\section*{CATHODE RAY TUBE CUSHION}

The cushion must fit sriugly agains the flare of the cathode ray tube in order that the rear of the tube will be supported firmly.

DEFLECTION YOKE
This adjustment controls the angle of the picture with respect to the horizontal. If the picture is not squared in the picture mask, loosen the wing nut and move it to the left or right so as to rotate the deflection yoke. The picture will tilt to the left or right with the deflection yoke rotation.

FOCUS CONTROL
The focus control (Fig. 2) should be adjusted with the brightness and contrast controls in their normal positions. If correct focusing cannot be obtained, the high voltage oscillator may require adjustments.

\section*{HEIGHT AND VERTICAL LINEARTTY}

The height adjustment controls the overall height of the picture, while the vertical linearity adjustment governs contraction or expansion of the upper portion only. For this reason, a balance between the two controls is necessary to make the piccare symmetrical and fill the mask vertically. MODEL H-609T10

\section*{ChASSIS REMOVAL}

Removal of the chassis is complicated somewhat by the built-in antenna. The recommended procedure is as follows:
1. Remove the control knobs from the front of the receiver
2. Remove the wood screws that secure the back cover, and remove the back cover by pulling it away from the cabinet.
3. Remove the built-in antenna feeder from the antenna terminals on the rear of the chassis.
4. Remove the thumb tack that secures the end of the antenna tuning stub to the top of the cabinet.
the high voltage lead from the C.R.T.
2. Connect 13 one megohm, one watt re sistors in series between the high voltage lead and the chassis.
3. Connect a kilovoltmeter across the 13 megohms of resistance.
4. Turn on the receiver and adjust C 507 (location shown on Fig. 8) for maximum voltage indication on the meter.
5. Turn off the receiver, disconnect the kilovoltmeter, remove the 13 megohms of resistance, and connect the high voltage lead to the C.R.T.
1. Turn off the receiver and disconnect

TEST EOLTPMEST-To properly service the chassis, the following test equipment should be available:
1. R-F sweep generator which meets the following requi rements:
a. Frequency range from 18 to 30 mc. with a sweep width of 10 mc .
b. Output adjustable with at leas IOU, 000 microvolts maximum and a very low minimum.
c. Output "flat" on all attenuat \({ }^{\text {r }}\) positions.
2. Cathode-ray oscilloscope, preferably ne with a wide band vertical deflection amplifier and a low-capacitance input probe.
3. Signal generator capable of providing output frequencies listed below
21.6 mc . 4 th I-F trap
22.6 mc . lst I-F
25.9 mc . 2nd I-F
25.6 mc . 3 rd I- F
23.8 mc . 5 th -F
23.0 mc . Sth
5.5 mc . Audio I-F and ratio detector (the frequency must be extremely accurate, preferably crystal controlled.)

VOTE: The R-F output level on all the above frequencies should be adjustable with at least 100,000 microvolts maximum and a very low minimum.
4. Heterodyne frequency meter with crystal calibrator (if the signal generator does not'include a crystal calibrator).
5. Electronic voltmeter (vacuum tube voltmeter), with a high voltage multiplier probe for measurements up to 15,000 volts and an R-F probe for measuring R-F voltages.

GENERAL INFORMATION-All test equipment and the chassis should be bonded together by short lengths of heavy (\(1 / 2\) inch) braided copper ribbon. The interconnecting leads should be shielded (72 ohms coaxial cable) and should be as short as possible consistent with ease of making connections. The effectiveness of the bonding can be checked during alignment by placing the hand on the metal chassis or test equipment case.

If the response pattern or meter reading changes visibly, the bonding must be improved before the circuits are aligned.

COMMON I-F ALIGNMENT PROCEDURE
1. Rotate the channel selector switch to channel 3.
2. Connect the signal generator to the mixer tube through the coupling device shown in Fig. 4. The device is constructed by squeezing together a miniature tube shield until it fits the tube snugly and does not ground to the chassis. A . 005 mfd capacito is then soldered to the side of the shield. By sliding the tube shiold up or down on the tube, the capacitance between the shield and the tube elements can been the shield and additional control of the coupling over that provided by the attenuator in the generator itself. The ground side of the generator output cable should be connected to the receiver chassis.
3. Connect a vacuum tube voltmeter to the video test jack on the receiver chassis, and set the meter to its 5 volt scale
4. Set the signal generator to 21.6 mc (unmodulated), and adjust C329 for minimu voltage on the VIVM. Use a strong signal for this adjustment.
5. Set the signal generator to 22.6 mc (unmodulated), and adjust L306 for maximum voltage on the VTVM. During this adjustment keep the signal generator output adjusted so that the VTVM reading does not exceed 2 volts.
6. Set the signal generator to 25.9 mc . (unmodulated), and adjust L307 for maximum voltage on the VIVM. During this adjustment keep the signal generator output adjusted so that the ITVM reading does not exceed 2 volts.
7. Set the signal generator to 25.6 mc (unmodulated), and adjust L308 for maximum voltage on the VIVM. During this adjustment, keep the signal generator output adjusted so that the VTVM reading does not exceed 2 volts.
8. Set the signal generator to 23.8 mc . (unmodulated), and adjust L309 for maximum voltage on the VIVM. During this adjustment,
fig. 3 - drive string arrangement
keep the signal generator output adjusted so that the VTVM reading does not exceed 2 volts.
9. Set the signal generator to 23.0 mc . (unmodulated), and adjust L313 for maximum voltage on the VTVM. During this adjustment, keep the signal generator output adjusted so that the VTYM reading does not exceed volts.
10. Connect the sweep generator to the mixer tube through the coupling device previously described. The signal generator will be used in the following steps to provide marker indications at various frequencies on the response curve. In this application, the signal generator input to distorting the response curve. To reduce the signal generator input accordingly the signal generator should be loosely coupled to the set by wrapping a few turns of insulated wire around the coupling capacitor "pigtail" and connecting the signal generator to this wire.
11. Connect the vertical input of the oscilloscope to the video test jack through the de-coupling network shown in Fig. 5 . The oscilloscope horizontal input should be connected to the sweep output from the sweep generator; turn the sweep control on the oscilloscope to the " X " or "OFF" position.
12. Adjust the sweep generator for a center frequency of 25.3 mc . with a 10 mc . deviation. Adjust the sweep generator output until a setting is found whe very little noise on the oscilloscope pattern.

The oscilloscope pattern obtained should be similar to that shown in Fig. 6. Use the signal generator as a marker to check at the frequencies indicated. If the pattern obtained is not similar to Fig. 6, L306, L307, L308, L309, and L313 should be re-adjusted to produce the correct pattern. The affect of the adjustments will be as follows:

L306 affects the low frequency side of the curve.
L307 affects the high frequency side of the curve and the position of the video I-F carrier.
L308 affects the center of the curve
L309 affects the tilt of the "shelf" 1313 of the curve.
L313 affects the center and the low frequency side of the curve.

SOUND I-F AND 4.5 MC. TRAP ALIGNMENT PROCEDURE
1. Connect the "high" side of the signal generator to the video test jack through a . 001 mfd capacitor, and ground the "low" side to the chassis.
2. Connect the vacuum tube voltmeter to the points indicated on the bottom view of the chassis, Fig. 8. The common lead should connect to point " \(\mathrm{C}^{\prime}\) and the "high" lead should connect to point "A". Set the meter on its 5 volt (-DC) scale.
3. Adjust the signal generator to 4.5 mc . (unmodulated). The accuracy of this frequency is very important. If a crystal controlled signal generator is not available the frequency should be checked using a fre quency meter with a crystal calibrator.
4. Adjust T201 and the primary of T2U2 for maximum voltage on the VIVM. During this adjustment, keep the signal generator output adjusted so that the ITVM reading does not exceed 5 volts.
5. Connect the common lead from the VTVM to point "A" (Fig. 8), and connect the "high" lead to point "B". Here it is import VTVM are not prounded to chassis; otherwise, point \({ }^{n} A^{n}\) would be shorted to the chassis through the common lead.
6. Using the same signal generator amplitude and frequençy as in step 4, adjust the secondary of \(T 202\) for zero voltage on he VIVM. As the adjustment is tuned through resonance, the voltage will rapidly chang from one polarity to the opposite polarity. The point where the voltage is zero is the correct setting.
7. Connect the common lead from the VTVM to the chassis, and connect the \(R-F\) probe from the VTVM to the junction of R324 and R325. This point is shown as point "D on Fig. 8. Note that point \({ }^{\prime \prime} D^{n}\) is 150 volt above ground and, therefore, the \(R-F\) probe must contain a blocking capacitor.
8. Using a strong 4.5 mc . signal applied as in step l, adjust C32l for minimum voltage on the meter.
H.F. OSCILLATOR ALIGNMENT PROCEDURE

If the \(6 \mathrm{C} 4 \mathrm{H}-\mathrm{F}\) oscillator tube is re placed in this tuner, the different interelectrode capacitance of the new tube may
change the oscillator frequency enough to necessitate re-alignment of the oscillator.

The oscillator adjusting screws are located on the front of the tuner assembly, and this procedure should be followed for their adjustment:
1. Remove the channel selector and fine tuning knobs. Remove the selector escutcheon plate and escutcheon mounting plate by removing the Phillips head screws securing them to the cabinet. The adjustments are accessible through the hole in the cabinet.
2. Set the fine tuning control to the middle of its range, and leave it in this position during the following adjustments.
3. Set the channel selector switch to the highest of the low band (channels 2 through 6) stations operating in your locality.
4. Peak the appropriate oscillator slug for the best picture detail.
5. Repeat step 4 for each progressively lower channel on which a station transmits in your area.
6. Set the channel selector switch to the highest of the high band (channels 7 through 13) stations operating in your locality.
7. Peak the appropriate oscillator slug for the best picture detail.
8. Repeat step 7 for each progressively lower channel in the high band on which a nearby station transmits.
9. Check the previously made low band adjustments, and if the tuning has changed repeat steps 3 through 8 .

\section*{I-f ALIGNMENT CHART}

Turn the channel selector to channel 3 to avoid undesirable beat response during alignment.

\section*{COMMON I-F SECTION}

Couple the sweep and marker generators to the mixer tube as shown in Fig. 4.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Step & \begin{tabular}{l}
Sweep Gen. \\
Frequency
\end{tabular} & Marker Gen. Frequency & Remarks & Indicator Connection & Adjust \\
\hline 1. & Not used & \[
\begin{gathered}
21.6 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & Use a strong signal & Connect VTVM to video test jack & C329 for minimum voltage \\
\hline 2. & Not used & 22.6 mc . unmodulated & Keep marker output adjusted so VTVM reading does not exceed 2 v . & Same as step 1 & L306 for maximum voltage \\
\hline 3. & Not used & \[
\begin{gathered}
25.9 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & Same as step 2 & Same as step 1 & L307 for maximum voltage \\
\hline 4. & Not used & \[
\begin{gathered}
29.6 \mathrm{mgc} . \\
\text { unmodulated }
\end{gathered}
\] & Same as step 2 & Same as step 1 & L308 for maximum voltage \\
\hline 5. & Not used & \[
\begin{aligned}
& 23.8 \mathrm{mc} \text {. } \\
& \text { unmodulated }
\end{aligned}
\] & Same as step 2 & Same as step 1 & L309 for maximum voltage \\
\hline 6. & Not used & 23.0 mc . unmodulated & Same as step 2 & Same as step 1 & L313 for maximum voltage \\
\hline 7. & 25.3 mc. with 10 mc . devia. tion & \begin{tabular}{l}
check at: \\
21.6 mc . \\
22.5 mc . \\
23.5 mc . \\
25.3 mc . \\
26.1 mc.
\end{tabular} & Keep sweep output low enough so that very little noise appears on the oscilloscope trace & Connect oscilloscope to video test jack. See Fig. 5. & If necessary, adjust L306, L.307, L308, L309, and L313 to obtain correct response curve. See Fig. 6. \\
\hline
\end{tabular}
© John F. Rider

© John F. Rider

©John F. Rider

© John F. Rider

\section*{InStallation instructions}

\section*{TO PREPARE THE RECEIVER FOR OPERATION:}

Later production models are shipped in operating condition, and there is no shipping material to be removed.

Early production models contain shipping precautions, however, and these steps should be
followed to prepare the receiver for operation:
1. Remove the screws that hold the rear cover to the cabinet, and remove the rear cover by pulling it away from the cabinet.
2. Remove the rud-headed wood screw from the shipping block locuted on the top (ins
3. Remove the two red-headed wood screws from the shipping block located between the upper left side of the cabinet and the chassis, and re-
4. Inspect the face of the CRT and the glass
dow for dust or smudges. If the face of the CRT window for dust or smudges. If the face of the CRT or the inside of the glass window is smudged,
refer to REMOVAL OF FRONT GLASS FOR refer to RE
CLIEANING.
5. Loosen the two, red, hex-head bolts on the under side of the cabinet.
6. In some models, a wood shipping strip is located between the chassis and the bottom of the cabinet. This strip should be removed.
7. Loosen the screws that secure the upper chassis mounting bracket to the top inside of the cabinet.
8. Adjust the position of the chassis so that the knobs and the face of the CRT are properly the knobs and the face of the CRT are properly
aligned with respect to the holes in the front of the cabinet.
9. Re-tighten the two, red, hex-head bolts on the under side of the cabinet, and the two screws of the upper chassis mounting bracket.
10. Make certain that all tubes are secure in their sockets.
11. These models contain a built-in antenna for use in areas of normal reception. In such areas when the built-in antenna provides good reception, no additional antenna connections are required. However, in weak signal areas or under adverse conditions, it may be necessary to use an external antenna. If an external antenna is to be used, the built-in antenna should be disconnected from the antenna terminals on the back of the chassis, and the lugs of the built-in antenna should be insunot touch the chassis or components.
12. If an outside antenna is to be used, connect the lead-in to the antenna terminals on the back of the set.
13. Connect the A-C plug to a 105 to 120 volt 60 cycles A-C power outlet.
14. Refer to REMOVAL OF FRONT GLASS
movable front glass plate, instruct the owner as to the correct procedure for removing the glass and cleaning the face of the CRT and the inside of the glass.

\section*{TO CHECK THE OPERATION OF THE RECEIVER:}
1. Turn the magnifier switch to the clockwise (magnified) position.
2. Rotate the brightness and contrast controls completely counterclockwise.
3. Turn on the receiver by rotating the offonvolume control clockwise.
4. Rotate the channel selector to the channel number of the desired station.
5. Rotate the brightness control clockwise until the screen is barely lighted. Check the adjustment of the ion trap magnet as outlined under justment of the
AD JISTMFNTS.
6. Rotate the contrast control clockwise until a picture appears on the screen
7. If the built-in antenna is in use, adjust the television antenna control for maximum picture contrast. If an external antenna is in use, this
step is not required. step is not required.
8. If the picture is moving up or down or quivering, adjust the vertical hold control to stabilize the image.
9. If vertical or diagonal bars or a foldedover picture appears on the screen, adjust the horizontal hold control to obtain a stable picture.
10. Adjust the fine tuning control for best picture detail.
11. Re-adjust the brightness and contrast controls until pleasing shades ranging from clear white to intense black are attained.
12. Check the adjustment of the focus coil as outlined under ADJUS'TMENTS.
13. Adjust the volume control for the desired sound volume (phono switch on back of set must be in TV position).
14. Turn the magnifier switch to the counterclockwise (normal) position.
15. If vertical or diagonal bars appear on the screen, adjust the width control as described under ADJIS'TMENTS. Do not re-adjust the horizontal hold control.
16. If necessary, adjust the height, height magnifier, vertical linearity, vertical linearity magnifier, and focus controls as explained under ADJUSTMENTS.
17. Check the operation on all available television stations. Note that if the built-in antenna is in use, the television antenna control must be readjusted for maximum picture contrast each time the receiver is tuned to a different channel.
18. Replace the rear cover.

\section*{ADJUSTMENTS}

FIG. 1-CRT ADJUSTMENTS

The picture adjustments are located on the rear of the chassis and are accessible through cut-outs in the back cover.

An insulated, long shank screwdriver is preferred for making the ringing coil and H.V. oscillator adjustments.

\section*{ION TRAP MIGNET}

Caution: When adjusting the ion trap magnet, care should be exercised to avoid breaking the ck of the cathode ray tube.

The magnet should first be oriented approximately as shown in Fig. l. Then, with the brightness control rotated completely clockwise, adjust
the magnet by rotating it about the neck of the tube and moving it forward and backward until the raster is brightest on the screen.

If shadows on the face of the tube are not completely removed by either coarse or fine adjustment of the focus coil as outlined below, ro-解

Forius coil
If a shadow falls on one corner of the picture, or the picture is not properly centered, adiustment of the focus coil will be necessary. To adjust, loosen the short hex head bolts that lock the coil to the adapter plates, and move the coil horizontally and vertically until the position is found where the picture is properly centered and sharlows are removed. Tighten the short hex head iustnient is provided in the position. Fine adat each corner of the focus coil.

FIG. 2 - ADJUSTMENTS ON REAR OF CHASSIS

If shadows cannot be completely removed by adjustment of the focus coil, refer to ION TRAP MAGNET above.

CATHODE RAY TUBE CIISHION
The cushion must fit snugly against the flare of the cathode ray tube in order that the rear of of the cathode ray tube in order
the tube will be supported firmly.

\section*{DEFLECTION YOKF}

This adjustment controls the angle of the picture with respect to the horizontal. If the picwing nut and move it up or down so as to rotate the deflection yoke. The picture will tilt to the left or right with the deflection yoke rotation.

\section*{FOCUS CONTROL}

The focus control (Fig. 2) should be adjusted with the brightness and contrast controls in their normal positions. If correct focusing cannot be obtained, the high voltage oscillator may require adjustment.

HEIGHT AND VF.RTIC.AI IINEARITY (NORMAL)
The height adjustment controls the over-all height of the picture, while the vertical linearity adjustnent governs contraction or expansion of the upper portion only. For this reason, a balance between the two controls is necessary to make the picture symmetrical and fill the mask vertically.

\section*{© John F. Rider}

The height nagnifier adjustment controls the over-all height of the magnified picture, while the vertical linearity magnifier adjustinent governs convertical linearity magnifier adjustinent governs comFor this reason, a balance between the two controls is necessary to make the picture symuetrical and fill the mask vertically. These controls must be reset if the height and vertical linearity controls governing the normal picture are changed.

\section*{WIDTH}

The width adjustment must always bc male with the magnifier control set for a normal size picture. The correct adjustment is made as follows
1. Rotate the magnifier control to the magnihed position, and adjust the horizontal hold con rol until the magnified picture holds horizontal sync.
2. Set the magnifier control for a normal size picture, and without re-adjusting the horizontal hold control adjust the width control until the pic ure holds horizontal sync and fills the mask horizontally.

HORIZONTAL RINGING COII
The horizontal ringing coil is accessible through a hole in the bottom of the cabinet. To adjust the coil:
1. Turn the magnifier switch to the clockwise (magnified) position.
\(\therefore\). Tinne in the weakest station in your area.
3. Set the horizontal hold control at approximately the center of its range.
4. Adjnst the ringing coil (L403) until the picture is properly "locked-in."

\section*{HIGH VOLTACF OSC:ILLATOH}
1. Turn off the receiver and disconnect the high voltage lead from the CRT.
2. Connect 18 one megohin, one watt resistors in series between the high voltage leal and the chassis.
3. Connect a kilovoltmeter across the 18 megohms of resistance.
4. Turn on the receiver and adjust C507 (location shown on Fig. 7) for maximum voltage indication on the meter. When C 507 is peaked using an 18 megohm load, the voltage across the should be 9.3 kilovolts (approximately).
5. Turn off the receiver, disconnect the kilovoltmeter, remove the 18 megohms of resistance, and connect the high voltage lead to the moved and the when the 18 megohm the CRT, the output voltage of the H.V. power supply will rise becanse of the higher load resistance offered by the CRT.

\section*{CATHODE RAY TUBE REPLACEMENT}
1. Remove the chassis from the cabinet as explained under CHASSIS REMOVAL.
2. Back off the set screw locking the shutter actuating link to the magnifier control shaft.
3. Remove the two self-tapping screws that secure the shutter assembly frame to the chassis
4. Remove the two self-tapping screws that secure the shutter assembly frame to the brace bars.
5. Remove the wing nut and lock washe from the stud on top of the CRT strap.
6. Remove the shutter assembly by lifting he bronze strap over the stud and sliding the complete assembly forward.
7. Remove the ion trap magnet and the CRT socket.
8. Loosen the CRT cushion screws and the
focus coil mounting screws, and remove the screw from the CRT strap.
9. Remove the defective CRT and insert the replacement through the deflection yoke and focus coil, exercising the caution necessary when handling cathode ray tubes.
10. Replace the screw in the CRT strap and tighten the strap about the tube just enough to hold the tube in place.
11. Replace the shutter assembly and tighten the self-tapping screws only. Do not tighten the CRT strap wing nut or the set screw on the magnifier control shaft
12. Position the CRT so that the clearance between the tube and the mask is approximately 1/32".
13. Tighten the CRT strap and the wing nut on the stud at the top of the CRT strap.
14. Adjust the CRT cushion and tighten the CRT cushion screws.
15. Replace the ion trap magnet and the CRT socket.
16. Adjust the ion trap magnet and focus coil as out lined under ADJISTMENTS.
17. Turn the magnifier switch to the clock

\section*{CHASSIS REMOVAL}

To remove the chassis from the cabinet:
. Remove the control knobs.
2. Remove the wood screws that secure the rear cover to the cabinet and remove the rea cover.
3. Disconnect the antenna feed line from the antenna terminals.
4. Release the antenna terminal mounting plate by removing the screws that secure the plate to the rear of the cabinet
5. Remove the two bolts that hold the upper chassis mounting bracket to the top inside of the eabinet, and swing the bracket clear of the cabinet. On some models, a wood block is used instead of the bracket; the two screws that hold he block in place should be removed to remove the block.

\section*{MODELS H-610T12, \(\mathrm{H}-\)} 614T12, Ch. V-2150-136
wise (nnagnified) position. Open the shutters completely and tighten the set screws to lock the shutter actuating link to the control shaft.
18. Check the operation of the shutters to make certain there is no binding.
19. Replace the chassis in the cabinet.
6. Remove the clamp that secures the shutter frame to the bottom of the cabinet by removing the machine screw that holds the clanip in place. This screw is accessible from beneath the cabinet.
7. Remove the two hex head chassis mounting bolts from beneath the cabinet.
8. Remove the chassis from the cabinet carefully to avoid damaging the built-in antenna system. Removal may be tacilitated by turning the cabinet on its side so that the chassis is upright during removal.

NOTE: When replacing the chassis in the cabinet, make certain that the shutter mechanism operates freely and that the control-shafts and the face of the CRT is correctly aligned with respect to the holes in the is mounting bolts and the upper support bracket bolts.

\section*{REMOVAL OF FRONT GLASS FOR CLEANING}

With early production Models, it is necessary to remove the chassis from the cabinet in order to face of the CRT. Later Models, however, contain provisions for removing the front glass plate for cleaning purposes.

Whether or not the glass is removable from the front of the cabinet can be determined by in specting the brass retainers at the top and bottom of the glass. If two screw heads are visible on the (ace of each retainer, the glass is removable from the front of the cabinet. Otherwise, the chassis must be removed to clean the inside of the glass.

For Models that contain the removable glass, the removal procedure is as follows:
1. Remove the power plug from the outlet
2. Remove the two screws from each of the brass retainers. This will detach the retainers from the cabinet.
3. Remove the glass by lifting it straigh out from the front. Use care to avoid scratching paint of the mask.

TEST EQUIPMENT-To properly service this chassis, the following test equipment should be available:
1. R-F sweep generator which meets the following requirements:
a. Frequency range from 18 to 30 mc with a sweep width of 10 mc .
b. Output adjustable with at least 100,000 microvolts maximum and a very low minimum.
c. Output "flat" on all attenuator positions.
2. Cathode-ray oscilloscope, preferably one with a wide band vertical deflection amplifier and low-capacitance input probe

John F. Rider
3. Signal generator capable of providing output frequencies listed below.
21.6 mc .4 th I-F trap
2.2 mc .1 st I-F
2.3 mc . 1st \(\mathrm{l-F}\)
25.9 mc . 2nd \(\mathrm{JF-}\)
25.9 mc . \(2 \mathrm{nd} \mathrm{F-}\)
\(20.6 \mathrm{mc} .3 \mathrm{rd} \mathrm{T-}\)
23.0 mc . 5th \(\mathrm{F-F}\)
4.5 mc . Audio I-F and ration detector (the frequency must be extremely accurate, preferably crystal controlled.)
NOTE-The R-F output level on all the above frequencies should be adjustable with at least 100,000 microvolts maximum and a very low minimum.
4. Heterolyne frequency meter with crystal calibrator (if the signal generator does not include a crystal calibrator).
5. Electronic voltmeter (vacuum tube voltmeter), with a high voltage multiplier probe for measurements up to 15,000 volts and an R-F probe for measuring \(\mathrm{h}-\mathrm{F}\) voltages.

GENERAL INFORMATION-All test equipment and the chassis should be bonded together by short lengths of heavy (\(1 / 2\) inch) braided copper ribbon. The interconnecting leads should be as short as possible consistent with ease of making connections. The effectiveness of the bonding can be checked during alignment ly placing the hand on the metal chassis or test equipment case. If the response pattern or meter reading changes visibly, the bonding nust be improved before the circuits are aligned.

\section*{COMMON I-F ALIGNMENT PROCEDURF}
1. Remove the \(6 \mathrm{AK} 5 \mathrm{R}-\mathrm{F}\) amplifier tube from its socket, and rotate the channel selector to channel 13 to avoid undesirable beat response during alignment. The channel selector is at chanthe tuner.
2. Connect the signal generator to the mixer tube through the coupling device shown in Fig. 3. The device is constructed by squeezing together a miniature tube shield until it fits the tube snugly capacitor is soldered to the side of the capacitor is then soldered to the side of the
the tube, the capacitance between the shield and the tube elements can be varied to obtain additional control of the coupling over that provided by the attenuator in the generator itself. The ground side of the generator output
be connected to the receiver chassis.
3. Connect a vacuum tube voltmeter to the video test jack on the receiver chassis, and set the meter to its \(\overline{5}\) volt scale.
1. Set the signal generator to 21.6 mc . (unmodulated), and adjust T305 for minimum voltage on the ITTM. Lise a strong signal for this adjustment.

ㄱ. Set the signal generator to 22.6 mic. (unmodulated), and adjust f. 110 for maximum voltage on the VTVM. During this adjustment, heep the single generator outpul adjusted so that the ITIM reading does not exceed 2 volts.
6. Set the signak generator to 25.9 mac . (unmodulated), and adjust T301 for maximum voltage on the VTVM. During this adjustment, keep the signal generator output adjusted so that the VTIM reading does not exceed 2 volts.
7. Set the signal generator to 25.6 mc . (unmodulated), and adjust IT3(2) for maximum voltage on the VTVM. During this adjustment, heep the signal generator output adjusted so that the VTVM reading does not exceed? volts.
8. Set the signal generator to 24.7 nic. (unmodulated), and adjust \(T 303\) for maximum voltage on the ITVM. During this adjustment, keep the signal generator output adjusted so that the ITIM reading does not exceed 2 volts.
9. Set the signal generator to 23.0 mc . (unmodulated), and adjust T304 for maximum voltage on the V'ГV. During this adjustment, keep the signal generator output adjusted so that the I'TL'M reading does not exceed 2 volts.
10. Connect the sweep generator to the mixer tube through the coupling device previouslv de scribed. The signal generator will be used in the following steps to provide marker indications a various frequencies on the response curve. In this application, the signal generator input to the set must be low in amplitude to avoid distorting the response curve. Tin reduce the signal generator input accordingly, the signal generator should be of insulated wire around the coupling capacitor "pigtail" and connecting the signal generator to this wire.
11. Connect the vertical input of the oscilloscope to the video test jack through the decoupling network shown in Fig. 4. The oscilloscope horizontal input should be connected to the sweep output from the sweep generator; turn, the sweep, control on the nscilloscope to the " \(X\) " or "OFF" position.
12. Adjust the sweep generator for a center frequency of 25.3 mc . with a 10 mc . deviation. Adjust the sweep generator output until a setting oscilloscope pattern.

The oscilloscope pattern obtained should be similar to that shown in Fig. 5 . ise the signal generator as a marker to check at the frequencies indicated. If the pattern obtained is not similar to Fig. 5, Ll10, T301, T302, T303, and T304 should be re-adjusted to produce the correc pattern.

SOIND I-F AND 4.5 MC . TRAP ALIGNMENT PROCEDUTRE
1. Connect the "high" side of the signal generator to the video test jack through a . 001 mfd capacitor, and ground the "low" side to the chassis.
2. Connect the vacuum tube voltmeter to the points indicated on the bottom view of the chassis, "Fig,; 7. The common lead should connect to point point "A". Set the meter on its 5 volt (\(-D C\)) scale.
3. Adjust the signal generator to 4.5 mc . (unmodulated). The accuracy of this frequency is very important. If a crystal controlled signal generator is not a freque, thequency should be checked using a frequency meter with a crystal
4. Adjust T201 and the primary of T202 for maximum voltage on the VTVM. During this adjustment, keep the signal generator output adjusted so that the V'TIM reading does not exceed 5 volts.
5. Connect the common lead from the VTVM to point " \(A\) " "(Fi,. 7 , and connect the "high" lead to point " \(B\) ". Here it is important that the case and components of the VTVM are not grounded to the receiver chassis; otherwise, point " \(A\) " would be shorted to the chassis through the common lead.
6. Using the same signal ge nerator amplitude and frequency as in step 1 , adjust the secondary of T202 for zero voltage on the TTVU. As the adjustment is tuned through resonance, the voltage will rapidly change from one polarity to the opposite polarity. The point where zero is the correct setting.
7. Connect the common lead from the VTVM to the chassis, and connect the \(R-F\) probe from the VTVM to the CRT cathode terminal. That this point is above ground and, therefore, the R-F probe must contain a blocking capacitor.
8. Using a strong 4.5 mc . signal applied as in step l, adjust 7.301 for minimum indication on the meter.

\section*{H. F. OSCILLATOR ALIGNMENT PROCEDURE:}

If the 6J6 oscillator tube is replaced, the different inter-electrode capacity of the new tube may change the oscillator frequency enough to necessitate realignment of the oscillator

Alignment of the oscillator on the high band is accomplished by adjusting the brass slug located adjacent to Aligernier of we oscillator on the low band is accomplished by adjusting the brass slug on the lower front of the tuner. A non metallic screwdriver is required.

The oscillator alignment procedure is as follows:
1. Set the fine tuning control at the middle of its range, and leave it in this position during the following adjustments.
2. Set the selector switch to the highest o the low-band (channels 2 through 6) stations operating in your vicinity.
3. Peak the low band adjustment slug for the best picture detail.
4. Set the selector switch to the highest of the high-band (channels 7 through 13) stations operating in your vicinity.
5. Peak the high band adjustment slug for best picture detail
6. Check the previously made low band adjustment, and if the tuning has changed, repeat justmen, and

Remove the GAK5 R-F amplifier tube and turn the channel selector to channel 13 to avoid undesirable beat response during alignment.

\section*{COMMON I-F SECTION}

Couple the sweep and marker generators to the mixer tube as shown in Fig. 3
\begin{tabular}{|c|c|c|c|c|c|}
\hline Step & Sweep Gen. Frequency & Marker Gen. Frequency & Remarks & Indicator Connection & Adjust \\
\hline 1. & Not used & \[
\begin{aligned}
& 21.6 \mathrm{mc} . \\
& \text { unmodulated }
\end{aligned}
\] & Use a strong signal & Connect VTVM to video test jack & T305 for minimum voltage \\
\hline 2. & Not used & 22.6 mc . unmodulated & Keep marker output adjusted so VTVM reading does not exceed 2 v . & Same as step 1 & L1 10 for maximum voltage \\
\hline 3. & Not used & 25.9 mc . unmodulated & Same as step 2 & Same as step 1 & T301 for maximum voltage \\
\hline 4. & Not used & \[
\begin{gathered}
25.6 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & Same as step 2 & Same as step 1 & T302 for maximum voltage \\
\hline 5. & Not used & \[
\begin{gathered}
24.7 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & Same as step 2 & Same as step 1 & T303 for maximum voltage \\
\hline 6. & Not used & 23.0 mc . unmodulated & Same as step 2 & Same as step 1 & T304 for maximum voltage \\
\hline 7. & 25.3 mc . with 10 mc . devia. tion & Check at: 21.6 mc . 22.5 mc . 23.5 mc .
25.3 mc . 26.1 mc . & Keep sweep output high enough so that very little noise apscope trace & Connect oscilloscope to video test jack. See Fig. 4. & If necessary, adjust L110, T301, T302, T303 and T304 to obtain correct re-
sponse curve. See Fig. \({ }^{5}\). \\
\hline
\end{tabular}

\section*{SOUND I-F SECTION AND 4.5 MC. TRAP}

Connect the signal generator to the video test jack through a .001 mfd mica capacito
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Signal Gen. Frequency & VTVM Connection & Remarks & Adjust \\
\hline 1. & \[
\begin{gathered}
4.5 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & See Fig. 7. Common lead to point " \(C\) " and high lead to point " A ". & Use 5 v. (-DC) scale on meter. Set sig. gen. output accordingly. & T201 and the primary of T202 for riaximum voltage \\
\hline 2. & 4.5 mc . unmodulated & See Fig. 7. Common lead to point " \(A\) " and high lead to point " \(B\) ". & Use same sig. gen. output as in step 1 . & The secondary of T202 for zero voltage \\
\hline 3. & 4.5 mc . unmodulated & See Fig. 7. R-F probe to point "D" and common lead to chassis. & Use strong signal from generator. & Z301 for minimum voltage \\
\hline
\end{tabular}

FIG. 3-COUPLING SIGNAL GENERATORS TO MIXER TUBE
 ISOLATION NETWORK

\(\square\)

© John F. Rider

© John F. Rider

12. Loosen the \(t\) wo screws securing the shock mounting bracket to the top (inside)
13. Adjust the position of the chassis so that the knobs and the face of the C.R.T. are properly aligned with respect to the holes in the front of the cabinet.
14. Re-tighten the two red headed bolts on the under side of the cabinet and the two screws securing the shock mount bracket on the top of the cabinet.
15. Make certain that all tubes are secure in their socket
16. Models \(\mathrm{H}-611 \mathrm{Cl} 2\) and \(\mathrm{H}-615 \mathrm{Cl} 2\) contain a built-in antenna for use in areas of normal reception. In such areas when the built-in antenna provides good reception, no additional antenna connections are required. However, in weak signal areas or under adverse conditions, it may be necessary to use an external antenna. If an external antenna is used the built-in antenna should be disconnected from the antenna terminals on the built-in ant cabinet, and the lugs of the dressed in such a position that touch the chassis or components. The spring clamp located on the top (inside) of the cabinet can be used to hold the built-in antenna feeder out of the way.
17. Replace the rear cover.
18. If an outside antenna is to be used, connect the lead-in to the antenna terminals on the back of the set.
19. Connect the A-C plug to a 105 to 120 volt 60 cycle A-C power outlet.

\section*{TO CHECK THE OPERATION:}
1. Rotate the selector to the TV position.
2. Turn the magnifier switch to the clockwise (magnified) position.
3. Rotate the brightness, and contrast controls completely counterclockwise.
4. Turn on the receiver by rotating the off-on-volume control clockwise.
5. Rotate the channel selector to the channel number of the desired station.
6. Rotate the brightness control clockwise until the screen is well lighted.
7. Rotate the contrast control clockwise until a picture appears on the screen.
8. If the built-in antenna is in use, adjust the television antenna control for maximum picture contrast. If an external antenna
9. If the picture is moving up or down or quivering, adjust the vertical hold control to stabilize the image.
10. If vertical or diagonal bars or a folded over picture appears on the screen, adjust the horizontal hold control to obtain stable picture.
11. Adjust the fine tuning control for best picture detail.
12. Readjust the brightness and contrast ontrols until pleasing shades ranging from clear white to intense black are attained.
13. Adjust the volume control for the desired sound volume.
14. Turn the magnifier switch to the counterclockwise (normal) position. If vert adjust the width control as described under TELEVISION ADJUSTMENTS. Do not readjust the horizontal hold control.
15. If necessary, adjust the height, height magnifier, vertical linearity, ver-
tical linearity magnifier, and focus controls tical explained under TELEVISION ADJUST MENTS.
16. Check the operation on all available television stations. Note that if the built in antenna is in use, che television antenna ore contrast each time for maxi is pic to a different channel.
17. Rotate the selector to the FM position, and check the operation of the radio section on the FM band.
18. Rotate the selector to the AM posi tion, and check the operation of the radio section on the broadcast band.
19. Rotate the selector to the PHONO position, and completely check the operation of the record changer using 78 RM.inter
 records.

MODELS H-611C12, H 615C12, Ch. V-2152-1

fig. 1- CRT adjustients

The picture adjustments are located on the rear of the chassis and are accessible through cut-outs in the back cover.

\section*{ION TRAP MAGNET}

Adjustment of the ion trap magnet is re quired only when a \(121 P 4\) cathode ray tube is used. An ion trap mannet is not used with
12 KP 4 or 12 KP 4 A cathode ray tubes.

The ion trap magnet must always be adjusted for maximum picture brightness. With the magnet oriented approximately as shown in Fig. 1, rotate it around the neck of the lhe and move it forward and backward untí the position is foun
raster is obtained.

CAUTION: When adjusting the ion trap agnet, care must be exercised to avoid breaking the neck of the CRT.

FOCUS COIL
If a shadow falls on one corner of the picture or the picture is not properly centered, adjustment of the focus coil is required. To adjust, loosen the short hexhead bolts that lock the focus coil to the adapter plates and move the coil up and down and to the left and right until the position s found where the picture is properly centered and there are no shadowed corners. Tighten the short hex-head bolts to lock the coil in this position. Fine adjustment is corner of the focus hex-head bolts at each

If a \(12 L P 4\) CRT is in use and shadows can-
not be removed completely by adjusting the
focus coil, the ion trap magnet may be in reed of adjustment.

\section*{CATHODE RAY TUBE CUSHION}

The cushion must fit snugly against the flare of the cathode ray tube in order that the rear of the tube will be supported firmly.

\section*{DEFLECTION YOKE}

This adjustment controls the angle of the picture with respect to the horizontal. If the picture is not squared in the picture mask, so as to rotate the deflection yoke. The picture will tilt to the left or right with the deflection yoke rotation.

\section*{FOCUS CONTROL}

The focus control (Fig. 2) should be adjusted with the brightness and contrast controls in their normal positions. If correct focusing cannot be obtained, the high voltage oscillator may require adjustment. height and vertical linearity (nORMAL)

The height adjustment controls the overall height of the picture, while the vertical
- John P. Rider
linearity adjustment governs contraction or expansion of the upper portion only. For this reason, a balance between the two control is necessary to make the picture symmetrical and fill the mask vertically.

HEIGHT AND VERTICAL LINEARITY (MAGNI FIED)
The height magnifier adjustment controls the overall height of the magnified picture while the vertical linearity magnifier ad justment governs contraction or expansion of the upper portion only. For this reason, a to make the picture symmetrical and fill the to make the picture symetrical and fill the set if the height and vertical linearity controls governing the normal picture are ontrols governing the normal picture ar changed

\section*{WIDTH}

The width adjustment must always be made with the magnifier control set for a normal size picture. The correct adjustment is mad as follows
1. Rotate the magnifier control to the agnified position, and adjust the horizontal hold control until the magnified picture holds horizontal sync.
2. Set the magnifier control for a nor mal size picture, and without re-adjusting he hol adjust the widt ontrol untill the pictur holds horizo

\section*{HORIZONTAL RINGING COIL}

To adjust the horizontal ringing coil:
1. Turn the magnifier switch to the magni-
fied (clockwise) position.
2. Tune in the weakest TV station in your area.
3. Set the horizontal hold control at approximately the center of its range.
4. Adjust the ringing coil (L4U3) until the picture is properly "locked-in".

\section*{HIGH VOLTAGE OSCILLATOR}

An insulated, long-shank screwdriver is preferred for making the H.V. oscillator adjustment The procedure is as follows:
1. Turn off the receiver and disconnect the high voltage lead from the CRT.
2. Connect 18 one megohm, one watt resistors in series between the high voltage lead and the chassis.
3. Connect a kilovoltmeter across the 18 megohms of resistance
4. Turn on the receiver and adjust C507 for maximum voltage indication on the meter. for naximum voltage indication on the meter. the voltage across the load should be 9.3 kilovolts (approximately).
5. Turn off the receiver, disconnect che kilovoltmeter, remove the 18 megohms of resistance, and connect the high voltage lead to the CRT. Note that when the 18 megohm load is removed and the high voltage voltage of the H.V. power supply will rise because of the hi her fered by the CRT.

\section*{CHASSIS REMOVAL}

To remove the chassis from the cadiner proceed as follows:
1. Remove the control knobs.
2. If an external antenna is in use, dis connect the transmission line from the antenna terminals.
3. Remove the screws that secure the rear cover, and remove the rear cover by pulling it straight out.
4. Disconnect the FM dipole and the AM loop from the antenna terminals on the rear of the chassis
5. Disconnect the built-in TV antenna (if in use) from the \(T V\) antenna terminals, and release the TV antenna terminal strip from the cabinet.
6. Disconnect the phono cable from the connector on the chassis
7. Disconnect the A-C power cord from the record changer
8. Disconnect the speaker leads from the terminals on the chassis.
9. Open the record changer drawer by pulling it out to the limit of its travel.
10. Remove the pilot lamp socket located under the AM/FM dial scile by removing the screw that secures it the supporting shelf.

1l. Pull the pilot lamp socket and leads up through the hole in the supporting shelf and dress it clear of the cabinet.
12. Remove the clamp that secures the shutter frame to the supporting shelf after removing the machine screw that holds the clamp in place. The screw is accessible from the underside of the supporting shelf.

\section*{CATHODE RAY}

To remove the CRT from the chassis, it is not necessary to remove the shutter assembly or the radio dial cord. The CRT can most readily be removed as follows:
1. Remove the chassis from the cabinet as explained under CHASSIS REMOVAL.
2. Remove the wing nut that holds the shutter assembly to the CRT strap. This wing nut is located at the top front of the CRT.
3. Remove the CRT strap bolt.
4. Slide the upper section of the CRT strap free from the bracket on the shutter assembly, and bend the strap away from the
5. Release the deflection yoke connector socket from the superstructure by removing the two screws that hold it in place.

\section*{ALIGNMEN}

\section*{TEST EQUIPMENT REQUIRED}

To properly service the chassis, the following test equipment should be available:
1. R-F sweep generator which meets the following requirements:
a. Frequency range from 18 to 30 mc . with a sweep width of 10 mc
b. Output adjustable with at least 100,000 microvolts maximum and a very low minimum
c. Output "flat" on all attenuator positions.
2. Cathode-ray oscilloscope, preferably ne with a wide band vertical deflection amplifier and a low-capacitance input probe
3. Signal generator or generators capable of providing output at various frequencie between 455 kc . and 108.5 mc . The R-F output
13. Remove the two bolts that hold the upper chassis mounting bracket to the top (inside) of the cabinet.
14. Remove the two red headed chassis mounting bo'ts from the underside of the supporting shelf.
15. Slide the chassis nut of the cabinet, keeping the front of the chassis against the cabinet partition and progressively moving the rear of the chassis to the right so that accessories.
6. Remove the CRI socket and the ion trap magnet (if used).
7. Remove the two short hex-head bolts from the focus coil, and slide the focus coil and its mounting bracket off the neck of the CRT.
8. Remove the CRT cushion adjustment wing screws. These are the screws that secure the deflection yoke and hood to the superstructure.
9. Slide the deflection yoke and hood assembly toward the base of the CRT until the yoke and hood are clear of the superstructure and the neck of the CRT.
10. Remove the CRT by pulling it slightly toward the rear of the chassis to clear the shutter mechanism and then lifting it straight up from the chassis. Care must be exercised to avoid damaging the aquadag of exercised to avoid damaging the

\section*{FORMATION}
level should be adjustable with at least 100,000 microvolts maximum and a very low minimum. Amplitude modulation is required on
4. Heterodyne frequency meter with crystal calibrator (if the signal generator does not include a crystal calibratur.
5. Electronic voltmeter (vacuum tube voltmeter), with a high voltage multiplier probe for measurements up to 15,000 volts and an R-F probe for measuring R-F voltages.

INTERCONNECTICNS AND BONDING
The test equipment and the chassis should be bonded together by short lengths of heavy, braided copper ribbon. The effectiveness of the bonding can be checked during alignment by placing the hand on the metal chassis or test equipment case. If the response pattern

MODELS H-611C12, \(\mathrm{H}-\)

r meter reading changes visibly, the bondare aligned.

An exception to this general bonding An exception to this general bonding Difficulty will be encountered during the ratio detector zero adjustment if the common terminal of the VTVM is bonded (either directly or through the instrument case) to the television chassis. During this adjustment, both connection points for the VIVM and both VTVM terminals must therefore be isolated from ground.

The interconnecting leads should be shielded (72 ohms coaxial cable) and should be as short as possible' consistent with ease of making connections.
SIGNAL GENERATOR COUPLING FOR TV ALIGNMEN
In steps 1 to 7 of the TV common I-F procedure, an unmodulated signal is applied to the TV mixer tube through the coupling device illustrated in Fig. 3. The device is constructed by squeezing toge the tume snugly and does not ground to the chassis. A. 005 mfd capacitor is then soldered to the side of the shield. By sliding the tube shield up or down on the tube, the capacitance between the shield and the tube elements can be varied to obtain additional control of the coupling over that provided \(y\) the acten side of the generator output cable should be connected to the receiver chassis.

In step 8 of the TV common I-F alignment procedure, a sweep generator is conabove. An unmodulated signal generator is used to provide marker indications at various frequencies on the response curve. In this application, the signal generator input of the set must be low in amplitude to avoid distorting the response curve. To reduce the signal generator input accordingly, the to the set by wrapping a few turns of insulated wire around the coupling capacitor pigtail" and connecting the signal generator to this wire. The sweep generator should be
connected directly to the coupling device. USE OF OSCILLOSCOPE

In step 8 of the TV common I- \(F\) alignment procedure, the I-F response pattern on the oscilloscope screen serves as a check on the I-F alignment. The vertical input to the oscilloscope is connected to the video test jack on the receiver chassis through the The horizontal input of the oscilloscope should be connected to the sweep output from the sweep generator, and the sweep control on the oscilloscope should be turned to the "X" or "OFF" position.

The oscilloscope pattern obtained in step 8 of the IV common IF alignment procedur should be similar to that shown in Fig. 5 Use the signal generator as a marker t check at the frequencies imilated. Fi the pat will be necessary to re-adjust Llio, T301, T302, T303, and T304 to produce the correct pattern.

fig. 6 - am/fm dial drive
am ramio section
Set the selector switch to the "AM" position.
Connect an output meter across the speaker voice coil.
While making the following adjustments, keep the volume cortrol set for maximum output, the tone con
\(A V C\) action.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Connect Signal Generator to- & Sig. Gen. Freq. & Radio Dial Setting & Adjust for Maximum Output - \\
\hline 1. & Stator of AM ant. section (C250E) of tuning gang thrua 0.1 mfd capacitor & 455 kc . amplitude modulated & minimum capacity & Primary and secondary of T204 and T205 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{NOTE: If the I-F transformers are badly mis-aligned, it may be imposible to obtain sufficient output using the above system. In this event it will be necessary to align each transformer separately. Start with T205 and work forward, connecting the signal generator through a 0.1 mfd capacitor to the control grid of the tube preceding the transformer under alignment.} \\
\hline 2. & Same as step & 1615 kc . amplitude modulated & minimum capacity & AM oscillator trimmer. \\
\hline 3. & Radiated signal (no actual connection) & \[
\begin{aligned}
& 1400 \mathrm{kc} \text { ampli- } \\
& \text { tude modulated }
\end{aligned}
\] & tune for maximum signal & AM ancenna trimmer (rock-in adjustment). \\
\hline
\end{tabular}

NOTE: The alignment of T204 and T205 affects the alignment of T201 and T202. Therefore, it Will be necessary to check the alignment of the 4.5 mc . I-F system whenever Tho4 or T205 are

FM RADIO SECTION
If AM adjustments are required, do not align the FM circuits until the AM adjustments
Set the selector switch to the "FM" position
\begin{tabular}{|c|c|c|c|c|}
\hline Step & \begin{tabular}{l}
Connect Signal \\
Generator to-
\end{tabular} & Sig. Gen. Frequency & Radio Dial Setting & Adjust - \\
\hline 1. & \multicolumn{3}{|l|}{Connect a VTVM between points "A" and "B" (shown on Fig. 8) to point " \(A\) " and the high lead to point "B".} & with the common lead \\
\hline 2. & Stator of FM mixer section (C250B) of tuning gang thrua . 01 mfd mica capacitor. & 4.5 mc . unmodulated & maximum capacity & Secondary (top slug) of T203 for zerovoltage. \\
\hline
\end{tabular}

Connect the VTVM between points "A" and "C" with the common lead to point "C" and the high lead to point AA. Set the VTVM on the 5 volt (-DC) scale, and keep the
 capacity of T203 for maximprimary age. T203 for maximum volt-
Repeat steps 1 and 2. He-connect the VTVM as in step 3.
\begin{tabular}{ll|l|l}
Ant. terminal No. l thru & 108.5 mc. & minimum & FM oscillator trimmer
\end{tabular} resistor.
minimum
capacity \(\quad \begin{aligned} & \text { FM oscillator trimmer } \\ & \text { (C247) for maximum }\end{aligned}\) NOTE: If two peaks appear, use the one that occurs with the
\begin{tabular}{|c|c|c|c|c|}
\hline 8. & Same as step & \[
\begin{gathered}
105 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & tune for maximum signal & FM R-F amp. trimmer for maximum voltage (rock-in adjustment). \\
\hline 9. & Same as step & \[
\begin{aligned}
& 105 \mathrm{mc} . \\
& \text { unmodulated }
\end{aligned}
\] & tune for maximum signal & FM mixer trimmer for maximum voltage (rockin adjustment). \\
\hline
\end{tabular}
- To check the dial calibration after adjusting the FM oscillator trimmer (C247), set the tuning gang at maximum capacity and adjust the signal generator frequency in the vicinity of
87.5 mc . for maximum voltage on the VTVM. If maximum response occursat a penerator frequency of 87.5 mc ., no further adjustments are necessary. If maximum response occurs when the gen
 the generator frequency is higher than 87.5 mc .) slightly compress the FM oscillator coil
(L203). Re-adjust the FM oscillator trimmer (247) at 108.5 , and again check the calibration Mepeat this process until correct calibration is obtained. and again check the calibration

\section*{ALIGNMENT PROCEDURE（continued）}

\section*{TV SOLND I．F SECTION}

The 4.5 mc ．circuits serve as an I－F channel for both the TV sound and the FM radio．Alignment of the TV sound I－F section is therefore accomplished when steps 1 to \(s\) inclusive under＂FM Radio Section＂have been performed．

\section*{TV COMMON I．F AND 4.5 MC ．TRAI}

Set the selector switch to the＂TV＂position
Turn the TV channel selector to channel 13 to avoid undesirable beat response during alignment．
\begin{tabular}{|c|c|c|c|c|c|}
\hline Step & Sweep Gen． Frequency & Marker Gen． Frequency & Remarks & Indicator Connection & Adjust \\
\hline 1. & \multicolumn{5}{|l|}{Couple the sweep and marker generators to the TV mixer tube as shown in Fig． 3.} \\
\hline 2. & Not used & 21.6 mc ． unmodulated & Use a strong signal & Connect VTVM to video test jack & T305 for minimum voltage \\
\hline 3. & Not used & \[
\begin{gathered}
22.6 \mathrm{mc} \text {. } \\
\text { unmodulated }
\end{gathered}
\] & Keep marker output adjusted so VTVM reading does not
exceed 2 v ． & Same as step 2 & 1110 for maximum voltage \\
\hline 4. & Not used & 25.9 mc.
unmodulated & Same as step 3 & Same as step 2 & T301 for maximum voltage \\
\hline 5. & Not used & 25.6 mc ． unmodulated & Same as step 3 & Same as step 2 & T302 for maximum voltage \\
\hline 6. & Not used & \[
\begin{gathered}
23.8 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & Same as step 3 & Same as step 2 & T303 for maximum voltage \\
\hline 7. & Not used & \[
\begin{gathered}
23.0 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & Same as step 3 & Same as step 2 & T304 for maximum voltage \\
\hline 8. & 25.3 mc ．with 10 mc ．devi－ ation & check at： 21.6 mc ． 22.5 mc ． 23.5 mc ． 25.3 mc
26.1 mc. 26.1 mc ． & Keep sweep output low enough so that very little noise ap－ pears on the oscillo－ scope trace & Connect oscilloscope to video test jack． See Fig． 4. & If necessary，adjust 1110 ， T301，T302，T303，and T304 to obtain correct re sponse curve．See Fig． \\
\hline 9. & \multicolumn{5}{|l|}{Connect the signal generator to the video test jack through a 0001 mfd mica capacitor．} \\
\hline 10. & Not used & \[
\begin{gathered}
4.5 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & Use a strong signal & Connect high side of R．F probe from （see Fig．8）and common lead to chassis & Z301 for minimum voltage \\
\hline
\end{tabular}

\section*{TV HIGH FRF：QUENCY OSCILLATOR}

If the \(\mathbf{6 J 6}\) oscillator tube is replaced，the different inter－electrode capacity of the new tube may change the oscillator frequency enough to necessitate realignment of tire oscillator

Alignment of the oscillator on the high band is accomplished by adjusting the brass slug located adjacent io the vernier drive wheel on the front of the tuner．Alignment of the oscillator on the low band is accomplished hy adjusting the brass slug on the lower front of the tuner．A non－metallic screwdriver is required．

The oscillator alignment procedure is as follows．
1．Set the fine tuning control at the middle of its range，and leave it in this position during the following adjustments．
2．Set the selector switch to the highest of the low－band（channels 2 through 6 ）stations operating in your vicinity．
3．Peak the low band adjustment slug for the best picture detail．
4．Set the selector switch to the highest of the high－band（channels 7 through 13）stations operating in your vicinity
5．Peak the high band adjustment slug for best picture detail．
6．Check the previously made low band adjustment，and if the tuning has changed，repeat steps 2 and 3

PARTS LIST FOR MODELS H-611C12 AND H-615C12

\section*{Capacitor, 330 mm \\ Capacitor, hi.temp. 001 mfd 600 v
Capacitior, hitemp .001 mfd 600 v \\ Capacior, 330 mmf
Capacitor,
hi-temp .0047 mfd 400 \\ \\ \\ Capacitor, 270 mmf \\ \\ Capacitor, hi-temp 01 mfd 400 v .
Capacior, hi-temp .11
Capact 400 v . \\ Capacitor, \(\mathbf{3 3 0 \mathrm { mmf }} \mathrm{Capacitor}\), \\ Capacitor, hi-temp 1 mfd 400
Capacitor,
hitemp 1
mfd
mit}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{54}{*}{\begin{tabular}{l}
Screen by-pass \\
Screen by-pass \\
Grid by-pass \\
Video coupling \\
Grid by-pass \\
Screen by-pass \\
Plate decouplin \\
Plate decoupling \\
Video peaking \\
Video peaking \\
Contrast \\
Brightness \\
Screen dropping \\
Cathode bias \\
Cathode bias \\
Cathode bias \\
Vidco peaking s \\
Plate decoupling \\
Screen dropping
Plate decouplins \\
Plate decoupling \\
Plate decouping
Plate decoupling \\
Screen dropping \\
Grid return \\
Grid return \\
Grid return \\
Screen bias \\
Isolating \\
AGC decoupling \\
AGC decoupling \\
Isolating \\
Grid return \\
DC divider \\
Cathode bias \\
AGC divider \\
Screen dropping \\
Screen dropping \\
DC. divider \\
Cathode bias \\
1st I-F \\
2nd I-F
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{Keyed AGC coup}

AFC coupling
AFC coupling
Error voltage coupling
AFC
AF delay AFC delay Transient by-pass
Noise clipper coupling
Horizontal sync couplin Noise clipper coupling
Hyrizonaal sync coupling
Sync coupling Sync coupling
Vertical sync con Vertical sync coupling
Plate decouppling
Horizontal mv coupling Horizontal my co
Chare limiting
Crider Charge limitin
Grid hy-pass
R.E by-pass PARTS LIST FOR MODELS H-611C12 AND H-615C12 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline lem & Pari No. & Description & & \[
\begin{aligned}
& \mathrm{R} 427 \\
& \mathrm{R} 42 \mathrm{l}
\end{aligned}
\] & \[
\begin{aligned}
& \text { RC20AF } 104 \mathrm{~K} \\
& \text { V-6067-4 }
\end{aligned}
\] & Resistor, 100,000 ohms Resistor, 1alatims & Grid retu \\
\hline C417 & V.6023-4104M & Capacitor hi.temp & Decouplin Puncion & R429 & RC20AE101K & Resistor, , Rlasohm, 150 ot & Cathode bias \\
\hline \(\mathrm{C}_{418}\) & V.6023-4103M & Capacior, hi-temp . 01 mfd 400 v . & Decoupling Horizontal coupling & R430
R 431 & & Resistor, 100 ohms \(1_{2}^{2} \mathbf{w}\) & Parasitic suppresso \\
\hline C419 & RCM208681M & Capacitor, 680 mmf & Horizontal discharge & \({ }_{\mathrm{R} 432}\) & V. 5910 & Control, 2.5 m & Height mag. \\
\hline & RCM20B271K & Capacitor, 270 mmi & Grid by-p & R433 & & Conirol, 2500 ohm & \\
\hline -6421 & V.9577 25sy & Capacitor, electrolytic 20 mfd 400 v . (assy consists of C421, C302, C417 & Griderpas & R434 & \[
\begin{aligned}
& \text { RCCOAE104K } \\
& \text { V-9233 assy }
\end{aligned}
\] & \begin{tabular}{l}
Resistor, \(\mathbf{1 0 0 , 0 0 0}\) ohms ' \(1 \mathbf{y} \mathbf{w}\). \\
Control, 500,000 ohms (assy consis
\end{tabular} & Plate load \\
\hline C422 & V.6023-4104M & \({ }_{\text {Capacitor, hi-temp } .1}^{\text {and }}\) mfd 400 v . & Decoupling & R439 & RC20AE 474 K & Resistor, 470,000 ohms & Vertical hold Grid retur \\
\hline \(\mathrm{C}_{423}\) & V-6023-4104M & Capacitor, hi-temp 1 mfd 400 v . & Cathode by-pass & R4368 & V.6463 \({ }^{\text {R }}\) & Resistor, 390,000 ohms & Plate load \\
\hline C424 & V.6023-4104M & Capacitor, hi-temp 1 mfd 400 & Decoupling & & RC20AE102K & Conito & \\
\hline C425 & V.6023-4103K & Capacitor, hi-temp 01 mfd 400 & Vertical mv coupling & R439, & \(\mathrm{RC}^{\mathrm{RC} 204 \mathrm{AFE} 102 \mathrm{~K}}\) & Resistor, 1000 ohms \(\frac{2}{2} \mathbf{w}\). & Cathode bias \\
\hline C426 & V.6023-4104M & Capacitor, hi-temp 11 mfd 400 v . & Vertical coupling & R 440 & V.6984-1 & Resistor, 47,000 ohms & \\
\hline \({ }^{\text {C42 }} 4\) & V.6023-4104M & Capacitor, hi-temp 11 mfd 400 v & Grid by-pass & R441 & V.6984.6 & Resistor & te \\
\hline C428 & V-6023-4503M & Capacitor, hi-temp 0.05 mfd 400 v . & Cathode by-pas & R442 & v. & Resistor, 110 otmms \(3 \mathbf{w}\). & \begin{tabular}{l}
Decoupling \\
Focus coil shunt
\end{tabular} \\
\hline C430 & V -6166-4254M & Capacitor, 25 mfd 400 v . & Plate by-pass & & & & \\
\hline C431 & V-6023-4104M & Capacitor, hi-temp 11 mid 400 v . & HV osc. decoupling & R443 & V .6984 .5
V 9908 & Resistor, 10,000 oh & Screen dropping \\
\hline \({ }^{\text {c }} 433\) & V.6023-4104M & Capacitor, hitemp 1 mfd 400 v . & Vertical mv decoupling & & & & \\
\hline C433 & v.9575 assy & Capacitor, electrolytic, 20 mld 450 v . & & R446 & RC30AE47IK & Resistor, 470 ohms 1 & Grid return Cathode bia \\
\hline & & (assy consists of C501, C5O2 and & & R447 & RC20AE472K & Resistor, 4700 ohms & Cathode bias \\
\hline C434 & V.9009.1 & Capacitor, electrolytic 150 mfd 50 v . & Cathore by-pass & R448 & V.6463 & Control, 5000 oh & Vertical linearity \\
\hline \({ }^{\text {C }} 435\) & V-6570 & Capacitor, electrolytic 30 mfd 450 & Filter & R449 & RC30AE471K & Resistor, 470 ohms
Resistor & Plate decoupling \\
\hline C436 & V-9792.15560K & Capacior, 56 mmf & Transient by-pass & R4s1 & RC20AESG1K & Resistor, 660 ohms & Transient damping \\
\hline \({ }_{C} 441\) & \({ }_{\text {RCM }}\) & Capacitor, hi-kap . 005 mfd & \({ }^{\text {Filament }}\) by-pass & R452 & V.9085-5 & Resistor, 680 ohms 10 w . & Transient damping \\
\hline C442 & RCM 20 B 681 K & Capacitor, 680 mm & Cathode by-pass & \({ }_{\text {R493 }}\) & RC40AE102K & Resistor, 1000 ohm & Focus shunt \\
\hline 1401 & V -6764 & Coil & Horizontal ringin & - \({ }_{\text {- }}\) & \({ }^{\mathrm{RC} C 20 A}\) & Res & Grid return \\
\hline 1402 & V-9590-3 & & Focus & & V-9607. & \({ }_{\text {Switch, }}\) & \\
\hline L403 & & Choke & Horizontal feed & & & Transformer & Magnifer \\
\hline 1404 & V-9099-1 & Choke & Filament & T402 & V.9584-1 & Transforner & \\
\hline L405 & V-9099-1 & Choke & Filament & Z401 & & & \\
\hline (4407 & V-9099.1 & Choke & \(\stackrel{\text { Filament }}{ }\) & Z402 & V.6486-4 & Yoke assembly & (inter \\
\hline 1408 & V-9099-2 & Choke & \(\underset{\substack{\text { Filament } \\ \text { Filament }}}{ }\) & & & & \\
\hline R 401 & RC20AE223K & Resistor, 22,000 ohms \({ }^{1} / 2 \mathrm{w}\). & Plate load & & & & \\
\hline R402 & RC20aE225K & Resistor, 2.2 megohms \({ }^{2} 2 \mathrm{w}\). & & & & Section 5-Power & \\
\hline R403 & RC20AE105K & Resistor, 1 megohm \({ }^{1 / 2} \mathbf{~ w}\). & Voltage divider & & & & \\
\hline (R404 & & Resistor, 220,000 ohms \({ }^{1} \mathbf{w}\). & Limitiong & \({ }^{\text {CSSO1 }}\) & V.9575 assy & Capacitor, ele & \\
\hline R406 & RC.20afe 63 K & Resistor, 68,000 ohms & \({ }_{\text {Lhase }}{ }_{\text {Limiting }}\) & & & (assy consists of Cs01, Csol & \\
\hline R407 & RC20AE104J & Resistor, \(\mathbf{1 0 0 , 0 0 0}\) ohms \(1 / 2 \mathrm{w}\). & AFC diode load & \({ }^{\bullet} \mathrm{C} 02\) & v. 9575 assy & C433) & \\
\hline R408 & RC20AE474K & Resistor, 470.0000 ohms \({ }^{2} \mathbf{w}\). & AF & & -9, & (apacior, & \\
\hline R409 & RC20AE104] & Resistor, 100,000 ohms \({ }^{1 / 2} \mathbf{w}\). & AFC diode load & & & & \\
\hline \({ }_{8410}\) & RC20AE. 75 M & Resistor, 4.7 megohms \({ }^{1 / 2} \mathbf{w}\). & Grid return & & & & Filter \\
\hline 411 & RC20AF182K & Resistor, 1800 ohms \({ }^{12} \mathbf{w}\) w. & Cathode bias & \(\mathrm{C}_{506}\) & V-6023.4503M & Capacior, hi-emp hitemp 0 nifd 400 : & Screen by-pass \\
\hline -R412 & V-9233 assy & Control, 100,000 ohms (assy consints & & \(\mathrm{CSO}_{7}\) & V-6454 & Capacitor & cen by-pass \\
\hline R413 & RC20aE224] & Resistor, 220,000 ohms \({ }^{2} \boldsymbol{w}\). & Grid return & C508 & \({ }_{\mathbf{V}-8895}^{\text {RCM203271K }}\) & Capacitor, 270 mmf & Osc. feed back \\
\hline R414 & RC20AE562K & Resistor, 6600 ohms ' & Plate load & C510 & V-589) & Capaciour, 5000 mmmf & ter \\
\hline 15 & Re3ate33 & Resistor, 33,000 ohms It w. & Decoupling & Ls01 & \(\underset{-6.771}{ }\) & Choke \({ }_{\text {chen }}\) & \\
\hline R417 & RC20AE154K & & Charge limiting & Lsoz & V-9279-1 & Choke, R-F & \\
\hline R418 & RC20AE 272 K & Resistor, 2700 ohms \({ }^{\text {c }}\) 2 w & Plate load & \(\mathrm{R}^{\mathrm{R} 502}\) & RC4IAE.33K & Resistor, 33,000 ohins 2 & Screen drop \\
\hline R419 & RC20AE223K & Resistor, 22,000 ohms & IC divider & R503 & RCzoameroh & Resistor, 68 ohms & Grid bias \\
\hline R420 & RC20atiosk & esistor, 1 merohm \({ }^{1 / 2}\) & Grid return & & RC20AEIOGK & Resistor. 88.000 ohnt & Plate decoupling \\
\hline R421 & RC20AF.272K & esistor, 2700 ohms & Limiting & -Sw'sor & V-9607.2 as,y & & Hi-volt filcer \\
\hline ¢ & V. 6500.2 & & Cathode bias & & & R20i, and SWW. 401) & \\
\hline R424 & RC30AE333K & Resistor, 33,000 ohmis 1 w . & Decoupling & \({ }_{\text {T }}^{\text {T } 502}\) & V-6988 & Transformer & Power L \\
\hline R425 & \({ }^{\text {RCC20AE22 }}\) & Resistor, 220,000 ohms \({ }^{2} \mathbf{z}\) w. & Horiz. mv plate load & & & & Hivoltage R-F \\
\hline R.26 & RC20AF.273 & Resistor, 27,000 ohins \({ }^{1} 2 \mathrm{w}\) w. & Horizontal dis & & & & \\
\hline
\end{tabular}

The danger atcompanying shock is always present when the receiver is operated outside
the cabinet or when the rear cover is removed from the cabinet. Only a person familiar with the cabinet or when the rear cover is removed from the cabinet. Only a person familiar with
the precautions to be ohserved when working with high-voltage equipment should service

\section*{CATHODE RAY TUBE handung precautions}

Shatterproof goggles and heavy gloves should be worn at all times when handling the cathode ray tube. The tube should not be handled in the vicinity of any person not so

The cathode ray tuhe bulh, due to its large surface area and high vacuum contained within, is subjected to high air pressure. More than ordinary care is required to prevent
shattering the tube. The large end of the hulh, particularly the rim of the viewing surface must not he struck, scratched, or subjected to more than moderate pressure at any time. If the tube sticks or fails to slip smoothly into place during installation. remove the tuhe and determine the cause of the trouble.-DO NOT FORCE THE TUBI
©John F. Rider
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{INDEX} \\
\hline & PAGE & & PAGE \\
\hline alignment instructions & & SPECIFICATIONS & 33 \\
\hline INSTALLATION DATA.. & 34 & top view - tube layout. & 37 \\
\hline PaRTS Layout & & trimmer locations. & 37 \\
\hline PARTS LIST & 37 & voltage measurements & 40 \\
\hline SCHEMATIC & 40 & WAVEFORMS & 40 \\
\hline
\end{tabular}

SPECIFICATIONS

\section*{FREQUENCY RANGES:}
\begin{tabular}{|c|c|c|c|c|}
\hline Channel Number & Channe I Frequency (mc.) & Video Carrier Frequency (mc.) & Audio Carrier Frequency (mc.) & Receiver H-F Oscillator Frequency (mc.) \\
\hline 1 & not used & -- & -- & -- \\
\hline 2 & 54-60 & 55.25 & 59.75 & 81.35 \\
\hline 3 & 60-66 & 61.25 & 65.75 & 87.35 \\
\hline 4 & 66-72 & 67.25 & 71.75 & 93.35 \\
\hline 5 & 76-82 & 77.25 & 81.75 & 103.35 \\
\hline 6 & 82-88 & 83.25 & 87.75 & 109.35 \\
\hline 7 & 174-180 & 175.25 & 179.75 & 201.35 \\
\hline 8 & 180-186 & 181.25 & 185.75 & 207.35 \\
\hline 9 & 186-192 & 187.25 & 191.75 & 213.35 \\
\hline 10 & 192-198 & 193.25 & 197.75 & 219.35 \\
\hline 11 & 198-204 & 199.25 & 203.75 & 225.35 \\
\hline 12 & 204-210 & 205.25 & 209.75 & 231.35 \\
\hline 13 & 210-216 & 211.25 & 215.75 & 237.35 \\
\hline
\end{tabular}

FINE TUNING RANGE:
Plus or minus 1 mc . on Channel 2 (minimum)
Plus or minus 2 mc . on Channel 13 (maximum)

OPERATING VOLTAGE:
105 to 120 volts, 60 cycles

RECEIVER ANTENNA INPUT IMPEDANCE:
... 300 ohms balanced or 72 ohms unbalanced TUBE COMPLEMENT:

VIDEO CARRIER INTERMEDIATE FREQUENCY:

VIDEO RESPONSE: 36 AUDIO CARRIER INTERMEDIATE FREQUENCY:

AUDIO DISCRIMINATOR BAND WIDTH:
(between peaks) 150 kc .
FOCUS:
SWEEP DEFLECTION: Magnetic
SCANNING: Interlaced 525 Line
HORIZONTAL SCANNING FREQUENCY:
15.750 CPS

VERTICAL SCANNING FREQUENCY:

FRAME FREQUENCY
(picture repetition rate):
high voltage marning
The danger accompanying shock is always present when the receiver is operated outside the cabinet or when the rear cover is removed from the cabinet. Only a person familiar with the precautions to be observed when working with high-voltage equipment should service this receiver.

\section*{CATHODE RAY TUBE HANDLING PRECAUTIONS}
Shatterproof goggles and heavy gloves should be worn at all times when handling the cathode ray tube. The tube should not be handled in the vicinity of any person not so equipped. When handling the cathode ray tube, always keep it away from the body.
The cathode ray tube bulb, due to its large surface area and high vacumm contained within, is subjected to high air pressure. More than ordinary care is required to prevent shattering the tube. The large end of the bulb, particularly the rim of the viewing surface, must not be struck, scratched, or subjected to more than moderate pressure at any time. If the tube sticks or fails to slip smoothly into place during installation, remove the tube and determine the cause of the trouble - - DO NOT FORCE THE TUBE.

\section*{TO PREPARE THE RECEIVER FOR OPERATION}
1. Remove the screws that hold the rear cover to the cabinet, and remove the rear cover by pulling it away from the cabinet.
2. Inspect the face of the CRT and the glass window for dust or smudges. If the face of the CRT or the inside of the glass window is smudged, it will be necessary to remove the front glass to clean the smudged surfaces. In this event, refer to REMOVAL OF FRONT GLASS FOR CLEANING.
3. If the control shafts and CRT face are not properly aligned with the holes in the front of the cabinet, loosen the two hex-head bolts on the under side of the chassis shelf and adjust the position of the chassis accordingly. Then re-tighten the two hex-head bolts.
4. Make certain that all tubes are secure in their sockets.
5. Connect the A-C plug to a 105 to 120 volt, 60 cycles \(A-C\), power outlet, and adjust the ion trap magnet as outlined undea ADJUSTMENTS.
6. Model H-613K16 contains a built-in antenna for use in areas of normal reception. In such areas when the built-in antenna provides good reception, no additional antenna good reception, no addi However, in weak signal areas or under adverse conditions, it may be necessary to use an external antenna. If an external antenna is to be used, the built-in antenna should be disconnected from the antenna terminals on the back of the chassis, and the lugs of the built-in antenna should be insulated and dressed in such a position that they do not touch the chassis or components.
7. Replace the rear cover.
8. If an outside antenna is to be used, connect the lead-in to the antenna terminals on the back of the set.
TO CHECK THE OPERATION OF THE RECEIVER:
1. Rotate the volume, brightness, and
contrast controls completely counterclockwise.
2. Turn on the receiver by rotating the off-on-tone control clockwise.
3. Rotate the channel selector to the channel number of the desired station.
4. Rotate the brightness control clockwise until light becomes barely visible on the picture screen.
5. Kotate the contrast control clockwise until a picture appears on the screen.
6. If the built-in antenna is in use, adjust the television antenna control for maximum picture contrast. If an external antenna is in use, this step is not required.
7. If the picture is moving up or down or quivering adjust the vertical hold control to stabilize the image.
8. If vertical or diagonal bars or a folded over picture appears on the screen, adjust the horizontal hold control to obtain a stable picture.
9. Adjust the fine tuning control for best picture detail.
10. Readjust the brightness and contrast controls until pleasing shades ranging from clear white to intense black are attained.
11. Adjust the volume control for the desired sound volume.
12. If necessary, adjust the height, width, vertical linearity, and focus controls as explained under ADJUSTMENTS.
13. Check the operation on all available television stations. Note that if the built-in antenna is in use, the television antenna control must be readjusted for maxantenna control must be readjusted for maximum picture contrast each time the re-
ceiver is tuned to a different-channel.

fig. 1 - CRt adjustuents
The picture adjustments are located on the rear of the chassis and are accessible through cut-outs in the back cover.
- An insulated, long shank screwdriver is preferred for making the ringing coil and H.V. oscillator adjustments.

\section*{ION TRAP MAGNET}

The magnet should be oriented approximately as shown in Fig. 1 with the arrow on the magnet pointing toward the large end of the CRT and the bar magnets lined up with the "flags" inside the neck of the cathode ray tube. Starting from this position, adjust of magnet by rotating it around the neck ward until the raster is brightest backscreen.

CAUTION: When adjusting the ion trap magnet, care should be exercised to avoid FOCUS COIL

If a shadow falls on one corner of the picture or if the picture is not centered, djustment of the focus coil is required

A coarse adjustment is made by loosening the two hex-head bolts that secure the focus coil to its mounting plate and shifting the tube until the coil around the neck of the are no shadowed edges. Re-adjustment of the ion trap magnet may be required to obtain these conditions
fig. 2 - adjustuents on rear
A fine adjustment of picture centering is made by adjusting the three bolts marked FOCUS COIL ADJUSTMENT on Fig. 1.

CATHODE RAY TUBE CUSHION
The cushion must fit snugly against the flare of the cathode ray tube in order that the rear of the tube will be supported firmly.
DEFLECTION YOKE
This adjustment controls the angle of the picture with respect to the horizontal. If the picture is not squared in the picture the , fosen the wing nut and move it to flection yoke. The picture will tilt to eft or right with the deflection yoke rotation.

FOCUS CONTROL
The focus control (Fig. 2) should be adjusted with the brightness and contrast controls in their normal positions. If correct focusing cannot be obtained, the high voltage oscillator may require adjustment.

\section*{HEIGHT AND VERTICAL LINEARITY}

The height adjustment controls the overall height of the picture, while the vertical linearity adjustment governs contraction or expansion of the upper portion only. For this reason, a balance between the two controls
© John F. Rider
is necessary to make the picture symmetrica and fill the mask vertically.

\section*{WIDTH}

Adjust the width control (Fig. 2) until the picture fills the mask horizontally. HORIZONTAL RINGING COIL

To adjust the horizontal ringing coil
1. Tune in the weakest station in your area.
2. Set the horizontal hold control at approximately the center of its range.
3. Adjust the ringing coil (L403), which is accessible through a hold in the botton of the cabinet, until the picture is properly

HIGH VOLTAGE OSCILLATOR
1. Turn off the receiver and disconnect
the high voltage lead from the CRT.
2. Connect 18 one megohm, one watt re sistors in series between the high voltage lead and the chassis
18. Connect a kilovoltmeter across the 8 megohms of resistance.
4. Turn on the receiver and adjust C507 (location shown on Fig. 7) for maximum voltage indication on the meter. When C507 is peaked using an 18 megohm load, the voltage across the load should be 9.3 kilovolts (approximately).
5. Turn off the receiver, disconnect the kilovoltmeter, remove the 18 megohms of resistance, and connect the high voltage lead to the CRT. Note that when the 18 megohm load is removed and the high voltage lead is connected to the CRT, the output voltage of the H.V. power supply will rise because of the higher load resistance offered by the CRT.

\section*{REMOVAL OF FRONT GLASS FOR CLEANING}

If it ia neceasary to clean dust or amdger off the face of the CAT or the inaide of the front glass plate, the front glasa plate can be removed from the front
of the cabinet. To remove the glass, first remove the four acrews from the corners of the glase plate, and then carefully lift out the glase plate and CRT mask assembly.

\section*{CATHODE RAY TUBE REPLACEMENT}
1. Remove the acrewa that hold the rear cover to the cabinet, and remove the rear cover.
2. Remove the CRT socket, ion trap magnet, and high voltage anode connector from the CRT.
3. Loosen the two wing bolts that aecure the deflection yoke assembly.
4. Remove the four screws from the corners of the front glass plate, and carefully of the front glass plate, and carefully
lift out the front glass plate and the CRT mask assembly.
5. Remove the four hex-head bolts that ecure the CRI mounting strap to the front bulkhead.
6. Grasp the CRT and mounting strap ecurely from the front of the cabinet, and

7 Pere the CRT, and position on the replacement \(C R T\) The strap
must be replaced in the same position to provide correct orientation of the high voltage anode contact.
8. Insert the replacement CRT through the yoke and focus coil asement CRT through the the four washers and bolta that secure the mounting atrap to the forward mounting bulkhead.
9. Replace the front glass plate and CRT mask asembly, and replace the four screws in the corners of the glass.
10. Position the deflection yoke assembly snugly against the flare of the CRT, and yoke assembly. wing bolts that secure the
11. Replace the ion trap magnet, CRT
ocket, and high voltage anode connector, ocket, and high voltage anode connector.
12. Adjust the focus coil and ion trap magnet as described under ADJUSTMENTS.
13. Replace the rear cover

\section*{CHASSIS REMOVAL}

To remove the chassis from the cabinet:
1. Remove the control knobs from the front of the cabinet.
2. Remove the wood screws that hold the rear cover to the cabinet, and remove the rear cover.
3. Disconnect the built-in antenna feeder from the antenna terminals, and release the antenna terminal bracket from the cabinet o screws that hold it in
4. Loosen the bracket at the top (inside) ALIGNMEN

TEST EQUIPMENT-To properly service his chassis, the following test equipment. should be available:
1. R-F sweep generator which meets the following requirements
a. Frequency range from 18 to 30 mc . with a sweep width of 10 mc .
b. Output adjustable with at least 100,000 microvolts maximum and very low minimum.
. Output "flat" on all attenuato positions
2. Cathode-ray oscilloscope one with a wide band vertical deflectio amplifier and a low-capacitance input probe
3. Signal generator capable of providing output frequencies listed below.
\[
\begin{aligned}
& 21.6 \mathrm{mc} .4 \mathrm{th} \text { I-F trap } \\
& 22.6 \mathrm{mc} .1 \mathrm{st} \mathrm{I}-\mathrm{F} \\
& 25.9 \mathrm{mc} .2 \mathrm{nd} \text { I-F } \\
& 25.6 \mathrm{mc} . \text { 3rd I-F } \\
& 24.7 \mathrm{mc} .4 \text { th I-F } \\
& 23.0 \mathrm{mc} .5 \mathrm{th} \text { I-F } \\
& 4.5 \mathrm{mc} . \text { Audio I-F and }
\end{aligned}
\]
4.5 mc . Audio I-F and ratio detector (the frequency must be extremely accurate, preferably

NOTE-The R-F output level on all the above frequencies should be adjustable with at least 100,000 microvolts maximum and a very low minimum.
4. Heterodyne frequency meter with crystal calibrator (if the signal generator does not include a crystal calibrator).
of the cabinet iy remeving the two screws that secure it to the top of the cabinet
5. Disconnect the CRT socket from the base of the CRT, the deflection yoke plug from its socket on the chassis, the ground leads from the speaker, and the speake nector from the CRT high voltage contact.
6. Remove the hex-head chassis bolts from the under side of the chassis shelf.
7. Remove the chassis by pushing it to the left of the cabinet and ther pulling it back until clear of the cabinet.
5. Electronic voltmeter (vacuum tube voltmeter), with a high voltage multiplier and an R-F measurements up to 15,000 volts

GENERAL INFORMATION-All test equipment and the chassis should be bonded together by short lengths of heavy (\(1 / 2\) inch) braided copper ribbon. The interconnecting leads should be shielded (72 ohms coaxial cable) and should be as short as possible onsistent with ease of making connections. the effectiveness of the bonding can be hecked during alignment by placing the hand on the metal chassis or test equipreading changes visibly pattern or meter be improved before the circuits are aligned

COMMON I-F ALIGNMENT PROCEDURE
If a common I-F transformer is replaced or, for any other reason, is badly out of out (count, it is advisable to turn the slug out (counterclockwise) as far as possible from this posing alignment. Then starting wise direction turn the slug in a clockreached. This procedure is recommended is obtain the correct peak rather thended to desired second peak which is sometimes ontained when the slug is turned clockwis past the first peak.

The common I-F alignment procedure is as follows:
1. Rotate the channel selector to the position where the flat of the shaft is parallel with the top of the tuner, thus selecting channel 13. Remove the 6AK5 R-F amplifier tube from its socket to avoid
undesirable noise pickup and beat response during alignment.
2. Connect the signal generator to the mixer tube through the coupling device shown mixer tube through the coupling device shown squeezing together a miniature tube shield until it fits the tube snugly and does not ground to the chassis. A. 005 mfd capacitor
is then soldered to the side of the shield. is then soldered to the side of the shield.
By sliding the tube shield up or down on the By sliding the tube shield up or down on the and the tube elements can be varied to obtain additional control of the coupling over that provided by the attenuator in the generator itself. The ground side of the generator output cable should be connected to the receiver chassis.
3. Connect a vacuum tube voltmeter to the video test jack on the receiver chassis, and set the meter to its 5 volt scale.
4. Set the signal generator to 21.6 mc. (unmodulated), and adjust T305 for minimum voltage on the VTM. Use a strong signal for this adjustment.
5. Set the signal generator to 22.6 mc. (unmodulated), and adjust L110 for maximum voltage on the VTVM. During this adjustment, keep the signal generator out not exceed 2 volts.
6. Set the signal generator to 25.9 mc. (unmodulated), and adjust T301 for maxme. (unmodulated), voltage on the VIVM. During this adjustment, keep the signal generator output ad-
justed so that the VTVM reading does not justed so that the VTVM reading does no
exceed 2 volts. exceed 2 volts.
7. Set the signal generator to 25.6 mc . (unmodulated), and adjust T302 for maximum voltage on the VIVM. During this adjustment, keep the signal generator output adjusted volts.
8. Set the signal generator to 24.7 mc . (unmodulated), and adjust T303 for maximum voltage on the VTVM. During this adjustment, voltage on the VTVM. During this adjustment, so that the VTVM reading does not exceed 2 volts.
9. Set the signal generator to 23.0 mc . (unmodulated), and adjust T304 for maximum voltage on the VTVM. During this adjustment, keep the signal generator output adjusted so that the VTVM reading does not exceed 2 volts.
10. Connect the sweep generator to the mixer tube through the coupling device prev-
iously described. The signal generator will be used in the following steps to provide marker indications at various frequencies on the response curve. In this application, the signal generator input to the set must be low in amplitude to avoid distorting the response curve. To reduce the signal gen erator input accordingly, the signal gener-
ator should be loosely coupled to the set by wrapping a few turns of insulated wire around the coupling capacitor "pigtail" and connecting the signal generator to this wire.
11. Connect the vertical input of the oscilloscope to the video test jack through the de-coupling network shown in Fig. 4. The oscilloscope horizontal input should be generator; turn the sweep control on the oscilloscope to the " \(\mathrm{X}^{n}\) or \({ }^{\text {nofF" }}\) position.
12. Adjust the sweep generator for a center frequency of 25.3 mc . with a 10 mc . deviation. Adjust the sweep generator output until a setting is found where there is very little noise on the oscilloscope pattern.

The oscilloscope pattern obtained should be similar to that shown in Fig. 5. Use the signal generator as a marker to check at the frequencies indicated. If the pattern obT302, T303, and T304 should be re-adjusted to produce the correct pattern.

SOUND I-F AND 4.5 MC. TRAP ALIGNMENT PROCEDURE
1. Connect the "high" side of the signal generator to the video test jack through .001 mfd capacitor, and ground the "low" side to the chassis.
2. Connect the vacuum tube voltmeter to the points indicated on the bottom vie of the chassis, Fig. 7. The common lead should connect to point "C, and the should connect to point "An. Set meter on its 5 volt (-DC) scale.
3. Adjust the signal generator to 4.5 mc. (unmodulated). The accuracy of this frequency is very important. If a crystal controlled signal generator is not available, the frequency should be checked using a frequency meter with a crystal calibra-
4. Adjust T201 and the primary of T202 for maximum voltage on the VTVM. During this adjustment, keep the signal generator outpu adjusted so that the VTVM reading does not exceed 5 volts.
5. Connect the common lead from the VTVM to point "A" (Fig. 7), and connect the "high" lead to point " \(\mathrm{B}^{\prime}\). Here it is important that the case and components of the VTVM are not grounded to the receiver chassis; other-
wise, point n \(A\) " would be shorted to the wise, point "A" would be shorted to the chassis through the common lead.
6. Using the same signal generator amplitude and frequency as in step 4, adjust the secondary of T202 for zero voltage on resonance, the voltage will rapidly change from one polarity to the opposite polarity. The point where the voltage is zero is the correct setting.

7: Connect the common lead from the VTVM to the chassis, and connect the \(R-F\) probe from the VTM to the junction of C338 and R343. This point is shown as point " \(\mathrm{D}^{\prime}\) on
on Fig. 7. Note that this point is above on Fig. 7. Note that this point is above
ground and, therefore, the \(R-F\) probe must contain a blocking capacitor
8. Using a strong 4.5 mc . signal applied as in step l, adjust Z30l for minimum in dication on the meter.
H.F. OSCILLATOR ALIGNMENT PROCEDURE

If the 6J6 oscillator tube is replaced, the different inter-electrode capacity of the new tube may change the oscillator frequency enough to necessitate realignment of

MODEL H-613K16
Ch. V-2150-1L6

I-F ALIGNMENT CHART
Turn the channel selector to channel 13 to avoid undesirable beat response during alignmen COMMON I-F SECTION
Couple the sweep and marker generators to the mixer tube as shown in Fig. 3.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Step & \begin{tabular}{l}
Sweep Gen. \\
Frequency
\end{tabular} & . Marker Gen. Frequency & Remarks & \[
\begin{aligned}
& \text { Indicator } \\
& \text { Comnection }
\end{aligned}
\] & Adjinst \\
\hline 1. & Not used & \[
\begin{aligned}
& 21.6 \mathrm{mc} . \\
& \text { unmodulated }
\end{aligned}
\] & Use a strong signal & Connect VTVM to video test jack & T305 for minimum voltage \\
\hline 2. & Not used & \[
\begin{gathered}
22.6 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & Keep marker output adjusted so VTVM reading does not exceed 2 v . & Same as step 1 & Lito for maximum voltage \\
\hline 3. & Not used & \[
\begin{gathered}
25.9 \mathrm{mc} \text {. } \\
\text { unmodulated }
\end{gathered}
\] & Same as step 2 & Same as step 1 & T301 for maximum voitage \\
\hline 4. & Not used & \[
\begin{gathered}
25.6 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & Same as step 2 & Same as step I & T302 for maximum voltage \\
\hline 5. & Not used & \begin{tabular}{l}
24.7 mc . \\
unmodulated
\end{tabular} & Same as step 2 & Same as step 1 & T303 for maximum voltage \\
\hline 6. & Not used & 23.0 mc . unmodulated & Same as step 2 & Same as step 1 & T304 for maximum voltage \\
\hline 7. & 25.3 mc . with 10 mc . devia. tion & check at: 21.6 mc . 22.5 mc . 23.5 mc . 25.3 mc.
26.1 mc. & Keep sweep output high enough so that very little noise appears on the oscillo. scope trace & Connect oscilloscope to video test jack. See Fig. 4. & If necessary. adjust 1.110 . \(\mathrm{T} 301,7302, \mathrm{~T} 303\). and T304 to obrain correig. 5.
sponse curve. See Fig. \\
\hline
\end{tabular}

\section*{SOUND I-F SECTION AND 4.5 MC. TRAP}

Connect the signal generator to the video test jack through a . 001 mfd mica capacitor.
\begin{tabular}{|c|c|c|c|c|}
\hline Syep & Signal Gen. Frequency & VTVM Connection & Remarks & Adjiust \\
\hline 1. & \[
\begin{gathered}
4.5 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & See Fig. 7. Common lead to point " C" a and high lead to point " A ". & Use s v. (-DC) scale on meter. Set sig. Ren. output accordingly. & T201 and pri. of T202 for maximum voltage \\
\hline 2. & \[
\begin{gathered}
4.5 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & See Fig. 7. Common lead to point "A", and high lead to point " B ". & Use same sig. gen. output as in step 1. & Sec. of T202 for zero voltage \\
\hline 3. & \[
\begin{gathered}
4.5 \mathrm{mc} \text {. } \\
\text { unmodulated }
\end{gathered}
\] & See Fig. 7 7 :. R-F probe to point "D" and common lead to chassis. & Use strong signal from generator. & 7301 for minimum voltage \\
\hline
\end{tabular}

FIG. 6-TOP VIEW OF CHASSIS

FIG. 7-BOTTOM VIEW OF CHASSIS
PARTS LIST FOR MODEL H-613K16

\section*{CABINET}

Part No.
Description
V-9621-1
V-1203-1
V-4898-1
V-9622-1
V. 4902
V.9091-2
V.9091-1
V.6284.7

V-9104-4
V-9547-1
V-91046-1
V-6146-1
V-9188.2
V-9626-2
V-6744-2
V. 9627.1
-6063-1
.6063-1
V. \(4900-1\)
V.5421.5

©John F. Rider

PARTS LIST FOR MODEL H-613K16 (Continued)
\begin{tabular}{|c|c|c|c|}
\hline No. & Part No. & Description & unctio \\
\hline C419 & V-6023-4104M & Capacitor, hi-temp. \(1 \mathrm{mfd} \mathbf{4 0 0} \mathrm{v}\). & Grid by-pass \\
\hline C420 & V-6023-4104M & Capacitor, hi-temp. 1 mfd 400 v . & Vert output coupling \\
\hline C421 & V-6023-4104M & Capacitor, hi-temp 11 mfd 400 v . & Horiz MV decoupling \\
\hline C422 & V-6023-4104M & Capacitor, hi-temp 11 mfd 400 v . & Plate by-pass \\
\hline C424 & V-6023-4104M & Capacitor, hi-temp 11 mfd 400 v . & Horiz output coupling \\
\hline C426 & V-6023-4104M & Capacitor, hi-temp 11 mfd 400 v . & Screen by-pass \\
\hline C427 & V.6066-4254M & Capacitor, .25 mfd 400 v . & Plate by-pass \\
\hline C428 & V-6023.4683K & Capacitor, hi-temp .068 mfd 400 v. & Vert discharge \\
\hline C429 & V-6023-4103K & Capacitor, hi-temp .01 mfd 400 v . & Coupling \\
\hline C430 & RCM20B271K & Capacitor, 270 mmf & Grid by-pass \\
\hline C432 & RCM20B681K & Capacitor, 680 mmf & Horiz discharge \\
\hline C433 & RCM20C331J & Capacitor, 330 mmf & Error volt coupling \\
\hline C434 & RCM20C331J & Capacitor, 330 mmf & Horiz MV coupling \\
\hline C435 & RCM30C392K & Capacitor, 3900 mmf & MV plate tank \\
\hline C436 & V.9176-15560K & Capacitor, 56 mmf & Transient hy-pass \\
\hline C437 & RCM20B271K & Capacitor, 270 mmf & Horiz sync coupling \\
\hline C438 & V-6023-4503M & Capacitor, hi-temp .05 mfd 400 v . & Phase invert coupling \\
\hline C439 & V-6023.4104M & Capacitor, hi-temp 11 mfd 400 v . & Cathode by-pass \\
\hline C440 & V-6066-4254M & Capacitor, 25 mfd 400 v . & Sync. coupling \\
\hline C442 & RCM20C331J & Capacitor, 330 mmf & AGC pulse coupling \\
\hline C443 & R5CC26ZY152M & Capacitor, \(\mathbf{. 0 0 1 5 ~ m f d ~}\) & Filament by-pass \\
\hline C444 & R5CC26ZY152M & Capacitor, 0015 mfd & Filament by-pass \\
\hline C445 & R5CC26ZY152M & Capacitor, 0015 mfd & Filament by-pass \\
\hline C446 & RCM20B101K & Capacitor, 100 mmf & Plate by-pass \\
\hline C447 & V-6570 & Capacitor, electrolytic, 30 mfd 450 v. & Decoupling \\
\hline C448 & V-6023-4104M & 'Capacitor, hi-temp . 1 mfd 400 v . & R-F by-pass \\
\hline L401 & V-9589-1 & Choke & Feed \\
\hline L402 & V-9235-2 & Coil & Focus \\
\hline L403 & V-6764 & Coil & Ringing \\
\hline L413 & V-9099-2 & Choke, R-F & I-F filament \\
\hline L414 & V-9099-1 & Choke, R-F & I-F filament \\
\hline L415 & V-9099-1 & Choke, R-F & I-F filament \\
\hline R401 & V-9232 & Control, 600 ohms & Focus \\
\hline R402 & V. 6462 & Control, 1 megohm & Height \\
\hline R403 & V-6463 & Control, \(\mathbf{5 0 0 0}\) ohms & Vert linearity \\
\hline *R404 & V-9233 assy & Control, 100,000 ohms (assy consists of R405 and R404) & Horiz hold \\
\hline *R405 & V.9233 assy & Control, 500,000 ohms (assy consists of R405 and R404) & Vert hold \\
\hline R406 & V.6500.2 & Control, \(\mathbf{3 0 0 0}\) ohms & Width \\
\hline R407 & RC20AE561K & Resistor, 560 ohms \(1 / 2 \mathrm{w}\). & Transient damping \\
\hline R408 & RC20AE561K & Resistor, 560 ohms \(1 / 2 \mathrm{w}\). & Transient damping \\
\hline R409 & RC40AE221K & Resistor, 220 ohms 2 w. & Plate load \\
\hline R410 & V-6984-5 & Resistor, \(\mathbf{1 0 , 0 0 0}\) ohms \(5 \mathbf{w}\). w.w. & Screen load \\
\hline R411 & V.9600-3 & Resistor, 7500 ohms 10 w . ww. & Plate load \\
\hline R412 & V-9002-4900K & Resistor, 90 ohms 2 w . & Focus coil shunt \\
\hline R420 & RC20AE471K. & Resistor, 470 ohms \(1 / 2 \mathrm{w}\). & Cathode bias \\
\hline R421 & RC20AE471K & Resistor, 470 ohms \(1 / 2 \mathrm{w}\). & Decoupling \\
\hline R423. & RC20AE102K & Resistor, 1000 ohms \(1 / 2 \mathrm{w}\). & Cathode bias \\
\hline R424 & RC20AE182K & Resistor, 1800 ohms \(1 / 2 \mathrm{w}\). & Cathode bias \\
\hline R427 & RC20AE562K & Resistor, 5600 ohms \(1 / 2 \mathrm{w}\). & Waveform correction \\
\hline R428 & RC20AE153K & Resistcr, 15,000 ohms \(1 / 2 \mathrm{w}\). & Plate load \\
\hline R429 & RC20AE562K & Resistor, 5600 ohms \(1 / 2 \mathrm{w}\). & Plate load \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline R430 & RC30AE333K & Resistor, 33,000 ohms 1 w. & MV decoupling \\
\hline R431 & RC20AE333K & Resistor, 33,000 ohms 1/2 w. & MV decoupling \\
\hline R432 & RC20AE273K & Resistor, 27,000 ohms \(1 / 2 \mathrm{w}\). & Waveform correction \\
\hline R433 & RC20AE223K & Resistor, 22,000 ohms \(1 / 2 \mathrm{w}\). & DC divider \\
\hline R434 & RC20AE473K & Resistor, 47,000 ohms \(1 / 2 \mathrm{w}\). & Vert MV decoupling \\
\hline R436 & RC20AE683K & Resistor, 68,000 ohms \(1 / 2 \mathrm{w}\). & Phase reference \\
\hline R437 & RC20AE104J & Resistor, 100,000 ohms \(1 / 2 \mathrm{w}\). & AFC diode load \\
\hline R438 & RC20AE104J & Resistor, 100,000 ohms \(1 / 2 \mathrm{w}\). & AFC diode load \\
\hline R440 & RC20AE104K & Resistor, 100,000 ohms \(1 / 2 \mathrm{w}\). & Plate load \\
\hline R441 & RC20AE224J & Resistor, \(\mathbf{2 2 0 , 0 0 0}\) ohms \(1 / 2 \mathrm{w}\). & Grid return \\
\hline R442 & RC20AE394J & Resistor, \(\mathbf{3 9 0 , 0 0 0}\) ohms \(1 / 2 \mathrm{w}\). & Plate load \\
\hline R443 & RC20AE474K & Resistor, 470,000 ohms \(1 / 2 \mathrm{w}\). & Charge limiting \\
\hline R 444 & RC.20AE474K & Resistor, 470,000 ohms 1/2 w & Grid return \\
\hline R445 & RC20AE474K & Resistor, 470,000 ohms \(1 / 2 \mathrm{w}\). & AFC delay \\
\hline R446 & RC20AE104K & Resistor, 100,000 ohms \(1 / 2 \mathrm{w}\). & Grid return \\
\hline R447 & RC20AE105K & Resistor, 1 megohm \(1 / 2 \mathrm{w}\). & Grid return \\
\hline R449 & RC20AE225K & Resistor, 2.2 megohms \(1 / 2 \mathrm{w}\). & Grid return \\
\hline R450 & RC20AE475M & Resistor, 4.7 megohms \(1 / 2 \mathrm{w}\). & Cathode bias \\
\hline R451 & RC20AE224K & Resistor, \(\mathbf{2 2 0 , 0 0 0}\) ohms \(1 / 2 \mathrm{w}\). & MV plate load \\
\hline R453 & RC30AE224K & Resistor, 220,000 ohms 1 w . & Error volt take off \\
\hline R454 & RC30AE224K & Resistor, 220,000 ohms \(1 \mathbf{w}\). & Error volt take off \\
\hline R456 & V-6067-4 & Resistor, glasohm, 150 ohms 3 w . & Cathode bias \\
\hline R466 & RC20AE103K & Resistor, 10,000 ohms \(1 / 2 \mathrm{w}\). & Decoupling \\
\hline R 467 & RC20AE105K & Resistor, 1 megohm \(1 / 2 \mathrm{w}\). & Positive bias limiting \\
\hline R468 & RC20AE154K & Resistor, 150,000 ohms \(1 / 2 \mathrm{w}\). & Plate load \\
\hline R469 & RC20AE225K & Resistor, 2.2 megohms \(1 / 2 \mathrm{w}\). & Grid return \\
\hline R470 & RC20AE272K & Resistor, 2700 oinms \(1 / 2 \mathrm{w}\). & Plate load \\
\hline R471 & RC20AE272K & Resistor, 2700 ohms \(1 / 2 \mathrm{w}\). & Limiting \\
\hline R472 & RC20AE331K & Resistor, 330 ohms 1/2w. & Cathode bias \\
\hline R474 & RC20AE225K & Resistor, 2.2 megohms \(1 / 2 \mathrm{w}\). & Diode shunt \\
\hline R475 & RC20AE101K & Resistor, 100 ohms \(1 / 2 \mathrm{w}\). & Parasitic suppressor \\
\hline R476 & RC20AE101K & Resistor, 100 ohms \(1 / 2 \mathrm{w}\). & Parasitic suppressor \\
\hline T401 & V.9584-1 & Transformer & Vert output \\
\hline Z401 & V-9213 & Filter & Integrating \\
\hline Z402 & V-8298 & Yoke assembly (complete) & Deflection \\
\hline & & Section 5-Power & \\
\hline \({ }^{*} \mathrm{C} 501\) & V.9575 assy & Capacitor, electrolytic, 60 mfd 450 v . (assy consists of C403, C5O1 and C502) & Filter \\
\hline *C502 & V.9575 assy & Capacitor, electrolytic, 20 mfd 450 v . (assy consists of C403, C501 and C502) & Filter \\
\hline C505 & V-6023-4503M & Capacitor, hi-temp 05 mfd 400 v . & Screen by-pass \\
\hline C506 & V-6023-4503M & Capacitor, hi-temp 05 mfd 400 v . & Plate decoupling \\
\hline C507 & V-6454 & Capacitor & Osc. trimmer \\
\hline C508 & RCM 20B271K & Capacitor, 270 mmf & Grid bias \\
\hline C509 & V-5895 & Capacitor, \(\mathbf{5 0 0} \mathrm{mmf}\) & HV filter \\
\hline L501 & V-6471 & Choke & Filter \\
\hline L502 & V-9279-1 & Coil & R.F \\
\hline R501 & RC41AE333K & Resistor, 33,000 ohms \(2 \mathbf{w}\). & Screen load \\
\hline R502 & RC20AE680K & Resistor, 68 ohms 1/2 w. & Plate decoupling \\
\hline R503 & RC20AE683K & Resistor, 68,000 ohms 1/2 w. & Grid return \\
\hline R504 & RC20AE104K & Resistor, 100,000 ohms \(1 / 2 \mathrm{w}\). & HV filter \\
\hline *SW501 & V-9686.1 assy & Switch (assy consists of SW 501 , R200 and R201 & On-off \\
\hline T501 & V-9595-1 & Transformer & Power \\
\hline T502 & V-9278 & Transformer & Hi-voltage \\
\hline \multicolumn{3}{|l|}{*Sold only as complete assembly.} & \[
\begin{aligned}
& \text { MODE } \\
& \text { Ch. }
\end{aligned}
\] \\
\hline
\end{tabular}
© John F. Rider

© John F. Rider

TO PREPARE THE RECEIVER FOR OPERATION:

Models H-617T12 and H-619T12 are shipped in operating condition. There is no shipping material to be removed. Simply remove the receiver from its carton, and connect the A-C plug to a 105 to 120 volt 60 cycle A-C outlet.

However, it is desirable that the adjustment of the ion trap magnet be checked in order to obtain best performance from the receiver. A check of this adjustment will also avoid the possibility of C.R.T. damage resulting from prolonged operation with an incorrectly adjusted ion trap magnet. To check the adjustment, proceed as follows:
1. Remove the screws that secure the rear cover to the cabinet.
2. Remove the rear cover by pulling it straight out from the cabinet.
3. Apply power to the receiver.
4. Adjust the ion trap magnet as explained under ADJUSTMENTS.

These models contain a built-in antenna for use in areas of normal reception. In such areas when the built-in antenna provides good reception, no antenna connections are required. However, in weak signal areas or under adverse conditions, it may be necessary to use an external antenna. In this event, the antenna lead-in can be connected to the antenna terminals on the back of the receiver after disconnecting the built-in antenna wires that normally connect to these terminals. The lugs on the built-in antenna should then be insulated and dressed in such a position that they do not touch the chassis or components.

TO CHECK THE OPERATION OF THE RECEIVER
1. Rotate the BRIGHTNESS and CONTRAST controls completely counterclock-

\section*{wise.}
2. Turn on the receiver by rotating the OFF-ON-VOLUME control clnckwise.
3. Rotate the CHANNEL SELECTOR to the channel number of the desired station.
4. Rotate the BRIGHTNESS control clockwise until the screen is well lighted.
5. Rotate the OONTRAST control clockwise until a picture appears on the screen.
6. If the built-in antenna is in use, adjust the TELEVISION ANTENNA control for maximum picture contrast. If an external antenna is in use, this step is not required.
7. If the picture is moving up or down or quivering, adjust the VERTICAL HOLD control to stabilize the image.
8. If horizontal or diagonal bars or a folded-over picture appears on the screen, adjust the HORIZONTAL HOL control to obtain a clear picture.
9. Adjust the FINE TUNING control to the best picture detail.
10. Readjust the BRIGHTNESS and CONIRAST controls until pleasing shades ranging from clear white to intense black are attained.
11. Adjust the VOUME control for the desired sound volume.
12. Check the operation on all available television stations. Note that if the builtin antenna is in use, the TELEVISION ANTENNA control must be readjusted for maximum picture contrast each time the receiver is tuned to a different channel.
13. If necessary, adjust the vertical linearity, height, width, and focus controls as explained under ADJUSTMENTS.

MODELS H-617T12, Hi 619T12, Ch. V-2150-176

The cushion must fit snugly against the flare of the cathode ray tube in order that

\section*{DEFLECTION YOKE}

The picture adjustments are located on the rear of the chassis and are accessible through cut-outs in the back cover.

\section*{ION TRAP MAGNET}

Caution: When adjusting the ion trap magnet, care must be exerc
ing the neck of the C.R.T.

The ion trap magnet must always be adjusted for maximum picture brightness. With the magnet oriented approximately as shown in Fig. 1, rotate it around the neck of the tube position is found where the brightest raster is obtained.
FOCUS COIL
If a shadow falls on one corner of the picture or if the picture is not properly centered, adjustment of the focus coil will be head bolts that lock the coil to the adapter plates, and move the coil horizontally and vertically until the position is found where the picture is properly centered and shadows are removed. Tighten the short hex head bolts to lock the coilin this position. Fine adhex head bolts at each corner of the focus coil.

If shadows cannot be removed completely,
fer to ION TRAP MAGNET. refer to ION TRAP MAGNET
CATHODE RAY TUBE CUSHION

fig. 1 - top viem of c.r.t.

This adjustment controls the angle of the picture with respect to the horizontal. If the picture is not squared in the picture mask,
loosen the wing nut and move it to the left or right so as to rotate the deflection yoke. The picture will tilt to the left or right with the deflection yoke rotation.

\section*{FOCUS CONTROL}

The focus control (Fig. 2) should be adjusted with the brightness and contrast rect focusing cannot be obtained, the high voltage oscillator may require adjustment.
height and vertical linearity
The height adjustment controls the overall height of the picture, while the vertical linearity adjustment governs cononly. For this reason, a balance between the two controls is necessary to make the picture symmetrical and fill the mask vertically. WIDTH

The width control should be adjusted so that the picture fills the mask horizontally.

HORIZONTAL RINGING COIL
To adjust the horizontal ringing coil (L403), tune in the weakest station in the area, set the horizontal hold control at approximately the middle of its range, and adjust L403 (location shown on Fig.
© John F. Rider

\section*{ALIGNMENT}

TEST EQUIPMENT-To properly service the chassis, the following test equipment should be available:
1. R-F sweep generator which meets the following requirements:
a. Frequency range from 18 to 30 mc . with a sweep width of 10 mc .
b. Output adjustable with at least 100,000 microvolts maximum and a very low minimum.
c. Output "flat" on all attenuator positions.
2. Cathode-ray oscilloscope, preferably one with a wide band vertical deflectio amplifier and a low-capacitance input probe.
3. Signal generator capable of providing output frequencies listed below.

> 25.6 mc. lst I-F 24.1 mc .2 nd I-F 23.6 mc .3 rd I-F 24.7 mc .4 th I-F
4.5 mc . Audio I-F and ratio detector the frequency must be extremely accurate, preferably crystal controlled.)

NOTE: The R-F output level on all the above frequencies should be adjustable with at least 100,000 microvolts maximum and a
4. Heterodyne frequency meter with crystal calibrator (if the signal generator does not include a crystal calibrator).
5. Electronic voltmeter (vacuum tube voltmeter), with a high voltage multiplier probe for measurements up to 15,000 volts
and an R-F probe for measuring \(R-F\) voltages.

GENERAL INFORMATION-All test equipment and the chassis should be bonded together by short lengths of heavy (\(1 / 2\) inch) leads should be shielded interconnecting cable) and should be as short as coaxial consistent with ease of making connections The effectiveness of the bonding can be checked during alignment of placing the hand on the metal chassis or test equipment case. If the response pattern or meter reading changes visibly, the bonding must be improved before the circuits are aligned.

\section*{COMMON I-F ALIGNMENT PROCEDURE}

If a common I-F transformer is re-
placed or, for any other reason, is badly out of adjustment, it is advisable to turn the slug out (counterclockwise) as far as possible before beginning alignment. Then starting from this position, turn the slug in a clockwise direction until the first peak is reached. This procedure is recommended to obtain the correct peak rather than an undesired second peak which is sometimes obtained when the slug is turned clockwise past the first peak.

The common I-F alignment procedure is as follows:
1. Rotate the channel selector to the position where the flat of the shaft is parallel with the top of the tuner, thus selecting channel 13. Remove the 6AK5 R-F amplifier tube from its socket to avoid un
2. Connect the signal generator to the mixer tube through the coupling device shown in Fig. 3. The device is constructed by squeezing together a miniature tube shield until it fits the tube snugly and does not ground to the chassis. A . 005 mfd capacito is then soldered to the side of the shield By sliding the tube shield up or down on the tube, the capacitance between the shield and the tube elements can be varied to obtain additional control of the coupling over that provided by the attenuator in the generator output cable ground side of the generator output cable should be connected to the re ceiver chassis.
3. Connect a vacuum tube voltmeter to the video test jack on the receiver chassis and set the meter to its 5 volt scale
4. Set the signal generator to 25.6 mc (unmodulated), and adjust Ll 10 for maximum voltage on the VTVM. During this adjustment, keep the signal generator output adjusted so that the VTVM reading does not exceed 2 volts
5. Set the signal generator to 24.1 mc . (unmodulated), and adjust T301 for maximum keep the signal generator output adjusted so that the VTVM reading does not exceed 2 volts.
6. Set the signal generator to 23.6 mc . (unmodulated), and adjust T302 for maximum voltage on the VTM. During this adjustment, keep the signal generator output adjusted so that the VTVM reading does not exceed 2
volts.
7. Set the signal generator 24.7 mc .
(unmodulated), and adjust T303 for maximum voltage on the VTM. During this adjustment, keep the signal generator output adjusted so that the VTVM reading does not exceed 2 volts
8. Connect the sweep generator to the mixer tube through the coupling device previously described. The signal generator wil be used in the following steps to provide marker indications at various frequencies on signal generator input to the set cation, the in amplitude to avoid distorting the response curve. To reduce the signal generator input accordingly, the signal generator should be loosely coupled to the set by wrapping'a few turns of insulated wire around the coupling capacitor "pigtail" and connecting the signal generator to this wire.
9. Connect the vertical input of the oscilloscope to the video test jack through the de-coupling network shown in Fig. 4 The oscilloscope horizontal input should be connected to the sweep output from the sweep generator; turn the sweep control on the oscilloscope to the " X " or "OFF" position.
10. Adjust the sweep generator for a center frequency of 25.3 mc . with a 10 mc . deviation. Adjust the sweep generator output little noise on the oscilloscope pattern.

The oscilloscope pattern obtained should be similar to that shown in Fig. 5. Use the signal generator as a marker to check at the frequencies indicated. If the pattern obtained is not similar to Fig. 5, Ll10, T301, T302 and T303 should be re-adjusted to produce the correct pattern.

\section*{SOUND I-F ALIGNMENT PROCEDURE}
1. Connect the "high" side of the signal generator to the video test jack through a to the chassis.
2. Connect the vacuum tube voltmeter to the points indicated on the bottom view of the chassis, Fig. 7. The common lead should connect to point " C ", and the "high" lead should connect to point "A". Set the meter on its 5 volt (-DC) scale.
3. Adjust the signal generator to 4.5 c. (unmodulated). The accuracy of this frequency is very important. If a crystal the frequency should or is not available, frequency meter with a crystal calibrat 4. Adjust primary and secondary slugs
f T 201 and primary of T 202 for maximum
voltage on the VIVM. During this adjustment keep the signal generator output adjusted so that the VTVM reading does not exceed volts. The primary adjustments are made fro the bottom of the chassis while secondar adjustments are made from the top.
5. Connect the common lead from the VTVM to point "A" (Fig. 7), and connect th "high" lead to point "B". Here it is im portant that the case and components of the VTVM are not grounded to the receive chassis; otherwise, point "A" would b lead. lead.
6. Using the same signal generato the second frequency as in step 4, adjust the VTVM. Asy of T202 for zero voltage on resonance, the voltage will rapidly change from one polarity to the opposite polarity. The point where the voltage is zero is the correct setting
H.F. OSCILLATOR ALIGNMENT PROCEDURE

If the 6 J 6 oscillator tube is replaced, the different inter-electrode capacity of the new tube may change the oscillator frequency enough to necessitate realignment of the Alator.
Alignment of the oscillator on the high band is accomplished by adjusting the brass slug located adjacent to the vernier drive wheel on the front of the tuner. Alignment of the oscillator on the low band is accomlower front screwdriver is required.

The oscillator alignment procedure is as follows:
1. Set the fine tuning control at the middle of its range, and leave it in this position during the following adjustments
2. Set the selector switch to the highest of the low-band (channels 2 through 6) stations operating in your vicinity.
3. Peak the low band adjustment slug for the best picture detail.
4. Set the selector switch to the highest of the high-band (channels 7 through 13) stations operating in your vicinity.
5. Peak the high band adjustment slug or best picture detail
6. Check the previously made low band adjustment, and if the tuning has changed, repeat steps 2 and 3.

MODELS H-617Tl2, H-
MODELS H-617T12, \(\mathrm{H}-\)
619T12, Ch. V-2150-176

Turn the channel selector to channel 13, and remove the 6AK5 R-F amplifier tube.

COMMON I-F SECTION
Couple the sweep and marker generators to the mixer tube as shown in Fig. 3
\begin{tabular}{|c|c|c|c|c|c|}
\hline Step & Sweep Gen. Frequency & Marker Gen. Frequency & Remarks & Indicator Connections & Adjust \\
\hline 1. & Not used & \[
\begin{gathered}
25.6 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & Keep marker output adjusted so VTVM reading does not exceed 2 v . & Connect VTVM to video test jack & L110 for maximum voltage \\
\hline 2. & Not used & 24.1 mc . unmodulated & Same as step 1 & Same as step 1 & T301 for maximum voltage \\
\hline 3. & Not used & 23.6 mc . unmodulated & Same as step 1 & Same as step 1 & T302 for maximum voltage \\
\hline 4. & Not used & 24.7 mc . unmodulated & Same as step 1 & Same as step 1 & T303 for maximum voltage \\
\hline 5. & 25.3 mc . with 10 mc . deviation & \begin{tabular}{l}
Check at: \\
23.0 mc . \\
23.4 mc . \\
24.0 mc . \\
25.3 mc . \\
26.1 mc .
\end{tabular} & Keep sweep output high enough so that very little noise appears on the oscilloscope trace & Connect oscilloscope to video test jack. See Fig. 4. & If necessary, adjust Li10, T301, T302 and T303 to obtain correct response curve. See Fig. 5. \\
\hline
\end{tabular}

SOUND I-F SECTION
Connect the signal generator to the video test jack through a .001 mfd mica capacitor.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Signal Gen. Frequency & VTVM Connection & Remarks & Adjust \\
\hline 1. & 4.5 mc . unmodulated & See Fig. 7. Common lead to point "C" and high lead to point " A ". & Use 5 v. (-DC) scale on meter. Set sig. gen. output accordingly. & Pri. and sec. of T201 and pri. of T202 for maximum voltage \\
\hline 2. & 4.5 mc . unmodulated & See Fig. 7. Common lead to point " \(A\) " and high lead to point " \(B\) ". & Use same sig. gen. output as in step 1. & Sec. of T202 for zero voltage \\
\hline
\end{tabular}

FIG. 3-COUPLING FIGN. 3-COUPLING TO MIXER TUBE

FIG. 5-I.F
FIG. 5-I-F

© John F. Rider

© John F. Rider

\section*{CHANGES IN V－2150－176 CHASSIS}

In later production of the - － \(2150-176\) chassis used in Models H－617T12 and H－619T12 he following changes are incorporated

1．To reduce horizontal wobble under strong signal conditions and increase the con－ 1 watt（RC30AE 332 K ）rather than 5600 pins 6 and 7 of the 6 AL＇ 6 AGC tube）is 3300 ohms

2．To improve horizontal linearity，C427（horizontal discharge capacitor）is 330 mm （RCM20C331K）rather than 680 mmf ．

NOTE：The information given above under＂CHAVGES IN V－2150－176 CHASSIS＂applies also to the V－2150－176U chassis．

\section*{HORIZONTAL DAMPING TUBE}

The H－6l7Tl2 and H－619T12 service notes specify a type oU4GT or oW4GI as the horizontal damping tube．Only a 6 U 4 GT tube should be used in this damping tube should be and all references to a 6 W4GT as the horizontal

\section*{MODEL H－619T12U－CHASSIS V－2150－176U AND V－2150－177U}

The difference between the two chassis is in the use of different R－F uses a 6AG5．

With the
to the parts exception of parts that correspond in function or item number to Model H－619T12U．Welow，the H－6l7Tl2 and H－619Tl2 parts list applies and V－2150－177U chassis），the following parts of the corresponding parts listed in parts should be ordered in lieu notes．
\begin{tabular}{|c|c|c|}
\hline trem & Part No． & Description \\
\hline & V －5522 & Cord，A－C power \\
\hline & V－9805－1 & Cover assembly，black \\
\hline & V－9756－2 & Mask，CRT（H－619T12 and H－619T12U） \\
\hline R209 & RC30AE471K & Resistor， 470 ohms， 1 w ．．．．．．．．．． \\
\hline T203 & V－9814 & Transformer，audio output \\
\hline T301 & V－9798 & Transformer，video I－F．．． \\
\hline T302 & V－9798 & Transformer，video I－F \\
\hline T303 & V－9798 & Transformer，video I－F \\
\hline C443 & RCP10W6202M & Capacitor，． 002 mfd \\
\hline C462 & RCP10W4104M & Capacitor， 0.1 mfd \\
\hline C463 & V － 5596 & Capacitor，hi－kap，． 005 mfd \\
\hline R401 & V－9813 & Control，height（1 megohm） \\
\hline R416
R417 & RC20AE 152 K & Resistor， 1500 ohms 1／2w． \\
\hline \({ }_{\text {R43 }}\) & RC20AE392K & Resistor， 3900 ohms 1／2w． \\
\hline R437 & RC30AE332K & Resistor， 330,000 ohms 1／2
Resistor， 3300 ohms \\
\hline R439 & RC30AE 224 K & Resistor，220，000 ohms \\
\hline R447 & RC20AE392K & Resistor， 3900 ohms \(1 / 2\) w． \\
\hline R461 & RC30AE104K & Resistor， 100,000 ohms \\
\hline R464 & V－5924－2 & Resistor， 10,000 ohms 10 w（used when V－9759 HV Trans．，T502，is used） \\
\hline R464 & RC40AE183K & Resistor， 18000 ohms 2 w．（used when V－9803 HV Trans．，T502 \\
\hline R505 & RC30AE224K & Resistor，220，000 ohms 1.1 used） \\
\hline T502 & V－9759 & Transformer，high voltage \\
\hline
\end{tabular}

\footnotetext{
Some chassis use a V－9803 HV transformer（T502）instead of
V－9759．Only the V－9759 HV When replacing V－9759 HV transformer is stocked as a replacement

}

\section*{CHANGES IN V－2150－176 CHASSIS}

The schematic diagram，Fig． 8 in the orig inal H－617T12 and H－619T12 service notes should be altered to include later production anges as forlows：
1．Add a fuse between the center tap of the power transformer（T501）and ground，and bel the fuse F501．
2．Add a 510,000 ohm resistor in series with R501 and R502 in the H．V．power supply， and label the resistor R506．This reduces heating in the network．

3．Change the capacitance of C 427 in the pin 6 plate circuit of the 12 AU 7 horizontal multivibrator to 330 mmf ．This improves the horizontal linearity．

4．Change the resistance of R 437 connected be tween pins 6 and 7 of the 6AU6 AGC tube to 3． 3 K ．This reduces horizontal wobble under strong signal conditions and increases the

5．Delete
5．Delete R333 located between the AGC line and ground，and change the resistance of R458 in the AGC line to loK．These changes improve the signal to noise ratio at medium signal levels．Note，however，that these areas only．If receiver overload low signal strong signal areas，R333 should be in inserted and R458 should be should be re－ the schematic．

In accordance with the preceding informa－ ion，the parts list in the original H－617T12 and H－619712 service notes should be altered
follows
l．Change R303 to read RंC40AE472K Re－ sistor， 4700 ohms 2 w．
2．Change C427 to read RCM20C331K Ca－ acitor， 330 mmf

3．Change R437 to read RC30AE332K Re istor， 3300 ohms 1 w．
4．Add the following parts to the list：

.11
Changes IN V－2150－176U AND

\section*{V－2150－177U CHASSIS}

The schematic diagram of the \(\mathrm{V}-2150-176 \mathrm{U}\) and V－2150－177U chassis given in supplement \＃2 to the \(\mathrm{H}-617 \mathrm{Tl} 2\) and \(\mathrm{H}-619 \mathrm{Tl} 2\) service notes should be altered to include production changes as follows：

1．Add a fuse between the center tap of the power transformer（T501）and ground，and label the fuse F501．
2．Add a 680 mmf capacitor connected in parallel with R416 in the cathode circuit o the capacitor C 464 ．multivibrator，and label

3．Change the resistance of R463 in the plate supply circuit（pin 1）for the \(12 A U\) horizontal multivibrator to 47 K ．This along with the preceding change improves the hori

4．Delete R333 located between the AGC line and ground，and change the resistance of imprin the AGC line to 10 K ．These changes improve the signal to noise ratio at medium are effective in medium or ver，that these are effective in medium or low signal areas signal areas，R333 should be re－inserted ang R458 should be 470 K as shown re－inserted and matic．

In accordance with the preceding informa－ tion，the following parts should be added to the parts list in supplement \＃2 to the

 \({ }^{\text {C464 }} 463\) RCM20B681M Capacitor， 680 mmf 463 RC30AE473K Resistor， 47,000 ohms

SCHEMATIC DIAGRAM

INDEX
\begin{tabular}{|c|c|c|c|}
\hline & PAGE & & PAGE \\
\hline ALIGNMENT Instructions & 4 & SPECIFICATIONS & 2 \\
\hline PARTS LIST & 9,15-20 & top view - tube layout. & 7,8 \\
\hline Schematic & 10-14 & TRIMMER LOCATIONS. & \[
7,8
\] \\
\hline
\end{tabular}

The \(22 \mathrm{H} 20 / 23 \mathrm{H} 22 / 24 \mathrm{H} 20-21\) series of direct view TV receivers have many outstanding features. These include Remote Control, Turret Tuning with replaceable channel strips, main chassis construction using interchangeable sub-chassis and provision for easy addition of Phonevision.

In addition, provisions are made for reception, under present standards, of the new ultra high frequencies by the simple addition of ultra high frequency channel strips as required.
For the convenience of the serviceman, a built-in oscillator adjustment wrench and easily accessible test points are provided for use during alignment and test of the receiver

Fig. 1 Top View 22H20 Chassis H2255, Ch. 22H2O; H2328EZ, H2328RZ H2 H3437R, H2438R, H2439R, H2449E, H3267 H2409E, H3475R, Ch. 24H20; H2 445 R . 24 \(27 \mathrm{R}, \mathrm{H} 347 \mathrm{R}, \mathrm{H} 3478 \mathrm{E}, \mathrm{Ch} .24 \mathrm{H} 2 \mathrm{I}\);

Zenith television receivers are being manufactured with the new Glare-Ban "Black" tubes These tubes are constructed with a special glass containing certain metallic oxides which reduce halations and provide much better contrast.

The etched surface on the picture tube face coupled with the precise tilt of the protective glass, virtually eliminates undesirable reflections from windows, room lights, etc.

On those receivers equipped with the Remote Control Unit, station selection can be made with ease from any point in the room within reach of the 17 -foot extension cable.
© John F. Rider
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODEL* & SCREEN & TV CHASSIS & \[
\begin{gathered}
\text { RADIO } \\
\text { CHASSIS }
\end{gathered}
\] & SPEAKER & TYPE OF SET \\
\hline H2226R & 12-1/2\% Circular & 22H20 & None & 5-1/4" & Table-Mahogany \\
\hline H2227R & 12-1/2* Circular & 22 H 20 & None & \(5-1 / 4^{\prime \prime}\) & Table-Mahog-Pyroxylin \\
\hline H2227E & 12-1/2" Circular & 22 H 20 & None & \(5-1 / 4^{\prime \prime}\) & Table-Blonde-Pyroxylin \\
\hline H2250R & 12-1/2" Circular & 22 H 20 & None & 10" & Console-Mahogany \\
\hline H2255E & 12-1/2* Circular & 22 H 20 & None & 10" & Console-Blonde \\
\hline H2328EZ & 16" Rectangular & 23 H 22 Z & None & 5-1/4" & Table-Blonde \\
\hline H2328RZ & 16* Rectangular & 23H22Z & None & \(5-1 / 4^{\prime \prime}\) & Table-Mahogany \\
\hline H2352RZ & 16" Rectangular & 23 H 22 Z & None & 10" & Console-Mahogany \\
\hline H2353EZ & 16" Rectangular & 23 H 22 Z & None & 10" & Console-Blonde \\
\hline H2437E & 16" Circular & 24H20 & None & 10" & Console-Blonde \\
\hline H2437R & 16" Circular & 24 H 20 & None & \(10^{\prime \prime}\) & Console-Mahogany \\
\hline H2438R & 16" Circular & 24H20 & None & 10" & Console-Mahogany \\
\hline H2439R & 16" Circular & 24 H 20 & None & 12* & Console-Mahogany \\
\hline H2449E & 16" Circular & 24H20 & None & \(12^{\prime \prime}\) & Console-Blonde \\
\hline H2445R & 19" Circular & 24 H 21 & None & \(10^{\prime \prime}\) & Console-Mahogany \\
\hline H2447R & 19" Circular & 24 H 21 & None & 10* & Console-Mahogany \\
\hline H3267R & 16" Circular & 24 H 20 & 8H20 & 12" & Radio-Ph.-TV-Mahog. \\
\hline H3469E & 16" Circular & 24H20 & 10H20 & 12" & Radio-Ph.-TV-Blonde \\
\hline H3475R & \(16^{\prime \prime}\) Circular & 24 H 20 & 10H20 & \(12^{\prime \prime}\) & Radio-Ph. -TV-Mahog. \\
\hline H3477R & 19" Circular & 24 H 21 & 10H20 & 12" & Radio-Ph. -TV-Mahog. \\
\hline H3478E & 19" Circular & 24H21 & 10H20 & 12" & Radio-Ph.-TV-Blonde \\
\hline
\end{tabular}
*All model numbers with the suffix letter " \(Q\) " identify receivers equipped with the S17268 Remote Control Unit.

Power Supply - 110 V 60 Cycles AC Audio Output-TV Undistorted 1.8 Watts Maximum 3.2 Watts

Antenna Impedance - 300 Ohms

CONTROLS AT REAR OF CHASSIS

\section*{CONTROLS AND FUNCTIONS}

Location of the various receiver controls is shown in Fig. 2 After the receiver has been properly adjusted, the servicenian should remove the Horizontal Hold, Brightness, Fine Tuning, Vertical Hold, and Contrast Control knobs and re-position them so that the white dot stamped on the outer edge of each knob faces upward. (As in Fig. 2). The positioning of the knobs will aid the customer in resetting the controls should they be accidentally moved. A brief description of each control follows:

CHANNEL SELECTOR SWITCH: Switches into operating position the pre-tuned RF strip for reception of the particular channel desired.

FINE TUNING CONTROL: Provides a means of vary ing the frequency of the local oscillator to compensate or any frequency deviation which may result from tube and circuit variations. In operating this control it will be found that the range of sound is quite broad. Proper setting is the point where the best picture is obtained within the range of best sound.

VERTICAL HOLD CONTROL
VERTICAL HOLD RANGE CONTROL: The combination of these controls provide a means of changing the cathode resistance of the vertical oscillator to effect synchronization of the vertical sweep with the transmitted sync pulses. Adjustment is made by set ting the vertical hold control in the center of its range and adjusting the vertical hold range control for pro per sync. Improper adjustment will cause the picure to "roll" vertically
BRIGHTNESS CONTROL: Controls the cathode voltage of the picture tube to afford control of picture brilliance. Must be operated in conjunction with the Contrast Control for maximum picture clarity.

CONTRAST CONTROL: Control is in the plate circuil of the 12AU7 second video amplifier. It regulates the magnitude of video signal applied to the picture tube.
PICTURE CONTROL SWITCH: The Picture Control witch changes the magnitude of the sweep voltage into whe vertical the magniude of the sweep llowing the hoice of either a Ciant Circle or "conventional" pic ture

Fig. 2 Controls frequency of the transmitted sync pulses.

VERTICAL SIZE CONTROL: The Vertical Size Control is part of the vertical oscillator plate load. It is sed in conjunction with the vertical linearity control to adjust the size of the picture vertically.
vertical linearity control: The Vertical Linearity Control is in the cathode circuit of the ver ical output tube and is used to shift the operating poin of the tube so that the sween is amplified along that portion of the plate current curve which results in

HORIZONTAL DRIVE CONTROL: Regulates the magnitude of the horizontal sweep voltage applied to th grid of the horizontal output tube. Care must be exright side of picture begins to fold. HORIZONTAL LINEARITY CONTROL: The Horizonal Linearity Control should be adjusted for best hor izontal symmetry while observing a test pattern on the controls also affect linearity and possible interaction of these controls must be taken into consideration when making linearity adjust ments.
WIDTH CONTROL: A variable inductance L75 shunted across a portion of the secondary winding of the hor ductance changes the magnitude of the sweep voltage across the horizontal deflection coils thus causing the picture to widen or narrow accordingly.
FOCUS CONTROL: (22H20) A mechanical shunt which regulates the flux density of the ring type permanen magnet to effect proper focus.

FOCUS CONTROL: (\(23 \mathrm{H} \& 24 \mathrm{H}\) series) A combination electro-permanent magnet is used. Focus is accom rol at the rear of the chassis.

\section*{TUBE COMPLEMENT} CHASSIS

22H2O-23H22* - 23H22Z*
\begin{tabular}{|c|c|c|}
\hline SYMBOL & TUBE & FUNCTION \\
\hline V1. & 6CB6 & RF Amplifier \\
\hline V2 & 6CB6 & Converter \\
\hline v3 & 6 C 4 & Oscillator \\
\hline V4 & 6AU6 & 1st IF Amplifier \\
\hline V5 & 6AU6 & 2nd IF Amplifier \\
\hline v6 & 6AU6 & 3rd IF Amplifier \\
\hline V7 & 6AU6 & 4th IF Amplifier \\
\hline V8 & 12AT7 & V8A Noise Limiter Inverter V8B Interca \\
\hline V9 & 6BN6 & Sound Detector and Limiter \\
\hline V10 & 6 BF 5 & Audio Output \\
\hline
\end{tabular}

12AU7 V11A 1st Video Amplitier V11B 2nd Video Amplifier 6SN7GT V12A AGC Amplifier 6BN6 Jync Clipper 6BL7GT V14A Vertical Oscillator V14B Vertical Output 6AL5 Phase Detecter 6SN7GT V16A Horizontal Oscillato V60 6W4GT Horizontal Output 6W4GT Damper
\({ }_{5}\) 1X2 \(\quad\) High Voltage Rectifier 5Y3GT Low Voltage Rectifier 12UP4B Picture Tube

Tube complement same as for 22 H 20 chassis except that V22 is a 17BP4 and two 6BQ6GT tubes are used the same as 23 H 22 except that V22 is a 16 TP 4 . V19 on 23 H 22 and 23 H 22 Z chassis can be 1 X 2 or 1B3GT.

\section*{TUBE COMPLEMENT}

\section*{CHASSIS}

\section*{24H20 - 24H21*}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & TUBE & FUNCTION \\
\hline V1 & 6CB6 & RF Amplifier \\
\hline V2 & \(6 \mathrm{CB6}\) & Converter \\
\hline V3 & 6 C 4 & Oscillator \\
\hline V4 & 6AU6 & 1st IF Amplifier \\
\hline V5 & 6AU6 & 2nd IF Amplifier \\
\hline V6 & 6AU6 & 3rd IF Amplifier \\
\hline V7 & 6AU6 & 4th IF Amplifier \\
\hline V8 & 12AT7 & V8A Noise Limiter Inverter V8B Intercarrier Sound Amp. \\
\hline v9 & 6BN6 & Sound Limiter Detector \\
\hline V10 & 6BF5 & Audio Output \\
\hline V11 & 12AU7 & V11A 1st Video Amplifier V11B 2nd Video Amplifier \\
\hline V12 & 6SN7GT & \begin{tabular}{l}
V12A AGC Amplifier \\
V12B Horizontal Control
\end{tabular} \\
\hline V13 & 6BN6 & Sync Clipper \\
\hline V14 & 6SN7GT & Vertical Oscillator \\
\hline V15 & 6SN7GTA & Vertical Output \\
\hline V16 & 6AL5 & Phase Detector \\
\hline V17 & 6SN7GT & V17A Horizontal Oscillator V17B Horizontal Discharge \\
\hline V18 & 6BQ6GT & Horizontal Output \\
\hline V19 & 6 W 4 GT & Damper \\
\hline V20 & 1B3/8016 & High Voltage Rectifier \\
\hline V21 & 5U4G & Low Voltage Rectifier \\
\hline V22 & 5Y3GT & Low Voltage Rectifier \\
\hline V23 & 16GP4 & Picture Tube \\
\hline V24 & 6BQ6GT & Horizontal Output \\
\hline
\end{tabular}

TEST PATTERNS ON CIRCULAR SCREEN
MODELS

ghosts

BRIGHTNESS
TOO HIGH

VERTICAL CENTERING
HORIZONTAL HOLD
CONTROL INCORAECTLY SET

VERTICAL HOLD
NTROL INORRECTL SET
HORIZONTAL CENTERING
NTROL INCORRECTLY SET
\begin{tabular}{|c|c|}
\hline CHANNEL & freo band \\
\hline \[
1
\] & \\
\hline 2 & 54-60-MC \\
\hline \[
3
\] & 60-66 \\
\hline & 66-72 \\
\hline \[
5
\] & 76.82 \\
\hline 6 & \(82-88\) \\
\hline 7 & 174-180 \\
\hline \[
B
\] & 180-186 \\
\hline 9 & 186-192 \\
\hline \[
10
\] & 192-198 \\
\hline (11) & 198-204 \\
\hline 12 & 204-210 \\
\hline 13 & 210-216 \\
\hline
\end{tabular}

Fig. 3 Television Channels and Corresponding Receiver Oscillator Frequencies

\section*{ADJUSTMENTS AND ALIGNMENT}

\section*{FOCUS AND}

\section*{CENTERING ADJUSTMENTS}

The 22 H series receivers incorporate mechanical means of centering and focusing while the 24 H serie utilize mechanical centering and electrical focus.

The centering control lever is used for centering the picture both vertically and horizontally. An up-down movement of the lever moves the picture horizontally while a left-right movement shifts it vertically.

Complete focus, centering and beam bender adjustments are made as follows
1. Loosen the deflection yoke adjustment locknut (See Fig. 4) and move the yoke as far as possible toward the front of the picture tube. Check for picture tilt and tighten locknut.
2. Adjust the magnet positioning screws until the assembly is approximately \(1 / 8^{\prime \prime}\) from the yoke. Be certain that the focus cor sleeve in of the picture tube

Fig. 4 Adjustments on Feck of Picture Tube. between the lines to clear up. However, going beyond his point causes the picture to take on a "wormy" ap pearance from sound getting into the picture. Correct adjustment is obtained by tuning to the "wormy" picture and then backing the control off slightly unil the picture clears up

\section*{AFC ADJUSTMENTS}

The AFC adjustment can effectively be made by setting the horizontal hold control (L74) to a position where it is virtually impossible to "throw" the receiver out of horizontal sync when switching from
channel to channel.

\section*{AGC ADJUSTMENTS}

Connect the calibrated oscilloscope through a 10 K isolation resistor to the grid (\(\mathrm{Pin}_{\mathrm{7}} 7\)) of the 12AT7 limiter-inverter. Select the strongest TV signal and observe the deflection on the scope screen. Adjust the AGC delay control R 50 for 2.5 V peak output.
Satisfactory adjustment can also be made by observing the picture and backing off the AGC contro from its maximum clockwise position to a point com distortion, improper sync or excessive contrast maximum contrast setting.

CAUTION: Misadjustment of the AGC delay contro can result in a washed-out picture, distorted picture buzz in sound OR COMPLETE LOSS OF PICTURE AND SOUND.

\section*{SOUND ALIGNMENT}

Proper alignment of the 4.5 Mc intercarrier sound channel can only be obtained if the signal to the receiver antenna terminals is reduced to a level below the limiting point of the 6BN6 Gated Beam Detector. This level can be easily identified by the "hiss" which then accompanies the sound.
Various methods may be used to reduce the signa level, however, it is recommended that a S17203 step attenuator be used for most satisfactory results. To preven connections are made. Use as must be taken possible between the attenuator and receiver anten terminals and approximately 6 feet of 300 ohm shield ed line between the antenna transmission line and the attenuator. The shield from the transmission line should be connected to the attenuator and the attenuator itself grounded to the TV chassis under test.

After the connections are made, proceed as follows:
1. Tune in a tone modulated TV signal and adjust the step attenuator until the signal is reduced to a leve where "hiss" is heard with the sound.
2. Adjust the sound take-off coil L60, input coil L57 quadrature coil L58 and buzz control R19 for th cleanest sound and minimum buzz. It must be rethe "hiss" to disappear and further reduction of the signal is necessary so that the "hiss" never dis appears during alignment appears during alignment

In weak signal areas, where the signal amplitude is not sufficient to cause limiting, the adjustments may be made without the use of an attenuator

If intercarrier buzz is in evidence, after all normal sound adjustments have been made, the cause may be attributed to one or more of the following.
1. Improper adjustment of the AGC delay control. 2. Defective 12AT7 inverter-limiter tube
3. Extremely high signal levels which require attenuation in the antenna circuit.
4. Transmitter overmodulatio

CALIBRATING THE OSCILLOSCOPE
When aligning RF-IF stages and when making AGC adjustments, it is necessary to measure detector peak output voltage. This may be done with an oscilloscope which has been calibraled with a known DC voltage.

Connect the ground lead of the scope vertical input Connect the ground lead of the scope vertical input Turn the horizontal gain control fully counter-clockTurn the horizontal gain control fully counter-clocktact to the positive connection on the battery and observe the instantaneous spot deflection on the screen. Discharge the scope input capacitor by shorting out the leads and then repeat the procedure, each time readjusting the scope vertical gain until the spot deflects 3 large divisions on the screen. Each division will then represent 1 volt peak. The position of the vertical gain control must be noted for future reference.
When aligning the 40 Mc IF, it is of utmost importance to keep the sweep generator connections as short as possible. (See Fig. 5). Clip the negative lead of a chassis. Connect the oscilloscope to the grid (pin 7) of the 12 AT 7 limiter-inverter through a 10 K is \({ }^{\text {la- }}\) tion resistor. During alignment keep the output from the sweep generator at a level which develops approximately 3 V peak output at the detector as viewed on the calibrated oscilloscope. It is important that the voltage be maintained at this 3 V level

After the bias and scope connections have been made and the receiver allowed a 15 minutes warm-up per iod, proceed as follows
1. Feed the output from the sweep generator throug connector, as shown in Fig. 5 , into the converte grid (terminal " \(\mathrm{F}^{\text {s }}\)). This jacent to the 6CB6 converter tube.
2. Remove oscillator tube V3 and switch channel sel ector to channel 12.
3. Adjust the IF transformers to obtain an overal pattern of maximum amplitude with linearity, simila to the illustration in Fig. 6. It will be noted that adjustment of L51, T1 and T3 will have maximum effect on the low frequency portion of the pattern (42.75 43.5 Mc) whereas adjustment of T 2 and T 4 will have
maximum effect on the high frequency side (45.75 and 45 Mc .) 'T5 tilts the top and is adjusted to obtain best symmetry.

After the correct overall pattern is obtained, turn the channel selector to channel 2 and inject a 47.25 Mc marker into the sweep. Adjust the low channel adjacent sound \(\operatorname{trap} \mathrm{L} 53\) for minimum indication on
the scope or on a VTVM connected to the video detector.
4. Feed a 4.5 Mc crystal calibrated signal to terminal "C" Fig. 20 and connect the RF probe of a VTVM o the cathode (Pin 11) of the picture tube. Advance contrast control for approximately 1 volt indica on on the meter and adjust trap L63 for minimum indication.

Fig. 7 RF Shelf

MASTER OSCILLATOR ALIGNMENT
The 6C4 master oscillator operates above the incoming frequency on the low channels (\(2-\overline{0}\)) and below on he high channels (\(7-13\)). Slug L52 is used to pre-se the master oscillator on channel 7 since the channel strip itself does not have an oscillator adjustment.

The master oscillator adjustment is to be made only if resonance cannot be obtained with the strip oscillator adjustment wrench when the fine tuning contro is in its center position (open end of pulley on the RF sheif facing up) and after it has been determined tha the channel strip itself is not at fault.

Although it is possible to set the master oscillator L52 by tuning in a station and alternating the master and strip oscillator adjustments until proper tuning re sults, the use of the Mega-Sweep and Mega-Marke Sr . is preferred. The Mega-Marker Sr. is provide
with crystas for the sound carrier frequencies of all 12 existing channels. The sound carrier frequencies can be used in adjusting the master oscillators, however, it is recommended that the Mega-Marker Sr . uency d than 7 (175.25 Mc) e inserted into one of the 2 tra positions and adjust be inserted into one of the extra positions and adjust
1. Connect the negative lead of a 4.5 V battery to point "A" (See Fig. 20) and the positive lead to chassis.
2. Feed the signal generator through a S-15369 matching transformer to the antenna terminals of he receiver. Fig. 5.
3. Set the channel selector to channel 7 and turn the ine tuning control until the open end of the RF shelf pulley faces upward.
. Adjust the sweep generator for an RF response curve (similar to Fig. 6). Set the Mega-Marker Sr on channel 7 and observe the video marker on the re sponse curve. Adjust L52 until this marker falls at approximately \(50 \%\) on the response curve.

In adjusting the master oscillator on the sound carrier frequency for channel 7 , the above procedure is followed, with the exception that the sound marker is placed at approximately 20 times down on the re-
sponse curve

\section*{TURRET TUNER AND RF} SHELF ALIGNMENT
The RF shelf adjustments are made at the factory and The RF shelf adjustments are made at the factory and normally do not require readjustment unless the unit essary, they are made as follows:
1. Connect the negative lead of a 4.5 V bias supply to point "A" (See Fig. 20) and the positive lead to chassis.

Connect the oscilloscope through a 10 K isolation re sistor to terminal "C" and chassis
2. Feed the output of the Mega-Sweep through a S-15369 matching transformer to the antenna terminals of the receiver
3. Adjust the Mega-Sweep and check the RF response curve (See Fig. 6) on each channel. If all the response curves are tilted approximately the same amount, firs check the IF response to see that it has a reasonably just the RF Fig. 6) before an attempt is made to ad set the channel selers. If the IF response is correct, the RF grid (C9), RF plate (C8), converter grid (C13) the RF grid (C9), RF plate (C8), converter grid (C13)
for symmetry and amplitude of the response curve. 4. If the receiver sensitivity is satisfactory on the low channels (2 to 6) and is down on the high channels adjust the high channel peaking trimmer (C15) for maximum sensitivity with band pass.

\section*{SERVICE HINTS}

FRINGE RECEPTION - Vertical synchronization in weak signal areas may be improved by lowering the value of the resistor in the grid circuit of the sync as 10,000 ohms may be used, however, care must be exercised as too great a reduction of this resistance may introduce horizontal distortion into the picture on some signals.
POOR VERTICAL LINEARITY - (\(22 \mathrm{H} 20-23 \mathrm{H} 22 \mathrm{Z}\)) If this condition cannot be corrected by adjustment of is condition cannot be corrected by adjustment o ill probably lie in a defective 6BL7CT vertical sweep
tube.
S-17268 REMOTE CONTROL UNIT - Locking of the S-17268 REMO can be caused by failure of the worm drive gear to disengage. This condition can be the result of a weak solenoid armature actuating spring or misalignment of the magnet mounting bracket. It
uill be noted that the solenoid mounting bracket ha slotted mounting holes which allows for horizontal as well as vertical alignment. Improper seating of the solenoid clapper plate on the magnet core will cause excessive buzz.
IMPORTANT: Any receiver equipped with the remote IMPORTANI: Any receiver equipped with ine remote its most satisfactory operation with the remote control TESTING GERMANIUM CRYSTALS - If, after al normal adjustments have been made, the picture ap pears washed out, the cause may be low detector out put due to a defective germanium crystal. The crysta may be disconnected and tested with an ohmmeter fo front-to-back ratio. The resistance in one direction
should be lower than 400 ohms and at least 25 times should be lower than 400 ohms and at least 25 times
this resistance (10,000 ohms) or higher in the other direction. Any ratio less than 25 to 1 would indicate a below standard crystal

Pins 7\&8 V8A-Pin 6 V12A Pin
\(1 \mathrm{~V} 11 \mathrm{~A}(60 \mathrm{cps})\)
Pin 2 V14B (60 cps)
Pin 2 V12 B (15.75 Kc)

Pin 6 V8A Pin 2 V11A Pin 6 V11B Pin 2 V13 Pin 11 V22 Pin 1 V14B (60 cps) Pin 5 V16A (15.75 Kc)

Pin 7 V13 (60 cps)
Pin \(1 \& 5 \mathrm{~V} 15(15.75 \mathrm{Kc})\)
Pin 2 V16B (15.75 Kc)

Pin \(5 \mathrm{~V} 12 \mathrm{~A}(15.75 \mathrm{Kc})\)
Pin 2 V15 (15.75 Kc)
Pin 5 V17 (15.75 Kc)

Pin 4 V14A (60 cps)

\section*{© John F. Rider}

Fig. 17 Schematic Diagram 24H20 Chassis.

Fig. 18 Schematic Diagram 24H21 Chassis.

Fig. 19. Schematic Diagram, Chassis 23 H 22 and 23 H 22 Z .
Chassis 23 H 22 Z same as 23 H 22 except for picture tuhe.

\section*{© John F. Rider}

Fig. 20 Schematic Dlagram 22H20 Chassis (Wave Forms Shown Also Representative
For \(23 \mathrm{H} 22 \mathrm{Z}, 24 \mathrm{H} 20\) and 24 H 21)

© John F. Rider

 replacing the \(\mathrm{a}-\mathrm{m}\) reaking coil. The early
 eow te wip peaking ablack dot
col
If oscilations are present when the new
ype peaking coil is isedit it is ossillt the the
 former Th04. In some instances the silver mica capacitors in Trout havc necome open Hacement of venvertormer to Tlilate. The re2B92) will curc the trouble
Under the heading "Tunable Audio Hum," the resistor mentioned
instead of 2.200 ohms.
In areas where any two adjacent chanels may be received, the sound transmission from the lower channel may cause interference on the picture of the higher channel. This type
of interference may be reduced to a minimun or eliminated by means of an adjacent chan2nd vidio i-f amplifier
The trap is constr
The trap is constructed by using another
sound trap, L308, part numler 72A88-1, which sound trap, L308, part numler 72A88-1, which
should be modified and installed in the receiver in the following manner
1. Procurce this sound tra
2A88-1) and remove two turns from the coil at the end farthest from the slug screw and resolder the coil to the lug on the form (do
not remove the capacior) Clip the white lead
lead from the coil.
3. Remove the
Remove the cov
strip and locate 7302 .
ort length (approximatel nd wind approximately 24 - or 26 -guage wire wise direction on T302. These turns should be positioned on the small fiameter portion
of T 302 at the end farthest from the slug screw, with one end of the wire liopved under
itself to hold the coil in pusition in a manner itself to hold the coil in pusition in a manner
similar to the coupling coil of \(T 301\). similar to the coupling coil of the \(11 / 2\)-turn coil to the ground connection of T302.
6. In a large number of these chassis, an
unused \(1 / 4\)-inch hole will be found between V302 and V303, but if the hole has not beer punched, one should be drilled and the new rap inserted.
Connect the black lead from the new
rap to the ground lug of T 302 and connect the toose end of the \(11 / 2\) oturn coupling coil to
the the other lug on the new trap.
Kealign the video i-f stage Realign the video i-f ftages. Due to the
slope of the video \(i-\mathrm{f}\) curve, it is difficult to slone of the vidco i-f curve, it is difficult to
align the new trap to to 27.25 Mc with a signal
generator, so the slum she generator, so the slug should be adjusted for
minimum interference on the picture. Howminimum interference on the picture. How
ever, care must be used when making this ever, care must be used when makillg this
adjustment since it is possible to affect the
ade video i-f landp
rectly made.
9 Use a swecp generator and scope to chek the video i-f bandpass after adjustment
to be sure the trap las

\section*{Admiral Ch. 20X1}

This chassis appears on puges 4.38 through
\(4-62\) of Rider's TV Alanuel Volume 4 Weak sound may be chue to the use of an incorrect sound i i. f. models are wired for permanent-magnet typhe speakers part mumbler 78 B. \(52-1\) and these chas-
sis may be ilentinier hyy the list ter " C " stamped
s.sit
2. 20X1 chassis made for straight TY
models are wired for an electro dynami models are wired for an electro dynam
speaker part number 78 B 50.1 or \(78 \mathrm{~B} 51-1\) an thesc chassis are not stamped with letter "C If the electrodynianic type sileaker is use
with a conlination model clissis (stamped with a conllination model chassis (stampe
with the letter "C"), weak sound will resul with the letter "C", weak solund will resuit a chassis wired for an electrody namic speake
the chassis will lee inoperative. Note that the the chassis will le inoperative. Note that the
20 Y 1 (12-iuch) chassis in straight TV models is wired only for an clectrodynamic speaker Should the sound level be weak in sets wit the correct speaker in use, careful realigı
ment of the 4.5 Mc should be made.
Admiral 32X26, 32X27, 32X35, 32X36, Ch. 20Z1, Radio Ch. 5B2 Applange has feeet made in the 2PA1 power
spiter circuit to reduce residual hum This power supply is used with the 202
chassis in combination models using the 5B radio tuner. The following changes will re
duce hum to a low duce hum to a low level. of V606 to center tap of R638-R639 candoh resistor. Remove lead that connects C651B to center tap of R638-R639. 2. Disconnect 270,000 -ohm resistor R635
from center tap of candolm and reconnct to from center tap of candohm and reconnct to
pin 4 of V 606 . Leave center tap of candohm unconnected 3. Cominect a 1 -watt, 22,000 -ohm resistor
\((60 \mathrm{~B} 14-223)\) from C651C to 651 B and lead from C651H to pin 4 of V 606 , as show in the accompanying diagram.
These changes have been incorporated
2PA1 power supplies now in production

ON LINES INOII
OLO WIRING
Associated Merchants 12T1, 12 T 160C2. 160C3
The service diata for these mextels are the
:atuc as those for Bendix Models 2025. 30.3 . anid 610122 except for the changes in the part:
list that are sliown elow and change mowtices sec Bendix 2025. 3033. and intoct

Automatic P-490 TV-707 TV-709 Automatic P-490, TV-707, TV-709,
TV-710, TV-712, TVX313, TVX404 These models all use Chassis AR-TV-70\%. A final oscillator adjustment for each channel
Nonuld he made .in the receiver at the time of Hhnuld be made .ins the receiver at the time of
installation and whenever the of oncillator tube is changed. This "ssillator adjustment can he made one eacll channel withunt rennowing the receiver irom the cabinet. The fol-
lowing procedure should be followed in setting the oscillator frequency for cach channel : 1. Turn chamed selectur to the remuired thamel.
Remuve clammel selector knuh
3. Kemwe two woont screws sccuring chan
nel selectur ingicatills plate.
Inting chamel mumber (oll chassis armued
surich.
witel.
5. Insert tiber or bakelite-type screw driven 5. Insert thler tor bikelite-type serew driver
careiully in sloted brass slug in uscillator coil. o. Whast ior best compromise hetween
hanges for Admival Models \(32 \times 26\),
\(32 \times 27\), \(32 \times 35\), and
32

\section*{Associaled Merchants 114 C . 114} 116 C .116 CD .16 RCT
The service data for these nurclele are the
 listed lellow:

 hannels and repeat ahowe procecture. Replace selector plate aud kinul.

\section*{Bendix 2025, 3033. 6002, Codes C} and D In order to improve electrical centering of the raster and to facilitate easier mechanica
adjustment of the focus coil, a revision of the horizontal oscillator and phase detector ircuit has been made. unction of capacitors C40 and C41 from the 2. Connect this lead of capacitor C39 to the junction of resistors R59, R60, and R61.
3. Remove lead of resistor R58 from 3. Remove lead of resisfor R58 from pin
number three of \(14,-6 \mathrm{SN} / \mathrm{GT}\), horizontal oscillator and phase detector.
4. Connect this tead of res 4. Connect this lead of resistor R58 to th
unction of resistor R55 and capacitor C36

\section*{Bendix 2025, 3033. 6002}

These motels Use timer asscmblies
ROTO4 (type 1), IKOTO5 (ywe in ROTO3 (type 3) as mentimed ine the parts ists for the maxhels. The sthematic for ROTO4 and alignment notes are given in
he service data for Morels 2025 , 3033 and he service data wor Morels 2025, 3033, and uners \(\backslash\) ROTO and AROTOS are siven in he service data for Moriels 2151, 3051, (x) (x)l.

\section*{elmont M-1101, C-1102, C-1104}

This Ch. 12AX22
-10 of Rider's TV Manaal Volume 4 . Model M-1101 "The Suburban" is a table
 with a whitc picture tuve. Model C-1e
"The Console" is a floor model with a glare
less grey picture the Model less grey picture tube. Modiel M-11 as "The
Suburban" is a table model with a glareless Suburban is a table model with a glareless
grey picture tube. As changes were made in he production of the 12AX22 chassis, code numbers were assigned to distinguish the
differences in the sets. The differences be ween the different code differences be plained below:
in the Core 1 chassis are wired as show cept for the tuner chas in Volume 4, ex Only terminals 6 and 7 should be connecte to H. Terminals 5, 8, and 10 should b tion between C 32 and C 31 direct connecVolume 4, C32 should go directly to termin 6, and C31 should go directly to to erminal Code 2. A \(1,000-\mu \mu \mathrm{f}\) capacitor is used in place of Cl11. The value of resistor R92 is
changed from 270,000 ohms to 220,000 ohms and the lead from R92 now goes to the +350 -volt line instead of to the +250 -volt ine. The value of R63 is changed from 5610
ohms to 680 ohms, 1 watt. Code 3. This is similar. to Code 2 except
that capacitor C109, \(47 \mu\) f has been deleted hat capacitor C109, \(47 \mu \mu \mathrm{f}\) has been deleted
from pin 1 tube 16 to ground. rom pin 1 tube 16 to ground.
hat C 117 is no longer connected to terminal
of T6. It is now grounded. Code 5. C111, \(680 \mu \mu \mathrm{f}\), and C109, 80-480
(A-8E-18508) are now connected in parallo (A-8E-18508) are now connected in parallcl
from the junction of C110 and R95 to ground.
Code 6 . C116,
18507) \(\mu^{\mu \mathrm{f}}\) (coil form, A5D-9-B, the 6 SLI. 7 agc amplifier, to pin 5 of tube 18, the 6 W 4 .
Code \(7 . \mathrm{R} 48\) is no longer connected to the +350 -volt line, instead it now goes directly to tap 3 of T6.
Code 8. R98 now goes to the +350 - oolt ne, instead of to tap 3 of T6. C113 is grounded instead of poing to the junction
of Cll
Cl C119, 1,000 umf, has been added from ground to the iunction of \(\mathrm{Cl118-A}\) and the lead from
C 114 that goes to tap 3 of T 6 . Code 9 . The value of R73 is 100,000 ohms to 68,000 ohms. The following additions have been made
the parts list in Codes 1 through 9 .

 red in deflection-yoke socket is now numdesignated as pin,+ 2 is now: 5,3 is 1 is now code 10 . The ralue of R 17 is 68,000 ohms (C-9B1-84), and a switch on R47 to the +250 -volt line lien added from to 18,000 ohms (C-9B1-77) R76 is changed to 560,000 ohms (C-9B1-95). R100 has be 19 and is now located from the 6 of tube pin 11 of tule 10 and C 67 to the tap of R 46 brightness control. The value of R100 is 100,000 ohms. R103 is changed to 5,600 ohm
2 watts (C-9B+-74). R108 5,500 watts (C-9B4-74), has been added fron C61-1) to the +350 -volt line. R105. and F-1
have been deleted from the circuit. C118have been delcted from the circuit. C118-
is now located from pin 1 of the powerground plag 10 pin 1 of ound; C119 goes fron
C114 C114. A \(1 / 4\) amp fuse hes lheen inserted from
pin 6 to pin 1 of the fumper
ode 11. Kesistor K107, 3,900 ohms, watts (\(\mathrm{C}-9 \mathrm{B4} 49\)) is added from pin 3 of
ulte 18 , the 6 W 4 , to the minus side of C 115 . horizontal-deflection transformer T6 has been changed from
\(-201-18530\). Code 12. Capacitor C120, \(7 \mu\) f (ceramic, cross coil L10.
Code 13. Capacitor C56 has been leted. anded contrast control, and R34 are now locomponent location in this circul changes own in Fig. 1. The lead from R34 pan 1 of tube \(9-B\), the agc amplifier. The in 1 goes to the junction of C C 4 ead from 37 has been relocated, as shown in \(F i s\) and its value is changed from 1,000 ohms to C60 have been has been deleleted. R35 nd C 63 are changed to 5,000 , ohms, 3,300 ms, 100 ohms, and \(22 \mu \mu \mathrm{f}\), respectively we location after control was moved to a nection of an oscilloscope or meter will connected across the contrast control, but ground)

Fig. 1. Changes in the aideo amplifier circuil
of the Belmont \(12.4 X 22\) R53 has hectu deleted and C59 has been
added. Additional chang cation are shown in Fig. 2. The lead from K50 and C59 goes to the agc line. The lead oi C116 goes to C116, and the other side sync amplifier. The learl from pin 2 goes to \({ }^{\text {tap }} 66\) (an atditional winding which is de and \(R 50\) is 2.200 ohms
T8, which went from R17 to pick-off coil T8, has been deleted. C72 has also been de-
leted. K99, to tap 5 of T6, has lieen deleted. To has been changed (see parts-list clange listed below), and now has an addlitional winding which is located hetween the wind-
ing for the fismen ing for the filanents on the \(1 \times 2\) and
winding going to the vitate of the 1.22 .

©John F. Rider

General Electric 12K1, 818
An adapter plug may be made which make
it unnecessary to remove the television chas it unnecessary to remore the television chas
sis when service has to be rendered on sis when service has to be rendered on the
radio chassis only of Models 818 and 12 K 1 A standardis octaly tute base is wired as show
in the sketch below. A jumper is connect in the sketch below. A jumper is connected
between pins 7 and 8 and also between pins
2 and 3 . This plug is then inserted into th \(J\)-4 socket on the radio chassis to re-instare audio contiun th add to energize
ments when the radio is searated from the TV chassis. A-c power is furnished at pin 3 -of P3 or with a suitable plut in receptacle
Precation-Wh power connection, it requires a male pin ja
which makes the pins "hot" at 110 volts.

Wiring for standurd ontal fube base for The plug slown above may also be used
when servicing the telewision chassis separated from the radio chassis. When this plug is
inserted into the octal socket 75 in the tele rision classis. it pernits application of power to the television classis
trouble shooting purposes.

General Electric 810, 811, 835 A new ceramic-core sweep transforme
Stock No. RT0.071, is recommended as substitute for the original molded horizontal sweep output transforniers for these model
It has several electrical design improvement ver the orisinal specifed transform over the arn higher efficiency and better
among the high-voltage insulation
The transformer is ohm resistor in shumt with a 0.0022 capacitor, connected letween the primary and
vide identical electrical characteristics to the original transformer, a few circuit revision are necessary when the substitution is made
Kits are available which contain all the addi-

ig. 1. RTO-0i1 transformer uscd in Electric Models 810, 811, and 835 ional components, except transformers or ube, which are required to make the con-
versions. Fig. 1 is a sketch of the RTO-071 ransformer. Fig. 2 shows the five steps required to hange the circuit for the uss of the substi-
uite transformer. The procedure is as follows: 1 Disconnect leads of defective sweep output transformer. including filament loo
 103 are removed wite it. Mount new, trans
former on chassis. Se Fig. 1 for lead iden former on chassis. See Fig. 1 for Pear iden-
tity to effect most satisfactory placement o ransformer. Wire new transformer into the
sircuit according to the diagram in Fig circuit according to the diagram in Fig.
2. Add a 27,000 -ohm resistor, URF-083, 2. Add a 27,000 -ohm resistor, 3. Disconnect the white lead of the hor
zontal size control, L18, that connects to pin zontal size control, L18, that connects to pins
4 and 6 of \(V 15\), and reconnect it to terminal 8 of the sweep transformer. Make sure that the leads from the horizontal size coil do no short to the frame of the sweep transformer high-voltage transformer should be made with the enigh-voltage insulation wire. 2054, in series with the \(1,500-\mu \mu \mathrm{f}\) capacito RCU-285. This series combination is the
connected between terminals 6 and 8 . connected between terminals 6 and 5. Remove the horiz-othm resistor, R6 L19. \({ }_{\text {The cons }}\) The conversion components re
\(1-1\) tock RTO--771 ransformer 1-Stock RTO-071 trat The kit consists of:
1-URF-083, resistor, 27,000 ohms 2 w carbon

1-USU-2054 capacitor, \(1,200 \mu \mu \mathrm{f}\), mica Readjustment of the blocking oscillato cases, if proper centering of the horizontal hold control cannot be had, it may be neces-
sary to reduce or increase the value of R5 sary to reduce or increase the value of R52
somewhat to effect the correct adjustment of the blocking oscillator trransformers. This
change should be limited to values between 35,000 and 82,000 .
There will probably be two settings of the
horizontal linearity control which will be horizontal linearity control which will be found to give good linearity. The prope.
setting is the one with the slug withdrawn from the center of the coil, or minimum in
ductance. The other position may cuss some ductance. The other position may cause som pattern.
General Electric 810, 814, 820, 830, General 840 835, 840
The following miscellaneous repair parts
are added for the head-end unit of the above
 RHM.070 Wather movesize "Cl" water (47 mils

\section*{eneral Electric 817, 821}

Under PRESET CONTROLS, the des-
cription of the TILT control was omitted The following should be added: ILT-if raster is slighty tilted and does yot square with the picture-tube mask, rotate
he deflection yoke in its clamp bracket by bosening the wing screw.

\section*{505. 506. Run \#3} Nodel 506 is the same as Models T-54 and
Nis. Kun \(\# 3\) is the same as Rum \(\# 2\) excep ior the \(\# 3\) is the same as Rur \#2 excep
ing changes: Resistor R29 from pin 5 to pin 6 of the \(r-i\) amplifier, \(V 5\), has been deleted. C61, a M005- \(\mu \mathrm{f}\) capacitor in the vertical oscillato pacitor connected from ground to the volunie control has also been deleted. Ri119, a 20.0000 olim resistor has been alded in place of C 23
from the volume control to ground. Capacifrom the volume control to ground. Capaci-
tor C99. 330 स \(\mu \mathrm{f}\), has been added in parallel
across C 19 and C 20 in the \(\mathrm{f}-\mathrm{m}\) detector, V2,
 circuit C100, \(1.5 \mu \mathrm{f}\), has been added from
the junction of C13 and C2M to the junction
of C14 and C 3 M .
The parts list for Run \#3 is the same as
that for Ruul \#2, except ior the following changes:

Hallicrafters T-54, 505. Run \#2 Run \#2 is similar to Run \#1 except for the
iollowing changes: Tube V3, the audio amplifier has been
changed for a 6 SH 7 to a \(6 \mathrm{AV6} 6\) and R 2, changed for a 6 SH 7 to a 6 AV , and R22
680,000 ohms, and \(\mathrm{C} 24,0.05 \mu \mathrm{f}\), that were connected to pin 6 o f the \(6 S H 7\) have beer
deleted. The tap from the yolume cotr deleted. The tap from the volume contro
goes to pin 1 of the 6 AV . R20 goes from goes to pin 1 of the 6AV6. R20 goos from
ground to the cathode, and R21 goes from
the cathode to the 110 -volt bus. The the cathode to the 110 -volt bus. The value
of R23 has been changed from 100,000 ohms of 470,000 ohms. Capacitor C \(98,10 \mu \mathrm{f}\) ha
ool heen added in parallel across cathode resistor (V4) R25.
Tubes 1,
Tubes \(1,7,8,9,11\), have been change
from type 6 SH 7 to type 6 AU 6 R R33, co nected to pin 1 of \(V 7\), has been changed from 27,000 ohms to 18,000 ohms. R 39, connected
to pin 1 of V8, has been changed from 27,000 to pin 1 of 18, has been changed from 27,000
ohms to 12,000 ohms. R40, connected to to
pin 1 of 19 has been changed from 77,000 pin 1 of 1,9 has been changed from 27,000
ohms to 18,000 ohms. L24 has been deleted ohms to 18,000 ohms. L24 has been deleted
from the 3 rd i -f circuit and R117, 6,800 ohms. substituted in its place, from pin 5 to
pin 6 of Vg. The value of \(C 52\), connected inn 6 of V9. The value of CS2, connected
irom pin 1 of V12 to pin 5 of VII, has been changed from 0.25 if to \(0.1 \mu\) f. The value
of C17, connected froml pin 3 of Vhe val of C17, connected fronn pin 3 of 12 to pin
2 of V 13 , has been changed from \(0.25 \mu \mathrm{f}\) to

R55 in the cathode circuit of the picture
tube V13, has been changed from 150,000 ohms to 470,000 ohms. R11, 5,600 ohms, connected from ground to the brightress contro k56, has been deleted R56 now goes directiy
 in parallel with R58, has been deleted. The
value of F 8 s has been changed from 6,800
ohms to 3,300 orm value of R.58 has been changed from 6,80
ohms the 3,300 ohms. The value of R83, con-
uectell from pin 4 of V18 to to thertial hectell from pin 4 of \(V 18\) to the vertical holk,
has lieen changed from 680,000 ohms has fieen changed from (880,000 ohms
\(5(0),(0,0)\) ohms. The values of \(C 73\) and \(\mathrm{C74}\)
 220, have heen changed from \(0.05 \mu \mathrm{f}\) to 0.03
fi. The value of RIO8, connected from pi H. To pin 4 of V12, has been changed from 68
ohms to 120 ohms ohms to 120 ohms.
The following.
The following changes in the parts list
for Run \#1 should be made for Run \#2:

Hottman CT800, CT801. CT802.
СТ900. CT901. Ch. 135
roballe causce also any sympoms and their

\section*{Moftracan
Ch. 146 \\ Insufficient adjustment range of the focus control R172 has occurred in 12-inch chassis
using the DuMont 120 P4 picture tube using the DuMont \(12 \mathrm{QP4}\) picture tube. Th
\(12 Q \mathrm{P}+\) tube requires more focusing curren \(12 \mathrm{P}+\) tube requires more focusing current
through the focus coil than other 12 -inch tube types, and maximum counterclockwise rota tion of the focus control
tube to its optimum focus. tube to its optimum focus.
Circuit changes to increase the amount of
current through the focus coil can be accomcurrent through the focus coil can be accom-
plished by changing one resistor and adding plished by changing one resistor and adding
another resistor, as shown in the accompanyanother resist.
ing diagram. \\

Circuil changes for Hoffman Chassis \(1+2\) and 140
The 2,500-ohm resistor formerly used as
R171 may be used as R210 The 1,500 -ohm resistor now used as R171 should be the resistor now used as
wire-wound type. R174A and B Bre a single large Candohm resistor, center tapped to
 These changes will increase the current
through the focus coil, and bring the adjustment of the focus control near the center of it range. These changes have been made on all sets produced after Serial No. H 913661
This also applies to Models 601 , Ch. 154 This also applies to Models
613. Ch. \(149,914,915, \mathrm{Ch} .150\).

\section*{HoHman Service Hints}

Symptom: Quivering of the picture duc to
partial loss of hoth vertical and horizontal sync pulses has been observed in strong signal areas. This occurs when a strong signal overloads the video i-f amplifiers and a limiting
action occurs which clips the sync pulses action occurs which clips the sync pilses.
Remedy: An increase in the agc action, which will proluce more agc linas with strong signals, can be accomplished by decreasing
the delay bias voltage on the agc diode This the delay bias voltage on the agc diode. This
delay bias voltage is derived from the plate, pin 2 of V113A, 2nd synced separator. Reference to the circuit diagram for Chas-
sis 140,142 , and 146 on page \(3-8\) and for sis 140,142 , and 146 on page \(3-8\), and for
Chassis 143 and 147 on page \(3-9\) of Rider's \(T V-\) Mlanual Volume 3, will show that a 10,000-ohm plate stabilizing resistor, R150), is
connecterd from pin 2 to ground A smalt connected from pin 2 to ground. A smaller
diode delay bias can te obtained by effectively tapping down on this resistor
R 150 at present is a \(10,000-\mathrm{ohm}, 1 / 2\)-watt,
\(10 \%\) composition resistor. Reno:e \(10 \%\), composition resistor. Rennove this re-
sistor from the circuit and replace with two 4700 -ohm, \(1 / 2\)-watt, \(10 \%\), comprosition resistors in series. The junction of the two new resistors provides a centertap for connection of
the delay bias lead, a green wire from pin the delay bias lead, a green wire from pin
of V110. This green wire is at present connected to pin 2 of \(V 113\).
This modification
This modification can be made on any
Hoff man receiver produced with signal keyed Hoff man receiver produced with signal keye
age and will aid materially in the stalilizing age and will aid materially in the stalilizizing
of picture sytuc itin strong signal areas. Factory modification has been accomplishced on
all sets produced afier Serial No. 921278 . This Chassis appears on pages 4-1 through
\(.4-6\) of Rider's TV Manual Volume 4. The trouble is experienced with hum or buzz in audio, and will eliminate such trouble and improve the quality of sound and picture: circuit of V 9 . Connect L17 direct to pin 8 of V9.
Remove jumper from pin 6, V9 and junction of R51-52 and R53,
4. Connect terminal of T1 which previ-
ously was connected to pin 8 , to pin 6 of V9. 5. Connect terminal of Tl which previously connected to L17 to junction of R51-52
and R53. 6. Connect 20,000 -ohm-per-volt meter across C51, and with meter on 10 -volt range, antenna in local plug, and signal tuned in, re-
adjust the top and bottom slugs of Ti for adjust the top and bottom sluge
maximum voltage across C51.

\section*{Majestic 12T6, 14C4, 14T2, 14T6, 16C6} Series 94
Fixcept for cabinet designs or picture tuhe
 as Mudel 12C4, and Nodel lich is the sanne
as 16 .
Majestic 14CT4, 16CT5, 19C6, 19C7 1671. 1672, 1673, 1674, 1675, 1900 1974. 1975. 16CT4, \(97 \& 98\) Series

Medel lite Th is a colsouletter" with a ma
 with a mahugany finish ank employs a \(1 h^{\prime \prime}\)

 also a commentete with a malug. Wans finvish, althengh it crupleys a \(19{ }^{9} \mathrm{r}\) rumut tulee. I total in these revecisers. The service data fur these nundels in the
97 ann yo series are the sanuc as the data for
 and additituls mentltwinct in the iolhewing para

 the twe serews which tuled the frout mave asembly. These pase through the two corner blocks on the inside of the cabinet at the tep).
When these screw, are remuved, the fromt
 crew: which bople the frome pancl and nask awembly. These pass thromplh the isur cur-Mer- on the lieture frame. Carciully lift ont
 casten the netal picture-tulke retaining bant
onfficienty so that the picture culce may be Shpeel throngh the oplecting. The high -woltage The che lumbld be lecated on the right oile Secure the metal lauk .wer the the ori the tille- by tighluening the two servers alle ernately and cevels. Wh that the retangular picture
 Cevers is os iollow: The bull, :ike ghas separation betwen the tratel with ature autiocornma cratime tor in duce ligh-witage leahage, inder humine it

HTectiveness, If handled accilentally, wash all traces of suaje. Usich the clu mical sulnewe
 1. Renneve the sloted head l., . . serew.
retaining the loakk and release with the interretaining the lack and release with the inter-
lueked line cord.
2. Reture the bap comtaining the beann hender. the hardware for deftections and ficus
coil asembly. and the froutt plug luutu, its, if used.
3. Renneve the detlection and focus crib assembly which is fastened to a slelf firr shipping purpus.s. Remove retaining wires that
are wraplect around fucus coil atjuntment
f. Carciully slide the deffectiom yike and fewers cuil assembly over the weck of the pic-
ture tube so that the detlection wo justment tlumb) sirew faces the top of the calinet.
5. Assemble the deflection yoke and frous
cuil assembly to the support hracket coil assembly to the suppert hracket using the
hardware prowided. See Fig. I for proper harilware assembly and mounting provedure 6. Remove the 60.32 grounding screw from the yoke frame (see Fig. 1 for lication). At
tach the grumud lue on the brown wiwe at
 \(\frac{7}{7}\) Slide the beam bender oper tike neek of the picture tube.
tube hase. 9 . Cunnect the male oxtal plug from the de Hection yoke and flecus coill assembly to the
feention ontal snoket from the chasis. The" eear parkel arljustments, that are illu trated for Mordel. \(1672.11673 .167+11675.119 \mathrm{C}\)
 nexcles blentioned ill this artive. The luca

 ony durnerverne (\(\backslash 1+1\))."
 Sumed Siginmentand the R-F and ()cillatior Sane as that iownulf firn the gt Series. Thine luat, and lciun, is the same ats that shrwn -
 5-1.3. except for the follenving changes: Pis

 anc7)-pins 3 and 5 are 0.2 v. pinn + is -2 restorer-clipyer-separatur-amplifier (V1). 12 2 U (7)-pin 1 is 90 v , pins 2 and 6 are 24 and pin 3 is 25 v . Vertical sweep oscillator
\((1,14.6 \mathrm{C} 4) \rightarrow \mathrm{mo}\) voltage on pin 100 v . and pin 6 is -25 v . Horizontal sweep mitput (V16. ob Q 6-GT)-pins 3 and 4 are
 2. 6 , and 7 are 11,5 kv. Horizontal damper (V18, \(61 \mathrm{~N}^{\prime} 4\)) are pins 2 anel + are N.C.. pin 3 370 v. pins 5 and fare 210 v , pin 7 i
 anuld 6 are 365 and \(v\) vac. Vertical output (\(1 \times 20\). Ko (0)-pin 1 is 0 y . The wellage reatimes for Monters \(1+C 74\) ne hort are the salle as those onn paye 5. 5.3
 and pin 11 is is 17 . Oseillatur-cunverter \((1) 3\)

Mavout fur Modits

 ant pin 7 is \({ }^{2}\) v. Third videt i.f. (

6 s, pin 2 is -6 v. Horizontal sweep oscillator ((15. 6SN7)-pin 5 is 100 v . Horizontal sweep cutput (\({ }^{2} 16,6 \mathrm{BQ} 6-\mathrm{GT}\))-pins 3 and
4 are 210 v pin 5 is 48 v no voltace
 Horizuntal damper (V18.6W4)- pini is - 85 \(\therefore\) pins 5 and 6 are \(225 v\)
 \(\mathrm{p}-\mathrm{m}\) s. speaker. The schematic for Series 97 and 98 is the sanie as that whicl appears on page 5 -
14 except for the following clarges in tieg ratio detector driver stage. A 100 -olm res resistor R 10 , is inserted from the junction of R28 and In9 to pin 1 of V6, the \(6 . \mathrm{AU}^{6}\) ratio detector
driver comnected from pin C of ratio detector transkrrner \(T 6\) to grounct, has been relocated ankd now gres fron pin C to pin 7 of V 6 , the ratio
detector driver. The value off \(\mathrm{C55}\) laas leew changed to 5000 , \(\mu \mu \mathrm{f}\). \(A\) a \(5(\mu \mu)\) - \(\mu \mathrm{\mu} \mathrm{f}\) capacitor C 32 las been alded from pin 7 to pin 2 an VO An 82 -othm resistor R26 has heen inserted
fromn pin 7 to R27. the 1,000 -chlme griel ren Thistere sellematic for mokels 1+CTt and 16,74 is the same as that described alove fur Seric

 Thie echenatic fur Mexlect 14\% is the salue
 Page 5-1t except firr the Conlowink clianges.
 the \(1 / 2-0.0 .11 .5\) video detecter. Has heril
changed irmm \(10 \mu \mu \mathrm{f}\) to \(15 \mu \mu \mathrm{f}\). Capacior

in inuwed, and C77C. \(10 \mu\) f, 450 v. inserttil pin 8 of V12A, the 1/2-124L' dec red sync clipper, has been changed from 8.200 whms to 7.000 , chmes: anne the value of resistor hiss in the samle from 12.048 shans to 11,100 olmus. The valut of resistor R100). Cumected from the junc iom of pinn 2 of 112 B and ping of V12 (1) 2.2 megohens. The 470.400 -ullm men resistur R116, las been deleted from the circeit and a direct comnection used in its place.
Mustel 1900 is tur not equippe:! with a built-in antema. The wo contuections from the terminal strip \(g\). ' the tuner. Since the huilt-in high-frequency intenna is int used, the 3001 -otmin transmis capacitors C112 and C11.3 attacheal to thi eection, and the line choke L21 (that are mitted in this mudel.l. In place of C114 an C115. 50001) \(\mu \mathrm{f}\), two \(0.01 \mu \mathrm{f}\) capacitors. C7 and C79 are connected frum the terminals of contering control R14 10 ohus, wertica elocated as shown in Fig. 4. On all vether muxdels int the 97 and 98 Series it gres fron he yellow lead of fucus coil 1.14. In Moxlet \(900 \mathrm{L12}\) is connected directly to the jurction Of C1A and the yellow lead of the focus nected in parallel across the vertical was conncoil. has heen deleted. The vertical centering cuil is connected, as shown in lig. to from to the -2.5 -volt line). The taps frum the vertical centering control are connincted as in the 97 and 98 Series schennatic. Additional changes in Modec 1900 are grees directly to the green lead of the focus coil. The lead ane the 270,000 onhm resistur
R79, frem the rell owe leat of the foen R79. frem the vellow lead of the focus coil
tu pinn 5 of 115 the horizonal swe lator. have beren deleted. The lead from the hurrizontalal size coil Lito and capacitor C79 to R83 have been deleted. Tap 2 or T12 gres
to the 470 .OWV--hhm resistor R90, the tead freme pin 1 of V15 groes to the junction of Cle(t) and K90. (74 gues to the red lead of the ver-

OJohn F. Rider

OJohn F. Rider

Searts 110.499 Series
Model 135 employs a 16 -inch kinescope,
16AP4, V12. The 16-inch tube has a metal cone that is connected to the high-voltage,
supply. The tube is insulated from the chassis by mounting it directly to the cabinet. The
tube should be installed as follows: (1) Remove the back cover by
(1) should in insalled an (h) Remote the back cover by removing (2) Be sure that the kinescope tube pro-
ector (cup) is mounted on the outside of (ector (cup) is mounted on the outside of
the cabinet back. If it is mounted on the in-
ide, turn it around. side, turn it around. Wounted in the center of a wooden block
owerer back rail eprotect the portion of the kinescope tube
extending beyond the cabinet. If it is not there, it will be found in back of the power \(\underset{\substack{\text { transf } \\ \text { rail } \\ \text { (4) }}}{ }\)
(4) Unscrew top panel and pull straight out. Do not remove
coils from the panel.
(5). Remove the plastic insulating ring by
losening the two nuts holding the kinescope
" U " shap "U" shape mounting ring and unwrapping
the bare wire from the top ends of the mounting ring. (It is not necessary to take the nuts (6) Remove the high voltage connector
bare wire

tube mount
Fig. 1. Frout mounting of kinescope,
The wire wive the wire fron
(8) Remove the 5U4
tater
(t)
(9) Place plastic ring on kinescope tube
with trade mark facing the neck of the tube. (10) Place high-voltage connector under Fig. 1 , Place bare wise in the indicated in
(11)
 (12) Plas indicated in Fig. I (12) Place kinescope tube and plastic ring
into the "U" Shaped bracket. The top of the
plastic ring will fit int plastic ring will fit into the wooden bracket
at the front of the cabinet. Support the tube at the front of the
with your hand.
(13) Slide the top panel into place with
the deflection and focus coils over the neck the deflection
of the tube
(14) Take
(14) Take up slack in
(15) Wrap one end of the bare wire (circling the plastic ring) around the left-hand end of the "U" sh
and tighten. and tighten,
(16) Wrap
aroun
anound right end of " "U" shaped bracket.
(17) Place terminal lug on one end of
ground haruess over right end of "U" shaped
bracket, Add second groukd hariess over right end of "U" shaped
bractid net nut and tighten.
(18) Remove one wing nut from the de-
(18) Remove one wing nut from the de-
fection yoke mounting bracket, place second
termina tug on ground harness under his nur

 (20) Berness under this nut and replace. ground harness is connected to the chassis. NOTE: Wire around plastice ring, "U" mounting brackets must all be connected together and grounded to the chassis.
(21) Replace screws in top wooden bracket.
(22)
(23) (23) Connect high voltage male pluy to the
(emale socket coming from the high voltage \(\underset{\text { (24) Place io }}{\text { compartment. }}\) tube. (lon trap will work best near the socket of the kinescope tube.)
(25) Place the socket on the kinescope \({ }_{\text {(26) }}\) Make sure that the hood on the de(26) Make sure that the hood on the de-
fection yoke is pushed as far forward as possible.
the \((27\). Push the deflection yoke as far up in
the hood as possible. (28) Place the focus coil as close to the (29) Make sure that the focus and deflection cables do not come in contat with the
cone of the kinescope tube (Outer surf of cone of the kinescope tube. (Outer sur (30) Proceed with all other adjustments in
the same maner as you do on the 10 - or \(121 / 2\). he same mann
inch models.
Caution : The inch models.
Caution : The metal cone of the picture tube
is connected direatly to the is connected directly to the high voltage. Ex-
treme care must be used so as not to come in treme care must be used so as not to come in
contact with this cone when the receiver is in
operation. operation.
The follo
 110.499-1, 110.499-2. The changes are not
retroactive, and should not be necessary on retroactive, and should not be necessary on
early \(\begin{aligned} & \text { production chassis sxcept for improving } \\ & \text { a particular function. }\end{aligned}\). a particular function.
Section (2), under Parts Removal, To Remection (2), under Parts Removal. To Re-
move the Chassis from the Cabinet, should
be changed to read: "On all models except be changed to read: "On all models except
912zreromeve the ccrews holding the antenna
terminal strip to the cabinet. On Model 9126 emove the antenna connector plugs connectng the antenna terminal." strip and the built-in The tube chart should have the following
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

Merrove Focus Range
(1). Change R 20 and 18,000 ohms, 2 watts.
(2) Connect R20 and R85 to the (2lage side of the focus coil instead of to
ver (3) Clange focus control R38 from 1,500 prove Contrast and Hold in Fringe Area This change increases the agc delay voltag
om 2.5 volts to 5 volts. (1) Change R15 from 39,000 ohms to
8,000 ohms, 2 watts.
(1) Change R64 from 6,800 to 3,900 ohm
and R59 from 1.5 megohms to Improvev Interlace
(1) Move lead of the vertical oscillator , from the grid to the grid return lead.
Reduce Drift of Horizontal AFC and the
Redi (1) Add R91, a 11-ohm 1-watt resistor In series with the heater of V15, 6 AL5, and
V10, \(6 T 8\). 10,6 T.
Changed
\(F\) (1) Remove all fusses
(2) 5 of the 6 W 4 damper tube and terminal 4 of 5 of the 6 Whal damper tube and termina
the horizonal output transformer T6.
Added he horizontal output transformer T6.
Added Horizontal Centering Control
(1) Add horizontal centering control 750 ohms, horizontal centering control R90,
(2) Run R39, 1,50 ohssis. from focus coil of top of horizontal centering control, instead (3) Connect R181 from screen of 6 BG6B oterminal 1 of the horizontal output trans-
former, instead of to terminal 3 of the yoke (armer, instead of to terminal 3 of the yoke.
(4) Connect top of horizontal centering ontrol to terminal 3 of the yoke.
control to plust arm of horizontal centering
360 volts. () Under Adjustments, Focus and Cen-
(ering, add: "On later model leceivers tering, add: "On later model receivers using
electrical centering proceed af follows: (1)
Swing the fous coils to center the . Swing the focus coils to center the picture
verically. (2) Turn the horizontal centering ertically (2) Turn the horizontal centering (3) Adjust the focus control R38 on the rear
f the chassis until the lines are in sharp Ithe chassis until the lines are in shar
ocus. It may be necessary to readiust the on trap magnet as indicated in step 8 above. mprove Vertical Flutter
(1) Change C43 from 0.00
(1) Cange C43 from \(0.005 \mu\) fo to \(0.01 \mu\) i
Additional changes that have been made are as fonlows: C2, \(10 \mu\) f, 150 volts, has been emoved from the tap of R30A, contrast con onnected to -2.5 volts. and \(C 25\) and \(R 30 \mathrm{~A}\) Eo directly to pin 1 of V7B. LL, L2, L3, LA,
\(\mathrm{L5}\), and \(\mathrm{L6}\), are 0.1 ohms. Figs. 2 and 3 show ddditions that have been made to the wave
and A new horizontal-hold-control circuit is
found in all sets having the chassis number \(110.499-3\) or or those having a highers dash num
ber, such as \(-10,-11,-12\), etc. There are, how ever. a quantity of receivers with the numbers ever, a quantity of receivers with the numbers
\(110.49,110.49-1\), and 10.449-2 that contain
henew horizontal hold circtit. These chas the new horizontal hold circuit. These chas-
sis are identififed with the stamped or written

(1) Remove C39, a \(0.01-\mu \mathrm{f}\) capacito
(2) Remove \(\mathrm{C} 38,222-\mu \mu \mathrm{f}\) capacitor
(3) Remove R47, a 1.0 -megohm resisto.
(4) Remove R46, a 47,000 -ohm resistor. (4) Remove R46, a 47,000 -ohm resistor.
(5) Remove R69, a 2,200 -hm resistor.
(6) Remove R45 and add R 23,23 -me ohm resistor, in its place. (7) Remore R68 and add R94, a \(1,800-\) oh
resistor, in its place
(8) Change C 65 from \(0.1 \mu\) to to \(0.05 \mu\). (9) Add C71, a \(0.005-\mu \mathrm{f}\) capacitor fron on 3 of the horizontal damper tube, 6 W 4 GT to o ins 5 and 7 of
tor tube, 6 ALL5.
(10) Connect
d -c restorer, sync clipper, sync of the 12AU? d -c restorer, sync clipper, sync amplifier and
(11) Add R96, 68,000 ohms across R77.
(12) Short out C49,

The horizontat linearity control. bs usec. ind in
all chassis having the chassis number 110.499 .

Fig. 2. Waveform at grito of syme amplifier.
 33 including type "A" and " B " only. To add a
horizontal linearity coil to other chassis proceed as follows: hic hole provided on the top of the main chas-
sis, using the figure showing the top of the
隹 thassis as a guide, near the high-voltage shield and the picture tube.
(2) Change C61 from \(0.25 \mu\) to \(0.1 \mu \mathrm{f}, 600\) volts. Change R87 from a 22,000 -ohm resisor to an 18,000 -ohm resistor, (5.) Remove wire from terminal 1 of the horizontal output transformer T6 and pin 3
of the horizontal damper tube 6 W 4 . (6) Add a \(0.05-\mathrm{ym}\), 600 -volt capacitor, put, from terminal 1 of the horizontal outwith C 57 and C 68 so as to to reduce the total
value to 12 nuf.

Fig. 3. Wavetorm of the horisontal phase
detector, \(V 15\) p pins 5 and 7 , applies to Model (8) Connect one side of the horizontal
linearity coil L21 to terminal 1 of the horizontal output transformer T6.
(9) Connect the other side of the horizon tal linearity coil to pin 3 of the horizontal damper tube 6 W.
(10) Under Alignment Procedure Width (10) U Under Alignment Procedure, Width
and Horizontal Drive, add: "(3) On later
model receivers having an model receivers having a horizontal linearity
control located on top of chassis next to the
oind control located on top of chassis next to the
high voltage shield. aduust this control for for
the best shaped picture horizontally." When high voltage shield, adjust ins coniro '
the betst shaped picure horizontally
using the horizontal linearity control, use using the horizontal linearity control, use
terminal 1 of the horizontal output transterminal 1
former T .
A description of the chassis in the 110.499
series is given below. series is isiven below.
Cbusis
Decripioion

\begin{tabular}{|c|c|c|c|c|}
\hline 110.499.2B & \begin{tabular}{l}
Original \(121 / 2\)-in. TV chassis with built \\

\end{tabular} & & 4 & ast \\
\hline & Original \(121 / 2\)-in. TV chassis with built & & A39198 & Koite brili hince, wontusut. \\
\hline 110.499 & n. round meal tube TV chassis wich & & & \\
\hline 110.499.3A & 16:in. found meal rube TV chassis with & & & \({ }_{\text {Knob }}^{\text {Knob }}\) \\
\hline 110.499 .38 & 16.ine found meal (ube TV chassis wih & & & Koobi fine maing, ma \\
\hline 110.499.10 & Revised doid & & - 139205 & \\
\hline 110.499-10A & & & 19 & Koiob hofon suund ver \\
\hline 110.499-10B & & & & \\
\hline 110.499.11 & Revised 123\(\}\)-inh TV chassis with new & & & used wid A33204, wal \\
\hline 0.499-11 & Recrers & & -A39200 & \\
\hline 0.499-11 & Stiod & & & \\
\hline 0.499.12 & & & & \\
\hline 110.499-12A & Reviect & & 1546 & \\
\hline 110.499.12B & & & Assi2 & Puas, initrlock \\
\hline & emaner sivi & -RS4 & \({ }^{1231 / 1223}\) & \\
\hline 110.499.20 & Revised 10-in. TV chasis wish & R15 & A233-1179 & Reisior, 18.0000 ohms, 2 \\
\hline 0.499.20^ & Revised ioinin TVaythensis with & -R20, R85 & A233-1179 & Reisitor, 18.0000 obms 2 \\
\hline 110.499-208 & & R64 & A232.11 & Rexisior, \\
\hline 110.499.21 & Reeised 123:-i. TV. TV chasis wime & -Rs9 & \(\mathrm{A}^{2}\) & Reisisot, \\
\hline 110.499.21A & & -R87 & A232. & \\
\hline 110.499.218 & and & R91 & 123 & \\
\hline 110.499.22 & ed 12Y: in. TV & R93 & A231-1233 & Resisoti \(3,3 \mathrm{meg}\) chms, \(1 / 2\) \\
\hline & dor & R94 & A231-113 & \\
\hline 110.499.22A & vised \(12 Y 2-i n\). TV chassis with an.
tenna swith, linearity control, and & R99 & A232-111 & \\
\hline 110.499.22B & & R96 & 119 & \\
\hline & inearity control, and & & A18160-1 & Sockere, kinescopoce. io. \\
\hline 110.499.33 & Rerised 16-in. TV chasuis wih ro & & A18160.2 & Sockre, \\
\hline 110.499.33 & oer & & \({ }^{154541}\) & Stump piomere ube, 10. \\
\hline & mad uibe. & & 154509 & (intip. piomuly tube, \(12 \%\). \\
\hline .33B & & & 154732-1 & \\
\hline fol & wing list is a supplement to the & & 732 & \\
\hline & ies: & & & \\
\hline & & T6 & A10100 & \[
\begin{aligned}
& \text { oin } \\
& \hline
\end{aligned}
\] \\
\hline Cs8 & A19108 & & & in \\
\hline & \(\mathrm{C}^{\mathrm{v}}\). \(+30 \%\) & & \({ }_{\text {A544796 }}\) & \\
\hline & A19121 & & & \\
\hline
\end{tabular}
Sears
101.868 \({ }^{\text {Ch. 101.865, }}\) 101.866, 101.867. Due to variation in design of horizontal
Dutput transfermers in sise outpunt transformers, in some sets, the voliage
output of the high voltage power supply is
reduce by reduced by grounding oue side of cappacitor
C102 instead of returning it to the high side (secondara) of returning it to the high side
reduction of the transiormer Till. This reduction of the high voltage (about 800
colts) \(g\) gives wider scan with certain horizonvolts) gives wider scan with
tal output transformers. In some sets resistor R147 is omitted in the
screen grid circuit of the \(6 B G 6 G\) horizo output tube. This results in lower screen voitrizontal scan.
orrect focus, the and it is difficult to get the be returned to transformer T11 as in the original chassis and R147 installed in its oriz-
nal position in the \(6 B G 6 G\) screen The high voltage will be back to normal. If nontion tcan is experienced; then the hori-
zontal output transformer will have to be
 lacement. There are two transformers cur-
tently used- \(\# 70930\) and \(\# 70372\), which

OJohn F. Rider

\section*{Sears Ch. 101.865}

The following is a revision and supersedes "Ion Trap Magnet Adjustme
Loosen thumb nut sufficiently to slip ion trap magnet on neck of picture tube from the rear with the narrow magnet ring toward the front of the tule. Tighten thumb nut as required to make magnet adjustable on neck of
picture tube. Position the ion trap magnet so that the open part of the " U " is in the direction of the second anode contact. The ion trap rear ring magnet should he approximately over the ion trap flags in the picture tube. The ion trap flags are small, rectanguabout 1 inch from the black base of the tube. Starting from this position, adjust the mag net by moving it forward or backward until the raster is observed. Kotate it slightly
around the neck of the picture tube for the around the neck of the picture tube for the
brightest raster on the screen, and at the same time reduce the brightness-control set ting until the raster is slightly above average brilliance. Adjust the focus control (on rea apron) until the line structure of the raste is clearly visible. Readjust the ion trap mag
net for maximum raster brilliance. The fina net for maximum raster brilliance. The final
touches on this adjustment should be mad with the brightness control at the maximum position with which good line focus can be maintained. Tighten thumb nut to perma-
nently hold magnet in adjusted position. Refrain from tightening too much however since excess pressure may break neck of picture tube.

Under Step 4 of "Video I-F Alignment," the first tuning slug adjustment with the former T8. This transformer should be TS The following paragraphs should be adde under "Picture Tube Installation"
of installing the wos strap around the top the picture tube. With the picture tube in place, the strap may hang over the flare of the tube. Fasten each end of the strap to the mounting springs attached to the mounting
bracket. Carefully pull the strap up the flare bracket. Carefully pull the strap up the flare
of the picture tube until it is in position near the front of the tube. The alternate method is to connect the mounting springs to the strap with the strap in front of the tube strap with the strap in front of the tube slip the mounting strap in position around of the strap and attempt to stretch it around the top of the picture tube before connecting to the other spring.
The following changes have been made to revised accordingly.
ithe coil assemblies the chanmel sequence hay be changed at will.
5. Vermer tuning-hernier oscillator tuning is provided by an auxiliary capacitor hunted across the plate portion of the tank ircuit. Average cuverage on the low rang \(\pm 0.5\) megacycles ; on the high range, \(\pm 1\) megacycles
tpproximute Gain Readinys

Sparton 4935, 4942, 4954. 4960. Ch
23TC10; 5002, 5003, 5006, 5007. Ch \(23 T D 10\)
Additional sync amplification and improved receiver performance can be provided for all is by following the procedure outlined be low:
On
n
On V11 (12AU7 Tube)
1. Disconnect resistors R53 (100,000 hms), R52 (1.0 megohm) and capacitor C 2. Connect the 1 N 34
3. Move ground from pin 7 to pin 8.
4. Move C48 (\(22 \mu \mu \mathrm{f}\)) from pin 6 to pin 7 5. Remove R54 (47,000 ohms) on pin 6. o ground. 7. Conn
al to pin 7 . Replace R48 (1.0 megohm) from pin
8. 8. Replace R48 (1.0 megohm) from pin 6
to +135 -volt line with new R48 (4,700 to +135 -volt line with new
ohms).
9 o pin 3.
On V16 (6AL5 Twbe)
10. Interchange Cl 00 and C 101 capacito leads on pins 5 and
New Parts Required
1. 1N34 Germanium crystal diode (Part No. PA4206).
2. 4,700 -ohm resistor, \(1 / 2\) watt (Part No RR12S-472)

\section*{Spartion 5068, 5069, Ch. 24TV9C}

Model 5068 and 5069 are consoles using re eiver chassis 24 TV 9 C and power supply. chassis 3TV9C.

\section*{Standard Coil TV-100 Series, TV-201 TV-202, TV-203}

In all models Cl is eliminated on some tuners by the use of a 3 - to \(9-\mu \mu \mathrm{f}\) trimmer a Description
1. Type of r-f amplifier-6AG5 with double-tuned bandpass coupling to converte grid.
2etting of of converter-Triode using on uctively a 6 J 6 . Oscillator excitation is in 3. Type of oscillator-Grounded Cathod Colpitts type using the second section of the 6J6.
4. Type of tuning-Switched inductances in a turret-type tuner. Normal channel sequence is progressive, channel 2 to 13 ; with
clockwise rotation, but due to clip in design

Output measured on Measurements Corpora Tuner. Yoint C loaded to gromnd with a 5,000 -ohm resistor only no i -f tube in circuit. Points \(A, A_{1}\) and \(C\) shown on sclematic

2. Oscillator Radiation

Radiation as measured at the antenna termi als with a tuned r-f voltmeter

\section*{Selectivity}

The selectivity of the \(r\) - \(f\) response shall be Tefned in terms of the attenuation at a bandwisth of 4.5 Mc and of the bandwidth at an mnnected to 6 db . With a sweep generator scilloscope connected to terminals and" an oscilloscope connected to terminal \(G\) (see
schematic), the sound and picture carriers are held to within \(3-\mathrm{db}\) attenuation from the peak of the r-f curve. Maximum bandwidth 6 db down is 11 Mc .

Intermediate Frequencies
-101 and TV-103 Tuners
1.25 Mc and 25.75 Mc for the found aies of are carriers at the i-f output of the pic split sound i-f assemblies have the following ranges:-

Sound trap: 21.0 Mc to 22.0 Mc
djustment of the brass-oscillator tuming slugs over plus and minus one turn from the all claannels so that the tuner may be used to produce intermediate irequencies of 21.0 M to 22.0 Mc for the sound carrier and 25.5 Mc 1020.5 Mc for the picture carrier.
peaked at approximately 23 Mc. Tuning single is from approximately 18.0 Mc . to 27.0 . Itc. TV:-104 and TV-111 are double peaked with peaks tumed to apmoximately 22 and 25.5 Mc . 0 Ocillor Churucteristics Stalility-After one min
the long time warm-un drift i from starting 150 kc on channel 13 and 50 kc on clannel 6 . Switch resetalility-Maximun detuning of oscillator circuit when switched is approxi-
mately 100 kc on chamel 13 . Minimum B+ mately 100 kc on channel 13 . Minimum B+ voltage, 120 volts, without loss of gain of
tuner. Reduction oi \(\mathrm{B}+\) to 00 v results in ap proximately \(2: 1\) loss of gain. Change of oscillator frequency from 150 volts to 90 volts results in slightity detectable change in sound Torque
Torgue
Forgue is held to a maximum of 90 inch-

\section*{Stromberg-Carlson TCl0. TC125Series} The series capacitors C90 and C91 in the changed from \(42 \mu \mu\) to \(4.5 \mu \mathrm{ff}\) (part no 10668).
Capacitor C43 in the horizontal-sweep output stage has been changed from \(0.22 \mu\) 400 volts, to \(5 \mu \mathrm{f}, 50\) volts (part no. 111030) Resistor 1259 has been changed from
22,000 ohms, \(1 / 2\) watt in TC10 and from 22,000 ohms, 1 watt in TC125, to 22,000 ohms, 2 watts. The required dissipation of about 1 watt was too great for the half-watt \(\stackrel{r}{ }{ }^{\text {alue. }}\)
bent metal shield has been added to cover the underside of the first audio-ampli-
fier tuhe socket to prevent extraneous audio pickup. This shield is designated part number 151104, and mounts with a PK screw which is already in use at that point. Light vertical fold lines in the picture can
usually be corrected by slight readjustment of the horizontal-size-control trimmer capacitor. This capacitor is located in the grid circuit of the 6BG6 horizontal sweep output ubes and bears the symbol of C40. The ad chassis he chassis
50 -ohm pote a greater range of contrast, the heen changed tiometer (part no. 145085) ha (part no. 145105) in the R19A position. The 3,000-ohm potentiometer will be substituted sembly, number 81539 , which also includes \(4-\mu \mu \mathrm{f}\) capacitor (part no. 110597) and instructions for making the change.

\section*{Stromberg-Carlson TC10 Series}

The R68, 1 -megohm, \(1 / 2\)-watt resistor, in series with the high voltage, has been changed to a 680,000 -ohm, 1 -watt valu (part no. 149202). If flashing horizontal picture when the brightness control is ad vanced, the receiver may have a defectiv

1-megolim resistor in the R 68 position which should he chnnged to the 680,000 olim value, even though the resistor outwardly appears
to be good. This resistor will he found on the 1 B3 socket terminal in the high-voltage case.
A 150,000 -ohm, \(1 / 2\)-watt resistor (part no. 27640) has been substituted for the 39,000 The first i-f screen resistor R23 has heen changed from 33,000 ohms, \(1 / 2\) watt to 56,000 ohms, \(1 / 2\) watt (part no. 28178). Resistor R66 in the 1B3 filament circuit has heen chankerd from 3.3 ohms to 5.6 ohms (part no. 149271)
Resistor R4.3 may he a 1.8 -megohm or a
1.5 -megohm resistor if the R 57 eter in the vertical sweep oscillator is part number 145086 or 145102 , respectively.

Stromberg-Carlson TC and TS Series Following are the part mumbers of the
movalle iron cores and the respective coils used in the tuning assembly on TS and TC receivers:
 Soscind
Low band
Lind
Core no. 118030 with coil no. 114066
Core \begin{tabular}{l}
cinverier \\
Hi-band \\
Core no. 118029 with coil no. 114065 \\
\hline
\end{tabular} no. 118035 with coil no. 114066
 and yellow) io indicate she range of diamerer size.
In model TC recivers, to assure maxithe telenision of the high-hand section of tube (part no. 110675) is being used, in place of the 6AG5 tube in the r-f amplifier position. The circuit remains unchanged.

\section*{Stromberg-Carlson TCl25 Series}

The following modifications have been made to improve the apparent resolution of
these instruments:
a ohms to 680,000 ohms (part no. 149118)
2. Resistor R73, 22,000 ohms (part no. 27407) has been added across the secondary of the video detector transformer.
\(0.01 \mu \mathrm{f}\) to \(0.047 \mu \mathrm{f}\) (part no 110541) A \(0.0022-\mu \mathrm{f}\) capacitor (part no. 110536) has been shunted across C30, the \(0.0047-\mu \mathrm{f}\) capacitor, when the R57B potentiometer in the vertical oscillator is part no. 145078 .
When a 2 -megohm potentiometer (part no. When a 2 -megohm potentiometer (part no.
145101) is used, this shunt capacitor is not used.
The \(80-\mu \mathrm{f}\) capacitors (part no. 111067) in the B-plus power supply, and the \(2-\mu \mathrm{f}\) capacitor (part no. 110675) in C7 position in
the agc line are now being supported in position by a center mounting strap. Other heavy tubular-type capacitors are being dressed in such a manner as to prevent transit hreakage of the capacitor leads.
To obtain sufficient vertical size under
low-line voltage conditions, the (vertical-oscillator charging resistor) R2 he changed from 1.8 megohms and 2.2 megohms to 1.5 megohms. This applies to TC125 eceivers not having the opera glass feature.

© John F. Rider

\section*{TEST PATTERNS}

Abnormalities in the patterns appearing on the scope can be classified as being caused by either:
1. Internal effects - i.e. misadjustment of one or more controls, incorrect voltares, deterioration of components,
etc., or -
- External effects - i.e. interfering signals, multiple signals, too strong or too weak a signal, etc. Many of the internal defects, causing abnormalities in the test patterri can be corrected by the simple adjustment of the pre-set or front panel controls.

The following test patterns have been arranged firstly as to internal and then the external causes for abnormalities. It should be born in mind that whereas only one cause is given for each defect, it is possible to have more than one simultaneously, necessating several adjustments.

These patterns are reproduced through the courtesy of the following companies: Radio Corporation of America, General Electric Company, Allen B. DuMont Laboratories, Inc., Capehart - Farnsworth Corporatich, Motorola, Inc., and other's

FIf. 1: NORMAL PICTURE

FIG. 2• CONTRAST TOO LOW

FIG. 3: CONTRAST TOO HIGH

FIG. 5: FOCUS COIL AND ION TRAP MISADJUSTED

FIG. 7: PICTURE TIBE ADJUSTMENT REQUIRED

FIG. 4: EOCUS MISADJUSTED

FIG. 6: DEFLECTION YOKE ROTATED

FIG. 8: VERTICAL HOLD MISAD JUSTED

(C)John F. Rider

FIG. 21: HOR. SYNC DISC. XFORMER PHASE ADJUSTMENT MISADJUSTED

FIG. 23: HOR. HOLD MISADJUSTED "TEAR OUT" AT TOP OR BOTTOM

FIG. 25: HORIZONTAL HOLI MISADJUSTED

FIG. 22: HORIZONTAL HOLD MISADJUSTED FAST MOVEMENT

FIG. 2L: HORIZONTAL HOLD MISADJUSTED SYNC AFFECTED

FIG. 26: HUM IN VIDEO AND
SYNC

FIG. 27: EXCESSIVE RIPPLE IN VIDEO AMPLIFIER

FIG. 29: 120 CYCLE HUM IN VIDEO AIND HORIZONTAL SCANNING

FIG. 31: SOUND INTERFERENCE - INCORRECT TUNING

FIG. 28: EXCESSIVE RIPPLE IN VIDEO AMPLIFIER

FIG. 30: SOUND BARS OR
MICROPHONICS

FIG. 32: MISALIGNMEN. IMPROPER ANTENNA ORIENTATION

FIG. 33: MULTIPLE IMAGES gHOSTS

FIG. 35: INTERFERENCE FROM ANOTHER SIGNAL

FIG. 37: DIATHERMY INTERFERENCE - MEDIUM

FIG. 34: TRANSIENTS

FIG. 36: DIATHERMY INTERFERENCE - HEAVY

FIG. 38: DIATHERMY INTER FERENCE - TIGHT

FIG. 39: DIATHERMY INTERFERENCE - WEAK

FIG. 4I: IGNITION INTERFERENCE - HEAVY

FTG. 43: HUM IN DEFLECTION COIL

FIG. 40: IGNITICN INTERFERENCE - WEAK

FIG. 42: BEAT FREQUENCY

FIG. \(44:\) NO VIDEO SIGNAL~~~~

[^0]: Gohn F. Rider

[^1]: © John F. Rider

[^2]: ©John F. Rider

[^3]: OJohn F. Rider

[^4]: © John F. Rider

[^5]: © John F. Rider

[^6]: (* in later sets)

[^7]: © John F. Rider

[^8]: OJohn F. Rider

