RIDER'S COMBINATION trlevision transistor radio HOME RADIO MANUAL VOLUME 27
 JOHN F. RIDER PUBLISHER, INC. 116 WEST 14th STREET, NEW YORK 11, N. Y.

RIDER BOOKS AND MANUALS

RIDER TV MANUALS

Volume 1 Volume 14 Volume 2 Volume 15 Volume 3 Volume 16 Volume 4 Volume 17 Volume 5 Volume 18 Volume 6 Volume 19 Volume 7 Volume 20 Volume 8 Volume 21 Volume 9 Volume 22 Volume 10 Volume 23 Volure 11 Volume $24 *$ Volume 12 Volume 25** Volume 13 Volume 26**

Volumes I to V

olume XIV Abridged (Volume) Volume XV Volume VI Volume VII
Volume VIII
Volume LX
Volume X
Volume XI
Volume XII
Volume XIII Volume XV Volume XVI Volume XVII Volume XVIII Volume XIX Volume XX Volume XXI Volume XXII
Volume XXIII
*Combination TELEVISION and TRANSISTOR RADIO Manual
**Combination TELEVISION - TRANSISTOR RADIO - HOME RADIO Manual

BOOKS

Picture Book of TV Troubles, Vols. 1, 2, 3, 4, 5. 6, 7 - by Rider Staff TV Repair Q \& A, Vols. $1,2,3,4,5$ - by Sidney Platt
How to Troubleshoot TV Syne Circuits - Ira Remer How to Troubleshoot TV Syne Circuits -Ira Remer
Television - How It Works - 2nd Ed. - (MARCO Cover) - by J. Richard Johnson
Television - How It Works - 2nd Ed. - (Cloth)
FM Transmission and Reception - 2nd Ed. 1960 Reprint -by Rider \& Uslan
Understanding Vectors and Phase (Paper) - by Rider \& Uslan
Understanding Microwaves, Abridged Reprint - by Victor J. Youn
TV Picture Projection and Enlargement - by Allan Lytel
Radio Oper. License Q \& A Manual - 6th Ed. - by M. Kaufman
Element 8 - Ship Radar Techniques - by M. Kaufman
Encyclopedia on Cathode-Ray Oscilloscopes - 2nd Ed. - by Rider \& Uslan
Principles of Frequency Moqulation-B.S. Camies
TV and Electronics as a Career - by Kamen \& Dorf
Broadcast Operator's Handbook - 2nd Ed. - by H. E. Ennes
Receiving Tube Substitution Guldebook-by
lst Supp. - Tube Substitution Guidebook - by H. A. Middleton
2nd Supp. - Tube Substitution Guidebook - by H. A. Middleton
3rd Supp. Tube Substitution Guidebook-by H. A. Middleton
4 th Supp. - Tube Substitution Guidebook - by H. A. Middleton
Master Receiving Picture Tube Substitution Guidebook - by H. A. Middleton
TV Troubleshooting \& Repair Guldebook - Vol. 1-by R. G. Middleton
TV Troubleshooting \& Repair Guidebook - Vol. 2 - by R. G. Middleton
TV Troubleshooting \& Repair Guidebook - Vol. 2-by R. G. Middleton
High Fidelity Simplified - 3rd Ed. - Ty Haro
low To Use Meters - by John F. Rider
TV Sweep Alignment Techniques - by Art Liebsher
Obtaining and Interpreting Test Scope Traces - by John F. Rider
How To Use Signal and Sweep Generators - by J. Richard Johnson
Gulde to Audio Reproduction - by David Fidelman
Radio Troubleshooting Guidebook - Vol. 1-by John F. Rider
Servicing TV Vert. and Hor. Output Systems - by Harry E. Thomas
How to Troubleshoot a TV Receiver - 2nd Ed. - by J. Richard Johnson
Introduction to Color TV - 2nd Ed. - by Kaurman \&
Highlights of Color TV - by John R. Locke, Jr.
How To Locate and Eliminate Radio and TV Interference - by Fred D. Rowe
How To Install and Service Auto Radios - 2nd Ed. - by Jack Darr
Fundamentals of Transistors - 2nd Ed. - by Leonard Krugman
Advanced TV Servicing Techniques - by The RETMA Pilot Training Course Teaching Staff
Advanced TV Servicing Techniques Lab Workbook - by The RETMA Staff
Color Television Recelver Practices (Paper) - by
Color Television Recelver Practices (Paper) - by Hazeltine Corp. Lab. Staff
Color Television Recelver Practices (Cloth)
Technician's Guide to TV Picture Tubes - by Ira Remer
Color TV Dictionary - by J. Richard Johnson
How To Service Tape Recorders - by C. A. Tuthill
How To Use Test Probes - by Ghirardi
How To Use Test Probes - by Ghirardi \& Middleton
Basic Vacuum Tubes And Their Uses (Paper) - by Rider \& Jacobowitz
Basic Vacuum Tubes And Their Uses (Cloth) -
basic Vacuum Tubes And Their Uses (Cloth) - by Rider \& Jacobowitz
Handbook of 630 TV Antennas - by Samuel Marshal
Selling Your TV-Radio Service - by GE Tube Dept.
Hi -Fi Loudspeakers \& Enclosures (MARCO Cover) - by Abraham B. Cohen
Hi -Fi Loudspeakers \& Enclosures (CCoth)
Hi-Fi Loudspeakers \& Enclosures (Cloth)
Radio Receiver Laboratory Manual - by Alex. W. Levey
How to Select and Use Your Tape Recorder - by David
How to Select and Use Your Tape Recorder - by David Mark
Basics of Phototubes \& Photocells - by David Mark
Introduction to Printed Circuits - by Robert L. Swiggett
Pictorial Microwave Dictionary - by V. J. Young \& M. W. Jones
TV Tube Location \& Trouble Guide (RCA) - by Rider Lab. Staff
Servicing TV AFC Systems - by John Russell, Jr.
Repairing Television Receivers - by Cyrus Glickstein
Transistor Engineering Reference Handbook - by H. E. Marrows
How to Read Schematic Diagrams - by David Mark
How to Read Schematic Diagrams - by David Mark
Getting Started in Amateur Radio - by Julius Berens, W2PIK
Marine Radiotelephone Permit Q \& A Manual, 3rd Class Operator - by M. Kaufman
Repairing Hi-Fi Systems - by David Fidelman
Basic Physics - by Dr. Alexander Efron
Physics Questions and Problems (with answers) - by Dr. Alexander Efron
Rider Global Time Conversion Simplifier-J. G. Dalger
How To Install \& Service Intercommunication Systems - by Jack Darr
TV Picture Tube-Chassis Guide - by Rider Lab. Staff
Industrial Control Circuits - by Sidney Platt
Stereophonic Sound - by Norman H. Crowhurs
Effects of Nuclear Radiation on Men and Marerial
Home Air Conditioning - Installation \& Repair - by J. Derman
Physics \& Mathematics in Electrical Cepair - by J. Derman, F. Makstein \& H. Seaman
Repairing Mather
Repaining Portable \& Clock Radios - by Ben
Pransistor Circuits S. W. Amos
Mathematics for Engineers, Vol. 1, Cloth Bound-W. N. Rose
Mathematics for Engineers, Vol. 2, Cloth Bound - W. N. Rose
How to Repair Transistor Radios S . Libes
Moon Base - Dr. T. C Helvey
undamentals of Nuclear Energy and Power Reactors - by Henry Jacobowitz
Building the Amateur Radio Station - by Julius Berens, W2 PIK
Fundamentals of Radio Telemetry - by Marvin Tepper
Fundamentals of High Fidelity - by Herman Burstein
Design of Transistorized Circuits for Digital Computers ; by A. I. Pressman
Experimental Electricity for Boys - by Willard Doan
Metallic Rectifiers \& Crystal Diodes - by Theodore Conti
Conductance Curve Design Manual - by Keats A. Pullen, Jr.
R-L-C Components Handbook - by David Mark
Shortwave Propagation - by S. Leinwoll
How To Service Tape Recorders - by C. A. Tuthill
Nound-n-Sight Code Course-L. Robins and R
Novice Course: 0 to 8 words per minute
Advanced Course: 9 to 20 words per minute
Complete Course
TV Mirs. Receiver Trouble Cures, Vols. 1, 2, 3, 4, 5, 6, 7, 8 - by Rider Staft
Radio Control for Model Builders, - Wocations, Vols. 1, 2, 3, 4, 5 - by Harold Alsberg

Basic Gyroscopes, Vols. 1, 2 - C. Machover
Basic Electricity, Vols. 1, 2, 3, 4, 5 -by Van Valkenburgh, Nooger, \& Neville
Basic Electricity, all 5 volumes in one cloth binding
Basic Electronics, Vols. 1, 2, 3, 4, 5, - by Van Valkenburgh, Nooger, \& Neville
Basic Electronics, all 5 volumes in one cloth binding
Basic Electronics, Volume 6, Cloth Bound
Basic Synchros and Servomechanisms, Vols. 1,2-by Van Valkenburgh, Nooger. Nevilie
Basic Synchros and Servomechanisms, both volumes in one cloth binding
Basic Electrical Power Distribution, Vols. 1, 2-by Anthony J. Pansint
Basics of Digital Computers, Vols. 1, 2, 3 - by John S. Murphy
Basics of Digital Computers, all 3 volumes in one cloth binding
Basic Television, Vols. 1, 2, 3, 4, 5 -by Alexander Schure
Basics of Missile Guidance and Space Techniques,
Basics of Missile Guidance and Space Techniques, Vols. 1,2-by Marvin Hobbs
Basics of Missile Guidance and Space Techniques, both volumes in one cloth binding
Basic Audio Course, Vols. 1, 2,3-by Norman H. Crowhurst
asic Audio Course, all 3 volumes in Norman \mathbf{H}. Crowhurst
Basics of Fractional-Horsepower Motors-G. Schweltzer
Basic Pulses - by I. Gottlieb
Basic Pulses Coth Bound - by I. Gottlieb
Bastes of Induction Heating, 2 Volume Set - C. Tudbury
Basics of Induction Heating, Vols. 1, $2-\mathrm{C}$. Tudbury
Basics of Induction Heating, Both volumes in a single cloth binding
Basic Ultrasonics. Cloth Bound-C. Glickstein

Basic Science Series:
Energy - by Sir Oliver Lodge
Heat - by Dr. Alexander Efron
Sound - by Dr. Alexander Efron
Mechanics - by Dr. Alexander Efron
Nuclear Energy - by Dr. Alexander Efron
Light - by Dr. Alexander Efron
Magnetic And Electrical Fundamer Efron
Direct Current Electricity - by Dr. Alexale Dr. Alexander Efron

Electronic Technology Series - by Alexander Schure
$\begin{array}{ll}\text { R-C / R-L Time Constant } & \text { Amplitude Modulation } \\ \text { FM Limiters and Detectors } & \text { Blocking Oscillators }\end{array}$
Fequency Modulation
A-M Detectors
Limiters and Clippers
Multivibrators
R-F Transmission Lines
R-F Amplifiers
R-F Amplifiers
Electromagnetism

Wlocking Oscillator Superheterodyne \& I-F Amplifiers L-C Oscillators Antennas nverse Feedback Low-Frequency Amplifiers Phototubes Advanced Magnetism And Elect romagnetlsm

Resonant Circults D-C Circuit Analysis D-C Circuit Analysis Vacuum Tube Rectifiers Vacuum Tube Characteristics Impedance Matching G2s Tubes Low-Frequency Amplifier Systems

Spanish Titles
High Fidelity Simplified, 2nd Ed. - by H. D. Weiler
Repairing Televiston R Guidebook - by John F. Rider and J. R. Thompson
The servicing data appearing on Philco, RCA, and other pages carrying individual copyright notices are copyrighted by the respective companies and are reproduced herein with their permission.
Entire contents copyrighted 1960 by John F. Rider

TELEVISION SECTION

TELEVISION
 曾

MODEL IDENTIFICATION CHART

MODEL	iv Chassis	$\begin{gathered} \text { MODE } \\ \text { NAME } \end{gathered}$	$\begin{gathered} \text { CHASSIS } \\ \text { SERIES } \end{gathered}$	$\underset{\text { TUNER }}{\text { VHE }}$	$\begin{gathered} \text { UHF } \\ \text { TUNER } \end{gathered}$	of tuning CONTROLS	$\begin{gathered} \text { TONE } \\ \text { CONTROL(S) } \end{gathered}$
$\begin{aligned} & \text { TT1E1E1 } \\ & \text { T21EIC } \end{aligned}$	$\begin{aligned} & 16 \mathrm{GI} \\ & 16 \mathrm{GIC} \end{aligned}$	Meredith	De Luxe 330	94E144.19		Hideaway Top	
$\begin{aligned} & \text { TAS1E1C } \\ & \text { TALIEIC } \end{aligned}$	$16 A G 1$ $16 A G 1 C$ 16AG1C	Meredith	De Luxe 330	94E144-30	$\begin{gathered} 940112.5 \text { or } \\ 940155.3 \end{gathered}$	Hideaway Top	
T21E2 T21E2C R2	$\begin{gathered} 16 \mathrm{G1} \\ 16 \mathrm{G1C} \end{gathered}$	Meredith	De luxe 330	94E144-19		Hideaway Tap	
$\begin{aligned} & \text { TA21E2 } \\ & \text { TA21E2C } \end{aligned}$	$\begin{aligned} & \text { 16AGIC } \\ & 16 A G 1 C \end{aligned}$	Meredith	De Luxe 330	94E144-30	$\begin{gathered} 94 D 112.5 \text { or } \\ 940155.3 \end{gathered}$	Hideaway Top	
	$\begin{gathered} 16 G 1 \\ 16 G 1 \mathrm{C} \end{gathered}$	Meredith	De Luxe 330	94E144.19		Hideaway Top	
$\begin{aligned} & \text { TA21E3 } \\ & \text { TA21E3C } \\ & \hline \end{aligned}$	16 AGI 16AGIC	Meredith	De Luxe 330	94E144-30	940112.5 or 940155.3	Hideaway Top	
$\begin{aligned} & \text { T21E21 } \\ & \text { T21E21C } \end{aligned}$	$\begin{gathered} 1681 \\ 16810 \end{gathered}$	Asbury	Imperial 330	$94 E 144.13$		Front	Single
TA $21 E 21$, TA21E21C	$\begin{aligned} & 16 A B 1 \\ & 16 A B 1 C \end{aligned}$	Asbury	Imperial 330	94E144-9	$\begin{aligned} & 940112.5 \mathrm{or} \\ & 940155.3 \\ & \hline \end{aligned}$	Front	Single
	$\begin{array}{r} 1681 \\ 16 \mathrm{B1C} \\ \hline \end{array}$	Asbury	Imperial 330	$94 E 144.13$		Front	Single
$\begin{aligned} & \text { TA21E22 } \\ & \text { TA21E22C } \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \mathrm{ABI} \\ & 16 \mathrm{ABIC} \\ & \hline \end{aligned}$	Asbury	Imperial 330	$94 E 144.9$	$\begin{gathered} \text { 94D112.5 or } \\ 94 D 155-3 \end{gathered}$	Front	Single
$\begin{aligned} & \text { T21E23 } \\ & \text { T21E23C } \end{aligned}$	$\begin{aligned} & 1681 \\ & 16810 \end{aligned}$	Asbury	Imperial 330	94E144-13		Front	Single
$\begin{aligned} & \text { TA21E23 } \\ & \text { TALIE23C } \end{aligned}$	$\begin{aligned} & \hline 16 \mathrm{ABI} \\ & 16 \mathrm{ABIC} \\ & \hline \end{aligned}$	Asbury	Imperial 330	94E144-9	$\begin{aligned} & 940112.5 \text { or } \\ & 940155.3 \\ & \hline \end{aligned}$	Front	Single
TH21E51C	16 WIC	Claridge	Hi.Fi 330	$94 E 144.13$		Front	Bass-Treble
thazlesic	16awic	Claridge	Hi.Fi 330	94E144.9	$\begin{aligned} & 94 \mathrm{D} 112-5 \text { or } \\ & 94 \mathrm{D} 1555-3 \end{aligned}$	Front	Bass-Treble
TH21E52C	16WIC	Claridge	Hi-Fi 330	$94 E 144.13$		Front	Bass-Treble
tha21E52C	16AWIC	Claridge	Hi-Fi 330	$94 E 144.9$	$\begin{aligned} & 94 \mathrm{DD112.5} \text { or } \\ & 94 \mathrm{D} 155.3 \end{aligned}$	Front	Bass-Treble
TH21E53C	16wic	Claridge	Hi-Fi 330	$94 E 144.13$		Front	Bass-Treble
THA21E53C	16AWIC	Claridge	Hi-Fi 330	$94 E 144.9$	$\begin{aligned} & 94 D 112.5 \text { or } \\ & 940155.3 \end{aligned}$	Front	Bass-Treble
-TR21E21	16 J 1	Asbury	Automatic 330	940151.1		Front	Single
-TR21 E22	16.11	Asbury	Automatic 330	940151-1		Front	Single
*TR21 E23	16 J 1	Asbury	Automatic 330	$94 \mathrm{D151.1}$		Front	Single
$\begin{aligned} & \text { C21E2 } \\ & \text { C21E2C } \end{aligned}$	$\begin{aligned} & 16 L 1 \\ & 16 L 1 C \end{aligned}$	Stanford	De Luxe 330	$94 E 144.26$		Hideaway Top	
$\begin{aligned} & \hline \text { CA21E2 } \\ & \text { CA21E2C } \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \mathrm{ALI} \\ & 16 \mathrm{ALIC} \\ & \hline \end{aligned}$	Stanford	De Luxe 330	94E144-27	$94 D 112.5$ or 940155.3	Hideaway Top	
$\begin{aligned} & \text { C21E3 } \\ & \text { C21E3C } \end{aligned}$	$\begin{aligned} & 1611 \\ & 1611 \mathrm{C} \end{aligned}$	Stanford	De Luxe 330	$94 E 144.26$		Hideaway Top	
$\begin{aligned} & \text { CA21E3 } \\ & \text { CA21E3C } \end{aligned}$	$\begin{gathered} 16 \mathrm{ALI} \\ \text { 16ALIC } \\ \hline \end{gathered}$	Stanford	De Luxe 330	$94 E 144.27$	$\begin{gathered} 94 D 112.5 \text { or } \\ 94 D 155.3 \end{gathered}$	Hideaway Top	
C21E6 C21EGC CO	$\begin{aligned} & 16 L 1 \\ & 1611 \mathrm{C} \end{aligned}$	Cornell	De Luxe 330	945144.26		Hideaway Top	
CA21E6 CA21E6C	$\begin{aligned} & 16 \mathrm{ALI} \\ & 16 \mathrm{ALIC} \\ & \hline \end{aligned}$	Cornell	De Luxe 330	94E144-27	$\begin{gathered} 94 D 112.5 \text { or } \\ 94 D 155.3 \end{gathered}$	Hideaway Top	
$\begin{aligned} & \text { C21E7 } \\ & \text { C21ETC } \end{aligned}$	$\begin{gathered} 1611 \\ 1611 \mathrm{C} \end{gathered}$	Cornell	De luxe 330	94E144.26		Hideaway Top	
$\begin{aligned} & \text { CA21E7 } \\ & \text { CA21ETC } \end{aligned}$	$\begin{gathered} \hline 16 \mathrm{AL1} \\ 16 \mathrm{ALIC} \\ \hline \end{gathered}$	Cornell	De Luxe 330	94 E144.27	940112-5 or $94 D 155.3$	Hideaway Top	
C21E12 C21E12C	$\begin{aligned} & \text { 16D1 or } 16 E 1 \\ & 16 E 1 C \end{aligned}$	Windsor	Imperial 330	94E144-24		Front	\dagger

For Service Information covering the RT440A Son-R tuner and the 8G1 remote control amplifier used in models with remote tuning see Service Manual ST599-1.

For servicing printed wiring use Service Manual No.
S559 and the special illustrations in this manual.

MODEL IDENTIFICATION CHART (Cont.)

MODEL nUMBER	IV CHASsIs	MODEL	$\begin{gathered} \text { CHASSIS } \\ \text { SERIES } \\ \hline \end{gathered}$	$\underset{\text { TUNER }}{\text { VHE }}$	$\begin{aligned} & \text { UHF } \\ & \text { TUNER } \end{aligned}$	cocation of TUNING CONTROLS	$\begin{gathered} \text { TONE } \\ \text { CONTROL(S) } \end{gathered}$
CA21E12 CA21E12C	16AD1 or 16AE1 16AEIC	Windsor	Imperial 330	94 E144.22	$\begin{gathered} 940112-5 \text { or } \\ 940155.3 \\ \hline \end{gathered}$	Front	\dagger
$\begin{aligned} & \text { C21E13 } \\ & \text { C21E13C } \end{aligned}$	16D1 or 16E1	Windsor	Imperial 330	94E144.24		Front	*
$\begin{aligned} & \text { CA2IE13 } \\ & \text { CA2IE13C } \end{aligned}$	$\begin{gathered} \text { 16AD1 or 16AE1 } \\ \text { 16AE1C } \\ \hline \end{gathered}$	Windsor	Imperial 330	94 E144.22	$\begin{aligned} & 94 D 112-5 \text { or } \\ & 94 D 155-3 \\ & \hline \end{aligned}$	Front	*
$\begin{aligned} & \text { C21E14 } \\ & \text { C21E14C } \end{aligned}$	$\begin{aligned} & \text { 16D1 or } 16 \mathrm{El} \\ & 16 \mathrm{E} 1 \mathrm{C} \end{aligned}$	Windsor	Imperial 330	94E144-24		Front	†
$\begin{aligned} & \text { CA21E14 } \\ & \text { CA2IE14C } \end{aligned}$	16AD1 or 16AE1 16AE1C	Windsor	Imperial 330	94E144-22	$\begin{gathered} 940112.5 \text { or } \\ 94 D 155.3 \\ \hline \end{gathered}$	Front	+
$\begin{aligned} & \text { C21E16 } \\ & \text { C21E16C } \end{aligned}$	$16 E 1$ $16 E 1 \mathrm{C}$	Genevo	Imperial 330	$94 E 144.24$		Front	Single
$\begin{aligned} & \text { CA21E16 } \\ & \text { CA21E16C } \end{aligned}$	$\begin{aligned} & \text { 16AE1 } \\ & \text { 16AE1C } \end{aligned}$	Geneva	Imperial 330	94E144-22	$\begin{gathered} 940112.5 \text { or } \\ 940155.3 \\ \hline \end{gathered}$	Front	Single
$\begin{aligned} & \text { C21E17 } \\ & \text { C21E1 } \end{aligned}$	16E1 16EIC	Genevo	Imperial 330	94E144-24		Front	Single
$\begin{aligned} & \text { CA21E17 } \\ & \text { CA21E17C } \end{aligned}$	$\begin{aligned} & \text { 16AE1 } \\ & \text { 16AE1C } \end{aligned}$	Geneva	Imperial 330	94E144-22	$\begin{gathered} 940112.5 \text { or } \\ 94 D 155.3 \\ \hline \end{gathered}$	Front	Single
$\begin{aligned} & \text { C21E22 } \\ & \text { C21E22C } \end{aligned}$	16 El 16 E 1 C	Vanderbilt	Imperial 330	94E144.24		Front	Single
$\begin{aligned} & \text { CA21E22 } \\ & \text { CA21E22C } \end{aligned}$	$\begin{aligned} & \text { 16AE1 } \\ & 16 A E 1 C \end{aligned}$	Vanderbilt	Imperial 330	$94 E 144.22$	$\begin{gathered} 940112.5 \text { or } \\ 94 D 155.3 \\ \hline \end{gathered}$	Front	Single
$\begin{aligned} & \mathrm{C} 21 \mathrm{E} 23 \\ & \mathrm{C} 21 \mathrm{E} 23 \mathrm{C} \end{aligned}$	$16 E 1$ $16 E 1 C$	Vanderbilt	Imperial 330	94E144.24		Front	Single
$\begin{aligned} & \text { CA21E23 } \\ & \text { CA21E23C } \end{aligned}$	$\begin{aligned} & \text { 16AE1 } \\ & 16 \mathrm{AEIC} \\ & \hline \end{aligned}$	Vanderbilt	Imperial 330	94E144-22	$\begin{gathered} 940112.5 \text { or } \\ 940155.3 \end{gathered}$	Front	Single
C21E24 C21E24	16E1 16EIC	Vanderbilt	Imperial 330	94E144-24		Front	Single
$\begin{aligned} & \hline \text { CA21E24 } \\ & \text { CA2IE24C } \end{aligned}$	$\begin{aligned} & \text { 16AE1 } \\ & \text { 16AEIC } \end{aligned}$	Vanderbilt	Imperial 330	94 E144.22	$\begin{gathered} 940112.5 \text { or } \\ 940155.3 \\ \hline \end{gathered}$	Front	Single
CH21E26C	16 UlC	Stratiord	Hi-Fi 330	94E144-24		Front	Bass-Treble
CHA21E26C	16AUIC	Stratiord	Hi-Fi 330	$94 E 144.22$	$\begin{aligned} & 940112-5 \text { or } \\ & 94 \mathrm{D} 155-3 \end{aligned}$	Front	Bass-Treble
CH21E27C	16U1C	Stratiord	Hi.Fi 330	94 E144.24		Front	Bass-Treble
CHA21E27C	16AUIC	Stratiord	Hi-Fi 330	$94 E 144.22$	$\begin{gathered} 940112-5 \text { or } \\ 94 \mathrm{D} 155-3 \end{gathered}$	Front	Bass-Treble
CH21E29C	16 UTC	Strafford	Hi-Fi 330	94E144-24		Front	Bass-Treble
CHA21E39C	16AUIC	Stratford	Hi.Fi 330	94E144-22	$\begin{gathered} 940112.5 \text { or } \\ 94 D 155.3 \\ \hline \end{gathered}$	Front	Bass-Treble
-CR21E12	16K1	Windsor	Automatic 330	94D151.2		Front	
-CR21E13	16K1	Windsor	Automatic 330	94D151.2		Front	
-CR21E14	16K1	Windsor	Automatic 330	94D151.2		Front	
$\begin{aligned} & \text { L21E22 } \\ & \text { L21E22C } \end{aligned}$	$\begin{aligned} & 16 E 1 \\ & 16 E 1 C \end{aligned}$	Princeton	Imperial 330	94E144-24		Front	Single
$\begin{aligned} & \text { LA21E22 } \\ & \text { LA21E22C } \end{aligned}$	16 AEI 16 AEIC 16AEIC	Princeton	Imperial 330	94 E144.22	$\begin{gathered} 940112.5 \text { or } \\ 940155.3 \\ \hline \end{gathered}$	Front	Single
$\begin{aligned} & \mathbf{L 2 1 E 2 3} \\ & \mathbf{1 2 1 E 2 3} \mathrm{C} \end{aligned}$	16 El $16 \mathrm{C} / \mathrm{C}$	Princeton	Imperial 330	94E144-24		Front	Single
$\begin{aligned} & \text { LA21E23 } \\ & \text { LA21E23C } \end{aligned}$	$\begin{aligned} & \text { 16AE1 } \\ & 16 A E 1 C \\ & \hline \end{aligned}$	Princeton	Imperial 330	94E144.22	$\begin{aligned} & 940112-5 \text { or } \\ & 94 D 155-3 \\ & \hline \end{aligned}$	Front	Single
$\begin{aligned} & \text { L21E24 } \\ & \text { L21E24C } \end{aligned}$	$\begin{gathered} 16 \mathrm{El} \\ 16 \mathrm{EIC} \\ \hline \end{gathered}$	Princeton	Imperial 330	94E144.24		Front	Single
$\begin{aligned} & \text { LA21E24 } \\ & \text { LA21E24C } \end{aligned}$	$\begin{aligned} & \text { 16AE1 } \\ & 16 \mathrm{AEIC} \\ & \hline \end{aligned}$	Princeton	Imperial 330	94E144-22	$\begin{gathered} 940112.5 \text { or } \\ 94 D 155.3 \\ \hline \end{gathered}$	Front	Single

FEATURES

The "Slim Line" television receivers covered in this man ual have many electrical and mechanical differences ove performance and ease of service were the prime recensidera tions. Admiral's new design techniques and use of the newly developed $21^{\prime \prime}$, short neck, 110° deflection picture tube have made it possible to produce a more compact, light weight and easier to service television receiver
These receivers were especially designed to provide excel ent performance under all signal conditions. Use of newly developed multi-purpose tubes, improved sound detector circuit, germanium diode as the video detector and dual selenium diode as the horizontal sync discriminator and two selenium or silicon rectifiers as B+ power suply have made superb receiver performance possible with use of a mini num number of tubes.
A major portion of receiver circuit wiring is contained in two printed circuit wiring boards. Use of printed circuit wiring (made possible by Admiral's automation) permits possibility of human errors in circuit wiring
All tubes (except high voltage rectifier) have been spe Ally designed for series heater operation. The heater of very low tolerance of the heater current. This prevents volt ge and current surges during warm-up thereby improvin ife expectancy of tubes
A Super Range Finder (threshold control for noise-gated AGC tube V401, 3BU8) is used for improved TV receptio in fringe areas or in areas where there is interference.
All operating and set-up controls are accessible withou need for removing cabinet back.
All tubes (except picture tube), detector diode, horizontal nnc discriminator diode and B+ rectifiers are accessibl for replacement after removing the cabinet back.

The picture window and face of the picture tube may b leaned by merely removing the front bezel from cabinet. An improved, short neck 110 degree magnetic deflectio picture tube is used. The design of this tube permits maller dimensioned cabinet and lighter over-all weigh ther tubimize is therefore minimized.
*An improved disc type turret VHF tuner is used. Thi uner features an improved cascode RF amplifier with highe sensitivity, better signal-to-noise ratio and a minimum o contained in the antenna circuit of the tuner for attenuatin RF interference from radio transmitters or other interference sources.
A three stage (41 MC) broadband IF amplifier is used Use of a 41 MC IF amplifier rejects interferences common ing sound traps are contained in the IF amplifier for elim nating possibility of interferences from adjacent channels or accompanying sound frequencies.
The sound detector is an improved version of the "quad arce gridock oscillator" circuit using a 3DT6 tube. This quality sound with constant sound level under all signal con ditions, especially in fringe areas or in noisy areas where weak or fading signals occur.
A newly improved dual selenium diode (horizontal syn Acriminator) is used. This new selenium diode is of the a cushion of ease in replacement. The diode is capsule mechanical shock and twisting of leads which may result in intermittent or erratic operation due to poor internal contact.

- Models with Son-R remote tuning use a drum type turre tuner with neutrode RF amplifier.

SPECIFICATIONS

Picture Tube: Short neck rectangular, 110° magnetic deflection, electrostatic focus, gray filter faceplate, alumi nized screen, no ion trap magnet required.
Operating Voltage: $110-120$ volts, 60 cycle AC.

Wattage:

165 watts for standard VHF models
175 watts for VHF models with Hi-Fi sound.
175 watts for VHF models with Hi-Fi soun
185 watts for VHF.UHF models with Hi .Fi sound.
225 watts for VHF models with Son-R remote tuning
Intermediate Frequencies :
Video IF; 45.75 MC
Intercarrier Sound IF; 4.5 MC

Input Impedance and Transmission Line: 300 ohm balanced (between antenna terminals) for either VHF or UHF inputs.
Indoor Antenna: Some models are equipped with built in VHF and UHF antennas.
Fusible Resistor: A fusible resistor is used as the B + and initial surge fuse. The fusible resistor is located below he high voltage compartment, see figures 6, 7 and 8. Se hassis parts list for description and part number of fusible esistor.
Important Note: Later production sets with 16U1C 6AU1C, 16 W1C and $16 \mathrm{AW1C}$ chassis use a 1.6 ampere, resistor instead of a fusible resistor, see figure 7.
©John F. Rides

Models or chassis numbers without the suffix letter " C " use a type 25 CD 6 GB tube as the horizontal output tube V405, see figure 67. Note: These chassis are stamped Run 10 through Run 22.
Models or chassis with the suffix letter " C " use a typ

2DQ6A tube as the horizontal output tube V405, see figures 68 through 72. Note: These chassis are stamped Run 23 or higher
A complete description of the above circuit differences is given under Production Changes, for chassis stamped Run 23

OPERATING INSTRUCTIONS

The illustrations below show locations of main operating controls in models covered by this manual. Note: Models with Hideaway top tuning, have controls located in a recessed compartment at top of cabinet. All other models have controls located at front of set, directly above the picture window.

Instructions for operating the television receiver is given in figures below, follow steps 1 through 4 in order. For in structions on Son-R remote tuning, see Service Data No. ST599-1. For location of auxiliary controls and set-up adjustments see figures 6 through 8 .

Figure 3. Contris in Models With

Figure 5. Left Hand Controls in Models

INSTALLATION ADJUSTMENTS

To insure best performance, it is important to make all checks and adjustments shown in the figures 6, 7 and 8 . It is important that VHF Channel Slugs be adjusted upon installation and at every service call. For receivers with Son-R remote tuning, it is especially important to make all adjustments given under "Tuning Adjustments for Son-R Remote Control Receivers." Note: Removal of cabinet back is required only for adjustment of picture tilt and centering. Use a separat

Wran (part ner
Warning: The chassis of these receivers are connected directly to one side of the 117 volt, 60 cycle power line. Depending upon the position of the line cord plug in the wall outlet, the total AC line voltage may exist between the chassis and any grounded object. Do not touch the chassis unless adequate safety precautions are taken. Never touch the chassis and a ground

Do not ground chassis or connect
Do not ground chassis or connect test equipment directly to it, unless an isolation transformer is used. If an isolation transformer is not available, a neon lamp can be used to determine if the chassis is "hot". Connect an electrician's neon point, such as electrical conduit, water pipe, etc. If the neon lamp glows, the chassis is "hot" and the line cord plug should be reversed. Make the same check with the neon lamp connected between ground and the ground terminal of the test equipment. If the lamp glows, reverse the line cord to the test equipment.

Figure 6. Rear Viow of Chassis Showing Adiustment Locations. UHF Antenna Terminals in VHF.UHF Sets Only. See Figures 7
and 8 for Chassis With Hi-Fi or Remote Control Amplifier.

Figure 2. Operating Instructions for VHF-UHF Sots with Tone
Control. Figures at Right Show Control Locations in Other Models.

0

Figure 7. Rear View of 16 UIC , $16 \mathrm{AUIC}, 16 \mathrm{WIC}$ and 16 AWIC Chassis Showing Adiustment Locations. UHF Antenna Terminals in VHF-UHF Sest Only.

Figure 8. Rear View of 16 J and 16 K 1 Chassis Showing Adjustment Locations.

PICTURE ADJUSTMENTS

Instructions for making picture adjustments are given in figures 6,7 and 8 . These adjustments should be made upo installation and checked at every service call.

VHF CHANNEL ADJUSTMENT

FOR ALL SETS EXCEPT SON-R MODEL

VHF Channel adjustment of each station should be checked upon installation and at every service call. With proper adjustment, best picture is generally obtained at approxi mate center rotation of Fine Tuning control. Note: Chan hel adjustment does not require chassis removal
Important: Always make adjustment on lowest channel first, then work up, in order of channel number to the highes channel. (For example, if channels 2, 9, 7 and 5 are re ceived, adjust in this order: $2,5,7,9$.)
Before proceeding with adjustment, see figures 9 through 2 for location of VHF channel slugs, then adjust as follows a. Turn the set on and allow 15 minutes to warm up.
b. Set VHF Channel Selector for lowest channel to be ad justed. Set other controls for normal picture and sound. c. Set Fine Tuning control at center of its range by rotat ing it approximately two turns in either direction and equarter turn in the opposite direction.
d. For table models, remove Channel Selector, Fine Tuning and UHF Indicator knobs. For console models, remove escutcheon plate above channel knob after removing mounting screw at center of platc. Note: Later sets may snap-in plate, insert blade ending screw. To remove driver against left side of channel window. With slight pressure, pull left side of plate away from cabine

e. Using a $1 / 8^{\prime \prime}$ blade, flexible, non-metallic tool (Admiral Part No. 98A30-19) carefully adjust the channel slug for best picture. (Note that sound is not loudest at this point.) Repeat procedure for remaining stations, adjusting them in order of their channel number (from lowest channel to highest channel)

VhF OSC. ADJ accessible throuch either of three holes. Wien wro slugs are visible aduust botiom slug
Figure 10. Top View of VHF Tuner In Hideaway Top Tuning
Models. Conirol Panal Door and Well Assembly Removed.

Figure 11. Front View of VHF Tuner in Table Models.

Figure 12. Front View of VHF Tuner in Console Models.
Escutcheon Plate Removed.

VHF CHANNEL ADJUSTMENT

 FOR SON-R MODELSVHF Channel adjustment of each station should be checked upon installation and at every service call. If adjustment is properly made, it is possible to tune from one station to another by merely turning the Channel Selector or with operation of the Son-R remote tuner
To adjust VHF Channel Slugs, proceed as follows:

1. Turn the set on and allow 15 minutes to warm up.
2. Set VHF Channel Selector for a station; set other controls for normal picture and sound.
3. Set Fine Tuning control at center of its range by rotating it approximately half-way.
4. For table models, remove Channel Selector and Fine Tuning knobs. For console models, remove escutcheon plate above Channel Selector knob after removing mount-
ing screw at center of plate. Note: Later console ing screw at center of plate. Note: Later console
models may use snap-in plate without mounting screw. models may use snap-in plate without mounting screw.
To remove snap-in plate, insert blade end of a screwTo remove snap-in plate, insert blade end of a screw-
driver against left side of channel window, see figure 9 . With slight pressure, pull left side of plate away from cabinet.
5. Insert a $1 / 8^{\prime \prime}$ blade, flexible non-metallic tool (Part No. 98A30.19) through the hole adjustment to Channel Se lector shaft (see figures 13 and 14). For each channel in operation, carefully adjust the channel slug for best picture. (Note that this is not the point at which the sound is loudest.)
Caution: Only slight rotation of the slug will be required; turning the slug out too far will cause it to fall out of coil.

Figure 13. Front Viow of VHF Tuner in Console Modai
With Son-R Tuning. Escutchoon Plate Removed.

Figure 14. Front View of VHF Tuner In Table Modols
With Son-R Tunling. Knobs Removed.

SUPER RANGE FINDER ADJUSTMENT

The Super Range Finder control is used to improve TV reception in fringe areas and in areas where there is inter ference. This control should be set fully counter clockwise (to the left), if satisfactory pictures can
be obtained by using the main operating controls. Where the TV signal strength is weak, the picture can ften be improved by turning the Range Finder part way to the right.
White flashes across the picture, or "snow" in the picture can sometimes be minimized by careful adjustment of the Range Finder. Caution: If the Range Finder is turned too far to the right for a normal signal, the picture may have xcessive contrast or may disappear completely.
If the signal strength changes, it may be desirable to change the setting of the Range Finder, however, it is gen-
erally possible to set it at a compromise position which gives reasonable reception for different signal strength
Important: Keep the Super Range Finder setting as far to the left as possible consistent with satisfactory pictures.

HORIZONTAL LOCK AND DRIVE ADJUSTMENT

A receiver which requires Horizontal Lock or Horizontal Drive adjustment can be corrected only by following in exact detail the procedure given here.
Note: If Horizontal Drive adjustment is not properly made, it may be difficult to obtain sufficient picture width and brightness. Also note that there is some interactio lesser effect. Make adjustment as follows: lesser effect. Make adjustment as follow

1. Allow receiver to warm up for a few minutes. Tune in
a station, set the Brightness and Contrast controls for normal picture. Important: Before proceeding, be sure that the Super Range Finder control (AGC) is adjusted according to instructions given in this manual.
2. Turn Horizontal Drive control fully clockwise. At thi point, picture compression and/or foldover will appear near the center of the picture
3. Very slowly turn the Horizontal Drive adjustment counterclockwise, just to the point at which picture foldove and/or compression disappears. Note that maximum width and brightness is also produced at this setting. Caution: Turning the Horizontal Drive control too far counterclockwise will shorten life of the horizonta output tube.
4. Reduce Contrast to minimum. If picture bends or loses horizontal sync, adjust the Horizontal Lock so that picnot appear at top of picture. If Horizontal Lock adjust ment was required, repeat steps 2 through 4

TUNING ADJUSTMENTS

FOR SON-R REMOTE CONTROL RECEIVERS
The following adjustments are required for smooth opera ion of Son-R remote control receivers. If adjustment properly made, the channel tuning mechanism will stop only on channels operating in the area and skips all non-operating channels. To prevent sound blasting (excessive volume) the maximum volume level of the receiver should he pre-set instructed below.

ADJUSTING POWER TUNING MECHANISM

TO STOP ONLY ON OPERATING CHANNELS

To adjust Son-R controlled Power Tuning mechanism to top only on TV channels operating in the

1. Turn receiver off and remove cabinet back.
2. Turn Channel Selector knob to a non-operating channel.
3. Locate recessed hole above tuning motor mounting plate Turn adjustment screw (visible through hole, figure 15 fully to the left (counterclockwise) until tight. Perform steps 2 and 3 for each non-operating channel.
4. Turn Channel Selector knob to an operating channel. Turn adjustment screw fully to the right (clockwise) until tight. Perform this step for each operating channel Manual switch back. Turn receiver on; set Remote Manual switch at rear of set to Remote position
5. Check channel tuning with "Son-R" remote tuner. Each time tuner push button is pressed for channel selection, reating channel only. If channel only.
If channel tuner should fail to skip a non-operating channel or stop on an operating channel, repeat adjustment procedure for that channel.

Figure 15. Rear Viow of Son-R Modols Showing
Channol Selection Scrow Location.

PRE-SETTING MAXIMUM VOLUME LEVEL

When operating the receiver by remote control (using the Son-R tuner), the sound volume (loudness) is tunable to volume). However, in levels (mute, low, medium and loud at each of these sound levels it is first the highest volume level at which the receiver may be operated.
To pre-set volume level, set the Remote-Manual switch to he manual position. Tune in a channel with normal sound Adjust Volume control for maximum sound volume and clearness required for comfortable listening. Do not tur volume control from this setting. Return Remote-Manua witch to the remote position, operate Son-R tuner (o olume position) for changing volume level. Note: with each pressing of the push button on the Son-R tuner, sound volume will progressively change in loudness from mute peat with continued presing of the Son R posh band

PICTURE TUBE HANDLING PRECAUTION

Warning: The newly developed picture tube used i hese sets must be handled with much greater care because of short, thin neck and wafer type base. ALWAYS lift pic IFT TUBE BY ITS NECK. Use care when inserting eac o prevent bending pins. Before handling picture tube move static charge from it by shorting 2nd anode well hassis ground with an insulated wire or screwdriver. WHEN TUBE IS REMOVED, ALWAYS PLACE IT FACE DOWN.

Due to the high vacuum and large surface area of picture tubes, extreme care must be exercised when handling these tubes. Shatterproof goggles, heavy gloves and a protective apron should be worn while handling or installing a picture tube. The picture tube must not be scratched, bumped or sub jected to excessive pressure, as fracture of the glass may cause injury or property cause injury or property damage.

PICTURE TUBE REPLACEMENT

The picture tube of these receivers is mounted directly to he front escutcheon as shown in figures 16 and 17. Note that the picture tube mounting in figure 16 is used only in ly to the front escutcheon. in figure 17 is used only in later production sets which haw the picture tube outer dag grounded directly to hassis ground.
To replace a picture tube, proceed as follows:

1. Remove the chassis, picture tube and front escutcheon as a unit from the front of the cabinet as instructed nder
. Remove knobs from front of set.
2. With the front escutcheon downward, place chassis face downward on a clean soft cloth. Caution: To prevent o that the control shafts overhang edge of table.
3. Remove static charge from picture tube by discher Remove static charge from picture tube by discharging
second anode well to chassis ground with an insulated wire lead or screw driver.
4. Disconnect picture tube socket and second anode lead from picture tube. In $\mathrm{Hi} \cdot \mathrm{Fi}$ and Son-R models, disconnect plugs and sockets connecting from the chassis or amplifier to the front escutcheon.
5. Loosen clamp at rear of deflection yoke cap by loosen. ing screw or nut on clamping band
6. Disconnect brackets supporting front panel controls and VHF tuner by removing bracket mounting screws.
7. Remove screws which mount chassis support channels to channel mounting bosses at sides and bottom of the front escutcheon.
8. Carefully lift chassis up and away from picture tube and escutcheon. Warning: Use extreme caution when removing chassis from escutcheon and picture tube Very carefully guide neck of picture tube out of yok and away from chassis. Do not use force. If tub
To mestigate caus before procecing
9. To remove picture tube from front escutcheon, loosen support wire retaining screw. Remove screws support To
To mount replacement tube, place tube on front escutch see figures 16 and 17 Reassemble mounting strap moved in step 10 .
10. Reassemble chassis and deflection yoke over picture tub and front escutcheon. Important: Use extreme care
prevent bending of pins on tube base or fracturing glass neck of picture tube.
11. Reassemble mounting screws to chassis support chan nels removed in step 8.
12. Connect second anode lead and picture tube socket Connect all other connector if previously removed. Turn receiver on and make picture adjustments a instructed in figures 6 through 8. Important: Afte making picture adjustments, be sure to tighten clamp ing band at rear of den a Important Caution: If a metal bracket with insulated Washers are used for supporting the front of the VHF place insulating washers. Failure to replace all insulat place washers will cause 117 volts AC to be applied to th front escutcheon and metal cabinet.

Figure 16. Rear Viow of Eecutchoon and Picture Tube Mounting
in Early Sols With Piture Tube Dag Grounded to Motal Cabine res Tube Dag Gro
and Escutcheon.

Figuro 17. Roar Viow of Escutchoon and Picture Tube Mounting
in Later Sots With Picture Tube Dag Graunded to Chassis.

REMOVING CHASSIS FROM CABINE

For servicing convenience, the chassis including picture tube and front escutcheon are removable as a unit from in ront of the cabinet. To remove the chassis, proceed as follows:

Remove cabinet back. Disconnect antenna and speaker leads.
2. In models with Hideaway top tuning, remove tuning knobs from on top of cabinet.
3. At rear of cabinet, remove screws which mount side At rear of cabinet, remover scews which mount side
support channels to back sides of cabinet. Also remove screws which mount bottom support channels to rear or bottom of cabinet.
4. Remove chassis from cabinet by securely grasping sides of front escutcheon. If chassis does not come out freely
 5. To reinstall chassis in cabinet, carefully insert chassis through front of cabinet. Very carefully guide chassis at sides and bottom of cabinet. In metal cabinet models, the front edges of the cabinet must fit firmly into grooved surfaces at rear of metal escutcheon. In wood cabinet models, guide metal locating pins (at rear of escutcheon) into matching holes in cabinet.
6. After chassis and escutcheon are firmly seated in cabinet, reassemble mounting screws to side and bottom support channels.

REMOVING PICTURE WINDOW

The picture window of these receivers is removable from the front of the cabinet. To remove the picture window, see figure 18 and proceed as follows:
a. Remove Admiral monogram strip located at bottom a. Remove Admiral monogram strip located at botiom
center section of window by pulling it away from cabinet.
b. Holding the window firmly in place, carefully loosen the two screws which mount the window retaining bracket at the bottom center of the window.
c. After removal of the retaining bracket, grasp the lower part of the window at the lower center. Gently pull outward and allow the window to slide downward from the position shown in hgure 18 unce clears the cabio avoid scratch in for frame away from lower part of frame.
To install the window after cleaning, proceed as follows:
a. Holding window at bottom, first slide projection at top of glass into slot at top of frame. See figure 18. Gently guide lower edge of glass into frame.
b. Holding window firmly in place, replace the window retaining bracket and tighten screws.
c. Insert Admiral monogram strip in its retaining clips and press down until the monogram strip is firmly in place.

TELEVISION ALIGNMENT

Warning: The chassis of this receiver is connected directly to one side of the 117 volt, 60 cycle power line. Depending upon the position of the line cord plug in the wall outlet, the total AC line voltage may exist between the chassis and any grounded object. Do not touch the chassis unless adequate safety precautions are taken. Never touch the chassis and a ground (radiators, pipes, etc.) at the same time.

Do not ground chassis or connect test equipment directly to it, unless an isolation transformer is used. If an isolation transformer is not available, a neon lamp can be used to determine if the chassis is "hot". Connect an electrician's neon tester (General Cement's "Ne-o-lite" or equivalent) between the receiver chassis (not control shafts) and some grounded point, such as electrical conduit, water pipe, etc. If the neon lamp glows, the chassis is "hot" and the line cord should be reversed. Make the same check with the neon lamp connected between ground and the ground terminal of the test equipment. If the lamp glows, reverse the line cord to the test equipment.

GENERAL

Complete alignment consists of the following individual procedures and should be performed in this sequence:
a. IF Amplifier Alignment.
b. 4.5 MC Sound IF Alignment.
c. VHF and Mixer Alignment.
d. Over-all VHF and IF Responsc Curve Check.
e. VHF Oscillator Adjustment.
-f. Alignment of UHF IF Input Coil and IF Pre-amplifier Response Curve Check.

TEST EQUIPMENT

To properly service receivers, it is recommended that the following test equipment be available.
Important: Many service instruments do not meet the equirements given below. A list of recommended equipment is available from Admiral distributors.

VHF Sweep Generator

Sweep generator must provide sweep frequencies from

$$
\begin{aligned}
& 18 \text { to } 90 \mathrm{MC} \text { range }: \\
& 170 \text { to } 225 \mathrm{MC} \text { range: }\} \quad \begin{array}{c}
\text { with at least } \\
10 \mathrm{MC} \text { sweep width }
\end{array}
\end{aligned}
$$

Output: adjustable; at least . 4 volt maximum output.
Output impedance: 300 ohms balanced to ground.
A sweep generator not having constant output voltage and linear sweep over the swept range, will produce curves which are widely different from the idcal curves shown on the fol owing pages. If repeated difficulty is encountered in obtaining these curves, the sweep generator should be checked. A simple check is to observe the response curve for a set that is in alignment.
Before suspecting generator, be sure alignment instrucions have been followed carefully.
"Note: This step is not performed on VHF only receivers.

Signal (Marker) Generator

18 to 90 MC frequency range.
170 to 225 MC frequency range.
Must have a built-in calibration crystal for checking dial accuracy.

ALIGNMENT TOOLS

The following alignment tools are required. They can be The following alignment tools are required. They can be
obtained from the Admiral distributor under the part num. obtained from tisted below.
NON-METALLIC (fiber) alignment screwdriver ($111 / 2^{\prime \prime}$ long, $1 / 8^{\prime \prime}$ diameter) Part No. 98 A30 10.
NON-METALLIC alignment wrench (for hexagonal core IF slugs) Part No. 98A30-12.
NON-METALLIC alignment wrench (for small hexagonal core slug) Part No. 98A30-14.

Oscilloscope

Standard oscilloscope, preferably one with a wide band vertical deflection, vertical sensitivity at least . 05 volt (RMS) per inch.

Vacuum-Tube Voltmeter

Preferably with low range (3 volt) DC zero center scal and a high voltage probe (30,000 volt range).

solation Transformer

117 volts input to 117 volts output; at least 200 watts.

Bias Supply

3 to 15 volts (battery or electronic).

IMPORTANT ALIGNMENT HINTS

The following suggestions should be performed if difficulty experienced during the alignment procedure.

1. IF CIRCUIT INSTABILITY: When aligning the IF amplifiers, the VTVM pointer may swing when the hand is placed too near the IF transformers or when viewing he response curve, the curve may change shape with following alignment hints should be tried
(a) Check the generator output leads to be certain tha the unshielded portion (especially the grounded lead) is as short as practicable.
(b) Be sure that a decoupling network is used at the video detector output and that the leads on the net work are kept as short as possible; see figure 21
(c) The use of a $9^{\prime \prime}$ long hexagonal alignment tool will permit adjustment without encountering "hand capacity" effects. See "Alignment Tools"
2. KEEP GENERATOR OUTPUT LOW TO AVOID DIS TORTION OF RESPONSE CURVES
(a) During video IF alignment, sweep and marker gen erator outputs should be set at a level not distorting response curves.
In general, varying the sweep generator output should not affect the shape of the response curve only the amplitude. It is advisable to calibrate the oscilloscope so that peak-to-peak amplitude of the observed response curve will be known. Note: The aplitude of the response curve at test point "V" test point "W" about .1 volt peak-to-peak.
(b) Some generators have a built-in pad in the outpu cable. Be sure that the pad in the cable is properly connected in the circuit. Refer to the generator in struction manual for details.

If a pad is not built in, the 12 db pad shown in figure 20 can be constructed and connected between the generator and the antenna terminals.
3. SPECIAL TUBE SHIELD: For injecting 41 MC IF signal for IF alignment use in insulated tube shield ove he VHF Oscillator-Mixer tube. Insulate bottom of tube shield with masking tape, see figure 19.
4. USE RULED SCREEN OVER OSCILLOSCOPE FACE If it is difficult to accurately judge the exact location o the different markers, a ruled screen can be used over th ace of the oscilloscope CR. Under certain condition by visual judgment alone.
5. ALL ALIGNMENT CONNECTION POINTS AND AD JUSTMENIS ARE ACCESSIBLE FROM FRONT OR REAR OF CHASSIS: Therefore alignment may be made
without need for removing picture tube and front es cutcheon, see figures 24 and 25 . Note: Alignment connection points on printed wiring board connect to pin type terminals. Connections from test equipment may be soldered to pin terminals during alignment. Impor tant: If picture tube is removed during alignment, is will be necessary to connect a 10 ohm, 5 watt resisto across terminals 1 and 8 of the picture tube socket for completing the series heater circuit
6. VOLTAGE CAUTION WHEN MAKING TUNER ALIGNMENT: B+ and heater voltages are present on the connector terminals located at the top side of tuners. To prevent possibility of short circuit or danger from shock, use extreme care to avoid contact with the con nector terminals at top side of tuners.

Figure 19. Special Tube Shield for IF Alignment and

Figure 20. Circuit of 12 DB Attenuation Pad for Viewing
Overall VHF-IF Response Curve.

TO TEST POINT 47,000 OHMS

Figure 21. Decoupling Filter.

IF AMPLIFIER ALIGNMENT

- Connect isolation transformer between power line and
receiver
Connect negative of 3.0 volt bias supply through 10 K re positive to chassis.
- Connect generator high side to 5CG8 mixer-osc. insulated tube shield, see figure 19. Connect low side to chassis near tube shield
- Connect VTVM high side to test point "V" through a de coupling filter, see figures 21,24 and 25

Connect a jumper wire across the antenina terminals.

- Set Channel Selector to channel 12 or other unassigned high channel, to prevent interference during alignment.
- Set Super Range Finder control fully to left (counterclock wise) and Contrast control fully to right (clockwise).
- Allow about 15 minutes for receiver and test equipment to warm up.
- Use a non-metallic alignment tool, part number 98A30-12.

Step	$\begin{gathered} \text { Signal } \\ \text { Gen. Freq. } \end{gathered}$	Instructions	Adjust
Before proceeding, be sure to check the signal generator used in alignment against a crystal calibrator or other frequency standard for absolute frequency calibration required for this operation.			
1	41.25 MC	If necessary, increase generator output and/or reduce bias to $-1 / 2$ volts to obtain a definite indication on VTVM.	Al for minimum.
2	47.25 MC		A2 for minimum.
3	42.3 MC	Use -3 volis bias. When adjusting, keep reducing generator output to prevent VTVM reading from exceeding 2 volis.	A3 for maximum.
4	45.3 MC		A4 and A5 for max.
5	41.5 MC		A 6 for maximum.
6	42.0 MC		A7 for maximum.
7	43.5 MC		A8 for maximum.
8	To insure correct IF alignment, make "IF Response Curve Check".		

IF RESPONSE CURVE CHECK (Using sweep generator and oscilloscope)

figure 22. Ideal If Response Curve Jures. It should not be necessary to turn the siuass peaks and marker location, carefully adjust alignment slugs as instructed under the above


```
\_Hotrom slug is neorest bottom of shield can
```


4.5 MC SOUND IF ALIGNMENT USING TELEVISION SIGNAL

For simplicity and required accuracy of the 4.5 MC signal For simplicity and required accuracy of the 4.5 MC signal
frequency, the sound alignment procedure given in the manual uses a transmitted TV signal rather than test equip. ment.
Important: Note that step 3 of the sound IF alignmen procedure requires the use of a strong transmitted TV signal signal. Failure to use a television signal of the required leve s instructed for each of the steps will cause incorrect alignment with resulting weak or distorted sound.
Make alignment adjustments as follows:
. Remove cabinet back. Turn set on and allow 15 minutcs for warm up.
2. Select the strongest TV station received. Adjust set fo normal operation. Turn Super Range Finder Contro 25 for the left (coustant locations 25 for adjustment locations.
3. Using a non-metallic alignment tool (for hexagonal core IF slugs, Admiral Part No. 98A30-12), very slowly turn slug "A9" several turns counterclockwise until a buzz is loudest and clearest sound is chtained. NOTE: There may be two points (approximately $1 / 2$ turn apart) at which sound is loudest. The slug should be set at the center range of the second point of loudest sound noted as the slug is turned in (toward printed circuit board).

Set Contrast control fully to the left (counterclockwise). Reduce the signal to the antenna terminals until there is a considerable amount of hiss in the sound. For best nected between the antenna and the antenna terminals. The signal can als 8 be reduced by disconnecting the antenna and placing it in close proximity of the antenna terminals or tuner antenna lead-in
5. Carefully adjust slug "A10" for loudest and clearest sound with minimum hiss level. If hiss disappears during alignment, reduce
6. Carefully adjust slug "All" for loudest and clearest sound with minimum hiss level. If hiss disappears during alignment, reduce signal input to maintain hiss level; readjust " $A 11$ ". Caution: Adjustment "All" is slug nearest bottom of shield can; use care so as not to disturb slug nearest top of shield can.
. If the above steps are correctly made, no further adjustment should be required. However, if sound remains distorted at normal volume level when receiver is tuned for best sound, repeat entire procedure.
Caution: Do not readjust slug "A9" unless sound is procedure should be repeated exactly as instructed above.

ALIGNMENT OF 4.5 MC TRAP USING A

 TELEVISION SIGNALBeat interference (4.5 MC) appears in picture as very fine vertical or diagonal lines, very close together, having a "gauze-like" appearance, the pattern will vary with speech, forming a very fine herringbone pattern.
To align the 4.5 MC trap (slug adjustment A12), tune in a television station with beat interference pattern in picture.

While closely observing the picture, adjust slug Al2 for minimum interference pattern.
Important: A hexagonal non-metallic alignment tool (Admiral part number 98A30-12) is required for making adjustment. Note that adjustment Al2 is top slug (nearest top of shield can) ; use caution so as not to disturb bottom will be affected.

ALIGNMENT INFORMATION FOR VHF TUNERS

94E144-9, -13, -19, -22, -24, -26, -27 AND -30

VHF tuners 94E144-13, 19, -24 and -26 are used in VHF only sets and VHF tuners 94 E144-9, $-22,-27$ and .30 are used in VHF-UHF sets in conjunction with UHF tuner 94D112-5 or 94D155-3. Both VHF tuners are identical with exceptio that tuners in VHF-UHF sets have a UHF input socket, addi ional coils and components in the UHF detent position of he turret discs, see figures 27 and 29. When the VHF chan nel selector of these VHF tuners is in the UHF detent posito (tage low-noise 41 MC IF Pre-amplifier coupled between the mixer output of the UHF tuner and the 41 MC IF ampli fier in the main chassis.
Note: Since these VHF tuners are all of the semi incremental type (contains series induclance circuits) VHF channel selection is accomplished by adding or subtractin prtions of inductance with rotation of the VHF Channe Selector (turret drum).
Since these tuners feature stable and trouble-free operation, tubes may generally be replaced without the need fo lignment. However, tube selection is recommended when
replacing the Oscillator-Mixer tube V102 (5CG8) for select ing a tube which will cause least oscillator frequency shift

Figure 26. Viow of Antonna Rotor Disc in VHF Tuners
$94 E 144-13,-19,-24$ and -26 .
as noted with rotation of the Fine Tuning control
VHF amplifier and Mixer alignment consists of checking he VHF response curve with a sweep generator and an osci loscope, then comparing curves with the ideal curve given is generally adequate for proper alignment.
If individual channel coils have been altered from origina shape, tracking adjustment (starting with highest channel) will be required. The chart and the illustrations given below show the location and function of individual coils or adjusi ments. Note that "gimmick" Al5 (free lead of capacitor Cl16) is used for adjustment of bandwidth of low channe 2 through 6
Bandwidth adjustment of high channels is accomplished by changing the spacing of VHF amplifier plate coils with respect to mixer grid coils.
Tilt adjustment (at center of curve) is accomplished by spreading or compressing coil turns in the mixer grid circuit. Important: No attempt should be made to align the uner until the balance of the receiver is known to be in proper operating condition and in proper alignment.

Figure 27. View of Antonna Rotor Disc in VHF Tuners

ALIGNMENT OF UHF IF INPUT COIL AND IF PRE-AMPLIFIER RESPONSE CURVE CHECK

*Important: This alignment is seldom required. It should be made only if UHF reception is poor and after usual causes of poor reception have been checked. This alignment should be made after completing the preceding alignments.

- Connect isolation transformer between power line and receiver.
- Set Super Range Finder control fully to left (counterclock. wise) and Contrast control fully to right (clockwise).
- Set VHF Channel Selector to UHF detent position, which is between channels 13 and 2 .
- Connect negative of 4 rolt bias supply to test point " X

號

- Connect UHF sweep generator 300 ohm output to antenn antenna terminals. To avoid distortion of the response

Stop	Marker Gen. Freq. (MC)	Sweep Gen. Frequency	Instruetions

"Alignment of the UHF If input coil LI37 (A 18) con be
"Al8" for the best pieture, consittent with good sound.

ALIGNMENT INFORMATION FOR VHF TUNERS 94D151-1 AND 2

VHF tuners 94D151-1 and 94D151-2 are identical except for shaft length. These tuners are 13 -position (12 channel) drum type $V \mathrm{HF}$ tuners, utilizing replaceable channel snap-in coils. A triode (2BN4) is used in a neutralized circuit as the VHF amplifier V901. A pentode-triode (5CG8) is used the VHF mixer and oscillator V902.
These tuners have been designed for stable and troublefree operation. Complete tuner alignment should seldom, if ever, be required. Tuner tubes may generally be replaced recommended when replacing the Oscillator-Miber selection is (5CG8) for selecting a tube which will cause least oscillator

frequen NF Amplifier and Mixer alignment consists of checking the VHF response curve with a sweep generator and oscilloscope. If response curve is not within limits shown in figure 3 , alternately adjust RF plate and mixer grid trimmers Al3 and Al4 for obtaining a satisfactory curve. If a proper curve is obtainable with adjustment of A13 and A14, alignment is completed. However, if a proper curve cannot be obtained, adjustment of neutralizing trimmer A15 is required. Repeat adjustment of trimmers A13 and A14 each time after adjusting neutralizing trimmer A15.

Figure 36. Ideal VHF Response Curve
Note: Full skirt of curve will not be visible unles.
sweep width extends beyond 10 MC .

FREQUENCY TABLE FOR CHASSIS WITH 41 MC IF SYSTEM

${ }_{\substack{\text { Cramonal } \\ \text { Ne. }}}$	$\begin{gathered} \text { Froide. } \\ \text { Rence } \\ \text { uct } \end{gathered}$	$\begin{gathered} \text { Pleterur } \\ \text { Curcic } \\ \text { Mcic } \end{gathered}$	$\begin{aligned} & \text { cound } \\ & \text { curne } \\ & \text { Muc } \end{aligned}$	$\begin{aligned} & \text { out. } \\ & \text { foc. } \\ & \text { nc } \\ & \hline \end{aligned}$		${ }_{\text {chenn }}^{\text {Con }}$						${ }_{\text {chen }}^{\substack{\text { Cheno. } \\ \text { No. }}}$			$\underbrace{}_{\substack{\text { sound } \\ \text { currice } \\ \text { wic }}}$	Oro. Bwon tonFreg. CentorMC Freq. MC	
2	54.60	25		-101	57.5	29	560-566	581.25	565.75	607	563.5	56	722-728	723.25	727.75		
3		61.25 67.25	75	-107	${ }_{69.5}^{63.5}$	30	566-572	567.25	571.75	613	569.5	57	728-734			775	7.731 .5
5	76-82	77.2	81	123	79.5	31	572-588	573.25	75	619	575.5	58	734.740			781	737.5
-	82-88	83.25	87.75	$\cdot 129$	85.5	33		585.2	589	631	5875	80	746-752	747.25	751.75	${ }_{793}^{787}$	743.5 7495
,	174-180				177.5	34	0.596	591.25	595.75	637	593.5	81	752-758	753.25	757.75	799	
8	$180-188$	181.25	185		183.5	35	598.002	597.25	601.75	643	599.5	62	758-784	759.25		5	750.
	188-192	187.25	191.75	${ }^{233}$	189.5	36	602-608	603.25	607.75	619	605	63	764.770	765			
10	192-198	193.25	197.75	-239	195.5	37	608-814			655	611.5	64	770-7	771			
11	198-204	199.25	203.75	-245	201.5		614-62	615.2		661		65	778-7	777.25		823	
12	204-210	205.25	209	-251	207.5	39	620-626	621.25	625.75	667	623.5	66	${ }^{782-78}$	783.25	787.75	829	785.5
13	210-216	211.25	215.75	-257	213.5	40	626-632	627.25	631.75	673	629.5		788-794	789.25	793.75	835	
14	470.476	471.25	475.75	517	473.5	41	632-638	633.25	637	679		68	794-800			841	
15	470-482	477.25	481.75	523	479.5	12				885	641.5		800-806	801.25		847	803
16	482-488	483.25		529	485.5	43	644-650			691	447.5	70	${ }^{8006-812}$	807		853	80
17	${ }_{\text {488-49 }}^{484}$	49925	493.75	535	491.5	4	650-656	651.25	655.75	697	653.5			813.25 819.25 8.25		8	815.5
18 19	400-590	495.25	499.75	541	497.5	45	656-662	657.25	661.75	703	659,5	72	824-330	825.25		885	${ }^{821.5}$
19	500-5	1.25	505.75	547	503.5	46	662-688			709	605.5		830-336	${ }_{83125}^{825.25}$	889.75	871	
20	506-512	, 25		553	509.5	47	688-6			715	671.5	75				${ }_{883}^{877}$	839
22	512-518	513.25 519.25	5217,	5595	515.5	48	674-6	${ }_{6}^{675}$	87975 88575	${ }_{727}^{727}$	${ }^{677.5}$	776	880-8	843.25		${ }^{883}$	${ }^{839.5} 8$
23	524-530		529.75	571	527.5	50	686-692	${ }_{687.25}$	691.75	${ }_{733}$	${ }^{883.5}$	77	848-8	25	${ }^{853.75}$	895	851.5
24	530-536	531.25	535.75	577	533.5	51	692-698	693.25		${ }_{739}$	68.5	${ }_{78}^{78}$		855.25	859.75	901	857.5
25	542		541.75	${ }_{5}^{583}$	539.3	52	698-704	-992		745	701.5	80	866-872	887.25	881.75	${ }_{913}^{907}$	${ }_{8}^{869.5}$
26 27 27	542-548	543.25	547.75	599	545.5	53				751	707.5	81	872-878	873.25		,	
	554.560	545.25	553.75 59	595 601	551.5 557.5			71.25	715.75	757	713.5	82	878-884				
					357.5	55	718-722	777.25	721.75	763	719.5	83	$84-$			1	887

VHF AMPLIFIER AND MIXER ALIGNMENT FOR VHF TUNERS 94D151-1 AND -2

Step	Marker Gen. Freq. (MC)	Sweep Gen. Frequency	Instructions
	193.25 MC	Sweeping	Set Channel Selector to channel 10. Use 4 volts bias.

Connect isolation transformer between power line and receiver.

- Connect negative of 4.0 volts bias supply to test point " X " (RF AGC), positive to chassis. Use 15 volt bias for step 3 only. See figures 24 and 25 .
- Set Super Range Finder control fully to left (counterclockwise) and Contrast Control fully to right (clockwise).
- Connect sweep generator 300 ohm output to antenno
marker generator, loosely couple a marker generator to curve, keep sweep generator output at a minimum, marker pips just barely
for step 3 .
- Connect oscilloscope through a $15,000 \mathrm{ohm}$ resistor to test - Connect oscilloscope through a 15,000 ohm resistor to tes point W on tuner. Keep scope leads away from chassis.
- Allow about 15 minutes for receiver and test equipmen to warm up
- Do not remove bottom shield during alignment. - See figure 37 for adjustment locations and identification.

Check response obtained with VHF response curve shown in figure 36. Alternately adiust A13 and A14 (figure 37) as required to obtain curve having
maximum amplitude, symmetry and flat top appearance consistent with maximum amplitude, symmetry and flat top appearance consistent with proper bandwidth and correct marker location.
Set Channel Selector to channel 6. Use 4 volts bias.
Check response obtained with VHF
Check response obtained with VHF response curve shown in figure 36. If curve is not within limits, compromise adjustment is required. Alternately
adjust A13 and A14 as required to obtain curve having maximum amplitude, symmetry and flat top appearance consistent with proper bandwidth and correct marker location. After completing adjustment, recheck adjustment of step 1. If satisfactory response curves are obtained, proceed with step 4 (skip step 3). If proper response curves are not obtained with adjustment of A13 and A14, proceed with step 3.
Set Channel Selector to channel 10 . Use 15 volits bias.
Increase sweep generator output to maximum and increase *oscilloscope goin as require (amplitude). After adiusting Al5, conclude by repeating meps 1, 2 and 4.
Use 4 volts bias. Check each channel operating in the service area for curve shown in figure 36. In general, the adjustment performed in steps 1 and 2 are sufficient to give satisfactory response curves on all channels. However,
if reasonable alignment is not obtained on an operating channel, repeat steps 1 and 2 as a compromise adiustment to favor the particular channel. If a compromise adiustment is made, other channels operating in the service area should
bly affected.

OVER-ALL VHF AND IF RESPONSE CURVE CHECK

| Reseiver Controls
 and Bios Supply | Swoep
 Generator | Marker
 Generator | Oscilloscope |
| :--- | :--- | :--- | :--- |$|$

Instruction
Compare the response curve obtained against the ideal curve shown in figure 38. If the curve is not within tolerance, touch up the IF slugs as instructed below. It should never be necessary to furn slugs more than one furn in either direction. If the curve is satisfactory on the channel checked, all other channels should also be satisfactory.

IMPORTANT: When sweep output is reduced, response curve amplitude on scope should also decrease but shape should remain the sam. In curve shope changes, reduce sweip output and/or the scope gain until the shape does not change.

Ideal Over-all VHF and IF
Rosponse Curve.
Response Curve.

Figure 39. Over-all VHF and If Response Curves,

VHF OSCILLATOR ADJUSTMENT USING A TRANSMITTED TELEVISION SIGNAL

It is always advisable to make VHF oscillator (channel) adjustments using a transmitted Television Signal as instructed "Vier "VHF Channel Adjustment." If a television signal is not available, VHF oscillator (channel) adjustment can be made while observing the Over-all VHF and IF Response Curve. Align oscillator adjustments to position the video carrier marker 50 to 60 per cent down from the peak of the over-all response curve, see figure 38 . For location af oscillator adiustments, se figures 10 through 14.

SERVICE HINTS

Also see "Production Changes".

TROUBLE SHOOTING

The television receivers covered in this manual incorporate the latest developments in circuitry and chassis construction. tuners, B+ rectifiers and picture tube size. VHF.UHF chassis use a combination VHF.UHF tuner assembly. VHF chassis use only the VHF tuner.

A description of the different tuners used is given elsewhere in this manual. A description of $\mathrm{B}+$ distribution is given in the paragraphs below. As an aid in trouble shooting, views of the wiring side and component side of the printed circuit board is given in fig. ures 48,50 and 52 . A view of the wiring side of the main chassis is given in figures 53 and 54 .

B+ DISTRIBUTION

The B+ power supply of television chassis consists of a transformerless circuit utilizing two rectifiers in a half wave voltage doubler circuit. Efficient filtering with excellent voltage regulation is obtained through use of a pi type filter network consisting of two 100 mf electrolytic capacitors and an iron core filter choke. The B+ voltage at output of the filter network is approximately 250 volts. See B+ Distribu
Note that the cathode of damper tube V406 supplies B+ woost voltage to horizontal output stage V405 and to the 1st

In chassis with single end
In chassis with single ended sound amplifier, the sound

Figure 40. Simplified $8+$ Distribution Diagram for VHF
Receivers With Single Ended Sound Amplifier.

ping tube for supplying 150 volts B+ to the VHF tuner, sound detector, 3rd IF amplifier and video amplifier circuits. The cathode of the sound output tube operates at approxi mately 150 volts pusitive with respect to chassis ground. If sound output tube becomes inoperative, both sound and 40 through 43.
Note also, that the 2nd IF amplifier V302 operates as a

Figure 43. Simplifiod B $+\begin{array}{l}\text { Distribution Diagram for VHF-UHF } \\ \text { Recoivers } \\ \text { With } \\ \text { Push-Pull Sound Amplifior. }\end{array}$

voltage dropping tube in addition to its regular function B+ voltage to V301 and V302 (lst and 2nd IF amplifiers) is effectively connected in series since the cathode of V302 connects to the plate and screen of V301.

SERVICING TUBES

Important: To prevent possibility of electric shock, do not remove or install tubes unless the set is disconnected from the power line.

LOCATING A BURNED OUT TUBE

The heaters of tubes in this receiver (except V407 high voltage rectifier) are connected in a series circuit. If tube do not light, check the interlock line cord to see that it is

 Noio vool in vituluk satio oniy.

Figure 45. Simplified Test Proeedures for Locating an Open Cir-
cuir Heater Tube in Sers With Push-Pull Sound Amplifier. Tube in Sots With Push-Pull sound
Note VBOI in VHF-UHF Sels Only.
making good cont
Note: The tube location diagrams on schematic pages contains a simplified diagram of tube heater connections Through the use of tube location diagrams and the step by step procedure given at right, an "open heater" (burned out) tube can be quickly located without the need for substituting

Figure ${ }^{\text {46 }}$. Simplified Test Procedure for Locating an Open
Circuit Heater Tube in Sets With Son-R Romote Tuning.
or testing of all tubes.
Measurements are made with an ohmmeter from tube socket pins to chassis grcund with the tube removed. Important: The cabinet, control shafts, control panel brackets and picture tube mounting are insulated from the chassis; do not connect ohmmeter to these points. When taking ohmance, when cold, of approximately 25 ohms. If the ohmmeter reads approximately 25 ohms or less, the heater circuit is continuous; if the ohmmeter indicates a very high resistance (above 10,000 ohms), the heater circuit is open.
Note also, that a tube heater can measure good when cold, but will "open" upon application of power. In this case, measuring continuity of the heater circuit with power applied
may be necessary. An AC voltmeter or an electrician's neon test lamp can be used to circuit trace (check voltage) the heater circuit with AC power applied. Warning: Before connecting AC power, be sure to observe the "Voltage Warning" on schematic pages.
Important: Socket pins are counted in a counterclock. wise direction when viewed from the tube side of the socket.
To prevent the possibility of electrical shock and damage

Figure 47. View of Wiring Side of Printed Wiring If Board As775-1. Gray area represents printed wiring; black symbols
and lines represent components and connections on opposite side
to tube pins and socket contacts, do not remove or insert tubes unless the set is disconnected from the power line. The tubes in this receiver can be serviced by simply removing the cabinet back

SERVICING PRINTED WIRING

A major portion of the circuitry in these receivers is contained in two printed wiring boards. The smaller printed circuit board at side of chassis contains tubes and components in the video IF and video detector circuits. The larger printed circuit board at bottom of chassis contains tubes and components in the sound IF, sound detector, sound output, sync, AGC, video amplifier, vertical and horizontal sweep circuits. Note: In models with Hi-Fi sound amplifier, the sound amplifier, phase inverter and push-pull sound output are contained in a separate sub-chassis mounted a lop or he main ch in a separe
Trouble shooting of printed circuit wiring is similar to the service and repair of printed circuit wiring is given in Service Manual No. S559, available from the Admiral Dis. tributor.

Figure 48. View of Component side of

Figure 49. View of Wiring Side of Printed Wiring Board A5780.1 Used in All Chassis
Except 16UIC, 16 AUIC, 16 WIC, and 16AW IC. Gray area represents printed wiring; black symbols and lines represent components and connections on opposite side.

R415 C404C403 R405 R410 V401 R403 R306 R301 V403 C411 R425 CR401 C423 R453 C4

 Figure 50. View of Component Side of Printed Wiring Board A5780.1 Used in All Chassis
Except 16UIC, 16AUIC, 16WIC, and $16 \mathrm{AWIC}$.

OJohn F. Rider

Figure 52. View of Component Side of Printed Wiring Board A5780-4 Used in 16 UIC ,
16AUIC, 16 W 1 C , and 16 AWIC Chassis.
 Figure 53. Wiring Side of Chassis With Single Ended Sound Amplifier

Figure 54. Wiring Side of Chassis With Push-Pull Sound Amplifier.

To simplify circuit tracing, identifying tube socket connec ions and locating component connection points, figures 47 49 and 51 have been included in this manual. In figures 48 pictorially. This illustration shows what would be seen if i were possible to look through the printed circuit wiring board and actually see the various components on the board

Note that servicing of most components at top side of printed circuit board can be made without the need of remov ing the chassis from the cabinet. To gain access to the component side of the printed circuit board, remove cabine back. For servicing wiring side of printed circuit board, or resistance measurements, it is necessary to remove the cabinet back.

Note: Important voltage and test point locations are stamped on surface of printed circuit board.

SERVICING GATED AGC CIRCUIT

The gated AGC circuit of these receivers utilizes a newly developed tube, type 3BU8. This tube combines the func ions of a noise-gate, sync separator and gated AGC tube.

Note that the type 3BU8 tube is a twin pentode, having the cathode, screen and control grid common to both pen todes with separate plates and suppressor grids for eac ection. In operation, the control grid is common the. By ap plying an outof-phase signal to the control grid, noise pulses drive the tube to cut-off, thus resulting in "clean" sync pulse separation and noise-free AGC.

Common symptoms of AGC trouble are, negative picture aster with no picture or sound, intermittent sync or com plete loss of sync, excessive contrast with buzz in sound, picture bending, and washed out picture.

In general, components in the AGC circuit are relatively trouble free and are seldom the cause of the AGC trouble. Past experience has shown that faulty tubes are generally CR301) AGC trouble. A faulty video delocuit to the AGC tube can defect in the horizontal Important: Be fore deciding that faulty components are the cause of AGC trouble, be sure that the Super Range Finder (AGC) control has been adjusted according to the instructions given in thi manual. Note: Some later sets may not have a Supe Range Finder Control.

When trouble shooting, tubes which can affect AGC oper ation should be checked first. Check tubes in VHF Tuner Also check tubes V401, V301, V302, V303 and V304. A tube with leakage between elements or a tube which is gassy or pre any of the symptoms mentioned in preceding paragraphs. Check tubes by replacing them with others known to be
ood or check tubes in a tube leakage tester for high resist ance leakage, gas and grid emission.

After eliminating tubes as being the cause of AGC trouble, the next step would be to clamp the AGC buss with a negative voltage (variable 0 to 18 volts) from either a battery pack or an electronic bias supply. Connect negative lead of bias supply to test points "X" and "T", see figures 24 and 25. Connect positive to chassis ground. Note: It may be neces sary to disable the AGC keyer section of V401 by connecting .1 mf capacitor between the plate (pin 3) and chassi ground.
With AGC clamping voltage connected, vary negative bias voltage to a point where a normal picture is produced. If a picture with a normal contrast can be obtained, trouble can e assumed as being in the AGC circuit. Check tubes men ioned in paragraphs above. Check capacitors in AGC cir cuits for leakage or open circuit. Especially check capacitors C428 (. $001 \mathrm{mf}, 1.6 \mathrm{KV}$) and C405 (150 mmf , 500 vonen As a further aid in localizing a defective stage or componect make voltage and waveform measurements at video detecto
CR301 and AGC tube V401 as indicated on schematic pages.

Important: If a normal picture and sound cannot be produced with application of a negative clamping voltag to AGC test points, trouble can be considered as heing in rouble generally affecting AGC operation, such as a defec ive video detector diode CR301 or troubles in the VHF uner, video IF or video amplifier circuitry

VERTICAL SWEEP TROUBLES

Horizontal line (no vertical sweep): Check tubes V402 and V403. A shorted or open capacitor C409 or C416 will cause loss of vertical sweep. Replacement of C409 capacitor, part number 65D10.181. Replace C416 with $047 \mathrm{mf}, 400$ volt, paper molded capacitor, part number $64 \mathrm{B8}-28$.

Intermittent vertical sweep or bunching of horizontal trace lines: This trouble can be caused by an inter mittently open or leaky coupling capacitor C411 (. 1 mf .) This condition is sometimes aggravated by turning the soun volume up. Replace C411 with a $.1 \mathrm{mf}, 400$ volt, upright mylar dielectric, tubular, part number 64C16.30.

Vertical fold-over (at the bottom of the raster) This trouble commonly due to a weak tube $u r$ a defective component in the vertical oscillator or vertical output circuit. it can also be due to low B+ voltage or a defective vertical output transformer T401. Note: A resistance check of the vertical output transformer seldom reveals defects such a shorted turn or leakage to ground or between windings
If in doubt, check by disconnecting leads from origina transformer and connecting a replacement (test) transforme for substitution check.

NO RASTER, SOUND OK

After checking usual common causes of no raster (sound OK) and cause of trouble is not determined, be sure to check he following:

Check capacitor C422: If capacitor C422 (. 022 mf .) should become leaky or shorted, complete loss of raster wil result. Note: Capacitor C422 is located on the printed wiring board, see figures 49 through 52 . It connects from pin 2 of the V404 (6CG7) to chassis ground.

Check capacitor C431: Shorting of capacitor C431 $.001 \mathrm{mf}, 1,000$ volts, ceramic) will result in no raster Momentary arcing within the picture tube may cause capaci for C431 (. 001 mf , ceramic) to breakdown, if the voltage ating is below 5,000 volts. When replacing capacitor C431 be sure to use a $.001 \mathrm{mf}, 5,000$ volt, ceramic capacitor, part umber 65D10-16

To provide further protection to circuit components in event of arcing in the picture tube, resistor R470 100,000 ohms, $1 / 2$ watt) should be moved from its original ocation and reconnected between pin 3 of the picture tube altage rectifier) Also see Run 13 under Production Changes.

NO RASTER, LOSS OF HORIZONTAL SYNC
 \section*{OR INTERMITTENT SYNC}

No raster, loss of horizontal sync or intermitten ("touchy") horizontal sync can be due to a faulty dual her componet in the sync circuit or horizontal sweep circuit. circui

If a section of the dual selenium diode should become shorted or open, complete loss of raster or no horizontal should become loose or make poor contact in socket or if the diode is inserted incorrectly, loss of horizontal sync or intermittent horizontal sync will result. Important: When inserting diode, beveled corner of diode must line up with beveled corner of diode socket, see figure at right.
Check the dual selenium diode CR401 as instructed in paragraphs below. If the dual selenium diode is not at fault, check capacitors C405, C419, C420, C421 and C422 for short, leakage or open circuit. Check value of resistors izing trouble, make an oscilloscope waveform check of the important test points in the sync, horizontal oscillator and important test points in the sync, horizontal oscillator and on schematic pages.

SERVICING HORIZONTAL SYNC DISCRIMINATOR (DUAL SELENIUM DIODE CR401)

A plug-in type dual selenium diode is used as the horizontal sync discriminator CR401. The diode sections of the
horizontal sync discriminator are connected in series (fron to back) as shown in figure below

Views of Horizontal Sync Discriminator CR401

A faulty diode or poor contact between diode leads and socket can result in no raster, intermittent sync or loss of sync. To insure good contact of diode leads, scrape leads to remove accumulated wax or rosin
Important: When inserting diode in socket, be sure to observe polarity indication. The beveled corner of the diod ust line up with the ben. The ber the diode socke se fare above.

Checking Dual Selenium Diode CR40
There are many ways of checking a dual selenium diode for determining if it is faulty. A simple and quick check can be made by measuring the diode using the RX100 scale of an ohmmeter or vacuum-tube voltmeter. Note: It is unnecessary to disconnect the diode leads from the circuit for resistance of the circuit will have little effect on the resist ance measurement.
When connecting an ohmmeter or VTVM (RX100 scale) in the forward direction across one section of the diode, the resistance will generally measure 2,000 to 5,000 ohms. When the ohmmeter or VTVM leads are reversed across the same iode section, the inverse resistance will be many thousand ohms.

SERVICING VIDEO DEIECTOR (CR30I)

In these receivers, a germanium diode (1N60, 1N87 or In 295) is used as the video detector CR3O1. The detecto transformer T303. The detector diode is accessible for check ing or replacement after removing the snap-on cover shield from the 3rd IF transformer.
Note: The germanium diode functions with excellent staility, has long lie expectance and a iny to whe diode may be permanently damaged by application of high current or excessive heat to the connecting leads. To avoid damage when soldering diode leads, clamp nose end of long nose pliers between the body of the diode and end of lead to be soldered. Any damaging heat will be conducted by the pliers and thus diverted from the diode.
A rough check for determining if a diode is open or shorted can be made using an ohmmeter. Check as follows Disconnect one end of the diode from the circuit and connect an ohmmeter (Rxl000 scale) across the diode termi
nals. A relatively low resistance (several hundred ohms or less) should be noted in one direction and a relatively high reading (many thousand ohms) should be noted in the othe direction as the ohmmeter leads are reversed.
IMPORTANT: A defective detector diode will cause insufficient picture contrast, with weak or no sound, inter mittent sync, no sync or AGC blocking. Connecting an os cilloscope to test point " V " will generally indicate no video
low video output with compression of sync pulses. Note low video output with compression of sync "pulses. Not of video detector should be approximately 3.5 volts peak-to peak. If the diode is susvected as being at fault, disconnect one end of the original diode and try a substitute diode, preferably of the same type number as the original. Impor tant: Note polarity when connecting the diode.

POSSIBLE CAUSES OF ARCING

The following points should be checked should arcing be experienced
a. Internal arcing can occur in the horizontal output or damper tubes.
b. Arcing can occur at the cavity for the high voltage con nection on the picture tube to either the dag coating or to the chassis. This can result from moisture accumuhe commercial insulators available in spray-type cans. a 10 in Improper dress of the high voltage lead either inside the high voltage can or between the can and the picture tube ean result if arcing has occurred for any length of time it may be necessary to replace the lead or wrap it with a vinyl electrical tape.
d. In early sets, arcing can occur at filament leads of the high voltage rectifier tube socket. In later sets, socket connections were changed to prevent arcing. Rewire fila matic.
e. Arcing can be due to a shorted deflection yoke
f. As a further preventive against arcing, it is recommended that the focus anode connection (from Pin 4 of V305) be placed at ground potential
arc-over that might occur within the picture tube will be dissipated directing to chassis ground, thus reducing audible arcing. Note: An occasional slight arcin within an electrostatic type picture tube can be consid. ered as normal.

FAILURE OF 25CD6

DUE TO ARC-OVER IN $19 A U 4$

In chassis stamped Run 10 through Run 21, arc-over beween elements of the 19AU4GTA damper tube V406 can 25CD6GB horizontal output tube V405.
To reduce possiblity of repeated heater failure, due to rc-over, it is recommended the location of tube heater connections be interchanged as follows. Connect pin 7 of

19AU4GTA to high side of AC line (terminal of On-Off pin 7 of 25 CD 6 GB to pin 5 of 6 CG 7 .
Note: Chassis stamped Run 22 or higher have this chang incorporated. See schematics for revised heater circuit

INSUFFICIENT WIDTH

If insufficient width is experienced, be sure to check the following before suspecting circuit components as bein Che
Check $A C$ line voltage. Line voltage may be far below the normal 117 volts AC for proper operation.
2. Check picture centering. Picture may be over to one side
3. Check horizontal drive adjustment. See adjustment pro cedure given elsewhere in this manual.
4. Horizontal output tube may be at fault. Try other tubes in checking for a tube which will provide greater width Readjust horizontal drive each time when replacing tube
Note: Tube replacement may be required even though a tube tester does indicate that the tube is good. A tube thal may produce insufficient width in one set may operate satisfactorily in another

"CHRISTMAS TREE" EFFECT OR "SQUEEGING"

Squeeging is a spurious oscillation at less than the normal horizontal sweep frequency. It usually shows up as a "christ mas tree" effect in the raster and the same time, produces high pitched audible "tweet". "Squeeging", which may oc解 circuit) from its original value of 120,000 to 110,000 ohms, 5%.
Note: Resistor R456 is 110,000 ohms in sets stamped Run 14 or higher. If horizontal instability is apparent, check the horizontal oscillator tube V404 and horizontal sync discriminator CR401.

FAILURE OF RESISTOR R215

Failure of resistor R215 (220 ohms, 2 watts) can be due to shorted elements within the 3rd IF tube V303 (3CB6) or ound output tube V202 (12CU5) Note: Resistor R21 is located in the B+ circuit tubes V202 and V303.
If elements within the 3rd IF tube V303 are shorted, failure of resistor R315 ($470 \mathrm{ohms}, 1 / 2$ watt) will also re sult. Note: Resistor R315 is located in the B+ circuit to V303. See figures 50 and 52 for location of resistor R315 on the printed wiring board.

ELIMINATING RF INTERFERENCE FROM POLICE
 OR OTHER SERVICES IN THE 40 MC BAND

A tunable RF interference trap (adjustment A17) is con tained in the antenna circuit of the VHF tuners used with these receivers, see figures 32,33 and 37 . At the factory, rap adjustment A17, is aligned for minimum response MC IF frequency range. The trap should generally never
require realignment in the field. However, if RF interference is experienced from radio transmitters or other sources at frequencies (harmonics or fundamentals) in the 41 MC range, the trap may be realigned to minimize the interference. The trap may be tuned while observing the picture.
However, if the interference is intermittent, it will be diff. cult to adjust and the following procedure is recommended.

Adjust trap as follows:
a. Determine the exact frequency of the interfering signal.
b. Set channel selector to channel 2 .

Connect VTVM to test point " V ", see figures 24 and 25.
d. Set AM signal generator to exact frequency of inter ference. Increase signal generator output for 2 volt
e. Using a non-metallic alignment tool with $5 / 16$ hexagonal shank (Admiral part number 98A 30-12) adjust trap A17 (see figures 32, 33 and 37) fo minimum VTVM reading at test point " V "

Caution: It should not be necessary to turn the slug A17 more than a few turns in either direction. Do not turn the ay result.

OPERATING 1611 AND 16 K 1 TELEVISION CHASSIS WITHOUT CONNECTION TO REMOTE

 CONTROL AMPLIFIERThe 117 volt AC power for operating the 16 Jl and 16 K 1 television chassis, and the 8 Gl remote control amplifier ar interconnected through the various switches, relay contact and connectors contained in the television and remote con trol amplifier chassis. Simplified illustrations of the 117 olt $A C$ circuitry contained in each of the chassis is shown in Service Manual No. ST599.1
To operate the 16 J 1 or 16 K 1 television chassis separately, without connection to the 8 Gl remote control amplifier, is necessary to connect a wire jumper between pins 5 and o complete the 117 volt AC circuit normally bennected through the remote control amplifier. An illustration of ennnector plug with wire jumper ronnerted is shnwn in the schematic

HORIZONTAL BARS IN PICTURE WHEN

 CABINET OR CHASSIS IS TAPPEDHorizontal bars or bunching of vertical trace lines in ras when cabinet or chassis is tapped, may be caused by a microphonic vertical output tube V403 (12DB5)

Tapping the vertical output tube lightly will aggravate his condition. Replace 12DB5 tube with another known to be good.

RASTER CORRECTOR MAGNETS USED IN

 DEFLECTION YOKEThe 110° deflection yoke used in these receivers contains four built-in raster correction magnets. These are permanent magnets used for preventing pin cushion distortion (bowcorrection magnets are contained in pockets molded in the plastic insulation at the front of the yoke coil.
Important: Do not disturbe position of magnets. Pin me are removed or are incorrectly placed (end for end)

AGC BLOCKING ON STRONG SIGNALS AND AT HIGH BRIGHTNESS SETTINGS

To prevent AGC blocking on strong signals and high brightness settings, change capacitor C428 (plate circuit of V401) from 300 mmf to $.001 \mathrm{mf}, 1600$ volts, part number change. Also necting from pin 6 of V401 (3BU8) to chassis ground.

DISTORTION AND BUZZ IN SOUND

If the sound is distorted or has buzz, touch-up adjustment of 4.5 MC intercarrier sound IF amplifier is required. Instructions for making "4.5 MC Sound IF Alignment Using A Television Signal" is given on alignment pages.
Frequent need for sound touch-up adjustment may be due to frequency drift of quadrature coil L203. Drift may be eliminated by changing resistor R207 from 220,000 ohms
 R207, make touch-up adjustment as mentioned above.

ELIMINATING CORONA AT ANODE BUTTON OF THE PICTURE TUBE

Under extreme conditions of high humidity, corona discharge may occur from the 2 nd anode button of the pictur ube to the dag coated area surrounding it.
If corona discharge is experienced, remove the electro tatic charge on the picture tube by shorting the 2 nd anode button to the dag coating.
Clean the area surrounding the 2 nd anode button with carbon tet and wipe dry. Then paint the area between the 2nd anode button and the dag coat
cial high voltage insulating dope.

REPLACING NYLON INSULATING INSERTS

The control panel bracket and the chassis are mounted The control panel bracket and the chassis are mounted
with self-tapping screws which thread into nylon insulating inserts.
Nylon inserts are used to insulate the control panel bracket and chassis mounting screws from the chassis, since the chassis connects to one side of the $A C$ power line.

The illustration, figure 55, shows the method used to remove and replace a nylon insert.

VHF TUNERS 94E144-9, -13, -19, -22, -24, -26, -27 AND -30

Figuro 56. Extiond Viow of vive

SERVICING TUNERS

The simplified circuitry and mechanical construction of these tuners make them relatively trouble-free and easy to measured from terminals on top side of tuner. See figures 32 and 33. All components at the underside of the tuner can be serviced without the removal of the turret assembly See exploded view of tuner, figures 56 and 57.
Important: Location and lead dress of most components at the underside of the tuner are generally critical. Parts location, lead lengths of components and ground connec ponents it is be as originally made. When epith parts of identical electrical characteristics and physical size. Refer to parts list for temperature coefficients, tolerances and other essential description.

Caution: The free end (lead A15) of the capacito C116 is used as a low band coupling adjustment. Location of this lead is critical. When servicing tuner, avoid contact with coils or wiring leads.

CLEANING AND LUBRICATING

TUNER CONTACTS

For cleaning rotating contacts of turret discs, remove bottom cover from tuner. Using a small stiff brush, apply a non-corrosive contact cleaner to all the contact points. With until surface is bright. After cleaning contacts, apply a thin film of switch contact oil, Admiral part number 98A64-1, to surfaces of contacts. Lubricate bearing surfaces of other moving parts with light vaseline or preferably Admiral part number 98A64.2 lubricant.
Caution: Do not use lubriplate or other similar lubricant containing zinc or cadmium.

REMOVING TURRET ASSEMBLY

To remove turret assembly, proceed as follows
Remove bottom cover shield M119. See exploded view of tuner, figures 56 and 57
b. Remove detent mounting screw M106 at side of tuner Remove detent spring M108 and roller M109
Remove turret shaft retaining springs M118 from insid of tuner, by pressing end of springs out of retaining tabs. Remove the turret M116 from the tuner by grasping it at the shaft ends and carefully guide it out of the tuner. Caution: Use care so as to avoid contact with coils or wiring leads on turret disc. Oscillator (upright) coils can be damaged or loosened by careless handling.
To reassemble turret in tuner, follow the above procedure in reverse, using care to avoid damage to stationary co lacts M112 M123

. To engage the fine tuning disc M111 into clutch surfaces of fine tuning rotor M114, insert the edge of a thin blade knife or a single edge razor blade between the plastic discs of the fine tuning rotor until the blade just contacts fine tuning disc; then carefully press disc into the rotor and remove blade.

ADJUSTING STATIONARY CONTACT SPRINGS

The stationary springs of the front and rear contact plates M112 and M123 can be adjusted if they make poor contact due to insufficient tension.
To adjust the contact springs, remove the turret assembly from the tuner, as instructed in paragraph on removing turret assembly.
Using a thin narrow blade screwdriver, adjust contact spring tension by carefully bending the contact springs upward until the clearance between the highest point on the spring extends about $9 / 64$ of an inch above the plastic sur face of the contact strip. With correct tension, the bowed portion of the contact spring should clear the platic sart

REPLACEMENT OF CERAMIC FEED-THROUGH

 CAPACITORSThe B+, heater and AGC leads of VHF tuners are termi nated through ceramic feed-through capacitors. When sol
dering leads to VHF tuners, care should be exercised to prevent damage to the ceramic feed-through capacitors.
Replacement of ceramic feed-through capacitors may be required if silver coated surface is peeled, i
cracked, or if center conductor has loosened.
To replace a ceramic feed-through capacitor, proceed as follows

1. Using diagonal cutters, clip off the terminals at each end of the capacitor Caution: Be careful not to cut the connecting leads.
2. Remove the terminals from the connecting leads using a hot soldering iron.
3. Apply the tip of a hot soldering iron to the metal plate, surrounding the capacitor. When the solder melts, withdraw the capacitor.
4. Clean off excess solder from plate, then draw the iron tip over the hole, on the oscillator side of the shield, to cover surface of hole with a thin film of solder.
5. With the soldering iron held at one side of the metal plate (approximately $3 / 16$ inches from the hole), quickly push the new capacitor into the hole as soon as the plate is heated sufficiently to melt solder
6. Reconnect the leads to the capacitor terminals.

If resistor leads break while replacing capacitor, new resistors may be soldered in place using a pencil point soldering iron.

SERVICING VHF TUNERS 94D151-1 AND 94D151-2

*Tuners 94D151-1 and 94D151-2 are drum turret type VHF tuners with replaceable channel snap-in coils. This uner has been especially designed for operation in connection with the automatic tuning mechanism of remote tunin models. This new tuner incorporates latest improvemen in mechanical and electrical design of turret type and purposes of automation, the circuit wiring is contained and purposes of automation, the circuit wiring is contained on a printed wiring assembly. All compo
, A newly developed triode (2BN4) is used in a neutrod neutralized circuil as the V HF amplifier Von. A ne pentode-triod tor Vo2
The antenna input circuit contains matching transforme T901 (ferrite core balun) which matches the 300 ohm bal anced antenna input to the 75 ulm uribalanced input of the F amplifier input circuit. Two resonant traps (series Lo uit parallel L905) are contained in the apa 41 to 46 MC .
A "book type" Fine Tuning control is used. Physically, the fine-tuning circuit includes a stator area (printed on the printed wiring board) and a hinge with tip-dipped phosphor bronze plate which combine to form the book type variable -VHF funers 90151-1 and 94D151-2 are identical oxcopt for shaft length.
inductor-capacitor. The Fine Tuning control provides a fine tuning range from 2 to 4.5 MC for all channels in the VHF range. Excellent stability, improved sensitivity, and low noise factor combine to provid
with improved picture quality.
The simplified circuitry and mechanical construction of The simplified circuiry and mechece construction of Tuner voltages (B plus, AGC and heater) may be measured from terminals on top side of tuner. The tuner circuitry is contained on a printed circuit wiring assembly. All components are accessible without need of turret removal. See exploded view of tuner, figure 59.
Trouble shooting of printed circuit wiring is similar to that of conventional wiring. Complete instructions on the service and repair of printed circuit wiring is given in Serv. ice Manual No. S559, available from your Admiral Distrib. utor.
Important: Location and lead dress of most components at the underside of the tuner are generally critical. Parts location, lead lengths of components and ground connections should be as originally made. When replacing components, it is important that they be replaced with parts of identical electrical characteristics and physical size. Refer to parts ist for temperature coefficients, tolerances and other essential description.

Figure 59. Explod
59. Explodod View of VHF
94D151.1 and 940151.2 .

REPLACEMENT OF

PUSH-IN DISC TYPE CERAMIC CAPACITORS

Many of the capacitors used in the printed wiring circuit of this tuner are of push-in (leadless) ceramic disc type. These capacitors are inserted between sections of printed Wh ring When replacing a push-in type ceramic disc capacitor, the printel circuit wisis pror he printed circuit wiring
To remove a disc capacitor, use a low wattage soldering iron with a forked soldering tip (split tip). Apply the fork simultaneously. When solder melts, immediately remove capacitor.
Replace disc capacitor in the same manner, using low melting point solder. Avoid application of excessive heat to capacitor or printed circuit wiring.

REMOVING CHANNEL COILS

The channel coils are held in the turret drum at one end The channel coils are held in the turret drum at one end
plate. The other end of the coil is held in the turret by the metal tab extending through the coil form.
To remove a channel coil, proceed as follows
With the thumb of the left hand, press the metal tab (ex lending through the coil form) toward the rear of the tuner; at the same time, using the forefinger, lift the end of the coil form up and out of the drum
Caution: Do not use force when removing channel coils from the turret as coils may be damaged. Use care so a not to disturb coil windings at the underside of the coil form.

CLEANING AND LUBRICATING TUNER CONTACTS
For cleaning rotating contacts of turret drum, remove bottom cover from tuner. Using a small stiff brush, apply a non-corrosive contact cleaner to all the contact points. With a soft canvas cloth, remove cleaner and buff contact points until surface is bright. After cleaning contacts, apply 64 -1, to surfaces of contacts. Lubricate bearing surfaces of other moving parts with light vaseline or preferably Admiral part number 98 A 64.2 lubrican

Caution: Do not use lubriplate or other similar lubricant containing zinc or cadmium.

ADJUSTING CONTACT SPRINGS

The stationary contacts consist of contact springs M107, illustrated in Figure 59. The contact springs are inserted
through the cut-outs molded in the contact strips. The through the cut-outs molded in the contact strips. The and should generally maintain their tension and provide good contact without further attention.
Should the stationary contact springs make poor contact due to insufficient tension, or dirty surface, remove several sets of coils from the turret. Rotate the turret to position making the bottom of the contact strip accessible for serv icing. With a narrow blade screwdriver, adjust contact spring tension by carefully bending the bowed portion of the contact spring upward slightly until the shape of the spring conforms with the shape of other springs on the contact strip. If he fernd of the conlact spring slips out or the contact and pressing inward. If contact spring is damaged or bent badly, a replacement spring may be reinserted. Restore the spring to its original shape by comparing it with other springs. If the majority of contact springs are bent out of shape or damaged, tuner replacement is recommended.

REPLACEMENT OF

CERAMIC FEED-THROUGH CAPACITORS
The B+, heater and AGC leads of this tuner are connected through ceramic feed-through capacitors. When soldering leads to the tuner, care should be exercised to prevent damage to the ceramic feed-through capacitors.
Replacement of ceramic feed-through capacitors may be required if silver coated surface is peeled, if ceramic is
cracked, or if center conductor has loosened.
To replace a ceramic feed-through capacitor, proceed as follows

1. Apply the tip of a hot soldering iron to the top center conductor on feed-through. When the solder melts at ber tom end (center conductor at printed circuit wiring), quickly grasp top end of center conductor with long-nose plier and work it completely out of the surrounding ceramic insulation.
2. Remove remainder of feedthrough by applying tip of hot soldering iron to metal surface surrounding it at top
side of chassis. When solder melts, quickly remove shell and excess solder. Caution: Do not allow solder or metal to fall in chassis
3. To install replacement feed-through, apply tip of hot soldering iron to metal surface. After surface is hot enough chassis with end through hole in printed circuit board.
r Resolder hough hor
printed circuit wiring, using a low wattage pencil point soldering iron. Caution: Application of excessive heat may cause damage to printed wiring

UHF TUNERS 94D112-5 AND 94D15 5-3

Genera

Tuners 94D112-5 and 94D155-3 are all-channel continuous tuning UHF tuners, designed to operate in conjunction with the 13 position VHF tuner used in VHF-UHF models. Tuners 94DI12.5 and 94D155-3 are identical with exception that tuner 94D155-3 has a mounting bracket riveted to it (not removable) for mounting the tuner to the VHF tuner.
The UHF tuners consist of a highly selective pre-selector circuit, UHF oscillator V801 (2AF4A) and a UHF mixer circuit using a newly developed low-noise crystal CR801 (1N82A). A single conversion circuit is employed with tubes in the VHF tuner operating as low-noise 41 MC IF preamplifiers coupled between the output of the UHF mixer
circuit and the 41 MC IF amplifiers in the main chassis
The preselector, oscillator and mixer circuits are each
enclosed in a separate shielded compartment. Each of the enclosed in a separate shielded compartment. Each of the circuits is continuously tunable with a ganged variable air dielectric capacitor.
A low end oscillator adjustment A20 is accessible through he hole in front of the tuner and a high end UHF oscillator adjustment A19 is accessible through the hole in the tuner cover plate, see figure 60

SERVICING UHF TUNER

Simplified circuitry and mechanical construction make UHF tuner relatively trouble free and easy to service. Very little difficulty should be encountered in the servicing of UHF tuner other than replacement of a defective tube, defective mixer crystal or other components which are accessible without disturbing tuned circuits. For important service information, see paragraph on "UHF Trouble Shooting Hints".
Before suspecting trouble in the UHF tuner, make sure that the VHF portion of the receiver is operating properly by tuning in a VHF station. If a station is not available, VHF test equipment can be used to check the VHF portion of the receiver in the same manner as checking for a defective known that a UHF signal of considerable strength exists, it can be assumed that UHF antenna, UHF tuner or compo.
nents in UHF position (between channels 13 and 2) of turret discs in VHF tuner are at fault. Also see "Recommended Checks for Determining Cause of Poor UHF Reception" Note: It is easy to be deceived in areas where a strong VHF signal exists. Whenever possible, check VHF receiver sonsiTelevision Reception" booklet, Form No. S 346 for instructions on checking sensitivity, expected sensitivity figures, and recommended equipmen.
Caution: When servicing UHF tuner, use care so as not to disturb or bend capacitor blades as alignment will be affected. When replacing components, it is important that they be replaced with duplicates of the same electrical characteristics and physical size. Refer to Parts List for description and characteristics of components.

UHF TROUBLE SHOOTING HINTS

Recommended Check For Determining Cause of Poor UHF Reception

Check the Antenna and Transmission Line. Check to see that UHF tuner antenna leads are not placed too close to the television chassis or are shorting at the antenna terminal strip or at the chassis.

Check UHF Oscillator Tube V801 (2AF4A) by substitution. When making tube replacement, try several tubes to find one which will cause the least frequency shif. (seated) firmly
In some instances, replacement of oscillator tube V801 may affect tuner calibration. If this occurs, touch-up of the UHF oscillator trimmer (at both ends of the tuning range) is recommended as instructed under "UHF Calibration (Oscillator Adjustment) Using A Television Signal"
Check UHF Mixer Crystal CR801. Try several mixer crystals, to select one which will produce the best picture and be sure that the crystal is seated firmly. Caution: Use care when replacing crystal, so as not to damage mounting clips.

Check Alignment of IF Preamplifier. IF preamplifier alignment should be checked since the sensitivity of the UHF tuner is dependent on the IF preamplifier response

Check UHF Tuner Voltages. Measure all voltages supplied to UHF tuner. See schematic diagram, figures 69 and 71 for correct voltages.
Check Operation of UHF Oscillator V801. If the tuner remains inoperative after making all the preceding by measuring the injection current. Set UHF Channel Selec. tor to approximate center of its range. Disconnect UHF IF output plug M801 from UHF IF input socket M101; see figure 33. Connect a DC milliammeter ($0-10 \mathrm{MA}$ range), negative to the center conductor of M801, positive to chassis. If the (HF oscillator is functioning, the reading obtained will be approximately 0.5 to 3.0 MA . If no reading is obtained, the oscillator tube is not functioning. Follow normal trouble shooting procedures until oscillation is obtained.

UHF OSCILLATOR ADJUSTMENT USING

 TELEVISION SIGNALAdjustment of the UHF oscillator can be made using the television signal(s). The oscillator should be adjusted for the best picture, consisted television channel by adjusting the appropriate UHF oscillator trimmer. UHF oscillator trimmer A20 has the greatest affect on the lower UHF channels. UHF oscillator trimmer Al9 has the greatest affect on the higher UHF channels. (above Channel 50). See figure 60. Check the LHF dial calibration. The LHF tuner dial should be accurate with ± 2 channels or 12 MC . If it is not accurately calibrated, try readjustment of the UHF oscillator.
In most cases, it is preferable to sacrifice accuracy of UHF dial calibration for improved performance with a minimum amount of UHF tuner alignment. If only one channel is in use in the area, or if only a few channels are in use and reception on only one is poor, a compromise adjustment of the oscillator can be made. This is done by alternately adjusting the tuner dial and the appropriate be had on a weaker channel without greatly affecting perbe had on a weaker channel without greatly affecting per-
formance on the other received channel(s). A VTVM connected to test point "W" will facilitate adjustment of the U'HF oscillator when rocking the tuning dial in this manner. Tune for a maximum VTVM reading

REPLACING MIXER CRYSTAL CR801

The mixer crystal CR801 (1N82A), is located in the center compartment of the UHF tuner, see figure 60
For removing the mixer crystal, it will be necessary to remo
tabs.
When removing the crystal, check the polarity markings so that the replacement crystal may be inserted in the same position as the original crystal.

Figure 61. Tuning Drive
Figure 62 . Tuning Drive
Used
On Cater Production

SERVICING UHF TUNING DRIVE

There are differences in the UHF tuning drive of early and later production VHF.L HF sets.
In early production sets, the UHF tuning drive operated at tuning ratio of 3.7 to 1 . see figure 61 .
In later production sets, the rocker arm was removed and the drive cord was strung differently. In these sets, the tuning drive operates at a tuning ratio of 2.0 to 1 , sepe figure 62.

Removal of the rocker arm, permits the tuning drive to operate at a lower tuning ratio for smoother UHF tuning.

SLIPPING OR BINDING TUNING DRIVE

The followir r_{-}^{-}points should be checked for remedying slipping or binding of the tuning drive in VHF-UHF models. Cherk to make sure that Tuning control knobs do not fully against sides of cabinet opening and that they are fully engaged on control shafts. If necessary, loose proper mounting screws and reposition tuner to give may use control cleararce. Note: Later production sem nating the possibility of insufficient engagement on the shafts.
b. Check pulley on LHF tuner. The front edge of the pulley hub should be flush with the end of the shaft. At thi position the cord will not rub against the tuner or tend to "climb" and cress over the nylon pulley on the VH

Check torque of UHF tuner rotor. If it is difficult turn rotor shaft by hand, place a drop of oil on the front and rear shaft bearings. Do not adjust end play screw at the rear of tuner shaft since this will upse alignment
d. Check rocker arm fingers (used on early models) for possible drag against front of VHF tuner. If fingers are hent ton far outward (away from tuner) the cord will VHF "Cr b" and cross over on ine brittent slippage.
. If drive cord is slightly loose, cut off about $1 / 8$ inch of the coil spring and replace the end of it under the lance.

Caution: Do not string drive cord tightly. Excessive Caution: Do not string drive cord tighty. Excessive with resulting misalignment

PRODUCTION CHANGES

Production changes are coded RUN 10, RUN II, etc., as given in the headings below. Run number istamped on chassis indicaies thar this chassls has the changels) Incorporated which are explained under that particular run number heading below, as well as changes (lower run numbers) made prior to that lime. At the start of production, all chassis were stamped RUN 10

CHANGE TO PREVENT AGC BLOCKING ON STRONG SIGNALS AT HIGH BRIGHTNESS LEVELS Chassis Stamped Run 11
To prevent AGC blocking on strong signals at high bright izontal output transformer T403 to pin 3 of V401) was hanged from 300 mmf . to $.001 \mathrm{mf}, 1,600$ voits, part num ber 64B2.32.

RESISTOR R403 REMOVED TO MINIMIZE TENDENCY OF AGC OVERLOAD AT HIGH SIGNAL EVELS AND RESISTOR R503 CHANGED FO REDUCING VOLTAGE TO VHF OSCILLATOR
Chassis Stamped Run 12
To minimize tendency toward AGC overload at high sig. nal levels, resistor R403 (390.000 ohms) was removed from between pin 2 of V401 (3BL8) and chassis ground.
At the same time above change "as made. whage to VIIF oscillator V102 was reduced by changing resistor R503 from 470 ohms to 1,800 ohms. Lowering of $\mathrm{B}+$ voltage to th VHF oscillator has lessened possibility of tuner interfer ence radiation.

RESISTOR R470 RELOCATED FOR PREVENTING BREAKDOWN OF CAPACITOR C431 DUE TO ARCING IN PICTURE TUBE
Chassis Stamped Pun 13
To prevent possible breakdown of capacitor C431 $(.001$ mf.) due to arcing in picture tube, resistor R470 was re-
moved from between junction of resistors R462, R463 and focus terminal " A ". Resistor R470 was reconnected beween pin 3 of pict
Note: When this change was made. voltage rating of ca pacitor C431 was changed from 1,600 volts to 5,000 volts.

RESISTOR R465 CHANGED FOR IMPROVED OPERATION OF HORIZONTAL OSCILLATOR

Chassis Stamped Run 1

For improved operation of horizontal oscillator V404 (6CG7), grid resistor R456 was changed from 120.000 ohms to 110,000 ohms, $1 / 2$ watt, 5%.

RESISTOR R329 CHANGED FOR PREVENTING

agC OVERLOAD DUE TO TUBE VARIATION
Chassis Stamped Run 15
To prevent possibility of AGC overload due to variation in operating characteristics of 4 BC 8 tubes of different megohms. megohms

RESISTOR R2O7 CHANGED TO PREVENT
FREQUENCY DRIFT WITH RESULTING SOUND DISTORTION
Chassis Stamped Run 16
To present frequency drift of 4.5 MC quadrature coil 203. with resulting sound distortion, resistor R207 was changed from 220,000 ohms to 100,000 ohms.

RESISTOR R47I ADDED TO FURTHER PREVEN

 BREAKDOWN OF C43I DUE TO PICTURE TUBE ARCING
Chassis Stamped Run 1

To further prevent breakdown of capacitor C431 due to picture tube arcing, resistor R471 (100,000 ohms) was
 R470, R462 and R463.
Important: Also see changes made under Run 13

RESISTOR R320 CHANGED FOR CENTERING USABLE RANGE OF CONTRAST CONTROL

Chassis Stamped Run 18

For centering usable range of Contrast control R319, resistor R320 (cathode of V304A) was changed from 470 ohms to 220 ohms.
This change makes it possible to obtain greater contrast at minimum setting of the Contrast control.

ALTERNATE VALUE USED FOR RESISTORS R470 AND R471

Chassis Stamped Run 19
Because of prevailing critical shortage of 100,000 ohm $1 / 2$ watt, resistors, as an alternate, 120,000 ohm, $1 / 2$ watt, resistors, were used for R470 and R471.
Note: This change was possible since circuitry was no critical with regard to above change in resistance value.

Chassis Stamped Run 20
This run change has no service significance, since no electrical changes were made.

RESISTOR R115 ADDED FOR PREVENTING POSSIBILITY OF AGC OVERLOAD IN STRONG SIGNAL AREAS
VHF-UHF Chassis Stamped Run 21
For preventing possible AGC overload in strong signal areas, resistor R115 (1 megohm) was added at the top side of the VHF tuner, connecting from terminal of test point W" to chassis ground. Note: In some later VHF tuners, resistor R115 was added internally, also connecting from test point "W" to chassis ground.

HEATER CIRCUIT CONNECTION OF TUBES
V405 AND V406 INTERCHANGED
Chassis Stamped Run 22
For preventing possible damage to horizontal output tube V405 (25CD6GB) due to momentary arc-over in damper were interchanged in the series heater circuit Note that heater of tube V406 (19AU4GTA) now connects to the high side of the 117 volt $A C$ line, see schematics.

DIFFERENT HORIZONTAL OUTPUT CIRCUIT USED

 IN SETS WITH SUFFIX LETTER "C" ADDED TO CHASSIS AND MODEL NUMBERS
Chassis Stamped Run 23

A different horizontal output circuit is used in 16 and 17 tube sets having the suffix letter " C " added to the chassis number. The changes in circuitry between sets without the suffix letter "C" (chassis stamped Run 10 through Run 22) suffix letter "C "Chassis stamped Run 10 through Run 22)
and sets with suffix letter "C" (chassis stamped Run 23 or higher) are described below. Important: These circuit changes are not recommended for field service.
Horizontal output tube V405 was changed from type 25CD6GB to type 12DQ6A.
Horizontal output transformer T403 was changed from part number 79D77-3 to part number 79D77-2.
Grid resistor R459 was changed from 470,000 ohms to 1 megohm, $1 / 2$ watt.
Screen suppressor resistor R464 (100 ohms) was removed from circuit.
Screen dropping resistor R461 was changed from 10,000 ohms to 8,200 ohms, 3 watts.
Filament dropping resistor R465 of high voltage rectifier V407 was changed from 1.8 ohms to 1.2 ohms.
Resistor R428 in cathode circuit of vertical output tube V403 was changed from 180 ohms to 220 ohms, 1 watt. Heater voltage dropping resistor R505 was added between ON-OFF switch S501 and pin 7 of V406. Note: R505 is 21 ohms, 10 watts, part number 61 B 3.30 in VHF sets. R 505 is 17 ohms, 10 watts, part number 61B3-31 in VHF.UHF sets.

CAPACITOR C505 ADDED FOR INCREASED BREAKDOWN SAFETY FACTOR OF RC NETWORK Chassls Stamped Run 24
Capacitor C505 (. $01 \mathrm{mf}, 1.4 \mathrm{KV}$) was added in series with capacitor C502. Capacitor C502 was changed from .005 to $.01 \mathrm{mf}, 1.4 \mathrm{KV}$ to make these components of equal value. These changes were made for increased breakdown safety factor of the RC network connecting from chassis ground to cabinet ground.
Note: The RC network in some early and later production sets may be a couplate, part number 63B10-3, see production change Run 26.

CAPACITORS C432 AND C433 CHANGED FOR IMPROVING EFFICIENCY OF HORIZONTAL OUTPUT CIRCUIT
VOLTAGE RATING OF C416 INCREASED
Chassis Stamped Run 25
For improving efficiency of the horizontal output circuit, capacitors C432 and C433 (connecting across horizontal 2 KV , part number 65D10.151

This change has provided increased raster width with minimum variation of raster size throughout the range of the Brightness control.
At same time above change was made, voltage rating of capacitor C416 (.047 mf, connecting across vertical yok winding) was changed from 200 volts to 400 volts. This change was made
of capacitor C 416

GROUNDING OF PICTURE TUBE DAG RELOCATED FOR PREVENTING STATIC DISCHARGE

COUPLATE USED FOR RC NETWORK

VOLTAGE RATING OF C409 INCREASED

un 26 in All Chassis Except Hi-Fi Mode

Connection of picture tube outer dag was removed from cabinet (front escutcheon) ground and is now connected to chassis ground. This change was made for preventing pos sibility of static discharge when metal cabinet or fron escutcheon is touched. Note chassis which have the pictur ube dag grounded to chassis use a dag grounding spring and insulated picture tube mounting brackets. Earla ad7 e was incorporated, the At the same time the above c C network (connecting from onents (R502, C502 an C505) to an individual couplate, part number 63B10-3.

For improved breakdown safety factor, voltage rating of capacitor C409 (. 001 mf , ceramic) was changed from 1.6 KV to 2 KV . Capacitor C409 connects from pin 2 of V402 (6CG7) to resistor R422 (220,000 ohms)

CIRCUIT CHANGES TO PROVIDE MORE CONSTANT SOUND OUTPUT LEVEL throughout range of tone control

un 27 in 16BIC, 16ABIC, 16EIC, 16AEIC and 16 JIC Chassis

To provide more constant sound output level throughou the range of the tone control, the tone and volume control circuitry of later production sets (Run 27 or higher) was changed in accordance with the circuit shown in schematics ote: Capaci 209 was 22000 to 47,000 .

Important: For tone and volume circuitry used in earl set (chassis stamped Run 10 through Run 26) see inse figure on schematic

CIRCUIT CHANGES FOR INCREASING RELIABILITY

 OF COMPONENTS IN B + SUPPLY CIRCUITRun 28 in 16UCI, 16AUIC, 16WIC and I6AWIC Chassis To increase reliablity of components in the B+ power supply circuit, resistor R501 was changed from a plug-in usible type, to a standard wire wound type with 5% tole ance. See parts list for part numbers.
For added circuit protection, a 1.6 ampere, type N, slow blow fuse (part number 84B13-42) was added betwe resistor R501 and negative terminal of capacitor C503.

At the same time the above changes were made, an alter nate type silicon rectifier was used for CR501 and CR502, see figures 65 and 66 . Note: The alternate silicon rectifi
is a pigtail type (part number 93Al3) of different physical shape as compared to the cartridge type rectifier (part num (500 millian pere) and are directly interchangeable if re

Figure 65. View of Fuse Holder Showing Position of
Cortridge Type Selenium Rectifiers.
placed in identical pairs.
Warning: When replacing rectifiers, be sure to observ polarity indications shown in figures 65 and 66

PIGTAIL SOLDERED
OUTSIDE OF CREP
ñ
$\stackrel{n}{2}$

PARTS LIST

Important：This Parts List covers only television chassis，cabinets and associated
parts．For Parts List covering the RT4 40 A Son－r Tuner and Bil Remote Control Amplifie used in models with remote tuning，see Service Manual S599．
NOTE：Electrical components have symbols in 100 series， 200 series，etc．，according o location on schematic．Order parts by part number and description from Admiral distributor．

RESISTORS－CONT＇d
Description

Sym．	Description Part No．
R326	180，000 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．60B
R327	220 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．．．．． 60 B
\＄328	3，300 ohms， 2 watts．．．．．．．．．．．．．608 ${ }^{\text {20－332 }}$
R329	10 megohms，$\frac{1}{2}$ watt．．．．．．．．．．．．．．．60B （R329 was 7.5 megohms in early
F402	4.7 megohms，$\frac{1}{2}$ watt．．．．．．．．．．．．60B 8－475
R403	390，000 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．60B 8－394
R404	8，200 ohms， 1 watt．．．．．．．．．．．．．． 60814
R405	390，000 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．． 60 B 8 8－394
R406	150，000 ohms，$\frac{1}{3}$ watt．．．．．．．．．．．．60B 8－154
R407	100，000 ohms，SUPER RAFGE FTNDER control．．．．．．．．．．．．．．．．． 7 TD
R408	47，000 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．．603 8－473
R409	10，000 ohms，$\frac{\frac{5}{2}}{4}$ watt．．．．．．．．．．．．．608 8－103
R410	47，000 ohms，妾 watt．．．．．．．．．．．．．60B 8－473
R412	15，000 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．．60B 8－153
P414	56，000 ohms，$\frac{\frac{1}{2} \text { watt．．．．．．．．．．．．．60B 8－563 }}{}$
R415	270，000 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．60B 8－274
R416	4.7 megohms，$\frac{1}{4}$ watt．．．．．．．．．．．．．60B 8－475
R417	15，000 ohms，$\frac{\frac{1}{2} \text { watt．．．．．．．．．．．．．60B 8－153 }}{}$
${ }^{\mathrm{R}} 418$	15，000 ohms，娄 watt．．．．．．．．．．．．．60B 8－153
R419	200， 000 ohms，VERTICAI，HOLD contr
	In 16B1，16D1，16E1， 160116 AU ，
	16W1，and 16AW1 Clussis．．．．．． 750 13－92
	In 16G1 and 16AGl Chassis．．．．．75D $20-97$
	in 16Il and 16ALl Chassis．．．．．79D 13－97
	in 16J1 and 16K1 Chassis．．．．．． 7 T 13 132
R420	56，000 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．．608 8－563
R421	220，000 ohms，$\frac{1}{2}$ watt ．．．．．．．．．．608 8－224
R 422	2२०，000 ohms，$\frac{\text { a }}{}$ watt ．．．．．．．．．．．．608 6－224
R423	470，000 ohms，골 watt．．．．．．．．．．．．608 8－474
8424	1.5 megohms，HETGFT control．．．．．75D 20－105
${ }_{\text {R }}^{\text {R }} \mathrm{R} 425$	2.2 megohms，$\frac{\frac{1}{2} \text { watt．．．．．．．．．．．．608 } 8 \text {－225 }}{}$
R427	100 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．．．．608 8－101
	180 ohms， 1 wett，in Chassis stamped Run 10 through Fun 22．60B 14－181
R428	३२० ohms， 1 watt，in sets stamped
	Run 23 or higher．．．．．．．．．．．．．6 60B 14－221
R429	18，000 ohms， 1 watt．．．．．．．．．．．．60B 14－183
R430	470 ohms， 3 watts，glass type．．．61B 24－317
R431	220 ohms，$\frac{1}{7}$ watt．．．．．．．．．．．．．．．．Part of T402
R432	3.8 ohms，（measured cold）， Thermistor（mounted on T402）．．61A 27
R433	220 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．．．．Part of T
R434	39，000 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．．608 8－393
R445	4.7 megohms，$\frac{1}{2}$ watt．．．．．．．．．．．．．608 8－475
R446	2.2 megohms，$\frac{4}{2}$ watt．．．．．．．．．．．．60B 8－225
R447	3，300 ohms，立 watt．．．．．．．．．．．．．．608 8－332
R448	5，600 ohms，$\frac{\text { \％watt．．．．．．．．．．．．．．60B 8－562 }}{\text { 6 }}$
R449	6，800 ohms，雨watt．．．．．．．．．．．．．．60B 8－682
R450	100，000 ohms，$\frac{1}{2}$ watt，5\％．．．．．．．．60B 7－104
R451	100，000 ohms，娄 watt，5\％．．．．．．．．603 7－104
R452	470，000 ohms，$\frac{\frac{1}{2} \text { watt．．．．．．．．．．．60B 8－474 }}{}$
R453	4.7 megohns，$\frac{1}{2}$ watt．．．．．．．．．．．．．60B 8－475
R454	5，600 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．．．60B 8－562
R455	1，000 ohms，雱watt．．．．．．．．．．．608 8－102
${ }^{1} 456$	110，000 ohms，$\frac{1}{2}$ watt，5\％．．．．．．．．60B 7－114 （R456 was 120，000 ohms in early sets；see Run Change 14．）
R457	10，000 ohms，HoRIz．DRIVE
	82,000 ohms，$\frac{1}{2}$ watt．．．．．．．．．．．．．．60B 8－823 470，000 ohms，$\frac{1}{2}$ watt，in Chassis
R459	$\left\{\begin{array}{l} 470,000 \\ \text { stamped Run 1o through Run 22. } 60 \text { 8-474 } \\ 1 \text { megohm, } \frac{t}{2} \text { watt, in Chassis } \\ \text { stamped Run } 23 \text { or higher...... } 60 B 8-105 \end{array}\right.$

RESISTORS－CONT

$$
\begin{aligned}
& \text { Part No. } \\
& \text { R460 } 100 \text { ohms, } \frac{1}{2} \text { wat } \\
& \text {. 6OB 8-101 } \\
& \text { (10,000 ohms, } 3 \text { watts, in sets } \\
& \text { glass type } \\
& \text { 8, } 200 \text { ohms, } 3 \text { watts, in sets } \text { 61B 24-349 } \\
& \text { stemped Fun } 23 \text { or higher...... 618 24-347 } \\
& \text { R462 150,000 ohms, } \frac{1}{2} \text { natt............. 60B 8-15 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { R464 } 100 \text { ohms, } \frac{1}{2} \text { watt................ } \\
& \text { Chassis stamped Run } 10 \text { throug } \\
& \text { R465 } \begin{array}{r}
\text { Run } 22 . ~
\end{array} \\
& \text { sets stamped Run 23 or higher. 60B 28-64 } \\
& { }^{\text {R }} 4664,700 \text { ohms }, \frac{1}{2} \text { watt. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { R471 120,000 ohms, } \frac{1}{2} \text { watt.................... } \\
& \text { (R4T0 and R471 were 100,00 } \\
& \text { hms in some sets; see Run } \\
& \text { F472 120,000 ohms, } \frac{1}{2} \text { watt. } \\
& \text { R803 8,200 ohms, } \\
& \text { R901 200,000 ohms to } 1 \text { megohm, } \frac{1}{2} \text { watt, } \\
& \text { R902 part of couplate M901.........663 11-1 } \\
& \text { part of couplate Mgo2......... 63A 11-1 }
\end{aligned}
$$

RESISTORS-Cont'd
Description

Sym.		Description	Part
R903	4,700 ohms,		OB 8-472
R904	2,200 ohms,	wa	608 8-222
R905	1,000 ohms,	$\frac{4}{2}$ wa	608 8-102
R906	220,000 ohms	, $\frac{3}{2}$ wa	60B 8-224
R907	3,900 ohms,	watt	608 8-392
R908	1,000 ohms,	, wat	60B 8-102
R909	10,000 ohms,		608 8-103
R910	6,800 ohms,	watt	60в 8-682

CAPACITORS

C101 1,000 mmi, ceramic feed-throuigh
in VHF-UHF Chass is only......
C102 120 maf , 500 volts, 10%, ce..... Cl03 disc, N750 temp. coeff..... 10415 want', 500 volts, 10%, ceramic 105 disc, N750 temp. coeff........ 1068.2 manf, 500 volts, 5%, ceramic 3 disc, NPO temp. coeff.
108 1,000 rmff, ceramic feed-through.
110 disc.........................
$\begin{array}{lll}\text { C111 } & 1,000 \text { nnff, ceramic feed through } \\ \text { C112 } \\ \text { 1,000 mnf, ceramic feed-through }\end{array}$ c113 1,000 runf, ceramic feed-through
114470 minf , 500 volts, ceramic, 15470 manf, 500 volts, ceramic,
 118 disc, N1400 temp. cuerf.....
 12010 mmf , 500 volts, 5%, ceramic 121 disc, N2200 temp. coeff...... $122 \mathrm{l}^{1,000 \mathrm{mmf}, \text { ceramic feed-through }}$ 1,000 minf, 500 volts, cer. disc. C124 1,00 manf, ceramic feed-through $1.5 \mathrm{mmf}, 500$ volts, 10
126 compos, 27 mis 500 vults, ion, ceramic
C201 47 mmf , 500 volts, 5%, ceramic
c202 $4.5 \mathrm{mmf}, 450$ volts, $5{ }^{\alpha}$,
composition.................
203
001 mf, 500 volts, cer. disc.
$204 \mathrm{minf}, 500$ volts, 5%, ceramic
$82 \operatorname{minf}, 500$ volts, 5%, ceramic
disc, NPO temp. coeff.......
$205.01 \mathrm{mf}, 600$ volts, ceramic disc. $65010-41$
$c 206$
$C 207$

CAPACITORS-Cont'd

Part No
$.047 \mathrm{mf}, 200$ volts, upright . 01 mf, 600 volts, ceramic disc 64 C 16 in all sets except 16 Ulc , 16AU1C
16 WIC , and 16AW1C. 16 WIC, and 16 Ahpl........... 65
$047 \mathrm{mf}, 600$ volts, mylar in mr, 600 volts, mylar upright
in 16 Ư1c, $16 A U 1 C, 16 \mathrm{WIC}$, and 16 Alil C .
6211.01 mf, 600 volts, cerami...... 64B 16-9 $.0047 \mathrm{mf}, 500$ volts, cer. disc. 650 10-41 $.0047 \mathrm{mf}, 500$ rolts, cer. disc
in chass is stamped
through Run 26. .
1,000 mmf, 500 volts, cer. disc
in chassis stamped Run
higher.
see
Run Change
65D 10-53
C214 . 01 mf, 1,400 volts, cer. disc.. 650 10-65 in early sets)
C2i5 $40 \mathrm{mP}, 200$ volts, electrolytic.. 67A 25-2 $\left.\begin{array}{l}\text { C216A } 60 \mathrm{mf}, 200 \text { volts } \\ \text { C216B } 20 \mathrm{mf}, 200 \text { volts }\end{array}\right\}$
 c21
dielec........................
64C 24-36
C243 $220 \mathrm{mmf}, 500$ volts, cer. disc... 65D 10-21 ${ }_{C 244}^{\text {C24 }} \mathbf{0} 5022 \mathrm{mf}, 500$ volts, cer. disc.. 65D 10-15 C247 .0022 mf, 500 volts, cer. disc.. 65D 10-15 c247 . 047 mf , 400 volts, myla C240 $.33 \mathrm{mf}, 400$ volts, paper.......
C249
C25 mf,
C251
. mf,
400 volts, electrolytic.
volts, mylar dielec. C251
C252
. 1 mf mf, 400 volts, mylar dielec
molts, mylar dielec C253 50 mf , 25 volts, electrolytic. c2544 $60 \mathrm{mf}, 300$ volts
 C301 $\quad .5$ to 8 mmf, ceramic trinmer.. 66A 38-8 $\begin{array}{ll}\text { NPO temp. coeff.............. } \\ \text { C303 } & 3 \text { to } 13 \text { mmf, ceramic trinmer.. } \\ \text { C304 } & 18 \text { runf, } 500 \text { volts, }\end{array}$ 66A 38-7 C304 18 runf, 500 volts, 5%, ceramic $305820 \mathrm{mmf}, 500$ volts, cer. disc.... $65 \mathrm{6D} 10-121$
$10-91$
$1.0 \mathrm{mf}, 100$ volts, paper........ $64 \mathrm{~A} 10-3$
 c309
c310
c311
 $c 315$
c316

4.7 mmi
47 mmf,
disc,

composition
olts, 5\%, ic...

CAPACITORS-CONt'd

APACITORS-CO

Description

Part No

Capacitors -Conid	
Sym.	Description Part 1 No.
C317	6.8 mmf , 10%, composition...... 65B 41
18	.1 mf, 200 volts, upright, mylar dielec.............
C319	5 mf , 200 volts, electrolytic... See C
C320	20 mf , 200 volts, electrolytic.. See c216B
C321	. $22 \mathrm{mf}, 400$ volts, paper. 64B 8
22	$3.3 \mathrm{mmf}, 500$ volts, 10%, ceramic, NPO temp. coeff. (part of T303).
C325	820 mmf , 500 volts, cer. disc... 65D 10-91
c326	820 mmP , 500 volts, cer. disc... 65D 10-91
C327	820 mmf , 500 volts, cer. disc... 65d 10-91
C328	820 mmf , 500 volts, cer. disc... 65d 10-91
c329	$5 \mathrm{mf}, 300$ volts, electrolytic... See c254B
${ }^{4} 401$. 022 mf , 400 volts, paper....... 64B 8
C403	. $01 \mathrm{mf}, 500$ volts, ceramic disc. 65D 10-41
C404	. $01 \mathrm{mf}, 500$ volts, ceramic disc. $65010-41$
C405	150 mmf , 500 volts; cer. disc... 65D 10-85
C406	. $0047 \mathrm{mf}, 500$ volts, cer. disc.. 65D 10-71
${ }^{4} 407$. $01 \mathrm{mf}, 500$ volts, ceramic disc. 65D 10-41
C408	. $0022 \mathrm{mf}, 500$ volts, cer. disc.. 65D 10-111
C409	```.001 mf, 2 KV, ceramic disc..... 65D 10-181 (C409 was .001 mf, 1.6 KV, mylar, in early sets.)```
C410	$.047 \mathrm{mf}, 200$ volts, 10%, 2% drift, upright, mylar dielec...... 64C 15-155
C411	$.1 \mathrm{mf}, 400$ volts, upright, mylar dielec.
${ }^{0} 412$	$.1 \mathrm{mf}, 400$ volts, 2% drift, upright, mylar dielec......... 64C 16-130
C413	50 mf , 50 volts, elect
$\begin{aligned} & \text { C414A } \\ & C 414 \mathrm{~B} \end{aligned}$	$50 \mathrm{mf}, 300$ volts electrolytic.. 6TD 15
C416	$.047 \mathrm{mf}, 400$ volts, paper....... 64B 8-2 (C416 was 200 voits in early sets; see Run Change 25.)
C417	. $022 \mathrm{mf}, 600$ volts, 10%, paper.. 648 $22-11$
C418	. $0047 \mathrm{mf}, 500$ volts, cer. disc.. 650 10-71
4419	. $001 \mathrm{mr}, 400$ volts, 10%, paper.. 64B 2-24
C420	. 001 mf , 400 volts, 10%, paper.. 648 2-24
C421	. 0047 mf , 500 volts, cer. disc. . 65 D 10-112
C422	.022 mf, 200 volts, upright, mylar dielec.................... 64c
${ }^{2} 423$	$3,900 \mathrm{mmf}, 500$ volts, 10%, mica. 65B 21-392
C424	390 mmf , 500 volts, 10%, mica... 65B 21-391
C425	680 mmf , 500 volts, 10%, mica... 65B $21-681$
C426	. $0047 \mathrm{mf}, 500$ volts, cer. disc.. 65p 10-112
0427	$.047 \mathrm{mf}, 400$ volts, paper...... 64B 8 -
	300 numf, 500 volts, ceramic, in sets stamped Run 10............ 65D 10-141
C428	$.001 \mathrm{mf}, 1,600$ volts, in sets stamped Run 11 or higher.....6 648 $2-32$
C429	. $033 \mathrm{mf}, 600$ volts, mylar dielec 64C 25-10
C430	. 1 mf, 600 volts, paper......... 64B 8-7
C431	$.001 \mathrm{mf}, 5,000$ volts, cer. disc. 65D 10-164 (C431 was 1,600 volts in early sets.)
C432	210 mmf , 2,000 volts, cer. disc. 65d 10-151
C433	$210 \mathrm{mmf}, 2,000$ volts, cer. disc. 650 10-151
C434	$120 \mathrm{mmf}, 2,000$ volts, cer. disc. 650 10-148
C435	. 01 mf , 400 volts, paper....... 64B 8-32
C501	. $047 \mathrm{mf}, 600$ volts, mylar
	elec....................... 648 2-36
	mf , 1,400 volts
	disc, in Chassis stamped Run
	10 through Run 23............. 65D 10-133
	. 001 mf, 1,400 volts, ceramic,
	$65010-$

C503 $150 \mathrm{mf}, 150$ volts, electrolytic 6TD 15-203 C504A $100 \mathrm{mf}, 300$ volts electrulytic. 67D 15-306 tC505 . $01 \mathrm{mf}, 1,400$ vClts, ceramic.... 801 1, 200 mmf , ceramic feed-through. . 802 1,000 mnff, ceramic feed-through. .
 Trinmer, Ciscillator.
Trimmer, Tuned Line Trinmer, Tuned Line. C807A Tr inmer and Stud.
8078 Tr-1mmer and Stud
. . Not 65D 10-65 $94 \mathrm{D} 112-51$ 94 D
$912-51$
94 D
912.51
94 D
$122-51$ $94 D \quad 12 \ldots-51$
940 112-61 g4D $112-61$
supplied supplied

C809 Rotor, Tuning Capacitor.Not supplied $903120 \mathrm{mmf}, 10 \%, 500 \mathrm{volts}$, ceramic.. 94D 131-59 C904 30 minf, 5 , 5 , 500 volts, ceramic 905800 nmf, ceramic feed-through. c905 800 mmf , ceramic feed-through. .
C906 $28 \mathrm{mmf}, ~$
low,
500 volts, ceramic 900712 mmff, $10 \%, 500$ volts, ceramic. C908 5-10 mmf, ceramic trinnuer..
$99114,000 \mathrm{mmf}, 500$ volts, ceramic....
C911
C91
C913
$1-4.5 \mathrm{mmf}, 5$, ceramic trinmer
C
C913
1-4.5 mmf, ceramic trimmer.......
C914
47 mmf, 10%, 500 volts, ceramic.
C915
800 mmf , ceramic feed-through....
C915 800 mmf , ceramic feed-through.
C916
30 mmf , 500 volts, ceramic fee
C917 through.......................
C918 800 mmf, ceramic feed-through.
C919 3.0 nmf, 10%, 500 volts, ceramic
C920 6.8 NPO temp. coeff...............
C920 6.8 munf, $10 \%, 500$ volts, ceramic
C921 $\begin{aligned} & \text { N330 temp. coeff.............. } \\ & 2.0 \text { nmf, } 5 \% \text {, } 500 \text { volts, ceramic, }\end{aligned}$
C922 N550 temp. coeff.............

C925 800 mmf , ceramic feed-through.
C926 800 mmf , ceramic feed-through.

$94 \mathrm{D} \quad 131-80$ 94 D 131
 94 D $931-97$ 94 D $131-81$

4 l	$131-81$
4 D	$131-95$

g'D $151-83$	
gluD	$131-82$

94D 131-82
$94 \mathrm{D} 131-86$
9D $131-83$

$94 D$
$94 D$
$9131-83$
$94 D$

$94 D ~ 131-83$
$94 D ~ 1311-83$
$94 D$
$131-87$
94D 131-97
94D 131-88
94D 131-89
$94 D$
$131-97$
94D 131-91
94D 131-92

94D 131-93
94D

COILS AND TRANSFORMERS

$\mathrm{L102}$	Increment Antenna Coil,
illo	
L104	Channels 2 through 5.

$73 D$ 30-12
L106 Master Antenna Coil
L106 Master Antenna Coll, Channels 2 through 6.......... 73D 30-17
107 Master Antenna Co1;,
73D 30-18
Channels 10 and 11
73D 30-21

L112	
L115	
L118	Plate Increment Co11,
Channels 2 through	

73D 30-19
L124 Master Plate Coil
127 Master Plate Coil, $\begin{gathered}\text { Channels } 2 \text { throug }\end{gathered}$
73D 30-27
Channels 7 throush
73D 30-8

Nay be part of'RC filter 63B10-3 in chassis stamped Run 10 tbrough Run 23 , and Run 26 or higher.
© John F. Rider

MISCELLANEOUS PARTS FOR VHF TUNERS-Cont'd
Sym.
Description
MISCELLANEOUS PARTS FOR VHF TUNERS
94DI51-1 and 94DI5I-2-Cont'd
Description

MISCELLANEOUS PARTS FOR UHF TUNERS 94D112-5 and 94D155-3
(see figure 60 for 1llustration of tuner.)
CR801 S1licon Diode (type IV82a) 94D 112-5

TUNING DRIVE PARTS FOR TUNERS

 IN VHF-UHF SETSCord, Tuning............................ 50A ${ }^{1-3}$ Srum, Drum Set (Cup point, $6-32 \times 3 / 16$ "). IA $5-54$
Spreyng, Drive Cord Tension............ 19C $1-5$

CABINET PARTS

odels may have supfix letter "C".

OJohn F. Rides

CABINET PARTS	Models may have suffix letter "C"				C21817	
	C21E12	C21el3	C21E14	C21E16		
	CA21E12	Caziel3	CA2IE14	CA21E16	Cazelel 7	
Description	Hahogany	Blond	Sierra	Mahogany	Blond	
Back, cabinet (hess 1ine cord)						
for vir	43E 298-1	43E 298-1	43E 298-1	43 E 298-33	43 E 298-33	
for UnIr	43E 298-13	43 E 298-13	43E $298-13$	43E 298-33	${ }^{43 \mathrm{E}}$ 298-33	
Sierra			*35E 390-4			
Mahogan	358 396-2			*35E 419-2		
${ }_{\text {clip }}^{\text {Blond. }}$		*35E 396-3 18A 159	18A 199	18A 159	*358 419-3	
Clip, yindow Retaining.	2 2 30-	2 2 $30-1$	2 2	2 2 $30-1$	2A $30-1$	
Escutcheon, Cabinet Front (molded)						
Gold finish.......	23E 286-1	238 286-1	23E 286-1	${ }^{23 E}$ 286-1	23E 286-1	
Ferrule, Lez.				378 123-5	378 123-5	
Grille, Hetal (above picture window)	368 80-1	${ }^{368} 80-1$	${ }^{368} 80-1$			
ille						
Jewel, Escutcheon (Beige)...	82A 32-3	82	82 A	उ2^ 32-3	82 A 3-3	
Knobs and Associated Parts						
Tuning knobs						
for VHF only models SDrive Disc Assem	33C 258-4	33 C 258-4	$33 \mathrm{C} 258-4$	33C 258-4	33 C 258-4	
for VFr-UHF models						
§Drive Disc Assem	33C 258-5	33 C 258-5	33 C 258-5		$\begin{aligned} & 33 C 258-5 \\ & 33 \mathrm{C} \\ & \hline 257-3 \end{aligned}$	
for All models						
VHFF Selector.	33D 231-13	$33 \mathrm{D} 231-13$	$33 \mathrm{D} 231-13$	33D $231-13$	33D 231-13	
Preference Control Knobs (Beige)						
Brightnes	33 C 230-5	336 230-5	334 230-5	336230	336	
Contrast,	33 C 230-2	33 C 230-2	33 C 230-2			
vertical,	33C 230-3	33C 230-3	33 C 230-3		33C 230-3	
Volume Spac	33 C 230-1	$33 \mathrm{C} 230-1$	33C 230-1	33 C 230	33 C 230	
Knob Springs						
Conical, un	19D 1-40	$1981-40$ 108 1814	198 188 1814	198 188 18	$198 \mathrm{~A}-4.4$	
Drive Disc Reta	13 A 14	10A 214	18 A 214			
for Fine Tunin	138 5-14	$18 \mathrm{~A} 5-14$	${ }_{188}^{188} 5$ 5-14	$\begin{array}{ll}188 \\ 138 & 5-14 \\ 1\end{array}$	184 $5-14$ 138 18	
for UTFF Indic	18A 5-11	184 18 A 103	188 188 108 10	184 188 103	${ }_{184}^{134} 5103$	
for Vif	18A 103		184103	18 A 103		
*Leg, Cabinet						
Blond..	-------	*35E 396-53		-------	*370 168-28	
Sterra.	898 62-4	$89862-4$	*35E 3-6-54 898 6	898 5\%-4		
e cord	898 62-4	898 62-4				
"A"	2 20	26 C 68 -1	$26 ¢ 6 .-1$	26 C	26 C	
admiral	23D 287-2	23D 287-2	23D 287-2	23 D 28		
Plastic, Bottom	${ }^{33 C} 1581-1$	${ }^{33 C} 1581581-1$	33 C 15 B 1589		33 Cb 15 B 15889	
Retainer, windo	158					
Rubber Escutcheon Bumper						
Sm	128 79-26-1	128				
Large		12879 -26	123 79-20-1	18 -		
Rubber Pad (top glass mtg.).	12 C 5-17	1205 5-17	12 C 5-17	$12 \mathrm{C} 5-17$	$1205-17$	
Rubber Pad (corner glass mtg	12A 89-2	${ }_{12}^{124} 89-2$	12A 89-2	$12489-2$	${ }_{12}^{12 A} 89-2$	
(bottom alass mtg.	12 C -5	12 C 5-53	12 C -53	12 C 5-53	12C 5-53	
$45 \times 3 / 8$ RHWS (mtg. cabt.) 2 7-16-7	1A 7-10̇-71	1A 7-16-71	1A 7-16-71	1A 7-16-	
\#10-24x ${ }^{\frac{1}{2}}$ BFWS (mtg. tube	$1 \mathrm{~A} 206-29$	2A 206-29-71	1 A 206-29-71	1 A 206-29-71	1 A 206-29-71	
\#10-24x ${ }^{\frac{1}{2}}$ (mtg. escutcheon)	1A 206-29-71	1A 206-29-71	1A 206-29-71	1A 206-29-71	1 A 206-29.-71	
Shield. Fflot Light.	${ }^{84}$ A ${ }^{24-2}$	${ }^{84} \times 2 \mathrm{P}$ 24-2	${ }^{84 A}$ 24-2		84 A 24-2	
$\mathrm{g}_{\text {glass suppurt. }}^{\text {corner }}$,	1243	1208 128 $89-2$	128 128 89	12484 $12489-2$		
corner glass mount	12A 89-2	12A 89-2		37 Cl 126	37 c 126	
$\begin{array}{lllll}\text { Terminal, Antenna (snap-in type).... } 98 \quad \text { 98 } & 98 & 98 & 98\end{array}$						
Right side	23D 291-17	23D 291-17	23D 291-17	$23 \mathrm{D} 291-$	23D 291	
Left stde.	23D 291-16					
Trim Strips						
Plain, Gold - Left	211 $21088-1$ 882	210 $2108-1$ $88-2$	210 21088 $88-2$	210 $2108-1$ $98-2$	$21 D^{98-1}$ $2108-2$	
Plain, Gold - Right	210 98-7	${ }^{211} 988-7$	210	21098	$21 \mathrm{D} 98-7$	
"Selector"	21D 98-4	$21 \mathrm{D} 98-4$	$21 \mathrm{D} 98-4$	21D 98-4	21 98-4	
"Fine Tuning"	21 98-5	21088	211 98-5	21598	$21098-5$	
*Orders for cabinets and certain matc	hing parts wil		ed unless the	damaged 1 tem	annot	

CABINET PARTS

CABINETPARTS
Models may have suffix letter "C"

Description	CR21E12 Mahogany	CR21E13 Blond	CR21E14 Sierra
Black, Cabinet (less line cord).	43E 298-21	43E 298-21	43E 298-21
Bulb, Pilot Light \#44	81A 1-5	82A 1-5.	81A 1-5
*Cabinet			
Mahogany	*35E 396-2	---	
Blond....		*35E 396-3	
Sierra			*35E 396-4
Clip, Tubuiar (plcture window 159			
Escutcheon, Cabinet Front (Molded)			
Gold Finish.	23E 286-1	235 286-1	23E 286-1
Grille, Metal (above picture window)	36B 80-2	368 80-2	368 80-2
Grille Cloth.....................	36D 86-1	$36 \mathrm{D} 86-1$	36D 86-1
Jewel, Escutcheon.	82a 32-1	82a 32-1	82¢ 32-1
**Knobs and Assoclated Parts			
Tuning Knobs			
for VHF only mode			
SDrive Disc Assembly.	33C 258-4	33 C 258-4	33 C 258-4
Fine Tuning.	33D 231-16	$33 \mathrm{D} 231-16$	33D 231-16
VHF Selector	33D 231-13	$33 \mathrm{D} 231-13$	33D 231-13
Preference Control Knobs (NoTE: Early production sets use beige plastic, later production use gold finish.)			
N-OFF Volune, Spacer $\left\{\begin{array}{l}\text { Beige.... } \\ \text { cold.... }\end{array}\right.$	$\begin{aligned} & 33 \mathrm{C} 230-1 \\ & 33 \mathrm{C} 230-6 \end{aligned}$	$\begin{aligned} & 33 \mathrm{C} \\ & 33 \mathrm{C} 230-1 \\ & 330-6 \end{aligned}$	$\begin{aligned} & 33 C \quad 230-1 \\ & 33 C \\ & 230-6 \end{aligned}$
ON-OFF Volume, Contrast $\left\{\begin{array}{l}\text { Beige } \\ \text { cold. }\end{array}\right.$	33c 230-2 33C 230-7	$\begin{aligned} & 33 C \quad 230-2 \\ & 33 C \quad 230-7 \end{aligned}$	$\begin{aligned} & 33 \mathrm{C} \\ & 33 \mathrm{C} 230-2 \\ & 330-7 \end{aligned}$
$\text { Brightness }\left\{\begin{array}{l} \text { Beige } \\ \text { Gold. } \end{array}\right.$	$\begin{aligned} & 33 C 230-5 \\ & 33 C 230-10 \end{aligned}$	$\begin{aligned} & 33 C \quad 230-5 \\ & 33 C \quad 230-10 \end{aligned}$	$\begin{array}{ll} 33 C & 230-5 \\ 33 C & 230-10 \end{array}$
$\text { Vertical, Tone }\left\{\begin{array}{l} \text { Beige. } \\ \text { Gold.. } \end{array}\right.$	33C 230-3	$\begin{aligned} & 33 \mathrm{C} \\ & 230-3 \\ & 33 \mathrm{C} 230-8 \end{aligned}$	$\begin{aligned} & 33 \mathrm{C} 230-3 \\ & 33 \mathrm{C} 230-8 \end{aligned}$
Remote-Manual (at rear)	33A 276	33 A 270	33 A 276
Knob Springs			
Conical, under push-button knob	19D 1-40	19D 1-40	198 1-40
Drive Disc Retaine	18A 214	18 A 214	18 A 214
for Fine Tuninis.	18A 5-14	18A 5-14	18A 5-14
for UHF Indicator	18A 5-11	18A 5-11	18A 5-11
for VHF Selector	18A 103	18A 103	18A 103
for volume.	18A 191	18A 191	18A 191
*Legs, Cabinet..	35E 396-52	*35E 396-53	*35E 396-54
Line Cord and Interlock S	898 62-4	898 62-4	898 62-4
Microphone and Cable.	78 B 137	78 B 137	78 B 137
Monogram			
"A"......	23D 287-5	${ }^{26 \mathrm{C}}$ 238-1 $287-5$	$23 \mathrm{D} 287-5$
Plast1c, Bottom Glass Mounting...	33C 281-1	$33 \mathrm{C} 281-1$	$33 \mathrm{C} 281-1$
Retainer, Bottom Class Mounting.	158 1589	1581589	158 1589
Rod, Nylon, Horizontal Hold Adj.....	33A 218-5	33A 218-5	33 A 218-5
Rubber Bumper (used under pic. tube)	8A 12-11	8 8 12-11	8 A 12-11
Rubber Escutcheon Bumper...........	128 79-26-1	128 79-26-1	$12 \mathrm{~B} 79-26-1$
Rubber Strip (top glass mtg.)	12C 5-17	12 C 5-17	12 C 5-17
Rubber Strip (corner glass mtg.)	12A 89-2	12A 89-2	$12 \mathrm{~A} 89-2$
Screw, \#5x3/8 RHWS (mtg. cabinet			
back clips)....................	1A 7-16-71	1A 7-16-71	1A 7-16-71
Screw, \#10-24x ${ }^{\frac{1}{2}}$ (mtg. escutcheon)..	1A 206-29-71	1A 206-29-71	1 A 206-29-71
Shaft, Remote Control Switch.....	338 170-8	33 B 170-8	$33 \mathrm{~B} 170-8$
Shield, Pllot Light....	82a 24-2	$8{ }^{\text {a }}$ 24-2	82a 24-2
Socket, Pllot Light.	82a 30-1	82a 30-1	$82 \mathrm{~A} 30-1$
Speaker, 6" PM.....	78C 134-5	78 C 134-5	$78 \mathrm{C} 134-5$
Terminal, Antenna (snap-in type)	98 29	9 P 29	9 B 29
Trim Plate, Gold Finish			
Right Side...........	23D 291-17	23D 291-17	23D 291-17
Left Side	23D 291-16	23D 291-16	23D 391-16
Wedge, Picture Tube Mtg.	33A 239	33 A 239	33A 239
W1ndow, P1cture (tinted)...........	$21097-2$	$21097-2$	$21097-2$

\$Drive Disc Assembly includes proper VEF Indicato
*Orders for cabinets and certain matching parts will not be filled unless the
Early production models which did not have or Push-Button ON-OFF
number 33D230-3 for the ON-OFF Volume, Contrast, Brightness and Vertical control

CABINET PARTS

Models may have suffix			
	L21822	L21E23	L21E24
	Latieza	LA21E23	lazif
Description Mahogany Blond Sierra			Si
Back, Cabinet (less line cord)			
for VHF .	43E 298-7	43 E 298-7	43E 298-7
for UFF	43E 298-17	43 E 298-17	43E 298-17
Back, Cabinet (less line cord)	43E 298-17	43E 298-17	43E 298-17
Bulb, Pilot Light 非峏. .	81A 1-5	82A 1-5	82A 1-5
*Cabinet			
Mahogany	*358 $401-$		
Blond.		*35E 401-3	
Sierra			*358 401-4
Clip, Cabinet Back litg	184159	184159	138159
Ferule, Leg.............	23E 286-1	23E 286-1	23E 286-1
Ferule, Leg.	37 C 165	37 C 165	37 C 165
Grille, Metal (above picture window)	368 80-1	$36880-1$	$36 \mathrm{~B} 80-1$
Grille Cloth.	36D 86-9	36D 86-9	36D 86-9
Jewel, Escutcheon (Beige)	82a 32-3	82a 32-3	82A 32-3
Knobs and Associated Parts			
Tuning Knobs			
for VHF only models§Drive Disc Assembly......... 33 C258-42			
for VHF-UHF models			
SDrive Disc Assem	336 258-5	336 258-5	33 C 258
for all models			
Fine Tuning (UFF Selector).	33D 231-16	33D 231-16	33D 231-16
	33D 231-13	33D 231-13	33D 231-13
Preference Control Knobs			
Brightness.....	33C 230-5	33 C 230-5	33 C 230-5
Contrast, Volum	33C 230-2	33 C 230-2	33 C 230-2
Vertical, Tone	33C 230-3	33 C 230-3	33 C 230-3
Volure Spacer	33C 230-1	33 C 230-1	33 C 230-1
Knob Springs			
Conical, under push-button knob.	19D 1-40	19D 1-40	19D 1-40
Drive Disc Retaine	184214	18 A 214	18 A 214
for Fine Tunin	18A 5-14	18A 5-14	18A 5-14
for UIF Indicat	18A 5-11	18A 5-11	1845011
for VFF Selector	18A 103	18A 103	18A 103
egs. Cabinet Base Assem. (complete)			
Mahogany.	358 401-52		
Black		*35E 401-53	*35E 401-53
	26C 68-1	26 C 6-1	26 C 68-1
"ADMIRAL"	23D 287-2	23D 287-2	23D 287-2
Plastic, Bottom Glass Mountin	33 C 281-1	33 C 281-1	$33 \mathrm{C} 281-1$
Plate, Pilot Light Mtg.	15C 1617	15C 1617	15 C 1617
Retainer (bottom glass mtg.	158 1589	158 1589	15B 1589
Rod, Nylon, Horizontal Adj.	33A 218-5	33A 218-5	33A 218-5
Rubber Escutcheon Bumper	123 79-26-1	128 79-26-1	128 79-26-1
Rubber Strip, Top Glass Mtg.	12C 5-17	12 C 5-17	12 C 5-17
Rubber Strip, Corner Glass Mtg...... 12A 89-2Screv, $45 \times 3 / 8$ RHyS Screw, \#5×3/8 RHWS			
(mtg. cab ${ }^{\text {det. }}$. back clips)	1A 7-16-71	1A 7-16-71	1A 7-16-71
rew, $110-24 \times \frac{1}{2}$ BHWD			
Shield, Pilot Light.	82A $24-2$	82 a $24-2$	82A 24-2
Speaker, 6" PM....	78 C 1344	78 C 134-4	78 C 1344
Strap. Tube Mounting	158 1621	158 1621	158 1621
Swivel Plate, Metal.	37 C 126	37 C 126	37 Cl 126
Terminal, Antenna (snap-in type)	9829	9 B 29	$98 \quad 29$
Trim Plate, Gold Finish			
Right Slde.	23D 291-17	23D 291-17	23 D 291-17
Left Side..	23D 291-18	23D 291-18	23 D 291-18
Window, Picture (tinted)	21D 97-2	21097	21D 97-2

Cabinet parts	Models may have suffix letter "C".		
	TH21E51C THA 21E51C Charcoal	TH21E52 C THAR1E52C Mahogany	TH21E53C thazle53C Blond
Description			
Back, Cabinet (less line cord)	43E 291-4	43E 291-4	43E 291-4
Bulb, Pilot Light \#44.	$81 \wedge 1-5$	81A 1-5	81A 1-5
*Cabinet, Metal			
	*34E 123-6		
Mahogany.		*34E 123-7	
Escutcheon, Cabinet Front (Molded) ${ }^{\text {E }}$ (-------- -------- *34E 123-8			
Goid Finish......................	23E 285-1	23E 285-1	23E 285-1
Feet, Cabinet.	8 12-5	8 A 12-5	8 A 12-5
Knobs and Associated PartsTuning Innobs			
VIF Channel Selector.	33D 231-4	33D 231-4	33D 231-4
VHF-UHF Channel Select	33D 231-2	33D 231-2	$33 \mathrm{D} 231-2$
UTF Channel Indicator.	$33 D$ 199-45	33 D 199-45	33 D 199-46
Fine Tuning.	33D 231-8	$33 \mathrm{D} 231-8$	$33 \mathrm{D} 231-8$
Preperence Control knobs (Beige)			
Bass, Brightness..	33C 230-5	33C 230-5	$33 \mathrm{C} 230-5$
Contrast, Volume,	33C 230-2	33C 230-2	33 C 230-2
Vertical	33C 230-3	33C 230-3	33 C 230-3
Knob Springs			
Conical, under push-button			
knob..	19D 1-40	19D 1-40	198 1-40
-or Fine Tuning.	18A 5-7	18A 5-7	18A 5-7
for Channel Seloc	18A 103	18A 103	181103
for UTE Indicator.	18^ 5-11	18A 5-11	18A 5-11
for Preference control	18A 191	18A 191	18 A 191
Line cord and Interiock socket.	$89 в$ гг-4	898 62-4	$89862-4$
Monogram "High Fidelity 330".	- 23 D 287-9	23D 287-9	23D 287 -9
Plastic, Bottom Glass Mounting	33C 281-1	33 C 281-1	$33 \mathrm{D} 281-1$
Plug, speaker Cable.........	88A 5-5	88A 5-5	$88 \mathrm{~A} 5-5$
Rod, Nylon, Horizontal Adj........	33A 218-5	$33 \mathrm{~A} 218-5$	
Rubber Escutcheon Bumper (small).	$\begin{aligned} & 12379-5-1 \\ & 12879-26-1 \end{aligned}$	128 128 $79-59-1$	$12879-5-1$
Rubber Strip (wedge eless support).	$12 \mathrm{~A} 4^{4}$	12 A 84	12 A 84
Rubber Strip (corner gleas mounting)) $12 \wedge 89-2$	12A 89-2	12A 89-2
Shield, Pilot Light...	82A 24-8	$82 \wedge$ 24-2	82 A 24-2
Socket, Speater (with 25 " leads).	89A 6-4	89A $6-4$	89A 6-4
Spring Clip Rack Retainer.........	18A 161	18 A 161	18 161
Terminal, Antenna (snap-in type)....	. 9B 29	$9 \mathrm{~B} \cdot 29$	9 B 29
Trim Strips (see note below)			
Plain, Gold - Left Side.	21D 98-1	21D 98-1	$21098-1$
Plain, Gold - Right Side	210 98-2	21088 -2	215 98-2
Preference Controls.	210 98-7	210 98-7	210 98-7
"Selector".	$21098-4$	$21098-4$	$21 \mathrm{D} 98-4$
"Fine Tuning"	$21098-5$	210 98-5	$21088-5$
Window, Glass.	$21096-2$	$21095-2$	$21096-2$
PARTS	$\begin{aligned} & \text { FOR MATCHING } \\ & \text { TTH21E51 } \end{aligned}$	BASES USED WITH Bт	above models втнә1е53
Grille Cloth.	36D 86-43	36D 36-44	36D 85-43
Monogram "A".	${ }^{26 C}$ 68-1	${ }^{26 C} 68-1$	26 C 68-1
Speakers, ${ }^{\text {5" }}$ 8M. ${ }^{\prime \prime}$ PM.	788 139-3	$788 \mathrm{Br} 139-3$	78 B 139-3

NOTE: Trim strips can be fastened to escutcheon with PLI-O-BOND, a cement . Irim strips can be fastened to
*Orders for cabinets and certain matching parts will not be filled unless full details are given with
repaired economically.

OJohn F. Rider

CABINET PARTS

Models may have suffix letter			
	т21e2l	т21e2a	T21823
	TA21E21	taziezz	taplez
Description	Charcoal	Mahogany	Blo
Back, Cabinet (less line cord)			
	43E 291-1	43E 291-1	43E 291-1
for Ufr.	43E 291-3	43E 291-3	43E 291-3
Bearing Plate			
for vir.	32A 335-2	32A 335-2	32A 335-2
for UHF.	$324335-$	32A 335-1	32A 335-1
*Cabinet, Metal			
Charcoal.	34E 123-		
Mahoga		* 348 123-2	
Blond			*34E 123
Clip, Cabinet	18A 161	184161	18 A 161
Clip, Hindow Retaining............... ${ }^{\text {Escutcheon, Cabinet Front (Molded }}$ 30-1 \quad 2A $30-1 \quad$ 2A $30-1 ~$			
	23E 285-	23E 285-1	${ }^{23 E}$ 285-1
Feet, Cabinet..........	8 A 12	8 8, 12	8 8 12.5
Knobs and Associated Parts			
Tuning Knobs			
VFF Channel Selec	33D 231-3	33D 231-3	33D 231-3
VIF-UHF Cliannel Select	33D 231-1	33D 231-1	33D 231-16
UFiF Channel Indicator	33D 199-46	33D 199-46	33D $199-46$
Fine Tuning.	33D 231-8	33D 231-8	33D 231-8
Preference Control Knobs (NOTE: Early production sets use beige plastic, later production use gold finish)			
ON-OFF -Volume, Spacer (Beige)...	33C 230-1	$\begin{aligned} & 33 \mathrm{C} \\ & 33 \mathrm{C} 230-1 \\ & 230-6 \end{aligned}$	33 C 33 C $230-1$ $230-6$
ON-OFF-Volume, Contrast (Beige).	33C 230-2	33 C 230-2	33С 230-2
(Gold)	33 C 230-7	33 C 230-7	33 C 230-7
Brightness (Beige)	33C $3300-5$	33C 230-5	33C 230-5
(Gold).	33C 230-10	336 230-10	33 C 230-10
Vertical, Tone (Beige)	33C 230-3	33C 230-3	33 C 230-3
(Gold)	336 230-8	$33 \mathrm{C} 230-8$	33 C 230-8
Knob Springs			
Conical, under push-button knob.	19D 1-40	198 1-40	198 $1-40$
for Fine Tuning.....	18A 5-7	18A 5-7	18A 5-7
for Charnel Selector	18A 103	18A 103	18A 103
for UIF Indicator.	18A 5-11	18A 5-11	18A 5-11
for Preference Controls..	184191	18A 191	18A 191
Line Cord and Interlock Soc	898 62-4	898 62-4	898 62-4
Monogram, "ADMIRAL".	23D 287-2	23D 287-2	23D 287-2
Plastle, Buttom Glass Mounting.	33C 281-1	33 C 281-1	33 C 281-1
Retainer, Picture Window. Bottom.	1581589	158 1589	1581589
Rod, Nylon, Horizortal Adj....	33A 218-5	33A 218-5	33A 218-5
Rubber Escutcheon Bumper (small)		128 79-5-1	$12 \mathrm{~B} 79-5-1$
(large)..	128 79-26-1	12в $79-26-1$	12в 79-26-1
Rubber Pad, Corner Glass Mounting...	12A 89-2	12A 89-2	12а 89-2
Rubber Strip, Wedge, Glass Support..	1248	$12 \wedge 84$	12 A 4
Rubber Strip, Hindow Retainer.......	120 5-53	12 C 5-53	120 5-53
Screen, Speaker, Flocked.	36B 55-18	368 55-19	36B 55-20
Screw, Mtg. Speaker, \#3x3/4 BDFD....	1A 28-22-70	1A 28-22-70	1A 28-22-70
Screw, Mtg. Escutcheon, \#6-32x $\frac{1}{2}$ HRST	1A 206-12-71	1A 206-12-71	1A 206-12-71
Shield, Pilot Light..	82A 24-2	82A $24-2$	82A 24-2
Socket, Pilot Light.	82A 35-1	82A 35-1	82A 35-1
Speakers			
$4{ }^{\text {" PM. }}$		$788136-4$	78B 136-4
$6^{\prime \prime} \mathrm{PM}$,	788 134-4	78 B 134-4	78 B 134
Terminal, Antenna (snap-in type)		9 B 29	9B 29
Trim Strips (see note below) ${ }^{\text {d }}$			
Plain, Gold - Left Side.	218981	218981	$21098-1$
Plain, Gold - Right Side	21088	21898	21098
Preference Controls	98-3	21088	21098
"Selector".	210 98-4	210984	$21098-4$
"Fine Tuning"	21098 -5	210 98-5	210 98-5
Wedge, Picture Tube	33 A 239	33A 239	33A 23
Window, Picture (tinted).	210 96-2	$21 \mathrm{D} 96-2$	210 96-2

NOTE: Trim strips can be fastened to escutcheun with PLI-O-BOND, a cement which can be obtained locally.
orders for cabinets and certain matching parts will not be filled unless full details

Warning: The chassis of this receiver is connected directly to one side of the 117 volt, 60 cycle power line Depending upon the position of the line cord plug in the wall outlet, the total AC line voltage may exist between the chassis and any ground object. When installing or servic ng , do not touch the chassis unless adequate safety precau tions are taken. Never touch the chassis and a ground (ra diators, pipes, etc.) at the same time.

Do not ground chassis or connect test equipment directly to it, unless an isolation transformer is used. If an isolation transformer is not available, a neon lamp can be used to determine if the chassis is "hot" "Connect an electrician neon tester (General Cement's "Ne-o-lite" or equivalent) etween the receiver chassis (not control shafs) and some If the neon lamp glows, the chassis is "hot" and the line cord plug should be reversed. Make the same check with the neon lamp connected between ground and the ground ter minal of the test equipment. If the lamp glows, reverse the line cord to the test equipment.

SCHEMATIC NOTES

(2) (3), ... etc. indicate production changes covered by Run number. Run numbers are stamped at the rear of the chassis. Brief description of Run changes given on sche matic
(A1), (A2), , (Y), (Z), etc. indicate alignment points and
Important: Before making waveform and voltage mea urements, see instructions below.
Fixed resistor values shown in ohms $\pm 10 \%$ tolerance $1 / 2$ watt; capacitor values shown in micromicrofarads \pm 20% tolerance unless otherwise specified.
Note: $\mathrm{K}=\mathrm{x} 1000$, $\mathrm{MEG}=\mathrm{x} 1,000,000, \mathrm{MF}=$ microfarad.

CONDITIONS FOR OBSERVING WAVEFORMS

Caution: Pulsed high voltages are present on the caps of V405 and V407, and at pin 3 of V406. DO NOT attempt o observe waveforms at these points unless suitable test equipment is used. Waveforms at these points may be taken with a capacitive voltage divider probe. The waveform at pin 3 of V 406 may also be taken by clipping or twisting the tion on the lead connecting to pin 3. If the waveform is taken in this manner, its shape will be the same, but the peak-to-peak voltage will be somewhat lower, depending on the degree of coupling between oscilloscope and lead connecting to pin 3 of V406.

- Waveforms should closely resemble those shown on the schematic.

Waveforms are taken with a transmitted signal input to the television chassis.

Set all controls for a normal picture. After the receiver is set for a normal picture, turn the CONTRAST control fully clockwise.
Oscilloscope sweep set at 30 cycles for vertical waveforms and at 7,875 cycles for horizontal waveforms to permit 2 cycles to be observed.

- Peak-to-peak voltages will vary slightly from those shown on the schematic, depending on the test equipment em. ployed and chassis parts tolerance.

CONDITIONS FOR MEASURING VOLTAGES

Caution: Pulsed high voltages are present on the caps of V405 and V407, and at pin 3 of V406. DO NOT attempt o measure voltages at these points without suitable test used when measuring picture tube 2nd anode voltage.

- Set the Channel selector on an unused channel. CONTRAST and SUPER RANGE FINDER controls fully clockwise. All other controls counterclockwise. Do not disturb HORIZONTAL DRIVE or HORIZONTAL HOLD adjustments.
- Antenna disconnected and terminals shorted together.
- Line voltage: 117 volt AC .
- DC voltages measured with a VTVM between tube sockel terminals and chassis, unless otherwise indicated.
- Voltages measured with tubes in socket
- Voltages marked (*) will vary widely with control settings.

tube locations and heater circuit +25CD6GB in chassis Run 10 thru 22; 12006A
 Suffix Letter "C" Added to Chassis Number. See Figure 57 for Horizontal Output Circuit in Chassis Without Suffix Letter "C" (Stamped Run 10 Through Run 22).

© John F. Rider

CHASSIS 16AB1, AD1, AE1, AG1, AL1,
AU1C, AW1C, B1, D1, E1,
G1, J1, K1, L1, U1C, W1C(Late) ADMIRAL TV PAGE 27-33

Figure 69. Schematic for 16AB1, 16AB1C, 16AD1, 16AE1, 16AE1C, 16AG1, I6AG1C, 16A Used Only in Sets with Suffix Letter "C" Added to Chassis Number. See Figure 57 fc

VHF TUNERS $94 E 144-9 \operatorname{IN}$ 16AB1, I6ABIC. $94 E 144-22 \operatorname{IN}$ 16AD1, 16AE1, 16AEIC. $94 E 144-30 \mathbb{N}$ I6AG1, 6 GAGIC. $94 E 144-27 \mathbb{N}$ 16ALI, 16ALIC.

(10) Run changes
(11)

tUBE LOCATIONS AND HEATER CIRCUIT
\dagger 25CD6GB in chassis Run 10 thru 22: 12DO6A
in chassis Run 23 or higher.
elevision Chassis Stamped Run 24 Through Run 28.

Figure 70. Schematic for 16 UIC and 16 WIC

VHF TUNER 94E144-24IN 16U1C VHF TUNER 94E144-13 IN 16WIC

OJohn F. Rider

1, and 16ALIC Television Chassis Stamped Run 10 Through Run 28. Horizontal Output Shown, Horizontal Output Circuit in Sets Without Suffix Letter "C" (Stamped Run 10 Through Run 22).

Figure 71. Schematic for 16AU1C and 16AWIC

Run 28. Horizontal Output Shown, Used Only in Sets with Suffix Letter "C" Added to Chassis Numlithout Suffix Letter "C" (Stamped Run 10 Through Run 22).

Television Chassis Stamped Run 24 Through Run 28.

Figure 72. Schematic for 16J1, 16J1C, 16K1, and 16 K 1 C Television Chassis Stamped Run 15 Througl: ber. See Figure 57 for Horizontal Output Circuit in Sets

Admiral

SERVICE DATA SUPPLEMENT No. ST597-3

for models using
16B1, 16AB1, 16D1, 16ADI, 16E1, 16AE1, 16G1, 16AG1, 16JI, 16KI, 16LI, 16ALI, 16UIC, 16AUIC, 16RIC, 16ARIC, 16SIC, 16ASIC, 16WIC and 16AWIC CHASSIS

includes latest

PRODUCTION CHANGES, SERVICE HINTS, SCHEMATICS AND PARTS LIST FOR MODELS USING ABOVE CHASSIS

IMPORTAN

Use this supplement with Service Data No. ST597-2 when servicing any model using these chassis. This supplement contains necessary service data for the later production chassis It also includes corrections and additions to earlier Service Data. For service information covering Son-r tuner RT440A and the 8G1 remote control amplifier used in models with remote tuning, see Service Manual No. S599.

MODEL IDENTIFICATION CHART
(For Model Numbers not listed below, refer to Model Identification Chart in Service Data No. ST597-2)

MODEL NUMBER	TV CHASSIS	MODEL NAME	$\begin{gathered} \text { CHASSIIS } \\ \text { SERIES } \end{gathered}$	$\begin{aligned} & \text { VHF } \\ & \text { TUNER } \end{aligned}$	$\begin{aligned} & \text { UHF } \\ & \text { TUNER } \end{aligned}$	LOCATION OF TUNING CONTROLS	$\begin{aligned} & \text { TONE } \\ & \text { CONTROL (} 5 \text {) } \end{aligned}$
$\begin{aligned} & \text { T21E2 } \\ & \text { T21E2C } \\ & \text { T21ED2 } \end{aligned}$	16G1 1661 C 16G1C	Meredith	De Luxe 330	94E144-19		Hideway Top	
$\begin{aligned} & \text { T21E3 } \\ & \text { T21E3C } \\ & \text { T21E3D } \end{aligned}$	16G1 16G1C 16G1C	Meredith	De luxe 330	94E144-19		Hideway Top	
$\begin{aligned} & \text { T21E3E } \\ & \text { T21E3F } \end{aligned}$	$\begin{aligned} & 16 R 1 C \\ & 16 R 1 C B \end{aligned}$	Meredith	De luxe 330	$\begin{array}{r} 94 E 144.13 \\ 94 \mathrm{D} 151.1 \text { or }-5 \\ \hline \end{array}$		Hideway Top	
$\begin{aligned} & \text { T21E20E } \\ & \text { T21E20F } \end{aligned}$	$\begin{aligned} & 16 R 1 C \\ & 16 R 1 C B \end{aligned}$	Asbury	Imperial 330	$\begin{aligned} & 94 \mathrm{E} 144-13 \\ & 940151-1 \text { or }-5 \end{aligned}$		Front	Single
TA21E20E	16ARIC	Asbury	Imperial 330	94E144-30	$\begin{gathered} 94 D 112.5 \text { or } \\ 94 D 155-3 \end{gathered}$	Front	Single
$\begin{aligned} & \text { T21E21E } \\ & \text { T2IE21F } \end{aligned}$	$\begin{aligned} & \text { 16RIC } \\ & 16 R 1 C B \end{aligned}$	Asbury	Imperial 330	$\begin{aligned} & 94 \text { E144-13 } \\ & 940151-1 \text { or }-5 \end{aligned}$		Front	
$\begin{aligned} & \text { T21E22E } \\ & \text { T21E22F } \end{aligned}$	16R1C 16R1CB	Asbury	Imperial 330	$\begin{gathered} 94 E 144-13 \\ 94 D 151.1 \text { or }-5 \end{gathered}$		Front	
TA21E22E	16ARIC	Asbury	Imperial 330	$94 E 144.9$	$\begin{aligned} & \text { 94D112-5 or } \\ & 94 D 155.3 \end{aligned}$	Front	
T21E23E	16R1C 16R1C	Asbury	Imperial 330	$\begin{aligned} & 94 E 144-13 \\ & 94 D 151-1 \text { or }-5 \end{aligned}$		Front	
TA21E23E	16ARIC	Asbury	Imperial 330	94E144-9	$\begin{aligned} & 94 D 112.5 \text { or } \\ & 94 D 155.3 \\ & \hline \end{aligned}$	Front	
$\begin{aligned} & \text {-TR21E21 } \\ & \text {-TR21E21C } \end{aligned}$	16J1 16JIC	Asbury	Automatic 330	94D151-1 or -5		Front	Single
-TR21E22	16 J 1 16 J 1 C	Asbury	Automatic 330	940151-1 or -5		Front	Single
'TR21E23 *TR21E23C	$\begin{aligned} & 1651 \\ & 16 \mathrm{JIC} \end{aligned}$	Asbury	Autnmatic 330	94 DISITl or -S		Front	Single
$\begin{aligned} & \text { C21E11E } \\ & \text { C2IE1IF } \end{aligned}$	$\begin{aligned} & 1651 \mathrm{C} \\ & 1651 \mathrm{CB} \end{aligned}$	Windsor	Imperial 330	$\begin{aligned} & 94 E 144-24 \\ & 94 D 151-2 \text { or }-6 \\ & \hline \end{aligned}$		Front	
CA2 IEIIE	16ASIC	Windsor	Imperial 330	94E144-22	$\begin{aligned} & 94 D 112-5 \text { or } \\ & 940155-3 \end{aligned}$	Front	
$\begin{aligned} & \text { C21E12E } \\ & \text { C2IE12F } \end{aligned}$	$\begin{aligned} & 1651 \mathrm{C} \\ & 1651 \mathrm{CB} \end{aligned}$	Windsor	Imperial 330	$\begin{aligned} & 94 E 144-24 \\ & 940151-2 \text { or }-6 \end{aligned}$		Front	
CA21E12E	16ASIC	Windsor	Imperial 330	94E144-22	$\begin{gathered} 94 D 112-5 \text { or } \\ 94 D 155-3 \\ \hline \end{gathered}$	Front	
$\begin{aligned} & \hline \text { C2IEISE } \\ & \text { C2IE13F } \end{aligned}$	$\begin{aligned} & 1651 \mathrm{C} \\ & 1651 \mathrm{CB} \end{aligned}$	Windsor	Imperial 330	$\begin{aligned} & 94 E 144-24 \\ & 940151-2 \text { or }-6 \\ & \hline \end{aligned}$		Front	
CA2IEI3E	16ASIC	Windsor	Imperial 330	94E144-22	$\begin{gathered} 94 D 112-5 \text { or } \\ 940155.3 \\ \hline \end{gathered}$	Front	
*CR21E12 -CR21E12C	16K1 16K1C	Windsor	Automatic 330	94D151-2 or -6		Front	
-CR21E13 CR21E13C	16K1 16 K 1 C	Windsor	Automatic 330	940151-2 or .6		Front	
-CR21E14 *CR21E14C	$\begin{aligned} & 16 \mathrm{k} 1 \mathrm{l} \\ & 16 \mathrm{k} 1 \mathrm{c} \end{aligned}$	Windsor	Automatie 330	940151-2 or -6		Front	
$121 E 22$ 121 E22C $121 E 22 E$ $121 E 22 F$	16E1 16E1C 1651 C ,	Princeton	Imperial 330	$\begin{array}{r} 94 \mathrm{E} 144.24 \\ 94 \mathrm{D} 151-2 \text { or }-6 \end{array}$		Front	Single
$\begin{aligned} & \text { L21E23 } \\ & \text { L2E23C } \\ & \text { L2IE23E } \\ & \text { L2IE23F } \end{aligned}$	16E1 16E1C 1651 C 1651 CB f6sic	Princeton	Imperial 330	$\begin{array}{r} 94 E 144-24 \\ 94 D 151-2 \text { or - } 6 \end{array}$		Front	Single

SPECIFICATIONS

（For Special Feafures，see page 4 of Service Data No．ST597－2．）

Picture Tube：Short neck rectangular， 110° magnetic deflection，electrostatic focus，gray filter faceplate，alumi－ nized screen，no ion trap magnet required．
Wattage：Voltage： $110 \cdot 120$ volts， 60 cycle AC
tage：
175 watts for Standard VHF models．
175 watts for VHF models with Hi－Fi sound
185 watts for standard VHF．UHF models．
225 watts for VHF models with Son R
ntermediate Frequencies
Video IF； 45.75 MC
Intercarrier Sound IF ； 4.5 MC
Input Impedance and Transmission Line： $\mathbf{3 0 0} \mathrm{ohm}$ balanced（between antenna terminals）for either VHF or UHF inputs．
Indoor Antenna：Some models are equipped with built－ in VHF and UHF antennas．
Fusible Resistor：A fusible resistor is used as the B＋ the high voltage cor

TUBE COMPLEMENT TOR

ALL VHF CHASSIS EXCEPT 16UIC AND 16 WIC
（For 16U1C and 16WIC chassis，

V101，v901	＊	VHF Amplifier
V102，V902	$5 \mathrm{CG8}$	VHF Mixer and Oscillator
V201	$3 \mathrm{DT6}$	Sound Detector
V202	$12 \mathrm{CU5}$	Sound Output
V301	$3 \mathrm{BZ6}$	1st If Amplifier
V302 V 303	3826	2nd IF Amplifier
V303	3Сb6	3 rd IF Amplifier
v304	6aw8a	$\left\{\begin{array}{l}\text { Video Amplifier } \\ \text { Sound IF Amplifie }\end{array}\right.$
V305	21CEP4A	Picture Tube （Noise Gate
V401	3BU8	Syne Separator Gated AGC
V402	\dagger	Vertical Oscillator Syne Inverter
V403	$12 \mathrm{DB5}$	Vertical Output
V404	CCG7	Horizontal Oscillator
V405	¢	Horizontal Output
V406	19AU4GTA	Damper
V407	1B3GT	HV Rectifier

SILICON，SELENIUM AND GERMANIUM DIODES

$$
\begin{aligned}
& \text { Germanium Diode, } \\
& \text { Yype } 1 N 60 \text {, IN } 87
\end{aligned}
$$

	with same type used．）	Selior
CR4	$93 \mathrm{BE}-4$ Dual	Horizontal Sy
CRSOr	350 MA Seleni	B＋Rectifie
CR502	350 MA Selenium	B＋Rec

$\begin{array}{ll}350 \mathrm{MA} \\ \text { Selenium } & \mathrm{B} \\ \mathrm{B}+\text { Rectifier }\end{array}$
 $7 \mathrm{AU7}$ in all chassis exsept $16 R 1 \mathrm{C}, 16 R 1 \mathrm{CB}$ ， 1651 Ss is． and 1651 CB ．

 （stamped Run 23 or higher）．
description and part number of fusible resistor． Important Note：Later production sets with 16R1C， 16ARIC，16S1C，16ASIC，16U1C，16AUIC，16WIC and and a conventional wire wound resistor instead of a fusible resistor．
TUBE COMPLEMENT FOR 8GI REMOTE CONTROL AMPLIFIER USED WITH 16 J 1 and 16 K 1 CHASSIS

vi	6aU6	Ist Amplifier
v2	6408	$\left\{\begin{array}{l}\text { 2nd Amplifier，} \\ \text { Tripler }\end{array}\right.$
v3	6BN6	Limiter
v4	6AL5	Discriminator
v5	$6 \mathrm{CM7}$	$\left\{\begin{array}{l} \text { Relay Control, } \\ \text { Relay Control } \end{array}\right.$
V6	6BJ7	$\left\{\begin{array}{l}\text { Discriminator，} \\ \text { Bias Rectifier }\end{array}\right.$
V7 V8	$6 \mathrm{CM7}$	Relay Control

TUBE COMPLEMENT FOR ALL VHF－UHF
CHASSIS EXCEPT 16AUIC AND IGAWIC （For 16AU1C and 16AWIC chassis，

，
V801
V101
V102
V201
V202
V301
V302
V303
V304
V305
V401

V402
V403
V404
V405
V406
V407

2AF4A
$4 B C 8$
$\left\{\begin{array}{l}\text { VHF Amplifier } \\ \text { UHF } 1 \text { 1st if Amplifie }\end{array}\right.$
 $\begin{array}{ll}\text { 3DT6 } & \text { Sound Detector } \\ \text { 12CUS } & \text { Sound Output }\end{array}$ Sound Detector
Sound Output
1st If Auplitior 1st IF Amplifier
2nd IF Amplifier
3d $\left\{\begin{array}{l}\text { 3rd If Amplifier } \\ \text { Video Amplifier } \\ \text { Sound If Amplifier }\end{array}\right.$ Picture Tube
Noise Gate $\left\{\begin{array}{l}\text { Noise Gate } \\ \text { Sync Separato } \\ \text { Gated AGC }\end{array}\right.$ $\left\{\begin{array}{l}\text { Gated AGC } \\ \text { Vertical Osilla } \\ \text { Sync }\end{array}\right.$ Sync Inverter
Vertical Output Horizzontal Oscillator
Horizontal Horizontal
Damper Damper
SILICON，SELENIUM AND GERMANIUM DIODES

CR301	Germanium Diode type IN60 iN87 or IN295（Replace with same type	Video Detector
CR401	93B5．4 Dual Selenium Diode	Horizontal Sync Diseriminator
CR501	350 MA Selenium	B＋Rectifier
CR502	350 MA Selenium	
CR801	Silicon Diode	UHF Mixer

t7AUT in all chassis except 16ARIC and 16ASIC．6CG7 in

§25CD6GB tube in chassis without suffix letter＂C
（chassis stamped Run 10 through Run 22）．

（stamped Run 23 or higher）．

DIFFERENCES BETWEEN CHASSIS

The television chassis covered in this manual are of uni－ versal design，both mechanically and electrically．All chassis utilize a $21^{\prime \prime}$ ，short neck 110 degree deflection picture tube with aluminized face plate．A series heater circuit is used in all chassis．The B＋power supply of all chassis（except in a voltage doubler circuit Hi ．Fi models ampere，plug－in type，silicon rectifiers．All chassis（except $16 \mathrm{~J}, 16 \mathrm{Kl}, 16 \mathrm{RlCB}$ and 16 SlCB ）use a disc type VHF tuner with cascode RF amplifier．The 16JI，16K1，16R1CB and 16S1CB chassis use a drum type VHF tuner with a neutrode RF amplifier
A description of basic chassis differences is given in the paragraphs below and in the＂Model Identification Chart＂ Note：The basic difference between table and console models of the same chassis series is in the use of a different front escutcheon
Imperial 330 Chassis：This series includes the 16B1， 16D1，16El，16RIC，16R1CB．16SIC and 16SiCB VHF （ 16 tube）chassis and the 16ABI，16ADI，16AE1，16ARIC and 16ASIC VHF．UHF（ 17 tube）chassis．The 16B1， $16-$ ABI，16RIC，16RICB and 16ARIC chassis are used in SICB and I6ASIC chassis are used in console models．All chassis have a tone control with exception of some early 16D1 and 16ADl chassis．All chassis use top tuning
De Luxe 330 Chassis：This series includes the 16 Gl and
16L1 VHF（ 16 tube）chassis and the 16AG1 and $16 \mathrm{AL1}$ VHF－UHF（ 17 tube）chassis．The 16G1 and 16AG1 chassis are used in table models；the 16 Ll and 16 ALl Chassis are used in console models．Both models use Hideaway top tuning．The chassis in this series do not have a tone control．
Hi－Fi 330 Chassis：This series includes the 16U1C and 16W1C VHF（ 18 tube）chassis and the 16AU1C and 16 － AWIC VHF－UHF（ 19 tube）chassis．The Hi－Fi sound amplifier of these receivers is contained in a separate sub．
chassis which mounts to the top side of the main chassis．A dual tone control and a dial light are used in all chassis．The U1C and 16AU1C chassis are used in console adels with sepr and 16AWIC chas the speaker of these receivers is mounted in the cabinet base．All models use top tuning Automatic 330 Chassis：This series includes the 16 J 1 and 6Kl VHF（ 16 tube）chassis．The 8 Gl remote control am pliner of these receivers is contained in a separate sub－chas－ is which mounts to the top side of the main chassis．Th 6 Jl chassis is used in table models；the 16 Kl chassis is used in console models．Both models use top tuning．The Kl chas a tor have a tone control．

SIGNIFICANCE OF SUFFIX LETTER＂B＂

The suffix letter＂B＂following the chassis number of a receiver，indicates that a different VHF tuner is used．Chas－ sis without suffix letter＂B＂use a disc type VHF tuner with竍 plete information，see Production Changes

SIGNIFICANCE OF SUFFIX LETTER＂C＂

The suffix letter＂C＂following the model and chassis num－ ber of a receiver，indicates that a different horizontal out put tube and horizontal output circuit is used．
Models or chassis numbers without the suffix letter＂ C ＂ Note：These chassis are as Run 10 through Run 22 Models or chassis wh＂C＂Run 22 12DQ6A tube as the horizontal output tube V405，see a figures 67 through 72 in Service Data No ST597－2．Note：These chassis are stamped Run 23 or higher．
A complete description of the above circuit differences is given in Service Data No．ST597．2 under Production Changes，for chassis stamped Run 23 a mplifier．For com

INSTALLATION ADJUSTMENTS FOR 16R1C，
 16AR1C，16S1C AND 16AS1C CHASSIS

（For other chassis，see Service Data ST597－2．）

To insure best performance，it is important to make all checks and adjustments shown in figure 73．It is important that VHF Channel Slugs be adjusted upon installation and at every service call．Note：Removal of cabinet back is required only for adjustment of picture tilt and centering．Use a separate line cord（part number 89A22－1 when servicing
Warning：The chassis of these receivers are connected directly to one side of the 117 volt， 60 cycle power line．Depend－ ing upon the position of the line cord plug in the wall outlet，the total AC line voltage may exist between the chassis and any grounded object．Do not touch the chassis unles

Do not ground chassis or connect test equipment directly to it，unless an isolation transformer is used．If an isolation trans－ former is not available，a neon lamp can be used to determine if the chassis is＂hot＂．Connect an electrician＇s neon tester （General Cement＇s＂Ne－o－lite＂or equivalent）between the receiver chassis（not control shafts）and some grounded point， reversed．Make the same check with the neon lamp connected between ground and the ground terminal of the test equipment． If the lamp glows，reverse the line cord to the test equipment．
a
© John F．Rider

PICTURE ADJUSTMENTS

Instructions for making picture adjustments are given in figures $6,7,8$ and 73 . These adjustments should

VHF CHANNEL ADJUSTMENT FOR 16RIC, 16ARIC, 16SIC and 16ASIC CHASSIS For adjustment procedure, see page 10 in Service Data No. ST597.2, under hearding titled "VHF CHANNEL AD.

VHF CHANNEL ADJUSTMENT FOR
 FOR 16RICB AND 16SICB CHASSIS

VHF Channel adjustment of each station should be checked upon installation and at every service call. If adjustment is properly made, it is possiblc to tune from one station
To adjurely turning the Channel Selec:orlows:

1. Turn the set on and allow 15 minutes to warm up.
2. Set VHF Channel Selector for a station; set other controls for normal picture and sound.
3. Set Fine Tuning control at center of its range by 3. Set Fine Tuning control at cent
4. For table models, remove Channel Selector and Fine Tuning knobs. For console models, remove escutcheon
ing screw at center of plate. Note: Later console models may use snap.in plate without mounting screw. To remove snap-in plate, insert blade end of a screw. driver against left side of channel window, see figure 9. With slight pressure, pull left side of plate away from cabinet.
5. Insert a $1 / 88^{\prime \prime}$ blade, flexible non-metallic tool (Part No. 98A30-19) through the hole adjustment to Channel Se lector shafi. For each channel in operation. carefully adjust the channel slug for best picture. (Note that this is not the point at which the sound is loudest.)
Caution: Only slight rotation of the slug will be required; turning the slug out too far will cause it to fall out of coil.

SUPER RANGE FINDER ADJUSTMENT, HORIZONTAL LOCK-ADJUSTMENT AND HORIZONTAL DRIVE ADJUSTMENT

These adjustments are the same for all chassis covered in this manual. For control locations see figures 6, 7, 8 and 73 . For adjustment procedure, see page 11 of Service Data No. ST597-2.
NOTE: Super Range Finder control not used in 16R1, 16AR1, 16S1 and 16AS1 chassis stamped Run 29. Disregard adjustment procedure for Run 29 chassis.

Figure 73. Rear View of $16 R 1 C, 16 A R I C$, $1651 C$ and $16 A S I C$ Chassis Showing Adiustment Locations. Note: Super Range Finder
control not in chassis stamped Run 29. UHF Antenna Torminals in VHF-UHF sets only.

SERVICE HINTS

AUDIO HUM

Persistent audio hum (with or without TV signal) can be caused by high resistance leakage of coupling capacitor c203 (.001 mf, 500 volls, ceramic). Coupling capacitor C203 is connected from pin 3 of sound IF amplifier V304B to terminal of sound detector coil L201.

GEAR TOOTHED RASTER

Distortion at right side of raster, with dark vertical line having a "gear toothed" pattern may be due to a faulty horizontal lock coil, L401.
Other symptoms occurring with above trouble may be a great change in horizontal oscillator frequency when set is switched off-channel and a few seconds delay for the
oscillator to lock-in when set is turned back to an operating channel.

INSTALLING UHF CHANNEL STRIPS

 N VHF TUNERS 94D151-1, -2, -5 OR -6 Receivers using VHF tuners 94D151-1, $-2,-5$ or -6 can be easily adapted for UHF operation by insertion of a UHF turret drum (between channels 13 and 2).If more than one UHF channel can be received, additional UHF channel coil strips can be inserted in the tuner turret drum after removing unused VHF channel coil strips. UHF channel coil strips (packed with installation and service instructions) are available from Admiral distri-
 Figure 74. View of Printed Wiring Board AS780-S used in 16R1 16AR1, 1651, 16ASI Chassis. Note: Noise Gate Circuit in
Chassis Stamped Run 30 or Higher. Gray Area Represents Printed Wiring; Black Symbols ond Lines Represent Components and
Connections on Opposite Side. See Service Manual No. STS97-2 for Other Printed Wiring Views.
butors, under part number N4D with UHF channel num. ber preceding the part number.
Note: When adapting a VHF tuner for UHF operation, it is necessary to order the following parts in addition to UHF channel coil strips.

1. Antenna input assembly, part number 31T-3112-01
2. Antenna lead assembly, part number 700D54.5
3. Antenna terminal clips, part number 9B24-1

SERVICING PRINTED WIRING

A major portion of the cirouitry in these receivers is coiltained in two printed wiring boards. The smaller printed ponents in the video IF and video detector circuits. The larger printed circuit board at bottom of chassis contains:
tubes and components in the sound IF, sound detector, sound output, sync,
sweep circuits.
Trouble shooting of printed circuit wiring is similar to that of conventionally wired sets. Complete instructions on the service and repair of printed circuit wiring is given in
Service Manual No. S559 available from the Admiral Dis. tributor.

To simplify circuit tracing, identifying tube socket connections and locating component connection points, figures 47 through 54 are given in Service Data No. ST597.2. Figures 74 and 75 covering printed circuit boards used in 16R1C, 16ARIC. 16S1C and 16ASIC are given in this manual. Nute: In these illusirations, components are shown
schematically instead of pictorially. This illustrates what would be seen if it were possible to look through the printed circuit wiring board and actually see the various com. ponents on the board.

Figure 75. View of Component Side of Printed Wiring Board A5780.5 used in 16RIC, 16ARIC, 16SIC and 16ASIC Chassis. See
Service Manual No, STS97-2 for other Printed Wiring Views.

LATEST PRODUCTION CHANGES

Production changes are coded RUN 10, RUN 11 , etc., as given below. Run number (stamped on chassis) indicates that chassis has change(s) incorporated which are explained under that heading, as well as changes (lower run tion changes, see Service Data No. 5T597-2.

RUN 29 HAS NO SERVICE SIGNIFICANCE OTHER THAN INDICATING START OF PRODUCTION FOR 16RIC, 16SIC, IGARIC; AND 16ASIC CHASSIS
NOISE GATE CIRCUIT ADDED TO V401 (3BU8) PULSE VOLTAGE REDUCED AT V403 16RIC,
1651 C 16ARIC, AND 16ASIC CHASSIS STAMPED RUN 30
STAMPED RUN 30 .
A noise gate circuit was added to V401 (3BU8) which sync separator and gated AGC tube. NOTE. The noise as circuit includes the Super Range finder control R407, re sistor R316 (47K) and capacitor C318 1.1 mf) ; see schematics, figure 80 through 82. See figure 76 for V401 (3BU8) circuit in chassis stamped Run 29.
To reduce pulse voltage at pin 9 (plate) of V403 (12DB5), capacitor C437 (. $001 \mathrm{mf}, 2 \mathrm{KV}$) with resistor R474 (39,000 ohms, 1 watt) connected in series was added across gree
lead and red lead of vertical output transformer T401. ead and red lead of vertical output transforme
Alternate VHF tuners were used in models using the 16J1 $6 \mathrm{Kl}, 16 \mathrm{Rl}$ and 16 Sl chassis as shown in the Model Ident fication Chart
Early 16J1 and 16K1 chassis use drum type tuner $94 \mathrm{Dl51}-1$ and -2 . Later 16 Jl and 16 K 1 chassis use drum ype tuners 94D151.5 and 94D151-6.
The 16RIC and 16S1C chassis use disc type turret tuners 94D144.9 and 94D144-24. Early 16R1CB and 16S1CB chassis use drum type turret tuners 94D151-1 and 94D151-2

© John F. Rider

VHF TUNERS 94D151

general

VHF tuners 94D151-1, -2, -5 and -6 are 13 position (12 VHF channel) drum type tuners, utilizing replaceable channel snap in coils. A triode (2BN4) is used in a neutralized circuit as the VHF amplifier V901. A pentode-triode (5CG8) is used as the mixer and oscillator VO02.

Early production $16 \mathrm{Jl}, 16 \mathrm{~K} 1,16 \mathrm{Rl} \mathrm{CB}$ and 16 SlCB chas. sis used VHF tuners 94D151-1 and -2. Later production 16Jl, 16K1, 16R1CB and 16S1CB chassis used VHF tuners 94D151-5 and -6.
VHF tuners 94D151-1 and -2 are similar to VHF tuners 94D151-5 and - 6 with exception of some circuit differences, see figures 77 and 81. Note also the VHF tuners 94D151-1 and -2 utilize a book type fine tuning control. VHF tuners 94D151.5 and -6 utilize a permeability tuned fine tuning control. See exploded views, figures 78 and 79

ALIGNMENT INFORMATION COVERING VHF TUNERS 94D151-5 AND -6

VHF amplifier-mixer alignment and VHF oscillator adjustment for VHF tuners 94D151-5 and . 6 are exactly the same as for VHF tuners 94D151-1 and -2. For tuner alignment information. refer to pages of Service
Data No. ST59T-2.

SERVICING VHF TUNERS 94D151-5 AND -6
The servicing of VHF tuners 94D151-5 and -6 is the same as for VHF tuners 94D151-1 and -2. For tuner servicing information, refer to pages in Service
Data No. ST597-2. For exploded view of tuners 94D151-5 and -6, refer to figure 79 .
Impurtant: When servicing tuites, be sure to nute the important differences described in the preceding paragraphs.

INSTALLING UHF CHANNEL STRIPS IN VHF TUNERS 94D151-1, -2, -5 AND -6

For above information see "Sersice Hints"

Figure 78. Exploded Viow of VHF Tuners 94D151-1 and -2
used in early $16 \mathrm{~J} 1,16 \mathrm{KI}, 16 \mathrm{R} 1 \mathrm{CB}$ and 1651 CB Chassis.

SUPPLEMENTARY PARTS LIST FOR MODELS USING 16B1, 16AB1, 16D1, 16AD1, 16E1, 16AE1, 16G1, 16AG1 16J1, 16K1, 16L1, 16AL1, 16Ú1C, 16AU1C, '16R1C, 16AR1'C 16S1C, 16AS1C, 16W1C AND 16AW1C CHÁSSIS

This parts list includes corrections and additions 10 the parts liet in Service Data No. ST597-2. Use this parts list FIRST; then refer to the
parts list in Service Data No. STs97-2 for parts not listed here.
Estater Electrical components have symbols in 100 series, 200 series, elc., according to location on schematic. Order parts by part number and
description from Admiral distributor.

94D 151-1, -2, -5 and 94D 151-6

$$
\text { (See figures } 78 \text { and } 79 \text { for illustration of parts.) }
$$

§Orders for these parts will not be filled unless damaged part cannot be repaired economically and full details are given with order

SUPPLEMENT TO CABINET PARTS LIST COVERING THE FOLLOWING MODEL5

(See Service Data No. ST597-2 for complete parts list.)
NOTE: Models may have suffix letter " C ", " E " or " F "

SUPPLEMENT TO CABINET PARTS LIST COVERING THE FOLLOWING MODELS

(See Service Data No. ST597-2 for complete parts list.
NOTE: Models may have suffix letter "C", "E" or "F"

- Orders for cabinets and certain matching parts will not be filled unless the damaged item cannot be coonomically repaired and unless full de-
tails are given with the order.

CABINET PARTS

Dessipipion				$\begin{aligned} & \text { C21E14 } \\ & \text { CA21E14 } \end{aligned}$ Sierra		
Eack, Catinet (less line ord)	43E 298.13	43 E 298.13 $81 A 1.5$	${ }_{881}^{43 E} 1.59 .13$	43E 298.13 $81 A$	${ }_{8}^{43 \mathrm{E}} 29 \mathrm{~S} 1.513$	
${ }^{-}$- Cabinet, $_{\text {Sierra }}$				E9		
Mahogany	35E 396.31	-35E 3			35E 4	
${ }_{\text {Wand }}^{\text {Wand }}$	35398.31		3 36.33			
Clip, Cabinet Back R Cii, Window Retain	18.1159 2430.1	- 18.1159	$18+159$ $2+30.1$	$18 \lambda 159$ 2430.1	${ }_{24}^{18450.1}$	
	3 E 286	${ }^{23 E} 286.1$	23 E 286.1	23E 286.1		
	${ }^{36880.1}$	${ }^{36880.1}$	0.1	36880.1	3688	
Grille Cloit			${ }_{32,3}^{86.1}$	${ }_{82 \mathrm{~A}}^{36-3680}$	${ }_{822} 32.3$	${ }_{824} 32$
obs and A sam						
Tuning Knobs						
	3 C 2	33 C	33C 258.4	33 C 258.4	33C 258.4	3C 258.4
				${ }^{33 C} 258.5$	$\begin{array}{r}33 C \\ 33 C 25.5 \\ \hline 25 \cdot 3\end{array}$	${ }_{3}^{33 C} 2585.5$
for ALL models						
(e) Fint Tuding (UHF Sel	(ind33231.16 $33 D 23124$	33D $231 \cdot 16$	$33 D 231-16$ $33 D 231.24$	33 D 33D 331.-16 $231-24$	33D $231-16$ 33D $231-24$	
Preference Control K Cobss (Beize) Bribhness	${ }^{33 C}$	${ }^{33 \mathrm{C}} 230$	${ }^{33} \mathbf{3} 230.5$	${ }^{33 \mathrm{C}} 230.5$		${ }_{3}^{33 C}$
Contrss, Volume	33 C					${ }_{33 \mathrm{C}}^{35}$
Veolical.' Tone	${ }_{33 C} 23.1$	33 C 230.1	33C 230.1	33	33C 230.1	
$\underset{\substack{\text { Knob Springs } \\ \text { Conical } \\ \text { dind }}}{ }$		19 D 140	19 D 1.40	1901.40	1901.40	${ }^{190} 1.40$
Drive Disc Reta				18A 5.14	(18A 214	
for fine fining	18 A S.11	18 A 5.11	${ }_{184}^{18.11}$	18955.11	188, 5.11	188.5 .11
for VHF		188103 184191	188103 18.191	188103 18 A 919	18A 1803 18491	188103 18 A 191
${ }_{\text {ces }}{ }^{\text {for Cob }}$ Cabinet						
Mahoza	Star	${ }^{\text {P35E }} 396.52$			37 D 16	
Blond			${ }^{3} 3.5 \mathrm{E} 396.53$			$\stackrel{37 D}{ } 168 \cdot 28$
年e Cord and Imerlock	99862.4	B624	${ }^{898} 62.4$	89862	62.4	89862.4
Amem						
Padmica	${ }_{33 \mathrm{C}}^{2381 \cdot{ }^{281.2}}$		${ }_{\substack{236 \\ 336281.1}}^{281 / 2}$	C 28	${ }_{33 C}^{258}$	${ }_{3}^{23 C} 281.11$
ainer, Windour Glass	${ }^{158 B} 1589$		15B 1589	$\begin{aligned} & 15151599 \\ & 33 A 218.5 \\ & \hline 105 \end{aligned}$		${ }_{\substack{158 \\ 33 A \\ 2189 \\ \hline 18.5}}$
Rubber Escutcheon Bum						
			12B 79.5-1 12B 79-26-1		${ }_{12 B}^{128} 79.9$	12B 79.5.1
(eater Pad (lop elass mit.)	${ }_{12}^{12}$	${ }^{122 C 5} 5$	${ }_{1}^{122} \times 5$	${ }_{\text {l }}$	${ }_{12}^{12}$	${ }_{124}^{122} 58.17 .2$
beer Pad (comer glass mty.)		122 C 89.2 12 C 5.53	$\begin{gathered} 12 A 89.2 \\ 12 C 5.53 \end{gathered}$	$\begin{aligned} & 12489.2 \\ & 12 \mathrm{CP} 5.53 \end{aligned}$	$\underset{12 \mathrm{C}, 53}{122 A}$	${ }_{12 \mathrm{C}}^{12 \mathrm{C}, 5 \mathrm{~s}, 5}$
Hws			1 A 7.16	1 A 7.16	14.7	
10.24x ${ }^{1 / 2} 8$ BHW		14		${ }_{1 /}^{1 / 2}$		${ }_{\text {1A }}^{1}$
		$84424-2$	84 A $24-2$	$\begin{aligned} & 84142424 \\ & 78 B 13+5 \\ & \hline 8 \end{aligned}$	${ }_{788 \mathrm{~A}}^{81342}$	$84 A^{2+2}$ 78 B 134
Strip, Wedre						
glass support	${ }_{12 A}^{12899.2}$	${ }_{12 A}^{12 \wedge 99.2}$	${ }_{12 A}^{12898}$	${ }_{12}{ }^{\text {A }} 89.2$		
Swivel Plate ${ }_{\text {Terminal, Antenna (snap }}$	9B29.1	9B29.1	9829.1	9 P 29.1		9829.1
		${ }_{23 \mathrm{C}}^{23 \mathrm{D} 291.17}$		${ }_{231}^{232} 291.1 .17$	${ }_{23 D}^{238} 29.1 .178$	${ }_{230}^{238291.17}$
Plain Gold - Left side			${ }_{210}^{210988.1}$	${ }_{\text {210 }}^{210898.1}$		${ }_{210}^{210} 9$
		${ }_{210}^{210} 989.7$	${ }_{210}^{20} 9898.7$	${ }_{210}^{20} 989.7$	${ }_{212}^{21089.7}$	${ }_{210}$
"Selector"		${ }^{210} 98.4$		${ }_{212}^{210} 989.4$	${ }_{210}^{210} 988.4 .5$	${ }_{210}^{210}$
Ser Tuning	${ }_{238}^{23801}$	${ }_{238} 301$	${ }_{238} 301$	238301	${ }^{238} 301$	${ }^{23 \mathrm{~B}} 301$
Se Picle	${ }_{\text {21D }}^{33 \mathrm{D}} \mathbf{2 3 9}$ 97.2	$\underset{\substack{\text { 33D } \\ 210 \\ \text { 239.2 }}}{ }$				

$\$$ Drive Disc Assembly includes proper VHF Indicator.
-Orders for cabinets and certain matching parts will not be filled unless the damaged item cannot be economically repaired and unless full

SCHEMATIC NOTES

(2, (3), . . etc. indicate production changes covered by a Run number. Run numbers are stamped at the rear of the chassis. Brief description of Run changes given on schematic.
(a11), (a2), (T).... (V), etc.. indicate alignment points and connections
Important: Before making waveform and voltage mea surements, see instructions below.
Fixed resistor values shown in ohms $\pm 10_{c}^{\circ}$ tolerance 1/2 watt: capacitor values shown in micromicrofarads \pm $20 c$ tolerance unless otherwise specified.
Note: $K=x 1000 . ~ M E G=x 1,000,000, M F=$ microfarad.

VOLTAGE WARNING

The chassis of this receiver is connected directly to one side of the 117 volt, 60 cycle power line. Depending upon the position of the line cord plug in the wall outlet, the total AC object. When installing weenvicing, do not touch the chassis unless adequate safety precautions are taken. Never touch the chassis and a ground (radiators, pipes, etc.) at the same time.
Do not ground chassis or connect test equipment directly to it, unless an isolation transformer is used. If an isolation transformer is not available, a neon lamp can be used to determine if the chassis is "hot". Connect an electrician's neon tester (General Cement's "Ne-o-lite" or equivalent) between the receiver chassis (not conduit, water pipe etc. grounded point, such as electrical cos if "hot" and the line cord plug should be reversed. Make the same check with the neon lamp connected between ground and the ground terminal of the test equipment. If the lamp glows, reverse the line cord to the test equipment.

PICTURE TUBE HANDLING PRECAUTION

The newly developed picture tube used in these sets must be handled with much greater care because of its short, thin neck and wafer type base. ALWAYS lift picture tube by grasping firmly around face plate; NEVER LIFT TOBE BY bending pins. Before handling picture tube, remove static charge from it by shorting 2nd anode well to chassis ground with an insulated wire or screwdriver. WHEN T IS REMOVED, ALWAYS PLACE IT FACE DOWN.

Due to the high vacuum and large surface area of picture tubes, extreme care must be exercised when handing these tubes. Shatterproof goggles, heavy gloves and a protective apron should be worn while handling or installing a picture tube. The picture tube must not be scratched, bumped or subjected to excessive pressure, as fracture of the glass may cause injury or property damage.

CONDITIONS FOR OBSERVING WAVEFORMS

Caution: Pulsed high voltages are present on the caps of V405 and V407, and at pin 3 of V406. DO NOT attempt to observe waveforms at these points unless suitable lest with a capactive voltage divider probe. The waveform at pin 3 of V406 may also be taken by clipping or twisting the lead from the high side of the oscilloscope over the insula. tion on the lead connecting to pin 3 . If the waveform is taken in this manner. its shape will be the same, but the peak-to-peak voltage will be somewhat lower, depending on the degree of coupling between oscilloscope and lead connecting to pin 3 of V406.

- Waveforms should closely resemble those shown on the schematic.
- Wavetorms are taken with a transmitted signal input to the television chassis.
- Set all controls for a normal picture. After the receiver is set for a normal picture, turn the CONTRAST control fully clockwise.
- Oscilloscope sweep set at 30 cycles for vertical waveforms and at 7.875 cycles for horizontal waveforms to permit 2 cycles to be observed.
- Peak-to-peak voltages will vary slightly from those shown on the schematic. depending on the test equipment employed and chassis parts tolerance.

CONDITIONS FOR MEASURING VOLTAGES
Caution: Pulsed high voltages are present on the caps of V405 and V407, and at pin 3 of V406. DO NOT attempt to measure voltages at these points without suitable test equipment. A wh whe

- Set the CHANNEL SELECTOR on an unused channel CONTRAST and SUPER RANGE FINDER controls fully clockwise. All other controls counterclockwise. Do not disturb HORIZONTAL DRIVE or HORIZONTAL HOLD adjustments.
- Antenna disconnected and terminals shorted together.
- Line voltage: 117 volt AC
- DC voltages measured with a VTVM between tube socket DC voltages measured win a
- Voltages measured with tubes in socket.
- Voltages marked (*) will vary widely with control settings.
© John F. Rider

Figure 81. Schematic for 16 R1CB and 1651 CB Television Chassis Stamped Run 30. See Figure 77 for Schematic of V

is Stamped Runs 29 and 30. See Figure 76 for Sync Separator and Gated AGC Circuit Used in Chassis Stamped Run 29.

Tuners 94D151-1 and -2, Used in Early Production.

Figure 80. Schematic for 16R1C and 1651C Television Che

TUBE LOCATIONS AND HEATER CIRCUIT

Figure 82. Schematic for 1

VHF TUNERS 94 E144 IN I6ARIC, 94 E144-22 IN 16ASIC
(29) SIor ot o poovoction.

TUBE COMPLEMENT

\dagger 25CD6GB in chassis Run 10 thru 22; 12DQ6A in chassis Run 23 or higher

AR1C and 16 ASIC Television Chassis Stamper Run 30.

Figure 83. Schematic for $16 \mathrm{~J} 1,16 \mathrm{~J} 1 \mathrm{C}, 16 \mathrm{~K} 1$ and 16 K 1 C Television Chassis Stamped Run 15 through Rt_{t} in Sets with suffix Letter "C" Added to Chassis Number. See Figure 57 in Service Data No. ST597-2 for ! "C" (Stamped Run 15 Through Run 22). See Figure 77 for Circuitry of VHF Tuners 94D15

© John F. Rider

Admiral

SERVICE DATA SUPPLEMENT NO. ST832-2

for models using

15A2, 15A2C, 15B2, 15B3, 15DIB and 15UA2 TV

 CHASSIS 4G3 and 4H3 Remote Control Amplifierand

Son-r Tuners S11A and S21A

IMPORTANT

Use this supplement with Service Data No. ST832-1 when servicing any model using these chassis. This supplement contains necessary service data for all chassis covered by ST832-1 and ST832-2. It also includes corrections and additions for ST832-1. For complete alignment instructions for all chassis, refer to TELEVISION ALIGNMENT section.

MODEL NUMBER	$\underset{\text { CHASSIS }}{\text { TV }}$	MODEL NAME	$\begin{aligned} & \text { VHF } \\ & \text { TUNER } \end{aligned}$	$\begin{aligned} & \text { UHF } \\ & \text { TUNER } \end{aligned}$	$\begin{aligned} & \text { POWER } \\ & \text { OOWER } \\ & \text { ANTENNA } \end{aligned}$
PITFIC	15A2C	Rockwell	94D164.3	---	No
P17F2C	15A2C	Rockwell	940164-3	---	YES
P17F3C	15A2C	Rockwell	94D164-3	---	yes
P17UF1	15 Sua	Rockwell	94E163-2	940162.3	No
P17UF2	15 UA2	Rockwell	94E163-2	940162-3	yes
P17UF3	15 SAL	Rockwell	94E163-2	94D162-3	yes
PL17F31B	15D18	Custom	$94 \mathrm{E163-1}$	---	Yes
PL17F32B	15018	Custom	$94 E 163.1$	---	YEs
PLITF33B	15D18	Custom	94E163-1	-	YES
PL17F418	15018	Executive	$94 \mathrm{ELE3}$-1	-	YES
PL17F42B	150ib	Executive	94E163.1	---	YES
PL17F43B	15018	Executive	$94 \mathrm{E163.1}$	--	YES

SPECIFICATIONS

Warning: Parts of the chassis are connected directly to one side of the 117 volt, 60 cycle power line. Depending upon the position of the line cord plug in the wall outlet, the total AC line voltage may exist between parts of the chassis and any grounded object. Do not touch the chassis unless adequate safety precautions are taken. Never touch the chassis and a ground (radiators, pipes, etc.) at the same time.
NOTE: Chassis 15D1B except for the chassis isolation brackets at top of chassis is connected to one side of the 60 cycle power line. Portions of chassis 15A2, 15A2C, 15B2 15B3 and 15UA2 (the tuner mounting bracket, the bracket on which the power line. Portions of chassis 15A2, 15A2C, 15B2. 15B3 and 15LA2 (the tuner mounting bracket, the bracket on which the
high voltage coinpartment is mounted, and the bracket on which the Damper (V405) and Horizontal Output (V404) tubes are mountel) are connected to one side of the AC line. When chassis ground is used as a connection point for test equipment on chassis 15A2, 15A2C, 15B2, 15B3 or 15UA2, be sure to clip the common (ground) lead to one of these three brackets.
Do not ground chassis or connect test equipment directly to it. unless an isolation transformer is used. If an isolation transrmer is not available a neon lamp can be used to determine if the chassis is "hot". Connect an electrician's neon tester ormer is not available, a neon lamp can be used to determine if the chassis is "hot". Connect an electrician's neon tester
(General Cement's "Ne-o-lite" or equivalent) between the receiver chassis (not control shafts) and some grounded point. such (General Cement's "Ne-o-lite" or equivalent) between the receiver chassis (not control shafts) and some grounded point, such Make the same check with the neon lamp connected between ground and the ground terminal of the test equipment. If the lamp glows, reverse the line cord to the test equipment.

Specifications for chassis covered by this supplement are
he same as in ST832-1 except as noted below
Picture Tube: 17DSP4 picture tube has a shorter neck
($41 / 8^{\prime \prime}$) than the 17CWP4 ($411^{\prime \prime}$)
Wattage:
155 watts for 1542C chassis.
170 watts for 15L'A2 chassis.
175 watts for 15 D 1 B chassis.
CORRECTIONS TO ST832-1
in figure 4 the frequency for the
"On figure 4 the frequency for the
frequency for the Channel Resonator should be 39.285 KC . e pin 3 . in figure 19. pin 8 of $V 4 \mathrm{~A}(\% 3 \mathrm{BJ})^{\circ}$ should
be pin 3 .
The tube complement listed on page 18 should be shown on page 19, the tube complement on page 19 should be complement on page 20 should

CHASSIS DIFFERENCES

The chassis covered by this Service Manual Supplement e sinilar in circuitry to those covered by ST332.1. Chassis $15 \mathrm{I}^{\mathrm{A}} \mathrm{A}$ is quite similar to chassis 15 A 2 . 151 A2 uses

94D162-3 UHF tuner in conjunction with 94E163-2 VHF tuner to provide VHF and UHF television reception. Chassis 15A2C is the same as chassis 15A2 except VHF tuner 94 D164-3 was used.

Chassis 15D1B, although similar in circuitry to the other chassis, is constructed mechanically different. Only one Etched Circuit Board is used with chassis 15D1B. Chassis 15DIB uses 94E163.1 VHF tuner as does chassis 15A2. Servicing procedures for 15D1B are, in
with procedures for the other chassis.

TUBE COMPLEMENT FOR

15A2C, 15D1B AND $15 U A 2$ TV CHASSIS

v101	$2 \mathrm{CY5}$	VHF Amplifier (15D1B) (VHF Amplifier (15A2C,
V901	2 RR 5	$\left\{\begin{array}{l}\text { 15UA2) } \\ \text { UHFIF Pre-amp (ISUA2) }\end{array}\right.$
		$\left\{\begin{array}{l}\text { VHF Mixer and Ossillator } \\ \text { (15A2C, } \\ \text { 15D }\end{array}\right.$
v902 $\}$	5CG8	$\left\{\begin{array}{l}\text { UHF IF Pre-amp (} \\ \text { SUA2) }\end{array}\right.$
$\begin{aligned} & \mathrm{V} 201 \\ & \mathrm{~V} 202 \end{aligned}$	3 3TT6 12 CU	Sound Detector Sound Ouput

V301 V 302	3826 $30 \mathrm{K6}$	Ist If Amplifier
		2nd IF Amplifier
v303	AW8A	Sound If Amplifier
V304	\{17CWP4	Picture Tube (15A2C, 13UA2)
	\{17DSP4	Pieture Tube (15D1B)
V401	$3 \mathrm{BU8}$	Sync Sepa
	100E7	Gated AGC
	100	Vertical Output
V403 V404	${ }^{6 C G 7} 12060$	Horizontal $\begin{aligned} & \text { Oscillator } \\ & \text { Horizontal } \\ & \text { Output }\end{aligned}$
V405	$12 \mathrm{AX4GTA}$	Dampe
406	IG3GT	HV Rectifie
V801	2454 A	UHF Oscillator (15UA2)

SEMICONDUCTOR DIODES
CR301
cer
ce501
CRSO2
CR8OI

Video Detector Germanium Diode
SN87 or INB7A
did
Detector
B+ Rectifier
B+ Rectlfier
UHF Mixer (ISUA2)

OPERATING INSTRUCTIONS

main operating controls - Models using chassis 15A2, 15A2C, 15B2, 15B3, 15UA2.
The main operating controls are located at the front of the cabinet; see figures $23,24,25$ and 26 . Figure 23 gives instructions for sets using 15A2 and 15A2C chassis, figure 24 for sets using 15B2 chassis, figure 25 for 15B3 chassis and figure 26 for 15 UA 2 chassis. For tuning, perform steps 1 through 4 in order for the applicable set.
main operating controls - Models using chassis 15D1B.
The main operating controls are located at the top and
steps 1 through 4, in order, for tuning the set AUXILIARY CONTROLS
The location of auxiliary controls on chassis 15A2, 15A2C, 15B2, 15B3 and 15UA2 are shown in figure 29. Follow the instructions on the illustration to adjust the auxiliary controls. Removal of the cabinet back is required for adjustment of the AGC control.
The location of auxiliary controls on chassis 15DIB is shown with the Main Operating controls on figure 27 and shown with the Main Operating controls on figure 27 and
28. Follow instructions in the illustration for adjustment of 28. Follow instructions in the illustration for adjustmen of control and Circuit Breaker RESET button.

ULTRA-CONVENIENT THROUGH ULTRASONICS

Figure 24. Tuning Instructions for Models using TV Chassis 15B2

Before operating, see "Some Importani Preliminary Hints"

SIMPLY FOLLOW STEPS 1 THROUGH 4 IN ORDER

Figure 25. Tuning Instructions for Models using iV Chassis 15B3.

Figure 20. Tuning Instructions for Models using iV Chassis 15UA2

Figure 29. Auxiliary Controls; Chassis 15A2, 15A2C,

INSTALLATION ADJUSTMENTS

15A2C, 15D1B and 15UA2 CHASSIS

Installation adjustments for models using TV chassis 15D1B are given in the following paragraphs. Installation adjustments for models using chassis 15 A 2 C and 15 C A2 are the same as for chassis covered in ST832-1. Figure 31 is the rear view of chassis 15D1B showing adjustment locations. Figure 30, in this supplement. shows the rear view of TV chassis 15UA2.

Figure 30. Rear View of Chassis ISUA2 Showing Adjustment Locations.

VHF CHANNEL SLUG ADJUSTMENTS

Check channel slug adjustment for each VHF station received. To check channel slugs, perform the following ad justment procedure. Refer to figure 32 .

1. Turn set on and allow 15 minutes to warm up.
2. Select an operating channel. Set other controls for normal sound and picture. Remove Channel Selector neath Fine Tuning knob. Reinstall Fine Tuning knob and turn to right or left until adjustment slug becomes visible through hole in tuner case. Remove Fine Tuning knob.
3. Insert a $1 / 8{ }^{\prime \prime}$ blade flexible non-metallic alignment tool (part number 98A30.13) in hole in tuner. Carefully ad just slu, for best picture. Note that sound is not loudest at this point. CAUTION: Only slight rotation of slug will be required for adjustment. Turning slug too far counterclockwise will cause it to fall out of the coil.
4. Select other operating channels and repeat adjustment procedure.
5. After making adjustments, replace plastic well and knobs. INDIVIDUAL SLUG ADJUSTMENT
LOCATION

Figure 32. Partial Top View of Models using Chassis 15018

AGC CONTROL ADJUSTMENT

Improper AGC control adjustment may result in an over loaded picture. Picture overload can be recognized hy bend ing and or tearing of the picture or buzz in the sound output. result from improper AGC adjustment. However these same conditions can be caused by other troubles in the set.
If adjustment is required. it should be performed exactl as described below:

1. Turn set on and allow 15 minutes to warm up
2. Select strongest station in the area.
3. Set Contrast control fcr normal picture and Brightness control to maximum (fully to right).
4. Set AGC control (at rear of chassis) to minimum fully to left.
5. If picture has disappeared when AGC control is set to left, turn AGC to right until a weak picture is obtained.
Adjust Horizontal Lock (at rear of set) and Vertical Hold (at front of set) for a steady picture without bend. ing of vertical lines at top of picture
6. Very slowly turn AGC control to right until picture just begins to bend, tear, shift or until buzz is heard in sound
Then, slowly turn AGC control to left to a point at which overload of picture and or buzz in sound is removed. Turn AGC control an additional 10 degrees (approx.) to left.
7. Check picture at maximum contrast on all channels. Picture should not overload and should reappear imme. diately after changing channels.
IMPORTANT: AGC adjustment should always be made on strongest TV station received

HORIZONTAL SWEEP ADJUSTMENT

Make adjustment if picture "slips sideways" or "tears" when switching channels. If the Horizontal Ossillator tube V403 (6CG $ך$) is replaced. the Horizontal Hold control may require adjustment.

1. Allow a few minutes for set to warm up. Tune in weakest station. set Brightness and Contrast controls for normal picture.
2. Adjust Horizontal Hold control to sync the herizontal sweep circuit. If the picture cannot be locked-in at approx. imately the mid-rotation setting of the Horizontal Hold control, perfom the following steps for complete horizon. tal sweep circuit alignment.
3. Connect a jumper wire from junction of R452 (680 K) and R453 (1 Meg) to ground to short out oscillator control voltage from Horizontal Phase Detector. CR401. Connect a jumper wire across C452 (. 0039 MF) on Etched Circuit Board. This effectively shorts out the Horizontal Lock coil L401.
Adjust Horizontal Hold control until one horizontal blanking bar (from top to bottom of picture) appears on the screen. This bar may waver back and forth slightly
which is normal. If this condition is not reached when Horizontal Hold control is at approximately mid-rotation, change the position of the built-in jumper that is connected between R458 and R469. Short R458 or R469 horizontal blanking bar when Horizontal Hold control is set 10 approx mid-rotation.
4. Remove jumper from C452 (.0039 MF). Adjust Horizontal Lock coil. L401. urtil the horizontal blanking bar appears on the screen. Remove remaining jumper
wire. Picture will lock into syn. If picture does
lock-in, trouble shooting of horizontal circuitry is neces sary to find source of trouble.

CHASSIS REMOVAL

(15A2, 15A2C, 15B2, $15 B 3$ and 15UA2)

1. Remove Contrast, Vertical and Off-On-Volume control knobs from front of cabinet. On chassis 15A2, $15 \lambda 2 \mathrm{C}$ and 15 A 2. remove Channel Selector knob (s) from front of set. On all chassis, use finger-tip pres sure at top to remove esculcheon.
. On chassis 15 A 2 . 15A2C and 151 A2. remove Fine Tun ing knob. On chassis 15B2 and 15B3, remove Indicator disc' and Fine Tuniny knobs
2. Disconnect antenna terminal board. Remove seven screws around edge of cabinet back. Place cabinet face down on a padded surface and remove all screws on bot tom of cabinet. Remove cabinet back carefully. Remove one chassis mounting screw at each side of chassis rea
. Set television upright. Disconnect picture tube socket, yoke plug and microphone input plug on chassis 15B2 and 15 B 3 . Remove the remaining two chassis mounting screws. Slide chassis part way out of the cabinet and disconnect high voliage connector from picture tube Remove chassis fully from cabinet. Feed microphon 15B3 chassis) - hassis (15B2 chassis

PICTURE TUBE REPLACEMENT

(CHASSIS 15A2, 15A2C, 15B2, 15B3 and 15UA2)
Before replacing picture tube, refer to "CHASSIS RE MOVAL" for 15A2. 15A2C, 15B2, 15B3 and 15UA2, and remove television chassis from cabinet. Remove retaining screw and daģ shorting spring (see figure 33). Remove lube DLING PRECAUTION" before removing picture tube.
When installing picture tube in cabinet, replace tube sup port wires and retaining screw. Make sure that all tube r
taining brackets are in place.

Figure 33. Rear View of Models using Chassis 15A2, 15A2C
15B2, 15B3 and $15 U A 2$ with Chassis Removed. is B2, 15B3 and $154 A 2$ with Chassis Removed.

CHASSIS REMOVAL

 (15D1B)1. Remove four knobs and two plastic cups from control shaft openings at top of cabinet. Remove three knobs at shaft openings at top
right side of cabinet.
2. At rear of set. disconnect VHF antenna leads from antenna terminals. Lay the cabinet face down on a soft cloth. Remove four screws from rear of cabinet back at and three ohassis retaining screws from bottom of cabinet Carcfully lift cabinct back from cabinct. Disconnect VHF transmission line from terminals of VHF tuner. Set cabinet back aside.
3. Disconnect speaker wires, yoke plug and picture tube socket. Remove High Voltage plug from picture tube.隹
4. Carefully remove bottom of chassis from cabinet first. Be sure that Power Tower antenna clears hole in top of held to the picture tube by a clamp.

PICTURE TUBE REPLACEMENT
 (15D1B)

Refer to figure 34 for view of picture tube mounted into cabinet

Remove a support wire retaining screw and nut at either side of picture tube. Remove the support wires from the tube retaining brackets. Carefully lift picture tube from cabinet. When installing picture tube, position the support wires and tube retaining brackets as shown in figure 34 .
Make sure mylar shield is in place. Replace screw and nut that holds the support wires together.

- ${ }^{* 12696-1-R U B E E R ~ B U M P E R-* 12896-1 ~}$

Figure 34. Rear View of Models using Chassis 15018 with
Chassis Removed. Method of picture tube mounting shown.

TELEVISION ALIGNMENT

WARNING: See "Warning Note" on page 22

Complete alignment consists of the following individual procedures and should be performed in this sequence
a. IF Amplifier Alignment.
b. 4.5 MC Sound IF Alignment.
d. Over-all VHF and IF Response Curve Chec
e. VHF Oscillator Adjustment.

Alignuent of UHF IF Input Coil and IF Pre-amplific Response Curve Check.

TEST EQUIPMENT

To properly service receivers, it is recommended that the ollowing test equipment be available
Important: Many service instruments do not meet the equirements riven below A list of recommended equip ment is available from Admiral distributors.

VHF Sweep Generator

Sweep wenerator must provide swcep frequencies from 18 to 90 MC range: $\} \quad$ with at least 170 to 225 MC range: $\} 10 \mathrm{MC}$ sweep width Output: Mdjustable: al least .4 volt maximum outpu A sweep generator not having constant output voltote Aweep generator not having constant output voltage and are widely different from the ideal curves shown on the fol owing pages. If repeated difficulty is encountered in obtain ing these curves, the sweep generator should be checked. A simple check is to observe the response curve for a set that is in alignment.

Before suspecting generator. be sure alignment instruc tions have heen followed carefully
Signal (Marker) Generator
18 to 90 MC frequency range
180 to 225 MC frequency range. accuracy.

Oscilloscope

Standard oscilloscope, preferably one with a wide band ertical deflection. vertical sensitivity at least .05 volt (RMS) per inch.

Vacuum-Tube Volimeter
Preferably with low range (3 volt) DC zero center scale and a high voltage probe $(30,000$ volt range)
Bias Supply
3 to 15 volts (battery or electronic)

ALIGNMENT TOOLS

The following alignment tools are required. They can be oblained from the Admiral distributor under the part num ers listed below
NON-METALLIC (fiber) alignment screwdriver ($111 / 2^{\prime \prime}$ ong. $1 / 8^{\prime \prime}$ diameter) Part No. 98A30-10
F slugs) Part No. 98 inment wrench (for hexagonal cor NON-METALLIIC alignment wrench (for small hexagonal ore slug Part No. 98A30-14.
*Note: This step is not performed on VHF only receivers

IMPORTANT ALIGNMENT HINTS

The following suggestions should be performed if difficult experienced during the alignment procedure.
IF CIRCUIT INSTABILITY: When aligning the Π is placed too near the IF transformers or when viewin the response curve, the curve may change shape with hand capacity. To correct either of these conditions, the following alignment hints should be tried:
(a) Check the generator output leads to be certain that the unshielded portion lespecially the grounded lead) is as short as practicable
(b) Be sure that a decoupling network is used at th video detector output and that the leads on the net-
(c) The use of a long hexayonal alignment tool will per mit adjustment without encountering "hand capac ity" effects. See "Alignment Tools",
2. KEEP GENERATOR OUTPUT LOW TO AVOID DIS TORTION OF RESPONSE CLIRVES
(a) During video IF alignment. sweep and marker gen erator outputs should be set at a low level so as no

distort the response curve

In general, varying the sweep generator output hould not affect the shape of the response curve only the amplitude. It is advisable to calibrate the oscilloscope so that peak-to-peak amplitude of the mplitude of the response curve at test point " V " hould be no more than 3 volts peak-to-peak. and test point "W" about . I volt peak-to-peak.
(b) Some generators have a built-in pad in the outpu cable. Be sure that the pad in the cable is properly connected in the circuit. Refer to the generator instruction manual for details.
If a pad is not built in, the 12 db pad shown in ligure 36 can be constructed and connected between the generato- and the antenna terminals.
3. SPECIAL TU'BE SHIELD: For injecting 41 MC IF signal for IF alignment use an insulated tube shield over the VHF Oscillator-Mixer tube. Insulate bottom of tube shield with masking tape, see figure 35.
4. USE RULED SCREEN OVER OSCILLOSCOPE FACE: If it is difficult to accurately judge the exact location the different markers, a ruled screen can be used over the face of the oscilloscope CRT. Under certain conditions correct marker location tolerances cannot be maintained by visual judgment alone.
5. VOLTAGE CAUTION WHEN MAKING TUNER ALIGNMENT: B+ and heater voltages are present on To conector terminals located at the top side of tuners. To prevent possibility of short circuit or danger from shock, use extreme care to avoid contact with the connector terminals at top side of tuners.

ALIGNMENT OF 4.5 MC TRAP USING A
TELEVISION SIGNAL
Beat interference (4.5 MC) appears in picture as very

Figure 35. Special Tube Shield for IF Amplifier Alignment and Tube Shield for IF Amplif
IF Response Curve Check.

FREQUENCY TABLE FOR CHASSIS WITH 41 MC IF SYSTEM

Cmanol			$\underset{\substack{\text { sound } \\ \text { cour } \\ \text { uncer }}}{ }$		Swoen Gen. Center Frea. MC	Chnnot	$\begin{aligned} & \text { Rrond } \\ & \text { Rund } \\ & \text { mic } \end{aligned}$	$\begin{gathered} \text { Peteture } \\ \text { Cotive } \\ \text { wic } \end{gathered}$	$\substack { \text { sound } \\ \begin{subarray}{c}{\text { surf } \\ \text { Micer }{ \text { sound } \\ \begin{subarray} { c } { \text { surf } \\ \text { Micer } } } \end{subarray}$		$\begin{aligned} & \text { Sween Gen } \\ & \text { Center } \\ & \text { Freq. NC } \end{aligned}$	${ }_{\text {Cmannoal }}^{\substack{\text { mo. }}}$		$\begin{gathered} \text { Pleterure } \\ \text { Cowrice } \\ \text { mic } \end{gathered}$	$\substack{\text { sound } \\ \text { cour } \\ \text { merice }}$		Bwen Con. Center Freq. MC
${ }_{2}$	54.60	55.25	59.75	: 101	57.5	29	560.566	581.25	565.75	${ }^{607}$	563.5	5	${ }^{722} 7288$	723.25	727.75	775	
3	60.66	61.25	65.75	- 107	63.5	30	566.572	587.25	571.75	613	569.5	57	728-734	729.25	733.75	775	737.5
		67.25	71.75	-113	69.5	31	572-578	573.25	577.75	819	575	58	734.740	${ }^{735.25}$	739.75	781	737.5 74.5
5	76.82	77.25	81.75	$\cdot 123$	79.5	32				625	581.5	59	740-746			787	
\bigcirc	82.88	83.25	87.75	$\cdot 129$	85.5	33	584-590	585.25	599.75	631	587.5	60	746-752			793	
7	174-180	175.25	179.75	$\stackrel{221}{ }$	177.5	34	590-596	591.25	595.75	${ }^{637}$	593.5	81	${ }_{7}^{752-758}$	753.25	757.75	799	755.5
8	180-186	181.25	185.75	-227	183.5	35	596.602	597.25	601.75	643	599.5	62	758-764	759.25	763.75	805	7615
	186	187.25	191.75	$\cdot 233$	189.5	36	602-6	603.25	607.15	649	605.5	63	774.770	${ }^{785} 2.25$	769.75	811	767
10	192-198	193.25	197.75	-239	195.5	37	608.6	609	813.75	6s5	811	64	770-776	771.25	795.75	817	773
11	198-204	199.25	203.75	-245	201.5	38	614.620	${ }^{615.25}$	819.75	${ }^{601}$	617.5	65 66	7782-7888	${ }_{783}^{777.25}$	781.75 787.75	${ }_{8}^{823}$	
12	204-210	205.25	20975	$\stackrel{251}{057}$	2075	38	620.626 626.632	621.25 627.25	C325.75	${ }^{607}$	823.5 829.5		782-788	783.25 789.25	787.75 793	${ }_{835}^{829}$	7891.5
113	210-210	${ }^{2111.25}$	215.75 4755	-257	213.5	4	6232-632	627.25 633.25	631.75 63775	${ }^{673}$		68		795.25	799.75	841	
15	476-482	477.25	481.75	523	479.5	4	632-644	-339.25	643,75	685	843.5 6	69	800-806	801.25	805.75	847	803.5
16	482-488	483.25	487.75	529	485.5	4	644-650	645.25	649.75	691	647.5	70	${ }_{812-818}^{806-812}$	813.25	811.75 817.75	${ }_{859}^{853}$	809.5 815.5
17	188-494	439.25	493.75	535	491.5	4	650.656	651.25	655.75	${ }^{697}$	653.5		${ }_{818.824}$	${ }_{819} 81$			821
18	194-500	495.25	499.75	541	497.5	45	656.662	657.25	601.75	703	659.5		824-830	825.25	829.75	871	827.5
19	500-500	501.25 50725	505.75 51175	547	503.5	16	662.668	863.25	6877.75	709	665	74	830-836	${ }^{831} .25$	835.75	877	833.5
20	500-512	507.25	511.75	553	509.5	17	668.674	699.25	673.7	715	ent	75	836-842	${ }^{837.25}$	841.75	883	839
21	S12-518	513.25 518	517.75	559	515.5	${ }_{48}$	680.688	681.25	685	${ }_{727}$	683	76	842-848	${ }^{843.25}$	847.75	${ }^{889}$	845
22	518.524	519.25	523.75	565	521.5 527.5	50	680.689	-881.25	${ }^{685.75}$	${ }_{733}^{727}$	683.5 689.5		848-854	${ }^{8,89.25}$	- 853.75	${ }^{895}$	as
23 24 24	530-536	525.25	5329.75	571	527.5 533.5	51	692-698	\$93.25	697.75	739	695.5	79	8880-866	${ }_{861.25}^{85}$	865.75	7	863
25	536.542	537.25	541.75	583	539.5	52	698-704	699.25	703.75	745	701.5	80	866-872	80,	871.75	913	869.5
26 27 27	542.548 5488 8.554	543.25 549.25	5477.	598 598	545.5 551.5	[53		705.25 711.25		751 757	${ }_{7}^{707.5}$	81		8		929	
${ }_{28}^{27}$	554-560	5s5.25	559.75	601	557.5	5	71	71725	721	763	719.5	83	884.890	${ }_{885} 25$	5	931	${ }_{887.5}$

For ossillotor freauencies from channels 2 to 13 , frequency indicoted is
Quency indicicted is thot of UHF oscillotor with VHF os illator inoperotive.
fine vertical or diagonal lines, very close together, having a "gauze-like" appearance, the pattern will vary with speech, forming a very fine herringbone pattern.
To align the 4.5 MC trap (slug adjustment A9), tune in a television station with beat interference pattern in picture. minimum interference pattern.
Important: A hexagonal non-metallic alignment tool (Admiral part number 98A30-12) is required for making rear of shield can) ; use caution A9 as rear slug (nearest
ret slug (nearest etched circuit board) as sound IF alignment will be affected.

Figure 36. Circuit of 120 B Artenuation Pad for Viewing
Overall VHF if Response Curve TO TEST POINT 47,000 OHMS
 $\underset{\substack{\text { chussis } \\ \text { creut }}}{\frac{1}{=}}$
Figure 37. Decoupling Filter

83	$884-890$	885.25	889.75	931	887.5
oscillotor frecumancies higher then chammal 13 , froe-					

Figure 38. Ideal IF Response Curve

- Connect isolation transformer between power line and
- Connect negative of 3 volt bias supply through 10 K resistor to test point "T" (IF AGC) and "X" (RF AGC),
- Connect generator high side to 5 CG8 mixer-o
lated tube shield, see figure 35 . Connect low side to chassis near tube shield.
- Connect VTVM high side to test point "V" through a decoupling filter, see figure 37.

$$
\begin{array}{|c|c|l|}
\hline \text { Step } & \begin{array}{c}
\text { Signal } \\
\text { Gen. Freq. }
\end{array} & \text { Instructions } \\
\hline
\end{array}
$$

- Set Channel Selector to channel 12 to prevent interference during alignment.
sincr a jumper wire across the antenna terminals.
- Set Contrast control fully to the right (clockwise)
- Set AGC control fully to the left (counterclockwise)
- Allow about 15 minutes for receiver and test equipment to warm up.
- Use a non-metallic alignment tool, part No. 98A30.13.

Adiust
Before proceeding, be sure to check the signal generator used in alignment against a crystal calibrator or other frequency standard for absolute frequency calibration required for this operation

1	42.7MC	If necessary, increase generator output and/or reduce bias to $-11 / 2$ volts to obtain a definite indication on VTVM.		A2 for maximum
2	44.2MC			Al for maximum
3	Repeat Step 1.			
4	44.3MC		If necessary, keep reducing generator output so that VTVM reading will be 1.5 to 2.5 volts above no signal voltage reading.	A3 for maximum
5	Place short across If input coil L301.			
6	44.8MC	See figs. 42 \& 45 for A5 location.		A5 for maximum
7	Remove short from L301.			
8	42.7MC			A4 for maximum
9	47.25MC	Chassis 15D1B only. Same as steps 1 and 2.		A14 for minimum
10	To insure correct If Alignment, make "IF Response Curve Check."			

QJohn F. Rides

IF RESPONSE CURVE CHECK (Using sweep generator and oscilloscope) AND IF TRAP (A13) ALIGNMENT				
			Oscilloseope Connect high side to test point "V" thru a decoupling filter, see figures 37 and 40 or 41 . 37 and 40 or 41.	Instructions Check curve obtained against ideal reon curve. Keep marker and sweep outputs at very minimum to prevent overloading. A reduction in sweep output should reduce response curve ampir tude without altering the shape of the response curve. If the curve is not within toleronce or the markers are not in

4.5 MC SOUND IF ALIGNMENT USING TELEVISION SIGNAL

For simplicity and required accuracy of the 4.5 MC sig For simplicity and required accuracy of the 4.5 MC sig
nal frequency, the sound alignment procedure given in th nal frequency, the sound alignment procedure given in th manual
ment.

Important: Note that step 3 of the sound IF alignment procedure requires the use of a strong transmitted TV signal. Steps 5 and 6 requires the use of a weak (attenuated) TV signal. Failure to use a television signal of the required level as instructed for each of the steps will cause incorrect align ment with resulting weak or distorted sound.
Make alignment adjustments as follows:

1. Remove cabinet back. Turn set on and allow $\mathbf{1 5}$ minutes for warm up.
2. Select the strongest TV station received. Adjust set fo normal operation. See figure 40 or 41 for adjustmen

ocations

3. Using a non-metallic alignment tool (for hexagonal core IF slugs, Admiral Part No. 98A30-12), very slowly turn slug "A6" several turns counterclockwise until a buzz is heard in the sound. Then turn it clockwise until th loudest and clearest sound is obtained. NOTE: There may be two points (approximately $1 / 2$ turn apart) a
which sound is loudest. The slug should be set at the center range of the first point of loudest sound noted as the slug is turned in (toward etched circuit board)
Set Contrast control fully to the left (counterclockwise) Set Contrast control fully to the left (counterclockwise) Reduce the slous to the hiss in the wor . For bes results, it is recommended that a step attenuator, be con nected between the antenna and the antenna terminals. The signal can also be reduced by disconnecting the an tenna and placing it in close proximity of the antenna terminals or tuner antenna lead-in.

* SLug to rear of coll
+ slug at front of coll (towaro picture tuee)

Point Locations and IF Alignment Data.

Figure 41. Rear View of Etched Circuit Board A7585.1
(Chassis 15D18) Showing Test Point Locations and
If Alignment Data.
5. Carefully adjust slug " A Ti" for loudest and clearest sound with minimum hiss level. If hiss disappears during alignment, reduce signal input to maintain hiss level; readjust "A $\overline{\text { " }}$.
6. Carefully adjust slug "A8" for loudest and clearest sound with minimum hiss level. If hiss dissappears during alignment. reduce signal input to maintain hiss level; readjust "A8". Caution: Adjustment "A8 is slug
disturb slug nearest top of shield can.
If the above steps are correctly made, no further adjustment should be required. However, if sound remains distorted at normal volume level when receiver is tuned for best sound. repeat entire procedure
Caution: Do not readjust slug "A6" unless sound is storted. If "A6" is readjusted, all steps in alignment procedure should be repeated exactly as instructed above.

ALIGNMENT INFORMATION FOR VHF TUNER
 94E163-1 \& -2

VHF tuner 94E163-1 is used in VHF only sets and VHF tuner 94E163-2 is used in VHF-UHF sets in conjunction with UHF tuner 94DI62.3. Both tuners are identical except that 94E163-2 tuner has an additional channel strip mounted on the tuner drum and "UHF Input Assembly" mounted at rear of tuner. When tuner 94E163-2 is set to UHF position staye low-noise 41MC IF preamplifier. The UHF tuner IF output signal is amplified by the pre-amplifier and fed to the 41MC IF system on the main chassis. The VHF oscillator is inoperative during $\mathrm{L} H \mathrm{HF}$ reception.
Tuner tubes may be replaced without need of tuner align. ment. However. when replacing the Oscillator-Mixer tube V102 (5CG8). select a tube which will cause least oscillator frequency shift as noted with rotation of Fine Tuning control.
VHF amplifier and mixer alignment consists of checking the VHF response curve with sweep generator and oscilloscope, then comparing corves with ideal curve given in
figure 46 . Adjustment of trimmer screws at top of tuner is generally adequate for proper alignment.
IMPORTANT: No attempt should be made to align the tuner until the balance of the receiver is known to be in proper operating condition and in proper alignment

FINE TUNING ROTOR
POSITIONED CORRECTLY

VHF AMPLIFIER AND MIXER ALIGNMENT FOR

 VHF TUNERS 94E163-1, -2 and 94D164-3- Connect isolation transformer between power line and
receiver
- Connect negative of 3.0 volt bias supply to test point " X "
- Connec), positive to chassis. See figures 40 or 41
- Connect sweep generator 300 ohm output to antenna terminals. If sweep generator does not have a built-in marker generator, loosely couple a marker generator to the antenna terminals. To avoid distortion of the response
marker pips just barely visible.
- Connect oscilloscope through a 15,000 ohm resistor to test point "W" on funer. Keep scope leads away from
- Allow about
to warm up.
ove bottom shield during alignment.
- See figures 44 or 45 or adjustment locations and identification.

Step	Marker Gen. Freq. (MC)	Sweep Gen. Freguency	Instructions
1	193.25 MC (Video Carrier) 197.75 MC (Sound Carrier)	Sweeping Channel 10. See "Frequency Table".	Set Channel Selector to channel 10. Check response obtained with VHF response curve shown in figure 46. Alternately adjust A10 and A11 (figures 44 and 45) as required to obtain curve having maximum amplitude, symmetry and flat top appearance consistent with proper bandwidth and correct marker location.
2	83.25 MC (Video Carrier) 87.75 MC (Sound Carrier)	Sweeping Channel 6. See "Frequency Table".	Set Channel Selector to channel 6. Check response obtained with VHF response curve shown in figure 46. If curve is not within limits, compromise adjustment is required. Alternately adjust A1O and All as required to obtain curve having maximum amplitude, symmetry and flat top appearance consistent with proper bandwidth and correct marker location. After completing adjustment, recheck adjustment of step 1 .
3 Neutrolizing Adjustment 94D164 VHF Tuners only	193.25 MC (Video Carrier) 197.75 MC (Sound Carrier)	Sweeping Channel 10. See "Frequency Table".	Set Channel Selector to channel 10 . Use 15 volts bias. Increase sweep generator output to maximum and increase *oscilloscope gain as required for obtaining usable response curve. Adjust A12 for minimum response (amplitude). After adjusting A12, conclude by repeating steps 1, 2 and 4.
4	Set the sweep generator to sweep the channel to be checked. Set the marker generator for the corresponding video carrier frequency and sound carrier frequency.		Use 3 volts bias. Check each channel operating in the service area for curve shown in figure 46. In general, the adjustment performed in steps 1 and 2 are sufficient to give satisfactory response curves on all channels. However, if reasonable alignment is not obtained on an operating channel, repeat steps 1 and 2 as a compromise adjustment to favor the particular channel. If a compromise adjustment is made, other channels operating in the service area should be checked to make certain that they have not been appreciably affected.

*If usoble respanse curve is nol abtoined, connect oscilloscope to test point "v" through decoupling filter,
amplifier must be in normal alignment. Adiust A12 for equal peak omplitides with dip of center of curve.

Figure 44. Top View of VHF Tuners $94 E 163.1$ and -2 Showing Alignment Points and Adjustment Locations.

Figure 46. VHF Response Curve Note: Full skirt of curve will not be visible unless
generator sweep width extends beyond $10 \mathrm{MC}$.

OVER-ALL VhF AND if response curve check				
		${ }_{\text {Marker }}^{\text {Menerar }}$	Ostiloscope	Instructions

Figure 47. Ideal Overall VHF and IF Response Curve.

Figure 49. Ideal Pre-amplifier Response Curve

Figure 48. Top Rear Partiol View of VHF TUner 94E163-2
Showing UHF IF Input and UHF IF Input Coil Adiustment, Al4.

- Connect oscilloscope through a 10 K resistor to test point "W" on VHF tuner (figure 44). Keep scope leads
Alloy from chassis.
ment to warm up.
- Bottom shield must be assember to
- Use
- Use a non-metallic alignment tool, part number
$98 \mathrm{~A} 30-14$. 98A30-14. -
Adiust A14 to obtain equal peak amplitudes and symmetry, consisten with flat top appearance, proper band width and correct marker location; see figures 48 and 49
Connect oscilloscope to test point "V", through decoupling filter; figure 40. Keep scope leads away from chassis. Connect 3 volts bias to If AGC test point " T ". Check response curve. If curve does not resemble figure
47 , repeat step 1 , making a compromise adjustment. If curve cannot be made to resemble figure 47, check to be sure all instructions have been followed. Check tubes V101 and V102 and repeat alignment. Important:
After replacing tubes, it may be necessary to check "VIFF Tuner. Alignment". and

ALIGNMENT OF UHF IF INPUT COIL AND IF PRE-AMPLIFIER

*Important This alinnment is seldon require it should be made only if UHF
*Impon is . This ater usal causes of poorired. It should be rade only This aligep should be made after completing the preceding alignments.

- Set AGC control fully to the left (counterclockwise).
which is between channels 13 and 2 .
- Connect negative of 3 volt bias supply to test point
- Connect UHF sweep generator 300 shm See figure 40. tenna terminals. boosely couple VHF marker generator to the antenna terminals. To avoid distortion of the response curve, keep sweep generator output at a

Step	Marker Gen. Freq. (MC)	Sweep Gen. Frequency	Instructions

*Alignment of the UHF IF input cail L807 (Al4) con be mode using a UHF television signol. Using a nonmetollic alignment tool, very corefully odiust
slug "Al4" for the best picture, consistent with good sound.

VHF OSCILLATOR ADJUSTMENT USING A TRANSMITTED TELEVISION SIGNAL
It is always advisable to make VHF oscillator (channel) adjustments using a transmitted Television Signal as instructed under "VhF Channel Adjustment." If a television signal is not available, VHF oscilator (channel) marker 50 to 60 per cent down from the peak of the over-all response curve, see figure 47 . For location of oscillator adjustments, see figure 42 or 43 .

GENERAL

Factory alignment of 4 H 3 and 4 G 3 remote control amp. Factory alignment of 4H3 and 4 G3 remote control amp-
lifiers consists of alignment of amplifier input coil (Ll) and discriminator transformer (T1). Factory alignment is made using a signal generator with frequency range of 37 to 42 kilocycles with calibration of plus or minus 20 cycles. If a signal generator meeting these requirements is not available an "ALTERNATE ALIGNMENT PROCEDURE" for 4G3 and 4 H 3 are given on page 40 using the Simpson Model 407 able from Admiral distributors.

Figure 50. Partial Top View of Remore Amplifier Chassis 4G3
Showing Alignment Points and Adjustment Locations.

Figure 51. Partial Top View of Remote Amplifier Chassis 4H3
Showing Alignment Points and Adjustment Loections.

ALIGNMENT CAUTION

Circuitry of remote control amplifier is designed for stable, trouble-free operation. The tuned circuits (Ll and 11) have been carefully aligned at the factory and are gen rally unaffected by tube or component replacement. Faulty peration is seldom caused by misalignment.
Need for amplifier alignment may be indicated by limited uning range (having to stand close to operate television
with Son-r hand-held tuner) on one or both functions, mplifier too responsive to extraneous noise, or, on 4G3 hassis, misregistration (wrong function operated when on-r tuning button is depressed). Caution: Before decid ing that amplifier alignment is at fault, be sure to check for dentical cause of trouble being due to faulty Son-r hand held tuner, defective microphone, tubes or other components in the amplifier.

TEST EQUIPMENT

To properly align remote control amplifiers, it is recom mended that the following test equipment be available: *Signal Generator
Frequency Range: 37 to 42 Kilocycles
,
Output: Adjustable from 0 to 1 volt. Output calibration at
1 microvolt and 5 volt
SIMPSON MODEL 407 REMOTE ALIGNER (SIGNAL GENERATOR)
Generator frequencies provided: As determined by 5 posi tion selector switch.
Position A: 38.285 KC

Crystal
Position B: 39.285 KC
Position C: 40.805 KC
Position D: $41.805 \mathrm{KC} \quad$ plus or minus
Position E: Frequency(s) determined by insertion of external plug-in crystal(s).
Note: Positions A, B and E will be used for "Factory Align ent Procedure." A crystal to be used in this alignmen Generator Output (Two outputs provided):

1. Direct: Continuously variable from approximately 100 microvolts to a least 1 volt.
2. Through 100,000 to 1 probe: Continuously variable from 0 to at least 10 microvolts.
Vacuum-Tube Voltmeter
Input impedance: 10 megohms. Preferably with low range 3 volts), DC zero center scale, and high impedance (100 megohms) probe. If VTVM does not have a 100 megohm megohm resistor (part number 60B15-107) in series with center conductor of probe.
Shielded Capacitor
A 910 mmf capacitor enclosed within a metal shield is re quired for coupling signal generator output to microphone input cable of remote control amplifier. The shield may be made, using a $7 / 8$ inch ID metal tube and two phono type
connector sockets. Locate the 910 mmf (part number 65B20 911) capacitor inside the tube and solder each lead end to the center connection on each phono connector. See figure the
3.

Figure 52. Shielded Capacitor (with Phono Connector Socket and Plug) Required for Coupling Signal Generator to
Mierophone Input Cable.

FACTORY ALIGNMENT PROCEDURE

Important: A signal generator meeting the requirements listed under Test Equipment is required for performing factory alignment procedure. The Simpson Model 407 Re mote Aligner may be used for this alignment procedure, provided that an additional crystal (to cover additional frequency requirement) is procured.

- Remove remote amplifier chassis from television chassis. Be sure that power and switching connections remain connected
- Chassis 4H3: Disconnect wire connected to pin 9 of V3B. Connect jumper wire from - 20 V bias (jct. of C16, R21 and R22) to pin ${ }^{2}$
Chassis 4G3: Disconnect wires from pin 8 on V4B and (jct. of C21, R31 and R32) to pin 8 on V4B and pin 9 on V3B.
- Disconnect V304 (picture tube) socket. Turn television and test equipment on and allow 15 minutes warm up. NOTE: Television circuits are disabled during remote amplifier alignment. On chassis 4G3, set Son-r Off-On switch (S1) to "ON" position.

1. Connect ground lead of VTVM to test point "B", connect VTVM 100 megohm probe to test point "C", connect generator output to test point "E" through a 0.1 mf capacitor and generator common lead to ground. Keep generator output
VDC or 5 VDC).
2. Detune "A2" (slug at top of can) flush with top of can. Set generator to 38.785 KC . Adjust "Al" (slug at bot. ncrease cenerator output to 0.5 volt. Adjust "A2" for null (zero point).
3. With 0.5 volt generator output at 38.285 KC , the indication at point " C " should be at least +26 VDC . On chasis $4 \mathrm{G3}$, connect VTVM 100 megohm probe to test point
"D". Set generator output to 0.5 volt at 39.285 KC . VTVM indication at " D " should be at least +26 VDC Reduce generator setting to minimum and turn televiion off.
4. Remove jumper wires from between bias point and control tube grid(s). Reconnect chassis wiring to V3B grid (pin 9) and, on chassis 4C3, to V4B grid (pin 8). Turn elevision set on.
5. Set VTVM to +100 VDC or +150 VDC scale. Con nect VTVM across winding of relay K1, positive probe
The generator is now to be acoustically or capacitively coupled to amplifier chassis input.
ACOUSTICAL COUPLING: With generator output at minimum and frequency at 38.285 KC , connect Son- r microphone (part number 78B137-2) to generator out put. Place this microphone approximately 1 inch from on-r microphone at front of receiver
CAPACITIVE COUPLING: With generator output a output cable to input jack M3 on amplifier chassis hrough shielded capacitor.
6. Carefully increase generator output until VTVM indi cates +30 VDC to +35 VDC. Do not allow VTVM reading to increase above +40 VDC. Adjust "A3" to peak and reduce generator output as necessary to keep reading between +30 VDC and +35 VDC. Alternatel djust "A2" and reduce generato adjusted to peak.
relay coil and turn generator off. If "CAPACITIVE COUPLING" was used, disconnect output of generato from M3 on amplifier chassis and reconnect M1. Recon nect V304 (picture tube) socket and allow television to warm up. Proceed with operational check using the hand-held Son-r remote tuner. At distances from 10 20 feet, check operation of remote control function(s).

4H3 ALTERNATE ALIGNMENT PROCEDURE

Important: This alignment requires the use of Simpson Model 407 Remote Aligner (specifications given under "Test Equipment")

- Use an isolation transformer between power line A R Y set during alignment.
- With set turned off, remove B+ (red) lead from relay
terminal board. This is necessary to keep the relay from being actuared during alignment
- Remove V3 (6U8A) and plug a 9 pin adaptor socket into (3ok
- Cort MTVM between pin 2 of V_{3} and chasis Sel Set generator switch to position " A " $\begin{gathered}\text { A LI G G N M E } \\ \text { (38.285KC) and }\end{gathered}$ connect the fixed attenuator probe through a .001 mf hielded capacito to microphone input connector M3.

2. Ad

Control input coil LI (A3) for maximum VTVM reading. din generator output so that meter will read less
han 3 volts. Remove
Replace V 3 and shield.

INSTRUCTIONS
VTVM to minus 3 volt scale.
Disconnect microphone cable from M3

- Turn TV set, signal generator, and VTVM on and allow 15 minutes warm up. Set TV B + and filament circuits open by setting VhF funer to "OFF" position (between See figure 51 for location of adjustment and alignment points.

STEPS

Set VTVM to minus 30 volt range and connect it between pin 11 of socket (M4) and chassis. Adjust primary and VTVM. (This will be the least negative voltage obtain able.)
4. Disconnect VTVM and generator and reconnect B+ (red) lead to relay board.
. Connect microphone plug to microphone input socket.

SERVICE HINTS

CIRCUIT BREAKERS

Circuit Breaker (part number 84817-4) is used on all chassis covered by ST832.1 and ST832.2 Thised on al thermally operated. If an overload $\mathrm{B}+$ current is drawn by TV circuitry, the thermal element in the breaker heats up and opens the power supply B+ circuit. By allowing several minutes to elapse for the thermal element to cool and then pressing the "RESET" button (rear of set), the breaker is again set for normal operation. NOTE: TV filaments will remain lit when the Circuit Breaker is either open or closed. Do not attempt to defeat circuit breaker action by hold ing the "RESET" button down; the breaker will remain open. Only by pressing and rel
circuit breaker be reset properly.
If Circuit Breaker continues to open after resetting several times, check the power supply electrolytics (C502, C504A \& B , and C505) for leakage or short-circuit. Also, check the Silicon Rectifiers (CR501 and CR502) and capacitors C503 and C508.

TV B+ DISTRIBUTION

15A2, 15A2C, 15B2, 15B3 and 15UA2 B + is provided by a transformerless half wave voltage doubler circuit. A pi type filtering network gives excellent filtering. $\mathrm{B}+270 \mathrm{~V}, \mathrm{~B}+250 \mathrm{~V}$ and $\mathrm{B}+145 \mathrm{~V}$ are provided for TV circuitry. Simplified B+ distribution diagrams are (V902), V301 V302 and V303. The cathode circuits of V202 and V401 are normally operated 145 volts positive with respect to ground.
The sound output tube V202 (12CU5) acts as a voltage dropping tube and regulator for 145 V B+. If the sound output tube (202) becomes inoperative, both sound and picture are affected.
Note: The cathode of the damper tube (V405) supplies B+ boost voltage 600 V to the horizontal output tube

V404). Plate voltage for V402A ($1 / 2$ 10DE7) and first node of picture tube (V304) are supplied with a boosted + voltage from the $\mathrm{B}+$ boost voltage divider network
$\mathrm{B}+$ for chassis 4 C 3 is s
R. The availability of B + for by K501 on the TV chas
 B+ for chassis 4 H 3 is switched by the cam-operated switch (S505) mounted behind the VHF tuner. B+ for the 15B2 TV chassis is also controlled by S505.

15D1B

B + distribution for TV chassis 15D1B is quite similar to $\mathrm{B}+$ distribution for the other chassis. See figure 54 for 15DIB B+ distribution diagram

SIIA AND S21A DISASSEMBLY

By removing two screws from bottom of tuner, the top can be lifted off. Refer to figures 57 and 58 for exploded views of S11A and S21A Son-r tuners. The listing of replaceable parts for both tuners is on page 53.
When reassembling tuner, make sure that the rod springs are seated in the notches at top and bottom of resonator spring are seated correctly behind the actuator lever (s) Improper seating of front edge of tension spring will cause improper triggering of remote function of set.

IMPROVED TUNING MOTOR USED ON
REMOTE CONTROL SETS

Run 12 television chassis 15B2 and 15B3 use an improved Tuning Motor and Gear Assembly, M507, (Part No. Tuning Motor and Gear Assembly, M507, (Part No.
91 D42.2). This assembly is interchangeable with Motor assemblies used on Run 10 and Run 11 sets.
If replacement of the motor rotor (armature) is desired on Run 10 and Run 11 sets, order Part No. 91D42-54 (Rotor
and Steel Pinion Assembly) and Steel Pinion Assembly).

Figure 53. Simplified B+ Distribution Diagram. TV Chassis 15A2, 15A2C, 15B2, 15B3 and 15UA2.

Figure 54. Simplified $\mathrm{B}+$ Distribution Diagram. TV Chassis 15DIB

Figure 55. View of Component Side of Etched Circuit Board A7585-1. A7585-1 is used with TV chassis 15DIB.

Figure 56. View of Etched Wiring Side of ETCHED CIRCUIT BOARD A7585-1. Gray area represents etched wiring; black
symbols and lines represent components and connections on opposite side. A7585-1 is used with TV chassis 1501 ID .

VHF TUNERS 94E163-1 AND -2

GENERAL

VHF tuners 94E163-1 and $\cdot 2$ are 13 position (12 VHF channel) drum type tuners. An expedient feature is the re placeable channel snap-in coils. A tetrode type 2CY5 vacuum tube (V101) provides low noise and high gain of the VHF input signal. A pentode-triode (5CG8) is used as the mixer and oscillator V102.
The 94E163-1 and -2 are identical with the exception that he 94E163-2 tuner has a snap-in channel coil in the UHF detent position (between VHF channels 13 and 2) that dis ables the VHF oscillator and allows V101 and V102 to act as UHF IF preamplifiers. Also, the 94D163-2 tuner has a UHF input asserably at the rear of the tuner which provides UHF IF (41MC) input circuitry and B+ switching for the separate UHF tuner.
The VHF input circuit contains an impedance matching
transformer (Tl01). The network containing C103 (10 mmf) and variable coil (L101) acts as a 41 MC IF trap.

The simplified circuitry and mechanical construction o his tuner makes it relatively trouble-free and easy to serv ice. Tuner voltages (RF B+, Mixer.Osc. B+, AGC and heater) may be measured from terminals on top of tuner By removing the drum and Fine Tuning mechanism, all components are accessible for servicing. Important: Loca ion and lead dress of most components at the underside of uner are generally critical. If conents at the underside of ner are generally critical. If a part is replaced, be sure t posion the replacement pars, dress the leads, and mak tuer wirin. When repang impor ant that they be replaced with parts of identical electrica characteristics and physical size. Refer to the "Parts List for temperature coefficients, tolerances, and other descrip. tions as well as the replacement part numbers.

REMOVING CHANNEL COILS

Channel coils are fastened onto the turret drum at each end. On early production tuners, two neoprene bands wer used with circular fiber end discs to hold the channel coils in place. In later production tuners, semi-rigid metal disc are used at each end of the turret drum to hold the channe coils.
Early Production Tuners (Fiber Retaining Discs)
When removing a channel coil, press the fiber retaining disc away from the end of the coil. Stretch both neopren bands away from turret drum and slip the channel coil out romı under the bands. Do not allow the neoprene bands to rub on the channel coil, because the proper placement of wiring on channel coils may be disturbed.

Later Production Tuners (Metal Retaining Discs)
Carefully press metal retaining disc away from channe coil to be removed. Lift channel coil out of its position on the turret drum
Caution: Do not use force when removing channel coils from the turret. Be careful not to disturb the position of the coils on the coil form.

REMOVING TURRET DRUM

To gain access to the inside of the tuner for servicing

1. Remove tuner bottom cover. Unsolder the two lateral metal braces at bottom of tuner. Unsolder shaft retaining plate at rear of tuner. On some tuners, the retaining plate is held with a screw.
2. Disconnect the two screws at the front of the tuner near the top of the case
3. Carefully lift out tuner drum and Fine Tuning assembly. aution: Grasp the detent spring and detent roller when removing drum assembly.
4. See the partial illustration on figure 59 for proper placement of detent spring and detent roller during tuner reassembly.

CLEANING AND LUBRICATING TUNER CONTACTS
For cleaning contacts of snap-in coils on turret drum emove the cover and use a small stiff brush to apply a no corrosive contact cleaner to all contacts. Warning: Do not allow contact cleaner to drip or run onto coils that are adja these contacts. With a soft canvas cloth, remove buff the contacts until they are clean and bright. After leaning contacts, apply a thin film of switch contact oil, ate part number 98A64-1, to contact surfaces. Lubr vaseline bing surfaces of other moving parts with light 98A64-2. Caution: Do not use lubriplate or other similar ubricants containing zinc or cadmium

Figure 59. Exploded Viow of VHF Tuners 94E163-1 and -2. Partial illustration shows placement of detent spring and detent roller.

SERVICING VHF TUNER 94D164-3

VHF tuner 94Dl643 is a new miniaturized drum type turret tuner with replaceable snap-in channel coils. This tuner is especially adapted for operation in connection with the power tuning mechanism of remote tuning models as well as for VHF only sets. This new tuner incorporates latest improvements in mechanical and electrical design of turret venience and purposes of automation the circuit wiring concontained on a printed wiring assembly All components are visible and accessible for servicing.

A newly developed triode tube (2ER5) with frame grid construction and beam forming plates is used as a neutralized VHF amplifier stage (V901) in this tuner. Due to the mechanical construction and physical mounting of the frame grid within the tube and the inclusion of beam forming plates, an extremely rugged tube is formed. Also, higher
stage gain with a lower noise figure is realized. A pentode. stage gain with a lower noise figure is realized. A pentodetriode (5CG8) tube is used as the VHF mixer and oscillator
V902.

The antenna input circuit contains matching transformer T901 (ferrite core balun) which matches the 300 ohm balanced antenna input to the 75 ohm unbalanced input of the RF amplifier input circuit. Two resonant traps (series L903 and parallel L902) are contained in the antenna input circuit for obtaining optimum IF rejection over a range from 41 to 46 MC . In later production sets, a VHF input circuit using a fixed IF rejection filter network is used. See schematic diagrams of chassis 15B2 and 15B3.
A variable inductor Fine Tuning control is used. The moveable core has a wire shaft extending from it which is attached to the variable arm of the Fine Tuning control. The use of this Fine Tuning control assures a more uniform range of the Fine Tuning control for all VHF channels.

The simplified circuitry and mechanical construction of this tuner make it relatively trouble free and easy to service. Tuner voltages (B plus, AGC and heater) may be measured from terminals on top side of tuner. The tuner circuitry is contained on a printed circuit wiring assembly. All components are accessible without need of turret removal. See exploded view of tuner, figure 60 .
Trouble shooting of printed circuit wiring is similar to that of conventional wiring. Complete instructions on the service and repair of printed circuit wiring is given in Service Manual No. S559, available from your Admiral Distributor.
Important: Location and lead dress of most components at the underside of the tuner are generally critical. Parts location, lead lengths of components and ground connections should be as originally made. When replacing components, it is important that they be replaced with parts of identical electrical characteristics and physical size. Refer to parts list for temperature coefficients, tolerances and other essential description.

REPLACEMENT OF

PUSH-IN DISC TYPE CERAMIC CAPACITORS

Many of the capacitors used in the printed wiring circuit Many of the capacitors used in the printed wiring circ
of turer are of push-in (leadless) ceramic disc type.
These capacitors are inserted between sections of printed circuit wiring and soldered, using low melting point solder.
When replacing a push-in type ceramic disc capacitor, care must be excercised to prevent damage to capacitor or the printed circuit wiring.
To remove a disc capacitor, use a low wattage soldering iron with a forked soldering tip (split tip). Apply the fork tip to sides of capacitor so as to melt solder at both sides simultaneously. When solder melts, immediately remove capacitor.

Replace disc capacitor in the same manner, using low
melting point solder. Avoid application of excessive heat to capacitor or printed circuit wiring.

REMOVING CHANNEL COILS

The channel coils are held in the turret drum at one end by the protrusion on the coil form extending into the detent plate. The other end of the coil is held in the turret by the metal tab extending through the coil form.
To remove a channel coil, proceed as follows:
With the thumb of the left hand, press the metal tab (extending through the coil form) toward the rear of the tuner; form up and out of the drum.
Caution: Do not use force when removing channel coils from the turret as coils may be damaged. Use care so as

CLEANING AND LUBRICATING TUNER CONTACTS
For cleaning rotating contacts of turret drum, remove bottom cover from tuner. Using a small stiff brush, apply a non-corrosive contact cleaner to all the contact points. With a soft canvas cloth, remove cleaner and buff contact points until surface is bright. After cleaning contacts, apply a thin film of switch contact oil, Admiral part number 98A. $64-1$, to surfaces of contacts. Lubricate bearing surfaces of other moving parts with light vaseline or preferably Admiral part number 98A64-2 lubricant.
Caution: Do not use lubriplate or other similar lubricant containing zinc or cadmium.

ADJUSTING CONTACT SPRINGS

The stationary contacts consist of contact springs M923, illustrated in figure 60 . The contact springs are inserted through the cut-outs molded in the contact strips. The stationary contacts (springs) are of the self-wiping type and should generally maintain their tension and provide good contact without further attention.
Should the stationary contact springs make poor contact due to insufficient tension, or dirty surface, remove several sets of coils from the turret. Rotate the turret to position making the bottom of the contact strip accessible for servicing. With a narrow blade screwdriver, adjust contact spring tension by carefully bending the bowed portion of the contact spring upward slightly until the shape of the spring conforms with the shape of other springs on the contact strip. If the free end of the contact spring slips out of the contact strip, the end may be reinserted by bowing the spring slightly and pressing inward. If a contact spring is damaged or bent badly, a replacement spring may be reinserted. Restore the spring to its original shape by comparing it with other springs. If the majority of contact springs are bent out of shape or damaged, tuner replacement is recommended.

REPLACEMENT OF

CERAMIC FEED-THROUGH CAPACITORS

The B+, heater and AGC leads of this tuner are connected through ceramic feed.through capacitors. When soldering leads to the tuner, care should be exercised to prevent damage to the ceramic feed-through capacitors.
Replacement of ceramic feed-through capacitors may be required if silver coated surface is peeled, if ceramic is cracked, or if center conductor has loosened.
To replace a ceramic feed-through capacitor, proceed as follows:

1. Apply the tip of a hot soldering iron to the top center conductor on feed-through. When the solder melts at bottom end (center conductor at printed circuit wiring), quickly grasp top end of center conductor with long-nose plier and
2. Remove remainder of feed-through by applying tip of hot soldering iron to metal surface surrounding it at top side of chassis. When solder melts, quickly remove shell and excess solder. Caution: Do not allow solder or metal to fall in chassis.
3. To install replacement feed-through, apply tip of hot soldering iron to metal surface. After surface is hot enough to melt solder, quickly push replacement feed-through into chassis with end through hole in printed circuit board.
4. Resolder bottom center terminal of feed-through to printed circuit wiring; using a low wattage pencil point soldering iron. Caution: Application
may cause damage to printed wiring

Figure 60. Exploded Viow of VHF Tuner 94Di64-3.

THE UHF TUNER 94D162-3

GENERAL

Tuner 94D162.3 is an all-channel continuous tuning UHF tuner, designed to operate in conjunction with a 13 position VHF tuner.
The UHF tuner consists of a highly selective pre-selector circuit, UHF oscillator V801 (2AF4A) and a UHF mixer circuit using a newly developed low-noise crystal CR801 (1N82A). A single conversion circuit is used in the UHF tuner. The UHF IF output at M802 is coupled to M801. When the VHF tuner is set to the "UHF" position, both VHF tubes, V101 and V102, function as a low-noise 41MC IF preamplifier and feed the UHF IF into the 41MC IF system in the main chassis.

The preselector, oscillator and mixer circuits are each enclosed in a separate shielded compartment. Each of the circuits is continuously tunable with a ganged variable air
dielectric capacitor.
A low end oscillator adjustment A18 is at top (side) of euner and the high end UHF oscillator adjustment tab Al9 is accessible after removing cover plate, see figure 61.
tions on checking sensitivity, expected sensitivity figures, and recommended equipmen
Caution: When servicing UHF tuner, use care not to dis urb or bend capacitor blades as alignment will be affected When replacing components, it is important that they be replaced with duplicates of the same electrical character and characteristics of components.

UHF TROUBLE SHOOTING HINTS

Recommended Checks For Determining Cause of
Poor UIIF Reception

Check the Antenna and Transmission Line. Check to see that UHF tuner antenna leads are not placed too close to the television chassis and are not shorting at the antenn terminal strip or at the chassis.
Check UHF Oscillator Tube V801 (2AF4A) by substitution. When making tube replacement, try several Be sure that the top section of tube shield is pulled up fully.
In some instances, replacement of oscillator tube V801 UHF oscillator trimmer (at both ends of the tuning range) as recommended under "UHF Oscillator Adjustment Usin Television Signals."
Check UHF Mixer Crystal CR801. Try several mixe crystals, to select one whioh will produce the best picture and be sure that the crystal is seated firmly. Caution: Use care when replacing crystal, to urevent damage to mountings.
Check Alignment of IF Preamplifier. IF preamplifie位 tuner is dependent on the IF preamplifier response.
Check UHF Tuner Voltage. Measure B + voltage sup plied to UHF tuner. See schematic for correct value
Check Operation of UHF Oscillator V801. If the tuner remains inoperative after making all the precedin checks, determine whether the UHF oscillator is operating by measuring the injection current. Set UHF Channel Selec tor to approximate center of its range. Disconnect UHF IF output plug M803 from UHF IF input socket M801. Con center conductor of M803, positive to chassis. If the UHF oscillator is functioning the reading obtained will be ap proximately 0.5 to 3.0 MA . If no reading is obtained, the oscillator tube is not functioning. Follow trouble shootin procedures until oscillation is obtained

UHF OSCILLATOR ADJUSTMENT USING TELEVISION SIGNALS
Adjustment of the UHF oscillator can be made using a television signal. The oscillator should be adjusted fo the best picture, consistent with good sound at the tuner dia seting for the received television channel by adjusting mer Al8 has the greatest effect on the lower UHF channel

UHF oscillator tab A20 has the greatest effect on the higher UHF channels, (above channel 50). See figure 61. Chec the UHF dial calibration. The UHF tuner dial should be accurate within ± 3 channels or 18 MC . If it is not accurately calibrated, try readjustment of the UHF oscillator.

In most cases, it is preferable to sacrifice accurary of UHF dial calibration for improved performance with a minimum amount of UHF tuner alignment. If only one channel is in use in the area, or if only a few channels are in use and reception on only one is poor, a compromise adjustment of the oscillator can be made. This is done by oscillator trimmer, to see if better performance may be had on a wcaker channel without greatly affecting performance on the other received channel(s). A VTVM connected to test point "W" will facilitate adjustment of the UHF oscillator when rocking the tuning dial in this manner. Tune for a maximum VTVM reading.

REPLACING MIXER CRYSTAL CR801
The mixer crystal CR801 (1N82A), is located in the center compartment of the UHF tuner, see figure 61.
For removing the mixer crystal, it will be necessary to remove the tuner cover plate after removing cover retaining spring.
 chassis.

Run 11 in 1582 and 1583 Chassis:
TUNER DETENT SWITCH, S503, ADDED TO MOTOR CIRCUIT
For increased accuracy of detenting, S503 (Tuner Deten ront of tuner and is actuated by movement of detent ball at front of tuner. refer to the parts list in Service Data No. ST832.1 for parts not listed here.

PRODUCTION CHANGES

Production changes are coded RUN 10, RUN 11, etc., as given in the headings below. Run number (stamped on chassis) indicates that this chassis has the change(s) incorporated which are explained under that particular run number heading
below, as well as all changes (lower run numbers) made prior to that time.
For start of production Run Number on a particular chassis, see "RUN CHANGES" column on schematic for that

Run 12 in 15B2 and 15B3 Chassis:
IMPROVED TUNING MOTOR AND GEAR ASSEMBLY USED
An improved tuning motor rotor (armature) with stee pinion shaft used for operating VHF tuner during manua and remote operation.

SUPPLEMETARY PARTS LIST FOR MODELS USING 15A2, 15A2C, 15B2, 15B3, 15D1B, AND 15UA2 TELEVISION CHASSIS AND 4G3, AND 4H3 REMOTE CONTROL AMPLIFIER CHASSIS

This parts list includes corrections and additions to the parts list in Service Data No. ST832-1. Use this list first the

Figure 62A. VHF Tuner 94D164-3 used with Television Chassis 15A2C. Except for Tuner,
Chassis 15A2C is the same as Chassis 15A2.

ALIGNMENT CAUTION

Circuitry of the remote control amplifier has been designed for stable, trouble free operation. The tuned circuits have been carefolly aligned at the factory and are generally unaffected by tube or component replacement. In general, ever, note that lead dress and location of components in most tuned circuits are critical and alignment may be affect ed to some degree. When servicing, avoid contact with coils or lead dress. Do not disturb adjustment cores of coils or transiformers.
If alignment should be required, correct alignment can only be made using the equipment and procedure outlined in this manual.

SCHEMATIC NOTES

Fixed resistor values shown in ohms $\pm 10 \%$ otierance, $1 / 2$ watt
capacitor values shown in micromicrofarads $\pm 20 \%$, unless specified capacitor values shown in micromicrofarads
NOTE: $\mathrm{K}=\times 1, \mathbf{1} 00, \mathrm{MEG}=\times 1,000,000, \mathrm{MF}=$ microfarad.

CONDITIONS FOR MEASURING VOLTAGES

- Microphone connected.

DC voltages measured with a VTVM beww
and chassis, unless otherwise indicated
All voltages measured with tubes in sockets. Remote amplifier
chassis may be removed from TV chassis for voltage measurements.

NOTE: Chassis 4H3 used with television chassis 15B2.

Figure 63. Schematic for 4G3 Remote Control Amplifier Chassis.
NOTE: Chassis 4G3 used with television chassis 15B3.

ALIGNMENT CAUTION

Circuitry of the remote control amplifier has been de igned for stable, trouble free operation. The tuned circuits have been carefully aligned at the factory and are generall faulty operation is seldom caused by misalignment. However, note that lead dress and location of components in most tuned circuits are critical and alignment may b affected to some degree. When servicing, avoid contac with coils or lead dress. Do not disturb adjustment cores of coils or transformers
If alignment should be required, correct alignment ca only be made using the equipment and procedure outlined

SCHEMATIC NOTES

Fixed resistor values shown in ohms $\pm 10 \%$ tolerance, $11 / 2$ watt;
apacitor values shown in micromicrofarads $\pm 20 \%$, unless specified. TE. $\mathrm{K}=x 1,000, \mathrm{MEG}=\mathrm{x} 1,000,000, \mathrm{MF}=$ microfarad

CONDITIONS FOR MEASURING VOLTAGES

- Son-r OFF.ON switch to "ON" position.
- Minrophone connected.
- Line Voltage: 117 volts, AC.
- And chassis, unless otherwise indicated.
- All voltages measured with iubes in sockets. Use of adapter
sockets when measuring voltages will eliminate need for remov sockets when measuring volta,
ing amplifier from TV chassis.

Figure 64. Sc

SCHEMATIC NOTES

(2), (3) \ldots etc. indicate production changes covered by a Run number. Run numbers are stamped at the rear of the chassis. Brief description of Run changes given on schematic. (14). (A2), , (Y), (Z), etc. indicate alignment points and connections.

Important: Before making waveform and voltage measurements, see instructions below.
Fixed resistor values shown in ohms $\pm 10 \%$ tolerance, $1 / 2$ watt, capacitor values shown in micromicrofarads \pm 20% tolerance unless otherwise specified.
NOTE: $K=x 1000, ~ M E G=x 1,000,000, M F=$ microfarad.

CONDITIONS FOR OBSERVING WAVEFORMS
Warning: Pulsed high voltages are present at the caps of V404 and V406, and at pin 3 of V405. Do not attempt to observe wavelorms at these points unless suitable test equipment is used
Set tuning controls for normal picture. Do not disturb AGC and Horiz. Lock adjust nients. After receiver is set for normal picture, turn the Contrast control fully clockwise
On-r OM-On switch to "OFF position. oscilloscope sweep is set at 30 cycles for vertical waveforms and at to be observed.

- Peak-to-peak . Peak-o-peak voltages will vary from those shown on the schematic, depending on the input signal strength, test equipment employed
Waveforms were taken wit
signal input to the telerision chasis

CONDITIONS FOR MEASURIP
Warning: Pulsed high voltages are pre nd V406, and at pin 3 of V405. Do not at these points without saitable test equipme voltage.
Set
Set the Channel Selector on an unusec trol fully clockwise. All other controls full
disturb AGC and Horiz. Lock adjustm Antenna disconnected and terminals sho Line voltage: 117 volts AC.
DC voltages measured with a VTVM betw and chassis, unless otherwise indicated. All voltages measured with tubes in
sockets is recommended.

tamped Run 12.

MEASURING VOLTAGES
tages are present at the caps of V404 i. Do not attempt to measure voltages test equipment. A VTVM with a high
then measuring picture tube 2 nd anode
on an unused channel. Contrast conor controls fully counterclock wise. Do not Lock adjustments.
terminals shorted together.
a VTVM between tube socket terminals ise indicated.
ith tubes in sockets. Use of adapter
ine

TUBE COMPLEMENT

nematic for 15A2 Television Chassis Stamped Run 12.

G VOLTAGES

ent at the caps of V404 it. A VTVM with a high 5 picture tube 2 nd anode channel. Contrast concounterclockwise. Do not ted together.
sen tube socket terminals

TUBE COMPLEMENT

TUBE LOCATIONS
TV CHASSIS $15 A 2$

