Model Navy C-10

Schematic diagram of the Magnaformer 9-8 Receiver. By means of the cam switch SW2 one stage of I.F. amplification can be cut out. This switch is mounted on the front panel of the receiver, below the drum dials.
FARRAND
FENWAY

Model Fenway Superheterodyne

Model Fenway Superheterodyne

SCHEMATIC DIAGRAM
This microphone amplification with the 250-B3 power amplifier. In such operation, these parts are normally omitted from the 250-B3 unit.
SPECIAL DATA FOR BUICK CARS.
ALL "SIXES" AND "EIGHTS".

(a) The above illustrates a method of grounding the spark plug cover plate found on all Buick cars. Do not be misled by the fact that this plate is apparently grounded by the two aluminum wing nuts holding it to side of motor, for this is in no way a ground for the type of current radiating from spark plugs which cause radio interference.* Soldering flexible jumpers to this cover plate and grounding these under motor or chassis bolts will in every case help eliminate motor noise in radio reception.

(b) As a further help on the new model Buick Eights, it will be found advisable to solder copper bonds to all the control shafts passing through bulkhead and grounding these to bulkhead. By "control shafts" we mean choke rods, carburetor heat control, motor temperature indicator, etc.

SPECIAL DATA FOR MODEL "A" FORD CARS

The above illustrates the proper mounting of a Motorola receiver on a Model "A" Ford car. On inspection you will note that it is necessary to move the ignition coil over to side of cowl. This is done for two reasons, one to make room for the flexible shaft to pass through cowl and the other to help in elimination of motor noise.

It is advisable to shield the high tension lead from coil to distributor and ground this shielding to motor block as per diagram.

The speaker will be found to mount best on the inside of cowl to the right side of car above foot board.
Model H-Y "7" Battery

Model H-Y "7-D" Power Pack

Model H-Y "7-B"

R1—100,000-ohm Durham metallic leak.
R2—2-megohm Durham metallic leak.
R3—400-ohm Electrad suppressor resistance.
R4—2,000-ohm Electrad suppressor resistance.
R5—25,000-ohm Durham metallic.
R6—3-megohm Durham metallic.
R7—25,000-ohm Electrad royalty potentiometer.
R8—50,000-ohm Durham metallic.
R9—2,250-ohm Durham metallic.
R10—10-ohm centre-tapped Yaxley.

R1—50 mfd. midget pilot.
R2—01 mfd. Sangamo fixed condenser.
R3—0005 mfd. Sangamo fixed condenser.
R4—000 mfd. Hammarlund equalizer, range with L3 about 1650-1475 kc.
R5—25 mfd. Sprague midget fixed condenser.
R6—0002 mfd. Sangamo fixed condenser.
R7—Same as Cl.
R8—00015 Sangamo.
R9—00005 mfd. Sangamo.
R10—001 mfd. Sangamo.
R11—1 mfd. Flechtheim.
R—5,000-ohm Electrad royalty potentiometer.
R. E. LACAULT

Model All-Wave Electric 9

The parts required for building the amplifier-power unit are as follows:

- Transformer: L1-Full-wave, power transformer; L2-Push-pull, audio-frequency transformer; L3-Filament transformer; L4 and L5-Audio-frequency chokes.
- Condensers: C1, C2, and C3—Variable condensers, 0.002 mfd. to 0.005 mfd.; C4 to C6—By-pass condensers, 5 mfd.; C7 to C10—Fixed condensers, 0.004 mfd.; C11 to C14—Fixed condensers, 0.003 mfd.; C15 and C16—Fixed condensers, 0.002 mfd.

- Resistors: R1—Fixed resistor, 100,000 ohms; R2—Variable resistor, 10,000 ohms; R3-Rheostat, 60 ohms; R4—Variable resistor, 1,000 ohms; R5—Fixed resistor, 0.001 mfd.; R6 and R7—Variable resistors, 500 ohms; R8—Fixed resistor, 1,000 ohms; R9—Fixed resistor, 100,000 ohms.

- Tubes: V1, V2, and V3—Power tubes, '10 type; V4 and V5—Rectifier tubes, '81 type; V6—Heated-cathode a.c. tubes.

- Connectors: 10 binding posts; 19 tube sockets; 1 drum dial; 1 grid-lead mounting; 1 tip jack and plugs.
THE MAGNAVOX CO.

Model "One Dial"

Model Type A

Model Type D
Model Neutrodyne - 3 Control

Model 7-Tube Single Control
REES-MACE

36T No. 24 D.C.C. WIRE The sets are available only from

REES-MACE RADIO
ENGLISH MAKE
5-TUBE MODEL
DRAWN BY RHF. 4-20-29
CHECKED BY J.H.A. Jr.

REES-MACE RECEIVER
FIVE TUBE IMPROVED
SCREEN GRID
ENGLISH MADE
DRAWN BY RHF 4-22-29
CHECKED BY J.H.A. Jr.

Constants
No. 1 and 2 Loop Connections
Sw 1 is a Push Pull Switch with
A Very Low Capacity
Tube Socket Data

6 F+ Plate Connection comes
S.G. FROM TOP OF TUBE.
M. B. SLEEPER
STENODE RADIOSTAT
TODD ELECTRIC COMPANY

Sleeper RX-1 Receiving Circuit.

STENODE RADIOSTAT

TODD "A" UNIT
Standardyne A C Model 29
50 to 60 cycles - 100 to 120 volts
TYRMAN ELECTRIC CORP.

Schematic diagram of the "Tyrman Ten" receiver.

Complete schematic diagram of the Tyrman Imperial "80" and the power supply.
Model 37

EIGHT TUBE CHASSIS

- L1 — Secondary of R.F. Transformer
- L2 — Primary of R.F. Transformer
- C1 — 500 MMF Variable Condenser
- C2 — Neutrodon Condenser
- C3 — 1 MF By Pass Condenser
- C4 — .1 MF Coupling Condenser

- C5 — .002 MF By Pass Condenser
- C6 — .002 MF Grid Condenser
- C7 — Fil. Resistance Unit, 2.35 AMP
- C8 — 25 ohm Rheostat-Switch
- C9 — 500 ohm Resistor
- C10 — 50,000 ohm Resistor

EIGHT TUBE CHASSIS

- R1 — 350 ohm Resistor
- R2 — 2 Meg ohm Grid Leak
- R3 — 500,000 ohm Resistor
- R4 — 2 Meg ohm Grid Leak

- T1 — Cx 301-A Vacuum Tube
- T2 — Cx 300-A Detector Tube
- T3 — CX 112 or CX 371 Power Tube

- U.S. ELECTRIC CORP.

Model 17

SIX TUBE CHASSIS

- L1 — Secondary of R.F. Transformer
- L2 — Primary of R.F. Transformer
- C1 — 350 MMF Variable Air Condenser
- C2 — Neutrodon Condenser

SIX TUBE CHASSIS

- C3 — 1 MF By Pass Condenser
- C4 — .0025 MF Grid Condenser
- C5 — Fil. Resistance Unit, 1.85 Amp.
- C6 — 25 ohm Rheostat-Switch

- R1 — 350 ohm Resistor
- R2 — 2 Meg ohm Grid Leak

- T1 — Cx 301-A Vacuum Tube
- T2 — Cx 300-A Detector Tube
- T3 — CX 112 or CX 371 Power Tube

- U.S. ELECTRIC CORP.

Model 17

Sochematic

Model 37

Front
SWITCH & VOLUME
The switch and volume control are located on the lower right hand knob which, when turned completely to the left, will act as a switch. To increase volume gradually turn to the right until desired output is gained, being careful to see that the tuning indicator is directly on the station signal.
The lower left hand knob operates VITATONE and tone control. The principle of VITATONE is supplying the backward notes with vitality and bringing them to the proper required impetus so that all reception carries breadth as well as the other registers. A further use of VITATONE is the elimination of line noises and static, which also can be accomplished by turning the knob completely to the right. This latter feature is exceptionally desirable for distance reception.

HINTS NECESSARY FOR BETTER RADIO RECEPTION
Use only standard high grade tubes. Cheap tubes will result in poor reception, poor tone and break downs at inopportune moments.

FUSE
Should there be a short in the wiring or a defective tube installed in the set, the fuse, which is located on the right hand side of the chassis assembly, will be blown. This can be replaced by an ordinary 3 amp. automobile type fuse. There are two positions to install the fuse, the two rear clips being used for 110 volts and the two front clips being used where excessive voltages rise as high as 130 volts.
In case of any unusual disturbances in the set, do not attempt to operate same until advised by an experienced service man.
If set does not light, inspect plug connections to wall, also fuse.
If set lights and does not play, inspect speaker terminal and see if it is plugged into the holes marked speaker at the rear of the chassis.
Also, have tubes tested for probable filament shorts.
In all cases, do not attempt to repair the set yourself. Call a competent service man, otherwise your guarantee will be nullified and void.

CAUTION: Before attempting to install or operate, ascertain if this receiver corresponds with the voltage and the cycles of your power supply. The voltage and cycle reading is marked plainly on the license plate. ("Check Same"). Information on the above figures can be ascertained by calling your local power company. In localities where extreme fluctuations of voltages occur, we recommend that a separate voltage compensator be used to maintain a steady power supply.

ANTENNA & GROUND
The quality and amount of reception depends on the correct use of both aerial and ground. In congested areas where several broadcasting stations are in operation, it is not necessary to have an outdoor aerial. Set can be operated on from 3 to 15 feet of aerial for all local reception. In outlying territories where your relativity to a broadcasting station permits, an aerial of from 25 to 150 feet may be used properly insulated and with correct lead-ins.
A very important feature in connecting a radio is to have a good ground as close to the receiving set as possible. A poor ground is a producer of noises, fading and generally poor reception. Both aerial and ground should be inspected every six months for loose connections or broken strands.
Aerial and ground connections are marked on the binding posts at the back of the chassis.

TUBES
The equipment for this radio consists of 3-224, 1-227, 1-230 and 1-245.
CAUTION: Do not insert or remove tubes from sockets while current is turned on.