HOW TO JUDGE METERS

What is the Basis for Judging Meters? See Article on Page 5
YOU MUST GET THIS BOOK!

DRAKE'S RADIO CYCLOPEDIA

This book, which has been developed to answer the questions of service men, custom set builders, amateur radio enthusiasts, and all others interested in radio and electronic apparatus, has been written in plain English; that is, in such terms as are used by those who are engaged in radio work.

Every one who is interested in radio will find this book a valuable possession. Its 564 pages are packed with instruction and information. Every chapter is valuable, every section and every page delightful.
Push-Pull Puzzle

Is There Any Way to Apply System to Detection?

By J. E. Anderson

Technical Editor

FIG. 1
A TWO-TUBE DETECTOR CIRCUIT IN WHICH THE GRIDS ARE IN PUSH-PULL AND THE PLATES ARE IN PARALLEL.

DETECTORS operating on the push-pull principle are often suggested, and even receivers incorporating them are proposed from time to time. Yet they never progress beyond the suggestion stage. There must be a reason. What is it?

The main advantage of the push-pull amplifier is that it prevents the transmission of the even harmonics generated by the two tubes in the amplifier stage. Why does not a push-pull detector do the same? It does, and that is just the reason a push-pull detector has not been made to work successfully.

The object of the detector is to create harmonics and to transmit them to the audio amplifier. If the circuit is so arranged that the harmonics created cannot be transmitted, obviously the detector does not function.

The detector does not create audio frequency harmonics, or at least it should not. The harmonics created by the detector are of the radio frequency carrier wave.

How Circuit Works

Consider Fig. 1. The input transformer L1L2L3 is arranged so that the secondary voltage is divided equally between the two tubes and in opposite phase, just as the input transformer to an audio frequency amplifier of the push-pull type. When the signal current in L1 is in such direction that the grid of the upper tube goes less negative, that of the lower tube goes more negative. Hence the plate current in the upper tube increases and that in the lower tube decreases.

The radio frequency voltage across L4 increases and that across L5 decreases. Hence if the increase on one tube were equal to the decrease in the other the voltage difference across the two coils would be twice the signal drop across either one. This is how the circuit works as an amplifier.

The sum of the two plate currents would be the current in the common lead where the telephone is placed. This current does not contain a component of the signal frequency because the two plate currents are equal and opposite in phase so that when they are united there is no current.

But the increase in the plate current of one detector tube is not equal to the decrease of that in the other. The increase is greater than the decrease. Therefore there will be some change in the common current through the telephone. To a first approximation this current will equal twice the sum of the current flowing in either tube when no signal is impressed and a term depending on the square of the signal voltage impressed on either tube.

For example, let Io be the current in either tube when no signal is impressed and e the signal voltage impressed on each grid. Then the current in the telephone will be 2(Io+Ke²), where K is some constant depending on the tubes.

Harmonic Component

Io is a direct current and will not produce any sound in the telephone. Ke² is a current having a frequency twice as great as the radio frequency impressed on the grids of the tubes. Since that was too high for audibility, obviously a frequency twice as high is inaudible. It would seem that there is no detection.

But e is not a simple radio frequency voltage. It is modulated with an audio frequency. That is to say, the amplitude of e varies periodically at an audio frequency rate. When this fact is taken into consideration in analyzing Ke² this term will be found to contain a term which is proportional to the audio frequency fluctuation in the modulated signal. This portion will make a sound in the telephone.

The two coils L4 and L5 in Fig. 1 serve no purpose. It is preferable to arrange the circuit as in Fig. 2 in which the two

(Continued on next page)
Objects of Untuned Antenna

The objects of an untuned stage are to make it practical to use a gang condenser and yet omit a manipulated trimmer across the first tuned circuit, and to make the tuning independent of the length of the aerial, so that a dial calibration can be set.

Parallel Plates Work Push-Pull Input

(Continued from preceding page)

plates are connected together and the telephone placed between the junction and the plate battery. There should also be a condenser of about .005 mfd between the junction and minus A. The behavior of a push-pull circuit can be studied with the aid of sine curves suitably placed. In Fig. 3 let the upper curves represent the first and second harmonics of one of the tubes and the lower curves the same harmonics for the other tube. The values of the currents at any time can be regarded as the distance from the line AB to the curve in question.

The second harmonic waves are displaced 90 degrees with respect to the fundamental. To show the fact that the fundamental waves for the two tubes are in opposite phase the curves have been drawn symmetrically with respect to the line AB. The second harmonic waves are in phase.

Suppose we take the difference between the fundamentals, which at any place is the sum of the distances between the curves and the line AB. It is clear that the difference rises and falls. This difference may represent the voltage across the equal impedances placed in the plate circuits of the two tubes, as in Fig. 1. Now take the sum of the two curves at any point, remembering that the distances below AB are negative and those above positive. It is clear that the sum is zero all over. This represents first harmonic current in the telephone in Figs. 1 and 2. There is no such current in the telephone if the circuit is balanced.

Now consider the second harmonic wave. Take the difference between the two curves. It is clear that they remain at the same distance apart at all times. This is equivalent to no difference. Hence the second harmonic does not appear across the impedances in the plate circuit, as in Fig. 1. That is the reason a push-pull detector has not been made to work.

If the sum of the two second harmonics be taken it will be found that it is 2i, where i is the value of the current at any instant. The even second harmonic will result in a push-pull circuit, as in Fig. 2. This is derived as follows: Let Io be the steady current in either tube and let i be the instantaneous value of the second harmonic. Then the current in the upper tube is Io+i, and the current in the lower tube is —(Io—i). Adding the two gives 2i for the total current. This is the current that flows in the telephone in Fig. 2, for example. It may be shown that all the even harmonics generated by the two tubes appear in the common portion of the circuit, that is, in the telephone in Figs. 1 and 2, and that all the odd harmonics appear across the plate impedance as L4, L5 in Fig. 2. The direct current is considered as an even harmonic because its order is one less than that of the first, which is odd. The direct current, of course, flows through the telephone.

There is some advantage in using a detector that is push-pull on the grid side and parallel on the output side. A single tube detector generates all the harmonics and does not prevent the transmission of any. The push-pull as shown in Fig. 2 generates all, but none of the odd harmonics appears in the telephone. Hence we have a direct current, which does not give rise to distortion, and the second harmonic, which gives rise to the desired detected signal. We also have the fourth, sixth, and eighth harmonics, but all of these and higher even harmonics are negligible.

It should be noted that the presence of the higher even harmonics in the current in the telephone does not result in harmonics at audio frequencies directly. But these RF harmonics indicate that the detected component is not proportional to the radio frequency input. The detected output increases with the input more rapidly than if the direct proportion held. This finally results in audio harmonics.

It is easy to detect by means of a push-pull circuit when the plates of the two tubes are parallel, but to couple a detector to a push-pull amplifier without the use of an input transformer is not so easy.
Judging Meters

Resistance Per Volt Often Vital Factor

By Herbert E. Hayden

FIG. 1

LEFT—A VOLTMETER IS SIMPLY A MILLIAMMETER WITH A RESISTANCE IN SERIES WITH IT AND HAVING A DIAL CALIBRATED IN VolTS.

RIGHT—A HIGH RESISTANCE VOLTMETER IS NECESSARY WHEN MEASURING VOLTAGE DROPS IN RESISTORS OR VOLTAGES OF BATTERY ELIMINATORS.

The importance of resistance in meters is not generally realized. Fans will measure the voltage of a B battery directly from the manner of the voltage meter, and find that they do not get correct results, or that they get different results with different meters. The assumption usually is that the meter in the one instance is in error or that one of the two in the other case is incorrect. But the fact may be that when the two meters are connected across the same place at the same time that they will read exactly alike.

These discordant results should not be used to condemn any meter but rather they should be used as an indication of what resistances are associated with the meter and what the sensitivity of the meter is.

An ammeter should have the lowest possible resistance and a voltmeter the highest possible. These requirements come differently from the manner in which the two meters are used. The ammeter is always connected in series with the line, and therefore its resistance should be so low that the circuit is not changed when the meter is inserted. The voltmeter is always connected across the line, and therefore it should have such high resistance that there is no change in the current when the meter is put across the line.

High Sensitivity, High Resistance

Meters designed to measure heavy currents usually have very low resistance, often a small fraction of an ohm. As the sensitivity of the meter is increased the resistance is greatly increased. Thus a microammeter may have a resistance of several thousand ohms. While it is unavoidable that the resistance should increase with the sensitivity, it is desirable that the resistance for any current meter be as low as possible, because the higher the resistance the more the meter changes the circuit when the meter is inserted. And it is always desirable to leave the circuit as nearly as possible as it was.

A voltmeter is only a very sensitive current meter with a high resistance in series with it. The more sensitive the current meter the better will the voltmeter be.

The important characteristic of any voltmeter is its resistance per volt. This quantity tells how much current the voltmeter will take at full deflection, and hence indirectly at any other deflection. When the resistance per volt is high it is known that a very small current is needed to cause full-scale deflection, and it is also known that a very sensitive current meter was used in making the voltmeter.

If the resistance per ohm is low, it is known that a large current is needed to cause full-scale deflection and that a very insensitive current meter was used in making the voltmeter.

If a 0.2 milliammeter is used for making a voltmeter the resistance per volt will be 50 ohms. This is not so good, but there are many meters which have a lower resistance per volt. If a 0-5 milliammeter is used for the voltmeter the resistance per ohm will be 200 ohms. This is much better.

A meter having a range of 0-1 milliamperes when used for measuring voltages yields a voltmeter of 1,000 ohms per volt. This is a very sensitive meter and is suitable for measuring voltages in B supply units with only a small error. It is entirely feasible to make voltmeters having a much higher sensitivity. If meters of higher resistance per volt are required it is possible to use galvanometers, which are available in all ranges of sensitivity up to 10 micro-milliamperes, and vacuum tube voltmeters, which are practically unlimited in application and range. They have infinite resistance per volt, at least for direct current.

Operation of Voltmeters

The performance of voltmeters can be understood with the aid of a few simple diagrams, as in Fig. 1. At the left is a milliammeter connected in series with a resistance \(R \) and a battery \(E \). The milliammeter and the resistance constitute the voltmeter, and it is to be used for measuring the voltage of the battery \(E \). Suppose the meter has a scale of 0-5 milliamperes and let \(R \) be 10,000 ohms. The deflection on the meter is 4.5 milliamperes. What is the voltage of the battery \(E \)? We know by Ohm's law that \(E = IR \) and that \(R = 10,000 \) ohms and \(I = 4.5 \) milliamperes. Then it is clear that \(E \) equals 45 volts. If \(R \) is built into the case of the meter so that it will always be the same it is obvious that it is permissible to calibrate the scale of the milliammeter in volts instead of in milliamperes. Instead of writing 4.5 milliamperes we would write 45 volts.

If a switch is built into the case of the meter so that the resistance \(R \) either can be thrown in or out, the same meter may be used both as a voltameter and a milliammeter. That is the way volt-ammmeters often are built.

It often happens that the voltmeter resistance is not the only resistance in series with the voltage that is being measured. In that instance the meter reads low, and the amount by which it reads low depends on the ratio of the resistance in the circuit not in the meter to the total resistance in the circuit. It is clear that for a given resistance in series with the battery, the higher the resistance of the voltmeter, the smaller will this error fraction be. That is, the more sensitive the meter, or the greater its ohms per volt, the smaller will the error be.

It is particularly desirable to have a meter of high resistance per volt for measuring voltages in B supplies and drops in resistors which form a portion of a high resistance circuit. A case is shown in the right-hand drawing in Fig. 1.
How Interference

Man-Made Molestation of Remedy, as Nature to Still Her

By James

Contribute

Some electrical apparatus may not be intended as such, for it is mechanical. For example, a dry belt running on a wooden pulley, a printing press of a certain type, and a paper making machine all have the property that they are neither electrical nor acoustical, although they are not intended as such and may not even have any electrical wiring near them. All of these and many other similar mechanical devices create some kind of electricity as is created when a cat's back is rubbed. Such a device may be a source of interference.

Natural interference is that which is created by atmospheric conditions, such as lightning, and by the aurora borealis.

Man-made interference is controllable; natural is not. The only way that has been found for coping with natural interference is "to raise the voice," for it increases the power of the broadcasting stations until it is strong enough to override the natural electrical disturbances. To do this increase in power we owe a large measure the excellent reception which we now enjoy both winter and summer.

Sometimes the natural interference involves more power, so that even the most powerful broadcast station is useless, and for that reason there will be times when "static" crashes come through the loudspeaker even when the receiver is tuned to a high-power station nearby.

Man-Made Interference

Since natural interference is beyond our control, and since we can do something about man-made interference, we will turn our attention to that.

First, let us do the problem that man-made interference is noise. The source of this noise can always be by a systematic method of elimination. The receiving system can be divided into two parts, and then by a suitable test it is possible to tell which contains the trouble and which is free. After it has been found that the trouble is in one division, that one can be subdivided, and the test be repeated. The trouble will be found to be in one of the subdivisions. The process of elimination goes on until there can be no doubt as to where the trouble is, because the ultimate division leaves no alternative.

Let us see how this works out in a few typical cases. There is an annoying hum in the loudspeaker when listening to a certain station. What causes it? The transmitting station, the receiver, or some interfering device may be at fault. To test whether the transmitting station is at fault, tune the set to some other station, one which has approximately the same signal intensity at the receiver antenna. Does the hum remain? If it does, the transmitter was not at fault. The hum is then due either to the receiver or to some source of interference. To test which, remove the antenna. If the hum remains, it originates in the set; if it disappears, it came from the outside.

Case of Crackles

Suppose there is a disturbing crackle in the sound output of the receiver. Where does it come from? Eliminate the station by tuning in on another station. If the noise disappears it was either on the carrier of the station or on a carrier of the same frequency as the frequency of that station. If the noise continues, its source is either in the receiver or in some electrical device in its vicinity.

One method of determining whether the noise comes from the outside or originates in the set is to remove the antenna. In certain instances, chances are that the noise originates in the set; if the noise disappears it was probably due to an outside source.

The test is not conclusive, for in certain instances the noise...
is Traced Down

Is Alone Susceptible
Thwarts All Attempts
Disturbances

H. Carroll

Editor

disappears when in reality its source is in the set. It happens frequently that a noise develops in the set when the volume is turned up, due to the partial breaking down of insulation in a condenser or some other part. The trouble does not appear at once but comes gradually as the set warms up. When the antenna is moved about, the noise disappears because there is no longer any volume. If the signal were derived from a phonograph pick-up the crackle would appear, proving that the source is actually in the receiver.

Cornering the Noise

Now we have traced this crackle down to the receiver, but there are many places in this where the cause might be. Is it in the B supply or in the amplifier? The simplest way of testing this is to turn the B rheostat down a little at a time to see if the crackle appears. If it does not one of them is available. The output voltage of this should be the same as that which is suspected. The substitution of the new B supply will either correct or convict the old supply.

If no B supply substitute is available, it will be necessary to test individual parts by piece-meal substitution of good parts. This is a tedious and long job. To shorten the work those pate which are the most likely to break down should be tested first. Condensers which are subjected to high voltages are the most likely to give way, especially those condensers which are operated near their rated working voltage. In testing for a defective condenser in the filter it is only necessary to have one test condenser, which can be moved about as required. It is simply connected in place of a suspected condenser. It is not necessary to remove both sides of the old condenser, for the condenser is out of the circuit as soon as one side is open.

The capacity of the test condenser should be approximately the same as that of the largest condenser which may occur in the test.

Finding the Noise Outside

Suppose that one of the earlier tests establishes the fact that the source of the noise is outside the receiver, and that it is brought in on the antenna. What can be done to locate it?

Much can be done by merely associating the type of noise made with various electrical devices in and near the house and by considering the time element of its occurrence. Certain electrical devices are used at certain times of the day, and they remain on for a certain length of time. Some click on and off regularly. Others are turned on and kept running for a minute or two, as in a sewing machine, for example. Vacuum cleaners are operated about the same way, although they may be kept running for longer periods.

When there is an interfering sound in the loudspeaker, it may pay to turn on and off all the electrical devices in the house. Perhaps it is not any of the devices in the house which is to blame, but it may be a similar one in the next house or apartment, and the test will point to the kind of device which causes the interference. When the kind has been determined, one should find out where such a device is being operated at the time the disturbance occurs.

In congested neighborhoods it may be difficult to find the trouble, if it originates outside the apartment, and it may not be so easy to apply a remedy even if it is found.

Direction Finder

Many sources of noise can be found with the aid of a direction finder. This instrument is simply a loop receiver. If it is portable almost any electrical disturbance can be traced to its source. It is only necessary to tune in the receiver on the noise and point the loop in the direction in which the signal is loudest. The loop then points to the source, provided that nothing intervenes between the receiver and the source to deflect the radio waves. Move the receiver to some other location and repeat the observation. The loop will now point in some other direction, but it will still point toward the source of the noise.

Fig. 1 shows the method of locating a noise. The two positions of the loop are indicated by A and B, and the black dot represents the source of the noise. The line passing through the loops intersect at the source. If it should happen that the loop points in the same direction at both places it means that the second observation was taken on the line joining the source and the first observation position. The second observation was either closer to or farther away from the source. The intensity of the signals will determine which, for the closer to the source the stronger the signals.

Spurious Directions

It may be that the observations point to something which could not possibly be the source of the disturbance. Reflection of the radio wave or conduction over wire from a distant source may be the reason for the trouble. When this difficulty is met many observations in different places in the locality should be made. All of them cannot be wrong completely. There will be a general trend which is toward the source.

A simple regenerative, portable loop receiver is shown in Fig. 2. The tube is a 199, requiring a filament voltage 3.5 volts, obtained from three dry cells, and a plate voltage of 45 volts. Co is .00025 mf, and R1 is a 2 megohm grid leak. The two variable condensers C1 and C2 should be .0005 mf. units. The loop can be any loop used for broadcast reception which is not too clumsy to carry about. It should have a tap near the center. R2 is a 20-ohm rheostat.

When the receiver is to be used for hunting trouble it makes little difference what the tuning range is. The noise will be carried on all frequencies.

Remedies for Noise

What shall be done when the source of the trouble has been located? It depends on where and on whose property the noise originates. If it is on property of the electrical company, report it. The company will be glad to correct it. If the noise originates in the neighbor’s apartment, perhaps the neighbor too, will welcome the information. If the source of the noise is located on your own premises, then it is your place to take appropriate steps to clear it up, not only for your own good, but for the general improvement of radio reception in your vicinity.

It should be remembered that the best place to attack the problem is as close to the source as possible. If a line runs to a noise-making device, a filter should be placed in the line near the device. If a line also runs away from the device a filter should be placed on each side.

("Interference Filters" next week, issue of July 13th.)
Installation Ideas

Taste and Use Decide Position of Components

By Capt. Peter V. O'Rourke

Contributing Editor

FIG. 1
AN AC RECEIVER MAY BE BUILT IN THIS FASHION WITH FILAMENT TRANSFORMER MADE A PART OF IT, SO THAT A SEPARATE B SUPPLY MAY BE READILY USED.

Separate power amplifiers and tuners are a favorite method of installation with experimenters, especially as the tuner may be encompassed in a small space, for housing in a table model cabinet. A separate power amplifier may be placed below in the booth of a console or radio table. How to arrange for these requisites is a question often discussed, with numerous corollaries.

An AC receiver may be built, if desired, as shown in Fig. 1, consisting of a tuner and audio amplifier, with filament transformer for heating the tubes of the receiver. Then the separate B supply will have a power transformer with the necessary high voltage winding and a filament winding for the rectifier tube. This makes a good combination, especially since the B supply is wholly independent, and may be used with almost any receiver.

Variety of Tube Options

A heightened eye appeal, plus utter separation of the power amplifier and the tuner, is achieved when the audio amplifier is made part of the B supply, and the filament voltages for the receiver also are furnished. This reduces the size of the table model cabinet, if one is used. Variety of tubes is limited, however, unless it is assumed that a power amplifier is to be used with an AC tuner, when the variety is great enough, since AC tubes are becoming standardized. The leaders are 224 for radio amplification, 227 for detector and audio amplification, and 245 for the output, either singly or in push-pull. Where the 226 figures it is usually for audio only, unless the receiver is of some design that may ignore the newer tubes, whereupon a row of 226s may be expected.

The radio frequency side, which includes the detector, is to be judged primarily on selectivity and sensitivity. The audio channel will have nothing directly to do with these. Selectivity should be excellent for utter discrimination among frequencies in these air-crowded days. Sensitivity should be as high as you desire. What your desire will be is what will determine the cost of the tuner.

Where Ultra-Sensitivity Begins

The receivers that are very sensitive bring in plenty of distant stations with great volume, and if you are interested in DX by all means you should provide yourself with a sensitive receiver. One that uses four screen grid tubes for radio amplifier and a 227, or other detector, negatively biased, is the starting-point in the ultra-sensitivity realm. Such a receiver makes most others seem like weak sisters beside it, if the audio channel is a good one.

What the audio should be is again a matter of taste. Good results can be obtained with transformer, impedance or resistance coupling, or combinations of these.

With a highly sensitive tuner, you are likely to deliver a strong voltage to the detector input, so you must use radio amplification than you've been furnishing to tuners that follow older designs. One stage of high-gain transformer coupling often will prove sufficient, or two stages of resistance-coupling or two of impedance coupling, whereas formerly resistance or impedance coupling called for three stages.

Fig. 1 is the design of the Push-Pull Diamond of the Air, where it is built for operation from an independent B supply.

Fig. 2 is a suggested diagram for a B supply, wherein the capacity-resistor filter system is used. A bleeder current is established through the resistor from points 1 to 6, so that the power tube plate voltage, being high, may be taken off at 6, whereas the point from which voltage is dropped through independent resistors is somewhere lower down, so that too high a current will not flow through these resistors any time.

Values of Resistors

What the values of these independent resistors should be can not be foretold for all circuits, as the voltage drop in a resistor depends on the current flowing through that resistor, and the current will depend on the number and types of tubes supplying with B voltage and current and connected to an individual resistor. However, the plate current drawn by any type tube at standard values of bias is known, or can be measured, and the number of tubes used is known, so the resistor's value can be calculated. By Ohm's law the resistance in ohms equals the voltage divided by the current in amperes.

Let us apply this formula to Figs. 1 and 2, and assume the power P at position 6. The 224 tube at 180 volts on the plate draws 4 milliamperes, the 227, negatively biased for detection, draws 1 milliampere, the 227 as first audio amplifier draws 5 milliamperes. These three are enumerated because all are served from the 180-volt tap. The maximum voltage is 300 volts, so the voltage to be dropped is the difference, or 120 volts. Therefore the resistance of the independent resistor, let us say point 5 in Fig. 2, is 120 volts divided by .01 amperes. Hence resistor 5 should be 12,000 ohms. Since it drops 120 volts at .01 amperes it must dissipate 1.2 watts.

Wattage Rating

Following the usual precaution of requiring a resistor of at least twice the rating of the actual wattage, this resistor would be 3 watts rating. This is low wattage, so almost any resistor of that resistance value would do. A 3 watts being a common minimum rating for resistors used for voltage dropping in B supplies.

B-75 is connected to the screen grid of the 224. Assume the resistor terminating at 2 is used. Then the resistance is the voltage drop, 225, divided by .0033 amperes, or about 173,000 ohms. If the pointer is moved down, as advised, say to 200 volts, then the voltages above would be 200-180 and 200-75, or 20 and 125, and the resistors 2,000 and 96,100 ohms.
POWER AMPLIFIERS

By J. E. Anderson and Herman Bernard

"Power Amplifiers," by J. E. Anderson and Herman Bernard, was begun in the June 1st issue. In the June 8th issue loudspeaker coupling devices and battery-operated amplifiers were explained. A special analysis of resistance-coupled audio was included. In the June 15th issue, the expostion was carried forward to the DC supply of A, B and C voltages, etc., for operation from 110-volts DC obtained from the convenience outlet. Ohm's law was explained in conjunction with the design of a DC supply. Then the part was begun that treats of AC July, with rectifier and filter analysis exceptionally well set forth. The AC topic was continued last week, June 29th. In the following installments, the sixth of the series, intimate details of A, B and C supplies will be set forth. Next week, June 13th, there will be another big installment. The series will continue for several weeks.—Editor

If the resistance is used for a tube requiring a different current, a different terminal voltage, and some other voltage source, the voltage of the source is V volts, the required filament voltage F volts, and the filament current I amperes, the resistance R of the ballast is determined by the formula \((V-F)/I = R \). If there are several equal legs, lay N, on the same resistor, then the formula for the resistance is \((V-F)/N = R \). Let us apply this to a circuit using 99 types. Suppose a storage battery is used as a voltage source. V = 6 volts. The filament terminal voltage is 3.3 volts, which is F in the formula. The current required by each tube is 0.066 amperes, which is the value of I. Let there be 5 tubes, so that \(N = 5 \). Substituting these values in the formula we find that \(R = (0.0066 \times 5) / 0.066 \) ohms, or 0.818 ohms. If the tubes require different currents but the same filament terminal voltage let \(N1 \) in the second formula be the total current, obtained by adding the different currents.

When 5-volt tubes are used on a 6-volt battery, the grid bias is limited to one volt. When 3.3-volt tubes are used on a 6-volt battery the bias is limited to 2.7 volts.

In the case of a battery type screen grid tube, the 2.7-volt bias is larger than that which is usually recommended for this tube, the standard bias being 1.5 volts. Several methods are available for avoiding this difficulty. The resistance R may be made up of two units in series, or a single unit with a tap at a suitable point. The tap, whether it be on the single resistor or at the junction of two, should be placed 1.5 volts down from the minus end of the filament, and then the grid return should be connected to this tap. Since the total drop in R is 2.7 volts and 1.5 volts are not required, the division of the resistor should be in the ratio of 5 to 4, with the greater portion next to the filament. This proportion is true no matter what the absolute value of R may be, that is, no matter what the number of tubes the resistor serves.

Another method is to put the larger portion of the resistor in the negative leg of the filament circuit, connecting the grid return to A minus, and then putting the smaller portion of R in the positive leg. Still another method is to connect a potentiometer of about 2,000 ohms across the total value of R, placed in the negative leg, and then connecting the grid return lead to the slider. This may then be set at any place between zero and 2.7 volts.

An easy way to get approximately correct bias for a battery type screen grid tube is to drop 2.7 volts, from 6 to 3.3 volts, in a 23-ohm resistor in the negative filament, and connect grid return to F—(not A) of a 5-volt battery type tube. The negative bias is then 1.7 volts.

There are very few circuits in which a bias of one volt or 2.7 volts is sufficient. In most amplifiers and in all grid bias detectors it is necessary or advisable to make some provision for a higher bias.

The oldest method, if not the simplest, of increasing the bias is shown in Fig. 37A. A small battery E is connected in the grid circuit with its positive terminal to A minus and its negative to the grid return. This gives the tube a bias equal to the drop in the resistance R plus the drop of the battery E. This battery, in whole or in part, may be used to supply bias for other tubes. The resistor method shown in Fig. 37A can be used for battery tubes only, but the method in B can be used for any tube.

If the plate voltage available for a given tube is higher than the required grid and plate voltage combined, the bias may be taken from the plate voltage supply in the manner indicated in Fig. 37C. The grid is returned to the lowest potential point on the voltage divider or the plate return is made to a suitable point of higher voltage. The filament is then connected to a point in between these two points. The bias given the tube in Fig. 37C is the sum of the voltage drop in R and the drop in R1.

The current through R1 is the sum of the plate current in the tube and the current through resistor R2. Suppose the total voltage available is 140 volts, to be divided so that 135 volts are on the plate and 5 volts on the grid. We first determine the value of R2 from the known plate voltage of 135 volts and the current desired through R1. The value of R1 is determined by Ohm’s law. Then by Ohm’s law the value of R2 must be 33, 750 ohms.

If the tube is a 20A, the plate current is 6 milliampere when the grid bias is 5 volts and the plate voltage is 135 volts. Thus through R1 the total current is 10 milliampere. Now, there is a drop of 1 volt in R, so that the drop in R1 should be 4 volts in order that the total bias be 5 volts. Hence by Ohm’s law the resistance of R1 should be 1000 ohms. If the plate voltage is only 134 volts because the drop in R is subtracted from the plate voltage.

The resistance R2 is not needed in all circuits, and indeed, it is not often used. But it is serviceable when the normal plate current in the tube is very small, such as in grid bias detectors and resistance coupled amplifiers. The object of this resistance is to get a larger current through R1 than is afforded by the plate alone, thus permitting a reduction in R, without changing the grid bias. This in turn reduces feed-back.

When R2 is omitted the value of R1 is determined by the plate current alone. We found above that the plate current under the condition specified is 6 milliampere. If this alone flows through R1 the resistance must be 166.67 ohms. If R were used the value of the 400 ohms obtain when R2 was used. But suppose that the circuit adjustment is such that the plate current is only .125 milliampere, which is the case in many detectors and resistance coupled amplifiers. Then the value of R1 must be 32,000 ohms. This would result in considerable reverse feed-back and a great reduction in the amplification. The situation would be much worse if a high grid bias were required, as in grid bias power detection circuits.

The method illustrated in Fig. 37C is directly applicable to AC circuits, and its use with a heater type tube is shown in Fig. 38A. Whether R2 is used or not depends on the plate current. If it is normally large, R2 may be omitted; if it is normally very small, the resistance should be used. The value of R2 is always determined from the desired voltage on the plate and the desired current through the resistance. Both of these values are arbitrary and may be chosen to suit the tube and its function. R1 is then determined from the total current flowing through it and the desired bias on the tube suitable to the type of tube, its function, and the plate voltage selected.

Whether the tube in Fig. 38A is followed by a transformer, R2 would hardly be used except when the tube is used is a grid bias detector. Let the voltage on the plate be 180 volts. The bias

FIG. 37

(A)—METHOD OF OBTAINING A LOW GRID BIAS BY INSERTING A BALLAST RESISTOR R IN THE NEGATIVE LEG OF THE FILAMENT CIRCUIT, THROUGH WHICH CURRENT FLOWS FROM THE GRID RETURN LEAD.

(B)—ADDITIONAL BIAS CAN BE OBTAINED BY CONNECTING A BATTERY E BETWEEN A MINUS AND THE GRID RETURN LEAD.

(C)—A GRID BIAS CAN BE OBTAINED BY UTILIZING THE DROP IN A RESISTOR PLACED IN THE GRID CIRCUIT, THROUGH WHICH CURRENT FLOWS FROM THE PLATE VOLTAGE SUPPLY FLOWS.
may be taken as 25 volts and the plate current one milliamperes. Under these conditions, if R2 is not used, R1 would have to be 25,000 ohms. But if we use R2 and adjust it so that 9 milliamperes flow through it, the total current through R1 is 10 milliamperes. Hence the grid bias resistor should be 2,500 ohms. R2 would have to be 20,000 ohms. Both resistors must be by-passed as indicated.

If the circuit employs a filament type AC tube the bias can be obtained as in Fig. 38B. This is really the same method as that shown in Fig. 38A, with the resistor R2 omitted. As in that circuit, the plate resistor may be used in this. It is simply connected from B plus to the mid tap of the filament.

Suppose the plate resistor is omitted in Fig. 38B, and that the tube is a 171A requiring a grid bias of 43 volts and a plate voltage of 180. The total voltage required across the plate voltage supply is then 223 volts. The current through the grid bias resistor R is simply the plate current, which may be taken as 20 milliamperes. By Ohm's law, then, the value of R must be 43/0.02, or 2,150 ohms. The plate current in this tube is so high that there is no reason for using the plate resistor to augment the current through R.

Since a filament type AC tube is not suitable for resistance coupled amplification or for detection, there seems to be little reason for using the plate resistor to augment the current in the bias resistor.

The method of obtaining bias shown in Fig. 38B as applied to a push-pull amplifier stage is shown in Fig. 39A. Since the two tubes in a push-pull stage must be equal and operated under identical static conditions, the grid bias resistor in a push-pull stage is just half as large as the resistor used for a single tube of the same type. Thus in Fig. 39A, the value of R should be 1,075 ohms, assuming that the tubes are 171A.

When equal tubes are used in tandem and are used with the same plate voltage, and when they are supplied filament current by the same winding, the grid bias resistor is also half as large as it would be if it were used for a single tube. A circuit of this kind is illustrated in Fig. 39C, it being the bias resistor.

When the circuit is of this type it is useless to use a separate grid bias resistor for each tube, for the two or more used would be in parallel. It is more convenient and economical to use a single resistor.

If two or more tubes are connected to the same filament winding and it is necessary to apply different plate and grid voltages, it is possible to do so. To obtain different plate voltages it is only necessary to return the plate leads to the appropriate points on the voltage divider. To obtain different grid bias on the tubes the resistance R must be provided with tape, preferably sliding. The value of the resistor is determined by summing up all the plate currents that flow through it and by using the highest bias necessary. The taps are then placed so as to provide the necessary lower grid voltages for the other tubes. No current flows into the taps when grid return bias is connected to them, so the determination of the positions is simple. The drop in any portion of the resistor is to the drop in the total as the length of the portion is to the total length. The voltage for any tube is measured from the mid-tap of the filament to the tap, and not from the other end of the resistor to the tap.

In Fig. 39B is shown a method of obtaining the grid bias for various tubes from the voltage divider in the plate power supply. This was used much in the early days of plate power detection and is still used widely. While it is applicable to all tubes it is used more for better tubes than for push-pull tubes.

As will be observed, the point of zero voltage is not taken at the extreme low potential end of the resistor strip, but at a point higher up. The plate voltages are measured from this point upward, and the grid voltages from the zero point downward. The total voltage output of the plate current supply circuit is the voltage difference between C1 and B4, so suppose this is 220 volts. Now if the power tube in the receiver is a 171A the plate voltage should be 180 and the grid should be nearly 40 volts. Thus the total voltage is divided by the point B4 in the ratio 180 volts above and 40 volts below. The point B4 will then be 180 volts higher than the zero point and the point C3 will be 40 volts lower.

Intermediate plate voltages are obtained by tapping the resistor strip at suitable points. This method was already explained. The intermediate grid voltage, likewise, are obtained by tapping the resistance between zero and C3. Sliding taps should be used preferably on this portion of the resistor.

In determining the value of the resistance from zero to C3, it should be remembered that the total current delivered by the rectifier flows through this resistor. The larger current alone flows through the portion between zero and B1. The plate currents return from the tubes to the voltage divider at the point B4 and then flow down the grid bias resistor.

It is necessary to remember that the taps read in from the rectifier filter are 60 milliamperes. What should the value of the resistance be to make the voltage difference between zero and C3 40 volts? Dividing 40 by 0.06, according to Ohm's law, gives 667 ohms. The tap C1 is placed a distance down from zero proportional to the voltage desired. For example, the voltage at C1 is to be 1.5 volts, the tap is placed 1.5/40 of 667 ohms down, that is, 25 ohms. Again, if voltage at C2 is to be 12 volts, the tap is placed at 12/40 of 667 ohms down, that is, 200 ohms down. A simple proportion may be used because none of the taps taps any current, so that the same current flows through the entire resistance R. And this current can be obtained by inserting a milliammeter in either the negative or the positive line to the filter, and varying the point of voltage can be obtained by connecting a high resistance voltmeter from (O) to either C1 or C2 and then sliding the tap until the meter reads the desired voltage.

Highest Voltage Drop Not Desirable

In all cases where the grid bias is taken from a voltage drop in the plate current supply the voltage available for bias is subtracted from the plate voltage. In some instances the bias is so small that this makes no difference. In other cases the bias is higher but the plate voltage available is high enough to permit the division of the voltage.
of the minute current that flows. The capacity of any one of the condensers C1, C2, C3 and C4 need not exceed 3 mfd, and low voltage rating condensers can be used since the voltage will not rise above the highest bias voltage. The choke coil L1 can be the secondary of an old audio transformer. This can be used without difficulty since the reduction of the extremely small value of the current that flows through it.

The choice of the resistors in the voltage divider is determined by the voltage drops across any one and the fact that the total voltage drop is to be equal to the highest bias desired. The placement of the taps is simplified by the fact that the same current flows through all resistors. It may be that the windings on transformer T are such that the voltage across the output is higher than desired. In that event, variable resistance Rh can be put in series with the line as indicated. Naturally the resistance value must be high to cause a considerable voltage drop, since the current through it is small. The rheostat could also be placed in the primary, but a placed there it would have to be smaller because at this point it would also control the filament current in the rectifier tube. The reduction in the filament current is a desirable feature.

If the receiver has a storage battery the rectifier tube can be placed on it as shown in Fig. 40B. The voltage required for ordinary ballast suitable to the tube used as rectifier T can be an audio transformer of low ratio and Rh an adjustable high resistance. The filter circuit in (B) is the same as that in (A). The voltage divider is placed on the output in (A). It need not be, for the two voltage dividers may be used interchangeably. Both are shown merely to illustrate the types. The advantage of the circuit in (A) is that the filament current in the primary or where shown without any difference in the effect.

The plus terminal in each of these circuits has been labeled zero. It should be connected to the cathode of a direct heated AC tube, and to the minus terminals of the filament battery. Note that if circuit (B) is used to supply bias for tubes which are on the same battery as the rectifier tube, the plus terminals should not be connected to anything. At any rate, it should not be connected to A plus in the set, for this would short circuit the battery. The output voltage of either of the circuits in Fig. 40 cannot be measured with any ordinary voltmeter, not even one of 1,000 ohms per volt. The only way to get the correct voltage is to use a vacuum tube voltmeter. For this the tube to be biased can be used.

Either of the circuits in Fig. 40 takes less room than a dry cell battery giving the same voltage, and it is also very easy and gives dependable service whenever it is needed. The power required to operate it is essentially that required to heat the filament.

Right or Wrong?

(Answers on next page)

(1) A photo-electric cell is a vacuum tube in which electrons are released from the cathode by means of light.

(2) One of the most effective methods of eliminating noise in electrical apparatus of a radio receiver is to use a high antenna and a good ground.

(3) A condenser type microphone responds twice as well to high frequencies as to low frequencies.

(4) Lenz’s law states that an induced current produced by relative motion between magnetic fields is such as to oppose the motion.

(5) Ohm’s law states that the sum of all currents flowing toward a point of junction of multiple electrical conductors is zero.

(6) The mutual conductance of a vacuum tube gives a measure of change in plate current for unit change in the grid voltage.

(7) If the effect of the direct current in the primary of an audio frequency transformer is balanced out, the low frequencies will be amplified more than when this current is effective.

(8) The ohms-per-volt of a voltage divider determines the current which that instrument will take at full deflection.

(9) The object of the air gap in transformer and choke coil is to prevent magnetic saturation by the direct current which flows through the winding.

(10) The advantage of using core materials of high permeability is that a smaller quantity of it may be used in a core for a given purpose.
A BROADCAST wave is a radio frequency wave because it is an agitation in the ether at super-audible rapidity, say, at more than 300,000 times a second. The emission of the wave by the broadcasting station is called radiation. But radiation may carry no intelligence. It may be a radio frequency of a form varying only at a given number of cycles a second, and unaffected by anything that would even slightly change that frequency. If so it is called an unmodulated wave. But if varying intensities of electrical impulses are mixed with the carrier, thus slightly but continuously changing the frequency in a manner corresponding to frequencies of the new ingredient, then it is a modulated carrier. In broadcast reception we are interested in modulated continuous waves.

Broadcast waves are alternating current and alternating voltage. The purpose of a receiving aerial is to intercept these waves. The aerial is mostly a capacity adjunct, with the ground as the other plate of the condenser. The aerial is a by-pass for all waves ever radiated, but broadcast receivers are only sensitive enough to pick up signals at about the time of their transmission. A wave, once radiated, never stops going, but it almost instantly becomes diffuse. Hence we have no instruments with which to intercept or measure it, but we assume it to be as imperishable as matter, and to continue on its way at 186,000 miles a second.

The object of the tuner is to enable the reception of a desired frequency. Therefore the tuner is a radio frequency discriminator, enabling us to select the desired frequency and reject the undesired frequencies. Hence the term selectivity.

The radio waves that use your antenna-ground system as their playground have a coil of wire connected in parallel, one end to aerial, the other to ground. Physical connection to earth is not essential. Even the roof of a building is approximately at ground potential, especially if physically connected to ground by metallic conduction, as by a standpipe. The batteries are at ground potential without necessarily being connected to a cold water pipe or radiator. So is a power transformer. The electrical line is grounded on one side, even if AC. So there are antenna and ground at all hazards.

Coil's Field Without Limit

This coil of wire, called the antenna winding, offers some odd obstruction to the radio waves, although it receives all waves, a certain band of frequencies better than others bands. The opposition is not the same as that of a resistor to direct current. It is complex, because the wire has a phenomenal quality called inductance, a property that causes the coil to behave like a magnet when current is passed through it. If the current were direct and steady, the manifestation of magnetism would be simple. But the wave is alternating, and the alternations are duplicated in this magnetic field which is that restricted area in which the magnetic lines are substantial. The field is actually without limit, and is possibly eternal, but it quickly passes beyond our scope of measurement.

The magnetism arising from the passage of current through a coil or over the surface of the coil is called electro-magnetism, and the coil as an electro-magnet is distinguished from a permanent magnet, such as a horseshoe magnet, and from other forms of magnets.

A field around the coil is an agitation in the ether, too, lines of force emanating from the coil, and concentric circles, so that every line or force sent out returns again. So all the waves intercepted by the antenna and set flowing in the antenna coil duplicate in the field of this small coil their behavior elsewhere. The field about the coil rises and falls twice for each cycle of the frequency of each wave, and as there are countless waves in the circuit, all rising and collapsing at different times, we

Right or Wrong

(1) Right. Light energy releases the electrons from the cathode just as heat energy releases them from the filament or cathode in an ordinary vacuum tube.

(2) Right. This is often the only means of lowering the noise-to-signal ratio that can be applied to a radio receiver.

(3) Right. High frequency sounds are reflected from the diaphragm and that doubles the pressure. At low frequencies there is no reflection. The change from no reflection to full reflection is gradual as the frequency of the sound changes.

(4) Right. If a bar magnet, for example, is thrust into a coil in a closed circuit, a current will flow in the coil, and the direction of the current is such as to oppose the motion of the magnet. This is general and is the basis of all electric machines and transformers.

(5) Wrong. This is Kirchhoff's law. It states simply that no electricity can accumulate at a point. Current flowing away from the point are considered negative. The law can be stated also that the sum of all the currents flowing to the point is equal to the sum of all the currents flowing away.

(6) Right. For example, if the mutual conductance of a
Entire Performance

Turkey

reach an infinite number at once. So from this amazing assortment of waves, however, only about a few hundred have any recognizable field strength, the tuner must make its selection at our bidding.

1. When it is desired to function easily, we have another coil in very close proximity to the antenna coil. The first coil we call the primary. The other coil we call the secondary. It has a larger number of turns of wire than the primary, and the number of turns is so proportioned that if we connect an adjustable tuning condenser across the secondary we are able to tune in from 200 to 600 meters by turning the condenser. We can tune in that way because the proximity of the secondary to the primary enables the secondary to acquire a copy field of its own, for the voltage and current of all waves in the primary are duplicated in the secondary, because of electromagnetic coupling, called mutual induction.

How Tuning Is Effective

By making the condenser variable, we have a storage tank that takes in and discharges electricity at assignable periods depending on the capacity setting to which it is turned, when the condenser is connected across the coil. The capacity receives its charge from the coil connected to it, and the amount of capacity determines the rate of charge and discharge. When that rate is equal to a certain frequency the circuit is resonant to that frequency. A resonant circuit offers infinite impedance to the tuned frequency, and the higher the impedance the greater the voltage across it, so the favored frequency passes into the first vacuum tube in Fig. 1.

The radio frequency fluctuations or alternations are in the grid-to-filament circuit of the tube at a resonant frequency now. The changes in grid voltage, still maintained at the tuned radio frequency, which may be from 1,500,000 cycles down to 350,000 cycles per second, cause corresponding fluctuations or alternations in the plate circuit of the tube, but on a magnified scale, because the instrument has a high input. This plate voltage is present because of plate connection to the B battery or B eliminator, which makes the plate positive in respect to grid and filament.

Plate Current Follows Resonant Frequency

Since the plate and the grid are coupled inside the tube, the electrons flowing from filament to plate and the plate current flowing from plate to filament even against the electrons, the plate current rises and falls at the resonant frequency, for again current is flowing in a conductor, consisting largely of capacity and inductance, and the plate current, direct at all times, is made to change in intensity corresponding to the resonant frequency.

If that frequency is 1,000,000 cycles per second (300 meters), then the plate current changes 2,000,000 times a second. It starts at zero, rises to maximum amplitude, falls to zero, this for the positive alternation, then drops to maximum at the negative alternation and rises to zero. Each half-wave is called an alternation, and two succeeding alternations constitute a cycle. So the plate current changes from zero to maximum twice each cycle, once in performing the positive alternation, again in performing the negative alternation. The plate current does that; although direct reading meters are not available to disclose this to the eye. The meters used in plate circuits are millimeters for direct current reading, and these read the peak current.

Carrier Wave Is Discarded

A corresponding input is made to the detector as was made to the first tube. But the circuit here is different. We want to hear the speech and music. The frequencies we have been dealing with are above audibility. They are radio frequencies with a mixture introduced in them, by virtue of sounds made before a microphone, sounds converted into electrical impulses corresponding to the frequency and intensity of the original sound waves, and which pulses were mixed with the carrier, so that they altered the fringe of the carrier to the extent of this modulation.

We want only the modulation henceforth. We want to discard the carrier now. This we do by unmixing the two mixed parts, forming the tube circuit for detection, which is the opposite of what we have been dealing with all along.

What have we now? A steady, unvarying current, or a fluctuating current? The rectified component is a fluctuating signal current. It doesn't fluctuate the same way that radio frequency does, however. Most obvious is the fact it is slower, much slower, for it is audible. We know it can't exceed 10,000 cycles a second. We adults scarcely can hear frequencies higher than that. It is not an alternating current, however, for it does not reverse its polarity. It is an unsteady or changing direct current, always flowing in the same direction. It is called a pulsating direct current. It falls to zero and rises to maximum positive, but it never goes negative.

Audio Transformer Passes DC?

Now, it is direct current. And first thing we do is to put an audio transformer in the circuit, in the primary connected to B. This detector and to the plate of the detector are well known that a transformer will not pass direct current. How is it that the signal goes through, even being stepped up by the transformer and then to the next tube, the process being repeated until the final or power tube is reached? Have audio transformers started passing direct current recently?

Since the detector plate current, although direct current, is pulsating, and since the primary of the audio transformer is a coil of wire, and possesses inductance, or the property of being an electro-magnet when current is passed through it, the pulsations in the plate current, due to the reconverted speech and music, set up a varying magnetic field, and the same phenomenon of magnified duplication by mutual inductive coupling is repeated at audio frequencies, but on a reduced scale at the transformer. The lines of force, or electrons in transit, rise from zero to maximum height, return to zero, and—do they swing negative? They do.

Wrong?

(7) Wrong. The direct current reduces the effective inductance and therefore it reduces the amplification. This effect is greater the lower the frequency.

(8) True. That is true regardless of the range of the volt-meter. If the instrument has 1000 ohms per volt it takes one milliampercere at full scale. If it has 200 ohms per volt, it takes five milliamperes. If it has 50 ohms per volt, it takes 200 milliamperes.

(9) True. The air gap increases a high reluctance in the magnetic circuit and prevents a high flux.

(10) Wrong. That is an error which many designers have committed. The reverse is generally true. More of the material should be used because it has a higher permeability. The advantage is that a given inductance can be obtained with fewer turns. If the permeability is high there will also be less iron loss in the transformer.
WHAT is the simplest B supply, using full-wave rectification? What would the output be? Several notations are given—J. M. P.

See Fig. 766. The power transformer has two windings. The one on top in the diagram is 5 volts for the filament of a 250 tube. If this winding is centered-tap, take the positive lead from the center tap to the grid of the tube. If you decide to use either side of the filament for positive, the difference is immaterial. The high voltage winding will largely govern the output voltage. The other important voltage is the total of the filament voltage, with the minus voltage having the less the voltage. If the high voltage winding is 600 volts across extreme terminals, with center tap, use this tap as negative and connect the extreme terminals to the rectifier plates. Thus you will get about 300 volts up to 100 ma. You should not draw more than 500 ma. from this tube anyway. The voltage divider may be 10,000 ohms, with the plates of the transformer 100 ohms. The current through this resistance alone, not counting current drawn by receiver tubes, is only 3 ma. This is called the bleeder current. Each tap on the resistor should be bypassed with 2 mfd, preferably 4 mfd, except the tap, 2, if that is used for connecting to A minus to make 1 the bias for the last audio tube. Then C7 is 4 mfd. C1 is 2 mfd, C2 and C3 are 4 mfd each. These three should be of the 600-volt AC working voltage rating.

DESIRE to build a B supply of special pattern, so that the AC cable will plug into the wall, as usual, at one end, and the other end will plug into the convenience outlet in the B supply, to serve the filament transformer and the power transformer. Is this all right?—A. B.

If you plug into the wall outlet you might easily leave the male plug exposed at the other end. Thus a connection between the exposed plug’s prongs would short the 110-volt AC line. Your method is a violation of the Underwriters’ specifications. You can build a male plug protruding from the B supply, and have a female plug to feed from the AC cable, but the standard method of permanently connecting the AC cable at the power supply, and using a male plug at the other end of the cable for connection to the wall outlet, is preferable.

HOW can the voltage of an A eliminator be controlled? I built an A supply, to work from direct current. The input is 110 volts DC. The tube filaments of the receiver draw 2 amperes. But if different filament voltage readings on a good voltmeter. Especially does the reading go off when I remove a tube. What can be done to correct this?—C. F. Z.

The supply of design in a DC eliminator has not reached the same state as in AC, probably because the market is not large enough to warrant the large expense of research work. Your supply is one where the voltage at the filaments depends on the current flowing through a limiting resistor. Evidently from your letter you get correct reading of voltage, that is, 5 volts for each of eight 25 amper tubes, when the 2 amperers are flowing. But if you put in a tube assumed to draw 25 amper, but actually drawing 5 amper, or you remove one tube, you change the voltage, decreasing it one-eighth in one instance, increasing it one-eighth in the other. Hence you read 5½ or 4½. Under other conditions the change might be greater. You should not remove any tube from a set served by a DC A eliminator when the power is on, for it is well to remove the power till all tubes are in circuit. A double circuit breaker would help cure the trouble, or a single circuit breaker at least would prevent application of a dangerously high filament voltage. This single relay would be in the circuit where all filament current flows and would shut off the power before tubes could be injured. Also, it may be advisable to have both sides of the line switched, so that you have to work with two tubes, or one double pole double throw switch amounts to the same thing, to turn the power on and off. Then no shorts can occur due to accidental grounding of an exposed side of the 110-volt line through the A supply.

I AM using an AC receiver, with 226 tubes as radio amplifiers and first audio. I wonder if I have biased them correctly? The current flowing through the three different biasing resistors seems to be the same, as measured by a good milliammeter, whether I connect the meter in the first or second radio stage. I simply open the resistor and insert the meter to complete the connection. This is the correct way. I get a reading of 15.2 milliamperes for the first and second grid and radio stages, and the first audio stage, so these tubes, adding up the currents, must be drawing 45 ma, which seems astonishing. I forgot to mention that each stage has a separate resistor for biasing. The first is 100 ohms, the second 200 ohms, the third 400 ohms. As I figured the progressive stages would require greater bias.——J. H. C.

You are heating the filaments of the three 226 tubes from a single winding of the filament transformer or power transformer. Therefore these filaments are in parallel, just as are the filaments of three battery type tubes when connected thus in the A battery. Hence the biasing resistors are in parallel, also. Instead of having the separate bias for all three stages, and the resistance is equal to the reciprocal of the sum of the resistors, which is 1 divided by the sum. Hence the two 100-ohm units and all the resistors save the 100-ohm one. Leave grid returns at negative of the B supply, as at present. Since the filaments and biasing resistors are in parallel, the total plate currents of the three tubes united in the parallel circuit consisting of filaments, biasing resistance of 57 1/7 ohms, and transformer secondary. You must have connected the meter in the wrong place.

SOME audio amplifier designs that I have seen lately call for a large output tube, such as a 227 or perhaps a 224. This strikes me as strange, since the negative bias recommended for these tubes is the 227 at a plate voltage of 45 volts, 83 volts. Particularly am I puzzled because the 224 does not have a high negative bias, but only about 1 to 1.5 volts, even at 180 volts applied to the plate. How can distortion be avoided, if the preceding audio stage tubes do not have such bias for the last stage takes such a very large bias? The grid should swing positive, should it not, and distortion result?—A. T. C.

The bias on the 220 is 83 volts negative and 9 volts, required for that plate voltage. Is this enough? The mu of the 223 is 5 and the step-up ratio of the transformer is 3, so the bias on the 227 would not have to exceed 83 divided by 27, or about 3.5 volts. To take care of any possible difference due to computation of the room temperature, plus the plate voltage swing as distinguished from the DC voltage, multiply by 1.41 to establish a safety factor. That gives 4.935 volts. So 5 volts practical use would be sufficient. Now consider the 224 tube. Suppose the plate voltage is 180, as recommended, and the bias 1.5 volts. The coupling device, let us suppose, is a resistance stage, for that does not increase the volume, as a coupling function, but merely utilizes the amplification stage. The factor of the 224 under operating conditions may be assumed to be 100. Let that be considered optimistic, let us say the factor is 60. Then the negative bias should have to be in excess of 83/60, or 1.39 volts. Multiply by 1.41 as a safety factor and you get 1.9599 volts. But as DC voltages are not dissipated, the negative bias required by 1.39 need not be taken, or, if you choose to take it, you can operate the tube at 2 volts negative bias. In audio amplification bias, a little less than the usual recommendations for the 224, as these recommendations do not in general apply to audio circuits. If you will calculate the voltage drop in biasing resistors, by multiplying the biasing
resistor’s resistance by the current, you will probably find that
the circuits provided ample bias for the tube preceding the
final stage, even if the power was a 250, or two 250s in
push-pull.

S THERE any general criterion of quality? When one says
a receiver has fine tone quality, how can one assign definite
values when a positively definite values that can be
assigned instead of the general descriptive phrase that has come
to be meaningless?—A. K.

There is no general criterion, as the method of determination
has not been agreed upon. What method is used will determine
to some extent what the result will look like on a curve
or other graph. The test at all hazards is bound to be a rather
difficult task, the average experimentor’s ability to apply.
A standard input might be provided, with modulation,
and the result measured as to qualitative response at various
assorted audio frequencies, and a general qualitative record
made by an oscillograph test. The nature of the reproducing device,
if any is used, would have to be stated explicitly. The Institute
of Radio Engineers is in the process of putting together standards for
this type of testing. Whether results obtained by public ears
as compared with private meters will coincide is hard to say,
since appreciation of tone quality seems to be a state of edu-
cated existence not possessed by all, or so many badly distort-
ing receivers would not grace so many homes.

S THERE any dispute as to who invented the vacuum tube?
I understand that Fleming, the Englishman, gives Dr. De-
Forest no credit at all, and I never read or hear about Dr.
DeForest giving much credit to Fleming, either. What did
Edison have to do with it, if anything?—C. J.
The question as to who invented the vacuum tube is like the
question as to who invented radio. No one person did. Each
discovery has improved and perfected the ability to circulate
or disperse a positive charge of electricity. Fleming put the
cell telephone, for which we now call the plate) was placed inside an evacuated bulb in which a
filament was burning, that current would flow in this extra
circuit. The tube body was made of positive voltages
obtained in his test from the positive side of the filament. He
found that when this extra body was made negative that no
current flowed. Years later others explained the reason for
this. With the theory of electrons had become fairly well es-
tablished, Fleming constructed an evacuated glass envelope
containing two elements, a plate and a filament, then passed
the filament through the tube body, and which is now known as the Edison effect. Dr. DeForest’s great contribution,
and it was really a great one, was the third element or grid.
The grid rode between the filament and the plate, to control
the flow of electrons. Fleming’s valve was a rectifier only.
DeForest made amplification possible by the use of a tube.
DeForest’s tube could be made to detect and also to oscillate,
and the oscillation, enabling agitation of the ether by radio waves.
It made it possible to send out modulated radio frequency waves,
without which we could have no broadcasting. From these facts
you may decide for yourself who invented the thermionic valve
or radio vacuum tube.

I N building a resistance-coupled amplifier, need I put a separate
condenser at each stage from A—to B+; where the same
B+ lead is used for all tubes in the amplifier, including
detector?
No. These condensers would be in parallel anyway. Use a large
capacity in single construction, as C2 in Fig. 767. Use 8 mfd. or
more. An electrolytic condenser of still larger capacity is suitable.
The single condenser is more economical than a group of smaller
capacities reaching the same total. You may use three resistance
coupled stages instead of the two shown.

I N building an AC receiver, using screen grid tubes, type 224,
a 227 as detector and as first audio, and 245s in push-pull as
the last audio stage, I find that I do not get the correct
voltages on the filaments. Do you think there is something
the matter with the tubes? I am using a power transformer that
has a 250-volt center-tapped secondary, and three filament wind-
lings : 2.5 volts for the push-pull stage, 2.5 volts for the heater
type tubes and 5 volts for the filament of the 250 rectifier. It is
a manufacturers’ model that I picked up at a price on radio
stall sales advertisements.
There is nothing the matter with the tubes, from your state-
ment, but instead you are overworking the power transformer,
and the capacity of the three filament type tubes particularly.
Check up carefully and determine whether you are getting the
right voltage, 2.5 volts, on the 245s, for the chances are that
such deals also check up on the 224s and the 227. These
supposedly are connected to one winding, and note whether
these tubes alone show too low a reading. Feel the trans-
former after it has been operating for an hour, to see how hot
it warms. It may even be hot if you are overloading it ex-
cessively. Power transformers are designed to carry a certain
load, and although a 10 per cent overload is not serious, a 20
or 30 per cent, or greater overload certainly is. If you will
notice where you get the lower reading, and leave the meter
in circuit when you take out a heater tube in the same trans-

FIG. 767
A SINGLE CONDENSER, C2, OF SUITABLY LARGE CAPACITY, FROM A TO MAXIMUM B PLUS, IS AS EF-
FECTIVE AS A GROUP OF SMALLER CONDENSERS OF
EQUAL TOTAL CAPACITY, AND COSTS LESS.

former log, probably you will read a higher voltage with the
tube out. If so you have doubly verified the fact that you are
overloading the transformer. There are few transformers on
the market that will stand even 8 amperes on the 2.5 volt wind-
ing intended for heater tubes, so be sure to get a transformer
that is rated by a reputable concern to stand the drain you in-
tend to put on it,—1.75 amperes for each 227 or 224 tube at 2.5
heater volts. Five such tubes would call for a winding rated
at 8 amperes at least, preferably 9 amperes.

S there any method of tuning that will increase the frequency
range (not the distance range necessarily), without plug-in
capacitors or alteration of capacity ratios?—P. M. B.
Yes. A coil may be constructed with fixed winding, a rota-
table winding connected in series with the rotatable coil actuated
by the same mechanism that turns a variable condenser that
is connected electrically across the total winding. A conven-
tional primary may be introduced for coupling. Thus the
turning of the condenser gives the usual capacity variation,
while the rotating coil, with its shaft connected physically to
the condenser shaft, increases the fixed inductance at series-
positioning position, and decreases the total inductance at series-opposing position. The variation is carried on steadily and automatically and the frequency range may
be determined by the inductive and capacitive constants. This system was invented by Her-
man Bernard and after long experimentation has been reduced to
practice. Circuits embodying this method will not be ready until
August or September.

Join
Radio World’s

UNIVERSITY CLUB

And Get Free Question and Answer Service for the Coming
52 Weeks. This Service for University Subscribers Only
Subscribe for RADIO WORLD for one year (52 numbers).
Use the coupon below. Your name will be entered on our sub-
scription and University Club lists by special number. When
sending questions, put this number on the outside of the for-
warding envelope (not the enclosed return envelope) and also
put it at the head of your queries. If already a subscriber, send
$6 for renewal from close of present subscription and
your name will be entered in Radio University.

NO OTHER PREMIUM GIVEN WITH THIS OFFER

[In sending in your queries to the University Department please
remember to number them. Write on one side of sheet only.
Always give your University Club Number.]

RADIO WORLD, 145 West 45th Street, New York City.
Enclosed find $6.00 for RADIO WORLD for one year (52
and also enter my name on the list of members of RADIO
WORLD’S UNIVERSITY CLUB, which gives me free answers
to radio queries for 52 ensuing weeks, and send me my number
indicating membership.

Name ____________________________
Street ____________________________
City and State ____________________________
If renewing subscription, put cross here. ☐
The Thrill Box
Tunes from 15 to 550 Meters and Gets DX

Front View of the National Thrill Box

[Part I of this article was published last week, issue of June 29th. Part II, the conclusion, follows.—Editor.]

Let us look at the circuit diagram of this short wave receiver called the Thrill Box, to discover how sensitivity and selectivity have been obtained.

In the antenna circuit is a choke coil L1, so designed as to offer a high impedance to any radio frequency signal in the wide band the circuit is designed to cover, and that is from about 15 meters to 550 meters, thus including the broadcast band.

The signal voltage developed across the coil L1 is impressed on the control grid of a 222 type screen grid tube. In the plate circuit of this tube is a coil system, L2, L3, L4, designed so as to make the screen grid tube work efficiently. This three-circuit tuner is of the plug-in type, and there is a set of six of these coils available for covering the entire band mentioned above.

Note the peculiar arrangement of the tuning condenser. It is a three-in-one affair. The object of this is to extend the range into the broadcast band when using the largest tuning coil in the set. The variable section C1 of this condenser is in two parts, one of eight plates and the other of 18 plates. The smaller section alone is used for tuning in the short waves. C2 is a fixed condenser permanently connected across the large portion of C1. A tiny switch Sw2 is provided for cutting in or out the larger section of the condenser, and this switch is easily accessible.

The tickler L4 is fixed in position on the three circuit tuners, and the amount of regeneration is controlled with an adjustable resistance R3 connected in parallel with it. This operates both by shifting the feedback around the coil and by introducing damping into the tuned circuit. It is of a type which operates very smoothly so that there is no difficulty in controlling the regeneration even when the circuit is on the verge of oscillation.

A .001 mfd condenser C6 is connected across the input to the audio amplifier to provide the necessary low impedance at radio frequencies.

Returning to the screen grid tube, we note a resistance R1 in the negative leg of the filament circuit. This has a value of 15 ohms and provides a bias of nearly 2 volts for the control grid. We also note two .3 mfd condensers C4 and C5 on the output side of the tube. These serve to maintain the screen and plate voltages constant with respect to radio frequency fluctuations and to minimize feedback. Large values are used to make them effective.

The detector is a 200A type. This is used because it is an exceptionally sensitive detector when followed by a high impedance coupler. The grid leak resistance R4 is 6 megohms and the grid condenser is the usual .005 mfd.

There is a common ballast resistor R2 of 1 ohm serving all the tubes in the set, placed in the negative lead to the battery. The drop in this resistor provides the bias on the grid of the first audio tube, which is a 240 high mu type tube.

The final tube is a 171A power tube, provided with 180 volts on the plate and a total grid bias of 46 volts. A 45-volt C battery is used and the extra volt comes from the drop in R2.

The audio coupler is a special development and is known as the National SW-4 Duo-Coupler. It contains two separate couplers in one case, each being of the resistor and auto-transformer type. The two couplers are not identical, but each is designed to work most efficiently with the tube which precedes. That is, the first section works best when preceded by a 200A detector and the second when preceded by a high mu tube.

A pilot light associated with the dial is connected across the filament circuit on the receiver side of switch Sw1. This is not shown in the drawing, Fig. 1.

It will be observed that the loudspeaker is connected directly in the plate circuit of the power tube. This suggests that the speaker used should be of a type which has a transformer built in such as a dynamic. Of course any speaker can be used if a suitable filter be placed between it and the set. Even if no filter is used there is little harm done to the speaker because the grid bias is little higher than the usual. The circuit was operated for several hours with a cone speaker directly in the plate circuit without any ill effects.
If the greatest sensitivity of which this short wave receiver is capable is to be realized, the various voltages must be adjusted carefully. If a B supply unit is used it is not safe to rely on the marked voltages on that device, for they may be off more than 50 percent, due to the current being other than the anticipated value. And if the screen and plate voltages are as much off, the receiver will not bring in the stations it would if all the voltages were as specified. This matter of voltage adjustment cannot be emphasized too strongly.

Best results will be obtained if batteries are used for supplying the screen and plate voltages, because the circuit has been designed for voltages which batteries readily give, and because the internal resistance of batteries is low as compared with the internal resistance of B supply units. If a B supply unit having very good regulation is used and if the voltages initially are adjusted to those specified, the results will be practically the same as if fresh batteries are used, and better than if old batteries are employed.

Cures for Excess Oscillation

If the circuit breaks into oscillation abruptly before the volume is loud when tuning in on a moderately distant station, the voltage supply is undoubtedly the cause. Likewise if the circuit motorboats the B supply is a fault. Motorboating usually starts coincidently with oscillation in the RF circuit, but it may occur whether or not the RF circuit is oscillating. If this trouble should occur, don't blame the receiver, for it is not at fault. The plate voltage supply is unsuitable for the receiver.

B supplies containing electrolytic condensers of large capacity, such as the National Velvet B, usually give no trouble. Other units not containing such large filter capacities often are very troublesome. In most instances motorboating can be stopped in any receiver by adding more capacity to the filter. Not all the taps need be by-passed with additional condensers, but just where a condenser is most effective depends on the receiver as well as on the B supply. With a certain B supply of poor regulation the short wave receiver motorboated whenever the receiver broke into RF oscillation. This was remedied by connecting a 6 mfd. condenser across the 135-volt tap.

It should be remembered that motorboating at a low frequency in any receiver is an indication that the receiver is capable of good quality, especially on the low notes, and that it also indicates the B supply unit has poor regulation and is inadequately by-passed.

The wiring of the Thrill Box is illustrated on this page. A life-size blueprint, showing this wiring, is supplied with the parts. The Thrill Box also is obtainable in built-up form, and with such a model goes a sticker disclosing that that set brought in a foreign station. At present such models are tested out particularly for SSV, Chelmsford, England. The Abbott Laboratories, that do the wiring, affix the certificate of foreign reception.

List of Parts

- L1—One National No. 10 RF choke coil.
- C1, C2—One National tuning condenser consisting of two sections.
- C3—One .0025 mfd. grid condenser.
- C4, C5—Two .5 mfd. condensers.
- C6—One .001 mfd. condenser.
- R1—One 15 ohm ballast resistor.
- R2—One 1-ohm ballast.
- R3—One variable high resistance.
- R4—One 6-megohm Lynch grid leak with mounting.
- SW1—One filament switch.
- SW2—An integral part of C1, C2.
- TL, T2—One National SW-4 Tripler Coupler.
- One specially designed National steel cabinet.
- Tubes—222, 200A, 240, and 171A.
- One cable for terminals.
- Three binding posts.
- One National flat type dial with pilot light.
Washington.

The establishment of a station owned and operated by the Federal government is under consideration. The operation of stations by cities has given rise to the suggestion that the United States should have an official station. When the Senate reconvenes on August 19th Senator Nye (Rep.), North Dakota, will ask the Interstate Commerce Committee to consider a bill for such creation.

The station would be erected in Washington and would be under the direction of the Secretary of Commerce. It would be available for use in the dissemination of information by governmental agencies and, during political campaigns, would be open to speakers for any political party without charge.

Wants to Reach People

Senator Nye explained that it is his idea that the Government should "give away the air" completely, as it has done in the case of radio channels of communication and transportation. There should be some agency left through which the Government may reach the people without going through a privately controlled, and possibly monopolistically controlled, channel, he said. While the bill provides for the establishment of only one broadcasting station to begin with it also gives the Secretary of Commerce the authority to establish additional stations. Authorization is given also for the Secretary to make arrangements for channel broadcasting by linking up the Government station with privately owned stations.

Not to Buck Private Concerns

It is understood the Senator said, to set up the Government as a commercial competitor of the private stations. There would be no sale of time for advertising or other purposes over the Government station, he said; it would be merely an agency for the dissemination of information.

N. Y. and Chicago

Public Shows Next

The Radio World's Fair at Madison Square Garden, New York City, and the Chicago Radio Show are the next two national radio events. Unlike the recent Radio Manufacturers Association trade show, these radio expositions will be open to the public.

All exhibition space in Madison Square Garden, New York City, and the Coliseum, Chicago, are being taken by manufacturers of radio sets and apparatus. The New York exposition will be held September 24th to 28th, inclusive, and the Chicago show October 21st to 27th, inclusive.

A THOUGHT FOR THE WEEK

The theme song has become so important a part of radio entertainment and is growing with such tremendous a sales among sheet music buyers that music publishers are wondering how long the happy days will last. At any rate, they are grateful at last to radio for helping the folks to find and sound to give real life to their hitherto moribund shipping departments.

Station Licenses Are Extended

Washington.

Licenses of broadcasting and point-to-point and mobile radio stations were extended by the Federal Radio Commission.

The licenses of broadcasting stations, expiring on July 31, 1929, were extended until October 31, 1929.

Establishment of a radiophone service between land and the United States Liner "Leviathan," by which persons anywhere in the United States may communicate directly with passengers while the vessel is on the high seas or in dock, has been authorized by the Federal Radio Commission.

The Commission has allocated to the American Telephone and Telegraph Company, with its own service, four high frequency channels for its land station, located at Deal, N. J., and three frequencies for the "Leviathan." These channels will be employed in the "two-way" telephone communication system to be operated by radio.

Establishment of a radiophone service between land and the United States Liner "Leviathan," by which persons anywhere in the United States may communicate directly with passengers while the vessel is on the high seas or in dock, has been authorized by the Federal Radio Commission.

The Commission has allocated to the American Telephone and Telegraph Company, with its own service, four high frequency channels for its land station, located at Deal, N. J., and three frequencies for the "Leviathan." These channels will be employed in the "two-way" telephone communication system to be operated by radio.

N. Y. and Chicago

Public Shows Next

The Radio World's Fair at Madison Square Garden, New York City, and the Chicago Radio Show are the next two national radio events. Unlike the recent Radio Manufacturers Association trade show, these radio expositions will be open to the public.

All exhibition space in Madison Square Garden, New York City, and the Coliseum, Chicago, are being taken by manufacturers of radio sets and apparatus. The New York exposition will be held September 24th to 28th, inclusive, and the Chicago show October 21st to 27th, inclusive.

A THOUGHT FOR THE WEEK

The theme song has become so important a part of radio entertainment and is growing with such tremendous a sales among sheet music buyers that music publishers are wondering how long the happy days will last. At any rate, they are grateful at last to radio for helping the folks to find and sound to give real life to their hitherto moribund shipping departments.

Plan Is Afoot for a Federal Station Group

Washington.

Thirty new regulations governing procedure of broadcasting stations, and relating to the authority to subpoena witnesses for attendance at hearings were adopted by the Federal Radio Commission.

The first specifies that broadcasting stations must give absolute priority to radio communication of news and events, and according to the time that the news and events were received by the station.

which persons anywhere...
WCFL INFERIOR, UNRULY, BOARD SAYS IN COURT

Washington

Reasons for its denial of the application for full time, a cleared channel and 50,000 watts power, WCFL, operated by the Chicago Federation of Labor, were filed with the Federal Radio Commission by the District of Columbia by the Federal Radio Commission.

The statement, drafted by Paul D. P. Spearman, of Commission counsel was filed in reply to the Federation's petition appealing from the Commission's decision denying the request. The station sought the 770-kilocycle channel, now assigned to WSBM, Chicago, and KFAB, Lincoln, Neb., as the first step in a national chain of broadcasting stations interconnected by short waves for rebroadcasting.

Consequences Listened

The Commission's statement set forth that the granting of the application would result in an unwarranted discrimination against the rights of one State and in favor of another, which would result in an inequitable distribution of the transmitting facilities between the States within the Fourth Zone, in violation of the decision and amendment to the radio act of 1927; that stations WSBM and KFAB were and are rendering a greater and higher class of service than the station WCFL; that Station WCFL has broadcast programs which are against public interest; that Station WCFL has operated in direct conflict and in disregard of the reasonable regulations of this Commission; that Station WCFL has used only a very small portion of time for rebroadcasting such programs.

Patent Medicine Ads

The Commission set forth that to accede to the WCFL request would mean closing KLAB, Nebraska, which is indicated as a better type station than WCFL. The Board stated:

"This station has given as much or more, time to the advertising of medicine of questionable value than it has to the furthering of the interests of organized labor. This station broadcast sponsored programs and advertised the sale of securities, without announcing or divulging the sponsor of such programs in violation of Section 19 of the radio act of 1927."

HOOVER HEARS LABOR

Washington

President Hoover's influence to obtain an exclusive wavelength for WCFL, Chicago, was sought by William Green, presi- dent of the American Federation of Labor, and John H. Walker, president of the United Federation of Labor, who visited the White House.

Mr. Green said that the American Federation of Labor was interested in the matter because the Federation regards the Chicago station as the one labor station whose efforts in being made to obtain an exclusive wavelength. At present, he said, the Chicago station is obliged to divide time with a station at Seattle, Wash. The Chicago station may now use the wavelength each day until sundown, a time, Mr. Green said, when laboring men are at work.

TALKING GROUP BUYS INTEREST IN RADIO CHAIN

Half interest in the Columbia Broadcasting System has been purchased by Paramount-Famous-Lasky Corporation, according to a statement by W. S. Paley, president of the Columbia System commenting on the transaction he said:

"Developments in both the aural and visual entertainment fields not only scientifically but in production, distribution and merchandising problems, have been drawing a closer and closer parallel for past year or eighteen months until they have reached such mutuality as to be almost common ground. Scientists developments have led to the introduction of sound and vision into motion pictures and a reasonable prospect for vision into broad- casting."

"We hear a lot about television but not many know a great deal about it. One thing is certain, however, it is coming. Whether it be in two years or five, it is sure to come. And with this amalgamation of interest we are prepared for it. Columbia can handle Paramount for any new problems entailing actual station present- ations in full costume, to be broadcast, and Paramount know an outlet in presenting its television features to the public."

Programs Over Wire

Delight New Zealand

New Zealand promises to equip the entire country with installations for getting programs over telephone wires, Charles F. Kunkel, Assistant U. S. Trade Commissioner at Wellington, New Zealand, said, Department of Commerce. The said:

"The carrier system has been so well received by the public in New York, as has been installed so far that its extension to all suitable lines in the entire country is indicated by plans. Carrier equipment required for attachment is so simple that the creation of the line to be used as conditions vary infinitely. This will not only determine the adjustments necessary."

NEW RESISTANCE FOLDER

A new folder on resistance in radio, ranging from an adjustable grid-leak of 1/10 to 10 megohms to a super-power variable resistor of 250 watt rating, has just been issued by the Control Manufacturing Company, Inc., 291 North Sixth Street, Brooklyn, N. Y. A copy will be sent to any interested person upon request. Mention Radio World.

CORTLANDT PANEL ENLARGES

Cortlandt Panel Engraving Company, 165 Greenwich Street, New York City, has expanded again. This concern furnishes panels of all kinds and for all standard circuits. It has drills and engravers to order, any size or quantity. The new facilities also take care of the making of aluminum shields and cans of all kinds.

LERNER WITH LANDAY

Meyer Lerner is in charge of service and installation at Landay Brothers store on Cortlandt Street, N. Y. City. Harry H. Moore is store manager.
Power handling capacity. The 245 has a low filament voltage, 2.5 volts, at a relatively high current, 1.25 amperes. This eliminates the objectionable hum. The tube requires only 250 volts on the plate to be able to handle about as great undistorted power as the 210 does at 350 volts. A 210-245 output tube will handle, without overload, the largest input to a last stage as would be required in any home. It works well into a dynamic speaker, or filtering the output, into a magnetic speaker. In push-pull two 245s give superb tone at doubled power handling capability. Typically, the 245 requires 50 volts negative bias at 250 volts on the plate and draws 32 milliamperes under those conditions. The direct filament heating method is used. Type of socket, UX (four-prong).

There never was a power tube so excellently suited to home use—no that has been such large plate voltage now regarded as a luxury class. Use this power tube and know supreme performance.

245 AC-5G Tube, $3.00

AC5 Pair

Highly selective antenna coil for any circuit, and interstage coil, for AC circuits. Step-up ratio, 1:10. Tuned with .0005 grid model AC5, for .0005 mfd...$1.75

SQT5 $2.75

Tuner to work out of a screen grid tube. The large primary is fixed and is connected in the plate circuit of the screen grid tube. Tuned with .0005 mfd Model SQT5, for .0005 mfd...$3.00

DIAMOND Pair

AC5 $1.50

Highly selective antenna coil for any circuit, and interstage coil, for AC circuits. Step-up ratio, 1:10. Tuned with .0005 grid model AC5, for .0005 mfd...$1.75

SQT5 $2.75

Tuner to work out of a screen grid tube. The large primary is fixed and is connected in the plate circuit of the screen grid tube. Tuned with .0005 mfd Model SQT5, for .0005 mfd...$3.00

UNIVERSAL Pair

TP5 $3.00

Interstage coupler to work out of a screen grid tube, where the primary in the plate circuit is tuned, the secondary, in the next grid circuit, untuned. Tuned with .0005 Model TP5, for .0005 mfd...$1.75

RF5 $1.50

Excellently selective antenna coil for any circuit, and interstage coil for any battery operated receiver, excepting output of screen grid tube. Tuned with .0005 mfd Model RF5, for .0005 mfd...$1.78

Quick Action Classified Ads

Radio World's Speedy Medium for Enterprise and Sales

10 cents a word — 10 words minimum — Cash with Order
New Junior Model
POLO UNIT $4

The famous twin magnet principle for double sensitivity, large magnets for great flux, permanently adjusted armature, all are in the new junior model Polo Unit. Weight, 234 lbs. Stands 150 volts unfilled. Stands up to 250 push-pull filtered. Works any cut-out tube, power or otherwise. Supplied with 10-ft. cord. Order unit now. Five-day money-back guarantee.

Acoustical Engineering Associates
143 West 45th Street
New York City (Just East of Broadway)

HAVE AN EXPERT PUT YOUR SET IN SHAPE!
If your receiver or amplifier, no matter of what kind, is not giving proper results, send it to us, prepaid. We will test it FREE and let you know what's wrong, telling you cost of repairs. Our charges are very reasonable. Six years' experience. Loudspeakers and volume retained. Burn-out coils replaced. Jayxon Laboratories, 57 Day Street, New York City.

Twice as Much for Your Money!

Send $6.00 for one year's mail subscription for RADIO WORLD (52 numbers, one each week), and you will be given one full year's subscription for any one of the following six magazines:

Radio News (monthly)
Science and invention (monthly)
Radio, San Francisco (monthly)
Citizens Radio Call Book and Scientific Digest

Radio Engineering (monthly)
Youth's Companion (weekly)
Boys' Life (monthly)

SPECIAL TWO-FOR-PRICE-OF-ONE COUPON

RADIO WORLD, 145 West 45th Street, New York City (Just East of Broadway):
Enclosed please find $8.00, for which send me RADIO WORLD each week for one year, 52 numbers, and also send me, without extra cost, for one year ONE of the following magazines as indicated:

☐ RADIO NEWS
☐ SCIENCE AND INVENTION
☐ RADIO (San Francisco)
☐ RADIO ENGINEERING
☐ YOUTH'S COMPANION
☐ BOY'S LIFE
☐ CITIZENS RADIO CALL BOOK AND SCIENTIFIC DIGEST

(Put a cross in the proper space above. Fill out coupon and send $8.00. If you are a subscriber for RADIO WORLD, or for the other magazine you select, or both, check off squares below. If left.)

Present RADIO WORLD subscribers may always under this offer. If renewing, put a cross here ☑
If renewed for the other magazine you select, put a cross here also ☑

Name
Street Address
City, State

THIS OFFER EXPIRES AT NOON JULY 30TH, 1929

Did You See the First Issue of RADIO-CRAFT?

If you have perused the first issue of this new magazine, you will have noticed that the text is 100% radio and that its editorial contents are purely along constructional and experimental lines.

The magazine caters only to the custom set builder, the experimenter, the constructor, the radio "fan," the man whose hobby is Radio.

Don't miss the August issue, on the newsstands July 3rd. If you are at all interested in Radio, you will like this number even better.

If your dealer cannot supply you, let us have your subscription at once.

REGULAR SUBSCRIPTION RATES
$2.50 in U. S., 25c. a copy;
$3.00 in Canada and foreign.

Special Charter Subscription Price:
8 Issues for $1.00

TECHNI-CRAFT PUBLISHING CORPORATION,
588 Park Place,
New York, N. Y.

Enclosed find $1.00 for which enter my subscription to your monthly magazine, RADIO-CRAFT for 8 (eight) months. Please mail all copies to address below:

Name
Address
City and State
AERIAL TUNER
Improves Summer Reception

Remove aerial lead from set. Connect aerial instead to one of the binding posts of the Aerial Tuner. Connect the binding post of the Aerial Tuner to antenna post of your set. Then move the level of the Aerial Tuner until any weak station comes in loudest. The lever need not be moved for every different frequency tuned in. The Aerial Tuner acts as an antenna loading coil and puts the antenna's frequency at any frequency in the broadcast band that you desire to build up. It makes high wavelengths come in loud as low wavelengths. It helps separate stations and clears up reception. Makes great improvement in Summer reception. Price, $1.00.

High Resistance Meter
Same Meter Reads Both AC and DC
Accurate to 1 per cent.

The 0-600 volt AC and DC meter (Cat. No. 609), priced at $2.40, is a bare type and hangs $2.00. The full scale is 0-600 volts, and this same meter measures both AC and DC.

GUARANTY RADIO GOODS CO.
145 West 45th Street
New York City

(East of Broadway)

Horn Unit $2.25

This unit is pre-eminent for horn-type speakers, such as the exponential horns or other long time travel horns. The faintest word from a "whispering tenor" or the tumultuous shout of the crowd or highest crescendo of the band is brought out clearly, distinctly. Stands up to 450 volts without altering. Works right out of your set's power tube, requiring no extra voltage source. Standard size nozzle and cap are die-cast aluminum, one piece, with rolled platinum like finish. The casing is full nickel, of highest possible polish. Works great from AC set, battery set or any other set, push-pull or otherwise.

For Portable Use

This unit can be used in a portable without any horn attached and will give loud reproduction. Order Cat. 225, with 4½ ft. cord attached.

(Shipping weight, 2 lbs.) $2.25

Air-Column Horn
8-ft. tone travel molded wood horn (less unit No. 225) is obtainable already mounted in a buffet box. Outdoors overall dimensions of buffet box, 21½ high, 18” wide, 15” front to back. Shipping weight, 27 lbs. Order Cat. 506 @ $2.50. The 225 unit and 90° horn built into a ply-walnut table top, 23½ high, 26½” wide, 17½” front to back. Shipping weight, 59 lbs. Cat. No. 597 @ $20.00.

Appraiser-Engineering Associates, 70 W. 45th St., N. Y. City (Just E. of Broad.).

Please ship C. O. D.

Cat. No. 225 @ $2.25
Cat. No. 506 @ $2.50
Cat. No. 597 @ $20.00

Name

Address

City State

FIVE-DAY MONEY-BACK GUARANTEE

SUBSCRIBERS!

Look at the Expiration Date on Your

Wrapper

Please look at the subscription date stamped on your last wrapper, and if that date indicates that your subscription is about to expire, please send in remittance to cover your renewal. In this way you will get your copies without interruption and keep your file complete.

SUBSCRIPTION DEPARTMENT
RADIO WORLD
145 WEST 45TH ST., N. Y. CITY

MARVELOUS NEW pick up for phonograph.

Only twelve left, all pigeons. Money-back 10-day guarantee. Send $1.75 P. C. Cohen, Room 1214, at

143 W. 45 St., N. Y. C.
Get Better Tone
If you are using a resistor to obtain tone for the last audio stage (power tube) the tone quality and volume suffer badly unless the resistor is tapered by a 3-6 volt filter condenser. This filter condenser will give you tone quality you have been missing. The best size is 42 volts x 150,000 ohms, 3.0 volt, so the 3.0 volt RC is ample for all tubes.

Circuit Diagram of AC Screen Grid Push-Pull Diamond of the Air

RASCO HAS IT—PROMPT DELIVERY

Radio Specialties

Wholesale Prices

For Dealers, Agents and Set Builders

From many years in the Radio Specialty Business, we have learned how an accumulation of defects frequently run to pain and remain the goal of our customers. Radio Specialties endeavors to give you 100% quality workmanship and complete satisfaction in every detail. We thoroughly satisfy and sell at rock-bottom net prices. Our radio specialty is the latest invention of a completely assembled all-electric AG (Amber) at amazingly low prices, and other Radio Merchandise including such things as Pitman—Bier-Marquis—

ELECTRONIC BROADCASTING

RASCO IS OPEN 10 A.M. TO 5 P.M. CASH

The name RASCO has always been associated with first-class service and total satisfaction. We are open from 10 A.M. to 5 P.M. cash or on account.

Bakelite-Hard Rubber-Metal

Any Size or Quantity

Aluminum Cans, Shields, Etc.

Cortlandy Panel Engraving Co.

145 West 4th Street

New York City

5-DAY MONEY-BACK GUARANTY
New Style DeLuxe Leatherette Carrying Case FREE with each Jiffy Tester!

This combination of meters tests all standard tubes, including the new AC screen grid tubes and the new 245 tube, making thirteen tests in 4½ minutes! Instruction sheet gives these tests in detail.

A PORTABLE testing laboratory is yours when you possess a combination Jiffy Tester, for then you can measure the filament and plate voltages of all standard tubes, including AC tubes, and all standard battery-operated or AC screen grid tubes; also plate voltages up to 300 volts on a high resistance meter that is 99% accurate; also plate current.

The Jiffy Tester consists of a 0-20, 0-100 milliammeter, with change-over switch and a 0-10 volt AC and DC voltmeter (same meter reads both), with two sockets, one for 3-prong, the other for 4-prong tubes; a grid bias switch and two binding posts to which are attached the cords of the high resistance voltmeter; also built-in cable with 5-prong plug and 4-prong adapter, so that connections in a receiver are transferred to the Tester automatically. Not only can you test tubes, but also opens or shorts in a receiver, continuity, bias, oscillation, etc. The instruction sheet tells all about these tests.

In addition you can test screen grid tubes by connecting a special cable, with clip to control grid (cap of tube) and other end of special cable to the clip in the set that went to the cap before the tube was transferred to the tester.

THE new carrying case, which is furnished FREE with each order for a Combination Jiffy Tester, contains the entire outfit, including the three meters, cable and plug, and three adapters (one for 4-prong tubes, two for 109 tubes). This case is 10½x7½x3½" and has nickel corner pieces and protective snap-lock. The case is made of strong wood, with black leatherette overlay.

To operate, remove a tube from the receiver, place the cable plug in the vacant receiver socket, put the tube in the proper socket of the Tester, connect the high resistance meter to the two binding posts, and you’re all set to make the thirteen vital tests in 4½ minutes!

The Combination Jiffy Tester is just the thing for service men, custom set builders, experimenters, students, teachers and factories. Order "Jiffy 500." The price is only $14.50.

If a 0-600 AC and DC high resistance meter (99% accurate) is desired, so house electricity line voltage and power transformer voltages can be measured, as well as plate voltage, instead of the 0-500 DC voltmeter, order "Jiffy 600" at $15.50.

Guaranty Radio Goods Co., 145 W. 45 St., N. Y. City (Just East of Broadway).

- Please ship at once on 5-day money-back guaranty one "Jiffy 500," at $14.50, consisting of:
 1. One Two-in-One 0 to 10 voltmeter for AC and DC. Same meter reads both. Scale especially legible at 1½ to 7½ volts. This meter reads the AC and DC filament voltages.
 2. One DOUBLE reading DC milliammeter, 0 to 20 and 0 to 100 mill'amperes, with change-over switch. This reads plate current.
 3. One 0-500 volts high resistance voltmeter, 99% accurate; with tipped 37° cord to measure 8 volts.
 4. One 5-prong plug with 37° cord for AC detector tubes, etc., and one 4-prong adapter for other tubes.
 5. One grid switch to change bias.
 6. One 5-prong socket.
 7. One 4-prong socket.
 8. Two binding posts.
 9. One handsome moire metal case.
 10. One instruction sheet.
 11. One de luxe carrying case.
 12. One screen grid special cable.

□ If 0-300 DC high resistance 99% accurate voltmeter is preferred to 0-500, put check here. Price is same, $14.50.
□ Same as above, except substitute a 0-600 volt AC and DC high resistance 99% accurate voltmeter (same meter reads both) for the 0-500 DC meter. Price $15.50.

NAME

ADDRESS

CITY STATE

FIVE-DAY MONEY-BACK GUARANTY

The new de luxe leatherette carrying case is compact and handy. Size 10½" long, 7½" wide, 3½" deep.