CONTROL OF AMPLIFIER DAMPING FACTOR

RADIO & TELEVISION NEWS

World's Leading Electronics Magazine

IN THIS ISSUE

"AUDAR"

CONSTANT-VOLTAGE SOUND SYSTEMS

COLOR TV Brought Up to Date

HAM PHONE COMPRESSOR

PORTABLE TV PICTURE

ELECTRONIC IGNITION SYSTEM

AN "IMPROVED" SOUND SWITCH

SERVICING WITHOUT METERS

ALL-TRANSISTOR AUTOMOBILE RECEIVER

MULTIMETER IS USEFUL IN P. A. SERVICING (See Page 112)

JULY 1955
35 CENTS
In U. S. and Canada
from DELCO RADIO...

High-Quality
POWER TRANSFORMERS
for Car Radios

Developed by Delco Radio and General Motors electronics specialists, and built under a strict quality control, Delco Universal Vibrator transformers have the kind of built-in customer satisfaction that can do a lot for your business.

And there's a model to replace the vibrator transformer in just about every model of car radio.

Three—Model Nos. 6055, 6065 and 6067—are uncased and do not include a filter network. Three others—Model Nos. 6060, 6064 and 6066—are cased and do include an "A" line filter network consisting of an "A" choke and a .5 mfd. capacitor. All six models have long-enough leads for universal application, and cased models are supplied with three self-tapping screws and a drilling template for easy mounting.

Here are some more of the features that prove this is the power transformer line to fill your needs . . . one that's competitively priced all the way, quality-made through and through . . . the Delco line:

- Laminated core inserts stamped out of low-loss silicon steel and heat-treated so magnetic properties will not change
- Primary and secondary coils wound by skilled operators using special machines
- Hot asphalt compound poured into cased models to hold components in position, transfer heat and protect quality and performance.

Order these quality products of a volume electronics manufacturer through your UMS Electronics Parts Distributor today.

DELCO RADIO
DIVISION OF GENERAL MOTORS, KOKOMO, INDIANA

A GENERAL MOTORS PRODUCT - A UNITED MOTORS LINE
DISTRIBUTED BY ELECTRONICS DISTRIBUTORS EVERYWHERE
America's Fast Growing Industry Offers You Good Pay—Bright Future—Security

I TRAINED THESE MEN

"Started to repair sets six months after enrolling. Earned $12 to $15 a week in spare time."—Adam Kramnik, Jr., Sunnystown, Pennsylvania.

"Up to our necks in Radio-Television work. Few other NRI men work here. Am happy with my work."—Glen Peterson, Bradford, Ont., Canada.

"Am doing Radio and Television servicing full time. Now have my own shop. I owe my success to N.R.I."

"Am with WCOC. N.R.I. course can't be beat. No trouble passing first class Radio-license exam."
—Jesse W. Parker, Meridian, Miss.

"By the time I graduated I had paid for my course, a car and testing equipment. Can service toughest jobs."
—E. J. Streitenberger, New Boston, Ohio.

AVAILABLE TO VETERANS UNDER G.I. BILLS

You Learn by Practicing with Parts I Send

Nothing takes the place of PRACTICAL EXPERIENCE. That's why NRI training is based on LEARNING BY DOING. You use parts I furnish to build many circuits common to Radio and Television. As part of your Communications Course, you build many things, including low power transmitter shown at left. You put it "on the air," perform procedures required of broadcasting operators. With my Servicing Course you build modern Radio, etc. Use Multitester you build to make money fixing sets. Many students make $10, $15 a week extra fixing neighbors' sets in spare time while training.

The Tested Way To Better Pay!

Radio-TV Needs Men of Action—Mail Coupon

Act now to get more of the good things of life. Actual lesson proves my training is practical, thorough. 64-page book shows good job opportunities for you in many fields. Take NRI training for as little as $6 a month. Many graduates make more than total cost of training in two weeks. Mail coupon now. J. E. SMITH, President, National Radio Institute, Dept. 5GE, Washington 9, D. C. OUR 40TH YEAR.

Radio & Television News is published monthly by Ziff-Davis Publishing Company, William B. Ziff, Chairman of the Board (1948-1953), at 64 E. Lake St., Chicago 1, Ill. Entered as second-class matter July 21, 1948, at the Post Office, Chicago, Ill., under the act of March 3, 1879. Authorized Post-Office Department, Ottawa, Ontario, as second-class matter. Subscription Rates: Radio & Television News—one year U. S. and possessions, $4.00; Pan-American Union countries $4.50; all other foreign countries $5.00. Postmaster—Please return undelivered copies under form 3579 to 64 E. Lake St., Chicago 1, Ill.

July, 1955
CONTENTS

JULY, 1955

"Audor"..................Charles P. Cox, Jr. 31
1955 Emerson Test Points........Harold Bernstein 34
Constant-Voltage Sound Systems.....Abraham B. Cohen 36
Servicing Without Meters...........Bill Bouie 38
Test Instruments Need Calibration....Walter H. Buchbaum 40
Portable TV Picture................John T. Jans 42
Control of Amplifier Damping Factor...David Halter 43
Color TV Brought Up to Date.........Harry E. Thomas 46
Ham Phone Transformer..............Allan M. Ferres, ex-W2CST 48
All-Transistor Automobile Receiver...50
Transistor Dip Oscillator............Rufus P. Turner, K6AI 51
Flyback Transformers................Sid Levine 52
Selenium Voltage Doubler............Harold Reed 54
Combination V.H.F.-L.F. Final Amplifier...Jack Najork, W2NH 56
An "Improved" Sound Switch.........Louis E. Garner, Jr. 58
Radio-Controlled Traffic LightsNorman Sklarowitz 61
Electronic Ignition System...........Harry W. Lawson, Jr. 62
Certified Record Revue..............Bert Whyte 64
Mac's Service Shop..................John T. Frye 69
What Is Your "Fi-Q"?...............W. R. Nugent 70
Protect Against Lightning...........Elbert Robberson 86
New TV Stations on the Air...........102
New TV Grants Since Freeze Lift.....102
The Multimeter Is Useful In P.A. Servicing...112
Radio-TV Service Industry News.....116

DEPARTMENTS

For the Record..................The Editor 8
Spot Radio News..................16
Within the Industry..............22
New Audio Equipment...............77
Sales Aids........................124

COPYRIGHT 1955
(All Rights Reserved)

ZIFF-DAVIS PUBLISHING COMPANY
WILLIAM S. ZIFF (1918-1953) FOUNDER

RADIO & TELEVISION
NEWS

Editor and Asst. Publisher
OLIVER READ, D. Sc., W4ETI
Managing Editor
WM. A. STOCKLIN, B. S.
Technical Editor
H. S. BENNE, M. S.
Service Editor
CHARLES TEPFER
Associate Editor
P. B. HOFER
Assistant Editor
J. JUSTER
Television Consultant
WALTER H. BUCHBAUM
Art Editor
FRANK SAYLES
Draftsmen
A. A. GANS, W2ISP
J. A. GOLANEK
Advertising Director
L. L. OSEN
Advertising Manager
MURRAY GOLDMAN
Midwest Adv. Manager
JOHN A. RONAN, JR.
Western Adv. Manager
JOHN E. PAYNE

SUBSCRIPTION SERVICE: All communications concerning subscriptions should be addressed to Circulation Dept., 64 E. Lake St., Chicago 1, Ill. Subscribers should allow at least four weeks for change of address. Include your old address as well as new one. If possible, an address label from a recent issue of this magazine.

CONTRIBUTIONS: Contributors are advised to retain a copy of their manuscripts and illustrations. Contributions should be mailed to the New York Editorial Office and must be accompanied by return postage. Contributions will be handled with reasonable care but this magazine assumes no responsibility for their safety. Any work submitted is subject to whatever revisions, revisions, abridgments, or additions may be made by the editors. Any material which is copyrighted is so marked and the author is credited. No claims for material accepted will be made unless a return slip is requested. Any contribution submitted for publication is subject to the approval of the Editor. Copyright laws prohibit the copying of material into other publications or into the public domain. Material may be quoted and reprinted, in whole or in part, with the permission of the Publisher.

SUBSCRIPTION SERVICE: All communications concerning subscriptions should be addressed to Circulation Dept., 64 E. Lake St., Chicago 1, Ill. Subscribers should allow at least four weeks for change of address. Include your old address as well as new one. If possible, an address label from a recent issue of this magazine.

CONTRIBUTIONS: Contributors are advised to retain a copy of their manuscripts and illustrations. Contributions should be mailed to the New York Editorial Office and must be accompanied by return postage. Contributions will be handled with reasonable care but this magazine assumes no responsibility for their safety. Any work submitted is subject to whatever revisions, revisions, abridgments, or additions may be made by the editors. Any material which is copyrighted is so marked and the author is credited. No claims for material accepted will be made unless a return slip is requested. Any contribution submitted for publication is subject to the approval of the Editor. Copyright laws prohibit the copying of material into other publications or into the public domain. Material may be quoted and reprinted, in whole or in part, with the permission of the Publisher.
NOW... at home... get D.T.I.'s
amazingly effective NEW training in
TELEVISION
RADIO-ELECTRONICS! Nothing else like it for providing real LABORATORY-TYPE training at home. Get the kind of thorough, practical experience YOU NEED for the kind of progress YOU WANT in today's tremendous field of Television, Radio and Electronics. Qualify yourself for real money... interesting work... a wonderfully promising future. And when you finish, D.T.I.'s active Employment Service HELPS YOU GET STARTED! Or open your own profitable Television-Radio Service Business.

THOUSANDS OF SUCCESSFUL GRADUATES
Why has D.T.I. become one of the largest training organizations of its kind? Because it provides EVERY MAJOR HOME TRAINING AID to help make the subject EASIER to learn... EASIER to remember—the kind of training so helpful for REAL PROGRESS. Students get thorough, up-to-date, practical training that TAKES ADVANTAGE of new and improved training developments. Study the ADVANTAGES shown on this page. Think what they can mean to YOU... TO YOUR FUTURE! Or come to D.T.I.'s big Training Laboratories in Chicago. MAIL COUPON TODAY for complete facts—including valuable publication, "89 Ways to Earn Money in Television-Radio-Electronics." Also, valuable information for men subject to MILITARY SERVICE.

DeVRY
Technical Institute
CHICAGO 41, ILLINOIS
Formerly DeFOREST'S TRAINING, INC.

MAIL COUPON TODAY
DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Ill. Dept. RN-7-1.

I would like complete facts including "89 Ways to Earn Money in Television-Radio-Electronics."

Name__
Age________

Street________________________
Apt.________

City________ Zone________ State________

D.T.I.'s training is available in Canada.

DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Ill. Dept. RN-7-1.

July, 1955

Use and keep ALL these units to get all-important PRACTICAL EXPERIENCE

NOW... at home... get D.T.I.'s
amazingly effective NEW training in
TELEVISION
RADIO-ELECTRONICS! Nothing else like it for providing real LABORATORY-TYPE training at home. Get the kind of thorough, practical experience YOU NEED for the kind of progress YOU WANT in today's tremendous field of Television, Radio and Electronics. Qualify yourself for real money... interesting work... a wonderfully promising future. And when you finish, D.T.I.'s active Employment Service HELPS YOU GET STARTED! Or open your own profitable Television-Radio Service Business.

THOUSANDS OF SUCCESSFUL GRADUATES
Why has D.T.I. become one of the largest training organizations of its kind? Because it provides EVERY MAJOR HOME TRAINING AID to help make the subject EASIER to learn... EASIER to remember—the kind of training so helpful for REAL PROGRESS. Students get thorough, up-to-date, practical training that TAKES ADVANTAGE of new and improved training developments. Study the ADVANTAGES shown on this page. Think what they can mean to YOU... TO YOUR FUTURE! Or come to D.T.I.'s big Training Laboratories in Chicago. MAIL COUPON TODAY for complete facts—including valuable publication, "89 Ways to Earn Money in Television-Radio-Electronics." Also, valuable information for men subject to MILITARY SERVICE.

DeVRY
Technical Institute
CHICAGO 41, ILLINOIS
Formerly DeFOREST'S TRAINING, INC.

MAIL COUPON TODAY
DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Ill. Dept. RN-7-1.

I would like complete facts including "89 Ways to Earn Money in Television-Radio-Electronics."

Name__
Age________

Street________________________
Apt.________

City________ Zone________ State________

D.T.I.'s training is available in Canada.

DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Ill. Dept. RN-7-1.

July, 1955

Work over 300 projects with your wonderful HOME LABORATORY

Use and keep ALL these units to get all-important PRACTICAL EXPERIENCE

NOW... at home... get D.T.I.'s
amazingly effective NEW training in
TELEVISION
RADIO-ELECTRONICS! Nothing else like it for providing real LABORATORY-TYPE training at home. Get the kind of thorough, practical experience YOU NEED for the kind of progress YOU WANT in today's tremendous field of Television, Radio and Electronics. Qualify yourself for real money... interesting work... a wonderfully promising future. And when you finish, D.T.I.'s active Employment Service HELPS YOU GET STARTED! Or open your own profitable Television-Radio Service Business.

THOUSANDS OF SUCCESSFUL GRADUATES
Why has D.T.I. become one of the largest training organizations of its kind? Because it provides EVERY MAJOR HOME TRAINING AID to help make the subject EASIER to learn... EASIER to remember—the kind of training so helpful for REAL PROGRESS. Students get thorough, up-to-date, practical training that TAKES ADVANTAGE of new and improved training developments. Study the ADVANTAGES shown on this page. Think what they can mean to YOU... TO YOUR FUTURE! Or come to D.T.I.'s big Training Laboratories in Chicago. MAIL COUPON TODAY for complete facts—including valuable publication, "89 Ways to Earn Money in Television-Radio-Electronics." Also, valuable information for men subject to MILITARY SERVICE.

DeVRY
Technical Institute
CHICAGO 41, ILLINOIS
Formerly DeFOREST'S TRAINING, INC.

MAIL COUPON TODAY
DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Ill. Dept. RN-7-1.

I would like complete facts including "89 Ways to Earn Money in Television-Radio-Electronics."

Name__
Age________

Street________________________
Apt.________

City________ Zone________ State________

D.T.I.'s training is available in Canada.

DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Ill. Dept. RN-7-1.
Your best buy!

...for new installations
...for replacement needs!

...the fastest mounting, best performing aerial on the market

Here is the outstanding, NEW auto aerial and it has everything! Handsome in appearance... outstanding in performance... and a new design that is a snappy one-two-three installation WITHOUT EVEN LOOKING UNDER THE FENDER!

Here are a few of the features:
- Speedy, one-man installation
- 30° mast adjustment
- Fits all body and fender contours
- 57½" length extended - 18-8 stainless steel
- Extra long, full 42" polyethylene lead-in

1. After dis-assembling, insert the lead and lower section through fender hole and guide the split ring through the fender hole—then draw up tight against fender.
2. Then lower rubber mat insulator and lock nut into position.
3. Just tighten assembly... plug lead-in into radio.

THE RADIART CORPORATION
Cleveland 13, O.

TV Antennas - Auto Aerials - Vibrators - Rotors - Power Supplies

RADIO & TELEVISION NEWS
We're Looking for MORE Fellows who Want to be Top Moneymakers in TV Servicing

We invite you to find out about our new, all-practice, professional TV training.

You Learn to Service TV Sets Quickly by Practicing at Home in Spare Time

get ahead faster, this new, all-purpose training is for you. It is 100% learn-by-doing; planned to give you the professional training and knowledge you need to diagnose TV receiver trouble quickly and expertly. You learn the causes of defects—audio and video—and how to fix them profitably and properly.

You get actual experience aligning TV receivers, isolating complaints from scope patterns, eliminating interference, using germanium crystals to rectify the TV picture signal, adjusting the ion trap and hundreds of other valuable Professional techniques.

NRI directed training at home you will gain knowledge of time saving techniques that would take years of ordinary on-the-job experience.

Basic Training Applies to ALL Makes and Models

This Professional TV Servicing Course gives you practical training that helps you understand why and how a TV receiver operates. Basic training applies to all makes and models, helps you quickly understand new developments.

UHF and Color Creating Growing Opportunities

If you want to go places in TV servicing, we invite you to find out what you get, what you practice, what you learn from NRI's new course in Professional Television Servicing. See pictures of equipment we supply. Read what you practice. Judge for yourself whether this training will further your ambition to reach the top. Mail the coupon now. There is no obligation.

MAIL NOW COUPON BRINGS IMPORTANT BOOK FREE

National Radio Institute, Dept. 5GET
16th and U Sts., Washington 9, D.C.

NOT FOR BEGINNERS

Please send me FREE copy of "How to Reach the Top in TV Servicing." I understand no salesman will call.

Name
Address
City Zone State

Approved Member National Home Study Council

www.americanradiohistory.com
COMPONENTS for all forms of electronic instruments have undergone a great change in recent years. The trend toward "flatness" may be readily seen by scanning the pages of catalogues from the parts jobbers. The ceramic disc capacitor is one result of flat design. Tubes, especially those for hearing aids, are flat and shortened to tiny dimensions.

Even circuitry has undergone considerable change. The Motorola and Walsco TV chassis reflect the trend toward flatness of construction that simplifies troubleshooting and saves time since connections to components are reached without searching and picking through a maze of wiring.

Printed-circuit techniques have become widely accepted— even by the novice. A leading kit manufacturer now supplies compact flat boards on which is etched the wiring for critical circuits. Mistakes are prevented and proper dressing of connecting leads result from utilizing these flat assemblies. Another manufacturer is merchandising a complete line of interstage coupling units, called "Couplates," which include all of the necessary resistors and capacitors for various coupling requirements in a single flat assembly.

We would, of course, be remiss if we did not call attention to the possibilities opened up by transistors in the trend toward flatness. Their small size, low power requirements, and small heat dissipation permit the design of more and more compact electronic circuitry for hearing aids, portable radio and TV receivers, tape recorders, and the like.

Electrostatic loudspeakers are now on the market. These flat disc-shaped reproducers have only recently achieved popularity. Further development may lead to units capable of good, clean bass response from small, flat assemblies which can be hung on a wall or mounted in any convenient manner.

Magnetic tape is now flatter than ever. New base materials, having greater strength, permit reduction of thickness and allow more tape footage per reel. Audio amplifiers have been flattened and redesigned for shelf-type installations or for drawer dimensions. And pocket-sized AM and FM receivers, wire and tape recorders, and other electronic gear have been developed. All of these designs reflect the trend toward compact, flat assemblies.

The universal acceptance of big-screen television on direct-view picture tube phosphors has been established. Projection TV, on the other hand, has not shared in the popularity for home methods of producing acceptable pictures. The principal objection was the "metallic" effect produced by light-ray diffractions of the glass viewing screen.

At least one laboratory has recently shown great progress in further developing projection TV for the home. Radically new viewing screens are being studied and more economical circuitry is reviving interest in the future possibilities for large-screen projection in the home on "movie-type" screens.

The so-called "picture on the wall" television screen has also received widespread publicity although such a screen is not yet commercially available. In this system, a flat screen is connected to the TV receiver by means of a cable, and the picture is formed on the screen electronically. It is even within the realm of possibility that an electrostatic speaker can be combined with the viewing screen to form a single, flat entertainment medium. This will include monochrome and color TV (regular reception or from pre-recorded tapes), slide film, and movie film.

The audio will be provided by the regular TV signals, from magnetic tape or film, or from hi-fi record albums. Reproducers (loudspeaker systems), if not a part of the picture screen, will be mounted within a wall or back of the screen. High fidelity will be achieved through a "new look" in flat electrostatic speakers or even more advanced types of cones.

Wide-angle viewing will simplify seating arrangements, and widely dispersed sound will enhance the effect of audio reproduction in the living room. Stereophonic reproduction will lend added realism and the practically complete elimination of noise and distortion will greatly reduce listener fatigue. Remote control will permit the major components of any system to be located out of sight, if desirable, thus contributing considerably to better room decor.

Such a composite system for providing our home entertainment is felt, by many, to be just around the corner. Most of the ingredients are well established. A few need more research and design, others economically into the picture—color TV, that is! O.R.
NEW at ALLIED

KNIGHT

Low-Cost Test Instrument Kits

Lab Precision Quality...Easiest-to-Assemble Money-Saving Instruments

The greatest value anywhere for your test instrument dollar! Here's more for your money in accuracy, dependability, versatility and professional styling. Here's the last word in easy-to-build convenience. Instruction manuals are a marvel of simplicity for quick assembly without guesswork. You need only a screwdriver, soldering iron and pliers—and you're ready to build these top-quality instruments!

New Knight Tube Tester Kit

83 FX 143. Knight Tube Tester Kit. Only $29.75

83 FX 142. As above but in fabrikoid covered portable case, 6½ x 14¼ x 10¾". Shpg. wt., 15 lbs. Only $34.75

83 F 141. TV Picture Tube Testing Adapter. Only $3.75

New Knight Signal Tracer Kit

Ideal for visual and audible signal tracing of RF, IF, video and audio circuits—at least the cost of an audio signal tracer alone. Highest usable gain: "magic eye" with calibrated attenuators permits stage by stage gain measurements. 4" PM speaker. With RF probe for checking all stages; includes audio probe tip. Noise test provision. Built-in wattmeter calibrated 25 to 1000 watts. With gray and green metal case (7 x 10 x 5") and all parts, tubes, precut leads, solder. For 105-125 v., 50-60 cy. AC. 13 lbs.

83 F 135. Knight Signal Tracer Kit. Only $24.50

New Knight VOM Kit

Quality 20,000 ohm/volt VOM with 4½" meter; ± 2% full scale accuracy; 1% multipliers; single switch selects: 6 DC ranges—0.25-10-250-1000-5000 at 20.00 ohms/volt; 6 AC ranges—0.25-10-250-1000-5000 at 5000 ohms/volt; 3 resistance ranges—0-200-2000,000 ohms and 0-200 meg. 4 DC current ranges—0-10-100 ma. and 0-1-10 amps. Complete with bake-lite case (6¼ x 5¼ x 3½"), all parts, 4 test leads, batteries, wire and solder.

83 F 140. Knight VOM Kit. Only $26.50

New Knight RF Signal Generator Kit

Provides modulated or unmodulated RF output on long wave, broadcast, short wave, FM and TV frequencies. Ideal for use with VTVM for aligning RF and IF sections of radio and TV sets; use with sweep generator as TV marker generator. Delivers audio output for troubleshooting all audio stages. RF output: 160 kc to 110 mc on fundamentals; useful harmonic output up to 2000 kc modulated at 400 cycles; with jack permitting modulation by external generator. Rated RF output 100,000 mc or greater. Max. audio output, 10 volts. Complete with green metal case (7 x 10 x 5") and gray panel, tubes, all parts, pre-wound coils, wire and solder. For 110-120 v., 50-60 cy. AC. 10 lbs.

38 F 145. Knight RF Signal Generator Kit. Only $19.75

New Knight Audio Generator Kit

Ideal audio frequency source for checking audio circuits and speaker response; fine for Hi-Fi testing. Frequency range: 20 cps to 1 mc in 5 ranges. Output voltage: 10 volts to high imp. ± 1 db to 200 kc. Generator imp., 600 ohms. Less than 25% distortion from 100 cps through the audible range; less than 1% when driving 600 ohm load at maximum output. Continuously variable step-attenuated output. Complete with green and gray metal case (8½ x 11 x 7½") all parts, tubes, precut leads and solder. 17 lbs.

83 F 137. Knight Audio Generator Kit. Only $31.50

FREE Supplement No. 148

Send for our latest 56-Page Supplement featuring new releases and special values. Make your selections at ALLIED from the world's largest stocks of tubes, parts, test instruments, Hi-Fi audio equipment, Amateur gear, industrial components—everything in electronics at lowest prices.

ALLIED RADIO

July, 1955

GET THE PROOF OF KNIGHT QUALITY

Send for complete construction manuals

See for yourself the exceptional quality and super-value represented in Knight Test Instrument Kits. See why KNIGHT offers you more for your money in dependability, precision quality and versatility.

38 K 166. Knight RF Signal Generator Kit Manual.

Order any of the above construction manuals.

Each only:..$10c

ALLIED RADIO CORP., Dept. 1-G-5
100 N. Western Ave., Chicago 80, III.

☐ Send FREE Supplement No. 148
☐ Ship the following KNIGHT Kits:

☐ Send construction manuals covering the following kits:

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>Zone</td>
</tr>
</tbody>
</table>

$______

Amount Enclosed
He's "fingerprinting" a relay contact

Bell Laboratories microchemists have perfected an ingenious new technique for "fingerprinting" relay contacts, the tiny switches on which a dial telephone system critically depends.

Using a portable test set, a chemist makes a plastic print of a contact. On-the-spot examination of the print with a microscope and chemical reagents quickly reveals the effects, if any, of arcing, friction, dust or corrosive vapors. While the chemist studies the print, urgently needed contacts continue in service. Findings point the way to improve relay performance.

This is another example of how Bell Telephone Laboratories research helps to keep your telephone system the world's best.

Bell Telephone Laboratories
Improving telephone service for America provides careers for creative men in scientific and technical fields
Week after week
Godfrey tells
the ladies...
There are
no finer tubes
than CBS tubes...
And more and more
women are asking
for the tubes with the
Good Housekeeping
Guaranty Seal.

Be sure YOU have
CBS tubes in your tube caddy.

Arthur Godfrey's Talent Scouts
now selling CBS Tubes
on both TV and Radio

Quality products through ADVANCED-ENGINEERING

CBS-HYTRON, Danvers, Massachusetts ... A DIVISION OF COLUMBIA BROADCASTING SYSTEM, INC.
July, 1955
The Most Nearly Perfect Phono Pickups Ever Produced... they are sold separately for all standard arms or mounted back-to-back to make up the famous PICKERING 260 TURNOVER PICKUP.

The 220 and 240 are engineered to maximize performance. By comparison they are without equal...

The 220 and 240 are
Lighter—5½ grams
Smaller—¾ by ¾ by ¾ inches

The 220 and 240 have
Highest Output—30 millivolts/10cm/sec.
More Compliance with Less Tracking Force
Lower Overall Distortion
Less Moving Mass
Wider Frequency Response
Mu-Metal Shielding for Less Hum

These characteristics have real meaning to those who understand that maximum performance depends upon components which meet professional standards. If you want the best that high fidelity can offer, ask your dealer to demonstrate the 220, 240 and 260 Pickering cartridges...

The Most Nearly Perfect Phono Pickups Ever Produced

PICKERING and company incorporated • Oceanside, L.I., New York

PICKERING COMPONENTS ARE PROFESSIONAL QUALITY

"For those who can hear the difference"

... Demonstrated and sold by Leading Radio Parts Distributors everywhere. For the one nearest you and for detailed literature; write Dept. C-7.

www.americanradiohistory.com
Weak TV Pictures? Replace Your Old Antenna Now!

Warm weather is profit weather!

The weather's warmer! Days are longer! This is the time of year to go after that gold mine in your own backyard: the replacement of the antennas in your area that are damaged, worn, and obsolete.

Channel Master's RAINBOW is the favorite replacement antenna of America's TV installation men — and here's why:

- There's a RAINBOW model for every installation ...for every signal area ...for every budget.
- Regardless of competitive claims—Channel Master's RAINBOW antennas are still the most powerful antenna series available today! Advanced engineering and the exclusive Tri-Pole make the difference!
- Featuring the fastest and strongest of all preassemblies: trigger-fast "Snap-Lock" action, Channel Master's fabulous preassembly that snaps open, locks open, without hardware or tightening.
- All-aluminum construction. Rugged, durable, reinforced at all stress points.

Today's greatest all-channel antenna value — bar none!

The World's Largest Manufacturer of Television Antennas

Warm weather is profit weather!
Here are a few reasons why:

Raytheon employs 18,000 people. Approximately 10,000 of them work in Raytheon's modern tube and semiconductor manufacturing plants.

Raytheon has more than 1,000,000 square feet devoted exclusively to the manufacture of Raytheon quality tubes and semiconductors.

Raytheon employs over 500 engineers and scientists who work exclusively in the electron tube and semiconductor fields.

Raytheon has had 33 years' experience in the manufacture of electron tubes.

Raytheon has made tubes of every type of construction — Standard Glass, "G", GT, Bantal, Lock In, Metal, Miniature and Subminiature Tubes.

Raytheon Receiving and Cathode Ray Tube Operations have produced more than a third of a billion tubes and semiconductors.

Raytheon perfected the first practical rectifier tube types (BA and BH) to eliminate the need for "B" batteries to operate home radios. This revolutionized the design of home radio sets. Raytheon later developed the cold cathode rectifier tube for auto radios and has produced more of these tubes than all other companies combined.

Raytheon developed the famous 4-pillar construction that strengthened internal structure resulting in sturdier tube design.

Raytheon developed and was first to mass-produce the octal button stem receiving tube — today's most imitated construction for premium TV performance. Raytheon was first to make millions of these tubes as far back as 1946. These tubes featured a planar button stem and 8 straight leads (8-pillar) which go directly into a standard octal base. Raytheon's Patent Numbers 2510237, 2921900 and 2940879 apply to this invention.
RAYTHEON developed and first mass-produced subminiature tubes for the hearing aid industry — the forerunners of the fuse tubes which made possible the famous proximity fuses of World War II. There are more commercial Raytheon subminiature tubes in use today than all other makers combined.

RAYTHEON developed a method of mass producing magnetrons (the power tube that is the heart of radar) early in World War II, that broke a serious bottleneck, and continues to produce more magnetrons than all other manufacturers combined.

RAYTHEON is the largest producer of klystrons and has manufactured more than all other companies combined.

RAYTHEON was the first commercial producer of Transistors — the "mighty mite" — a Raytheon achievement that revolutionized the hearing aid industry.

RAYTHEON first commercially produced fusion-alloy RF Transistors, expected to revolutionize the portable radio, auto radio and computer industries.

RAYTHEON has produced many more transistors than all other manufacturers combined — nearly 2,000,000 in use.

TODAY, RAYTHEON makes Receiving and Picture Tubes, Reliable Miniature and Subminiature Tubes, Semiconductor Diodes and Transistors, Nucleonic Tubes and Microwave Tubes.

These facts and figures show why you can use Raytheon Television and Radio Tubes with complete confidence that they are Right ... for Sound and Sight — Right for you and your customers, too.

A Company second to none in Excellence in Electronics

RAYTHEON MANUFACTURING COMPANY
Receiving and Cathode Ray Tube Operations
Newton, Mass. • Chicago, Ill. • Atlanta, Ga. • Los Angeles, Calif.

They're Right...
For Sound and Sight

July, 1955
WAVERING UPSTAIRS TV, under the Congressional microscope for months, also found itself on the Commission's examination table during the late Spring months. Determined to find some way to spur ultra-high acceptance, the FCC issued a proposal which would authorize co-channel u.h.f. booster stations to go on the air and serve to fill in the shadow areas of the mother station.

Pointing out that it was deeply concerned with the snarled high-band situation, the Commission declared that this new move could help to "...insure the fullest development of the television industry's potentials in line with the needs and desires of the American public and the abilities and ingenuity of the American broadcasters."

Emphasizing that there are... "substantial obstacles presently hindering the bringing of a first television service to many small communities, as well as the expanding of multiple competing services in larger economic and population centers..." the Commission said that the trouble lay in the failure of the u.h.f. station to become fully integrated with stations now on the air. This, they said, has hampered the development of an economically sound, nationwide TV service.

Comparing the very-high and ultra-high channels, the FCC explained that the "...signals from u.h.f. transmitters have less tendency to fill in areas which are not in direct line-of-sight with the transmitting antenna. Consequently, there are areas which, although lying within the area that would normally be served by a u.h.f. station, are effectively shadowed by intervening terrain, and are thereby deprived of service."

The proposed amplifying transmitters or boosters, they felt, would be one means of providing coverage in such shadow areas. These slaves would operate on the same channel as the base transmitter and be dependent on the mother station for the generation of carrier frequencies and modulation.

Many have been experimenting with booster operation for years and thus were able to submit extensive data on this phase of operation. Some had even forwarded detailed survey analyses before the proposal was formally issued.

In one such report, covering plans for low-powered television, it was revealed that three systems have been developed. One, called an "on-channel" booster, features use of highly directional receiving and retransmitting antennas, so positioned that there is no feedback. In this setup, a high-gain, broadband a.g.c.-controlled amplifier with a 6-megacycle bandwidth serves as a preamplifier. This unit, it was said, requires an input signal of less than 1 millivolt-per-meter. Two more system amplifiers are also necessary, the report continued. One is a high-gain broadband unit with sufficient gain (30 to 80 db, depending on number of stages) to amplify an input signal on the order of 6 millivolts (across 30 ohms) to 20 watts visual peak power; aural power in the same ratio as the received signal. The second unit is a single stage, also broadband, but linear, which can be driven by the 20-watt amplifier, to amplify simultaneously visual and aural signals. Output here is 150 watts peak.

Receiving antennas required were described as collinear (4 x 4) with a power gain of 23 db. As a transmitting antenna, a 16 x 2 (32-element) collinear, with a power gain of 17 db, was said to be ideal for the purpose.

The second system offered was an "off-channel" satellite, with a crystal-controlled translator to shift the original signal, without demodulation, to a new frequency; any channel from 2 to 83 can be shifted. This arrangement, it was noted, could serve to provide improved coverage within the normal service contours of the originating station and also in the fringe signal areas. It was assumed, the report added, that translation would take into account existing unused allocations.

The third system featured a complete low-powered broadcasting station which could be programmed locally, off-the-air, or via a network signal. This equipment, it was noted, would be particularly useful for the establishment of a TV service in communities of 50,000 population or less, where a television facility would not be otherwise practical.

ELSEWHERE, the u.h.f. issue was the target of a roaring attack by Madame Commissioner Frieda Hennock. In a sizzling letter to the chairman of the Senate Interstate and Foreign Com-
Prevents corrosion and extends the life of your resistors for series heater tubes.

No. H025-F

G-C RUBBER GROMMETS
Box of 15 assorted grommets.
No. H025-F NET $0.30

G-C MAG-NEKTIC HEAD CLEANER
Remove oxide from tape heads.
No. 53-1 NET $0.51

G-C CARBON-X
Quiet noisy carbon volume controls.
No. 1205 NET $0.72

G-C REK-O-DOPE
All-purpose recording lubricant.
No. 126-2 NET $0.39

G-C COLOR CODING KIT
Includes 10 standard colors, brushes.
No. 677 NET $1.29

G-C GLO-BAR THERMISTORS
Resistors for series heater tubes.
No. 9135 NET $1.44

G-C STREAMLINE POINTER
Black 2" long. 13/16" square .002" thick.
No. 1171 NET $0.25

G-C SPAGHETTI WIRE
Flexible copper insulated.
No. 840 NET $0.27

G-C PRINTED CIRCUIT REPAIR KIT
Contains Silver Print, Silicone Resin, Solvent and all tools.
No. 680 NET $5.85

G-C TV CORONA DOPE
Prevent corona shorts in TV sets.
No. 47-2 NET $0.72

G-C 300-OHM WALL PLATE
Brown plate and plug.
No. 8595 NET $0.75

G-C WESTINGHOUSE TV ALIGNER
Fits openings in Westinghouse cabinets, etc.
No. 9089 NET $0.54

G-C SLUG RETRIEVER TOOL
For standard coil tune plugs.
No. 9096 NET $2.22

FREE! Send postcard for your big G-C CATALOG.

G-C TELEVISION ALIGNING WRENCH
 Socket 1/4" square. 6" long.
No. 5080 NET $0.51

G-C NON-MAGNETIC SHORTY
Tough, heat-treated beryllium.
No. 9105 NET $0.75

G-C ADJUSTABLE SHORTY
Adjusts from 1/8" to 1/2"
No. 9090 NET $0.42

G-C TELEVISION ALIGNER
No. 8642-6P Pack of 6 NET $2.25

G-C SPRA-KLEEN
No. 8666 6-oz. can
NET $1.00

G-C AUTO Fuse INSULATOR SLEEVES
Box of 16: 1/2" long x 1/8" I.D.
No. H640-F NET $0.30

G-C BAKELITE CEMENT
Repairs cabinets, knobs, panels.
No. 32-2 NET $0.51

G-C LIQUID NON-SLIP
Prevent slipping on drive cables.
No. 1211 NET $0.21

G-C TV LINE SEAL
Prevents corroboration on wires, etc.
No. 17-2 NET $0.39

G-C SCRATCH REPAIR KIT
Remove cabinet scratches.
No. 915 NET $0.99

G-C REAR SPEAKER BAFFLE KIT
Has 3-way switch, bronze grille.
No. 9180 NET $2.70

G-C 7.5 OHM FUSE RESISTOR
For series-wired TV sets.
No. 9207 NET $0.33

G-C 1171 No.
Contains assorted grommets.
No. 551 NET $0.84

G-C ASSORTED SPACERS, BUSHINGS CLIPS
Assorted grommets.
No. 6617 NET $0.51

G-C FANNESTOCK CLIPS
Box of 12 assorted plated clips.
No. H590-F NET $0.30
No. 5606 NET $1.65

G-C TV 3-for-2 CHEMICAL SPECIAL
No. B-3 Pack of 3 NET $0.69

G-C SPRA-KLEEN
No. 8642-6P Pack of 6 NET $2.25

G-C AUTO FUSE INSULATOR SLEEVES
Box of 16: 1/2" long x 1/8" I.D.
No. H640-F NET $0.30

G-C BAKELITE CEMENT
Repairs cabinets, knobs, panels.
No. 32-2 NET $0.51

G-C LIQUID NON-SLIP
Prevent slipping on drive cables.
No. 1211 NET $0.21

G-C TV LINE SEAL
Prevents corroboration on wires, etc.
No. 17-2 NET $0.39

G-C SCRATCH REPAIR KIT
Remove cabinet scratches.
No. 915 NET $0.99

G-C REAR SPEAKER BAFFLE KIT
Has 3-way switch, bronze grille.
No. 9180 NET $2.70

G-C 7.5 OHM FUSE RESISTOR
For series-wired TV sets.
No. 9207 NET $0.33

G-C BAKELITE CEMENT
Repairs cabinets, knobs, panels.
No. 32-2 NET $0.51

G-C LIQUID NON-SLIP
Prevent slipping on drive cables.
No. 1211 NET $0.21

G-C TV LINE SEAL
Prevents corroboration on wires, etc.
No. 17-2 NET $0.39

G-C SCRATCH REPAIR KIT
Remove cabinet scratches.
No. 915 NET $0.99

G-C REAR SPEAKER BAFFLE KIT
Has 3-way switch, bronze grille.
No. 9180 NET $2.70

G-C 7.5 OHM FUSE RESISTOR
For series-wired TV sets.
No. 9207 NET $0.33

G-C BAKELITE CEMENT
Repairs cabinets, knobs, panels.
No. 32-2 NET $0.51

G-C AUTO FUSE INSULATOR SLEEVES
Box of 16: 1/2" long x 1/8" I.D.
No. H640-F NET $0.30

G-C BAKELITE CEMENT
Repairs cabinets, knobs, panels.
No. 32-2 NET $0.51

G-C LIQUID NON-SLIP
Prevent slipping on drive cables.
No. 1211 NET $0.21

G-C TV LINE SEAL
Prevents corroboration on wires, etc.
No. 17-2 NET $0.39

G-C SCRATCH REPAIR KIT
Remove cabinet scratches.
No. 915 NET $0.99

G-C REAR SPEAKER BAFFLE KIT
Has 3-way switch, bronze grille.
No. 9180 NET $2.70

G-C 7.5 OHM FUSE RESISTOR
For series-wired TV sets.
No. 9207 NET $0.33

G-C BAKELITE CEMENT
Repairs cabinets, knobs, panels.
No. 32-2 NET $0.51

G-C AUTO FUSE INSULATOR SLEEVES
Box of 16: 1/2" long x 1/8" I.D.
No. H640-F NET $0.30

G-C BAKELITE CEMENT
Repairs cabinets, knobs, panels.
No. 32-2 NET $0.51

G-C LIQUID NON-SLIP
Prevent slipping on drive cables.
No. 1211 NET $0.21

G-C TV LINE SEAL
Prevents corroboration on wires, etc.
No. 17-2 NET $0.39

G-C SCRATCH REPAIR KIT
Remove cabinet scratches.
No. 915 NET $0.99

G-C REAR SPEAKER BAFFLE KIT
Has 3-way switch, bronze grille.
No. 9180 NET $2.70

G-C 7.5 OHM FUSE RESISTOR
For series-wired TV sets.
No. 9207 NET $0.33

G-C BAKELITE CEMENT
Repairs cabinets, knobs, panels.
No. 32-2 NET $0.51

G-C AUTO FUSE INSULATOR SLEEVES
Box of 16: 1/2" long x 1/8" I.D.
No. H640-F NET $0.30
be your own audio engineer...

HI-FI speaker-equipment cabinets

KITS by cabinet art

ACOUSTICALLY ENGINEERED—ASSEMBLED WITH ONLY A SCREWDRIVER!

Model 80 has lift lid, removable panels. Bass reflex tuned for 12" or 15" speakers. Overall dimensions: 33½" H, 23" W, 16½ D. MB0 tuner section, inside: 20" H, 21½ W, 13½ D. M8112, M8115 baffle volume: 6 cubic feet. ½" white pine

Model 80 equipment cabinet kit $27.00
Model 8112 '12" speaker cabinet kit 18.00
Model 8115 '15" speaker cabinet kit 18.00

FEATURING THE KLIPSCH-DESIGNED Rebel 4

DIRECT RADIATION OF HIGHS
BACK RADIATION OF LOWS

REBEL enclosure development entails a cavity and slot port, to form a resonant chamber, and a horn coupled to the slot. The slot is loaded by the horn; the proportioning of slot, cavity and horn provide bass response below 100 cycles which corresponds in efficiency to the front-of-cone direct radiator response above this critical 100-cycle point. There are two ways one might consider the function of this horn. One is a bass reflex with a horn acting as a resistive load on the port. System resonances are damped by useful radiation resistance while the horn does not cost anything. It is already formed by the room corner. Again, if a full horn were added below the 100-cycle point bass response would be boomy and unnatural. But, in the Rebel enclosures, the cavity-port combination acts as an acoustic low pass filter. And its design is such that low-end response will compare with response higher in the sound scale.

MODEL K-12 — $36.00
MODEL K-15 — $42.00

ready-to-finish birch

All kits precision-cut to size, baffles pre-cut for 12" or 15" speakers. Kits include Saran plastic acoustic cloth, glue, sandpaper, plastic wood, hardware, assembly instructions and finishing instructions. Write for complete catalogs and nearest Cabinet kit dealer.

CORNER HORN

Model 61, 12" speaker—$19.95
Model 63, 15" speaker—$23.95

slightly higher west and south

KIT FORMS BY cabinet art

75 North 11th Street
Brooklyn, N. Y.

merce Committee, Senator Warren Magnuson, she told the government should begin telling prospective TV set buyers that they are being short-changed if their sets are not equipped to pick up all bands.

Charging that industry is saturating the market place with incompatible sets, she told the Senator that "unless your committee takes action to halt this deluge . . . the monopolistic pattern will take hold permanently and thereby thwart the Congressional objective of a nationwide competitive TV system."

Noting that the public, still kept in the dark, continues to buy the standard-band receivers at a rate of over a half-million a month, the Commissioner reported that this adds up . . . "to destruction of 85 per-cent of television."

TOLL TV also found itself in the midst of a furious tug-of-war, with thousands telling the Commission that they should OK the new service, and many thousands strongly denouncing the plan.

A number of business groups told the Commission that they felt the pay-see idea was a good one. According to the National Small Business Men's Association, coin-code TV, which they tagged as an electronic delivery system, has substantial potentials in our economy. . . . "not only as the basis of a wholly new and badly needed service in its own right, but . . . as a means of increasing the scope and usefulness of the present TV service."

Urging the Commission to give early approval to this new technique, the association said that such authorization should help everyone.

Television, continued the association's plea for subscription-TV, is a major factor in our way of life; it has created billions of dollars worth of new wealth in receivers, stations, service, and programming, and still this industry is in its infancy. But, they emphasized, even though the Commission has allocated spectrum space for more stations, some 1500 more, few are being used, that, said the business group, indicates that something is wrong. Something, they added, is missing in the economics of the TV industry, and subscription TV . . . "represents a fresh approach to this vital economic basis of television."

Declaring that the best interests of small business is their business, the association said that they heartily . . . "resent any cross attack on the part of a single self-interest group to carry the banner of 'small business' in their undynamic parade against progress."

If the new plan has the potentials . . . "of making more TV stations economically supportable, especially in the smaller towns and cities . . ." then said the association brief . . . "it certainly will help all business, large or small . . . More importantly, it will answer a growing and obvious public demand for more and better TV service."

Also writing in support of pay-TV, a (Continued on page 101)
Good Jobs Await the Trained Radio-TV Technician

There is a place for you in the great Radio-Television-Electronics industry when you are trained as National Schools will train you at home.

Trained technicians are in growing demand at good pay—in manufacturing, broadcasting, television, communications, radar, research laboratories, home Radio-TV service, and other branches of the field. National Schools Master Shop-Method Home Training, with newly added lessons and equipment, trains you in your spare time, right in your own home, for these fascinating opportunities.

Our Method is Proved by the Success of National Schools Trained Men, All Over the World, Since 1905.

Earn While You Learn

Many National students pay for all or part of their training with spare-time earnings. We'll show you how you can do the same! Early in your training, you receive "Spare-Time Work" Lessons which will enable you to earn extra money servicing neighbors' and friends' Radio and Television receivers, appliances, etc.

National Schools Training is All-Embracing

National Schools prepares you for your choice of many job opportunities. Thousands of home, portable, and auto radios are being sold daily—more than ever before. Television is sweeping the country, too. Co-axial cables are now bringing Television to more cities, towns, and farms every day! National Schools' complete training program qualifies you in all fields. Read this partial list of opportunities for trained technicians:

- Business of Your Own • Broadcasting
- Radio Manufacturing, Sales, Service • Telecasting
- Television Manufacturing, Sales, Service
- Laboratories: Installation, Maintenance of Electronic Equipment
- Electrolysis, Call Systems
- Garages: Auto Radio Sales, Service
- Sound Systems and Telephone Companies, Engineering Firms
- Theatre Sound Systems, Police Radio
- And scores of other good jobs in many related fields.

Television Training

You get a complete series of up-to-the-minute lessons covering all phases of repairing, servicing and construction. The same lesson texts used by resident students in our modern and complete Television broadcast studios, laboratories and classrooms!
12 Pictorial Assembly Plans for Better Listening...

Now—for every high fidelity enthusiast—12 "Do-it-yourself" booklets, called Technigrams, which cover every one of the 36 different speaker systems featured in the original University PROGRESSIVE SPEAKER EXPANSION chart. These Technigrams contain all of the essential information, in words and pictures, required to assemble and install the speaker system of your choice. Even baffle board layout diagrams are included. All of this is available to help you to plan your listening the PSE way...to develop your speaker system in successive, relatively inexpensive stages...with no fear of obsolescence, until what you have meets your listening tastes.

With vacations and long summer days upon us, the time is ideal for building that high fidelity system which will give so much listening enjoyment on the colder Fall and Winter evenings ahead. Take advantage now of extra leisure hours...and take pleasure in leisurely listening later. See your UNIVERSITY HI-FI distributor today...and ask for the free Technigram that features the University speaker system of your choice. If you haven't seen the original University descriptive folder on the PSE Plan, mail this coupon immediately for your copy.

* Progressive Speaker Expansion
—the plan that makes it possible to buy a speaker today in terms of the system you want tomorrow.

University Loudspeakers
80 South Kensico Ave., White Plains, New York
WHY YOUR SERVICE PROBLEM?

FM Radios • Amplifiers and Tuners • Auto Radios • Record Changers

PHOTOFAC T HELPS YOU SOLVE IT
FASTER, EASIER, BETTER, MORE PROFITABLY!

THE WORLD'S FINEST SERVICE DATA

PHOTOFACT Service Data is the only service information based upon first-hand examination of the actual production-run receivers and equipment. It is authentic, uniform data developed through actual study and analysis by service engineers in the Howard W. Sams Laboratories. PHOTOFACT is the only data prepared from the practical point of view of the Service Technician.

Thousands of Service Technicians use PHOTOFACT daily for time-saving, profit-boosting service operations. If you've never used PHOTOFACT, you've never realized your full earning power—you've never given such complete customer satisfaction. So get the proof for yourself. Try PHOTOFACT—use it on any job. Your Parts Distributor has the Folder. Sets you need for any of the 17,000 TV and radio receivers, changers, recorders, etc., covered in PHOTOFACT. Once you use this great service, we know you'll want the complete PHOTOFACT Library.

ONLY $25 DOWN

Puts a Photofact Service Data Library in Your Shop. Ask Your Photofact Distributor—he Has the Full Easy-Pay Details.

FREE PHOTOFAC T CUMULATIVE INDEX

Send for it! Your guide to virtually any model ever to come into your shop; helps you locate the proper PHOTOFACT Folder you need to solve any service problem on any model. Once you have the make and chassis number, it takes just 60 seconds to find the applicable PHOTOFACT Folder. Send coupon now for your FREE copy of the valuable Cumulative Index to all PHOTOFACT Folders.

HOWARD W. SAMS & CO., INC.
Howard W. Sams & Co., Inc., Dept. 1-G5
2201 E. 46th St., Indianapolis 5, Ind.

SEND...Free Photofact Cumulative Index.
Name: __________________________
Address: ________________________
City: ___________ Zone.... State....

THese GREAT FEATURES ARE EXCLUSIVE IN PHOTOFACT—they Help You EARN MORE DAILY, HELP INSURE CUSTOMER SATISFACTION

FULL SCHEMATIC COVERAGE
1. Famous "Standard Notation" uniform symbols are used in every schematic.
2. The same standard, uniform layout is used for each schematic.
3. Diagrams are clear, large, easy to read, easy to handle.
4. Wave forms are shown right on the TV schematics for quick analysis by 'scope.
5. Voltages appear on the schematics for speedy voltage analysis.
6. Transformer lead color-coding is indicated on the schematic.
7. Transformer winding resistances appear on the schematic.
8. Schematics are keyed to photos and parts lists.

FULL PHOTOGRAPHIC COVERAGE
9. Exclusive photo coverage of all chassis views is provided for each receiver.
10. All parts are numbered and keyed to the schematic and parts lists.
11. Photo coverage provides quicker parts identification and location.

ALIGNMENT INSTRUCTIONS
12. Complete, detailed alignment data is standard and uniformly presented in all Folders.
13. Alignment frequencies are shown on radio photos adjacent to adjustment number—adjustments are keyed to schematic and photos.

TUBE PLACEMENT CHARTS
14. Top and bottom views are shown. Top view is positioned as chassis would be viewed from back of cabinet.
15. Blank pin or locating key on each tube is shown on placement chart.
16. Tube charts include fuse location for quick service reference.

TUBE FAILURE CHECK CHARTS
17. Shows common trouble symptoms and indicates tubes generally responsible for such troubles.
18. Series filament strings are schematically presented for quick reference.

COMPLETE PARTS LISTS
19. A complete and detailed parts list is given for each receiver.
20. Proper replacement parts are listed, together with installation notes where required.
21. All parts are keyed to the photos and schematics for quick reference.

FIELD SERVICE NOTES
22. Each Folder includes time-saving tips for servicing in the customer's home.
23. Valuable hints are given for quick access to pertinent adjustments.
24. Tips on safety glass removal and cleaning.

TROUBLE-SHOOTING AIDS
25. Includes advice for localizing commonly recurring troubles.
26. Gives useful description of any new or unusual circuits employed in the receiver.
27. Includes hints and advice for each specific chassis.

OUTSTANDING GENERAL FEATURES
28. Each and every PHOTOFACT Folder, regardless of receiver manufacturer, is presented in a standard, uniform layout.
29. PHOTOFACT is a current service—you don't have to wait a year or longer for the data you need. PHOTOFACT keeps right up with receiver production.
30. PHOTOFACT gives you complete coverage on TV, Radio, Amplifiers, Tuners, Phonos, Changers.
31. PHOTOFACT maintains an inquiry service bureau for the benefit of its customers.

HELPS YOU EARN MORE DAILY

www.americanradiohistory.com
Within the INDUSTRY

JOHN V. ZUCKERMAN is the new manager of personnel and plant services at Ampex Corporation, Redwood City, California, manufacturer of magnetic tape recorders.

For the past five years Mr. Zuckerman has been conducting audio-visual work and personnel management for the Air Force and Army. He was associated with Stanford University for four years, in 1947 and 1948 as director of the audio-visual aids and radio training programs, and in 1949 and 1950 in personnel work.

During World War II, he served with the OSS and the Armed Forces Radio Service. He holds graduate degrees from Stanford.

TELEVISION ACCESSORIES CO. has moved to Scottsdale, Arizona from Arlington, Va. The new address is Box 368. . . . L & M ASSOCIATES, sales and engineering representatives, have opened new offices at 253 Boulevard, Hasbrouck Heights, New Jersey . . .

OLSON RADIO WAREHOUSE, INC., of Akron, Ohio has opened a new store at 423 W. Michigan Street in Milwaukee, Wisconsin. The company now has warehouses and stores in Chicago, Cleveland, Akron, Pittsburgh, and Milwaukee.

EDMUND SHERMAN, formerly chief engineer for Tele-King Corporation, has joined Transitron, Inc. of New York City in a similar capacity.

He has also served as project engineer on equipment for Hazeline Electronics Corporation, as project and chief engineer for leading manufacturers of government electronic equipment, and commercial radio and television receiver makers.

Mr. Sherman holds his degree in electrical engineering from New York University.

DAYSTROM, INC. has merged with WESTON ELECTRICAL INSTRUMENT CORP. which will be operated as a wholly-owned subsidiary. WESTON operations will be continued under the same management, and the company's name will be retained on its products . . . MAG-ELECTRIC PRODUCTS, INC. of Hawthorne, California, manufacturer of magnetic amplifiers, regulated power supplies, transformers, etc., has acquired all of the assets of MAG-ELECTRIC NETWORKS, INC., manufacturer of radar components, etc. . . . METROPOLITAN SOUND SYSTEMS, INC. has been formed at 216 W. 14th Street, New York 11, N.Y., as a successor to SOUND SYSTEMS, INC. . . . WESTERN UNION TELEGRAPH COMPANY has acquired a one-third interest in MICROWAVE ASSOCIATES, INC. of Boston . . . ELGIN NATIONAL WATCH COMPANY has become the nation's largest manufacturer of high precision relay switches with the purchase of ADVANCE ELECTRIC & RELAY CO. of Burbank, California. The firm purchased NEOMATIC, INC., Los Angeles relay company, last October and two months ago purchased AMERICAN MICROPHONE CO. of Pasadena.

ROBERT B. DAVISON has been appointed distributor sales manager of Cannon Electric Company of Los Angeles.

He joins the firm with a wide background in sales and jobber organization. With the exception of two periods spent in the military service, he has engaged in selling and manufacturers' jobbing activities in hardware and electrical products. Most recently he was sales manager for Pacific Electric in Los Angeles.

Mr. Davison will make his headquarters at the company's Los Angeles plant.

WILLIAM R. McQUISTON is the new sales manager for Electronic Engineering Company of California. He has been with the firm for the past six years . . . Rola Company, Inc. has advanced E. C. SLAUGHENHAUTH to the post of vice-president in charge of manufacturing and promoted KENNETH E. PHILLIPS to the position of vice-president and director of purchases . . . N. L. JOCHEN, who has been with Gates Radio Company for the past twelve years, has been appointed to the position of director of engineering . . . ALFRED E. BOURASSA is the new merchandising coordinator at CBS-Electrovision of Danvers, Mass. . . .

Radio Condenser Company has appointed ALBERT G. SHAFER to the post of vice-president in charge of its Western Division. He will be in charge of the company's plants in Watseka and Hopkins, Illinois. He has been with the firm 24 years . . . Magnetic Recording Industry Association, a trade group made up persons and companies engaged in the manufacture of magnetic recording equipment and media has

RADIO & TELEVISION NEWS
Tell a story of two time in the electronics industry. These two perfectionists build upon their skills in the shop.

Upon completion of training, you will be able to: take two weeks of training and learn about FM and Television Technician - TV Technician and Studio Course.

These Courses - especially prepared for home study - will train you for top-paying jobs in the ever-expanding radio-televisio-electronics industry. You'll be able to write your own ticket to get a better pay job or set up your own business.

EXPERT FM-TV TECHNICAL TRAINING

My FM-TV Technician Course lets you take full advantage of your previous experience - either civilian or Armed Forces. You CAN SAVE MONTHS OF TIME. My FM-TV Technician Course completes your training by providing a thorough background in Frequency Modulation and Television Theory and Practice.

You "Learn by Doing," working with parts and equipment I send you. Six large kits of FM and TV parts are given to you as part of the course. You build and keep a professional GIANT SCREEN TV RECEIVER complete with big picture tube (designed and engineered to take any size up to 21-inch).

Upon completion of your training you may - if you desire - take two weeks of shop training at my associate resident school in New York City AT NO EXTRA COST!

PRACTICAL TV CAMERAMAN AND STUDIO COURSE

My TV Cameraman and Studio Course is designed to train TV Studio Technicians and TV Cameramen, urgently needed today by Television Broadcasting Stations throughout the nation.

New TV Stations are now mushrooming throughout the country. Men who can work as Audio Technicians, TV Cameramen, Microphone Boom Operators, Monitor Operators, Turntable Operators, Central Room Technicians can write their own tickets.

I will train you for an exciting high-pay job as the man behind the TV camera. Work with TV stars in TV studios or "on location" at remote pick-ups.

Available if you want it - a week of actual work with studio equipment & TV Camera at my associate resident school in New York City. This course is a MUST for those who wish to increase their technical knowledge of television operations.

TRAINEE FOR BEGINNERS

My Radio-FM Television Technician Course is especially prepared for men with no previous experience or training. I have trained hundreds of men for successful careers in radio-televisio-electronics. Many of them had only a grammar school education and no previous experience whatever in the field.

Two weeks of intensive shop practice at my associate resident school is also included with this Course.

Radio Television Training Association

52 East 19th Street • New York 3, N. Y.

Licensed by the State of New York • Approved for Veteran Training
Pocket size with a 4 7/8" length scale

an instrument of PERMANENT ACCURACY

in a case that WON'T BREAK

✓ AC CURRENT RANGES
✓ SEPARATE RANGE & FUNCTION SWITCHES
✓ SIMPLICITY . . . ONLY 2 JACKS
✓ EASY-TO-READ, LARGE 4 COLOR SCALES
✓ 43 UNDUPlicated RANGES
✓ MAGNETIC SHIELDING
✓ 3% DC, 4% AC PERMANENT ACCURACY

Accessories Available

Genuine Leather Carrying Case $5.95
Panel Mounting Adapter $1.50

"555" Multimeter complete with probes and batteries at your PARTS DISTRIBUTOR

PhaOstron Company 151 Pasadena Ave., South Pasadena, Calif. U.S.A.
Become a top-notch television service technician

Now . . . RCA INSTITUTES offers modern TV KIT with Comprehensive Television Servicing Course

START to build with a TV Kit developed by one of America's foremost radio-tv schools—RCA Institutes. LEARN with simple step-by-step instruction how to build a modern, large-screen receiver. TEST each stage, as you build, and see how it works. Learn how "trouble-shooting" is applied. FINISH your Home Study Course ready and able to service all make and model sets!

Easy-to-follow instructions are planned and prepared for you through the efforts of RCA Institutes' instructors, engineers at RCA Laboratories, and training specialists of the RCA Service Company.

The RCA Institutes' TV Kit utilizes up-to-date circuits including:
- Synchro-Guide horizontal automatic frequency control circuit.
- Horizontal magnetic reaction scanning.
- Latest deflection circuits.
- FM sound discriminator.
- High-gain, low-noise cascode tuner.

Join the many thousands who have been successfully trained by RCA Institutes for a good job (or business of their own) in television servicing.

BASIC KNOWLEDGE OF RADIO NECESSARY
NO NEED FOR PREVIOUS TV TRAINING

FREE BOOKLET! MAIL COUPON NOW.
RCA INSTITUTES, INC., Home Study Dept. NK-7-55
350 West Fourth Street, New York 14, N.Y.

With no obligation on my part, please send me a copy of your booklet on the TV Servicing Home Study Course and Kit. I understand no salesman will call.

Name: __________________________ (Please print)
Address: __
City: __________ Zone: ______ State: ______

July, 1955
A complete portable 20 watt amplifier system as a fraction of its original cost! Quality is unquestionable—designed and built for "St. B. Navy"! Use on buses, trains, boats, etc.—for military, airport, post office, department store, race track, school, club—anywhere! A complete system that includes a microphone, amplifier, battery charger, and a complete set of speaker leads. The system consists of a 20 watt 6 tube amplifier—its own portable metal case, an electronic megaphone, a battery charger power unit that operates on 110 volts AC/DC and on 12, 24, 48, or 96 Volts DC. 3 cell 6 volt storage battery, tubes, cables, plugs, and 3 page instruction and diagram book. Overall size complete 151/2" x 111/2" x 2". Weight 88 lbs.

ELECTRONIC MEGAPHONE SYSTEM

YOURS FOR ONLY $89.50

- Powerful 20 watt amplifier
- Pistol grip dynamic megaphone

SPECTACULAR MONEY SAVERS

A BUY OF A LIFETIME

PORTABLE ELECTRONIC MEGAPHONE AND AMPLIFIER SYSTEM

COST

U.S. NAVY $1850.00

FOR ONLY $89.50

All Units Brand New and Guaranteed

TRANSISTOR TRANSFORMERS

AT LAST A COMPLETE LINE OF QUALITY TRANSFORMERS FOR EVERY TRANSISTOR APPLICATION AT A PRACTICAL PRICE!

2.75 each

Loss of 10 Assorted: 2.95 Singly, each:

A Nickel-Steel and Silicon Steel laminations, A coils wound on Wood Center Core Leads, Hand wound, epoxy coated and oven cured. A unit that is the result of over 20 years experience in the transformer field and have been tested to meet military standards with comprehensive testing. A wide variety of values are necessary. Unit operates from 12VDC to 100VAC. A unit designed to meet all requirements. Efficiently designed and engineered to provide maximum performance handling and output power. Frequency response with slight roll-off at high and low frequencies. All new nickel-steel laminations. Available in perecentage turns and are designed specifically for your equipment. A wide variety of windings. Average net weight 1 lbs. and shipping wt. 1 lbs.

RAYTHEON TRANSISTORS

QUANTITIES LIMITED

HIGH OUTPUT DYNAMIC MICROPHONE

List Price

$47.60

High quality Dynamic microphone exclusive with the following ad

- 68 - 6,000,000 mks at 500 cycles.
- 5,000,000 mks at 1,000 cycles.
- 1,000 mks at 500 cycles.
- 100 mks at 100 cycles.
- 30 mks at 1 cycle.

$12.95

RADIO RECEPTOR UHF CAVITURER

Imported Direct

- Phono-Prismatic Lenses
- All-Metal Construction
- Individual Focus
- Leather Cases & Straps

BINOCULARS NEVER BEFORE AT THIS PRICE

FREE

RADIO CATALOG

To Speed Response in Your Order Please Mention RADIO TELEVISION NEWS

26
The data that Launched
Thousands of Careers
is yours FREE to show

HOW YOU CAN BE SUCCESSFUL
IN RADIO-TV-ELECTRONICS

Send for Your Booklet Today!

You can plod along for years, getting a paltry increase now and then, enjoying little security, finding your work dull and drab. Then something happens. Things look up. You become more confident. Your earnings rise. You feel more important.

"Lucky," some may say.
"Contacts," others may suggest.

But in your heart, you will know the answer: "Training." And it all may have started the moment you filled out a coupon requesting a copy of a free booklet named "Your Future in the New World of Electronics." From this data you get knowledge of where you stand in Electronics. Tremendous expansion leaves this gigantic industry pleading for trained men. Top manufacturers sold billions of dollars' worth of electronic merchandise in 1954. By 1960, the radio-electronics industry should do no less than 10 billion dollars per year, not counting military orders.

Today there are over 97,000 radio-equipped police cars; an even larger number of taxis are radio equipped (at least 87,000); 32,000 civilian planes have radio; 30,000 American ships have radio.

Today there are over 120,000,000 radios in use. There are 36,000,000 TV sets and 428 TV stations in operation. Color TV is coming into its own. Countless positions must be filled—in development, research, design, production, testing and inspection, manufacture, broadcasting, telemarking and servicing. To fill these posts, trained men are needed—men who, someplace along the line take time to improve their knowledge, their skills. Men who, today, perhaps, take two minutes to send for a booklet.

"Your Future in the New World of Electronics" shows you how CREI Home Study leads the way to greater earnings through the inviting opportunities described above.

However, CREI does not promise you a "snap." With an accredited technical school such as this, you must study to convert your ambition into technical knowledge you can sell in the fabulous Electronics market.

Since its founding in 1927, CREI has provided thousands of professional radio men with technical educations. During World War II CREI trained thousands for the Armed Services. Leading firms choose CREI courses for group training in electronics, at company expense, among them United Air Lines, Canadian Broadcasting Corporation, Trans-Canada Airlines, Sears, Roebuck and Co., Bendix Products Division, All-American Cables and Radio, Inc., and Radio Corporation of America.

CREI courses are prepared by recognized experts in a practical, easily understood manner. You get the benefit of time-tested materials, under the personal supervision of a CREI Staff Instructor, who knows and teaches you what industry wants. This is accomplished on your own time, during hours selected by you, and controlled by your own willpower. This complete training is the reason that graduates find their CREI diplomas keys-to-success in Radio, TV, and Electronics. CREI alumni hold top positions in America's leading firms. At your service is the CREI Placement Bureau, which finds positions for advanced students and graduates. Although CREI does not guarantee jobs, requests far exceed current supply.

Now is the time of decision for you. Luck will not propel you forward unless it finds you trained. Contacts won't budge you an inch unless you have the skill to back them up. The answer is: Technical Training and willingness to learn. Together they will bring you increased earnings in this new Age of Electronics. Fill out the coupon below. Mail it now. We'll promptly send your free copy of "Your Future in the New World of Electronics." The rest—your future—is up to you.

MAIL THIS COUPON Today!

CAPITOL RADIO ENGINEERING INSTITUTE
Accredited Technical Institute Curricula
DEPT. 1728, 3224 16TH ST., N. W., WASHINGTON 10, D. C.
Please send me your course outline and FREE illustrated Booklet "Your Future in the New World of Electronics" describing opportunities and CREI home study courses in Practical Electronics Engineering.

CHECK ___________________________ Practical Radio Engineering
FIELD OF ___________________________ Broadcast Radio Engineering [AM, FM, TV]
GREATEST ___________________________ Practical Television Engineering
INTEREST ___________________________ Aeronautical Electronics Engineering

Name.
Street.
City. Zone State.
CHECK: [] Home Study [] Residence School [] Veteran

To help us answer your request intelligently, please give the following information:

To EMPLOYED BY:

TYPE OF PRESENT WORK:

SCHOOL BACKGROUND:

ELECTRONICS EXPERIENCE:

IN WHAT BRANCH OF ELECTRONICS ARE YOU MOST INTERESTED?

www.americanradiohistory.com
HYCON MODEL 622
5" OSCILLOSCOPE

Now, Hycon brings you a really new oscilloscope, particularly adapted to random signals or low duty cycle pulses. Its unique automatic triggered sweep reduces adjustments, makes synchronization positive, protects phosphors in the absence of signal.

See and operate the new Model 622 at your local electronic parts jobber.

THE NEW 622 OFFERS...
- preset TV sweep frequencies
- 6 mc (±3 db) vertical bandpass
- 5" flat face CRT...undistorted edge to edge
- illuminated graticule with dimmer
- electronically regulated power supplies
- unusually light weight
- AUTOMATIC TRIGGERED SWEEP

BASIC SPECIFICATIONS

VERTICAL AMPLIFIER
Frequency Response: 6 cps to 6 mc; ±3 db; down less than 0.5 db @ 4 mc
Sensitivity: 10 mv rms (28 mv peak-to-peak) per inch
Input impedance: 1 megohm, 40 mmf (±2 mmf) over entire attenuator range

HORIZONTAL AMPLIFIER
Frequency Response: 1.5 cps to 500 kc ±3 db
Sensitivity: 75 mv rms (210 mv peak-to-peak) per inch
Input impedance: 100k, 25 mmf

SWEEP CHARACTERISTICS
Usable writing speed...0.03 sec/in to .3 sec/in

RANGES
a. 10 cps to 300 kc
b. Preset H & V television @ 7875 and 30 cps
c. 60 cps, variable phase line type...automatic triggered or straight triggered (by switching)

SYNCHRONIZATION
Internal, between, positive, negative or AC line
CALIBRATION
Internal 60 cps square-wave .05 volts peak-to-peak ±3%

POWER REQUIREMENTS
115 volts, 60 cycles, 175 watts
SIZE...WEIGHT
33¾" x 10¾" x 18¾"...32 lbs.

HYCON MFG. COMPANY

2961 East Colorado Street • Pasadena 8, California

"Where accuracy counts"

ORDNANCE • ELECTRONIC TEST INSTRUMENTS • AERIAL CAMERAS •
GO NO-GO MISSILE TEST SYSTEMS • AERIAL SURVEYS • BASIC
ELECTRONIC RESEARCH • ELECTRONIC SYSTEMS

RADIO & TELEVISION NEWS
"Submarine, heck! It's supposed to be an airplane!"

Trade-ins are not always what they seem, either. That's why it will pay you, as it has thousands of others, to rely on the one and only "Surprise" trade-in policy popularized by Walter Ashe. For real satisfaction and money saving trade used (factory-built) test or communication equipment today. Wire, write, phone or use the handy coupon.

<table>
<thead>
<tr>
<th>Elmac AF-67 Transciter</th>
<th>Net $177.00.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Carter Genemotors, "B"</th>
<th>Power for mobile transmitters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Input VDC</td>
</tr>
<tr>
<td>450AS</td>
<td>6 @ 29 A.</td>
</tr>
<tr>
<td>520AS</td>
<td>6 @ 28 A.</td>
</tr>
<tr>
<td>624VS</td>
<td>6 @ 46 A.</td>
</tr>
<tr>
<td>450BS</td>
<td>12 @ 13 1/2 A.</td>
</tr>
<tr>
<td>520BS</td>
<td>12 @ 14 A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECCO 10 Meter Trans-Receiver</th>
<th>Designed for spot frequency use for emergency, CD, and net operation. Completely self-contained including batteries. Transmitter uses 20 meter crystals. Fixed frequency receiver has regenerative circuit. Base loaded 36° antenna. Carbon mike input. 1/2 watt input to final. With 5 tubes. Less mike, headphones, crystal, and batteries.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-3 Crystal (specify frequency)</td>
<td>Net $3.87.</td>
</tr>
<tr>
<td>Batteries (2-M30 "B", 1-2F "A")</td>
<td>Net $4.76.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 3030-12. For 12 VDC.</td>
<td>Net $52.50.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elmac Mobile Receiver.</th>
<th>Dual conversion, 10 tubes, less power supply.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model PMR-6A. For 6 volts.</td>
<td>Net $134.50.</td>
</tr>
<tr>
<td>Model PMR-12A. For 12 volts.</td>
<td>Net $134.50.</td>
</tr>
</tbody>
</table>

Walter Ashe Radio Co.
1125 Pine St. • St. Louis 1, MO.

July, 1955
STROMBERG-CARLSON®

COLOR

and Monochrome TV set testing with speed, accuracy, and economy ...

To maintain its reputation for high standards of TV production quality, Stromberg-Carlson subjects its TV receivers to stringent procedures and tests before approval for final assembly. Photo shows Harold P. Field, Test Equipment Engineering Manager, inspecting how famous EICO #211 VTVMs, at all vital TV Alignment Positions, check the sensitivity and align the IF amplifiers of all Color and Monochrome sets—at Stromberg-Carlson's Rochester, New York plant.

NEW! GEIGER COUNTER 2803
KIT $19.95 Wired $29.95
(new 2.5 TC, v. & 2.15 v. batteries.
Super-sensitive.
Detects 0.5 mC/h or above.
With radioactive sample.

NEW! SENSATIONAL!
Wide Band 5" SCOPE #460
Tentative Price $79.95 Wired $129.50
DC to 4.5 mc, usable to above 5 mc. Vert. scan 25 mv/in. Push-pull driveout.

NEW! BATTERY TESTER #584 KIT $9.95 Wired $12.95

Write for FREE Catalog R-7

ELECTRONIC INSTRUMENT CO., Inc.
84 Withers Street • Brooklyn 11, N. Y.
"AUDAR"

By CHARLES P. COX, JR.

SINCE World War II, considerable interest has been displayed among both professional researchers and amateur experimenters alike, in electronic circuits suitable for detection and ranging of distant objects. In this connection, the author recently suggested a modified version of the circuit herein described to the Department of Army, Signal Corps Engineering Laboratories as a means of short distance radar for possible military use.

The photographs and circuits accompanying this article represent the author's original workable model of this device which has been nicknamed "Audar." This title was selected as a contraction of the phrase, "autodyne detection and ranging." The carrier frequency of approximately 500 megacycles was chosen as a compromise between the desire for the shortest possible wavelength with the resultant small antenna dimensions and the economy and practicability of construction afforded by conventional tubes and associated components. This model proved that the circuit design was workable and could be adapted to much higher frequencies, if desired.

Theory of Operation

Those readers who are old enough to recall the earlier days of amateur radio communication will remember the autodyne circuit as a regenerative detector which is so adjusted as to be in a slightly oscillating condition. Such a detector can demodulate and amplify tremendously such frequencies which are within a small percentage of the oscillating frequency of the detector. Thus, the incoming frequency is made to beat with the local detector frequency and the resultant audio beat note is heard in the phones or speaker. This arrangement, while not satisfactory for carrier frequencies modulated by voice or music, was utilized for many years for reception of code signals due to its efficiency and simplicity.

Audar depends upon the oscillating detector to produce a carrier frequency which emanates from a directional antenna. This carrier is frequency modulated at a constant rate of 60 cycles-per-second over a total deviation range of about 25 megacycles bandwidth. The carrier is directed to the target from whence it is reflected back to the antenna, received by the detector, and beat with the local oscillator frequency. Since the oscillator frequency is frequency modulated at a constant rate, the incoming frequency will at all times differ from the local oscillator frequency by a degree proportional to the distance existing between the antenna and the target. Therefore, a beat or heterodyne frequency is produced which is proportional to the distance ranged. If this beat frequency is amplified and converted to power so that a speaker cone can be actuated, it is found that the audible tone goes down as the ranged distance decreases and goes up as this distance increases.

In this circuit, it will be noted in Fig. 3 that a power amplifier stage and speaker have been incorporated in the design of the instrument for audible perception of the distance being ranged. In addition, Fig. 4 indicates a circuit which is not unlike the conventional type of cycle-counter which we call the beat-frequency indicator circuit. The microammeter of this circuit indicates, visually, the distance ranged and may be calibrated in terms of "feet" if so desired.

Construction Hints

As it was deemed at the outset, the model was to be somewhat portable in spite of its dependence upon the 117 volt power line, so it was decided to house it in a 7½" x 7¾" x 15" steel cabinet with handle as shown in the photograph of Fig. 1.

On the rear of the front panel were mounted three sheet metal chassis, 6½" wide by 6½" deep, which are duly supported by triangular brackets as shown in the photograph of Fig. 2. On these chassis were mounted the various components of each of the three sections of the instrument. The bottom chassis supports the power
supply; the middle one—the beat frequency indicator, and the top chassis supports the oscillator, modulator unit, and beat frequency amplifier. The volume control, \(R_a \) of Fig 3, is mounted under the middle chassis with the shaft protruding through the front panel and connected to the power amplifier stage on the top chassis by means of shielded cable. Range switch, \(S_i \) of Fig. 4, is likewise mounted on the front panel along with the meter, power switch, and pilot light assembly. All other controls are mounted either on the individual chassis decks or on sub-panels which can be seen mounted on the two upper chassis decks in Fig. 2. The antenna is introduced by means of the coaxial connector, \(J_a \), mounted above the meter on the panel.

Assembly and wiring is straightforward and presents no unusual problems to the skilled technician, although it is suggested that if a larger case, panel, and chassis decks are utilized the wiring will be made considerably easier, as the construction method shown required a degree of "cramming."

It should be noted that the oscillator wiring, shown in Fig. 3, is to be kept as short as possible and should be mechanically strong for stability. \(L_a \) consists of a half-wave plate line made from two parallel \#10 AWG tinned copper conductors spaced \(\frac{3}{4} \)" apart and each \(\frac{3}{4} \)" long. \(L_a \) is a hairpin loop of \#10 AWG wire about \(\frac{3}{4} \)" wide and \(\frac{3}{4} \)" long and spaced about \(\frac{3}{4} \)" from, and parallel to the open-end or capacitive end of \(L_a \). Spacing of the hairpin loop, in relation to \(L_a \), will be somewhat critical and will depend, to some extent, upon the antenna design. The oscillator, after assembly and wiring, was shielded by means of an aluminum channel-type of chassis about \(\frac{3}{4} \)" wide, \(\frac{3}{4} \)" long, and \(\frac{3}{4} \)" deep. The speaker is bolted to the aluminum chassis and aligns with a 4" hole cut in the rear panel of the cabinet. RFC, is an air wound r.f. choke consisting of 19 turns of \#20 AWG enamelled copper wire with an inside diameter of \(\frac{3}{16} \)" and a finished length of \(\frac{3}{4} \)". This choke is connected to the mid-point of the plate lines as shown in Fig. 3. RFC, and RFC, are likewise air wound r.f. chokes consisting of 12 turns of \#20 AWG enamelled copper wire, 3/16" i.d. by \(\frac{3}{4} \)" long. C, in Fig. 3 is a magnetically-activated variable capacitor used in the APN-1, altimeter and readily available as a war-surplus item for a few dollars.

The power supply, shown in Fig. 5, was designed to furnish 200 volts by adjustment of \(R_s \), with a degree of freedom from line voltage fluctuation, to the oscillator-amplifier section. Voltage regulation in the beat frequency indicator section of Fig. 4 is maintained by the 0A2 voltage regulator tube.

The antenna design may vary according to the individual preference of the builder and, indeed, the instrument could be utilized as a means of testing various antenna designs. The author used the helical, the yagi, and the folded dipole with reflector at various times in experimentation. Best results should be obtained when the antenna and transmission line are designed for about 72 ohms impedance and the antenna is made as directional as possible at 500 megacycles.

Adjustment and Operation

The approximate mean carrier frequency of the completed unit can be...
checked by disconnecting the energizing lead to C, and adjustment of R, of Fig. 3 to a point where oscillation is just begun, as indicated by a slight grid current drain of the 6J6. This current should not exceed 5 milliamperes with the antenna connected. Lecher wires will now indicate the approximate carrier frequency, which should lie somewhere between 450 and 500 megacycles.

C, can now be re-energized and its amplitude and the resultant deviation of carrier frequency adjusted by means of R, of Fig. 5. Deviation can be checked by means of Lecher wires, by measuring the average a.c. voltage developed across C, at any given setting of R,. By substituting a d.c. voltage of like magnitude to C, with the Audar unit oscillating, the resultant frequency can thus be determined and the difference between this frequency, and the average mean carrier frequency, multiplied by a factor of 2 will indicate the total carrier deviation frequency for a particular setting of R,.

If the antenna is aimed at a target, say 100 feet away, and R, of Fig. 5 is adjusted for a total frequency deviation of 25 megacycles (12.5 megacycles either side of the mean carrier frequency), then by use of the following formula:

\[F_0 = 3 \times 10^2 \times \frac{2D}{186,000 \times 5280} \]

where: \(F_0 \) = best frequency in cycles to the speaker or beat frequency indicator, and \(D \) = distance to the target in feet.

then:

\[F_0 = 3 \times 1,000,000,000 \times \frac{2\times 100}{186,000 \times 5280} \]

or:

\[F_0 = 3 \times 1,000,000,000 \times 0.0000002 = 3 \times 200, \] or \(F_0 = 600 \) cycles

This would indicate that a beat frequency of 600 cycles would be heard in the speaker when the instrument was ranging a target 100 feet from the antenna. If the distance is increased to 200 feet, then the frequency will increase to 1200 cycles; whereas, if the distance is made 50 feet then, the beat frequency will be about 300 cycles.

The beat frequency indicator circuit of Fig. 4 can be properly calibrated by means of an audio frequency signal generator. However, it should be noted that should the indicator needle deflect with the input disconnected or a continuous deflection be noted irrespective of input frequency, the wiring should be checked for possible cause of oscillation between stages or stray pickup of 60-cycle hum from the filament supply or power supply. Range switch S, of Fig. 4, when in position 1, should read exactly full-scale at 500 cycles input frequency, provided that input voltage is of an amplitude of 1 volt or more and less than 200 volts. The meter scale reading on range position 1 is calibrated by means of meter shunt, Rm. Position 2 has a full-scale indication range of 5000 cycles and is calibrated by means of R, whereas, position 3 should indicate full scale at 50,000 cycles and may be calibrated by Rm. Thus, as long as a carrier frequency deviation of 25 megacycles is maintained, the distance measurable by position 1 of the range switch is from 0 to 83.3 feet; for position 2, ranging distance is from 0 to 833.3 feet; for position 3, ranging distance is from 0 to 8333.3 feet.

The instrument was found to be accurate to within 10% on all ranges. The maximum range seemed to extend to about 2500 feet over water or flat terrain, provided the target had a flat area facing the antenna which was in excess of at least one square foot. This distance increased to about 3500 feet when used for ranging planes in the air.

Possible Uses

This instrument, it would seem, would be of particular interest to the small boat owner who could utilize the ability of the instrument to penetrate fog and darkness to discern shore lines, channel buoys, other craft, and similar obstructions.

With a suitable vibrator-type power supply the instrument could be used by small planes as an economical but accurate absolute altimeter. With the large area of the ground as a target, it would seem that the upper altitude limit would be extended to about 5000 feet or more. In fact, the Audar unit favors, in theory of operation, the absolute altimeter but is simpler, more economical to construct and operate, and uses but a single antenna for both transmission and reception of the frequency-modulated signal.

Other than the uses previously described, the construction of this unique instrument makes an interesting project for the technician who enjoys experimenting with an electronic device whose uses are limited only by the range of the imagination.

Fig. 4. Schematic diagram and parts list covering the beat frequency indicator.

Fig. 5. Circuit diagram and parts list for building the power supply for unit.

July, 1955
1955 EMERSON
TEST POINTS

By HAROLD BERNSTEIN
Service Manager
Emerson Radio & Phonograph Corp.

These new chassis have some unique features; using the provided test points will insure rapid servicing.

EMERSON'S new side-tuned chassis 120245-D, 120255-F, 120256-F, and 120259-F used in Models 1130D, 1106H, J, 1106L, N, 1104F, J, and 1114D, F, utilize an extremely high efficiency horizontal deflection system and high-voltage supply. A filtered "B+" supply of only 125 volts is needed to energize the horizontal sweep and develop about 350 volts of "B+" boost which is then used to insure adequate sweep and high voltage. This low operating voltage can be supplied by a single selenium rectifier and an a.c. input of between 105 and 125 volts. The model 1130 using chassis 120245-D is an a.c.-d.c. model.

The rest of the circuitry used in these chassis is fairly conventional except for the use of a sound reflex circuit and a low-voltage deflection system. By taking the 4.5-mc. intercarrier sound beat from the output of the video detector and feeding it back to the second i.f. stage where it is amplified and fed directly to the sound limiter, a sound i.f. amplifier tube is saved without any change in over-all performance. This is accomplished simply by using two resonant circuits in the grid circuit and two resonant circuits in the plate circuit of the second i.f. stage. One plate and grid circuit is made resonant at about 44 mc., while the other plate and grid circuit resonates at 4.5 mc. This stage will, therefore, amplify 40-mc. signals as well as 4.5-mc. signals without any interaction between the two.

Few test points are needed on the top side of the chassis in these sets since one section of the bottom of the cabinet is removable, as shown in Fig. 2, making approximately 90 per-cent of the components and all of the tube sockets (except for the tuner) accessible. Therefore, aside from a tuner test point (which indicates if the r.f. oscillator is working and should measure −1 to −5 volts), a "B+" test point (125 volts on one side of the brightness control), and a horizontal oscillator alignment point, all others are accessible from the bottom of the chassis while it is still mounted in the cabinet. Table 1 indicates the various test points and their uses.

In the event that a heater of one tube should open up in a group of tubes whose heaters are connected in series, the heaters of all tubes are extinguished. Therefore, irrespective of which tube heater fails, picture and sound are lost and a new simple approach must be made to locate the defective tube. Tube substitution is one method, but this is slow. Following are simple quick checks which can be made by the technician in the home. Two methods are given—one from the top of the chassis and one from the bottom of the chassis.

To locate open heaters from the top of the chassis, use an ohmmeter or continuity checker. The ohmmeter should be set to a low scale and no more than a 3-volt battery used in the continuity checker. This is important
especially when checking for continuity or resistance across a 3-volt tube such as the 3CD6. A simple inexpensive continuity checker can be made with a 3-volt battery in series with a #40 pilot light bulb.

Refer to the tube location diagram, Fig. 3, and remove Vs (5U8, sound limiter and sync separator). Check continuity between pins 4 and 5 of the 5U8. If OK, then rest the a.c. plug on the chassis, making sure a good electrical contact is made with both prongs. Check continuity between the 5U8 tube socket hole 4 and the chassis (with the 5U8 tube removed). If OK, then the trouble should have been found in the previous check. If not OK, then the trouble lies in one of the following: Vs, Vg, Vp, Vp2, Vp3, Vp4. If the tube heater resistor if used, or the line to the a.c. plug.

The trouble could be further isolated to the exact tube by using the previous procedure on the string of 5 or 7 tubes which tested open. Note: When looking at the top of a tube socket, be sure to count pin numbers in a counterclockwise direction from the keyway or wide pin-spacing reference point.

To locate an open heater from the bottom of the chassis, use an a.c. voltmeter set for 150 volts or more. Starting with Vs (12AX7), check the heater pins of each tube (keep low side of meter to chassis and turn chassis “on” with power supplied to set). When you get to a tube which reads 117 volts a.c. on one side and zero on the other, you have located the defective tube.

Note: Since one side of the chassis is connected to the a.c. line, it would be best to polarize the a.c. plug properly (Continued on page 105)

Table 1. Procedure for servicing the new Emerson side-tuned TV receivers via the use of the test points shown in Fig. 2.

<table>
<thead>
<tr>
<th>TEST POINT</th>
<th>NORMAL READING</th>
<th>SYMPTOMS</th>
<th>CIRCUITS INVOLVED</th>
<th>TEST PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuner test point (top of chassis).</td>
<td>-1 v. to -5 v.</td>
<td>Weak or no picture. No sound.</td>
<td>R.F. oscillator.</td>
<td>Grid conduction of the mixer due to the oscillator voltage develops this voltage which varies from channel to channel. Check other channels; if OK, change oscillator strip of affected channel; if not, check voltage to the tuner. This should be 115 volts. If it is much lower, disconnect the “B+” input to the tuner and measure the “B+” again. If OK, then there is a short in the tuner. If still low, check the power supply.</td>
</tr>
<tr>
<td>Power supply 125-volt point (function of filter choke and 120-ohm resistor). “1” on Fig. 2.</td>
<td>125 v.</td>
<td>No sound. no raster.</td>
<td>Power supply.</td>
<td>Check fuse. 5-ohm surge resistor, and rectifier. If fuse keeps popping, check “B+” points for shorts. Disconnect electrolytic filter capacitors and reconnect one at a time.</td>
</tr>
<tr>
<td>A.G.C., pin 1 of Vs, SUB. “2” on Fig. 2.</td>
<td>-8 v. to -6 v., depends on signal strength.</td>
<td>Weak or no picture. No sound. Baster OK.</td>
<td>Power supply or circuits which it feeds.</td>
<td>Resistance from 125-volt point to chassis should be 18,000 ohms. If lower, find which feedline has a short. In the event that the short appears only when the set is on, disconnect all leads from the 125-volt point and add one at a time until the voltage is materially reduced.</td>
</tr>
<tr>
<td>Sound limiter, pin 2 of Vs, SUB. “9” on Fig. 2.</td>
<td>-2 v. to -18 v., depends on signal area.</td>
<td>No sound. picture and raster OK.</td>
<td>I.F. circuits.</td>
<td>If a.g.c. is over 10 volts negative, an i.f. stage is probably oscillating. If a.g.c. measures high on a weak signal, then an i.f. stage may be regenerative. Check the dress of components near detector, the alignment of the i.f. stages, and the screen bypass capacitors.</td>
</tr>
<tr>
<td>Sync separator, pin 9 of Vs, SUB. “4” on Fig. 2.</td>
<td>-12 v. to -30 v. depends on setting of contrast control.</td>
<td>Poor or no vertical and horizontal sync. Picture and sound OK.</td>
<td>Sync separator and video amplifiers.</td>
<td>For severe picture overload, check components in the a.g.c. circuit. If picture and sound are weak where they should be strong, then the signal is not getting through the tuner or i.f. circuits. Voltage and resistance readings on tuner and i.f. stages (i.e. coils included) should indicate the trouble.</td>
</tr>
<tr>
<td>Vertical oscillator, pin 1 of Vs, 6SN7. “5” on Fig. 2.</td>
<td>-9 v. to -14 v.</td>
<td>No vertical sweep, insufficient vertical sweep, and/or vertical fold-over.</td>
<td>Vertical multi-vibrator.</td>
<td>Good reading means audio is getting to this point. If reading is low on a strong channel, then trouble is due to alignment or reflex transformers. If reading is normal but varies from channel to channel and is lower on unused channels, the trouble is in the following stages. Check pin 9 of Vs (44 v.) and pin 3 of Vs (105 v).</td>
</tr>
<tr>
<td>Horizontal oscillator, pin 5 of 25CD6 GA. “6” on Fig. 2.</td>
<td>-20 v. to -30 v.</td>
<td>No high voltage (no raster) due to defective horizontal oscillator.</td>
<td>Horizontal oscillator, horizontal control tube. “B+” circuits.</td>
<td>If the reading is OK, the trouble may be due to severe video overload (i.e., i.L. or video amplifier), or to defective sync phase inverter circuit. If the reading is incorrect, check components between plate of video amplifier and grid of sync separator.</td>
</tr>
<tr>
<td>Pin 4 of 6SN7. Vs. “7” on Fig. 2.</td>
<td>-50 v. to -60 v.</td>
<td>Vertical sweep, insufficient vertical sweep, and/or vertical fold-over.</td>
<td>Vertical multi-vibrator.</td>
<td>If the reading is OK, check the electrolytic capacitor from the cathode of the vertical output tube to the chassis. Check also, the .1 µfd. capacitor in the grid circuit and the vertical output tube and the vertical winding in the deflection yoke. In the event that the reading is incorrect, check the “B+” at pin 2 of Vs (10 v. to 70 v. depending on size control setting), “B+” at pin 3 of Vs (118 v.); the .01 µfd., .001 µfd., and .0047 µfd. capacitors in the circuit of Vs.</td>
</tr>
<tr>
<td>If the voltages check, then the trouble is due to high voltage and not to the horizontal oscillator. In the event that the voltages are not OK, check the oscillator or boost circuits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONSTANT-VOLTAGE SOUND SYSTEMS

By ABRAHAM B. COHEN
University Loudspeakers, Inc.

Method of sound distribution that is most practical for multi-loudspeaker installations of practically any type.

The constant-voltage distribution system has been widely used by public utilities because of its inherent advantages for power distribution work. The audio field, taking its cue from the utilities, may now realize for itself the many benefits to be derived from the "70.7 constant-voltage" audio power distribution system. The advantages of this method are: (a) Elimination of impedance matching of the load to the line; (b) Ease of adding or removing a section of the load without resetting master gain controls; (c) Ability to proportion the individual sound outlets to fit specific local needs without upsetting other local outlets; (d) Reduction of audio power losses in attenuators by eliminating individual speaker branch attenuators in favor of vari-tapped constant-voltage transformers; (e) Simplicity of choosing amplifier equipment through standardized power output ratings on a constant-voltage basis; and (f) Reduction of overload failures of sound units when "power matched" to a constant voltage line system.

These benefits stem from the fact that if the line voltage of the distribution network is maintained constant then the various speakers that are added to the line may be considered in terms of rated watts, rather than in rated impedances. The loudspeakers used with this type of system need to be designated in wattage input steps to the unit for the 70.7 constant-voltage line feeding it. This is analogous to power type of equipment being rated in input watts for the power line voltage of 110 (constant) volts. Fig. 1 illustrates such a sound driver design to operate at full efficiency not only on the constant-voltage system but likewise on constant-impedance systems if necessary.

It will be observed that the terminal board designations are given on a wattage basis for the 70.7-volt line. This simply means that when connected to the 20-watt tap, the driver unit receives 20 watts; or when connected to the 5-watt tap, it takes 5 watts of audio power. The sound output will naturally be in proportion to the power input. Accordingly, then, it becomes a simple matter to get the necessary sound power from such a unit by simply tapping into the right power rating terminals, from the 70-volt line. It will be observed, however, that these same terminals are also rated in terms of input impedance across the 70-volt line which produces the indicated power. We will have more to say concerning these alternate ratings later, but first let us see what we may do by simply using the wattage ratings of such a unit for the constant-voltage system.

Planning a sound system is very much like laying out a lighting system. In problems of illumination, one determines by experience or by photo-measurements how much light is needed in given areas and how that light is to be distributed. Then appropriate light sources are installed. Similarly, for sound systems, one makes a survey of the sound needs by means of sound survey meters, or by experience, or by the use of available tables and literature, and a plan for the sound distribution is developed that calls for specific sound powers to be delivered in given areas.

Fig. 2 illustrates a small plant installation requiring three different levels of sound coverage as determined by the noise considerations of the various areas and the size of these respective areas. The busy office may require 1 watt of audio power, the stockroom 10 watts, and the factory area 30 watts. The project now becomes one of determining the means by which these different values of audio power may be obtained. If the amplifier were a 70-volt constant-voltage type, then with the type of driver unit illustrated, one would simply choose the proper wattage tap on the input terminal board and the installation would be complete. As simple as this procedure seems to be on paper, it is not in any way oversimplified. The design of the driver unit and its integral "power matching" transformer makes the use of this system as simple as it sounds. Although the transformer is rated in wattage, it must present to the amplifier some very definite impedance. The actual impedance that the constant-voltage amplifier will see will be the speaker impedance modified by the step-up ratio of the transformer. Fig. 4 gives, in tabulated form, the primary
impedances of the transformer for the secondary impedance load of 16 ohms (which is the speaker voice coil impedance). These primary impedances are the impedances that the constant-voltage amplifier actually sees, and the power that the amplifier will deliver into each of these taps will be readily derived from Ohm's law, as shown in the tabulation. Thus, although the user of this driver unit on a constant-voltage system doesn't have to know what the impedance of the tap is from which he expects a certain power input to the driver, yet the designer of the unit takes it into account.

Since the constant-voltage amplifier maintains its output at a constant 70.7 volts irrespective of the impedance it sees, one may indiscriminately run up and down these transformer taps, selecting whatever power input to the speaker best suits the acoustical conditions, without upsetting any amplifier operating characteristics. One may now plant loudspeakers in any location, and after the other, simply by plugging them in (like an appliance) across the 70.7 constant-voltage line without upsetting previously installed speaker inputs. Furthermore, each loudspeaker may be adjusted to give the desired output without upsetting the loudness adjustment of the other. There is, of course, a practical limit to the number of speakers that may be put across one amplifier. This limit is naturally fixed by the present-day capabilities of the amplifier. Thus for a 100-watt amplifier, any number of speakers may be installed provided that the total power drawn by all of them does not exceed 100 watts.

The real value of this constant-voltage system cannot be fully appreciated, however, until one examines a typical installation of the constant-impedance, rather than the constant-voltage, type. The constant-impedance installation is, of course, of the type where the total impedance of the speaker system installation must match the amplifier impedance for maximum power output. Let us assume that we have two 16-ohm impedance speakers to be installed in two different locations requiring different power inputs, but both operating from the same amplifier. If the output impedance of this amplifier is 8 ohms, then we may arrange the speakers in a parallel circuit giving a resultant load impedance of 8 ohms which will match the amplifiers, as shown in Fig. 3. Now if on this constant-impedance system one of these speakers is to be operated at a lower power than the other, then an attenuator will have to be put in this speaker branch as illustrated.

If 5 watts is to be fed into the unattenuated 16-ohm speaker, then the gain of the amplifier will have to be such that the voltage developed is close to 9 volts. But now, how about the speaker that only requires 1 watt of input power? In order to reduce its input power to 1 watt, the attenuator in its circuit must be turned down until the voltage across the driver unit is 4 volts (even though the input to the attenuator still sees the 9 volts of the line). If the attenuator is matched in impedance to the speaker, then this 16-ohm pad must be receiving a full 5-watts input. But if it delivers only 1 watt to the speaker, then 4 watts of audio power must be burned up in the attenuator. This is the price that must be paid in amplifier power for level control by means of attenuators.

It will, of course, be realized that this case is oversimplification of fact, for actually in a complex multi-speaker installation of many branches, these attenuator power losses may add up to a value that will make the initial power amplifier equipment large and expensive simply to handle the attenuator losses. In the simple illustrative problem just discussed, the two-speaker installation requiring a total of 6 watts of audio would draw only 6 watts from the constant-voltage amplifier, but would draw 70 watts of amplifier power from the constant-impedance type of amplifier for the same speaker power input.

Impedance matching serves only one purpose in life: to get maximum power from a system. If we have a system where impedance mismatch does not upset the power relationship, then there is no problem about impedance match. If the amplifier used in the system is of the constant-impedance type where the power delivered to the load is simply a function of the load impedance and not the impedance match, then we can throw away our problems of load matching. This is exactly what the 70-ohm system accomplishes. The loudspeaker itself is always across the full secondary of the transformer as shown in Fig. 4, but the primary is tapped so that when the 70-volt line is connected to a given section of the primary winding, the amplifier will see a given impedance; and deliver to that tap a corresponding electrical power. Thus, it will be observed that if the full primary is put across the line, the voltage to the secondary is stepped down the most, giving a low power input to the speaker. As the line is connected to smaller sections of the primary of the transformer, the voltage step-down to the secondary is decreased, developing more voltage on the primary and consequently delivering more power to the speaker.

However, since in setting these wattage ratings for the convenience of the user of the 70.7-volt system it has been necessary to definitely use the concept of impedance in the design of the unit, we might just as well take full advantage of the impedance ratings of the various sections of the constant-voltage transformer for applications when the 70.7-volt system is not available, but where instead the constant-impedance system is in use. For instance, ten such units, of the type illustrated in Fig. 4, may be connected in parallel across their 16 ohm input taps giving a total resultant impedance of 1.6 ohms.

This will, of course, match commercial power amplifier output ratings of 16 ohms. In this case, however, the power that each unit will receive will be dependent upon the gain setting of the power amplifier. If this main power amplifier has sufficient reserve power, then any power from zero watts up to the rated unit input power of 30 watts may be applied to each unit when so connected. The fact is that on a constant-impedance basis the power input to the unit is entirely variable, depending entirely upon the gain setting of the amplifier no matter what impedance tap is used on the unit.

Take, for example, an amplifier that has a 500-ohm output for a long line distribution, such a line may be loaded down with four of these units combined.
You can make a.c.-d.c. radio servicing pay if you use faster methods. Here's one approach that has worked.

We'll assume that your defective set is a five-tube a.c.-d.c. radio. Since television has become top entertainment in the average home, many of these faithful little radios are left to collect dust after they become inoperative. In most cases, only a simple defect has developed which can be easily corrected, and the set restored to useful operation again. The circuit of a conventional five-tube superheterodyne receiver is shown in the schematic diagram of Fig. 2. Either standard octal-base or pin-type tubes are indicated for use in corresponding stages. A rectifier tube is used, but conditions are similar if a selenium rectifier is found instead.

Before any tests are attempted, a preliminary inspection should be made to discover possible symptoms indicating the source of trouble. Many times such a routine inspection immediately finds the fault. However, even these simple checks should be done in some sort of order because we are now interested in saving as much time as possible. Before you remove the chassis, check the line plug and connecting cable for loose or broken connections. Remove the back from the set and check the antenna connections. Connect the plug to the power line and turn the switch on. If nothing lights up, you probably have a dead tube. If a set of tubes is available, try replacing tubes to restore operation. Otherwise, pull the chassis from the cabinet and turn it bottom side up. With the set turned on, connect your test leads to the 150-ohm resistor and apply it across the heater terminals on each tube base in turn. The heaters of tubes in a.c.-d.c. sets are all wired in series and if one burns out the whole string goes dead. Jumping the terminals of the burned-out heater with the resistor completes the circuit and the other tubes will light.

Your first suspect is the rectifier tube with the output tube usually next, since more power is consumed in the heaters of these tubes than by the others. When the rectifier heater burns out, the pilot light usually burns out, too, and will require replacement.

The next test is made on the power supply to find out if operating voltages are present. This test can be made in two ways. One way is to connect your two test leads to the 150-ohm resistor, and connect the free end of the black lead to "B". (Note that "B" here is not the same as chassis ground. To reduce the shock hazard in these circuits, "B" is floated above ground by capacitor C and resistor R in Fig. 2.) The red lead is then touched momentarily to a high-voltage point, such as the junction of C and R. If voltage is present, the momentary contact causes a spark, and a "pop" is heard in the speaker, caused by the sudden change of current in the circuit. Don't hold this contact longer than a moment, or some other component may be damaged by the shorting of the power supply.
The second method of testing for voltage is made with the 8-µfd. filter capacitor. Connect the test leads to the capacitor terminals observing polarity (red to "L", black to "E"). With the black lead connected to "E", connect the red lead directly to the high-voltage point and wait a few seconds for the test capacitor to take a charge. Then disconnect the red lead and immediately touch it to the black lead, shorting the test capacitor. A fat spark indicates that operating voltage is present at the point of contact in the circuit.

Using either of these two test methods, any point in the power supply can be tested for operating potentials. After a little experience, the size of the spark obtained will indicate expected relative values of voltage at different points in the circuit.

Suppose no spark was obtained when the test was made on the input filter capacitor, Cm. The trouble could be in Cm or in the rectifier tube. Disconnect the positive lead of Cm and connect your test filter capacitor as a substitute. If voltage is available now, Cm is bad and should be replaced. If still no voltage is obtained, then attention is directed to the rectifier tube. Similar tests are made on the other filter capacitors, C1 and C2. Suspected filter resistors, Rm and Rm, are checked by shunting them with your 150-ohm test resistor, one at a time. If no voltage seems to be coming into the set, check the switch by shorting a test lead across its terminals (always assuming, of course, that you are not plugged into a dead power line). An examination of the circuit in Fig. 2 will readily indicate other points in the power supply at which to make a jumper test.

A check on the loudspeaker normally comes next. However, the spark test for voltage may have produced audible clicks or pops in the speaker, indicating that this unit is operating. An additional test of speaker operation can be made by connecting your 0.02-µfd. test capacitor from the a.c. line or a heater prong on one of the tube sockets to the plate or grid of the output tube. A hum should be heard if the speaker is operating OK. In this test you are picking up the 60-cycle power line hum and feeding it through to the speaker. The hum will be louder if the output tube can be used to amplify the signal by feeding it into the grid of this stage. Press the speaker cone lightly for a test on the voice coil connections. Examine the rim of the cone for secure mounting to the speaker frame.

Stage-By-Stage Tests

You can now turn your attention to a stage-by-stage test. Use either the 150-ohm test resistor or the test filter capacitor to check for voltages at the plates and screen grids of the tubes, working back from output to input. As you do this, listen for clicks in the speaker upon initial contact with the test lead. This will give you a general idea of the ability of the stage to pass a signal. The plate of the detector-audio stage, V3, normally operates with less voltage than the other tubes, but once again, a little experience will tell you the normal voltage indication to expect from this stage.

A signal test can be made on each stage to determine whether it is operating. Connecting a test lead to the grid of the i.f. tube and tapping the other end of the lead against the chassis produces clicks in the speaker if this and all following stages are operating. This test produces similar results when made from the signal grid of the mixer tube or from the antenna terminal connecting to the tuning capacitor.

This test method can be used on the audio grids as well to produce a hum in the speaker. For a better test on the audio stages, you can pick up a hum signal from the a.c. line or from a tube heater and couple it through your 0.02-µfd. test capacitor to the plates and control grids of these stages in turn. As you work back from the plate of the output tube, the hum in the speaker will increase with the increased amplification of each audio tube.

When the faulty stage has been found, the component substitution test is made to isolate the defective part. For this test, use the 0.02-µfd. capacitor and the 150,000-ohm test resistor.

(Continued on page 127)
TEST INSTRUMENTS NEED CALIBRATION

By WALTER H. BUCHSBAUM
Television Consultant
RADIO & TELEVISION NEWS

Why not stop "second guessing" your meters and calibrate them, now that you have time on your hands. Accurate-reading instruments save time.

The summer months are usually marked by a slump in radio and TV service work and afford the alert technician an opportunity to attend to some of the chores neglected during the busy part of the year. Organizing the bookkeeping, restocking the parts shelves, and similar activities often wait for the summer months and many service technicians also look after their test equipment and tools at that time. Calibrating the various test instruments is another important job for the slack season.

This article deals with the check and calibration work which the average service shop can do, without investing in expensive precision test equipment.

Basically all the instruments in the service shop can be divided into two types: the generating equipment and the measuring equipment. Into the first classification fall signal generators, sweep generators, oscillators, square-wave and pulse generators, and even test receivers which provide a test signal from a station. Measuring devices are all kinds of meters, tube testers, and oscilloscopes.

In the course of ordinary troubleshooting these two types of instruments are generally used to measure or test each other's performance. Thus, the output of the sweep generator is eventually displayed on the oscilloscope. The test set-up illustrated in Fig. 1A can be changed by removing the TV receiver and connecting directly to a detector as shown in Fig. 1B. In this manner, the oscilloscope display is an indication of the sweep generator performance and output flatness. This can be used for calibrating other generators, as will be explained later. The oscilloscope itself is subject to calibration and it may be necessary to calibrate it before it can serve as a standard of comparison.

This illustrates the fundamental requirement of any calibration procedure, and that is that some kind of standard, a known, accurate value of an electric parameter, must be used against which the other instruments can be compared. A standard for frequency and one for voltage, current, or resistance is required for the test equipment found in radio and TV service shops.

Calibration Standards

Frequency standards for the calibration of extremely accurate devices are usually called "secondary" standards, such as the type TS-173 frequency meter used by the Armed Services. Receivers tuned to station WWV, the government-owned radio station which transmits code signals at accurately fixed frequencies, are also used as standards. For radio and TV work the broadcast stations themselves serve as frequency standards, since their accuracy is the ultimate required from home receivers. In addition to those station signals, intermediate frequencies are also needed and these can usually be checked by comparison with crystal oscillators.

Accurate voltage or current sources are not quite so easily available. One of the simplest is batteries and neon bulbs or other gas-filled tubes. The accuracy of the battery voltage is unfortunately dependent on the age and the state of charge, but gas-filled tubes are remarkably uniform in their firing voltages. In order to permit a variety of calibrations to be performed with the voltage standards, a set of accurate resistors is required. These resistors will also come in handy for the calibration of the resistance and current ranges. For this reason we recommend a set of 2-watt, film-type resistors having an accuracy of 1%. Suitable values are 100 ohms, 500 ohms, 9000 ohms, and 90,000 ohms. These values can be combined to provide a great variety of standard voltages.

Frequency Calibration

When a sweep generator has an r.f. marker available, it should be calibrated first and then it can be used in conjunction with the oscilloscope to help calibrate other signal sources.

To check the calibration on a TV station, connect the sweep generator as shown in Fig. 1A. Tune the TV set to a local channel; tune the sweep generator to the same channel and observe the scope presentation. In order to see the station sound and video carriers as illustrated in Fig. 2, it may be necessary to reduce the sweep generator output and increase the oscilloscope gain. Now, tune the r.f. marker generator until the marker pip coincides with the station video carrier.

Having followed thus far, the technician now probably finds that the marker generator dial indicates a frequency other than that of the video carrier. It may be possible to shift the frequency dial to correct the error, but this may throw off other frequency bands. The simplest method is to first...
note down each dial reading and the actual frequency, and then decide after the entire unit has been calibrated how the correction should be made. In some generators there is an internal or external trimming adjustment which permits accurate calibration. Other units allow for calibration by a shift in the frequency indicating mechanism. In either event, the manufacturer's instructions should be carefully followed.

After the individual channel signals have been fully utilized, it may be possible to get lower frequencies directly from the marker signal by using the principle of harmonics. For example, the RCA WR-39 TV calibrator has crystal calibration available at 2.5 mc. and 25 mc which can be utilized in the following manner: Assume that channel 4 is available and the setup of Fig. 1A is used. First, set the r.f. marker at the video carrier of channel 4, 67.25 mc. Next, turn on the 25 mc crystal and vary the crystal adjustment control until the marker and crystal oscillator signals zero beat. (In the RCA WR-39, a speaker is provided; earphones can be used with other units.) Once the 25 mc crystal oscillator has been calibrated, the various i.f. frequencies can be checked by first zero beating with the 2.5 mc, and then with the .25 mc crystal for final accuracy.

Other signal generators not having built-in crystal oscillators can be calibrated in the same manner if an additional generator is used as the intermediate or transfer oscillator. Many of the r.f. generators used for radio work operate at 250 kc and this is then mixed with the station carrier marker. Since the relative signal amplitudes of the various generators will probably not be known in advance, some adjustment must be tried in the equipment that is not readily obtainable. If the signal is too weak, the audio section of the TV set can be used as an indication of zero beating by connecting the two signals directly to the volume control. Other methods of calibration are also possible, especially where accurate equipment is readily available.

A word should be said here about the use of calibration charts or graphs. Fig. 3A is a portion of a typical calibration chart, and Fig. 3B, a typical graph. The former is preferable when the same frequencies are always used, as in radio and TV servicing, while the latter is more suitable for experimental work since it requires careful reference and interpretation, while the chart immediately tells the exact frequency at a glance.

Practice has shown that for service shop operation, the chart should always be kept next to the generator and in an easily visible spot. Some technicians simply type or letter the chart, paste it to the top or side of the generator, and forget about it. In less than three months the chart is usually illegible, torn, and dirty. A much better solution is to sandwich the paper between two sheets of transparent plastic and fasten this to the generator with strong wire. One really elegant service technician uses surplus military map cases for this purpose.

Voltage Calibration

As previous articles in Radio & Television News have pointed out, the oscilloscope is a voltage indicating device and can be used as a voltmeter. It is especially useful for a.c., but can be calibrated with d.c. Usually, the vertical axis is used for voltage indication and this is calibrated simply by connecting a voltage of known amplitude to the vertical scope terminals. Most of the voltage standards are d.c. When a d.c. voltage is applied to the oscilloscope terminals, the base line will jump up or down by a certain amount. This corresponds to the applied d.c. potential. To calibrate the oscilloscope, therefore, simply connect a battery to the scope with a means for rapidly interrupting the circuit. A transmitting key or switch, as shown in Fig. 4, is sufficient. The resultant scope presentation is shown in Fig. 5, the separation between lines represents the applied calibrating voltage.

If a 1.5-volt battery is used for this, adjust the vertical scope amplifier until the separation between scope traces is 15 divisions, then the scope is set for .1 volt per division. If the lines are separated by 3 divisions, then the scope is calibrated for 1 volt per 2 divisions. The other ranges can be calibrated in a similar manner, using larger voltage sources such as gas tubes.

Regulated power supplies usually use a gas tube as the voltage reference because this tube has the characteristic of maintaining a fixed voltage across itself. As an example, refer to the circuit of Fig. 6, which shows a VR105 connected for calibration purposes. This tube conducts and glows when the voltage across it exceeds 105 volts. Any increase in input voltage results in an increase in current through the tube, but the voltage across the tube remains constant over the range of current from about 5 to 30 milliamperes.

Knowing that the voltage across the tube is 105 volts, we can calibrate a d.c. meter against it or else use it as a voltage standard for the oscilloscope. It is only necessary to rig up a circuit like that in Fig. 6, using the “B-” from a TV set as a source, for example, and adjust the variable series resistor until the VR tube glows. Then we know that the firing voltage is present. A voltage divider made up of the 1% precision resistors shown in Fig. 6 will allow suitable fractions of the total calibration voltage to be available.

In addition to the VR105, regulating tubes are also available for 150 and 75 volts, and a simple neon bulb like the NE-51 provides a voltage drop of 51 volts. Furthermore, it is possible to connect several VR tubes in series, and use a much higher voltage. The accuracy of the VR tube method of calibration probably does not exceed ±2%, but this is sufficient for most service applications.

One of the most useful aspects of a

(Continued on page 115)
By JOHN T. JANS

Build this picture tube substitute using the new 5AXP4 tube, invaluable for servicing vertical chassis TV sets.

With the trend toward larger picture tubes and smaller chassis, more manufacturers are mounting the picture tube on the cabinet. When the picture tube is so mounted and the receiver needs shop service, the technician is faced with the unenviable decision of carrying the entire receiver, cabinet and all, to the shop or dismantling the receiver in the customer’s home and carrying the parts piece-meal. Most service technicians grit their teeth, remove the chassis, focus coil, yoke support, yoke, and picture tube, and when the set is repaired, replace these parts one by one. Usually, the disassembly, subsequent reassembly, and adjustment takes at least twenty minutes. This time is completely unproductive and, coupled with the risk of damage to the yoke and picture tube, makes the shop repair of a receiver with a cabinet-mounted picture tube more expensive than necessary.

Since the 5AXP4 receiver check tube was introduced by Sylvania, the service technician has had a simple solution to the problem of the cabinet-mounted picture tube. With the 5AXP4 receiver check tube the technician need remove only the chassis and leave the picture tube and its components in the cabinet without changing their adjustment. Once back in the shop, the receiver is connected to the socket and yoke adapter of the 5AXP4 and the receiver can be operated on the bench.

For convenience, speed, and safety, the Sylvania 5AXP4 tube can be mounted in the enclosure shown in Fig. 1 and the yoke connected as shown in Fig. 2. A 70 degree yoke similar to the Ram YTOPF14/43” or Stancor “DY9A” is used. A 12-pin socket on the 5AXP4 is wired directly to a 12-pin plug, pin-for-pin. Two other leads ending in alligator clips, shown in Fig. 1, are for high voltage for the tube—one for the anode connector, the other for grounding the box.

The yoke, socket adapter, and high-voltage leads are about four feet long, so the 5AXP4 tube and its enclosure can be left on a shelf above the service bench out of the way. This leads will not affect the yoke operation and the slight reduction of horizontal resolution caused by the long socket leads will be too small to see on the five-inch tube.

The dimensions and layout for the tube and yoke enclosure are shown in Fig. 3.

Alligator clips on the yoke leads enable the service technician to connect quickly to the scan output circuits of the receiver. In most cases where the picture tube is cabinet mounted, the yoke and focus assembly is plugged into the chassis—the alligator clips can connect to this chassis socket. When most of the receivers serviced are of one make or type, an adapter plug and the exact yoke replacement can be used to plug directly into the chassis. In a few instances the yoke is wired directly to the chassis. When this is the case, the best expedient is to cut the yoke leads at a convenient spot and connect the alligator clips to the bare ends of the wires on the chassis. This situation happens infrequently and the cutting and repairing of the cut leads is still much faster than the disassembly of the yoke and picture tube.

There is no external coating on the 5AXP4 and consequently, on receivers (Continued on page 76)
Is variable damping a "must"? Here are some pros and cons on this currently "hot" audiophile topic.

Until recently the damping factor of an amplifier was an incidental result of the design. Triodes without feedback had damping factors in the range of 2 to 4. Potted amplifiers had damping factors of 1 to 10 (depending on the amount of feedback used). More recent designs using triodes with feedback or "Ultra-Linear" stages with feedback have had damping factors ranging from 10 to 30. It was generally felt that higher damping factors were more effective than lower ones, but design was aimed more at obtaining low distortion and similar attributes than at achieving a specific degree of damping.

Now, however, the latest fad in amplifier design is to provide means of controlling the damping factor through control of the amplifier's output impedance. Variable damping is appearing on more and more commercial amplifiers, and the advertising claims for it herald it as a tremendous advance and an absolute necessity for the audio enthusiast. Amazingly, these claims are inconsistent since some recommend high damping factors, others lower ones; and even the negative damping factor is extolled. It is well worth while examining the reasons for variable damping, the means by which it is done, and its results. In this way, perhaps, the role of variable damping in amplifier design will be better understood.

Why Variable Damping?

Even though variable damping is a feature of amplifier design, its function has nothing to do with amplifier performance. Variable damping is introduced for the purpose of obtaining better loudspeaker performance. It is widely appreciated that the performance of a loudspeaker is influenced by the impedance of the source from which it is driven. Variable damping makes it possible to optimize the source for any given loudspeaker. Unfortunately, it does not determine what comprises the proper source impedance for a loudspeaker. There are three basic schools of thought on this subject, and their opinions are incompatible and contradictory.

School A claims that a speaker should be critically damped. Depending on the speaker system being used, this is generally attained when the speaker is almost matched to the amplifier and the damping factor is approximately 1 or 2. A range of variable damping from 1 to 10 would take care of almost all systems if critical damping were the only consideration.

School B claims that the speaker should be matched in impedance at frequency extremes. Most loudspeakers exhibit a substantial rise in impedance at low and high frequencies. If a constant voltage amplifier, one with a zero output impedance, were used, the power into the speaker would decrease (because it takes increased voltage to maintain constant power across an increased impedance). Conversely, a high impedance source, which would match the speaker impedance at high and low frequencies, would make for flatter power output. It is necessary to get output impedances as high as 10 times the nominal impedance (damping factor of .1) to follow the practices of this school.

School C believes in the need for an infinite damping factor, or at least as high a damping factor as possible, obtained by a source impedance which approaches zero. The reasoning behind this school of thought is that a zero impedance will short circuit the back e.m.f. due to spurious speaker motions and thus produce cone motions more closely following the amplifier output. This of course would provide less distortion and superior transient response.
as well as making the output of the amplifier dependent of impedance variations in the speaker.

A subgroup of "School C" believes in carrying the output impedance into the negative region to the point where the d.c. resistance of the speaker voice coil is cancelled out. In this way the total feedback impedance, including amplifier and speaker, is approximately zero; and the speaker cone is rigidly coupled to the amplifier. This represents the ultimate in damping, past which one cannot go.

Fig. 1. The use of current feedback for damping factor control. Refer to article.

How It Is Done

Variable damping is accomplished through the manipulation of feedback around the output stage. Normally, a high grade power amplifier has negative voltage feedback which lowers its output impedance. It is also possible to increase the output impedance by using positive voltage feedback, but this is basically an unstable mode of operation. It is practical, however, to use current feedback; and the effect of current feedback on output impedance is inverse to that of voltage feedback—positive current feedback decreases output impedance, while negative current feedback increases it. It is useful, therefore, to combine voltage and current feedback to obtain a wide range of impedance control.

Fig. 1 illustrates how voltage and current feedback can be combined to obtain any desired output impedances and damping factor. In Fig. 1A negative voltage feedback is combined with positive current feedback to lower the output impedance and to increase the damping factor. In Fig. 1B the combination of negative voltage and negative current feedback increases the output impedance and reduces the damping factor.

In each case, R_s is the output resistor of the stage to which feedback is taken. R_v and R_c form a voltage divider which controls the proportion of negative voltage feedback. R_v is a resistor in series with the load. The current through the load and through R_v produces a voltage across R_v which is fed back to furnish current proportional feedback. R_c must be made small or too much of the load power will be dissipated in it. Because it is small, it must be introduced in series with R_v or else its shunting effect would change operating conditions of the stage biased by R_v.

The larger R_v is, the more current feedback there is. Also, changes in the load will produce current changes in R_v and change in the current feedback. Therefore, such changes as shifting to a speaker of different output impedance brings about a change in output impedance and a corresponding change in damping factor, because of the change in the ratio of voltage and current feedback.

For those who are interested in experimenting with variable damping, it can readily be added to an "Ultra-Linear" Williamson-type circuit by using a 5 ohm rheostat for R_c. This can consist of a 1-ohm resistor and a 1-ohm rheostat or potentiometer in parallel. If a wirewound control without a parallel resistor is used, poor contact at some points of rotation of the slider arm would make the effective resistance increase and cause big changes in current feedback. This effect is minimized by having a fixed resistor in parallel.

The circuit gives an approximate range of control of output impedances (on the 16-ohm nominal output) from -12 ohms to +1 ohm if the current feedback is positive and +1 ohm to +15 ohms if the current feedback is negative. The total possible damping factor variation is from 4.2 to -1.3 and including infinity in this range. If a loudspeaker load is connected to the amplifier, its impedance variations might cause even more current feedback, thus adding to the range of control. Unfortunately, large proportions of current feedback may cause instability and oscillations. The experiment is warned that a wide-band a.c. or t.v.m. or scope should be kept connected across the amplifier output when adjusting the damping in order to avoid instability which could damage the speaker system should too much current feedback be used. In particular, the use of positive current feedback can easily lead to instability irrespective of the amount of voltage feedback. Negative current feedback adds to the total negative feedback; and if instability is a problem, a reduction of the negative voltage feedback can be made (by doubling the value of R_v, for example) to keep the total feedback within the range of satisfactory stability. Many circuits use ganged controls to vary both R_v and R_c simultaneously so as not to change the total amount of negative feedback. For the purpose of this article it was felt that such variants are of minor pertinence; and, therefore, they are not discussed. Of far greater importance are the end results of using current feedback to vary the damping of the amplifier.

Effects of Variable Damping

The use of current feedback for damping factor control influences the performance of both amplifier and loudspeaker. The effect on amplifier performance is generally ignored in presentation of information on variable damping because the effects on speaker performance are more obvious. However, some mention of what happens to amplifier performance is justified, since we are interested in the over-all amplifier-loudspeaker combination rather than one alone.

1. Amplifier performance: Irrespective of whether feedback is of the voltage or current proportional type, it influences the amplifier distortion. Therefore, the addition of current feedback to an amplifier will increase its distortion; while adding negative current feedback will reduce the amplifier distortion.

Any mention of the use of positive current feedback will lead to instability if the output impedance is made too negative. Instability can also arise when too much negative current feedback is added to the amplifier. These problems appear superficially unimportant because they can always be checked for stability before it is put into service. Unfortunately, however, there is no certainty that instability will remain stable under home listening conditions.

The reason for this is that the current feedback varies with the load impedance is changed. Connection of a loudspeaker will give a different proportion of current feedback than will be obtained with a network of a multiple speaker system with crossover network will cause drastic changes in feedback at the crossover frequency where impedance changes usually occur.

Even if variations in load impedance do not cause instability, they cause changes in frequency response. Obviously, when the feedback changes, the gain changes; and if this is a different effect at different frequencies (as happens on complex loads) then there is frequency discrimination.

2. Loudspeaker performance: When current through the load is fed back through the amplifier, any non-linearities in the load current are applied again to the load as part of the driving signal. Thus if a speaker has non-linear voice coil excursion, a non-linear driving signal will be applied to the speaker when current feedback is being used. This is a type of cancelation for the original non-linearity or it may add to it, depending on phase relationships. It has been claimed that positive current feedback provides a phase relationship which reduces loudspeaker distortion by this method of cancelation of some of the distortion components. However, as shown in Table 1, there

www.americanradiohistory.com
is no clear-cut reduction in distortion as the damping is increased, nor is there much difference in distortion when the damping is decreased with current feedback. Apparently, the effect of variable damping on distortion is dependent on the type of speaker used, its baffle, and similar variables which make it difficult to generalize.

One experiment which can be readily attempted with limited equipment indicates that under some conditions positive current feedback increases speaker damping, while negative current feedback decreases it. When a signal is fed into the loudspeaker, smother its output by putting a heavy cardboard across the orifice of the baffle. This places an air load on the cone which changes the linearity of the voice coil motion. A corrective signal should be in such a phase that the amplifier delivers more output and pushes the speaker harder to overcome the smothering. Either more positive feedback or less negative feedback would furnish the correct compensating signal.

At most frequencies where this experiment is tried, the speaker impedance increases, the current through E_i increases, and the current combination decreases. Positive current feedback causes a reduction in gain and does not correct for the smothering effect; while negative current feedback causes the speaker to be driven harder, thus correcting the effect. At the bass resonance frequency, however, the speaker impedance is decreased by the extra air load; and the correction effect is reversed. Therefore, this particular type of speaker non-linearity is affected differently by different types of current feedback depending on the frequencies at which testing is done. It is probably possible to pick frequencies and test conditions which can tip the scales in any direction desired by the experimenter.

Although the effects of different damping factors on speaker distortion are not conclusive, the effects on frequency response are quite certain. The response of the speaker-amplifier combination increases with increases in impedance when the damping factor is low (and source impedance is high) and decreases with increases in impedance when the damping factor is high (and source impedance low). The response follows the impedance curve with low damping and is inverse to the impedance curve with high damping. Which is the more desirable response curve?

Evidently, if speakers are designed to operate with a low-impedance source, this is the best condition to use. If the speaker manufacturer sets his response specifications by observing a fixed voltage across the voice coil at various frequencies, the amplifier with zero source impedance (infinite damping factor) would duplicate the manufacturer's test conditions. In this case a higher source impedance would cause response peaks at impedance peaks, such as the bass resonant frequency; while a negative source impedance would cause a loss in response at impedance peaks. The correct response curve for a speaker will be obtained only if the speaker is operated as intended by its manufacturer.

Fig. 2 shows the response curve of a 12-inch loudspeaker in the medium price category (near $30.00). These curves, taken with various damping factors, show that the frequency response is intimately related to the source impedance. With high damping factors (low source impedance), there is a definite loss of bass and treble response. Experiments were also carried out with better quality speakers, and it appears that the effects of different damping factors are diminished with better grades of loudspeakers.

The higher the quality of the loudspeaker system (including baffle), the smoother and less variable is the impedance characteristic of the system. With less impedance variation in the speaker system, there will be less changes in frequency response as the damping is changed.

The same situation holds for speaker damping. Better grades of speakers with more efficient and larger magnet structures will generally be critically damped with a damping factor in the range of 1 to 4. Low cost, inefficient speakers may have so much d.c. resistance that a negative source impedance is necessary to bring the total circuit impedance in the range where the back e.m.f. generated by the voice coil is effectively short circuited. Therefore, except with the poorest types of systems, moderately low source impedances will supply sufficient damping to nullify overshoot and boom which are spuriously generated by underdamped systems. Damping factor control over the range of 1 to 10 would cover the possibility of obtaining critical damping of most better grade speaker systems. Increases in damping factor past the condition of critical damping will have practically no effect on the damping of the system. The damping contributed by the amplifier after passing a damping factor of 10 is so small compared to that contributed by the speaker that damping is unaffected by further reduction of amplifier source impedance.

Thus, after eliminating poor grade speakers, it appears that any damping factor of 10 or more will serve to provide satisfactory speaker damping. However, speaker response will depend on the damping factor used. The best (Continued on page 66)

Table 1. Loudspeaker harmonic distortion for various damping factors. Measurements made at absolute sound pressure of 500 cps at 84 db. Sound pressures at other frequencies are obtainable by reference to the response curves shown in Fig. 2 below.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Amplifier Impedance 5 ohms</th>
<th>Amplifier Impedance 0 ohms</th>
<th>Amplifier Impedance 50 ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 cps</td>
<td>D.F. = -0.2</td>
<td>20 %</td>
<td>18 %</td>
</tr>
<tr>
<td>100 cps</td>
<td>8.2%</td>
<td>5.2%</td>
<td>4.8%</td>
</tr>
<tr>
<td>500 cps</td>
<td>8%</td>
<td>2.3%</td>
<td>2.0%</td>
</tr>
<tr>
<td>1000 cps</td>
<td>2.0%</td>
<td>1.4%</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

Fig. 2. Frequency response with variation in damping factor. For a more accurate comparison of these responses, these three curves should be superimposed by user.

July, 1955
The new RCA 21-inch round color TV picture tube is shown here in comparison with the old 15-inch tube. The receiver with the larger tube actually uses fewer receiving tubes than the set with the 15-inch tube.

By HARRY E. THOMAS

The cost of color sets is coming down, due in part to the great strides in tube reduction described here.

The rapid progress in color TV receiver circuitry within the last year is particularly evident in the tube economies seen in the latest models. For example, the reduction in tube count in RCA's latest receiver, described in the March issue of Radio & Television News, is accompanied by improved performance, although this set uses only 28 tube envelopes instead of the 39 tubes used in their original 15-inch set. Other manufacturers have likewise reduced their over-all tube count. Also, in attaining general improvement in color reproduction, all models now use stabilized color phase circuits and employ improved picture-tube circuits. Tuning and color controls have also reached high degrees of flexibility equaling the convenience standards existing in present monochrome receivers.

Color picture tubes themselves have likewise shown remarkable improvements, among which are large size color screens of up to 250 square inches using a light, round, metal tube blank; an adjustable magnetic field equalizer affecting the whole picture-tube screen irrespective of extraneous magnetic fields; a shorter, more efficient electron gun; and temperature-compensated components within the picture tube itself.

In summarizing, the most important contribution to receiver circuitry is the development of high level demodulation. Two triode demodulators (in one envelope) plus a suitable transformer and coupling networks handle large enough signals to directly drive the grids of the picture tube. This results in savings over old-style circuitry of one demodulator tube, three adder tubes, three amplifiers, three restorer diodes, a phase splitter, and a phase inverter. Even when using double section tubes in old circuits, this results in a saving of six tube envelopes. This type of demodulation provides improved linearity, better maintenance of stability, and assures color processing which is independent of tube characteristics.

Further comparison of low level and high level demodulation systems is particularly interesting in that two types of low level systems have been used—one involving pentodes and one using double diodes. Figs. 1 and 2 show two early pentode circuits where the chrominance signal in both cases is applied to the demodulator control grid while the in-phase and quadrature c.w. gating signals are applied to the respective suppressors. Note in Fig. 2 that the demodulator is a 6AS6 tube whose suppressor characteristic is specifically tailored for gating applications.

Fig. 3 shows double diodes employed as gating tubes in the demodulator circuits of a difference color TV receiver. These circuits also require additional amplification between the demodulators and the picture-tube grids. The circuits of Figs. 2 and 3 combine matrixing steps within the demodulator and amplifier circuits, thus eliminating adder, phase splitting, and inverter tubes which are necessary in the I and Q signal system of Fig. 1. Fig. 4 is a schematic of the high level triode demodulators used in the new RCA receiver.

Another improvement and saving involves the convergence system. With suitable magnetic coupling directly from the horizontal and vertical output amplifier circuits, it is possible to eli-
inate one amplifier tube. This system is a low level one, quite different from the original circuitry used with the 15-inch color tube in the "CT100" receiver, where convergence voltages were applied to focus electrodes at the picture tube.

By using selenium rectifiers, as is becoming common practice in heavy duty power supplies, a net reduction of focus tubes is achieved over the total receiver tube count of the older models.

Other circuit improvements resulting in tube savings are: (1) the elimination of a quadrature amplifier by suitable phasing obtained in the coupling networks linking the subcarrier oscillator and the demodulator (see Fig. 4); (2) the inclusion of the chroma bandpass filter as an amplifier coupling network leading to the demodulator circuits; (3) the elimination of a focus rectifier tube and associated components due to improvements in the electron gun of the picture tube; (4) the reduction of two tubes in the sound amplifier system by economies in multiple section tube envelopes; (5) the use of an auxiliary as a burst gate instead of employing a burst amplifier stage; and (6) the reduction of tubes in miscellaneous circuits throughout the receiver such as vertical deflection (½ tube), color sync and a.f.c. (½ tube), picture i.f. (1 tube), and luminance channel (1 tube).

Table 1 offers an interesting comparison of these economies by giving a breakdown of the tube complements of the original 15-inch color-tube receiver circuitry as presented by RCA in the "CT100," which was a production version of the original 15-inch receiver designed by them in 1953: the present RCA 21-inch color-tube circuitry; the CBS-Columbia model 205; and the Motorola model TS-902; and an interim design by G-E.

Picture Tube Developments

It is interesting to note that the picture tube developments paralleling the circuit advances were covered in two steps—the first embodied in the development of 19-inch picture tubes, and the second in the additional advances incorporated in the 21-inch model.

Following the first 15-inch picture tube which had obvious drawbacks, both RCA and CBS started on a development program for a 19-inch tube. Three advances that resulted from this work were the process of photographically depositing color phosphors directly on the picture-tube face plates, the use of a curved shadow mask which serves also as a template in the photographic process, and the inclusion of internal pole pieces for exact convergence of the individual beams plus auxiliary pole pieces for additional correction of the position of the blue beam. Also, the 19-inch tube uses low level dynamic convergence with electromagnetic correction coils placed directly above the color guns and on the neck of the tube.

The 21-inch tube is the latest one developed by RCA, which has discon-

Fig. 2. The circuit shown here is a period low level demodulator whose output is a set of B-Y and R-Y difference signals.

Fig. 4. High level triode demodulators used in the new RCA 21-inch tube set.

Fig. 3. Schematic of the Motorola low level demodulator using double diodes.

(Continued on page 128)

www.americanradiohistory.com
Add this effective unit to your present ham transmitter and obtain up to 20 db of compression at low distortion.

VOLUME compressors increase the effective range of voice transmitters. Almost all commercial radio equipment and many amateur radio stations include them to good advantage. As a compressor can keep the average percentage of modulation high, the carrier power of the transmitter is used more efficiently, resulting in a louder signal at the distant receiver. They are especially valuable when used with a "phone patch," where a wide range of voice levels is encountered.

A recent project involved building a compressor which could be added to a factory-built amateur transmitter. Although many excellent compressors have been described in technical publications over the past few years, none of them fully met the requirements. The unit described here has proven to be very satisfactory and has these advantages:

1. Up to 20 db of compression can be obtained with less than 3% distortion.
2. No audio transformers are required.
3. The plate current requirements are small and constant, so that a simple power supply can be used.
4. Short attack time has been combined with thump elimination.
5. It can be added to any transmitter using a high-impedance microphone without disturbing the wiring of the transmitter itself.

A compressor is an audio amplifier with an automatic gain control, the gain being reduced as the signal into it increases. Although there are many ways of accomplishing an automatic control of gain, the method similar to that used in radio- and intermediate-frequency amplifiers is perhaps the most satisfactory. In this system, the output of the amplifier is rectified and the resulting d.c., which varies with the amplitude of the signal, is used to increase the negative bias on the amplifier, thus reducing the gain. Fig. 3 is a graph showing the relationship of the input to the output voltages of a normal amplifier and this unit with a compression characteristic. Curve "A" represents a normal amplifier, that is, the gain is a constant, and the output voltage increases linearly with the input voltage. Curve "B" shows the result of automatic gain control. The gain is constant up to point "C," called the "breakaway" point, and then as the input signal increases, the gain becomes less, so that the output voltage, follows curve "B." As the input is increased from -44 db to -5 db, the output increases from -38 to -19 db; a 30 db input change is reduced to a 19 db change, that is, a 20 db compression. Because the amplitude of the output voltage does not vary as widely as the input voltage, the average level of modulation can be made higher with less danger of over-modulation.

This unit is designed so that the gain characteristic goes into limiting if the input is accidentally increased above -5 db, preventing the output from exceeding -18 db irrespective of the input voltage.

A major problem in the design of automatic gain control amplifiers is to prevent the d.c. control voltage from appearing at the output of the amplifier as a disturbing thump. The usual method of thump elimination is the use of a push-pull controlled stage, the
control voltage being balanced out in the output transformer. In order to save the cost of a transformer, a modification of the circuit suggested by Mr. A. Nelson Butz ("Surgeless Volume Expander," Electronics, September, 1946) was used. The gain-reducing d.c. control voltage is applied to the suppressor grid of a pentode tube. When the suppressor grid of a pentode is made more negative, the plate voltage rises and the screen voltage decreases. This rise in plate voltage would appear in the output of the amplifier as a thump. In this circuit, the control voltage is also fed to the suppressor grid of a dummy tube. Its plate is connected to the screen grid of the amplifier tube, and its screen is connected to the amplifier plate. By proper choice of plate, screen, and cathode resistors, the plate and screen voltage changes can be made to cancel each other and the effect of the control voltage on the output signal is eliminated.

The wiring diagram of the compressor is shown in Fig. 2 with the power supply diagrammed in Fig. 1. \(V_s \), a 6BA6, is the gain-controlled amplifier, and \(V_s' \) also a 6BA6, is the dummy tube described previously. \(R_9 \) in the cathode circuit of \(V_s \) is a balance control to adjust for any difference in characteristics of the two 6BA6's. The output of the gain-controlled tube is fed to the output jack, \(J_1 \), through \(C_s \) and the voltage divider \(R_{10} \) and \(R_{11} \). This voltage divider is necessary to reduce the output of the compressor unit to a level comparable to a crystal microphone in order to prevent overloading the high gain input stage of the transmitter.

\(V_9 \), a 12AT7 with the two triode sections connected in parallel, is used as a side amplifier feeding \(V_s \), a 6ALS5 connected in a voltage-doubler circuit. The cathode on pin 5 of the 6ALS5 is connected to the cathode of the 12AT7 to provide a positive 2.2 volt delay bias. This bias and the gain of the 12AT7 stage sets the "breakaway" point of \(C \) of Fig. 3. The d.c. output of the rectifier is filtered by \(R_{15} \) and \(C_6 \). \(R_{16} \), a one-megohm pot, is also used to adjust the operating point of the electron-ray tube, \(V_s \).

The power supply consists of a 40-ma, 650-volt power transformer, a 5V3GT rectifier, and the RC filter made up of \(R_{10} \), \(R_{11} \), and \(C_5 \). As the plate current requirements are only 3 milliamps at 300 volts and 12 milliamps at 270 volts, and as the plate currents do not vary during operation,

(Continued on page 113)
ALL-TRANSISTOR AUTOMOBILE RECEIVER

"Dead-battery blues" may be a thing of the past with the development of a transistor auto radio.

A TRANSISTORIZED automobile radio that operates directly from a 6-volt car battery and requires only about one-tenth the power used by a conventional car radio has been introduced on an experimental basis by scientists from the David Sarnoff Research Center of Radio Corporation of America in Princeton, New Jersey.

The new radio, employing nine transistors in place of tubes, is said to be equal in performance to standard car radios. Emphasizing its low power consumption, the scientists pointed out that more than half of the current required by the radio was used to light the dial pilot bulbs.

The radio has been tested with a 6-volt battery as its power source. It is also adaptable to installation in automobiles with 12-volt batteries. With a 12-volt supply, the power output of the radio would be more than doubled since it is not limited by the capabilities of the transistors used in the circuit.

While the new receiver resembles present car radios in external appearance, it requires no vibrator, power transformer, or rectifier. It is also said to perform satisfactorily at temperatures as low as -40 degrees F and as high as 176 degrees F.

Schematic diagram of RCA's experimental transistorized automobile receiver.

Internal view. The problem of parts heating is eliminated by use of transistors.
The vigorous oscillating ability of the CK722 junction transistor immediately suggests its use in several low-voltage instruments and test gadgets. Among the possibilities is a transistorized version of the well-known grid-dip oscillator.

In this case, the term grid-dip hardly would be appropriate, inasmuch as there is no grid. A more exact term would be collector-dip, since it is the collector current in this transistor oscillator that dips as the circuit is tuned.

Advantages afforded by the transistor in the dip circuit are extremely small size and lightness of weight, low current drain, simplicity, and complete isolation from the power line. Particular advantages afforded by the junction-type transistor are high efficiency, low-voltage requirements, and single miniature battery operation.

The single disadvantage is the restricted frequency range of the junction transistor. This author has been unable to obtain suitable oscillation at frequencies higher than 1700 kc., using the CK722. Such r.f. transistors as the CK760 and CK761 are intended for higher frequencies but the price is somewhat higher. The instrument described in this article is nonetheless interesting, however, being entirely practical and dependable at broadcast and i.f. frequencies as well as at low frequencies. Further refinements in transistor construction, as exemplified by the new Raytheon CK760, now permit higher-frequency operation, and the same type of dip oscillator is useful at the additional frequencies now covered by conventional grid-dip meters and at reduced voltages.

Constructional details of the transistor dip oscillator are shown in photos of Fig. 1. The circuit diagram is given in Fig. 2.

The entire instrument is self-contained in a small metal radio utility box 4 in. long, 2¾ in. wide, and 2¼ in. high. A 4-contact tube socket in the front end of the box receives plug-in coils. A 1-inch-diameter, 0-1 d. c. milliammeter is mounted in the rear end.

In the complete circuit diagram of Fig. 2 a "tickler coil" feedback circuit is employed with the transistor connected in a grounded-emitter arrangement. Tuning is accomplished with a midget 365-µufd. dual capacitor with its two stator sections connected in parallel. The surplus tuning capacitor used in the author's instrument has unequal sections, but its total capacitance is approximately equal to the 730 µufd. obtainable with the more conventional unit specified.

The d. c. power is supplied by a small 15-volt hearing-aid battery (Burgess U-10), visible in the photograph. This battery is 1¼ in. high, 1½ in. wide, and ½ in. thick. The total current drain (out of dip) is 0.3 ma. At dip, the current drops to 0.1 ma. on close coupling to the external circuit under test, and to a somewhat higher value on loose coupling. In order to save space, no battery switch has been provided. Instead, removing the coil from its socket automatically disconnects the battery through tickler coil L2.

Only one coil combination (L1-L2) has been provided for the instrument shown. With the specified tuning capacitor, it covers the range 350 to 1700 kc.

Both L1 and L2 are wound on the same 1-inch-diameter, 4-pin coil form (National XR-1). L1 first is wound on the form and consists of 113 turns of (Continued on page 85)

Details on a compact unit that covers from 350-1700 kc.

with plug-in coil. It can also be used as an oscillator.

Fig. 1. Internal and exterior views of the home-built dip oscillator. Although not a "subminiaturized" version it measures just 4 in. long, 2¾ in. wide, and 2¼ in. high. The hearing-aid battery is 1¼ in. high and ½ in. thick.

Fig. 2. Complete schematic and coil winding data chart for the dip oscillator.
Although they are well built and well designed, they are subject to certain troubles—recognizing these faults can make your servicing job faster and surer.

Far too often, service technicians spend valuable troubleshooting time checking every component in the horizontal sweep and high-voltage circuits until they finally realize something might be wrong with the flyback transformer. Even though these transformers have been widely used within the last decade, their whys and wherefores still remain a mystery to many service technicians. The purpose of this article is not to go too deeply into the theory of the operation of the flyback transformer, but to show how to quickly check and, in some cases, repair them.

The use of the flyback transformer in the television receiver is two-fold. It provides the electromagnetic current to sweep electrons across the full width of the picture tube and also the high voltage that is needed to pull the electrons down the neck of the picture tube and onto the face. An additional by-product of the flyback circuit is the boost voltage, the high "B+" voltage that is applied to the plate of the horizontal output tube. It is the interdependence of these separate functions that makes troubleshooting of the flyback transformer more difficult than, say, a video i.f. transformer. By a careful analysis of the causes and effects of the troubles originating in flyback transformers, we can learn to handle these circuits more quickly and thus more profitably.

A typical flyback circuit is shown in Fig. 2. The horizontal output tube amplifies the trapezoidal voltage which is obtained from the horizontal oscillator circuit. This amplified voltage is fed into the primary of the transformer between terminals 1 (the bottom) and 2, and is coupled through the transformer to the output (terminals 4 to 6) where it is applied to the plate of the damper and the horizontal windings of the deflection yoke. When this voltage enters the yoke, it generates the proper saw-tooth of current that is needed to sweep the electron beam in the picture tube.

When the voltage across the input drops to zero during the retrace time, oscillations are generated in the flyback. To squelch these oscillations, which appear as vertical striations in the picture, the horizontal damper tube is used. This tube is essentially a rectifier and a large "B+" potential appears at its cathode. This large "B+" voltage (larger than the "B+" supply of the set) is called the boost voltage and is supplied to the plate of the horizontal output tube after being filtered through the horizontal linearity coil and its two capacitors.

The sharp pulse supplied by the horizontal output tube to the primary winding of the transformer is stepped up through the tertiary winding from terminals 2 to 3, and applied to the plate of the high-voltage rectifier tube. There, this pulse is rectified and filtered by the 500 micromicrofarad capacitor and applied through a current-limiting resistor to the high-voltage cap of the picture tube.

The width control is a variable coil which places a small inductive load on the output of the transformer.

A brief description of the construction of flyback transformers will aid in understanding the possible troubles to which they are subject. The typical bottom-mounted flyback transformer is wound in three sections: the first or "A" winding is the secondary of the flyback output, the second or "B" winding is the primary or input from the horizontal output amplifier, and the third is the tertiary which is the high-voltage winding to the high-voltage rectifier tube.

Fig. 3 is a typical flyback transformer showing the various windings and their leads. The "A" winding is the first to be wound. It starts from the paper tube form. The "B" winding starts on top of the "A" winding. The tertiary starts at the finish of the "B" winding.

After the transformer has been wound on the paper tube, it is then impregnated in a varnish or oil bath to remove the air and furnish greater dielectric strength between wires. When it has cooled, after sufficient impregnation time, a wax "wire" is placed around the rim of the tertiary to prevent condensation from this high r.f. voltage point. The windings are then placed on a core of ferrite material, after the proper air gap has been set (usually with tape) between cores to prevent core saturation. It is next mounted, and the taps are brought out to their proper terminal lugs and soldered (see Fig. 1). Then the high-voltage rectifier filament winding is added.

Troubles

There are three common troubles to which flyback transformers are subject in the field: shorts, insulation breakdowns, and "opens." Each one of these troubles will be discussed in detail as to their causes, effects, troubleshooting procedures, and repair.

Shorts occur less frequently in the field than breakdowns and "opens" but, because of their nature, are difficult to spot. A short can occur from one wire to another in any one of the three windings, or from one winding to another. Poor insulation on the wire used in the windings can cause a short from turn-to-turn or layer-to-layer. Most wires used today have a heavy coating of "Forzem" with a nylon or silk jacket, but even with these precautions, fraying occurs in the winding of the transformer or in the spooling of the wire. When a short occurs between windings, it is usually due to poor quality or an insufficient amount of tape separating the sections. This type of short is first caused by a breakdown between the sections through the tape.
Remember, one shorted turn of a coil may greatly reduce the "Q" of the coil. If a great deal of energy is dissipated in one or more shorted turns, the output Q will be reduced considerably. Thus, if a short occurs in the tertiary, not only will the high voltage suffer, but energy will be drawn away from the "A" winding and result in lowered sweep output. To check for shorts with an oscilloscope, check the resistance of the windings as compared to the manufacturer's specifications which many times are found on the TV receiver schematic. As a general guide, the resistance of the primary between the bottom and terminal 2 in Fig. 2 will be between 30 and 40 ohms, the tertiary between terminals 2 and 3 should measure between 180 and 350 ohms, and the secondaries are on the order of 3 to 10 ohms between consecutive terminals. However, an ohm or two lower than the actual manufacturer's specification could indicate trouble. In many cases, particularly in the tertiary, the reduced resistance due to a short will be very pronounced.

Another method of testing for shorts is to check waveforms with the aid of an oscilloscope. To do this, however, you must be thoroughly familiar with the wave amplitude, under normal conditions, of the input to the deflection voltage and the boost voltage.

Still another way of checking for shorts is to feed r.f. voltage into the primary winding of the flyback transformer and apply a spark to the tertiary terminal 3, the high-voltage rectifier plate cap. A convenient source is the r.f. is the output of a working flyback (terminal 3). Feed this into the primary of the suspected transformer and see if you can pull a spark off the secondary.

A short from the primary to the secondary of the transformer acts as a short across the damper tube. In the circuit of Fig. 2, any measurable resistance from the plate to the cathode of the damper tube can usually be attributed to a primary-secondary short.

In addition to these methods for finding shorts, there are numerous commercial flyback testers. These generally contain a source of r.f. voltage which is fed into the primary; the inductance or "Q" of the secondaries or tertiary usually determines the meter reading. A shorted turn will impair the "Q" of a coil appreciably. In addition, these instruments are generally useful in determining open windings.

Whenever high r.f. and d.c. potentials are applied in surges to a component, breakdowns can occur. The flyback transformer is no exception. Breakdowns are the most prevalent of flyback troubles.

The causes for breakdowns are numerous. When the transformer is being wound, one wire may slip from its layer and come down on the outside next to a wire of a layer much closer to the core. This would place a wire of a high r.f. potential close to one of much lower r.f. This trouble, slipped turns, is the biggest cause of breakdowns. Low breakdown strength of the insulating tape between windings and insufficient insulation of the windings are other causes of breakdowns. Sometimes, a transformer is wound with the edges of the windings close to or even touching the edges of the core, causing a breakdown to the core. The high-voltage rectifier tube gets its filament voltage from the r.f. that is picked up by a loop of wire close to the tertiary. This filament wire carries from 12,000 to 16,000 volts d.c., and if it is positioned too close to the rim of the tertiary, breakdown may occur. A poor quality of wax or insufficient amount of wax "tire" on the rim of the tertiary may cause arcing.

A visual check of the transformer while in operation will usually show up most breakdowns. Arcing, sputtering, and even smoking are self-explanatory. Sometimes, when the windings have broken down to the core, arcing takes place from the core through the phenolic black to the metal bottom of the mount. When the filament lead breaks down to the tertiary rim, the insulation of the filament wire will be charred and the bare wire exposed.

The biggest cause of open leads is mishandling or breaking of the transformer. Often when installing a flyback transformer during a replacement, for example, can result in broken wires. Don't jerk leads or bend the phenolic boards. Try not to have any sharp objects come in contact with the transformer; when a slight nick in the wax may cut several layers of winding. Some secondaries are wound with number 40 wire, approximately the size of a human hair.

Cold-soldered joints at the terminal will act the same as open windings. These generally result from improperly cleaning the "Formex" or enamel coating from the ends of the wires that are to be soldered to the terminals.

To attach the high-voltage lead to the extremely thin wire of the tertiary, it is first necessary to strengthen this wire with one that is heavier. Sometimes, a slight pressure on the heavier wire can snap its connection to the lighter wire even though both are taped down to the tertiary rim before the wax "tire" is applied.

The operational effect of a break in a winding or a cold-soldered joint depends on where the break occurs. If there is an open in the primary winding, there will be no high voltage sweep, or boost. This can be quickly checked with a simple ohmmeter readings across the primary. An open tertiary will not prevent horizontal sweep or boost voltage and there may even be high voltage due to the inductive coupling of the r.f. pulse through the windings.

When the transformer is open at terminal 4 but still have continuity from 5 through 6, and it will continue to operate but with slightly lower high-voltage output. If it is open at terminal 8, but there is continuity from 4 through 6, there will be high voltage and a wider sweep with no width control action.

Repair and Replacement

It was mentioned that shorts comprise a large percentage of flyback troubles, yet nothing can be done to repair them. However, there are some breakdown and "open" troubles that can be easily fixed to keep the flyback running satisfactorily.

When the edges of the transformer windings are pressed up against the sides of the core and are breaking down, the windings can be insulated from the core by taping them over at the point of breakdown with black vinyl electrical tape. If there is arcing from the rim of the tertiary, carefully tape over the portion of the rim where the arcing is taking place.

A common trouble is the breaking down of the high-voltage filament lead (Continued on page 127)
SELENIUM VOLTAGE DOUBLER

A discussion of voltage doubler rectifier circuits and details on a compact selenium power supply of many uses.

By HAROLD REED
Research and Engineering
U. S. Recording Company

VOLTAGE doubler rectifier circuits have been used extensively in electronics equipment. Their special advantage lies in their ability to supply a rectified, pulsating, direct current output voltage equal to approximately twice the peak voltage value of the input alternating current voltage. Or, more simply expressed, we obtain a d.c. voltage in the output of the rectifier which is two times higher than the a.c. voltage applied to the input, which is useful in the proper operation of electron tubes and other electronic apparatus.

A conventional type of voltage doubler circuit employing diodes is illustrated in Fig. 2A. It is shown using a power line isolation transformer. Direct operation from the 117 volt a.c. line with suitable tubes is possible; however, in many applications it is preferable to use the transformer, and definitely safer, too, inasmuch as the 117 volt supply line is then isolated from the chassis. Also, the same transformer, with low voltage windings, can furnish required filament voltages. We may explain the operation of this circuit as follows.

The 117 volt a.c. supply voltage is applied to the primary at points P1 and P2 of transformer T. Therefore, an a.c. voltage is induced in the secondary of this transformer. Suppose now, for purposes of this analysis, we assume that this induced voltage in the secondary winding results in point S1 being at a positive potential while S2 is negative with respect to point S1. The voltage at this instant is then impressed across tube V. Capacitor C, in series with the secondary winding and the diode tube. The plate of V is positive with respect to its cathode and so electrons flow from cathode to plate. This electron movement constitutes a current flow in the series circuit. Electrons leaving the top plate of C, flow around the circuit through tube V, accumulating on the bottom plate of this capacitor. Thus capacitor C, becomes charged to the peak alternating voltage of the transformer secondary, less the voltage drop across tube V.

When the alternating current cycle reverses, point S1 of the transformer secondary goes negative and there is no current flow through V. However, tube V, now conducts and the current flow in the other series circuit comprising V, the transformer secondary, and capacitor C, causes C, to charge to the peak alternating voltage during this half of the a.c. cycle. The total rectified d.c. voltage is applied to the load, Rz, between terminal Z and ground. This output is equal to the sum of the voltages on C, and C, which is about twice the peak a.c. voltage across the transformer secondary. V, and V, may be a single tube housing two diode sections.

The foregoing rectifier analysis concerning diode electron tubes was reviewed so that a clear understanding of voltage doubler action may be had, and so a comparison can be made between the tube diode circuit and that of the selenium rectifier now to be analyzed.

A selenium rectifier schematic as frequently diagrammed is shown in Fig. 2B. In this form it may appear confusing and difficult to understand. This is a symmetrical or full-wave voltage doubler similar to the tube circuit just considered. To simplify the discussion the circuit of Fig. 2B has been redrawn to appear as in Fig. 2C. It is to be remembered that current flows through a selenium rectifier cell more readily in one direction than in the other direction and although an electron tube may be non-conducting in the reverse direction a selenium cell does allow current flow in the reverse direction; however, it is small in comparison to the current amplitude in the forward direction.

In Fig. 2C, suppose at a certain time the alternating voltage wave is such that the upper end of the secondary of T, is positive with respect to the lower end. In this state SR, conducts, charging capacitor C, to the peak a.c. voltage, less the rectifier voltage drop which is approximately 5 volts. We may say SR, does not conduct during this time. During the following half cycle when the upper end of T, is negative and the lower end positive, rectifier SR, conducts, charging capacitor C, SR, being considered in the non-conducting state at this time. The rectifier output voltage appears across points X and Y, being the ground side, and is equal to the sum of the voltages across capacitors C, and C, which sum is about equal to twice the peak a.c. voltage across the secondary of T, less the voltage drops across the rectifier cells, approximately 5 volts across each unit.

It will be observed from Fig. 2C that failure of either capacitor in the form of a short circuit can prove disastrous to the particular selenium unit in series with it by allowing the transformer potential to appear across it. In like manner, either capacitor can be ruined by a prolonged short across the series rectifier of the circuit.

The rectifier circuit of Fig. 2B was used to supply the required d.c. supply voltages to a 4 watt record player amplifier using a 12AT7 twin triode and 6V6 output tube. The selenium rectifiers were rated at 65 milliamperes each. The load imposed by this amplifier required a current flow of 42 milliamperes through the rectifier circuit at point X. With this current flow the d.c. supply voltages as indicated in the diagram were obtained. Sufficient filtering was employed to smooth out the 120-cycle ripple frequency of the rectifier is pro-

RADIO & TELEVISION NEWS
vided by the filter section consisting of resistors R_1 and R_2 and capacitors C_3a, C_3b, and C_3c. In Fig. 1 this power supply is shown built up as a separate unit for general use. With filter resistors selected as required or variable controls used, a versatile utility unit can be constructed with output voltages as required. The component parts are assembled on a simple 3½ x 4½ x 2 inch chassis suitable for experimental applications.

The schematic circuit diagram given in Fig. 2D is similar to Fig. 2C but employs selenium rectifiers rated at 10 milliamperes each. This circuit provided supply voltages for a commercial hi-fi 10-watt amplifier consisting of a 12AX7 twin triode preamplifier, 12AX7 voltage amplifier and treble-bass tone control stage, 12AT7 voltage amplifier and phase splitter and push-pull 6V6 output stage. The d.c. supply voltage to the output stage was 290 volts. A voltage dropping resistor, R_r, is used in this circuit. This dropping resistor, either fixed or variable, could be used in the rectifier shown in Figs. 1 and 2B to obtain variable output voltage.

That this selenium rectifier circuit was capable of giving satisfactory results was proven by the fact that the hum and noise level in the above mentioned hi-fi amplifier was −55 dB through the phono preamplifier input and −65 dB through the tape-TV-tuner input. Distortion at 10 watts output was 1.5%. Filtering was provided by the RC decoupling networks between the rectifier output and the individual amplifier stages.

Before closing this article we should consider the half-wave voltage doubler, a simplified diagram of which is given in Fig. 2E. In this analysis, consider first that the a.c. voltage across the secondary of T_1 is such that the lower end is positive. Rectifier SR_1 will then conduct, charging capacitor C_1 to the peak voltage of the a.c. potential across T_1, secondary winding. During the next half a.c. cycle across T_1 the upper half of the secondary winding goes positive. Rectifier SR_2 now conducts and capacitor C_1 charges up to the peak a.c. potential across T_1, plus the charge already across capacitor C_1. It is easy to see, then, that the sum of these two potentials applied across C_2 is equal to twice the peak a.c. voltage of the transformer secondary. This voltage is then applied to the load R_s between point Z and ground. Disadvantages of the half-wave voltage doubler are the lower frequency (60 cycles) ripple component and poorer voltage regulation.

There are, of course, other useful circuits such as the tripler and quadrupler arrangements and the interested reader is referred to the references below. The selenium rectifier contributes to a compact, cool-operating, long-life power source and, when properly used, furnishes a very satisfactory means of obtaining a ripple-free, d.c. voltage supply.

REFERENCES

"Radiotron Designer's Handbook," Radio Corporation of America, Harrison, N.J.

Fig. 2. Various doubler circuits. (A) A conventional circuit using diodes. (B) A conventional selenium rectifier circuit. (C) Simplified version of the circuit of (B). (D) Circuit similar to that of (C) except that 100 ma. rectifiers are used. (E) Simplified diagram of a half-wave voltage doubler circuit. As discussed in the text, the circuit of (B), shown photographically in Fig. 1, was used to supply the required d.c. supply voltages to a 4-watt record player amplifier using a 12AT7 and 6V6. The circuit in (D) is similar but provides supply voltages for a commercial hi-fi 10-watt amplifier.
COMBINATION V.H.F.-L.F. FINAL AMPLIFIER

Top chassis view of the author's v.h.f.-low-frequency mobile transmitter. The design has several operational advantages.

By JACK NAJORK, W2HHH

Two tank circuits in series permit operation of the same transmitter final on 3.5 or 144 mc. without coil changes.

The author recently designed and built a mobile rig ending up with the popular 2E26 as a final amplifier. Since this tube is a proven performer at 144 mc., and since we had more than a passing interest in this band, it was decided to use separate exciters for low-frequency and 144 mc. and employ the 2E26 as a combination v.h.f.-low frequency final amplifier. As finally evolved, the 2E26 plate circuit can be tuned to two meters or any of the low-frequency bands from 10- to 80-meters without bandswitching or use of plug-in coils.

Before covering the practical aspects of the circuit, it might be well to discuss briefly how such a design can be made to operate efficiently despite the popular contention that independent amplifier stages are required for optimum performance on v.h.f. and low-frequency amateur bands.

The usual textbook reasons advanced for the use of separate amplifiers are theoretically sound, viz: that the L/C ratios required in a tank circuit for low-frequency operation cannot be used with any degree of efficiency at v.h.f. and vice versa. Other design factors such as physical arrangement of components, lead lengths, etc., are also involved if v.h.f. operation is contemplated but, in general, the primary problem is simply one of maintaining proper tank circuit Q over the frequency spectrum to be covered. As an example, the generally accepted Q figure of 12 for a final amplifier tank circuit usually requires a tank capacity on the order of 100 µfd. for 80-meter operation. If a tuning capacitor of, say, 125 µfd. is used on this band, the designer soon finds that the minimum capacity for such a unit, together with stray wiring capacities, results in an extremely poor L/C ratio for 144 mc. operation. This is because the minimum total tank capacity will fall between 30 and 50 µfd. whereas something like 10 µfd. is called for on the two-meter band. How then, does one go about designing a tank circuit that will overcome this bugaboo?

The answer is quite simple and is based on a technique used by receiver design engineers who were faced with a similar problem in the design of a combination 10.7 mc.-455 kc. l.f. amplifier for AM-FM radio receivers. They found that the 10.7 mc. transformers could be put in series with the 455 kc. transformers and the laws of reactances did the rest. The basic circuit is shown in Fig. 1. What could be easier? No bandswitching—no extra amplifier tubes—no additional power consumption! Feed a 455 kc. signal into the system and it passes through the 10.7 mc. transformer winding with negligible loss. Why? Because the inductance of the 10.7 mc. transformer looks almost like a piece of straight wire at 455 kc. Push through a 10.7 mc. signal and what happens? The 10.7 mc. transformers do their work and the relatively large capacities hanging across the windings of the 455 kc. transformers look like good bypasses at 10.7 mc.

We did the same thing, with minor variations, in our 2E26 final amplifier and it works just as well as the dual i.f. systems. Separate exciters are used, one for v.h.f. and one for 10- to 80-meter operation. On the low frequency high capacity coupling is used between the 6AK6 buffer/doubling stage and the 2E26 grid. This low-frequency excitation flows through the two-meter grid circuit, L1 in Fig. 2, which is permanently wired into the 2E26 directly at the socket. Since the reactance of Le is negligible at 28 mc., however, it has no effect on the low-frequency operation of the circuit. At the plate of the 2E26 we again feed through a permanently connected two-meter tank, Lm, which at low frequencies looks like a parasitic suppressor, and drives the low frequency tank circuit made up of Lm, Le, and C. This latter circuit will be recognized as the all-band tank circuit which tunes 10- through 80-meters with one rotation of the tuning capacitor. If desired, a pi network or switched coils can be used here with no change in circuit performance.

For two-meter operation, the coupling capacitor, Ca, is grounded by a section of the exciter bandswitch and becomes a bypass for the cold end of the two-meter grid coil, Lm. Two-meter drive is coupled into this coil by inductive coupling from the plate circuit of the 144 mc. driver stage, Ls. The two-meter plate tank is of the "series-tuned" variety. The plate inductance, Ls, is proportioned so that it resonates with a tuning capacity at C, of approximately 7 µfd. This is equal to the output capacity of the 2E26, and the complete tank circuit then looks like a parallel-tuned circuit with the tuning capacitor C, and the output capacity of the 2E26 in series across the tank coil, Lm. Ls is tapped at the r.f. center which is not necessarily the physical center of the coil. To find this point, fire up the rig on two meters and tune the tank to resonance. "B+" can be temporarily fed through a 144 mc. choke at any point on Ls. Experimentally tap Lm with a small
screwdriver and a point will be found where contact does not cause detuning. Connect the "B+" lead at this particular point. The 144 mc. antenna coupling coil, L_0, is loosely coupled to the tank coil and is series-tuned in the usual manner.

Keeping the 2E26 neutralized for both v.h.f. and low-frequency operation poses a tough problem. The circuit was first neutralized at two meters by tuning out the screen inductance with a trimmer, C_s. An effective capacity of approximately 30 µfd. tamed the 2E26 nicely on two meters bu as was expected, this turned out to be insufficient capacity at the lower frequencies and the tube took off as a tuned-plate, tuned-grid oscillator. One method of taming unwanted oscillations of this type is to lower the impedance of either the grid or plate circuit to a point where the oscillation ceases. Since there was an excess of excitation available at the low frequencies, and since the buffer/doubler plate coils had to be damped for broad-band operation anyway, the problem solved itself. Loading resistors across these grids reduced the grid circuit impedance enough to prevent tuned-plate, tuned-grid oscillations and simultaneously reduced grid drive to the 2E26 to the proper level. These resistors varied from 4700 ohms at 80 meters to 18,000 ohms at ten meters.

As is the case with all v.h.f. designs, some precautions must be taken with regard to lead lengths. The grid-cathode path with the exciter switch in the two-meter position must contain an absolute minimum of inductance, otherwise L_i will have to be reduced to microscopic proportions to achieve grid circuit resonance at 144 mc. L_i by itself, is but a small portion of the total resonant grid circuit at 144 mc., since the inductance of C_s, the switch inductance, and the cathode path to the switch ground point all form part of the total circuit which is shunted by the rather hefty input capacity of the 2E26. L_i should be wired directly to the grid pin of the 2E26 with just sufficient room between the cold end of L_i and the switch rotor to permit insertion of C_s. The two-meter ground connection at the switch should be made with copper strap rather than wire, in order to reduce the inductance to a minimum. All three cathode pins on the 2E26 should be grounded with short, heavy straps. If it is desired to keep the cathode above ground for keying purposes, disc type ceramic capacitors should be used to bypass all three cathode connections.

Adjustment of C_s, the screen neutralizing capacitor, will affect the input capacity of the 2E26, hence, L_s should be returned for maximum grid drive after C_s has been adjusted for proper neutralization.

A grid-dip meter will greatly simplify v.h.f. tune-up and is almost necessary for initial grid circuit adjustment. With the two-meter driver coil, L_d, shorted, L_i is adjusted for resonance at the approximate operating frequency in the two-meter band. Since the tuning range of the brass slug in L_i is rather limited, some physical alteration of this coil may be required, depending on individual layouts. When approximate resonance is indicated by the grid-dip meter, the two-meter excit-

can be fired up and L_i and L_s tuned for maximum grid drive.

The two-meter exciter used with this circuit employs a 6BK7 36 mc. crystal oscillator-doubler, and a 5763 doubler to 144 mc. With 250 volts on the 5763 plate and screen, 2.5 ma. of grid current is obtained.

The low-frequency exciter uses a 6AK6 v.f.o. and a 6AK6 buffer/doubler. Plate voltage is permanently wired to both exciters and a section of the bandswitch applies heater voltage to the appropriate exciter as the bandswitch is shifted from v.h.f. to the low-frequency bands. Separate antenna relays are used in the v.h.f. and low-frequency output tanks, thus the shift from one range to the other can be made by simply flipping the bandswitch and tuning the appropriate tank circuit. Since C_s, the v.h.f. tuning capacitor, remains in the 2E26 plate circuit at all times, it can be set at mid-range and used as a low-frequency vernier when small shifts in frequency are made on these bands.

Fig. 2. Complete schematic of the author's v.h.f.-l.f. combination final amplifier.

Closeup view of 2E26 v.h.f. tank circuit with l.f. tank in background. Split section of twin-lead connected to the 2E26 is capacitor coupling to the neon bulb modulation indicator.

The 2E26 v.h.f. grid circuit. The 5763 plate coil is in foreground, coupled to 2E26 single-turn grid coil. The 2E26 screen neutralizing capacitor is slightly to the left of the socket.
AN "IMPROVED" SOUND SWITCH

By LOUIS E. GARNER, JR.

This versatile unit can serve as a secret lock, a noise alarm, transmitter control, or a commercial "killer".

SOUND-ACTUATED switches are not new, but most of the ones described in the past have been designed for specific, rather than for general, applications. Many of the earlier "sound switches" have been fairly insensitive, using a high output carbon microphone and, even then, requiring a sound source of fairly high intensity or very close to the mike for proper operation. In addition, most of the earlier sound-switch circuits have been limited to one of three modes of operation: (1) "pulsed", (2) "continuous", or (3) "locked in" operation.

The "pulsed" type units are fast acting, opening and closing a relay with every pulse in the sound. Such units are popular for operating model trains and similar "remote control" devices, where the pulsed output can be applied to a sequence or stopping relay. Where this type of sound switch is employed, the operator's choice of words or phrases determines the relay's stopping point and hence the type of operation obtained from the remote controlled device.

The "continuous" operation sound switch is similar to the "pulsed" type except that a short time delay is introduced in circuit operation. Instead of opening and closing on individual pulses, the relay is kept closed (or opened) as long as the sound intensity is kept above a given level. Shortly after the sound level drops, the relay opens.

"Locked in" sound switches generally incorporate a gas-filled tube (thyatron) which "fires" and closes a relay when the sound intensity reaches a predetermined level. The relay then remains closed until the unit is "reset" by a manual switch. This type of sound switch is useful in alarm applications.

Although the entire circuit, including its self-contained power supply, is assembled in a standard 4"x5"x6" box, the sound switch shown in Fig. 1 will, with but minor modification, take the place of any of the three basic sound-switch circuits in most applications. The unit shown uses a crystal microphone and has ample sensitivity for most uses.

With the "Sensitivity" control turned only part of the way up, the instrument may be operated easily with a normal speaking voice at a distance of 12 to 15 feet from the microphone. In fact, with full sensitivity, the faint click of its own relay is sufficient to initiate circuit operation.

The unusual versatility of the sound switch shown is obtained in two ways. First, its high sensitivity allows it to be used under extreme conditions. And, secondly, a unique "time delay" circuit permits its operation either at the short intervals of a "pulsed" type circuit or at extremely long intervals. Only two components need to be changed to go from one type of operation to the other.

When maximum time delay is used, the relay may remain open for as long as 15 to 20 seconds (or more) after the application of an actuating signal. With this much time delay the instrument's operation is similar to that of a "locked in" circuit, but with an "automatic reset" feature.

Circuit Description

The complete schematic diagram for this "improved" sound switch is given in Fig. 2. Only two tubes are used in the amplifier and control circuits and both of these are miniature types. A single selenium rectifier is used in the power supply.

In operation, sound striking the microphone ("Mic.") is converted into an electrical audio signal and applied across potentiometer R2. The setting of this control determines what portion of the available signal is applied to the amplifier and hence the sensitivity or gain of the instrument.

The audio signal is applied through coupling capacitor C, to the grid of the first amplifier stage, a pentode-connected 6A6U. Resistor R2 serves both as a grid return resistor and as a bias resistor for this stage. Convection bias is used and the tube's cathode is returned to ground. Screen grid voltage for the 6A6U is furnished through voltage dropping resistor R3, bypassed by capacitor C1.

Resistor R3 serves as the plate load impedance for the first stage, with the amplified audio signal appearing across it applied through coupling capacitor C2 to the grid of the second stage, half of a 12AT7 high-mu dual triode. R4 serves as the grid return resistor. Conventional cathode bias is provided for this stage by cathode resistor R5, bypassed by C2, a tubular electrolytic capacitor.

The amplified signal appearing across plate load resistor R3 is applied through coupling capacitor C3 to the grid of the relay control stage, the second half of the 12AT7. R6 serves as the grid return resistor.

Since both the cathode of the tube and the "cold" end of the grid resistor (R6) are returned to ground, the only bias on the relay control stage is that provided by contact potential bias through R6. This bias is fairly small and enough plate current flows through the relay (RLa) to keep it closed.

When the amplitude of the audio signal appearing on the grid of the relay control stage becomes larger than the contact potential, the grid is driven

Fig. 1. This easily-built sound switch features high gain and built-in delay.
positive, and the grid-cathode circuit acts as a simple diode. The resulting grid current charges C_x which, in turn, can only discharge through R_x. A large bias voltage is built up across R_x as C_x discharges. This bias is sufficient to reduce the plate current to the point where relay RL_x drops out.

The relay then remains open until C_x is almost completely discharged and the grid bias voltage drops to approximately its contact potential value. The time the relay remains open is determined partially by the amplitude of an applied signal and partially by the RC time constant of R_x and C_x. Where a fairly strong actuating signal is used, the RC time constant is the essential factor.

Thus, the sound switch relay remains closed until a loud sound strikes the microphone. The relay then drops out and remains open for a period determined by the time constant of R_x and C_x. This period may be made either short or long simply by varying the size of these two components. For long periods, the size of either R_x or C_x (or both) may be increased. For shorter periods, the size of these components are reduced.

The level of the sound required to initiate operation depends on the setting of R_x, the "Sensitivity" control.

The relay operation described is like that employed in many industrial electronic control circuits and in alarm devices. Since the relay is normally held closed and opens on the application of a small signal, circuit operation is virtually assured since should the 12AT7 burn out or the relay coil open, the relay will then drop out. This is generally called "fail safe" operation.

Capacitor C_x across the relay, smooths any variations that may occur in relay current and helps insure positive operation. There is no tendency for the relay to "hum" or vibrate.

Although it is customary to use a.c.-d.c. power supplies in simple relay control circuits, this type, in the interests of safety and reliable operation, a straight a.c. power supply circuit has been employed. A small transformer (T_x) of the type used in audio preamplifiers furnishes both filament power and high voltage for the rectifier. A s.p.s.t. switch, S, in the primary circuit, serves as the "Off-On Power" switch.

A half-wave selenium rectifier, SR_x, furnishes d.c. power for the operation of our instrument. A conventional "pi" RC filter, consisting of resistor R_x and electrolytic capacitors C_x and C_y, is used to remove ripple. Resistor R_x serves to protect the selenium rectifier from current surges as C_x charges when the unit is first turned "on".

Construction Hints

Above and below chassis views of the completed instrument are given in Figs. 4 and 5, respectively. The unit is housed in a standard 4" x 3" x 6" "Minibox". A commercial aluminum chassis measuring 3" x 6 1/4" x 1 1/4" is used, with approximately 1/4" cut off its length so it fits within the "Minibox". If the builder prefers, he may bend a chassis from sheet stock.

Neither layout nor wiring is especially critical. However, good wiring practice should be followed. The input and output circuits should be kept well separated to avoid feedback and oscillation, and the power supply components should be kept away from the input circuit to avoid hum pick-up. All connections should be as short and direct as possible.

In order to conserve space, disc ceramic capacitors were used for coupling the input and the second stage (C_y and C_z). Metallized paper capacitors were used for the screen grid by-pass (C_y) and for the "time delay" coupling capacitor (C_z).

Commercial decals were used to label the model. These were protected with two coats of clear acrylic plastic sprayed on after the decals had dried.

The microphone cartridge may be mounted by cutting a hole in the "Minibox" slightly smaller than the rubber support ring and forcing the "mike" into place. Special rubber-to-metal cement may be used if desired. See Fig. 5.

A pattern of small holes should be drilled in the back and top of the box cover to provide ventilation. Commercial louvers or "vent plugs" may be used instead, if preferred by the individual builder.

Circuit Modifications

A number of modifications in the basic circuit is possible, depending on the requirements of the individual builder. However, while circuit values are not critical, a certain amount of care should be exercised to avoid

Fig. 2. Complete schematic diagram and parts list for the "improved" sound switch.

Fig. 3. Under chassis view of the sound switch. Layout is not especially critical.
trouble. The average builder will probably find it best first to duplicate the circuit given in Fig. 2, and then, after checking the unit's operation, to make the desired modifications.

With the component values given in the parts list, the time delay is approximately 10 to 15 seconds. That is, the relay will remain open for this period of time after the actuating sound.

To increase this time delay, decrease the value of either C1 or R1 (or both). To reduce the time delay, decrease the value of these components. A “dual”-time delay may be obtained by providing two capacitors (C1) of different values, with a small switch to select the one to be used. A continuous control of time delay may be obtained by replacing R1 with a potentiometer. However, the value of R1 should not be dropped below 3 megohms.

The sound switch may be made sensitive to certain tones by replacing plate load resistor R4 by a parallel-tuned circuit adjusted to the desired frequency. A tuned circuit may also be used in place of R4.

If desired, the instrument may be modified to use a “remote” microphone. Replace the “mike” connections with a closed-circuit jack and add a shielded lead and plug to the microphone cartridge.

Other possible modifications include replacing the relay (Rl) with a different unit to obtain a greater number of contacts, using a control with a toggle switch for R1, replacing the toggle switch with a key-type switch, or even combining the “Sensitivity” control and “Power” switch, and replacing the crystal mike cartridge with a magnetic unit. If desired, a PM loudspeaker and output transformer may be used in place of the crystal mike. Connect the primary winding of the audio transformer to the input of the instrument (across R1), thus using it as a step-up unit.

Adjustment and Use

Two adjustments affect the sensitivity of the sound switch—the setting of the “Sensitivity” control R1, and the tension on the relay spring. For most work, the factory setting of the relay is satisfactory.

To use the sound switch, first connect the circuit to be controlled to the proper relay contacts to give the type of operation desired. Either “normally on” or “normally off” operation may be obtained, depending on the pair of relay contacts chosen. Turn the “Sensitivity” control to its minimum gain position.

After turning the unit on and allowing a few minutes warm-up, adjust the “Sensitivity” control so the relay opens with a sound of the desired level. The proper setting of this control will be such that the instrument does not respond to background noises, but operates instantly on the “control” sound. The position of the microphone with respect to the point at which the “control” sound originates will affect the setting of the “Sensitivity” control.

Applications

The possible applications of the “improved” sound switch are limited only by the ingenuity of the individual user. A few possible applications are listed and these should serve as a guide to the reader in working out applications of his own:

Voice controlled toys: By shortening the time constant of the time delay network (C1-R1) to the point where “pulsing” type operation is obtained, the sound switch may be used to operate a sequence or stepping relay to control toys or models.

Commercial “killer” or radio-TV silencer: A piece of ordinary line cord may be used to connect the relay terminals across the coil leads of a radio or TV receiver. The “Sensitivity” control is adjusted so that the relay does not operate on normal program volume. When a commercial comes on, simply shout “Shaddupp!!” and the sound switch will do the rest . . . the commercial will be cut off for about 10 or 15 seconds . . . if this isn’t long enough, extend the time by saying “Keep Quiet!!” Used in this fashion, the sound switch is also handy for silencing a radio or TV set when you are called to the telephone. If the sound switch is placed near the phone bell, radio silencing may be made automatic.

Garage door opener: Mounted in a garage, with the relay contacts connected to a door opening motor, the sound switch may be used as a remote control for opening the garage doors. Adjust the “Sensitivity” control so the sound switch will respond only to an auto horn sounded a few feet away. Little sensitivity is required.

When you come home, drive up into the driveway until your car is only a few feet from the garage. Slowly beak the sound and the sound switch will do the rest.

“Secret” lock: With the plate load resistors (R4 and R5) replaced by tuned circuits (at a selected audio frequency), and the relay contacts connected to control an electric lock release, you have a “secret” lock which may be operated. Adjust a small whistle to sound a note of the proper frequency.

“Noise” alarm: When a late party is planned, the sound switch may be connected to operate a light or buzzer and the “Sensitivity” control preset. As long as the party proceeds at a quiet pace, the neighbors will be happy and the sound switch will remain inoperative. Should the party become too boisterous, however, the sound switch will let you know so you can quiet things down and avoid tangle with the police.

Tricks and stunts: The sound switch may be used to good advantage at parties or meetings . . . to turn a light off or on “on command”, to operate a record player on command, and in similar applications.

Transmitter control: Hams will find the sound switch useful as a control on their phone transmitters. Instead of having a “push-to-talk” switch, use the sound switch (the same microphone may be used both for the sound switch and for the transmitter). The transmitter is turned from “standby” to “on” as soon as the operator starts talking.

Audio burglar alarm: If you live in a quiet neighborhood, you can connect the sound switch to an alarm bell and turn the “Sensitivity” control up just before you retire. If someone tries to “jimmy” a door or window, the sound of their efforts will operate the alarm. When used in this application, the sound switch should be placed near the outside entrance.
ELECTRONICS will take over the job of traffic control in a growing number of American cities this summer as a new engineering contribution toward speeding vehicle movement and saving lives. Conventional corner traffic lights will be activated by remote-control radio.

Greeley, Colorado, already has one system, designed by Colorado Electronics Corporation, in operation, and Chicago will get the world's most extensive network of radio-operated signals by summer. The equipment for the Windy City was designed and built by General Electric.

Both systems utilize existing stop-and-go lights but overcome the disadvantage of fixed time cycles. Tone signals transmitted from a central radio station to FM receivers mounted near the lights will re-time signals automatically as required by car movements and weather conditions.

The need for these new systems stems from the fact that street traffic changes its pattern a number of times each day. During the early morning rush hours, for example, cars roll into Chicago's "Loop" area at a tremendous volume. Yet intersection signals remain at constant timed cycles. The period of "go" for this southbound flow is the same as it is for traffic headed north although virtually no cars are moving in that direction.

Cars back up for blocks and drivers fuss and fume. The result of this condition is more than delays and inconvenience, engineers found. In order to "beat the lights," drivers make jackrabbit starts, cut in and out, and follow much too closely. Dozens of serious accidents along such busy thoroughfares as well as dented fenders and bent grilles underscored the need for some change.

Lloyd M. Johnson, Chicago's commissioner of streets, initiated a detailed survey of traffic conditions. The result was a recommendation that the number of intersections with traffic lights be increased by almost 1500 new signals.

The majority of these new lights could be equipped with conventional preset timing patterns. At about 450 corners, however, engineers said that the unbalanced traffic flow during the morning and evening rush hours called for a system that would permit variable time conditions. This could be done by interconnecting the lights by underground cable—a system used in heavily concentrated business centers. Cost, however, was a prohibitive $3,375,000.

So another solution was sought and radio was it. Research and development of an entirely new idea in remote-controlled signals was undertaken by the city's associate traffic engineer, Ralph F. Michel, and General Electric's Charles L. Race.

A pilot network was subsequently designed with radio-controlled signals going at two different six-way intersections on the city's South and West Sides and along eleven intersections of La Salle Street which brings traffic directly into the Loop district from the Outer Drive.

The Central station for the Chicago system will be a G-E 34-W transmitter which will be located in the Board of Trade Building, one of the city's tallest.

(Continued on page 106)

First electronic system of its type now permits traffic signal patterns to be adjusted from a central point.

The new traffic control signal plan being set up in Chicago by General Electric.

RADIO SIGNALS
UNDERGROUND CABLES TO BOARD OF TRADE BLDG.
CENTRAL CONTROL STATION

Two views of the radio control equipment mounted on traffic signal and the three-tape system which provides the automatic cycling for control, as installed in Greeley, Colo.
ELECTRONIC IGNITION SYSTEM

By HARRY W. LAWSON, JR.

Step-up performance of your car without use of added coils or distributors by incorporating this simple circuit.

The system to be described here can be considered more than a hot-rod novelty. Indeed it should be of interest to any Saturday mechanic on the lookout for smoother operation, better acceleration, and extremely long point life. Perhaps, first it would be well to lay some ground work about ignition systems in general.

To begin with, those of you who remember the struggling infancy of the automobile industry may recall the various methods of obtaining the required ignition voltage. Out of all the multitude of magneto and vibrator-coil designs, there emerged the single-coil interrupter type still in use today. The industry's reluctance to abandon this antiquated method stems mainly from the economics of long-standing practice.

Let us first review the operation of the conventional ignition system used today along with its various innovations. Starting with fundamentals, it has long been established that the interruption of current through a coil produces a voltage induced in the coil proportional to the inductance of the coil and the rate of change of current in that coil.

Hence: \[E_{noe} = L \frac{di}{dt} \]

If we then place another winding on this coil (i.e., a transformer), this second winding will have induced in it a voltage proportional to the first winding voltage multiplied by the turns ratio. Hence, with large ratios the right order of magnitude of secondary voltage will result in the second winding or secondary. This is all well and good except that it is a little rough on the contacts that do the interrupting. It will be apparent that the entire primary induced voltage (250 to 350 volts for an ordinary coil) appears across the points immediately on opening. With the small contact spacing present at the initial break, this voltage is sufficient to break down the gap and cause a destructive arc. In order to slow down the rate of rise of voltage across the points, a capacitor is shunted around them. Since the capacitor voltage cannot change instantaneously, the points have sufficient time to increase their gap above breakdown voltage. The result of all this is the ignition system used today, as shown in Fig. 2.

On closer examination of this circuit we will find that on opening of the points a series resonant circuit is present, consisting of the primary coil inductance and the distributor capacitor (C). With typical values of 5 to 15 millihenrys (open secondary) and .25 μf, the opening of the points causes a sinusoidal rise of voltage for roughly one-quarter cycle of a 2000 to 3500 cps wave, assuming the spark plugs fire at approximately the peak of this wave. A plug firing appears as a secondary short circuit reflecting a decrease of primary inductance on the order of ten-to-one or 5 to 15 millihenrys. With this change of primary inductance the induced voltage and subsequent damped oscillations have now become shifted to the neighborhood of 10,000 cycles per second. Fig. 1 illustrates this point of operation. It should be mentioned that if the plug fails to fire at the top of the initial rise it is
safe to assume that it will not fire at all.

First, take a look at some of the aspects of this system as described. Though it is simple and reliable, but it falls in many ways to meet the requirements of modern, high-speed engines. During the relatively slow initial voltage build-up, needed coil energy is expended through ground leakage paths in high voltage wiring. This is aptly demonstrated by fouling a plug with as high as ten megohms shunt resistance. In addition, this slow build-up time, although of no consequence at low speeds, amounts to twenty-four crankshaft degrees or 4000 rpm. True, an attempt to correct this and the combustion rate is made by automatic distributor advance, but nonetheless the difference between the optimum and actual firing points increases with speed.

Of the most consequence however, is the inability of the present system to function at high engine speeds. The reason for this stems from the relatively slow rise time of the charging current in the coil, this time being proportional to the ratio of the coil primary inductance to the circuit resistance. Thus, in order for proper ignition voltage at high speed the closed point time or dwell time in seconds should be on the order of ten times the time constant \(L/R \). This condition can be improved by the addition of another set of points whose function is solely that of increasing the dwell time in order that the charging current more nearly reaches its full value before break. On the author's V-8 Dodge this dual-point distributor is standard equipment as on all Chrysler V-8 engines.

Though the foregoing is only a partial coverage of the story it would be pertinent here to set down the requirements of an ideal ignition system: a. Good reliability; b. No speed limitation; c. Not affected by secondary loading; d. Elimination of points; e. No warm-up time; f. No supply voltage restriction; and g. Low cost and easy serviceability.

Although the system to be described does not eliminate points, it meets the other requirements. However, since the point current and voltage requirements are both reduced by a factor of fifty to one, point life is increased. It can be seen from Fig. 1 that there is much to be gained by applying a fully charged capacitor directly across the coil at the desired instant of firing. The simplified schematic shown in Fig. 3 illustrates a circuit which will accomplish this. Capacitor \(C \), which has become charged through the limiting resistor \(R \), is suddenly switched across the coil by voltage of the thyatron.

The resulting current and voltage waveforms for this circuit are shown in Fig. 4. This circuit has the disadvantage that the limiting resistor, \(R \), is wasteful of plate current during thyatron conduction and limits the maximum firing rate by slowing up the capacitor recharging.

By replacing the limiting resistor by charging choke \(L_{t} \) as shown in Fig. 5A, the efficiency of the circuit can be raised 100 per-cent. This is brought about by the utilization of the energy storage in this inductance during conduction. Since capacitor \(C \) is charged by both the power supply and the stored inductor energy, the resultant peak capacitor voltage is approximately twice the power supply voltage. Since the rate of firing has a wide frequency range, the selenium rectifier, \(Rect. \), is used to hold the capacitor at full peak voltage before firing. Since the thyatron conducts for only one-half cycle, as soon as the tube extinguishes its plate voltage drops as shown in the Fig. 5B waveforms. This is due to the negative charge left on capacitor \(C \). If the inverse diode \(Rect. \) is added as per Fig. 5C, the other half cycle of the oscillation is completed and the firing capacitor is charged to twice power supply voltage, again from

(Continued on page 90)
Certified Record Revue

By BERT WHYTE

A S THE regular readers of this column know, I'm a creature of moods. Some months, I ain't mad at nobody; other months I'm loaded for bear and ready to eat raw meat! Of course, these "moods" or attitudes are merely my personal reflection on what is current, good, bad, or indifferent in the word of audio. Those of you who don't cotton to my ranting can stop reading right here...cause this month I'm really tuning!

You might support the audio-hi-fi movement ever since 1950 cycles was the big deal. Like many of my contemporaries, I'm pretty proud of the fact that the prognosticators we made about the future our high quality music reproduction are at long last coming to fruition. Yessir, hi-fi is hightime now...articles about it in Life, Time, Newsweek, etc. are becoming (fortunately from a philological viewpoint) a word in common usage...hi-fi shops and services burgeoning everywhere. You might say, "In New York which is the apex of the hi-fi market, surely the public interest in good music and high quality sound is one of the phenomena of this decade. I sincerely feel that this tremendous upsurge of interest in what is largely a cultural pursuit, is one of the saving graces that makes life bearable in the psychoneurotic political climate of this weary world. Feeling as I do about good music and hi-fi, I am acutely sensitive to influences and conditions which might have a deleterious effect on the public acceptance of this medium."

It is because of this that I call your attention to a situation which is rapidly becoming one of the greatest menaces to hi-fi sound. I refer to the insidious rise of "discount stores" as a source of hi-fi equipment. At first glance, one might raise the question "what is so harmful about a discount house? After all, if I can save a few dollars on the equipment, what is wrong with that?"

On the face of things, the answer to this seemingly would be...nothing! It is human nature asserting itself when we try to "get something for nothing," or indulge in "Yankee penny pinching" to save a few dollars. It is just as much a part of human nature to be suspicious...to beware the "pig in the poke" type of transaction. And well you might be suspicious! The sad fact is that many people who "got a deal" attest to the basic fallacy of doing business with a discount house. Yessir, that "ten or fifteen or twenty percent off" sounds mighty attractive, but if the average hi-fi buyer would take a good look at the background of his deal...I very much doubt that the discount would continue to enthrall him. All too often, it would be found that the equipment is defective, rate or indifferent in operation, etc. When it comes to personnel, it's just short of murder! You can hear more pure balderdash and mis-information dispensed in one five minute period in one of these "discount" stores than you can hear in a legitimate establishment in a year!

Sure, if you're real hip to the hi-fi, you know what equipment you want, etc. But consider the case of the average Joe who doesn't know much about the subject and must, patently, pursue the supposed "expert" advice he thinks he can get in the hi-fi salon. One of the most lamentable practices that has sprung up is the unthinking (and for that ethical) nonsense that goes to legitimate dealer's showrooms. The legitimate dealer cannot afford to compete with the two-bit discount houses. Some dealers have faked up the situation by getting out of hi-fi business altogether or by dropping those lines which are being "footballled" around the discount houses. Which brings us up to the point that all hi-fi manufacturers are hardly blameless in many cases, since they sell direct to the cut-price artists. In this they are sowing the seeds of their ultimate destruction. A few of the manufacturers are "hungry" for a fast buck started all this foolishness and gradually others followed suit in self-defense. If the discount market ever gets out of hand, it's on the face of this decade. I know the public is not maintaining a happy face of high fidelity. Those who do, have compensated by the insidious "dis-transhippers." Discount houses generally don't give a tinker's damn about it. Many do maintain a service department at all. And I'm not talking of the usual "shrewd" discount houses or the thinking person who Real hep to the hi-fi, over-all "transhippers." Dis-transhippers in this magazine are sowing the seeds of their ultimate destruction. A few of the manufacturers are "hungry" for a fast buck started all this foolishness and gradually others followed suit in self-defense. If the discount market ever gets out of hand, it's on the face of the public is not maintaining a happy face of high fidelity. Those who do, have compensated by the insidious "dis-transhippers." Discount houses generally don't give a tinker's damn about it. Many do maintain a service department at all. And I'm not talking of the usual "shrewd" discount houses or the thinking person who Real hep to the hi-fi, over-all "transhippers." Dis-transhippers in this magazine are sowing the seeds of their ultimate destruction. A few of the manufacturers are "hungry" for a fast buck started all this foolishness and gradually others followed suit in self-defense. If the discount market ever gets out of hand, it's on the face of the public is not maintaining a happy face of high fidelity. Those who do, have compensated by the insidious "dis-transhippers." Discount houses generally don't give a tinker's damn about it. Many do maintain a service department at all. And I'm not talking of the usual "shrewd"

BIZET

SYMPHONY #1

PATRIE OVERTURE

L'Orchestre de la Suisse Romande conducted by Ernest Ansermet. London LL1186. RIAA curve plus $3.98.

This comes hard on the heels of the excellent versions by Cluytens and the Philharmonic Orchestra on Angel. In comparison, I think that Cluytens and Ansermet are sowing the seeds of their ultimate destruction. A few of the manufacturers are "hungry" for a fast buck started all this foolishness and gradually others followed suit in self-defense. If the discount market ever gets out of hand, it's on the face of the public is not maintaining a happy face of high fidelity. Those who do, have compensated by the insidious "dis-transhippers." Discount houses generally don't give a tinker's damn about it. Many do maintain a service department at all. And I'm not talking of the usual "shrewd"

WALTON-SITWELL

FACADE

Dame Edith Sitwell and Peter Pears with The English Opera Group Ensemble conducted by Anthony Halsted with these investments LL1133. RIAA curve. Price $8.98.

This is listed as an "entertainment!" and I can assure you it qualifies as that! The recording is supplied by Walton-Sitwell with Dr. Sitwell on an early Columbia and, cloaked in a plain-looking wrapper, Radio & Television News...
Six months from today
Which Will You Hold?

Add Technical Training To Your Practical Experience-
GET YOUR FCC LICENSE IN A HURRY!
Then use our Amazingly Effective JOB-FINDING SERVICE

Here is Your GUARANTEE
If you fail to pass your Commercial License exam after completing our course, we guarantee to continue your training without additional cost of any kind until you successfully obtain your Commercial License.

WE GUARANTEE TO TRAIN AND COACH YOU AT HOME IN SPARE TIME UNTIL YOU GET YOUR FCC LICENSE
If you have had any practical experience—amateur, Army, Navy, radio repair, or experimenting.

Tell How-
Employers make job OFFERS Like These to Our Graduates Every Month
Letter from nationally-known airline, "Radio Operators and Radio Mechanics are needed for our company. Permanent wage increase with opportunity for advancement. Both positions include many company benefits such as paid vacations, free flight mileage allowance and group insurance."
Letter from nationally-known manufacturer, "We have a very great need at the present time for radio-electronics technicians and would appreciate any helpful suggestions that you may be able to offer."
These are just a few examples of the job offers that come to our office periodically. Some licensed radioaman filled each of these jobs...it might have been you!

Here's Proof FCC licenses are often secured in a few hours of study with our coaching at home in spare time.

Name and Address License Lessons As Approved
Harry G. Frame, Box 429, 2nd Class 13 Weeks Martin
Charleston, W. Va. 1st Class 28 Weeks
Charles Ellis, Box 449
Omar Bibbs, 1320 South 27th St., 1st Class 34 Weeks Robert B. L. Jordan, Seattle, Washington
Kansas City, Mo. 2nd Class 20 Weeks
Kenneth Rue, Dresser, Wisconsin 1st Class 20 Weeks
Carl E. Smith, E.E., Consulting Engineer, President
Cleveland Institute of Radio Electronics
DESK RN-78, 4900 Euclid Bldg., Cleveland 3, Ohio
July, 1955

Money-Making FCC Commercial Radio Operator License Information

Get This Valuable Booklet FREE!

Tell How-
Our Amazingly Effective JOB-FINDING SERVICE Helps CIRE Students Get Better Jobs
Here are a few recent examples of Job-Finding results:

BROADCASTING
"Your Chief Engineer's Bulletin" is a grand way of obtaining employment for your graduates who have obtained their 1st class license. Since my name has been on the list I have received calls or letters from five stations in the southern states, and am now employed as Transmitting Engineer at WMMT."
Edward Powell, Box 274, Sparta, Tenn.

CIVIL SERVICE
"I have obtained a position at Wright-Patterson Air Force Base, Dayton, Ohio, as Junior Electronic Equipment Repairman. The Employment Application you prepared for me had a lot to do with my landing this desirable position."
Charles E. Loomis, 4516 Genesee Ave., Dayton, Ohio

"Due to your Job-Finding Service, I have been getting many offers from all over the country, and have taken a job with Capital Airlines in Chicago as Radio Mechanic."
Harry Clare, 4557 S. Ashland Blvd., Chicago, Ill.

Your FCC Ticket is recognized by employers as proof of your technical ability.

Get All 3 Free!
MAIL COUPON NOW!

CLEVELAND INSTITUTE OF RADIO ELECTRONICS
DESK RN-78-4900 Euclid Bldg., Cleveland 3, Ohio
(Address to Desk No. 6 to Avoid Delay)

I want to know how I can get my FCC ticket in a minimum of time. Send me your FREE booklet, "How to Pass FCC License Examination," does not cost me anything. Also ask me for the valuable booklet, "Money-Making FCC License Information." Be sure to tell me about your Television Engineering Course.

NAME ____________________________
ADDRESS ____________________________
CITY ____________________________ ZONE ____________ STATE

For Prompt Results, Send Air Mail
Special tuition rates to members of the U.S. Armed Forces.
Variable Damping

(Continued from page 45)

source impedance for a particular speaker must be specified by the manufacturer of that speaker, as the means for proper adjustment of frequency response. These variable damping are beyond the capacity of any but a well equipped acoustics laboratory.

The author has questioned several speaker manufacturers and has found them amazing and (unusually) reluctant to comment on how their speakers should be operated. The consensus seems to be that modern speakers are expected to work properly with amplifiers of low positive source impedance. (damping factors of 10 or more), and the manufacturers' specifications are set from a constant voltage source—the equivalent of a zero source impedance. Any departures from this conventional standard should be mentioned by the manufacturer in his directions for using the speaker.

Conclusion

Weighing the various pros and cons of variable damping, the author finds it difficult to justify variable damping except in the limited case of low grade speakers. In situations where the speaker manufacturer intended a specific source impedance other than close to zero.

Speaker distortion may be affected for better or for worse through variable damping. Frequency response will generally be most suitable for a low source impedance. Therefore, a fixed, low source impedance, such as is normally obtained from amplifiers with appreciable negative voltage feedback, will provide close to optimum performance as well as insuring that the speaker is critically damped (or slightly overdamped).

On the other hand, the use of current feedback to provide variable damping introduces new problems which tend to degrade tuning quality. When a multiple speaker system is used with a crossover network, the impedance-sensitivity of current feedback will cause frequency variations which cause rough and ragged reproduction at the crossover frequencies. If no crossover network is present, the impedance variations in one part of the system cause current feedback changes which are reflected in changes in signal level to other units in the system. This again accentuates raggedness of frequency response.

The most serious drawback to the use of variable current feedback lies in the dangers of instability. This is particularly true where the feedback is positive. In order to minimize this difficulty, some design introduce filters to confine the positive feedback to a limited frequency spectrum. However, this causes frequency imbalance similar to tone control action.

Listening tests under reasonably well controlled conditions indicate that, as theoretically expected, high output impedances lead to boom and screechy sound quality, while negative impedances lead to a loss of tone. Extremes in either direction lead to veiled and indistinct sound quality. Undoubtedly, other experiments using different equipment could lead to different conclusions, but so far the author has found nothing to justify variable damping, while many factors indicate that it is undesirable.

Editor's Note: One thought that should not be overlooked is that many manufacturers have been including some form of variables in their new amplifiers at no additional cost to the consumer. Many individuals may find it quite interesting to experiment with this feature. In all cases, it can be cut out of the circuit if not desired.

The measurements shown in Table 1 and Fig. 2 were made by Mr. Bruce DePalma, of M.I.T. Mr. DePalma also contributed many ideas on the subject of variable damping during the course of the discussions and tests on which this article are based. —DJ0

WYOMING HAMFEST

The annual Wyoming Hamfest will be held at the South Fork Inn area, 18 miles west of Buffalo, Wyoming on Highway 236, June 23rd and 24th. Cabins or camping sites will be available.

The Sheridan Radio Amateur League has prepared a full program that will include a banquet, a Wyoming "Trading Post," and valuable prizes.

Registration, including the banquet, is $35.00. Hams vacationing in the Yellowstone Park area are invited to join with the Wyoming hams in this get-together.

Register with W7QPP, 362 E. Loucks St., Sheridan, Wyoming, or contact any Wyoming Radio Club for information on this hamfest in the wide-open spaces. A hearty welcome awaits attendees. —DJ0

REMTA TEACHERS' COURSE

A PART of its effort to increase the skills of practicing TV service technicians, the RETMA has announced that it is again offering a three-week teacher training seminar in advanced TV servicing techniques, beginning July 5th. The seminar is being offered by RETMA and the New York State Department of Education, in cooperation with the New York Trade School, Inc.

This year's seminar will offer special advanced instruction in TV servicing to teachers of television courses in public and private schools in addition to those who conduct instruction for service organizations.

The course will include instruction on servicing all sections of TV receivers, the addition to antenna systems and TV accessories, customer relations, techniques of teaching, and the organization of a shop workshop. Extensive laboratory work will be included.

Full details are available from Gilbert Weaver, Director of Training, The University of the State of New York, 227 Ninth St., New York 3, N.Y., upon request.

RADIO & TELEVISION NEWS

www.americanradiohistory.com
Standardize with Cannon Audio Connectors... designed to meet all audio equipment disconnect needs. Simplify circuitry and cabling. Get quiet, continuous operation with the standard connectors of the industry—Cannon Plugs.

You'll find exactly the type you need in 14 extensive series expressly designed for radio, sound, TV and related fields... in cord, rack or panel chassis, audio and low-level, portable, hermetic sealed, miniature and subminiature, and power-supply types. Standard equipment with leading manufacturers of electronic equipment. The old reliable "Latchlock" feature on Cannon microphone connectors... standard on top-ranking microphones.

Complete Audio Connector Bulletin is yours for the asking... D Series in separate bulletin coded D-4.

CANNON PLUGS

Please refer to Dept. 145
CANNON ELECTRIC COMPANY
3209 Humboldt St.
Los Angeles 31, California
Factories in Los Angeles; East Haven; Toronto, Canada; London, England; Licensees in Paris, Tokyo, Melbourne. Representatives in all principal cities. Distributors everywhere.
Exact Duplicate DUAL CONTROLS available TWO ways

Do you prefer ready-to-use dual controls? Or would you like a small stock of control sections, switches and shafts that you can assemble quickly for the combination you need?

Either way, with Mallory, you can be sure of duplicating the exact electrical characteristics of the controls in practically any popular TV set.

Either way, with Mallory, you can equal or exceed the performance of the original equipment control. You can count on accurate resistance values, smooth tapers, quiet operation and long life.

Either way, with Mallory, you can be sure the job is right the first time... without profit-cutting "come backs."

Either way, your Mallory distributor has what you need. Call him today!

Exact duplicate, ready-to-use, dual control...

factory-made with all the resistance values, tapers, taps, switches and shaft lengths needed for most of the popular TV sets.

Exact duplicate, dual control kits. With a small stock of factory-assembled control sections, you can make 10,000 different combinations. No soldering or special tools required. Assembly takes less than five minutes.
A MAN who was just leaving the service shop politely held the door open for Barney to enter. The youth, at the age when he thought all forms of common courtesy were, at best, so much wasted motion, or, at worst, performed with an ulterior motive, looked suspiciously at the neatly dressed man as he carried a small tool box to his waiting car.

"Well, Mac," Barney greeted his boss, "did you finally get a set too tough for you and have to call in another technician for a consultation? Why didn't you call on me? I'm always available."

"That would be like a one-eyed man asking a blind man to lend him," Mac grunted. "That fellow is a technician all right, but he works on electric typewriters instead of radios. The on-off switch on Matilda's pride and joy finally wore out, and he came over to replace it."

"If that's all that was wrong, why didn't you do it yourself?"

"I started working in that direction, too," Mac admitted, "and then I brought myself up short. There I was right on the verge of doing what I criticize so severely in our customers: tinkerin' with something I knew little about and that I was not equipped to service. So I picked up the telephone and called the service department of the people who sold us the typewriter and asked them to send a repairman over to fix it. He came right away, and I'm certain I got a lot more useful information about patching him work than the bill will total."

"How's that?"

"Well, I happen to know that the company manufacturing our electric typewriter also makes other expensive office equipment used all over the globe. Since they realize their service technicians represent the whole company and its products in the minds of many people, they give each fellow an intensive and intensive training before he is allowed to start work. It occurred to me that if I watched him at work here in our office, I probably could pick up some good pointers on how a professionally-trained technician worked to produce a good impression; then I might even try to graft some of these scientific methods on you."

"Trust a Scotchman to squeeze an education out of a service call," Barney said with a grin. "What did you learn?"

"You see for yourself how neat and clean he was—and how courteous. He came in, introduced himself, removed his coat, opened his toolbox and took out a workcloth to place beneath the typewriter, put this in place, and went right to work. No time was lost in idle chatter. In that little toolbox he had exactly the right tool for every job, and I particularly noted the tools were clean and in excellent condition."

"Even though I promptly gave him my own diagnosis of the trouble, he politely made his own checks before starting to remove the switch. Two or three other times I offered him the benefit of my valuable advice—which invariably turned out bad. He received all this courteously, without comment, and then we right ahead to do the job the way it should be done; but he was careful not to mention or point up the fact that I was mistaken. That takes good discipline and will power to keep from showing a smart aleck how wrong he was!"

"I kept trying to engage him in conversation on every subject from baseball to politics. He answered me each time politely and briefly, but he kept right on working. His movements were quick and sure but gentle. That typewriter was treated as though it were a priceless family heirloom. After the switch was installed, he worked it several times to be sure it was all right. Nothing was taken for granted. Next he cleaned and oiled the entire machine—not only the working parts but also the portions that had to do with the appearance of the typewriter. After that, in spite of the fact that Matilda and I both assured him there was nothing wrong with the typewriter except the bad switch, he ran a sheet of paper into the rolls and checked the operation of every key and control several times. And he found several minor flaws in the typewriter's operation that we could easily see when he pointed them out but that had gone unnoticed before. For example, he made every key hit with exactly the same force so the letters were of equal shading. All of these things were taken care of easily and quickly until finally the machine was doing the job he knew it was capable of; then he put away his tools and wiped the desk so it was actually cleaner than when he started."

Barney took in every word of this, although he pretended to pay scant attention, and Mac knew the boy would try to put into practice the points observed and stressed. For a while both men worked in silence; then Barney piped up:

"Mac, here's a queer one. This set is practically new, but it has developed a bad hum. At first I thought it was filter capacitors, but new ones don't help. I've tried new tubes in the output and audio amplifier stages with no improve-

ment; yet I know the hum originates here because when I pull any tube ahead of the detector and audio amplifier tube, the hum is not affected; but when I pull that tube, the hum stops. A kind of funny thing is that the hum seems to get worse as the volume is turned down."

Mac noted the model number of the set and went to the service literature file and pulled out a folder covering the set. He studied the diagram for a couple of minutes and then turned the chart over and studied it for a few seconds. Next he got a new 35W4 tube and substituted it for the one in the set. When this warmed up, the set played normally and there was no hum.

"Well, I'll be a monkey's uncle!" Barney exclaimed. "I never thought of a bad rectifier tube causing hum. Thanks a lot. I'll put it back in the cabinet now."

"Not so fast," Mac cautioned as he replaced the old 35W4 in the socket. He waited until the hum was coming through strongly and then carefully cut a lug loose from one of the tube sockets so that the resistor and capacitor leads soldered to this lug were freed from the socket. Instantly the hum quit.

"For the umpteenth time," Mac said wearily. "I repeat: study the diagram whenever you come up against an unusual symptom. In this case the unusual symptom is that business of the hum being worse when the volume is turned down. The diagram shows the bottom of the volume control does not go directly to ground, as is usually the case, but instead returns to 'B-minus' through this 2200-ohm resistor. A .05 µfd. capacitor connects to the junction of the control and this resistor, and the other end of the capacitor goes through this 4700-ohm resistor to the cathode of the output tube. The cathode resistor of this tube is not bypassed, and some of the voltage developed across it is fed back through the resistor and capacitor to the bottom of the volume control, thus supplying negative feedback to the grid of the audio amplifier tube fed from the sliding contact of the control. (Continued on page 82)"

By JOHN T. FRYE

A TYPICAL DAY IN THE SHOP

July, 1955

69

www.americanradiohistory.com
WHAT IS YOUR "FI-Q"?

By W. R. NUGENT, E.E.

Test your grasp of high fidelity with this brief yet comprehensive quiz. The twenty questions below cover the full scope of hi-fi from recording to the ear, and will give a good indication of your mastery of this timely subject. A choice of three answers is given after each question. When all questions are completed, compare your answers with the correct ones on page 128. Give yourself 5 points for each correct answer. A score of 90 to 100 ranks you as an expert; 75 to 85 indicates "advanced amateur" status; 60 to 70 places you in the "novice" class, while less than 60 shows you need to acquire a firmer background in the tools and techniques of hi-fi.

1. Increasing the speed of recording on tape will cause frequency response to:
 (a) improve
 (b) deteriorate
 (c) remain the same
2. "Liveness" in a recording refers principally to:
 (a) dynamic range
 (b) tone quality
 (c) reverberation time
3. With phono pickup arms of equal length, which type will introduce the least tracking distortion?
 (a) straight head
 (b) bent head
 (c) no difference
4. In phono cartridges, the term "compliance" refers to the ratio of needle displacement to:
 (a) tracking error
 (b) voltage generated
 (c) force applied
5. A recording with constant amplitude characteristics is reproduced by an "ideal" magnetic cartridge. As the frequency is increased, the output voltage:
 (a) is essentially constant (b) increases at 6 db/octave (c) decreases at 6 db/octave
6. Bent shank needles are designed to give:
 (a) increased vertical compliance (b) longer needle life (c) less surface noise
7. From the standpoint of quietness and speed regulation, the best type of motor for recording or playback use is:
 (a) 4-pole induction
 (b) shaded pole
 (c) hysteresis-synchronous
8. High sensitivity is of greatest import in FM tuners employing:
 (a) limiters
 (b) ratio detection
 (c) a.d.c.
9. Many quality tuners and preamplifiers are shock mounted. This reduces the possibility of:
 (a) breakage
 (b) microphonics
 (c) poor connections
10. D.C. heater supplies are often used in low-level stages of preamps in order to reduce:
 (a) parasitic oscillations
 (b) transformer drain
 (c) hum
11. If a preamp is to be used at a distance from the main amplifier, a wise choice of preamp output would be:
 (a) cascade
 (b) cathode follower
 (c) push-pull
12. Push-pull amplifiers help to eliminate distortion by cancelling all spurious:
 (a) odd harmonics
 (b) even harmonics
 (c) odd and even harmonics
13. Expander circuits are useful when playing recordings having limited:
 (a) pre-equalization
 (b) frequency range
 (c) dynamic range
14. In conventional speakers, the angle of sound radiation is narrowest for the:
 (a) low frequencies
 (b) high frequencies
 (c) no difference
15. The most faithful reproduction is obtained from which type of speaker enclosure:
 (a) bass reflex
 (b) labyrinth
 (c) horn
16. To obtain full symphonic volume in an average livingroom, a speaker must deliver an average acoustic power of about:
 (a) 1 watt
 (b) 5 watts
 (c) 10 watts
17. To the ear, the most objectionable type of distortion is:
 (a) amplitude
 (b) phase
 (c) intermodulation
18. "Loudness" controls compensate for variations in the frequency response of the ear at different volume levels. The ear's frequency response is poorest at:
 (a) high volume
 (b) low volume
 (c) average volume
19. The audible frequency spectrum is roughly from:
 (a) 30 to 18,000 cps
 (b) 300 to 8000 cps
 (c) 800 to 30,000 cps
20. The weakest link in most hi-fi rigs is usually the:
 (a) pickup arm and cartridge
 (b) amplifier
 (c) speaker system
The Heathkit OSCILLOSCOPE KIT 3" is a light, portable oscilloscope designed for hobbyists and professionals. It features a voltage range of 0.015 volts RMS to 2000 volts RMS, and can be used with an AC or DC power supply. The kit includes a 100 prism, 1000 ohm/meter scale, and a 10 microfarad capacitor. It is priced at $24.50.

The Heathkit OSCILLOSCOPE KIT 5" is a full-size oscilloscope with many outstanding features. It has a voltage range of 0.015 volts RMS to 2000 volts RMS and can be used with an AC or DC power supply. The kit includes a 100 prism, 1000 ohm/meter scale, and a 10 microfarad capacitor. It is priced at $49.50.

The Heathkit MULTIMETER KIT 20,000 ohms/volt is a versatile instrument for measuring AC and DC voltages. It features a range of 0.015 volts to 2000 volts, and can be used with an AC or DC power supply. The kit includes a 100 prism, 1000 ohm/meter scale, and a 10 microfarad capacitor. It is priced at $29.50.

The Heathkit A.C. VACUUM TUBE VOLTMETER KIT measures AC voltage from 0 to 500 volts. It incorporates full 10 ranges of dB scale from -52 to 52.52. Essential for the audio laboratory or for audio enthusiasts and experimenters. Priced at $29.50.

The Heathkit ELECTRONIC SWITCH KIT is a device that will electronically switch between two input signals to produce both signals alternately at the output. It is priced at $23.50.

The Heathkit VOLTAGE CALIBRATOR KIT provides a known peak-to-peak voltage standard for comparison with unknown voltage values on an oscilloscope. It is priced at $11.50.

The Heathkit PRINTED CIRCUIT 5" COLOR TV and the Heathkit PRINTED CIRCUIT 3" OSCILLOSCOPE KIT are both available at www.americanradiohistory.com. For more information, visit the Heathkit website at heathkit.com.
Heathkit \textit{TUBE CHECKER KIT}

Because of its low price this fine tube tester is available not only to the service shop and laboratory, but to part-time servicemen, experimenters, and radio amateurs, as well. It will test almost all tubes commonly encountered in radio and TV service work. Simple "GOOD—BAD" scale on the 4 ¼" meter. Tests for open, short, and quality of the basis of total emission. Includes fourteen different filament voltage values available. Separate switch for each tube element. Model TC-3P is the same electrically as TC-2, except that it is housed in a beautiful two-toned illuminated case. Twenty-five switch positions. Only $44.50. Shpg. Wt. 15 lbs. Portable carrying case available separately for $5.50. Shpg. Wt. 2 lbs.

Model RS-1

	extit{Heathkit RESISTANCE SUBSTITUTION BOX KIT}

Provides switch selection of 36 RTMA standard 10% resistors, ranging from 15 ohms to 19 megohms. Numerous applications in radio and TV work. 2 lbs. Aluminum panel, hinged case, and includes 18" flexible leads with alligator clips.

Model C5-1

$5.50

Shpg. Wt. 2 lbs.

	extit{Heathkit CONDENSER SUBSTITUTION BOX KIT}

Very popular companion to Heathkit HS-1. Individual selection of 18 RTMA standard condenser values from .0001 mfd to 22 mfd. Aluminum panel, hinged case, and includes 18" flexible leads with alligator clips.

Model DC-1

$16.50

Shpg. Wt. 3 lbs.

	extit{Heathkit DECADE RESISTANCE KIT}

Twenty 1% precision resistors provide resistance from 1-30,000 ohms in 1 ohm steps. In-disposable around service shop, laboratory, home workshop.

$19.50

Shpg. Wt. 4 lbs.

	extit{Heathkit DECADE CONDENSER KIT}

Provides capacity values from 100 mfd to 0.011 mfd in steps of 100 mfd. 1% precision silver-mica condensers used. High quality ceramic wafer switches for reduced leakage.

$16.50

Shpg. Wt. 3 lbs.

\textbf{SELECT YOUR NEXT HEATHKIT FROM}

\textbf{Heathkit TV ALIGNMENT GENERATOR KIT}

Here is the complete R.F. signal source for FM and TV alignment. (both monochrome and color). Provides output on fundamentals from 3.6 Mc to 220 Mc in four bands, with harmonic output usable through the UHF channels. Electronic sweep circuit eliminates mechanical gadgets and accompanying noise, hum, and vibration. Continuously variable sweep up to 0-12 Mc, depending on tube frequency.

Variable marker (19-61 Mc on fundamentals) and crystal marker (5.4 Mc and multiples thereof) generators built-in. Crystal included with the kit. Provision for external marker if desired.

Packed with outstanding features. 50 ohm output impedance—exceptionally good linearity—effective AGC action—plenty of R.F. output. An essential instrument for the up-to-date service shop.

$49.50

Shpg. Wt. 16 lbs.

Model TS-4

\textbf{Heathkit SIGNAL GENERATOR KIT}

This is one of our more popular kits, and is "serviceman engineered" to fulfill the signal source requirements of the radio serviceman and experimenter.

Covers 100 Kc to 110 Mc on fundamentals (6 bands), with output in excess of 100,000 microvolts. Calibrated harmonics extend usefulness up to 220 Mc. Choice of unmodulated R.F. output, 500 cps modulated R.F. output, or 400 cps audio output. Step-type and continuously variable output attenuation control.

Coils are prewound, and construction manual is complete. Calibration unnecessary for service applications.

$39.50

Shpg. Wt. 16 lbs.

Model LG-1

\textbf{Heathkit CONDENSER CHECKER KIT}

Measures capacity in four ranges from .66 mfd to 1000 mfd. Power factor control is provided for indication of electrolytic condenser efficiency. Tests capacitors under actual load conditions. Checks resistance from 150 ohms to 5 megohms. Direct reading scales for all tests. No calculation necessary.

$19.50

Shpg. Wt. 7 lbs.

Model T3

\textbf{Heathkit VISUAL-AURAL SIGNAL TRACER KIT}

This signal tracer features a high-gain R.F. channel and probe to permit signal tracing from the receiver antenna input through the R.F. and I.F. stages. Provides low gain channel for audio circuits. Both visual and aural indication by means of speaker and electron beam "eye" tube. Also noise locater circuit, wattmeter, and terminals for "patching" output transformer or speaker into external circuit.

$23.50

Shpg. Wt. 9 lbs.

Model M-1

\textbf{Heathkit HANDITESTER KIT}

The M-1 is literally pocket size to fit in your coat pocket, tool-box, glove compartment, or desk drawer. Measures A.C. or D.C. in 5 steps from a full scale minimum of 0-10 v. to a maximum of 0-500 v. Measures direct current at 0-10 Ma and 0-100 Ma, and provides ohmmeter ranges of 0-3900 ohms and 0-300000 ohms. Sensitivity of 1,000 ohms v. 1% precision divider resistors employed.

$14.50

Shpg. Wt. 3 lbs.

Model M-1

\textbf{HEATH Company}

A SUBSIDIARY OF DAYSTROM INC.

BENTON HARBOR 15, MICHIGAN

RADIO & TELEVISION NEWS
HEATHKIT HARMONIC DISTORTION METER KIT

Performs the functions of more elaborate and much more expensive audio distortion testing devices and yet is simple to operate and inexpensive to own. Used with a sine wave generator, it will check the harmonic distortion output of audio amplifiers under a variety of conditions. Essential in audio design work.

The HD-1 reads harmonic distortion directly on the meter as a percentage of the original signal input. It operates from 20 to 20,000 cps in 3 ranges, and incorporates a VTVM circuit for initial reference settings and final harmonic distortion readings. VTVM ranges are 0—1, 3, 10, and 30 volts full scale. 1% precision voltage divider resistors used. Distortion meter scales are 0—1, 3, 10, 30 and 100% full scale. Having a high input impedance the HD-1 requires only .3 volt input for distortion tests.

MODEL HD-1

$349.50

shpg. Wt. 13 lbs.

HEATHKIT AUDIO GENERATOR KIT

This basic audio reference generator deserves a place in your Laboratory. Complete frequency coverage is afforded from 20 cps to 1 Mc in 5 ranges, and output is constant within ±1 db from 20 cps to 400 Kc, down only 3 db at 600 Kc, and 8 db at 1 Mc. An extremely good sine wave is produced, with a distortion percentage below 0.4% from 100 cps through the audible range.

Plenty of audio output for all applications; up to 10 v. under no load conditions. Output controllable with a continuously variable or step-type attenuator with settings of 1 µV, 100 µV, 1 v., and 10 v. Cathode follower output.

MODEL AG-8

$29.50

shpg. Wt. 11 lbs.

HEATHKIT VARIABLE VOLTAGE POWER SUPPLY KIT

Model PS-3

$35.50

shpg. Wt. 3 lbs.

6—150 mA at 200 vdc. Essential for circuit design and development. Voltage or current read on 4-1/2" meter.

HEATHKIT IMPEDANCE BRIDGE KIT

Model IB-2

$59.50

shpg. Wt. 12 lbs.

Measures resistance, capacitance, inductance, dissipation factors of capacitors, and the storage factor of inductance. Employs 2-section CRL dial. Q and DG functions are combined in one control. 15% resistors and capacitors used in critical circuits. 100—0—100 microfarad for null indications. 1000 cycle oscillator, 4 tube detector-amplifier, and power supply built-in.

HEATHKIT "Q" METER KIT

Model OM-1

$44.50

shpg. Wt. 14 lbs.

Will measure Q of condensers, LF resistance and distributed capacity of coils, etc. Uses 4-1/2" 50 mmf meter for direct indication. Will test at 150 Kc to 18 Mc in 4 ranges. Measures capacity from 40 mmf to 450 mmf within ±3 mmf. Useful for checking wave forms, choke, peakings coils. Indispensable for coil winding and determining unknown condenser values.

HEATHKIT 6-12 Volt BATTERY ELIMINATOR KIT

Model BE-4

$31.50

shpg. Wt. 17 lbs.

Furnishes 6 or 12 volt output for the new 12 v. car radios in addition to 6 v. models. Two continuously variable output voltage ranges; 0—8 v. DC at 10 A, continuously or 15 A. intermittent, 0—16 v. DC at 5 A, continuously or 7.5 A intermittent. Output voltage is clean and well filtered by two 10,000 mf condensers. Panel meters real voltage and current output.

HEATHKIT 6-12 Volt BATTERY ELIMINATOR KIT

Model BE-4

$31.50

shpg. Wt. 17 lbs.

Furnishes 6 or 12 volt output for the new 12 v. car radios in addition to 6 v. models. Two continuously variable output voltage ranges; 0—8 v. DC at 10 A, continuously or 15 A. intermittent, 0—16 v. DC at 5 A, continuously or 7.5 A intermittent. Output voltage is clean and well filtered by two 10,000 mf condensers. Panel meters real voltage and current output.

HEATHKIT BROADCAST BAND RECEIVER KIT

Model BR-2

$17.50

(less Cabinet)

shpg. Wt. 10 lbs.

Build your own receiver with confidence. Complete instruction book anticipates your every question. Features transformer-type power supply, high-gain miniature tubes, built-in antenna, phono input tuning from 500 Kc to 1600 Kc, 5-1/2" speaker. Also adaptable for use as AM tuner or phono amplifier.

CABINET: Fabric covered plywood cabinet available, complete with aluminum panel and re-inforced speaker grille. Part No. 91-6, shpg. Wt. 5 lbs., $4.50
This one compact package contains complete transmitter, with built-in VFO (Variable Frequency Oscillator) and power supplies. Provides phone or CW operation—VFO or crystal excitation—and band-switching from 160 meters through 10 meters. HF power output 100—125 watts phone, 120—140 CW. Parallel 6L6's modulated by push-pull 1625's. 1K network interstage and output coupling for reduced harmonic output. Will match non-reactive antennas between 50 ohms and 600 ohms. TVI suppressed with extensive shielding and filtering. Rugged metal cabinet has inter-locking seams.

The high-quality transmitter is packed with desirable features not expected at this price level. Copper plated chassis—potted transformers—wide spaced tuning capacitors—ceramic insulation—illuminated VFO dial and meter face—remote control socket—performed wiring harness—concentric control shafts—high quality, well rated components used throughout. Overall dimensions 20 1/2" wide x 13 3/4" high x 16" deep.

Supplied complete with all components, tubes, cabinet and detailed construction Manual. (Less crystals.) Don't be deceived by the low price! This is a top-quality transmitter designed to give you years of reliable service and dependable performance.

Heathkit AMATEUR TRANSMITTER KIT

Enjoy the trouble-free operation of commercially designed equipment while still benefiting from the economies and personal satisfaction of "building it yourself."

This CW Transmitter is complete with its own power supply, and covers 90, 40, 20, 15, 11 and 10 meters. Single knob band-switching eliminates coil clanging. Panel meter indicates grid or plate current for the final Crystal operation, or can be excited by external VFO. Crystal not included in kit. Incorporates features one would expect in this price range, such as key-click filter, copper plated chassis, parallel coils, 52 ohm coaxial output, and high quality components throughout. Instruction Book simplifies assembly. Uses 6AG7 oscillator, 6F5 final and 5U4G rectifier. Up to 15 watts plate power input.

Heathkit GRID DIP METER KIT

Model GD-1B
$19.50
Shpg. Wt. 4 lbs.

Heathkit IMPEDANCE METER KIT

Model AM-1
$14.50
Shpg. Wt. 2 lbs.

Heathkit ANTENNA COUPLER KIT

Model AC-1
$14.50
Shpg. Wt. 4 lbs.

Heathkit COMMUNICATIONS RECEIVER KIT

Model AR-2
$25.50
Shpg. Wt. 12 lbs. (Less Cabinet)

Heathkit VFO KIT

Model VR-1
$19.50
Shpg. Wt. 7 lbs.

Heathkit ANTENNA LIMITER-METER KIT

Model AM-1
$14.50
Shpg. Wt. 2 lbs.

Heathkit GRID DIP METER KIT

Model GD-1B
$19.50
Shpg. Wt. 4 lbs.

Heathkit COMMUNICATIONS RECEIVER KIT

Model AR-2
$25.50
Shpg. Wt. 12 lbs. (Less Cabinet)

HEATH Company
SUBSIDIARY OF DAYSTROM INC
BENTON HARBOUR 15, MICHIGAN

RADIO & TELEVISION NEWS

www.americanradiohistory.com
Heathkit ADVANCED DESIGN Hi-Fi Amplifier Kit

This advanced-design 25-watt Hi-Fi Amplifier features a new-design Peerless output transformer, improved circuitry, and uses KT-66 output tubes. This results in higher power output: improved bass and high frequency response; and reduced IM and harmonic distortion. Incorporates all the "extra" features that make for real listening enjoyment. Power handling capabilities increased to follow instantaneous power peak of full orchestra. Also new type balancing circuit, and "tweeter saver" to suppress HF oscillation. New physical design results in attractive appearance, suitable for use either in or out of a cabinet.

KIT COMBINATIONS
W-A4M: Consists of main amplifier and power supply for single chassis construction. Includes all tubes, components, and complete assembly instructions. Shop. Fee... $597.50

20-WATT HIGH FIDELITY AMPLIFIER KIT
Model WA-P2
$197.50

Beautiful modern appearance blends with any interior color scheme. Completely fulfills all the requirements for remote control, compensation, and preamplification for the Heathkit Williamson-type Amplifiers or any conventional Hi-Fi Amplifier. Five separate input channels, each with separate audio level control. Full record equalization accomplished with 4-position turnover and roll-off controls. Separate bass and treble controls. Overall frequency response within 1 db from 25 cps to 30,000 cps. Hum and noise level extremely low. This brilliant performer will do justice to the finest available program sources.

MAIL YOUR ORDER TODAY TO THE
HEATH COMPANY
A SUBSIDIARY OF DAYSTROM INC.
BENTON HARBOR, MICHIGAN

ORDER BLANK

From

SHIP VIA
- Parcel Post
- Express
- Freight
- Best Way

QUANTITY ITEM (PLEASE PRINT) MODEL NO. PRICE

Enclosed find () check () money order for
Please ship C.O.D. () postage enclosed for

pounds.

On Express orders do not include transportation charges—they will be collected by the express agency at time of delivery.

NOTE: ALL PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

ON PARCEL POST ORDERS include postage for weight shown.

ORDERS FROM CANADA and APO's must include full remittance.

July, 1955
Portable TV Picture
(Continued from page 42)

where the picture tube has an external coating, a 500 µfd. high-voltage capacitor may be added between the anode of the 5AXP4 and ground. However, experience has shown that the operation of the receiver is unaffected by the missing capacitance except for about 1000 volts lower anode voltage, so the capacitor may be omitted along with its attendant shock possibilities.

Some older receivers with electromagnetic focus units use the focus coil as a filter choke. On receivers of this type, a 100-ohm, 20-watt resistor can be clipped into the focus coil circuit to replace the focus coil.

Fig. 1 shows a service technician using the 5AXP4 with a universal yoke assembly to check a receiver on his bench. The cabinet, picture tube, and receiver yoke have been left in the customer’s home. With this setup, approximately ninety-five per cent of the receiver repairs requiring shop work can be made without disturbing the receiver yoke or picture tube. These repairs include all r.f., i.f., video, sound, and sync troubles including alignment, many horizontal and vertical scan problems, and most power supply failures.

Most receivers are similar enough to permit the satisfactory use of one universal yoke with four-foot leads even though the horizontal and vertical impedances of their yokes are different. Only a very small percentage of the receiver troubles, such as some linearity problems, would require that the exact replacement yoke be used with the 5AXP4 to obtain an accurate indication of servicing adjustments.

The check tube and adapter may be carried on service calls as it is extremely handy and serves as a positive check on the receiver yoke and picture tube in the customer’s home. Often, the 5AXP4 yoke can be connected directly in parallel with the receiver yoke without removing it, and the picture, while half size, is still useful.

With the 5AXP4 and the yoke assembly shown here, the service technician can build a new tool that will save him at least twenty minutes on a call requiring shop service and provide a rapid positive check of the receiver yoke and picture tube.

ADDITIONAL DATA ON "A PAIR OF FOLDED DIPOLES"

By HAROLD J. GRUBER, W8MGP

BACK in the October 1951 issue of RADIO & TELEVISION NEWS the author gave full details on "A Compact 20-Meter Beam" which consisted of a pair of folded dipoles 135 degrees out-of-phase.

Since the original article appeared, the author has received a tremendous amount of mail from all parts of the world—in fact—several letters are still being received each month.

Most of the letters consisted of requests for additional information or more specific details but, on the whole, the gang wanted dimensions for constructing this antenna for other amateur bands, especially for 21 mc.

Fig. 1. Schematic of the antenna and table of formulas and actual dimensions for the antenna for all amateur bands from 3.8 megacycles to 145 megacycles.

<table>
<thead>
<tr>
<th>FORMULA</th>
<th>3.8 MC</th>
<th>7.2 MC</th>
<th>14.25 MC</th>
<th>21.3 MC</th>
<th>29 MC</th>
<th>51 MC</th>
<th>145 MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lreff</td>
<td>0.66</td>
<td>0.71</td>
<td>0.76</td>
<td>0.82</td>
<td>0.88</td>
<td>0.94</td>
<td>1.00</td>
</tr>
<tr>
<td>Llow</td>
<td>442.2</td>
<td>457.5</td>
<td>473.0</td>
<td>490.0</td>
<td>508</td>
<td>527</td>
<td>547.5</td>
</tr>
<tr>
<td>Lhigh</td>
<td>116.2</td>
<td>119.0</td>
<td>122.0</td>
<td>125.0</td>
<td>129</td>
<td>133</td>
<td>137.5</td>
</tr>
<tr>
<td>Llow/H</td>
<td>0.1250</td>
<td>0.1254</td>
<td>0.1256</td>
<td>0.1259</td>
<td>0.1262</td>
<td>0.1264</td>
<td>0.1264</td>
</tr>
<tr>
<td>Lhigh/H</td>
<td>0.2530</td>
<td>0.2534</td>
<td>0.2536</td>
<td>0.2539</td>
<td>0.2542</td>
<td>0.2544</td>
<td>0.2544</td>
</tr>
<tr>
<td>Lshort</td>
<td>29.1</td>
<td>31.0</td>
<td>33.0</td>
<td>35.0</td>
<td>37.0</td>
<td>39.0</td>
<td>41.0</td>
</tr>
<tr>
<td>Llong</td>
<td>128.5</td>
<td>131.0</td>
<td>133.5</td>
<td>136.0</td>
<td>138</td>
<td>140</td>
<td>142.5</td>
</tr>
</tbody>
</table>

ALL DIMENSIONS IN FEET EXCEPT Ls WHICH IS IN INCHES

F = FREQUENCY IN MEGACYCLES

L = LENGTH OF PHASING SECTION OF TRANSMITTING TYPE 300 OHM LINE
V = VELOCITY FACTOR FOR TRANSMISSION LINE
New Audio Equipment

AMPLIFIER FOR PLANES

Aircraft Radio Corporation of Boonton, N.J., has begun delivery of its new Type F-13 audio amplifier which is designed to power one or more loudspeakers in the cockpit of aircraft.

The unit has an output of 8 watts into a choice of 4, 8, or 300 ohms. Its weight, complete with dynamotor and mounting, is 5.9 pounds.

The output from several radio receivers may be fed into the F-13 for simultaneous monitoring. Use of a cockpit loudspeaker is especially welcome to pilots on long flights or during hot days where the alternative is headsets.

Descriptive brochures on this equipment are available from the company.

SWAM TUNER

Browning Laboratories, Inc., 750 Main St., Winchester, Mass., is now marketing a short-wave-AM tuner as a companion piece to its "Brownie L-300" FM-only tuner.

The "Brownie L-500" is said to be the first tuner to cover the short-wave bands, 19 to 49 meters. The instrument features broad and sharp AM tuning, full frequency response, 10 kc. whistle filter, under 2 mv. sensitivity, a built-in high-gain ferrite antenna, cathode-follower output, and self-contained power supply.

Full specifications and price information are available from the manufacturer.

"ORTHOPHONIC" PHONOGRAPH

The RCA Victor Radio and "Victrola" Division, Camden, N.J., is now offering the first of a series of "New Orthophonic" hi-fi "Victrola" phonographs—a low-cost model, the Mark V.

The new instrument is a table model which features a panoramic speaker system. The set contains one 6-inch speaker and two smaller speakers mounted at a 90 degree angle to each other for room-wide dispersion of high frequencies. According to the company, this new acoustical system provides for uniform quality in every part of the room and virtually eliminates dead spots.

Featuring a smooth-operating, three-...
“Superb Performance!”
—HIGH FIDELITY Magazine

THE FISHER
SERIES SEVENTY

“High quality results at an attractive price,” says High Fidelity Magazine. The Series Seventy tuner and amplifier have established themselves firmly as the outstanding buy in the professional quality field. The performance of this equipment is limited only by the calibre of the phonograph pickup, turntable and loudspeaker system used in conjunction with it.

THE FISHER
FM-AM Tuner • Model 70-RT

- Features extreme sensitivity (1.5 mv for 20 db of quieting); works where others fail. Armstrong system, adjustable AFC on switch, adjustable AM selectivity, separate FM and AM front ends. Shielded and shock-mounted main and subchassis. Distortion below 0.04% for 1 volt output. Hum level: better than 90 db below 2 volts on radio, better than 62 db below 10 mv input on phone. 2 inputs, 2 cathode-follower outputs. Self-powered. Exceptional phono preamplifier with full equalization facilities. 15 tubes. Six controls: Bass, Treble, Volume, Channel/Phono Equalization, Tuning and Loudness Balance. Beautiful control panel. Size: 14½" wide, 8½" high, 9½" deep. $184.50

THE FISHER
25-Watt Amplifier • Model 70-AZ

- Offers more clean watts per dollar at its price than any amplifier made. The 70-AZ has 2 1/2 times the power of basic 10-watt units. OUTSTANDING FEATURES: High output (less than 0.5% distortion at 25 watts); 0.05% at 10 watts.) FM distortion less than 0.5% at 20 watts; 0.2% at 10 watts. Uniform response ±0.1 db, 20-20,000 cycles; 1 db, 10-50,000 cycles. Power output constant within 1 db at 25 watts, 15-15,000 cycles. Hum and noise virtually non-measurable (better than 95 db below full output!) Includes FISHER Z-MATIC at no additional cost. Size: 14½" x 14½" x 6½" high. $99.50

Prices Slightly Higher West of the Rockies
WRITE TODAY FOR COMPLETE SPECIFICATIONS
FISHER RADIO CORP. • 21-23 44th DRIVE • L. I. CITY 1, N. Y.

speed changer with one control for all speeds, the instrument has a range of from 70 to 20,000 cps and an undistorted output of three watts.
A master control panel houses the three controls for loudness, bass, and treble in a simplified grouping for easier operation. The tone arm is balanced with a flipover ceramic pickup which has two sapphire stylis.

45 RPM SPINDLE
Components Corporation of Denville, N. J., is now offering a deluxe, precision lathe-turned 45 rpm spindle of heavy gold-anodized aluminum for use with its “Professional” turntable.
Although designed for a specific unit, it will fit any standard turntable and is said to improve reproduction from 45 rpm records because of its true centering and concentricity.
The spindle is thick enough to accommodate up to three 45 rpm records. Its distribution will be handled by high-fidelity equipment dealers.

"SOUND BOOK"
Audio-Master Corp., 17 E. 45th St., New York 17, N. Y., is handling the U. S. distribution of the German-developed “Sound Book.”
This ultra-modern tone reproducer combines the simplicity of a record with the advantages of tape. In the "Tefifon" the sound is engraved on pure vinylite with an average of 82 grooves on a 4½" band and is self-contained in a cartridge the size of a small book, 6" x 5½".
To play a "Sound Book," the window face is first slid back and the sound-band extended in a loop, which is then placed around the playing wheel of a
special playback machine in the same manner that a record is placed on a turntable. The needle is then set against the soundband. If a specific portion of the tape is desired, the music selector spots it immediately.

"CRESTWOOD 402"
Daystrom Electric Corporation, Poughkeepsie, N. Y., has recently added the "Crestwood 402" power amplifier and extended range loudspeaker to its line of audio equipment.

Designed especially for use with the "Crestwood Hi-Fi 404" tape recorder-preamp, the "402" has a frequency response of ±1 db from 20 to 20,000 cps, distortion of less than 2%, and 10-watt power output.

This portable unit measures 91/2" x 131/2" x 16" and weighs 171/2 pounds. It incorporates an 8" round speaker, a high- impedance input jack, and external speaker jack and includes a power cable and connecting audio cable as accessory items.

Write the company for a data sheet on both this unit and the companion "Crestwood 404," shown above.

MESSAGE REPEATER
Amplifier Corp. of America, 398 Broadway, New York 13, N. Y., is currently introducing the "Magneloop, Jr.," a multi-purpose, magnetic tape, continuous-loop, record-playback device.

Now available in two models, recordings may be made instantly on this unit by simply switching into the "Record" position. Immediate playback is possible at any time without the necessity of rewinding or resetting. Messages, announcements, or sound effects up to 12 minutes may be recorded on the Model A which operates at 3% ips. Model B, with a tape speed of 71/2 ips, is able to record for 6 minutes and is recommended for applications where greater fidelity is required.

Complete information on either or both of these models is available from the manufacturer.

BOGEN AM-FM TUNER
David Bogen Co., Inc., 29 Ninth Ave., New York 14, N. Y., has added an AM-FM tuner to its line, the R765.

The instrument provides flat frequency response and minimum distortion, according to the company. Ease and accuracy of FM tuning are achieved

"Dream Set!"—LIFE Magazine

THE FISHER SERIES FIFTY

THE FISHER FM-AM Tuner · Model 50-R

- "This tuner is among the most sensitive of all in 'fringe' areas and conjoins beautifully with the FISHER Amplifier."—Life Magazine. The finest index to the quality of the Model 50-R is its selection even by FM stations, after competitive trials, for pickup of distant programs for rebroadcast to their own communities. In town, or even in the extreme suburbs, the 50-R is unexcelled. $164.50

THE FISHER Master Audio Control · Series 50-C

- "The finest unit yet offered."—Radio and TV News. 25 choices of record equalization, outstanding phono preamplifier, separate bass and treble tone controls, loudness balance control, 5 inputs and 5 input level controls, cathode follower outputs. Hum and noise inaudible.

Class A $89.50
With cabinet $97.50

THE FISHER 50-Watt Amplifier · Model 50-AZ

- "Of the very best!"—High Fidelity Magazine. Will handle 100 watts peak. World's finest all-triode amplifier. Uniform response within 1 db from 5 to 100,000 cycles. Less than 1% distortion at 50 watts. Hum and noise content 96 db below full output—virtually non-measurable! Oversize components and quality workmanship in every detail. Includes FISHER Z-MATIC, at no additional cost.

$159.50

Prices Slightly Higher West of the Rockies
WRITE TODAY FOR COMPLETE SPECIFICATIONS

FISHER RADIO CORP. · 21-23 44th DRIVE · L. I. CITY 1, N. Y.

July, 1955
Fine Accessories
FOR THE FULLEST ENJOYMENT
OF YOUR HOME MUSIC SYSTEM
FISHER ACCESSORIES

MIXER-FADER • Model 50-M
NEW! Electronic mixing or fading of any two signal sources (such as microphone, phono, radio, etc.) No insertion loss. Extremely low hum and noise level. High impedance input; cathode follower output. 12AX7 tube. Self-powered. Beautiful plastic cabinet. Only $19.95

PREAMPLIFIER-EQUALIZER • 50-PR

PREAMPLIFIER-EQUALIZER • 50-PR-C
WITH VOLUME CONTROL
50-PR-C. This unit is identical to the 50-PR but is equipped with a volume control to eliminate the need for a separate audio control chassis. It can be connected directly to a basic power amplifier and is perfect for a high quality phonograph at the lowest possible cost. $23.95

HI-LO FILTER SYSTEM • Model 50-F
Electronic, sharp cut-off filter system for suppression of turntable rumble, record scratch and high frequency distortion — with absolute minimum loss of normal range. Independent switches for high and low frequency cut-off. Use with any tuner, amplifier, etc. $29.95

PREAMPLIFIER • Model PR-5
A self-powered unit of excellent quality, yet moderate cost. Can be used with any low-level magnetic cartridge, or as a microphone preamplifier. Two triode stages. High gain. Exclusive feedback circuit permits long output leads. Fully shielded. Uniform response, 20 to 20,000 cycles. The best unit of its type available. $12.57

QUALITY IS NO ACCIDENT...
At Fisher Radio Corporation we never take chances with quality. All materials go first to the Incoming Inspection Department and any that do not meet our rigid requirements are returned to their manufacturer. In addition, inspections occur at many points during production—from the original, blank chassis to the final, assembled unit, assuring correct assembly and wiring. Our Test Department is staffed with a highly-trained group of technicians. Finally, equipment already packed for shipment is selected at random and given a complete inspection and electrical test in our Engineering Laboratories to keep Quality Control at a constant, high level.

WRITE TODAY FOR COMPLETE SPECIFICATIONS
FISHER RADIO CORP. • 21-23 44th DRIVE • L. I. CITY 1, N. Y.

by use of the company's auto-lock tuning circuit which "zeros in" from fringe areas, thus eliminating the need for a tuning indicator. The set has a built-in preamplifier with controls for volume, bass tone, treble tone, record equalization, and loudness compensation. A cathode-follower output circuit permits physical separation of the tuner and the power amplifier to which it is connected.

The tuner is available in chassis form or housed in a wood cabinet of either blonde or mahogany veneer.

"EXECUTONE" INTERCOM
Executone, Inc., 415 Lexington Ave., New York 17, N. Y., is marketing a new electronic intercom system, the "6000."

Featuring wall-mounted master stations and economical single amplifier operation, the new unit design conserves valuable desk or table space in offices, supply rooms, production and manufacturing areas, and other key locations.

The central amplifier, which draws only as much current as a 30-watt bulb, is the only unit in the system that requires a power outlet. Stations may be installed and full communication provided between as many as six master stations.

In addition to functioning as a two-way intercom, the "6000" offers paging facilities as well.

TURNTABLE BASE
JKM, Inc. of 13 W. Hubbard St., Chicago 10, 11., is offering an inexpensive base designed to mount the Rek-O-Kut "Rondine" Models B-12H and B-12 two-speed turntables.

Continuous felt cushioning at all contact points of the mounting board provides effective isolation as recommended by the turntable manufacturer. The base takes any transcription arm up to 16 inches.

Installation of turntable and arm is easy as the mounting board simply lifts out from the base. All exposed surfaces are of grained mahogany veneers, hand-rubbed. Over-all size is

www.americanradiohistory.com
CERAMIC CARTRIDGE
Shure Brothers, Inc., 225 W. Huron St., Chicago 10, Ill., has developed a new ceramic cartridge especially designed to enhance the quality of all popular hi-fi equipment in use today.
Known as the "Music Lover," the new cartridge comes complete with a magnetic input adapter. The company claims that the new design eliminates the problem of induced hum, eliminates cartridge drag caused by magnetic attraction to steel turntables, im-
proves tone quality, increases record and needle life, and has high output.
The cartridge also features the unique twin-lever needle shift transport. It provides a lower mass and individual needle compliance. Needle replacement involves no tools and may be accomplished in seconds.

WEBCOR "DISCHANGER"
Webster-Chicago Corporation, 5610 W. Bloomingdale Ave., Chicago 39, Ill., is now offering its new G-1127-270 changer which plays all sizes and speeds of records automatically or manually.
The selective assembly of micro-finished parts and dynamically-balanced motor limit wow and flutter to less than ¼ per-cent and hum to less than 40 μV. The free-floating tone arm, with stylus pressure of 6 to 8 grams, is engineered for minimum torsional and lateral pressure.
The changer comes equipped with a preselected G-E wide-range variable reluctance cartridge with diamond stylus for 33⅓ and 45 rpm speeds and a sapphire stylus for 78 rpm. The turntable is ball-bearing mounted and covered by electrostatic flocking that stands the fibers permanently on end to cushion the record drop and prevent slipping.

America’s TOP Tuner!
THE FISHER FM TUNER MODEL FM-80

World’s Best by LAB Standards
For almost two decades we have been producing audio equipment of outstanding quality for the connoisseur and professional user. In the cavalcade of FISHER products, some have proved to be years ahead of the industry. THE FISHER FM-80 is just such a product. Equipped with TWO meters, it will outperform any existing FM Tuner regardless of price! The FM-80 combines extreme sensitivity, flexibility and micro-accurate tuning. Despite its full complement of tubes and components, the FM-80 features an unusually compact chassis of fine design. Only $139.50

Outstanding Features of THE FISHER FM-80
- TWO meters; one to indicate sensitivity, one to indicate center-of-channel for micro-accurate tuning. - Armstrong system, with two IF stages, dual limiters and a cascode RF stage. - Full limiting even on signals as weak as one microvolt. - Dual antenna inputs: 72 ohms and 300 ohms balanced (exclusive!) - Sensitivity: ½ microvolts for 20 db of quieting on 72-ohm input; 3 microvolts for 20 db of quieting on 300-ohm input. - Chassis completely shielded and shock-mounted, including tuning condenser, to eliminate microphonics, and noise from otherwise accumulated dust. - Three controls — Variable AFC/Line-Switch, Sensitivity, and Station Selector PLUS an exclusive Output Level Control. - Two bridged outputs. Low-impedance, cathode-follower type, permitting output leads up to 200 feet. - 11 tubes. - Dipole antenna supplied. Beautiful, brushed-brass front panel. - Self-powered. - Weight: 15 pounds.

WRITE TODAY FOR COMPLETE SPECIFICATIONS
FISHER RADIO CORP. - 21-23 44th DRIVE - L. I. CITY 1, N. Y.

July, 1955
Mac's Service Shop
(Continued from page 69)

"The hum's growing worse as the sliding contact approaches the bottom of the control made me think the hum was being fed in at this point. About the only way it could get there would be through the 95 ohm, capacitor connecting there. When you look at the chassis wiring, you see that this capacitor and the 4700-ohm resistor tie together on this blank lug of the rectifier socket. I suspected that something may have happened inside the rectifier to cause the blank lug to vibrate with a.c.

When a new tube cleared up the hum, I was sure this was the case. Replacing the old tube and then removing the capacitor-resistor junction from the socket again had hum-free reception. Either things. Just put in a tie-point for the capacitor has been taken off the socket and leave the old rectifier in. It can cause no further trouble, and neither can any other rectifier that may develop this fault."

"I don't think much of tying leads to empty socket lugs," Barney remarked as he started mounting a tie point on the chassis.

"Neither do I when those lugs have a tube pin connected to them," Mac agreed as he went to answer the telephone, "and tying a sensitive grid connection to a rectifier socket with its high-voltage i.e. is just asking for trouble."

When Mac came back from answering the phone his face was wearing a satisfied smile. "That's the kind of call I like to get. It was Mr. Rudy just calling to say his set was working fine and thanking me for clearing up his trouble. Most customers only bother to call when they want to gripe."

"Mr. Rudy's was a rather interesting case. He had it about a month ago, and it was seemingly a simple repair job, for all that was wrong was a shorted plate bypass capacitor together with its charred decoupling resistor. Both were replaced and everything worked fine. I let the set run for a couple of hours and then took it back. The next day Mr. Rudy called and said it was dead again with exactly the same symptoms as before; then he told me he had had trouble with this set time and again and that he was about in the notion of junking it."

"Well, I picked it up and found that another high-voltage bypass capacitor had gone west, taking a resistor with it; furthermore, I noticed now that several other 'b-plates' bypass capacitors had been replaced previously. A new capacitor and resistor restored the receiver to normal operation, but I did not take it back. Instead, I called Mr. Rudy and asked him if he burned out a great many light bulbs in his house. He emphatically said that he did. I suggested he call the lamp company and have them put recording voltmeter on his line for twenty-four hours. The company did this and found the line voltage hit peaks of around 127 volts. The fellow who installed the recording voltmeter told Mr. Rudy he doubted this would cause trouble in the radio because it would only raise the voltages something less than ten percent above normal, and that would still leave the bypass capacitors with a voltage rating more than 350 volts or so."

"It was true that the highest voltage in the set was around 127 volts when it was operating normally on a 117-volt line, but the capacitors were all rated at 400 volts; but when a voltmeter was placed across one of the new capacitors and the set was turned on, the voltage soared to 375 volts for several seconds before finally settling at 250 volt figure. You see the set uses a filament type of rectifier while the rest of the tubes are of the cathode type. That means the high voltage power supply runs virtually unloaded until the tubes warm up and start drawing current. Since series dropping resistors in screens, etc., only perform their voltage dropping function when current is being drawn through them, bypass capacitors at the ends of these resistors were subjected to the full high voltage during this warming up period. In the working voltage at these points might be below a hundred volts."

"Next I ran 127 volts on the set from our tapped isolation transformer. When I did this, the voltage on the capacitors soared to 430 volts before the warming cathodes pulled it down. That easily explained why the receiver was popping all the capacitors. Upon my advice Mr. Rudy had the electric company change the taps on the pole transformer feeding his house so that his voltage was down around 117 volts where it belonged. He reports he has not had a bit of trouble with the set since, and he has not replaced a single light bulb since the voltage was lowered."

"That's interesting," Barney remarked. "I'm surprised to see how the bad effects of low voltage, especially on TV sets, that I never thought about high line voltage giving trouble. Come to think of it, though, practically all TV sets use either filament or selenium type rectifiers; and in either case the output of the low voltage supply runs unloaded until the tubes warm up and start to draw current. From now on I'll be suspicious of this condition when I run across any sets that seem to be blaring too many tubes."

"And don't forget that high line voltage is hard on tubes, too; just as it is on light bulbs," Mac pointed out. "Be suspicious of high line voltage when a set burns out a lot of tubes. Many TV sets have a tapped primary on the power transformer for bypassing low voltages that are abnormally high or low; but it is better to have the electric company correct the voltage fed to the house, if they can. If this is done, all the other electrical equipment in the house will be relieved of the high line imposed upon it by improper voltage, while changing the taps on the TV receiver transformer will only help it."

"Check!" Barney acknowledged.
Superior's New Model TV-11

TUBE TESTER

SPECIFICATIONS:
- Tests all tubes, including 4, 5, 6, 7, Octal, Lock-in, Peanut, Bantam, Hearing Aid, Thyatron, Miniatures, Sub-miniatures, Nuvol, Sub-miniars, Proximity fuse types, etc.
- Uses the new self-cleaning Lever Action Switches for individual element testing. Because all elements are numbered according to pin-number in the RMA base numbering system, the user can instantly identify which element is under test. Tubes having tapped filaments and tubes with filaments terminating in more than one pin are truly tested with the Model TV-11 as any of the pins may be placed in the neutral position when necessary.
- The Model TV-11 does not use any combination type sockets. Instead individual sockets are used for each type of tube. Thus it is impossible to damage a tube by inserting it in the wrong socket.
- Free-moving built-in roll chart provides complete data for all tubes.
- Newly designed Line Voltage Control compensates for variation of any Line Voltage between 105 Volts and 130 Volts.
- Noise Test: Phono-jack on front panel for plugging in either phones or external amplifier will detect microphonic tubes or noise due to faulty elements and loose internal connections.
- **EXTRA SERVICE** - The Model TV-11 may be used as an extremely sensitive Condenser Leakage Checker. A relaxation type oscillator incorporated in this model will detect leakages even when the frequency is one per minute.

The Model TV-11 operates on 105-130 Volt 60 Cycles A.C. Comes housed in a beautiful hand-rubbed oak cabinet complete with portable cover.

$47.50 NET

C.R.T. TUBE TESTER

A complete picture tube tester for little more than the price of a "make-shift" adapter!!

The Model TV-40 is absolutely complete! Self-contained, including built-in power supply, it tests picture tubes in the only practical way to efficiently test such tubes, that is by the use of a separate instrument which is designed exclusively to test the ever-increasing number of picture tubes!

EASY TO USE:
Simply insert line cord into any 110 volt A.C. outlet, then attach tester socket to tube base (fan trap need not be on tube). Throw switch up for quality test...read directly on Good-Bad scale. Throw switch down for all leakage tests.

Tests all magnetically deflected tubes...in the set...out of the set...in the carton!!

SPECIFICATIONS:
- Tests all magnetically deflected picture tubes from 7 inch to 30 inch types.
- Tests for quality by the well established emission method. All readings on "Good-Bad" scale.
- Tests for inter-element shorts and leakages, up to 5 megohms.
- Test for open elements.

Model TV-40 C.R.T. Tube Tester comes absolutely complete—nothing else to buy. Housed in round cornered, molded bale-line case. Only

$15.85 NET

SHIPPED ON APPROVAL NO MONEY WITH ORDER—NO C.O.D.

We invite you to try before you buy any of the models described on this and the following page. If after a 10 day trial you are completely satisfied and decide to keep the Tester, you need send us only the down payment and agree to pay the balance due at the monthly indicated rate. (See other side for time-payment schedule details.)

NO INTEREST OR FINANCE CHARGES ADDED!
If not completely satisfied, you are privileged to return the Tester to us, cancelling any further obligation.

SEE OTHER SIDE
CUT OUT AND MAIL TODAY!

BUSINESS REPLY CARD
No Postage Stamp Necessary if Mailed in the United States

POSTAGE WILL BE PAID BY—
MOSS ELECTRONIC DIST. CO., INC.
3849 TENTH AVENUE
NEW YORK 34, N. Y.

FIRST CLASS
Permit No. 61430
New York, N. Y.

VIA AIR MAIL
Superior's new
Model 670-A

SUPER-METER
A COMBINATION VOLT-ohm MILLIAMMETER PLUS CAPACITY REACTANCE INDUCTANCE AND DECIBEL MEASUREMENTS

SPECIFICATIONS:
D.C. VOLTS: 0 to 7.5/15/75/150/750/1,500/7,500 Volts
A.C. VOLTS: 0 to 15/30/150/300/1,500/3,000 Volts
OUTPUT VOLTS: 0 to 15/30/150/300/1,500/3,000 Volts
D.C. CURRENT: 0 to 1.5/15/50 Ma. 0 to 1.5/15 Amperes
RESISTANCE: 0 to 1,000/100,000 Ohms 0 to 10 Meg-ohms
CAPACITY: .001 to Mfd. 1 to 50 Mfd. (GOOD-BAD scale for checking quality of electrolytics)
REACTANCE: 50 to 2,500 Ohms 2,500 Ohms to 2.5 Meg-ohms
INDUCTANCE: .15 to 7 Henrie 7 to 7,000 Henries
DECIBELS: -6 to +18 +14 to +38 +34 to +58

ADDED FEATURE:
Built-in ISOLATION TRANSFORMER reduces possibility of burning out meter through misuse.

The Model 670-A comes housed in a rugged cradle finished steel cabinet complete with test leads and operating instructions.

$28.40

GENOMETER

A versatile all-inclusive GENERATOR which provides ALL the outputs for servicing:
A.M. Radio • F.M. Radio • Amplifiers • Black and White TV • Color TV

7 Signal Generators in One!
• R. F. Signal Generator for A.M. • Cross Hatch Generator
• R. F. Signal Generator for F.M. • Color Dot Pattern Generator
• Audio Frequency Generator • Marker Generator
• Bar Generator

R. F. SIGNAL GENERATOR: The Model TV-50 Genometer provides complete coverage for A.M. and F.M. alignment. Generates Radio Frequencies from 100 Kilocycles to 60 Megacycles on fundamentals and from 60 Megacycles to 180 Megacycles on powerful harmonics.

CROSS HATCH GENERATOR: The Model TV-50 Genometer will project a cross-hatch pattern on any TV picture tube. The pattern will consist of non-shifting, horizontal and vertical lines interlaced to provide a stable cross-hatch effect.

VARIABLE AUDIO FREQUENCY GENERATOR: In addition to a fixed 400 cycle sine-wave audio, the Model TV-50 Genometer provides a variable 300 cycle to 20,000 cycle peaked wave audio signal.

DOT PATTERN GENERATOR (FOR COLOR TV): Although you will be able to use most of your regular standard equipment for servicing Color TV, the one addition which is a "must" is a Dot Pattern Generator. The Dot Pattern projected on any color TV Receiver tube by the Model TV-50 will enable you to adjust for proper color convergence.

BAR GENERATOR: The Model TV-50 projects an actual Bar Pattern on any TV Receiver Screen. Pattern will consist of 4 to 16 horizontal bars or 7 to 20 vertical bars.

MARKER GENERATOR: The Model TV-50 includes all the most frequently needed marker points. The following markers are provided: 189 Kc., 262.5 Kc., 456 Kc., 500 Kc., 1000 Kc., 1400 Kc., 1600 Kc., 2000 Kc., 2500 Kc., 3579 Kc., 4.5 Mc., 5 Mc., 7.5 Mc., 10.7 Mc., (3579 Kc. is the color burst frequency.)

$47.50

SHIPPED ON APPROVAL
NO MONEY WITH ORDER—NO C.O.D.

MOSS ELECTRONIC DISTRIBUTING CO., INC.
Dept. D-139, 3849 Tenth Avenue, New York 34, N. Y.

Please send me the units checked. I agree to pay down payment within 10 days and to pay the monthly balance as shown. It is understood there will be no finance, interest or any other charges, provided I send my monthly payments when due. It is further understood that should I fail to make payments when due, the full unpaid balance shall become immediately due and payable.

□ Model TV-11 . . . Total Price $47.50
□ Model 670-A . . . Total Price $28.40
$11.50 within 10 days. Balance $6.00 monthly for 6 months.
$7.40 within 10 days. Balance $3.50 monthly for 6 months.

□ Model TV-40 . . . Total Price $15.85
□ Model TV-50 . . . Total Price $47.50
$3.85 within 10 days. Balance $4.00 monthly for 3 months.
$11.50 within 10 days. Balance $6.00 monthly for 6 months.

□ Model TV-50 . . . Total Price $47.50
□ Model TV-50 . . . Total Price $47.50
$3.85 within 10 days. Balance $4.00 monthly for 3 months.
$11.50 within 10 days. Balance $6.00 monthly for 6 months.

Name
Address
City
Zone
State

We invite you to try before you buy any of the models described on this and the preceding page. If after a 10 day trial you are completely satisfied and decide to keep the Tester, you need send us only the down payment and agree to pay the balance due at the monthly indicated rate.

NO INTEREST OR FINANCE CHARGES ADDED!

If not completely satisfied, you are privileged to return the Tester to us, cancelling any further obligation.

SEE OTHER SIDE
CUT OUT AND MAIL TODAY!

www.americanradiohistory.com
Dip Oscillator
(continued from page 51)

No. 32 enamelled wire, closewound. This coil is then covered with a single wrapping of paper, plastic film, or Scotch tape, and \(L_2 \) wound on top of it. \(L_2 \) is wound in the same direction as \(L_1 \) and consists of 42 turns of No. 26 enamelled wire, closewound.

Polarity of the two coils is of the utmost importance, since the circuit will not oscillate if the coils are reversed. Fig. 2 shows winding details. The ends of the two coils are lettered in this drawing to correspond to the lettering in the circuit diagram, Fig. 2.

Additional coils may be constructed, with the aid of coil graphs and formulas found in the radio handbooks, to cover lower-frequency ranges.

It will be noted from Fig. 2 that the tuning capacitor floats above ground. It therefore must be insulated from the instrument case.

Resistor \(R_1 \) must not be lower than the 0.22-megohm value specified; otherwise the CK722 base current will be excessive and the transistor possibly damaged.

This instrument, although something of a novelty, definitely is not a toy. Within its frequency range, it is entirely practical and is operated in the same manner as a conventional grid-dip oscillator. It also may be used as an oscillator to supply clean, c.w. signals up to 1700 kc.

While every attempt has been made to keep this transistor instrument as small in size as possible with the components immediately available to the author, it certainly is not the ultimate in tininess. Considerably smaller size might be achieved through the use of a specially-designed subminiature tuning capacitor, lattice-wound powdered-iron-core coils, and a printed-circuit version of the C.R. combination.

MORE CAMPUS STATIONS

In the Editor's Note accompanying the article "Campus Carrier-Current System" in our May issue, we stated that Purdue was the only school having off-campus tie-ins with its radio system, as far as we knew.

Word has now come from Daniel B. Bradley, chief engineer of station WSLN at Ohio Wesleyan University, that the college operates a 10-watt FM non-commercial station which has a self-contained broadcast unit in the women's dormitories six blocks from the studios and an FM transmitter on the main campus.

The unit consists of an FM tuner and a home-made transmitter that broadcasts the audio signal from the tuner on 960 kc. There is a coupler with this unit for that particular dormitory and an r.f. line to an adjoining dorm, with a coupler there.

Another receiver-transmitter unit is presently under construction and the station hopes to install units in all of the university living quarters within the next few years so that its varied programs can be received by all.

July, 1955

System Test Engineers

Hughes

Among important activities at Hughes is a program involving comprehensive testing and evaluation in connection with Hughes-developed radar fire control and navigation systems for latest type military all-weather interceptors.

There is need on our Staff for qualified engineers who thoroughly understand this field of operation, and who have sufficient analytical and theoretical ability to define needed tests; outline test specifications; assess data derived from such tests, and present an evaluation of performance in report form.

Engineers who qualify in this area should have 1 a basic interest in the system concept and operation of test procedures; 2 experience in operation, maintenance, "debugging," development, and evaluation testing of electronic systems, and knowledge of laboratory and flight test procedures and equipment; 3 understanding of basic circuit applications at all frequencies; 4 initiative to secure supporting information from obscure sources.
Protect your family and eliminate a serious fire hazard
in your home by installing a simple, inexpensive arrester.

"We were sitting in our library looking out at the storm." With this undramatic start an eyewitness describes one of the most terrifying things that can happen—being right under a lightning bolt. "Suddenly there was a snapping crackle and a roar—and a ball of fire that looked to be 4 or 5 feet in diameter hit the corner of the house where the antenna was attached. I was blinded for an instant and then saw a wisp of smoke curl from the window. I smelled smoke, and put some CO₂ inside the corner of the house and into the air space between the "pod tec" ceiling and the roof.

Antenna hardware showing the burns and scars of a direct stroke. Note burn on rim of flange, and the mitten screw head. No trace of missing relay arm was ever found. Half of the Bakelite coil form also disappeared. The wire in the twin-lead fused and blew holes in the plastic. Wire of #10 gauge will carry current without strain.

"The antenna was down—the three sections still intact. . . . The bolt apparently hit the tip of the antenna as it has marks that very much resemble the pit marks left when you quickly pass an electric welding torch across a piece of iron—a lot of little spatter marks."

Every day lightning strikes somewhere. Usually it strikes high objects. Sometimes these objects are radio antennas. "But will lightning hit my antenna?" you ask. "And if it does—what will happen?"

Chances are lightning will not hit your antenna, but protection is so simple and inexpensive that anyone is foolish to take even the small chance. Because if lightning does hit, it may mean anything from simple inconvenience to explosions and "curtains."

The accompanying chart prepared by the U.S. Bureau of Standards, shows the number of lightning-storm days per year in different localities. However, it doesn't really matter if you expect ninety or just five storms this year—all you need is one, if it hits.

In the first place, if lightning is so powerful, how can we possibly protect ourselves? The answer lies in the very composition of lightning bolts and the fact that despite their awesome nature, they are really mostly noise. A fairly sized bolt doesn't carry much more electrical power than it takes to start your car on a cold morning.

True, there are voltages in the millions, and currents in the thousands—but this power is "turned on" for such a small fraction of a second that a conductor of adequate size doesn't have time to get warm before the show is over. Also, it is well known that to do any work, electricity must pass through a "load resistance." Keep your antenna circuit free from resistances, and there is nothing for the heaviest charge to go to work on—it's that simple.

Add to this the fact that a lightning bolt has such a steep front that any inductance whatever offers a terrifically-high impedance, and you have the secret of lightning protection: provide a straight shoot to ground for the bolt, and let the wires for signal currents have a little inductance. An "electronic switch" in the form of a simple spark gap will automatically ground the antenna whenever one of these noisy visitors comes charging down the wire.

Protection is fairly simple with receiving antennas. There are over

<table>
<thead>
<tr>
<th>GAP SPACING (in inches)</th>
<th>PEAK VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>.039</td>
<td>1000</td>
</tr>
<tr>
<td>.050</td>
<td>1500</td>
</tr>
<tr>
<td>.070</td>
<td>2000</td>
</tr>
<tr>
<td>.078</td>
<td>2500</td>
</tr>
<tr>
<td>.084</td>
<td>3000</td>
</tr>
<tr>
<td>.100</td>
<td>3500</td>
</tr>
</tbody>
</table>

RADIO & TELEVISION NEWS
twenty different lightning arresters on the market that will keep the insides of your set from melting, when they are properly installed. But nobody has ever done very much in the way of making lighting arresters for transmitting antennas. Broadcast stations make up their own systems, and amateurs usually get by on crossed fingers.

Here is how to protect your transmitting antenna. First of all, unless yours is a very low-powered transmitter, don't try to use one of the broadcast or TV arresters. Their spark gaps are not designed to withstand the comparatively high voltages applied to transmitting antennas, and the arrest er usually breaks down and short circuits the antenna the first time power is turned on.

You can make an arrester quite simply just by providing a heavily-grounded spark gap. This may be improvised out of stand-off insulators, a metal rod, and ordinary nuts and bolts. The photographs give the story.

Spacing of the gap should be the minimum that will withstand the peaks of your transmitter-feeder voltage. With a low-impedance feedline, or at the bottom of a quarter-wave grounded antenna, the gap can be very close. But if the antenna operates in the half-wave mode, or if it has high-impedance feed, greater spacing is required.

This spacing can be determined experimentally, but if you know the antenna impedance at the point of lightning-arrester connection (which you can find with an antenna-impedance bridge, or the popular "Antennascope") and the power output of your transmitter, you can calculate the effective voltage at this point by using the formula:

\[E = \sqrt{PE} \]

Peak voltage will be 1.41 times this value. Then, allow spacing according to Table 1. The gap can be set with a "feeler" gauge, or measure the proper diameter with a drill from a numbered-drill set.

The lead from the arrester to your equipment can present even higher impedance to the lightning if you install a "lightning choke," which is simply a small coil. The inductance is not critical, so the choke can be a few turns cut from self-supporting coil stock or 18" of copper tubing formed around a 2" mandrel.

The same added protection can be given the TV receiver, or conventional radio, by tapping a few turns on the lead-in wire into a self-supporting coil on the equipment side of the arrester. This coil can be secured with Scotch tape. It should have no appreciable effect on signal currents, while at the same time strongly encouraging the lightning bolt to be on its way to ground, rather than to take the long route into the house.

The middle of a storm is a poor time to do the job! Make preparations for your protection now. Then, when one of those black clouds rumbles along, you need not be afraid of lightning.

Simple transmitting antenna arrester is made from a rod, drilled end tapped for 1/4-20 brass bolt and a bolt-head electrode in a heavy lug on the lead-in insulator. The gap can be set to proper spacing with feeler gauge, a numbered drill, or a wire.

For the maximum protection, follow this technique. Here the antenna's downlead attaches to one side of a safety gap supported by porcelain stand-off insulator. A lightning choke is installed in the lead to the equipment used with the antenna.

Television receivers can be given positive protection by means of a lightning choke which is installed on the equipment side of a conventional arrester.

Bureau of Standards map shows lightning storms per year in various areas.
McGEE'S LOW COST HIGH FIDELITY

20 WATT HI-FI AMP

Response 30-15000 CPS.
Push-Pull GL 3 inputs
for Mike or Crystal or V.R. Phone Pickup.
Twin Tone Controls.

$29.95

17" FULL DOOR $29.95

Cabinet with full doors. 16" h, 24" w, 27%4" deep.
Charger size, 21" w, 15%4" h. Radiosize, 12%4" h.
Speaker cut for 16%4" speaker. Pipe cut for 3\%6".
Shipped wt. 14%4 lbs. Stock No. NRT-271.

$19.95

21" w, 15%4" h.
DELUXE 21" MAHOGANY TV-PHONO CABINET

$59.95 $22.95

With or without cabinet. RF transformer for 70%4" or V.R. Phono.
Complete $59.95.

$22.95

6-TUBE, 2-BAND RADIO KIT $14.95

6-18 MC 550-1650 KC
6 tube, 2 band AC-DC radio kit, complete with speaker and phone kit.

$39.95

6"-8" SPEAKER $29.95

8"-10", 12" SPEAKER $49.95

8", 10", 12" SPEAKER-BAFFLE COMBINATIONS

$39.95 $49.95

Our most popular speaker-baffle combinations. Brown leatherette cover with separate tone and volume controls. 70%4" x 16%4" x 7%4" high. Weight 25 lbs.

$69.95

A 3 SPEED AMPLIFIER PLAYER KIT $10.95

With tweeter, 3" dome, 6%6" dome, 2%6" dome, 1%6" dome. Can be made into a simple hi-fi amplifier. Complete with speaker and phone kit.

$8.95

5 SPEED AMPLIFIER PLAYER KIT $10.95

With tweeter, 4%4" dome, 5%4" dome, 2%6" dome, 1%6" dome. Can be made into a simple hi-fi amplifier. Complete with speaker and phone kit.

$8.95

TELEVISION BOOSTER CLEARANCE SALES

Clearance sale on VHF television booster for channels 2 through 13. 8" wide, brown leatherette cover. Complete with speaker and speaker kit.

$39.95 $14.95

8", 10", 12" SPEAKER-BAFFLE COMBINATIONS

$39.95 $49.95

Our most popular speaker-baffle combinations. Brown leatherette cover with separate tone and volume controls. 70%4" x 16%4" x 7%4" high. Weight 25 lbs.

$69.95

A 3 SPEED AMPLIFIER PLAYER KIT $10.95

With tweeter, 3" dome, 6%6" dome, 2%6" dome, 1%6" dome. Can be made into a simple hi-fi amplifier. Complete with speaker and phone kit.

$8.95

5 SPEED AMPLIFIER PLAYER KIT $10.95

With tweeter, 4%4" dome, 5%4" dome, 2%6" dome, 1%6" dome. Can be made into a simple hi-fi amplifier. Complete with speaker and phone kit.

$8.95

McGEE RADIO COMPANY

PHRICES

F.O.B. KANSAS CITY

FREIGHT COLLECT OR FREE

R. B. RENNER, MGR.

TELEPHONE VICTOR 5092

1903 McGee ST., KANSAS CITY, MISSOURI

RADIO & TELEVISION NEWS
McGee's Latest 1955 Low Cost Hi-Fi Speaker Systems

25 Watt Hi-Fi Speakers and Baffle Board
2-12" Woofers
2-5" Tweeters
350 Cycle Crossover $10.00 Extra

$24.95

McGee's Famous
12 and 15 Inch Coaxial P.M.
High Fidelity Speakers

Model CU-15Y
12-Inch

$179.95

Model CU-15
15-Inch

$239.95

Model CU-14Y, 14" High Fidelity coaxial PM speaker. Includes 1-1/2" tweeter, 15" cone, 900 watt capacity, 350 cycle crossover, 60°-15° control. Audio response to both high and low frequencies. Takes 15 to 20 watts. Sale 50 to $5000.00. In black or white finish. Sales price, $225.00.

High Fidelity Speakers

8" Blue Streak $6.95
15" Blue Streak Woofer $16.95

Crosley FM-AM Tuner
Sale Price $19.99

Audio Amplifier Is Required to Operate a Speaker
Model 3622, 6 tube Crosley FM-AM Tuner. Receives broadcast 550 to 1600 kc, FM 88 to 108 mc. With tuning, $19.95. $19.95

Jackson AM, 12 watt hi-fi audio amplifier and control. Receives broadcast 550-1600 kc, FM 88 to 108 mc. With tuning, $19.95. $19.95

9-Tube Hi-Fidelity
12 Watts Audio
Dual Tone Controls

Jackson AMPA
35 watt coaxial with tuned input. Jackson AMPA, 35 watt audio amplifier with tuned input. Receiving broadcast 550-1600 kc, FM 88 to 108 mc. With tuning, $19.95. $19.95

Hi-Fi FM Tuner and 9 Watt P.P. 6V6 Amplifier

New Hi-Fi self-powered F.M.-A.M. tuner with new tweeter and rectifier. Full range audio amplifier, separate chassis. All you need is a record changer and speaker to have a complete home stereo system. 12 watt audio amplifier. Includes 1-1/2" tweeter, 14" cone, 900 watt capacity. New twist control. Sale price, $29.95.

New Imperial IV with General Electric
8 in. High Fidelity Speaker

$199.95

New 1955 model IMPERIAL IV, high fidelity speaker system with General Electric 8" speaker, 2500 watt capacity. Includes 1-1/2" tweeter, 14" cone and 8 ohm speaker. Has new 3 1/2" tweeter. Sales price, $249.95. Includes complete speaker and 8" hi-fi speaker. Sales price, $289.95.

Console High Fidelity Speaker System

Equipped With 3 FM Speakers

12 in. General Electric Woofer

60 Watt Console Amplifier With 3 Speakers $275.00 Value

60 watt console amplifier system for only $169.50. A 43" long speaker control panel is built into this unit. The console panel is designed to add beauty to the control panel. This is a complete assembled amplifier system with a super terry driver 15" General Electric speaker. Model has auto volume and controls. Additional 12 volt batteries are added. The speaker is connected to the amplifier. This unit is a complete amplifier with a woofer, woofer and crossover. Controls are built into the cabinet. This panel is a complete amplifier with a woofer, woofer and crossover. Controls are built into the cabinet. Price, $199.50.

60" Long Automatic Speaker System

$399.50

Crosley Radio Company

July, 1955

Garrard—Collaro—Webcor
3-Speed Record Changes

$65.00 List Collaro 2/332 $38.95

Here are the values in modern high fidelity: 3-speed automatic record changer. New Weinbo 116 4/43. 3 speed automatic record changer with $58.95. Net price, $58.95.

New Collaro 3/332, 3 speed automatic record changer made in England. Intermatic 10 and 12" records of same speed. Constant speed changer with 6 rpm turns. Cuts weight to 30% of manual changer. 12 rpm appears, 119 rpm, 315 rpm, and 119 rpm. Price, $58.95

$95.00

3-Speed Automatic Record Changer

$39.95

Garrard—Collaro—Webcor
3-Speed Record Changes

$65.00 List Collaro 2/332 $38.95

Here are the values in modern high fidelity: 3-speed automatic record changer. New Weinbo 116 4/43. 3 speed automatic record changer with $58.95. Net price, $58.95.

New Collaro 3/332, 3 speed automatic record changer made in England. Intermatic 10 and 12" records of same speed. Constant speed changer with 6 rpm turns. Cuts weight to 30% of manual changer. 12 rpm appears, 119 rpm, 315 rpm, and 119 rpm. Price, $58.95

$95.00

3-Speed Automatic Record Changer

$39.95

Garrard—Collaro—Webcor
3-Speed Record Changes

$65.00 List Collaro 2/332 $38.95

Here are the values in modern high fidelity: 3-speed automatic record changer. New Weinbo 116 4/43. 3 speed automatic record changer with $58.95. Net price, $58.95.

New Collaro 3/332, 3 speed automatic record changer made in England. Intermatic 10 and 12" records of same speed. Constant speed changer with 6 rpm turns. Cuts weight to 30% of manual changer. 12 rpm appears, 119 rpm, 315 rpm, and 119 rpm. Price, $58.95

$95.00

3-Speed Automatic Record Changer

$39.95

Garrard—Collaro—Webcor
3-Speed Record Changes

$65.00 List Collaro 2/332 $38.95

Here are the values in modern high fidelity: 3-speed automatic record changer. New Weinbo 116 4/43. 3 speed automatic record changer with $58.95. Net price, $58.95.
We're still telling the world about

Telechiefs

because Sangamo Telechief Capacitors still outperform all other paper tubulars

What do we mean when we say Sangamo Telechief Capacitors outperform all other molded paper tubulars?

Simply this: When it comes to moisture resistance... optimum operation in high temperatures... when it comes to holding rated capacity under all conditions, the Sangamo Telechief wins hands down.

Tests by major manufacturers and branches of the Armed Services—not our tests—have proven that Telechiefs outlive all other molded tubular capacitors... that they have a final insulation resistance 10 to 15 times greater than any other paper tubular because they're molded in HUMIDITITE... the remarkable plastic molding compound developed by Sangamo.

HERE IS TRULY EXTRA VALUE AT NO EXTRA COST! Best of all, Telechief, the biggest value in molded paper tubulars, is available to you at the price of an ordinary capacitor.

Electronic Ignition (Continued from page 63)

approximately ground potential. It should be noted that the time of recharging capacitor C is determined by the resonant circuit consisting of the charging inductor L and the firing capacitor itself. With the components used, recharging time is on the order of one millisecond. This time is thus considered to be the upper firing rate limit or 1000 pulses per second. This, incidentally, on an eight-cylinder engine corresponds to over 10,000 rpm.

Fig. 6 shows the complete schematic. The power supply makes use of a filament transformer as a vibrator transformer. Power requirements are quite reasonable since operation at as high as 1000 pulses per second requires only 100 ma. at 250 volts. The negative supply establishes cut-off bias for the 2D21 thyatron. Transformer T1 supplies the trigger to the thyatron grid as the points open. This then fires the thyatron, discharging C1, through the coil. Capacitor C1 attains a peak voltage of between 500 and 600 volts and therefore should have a 1000 volt rating. Since the 2D21 requires a minimum of 10 seconds heating time before operation, the time delay relay and relay RL1 are wired in a latching manner so that thyatron cathode protection is maintained under all possible conditions. During the warm-up interval, relay RL1 also switches capacitor C1 to provide conventional ignition when starting, thus alleviating any problems with low plate voltage during starter engagement as well as eliminating any inconvenient starting delay.

Construction is comparatively simple as the photographs clearly indicate. The chassis was an aluminum 5 x 10 x 3 inch chassis which is actually larger than necessary. Aluminum should be used to minimize corrosion. It is best to mount everything possible, with the exception of plug-in units, under the chassis for shielding, both mechanical and electrical. For reliability, good components should be used and particular attention should be given to good wrap-around solder joints to withstand severe vibration. The charging inductor L1 is the only component that might be hard to find. The one used by the author had a rating of .2 henry, 10 ohms. If necessary about 50 per-cent of the turns can be removed from a Stancor C2326 filter choke to provide the right inductance. After wiring, the unit should be bench tested, making sure that the battery polarities are the same as the car in which it is to be mounted. Connect a coil primary between the coil terminal and ground. Provide a gap for the coil and connect a lead from the distributor terminal to ground. The thyatron should fire only when this latter ground lead is broken. If such is not the case, reverse the trigger transformer leads at the terminal strip. Installation is mostly a matter of

SANGAMO ELECTRIC COMPANY
MARION, ILLINOIS

90
...but don't overlook

SANGAMO REPLACEMENT ELECTROLYTIC CAPACITORS

SANGAMO Type MT "Chieftains." Specially designed for television and other electronic applications where operation at 85°C is required...hermetically sealed in round aluminum containers...small size makes them good for mounting in limited space...they fit anywhere and can be mounted in almost any position.

SANGAMO Type PL "Warrior." These twist-tab electrolytics are used as original equipment by all major manufacturers...they are exact replacements...assure long life and dependable operation...at 85°C and under conditions of high surge voltages and extreme ripple currents.

SANGAMO Type CS "Tomahawk." These electrolytic capacitors are contained in wax-filled cardboard tubes with insulated flexible leads approximately 8 inches in length extending from both ends of the unit. Each unit is supplied with a mounting strap to facilitate mounting to the chassis.

Fig. 7. Interconnection for ignition unit.

July, 1955
500-WATT AMPLIFIER
A new, compact linear power amplifier, designed for high power outputs on c.w., AM, and SSB operation at 75, 40, 20, 15, and 10 meters has been announced by Transitron, Inc., of 154 Spring St., New York 12, N.Y.
The amplifier, which requires low driving power, provides low harmonic output, excellent stability, and freedom from parasites, according to the company. A continuously-tuned grid circuit from 3.5 to 30 mc. and band-switched pi-network tank circuit for matching to a 50 to 75 ohm antenna, minimize tuning adjustments and eliminate the need for plug-in coils. The amplifier is adjustable from class A through class C operation.
The T-11 is mounted in a 21" x 15" x 12" metal cabinet with self-contained, heavy-duty power supply, including two 886A rectifier tubes. The complete unit weighs 80 pounds.

PRINTED CIRCUIT PARTS
Malco Tool and Mfg. Co., Dept. REN, 4625 W. Lake St., Chicago 24, III., has developed a new line of miniature terminals and contacts for printed circuits which is said to cut wiring time, speed production, and save assembly costs.
The tubular pin is readily adapted to numerous wiring problems. Two heads on the lower part of the pin terminal depress and snap out again when pushed through an accommodating panel hole. The pin snaps into the panel with a positive locking action, eliminating roll-over operations and possible fracturing of the panel or chipping of the plate. This locking action retains the pin until additional components are added or until it is permanently sol-dered.

The female contact is for use where quick connect and disconnect type connections are desired. The solderless wire crimp can be varied to meet requirements.

BREADBOARD KIT
Pic Design Corporation, 160 Atlantic Ave., Lynbrook, Long Island, N.Y., is now offering a practical kit of precision laboratory instrument components consisting of 630 different parts such as gears, shafts, differentials, breadboard plates, hangers, bearings, etc. The kit of parts is complete in every way as it incorporates all parts necessary to solve any mechanical or electronic problem. The material is designed for re-use.
The kit can be used for military engineering or development contracts, university laboratories, educational institutions, etc. The entire kit is contained in a leather carrying case 5" x 12" x 18", felt lined to protect the parts. The kit comes complete with tools to assemble and disassemble the parts as desired.

PICTURE TUBE TESTER
Century Electronic Company of Minneola, N.Y., is offering a budget-priced cathode-ray tube tester designed for the service field.
The Model 102 tests all 10" to 30" picture tubes for quality by the emission method. It also tests for inter-element leakage, shorts, and open elements. The instrument is completely self-contained and supplies its own CRT power through a unique circuit which allows efficient testing whether the tube is in the set or not. A single master control eliminates complicated switching and instantly shows the condition of the tube under test.

RECHARGEABLE BATTERY
The development of a rechargeable storage battery, believed to be the world's smallest, the size of an ordinary postage stamp, has been announced by Yardney Electric Corp., 40 Leonard St., New York 13, N.Y.
The battery is suitable for use in portable communications, recording, telemetering, and photographic equipment. This new storage cell, built on the silver-zinc principle, measures only 3/6" x 3/8" x 3/8". It is rated at one-tenth ampere-hour and weighs one-sixth of an ounce. It provides maximum continuous drains of 500 ma. and peak pulse currents in excess of 2 amps.

INDOOR TV ANTENNA
Tennessa, Inc., 122 E. 42nd Street, New York 17, N.Y. is now offering a unique indoor television antenna which has been trademarked the "Twin Ogyro.

Using twin dipoles of "Cercoc" which is a specially processed wire of unusual characteristics and gain, each dipole is wound on a rubber molded combination spool and suction cup, slightly less than one inch high and wide. Both dipole spools take up no more room than two thumbles. The dipoles are attached by suction to any board molding, window pane, or sill.

RACK-MOUNTED SCOPE
Hickok Electronic Instrument Company, 10534 Dupont Ave., Cleveland 8, Ohio, is now offering its new 3" oscilloscope in rack-mounted form.
Known as the Model 385R, this instrument features a six-section unitized circuit construction similar to that used in equipment made for the Armed Forces. Circuit sections are available as individual units for replacements. Provision is also made for two-axis modulation.
Over-all dimensions of the new rack mount are 19" wide, 5 1/2" high, and 9 1/4" deep. The unit weighs 15 pounds. Complete details will be provided by the company on request.

TINY MICA CAPACITORS
The Electro Motive Mfg. Co., Inc., of Willimantic, Conn., is in production on a new dipped mica capacitor which is said to be the world's smallest mica unit and the first with parallel leads.
The "Dur-Mica DM-15" is rated at from 1 to 510 µfd. at 300 w.v. and up to 400 µfd. at 500 w.v. It provides minimum capacity tolerance of ±1% or .5 µfd. (which ever is greater)

RADIO & TELEVISION NEWS
CRystal Package Sale!

Start Your Own Crystal Bank Now!

Same Day Shipment! Satisfaction Guaranteed!

Warranty: Crystals in all packages on this page are Guaranteed by Crystals manufactured by nationally-known companies such as Biller, Plaza, and other leading firms. If your satisfaction is not 100%, return any unused crystals for a full refund of your money back in full!

Special Package Deal No. 1

100 Cystals!

Regular Value: $9.95

Special Package Deal No. 1 consists of:

FT-243 10 1915
FT-111 10 2300

MIXED FREQUENCIES! At least 100 MAM BANK crystals selected at random. For operation on 100-500 kHz. Includes: 1 FT-243, 2 FT-111, 10 each of 1000-1500 kHz, 40-500 kHz, 500-800 kHz, 800-1500 kHz. Includes sufficient Postage to cover cost of mailing.

Special Package Deal No. 1 Regular Value: $9.95

PAY $8.95

Guaranteed to Oscillate! Consists of 5 choice crystals: Includes: 1 FT-243, 1 FT-111, 3 each of 2000-3000 kHz, 3500-4500 kHz, 4500-5500 kHz. Includes sufficient Postage to cover cost of mailing.

Special Package Deal No. 2 Guaranteed to Oscillate! Consists of 5 Choice crystals: Includes: 1 FT-243, 1 FT-111, 3 each of 2000-3000 kHz, 3500-4500 kHz, 4500-5500 kHz. Includes sufficient Postage to cover cost of mailing.

Special Package Deal No. 2 Regular Value: $15.91

Pay $8.95

Guaranteed to Oscillate! Consists of 5 choice crystals: Includes: 1 FT-243, 1 FT-111, 3 each of 2000-3000 kHz, 3500-4500 kHz, 4500-5500 kHz. Includes sufficient Postage to cover cost of mailing.

Special Package Deal No. 3 Regular Value: $15.91

Pay $8.95

Guaranteed to Oscillate! Consists of 5 choice crystals: Includes: 1 FT-243, 1 FT-111, 3 each of 2000-3000 kHz, 3500-4500 kHz, 4500-5500 kHz. Includes sufficient Postage to cover cost of mailing.

Special Package Deal No. 4 Regular Value: $15.91

Pay $8.95

Guaranteed to Oscillate! Consists of 5 choice crystals: Includes: 1 FT-243, 1 FT-111, 3 each of 2000-3000 kHz, 3500-4500 kHz, 4500-5500 kHz. Includes sufficient Postage to cover cost of mailing.

Special Package Deal No. 5 Regular Value: $15.91

Pay $8.95

Guaranteed to Oscillate! Consists of 5 choice crystals: Includes: 1 FT-243, 1 FT-111, 3 each of 2000-3000 kHz, 3500-4500 kHz, 4500-5500 kHz. Includes sufficient Postage to cover cost of mailing.

Special Package Deal No. 6 Regular Value: $15.91

Pay $8.95

Guaranteed to Oscillate! Consists of 5 choice crystals: Includes: 1 FT-243, 1 FT-111, 3 each of 2000-3000 kHz, 3500-4500 kHz, 4500-5500 kHz. Includes sufficient Postage to cover cost of mailing.

Special Package Deal No. 7

120 FT-243

Complete with crystal storage box

Regular Value: $18.75

Same day shipment. Satisfaction guaranteed.

Pay $24.95

Special Package Deal No. 8

120 FT-243

Complete with crystal storage box

Regular Value: $18.75

Same day shipment. Satisfaction guaranteed.

Pay $24.95

Special Package Deal No. 9

CRYSTAL BANK COMBINATION SPECIAL!

Regular Value: $175.50

Pay $15.91

Guaranteed to Oscillate! Consists of Package Deal No. 7 and Package Deal No. 8.

Special Package Deal No. 9 Complete with 2 crystal storage boxes

Pay $39.95

Special Package Deal No. 10

CRYSTAL BANK SUPER PACKAGE!

Regular Value: $381.50

Pay $39.95

Guaranteed to Oscillate! Consists of Package Deals No. 1, 2, 3, 5, 6, 8, 11.

Same day shipment. Satisfaction guaranteed.

TOTAL: 483 CRYSTALS

Pay $89.50

Terms: All items subject to prior sale, and change of price without notice. All prices are F.O.B. factory and shipment is Free inside 48 states, F.O.B. factory. All shipments outside 48 states by rail or truck are subject to freight charges. All orders over $5.00 freight prepaid. Unpacking instructions enclosed. No C.O.D. No returns without protest.

U.S. Crystals, Inc.

805 South Union Avenue
Los Angeles 17, Calif.

July, 1955
Here's where
spare-time
fun begins!

Centralab Ampec®
3-stage P.E.C.*
Audio Amplifiers

You can use them to build all
sorts of exciting, miniature
projects — pocket radios, mike
preamplifiers, signal tracers, portable
megaphones, phonograph
cartridge, pickup, hearing aids, model
controls — even stethoscopes
For your work or your hobby,
you can have a "picnic" with Ampec. It's the highest form of
Printed Electronic Circuits and
provides complete electrical
service from input to output.
Wiring, capacitors, resistor, and
tube sockets are bonded to a
single, master plate.

Even with tubes, Model 2
Ampec is smaller than a book of
matches. Model 3 is smaller
than a postage stamp — and it
has a tone circuit, besides! You
can get either model with or
without tubes. The quality of
both models measures up to the
same high standards you enjoy
in the Centralab components
you install every day.

Ask your Centralab distributor
to tell you more about Ampec.
And send coupon for Booklet
42-142 with complete specifi-
cations and application "ideas".

Trademark

Centralab
A Division of Globe-Union Inc.
910 E. Knofe Ave., Milwaukee 1, Wisc.

Send me free Booklet 42-142.

Name_____________________________________
Company_____________________________________
Address_______________________________________
City_________________________ State__________

with good stability over a wide tem-
perature range.

Measuring only 3/8" long and 3/4" wide to 3/16" thick, the DM-15 meets all
RECMA and MIL-C-5 specifications
for regular capacitors. It uses stan-
dard #22 wire leads with a minimum
length of 1 1/2" and 10/16" ± 1/32" between
leads.

Free samples and complete data are
available from Dept. RN of the com-
pany.

TUBELESS REGULATOR
An automatic regulator designed for
unattended installations has been de-
veloped by The Superior Electric Com-
pany of Bristol, Conn.

Operating without tubes or moving
parts, the "Stabiline" automatic volt-
age regulator Type TM can be used in
microwave or other installations where
standard voltage regulators cannot be
attended or where there is vibration
that would cause electronic tubes to
break.

The unit holds output voltage to
within a one-volt band, has a speed re-
sponse of less than one second for full-
range correction. Maximum waveform
distortion is 3 per-cent. The regulator is
currently available in rack mount-
ing and cabinet models.

POLYSTYRENE CAPACITOR
Condenser Products Company, 140
Hamilton St., New Haven, Conn., has
announced the development of a poly-
styrene capacitor of extremely high
insulation resistance. The capacitor is
designed for use as a charge storage
unit and as a capacitance divider.

The capacitor, except for its studs
and aluminum foil winding, is
completely plastic. The case itself has
much higher insulation resistance than
either glass or metal, thus keeping
surface leakage to a minimum.

The insulation resistance at room
temperature is 30,000,000 meg. x std.
at 400 volts d.c. while at 75 degrees C
the insulation resistance is 1,000,000
meg. x std. at 400 volts d.c. These
resistance values are measured by the
time decay of voltage method.

THREE-WIRE OUTLET
Under the new UL requirements
eliminating the pigtail for grounding
on line cords, the three-prong, parallel
blade layout will undoubtedly be the
standard on new appliance and equip-
ment cords.

In order to conform to the new de-
design trend, Alden Products Company,

Brockton, Mass., has designed a tiny,
three-wire "Mini-spACe" outlet for the
original equipment manufacturer who supplies convenience outlets for power
take-offs as part of his equipment.

The new receptacle uses a unique
adapter plate to provide the third con-
nects the output terminal to any one
of the sixty sections of the LC net-
works.

Both the m-derived networks and the
rotary switches can be removed
from the cabinet and incorporated into
any equipment where a variable time
PRACTICE CODE TAPES & TG-34A KEYER

PRACTICE CODE TAPES
Code Training and Practice Inked Paper Tapes on 16MM 400 ft. Reels for Tablet for Telegraph and Radio Operators. Fifteen (15) Reels to a Set—in Wood Case. For use with TG-34A or TG-10 KEYERS.

COMPLETE SET—$14.95

TG-34A KEYER
115 or 230 Volts at 60 to 60 cycles—an automatic unit for reproducing audible code practice signals previously recorded in ink on paper tape. By use of the self contained speaker, the unit will provide audible practice signals to one or more persons. Provide a lovely aural oscillator for use with a hand key. Unit is compact, in portable carrying case, and complete with Tubes. Photo Cell and Operation Manual. Size: 10 1/2" x 12 1/2" x 8 1/4" Weight: 16 lbs. NEW...

SET OF 15 TAPES AND TG-34A KEYER—BOTH: $30.00

RECORDER FOR CODE TAPES AND TAPE PULLER

RECORDER BC-791 Recorder & Amplifier of Code Signals from Radio Receiver or Local Key sending on 8" Paper Tape with Ink Writing Stylo. Tape can be played back on any TG-34 or TG-10 KEYER. 115 Volt 60 cycle operation with Tubes. (No Tape Puller included.) Prices: NEW: $9.95...USED.

TAPE PULLER

BOTH BC-791 RECORDER and MC-310 TAPE PULLER—NEW: $20.00
Or USED: $15.00

BC-221 FREQUENCY CASE

BC-221 FREQ. CASE—Aluminum case for BC-221 or TS-164 Fire. METER-W/ Voltage Regulator Supply using 1A/RC-106/Ballast Tubes, Relay, Cadmium. Size: 7 1/2" x 7 1/2" x 7 1/2". Rear Compartment 2" Deep. Shipped mounted...NEW: $4.95

DYNAMOTORS:

INPUT: OUTPUT: STOCK PRICES:

Volts: Volts: M.A. No. USED: NEW:

14 VDC 220 150 BD-87 3.95 $5.05
14 250 350 6.05 8.05
14 1000 350 BD-77 14.95 20.95
14 500 500 BD-500 12.95
14 600 386 BD-66 12.95
14 1030 290
515 215 DM-42 8.95 12.05
28 1000 350 PE-73 8.95 12.05
12 or 24 275 100 USA/596 4.95 6.05
10 or 24 90 4.95 6.05
14 VDC 375 150 BD-83 3.95 4.05

ALL ITEMS PREVIOUSLY ADSVERTED STILL AVAILABLE—SEND FOR LIST!

ANTENNA RELAY UNIT—BC-442 consists of a scaled down RF indicator & 59 MFM Vacuum Capacitor...NEW: $3.95

CLASSIFIED ITEMS:

BC-239/240 REC, 2500-7700 KC. w/Coats...U: $5.95
BC-229 TRANS., 5000-16,000, 1000 MA., 12.5 V., w/Tubes...U: $6.95
BC-347 AMPLIFIER—\(U\)S...G...\(N\)...U: $1.95
BC-309 Amp—Batt. Od...Tubes. $3.95. U: $1.95
BC-745 TRANSCIVER—3 to 6 MC...U: $3.95
RT-34/13-13 TRANSCIEVER—Less Tubes...U: $3.95
FL-8A Range Filter...U: $18.00...
TB-9 Carbon HANDSET...U: $3.95
TB-10 Ind. Pwrd. Manual or H & Ch. Set...U: $3.95

FAIR RADIO SALES
132 SOUTH MAIN ST.
LIMA, OHIO

SAVE $95.50!
CONSTANT-VOLTAGE TRANSFORMER
with 4 inputs! 120 or 220 V. 50 or 60 cycles
SOLA No. 3970...$5.00

OUTPUT: 115 V, \(\pm 5\)% even if line voltages 50 or 75% continuous or 165 V, \(\pm 10\)% if line & voltages vary 25%. Use as step-down with 220 V, 3,000 W. Clamp around charging cord. Self-protecting against overloads. Air Filter, terminal strips, leads included. Price: NEW: $95.50 LESS that regular price of single-input 2200 W. unit. Brand new in original wood box. 4 cu. ft. Ship. 25 ea.

THE M. R. COMPANY
P. O. Box 1220-A
Beverly Hills, Calif.

BROADCAST BAND RECEIVER
NAVY-TYPE REC-3...$24.95
To 1500 KC. NEW...

NAVY TYPE REC-3...$24.95
9 MC. Less Tubes...U: $8.05
BC-455 REC-6...to 9 MC. Tubes...Used: $4.05
N-34C PRESS-5...to 6 MC. Tubes...NEW...

NAVY TYPE COMM. TRANS. 2.1-15 MC...U: $12.95
NAVY TYPE COMM. TRANS. 2.1-3 MC...U: $16.95

METERS:

WESTON AC AMMETER.
(Previously used, 1/2" needle, 3000 ohms for Leads. 3/4", 0-15 A. $5.95
AC and 0-3 ohm Scale.

AMMETER H-1 portable metal case, with Test Leads, 4\(\frac{1}{2}\)" needle, 3000 ohms...$10.00

3/4 AMMETER-3...$4.95
AMMETER-3...$4.95

DESIGN'S V. 60 CYCLE PRI.
600 VCT/100 MA-6...3 V./5 A; 5 V./5 A...$4.95
650 VCT/50 MA-6...3.2 V./5 A; 5.3 V./5 A...$4.95
350 VCT/40 MA-6...3.2 V./5 A, 5.3 V./5 A...(Rect. 6x5)...$7.75
3500 MA-6...3.2 V./5 A; 5.3 V./5 A...$14.50
1800 V/12.6 MA Tapered 2.5 V...$2.95
1200 MA-25 V...$2.95
2 V-Volt—Two separate windings—Amp meter...$5.95
28 Volt A/V Amps...$5.95
60-1000 VAC-A/C-100 MA-3 V.; 3 A; 100 MA-3 V; 100 MA-3 V...$5.95
600-6000 VAC-A/C...$5.95
6.3 V.-3 A.-100 MA-3 V.-100 MA-3 V...$5.95
250-250 VAC-50 MA...$5.95
25 V. A/C...$5.95

CURRENT TRANSFORMER—Ratio 150 to 5 to 25 to 60 cycle. West Style.

CONSTANT VOLTAGE REGULATOR—115 Volt 60 cycle. 80 V. A/C. SOLA 2087...$12.95

Choke 12.5 Hy 100 MA...U: $1.95
Choke 110 Hy 150 MA...U: $1.95
Choke 5 Hy 150 MA...U: $0.95

6 VDC VIBRATOR POWER SUPPLY
RCA MJ-8—6 VDC Input; output 275 VDC 80 MA/924 Tube. 11 ft. Batt. Cable, Switch & Fused Line. $4.95...

FM RECEIVER
27 to 38.9 MC.

Four Presets Channel A/B/C/D frequency Ranges 27 to 29.15, 31 to 33, 33 to 34.4, and 34.4 to 38.9 MC. Complete with 16 Tubes: 1/1287; 1/2562; 1/3127; 1/1920; 2/1897; 1/4423; 1/2987; 1/316; 2/467; 2/487; 1/2467; 1/2647; 1/4827. 2/467; 1/2467; 1/2647; 1/4827; and 1C-4 Crystal 1000 KC. Crystal, 6-C, 8-C, 12-C, 24-C. Radiator, and Speaker. Power requirements: 24 V. DC and 275 V. DC 150 MA. Size: 6 x 6 x 8. 10 x 10 x 10...

BC-932 RECEIVER...NEW...$34.95

Address Dept. RN...$5.00 Order Minimum, & 25% Deposit on C.O.D.'s. Prices are F.O.B., Lima, Ohio

SAVE $95.50!

TV TUNER REPAIRS
48-HOUR SERVICE
Defective tuners rebuilt to factory standards. New tuner guarantee. Ship prepaid.

RADIO PRODUCTS CO.
15-20 122nd Street & Pt. 56, N. Y.
Needless and Redrawn Tuners for all makes of TV.

ARRAZ KITS
WORLD'S FINEST KITS
RADIO PHONOGRAPHY TV
TEST EQUIPMENT HI-FI
Write for FREE Brochure

RADIO KITS, Inc. • 120 Cedar St., N. Y.

GET INTO ELECTRONICS
This can enter this Intermeddled, Interesting field using equipment expansion. Much of our present equipment is handled by trained specialists. Also all phases radio & television theory and practice, TV, PM, broadcast servicing; aviation, marine, police radio. 3 month course. Prepare for entry into careers in demand by major companies. High School equivalent, minimum; 12 hours TV, PM, broadcast servicing, and 12 hours in June, September. Campus Life. Write for catalog.

VALPARAISO TECHNICAL INSTITUTE
Dept. RD
Valparaiso, Indiana

July, 1955
ARROW SALES

SPECIAL TELEVISION TRANSMITTER

M. 27-52. 77 ft. 2-15 volt relay. Receives and amplifies side and side i.f., side and side r.f., and side and side a.f. circuits. For home, boat, or car use. Complete except for speaker. Weight 14 lbs. Includes a.f. and r.f. coils for transmitting equipment. 24 V. $15.75

APS-13 UHF TRANSMITTER-RECEIVER

Freq. range 415-430 MC; staves of 55 MC. Excellent sensitivity and resolving power. 80% modulation by a.c. and d.c. Current drawn 1.25 amp. Weight 11.25 lbs. $130.00

BOTH

BUILD A TELEVISION TRANSMITTER-RECEIVER

COMMAND SPECIALS

SPECIAL TELEVISION TRANSMITTER

Model TS-182. 40 volt, 10 watt, 440 cycles. Receives and transmits. Complete except for speaker. Weight 14 lbs. Includes r.f. and a.f. coils for transmitting equipment. 24 V. $15.75

WHAT A BARGAIN!

APX IFF EQUIPMENT. This transmitter is a transceiver of the tube-oscillator, relay-vacuum tube type. Designed for all types of radio transmitters. 24 V. $15.00

MOBILE COMBO SPECIAL

Model 234-259 MC RECEIVER

11-tube UHF tunable receiver with automatic tuning. 24 V. $9.95

SEND FOR NEW FREE FLYER!

TS-182/UP

SIGNAL GENERATOR AND TEST SET. Complete. For checking power output, receiver sensitivity, pulse shapes and receiver time. Equipped with a.c. and d.c. units to transmit. Includes a.f. and r.f. oscillator. Weight 11.25 lbs. $10.00

6 VOLT POWER SUPPLY

Complete mobile supply for mobile equipment. Invert 20 V. to 120 V. 12 V. 600 ma. Unit has tubes and vibrator with filter assembly. Mfg. by Peter Taylor Equipment, Racine, Wis. $24.50

RECEIVER

Complete mobile supply for mobile equipment. Invert 20 V. to 120 V. 12 V. 600 ma. Unit has tubes and vibrator with filter assembly. Mfg. by Peter Taylor Equipment, Racine, Wis. $24.50

MOBILE COMBO SPECIAL

Model 234-259 MC RECEIVER

11-tube UHF tunable receiver with automatic tuning. 24 V. $9.95

RECEIVER

Complete mobile supply for mobile equipment. Invert 20 V. to 120 V. 12 V. 600 ma. Unit has tubes and vibrator with filter assembly. Mfg. by Peter Taylor Equipment, Racine, Wis. $24.50

ARROW SALES, INC.

Western Marketing Address

BOX 3878, NORTH HOLLYWOOD, CALIF.

Central Marketing Address & Sales Showroom

2441 S. MICHIGAN AVE., CHICAGO 16, ILL.

Visit our Western Sales Showroom

2005 EMPLOYEE AVE., BURLINGTON, CAL.

Phone: Detroit 9-3034

HEADLIGHT CONTROL

Dynatron Corporation, Shaker Square, Cleveland, Ohio, has introduced a new automatic control for automobile headlights which incorporates a unique photoelectric circuit with an electronic delay. The delay is essential to the proper functioning of the dimmer since it provides smooth and positive control of car headlights under all operating conditions and eliminates annoying flickering of headlights and improper return to upper beam after dimming.

The dimmer features a universal type mounting which permits installation on all makes of cars. The entire photoelectric circuit and power supply is enclosed in a compact metal case which is mounted on the instrument panel at the lower left corner of the windshield, inside the car.

The unit is now available in 6 and 12 volt models for all makes of cars. The manufacturer will provide full details on request.

Hoffman Radio Division is currently shipping its 21-inch color television receiver to distributors.

The "Colorcaster," Models 21M110 and 21B1102, features simplified circuitry which uses 24 tubes plus 4 rectifiers, increased color stability, increased picture detail, and greater viewing area. Automatic luminance and chroma tracking are accomplished with a single control.

The set has its own swivel base and tuning controls mounted vertically at the side of the color picture tube. A hinged panelled door on the chassis side of the cabinet has been incorporated to permit maximum ease in servicing the receiver.

The retail price of the set is under $900.

Certified Record Revue

(Continued from page 64)
facilitating faculty for making the machine-gun patter of the verses completely articulate and Mr. Collins keeps everything moving lightly and gets excellent support from his instrumentalists. If you like the Billy fire verse of Gilbert and Sullivan you may find this diverting. Voice and orchestral sound is clean and clear throughout the disc. No curve adjustment was needed.

While this isn’t a “must” in the well-stocked record library, it does provide lots of good, clean fun. If you want something just a little different to spring on your friends, this would be a good disc for the purpose. Dame Edith stands a good chance of surviving as one of the “people” of our time, so this might turn out to be a real collector’s item.

TCHAIKOVSKY
SWAN LAKE BALLET (COMPLETE)
Minneapolis Symphony Orchestra conducted by Antal Dorati.
Mercury OL-3-102. RIAA curve. Price $22.80 (Three discs).

This is one of the most outstanding productions of this year. Mercury, influenced by the great success of its “Nutcracker,” has turned once again to Tchaikovsky and with stunning realism has recorded the first complete, uncut version of the magnificent “Swan Lake.” The London recording is listed as “complete,” but actually the score contains much that is not in the London album. Indeed, there is some question as to whether many of the sections herein recorded, have ever been played before. It is good to report that musical quantity has not been made subsidiary to quality. The sound of this album beggars description. The over-all effect is huge, quite overwhelming and I assure you that if your experience with this work has been limited to records rather than the ballet or concert hall, you have a treat in store, as the “presence” on these discs is nothing short of miraculous! Mr. Dorati, of course, an acknowledged master of the ballet idiom and his reading is a model of disciplined good taste. His tempi are authentic, his phrasing deft, and his orchestral balance is just and carefully maintained. Some critics have characterized Dorati’s reading as “cold,” a statement I find incomprehensible. They also say that the bass drum was too prominent. I think the root of this criticism stems, in many cases, from a mistaken concept of ballet music, especially as performed in a concert hall. A ballet is, after all, largely movement and as such the music must keep pace with the action. In the concert hall or on records, we are dealing with the score without the benefit of the dancers and I think this tends to throw emphasis on the rhythmic aspects, hence the heightening of percussives and the notion that the performance is “cold.”

(Continued on page 98)
NEW MODERN RCP
"DO-ALL"
Tube and Set Tester
Model 808AA

There is much new material here and while there are redundant sections where some cutting is justified... there is also much that is completely original and ownership of the complete ballet is sensible. Merscury's engineers have come up with a real dazzler in the sound department. The strings are silky smooth and the brass is fantastic... extremely brilliant, yet carrying clear weight. The woodwinds are flawlessly reproduced with nary a trace of flutter and, as is usual with the percussion heard from the Minneapolis Symphony, the clarity and weight of bass drum and tympani and the expansive transients of cymbals. Acoustic perspective is pervasively "live" and all is very wide in range with little distortion of any type including "pre- and post-echo." Dynamics and transient response are really incredible and you will have to watch your gain control carefully if you have neighbor problems! As befitting such a magnificent musical and engineering triumph, the album is quite delicate with light blue silk moire covers and with the program notes some superb sketches by the eminent Cecil Beaton. The music is fabulous, the hi-fi is ultra high and I predict that this irresistible recording will set news sales records for ballet music.

RACHMANINOFF SYMPHONY #3

VOCALISE

This will be welcomed by Rachmaninoff fans with unabashed delight, as up to this present recording they have had to contend with the miserable sounding gross version on the Rachmaninoff Society label. Why so... the fabulous Philadelphia strings, Ormandy in his element and at the top of his form, excellent hi-fi sound and music which will find an immediate and sympathetic audience. Generally string tone is quite clean and in the lovely "Vocalise" you will find string playing that is quite incredible and probably unmatched for warmth and precision by any orchestra in the world today. Sound was wide in frequency response, dynamics were impressive. My only quibble is some rather thick sounding percussion, too much pre- and post-echo and an acoustic environment which seems a shade over-reverberant. These are relatively minor however and if I think I can safely say that most people will find this a most desirable recording.

GOULD

DANCE VARIATIONS

Wittmoe and Lowe, duo-pianists with San Francisco Symphony Orchestra conducted by Leopold Stokowski.

This is an absolutely sensational recording in every respect! The hi-fi fan will have a field day with this one. The music is the sort of thing that begs for hi-fi treatment and under the inspired leadership of Stokowski and the brothers in "4", this is quite a sonic showpiece! The Gould work is a virtuoso exercise for duo-pianists Whittemoe and Lowe. Modern, but not excessively so, the work is quite exciting and his plenty of dazzling effects for the pianos. The pianos are used quite percussively and, in combination with the rousing brass and sharp, accurate snare, timpani and cymbals, etc., your speaker will get quite a workout. The "Sebastian Ballet Suite" is a wonderful little score. There is some very lovely, engaging writing here and the famous Menotti touch for lyrical themes and per- formance. This, too, will delight the sound conscious. Some beautiful bell and chime work here and ultra-sensory contrabass and gay and one piano. The work is quite wide in range, dynamics are of notable breadth and the most outstanding characteristic is the mar- velously "live" acoustics. It is possible that with a thicker-textured score this reverber would prove too much; with this music it is a near perfect example of liveness with de- tail. Don't fail to hear this! The RIAA curve was OK.

TCHAIKOVSKY MANFRED SYMPHONY

It is surprising how few dyed-in-the-wool Tchaikovsky enthusiasts know this symphony. It is even more surprising when one considers that this is the 6th, 7th, 8th and 4th symphonies and as ha hi-fi vehicle is quite spectacular. There have been three previous versions in the LP catalogue, the only one included at all being the Toscanini effort. This present recording is far beyond the others in matters of sound and as performance goes, while not up to the MKS, he gives a good competent reading. The orches- tration is lavish and is among the best ever done by Tchaikovsky. It calls for a large orchestra and a good label for that. The Philharmonic fits this bill very ade- quately and produces some stupendous sounds. Hi-fi fans will particularly like the brass and percussion scoring in the "Orgy scene" in the finale. Sound generally is some- what sharper focused than is usual with Angel and is good for this score. Strings are their usual smooth self, but brass seems brighter and percussion has more solidity and impact. Dynamic range was quite wide and groove distortion, virtually non-existent. If you are not familiar with this work and you like Tchaikovsky, you will find this most reward- ing. Curve was OK and surfaces were quiet.

RAVEL INTRODUCTION AND ALLEGRO DEBUSSY DANSES SACREE ET PROFANE

SCHOENBERG

Those of you who have an antipathy to a certain famous number of an orchestra conducted by this disc. If you don't like what you hear, I will be very surprised. The "Introduction and Allegro" is one of the most beautiful small-scale works ever composed. It has the sensitive, almost other-worldly beauty of this score, with the swelling strings, the soft cascades of sound from the harp and the pure lambent nature of the flute, has an extraor- dinary effect on women! (All those courtin's and sparklin' take heed!) I would sincerely recommend that you play this work for the ladies. I don't think the woman if she have seen her hard time about your hi-fi. I've seen more than one woman won to the cause of hi-fi with this music. Of the five versions in the catalog, his wins hands down. Performance is expert, sound is smooth, wide range, splen- didly balanced. The Debussy work is in the same vein as the Ravel and is equally well performed. The Schoenberg is a great work, that may take a little acclimatization, but it is well worth your trouble. It is heard here.
MAMMOTH CRYSTAL CLEARANCE SALE!

SAVE MONEY—ORDER IN PACKAGE QUANTITIES!

Shipment made same day order received. All crystals tested and guaranteed to oscillate. Please include 20c postage for every 10 crystals or less. Minimum order $2.50. No C.O.D.'s.

PACKAGE DEAL NO. 1
25 Assorted FT-243 $8.95
15 Assorted FT-171B $4.49
100 CRYSTALS Assorted Special Regular Value $66.00

PACKAGE DEAL NO. 2
FT-241A CRYSTALS for single Sideband 370 KC—538 KC
35 CRYSTALS $3.49

PACKAGE DEAL NO. 3
HAM BAND CRYSTALS—FT-243
For operating on 80, 40, 20, 15, 10, 6 and 2 meters—on either fundamentals or harmonics.
25 CRYSTALS $6.95

ASSORTED REGULAR PACKAGE

![Image of TV diagrams and manuals]

NEW TELEVISION COURSE
Amazing Bargain. Complete. Only $3

NEW PRACTICAL COURSE
Here is your complete training in television servicing. Amazing value at only $3, full price. These new lessons cover every aspect of television design, and each pair of all types and makes of TV receiving circuits. Quizzes are written, and exercises to be performed. These just-like correspondence courses selling for only $3.50. Our amazing offer permits you to obtain the course complete for only $3.

SIMPLIFIED TV TRAINING
New, easy-to-follow, well illustrated 14 lessons on circuits, picture failure, adjustments, short cuts, about UHF, alignment, antenna problems, troubleshooting, service hints, how to use test equipment. Very large practical sections prepared by leading manufacturers. Recently published. Send trial coupon right now. Prompt replies.

RADIO and TV Manuals
Your complete, best source for all needed RADIO and TV diagrams and servicing data. Amazing values. Still sold at pre-War prices. Only 50 to 80 per volume. Every Radio manual contains large schematics, all needed alignment facts, parts lists, voltage values, trimmers, dial selectors, and many repair hints. Each TV volume is a practical treatise on servicing a full year's sets, with great troubleshooting, warform, hints, alignment and voltage charts, production changes. See contents at right for a complete list of these low-priced Supreme Service Manuals.

COMPANION RADIO COURSE
Here are your complete radio training in 22 lessons—because of high TV prices, radio servicing, test equipment, everything is easier, introduction in only 50c.
Firmly 80% to 90% of tubes that have gone dim in service can be reactivated to furnish up to years of “bright as new” service.

GOODBYE BOOSTERS!
“Rejuva-Tube” isn’t just a gadget to give picture tubes a temporary shot in the arm — even most tubes that have gone “flat” using a booster can be rejuvenated.

PORTABLE —
It’s compact, light weight and easy to use. Check and rejuvenate picture tubes right in the set in a few minutes.

DEALERS!
Now you can sell those “dim-out” trade-ins at a good profit.

SERVICEMEN!
Sell rejuvenation service — it’s a real money maker. Test and quickly rejuvenate picture tubes in the customer’s home. An inexpensive instrument that protects your profit on service contracts.

PROVEN — TIME TESTED!
Tubes rejuvenated experimentally over three years ago are still showing good pictures.

COMPARE THESE FEATURES
Welds Open Elements

TESTS — REPAIRS TV PICTURE TUBES WITHOUT REMOVING TUBE FROM SET

- Restores cathode emission and brightness.
- No guesswork — only device that meters cathode activity during rejuvenation. Tells you when to stop rejuvenation to prevent damage to cathode emitting surface. Built-in current limiter prevents accidental cathode ribbon burn-outs!
- Complete tester — detects open or shorted elements and leakage high as 3 megoohms between elements. High quality lab instrument style construction.
- Has special metered circuit to remove “particle” shorts between heater and cathode.
- Checks cathode emission and grid cut-off characteristics.
- Predicts approximate life expectancy of tube — identifies gassy tubes.

*PATENT PENDING Condensed Instructions Printed Inside Case Lid

**WRITE FOR MANUAL ON REJUVENATION WITH THE **

"Rejuva-Tube"

In the original chamber version, but has achieved more popularity in its orchestral guise. Those interested can hear the orchestral version on a Columbia disc with Eugene Ormandy and the Philadelphia Orchestra. Curve was OK and, as usual, Capitol surfaces were outstandingly quiet.

BLISS MIRACLE IN THE CORBALS MUSIC FOR STRINGS

This will be welcomed by balletomane who like this blood-curdling vignette of life in the “Corbals” of the shue district of Glasgow. This extraordinary ballet has sold very well in the old Constant Lambert/Columbia version, and this should have a ready market for those who wish to upgrade their libraries and with those who will be discovering it for the first time. The scoring can be termed modern, although atonality is not very prominent. The structure is most interesting and has many sections which will appeal to those who like the lyric and those who relish hi-fi effects. Sir Arthur Bliss lends his authority to the performance and the result is a more tightly organized, more dramatic reading than the old Lambert effort. Smooth sound throughout in the Angel manner and quiet surfaces add up to an attractive buy.*

BEETHOVEN SYMPHONY #6 (PASTORAL)

One of the most extraordinary facets of Paul Paray’s uncanny ability to give superb performances of music which is presumably incompatible with his background and temperament. This recording of the “Pastoral” is further evidence in support of this. It is not a Germanic, or Italianate, or French performance, but rather is something special that belongs to Paray himself. One thing is certain ... it can stand comparison with the best. It is a warm, glowing, completely relaxed and unhurried reading. But it is not flabby, rather the “storm” has a strength and force that is not apparent in many other versions. In terms of sound, this recording is uncompromised. Mercury shows here that they know how to record the less spectacular repertoire as well as they do the fire-breathers. The superbly live smooth strings and woodwinds are heard with every nuance, every shading perfectly reproduced. The frequency response is very wide as are the dynamics. The “storm” is really stormy in this version, with great growling tympani completely reproduced. I believe this version will become the favorite of those who like the work and who want the best-sounding disc, and who will leave the arguments about performances to the critics. Curve and surfaces were OK.*

SCHUBERT SYMPHONY #8 (UNFINISHED)

With a combination like Bohm and the Vienna Philharmonic, this recording was bound to be successful. At least with this particular repertoire. Bohm is an able and astute hand with Schubert and his essay of the 5th is simply magnificent and unlikely to be surpassed too soon. The “Unfinished” is subject to a few mainmers but they are of minor significance and this reading must be adjudged along with the best. The sound is in the “big-boned, big hall” tradition and the orchestral sonorities are tubalh... Dynamics are exceptional and generally the

Central Electronics, Inc.
1247 W. Belmont Ave. Chicago 13, Illinois
sound is clean and distortion free. The playing of the Philharmonic is magnificent and they are as close to their pre-war skill as we are likely to hear. An excellent disc for upgrading libraries and for beginning audiophiles.

Jazz Corner

POPULAR FAVORITES
Clifford Brown with Strings. EmArcy MG 36005. RIAA curve. Price $3.98.

This is the first of the new jazz releases on the EmArcy (Mercury Record Corporation) label. I like to say that this is the find of the most hi-fi jazz I have yet encountered. Clifford Brown is a fabulous talent on the trumpet and in some excellent arrangements by Neal Hefti of such popular favorites as "Laura," "What's New," "Embraceable You," "Stardust," etc., he gives a distortion that his reputation is well founded. The recording is very close to, yet retains enough reverber for an extremely live sound. The trumpet of Brown is sharp and "gutty" and the fidelity is such that you can hear the wind sounds of his tongue and lip techniques. In addition to the string complement, Brown is supported by such estimable sidemen as Max Roach on the drums, Richie Powell on the piano, and George Morrow on the bass. The over-all sound is very wide range and in very fact with the very quiet surfaces, sounds very much like a tape! If you are in the mood for some ultra hi-fi jazz in the "cool" vein try this.

Spot Radio News
(Continued from page 18)

large ad agency in Chicago told the Commission that income from this new source will make it economically feasible for stations to operate in areas that have had to be bypassed up to now.

Bluntly announcing that subscription-TV is inevitable, the ad men said that "the public is aware that it is now technically feasible, by means of this new system, to bring to the home important entertainment that is now impractical due to high production costs . . . Public dissatisfaction will become more acute as the knowledge grows that an inexhaustible source and variety of programs are being denied access to television because of governmental restriction.

Securing the critics, the agency told the Commission that no solid objections have really been raised. "It seems to us," they said, "that the pursuit of obscure claims by minorities and special interests should not be permitted to delay any longer the great benefits that can result from this new development."

Opponents to the pay-TV idea told the Commission that the fee plan would wreck the free-air TV broadcasting system. One group said that it would show officials in Washington the conversion of receivers for decoding apparatus . . . "would impose a severe economic hardship on the viewing public running into hundreds of millions of dollars."

Service shop operators also revealed their concern over the problems that the pay-TV mechanics could create. An association in Pennsylvania filed a brief with the Commission, which said that . . . "manufacturers of subscription television units will probably insist that they control and monopolize the installation, maintenance, and servicing of these units . . . because the equipment is of a coded nature . . ."

If this practice is approved, the technicians told the Commission, established servicing agencies of independent radio and television shop owners will be eliminated. And, continued the brief, the millions of dollars invested in equipment, special components, shop facilities, trucks, trained personnel, and experience would thus be wiped out.

"Therefore," said the association, "we petition your body to issue rules and regulations which will prohibit the granting of any franchise to any manufacturer of TV sets for subscription TV, if they attempt to control or monopolize the sale, installation, maintenance, and service of such equipment."

THE VELOCITY OF LIGHT has been re-determined by a radio method, which makes use of phase-shift measurements on v.h.f., with the aid of a radio interferometer (Continued on page 102)

July, 1955

LEARN PRACTICAL RADIO
ONLY $19.95
COMPLETE 15 RADIO CIRCUITS AT HOME WITH THE NEW IMPROVED PROGRESSIVE RADIO "EDU-KIT"$19.95

Build 15 Receiver, Code Oscillator, Transmitter, Signal Tracer Circuits

• ATTRACTIVELY GIFT PACKED
• FREE SOLDERING IRON
• NO ADDITIONAL PARTS NEEDED
• EXCELLENT BACKGROUND FOR TV
• 30 DAY MONEY-BACK GUARANTEE
• SCHOOL INQUIRIES INVITED
• ABSOLUTELY NO KNOWLEDGE OF RADIO NECESSARY
• LEARN HIGH FIDELITY

WHAT THE PROGRESSIVE RADIO "EDU-KIT" OFFERS YOU

Our Kit is designed specifically for the do-it-yourselfer, who, in keeping with the basic facts of radio theory and Construction Practice, expressed simply and concretely, will gain a sound technical knowledge of Radio Reception, Radio Transmission and Audio Amplification. You will learn how to build a complete radio set including every wire and solder in a professional manner. You will learn proper chassis design and assembly, and how to read blueprints and schematics. You will receive training for F.C.C. Radio License. You will learn how to operate a professional radio station.

Build in the practical basic education in radio, worth many times the small price you pay.

THE KIT FOR EVERYONE

The Progressive Radio "EDU-KIT" was especially designed for the do-it-yourselfer, who has a desire to learn Radio. The Kit has been used successfully by students and operators all over the world. It is not necessary that you have even the slightest background in science or radio. The complete "EDU-KIT" is used by many Radio Schools and Clubs in their instruction. It is designed by Armored Forces Personnel and Veterans throughout the world.

PROGRESSIVE TEACHING METHOD

Two Progressive Radio "EDU-KIT" demos complete with instructions. These instructions are arranged in a clear, simple and progressive manner. The theory of Radio Transmission, Radio Reception, Audio Amplification and servicing by the individual is clearly explained. Every part is identified by illustration and diagram. You will learn the fundamental principles of Radio Transmission, Radio Reception, Radio Amplification, and Radio Servicing in a progressive manner. You will learn to use a multimeter, an oscilloscope and other radio test equipment. You will learn to build a complete radio set including every wire and solder in a professional manner. You will learn to analyze circuits and diagrams; how to build and operate a complete radio set. You will receive practical training to enable you to pass the F.C.C. Radio License.

THE PROGRESSIVE RADIO "EDU-KIT" is complete. It is complete with parts, tools, accessories, trouble-shooting lessons, all the information necessary to build a complete radio set. The "EDU-KIT" includes tools, tube sockets, variable, electrolytic and paper condensers, resistors, meters, lamp, switch plate, etc. No tools or solder included. All parts are individually boxed, and identified by name, illustration and instruction diagram. Every part is tested in historic radio sets, is specially explained. You will receive practical training to enable you to pass the F.C.C. Radio License.

FREE EXTRAS

• ELECTRICAL & RADIO TESTER • ELECTRIC SOLDERING IRON • TV BOOK • QUIZIES • FREE CONSULTATION SERVICE • HI-FI GUIDE Progressive "EDU-KITS" Inc. 497 Union Ave., Brooklyn 11, N.Y.

MAIL TODAY—Order shipped same day received.

30 Day Money-Back Guarantee. Include ALL FREE EXTRAS.

Send "Edu-Kit" Postpaid. I enclose full payment of $19.95 U.S.A. only.

Send "Edu-Kit" Postpaid. I enclose full payment of $20.95 (Outside U.S.A.).

210-215 V. Foreign Line Voltage Adapter for "Edu-Kit" (U.S.A. only).

"Edu-Kit" C.O.D. (U.S.A. only)

I wish additional information describing "Edu-Kit". No Obligation.

Send me FREE Radio-TV Servicing Literature. No Obligation.

Mail: Progressive "EDU-KITS" INC.

497 UNION AVE. Room 43-E, Progressive Bldg. BROOKLYN 11, N.Y.

www.americanradiohistory.com
Gigantic SAVINGS on TUBES and Parts!

- Same Day Service • Full Year Guarantee • All Tubes Individually Boxed • 400 Types Always In Stock • For Quality, Performance, Dependability

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6SA7GT</td>
<td>.82</td>
<td>6SK7</td>
<td>.69</td>
<td>11726</td>
<td>.62</td>
</tr>
<tr>
<td>6CG7GT</td>
<td>.77</td>
<td>6SK6</td>
<td>.69</td>
<td>11726</td>
<td>.62</td>
</tr>
<tr>
<td>6CG7GT</td>
<td>.77</td>
<td>6SKK6</td>
<td>.69</td>
<td>11726</td>
<td>.62</td>
</tr>
<tr>
<td>6CG7GT</td>
<td>.77</td>
<td>6SK6</td>
<td>.69</td>
<td>11726</td>
<td>.62</td>
</tr>
</tbody>
</table>

TERRIFIC VALUE! Individually Boxed, Famous Make Dynamic Speakers at Super Savings 4"-2000 Ohms. 10"-1700 Ohms. 6"-2500 Ohms. 10"-2500 Ohms. 8"-2500 Ohms. 12"-1700 Ohms. $89.95 assorted 79c each.

WRITE DEPT. RN-7 FOR FREE TUBE AND PARTS CATALOG LISTING OVER 400 TUBE TYPES EXPORT INQUIRIES INVITED

Wood UTILITY CASE With Handles! $3.95

NEW TV GRANTS SINCE FREEZE LIFT

Continuing the listing of construction permits granted by FCC since lifting of freeze. Additional stations will be carried next month.

<table>
<thead>
<tr>
<th>STATE</th>
<th>CITY</th>
<th>CALL</th>
<th>CHANNEL</th>
<th>FREQUENCY</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>Sacramento</td>
<td>KCRA-TV</td>
<td>0</td>
<td>185-192</td>
<td>93.5</td>
</tr>
<tr>
<td>Florida</td>
<td>Ft. Pierce</td>
<td>WBFT-TV</td>
<td>1</td>
<td>185-192</td>
<td>12.6</td>
</tr>
<tr>
<td>Nevada</td>
<td>Reno</td>
<td>KSNU-TF</td>
<td>2</td>
<td>185-192</td>
<td>17.5</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Florence</td>
<td>KDLO-TV</td>
<td>3</td>
<td>185-192</td>
<td>21.5</td>
</tr>
<tr>
<td>Virginia</td>
<td>Roanoke</td>
<td>WDBV-TV</td>
<td>4</td>
<td>185-192</td>
<td>35.7</td>
</tr>
</tbody>
</table>

NEW CALL LETTER ASSIGNMENTS

<table>
<thead>
<tr>
<th>STATE</th>
<th>CITY</th>
<th>CALL</th>
<th>CHANNEL</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>San Diego</td>
<td>KNXV</td>
<td>11</td>
<td>198-204</td>
</tr>
</tbody>
</table>

*ERF = (effective radiated power, kw.)

CALL LETTER CHANGES

<table>
<thead>
<tr>
<th>STATE</th>
<th>CITY</th>
<th>CALL</th>
<th>CHANNEL</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>San Diego</td>
<td>KNXV</td>
<td>11</td>
<td>198-204</td>
</tr>
</tbody>
</table>

www.americanradiohistory.com
affected by the presence of the ground. It was also affected by the atmosphere, through which the waves had to travel since the velocity of propagation of radio waves depends on the index of refraction of the air. Thus, to obtain the free-space wavelength (that is, the wavelength in vacuum), it was necessary to correct for ground effects and for the index of refraction of the air. Accurately known ground constants were used to adjust for ground effects, while the index of refraction of the air was calculated as a function of temperature, pressure, and relative humidity.

Actual phase measurements were made at an audio frequency, rather than the radio frequency used for transmission. The audio frequency was obtained by heterodyning the r.f. signals with another signal differing in frequency from the first by 1 kilocycle. Both the transmitted radio frequency and the 1-kc. heterodyne audio signal were monitored and adjusted against a 100-kc. crystal oscillator. The frequency of this oscillator was periodically checked and adjusted to 1 part in 10 million by comparing either its 50th or 100th harmonic with either the 5 or 10-mc. signal broadcast from the Bureau's standard station, WWV.

DEMIXING CONTINUED to hold the stage in the hearing rooms of the Commission. A number of cities were involved in petitions asking for channel shifts which would clear the air for all v.h.f. or all u.h.f. operation.

Among the areas included in the band-revision requests were Toledo, Ohio; Norfolk, Virginia; Corpus Christi, Texas; and Raleigh-Durham, North Carolina.

In the meantime, a few standard authorizations were approved, including one for the high bands; see page 102 for listing.

THE GIANTS IN THE MOVIE industry in Hollywood who for years refused to accept TV as a factor, have succumbed and begun to convert their huge sound lots for telecasting pick-ups.

One movie maker, operating on the assumption that all TV will eventually be on film, has taken over ten sound stages, divided them up into three each, providing a total of 30 sound stages. Millions of dollars have been and are being spent in redesigning the stages, installing the latest equipment, lighting and other allied facilities.

Another movie operator, who has been in TV, and who recently moved its station to a ten-acre lot, is considering the use of substantial land on the new site for TV sound stages. At present, only about an acre is being used for TV, but additional stages are under construction on the remaining part of the lot.

TV has become a giant and the old studio moguls not only know it, but recognize the fact that it may even outpace theater films. So they have decided to join the parade and sit in on the TV bandwagon.... L.W.

July, 1955

NEW SX96

For top performance with extra pull power and ability to tune in stations.

$25.00 Down

18 monthly payments of $1.36

--- $249.95 Cash Price

A few items in stock for immediate shipment are:

<table>
<thead>
<tr>
<th>Model</th>
<th>Cash Down</th>
<th>Payments</th>
<th>20 Monthly CASH PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX30</td>
<td>9.95</td>
<td>21.70</td>
<td>103.35</td>
</tr>
<tr>
<td>SX31</td>
<td>12.95</td>
<td>26.90</td>
<td>131.75</td>
</tr>
<tr>
<td>SX32</td>
<td>15.95</td>
<td>30.90</td>
<td>160.15</td>
</tr>
<tr>
<td>SX33</td>
<td>19.95</td>
<td>34.90</td>
<td>188.55</td>
</tr>
<tr>
<td>SX34</td>
<td>22.95</td>
<td>38.90</td>
<td>216.95</td>
</tr>
<tr>
<td>SX35</td>
<td>25.95</td>
<td>42.90</td>
<td>245.35</td>
</tr>
<tr>
<td>SX36</td>
<td>28.95</td>
<td>46.90</td>
<td>273.75</td>
</tr>
<tr>
<td>SX37</td>
<td>31.95</td>
<td>50.90</td>
<td>302.15</td>
</tr>
<tr>
<td>SX38</td>
<td>34.95</td>
<td>54.90</td>
<td>330.55</td>
</tr>
<tr>
<td>SX39</td>
<td>37.95</td>
<td>58.90</td>
<td>358.95</td>
</tr>
<tr>
<td>SX40</td>
<td>40.95</td>
<td>62.90</td>
<td>387.35</td>
</tr>
<tr>
<td>SX41</td>
<td>43.95</td>
<td>66.90</td>
<td>415.75</td>
</tr>
<tr>
<td>SX42</td>
<td>46.95</td>
<td>70.90</td>
<td>444.15</td>
</tr>
<tr>
<td>SX43</td>
<td>49.95</td>
<td>74.90</td>
<td>472.55</td>
</tr>
<tr>
<td>SX44</td>
<td>52.95</td>
<td>78.90</td>
<td>500.95</td>
</tr>
<tr>
<td>SX45</td>
<td>55.95</td>
<td>82.90</td>
<td>529.35</td>
</tr>
<tr>
<td>SX46</td>
<td>58.95</td>
<td>86.90</td>
<td>557.75</td>
</tr>
<tr>
<td>SX47</td>
<td>61.95</td>
<td>90.90</td>
<td>586.15</td>
</tr>
<tr>
<td>SX48</td>
<td>64.95</td>
<td>94.90</td>
<td>614.55</td>
</tr>
<tr>
<td>SX49</td>
<td>67.95</td>
<td>98.90</td>
<td>642.95</td>
</tr>
<tr>
<td>SX50</td>
<td>70.95</td>
<td>102.90</td>
<td>671.35</td>
</tr>
<tr>
<td>SX51</td>
<td>73.95</td>
<td>106.90</td>
<td>700.75</td>
</tr>
<tr>
<td>SX52</td>
<td>76.95</td>
<td>110.90</td>
<td>729.15</td>
</tr>
<tr>
<td>SX53</td>
<td>79.95</td>
<td>114.90</td>
<td>757.55</td>
</tr>
<tr>
<td>SX54</td>
<td>82.95</td>
<td>118.90</td>
<td>785.95</td>
</tr>
<tr>
<td>SX55</td>
<td>85.95</td>
<td>122.90</td>
<td>814.35</td>
</tr>
<tr>
<td>SX56</td>
<td>88.95</td>
<td>126.90</td>
<td>842.75</td>
</tr>
<tr>
<td>SX57</td>
<td>91.95</td>
<td>130.90</td>
<td>871.15</td>
</tr>
<tr>
<td>SX58</td>
<td>94.95</td>
<td>134.90</td>
<td>899.55</td>
</tr>
<tr>
<td>SX59</td>
<td>97.95</td>
<td>138.90</td>
<td>927.95</td>
</tr>
<tr>
<td>SX60</td>
<td>100.00</td>
<td>142.90</td>
<td>956.35</td>
</tr>
</tbody>
</table>

Write, wire, phone or visit either store today.

STOP CONTAINS THE AMAZING NEW PERMA-FILM!

NEW

"N"O ISOISE

CONTAINS THE

FREE NOISE!

FREE NOISE

VOLUME CONTROL RESTORER...

Cleans & restores volume controls, b & n d switches, push button assemblies, control-face, control, NO NOISE. It is not a carbon dust solution.

HENRY RADIO STORES

Gronite 7.6701

11240 West Olympic Blvd. Los Angeles 64

STOP CONTAINS THE

FREE NOISE!

FREE NOISE

VOLUME CONTROL RESTORER...

Cleans & restores volume controls, b & n d switches, push button assemblies, control-face, control, NO NOISE. It is not a carbon dust solution.

New 6 oz. bottle No. 3199, 2 oz. bottle No. 3198.

Available at all retail stores, home appliance stores, hardware distributors - or service centers today.

ELECTRONIC CHEMICAL CORP.

813 Communipaw Ave.

Jersey City 4, N. J.

HERE'S WHY!

- Top Trades
- Only 10% Down
- Easy Terms
- Fast Delivery
- Personal Service
- Low Prices
- Complete Stocks

We want you to be satisfied. Ask any Ham about Henry. And Henry has the new equipment first!
Sound Systems
(Continued from page 37)

nected to their 2000-ohm input taps. When thus connected, these four units will present an impedance of 500 ohms from the power amplifier to the chassis, the power amplifier being the only source of power to the chassis. In this way each section of the chassis will be entirely a function of the voltage that is put onto the feed line notwithstanding the fact that the very same tap indicates 2% watts for the 70.7 constant-voltage system. The constant-impedance amplifiers of 500-ohm output were to develop this same 70.7 volts across its own line when loaded by such a unit representing 2000-ohms input, that 2% watts would definitely be produced across it since irrespective of what we may wish to call a system, we still have to deal with the same electrical laws of wattage, power, and impedance. In this approach, then, if we want 20 watts to be delivered to this unit when connected to the 2000-ohm tap (assuming safety factors) and not across the constant-impedance, 500-ohm line, then we would have to develop 200 volts across the transmission line.

It will be noticed that direct access is available to the voice coil of the driver unit itself where it may be necessary to use its 16-ohm input impedance characteristic directly. When so used there is an added safety factor protecting the unit against excessive overload. The safety factor is the secondary of the transformer which is connected directly across the voice coil. In horn-loaded systems, the low-frequency output of the horn is determined by the low-frequency cut-off characteristic of the horn. Frequencies below this theoretical cut-off point are fed to the driver unit, the unit finds itself virtually unloaded for these below-cut-off-point frequencies, and the diaphragm has a tendency to run wild and may suffer damage. One way of preventing this frequency overload is to use either a capacitor in series with the driving unit which will offer increasing reactance to the lower frequencies and so prevent their being fed to the driver unit; the alternate method is to shunt the voice coil with a choke which will bypass the very low frequencies around the voice coil. Essentially then, the secondary of the transformer in this unit bypasses the low-frequency energy from the voice coil and that the diaphragm will not see as an acoustic load, and thus affords overload protection against excessive unused power.

There is sometimes confusion as to how to set a constant-voltage amplifier when its full rated power is not used. Frequently it is thought that it is proper to turn down the gain of the amplifier which may be rated at 100 watts when only 35 watts are drawn from it on the basis that economy of amplifier power will thereby be obtained, or that the speakers will be overdriven. Both of these propositions are wrong. Consider your home light and power system. If all your appliances were turned off, your watt-meter would stand still, but the line voltage would still remain at 117 volts. The same thing holds true in the audio 70.7-volt system. Even though the gain control may be set to provide a maximum power to the 70.7 volt output volts, if there is no load tied to the amplifier, then the amplifier will deliver no power, and take no power from the line (other than standby power). The power it will take from the line, and the power it will deliver to the load are completely dependent upon the actual load itself. As to the question of over-driving the units on the system if the full power rating of the amplifier is not used, this is obviously impossible since it is voltage which overdrives a unit which is of fixed impedance and not power; and since the voltage is maintained constant by the amplifier irrespective of load, then even one unit (set at 2% watts) may be put across a wide-open 100-watt system with complete safety. Turning down the gain of the constant-voltage amplifier will naturally reduce the power input to the driver units, if one desires to do so, but at the expense of upsetting the sound power distribution as a whole. If the system is set up after a legitimate sound survey has been made, and the power ratings of the individual units of the system were set accordingly, there should be no reason to play with the gain controls of the amplifier. If variations are required in certain areas due to changes in ambient noise conditions, then these changes should be made by tapping at the transformer of the unit in that particular location to achieve the proper sound output at that station without upsetting the rest of the installation.

We are now in a position to more fully understand the compound advantages of the 70.7 constant-voltage system.

(A) In multi-speaker systems, impedance matching is completely eliminated. It is not necessary to arrange a network of speakers in fancy series-parallel combinations to obtain the proper impedance match to a transformer. In the constant-voltage system, the impedance is meaningful only to the extent that it determines how much power will get into the speaker, and this is already taken care of by the manufacturer of the unit by fixing the wattage rating of the terminating board of the driver unit. One simply chooses the required power tap and puts it directly across the constant-voltage line.

(B) Since the 70.7-volt line maintains constant voltage irrespective of load, any adjustment on a speaker has been made, it continually receives the same amount of power even when other speakers are added or subtracted from the system. More constant and uniform coverage is thus the result of volume controls which have not been readjusted.
(C) By being able to proportion individual speaker power to immediate local and specific needs without upsetting other local adjustments of the other components, more efficient utilization of available sound power is made feasible.

(D) Maximum utilization of available audio power is made possible by the elimination of volume controls or attenuators which burn up power to make a level change, in contrast to transformers which are essentially nonpower consuming devices.

(E) It becomes relatively easy to determine one’s amplifier needs and to keep these needs to a minimum by simply counting up the actual speaker power requirements without the necessity of allowing for uncertain attenuator losses.

(F) More adequate overload protection is afforded each individual speaker unit on the constant-voltage system. Should a unit somewhere in an installation fail, the line voltage would still rise and so this unit failure in one location does not start any chain reaction such as a rise in line voltage that might, in other distribution systems, override the remaining speakers.

1955 Emerson TV Sets
(Continued from page 35)

before making the tests with a voltmeter or neon bulb. When the plug is properly installed in the outlet, you will not measure any a.c. voltage between the chassis and a power-line ground such as a radiator, "BX" cable, or a.c. receptacle box cover. If you are using a neon bulb, it will not glow when connected between these two points. If it does or you get a meter reading, reverse the plug in the a.c. power receptacle.

If good receiver operation cannot be restored by a tube change, then remove the rear chassis mounting board. This exposes most of the underside of the chassis without having to remove it from the cabinet.

The various test points for checking receiver operation are shown in Fig. 2.

The method for using these test points to service these chassis is described in Table 1, which also lists the normal meter readings.

Aside from the main sources of "B+" voltages at the power supply, the test points which indicate whether a signal is present or whether the circuit is functioning correctly, can be broken down to those tubes which show grid current in proportion to the signal applied. In Table 1, the trouble analysis chart, we are assuming that all heaters are lit and that tube changes have been made. This table covers some of the high points but is not intended to cover every service need. If you understand the development of this chart, which is derived from a knowledge of the block diagram, you should have no difficulty in servicing these chassis.

LIFE TIME GUARANTEED TUBES

BRAND NEW PICTURE TUBES

- RCA Licensed
- One Year Unconditional Guarantee

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10BP4</td>
<td>$11.90</td>
<td>17BP4</td>
<td>$20.63</td>
</tr>
<tr>
<td>12LP4</td>
<td>$14.38</td>
<td>19AP4</td>
<td>$24.81</td>
</tr>
<tr>
<td>14BP4</td>
<td>$16.86</td>
<td>21AP4</td>
<td>$28.79</td>
</tr>
<tr>
<td>16RP4</td>
<td>$19.38</td>
<td>21EP4</td>
<td>$28.79</td>
</tr>
<tr>
<td>16LP4</td>
<td>$19.38</td>
<td>24AP4</td>
<td>$42.50</td>
</tr>
</tbody>
</table>

Picture Tubes shipped F.O.B. Harrison, N. J.

FRED AND VHF.

Brings better reception than most outdoor antennas. Use on top of TV.

List Price $9.95

Your Price

Lots of 3

$3.29 each

FREE BONUS BOX

With Every $25 Order

- 1 RCA Cord Set
- 1 85566T tube
- 10 Assorted resistors
- 12 assorted 2 color "blank" tube cartons

FREE CLOCK RADIO

With Every $25 Purchase Within 30 Days

Wakemaster clock radio with famous Sessions clock movement for 120 volt AC. May be purchased outright from MAJOR BRAND for $17.75. In ivory or rust.

FREE GIFT CERTIFICATE

A worth $5 toward the purchase of any of our merchandise on future orders will be sent with any order of $50 or more. This gift certificate is not to be used to obtain another certificate unless order is $55 or more.

WE PAY ALL POSTAGE on orders shipped in USA to counties and APO's. Send only purchase price of merchandise. Please include approximate postage on foreign shipments. All orders subject to prior sale.

MAJOR BRAND TUBE CO.

Romano Bldg. Essex 4-1106

Harrison, N. J.

PUT THE HIGH IN HIGH FIDELITY!

Whether you specialize in high fidelity service, custom service or simply want to build a top-notch outfit for yourself, this big $11.95 to the service minded V. F.检修 guide you every step of the way. Here is your complete, full service, step by step guide to better results at less cost. Shows what to do, what mistakes to avoid. Gives you a full understanding of the many different methods, circuits, equipment, components and other subjects that are debated; wherever hi-fi fans get together.

A COMPLETE GUIDE

Written by one of the nation's leading experts, High Fidelity Techniques is complete, authentic and easy to understand. From beginning to end, it is chock full of how-to-do-it tips, service hints, custom-building ideas and data.

Cost $11.95, the price of the most helpful sort.

10-DAY FREE EXAMINATION!

Send HIGH FIDELITY TECHNIQUES for 10-day FREE EXAMINATION. If you like the book, return it promptly; $7.50 plus a few cents postage in full payment. Otherwise, we will return book postage paid and owe you nothing.

Name

Address

City, Zone, State

GETTYSBURG U.S.A. - Price $8.00 each with order only.

NEW INDOOR ANTENNA

Both UHF and VHF. Brings better reception than most outdoor antennas. Use on top of TV.

Here's New LIFE TIME GUARANTEED TUBES

SAVES YOU PLENTY!

- Top Branded Tubes and Our Own MAJOR BRAND Label
- Each Tube Individually Boxed and Guaranteed for Life
- Over A Half Million Tubes Always In Stock
- Immediate Shipment
- Free Postage On All Orders With Full Remittance

- There are fewer "Call" or "Peak Performance" testing in our lifetime guarantee. There are no "out of stock" tube items. All tubes shipped outright before shipment guarantees quality.

- We pay all postage on orders shipped in USA to counties and APO's. Send only purchase price of merchandise. Please include approximate postage on foreign shipments. All orders subject to prior sale.

Write For FREE Single Tube List - OR FREE Single Tube Carton.

We want YOU on Our Mailing List!
blocks away. Existing underground cables will link the transmitter with this room. A G-E EC-10-B remote control unit will be located here along with the automatic program device, the manual controller, and a tone generator and tone coder, and an automatic three-diode master controller.

Heart of the entire operation is the tone generator, which has eleven basic tones, all in the voice frequency range of 300 to 3000 cycles. At the present time, the city will use only seven combinations but expansion can be economically made into hundreds of two-tone combinations.

The operation begins when the basic weekly program is set up on a small metal drum. Current plans call for three automatic changes each day as follows: southbound traffic between 6 a.m. and 11 a.m. will get signals to move it along at about 30 mph. At 11 a.m. "normal" broadcast condition will begin and remain until 3:30 p.m. Then the flow is shifted to move northbound cars out at the higher ratio until 7 p.m., when the "normal" condition is initiated again.

Cars in the priority direction actually will move at a 7 to 1 ratio to those in the opposite direction. Under existing conditions, 17 mph is the average speed of traffic during rush hours.

This pattern will be maintained Monday through Friday with weekends getting the normal pattern. When foul weather hits, the manual controller can be cut in to slow down traffic until conditions improve.

As each change is called for by the automatic master controller, the tone generator and coder emit three half-second two-tone signals which are relayed to the transmitter and broadcast. At each of the traffic signals, the wave is received by a crystal-controlled FM receiver and fed into a decoder. If the particular two-tone combination emitted at that time passes the selector, circuits are closed and the synchronous motors serve off the newly-designed timing pattern.

Following each program change, the transmitter also sends out a series of pulses much like those used to set electric clocks to make sure that the whole system remains in step.

Over-roadway signs at the entrance to the traffic lanes will go on automatically to indicate the time interval at which drivers can best proceed. Cost for the entire General Electric system of thirteen remote-controlled intersections and the transmitter gear will be $3035. announcements of the system were made, Chicago officials have received requests for information from all over the U.S. and even from Holland and England.

Early experimentation with a similar system was made in Greeley, Colorado, in October, 1953. For, too, each intersection has a conventional answering with the output fed into a decoder unit. It selects those impulses intended for the particular location and, in the units made by Colorado Electronics, these, in turn, activate mechanical switches which handle the lamp load.

Of special interest in this network is the use of a tape recorder as the storage mechanism for coded signal voltages. These are recorded on tape and reproduced continuously for broadcast. The signals are processed through a pre-modulated unit and fed into a conventional transmitter much the same as ordinary microphone output.

The transmitter used in Greeley is a standard Motorola units, Model PA-334, designed for mobile use with the previously-mentioned base station transmitter. In spite of the relatively narrow-band design of the equipment, several systems can be put in this band with overlapping radiation patterns and operate without interference between systems. This feature was necessary to accommodate systems in neighboring cities.

Naturally details such as transmitter power, receiver sensitivity, and other factors can only be determined through reference to a specific installation with specific equipment.

Receiver sensitivity is not as critical, for instance, when relatively high transmitted power is used and field strength is high. Inversely, some receivers with high sensitivity will operate well from a weaker field.

Roy R. Newson, president of Colorado Electronics, says, "For average installations, a bandwidth of 30 kc. is sufficient. For a more complex system in a larger city desiring several independent systems, 60 kc. might be required to insure that one system does not interfere with another."

The novel modulating, filtering, and decoding circuitry of the Colorado units is intended to give maximum protection against interference from other transmissions, screen out skip interference, and permit operation with a signal-to-noise ratio far below that required for conventional communications.

Officials of the company declined to reveal details of the tape-making process, the pre-modulation circuitry, or the decoding action, but claim that their system is capable of transmitting "hundreds of switching functions simultaneously with maximum integration and control of the traffic system of any American city."

The tape recorders used in Greeley were built by Colorado Electronics. They are conventional units, providing dual-track recording at 1.875 ips.
LOUDSPEAKER SELECTION

By CHARLES A. WILKINS

LOUDSPEAKERS should be judged
by listening test and not by what
most of us have heard this many
times. Usually such a statement is
issued dogmatically with no support,
but there does seem to be some evidence in
its favor.

A few years back a paper was pub-
lished in the "Journal of the Acous-
tical Society of America" treating the
tonal differences between a Stradivarius
violin and an inexpensive instrument of
contemporary make. Every type of acous-
tical test and analysis was rigorously
performed on both. The conclusion was
that none explained why the Strad
sounded better.

Frequency vs. sound pressure response
curves for loudspeakers are often shown
in literature. They all show nice re-
sponses down to 30 cycles or so. But
how many people realize that these
curves show only that the speaker re-
sponds to a given frequency with so many
dB of sound output and nothing more?
Relying on a frequency response curve is
do to a g lightly loaded that it produces very
little fundamental. Then why do
the curves look so pretty?

The recording oscillograph, used for
tracing the curves mechanically is cou-
pied to the signal generator. When the
generator is producing 30 cycles, the
recording pen is resting on the 30-cycle
line of the graph paper. In this way, any
sound from the speaker will register on
the graph as a 30-cycle response—and
so on through the spectrum. Suppose
that the speaker has no 30-cycle response
but instead the frequency doubles to 60
cycles. This 60-cycle sound—the oscil-
llograph—will be registered on the graph as
a legitimate 30-cycle response in spite of
the fact that the speaker is producing 60
cycles. It is obvious that this type of
curve does not help much in passing
judgment on the bass end of a speaker
system. If it were accompanied by a dis-
tortion meter, a constant distortion curve
in addition to stating the damping factor of the
amplifier used to drive the speaker, matters
would be much happier.

The Strad tests show that there are
still some things we do not understand.

The speaker response curves show that
interpretation must be tempered with
understanding.

LOUNING, 1955
SURPLUS BARGAINS

MOBILE DYNAMOTORS
Made by PIONEER GEN-E-MOTOR

Compact, efficient dynamotors designed for commercial or amateur mobile applications. Ideal for mobile radios, mobile TV receivers, and portable battery chargers. The Mounts in your car. Special price even less for three or more.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>500,000 Watt</th>
<th>600,000 Watt</th>
<th>800,000 Watt</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 VDC</td>
<td>$129.75</td>
<td>$149.50</td>
<td>$179.25</td>
</tr>
<tr>
<td>24 VDC</td>
<td>$189.00</td>
<td>$209.75</td>
<td>$229.50</td>
</tr>
</tbody>
</table>

5.5 TO 6 VOLT DC INPUT

New Sensitive Designs

MAGNETIC DEVICE AMPLIFIERS

BRAND new rival to transistors and vacuum tubes is a device developed by the Potter Instrument Company known as a "Magnistor" (Fig. 1). These are small saturable reactors having unique shapes and flux paths. In their simplest form, "Magnistors" consist of a ferroceramic ring on which two windings are wound. One winding, called the signal coil, is used to carry a sine-wave signal in the range from 100 kilocycles to 15 megacycles or pulses having a repetition rate from 0 to 10 megacycles. By varying the d.c. current applied to the second winding (called the control coil), the impedance of the signal winding to the carrier frequency or pulses can be varied over a ratio as high as 500 to 1, if desired. Thus, we have a form of control action here that is similar to that obtained in vacuum tubes and transistors.

As a matter of fact, the analogy to vacuum tubes can be carried much further. It has been found that for small signal levels, the control coil behaves essentially as a linear inductance, i.e., it is not appreciably dependent on the magnetization characteristic of the ferroceramic core. For this reason, the characteristics of the "Magnistor" can be most easily presented in a similar fashion to that employed in describing vacuum tubes. The curve which is used compares with the customary plate characteristic curve for vacuum tubes and is shown in Fig. 2. The signal coil current (I) is plotted as a function of a 15-megacycle carrier signal voltage (E) for various control coil input voltages (E1) normally employed in the operating range. The load line of a 1000-ohm resistor is also plotted on the same graph. (This resistor would occupy the position indicated by the load in Fig. 3.) For an input control voltage (E1) change of 0.01 volt (from zero to 0.01 v.), the output signal current will change 11 milliamperes (6 to 16) or a voltage change of 11 volts across the 1000-ohm load. Gain would then be given by the ratio

\[
\text{Gain} = \frac{\text{Change in output current}}{\text{Change in control voltage}} = 11/0.01 = 1100
\]

Potter engineers have developed two general classes of "Magnistors": transient and permanent. The transient variety, just described, has "no memory"; that is, it retains no "record" of the currents which have passed through it. On the other hand, the permanent or "two state" unit will remember its "set" or "reset" conditions indefinitely even if all power is removed. To achieve this remembrance facility, permanent "Magnistors" basically contain three windings on a special ferroceramic core. One is a signal winding similar to that used in the transient "Magnistor." The other two are control windings normally designated as "set" and "reset" coils. The signal winding has two possible impedances—a low impedance if the "set" coil has previously passed a specified minimum current, and in either direction and a high impedance if the "reset" coil has previously passed a specified minimum current. Either condition persists until the other is established irrespective of the presence or absence of energy anywhere in the system. The "Magnistor" is a static storage device which will retain its "information" as long as desired; principal applications are in high speed computers, business data handling systems, automation control systems, high speed counters and magnetic tape systems.

TUBE TESTER PERMITS GM AND EMISSION CHECKS

THE old argument of which is better: a Gm, or an emission test for a tube has been met in the tube tester kit Model 111 which Precise Development Corporation has recently announced. This instrument will permit both checks to be performed on every amplifier tube. The different controls that may be set for each type of test may be indicated separately on the roll chart. This permits either test, or both, to be run, as desired. For some tubes, particularly pentode amplifiers used in the i.f. and video amplifier stages, the Gm test is best. For other tubes where re-
lately large amounts of current are required, the emission test provides the more reliable indication. With this in mind, Precise has starred the most important single test for each tube or section thereof. If you do not wish to make both tests, it is recommended that the one with the asterisk be selected.

Several other interesting design features are found in this same instrument. For example, the filament current drawn by a tube can be accurately measured. This facility becomes particularly important in view of the trend toward series filaments. Any tube which draws 10 per-cent or more under its normal current indicates a higher-than-normal resistance. In a series string, this tube would take more than its share of the available voltage, leaving less for the remaining tubes. Under these conditions it is possible for a critical tube, such as the local oscillator, to receive so little filament voltage that it operates intermittently if at all.

The same tube tester will also permit direct determination of the cut-off bias of a tube. This feature can be used in grading a batch of similar tubes according to their cut-off value. Then the tubes can be used in accordance with these results. For example, in any video i.f. system, the tubes having the lower cut-off bias values should preferably be placed in the earlier stages where the signal level is low. If these same tubes are placed in the later stages, they could easily distort or cut-off with normal signals. The advantages to be gained by such a classification are considerable and set manufacturers have been known to follow the same procedure with the tubes they receive.

Tests can also be made for leakage, shorts, gas, noise, and life. The latter test, while admittedly not conclusive, nevertheless does enable the user to evaluate the potential of a tube. Actually, of course, there is no true method of ascertaining the life expectancy of any tube. But, from the behavior exhibited when this life test is made, and from experience with similar tubes, an educated "guesstimate" can be made of the probable life of a tube.

There are two additional features of this instrument which are worth noting. One is the ability to insert an external meter to measure the current...
LORAN EQUIPMENT
Marine or Airborne Long Range Navigational equipment. Determine the geographical position of your boat or airplane. AV-APX, Average, 780-2000 KC, complete with 10DB/APX indicator, RRO. APX receiver, crystals, and leads. Complete. Brand New $129.50

R-65 APX-9 LORAN Indicator. LATEST MODEL Unit. Complete in one unit weight, measures on a maximum range of up to 1600 statute miles within 1% of the actual distance from the ground to the sky. The finest unit available at any price. BRAND NEW. Only $295.00.

NAVY RECEIVER TYPE ARB
Finder. $55.00 to $90.00 set. Low freq., ship broadcasts—49-99 kHz, male tubes and dials, 9-35 V., 12-15V. Fully reconditioned. Easiest converted for 110 V. Lightweight; 3.5 lbs. $16.95. Special 174" x 154", Wl. 30 lbs. $99.95.

Command Equipment
(274N-ARCS, ATA)

Model Receiving Tube Excellent Brand
101-300 MC. $6.95 2.95 3.95
201-1000 KC. 22.95 29.95
1.5 MC. 3.95 5.95
2-6 MC. 3.95 5.95
100 MC-165 KC. 13.95

TRANSMITTERS
2.1-3 MC. 14.95
4.4-6 MC. 14.95
5-8 MC. 9.95
5.3-7 MC. 5.95
7.9-10 MC. 9.95
10-100 MC. 22.50 29.50
BC 444 Modulator. 2.95 4.95
BC 450. 7.95
RC 465-1. 3 Rec Control.
RC 481-1. XMT Control.

Radio Receiver 11-tube uhf tumbler 284-260 MHz receiver with amplifier. Complete with tubes 3 ea. of 6AK5, 6AK7, 6EC5A, 6SN7. Also complete with 5CP1. Brand New. $6.95. Control Box. New $1.50. Less Tube $5.00. $2.95 4 for $10.95.

A Sweet Oscilloscope Deal
INDICATOR UNIT. For conversion to test scope, as a device to make many tests. Easiest to use. No tubes. $9.95. Eke. cond. $9.95. 35 watt phone-CV 5 tube transmitter. Frequency range 2-190 MHz. Two 915 tubes in circuit, one as modulator and one as RF output. Ideal for U. F. Mobile. Excellent condition with tube 170 2.5 to 4.3 MC. $12.95.

APX-1 IFF EQUIPMENT
This transceiver is a treasure-house of tube type, 9 in 1 operation. Resistors, capacitors, wave-asher, amphenol connector and a raft of other items. Also complete for DC meter or power pack and convertible to 110 VAC. $3.95. Less tubes—Special-AX $4.95. Bath for-AX $7.00.

HEADPHONES
Model Description Excellent 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
HS-23 High Impedance. $8.25 10.25
HS-33 Low Impedance. $4.95 6.95
HS-30 Low Imp. (hearth). 1.49 2.49
CD-307A Card with PL 55 plug, new. $6.95 8.95
T-26 Mobile Chest Mite. Band Brand New. $1.25 1.35
TU8-2.5-9-10 Twc for above. Excellent. $1.95 2.05

DYNAMOTORS
Type Imp. D.C. VDC Use New
B-8 12 D.C. 350-150 IC. D. $3.95 4.05
B-23 12 D.C. 350-150 MA. D. $3.95 4.05
D-52 12 D.C. 350-150 MA. D. $3.95 4.05
D-81 12 D.C. 350-150 MA. D. $3.95 4.05

MOBILE HEAVY DUTY DYNAMOTOR: 14 V. IN. P. $6.25 8.50. 100-250 MA. Tapped 215 V. 215 MA. use 6 V D.C. UNIP.W. 175 MA. $4.95 6.95. Brand New. $5.95 7.95

METER—0-5-0.5-0.5-5.0-5 Ma. 370° Indication—By Push Button. Excellent 3 for $1.75 2.50

ALL ITEMS F.O.S. CHICAGO
264 W. Polk St. 264 W. Polk St. Required with order.
WRITE FOR NEW BULLETIN AND PRICES.
R W ELECTRONICS
264 W. Polk St. 264 W. Polk St. Chicago 18, Ill.
PHONE: Calumet 1-2129 2-3

SELENIUM RECTIFIER LIFE EXTENDED BY NEW CONSTRUCTION
One of the causes of selenium rectifier failure is overheating. This may be due to the high ambient temperature of the equipment in which the rectifier is used or it may be due to the additional heat which is generated in the rectifier itself. Heat reduction at either point would help prolong rectifier life and it was with the latter aim in mind that Pyramid Electric Co. engineers developed their new line of selenium rectifiers. Current which is forced to flow through a relatively small, concentrated area in conventional rectifiers is here dispersed over the full width of the rectifier plates. This is accomplished through a change in support position from the center of the plates to the sides. See photo. The resulting dispersion of current enables these units to run some 10° to 15° C cooler than comparable rectifiers carrying the same amount of current.

Another factor said to be responsible for the extended life of these rectifiers is the high purity of the vacuum-deposited selenium and the composition of the barrier layer placed over the selenium. These two layers, placed between nickel-plated aluminum on one side and cadmium and stainless steel on the other, constitute the basic construction of a complete selenium rectifier. Actually, the rectifying action occurs between the selenium and barrier layers and much of the efficiency of the unit depends upon the purity of these substances. It has been estimated that an increase in impurity by as little as 3 parts-per-million can be the difference between a good rectifier and a poor one.

Additional features of this rectifier include low pressure stacking of the various plates and a high resistance to moisture. The low pressure stacking is significant because it has been found that too much pressure tends to impair rectifier efficiency. When the holding screw passes down through the rectifier assembly, it is difficult to avoid changing the pressure on the plates as the holding screw is tightened. In the Pyramid rectifier the holding screw is imbedded in a Bakelite strip which is mounted along the bottom of the unit. See photo. With this arrangement, plate pressure is not affected, no matter how tight the fastening nut is made.

Pyramid selenium rectifiers are listed by Underwriters' Laboratories for 85° C operation. They are available in all standard ratings used in radio, television, and other electronic equipment.

RANGE-SWITCHING VACUUM-TUBE VOLTMETERS
THAT occasional lapse of memory which besets even the most experienced service technician and results in a burned out meter may be a thing of the past thanks to a unique instrument that has been incorporated in Bergen Laboratories' new "Volt-Omni" automatic range-switching vacuum-tube voltmetter.

The instrument itself is a general-purpose one and offers the usual ranges found in service meters but, in addition, it provides an automatic feature which is unique. The user touches the probe tip to an unknown voltage or resistance at the same time depressing the "Automatic" button on the instrument.

This action allows the special range selector switch to rotate automatically and stop at the appropriate voltage or resistance range. The user then releases the probe button and notes the range, d.c. polarity, and measured value.

During the automatic range selection procedure the meter movement is disconnected from the circuit, thus protecting the instrument from damage. When not being used in the "Automatic" mode, the range switch

www.americanradiohistory.com
may be operated manually as a conventional voltmeter. A single probe is used for all meter functions (a.c., d.c. and ohms). Changing of these functions does not require changing of the probe. A multiplier switch in the probe itself extends the a.c. and d.c. ranges to 1500 volts, as required.

The company is currently making this instrument at its Fair Lawn, New Jersey plant.

MONTANA HAMFEST

The Glacier-Waterton International Peace Park Hamfest will be held on July 23-24 at the foot of McDonald Lake in Glacier National Park.

Cabins, camping, and all recreational facilities will be available. The annual "junk sale," a popular feature, will be repeated and the proceeds used to defray hamfest expenses.

THE BATHTUB CAPACITOR

By ROY E. PFENBERG

When the junk box is being screened for the particular capacitor required to build that "ultra-modern, gold-plated electronic jewel," it is easy to pass gold up in the rough. The ease in point being the common ordinary garden variety of bathtub capacitor.

On first consideration there are often many seemingly apparent reasons why the tub should not be used for the application in mind. However, let's go through the advantages of this type of component. First of all, it is a high quality, oil-filled capacitor, built to the highest standards of the industry and still used extensively. Simple tests applied to old or used capacitors of this type can weed out the "bad ones," and you will be surprised how few there are. The same standards apply, in general, to other types of metal-cased, oil-filled capacitors.

Now let's look at the disadvantages and see how they stack up for many applications. First of all, the size of the beast: Well, take a triple .1 ufd unit and examine it. It has three bypass sections with ease grounded. Try and mount three .1 ufd, plastic molded paper tubulars and their associated parts in the same space and you will see the logic in this. Then look at the shielding that is afforded by the metal case—isolation of critical circuits, and all for free!

Of course, there are limitations. First, don't use a bathtub capacitor in a critical, high-frequency coupling circuit. The capacity to ground could throw off the best of calculated response curves. Further, the presence of bulky components mounted above the chassis may physically interfere with the mounting screws required for the bathtub capacitor. Also, as a final warning, don't forget that the voltage rating of a capacitor may not only be the dielectric rating, but also may be the rating between either plate and ground. Of course, in normal applications this will not matter, but, in such usage as scope deflection plate coupling, it cannot be ignored.

Those are the facts, and with a little imagination, it will be seen that the advantages of this type construction, plus the availability of these parts in the junk box far outweigh their disadvantages.

July, 1955

FLEETCOM Jr.

MODEL 500 SERIES

COMCO's NEW

LOW POWERED / LOW PRICED

6/12 and 117 volt AC mobile base combination

Ideal for small town police, taxi and low powered industrial radio systems.

ATTENTION DEALERS!

Write for available territories.
CATHODE RAY TUBE SPECIALS

One Year Guarantee

<table>
<thead>
<tr>
<th>G.E.</th>
<th>ST-BURN</th>
</tr>
</thead>
<tbody>
<tr>
<td>16DP4</td>
<td>$26.10</td>
</tr>
<tr>
<td>16AP4</td>
<td>$26.10</td>
</tr>
<tr>
<td>16VP4</td>
<td>$26.10</td>
</tr>
<tr>
<td>16FP4</td>
<td>$26.10</td>
</tr>
<tr>
<td>16GFP4</td>
<td>$26.10</td>
</tr>
<tr>
<td>16GP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EB4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16GP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16AP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EB4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16GP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16AP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EB4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16GP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16AP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EB4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16GP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16AP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EB4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16GP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16AP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EB4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16GP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16AP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EP4</td>
<td>$31.95</td>
</tr>
<tr>
<td>16EB4</td>
<td>$31.95</td>
</tr>
</tbody>
</table>

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

AUTHORIZED DISTRIBUTORS

EASY TO LEARN CODE

It is easy to learn or increase speed with an Instructograph Code Teacher. This tool is designed to help students learn the quick and most practical method of learning the alphabet. The Instructograph Code Teacher quickly and easily helps students master the alphabet and learn the code without further assistance. Thousands of successful operators have "acquired the code" with the Instructograph System, while today for convenient rental and Purchase plans.

INSTRUCTOGRAPH COMPANY

4711 Sheridan Road, Chicago 40, Illinois

THE MULTIMETER IS USEFUL IN P.A. SERVICING

Installing and servicing p.a. systems can be a highly profitable occupation, particularly during the summer months when such systems are used extensively out of doors. A valuable aid in this type of work is a good multimeter, an instrument which will perform a number of useful functions, but is not excessively bulky nor difficult to use.

Among its applications in such service work on public address systems of all types are one or more of the following:

- Continuity checks of cables and plugs are easy with the "ohms" range of a multimeter in its lowest position.
- Volt coil resistance can be measured, and the approximate value determined by adding 10% to the measured value of d.c. resistance. Open transformer windings, corroded solder joints, broken wires, and many other faults can be readily located. And, of course, resistors can be measured to determine if their values have changed.

A multimeter having an a.c. voltage scale can be particularly useful in audio work. Losses in long transmission lines can be spotted by measuring the voltage at the input and output ends of the line under load. Balancing of push-pull output stages under dynamic operating conditions can be carried out with such a meter. The proper transformer audio power fed into a device such as a loudspeaker can be determined if the impedance of the device is known. Sometimes the p.a. man is interested in obtaining maximum power output, ignoring distortion; rather than maximum undistorted power output. The proper transformer tap for such operation can be determined by choosing the tap giving the greatest voltage across the speaker load.

Ability to measure a.c. current can also be useful in audio work, provided that insertion of the meter into the circuit under consideration does not add so much resistance as to disrupt normal operation and mask the quantity being measured. With care, the a.c. current and a.c. voltage scales may be used to determine the impedance of a device such as a loudspeaker voice coil or transformer winding. In addition, the approximate power output of an amplifier can be measured.

The power photo shows a Phaстроn Model 555 multimeter being used in p.a. work. This instrument is manufactured by the Phaстроn Company, 151 Pasadena Avenue, South Pasadena, California.

SENSATIONAL CHANGER SALE

We're Crazy With The Heat To Offer Changers At These Ridiculously Low Prices...

WEBSTER (NEWEST MODEL): Automatic shut off. Hi-fi ceramic cartridge with dual pickup stylus. Heavy duty 1 pole motor. Automatic shut off. Plays 7-10-12" records. Regularly $37.50. **$23.75**

VM TRIOMATIC: 3 speed intermix with two sizes of dual stylus. Reg. $34.90. **$22.97**

WEBSTER 1000A: 3 speed hi-fi changer with GE Reluctance RPX050 cartridge. Heavy duty 1 pole motor. Automatic shut off. Reg. $40.00. **$27.87**

COLLARO RC 54: 5 speed. Fine British import. Automatic shut off. Weighted turntable. 4 pole motor. Complete with plug-in head. Reg. $48.00. **$38.50**

GARRARD RC 90: 5 speed. One of finest British changers. Automatic shut off. Weighted turntable. 4 pole motor. Complete with plug-in head. Reg. $50.00. **$42.95**

TRIPLE PLAY CARTRIDGE

Type GE RPX506

Reliability triple play cartridge complete with dual pickup needles. As exclusive replacement cartridge for all types of changers and pick-ups. **$4.99**

RECORD CHANGER BASES & BOARDS

Boards - $1.49 Mounting Boards - 61.87

WEBER - Webster - Garrard - Collaro. Give model.

45 RPM RECORD SPINDLES

Reg. $34.90 Garrard $34.90 Weber $3.99

Some postcard for our latest FREE 111 equipment catalog. All merchandise in brand new, factory fresh condition. Always in stock - no waiting. 5 years' experience. Call or write for complete catalog. Prices and specifications subject to change without notice.

AIREX RADIO CORP., 171 Washington St., N. Y. 7 CO 7-5218

COLOR TV

COLORADOPTOR - 100% Simple tube circuit and reliable 500 volt converter gets any black and white TV, direct view or projection, to receive color TV. Specifications: receiving tube, complete color picture tube; automatic color processing for superior color reproduction; complete installation guide. **... $2.95**

SAVING $$$$ THOUSANDS OF BARGAINS

Send Stamp for our GIANT CATALOG

UNITED RADIO CO.
58A Market St. Newark, N. J.

SHADES OF 27.95

109 BROADWAY • NEW YORK 19, N.Y.
Phone Compressor
(Continued from page 49)

the RC filter is perfectly satisfactory.

In order to conserve space on the operating desk, the compressor was built in a 3" x 4" x 5" aluminum "Flexi-mount" case. The power supply was built on a separate 2" x 4" x 6" chassis which could be placed on an out-of-the-way shelf.

The location of the parts of the amplifier is clearly shown in the photographs. The gain control, \(R_1 \), microphone jack, \(J_1 \), and the electron-ray tube are mounted on the front panel. Balance control, \(R_7 \), and the electron-ray control, \(R_8 \), are mounted alongside the tubes on the top of the case. The preamp tube, \(V_5 \), is mounted nearest the front panel and behind it in order are \(V_6 \), \(V_7 \), and \(V_8 \). The 6A15 is mounted on the side of \(V_6 \). Most of the resistors and capacitors are connected between the tube sockets and a Cinch-Jones type 2013 terminal strip directly under the center line of the four sockets. The heater leads are tightly wrapped and fastened back to the rear edge of the panel. They are slightly away from the grid and plate pins of the tube sockets. In spite of the compactness of the assembly, no difficulty was experienced with hum.

After the compressor has been wired, only two adjustments are necessary before putting it to use. The first step is the balancing of the two 6BA6 tubes. Plug the unit into the a.c. line, turn it on, and let it warm up for about fifteen minutes or so. Connect a d.c. voltmeter between pin 6 of \(V_7 \) and pin 6 of \(V_8 \). Slowly adjust \(R_7 \) until the voltmeter reads zero. If the voltage difference between the two points cannot be brought to zero, it indicates that either the two 6BA6's differ widely in characteristics or resistors \(R_6 \) and \(R_8 \) are not closely matched. Interchange the socket positions of the two tubes. If the correct setting still cannot be obtained, check the resistance of \(R_6 \) and \(R_8 \). Replace one of them if they differ by more than about 200 ohms. If the tubes still can't be balanced, obtain another 6BA6 and select the two tubes which will balance.

The next step is the setting of the electron-ray tube control. The 6E5 acts as a voltmeter to measure the d.c. control voltage which is used for gain reduction. \(R_6 \) is adjusted so that the eye just closes when the desired compression is obtained; in that way, it indicates the proper setting of the gain control, \(R_6 \), when compressor is in use.

To set \(R_8 \), the unit is turned on and a high-resistance voltmeter is connected between pin 7 of the 6A15 and the chassis. Next connect an audio oscillator, set \(R_8 \) about 1000 cycles, to the input jack, \(J_1 \), in new adjustment, all voltmeter reads 32 volts. With this 32 volts between pin 7 and chassis, \(R_6 \) is adjusted until the eye of the 6E5 just closes. As shown in the graph, Fig. 3, 32 volts of control voltage produces 20 dB of compression.

July, 1955
LEKTRON SPECIALTIES

GET MORE FOR YOUR $1 WITH Lektronic KITS!

125 CARBON RESISTORS $1
KIT OF THE MONTH!
Non-Inducted, mols made by Gibson. 40 selected values, 100 ohms to 2 meg., 1/2 w., Many 5%. Reg. $1.50.

20 TUBULAR CONDENSERS 1.0 µf. to 1000 µf. Write for list. All sm. values available for 2.0 µf. and up. Reg. $1.00. Non-inducted. No 1000 µf. available. Non-inducted. Reg. $1.00.

25 OHM CAPACITORS Tantalum and silver. 1 in. to 1000 ohms. Wide range of values. Write for list. Reg. $0.50.

10 ELECTROLYTICS Tuning for FM. 0.1 to 10.0 mfd. Dollar place. 3A 100 volts. Reg. $0.25.

100 PIECES SPAGHETTI tubing, 1/8" to 1/2" I.D. Use for TV, radio, Hi-Fi, etc. Non-inducted. Reg. $1.50.

15 WIRE WOUND RESISTORS. Non-inducted. Reg. $1.00.

50 PILOT LITE SOCKETS. Reg. $0.50.

150 PIECES SPAGHETTI tubing, 1/8" to 1/2" I.D. Use for TV, radio, Hi-Fi, etc. Non-inducted. Reg. $1.50.

15 SWITCHES Rotary. Experimenters’ kit. Reg. $0.50.

100 ANELLO FORM. Non-inducted. Reg. $0.25 each.

TV ACCESSORY KIT. Non-inducted. Reg. $0.50.

LEKTRON SPECIALTIES 28 Gardner St. Chelsea, Mass. WRITE FOR OUR LATEST BARGAIN-FILLED BULLETIN

A LEKTRON EXCLUSIVE

0 to 60 MINUTE TIMER
Reg. $5.00
ONLY $1.88

Ideal for school rooms, kitchen, shops, home, factory and other jobs. Highly accurate and small in size. Locally etched dials with red numerals, cast-aluminum bodies, ground 100% metal contact, aluminum wire link, No Electricity Required, Brand new.

LOOK AT THESE BUYS!

1N34A DIODES—Reg. $1.20 ea. 2 for $1
1N81 DIODES—Reg. $1.80 ea. 3 for $1
1N48 DIODES—Reg. 65¢ ea. 3 for $1
1N51 DIODES—Reg. 51¢ ea. 4 for $1
POWER TRANSFORMER—I.5-150. Out-220V @ 5mA. 6V @ 6 amps. Reg. $6.
2-50 METER—Measures 0-100 DC. Reg. $1.50.

Please send check or M.O. Include postage. C.O.D. orders, 25% down payment.

The compressor is now ready to be connected to the transmitter. By means of a suitable wire connect the output jack, J3, to the microphone jack of the transmitter. Turn on the transmitter and adjust the speech amplifier gain control so that the test tone, which is supplied from the 6ES, modulates the transmitter 100 percent. Disconnect the test tone oscillator and plug in a microphone into the input jack of the compressor. Talk into the microphone and set the gain control of the compressor so that speech peaks just close the 6Es eye.

The ham phone compressor is now ready to be used on the air. Contact a nearby amateur who can be relied upon to give an accurate voice quality report. If the compression appears to be too noticeable, reset R1 so that the eye closes on 30 volts and test again. Continue testing until a satisfactory setting is obtained. The higher the voltage from pin 7 to chassis, the greater the compression, and the higher the average level of modulation.

The release time of the compressor is governed by the total resistance of R1 and R2 and the value of C1. C1, 25 µfd. has been selected for C1 as the minimum satisfactory value. If it seems desirable, as indicated by the voice quality tests, to increase the "hold-down" time, then a 0.1 or 0.2 µfd. 200-volt capacitor can be connected across C1. The exact value to use depends on some extent upon voice characteristics and the value can be determined by test.

REDUCING RECORD-PLAYER RUMBLE

By Arthur Trauffer

T WAS a happy day for this writer when he ran across some under-the-rug "Nonskid" in a local department store. "Nonskid" is sheet sponge rubber a little over 1/16" thick with a non-slip surface on the underside. It is designed to be placed under rugs to keep them from slipping on highly polished floors. The characteristics of this material make it ideal for cushioning various parts of phono-record players to reduce rumble caused by motor vibration.

Fig. 1 shows a disc of "Nonskid" placed on an 8" diameter metal turntable. The material not only helps to cushion the records from the turntable, but it provides a non-slip surface for the records. Since the material lays flat and doesn't slip easily, it isn't necessary to cement the disc to the turntable. Two discs of "Nonskid," one placed on top of the other, will provide even better cushioning for the record, and it will also reduce "hidden pull" of certain magnetic-phono cartridges on steel turntables. The sponge rubber also provides a cushion in case the pickup is accidentally dropped on the turntable.

"Nonskid" is easier to keep dust-free than felt or flocked turntable surfaces, when dust collects on "Nonskid" you can easily blow it off since there are no small hairs for the dust to catch in. This writer dislikes flocked turntable dust because the small hairs come off and stick to the records. To cut a neat disc from the "Nonskid," simply remove the turntable, lay the turntable on top of the "Nonskid" sheet, and cut all around the turntable edge with a sharp razor blade. To cut a neat center hole, simply file a sharp edge on a metal tube which has the same o.d. as the turntable spindle, and twist the tubing in the exact center of the "Nonskid" disc.

Fig. 2 shows two discs of "Nonskid" cemented between the base of the tone arm swivel and the cabinet, in order to cushion the tone arm. The two discs were cut by running a sharp razor blade around the base of the swivel, and the hole was punched through the centers of the discs to pass the pickup cord. No screws were used to fasten the swivel onto the cabinet since that would have ruined the cushioning effect; simple cement the two discs together, and then cement the bottom disc to the cabinet and the top disc to the base of the swivel. The writer used "Spiegels" liquid adhesive. "PermaTite" liquid adhesive is also good. Both of these all-purpose cements are sold in auto supply stores. Be careful not to get any of the stuff on your hands, it's very difficult to get off!

"Nonskid" material can also be used to cushion the mounting plate from the cabinet. In this case, simply cut a "gasket" from "Nonskid" and cement it between the motor plate and the cabinet. In this case it isn't necessary to use screws for mounting the motor plate to the cabinet, the all-purpose cement mentioned above will hold the assembly securely. Use two layers of "Nonskid" for the gasket if you want even better cushioning.

Don't throw away the scraps, they come handy for making sponge rubber washers for different purposes.

Fig. 1. How a rug cushion, "Nonskid," can be used to provide a non-slip surface for records while reducing rumble of turntable.

Fig. 2. Two discs of "Nonskid" cemented between base of tone arm swivel and cabinet to cushion the tone arm against vibration.
Instrument Calibration

(Continued from page 41)

calibrated oscilloscope lies in the fact that it measures a.c. peak voltages. Knowing the a.c. peak voltage means that we can calibrate an a.c. meter which usually measures r.m.s. or average value. Assume, for example, that we want to calibrate the 10-volt a.c. scale of an r.m.s.-reading voltmeter. First, calibrate the oscilloscope by means of a d.c. reference voltage and then use an oscilloscope probe that energizes the circuit in such a way that the peak of the probe represents 1 volt. Next, connect the vertical scope amplifier across the heater of a 6.3-volt tube in an operating circuit. This should give 17.7 volts peak-to-peak on the scope. If the 6.3-volt source is actually only 5.6 volts, the peak reading will be 18.8 volts. Knowing what the peak reading is permits us to convert to r.m.s. values simply by dividing the peak voltage by 2.82.

If we cannot measure voltage accurately and know the resistance across which the voltage is measured precisely, the current can be calculated by dividing the voltage by the resistance according to Ohm's Law. In this manner, the accuracy of the ammeter and the source can be evaluated too. The ohmmeter scales are adjusted simply by comparing the measured value to the nominal value of the 1% precision resistors.

Knowing which methods to use for calibrating fixed resistors or variable resistors utilized as a standard are not enough unless we are satisfied to use calibration charts for all instruments. In the majority of cases it is advisable to use such charts only for the signal or sweep generators as regards their frequency. Most meters have some internal adjustment which can be set for correct calibration. A circuit diagram of the test instrument and manufacturer's service data for it is invaluable in such a procedure. In many of the multimeter circuits, variable resistors are used for more than one purpose so that it is possible to correct the calibration of, for example, the 10-volt d.c. scale and the 100-volt a.c. scale for the 10,000-ohm range. Be sure to always check the circuit before changing any resistance.

Aside from the adjustment of rheostats in the meter circuit, fixed resistors occasionally need replacement because their resistance has changed too much. To check the replacement resistor for accuracy, another meter can be used, or else a number of resistors with the right nominal value can be tried in the meter circuit until the calibration comes out correctly.

While the service technician is calibrating and adjusting his test equipment, it is also a good idea to clean instrument cases and dials, replace broken glass windows on meters, repair tears in leads and connectors, and generally spruce them up. Broken or chipped housings, dirty meters, bent or badly scratched dials, etc., make a poor impression.
A TERRIFIC BUY!

TS-100/AP SCOPE

One of the most sensational values ever offered! Circular sweep, 12.5 microseconds per inch. 13.2 microseconds per revolution. Linear sweep rate: 12.2 to 120 micro-seconds for 5 sweep. Self- contained in metal case 12½"x18½" deep. For 110V and 210V power sources. De-militarized. New, with all tubes including crystals and C.R. Tube.

OUR LOW PRICE

$3.45

NEW RECEIVER TYPE ARB

Four Band, 10 to 1000 MHz. Low Price. Dual band operation, for 21 full operation. May be used for 10 V, 110 V, or 220 V, of condition. Overall: 9½" x 7½" x 8.18. Dept. 95, 99.95.

BC-221 FREQ. METER CASE

Aluminum case for BC-221 or TH-164 Freq. Meters. Mfr. BRAND NEW. Complete with 2 ballast tubes, 12 tubes, and 2 in size. BRAND NEW original. $16.88

BC-34A CODE KEYER

Self-contained automatic unit. Reproduces code practice signals recorded on paper tape. Use same, multiple, provides code-practice signals at speeds from 5 to 25 WPM. BRAND NEW, in original carton. $3.95

BORG MICROPHONES-HEADPHONES

Model: 3112, 6C32, 6C33, 6C34. T-37 Carbon Hand Mike, $4.15. Morns 6C34, $5.75. Morns 6C33, $5.95. Models 6C32, $6.95.

FAMOUS BC-645 XMITTER-RECEIVER

Makes economical QRP for 420-600 Mc. Easy to operate for commercial CW 5-way communication. CONVERSION PLATE IN CLAM INCLUDED. This unit is complete for operation over $100—your's for practically a steal. Get it all, in original factory carton. BRAND NEW, complete with 17 tubes, less power supply. Rigs, $5. "A"-F-12IC DYNAMOTOR for BC-645, has 12-54 volt (easy to connect for Battery operation). Only $8.95.

MILWAUKEE ASSEMBLY

For BC-645. $4.25. Mf. BRAND NEW. $2.45

AGFA ANSCO Bubble Sextant

WILLARD 6-VOLT MIDGET STORAGE BATTERY

SPECIAL OFFER!

2-VOLT "PACKAGE" 1—2V. 2-amp. Brand New. $1.50.2—2V. 2-amp. Brand New. $2.85. ALL BRAND NEW. Total Value $4.95

Lowest Dealers Price $3.89

Prices Include 25% Sales tax with correct order F.O.S. our Warehouse N.Y.C. 51 Vesey St., N.Y. 7, N. Y. 74-405 Branch: 544 So. Broadway St., Dayton, Ohio

RADIO TV Service Industry News

AS REPORTED BY THE TELEVISION TECHNICIANS LECTURE BUREAU

NORTH, east, south, and west, there is evidence that an aroused legitimate service industry is determined to do something to curb the activities of fraudulent service firms and technicians. These are a new crop of local and state licensing laws under consideration and many associations that heretofore were opposed to licensing in any form have reconsidered their stand on the matter of licensing. The most recent association shift in attitude toward licensing was the action of the executive board of the National Appliance & Radio-TV Dealers Association (NARDA) in approving a "local option" stand on service licensing.

Under the currently approved plan, NARDA will survey its members in an area where licensing is an issue and the chairman of the state or local NARDA affected will testify for or against licensing.

Positive Actions

In contrast to the pressure for licensing in some states, more positive action to curb fraudulent service practices has been launched in many cities in cooperation with Better Business Bureaus.

In San Jose, California, thirty service firms formed the Radio & Television Association of Santa Clara in cooperation with the Better Business Bureau to combat fraud and unethical service practices in that area. Members will be required to make adequate financial arrangements to insure the fulfillment of all contracts, to inform customers of service charges, to give advance estimates of labor and materials charges on shop jobs, to avoid the use of deceptive advertising, to use parts of a quality equal to or better than the original units, to return all parts removed from a set upon request, to furnish itemized statements of labor and materials, and to service sets in the home whenever possible.

Officers of the Radio & Television Association of Santa Clara are H. F. Ash, president; Len Scarpelli, vice-president; Jack Kellogg, treasurer; and Wesley Stroule, of the San Jose Better Business Bureau, secretary.

In Colorado, an organization known as the Television Service Division of the Denver Area Better Business Bureau was recently formed. Although it is sponsored by the Better Business Bureau, the organization will be completely self-governing. Seventy-five television service companies joined the association as charter members. The purpose of the organization is to formulate a program of public education and protection as well as to adopt industry standards.

Officers of the BBB Service Division are William Teck, president; Dick Seabough, vice-president; and Ralph Buonieronni, secretary.

An association of television and appliance dealers and service companies has been formed in Dubuque, Iowa, for the purpose of promoting television and appliance sales and service and protecting the public against overcharges and malpractice. According to the Key City TV & Appliance Association, their membership represents 90 per-cent of the television and appliance business in Dubuque. Officers of this new association are: Jim Renier, president; Don Allendorf, secretary-treasurer; Cliff Colson, Ken Morgan, Vince Miller, Herbennis, and Ray Kluck, members of the board of control.

The Milwaukee Association of Radio and Television Service is stepping up its campaign to bring about the elimination of bait advertising and dishonesty in replacing tubes and parts.

Stressing the fact that it is economically impossible to make home calls for a $1.50 service charge, association members claim that this type of bait advertising is predicated on the manipulation of parts replaced and inflated tube and parts prices to provide the necessary income per call. They claim also that it is the gimmick unscrupulous service business operators use to get a high volume of shop jobs for which the charges are completely out of line for the actual work required to service the sets.

The Milwaukee Association has requested the assistance of their Better Business Bureau and the Milwaukee district attorney's office in an aggressive campaign to curb bait advertising and to root out unethical service business operations.
It is always an unfortunate experience for legitimate service business operators when a newspaper quietly puts on a campaign to expose local "TV Service Racketeering" without first fortifying itself with basic facts about the known professional gyp in its city. This type of exposure is ably explained in San Francisco. Where and why it failed to accomplish its purpose was ably explained by Ernest S. Copley, editor of TV Flashes, the monthly house organ of the Television-Radio Association of Alameda County, Inc.: "The television service industry has just had the treatment. It has just had the dubious honor of being not the wrong end of a newspaper expose. Whether The San Francisco Chronicle sold more papers or not while exposing sharp practices in TV servicing, we have no way of knowing. But we do know the paper loused up a beautiful expose and flubbed the thing completely.

"The idea was terrific. The publicity was badly needed, but the sharp-shooters were not at all upset. They could rate three more than three weak articles.

"What meat our crusading reporter would have had if only he had taken the trouble to follow one of our 'volume' service trucks for an hour. He would have reported seeing four service calls being made in one hour, and out of the four calls, he could have reported three chassis being hauled to the shop. Within two hours of leaving the shop he could have reported seeing a 'volume' service truck fully loaded with chassis. He would have noted the truck wasn't large enough for the load. The last chassis rode in the front with the driver.

"This was the 'take' for 2 hours by one 'volume' service outfit in Oakland. Yes, the Chronicle missed the boat. The reporter fished for minnows and that's what he caught. He missed the salmon run completely.

"Perhaps the reporter would have fished for the big ones had he first sat with the district attorney and listened to some of the unbelievable stories poured across that desk. Maybe a few hours spent with the Better Business Bureau would have given him the true picture.

"Three short articles don't begin to cover the mess.

"The true story would have to report cases where 9 and 10 tubes were replaced on house calls. And of the 9 tubes, 7 would check good, and what's more, they would operate satisfactorily in a TV set. The story would have shown cases of receivers actually lost because the customer couldn't pay the informal repair bill.

"All cases cited here are fact, and it took no master sleuth to uncover them.

"What, if anything, can the industry itself do to combat cut-priced volume operations? Are these fast-buck fellows to be left alone until some form of licensing and police regulation is forced down the throat of a good industry?

"It is well to say the fast-buck boys that's worth.

July, 1955
<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>24A</td>
<td>.40</td>
<td>4G5</td>
<td>.49</td>
</tr>
<tr>
<td>1A7GT</td>
<td>.53</td>
<td>6AS</td>
<td>.50</td>
</tr>
<tr>
<td>1X7</td>
<td>.46</td>
<td>1A8GT</td>
<td>.40</td>
</tr>
<tr>
<td>180GT</td>
<td>.69</td>
<td>6AU6</td>
<td>.45</td>
</tr>
<tr>
<td>12BGT</td>
<td>.77</td>
<td>6AV6</td>
<td>.40</td>
</tr>
<tr>
<td>125GT</td>
<td>.75</td>
<td>6BE4</td>
<td>.49</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>68B4</td>
<td>.49</td>
</tr>
<tr>
<td>125PT</td>
<td>.56</td>
<td>6B66</td>
<td>.46</td>
</tr>
<tr>
<td>120GT</td>
<td>.57</td>
<td>6BE6</td>
<td>.49</td>
</tr>
<tr>
<td>18S</td>
<td>.65</td>
<td>6BG6</td>
<td>.49</td>
</tr>
<tr>
<td>124A</td>
<td>.88</td>
<td>6BS3</td>
<td>.85</td>
</tr>
<tr>
<td>14T</td>
<td>.55</td>
<td>6BK6</td>
<td>.85</td>
</tr>
<tr>
<td>14F</td>
<td>.53</td>
<td>6BT7</td>
<td>.85</td>
</tr>
<tr>
<td>15S</td>
<td>.49</td>
<td>6V7</td>
<td>.74</td>
</tr>
<tr>
<td>24A</td>
<td>.49</td>
<td>6BB3</td>
<td>.59</td>
</tr>
<tr>
<td>24</td>
<td>.55</td>
<td>6BK6</td>
<td>.85</td>
</tr>
<tr>
<td>24B</td>
<td>.60</td>
<td>6BS3</td>
<td>.85</td>
</tr>
<tr>
<td>24E</td>
<td>.82</td>
<td>6AV6</td>
<td>.56</td>
</tr>
</tbody>
</table>

Type Prices

- 5U4G
- 3S4
- 3A5 .90
- 3A4 .44
- 1U4 .53
- 1Q5GT .57

We have been informed by the district attorney that he intends to see what his office can do to curb the multitude of complaints flooding the Better Business Bureau, and in fact, the district attorney is himself. What steps he contemplates we are not to say. But little man, watch out!

“This development, then, holds some hope for the ethical dealer. Whether the bait advertiser and the fast-buck boys will be allowed to wreck, so that business remains to be seen. Whether the ethical service organization will be forced into fast-buck operations, only the future will tell.”

Cost of Doing Business

While it is well known to every service businessman who knows his costs of doing business that the actual cost of putting a technician into a home, so that he will have a TV repair service, is $4.00 to $5.25 (depending on a variety of local conditions), many TV technicians still delude themselves into thinking they can handle home service calls for service charges of $2.50 or less. In and out of buildings, walking up and down stairs, waiting for traffic lights, consulting superintendents, in telephone contacts with your office, and you may have spent all of your time covering those calls within the weekly work-hour time limit of 48 hours.

“Therefore, the average time consumed in making each call will be one hour, provided you do not remain in the homes any longer than an average of 25 minutes. In other words, in any case, you will have spent 4 hours daily in the homes or a total of 24 actual hours servicing time during the week. The remaining 4 hours daily will have been spent not just in traveling between calls, but in parking, walking into and out of buildings, waiting for elevators, walking up and down stairs, waiting for traffic lights, consulting superintendents, in telephone contacts with your office, and you may have spent all of your time covering those calls within the weekly work-hour time limit of 48 hours.

“If your purpose must be to get in and out of the home within one-half hour (the basis on which your service-call fee should be predicated), that should be your exact goal. This must be your intention. Your service-call fee represents your charge for services rendered in the home for the first half-hour of your time.

“Smart operators notify their customers that the additional charge for labor after the first half-hour has elapsed will reflect the additional charge for labor at the rate of $5.00 per hour (in some areas this rate is higher).

“Some operators notify their customers that the additional charge will be $1.50 for each and every fifteen minutes. Some add the entire hourly charge to the service-call charges regardless of the additional charge for labor beyond the first half-hour. Some operators notify customers that the additional charge for labor after the first half-hour has elapsed will be an additional charge for labor at the rate of $6.00 per hour (in some areas this rate is higher).
When you are making a satisfactory living and profit from your efforts, the temptation to charge for something you did not do will never exist. Men who do business by buying their way into homes and then attempting to all but sell the set back to the customer, do those things because they start out with those intentions. They do not pursue such tactics because they are barely making a living and feel they are forced to sell the customer something his set does not require. They do not find themselves in that kind of a position. Racketeers never take any such risks. When they receive a call for service their first and all-consuming thought and aim is to get all the traffic will bear and then some more.

"When you stop fearing to establish your labor on a level with your professional dignity and stop kidding yourself that you can make service calls at a lower cost than the other fellow, you will find out that the one who goes out of business first will be the competitor with the low service charges you have been worrying about. Never stoop to the level of an unfair competitor. It is too hard to climb back."

Quite a number of letters have come to your editor in response to the announcement that a survey of the actual costs of operating a radio-TV service business is now underway. Many of these letters have an additional factual point to the previous surveys which indicated that the actual average cost per service call in the home is now above $4.50.

The following excerpt from a letter indicates the type of information that is being sent to assist in determining the costs of doing business in electronic servicing. We would sincerely welcome similar information from other service business operators.

"Like most service business operators who entered radio-TV servicing by degrees, I went through the part-time stage by charging $3.50 to $4.00 per call. Since I did not know my actual costs of operating, I felt that those charges were fair to me and fair to my customers.

"Now I am operating a full-time service business from a regular business location and I realize that if all low-price operators who honestly try to give good service would realistically analyze their costs of making a service call, and figure in a reasonable return on their investment over wages, I am sure most of them would realize that they must get from $5.00 to $5.75 per call to receive adequate compensation for their time, knowledge, and equipment investment."

This text has been designed for senior engineering students and as such is a specialized and hard-hitting handbook. Persons who have the requisite mathematical and engineering background would undoubtedly find this text too "deep," but for those prepared for it, this book fills a definite need.

Since servomechanisms have been widely adopted in industry, the need for engineers who understand the design and operation of such equipment is a pressing one. The text is divided into twelve chapters and three appendices. The introductory material presents the problem of automatic control and then discusses various applications for suitable systems. The other chapters deal with the general aspects of analysis and design; transient analysis of servomechanisms; transfer functions; transfer-function plots; analysis of single-loop systems; methods of meeting performance specifications; gain adjustment of servomechanisms; series compensation of servomechanisms; feedback compensation in such equipment; introduction to linear theory; and an introduction to nonlinear systems.

No matter how talented a technician is with the soldering iron or how successful in tracking down interminable and other service faults, if his business is not run with a realistic appreciation of the importance of business records and bookkeeping relations he will fail. The fact that just such failures have occurred with heartbreaking regularity has prompted the authors to write this practical handbook for practicing technicians.

The book is divided into nine fact-filled chapters each dealing realistically with a single topic. The book covers the keeping of business records; how to figure profit; business forms; how to price labor charges; how to get better service to foreign customers; setting margins and retail prices; when to mark down merchandise and trade-in allowances; credit and collections; and the legal aspects of business. One especially noteworthy point about this text is that the examples cited are realistic and very much in line with the operations of one-man and small TV service establishments. There are no flights of fancy into the half-million-a-year type of bookkeeping but examples are culled from more down-to-earth operations. This same characteristic permeates the entire book so that the user will be enabled to use every scrap of information provided.

This is Volume 15 in this publisher's series of concise and practical servicing handbooks. It follows the pattern of the previous volumes in that the complete schematic, tube location guide, dial cord stringing information, and pertinent voltage readings, etc. are provided for each receiver.

The 1955 output of thirty manufacturers is included. Users of this volume will be glad to find that information on a number of auto radio receivers has been presented, including schematics on sets used in Cadillacs, Chevrolets, Fords, Mercury, Pontiacs, etc. in addition to car radios made by Western Auto, United Motors, Delco, and Motorola.

This is an engineering handbook for the serious audioman and fills a hiatus in the literature. Of necessity the treatment is mathematical but those with a working knowledge of advanced high school algebra and college math could handle the formulas.

The text material is divided into eight chapters and covers microphones, loudspeakers, circuits, magnetic structures, public address systems, vibrations and architecture, acoustics, and magnetic recording. Four valuable appendices covering octaves; decibels, volume units, dbm versus watts; dbm versus voltage; and a bibliography complete the book.

The lavish use of graphs, charts, and schematic diagrams contributes to the practical value of this handbook. The engineer entrusted with the job of planning various types of sound installations—whether for a huge outdoor amphitheater or for a family living room—will find this book of great assistance in coping with his particular problems.

Although the material in this text has been prepared with the senior or graduate engineering student in mind, the subject matter is of such vital im-
portance in our everyday lives that it is to be hoped that the technically inclined will try to acquire a practical understanding of the techniques and processes involved.

The text itself is divided into two parts—the first dealing with the components which comprise the various systems and the second covering feedback-system theory. The first part includes discussions of mechanical systems; electric actuators; hydraulic elements; pneumatic elements; electronic amplifiers; transducers; data transmitters; error detectors; and reference standards. The part dealing with theory includes chapters on specifications and stability, block diagrams and network reduction, experimental methods for obtaining transfer functions; transient response from frequency-response data; linear systems; and discontinuous systems.

As a basic handbook this text serves admirably as a practical and worthwhile introduction to the subject.

TV WHILE YOU RIDE

One of the eye-catching features of the General Motors "Motorama" which is on a coast-to-coast tour is the deluxe "Westchester" Cadillac which has all the comforts of home including a television set in the rear seat.

The 14-inch set was designed and built by the Universal Broadening System, Inc., of 2193 Commonwealth Ave., Boston. The set has been engineered so that it can be used in the family car as well as in the "Westchester" for which it was designed.

It can be installed in the back of the front seat of any automobile with a rigid front seat.

The set has a safety glass between the screen and the viewer. It is shock-mounted so that when the car goes over a bump the set will ride up and down with the viewer.

The speaker, picture tube, and controls are the only parts of the set in the interior of the car. The rest of the circuitry is mounted in the trunk.

Installation in an automobile is relatively simple. A new short tube has been used which is aluminized to give a more brilliant picture. It will operate from the car's 12-volt electric system.

SAVE HOURS OF WORK

quickly make round, square, key and "D" openings with Greenlee Radio Chassis Punches

In 1½ minutes or less you can make a smooth, accurate hole in metal, bakelite or hard rubber with a Greenlee Punch. Easy to operate...simply turn with an ordinary wrench. Wide range of sizes. Write for details. Greenlee Tool Co., 1887 Columbus Ave., Rockford, Ill.
ATTENTION HAMS!

Mobile Antenna Bargain

Brand new, Heavy Duty, VHF Whip Antenna, for mobile and marine applications. Ideal for band or marine use. All models equipped with stainless steel whip and bakelite insulator. Universal clamp. WRAPS. 7 ft. Easy to install. "Made in the USA." Complete with 16 ft. of cable. Real bargain.

$19.95

LOWEST PRICES EVER!

Alnico V PM Speakers!

YOUR CHOICE

4 inch Square (1 1/2" deep)
5 inch Round (1 1/2" deep)

BARGAIN SCOOPS

5/8 ohm, 3000 watts... .75c
5/8 ohm, 10,000 watts... .25c

Write for FREE FYI Bulletin 226

WHOLESALE RADIO PARTS CO., INC.
311 W. Baltimore St. • Baltimore 1, Md.

WANT POWER & VERSATILITY?

FOLLOW THE LEADER...

Buy EICO®

KIT

$29.95

Wired

$38.95

6V & 12V BATTERY ELIMINATOR & CHARGER #1050

- operates 6V and 12V auto radios for servicing and sales demonstration.
- charges 6V and 12V storage and Edison Batteries.
- operates mobile and marine receivers, transmitters, boat lights, electric trains, projection and other equipment.

SPECIFICATIONS

- 6-Volt range: 0.6V (up to 20 Amp.)
- 12-Volt range: 0.16V (up to 10 Amp.)
- variable transformer for continuously variable voltage adjustment.
- reads volts and amperes at same time on 2 separate meters.
- Transformer primary and secondary fully protected.

In stock at local jobbers throughout the world. Write for free catalog PB-7.

EICO
84 Winthers Street
Brooklyn 11, N. Y.

6V & 12V BATTERY ELIMINATOR & CHARGER #1050

ALLIED SUPPLEMENT

Allied Radio Corporation, 100 N. Western Ave., Chicago 80, Ill., has issued its Supplement No. 146 which is currently available on request.

Designed as an addition to its 1955 general catalogue, this publication lists hundreds of new electronics products releases as well as outstanding values now available.

Tape recorders, TV accessories, test instruments, and amateur gear are all included in this new supplement along with new tool and component listings, etc. For a free copy of Supplement No. 146, write the company direct.

FM POCKET RADIO

Details on its new FM pocket radio receiver are included in the four-page booklet just released by Hastings Products, Inc., 171 Newbury St., Boston 16, Mass.

The booklet pictures and describes the company's new "FM Jr." receiver which measures only 2 1/4 x 3 1/4 x 1/2" and weighs just 5 1/2 ounces complete with batteries and earphones.

For a copy of "High Fidelity in the Palm of Your Hand," write the manufacturer direct.

TRANSISTORS AND RECTIFIERS

Transistor Electronic Corporation, Melrose 76, Mass., now has available two catalogue sheets and two data sheets of interest to the trade.

The catalogues cover high-temperature silicon power rectifiers for magnetic amplifier and power supply applications and transistors. One data sheet describes silicon junction diodes for high temperature applications while the second data sheet summarizes the firm's line of silicon and germanium products.

Any of these publications may be obtained by writing the firm.

LOCK NUTS AND FASTENERS

Palm Company, Irvington 11, N. J., has just issued a 16-page catalogue covering its line of lock nuts and fasteners for the radio, electronic, and television industry.

The publication describes the firm's regular, washer, tension, inverted, and wing type lock nuts as well as shield can fasteners and coil tube fasteners. Each type of fastening device is described in detail and then typical applications are pictured and described.

SILICON DIODES

Microwave Associates Incorporated, 22 Cummington St., Boston 15, Mass., has just issued a four-page data sheet covering its line of silicon diodes.

Designated as Catalogue 558, the new publication provides general information on uniformity; low-noise operation; diode life; the effects of shock, vibration, humidity, and temperature; operating limits; etc.

Characteristics of these diodes are presented in tabular form for quick and ready reference, along with physical dimensions and other pertinent data.

ADHESIVES GUIDEBOOK

The most interesting feature of the booklet is a completely new chart describing the properties and characteristics of all principal types of transparent film including Mylar, cellophane, plofilm, polyethylene, cellulose acetate, etc.

PIEZOELECTRIC CRYSTALS

The Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C., has announced publication of a comprehensive manual on the application of piezoelectric crystals for the control of radio frequencies.

This 600-page handbook was produced under Wright Air Development Center contract for the guidance of design and developmental engineers of military electronics equipment.

The book is available from the Department of Commerce for $6.00 a copy. When ordering specify publication PB 111986. Payment must accompany all orders.

C-D CAPACITOR DATA

Cornell-Dubilier Electric Corporation, South Plainfield, N. J., has just issued a comprehensive type capacitor cross index and price list of recommended replacements for four leading brands.

Over 1000 different twist-prong type capacitors are listed with a separate price listed for quick interchangeability, along with stock numbers and approximate price of the C-D equivalent.

For a copy of Form UPX155 contact your local C-D distributor or write the company direct.

CARTRIDGE REPLACEMENTS

A new "Master Cross-Index Replacement Chart," covering all makes of phonograph cartridges, has been compiled by The Astatic Corp., Conneaut, Ohio.

Consisting of eight 8 1/2 x 11" pages, the chart lists not only the company's cartridges but those made by other manufacturers, together with their current Astatic replacement number. The chart is compiled in booklet form, with a three-hole punch for insertion into any standard loose-leaf binder.

A free copy of this chart is available from Dept. RC of the company.

GOODBY'S AUDIO CATALOGUE

Goody Audio Center Inc., 235 W. 49th St., New York 19, N. Y., is now

RADIO & TELEVISION NEWS

www.americanradiohistory.com
July, 1955

Rely on POST for... hottest values and speediest deliveries. SEND FOR OUR NEW BULLETIN

PIONEER MOBILE DYNAMOTORS Designed especially for the mobile market, these dynamotors are compact and efficient. Only 4" diameter, they're only 7" tall. The car 12V dynamotor is 11" tall. The 110V dynamotor is 12-1/4" tall. These dynamotors have an internal operating fan and mica brush RF filters. The dynamotors have an internal operating fan and mica brush RF filters. Connections are terminated in a Jones receptacle and matching Jones plug is supplied (fully guaranteed). A

5.5 TO 6 VOLT DC INPUT.

OUTPUT					FILTER	PRICE
400 VDC | 300 MA | 175 MA | 19.95
11.5 TO 12 VOLT DC INPUT
400 VDC | 300 MA | 175 MA | 19.95
500 VDC | 300 MA | 175 MA | 16.95

Filament Transformer, 6.3 Volts, 10 amps, 110 V. 60 cy. 81, Thordarson... SPECIAL $1.45 ea.

G. E. RELAY CONTROL

Price of $1.25, each 10 for $8.90

STANDARD BRAND OIL CONDENSERS

3 TO 150 MFD 1000 VDC.

6 TO 150 MFD 400 VDC.

1 TO 150 MFD 100 VDC.

3" ROUND, WESTINGHOUSE METERS

500 KILLER MILLIAMPS.

5000 MILLIAMS.

50,000 MILLIAMS.

MICRO A Meters.

MISCELLANEOUS BARGAINS

500 mfd ceramic condensers.$ 10 for .90

2500 micro watt meters wired.$ 9 for .90

115 VAC, 200 micro galvanometers.$ 2 for 1.75

500 mfd 100 volt vacuum tube resistor.$ 1.25

600 mfd 150 volt adjustable differential.$ 1.40

500 MFD 1500VDC

Mix. order 250-650$ with order.

POST ELECTRONICS CO.

69 Barclay Street, New York 7, N. Y.

LEARN TV SERVICING

Send for free 24-page illustrated booklet which tells how to service TV, transistor, audio amplifier, phonograph, TV, phonograph, etc. Also included is a specialized training program that omits nonessential TV facts & TV shop theory. You concentrate on radio & TV servicing only. You get professional training in a professional school.

POST ELECTRONICS CO.

69 Barclay Street, New York 7, N. Y.

Please Mention RADIO & TELEVISION NEWS When Answering Advertisements

NOW ON SALE...

The 1955 PHOTOGRAPHY DIRECTORY & Buying Guide

- New Descriptions
- Latest Price Information
- Over 700 Products New This Year

If you're planning to buy new equipment... use it... trade it... or sell it — The 1955 PHOTOGRAPHY DIRECTORY & Buying Guide will help you.

This year's PHOTOGRAPHY DIRECTORY & Buying Guide lists all the new products you've been reading about... lists the manufacturer... tells the price...everything you want to know about cameras... lenses... films... picture-taking accessories.

Pick up your copy of this useful year 'round photographic reference book...

50c AT NEWSSTANDS AND CAMERA STORES ONLY

1955 PHOTOGRAPHY DIRECTORY & Buying Guide

366 MADISON AVE.

New York 17, N. Y.
NOW!

Step ahead faster as an INDUSTRIAL ELECTRONICS TECHNICIAN

Turn your experience into a big, new better-paying career!

Day by day industrial plants are adding more electronic devices—sorting, counting, checking almost any control job you can name. Cash in on industry's great need for men who can keep these devices in top working order. Make more money, feel more secure, doing work that is second nature to you. With what you already know about electronics you have a long head start in a field just beginning to boom. GET INTO IT RIGHT NOW with the help of PRACTICAL INDUSTRIAL ELECTRONICS LIBRARY

No long sessions on math or theory! These practical volumes show you how to keep the plant's electronic equipment working—how to locate and correct tube and circuit troubles...how to install, service, and maintain even brand new equipment without being stumped by new circuits.

FREE TRIAL—EASY TERMS!

McGraw-Hill Book Co., 327 W. 41 St., N.Y.C. 36

Send me the Practical Industrial Electronics Library for 10 days—examination on approval. In 10 days I will send $4.50, then $4.50 a month until $27.50 is paid in full. $150.00 a volume, or $275.00 all for $27.50. (A service of $3.50 under the regular price.)

Name ____________________________
Address ____________________________
City State ____________________________
Position ____________Payable in U.S.A. and Canada ____________

"We'll Pay More" because we NEED

ART-13 — DY-11 or 12 — CU-25
BC-221 — RA-34F — TS-62
TS-382 — TS-147 — TS-148

Phone or Wire Collector

ASSOCIATED INDUSTRIES
6855 Tujunga Avenue
No Hollywood, Calif. STanley 75458

Radar Correspondence course now available in Radar, Loran, Microwaves, etc. Prepares for Radar endorsement, high-paying position as Radar technician. Introductory offer now being made. Write for details. Progressive Electronics Institute, P.O. Box 591, Akron 9, Ohio.

When Answering Advertisements Please Be Sure to Mention RADIO & TELEVISION NEWS

"ROCKET TO PROFIT"

Free portable batteries and advertising aids arrive the rewards that await dealers and service technicians who participate in Philco's nationwide "Rocket to Profit" promotion.

The promotion supports the introduction of the company's new battery models. Based on the theme that 87 per-cent of all portable battery sales are produced by six "best sellers," the promotion enables dealers and technicians to earn free quantities of "best sellers" with their regular purchases of these six most popular style batteries.

Heavy merchandising support includes a complete sales and display package which contains a set of window streamers, three-dimensional window and counter display, a shower of store pennants, and jumbo direct-mail cards.

TUBE PROMOTION

The key to one of the new first Tube Caddies received by a distributor in Raytheon's Spring Tube Promotion was presented to Morrie Green, owner of Almo Radio Company of Philadelphia, by E. I. Montague, advertising and promotion manager of Raytheon's replacement tube sales.

This represented the start of a new receiving tube promotion designed by the company to provide its distributors, through a new tube caddy promotion, with a means of obtaining a greater portion of the receiving tube business in their areas.

The caddy itself incorporates all of the outstanding features of the company's previous tube caddies along with the newly added features of roummy tube compartments, lock cornering, and luggage styling in a mod-ern and durable blue airplane luggage finish with crisp white inlaid piping.

"ABSORBING" LETTER

CBS-Fraternity is now sending out a unique sales promotion letter as part of its extensive program to expand the sales of radio and TV receivers.

The letter is printed on real comp-pressed sponge which enlarges when wet. The 8" x 10" sponge letter, alerting distributors to some of the highlights of the current campaign, concludes with an invitation for the recipient to wet the letter and promises that his "sales will expand like this letter."

The unique compressed sponge mailing was worked out in conjunction with the Autopoint Company of Chica-go.

ANTENNA COUNTER DISPLAY

A new four-color counter display, featuring the "Invader" fringe anten-na, is now available to jobbers from Ward Products Corp., 4710 State St., Ashland, Ohio.

The display has a pocket on it for a small folder, "How to Conquer the Fringe," which is actually a condensed catalogue on the "Invader."

Diane Daniggiel, Miss Photo Flash of 1955, poses with the display.

RCA PORTABLE PROMOTION

RCA Victor is demonstrating the ruggedness of the "Impac" cases on its new portable radios by means of a dramatic motion display showing a mallet striking one of the non-breakable plastic cases.

This display is the keynote of a wealth of sales promotion aids being offered dealers. The available aids include streamers and wall charts. The eleven different streamers feature humorous sketches of woodland animals with tie-in sales slogans.

CBS TUBE PROMOTION

CBS-Byron of Danvers, Mass., has initiated a heavy radio and TV tube sales promotion and advertising program specifically angled toward the women's market.

According to a recent survey, women initiate 88.5 per-cent of the telephone requests for TV service and 76.95 per-
cent of the service calls are made when the woman of the house is present. The program is being tied in with the Good Housekeeping "Guaranty Seal." This seal now appears on the new tube cartons which were recently streamlined to feature the CBS initials.

"VICTROLA" PROMOTION
RCA Victor is promoting its line of "Victrola" phonographs with an elaborate display featuring an eye-catching and regal mid-Victorian clock as the centerpiece. Small copy panels around it add emphasis to the main theme, "Music When You Want It," which appears on the face of the clock.

Wrought iron racks hold "45" and three-speed instruments on both sides of the centerpiece.

The displays are now on their way to RCA Victor distributors throughout the country.

PEGBOARD ISLAND DISPLAY
Arvin Industries, Inc., Columbus, Ind., has introduced a new pegboard island display which is designed to hold from 20 to 25 radios, depending on their size.

This display, designated RA-441, consists of a white pegboard display area with contrasting black table and wrought iron legs. The nameplate is blonde natural finish wood with the "Arvin" logotype in black and "radios" in aqua.

Twelve sets of brackets fit into the pegboard display area and can be adjusted for any arrangement or for any size of table model radio. Each unit is individually packed and can be easily assembled by following the instructions enclosed in each carton.

The display is designed for distributor or dealer use.

SALES LITERATURE KIT
A sales promotion kit for jobbers is now being distributed by Ward Prod...
Sylvania Promotions

The Sylvania Division of Sylvania Electric Products Inc. is now offering six separate and distinctive dealer campaigns for across-the-board sales promotion of its TV sets.

The highlight of the campaign includes two outstanding premium offers—a free mink scarf with the purchase of one of the firm’s “HaloLight” sets and the other a specially designed TV hostess “lazymusic” with the purchase of the same item.

Individually designed kits for each of the six promotions have been prepared. A dealer’s promotional guide serves as a handy ready-reference to all events. It is available from the company’s distributors.

Crossley “Sales Tonics”

The Crossley Division is currently offering its television dealers an option of several different “sales tonics.” The “tonics” consist of several TV-related furniture items. These include a 30d. chair and ottoman, coffee table, shelf table, and collapsible snack tables.

The decision whether to give the premium items to consumers with the purchase of Crossley TV receivers or to sell them with the set at slight extra charge rests with the individual dealer.

Dealers should contact their local distributors for full details on how this promotion is being carried out.

Jobs with Navy

The U.S. Naval Ordnance Plant at Indianapolis, Indiana now has several interesting openings for engineers and scientists who want to apply their knowledge and experience to projects of critical importance to the national safety and welfare.

Vacancies exist in the fields of research, development, design and production of mechanical and electronic airborne fire control systems, including radar, servo-mechanical systems, and various mechanical and electronic components and associated electrical and electronic circuitry.

The plant is seeking qualified engineering and scientific personnel—with or without experience—and who have degrees in physics, mathematics, and engineering—electrical, electronic, or mechanical.

Salaries range from $3410 to $6940 per year with opportunities for personal and professional advancement under the guidance of competent supervisors. Other benefits are also offered.

For complete information on these openings, write to the Industrial Relations Officer, U.S. Naval Ordnance Plant, Indianapolis, Ind.
Shunting these units across corresponding circuit components in the stage will restore operation when the defective unit is shunted. Sometimes, especially in the presence of capacitors, you will have to disconnect one lead of the suspected component from the circuit before connecting your test unit. As an example, suppose coupling capacitor, C2, were shorted or leaking badly (distorted output). Shunting it with your test capacitor would not correct the condition. In this case, C2 must be disconnected and your test capacitor substituted before operation can be restored.

The few examples given here should start you well on your way toward servicing defective sets quickly and easily. Remember, the initial inspection, if done thoughtfully, can very often direct you to the defective stage without resorting to many of the tests discussed here. A loud hum in the loudspeaker usually indicates faulty filter capacitors, but it can also mean a cathode-to-heater short in one of the tubes. Naturally, you would decide first to perform the tests on the simplest and most suspected components before turning your attention to other possibilities.

It should be remembered that the methods described here are for quick diagnosis or repair, and not substitutes for accurate test equipment. When replacing parts, always use components equal in value and quality to the items being replaced.

Flyback Transformers

(Continued from page 53)

to the tertiary rim or to ground. When it breaks down to the tertiary, first repair the arcing point on the rim with vinyl tape. Next, tape the filament lead and reposition it away from the rim. If the filament lead has broken down to ground, tape the breakdown point and redress the lead.

When one or more of the leads going to the terminal board are broken, they can be repaired if they have not been broken too close to the windings. If the break is at a point where two taps on a winding are brought out, such as at terminal 5 in Fig. 2, make sure both leads are present. Next, wrap a piece of thin bare copper wire around the lead or leads. Solder this strengthening wire to the leads, slip a piece of spaghetti over the junction, and solder the other end of the strengthening wire to the terminal lug.

If the suspected trouble is a cold soldered joint at one of the terminal lugs due to improper cleaning of the wire, unwind the wire or wires from the lug and gently clean them with a piece of fine emery cloth. Wrap the cleaned wires back on the lug and solder.

July, 1955
Sky-Ray ANTENNAS

offer you more profits! How? By giving quality equal to or better than other TV antennas plus amazingly low prices that provide bigger mark-up or faster turnover. This combination of quality and price is achieved by excellent engineering coupled with cost-conscious construction. Standard weight materials are used throughout and none are wasted. Clean, functional design contributes a pleasing appearance but eliminates expensive "gingerbread." The results are all-aluminum antennas ... lightweight and rugged ... that sell fast. And all Sky-Ray Antennas are pre-assembled.

Model ACV-2 "SUPER-RAY". All-Channel VHF Antenna ... Sky-Ray's new twin-bay model featuring improved front-to-back ratio and higher gain. Has snap-in construction, reinforced at the U-bolt connection. Matches 100-ohm transmission line. Suggested list price ... $24.50.

Model UCP All-Channel UHF Array. Highest gain and front-to-back ratio on UHF. Completely pre-assembled; only 4 wing nuts to tighten. Suggested list price ... $10.85.

SNAP-IN CONSTRUCTION: One push and elements are locked securely in position. No bolts to tighten. This feature on all Sky-Ray VHF Antennas gives the easiest, fastest installation possible.

Sky-Ray offers complete lines of proven, top-quality, low-priced antennas for all TV bands: for VHF ... Snap-In Yagis, Conicals, and In-Line; for UHF ... Bow Ties, and Single and Double Corner Reflector types. Get these big-profit antennas now. Ask your supplier for specifications and price lists or write direct to...

SKY-RAY MANUFACTURING CO.

MCLEANBORO, ILLINOIS
RADIO ENGINEERING

COMPLETE radio, electronics theory & practice; television, tubes, transistors, circuits; servicing: broadcasting, home radio, television, police radio. 12 or 18 months. Catalog. Valparaiso Technical Institute, Dept. N, Valparaiso, Ind.

TAPE RECORDERS, ACCESSORIES. Catalog of best values. Pre-recorded tapes. Will quote on hi-fi components. Boynton Studio, 180 Pennsylvania, Tucson, N. Y.

GUARANTEED to improve your TV picture or money refunded! Genuine Hanco C T R Rejuvenator, send only $1.99. Pay Onyxman $2.95 C.O.D. Hanco Electronics, 565 Claremont Ave., N. Y. 57 N. Y.

ALUMINUM Tinplate, Angle & Channel, Plain and Perforated Sheet. Willard Redstone, Fostoria, Ohio.

TELEVISIONS, repairable from $10, also working. WAP1, 1420 South Randolph, Arlington 4, Virginia.

BASS REFLEX CABINET Model 7112

<table>
<thead>
<tr>
<th>Model</th>
<th>12" LOUDSPEAKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIAL</td>
<td>HIGH FIDELITY</td>
</tr>
<tr>
<td>UTOH</td>
<td>only 95</td>
</tr>
</tbody>
</table>
| 6.8 Alinco V Magnet with extremely small voice coil gap gives high sensitivity and handles 12 watts of audio continuously. Clear tone frequency. Response is exceeding fidelity from 40 to 12000 cps and down only 5 db at 15,000 cph. Many customers, writing our Audio Dept., thought they were listening to a lower fidelity than this and they called by new at 9.95.

Use them in pairs 2 for only $17.95. Special McIntyre prices available for HIF and PA Dealers Write for quotation.

TERMINATE FM-AM RADIO

Incorporates latest features, RF stage on FM for high sensitivity. FM Circuit is temperature compensated for minimum drift. Built-in receiver: 6 stage, high fidelity MAGNETIC phono cartridges, and a 3-junction equalizer for accurate record playback across high quality phonograph reproduction. Tone control + hum adjustment to balance output residual line-frequency. 12 watts beam power amplifier delivers excellent audio. Audio Response from 50-15,000 cph. Terminals on rear for any type FM speaker. Efficient built-in antennas for AM and FM, Ferrite loopstick plus conventional loop FM, and folded dipole for FM, terminals for outdoor antennas.

NET $49.50

BUY...

FOR SALE...

SALE...

**HIGH FIDELITY—All Nationally advertised high quality equipment. Low prices. Tuners, Amplifiers, Speakers, Cartridges, Turntables, etc. Consult us for your Hi-Fi needs. Local Electric, 23-12 72nd Street, Jackson Heights, 72, N. Y.

TV Trade-In sets, Philco, R.C.A., Emerson, others. List available. 10"—$27. 12"—$52 $57 up. Washburn Service Co., Dept. R, 95 Southern Blvd., Bronx, N.Y.

WALK-TALK. Build wireless two-way portable radio telephone for less than $10.00. Plans 50c. Springfield Enterprises, Box 34-H, Springfield Gardens, 19, New York.

SCINTILLATION Crystals NE-101 Plastic Phosphors have distinct advantages over sodium iodide: Cost is low. Linearity is high. Not affected by moisture. Unbreakable. Easy to attach. Mylar-wrapped wires adapting them for use. Write for details. Western Radiation Laboratory, 1187 West 21st Street, Los Angeles 7, California.

COMPLETE VHF Radio Terminals. These are designed for telephone service in the 17-76 mc. band, and are ideal for setting up a communication system along a railroad, in six-hams or bush country. Each terminal consists of NE-101 Link Radio Type 1091X Transmitter, 1—Link Radio Type 1099A Power Supply; 1—Link Radio Type 1091X Power Amplifier; 1—Link LPL13 Power Supply; 1—Federal Type 101B-V 1R5; 500 ft. 1—Tel Quil 1097C-120 foot insulated steel Yagi Antennas—5 element; 1—Levi Diesel-Genset control, 2 kw. J. P. Plishner, 555 Fifth Avenue, New York City, New York, July 1955

FREE Get our monthly electronic lists. Dick laws, Everett, Wash.

DIAGRAMS for repairing radios $1.00. Television $3.00. Give make, model, Diagram Service, Box 621-BN, Hartford 1, Conn.

**SCINTILLATION Crystals. Sodium Iodide, Thallium activated hermetically. Sealed tested. 1-1/2" x 1-1/2" x 1-1/2" $50. Shibly Instrument, 1701 Magnolia, Long Beach, Calif.

WANTED...

WANTED... CY 187 or 535CV English make Recti- fle tubes new, will pay $10 each for two tubes. Captain James J. Fay, Oldman, Virginia.

BASS REFLEX CABINET Model 7112

PREPARE for high paying job in Radar. Correspondence Course. Write Progressive Electronics Institute, P.O. Box 543, Akron, Ohio.
"TAB" THAT'S A BUY

NEW HIGH CURRENT POWER SUPPLIES
Variable 0-200 VDC Cont. (50%) with Interlocked Rectifier, Transistor U.S.A. (1200 W.) No. 2452 $29.50; 2455 $34.50; 2456 $39.50

New Tabtron Selenium & Regenerative Rectifiers
Dated & Yrd Gtd
By info. Power Rectifiers
Tabtron's new high voltage, high current Tabtron selenium and Tabtron regenerative rectifiers are available in a wide range of ratings. They are designed for years of dependable service. A number in each size is included, to get full use of high voltage selenium rectifiers. Sensitive input circuits are ideal for high precision measuring, recording, control and testing.

CIRCUIT BREAKERS

Transformers

On 15V, 60 Cy. Input TV & AC-Dry Battery Kit 27C $94.50 (FG/710-5315) 1.5 F.240V, 60 Cy. Input TV & AC-Dry Battery Kit 27C $94.50 (FG/710-5315) 1.5 F.

COMPONENT KITS

Rectifiers, 100% & more $9.50, 100% & more $9.50

Specials: X, V, & TV (Prepaid only) $2.50

NEW "TABTRON" Selenium & Regenerative Rectifiers

TUBES

- Hickok Mu Tested

IN21 $5.00 SPECIAL 200 W.A. 100 FOR $115

TV SPECIALS: TV EQUIPMENT

Specials: X, V, & TV (Prepaid only) $2.50

PRECISION POTENTIOMETERS

New Precision Potentiometers

THERMOCOUPLE KITS

Thermocouple KITS

- Check These "BARGAIN" VALUES from "TAB'S"

REGA KIT (2) REGA Tubes, sockets, and transformers - Special $4.28

BATTERY KIT - Special $7.95

"TAB" DO-IT-YOURSELF TOOLS

Hi Quality Precision Tools

ECEMINS 23% MAXWELL 1200 Ohm 2 1/2" cut dia. 4 3/4" tall 125V, 3.95

TUBE "TAB" 200F2F ELECTRIC SPEED DRILL 200F2F (FG/710-5315) 115VAC. Now Only 14.25

CHROME VANADIUM SPEED DRILLS

60 Gal. $1.65

Elico Soldering Irons 115VAC/DC

220-230VAC, 50-60 cy. $3.75

THOR "B" POWER SAW 000

Saw & Power Saw Blade $2.25

THOR BENCH SPEED GRINDER

Model 117-2446$15.95

Full Retma Warranty

Write for Full Details.

Wilton Quality Utility Bench

V107-215 saw width, max. $7.95; 215-315 $8.79; 315-420 $9.65; 420-525 $10.45; 525-625 $11.35; 625-725 $12.25; 725-825 $13.15; 825-925 $14.05; 925-1025 $15.05; 1025-1125 $16.05; 1125-1225 $17.05; 1225-1325 $18.05; 1325-1425 $19.05; 1425-1525 $20.05; 1525-1625 $21.05; 1625-1725 $22.05; 1725-1825 $23.05; 1825-1925 $24.05; 1925-2025 $25.05; 2025-2125 $26.05; 2125-2225 $27.05; 2225-2325 $28.05; 2325-2425 $29.05; 2425-2525 $30.05

Write for New "Thur" Tool Catalog

TELEVISION BARGAINS

Voltage at outlet terminal, 2 Volts or less. For New Replacement Chart.

110-120 Volts 60 cy. (SN. 12-003) $1.95

-100% SATISFACTION GTD-

SATIONAL OFFER!!

3325 3950 5253 6255 3725 5255

ASSY" "10, Each 59c

Assorted 10, each .99c

All New Model Dual Volume

PHONO CARTRIDGE

$17.90

Reg. $25.95

A.B. "U" BUY UNIT

PHOTOFLASH

21A18 10 A.C. 6-104b $5.95; 21A24 6-250 $7.95; 21A34 6-500 $9.95; 21A38 6-750 $11.95; 21A42 6-1000 $13.95

CIRCUIT BREAKER KIT

21A24 6-250 $7.95; 21A34 6-500 $9.95; 21A38 6-750 $11.95; 21A42 6-1000 $13.95

"TAB" MONEY BACK GUARANTEE

S'S PRICED DISMISSED S'S

AB "J" POTENTIOMETERS

WON'T GET "J" POTENTIOMETERS

WON'T GET "J" POTENTIUMETERS

- PRECISION RESISTORS

$5" TAB" MONEY BACK GUARANTEE

- "ONCE AGAIN BY DEMAND-

AC-DC Multiplier

"TAB" 27C

"TAB" ACCESSORIES!!

PRINTED IN U.S.A.

RADIO & TELEVISION NEWS

www.americanradiohistory.com
TRAVELING LIGHT

BUT WITH A COMPLETE pocket-sized LABORATORY

ON HAND for his service needs in the Triplett Model 666R pocket size VOM

TRAVELING LIGHT too, on expense

Model 666R is only $26.50 dealer net

Enclosed selector switch of molded construction keeps dirt out. Retains contact alignment permanently. A Triplett design representing the culmination of a quarter-century of switch making experience. Unit construction—All resistors, shunts, rectifier and batteries housed in a molded base integral with the switch. Eliminates chance for shorts. Direct connections. No cabling.

Precision film or wire-wound resistors, mounted in their own separate compartment—assures greater accuracy. Four connectors at top of case, controls, knobs and instrument are all flush mounted with the panel.

3" 0-200 Microammeter, RED • DOT Lifetime guaranteed. Red and black dial markings on white. Easy to read scale.

RANGES
D.C. VOLTS: 0-10-50-250-1000-5000, at 1000 Ohms/Volt.
A.C. VOLTS: 0-10-50-250-1000-5000, at 1000 Ohms/Volt.
D.C. MA: 0-10-100, at 250 M.V.
D.C. AMP.: 0-1, at 250 M.V.
OHMS: 0-3000-300,000 (20-2000 center scale).
MEGOHMS: 0.3 (20,000 Ohms center scale).
(Compensated Ohmmeter circuit.)
Also available—Model 666-HH Pocket V O M, Dealer Net $24.50.

TRIPLETT ELECTRICAL INSTRUMENT CO.
Bluffton, Ohio

Dim.: 3 1/16 x 5 7/8 x 2 9/16

www.americanradiohistory.com
TAKE a look inside the Mallory 25th Anniversary Vibrator—and you'll see why it's so free of mechanical hum. The vibrator mechanism "floats" in a bell-shaped rubber liner. Noise produced by the vibrating element just doesn't have a chance of getting to the case or mounting plug.

That's not all. The rubber cup at the plug end also "floats" in place... never touches the can at more than one point. Even the leads are designed to minimize transmitted noise.

The net result is the quietest-running vibrator you've ever seen... or heard. Its mechanical hum is actually less than the electrical noise emitted by the speakers of most auto radio sets. And it costs no more than previous Mallory models.

On every vibrator replacement job, treat your customers to the quietest performance on the market. Check your stock today... and call your local Mallory distributor for quick delivery.

*Pat. Pending