IN THIS ISSUE

RADIO ASTRONOMY

"ULTRA-LINEAR" OPERATION OF 6V6 TUBES

REMOTE CONTROLS FOR MARINE RADIOTELEPHONES

FUNDAMENTALS OF COLOR TV

3-BANDS, 1-VERTICAL

BANDSWITCH YOUR LOADING COILS BY REMOTE CONTROL

THE CROSLEY "SUPER-V"

ELIMINATION OF R. F. INTERFERENCE IN AUDIO SYSTEMS

A PHOTOTRANSISTORIZED PHOTOELECTRIC COUNTER

SONIC LIQUID LEVEL INDICATOR

(See Page 46)
Customer confidence in you and your way of doing business is the greatest single business asset you can have. The RAYTHEON Bonded ELECTRONIC TECHNICIAN program, now in its 10th year, has helped and continues to help many thousands of Radio and Television service dealers break down the barrier of public mistrust. And in so doing increases the volume and profit of these Raytheon Bonded Technicians.

Ask your Raytheon Tube Distributor if you can qualify for this priceless sales asset. If you can, the program costs you not one cent, it's Raytheon's investment in your future.
Let Me Show How You Can Qualify for RADIO-TELEVISION at Home in Spare Time

TRAINING plus OPPORTUNITY is the PERFECT combination for ambitious men. Let me send you a sample lesson from my course to prove you can keep your job while TRAINING at home in your spare time, for better pay and a brighter future. I will also send my 64-page book to show you that Radio-Television is today's field of OPPORTUNITY for properly trained men.

Practice Broadcasting or Servicing with Kits of Parts I Send You

Nothing takes the place of practical experience. That's why NRI training is based on LEARNING BY DOING. My training includes kits of parts which you use to build equipment and get practical experience on circuits common to both Radio and Television. Shown at the left is the low-power Broadcasting Transmitter you build as part of my Communications Course. It gives you experience putting a station "on the air," learning broadcast station operations. Shown below is the modern Radio you build as part of my Servicing Course. You use it to conduct tests, get experience locating and correcting set troubles. My book shows other specially designed equipment you build to get practical experience, to bring to life things you learn from my illustrated lessons. All equipment is yours to keep.

Television Growth Making More Opportunities

Good Pay Jobs, Prosperity

Radio is bigger than ever and Radio-Television is still growing fast. Government, Aviation, Police, Ship, Radar, Communications, Systems for buses, taxis, trucks, railroads are other growing fields providing good job opportunities and bright futures for men properly trained in Radio-Television.

Start Soon to Make '10, '15 a Week Extra Fixing Sets

You can start to cash in right away. Many men I train fix neighbors' sets, make extra money, starting soon after they enroll. Multitester built with parts I send helps locate and correct set troubles. Read at left how you build actual equipment that gives you practical experience with circuits common to both Radio and Television.

Mail Coupon—Find Out About Tested Way To Better Pay

Act now to enjoy more good things of life. Take NRI training for as little as $5 a month. Many NRI graduates (some with only a grammar school education) make more in two weeks than the total cost of my training. Mail coupon today for Actual Lesson and 64-page Book—BOTH FREE! J. E. SMITH, President, National Radio Institute, Dept. 4FE Washington 9, D.C. OUR 40TH YEAR.

I Trained These Men

Extra Money Spare Time

"Four months after enrolling was servicing Radios and averaged $10 to $15 a week more pay. Now have full-time Radio and Television broadcasting."

WILLIAM WEYDE, New York.

Get Laid Off, Good Thing

"Got laid off my machine shop job which was the best thing that ever happened to me as I opened a full-time shop. Business has been keeping up every week."—E. T. SLAY, Cono, Kansas.

Likes Job At Station WTOE

"I am a technician at WTOE in Washington and I like it very much. Most of my Radio knowledge was obtained from National Radio Institute."—JOHN BIRTTO, Hysto, Maryland.

Television Technician

"I am now employed as a Technician for a Television Clinic. Here I handle only the tough jobs that cannot be fixed in the home. NRI started me off right."—BERNARD SHERS, Cleveland, Ohio.

Good for Both—FREE

Mr. J. E. SMITH, President, Dept. 4FE
National Radio Institute, Washington 9, D. C.
Mail me Sample Lesson and 64-page Book, FREE. (No salesman will call. Please write plainly.)

NAME __________________________ AGE __________________________

ADDRESS __________________________

CITY __________________________ ZONE __________________________ STATE __________________________

VETS WRITE IN DATE OF DISCHARGE __________________________

RADIO & TELEVISION NEWS is published monthly by Ziff-Davis Publishing Company, William B. Ziff, Chairman of the Board (1948-1954), at 64 E. Lake St., Chicago 1, Ill. Entered as second-class matter July 24, 1945, at the Post Office at Chicago, Ill. under the act of March 3, 1917. Authorized by Post Office Dept. for the N. American possessions. (Canada, etc.) and for the U. S. and possessions, and Canada $4.00. Non-American subscribers please remit in U. S. currency in advance. POSTMASTER: Please return undelivered copies under same address at 64 E. Lake St., Chicago 1, Ill.
CONTENTS

JUNE, 1954

Radio Astronomy. Dr. F. G. Smith 35
TVI Troubleshooting (Part 2). Carl J. Quirk 38
Remote Controls for Marine Radiotelephones. Elbert Robberson 40
Voltage Stabilization for Scope Calibrators. Ronald L. Ives 42
"Ultra-Linear" Operation of 6V6 Tubes. David Hafler 43
Sonic Liquid Level Indicator. Clayton R. Kielich 46
Bandswitch Your Loading Coils by Remote Control. Leon A. Wortman, W2LJU 50
A Phototransistorized Photoelectric Counter. Nathan O. Sokal & Richard G. Seed 52
Comparison Methods for Determining Voltage Standing-Wave Ratios. J. P. Sterner 54
Certified Record Revue. Bert Whyte 58
The Crosley "Super-V." Bob Youger 59
1954 TV Receiver Specifications. William H. Harrison, WBUK 64
3-Bands, 1-Vertical. John T. Frye 66
Mac's Radio Service Shop. J. F. Sterner 68
Service Hints on Crosley TV Sets. C. Howard Bowers 73
More Old Time Operators Report. Bob Youger 76
New TV Grants Since Freeze Lift 98
New TV Stations on the Air 98
A Video-Magnetic Tape Recorder 120

DEPARTMENTS

For the Record. The Editor 8
Spot Radio News 16
Within the Industry. K. R. Boord 24
Technical Books 129
Manufacturers' Literature 132

COPYRIGHT 1954

ZIFF-DAVIS PUBLISHING COMPANY

132 Madison Ave., New York 17, N. Y.

VOLUME 51 NUMBER 6

SUBSCRIPTION SERVICE: All communications concerning subscriptions should be addressed to Circulation Dept., 64 E. Lake St., Chicago 3, Ill. Subscribers should allow at least four weeks for change of address.

CONTRIBUTIONS: All contributions should be submitted with carbon copy to radio news, Ziff-Davis Publishing Company, New York Editorial Office. All contributions must be addressed to the Editor and be accompanied by return postage. Contributions will be handled with every care and consideration. In no case will the Editor be responsible for loss or damage. All contributions must be in typewritten form. Within 60 days of publication the Editor reserves the right to accept, edit or reject any contributions. Further, the Editor reserves the right to publish any contribution or part thereof in any form he deems proper.

RADIO & TELEVISION NEWS
Build and keep this BIG DTI Engineered TV set — easily converted to U.H.F. (DTI offers another home training, but without the TV set.)

D.T.I. Provides EVERYTHING YOU NEED to master TELEVISION

In addition to your home laboratory and easy-to-read lessons, you even use HOME MOVIES—a wonderfully effective and exclusive D.T.I. training advantage. You watch hidden actions... see electrons on the screen... important fundamentals... become "movie clear," helping you learn faster... easier... better.

Full time Residential training in D.T.I.'s great Chicago laboratories also available. MAIL COUPON TODAY for all facts. (If subject to Military Service, you'll especially welcome the information we have for you.)

MAIL COUPON TODAY!

DeVRY TECHNICAL INSTITUTE
4141 BELMONT AVE., CHICAGO 41, ILL. DEPT. RN-6-K

I would like your valuable information-packed publication showing how I can get started toward a good job or my own business in Television-Radio-Electronics.

Name: ___________________________ Age: ___________________________
Street: __________________________ Apt: ___________________________
City: ___________________________ Zone: ___________________________
State: __________________________

June, 1954
To triple the voice-carrying capacity of coaxial cable, Bell Laboratories engineers had to create new amplifying tubes with the grid placed only two-thirds of a hair's breadth from the cathode. Furthermore, the grid wires had to be held rigidly in position; one-quarter of a hair's shifting would cut amplification in half.

Working with their Bell System manufacturing partners at Western Electric, the engineers developed precise optical means for measuring critical spacing insulators. On a rigid molybdenum grid frame they wound tungsten wire three ten-thousandths of an inch thick. To prevent the slightest movement they stretched the wire under more tension for its size than suspension bridge cables, then bonded it to the frame by a new process.

The resulting tube increases coaxial's capacity from 600 to 1800 simultaneous voices — another example of how Bell Telephone Laboratories research helps keep your telephone system growing at the lowest possible cost.

This coaxial system electron tube amplifies more voices at the same time because of wider frequency band—made possible by bringing grid and cathode closer together.

Grid is shown above on left. Picture at right, enlarged 15 times, shows how wires are anchored by glass bond. They will not sag despite nearness of red-hot cathode.
Here's the most terrific Time and Trouble saver you've ever seen
the
CLASSY CHASSIS CARRIER!

$19.95
A 1995 VALUE... YOURS FREE WHEN YOU BUY SYLVANIA TUBES

You'll say it's stupendous... the greatest and most valuable helper a TV Serviceman ever had!
An easy-wheeling, aluminum carrier that lets you move a heavy TV chassis (up to 27-inch tube) anywhere... with no lugging, no straining, no bumping. And no risk to tubes, floors, or polished surfaces. You save time, save money, save effort, and win renewed confidence from your customers.

SEE HOW IT SAVES!

1. Saves effort and energy... a breeze to wheel... a snap to carry!
2. Saves extra steps and extra labor. Carries your TNT Kit... everything all at once.
3. Saves valuable service time... permits more calls per day... you make more money.
4. Prevents damage to tubes, wiring and set.
5. Prevents damage to customers' furniture, woodwork and floors.

Yours FREE!

This sensational work-saver now yours FREE with your purchases of Sylvania Tubes.
But don't delay! Offer expires August 31st. So, order your Sylvania Tubes and get your carrier reservation in NOW! Call your Sylvania Distributor for full details today!
NEW High Fidelity INTEGRATED 3-WAY TRIAXIAL 15" and 12" REPRODUCERS

Brings advantage of distortion-free wider range found in E-V separate 3-way systems, in one compact speaker

E-V concentric Triaxial design gets the most from specialized driving media for each portion of the audio spectrum. Augmented bass response, full bodied mid-range and silky-smooth upper octaves to the highest audible frequencies provide excellent musical balance without masking effects or imposed distortions.

Model 12TRX. 121/8" diam.
List, $190 Audiophone Net, $114

Model 15TRX. 151/4" diam.
List, $225 Audiophone Net, $135
Includes X36-1 crossover network and AT77 brilliance control

- Response 30-15,000 cps in Recommended Enclosures
- Exclusive E-V Concentric Mounting Insures Full Range, Complete Room Coverage
- Balanced Response Characteristic Provides Realism and Presence
- Adjustable Brilliance Control for Remote Mounting Allows Matching to Room Acoustics
- Edgewise Wound Voice Coil Design Allows 15% More Efficiency
- Full 1/2 Section M-Derived Crossover Network Minimizes Distortion Products

Write for Bulletin No. 204

ElectroVoice
BUCHANAN, MICHIGAN

For the RECORD
BY THE EDITOR

AT HOME WITH COLOR TELEVISION

It was with feelings of mixed emotion that your editor undertook the responsibility to "guinea pig" a color television receiver at his home during the past several weeks. We knew, for example, that no soupied-up laboratory model would provide the necessary data we were seeking. For the purpose a receiver would need to be taken right off a production line in order to serve as a fair basis for our tests.

But production models for immediate delivery to the public were not generally available back in March. The only exception was the announcement by Westinghouse that color television sets were now in production and were available for sale and delivery to the public. We decided to request the loan of a receiver from stock for test purposes at the consumer level. Our request was immediately granted and Model 840CK15 arrived promptly at our home in Greenwich, Conn. in its sealed carton via truck.

This location is 35 airline miles from the television antennas atop the Empire State Building in New York City. Our antenna is a 2-day conical, vintage of 1951. It feeds a 2-channel coupler.

One channel feeds a 24-inch monochrome receiver. The remaining channel was connected to the color set after curiosity prompted the decision to personally uncrate the set and connect it before the manufacturer's technician could arrive to handle the installation, the same as would be done for a consumer (apologies to Westinghouse). Somewhat hurriedly we read the tuning instructions and turned on the set.

Controls and tuning procedures were found to be about the same as on standard monochrome receivers. All seven channels were in good alignment and monochrome reception was highly acceptable. For comparison, the 24-inch black-and-white receiver was placed near the new color set. As expected, there was an immediate reaction due to the small color screen compared to the large screen to which we had become accustomed. However, experience later showed that one can become acclimated in a hurry providing he draws his chair closer.

No colorcasts were available during the first three days of viewing. We became quite accustomed to the slight sepia tone as viewed on the color screen from black-and-white telecasts and this actually becomes pleasing to the eye. The technician from Westinghouse had arrived and checked all controls, utilizing the color test patterns from WNBT. Three days later found us tuning in our first color television set at home. It was "The New Review," CBS, and from the standpoint of subject matter was a poor example of color possibilities. Skin tones were yellowish and lip makeup was excessive. A slight adjustment of the flesh control partly corrected the jaundiced appearance of the actors. True colors were still hampered somewhat with the convergence control for the first time and, possibly due to aging of components, was found to be slightly out of register.

Our impatience for more color programming mounted as the days slipped by. We realized that we would have the loan of the receiver for but a limited time and that all too few colorcasts were scheduled. It seemed that we could enjoy about one hour per week of mediocre subjects, including the Scholz-Andrews fight. This editor doubts if any prospect for a color set could be sold from this example.

Our enthusiasm for color reached a climax on March 28 when NBO set up their color cameras at New York's Botanical Gardens. This production was excellent from both color and production standpoint. It is a real thrill to enjoy the sparkle and life produced by various plants and flowers in their true colors. A three-dimensional effect and an added depth to the picture results from color television. Small objects which are not even noticed on monochrome are readily identifiable. It has been noted that picture quality (at least at this writing) of color signals on the monochrome set were not as compatible as one would expect. For example, reception of color on a color set is found to be in good focus while the same signals received on the monochrome set always appear fuzzy and contrast excessive.

A total of approximately 125 hours use has now been chalked up on the color set. It is interesting to note that no corrections have been required on any secondary control since the first week of use. It is only necessary to adjust the fine tuning and the color control occasionally when receiving colorcasts. Contrary to many opinions, a color receiver is far simpler to tune than several monochrome sets used in the past.

Now that we have good quality color television receivers, the need remains for more and better telecasts in color. Yes—color TV is here and it's terrific!
big values
new releases

"Golden Knight" 24-Watt High Fidelity Amplifier

A standout choice for limited-budget home music systems. Features ±0.75 db, 20 to 40,000 cps response; harmonic distortion less than 0.5% at normal level; low hum (30 db below rated output); switch for proper loading of G. E., Pickering or Audak cartridges; 3-position record-equalizer; base and treble controls; inputs for magnetic phono, mike, tuner and auxiliary. Finished in satin-gold. 8 x 14 x 9" deep. With convector, shaft, matched panel for cabinet. For 110-130 v., 50-60 cy. A.C. Shpg. wt., 30 lbs. Guaranteed for one full year.

93 SX 321. Net, only...

$79.50

"Golden Knight" Hi-Fi Music Systems

94 SX 127. Net, only...

$161.75

FM-AM Phone System: As above, but includes new Knight 727 FM-AM-Tuner. Shpg. wt., 76 lbs.

94 SX 128. Net, only...

$214.50

Knight VT Volt-Ohm-Milliammeter Kit

Terrific Value! Response to 8.5 mc. Bridge-type circuit; 1½ range resistors. Input res.: DC, 20 mgs; AC, 1½ mgs. 12-range meter. Range: AC p-p: volts, 0-28-56-110-120-v.; AC rms: volts, 0-3-10-30-100-1100; DC mgs; 0-250-500-1000-2000; DC milliamps; 0-2-5-10-20-50; ohms; 0-25-50-100-200-500-1000; 1 meg. Leads, case, instructions. For 110-120 v. AC or 60 v. DC. Shpg. wt., 61 lbs.

83 F 120. Net, only...

$24.95

83 N 121. Hi-V Probe; extends DC range to 10 KV. $6.95

83 N 122. Hi-Frequency Probe for AC range to 200 mc. $5.95

Wall "Frig-R-Heat" Soldering Gun

New transformerless quick-heat gun—very lightweight; perfect balance. Squeeze the trigger—you're ready to solder in 3 seconds. Long, narrow 1½" head. Featuresatheromaticelectronic "brain"—automatically regulates gun wattage from 150 to 800 watts, depending on size of job. Built-in limit-iron-cold 1½" tip. U.L. Approved. For 110-120 v. AC or DC. Shpg. wt., 2 lbs.

46 N 850. Net, only...

$7.85

JFD Super-Jet VHF Fringe Antenna

Model 2135. New, 2-ray all-channel VHF stacked array for fringe areas. Dual reflectors provide flat response on low channels. Conical-type driven elements for broad band-width. High band sections use 4 driven elements and 2 directors each—spaced and phased for peak performance. With half-wave stacking bars. Entirely pre-assembled for easy installation. 1 square aluminum beam. Less mast and 300 ohm line. Shpg. wt., 18 lbs.

98 CX 465. Net...

$22.55

JR 213. As above, but single-ray array. Shpg. wt., 81 lbs.

98 CX 464. Net...

$11.00

Knight Crystal Mike Value.

A real buy in a moisture-sealed crystal mike for recording or Amateur use. Response, 60-7500 cycles. Output level, ±0 db. High impedance, insulated internal elements for safe AC-DC use. With 0.5" shielded cable. Shpg. wt., 1 lb.

99 S 599. Net, only...

$3.25

ALLIED RADIO

June, 1954

send for ALLIED’S

Latest Free Supplement

New Knight Combination Tape Recorder and 8-Watt P. A. System

Amazing value in a versatile Hi-Fi recorder and powerful P.A. System. Records and plays back simultaneously. P.A. features outstanding sound quality for home listening and include: Quality push-pull 5-watt amplifier, 2 built-in oval speakers for playback and P.A.; jack for external speakers (below); push-button control of recording and playback functions; limits for recording from mike, radio, phonograph, TV, etc., recording time scale. Exceptional response: 7.55 speed, ± 3 db from 65-10,000 cps; 3.75 speed, ± 3 db from 75-7000 cps. Recording time (80 db, ratio 7.5:1), 14½ hour continuously; one hour overall; 3.75 speed, one hour continuously, two hours overall. Manual and grease-lubricant-type cast, 3½ "x 17½ " x 14½ ". With crystal mike, 600 ft. reel of tape and take-up reel. 110-120 v., 60 cycle AC. Special Offer...

96 RX 635. Net, only...

$129.30

Accessory Speakers: Two 12" speakers in 2-section case. With 25 ft. cables and plugs. 20 x 9 x 16". Shpg. wt., 21 lbs. 96 RX 637. Net...

$142.00

Sample Value Knight Recording Tape

Top quality 1½" tape at very low cost. Plastic base smoothly coated with red oxide. Features low noise level and uniform output. Type "A".

95 R 699. 600 feet. Net each...

$1.24

95 R 699. 1200 feet. Net each...

$1.99

Servicemen's Carry-All Case Quantities Limited

Worth twice this price! All-steel tool and accessory case. Each half of case is compartmented. One has 12 compartments and 6 transparent plastic boxes for small parts and tools. Other half has 2 compartments for larger tools and instruments. 7 compartments are in removable tray. Internal plate divides and protects each half of case. With carrying handle. 3½ " x 17½ " x 14½ ". A truly remarkable value. Shpg. wt., 14 lbs. 86 RX 284. Quantity limited. Net, while they last...

$7.95

New Rider Books on Color TV

"Highlights of Color TV." Makes color TV understandable to everyone. Covers principles of color TV receiver circuits. 48 pages.

37 R 937. Postpaid, only...

$975

"Introduction to Color TV." Covers color wave lengths and frequencies, primary color mixing, color production by reflection and projection; explains various color systems, brightness, hue, saturation, etc.; describes Color TV receiver circuits. 140 pages.

37 R 938. Postpaid, only...

$20.06

ALLIED RADIO CORP., Dept. 18-A

100 N. Western Ave., Chicago 80, Ill.

Send FREE ALLIED Supplement No. 139.

Enter order for...

$...

enclosed.

Name...

Address...

City...Zone...State...
The Best Costs Less When You Buy

THE FISHER

Custom Audio Components

If you are buying 'for keeps' buy the best first! Buy FISHER, quality leader for seventeen years. Engineered for the professional, functionally designed for home use. “Of the very best!”—High Fidelity.

FM-AM TUNER, Model 70-RT

FM-AM TUNER, Model 50-R
Same features as 70-RT above, but designed for use with external preamplifier-equalizer such as 50-C. Hum level better than 100 db below 2 volts output. Fully shielded and shock-mounted. Self-powered. $164.50

MASTER AUDIO CONTROL, Series 50-C
16 choices of record equalization, plus separate bass and treble tone controls, loudness balance control. Five inputs and input level controls, two cathode follower outputs. Chassis only, $89.50; with cabinet, $97.50

25-WATT AMPLIFIER, Model 70-A
50-watts peak! More clean watts per dollar. Less than 1/2% distortion at 25 watts (0.05% at 10 watts); Response ±0.1 db, 20-20,000 cycles; - db, 10 to 30,000 cycles. Hum and noise virtually non-measurable! $99.50

50-WATT AMPLIFIER, Model 50-A
100-watts peak! World's finest all-triode amplifier. Uniform within 1 db, 5 to 100,000 cycles. Hum and noise 96 db below full output. 1M distortion below 2% at 50 watts. Highest quality components throughout. $159.50

SPEAKER ENCLOSURE, Series 50
NEW! Regardless of the speaker or enclosure you are now using, the “50” Horn will revolutionize its performance. For use with 12” or 15” speaker systems. 50-HM (Mahogany) $129.50; 50-HB (Blonde) $134.50

PREAMPLIFIER-EQUALIZER, Model 50-PR
Professional phono equalization facilities at low cost! Independent switches for LF turn-over and HF roll-off. Output lead up to 50 feet. Can accommodate any low-level, magnetic pickup. Self-powered. $22.95

HI-LO FILTER SYSTEM, Model 50-F
Does what ordinary tone controls cannot do, for it suppressing all types of noise with an absolute minimum loss of tonal range. High impedance input; cathode follower output. Use with any equipment. $29.95

WRITE TODAY FOR COMPLETE SPECIFICATIONS

FISHER RADIO CORPORATION • 39 EAST 47th STREET • NEW YORK, N. Y.

Prices slightly higher west of the Rockies
ADVANCE! Raise your earning power—learn RADIO-TELEVISION-ELECTRONICS by SHOP-METHOD HOME TRAINING

GOOD JOBS AWAIT THE TRAINED RADIO-TV TECHNICIAN

There is a place for you in the great Radio-Television-Electronics industry when you are trained as National Schools will train you at home!

Trained technicians are in growing demand at good pay—in manufacturing, broadcasting, television, communications, radar, research laboratories, home Radio-TV service, and other branches of the field. National Schools Master Shop-Method Home Training, with newly added lessons and equipment, trains you in your spare time, right in your own home, for these fascinating opportunities. OUR METHOD IS PROVED BY THE SUCCESS OF NATIONAL SCHOOLS TRAINED MEN, ALL OVER THE WORLD, SINCE 1905.

EARN WHILE YOU LEARN

Many National students pay for all or part of their training with spare time earnings. We'll show you how you can do the same! Early in your training, you receive "Spare-time Work" Lessons which will enable you to earn extra money servicing neighbors' and friends' Radio and Television receivers, appliances, etc.

National Schools Training is All-Embracing

National Schools prepares you for your choice of many job opportunities. Thousands of home, portable, and auto radios are being sold daily—more than ever before. Television is sweeping the country, too. Co-axial cables are now bringing Television to more cities, towns, and farms every day! National Schools' complete training program qualifies you in all fields. Read this partial list of opportunities for trained technicians:

- Business of Your Own
- Broadcasting
- Radio Manufacturing, Sales, Service
- Television Manufacturing, Sales, Service
- Laboratories: Installation, Maintenance of Electronic Equipment
- Electrolysis, Cell Systems
- Garages: Auto Radio, Sales, Service
- Sound Systems and Telephone Companies, Engineering Firms
- Theatre Sound Systems, Police Radio
- And scores of other good jobs in many related fields.

TELEVISION TRAINING

You get a complete series of up-to-the-minute lessons covering all phases of repairing, servicing and construction. The same lesson texts used by resident students in our modern and complete Television broadcast studios, laboratories and classrooms!
no other rotor offers SO MUCH

a complete line

TR-2 the heavy duty rotor with compass control dial cabinet.
TR-4 the heavy duty rotor with meter dial cabinet.
TR-11 all purpose rotor with meter dial cabinet.
TR-12 all purpose rotor for large TV antenna arrays with meter dial cabinet.

CORNELL-DUBILIER
SOUTH PLAINFIELD, N. J.

THE RADIART CORPORATION
CLEVELAND 13, OHIO
"Here's proof the CQS Plan can really help your business"

"SEE HOW IT WORKS FOR ME..."

"I like my customers to know I'm the dependable CQS service-dealer; they read about in the big magazines like LIFE and the POST. So I make sure they do... by using the CQS Clocks, Signs, Decals, etc., available to any service-dealer."

"CBS-Hytron is running advertisements like these in LIFE. Maybe you've seen them and noticed they really do a selling job for us service-dealers. Well, I'm one service-dealer who is cashing in on a plan that's tailored-mode for me."

"So, I'm using the CQSTags on every job. Many of my customers now ask for them. They like the Tag's lay-it-on-the-line certification. Since December, I've ordered three lots of Tags...500, 1000 and 2000."

"Take my word for it. Here's a plan that's so simple...so sound that any service-dealer is missing a real bet, if he doesn't tie in...and cash in. The boost that CQS has given my business proves it."

"Look at the 'sell' of these new CQS Streamers! Get aboard this CQS plan. It can do just as fine a job for you as it is doing for me. Take a tip. Find out today the facts about CQS. Prove to yourself that CQS can build up your business, too."

GET YOUR Certified QUALITY SERVICE TAGS...imprinted with your name and address. Use them on every job. Get your big, new CQS CBS-Star Kit. It contains:

A. Six smashing, colorful CBS-Star streamers. Each features a different CBS-TV star: Benny...Burns and Allen...Gleason...Godfrey...Morrow...and Marie Wilson. Each streamer is a different size and shape. Each one sells the Star Performance of your Certified Quality Service.

B. New colorful inside/outside CQS decal.

C. Business Builders Catalog showing the many hard-hitting sales aids available to you.

CBS-STAR KIT IS FREE with your order for CQS Tags...Kit alone, 25¢.

Ask your distributor salesman for special offer. Or use coupon:

CBS-HYTRON, Danvers, Mass.

Please rush me:

A CBS-Star Kit free with CQS Tags (quantity)
@ $2.25, 250; $3.50, 500; $6.00, 1000

A CBS-Star Kit only
@ 25¢ (for handling and mailing)
I enclose $...to cover Tags and/or Kit.
(please send cash, check, m.o. no C.O.D.'s.)

HERE IS MY 3-LINE IMPRINT FOR TAGS
(please print name and address)

Name...Street...
City...State...
Signed...

C-251
You're in the best of company if you use a Pickering MAGNETIC Cartridge. You have this in common with:

1. Leading record companies who use Pickering Cartridges for quality control.
2. Leading FM/AM good music stations and network studios.
3. Leading manufacturers of professional equipment for radio stations, recording studios, wired music systems and automatic phonographs, who install Pickering Cartridges for the maximum performance of their equipment.

Why Pickering MAGNETIC Pickups are the Choice of Recording and Broadcast Engineers!

"All modern disc recordings are made with MAGNETIC cutters. Within the geometrical and mechanical limitations of recording and reproducing equipment, a Pickering Pickup will re-generate an exact replica of MAGNETIC cutter response to the original program of music, speech or sound. This is a fundamentally inherent characteristic of the Pickering Pickup, supported by basic electromagnetic theory and countless precise laboratory measurements. This is why Pickering MAGNETIC Pickups provide the most nearly perfect coupling possible, between reproducing equipment and original program. This is why they sound cleaner ... less distorted.

"Through the medium of the disc material, the reproducing system is effectively driven by the cutter electrical response itself."
June, 1954

Six months from today

Which Will You Hold?

Add Technical Training
To Your Practical Experience-
GET YOUR FCC LICENSE IN A HURRY!

Then use our Amazingly Effective
JOB-FINDING SERVICE

TELLS HOW-

Here Is Your GUARANTEE

- **WE GUARANTEE TO TRAIN AND COACH YOU AT HOME IN SPARE TIME UNTIL YOU GET YOUR FCC LICENSE.**
- If you have had any practical experience—Amateur, Army, Navy, radio repair, or experimenting.

TELLS HOW-

Employers make JOB OFFERS Like These to Our Graduates Every Month

Letter from nationally known manufacturer of high quality AM and FM transmitters. "We are very much in need at the present time of radio-electronics technicians and would appreciate any helpful suggestions that you may be able to offer." Salary up to $100 per month to start.

Letter from nationally known airline manufacturer. "We need men with electronic training or experience in radio maintenance to perform operational check-out of radio and other electronic systems. Starting salary... amounting to $32.33 per month."

These are just a few samples of the job offers that come to our office periodically. Some licensed technicians filled each of these jobs... it might have been you!

HERE'S PROOF FCC LICENSES ARE OFTEN SECURED IN A FEW HOURS OF STUDY WITH OUR COACHING AT HOME IN SPARE TIME.

<table>
<thead>
<tr>
<th>Name and Address</th>
<th>License</th>
<th>Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee Worthy</td>
<td>2nd Phone</td>
<td>36</td>
</tr>
<tr>
<td>5214 W. Olympic, Baltimore, California</td>
<td>1st Phone</td>
<td>20</td>
</tr>
<tr>
<td>Box 1016, Chicago, Florida</td>
<td>1st Phone</td>
<td>38</td>
</tr>
<tr>
<td>Francis R. Ander</td>
<td>110 West 110th St., Central, California</td>
<td>2nd Phone</td>
</tr>
<tr>
<td>3400 E. 19th St., Chicago, Illinois</td>
<td>110 W. 11th St., Chicago, Illinois</td>
<td></td>
</tr>
<tr>
<td>Carl E. Smith, E.E., Consulting Engineer, President</td>
<td>1st Phone</td>
<td>38</td>
</tr>
<tr>
<td>CLEVELAND INSTITUTE OF RADIO ELECTRONICS</td>
<td>2nd Phone</td>
<td>36</td>
</tr>
<tr>
<td>Desk RN-65, 4900 Euclid Bldg., Cleveland 3, Ohio</td>
<td>Name and Address</td>
<td>License</td>
</tr>
</tbody>
</table>

Get This Valuable Booklet FREE!

TELLS HOW-

Our Amazingly Effective JOB-FINDING SERVICE Helps CIRE Students Get Better Jobs

Here are a few recent examples of Job-Finding results:

- **GETS CIVIL SERVICE JOB**
 - "Thanks to your course I obtained my 2nd class license, and am now employed by the Civil Service at Great Lakes Naval Training Station as a **CIVIL SERVICE LICENTIATE**."

- **GETS STATE POLICE JOB**
 - "I have obtained my 1st class license, and since receiving it I have held good jobs at all times. I am now an unclassified Police Officer with the Kentucky State Police."

- **GETS BROADCAST JOB**
 - "I wish to thank you for your prompt service. I have been getting good offers from all over the country, and I have taken a job with Capital Airlines in Chicago, as a **Broadcast Operator**."
 - Walter Koschik, 444 S. Dearborn, Chicago, Ill.

Get All 3 FREE MAIL COUPON NOW

Cleveland Institute of Radio Electronics
Desk RN-65, 4900 Euclid Bldg., Cleveland 3, Ohio

I want to know how I can get my FCC Ticket in a minimum of time. Please send me your FREE coupon "How To Pass FCC License Examinations" (does not cover exams for Amateur License), as well as a sample FCC-type exam and the valuable booklet, "Money-Making FCC License Information." To be sure to tell me about your Television Engineer Training Course.

NAME: ____________________________

ADDRESS: ________________________

CITY: ____________________________ ZONE: __________

POSTAGE PAID ENCLOSE POSTAGE OR SEND AIRMAIL.
The Ultra-Highs, shuttled to the grazing grounds for quite a spell while color held sway, have roared out of the quiet hinterland into Washington, to the halls of Congress, the inner sanctum of the Commission, and scores of offices of consultants and lawyers. The raging shift has beenbrewing since the beginning of the year when the FCC began receiving u.h.f. permits back; it has brought about a full-scale Congressional hearing on "the status and development of the u.h.f. channels in the U.S." under the chairmanship of Senator Charles E. Potter, heading a special subcommittee on communications on the Senate Interstate and Foreign Commerce Committee. Others named to the new group were Senators Andrew J. Schoeppel, Dwight Griswold, John O. Pastore, and Lester C. Hunt.

The hearing was applauded by ultra-high operators and the recently-formed u.h.f. association. Senators were also quite keen about the investigation, feeling that now it would be possible to probe thoroughly all of the ways that might be used to develop the upstairs channels, so that they could become solidly united with the low-band system. One of the key problems under survey is the affiliation of networks with the newcomers, particularly in mixed markets. Other points being considered are power, availability of less low-band channels than high-band, differences between systems as to cost and operation, multiple-station acquisition, and the use of v.h.f. profits to build up the ultra-highs.

Reviewing the role that they'll play in the hearings, counsel for the u.h.f. association said: "Since the first of the year, a number of u.h.f. stations have been forced to suspend operations because of economic and regulatory problems beyond their control. Until the FCC and the television manufacturers, as well as the networks, approach the problem of u.h.f. in a more realistic and intelligent fashion, the great expectations of the industry cannot be fully realized. We hope to cooperate with the subcommittee by making available facts and witnesses."

To boost interest in the high bands, several plans have been offered. The Commission has proposed that the present rule be modified to allow one owner to operate seven stations, instead of five, with two of the stations using the high bands. Senator Edwin Johnson, former chairman of the main committee, differed with the Commissioners, declaring that use of the higher bands should be made more attractive to multiple-station operators. He proposed, in a bill, that no one should operate more than five low-band stations; but they could control four v.h.f. and two u.h.f. stations, or three v.h.f. and four u.h.f. stations, or two v.h.f. outlets and six high-band units, or a single low-band and eight ultra-high outlets, or no low-band and ten stations on the higher channels. The measure also provides that anyone with a very-high permit, issued before the enactment of the bill, who yields the permit within five years of its enactment, would be entitled to a couple of ultra-high permits, with one of them serving substantially the same area as the abandoned v.h.f. permit.

The problem of power, also a critical factor, prompted the Commission to propose that the minimum power for the high-channels be raised from one to five kilowatts to assure the best possible technical service. The lower powers, now in effect, were authorized because no high-powered gear was available when the ruling was placed on the books. Stations already authorized for low power would not be disturbed, but all new applicants would be obliged to use high power immediately, unless they could show that such high-power equipment was not available. Operators have complained that it was not possible to get high-kilowatt transmitters; now the manufacturers say that such transmitters will be available. Some of the broadcast makers have promised that before the year is out, 1000-kilowatt units will be available.

The affiliation problem has provoked many, and one broadcaster saw to it that the Senators knew the score. In a sizzling letter to a group of the legislators, including Senators Johnson and Potter, Parris E. Rahall, owner of several TV stations, said that some of the stations were operating a monopoly, refusing neighboring stations a tie-in with networks, because they felt that their stations offered sufficient coverage. He cited the case of a station in Philadelphia which insisted that a network use their facilities...
IT SAYS IT WANTS BETTER PROGRAMS AND SPRAGUE CAPACITORS.

Don't Be Vague...Insist on SPRAGUE

Accept no substitutes. There is a Sprague Distributor in every sales area in the United States. Write for the name of your nearest source of supply today.

Twist-Lok 'Lytics
Sprague TVL's fill the top performance bill in the toughest TV circuits. High temperatures, surge voltages, ripple currents won't faze them. Like all Sprague capacitors, Twist-Lok 'Lytics are your first line of defense against expensive call-backs.

Tel-Ohmike
This capacitor-resistor analyzer is the handiest instrument you can buy! Moderately priced for radio and TV repair shops, the Model TO-4 Tel-Ohmike offers top quality and accuracy for every service need. Priced so you can afford it at $73.50 net.

Aroms
The smallest TV 'lytics made—and the only small ones for 85°C (185°F) up to 450 volts d-c. Guaranteed for low leakage and long shelf life, they withstand high temperatures, high ripple currents, high surge voltages. From crowded TV chassis to jam-packed portables, Sprague Aroms fit 'em all.

SPRAGUE

WORLD'S LARGEST CAPACITOR MANUFACTURER

June, 1954
NEW! Unique!

The only FM Tuner with Photo-Etched Circuit.

THE craftsmen

C900 FM TUNER

Finest FM Tuner regardless of cost.
Highest in Sensitivity . . .
Lowest in Distortion.

Another craftsmen first . . .
Photo-etched 20.6 mc. transitionally-coupled
IF coils insure life-long uniformity and
stability of performance under all conditions.

In every performance test by
high fidelity experts the C900 has established
its outstanding superiority.

FEATURES

Extreme Sensitivity: 1.0 ye for 20db quieting
provided by advanced circuitry of cascode
rf amplifier. Minimum Distortion: 0.1% FM
throughout entire receiver. Amplified AFC with
front-panel control, assures accurate
tuning for minimum distortion.

Entirely new 20.6 mc. IF system rejects spurious
images, reduces oscillator radiation.

See your Hi-Fi Dealer or write to

The Radio Craftsmen, Incorporated, Dept. R6
4403 North Ravenswood Avenue, Chicago 40, Illinois

$119.50 NET

only, and there was no need to provide
service to any other station in the
vicinity. The complaining telecaster
pointed out that engineering studies
revealed that actually the network
station had inadequate coverage in the
questioned area, some sixty miles
away. Declared Rahall: "If Congress
or the FCC is going to permit power
stations . . . to dictate to the net-
works, we can expect approximately
35 TV stations to claim coverage of
the U.S. population, which I think es-
tablishes monopolistic operations."

Urging support for Senator John-
son's view that networks and power
stations should be denied their requests
for additional stations, Rahall added
that in his opinion the Commission
committed an error in permitting power
increases to the low-band stations. He
felt that such boosts could be com-
pared to the establishment of a num-
ber of 50-kilowatt AM broadcast sta-
tions.

DIRECTIONAL ANTENNAS were
offered as an answer to some of the
high-band problems, some believing
that such an antenna could be used as
a means of gaining more coverage.

When questioned why such antennas
were not authorized in the rulings is-
issued on freeze-lift day, a member of
the Commission said that an industry-
government ad hoc committee had
studied the proposal and felt that off-
set carrier frequency operation would
help more in reducing co-channel spac-
ing and minimize interference, too.

The fix that uh.f. stations are in
now, appears to have changed this at-
titude. Even Commissioner George
Sterling declared publicly that broad-
casters who use the high bands would
find help in the beam antenna. At an
IRE meeting recently, he said that the
rules actually define "a direc-
tional antenna as one that is designed
or altered for the purpose of obtaining
a non-circular radiation pattern. Di-
rectional antennas may not be used for
reducing minimum mileage separation
requirements, but may be employed
for improving service."

Detailing the design characteristics
of a directional antenna, the Commis-
sioner said that such an antenna . . .
"designed for changing the position of
the major radiation lobe from the hor-
izontal plane to any other vertical
plane is considered a directional an-
tenna for the purposes of licensed
power and power limitations. Thus, an
antenna designed for beam-tilting
would not be considered an omnidirec-
tional antenna in respect to these mat-
ters, even though the horizontal radia-
tion pattern is not directional. As a re-
sult, such stations would be licensed
for the power in the horizontal plane,
and would be limited to the maximum
powers authorized in the rules in any
vertical plane."

The Commission was aware, Sterling
added, that . . . "beam tilting may re-
sult in a licensed effective radiated
power which is less than the maximum
radiation. This condition would occur
A Brief Survey of COLOR TV

by E. H. Rietzke, President, Capitol Radio Engineering Institute

GOOD MANY YEARS AGO, when he was a young fellow, my Dad was one of the country’s fastest typesetters. He could go anywhere and get a highly paid job with any newspaper in the country. Then came the linotype machine! Before he knew it, my Dad’s job was obsolete. He had to start all over in another line of work.

How will you get along in the age of Color TV that has already arrived? Will you have to start all over? Or will you be prepared? The choice is a matter of black-and-white—or color. As you may know, color TV involves handling an understandably much more complicated signal than for black-and-white; the components must be in perfect balance; the margin for error is practically zero. Technical personnel need new skills in working to closer tolerances. Microwave relays and co-axial cables require added equipment and special adjustments. Before a station can originate color it needs a great deal of additional equipment, much more expensive and vastly more complicated than that for black-and-white. Slide and film equipment also require additional components and maintenance. Color camera chains are much more complex, requiring more highly skilled adjustments and care. Reports of network experiments indicate that live telecasting in color increases technical man-hours required by 30 to 50%.

Lighting personnel need more skill in handling new—and delicate—problems. That’s a very quick run-down from the technical end. Every step is a technical opportunity.

What about color receivers? They’ll be bigger—with roughly twice as many receiver tubes as black-and-white. There is at least one more tuning knob—the chroma control for color saturation. Maintenance is complicated, to say the least, with three highly critical video channels to trouble-shoot instead of one. Service contracts for color receivers will cost considerably more than for black-and-white, according to one highly qualified source—which should give you an idea of servicing complexity—and earnings possibilities. So much for transmission and reception. Manufacture of color equipment is another field for trained technicians.

Many well-informed sources agree that color television will be spread all over the U.S. by 1956 at the latest. The years between now and then are crucial. If you are interested in an honest-to-goodness career in this booming part of the booming electronics industry, here’s how you can step ahead of competition, move up to a better job, earn more money, and be sure of a well-paid job: Study radio-television-electronics via CREI. You don’t have to be a college graduate. You do have to be willing to invest some of your spare time—at home. You can do it while holding down a full-time job. Thousands have. Since 1927 CREI has provided men with the technical knowledge that leads to more job security—and more money. CREI starts with fundamentals and takes you along at your own speed, not held back by a class, not pushed to keep up with others who have more experience. You master the fundamentals, then get into more advanced phases of electronics engineering principles and practice. Finally you may elect training at career level in high specialized applications of radio or television engineering, or aeronautical radio.

The coupon below, properly filled out, will bring you—without cost—a fact-packed booklet, “Your Future in the New World of Electronics,” which includes outlines of courses offered, a resume of career opportunities, full details about the school, our Placement Bureau (with more requests for trained men currently on file than we can fill), and the names of some of the organizations using CREI training (like All American Cables & Radio, Inc., Canadian Broadcasting Corp., Columbia Broadcasting System, RCA Victor Division, United Air Lines, to name a few). I urge you—for your own good—to send for this free booklet immediately.

NOTE: CREI also offers Resident School instruction, day or evening, in Washington, D.C. New classes start once a month. If you are a veteran discharged after June 27, 1950, let the new GI Bill help you obtain resident (or home study) instruction. Check the coupon for more data.

CAPITOL RADIO ENGINEERING INSTITUTE
An Accredited Technical Institute. Founded in 1927
3224 16th Street, N.W. Dept. 116-A
Washington 10, D. C.

Send booklet “Your Future in the New World of Electronics” and course outline, Check:
□ TV, FM & Advanced AM Servicing
□ Practical Radio Engineering
□ Broadcast Radio Engineering (AM, FM, TV)
□ Practical Television Engineering
□ Aeronautical Radio Engineering

Name _______________________________
Street _______________________________
City ______________________ Zone __ State ________

Check: □ Residence School
 □ Veteran

June, 1954
where the power radiated toward the more distant portions of the service area is reduced by beam tilting for the purpose of increasing the signal strength at relatively close locations."

The Commissioner noted that his colleagues were willing to listen to proposals for changes. "To the extent the Commission might relax its directionalizing rules to aid u.h.f. stations in obtaining better coverage because of their power limitations," Sterling continued, "consideration must be given to the number of people that would gain service, as compared to those who would lose service or have it degraded as well as the remote possibility of co-channel interference."

TOWER SHARING, which has had a phenomenal success in New York City, will soon become a factor in Dallas, where two stations, operating on channels 4 and 8, will become neighbors on a common antenna, 1521 feet above the flatlands of Texas.

The stations WFAA-TV and KRLD-TV told the Commission that the antenna site is actually 828 feet above mean sea level, but the effective antenna height above average terrain for each antenna would be 1685 feet. KRLD-TV said that they plan to use a six-bay antenna and operate on 100 kilowatts, while WFAA-TV reported that they would use a 12-bay job and an output of 315 kilowatts. The antenna structure was described as a triangular-guyed tower, with fifteen sets of double-guy wires for support, and the longest guy leads extending to over 1000 feet from the base. The installation will cost over one-million dollars, and will include transmitter buildings for each station, which will house all of the necessary radiating gear.

The structure, a candelabra-type affair, will be located about sixteen and a half miles southwest of Dallas, and will, it was said, provide each station coverage of 80 to 85 miles for class B service.

A UNIQUE VIDEO-RECORDING system, capable of recording up to 80 per cent of televised information, has been designed and constructed by scientists at the Naval Research Laboratory in Washington.

The development, prompted by the increasing number of applications of TV to military operations, features the use of a film-recording system, with a free-running shutterless camera in conjunction with an electronic shutter, to provide a versatile system adaptable to a wide variety of TV line and frame rates. The electronic shutter, which replaces the more familiar mechanical shutter on the camera, blanks and unblanks the recording picture tube. Used in a 525-line system with a camera having a pull-down time of 72° or less, up to 80 per cent of televised information can be recorded, using a 24-frame-per-second recording rate. No provisions have been

(Continued on page 96)
Here’s the expert crew that keeps Keyport’s TV’s in tip-top shape at Pete’s, Inc. Left to right: Leroy Christensen, William Murray and shop manager, Dan Noreen.

"G-E Field Clinics cut repair time, step up number of calls,"

Says M. Kuarloyg, Pete’s, Inc., Keyport, N. J.

"Can’t keep our men away from those G-E Field Clinics," writes M. Kuarloyg, head man at Pete’s, Inc., Keyport, N. J. "Their meetings give us a keen edge over competitors’ service methods—we’ve cut down repair time and stepped up the number of calls. Customer satisfaction increases, too, because when we fix sets they stay fixed."

· G-E Field Clinics show the quickest ways to diagnose and correct TV troubles... how to increase efficiency of service operations. Call your G-E Distributor for date and location of clinic nearest you.

You can put your confidence in...

GENERAL ELECTRIC

June, 1954
NEW INVENTION OUTMODES ALL PRESENT ANTENNAS!

53 CLAAMS GRANTED IN 5 U.S. PATENTS ON NEW REVOLUTIONARY ANTENNA INVENTION!

NEW!
SUPER 60

GUARANTEED PERFORMANCE

LIST PRICE $36.75
SEE YOUR JOBBER

MONEY BACK GUARANTEED TO RECEIVE ALL CHANNELS 2-83 FROM ALL DIRECTIONS AND POSITIVELY OUTPERFORM ALL OTHER ANTENNAS WITH OR WITHOUT A ROTORMOTOR

GUARANTEED TO POSITIVELY OUTPERFORM ALL OTHER ANTENNAS (with or without rotor motors) on ALL UHF, and ALL VHF stations 2 thru 83 from ALL directions.

GUARANTEED to positively give you the CLEAREST, SHARPEST, most PERFECT GHOST-FREE pictures possible in both COLOR and black-white.

53 CLAIMS GRANTED IN 5 U.S. PATENTS ON NEW REVOLUTIONARY ANTENNA INVENTION!

#2,585,670 #2,609,503 #2,625,655 #2,644,091 #2,661,423 others pending

ELECTRONIC ORIENTATION SWITCH

The 9-position selector switch electronically rotates the antenna in a stationary position.

NEW POLYMICALENE 4 CONDUCTOR TRANSMISSION LINE

- Low Loss External Air Dielectric
- Matched Impedance
- Eliminates End Sealing
- Eliminates Condensation
- Up to 50% Less Loss Than Tubular When Wet
- Easily Spiraled
- No Breaking or Shorting
- Patents Pending - T.M. Reg

This is all you need! The price includes the complete antenna and the 9-position electronic orientation switch. The Air Dielectric Polymicale Line is purchased as required for the individual installation.

NOW!! SOLVE YOUR ANTENNA PROBLEM ONCE AND FOR ALL.

ALL CHANNEL ANTENNA CORP.
47-39 49th STREET, WOODSIDE 77, N.Y.
EXETER 2-1336

22
I'll Train **YOU** at Home in Your Spare Hours for Big Pay Job • Your Own Business • Exceptional Opportunity in RADIO-TELEVISION

ON New NO-OBLIGATION PLAN!

You Have NO MONTHLY PAYMENT CONTRACT to sign ... you pay for your training as you learn and earn...ENROLL NOW! Be Ready in Little as 10 MONTHS!

Now you can get into Radio-Television, today's fastest growing big money opportunity field, in months instead of years! My completely new, "package unit" training plan prepares you to qualify as a Radio-Television Technician in as little as 10 months, or even less! I offer you my training with no monthly payment contract to sign, thus NO RISK, and NO OBLIGATION for you! This is America's finest, most modern and really practical training. Includes FM, UHF Television and all the most recent developments. My training gets you ready to handle any practical job in the booming Radio-Television industry. Start your own profitable Radio-Television service shop and be in your spare time Radio-Television service jobs. New Television stations. New New Television stations opening everywhere open big money opportunity for men to install UHF antennas—I tell you how! If you expect to be in the Armed Forces later, there is no better preparation than Radio-Television. Mail coupon below... get facts FREE. No salesman will call.

VALUABLE EQUIPMENT INCLUDED WITH TRAINING

Much of your Sprayberry Training is actual construction, demonstration and experimentation. You get priceless practical experience this way. You build the 6 tube Sprayberry Short Wave and Broadcast Training Receiver, the Sprayberry Television set, multi-range test meter, signal generator, signal tracer, cathode ray oscilloscope and many other projects. All this equipment is yours to keep. You have practically everything you need to set up your own profitable Radio-Television shop. All lessons and books I send you remain your own property.

OUR 21st YEAR TRAINING MEN FOR RADIO-TELEVISION

Earn Extra Money While You Learn

All your Sprayberry Training is given IN YOUR OWN HOME during your free time. Keep on with your present job and income while learning Radio-Television. With each Sprayberry "Package Training Unit" I include money-making plans and special "Business Builders" for spare time Radio-Television service jobs. New Television stations opening everywhere open big money opportunity for men to install UHF antennas—I tell you how! If you expect to be in the Armed Forces later, there is no better preparation than Radio-Television. Mail coupon below... get facts FREE. No salesman will call.

FREE TO YOU 3 BIG RADIO-TELEVISION BOOKS

I invite you to get all the facts— I want you to have ALL the facts—without cost! Rush coupon for my three big Radio-Television books! "How to Make Money in Radio-Television" PLUS my new illustrated Television Bulletin PLUS an actual sample Sprayberry Lesson—ALL FREE. No obligation and no salesman will call. Mail coupon TODAY!

Mail Coupon

Mail Coupon Today!

Sprayberry Academy of Radio
111 North Canal St., Dept. 25-K
Chicago 6, Illinois

IF YOU ARE EXPERIENCED IN RADIO Men already in Radio who seek a short intensive 100% TELEVISION Training with FULL EQUIPMENT INCLUDED are invited to check and mail the coupon at the right.
FRANK SWINEHART has joined the engineering department of the Turner Company, Cedar Rapids manufacturer of microphones for amateur, broadcasting, and PA applications. He is a graduate of Tri-State College and will be engaged in engineering and research work for the company.

He was formerly associated with Radiant Corporation, the Astatic Corporation, and Brush Development Corporation. He will now make his headquarters in Cedar Rapids.

JAMES M. SKINNER, JR. has been named vice-president of Philco's television division. Standard Coil Products Co., Inc. has appointed HAROLD F. BEALE to the post of assistant to the president. NAT WELCH is the new vice-president in charge of sales for OR Radio Industries, Inc., manufacturers of Irish sound recording tape.

SIDNEY A. STANDING has rejoined Raytheon as manager of its cathode-ray tube division. He will make his headquarters at the firm's new Quincy, Mass. plant.

LOUIS W. SELSOR has been promoted to the post of distributor sales manager for Jensen Manufacturing Company of Chicago.

ABRAHAM HYMAN has been named head of the recently expanded TV antenna development section of Brach Manufacturing Corp. Telecro Industries Corp. has appointed NATHAN GROSSNER to the post of chief engineer and sales engineer of its transformer division.

E. DUDLEY BELL is the new general manager of Solar Manufacturing Corp. Westinghouse's tube division has named FRANKLIN P. HINMAN acting manager of manufacturing for the division, and HARRY F. PULLEY acting manager of the division's Elmira, N.Y. plant.

SEVERIN JONASSEM, industrial designer, has recently accepted a position with Philco in the TV product development department. For the past nine years he has operated his own studios in New York.

The appointment of GEORGE J. DESPOTICO to the executive staff of Pyramid Electric Company has been announced by the company. He will be administrative assistant to the executive vice-president.

EDWARD JAHNS has been appointed vice-president in charge of production at the Recordio plants of Wilcox-Gay Corporation.

GEORGE S. BOND is the new advertising manager of P. B. Mallory & Co., Inc. He has been with the firm since 1937.

Radio Craftsmen, Inc. has promoted EDWARD S. MILLER to the post of vice-president and JOHN NARRACE to the chief engineer's position.

ALLEN S. NELSON has been appointed manager of distributor sales for International Rectifier Corp. of El Segundo, California.

GORDON LE MAY is the new assistant sales manager for RMS of New York. The equipment sales division of Raytheon has named JOHN F. MORTEN marketing services manager.

SAVA JACOBSON is the new head of product engineering for Pacific Mercury Television Mfg. Corp. of Van Nuys, California.

RAUL H. FRYE has been named vice-president in charge of engineering for National Company, Inc. He was formerly with Raytheon. Capital Radio Engineering Institute has appointed EDWARD H. GUILFORD to the post of assistant to the president. He has been associated with the educational branch of radio-electronics field during his entire business career.

J. GERALD MAYER, Washington, D.C. attorney, has been elected executive vice-president of Micamold Radio Corporation.

GRAEWE W. STEWART has been appointed advertising and sales promotion manager of Stewart-Warner Electric, the radio, television, and electronic products division of Stewart-Warner Corporation.

Mr. Stewart, who has been regional sales manager in Indiana, Kentucky, Ohio, and West Virginia for the past year, will be responsible for the expanded national advertising in both consumer and trade magazines and will develop and provide sales help and plans in the promotion field at the dealer level.

Prior to joining the firm, Mr. Stewart was in business in Denver and Cumberland, Maryland.

PRECISION POTENTIOMETERS CORPORATION has been organized as a subsidiary of MASTER MOBILE MOUNTS, INC. The new firm, at 1243 West Pico Blvd., Los Angeles, will manufacture precision pots and precision windings.

STAN WHITE INC. has been established at 725 S. LaSalle Street in Chicago to manufacture and sell high-fidelity components. The new firm is a division of EDDIE BRACKEN ENTERPRISES.

HERMAN KAYE has formed a new organization known as CALTECH ELECTRONICS CORP. The firm is located in a new, modern structure at 8930 Lindblade Ave., Culver City, California, where a line of hi-fi RADIO & TELEVISION NEWS.
PHILCO announces 3 new super-performance TV antennas

The finest TV antennas in their class... designed by the world famous Philco Laboratories after thorough research into receiver requirements in all types of locations... designed to give complete customer satisfaction... to meet competition on any level!

PHILCO SUPER CONICAL UHF-VHF ALL-CHANNEL ANTENNA

Full 45" dowelled aluminum antenna elements and full 33" dowelled aluminum reflector assure strong signal pickup on VHF channels 2 through 13... top quality performance on UHF channels 14 to 83.

Single or stacked array Super Conicals produce new balanced performance... super picture quality plus high gain. All-aluminum construction in the Super Conical... it's easy to erect. Part No. 45-3096.

PHILCO SUPER YAGI VHF ANTENNAS

Quick-rig model with ten elements gives top fringe-performance on VHF channels 2 through 13. Excellent front to back ratio (6 to 1). This Super Yagi eliminates ghosts in strong signal areas... selects signals from adjacent weak area channels or co-channel stations. 10 db to 12 db gain depending on channel. Strong, all-aluminum. Part No. 45-3112. (Single channel 2 thru 13 and broadband 2 thru 6, 7 thru 13; 4, 5, 6).

PHILCO PARAFLECTOR ALL-CHANNEL UHF ANTENNA

Light weight pre-assembled all-channel UHF antenna. Outstanding performance in far-fringe areas. High gain... 8 to 10 db. Exceeds gain of corner reflector of like dimensions. Impedance matched to 300 ohm line. Completely assembled, all-aluminum construction... can be mounted on existing masts for immediate use... all-channel paraflector weighs only 1 1/2 lbs. Part No. 45-3071.

See them today at your Philco Distributor

PHILCO CORPORATION
ACCESSORY DIVISION

June, 1954
Every Room a Music Room...

with the UNIVERSITY 3-WAY "Companion"

Within the confines of a small enclosure—performance that spans the complete musical range....from rich, vibrant bass to lyrical, brilliant highs.

HERE'S HOW:

WOOFER: heavy duty exclusive "N" Alnico 5 magnet and rim-centered diaphragm with oversized voice coil on buzz-free duramel suspension provides exceptional richness and depth of the lowest bass tones.

MID-RANGE: Patented "Diffuser" element comprises dual radial mid-range projector and diffraction ring for efficient full-bodied reproduction of the middle octave, retaining all the original "presence".

TWEETER: genuine heavy duty driver unit with exclusive "replacethn replacing stores" while angle horn reproduces the full range of the highest musical tones clearly and with true brilliancy.

CROSSOVER NETWORK: True electrical separation of high, middle and low frequencies, with professional inductance/capacitance type network, results in deep dimensional spatial orchestral quality.

BALANCE CONTROL: Adjusts performance of the system to suit program quality, room acoustics and accommodates a wide gamut of personal tastes.

AUTOMATIC CLOCK: Versatile timepiece will plan your musical itinerary—record broadcast programs in your absence—awaken you to retire with choice music by adjusting a simple control...and the entire music system, tape recorder or radio will "perform" or "shut off" remotely or automatically.

For complete information write to desk 15-F

UNIVERSITY LOUDSPEAKERS INC.
80 SOUTH KENSICO AVENUE WHITE PLAINS, N.Y.
MORE DEALERS ARE INSTALLING

CHANNEL MASTER'S

CHAMPION

THAN ANY OTHER ANTENNA IN TELEVISION HISTORY!

All-channel reception: VHF & UHF

ONLY THE CHAMPION enjoys this overwhelming acceptance: over 300,000 already sold!

ONLY THE CHAMPION is powered by the unique "Tri-Pole," the triple-powered dipole system that provides fabulous VHF-UHF fringe area performance. 100% aluminum; rugged, exclusive alloy. Installs in a flash!

ONLY THE CHAMPION gives you this four-star promotion program:

★ FREE newspaper ads
★ FREE TV film commercials
★ FREE colorful display material
★ FREE consumer literature

See your Channel Master distributor for full details.

The antenna America knows best!

Introduced to millions through the editorial pages of their favorite magazines and newspapers, and on TV.

DON'T BE MISLED BY "LOOK-ALIKES" . . . THERE'S ONLY ONE REAL CHAMPION!
AMPHENOL installation-proved VHF and UHF television antennas are the first choice of dealers, servicemen and distributors because they are easy to sell. Viewers choose AMPHENOL antennas for the very good reason of better picture quality, their assurance of viewing satisfaction.

AMPHENOL television accessories are designed by skilled engineers with years of experience in electronics. Each installation accessory, whether it is the new Lightning Arrestor, new Tele-Couplers, or any other part, operates at peak efficiency because of AMPHENOL quality-designing.
Home Study Courses in TELEVISION SERVICING offered by RCA INSTITUTES

Study Television Servicing—from the very source of the latest, up-to-the-minute TV and Color TV developments. Train under the direction of men who are experts in this field. Take advantage of this opportunity to place yourself on the road to success in television. RCA Institutes, Inc. (A Service of Radio Corporation of America), thoroughly trains you in the “why” as well as the “how” of servicing television receivers.

FIRST HOME STUDY COURSE IN COLOR TV SERVICING

Now you can train yourself to take advantage of the big future in Color TV. RCA Institutes Home Study Course covers all phases of Color TV Servicing. It is a practical down-to-earth course in basic color theory as well as how-to-do-it servicing techniques.

This color television course was planned and developed through the combined efforts of instructors of RCA Institutes, engineers of RCA Laboratories, and training specialists of RCA Service Company. You get the benefit of years of RCA research and development in color television.

Because of its highly specialized nature, this course is offered only to those already experienced in radio-television servicing. Color TV Servicing will open the door to the big opportunity you’ve always hoped for. Find out how easy it is to cash in on color TV. Mail coupon today.

HOME STUDY COURSE IN BLACK-AND-WHITE TV SERVICING

Thousands of men in the radio-electronics industry have successfully trained themselves as qualified specialists for a good job or a business of their own—servicing television receivers. You can do this too.

This RCA Institutes TV Servicing course gives you up-to-the-minute training and information on the very latest developments in black-and-white television.

As you study at home, in your spare time, you progress rapidly. Hundreds of pictures and diagrams, easy-to-understand lessons help you to quickly become a qualified TV serviceman.

There are ample opportunities in TV, for radio servicemen who have expert training. Mail coupon today. Start on the road to success in TV Servicing.

MAIL COUPON NOW

RCA INSTITUTES, INC.
Home Study Dept. 654
350 West Fourth Street, New York 14, N. Y.
Without obligation on my part, please send me copy of booklet on:

☐ Home Study Course in TELEVISION SERVICING.
☐ Home Study Course in COLOR TV SERVICING.

Name ____________________________ (please print)
Address __
City ___________________ Zone ______ State ________

SEND FOR FREE BOOKLET

Mail coupon in envelope or paste on postal card. Check course you are interested in. We will send you a booklet that gives you complete information. No salesman will call.
“Not in 55,973 years have I had an imp that operated so efficiently in such high temperatures,” says L. (Lucifer) Satan, Hades strong man. “What’s more, the improved Jet Imps are tough and won’t scar under heat.”

Jet Imps are designed to operate at 100° Centigrade (212°F —boiling point) 15° higher operating temperature than most molded capacitors available today. This means that Jet Imps not only withstand emergency conditions but also under normal operating temperatures, such as the high temperatures under a TV chassis, Jet Imps have a real safety margin for long trouble-free service.

The rugged low loss thermosetting plastic case of the Jet Imps enables them to pass the RETMA Humidity test. Jet Imps are small too, built to the sizes which conform to the requisite design factors for the finest capacitors.

See your Pyramid jobber for the new Imp.

PYRAMID ELECTRIC COMPANY, 1445 Hudson Blvd., North Bergen, New Jersey
Now — National — world's most respected maker of professional radio receiving equipment — brings you a new concept in high fidelity — the new HORIZON line!

This new integrated system with advanced manufacturing techniques based on the latest research available, is so unique in circuitry, so far ahead in performance and styling it obsoletes present equipment on the market!

See it — hear it — this month!

For complete specifications, write Dept. RN-654, National Co., Inc.
Malden, Mass.
ALL TUBES are guaranteed for one year... individually boxed. Very BEST BRANDS available for immediate delivery.

Regency Model RC-53
All Channel UHF converter. Hottest news in UHF history, much more gain than strips and kits any set... only $14.96

ALLIANCE AUTOMATIC TENNA ROTOR
ALLIANCE MODEL U-83
Fully automatic. Simply set dipole on direction and stops. Magnetic brake prevents buckling and binding of the mast-tenna assembly. Weight of antenna from rotor unit to roof or ground. List $4.95. Dealer Net...

TUBE KITS
3VA, 1TA, 150. List Value
155 $2.49
All Tuba Kits for...
1727250, 3VA, 1TA, 150, List Value
2.95
1727260, 14KP4, 1TA, 155, List Value
2.95
1727270, 14KP4, 150, List Value
2.95
1727280, 14KP4, 150, List Value...

FILTER CONDENSERS
FP Type or Tubular with Leads—Finch Electrolytic
470 A, 6.3 volts $1.69
4.7 mfd, 6.3 volts $1.69
470 A, 1500 volts $3.65
4.7 mfd, 1500 volts $3.65
470 A, 6.3 volts $1.69
4.7 mfd, 6.3 volts...

RESISTOR KITS
Insulated 2%, 3 and 5 wire assembly of most used values. T.F. Champ, Stockbridge, Mass.
600 VOLT $2.95
400 VOLT $2.95

WELDER Instant Heat
Solder Guns
NEW DUAL HEAT
2 Lights No Shadow
0.400—150—150 Watts $10.95
0.500—250—250 Watts $11.95

Write for our free BARGAIN CATALOG.
"...and all I did was install a WALSCO antenna"

Buyers are getting wiser. The quality of their TV reception is your responsibility...and they'll hold you to it! For your protection, sell and install WALSCO, the finest antennas ever built for VHF and UHF.

WALSCO IMPERIAL CONICAL (all-channel VHF)
Featuring the new, exclusive "Barrier Disc" Insulator to prevent shorts and maintain lasting high gain performance anywhere. Designed for color as well as black and white. Not affected by dirt, moisture, salt...will not rust. Stainless steel hardware prevents corrosion losses permanently. Pre-assembled...guaranteed 3 years!
Single Bay...only $9.95 List. Also available in Dual and 4 Bay Stacks.

WALSCO CORNER REFLECTOR (UHF)
No other UHF antenna so effectively combines all three... (1) extra high gain; (2) all-channel reception; (3) sharp vertical and horizontal directivity. Features the hollow, unbreakable X-77 Insulator...silicone treated to shed dirt and moisture...not affected by extreme heat, cold or wind.
Single Bay...$10.95 List. Also available in 2 and 4 Bay Stacks.

WALSCO ELECTRONICS CORPORATION
3602 Crenshaw Boulevard, Los Angeles 36, California

Overseas Distributor: Ad Auriema, Inc., 89 Broad St., New York 4, N.Y.

Canadian Factory Distributor: Atlas Radio Corp., Ltd. 560 King St. West, Toronto 2-B.
NOW...2 SENSATIONAL EICO SCOPE VALUES!
NEW AMAZING FEATURE PACKED
7" PUSH-PULL OSCILLOSCOPE

Only EICO Has All These Features
- VERTICAL FRED. RESPONSE: 6x to 20, 1500 1 mic
- VERTICAL SENS.: .01 volts
- BOR. FRED. RESP.: flat to .0 db .01 to 200 kc, .0 db at 500 kc
- BOR. SENS.: .3 volts rms/inch
- SWEEP RANGE: 15 cps-500 kc
- 3-STEP FRED. COMPENSATED ATTENUATOR eliminates freq. distortion, overloadng.
- CATHODE FOLLOWER inputs to both amplifiers
- PUSH/PULL outputs in both amplifiers
- RETURN TRACE BLANKING
- INT. VOLTAGE CALIBRATOR
- P & H TRACE EXPANSION & CENTERING: .5x full screen without distortion.
- BIREC CONNECTION to vert. CRT plates.
- PHASING CONTROL of internal 60 cps sine wave sweep.
- 4 AT FRONT PANEL: intensity mod. Input; 60 cps, sawtooth outputs.

EICO EXCLUSIVE! 5" PUSH-PULL SCOPE, 425K, Amazing feature-packed! packed-

Wired, $79.95.

PUSH-PULL V & H amplifiers: Sens. 0.5-1 mms/v, Useful to 2.5 mc.

SWEEP: 15 cps-76 kc. 2-axis intensity modulation. Dual trace positioning controls.

SCOPE VOLTAGE CALIBRATOR KIT
495K KIT $12.95. WIRED $17.95.
- 50 VDC output at power-line freq., with full-scale readings of 1.00, 5.00, 15.00, 50.00, 150.00, 1500.00 V. 0.1% accuracy w/o leakage
- Continuous current rating 500 ma at 5 V, 1 A at 12 V.
- Intermittent current rating 1 A at 5 V, 12 A at 12 V.
- Separate Voltmeter & Ammeter.

4V & 12V BATTERY ELIMINATOR KIT
105K KIT $29.95. WIRED $38.95.
- DC output: 0.5 to 300 volts DC, or 0-300 VAC. 0.1% over 1 minute.
- Continuous current rating 500 ma at 5 V, 1 A at 12 V.
- Intermittent current rating 1 A at 5 V, 12 A at 12 V.
- Separate Voltmeter & Ammeter.

NOW! ONLY EICO KITS & WIRED INSTRUMENTS Gives You LIFETIME SERVICE & CALIBRATION GUARANTEE. *at less than our cost of handling (See EICO Guarantee Card enclosed with each Kit & Instrument).

NEW! EICO SCOOPS!
232K PEAK-TO-PEAK VTVM with DUAL-PURPOSE AC/DC

Uni-Probe KIT $29.95 WIRED $49.95

NEW! UNI-PROBE! Terrific time-saver! Only 1 probe for all functions—a half-turn of probe-tip selects DC or AC-Ohms!

249 K PEAK-TO-PEAK VTVM with 7½" METER KIT $38.95 WIRED $59.95

944 K FLYBACK TRANSFORMER AND YOKE TESTER KIT $23.95 WIRED $34.95
Tests all flybacks and yokes, in or out of TV set — in just seconds! Detects even a shorted turn. Exclusive separate calibrated for air—wind iron- core flybacks assures utmost accuracy. Large 7½" meter, 3 colored scales. Compact, portable (8½x5½x5½), smart, rugged.

1171K RES. DECADE BOX KIT $19.95 WIRED $24.95
DECADE RESISTANCE STANDARD BOX KIT 1000W $5.95 KIT $5.50

350K SWEEP GEN. KIT $34.95. WIRED $49.95.
- 0.5, 10, 100, 500, 1000 V (32 kc with HPV-L probe), 5 ohm range from 2.7 to 1000 mels.
- DC input Z 2.65 V. 0.1% accuracy. 40° meter movement in correct burn-out circuit.
- 1% mult. resistors.

HIGH VOLTAGE PROBE $5.95.
- External range of VTVM’s & voltimeters to 30 KV.

CATADORE RAY TUBE CHECKER
630K, WIRED $24.95 KIT $17.95
- Checks all types of TV picture and C.R. tube in the set or on carton. Bridges measurement of peak beam current (proportionate to screen brilliance). Detects shorted & open elements.

MODEL 470K
KIT $79.95. WIRED $129.50.

214K VVM KIT $34.95. WIRED $49.95.
- Push-pull output.
- Twin input, 1000 V at 600 pf.
- 100 V at 20 pf.
- 10 V at 2 pf.

- Larget 7½" meter, can't burn-out circuit.
- DC input 0 to 1000 ohms. 2.5 mc.
- DC input Z 26 mgs.
- 1% mult. resistors.

249 K P-P KIT $35.95 WIRED $55.95.
- Large 7½" meter, can't burn-out circuit.
- DC input 0 to 1000 ohms. 2.5 mc.
- DC input Z 26 mgs.
- 1% mult. resistors.

ELECTRONIC INSTRUMENT CO., Inc., 84 Withers Street, Brooklyn 11, N. Y.

Write NOW for FREE EICO business building decal.

Seperate Assembly & Operating Manuals supplied with each EICO KIT!
You build EICO KITS in one evening, but... they last a lifetime!
SAVE OVER 50%! See the famous EICO line TODAY, at your local jobber.
June, 1954

IN 1942 radar operators in England began to report a new kind of jamming observed on their meter-wave- length receivers. Weak radar echoes became lost in the "grass" on the (ra- dar) screen, as if swamped by "noise" from a powerful transmitter. In the Army Operational Group, a scientist named J. S. Hey—later to be known as one of the pioneers of the new science of radio astronomy—examined the reports. He established that the source of the "jamming" was no enemy sta- tion, but the sun, and he noticed that at that time an exceptionally large sunspot was crossing the sun's face.

Radio amateurs can detect this ra- diation from the sun during periods of sunspot activity, and even television screens are affected by it, but few people know that the sun and some other celestial objects are radiating short radio waves continuously.

The first observations of this steady radiation were made in 1932 by an American radio engineer, Jansky, who was investigating the level of noise picked up by a sensitive receiver on a frequency of 20 mc. He found that a directional antenna gave a greater noise signal when pointing at the con- stellation of Sagittarius, in the bright- est part of the Milky Way, than in di- rections away from this high concen- tration of stars. Ten years later, a ra- dio amateur, Reber, built a parabolic re- flector antenna 30 feet in diameter, in his own yard, and used this to make a map of received signal strength on frequencies up to 500 mc. over a large part of the sky.

Then came one of the most startling discoveries, again first hinted at by J. S. Hey. Workers in Australia and Eng- land found that the radio waves picked up by Jansky and Reber came, not only from the Milky Way but also from some quite definite points in the sky, as though individual stars were transmitting to us. But there were no bright stars at these points, and it was not until 1952 that these "radio stars" were identified with visible objects in the sky; even then the objects were so faint and inconspicuous that it needed the 200-inch Hale telescope at Mt. Palomar to find them. Many astron- omers have become interested in this new science as an extension of astron- omical techniques, and radio-as- tronomy is now being put to use in many parts of the world extending our knowledge of the solar corona, inter- stellar gas, nebulae, and even of our own ionosphere. In this article we shall be concerned less with the results than with the methods, since the problems of technique are of great interest and are not well known.

The two main problems facing the radio-astronomer wishing to study ra- diowaves from some object or region in the sky are simply stated. First, the power available in his antenna is usually not greater than about 10^{-18} watt. Second, the beam width of his antenna is usually vastly greater than the angular size of the object, and the radiation picked up may well have come from many other objects in this region. Both these difficulties, of signal strength and resolving power, clearly call for large antenna systems and the radio astronomers are, in fact, build- ing large antennas for this work. In Manchester, England, there is now un- der construction a very remarkable parabolic reflector antenna. This will be 250 feet in diameter, and it will be so mounted that it can be directed to- wards any part of the sky. The re- flector will be made of wire mesh, and the accuracy of its surface will be such that it can be used on wavelengths as short as a half meter or less. But many observations can be made with much smaller antennas by using the principle of the radio interferometer.

If two similar antennas spaced sev- eral wavelengths apart and both di- rected towards the sun, are connected to the same receiver, as in Fig. 6A, it is possible to distinguish the radiation received from the sun against a back- ground of radio waves from the stars behind it, although this background may be several times more intense than the solar radiation. The records of total power received from such a radio interferometer as the sun moves slowly across the sky would be like those in Fig. 3, showing some actual records on various wavelengths. In each the sinusoidal variation of signal is due to the sun passing in and out of the interference zones of the spaced antennas, whereas the steady signal, most evident on the longer wave- lengths, is from the extended source of the Milky Way background. An im- proved method of recording recently used makes a record of only the sinusoidally varying signal, giving the intensity of the solar radiation without any confusion from the background radiation. The method of achieving
Fig. 2. Array of full-wave dipoles at 3.7 meters. This array is one-half of an interferometer for detecting radio stars. See text for full details.

The 600-inch "radio telescope" installation at the Naval Research Laboratory which is being used to study radio "signals" from the sun, moon, and stars. Scientists use this research tool to extend man's knowledge of the universe and to assist in forecasting the conditions for radio communications work.

This, known as phase-switching, will be described after we have examined more closely the problem of detecting these exceedingly small signals.

The character of the signals received from the sun and the stars is exactly the same as that of "receiver noise." If we connect the input of a receiver first to an antenna and then to a dummy load, the difference in signal may be demonstrated as a change in the output of a detector circuit, but this change may be only a few per-cent of the output, most of which is due to the receiver noise. It is necessary to record this difference without including receiver noise, and this is achieved in the schematic of Fig. 6B. The use of a phase-sensitive detector enables a long time constant to be used in the output circuit, and the smoothed output records the difference between the two levels of noise. An improvement is again made in Fig. 6C, where the antenna noise is continuously compared with the noise generated in a controllable local source, in practice, a noise diode. The output from the local source is automatically adjusted to equality with the antenna noise, and a record of the current in the diode gives a direct record of antenna noise unaffected by the characteristics of the receiver. The records in Fig. 3 were made in this way.

These methods of detecting small noise signals have been widely used in the measurement of the total noise power received at an antenna. But in radio astronomy it is often necessary to select only that part of the noise which is coming from a small source in the sky, perhaps a radio star or a sunspot, and to disregard a large proportion coming from a diffuse background of other sources. A new method of detection is then used.

In the schematic of Fig. 6D a pair of antennas is connected in a radio interferometer with a device for reversing the phase of the signal from one antenna. Periodically, the lobes of the interferometer radiation pattern then shift by a half lobe width, due to the phase shift, and the signal from a source smaller than the lobes of this pattern will change periodically by an amount depending on its position in the pattern. Again a phase-sensitive detector is used to measure this periodic change in output. In Fig. 4 we see the recorded output of such a phase-switching receiver connected to a large interferometer operating at a wavelength of 3.7 meters, shown in Fig. 2. The output is centered on zero, and the groups of oscillations each record the passage of a radio star through the antenna receptivity pattern as the earth rotates. This method of recording radio stars has been used in the accurate location of some of the most intense radio storms. A record from the intense radio star in Cassiopeia using part of the same interferometer is shown in Fig. 5.

The interferometer in Fig. 2 is locat-
ed along an east-west line so that each radio star is detected as it crosses the meridian, a line from the zenith to the south point. The time of this crossing, found from the record, gives the position of the star in the sky. The timing may often be carried out to an accuracy of about 0.1 second, but unfortunately the actual position of the star cannot be determined quite as accurately as this. For one thing, the position of the interferometer axis may be known, and with the antennas of Fig. 2 this cannot be defined to smaller than about 2 minutes of arc. The interferometer in Fig. 7 was specially built for such work, and the line joining the bearings of the two parabolic reflectors was determined to 10 seconds of arc. These reflectors are two of the antennas of the "Wurzburg" radar set used by the Germans during the war. They are 27 feet in diameter, and the two are mounted 900 feet apart. 200 wavelengths at 1.4 meters, the wavelength used, are the most accurate direction finding experiment yet made. With this interferometer, a radio star in the constellation Cassiopeia was located within an area only 10 seconds by 30 seconds of arc. The position was given to astronomers at Mt. Palomar, who found with the 200-inch telescope a new type of nebulal exact in the right place.

This new branch of science is certainly providing new tools for the astronomer in his survey of the heavens, but it may also prove to be a useful approach to some studies of the ionosphere. When Hey first detected radiation from a radio star, he distinguished it from the background because the signal was fluctuating in a peculiar way. This effect we now know to be very similar to the scintillation, or "twinkling," of ordinary stars. It is caused by reaction in irregularities in the earth's ionosphere, through which the radio waves pass, and by studying the fluctuations in signal it has been found that the irregularities are in the upper part of the F-region, inaccessible to pulse-sounding methods. It appears that the top of the F-region occasionally becomes corrugated, to an extent of about one per-cent of its total depth, the wavelength of the corrugations being about 5 km. The whole structure is drifting across the earth at a speed of several hundred miles per-hour, and the effect on the ground is similar to the moving pattern of sunlight on the bottom of a swimming pool when waves disturb the surface. The cause of this ionospheric disturbance is still unknown.

Another useful way of investigating the ionosphere has been suggested. As the radio waves from a radio star pass through the ionosphere they may be refracted in such a way as to make the star appear in the wrong position. The amount of this displacement may be measured, and depends primarily on the total number of electrons in a vertical column right through the ionosphere. Pulse-sounding methods are not suitable for this measurement, and it is likely that understanding of the ionosphere, still full of mysteries, will be helped by these new experiments.

The most exciting discoveries of radio astronomy have been in the search for sources of radio waves in our galaxy and in extragalactic nebulae, and this search is being pursued with great vigor in several places. The new Manchester antenna will be used in this work. Recently some details were published on a new antenna installed the Ohio State University designed to carry on the search. There is, however, a large interferometer antenna now in operation at Cambridge, England, which may well be called the largest radio-telescope in the world. Its parabolic reflectors cover an area close to 50,000 square feet. Results from a survey of radio sources in the Northern sky should be available in a few months' time. No description of this instrument has yet been published, and a picture of one of the reflectors in Fig. 1 is the only one available as yet. It is hoped that this instrument will provide some further clues to the solutions of the great problems "What are radio stars?"; "How many are there in our galaxy?"; "Do other galaxies have radio stars like ours?"—questions we may hope to have answered in only a few years from now.

REFERENCE

Fig. 7. Parabolic reflectors used in an interferometer for accurate direction finding.

Fig. 8. (A) How two similar antennas, spaced several wavelengths apart, are used to detect radiation from the sun. (B) Use of a phase-sensitive detector to eliminate receiver noise. (C) Improved version of the circuit shown in (B) in which the antenna noise is continuously compared with the noise generated from a controllable local source, a noise diode. (D) A pair of antennas connected in a radio interferometer with a device for reversing phase of the signal from one antenna periodically.
Part 2. Tells how TV interference gets into the set, how it may originate in the set, and how to calculate the frequency of the TVI pattern on the picture tube.

In last month's article the five most common types of interference normally encountered in TV receivers were identified. As listed, these are: unmodulated, frequency modulated, video modulated, burst modulated, and mixed modulated. The next step is to determine how these interference signals get into the circuits of the TV set—and where they come from.

Most service technicians are aware that a superheterodyne receiver, whether radio or TV, has numerous responses. These responses can be considered as "slots" or "gates" in the frequency spectrum associated with a desired channel or frequency. It is through these "gates" that the undesired signals will enter to cause trouble.

Video Gate—The video passband of a TV receiver is normally between 0 and 4 mc. Any strong signal whose frequency lies within these limits may be picked up after the video detector. Standard radio broadcast stations are the main source of such trouble.

I.F. Gate—This is the i.f. passband of the receiver which, for all practical purposes, is about 3.5 mc. to 4.0 mc. wide. The opening provided by this "gate" is determined by a design specification of the receiver known as i.f. rejection. There are some cases, however, when two very strong signals will enter the receiver and beat together in the r.f. stage or mixer to produce an i.f. signal. Such a condition is not affected by the i.f. rejection of the receiver. Another source of interference in the i.f. range is the harmonics of the receiver's oscillator, particularly the second harmonic. This beats with the video or sound carriers of other channels to produce an i.f. signal in the set.

3. Lower Adjacent Channel—This is the 6 mc. immediately below the desired channel in frequency. The opening provided by this gate is determined by the adjacent channel sound rejection. Interference that enters this way is usually due to another TV station operating in this channel.

4. **Desired Channel**—This is the frequency range of the station to which the set is tuned. Those interference signals which enter through this gate are generally the most difficult to eliminate since there is no filter that can differentiate between a desired signal and an undesired signal having the same frequency. Such interferences normally require elimination at the source or possibly the use of extremely directional antennas. One of the most common sources of this "on-channel" interference is the local oscillator of a neighboring receiver. Another source is the set itself, where harmonics of the video i.f. or sound i.f. fall into the channel to produce annoying interferences. This may also result from co-channel interference, the result of another station operating on the same channel.

5. **Upper Adjacent Channel**—This is the 6 mc. above the desired channel. Most commonly, the interference entering this gate is caused by the video carrier of a TV station occupying this upper channel. This interference exhibits itself as a back-and-forth motion from which it derives its name of "windshield-wiper" effect.

6. **Image Band**—Most TV receivers operate the oscillator on the high side of the incoming signal. The image band is located above the oscillator by an amount equal to the i.f. The opening provided by this "gate" is dependent upon the image rejection of the receiver.

Internal Sources of TVI

Any TV receiver is a potential generator of interference to itself. The number of possible sources of interference in any set depends upon its circuitry. For example, an intercarrier set will not include all of the interference sources of a split-channel set. First, let us consider those sources of interference which are common to both intercarrier and split-channel receivers.

1. **Video Detector.** Harmonics of the video carrier i.f. which are produced in the video detector stage are either radiated back into the tuner, or find their way back through the set wiring to beat with the video carrier. As a rule, this presents a problem only when the harmonic falls directly into the channel being viewed. For example, the 3rd harmonic of a 25.75 mc. video i.f. is 77.25 mc., which is the video carrier of channel 5. The 4th harmonic of a 45.75 mc. video i.f. is 183 mc., which can beat with the video carrier of channel 8 to produce a 1.75 mc. interference.

A relatively common interference seen in many TV sets is the very fine herringbone pattern commonly referred to as "grain." Technically, it is a 4.5 mc. FM beat. The pattern (if watched closely) varies with the sound modulation of the desired channel.

This interference originates at the video detector as a result of the heterodyning of the sound i.f. and the video i.f. carriers. Theoretically, if the sound i.f. amplitude at the video detector were very low, the beat would not exist. Its presence is usually more prevalent in intercarrier sets than in split-channel receivers because in the former, the sound carrier runs higher in amplitude at the video detector.

Most TV sets use a 4.5 mc. trap in the video amplifier circuit to attenuate this undesired signal. Fig. 2 shows a 4.5 mc. trap in a Du Mont RA-306 chassis.

Sound in picture is another effect originating in these circuits when the sound carrier is too strong. This condition can, in many intercarrier sets, be tuned out by the customer who will still get usable pictures and sound.
However, this is not true for a split-channel set, where the sound would be lost with a small amount of detuning. Fig. 3 illustrates a normal overall response curve which shows the position of the sound carrier. An intercarrier set should have an average sound attenuation of 80 db with respect to the video carrier. In terms of voltage, the ratio of the video carrier amplitude to the sound carrier amplitude is about 13 to 1. If, however, the ratio of video to sound is only 3 to 1 (approximately 10 db) or less, the sound will be quite evident in the picture. In such a set, it will be necessary to detune and raise the video carrier to provide adequate attenuation, with the resultant loss of fine picture detail.

2. Horizontal Output Circuit. Barkhausen oscillation occurring in this circuit will produce a "burst-type" interference, characterized by one or two vertical dark lines on the left side of the CRT. In addition, the 15,750-cycle sweep voltage generated in these circuits may interfere with both the sound and video signals to produce "buzz" and horizontal bars.

Intercarrier receivers have some additional types of interference which do not apply to split-channel sets. Due to the relatively high level of the 4.5-mc signal in the video detector of intercarrier sets, a beat is produced with the harmonics of the video i.f. carrier. Because of the 4.5-mc signal, the interference will vary in accordance with the sound modulation of the program being viewed. For example, the 2nd harmonic of a 25.75 mc video i.f. plus 4.5 mc results in a frequency of 50 mc, which, in turn, beats against the video carrier of channel 2 (55.25 mc) to give an interference of 0.75 mc. The 2nd harmonic of 45.75 mc (video i.f. of 41 mc, i.f. sets) plus 4.5 mc may beat with the video carrier of channel 6 (83.25 mc) with a resultant interference of 3.75 mc. Other interference relationships can be determined in a similar way for high harmonics. Fig. 1 shows the pattern caused by a 1.5 mc beat of the type described here.

It is, of course, also possible for the various harmonics of the sound i.f. (21.25 or 41.25 mc) to interfere with the video carrier of a received channel. The interference would be recognizable as FM whose pattern would vary with the sound modulation of the desired channel.

Another possible source of FM interference, particularly in split-channel receivers, is the sound discriminator and, in some cases, the sound limiter. If the level is high enough, harmonics of the sound i.f. are generated and find their way back into the front end to produce "in-channel" interference.

Calculating the Frequency

Throughout the discussion thus far, the interference has been referred to as a beat or heterodyne pattern on the CRT screen. To an experienced observer, a mere look at the pattern will be sufficient to permit him to determine the beat frequency with sufficient accuracy. A completely inexperienced observer may not know quite how to start.

One might ask, "What difference does it make what the frequency of the beat is?" Actually, it makes no difference, if the source is obvious. On the other hand, as so often happens, there are a number of possible sources. One method of determining which is the one causing the trouble is to determine the beat frequency. For example, suppose a TV set has an interference pattern on channel 12, and it is suspected that a harmonic of the video i.f. originating at the video detector is the source of the interference. Let us assume that the set uses a 25.75 mc, video i.f.

Now, the 8th harmonic of 25.75 mc appears at 206 mc and can beat with the video carrier of channel 12 located at 205.25 mc to produce a 0.75 mc signal. If, however, we had no idea what a beat of 0.75 mc looked like, we could only guess that this was what was appearing on the screen and, in many cases, we would find that prescribed cures for this type interference had no effect. Obviously, the reason they had no effect was because the interference was caused by some other source.

The most usual type of unmodulated interference pattern consists of dark vertical or diagonal lines as shown in Fig. 4. Now, if we were to take one scanning line and concern ourselves with each segment of this line that was dark due to this interference, we would find that the dark segment was caused by the positive half cycle of the interference signal. This assumes that the signal is applied to the cathode of the CRT which is the most common practice at this time. Obviously, the negative half cycle of this signal occurred during the light portion immediately following the blacked-out segment. Since the length of the horizontal scanning line represents a specific length of time, it follows that the greater the number of these dark segments that occur during one line the greater the frequency of the beat at the CRT cathode.

Since the horizontal scanning frequency is 15,750 cps, the time constant summed by one complete scanning line including trace and retrace is 1/15,750 seconds or 63.5 microseconds. However, since about 10 microseconds of each scanning line time is lost in blanking and retrace, the visible length of the scanning line represents approximately 54 microseconds. Therefore, to find the frequency of the beat on the CRT, merely divide the distance between two dark lines by the visible length of a scanning line, multiply this by 54, and divide the result into 1. This gives the beat in megacycles. This particular method is quite cumbersome, but probably the most accurate. There is, however, a much simpler way.

Assume that there is a pattern of 10 vertical or diagonal dark interference lines on the screen of the CRT. This means that each scanning line is modulated 10 times. Each scanning line, however, represents one cycle of a 15,750 cps signal. Therefore, the frequency of the beat must be 10 times 15,750, or 157,500 cps. Although not as accurate as the method previously mentioned, this is much simpler and as accurate as necessary for most cases. Merely count the number of lines, either vertical or diagonal, and multiply this number by 15,750 for the frequency.

(Continued on page 77)
REMOTE CONTROLS
FOR
MARINE
RADIOTELEPHONES

By ELBERT ROBBERSON

Simple and economical to build, these units are source of income for marine radio technicians.

The main disadvantage of the marine radio service business is its periodic slumps. You may have a fleet of a hundred or a thousand boats normally in port—but, come the Fourth of July, and they're gone for a week. You don't have to sit twiddling your thumbs waiting for them to come back, if you fill in with building some of the radiotelephone remote-control units described in this article.

On most boats, the main equipment will have been installed in a cabin below, where it is protected and is close to battery and ground connections. The result is that when the boat is under way and the skipper is at the helm above, as shown in Fig. 1, he is as mute as a mackerel. A regulation handset cord will stretch only four feet, so if he wants to talk on the phone he must stop hoating. The obvious solution to his problem (and he will be happy to hear of it) is a remote-control unit at the helm.

Unfortunately, the engineering of many of the smaller manufacturers has not advanced to the point of providing remote control, and the manufacturers who do make remote units design them to be used only with their own gear. Consequently, many boatmen go without or do with makeshift adaptations.

Here is a unit which can be used with any marine radiotelephone on the market employing relays and an electronic push-to-talk circuit. It can be connected to any properly adapted set, and will provide all of the features essential for communication. Construction is simple—extensive facilities are not necessary.

The basic requirements of such a unit are to provide loudspeaker reception of whatever traffic is on the air, a volume control, a means for transferring the audio from the speaker to the handset earpiece, a microphone circuit, and a control circuit. In addition to the control unit a telephone handset with a push-to-talk switch is needed, but a simple arrangement can be made to use the handset for the radiotelephone at both the main and the remote positions.

The circuit shown in Fig. 2 fulfills all of these requirements. It will be noted from the parts list that components are standard items, available at any parts house. The cost of materials should come to about $12 per unit.

Operation is easily illustrated with a radiotelephone having the handset circuit of Fig. 3. In this transceiver, handset connections are brought to a 4-contact socket on the panel, and the handset has a mating plug. The ground is a common return, not only for receiver audio, but also the relay-keying circuit and microphone. Voltage for the microphone is provided by the voltage drop across a heavily bypassed portion of the modulator cathode bias resistor, while voltage to actuate the antenna and power-switching relay is obtained from the low-voltage d.c. input.

Since these circuits are all of very low impedance, no crosstalk or noise pickup results, and the ground wire and the other three wires are twisted together in the handset cord. It is perfectly feasible to extend the handset circuits a considerable distance without noticeable loss or objectionable distortion.

Connection between the radiotele-
phone and the remote control is made by means of 3-conductor and shield, rubber-covered cable, with the shield acting as the common return. In the make-up of this cable the transceiver end is soldered into the plug, but the remote end connects into a terminal strip. The reason for not soldering this end right into the circuit is that in most installations the cable must run through numerous bulkheads or lockers. It is much easier and neater to bore round 5/16" holes to make the bare cable end through than to gnaw out square holes to pass the plug.

Mounting and construction details for the remote control box are shown in Figs. 4 and 5. Fig. 6 shows most of the parts needed.

Some work is required on the radiotelephone if it does not have the panel socket and handset plug mentioned previously. All this will amount to is connecting a short cable and socket to the set's handset strip, and a plug to the handset cord. Handset or remote connections are then made by plugging into this cable socket.

Some radiotelephones will be found to have handset audio supplied by condenser coupling from the plate of the receiver power-amplifier tube. In this case remove the condenser and rewire to the circuit of Fig. 3, a matter of changing a couple of connections. In sets with "floating" input, one side of the battery-input circuit is used for the handset common. On these, disconnect the ground return of the voice coil and the output transformer, and connect these returns instead to the common handset circuit. Note that nothing in the remote unit should be grounded or connected to the cabinet.

Operation of the unit is simple. At the main position the desired frequency is selected with the receiver on "loudspeaker." Gain is set for a healthy signal level, then the speaker-handset switch is thrown to "handset." The handset is removed, the remote cable plugged in its place, and the handset taken to the remote station and plugged into the control. At this point, reception may be had in either the speaker or the earphone by throwing the switch on the control unit and with audio set to a comfortable level by the volume control. Since most marine-phone modulators work "wide open," with maximum possible gain at all times, no control of microphone level is provided. The transmitter filaments must, of course, be on if instant transmission is desired.

A profitable offshoot from this is the wiring of boats for remote speakers connected to the broadcast radio. It is astonishing to learn the number of people who buy yachts to get away from the annoyance of telephones and radios—and then spend most of their time aboard the boat telephoning and listening to the radio!

Keep track of parts cost and manufacturing labor. A 100% markup is about standard and will cover over-
A simple circuit change insures stable operation of this test unit in areas where voltage fluctuations are common.

Many owners of small oscilloscope voltage calibrators, either of the kit type or "home grown," find that these instrument adjuncts are robbed of much of their usefulness by line voltage fluctuations. This trouble, already severe in many areas, is increasing because loads are growing faster than distribution systems. Fortunately, relatively minor and inexpensive changes in most oscilloscope voltage calibrators will make them dependable to within less than one percent at any setting.

The conventional oscilloscope calibrator consists of a source of sine waves, usually the power line, a biased diode, to clip the sine waves into semi-square waves; and a power supply, to bias the diode. One of the more popular circuits is shown in Fig. 2. This is essentially the circuit used in the Heathkit Model VC-1 calibrator. (Heavy lines show the alterations made.) In the original circuit, the clipping level is constant only when the d.c. supply voltage is constant, and this voltage depends upon the line voltage.

The d.c. supply voltage, and hence clipping level, can be stabilized in a voltage calibrator of this type by the addition of a voltage regulator tube, a modification costing only a couple of dollars and requiring perhaps an hour of labor. The resultant instrument quite closely resembles, in circuit and performance, the Du Mont voltage calibrator, an instrument most of us would like to own if we could afford it.

Operation of an unregulated voltage calibrator is quite simple. Sine waves, derived from the power supply through a resistor and an isolating condenser, are impressed across two halves of a dual diode. The cathode of the first diode is biased positive with respect to ground so that it will not conduct until the positive voltage.

(Continued on page 85)
“ULTRA-LINEAR” OPERATION OF 6V6 TUBES

by DAVID HAFLER
Acro Products Company

One of the best designs in recent years covering an audio amplifier using 6V6 tubes. The author, in this case, has converted a Grommes unit to illustrate his design idea.

Fig. 1. The Grommes 100BA power amplifier alter conversion to “Ultra-Linear” operation. See diagram of Fig. 4.

Ever since the introduction of “Ultra-Linear” circuitry,1 there has been a steadily growing interest in amplifiers utilizing this type of output stage coupling. The basic arrangement has become popular in ardent audiophile circles and has also found commercial and industrial applications where extremely low distortion is required.

Essentially, the “Ultra-Linear” circuit is illustrated in Fig. 2. The screens of beam power output tubes are connected to taps on the primary of the output transformer; or if it is desired to operate the screens at a different a.c. potential than the plates, to a tertiary winding on the output transformer. Either arrangement requires a transformer with the correct ratio of screen load to plate load if optimum results are to be obtained, and a mismatch will lead to inefficiency and/or increased distortion.

The “Ultra-Linear” arrangement has been mistakenly referred to as a feedback circuit. This is not correct since negative feedback would produce a reduction in gain which does not occur with the “Ultra-Linear” circuit. It would be just as incorrect to refer to a triode as a tetrode with feedback as it is to analyze the “Ultra-Linear” circuit as a feedback circuit. Instead it must be considered as a new and different type of tube structure which is neither triode nor tetrode.

The circuit provides some of the advantages of both triodes and tetrodes, and it overcomes some of the disadvantages of each of these types. For example, it is more efficient and provides more power output than triodes. Its capabilities in this respect parallel the capabilities of tetrodes. However, it has low internal impedance, almost as low as triodes and about one-tenth that of tetrodes; this provides good loudspeaker damping. Lastly, and most important of all, it has a more linear input-output relationship at most power levels than either triodes or tetrodes which means that its distortion is lower than other methods of operation. This alone justifies the use of the circuit in those cases where low distortion is the guiding criterion.

The “Ultra-Linear” circuit has achieved popularity in deluxe amplifier arrangements such as conversion of the Williamson circuit.2 It has been widely used with tubes of the KT66, 807, and 5881 type for circuits in the 20 to 30 watt power bracket—for circuits of truly outstanding characteristics suitable for the most critical usage. Naturally, 20 or 30 watts is a lot of power for living room use—just as 200 horsepower is a lot of power for a deluxe automobile. However, there are definite advantages to high powered amplifiers which are operated at a fraction of their potential output just as there are definite advantages to high powered cars which are run at a fraction of their capabilities.

Nevertheless, not all of us want, or can afford, 200 horsepower cars; and not all of us feel the need for, or wish to spend the money for, amplifiers of 20 or more watts power rating. Many audiophiles and music lovers are very happy with amplifiers of 10 or 15 watt power bracket. The popularity of this range is demonstrated by the sales success of thousands of Williamson-type amplifiers as well as tens of thousands of lower cost amplifiers using 6V6 tubes providing 10 to 15 watts of power output. Undoubtedly, the greatest number of amplifiers in home use utilize the type 6V6 tube in one of several popular circuit arrangements, all of which have essentially similar performance characteristics.

The possibilities of using the “Ultra-Linear” arrangement with 6V6 tubes in medium-powered amplifiers has been investigated carefully. It has been found that the tube is well suited for this mode of operation since its dynamic input-output characteristic can be linearized by proper selection of a tapping point for screen connection.

The characteristics of the 6V6 are not at all similar to the 6L6 family, and the connection arrangement which is optimum for 6V6's is quite different from that which can be used with the large tube types. As a tetrode, the 6V6 permits 10 to 15 watts of output depending on plate supply voltage and bias. These ratings are based on the point where clipping of a sine wave becomes visible—which happens when the grids start to go positive, and the driving source cannot furnish power to the tubes.

If the same tubes are triode connected (by strapping the screen to the plate), power output, using the same criteria, is reduced to 2½ to 3½ watts. When the “Ultra-Linear” connection is used, the power output depends on the position of the screen taps. If a 50% tap is used, power is reduced to about one-half of the tetrode capability. If a greater than 50% tap is used, power is reduced toward the triode limitations. At a tapping point of about 24%, power output is within 90% of the tetrode condition, and distortion at all levels up to maximum is minimized. This point, therefore, has been selected as the optimum operating point for “Ultra-Linear” use.

It would be possible to take an even lower tapping point and obtain slightly more power output than the tetrode connection, but the distortion at low levels and the internal impedance both begin to increase as the tap is brought closer to the zero per-cent point when
is coincident with conventional tetrode connection.

Thus the "Ultra-Linear" operating point has been set at a compromise level in which the factors of maximum power output, distortion at various levels, and internal impedance have all been weighed against each other. It must also be mentioned that listening tests at various tapping points with no feedback around the amplifier validate this selection of the tapping point. This was done without feedback on the assumption that the best amplifier without feedback would also be the best after the application of feedback. In these listening tests, the triodes fell behind because they could not handle the power; after all, 3 watts is insufficient for musical peaks, the tubes were somewhat screechy and boomy (too much internal impedance for satisfactory speaker damping), and the 24% point sounded natural and smooth even without connection of the amplifier feedback loop.

Use of the "Ultra-Linear" circuit involves utilization of an output transformer with the correctly placed taps. A special transformer, the Acrosound TO-310, has been designed specifically for this application; and its parameters were selected so that it would not limit the ultimate capabilities inherent in the circuit. For example, its bandwidth has been set at ± 1 db from 10 cps to 100 kc so as to provide the low phase shift and good transient performance desired in the most critical applications. Similarly, its distortion characteristics complement those of the "Ultra-Linear" circuit and permit low distortion at both high and low levels from 20 cps to over 20 kc.

Circuit Considerations

There are many 6V6 circuits which have become popular, but by far the most commonly used is that in which a twin triode phase inverter is used to drive a pair of 6V6's; and feedback is carried from the output winding of the output transformer to the cathode of one of the triode sections. This basic configuration is simple, practical, economical, and adequate. The a.c. grid-to-grid voltage requirements of the 6V6 output stage are not stringent, and the phase inverter supplies ample drive without the need for an interstage push-pull. As is used in the Williamson-type circuit. Since there are only two stages, the problems of utilizing feedback are simplified (as there is less phase shift in the circuit), and the designer can use less elaborate circuitry and components while preserving a satisfactory margin of stability.

Generally the phase inverter tube is a high mu triode such as the 6SL7 or 12AX7 in order to obtain as much gain as possible within the two stages. Actually, except for gain considerations, the specific type of inverter is of comparatively little consequence—circuit performance is determined almost completely by the mode of operation of the output tubes with respect to bias, supply voltage, and impedance match; the quality of the output transformer; and the proportion of feedback. The voltage amplifier stage contributes relatively little, as compared to the contribution of the output stage, to the overall quality of the amplifier.

Conversion of these circuits to "Ultra-Linear" operation can be done by substituting an output transformer which has properly placed taps for connection to the 6V6 screens. Generally, this substitution will make an immediate decrease in distortion.

If the original amplifier used a screen dropping resistance, this is removed for "Ultra-Linear" operation; and the screens are connected to the tapping points on the primary of the output transformer. It is important to observe polarity and to connect the screen to the same primary winding of the transformer as that from which the plate is energized. Otherwise an oscillatory condition will be provoked. Similarly, polarity must be observed between upper and lower output tubes, or the feedback from the secondary side of the transformer may be in the incorrect phase and cause regeneration.

When the screen resistor of the original circuit has been removed, the screen bypass condenser must also be disconnected. This can be readily put to good use by paralleling it across one of the filter condensers of the power supply for extra filtering and lowered power supply impedance.

The only other changes which need be made involve the feedback resistor and feedback compensating condenser which shunts this resistor (or in some circuits bypasses it to ground). The ratio of series resistor to shunt re-
June 1954

istor in the feedback path determines both the total gain in the circuit and the proportion of feedback. For example, with a 6SL7 phase inverter and feedback from the 16-ohm tap of the Acrosound TO-310 transformer, the power amplifier will have 17 db of feedback and require a maximum input signal of 3 volts to drive it to full output when the ratio of feedback to cathode resistance is 5 to 1. If the ratio is changed to 7.5 to 1, the amplifier will be driven with a 2 volt input, but the feedback is cut down by 3 to 4 decibels. Similarly, a 12AX7 has about 50% more gain than a 6SL7. If this tube is used with a 7.5 to 1 ratio of resistance, the amplifier can be driven to full output with 2 volts of signal while still maintaining 17 db of feedback. In the original construction, it is recommended that the 12AX7 be used so as to obtain this increased sensitivity. However, in converting an existing amplifier, the conversion of the 6SL7 tube to another may make the required sensitivity by varying the feedback resistor. If necessary, he can sacrifice a portion of the feedback in order to maintain sufficient gain for the preamplifier stages which are being used.

In many commercial amplifiers, the power amplifier section must be sufficiently sensitive to be driven by 1 volt of input because of the low gain of the earlier stages. If this is the case, it may not be possible to adjust the feedback (by increasing the feedback resistor). However, the most modern preamp designs are intended to supply about a two volt input such as is found on Williamson-type amplifiers. Any of these preamps will handle the converted 6V6 amplifier and still permit 14 or more db of feedback. This is sufficient feedback to reduce distortion, hum, noise, and internal impedance to low values and provide a quality application. Thus the more common front-end arrangements will serve with the "Ultra-Linear" 6V6 amplifier while preserving an adequate proportion of feedback. When the 12AX7 is used, the designer has an additional 3 or 4 db of latitude in his choice of gain versus proportion of feedback.

In some amplifiers which are of the public-address type rather than the high-fidelity type, inadequate feedback is used which is limited to 6 db or less. Conversion of these amplifiers with the increased feedback which results from a 5 to 1 resistor proportion will produce insufficient gain. In those cases, there must be a sacrifice of feedback or the addition of more gain in the early stages. However, in these amplifiers the original quality is generally so poor that the substitution of the "Ultra-Linear" output arrangement will make a decided improvement in performance even if only 6 db of feedback is used. The relative improvement in a low grade amplifier is even greater than is achieved by converting a full gain amplifier which has a high proportion of feedback.

When feedback in excess of 12 db is used, there is some possibility that the amplifier response will peak in the ultrasonic region even though the response without feedback is flat over a very wide range. This peaking can be eliminated with a consequent improvement in transient response, by adding a network to change the phase of the feedback voltage in the peaking region. One simple arrangement is to add a small condenser across the feedback resistor. A suitable condenser value in the type of circuit under discussion is one which makes the product of the feedback resistance in ohms and the condenser in microfarads equal to unity. Several typical circuits using a 5 to 1 resistor proportion are illustrated in Fig. 3. In these arrangements, the feedback connection is brought to the cathode or pair of cathodes of the phase inverter stage. All of the arrangements have the same proportion of feedback and the identical phase correction.

Circuit Conversion

These conversion considerations are exemplified in the conversion of the Grommes 100BA amplifier, Fig. 1, the circuit of which is shown converted in Fig. 4. This amplifier is typical of many which come both with and without preamps in the $40 to $60 price bracket. Both former values and converted ones are indicated on the schematic. There are only three electronic parts changes in addition to the new output transformer.

Physically, it takes only two additional holes for mounting the output transformer—the remaining holes line up without alteration. The transformer fits rather snugly but inasmuch as it contributes no heating, its proximity to other parts causes no difficulty.

Any power supply which is satisfactory for the original circuit is also suitable for the "Ultra-Linear" version since the "Ultra-Linear" circuit is less critical as to supply regulation than the tetrode circuit. In the Grommes 100BA no filter choke is used, and the converted circuit works just as well without one although a single 100 ohm resistor was added in converting in order to reduce the hum voltage.

The converted amplifier has extraordinary specifications for its size and price. In fact its specs read amazingly like those of a conventional triode Williamson amplifier. Frequency response is flat ± 0.5 db from 20 cps to over 100 kc. at a 1 watt level. (By increasing the size of the cathode condenser of the 6SL7 the low end response can be made flat to below 5 cps.) At 10 watts, response is flat ± 1 db from 20 cps to over 60 kc., and clean waveform is preserved from 20 cps to 30 kc. even at this high a level.

The transient response as evaluated by square waves is shown in Fig. 6. There is a minimum of transient distortion and phase shift at these two extremes of the audio band.

Intermodulation distortion is extremely low. It runs about 1% at 1 watt, rises to 4% at 8 watts, and to 5% at 10 watts. It is still below 1% at 11 watts. These tests were made with 40 and 7000 cps mixed 4 to 1 and are based on equivalent sine-wave output. This is the conventional method of rating which is used for practically all commercial amplifier equipment.

The quality of a low cost 6V6 amplifier is normally not up to the top high-fidelity standards which have been set by the Williamson-type amplifiers produced in recent years. However, it is now possible, by using the "Ultra-Linear" circuit arrangement and a top quality output transformer, to convert these run-of-the-mill amplifiers into ones whose quality is comparable with the best obtainable in the

(Continued on page 117)
SONIC LIQUID LEVEL INDICATOR

A safe, explosion-proof instrument for measuring liquid levels in tanks without floats or other moving parts.

To meet a long standing need for accurate gauges, free from floats and similar moving parts, The Bogue Electric Manufacturing Co., has developed the SL-102 sonic liquid level indicator, shown being tested on this month's cover. Synchros, potentiometers, and other rotating data transmitters have been eliminated in the sonic system. The system does not use direct current within the tanks, and the liquid is not a conductor of electric current. The equipment is, therefore, safe and explosion-proof.

Sonic liquid level indicators are being used to gauge petroleum storage tanks and similar containers filled with corrosive and radioactive liquids.

The indicators may be arranged to deliver digital level data to commercially available tape printers for inventory purposes. The recorders may be operated up to several thousand feet from the indicators without the use of special equipment. When desirable, level information can be transmitted over greater distances using wire-radio transmission networks.

The SL-102 sonic system is completely automatic, and is capable of compensating for variations in sound velocity due to temperature and gravity changes within the liquid being measured, without any external equipment. It is also possible to read an interface level of two immiscible liquids in the same tank.

The system consists of an indicator and two transducers in each storage tank being gauged. The transducers, with proper protection, are installed at the bottom of the tank and are the only transmitting and receiving devices to come in contact with the liquid. Any number of tanks containing differing liquids may be read by one SL-102 indicator with the aid of a switching relay, R-102. The accuracy of this instrument is ±.01 foot.

The system consists of two sonic gauges, one measuring the surface level and the other the spacing between a series of acoustic reflectors placed along the sound path of a second transducer.

A pulse transmitted from the level measuring transducer is propagated to the surface of the liquid where it is reflected back to the transducer. The elapsed time interval is used to gate a timing oscillator, the frequency of which is directly proportional to the velocity of propagation of the pulse.

The period of each cycle of the timing oscillator is chosen to equal the time required for a sound pulse to travel .01 foot up and back through a particular liquid, so that the total number of cycles in the interval between transmission and return of an echo equals the actual level in hundreds of a foot. This information is translated to a liquid level reading on the decade counter of the indicator.

The transmitted pulse train at 400 kilocycles is transmitted at a rate of 20 times-per-second. Each pulse is 40 microseconds in duration. The calibrating pulse is identical to the indicating pulse. The reflectors, located at known distances in the stillwell of the calibrating system, provide pulses to adjust the timing frequency to exactly correspond to the velocity of propagation in the particular liquid. The number of reflectors used will depend on the depth of the tank.

Transmitter A and receiver A, along with the time interval counters, are designated the “main” system and, in conjunction with the associated transducer, gauge the surface level. Fig. 1.

The second system, or the “calibrate” section, consists of transmitter B, which directs the sound pulse along the path fitted with accurately located reflectors, and receiver B which amplifies the received echoes. The amplified reflector echoes are applied to the time interval counters where they calibrate the main system.

To support the acoustic reflectors in the calibrate section and to contain the sound energies within a small part of the tank, two stillwell pipe assemblies are installed in the tank. These stillwell pipes are acoustically treated internally with a material that is impervious to corrosive and non-corrosive liquids.

The transducers used with the system are made up of ammonium dihydrogen phosphate (adp) crystals. The crystals are encapsulated in a stainless steel container, measuring 5 inches in diameter. The crystals are protected by an acoustically transparent window of teflon that is impervious to corrosive liquids.

The indicator is housed in a table mounting cabinet, 15½ inches high, 19½ inches wide, and 21 inches deep. The weight of the indicator is approximately 116 pounds. The unit is mounted on slide rails making it readily accessible for inspection and maintenance. The system operates from 117 volts, 60 cycles, single-phase power and consumes 270 watts.

By CLAYTON R. KIELICH
Systems Engineer
Bogue Electric Manufacturing Co.

Fig. 1. How the indicator system operates to gauge liquids in various storage tanks.
Comparing production model 3-gun, 15" color TV set with black-and-white 17" set. Color receiver uses over twice as many components.

By MILTON S. KIVER
Pres., Television Communications Institute

In last month's article we examined in some detail the block diagram of a color television receiver designed to operate with a tri-gun color picture tube. Now we are ready to consider the actual circuits which each of the blocks represented.

R.F. Tuner. The introduction of color in no way alters or modifies the r.f. section of the television receiver. Thus, the r.f. amplifier should still possess high gain and low noise; the oscillator still provides a signal which, when mixed with the incoming signal, will produce the desired difference or video i.f. frequencies. For the reception of v.h.f. signals, either a turrent tuner or a continuous arrangement is employed. For u.h.f. reception, continuous tuning is the most common method although there is also available an 8-channel turret tuner.

A typical v.h.f. turret tuner circuit is shown in Fig. 1. Cascode amplifiers are common in the r.f. stage, although some manufacturers favor single high-frequency miniature pentodes. The oscillator tube is invariably a triode, usually half of the mixer tube. The latter may be another triode (i.e., ½ of a 6J6) or pentode (¼ of a 6U8). This arrangement requires only two tubes for the entire tuner section.

In the tuner shown in Fig. 1, the cascode r.f. amplifier uses a 6527 duo-triode. One section of a 6J6 serves as the mixer while the other section functions as the oscillator. Balanced 300-ohm and unbalanced 75-ohm (coaxial line) input impedances are provided by a center-tapped primary winding, Lm. All signals must pass through a high-pass filter designed to attenuate all signals below channel 2.

The secondary winding, Lm, is tuned by the input capacity (of the first triode unit) in series with alignment trimmer Cm. Loading of Lm by Rm provides the required bandpass, particularly on the lower v.h.f. channels. The a.g.c. bias is applied to the first triode of Vm through decoupling resistor Rm.

Direct coupling is used between the first triode plate and the second triode cathode. This is normal in cascode circuits. With cathode feed to the second triode, Cm is used to place the grid at r.f. ground potential. Since the two triode sections of Vm are in series across a common plate supply, the cathode of the second triode is positive with respect to chassis ground. A diode across the "B+" consisting of Rm and Rm1 places the grid of the second triode at a sufficiently positive potential (with respect to its cathode) for proper operating bias.

The signal at the plate of the second triode of Vm is inductively coupled into the grid circuit of the mixer. At the same time, a voltage from the oscillator is similarly brought into the mixer circuit. The mixer combines both signals to produce the desired i.f. and then transfers this signal to the following i.f. stages.

The oscillator is of the ultradunion variety with a front panel fine-tuning control.

Video I.F. Section. The video i.f. system follows the r.f. tuner. This will consist, usually, of four and sometimes five separate stages. See Fig. 2. In the conventional black-and-white television receiver, three i.f. stages was the number most frequently used, although four stages were found in some sets. The increased number of i.f. stages in a color receiver stems, in part, from the wider bandpass required (4.2 mc.) and from the greater precautions that must be taken to insure that the response curve will possess the right form.

The desired response curve for the video i.f. section is shown in Fig. 3. Of particular interest is the care with which the low frequency end of the curve must be shaped so that it provides the proper amplification for the color subcarrier and its sidebands. Note that the curve is flat down to approximately 41.65 mc. and then the "roll-off" is quite steep. The steep decline is needed to prevent the sound carrier from receiving too much amplification, producing a 920-kc. beat note at the video second detector which would appear on the screen as an interference pattern. Furthermore, too much sound voltage at the detector will produce a fine-grained 4.5-mc. pattern on the screen and/or sound bars. The latter effect, of course, can occur in all television receivers, whether they be of the black-and-white or color variety. The 920-kc. interference, however, arises only when a color signal is being received.

Video i.f. systems in color receivers...
follow the same practice as for black-and-white receivers in so far as interstage coupling is concerned. Most common types of coupling are bifilar coils and/or single wound coils. For example, the circuit of Fig. 2 uses bifilar coils predominantly ($T_{201}, T_{202}, T_{203},$ and T_{204}), but two of the tuned circuits have single-wound coils (L_{205} and L_{206}).

The interstage coils are stagger-tuned, ranging from a low frequency of 41.4 mc to a high frequency of 45.5 mc. Also present are five shunt traps, three tuned to the sound i.f. signal of 41.25 mc, one to the video carrier frequency (39.75 mc) of the adjacent higher channel, and one to the sound carrier frequency (47.25 mc) of the adjacent lower channel.

A number of sets resort to complex coupling circuits in one or more i.f. stages in order to obtain the desired attenuation at certain trap frequencies, such as the adjacent-channel video carrier, adjacent-channel sound carrier, and the sound carrier of the channel being received.

In one RCA color receiver, a bridged-T circuit is inserted between the tuner and the first video i.f. amplifier. See Fig. 4. The network contains a trap tuned to the accompanying sound carrier, 41.25 mc. In order to reduce interference from this source (i.e., cross modulation), the sound carrier is attenuated as soon as possible in the i.f. amplifier. (The signal is not removed completely, however, since enough must be available for the sound system. The latter ties into the video system at a subsequent point.)

A more elaborate bridged-T network, combined with an m-derived bandpass circuit, is employed between the first and second i.f. stages. This circuit contains two rejection traps, one tuned to 39.75 mc. (video carrier of adjacent higher channel), the other tuned to 47.25 mc. (sound carrier of adjacent lower channel). A second such complex coupling network is found between the final i.f. stage and the video second detector. This, too, contains two traps, one for the accompanying sound carrier at 41.25 mc and one for 47.25 mc.

It will be noted from Fig. 4 that the sound take-off occurs in the plate circuit of the final video i.f. amplifier. This does not necessarily denote a split-sound type of receiver, as mentioned earlier, but stems from a desire on the part of the set designer to avoid any interaction between the color subcarrier and the sound carrier that could produce (by mixing) a 920 kc beat note. The sound carrier is permitted to travel with the video signal up to the plate of the final video i.f. amplifier and then it is diverted to a germanium crystal where it mixes with the video carrier to produce a 4.5 mc signal. In the meantime, the monochrome and color subcarrier signals proceed to the video second detector for their demodulation. By this arrangement, the sound signal can be strongly attenuated in the video detector thereby minimizing the development of a 920 kc beat signal.

Automatic gain control is applied to the first two or three video i.f. stages in the same manner, and for the same reason, that it is applied in monochrome receivers. The r.f. amplifier also receives all or a portion of the same a.g.c. voltage.

Sound Channel. As indicated previously, the sound signal is diverted from the video path in the plate circuit of the final video i.f. amplifier. This signal and a portion of the video carrier are then mixed in a germanium diode to produce the desired 4.5 mc intercarrier sound signal. See Fig. 5. This is followed by several 4.5-mc i.f. amplifiers and then the signal is applied to a ratio detector. Here the audio intelligence is recovered from the FM signal. Further amplification by audio voltage and power amplifiers raise the signal to the proper level for operating a loudspeaker. Just how extensive this portion of the audio system is will be governed by the price range of the receiver. If a high-fidelity system is desired, then the audio stages can be elaborated, perhaps by the addition of push-pull output, phase inversion, feedback net-
works, etc. The system shown in Fig. 5 is commonly found in most TV receivers where economy and good sound is desired.

Luminance Channel. The video signal is demodulated in the video detector (Fig. 7), providing an output 0 to 4 mc. monochrome signal plus the I and Q color sidebands. (The color subcarrier, it will be remembered, was deleted at the transmitter.) The detector itself may be either a germanium diode (1N60 or its equivalent) or one section of a vacuum tube. There appears to be a definite swing toward the germanium crystal but vacuum tubes are still widely used.

Beyond the detector, both the monochrome and color sideband signals are applied to at least one stage of amplification before they are separated. In the circuit of Fig. 8, the output from the video second detector is applied first to the triode section of a 6UB, then to the pentode section. Both signals remain together only in the triode because at the grid of the pentode, a portion of the signal is fed to the bandpass amplifier, which is the input stage to the chrominance section of the receiver. Hence, separation of the monochrome and color signals might be said to occur at the output of the triode video amplifier.

The second video amplifier in Fig. 8 deals solely with the monochrome portion of the total color signal. This fact is further accentuated by the 3.58 mc. series trap which is present in the plate circuit of this stage. The trap attenuates any 3.58 mc. color subcarrier voltage which may be present here in order to prevent it from reaching the picture-tube screen and producing a visible interference pattern. The presence of the 3.58 mc. trap limits the response of the luminance or monochrome channel to a somewhat lower value, usually 3.0 or 3.2 mc. Since most present monochrome receivers operate within this bandwidth, both in their I.F. and video amplifier systems, any loss of detail will be no more apparent on color sets than on black-and-white sets.

At this point the reader may wonder why a special 3.58 mc. trap is required when, in fact, no 3.58 mc. color subcarrier is being sent with the signal. The answer rests in the fact that while it is true that at no time is there any voltage at precisely the 3.58 mc. frequency, the phase excursions of the color signal cause the carrier to move back and forth from frequencies above 3.58 mc. to frequencies below 3.58 mc.

Furthermore, most of the color energy is concentrated in the sidebands around the 3.58 mc. frequency and if we remove the bulk of this energy with a trap, we minimize any tendency of the color signal to produce interference patterns on the screen.

Another fact to note is this: The frequency of the color subcarrier (and hence, the frequency of its sidebands as well) was purposely chosen so that all this energy would fall midway between the clusters of energy of the monochrome signal. Any color signal reaching the screen of a monochrome receiver will tend to at least partially cancel itself out on successive frames so that its visibility is reduced. The same action occurs in a color set when the color signal reaches the screen via the luminance channel. Hence, the combination of the 3.58 mc. trap with the frequency interchange principle acts to reduce the visibility of any interference pattern from this source to a considerable degree.

Returning to the circuit of Fig. 8, the luminance signal is finally applied to the matrix section where it combines with suitable I and Q signals to provide the original red, green, and blue voltages.

Two additional representative video amplifier systems are shown in Figs. 6 and 9. The circuit in Fig. 6 is taken from an RCA schematic and employs a 1N60 crystal diode as the video second detector. The output of this stage is fed to a 6CL6 video amplifier. Here both chroma and monochrome signals are amplified. The monochrome signal is then transferred to a second video amplifier and from this stage to the matrix network. The chroma signal is taken from the cathode circuit of the 1st video amplifier and transferred to the bandpass amplifier which stands at the head of the chrominance section.

There are a number of things to note about Fig. 6. A 3.58 mc. resonant circuit in the plate circuit of the 1st video amplifier transfers the 3.58 mc. signal to a burst amplifier for use in the color sync section of the receiver. The same arrangement also attenuates the amount of 3.58 mc. voltage reaching the second video amplifier. The response of this latter amplifier extends to approximately 3.2 mc., enabling it to impose additional attenuation on the color subcarrier.

Connection to the sync and a.g.c. circuits is made at the plate of the 1st video amplifier. Also, a 1.0 microsecond delay line is inserted in the path of the luminance signal between the 1st and 2nd video amplifiers. The delay line is terminated in a 1500-ohm potentiometer which serves as a contrast.

(Continued on page 128)
Add a luxury touch to your mobile rig. This inexpensive control unit can be built and installed in a few hours.

"MAN, what luxury!"

That's what they say and that's how I feel when I put W2LJU/mobile on the air. The installation uses a bandswitching transmitter, bandswitching converter, and push-to-talk operation.

“So what? So lots of guys have bandswitching rigs and converters and push-to-talk.”

“So this,” I say, “I also have bandswitching loading coils on the whip at the rear of the car and remote control for them at the dashboard! I never have to get out from behind the wheel when changing bands. And, what's more, I can change bands and return in a matter of seconds... while the car is in motion.”

“Man, what luxury!”

It all came about because I am basically a very lazy fellow, I think. Anything I can devise which adds to convenience or minimizes the expenditure of effort, that's for me. I used to have to drive 45 miles each morning to get to my office in the country from my apartment in New York City. And, of course, I had to make a repeat trip each night in the return direction. Not knowing exactly what time I would get home to the city each night worked a bit of a hardship on the wife. When I would work into the city on my way home on 10-meters, one of the gang would telephone the wife to tell her I was on my way and would arrive in so much time. Some of the fellows even provided a phone patch and

Details of coil cover. Drill a 3/4" dia. hole in top piece. centered 1/4" from forward edge, 2" from side edges. Cut 2" corner wedges in side pieces as shown to avoid scoring against car body as the whip assembly swings while car is in motion. Parts are joined with liquid cement.
and put in operation in an afternoon's time.

There are available from some of the radio parts houses and surplus outlets 6-volt, impulse-operated, ratchet-type rotary switches. These have shafts and long side bolts which fit standard ceramic switch wafer. Because we have never seen two mobiles exactly alike, each representing the likes and economies of the individual owner-operator, the type numbers of the parts used in W2LIU/mobile are unimportant here. The technique used in achieving the end result is the important thing and sufficient data is given here to guide you in your own construction of a similar unit.

We obtained four ceramic wafers to fit the 6-volt switch. They are of the 3-pole, 3-position, non-shorting type. The 3-pole, 3-position wafers were chosen because of their physical construction which enables continuous rotary action, resulting in the cycle of band selection repeating itself automatically at every fourth impulse. Three of the switch wafers are connected in parallel and used for the r.f. section, contacting the loading coils. The fourth wafer is used for the remote indicator section at the dashboard of the car. The remote indicator is an aluminum box (steel will do as well) 4"x4"x2". Located at the upper edge of the box, for convenience, is the bandswitching control for the loading coils. It is a spring return, push-to-make, single-circuit switch. This switch remotely actuates the 6-volt ratchet unit at the whip. A group of three pilot lights is mounted at the edge of the 4"x4"x2" control box which is most easily seen by the operator seated behind the wheel. These indicate which of the three bands the whip is loaded for. This technique of identification makes it quite impossible to have the wrong loading coil "in" for any band when the pilot lights indicate which is the correct one.

The setup, as we said earlier, at W2LIU/mobile was for 75, 20, and 10. No coil is necessary for 10, of course. Loading coils are required for the other two bands. Therefore, as seen in the photographs, the two loading coils are screwed together, the lower frequency, or 75-meter coil, at the top side. As shown in the schematic diagram, the 75- and 20-meter coils are in series when operating on 75. For 20-meter operation, the 75-meter coil is shorted out. For 10-meters, both coils are shorted out. The photos and diagram show the wiring technique used. The whole thing is simplicity itself and non-critical in setting up.

For weather protection, a housing was fabricated of ¼" thick sheets of clear plastic. Lighter weight and opaque plastics will probably do just as well and are less expensive. The housing is slipped over the coils and switching mechanism after they have been screwed into the whip mounting in the usual way. The housing is held securely in place by the pressure of the whip screwed down into the top coil. If your loading coils are of the high "Q" type, it may be necessary to trim them a turn or two to restore resonance to that portion of the band in which you intend to do your operating. Adjustments can be made to the coils by unscrewing the whip, lifting the plastic housing, and screwing the whip back onto the coils. The housing has no electrical effects on the coils and can be replaced on the coils when the final adjustments have been made.

This specific setup has been in operation for over a year now in all sorts of weather from high summer heat to winter freezes, and spring rains. Except for taking the pictures for this story, the housing has not once been removed not even for maintenance. It has never failed to give us loyal and efficient service. Measurements with a diode type field strength meter show no measurable difference in power radiation between the conventional one-coil-at-a-time method and this remote control bandswitching arrangement. This device has been an identification for W2LIU/mobile and has aroused considerable interest among hams who have seen it. And every one says, "Man, what luxury!"

Schematic and parts list covering the remote control for mobile loading coils.

Close-up view of the switching mechanism. Surplus parts are used and the entire construction costs less than 12 dollars.
A PHOTOTRANISTORIZED PHOTOELECTRIC COUNTER

By

NATHAN O. SOKAL
and
RICHARD G. SEED

Construction details on a simple "on-off" unit to count interruptions in steady beam of light.

One of the most fascinating members of the new transistor family is the phototransistor, a photosensitive device of amazing sensitivity with built-in transistor amplification. These units have recently become commercially available, and offer extremely interesting and varied possibilities to the electronic experimenter.

The authors will describe one of the gadgets they have made with this unit; the reader's ingenuity can easily extend these basic ideas to a host of similar projects. The device to be described is a portable phototransistorized photoelectric counter.

The counter, shown in Figs. 1 and 2, is contained in the proverbial "black box." Fig. 2 is the circuit diagram.

The phototransistor is most easily understood by considering first the photodiode. The photodiode is a germanium crystal which behaves like an ordinary crystal diode, except that the back current depends on the amount of light falling on the sensitive region. The characteristic curves for a typical germanium photodiode are shown in Fig. 4. Note that the voltage and current are in the "back" direction—the direction of high resistance of the rectifier. In the phototransistor, the current of the photodiode is multiplied by transistor action inside the crystal.

Fig. 5 illustrates a typical characteristic curve for a phototransistor, showing the increased current sensitivity.

* Patent Pending. The commercial version of this device will be manufactured by Photocells Company, 30 Ware St., Cambridge 38, Mass.

Fig. 1. External and internal views of the phototransistor. An X-25 phototransistor is the heart of the device.

Fig. 6 illustrates the optical system. The light source is a small incandescent lamp which has a mirror or a lens to collimate the light into a narrow beam—an ordinary narrow-beam flashlight will do. The collecting lens gathers light from the beam and focuses the light onto the sensitive area of the phototransistor, which is placed at the focal point of the lens.

The sensitive area of the phototransistor is only about 0.05 inch by 0.1 inch. Any off-axis displacement of the image greater than this amount puts the light spot off the sensitive area. Displacement of the light source also displaces the image. Thus the light source must be kept within a certain distance of the optical axis, or it will be ignored. This means that the phototransistor, in a properly-designed optical system, can give very good rejection of strong spurious light while accepting relatively weak light from the intended source. For example, the unit can easily be operated outdoors in bright sunlight by an ordinary flashlight twenty-five feet away.

To get a quantitative idea of this point, refer to Fig. 7. If \(\theta \) is measured in radians (one radian equals 57.3 degrees) and \(F \), is the focal length of the lens, then the image displacement, \(d \), is approximately \(\theta \times F \). Since \(d \) cannot exceed about \(\pm 0.05 \) inch, and if \(F \) is about 2.8 inches, then \(\theta \) must be about \(\pm 0.04 \) radian, or about 2 degrees total. Thus the device sees only in a rectangular cone about 2 degrees tall and 1 degree wide. The sensitive cone can be widened, if desired, by defocusing the lens. In practice, imperfections of the lens do a certain amount of unavoidable defocusing, so that the angular discrimination of the device would probably be not quite as good as calculated, unless a good-quality lens were used.

Circuit Operation

Referring to the circuit diagram of Fig. 2, the operation of the unit can be traced as follows: A steady beam of light shines on the phototransistor, causing enough current flow to keep the relay closed. When the beam is broken by the object to be counted, the current decreases, and the relay opens, discharging the charged condenser through the counter, advancing the counter one count. When the light beam is restored, the relay closes again and the condenser is again connected to the battery, thus recharging the condenser to be ready for the next count.

This method of counting by charge transfer via the condenser usually uses less battery power than the more conventional method of connecting the counter directly to the battery. This is because the beam interruption in most practical cases is much longer than the time required for the counter to operate. With the counter connected directly to the battery, current keeps flowing even after the counter has operated, for as long as the beam remains...
interrupted. This drain on the battery after the counter has done its job represents wasted power. The condenser, however, delivers a measured amount of energy on every count, just enough to do the job, irrespective of how long the beam is interrupted.

If greater sensitivity is desired, a transistor amplifier can be added, as shown in Fig. 3. A CKT22 transistor will extend the operating distance by about three times; a CKT21 or 2N34 by about five or six times. Adjust the "dark-current balance" control until the relay contacts open with no light on the phototransistor.

If desired, a photodiode can be substituted for the phototransistor in the circuit of Fig. 3; the performance will then be about the same as that of a phototransistor without the extra transistor amplifier. Because of the variability in transistor characteristics, some CKT22's may not work well in the circuit of Fig. 3; all CKT21's and 2N34's should be satisfactory.

The phototransistor used in this device was an X-25, p-n-p grown-junction type, manufactured by Transistor Products, Inc., Boston 35, Mass. The transistor amplifier shown in Fig. 3 used a CKT21, p-n-p diffused-junction type, made by Raytheon Manufacturing Co., Newton, Mass.

The collecting lens was a fifty-cent condensing lens 2 inches in diameter and 2.75 inches in focal length, available on the surplus market. This relay was a 550-ohm, 5-milliwatt, Advance sensitive relay which happened to be available. A less expensive choice might be one of the sensitive relays now on the surplus market, having a resistance of several thousand ohms, and a sensitivity of about 20 milliwatts. The experimenter can make the relay more sensitive, if desired, by carefully decreasing the spring tension and the contact gap.

The only limitations on the choice of battery voltage and the relay are that the "light" current should close the relay, the "dark" current should let it open, and the voltage and dissipation on the phototransistor should not exceed 25 volts and 40 milliwatts respectively. If the reader wishes to calculate the proper values, he merely lays off a load line on the characteristic curve of Fig. 5, similar to the one illustrated there. One point of the line lies on the voltage axis at the battery voltage, E, and another point lies on the current axis at a current of E/R, where R is the relay coil resistance. The load line is a straight line connecting these two points, and the circuit operates at point A in the dark, and some point similar to B in the light, the exact point depending on how much light is available. The example shown in Fig. 5 is for a six-volt battery and a 1000 ohm relay.

The authors found that two flashlight cells in series were sufficient to power their unit. The counter used was a 110 volt a.c. unit operated at 45 volts d.c. from a 50 µfd. condenser. A lower-voltage counter would have the advantage that it could use the same battery that powers the transistor and relay. The proper value of capacitance is found by experiment. Use the value that turns over all counter wheels simultaneously, e.g., going from 9999 to 0000.

Performance

Reliable operation can be obtained at distances of 25 feet with a flashlight as the light source. The device shows excellent rejection of ambient light, due to its high angular discrimination, and can be operated easily in bright sunlight. With a transistor amplifier, distances well over a hundred feet can be obtained from a flashlight source. The reader is encouraged to test the distance achievable with an automobile headlight but he is cautioned to be very careful when aiming the unit at large distances and keep in mind the tremendous directional sensitivity of the unit.

This photoelectric counter is easy to build and can be an interesting weekend project. It can also serve as an excellent introduction to the fast-growing field of transistors and photosensitive semi-conductor devices.

The authors wish to thank Vladimir Korn of the Photocontrols Company for his help in developing the device.

REFERENCES

A simple method for matching a load to a transmission line or for determining if a load is correctly matched.

A COMBINATION of high-quality television test equipment such as a sweep generator, a high-gain oscilloscope, and a demodulator probe or detector provides a quick and accurate means for matching impedances, determining voltage standing-wave ratios, and measuring line attenuation. The technique described in this article is based on the observation and measurement of voltage standing-wave ratios to determine impedance matches. A good match between a component or circuit under test and a transmission line results in a v.s.w.r. approaching one. If the v.s.w.r. is not close to one, the circuit or component may be replaced by pure resistive loads having various values until the v.s.w.r. obtained with the original setup is duplicated; the impedance of the component or circuit may then be determined by direct measurement of the substitute resistive load.

The Comparison Method

The complete physical arrangement of a suitable combination of test equipment is shown in Fig. 3. The output cable of the RCA WR-58C sweep generator is coupled to one end (input end) of the transmission line. The sweep generator must have good linearity and a constant output voltage over its frequency range. The input of an RCA WG-291 demodulator probe or a simple detector is connected to the same end of the line. The output of the demodulator or detector is fed to the vertical input terminals of the RCA WO-56A oscilloscope. The scope used in this method must have good linearity and good sensitivity.

If the impedance of the load and the characteristic impedance of the line are equal, the voltage which appears across the demodulator or detector is independent of the frequency. In other words, if there is a perfect match between the load and the line, the voltage does not change as the generator sweeps through its frequency range.

Fig. 3. Test equipment arrangement for determining impedance match by v.s.w.r.
zero base line. The distance from the zero base line to the voltage minimum therefore provides a measure of the attenuation due to losses in the line. Care must be used in this method to prevent the existence of any large degree of reactance at the short itself. To make an effective short for 300-ohm line, it is convenient to strip back the line about one-half inch and twist the leads together. For coaxial lines, it is better to strip back the inner polyethylene insulation about one-quarter inch and short the outside braid directly to the inner conductor.

When measurements are made at v.s.w.r., the transmission line should be 75 to 100 feet long. A 300-ohm line may be wound around a cardboard box, a packing carton, or any low-dielectric form. The spacing between the turns should be equal to or greater than the width of the line being used, as shown in Fig. 1. Coaxial cable may be placed in any convenient location without regard to spacing between turns.

For most applications in which the frequency is below 216 megacycles, the detector or demodulator used in the measurements may be an RCA WG-261 demodulator probe or a simple detector such as that shown in Fig. 5A. An alternate detector for balanced input is shown in Fig. 5B. Either of these detectors may be constructed on a phenolic board 1/16 inch thick.

The entire test setup may be checked by the connection of a ¼-watt or ½-watt carbon resistor, having the same value as the line impedance, directly across the termination or output end of the line. The line connection to the resistor leads must be made in the area directly adjacent to the body of the resistor. The pattern observed on the screen of the oscilloscope should be similar to that shown in Fig. 6. It may be necessary to use several resistors having the same nominal value as the line before a good match is obtained because of variations in the resistance values and in the characteristic impedance of the line due to manufacturers' tolerances. When a good match has been obtained, the characteristic impedance of the line may be determined by measurement of the resistor.

Use of Comparison Method

The application of this method to the determination of impedance matches can be best illustrated by an example. If it is desired to determine the match of a 300-ohm transmission line to a television tuner, the tuner is connected as the load in the arrangement shown in Fig. 1. If the arrangement is used with the calibrator connected to the input end of the line, the screen shows a horizontal line as illustrated in Fig. 6. If the arrangement is used with the calibrator connected to the output end of the line, the screen shows a horizontal line as illustrated in Fig. 7. If the arrangement is used with the calibrator connected to the input and output end of the line, the screen shows a horizontal line as illustrated in Fig. 8.

Fig. 4. Simplified block diagram shows the arrangement of test equipment for matching a transmission line to an antenna.

Fig. 5. (A) Detector circuit for use with test equipment shown in Fig. 1. (B) A detector circuit for a balanced input.

Fig. 6. Oscilloscope pattern produced by a 300-ohm line terminated by 300-ohm resistor.

Fig. 7. How a television calibrator is coupled to the input end of transmission line.

Fig. 8. Tube loading effect across the antenna circuit of a TV tuner. (Top) The tuner presents a good match to the antenna over the passband as indicated by the two marks. This is the condition with all the elements turned on and "293" applied to the circuit. (Bottom) Trace with the power removed from the tuner and the reactive components of the tuner circuit less tube grid loading causing a mismatch. This shows that the input transformer is properly designed for the type of tube used in this circuit, i.e., the grid circuit applies a resistive component across the antenna transformer so as to effect a good match.
ELIMINATION OF R.F. INTERFERENCE IN AUDIO SYSTEMS

By

MAJOR EUGENE F. CORELL, USAF
Armed Forces Radio Service, New York

Part 1. A survey of the interference problem, eliminating r.f. at the source, shielding, and grounding procedures.

Radio-frequency interference with electronic equipment is a problem as old as radio. The various broadcast and communications services may interfere with each other and, in turn, may suffer interference from household appliances and industrial equipment. As a result, a large body of literature has accumulated on this general subject, augmented by comparatively recent work done to reduce interference in and to television receivers. In this latter connection, there is an excellent summary of corrective measures for TV in a recent Remington Rand publication.

The present article discusses r.f. interference with audio equipment. This is a phase of the general problem which has received little attention in the literature, at least in this country, and which is becoming increasingly important with the rapid growth of the audio field. The gear subject to r.f. interference includes broadcast audio facilities, tape and disc recorders, motion picture sound systems, high-fidelity home music layouts, public address equipment, intercoms, and other installations operating in the audio spectrum. Some of the remedies listed herein are peculiar to audio systems; others include standard shielding and grounding practices and other general interference suppression techniques.

It should be noted that a well-designed and carefully installed professional plant, such as a recording or broadcast audio facility, should experience little trouble with r.f. interference from transmitters, even in the presence of strong radio frequency fields. However, not all installations approach the ideal, and not many non-professional audio devices, such as home tape recorders and music systems, are designed with "built-in" automatic interference protection. It is hoped these articles will be useful for affected gear in both categories.

The r.f. interference may be heard in the earphones or speaker as the actual transmission of a broadcast or communications transmitter, or as various noises such as clicks, pops, whines, "hash," etc. The familiar radio elements—radiation (and/or conduction), detection, and amplification—are present when this occurs. The fact that the audio gear may have no front end or tuner as such is, alas, no bar to the excellent reception of unwanted r.f.

Radio frequency energy is generated not only by transmitters, but also by motor and generator brushes, household light switches, relay contactors, heating appliance thermostats, and sometimes by the innocent-appearing lamp bulb. The arcs and sparks of some of these devices are essentially oscillatory discharges which create waves of many frequencies. Other possible sources of r.f. noise include the older type of diathermy machines, induction furnaces, and r.f. test equipment. Microphone cables, phonograph cartridge leads, d.c. power supply wiring, and a.c. power lines act as antennas which pick up r.f. from the sources mentioned and re-radiate or conduct it to associated audio equipment. The a.c. lines may also conduct r.f. directly from source equipment to audio facilities. The tendency of various kinds of conductors to collect radio frequency energy is shown by the fact that it is possible, under certain critical conditions, for the long wires carrying the firing current for blasting caps to collect enough r.f. to detonate the cap and set off the explosive charge. Getting back to audio, r.f. may also be picked up by inductive elements like amplifier input transformers. Somewhere in the system, rectification takes place in a non-linear element. The demodulated energy is then amplified along with the wanted signal. There are two main ways of eliminating or reducing this trouble. One is to prevent the r.f. from entering the gear. In other words, the prevention of radiation and/or conduction. The other way is to get rid of the interference after it arrives at the audio gear.

Elimination at Source

The first step, of course, is to identify the source of the interference. This may take some doing unless the offending agency is a broadcast station or other generator whose signal is recognizable. For pin-pointing other sources of r.f., the characteristics of the offending sound may offer clues. A whining noise which occasionally changes pitch suggests a motor or generator with speed varying under changing loads. "Hash" may be due to fluorescent lights or to small a.c./d.c. appliances like shavers or fans. Clicks and pops at irregular intervals may be caused by light and power switches. Other characteristics such as the time of day, frequency of the interfering voltage, and rate of repetition may further narrow down the possibilities. In smaller buildings where this is practicable, all lighting and power circuits, except the a.c. feed to the audio gear, can be turned off and restored one by one until the noise reappears. The familiar tracing technique of using a receiver with an electrostatically shielded loop antenna as an exploring coil sometimes brings results. So does a wave-meter and also an ingenious and easily-built neon bulb gadget called an "r.f. sniffer." In the presence of fairly strong fields. Having located the origin of the trouble, it may be possible to reduce or eliminate the difficulty by one or more of the following measures, which are standard 'suppression-at-the-source' techniques used for r.f. protection of various types of electronic gear.

1. Supply a.c. power to the offending equipment through r.f. filters, or use bypass or feedthrough condensers. This prevents radio frequency energy from being carried away from the source equipment by the power lines which
may conduct it or re-radiate it to audio systems. Fig. 1 shows a filter of this type.

2. Induction heating furnaces and some r.f. test gear may require shielded rooms to prevent excessive radiation. A proper test setup should be well shielded.

3. Keep the negative brush lead on d.c. motors as short as possible.

4. Check with utility company on the possibility of insulators on nearby high-tension lines causing interference. Even if the insulator is not cracked any roughness on its surface may cause breakdown of the air over that area and cause corona discharge. Low-voltage circuits from the same or adjacent poles may pick up the radiated disturbance and conduct or re-radiate it to audio gear in the building served.

5. Check for "stuttering" thermostats or defective contacts in heating appliances, and chattering power relays that fail to close their contacts firmly.

6. Switches for lighting and power circuits can cause interference by their arcs. This is especially true of heavily inductive circuits. These may be suppressed by RC or LC filters.

7. Condemns between motor and generator brushes to ground or frame, keeping condenser leads as short as possible to reduce radiation. Note that condensers so used may constitute a shock hazard on ungrounded circuits. Safety considerations generally limit the size of the condenser to 1 µfd., and the degree of suppression obtainable by this means is therefore limited accordingly. The local electric code authority can be of help on this point.

8. Incandescent bulbs of the rough-service type, old style tungsten lamps with "W" filament, and even miniature panel pilot lights may generate voltage disturbances.

9. Neon bulbs used in oscillator circuits may cause r.f. interference.

10. Fluorescent lamps are a familiar source of trouble and can sometimes be suppressed by a small plug-in type filter inserted in the wall socket supplying the lamp. A typical unit of this type is the Cornell-Dubilier "Quietone" IF-6. In aggravated cases, chokes, condensers, or filters like the Mallory 2BA may be installed in the internal circuits of the lamp. It may also be helpful to move the ballast reactor closer to the lamp to shorten the internal wiring and thereby reduce radiation. It should be noted that fluorescent lamp interference is often unpredictable. Not all lamps of an identical type will give trouble, and a particular unit may interfere at some times and not at others. It has been the writer's experience that fluorescent lights should not be used in broadcast and recording studios, although there are numerous installations in which they are used successfully.

11. Neon signs are potential causes of trouble if their high-voltage leads have poor connections and/or are not well shielded. All metal portions of the sign, the transformer housing, and the wiring shields should be bonded together and grounded.

12. Mercury rectifier tubes can be silenced by condensers between the positive terminal and ground, and by r.f. choke on the positive lead.

13. When the number of interfering sources and the number of affected audio installations warrants the cost, the use of the Aerovox type ANL37 interference analyzer may simplify selection of the proper type of filter for a.c. power lines.

14. In case of interference from the stepping relays of private automatic telephone exchanges, the telephone company should be asked to install filters.

15. For detailed data on locating and suppressing r.f. interference sources, the reader is referred to G. L. Stephens' excellent volume from which some of the prevention-at-the-source material in this article was obtained.

Suppression at Audio Gear

While it is certainly desirable to eliminate interference at the source, there are numerous occasions when this is difficult or impossible, as for example, in the case of a broadcast transmitter. Remedies must therefore be applied to the affected audio equipment. These include treatment of audio and power lines, modification of circuits, substitution of special components, and most important of all, careful analysis of the shielding and grounding of the entire audio system. In this connection, it bears repeating that r.f. interference from transmitters should be no problem in a professional audio facility if it is carefully designed and installed in accordance with the best broadcast and/or recording standards. The following data includes design and installation precautions of good engineering practice as well as what might be called "brute-force" remedies. The distinction between the two approaches, and the applicability to non-professional equipment of the various measures described, should be obvious from the text.

Faced with an existing r.f. interference problem, the first thing to do is to find out what element in the system is acting as the antenna or the pickup coil—the audio wiring, the power cables, or circuit components. An audio pair can be checked by determining whether the interference ceases when the wires are disconnected from their destination across which an equivalent load resistor has been shunted. Inductive elements acting as pickup coils—transformers, filters, and equalizers—can sometimes be located by circuit tracing with a crystal or diode probe feeding a high-gain amplifier. The r.f. pickup and rectification may occur in the same element, or each phenomenon may take place at a different point. In the latter case, the effective point of rectification will be further along toward the system output. This point may be determined by applying the input of a test amplifier with a shielded audio probe successively to various circuit or chassis components and wiring joints, working back from the system output until the interference disappears. This procedure should be used with caution, to make sure the application of test leads to high impedance circuits does not, of itself cause noise, hum, and other interference. Having determined the circuits and/or components involved, the measures described herein may be applied. These are grouped under the headings "Shielding and Grounding" (in this article), "Lines and Cables," "Amplifiers and Power Supplies," "Prevention of Rectification," and "Miscellaneous Remedies" (in Part 2).

(Continued on page 90)

Fig. 1. Filter used to prevent high-frequency industrial equipment from feeding r.f. to a.c. supply line. May also be used in the a.c. leads of audio gear to keep out r.f. conducted along the power line. Inductance values refer to the Ohmite Z-70, 5 ampere power-line choke, in which two 7 ph, windings are on a single ceramic core. Suppression range includes the b.c. band and extends upward to 15 or 20 mc. Whether condensers are to be on the line side or the load side of the chokes should be determined by trial. Circuit by Ohmite.

Fig. 2. (A) The r.f. voltage appears between ground and long "B—" leads and is coupled to preamplifier proper through stray capacitances such as C. (B) Remedy is to use input transformer secondary to preamplifier chassis and remove ground from power supply to prevent ground loop. Circuit from the book "Elements of Sound Recording" by Frayne and Wolfe, John Wiley & Sons.
THE preface to this column has been used as a sounding board by me, for many purposes. Quite often I let off steam about this or that subject which I feel is not in the best interests of music and high fidelity sound. Sometimes I damn and othertimes, I praise. In all of this I hope I have been at least entertaining and informative, and perhaps, even helpful. You know, help it's come for this, the outpur of the get enough of it, others resent the whole idea, still others cast a cynical and jaundiced eye towards anyone who presumes to offer help. Well, as I've said before, some people like vanilla and some like chocolate. Since the basic premise of this column is to be helpful, I'll try to meet this obligation to the best of my ability.

Recently I enjoyed a conducted tour of the Pickering magnetic cartridge plant in Oceanside, Long Island. It was a most interesting experience to say the least. I was amazed at the amount of precision work that goes into the manufacture of a magnetic pickup. As is common in most electronic manufacturing plants, most of the delicate work is performed by women. The dexterity of some of these women was fascinating to watch as they wound minute coils, or positioned stylus. My reason for mentioning this visit, is because of something I learned which may be helpful to those of you who happen to use Pickering cartridges. It seems that there has been a change in the output voltage in recent models of the 120 and 140 series pickups. A little over a year ago, it was found that the 70 million output of the original model cartridge would cause some distortion when used with some of the newer models of front-ends and preamps. This is due to the fact that the phono channels on these units have a gain of over 48 db. To correct for this, the output of the 120 and 140 series cartridges was dropped to 50 millivolts. The output of the new 260 turnover unit is 30 millivolts and presents no problems. So, if you are the owner of a late model preamp and an "older" Pickering cartridge, try putting a resistance across the terminals and see if it sounds any different to you. It is certainly not a serious problem, and one which is easily solved. I shall try to find out the serial number which ended the use of the higher output coil in the pickups, and pass it on to you.

STRAVINSKY
LE SACRE DU PRINTEMPS
Minneapolis Symphony Orchestra conducted by Antal Dorati. Mercury "Olympian" MG50030, AES curve. Price $5.95.

I'm going to make some pretty strong statements now, so I'd like a few things understood. (A) I do not own any stock in Mercury Records. (B) I am not married to the daughter of the chief recording engi neer, nor am I a cousin of Antal Dorati. (C) I am under no compulsion or duress and the material contained herein is the product of my own free will.

Having thus unburdened myself, I can proceed with the business at hand. To wit: I think this is the greatest recording since the invention of the phonograph! Yes, you heard me right! Of all the countless thousands of recordings I have heard, this is positively the last word. Let us examine this marvel and see wherein lies its greatness.

It would be difficult to single out one particular element as the significant contribution to its superiority. Any "favorite" or "best" recording is, of course, a reflection of an individual's taste in repertoire, conductors, and performance, and the technical qualifications. It also goes without saying that "one man's meat is another man's poison." Even when a majority of so-called "experts" agree that such and such a recording is the "best," there will be legions of dissenters for one or another reasons. A person can be told about a certain Beethoven 5th, that has the finest performance and sound. But if that person doesn't like the Beethoven 5th, what cares he for the recording's other qualities? Or this person may love the Beethoven 5th, but can't stand this particular performance or sound. And so ad infinitum.

The ideal of course, is a magical amalgam of all three prerequisites. As far as I am concerned this recording comes closest to realizing this ideal. I freely admit I'm prejudiced in favor of the work itself. I've been fascinated and thrilled with this controversial score ever since I heard it in Europe many years ago. What there is about the music that is so compelling is hard to put your finger on. Sure, it is programmatic. But its "primitiveness" stems more from the music itself than from the program ascribed to it. Indeed, with the advent of Disney's "Fantasia" we were shown an entirely new programmatic concept of the score. This is provocative music and it has its private meanings in everyone's private little world. In matters of performance, this version is almost totally different in concept than the other available recordings. Mr. Dorati has realized a particular ambition with this recording, having "pointed" towards conducting "Le Sacre" ever since he was signed for the Mercury "Olympian Series." To this end, he has programmed "Le Sacre" as part of the regular concert repertoire of the Minneapolis Symphony, for the past several years. All this careful planning and enthusiastic anticipation has resulted in a performance abso lutely overwhelming in its impact. In a score which is notable in itself for the generation of excitement, this reading is a blood-tingling, nerve-shattering experience.

Throughout the work, Dorati emphasizes the rhythmic elements which is as it should be. From the Introduction to the "Dances of the Adolescents," and on through the "Game of Abduction" and "Spring Rounds," Dorati drives his music obliquely. But for all this headlong pace and blaz ing intensity, the score remains completely articulate. There is no blur or fusion of important polytonalities or polyrhythms. The remainder of the reading from the "Sacrificial Night" to the final "Sacrificial Dance" is unbelievable. Dorati and his orchestra give an absolutely stunning display of virtuosity. The incredibly difficult polyrhythms of the "Sacrificial Dance" are negotiated without "error"! From an interpretative viewpoint, Dorati's reading is most closely paralleled by that of Stravinsky himself. Strangely, the authenticity usually ascribed to conductor-conducted readings, is not fully realized in the Stravinsky recording. Dorati has taken one further step in the direction of rhythm and balance which makes his reading altogether unique.

Now for the all important question of sound: Nothing in my entire experience with recorded music has ever impressed me so much. This is the cleanest, most distortion-free, most beautifully balanced sound in phonographic history! From every possible aspect, this recording wins hands down. Dynamic range? Unนมberable.

Frequency response? Only the most advanced equipment will do it full justice. You will hear sounds in this recording, you probably thought were impossible to engrave on a disc. Stratospheric, piercing piccolos and flutes. (Continued on page 121)
THE Crosley
Super-V

by BOB TOUGER
Technical Section, Crosley Service Dept.
Division, Avco Manufacturing Corporation

First complete service article on the new Crosley
"Super-V" 15-tube TV set with a vertical chassis.

The tuning, volume-on-off, contrast, horizontal hold, and vertical hold controls are located on the side of the chassis and are readily accessible by removing the back of the cabinet. It is possible to see right down into the tube-socket pin holes. Note: Turn off the set before removing any of the tubes.

The cabinet is designed to fit over the chassis and tube assembly like a bonnet, as shown in Fig. 6. It is held side of the chassis and are readily accessible by removing the back of the cabinet. It is possible to see right down into the tube-socket pin holes. Note: Turn off the set before removing any of the tubes.

The cabinet is designed to fit over the chassis and tube assembly like a bonnet, as shown in Fig. 6. It is held
Fig. 3. Complete schematic diagram of the Crosley 426 "Super-V" TV chassis used with TV models G-17TOMH, TOBH, TOWN, TOMU, TOBU, and TOWU.
to the chassis mounting board with four 5/16" hex head machine bolts which extend up through the bottom, two on each side, and three wood screws. One of the wood screws is located in the bottom front, the other two are in the rear corner blocks. To remove the cabinet, take off the back and antenna terminal board, remove or disconnect the speaker, and take out the mounting screws. The lightweight cabinet is easy to handle and, once it is removed, most of the circuit components and the circuitry are exposed to view.

B+ and Heater Circuits

The block diagram of the "B+" and heater circuitry used in the "Super-V" chassis is shown in Fig. 4. A good general working knowledge of this block diagram is very important to any television service technician in tracking down symptoms and locating troubles in the "B+" and heater circuits. Starting with the a.c. power plug, note that one side of the a.c. line passes through the interlock connector and through the "on-off" switch directly to the chassis, which is used for the common electrical ground. This makes the chassis "hot." Since, in most cases, one side of the power line is grounded, the chassis will be either at ground potential or 117-volts a.c. above ground, depending on which way the power plug is inserted into the a.c. outlet. To eliminate the shock hazard associated with this arrangement, take care when working on the chassis to

Table 1. Alignment procedure for the video i.f. and sound circuits of the Crosley 426 "Super-V" TV chassis.

<table>
<thead>
<tr>
<th>STEP</th>
<th>SIGNAL GENERATOR</th>
<th>OUTPUT INDICATOR</th>
<th>CONNECT TO</th>
<th>ADJUST</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.4 mc.</td>
<td>Test point 2 on tuner through a .01-µfd. condenser</td>
<td>Junction of R₁₁₈ and C₁₁₂</td>
<td>T₁₀₁ for maximum</td>
<td>Limit generator output to give less than -2 volt reading. Put -3 vol. on a.g.c.</td>
</tr>
<tr>
<td>2</td>
<td>22.9 mc.</td>
<td>Same as above</td>
<td>Same as above</td>
<td>L₁₀₈ (rear slug) for maximum</td>
<td>Use first peak from Tinnerman-clip end of coil</td>
</tr>
<tr>
<td>3</td>
<td>21.9 mc.</td>
<td>Same as above</td>
<td>Same as above</td>
<td>L₁₀₈ (front slug) for minimum</td>
<td>Use first null from coil form end. Adjust input level to give at least .5-volt null</td>
</tr>
<tr>
<td>4</td>
<td>Repeat steps 2 and 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25.5 mc.</td>
<td>Same as above</td>
<td>Same as above</td>
<td>L₁₀₈ for maximum</td>
<td>Use first peak from Tinnerman-clip end of coil</td>
</tr>
<tr>
<td>6</td>
<td>25.1 mc.</td>
<td>Same as above</td>
<td>Same as above</td>
<td>L₁₀₈ (front slug) for maximum</td>
<td>Use first null from coil form end. Disregard this step if 27.9 mc. trap has not been added.</td>
</tr>
<tr>
<td>7</td>
<td>27.9 mc.</td>
<td>Same as above</td>
<td>Same as above</td>
<td>L₁₀₈ (rear slug) for minimum</td>
<td>Use first null from coil form end. Disregard this step if 27.9 mc. trap has not been added.</td>
</tr>
<tr>
<td>8</td>
<td>25.1 mc.</td>
<td>Test point 1 on tuner</td>
<td>Same as above</td>
<td>L₄ (brass screw) for maximum</td>
<td>Connect a 100-ohm resistor in series with a 1000-µµfd. condenser across L₁₀₁</td>
</tr>
<tr>
<td>9</td>
<td>25.1 mc.</td>
<td>Raised tube shield of V₁₈ (6J6) and chassis</td>
<td>Oscilloscope</td>
<td>High side of R₁₀₂ contrast control and chassis</td>
<td>Set contrast control at minimum</td>
</tr>
</tbody>
</table>

This step is not required in the alignment procedure but is useful as an over-all i.f. check.

SOUND ALIGNMENT

<table>
<thead>
<tr>
<th>STEP</th>
<th>SIGNAL GENERATOR</th>
<th>OUTPUT INDICATOR</th>
<th>CONNECT TO</th>
<th>ADJUST</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.5 mc. 400 cps amplitude modulated (30% or greater)</td>
<td>Pin 8 of V₁₀₄</td>
<td>Oscilloscope</td>
<td>Pin 11 of CRT through detector probe</td>
<td>L₁₀₈ (rear slug) for minimum</td>
</tr>
<tr>
<td>11</td>
<td>Tune in local TV station</td>
<td></td>
<td></td>
<td></td>
<td>"Buzz control," R₁₀₂ for maximum sound</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>Pin 11 of CRT through detector probe</td>
<td>L₁₀₁ and L₁₀₈ (front slug) for maximum sound output</td>
<td>If signal in area is too strong to obtain peaks, remove antenna temporarily</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>"Buzz control," R₁₀₂ for minimum noise & L₁₀₈ for maximum sound</td>
<td>Signal must be weak to allow noise (hash) to come through</td>
</tr>
</tbody>
</table>

June, 1954
selenium rectifiers. This is called the "fusistor," which is used as both a fuse, which opens on a direct short or overload, and a current-limiting resistor, which limits the maximum current which can flow through the input condenser, C_{in}, during the initial charging period, i.e., when the set is first turned on. This protects both the condensers and selenium rectifiers. The bottom rectifier, SR_{in}, conducts on the negative peak of the a.c. input and develops $+135$ volts across its terminals. The amplitude of the rectified voltage is dependent on the "B+" load and is less than the input peak voltage, in this case, 1.41×117 volts or 165 volts. On the positive peak, the top rectifier, SR_{in}, conducts and develops an output of $+135$ volts. Since the two voltages are in series across the output condenser, C_{out}, they add to produce a total of approximately 270 volts for the "B+" supply.

The output from the doubler circuit is passed through the filter choke, L_{filter}, and condensers $C_{filter1}$ and $C_{filter2}$, which eliminates most of the hum component. The $+260$-volt supply provides the basic power requirements for all the "B+" circuits in the receiver. Some tubes such as the sound detector, video amplifier, horizontal oscillator, and a.f.c. are operated directly off the $+260$-volt "B+". However, the tubes in the r.f., i.f., and sync circuits must be operated on a lower voltage and are, therefore, connected (in a parallel string) in series with the audio output tube across the $+260$-volt "B+" circuit. In normal operation, the 2SL6 output tube is self-biased to a point which places approximately $+150$ volts at its cathode. This is the "B+" voltage required by the other tubes. The a.c. coupling and interaction between the circuits is kept to a minimum by using the two 200-mfd bypass filter condensers, C_{132a} and C_{132b}.

The horizontal and vertical amplifiers, requiring a higher voltage than the 260 volts available from the "B+" supply, obtain 480 volts from the "B-" boost circuit, as in most conventional receivers.

The other lead from the a.c. line is connected through the "tube life extender" resistor R_{480}, to the high side of the heaters which, in turn, connected in a combination series-parallel circuit, as shown in Fig. 4. The "tube life extender" resistor limits the amount of current flowing in the heater circuit when the set is turned on. The current-limiting resistor is required because the resistance of the tube heater is much less when cold than when hot. The high resistance of the current-limiting resistor when it is cold is sufficient to limit the amount of heater current which can flow when the set is first turned on, thus effectively eliminating the high-current surges which would otherwise shorten the life of the tube heaters.

Tubes in the receiver should not be pulled out while the set is turned on. A glance at the heater circuit will show that some of the tube heaters are shunted by either a resistor or another tube. Therefore, should one of the parallel tubes such as V_{103} or V_{105} be pulled out while the set is on, the tube that is left is forced to carry the entire load, placing an excessive strain on its heater. Should V_{103} or V_{105} be removed while the set is turned on, it will result in an excessive amount of current being forced through the associated shunt resistor, which may cause it to change value or otherwise destroy its usefulness. (Note: In later production receivers, the three 43-ohm resistors have been replaced by one 126-ohm, 10-watt resistor.)

The "Super-V" employs a *Standard Coil* turret tuner with a pentode r.f. amplifier. (See Fig. 5.) It can be field converted to receive u.h.f. by replacing unused v.h.f. strips with u.h.f. strips. This chassis is also available with a factory installed continuous coverage u.h.f. tuner, shown in Fig. 7, which converts u.h.f. signals to channel 5 or 6. The u.h.f. tuner is also available with a complete set of instructions for field conversion, and is recommended for fringe-area reception or wherever full channel coverage is desired.

The u.h.f. tuner employs the same double-conversion system used in previous models. It is, however, a new design and employs several interesting features. New pin-type u.h.f. an-

Table 1

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{filter}</td>
<td>480µh</td>
</tr>
<tr>
<td>$C_{filter1}$</td>
<td>200µf</td>
</tr>
<tr>
<td>$C_{filter2}$</td>
<td>200µf</td>
</tr>
</tbody>
</table>

Fig. 4. Block diagram of the "B-" and heater circuits of the "Super-V" chassis.

Fig. 5. Schematic diagram of the v.h.f. turret tuner using a pentode r.f. amplifier. The test points indicated are used in the alignment procedure of Table 1.
tenna connections are used because it was found that during the development and field testing of the u.h.f. tuner, conventional screw-type antenna terminals in a 300-ohm balanced line represented a considerable discontinuity which resulted in a poor voltage standing-wave ratio. The conventional screw terminals are satisfactory for v.h.f. reception.

The oscillator in the converter operates approximately 82.5 mc. below the u.h.f. channel frequency to which it is tuned, producing an 82.5-mc. i.f. signal. This is picked up by the "Super V" by setting the v.h.f. tuner on either channel 5 or 6.

The u.h.f. variable tuning unit is composed of three silver-plated, semicircular rings which act as one-quarter wave tuned lines; two for the r.f. preselector, one for the oscillator. The end inductors, \(L_0 \), \(L_{1} \), and \(L_3 \) (see Fig. 7), are formed by making a loop in the connecting lead on condensers \(C_1 \) and \(C_3 \), respectively. The converter is aligned on the high end of the band by adjusting the size and shape of these loops. The preselector is aligned on the low end by adjusting condensers \(C_1 \) and \(C_2 \) on the oscillator. The oscillator is aligned on the low end by varying \(C_a \).

A 6T4 u.h.f. oscillator triode is used in a modified Colpitts grounded-plate circuit. The output of the oscillator is inductively coupled to the mixer circuit by means of the loop formed in the lead which passes through the hole in the oscillator shield and connects the oscillator grid, pin 6, to the .1 \(\mu F \) blocking condenser, \(C_B \). Moving this loop toward \(C_x \) increases the oscillator-to-mixer coupling, and moving it away decreases it.

There is, in some cases, an appreciable variation in the amount of crystal capacity between crystals of the same type. For this reason, it is usually best when replacing the 1N82 crystal to try three or more different ones. Particular care should be exercised to make sure the crystal contacts are clean and that they make good contact in the socket clips. For best results, the crystal current should not fall below 0.4 milliamperes, or exceed 5 milliamperes at any point in the tuning range as measured at the test point (T.P.).

The i.f. signal developed in the crystal mixer circuit is amplified in the 6BK7A cascode amplifier before it is coupled through the function switch, \(SW_1 \), to the v.h.f. tuner input. The double-tuned broadband i.f. input transformer \(T_7 \) is aligned at the center frequency of 82.5 mc. The function switch \(SW_7 \) is used both to switch the antenna connections and to control the "B+" to the u.h.f. converter.

To facilitate the construction and testing of u.h.f. units with available u.h.f. signal generator equipment, the u.h.f. tuner is designed with a 50-ohm single-ended input impedance. In order to match this input to a standard 300-ohm antenna system, an impedance-matching network called a balun is used \((C_A; \text{Fig. 7}) \). Shown in Fig. 9A, it consists of two pieces of 125-ohm transmission line, each cut to a quarter-wavelength near the center of the u.h.f. band. The two sections are connected in parallel at the 50-ohm (tuner end) and in series at the 300-ohm (antenna) end, as shown in Fig. 9B.

Video i.f. and Amplifier

The three-tube video i.f. circuit is similar to the one used in other Crosley models. A broadband circuit employing low-side capacitive coupling is used between the mixer and the 1st i.f. amplifier. (See Fig. 3.) The series circuit formed by \(L_4 \) and \(C_4 \) constitutes an effective filter which suppresses the oscillator energy present in the mixer plate circuit. This is an important factor in keeping oscillator radiation to a minimum so as to eliminate interference with other TV sets.

Service technicians in areas plagued with adjacent channel interference will be interested in learning that a 27.9 mc. adjacent-channel trap is available which can be easily installed and adjusted without removing the cabinet. This trap is a small coil and condenser assembly connected together to form a parallel.

(Continued on page 108)

Fig. 6. Chassis removal is rapid and exposes all tubes and components for servicing.

Fig. 7. Schematic diagram of the continuous-type u.h.f. tuner available with the "Super V" chassis either factory installed or for field installation. The dial cord stringing guide in the lower right-hand corner should be followed exactly.
1954 TV Receiver Specifications

Continuation of the list of mechanical and electrical specifications on new TV sets for service technicians. See next issue for additional listings.

Hall-Crafters

MFR.	CHASSIS	TUNER	I.F.'s	VIDEO'	AUDIO	SWEEP'	P.S.	CRT	VIDEO I.F.	H.V.	U.H.F. PRO-	POWER	SPECIAL FEATURES																		
------	---------	-------	--------	--------	--------	--------	------	-----	-----------	------	VISION (WATTS)																				
C1400D	6B27 6CB6	6CB6	12BY7	6AU6	6B59, 657	614G	2CP4	45.75	18	11	275	5, 10, 12																			
D1400D	6J6	6CB6	6CB6	6CB6	12BY7	657, 6CD6	6AV6	6V3A	6AQ8	6B07	6BZ7	6CB6 12BY7 6AU6 6BE6, 6SN7, 6CD6	6AV6	6V3A	6AQ8	6B07	6BZ7	6CB6 12BY7	6AU6	6BE6, 6SN7, 6CD6	12BY7	6US, 6BE6	6B06	6W4 1B3	21YP4	1215P4	1B3	41.25	15	11	155

Hoffman

MFR.	CHASSIS	TUNER	I.F.'s	VIDEO'	AUDIO	SWEEP'	P.S.	CRT	VIDEO I.F.	H.V.	U.H.F. PRO-	POWER	SPECIAL FEATURES
------	---------	-------	--------	--------	--------	--------	------	-----	-----------	------	VISION (WATTS)		
400	6B7 or 6CB6	6CB6	128Y7	6AU6	6B59, 657	614G	2CP4	45.75	18	11	275	5, 10, 12	
TV-180-3W	12A27 6CB6	6CB6	128Y7	6AU6	6B59, 657	614G	2CP4	45.75	18	11	275	5, 10, 12	

Philco

MFR.	CHASSIS	TUNER	I.F.'s	VIDEO'	AUDIO	SWEEP'	P.S.	CRT	VIDEO I.F.	H.V.	U.H.F. PRO-	POWER	SPECIAL FEATURES
------	---------	-------	--------	--------	--------	--------	------	-----	-----------	------	VISION (WATTS)		
TV-197	6CB6	6CB6	128Y7	6AU6	6B59, 657	614G	2CP4	45.75	18	11	275	5, 10, 12	
TV-207	12A27 6CB6	6CB6	128Y7	6AU6	6B59, 657	614G	2CP4	45.75	18	11	275	5, 10, 12	
TV-208	12A27 6CB6	6CB6	128Y7	6AU6	6B59, 657	614G	2CP4	45.75	18	11	275	5, 10, 12	

1. Video i.f. tubes only. 2. Includes detector and a.g.c. 3. Includes sync section and a.f.c. 4. CRT 2nd anode voltage. 5. Removable safety glass. 6. Local-fringe a.g.c. adjustment. 7. High-fidelity sound. 8. Aluminised picture tube. 9. TV-radio-phono combination. 10. Built-in antenna. 11. 82-channel tuner. 12. Adjustable dial light. *Part of tube is used in another section.
WHEN this month's column was prepared, a few stations had not yet gone on summer schedules; in such cases, you may find summer schedules one hour earlier than listed here-in.

Albania—Radio Tirana, 7.832A, noted with news 1400. (Pearce, England) Heard in English 1745-1800. (Erikkson, Sweden) More recently noted with English 1700-1730 closedown. (Cox, Dela.)

Algeria—Radio Algerie, 6.160, is heard best in France around 1300. (La Radio Mondiale, France)

Anglo-Egyptian Sudan—Radio Omdurman, 4.995, noted 1340 with Arabic music; 1350 with Arabic news. (Pearce, England)

Australia—VLI6, 6.090, Sydney, N.S.W., noted 0600-0700. (Pearce, Ill.) VLM4, 4.920, Brisbane, Queensland, heard 0600 with news. (Murphy, N. Y.) Chatfield, N. Y., others) VLEC9, 9.615, is good level 1000-1115. (Waltz, Washington, Forster, Ill.) Good over VLA15, 15.200, 2152-2155 to West Coast North America. (Kirby, Mo.)

Austria—Blue Danube Network, 5.080, heard in Europe 0630-0700. (URDXC) And on 9.617 at 0430. (Pearce, England) Vienna, 6.155, is heard in Britain closing 1828 after identification in German. (URDXC)

Balearic Islands—Radio Menorca now uses 7.415 around 1430. (ISWC, London) Heard near 7.405 at 1500 with music, generally closes after taking relay from Madrid 1600-1615. (Pearce, England)

Belgium—ORU, 9.767, Brussels, noted in clear 1945. (Rideout, Wisc.; Foster, Ill.)

Bolivia—CP38, 9.442, La Paz, noted closing around 2128A. (Ferguson, N. C.)

Burma—Rangoon, 4.775A, is good 0915-1015. (N. Z. DX Times) Weak in Calif. (Morgan)

Brazil—PRLA, 9.770, Rio de Janeiro, is heard occasionally around 2030 with much classical music. (Niblack, Ind.) PRL7, 9.120, Rio de Janeiro, noted Sat. 2100 with announcements in English in musical session. (Anglado, Miss.) With news in Portuguese 2130. (de Neuf, N. Y.) Radio Clube de Pernambuco noted again on 9.865 from 1500 onwards. (Cody, Ireland) ZYR78, 11.925, Sao Paulo, noted 2200-2300 when identified as "Radio Bandeirantes." (Nor- throop, N. C.) ZYK3, 9.565, noted with "Brazil Calling" (English) 2005-2030. (Reidler, Pa., others)

British Honduras—Radio Belize, 3.300, 4.950, noted around 1800-2130 in English and (a little) Spanish. (Rowell, Minn.)

British New Guinea—VL76, 6.130, Port Moresby, heard 0450-0550 when is blotted out by CHNX, Halifax, N. S., Canada, coming on air. (Pearce, Ill., others)

Canada—CFRX, 6.070, Toronto, Ont., is good level around 1600. (Welch, Mass.) VE3AI, 9.540, Edmonton, Alta., is again audible in Texas around 0900. (Stark) Canada noted over 6.08 at 0100-0145 with news, music. (Garren, Calif.)

Cape Verde Islands—CR4AB, St. Vincent, has been heard in Britain on measured 7.092 at 1720. (URDXC) CR4AA, 7.386A, noted opening 1500; 1545 news in Portuguese. (Pearce, England) Good signal around 1700. (Sutton, O.)

Ceylon—Radio Ceylon, 9.52 noted to South India around 1100. (Zahner, Md.) Chile—CE1515, 15.150, Santiago, noted fair level 1830 in Spanish. (Hill, N. H.)

China—Radio Peking, 15.060, noted 0400 with news, strong level. (Bates, Okinawa) Noted by Balbi, Calif., then on 10.20, 10.26, 9.08, 7.50, 6.20, 6.10; 11.67 does not carry news then; Shanghai noted by Balbi on 6.20, excellent signal around 0400; Balbi notes the 0930 news over 11.67 (not 11.69 as announced). Ferguson, N. C., recently heard Peking in native at 2040 on 15.060, 15.130A.

Colombia—HJCO-HJKA, 4.99A, Bogota, noted with program schedule in Spanish 0000-0005 and then closing with anthem, good level; HJKD, 6.000, heard 2000 with bilingual musical program in English-Spanish, good level; HJFX, 6.054, Cali, noted 2200-2300 with music, some QRM. (Koch, Ore.) HJAE, 4.940, Cartegena, heard closing 0900. (Murphy, N. Y.) Radio Maria. 4.824, Pasto, noted 2129-2205; when identifies, uses "Love's Old Sweet Song" as background music. (Roberts, Conn.) HJCT, 6.185A, Bogota, noted at good level evenings EST. (Strong, Md.)

Costa Rica—TIFC, 9.647, is good level to 2305 closedown. (Herd, Dela.) Due to power shortage, schedule is now 0600-1300, 1800-2300. (Cushen, N. Z.; Frazier, Texas)

(Continued on page 100)

This veteran SWL is Bill Roemer, Bowling Green, Ky. His well-equipped listening post includes a National HRO-50, a Hallicrafters S-15R, and DE22A (ME) Prese-ector, and a BC-221 frequency meter. During both World War II and the war in Korea, Bill did a splendid job of monitoring POW messages and then relaying them to the prisoner's families in the U.S.
Fig. 1. The tuning unit assembly and base of the tower. Access to bandswitch is through front door of the mailbox "cabinet."

Construction and operational details on a compact, highly efficient antenna system for the 80, 40, and 20 m. bands.

EVERY amateur is faced with the problem of efficiently radiating the energy produced by his transmitter. The antenna described in this article operates well on 80, 40, and 20 meters, requires very little space, is reasonable in cost, and looks professional.

The antenna, a 44-foot vertical, is mounted approximately one foot off the ground supported by standoff insulators on a wooden mount. Ground wire radials are buried just beneath the sod and terminate at the base of the mount. The tuning units are placed in an RFD mailbox beside the antenna.

Some of the important features of the antenna include the following:

1. Radiation of the energy at vertical angles which favor DX communications.
2. Excellent local coverage produced with vertical polarization.
3. Better communications with local mobile installations because they are all vertically polarized.
4. Buried coax line is used to feed the antenna on all bands. (RG-8/U)
5. Harmonic radiation is reduced because of the low-pass filter action of the L-networks used to match the antenna and the transmission line.
6. The complete system can be erected on any small city lot.
7. The total cost is approximately $25.00.
8. One final important feature—installation of the ground system is work, however the rest of the job is pure enjoyment.

An antenna height of 44 feet was chosen because this height will produce maximum radiation of energy, on 20 meters, at very low vertical angles. This was discussed in a previous article ("The Ground Plane Grows Up," May 1954, Radio & Television News). Briefly, the antenna is 63 wavelength on 20 meters and is similar to an extended double-zepp, except in this case it is vertical and worked against ground. This type of operation has been used by some broadcast stations to obtain added coverage. Note the 20-meter vertical pattern shown in Fig 2A.

There is a small high angle lobe caused by a phase reversal on a portion of the antenna. If the antenna was considerably longer it would become a poor radiator on 20 meters as the small high-angle lobe would develop into a large lobe and finally replace the lower lobe altogether. The antenna height is therefore limited by this feature.

Vertical radiation patterns are also included (Figs. 2B and 2C) for 40 and 80 meters. As can be seen from the patterns, 40 meter radiation is at a slightly lower vertical angle than 80 meters whereas 20-meter radiation is concentrated at very low angles. The radiated energy from the antenna on all three bands is concentrated in each case where it will be most beneficial for DX work.

The ground system used with this type of antenna is very important because considerable losses can develop at this point. The outside braid of the coax transmission line is connected to the ground radials at the base of the antenna support where the ground wires are terminated. The ground wires, like spokes of a wheel, form radials from the base of the antenna. If the ground system is poor then losses are developed similar to those that would occur if a resistor were inserted in series with the transmission line. A ground stake is not satisfactory by itself, however it may be used in conjunction with the ground system described. The ground system should include as many radials as possible with lengths up to ¼ wavelength or greater.

The author's installation includes 16 radials which vary in length from about 25 to 45 feet. They are made of number 16 galvanized iron wire which is inexpensive and does a good job. Copper wire is slightly better but much more expensive. The radials are buried about 2 inches below the surface. The wire was stretched between two temporary stakes in the position desired and then the ground sliced beside the wire (using the wire as a guide). Two large screwdrivers were used to push the wire down in the slit in the sod. After the wire was in place the sod was then tamped back to normal. The ground installation task was made easier by heavy watering the night before. The coax feedline which runs under the house was also buried and brought out in the operating room in a coaxial wall receptacle mounted on the baseboard.

The tuning network, Fig. 3, for each band is simply a series coil and shunt condenser called an L-network. The values used are dictated by the antenna impedance at the frequency of operation. The 80-meter tuning unit consists of a large shunt capacity (1200 µfd.) and a large series coil (10 µh.) The 40-meter unit consists of a series coil (2.1 µh.) and a shunt condenser (215 µfd.). The 20-meter coil has an inductance of 8 µh., but no shunt capacity is used. The measured impedance of the antenna on 20-meters indicated that a shunt capacity of about 15 µfd. would be needed on the antenna side of the network; however

WILLIAM H. HARRISON, W6ULD
Stanford Research Institute
Mount Lee Laboratory

RADIO & TELEVISION NEWS
this is a very small value and in actual practice it was found unnecessary, possibly because the switch and wiring capacities to ground amounted to this value. The coils used were home constructed and self-supporting with the exception of the 80-meter coil which was found on a standard 2½ inch form. Coil lengths, diameters, and number of turns are listed in the parts list accompanying Fig. 3.

Several methods can be used to obtain the necessary capacity for the shunt condensers. A receiving-type variable can be used on 40 meters—the author uses 250 µµfd. variable rated at 1500 volts because it happened to be in the junk box. The 80-meter capacity presents a problem because of its large value. A good solution is to use a fixed mica condenser of 1000 µµfd. and a 210 µµfd. variable condenser in parallel to obtain the correct value. The current developed across the capacity is rather high because the reactance is low. This is not important with air dielectric condensers since they do not break down due to high current until the voltage rating is approached. Mica condensers, however, have definite maximum current limitations even though the voltage rating is not exceeded. This varies with the type of mica condenser, the frequency of operation, and its capacity. If you are using a full kilowatt purchase one of the large mica condensers made specifically for r.f. current, such as the Solar type YA, Aerovox 1994, or similar condensers, having a 5000 volt d.c. rating and a current capacity of about 9 amperes at this frequency. In the author’s particular installation a similar condenser was used (1200 µµfd. purchased at one of the local radio stores on their surplus table for $8.50. 1200 µµfd. is an odd value and probably is available, however, the author has noticed numerous advertisements mentioning 1000 µµfd. condensers as surplus items at a similar price. Although there seems to be no specific current ratings available for the smaller transmitting mica condensers such as the C-D type 4 and 9 or Sangamo type A and H (2500 d.c.w.v.), they are being used successfully in similar applications.

Mr. Grammer in his article, “Pi-Network Tank Circuits for High Power” (QST, October 1952), describes the use of these smaller mica condensers in a pi-network in the output circuit of a high power amplifier. His experiments indicate that this type of condenser is capable of carrying about 5 amperes r.f. current, thus, for powers up to about 150 watts, a single unit rated at 1000 µµfd./2500 d.c.w.v. would be satisfactory. He mentions the TV 500 µµfd./10,000 d.c.w.v. type condenser works very well in this application; a pair of these in parallel could be used satisfactorily at higher powers. So much for the current limitations of mica condensers. Another method can be used to obtain the correct capacitive reactance (the one the author used). It consists of combining a fixed mica condenser with a small series coil. The coil reduces the capacitive reactance which is the same as increasing the capacity. Calculations had indicated the shunt capacity required on 80 meters would be slightly larger than is actually needed, thus a small coil was placed in series with the 1200 µµfd. (measured 1195 µµfd.) condenser so the effective capacity could be raised. Turns were shorted out in the little series coil until the proper reactance was present. In the author’s (Continued on page 88)
Barney, late as usual after his lunch hour, came charging into the service department only to be brought up short by the sight of Mac, his boss, wearing something that looked like a doctor's stethoscope. The gadget was plugged into a tape recorder: and the service shop owner, unaware he was being observed, was keeping time to the rhythm on the silently moving tape with a wavering forefinger.

"Well, well! If it isn't Old Doctor Kildare himself!" Barney shouted gleefully at the nape of Mac's neck, delighted at catching his employer off guard. "What's your prognosis, Doctor?"

Rather sheepishly Mac removed the apparatus from his ears, shut off the recorder, and turned on his assistant with a fierce scowl. "My prognosis," he announced menacingly, "is that if a certain red-headed Irishman does not knock off his practice of sneaking up behind people and yelling at them, he is not long for this world."

"What you got?" Barney wanted to know.

"It's a new idea in low impedance earphones. See this little housing on the back end of the phone plug?" Mac asked as he touched an object about the size of a small hickory nut sticking out of the "External Speaker" jack of the recorder. "Inside is a midget 3/8 inch, six-ohm speaker. The output of this speaker goes through this flexible plastic tube to a 'Y' beneath the chin, and from there anodized aluminum tone arms carry the sound to both ears. The whole thing only weighs an ounce and a quarter."

"What's the good of it?"

"Well, for one thing, it can be plugged directly into the external speaker jack of any tape recorder for personal listening. That's handy when you want to listen to a tape privately or when you want to crank up the playback level for listening to a high-fidelity recording without disturbing others. Also it looks like a good unit to use when people want earphones connected to a radio. This will allow us to make a quick, easy, and safe installation. By employing a miniature closed-circuit jack, the secondary of the output transformer can be hooked across the phones when the plug is inserted, and returned to the set speaker voice coil when the plug is removed. Since there is no metallic connection between the earphones proper and the plug, there will be no danger of the wearer being shocked, even when the phones are connected to an a.c.-d.c. set."

"How's the quality?"

"The manufacturer advertises 'response from 50 to 8000 cps or better.' That does not say, of course, within what db limits this response is had. However, take a listen yourself to this recording of the 'Studies in Percussion' track by Hal Reeves that I took off Capitol's 'Full Dimensional Sound' test record. Keep an ear cocked especially for the triangle, the tambourine, and the bass drum."

Barney adjusted the tips of the tone arms in his ears and listened carefully for two to three minutes. Then he cut off the recorder and announced importantly, "I may not have a golden ear, but those phones sound good to me. That tambourine seemed as though it were being shaken right in front of my face, and I could almost see the bass drum's stretched hide quiver as it gave that last 'whump.'"

"Not to change the subject," Mac remarked as he put the cover back on the recorder, "but never think I failed to notice you were late getting back from lunch again. What was it this time? Did you get held up with flying saucer traffic, or was it really something unusual?"

"Nope; the drugstore was just full of high school kids, and I couldn't get waited on. While sitting there, though, I really saw a demonstration of the power of advertising. Remember a while back when you couldn't turn on your radio or TV set without having a guy on it tell you all about lanolin and sheep's wool and his particular brand of hair dressing! Well, one of those high school hot shots came in and told the druggist he wanted something for his hair. The druggist asked what brand he wanted, and the kid just went 'Ba-a-a-a-a-a!' like sheep. Without saying another word the druggist reached up and pulled down the kind of hair dressing that bird on radio and TV was plugging. His message certainly must have got across!"

Mac chuckled at Barney's graphic description of the drugstore scene as he said, "I'm glad you brought up the subject of advertising, for it's something I've been thinking about lately. If you're not in too great a hurry to get back to work, we might talk it over a little."

"I'll try to restrain myself," Barney murmured languidly as he collapsed on one end of the service bench.

A fellow moved into the neighborhood recently," Mac explained, "and when he found I ran a service shop, he jumped on me all spattered out. He says TV service advertising is strictly for the birds and that it makes no commercial sense. To prove his point, he pointed out several ads in a metropolitan newspaper. One shop harped on the expensive equipment and the advanced technical knowledge needed to do modern TV service work. On the next page he had boasted that practically all service work could be performed right in the customer's home in a very short time."

"This guy then went ahead to say that twice he had had to call in a service technician to repair his set. In each case the call was answered by a young kid who, as he put it, 'didn't look as though he were dry behind the ears yet.' This boy came in carrying a small tool box, about two dozen tubes, and a single meter—probably a v.t.v.m. In both cases he looked in the back of the set, noted a burned out tube, replaced it, and was on his way. Where was the 'expensive equipment?' this fellow wanted to know. As for the 'advanced technical knowledge,' it required about as much of that as would be needed to find out which bulb was burned out in a floor lamp. According to the way my neighbor looked at it, that business was expensive and delicate instruments being needed to do TV work is a lot of hooey. So is the talk about technical knowledge. The fact that most TV repairs can be made right in the home (Continued on page 118)"
The use of a Voltage Calibrator will greatly increase oscilloscope usefulness. Provides a convenient method of making peak to peak voltage measurements by establishing a relationship between the unknown wave shape and the Voltage Calibrator. Voltage ranges 0.1-100 volts peak to peak. The Voltage Calibrator features direct reading scales and a regulated power supply system.

MODEL VC-2
$11.50
Shipping Wt. 4 lbs.

The Heathkit Electronic Switch Kit will further extend scope usefulness by permitting simultaneous observation of two individually controlled traces. Continuously variable switching rates 10 cps to 2,000 cps in three ranges. Will also serve as a square wave generator over the range of switching frequencies.

MODEL S-2
$23.50
Shipping Wt. 11 lbs.

The Heathkit Oscilloscope Kit provides a rock steady pattern, regardless of normal line voltage variations. A built-in blanking amplifier eliminates the retrace line entirely. Other important advantages are: input transformer, 2-axis input, direct connections to the deflection plates, 1 volt peak-to-peak calibration voltage and a calibrated grid screen. Wiring is simplified by the use of the harness technique which also results in a neat professional appearance. Extremely wide vertical bandwidth allows accurate reproduction of even a 500 KC square wave. Excellent focusing characteristics are made possible by the use of the new RCA 5UP1 CRT and a new shape control. One of the most versatile of test instruments, the Heathkit 0-9 Oscilloscope will be invaluable in the radio and TV service shop, as a work project in school and for all types of circuit investigation work in the laboratory. Its new features make Model 0-9 comparable in every way to many commercially built oscilloscopes selling for as much as $400. Don't pass up this opportunity to add a really fine instrument to your service or experimental lab.

NEW FEATURES

- Unheard of in a kit oscilloscope have been added to the already popular Heathkit series. All top quality components are used including a brand new RCA 5UP1 CRT. Ten other first line tubes complete the lineup.
- Voltage regulation provides a rock steady pattern, regardless of normal line voltage variations. A built-in blanking amplifier eliminates the retrace line entirely.
- Other important advantages are: 2-axis input, direct connections to the deflection plates, 1 volt peak-to-peak calibration voltage and a calibrated grid screen.
- Wiring is simplified by the use of the harness technique which also results in a neat professional appearance.
- Extremely wide vertical bandwidth allows accurate reproduction of even a 500 KC square wave.
- Excellent focusing characteristics are made possible by the use of the new RCA 5UP1 CRT and a new shape control.
- One of the most versatile of test instruments, the Heathkit Oscilloscope will be invaluable in the radio and TV service shop, as a work project in school and for all types of circuit investigation work in the laboratory.

SAVE BY ORDERING DIRECT FROM MANUFACTURER

- All high quality standard brand components.
- Increased knowledge through Heathkit construction.
- Solid engineering insures excellent performance.
- Kit construction is fascinating and enjoyable.

HEATH COMPANY Benton Harbor 15, Mich.
HEATHKITS for the ENGINEER

Heathkit VISUAL AURAL SIGNAL TRACER KIT

- Designed especially for service applications in AM, SW-FM-TV repair work. IF and audio two channel input. More than adequate sensitivity—new noise locater circuit—calibrated wavemeter—substitution speaker—visual signal indication. Can be used with scope and VTVM, checks phone cartridges, phono mechanisms, microphones, tuners, etc. Let the Heathkit Visual Aural Signal Tracer help you.

Heathkit CONDENSER CHECKER KIT

- An instrument designed solely for its particular job. Not a “sideline” or a multiple function instrument. Measures value and quality of unknown condensers and resistors. Capacity range .0001 mfd to 1,000 mfd. Resistance range 150 ohms to 5 meg ohms. Sensitive electron beam indicator—five polarizing test voltages—safely spring return leakage test switch. An amazingly accurate instrument at this low price.

Heathkit SIGNAL GENERATOR KIT

- MODEL SG-8
 - $19.50
 - Wt. 8 lbs.
 - The standard service instrument for alignment work. 2-220 MC. Controlled sensitivity. Usable as an oscillator or an absorption wavemeter. Extra low frequency coils available.

Heathkit LABORATORY REGULATED POWER SUPPLY KIT

- MODEL PS-2
 - $33.50
 - Wt. 20 lbs.
 - A regulated variable 160-450 volt DC output power supply for the lab or service shop. Accurate voltage and current measurements with large Simpson meter. AC supply 63 volts at 4 amperes—standby switch eliminates warmup time. Low hum content—5 circuit. AC and DC output voltages isolated from panel for maximum operational flexibility.

Heathkit RESISTANCE SUBSTITUTION BOX KIT

- MODEL RS-1
 - Ship. Wt. 2 lbs.
 - $5.50
 - Choice of 36 switch selected resistance values 15 ohms to 10 megohms. All standard RTMA 1 watt 10% resistors. Buy several for those lab and service applications.

Heathkit GRID DIP METER KIT

- One hand operation. 5 pre-wound coil cover 2-220 MC. Controlled sensitivity. Usable as an oscillator or an absorption wavemeter. Extra low frequency coils available.

Heathkit TUBE CHECKER KIT

- Checks overall tube quality, filament continuity, and individual elements for shorts and opens. Features chart illumination, harness type wiring, and large 3-color meter scale.

Heathkit AUDIO WATTMETER KIT

- Measure output power levels directly with the Heathkit Audio Wattmeter. Flat response to frequencies from 10 CPS to 250 KC. Full scale ranges of 5 MW, 20 MW, 50 MW, 5 W and 50 W. Db calibration from —10 to +48. Uses non-inductive built-in resistors. Resolving impedances of 4, 8, 16 and 600 ohms. Meter bridge uses germanium diodes.

Heathkit LABORATORY GENERATOR KIT

- MODEL LG-1
 - Ship. Wt. 16 lbs.
 - $39.50
 - A professional laboratory instrument designed for extreme accuracy in frequency and output level. Colpitts oscillator operates in 5 ranges from 150 KC to 30 MC. Panelmeter calibrated in output voltage and percent of modulation. Output in excess of 1 volt. Features complete shielding of oscillator, buffer and attenuator sections; regulated power supply and 50 ohm output cable. Comparable instruments priced many times higher than the cost of this new kit.
Heathkit IMPEDANCE BRIDGE KIT

MODEL IB-2

$59.50
Ship. Wt. 15 lbs.

Heathkit DECADE RESISTANCE KIT

MODEL DR-1

$19.50
Ship. Wt. 4 lbs.

Heathkit Q METER KIT

MODEL QM-1

$44.50
Ship. Wt. 14 lbs.

Heathkit TELEVISION SWEEP GENERATOR KIT

MODEL TS-3

$44.50
Ship. Wt. 18 lbs.

Heathkit COMMUNICATIONS RECEIVER KIT

MODEL AR-2

(Less Cabinet)

$25.50
Ship. Wt. 12 lbs.

Heathkit COMPARATOR KIT

MODEL DC-1

$16.50
Shipping Wt. 4 lbs.

Heathkit AMATEUR TRANSMITTER KIT

MODEL AT-1

$29.50
Ship. Wt. 16 lbs.

Heathkit DECADE CAPACITOR KIT

MODEL DC-1

$16.50
Shipping Wt. 4 lbs.

Heathkit AMATEUR DUOGEN KIT

MODEL AG-8

$29.50
Ship. Wt. 11 lbs.

Heathkit BATTERY ELIMINATOR KIT

MODEL BE-4

$31.50
Ship. Wt. 18 lbs.

Heathkit BAR GENERATOR KIT

MODEL BG-1

$14.50
Ship. Wt. 6 lbs.

WRITE FOR FREE CATALOG

New 49 page 1954 Catalog lists all kits, specifications, schematics and latest price information.
NEW HEATHKIT WILLIAMSON TYPE AMPLIFIER KIT
The ideal amplifier for custom high fidelity audio installations. Top in performance, value and flexibility of operation. Either Altec Lansing Peerless or Acrosound output transformers available. Frequency response ±1 db 10 CPS to 100 KC, negligible hum and noise levels and plenty of reserve power for complete listening pleasure. First Williamson Type Amplifier supplied with matching preamplifier.

PRICES OF VARIOUS COMBINATIONS:
- W-2 Amplifier Kit (includes Main Amplifier with Peerless Output Transformer, Power Supply and WA-P2 Preamplifier) Shipping weight 30 lbs. Shipped express only $69.50
- W-3 Amplifier Kit (includes Main Amplifier with Acrosound Output Transformer, Power Supply and WA-P2 Preamplifier) Shipping weight 30 lbs. Shipped express only $69.50
- W-4 Amplifier Kit (includes Main Amplifier with Acrosound Output Transformer, Power Supply and WA-P2 Preamplifier) Shipping weight 30 lbs. Shipped express only $97.50

NEW HEATHKIT ECONOMY 6 WATT AMPLIFIER KIT
MODEL A-78
$15.00
Ship. Wt. 10 lbs. Dual inputs—separate bass and treble tone controls—output impedances of 4, 8, and 15 ohms. Performance far beyond that normally expected for the price. A-7C includes preamplifier for low level input devices. Price $17.50

NEW HEATHKIT HIGH FIDELITY 20 WATT AMPLIFIER KIT
MODEL A-9B
$35.00
Shipping Wt. 23 lbs.

Outstanding features of the Heathkit 20 Watt Amplifier include a frequency response of ±1 db from 20 CPS to 20 KC, less than 1% harmonic distortion at rated output, separate (boost and cut) bass and treble tone controls, 4 selected input jacks, hum balancing control and output impedances of 4, 8, 16 and 500 ohms. Flexibility is emphasized in the input circuits with built-in preamplifier and proper equalization.

HEATH COMPANY • Benton Harbor 15, Mich.

MAIL YOUR ORDER TODAY TO THE HEATH COMPANY
BENTON HARBOR 15, MICHIGAN

ORDER BLANK

SHIP VIA
- Parcel Post
- Express
- Freight
- Best Way

QUANTITY

ITEM

MODEL NO.

PRICE

On Express orders do not include transportation charges—they will be collected by the express agency at time of delivery.

On parcel post orders insure postage for weight shown.

ORDERS FROM CANADA and APO's must include full remittance.

RADIO & TELEVISION NEWS
SERVICE HINTS ON CROSLEY TV SETS

MODELS 10-401, 10-404, 10-412, 10-414, 10-416 & 10-418

Unstable horizontal sync.
If the horizontal oscillator drifts, causing the receiver to fall out of horizontal sync after operating several hours, check Cvm, the 0.01-µfd. condenser connected to pin 6 of Tvm, the horizontal oscillator transformer. This condenser, if it is of the molded type, may change capacity with temperature change sufficiently to cause the receiver to fall out of horizontal sync.

Replace the condenser with a 0.01-µfd., 600-volt paper type, and realign the trimmer at the bottom of Tvm.

Carrier buzz.
To reduce carrier hum which may accompany high contrast on some sets, change condenser Cvm (connected to pin 6 of Vm, 6AU6 sound driven), 100-µfd., 500 volts, to 47-µfd., 500 volts.

Also change resistor Rv (in parallel with Cvm) from 220,000 ohms to 47,000 ohms, ½ watt, and Rv (connected to pin 6 of Vm) from 56,000 ohms to 27,-000 ohms, 10%. The voltage divider (47-µfd. with 10%, 1 watt.)

Arcing between the 6BG6 and damper-tube plate lead.
When experiencing breakdown due to arcing between the 6BG6 and damper-tube plate leads, install 3½ inches of fiberglass sleeving over the 6BG6 plate lead. This sleeving should be placed toward the terminal on the horizontal deflection transformer.

MODELS 10-401, 10-404, 10-412, & 10-418

Horizontal sweep sing.
This condition can be caused by vibration of the mounting bracket on the horizontal output transformer, Tvm. This mounting bracket occasionally vibrates at a subharmonic of the 15,-750-cps horizontal sweep frequency. This can be corrected by inserting small wedges between each end of the transformer and chassis, as shown in the accompanying diagram.

It is not necessary to remove the chassis from the cabinet to make this correction.

MODELS 10-404MU, 10-404MU, 10-412, & 10-418

Insufficient vertical sweep.
To obtain sufficient vertical sweep, make the following changes:
1. Change resistor Rvm from 5600 ohms to 4700 ohms, 10%, 1 watt.
2. Change the vertical output transformer, Tvm, to an autotransformer by connecting the secondary winding in series with the primary, as shown by the dotted line in the accompanying diagram. (The diagram shows the circuit before changes.) To make this change, do the following:
a. Remove the red lead of the primary winding of Tvm at the terminal board where it is soldered beneath the chassis. There is another lead to this lug which is red with a white tracer. Resolder the red lead to the adjacent lug to which two green leads are connected.
b. Remove the yellow lead of the Tvm secondary winding and the yellow lead of the deflection yoke from the lug of the terminal board nearby where they are both soldered. Resolder these two leads to the lug where the red lead of Tvm was formerly connected.

"SUPER V" MODELS (CHASSIS 426)
Poor vertical interface, unstable picture, and intermittent streaks.
This combination is caused by an intermittent contact between the Aquadag coating on the picture tube and the grounding strap.

To correct this, take off the grounding strap and reform it so that it makes a firm contact at the Aquadag coating when it is in place.

In cases where the Aquadag coating has become scraped off by the movement of the tube during shipment, repair the strap so that the contact falls on a good area.

MODELS 11-442MU, 11-444MU, 11-453MU, 11-460MU, 11-470BU, 11-472BU, 11-474BU, & 11-493BU

Hum or buzz.
To reduce this condition, do the following:
1. Make certain that the electrolytic condenser, Cvm (one section of which goes from pin 6 of the 6AHG video amplifier to ground), has a good ground connection by soldering the wire from the chassis to one of the ground lugs on the condenser.
2. Replace the shield in back of the contrast control if it has been removed.

June, 1954

New replacement control helps you provide hi-fi reproduction at low-volume levels

Centralab's new SENIOR COMPE NTR0L* with level-set

Combination volume control and Printed Electronic Circuit

There's nothing else like it for improving tone performance

Now, Centralab's new Senior Compentr0l with level-set lets your customer control bass and treble range to suit himself — something he cannot do with an ordinary compensated volume control. A universal unit, Senior Compentr0l replaces any value without additional amplification. You install it easily and quickly — make money on the job.

Be set to cash in on today's increasing awareness of tonal qualities by your customers. Get several Senior Compentr0ls from your Centralab distributor — net price, $4.50.

Centralab also has a Junior Compentr0l. It is furnished in ½ and 1 meg., plain and switch types, for use in radio sets (5 or more tubes, AC or DC), audio amplifiers, or phono combinations.

Send coupon for 20-page booklet 42-182 telling the whole Compentr0l story — or Centralab Catalog 28.
IN CONSTRUCTION
Rohn Towers are built of heavy duty tubular steel electrically welded throughout by skilled workmen exactly to specifications. Proof of Rohn construction lies in the fact that thousands of towers have been sold in the past several years and have successfully withstood the rigors of time in all climates and under the severest of conditions!

IN PERFORMANCE
Rohn Towers assure you of trouble-free performance and once installed give unquestioned satisfaction year in and year out! You are free of complaints because over the years Rohn Towers have proved themselves from the serviceman, dealer and customer point of view.

IN SALES
Sales acceptance has been phenomenal — thousands have been sold coast to coast — and the design has been one which we’re proud of every test known! Why “experiment” with an unproved tower design when you can select Rohn!

So we ask you, “Why take chances with an uncertified tower? Be sure — select Rohn — the only tower of its kind to withstand every test!”

3 Self Supporting Rohn Towers To Fit Your Every Need
The No. 5 — The self-supporting tower for use up to 40’, or geared to 60’. An economical, yet sturdy, permanent tower!
The No. 10 — The standard 12’ design that is self-supporting to 50’ and can be installed to 120’ when geared!
The No. 20 — The heavy duty Rohn Tower, ideal for communication and where great height is required — self-supporting to 60’, or geared to 100’!

All Rohn Towers are in 10’ sections — easily erected, transported and stored!

Contact your Rohn authorized representative or your distributor for FREE CATALOG or write...

MANUFACTURING CO.
DEPT. RTN 116 LIMESTONE BELLEVUE
PEORIA, ILL.

Rohn Fold-Over Tower only one of its kind exclusive with Rohn — patent pending.

Rohn Telescoping Mast — complete line in proven structural design to 20’ — 26’ — 40’ — 60’ models.

SPLINED TUNING KNOB FOR 274-N RECEIVERS
An exclusive 0-9 tuning manufactured for us. Fits BC-655, BC-656 and 274-N receivers. This is a really hard-to-obtain item. Only $.49 ea.

OFFENBACH-REIMUS
1584 Market Street, San Francisco, Calif.

110V, AC POWER SUPPLY
FOR ANY 274-N RECEIVER
Just plug it into the rear of your 274-N receiver and you can build and check years of servicing. It’s a complete line in a single case, with ALL parts and dis-connections all in a lute, Delivers 24 volt plus or minus 2 volt. No wiring changes to be made. Designed especially for the 274-N receiver. Only $9.95.

Factory Repair's on all makes and types of test equipment
Write Dept. 5 for BIG NEW FREE Catalogue
GENERAL ELECTRICAL DIST. CO.
98 PARK PLACE, NEW YORK 7, N. Y.

World's Only Recorder of its Kind
WALKIE-RECORDALL
8-LB. SELF-POWERED BATTERY RECORDER

Automatic Recording up to 120 mins.
Records continuously in an out of circuit, anywhere.
Records harmonicas, flutes, trumpets, etc.
Wireless, 2-way phone. Permanent, automatic publication of results. Only $26. per Mr.
MILES REPRODUCER CO., INC.
812 Broadway, N. Y. 1, N. Y. Dept. 921-6

3. On sets equipped with a resistor-condenser unit, dress coupling condenser C1 (at pin 2 of TR2, sound i.f. transformer), as far as possible away from the resistor-condenser unit.

4. If necessary, remove resistor R22, 22 ohms, at pin B of the ratio detector transformer.

5. Adjust the ratio detector transformer (TR4) secondary for minimum hum or buzz while the set is tuned to a station. Only a slight adjustment is required. If the screw is turned too far, the result may be weak or distorted audio.

6. Check over-all alignment.

ALL SETS
Elimination of corona or arcing at the picture anode button.
When corona or arcing is experienced at the anode button, it is probably due to the accumulation of dirt or to the effect of a corroded rubber suction cover.

To eliminate this trouble, do the following:

1. Disconnect the anode lead from the tube.
2. Clean the area around the anode button with carbon tetrachloride or a scouring powder such as Bon Ami.
3. Add a protective coating such as Crosley appliance polish.
4. If the original anode connector is without a suction cover, thus permitting free accumulation of dirt, a new anode connector and lead assembly with a neoprene suction cover should be used to replace the original assembly.

SHAFT COUPLINGS
By ARTHUR TRAUFTER
NEEDING some insulated couplings for ¼" extension shafts, I dug into my radio scrap box and fished out some small knobs with set-screws in them. I filed the fronts of the knobs flat and cemented the knobs together (front-to-front) using Duco cement.

The photograph below shows the resulting neat and serviceable insulated coupling installed on the condenser shaft. When cementing the knobs together, be sure that the holes in the knobs line up perfectly so that there will be no eccentric motion of the extension shaft in relation to the condenser shaft.

If you prefer, you can bore through the knobs with a ¼" drill and then cement the knobs together bottom-to-bottom. This may give you a better alignment of the knobs.

Shaft coupling improvised from small knobs.
Guaranteed to oscillate!

Your choice of frequencies!

Largest selection in the world!

NOTE! Every crystal tested for activity before shipment! All frequencies listed are fundamental frequencies with fractions omitted.

FT-243 HOLDER

<table>
<thead>
<tr>
<th>Lots of 10 or more, Each.</th>
<th>90c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lots of 5 or more. Each.</td>
<td>99c</td>
</tr>
</tbody>
</table>

FT-243-A HOLDER

<table>
<thead>
<tr>
<th>Lots of 10 or more, Each.</th>
<th>.39c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lots of 5 or more. Each.</td>
<td>.49c</td>
</tr>
</tbody>
</table>

FT-241-A HOLDER

<table>
<thead>
<tr>
<th>Lots of 10 or more, Each.</th>
<th>.39c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lots of 5 or more. Each.</td>
<td>.49c</td>
</tr>
</tbody>
</table>

FT-171 HOLDER

<table>
<thead>
<tr>
<th>Lots of 10 or more, Each.</th>
<th>.79c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lots of 5 or more. Each.</td>
<td>.89c</td>
</tr>
</tbody>
</table>

NOVICE BAND

Fundamental Frequencies

<table>
<thead>
<tr>
<th>Lots of 10 or more...</th>
<th>69c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lots of 5 or more...</td>
<td>79c</td>
</tr>
</tbody>
</table>

MISCELLANEOUS & SHIP BAND FREQUENCIES

| All frequencies from 1716 KC through 1798 KC in steps of 1 KC, fractions omitted. | 51c |

CRYSTALS

CRYSTAL CRUSHING KIT with instructions. 10 crystals, grinding equipment and labels.

**All buyers invited to write for FREE crystal catalogue giving complete list of frequencies.

NOTE! All items subject to ship date and change of price without notice. Past sales list includes 10% for special orders. Write for Special QUOTATION. (Includes 36 cents per order charge for handling, mailing, etc.)

U.S. CRYSTALS, INC.

805 S. UNION AVE., LOS ANGELES 17, CALIF.

June, 1954
MORE OLD TIME OPERATORS REPORT

By C. HOWARD BOWERS

IT IS very interesting to note that the majority of the old time wireless operators we have contacted have prospered in their chosen field, and many have wound up as big wheels in their respective communities. Take Sydney J. Fass, for instance; he now makes his home in Berkeley, Calif., but is identified as one of the larger radio and television dealers in San Francisco. Syd became interested in the fundamentals of wireless back in 1909 and, with some other lads, including Dick Johnstone, Bob Hafels, et al., they put in their spare time learning the code, as Syd himself describes it, "By whistling through their buck teeth". Anyway, in building his first wireless rig he was aided and abetted by Haradan Pratt, who is now the Aide to Communications to President Eisenhower. From there, his efforts have been very effective because by 1911, Sydney was then sixteen, secured his Certificate of Skill from the U. S. Department of Commerce and Labor and soon after was a full fledged sea-going operator. He says he still has his original "ticket" which is endorsed by the skipper of the good ship "Falcon" which he claims was the first steel steam schooner ever built, also by skippers of the tankers "Oleum" and "Wahitena"—two of the "foullest smelling crude oil carriers on the Pacific Coast!" After that came the old Pacific Mail Liners "San Juan" and "San Jose" and "Acapulco" from San Francisco to Central America. An urge for more schooling brought our ambitious subject ashore and in 1914 he graduated from the California School of Mechanical Arts after spending the summer of that year as operator aboard the Matson liner "Marline" from Pacific ports to Honolulu, T.H. The sea-going urge still prevailed and young Fass continued on to the good ship "Geo. W. Eldridge" between West Coast ports and Central America.

In 1917, Uncle Sam called Syd for Navy duty and he saw plenty of action in the European battle areas. World War II was no exception and Syd was again in Navy uniform. However, he has now retired as a Commander after 35 years of Naval Reserve service and a liberal collection of "fruit salad" and "scrambled eggs".

During recent years he has followed the natural pattern—amateur radio—and now has one of the finest ham rigs we have seen in years. With a full kw. transmitter, and a Collins receiver, it's no wonder his name frequently appears in ham magazines as holder of DXCC and WAC awards—no wonder! His call is W6NZ and he has enough QSL cards to shuffle a roof—a warehouse roof. That's not all. He has a nice wife and a home in the college town of Berkeley, California, across the bay from San Francisco. A success story, if we ever heard one! Continued good luck, Mr. Fass.

WE HAD to go clear across the continent to catch up with another West Coast Old Timer. It's the story of John M. Boyle, RFD #1, Alma, Georgia, as told to his friend, Jack Williams, of the same city.

John M. first succumbed to the wireless bug in 1911 in the days when iron men and wooden ships frequented San Francisco Harbor and when Pacific Street "wasn't a boulevard. He reports having secured his Certificate of Skill from R. B. Woolerton, Wireless Inspector at San Francisco in 1912. His first sea-going job was wireless operator aboard the Schooner "Yosemite" sailing between Puget Sound and San Diego with stops at Portland, San Francisco, and San Pedro. Those were the good old days when L. Malarin was chief operator for Mareoni and every trip into San Francisco meant a trip to the Merchants' Exchange Building to check with L.M.

One small vessel followed another until 1914 when he signed on the "S.S. Uneas" operated by the Tank Storage and Carriage Company of London and sailing deep water between San Francisco and the Orient. It was easy those days to pick your own run and in 1914-1915 John pounded brass for Standard Oil Company on various tankers between San Francisco, Chile, Peru, and Vancouver. In 1916 he switched to the Ward Line and was so occupied until the Army tapped him on the shoulder in 1917 for a very important job as Corporal in the
Signal Corps. He followed this duty in 1919 with a tour for Marconi on transpacific ships to China and India. (We thought for a second he was going to slow down.) In 1920, John joined the U.S. Army Transport Service and was assigned to "USAT Mt. Vernon" on a voyage to Germany. However, just after passing through the Panama Canal the vessel lost a prop and the trip terminated at Portsmouth Navy Yard, where he was assigned other duty. After his one hitch in the Army, John evened the score by joining the U.S. Coast Guard in 1914 as a Chief Radioman and served along the east coast until paid off in 1931.

Up to now, our fast moving companion had traveled on everything that boasted a wireless set—well, not quite everything, for in 1932 he accepted employment with the U. S. Airways as operator at various points including Cleveland, Pittsburgh, Erie and—yes he’s coming to a stop—Alma, Georgia. There must have been other attractions at Alma besides being Chief Airways Operations Specialist for the now-called U. S. Civil Aeronautics Administration, but our wireless career-man concludes with, "Present communication is a far cry from the old days of 1912." To which we say, "Amen!" Our congratulations, Mr. Boyle on a job well done!

TVI Troubleshooting
(Continued from page 39)

frequency of the beat. In the event that the lines are horizontal, as in Fig. 5, multiply the number of dark horizontal lines by 60 (since the vertical scanning frequency is 60 cps) for the beat frequency.

Unfortunately, all beat frequencies cannot be determined quite this simply because if the beat is high, one megacycle or more, the number of interfering lines becomes difficult to count. In those cases, use a scale and count the number of lines that occur in one inch. Multiply this number by the number of inches in the picture width, and then multiply this figure by 15,750 cps to obtain the frequency of the beat. In the case of modulated interference signals, make the measurement during the periods of no modulation. With a little experience, it is possible to come very close to the correct frequency even in the presence of the modulation.

A technician may find that in a particular case of interference, the beat frequency changes as he turns the receiver fine tuning control. This means that the interference is "tunable." What does this mean in terms of receiver functioning?

When the fine tuning control is adjusted, the frequency of the oscillator is changed and the i.f. frequencies that correspond to the r.f. video and sound carriers are changed. At the same time, during this fine tuning adjustment, there is absolutely no change in the frequencies of the r.f. video and sound carriers, and in the difference frequency between the two carriers (4.5 mc.). Also, the frequency of any outside interfering signal is not changed by any means within the receiver.

June, 1954
These clues can help us to further identify the interference frequency and type. If the beat is due to an interfering signal heterodyning with the r.f. video carrier frequency, the beat will be untunable, i.e., the fine tuning control will have no effect upon the interference pattern on the CRT. For example, if an interfering signal occurred at 63.25 mc., which is 2 mc. away from the video carrier of channel 3, the oscillator and mixer when properly tuned, will produce a 45.75 mc. i.f. for the carrier and a 43.75 mc. i.f. signal for the interference (assuming a 41 mc. i.f. system). Detuning the oscillator will change the 43.75 mc. i.f. signal, but it will also change the 43.75 mc. i.f. interference signal the same amount, and the difference between the two signals will always be 2 mc.

If, however, the interfering signal entered through the i.f. “gate” at a frequency say of 43.75 mc. (police interference), tuning the oscillator to produce a 45.75 mc. i.f. for the video carrier would produce a beat of 2 mc. Detuning the oscillator in this case would change the 43.75 mc. i.f. for the video carrier, but it could not change the frequency of the 43.75 mc. interfering signal. Therefore, the beat frequency would change and the interference would be “tunable.”

The various “gates” previously discussed can be classified according to whether they are sources of “tunable” or “untunable” interference. The “tunable” ones are the i.f. and image gates; the “untunable” ones are the video, desired channel, and upper and lower adjacent channel gates. Since most of the internal sources of interference produce harmonics of the video i.f., the beat produced by them will be “tunable,” since detuning the set changes the i.f. frequency and likewise, the frequency of the harmonics.

(To be continued)

PHONE JACK CASE

By HUGH LINEBACK

Oklahoma A & M College

FOR mounting a phone jack at the end of a cable; a neat housing can be easily made from the aluminum cans used for packaging cartridges of 35 mm film. A photo dealer, or a photographic friend, will have discarded containers.

Holes for the jack and for the cable can be punched in the thin material with a center punch, and a rubber grommet inserted in the lid opening to protect the wire.

Details of the handy phone jack case mounted at end of cable, is easy to make.

These clues can help us to further identify the interference frequency and type. If the beat is due to an interfering signal heterodyning with the r.f. video carrier frequency, the beat will be untunable, i.e., the fine tuning control will have no effect upon the interference pattern on the CRT. For example, if an interfering signal occurred at 63.25 mc., which is 2 mc. away from the video carrier of channel 3, the oscillator and mixer when properly tuned, will produce a 45.75 mc. i.f. for the carrier and a 43.75 mc. i.f. signal for the interference (assuming a 41 mc. i.f. system). Detuning the oscillator will change the 43.75 mc. i.f. signal, but it will also change the 43.75 mc. i.f. interference signal the same amount, and the difference between the two signals will always be 2 mc.

If, however, the interfering signal entered through the i.f. “gate” at a frequency say of 43.75 mc. (police interference), tuning the oscillator to produce a 45.75 mc. i.f. for the video carrier would produce a beat of 2 mc. Detuning the oscillator in this case would change the 43.75 mc. i.f. for the video carrier, but it could not change the frequency of the 43.75 mc. interfering signal. Therefore, the beat frequency would change and the interference would be “tunable.”

The various “gates” previously discussed can be classified according to whether they are sources of “tunable” or “untunable” interference. The “tunable” ones are the i.f. and image gates; the “untunable” ones are the video, desired channel, and upper and lower adjacent channel gates. Since most of the internal sources of interference produce harmonics of the video i.f., the beat produced by them will be “tunable,” since detuning the set changes the i.f. frequency and likewise, the frequency of the harmonics.

(To be continued)

PHONE JACK CASE

By HUGH LINEBACK

Oklahoma A & M College

FOR mounting a phone jack at the end of a cable; a neat housing can be easily made from the aluminum cans used for packaging cartridges of 35 mm film. A photo dealer, or a photographic friend, will have discarded containers.

Holes for the jack and for the cable can be punched in the thin material with a center punch, and a rubber grommet inserted in the lid opening to protect the wire.

Details of the handy phone jack case mounted at end of cable, is easy to make.
Superior's new
Model 670-A

A COMBINATION
VOLT-OhM MILLIAMMETER PLUS
CAPACITY REACTANCE INDUCTANCE AND DECIBEL MEASUREMENTS

SPECIFICATIONS:
D.C. VOLTS: 0 to 7.5/15/75/150/750/1,500/3,500 Volts
A.C. VOLTS: 0 to 15/30/150/300/1,000/3,000 Volts
OUTPUT VOLTS: 0 to 15/30/150/300/1,500/3,000 Volts
D.C. CURRENT: 0 to 1/5/15 Ma. 0 to 1.5/15 Amperes
RESISTANCE: 0 to 1,000/100,000 Ohms. 0 to 10 Megohms
CAPACITY: .001 to 1 Mfd. 1 to 50 Mfd. (Quality test for electrolytics)
REACTANCE: 50 to 2,500 Ohms, 2,500 Ohms to 2.5 Megohms
INDUCTANCE: .15 to 7 Henrys 7 to 7,000 Henrys
DECIBELS: -6 to +18 +14 to +38 +33 to +58

ADDED FEATURE:
The Model 670-A includes a special
GOOD-BAD scale for checking the
quality of electrolytic condensers at
a test potential of 150 Volts.

The Model 670-A comes
housed in a rugged
crackle-finished steel
complete cabinet with
fast leads and operat-
ing instructions.

$28 40 NET

TUBE TESTER

Superior's new
Model TV-11

SPECIFICATIONS:
★ Tests all tubes including 4, 5, 6, 7, Octal, Lock-
in, Peanut, Bantam, Hearing Aid, Thyratron,
Miniatures, Sub-Miniatures, Novals, Sub-mins,
Proximity fuse types, etc.
★ Uses the new self-cleaning Lever Action Switches
for individual element testing. Because all ele-
ments are numbered according to pin-number in
the RMA base numbering system, the user can
instantly identify which element is under test.
Tubes having taped filaments and tubes with
filaments terminating in more than one pin
are truly tested with the Model TV-11 as any of
the pins may be placed in the neutral position
when necessary.
★ The Model TV-11 does not use any combination
type sockets. Instead individual sockets are
used for each type of tube. Thus it is impossible
to damage a tube by inserting it in the wrong
socket.
★ Free-moving built-in roller chart provides com-
plete data for all tubes.
★ Newly designed Line Voltage Control compen-
sates for variation of any Line Voltages between
105 Volts and 130 Volts.
★ NOISE TEST: Mono-jack on front panel for plug-
ging in either phone or color amplifier to detect
microphonic tubes or noise due to faulty
elements and loose internal connections.

The model TV-11 operates
on 105-130 Volt 60 Cycles
A.C. Comes housed in a
beautiful hand-rubbed oak
complete cabinet with port-
able cover.

$47 50 NET

SUPERIOR'S NEW MODEL TV-40

C.R.T. TUBE TESTER

A complete picture tube tester
★ for little more than the price of a
"make-shift" adapter!!

The Model TV-40 is absolutely com-
plete! Self-contained, including built-
-in power supply. It tests picture tubes
in the only practical way to efficiently
test such tubes; that is by the use of a
supervisory instrument which is designed
to test the over increasing number of picture tubes

EASY TO USE:
Simply insert line cord into any 110
volt A.C. outlet, then attach test-
er socket to tube base (flow trap need
not be on tube). Switch back up
for quality test. Read direct on
Good-Bad scale. Throw switch down
for all leakage tests.

Tests all magnetically deflected
tubes ... in the set ... out
of the set ... in the carton!!

SPECIFICATIONS:
★ Test all magnetically deflected picture tubes from 7 inch to
30 inch types.
★ Tests for quality by the well established emission method.
All readings on "Good-Bad" scale.
★ Tests for inter-element shorts and leakages up to 5 megs.
★ Test for open elements.

Model TV-40 C.R.T. Tube
Tester comes absolutely
complete—nothing else to
buy. House in round cor-
nered, molded bakelite

$15 85 NET

MOSS ELECTRONIC DISTRIBUTING CO., INC.
Dept. B-102, 3849 Tenth Ave., New York 34, N.Y.

Please send me the unit checked. I am enclosing the down
payment with order and agree to pay the monthly balance
as shown. It is understood there will be no carrying, interest
or any other charges provided I send my monthly payments
when due. It is further understood that should I fail to make
payment when due, the full unpaid balance shall become
immediately due and payable.

NAME
ADDRESS
CITY Zone...STATE

June, 1954
Perhaps the most significant feature of the recent annual IRE Convention was the clearly evident passing of the vacuum tube from its place of dominance in the electronics industry. As one milled through the vast crowds that swarmed through the immense Kingsbridge Armory every day of the four-day show it was the widespread exhibition of transistorized devices that left the most striking and lasting impressions on many observers.

The rapidly growing magnitude of electronics as an industry was clearly evident in the tremendous volume of registrations at this year's show. And while major engineering attention was given to developments in color TV, transistors, and transistor circuitry, new electronic devices for applications in the medical, biological, and industrial fields indicated the broadening scope of the industry's activities.

In attending these engineering shows, your editors try to appraise these developments on the basis of their possible future effect on the activity of independent service. As "coming events cast their shadows before," the introduction of basically new equipment usually presages changes in the operational structure at all industry levels. This will be especially true of the service field as more complex circuitry demands more skillful technicians, and trained service business management finds ways and means to provide top-flight service and maintain a high level of customer confidence.

When black-and-white television was being readied for sale to the general public there were two schools of thought about its effect on the then radio servicing industry. One group held that monochrome TV would be much too complex for the average radio service technician to comprehend and that, as a result, manufacturers would be forced to set up their own servicing departments to handle the installation and maintenance of their receivers. The other group felt that TV would be absorbed by the radio service industry in time, and that servicing would be handled by thousands and thousands of individual technicians working from their homes and small, inexpensive business establishments.

Television did make some drastic changes in the structure of the independent servicing industry. It did not, however, fall into either pattern visualized by these two schools of thought. It established its own pattern and one that will be thoroughly capable of expanding with the needs of color TV and transistorized devices as they are sold commercially.

Pattern of the Service Industry

For the past six months the Bureau has been receiving registrations for its planned National Electronics Service Directory from service businesses all over the country. More than 15,000 of these registrations have been received and the information supplied on these thousands of registrations provides the clearest picture of the actual structure of what is known as the "independent service industry" that has ever been compiled.

At the present time a complete analysis of these registrations is underway. However, an analysis of a representative sample of these registrations has already been completed. Your editors feel that this sampling provides sufficiently accurate figures to illustrate the type of business structure that has been created to handle monochrome TV servicing.

It should be pointed out that the listings in the National Electronics Service Directory are restricted to full-time service businesses so that the figures cited here represent the activities only of recognized, established service businesses.

The average annual volume of business handled by the service businesses represented in the sampling analysis is $33,463.41. For comparison of the present servicing industry with the prewar radio service industry consider the Department of Commerce figures on the average volume of business done by radio service shops in 1939—$6103.00 per year. This would indicate that the average shop today is doing five times the volume of business that the average radio shop handled in 1939.

The average number of technicians employed in the surveyed service businesses is 4.19. The average number of technicians employed in radio service
YOU'LL FIND BARGAINS GALORE AT PLATT'S NEW "SUPERMARKET"

Now, here's your chance to pick up real super-bargains at PLATT'S newly enlarged giant retail store at 489 BROOME ST., N. Y. C. Unfortunately, this ad permits us to list only a few of our many, many items so why not come down now and become a frequent customer.

INTERPHONE AMPLIFIER, BC-345-C $2.96
NEW LOCALIZER RECEIVER, 730-D, NEW $39.95

TUBES 40% to 99% OFF LIST TUBES

PHONES: WO 4-0827 and WO 4-0828

PLATT ELECTRONICS CORP.
DEPT. A, 489 BROOME ST., NEW YORK 13, N. Y.
Here's a TERRIFIC BUY for MOBILE HAMS!

FAMOUS BC-645
Transmitter-Receiver
BRAND NEW!

Makes wonderful mobile rig for 400-540 Mc. Easy to convert for phone or CW. 5 watt communication. Complete with matched Di-Antennas. EXCELLENT PERFORMANCE. Originally over $1100. Offered at only $899.95. C.O.D. for $2950.

P.1727 DYNAMOTOR for BC-645, has 15-16-V battery. (Easy to convert for 6-V battery. $4.85. Operation instructions included.)......only $4.85

UHF ANTENNA. Assembled.
for BC-645......$2.45

CONVERSION BOOKLET. Instructions for making your own home rig.......$2.50

HEADSETS
Excellent BRAND USED NEW
HS-23 high impedance $2.25 $4.75
HS-22 low impedance......$2.25 $4.75
HS-30 low imp (featherwt)......$1.40 $2.45
HS-30 low imp (w/earset)......$1.40 $2.45
CD-300T cord, with PHL5 plug and jack $1.00

ARC-5 MARINE RECEIVER-TRANSMITTER
Receiver BRAND NEW, each......$22.50
Transmitter 2.1 to 8 Mc. BRAND NEW, each......$26.50
Combination Transmitter and Receiver, complete with tubes......$45.00

SCC-274N COMMAND ARC-EQUIPMENT

ALL COMPLETE WITH TUBES PRICES SLASHED!

Excellent BRAND USED NEW
BC-58 Rev. 3, 30 mc......$118.90 $200.00
BC-60 Rev. 3, 30 mc......$118.90 $200.00
BC-61 Rev. 3, 12 mc......$118.90 $200.00
BEACON RCVR BC-1206-C
Complete with 3 tubes. Tunes 115 KC to 300 KC. 17 frequencies. 12 indicators for identification and compare frequency. Original low price......$199.50

WILLARD 6-VOLT MIDGET STORAGE BATTERY

3-comp. hr. rating with 15-15-15 "L1.12/16" x 2 3/4"......$1.95
Uses standard electretes......$1.95

WILLARD 2-VOLT STORAGE BATTERY

28 Amp. hour......$2.69

1-Qt. Electrolyte, enough for two cells or bottle.......$4.14

DYNAMOTORS

Type Horse. Output Used Brand
DM-24A 24V 1.2A 90° 7A $8.75 $8.50
DM-33A 24V 2.5A 10° 7A $8.75 $8.25
DM-44A 24V 4.0A 60° 7A $9.75 $9.50
DM-25 36V 2.0A 10° 7A $8.75 $8.25
DM-26 80V 2.0A 10° 7A $8.75 $8.25
DM-27 120V 2.0A 10° 7A $8.75 $8.25
DM-28 120V 2.0A 60° 7A $9.75 $9.50
DM-29 240V 2.0A 10° 7A $8.75 $8.25

Please include 25¢ deposit with order. Balance to be paid upon delivery. All shipments F.O.B. Our Warehouse, N.Y.C.

When it comes to high-voltage capacitors, you just can't beat CRL Precision Attachable Terminal Hi-Vo-Kaps for dependability. Here's why:

They are 100% factory tested at twice rated working voltage—withstanding continuous overload up to 40,000 v.d.c. 1. Terminals and tabs have a 28-2 thread—cannot strip or break off, when terminals are tightened.

Terminals seat flat at bottom of tap. No gaps between terminals and capacitor body—no possibility of corona. Positive mechanical bond between stab terminals and internal electrodes prevents jamming, when terminals are attached.

Keep a stock of CRL Precision Attachable Terminal Hi-Vo-Kaps on hand. Separate packaging of terminals and capacitor body lets you buy only the terminals you need. See your Centralab distributor.

Send coupon for bulletin 28-2 on CRL Precision Attachable Terminal Hi-Vo-Kaps.

Centralab
Division of Globe-Union Inc.
910 F. Keefe Avenue, Milwaukee 1, Wisconsin
Send bulletin 28-2 on CRL Precision Attachable Terminal Hi-Vo-Kaps.

Name:
Company:
Address:
City.... Zone.... State....

RADIO & TELEVISION NEWS

Positive connections every time

Attachable Terminal HI-VO-KAPS®

Effect of Color TV

It is possible to make a reasonably accurate projection of the future growth of an activity from an analysis of the need for the services it has to sell. In the case of color television receiver service it is quite obvious that considerably more service calls per set will be required than has been necessary on monochrome TV. The present national average of service calls per TV receiver is said to be somewhere around 2.9 calls per set in operation. The present estimate of the frequency of service that will be required on color TV sets is 12 calls per year. The in-
vestment per technician in test instruments for field service is yet to be determined, but for many color TV ills a man will have to have more than a V.T.V.M.

There is no doubt that contract service will return with the sale of color TV receivers. However, manufacturers and distributors will be more cautious about the qualifications of the service companies they authorize to handle contract service than they were on monochrome TV. And they can be, for there are excellent service facilities available to them in capably managed independent TV service shops in every section of the country.

The present shops that are authorized by manufacturers to handle contract service on color TV receivers will expand their personnel and facilities to handle the volume of business they get. They will work with nonserviceing dealers, of course, and even though they are factory-authorized service depots they will have to compete with other service companies for dealers' business.

TV service companies will avoid the mistakes that doomed so many service businesses in the early years of TV. Over-expansion, unlimited dealer credit on contract monies, improper accounting and allocation of contract fees, and slip-shod handling of supplies and replacement parts—these are the things that finally spelled disaster to many service businesses in the late forties and early fifties.

Many radio-appliance dealers will add their own service departments to handle color TV installation and service. Thirty-six per-cent of the businesses included in the analysis of service businesses are radio-TV appliance dealers with major service departments. These companies have found their service departments to be consistently profitable operations. An expansion of service departments by set retailers will open up many good opportunities for present small shop operators who cannot finance color TV equipment, to take lucrative jobs as service managers for major retailers.

On the basis of 12 calls per year per set, independent service businesses that handle color TV should expand from an average of 4.19 men per shop to about 15 men per company. The present independent TV service industry can easily support this expansion because the management skill and "know how" is already there—developed by monochrome TV.

Selling Service

Regardless of how good a technician a man may be, if he doesn't get enough work week after week and month after month to pay all of his expenses, and provide a better-than-average income for his family, he will live constantly on the fringe of failure. The constant problem of any business is to maintain a consistent or growing volume of business. This is true of grocery stores, drug stores, department stores, and service shops.

There is no sure fire system of busi-

NEW RCA Broadband Antenaplex Amplifier

Pre-aligned for all 12 VHF Channels

Here—at last—is the easy-to-connect, easy-to-install broadband amplifier for multiple TV-receiver installations.

New RCA design provides the simplest, yet the most effective way of handling low- and high-band VHF and UHF (with convertor). It's ready for color—ready for immediate connection to as many as 50 receivers.

IF INSTALLATION IS YOUR BUSINESS

Check these important opportunities

You'll find the RCA Broadband Antenaplex Amplifier offers important easy-installation, low-maintenance business in your locality in:

- GARDEN COURTS
- MOTELS
- INSTITUTIONS
- APARTMENT BUILDINGS
- DEPARTMENT STORES
- TV DISPLAY ROOMS
- SHOPPING CENTERS
- INDUSTRIAL BUILDINGS

Check the new RCA Broadband Antenaplex Amplifier at your RCA Electronics Distributor's, or write

Radio Corporation of America, Building 15-1, Dept. F-222, Camden, N. J.

SOUND PRODUCTS
RADIO CORPORATION OF AMERICA
ENGINEERING PRODUCTS
CAMDEN, N. J.

In Canada: RCA VICTOR Company Limited, Montreal

June, 1954
UGH TRANSMITTER-RECEIVER

AP5-1

$49.5

Freq. range
410-60 MC. 0.6
Watts at 50
MC. Improved se;
section. Dimensions:
54 x 3.5 x 2.5.

ARC-5/8-2 2-METER RECEIVER

Here is the 2-meter setup you have been looking
for! Absolutely one of the BEST called today.
Tubes from L.B. & 80-Meter-Complete with
Tubes and CRYSTALs. Size: 11 x 24 x 18/2. -110-280 VAC 60-
y. $24.50 Add 35 for mobile. New with service.

SIGN101 TRANSMITTER RECEIVER. Complete
with 12V, dynamotor and tubes. 40, 40 meter.
F.H. for mobile. New with service.

$24.95

TG-1 CODE KEYER

Self-Contained Automatic unit for code practice
starts from an indexed type record. Complete with
1 tubes and elect. eye. Audio freq. output of 868
MC. Size: 11 x 24 x 18/2. -110-280 VAC 60-
y. $22.50 Add 35 for mobile. New with service.

C.A.P. SPECIAL

BC-635 VHF TRANSMITTER

Freq. range 100-
200 MC. With
modulation section and special督导,
tubes & crystals, with conversion dipole.
Used, good condition. See Nov/Dec CA.

$9.95

ARB NAVY RECEIVER

155 to 960 K.C. Four Bands, calibrated 21st,
25th, 30th, 35th, 40th, 45th MC. Complete with
Tubes and Crystals. $960. $745 add for mobile.
New with service.

$53.95

6ID/4APN

Made to operate in conjunction with
Radio Receiver B/CAP/4. Unit uses
4 tubes, and 7 scope tube, crystal
controlled standard oscillator, sweep
circuits, carrier elimination. Excellent
condition. Less tubes but same tube.
$29.50

WITH TUBE & CRYSTAL

$39.50

DUAL-OCTAL SPECIAL: 2-V. ingot. Output
19.95. Each crystal. Excellent
condition. Excellent cond.

$7.95

BEST HEADSET & MIKE BUYS

HS-18 HEADSET

$6.50

HS-18 HEADSET & MIKE

New, exc.

$10.95

HS-38 HEADSET & MIKE

New, exc.

$16.50

HS-38 HEADSET & MIKENSF.

$16.50

HS-88 HEADSET.

Used, exc.

$1.50

RS-36 HEADSET & MIKE

New, exc.

$16.50

RS-88 HEADSET.

Used, exc.

$1.50

AS-56 HEADSET.

New, $4.95

Used, exc.

$2.75

PE-125 POWER SUPPLY. Operates on 12
or 24 V. battery. New.

$17.95

MODULATION TRANSFORMER. For BC-610
Transmitter. P/N: 10000 drain CT, sec. 4,300 drain
@ 250 at full. Fully shielded steel case. New, ex.

$34.95

Sound Powered Headset

Uses no batteries or exter-
ternal power supply. For
TV installation work,
various, construction projects, commercial operation,
extension, etc. Includes 117. Exc.

$11.50

Used, exc. cond.

$17.50

NEW, $9.50

NEW Per Pr.

$14.50

LM METER.

Premature meter with modulation.
Prem. range 120-0.000 C.C. With calibration

$45.50

This is an essential promotion for any business. Each
city, town, hamlet, and community has its own small
individualities, and local promotions will take these
things into account when they are planned. Each
type of business, too, has its individual characteristics,
so a promotion that works well in one type of business
will not necessarily work in another type.

Service businesses compete for dollars
that set owners would much rather spend for other
things. Television service
should be the easiest type of service
to sell because the product itself can
be "romanced" even from the point
of selling. It is the focal point
of interest in the home and any
consistent program detailing the beauty
of better pictures or more enjoyable sound
would have a more receptive audience
than service promotional literature on
any other device in use in the home.

Yet only a handful of TV service
companies have done more than advertise
that they have the facilities to service
TV sets when the owner needs TV service.
The most successful service
companies use direct-mail promotions in
preference to all other forms of
advertising because they have accumulated
tested mailing lists.

One of the most aggressive coopera-
tive programs for service selling is
one sponsored by the G. M. Popkey
Company, a wholesale distributing
organization in San Francisco.
They set up an organization which is known as the
GMP Qualified TV Service Dealers.
Any servicing dealer or independent
operator in service
operator in northern California
can become a member of this organization
by agreeing to strictly adhere to
the code of ethics and signing a
pledge to maintain high ethical standards
in the conduct of his business.

The code of ethics provides:
1. Employ qualified trained personnel.
No student shall be passed off
as a journeymen technician.
2. Avoid misleading advertising which
ofers to service or deliver materials
under conditions which are questionable.
3. Issue a standard RTMA
guarantee with all work.

4. Have sufficient and proper test
equipment to insure good work.
5. Install only such parts and tubes
as are really necessary to assure
continued performance.
6. Use only new parts and tubes of
equal or better quality than original
equipment.
8. Service sets at home whenever
possible and practical.
9. Carry adequate insurance
coverage.

Believe me, courteous, and treat
each client in an accepted professional manner.

Each member of the GMP Qualified
TV Service Dealers signs the following pledge:

"I pledge that I will conduct my busi-
ness activities as a dealer in such
a manner as to cast no discredit on myself,
my competitors, or the television
service industry.

Further I pledge that I will promptly
take all necessary steps to correct
any legitimate complaints which may be
bring against me during the course of my business.

Further I pledge my assistance to the
G. M. Popkey Company in carrying
out its plans for educating the public
and to maintain the standards of ethical
and technical practices in the
industry."

In support of the GMP Qualified
TV Service Dealers, the G. M. Popkey
Company has sponsored a highly
popular TV program, coordinated
member advertising in local newspapers in
support of this program, and just recently
lunched a TV service time payment
plan that enables the members to sell
service on a time payment basis with
no down payment required and monthly
payments as low as five dollars per month.

The important feature of this
plan to dealers is that the finance com-
pany handles the paper without
recourse. Space does not permit a de-
tailed outline of this plan but readers
who are interested in having these complete
details may obtain them by writing
to TTYL Special Services, P. O.
Box 1321, Indianapolis 5, Indiana.

Jack Sterner, KS AT A: Dr. Jose Polok, XEIVA,
vice-president of the Mexican Radio
Experimenter's League; John Griggs, WSKW. ARRL
director for Southern California: Guy Dennis,
W6DI, U.S. convention manager; and Ed Lucky, W6MJ,
public relations manager for the U. S. get together to discuss
the international convention being
held in Acapulco May 27 through 30th. The 22nd annual
convention of the Mexican
group is being opened to service
hams, technicians, engineers, service
technicians, and
electronic manufacturers throughout the world to help promote brotherhood
and fraternity among such groups. In addition to exhibits, technical sessions, and
contests the meet will feature a diversified program of fiestas, sightseeing trips, a
bouquet and ball, as well as fishing and cruising at the resort city of Acapulco.
impressed on the plate exceeds the bias value. The plate of the second diode is biased negative with respect to ground by an equal amount so that there is no conduction across that section until the impressed negative voltage exceeds the bias voltage. When the voltage impressed across a diode section exceeds the bias voltage, diode conduction takes place, "shorting out" all voltage above the bias value, so that the peak value of the output voltage cannot exceed the bias voltage. In consequence of this connection, the sine-wave input is clipped, with the positive and negative peaks being equal and flat, and the peak-to-peak output voltage equal to the total bias voltage. This clipped sine-wave ("semi-square wave") output is then fed to a calibrated voltage divider through a calibration resistor, and from this circuit clipped sine waves of known peak-to-peak value can be coupled to the oscilloscope.

Rather extensive use of a simple unregulated oscilloscope calibrator of this design disclosed that, although it performed exactly as advertised, its utility was greatly restricted by vagaries of the local supply voltage. To improve the electrical operation, regulation of the bias voltage was necessary. At the same time, a few mechanical changes, largely a matter of personal taste, were found desirable. These included the addition of a strong handle on the case, to prevent droopage; replacement of the line cord by a plug; addition of new rubber feet; and addition of a pilot light, so that the calibrator would not be left on overnight. A change in binding posts, to match those used on other equipment was also made; and a fuse was added, so that the instrument would comply with the local electrical code.

This circuit as shown in Fig. 2 with all alterations incorporated is now operationally equivalent to the best 60-cycle calibrator now commercially available. The panel view of the modified calibrator is shown in Fig. 1. The handle, a Stanley #3 door pull, is ideally suited for electronic equipment because it is large enough to fit a man's hand, and the mounting holes exactly fit a standard 10-32 rack screw. During remodeling, all screw holes were tapped 6-32, and the self-tapping screws supplied with the instrument were replaced by 6-32 binding head machine screws.

Interior above-chassis view of the modified voltage calibrator is shown in Fig. 3. The socket for the regulator tube, an OB2, is mounted in the hole formerly occupied by the calibration resistor (after some reaming); and the calibration resistor was moved to a vacant area between the rear of the multiplier switch and the dual diode. So that the instrument would

Scope Calibrator
(Continued from page 42)

When Wild Winds Hit...
PERMA-TUBE STAYS UP
... and so does your reputation!

Here's why PERMA-TUBE
backs up quality service:

1. PERMA-TUBE IS STURDY... it's made of special, high-strength J&L Steel.
2. PERMA-TUBE IS CORROSION-PROOF... it's treated with vinsynite—then coated inside and outside with a metallic vinyl resin base.
3. PERMA-TUBE IS EASILY INSTALLED... it's the only mast with both ends of the joint machine fitted.

Here's proof of Perma-Tube's superior strength.
Ordinary masts and Perma-Tube were subjected to regular deflection and permanent set tests with the following results:

<table>
<thead>
<tr>
<th>TV Mast Tested</th>
<th>Size and B W Gauge</th>
<th>Bonding Force To Produce 2½-inch Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mast A</td>
<td>1 1/2" OD x 20 Ga.</td>
<td>1870 inch pounds</td>
</tr>
<tr>
<td>Mast B</td>
<td>1 1/4" OD x 18 Ga.</td>
<td>2740 inch pounds</td>
</tr>
<tr>
<td>Mast C</td>
<td>1.165" OD x 17 Ga.</td>
<td>2780 inch pounds</td>
</tr>
<tr>
<td>Perma-Tube</td>
<td>1 1/4" OD x 18 Ga.</td>
<td>2930 inch pounds</td>
</tr>
<tr>
<td>Mast D</td>
<td>1 1/2" OD x 15 Ga.</td>
<td>4370 inch pounds</td>
</tr>
<tr>
<td>Mast E</td>
<td>1 1/4" OD x 15 Ga.</td>
<td>4860 inch pounds</td>
</tr>
<tr>
<td>Perma-Tube</td>
<td>1 1/4" OD x 16 Ga.</td>
<td>5950 inch pounds</td>
</tr>
</tbody>
</table>

CHECK THE 500 HOUR MINIMUM SALT SPRAY TEST RATING OF YOUR TELEVISION MASTS (Am. Soc. of Testing Materials—Spec. 5117-49T). Remember Perma-Tube passes this test... remains corrosion-proof.

Jones & Laughlin
STEEL CORPORATION – Pitts., Ind.
If you want professional sound quality

Sound engineers know that the selection of a fine amplifier, pickup and speaker system is only part of the story; that unless the turntable is of equal quality, music reproduction must suffer. That is why they insist on such high standards for turntable performance.

do as the professionals do...

Rek-O-Kut precision turntables are made to conform to the highest standards in the professional field, and they certainly represent the finest you can use in the home. A Rek-O-Kut turntable will make all the difference in the world. The finer your present system, the more apparent the improvement will be. Whether you select the deluxe T-12H or the standard LP-743, the entire performance of your sound system will become a new and thrilling experience.

use a

REK-O-KUT precision turntable

Rek-O-Kut Precision Turntables are priced from $59.50. Write for specifications and descriptive literature to Dept. J-12.

The REK-O-KUT COMPANY
Manufacturers of Professional Disc Recorders and Specialized Sound Systems
38-01 Queens Boulevard, Long Island City 1, New York
Export Division 458 Broadway, New York, U.S.A. Cables: Mohannes
In Canada: Atlas Radio Corp., Ltd., 560 King Street, W., Toronto 28

GET INTO ELECTRONICS

VALPARAISO TECHNICAL INSTITUTE
Dept. RD Valparaiso, Indiana

TV TRADE-IN SETS
- Philco - Emerson - GE - Admiral
- Motorola - Tele-King - Others

10"—$17; 12" to 17"—$20 up

Send check or money order now! List available—Add $5 each for packing.

WASHTEK SERVICE CO.
1551 Boston Street, Bronx, N. Y. 5-5281

ARKAY WORLD'S FINEST KITS
RADIO PHONOGRAPH TEST EQUIPMENT HI-FI
Write for FREE Brochure

VALPARAISO TECHNICAL INSTITUTE
RADIO KITS, INC. • 120 Cedar St., N. Y. 6

not creep out of calibration, a Millen shaft lock was added to this control. Optimum panel location for the pilot light is on the vertical center line, just above the upper edge of the L-shaped chassis. So that the pilot light bracket would seat firmly, a locking washer, with the lower periphery flattened to clear the chassis and the upper to clear the cabinet, was placed between the panel and the pilot light mounting bracket. An Amphenol type 61-M plug was mounted in the center back of the chassis to replace the line cord. This also required enlarging the cord hole in the case.

Changes beneath the chassis were few, and consisted of adding a fuse clip (Fig. 4) in the a.c. circuit; mounting the dropping resistor for the regulator tube; attaching cable-clamp hold-downs over the two condensers; and recabling the wiring. The clamp ring of the a.c. plug was soldered to the chassis to prevent rotation or creeping of the plug. Under-chassis appearance of the instrument is shown in Fig. 4.

These modifications necessitated readjustment of the calibration resistor. This was done in the following manner: The calibrator output was connected to the oscilloscope input, and both instruments were turned on and allowed to warm up and stabilize. A maximum reading of 100 volts peak-to-peak was desired. As peak-to-peak volts are 2.828 times the r.m.s. value obtained from sine waves, a sine-wave voltage input of 35.36 volts r.m.s. is needed for calibration. With the multiplier switch of the calibrator turned to signal, this voltage (obtained from the filament supply of a tube-checker) was applied across the input of the calibrator, and a good a.c. voltmeter was shunted across it, to insure that the applied voltage, at the time of calibration, remained at 35.36. The oscilloscope gain was then adjusted until the sine-wave pattern was exactly two inches high (Any other convenient height may be used). The calibrator switch was then set to X 10, and the potentiometer to 10, and, being sure that the oscilloscope gain has not been changed and that the input voltage to the calibrator is still 35.36, the calibration resistor of the calibrator was adjusted until the semi-square wave pattern was exactly two inches high. After locking the calibrator shaft, and checking the adjustment, the calibrator was put in its case. It is now completely ready for operation.

This voltage calibrator performs satisfactorily in actual use, and appears to be operationally as good as some commercial models costing more than three times as much. Rather interestingly, although it would not be economical to make an oscilloscope calibrator "from scratch," it is definitely cheaper to modify a kit calibrator than it is to buy a commercial model, if your time is worth $5.00 per hour or less!

RADIO & TELEVISION NEWS
Special Hi-Fi Offer

The fascinating bi-monthly magazine of information about hi-fi music from records, tape, and FM radio...

MUSIC at HOME is a large-size magazine, with beautiful photographs and drawings, printed on fine paper. You'll enjoy it from cover to cover, and you'll be proud to show it to your friends.

- Whatever your interest in hi-fi... you'll find ideas galore in MUSIC at HOME!

See what MUSIC at HOME gives you for 4¢ a week!

MUSIC at HOME will keep you posted on all phases of hi-fi music, and equipment for records, tape, and FM. A year's subscription provides:

MUSIC: Over 2,500 indexed listings of new releases in Your Record Shopping Guide; an expertly planned Home Record Concert for every week of the year, each with fascinating program notes; special articles on records, tape, and FM music, by nationally prominent authorities.

EQUIPMENT: The complete source of the latest information on hi-fi equipment, elaborately illustrated, explained in non-technical language, written by leading authorities.

INSTALLATIONS: Nearly a hundred different ways to make simple and elaborate hi-fi installa-

tions of correctly-matched components, that are as attractive in appearance as they are fine in performance.

OPERATION: Dozens of money-saving ideas about the correct use of hi-fi equipment, improving tone quality, keeping your system up-to-date, and doing your own service work when troubles develop.

MUSIC at HOME: These four departments, plus many special features, make this magazine your complete hi-fi guide. Order today! See for yourself.

MILTON B. SLEEPER, Publisher
207-D E. 37th St., N. Y. 16, N. Y.

Please enter my subscription to MUSIC at HOME.
My remittance is enclosed for

$1.00 SPECIAL 6-MONTH RATE (3 issues)
$3.00 for one year (6 issues)
$6.00 for 3 years (18 issues)

Foreign postage, $1.00 per year

Name
Address
City State

Guarantee: After you have received your first issue, if you are not completely satisfied, full remittance will be refunded on request.

June, 1954
3-Bands, 1-Vertical
(Continued from page 67)

unit this took place when all turns but one were shorted out. The single turn lowers the reactance to the same value obtained with a 1200 μfd. condenser. While discussing the 80-meter tuning network it might be well to mention that it is realized that the antenna can be brought to resonance and the feed-point matched by using a slightly smaller inductance in the series position and substituting an inductance at the same point we are now using the shunt condenser. This eliminates the need for the large condenser, however, the network is no longer a low-pass filter and harmonics will receive little attenuation. By using the condenser, the system is properly matched and at the same time undesirable harmonics greatly attenuated.

An r.f. bridge was used to determine the values of resistance and reactance of the antenna on each band. This was necessary to provide information for designing the L-networks; however to duplicate the antenna it is only necessary to have some form of standing wave indicator which can be placed in the transmission line so the tuning network may be adjusted to the exact value to produce a low standing wave on the line. It is only necessary to watch the standing wave indicator while making a small change in the shunt capacity of the L-network. After it is set at the lowest reading, the inductance is then adjusted slightly to improve the standing wave ratio even further, after which the condenser adjustment is made again. The two operations are repeated several times until the standing wave is reduced to a very low value. Since the network corrects for both reactance and resistance values of the tower it is possible to obtain an excellent standing wave ratio. It is better to adjust the system as described rather than trying to duplicate the original installation to the letter. Small variables such as proximity of the antenna to other objects or a slightly different base mount will make it necessary to make minor changes in the antenna tuning network settings.

You will notice that C₄, the condenser used on 80 meters, is positioned on the coax side of the coil, while C₅ (40 meters) is on the antenna side of the coil. This is because the antenna base resistance is lower than the characteristic impedance of the transmission line when used on 80 meters. Just the reverse is true on 40 meters. In each case the antenna impedance is made to look like 52 ohms at the coax side of the network. The amount the impedance is raised or lowered by the network is determined by the relationship between the coil, condenser, and antenna impedance.

The tuning network assembly is enclosed in an ordinary RFQ mailbox, see Figs. 1, 4, and 5. Several different containers were tried but the mailbox has proved most satisfactory since it is rainproof, sturdy, and easily accessible. The rivets along the side of the box were removed so the top cover may be hinged back from the tuning units when they are adjusted. When changing bands it is only necessary to open the front door. The mail box is mounted beside the antenna base and a piece of copper braid about 10 inches long connects to the antenna. The braid was made from a piece of the outer conductor of RG-8U coax. Any double-pole, three-position switch with low-loss insulation will work well. The type used for high-voltage meter switching or tank circuits is excellent. Standard inductor clips are used to tap the coils. The tower consists of a 30-foot TV mast with two sections of thin-wall steel conduit added to the top to bring the total length to 44 feet.

The antenna has been in use for quite some time with satisfactory results. During the past "Sweepstakes" contest, while running 100 watts and using the antenna, 465 contacts were established in 69 of the 73 sections. The author is not attempting to say that this antenna will out-perform the well-elevated beam or a good rhombic. It works exceedingly well and fills a definite need for the average ham.

DIODE CHECKER

By PHIL WEISS

HERE is a simple and practical way to check a germanium diode detector in a TV set without unsoldering any leads. This is important since germanium diodes cannot stand much heat and the leads are usually pretty short.

Make up a gimmick consisting of a good germanium diode in series with a 3900 ohm load resistor. Attach an alligator clip to each end of the gimmick. The gimmick can, of course, be used over and over again.

How the gimmick described above is connected into the TV circuit to check detector.
"He Wants To Keep In Touch With WALTER ASHE"

Let nothing stand in the way of taking advantage of those fabulous Walter Ashe "Surprise" Trade-In Allowances on used test and communication equipment. Get your money-saving, trade-in deal working today. Wire, write, phone or use convenient coupon below.

HAMMARLUND HQ-140X
Less speaker. Net $264.50

ELMAC AF-67 TRANS-CITER
Net $177.00

Announcing the New JOHNSON VIKING RANGER TRANSMITTER
Self-contained power supply, VFO, modulator, TVI suppressed, 160 through 10 meters, 75 watts input on CW.
In kit form at low price to be announced.

HALLICRAFTERS SX-88
Less speaker. Net $595.00

HALLICRAFTERS SX-71
Less speaker. Net $249.95
Matching speaker. Net $19.95

We want every ham to have the opportunity to own a new receiver for field day. We have a fresh stock of brand new, latest model SX-71 receivers on which we will out-trade all competition. Every set delivered in a factory-sealed carton and backed by Hallicrafters' 90 day guarantee. We will go all out to give you the highest trade-in allowance in the country—plus immediate delivery. Try us and see for yourself!

FREE CATALOG

Send for your copy today

WALTER ASHE RADIO COMPANY
1125 Pine Street, St. Louis 1, Missouri

☐ Rush "Surprise" Trade-In Offer on my __________________ for __________________ (show make and model number of new equipment desired)

☐ Rush copy of latest Catalog.

Name __
Address __
City __ Zone ______ State

June, 1954
Shielding and Grounding

1. Analyze and lay out the grounding system with care. Run a very heavy conductor from a central grounding point in the studio, either to a cold water pipe as close as possible to the street main—or to a transmitter-type radial ground system. Do not ground to a.c. conduit. One network uses #4 copper conductor in conduit for the ground lead and specifies a maximum d.c. resistance of 1 ohm over its length. Use a minimum of copper conductor to bond all rack and console frames to the central grounding point which may be a heavy bolt in the bottom of one rack. Bond all amplifier chassis firmly to their racks.

2. Run a heavy ground bus up the inside of each rack and connect it to all cable shields and the low sides of any unbalanced circuits. The rack bus should be grounded to the rack frame at only one point.

3. Shielded or unbalanced circuits should be grounded only at one end to avoid ground loops which are one of the main causes of r.f. interference. When a shield or conductor is grounded at two points some distance apart, an r.f. voltage may appear across these points, since what appears as a dead short to d.c. may present an impedance to r.f.

4. Determine by trial whether or not to ground the center taps of balanced transformer windings and balanced pads. Such grounding may do more harm than good from an r.f. or longitudinal voltage standpoint.10

5. The r.f. pickup may occur in a preamplifier in which the input transformer secondary is grounded to the "B-minus" terminal of a distant power supply, instead of to the preamplifier chassis. See Fig. 2. An r.f. voltage may appear between the "B-minus" lead and the chassis and be coupled to the preamplifier proper through stray capacitances. The remedy is to ground the transformer secondary low side to the chassis, and remove the ground from the "B-minus" lead at the power supply, to avoid a ground loop.11

6. Use cables whose shields are tightly woven, especially in low-level circuits. This condition is often expressed as a high percentage of shielding. It should be a minimum of 80%, which means that the metal in the braid should constitute 80% of the braid area.

7. In cases of severe r.f. interference, install a second shielding braid over the cable primary low side. The added shield should be carefully soldered all around to the original braid. Whether this should be done at one or both ends should be determined by trial.

8. Use shielding covers on open-bottom amplifier-supply chassis.

9. Shield the glass tubes in low-level stages, and make sure the shell of...
metal tubes (generally #1 socket pin) is grounded.

10. It may be necessary to shield not only the grid lead but also the plate lead and the plate load resistor in low level stages. The resistor shield should be of copper, brass, or other metal of high electrical conductivity.

11. Under extreme conditions of interference, build a shield of copper screening around preamplifiers, and a sheet copper shield around inductive elements like equalizers, and ground the shield. Larger sheet metal shields should have their edges turned over to form a flat surface on which to mount the cover. To maintain good contact for a removable cover, knitted wire mesh gaskets are available (Metal Textile Corporation, Roselle, N. J.). Such shields are obviously a "brute-force" expedient and should rarely be necessary in an audio installation.

REFERENCES

(Mounting Crystal Diodes)

By CHARLES ERWIN COHN

Crystal diodes are handy components to wire into a circuit, but their installation is complicated by the fact that they can be injured permanently by excess heat during the soldering process. Furthermore, when wired and unwired many times in experimental work their leads tend to break off.

In the case of a resistor costing five cents one can take such a loss without too much grumbling, however a dollar diode is an entirely different matter and one always hopes to be able to salvage an otherwise good unit.

Soldering new leads to the diode is not too practical for the previously mentioned problem of heat damage.

All of these considerations point to the desirability of a solderless mounting for crystal diodes. Fortunately, there are two convenient methods available. When it is possible on a panel or chassis, the diode can be slipped into an 8A6 fuse clip, which is just the right proportions to hold it firmly after the leads have been clipped off. Of course, this applies only to the Sylvania 1N34 and similar types with the ceramic body and two metal end caps.

If it is desired to mount the diode on leads, then the end caps can be pushed into octal-type grid clips. The National Type 8 is preferable because the diode end caps are slightly oversize.

June, 1954
WHAT'S NEW IN RADIO

The products described in this column are for your convenience in keeping up-to-date on the new equipment being offered by manufacturers. For more complete information on any of these products, write direct to the company involved.

U.H.F. GRID DIP METER

Boonton Electronics Corp., Boonton, N. J. has announced a new u.h.f. grid dip meter, the Model 101B.

The instrument operates in the frequency range 300 to 1000 mc. in three steps. The frequency scale is approximately linear throughout the range which include 300-425 mc.; 425-650 mc.; and 650-1000 mc. employing three plug-in coils mounted externally on the u.h.f. probe, allowing ease of coupling to the circuits to be measured. The dial is individually calibrated to a frequency accuracy of ±2%.

The instrument may be used to measure capacity, inductance, circuit "Q", and choke resonance as well as functioning as an auxiliary signal generator, an absorption wavemeter, and as a means of determining many other factors in u.h.f. circuits.

Full details of the Model 101B are available from the company without charge.

CD RECEIVER

A small radio receiver which can be worn like a hearing aid has been developed by two engineers at General Electric Company's Syracuse plant.

Designed primarily for civil defense applications where a compact, lightweight receiver operating from a minimum number of flashlight cells is required, the radio is tuned to a single broadcast frequency of 1240 kc.

The radio has a hearing-aid type earphone and weighs about five ounces. Further development work is being done before the radio is mass produced.

CONVERTER

Palisade Electronic Corp., 1023 Palisade Ave., Palisades, N. J. is now offering a new crystal-controlled converter, the UHF-2.

The new unit tunes the frequency range 432-436 mc. and can be used with any receiver that covers from 11 to 15 mc. The chassis is of copper-plated steel and uses five tubes. A 6A34 is used as a tunable tuned-line r.f. amplifier, a 6AM4 is the mixer, a 6CB6 functions as the 11 to 15 mc. f.f. amplifier while two 6J8's are used as the crystal oscillator and frequency multiplier. The input and output fittings are coax.

The approximate gain of the converter is 25 db and the noise figure is 7 db. Sensitivity is 2 microvolts. Bulletin UHF-4 covering this unit is available on request.

SINGLE-SIDEBAND FILTER

Burnell & Company, 45 Warburton Ave., Yonkers, N. Y. is currently marketing a single-sideband filter for amateur receivers.

Designed as the Type S-15000, the new filter utilizes a toroid coil instead of the crystal filters formerly required. The unit is compact in size and easy to install. Fixed-tuned and hermetically sealed, it requires no adjustment, is rugged and trouble-free. It may be installed in any existing amateur receiver and is also suitable for incorporation in new equipment.

Descriptive literature, including a schematic and response curve, is available from Dept. D of the company.

RADIATION DETECTOR

El-Tronics, Inc. of 5th & Noble Streets, Philadelphia, Pa. has recently introduced a radiological survey instrument, the "Rad-Tek."

Approved for use by the Federal Civil Defense Administration, the new unit was built to FCDA's rigid specifications and requirements. It is a ruggedized ionization-type of instru-
oscillators, featuring zero impedance output of 10 volts at 2 watts and a variable voltage output at low impedance.

The new DX-1 provides an inexpensive source of essentially pure, highly stabilized sine-wave power for general lab use and production testing. Frequency coverage from 300 to 10,000 cps, by hundreds, is available in stock models while the range 301 to 9999 is available on special order at no extra cost.

Housed in a ventilated metal case, the circuit is an LC bridge-type incorporating a high "Q" toroid, mica condenser and air trimmer, combined with a self-balancing feedback amplifier.

HEATH PREAMP KIT

Heath Company of Benton Harbor, Michigan has added a preamplifier kit to its line of assemble-it-yourself units.

The Model WA-P2 has three high-level and two low-level inputs with individual level controls for each input. There are two outputs—one to the main amplifier which is variable from 0 to at least 2.5 volts r.m.s. from any normal program source and one to a recorder input providing a minimum of 25 volt r.m.s. from any normal program source.

Frequency response is ± 1 db from 25 to 30,000 cps and ± 1.5 db from 15 to 35,000 cps. Low frequency compensation is provided by a four-position turnover control while the high-frequency

June, 1954
Windsor TUBES

We've EARNED your confidence...and we mean to KEEP IT!
Thousands of Service Organizations and Dealers throughout America send us their orders month after month...they know you can depend upon the WINDSOR promise of PEAK PERFORMANCE!

And here's why: Every tube we ship is first carefully tested in our laboratories, for maximum functioning characteristics, right in a radio or TV set—under actual operating conditions! That's why we unconditionally guarantee every Windsor Tube in accordance with the Standard Warranty: Fall replacement of any defective tube within 90 days of purchase, excluding only breakages and breakenage. Each tube attractively packaged in individual carton.

BUY WITH CONFIDENCE—WINDSOR TUBES WITH CONFIDENCE!

FREE!
WINDSOR TUBE CADDY
The most practical Service Aid ever designed for the radio and TV repairman. This ideal televi
sion carries all new offered free with every purchase of $16.00 or accumulated pur-
chases totaling $16.00 within 90 days...includes a position and address of each purchase. Windsor Tube Caddy may also be purchased outright for $3.50.

DON'T MISS THIS SENSATIONAL OFFER!

THE NEW TV DYNATRACER
TRACES TV SIGNALS AND VOLTAGES
LOCATES DEFECTIVE COMPONENTS
REQUIRES NO ADDITIONAL EQUIPMENT
This sensational new piece of test equipment is ideal for troubleshooting and servicing any picture tube. The "DYNATRACER" will automatically do the servicing...easy to use...will save time and labor.

A Must for Every TV Technician
Specifications: The DYNATRACER instrument designed to locate TV picture tube defects. Includes power cord with ground, 4 ft. lead, 12V.D.C., 40A M.A.; a pair of brushes, one 40A, and one 10A, with controls. Complete set weighs - 5 lb.

ADDED FEATURE: The "DYNATRACER" will also trace TV signals from 120k to 3 k and instantly display them on the face of the tube. The "DYNATRACER" will automatically do the servicing...easy to use...will save time and labor.

BELL AMPLIFIER
Bell Sound Systems, Inc., 555 Marion Road, Columbus, Ohio, is now offering a redesigned version of its Model 2199 amplifier.

The new Model 2199-B features a seven-position equalization and selector switch to compensate for five types of recording curves and for radio and tape. A loudness control is also provided. Output impedances of 4, 8, and 16 ohms, plus an auxiliary high-impedance jack are also available.

A special input is provided for frequency-modulated and ceramic pick-

TELEVISION PREPARE FOR A GOOD JOB!
BROADCAST ENGINEER COMMERICAL OPERATOR (CODE)
RADIO SERVICING

Television Servicing
Approved for Veterans
SEND FOR FREE LITERATURE
Baltimore Technical Institute
1425 Eutaw Place, Balt., Md.

CENTURY ELECTRONICS CO.
211-04 99th Ave.
Queens Village, N. Y.
QUARTZ CRYSTALS
FT-243-.003" PIN DIODE-.465" PIN SPC
FOR HIGH AND GENERAL USE * GUARANTEED
1391 412 435 497 519
390 388 409 383 404 425 490
380 402 423 487 508 531
376 397 419 484 505 527
375 396 418 483 504 526
374 395 416 438 502 523
5485 5906 6406 6950 7640 7850 8325
5205 5873 6373 6875 7606 7800 8273
5030 5852 6350 6850 7600 7775 8250
4495 5840 6325 6806 7573 7750 8206
4490 5806 6300 6800 7550 7740 7975
4280 5740 6250 6725 7506 7706 7940
4190 5725 6240 6706 7500 7700 7925
4035 5500 5925 6425 6975 7641 7873
and Pins,.486" SPC.,marked
WATERLOO
BAKER STREET
FOR
Nos.
270

PARTS DISTRIBUTORS, LTD.
520 TENTH ST. N.W.—WASH. D. C., DEP. N.

BAKER STREET
SCOTLAND YARD
WATERLOO BRIDGE
READ LONDON MYSTERY MAGAZINE
Now on sale at leading newsstands

ULTRA LOW LOSS DESIGNED FOR HIGHEST UHF GAIN
DON'T RUIN your installation with a lightning arrester of high insertion loss. Install the arrester that's an asset instead of a liability to your UHF or VHF installation—the JFD "3-IN-1" with the ultra low loss compensating circuit. Thousands of installations prove the "3-IN-1" gives the lowest insertion loss of any arrester in use today. Patented strain-relief lips and patented saw-tooth washers are exclusive JFD extras at no extra cost.
Write for Form 210.
No. AT110 with hardware for wall or window sill...........$1.50 list
No. AT110S with UL approved stainless steel mounting strap$1.75 list
U. S. Patent Nos. 2,654,857; D-159,330

for VHF flat twin leads
for all UHF or VHF tubular twin leads

SPECIAL OFFER on this
COMPLETE RADIO ENGINEERING LIBRARY
* 5 Volumes * 3872 Pages * Illustrations

T HIS new, up-to-date edition of a famous, 5-volume library covers the whole field of radio engineering—it includes latest facts, standards, data, and practice to help you solve hundreds of problems in any field based on radio. Books cover circuit phenomena, networks, tube theory, amplification, measurements, etc.—give specialized treatment of all fields of practical design and application.

SPECIAL LOW PRICE—EASY TERMS
SAVE $10.00—Regular price of books is $48.00; when bought as a set, you pay only $38.00, and on easy terms.

Please Mention RADIO & TELEVISION NEWS When Answering Advertisements

NEW MICROPHONES
Altec Lansing Corporation, 161 Sixth Avenue, New York 13, N. Y. has just introduced three new microphones to the trade.
The new Model 21C is of the condenser type and is sufficiently small to be used on the coat lapel, be hand-held, or stand-mounted. The Model 670 cardioid is similar in appearance to the manufacturer's Western Electric Type 639 but is a newer and smaller version.
NOW FOR THE FIRST TIME
Mix Any Audio Sources With Plug-In Simplicity
You can do things you have never been able to do before using the Berlant Multichannel Mixer MCM-2. This versatile, four channel, high level mixer will mix any combination of audio inputs and feed any normal or studio line loads.
The built-in power supply makes this an extremely flexible unit, completely independent of any other equipment. Radio stations, recording studios, schools, musicians and users of public address systems will all find this rugged, high quality multichannel mixer invaluable.
Write for our bulletin 21U01
Basic mixer $137.50. Professional users, net price.
BERLANT ASSOCIATES - 4010 W. JEFFERSON BLVD.
LOS ANGELES 16, CALIF.

Examine Free! Greatest Television Repair Book Ever Published!
Here is the most complete and up-to-date book on television servicing available today—a book that gives you succinct, practical, how-to-do-it knowledge of TV repair, installation, maintenance, and troubleshooting.
Whether you're a professional serviceman or a hobbyist, you'll use this thoroughly practical handbook day in and day out to solve every kind of TV problem.

TELEVISION SERVICING
New 1954 Edition, Completely Revised
by Walter H. Buchsbaum
Nowhere else will you find as much detailed, step-by-step guidance on all the latest developments in TV sets—UHF tuners, converters, and late-model antennas—large-screen tubes, automatically focused picture tubes, and transistors. The book brings you completely up to date on color, UHF, and special TV applications like industrial TV, theatre TV, and projection systems.

PARTIAL LIST OF CONTENTS
ALIGNMENT AND INSTALLATION—
Video IF alignment—sound channel alignment—aligning RF amplifier, mixer, and oscillator—how to develop a systematic, professional approach that was customers for you and keeps them satisfied—where to locate the set—how to install antennas—final check-up.

MAIL THIS COUPON NOW

PRENTICE-HALL INC., Dept. M-RTN-654
Englewood Cliffs, New Jersey
Send me TELEVISION SERVICING for 10 days' FREE TRIAL. Within 10 days I will return it and owe nothing—or keep it and send $1.95 down (plus postage) and $2 monthly for 2 months.

Name ..
Address
City ... Zone State

[] SAVE! Send $5.95 with this coupon, and we'll pay postage and packing. Same return privilege and guarantee.

The third microphone, the 21-BR-150, is a medical microphone which possesses the ability to detect and separate the beat of the human heart. It is intended for teaching and demonstration purposes in medical schools and for research and study applications.

Spot Radio News
(Continued from page 20)
made in this system for inclusion of simultaneous sound recording or of recording of color television.

RADAR EQUIPMENT, which will tell how successfully broadcasts from long-range transmitters, such as the "Voice of America," are reaching their destinations, was announced recently by the Air Force's Air Research and Development Command Headquarters in Baltimore.

The new setup, coded Cosi (communications zone indicator) was also said to indicate approximately how strong the signals are when they get to their destination, and might also reveal whether an enemy was deliberately jamming that particular frequency with static and interference.

To test a signal, the indicator equipment transmits a radar beam from the station's own antenna. The beam follows the same path taken by the radio waves. The difference, however, is that the Cozi beam comes back and tells where it has been, and often, whether it has run into any interference at its destination. The radar device is made in two units, each about the size of a steamer trunk; one is the transmitter and the other the receiver. In testing, it is necessary to interrupt the broadcast momentarily, while the radar beam is sent out. A reading is obtained instantly, and broadcasting is resumed without any appreciable break or loss of time.

The Air Force said that they intend to make extensive use of Cozi to increase the efficiency and reliability of its worldwide communications system. Interest has also been displayed by Radio Free Europe, and by several commercial radio stations in this country and Canada. It was also reported that several large industrial and shipping groups were studying the practicality of using the new radar system as a standard accessory for long-range, directional radio-broadcasting equipment.

INTERFERENCE has become one of the biggest jobs of the members of the FCC field engineering and monitoring bureau. With some 600,000 transmitters now authorized, it has become difficult enough to see that transmitters do not collide with another. But the field task has been magnified by the accidental or careless release of emissions by a host of new devices and gadgets which use r.f. energy for various non-communication purposes.

In their annual report, the Commis-
...an intermittent interference which was proved to be arising from the fault in the line cord of an air door-opening device which was elderly and in poor health, and his principal interest was his ham station which had been constructed and serviced for him by several fellow amateurs. Investigation of the ham gear revealed no trouble, but the FOC field men went to the home of the complainant. They found that interference was observed in an all-wave set only when it was in the phono position. It was further noted that the antenna consisted of a short length of insulated wire wrapped around a line cord of a very messy electric system. When the

COYNE HAS TRAINED MORE SUCCESSFUL MEN

Thousands of successful men trained at COYNE — the largest, oldest, best-equipped school of its kind (established 1899). A Coyne-trained man is a top-trained man. Coyne methods require no advanced education or previous experience.

TRAINING TAILORED TO MEET YOUR NEEDS

Resident Shop Training — You can learn on real equipment in the Great Shops of Coyne. Learn practically, easily at Coyne. Practical Technical methods gives practical experience on massive output of full-size equipment plus necessary technical training. Finance Plan whereby you can enroll now and pay most of tuition later. Also Monthly Payment Plan especially designed for K-Vets. If you need part-time work to help out with living expenses while at COYNE, we will help you get it. Coupon brings FREE BOOK and details.

Coyne Tested Home Training — To those who cannot come to the Coyne shops here in Chicago, we offer modern, up-to-the-minute training designed to meet Coyne standards. Practical, down-to-earth, easy to follow, step-by-step instruction. So practical, you can actually be earning wages in Chicago.

B. W. COOKE, President

COYNE ELECTRICAL SCHOOL

A TECHNICAL TRADE INSTITUTE CHARtered

NOT FOR PROFIT

500 S. Paulina Street, Chicago 12, Dept. A-4-TRS

ELECTRONICS • RADIO • TELEVISION • REFRIGERATION • ELECTRICITY

MAIL COUPON FOR FREE INFORMATION

Fill in and mail coupon, TODAY. Check the training you’re interested in. If you want information on both, check both. Complete details will come by return mail. No cost — No salesman will call.

B. W. COOKE, President

COYNE ELECTRICAL SCHOOL

500 S. Paulina Street, Chicago 12

Dept. A-4-TRS

Send details of your offer on training checked below. This does not obligate me and no salesman will call, if I am interested in...

□ TELEVISION-RADIO HOME TRAINING

□ TELEVISION-RADIO IN COYNE SHOPS

Name _________________________________

Address__________________________________

City ___________________________ State ______

COYNE TRAINS YOU FOR BIG PAY JOBS IN...

TELEVISION — RADIO in shops of COYNE

...or in spare time at HOME

A fascinating field! A great future! A good job or independence in a business of your own! TV is growing by leaps and bounds — 1227 new communities, 1945, were given "go-ahead". Trained men are worth their weight in gold!

Television and Radio while learning—personal supervision by Coyne Staff — men who know TELEVISION AND RADIO, and know HOW TO TEACH IT — and the cost is low — you pay only for training — no costly extras. Send coupon below for Picture Folder and full details, including easy Payment Plan.

June, 1954
NEW TV GRANTS SINCE FREEZE LIFT

Continuing the listing of construction permits granted by FCC since lifting of freeze. Additional stations will be carried next month.

<table>
<thead>
<tr>
<th>STATE</th>
<th>CITY</th>
<th>CALL</th>
<th>CHANNEL</th>
<th>FREQUENCY RANGE (IN MC.)</th>
<th>VIDEO WAVELENGTH POWER* (IN FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>Montgomery</td>
<td>WSFA</td>
<td>12</td>
<td>204-210</td>
<td>1.49</td>
</tr>
<tr>
<td>North Dakota</td>
<td>Grand Forks</td>
<td>KNOX-TV</td>
<td>10</td>
<td>199-198</td>
<td>1.20</td>
</tr>
<tr>
<td>South Carolina</td>
<td>Charleston</td>
<td>WUSN-TV</td>
<td>2</td>
<td>54-60</td>
<td>1.02</td>
</tr>
<tr>
<td>Texas</td>
<td>El Paso</td>
<td>KELP-TV</td>
<td>13</td>
<td>210-215</td>
<td>3.32</td>
</tr>
<tr>
<td>Vermont</td>
<td>Montpelier</td>
<td>WMVT</td>
<td>3</td>
<td>80-86</td>
<td>1.83</td>
</tr>
<tr>
<td>Washington</td>
<td>Spokane</td>
<td>KREM!</td>
<td>2</td>
<td>54-60</td>
<td>1.00</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>Green Bay</td>
<td>WGBY</td>
<td>9</td>
<td>76-82</td>
<td>1.00</td>
</tr>
</tbody>
</table>

NEW CALL LETTER ASSIGNMENTS

- ERP = (effective radiated power, kw.).
- = Call letters to be announced
 + = Temporary call letters.

tenna was unwrapped from the line cord and the line plug reversed, the interference ceased.

Some time later, however, another report was received from the same complainant. This time the aggrieved lady claimed that whenever she put her hand near the radio-phono pickup to change records, the amateur's voice would break through. This phenomena, she raged, was making her nervous and affecting her health. The investigating engineer discovered that the latest apparition was due to pickup in the phono-pickup leads. So he devised a wavetrap which eliminated the woman's haunt, and the amateur could continue to operate his station, which according to him . . . made life worth living.

FOR THE FIRST TIME since the Commission began processing of new applications for TV stations, the boys are out of the woods, at least for all practical purposes.

Hearings are now being scheduled as quickly as the respective applications in a particular city are in a position to be designated for hearing. Technically, said the Commission, applications will hereafter be considered chronologically, and the temporary processing procedure and city-priority listings will be discontinued.

Notwithstanding the cleaned-up slate, the New TV Stations on the Air.

NEW TV STATIONS ON THE AIR

(As of May 28, 1954)

The following new stations bring the lists published in previous issues up to date.

<table>
<thead>
<tr>
<th>STATE, CITY</th>
<th>STATION</th>
<th>CHANNEL</th>
<th>FREQUENCY RANGE (IN MC.)</th>
<th>VIDEO WAVELENGTH POWER* (IN FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>KBIE-TV</td>
<td>46</td>
<td>602-668</td>
<td>1.49</td>
</tr>
<tr>
<td>Sacramento</td>
<td></td>
<td></td>
<td></td>
<td>207</td>
</tr>
<tr>
<td>Florida</td>
<td>WDBO-TV</td>
<td>6</td>
<td>82-88</td>
<td>11.3</td>
</tr>
<tr>
<td>Orlando</td>
<td>WGAN-TV</td>
<td>13</td>
<td>210-216</td>
<td>4.65</td>
</tr>
<tr>
<td>Maine</td>
<td>WPTV</td>
<td>66</td>
<td>202-220</td>
<td>4.79</td>
</tr>
<tr>
<td>Portland</td>
<td>WBNN</td>
<td>21</td>
<td>512-538</td>
<td>12.9</td>
</tr>
<tr>
<td>Kentucky</td>
<td>WAVE-TV</td>
<td>12</td>
<td>204-210</td>
<td>4.79</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>WHA-TV</td>
<td>21</td>
<td>512-538</td>
<td>12.9</td>
</tr>
<tr>
<td>Madison</td>
<td></td>
<td></td>
<td></td>
<td>10.7</td>
</tr>
<tr>
<td>Canada</td>
<td>CHIC-TV</td>
<td>11</td>
<td>198-204</td>
<td>4.93</td>
</tr>
<tr>
<td>Hamilton, Ont.</td>
<td></td>
<td></td>
<td></td>
<td>42.9</td>
</tr>
</tbody>
</table>

KETX, channel 19, Tyler, Texas; WACH, channel 33, Newport News, Virginia; and WOSH-TV, channel 48, Oshkosh, Wisconsin, have gone off the air.

The frequency of the video carrier = 1.25 + channel lower freq. limit. Total number of TV stations now on air in U.S.: 384 (135 of which are u.h.f.).

| Educational: *From Station CP application. |
comparatively few station grants are being issued, because of hearing extensions, and delayed interest of many, awaiting the outcome of the Congressional investigation.

At this writing, channel assignments shown on page 98 have been made.

ONE OF THE MOST IMPORTANT anniversaries, of concern to every scientist in this country was celebrated in mid-Spring. The date . . . April 10 . . . and the occasion, truly the birthday of American industrial progress. On that date, in 1790, George Washington signed the bill that established our patent system, which introduced a new era and sparked so many great inventions.

When Lee de Forest took the Edison effect, in a light bulb, and converted it into a tube, he probably little realized that he would live to see the day of our modern electronic industry, built up through a chain of ingenious inventions, protected by patents.

Certainly, April 10 is a memorable date that all should remember. . . L.W.

PACIFIC ARRL MEET

The Santa Clara County Amateur Radio Assn. is sponsoring the Pacific Division ARRL convention in San Jose, California, July 3, 4, and 5.

The program for the first two days will be held in the Municipal Auditorium in San Jose with the last day devoted to outdoor activities. Harry Engwicht, W6HC, is chairman.

From

Henry

Bob Henry
WO6AA
Butler, Mo.

Ted Henry
W6YOU
Los Angeles

We Give...

LONG LONG TRADES
LOW LOW TERMS
10 DAY TRIAL
FAST PERSONAL SERVICE

We WANT you to be SATISFIED
Ask any Ham about Henry

We have All National Receivers in stock for immediate delivery, also National parts.

Write, wire, phone or visit either store today.

Butler, Mo.
Phone 935

Henry Radio Stores

Beadshaw 2-2177

11240 West Olympic Blvd. Los Angeles 64

New National

ONLY $1500 DOWN
18 Cash Monthly Cash
Down Payments Price
SW-54 $5.00 $2.51 $49.95
NC-98 12.00 6.54 119.95
NC-125 20.00 10.99 199.95
NC-1830 40.00 21.77 399.50
HRO-60 54.00 29.00 533.50

SAFETY GUARANTEED

Henry Radio Stores

New NC98

18 monthly payments of $8.00
Cash price $149.95
Now for the first time, a crystal
filter, on S-Meter, choice of
electrical bandspread on ama-
teur or SWL bands, on RF
stage and 2 IF stages.

PRACTICAL, NEW, LARGE
Here is your complete training in
television servicing. Amazing value at
only $3. Complete. These new les-
sions cover every fact, adjustment
and repair of all types and makes of TV
receivers. Giant in size, mammoth in
scope, just like other correspondence
courses selling for over $150.00. Our
amazing offer permits you to obtain
the course complete for only $3. Noth-
ing else to pay. Easy-to-follow well
illustrated lessons on circuits, picture
faults, adjustments, short cuts, about
UHF, alignment, antenna problems,
trouble-shooting, service hints, how to
use test equipment, and many practical
sections prepared by leading manufac-
turers. Just published. Send trial cou-
pon today and use the complete TV
course at our risk. Satisfaction gar-
anteed. Your price for all lessons in
large manual form, complete, post-
paid, only $3. Send trial-coupon now.

NEW TELEVISION COURSE

Amazing Bargain, Complete, Only $3

RADIO & TV Manuals

Your complete source for all needed
RADIO and TV diagrams and service
data. Most amazing values. Still sold at
pre-Korean prices. Only $2 to $5 per vol-
ume. Every Radio manual contains large
schematics, all needed alignment facts,
parts lists, voltage tables, trimmers, dial
schematics and service hints. Each TV
volume is a practical treatise on servicing
a full year's sets, with giant blueprints,
waveforms, hints, alignment and voltages
charts, production changes. See coupons
right for a complete list of these low-
priced Supreme service manuals.

NO-RISK TRIAL ORDER COUPON

SUPREME PUBLICATIONS, 1760 Balsam Rd., Highland Park, ILL
Radio Diagram Manuals

$1952 Radio Manual $2.50
$1951 Diagrams $.50
$1951 Manual $.50
$1949 Radio $2.50
$1988 Radio $2.50
$1946 Radio $2.50
$1942 Radio $2.50
$1939 Manual $.50
$1926-1938 Manual $.50
$1950 Television Manual $.50
$1948 TV $.50
$1947 TV & FM $.50

Radio Today TV manuals checked below and
Radio manuals at left. Satisfaction guaranteed.

MASTER INDEX only 25c

Address:

June, 1954

Supreme Publications

Sold by all Leading Parts Jobbers
Cuba—CMAS, 5.780, heard relaying program from Hollywood recently 1745. (Cody, Ireland) Santiago, 8.955, noted closing in Spanish-English 0030. (Barnard, Calif.)

Cyprus—Limassol noted on 6.790 at 0100, with news in Arabic, good level, weaker on 6.125, 6.170 in parallel. (Cox, Dela.) Heard on 9.650 at poor level 1025. (Barnard, Calif.)

Denmark—OZFT, 15.165, heard opening 0400 with Town Hall chimes, anthem. (Pearce, England)

Dominican Republic—H12T, 7.777A, noted in Spanish 1815-1830 with good music. (Rugel, Kans.) HIG, 9.590A, noted at good level in Spanish. (Barnard, Calif.)

Ecuador—HC21T has moved to 6.858A from listed 6.795; generally good around 2200. (Hill, N. H.) HC22B, 11.915, noted 2100 with religious session in English, good level. (Sicks, Ore.) Heard on 9.743A at 0000 with German session. (Calos, Calif.)

Egypt—Radio Cairo, 9.475, noted in news session 1330-1340. (Leake, N. J.) Golden, Mass.) Heard on 15.315 ending English news 0840, then continuing with Eastern music. (Ferguson, N.C.) Arabic Service noted on 12.030, 7.060 around 0000-0200. (Cushen, N. Z.) At 1100 on 11.965 and near 7.035; another day at 1040 near 9.740; another day around 1400 near 7.060. (Pearce, England)

Fiji Islands—ZIJ3, 3.980, Suva, noted 0615 with music. (Sanderson, Australia) Has newcast 0400. (Morgan, Calif.; Saylor, Va.)

Finland—Helsinki, 15.190, heard opening 0430 with news in French, then news in English 0445. (Pearce, England) Should have news for America 0600 note.

France—Paris, 15.295A, noted opening 0820A with "La Marsaville." (Silverman, N. Y.) Is using 7.220 for "French by Radio" 0245. (ISM, Lon.) Noted on 15.100 around 1030-1045. (Stark, Texas)

French Morocco—Brazzaville, 9.440, good level in news 1745. (Grace, Conn.) Heard with English 1400 over 15.955. (Cox, Dela.)

French Guiana—Radio Cayenne, 6.232A, noted around 1730-1830 when closes with "La Marsaville." (Swayer, Ont., others)

French West Africa—Dakar, 11.894A, noted 1500 with news in French. (Pearce, England) The 9.562 outlet is
widely heard with English 1715-1730 on Mon., Wed., Fri., Sat.; Portuguese that time Tue. Thu. (Esser, Pa., others)

Germany—Cologne, 15.275, noted closing 0830 with announcements in German, English, French in beam to Far East; said 11.795 was parallel. (Silverman, N. Y.) This transmission heard opening 0530 on 11.795. (Pearce, England) Noted some days around 1315 on 11.795. (Nibleck, Ind.) Radio Liberation, Munich, now uses 6.055, 6.175, 7.130. (ISWC, London) Home Service noted from NWDR, 6.075, Hamburg, at 1750 with classical music, announcements in German by man. (Bellingham, N. Y.)

Greece—Athens, 9.607, has news in French 1230, in English 1245. (Forces Station, Athens, near 7.420, noted 0730 with Greek Songs, and closing 1700 with Greek National Anthem. (Pearce, England)

Guatemala—TGTN, 5.970, noted with Spanish music 2230-2300. (Middleton, O.) TGNRC, 9.668, is good in English session 2200-2345. (Klein, Va.) Sexton, Pa. and parallel over TGNC, 11.850. (de Noel, N. Y.)

Guadeloupe—FGHAA, 6.066A, Basse-Terre, noted 1815 in French with QRM from XEXE, Mexico (Cox, Dela.) Poor level 1730 in heavy CWQRM. (Barnard, Calif.)

Haiti—Radio Citadelle, 4WVA, 6.1535, Cap Haitien, noted 1900 when identified in French. (Nibleck, Ind.) 4VC, 9.485, is excellent around 1730. (Middleton, O.) 4VEH is using 9.658A mornings and 9.675 (Sun., Mon.) evenings EST. (West, Va.) 4VCV operates on 6.365, has French news 1850. (La Radio Mondiale, France)

Hawaii—VOA relay, 6.195, good in oriental languages 0630-0700. (Roberts, Conn.)

Holland—Hilversum noted on 6.025 at 1630-1710 at fair level in English. (Parsons, Pa.)

Honduras—HRN, 5.885, good nightly, best around 2000-2100. (Pearce, Ill.)

Hong Kong—ZVW3, 9.025, heard 0600 with BBC news relay, then music. (Sanderson, Australia) Heard opening 0400 now—one hour earlier than formerly. (Balbi, Calif.)

Hungary—Budapest, 9.833, noted re- laying Moscow from 1400. (Sawyer, Ont.) Heard on 6.248 with news 1500. (Sutton, O.)

Iceland—TFJ, 15.175, Reykjavik, is heard Sun. (only) at good strength 1115-1130. (ISWL, England)

India—AIR, 5.990, noted with news and music; on 7.955 at 1930 with news; at 2030 with news on 11.870. (Sanderson, Australia) English news sessions now are 1930-1940, 11.850, 9.755; 2310-2320, 15.130, 11.870; 0222-0245, 17.740, 15.330, 0615-0845, 11.960, 9.365; 1045-1055, 15.380, 11.920.

Indo-China (Vietnam)—Radio France-Axie, 15.420, noted 0430 with English program of music and news. (Sanderson, Australia)

India—EQQ, 3.785A, Teheran, is strong in New Zealand with French 1500, English news 1515-1530 close.
That's what Dubbings Company, Inc., say of Soundcraft's LIFETIME Magnetic Recording tape. These nationally known specialists in the hi-fi field chose LIFETIME Tape for their new 15-minute test reels.

These amazing test reels accurately measure your tape recorder's wow and flutter, head azimuth alignment, frequency response, signal-to-noise ratio, signal level, tape speed. After exhaustive study of every available tape, Dubbings found that only LIFETIME was equal to the job.

And that's why you, too, should choose LIFETIME Tape for your critical applications. More and more radio, TV and recording studios insist on LIFETIME Tape for its strength; freedom from stretch and shrink despite temperature and humidity, permanence and high fidelity. Remember, LIFETIME Tape is guaranteed for a lifetime! Make your own test today!

REEVES SOUND CRAFT CORP.
Dept. U6
10 East 52nd St., New York 22, N. Y.

"RACON" Radial Horn
Famous Double Re-Entrant Type

Save hours of hard, tedious work...cut accurate holes in chassis for sockets, plugs, controls, meters, panel lights, etc. with GREENLEE Punches. In 1-1/2 minutes or less make a smooth hole in metal, bakelite or hard rubber up to 1/16" thick. Easy to operate...simply turn with ordinary wrench. Wide range of sizes. Write for details. GREENLEE Tool Co., 1896 Columbia Avenue, Rockford, Ill.

Iraq—Baghdad is now on 11.705. (Cushen, N. Z.) Noted by Collett, N. Z., opening 2330 with chirping of bird identification; has severe interference from Moscow from 04:15; closes 0205. (Radio Australia)

Israel—Tel Aviv, 9.010A, noted in English 1615-1700S, closedown. (Leake, N. J.) Heard with news 1515. (Welch, Mass.) Forces Station, listed 6.725, noted nearer 6.705 at 1445 with dance recordings, closing 1500 with "Lights Out" (bugle). (Pearce, England)

Italy—Rome, 17.900, 1920-1935 with news, steady level. (Howard, Fla.) With French 1935-1945A. (Grace, Conn.) Lately, 9.780 has been noted in parallel. (Ferguson, N. C., others) Heard opening 0540 to Far East on 17.800, 15.400, 15.120. (Pearce, England) Noted on 15.30 to 2130 with news. (Bigley, Pa.)

Jamaica—Radio Jamaica, 3.360, noted closing 2308 with "God Save the Queen." (Bellington, N. Y.)

Japan—The first commercial short-wave station in Japan is expected to be on the air from "Nippon Tanpa Hoso" (Japanese Shortwave Broadcasting Co.) in July; will use JOZ, 3.925, 5 kw., and JOZ2, 6.095, 5 kw.; programs will include educational features sponsored by the Ministry of Education; studios, transmitters are in Tokyo. (Wada, Japan, others) Tokyo noted on 9.695 at 0005-0100. (McDonald, Calif.) And then 0200 with news. (Kahan, Calif.)

Luxembourg—Radio Luxembourg, 6.090, noted around 1530 and later. (Sawyer, Ont.)

Malaysia—Radio Tanararive, 9.515, noted at weak strength 2300 in French. (Cox, Dela.)

Radio Malaya—BFBS, Singapore, noted opening 0415 on 15.435, 11.820, news 0415. Heard on 7.120, 9.690 at 1045 with BBC sports relay. (Cooper, Morgan, Calif.) Heard on 11.820 at 0800 with BBC news relay. (Sawyer, Ont.) The 11.955 outlet, is again heard to 0930 closedown. (Stark, Texas, others)

Radio Malaya, 7.200, Singapore, noted 0630 with musical selections, then stock quotations. (Sanderson, Australia) Kuala Lumpur, 6.025, is good level 0600. (Christie, Calif.) Forces Station, Singapore, noted on 5.010A at 0745 with native music, man in Fijian, weak level. (Morgan, Calif.)

Monaco—Radio Monte Carlo, 7.349, noted daily around 1515-1730A sign-off; fair level, mostly French, sometimes with English. (Levy, N. Y.) Noted on 6.03A at 1815-1845 in French. (Winthrop, N. C.)

Mozambique—The English request session from 2300 is noted over 3.490 parallel 11.740, 4.916A. (Morgan, Bait., Calif., others)

New Caledonia—Radio Noumea, 6.028A, noted opening 0200, good level but with interference from APRS out-
BOOKS

RADIO • T.V. • AUDIO • ELECTRONICS

New!

224. RADIO DATA CHARTS. By R. T. Beatty. Charts required in the design of radio receivers cover such topics as strength, indirectance, capacity, frequency, and various other factors. The only equipment necessary to utilize any of the nomograms is a straightedge. $1.75

New!

225. TELEVISION SIMPLIFIED. By Milton S. River. The most up-to-date, complete, and practical television handbook now available for repair men, radio workers and all who are interested in the practical opportunities a working knowledge affords. Basic principles are explained in language free of involved theory or mathematics from the analysis of circuits and operating fundamentals of television and color modulation to the replacement of television sets and the explanation of an actual troubleshooting system. $6.75

4th Edition

226. TELEVISION AND FM RECEIVER SERVICING. By Milton S. River. New, third edition of this famous definitive text. Explanatory material is offered freely so that the student or novice technician may derive maximum benefit from this text. Eighteen chapters cover antennas, TV receiver installation, TV test equipment, r.f. stages, video amplifiers, and for many systems. C.R. picture tubes, servicing intercarrier receivers, using TV test patterns, deflection systems, etc. Service technicians who have come to depend on River as reference will welcome this new volume. $24.20

A GREAT BARGAIN

227. TELEVISION REPAIR MAN'S TUBE LOCATION GUIDE. By William Prior, Jr. Almost every known make of set including over 4000 models are covered with tube location diagrams. Put it in your service kit, in your shop, in the house. Up to date Only $1.00

MAIL THIS COUPON

RADIO & TELEVISION NEWS BOOK SERVICE, Dept. R
201 East 57th Street, New York 22, N.Y.

I enclose $..................for which please ship postpaid books circled or indicated below. If not satisfied I return them within 5 days for refund.

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236

Any book not listed.

Mail to:

Radio & TV News Book Service
201 East 57th St., New York 22, N.Y.

Address

City Zone State

ALL ORDERS SHIPPED POSTPAID. Sorry, no COD's. Add 3% sales tax with orders for N.Y. C. delivery; add 25¢ per title for delivery outside U.S.A., except for APO's.

FOR THE YOUNG READER

231. ALL ABOUT RADIO AND TELEVISION. By Jack Gould, Radio and Television Editor, The New York Times. The how and why of radio and television are explained clearly and directly in simple language and with over 100 illustrations and diagrams. Shows how a picture is changed into electricity, how to build a loudspeaker, why we have networks, how to communicate with the moon by radar. 160 pages. 61/4 x 91/2. $1.95

Your Radio & TV News Book Service will attempt to procure any book in this field for you. Just send title, author and price.
NOW IT'S Plug-In SELENIUM RECTIFIERS

Plugged In for Easy Replacement
Polarized for Correct Positioning
Still Can Be Soldered In The Set
Available In All Sizes.
Write for Further Information.

When buying selenium rectifiers be sure to specify "PLUG-INS" ... they cost no more.

Polzarized
Cinch Socket No. 5426269

RECTIFIER DIVISION
Dept. R-3, 415 N. College Ave., Bloomington, Ind.
In Canada—20 St Clair Ave. N W., Toronto

104

on 6.040; closes 0535. (Sawyer, Ont.; Morgan, Christie, Calif.) Heard on 3.375 at 0530 with news in French, music. (Sanderson, Australia)

New Zealand—Revised summer schedules of Radio New Zealand include 1300-1545, 9.520; 1600-2345, 11.830; 0000-close, 9.320 to Australia. At 1300-1545, 9.440; 1600-2345, 11.780; 0000-to close, 9.540 to the Pacific Islands: close is 0545 weekdays, 0620 Sat., 0500 Sun. (Morgan, Calif.)

Nigeria—Saylor, Va., says YNNW, Radio Sport, has moved from 7.850 A to 8.000 A, noted at 1800 and still going strong at 2300.

Nigeria—Fains, England, says Kaduna, 3.327, has increased power from 300 w. to 7.5 kw. and is audible in England around 1430. (URDZC)

North Korea—Radio Pyongyang, 6.250 A, has Korean news and music around 0500. (Sanderson, Australia)

Norway—The summer schedules of Radio Norway include to North America, North Atlantic 2000-2100, 6.130, 7.210, 9.610, 1578 kc.; to North America West Coast, Pacific, East Africa, 2300-0000, 6.120, 7.210, 9.610, 1578 kc.; on Sun. each transmission is extended by 20 minutes for "Norway This Week" (English). (Halvorsen, Norway)

Okinawa—VOA Relay Base is using 7.165 A in parallel with 6.145. (Balbo, Calif.)

Panama—HORT, 6.060 A, Radio Balboa, Panama City, noted at excellent level 1930. (Nibilidade, Ind.)

Paraguay—2PA4, Radio Stentor, 9.735, is scheduled 1730-2200, sometimes has bad QRM from FIEST, Dominican Republic; heard in Germany. (ISWC, London) Radio Teleco, 11.85, lately has had fair signals as early as 1730; closes around 2105. (Gay, Calif.)

Philippines—VOA Relay Base, San Fernando, North Luzon, heard at good level 1030 on 9.655. (Churchill, Calif.) D2H8, 15.300, Manila, noted with news 2300. (Cooper, Calif.) Heard over 9.73 and 11.853 in English 1015-1030, both good level. (Koch, Ore.)

Pitcairn Island—ZBP now operates in English over 12.110, 500 watts, 0000-0100. (Scheiner, N. J.)

Poland—Warsaw, 11.740, noted with English 0730, good level. (Nibilidade, Ind.)

Portugal—Lisbon heard on new 12.140 outlet opening with time pipes, "A Portuguesa" at 0945 and closing...
June, 1954

FENWIRE is BEST by TEST

FENWIRE AIR-SPACED and *TWISTUBE* are outstanding for high performance—low insensible characteristics under all atmospheric conditions—reduced interference pick up—reasonable price.

Write Dept. RE-6 for literature on complete FENWIRE line including "TUF-GUY"...finest guywire made.

(Sold through jobbers only.)

"U.S. & British Pat. Pending"

FENTON COMPANY • 15 Moore Street, N. Y. 4, N. Y. Tel. BOWling Green 9-3445
Press Time Flashes

An interesting novel based on a model ham radio is "Stand By for Danger" by E. G. Nygatt, published by Longmans, Green and Co., and which has been running serially in "Boy's Life," the national Boy Scout journal; included at the end of the book is some valuable factual information on ham radio, carefully checked by ARRL. This is a fine book for teenagers, written out of the author's "intense conviction" that, so far, ham radio has only scratched the surface possibilities of direct communication between young people the world over. "SWL" is the call sign of Kristiansand S. DX Club of Norway.

WWK37, Box 3746, San Juan, Puerto Rico, heard 1900 with test transmission; QSL letter states that Radio Corporation of Puerto Rico, which operates this one, uses it only for overseas radiotelephone service; is not a broadcasting station. (Smith, N. Y.) By now, Israel's new 50 kw. transmitter should be on the air. (Klein, Va., others) At press time, Niblack, Ind., repeated pile-up Radio Ceylon plus incoming 11,770 opening 2030, announcing 7,190 in as dual.

Summer schedule for the "Happy Station Programs" from Hilversum, Holland, Sun., are—0530-0700 to Europe; Asia, South Pacific, 17.775, 15.425, 15.220, 11.950, 6.025; 1100-1230 to Europe, Near and Middle East, 15.425, 15.220, 11.950, 11.730, 6.025; 1630-1800 to Spain, Portugal, South America, 11.730, 9.580, 6.025, and 2130-2300 to USA-Canada, 9.580, 6.025.

A new Brazilian is Radio Club Paranaense Ltd., C. Postal 448, Curitiba, Parana, Brazil, operating on 11.950 from around 1530; call is PR2B, is 1 kw, soon to be increased to 5 kw. Will have regular transmission as soon as equipment installation has been completed. (ISWC, London) Sunspot count predictions, as heard from Berne, Switzerland, are—June 3, July 3, August 3, Sept. 3. (Ferguson, Northern Ireland) Cushen, N. Z., flashes that Radio Takiti now is scheduled 2300-0000, 6.135, 7.027 (Tahitian): 0000-0200,
The Crosley "Super-V"
(Continued from page 63)

tuned absorption-type trap. It is easily installed by sliding it down over the coil form of L_{cm} to within approximately 3/32" of the secondary winding. (See Fig. 10.) It can be fixed in place by holding a hot soldering iron near enough to fuse the wax on the form. Once the coil is in place, it can be readily tuned by inserting the iron core in the top end of L_{cm} and adjusting it to the setting where the interference disappears.

Bifilar-wound interstage i.f. transformers are used to obtain maximum gain and bandwidth, and a low time constant in the grid circuits.

Diode detection is used in the "Super-V." The diode is housed in the same envelope with the pentode used for the 3rd i.f. amplifier.

The video amplifier grid resistor, R_{cm}, is returned to a point which is approximately 2-volts positive. This gives the video amplifier greater signal handling ability, and thus prevents the peaks of the negative-going sync tips from cutting off the tube at high-input levels. Without this positive-going bias, the sync tips are compressed (i.e., the ratio of the sync pulse to the total signal is reduced) in the plate circuit at high-signal inputs, causing unstable pictures or even a total loss of sync.

A double-tuned transformer, L_{cm}, is used to couple the 4.5-mc. sound i.f. signal from the video amplifier plate circuit to the sound i.f. amplifier grid. This type of coupling provides maximum selectivity and, at the same time, the primary serves as an effective 4.5-mc. trap to keep the 4.5-mc. sound i.f. off the picture-tube cathode.

An electrostatically-focused picture tube is used in the "Super-V." It has many features which warrant its use. Its adjustment is not too critical, it provides even focus over the entire picture, and the focus does not change appreciably with changes in line voltage. It also does not require a bulky focus coil or magnet.

A fixed voltage is applied to the focus element by connecting it to the +150-volt circuit. If, at some future date, a replacement tube is installed which requires a higher or lower focusing potential, it can be readily obtained by disconnecting the focus lead from the +150-volt circuit and connecting it either to the +260-volt or the +480-volt boost circuit, or to the chassis.

The brightness control varies the bias on the cathode of the picture tube. It is mounted on the vertical chassis just above the 25L6 audio output tube. (See Fig. 13.) At normal locations, the brightness control does not have to be changed when tuning from one station to another. However, in cases where an external control is desired, a special extension shaft, Crosley part #158188, is available as an accessory item to adjust the brightness control without removing the back.

Sync and Sweep

The sync-clipping circuit uses the triode section of the 6AN8, and features a double time-constant circuit in the input stage. This provides maximum noise immunity for a wide range of noise impulses. The components have been grouped together in the printed-circuit Couplet, Cm.

When a single time-constant circuit is used, high-noise impulses quickly charge the condenser (due to the low grid impedance of the tube when it is drawing grid current) to a peak value higher than the sync pulses. Thus, the bias on this tube immediately after a series of high-noise pulses is too high to allow the sync tips to cause the tube to conduct. The result is a loss of sync immediately following heavy noise pulses. To overcome this problem, a second time-constant circuit is used, consisting of the 330,000-ohm resistor shunted with the 270-µµfd. condenser. The 330,000-ohm resistor slows the charging time of the .01-µµfd. condenser so its charge is determined only by the sync pulses and not by random noise. The 270-µµfd. condenser prevents attenuation of the horizontal sync pulses.

The 10,000-ohm resistor in series with the input to the Couplet isolates the stray capacity in the Couplet from the video signal circuit. The 25-µµfd. condenser from the sync clipper grid to ground is helpful in bypassing high-frequency video signals.

The output of the sync clipper is coupled in the usual manner to the triode section of a GUS sync amplifier. The output of the sync amplifier is coupled through the integrating network, C_{cm}, to the vertical deflection circuit and through the 25-µµfd. condenser, C_{cm}, to the horizontal a.f.c. circuit.

Because of its inherent stability, the time-proven "synchro-guide" or pulse-
June, however, is not providing sufficient drive for reproducing audible code practice signals previously recorded in the pre-recorded tracks of the tape contained speaker, the unit will provide code practice signals in one or more of its own. A key is on one side of the cabinet, in the center, just below the hopper, is a key switch which selects channels, and can be turned clockwise or counterclockwise to access different tracks. Availability of a key switch is required, as some channels may be used with this display.

The same situation exists regarding width controls. Present-day practice calls for setting the width so that it is ample for low-line voltage conditions, and accepting the slight over-scan that results at higher line voltages. In the “Super-V” the correct width at low voltage is designed into the receiver. It may be noted, however, that a variation in width can be obtained by changing the value of the width condenser, C1w. Be sure, however, to use a condenser rated at 3000 volts or more. Increasing the value of this condenser makes the picture wider; decreasing it makes it smaller. To prevent horizontal fold-over, do not use more than 80 kHz.

The vertical sweep circuit uses a 12BH7 in a direct-coupled circuit.

Sound Circuit

The 6BN6 gated-beam tube is a

Fig. 10. Method of installing the 27.9 mc. adjacent channel trap assembly over I/16.

PRACTICE CODE TAPES

- Code Training and Linked-Player Tape for use with TV-M4A and TG-10 Keyers.

Complete Set

SEPARATE TAPES for following lessons:*

Type #1—Traffic

Type #2—Code Groups

Type #3—Traffic

Each on 6 1/2 ft. reel, in metal container: **$1.25 Ea.**

TG-34A KEYER:

115 or 230 V. @ 50 or 60 c.p.s. 4-cycle-KEYER TG-34A is an automatic unit for reproducing audible code practice signals previously recorded in the pre-recorded tracks of the tape contained speaker, the unit will provide code practice signals in one or more of its own. A key is on one side of the cabinet, in the center, just below the hopper, is a key switch which selects channels, and can be turned clockwise or counterclockwise to access different tracks. Availability of a key switch is required, as some channels may be used with this display.

BRAND NEW: $24.95 • USED: $14.95

TG-10 KEYER:

Same function as TG-34A, only larger, using 2/887-2/882, 6/857-1/704 tubes and 1/73 Photo Cell. Housed in standard metal cabinet, can be removed for 10" rack mount. Size: 11" H x 24" W x 15/16" D.

NEW: $29.95 • USED: $19.95

ANTENNA EQUIPMENT

MAST BASES—INSULATED:

MP-22 BASE—(illustrated) Ins. spring action; direction of bracket can be reversed. Weight 15 lbs.

MP-122 BASE—1 heavy coil spring; 2 ins. Overall length: 111/2 ins.

MP-333 BASE—Insulated type with heavy coil spring and 5 ins. (Ins. Requires 2 hole for mounting. Weight: 10 lbs.

MP-48 BASE—Insulated base with heavy coil spring and 1 1/4 ins. "H" mounting hole. Weight: 10 lbs.

MAST SECTIONS FOR ABOVE BASES:

Table: steel, coated, painted in 3 ft. sections, screws-in. Masts can be used to make any length with 35-52-51-50-40-30-40-30-20-10-10-10. Any section, 890-1170. Larger Diameter Section: MS-117.

NEW—LOW—LOW PRICES

ARC-5 COMMAND EQUIPMENT:

R-25/ARC-5 Rec. 1½ to 3 MC. No Tubes. Used: $13.95
R-26/ARC-5 Rec. 3 to 6 MC. No Tubes. Used: $7.95
R-37/ARC-5 Rec. 5 to 15 MC. No Tubes. Used: $6.95
R-29/ARC-5 Rec. 100 to 150 MC. No Tubes. Used: $19.95
T-28/ARC-5 Trans. 4 to 5.3 MC. New: $19.95
T-22/ARC-5 Trans. 5.3 to 10 MC. New: $19.95

274-N COMMAND EQUIPMENT:

BC-45 Rec. 3 to 6 MC. Used: $10.95
BC-455 Rec. 6 to 9 MC. Used: $9.90
BC-485 Trans. 5.3 to 7 MC. Used: $16.95
BC-495 Trans. 7 to 9 MC. Used: $16.95
BC-496 Modulator. Used: $5.95
FT-225 Wg. 6-C00 Used: $5.95
FT-290 3 Rec. Rack Used: $15.95
FT-283 Rec. Cond. Box Used: $15.95
BC-453 Rec. Cond. Box Used: $15.95
BC-450 3 Cond. Box. Used: $12.95
PLUG—Male for use of Rec. or Trans. $5
DM-32 Dynamic F. R. 34V. Used: $10.95
DM-33 Dynamic F. Modulator & Trans. Used: $2.95

TRANSFORMERS FOR COMMAND REC. & TRANS.:

600-0-600 VAC.—210 MA. 12.5 V. 2 A. 15.9 V. 2 A. $12.95
25.3-0-250 VAC.—12 A. 125 V. 100 W. 12.7 %

Address Dept. RN **Minimum Order $5.00**

Prices F.O.B., Lima, Ohio **25% Deposit on C.O.D. Orders**

Coaxial Cable & Connectors

Coaxial Cable—Connectors

FAIR RADIO MFG. CO.

132 SOUTH MAIN ST. LIMA, OHIO

SOUND POWERED HEAD AND GHOST SET

Navy Type—No Batteries Required—Ideal for TV Antennas and other equipment. Weight: W-130. **$6.59 Ea.**

FIELD WIRE—New, Twisted, Waterproof. **$4.75 Per 1000 ft. Roll.**

DYNAMOTORS

HEAVY DUTY MOBILE DYNAMOTORS

14 V. INPUT—Output: 1030 VOLTS 250 MA. Tapped 515 V. 215 MA. un @ 9 DC. V. INPUT—95 V. 175 MA. While they last—DM-42. Excel. Cond.: **$14.95**. New: **$20.95**

VOLTAGE REGISTRATORS:

VOLTS: MA. **Used:**

15 335 105 BD-9 6.95
24 350 150 BD-9 8.95
24 360 200 BD-9 10.95
12 400 250 BD-7 16.95
24 510 300 BD-7 20.95
24 720 450 BD-7 25.95
12 or 24 500 50 BD-10 20.95
12 24 750 50 BD-10 25.95
12 24 1000 10 BD-10 30.95
12 24 590 50 BD-10 35.95
12 24 750 50 BD-10 39.95
12 or 24 1000 10 BD-10 45.95
12 or 24 1500 10 BD-10 59.95
12 or 24 1800 10 BD-10 79.95
12 or 24 2500 50 BD-10 125.95
12 or 24 3000 50 BD-10 139.95
12 or 24 3600 50 BD-10 159.95
12 or 24 4800 50 BD-10 199.95

PE-101 DYNAMOTORS—6 or 12 Volt. (Repairs of original G. C. conversion articles—Oct. 6, Dec. '52 issues—furnished). This is the Dynamotor the Hams have been talking about! Easily adapted to supply 625 V. 125 MA. and 325 V. 125 MA. @12 Volt—or 380 V. 10 MA. @110 Volt.

NEW: $4.95

BLOWERS—115 VAC 60 CYCLE

SINGLE TYPE: (Illustrated at left) 100 CFM. 2¾" intake 2¾" exhaust 1¾" motor. **Gathered Order No. CB-93. $18.95**

DOUBLE TYPE: 2¼" Intake. Each Side. **Gathered Order No. CB988**. **$23.95**

COMPACT TYPE: 100 CFM. Motor built inside standard shaped recess. **Gathered Order No. CB896**. **$13.95**

FLANGE TYPE: 140 CFM. 3½" Intake. 2½" Dia. **Gathered Price:** 7½" W x 7½" L x 6¾" H. **Order No. CB-1039**

FLANGE TYPE: 275 CFM. 4½" Intake. 3½" Dia. Complete size: 11½" W x 8¾" L x 7½" H. **Order No. CB-1969**. **$33.95**

FREE CATALOG

LISTING HUNDREDS OF TRULY EXCEPTIONAL "BUYS!" WRITE FOR YOUR FREE COPY NOW!
These N. J. R. T. Tube Prices Check 70% to 90% Off List

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A7GT</td>
<td>.45</td>
<td>6AK5</td>
<td>.75</td>
<td>6L6</td>
<td>.62</td>
</tr>
<tr>
<td>1B3GT</td>
<td>.47</td>
<td>6AQ5</td>
<td>.37</td>
<td>6S4</td>
<td>.88</td>
</tr>
<tr>
<td>1C5GT</td>
<td>.38</td>
<td>6AQS</td>
<td>.38</td>
<td>654</td>
<td>.54</td>
</tr>
<tr>
<td>1D7GT</td>
<td>.50</td>
<td>6AX7</td>
<td>.37</td>
<td>657</td>
<td>.41</td>
</tr>
<tr>
<td>1N5GT</td>
<td>.62</td>
<td>6AT6</td>
<td>.37</td>
<td>657T</td>
<td>.41</td>
</tr>
<tr>
<td>1R5</td>
<td>.48</td>
<td>6AV6</td>
<td>.40</td>
<td>657GT</td>
<td>.39</td>
</tr>
<tr>
<td>1T4</td>
<td>.48</td>
<td>6AV6</td>
<td>.37</td>
<td>657T</td>
<td>.40</td>
</tr>
<tr>
<td>1U4</td>
<td>.48</td>
<td>6AX7</td>
<td>.55</td>
<td>657GT</td>
<td>.37</td>
</tr>
<tr>
<td>1U5</td>
<td>.40</td>
<td>6BA6</td>
<td>.60</td>
<td>657GT</td>
<td>.37</td>
</tr>
<tr>
<td>1X2</td>
<td>.65</td>
<td>6BA7</td>
<td>.57</td>
<td>6Y7</td>
<td>.57</td>
</tr>
<tr>
<td>3A4</td>
<td>.43</td>
<td>6BC5</td>
<td>.49</td>
<td>6UB6</td>
<td>.49</td>
</tr>
<tr>
<td>3F4</td>
<td>.69</td>
<td>6BD6</td>
<td>.45</td>
<td>6BVG7</td>
<td>.42</td>
</tr>
<tr>
<td>3Q4</td>
<td>.68</td>
<td>6BE6</td>
<td>.37</td>
<td>6W4GT</td>
<td>.45</td>
</tr>
<tr>
<td>3Q6GT</td>
<td>.60</td>
<td>6BE6</td>
<td>1200</td>
<td>6W6GT</td>
<td>.45</td>
</tr>
<tr>
<td>3S4</td>
<td>.48</td>
<td>6BH6</td>
<td>.45</td>
<td>6X4</td>
<td>.35</td>
</tr>
<tr>
<td>3V4</td>
<td>.50</td>
<td>6BJ6</td>
<td>.41</td>
<td>6X7GT</td>
<td>.35</td>
</tr>
<tr>
<td>5A4</td>
<td>.50</td>
<td>6BK7</td>
<td>.89</td>
<td>7E6</td>
<td>.56</td>
</tr>
<tr>
<td>5V4</td>
<td>.55</td>
<td>6BL7</td>
<td>.65</td>
<td>7F8</td>
<td>.63</td>
</tr>
<tr>
<td>5X3GT</td>
<td>.39</td>
<td>6BQ7A</td>
<td>.70</td>
<td>12A5L</td>
<td>.65</td>
</tr>
<tr>
<td>5Z7</td>
<td>.45</td>
<td>6BQ7A</td>
<td>.92</td>
<td>12A76</td>
<td>.35</td>
</tr>
<tr>
<td>5W4</td>
<td>.29</td>
<td>6BZ7</td>
<td>.96</td>
<td>12A77</td>
<td>.38</td>
</tr>
<tr>
<td>6A3</td>
<td>.57</td>
<td>6C4</td>
<td>.30</td>
<td>12AU6</td>
<td>.55</td>
</tr>
<tr>
<td>6A6</td>
<td>.49</td>
<td>6C6</td>
<td>.45</td>
<td>12AX7</td>
<td>.50</td>
</tr>
<tr>
<td>6BB4</td>
<td>.42</td>
<td>6CG6</td>
<td>1.15</td>
<td>12AV6</td>
<td>.50</td>
</tr>
<tr>
<td>6AF6</td>
<td>.92</td>
<td>6DF6</td>
<td>.45</td>
<td>12AX7</td>
<td>.60</td>
</tr>
<tr>
<td>6FG</td>
<td>.75</td>
<td>6EJ5</td>
<td>.40</td>
<td>12AX7</td>
<td>.60</td>
</tr>
<tr>
<td>6G5</td>
<td>.47</td>
<td>6G6</td>
<td>.50</td>
<td>12AX7</td>
<td>.55</td>
</tr>
<tr>
<td>6G6S</td>
<td>.47</td>
<td>6H6</td>
<td>.50</td>
<td>12AX7</td>
<td>.45</td>
</tr>
<tr>
<td>6J5</td>
<td>.73</td>
<td>6G6T</td>
<td>.37</td>
<td>12AG6</td>
<td>.32</td>
</tr>
</tbody>
</table>

FREE FIVE 1L4 TUBES INDIVIDUALLY CARTONED LIST $11.25 WITH EVERY ORDER OF $25.00 OR MORE.

Many 7 volt types not listed. All tubes individually boxed. For orders under $10 add $1 handling charge. Tubes subject to prior sale. Prices subject to change. All orders shipped F.O.B. %2 discount if full remittance accompanies order. 25¢ deposit on c.o.d. shipments.

SEND FOR FREE TUBE LISTING.

New EICO PROBES

SCOPE PROBES

- **SCOPE DEMODULATING PROBE**
 - Kit $3.75
 - Wired $5.75

- **LOW CAPACITY PROBE**
 - Kit $3.75
 - Wired $5.75

- **DIRECT PROBE**
 - Kit $2.75
 - Wired $3.95

VTVM PROBES

- **VTVM RF PROBES**
 - Kit $3.75
 - Wired $4.95

- **PEAK-TO-PEAK PROBES**
 - Kit $4.95
 - Wired $6.95

SENSATIONAL HIGH VOLTAGE PROBE

- Model HVP-2
 - ONLY $4.95

See these amazing probe values at your jobber today. Write for FREE catalog RF-6. Read EICO's other ads in this issue—turn to Advertisers Index!

New 2-Speed Magnemite*

For Greater Recording Versatility in the Field!

For Nature Sounds, Music, Street Sounds, Interviews, Conference Recording, Courtroom Reporting, Mis-en-Scene Work, Testimony Recording.

The only two-speed battery-operated spring-motor recorder that meets primary and secondary NARTB standards for flutter, frequency response and dynamic range. Records and plays back frequencies up to 15,000 cycles. Features real portability, constant tape speed and independency of AC source. Models available for tape speeds of 15/7"ips and 7½"ps. Ips. Quick change without sacrificing equalization.

These tiny recorders weigh only 16 lbs. with self-contained batteries that last 100 hours and include built-in monitoring and headphone playback facilities. Smaller than a portable typewriter (8 x 10 x 11 inches), the two-speed Magnemite* do away with cumbersome generators, storage batteries, rechargers and may be operated anywhere.

Write for complete technical literature and direct factory prices to Dept. RT

HAMFEST-PICNIC

The North Fork Amateur Radio Club of Southwest Oklahoma is holding its annual hamfest and picnic at Quartz Mountain State Park on June 12 and 13. Prizes and a generous measure of fun await attendees. Reservations may be made with Elmer Triplitt, secretary, Sayre, Oklahoma.

Jerry B. Minter president of the Audio Engineering Society, and Harry N. Beitz, managing director of Audio Fairs, sign a sponsorship renewal agreement as C. R. Sawyer of Bell Labs and Walter Stanton of Pickering, governors of AEB, look on. The AES will select the Audio Fair for the years 1954 and 1955. This year's event will be held October 14, 15, 16, and 17 at the Hotel New Yorker in New York City.

Multipurpose tube that functions in this chassis as an FM limiter, detector, and Ist audio amplifier. This particular circuit was selected because the 6BN6 detector requires much less i.f. drive to obtain effective limiting than a conventional ratio detector, resulting in a better signal-to-noise ratio at low inputs. It has a high audio output, sufficient to drive the 2S166 directly, thus taking the place of an audio amplifier. The adjustable control ("buzz control") in the cathode circuit of the 6BN6 makes it possible to obtain a very effective intercarrier buzz null. Although the circuit is critical as to adjustment, it can be easily aligned on a local TV station, thus eliminating the need for an FM generator. The adjustments can be made without removing the cabinet.

To align the circuit, refer to Table 1. Due to the interaction between the quadrature coil adjustment and the buzz control setting, and since a few degrees turn in either direction can throw the alignment off, it may be necessary to repeat the adjustments several times. Typical symptoms of a misadjusted sound circuit are excessive sync buzz, weak sound, and distortion in the sound—all of which can be corrected by properly aligning the sound circuits.

Before proceeding with the alignment of this receiver as per the instructions given in Table 1, connect the negative lead of a 3-volt bias battery to the white lead coming from the tuner, and the positive lead of the battery to the chassis. In Table 1, where reference is made to the rear of the chassis, it means the side of the chassis with the tubes.

NEW JERSEY TELEVISION SUPPLY CO.

Sole Distributor of NJRT Tubes

906B WESTFIELD AVE., ELIZABETH, N. J. EL. 3-6166

New EICO PROBES

SCOPE PROBES

- **SCOPE DEMODULATING PROBE**
 - Kit $3.75
 - Wired $5.75

- **LOW CAPACITY PROBE**
 - Kit $3.75
 - Wired $5.75

- **DIRECT PROBE**
 - Kit $2.75
 - Wired $3.95

VTVM PROBES

- **VTVM RF PROBES**
 - Kit $3.75
 - Wired $4.95

- **PEAK-TO-PEAK PROBES**
 - Kit $4.95
 - Wired $6.95

SENSATIONAL HIGH VOLTAGE PROBE

- Model HVP-2
 - ONLY $4.95

See these amazing probe values at your jobber today. Write for FREE catalog RF-6. Read EICO’s other ads in this issue—turn to Advertisers Index!
at its new 422,000 square foot television set assembly plant in Batavia, N.Y. . . . EL MEC LABORATORIES has moved its entire plant and office to 730 Boulevard, Kenilworth, N.J. The new location provides approximately twice the space for engineering, development, and manufacturing as was available at the old location . . . BUXTON INDUSTRIES, manufacturer of a line of TV antennas, has moved into a new plant at 88 North Fair Oak Avenue in Pasadena where almost triple the old plant area will be available . . . TELE-MATIC INDUSTRIES, INC. has opened a warehouse at 6115 Denton Drive in Dallas to service the southwest territory . . . GENERAL ELECTRIC COMPANY has consolidated its Indiana receiving tube manufacturing operations at its Tell City plant and will close its feeder operation at Huntington. The processing formerly done at Huntington has been transferred to the new Tell City plant addition . . . AEROVOX CORPORATION has opened two new plants in California. One plant will house the company's CINEMA ENGINEERING CO. division at 3100 Chestnut St. in Burbank and the other will house both ACME ELECTRONICS, INC. and the Pacific Coast division of the parent firm at 2724 S. Peck Road, Monrovia . . . FEDERAL ELECTRONIC PRODUCTS COMPANY has completed new executive and sales headquarters at its Newark, N.J. plant. The new addition provides approximately 12,000 square feet of space . . . PRECISION APPARATUS CO., INC. will move its manufacturing, engineering, and administrative facilities to a new plant in Glendale, Long Island by midsummer. The new two-story air-conditioned building occupies a plot of ground running from 84th St. to 88th St. south of Cooper St. in Glendale . . . STRUETERS-DUNN, Inc. has moved to Lamb's Road, Pitman, N.J. The firm was formerly located in Philadelphia . . . ZENITH has opened a new high-fidelity salon at 333 N. Michigan Avenue in Chicago . . .

ERIC B. T. KINDQUIST has been appointed vice-president and general manager of the Garfield Wire Division of the Overlakes Corporation. He began his metallurgical career in the research laboratory of International Nickel Co., and then becoming a research engineer for RCA at Harrison, N.J. He received his degree in chemical engineering from Pratt Institute and has taken graduate work at N. Y. U. and Ohio State. The Garfield firm manufactures a line of wire for the electrical and electronic industries.
NEW TV PRODUCTS
On the Market

NEW ANTENNAS
Brach Manufacturing Corp. of 200 Central Ave., Newark 4, N. J. has released its Model 556 "Delta-Vee" beam for v.h.f.-u.h.f. black-and-white and color reception.

Channel Master Corporation, Ellenville, N. Y. is offering its "Econo-Vee" Model 411 antenna to the trade. This fully preassembled antenna is designed to operate effectively in secondary and fringe u.h.f. areas as well as primary v.h.f. areas.

Pink Electronics, Inc., 518 E. 95th St., Chicago, Ill. has introduced an indoor antenna which the company claims is effective even with color TV. Known as "Diron," the new antenna covers all v.h.f. television channels plus the FM frequencies. It comes completely assembled and tested.

Insuoline Corporation of America, Manchester, N. H. is offering a "Comb-O-Fan" which may be used to convert existing v.h.f. antennas to u.h.f. reception. The device is a fan-shaped, weatherproof, all-aluminum antenna giving high gain on channels 14 through 83 without affecting normal operation on the v.h.f. channels.

JFD Manufacturing Company, Inc., 6101 Sixteenth Ave., Brooklyn 4, N. Y. has restyled its "Pace-Setter" series of conical antennas for channels 2 to 13. This new series features seamless aluminum cross arms, dowel-reinforcement at both ends for extra strength, wood dowel reinforcement of the aluminum elements, and a double reinforced-U-bolt mast clamp assembly.

Television Hardware Mfg. Co., 919 Taylor Ave., Rockford, Ill. is offering two new window-mounted TV antennas for applications where roof mounting is impractical or forbidden. The "bow tie" style is designed for u.h.f. reception while the "double V" model can be used for u.h.f. and v.h.f. in primary and secondary signal areas. The "Window-Tennas" are now at distributors.

Tricraft Products Company, 1535 N. Ashland Ave., Chicago 22, Ill. is now marketing a new indoor u.h.f. antenna, the Model 222 "Radome." This moderately priced unit covers channels 14 through 83 and measures 12" x 12" x 33").

COLOR TV TUBES
CBS-Hytron Div., Philips, Mass. is currently in production on two new color tubes which have been developed specifically for color TV circuits.

The 3A3 is a high-voltage, half-wave vacuum rectifier designed to be used in the high-voltage section of a color set. It may also be employed in any rectifier application where high peak-inverse plate voltage and high-peak plate current are required. Bulletin E-225 gives complete data on this tube.

The second tube is the 6BD4, a high-voltage rectifier for anode and convergence supplies in color receivers. Bulletin E-226 gives complete specifications on this tube.

LARGE COLOR TUBE
A new color television picture tube that produces a 20" (diagonal) color picture, comparable in contour and size to the standard 21" black-and-white tube, is now under development at the Electronic Tube Division of Westinghouse Electric Corporation.

A significant advancement in the new tube is its larger screen size coupled with the use of a phosphor screen which has 20 complete color groups per inch compared to 17 previously used. This gives improved resolution and good color definition at normal viewing distances. The total viewing area is approximately 200 square inches.

"CHROMALYZER"
Telechrome, Inc., 632 Merrick Road, Amityville, Long Island, N. Y. has developed an elaborate test unit for checking and aligning home color receivers, the Model 636-B "Chromalyzer."

The new instrument provides all the standard color signals needed for service work. By push-button control, the unit produces eleven bars of blue, red, magenta, green, cyan, yellow, G-Y (greater than 90 degrees), R-Y, B-Y, Q, I, in addition to black, white, sync, and color burst.

Light and portable and held to high accuracy by crystal control, the unit operates with a self-contained, fully-regulated power supply and produces signals at video or r.f. with both picture and sound carrier on any channel from 2 to 6.

COLOR SIGNAL GENERATOR
Radio Corporation of America, Camden, N. J. has developed an inexpensive color signal generator for use in...
television stations to expedite installation or performance checks of color TV receivers in homes while black-and-white programs are on the air.

The new device, when used by the station, will enable service technicians to check color set reception during normal servicing hours without waiting for color signals to be aired.

The color test signal is a narrow vertical yellow-green bar which is visible at the extreme edge of color receivers but is practically unnoticeable on black-and-white sets.

The device will be made available through the company's Engineering Products Division.

COMBINATION TUNER
General Instrument Corporation is now offering a combination all-channel v.h.f.-u.h.f. tuner, the Model 80.

The new unit is composed of a new 13-position turret-type v.h.f. tuner (Model 78) and a new, compact, continuously-tuned u.h.f. unit (Model 79). The combination unit is so designed that the v.h.f. section can be purchased and installed separately in sets. If the manufacturer's market should change, he or his distributor can add the u.h.f. section in the field.

The combination tuner measures less than 7" long and 3½" wide and was designed especially to meet the demand for smaller cabinets and larger picture tubes.

NEW ROOF MOUNTS
Commercial Products, 201 Division Street, Toledo 2, Ohio has announced five new models of roof mounts for simplified installation of TV antennas.

Designed to be used with "walking up" masts, the new units are in addition to the four already offered by the company.

A catalogue containing complete details on all nine of the mounts is available on request.

ANTENNA ROTATOR
Crown Controls Company, Inc., New Bremen, Ohio has added a new unit to its line of antenna rotators.

A new design permits the entire mast assembly support to be preassembled, thus simplifying installation. The size of the mast support base has been increased to provide a wider, stronger support for antenna masts. It will accommodate masts from ¾" to 2½" and up to 175 pounds in weight.

The unit also features an exclusive "weather-guard" design, automatic braking which prevents coasting and windmilling, a lifetime-lubricated con-
denser motor, and 365 degree rotation in 60 seconds. Complete literature is available on this new rotator.

NEW MALLORY CONVERTER
P. R. Mallory & Co., Inc. of Indianapolis, Ind. has announced the availability of a concealed u.h.f. converter, the Model 188.

According to the company, the new unit is the first all-channel converter designed to fit completely inside a TV set. Installation requires no chassis or cabinet alterations. All that can be seen of the finished installation is the clear plastic selector dial and switch.

The converter offers a choice of mounting positions, left, right, or inside top of the cabinet.

CONTINUITY TESTER
Kapner Hardware, Inc., 2248 Second Ave., New York 29, N. Y. is now offering a self-contained, all-electric continuity tester, the Model 170-A.

The instrument indicates resistance from a fraction of an ohm to 5 megoohms. A safeguard resistor limits the output to 1 ma. The testing procedure is simple and quick. One lead is clipped to one side of the circuit or resistance under test while the test prod is then touched to the other side. An indicator light tells whether the resistance is low, high, or open.

It can also be used for checking filaments of all radio and television tubes. The low output of the unit makes it impossible to damage even battery or hearing-aid tubes.

TUBES FOR COLOR TV
The Tube Department of General Electric Company has announced the development of four new receiving type tubes which have been designed for color TV sets.

The new units include a 2V2 high-voltage rectifier; a 5AU4 high-output, full-wave rectifier; a 6AR8 sheet-beam synchronous detector; and a 6BU5 high-voltage pentode for shunt regulation.

Complete information on these new tubes is available from the Tube Department at Schenectady 5, New York.

TELEVISION ADAPTER
Textronix, Inc., P.O. Box 831, Portland 7, Oregon has announced the availability of a new television adapter, the Type 124.

The new unit adapts any triggered wide-band oscilloscope to the observation of the composite video signal. The delayed-trigger output of the new unit
is continuously variable from zero to 25 milliseconds after receipt of a vertical sync pulse. By adjusting the delay, an oscilloscope can be triggered at the start of any desired line in a field. A panel push-button provides instant shift to the opposite field. Triggering occurs at half the television vertical rate. Duration of the output pulse is less than 1 microsecond and amplitude is 2 volts positive.

To make use of the time-marker output of the Type 124, the scope should have a positive gate output and a CRT cathode terminal.

COMPONENT TESTER

Transvision, Inc. of New Rochelle, N. Y. has recently introduced a new TV component tester which will check the following parts: flyback transformers and yokes, selenium rectifiers, and picture tubes as well as reactivating the picture tubes.

The new component tester will make positive checks on color tubes and extend the life of weak color tubes with low emission. Additional information on the unit will be supplied by the manufacturer on request.

NEW “TENNA-TIE”

Channel Master Corporation of Elenville, N. Y. is now offering an improved version of its “Tenna-Tie,” an inter-action filter which joins high and low-band v.h.f. antennas for use with a single transmission line.

The new unit now incorporates separate high- and low-pass filters, replacing the parallel resonant circuit previously used. With the new circuit, the installer may connect leads of any length between the antennas and the unit without affecting the efficiency of the filter. Lead lengths are no longer critical.

The new version is catalogued as Model No. 9033-A.

COLOR TEST GEAR

The Tube Division, Radio Corporation of America, Harrison, N. J. is in production on three types of test equipment essential to the installation and maintenance of home color television receivers.

The new equipment includes the
NEW Grommes CUSTOM HI-FI COMPONENTS

206PA De Luxe Pre-Amplifier—New compact equalizer pre-amp. 4-band control. Recirculation equalizer with 3-channel input selector for correct pick-up curves. Feedback magnetic pick-up equalization, cabotide follower output. $55.00

FLYBACK-YOKE TESTER
Electronic Instrument Co., Inc., 84 Withers Street, Brooklyn 11, N.Y. is currently offering a flyback transformer and yoke tester in both kit and wired instrument form.

THE EICO Model 944 operates on the grid-dip principle and detects even a single shot turn. It has separate calibration for air core and iron core flybacks to insure accurate testing of all types of video flyback transformers. The unit may also be used to check and test the continuity of any inductance whose impedance is not too low. The 4½" meter with its three separate three-colored scales makes for easy reading. The tester measures 8½"x5½"x5½". In kit form it is known as the Model 944 K.

TV COMPONENTS
General Instrument Corporation's F. W. Sickles Division, Chicopee, Mass. is now in production on a new line of television components.

Included among the new products are a horizontal deflection yoke, a horizontal convergence coil for color sets, a low-voltage high-sensitivity deflection system for 17 and 21 inch black-and-white 70 degree sets, as well as flybacks, purity coils, and delay lines for color TV and a number of components which may be used interchangeably or with slight modification in both color and monochrome sets.

CONTACT CLEANER
Worman TV, Inc. of Teaneck, N. J. has developed an electronic contact and tuner cleaner and lubricant which is being marketed under the trade-name "Wissch".

The new formula is designed to perform the dual function of cleaning parts, points, and tuners as well as acting as a lubricant for the equipment. The product is now available at local jobbers.

U.H.F. TUNER
Granco Products Inc., 36-17 20th Avenue, Long Island City, N. Y. has developed a new "line-omnibar" tuner for u.h.f. conversion applications.

For concealed installation with a minimum of effort, the compact metal-cased tuner mounts at the rear of the TV set. Just the slide-rule tuning dial...
protrudes slightly above the top while the tuning knob and selector switch are accessible at the right rear. The unit can also be placed on top or alongside the TV set if concealment is not required.

Three models of the "Hideaway" are currently available.

SELF-SUPPORTING CONTROL

Chicago Telephone Supply Corporation, Elkhart, Indiana has announced the availability of a new variable composition resistor which features a unique self-supporting snap-in bracket designed for mounting directly to a printed circuit panel.

The Type YGC-B45 simplifies assembly by snapping into place on the printed circuit panel. The control is held tightly by the mounting bracket during the soldering process and is permanently anchored to the circuit panel by solder. The bracket eliminates the need for a separate supporting panel and the usual mounting hardware.

Manufacturers are invited to write for complete details on this control.

PRINTED CIRCUIT AID

Corn Electric Company, 571 Main St., Stamford, Conn. is now offering a new receptacle connector with 6, 8, 10, 12, 15, 18, or 22 contacts to receive printed circuit cards.

The body of the connector is compression molded melamine for high dielectric and mechanical strength. Contacts are of spring-tempered beryllium copper, gold plated over silver for ease of soldering and prevention of corrosion.

Design of the contacts provides positive mating of the connector with printed circuit cards of from .061" to .071" thickness. Proper tension to insure constant conductivity is maintained at all times.

"Ultra-Linear" 6V6's

(Continued from page 45)

10 to 15 watt power range. For many people this power range is ample for all home needs.

Careful listening tests have borne out the justification for the "Ultra-Linear" conversion. Particularly in the low frequency range there is substantial improvement. The solidness and clarity of the heavy bass passages is a revelation when one compares old and new amplifiers. The silkiness and smoothness of the treble range also stand out in a side-by-side comparison. In short, the improvement in measured characteristics is confirmed and substantiated by a corresponding improvement in listenability.

REFERENCES

OSCILLOSCOPES ARE "GOLD MINES"!

...if you learn how to use them fully on all types of service jobs!

Learn to handle the oscilloscope fully on all types of AC, DC, TV, and hi-fi service—improve your efficiency and speed in handling and solving the toughest problems of modern oscilloscopes and their uses. A 64-page manual, containing the essential knowledge written in a style you can really understand. It shows you how to use your scope for fast accurate work on all types of jobs. From troubleshooting to diagnosing: how to make connections; how to adjust circuit components; how to set controls and how to analyze patterns fast and accurately. 266 helpful illustrations including dozens of pattern guides make things doubly clear.

MAIL ORDER

10-DAY FREE EXAMINATION

DEAL, RN.6, Rinnehr & Co., Inc.
232 Madison Ave., New York 16, N. Y.
Send modern oscilloscopes and their uses for 10-DAY EXAMINATION. If I decide to keep the scope, I will send payment of $6.50. If I decide not to keep the scope, I will return both prepaid and owe you nothing.

Name
Address
City, Zone, State
Employer's Name & Address:

OUTSIDE U.S.A.—Perif $6.00 each. Money back if book is returned in good condition.

COMMUNICATIONS TYPE TAPE RECORDER

59.00

Ready To Operate COMPLETE

with plastic base tape, patch cord, and all features to record, playback, erase, rewind, dual track at two speeds, 71/2 and 3 inches per second.

SPECIFICATIONS: Solid aluminum drive mechanism. Heavy flywheel. 110 volt, 60 cycle AC phone motor. Shure Bros. Model 815 head responds to more than necessary to cover frequency range of standard broadcasting. Takes seven inch reels. Wow and flutter sufficiently low to be imperceptible to the ear in the service for which this machine is intended. Case 11"x17½"x2½". Natural wood finish. Total weight less than 15 pounds.

NO MIKE REQUIRED

Properly damped built-in feature permits use of speaker for microphone with greater sensitivity than usual home recorder type crystal microphone. No breath blasts or hisses. May be used for close talking or will pick up normal room for natural conversation. This feature eliminates mike and sound cables. Positively does not sound like a cheap interference. Gives full sensitivity over entire voice range and music pick up equal to the average radio. Any standard X10 mike may be connected; however, if the user prefers. Patch cord permits recording directly from the output of any phone, radio, TV, or amplifier speaker.

MANUFACTURER DIRECT TO YOU—GREATEST TAPE RECORDER BUY EVER OFFERED

AMPLIFIER: Uses simple, novel three tube hi-gain circuit employing 12SL7, 5026, 68V76 to drive a good quality 4" speaker. This self-compensating circuit automatically provides correct current and DC bias for recording, and on playback will drive the speaker to full room volume without excessive distortion. Single control for record-playback.

This very simple circuit using high quality components is as easy to service as an AC-DC radio. No trick oscillators or special knowhow required to maintain.

THIS ADVERTISEMENT WILL NOT BE REPEATED

Dealer-distributor arrangements will not permit us to make this wholesale, direct-to-user offer again. See this machine at your dealer's after July 1.

The requirements for low cost manufacture of this unit do not allow us to carry stock. ALL ORDERS SUBJECT TO SOME DELAY. We will forward prompt acknowledgement and shipping date upon receipt of your order. $59.00 postpaid. C.O.D.'s one-third cash. ABSOLUTE MONEY BACK GUARANTEE with one-year parts warranty. Send orders to:

1815 ADAMS AVENUE
SAN DIEGO 16, CALIFORNIA

ULTRA-AUDIO BROADCASTING SYSTEM

June, 1954
TELTROM TUBES

GUARANTEED! LOWEST PRICES EVER!

All tubes individually boxed...unconditionally guaranteed for one year.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6V4</td>
<td>.46</td>
<td>6B6C</td>
<td>.48</td>
<td>6L6GT</td>
<td>.48</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.60</td>
<td>6A80</td>
<td>.62</td>
<td>12AT7</td>
<td>.64</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.62</td>
<td>6A84</td>
<td>.64</td>
<td>12AT7</td>
<td>.66</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.62</td>
<td>6A84</td>
<td>.64</td>
<td>12AT7</td>
<td>.66</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.62</td>
<td>6A84</td>
<td>.64</td>
<td>12AT7</td>
<td>.66</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.62</td>
<td>6A84</td>
<td>.64</td>
<td>12AT7</td>
<td>.66</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.62</td>
<td>6A84</td>
<td>.64</td>
<td>12AT7</td>
<td>.66</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.62</td>
<td>6A84</td>
<td>.64</td>
<td>12AT7</td>
<td>.66</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.62</td>
<td>6A84</td>
<td>.64</td>
<td>12AT7</td>
<td>.66</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.62</td>
<td>6A84</td>
<td>.64</td>
<td>12AT7</td>
<td>.66</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.62</td>
<td>6A84</td>
<td>.64</td>
<td>12AT7</td>
<td>.66</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.62</td>
<td>6A84</td>
<td>.64</td>
<td>12AT7</td>
<td>.66</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.62</td>
<td>6A84</td>
<td>.64</td>
<td>12AT7</td>
<td>.66</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
<tr>
<td>6L6GT</td>
<td>.62</td>
<td>6A84</td>
<td>.64</td>
<td>12AT7</td>
<td>.66</td>
<td>6L6GT</td>
<td>.48</td>
</tr>
</tbody>
</table>

FREE GIFT OFFER

Only 6000 tubes will be offered on order accompanying this ad.

SPECIAL!

While they last! 39c each 10 for $3.50

![Promax Products](image)

Mac's Service Shop

(Continued from page 68)

by a man who has not been shaving too long, using only a v.t.v.m., proves to him he is right."

"He has built up quite a case," Barn- ney observed.

"On the surface, yes; but it has a lot of holes in it. As I told him, you do not need to have a long grey beard to be a TV expert because television itself, as we know it, is hardly ten years old. Youth, with its eagerness to learn about new things, is a natural for this brand-new field. Probably the age of the youngster who fixed the set would be about the same as that of the men who are designing, testing, and flying our modern jets; and the Air Force seems satisfied with the job they are doing."

"I also pointed out that when he called for service he was doubtless asked about the make, model, and symptoms of his receiver. Using this little bit of information, the technician called upon his technical knowledge and his rich fund of experience and probably made a very shrewd guess as to the likely cause of the trouble before he hung up the telephone. Then he consulted his service library, in which he would have invested from $1000 upwards, he selected the one best suited to determine whether or not the set could be repaired in the home if his original guess as to the cause of trouble proved wrong."

"The knowledge and equipment that a set owner sees displayed when a technician makes a home call is only a very small per-cent of that at his disposal," Barney threw in. "It's kind of an iceberg that has nine-tenths of its bulk hidden below the surface supporting the one-tenth that is in plain view."

"Exactly," Mac agreed. "At the same time I must admit my neighbor has a point in there being inconsistency in service shop advertising. When one shop talks about the expensive equipment and extensive technical knowledge needed to perform service work and another stresses how quickly and easily it can be done right there in the customer's home, this is confusing to say the least."

"The inconsistency lies in the fact that two different types of service operation are being described. Abrupt set failures are usually the product of faults that can be quickly detected and corrected by a skilled technician right in the home. On the other hand, all television sets are subject to a gradual deterioration in performance as the months go by. The tube emission; condensers develop slight leakage; resistors change value; dirt accumulates on the tube face and on..."
the selector contacts; circuits drift out of alignment. The total effect of these defects is arrived at so gradually that quite often the owner fails to notice how much his reception has suffered. The only way in which the receiver can be restored to the kind of operation it had when it was new is for the receiver to be checked over completely, using expensive and delicate instruments that cannot be plugged around in a service truck. In other words, a receiver cannot practically be kept in first-class working condition unless it makes periodic visits to a service shop."

Mac paused for a moment and then went on: "What I am going to try to do in our advertising is to persuade our customers that this is so. To get the point across, I'm going to resort to analogy. For example, to reach the women customers, I plan to say something like, 'If you are a good housewife, you sweep and dust every day; yet you still give your home a general housecleaning at least once a year. Your TV set needs a complete going over once a year, too.' For the men I propose something like this: 'If a fan belt breaks, you replace it in a station for a new one and are on your way; but every so often you leave your car at a garage for a complete check. Your TV set deserves a careful annual inspection also.' Then I'll go ahead to urge our customers to let us have their sets while they are on vacation. This, of course, will help fill in our slack summer season; but more important, it will give us plenty of time to go over each set completely, locating and correcting every defect, and to bench-test it thoroughly—something we can't do when the customer is yelling for it back every hour on the hour."

"Are you going to say this will prevent the exceptions to the moving set failures during the rest of the year?"

"No, because no one can honestly promise that. A tube heater can open up or a condenser pop at any time. Certainly the likelihood of failure will be lessened by these annual checks, but the principal advantage to the customer will lie in the fact that his set will be operating in tip-top shape. If a particular part fails, it can be replaced with confidence that this will be all that is needed to restore the set to perfect operation. We cannot guarantee uninterrupted reception with these annual checks, but we certainly will be able to promise good reception; and you know as well as I how many sets we see that produce some kind of a picture and some sort of sound but are a long, long way from providing the kind of reception they were designed to give."

Barney heaved a big sigh and slid off the bench. "And I was just looking forward to a nice long slow-business summer," he murmured.

"My deepest sympathy," grinned Mac. "You certainly are the most abused service shop assistant that ever saddled a lead!"

June, 1954
A VIDEO-MAGNETIC TAPE RECORDER

Details on an improved system for recording TV pictures on standard recording tape. The unit is now in production.

A RE-DESIGNED and improved video tape recorder has been announced by Bing Crosby Enterprises, Inc. of Los Angeles. The new "VTR" systems are now ready to be put into production in limited quantities for military applications.

Operation of "VTR" is based on a method which is introduced primarily to conserve tape velocity. In this way at least 15 minutes running time is possible from reels of reasonable size. Ten tracks are employed simultaneously for recording video information. An eleventh track records the necessary vertical and horizontal synchronizing signals while the twelfth carries the sound channel. On playback, signals from the ten video tracks combine to produce a high-definition picture.

An alternating signal is recorded on each track. Both positive and negative halves of this signal represent bits of picture information. This alternating rate is 169 kc. Consequently each head records 339,000 bits per second and since there are ten heads the system is capable of recording 3,390,000 bits per second, or video signal information up to 1.69 mc.

It is not necessary to employ bias in this form of recording since the minimum signal amplitude remains sufficient high to result in linear amplitude response.

On playback each of the ten video heads is excited by a strong carrier frequency rate of 169 kc. amplitude modulated in accordance with the original video information. By means of a full-wave rectifier, each signal is converted at the output of its preamp from 169 kc. a.c. to d.c. with a strong 339 kc. component. This rate is used to control the sampling pulse generation and timing since it exists even at minimum signal levels.

The vertical and horizontal sync signals are recorded in track number eleven since they must be played back free from the results of sampling. If this were not done, the playback sampling rates would cause the horizontal sync to lock in incorrectly at certain places in the picture.

The sound is recorded on one track by means of a high-quality FM system. A carrier of 100 kc. is modulated through wide deviation from 50 to 150 kc. On playback, this results in a better than 65 db signal-to-noise ratio measured below 1/2% harmonic distortion.

The machine occupies a floor area of 40" x 26". It operates the tape at 100 inches-per-second. It can accommodate reels of tape providing more than 16 minutes of continuous recording, thus sufficient overlap time is allowed for starting a second machine where half-hour programs are re-broadcast.

In operation, tape unwinds from the left spindles, past the capstan drive and head assembly to be taken up on the right hub. Rolls of tape are essentially self-supporting. No reels are required for 1/2" tape. For re-winding at high speed, a "tight winder" is employed. No equipment other than drive motors is concealed in the cabinet.

John T. Mullin, chief engineer of Bing Crosby Enterprises, explains new "VTR" system to TV and movie star Don Duryea.

Close-up of the tape drive mechanism.
Ponderous crashing chords from trombone and tubas. Trumpets, in a very high and strident register. Almost all of the brass work in this composition is in the form of short, staccato bursts and will tax the transient response of your system. The percussion I still do believe! Thundering bass drum and timpani so sharp and clean, you can literally "feel" the tautness of the drumskins! In the section called the "Evocation of the Ancestors" there is a series of timpani rolls followed by an accelerate to a figure which is quite fantastic. I guarantee this will make you sit bolt upright, and start you to wondering whether your speaker cone can withstand this assault! The strings are in this work too, and are clean and edgeloess. However you don't seem to notice them as much in this composition, partly because there is so much else going on, and partly because they are used in pizzicato fashion so often and blend in with the other rhythmic elements. In the finale, the "Sacri- ficed Dance", the orchestra virtually explodes in as madly orgiastic sound as you're ever likely to hear again. So furious and complex is this last section that Stravinsky made some revisions in it in 1943 to make it easier to perform. Mr. Dorati has essayed the original version and the Minneapolis has responded with magnificent precision. Acoustically, the recording has just the right amount of reverber. Too much in a work like this could be disastrous, making the sound run together and completely destroying its distinctive texture. In spite of all these huge sonorities and what may seem to some like special effects, especially in the percussion, I can assure you that this disc was recorded with the usual "Olympian" technique, measuring the single Telefunken mike and the transfer from tape to disc via the Miller cut- ter. Well, that's it. I know this review has been longer than most, but it was necessary to justify my enthusiasm. The recording conformed perfectly to the AES curve and the surfaces on my copy were quiet.

Stravinsky
Pulcinella
Cleveland Orchestra conducted by Igor Stravinsky. Mary Simmons, soprano; Glenn Schmitke, tenor; Phillip Mac- Gregor, bass. Columbia ML14830. NARTB curve. Price $5.95.

While we are on the subject of Stravinsky, let's stay with him awhile and give "ear to this latest version of his one act ballet with songs," "Pulcinella." The notation "after Pergolesi" is usually attributed to this work, because of the derivative source of much of the score. However, it would be a gross error to convey the idea that this work is anything less than a major and distinctive effort by Stravinsky. It is true that there are certain passages which are...
The new ERIE "D-54" Catalog includes descriptions of the new line of Temperature Compensating Tubular Ceramicons and Disc Ceramicons... plus the long-time ERIE Standard numbers and all items introduced since publication of our last catalog. Many items are illustrated.

SAVE MONEY... MAKE MONEY...
LEARN TV the practical way...

ASSEMBLE A TRANSVISION TV KIT

Complete Kit...

Pay as You Wire $39

Sends Great TV Kits:
17" to 21"

MAIL THIS COUPON TODAY:

VEEDER R. COUNTER

JSh SALES CO.

Electronics Distributor Division
ERIE RESISTOR CORPORATION
Main Offices: ERIE, PA.
Factories: ERIE, PA. • LONDON, ENGLAND • TRENTON, ONTARIO

New Guaranteed TUBES

Standard Brands

Prices Slashed Far Below Wholesale!

Send for Your FREE Catalog Just Off Presses.

Ask for it at your distributors,
write Dept. B for your copy.

ERIE RESISTOR CORPORATION

Erie, Pa.

ERIE ELECTRONIC COMPONENTS

ERIE, PA.

ERIE RESISTOR CORPORATION

Erie, Pa.
CRISTAL GRINDING KIT!

* Grind your own crystals to desired frequency for ham bands.
* No elaborate frequency measuring equipment needed. Your receiver is sufficient.
* All crystals tested for activity!

CONTENTS OF BASIC KIT
A) 9 good, commercially-made crystals for re-grinding. Mounted in original holders with fundamental frequencies indicated on holders.
B) 1 master crystal for calibration purposes.
C) Crystal grinding components.
D) Easy-to-follow instructions.
E) Material to re-mark holders to your new frequency.

Incluides Basic KIT and crystals mounted in DC-54 & DC-35 type holders. Pin spacing: .06". Crystal holder dim: 13/16" x 11/16" x 15/32". Pins will fit into banana plug sockets. Price per COMPLETE KIT...

$7.95 postpaid

Price per COMPLETE KIT...

$6.95 postpaid

Includes Basic KIT and crystals mounted in FT-243 holders. Same physical dimensions as those in Kit No. 2. MULTIPLY FREQUENCY 18 TIMES.

Price per COMPLETE KIT...

$6.95 postpaid

Includes Basic KIT and crystals mounted in FT-243 holders. Same physical dimensions as those in Kit No. 2. MULTIPLY FREQUENCY 24 TIMES.

Price per COMPLETE KIT...

$6.95 postpaid

CRYSTAL BUYERS! WE HAVE THE LARGEST STOCK OF CRYSTALS IN THE WORLD! SEE OUR APRIL '54 ADS IN RADIO & TV NEWS AND C.Q. FOR COMPLETE LIST.

NOTE: Check, cash or M.O. IN FULL MUST ACCOMPANY ORDERS. NO C.O.D. Items subject to prior sale and change of price without notice.

U.S. CRYSTALS, INC.
805 S. UNION AVE., LOS ANGELES 17, CALIF.
Phons: Dukirk 1-3200 - Dukirk 1-3209

MOVIES ON APPROVAL

Most entertaining 8MM DANCE FILMS for home movie audiences. Write today and we'll send you a 50-ft. 8MM FILM - POSTPAID - ON APPROVAL. (Return film and $5 within 5 days without obligation, if it's not worth more than the $5.00 we ask.) BONICA NEWSREEL CLUB, 6516-KT Selma Avenue, Hollywood 28, California.

BARTOK
PIANO CONCERTO #3

PIANO CONCERTO #3
Julius Katchen, pianist with L'Orchestre de la Suisse Romande conducted by Ernest Ansermet. London LL.945. 7" curve. Price $5.95.

This record would be distinguished if for no other reason than the coupling of these two great concerti. This has always seemed to me to be an eminently logical pairing, instead of the opposite ends of the poles repertoire both works have been saddled with. Happily, there is much more musical substance here than in previous recordings of these concerti. The Bartok concerto has always impressed me as being one of the composer's most listenable works. Oh, it has all of the usual dissonances associated with Bartok, but its construction is so clever, that this element seems less apparent. In addition, since this is the last of Bartok's works and a product of his more advanced years, it is possible to detect more than a little "mellowing" in his musical philosophy. Of the two other recordings of this work, only the Sandor recording offers this new disc any competition. Julius Katchen is a better pianist than Sandor, and Ansermet's supporting reading more persuasive than Ormandy's. There is much to be said for Katchen's precision and ultra-careful phrasing, but it is this very quality that keeps this from being an outstanding reading. Sandor misses a few notes here and there, and in general is not the craftsman that is Katchen. But for all this, his reading is full of dash and fire and Katchen suffers by comparison. Soundwise this is a different matter. The Columbia piano had a tone that was on the hard side, and the orchestral accompaniment was restricted in range. This is not too surprising, since the Sandor recording appeared early in the LP catalogue, and I'm pretty sure it was a transfer from 78 rpm. Good sound for its day, but not equal to this present recording. The piano here is liquidly beautiful, very clean toned, little evidence of wow or flutter. The piano is used quite persuasively in this score, and this quality is recorded with virtually no harshness. cially noteworthy is Giuliano Ferrein as the "Ballif." The ensemble work was good, but it is in this department that the Urania disc at least was its equal. Pradelli lends his considerable talent to the proceedings and his orchestra is always complementary and in balance with the vocalists. Sound is generally well above average, as far as operatic recordings go. Strings were smooth, woodwinds a little ragged, brass was bright and clean, but unfortunately at times became somewhat strident. Percussion good, except for occasional muddiness. Over-all, a thoroughly enjoyable recording, highly recommended to those of you who are looking for an opera a little off the beaten track. AES curve was adequate with a slight assist in the bass and a slight cut in the treble helping the balance.

COMMUNITY AND MASTER TV Antenna Systems

The Finest Systems at Lowest Cost of Installation and Maintenance

Proven in thousands of difficult installations

A few of the many ADVANTAGES
1. Highest power output allows longest cable runs.
2. Central system with only 1 point of service.
3. Operates up to 500 TV sets from 1 amplifier.
4. Lowest cost per outlet.
5. Maximum signal to each set with minimum interference.

FREE: Engineering advice. Send us your problem for quick solution.

Also: COIN TV SETS featuring custom-quality, powerful fringe-area chassis up to 27".

Get full details about these 2 great products now. Write:

TRANSVISION, INC.
NEW ROCHELLE, N. Y.
or "ringing." Ansermet maintains a fine rapport with the pianist throughout the work and his orchestra is well recorded with sharp, incisive strings, clean woodwinds, and solid, authoritative percussion.

In the Prokofiev 3rd, we have a similar situation with the Bartok recording, though on a lesser scale. By that I mean that Katchen again comes off as the best pianist, as compared to the artists on the other three other discs of this work. And once again, in spite of his technical superiority, his reading is less exciting than is, for instance, the late William Kapell's. I'll admit that Kapell's essay of the score might be called theatrical; but this music can stand up to that sort of treatment and I find I prefer it to the leaner, less hurried, more deliberate reading of Katchen. The situation is the same with the sound. The London disc is far superior in all respects to either the Angel, Victor, or Columbia efforts. In fact for many of you this superiority of sound may be the deciding factor, for if the Katchen readings are not outstanding, they are nonetheless honest and competent. All in all a matter of taste in this. A few dB of bass boost helped the ffr curve in my set-up. Quiet surfaces.

LISZT
MENHITO WALTZ

CHOPIN
BARCAROLLE IN F SHARP MINOR

Leonard Pennario, pianist. Capitol 118246. AES curve. Price $2.98. The popular "Bacharolle" Waltz" is given a supercharged reading on this disc by Leonard Pennario, a young pianist who is really making quite a name for himself. He takes the florid, flamboyant passages of this work at a terrific pace, and from his sheer momentum makes this overblown piece newly enjoyable. In the "Barcarolle," Pennario calms down and the result is a finely wrought performance, a model of balance and good taste. The sound of the piano is acceptable on this disc, but for my taste a little too "close" with "dry" acoustics. The AES curve was adequate without further adjustment. Very quiet surface.

BARBER
ADAGIO FOR STRINGS

DIAMOND
BOUND

COPLAND

QUIET CITY

CRESTON

TWO CHORIC DANCES

Concert Arts Orchestra conducted by Vladimir Golschmann. Capitol P28245. AES curve. Price $5.75.

Another in the exemplary series of the Concert Arts Orchestra so successfully introduced last month by Capitol. Some of Capitol's very finest recording is to be found in this series, as this latest disc will testify. Two of the numbers have been recorded before on Mercury discs. These are the "Adagio for Strings" and "Quiet City." There is very little to choose between the performances on the two labels. The "Adagio" is conducted at almost the identical tempo by Hanson and Golsch-
man and the trumpet soloists in "Quiet City" have no particular advantage of one over the other. The Mer-
cury disc has a slight edge in the mat-
ter of sound. "Rounds" and the "Two Chorik Dances" are new to LP. "Rounds" is scored for string orchestra, and is typical of the work of David Diamond. Well constructed, with an economy of means, it belongs to the "listenable" school of modern music. Excellent string work throughout this work. The outstanding work on this disc is the "Two Chorik Dances" of Paul Creston. This work is liberally sprinkled with atonal devices, which however are used to good purpose in the dance rhythm-jazzy type scoring. This piece really gets wound up and generates a lot of excitement in the closing passages. The recording is excel-
lent with good clean strings, nice bright brass and notable percussion. I think the first disc in this Concert Arts Or-
chestra series was the better of the two so far recorded, but this is still deci-
sively worth your while. Golschmann maintains an excellent balance and tempo in all of these works, and the orchestra (as I observed last month) is very good indeed. The disc con-
formed perfectly to the AES curve. Usual quiet Capitol surfaces.

BACH, J. S.
CHRISTMAS ORATORIO
Gustav Adolf Weck, soprano; Lore Fischer, soprano; Heinz Marten, tenor; Horst Gunther, bass; with orchestra and choir of Detmold Academy of Music and Col-
egium Pro Arte, conducted by Kurt Thomas. London "Editions de L'Oiseau-
Lyre" OL50001/3. NARTB curve. Price $17.65. Three discs.
The "Christmas Oratorio" is a notable recording in many ways. Primarily significant is the fact that this is one of the initial releases by London of the long-awaited "Edi-
tions de L'Oiseau-Lyre." This French company, which is now tied up to Lon-
don for release of its material in this country, has a long history as an or-
ganization catering to the musical connoisseur. A listing of its first re-
leases by London is indeed imposing, and I am looking forward most eagerly to hearing these and subsequent re-
leases. The "Christmas Oratorio" has been recorded twice previous to this version. This effort is by far the best, although the Vox discs have many good points. In matter of performance, this is closest, I think, to the original intent of Bach. Grischkat's tempo was too druggy in the Remington version, and Grossmann's tempo a little too fast in the Vox reading. Thomas takes the middle road between these extremes and comes up with a finely paced, beau-
tifully detailed reading. He maintains a good balance between the vocal ele-
ments and the orchestra, and uses good taste in the matter of the climactic sections. The Vox edition had a gen-
erally better level of soloists than this version, but these are competent enough with an especial bow to Lore Fischer for her splendid work. Sound is much superior to either the Vox or the Remington editions. Brass is heavy, weighty, and imposingly authoritative.

June, 1954
FOR THOSE WHO SEEK THE ULTIMATE IN HIGH FIDELITY CABINETS

Klipsch REBEL IV by Cabinart

A Klipsch Corner Horn Enclosure designed especially for manufacture by Cabinart.

- Two-way system performance. So flexible in design as to provide you with wide latitude in determining your listening requirements. Removable panel allows for a variety of speaker combinations. For example, in the 12" Klipsch you can install a single 12", two 12" speakers or a tweeter-woofer combination.
- Attractively styled to blend with any interior decor, the Klipsch REBEL IV by Cabinart comes in Lined Oak, Honey Walnut, French Mahogany and Black Lacquer.

"Popularly Priced"

* $69.00 Net for 12" model
* $87.00 Net for 15" model

Precision Manufactured High Fidelity Cabinets of Character

by Cabinart

G & H WOOD PRODUCTS CO.

75 NORTH 11th STREET, BROOKLYN 11, N. Y.

Pioneers in radio furniture for high fidelity equipment

SUPER RECEPTION IN FRINGE AREAS AT BARGAIN PRICES!

360° Super Directorale Electronically Rotated In All Directions

VHF-UHF CHANNELS 2-83

Expressive, Enthusiastic and All-$23.50 Extra, extra nice!

Powerful, 24 element 2 by 6 Double Arrays are electronically balanced to one temperament in fringe areas. No motors or electronic devices high noise levels. GE, Admiral, Zenith, RCA, Admiral, DuMont, Philco, etc.

TUBULAR TRELLIS CABLE. Open-ended. 300 ft. box.

TREMENDOUS BARGAIN IN CONICALS

2-Bay 16-Element CONICAL ARRAY

WITH HY-BAND ADAPTERS STURDY 1/4 ELEMENTS

$499.00 EACH, IN SINGLE LOTS

LOTS OF 3 $55.00 EACH

Never before has National Electronics had a BARGAIN like this. We made a special purchase in order to get these equivalent price. And this array has everything. This model 2-bay 16-element array provides ultra-linear fringe reception. Includes aluminum directorale, wave guide, aluminum elements, cabinet, pre-cable, diode detector and variableFM pre-selector. Each array is complete with one pair of matching rods to each array. These are paired in contours at three, 16-element arrays per carton, with four rods, at $14.95 per carton.

When purchased in a single element in cartons, 3 newspaper, $1.50 each 9 Two-Bay Arrays per carton without Tie $39.99 each 15 Newspaper, $1.20 each

4 Bay Ultra-Fringe Stacking Assembly for Horns-Model HT

New Spring-Summer Catalog Available

National Electronics

CLEVELAND

THE HOUSE OF TV VALUES

106 Delco Building

Cleveland 3, Ohio

CONVERT YOUR 6V6 AMPLIFIER TO ULTRA-LINEAR OPERATION

ULTRA-LINEAR WILLIAMSON

ACRO TO-310

Get more out of your amplifier with the ACRO TO-310. Just a few resistors and condensers are involved in converting to ultra-linear operation — layout remains the same.

Specifications

- Response—1 db, 2 cps. to 200 kc.
- 30 watts of clean power within 1 db
- 20 cps. to 30 kc.
- Less than 1% IM at 20 watts.
- Square wave transmission to 50 kc.
- ACRO TO-300 . . . net $24.75
- ACRO TO-310 . . . net $18.75
- ACRO TO-330 . . . net $39.75

(Push-pull parallel ultra-linear operation using 4 KT 66's, 5SK8's or 607's to deliver a power output of 60 watts.)

Shipping wt. (TO-300—7 lbs.)

(TO-300—6 lbs. (TO-330—17 lbs.)

ORDER BY MAIL!

Send check or M.O. Include postage.

Radio & Electric

SERVICE CO. OF PENNA., INC.

7th & Arch Streets, Philadelphia 6, Pa.

Strings are very smooth, and there is some wonderful woodwind and organ reproduction. The chorus numbers 220 members and seems better disciplined than the choirs used in the other two readings. This is a massive work, and a poor performance can make it seem endless. This version avoids this difficulty and can easily be digested in one listening. I would not vouchsafe to say that this recording is the last word on the "Christmas Oratorio," but it is a fine addition to everyone's library until something better comes along; since this work is very large and expensive to record, you might have quite a wait. 2 db of bass boost on the NARTB curve made the recording sound better to me. Surfaces were quiet.

BORODIN

POLOVETSIAN DANCES IN THE STEPPES OF CENTRAL ASIA

IPPOLITOIV-JANOW

CAUCASIAN SKETCHES

New York Philharmonic Orchestra conducted by Dimitri Mitropoulos.

Columbia ML4815. NARTB curve. Price $3.95.

A potpouri of works in the standard repertoire, which have been recorded numerous times before. As far as performance is concerned, Mitropoulos shines here with vigorous, forceful readings. Except for the "Caucasian Sketches," in which Desormiere on London is a notch or two better, these are the best readings of these war-horses available. The superiority in sound is even more evident and hi-fi fans will love the "Polovetsian Dances." Plenty of the bang and the bang here! Beautifully clean cymbals and big, big, tympani. Exceptional string tone, and playing by the N. Y. Philharmonic is superb. If you don't already own these works or you're looking for better sound, this is highly recommended. Disc followed the NARTB curve perfectly. Surfaces in my copy a little "ticky."

BRITTON

A CEREMONY OF CAROLS

The Copenhagen Boys with Emil Simon, harpist; Megens Wohllike, choirmaster, conducted by Benjamin Britten. London L99102. ffr. Price $2.98.

This recording is typical of what London is turning out in their new low-priced ($2.98) LD series. I absolutely agree with London that there is a great mass of musical material that is too short for a 12" LP and too long for 45 rpm discs. The 10" LP has been an obvious medium, except for the bug-a-boo of price. Now that this has been overcome, I think you will find a growing catalogue of these "in between" works is a certain development. London is also operating on the premise that the discs must be first class in sound as well as repertoire, if they are to succeed. Suiting words to actions, their first releases in this series are quite splendid. This lovely work of Britten has been recorded by the Robert Shaw Chorale on Victor, where it occupied one whole side of an LP. The Shaw version was very good with his wonderfully precise singers, but I find the boys' choir used herein, much
HINDEMITH
MATHIS DER MALER
CONCERT FOR STRINGS AND BRASS
Philadelphia Orchestra conducted by Eugene Ormandy. Columbia ML 4816.
NARTB curve. Price $5.95.
A new recording of one of my favorite works, and one that was badly needed. "Mathis der Maler" is certainly one of the masterpieces of twentieth century music and I think the best thing to come from the pen of the versatile Paul Hindemith. Intensely dramatic, the score is a tremendous achievement in the art of powerful, evocative orchestration. You will find the atonalities that Hindemith is noted for in this music. You will also find some of the most beautiful, almost "other-worldly" music ever written.
Ormandy's performance is magnificent. While the old Hindemith performance on Capitol is good, it suffers from the relatively poor sound, and the fact that it is broken up on two sides of a 10" LP. Curiously, the Hindemith and Ormandy versions are almost carbon copies in matter of tempo, something that does not happen too often. Ormandy is evidently fully "at home" with this music and he makes the best of it.
The strings of the Philadelphia are a miracle of tone and precision, brass is properly weighty, and percussion is more than adequate to the demands of the score. I thought that the reading by Ormandy was very good on the Victor label, but Ormandy's exposition is head and shoulders above it.
The "Concert Music for Strings and Brass" is more in keeping with what most people expect of Paul Hindemith. Dry, almost astringent scoring characterizes this piece, which also is a much more dissonant affair than the "Mathis der Maler." Again the string work of the Philadelphia is outstanding and there is also some magnificent playing from the French horns and trombones. I noticed something I thought was odd when I listened to both of these works, one after the other. This was that while the "Mathis der Maler" is an excellent recording, it did not seem to have the brilliance and range of the "Concert Music for Strings and Brass." An examination of the record jacket disclosed that both works were recorded at the Academy of Music in Philadelphia, but nearly a year separates the "Concert Music" from the earlier "Mathis der Maler." I concluded the difference in sound was due to the constructional changes which were undertaken at the Academy during 1953, and which were tacitly announced with more in the spirit of the music. The boys are beautifully trained and ben-efit, of course, from the composer's guidance in the performance. The recording is startling in its clarity, with the harp in particular blending with the young voices. If you don't know this music, try this for a real off-beat vocal treat. One of the loveliest things on records. The frr curve was "just right" as is, no fiddling necessary.
Control for the luminance signal. A contrast control for the chrominance portion of the signal is mechanically ganged to the luminance contrast control, thereby insuring that both signals will be varied in equal amounts. This is required to maintain the proper voltage relationship between the two signals.

A 4.5 mc trap in the cathode leg of the 1st video amplifier attenuates any 4.5 mc voltage that may develop in the video detector through the beating of the video and sound carriers.

For the color TV video amplifier circuit shown in Fig. 9, the detector stage is formed by using one-half of a 6BJ7 duo-triode. The grid and plate are tied together so the triode function as a diode. The second triode section of the 6BJ7 is operated as a cathode follower, thereby permitting a number of circuits to obtain their signals from the detector without imposing any capacitive loading on this stage.

The plate circuit of the cathode follower provides signal voltages for the sync separator, a.g.c., and burst amplifiers. The cathode of the same tube contains a 500-ohm potentiometer which provides the signal for both a luminance amplifier and a bandpass amplifier and controls the contrast for both channels simultaneously.

The brightness or luminance signal is amplified by a single triode stage and then passed through a 1.0 microsecond delay line that is terminated in the matrix network. There are no special traps in this circuit, but response falls off rapidly beyond 3.2 mc, attenuating any color subcarrier and 4.5 mc voltages that might be present.

(To be continued)

That a new and enlarged edition of the author's basic television text is now available should be good news to all Kiver fans.

As with the previous editions, the author has treated his subject matter clearly, concisely, and completely. The only prerequisite for an understanding of this text is a working knowledge of standard broadcast receivers.

This new edition contains many new illustrations and schematics as well as two completely new chapters on u.h.f. and color television. The added material includes more data on TV tuners, an explanation-color keyed a.c. systems and their application, d.c. video amplifiers, and cascode amplifiers and their operation. In addition to an enlarged intercarrier receiver section, two television receivers are completely analyzed and the new 45 mc. i.f. systems as well as the older 25 mc. i.f. circuits are discussed.

Those who use this book as a homestudy text will find the self-check questions at the end of each chapter particularly valuable. Whether the reader uses this book as a basic text or as a reference volume, he will find it a uniformly valuable addition to his library.

This compact little book, written by an engineer from General Electric Company's radio and television department, is an introduction to the subject of color based on the standards recommended by the NTSC, and subsequently adopted by the FCC.

The discussion deals with only those features or circuits which are unique to color receivers. Circuits and techniques found in standard monochrome receivers are not covered. The discussion covers colorimetry, the NTSC color signal, the transmitter, the color receiver, the tri-color picture tube, and color receiver circuitry.

Those interested in the new medium will find this book enlightening and instructive, providing information that applies to all receivers designed to conform to the NTSC standard.

"ELEMENTS OF MATHEMATICS FOR RADIO, TELEVISION AND ELECTRONICS" by Bernhard Fischer & Herbert Jacobs. Published by The Macmillan Company, 60 Fifth Avenue, New York. 522 pages. Price $7.20.

With the passing of the "screwdriver" mechanic and the introduction of new and more complex circuitry,
Acrosound Ultra-Linear

TRANSFORMERS
for the ultimate in
High Fidelity amplification

TO-300 for Ultra-linear circuits
with KT-66's, 6H6's, etc. $24.75 net

TO-310 for Ultra-linear operation
of 6V6 tubes 18.75 net

TO-330 for push pull
parallel Ultra-linear circuits 39.75 net

TO-350 for Ultra-linear 100 watt
amplifiers with 6L6 tubes 49.50 net

It takes more than a tapped output transformer
to make an Ultra-Linear amplifier. It takes the
exclusive patented Acrosound Ultra-Linear
transformer designed for this application and
crafted to the most rigorous specifications.
Whether you build your own, convert an exist-
ing amplifier, assemble a kit, or buy a man-
ufactured amplifier you can have genuine
Acrosound Ultra-Linear circuitry, the finest
available. Full transformer data and high fidelity
circuits are available on request.

ACRO PRODUCTS CO., 369 Shurs Lane, Phila. 28, Pa.

BASIC MULTIMETER KIT

* 3 Color Meter Scale
* 2 Color Switch Plate
* Complete Builders and
Users Manual
Instrument has 15 Ranges of
Volts, Ohms, Mills and Output
A.C. and D.C.

When Ordering Specify if Meter to Be Used
is 3 or 4½ Inch

$1 POSTPAID IN U.S.A.
No C.O.D. or Stamps

mait Products
ROBERT HILLIARD CO.
Inglewood, California

EASY TO LEARN CODE

It is easy to learn or increase speed
with an Instructograph Code Teacher.
Avoids the monotonous and non prac-
tical method you have developed. For
beginners or advanced students, Available
tapes from beginner's almost to topikal messages on all subjects
-40 W.P.M. Always ready
no GM.

ENDORSED BY THOUSANDS!
The Instructograph Code Teacher lit-
erally takes the place of an instructor.
Learn and master code without fur-
ter assistance. Thousands of successful operators have
"mastered the code" with the Instructograph System.
Write today for important result and purchase price.

INSTRUCTOGRAPH COMPANY
4777 SHERIDAN ROAD, CHICAGO 40, ILLINOIS

RECEIVING TUBES
THREE TOP BRANDS ONLY!
AT TREMENDOUS SAVINGS OVER
REGULAR WHOLESALE

OTHER TUBES AVAILABLE AT SAME LOW, LOW PRICES

Latest Code Dates + Boxed + Fully RTMA Guaranteed

<table>
<thead>
<tr>
<th>Code</th>
<th>Date</th>
<th>Boxed</th>
<th>Fully RTMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>02A</td>
<td>9-26-50</td>
<td>1.30E6G</td>
<td>1.42</td>
</tr>
<tr>
<td>03A</td>
<td>9-26-50</td>
<td>1.30E6G</td>
<td>1.42</td>
</tr>
<tr>
<td>04A</td>
<td>9-26-50</td>
<td>1.30E6G</td>
<td>1.42</td>
</tr>
<tr>
<td>05A</td>
<td>9-26-50</td>
<td>1.30E6G</td>
<td>1.42</td>
</tr>
<tr>
<td>06A</td>
<td>9-26-50</td>
<td>1.30E6G</td>
<td>1.42</td>
</tr>
<tr>
<td>07A</td>
<td>9-26-50</td>
<td>1.30E6G</td>
<td>1.42</td>
</tr>
<tr>
<td>08A</td>
<td>9-26-50</td>
<td>1.30E6G</td>
<td>1.42</td>
</tr>
</tbody>
</table>

Brands New Pix Tubes Full One Year Guarantee

<table>
<thead>
<tr>
<th>Tube</th>
<th>Old Tube</th>
<th>New Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>108F</td>
<td>10.5 95</td>
<td>16PF</td>
</tr>
<tr>
<td>104F</td>
<td>12.95 11.95</td>
<td>16PF</td>
</tr>
<tr>
<td>102F</td>
<td>14.15 13.95</td>
<td>16PF</td>
</tr>
<tr>
<td>101F</td>
<td>14.15 13.95</td>
<td>16PF</td>
</tr>
<tr>
<td>15AF</td>
<td>15.95 14.95</td>
<td>16PF</td>
</tr>
<tr>
<td>16AF</td>
<td>18.45 16.95</td>
<td>20PF</td>
</tr>
<tr>
<td>16BF</td>
<td>18.45 16.95</td>
<td>21PF</td>
</tr>
<tr>
<td>16CF</td>
<td>17.45 15.95</td>
<td>21PF</td>
</tr>
</tbody>
</table>

JUNE SPECIAL!
17BP4...15.95 with old tube
Special Pix Tube Brightener. Each
$1.59
Lots 3... $4.59
RCA 630 Type Chasis, Cascade Tuner, 12" Speaker...
$149.00
Double V Ant...
$2.39 each
1,000 Ft. 300 Twin Lead...
$10.95

Send for FREE CATALOG of Additional Tubes and Parts

STUART ELECTRONIC DISTRIBUTORS
Dept.—R-6
Minimum Order $10.00

149-09 Union Turnpike
Flushing, N. Y.

OLYMPIC 8-3533, 4352

Terms: 25% Cash or Money Order, Balance C.O.D., F.O.B. New York. Satisfaction Guaranteed or money back in 10 days.

"cut and try" methods of servicing are gradually being replaced by formalized procedures based on mathematical formula-

The book is divided into two separate sections, the first dealing with the prin-
ciples of arithmetic and their application
to problems in radio and television. The second section covers algebraic material which deals with negative
numbers, literal equations, ratio and propor-
tion, exponents, elements of log-
arithms, and a discussion of sine and
square waves.

An interesting and surprising addi-
tion to the text is a section on "busi-
ness mathematics" for radioelectro.

RADIO & TELEVISION NEWS

"TELEVISION SERVICING" by Walter H. Buchsbaum. Published by Prentice-

The problem of keeping up with the fast-moving television industry would be a hopeless one were it not for the fact that magazine and book publishers have assumed the responsibility for keeping the industry informed.

The second edition of Mr. Buch-
sbaum's basic servicing text has been revised and brought up-to-date with the progress that has been made since the original volume appeared in 1950.

Like the first edition, the book is di-
vided into three parts and covers the
theory of TV circuits in relation to the

This material is primarily sim-
ply written, and completely under-
standable. The layman or television

"INTRODUCTION TO COLOR TV" by M. Kaufman & H. Thomas. Pub-

This little handbook has been de-
signed for the service technician, stu-
dent, and engineer who wants to keep abreast of current color developments.

The receiver circuitry is based on

130
on the NTSC system and represents the earliest production ideas.

Since industry thinking on single-gun and tri-gun tubes for the new receivers has not been crystallized, the authors have "played it safe" and presented both mysteries—the tri-gun tube in greater detail as it is being used more extensively at present.

Of special interest to technicians is the inclusion of two complete color receiver schematics for study purposes.

While few color receivers are in the hands of the public at the present time, the day the first colorset arrives at the express office is too late for the technician to think about "boning up" on the circuitry. Progressive and alert technicians will recognize the trend and prepare for a successful and lucrative chromatic future.

This book is designed as a home study text for those with a working radio knowledge but no prior television training.

Rather than involve the student in a complex discussion of transmission of TV signals, etc., this text plunges right into the subject matter by considering simple adjustments that can be made by the veriest tyro. From this beginning the material becomes progressively more advanced and covers circuit faults visible on the tube, locating bad tubes by checking the picture tube, antenna principles and practices, CR tubes, how to troubleshoot a receiver, converters and tuners for u.h.f., TV test equipment and alignment, step-by-step procedures for aligning four popular TV receivers, and advanced troubleshooting by means of television picture analysis.

Those seeking a fast-moving introduction to television servicing will find this book a practical answer to their problems.

This volume is devoted exclusively to RCA receivers and covers sets produced in the period June 1951 through December 1953.

Each receiver model covered is pictured and described. Alignment procedures are outlined and the complete schematic and parts list provided. The manual is designed to be used on the service bench—the type is large and clear and the circuit diagrams are jumbo size for high-speed servicing of the receivers.

These specialized manuals meet a definite need for authoritative and low-cost service data.

The earlier volumes are still available. Information on them will be supplied by publisher.

REAL SAVINGS! AT PART-MART

TV VOLTAGE REGULATOR

A Stat Bulb Designed to Square max., performance of any TV set when low line voltage distorts picture. Reduces tube failures, increases sensitivity. Eliminates intermittent sync and out-drift, 300 Watt rating ample for voltages from 90 to 135. Perfect for TV set or other appliances rated under 300 watts. Fully automatic with low, high or normal selector switch. Wt., 3 lbs. No. FS 152. $3.95 ea.

ADJUSTABLE ION TRAP

Newest Beam Bender with adjustable feature which allows magnetic field to be varied between 32-55 gauss. Will replace old style on traps having specific magnetic fields. One universal ion trap to take care of all your needs! Wt., 8 ozs. No. FS 111. $38 c. ea.

3 FOR 1 SPECIAL!

SPECIAL Inductuner

Below wholesale! Popular 3-prong tuner for replacement or in own designs for TV and Hi-Fi sets, receivers and boosters. Continuous tuning from 32-120 mc and 175-216 mc with 4 horns of 3", 5", 7", 9", 11". 41cG, 2 x 3", 50c. Wt., 3 lbs. No. LF 108. 3.49 EACH.

TRIPLE-PLAY CARTRIDGE

5. E. RPX-050. Only a limited quantity left at this price! Popular variable reluctance cartridge. Plays all records. Complete with dual sapphire-tipped needle. 1001 tip for $3.35 and 45 rpm; 1003 tip for $7.80. Wt., 6 ozs. No. LF 120.

CHECK-MATIC PEN

ANYONE WITH A CHECKING ACCOUNT needs this famous 2-in-1 Check-Matic Pen! You get a durable Ball-Point Pen (worth the price alone) that writes over 75,000 words PLUS the amazing Check-Matic Check Protector! Prevents forgery by erasing and preprinting indelible type every amount. NOBODY can write over it without detection. Protects your account from the hands of checkers. Black with Golden cap. Fully Guaranteed! SAVINGS! For every $5.00 paid postage $1.69 each.

3 SPEED "INTERMIX" RECORD CHANGER

$3.95 ea.

Famous make best copy, fully automatic changer at record low price! This newest performer plays all 45, 78 and 10" records in any sequence. "Free-Fusing" feature. Brand new and has hesitation lift-over recording and dual needles for 33 1/3 and 78 rpm. Balanced for excellent loud reproduction. Automatic shut off at last record. Direct drive turntable action and constant speed motor for "wet" operation. Easily installed. Model 664. 115 V. 33 1/3 r.p.m. \(*$3.95 each. 3 for $9.95.\) Promptly Returned. Wt., 110 lbs. No. SF 27. Write for additional Listings.

TV-101 TV CONVERTER

Brand New! Continuous tuning type with Built-in Antenna, Micron cab. Comes with all Tubes, Wt., 5 lbs. No. SF 27. $30.95 each. Quantities limited at this price only. Write The Bolck No. 1222.

LITERATURE!

INCLUDE POSTAGE—Excludes Prompts Returned.

TERMS: F.O.B., N.Y.—MIN. ORDER $3.00—50% DEPOSIT ON ORDER. EXTRA CHARGES—REMIT IN FULL PLUS POSTAGE. EXTRA Promptly Returned. SUBJECT PRIOR SALE.

REMEMBER!

ROCHESTER VALLEY CENTER L. I., N. Y.
SHALLCROSS BULLETIN

Shallcross Manufacturing Company, Collingdale, Pa. has issued an engineering bulletin which gives complete specifications and laboratory performance data on its "PT" type encapsulated precision wirewound resistors.

This unusually detailed bulletin, L-30, lists eleven different "PT" type resistors in both radial lug and axial lead styles, covering the effects of temperature cycling, load life, moisture resistance, and short-time overload tests are also included.

Copies of this bulletin are available only on letterhead request.

THORDARSON CATALOGUE

Thordarson-Meissner, Seventh and Bellmont, Mt. Carmel, Illinois has announced the availability of a new catalogue covering the Thordarson line of transformers and reactors and featuring a new, complete TV replacement section, a new output transformer chart, and complete cross-reference data.

Catalogue 400-L may be obtained without charge from the company.

ACOUSTICS STANDARD

The American Standards Association, 70 E. 45th Street, New York 17, N. Y. has just completed and published a new standard for letter symbols for acoustics.

The standard presents symbols and terminology used in studies of acoustical, shock, and vibrational problems.

Harry F. Olson of RCA was chairman of the committee that set up the new standard.

Known as "The American Standard Letter Symbols for Acoustics, Y10.11-1953," the new publication may be obtained from the Association for $1.00 a copy.

TRANSITOR CURVE TRACER

The new booklet, which is available without charge, explains the operation of the unit and details both electrical and physical specifications.

BATTERY PROMOTION

National Carbon Company is now distributing a new motion display, promoting the use of its line of portable radios, as the featured piece in its complete point-of-sale kit on Eveready batteries.

In addition to the motion display, the kit includes small cards, a jumbo banner, pennants, streamers, and a copy of the 1954 radio battery replacement guide.

The kit is available through the company's distributors who will provide details on how it may be obtained free of charge.

TEST EQUIPMENT

The bulletin provides specifications and data on its test equipment line which has been included in the new catalogue just released by Clough-Bregen Co., 6014 Broadway, Chicago 40, Illinois.

Catalogue No. 54-A lists sweep generators, b.f.o.'s, automatic generators, transmission measurement sets, r.f. signal generators, capacity-resistance-inductance bridges, and extended range audio oscillators.

Dept. RE of the company will supply a copy of this publication without charge.

RIDER CATALOGUE

John F. Rider Publisher, Inc., 480 Canal Street, New York 13, N. Y. has announced the availability of its 1954 book catalogue.

The publication contains 32 pages and is a complete, up-to-date listing of the latest books, "Tek-File," and manuals published by the company.

Copies of the catalogue are free and are available from the company's distributors and bookstores or direct from the publisher, Box RC-54.

SOLENOID CATALOGUE

West Coast Electrical Mfg. Corp.'s AC Division 215, 233 W. 116th Place, Los Angeles, California now has available a new AC solenoid catalogue.

The new publication presents in easy-to-read form, solenoid design information, engineering drawings, solenoid performance charts, work and temperature curves.

This catalogue is available only on company letterhead request.

MALLORY GUIDE

A cross-reference guide, covering radio and television components by means of manufacturers' part numbers, has just been published by the Distributor Division of P. R. Mallory & Co., Inc., P.O. Box 1558, Indianapolis, Ind.

Separated into four sections, the guide provides a cross reference for dry electrolytics, TV and radio controls (including carbon and wirewound single-section, universal-section, and
The COMPLETE line

preassembled dual controls and "L" and "T" pads, radio and TV selenium rectifier stacks, and communications and auto radio vibrators.

Copies of the new guide are available from the firm's distributors or from the company direct.

ONAN PLANTS
D. W. Onan & Sons Inc., Minneapolis 14, Minn. pictures and describes six interesting installations of its electric generating plants in its new pocket-size, 12-page booklet.

The new publication is Volume 10. No. 2 of the company's publication "Power Points Digest" and will be sent without charge to those specifying the volume and issue number in their requests.

ANTENNA DATA
Tennalab, Quincy, Illinois has issued a two-color, four-page bulletin covering its line of TV antennas.

Pictured and described are units for all-channel applications, single-channel yagis, multi-channel yagis, and accessories to be used with the various antennas.

A copy of the new publication is available upon request.

SCOPE HANDBOOK
The Hickok Electrical Instrument Co., 10524 Dupont Ave., Cleveland 8, Ohio is offering a 24-page handbook on cathode-ray oscilloscopes to service engineers, technicians, experimenters, and students.

This free publication contains an explanation and illustration of the basic characteristics of the oscilloscope, explains how it works, and provides tips on its more general uses.

The handbook also lists features and performance specifications on models ranging from a 9" portable unit to large technician bench models as well as the highly accurate industrial-electronic laboratory types.

CONDENSER DATA
The Astron Corporation, 255 Grant Avenue, East Newark, N. J. is offering a copy of its new condenser manual, AC-4, which contains detailed engineering data and specification information on its complete line.

Condensers are grouped into three broad categories; electrolytic, paper, and metallized paper. Within each category, the condenser types are grouped according to operating temperature range and construction styles and ratings that are available as standard.

The catalogue is available on company or professional letterhead request only.

MAST TUBING
Bellevue Tube Mill, Inc., Box 4465, Philadelphia 40, Pa. has just issued a revised catalogue of its products which is being distributed to interested persons without charge.

The catalogue illustrates and de-
The NEW MOSLEY "ORIENTOR"

HERE'S HOW THE "ORIENTOR"
SAVES TIME AND MONEY...

☑ Permits ONE MAN To Do The Job Formerly Requiring Two!
☑ Makes Possible Use Of Low Cost, Portable VOM To Read Relative Video Signal Strength!
☑ Eliminates Need For Extra Wires From Set To Roof!
☑ Use To Determine Best Lateral, Vertical and Directional Orientation Of Antenna!
☑ Aids In Determining If Transmission Line Is Functioning Properly!

Try it on your next installation job. You'll quickly see why the MOSLEY "ORIENTOR" has been termed "The TV Installers Handiest Tool Since The Step-Ladder...!"

THE NEW MOSLEY "ORIENTOR" includes dual isolation network units, ready-to-use leads for connecting unit to set without removing chassis and complete instructions.

Catalog 903, Dealer Net, just $7.50
Descriptive Folder, Form 351, Sent Upon Request.

Write for your FREE copy of new MOSLEY TV Accessories Catalog

RADIO ENGINEERING Answers 27 MONTHS

Radio engineering is a big field. There's room for you in 0-12 if you're good. Get first-class training at Indiana Tech. Intensive, specialized course, including strong basis in mathematics and electrical engineering, advanced radio theory and design, television, electronics, modern laboratories. Low rate. Also B.S. DEGREE in 27 MONTHS in Aeronautical; Chemical; Civil; Electrical and Mechanical Engineering. O.K. Government approved. Enter June, September, December, May. You can earn part of your expenses right here in Fort Wayne while you are studying.

INDIANA TECHNICAL COLLEGE
964 E. Washington Blvd., Fort Wayne 2, Indiana

Please send me free information on B.S. Engineering Degree in 27 months as checked. □ Radio-Television □ Civil □ Aeronautical □ Mechanical □ Electrical

Name
Address

CRYSTALS!

COMPLETE SET—80 CRYSTALS
Ranging from 370-516 Kc., 7th Harmonic. INCLUDING 300 kc. & 455 Kc. crystals. Only...

COMPLETE SET—120 CRYSTALS
Ranging from 300-455 Kc., 7th Harmonic. INCLUDING 300 Kc. & 455 Kc. crystals. Only...

500 Kc. Crystal...
5.75...

455 Kc. Crystal...
4.75...

24 V. TRANSFORMER, D.I. 110 & 2 mps.,...
5.95...

EXTRA!

Extra Set of 400 NICA Capacitors, Assorted. Mounted...
16 to a strip, 50 for...

AM-GU Remote Control Receiver, 1.95...

All merchandise sold as is. Write for quantity discounts! Items subject to prior sale. Send for FREE Catalogue!

J. J. GLASS ELECTRONICS CO.
1815 X. MAIN ST. LOS ANGELES 15, CALIF.

No Rumble! No Wow! 3 SPEEDS

Professional TURNTABLE

$74.50

with negligible lubrication. The bottom thrust ball rides in a special hardened and polished steel. A 25 lb. turntable assures stabilized speed. Choice of mahogany or blond finish.

Write for complete information.

COMPONENTS CORP. DENVILLE, NEW JERSEY

scribes the company's line of electro-welded TV antenna masts and butt and lock seam tubing. The antenna masts are 1/4" o.d. "3-Cote" units while the other sections illustrated are 1/4" o.d. "2-Cote" 20-gauge sections.

Requests for catalogues should be addressed to Dick Morris, the sales manager.

MORE SERVICE GROUPS

In the March issue of RADIO & TELEVISION NEWS, on page 84, there appeared a list of radio and television service associations in the United States and Canada. Since that list was published the following additional associations have been brought to our attention:

Associated Qualified TV Technicians, 406 W. Capitol St., Jackson, Miss.—Ivan Scott, Pres.; M. M. Sage, Sec'y.

Radio & Television Electronic Technicians Ass'n., 52 E. 19th St., New York 3, N. Y.—Charles J. Vassallo, Pres.; Carlos Boxill, Sec'y.

Southern Pennsylvania Radio & Television Technicians Ass'n., 734 E. Market St., York, Pa.—Joseph Hauser, Pres., Willard Stroyer, Sec'y.

PHOTO CREDITS

36 (center) ...Official Defense Dept. Photo
38, 39 ...Allen B. Du Mont Laboratories
43, 45 ...Aero Products Company
46, 48, 50 ...Bogue Electric Manufacturing Co.
47 ...Westinghouse Electric Corp.
54, 55 ...Radio Corporation of America
59, 60, 62, 63, 108 ...Crosley Division, Avco Mfg. Corp.
110 ...Audio Fairs
120 ...Bing Crosby Enterprises, Inc.
128 ...World Radio Laboratories

ADDITION & ERRATUM

In connection with Fig. 5 of "A Transistorized Light-Beam Communications System" (May 1954) there is a slight possibility of damaging the transistor if a pot is used for resistor R and the pot is turned to zero. To avoid damage the authors suggest that a 47,000 ohm fixed resistor should be placed in series with a 1 megohm pot for R thus eliminating any chance of transistor burnout. The maximum resistance which gives undis- tormed output should be used to conserve power and reduce transistor collector power dissipation.

In the article "The Audio Cathode Follower" which appeared in the April 1954 issue, the captions for the photographs on pages 31 were inadvertently interchanged. In addition, although not too clearly indicated, it was not the intention of the author to provide construction details on the tone controls and preamp. The photographs were included merely to show the equipment he used with his driver unit.

RADIO & TELEVISION NEWS
FREE money saving bargain list. 10 MFY/600W Oil Capacitor 98c; RCA SAPIA $5.95; add postage. Marius Electronic, 1863 Randell Ave., Bronx 72, N.Y.

SPEAKERS repaired, wholesale, guaranteed. Jol- lington, Amprime Speaker Service, 70 Vesey St., New York 7, N.Y.

BUILD your own electronic organ or miniature electronic brain. Joe Kirs, WDEB, 1552 Church St., San Francisco 14, Cal.

SPEAKERS repaired, guaranteed, 24 hours service, 56% off dealers. Send to Dept. A, Sweeney's Reconditioning Service, P.O. Box 504, Chicago 47, Ill.

MISCELLANEOUS

FREE OFFER! Parts $1 and 2-volt lamps $2. Lowest prices you will find! See for yourself. We want to absorb overhead costs. Our Net Cost each.

STANDARD BOOSTER

Powerful 115 volt booster, new. 220 volts. $5.95 each.

TRACTOR RADIO

Farm Ranch Tractor Radio. Takes 7 tubes. All Metal, Sturdier, Plastic, Dual Battery with寺 (9V and 115); 4AY7, 807; 12AT7; 19U4, 6V6; 6L6, 6F6, 6M6, 597, 596. Free shipping.

HEADSET SPECIAL

Exceptionally fine ear-shell tubes. 55-75 per cent. Value based. Your Net Cost 129.99, minimum order 10. Please include your Net Cost with your order. Prices subject to change without notice. All prices F.O.B. our warehouse, N.Y.C. Write for types not listed.

ELECTRON TUBE WHOLESALERS, INC.

140 DUANE STREET • NEW YORK 3, 13, N. Y. • Phone: BARclay 7-7616

Rate 50c per word. Minimum 10 words.

WE SPECIALIZE in TUBES—at every grade and price level. More than 3000 different tubed in stock for immediate DE-continued numbers. We pride ourselves on fresh, re-tated and carefully equipped labo- Our ONLY COST. Look for these terrific offers of different type each month, in Industry-wide publications!

CLASSIFIED

RESISTORS: condensers, mistes, electrolytics, tubemount, new, many others usable, none short leads. 5 lbs. $5.00, 10 lbs. $8.50. Prepaid Cagan, Box 1152, Rochester, N.Y.

CODE practice oscillators New, guaranteed, $4.00 postpaid. Stoul, 2141 E. Broadway, Muskegon, Michigan.

TELEVISION Receivers, $30 up. W4API, 1240 South Dixie Highway, Raleigh, North Carolina.

USED Radio Vibrators Reconditioned $1.25 each. By day guarantee. Radio Products Service, R. J. Boyer, 104 N. Florence Street, Springfield, Ohio.

ALUMINIUM tubing, single and channel, plain and perforated sheet. Willard Radiolift, Fostoria, Ohio.

$90.00 TRADE-IN allowance for any Tape Recorder on purchase of new, latest model Concertone Professional. Other termites. Televese Audio Exchange, Azurine Drive, Glo- be 2614, Lincoln, Calif.

WANTED

HIGHEST prices paid for BC10 transmitter, JD78 junction box, BC100 or BC128 Ant. tuning units, BC109 Phono amp. all BC64 coils & TUBE: 7320AP/4A spectrum Analyzer, G. R. VTV Model 1820, 1824, 1826, 1828, 1830, 1832, 1834, 1836, 1837, 1838, 1839. 3-1521, 6242, 6250, 6146, 6124. All W. E. tubes. We buy all types. Receiving, transmitting, industrial, "TAR," 131 Liberty St., N. Y. 6, N. Y.

WILL buy all ART-13/type T-47A $200.00; ART-15/type T-47, $150.00; BC-384 unmodified $55.00, BC-384 modified $50.00; BC-386 $39.00; BC-391 complete $600.00; R77 Receivers $390.00; A8C-1 $390.00; BC-312 $60.00, BC-542 $60.00. Ship via Express C.O.D. For local purchase to: H. Finsen- gan, 49 Washington Avenue, Little Ferry, N. J.

TRIPLETYPE/PHNE, to tape send/record or receive only, Model 14, any quantity or condition. Box 540, Radio & Television News.

MINION Receiver not receiving. A. Siegel, 1516 Sheepshears Ave., N.Y.C. 52.

BUSINESS OPPORTUNITIES

INDEX OF ADVERTISERS

While every precaution is taken to assure accuracy, we cannot guarantee against the possibility of an occasional change or omission in the preparation of this index.

#### ADVERTISER	PAGE
Adon Electronics | 90
Acro Products Co. | 139
Airfix Radio Detectors Co. | 112
All Channel Antenna Corp. | 22
Alimed Radio Corp. | 29
American Radio Corp. | 140
American Television & Radio Co. | 88
Amplifier Corp. of America | 59
Arkay Radium & Elec. Co. | 86
Arrow Electric | 104
Arrow Sales | 64
Ashe Radium Co. | 80
Atlas Sound Corp | 133
Audel Publishers | 106
Baltimore Technical Institute | 94
Barry Electronics Corp. | 136
Bell Telephone Laboratories | 6
Bertil Associates | 89
Bennett Electronics | 123
Boulevard Electronics, Inc. | 116
Brook Electronics, Inc. | 69
Burstein-Ampelleco Co. | 100
CBS-Hytron | 13
Cagan Sales, R. C. | 131
Calvert Electronics Incorporated | 97
Candler Radio Co. | 76
Capital Radio Engineering Institute | 19
Carrington Electric Corp., Inc. | 117
Century Electronics Co. | 94
Channel Master Corp. | 27
Chicago Standard Transformer Corporation | 2
Cincinnati Ventilating Co., The | 100
Cleveland Institute of Radio Engineering | 15
Collins Radio Co., Inc. | 116
Columbia Electronics Sales | 122
Commissioned Electronics Co. | 124
Commercial Radio Equipment Co. | 102
Components Corp. | 134
Concord Radio | 114
Cooper T. V. Co. | 119
Coyne Electrical System | 97
Davis Electronics | 125
DeForest's Training, Inc. | 5
Editors & Engineers, Ltd. | 104
Electronic Chemical Corp. | 96
Electronic Instrument Co., Inc. | 106
EICO. | 34, 110
Electrical Measurements Corporation | 76
Electron Tube Wholesalers, Inc. | 133
Electro-Voice | 5
Erie Electric Products Co. | 122
Fair Radio Sales | 109
Fenton Company | 105
Fisher Radio Corporation | 10, 77
G & G Radio Supply Co. | 82
G & H Wood Products Co. | 126
G. L. Electronics, Inc. | 111
General Electric Co. | 21
General Electronic Dist. Co. | 74
Goodheart, R. E. | 111
Greenele Tool Co. | 102
Harie Sales Co. | 90
Harvey Radio Company, Inc. | 104
Heath Company | 69, 70, 71, 72
Henry Radio Stores | 99
Henness Radio Supply | 94
Hilliard Co., Robert | 130
Hughes Research and Development Laboratories | 113, 128
Indiana Technical College | 134
Instructograph Company | 130
International Rectifier Corporation | 29
Inter-Space Corporation | 3rd Century | 126
JFD Manufacturing Co. | 95
J. J. Glass Electronics Co. | 138
JSH Sales Co. | 122
Janes & Johnson Steel Company | 124
Kedman Co. | 131
Krylen, Inc. | 131
Lafayette Radio | 129
Leotone Radio Corp. | 102

#### ADVERTISER	PAGE
Mallory & Co., Inc., P. R. | 4th Cover
Mattison Television & Radio Corp. | 124
McDow-Hill Book Co., Inc. | 33
Miles Reproducer Co., Inc. | 74
Milwaukee School of Engineering | 123
Monarch Electronics, Inc. | 134
Moss Electronic Distributing Co., Inc. | 79
National Company | 31, 78
National Electronics of Cleveland | 126
National Radio Institute | 11
National Schools | 11
New Jersey Television Supply Co. | 110
Odenbach-Reimus | 74
P-A-R-T-S., Inc. | 102
Part Mart | 131
Peak Electronics Co. | 92
Pepco Company | 123
Philip Corporation | 25
Pickering & Co., Incorporated | 144
Pitt Electronics Corp. | 81
Precision Electronics | 116
Premax Products | 117
Premier Radio-TV Supply | 32
Prentice-Hall, Inc. | 96
Pro-Fix "Eda-Kits, Inc. | 107
Pyramid Electric Company | 30
R.C.A. Institutes, Inc. | 20, 115
R W Electronics | 115
Radiant Corporation, The | 12
Radio Electric Service Co. | 126
Radio City Products, Inc. | 121
Radio Corporation of America | 83
Radio Craftsmen, Inc., The | 91
Radio Receiver Company, Inc. | 107
Radio & Television News Book Service | 103
Radio Tube Co. | 137
Rainbow Manufacturing Company | 2nd Cover
Reed Soundcraft Corp. | 102
Reel-K-Set Company, The | 96
Rider Publishers, Inc., John F. | 120
Rinehart & Co., Inc. | 117, 118
Riverway Industries | 124
Rohn Manufacturing Co. | 74
Sams & Co., Howard W. | 114, 127
Sarkes-Tarzian, Inc. | 104
Sciascia, Inc., Herman Hamer | 87
Steep Publisher, Milton B. | 87
Sonnette Corporation | 91
Southern Products Corporation | 114
Sprayberry Academy of Radio | 23
Stam Broadcast & Radio Co. | 119
Steel Electronics Co., Inc. | 116
Stevens Walden, Inc. | 106
Steel Electronic Distributors | 130
Sun Parts Distributors, Ltd. | 95
Supreme Publications | 99
Sylvania Electric Products, Inc. | 7

TAB

- **Television Communications Institute.** 121
- **Teltron Electronics Co.** 118
- **Transamerica Electronics Corp.** 129
- **Travelin, Inc.** 192
- **Triad Transformer Corp.** 23
- **Tri-State College** 124
- **Tung-Sol Electric** 116

Ultra-Amp Broadcasting System | 117
Universal Radio Co. | 109
Universal Service Co. | 115
University Loudspeakers, Inc. | 26
U.S. Crystals | 75, 123
Valparaiso Technical Institute | 86
Video Electric Co. | 113
Walsho Electronics Corporation | 33
Washite Service Corp. | 86
Western Radio Service | 109
West Side Radio Parts Co., Inc. | 116
Windsor Electronics Tube Co. | 94
World Radio Laboratories | 105
Zingo Products | 76

BARRY ELECTRONICS CORP.
130-E Liberty St. N. Y. 6, N. Y.
June, 1954

Philo TV BOOSTER

Individually boxed, full year guarantee. 70% to 90% off on tubes. Same day service. Over 300 types in stock at all times.

Compare! Save!... on RAD-TEL TUBES and PARTS!

Table Model TV

350-10234

$39.95.

Two station intercom. Uses 15 V.A. tubes, 6AG5 and 6J7G. Complete instructions included. Sold in 15 sets at $39.95 each.

25ST6

$39.95.

25ST7

$39.95.

25ST6

$39.95.

25ST7

$39.95.
ASSURED ELECTRICAL ACCURACY
BASED ON MANUFACTURERS’ PROCUREMENT PRINTS

IRC Exact Duplicate Controls
Are Double-Money-Back Guaranteed

Based on set manufacturers’ procurement prints, only IRC Exact Duplicate Controls are double-money-back guaranteed for accurate electrical operation. This firm guarantee applies to both IRC factory-assembled Exact Duplicates and universal CONCENTRIKIT equivalents.

Set manufacturers’ electrical specifications are closely followed.

Resistance values are carefully selected to match.

Tapers are watched carefully; IRC doesn’t arbitrarily substitute tapers to obtain wide coverage.

For exact duplicate controls of guaranteed accuracy, specify IRC. Most Service Technicians do.
You always win with...

Mallory Vibrators

You and your customers win
every time you use a Mallory Vibrator on a service job because the patented, tuned mechanism of the Mallory Vibrator assures completely dependable performance.

Here's your proof of winning performance... Mallory produced the first commercial vibrators... produces more vibrators for set manufacturers than all other makes combined. And surveys show that Mallory Vibrators are preferred and used by 5 out of 6 servicemen.

Stick with the winner...
always ask for Mallory Vibrators by name. Use them for all your car radio service jobs.

Another Mallory Winner!
The new Mallory Vibrator Guide is a complete cross-reference and service guide. It has always been the accepted reference book for vibrator selection. Get one from your Mallory distributor.

P. R. Mallory & Co. Inc.
CAPACITORS • CONTROLS • VIBRATORS • SWITCHES • RESISTORS
RECTIFIERS • POWER SUPPLIES • CONVERTERS • MERCURY BATTERIES
APPROVED PRECISION PRODUCTS
P. R. Mallory & Co. Inc., Indianapolis 6, Indiana