WHAT'S COMING NEXT FROM INTEL

ELECTRONICS NOW

MARCH 1999

You can tune in the world when you build this

Surface-Mount Shortwave Radio

A Brain/Computer Interface
Helping the paralyzed to interact with the world around them

Unleash the power of the SmartProbe to test digital circuits and more

Measuring RF Power
The right way to get accurate results

$4.99 U.S.
$5.99 CAN.

www.americanradiohistory.com
CircuitMaker Version 6 and TraxMaker Version 3 give you the features of professional, high-end software at a fraction of the cost. Plus, with exceptional ease-of-use you'll spend less time learning to use the software and more time designing. Both applications are compatible with your existing software, and feature outstanding technical support. Call now for your free functional demo.

CircuitMaker 6 is a powerful schematic design and simulation program featuring:

- Professional schematic features including printout borders, title block and barred pin names
- Symbol editor and Macro feature for custom devices
- Fast, accurate SPICE3f5/XSPICE-based simulation
- Complete array of analysis types, including Fourier, AC, DC, Parameter sweep, Transient and more
- Virtual instruments including a digital oscilloscope, multimeter, Bode plotter, curve tracer and more
- Extensive library of over 4,000 models
- Tight integration with TraxMaker® for quick PCB layout
- Output PCB netlists in Protel®, Tango® and TraxMaker® formats for use in a variety of PCB layout programs
- Windows 3.1, 95 and NT

TraxMaker 3 is a powerful printed circuit board layout program featuring:

- Over 2,000 component footprints in a fully-documented, indexed library. Documentation shows footprints actual size
- Built-in autorouter and Design Rules Check
- Supports up to 6 signal layers plus power and ground planes, silk screen overlays and solder and paste masks
- Board sizes up to 32" x 32", with no pin limitations
- Intelligent manual routing with unroute capabilities
- Import any PCB netlist in CircuitMaker®, Protel® or Tango® format
- Output RS274X Gerber files, Excellon N/C drill files and Bill of Materials
- Print to any Windows-compatible printer or plotter
- Windows 3.1, 95 and NT

For free demo software, or to order, call 1-800-419-4242
927 West Center Street • Orem, UT 84057 • Phone (801) 226-4470 • Fax (801) 226-6532 • www.microcode.com

©1998 MicroCode Engineering, Inc. All rights reserved. CircuitMaker, TraxMaker, SimCode and MicroCode are registered trademarks of MicroCode Engineering, Inc. All other brand and product names are trademarks or registered trademarks of their respective companies.
CONTENTS

MARCH 1999

ON THE COVER

33 **SURFACE-MOUNT SHORTWAVE RADIO**

Every once in a while we come up with a project that has something to offer almost everyone. This month's cover story is just such a project. The key is its unique circuit board—it is designed so that either traditional through-hole components or surface-mount devices (SMDs) can be used at almost every location. The result is a project that's an effective yet inexpensive way to listen in on shortwave broadcasts, and/or is a valuable teaching tool to help you master the techniques required to build circuits using SMDs. Either way, it's a winner.

— Paul Yost

BUILD THIS

45 **TEST DIGITAL CIRCUITS WITH THE SMARTPROBE**

A significant improvement over the typical "dumb" logic probe, it can resolve four voltage levels, store the last 20 readings, and show the frequency and pulse width of signals on an oscilloscope-like display.

— James J. Barbarello

TECHNOLOGY

25 **PROTOTYPE**

Crash-data recorders for your car, a virtual microscope, tiny chips, a healthy video monitor, and more.

51 **MEASURING RF POWER**

RF power is one of the most difficult parameters to measure correctly; here's how to do it.

— Joseph J. Carr

55 **A BRAIN/COMPUTER INTERFACE**

A medical breakthrough that could one day allow paralyzed individuals to effectively communicate with those around them.

— Bill Siuru

DEPARTMENTS

7 **EQUIPMENT REPORT**

Matrix Multimedia interactive Digital Electronics CD-ROM.

8 **SERVICE CLINIC**

Monitor deflection circuits. — Sam Goldwasser

13 **COMPUTER CONNECTIONS**

What's coming next from Intel. — Konstantinos Karagiannis

57 **TECH MUSINGS**

AC and DC lamp-dimmer circuits, a surplus update, and more.

— Don Lancaster

AND MORE

2 **EDITORIAL**

3 **Q&A**

16 **NEW PRODUCTS**

22 **NEW LITERATURE**

30 **LETTERS**

100 **ADVERTISING INDEX**

100 **ADVERTISING SALES OFFICE**

As a service to readers, ELECTRONICS NOW publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, ELECTRONICS NOW disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

Since some of the equipment and circuitry in ELECTRONICS NOW may relate to or be covered by U.S. patents, ELECTRONICS NOW disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

POSTMASTER: Please send address changes to ELECTRONICS NOW, Subscription Dept., Box 55115, Boulder, CO 80322-5115.

A stamped self-address envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.
EDITORIAL

Changes

As everyone knows, nothing ever stays the same. Change is something we all must deal with, and how well we deal with it often determines how well we succeed in our careers—and our lives. Fortunately, most of the time, changes turn out for the best. Other times... well, let's just say that whatever does not kill you makes you stronger.

Anyway, as you might have guessed from the preceding, changes are afoot here at Electronics Now. The good news is that they all fall into the first category. In fact, one of those changes has already arrived.

Regular readers of our “Computer Connections” column might have noticed a new thump perhaps familiar name on the byline. Jeff Holtzman, our long-time computer editor, has left to pursue other interests. In his place is Konstantinos Karagiannis. Konstantinos is the editor of our sister magazine, Popular Electronics. He’s also served as the technical editor for PC Upgrade, Computer Buyer’s Guide and Handbook, and Laptop Buyer’s Guide and Handbook magazines. With his excellent contacts within the PC industry, Konstantinos is in a unique position to bring our readers the lowdown on what’s happening today in computer hardware, and what to look forward to tomorrow. You’ll also see expanded coverage within the column on practical hints and tips to get the most out of your current hardware, how to do repairs and upgrades, and what to look for when shopping for a first or replacement computer.

We also will be adding a couple of new columns in the coming months. While I can’t reveal the details at present, I can tell you that they focus on some of the most popular aspects of the electronics hobby. We know you will enjoy them.

However, no matter how much things change, there is one thing I can promise will stay the same. That is our commitment to providing our readers with the best, most comprehensive coverage of the entire gamut that is electronics. We think the changes will help us to better fulfill that commitment, and we think you’ll agree.

Carl Laron
Editor
Audio Induction Coil

Q I am 90 years old and have been reading Gernsback electronics magazines for many years. I once learned from your magazine how to hook up a Morse code key to a Model T spark coil to make a radio transmitter. It worked then, but today it would mess up a lot of people's TV reception.

My problem now is different. I need a schematic for a device to take the signal from a telephone circuit, amplify it, and feed it into a loop around a room. This should set up a magnetic field that can be detected by hearing aids with T coils. I know it has been done before. If you can be of any help on this, I and many of my senior friends would appreciate it.—H. R. A., Bay Village, OH

A What you describe is called audio induction. A large coil around the room and a small coil on the pickup unit form a big circuit, transferring the audio signal from one to the other magnetically. This isn’t radio; little or no electromagnetic radiation is produced. (The coil is a monstrously inefficient antenna at audio frequencies.) Instead, what you’re doing is exactly what goes on in transformers.

Some hearing aids use induction coils to pick up the signal from telephone receivers—it’s more reliable than picking up the sound. Not having one of these hearing aids handy, we’re not sure how sensitive they are, but Fig. 1 shows an audio induction circuit we’ve experimented with. The big coil has a resistance of about 16 ohms and is fed with a few watts of audio, just as if it were a speaker. The small coil picks up a tiny audio-frequency signal, which is stepped up by the matching transformer and then fed to the microphone input of an amplifier. Pickup coils with substantially more turns may not need the transformer.

We trust you can adapt this circuit to your needs; you’ll be using a hearing aid with an induction pickup in place of the pickup coil and amplifier. Others will find it useful as a way to transmit audio without wires to listeners who are free to move around and may even be on the other side of a wall.

Remote Control Repeater

Q I’m sitting in my living room in my favorite chair trying to find the right angle at which to bounce the infrared remote control signal off the ball mirror and change the CD. What I need is a remote control extender. I tried to use the RadioShack IR receiver to modulate an IR emitter but I had no luck. What am I doing wrong?—T. P., St. Albert, Alberta, Canada

A The solution to the mystery is that the IR signal is chopped (turned on and off) at about 40 kHz to distinguish it from ambient IR light. The receiver module supplies un-chopped output, so you have to chop it again if you want to use it to control an IR-emitting LED. We published a circuit that does this in the December, 1995 installment of this column.

Sick Ohmmeter

Q I recently dusted off my Simpson 260-5 (circa 1965) volt-ohm-milliammeter (VOM) and I’m having some trouble with the R × 1 scale readings. Fresh batteries and clean battery connections allow a full-scale 0 reading when I short the test leads, but the readings seem to be high by a factor of 4: 50-ohm resistors read 200 ohms, and so forth. I verified the test resistors with a DMM, VTVM, and another VOM. They all concur—the Simpson is off. The R × 100 and R × 10K scales read normally, as do all voltage and current scales.

A If anyone recognizes this anomaly, or has service experience with the 260, I would greatly appreciate any suggestions. It’s a great meter that’s worth saving. Also, I’d like to get a schematic and owner’s manual for it; any ideas on where or how? Thanks.—J.A., Stony Point, NY

A Your second question is easy: Simpson Electric Company is still in business and still making the 260, although they’re now up to model 260-8 instead of 260-5. You can reach them at 8853 Dundee Ave., Elgin, IL 60120, Tel: 847-
Some Say Watching Tropical Fish Lowers Blood Pressure & Relieves Stress...

697-2260, Web: www.simpsonselectric.com. Many technicians prefer a traditional VOM because it can't be damaged by static electricity.

We don't have the schematic ourselves, nor is it necessary; the ohmmeter portion of a classic VOM always has roughly the circuit shown in Fig. 2, plus switches to select appropriate resistors for each range. Just trace the circuit to figure out which resistors are used on the range that has the problem.

In fact, knowing that on the R x 1 range, the Simpson 260 reads 12 ohms in the middle of the scale, we can calculate that R2 + R3 = 12 ohms. The half-scale reading is what matters, of course; all ohmmeter ranges have 0 ohms at the right and infinity at the left. When you short the test leads together and the meter reads 0 ohms, it's putting 125 milliamperes through R2, R3, and the test leads, but we know the meter has a 50-microampere movement, so nearly all the current must be going through the shunt (R1). Most likely, R1 has decreased in value or there is a short circuit across it. Also, it looks as if R2 has increased in value, or, more likely, you've set R3 very high.

Look for solder bridges and defective switch contacts, then try replacing R1. You can find the correct value by trial and error; try 2 ohms as a first guess, and use a precision resistor for the final repair.

By the way, do not use the R x 1 range to check circuits containing semiconductors or other delicate components—the heavy current can damage them. Use a digital meter for that.
Back To Basic

Q I would like to know where to obtain updated versions of the useful do-it-yourself programming language BASIC. My versions are XBASE and GW-BASE, and they are 10 to 12 years old.—R. A. R., Los Angeles, CA

A You’ll feel like Rip Van Winkle when you discover what BASIC has grown up to be.

BASIC (originally Beginner’s All-purpose Symbolic Instruction Code) was invented at Dartmouth University in 1964 to give math students a quick way to do calculations on a computer. It remains a popular general-purpose programming language. Unlike Pascal, C, C++, and Java, which are based on particular theories of how programs ought to be constructed, BASIC is all practice, no theory. The language is essentially a collection of things programmers have found useful, and it keeps growing.

If you run Windows 95 or 98, or a late version of DOS, you probably already have Microsoft QBASIC (Fig. 3), a full-screen programming environment that includes instant online help so you don’t need a manual. If you’re a Windows user, you probably didn’t install QBASIC, but you’ll find it on your Windows 95 or 98 CD-ROM in a directory called \\windows\oldmsdos or \\windows\tools\oldmsdos, respectively. To install it, copy QBASIC.EXE and QBASIC.HLP into your \windows\command directory and establish a shortcut to QBASIC.EXE. It’s a DOS application and runs in a DOS window.

QBASIC will run all your GW-BASIC programs, but line numbers are no longer necessary because you have a full-screen editor. Although QBASIC itself can’t generate .EXE files, a related product, Microsoft QuickBasic, can do so; it’s no longer marketed, but you can probably pick up a secondhand copy from an old-timer.

For Windows itself, Microsoft produces Visual Basic, a widely used professional program development environment (Fig. 4). Visual Basic lets you design windowed programs graphically, then write the BASIC code that should execute when the user clicks on each button or other object. You don’t have to do the whole design at the beginning; you can add and delete objects and code at any time.

Visual Basic generates compact .EXE files that require a large .DLL file (supplied, and freely redistributable) in order to run. If you like the Visual Basic idea but would like to program in Pascal, C, or C++ and generate .EXE files that don’t require a .DLL, try Inprise (formerly Borland) Delphi or C++ Builder respectively.

The alert reader will note that some time in the 1980s, between QBASIC and QuickBasic, Microsoft stopped writing BASIC in all capitals; we don’t know why.

Low-Power FM Transmitters

Q I live in a small community in northern British Columbia, Canada; am 13 years old; and ever since I was old enough to walk, I have been in love with science. Even

FIG. 3—QBASIC IS A DOS product that is still distributed with Windows 95 and 98.
though I'm a girl, I do a lot of "boyish" things (e.g., loving science, insects, reptiles), and my father has built me a lab down in the basement, complete with soldering station, electronic components, and microscope.

My friends and I have a 4-person "Mad Scientists' Club," and would like to have a way to communicate. Could you print some circuit diagrams of small, short-range FM radio transmitters that would transmit 5 or 10 miles?—K. S., Tewksbury, B.C., Canada

Keep it up—science needs more girls! Seriously, it's unfortunate the way so many girls are persuaded not to use their scientific or engineering talents.

The transmitters you describe will need a license for two reasons: the laws of Canada say so, and anything that can reliably cover 5 miles will sometimes interfere with communications 50 or 100 miles away. Thus, it's important to keep everything on carefully allocated frequencies.

Fortunately, you can get a license, as well as lots of information about how to build transmitters, by becoming a radio amateur (ham). For information, contact Radio Amateurs of Canada, 720 Belfast Road, Suite 217, Ottawa, Ontario K1G 0Z5, Web: www.rac.ca You do not have to learn Morse code in order to use FM above 30 MHz.

Carbon Monoxide Detector

I have a CO (carbon monoxide) detector located in the basement, near the furnace.

If it goes off in the middle of the night, there's no way we can hear it from the second-story bedroom. Can you suggest a way to connect it to a buzzer or bell upstairs?—J. H., Belmont, MA

You could probably just remove the sounder from a cheap CO detector and locate it elsewhere, connected by a long cable, but if you want real reliability—as you should, in a potentially life-saving device—it would be better to get a detector that is designed to connect to a fire alarm or other external indicators. Such detectors are available from Fireboy-Xintex, 100 Commerce Ave., SW, Grand Rapids, MI 49501-0152, Tel: 616-454-8337. Also contact local fire-alarm and building-supply companies, both are likely to have CO detectors that are easy to interface to external alarms.

Writing to Q&A

As always, we welcome your questions. The most interesting ones are answered in print. Please be sure to include plenty of background information (we'll shorten your letter for publication) and give your full name and address (we'll only print your initials). If you are asking about a circuit, please include a complete diagram. Send your questions to: Q&A, Electronics Now Magazine, 500 Bi-County Blvd., Farmingdale, NY 11735. Due to the volume of mail, we regret that we cannot give personal replies.

FIG. 4—VISUAL BASIC is a professional Windows programming environment based on the BASIC programming language.
Learn the basic principles and concepts behind digital electronics at your own pace with this valuable interactive CD-ROM

While some might not see it that way, the worlds of electronics and computers overlap a great deal. Computer-based virtual test gear has earned acceptance on many professional workbenches and is now making inroads with electronics hobbyists. Many of the electronic products you buy, and projects you build, have a microcontroller as their key component.

But computers can have another role, and one that is especially important to the electronics beginner. That is the role of teacher. There are many programs out there that help the novice gain insight into all the aspects of electronics. With those insights, an individual can get more out of his hobby, or perhaps take the first steps toward a rewarding career. In the realm of digital electronics, one of the best computer-based teaching aids we've seen is Matrix Multimedia's Digital Electronics CD-ROM.

The Digital Electronics CD-ROM is an interactive computer-based multimedia laboratory/textbook that moves along at whatever speed the user is comfortable with, teaching the basics behind digital electronics—the theories, circuits, parts, and all. While those already knowledgeable in digital electronics might not learn much new information from using this disc, beginners in digital theory will find it quite interesting. And those who don't want or need to learn about digital electronics might just want to have the disc around for informational purposes. Digital Electronics is written by Mike Tooley and published in the UK by Matrix Multimedia Limited. It's available here in the United States for $75 from CLAGGK Inc. (that price includes shipping in the US; foreign buyers must contact the company for shipping information).

Digital Electronics

Intended for educational and training purposes, Digital Electronics is useful for teachers, students, and professionals. The disc includes all support materials and printable and editable worksheets, plus supervisor notes. Text on the disc can be heard by clicking a play button. System requirements are hardly steep: an IBM-compatible 486/25MHz or better PC, Windows 3.1 or Windows 95, a mouse, CD-ROM drive, VGA graphics with 256 colors, 8MB of RAM, about 10MB of hard-disk space, and a Sound Blaster-compatible sound card for audio playback.

Digital Electronics proved easy to install, and we were rummaging through its resources in minutes. A series of menus and sub-menus take the user through different lessons in digital electronics. Each lesson is accompanied by circuit diagrams, text, drawings, and photographs of actual parts. Digital Electronics introduces users to the principles of digital electronics, including logic gates, combination and sequential logic circuits, clocks, counters, shift registers, and displays. There's also an introduction to microprocessor-based systems.

What's interesting about Digital Electronics is that many of the circuits are "interactive." These circuits—logic circuits in particular—are shown in a steady state along with the logic states of each terminal listed on-screen. The user can toggle inputs to circuits and see the effect that the input conditions have on the output. It's a neat way to learn how digital circuitry works.

The first section of the disc covers digital fundamentals. This is where basic logic gates and truth tables are introduced. Also included are monostable and bi-stable circuits, master-slaves, various flip-flops, and more. Another section on combination logic covers circuits with multiple AND and OR gates, equivalent logic functions, comparators, parity checkers, scramblers, code converters, half- and full-adders, Karnaugh maps, Karnaugh simplification, and lots more.

The disc includes a section that covers sequential logic. Here you'll find clocks, counters, shift registers, and the like. Digital systems are also discussed, with details on traffic-light controllers, A/D and D/A converters, memory, microprocessors, and other critical sections of digital systems.

Along with all of the circuitry shown in the disc's many nooks and crannies, you'll find a section that includes a definition of basic logic gates, an introduction to the 7400 TTL series of integrated circuits as well as the CMOS 4000 series. A picture gallery shows many examples of digital circuitry and components.

While the Digital Electronics CD-ROM and some free time on a PC is no substitute for a college degree in electronics, it is a good resource to have on hand for electronics professionals and amateurs at all levels. It's also a great way for parents to introduce digital electronics to their children. To order Matrix Multimedia's Digital Electronics CD-ROM, contact CLAGGK Inc. (P.O. Box 4099, Farmingdale, NY 11735-0792; e-mail: clagg@poptronix.com) directly.
Monitor Deflection Circuits

This month, we'll address the basic principles of operation of the horizontal-deflection systems used in monitors. While most people with any familiarity with TV or monitor operation or repair have some vague idea of how these circuits work (probably just enough to be dangerous), many of their assumptions are incorrect or at least very incomplete. In addition to monitors, TVs (direct-view as well as CRT and light-valve projection types), tube-based video cameras (e.g., vidicon), and other magnetically-deflected CRT devices also use the same techniques.

Note that vertical-deflection circuits are much less complex due to the lower scan rate (e.g., 50 to 120 Hz as compared to 15.734 kHz for an NTSC TV or up to 120 kHz or more for a high-resolution computer monitor). Most of the control and output drive circuitry is contained in a special vertical chip in modern equipment.

TVs and most computer and video monitors depend on the use of similar (at least in concept) circuit configurations to generate several outputs:

- Current waveform required in the deflection yoke coils of the CRT for linear sweep of the electron beam to create a high quality (geometry and linearity) picture. This is close to a sawtooth but not quite.
- CRT high voltage (20 to 30 kV or more) as well as other related voltages—focus and screen (G2).
- Various auxiliary power and signals for other subsystems of the equipment (low voltage, CRT filament, feedback, etc.).

How It Works

Although there are many variations, the basic operation of the horizontal-deflection/high-voltage power-supply circuits in most TVs, monitors, and other CRT displays is very similar.

To better understand how the deflection circuit works, regard the flyback transformer as an inductor. The airgap stores energy, some of which might be tapped off during flyback by secondary rectifiers (e.g., vertical deflection, signal circuits, and high-voltage supplies) and non-rectified loads (e.g., filament supply), but those have hardly any influence on the basic working principles.

The scenario described next is only true in the steady state—the first few scans are different because the picture-tube capacitance is still discharged.

A very simplified circuit is shown in Fig. 1. Note that many components needed to create a practical design have been omitted for clarity.

We begin our adventure at the end of the scan—called retrace—when the flyback period begins. At the end of the scan, current is flowing through the flyback primary to horizontal-output transistor (HOT) Q1. At the start of the flyback period, Q1 turns off. (This must be done in a controlled manner—not just a hard shutoff to minimize stresses on the HOT—but that is another story). Since current in an inductor cannot change instantaneously, the current is diverted into the snubber capacitor, C1. The inductance of the flyback primary (L1) and C1 forms a resonant circuit so that the voltage climbs on C1 as the current goes down. At its peak, this voltage will be 1000 V to 1500 V. Snubber capacitor C1 now begins to discharge in reverse through the primary of L1 (back into the B+ supply—the filter capacitor will stabilize the B+ output) until its voltage (and also the collector-emitter voltage of the HOT) reaches 0.

If there were no damper diode (D1), that voltage would go negative and continue to oscillate as a damped sinusoid...
due to the resonant circuit formed by L1 and C1 (and the other components). However, D1 turns on as the voltage goes negative and diverts the current through it, clamping the voltage near 0 (-\(V_F\) for the diode).

Note that in inexpensive or small screen TVs, damper-diode D1 may be built into the HOT. That’s also true for some monitors that don’t have any circuitry for E/W correction (more on that later).

The steps we’ve just described perform the flyback function of quickly and cleanly reversing the current in L2 (and, as we will see, the deflection yoke as well). The full flyback (and yoke current) are now flowing through the forward-biased damper diode, D1.

Therefore, at the beginning of scan, the damper diode (forward biased) carries the bulk of the current from the yoke and flyback. The nearly constant voltage of the \(B^+\) across L1 results in a linear ramp of current through the damper diode since it is still negative and decreasing in magnitude.

At approximately mid-scan, the current passes through zero and changes polarity from minus to plus. As it does so, the damper diode cuts off and the HOT picks up the current (with a voltage drop of \(+\text{V}_{\text{CE}}\text{sat}\)). Current is now flowing out of the \(B^+\) supply.

Note that the base-drive to the HOT must have been switched on at some time before this point!

During the second half of the scan, the HOT current ramps up approximately linearly. That is again due to the nearly constant voltage of \(B^+\) across the inductance of the flyback primary.

Near the end of scan, the HOT turns off and the cycle repeats.

Thus, the current in the flyback (ignoring the yoke components) is a nearly perfect sawtooth. The ramp portion is quite linear due to the essentially constant \(B^+\) across the flyback primary’s

FIG. 2—HERE THE E/W CORRECTION circuit has been added to the power supply of Fig. 1. Again, note that this is a simplified schematic.
inductance. The current waveform can be easily viewed on an oscilloscope with a high-frequency current probe. I'll even tell you how to build one safely for next to no cost in a future installment!

The voltage across the collector-emitter junction of the HOT is a half sinusoid pulse during the flyback (scan retrace) period and close to zero at all other times (Vp of the damper diode during the first half of scan; \(+V_{CE,\text{sat}} \) for the HOT during the second half of scan).

Caution: Without a proper high-frequency, high-voltage probe, it is not possible or safe to observe this point on an oscilloscope with full B+. However, where the equipment can be run on a Variac, this clean pulse waveform can be observed at very reduced B+. Excessive ringing or other corruption would indicate a problem in the flyback, yoke, or elsewhere.

The current through Q1 and D1 is several amps peak-peak. There's a lot of power circulating here, making this a dangerous circuit in every way!

The Deflection-Yoke Connection

So, you ask: "Why can't the yoke just be placed in series or parallel with the flyback primary?" There are several reasons including:

- The desired yoke current is not quite a sawtooth, but includes two major corrections: S and E/W (described below). These cannot be applied easily with such a configuration.
- The flyback also generates the HV and secondary output voltages, and the primary current might then be affected by these and change as a function of beam current (picture brightness) or audio level (although feeding the audio amplifiers from HOT windings is not common anymore).

The yoke in series with a capacitor (S-correction) and other components are placed across the collector-emitter junction of the HOT. That, in effect, forms a variable power supply (analogous to the constant B+) that is used to compensate for the various problems of scanning a nearly flat screen.

What Are S, E/W, and N/S Correction?

Those terms actually refer to the various corrections to deal with what is normally called scan linearity and pin cushion distortion. Most larger TVs and nearly all high-quality monitors will have various user and internal controls to optimize the corrections for each scan rate (multiscan monitors).

Because the screen of most CRTs is relatively flat (even those not advertised as flat) and the electron gun is relatively close, any picture tube would naturally have serious linearity problems and pin-cushion distortion if there were no corrections applied. The spot will move faster near the edges and corners of the screen because the same angular speed translates to a larger linear speed.

S-Correction Circuit Operation

The first correction to apply, in both directions, is S-correction. By simply putting a capacitor in series with each coil, the sawtooth waveform is modified into a slightly sinewave shape (the top and bottom are somewhat squashed). This reduces the scanning speed near the edges. Linearity over the two main axes should now be good. When we add in the yoke components (only the horizontal deflection coil and S-correction capacitor or S-cap are shown in Fig. 1) conditions are only slightly more complex.

First, consider what would happen if instead of the S-cap, the yoke were connected to B+ like the flyback. In that case, the total current would divide between the flyback primary and the yoke. It would still be a sawtooth as described above. Of course, component values would need to be changed to provide the proper resonant circuit behavior.

That's called "tuning of the flyback capacitor." The goal is to get the proper duration of the flyback pulse, matching the blanking time of the video signal, and to achieve the proper peak flyback voltage, matching the \(V_{CE,\text{sat}} \) specification of the HOT with a reserve of about 20%. That's two conditions, requiring two degrees of design freedom. There are three freedoms: supply voltage, flyback capacitor, and yoke inductance.

With the S-cap and yoke wired as shown in Fig. 1, the inductance of the yoke and S-cap form a low-pass filter such that the voltage on the S-cap will be a smoothed version of the pulses on the HOT collector (similar in effect to the B+ feeding the flyback but not a constant value). The average value of the S-cap voltage will be positive.

The S-capacitor together with the yoke inductance forms a resonant circuit whose frequency is tuned lower than the line frequency. It has the effect of modifying the sawtooth current into a sinewave shape. This is called "S-correction." It reduces the scanning speed at the left and right edges of the screen.

The value of the S-cap can be selected so that the voltage varies in such a way as to squash the current sawtooth by the appropriate amount to largely compensate for the fact that the electron beam scans a greater distance with respect to deflection angle near the edges of the screen.

Think of it this way: When the scan begins, the yoke current is at the maximum value in the direction to charge the S-cap. The voltage across the S-cap is causing the current to decrease, but the S-cap is also gaining charge, so the rate of decrease is increasing. At the time the current passes through 0, the S-cap is charged to its maximum. The current now reverses direction, retracing its steps. This is an example of a portion of a resonant circuit. The voltage on the S-cap is varying by just the right amount to compensate for the geometry error.

For multiscan monitors, S-caps must be selected for each scan range since the timing varies with scan rate. These are only approximate corrections, but are good enough for most purposes. MOSFET or relay circuits are used to select the correct combination of S-correction capacitors for each range of scanning frequencies.

As an example, consider a multiscan monitor that supports VGA (31.4 kHz,
The E/W amplifier usually has a PNP emitter follower only, because it must only sink current and dissipate a bit of power. Coils L3 and L4 ensure that the E/W amplifier sees no line-frequency. The "bridge" components, L3 and C5, resemble the deflection coil with its S-correction capacitor and carry the large amplitude alternating current. The L3/C5 circuit is tuned to approximately the same frequency as the L2/C2 circuit.

Capacitors C1, C3, and C4 must be tuned so that EHT is independent of VM and peak voltage over D2/C2 is high enough but not too high when Q2 is off. Capacitor C4 is usually a small (approximately 1 nF) ceramic capacitor mounted close to the HOT (Q1); it also suppresses EMI. Flyback capacitors are critical components. Wrong types may overheat and burn. Bad contacts here or elsewhere in the deflection circuit might arc and also cause fire.

There are many variants to this circuit, e.g. for dynamic S-correction. Multi-sync monitors need added circuitry to make the EHT independent of the line frequency (if there is not a separate EHT supply, that is).

If the E/W modulator fails, you will see that the top and bottom lines will be much too wide. There are several parts that could have failed. It's usually not too difficult to find why there's no parabola. If you have partial loss of E/W modulation, notably in the extreme corners, then you should suspect the tuning of the three flyback capacitors that belong to the diode modulator circuit. That's a specialist job...

S-Correction Problems

So, then, what are the problems associated with the S-Correction capacitor, and what are their symptoms? Here goes:

- An open S-cap will result in no horizontal deflection — a vertical line.
- A shorted S-cap will likely load down the B+ possibly resulting in a blown fuse or other power supply components.
- An S-cap that changed value (or in the case of a multisync monitor, selected to be the wrong value) will result in distortion at the left and right sides of the screen. If it is too low, the picture will be squashed towards the edges. If it is too high, the picture will be stretched towards the edges.

Note that this is not the same as what is commonly called linearity, which would likely affect only one side or gradually change across the screen.

Horizontal-Linearity Correction

Since there is a non-zero resistance associated with the components (mainly coil losses) in the yoke circuit (yoke winding, ESR of S-cap, etc.), the world is not quite as ideal as one would hope. Without compensation, that resistance would result in non-linearity of the picture — it would tend to be squashed on the right side as the resistance saps energy from the yoke circuit.

The waveform becomes a damped sine wave, which will be "undamped" by restoring energy during the flyback.

One way to deal with this is to add a magnetically biased saturated inductor in series with the horizontal-deflection yoke. That inductor is called the linearity coil.

Its core is magnetically biased near the point of saturation such that the inductance decreases with increasing current, and that helps to stretch the right-hand side of the scan. In other words, during the scan the coil saturates so that the inductance decreases. At the end of scan there is practically no voltage left over the linearity coil, so that the deflection coil gets maximum voltage.

E/W Correction Problems

The common name for the adjustment controls is likely to be "Pincushion Amp" and "Pincushion Phase." They affect the E/W correction circuits. Pincushion Amp adjusts the amplitude of the correction signal. Pincushion Phase adjusts where the correction is applied on the vertical scan.

Problems in the E/W correction circuits will show up as follows:

- Failure of the E/W correction circuit will result in very noticeable pincushion distortion of the vertical edges.
- Excessive E/W correction will result in barrel distortion of the vertical edges.
- A bad power supply derived from the flyback could also result in similar symptoms due to ripple or lack of power to the pincushion circuitry.

N/S and E/W Circuit Differences

While the desired effects are largely the same — modulate the amplitude of one component of the deflection circuit (H or V) by the other (V or H), the implementations of the N/S and E/W circuits...
will differ substantially. The reasons should be obvious: The line frequency is much higher than the field frequency.

E/W correction is easy—the lower frequency modulates the higher frequency. That reduces to simple amplitude modulation. Well, simple in principle. The line circuit is a high-energy circuit. That’s why the diode modulator circuit has been invented for this application. It allows an energy exchange between the line-deflection circuit and a pseudo deflection circuit.

N/S correction is difficult—the higher frequency modulates the lower frequency. It can be done with sort-of amplitude modulation by using a “transductor.” This is not a transformer but a component with 2 coils and a saturable core where the current through 1 coil modulates the inductance of the other coil. If there are tuned parts in the circuit, then the correction will be highly sensitive to line-frequency variations.

It can also be done with a regular transformer by injecting a strong signal (from an amplifier) with line-frequency components into the field-deflection circuit.

Either way, it’s an expensive solution that should be avoided by designing the deflection coils so that the picture tube needs no active N/S correction.

Deflection Derived Power Supplies

Several types of auxiliary power may be obtained from the flyback, somewhat as a byproduct of the deflection-system operation.

Although not always well known, the coupling factor with the primary is decent for a flyback transformer, and so there can be scan rectifiers as well as flyback rectifiers.

- Scan power is obtained during the forward stroke as with a “normal” transformer. Energy is transferred while the HOT/damper diode is conducting. The output rectifier is oriented so that current flows during scan time (dots on the transformer winding match). See Fig. 3A.

- Scan rectifiers make no use of the stored magnetic energy; they load the primary directly during the scan part. They do not cause an increase of the stored magnetic energy, so a heavy load is not a problem.

- Flyback power is obtained from the stored energy in the flyback transformer’s inductance when the HOT shuts off. The output rectifier is orient-
ed so that current flows at flyback time (dots on the transformer windings oppose). See Fig. 3B.

Unlike scan rectifiers, flyback rectifiers (especially the EHT) draw from the stored magnetic energy. When the secondary load increases, the magnetization current will also increase. Ultimately this will cause saturation of the ferrite core. Excess beam current is a common cause for this and should be avoided by the beam-current limiter. The advantage of a flyback rectifier is that it provides 7 times more volts per winding than a scan rectifier.

- AC power (usually only for the filament or a feedback signal) flows during both scan and flyback.

EHT (High-Voltage) Generation

The EHT (Extra High-Tension or HV to the CRT) is generated from a secondary winding on the flyback transformer having several thousand turns of very fine wire. Being a flyback supply, the actual output voltage is many times what would be calculated based on turns ratios alone. The HV rectifier consists of a stack of silicon diodes with a total PIV rating of 50KV or more. Because the flyback pulse is so narrow, the rectifier diode will conduct only a short time. Thus the peak current in the winding will be quite high, resulting in a significant voltage drop when loaded. The internal impedance of the EHT source is in the order of 1 megohm, so with a load of, for example, 1mA, the EHT will drop 1000 V = -3%. Usually the EHT voltage is far from stable; a 10% drop is quite normal.

If the EHT voltage drops, then the electrons will be accelerated less and will move through the deflection field at a lower velocity. As a result they will be easier to deflect by the magnetic field, and the picture size will grow. Without special measures, brighter pictures will be larger. The way to prevent this is to feed some EHT information or beam-current information to the deflection circuits, reducing the deflection current amplitude a bit for bright pictures. For horizontal deflection, that is done by the E/W modulator. This technique is called anti-breathing.

Sets with raster-correction-free picture tubes don’t have an E/W modulator. There the correction might be done by means of a power resistor in series with the B+ supply. A large beam current causes more power consumption; this lowers the B+ supply voltage and thus reduces the line-deflection current. That also reduces the EHT even further, but the deflection current has a stronger effect on the picture width than the EHT. Better methods exist as well.

The EHT information is also used to protect the flyback transformer from overload. As the load increases, the average primary current rises. Ultimately it may reach a level where the transformer core may go into saturation. This causes large peak currents in the Hiot, which might lead to destruction. To prevent that, some EHT information is fed to the contrast controller to automatically reduce the picture brightness whenever the white content is too high. That is called the average beam-current limiter.

A failure in the video path, like a video output amplifier stuck at 0 V, causes a high beam current that will not react to the contrast controller. In that case, the beam-current limiter will not work; and the set should switch off automatically, usually within a few seconds after applying power. When the cathodes heat up, you’ll see an even picture with diagonal retrace lines, and then it will switch off.

“Real-World” Circuits

Don’t expect to find the circuits shown this month to be staring you in the face when you get your Sam’s Photofacts or service manual. There are a semi-infinite number of variations on this basic theme. Some of them will, to put it mildly, appear quite obscure (or to put it more positively, creative) at first.

You might see all sorts of additional passive components as well as transformers for generating additional voltages not provided by the flyback. There could be diodes in places you would think would be impossible. Therefore, to really understand even approximately how each design works could require some head scratching—but the basic operation of them all seems to be very similar.

Wrap Up

That’s it for now. Next time we will continue our discussion of deflection-system operation with some information about horizontal-output transistors and deflection system problems. Until then, check out my Web site: www.repairfaq.org. I welcome comments (via e-mail please at sam@stdavids.picker.com) of all types and will reply to requests for information. See you next time!
Intel's Coming CPUs

If you're a regular reader of this column, you might have noticed there's a different name listed above. Rather than going into a long-winded introduction, let me simply take this opportunity to say that I'm delighted to take over this assignment and happy to be able to promise many great installments of Computer Connections in the coming months and years.

Expect hands-on advice for upgrading your PC, as well as details on just what makes its components (both old and cutting edge) tick. If it's a new technology, application, or industry trend, there's a good chance you'll find it covered in these pages. We don't need to stress how important computers are to the electronics world (and vice versa); and if you want to be a hands-on part of the state of high-tech, you have to keep abreast of the PC world.

While other magazines rely primarily on computer product reviews, this column will focus on making you truly savvy about what's inside (or could soon be inside) that cream-colored box on your desk. To get things started, this and next month we'll be focusing on the most important component in a PC. We're talking, of course, about the CPU. While in the past picking a computer was an easy decision (most people would simply look for the highest CPU clock speed they could afford), it's now become a task performed in a blurry market. Intel is no longer the only company supplying chips.

How do you decide which CPU is best for your needs? Sure, all new processors are touting some pretty high clock speeds. But are all, say, 350-MHz chips created equal? Not by a long shot. Find out who the players are, how their products stack up, and, perhaps most interesting of all, what secrets these vendors have in store for us throughout the coming year.

We've got some secrets to share.

The Father Of It All

No discussion of CPU manufacturers can begin without an analysis of what Intel's up to—in fact, its past and future contributions are so significant that we'll only be dealing with this giant Santa Clara corporation this month. We will deal with Intel's competition (such as AMD) in detail next time. Since the first days of the home PC, Intel has pretty much dominated the silicon market for these devices. The engineers there have come a long way, too. Within the past couple of years alone, Intel has come out with several groundbreaking technologies.

The real beginning of the hyper jumps that CPUs have been making recently was MMX Technology. These new instructions, which were added to...
ELECTRONICS CD ROMs
The most effective way of learning Digital Electronics

Complete Course on CD ROM! Only $74.99

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits and Components, and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The included virtual laboratories allow users to operate many circuits on screen.

Digital Fundamentals
Starting from the very basic principles of logic gate operation, Digital Electronics guides users through Boolean algebra, combinational and sequential logic to complex digital systems such as A/Ds and D/A s, memories and microprocessors. Virtual Laboratories and worked examples help to build students' confidence and promote understanding.

Combinational Sequential Logic
Multiple gate circuits, equivalent logic functions, and specialised logic functions such as majority vote, parity checker, scrambler, half and full adders. Includes fully interactive virtual Laboratories for all circuits.

Sequential Logic, Digital Systems, and a Gallery of commonly used IC schematics are also included!

- Virtual Laboratories
- Worked Examples
- Full Audio Commentary

See and Test a demo version at http://www.MatrixMultimedia.co.uk

Claggk Inc., PO Box 4099
Farmingdale, NY 11735-0792
e-mail: claggk@poptronix.com

Name __ Phone __________________________
Address __
City _____________________________________ State ________ Zip __________

Enclosed is $74.99 for each student version of Digital Electronics on a single CD ROM, shipping included inside the U.S. Shipping costs to Canada an additional $3.00. Overseas orders please contact CLAGGK, Inc. for shipping costs. I am ordering () copies at $74.99 each. NY State residents must include sales tax.

[] I have enclosed my check for $____________
[] Please charge my credit card for $____________

[] Visa [] MasterCard [] Discover Expiration Date ________

Card Number __________________________ Signature ________________

(Name on order and signature must be the same as on Credit Card.)

the old x86 instruction set, helped CPUs perform about 10 to 20 percent better when running multimedia software designed for MMX. It was Intel’s first real step toward bringing the world a more “visual” PC.

Then came the real rocket: Pentium II. While the Pentium was an impressive chip, it’s literally only half as impressive as a PIII with a similar clock speed. In short, a typical 233-MHz Pentium II machine will benchmark almost twice as fast as a 233-MHz Pentium with MMX. (Just to clarify, all Pentium II chips have MMX Technology, but all Pentiums do not, which is why we differentiate when the latter has it present, and say “Pentium with MMX” or “MMX Pentium.”)

What makes PII so powerful? For starters, the core of the chip contains 7.5 million transistors—about twice as many as a typical MMX Pentium. Like MMX Pentium CPUs, the Pentium II has two separate 16K, on-chip Level-1 caches, which run at processor speed and provide fast access to heavily used data. However, the PII also has a closely coupled 512K Level-2 cache that helps achieve higher performance.

Having an L2 cache right in the processor package—the PII comes in a single-edge contact cartridge (SECC) form factor—eliminates data-transfer speed bottlenecks. Rather than the L2-cache bus controller used in the older Socket 7 architecture, where the L2 cache was separate on the motherboard, a dedicated 64-bit bus handles transfer between the processor and L2 cache housed within the silicon and does so at half the processor speed.

The Pentium II's Dynamic Execution Technology is another great boost to its power, allowing the CPU to execute instructions out of order and take full advantage of each clock tick. Better yet, the Pentium II can speculate as to which instructions might be needed in the near future and perform those in advance.
The chip is also superscalar, which means its internal pipeline architecture lets it execute multiple transactions simultaneously.

Another boon to the Pentium II's speed is the dawn of Deschutes technology. While in the past processors were being manufactured with 0.35-micron traces, Intel got that distance between traces down to 0.25 microns, cutting down on power use and increasing clock frequencies (electronics don't have to travel as far). As we'll see later on, the Deschutes manufacturing process will not be this year's miniaturization limit.

Combined with the 440LX and later 440BX chipsets, the Pentium II has remained the fastest chip available for a PC. From benchmark testing, we have concluded that MHz for MHz, no other CPU outclasses the PII yet. For this reason, the Pentium II's performance is the standard against which all competitors will be judged. Again, more on them next month.

3-D Wars

Chances are that you've already heard of AMD's 3DNow! technology. With all the print and TV advertising going on, it's pretty hard not to have noticed the hype. That might lead some people to believe that AMD has finally beaten Intel in terms of innovation—if all, Intel hasn't released a 3-D in-process technology yet. However, the truth is a bit more complicated than that.

The idea of in-chip 3-D technology is to enable a CPU to handle more floating-point operations per clock tick (say, four instead of one). It is floating-point operations that handle most of the multimedia magic that appears onscreen. With extra floating-point horsepower available, game and graphics-program designers can write code that performs more smoothly yet doesn't overload a PC video system. AMD was indeed the first company to release such a technology.

However, while 3DNow! technology is available in the K6-2 processor (more on this chip next month), AMD's market share is still not so large that software developers can easily invest in supporting the K6-2. There are a couple of games that have 3DNow! patches available for download, but the majority of vendors are instead busy themselves preparing for the release of what's certain to be a faster 3-D CPU with more market penetration—Intel's Katmai.

Which brings us to this month's real "goody"....

Intel's Roadmap

As you might have guessed, processor manufacturers know quite a bit in advance that CPUs they're going to bring out. I got Intel to share with us a few of its secrets for the rest of the year. Because of space considerations, we'll only be dealing with desktop processors. Laptop chips and technology will be a topic for another day.

If all goes as scheduled, Intel's much-awaited Katmai processor will soon be appearing in desktop computers. This is a Pentium II with 3-D enhancements in the form of 70 new instructions. But the fact that almost every software manufacturer on the planet is writing to support Katmai is not its only benefit over 3DNow! Katmai can handle real-time MPEG-2 encoding, which will make it possible to record DVD-quality video and audio on your computer.

The new PII will launch in clock speeds of 450 and 500 MHz. While there is currently a 450-MHz PII, Katmai's floating-point enhancements will make both chips perform faster than existing PIs. Katmai will also use the 440BX chipset, which means that current 350-to 450-MHz Pentium II systems may be upgradeable to the chip (depending on whether the BIOS can handle or be upgraded to handle the CPU).

In addition to its high-end performer, Intel will also expand its Celeron line of processors this year. Soon after this issue hits the stands, Intel should be announcing a 366-MHz version of this "basic PC" chip. Like its 300- and 333-MHz predecessors, the new Celeron is basically a Pentium II with only a 128K integrated L2 cache. Expect a 400-MHz Celeron soon after.

Moving back to the high-end CPUs, we have to address the exciting advances coming in the second half of '99. As you might have guessed, we will definitely see faster-than-500-MHz chips. The first of these from Intel is code-named Coppermine, because of its new copper-interconnect assembly technology. This is a cheaper method of creating CPU traces and will result in faster chips because it is a 0.18-micron process. While Intel is sketchy on the details, expect Coppermine to use a bus speed that's even faster than the 440BX—maybe 133 MHz? We'll likely see 600-MHz Coppermine chips this year, if not faster ones.

And that's pretty much what Intel has in store for the desktop PC market. Join us here next time for a look at what the competition is up to. If you'd like to drop me a line in the meantime, feel free to e-mail me at connections@gernsback.com, or send a USPS letter to Computer Connections, Electronics Now, 500 Bi-County Blvd., Farmingdale, NY 11735.
Hardware Simulator

OFFERING LOW-COST SYSTEM debugging for base-line PICmicro 8-bit RISC microcontrollers, such as PIC12C5XX, PIC12CE5XX, and PIC16C5XX, the SIMICE hardware simulator works in conjunction with Microchip's MPLAB-SIM software simulator to provide non-real-time I/O port emulation.

SIMICE enables a developer to run simulator code for driving the target system. The target system can give input to the simulator code, which allows simple and interactive debugging without having to manually generate MPLAB-SIM stimulus files. Features of this simulator include unlimited software breakpoints, PC communication via serial interface at speeds up to 57k baud, and support of source-level debugging.

MPLAB Integrated Development Environment (IDE) reduces microcontroller development time by giving users the flexibility to edit, compile, and emulate, as well as program, all devices from a single user interface. A project manager and program text editor, a user-configurable toolbar containing four predefined sets, and a status bar that communicates editing and debugging information are contained in the MPLAB software. A dynamic error capability allows rapid application development with a simple click on any error listing, returning the user to the source code for quick editing.

MPLAB is available for free by downloading the software program from the Web site listed below. The complete SIMICE Hardware Simulator system features a hardware I/O port emulator board, RS-232 cable, PICmicro target probe cables, and MPLAB IDE software. For more information, contact any Microchip sales representative or authorized worldwide distributor. SIMICE has a list price of $129.

MICROCHIP TECHNOLOGY, INC.
2335 W. Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602-786-7668
Fax: 602-899-9210
Web: www.microchip.com

Dual-Display Digital Multimeter

DESIGNED TO PROVIDE PRICE/performance value, the Model 2880A is a high-performance, dual-display DMM. This hand-held device is ideal for use in electronic and electrical field service, plant maintenance, and engineering/R&D applications.

"These products offer unique and useful features not normally found in a typical DMM, especially at this price," said Mark Albert, director of marketing, as well as "...RS-232 computer interface and the added functionality of in-depth, long-term signal analysis utilizing the dual display."

Other features include two user-selectable operating resolutions (4000/40,000 counts), voltage to 1000VDC/750 VAC, and current to 10 amps. There is also a dual-display providing frequency to 200 kHz with AC signal measurement, resistance to 40 megohms, and capacitance to 9999 µF, as well as diode check and continuity. User-friendly features, such as: data hold, relative mode (displays the difference between a set input and subsequent inputs), and max/min/avg reading of an input with an elapsed timer, make this a very practical test instrument for the professional or serious hobbyist.

The 2880A offers true rms measurements to accurately display non-linear and traditional loads and is IEC1010-1 Cat III approved. An optional accessory
NRI Schools now gives you a fast, easy way to break into the high-tech industry as a PC Servicing Technician

With NRI's PC Servicing course, you can get the practical skills and experience to service any computer with confidence. From diagnostic software to CD-ROM tutorials to a high-end computer system, NRI gives you the technological tools and training you need to carve out a successful new career, even start a business of your own!

Learn essential PC servicing skills with these unique course features:

- CD-ROM training from Norton interactive—designed by acclaimed software developer Peter Norton, this unique training has realistic simulations, special effects, full-color graphics, and role-playing lessons.

- ForeFront Troubleshooter™ Software and CD-ROM pinpoints system failures and diagnoses faulty components.

- Troubleshooting training—includes McGraw-Hill's easy-to-follow guides on troubleshooting and interactive computer-aided electronics diskettes relating to four key areas: AC electronics, DC electronics, semiconductors, and electronic circuits.

- Windows 98—this long-awaited version of Windows has more power, a new Web look, e-mail capabilities, single-click functionality, and System File Checker.

A+ Certification—a credential that counts!

Your value as a computer service technician will soar with coveted A+ Certification. With NRI, you get essential study tips, test-taking strategies, and supplemental lessons, plus interactive tutorials and practice tests on CD-ROM. As you prepare for the exam, you'll also benefit from online support from NRI's personal instructors.

You cover these important exam subjects:
- Diagnosing & Troubleshooting
- Memory Management
- Networks
- Operating Systems
- Printers
- Portable Systems
- and more!

Call or send for FREE information: 1-800-321-4634

or reach us online at: www.nrischools.com
package that includes software and a cable with an optical receiver that connects to the meter permits RS-232 communication between the 2880A handheld DMM and a PC. The software allows for saving, loading, making reports, displaying multimeter readings, printing data and controlling data recording.

The Model 2880A sells for $199 (single quantity pricing). The AK2880A Accessory Communications Package is $15.

B&K PRECISION CORP.

1031 Segovia Circle
Placentina, CA 92870-7137
Tel: 714-237-9220
Fax: 714-237-9214
Web: www.bkprecision.com

High-Accuracy Resistance Standards

THE SRL SERIES IS A VIRTUALLY zero temperature coefficient set of high-accuracy resistance standards. For testing very low values, tellurium copper for binding for 4-ohms, are available in standard resistors. Economical and cost effective, the 28 °C coefficients set to zero exhibit virtually zero temperature bath stabilization. The dimensions of the standards are 3.4 X 4.2 X 5 inches, and the weight is 1.6 lbs. The optional lightweight carrying case with handle (SRC-100) is designed for transporting two units. The case provides insulation from temperature changes during transportation.

The SRL Series basic price is $1569, and the SRC-100 carrying case costs $185.

IET LABS, INC.

534 Main St.
Westbury, NY 11590
Tel: 516-334-5959
Fax: 516-334-5988
Web: www.ietlabs.com

PC-Based Harness Tester

WITH WINDOWS-BASED SOFTWARE AND FEATURES SUCH AS SEQUENTIAL AND RANDOM BUILD/TEST MODES, SINGLE AND CONTINUOUS TEST, AND GRAPHICAL GUIDED-ASSEMBLY CAPABILITIES, THE easy-wire CR harness/ backplane tester makes harness assembly and testing easier and more efficient.

The CR offers on-screen graphical representations of connectors, sound prompts for correct/incorrect wire placement, and blinking LEDs on the harness board to guide assembly. Among the additional features are repetitive continuous testing and the ability to add wire names and colors. The data base can be backed up to import and export across networks for multiple testing.

These features make it easy for operators to quickly learn an assembly and to identify wiring errors and defects (opens, shorts, miswires, twisted-pair defects, and terminations with high resistance) as the harness is built. The tester's small size (each 256-point box measures 5.4 X 6.6 X 2.6 inches and weighs under 3 lbs.) and daisy-chain architecture allow users to distribute the test points around the device under test, reducing the length and complexity of the interface cabling. With expandability up to 65,024 points, the easy-wire CR should meet the largest test requirements.

The easy-wire CR Base Unit (256 points) has a list price of $1745. Scanner Add-ons (256 points) cost $895 each.
Notebook Digital Camera
THE FIRST DIGITAL CAMERA built especially for notebook computer users, the PDR-5 offers out-of-the-box functionality with Windows and Macintosh notebooks. Designed as a companion for on-the-go professionals—field engineers, project managers, security personnel and marketing staff—the camera is optimized for notebook use because its back-panel doubles as a built-in PC Card interface.

To use the PC Card, simply flip it open, and plug it into any Type II slot. Once the card is inserted, the computer automatically recognizes it as a drive for file-transfer purposes. The JPEG format images are then retrieved via Sierra Imaging's drag-and-drop Image Expert Album software format on the computer screen, thus simplifying photo selection.

With the PDR-5, there is no scanning and no film developing. Its VGA-quality images are instantly available on a notebook, and it can be used to create e-mail attachments; Web-page graphics; professional-looking brochures, flyers and field reports; as well as for presentations.

Other outstanding features of the digital camera include: a wide-angle 39mm all-glass lens with macro, a reflective 2.5-inch color LCD, SmartMedia storage, video-out, and a four-mode flash. The camera weighs just 6.4 ounces and fits inside a shirt or jacket pocket.

Accessories for the PDR-5 include a long-life CR123A lithium battery, a hand strap, a 2-GB SmartMedia card, and a carrying case. The estimated street price is $399.

TOSHIBA AMERICA INFORMATION SYSTEMS, INC.
IMAGING SYSTEMS DIVISION
9740 Irvine Blvd.
Irvine, CA 92618
Tel: 800-288-1354
Fax: 800-640-8674
Web: www.toshiba.com/taisd

Switching Power Supply
THE 25-AMP MIGHTYLITE switching power supply can power HF transceivers or 2-meter/440 MHz mobile or base and accessories in the shack, or anywhere else you need it. Its three-inch dual meters are brightly illuminated to make it easy to monitor voltage and current.

MightyLites are so lightweight and small that they can be carried in the palm of the hand—no more heavy, bulky power supplies. The 25-amp version, the MFJ-4225MV, weighs just 3.7 lbs., five times lighter than an equivalent switching power supply, and measures only 5 1/4 by 4 1/2 by 6 inches.

The unit features a front-panel voltage control to vary the output voltage from 9 to 15 VDC and yields a highly regulated voltage output. It gives less than 35 mV of peak-to-peak ripple and a better than 1.5% load regulation under a 25-amp full load. Users won't hear hash in the signal, and their buddies won't hear it on their end either.

The MFJ-4225MV has three sets of output terminals, including a pair of heavy-duty five-way binding posts and a cigarette lighter socket for mobile accessories. In addition, in the rear there are two sets of quick-connects for accessories.

The power supply is fully protected with over-voltage and over-current protection circuits and with a quiet internal fan to cool it. The MightyLite is fused, has a switchable AC input voltage, works from 85 to 135 VAC, meets FCC Class B regulations, and provides 25 amps maximum or 22 amps continuous.

The MFJ-4225MV sells for $149.95. The MFJ-4245MV MightyLite, a 45-amp version, is also available for $199.95.

MFJ ENTERPRISES, INC.
P.O. Box 494
Mississippi State, MS 39762
Tel: 800-647-1800
Fax: 601-323-6551
e-mail: mfj@mffenterprises.com
Web: www.mffenterprises.com

SDRAM Memory Tester
WITH THE COMPUTER INDUSTRY's move to the Intel PC100 motherboard standard, there is a great demand for true 100-MHz testing equipment. The 125-MHz test engine and the 1-ns speed resolution technology of the Sync DIMMCHECK 168 adapter combine to provide an affordable testing solution for SDRAM and standard EDO/FPM 168-pin DIMM modules.

The adapter snaps into the Simcheck II or Simcheck IIe. With the push of a single button, the fully automatic test programs allow even non-technical personnel to test memory. The adapter quickly tests the module's functionality, size, speed, type, and gives detailed structure information.

It then proceeds with full SDRAM mode tests and comprehensive Page Burst and Blank Interleave tests. The Sync DIMMCHECK 168 adapter provides full support for SPD data (Serial Presence Detect), including reading, editing, and programming. The adapter retails for $995.

ARISTO COMPUTERS, INC.
6700 SW 105th Avenue, Suite 300
Beaverton, OR 97008-5484
Tel: 800-3ARISTO or 503-626-6333
Fax: 503-626-6492
Web: www.aristocom.com

The 76th edition of the handbook maintains its reputation as the best all-around electronics reference. Over the past 75 years, this guide has meant many things to generations of hams, students, engineers, and technicians. It's been an extensive resource for projects for all levels of building experience, an invaluable source of reference material, and a thorough foundation of electronics and communications theory.

This 1200-page book has served as an overview of what hams do and how they do it. For newcomers to the hobby, it's provided an introduction to the modes and equipment hams use, as well as to the theory.

The new projects in this edition include a 13.8-V/40-A switching power supply, a legal-limit Svetlana 4CX1600B amplifier, and a voice keyer, as well as an enhancement to the high-power antenna tuner introduced in the Handbook's last edition. In response to reader's comments, this volume includes PC templates for the weekend projects. The larger more complex templates are on the ARRL Web site listed above.

The handbook is divided into 30 chapters grouped under five headings: Introduction, Fundamental Theory, Practical Design and Projects, Construction Techniques, and Operating Practices. In addition, the software for the book is now available separately. It can be downloaded from either the League's Web site or from its Hiram BBS, or it can be ordered for a nominal cost.

ECG Semiconductor Master Replacement Guide, 18th Edition
from Philips ECG
Tel: 800-526-9354
Web: www.ecgbilips.com

The latest ECG Master Replacement Guide contains a wide variety of high quality replacement devices for the entertainment industry and commercial and industrial companies. The most comprehensive, single source of replacement information available today, the 18th edition of this guide features new products, new product families, additions to existing lines, and approximately 300,000 cross-references. Using the expanded cross-reference guide and other selector guides makes it easy to select the best ECG part for an application.

ECG now offers the most complete user cross-reference library in the industry—the entire data base has been updated from the recently published 212T Master Guide and the software has been upgraded. The Philips ECG Instant Cross program is available in both DOS format and Microsoft Windows 95.

Philips ECG semiconductors are available through a global network of distributors. The ECG Semiconductor Master Replacement Guide, 18th Edition is free upon request from your local distributor. Contact Philips ECG at the phone number or Web site listed above to locate the nearest distributor.

Stopping Spam
by Alan Schwartz and Simon Garfinkel
O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
Tel: 800-998-9938 or 707-829-0515
Fax: 707-829-0104
Web: www.oreilly.com

$19.95

Why are we getting spam—junk messages, unsolicited ads, come-ons, and pornography in our e-mail mailboxes, and newsgroups—and who is sending them? This book answers these questions about unwanted e-mail messages and inappropriate news articles, discussing what can be done about them and how they can be stopped and even outlawed. According to the authors, "Spam is the Internet's version of junk mail and telemarketing calls ... all rolled into a single annoying electronic bundle."

Meant for everyone who surfs the net; for administrators of systems, news- groups, and networks; and for Internet service providers (ISPs); Stopping Spam covers methods to help stop junk e-mail. The top three weapons in this battle are keeping your e-mail address private or disguising it, using filters, and registering complaints about spam to ISPs.

In addition to technical details, readers will find entertaining stories about famous Internet chain letters and court
Winter 1999 Short Form Designer's Guide

Analog Devices
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
Tel: 800-262-5463 or 781-329-4700
Fax: 508-894-5114
Web: www.analog.com
Free

Analog Devices designs, manufactures, and sells sophisticated electronic components and subsystems for use in signal processing. In the last year, they introduced more than 100 new products, bringing their total product lines to over 1500 items. To provide maximum usefulness to designers of new equipment, the contents of the selection guide are limited to products most likely to be used for the design of new circuits and systems.

This catalog is organized for quickly narrowing the product search using its “Trees” or “Selection Guides.” The text begins with an introduction to new products, including ADµC812 MicroConverter; dual access accelerometers; and DSP processors, such as the ADSP-21061. At the back of this volume, readers will find a list of older products still in production, as well as a guide to substitutions and those part numbers that are on lifetime buy.

This publication, coupled with the CD-ROM (available separately), makes for a paper/paperless data book. Once readers have found a solution, they can print the data sheet from the CD-ROM or use the Web or the faxback system to download it. The CD-ROM contains all the data sheets, along with parametric search engines, application notes, SPICE models, and a cross-reference guide.

Combinatorial Optimization
by William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander Schrijver

Wiley-Interscience
John Wiley & Sons, Inc.
605 Third Avenue
New York, NY 10158-0012
Tel: 212-850-6336
$49.95

One of the most vital areas of applied mathematics, combinatorial optimization integrates techniques from combinatorics, linear programming, and the theory of algorithms. Because of its success in solving difficult problems in areas from telecommunications to VLSI and in areas from product distribution to airline crew scheduling, the field has grown over the past decade.

Written by a team of experts, the text offers a thorough, highly accessible treatment of both classical concepts and recent results. It is an ideal introduction to this mathematical discipline for advanced undergraduates and graduate students of discrete mathematics, computer science, and operations research. Topics include network flow problems, optimal matching, integrality of polyhedra, matroids, and NP-completeness.

Featuring logical and consistent writing, clear explanations, real-world examples, and helpful exercises, this volume is sure to become a standard in the field.

1998/99 Jensen Tools Catalog
Jensen Tools Inc.
7815 S. 46th Street
Phoenix, AZ 85044-5399
Tel: 800-426-1194
Fax: 800-366-9662 or 602-438-1690
e-mail: jensen@stanleyworks.com
Web: www.jensentools.com
Free

Jensen Tools—supplier to the electronics industry since 1954—has completely redesigned and expanded their catalog; this edition is 308 full-color pages. This comprehensive reference guide features premium Jensen-brand products, including 50 pages of original JTK tool kits, a new line of high quality handheld JTM multimeters, and an extensive selection of hand tools.

Over 5000 total products from major manufacturers are available, including test equipment, computer and LAN support, wire and cable, telecom, power tools, soldering, storage and handling, work stations, lighting and optical, shop supplies, and communications products. Hundreds of new products—many new to the industry—have been added.

A complete online catalog with secure e-commerce is also available at the Web site above.

Semiconductor Material and Device Characterization, 2nd Edition
by Dieter K. Schroder
Wiley-Interscience
John Wiley & Sons, Inc.
605 Third Avenue
New York, NY 10158-0012
Tel: 212-850-6336
$89.95

Devoted to the characterization techniques used by the modern semiconductor industry to measure diverse semiconductor materials and devices, this book covers the full range of electrical and optical characterization methods, while thoroughly treating the more specialized chemical and physical techniques. It is a practical and an essential reference for research and development in the industry, as well as for students at the graduate level.

This edition covers the many innovations in the field during the last decade. The easy-to-use text includes a real-world mix of units, rather than strictly MKS units. From the detection of metallic impurities in silicon wafers to...
the use of microwave reflection to measure contactless resistivity, each chapter presents state-of-the-art tools and techniques. There are numerous examples, and end-of-chapter problems have been added for this edition. In addition, there's a new chapter on reliability and probe microscopy. Five hundred illustrations were also revised.

1999 Catalog
Antique Electronic Supply
6221 South Maple Avenue
Tempe, AZ 85283
Tel: 602-820-5411
Fax: 602-820-4643
e-mail: info@tubesandmore.com
Web: www.tubesandmore.com
Free

Offering the most diverse line of products for all types of tube gear, including vacuum tubes, transformers, capacitors, parts, supplies, and literature, this 72-page catalog contains many new products. Among them are ferrite rods, inductor coils, gift items, a line of Hammond classic 300-series power transformers, a line of telegraph keys, books, and many other products. There are also newly packaged "Screamin' Deals."

The telegraph keys are high quality, beautifully made, and reasonably priced, and they are great gifts for the ham in your life. Three types of keys are available: straight key, tambic paddle, and a dual straight key and tambic paddle. They are imported from Spain, have gold-plated brass keys on an olive wood base, and the handles and knobs are teakwood.

Books that Bridge Theory & Practice

Many electronics enthusiasts discovered that the bridge from classroom theory books to hands-on project building is difficult to span at times without a handy pocket guide. Even the equipment manual to operate a gadget often makes things murkier rather than clearer. A compact text authored by a seasoned expert with hands-on knowledge and a knack of writing in an easy-to-understand style is many times more valuable than the price of ponderous theory and equipment manuals or the parts for a project that could be damaged. Here's a sampler of some titles you may want to own!

ELECTRONIC HOBBYIST DATA BOOK—The info you need to transport you from the schematic diagram to project parts. Pin-outs, color codes, truth tables, parts parameters, etc. Order BP396—$10.99 Includes S & H

PRACTICAL INTRODUCTION TO SURFACE MOUNT DEVICES—A technology that spun off the automated assembly line into the grasp of experimenters and project builders. Order BP411—$9.99 Includes S & H

THE INTERNET AND THE WORLD WIDE WEB—The most difficult part of the Internet is its mystery. Erase the mystery and you'll become the super surfer with a little help from this book. Order BP403—$10.99 Includes S & H

PRACTICAL OSCILLATOR CIRCUITS—If your budding project requires an oscillator, you can design it and build it from the many types described here in a hobbyist-friendly style. Order BP393—$9.99 Includes S & H

EASY PC INTERFACE—Hot shot Pentium computers to the lowly XT slow poke can interconnect to the outside world to sense and/or control events governed by simple writeable software and simple home-brew projects. Order BP385—$9.99 Includes S & H

Please send me the following book(s) that I checked:

☐ BP396—Electronic Hobbyist Data Book—$10.99
☐ BP411—Practical Introduction to Surface Mount Devices—$9.99
☐ BP403—The Internet and the World Wide Web—$10.99
☐ BP393—Practical Oscillator Circuits—$9.99
☐ BP385—Easy PC Interfacing—$9.99

All above prices include shipping and handling.

Name/Company__________________________
Address__________________________Apt.
City________State______ZIP

Sorry, no orders accepted outside the USA and Canada. All payments must be in US funds! NY state residents must include local sales tax. Allow 6-8 weeks for delivery.

March 1999 Electronics Now

24
A s tragedy has shown us, the "black boxes" carried by airliners are often the most important source of evidence in helping the investigators determine the precise reasons for an aircraft crash. Now that same concept is moving to the family automobile: Though less sophisticated, nine different 1999 General Motors cars feature "black box" crash-data recording capability. The 1999 models scheduled to be fitted with the new system include the Buick Century, Park Avenue and Regal; Cadillac Eldorado, Deville and Seville; Chevrolet Camaro and Corvette; and Pontiac Firebird.

The system, which GM calls an advanced event-data recorder, is an enhancement of the air-bag sensing and diagnostic module (SDM) that has been installed in GM-built vehicles for several years. The SDM records information about the readiness of the air-bag systems when the sensors are activated and if the driver's safety belt is being used at air-bag deployment or in a near-deployment crash.

Gathering More Information

The new enhanced system adds vehicle speed, engine RPM, throttle position, and brake use for the five-second period before the crash. The data is captured in one-second intervals by a method conceptually similar to an endless-loop tape. Actually, the term "black box" is a misnomer since enhancements included in the SDM required no additional hardware, just connections to a local area network within the vehicle so the SDM can "talk to" the other computers and sensors in the vehicle.

In the event of a crash, an SDM senses any frontal impact and determines when to deploy the air bags. Now it also provides a signal to store the data on four additional parameters taken during the previous five seconds. The recorded data can be retrieved even if the battery is disconnected or the SDM box is unplugged.

The enhanced SDM stores information whenever a severe impact causes the air bags to deploy; under certain circumstances, it may also store data for a "near-deployment" event. An impact at about 12 mph or greater into a rigid barrier will trigger data collection as will a crash into a parked car at 24-30 mph. Data storage will occur only during frontal collisions—the major cause of death or serious injury in crashes.

Making Safer Cars

Like black boxes in airliners, which provide important research data that can prevent future crashes, event data recorders installed in automobiles could also help design safer vehicles. Last year, the NTSB recommended to the National Highway Traffic Safety Administration (NHTSA) and the automotive industry that they "gather better information on crash pulses and other crash parameters in actual crashes, utilizing current or augmented crash sensing and recording devices." This system answers this recommendation.

The GM advanced event data recorder will provide significant real-world data to improve automotive safety. Researchers will have new information on how drivers react to hazards and interact with their vehicles. That information can help provide critical insight into crashes and resulting injury patterns. The bottom line is data that can eventually lead to improved designs that are more crashworthy.

Post-crash reconstruction will also be easier and more precise thanks to these units. Data from the recorders will be available to augment data collected by law-enforcement and insurance investigators. Future vehicle-defect investigations and rule making can also benefit by having a more objective and scientific basis.—By Bill Siuru
Virtual Reactions

The development of the virtual microscope is still in the early stages, but NEC's latest computer-simulation technologies have advanced to the point that scientists can "watch" and replay the complex mechanisms of chemical reactions at the atomic and molecular level. A detailed understanding of such mechanisms should make it possible to make existing production methods safer and more efficient.

The virtual microscope is a molecular simulation system that uses a supercomputer to recreate the chemical reaction process—as understood by quantum mechanics—that occurs when molecules collide and displays the process using computer graphics. Chemical reactions occur on the picosecond (one trillionth of a second) scale. The virtual microscope can solve Schrodinger's equations in femtoseconds (one quadrillionth of a second). When one cycle of calculations is completed every 1/20 of a second and the results are continuously displayed via computer graphics, the chemical reaction process can be portrayed with smooth animation. Because it is an online simulation, the scientists' commands, such as degree of rotation and magnification of the graphics, can be processed during the calculation step. Parameters that in a laboratory experiment would correspond to variables such as temperature can also be changed during the simulation.

Where the virtual microscope differs from conventional simulation systems is that when the scientists actually intervene in the simulation, they can observe chemical reactions as if they were watching them through a microscope in the lab. Using a virtual microscope, scientists can watch chemical reactions occurring at slow-motion speeds of 10 to the 14th power and magnifications of 10 to the 9th power.

Among the benefits of the virtual microscope are that 1) chemical behavior of molecules unseen in the natural world can be observed; 2) simulations can be run to mimic extreme conditions of pressure and temperature; 3) the time scale can be controlled at will—slowing down the reaction, stopping it, or even running it backwards; 4) magnification and rotation of the graphics display is also possible, meaning that observers can voluntarily change their visual perspective of the reaction; and 5) computer simulations are perfectly safe, with no danger of accidents or mishaps.

With this virtual microscope system, a graphic work station is in charge of the image processing. In the upper left corner of the screen, there are control buttons similar to the pause and rewind buttons on video recorders. Clicking on these buttons makes the simulation stop or back up. The chemical reaction can be seen developing over time on the right side of the screen. While watching the reactions unfold, the viewer's perspective and variables such as temperature can be changed to give a true understanding of the mechanisms involved.—Courtesy Look Japan, (November 1998); reprinted with permission.

Reduce Stress: Stare at Your Computer Monitor

With computer users and TV viewers spending increasingly more time in front of the screen on the job and at home, scientists have expressed increased concern about the extent of long-term exposure to CRTs. The Fresh BioDisplay CRT (Cathode Ray Tube) from Samsung Display Device (SDD) is a "major breakthrough" in CRT technology values for computer monitors and televisions.

"Fresh BioDisplay is engineered to be environmentally safer than a standard CRT," said Hunsoo Kim, general manager of SDD. This CRT's technology increases the delivery of carefully modulated light waves in the far-infrared portion of the spectrum, strongly reducing stress on the viewer.

In a study conducted by Dr. Machi Yoshio, a professor at Tokyo Denki University and an expert in the physiological measurements of "subtle energy," subjects who viewed Fresh BioDisplays over long periods displayed a marked reduction of stress. According to Dr. Yoshio, the far-infrared ray (FIR) emissions from these CRTs increased alpha wave production in viewers, a bio-beneficial effect that resulted in less stressful brain wave patterns.

Aside from stress, another concern is the physical impact of CRTs on users. Standard CRTs generate positive ions caused by high voltage and heat, thus breaking the "ion balance." Aging, caused by high-speed heavy ions in dust colliding with the face, is promoted by long-term exposure to electrostatic...
National Laboratory's high-performance computing capability, the Lab's researchers are working on a project to give city officials, regional planners, police, and other agencies a tool to help them plan for and respond to all kinds of disasters. The project, called the Urban Security Initiative, links a wide range of urban subsystems—transportation, energy and water distribution, weather, infrastructure, ecosystems, economic activities, geology, and demographics—into an integrated system that contains all the pieces of the project and combines them into common databases along with geographic information.

"The tools being developed through this project can be used to help deal with natural disasters, environmental problems, the threat of chemical or biological attacks, industrial accidents, and other events," said geologist Grant Heiken, a member of the Urban Security Team. The project, now in its second year, involves many scientific disciplines, huge amounts of data, dozens of computer programs and tricky interfaces, and numerous collaborations. Heiken likens it to a big jigsaw puzzle being assembled by different groups, with various sections emerging and then needing to be connected properly to make a complete picture.

In addition to improving the responses to emergencies, the project is designed to help prepare for catastrophic events more effectively. "In order for a user community to know how to deal with the immediate aftermath of an earthquake, it would be very helpful to conduct training simulations," said astrophysicist Eric Jones. "People also want to find out where to locate their resources before a disaster happens to provide the most effective response."

One collaboration is with the Southern California Earthquake Center and other California agencies on a project to link computer models of seismic ground motion, earthquake-damage predictions, and the infrastructure of the city of Los Angeles to enhance pre-planning and emergency responses. One of the models is of the effects of a major earthquake in the Los Angeles area.

In addition to collaborating on earthquake modeling in Southern California, the team is working with other cities, federal agencies, and professional orga-
nizations. In one program, they are urging additional studies of urban systems, including a request for a declaration of the years 2001 to 2010 as the “Decade of Science in the Cities.” Since almost all growth worldwide is in cities, which are the places most vulnerable to disasters, Heiken believes that “Developing a science-based understanding of their vulnerabilities will help them survive.”

Seeing Machines in A Grain of Pollen

Jim Smith, manager of Sandia’s Intelligent Micromachine Department—together with researchers Trey Roessig, Al Pisano, and Roger Howe from UC Berkeley—have built a microelectromechanical systems (MEMS) prototype that functions as a clock source. The minuscule machine, with moving parts the size of a pollen grain, performs the same job as quartz crystals.

Micromachines are made from polysilicon—the same material used in manufacturing ICs. Because of this, the micromachines and ICs can be constructed on one chip.

The micromachined clock source, conventional ICs, and other micromachined elements can be built simultaneously to form a complete “system on a chip,” Smith says. If mass produced, the chips could dramatically reduce prices and increase reliability.

Hundreds of thousands of the chips can be built on a single silicon wafer. Manufacturing costs would decrease sharply, because assembly would be unnecessary. Currently, quartz-crystal timing devices and ICs are manufactured separately and then assembled.

The MEMS prototype would serve as a replacement clock source. It consists of two very fine strings or tines—ten would fit on a pin head—anchored in parallel to actuator frames. The size of red blood cells. The process of building these devices at Sandia appears capable of fabricating integrated circuits with frequencies above 10 MHz. Despite the high frequencies, these micromachines are producing very low noise. The frequencies provide the constant timing signals necessary for the digital electronics device to operate.

Micromachines, in the shape of a tuning fork, serving as oscillators are not new. The uniqueness is putting the MEMS oscillator on the same chip as the ICs.

Cool Chips

Researchers at Sandia National Laboratories have developed a substrate that removes heat from microchips and PC boards, keeping them closer to their optimum operating temperatures. The Sandia approach uses an intricate network of microscopic, coolant-filled passages formed directly within the substrate.

In a few years, a dime-size microchip may house as many as 10 million transistors. But the electrical resistance created within that tiny world even cause today’s tightly packed microprocessors to get hot—really hot! Hot microchips and PC boards fail faster. More damaging are temperature differences, or gradients, across chips that can cause tiny cracks and stress voids in the wiring.

Quantum Computer Calculations

Scientists have manipulated the atomic spin of molecules to demonstrate that reliable calculations can be made by a quantum computer. A report was published in a recent issue of Physical Review Letters (PRL) on the first experimental use of quantum error cor-

Various heat-removal methods have been devised for high-end microelectronics but not for everyday electronics devices—because of the cost. As these get smaller and operate hotter, even the most common devices may soon require heat-removal technology.

Manufacturers have added small tubular heat pipes to the surfaces of microchips to carry some heat away from circuitry and transfer it to other elements, such as the external surfaces of the PC board. But these surface connections are very ineffective heat removers. In the new Sandia substrate, the “micro-heat pipes” built directly within the substrate material, carry much more heat away from the chip.

Sandia is working to license the technology to a California firm. Research and development agreements are also being discussed with end users in the U.S. microelectronics industry.
strated for the first time that our quantum error correction works as expected. It is also the first time anyone has manipulated three bits in a quantum mechanical way," said Laflamme. "This is the most interesting proof to date that quantum computing is not just a crazy idea."

Unlike today's "classical" computers that make calculations with a binary system of zeroes and ones from digital switches, first-generation quantum computers are assembled from molecular switches called qubits. A qubit can represent one, zero, or potentially any state in between. A functional quantum computer will manipulate atoms to perform many calculations at once by taking advantage of quantum mechanics, which allows qubits to represent many states simultaneously.

"Suddenly you have information encoded on single atoms, and you can do things that you never thought you would be able to do before," said Laflamme. Until recently, the main problem for quantum computing was believed to be an inability to correct errors. Two years ago, the Los Alamos team developed a scheme that uses repetitive processing to reduce the probability of errors. For the general error type, every encoded qubit is checked for errors, corrected, then multiplied five times. Those five qubits also get checked for errors, then corrected and multiplied, etc. Knowing how many steps a particular calculation takes, the theorists can determine the number of checks needed to ensure the calculation's accuracy.

Now the physicists have adopted NMR techniques for experimenting with qubits. NMR allows scientists to manipulate the atomic spins of nuclei by applying an electromagnetic pulse to molecules diluted in a liquid. The signal is amplified by the molecules acting in parallel. Because the researchers knew the most common errors in NMR were of a specific type, they could test quantum error correction ideas using only a three-qubit system.

Functional quantum computers that exceed current machines are years away. However, these experiments show the hurdles to overcome are merely mechanical—the difficulty of manipulating individual atoms.

Intelligence Comes in Small Packages

To meet the industry's needs for simplified mounting and reduced size, Dallas Semiconductor's "1-Wire" chips merge bi-directional, digital communication and power into just one signal plus a ground return. Using flip-chip methodology, the wafer-level solder bumping process produces a ready-to-use package no bigger than the silicon chip itself. These silicon-size packages will benefit designers trying to solve board-layout problems.

"It's the lowest-cost way for one chip to talk to another chip," said Michael Bolan, vice-president of product development. "The electron path goes in one bump and out the other. This is in contrast to the higher number of connections needed for traditional chips."

The smallest Chip-Scale Package (CSP) in the industry, these 1-Wire CSPs can be the size of a pin head (as small as 0.77mm × 1.3mm × 0.43mm), yet are as rugged as their larger, plastic-packaged counterparts. Chips in this package range from a simple silicon serial number to devices that include memory and temperature sensors, and all of them attach directly to printed circuit boards with on-chip solder-bump connections.

The solder bump adds just 0.004 inches (0.1mm), an insignificant increase to the 0.77-mm height of the chip. When placed and refloved on printed board traces, these solder bumps form strong joints. Shear and pull strength tests show that the solder-bump method of board attachment exhibits performance equal to traditional plastic packages. The new 1-Wire CSP packaging passes tests for temperature cycling (1000 cycles of -55°C to +125°C), accelerated operating life, biased moisture, and autoclave.

Manufacturing is simplified as electronic assemblers won't have to retool their automated pick-and-place equipment to place the 1-Wire CSPs on circuit boards; they can use the same equipment that places other components, such as surface-mount chip resistors and capacitors.

"Innumerable everyday things—like printer cartridges, battery packs, medical consumables, and even weather sensors for digitizing the wind—can be more intelligent because the chip can fit into a tight space and survive the use environment," Bolan said. "Often design engineers run out of room as they seek to integrate more and more functionality into ever smaller form factors. Until now, we needed to seal the chip from outside contaminants using a package many times larger than the chip it housed."

For more information, see Dallas Semiconductors' Web site: www.dalsemi.com.
LETTERS

Send your comments to the editors of Electronics Now Magazine

Monitoring Lightning

We have discovered that there was a printer's error in the schematic diagram for the "Storm-Warning Lightning Monitor" (Electronics Now, October 1998). The anode of D1 should be connected to the center conductor of J1 along with S2. Figure 1 in the article does not show that connection extending all the way; someone might think (incorrectly) that it should be connected to the outer conductor, grounding the input to IC1.

We apologize for any problems that this misprint might have caused. — *Editor*

... and Running Lights

It has come to our attention that the foil pattern that appeared in the article, "Daytime Running Lights for Your Car" (Electronics Now, October 1998) had an error. A corrected foil pattern as well as an updated parts-placement diagram (Fig. 1) appears to the right. We regret any inconvenience that might have occurred. — *Editor*

Input and Information

I am writing about three things that have been mentioned either in editorials or in "Letters" in Electronics Now.

First, I like "Prototype." Its coverage of new science and technology, the type of material covered, and the way it is covered make "Prototype" one of the first sections I read in each issue. Second, I like the idea of having a column something like "Try This One" and "Technotes," which were in *Radio Electronics* in the 1950s and 1960s. I had a few items published in those columns at that time, and I already have plans for two short items to submit to the new "Try This One."

Third, there have been several questions about clocks that are self-correcting using radio signals from WWVB. I have just seen a catalog from Klockit (P.O. Box 636, Lake Geneva, WI 53137-0636; Tel: 800-556-2548). As their name implies, they sell kits for building clocks. They also sell several types of clock movements or replacements for old movements. Two of their clock kits include a WWVB receiver. Probably of more interest to Electronics Now readers are clock movements, powered by one AA cell, which have a WWVB receiver. These sell for $27.95 plus shipping.

Bill Stiles

Hillsboro, MO

Airport Chatter

I would like to point out a couple of items not originally mentioned in the article by Anthony Caristi, "The Airport Buddy" (Electronics Now, January 1999).

The 108-136-MHz AM aircraft band covers ALL commercial communication, including ground-to-air as well as air-to-air and navigation. The frequencies between 108 and 118 MHz are for navigation, where you will hear mostly VOR guidance beacons, with occasional voice messages from Flight Service Stations (FSS) to help identify a particular beacon. All non-military communications and navigation uses this band, including airlines, cargo haulers, helicopters, and general aviation aircraft (which includes private aircraft). Most ground control frequencies, by the way, are located at the 121-MHz range and will be referred to by the tower as “point 9.”

The other item concerns the usage of this receiver on board the aircraft. It shouldn’t be used during a flight for several reasons. First, it is not a device approved by the FAA. Second, because of the lack of an RF preselector, there is probably substantial RF harmonics coming out of the antenna to interfere with aircraft communications and navigation.

P.S. I also have a private pilot’s license and a General Class FCC license.

TOYSESTERO
Towson, MD

Letter-Writing Etiquette

Okay, so you’ve finally completed that really neat project from the latest issue—but it doesn’t quite work correctly. Who can help you out? The author is the best person for the job, in all cases. We authors are always eager to help, and indeed, your inquiry lets us know that somebody is actually building this stuff! We sometimes wonder....

Yes, most of us are rather secretive—we don’t publish our phone numbers or addresses for a simple reason: privacy! We are, however, easily reached through the publication. Before you even take that approach, consider the following so that you might better expect a reply.

Firstly, do as much troubleshooting on the project as you can. Look for incorrect wiring or wrong values on components. Don’t expect the authors to do all the troubleshooting for you. The more information you can provide, the sooner you can expect a solution to your problem. Most requests for help turn out to be builder’s construction errors.

Secondly, read the entire article once again to make sure that you didn’t miss anything.

You have to realize that a project appearing in the latest issue was probably conceived by the author over a year ago. Yes, it takes that much time to actually prepare everything for publication, both by the author and the publisher. We go to great lengths to publish everything correctly. But, as many people are involved in the process, errors will sometimes creep in. These are normally caught right after publication by the author (or editors) and corrections are noted in future issues and on the publisher’s Web site. Try them first.

As most authors write for a living, the article you inquiring about was probably written about fifty or more articles ago. We tend to get a little hazy after all that time. In order to give an accurate answer, authors have to spend a considerable amount of time in researching the design and refreshing their memory. We do this quite happily. However, time is always in short supply for a writer.

So now you’ve done all the groundwork, but still haven’t had any luck. Now it’s time to contact the author. Keep your inquiry brief and to the point. Describe your problem accurately. Above all, be courteous. Here’s how to get a prompt response: Send your inquiry along with a self-addressed stamped envelope (S.A.S.E) to the author, in care of the magazine. I don’t know how many inquiries I’ve received without the S.A.S.E. This usually means an extra delay in responding, especially when the reader is from another country, which requires getting the correct postage.

One of this author’s pet peeves is someone looking for free design information. I recently received a two-page letter listing over two dozen questions on formulas used for every facet of a complex design. A genuine reply to this type of letter would require writing an entire book. Besides, we actually incorporate a few of our own trade secrets in our designs. We don’t intend to give these away for free—do you blame us?

If you ever do manage to find an author’s address or phone number, or if he chooses to make it public, please be considerate. Typically, a writer’s schedule is 24/7—he doesn’t have time to chat with you, no matter how nice or how desperate you are. The editors themselves are pretty much in the same boat.

So there you have it—the proper method of contacting an author for help. It’s dirt simple, and we’re always available to help get the circuit going. We even enjoy it! We value ALL of our readers—don’t forget that.

SKIP CAMPISI

THE COLLECTED WORKS OF MOHAMMED ULYSSES FIPS

#166—By Hugo Gernsbach
Here is a collection of 21 April Fools Articles, reprinted from the pages of the magazines they appeared in, as a 74-page, 8½ x 11-inch book. The stories were written between 1933 and 1964. Some of the devices actually exist today. Others are just around the corner. All are fun and almost possible. Stories include the Cordless Iron, The Vasi-Talkie, Electronic Razor, 30-Day LP Record, Teleleglasses and even Electronic Brain Servicing. Get your copy today. Ask for book #166 and include $9.99 (includes shipping and handling) in US (First Class), Canada and Overseas (surface mail), and order from CLAGGK Inc., P.O. Box 4099, Farmingdale, NY 11735-0793. Payment in US funds by US bank check or International Money Order. Allow 6-8 weeks for delivery.

POPTRONIX®

Online Edition

We’re on the web FREE

Get your copy of the CRYSTAL SET HANDBOOK

Go back to antiquity and build the radios that your grandfather built. Build the "Quaker Oats" type rig, wind coils that work and make it look like the 1920's! Only $10.95 plus $4.00 for shipping and handling. Clagk, Inc., P.O. Box 4099, Farmingdale, NY 11735. USA Funds ONLY! USA and Canada—no foreign orders. Allow 3 weeks for delivery.
Retailers That Sell Our Magazine Every Month

California

- **California Electronics**
 221 N. Johnson Ave.
 El Cajon, CA 90202

- **Ford Electronics**
 8431 Commonwealth Ave
 Buena Park, CA 90621

- **All Electronics**
 14298 Oxnard Street
 Van Nuys, CA 91411

- **Gateway Electronics of CA**
 9222 Chesapeake Drive
 San Diego, CA 92123

- **Mac's Electronics**
 191 South "E" Street
 San Bernardino, CA 92401

- **Electronics Warehouse**
 2691 Main Street
 Riverside, CA 92501

- **Orvac Electronics**
 1645 E Orangethorpe Ave.
 Fullerton, CA 92631

- **Sav-On Electronics**
 13225 Harbor Blvd.
 Garden Grove, CA 92643

- **JK Electronics**
 6395 Westminster Blvd.
 Westminster, CA 92683

- **Kandarian Electronics**
 1101 19th Street
 Bakersfield, CA 93301

- **Whitcomm Electronics**
 105 W. Dakota #106
 Clovis, CA 93612

- **Minuteman Electronics**
 3711 Post St., Suite 1
 Fremont, CA 94536

Illinois

- **HCS Electronics**
 6819 S. Redwood Drive
 Cotati, CA 94931

- **Halted Specialties Co.**
 3500 Ryder Street
 Santa Clara, CA 95051

- **Metro Electronics**
 1001 J Street
 Sacramento, CA 95814

- **HSC Electronics**
 4237 Amber Lane
 Sacramento, CA 95841

Colorado

- **Gateway Electronics of CO**
 2525 Federal Blvd.
 Denver, CO 80211

- **Centennial Electronics**
 2324 E. Bijou
 Colorado Springs, CO 80909

Connecticut

- **Cables & Connectors**
 2198 Berlin Turnpike
 Newington, CT 06111

- **Electronic Service Prod.**
 437 Washington Avenue
 North Haven, CT 06473

Florida

- **P. Benavides Corp.**
 3900 NW 79 Ave. Suite 600
 Miami, FL 33166

Georgia

- **Normans Electronics Inc.**
 3653 Clairmont Road
 Chamblee, GA 30341

Missouri

- **Gateway Electronics of MO**
 8123-25 Page Blvd.
 St. Louis, MO 63130

If you'd like to sell our magazine in your store, please circle 210 on free information card or Contact Gina Gallo at (516) 293-3000 ext 223

www.americanradiohistory.com
BUILD A Surface-Mount Shortwave Radio

Build this radio using either surface-mount components, through-hole components, or a mix of the two—the choice is yours.

PAUL YOST

Like many other professionals in the electronics field, electronics instructors must keep current with the latest technical changes and products. As technology advances, the skills and knowledge of the technician must advance as well. Therefore, it is often a challenge to develop new classroom projects that demonstrate such advances.

The focus for many new designs is to make the product smaller, lighter, and faster. Because of that, surface-mount devices (SMDs) have rapidly replaced the older traditional through-hole components in many products. Therefore, students (as well as established electronics professionals) should learn about those devices as well. However, demonstration is not enough. To truly educate, the project must be just as interesting as it is educational—nothing is less instructional than a boring project. Fortunately, the Surface-Mount Shortwave Radio presented here combines learning with entertainment by introducing the builder to the fascinating world of shortwave listening.

Although the Surface-Mount Shortwave Radio is a well-designed shortwave receiver, its main purpose is to educate. In many ways, it is a self-contained semiconductor course and lab exercise. During its construction, we will be working with (and learning about) Field-Effect Transistor (FET) circuits, oscillators, operational amplifiers, varactor diodes, L-C circuits, Zener diodes, ceramic filters, bipolar transistors, power amplifiers, specialized IC circuits, and modern surface-mount devices. Yet, what truly makes the Surface-Mount Shortwave Radio project unique is its construction versatility. The board design works with either standard components or their surface-mount equivalents. The builder has the option to use either type or both in any combination on the board. That means that you can practice with SMDs as much—or as little—as you want.

Theory of Operation. The Surface-Mount Shortwave Radio is a superheterodyne receiver with varactor tuning. It operates in the high-frequency (HF) band and is capable of receiving shortwave broadcasts from around the world. On a good night, stations from Africa, Australia, Europe, Asia, and South America can often be heard.

The circuit's block diagram is shown in Fig. 1. It consists of seven main sections: the tuning oscillator, the RF amplifier/mixer, the IF filter, the IF amplifier/detector, the audio preamplifier, the audio power driver, and the voltage regulator. Figure 2 shows the schematic for the circuit. Follow along with those diagrams as we discuss each section in turn.

The Tuning Oscillator. The heart of any good superheterodyne receiver is its tuning oscillator. While that circuit mainly determines the frequency range of operation, it can also affect the sensitivity and clarity...
of the station being heard. A properly designed and functioning oscillator is therefore critical for proper operation of the entire receiver. For the Surface-Mount Shortwave Radio, the oscillator section is built around Q1, an MPF102 general-purpose N-channel JFET (Junction Field-Effect Transistor). The tuned part of the circuit is a parallel-resonant LC "tank" circuit, located on the drain lead of Q1. The tank circuit is made up of L1, C8, and D2; those components set the frequency of operation. The part that actually tunes the oscillator is D2, a varactor diode. The term varactor is a contraction of the words "variable capacitor."

To understand how it works, remember that a capacitor is made from two conductors that are separated by an insulator. A reverse-biased diode fits that description because it has two conductors (the anode and the cathode) that are separated by an insulator (the reverse-biased junction). That is why a reverse-biased diode acts like a capacitor.

Although every diode or PN junction exhibits that effect, a varactor diode is specifically designed to take advantage of it. In our oscillator, the varactor's cathode is connected to the positive power supply through L1 while its anode is connected to a variable voltage source from R6. As R6 is adjusted, the amount of reverse bias applied to D2 is varied. That, in turn, varies the size of D2's depletion zone and, consequently, its capacitance. In our tank circuit, D2 can be varied from 30 to 90 pF.

The frequency of an LC circuit is determined by the formula:

$$fr=\frac{1}{2\pi \sqrt{LC}}$$

where FR is the resonant frequency in Hz, L is the inductance value in henries, and C is the capacitance value in farads. In our circuit, the C value is the combination of C8 and D2. However, the capacitance value of C8 is far larger than that of D2 and, because the smaller value rules when capacitances are in series, the total capacitance effectively equals that of the varactor alone. Therefore, we can calculate the operating range of the oscillator by using the upper and lower values of D2's capacitance range (30 to 90 pF) along with the 3.3 microhenry inductor value of L1. Doing the math (which is straightforward and left as an exercise for interested readers) reveals that:

$${fr_{max}}=9.235 \text{ MHz and } {fr_{min}}=15.95 \text{ MHz}$$

Theoretically, the oscillator should operate between 9.2 and 16 MHz, but it usually tunes an approximate 5-MHz range somewhere between 7 and 17 MHz. That is caused by component placement and tolerances. Fortunately, that is more than enough range to tune in dozens of stations worldwide.

An analog sinewave oscillator is an amplifier with positive feedback. For the Surface-Mount Shortwave Radio's RF oscillator, feedback is provided by C7, which couples part of the oscillation generated in the tank circuit back to the source lead of Q1. Since output current flows from source to drain in a JFET, they form the same current path. Therefore, the signal is coupled back in phase and oscillation occurs. Source resistor R13 is used to set the proper bias voltage. The actual adjustment of that control will be discussed in detail in the construction section of this article.

Note that there is a Zener diode placed across R6. Because the receiver is battery powered, a problem can occur as the battery discharges and its voltage level declines. Since the oscillator is electrically tuned, any voltage change to D2 will cause a corresponding shift in frequency. The battery voltage for D2 is regulated by D1 to help maintain a steady voltage level in order to minimize that effect.

Parts List for the Surface-Mount Shortwave Radio

Semiconductors

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>NE602A or SA602N RF/IF mixer, integrated circuit, see text</td>
</tr>
<tr>
<td>IC2</td>
<td>Not used</td>
</tr>
<tr>
<td>IC3</td>
<td>LM741 op-amp, integrated circuit</td>
</tr>
<tr>
<td>IC4</td>
<td>MPF102 N-channel field-effect transistor</td>
</tr>
<tr>
<td>Q1</td>
<td>2N4401 NPN transistor</td>
</tr>
<tr>
<td>Q2</td>
<td>2N3904 NPN transistor</td>
</tr>
<tr>
<td>D1</td>
<td>IN4738 8.2-volt Zener diode</td>
</tr>
<tr>
<td>D2</td>
<td>MV2209 varactor diode</td>
</tr>
</tbody>
</table>

** Resistors**

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>470-ohm</td>
</tr>
<tr>
<td>R2</td>
<td>15,000-ohm</td>
</tr>
<tr>
<td>R3</td>
<td>8- R11 -1000-ohm</td>
</tr>
<tr>
<td>R4</td>
<td>220,000-ohm</td>
</tr>
<tr>
<td>R5</td>
<td>10-ohm</td>
</tr>
<tr>
<td>R6</td>
<td>50,000-ohm potentiometer</td>
</tr>
<tr>
<td>R12</td>
<td>Not used</td>
</tr>
<tr>
<td>R13</td>
<td>50,000-ohm potentiometer</td>
</tr>
</tbody>
</table>

** Capacitors**

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>100-pF, ceramic-disc</td>
</tr>
<tr>
<td>C2</td>
<td>47-pF, ceramic-disc</td>
</tr>
<tr>
<td>C3</td>
<td>0.001-µF, ceramic-disc</td>
</tr>
<tr>
<td>C9</td>
<td>0.01-µF, ceramic-disc</td>
</tr>
<tr>
<td>C10</td>
<td>Not used</td>
</tr>
<tr>
<td>C11</td>
<td>1-µF, 25-WVDC, electrolytic</td>
</tr>
<tr>
<td>C13</td>
<td>10-µF, 25-WVDC, electrolytic</td>
</tr>
</tbody>
</table>

** Additional Parts and Materials**

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANT1</td>
<td>Whip or wire antenna (see text)</td>
</tr>
<tr>
<td>B1</td>
<td>9-volt battery</td>
</tr>
<tr>
<td>FL1</td>
<td>4.5-MHz ceramic filter</td>
</tr>
<tr>
<td>J1</td>
<td>1/4-inch headphone jack</td>
</tr>
<tr>
<td>L1</td>
<td>3.3-µH coil</td>
</tr>
<tr>
<td>L2</td>
<td>1-µH coil</td>
</tr>
<tr>
<td>S1</td>
<td>Single-pole, single-throw switch</td>
</tr>
<tr>
<td>S2</td>
<td>9-volt battery clip, case, hardware, etc.</td>
</tr>
</tbody>
</table>

Note: The following items are available from Paul E. Yost, PO Box 32921, Louisville, KY 40232: Complete kit of parts with all the parts listed above including both surface-mount and through-hole components, $24.95 plus $1.25 shipping; Blank PC board, $11.95 plus $1.00 shipping. Kentucky residents must include 6% sales tax. No credit card, C.O.D. or orders outside the USA or Canada will be accepted.
Study at Home

We live in a constantly changing world, where exciting new technological advancements are made everyday. At the Cleveland Institute of Electronics we make it simple to train, earn a degree and prosper in the workforce. Over 130,000 students in the United States and 70 foreign countries got their start in electronics through CIE. And they received their education at their own pace in the comfort and convenience of their homes. At CIE you’ll receive a first class education by a faculty and staff devoted to your career advancement. All of CIE course and degree programs are taught through a patented, proven learning process. To discover all the benefits and programs/diplomas available from CIE send for your free course catalog today.

Work Where You Want

And once you complete your education at CIE, you can just about write your own ticket to where you want to work and in what specialized field... MIS, broadcasting, industrial, automotive, management...
The opportunities seem limitless in today’s high-tech world.
The Cleveland Institute of Electronics has been approved for use of Veterans Affairs Benefits and DANTES Tuition Reimbursement.

Tuition assistance from the Veterans Administration or the DANTES Program is available to veterans and service members in the Armed Forces.

□ YES! I am interested. Please send me a catalog.

Name:
Address:
City: State: Zip:
Phone Number:

Visit Our Web-Site www.cie-wc.edu

A school of thousands. A class of one. Since 1934.
The RF Amplifier/Mixer. This section is built around IC1, an NE602 /SA602 chip. Although the NE602 is no longer being manufactured, it is still available from several sources including JDR Microdevices, 1850 South 10th St, San Jose, CA 95112 Tel: 800-538-5000. That chip also comes as part of a kit available from the supplier provided in the Parts List. The SA602, a drop-in replacement, is currently being manufactured.

The NE602 is an IC that has been specifically designed as an RF amplifier and mixer. It first amplifies the weak incoming radio signal on pin 1 and then mixes or "heterodynes" it with the oscillator output coupled to pin 6 through C6. Both signals are sinewaves; whenever two sinewaves mix, four signals result. Besides the two original signals, two new signals are formed at the sum and difference frequencies of the originals. For example, if a 7-MHz signal is mixed with an 11.5-MHz signal, two new sinewaves would occur at 18.5 MHz (the sum) and 4.5 MHz (the difference). As we will see, the difference signal will be used to select the desired station.

The IF Filter. Two important receiver characteristics are sensitivity and selectivity. Sensitivity is the ability to receive weak or distant stations; selectivity is the ability to receive only the station you want despite the presence of other, possibly stronger, stations. Sensitivity is obtained by proper antenna connection and RF amplification. Selectivity is obtained by the use of FL1, a special filter that is located just after the mixer stage. That filter is known as the IF filter, the letters "IF" stand for intermediate frequency. For most receivers, the IF signal is the difference frequency created by the mixer circuit. It is called the intermediate frequency because it is a middle- or intermediate-frequency signal that is between the higher frequency of the RF input and the lower frequency of the audio output. The Surface-Mount Shortwave Radio uses 4.5 MHz as the IF frequency. It was chosen because 4.5 MHz is a very common and inexpensive filter to obtain. Two other common IF frequencies are 455 kHz and 10.7 MHz—some radio designs use those values instead.

Tuning a radio receiver is quite simple. Although many stations broadcast simultaneously throughout the world, only a station on a frequency that is exactly 4.5 MHz away from the oscillator signal will be heard. That occurs because only 4.5 MHz can pass through the IF filter. An example of that effect is the mixing that would occur for the shortwave stations of the BBC in England and Radio Nacional in Ecuador. Those two stations broadcast at 9.825 MHz and 9.745 MHz, respectively. To receive the BBC, the oscillator could be tuned to 14.325 MHz. When the two signals mix inside IC1, the resulting difference frequency is 4.5 MHz (14.325 MHz -
9.825 MHz = 4.5 MHz). That signal would then pass through FL1 for processing by the rest of the receiver; the result is that the BBC broadcast would be heard. By contrast, the Radio Nacional signal would not be heard because its difference frequency would be 4.58 MHz, which is much too high to pass through the filter.

It should be apparent by now that the oscillator/mixer/filter combination of circuits makes selective tuning possible. However, that tuning method does create a potential problem. Occasionally, two separate stations can each be located 4.5 MHz away from the oscillator frequency. For example, while the BBC broadcasts at 9.825 MHz (4.5 MHz below), another station could also be transmitting at 18.825 MHz (4.5 MHz above)—both of which are exactly 4.5 MHz away from the 14.325 MHz oscillator signal. In that case, the radio would try to receive both stations simultaneously. Not surprisingly, that would cause a tremendous interference and neither station would be heard clearly.

That phenomenon is called the image frequency effect. The unwanted station is called the image because it is like an image one would see in a mirror—the exact same distance away from the mirror as the original but on the opposite side. Yet despite that potential problem, the heterodyning or IF system is still an excellent and efficient way to make a good, selective receiver.

The IF Amplifier. Although radio transmitters often use thousands of watts of power to broadcast, the signal is typically just a few microvolts in strength by the time it reaches the receiver. That is due for the most part to the long distance that the signal must travel—sometimes thousands of miles! While the signal level is increased by the RF-amplifier circuit, it is still only a few millivolts in amplitude by the time it exits the IF filter—a level far too weak to properly drive a detector circuit. Additional amplification is required. That amplification is done by Q3, a 2N3904 transistor.

The Detector. Shortwave stations broadcast in the High Frequency or "HF" band and use amplitude modulation (AM). The actual radio signal is called the carrier while the music or voice part is called the intelligence or modulating signal. Some texts also refer to that as the baseband signal. For AM systems, the audio actually rides the amplitude of the carrier wave. That is, the audio signal changes or modifies the amplitude of the carrier. The process is shown in Fig. 3. If you looked at a straight RF signal on an oscilloscope, it would look similar to the waveform shown in Fig. 3A. If an audio-frequency signal such as the one shown in Fig. 3B is used to amplitude modulate the RF signal, the result would be the signal shown in Fig. 3C.

Radio theory is a very broad subject area and is beyond the scope of this article. For our purposes, it is only important to know that a signal resembling the waveform in Fig. 3C will be present at the output of FL1 when you receive a station. That signal is amplified by Q3. The modulated signal has two features that should be noted—it is an AC signal with both a negative- and positive-going peak, and it is symmetrical. With the modulating signal appearing on both halves of the carrier, only one half of the signal is needed to recover the audio signal.

Transistor Q3 also functions as the demodulator stage. Besides providing amplification, Q3 also rectifies the carrier signal of Fig. 4A into the half-wave shape shown in Fig. 4B. The action is similar to the rectifier method used in a power supply. That happens because Q3 uses only a single resistor (R4) to provide the base bias. Because the emitter lead connects straight to ground, the voltage across the emitter-base junction is the standard 0.7-volt drop of a silicon PN junction. That places the transistor right at the point of conduction, making it extremely sensitive to the slightest voltage change on the base.

Having Q3 biased just above ground serves two purposes. First, it creates the maximum gain possible for low-signal conditions. Second, it

Fig. 4. When an audio signal (A) is half-wave rectified, the resulting signal (B), while odd looking, is nonetheless very usable in recreating the station's audio signal.
rectifies the signal into the half-wave shape discussed earlier. It does that because the base bias is at the exact point of turn on (0.7 volts). When the incoming signal swings positive, it adds to the base voltage, increasing the forward bias. However, when the incoming signal goes negative, it decreases the base bias to a point below the conduction level, turning off Q3. The result is the rectified signal that is needed to complete the demodulation process.

Two signals are present in the resulting waveform—the carrier wave and the modulating wave. The modulation wave, being audio, typically varies between 50 and 5000 Hz but some stations now broadcast a wider range (up to 15 kHz) to provide a high-fidelity service similar to the American FM broadcast system. The two signals must be separated so that only the audio signal passes through to the output. That is done by the audio preamp circuit, which will be discussed next.

The Audio Preamp. The rectified half-wave audio signal and 4.5-MHz carrier that appear across L2 are passed to IC3 through coupling capacitor C11. Integrated circuit IC3 is a 741-type op-amp. Being an early example of an IC amplifier, IC3 is severely frequency limited. In fact, it is specifically designed to provide no gain for signals above 1 MHz, so it cannot pass the 4.5-MHz carrier signal. However, for lower-frequency signals (like audio), the 741 can provide a gain as high as 100 or more. That is how the audio gets separated from the carrier. The op-amp circuit amplifies the audio signal while blocking the carrier.

For the Surface-Mount Shortwave Radio, IC3 is configured as a basic inverting amplifier. Potentiometer R7 provides a variable negative feedback path in order to control the gain. In an inverting op-amp circuit, gain is set with the formula:

\[
\text{Gain} = \frac{R_F}{R_{IN}}
\]

where \(R_F\) is the feedback resistance and \(R_{IN}\) is the input resistance.

Let's apply that formula to find the gain of our op-amp circuit. In the circuit, R7, with a variable range
HELPFUL CONSTRUCTION TIPS

Be sure to observe the polarity markings when installing an electrolytic capacitor.

Observe proper IC placement. Pin '1' is marked by either a dot or a notch on the chip.

If you use insertion-mount devices, the disk capacitors, transistors, and the varactor should be mounted above the board with some lead length showing. The other components should be mounted flush to the board with excess lead lengths clipped off.

Refer to the schematic diagram and parts-placement diagrams often in order to make sure that your construction is correct. Since this project is a relatively low-frequency device, actual parts positioning and lead lengths aren't critical but neatness should always be a primary concern.

Use good soldering practices during construction. Before soldering a joint, wipe the soldering iron tip clean on a wet sponge. Melt a small ball of solder on the iron tip. Touch that molten solder to the joint to be soldered first. The liquid solder forms a "heat bridge" that lets the joint area heat up to melting temperature quickly before the heat flows away to the surrounding area. Let the soldering tip heat each component lead and board trace just enough to make the solder flow smoothly. Although most of the parts used in this project are not overly heat sensitive, the copper pads and traces on the PC board can lift up if they are allowed to get too hot.

Mark off each part on the list as you install it. That will help keep track of your work.

of zero to 50,000 ohms, is R_F and R_8, at 1000 ohms, is R_{IN}. Plugging those values into the formula, we see that the maximum gain is 50 (50,000/1000) and that the minimum gain is zero (0/1000). It is easy to see that R7 can be used as the Surface-Mount Shortwave Radio's volume control.

Another feature of the audio pre-amplifier circuit is that it also provides the bias voltage that drives Q2, the audio output. An op-amp normally requires a dual-polarity power supply to operate. That lets the output signal swing both positive and negative across the ground reference. Unfortunately, dual-polarity supplies are both expensive and inconvenient to use—especially with battery-operated devices. Fortunately, op-amp circuits can be made to operate from a single supply by placing a DC offset voltage on one of its inputs.

An op-amp is a differential amplifier that has two inputs and one output. One of the inputs is "inverting" while the other is "noninverting." A signal applied to the inverting input will be phase shifted 180 degrees (or inverted) at the output. By contrast, a signal applied to the noninverting input will remain unchanged in phase at the output. If two signals are simultaneously applied to both inputs, their difference appears at the output multiplied by the gain of the circuit. Normally, only one of the inputs is used for the signal: the other is referenced to ground. A simplified example of that type of circuit is shown in Fig. 5. Since the unused input is grounded, it effectively stays at zero volts. Therefore, the difference between the two inputs automatically becomes the incoming signal, which is then amplified and passed through to the output. That circuit works fine when both a negative and positive supply are available. What would happen if only a positive supply is available?

In that case, the output signal could only swing positive as shown in Fig. 6. For the op-amp to work from a single supply voltage, the circuit must be able to produce both positive- and negative-going signal swings. The easiest way to do that is to offset the output reference above ground. That is done by referencing the unused input to one-half of the positive supply voltage instead of connecting it to ground as we've done with IC3. The bias voltage is supplied by R14. That will let the output signal swing both positive and negative around the bias level. The resulting waveform on an oscilloscope will look like the waveform shown in Fig. 7.

The output signal has effectively become an AC signal that is riding on top of a DC level. Normally, the DC component is removed before the signal passes on to the next stage (usually by coupling capacitor) but, in this project, we do not remove it. Instead, it is used to bias Q2, the audio power amplifier.

The Audio Power Amplifier. Transistor Q2 is the main component of the audio-output stage. Note that it is wired as a common-collector amplifier. That type of circuit was chosen because its low-impedance output allows a direct connection to a headset. Like all bipolar transistors, Q2 requires a certain amount of DC bias in order to operate. Often, a resistor divider network is used to provide bias; our circuit is no exception. Resistors R9 and R10 form the bias network for Q2. Normally, most amplifiers connect the bias resistors to the power supply. We will not be doing that here because the DC offset from IC3 is providing the bias.

Capacitors C13 and C14 are bypass capacitors that block any DC while passing the AC audio signal. They create a low-impedance audio-signal path around the bias-resistor network, increasing gain. From here, the signal goes on to drive the headset.

Construction. Building the Surface-Mount Shortwave Radio is as simple as mounting the parts to a printed-circuit board; no particular order is required. A foil pattern for a single-sided board has been included here. As an alternative, a pre-etched board is available from the source given in the Parts List. If you purchase a board or make one from the foil pattern, the parts-placement diagrams in Figs. 8 and 9 indicate where the various components should be mounted. Remember that you can use either surface-mount or through-hole components—the option is yours.
If you decide to use surface-mount components, you should place those items on the board first. Figure 8 is specifically for the surface-mount components. For those unfamiliar with the techniques involved, several sidebars on working with SMTs well as information related to them can be found elsewhere in this article. The Glue-Place-Solder method that is demonstrated is probably the best method to use when assembling the Surface-Mount Shortwave Radio. Please keep in mind that this project is “component versatile.” If you have trouble in placing an SMD part, you can simply substitute the through-mount device instead; the PC board will accept either type. When deciding whether to use surface-mount or traditional components, remember that you can use as many or as few of the surface-mount components as you want. The receiver works just as well with either type of device installed on the board.

The most important thing to remember when building this project is that either a surface-mount or a through-hole component should be used for a particular component. DO NOT place both types on the board for the same reference designation.

One last note: While surface-mount components could be used for all parts, in a few instances using standard through-hole components is recommended. Those are C6 (because of a ground trace that the component would have to straddle, increasing the likelihood of a short) and C11-C14 (due to their size).

Figure 9 is the parts-placement diagram for any insertion-mount components you elect to use. None of the parts are particularly sensitive or difficult to mount. Neither S1 nor FL1 are polarity sensitive; you can install them in either direction on the board.

When all of the parts are installed on the board, the basic construction of the unit is complete. Only one more item is necessary for receiver operation—the antenna. The most convenient type to use is a straight piece of wire. The antenna wire should be 18 to 24 gauge with a length between 25 and 50 feet. One end of the wire connects to the PC board at the hole marked “ANT1” on the parts-placement diagrams. The rest of the wire should be stretched out full length away from the radio.

The Surface-Mount Shortwave Radio can be mounted in any suitable case. After checking over your work for errors such as bad solder joints, solder bridges or incorrect or backward-mounted components, you can test the unit.

Testing and Adjustment. The Surface-Mount Shortwave Radio is designed to operate from a standard 9-volt battery. Apply power to the radio but DO NOT connect a pair of headphones to J1 yet—that will be done later.

The first step is to set the oscillator bias. Set both R6 and R12 to their center range and connect an oscilloscope to Q1’s source lead. It is very important to use a 10X probe; any other type of probe will load the circuit and kill the signal. Adjust R12 until you see a sine wave on the oscilloscope that is a good compromise between signal amplitude and symmetrical shape. You need to check the signal across the entire oscillator range, though, so vary R6 (the tuning control) from end to end and readjust R12 as needed to compensate for any distortions that might occur. When the circuit is working properly, the oscillator signal will vary a few megahertz in frequency—somewhere between 7 and 17 MHz.

If the oscillator does not work, check for 9 volts on the drain lead of Q1. If that is missing, check to see if L1 is open, S1 is defective, or for a defective battery clip. If the voltage on the drain is correct, then check the voltage level on the anode of D2. That voltage should vary between zero and 8.2 volts as you turn R6. If you do not obtain those results, then either R2 or R6 might be open or D2 might be installed backwards on the board. If all of the tests check okay but no oscillation occurs, then either Q1 or D2 might be defective.

The audio section is adjusted next. Set R13 for about 4.5 volts on pin 3 of IC3. Plug a pair of headphones into J1. You will probably hear some noise or “hiss” from the

HELPFUL HINTS FOR INSTALLING SMDs

Because of their small size, surface-mount devices (SMDs) are easy to lose. When working with SMDs, you should place and keep all parts on a plain sheet of white paper.

Before you glue or place any parts, you need to clean the PC board. You can do that by using alcohol or some other non-residue cleaning solution specifically made to safely clean electronic equipment. **DO THAT EVEN IF THE BOARD APPEARS TO BE FINE.** If you do not clean the board first, then some of the solder connections that you make during construction might become intermittent and cause improper operation that will be difficult to trace.

Do your best to keep the glue between the trace runs and off the pads.

After you place the part on the board, you should allow the glue to dry first. That will prevent the part from shifting during the soldering process.

For easy soldering, smear some soldering paste (such as RadioShack 64-021) on the pads and terminal ends of the SMD after it has been glued in place. Also, you should use the smallest diameter solder available. For example, RadioShack 64-005 solder is only 0.032 inches in diameter.

None of the SMD resistors or capacitors used in the Surface-Mount Shortwave Radio are polarity sensitive. You may place them either way on the board.

DO NOT use a soldering iron larger than 25 watts and use the finest point possible. You should also have a good set of tweezers, a magnifying glass, and some de-soldering wick when working on this project.
headset. The volume should change as you adjust R7. The easiest and best way to adjust the sound is by using an actual shortwave reception. Adjust R6 until you hear a moderately strong station; adjust R13 until the audio sounds most clear to you.

The audio adjustment is quick and easy to make; however, the time of day and location can affect the quality of the Surface-Mount Shortwave Radio's output. The very best time to receive a shortwave signal is at night shortly after sunset. The antenna must also be fully extended and preferably outdoors. If you cannot stretch it outside, then do so inside a non-metalllic-frame building. If you attempt to receive shortwave inside a metallic-frame building (like a commercial or industrial building) or during the day, you will hear few or no stations. Like most shortwave receivers, the Surface-Mount Shortwave Radio works best when referenced to an earth ground. The easiest way to do that is to make a strap connection to any cold-water pipe that runs into the ground.

Troubleshooting. Since the oscillator should have already been checked and adjusted, any problems will be located elsewhere. Before you begin the test procedures outlined below, you should first check all of your solder connections. Almost every problem is directly due to either an improper solder connection or an accidental solder bridge across adjacent traces. A lot of aggravation and trouble will be avoided if you thoroughly check the solder work first. If the soldering is okay and the receiver still does not work, then one of the following steps should help to isolate and solve any problems that might occur.

The first step in troubleshooting is to isolate the problem area. For example, is the problem in the RF or the audio portion of the circuit? Fortunately, you can determine that quite easily. Simply remove the antenna wire from its normal connecting point and reconnect it where FL1 meets the base of Q3. You should hear various local AM- broadcast stations through the headset when you do that. If you hear those stations, the receiver is operating properly from Q3 through to the headset; the problem exists between the antenna and the IF filter. Note that for that procedure to work well, you should use the earth grounding method discussed earlier.

If the problem is in the RF section, you should check IC1, FL1, and the oscillator. The oscillator is the easiest to check—simply follow the adjustment procedure used earlier. If the signal still looks good on the oscillo-
SMT—ANSWERS TO FREQUENTLY-ASKED QUESTIONS

What is SMT? What is SMD?
The letters “SMT” stand for Surface-Mount Technology. The letters “SMD” stand for Surface-Mount Device. Those terms refer to a style of tiny, leadless electronic components that are made to mount on the PCB board's surface as opposed to the larger through-hole style of components that we are more familiar with. Unlike those larger components, SMT devices have no leads. Instead, they use either small metal tabs or metallic terminals to make the electrical connections to the circuit board.

Why is SMT used?
Due to their small size, SMT is often used to construct miniaturized electronic devices such as pocket-size cellular telephones or keychain-sized car lock controls. Also, SMT devices can be more easily installed in some automated assembly processes due to their lack of leads.

What components are available as SMT devices?
Resistors, capacitors, transistors, diodes, and ICs have been available in SMT style since the 1970s. Today, LEDs, potentiometers, crystals, inductors, fuses, connectors, and certain subassemblies like filters and oscillators are available in large quantities.

What is the size of an SMT device?
Like many electronic components, SMT devices come in various styles and sizes. SMT resistors, for example, commonly come in 1/4, 1/2, 1/3, and 1/8, and 1-watt sizes. The 1/4-watt size is 2.00 mm by 1.25 mm by 0.60 mm, while the 1-watt device measures 6.40 mm by 3.20 mm by 1.10 mm. Not surprisingly, the chip-style capacitors and inductors are roughly the same size. The other components, such as transistors and ICs, come in various sizes as well. However, they are usually smaller than their through-hole counterparts.

Other than physical size, what differences are there between SMT and regular components?
Electrically speaking, no difference exists between SMT devices and their counterparts. An SMT resistor of 1000 ohms would act the same as a 1000-ohm leaded resistor. Their differences are purely physical and not electrical.

How can you identify the type and value of an SMT device?
SMT resistors are usually manufactured as small black rectangular chips with metallic-coated ends. Often, the value of the device is printed in a numerical code across its top. The number is similar to the more familiar color-code bands found on leaded resistors. For example, a 390-ohm resistor would have “39” (3, 9, and 1 zero) printed on it while a 3900-ohm unit would be marked “392”.

Like resistors, capacitors also resemble a small rectangular chip but they are usually either a yellow or gray in color. Unfortunately, these components don’t have a value printed on them. You either have to refer to a manufacturer’s reference or physically measure their value.

SMT-style transistors and diodes often look like small black squares but with metal tabs instead of ends. Usually two of the tabs are located on one side of the device while the third tab appears on the opposite side. SMT ICs look very similar to regular DIPs except that they are generally smaller in size with leads that lay flat to the board.

What tools are needed to work on SMT devices?
Virtually all electronic components are soldered to the board and SMT devices are no exception. Therefore, good soldering equipment is still required. While some shops use specialized (and expensive) equipment to do SMT soldering, a low-wattage standard iron with a fine point tip can still be used for many applications. Other good tools have to have on hand are tweezers, a magnifying glass, glue, and soldering paste.

Why should I practice working with SMT devices?
Although most assembly processes are automated, most repairs are not. Employers need people with the knowledge and “hands-on” skill to work with SMT; that need will only grow with time. Practicing with SMT is one good way to prepare for the future.

scope, it is operating properly.
The IF filter is the next component to test. Actually, it’s a very easy part to test if you have an RF signal generator. Set the signal generator for an AM modulated output at 4.5 MHz and connect it to the filter input at C9. If the filter is okay, you should hear the signal in the headset.

Check for 9 volts on pin 8 of IC1. If that voltage is present and the receiver still doesn’t work, then IC1 might be defective or installed backwards. If it is in backwards, it is almost certain that if it wasn’t defective to begin with, it probably is now!

If placing the antenna wire on Q3’s base causes no sound to be heard from the headset, the problem is in the audio section and it will involve Q3, IC3, or the audio-output section. The easiest way to troubleshoot those sections is to use the signal injection and tracing method. To do that, simply inject a 10-milliamp peak-to-peak RF audio signal into the positive side of C11. If you hear that tone through the headset and it varies in loudness as you turn R7, then IC3 and the output stage are okay; the problem is with the Q3 amplifier/demodulator circuit.

If you do not hear the tone, disconnect the generator. Check the voltage level on the base of Q2. It should read somewhere between 2 and 3 volts DC; the level should vary as you adjust R13. If the proper voltage is on the base, then check the level on the emitter. That voltage should be about 0.7 volts less than the level on the base. Note that the headset must be plugged into J1 for the measurements to be accurate. If that voltage is missing or high, then either Q2, R11, C14, the headset, or J1 might be defective.

Final Notes. Shortwave listening makes for an interesting and worthwhile hobby. Millions of people throughout the world enjoy listening to shortwave and there’s quite a variety to hear. There are news broadcasts, religious broadcasts, and even commercial rock-and-roll stations. Many broadcasts occur in English as well as most every spoken language on Earth.

Most important, those broadcasts originate from faraway countries with different ideas, cultures, and perspectives. A very good example of that occurred in 1989 with the fall of the Berlin Wall. Although that was a truly major historical event, most Americans knew about it from only a few short minutes of news broadcast each evening on network television. By contrast, those with shortwave receivers heard first-hand reports continuously throughout the event. Yet we did not hear these broadcasts from American journalists. Instead, we heard from

(Continued on page 50)
Test Digital Circuits with the SmartProbe

Replace your old logic probe with one that comes with a cap and gown—and the ability to resolve voltages to four levels as well as remember them!

While a logic probe is an inexpensive piece of test gear that can be very handy when working with digital circuits, there are both positive and negative aspects to it. On the positive side, it’s easy to use and gives you a quick view of what’s going on in digital circuits. On the negative side, you get only three LEDs that tell you if the point being probed is low, high, or is pulsing between low and high. Of course, if all of the LEDs are off, the reading might be “floating” between the voltage thresholds for zero and one. That assumes that the instrument is working properly and that you’ve set it up correctly—like making sure not to accidentally switch the sensitivity to “CMOS” while testing a TTL-based circuit!

It’s probably fair to characterize most logic probes as “dumb” instruments. Wouldn’t it be nice to have a “smart” probe that gives you both visual and audible indications? How about adding the ability to display the status of the last 20 or so readings? While we’re at it, let’s add the ability to view the relative frequency and pulse width of signals on an oscilloscope-type display? Of course, it would be nice if you got all of those additional capabilities for about the same cost as that standard “dumb” logic probe.

The SmartProbe device presented here is such a device. Using an inexpensive LM339 comparator IC and a handful of other components, it connects to the parallel port of a PC. Like a standard logic probe, it senses the logic 0 and logic 1 “windows” of both TTL and CMOS devices, providing visual feedback of the detected logic state. The software lets your PC select a different audible tone for TTL and CMOS levels; keep a history of the last 20 readings; and show amplitude, frequency, and pulse-width characteristics on an oscilloscope-type display. Since it is a PC-based device, you can modify it to control other devices based on the sensed levels. It will work with any PC, from an old XT to tomorrow’s newest model. The SmartProbe uses readily available components and doesn’t require any special construction techniques. Even without any “junk-box” parts, the total cost is under $15.

How It Works. The schematic diagram for the SmartProbe is shown in Fig. 1; refer to it during the following discussion. The heart of the circuit is IC1, an LM339 quad comparator. That chip has four identical comparators in it. When the voltage to the positive input is greater than the voltage to the negative input of any particular comparator, its output goes high. When it is lower, the output goes low. Although the outputs of an LM339 do not actively produce a voltage to indicate a high output, we’ll assume at this point in the description that they can do that; the outputs of IC1 will be discussed in greater detail later in this section.

The SmartProbe’s tip is connected to one of the inputs on each comparator. Note that two of the comparators (“b” and “c”) have the probe voltage going to their positive input, while the other two have the probe voltage going to their negative input. The other comparator inputs are connected to a voltage divider formed by R5-R9; that divider provides a reference level for each comparator. The resistor values chosen set the logic-low and logic-high voltage levels for both TTL and CMOS devices. With a 5-volt source, the reference voltage for comparator “a” is about
0.8 volts (TTL low) and about 2 volts for comparator "c" (TTL high). Since CMOS uses a percentage of the supply voltage to determine the logic-low and logic-high thresholds, comparator "b" is referenced to 30% of the supply voltage while comparator "d" is set to 70% of the supply voltage.

To better understand the action of the comparators, we'll apply a voltage to the probe that is between ground and 15% of the power supply. Since that level is lower than the reference voltage at R5/R6, IC1-a's output will go low. The same thing will happen with IC1-c since the input level is also lower than the reference voltage at R7/R8. The opposite occurs with IC1-b and IC1-d because the probe voltage is being applied to the inverting inputs. Table 1 shows the resulting outputs on IC1 for the various voltage thresholds.

Note that with the probe unconnected, R10 provides a ground reference, effectively keeping all of the comparator inputs at ground, avoiding any spurious responses.

A trigger switch, S1, is connected to two pins of PL1. Pin 2 supplies voltage to S1 (which will be set through the software) and pin 15 reads the current state of S1 (closed or open). When S1 is opened, R11 keeps pin 15 at ground level.

Using an LM339 for IC1 is the secret to powering the SmartProbe with voltages (as high as 18 volts for CMOS) that would otherwise destroy the circuitry in the computer's parallel port. Although the output of IC1 does not supply an active voltage when high (only grounding the output when low), blocking diodes D1-D4 and their associated pull-up resistors, R1-R4, give the open-collector outputs of IC1 additional protection in case something goes wrong with IC1.

Reading SmartProbe Information.

First, let's review how a parallel port on a PC works. We'll assume that we're using LPT1; the decimal address of that port is 888. That port address is for outputting to the data lines of the printer. We want to read the five input pins that normally send feedback from the printer to the computer. That address is the base address + 1, or 889 in our example. If we want to look at a particular pin, we simply AND the read value with a "masking" value that strips away the data that we're not interested in. For example, if we want to look at pin 10, we would AND the reading from input port 889 with the value 64. If the result is 64, pin 10 is high; if it is zero, then the pin is low. The state of the other pins are forced to zero by the AND operation.

An oddity to remember is that pin 11 inverts its signal. Our software has to consider that in order to read data from the SmartProbe correctly.

Table 2 is simply Table 1 with the logic levels replaced with the values that our software would see when the input port is read. An additional column has been included: a sum of the read values. For example, if we read port 889 and that data with 240 (to mask our four input pins), and find that the result is 208, we know that the SmartProbe is reading a voltage that is between 30% and 40% of its power supply.

Table 1—Comparator Responses

<table>
<thead>
<tr>
<th>Probe Voltage</th>
<th>"a"</th>
<th>"b"</th>
<th>"c"</th>
<th>"d"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%-15%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>15%-30%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>30%-40%</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>40%-70%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>70%-100%</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
How those numbers relate to the logic levels of the SmartProbe are detailed in Table 3. For example, if the SmartProbe is sensing a voltage between 40% and 70% of its power supply, the read value is 240. That value represents a valid logic high for TTL circuitry, but is below the logic-high threshold for CMOS devices.

One final detail is how S1 is read: simply mask the input data with 8. A value of 8 means that S1 is closed; if it is open, the value will be zero.

Construction. Building the SmartProbe is very simple and straightforward. None of the circuitry is sensitive or high-speed. You can use a piece of perfboard and standard construction techniques.

Before building the circuit, we will need the case to know how much room we have to work with. The author's prototype was built from 1/8-inch-thick wood. The overall dimensions are shown in Fig. 2. Those dimensions result in a case that is large enough inside to hold all of the electronics, yet is comfortable to hold like an oversized pencil. The author's prototype can be seen in Fig. 3, showing all of the parts that go into building the SmartProbe.

A notch will be needed in the back end of the case for the power clips and the cable that will be attached to the parallel port. Don't forget to drill a hole for S1. If you mount S1 on the bottom side of the case, it will be easier to assemble the unit—no wires will need to be attached to the top of the case.

The probe tip itself can be a solderless tip jack or, if one is not avail-

<table>
<thead>
<tr>
<th>PARTS LIST FOR THE SMARTPROBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMICONDUCTORS</td>
</tr>
<tr>
<td>IC1—LM339 quad comparator,</td>
</tr>
<tr>
<td>integrated circuit</td>
</tr>
<tr>
<td>D1—D4—1N4148 silicon diode</td>
</tr>
<tr>
<td>RESISTORS</td>
</tr>
<tr>
<td>(All resistors are 1/4-watt, 5% units unless otherwise noted.)</td>
</tr>
<tr>
<td>R1-R4—10,000-ohm</td>
</tr>
<tr>
<td>R5, R6—11,000-ohm, 1/4-watt, 1%</td>
</tr>
<tr>
<td>R7—4700-ohm</td>
</tr>
<tr>
<td>R8, R9—22,000-ohm</td>
</tr>
<tr>
<td>R10—100,000-ohm</td>
</tr>
<tr>
<td>R11—100K-ohm</td>
</tr>
<tr>
<td>ADDITIONAL PARTS AND MATERIALS</td>
</tr>
<tr>
<td>PL1—DB-25 male connector</td>
</tr>
<tr>
<td>S1—Single-pole, single-throw, momentary-contact switch, normally open</td>
</tr>
<tr>
<td>DB-25 non-shielded hood, 9-conductor cable, black and red mini-alligator clips, wire, hardware, etc.</td>
</tr>
</tbody>
</table>

Note: The following item is available from James J. Barbarello, 817 Tennent Road, Manalapan, NJ 07726: A 3/4-inch floppy disk containing the SmartProbe software plus additional material (both source and executable code), Part No. SP-S, $12.00. Check or money order must be payable in US funds. NJ residents must add appropriate sales tax. The author will be happy to answer any questions that are accompanied by a stamped, self-addressed envelope.
able, it can be formed from a machine screw. If you're using a tip jack, drill the mounting hole slightly smaller than the threads on the probe tip. To form a probe tip from the machine screw, file its end down to a point, forming a smooth taper approximately ¼-inch long from the pointed end. Drill a clearance hole in the probe end of the case.

![Diagram](image)

Fig. 4. To test the SmartProbe, a simple variable voltage is applied to the tip. When the software indicates that the SmartProbe has changed from one level to the next, the voltage is measured with a voltmeter to verify that the unit is working correctly.

![SmartProbe Computer-Controlled Logic Probe](image)

Fig. 5. The main screen of the SmartProbe software lets you easily choose the various settings and options.

![Quick Test](image)

Fig. 6. When testing the unit, this screen tells you what the SmartProbe is reporting. The information at the bottom of the screen is a handy reference for testing the hardware.

Coat the mating surfaces of the ends, sides, and bottom pieces with wood glue and clamp together for about an hour. Remove the clamps and mount the top piece on the assembly with four sheet metal or wood screws. Sand all of the surfaces smooth and chamfer or round all 12 edges. Apply a finish such as paint or varnish to seal the surfaces of the wood. When dry, remove the four screws and the top.

Mount the probe tip to the case. For a tip jack, simply thread it into the hole that was drilled earlier. For a machine screw, install two washers and a nut on the end of the screw, place it inside the case, and pass the pointed end of the screw through the hole in the probe end. Loosely install a second nut on the part of the probe screw that is outside of the case.

With the case finished, you can cut a piece of perfboard for the circuit that fits the available space. If you mount S1 on the board, you can use the switch to hold the board inside the case.

The power wires can be color coded red and black with similar-colored alligator clips. A short length of insulated wire connects the probe tip to the circuit board. If you are using a machine screw, wrap the bare end of the wire around the screw between the two washers and tighten one of the nuts; the outside nut might be easier to reach.

The data cable should be shorter than ten feet—four to six feet is a common length. Once it is wired up, install a DB-25 hood on PL1.

Once everything is mounted in the case, inspect your work before closing it up.

Testing and Using the SmartProbe. Basic software for the SmartProbe is available from the Gernsback FTP site (ftp.gernsback.com/pub/EN/smartprobe.zip); it contains the set of compiled programs that will let the SmartProbe be used in its basic functions. The software available from the source given in the Parts List includes additional programs as well as source code. While the main application can be run on even the oldest non-graphics PC, the Scope function (discussed later) requires an EGA or
better monitor.

The simple test circuit shown in Fig. 4 will be used to test the SmartProbe. Although a 10,000-ohm value is shown for the potentiometer, any value between 1000 ohms and 1 megohm can be used; the voltage source can be anywhere between 5 and 15 volts.

Connect the red and black power leads of the SmartProbe as shown and plug the SmartProbe into the printer port. After the software has been stored on the PC in a directory of your choice, type "SP" at the DOS prompt to start the program.

Once you see a startup screen with some initial instructions, press any key. The instructions will be replaced by a graphical representation of a logic probe as shown in Fig. 5. Press <ALT> q to perform a Quick Test. You should see a screen similar to the one shown in Fig. 6. Note that the SmartProbe's current status is to the right of the STATUS indication; expected results are listed in the lower half of the screen. Press S1 on the SmartProbe and notice that the switch indication changes from "0" to "1". Release S1 and the indication should return to "0". Hold the SmartProbe's tip against the wiper of the potentiometer and turn the potentiometer's shaft. The "PI0 PI1 PI12 PI13" indications should change to one of the five conditions listed under EXPECTED RESULTS. If you do not get one of those indications, check the unit for component, connection, or construction errors; fix any errors as needed.

When the SmartProbe is giving a correct indication, measure the DC voltage at the point where the SmartProbe changes from one condition to the next. The voltage should be approximately as expected; there might be some variation based on the actual value of the components used. For example, the voltage between the "0 1 0 1" and "1 1 0 1" transition should be about 1.35 volts with a battery voltage of 9 volts. If you do not get those results, check the value and placement of resistors R5-R9 and correct any problems that are found.

To complete initial testing, press the <ESC> key to return to the program's main screen.

Now that you've used the Quick Test function, let's quickly review the other four menu choices (File, Edit, Scope, and Help) available from the main screen (Fig. 5). The File menu (accessed by pressing <ALT> f) contains the DOS Shell and Exit commands. Pressing S for DOS Shell temporarily brings you to a DOS prompt where you can perform normal DOS functions. Type EXIT and press <ENTER> to exit the DOS shell and return to the pro-

![Fig. 7. This simple LM555-based oscillator shows the SmartProbe's ability to act like a poor-man's digital-storage oscilloscope.](image)

![Table 2—Parallel Port Responses](table)

<table>
<thead>
<tr>
<th>Probe Voltage</th>
<th>Pin 10</th>
<th>Pin 11</th>
<th>Pin 12</th>
<th>Pin 13</th>
<th>Read Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%-15%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>15%-30%</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>80</td>
</tr>
<tr>
<td>30%-40%</td>
<td>64</td>
<td>128</td>
<td>0</td>
<td>16</td>
<td>208</td>
</tr>
<tr>
<td>40%-70%</td>
<td>64</td>
<td>128</td>
<td>32</td>
<td>16</td>
<td>240</td>
</tr>
<tr>
<td>70%-100%</td>
<td>64</td>
<td>128</td>
<td>32</td>
<td>0</td>
<td>224</td>
</tr>
</tbody>
</table>

![Fig. 8. When using the SmartProbe to check the output of the circuit shown in Fig. 7, the output pulse is accurately displayed.](image)

![Fig. 9. Since the SmartProbe can sense four different voltage levels, it can be used to read simple analog signals. Here is the signal on the capacitor of the circuit shown in Fig. 7.](image)
adjust the scan time (the time between subsequent scans). Since there is no sync input, the display tends to jitter; increasing the scan time reduces that jitter. When you want to examine a particular scan, you can freeze the display by pressing F6. Function keys F7 through F10 control the time base (somewhat like a time base on a standard oscilloscope). Pressing the Escape key returns you to the main screen.

The Help function is a non-context sensitive help file that provides user information on the operation of the program and on the SmartProbe hardware.

Expanding the SmartProbe. Since the SmartProbe is computer controlled, adding new or different functions and features is simply a matter of writing custom programs for those who have the tools and need. For instance, those doing digital-electronics manufacturing and repair are always looking for a quicker and easier way to repetitively check circuits. One such application is included in the software bundle available from the source given in the Parts List. It lets you quickly and repetitively test circuits based on a test specification that you develop (and document) in a plain text file. It provides a running pass-fail indication (with an audible beep if something does not comply) and a printed test report if needed.

You can also use the parallel port's unused output pins (along with appropriate external circuitry) to control external devices based on the levels sensed by the SmartProbe. Even if you choose not to expand its capabilities, you'll find the SmartProbe to be an inexpensive yet extremely versatile addition to your test bench. Why not build one today!

TABLE 3—TTL, CMOS LEVELS

<table>
<thead>
<tr>
<th>Value</th>
<th>TTL</th>
<th>CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>80</td>
<td>open</td>
<td>open</td>
</tr>
<tr>
<td>208</td>
<td>High</td>
<td>open</td>
</tr>
<tr>
<td>240</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>224</td>
<td>S1 Open</td>
<td>S1 Open</td>
</tr>
<tr>
<td>0</td>
<td>S1 Closed</td>
<td>S1 Closed</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shortwave Radio

(continued from page 44)

the Germans themselves through such stations as Radio Deutsche Welle in Cologne and Radio Berlin International in Berlin. In contrast to their American counterparts, the German commentators were far more informed and informative on the subject. To them, it was not just another news story, but a miraculous, healing event for their people and their country. They not only reported the facts of the event but told the stories, the meanings, and the emotions behind it as well. Through the power of shortwave radio, they both clearly and eloquently conveyed to the world just what the fall of the Wall meant to Germany and did so in a depth and style that the other journalists could not understand, much less appreciate or convey.

Another fine example of shortwave listening occurred during the Persian Gulf War. When the American public discovered that some of the international stations were continuously broadcasting the war news both day and night, most stores selling shortwave receivers sold out in a few hours time. Simply put, shortwave listening can be both educational and entertaining in itself. Many of the broadcasts, whether in English or another language, give a glimpse of another place and people. Listen for awhile; you just might enjoy what you hear.

Yours for only $399

Prices includes shipping!

HAVE A THOUSAND YUCKS FOR ONLY THREE AND A HALF BUCKS! That comes to one-third of a cent per laugh. Electronics Comics is a compilation of over 125 riotous, outrageous and phenomenal cartoons that appeared in Popular Electronics and Electronics Now. Only $3.99—price includes shipping. Claggk, Inc., Reprint Bookstore, P.O. Box 4099, Farmingdale, NY 11735-0793. All payments in U.S. funds. Sorry, no orders outside U.S.A. and Canada. Check or money order only—send no cash. NY state residents add applicable tax.
Radio frequency (RF) power is one of the principal performance indicators of radio transmitters. Whether you are a ham-radio operator, citizen's-band operator, or a commercial radio-communications technician, the RF-power output of your transmitters is a key indicator of its health. RF power measurements vary from a few milliwatts up to many kilowatts. In this article we will take a look at some of the principal methods for measuring RF power.

RF power measurement is no different from other alternating-current (AC) power measurements, although the increased frequencies involved cause some problems. Power is still described by the standard equations (P = V x I, P = I² x R and P = V²/R), so if you can measure the current or voltage and know the resistance, you can measure power. The problem is relatively easy with sine-wave RF, such as unkeyed continuous wave (CW) signals, but becomes a bit more complicated on modulated, chopped, keyed, or pulse RF waveforms. In any event, the most basic power level measured is the root-mean-square (rms) value, which equates the power's heating ability to a like amount of heating from a DC source. The trick is in making rms readings.

RF Ammeter Methods. The thermocouple RF ammeter (see Fig. 1) is an inherently rms-reading device because it relies on heating a very low value resistive heating element (R). The temperature of the heating element is measured by a thermocouple device (TC in Fig. 1), which produces a voltage proportional to the temperature of the thermocouple junction. A DC voltmeter is used to measure the thermocouple output, but its scale is calibrated in units of current (amperes, milliamperes).

When the RF ammeter is in series with the transmission line from the transmitter to a resistive load (Rl) or a resonant antenna, the rms RF power level can be calculated from I² x Rl. The advantage of the thermocouple RF ammeter is that it can be used with any load resistance, while other meters are designed for a specific load (usually 50-ohms). The disadvantages include the need to make a calculation, and the fact that RF ammeters tend to fade out above some frequency in the 40- to 70-MHz range.

Calorimeter/Bolometer Methods. A number of professional-grade RF-power meters are based on the fact that the temperature change in a resistive load is proportional to the rms value of the applied RF waveform. Figure 2 shows a basic form of calorimeter or bolometer: A heat-dissipating resistor with a resistance value equal to the desired load impedance is enclosed in an assembly with some sort of temperature-measurement device.

Theoretically, you could put a big dummy load in a room and use a glass-mercury thermometer to measure the air temperature of the room before and after the power was turned on, but that's hardly practical. If, however, you embed a dummy load and some temperature sensors (thermistors and thermocouples are used) in a small assembly, then the before and after temperature rise of the resistor can be measured.

A low-cost instrument can be built using only the dummy load and Temperature Sensor 1, but that would ignore the problem that ambient temperature also affects the measurement sensor. It is not uncommon to include a second sensor to measure ambient temperature, so that changes in ambient temperature can be factored into the measurement. The results can then be displayed on an analog or digital meter.

Some calorimeter methods use two sensors (three could be used if ambient is accounted for) in a comparison measurement. A low-frequency (e.g. 60-Hz) AC power source is used to drive one sensor/resistor, while the RF power is used to drive the other. A differential
Fig. 1. The thermocouple RF ammeter relies on heating a very low value resistive heating element (R) to measure RF power.

The thermocouple RF ammeter will show when the two output levels are the same. At this point, the easily measured 60-Hz AC power level is equal to the applied RF power.

Simple Diode Detector Methods. A simple diode detector scheme (see Fig. 3) can be used to measure the RF power applied to a load. The scheme shown was used on the Heathkit Cantenna dummy load that was popular some years ago, and is still used on similar products today.

The diode is an envelope detector, and produces a pulsating DC output from the RF voltage applied across the load (R). Capacitor C1 filters out the pulsations to pure DC. The power can be inferred from \(V_o^2/R_o \).

The actual voltage applied to the diode is reduced by a resistive voltage divider \((R_1/R_2)\) and is only a fraction of the applied voltage. This allows higher power levels to be measured. A diode such as a germanium 1N60, a silicon 1N914 or 1N4148, or a Schottky diode can be used for D1. Note that both \(R_1 \) and \(R_2 \) should be much larger than the load \((R_o) \). Typical values for the circuit are \(R_1 = 100,000 \) ohms, \(R_2 = 1000 \) ohms, and \(C1 = 0.05 \) µF.

The diode detector circuit of Fig. 3 remains popular because it is simple and easy to implement. But it suffers from the fact that it measures the approximate peak power, not the rms power. On a sinusoidal CW signal, the rms power can be approximated by \((0.707 \times V_o^2)/R_o \).

TABLE 1—METER READINGS BASED ON 100-WATT RMS CW CARRIER

<table>
<thead>
<tr>
<th>Waveform</th>
<th>PEV<sub>rms</sub></th>
<th>PEP(PEV<sub>rms</sub>/Z<sub>0</sub>)</th>
<th>Thermal Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>100/1.414 V</td>
<td>100 W</td>
<td>100 W</td>
</tr>
<tr>
<td>AM (100%)</td>
<td>200/1.414 V</td>
<td>400 W</td>
<td>150 W</td>
</tr>
<tr>
<td>AM (73%)</td>
<td>173/1.414 V</td>
<td>300 W</td>
<td>127 W</td>
</tr>
<tr>
<td>SSB (1 tone)</td>
<td>100/1.414 V</td>
<td>100 W</td>
<td>100 W</td>
</tr>
<tr>
<td>SSB (2 tone)</td>
<td>100/1.414 V</td>
<td>100 W</td>
<td>50 W</td>
</tr>
</tbody>
</table>

Fig. 2. In the bolometer/calorimeter approach to measuring RF power, a heat-dissipating resistor with a resistance value equal to the desired load impedance is enclosed in an assembly with some sort of temperature measurement device. A number of commercial devices are based on this approach.

Fig. 3. A simple diode detector scheme shown here was used on the Heathkit Cantenna dummy load that was popular some years ago, and is still used on similar products today.

The most common forms of RF power meter is the in-line wattmeter (see Fig. 4). The instrument is inserted in the coaxial line between the transmitter and either the antenna or a dummy load. Instruments designed for use with an antenna often have the ability to measure the forward and reflected power, so they can also be used to determine the standing wave ratio (SWR).

The classic Wheatstone bridge can theoretically be used for making an in-line RF wattmeter, but that is not a practical approach.

Such bridges are useful for making antenna impedance measurements at low power levels, but they cannot be left in-line because of the huge insertion loss involved. Other bridges, such as the micro-match bridge, discussed next, are used instead.

Micromatch Bridge. Figure 5 shows the basic capacitor-resistor micro-match-bridge circuit. Immediately we see that the micromatch is better for those applications than a conventional Wheatstone bridge because it only places a 1-ohm resistor
(R1) in series with the transmission line. That resistor dissipates considerably less power than the resistors typically used in Wheatstone bridges. Because of that low-value resistance we can leave the micromatch in the line while transmitting.

As with Wheatstone bridges, the ratio of the resistances and/or reactances in the arms must be equal to create a null output to the meter. In that case, the ratio of the capacitive reactances of C1 and C2 must match the ratio of R1 and the antenna or load resistance Rl:

\[\frac{X_{C1}}{X_{C2}} = \frac{R1}{R_l} \]

For a 50-ohm load, the ratio is 1/50, while for 75-ohm loads it is 1/75. A compromise situation that yields a small error on both 50-ohm and 75-ohm systems is to use a 68-ohm value for Rl and make the ratio \(\frac{X_{C1}}{X_{C2}} = 1/68 \). These ratios occur when \(C2 \approx 15 \text{ pF} \) for 50-ohm systems, \(C2 \approx 10 \text{ pF} \) for 75-ohm systems, or \(C2 \approx 12 \text{ pF} \) for the compromise 68-ohm value.

The sensitivity control can be used to calibrate the meter. For fixed power meters, that potentiometer can be a trimmer type that is set when the meter is calibrated, and then left alone. At least one commercial micromatch bridge that was once popular with CB service technicians used a three-position switch to select three different sensitivity controls for 10-watt, 100-watt or 1000-watt power levels. Each range has its own sensitivity control, and those are used as needed.

Monomatch Bridge. The monomatch bridge of Fig. 6 is one of the "instruments of choice" for hams and other users for measuring RF power in the HF and low VHF ranges. In the monomatch design, the transmission line is segment "B", while the directional coupler transmission line segments are "A" and "B". The directional coupler lines are used for sampling the forward and reverse RF signals. Although some instruments used modified coaxial transmission lines, later versions use PC-board elements for A, B and C.

The sensor unit is basically a directional coupler with a diode detector element for both forward

Fig. 5. The micromatch RF wattmeters offer important advantages over traditional Wheatstone bridges in RF power meter applications because they dissipate less power, allowing them to be left in the line.

Fig. 6. The monomatch RF wattmeter is one of the "instruments of choice" for hams and other users for measuring RF power in the HF and low VHF ranges.

Fig. 7. In this version of the monomatch RF wattmeter, a single-turn ferrite or powdered-iron toroid transformer is used as the directional coupler.
and reverse directions. For best accuracy, diodes D1 and D2 should be a matched pair, as should R1 and R2. The resistance of R1 and R2 should match the transmission-line characteristic impedance, although in many cases the 68-ohm compromise is used.

A variation on the theme uses a transmission-line transformer as shown in Fig. 7. In that instrument, a single-turn ferrite or powdered-iron toroid transformer is used as the directional coupler. The transmission line passing through the hole in the toroid "doughnut" forms the primary winding of the transformer. The secondary winding consists of 10 to 20 turns of small gauge enameled wire and is connected to a measurement bridge circuit (C1, C2, plus the load) that produces a diode-rectified output voltage.

Details for the construction of the sensor assembly is shown in Fig. 8. The secondary winding, made of 24- to 30-gauge enameled wire, is wound as shown in Fig. 8, with at least a 30 degree separation between the ends to minimize distributed capacitance. A rubber grommet is inserted into the hole of the toroid. The primary winding is a single conductor passing through the hole. It is common to find $\frac{1}{8}$-, $\frac{3}{16}$-, or $\frac{1}{4}$-inch brass tubing used for the primary. Note: When counting turns on a toroidal transformer, each pass through the hole is a "turn," so passing a straight wire or tube through the toroid hole once counts as one turn.

The value of R1 should match the transmission-line impedance, although, as usual, the 68-ohm compromise is often seen. If you opt to use the exact value in any of those circuits, then you can use either a single 51-ohm resistor, or two 100-ohm resistors in parallel. If you can find a precision 50-ohm resistor, however, use it (in standard carbon-composition or metal-film resistors, 51 ohms is a standard value, but 50 ohms is not).

Complex Waveforms. Measuring the RF power of unkeyed CW waveforms is relatively easy, but when modulation is applied, many instruments will read incorrectly. Table 1 shows some of the factors that compare the listed waveform's power, peak envelope voltage (PEV), peak envelope power (PEP) and equivalent thermal power with a 100-watt unmodulated, unkeyed CW carrier.

Some Commercial Instruments. Figure 9 shows a commercial RF power meter that the author bought nearly thirty years ago and has used heavily ever since. It is the Bird Electronics Corporation (30303 Aurora (Continued on page 56)
A BRAIN/COMPUTER INTERFACE

An amazing breakthrough could one day allow the paralyzed to communicate and interact with the world around them.

As someone who has experienced complete paralysis from spinal cord surgery, this author knows the utterly demoralizing frustration of not being able to communicate with the outside world. Fortunately, I recovered (essentially) completely. Many people don't, and as a result have to live in complete isolation with ideas and words that can't be shared with anyone.

There is a chance, however, that all of that could change. Dr. Roy E. Bakay and Dr. Phillip R. Kennedy, neuroscience researchers at Emory University in Atlanta, GA have achieved a breakthrough that promises a way for those left paralyzed and unable to speak from a spinal cord injury, stroke, or diseases like Lou Gehrig's disease to communicate.

More than 700,000 Americans suffer from stroke each year and tens of thousands more suffer spinal cord injuries or from diseases like Lou Gehrig's that threaten their ability to communicate. Stroke is currently the leading cause of permanent adult disability in the U.S.

The researchers have developed a neurotrophic electrode (an electrode implanted with nerve-growth factors) that can be implanted in the brain to allow speech-incapable patients to communicate via a computer. According to Dr. Bakay, "A person can interact with the world if they can use a computer." If someone can move the cursor on a computer, that person can stop on icons to produce phrases, send e-mail, turn on or off a light, and, in general, interact with the outside world in an effective manner.

How It Works. The heart of the concept is the neurotrophic electrode that makes the connection with the brain. The neurotrophic electrode, which is housed in a tiny cone-shaped glass casing, is implanted into the motor cortex. The electrode is about 1.5 mm long and 0.1 to 0.4 mm in diameter. Nerve growth factors are implanted into the glass cone, and the cortical brain cells are induced to grow into the electrode's tip and form contacts. It takes several weeks to three months for the cortical tissue to grow into the electrode; the process is considered complete when the resulting signals become stable.

The neurons in the brain transmit an electronic signal when they "fire." Gold recording wires are placed inside the glass cone to pick up the neural signals from the ingrown brain tissue and transmit them through the skin to a receiver and amplifier outside the scalp. The system is powered by an induction coil placed over the scalp so wires for powering the device do not have to pass through the skull. Signal processors are used to separate individual signals from the multiple signals that are recorded from inside the conical electrode tip. These signals are used to drive the computer cursor in the same way a computer mouse is moved back and forth. Indeed, the recorded neural signals substitute for the mouse cursor.

Unlike other electrode techniques that have been tried in the past—those primarily used miniature antennae that pierced the surface of the brain and usually lasted for only short periods—this electrode forms an intimate and long-lasting connection with the brain. This basic neurotrophic electrode technology was developed and patented by Dr. Kennedy while at the Georgia Institute of Technology. It was tested...
and developed using animals for over 12 years before it was implanted in humans. Both Federal Drug Administration and Institutional ethical approvals were obtained before the implants were made.

"The trick is teaching the patient to control the strength and pattern of the electric impulses being produced in the brain," Dr. Bakay said. "After some training, they are able to 'will' a cursor to move and then stop on a specific point on the computer screen."

First Tests. The electrodes have been successfully implanted into the brains of two patients at Emory University Hospital, one with amyotrophic lateral sclerosis (ALS or Lou Gehrig’s disease) and one with a brainstem stroke. The first patient was able to control computer signals in an on/off manner for 76 days before she died from her terminal ALS condition.

The second patient, who is at the Atlanta Veterans Affairs Medical Center, is paralyzed except for his face due to a stroke and a subsequent heart attack. While dependent on a ventilator and unable to speak, he is fully alert and intelligent.

The electrodes were implanted in the part of the patient’s brain that once controlled his arm and facial motion. All he has to do is think about moving his arm to create the electrical signals that are translated by the computer into movement of the cursor from icon to icon in a horizontal direction. As each icon is encountered, a phrase such as "See you later. Nice talking with you." is spoken by the computer.

The researchers are now working to help the patient communicate with the computer to produce speech, as well as provide word processing, control of his environment, and maybe even access the internet. The future includes implanting the electrode in the brains of other "locked-in" patients.

Other Applications. The brain-implant technology has other applications. For instance, it could be used as a "spinal bypass" for those with spinal cord injuries that left them with stiff and uncontrollable muscles. Here neural signals could provide some control of electrical stimulators that activate the paralyzed muscles, therefore bypassing the area of spinal-cord injury.

The technique can also be used for basic research on understanding how the brain works. Never before have recordings been made from a human brain for so long and with such stability. For example, the firings of recorded neurons may change in response to differing inputs from different body parts: If neurons fire with taps to the arm, their firing may change over time from repeated taps to the face. This will help researchers understand how the brain communicates with other parts of the body.

RF POWER
(continued from page 54)

Road, Cleveland, OH. 44139; Tel: 1-440-248-1200 Model 43 Thruline meter. It's a tough old war horse! That instrument is an in-line meter that uses a plug-in directional coupler and detector element to customize the meter for different RF power levels and frequency ranges. The tip of the plug-in element comes in close proximity to the coaxial line that runs inside the meter case from connector-to-connector. The analog meter displays the value of the RF power being measured.

The case of the Model 43 has two sockets for additional plug-in elements to accommodate other power and frequency ranges. The heavy leather case that protects the meter in transit has space for several more elements. I have elements for amateur radio HF (10 watts for QRP, 100 watts for my transmitter, and 1000 watts for my linear amplifier), amateur radio VHF (50 watts), and lower power VHF (for marine radios).

Notice in Fig. 9 that the element has an arrow on it. The arrow points in the direction of power measurement. For example, if the load is connected to the right-hand coaxial connector, and the transmitter is connected to the left-hand coaxial connector, then the meter (as shown) will measure the forward power. If the direction of the arrow is reversed, then the reflected power can be measured. Once both the forward power (Pf) and reflected power (Pr) are known, the SWR can be calculated: but to make things easy, the Model 43 comes with a nomograph in the instruction book that makes the calculation graphically.

The Bird APM-16 Advance Power Meter, shown at the beginning of this article, is similar in concept to the older Model 43, but is considerably advanced. While the Model 43 measures rms CW power, the APM-16 will measure analog and digital complex waveforms, as well as CW (e.g., CDMA, TDMA, FDMA, COFDM and other modulation). It will measure both peak and rms power levels.

Figure 10 shows a Bird meter that uses a different approach. That meter uses a remote sensor head connected in-line between the source and load, and a multi-range digital readout display.

That wraps up our look at RF power-measurement circuits and instruments. Whether you need to measure RF power as part of your hobby or for your profession, keep the concepts we’ve discussed here in mind and you won’t go wrong.
AC and DC Lamp-Dimmer Circuits, and More

The web sure makes electronics design much simpler and far easier than before. For example, www.questlink.com can almost instantly provide you with any available data sheet or applications note on just about anything from anyone. There are also a number of newsgroups that anyone into electronics will find handy, including:

- sci.electronics.design
- sci.electronics.equipment
- sci.electronics.misc
- sci.electronics.repair

I have recently added several more key electrical engineering links to my www.tinaja.com/eeweb01.html

Lamp Dimming Fundamentals

Let's assume you have some lamps that you want to cheaply control with a PC, a PIC, or another microprocessor. How would you go about it?

We saw last November (MUSE129 PDF on my Web site) how theaters and concerts use the fancy DMX512 communications standard. Also see RESBN76.PDF on my Web site for information on how home automation often makes use of X-10 dimmer controllers.

Anyway, any incandescent lamp might be brightened or dimmed by changing the DC or rms voltage sent to it. The obvious method involves putting a variable resistor in series with your light. Unfortunately, that technique has big-time inefficiency and heat problems. When you control a 100-watt bulb, as much as 25 watts of heat would have to be burned up in the series controller.

One ancient alternative is to use a Variac, or variable AC transformer. In those, a knob twists a contact to select a changing turns ratio. Early theater lighting controls used ganged banks of motor driven Variacs.

Incandescent lamps can be better brightened or dimmed by changing a duty cycle—the percentage of time voltage is applied. Duty cycling can be very efficient, since the controller is always either on or off. The ratio of on time to off time helps set the brightness. The switching frequency is usually 120-hertz or higher. The thermal inertia from the light bulb's filament and human persistence of vision should integrate or "average out" on and off times, reducing or eliminating flicker.

Your approaches to lamp dimming will differ between AC and DC power systems. The DC routes of Fig. 1 could be used in automobiles, for caving helmets, or in flashlights. In Fig. 1A, a power semiconductor such as a MOS field-effect transistor is placed between lamp and ground. The lamp turns on by making the gate positive by five volts or so. It will turn off by leaving the gate voltage near ground. Very little gate current is needed, so the MOS device acts as a powerful linear or switched "amplifier." One source of white LED caving lights that use those techniques can be found at www.hdssystems.com

In Fig. 1B, a newer style of integrated circuit known as a high-side driver is used. A high-side driver is basically a series power MOSFET with some additional control circuitry. The high-side driving eliminates the need for more than one wire going to the lamp. The return path can be via the vehicle frame or chassis. High-side driver circuits also sense open bulbs, detect other faults, and shut down on short-circuit currents.

One-piece chips that can combine dimming and high-side driving are available. Figure 1C shows how to use the new SGS-Thomson L9830. Its intended use is dimming dashboard lights in an instrument cluster.

The AC dimmers of Fig. 2 all provide a way to switch line-voltage bipolar currents that can be positive or negative. This leaves most power semiconductors out; the exception is a very popular switching device called a Triac.

A Triac has three terminals, called gate, T1, and T2. There is no current between T1 and T2 until a brief and small gate-current pulse is delivered. At that time, the Triac turns on and heavily conducts between T1 and T2. Above a rather small load-holding current, the Triac will latch and stay on. The Triac will stay on until such time as the main current returns to zero. Turn off will usually occur at the next current zero

NEED HELP?

Phone or write all your US Tech Musings questions to:
Don Lancaster
Synergetics
Box 809-EN
Thatcher AZ, 85552
Tel: 520-428-4073

US email: don@tinaja.com
Web page: http://www.tinaja.com
crossing of the line AC sinewave.

The simple Triac on-off switching circuit appears in Fig 2A. Closing the switch turns the Triac on; opening the switch will turn the Triac back off just after the next zero crossing. The sensitivity of a Triac's gate changes a little with the changing line and gate polarity. But proper gate drive can switch either polarity load with either polarity gate pulse.

Your classic Triac wall dimmer is shown in Fig. 2B. The dimmer shown is a bilateral switching diode. A diac turns on whenever its lead voltage exceeds a set amount—often 30 volts or so. Each AC half cycle, the potentiometer starts charging the capacitor. When the capacitor reaches the threshold voltage, the diac will turn on, in turn tripping the main Triac.

The lower the potentiometer's resistance, the earlier in the half cycle that turn on occurs, and the brighter the lamp. The higher the resistance, the later in the cycle that turn on occurs, and the dimmer the lamp. Such a circuit is called a proportional phase control. A second resistor and capacitor (not shown here) will often be added to eliminate any "jumping" problems at very low light levels. You can see the waveforms on this in MUSE108.PDF on my Web site.

One big "gotcha" with Tracs is that they are connected to one side of the AC power line, which creates serious "hot chassis" shock-safety issues.

Figure 2C shows us the standard and safe way of interfacing a Triac to a PIC or a personal computer port. A small and low cost photo-Triac—an optoisolator
with a Triac output—is used. That device is just a light-emitting diode that shines onto a photo-Triac. Pulse the LED with suitably limited current (typically 10 mls) and both the little Triac inside the device and the big main one it drives turn on.

There are a few different ways to use this circuit. You can simply use it for on-off control. Alternately, for heaters and such, you can sense power-line zero crossings somehow and then provide turn on only just after a zero crossing. Such a zero-voltage switch eliminates annoying clicks and radio noise, and it is gentler on both the power line and your load. But note that zero crossing switching is not usable for dimming because the frequency is too low; flicker would be unacceptable.

Instead, you have the option of carefully pulsing the optoisolator’s LED on at an exact position inside of each AC half cycle, thus creating a proportional phase control. This gives you a wide flicker-free brightness range.

You can also get combination Triacs and optoisolators. These are called AC solid-state relays and are offered in a wide variety, but tend to be more expensive than going with discrete devices.

A PIC or PC port can also be programmed to do fancy tricks such as slow dimming, stepped brightness, random “somebody is home” security lights, or for theater-lighting scene sequences.

Note that the brightness versus duty cycle is not linear. Why? Because there is more energy at a half sinewave peak than at the “corners”. Table lookup software can easily adjust for linear voltage versus current, linear power versus current, log compression for input audio, or can even create flickering “flame” effects. You can find more on those concepts on www.tinaja.com; look for EMERGOP5.PDF and MUSE109.PDF.

Be sure to observe the “backwards” LED connection. Because many computer ports and interface drivers are a lot better at sinking current than they are at sourcing, an active-low scheme is normally used; that turns the LED and the Triac on with a low input and off with a high input—watch that detail.

A Triac that switches in mid cycle could generate severe radio noise and other interference. Series LC filters and suitable shielding is often needed to keep that to acceptable levels.

The leading Triac and optoisolators manufacturers include Motorola, Teccor, and Texas Instruments. A color organ is an older name for psychedelic lighting or audio control of lamps. Design tips and ideas can be found in MUSE108.PDF on my Web site.

A Selection of Dimmer Chips

You have a choice of building a dimmer from bits and pieces, by use of a PIC or other microcontroller, or by going to new specialized dimmer chips. A surprising variety of custom chips are available and are summarized in Fig. 3.

Two companies that seem to be in the dimmer forefront are Holtek and LSI/CSI. The Basic Stamp from Parallax or the PIC or baby PIC from Microchip Technology are often superb choices. Control can be by way of an up

FIG. 2—THREE DIFFERENT line-operated lamp dimming circuits. All are built around a Triac.

- (a) Simple triac on-off ac power control.
- (b) Classic phase control dimmer circuit.
- (c) Safety isolated computer interface.
and down pair of input pins, by a resistor going to an A/D converter, parallel "set level" inputs, serial data, or an analog voltage.

A number of useful PIC-dimmer applications notes are downloadable directly from Microchip Technology. To download, use the Questlink listings or the links at www.tinaja.com/picw101.html.

One very interesting combination for multiple control of lots of lamps would be to drive a slew-up/down PICs with several of the new Dallas DS2407 dual addressable switches (from their MicroLAN series). That would let you cheaply and independently control dozens or even hundreds of lamps using a one-wire simple networking system. Each PIC would test every so often to decide if the brightness needed to be changed. With 64 brightness levels, the slew rate from full off to full on would be just over half a second with half cycle sampling if the elaborate MicroLAN communion scheme could be made fast enough. Each addressed up or down command would be carefully synchronized and adjusted to last for a precise line-cycle interval. Levels would be synchronized either with a master reset or simply by supplying enough down commands in a row to guarantee everything is off.

A possible block diagram for this appears in Fig 4. Should the best data rates of a MicroLAN end up too slow, a second baby PIC might be used instead of turning to higher baud rates.

Even simpler might be a "one long serial word" setup. Your first six bits go to lamp 1, the second six bits go to lamp 2, and so on. Sort of a "mini" DMX512.

Yes, a PIC can directly drive a Triac gate. That would eliminate the cost of your Triac-output optoisolator. But the extreme shock hazard would have to be addressed at other points in your circuit or system.

Zero-crossing detection could be simplified by sensing only positive, zero-going transitions and deriving turn on pulses for both half cycles. For further consulting and design information, see www.tinaja.com/info01.html.

What About Fluorescents?
Fluorescent lamp-dimming needs special circuits. Ordinary dimmers must definitely not ever be used with fluorescents! But new concepts are available that let you dim from full brightness down to as low as four percent.
One source of suitable ballasts is Advance Transformer, while useful chips and applications notes can be found at Unitrode. Small laptop fluorescents and suitable dimming technique information is offered by JKL Components.

We just might look at fluorescent dimming further in a future column. Meanwhile, do not try it unless you really know what you are doing!

Magnetic Recording Books

A list of magnetic recording books shows up for this month's resource sidebar. More information on any of these is available at www.tinaja.com/amlink01.html. A useful new trade journal on this topic is Data Storage.

Custom research into any technical field is available at surprisingly low cost at www.tinaja.com/info01.html. This is especially useful in gathering essential background material on any emerging or unfamiliar technology topic you might want to get into big time.

Surplus Update

At present, the administrative expenses of selling military surplus electronics seem to be running something like $1.60 for each dollar in public sales. Thus, your tax dollars are being used to pay people to haul away surplus bargains. Your best defense here is to recycle your tax dollars by grabbing some of these for yourself!

To improve their bottom line, the Feds appear to be experimenting with DRMO office closures; "term" sales (in which you agree to accept a full year's worth of stuff), other new types of sales; and privatization. An asset-management outfit by the name of Levy/Latham is now doing a few of the Fed's surplus sales—so far mostly big-ticket items like machinery and boats. Supposedly a lot more of this will be done in the future. For more details on getting involved, you can visit www.levylatham.com

Although seldom publicized, most DRMO sites stock lists of people and firms who will photograph, bid, pack, and ship items for you. These lists are usually available on request. The type and quality of their services offered seems to vary with the base and who happens to live nearby. The major problem here is triage, where you literally want to lighten up a lot before you ship.

A pair of tutorials on military-surplus bidding insider secrets can be found at www.tinaja.com/reslink01.html Hot buttons on my home page take you directly to the various DRMS access pages. Examples of the actual surplus bargains available these days are up at www.tinaja.com/barg01.html

New Tech Lit

You are invited to participate in a new SETI extraterrestrial intelligence search. An ongoing quest that needs millions of net-linked computers. For info, see setiathome.ssl.berkeley.edu or pick up the summary invitation in the October 30, 1998 issue of Science. Meanwhile, you also might follow the separate Planetary Society billion-channel extraterrestrial assay in real time at seti.planetary.org

Volume 9, #4 of the Tech Transfer Highlights by the Argonne National Lab describes some magic new ionic conductor filters. One can be used to extract oxygen from air. Another can separate hydrogen from gas streams.

USGS topographic maps are at long last finding their way onto the Web and CD-ROM. Although not yet in full resolution, full quality, or in the downloadable and compact Adobe Acrobat format, at
From Jameco comes the latest electronic components catalog 984. Get this one free by clicking on their banner on my Web site. From Galco, their latest industrial electronics catalog. Galco specializes in high-power electronics.

Nomadics, human-scale transport, and energy efficiency are all nicely covered by Steve Roberts through his Microship site at www.microship.com. Grab his free e-zine newsletter.

Free samples this month include a TLCS615 ten-bit serial D/A converter from Texas Instruments, along with plastic fittings, tubing, and such from the folks at Ark-Plas Products. The latest of "new-old" books by Lindsay Publications now include the

Harper's Aircraft Book, Manufacture of Wireless Components, and Electrical Designs. All of these are unique turn-of-the-century reprints. The Ultimate Modern Handbook is a Cass Lewart book from Prentice Hall. More details on all these titles at www.tinaja.com/amlink01.html.

For most individuals and smaller scale startups most of the time, any involvement with patents is virtually certain to result in a net loss of your time, energy, money, and sanity. Find out why, along with proven and tested real-world alternatives in my Case Against Patents package as per my nearby Synergetics ad.

The latest Web site additions at my www.tinaja.com include an expanded PIC library, lots more classic Blatant Opportunist uploads, plus improved layout and navigation. The newest surplus bargains that you will now find at www.tinaja.com/bargte01.html include mystery cryogenics, military tube testers, distortion analyzers, superb luminance probes, radiosondes, and much more.

As usual, most of the mentioned resources show up in the Names & Numbers or the Magnetic Recording sidewalls. Always check here before using our US technical helpline that is shown in the nearby box.

Let's hear from you.

NOW Find the Right Part for Your VCR!

The 172-page Eighth Edition of the VCR Cross Reference contains both model and part number cross references. Over 7,810 new parts and 1927 new models have been added.

VCR's are made in a few factories from which hundreds of different brand names and model numbers identity cosmetically changed identical and near-identical manufactured units. Interchangeable parts are very common. An exact replacement part may be available only a few minutes away from you even though the original brand-name supplier is out of stock. Also, you may be able to cannibalize scrap units at no cost.

with the ISCEI VCR CROSS REFERENCE

NEW! The Seventh Edition is contained on a 3½ diskette for IBM PC AT/XT compatibles, DOS 2.1 or higher. The disk software allows technicians to search by manufacturer for model numbers and description of part numbers. A parts editing sequence gives an on-screen view of all substitutes for parts entered. With the diskette, the technician can update files by adding model and parts crosses of future models. The Eighth Edition can be printed on pages completely from the diskette.

The ISCEI VCR Cross Reference, Seventh Edition, is on 8½ × 11-in., pre-punched pages and sells for $24.95. The 3½ inch diskette sells for $69.95 and you can view listings from a monitor or printed page.

ONLY $24.95 for pages
$69.95 diskette
Not including Shipping & Handling

Claggk Inc.
VCR CROSS REFERENCE OFFER
P.O. Box 4099
Farmingdale, New York 11735-0793

Name
Business
Address
City
State Zip
Phone

Enclosed $69.95 for the diskette containing the ISCEI VCR Cross Reference, Ver. 7.0
Include $5.00 for shipping Version 8 pages within the United States. All other countries add $6.00 (surface mail).
Include $3.00 for shipping Version 7 disk within the United States. All other countries add $4.00 (surface mail).

The total amount of my order is $ Check enclosed—Do not send cash. US funds only.

Card No. Signature

New York State residents must add applicable local sales tax to total.

CB02
SUPPLEMENT TO ELECTRONICS NOW MARCH 1999

Electronic SHOPPER

Micro Video Camera Sale

MB-45cB
Color Video Camera
2.8mm Lens
45° Angle of View
$99.95
Size: 1.25" sq.

MB-650Ua
Black & White Video Camera with Built-In Audio & 4.3 mm Lens.
$89.95
Size: 1.18" sq.

Wireless Cameras

Wireless Camera Package Deals, include: one camera, one receiver and power supplies. (Receiver holds up to 4 cameras)

MB-550U -$69.95
Pinhole Camera Available:
CM-550P -$69.95
240 Line Horizontal Resolution:
Size: 1.12"(L) .5"(W)

No Bigger than the size of a Quarter!
with CMOS Technology.

Wireless 4-Channel A/V Black/White & Color Cameras
GFS-1001 (900MHz)
GFS-2002 (1.2GHz)

Video Conferencing

TeleEye has everything you need to do Color Video Conferencing. It comes with a built-in high quality digital camera, a high speed modem and state-of-the-art Audio/Video hardware.

Remote View Window
Up to 15 frames per second or VHS-quality resolution.
On-Screen Menus
Easy Control using your phone keypad.

$499.

Stand Alone System
No PC Needed.

System includes:
- Monitor
- Camera/100 ft. Cable
- Camera Stand/ Mount
- 2-way Intercom Station
- 100 ft. Intercom Cable
-VCR/Interconnect Cable
-One Year Warranty

SCO-1 -$399.95
Observation System

Interfaces with existing Camera Systems!

Polaris Industries
http://www.polarisusa.com
800.752.3571
Polaris Industries 470 Armour Dr. Atlanta GA 30324 Tech Info: 404.872.0722 FAX: 404.872.1038

CIRCLE 222 ON FREE INFORMATION CARD

www.americanradiohistory.com
EARN MORE MONEY!

Be an FCC LICENSED ELECTRONIC TECHNICIAN!

Earn up to $60 an hour and more!

No costly school. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radio-telephone License." This valuable license is your professional "ticket" to thousands of exciting jobs in Communications, Radio-TV, Microwave, Maritime, Radar, Avionics and more...even start your own business! You don't need a college degree to qualify, but you do need an FCC License.

No Need to Quit Your Job or Go To School
This proven course is easy, fast and low cost! GUARANTEED PASS—You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

Or, Call 1-800-932-4268 Ext. 210

COMMAND PRODUCTIONS
FCC LICENSE TRAINING, Dept. 210
P.O. Box 2824, San Francisco, CA 94126

Please rush FREE details immediately!

NAME
ADDRESS
CITY STATE ZIP

Digital Power Meter

Measures Watts & Watt-hours (kW-hr)

Simple to use. Plug the Power Meter into any AC outlet, and plug the appliance to be measured into the Power Meter. That's it!

Model 4-1850:
• Measure REAL ("true") power 1 to 1850 Watts
• Measure Power used, 1 Watt-hour to 9999 kilo-Watt-hr
• Measure power cost ($), just enter cost per kilo-Watt-hr

Model 20-1850 does everything the 4-1850 with these additional features: Irms, Vrms, Power Factor, 20 mhz processor and more!

Model 4-1850 Only $149.95 Delivered!
Model 20-1850 Only $249.95 MC/Visa/MO/Check

PCBoards

PCB Artwork Made Easy!

PRINTED CIRCUIT DESIGN SOFTWARE

For Windows and DOS

Layout - Autorouting - Schematic - Circuit Simulation

* 16 and 32 bit version available
* Ripup and Retry Router in Advanced Pkg.
* Copper Flooding for Building Ground Areas
* Gerber and Excel on Output
* Create Negative & Positive Printouts
* Create Single or Multi Layer Boards
* Create artwork from the Schematic
* Analog and Digital Simulation available
* Make boards up to 32" x 32" * Parts Libraries - Silk Layers - Solder Mask
* For the Professional and Hobbyist!

Download DEMO - www.pcboards.net

Windows LAYOUT pgm. starts at $149

Windows Pkg. layout-schematic-router $399

DOS pcb layout - $49.95

Call or Write for Full Product Line, Prices & Free Demo

PCBoards (800)473-7227

2110 14th Ave. South
Birmingham, AL 35205

Fax (205)933-2954

Phone (205)933-1122

www.americanradiohistory.com
We call them the 'Cubes'... Perfect video transmission from a transmitter you can hide under a quarter and only as thick as a stack of four pennies—that’s a nickel in the picture.

Transmits color or B&W with fantastic quality—almost like a direct wired connection to any TV tuned to color channel 59. Crystal controlled for extremely high frequency accuracy. A quiet, compact, and detailed CCD Camera which will produce standard television picture quality and Microprocessor controlled for easy frequency setting. DIP switches for easy frequency setting. Less than 1/4 mile is no problem! The answer to their transmitting needs, you will too—fully assembled, including pre-wired connector. Add one of our transmitter units for wireless transmission to any TV set, or add our IB-1 Interface board for audio sound pick-up and easy direct wire hook-up to any Video monitor, VCR or TV or with video audio input jacks. Cameras fully assembled, including pre-wired connector.

AM Band Radio Transmitter

Ramsey AM radio transmitters operate in the standard AM broadcast band and are easily set to any clear channel in your area. Our AM-25, pro version, fully synthesized transmitters feature easy frequency setting DIP switches for stable, no-drift frequency control. Other transmitters in this price range are not capable of maintaining such high accuracy. A unique feature is the maximum 100 milliwatts of power. No FCC license is required, expected range is up to 1/4 mile depending upon antenna and conditions. Transmitters accept standard line level inputs from tape decks, CD players or mixer mixers, and run on 12 volts DC. The Pro AM-25 comes complete with AC power adapter and matching case set and bottom loaded wave antenna. Our entry-level AM-1 that an available matching case and knob set for a finished, professional look.

RF Power Booster

Add some serious muscle to your signal, boost power up to 4 watts. A frequency range of 50 KHz to over 100KHz. Use as a lab amp for signal generators, plus many foreign uses employs the LPA-1 to boost the power of their FM transmitters. The LPA-1 is easily heighten through an entire town. Runs on 12 VDC. For a neat, professionally finished look, add the optional matching case set.

Treasure Finder Kit

Search for buried treasure at the beach, backyard or park. This professional quality kit can detect metal at a depth of up to 6 inches. Easy to use, just lightly change in tone as you 'swEEP' the unit across the surface - the larger the tone difference, the larger the object. Has built-in speaker or earphone connection, runs on standard 9 volt battery. Complete kit, includes handsome case, rugged PCV handle assembly that 'breaks down' for easy transportation and shock proof travel. Save money and cool. Easy one evening assembly. This nifty kit will literally pay for itself! That guy in the picture looks like he found something—what do you think it is - gold, silver, Rogen, Viagas! You'll have fun with this kit.

Super Pro FM Stereo Radio Transmitter

A fully professional frequency synthesized FM Stereo transmitter station in one easy to use, handsome cabinet. Most radio stations require a whole equipment rack to hold all the features we've packed into the FM-100. Set frequency easily with the Up/Down frequency buttons and the big LED digital display. Plus there's input low pass filtering that gives great sound no matter what the source (no more squealing or feedback). Sounds from cheap CD player inputs! Peak limiter for maximum 'punch' in your audio - without over-modulation, LED bargraph meters for easy setting of audio levels and a built-in mixer with mike and line level inputs. Churches, drive-ins, schools and colleges find the FM-100 to be the answer to their transmitting needs, you will too. No one offers all these features at this price! Kit includes cabinet, wrap antenna and 120 VAC supply. We also offer a high power export version of the FM-100 that's fully assembled with one watt of RF power, for miles of program coverage. This high powered version can be shipped anywhere in the US, or within the US if accompanied by a signed statement that the unit will be exported.

RMSEY ELECTRONICS, INC.

793 Canning Parkway, Victor, NY 14564
Call for our Free Catalog! See our complete catalog and order on-line with our secure server at: www.ramsayelectronics.com

Speech Descrambler

Decide all that gibberish! This is the popular descrambler / scrambler that you've read about in all the Scanner and Electronic magazines. Speech inversion technology is used, which is compatible with most cordless phones and many police department systems, hook it up to your scanner speaker terminals and you're in business. Easily configured for any use: mike, line level and speaker output. Special adapters for telephones, radio, cell phones, new digital phones, many police department systems, and many others, all built-in to our secure line. Orders under $20, add $3.00. Call for free catalog and order status. Fax: 716-924-4561.
ATTENTION DEALERS: WHOLESALE ONLY!

BEST DEALER PRICING!
FAST SERVICE
SAME DAY SHIPPING

EXCLUSIVE:

2 PIECE SETUPS: $85
10 lot • 1 Year Warranty
Latest Technology • Universal Combo’s - Ask For Details
CALL US LAST! LOWEST PRICES GUARANTEED!

TOLL FREE: 800-375-3682
FAX: 516-246-5634

Visit our web site! www.mouser.com
Subscribe, download, or view catalog online!

- Over 78,000 Products
- More than 145 Suppliers
- Same Day Shipping
- No Minimum Order

800-992-9943
817-483-6828 Fax: 817-483-6899
catalog@mouser.com
958 North Main St., Mansfield, TX 76063

MEMBRANE SWITCHES

Stock Layouts!
Eliminates tooling cost...
From 2 to 128 keys
Industrial/Commercial/Prototyping
Popular types are available as complete kits, with bezel, connector & overlay!
4 key DSK-4 kit $9.60
12 key DSK-12 kit $13.87
many more layouts...
Optional Stainless Steel “Clickdomes”.

Sil-Walker
(805) 491-0654
FAX (805) 491-2212
P.O. Box 3220
Camarillo, CA 93011-3220
silwkwr@vcnet.com
www.vcnet.com/silwkwr/

Low Cost PICmicro Tools

EPIC Pocket PIC Programmer - $59.95
- Programs PIC12C50x, 67x, 16C5x, 6x, 7x, 8x
PICProto Boards - $8.95 to $17.95
PicBasic Compiler - $99.95
new! PicBasic Pro Compiler - $249.95
BASIC makes it easy for you to program the fast and powerful Microchip PIC microcontrollers:
- Expanded BS1/2 compatible instruction set
- True compiler provides faster program execution and longer programs than BASIC interpreters

microEngineering Labs, Inc.
Box 7532 Colorado Springs CO 80933
(719) 520-5323 fax (719) 520-1867
http://www.melabs.com

ATTENTION DEALERS: WHOLESALE ONLY!

BEST PRICES!
FAST SERVICE
SAME DAY SHIPPING

MEMBRANE SWITCHES

Low Cost PICmicro Tools

EPIC Pocket PIC Programmer - $59.95
- Programs PIC12C50x, 67x, 16C5x, 6x, 7x, 8x
PICProto Boards - $8.95 to $17.95
PicBasic Compiler - $99.95
new! PicBasic Pro Compiler - $249.95
BASIC makes it easy for you to program the fast and powerful Microchip PIC microcontrollers:
- Expanded BS1/2 compatible instruction set
- True compiler provides faster program execution and longer programs than BASIC interpreters

microEngineering Labs, Inc.
Box 7532 Colorado Springs CO 80933
(719) 520-5323 fax (719) 520-1867
http://www.melabs.com

www.americanradiohistory.com
Interact ProPad
GAME CONTROLLER

Interact Game Products # SV-230
PC ProPad works with hundreds of
PC games.
Very similar to Super
Nintendo
controllers, it has a
four-way direction but-
ton on the left, A and B
buttons on the right and speed con-
trols and auto-fire controls in the
middle. 15 pin D sub con-
ector plugs into the sound
Card on most Windows based computers.

$3.00 each
CAT # SV-230
2 for $5.00

3000 MCD ULTRA-BRIGHT
RED LED

Everlight # 3833RC-2/TR1-C(R)
Red, "Ultra-bright" T 1 3/4 LEDs
now at our lowest price ever.
Due to a special purchase of
"tape-and-reel" parts we are
able to offer these LEDs at an
incredibly low price when pur-
chased on the reel. These
are 5 mm diameter water-clear LEDs that
light bright red at 20 ma.
CAT# LED-50
2 for $1.00

S-VHS Tape (Used)

Super VHS tape users!
Save a bundle on
name-brand S-VHS,
T-120 tapes. These
tapes were used for a
brief period, then bulk
erased. The record-
protect tabs have been broken
out, so you will have to cover the
notch with a piece of tape, but they work
great and cost a fraction
of the "new" price.
CAT #S-VHS
$3.00 each
10 for $28.00 • 100 for $250.00

ORDER TOLL FREE
1-800-826-5432

MAIL ORDERS TO:
ALL ELECTRONICS CORP.
P.O. BOX 567
VAN NUYS, CA 91408-0567

FAX (818) 781-2653 • INFO (818) 904-0524
INTERNET http://www.allcorp.com/
E-MAIL allcorp@allcorp.com

NO MINIMUM ORDER • All Orders Can Be Charged to Visa, Mastercard, American Express or Discover • Checks and Money Orders Accepted by Mail • Orders Delivered in the State of California must include California State Sales Tax • NO C.O.D. • Shipping and Handling $5.00 for the 48 Continental United States • ALL OTHERS including Alaska, Hawaii, P.R. and Canada Must Pay Full Shipping • Quantities Limited • Prices Subject to change without notice.

MANUFACTURERS - We Purchase EXCESS INVENTORIES... Call, Write, E-MAIL or Fax YOUR LIST.

CIRCLE 214 ON FREE INFORMATION CARD

CALL, WRITE, FAX or E-MAIL For A
Free 96 Page
CATALOG.
Outside the U.S.A.
send $3.00 postage.

Interact Game Products # SV-230

STEREO HEADSET
with Electret Mike

Andrea Electronics # M-150
Designed for use with
personal computers for multimedia,
speech recognition, internet telephone, etc.
Stereo headset and boom mike has two separate
3.5mm stereo plugs for connection
to mike and speaker jacks.
Lightweight headphones with adjustable headband.

6" cord
CAT# PHN-15

$8.75 each

10K THERMISTOR

Semtec # 103AT-2
10K ohm (± 1 %) @ 25 deg. C. Rated
10 mW. Time constant: 15 sec.
2 mm x 3 mm.
CAT# THR-20
$1.00 each
10 for $8.50
200 for $130.00

250 uh PANEL METER

Good-looking 1.65" x 1.66" panel meter. Matte-black frame
with a 1.43" x 0.84" viewing window. Scale calibrated from
1 to 10, divided into green
(1-4), yellow (4-6) and red
(6-10) areas. Logo, "The Seeker"
is written under the scale.

$1.50 each
CAT # MET-51

10 for $12.50

Encased Piezoelectric Element

0.82" DIAMETER X 0.15"
AVX/Kyocera # PORT21BGX
Black plastic front, vented metal
top. Solder loop terminals.
Loud for non encased piezo elements.
Requires exterior signal to produce sound.

$3.00 each
CAT # PE-38

3 for $1.00
100 for $25.00
1000 for $125.00

BIG Flashing LED

Big, bright red flashing LED.
10 mm diameter. Red diffused lens. Great for attention getting displays.
Operates on 3-12 Vdc. Flash rate approx. 2 times per second.

CAT# LED-60
2 for $1.50
10 for $6.50
100 for $50.00

UV Blacklight

New black-light lamps designed by Avon
Cosmetics to highlight dry skin.
They have a built-in timer that
shuts-off the lamp after
approximately one
minute. Ideal for
lighting fluorescence in
black-light postes, gemstones,
hand stamps and US
currency. 5" lamp, F4T5BLB, is housed in a
lightweight plastic case.
7" x 2.5" x 2.3" high.
Powered by a 12 Vdc, 500 ma wall transformer
(included). Individually boxed.

CAT# UVL-1
$10.00 each

F4T5-BLB Replacement lamp for above
fixture.
CAT# BBL-5 $3.00 each

470 Mfd 450 Vdc
Nichicon #LGQ2W471MHSC
1.375" dia x 2" high. 0.4" lead
spacing.

CAT# EC-4745
$3.00 each
10 for $22.50

"Hi-8" Video Cassette

SONY Hi-8 Top quality,
metal particle 120 minute
video cassettes. Used
for a short time, then
bulk-erased. Each
cassette has its own
plastic storage box.

CAT# VCU-8
$3.00 each
10 for $28.00 • 100 for $250.00

www.americanradiohistory.com
INTERNET SECURITY

The latest tricks and methods hackers use on the Net to pirate software (warez), and hack websites. Includes examples, countermeasures, password defenses, Packet-Switched Networks, UNIX, Samba, timestamp, brute force techs, lots of tips. More! $29 EWC-10K.

INTERNET TRACKING & TRACKING Scammers, spammers, stalkers, intruders, and others hide behind the Internet's anonymity to commit serious offenses. Learn from master hackers best methods to track, trace IDs and origins, and to protect your own privacy. More! $29 EWC-17K.

INTERNET FRAUDS DATABASE Internet con scams and related frauds now rake in $2 Billion annually! Most are done anonymously with impunity. Details how they've done it, how to stop them from doing it to you, how to protect yourself. More! $29 EWC-18K.

THE COOKIE STOPPERS, pptunity. Details how cookies operate: what they do, how hackers use cookies, how they masquerade as legitimate cookies, how to stop them, and how to protect yourself. More! $29 EWC-11K.

THE CALLER ID & ANI SECURITY How and why new Telephone Identification (Caller ID) is vulnerable and how hackers are using it to track, trace and harvest your personal information. More! $29 EWC-32K.

FAX MACHINE SECURITY All known methods used to hack faxers and countermeasures. Includes fax automations, fax interactions, fax servers, fax on-demand, and others. More! $29 EWC-44K.

VOICE MAIL SECURITY VMS are hacked to penetrate PBX to make outgoing calls, get free VMS usage, securely read/change/delete messages, control or damage the VMS (or its PBX) itself! Details how hackers do it, countermeasures. A must for PBX users, security personnel! More! $29 EWC-14K.

TOP SECRET
Catharine A. Clancy
2430 Juan Tabo, NE, #259, ABQ, NM 87112
P.O. Box 23907, ABQ, NM 87192
Fax 505-292-4075 (after hours) Voice 505-237-2073 M-S
Full Web Catalog: www.tsc-global.com Special Projects: spaf-sph.htm
Established in 1971 by John Williams, M.E. & Ph.D. Engineer and Electronics Designer. "Never Underestimate a Minute's" Forbes, New York Times. Add $5 total S/H (U.S. Canada). Cash, MC, Visa & COD. 5% Off all Orders over $100. 15% Off all New Orders over $150 placed by Mail or Fax, EWC Estimated Word Count. Sold for legal educational purposes only. Some publications are controversial. While stocks last. Things we publish. See Catalog for LIMITED EDITION, SPECIAL PROJECTS and all other applicable policies and prices. CIRCLE 226 ON FREE INFORMATION CARD.

Quality Reconditioned

TEST EQUIPMEN

Visit us at our website www.danbar.com
(W620) 483-6202 • (W620) 483-6403 Fax
14455 North 79th Street, Unit #C • Scottsdale, Arizona 85260

CIRCLE 223 ON FREE INFORMATION CARD

www.americanradiohistory.com
6-1/2" Two Way System

This is our most popular in-wall. You won't believe how good these really sound. Big enough to produce great home theatre sound and still fit everyone's budget. Put a pair in every room of your house. Great for front or rear speakers in your surround sound system. The 6-1/2" polypropylene woofer and 1" textile dome tweeter were specially designed with home theatre in mind. The crossover network utilizes a mylar capacitor for crisp clean highs, 3 piece design make installation in new or existing walls a snap.

Specifications: 6-1/2" polypropylene cone woofer with poly foam surround, 1" textile dome tweeter, midrange 0.8 ohm impedance 3 component LC crossover network 50-20,000 Hz Power handling capability: 60 watts RMS/85 watts max Sensitivity: 89 dB 1W/1M Overall dimensions: 8 1/8" H x 12 1/2" O Hole size: 7-1/4" x 10-3/4" Fits into standard 2" x 4" wall Net weight: 12 lbs. per pair.

#300-036 $89.90 (3PR) $79.50 (4PR-UP)

Satellite Speaker Stands

These quality speaker stands are perfect for rear or surround speakers. The heavy die cast base provides stability. Textured black satin finish blends in well with any decor. The height is adjustable from 26-1/2" to 47" and the speaker wire can be run inside the pole for a better appearance. The top base is adjustable from 4-1/8" to 7-1/2" to accommodate most mini speakers. Includes foam pads to prevent marring of speaker cabinet. Sold in pairs. Net weight: 12 lbs.

#240-762 $39.80 (1PR) $35.50 (2PR-UP)

5 Function Remote

- Operates five devices (TV, VCR, Cable, Satellite, A/V Receiver)
- Lighted control keys which indicate what device is currently being used
- Extensive programming, 621 codes that work with over 6,400 models
- Ergonomic design features an ergonomic case, index finger grooves, and keys grouped in order for easy operation
- Satellite control is tailored for use with a Home Theatre system, keypad design allows movement through menus with ease
- Retains codes when replacing batteries
- Short-circuit guarantee ensures customer satisfaction
- Requires 2 AAA batteries (#140-150 not included)

#180-806 $29.95 (1PR) $26.50 (2PR-UP)

3M 3/4" TemflexTM 1700 Vinyl Electrical Tape

General purpose 7 mil electrical tape. UL listed and CSA approved. 3/4" x 60 rolls.

#350-052 75¢ (5PR) 59¢ (10PR)

Gold Plated A/V Cables

A super quality, "shamed" type cable. Two RCA cables for stereo (audio) signal from VCR to receiver/stereo TV and one low noise coaxial type cable for video.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Length</th>
<th>Price (1PR)</th>
<th>Price (10PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180-180</td>
<td>10 ft.</td>
<td>$4.25</td>
<td>$3.95</td>
</tr>
<tr>
<td>180-188</td>
<td>6 ft.</td>
<td>4.60</td>
<td>4.50</td>
</tr>
<tr>
<td>180-121</td>
<td>12 ft.</td>
<td>8.95</td>
<td>7.95</td>
</tr>
<tr>
<td>180-240</td>
<td>20 m.</td>
<td>12.75</td>
<td>11.50</td>
</tr>
</tbody>
</table>

If you haven't received a copy of our current 260 page catalog... have one added to your order or give us a call and we will send one out to you immediately.

6-1/2" Round Coaxial System

Designed for the home and office, these 6-1/2" round in-wall speakers are ideal for installations, or for use as rear channel surround speakers. Adding music to the kitchen, den, bath, or porch has never been easier. System features a weather resistant 6-1/2" treated paper cone with poly foam surround, coaxially mounted 1/2" poly dome tweeter, and built-in crossover with a mylar capacitor in the tweeter lead. Retrofit design allows installation in both new and existing construction in just minutes. System includes removable steel mesh grills, built-in mounting bracket, hardware, and installation instructions.

#300-408 $69.95 (1PR) $62.75 (2PR-UP)

3 Amp Power Supply

This fully regulated power supply is perfect for powering CBs, car radios, and other 12 VDC devices that draw up to 3 amps. All sub-steel housing with front mounted switch and binding posts. Short-circuit and overload protection!

Specifications for Output Voltage: 12.8 VDC (fixed) Output Current: 3A (con), 5A (surge) Ripple Voltage: Less than 3mV at rated output Input Voltage: 120 VAC, 60Hz Dimensions: 5-1/2" x 3-1/2" x 6-1/2" Weight: 5 lbs.

#120-530 $19.95 (1PR) $18.50 (4PR-UP)

DMM and LCR Meter

In addition to functions found in regular DMMS, this meter can also measure inductance in 5 ranges (4mH, 40mH, 400mH, 4H, 40H), capacitance in 5 ranges (4nF, 40nF, 400nF, 4uF, 40uF), frequency in 5 ranges (kHz, kHz, kHz, kHz, kHz), TTL logic test, diode test and transistor FET test. 5 AC DC ranges up to 1000V (AC75V), 3 AC/DC current ranges up to 20A and 7 resistance ranges up to 4000 M ohms. Includes test leads, battery, spare fuse, and manual. Net weight: 1 lb.

#390-513 $55.90 EACH

2.5W Mini Audio Amplifier

This amplifier both pre-amp and power amplifier on a super small board measuring only 1-5/8"x1-1/4". Max output power is 2.5W into 4 ohms with 12VDC input. No adjustments required. Short-circuit protected.

#320-215 $9.55 EACH

Weller Soldering Station

WLC100

Soldering Station

The Weller WLC100 soldering station is ideal for the professional, serious hobbyist, or anyone who demands higher performance than usual of a standard iron, but without the high cost of an industrial unit. Power is adjustable from 5 to 40 watts. Includes 40 watt pencil iron. UL approved. Net weight: 1-34 lbs. Replacement sponge #372-119.

#372-120 $39.95 EACH

"44" Solder

Kester "44" rosin core solder is designed for electronic and electrical work. It is a fast acting, instant wetting, non-concor, and non-conductive flux for faster soldering and a strong, long lasting bond.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Alloy</th>
<th>Lead/In</th>
<th>Snell. Dia.</th>
<th>Price (1-PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>370-070</td>
<td>60/40</td>
<td>1 lb.</td>
<td>031"</td>
<td>$8.50</td>
</tr>
<tr>
<td>370-080</td>
<td>60/40</td>
<td>1 lb.</td>
<td>050"</td>
<td>$8.50</td>
</tr>
<tr>
<td>370-090</td>
<td>60/40</td>
<td>1 lb.</td>
<td>031"</td>
<td>$33.50</td>
</tr>
<tr>
<td>370-125</td>
<td>618-50</td>
<td>1/2 lb.</td>
<td>031"</td>
<td>$14.90</td>
</tr>
<tr>
<td>370-137</td>
<td>618-50</td>
<td>1/2 lb.</td>
<td>031"</td>
<td>$9.95</td>
</tr>
<tr>
<td>370-074</td>
<td>60/40</td>
<td>1/2 lb.</td>
<td>020"</td>
<td>$7.95</td>
</tr>
<tr>
<td>370-088</td>
<td>60/40</td>
<td>1/2 lb.</td>
<td>020"</td>
<td>$12.50</td>
</tr>
<tr>
<td>370-089</td>
<td>60/40</td>
<td>1/2 lb.</td>
<td>020"</td>
<td>$12.50</td>
</tr>
</tbody>
</table>

Pro Wick

Pro Wick's advanced fine braid design provides wicking action that is second to none.

<table>
<thead>
<tr>
<th>Part #</th>
<th>T#</th>
<th>Size</th>
<th>Length</th>
<th>Price (1-PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>341-415</td>
<td>1802-5</td>
<td>.06"</td>
<td>5"</td>
<td>$1.40</td>
</tr>
<tr>
<td>341-416</td>
<td>1803-5</td>
<td>.08"</td>
<td>5"</td>
<td>$1.40</td>
</tr>
<tr>
<td>341-417</td>
<td>1804-5</td>
<td>.10"</td>
<td>5"</td>
<td>$1.60</td>
</tr>
<tr>
<td>341-424</td>
<td>1802-10</td>
<td>.06"</td>
<td>10"</td>
<td>$2.75</td>
</tr>
<tr>
<td>341-425</td>
<td>1803-10</td>
<td>.08"</td>
<td>10"</td>
<td>$2.85</td>
</tr>
<tr>
<td>341-426</td>
<td>1804-10</td>
<td>.10"</td>
<td>10"</td>
<td>$2.85</td>
</tr>
<tr>
<td>341-430</td>
<td>1802-25F</td>
<td>.06"</td>
<td>25'</td>
<td>$6.80</td>
</tr>
<tr>
<td>341-441</td>
<td>1803-25F</td>
<td>.08"</td>
<td>25'</td>
<td>$6.80</td>
</tr>
<tr>
<td>341-442</td>
<td>1804-25F</td>
<td>.10"</td>
<td>25'</td>
<td>$7.60</td>
</tr>
<tr>
<td>341-443</td>
<td>1805-100</td>
<td>.06"</td>
<td>100'</td>
<td>$21.90</td>
</tr>
<tr>
<td>341-419</td>
<td>1803-100</td>
<td>.08"</td>
<td>100'</td>
<td>$21.90</td>
</tr>
<tr>
<td>341-423</td>
<td>1804-100</td>
<td>.10"</td>
<td>100'</td>
<td>$23.90</td>
</tr>
</tbody>
</table>

Visit our web site at www.parts-express.com or call toll free 1-800-338-0531

Largest selection of speaker drivers in the country!

Circle 262 on free information card
<table>
<thead>
<tr>
<th>ALFA ELECTRONICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH QUALITY TEST EQUIPMENT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMM-895 ($197.00): true rms, AC/DC (V/A), Q bar graph, freq, cap, dmm, logic, diode</td>
</tr>
<tr>
<td>DMM-237 ($99.95): 4½ digit, true rms, high resol. (10uV, 10nA, 10s/s) MFE, diode, continuity</td>
</tr>
<tr>
<td>DMM-26 (74.95): ACDC + A/F, freq, cont. Cap, Induct, Q, MFE, diode, duty cycle</td>
</tr>
<tr>
<td>DMM-112 ($39.95): DCAV(A), Q, MFE, diode, capacitance, freq, logic, continuity</td>
</tr>
<tr>
<td>DMM-123 (54.95): DMM + capacitance, DCAV(A), Q, MFE, diode, continuity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OS-820 324.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most economical</td>
</tr>
<tr>
<td>Dual CH-X/Y operation</td>
</tr>
<tr>
<td>1 mV/div sensitivity</td>
</tr>
<tr>
<td>2-axis input, CH output</td>
</tr>
<tr>
<td>Dual CH, Delay sweep</td>
</tr>
<tr>
<td>Built-in delay line</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALFA ELECTRONICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.O. Box 8089</td>
</tr>
<tr>
<td>PRINCETON, NJ 08543-8089</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCR/CTRNER</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLUKE</td>
</tr>
<tr>
<td>SPECIALTY</td>
</tr>
</tbody>
</table>

| CAP-15 ($49.95): 3½ digit, 0.1pF, 20mΩ, 9 Ranges, 0.1pF resolution, auto adjustment |
| LCR-24 ($119.95): 0.1µH/200kΩ, 0.1pF/100pF, 0.01µF-20µF, auto test, New Model |
| LCR-121D ($79.95): autotune, 0.1pF-100pF, 1mΩ-10MΩ, Q Factor, serial/parallel, 120Hz/1kHz testing mode. |
| FC-1200 ($129.95): 1µA/div |

<table>
<thead>
<tr>
<th>Fine</th>
<th>Direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESR</td>
<td>Output</td>
</tr>
<tr>
<td>50k</td>
<td>50k</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Triple Output DC Power Supplies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant current, constant voltage mode</td>
</tr>
<tr>
<td>Short circuit and overload protected</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS-303 ($159.00)</th>
<th>0V-3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-305 ($219.95)</td>
<td>0V-5A</td>
</tr>
<tr>
<td>PS-1112 ($399.95)</td>
<td>60V/5A</td>
</tr>
<tr>
<td>PS-1610 ($289.00)</td>
<td>16V/10A</td>
</tr>
<tr>
<td>PS-8010 ($499.95)</td>
<td>8V/5A</td>
</tr>
<tr>
<td>PS-9017 ($399.95)</td>
<td>20V/5A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GWINSTEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MHz Scope</td>
</tr>
<tr>
<td>Cursor Readout</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GWINSTEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MHz Scope</td>
</tr>
<tr>
<td>Cursor Readout</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DC POWER SUPPLIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple Output</td>
</tr>
<tr>
<td>Single Output</td>
</tr>
<tr>
<td>Programmable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUNCTION GENERATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Display</td>
</tr>
<tr>
<td>Analog Display</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BENCHTOP DMM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ATTENTION CABLE VIEWERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABLE VIEWERS... get back to your BASIC Cable Needs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BASIC ELECTRICAL SUPPLY & WAREHOUSING CORPORATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.O. Box 8180 • Bartlett, IL 60103 • 800-577-8775</td>
</tr>
</tbody>
</table>

| www.americanradiohistory.com |
Questions? Contact us for a list of US distributors or to get your FREE catalogue

CIRCLE 282 ON FREE INFORMATION CARD

www.americanradiohistory.com
CALL TOLL FREE
(800) 292-7711 orders only
Se Habla Español

C&S SALES
EXCELLENCE IN SERVICE

LOOK FOR OTHER MONTHLY SPECIALS
ON OUR WEBSITE

XK-700 Digital / Analog Trainer
Elenco's newest advanced designed Digital / Analog Trainer is specially designed for school projects. It is built on a single PC board for maximum reliability. It includes 5 built-in power supplies, a function generator with continuously sine, triangular and square waveforms and a 1560 point/second analog area. Tools and meter shown optional. (Mounted in a professional tool case made of reinforced metal).

XK-700 Assembled and Tested $189.95
XK-700 - SEMI KIT w/ Fully Assembled PC Board $174.95
XK-700K - Kit $159.95

15pc. VCR Service Tool Kit
Model TK-1400 Special $24.95
- Inclined Base Screwdriver
- Eccentric Screwdriver
- 2mm & 3mm Fine Adjust Screwdriver
- VHS VCR Head Puller
- Retaining Ring Remover
- 3 Reversable Screwdrivers
- Spring Hook Tool
- Micro Screwdriver
- Hex Wrench Set

Model M-6100
The M-6100 is Elenco's most sophisticated meter with almost every possible feature available. The M-6100 even has a computer interface for viewing and storing data on a personal computer. It comes complete with software, RS-232 cable, test leads and manual.

Power Supply Kit
Model XP-720K
3 fully reg. DC supplies
1.5VDC - 15VDC @ 1A
-1.5VDC to -15VDC
5VDC @ 3A
Plus
6.3VAC @ 1A and 12.6VAC C.T. @1A

Digital Multimeter
Model M-1740
$39.95 Free Holster
11 functions
- Freq to 20MHz
- Cap to 20pF
- AC/DC Voltage
- AC/DC Current
- Beeper
- Diode Test
- Transistor Test
- Meets UL-1244 safety specs

Digital LCR Meter
Model LCR-1810
$99.95
- Capacitance 1pF to 20mF
- Inductance 1µH to 20H
- Resistance 0Ω to 2000Ω
- Meniscure -20°C to 75°C
- DC Volts 0 - 20V
- Frequency up to 15MHz
- Diode/Audible Continuity Test
- Signal Output Function
- 3 1/2 Digt Display

Digital Capacitance Meter
Model CM-1555
$44.95
- Capacitors from 1pF to 20mF
- 3 1/2 Digit LCD
- Zero adjust
- Special insertion lock
- ±2% basic accuracy
- TTL level

Digital Audio Generator
Model SG-9300
$175
- 10Hz - 1MHz
- Low Distortion
- Sine/Square waves
- Built-in 150MHz Frequency Counter

RF Generator
Model SG-9500
$225
- 100KHz - 150MHz
- Internal AM Mod of 1KHz
- RF Output 100mV - 35 MHz
- Audio Output 1KHz @ 1V rms

UPS SHIPPING: 48 STATES 5%
OTHERS CALL FOR DETAILS
IL Residents add 6.25% Sales Tax

WE WILL NOT BE UNDERSOLD
C&S SALES, INC.
150 W. CARPENTER AVENUE
WHEELING, IL 60090
FAX: (847) 541-9804 (847) 541-0710
http://www.elenco.com/cs_sales/

CIRCLE 322 ON FREE INFORMATION CARD

15 DAY MONEY BACK
GUARANTEE
FULL FACTORY WARRANTY
PRICES SUBJECT TO CHANGE WITHOUT NOTICE

www.americanradiohistory.com
Quality Scopes by Elenco

Lowest Prices of the Year!

Includes Free Dust Cover and Probes

60MHz
DS-603 $995
- Analog / Digital Storage
- 20MS/s Sampling Rate
- RS232 Output

S-1360 $749
- Analog with Delayed Sweep
- Component Tester

100MHz
S-1390 $895
- Analog w/ delayed sweep
- Dual Time Base
- TV Sync

25/30MHz
DS-303 $895
- Analog / Digital Storage
- 20MS/s Sampling Rate
- RS232 Output

DS-203 $695
- Analog / Digital Storage

S-1330 $439
- 25MHz Analog
- Delayed Sweep

S-1325 $325
- 25MHz Analog
- TV Sync
- 1mV Sensitivity

Fluke Multimeter Specials

F-73III $119
List $135

F-T111 $165
List $185

F-79II $175
List $199

F-87 $289
List $335

B&K Precision Multimeter Specials

Model 5390 $295.00

MX-9300

Four Functions in One Instrument

Features:
- One instrument with four test and measuring systems:
 - 1.3GHz Frequency Counter
 - 2MHz Sweep Function Generator
 - Digital Multimeter
 - Digital Triple Power Supply

- 0-30V @ 3A, 15V @ 1A, 5V @ 2A

GUARANTEED LOWEST PRICES

C&S SALES, INC.
150 W. CARPENTER AVENUE
WHEELING IL 60090

15 DAY MONEY BACK GUARANTEE

FULL FACTORY WARRANTY

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

Most Major Credit Cards Accepted

CALL OR WRITE FOR OUR
NEW FREE 64 PAGE CATALOG!
(800) 445-3201

March 1990, Electronics Now
OVER 30,000 ITEMS IN STOCK

LARGE VARIETY SAME DAY SHIPPING
Minimum Orders $20.00
Not Including Shipping & Handling

SEMICONDUCTORS

Original # Brand Replaces
7805 Tesla 960
7806 Anc 962
7809 Anc 1910
7810 Samsung 1968
7812 Tesla 966
7815 Tesla 968
7816 Tesla 958
7824 Tesla 972
7905 Tesla 968
7906 Tesla 963
7908 Tesla 965
7910 Tesla 958
7912 Anc 967
7918 Tesla 959
7924 Tesla 971

YOUR CHOICE

5 Feet Dalco®

ECONOMICAL SOLDER WICK

- Length: 5 feet
- Width: 0.16"
- Safer Desoldering
- Fast Response

Item # 51-1050 $1.10 each

SOLDER ROLL

- 1 LB Spool
- 370°F melting point
- Fastest solder
- Alloy 60/40, tin lead, non corrosive flux, Diam. 1.0mm

Item # 51-1005 $5.49

TUN-O-WASH®

Fast drying electrons grade cleaner for tuners, controls and PC boards.
- CFC and HCFC free
- Not for use on energized equipment
- Due to the chemical content, this product can only be shipped by UPS ground service.

Item # 30-0100 (12.5 Oz aerosol)

DUAL HELPING HANDS

- Hold Work in any Position to leave hands free for soldering

Item # 50-1325 $3.45

SOLDERING IRON

- General Purpose Applications
- 117V AC, 30 Watts

Item # 51-1335 $2.25

DAIPCO DIGITAL MULTIMETER

- DC Voltage: 200m-1K
- AC Voltage: 200-750V
- DC Current: 20m-30
- Transistor and Diode Test
- Continuity Tester
- Polarity indicator appears on LCD
- Test Probes Included
- Dimensions: 4.96" x 2.76" x 9.4"
- Weight: 6 oz.
- 9V Battery Included

Item # 50-2895 $9.95

WELLER WLC100 SOLDERING STATION

- Ideal for the professional, serious hobbyist
- Variable power control (5-40W)
- 40W pencil iron and ST# interchangeable tips
- Replaceable heating element
- Cushioned foam grip
- Safety guard iron holder
- On/Off switch with "power-on" indicator light

Item # 51-1505

Free 400 Page Color Catalog With your First Order

1-800-325-2264

Dalbani
The Ultimate Saving Source

Dalbani®
4225 NW 72ND AVE. MIAMI, FLORIDA 33166
TEL : (305) 716-1016 ---- FAX : (305) 594-6588

Electronics Now, March 1989

www.americanradiohistory.com
ONLY COOL-AMP SILVERPLATES ON THE JOB.

From a customer testimonial:

"Ok, your edge connectors don't connect. Or you want to plate your own PC creations, but you don't want to bother with electro-plate solutions. The plating on the socket... has worn off and no longer makes reliable contact... what are you going to do now?

"Give the people at Cool-Amp a call. They have a silver plating compound I have used for the past couple of years that solves all of the above problems and more. This white powder has an infinite shelf life... and is easy to use.

"It will actually put a permanent silver plate on copper, brass or bronze... There are no messy or dangerous chemicals. Application could not be easier. Use a clean rag and a little bit of water and just rub it on a clean surface. In minutes you can permanently silver plate a circuit board or replate a power amp tube or socket.

"It has saved me time, money and my sanity."

Cool amp has even outperformed electroplating in recent tests. It is time-proven since 1944.

COOL-AMP

AND CONDUCTO-LUBE. THE SILVER-BASED CONDUCTIVE LUBRICANT.

The upset, since 1952. Developed for switches, uses continue to expand to all applications needing a conductive lubricant.

ORDER FACTORY DIRECT:
503-624-6426 or FAX 503-624-6436
http://www.thomasregister.com/cool-amp
Are you interested in Microprocessors & Embedded Control Systems? If not you should be! Look around, just about everything these days has an embedded microprocessor in it. TVs, cars, radios, traffic lights & even toys have embedded computers controlling their actions. The Primer Trainer is the tool that can not only teach you how these devices operate but give you the opportunity to program these types of systems yourself. Examples & exercises in the Self Instruction manual take you from writing sample programs to controlling motors. Start out in Machine language, then move on to Assembler, & then continue on with optional C, Basic, or Forth Compilers.

Examples Include:
- Measuring Temperature
- Using a Photocell to Detect Light Levels
- Making a Waveform Generator
- Constructing a Capacitance Meter
- Motor Speed Control Using Back EMF
- Interfacing and Controlling Stepper Motors
- Scanning Keypads and Writing to LCD/LED Displays
- Bus Interfacing an 8255 I/F
- Using the Primer as an EPROM Programmer
- DTMF Autodialer & Remote Controller (New!)

The PRIMER is only $19.95 in kit form. The PRIMER Assembled & Tested is $169.95. This trainer can be used stand alone via the keypad and display or connected to a PC with the optional upgrade ($49.95). The Upgrade includes an RS232 serial port & cable, 32K of battery backed RAM, & Assembler/Terminal software. Please add $5.00 for shipping within the U.S. Picture shown with upgrade option and optional heavy-duty keypad ($29.95) installed. Satisfaction guaranteed.

PIC'N Books

LEARN ABOUT PIC MICROCONTROLLERS

EASY PIC'N - Beginner $29.95
- Programming techniques
 - Instruction set, addressing modes, bit manipulation, subroutines, loops, lookup tables, interrupts
- Using a text editor, using an assembler, using MPLAB
- Timing and counting (timer 0), interfacing, I/O conversion

PIC'N Up The Pace - Intermediate $34.95
- Serial communication - PIC to peripheral chips and PIC-to-PIC
- Serial EEPROMs
- LCD interface and scanning keypads
- DMA and A/D conversion - several methods
- Math routines

PIC'N Techniques - Intermediate $34.95
- 8 pin PICs
- Timer 1, timer 2 and the capture/compare/PWM (CCP) module
- Talking to a PIC with a PIC using a terminal program
- Test equipment and data logger experimenters

See Table Of Contents: http://www.eq-1.com

*$4 s/h in US for 1 book, $5 for 2 books, $6 for 3 books
VISA, MC, AMEX, MO, Check
CA residents please add 7.25% CA sales tax
PIC and MPLAB are trademarks of Microchip Technology Inc.

SQUARE 1 ELECTRONICS

P.O. Box 501, Kelseyville, CA 95451
Voice (707) 279-8881 FAX (707) 279-8883
Web Site: http://www.eq-1.com
E-Mail: supone@pacific.net

CABLE TV DESCRAMBLERS

GUARANTEED LOWEST PRICES
DESCRAMBLERS FOR ALL SYSTEMS
FREE SHIPPING

CRAZY LIZ'S ELECTRONIC WAREHOUSE
CALL TODAY!
1-800-391-7803
EQUIPMENT IS NEW & GUARANTEED
B^2 SPICE and B^2 LOGIC are the best values in circuit simulation tools. They are used at over 100 major universities and many leading Fortune 500 companies including the University of Michigan, Stanford, AT&T, General Electric, and Motorola.

B2 Logic provides precise and customizable timing of individual pins on each device. No other program in this price range will help you catch as many timing glitches and violations. It also supports busses and subcircuits to facilitate the design of complex circuits.

B2 Spice integrates an intuitive interface with an optimized Spice engine. With a library of over 3000 parts, you will be able to find the part you need. In case you don't find it, you can easily import new parts into the libraries. The interface supports the full set of Spice3F5 simulations as well as Temperature and Parameter sweeps.
DIY Audio Electronic Kits

3½ Digital LED Panel Meter #TY-43
It is a precision AD converter integrated circuit. The display is a 6½ LED for high visibility. It is easy to assemble and use the meter as a voltmeter, ammeter, ohmmeter, and thermometer, frequency counter or capacitance meter. DC ± 199.9 mV full scale input ± 5 VDC. (Stroboscope is available.)

20 Color LED Audio Level Meter #TY-13
Use this dual LED display indicating meter with your stereo power amplifier to indicate an instantaneouse amplifier power. Operating range is -30 dB to +5 dB and can be calibrated to operate with 1-200 W amplifiers. A peak LED illuminates on overload!

Fluorescent Light Driver #TY-2
This unit drives 6-40 watts fluorescent light for portable & emergency use. Works from a 7-12 VDC battery. Includes a "Hi-Efficiency Switching Mode IC Driving Circuit" suitable for use with different lights.

300W MOSFET Power Mono Amp #AF-3
300W RMS into 4 ohms, 200W RMS into 8 ohms. Frequency response: 10Hz-20kHz TDD < 0.03% S/N 91 dB, Input Sensitivity & Load impedance at 1kHz, 1V. 47k & 4-16 ohm. Power Requirement: ±55V ± 65V DC at 5A (each channel), A speaker protection circuit which provides time delayed speaker turn on.

We accept Visa, MasterCard, Discover & Money Orders. Checks allow 2 weeks for Clearance. We ship by UPS ground inside US (min $5.00) and ship by UPS outside US. Please call for orders shipping & handling or fax (foreign) orders. In business since 1985.

New and Pre-Owned Test Equipment

Goldstar

Model OS-5100 — $899.00
Full 100 MHz Bandwidth!
- Dual-Channel, High Sensitivity
- TV Synchronization Trigger
- Calibrated Delayed Sweep
- Includes Two Probes, 2 Year Warranty

Pre-Owned Oscilloscope Specials

Tektronix 2213 — 60 MHz — $499.00
Tektronix 2215 — 60 MHz — $499.00
Tektronix 465 — 100 MHz — $599.00
Tektronix 465B — 100 MHz — $729.00
Tektronix 475 — 200 MHz — $829.00
Tektronix 475A — 250 MHz — $999.00
- Professionally Refurbished
- Aligned & Calibrated to Original Specifications
- The Industry Standard of Oscilloscopes
- 1 Year Warranty - The Longest Available!!!
Test Equipment Sales

Check out new B&K PRECISION and INSTEK!

B&K 5150 150 MHz 200MS/s DSO............ $4695
B&K 2625 1 GHz SPEC. ANALYZER.......... $2395
B&K 2630 1 GHz SPEC. ANALYZER
w/ TRACKING GENERATOR............... $3095
B&K 1760 TRIPLE OUTPUT DC PS......... $595
B&K 1045B TELEPHONE PRODUCT TESTER.$599 w/CURSORS & READOUT............. $795
B&K 898 SIMM TESTER........................ $695
B&K 560B PROG. PC BOARD TESTER....... $2750
B&K 1260 NTSC SIGNAL GENERATOR...... $1795
B&K 2260 60 MHz SCOPE w/ C&R....... $1250
B&K 2615A 500 MHz SPEC. ANALYZER.... $1599

Ask about our line of new products including HP, LeCroy, Instek, Tektronix, Fluke and more!

CALL 800 684-4651 OR FAX (603) 425-2945
CHECK US OUT AT WWW.TESALES.COM

CIRCLE 217 ON FREE INFORMATION CARD

Miniature Transmitters and Receivers

2 Button / 3 Channel Transmitter
RF300T
1....$22.95
5....$19.95 ea
10....$16.95 ea
RF300XT
1....$25.95
5....$22.95 ea
10....$19.95 ea
- 300' (XT), 150' (T) Range
- Frequency: 318 MHz
- 59,049 Settable Security Codes
- 12 Volt Battery and Keychain Included
- Current Draw: 4.8 ma
- Fully Assembled in Case
- Dimensions: 1.25" x 2.0" x .5"
- Push both buttons for the 3rd Channel
- Slide Button Cover Included
- Alarm Systems
- Garage / Gate Openers
- Lighting Control

4 Button / 15 Channel Transmitter
RF304XT
1....$27.95
5....$24.95 ea
10....$21.95 ea
- 250' Range
- Frequency: 318 MHz
- 6,561 Settable Security Codes
- 12 Volt Battery and Keychain Included
- Current Draw: 4.6 ma
- Fully Assembled in Case
- Dimensions: 1.35" x 2.25" x 5"
- Push combination of buttons to achieve up to 15 channels
- Magic Props
- Medical Alert
- Monitoring Systems
- Industrial Controls
- Surveillance Control
- Motor Control

2-4 Data / 3-15 Channel Receivers
RF300RL
RF300RM
1....$27.95
5....$24.95 ea
10....$22.95 ea
RF304RL
RF304RM
1....$29.95
5....$26.95 ea
10....$23.95 ea
- Compatible with 300/4 Transmitters
- 11-24 volts DC Operating Voltage
- 13 ma. Current Draw
- Latching (L) or Momentary (M) Output
- Kits Available (subtract $5.00 ea.)
- Dimensions: 1.25" x 3.75" x 5"
- 2 (300) / 4 (304) Output Data Lines
- Binary to Dec / Hex Converter can achieve up to 15 channels
- Schematics Available
- Receiver Board Layout Available
- Custom Design Consulting Available

Visitect Inc. (510) 651-1425 Fax: (510) 651-8454 Email: Support@Visitect.Com
P.O. Box 14156, Fremont, CA 94539 Visa / Mastercard, COD

CIRCLE 310 ON FREE INFORMATION CARD

www.americanradiohistory.com
Any waveform you want!

Telulex Inc. model SG-100A

New Features:
- 21.5 MHz
- .01 Hz steps
- multi-unit phaselock
- Int/Ext AM, SSB, Dualtone Gen.
- Int/Ext FM, PM, BPSK, Burst
- Noise
- Arbitrary Waveforms
- Unlimited Possibilities!

Telulex Inc.

2455 Old Middlefield Way S Tel (650) 938-0240 http://www.Telulex.com
Mountain View, CA 94043 Fax (650) 938-0241 Email: sales@Telulex.com

CIRCLE 311 ON FREE INFORMATION CARD

RF Data Modules

AM Transmitter
- Sub Miniature module
- SAW Controlled
- No adjustable components
- Low current - 2.5mA
- Supply 2.5-12Vdc
- 418MHz or 433MHz
- Range up to 300ft.
- CMOS/TTL data input
- 7 x 11 x 4mm!
- AM-TX1-xxx $12.60

AM Receiver
- Compact Hybrid Module
- Very stable
- CMOS/TTL output
- Patented Laser Trimmed
- 5Vdc, 0.8mA (HRR6)
- 2kHz data rate
- Sensitivity -105dBm
- 38 x 12 x 2 mm
- AM-HRR6-xxx $16.33

FM Transceiver
- Only 23 x 33 x 11mm
- Up to 40,000bps data rate
- Up to 450ft. range.
- 5V operation
- 418MHz or 433MHz FM
- 31/2wire RS232 interface
- 19.2Kbps half duplex
- 418MHz or 433MHz FM
- 7.5-15Vdc, 20mA
- TXRX Status LED’s
- Up to 400ft. range
- 1/4 wave ant. on board
- User data packetizing
- Carrier Detect output
- BiM-xxx-F $87.36

RS232 Transceiver
- Only 23 x 33 x 11mm
- Up to 40,000bps data rate
- Up to 450ft. range.
- 5V operation
- 418MHz or 433MHz FM
- 3wire RS232 interface
- 31/2wire RS232 interface
- 19.2Kbps half duplex
- 418MHz or 433MHz FM
- 7.5-15Vdc, 20mA
- TXRX Status LED’s
- Up to 400ft. range
- 1/4 wave ant. on board
- User data packetizing
- Carrier Detect output
- BiM-xxx-F $139.30

AM Transmitter
- Range up to 250ft.
- SAW controlled stability
- Wide supply range 2-14V
- CMOS/TTL input
- Low current 4mA typ.
- Up to 4kHz data rate
- Small: 17 x 11mm
- AM-RT5-xxx $12.10

Learn to Hack!

Finally, here is a non-nonsense technical book on computer hacking! In it you will learn how to hack computers you have physical access to and how to hack on the Internet. With this book, you will learn about:
- Finding computers to hack
- Breaking into computers
- Hacking with Finger
- Port Surfing
- Mapping the internet
- Forging E-mail
- Fighting spam
- E-mail bombs
- Hacker wars
- and more! But this book will also teach you how to hack safely. It will steer you clear of the law, so that your hacking career won’t lead to prison, but to a better job! By far, the best book on hacking available today!

400 PAGE PAPERBACK, $34.95 SHIPPING $3

Call (800)719-4957 now!

to order (Visa/MC/COD) or call or write for FREE CATALOG of hard-to-get information about computer viruses, computer hacking, security and cryptography!!

www.logoplex.com/resources/ameagle

Check our web site: American Eagle Publications, Inc.

March 1999 Electronics Now

WASHINGTON

ABACOM TECHNOLOGIES

Free Catalog

www.abacom-tech.com

MasterCard / VISA

CIRCLE 270 ON FREE INFORMATION CARD
VECTOR VOLTMETER
HEWLETT-PACKARD 8405A VOLT-METER, measures by both magnitude and phase over 1 to 1000 MHZ in 21 overlapping bands. Also capable of determining insertion loss, group delay of bandpass filters, complex impedance of mixers and antennas, RF distortion and in-circuit probing. Ranges: 100 uv to 1 V-rms full scale in 10 db steps. Phase: 360 degrees on 0-center meter with entire scale ranges +/- 180, 60, 18 and 6 deg. Band-width: 1 KHz. Requires 115/230 VAC50-400 Hz; 7x16.8x18.4, 36 lbs USED-reparable, $295

30 FOOT MAST KIT
AB-1244/GRC MAST KIT, twelve aluminum alloy on steel sections form sturdy, yet lightweight 30 foot 1.7" dia. Mast includes five each lower and upper sections, one ea lower and upper adapter sections, pin pole swivel base, four ea 36 and 42 ft guy ropes, four guy stakes, two guy rings plus a 2.5 pound sledge hammer. Part of OE-254 antenna set; 30 lbs shpg NEW, $139.50

400 MHZ RADIOSONDE
VAISALA RS80 RADIOSONDE, ultra-light disposable transmitter (400 MHZ approx) is designed to be carried aloft by weather balloon and transmit data for air temperature, barometric pressure and humidity to a ground station. Con-sists of circuit board, dipole antenna, and trailing wire. Requires 9 V battery. Cute experimenter item! 12.5"H as shown; 3 lbs shbg NEW, $9.95 ea; 5 for $42.50

Prices F.O.B. Lima, Ohio. VISA, MASTERCARD, DISCOVER. Allow for shipping charges. Write for latest Catalog. Address Dept. ES + Phone 419/227-6573 + FAX 419/227-1313 E-mail: fairadio@wcoil.com http://www2.wcoil.com /fairadio

FAIR RADIO SALES
1016 E. Eureka + Box 1105 + Lima, Ohio 45802

ABC ELECTRONICS 315 7TH AVE N MPLS. MN. 55401 (612)332-2378 FAX (612)332-8481 E-MAILSURPI@VISI.COM WE BUY TEST EQUIPMENT AND COMPONENTS VISIT US ON THE WEB AT WWW.ABTEST.COM

HP 5150A 100MHZ DIGITIZING SCOPE	$1300.00
HP 5120I 300MHZ DIGITIZING SCOPE	$1000.00
HP 5201A 500MHZ DIGITIZING SCOPE	$1000.00
HP 5202A 500MHZ DIGITIZING SCOPE	$1000.00
HP 5120A 500MHZ SCOPE/WAVEFORM ANALYZE	$700.00
HP 5131A 13MHZ FUNCTION GENERATOR	$250.00
HP 5190A 500V/5U UTILITY COUNTER	$400.00
HP 396C LEVEL METER	$70.00
HP 49A POWER METE W/O SENSIRABLE	$500.00
HP 336D SCALED DIGITAL METER	$200.00
HP 337A 30GHZ SPECTRUM VOLT METER	$250.00
HP 335A DIGITAL MULTIMETER	$250.00
HP 336A DIGITAL MULTIMETER	$200.00
HP 336C SYNTHESIZER GENERATOR	$600.00
HP 332A SYNTHESIZER GENERATOR	$400.00
HP 335A 200MHZ COUNTER	$600.00
HP 816A SIGNAL GENERATOR	$1000.00
HP 555BBI 100K-1000MHZ SPECTRUM ANALYZE	$1000.00
HP 555BBI 100K-1000MHZ SPECTRUM ANALYZE	$1000.00
HP 5170A 1000VDC-O.5A POWER SUPPLY	$500.00
HP 453A 50VDC-10A POWER SUPPLY	$500.00
HP 453A 45VDC-4.3A POWER SUPPLY LIMIT	$750.00
HP 453A 45VDC-4.3A POWER SUPPLY LIMIT	$750.00
HP 403A TRANSIMPEANCE TEST SET	$900.00
HP 500A SIGNEDT ANALYZER	$150.00
HP 8062B 1MHZ-1000MHZ RF PLUG	$400.00
HP 575 MICROVACUUM COUNTER	$1500.00
FFLKE 855NMZ SCOPEMETER	$500.00
LECROY 7500 1000MHZ O.Sc. SCOPE	$1000.00
TEC 475 200MHZ-O SCOPE	$400.00
TEC 465 500MHZ-O SCOPE	$400.00
TEC 485 1KHZ-1KHZ SPEC ANALYZER	$500.00
TEC 1520 LOGIC ANALYZER	$750.00
TEC 10830Z 100MHZ DIGITAL O.SCOPE	$1200.00
TEC 11401A 500MHZ PROG-O.SCOPE FRAME	$750.00
TEC 7961 1000MS O.C. REFERENCE FRAME	$500.00
TEC 7901 600MHZ OSCILLATOR FRAME	$900.00
TEC 7024 500MHZ VELOCITY AL.PLU	$75.00
TEC 7023 500MHZ VELOCITY AL.PLU	$150.00
TEC 7808 400MHZ TIME BASE	$75.00
TEC 7807A 500MHZ DUAL TIME BASE	$125.00
TEC 7317 SAMPLING PEG	$250.00
TEC 72L1 1/2KHZ-LIGHT SPEC ANALYZER	$150.00
TEC AM530 CURRENT PROBE AMPLIFIER	$250.00
WAVEFET 145 20MHZ PULSE FUNCTION GEN	$400.00
WAVEFET 9824 2MHZ FUNCTION GEN	$150.00
WAVEFET 955 7.5-12 GHZ MICROSOURCE	$3100.00
A Trained Computer Repairman Charges $100 An Hour and More... You Can Get That Training!

Foley-Belsaw's Totally New Computer Repair Course gives you the skills to start earning top pay FAST!!!!!!

No Experience Necessary!
Get "hands-on" training in the exciting field of computer repair.

Fully illustrated, easy to understand course gives you everything you need to succeed.

The key to your success lies in providing a service that is in great demand. Even if you have no experience, you can become an expert in a few short months. Foley-Belsaw's computer repair course is broken into small, easy to manage lessons. Each lesson is designed with your success in mind. After you complete the course, you'll have the expert knowledge to earn up to $100 an hour, or more!

Latest technologies and insider knowledge available only to Foley-Belsaw students!

Get the "hands-on" experience you need in Computer Repair. Foley-Belsaw's CD-Rom Learning Assistant guides you through each lesson and is always right at your fingertips. The Test Preparation Tutor makes preparing for your A+ Certification as easy as turning on your computer. Foley-Belsaw's inside knowledge gives you the practical experience to become a computer repair professional. Get started today!

World leader in training since 1926, provides at-home, "hands-on" training in high-demand fields.

Train At Home!
There's not a more complete-or affordable-PC Repair course that will have you trained and job ready in such a short time.

Take the first step to top pay. Call for a FREE Opportunity Kit today!
1-800-487-2100 or complete this coupon and mail to Foley-Belsaw Institute, 6301 Equitable Road, Kansas City, MO 64120-1395

Yes! Send me one of the following Free Opportunity Kits:

- Computer Repair, Maintenance, Upgrade, Dept. 64800
- Personal Computer Specialist, Dept. 35436
- Professional Computer Programming, Dept. 35616
- Professional Saw and Tool Sharpening, Dept. 22002
- VCR/DVD Service and Repair Dept. 62986
- Small Engine Service and Repair, Dept. 59071
- TV/Satellite Dish Service and Repair, Dept. 31669
- Professional Gunsmithing, Dept. 92706
- Home Inspection, Dept. 76116
- Networking Specialist, Dept. 39437
- Locksmithing, Dept. 13198
- Woodworking, Dept. 43934
- Upholstery, Dept. 81606
- Vinyl Repair, Dept. 71531
- Electrician, 95477

Name:
Street:
City:
State:
Zip:
Phone:

CIRCLE 335 ON FREE INFORMATION CARD

www.americanradiohistory.com
386 MINI-PC $83
includes:
- 5 Serial, 3 Parallel (32 bit max)
- Up to 8 meg ROM (27C080)
- 32K RAM exp. to 64Mbyte
- Battery backed RT Clock
- LCD and Keyboard ports
- IRQ x15, DMA x2, TIMER x4
- On-board LED display
- Industry Standard PC Bus

Perfect when a full-size PC is too large, expensive, or power hungry. A fully functional single board computer, needs only program and power source. Runs DOS / WINDOWS. Use Turbo C, BASIC, MASM. All utilities to do this included.

A to D D to A CONVERTERS
For PC or SBC
8,12,16 bit resolution
up to 24 channels
starting at $21 OEM (1k)
eval kit $75

$95 UNIVERSAL PROGRAMMER
FLASH, EEPROM, NVKAM, EPROM
up to 8 meg (27C64-600). Adapters for micros, PLCC, etc. Parallel port version
for notebook. FAST AND EASY TO USE.

LOW COST... LOW POWER... LOW RISC!
QTY 1K PRICE $1.99
EVAL KIT 7.00
LOWER COST, FASTER, EASIER TO PROGRAM SINGLE CHIP COMPUTER
COMPARE:
16C54 16C120
OEM (1K) PRICE $2.57 $1.99
RS232 PROGRAM DOWNLOAD NO YES
SINGLE CHIP OPERATION NO YES
BUILT-IN BASIC NO YES
EEPROM DATA MEMORY NONE
PROGRAM MEMORY 768 OTP 1K FLASH
MATH REGISTERS 1 32
MAX INSTRUCTIONS / SEC 5M 20M
MAX COUNTER BITS 16 18
INPUT / OUTPUT BITS 12 15
A TO D COMPPARATOR NO YES
HARDWARE INTERRUPTS NONE
- LONG WORD INSTRUCTION - FRIENDLY SYMMETRIC ARCHITECTURE -

PC SOLID STATE DISK
$21
OEM (1k) eval kit 75.00
FLASH / RAM / EPROM
256K-1M PCMCIA/DIPS

No More Hangups...
PC WATCHDOG!
VGA LCD
640x480 controller for PC or SBC
$37 OEM SS $5 eval combo LCD/CRT version available

visit our web site: www.mvsweb.com

Learn MICROCONTROLLERS EMBEDDED SYSTEMS and PROGRAMMING...
...with the AES learning system/ embedded control system.
Extensive manuals guide you through your development project. All programming and hardware details explained.
Complete schematics. Learn to program the LCD, keypad digital, analog, and serial I/O. for your applications.

THREE MODELS AVAILABLE. Choose from an
Intel 8051, Intel 8088, or Motorola 68HC11
based system. All models come with:
- 32K Byte ROM, 32K Byte RAM - 2 by 16 Liquid Crystal Display - 4
by 3 Keypad - Digital, Analog, and Serial I/O - Interrups/timers, chip selects - 26 pin expansion connector - Built-in Logic Probe - Power Supply (can also be battery operated) - Powerful ROM MONITOR to help you program.
- Connects to your PC for programming or data logging (cable included)
- Assembly, BASIC, and C programming (varies with model)
- Program disks with Cross Assembler and many, well documented, program examples
- User's Manuals: cover all details (over 500 pages)
- Completely assembled and ready to use
- Source code for all drivers and MONITOR - Optional Text Book

Everything you need. From $279. Call for Free Info Pack, or see
Money Back Guarantee

Call 1-800 - 730-3232
Aes 575 Anton Blvd., Suite 300, Costa Mesa, Ca 92626, Usa

The Pocket Programmer
Only $129.95

The portable programmer that uses the printer port of your PC instead of a internal card. Easy to use software that program Eprom, EEprom, Flash & Dallas RAM. .27(C) / 28(C) / 28F / 29F / 29C & 25XX series from 16K to 8 Megabit with a 32 pin socket. Adapters available for Pic, PLCC, 5-Gang, 874X, 875X
MCU's, 40-Pin X 16 & Serial
Eprom's, 82/74 Prom's and Eprom
Emulator to 32K X 8

Same Name, Address & Phone # for 16 Years... Isn't it Amazing?

Intronics, Inc.
Box 13723 / 612 Newton St.
Edwardsville, KS 66113 Add $5.00 COD
Tel. (913) 422-2094 Add 14.00 Shipping
Fax (913) 441-1623 Visa / Master Charge

Whaddya Say To A Guy Who's Had The Same Job For 50 Years, Has Never Called In Sick Or Showed Up Late, Never Taken A Vacation Or A Holiday, Never Asked For A Raise Or Griped About His Bonus And, Believe It Or Not, Has No Plans For Retirement?

Thanks.

Information - with you or in print somewhere.

www.americanradiohistory.com
Electronic CAD for Windows

Professional Windows EDA tools at an affordable price with powerful features to make designing faster. WinBoard PCB layout delivers sophisticated interactive routing for complex designs, plus it has the tools needed for high-speed circuits, analog, RF and SMT designs.

WinDraft® Schematics
- Use True-Type fonts. Quickly copy and paste into other applications.
- Supports hierarchical designs, electrical rules checking, Annotation & Bill of Materials.
- Thousands of library parts and symbol editor included.

WinBoard™ PCB layout
- Supports 16 layers, multiple copper pours, and advanced features for RF designs.
- SMD & through hole library with on-line graphical editor.
- CAM outputs include BOM, in-circuit test, NC Drill, Gerber, Pick & Place, & Advanced Design Rule Checking (DRC).

With our unique pin capacity versions you only pay for what you need. You choose the base configuration to suit your needs today, and expand that configuration to handle increased pin capacity as your design requirements change.

WinDraft 2.0 Available Now

$ 250 WinDraft or WinBoard - P650
$ 495 WinDraft or WinBoard - unlimited
$ 895 WinBoard P650 with CCT Spectra® autorouter.

Thousands of satisfied customers are using this new generation of powerful and affordable Windows EDA tools from Ivex. Your satisfaction is guaranteed!

World Wide Web: http://www.ivex.com

Information and free evaluation version is available on the Ivex WW Web, FTP and BBS.

Tel: (503) 531-3555
Fax: (503) 629-4907
BBS: (503) 645-0576

Ivex Design International. 15232 NW Greenbrier Parkway. Beaverton, Oregon 97006. USA.

CAD FILES TO CASH PILES

IMAGINE THE POSSIBILITIES!
ROUTE, MILL, DRILL, CARVE,
ENGRAVE, PAINT, ETC. . . .
IN WOOD, PLASTIC, VINYL,
PC BOARD, & LIGHT METALS.

THE ROBOPRO X50
CNC ROBOTIC MACHINING SYSTEM
YOUR WISH IS ITS COMMAND!

STARTING AT $895.00

Visit us at
www.uscyberlab.com

March 1999, Electronics Now
85
Liquid Crystal Displays

240x64 dot LCD with built-in controller.
AND 4021ST-FO. Unit is EL back-lit. $59.95 or 2 for $109.00
OPTREX. DMD-5005 (mon back-lit) $49.95 or 2 for $89.95
20 characters x 8 line. "TLC x 2.51 The built-in controller allows you to do text and graphic.

Alphanumeric—parallel interface
16x1 $12.00
16x1 (lg char) $10.00 20x1 $15.00 40x1 $18.00
16x2 $14.00 24x2 $15.00 40x2 $20.00
16x2 (lg char) $10.00 24x2 (lg char) $12.00 $15.00
16x4 $16.00 32x4 $18.00 40x4 $20.00
60 character requires in build-in controller - Easy "interpretation" interface - VHS ASCII character generator - Certain models are backlit for more info.

Graphics and alphanumeric—serial interface
Size
Mitsubishi Epson Hitachi
128x64 (backlit) $25.00 48x128 $25.00 $10.00
160x64 (backlit) $30.00 64x128 Epson $20.00
64x64 Epson Epson
16x128 Toshiba $15.00 24x128 (backlit) $18.00 $15.00
16x128 ALPS $10.00 24x64 $10.00 32x64 $15.00
6" VGA LCD 64x96x480, Sony LMDK55-22 $29.95

MONITORS
Non-Enclosed TTL
Comes with poly. LCD at 14.4 input Microwave frequency (500). Ability to do 40 and 80 columns.
5 inch Amber $25.00 * 7 inch Amber $25.00
9 inch Amber or Green $25.00

5" COLOR MONITOR $39.95
• Hot faceplate $39.00 x 200 Dot Resolution • CGA & Hercules Compatible
• 12 x DC Operation • 15.75 Hz Hanz. Freq. • 60 Hz Vert. Sync. Freq.
• Open Front • Selectable Contrast & Brightness • Built-in Color Bar Modulator • 1.4 M dot matrix display with built-in controller & VHS ASCII character generator. 2" for $19.95

9" COLOR SVGA MONITOR $179.95- Fully Enclosed - Tilt and swivel type

MAGNETIC CARD READER $25.95
Includes - 20 characters dot matrix display with full alphanumeric capability - equipped with full alphanumeric entry • separate 7.5 VDC/0.5 Amp power supply • standard telephone extension cord • built-in power supply with 110V to 220V/100V converter. HP bar code (HBCS) $169.95

CIRCLE 275 ON FREE INFORMATION CARD

MICROTEST INC.
CABLE TEST CHIPS FROM $9.95
WE STOCK A COMPLETE LINE OF CABLE TEST CHIPS. WE ALSO BUY CABLE TESTER S FOR AS LOW AS $19.95! 17.1 MPH WARN.
ANYONE IMPLYING ILLEGAL USE WILL BE DENIED SALE. WE SELL PRODUCTS ONLY TO TECHNICIAN OR REPAIR FACILITIES. ALL ORDERS SHIP VIA UPS/ECT THE BEST PRICE IN THE MARKET WE INCLUDE SWICH & RESISTOR MON-SAT 8AM-7PM EST. TECH SUPPORT E-MAIL WWW.MICRO-TEST@AOL.COM

FOR ORDERS 1800-931-9440

Quality Microwave TV Systems
WIRELESS CABLE - JETS - MINDS ATV - INTERNATIONAL - DIGITAL Amateur - Business Components - HR Frequency 2150-2370 MHz

CHALLENGER SYSTEMS
1000 Lincoln Avenue #100
Pennington, NJ 08534
CABLE INFO: 609-449-7700
PHONE: 609-449-7700
FAX LINE: 609-449-7799
WEBSITE: www.philips-tech.com
E-MAIL: product@philips-tech.com
USA & CANADA - Orders & Enquiries - Cables - Quality Guarantee

WEB

EZ-EP ELECTRONICS
Los Angeles, California
Check Webl!! - www.m2l.com
Fast - Programs 27C010 in 23 seconds
Portable - Connects to PC Parallel Port
Versatile - Programs 2716-080 plus EE and Flash 28F62C to 32 pins
Inexpensive - Best for less than $200
Correct implementation of manufacturer algorithms for fast, reliable programming.
Easy to use menu based software has binary editor, read, verify, copy, etc. Free updates via bbs or web page
Full current detection on all device power supplies protects against bad chips and reverse insertion
Broad support for additional devices using adapters listed below

Available Adapters
EP-PIC 16C545, 62x, 74x, 84x .49$ 95
EP-PIC15 (21C50x) .49$ 95
EP-PIC17 (17C40x) .49$ 95
EP-PIC12 (12C50x) .49$ 95
EP-116 (68HC11) .99$ 95
EP-11D (68HC11D3) .99$ 95
EP-16 (IEEE-488, 40 pin DIP) .49$ 95
EP-516 (89C51) .99$ 95
EP-5116 (89C5161) .99$ 95
EP-100 (IEC-1280) .99$ 95
EP-PIC18 (18C851) .99$ 95
EP-PIC181 (18C852) .99$ 95
EP-PIC19 (19C852) .99$ 95
EP-1819 (80C196P, 22pin DIP) .99$ 95
EP-1829 (80C196, 22pin DIP) .99$ 95
EP-PLCC (40 pin PLCC EPROMs) .99$ 95
EP-PIC1819 (18C852, 22 pin DIP) .99$ 95
E-PIC1519 (15C502) .99$ 95
E-PIC1705 (17C405) .99$ 95
E-PIC1205 (12C505) .99$ 95
E-PLCC (40 pin PLCC EPROMs) .99$ 95
MOS Other Adapters Available

M2L Electronics
970/529-0555 Fax: 970/258-0777
361 S Cameron Dr. (On Rt Suite 119), Denver, CO 80204 - 303-824-4996 - 303-846-9830
http://www.m2l.com

EZ-EP ELECTRONICS

SINGERS! REMOVE VOCALS
3610 LT Parkway, Lithonia, GA 30058
http://cummings.com

The Prolink Radio Module is a small communication device which replaces cabled between RS-232 devices with wireless RF (Radio Frequency) technology. Attaching a pair of ProxLinks to any two devices with three wire asynchronous RS-232 ports allows wireless data communications at rates up to 19.2K baud (full duplex) over a range of 500 ft. Each device contains an independent microcontroller and uses 192000 Hz spread spectrum radio for communication which does not require an FCC license. A variety of configuration information (radio channel, baud rate, serial port configuration, etc.) can be programmed into the module's nonvolatile memory by host PC to provide communication and avoid overlapping systems. Configuration changes are supported by menus, on-board software. Commonly used Terminal Emulation software and transfer protocols can be used for configuring modules and transmitting data between computers. ProxLinks require only 6-9 VDC (30 mA). RS-232 (9 pin sub-D) interface, and small (4.7') whip antenna for operation. Units size is 4.7" x 2.6" x 1.7". Installation schematics and application details available. There are 100 Mw power.

COLOR CCD CAMERA $899.95
Small fully enclosed color CCD camera ideally suited for video conference and mobile operations. No separate power supply or batteries needed - single 5 VDC power requirement can be obtained from PC keyboard interface and driven from the computer using daisy chained adapter plugs. Standard NTSC composite output from 1/4" color CCD sensor with 250,000 pixels and automatic white balance.

SILENCE THE VOCALS

To learn more about life-saving techniques, call your Red Cross.

March 1999 Edition

www.americanradiohistory.com
Since 1971

You’ll “Bookmark” This Site!

B/W Board Camera
with Infra-Red
ONLY $59
Part #VMCB-21
And that’s not all!

Full-Sized, Full Featured
DMM
ONLY $19
Part #9300G
Even includes the rubber boot.

Color Board Cameras
with Audio Function
ONLY $139
Part KVM3010-A
We also have great deals on bullet (B/W &
color) cameras, pinhole cameras (B/W & color), some
with audio. Get specs, details & prices from our web site.

Electronic Soldering Station
with Ceramic Heating Element,
3-Conductor Grounded Power
Cord, 250-
480°C (470-
900°F) Fast Heating
ONLY $39
Part #SR-976
Extra tip selection on our web site.

Get all of the specifications and details on these items
and thousands of other electronic components, test
equipment, PCB supplies, computer parts, and much
more at www.web-tronics.com

Secure on-line ordering, or by FAX, toll free, or snail mail.

Circuit Specialists, Inc.
800-528-1417/(602)464-2485
FAX (602)464-5824

Pic C Compiler $59
for Microchip’s PIC microcontrollers
Supports PIC16C5x, 16C6x, 18Cxx, 18C62x, PIC families
SnXC C Compiler $59
Supports Scientix xXtens and xXtreme microcontrollers
Both compilers based on ANSI C standard, Arrays, unions,
structures, pointers, strings, function calls, if, for, switch, while,
interrupt vectors, in-line assembler code, 8 & 16 bit variables,
etc. Outputs Intel Hex format and assembly code. Code optimizer
included. Excellent development tool!

DebugIDE Debugger $79
Available for both PicC and SnXC compilers. Integrated
Development Environment. Step, Run, Stop, Repeat, Variable
monitoring and modification. Oscillogram view ($59)
732-873-1519 ext. 732-873-1591 gribanc@amk.com
Gricn RC Inc.152 Cedar Grove Ln, S8430, Somerset NJ USA 08873
URL: http://members.aol.com/piccompiler

The Transducer
PROJECT BOOK

1992—from TAB Books. A
unique collection of practical
transducer devices that you
can put together simply and
inexpensively. You can build
a sensor, a temperature
survey meter, an opener
announcer, a moisture
detector, an automatic night
light, and more. To order—ask for book 1692T,
and include your check for $5.99 - clearance
(Includes s&h) in the US and Canada, and
order from —Electronic Technology Today
Inc., P.O. Box 240, Massapequa Park, NY
11762-0240. US funds only; use US bank check
or international money order. Allow 6-8 weeks
for delivery.

Electronic Games

BP69—A number of interesting
electronic game projects
using IC’s are presented. In-
cludes 19 different projects
ranging from a simple coin flipp-
er, to a competitive reaction
game, to electronic roulette, a
combination lock game, a
game timer and more. To
order BP69 send $4.99 clearance
(Includes s&h) in the US and Canada to
electronic Technology Today
Inc., P.O. Box 240, Massapequa
Park, NY 11762-0240. US funds only.
Use US bank check or international
money order. Allow 6-8 weeks for delivery.

Electronic Games

PROFESSIONAL DESOLDERING with the World's Best
Transportable, Totally Self-Contained Desoldering Tool

Now Get

More Vacuum
Mike Murphy - Service Center - Van Nuys CA 818-785-7986
The single best investment of repair equipment we’ve made. It outperforms all other desoldering tools we’ve used. Easier to use and least expensive.

Dick Manning - Dick's Electronics - Hartland WI 414-367-8380
The ease & speed of component removal greatly increases productive time. The SMD kit makes SMD removal a breeze, even for inexperienced techs.

Quicker Vacuum
LAV Electronics - Healah-Miami Lakes FL
Don Scott - I am a constant user of the SC7000 Desoldering Tool and for quick component removal, this unit has no equal. It also comes with excellent company support. I am very satisfied and highly recommend it to anyone in the servicing field.

George Hefner - Hefner Electronics - Coleridge NE 402-283-4333
Being a one-men service center, I hesitated to spend the money on a desoldering tool, however all that changed when I nearly ruined a $400 computer logic board. It has cut my desoldering time by 50%.

Higher Temperature
Cresson - Certified Electronics Service - Ellicott City, MD 301-461-8008
Don Pettit - LuRay Electronics - LuRay VA 703-743-5400
We have obtained excellent results with the SC7000 including repairing high density U/V tuners. It is one of the best purchases we have made.

Doug Pettit - LuRay Electronics - LuRay VA 703-743-5400
We found that the SC7000 not only saves money vs. wick, but saves valuable time in troubleshooting. It allows you to be more accurate in removing SMD's.

Sale Price
$395.00

New Features
• Totally Self Contained diaphragm vacuum pump and AC motor for high vacuum suction or reversible hot air blow for SMD removal.
• 100 Watt Ceramic heater with zero-crossover switching heater control circuit which prevents spikes and leakage currents.
• Unique patented long lasting filter cartridge design. Solder builds up on easily cleaned baffle, while air flows around the outside of baffle.
• Totally ESD Safe. The housing contains carbon and the tip is at ground potential for complete ESD Protection.

Howard Electronic Instruments, Inc.
6222 N. Oliver
Kechi, KS 67067

New Specifications
• Voltage - AC 100v, 120V, 230V, 50/60 HZ
• Power Consumption - 120W
• Pump - Diaphragm Type
• Motor Output - 12W
• Vacuum Attained - 6500 mHg
• Temperature Range - 300° C - 500° C (572° F - 932° F)
• Air Flow Rate - 15 Liter/Minute (Open)
• Heater - 100W (Ceramic)
• Control System - Feed Back Zero Cross-over Type
• Net Weight - 420 Grams

For More Info and 5% Savings Go To
http://www.heinc.com/sc7000zb.html

March 1999 Electronics Now
There is the Computer monitor tester you have been asking for. Sweep rates to 15-64 kHz, MGA, CGA, VGA, lots of MACs, even video (mono), GRAY SCALE, quick push button operation, "Energy Star" testing, and more. AC or Battery.

PRICE: $499.95

Now you can repair and test Computer monitors with ease. With sweep rates up to 64KHz., eight step gray scale, white screen, single color mode, Mac II, EGA, CGA support, you can run almost ANY PC monitor. And it is EASY to use. Color front panel displays show just what you should see. Don't let its' small size fool you. It is the most powerful handheld available, and it supports ALL basic VGA modes (some don't). It is suitable for bench or field operations. Battery or AC operation.

PRICE: $295

The TV Pro is just the tool for your repair bench. It provides Video, S-Video, and RF outputs. It also has the most important pattern, GRAY SCALE! You can't set up a color TV without it. All with NTSC standards and COMPLEX sync. The RF output also includes an audio tone and STEREO signaling. With colorbars, gray scale, crosshatch with dots, you can set and test quickly.

Checker TV Jr...PRICE: $129.00

The Jr is a small NTSC video generator with colorbars crosshatch with dots white red blue green, and black screens. Small enough to fit in your pocket, powerful enough to drive the largest projection TV!
DIGITAL STORAGE OSCILLOSCOPES

WITH

- SPECTRUM ANALYZER,
- DVM, FREQ.
- COUNTER,
- AND DATA LOGGER.

FROM $189.

PORTABLE MODULES

- CONVERT PCs INTO
- MULTIPURPOSE TEST AND MEASURING INSTRUMENTS.

Why lug a scope around? Toss one of our modules into your laptop case or tool kit. For a multi-purpose test device, plug to a PC parallel port and use the PC screen. Continuous, delayed, or triggered sweeps can be frozen on the screen, printed out, or saved to disk. Frequency Spectrums DC to 25 MHz.

Allison now provides PICO TECHNOLOGY Ltd portable test equipment, including high-speed scopes, and multi channel data loggers. Pico and O-Scope modules accept standard probes and work with 286 or faster PC's.

FEATURES:

- PORTABLE UNITS TO 25 MHz
- USES PRINTER PORT
- USES STD. PROBES
- OPTIONS:
 - PROBE SETS
 - AUTOMOTIVE PROBES
 - BATTERY PACKS
 - SOFTWARE & HARD CASES

O-Scopes Made in U.S.A. Picos Made in U.K.

Same Day Shipping
Includes Cable, Software & Manuals

- O-Scope Ip (DC-50KHz, single trace) $189.
- O-Scope II (DC-500KHz, dual trace) $349.
- PICO (ADC 200) (DC-10MHz, dual trace) CALL
- PICO (ADC 200/50) (DC-25MHz, dual trace) CALL

PICO pc based data loggers from $99.

Shipping within U.S. UPS Ground $7.50(Second day $11.50)

SEND CREDIT CARD INFO., M.O., OR CHECK OR CALL 1-800-980-9806

Allison Technology Corporation
2006 FINNEY-VALLET, ROSENBERG, TX 77471
PHONE: 281-239-8500 FAX: 281-239-8006

http://www.atcweb.com

µLink™ Infrared Remote Control System

- 4 Channel IR Keychain Transmitter (pcb 1.1"x 1.2") IRTX4-A
- 4 Channel IR Receiver (pcb 1.1"x 1.9") IRRX4-A
- Each receiver can LEARN up to 4 transmitters.
- Each transmitter can have a different access level.
- User selectable receiver output modes.
- Security, Industrial and Home Control Applications
- Up to 9m Range.
- RX and TX IC's available. Custom design service available.
- Only $39.95/PAIR + S&H, additional IRTX4-A units $19.95

SURFACE MOUNT KITS:

- Pager Decoder Interface
- Garage Door Openers
- Phone transmitters

Orders: 1-800-417-6689 Mon-Fri 9AM-6PM ET

visa/mastercard/money orders
email: iecorp@i-e-c.com
web: www.irmicrolink.com
IEC • PO Box 52347 • Knoxville TN 37950

COPYRIGHT ©1998 International Electronics Corp.

CONTROL RELAYS • LIGHTS • MOTORS

MEASURE

- TEMPERATURE
- PRESSURE
- LIGHT LEVELS
- HUMIDITY

INPUT

- SWITCH POSITIONS
- THERMOSTATS
- LIQUID LEVELS

FEATURES:

- 4 PLUGS INTO PC BUS
- 24 LINES DIGITAL I/O
- 6 CHANNELS
- 8 BIT A/D IN
- 12 BIT COUNTER
- UP TO 164 BPM/SEC

OPTIONS:

- PLL XTAL FM MIC
- LC tuned FM MIC
- Phone transmitters

Prairie Digital, Inc.

PHONE 608-643-8599 • FAX 608-643-6754

2816 ELEVENTH STREET • PRAIRIE DU SAC, WISCONSIN 53578

CIRCLE 315 ON FREE INFORMATION CARD
www.jm-micro.com

PIC In-Circuit Emulator for the PIC16Cxx from $295
PIC Programmer $155
80C552 (8051) Development Training System $235
68HC11 SBC $120
ROMY-16 EPROM Emulator from $195
Universal Microprocessor Simulator/Debugger (including Assembler, and Disassembler) $100 each CPU

J&M Microtek, Inc.
83 Seaman Rd, W Orange, NJ 07052
Tel: (973)3325-1892 Fax: (973)736-4567

www.plc-projects.com

PIC PROJECTS

Book & CD-ROM
Many PIC Projects for Beginners & Experts
Includes Software, Documentation, and PCB Layout

- LCDs
- Home Automation
- Keypads
- Serial Port Interface
- Oscilloscope Displays
- Robotics
- Date Logging
- Serial-Parallel
- And Many More!

PIC Programmer
Programs all PIC16Cxxxx, PIC16C7x, PIC16Fxxxx, and PIC18F devices.
Optional 20 adapters for I2C & PIC16. Includes all necessary software.
Only $39!

We accept VISA, MasterCard, AmericanExpress.
To order, call Worldwide at 1-800-773-6698
21365 Randall Street • Farmington Hills, MI 48334
Visit us on the web at www.worldwide.com/pic

SCIENCE FAIR ELECTRONICS

One of the largest electronic kit selection
Address: 9740 CAMPO RD. #209
SPRING VALLEY, CA 91977
PHONE: (619) 668-0107
TOLL FREE 1-800-475-0349
FAX: (619) 461-6961

We Carry Electronic Kits, Robots, Motors, Tools, Test Equipment, batteries, etc.

To receive a FREE CATALOG fax or mail your address with phone number to the address above and you will automatically become a member with no obligation.

www.americanradiohistory.com

7 MB cache, AMD 300
3DNow System featuring: 10/100
Enlight Mini Tower, VIA chipset, 100 MHz processor, 2 USB ports, 64 MB PC-100 compatible memory, 7.5 GB 7200 rpm Ultra DMA33 hard drive, 32X CD-ROM with audio button, 4 MB AGP video card, 53Tri 3D, 1.44 floppy, V.90X2 PCI faxmodem, 3D sound card, fullsize speaker set, 15" digital monitor.
Windows 98 on CD $997

techn-specialties, inc.
(800)864-5391, fax: (713)307-0314
email: sales@ts.nu, web: www.ts.nu
Detailed Quote on other configurations (Pl 300,450, single/dual CPU or low cost 233 MHz, 32 MB - $570 w. monitor) by email, fax or phone. Ask for our Free Shipping option! Illustrated 32-page Catalog with latest parts, many more system options, benchmark comparisons and technical tips free!

LASER MODULE

Auto Power Control
Colimated Laser
Compact Size
100,000 hr lifetime
No Electronics Required

Visible Laser Modules (835-670 nm)
TTL Modulated Laser Modules
Line Generator Laser Modules
Infrared Laser Modules (760-830 nm)

LASER POINTER

Focus Adjustable
Elegant Design
Solid Metal Body

Pen Style Laser Pointer (900 Hz audio) Key Chain Laser Pointer (1500 Hz audio) Available in silver and black finish

$19.95 (US)
Ask for free catalog
World Star Tech.
Tel: (416)595-3339 Fax: (416)716-1010
http://www.worldstaritech.com e-mail: info@worldstaritech.com

PIC Microcontroller Programmer Kit

Super Value! • Program all 8, 16, 28, & 40 pin PICs in the 12Cxxx, 14Cxxx and 16Cxxx series (except PIC16C450).
• All components, PCB and instructions included.
• Parallel port of PIC is used with straight through (25 pin) cable (not supplied).

$14.95 + $4.95

TSC-450-90

Running Lights Kit

Ideal for parties, discos, shop windows and X-mas decorations. 8 LEDs.

$14.95 + $4.95

Orders only: 1-888-549-3749 USA & Canada Info: (309) 549-3726 Request a FREE catalog or visit us at: www.electronics1st.com for more products
Amazon Electronics, Box 21 Columbus OH 43201

ADAP T-11
68HC11 Modules for Solderless Breadboards

For just $79.95, our Solderless Kit (ADAP-11) provides every thing you need to get going fast! Now you can harness the power of the popular 68HC11 in your projects! Includes ADAP-11 with 68HC11L23, prewiring, 2x EEPROM, 2x-programmable, 2x channel 8-bit Analog-to-Digital Converters (ADCS), built-in 4-bit timers, counters, interrupts, Serial Peripheral Interface (SPI), Serial Communication Interface (SCI) & more. On-board I2C-232 interface (tablet included). 9VDC regulator. RS232 circuitry and convenient autorun switch. Comes with soon-to-be-released versions of "PIC 11 assembler", BACIC, & C, as well as handy utilities & example code. Includes Materials 68HC11 Port Programming Reference Guide and manual will come with software. All you need to PIC in write & program your software. A DC power supply, and a solderless breadboard for prototyping to build your applications/prototypes for faster development.

"MasterCart" & "Accessories/Disconty"

TECHNOLOGICAL ARTS
509 Aragona Blvd., Suite 102, Carls, CA 92218, USA 800-475-0349 www.tecarts.com

The Hack & Crack Bible on CD-ROM

Includes all Software, Documentation, Plans, and PCB Layouts
Unlock the secrets of:
- DISK & File System.
- Programming & Schematics.
- Cable Test Devices
- Sony PlayStation
- Mod Chip/CD Backups/Emulation
- Backup Sega & SNES Console Customized
- Sega & SNES Emulation on your PC
- Mac Wares - where to find them on the Internet
- And Much More!

$2495

PC & Mac compatible

We accept VISA, Mastercard, AmericanExpress

To order, call Worldwide at 1-800-773-6698
21365 Randall Street • Farmington Hills, MI 48334
Visitez nos sites de Web at: www.worldwide.com/hack

Timid about getting on the...
World Wide Web?

You've heard about the Information Superhighway and all the hype that goes with it! Sort of makes you feel timid about getting on the Web. Put your fears aside! A new book, The Internet and World Wide Web Explained, eliminates all the mystery and presents clear, concise information to build your confidence. The jargon used is explained in simple English. Once the tech-talk is understood, and with an hour or two of Web time under your belt, your friends will believe you are an Internet guru!

To order Book #BP430 send $7.99 plus $3.00 for shipping in the U.S. and Canada only to Electronics Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240. Payment in U.S. funds by U.S. bank check or International Money Order. Please allow 6-8 weeks for delivery.

www.americanradiohistory.com
FRIENDLY LITTLE MICRO CONTROLLER
$149 (single)

...picks a MEAN punch
a.k.a. "Steroid Stamp"

- 39 I/O + 8 A/D (10 bit)
- 128K SRAM + 12K Flash
- LCD/Keypad Interface
- Fast 16 bit Motorola CPU
- Affordable C Compiler
- Comprehensive s/w library

*Intec Automation Inc. v. 250-721-5150
www.intecautomation.com
Fax: 250-721-4191

Direct from Manufacturer
We will beat any competitor's price

World's Smallest Wireless Video Camera!
- Transmits video up to 1000 ft.
- Runs on 9V battery for 12 hrs.
- Can be built into just about anything
 (broom, clock, etc.)
We also carry:
- Color micro video cameras.
- B&W micro video cameras.
- Hidden cameras
- Custom video systems
- Counter surveillance & More

Looking for Distributors
Call for a free catalog (305) 667-4545
SECURETEK Fax (305) 667-1744
7175 SW 47 St. #205 Miami, FL 33155

10 Hr. Telephone Recorder $69 + $6.95 S/H

FCC Approved

6 Hr. Tape Included!

Automatically starts recording when the phone is picked up and stops when you hang up.
Records both sides of the conversation.

FREE CATALOG
www.mscelectronics.com

MSC Electronics
PO Box 461 Jessup, MD 20794
(301) 497-1600
FAX (301) 497-1925

Printed Circuits in Minutes Direct From LaserPrint!

1. LaserPrint*
2. Press On**
3. Peel Off
4. Etch

Use Standard Copper Clad Board
20 Shts $30/40 Shts $50/100 Shts $100
Vias/MD/PO/CX/MO $4 S & H
Techniks Inc.
P.O. Box 463
Ringoes NJ 08551
ph: 908.786.8249 fax: 908.786.8837
http://chelsea.ios.com/techniks
Reg'd Dealer Inquires Invited

Notch Filters
Test Chips

www.nutnet.com

1 Adult Wholesale Video's
$379.00
Free Shipping

Video Media
P.O. Box 93/6025
Margate, Fl. 33093-6025
(954)-752-9202

March 1992, Electronics Now

Visit our ON-LINE CATALOG

www.weedtech.com

Weeder Technologies
PO Box 2426, Ft. Walton Beach, Fl 32549

Stackable RS-232 Kits

Digital I/O - 12 I/O pins individually configurable for input or output. DIP switch addressable; stack up to 16 modules on same port for 192 I/O points. Turn on/off relay. Sense switch translations, button presses, 4x4 matrix decoding using auto-debounce and repeat. Analog Input - 8 input pins. 12-bit plus sign self-calibrating ADC. Returns results in 7.6 ms from 0 to 4095. Software programmable input tri-point for each input. DIP switch addressable; stack up to 16 modules on same port for 128 single-ended or 64 differential inputs.

Home Automation (X-10) - Connects between a TWSS23 and your serial port. Receive and transmit all X-10 commands with your home-brewed programs. Full collision detection with auto-retransmission.

Caller ID - Decides the caller ID data and sends it to your serial port in a pre-formatted excel character string. Example: 12345 08 40 5B0-372财经, Terry <CFR> Keep a log of all incoming calls. Block out unwanted callers to your BBS or other modern devices.

Touch Tone Input - Decodes DTMF tones used to dial telephones and sends them to your serial port. Keep a log of all outgoing calls. Use with the Caller ID kit for a complete Touch Tone logging system. Send commands to the Home Automation or Digital I/O kits using a remote telephone.

Telephone Call Restrictors

Two modes of operation; either prevent receiving or placing telephone calls (or call prefixes) which have been entered into memory, or prevent those calls (or call prefixes) which have *not* been entered.

Block out selected incoming calls. Bypass at any time using your password.

Block out selected incoming calls. Calls identified using Caller ID data.

Phone Line Transponder

7 Individual output pins are controlled with buttons 1-7 on your touch-tone phone. Automatically answers telephone and waits for commands. Monitor room noises with built-in mic. "Dial-Out" pin instructs unit to pick up phone and dial user entered number(s). Password protected.

IR Remote Control Receiver

Learn and respond to the data patterns emitted by standard infrared remote controls used by TV's, VCR's, Stereos, etc. Let you control all your electronic projects with your TV remote. 7 Individual output pins can be assigned to any button on your remote, and can be configured for either "draggle" or "momentary" action.

DTMF Decoder/Logger

Keep track of all numbers dialed or entered from any phone on your line. Decodes all touch-tones and displays them on a 16 character LCD. Holds the last 240 digits in a non-volatile memory which can be scrolled through. Connect directly to radio receiver's speaker terminals for off-air decoding of repeater codes, or numbers dialed on a radio program.

www.americanradiohistory.com
OUR FINEST

Counter-Surveillance Device

THE ULTIMATE IN "BUG" DETECTION EQUIPMENT "DEBUGS" ROOMS AND TELEPHONES!

If you require GUARANTEED PROTECTION against electronic telephone monitoring devices and COMPLETE CONFIDENTIAL PRIVACY in certain rooms and areas, we highly recommend the COUNTER-SURVEILLANCE DETECTOR CSD-18.

EXTREME SENSITIVITY!
This is our finest piece of detection equipment! The CSD-18 quickly locates electronic eavesdropping devices in telephones, homes, offices, vehicles, boats, or concealed on the body. It will actually pick up many eavesdropping transmitters at ranges up to 25 ft. Extreme sensitivity is achieved by a three-stage signal amplification circuitry directly following the RF detection stages. Excellent quality dynamic headphones exclude all external sounds to further enhance detector output. Encompassing an extremely wide-band frequency coverage of the entire human voice range, the CSD-18 quickly identifies not only any eavesdropping transmitter and immediately pinpoints its location. The closer you get to the "bug", the further the needle moves to the right. It is as simple as that!

"FLASHING" LED WARNS YOU INSTANTLY!
And, for maximum telephone security, the CSD-18 automatically analyzes a pre-programmed series of electronic measurements along the telephone line and converts the analysis into an easy-to-follow, step by step, test procedure. No technical knowledge is required or necessary. A visual indication (via a flashing LED) immediately reveals the presence of the various types of telephone "taps" and the flashing sequence identifies the actual type of eavesdropping device.

DETECTS THE LATEST "SUPER-BUGS"!
Exclusive CSD proprietary circuitry assures the almost unbreakable protection possible.

FREE WITH ORDER!

SUBMINIATURE "BODY WIRE" DETECTOR!
If you fear the possibility of being overheard and/or recorded during private conversations and require "silent" notification, we've also included our SBD-5 (regularly $25.50) as a FREE GIFT! Only 3" x 2" x 1", this exciting new device can instantly detect hidden body wires at ranges up to 10 ft and alert you via a silent vibration.

BIG MONEY OPPORTUNITIES!
Complete information regarding the fantastic opportunities now open to trained Counter-Surveillance technicians and how a number of individuals are reaping a bonanza in this booming business! You'll learn exactly how the ever-increasing use of Electronic Listening Devices by investigative agencies, government agencies, jealous suitors and unscrupulous business competitors, has created huge demand for the service.

FASCINATING HI-TECH INFORMATION PACKAGE!
A detailed analysis of a variety of extremely fascinating hi-tech devices and procedures used for ultra-sophisticated audio and video eavesdropping including micro-wave and laser device monitoring; new methods for listening thru walls; all about scramblers, voice changers and exactly how neighbors eavesdrop. Now missing persons are found, confidential data banks are broken into, lie detectors deceived and much more.

CONDUCT A PROFESSIONAL SEARCH...ANYTIME...ANYWHERE!
Every newspaper and magazine article and every radio and TV story discussing some new episode involving "bugging" devices, in every town in the land has ordered this complete Counter-Surveillance "sweep" equipment. The very limited availability of competent trained and equipped Counter-Surveillance specialists has created a situation where "sweep" rates exceeding $50 per hour are now considered reasonable and appropriate.

This is an exciting, immensely interesting and profitable field that you can enter with a minimum investment. Two hours actual practice with the CSD-18 will have you "reading" and "clearing" telephones and rooms with professional ease and competence. The average fee for debugging a single telephone is over $200.00. It requires about 45 minutes to complete the job and once it gets around that you can provide this service, you'll quickly have more clients than you can handle. Even if you choose to provide "sweeps" for only a small number of friends and associates, your initial investment will quickly be returned many times over.

THE ONE "BUG" TO FEAR MOST!
While most individuals are now somewhat guarded in their telephone conversations, they still rather naively feel secure in the "privacy" of their own home or office. However, the most common type of "tap" presently used by eavesdroppers now picks up ALL SOUNDES AND CONVERSATION WITHIN A ROOM WITH THE TELEPHONE STILL ON THE HOOK! Due to this devastating capability, this "Infinity" tap (variously referred to as "Infinity Transmitter, Hookswitch Bypass, 3rd Wire, Harmonica Bug, etc.) has become the "bug" of choice.

In flagrant violation of federal law prohibiting their use and sale, these devices in various forms are openly advertised in many technical publications for as little as $30. Literally thousands of these devices are now in the hands of unscrupulous individuals all over the country.

In response to this ever-growing threat, a uniquely engineered feature of the CSD-18 now also detects infinity type devices anywhere "down the line".

In other words, if ANYONE ANYWHERE is utilizing the telephone tap and/or ring wires to monitor your private conversations while your telephone is on the hook, you'll immediately be made aware of it via a flashing LED.

100% POSITIVE INDICATION
The CSD-18 also flawlessly detects "Series" and "Parallel" telephone transmitters and "Telephone Recording Devices". And, a separate feature silently indicates when extension phones are plugged in or being used. The CSD-18 completely eliminates all doubt and guesswork.

EXCLUSIVE "LISTEN-IN" FEATURE!
The CSD-18 will even allow you to "listen-in" to exactly what the eavesdropper is surreptitiously monitoring. And, without the eavesdropper even becoming aware that he has been detected! We are unaware of ANY other detection equipment having this combined capability AT ANY PRICE.

MAXIMUM PROTECTION
The CSD-18 detects and locates all major categories of surveillance equipment including:

BUMPER BEEPERS
BODY TRANSMITTERS
TELEPHONE RECORDING DEVICES SERIES & PARALLEL PHONE TRANSMITTERS "INFINITY", MICRO-WAVE AND "LASER" BUGS & ALL TYPES OF CONCEALED TRANSMITTERS (Including Vido, Computer and Fax Transmitters)

CSD-18 $495 Complete
Includes headphones, antenna probe, all plugs and adapters, batteries, the Free SBD-5 & Info Packages.

HOW TO ORDER
Order NOW by Mail or Telephone (10 DAY MONEY BACK GUARANTEE if you're not 100% pleased and completely satisfied. We pay shipping charges on all prepaid & credit card orders. Add $15 for COs.)

Great Southern Security
30113 Bankhead Highway
Carrolton, GA 30117

FASTEST SERVICE CALL TOLL FREE ORDER BY PHONE 1 800 732-5000 VISA

94
THE QUALITY YOU DESERVE

TEK 2465A/DM, 350 MHz, 4Chan, O'Scope with DMM

WORLDS SMALLEST, 100mW, VIDEO TRANSMITTER,
Only 0.98" x 0.8" x 0.031" in size. Transmits crystal controlled, hi-res, color or B&W images with 100mW output! The transmitter you've been waiting for. Shown actual size. Much smaller than the 9V battery which powers it. Draws only 35mA!
Factory turned. Receives on channel 59. UHF B魏 lie antenna with balun and 3' cable for TV supplied. Perfect with GM100A camera. Both will fit in a cigarette pack...with the battery! The best anywhere.

TVX-100...$189 with GM100A-PH CAM.............$268

SUPER! UNDERWATER (to 60 ft.) "INSPECTION CAMERA with INTERNAL INFRA-RED ILLUMINATOR!" Sleek black anodized, BRASS, housing with O-Ring sealed & WATERPROOF. Adjustable mount included. Specs: 1/3" CCD, 400 lines resolution, 0.65 Lux sensitivity, AGC, Auto. Shutter. Operates on 12VDC @120mA, 6.2mm, f/2.5 FOV lens. NTSC video out. Superior construction. SENSITIVE to IR. Ultra small Size only: 1.5" x 1.5" x 2.0". With 60 ft. cable. Great for gen'outdoor use also. GM-300K...$199

TWO MINI C-MOUNT CAMERAS, Super sensitive, GM410 or the general purpose GM412, The GM-412 specs: B&W, size 1.5" sq. x 2.4", 250,000 Pixels, 380 Lines Resolution, Sensitivity 0.8 Lux. The GM-410 specs: size only: 1.5" x 1.5", 270,000 Pixels, 480 Lines, Sens. 0.65 Lux. Both cameras are 1/3" CCD with AGC & Electronic shutter. 12V @120mA power NTSC out. IR SENSITIVE, BNC video out, both use std. DC pwr. jack. Aluminum housings with dual threaded top and bottom mounting. True performance not hype! These cameras will outperform ANY camera in this magazine. Multi-lens options are available. GM412, less lens...$119, GM410, less lens...$169

C-MOUNT LENS OPTIONS to ENHANCE YOUR IMAGE:
Fast Lenses for Low Light or General Purpose Normal Light
16mm, f/1.6, 15" FOV$39 4mm, 80" FOV$24
8mm, f/3.4, 40" FOV$49 8mm, 40" FOV$24
4mm, f/1.8, 78" FOV$49 12mm, 28" FOV$24

6V @ 12 AH SEALED, RECHARGEABLE, LEAD ACID BATTERY
Brand new Panasonic type (CR6W2P), tough to get at a discount. Very compact. Use two for a 12V DC 12AH pack. Two top mounted 1/4" faston connectors. Perfect for robots and other high drain applications. Size: 5.9"L x 3.7"H x 1.97"D. REG. $18ea. NOW 2 for $20, or $10/$89

10V @ 2.5 AH SEALED, LEAD ACID, PACK Each pack consists of five, 2 Volt cells. Each cell the size of a std. 12V battery. Arranged as 1X5 cells. Enclosed in an ABS outer shell (removed for photo). Mint condition. Perfect for high drain and robotics applications. Make custom packs of any rating. Size: 7.5"L x 2.8"H x 1.5"D. 5-five packs$20, $30 for $99

YOU CAN NEVER BE TOO THIN OR TOO POWERFUL
Unique, 0.3" thick, Thinline Energy Cell, Portable Energy Products model PLA0250S. Super thin, high performance, patented technology. RECHARGEABLE sealed lead acid battery. Each cell is 2V/8AH. Size: 3.1" x 5.3" x 0.31" Mount any orientation. Used the bottom of a briefcase or covertly wear on the body. 30% higher density than std. lead acid batteries.
SPECIAL 6 cells $15 or 24 for $49

4 HEAD TIME LAPSE VCR, Records 24 + HOURS!
Used, refurbished, late model
VICON model: 4240 at only 2/3 off the regular price. On screen programming, time/date stamp, audio, index search, power loss recovery and alarm inputs. Excellent, with manual
VICON 424........$489ea.

MOTORIZED LINEAR SLIDE, with Z AXIS DRIVE
Heavy duty 3/8" diameter chromed steel rods provide up to 9 inches of linear travel. X drive is via a toothed belt powered by a 500W-5000-UF-409, 1.25V@43A stepper motor with 200 steps per rev and 75 oz. in. hold. The Z axis is attached directly to the slide, provides 2 inches of travel and is powered by its own RapidSyn 25E-61086H1.5V@63.8A stepper 200 steps per rev and 60 oz. in. of hold. Very precise motion is possible due to the approx. 4:1 ratio toothed belt drive. Nice quality, suitable for gen'1 use. Not recommended for ultra precise or high load applications. Removed from precision optical equipment. Overall size: 17"L x 6"H x 5.5"D. Complete assembly mounted on a rigid 1/4" thick base.

ASTRO-CAM, TE COOLED CCD CAMERA HEAD!
Model T3W/4 with KODAK KAF 0400-C1 CCD. These cameras were over bought by a large analytical instrument company. We have no new condition. We have no data except for the KODAK 768 x 512 CCD specs. Wavelength sensitivity is from 400 to 1080nm. Less than 1.5% non-linearity. Fan cooled Pelletier device. Bayonet lens mount for 35mm objective. Lens not included) These heads are used in the Capella and Antares systems. With readout rates of 50kHz to 8 MHz, 12-1abit dynamic range, no image retention lag or distortion, high tolerance to over exposure Size: 4.5" sq. x 4.5" Long. Qty. Special...$349ea.

Please fax us your list of unique surplus material.

CLOCK RADIO COVERT CAMERA, New, Magnavox clock radio with covert low light video camera. Specs. per GM100A shown below. Connect to anything with a "video in" jack via RCA style output. Also available wireless model, CRC-2W transmits to cable ready TV or VCR on channel 59, up to 500ft.

CRC-1std...$129 ea. or CRC-2W, Wireless...$279 ea.

SEE in TOTAL DARKNESS!
WEATHERPROOF IR FLOOD, 48 powerful LED's project a 40 deg. FOV beam up to 45 feet. Automatic on at dusk down at 110VAC power. Rugged anodized aluminum housing with adjustable tilt bracket. Size: 4"x5"x3.1" Commercially made. Brand New! WPIR...$179ea.

SPECIAL! ULTRA MINI and WEATHERPROOF!
Our "LIPSTICK" camera sets new standards. Sleek black anodized, aluminum housing is O-Ring sealed & RAINPROOF! Adjustable tilting mount included. Specs: 1/3" CCD, 380 lines resolution, 0.3 Lux sensitivity, AGC, Auto Shutter. Operates on 9 to 18VDC @100mA, 3.7mm, 500 FOV lens. A real glass lens. NTSC video out. 1/2 once SENSITIVE to IR. Ultra small Size only: 23mm diameter x 50mm long. With 36" leads GM-200KSTD...$99, AC pwr...$4.95

PINHOLE LENS, "BULLET CAM"
So tiny you can install it in a door with merely an 0.9" diameter hole. Sleek black anodized, extruded aluminum housing. Similar construction as the lipstick camera above only 0.12" long. 1/3" CCD, 410 Lines Res., 0.3 Lux sens.... AGC, Auto Shutter. Power from 9 to 16VDC @100mA, 250K PIXELS, 900 FOV. Pinhole lens. Std. NTSC video out. 1/2 once SENSITIVE to IR. Size only 23mm Diam. x 35mm long. With 36" leads GM-200KPH...$99

MARCH 1999, ELECTRONICS NOW

RESOURCES UNLTD.,
300 BEDFORD STREET, MANCHESTER, NH 03101
VISA, MC, AMEX, DISCOVER, COD. ORDER: 800-810-4070 TECH: 603-668-2497 ORDER: 603-604-7825 E-MAIL: unli3l@comcast.net

CIRCLE 283 ON FREE INFORMATION CARD

www.americanradiohistory.com
Exploring the New World of Science Kits.

OWI's "Next Generation" of affordable, rugged Robot Kits for the next millennium challenges the enthusiast to solder circuit boards and/or mechanically assemble.

Each OWIKIT also incorporates the basic principles of robotic experiments, sensing and locomotion, guaranteeing an exciting, hands-on adventure of knowledge and fun!

But remember! OWI is the recognized founder and leader in Educational Robot Kits. ACCEPT NO IMITATIONS.

Visit our homepage at www.owirobot.com

CABLE TV BOXES

WE'LL BEAT ANY PRICE!

30 DAY TRIAL 1YR. WRNTY. *FREE CATALOG QTY. DISCOUNTS * DEALERS WELCOME!

1-800-538-2225

GLOBAL ELECTRONICS INC.

http://www.tvcableboxes.com

NEW INVENTION!

BUILD YOUR OWN

5,000 WATT INVERTER

Input 12vdc
Output 120 Volts AC 60 Hz

You can build this simple but POWERFUL inverter with parts you may already have laying around the house! There is no other inverter built like this inverter. Now anyone can afford a 5,000 watt inverter. Run your entire home.

1000 watt plans..................$25.95
5000 watt plans..................$40.00

Send order to: CREATIVE SCIENCE
PO BOX 557 New Albany, IN. 47151

For more information, phone or write to:

MAXNC
6730 West Chicago
Suites 2 & 3
Chandler,AZ 85226
Ph (602) 940-9414
Fax (602) 940-2484
2-Channel, 20-MHz
CS-4125
Regular $595
Sale $389

2-Channel, 40-MHz Oscilloscope
CS-4135
Regular $855
Sale $685

Hybrid IC Technology is the Key to the High Quality and High Reliability at Low Cost!

- **FIX SYNCHRONIZATION** detects the trigger level automatically for the acquisition of stationary waveforms without complicated sync level adjustments.
- **VERT MODE TRIGGERING** enables the acquisition of stationary waveforms for both CH1 and CH2 even when the input signals to the two channels have different frequencies.
- **HIGH WITHSTAND INPUT** voltage of 400V (800Vp-p).
- **RELAY ATTENUATORS** are provided for reliable logic switchover.
- **SCALE ILLUMINATION** (CS-4135 only)
- **DIMENSIONS** (WxHxD): 300(343) x 140(150) x 415(430)mm () including protrusion.
 WEIGHT: approx. 7.2kg (CS-4135) approx. 7kg (CS-4125)

*Phone 800-638-2020 * Fax 800-545-0058 * www.prodintl.com
CLASSIFIED

CB-SCANNERS

CB Radio Modifications! Frequencies, kits, high-performance accessories, books, plans, repairs, amps, 10-Meter conversions. The best price since 1976! Catalog $3.00. CBC Box 1898 EN, Monterey, CA 93942. www.cbcanit.com

CB Trick Books, three books 1, 2, and 3. Each book $9.95 each. Repairs, tune ups, and amplifiers. Send money order to Medicine Man CB PO Box 37, Clarksville, AR 72830.

COMPUTER HARDWARE

New computers and parts at wholesale prices, www.Techass.com Toll Free 1-877-Tech-ass. We ship all parts and computers 1-877-832-4277

ROBOT Module. Abundant outputs, inputs, counters, compass, analog. Infinite configuration $299.00. Free catalog WINDesign, Box 138, Boston, NY 14025

CABLE TV

Cable TV scramblers, One-piece units. Scientific Atlanta, Jerrold, Pioneer, and others. Lowest prices around, Precision Electronics, Houston, TX 77024 1-800-891-4276

CABLE DESCABLING, New secret manual. Build your own scramblers for cable and subscription TV. Instructions, schematics for SSAVI, Gated Sync, Surfwave, $12.95. $2 postage CABLETRONICS, Box 30562A, Bethesda, MD 20824

Wholesale to the public. The industries leading distributor of cable electronics is now open to the public. We will beat all competitors pricing. Dimension 800-474-2343.

New! Jerrold and Pioneer wireless test units $125 each, also 75DB notch filters $19.95 each, quantity pricing available please call KEN ERNY ELECTRONICS 24-hour order and information hot line 516-389-3536

Descramblers, Converters, Activators, RFI's, Pig's, Bullet Snippers, All Options Explained, Best Prices, Services, 2yr. Warranty, Free Catalog 1-800-854-1674 www.resource-leader.com auqip

ALL CABLE TV BOXES, WE'LL BEAT ANY PRICE. 30 DAY TRIAL 1 YEAR WARRANTY, 1-800-538-CABLE (2225).

Cable boxes all models, all channels, lowest prices in the United States. Open seven days a week till midnight, Pacific Time. Call (877) 789-7337 Toll-Free.

NEW! Cellphone E.S.N. readers $250 each, cell phone programmers $175 each, cell phones $25 each, DS3 satellite dish card programmers and drivers $125 each, credit card readers $350 each, Cable TV, notch filters 50 cents each, converter boxes $75 each, magnetic strip card readers for ATM machines, bank cards, drivers license, and all types of data acquisition all under $200 each. You pay these super low prices when you deal directly with the manufacturers. When you order "Direct Connection" a 150 page directory published by Ed Trei Publications, you will receive the largest collection of names, addresses, and phone numbers of all the leading American and International manufacturers of these powerful new devices available. Stop paying second, third and fourth hand prices and deal directly with the source!!! Order your copy of "Direct Connection" today for only $59.95 plus $5 shipping. All orders are sent C.O.D. Please call Ed Trei Publications 24 hour order hot line 914-544-2829.

EDUCATION

Be A COMPUTER SUPPORT SPECIALIST! Learn computer hardware and software. Great career path. Computers are the future. Free information. Call 1-800-326-5921 or write Lifetime Career Schools, Dept. ELN1039, 101 Harrison Street, Archibald, PA 16403.

PLANS-KITS-SCHEMATICS

IR remote control Jammer kit. Stop channel surfing. Send $19.95 plus $2.00 Shipping to PMS PO Box 88077 Colorado Springs, CO 80908-8077.

ELECTRONIC PROJECT KITS: 49 McMichael St., Kingston, ON. $74.00. $3.00 catalog. www.cds.com. QUALITY KITS

SATELLITE EQUIPMENT

DSS Hacking: How to construct and program smart cards, with pic 16C84, PCB layout. Complete DSS system schematics, $16.95. Software $25.00. CABLETRONICS, Box 30502R Bethesda, MD 20824

DSS Test card. Authorizes all channels for information, plus free bonus. Call toll free 1-888-416-7296.

BUSINESS OPPORTUNITIES

Have an idea? If so, we are a national company working with ideas, inventions, new products. Patent services. Call 1-800-288-IDEA.

Wholesale buying for retailer to carry solar electronics and hobby goods. (916) 486-4737. Please leave message.

EASY WORK! EXCELLENT PAY! Assembly Products At Home. Call Toll Free 1-800-467-5566 Ext. 5192.

$400 Weekly Assembling electronic circuit boards/products from home. For Free information send SASE: Home Assembly-EN Box 216 New Britain, CT 06050-0216.

www.americanradiohistory.com
ADVERTISING INDEX

Electronics Now does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>— Abacom Technology</td>
<td>81</td>
<td>— James Electronics</td>
<td>66</td>
</tr>
<tr>
<td>— ABC Electronics</td>
<td>82</td>
<td>— Jensen Tools</td>
<td>78</td>
</tr>
<tr>
<td>— AES</td>
<td>84</td>
<td>— Lynxmotion</td>
<td>82</td>
</tr>
<tr>
<td>213 Alfa Electronics</td>
<td>70</td>
<td>— M2I Electronics</td>
<td>87</td>
</tr>
<tr>
<td>214 All Electronics</td>
<td>67</td>
<td>— MAT Electronics</td>
<td>5</td>
</tr>
<tr>
<td>— Allison Technology</td>
<td>91</td>
<td>— MCM Electronics</td>
<td>CV3</td>
</tr>
<tr>
<td>— Amazon Electronics</td>
<td>92</td>
<td>— Merrimack Valley Systems</td>
<td>84</td>
</tr>
<tr>
<td>270 American Eagle Publications</td>
<td>81</td>
<td>— MicroCode Engineering</td>
<td>CV2</td>
</tr>
<tr>
<td>— Andromeda Research</td>
<td>86</td>
<td>— NRI Schools</td>
<td>19</td>
</tr>
<tr>
<td>— Arrow Technologies</td>
<td>76</td>
<td>— Netcom</td>
<td>75</td>
</tr>
<tr>
<td>314 Basic Electrical Supply</td>
<td>70</td>
<td>— OWI</td>
<td>96</td>
</tr>
<tr>
<td>304 Beige Bag</td>
<td>77</td>
<td>— Parts Express Inc</td>
<td>69</td>
</tr>
<tr>
<td>— Brand Electronics</td>
<td>64</td>
<td>— PC Boards</td>
<td>64</td>
</tr>
<tr>
<td>322 C&S Sales, Inc</td>
<td>72</td>
<td>— Pioneer Hill Software</td>
<td>86</td>
</tr>
<tr>
<td>— Cable USA</td>
<td>99</td>
<td>— Polaris Industries</td>
<td>63</td>
</tr>
<tr>
<td>— Circuit Specialists</td>
<td>88</td>
<td>— Prairie Digital</td>
<td>91</td>
</tr>
<tr>
<td>— CLAGGK, Inc</td>
<td>14, 62</td>
<td>— Print (Page)</td>
<td>97</td>
</tr>
<tr>
<td>— Clearview Group</td>
<td>88</td>
<td>— Ramsey Electronics</td>
<td>65</td>
</tr>
<tr>
<td>— Cleveland Inst. of Electronics</td>
<td>37</td>
<td>— Resources Unlimited</td>
<td>95</td>
</tr>
<tr>
<td>— Command Productions</td>
<td>64</td>
<td>— Science Fair Electronics</td>
<td>92</td>
</tr>
<tr>
<td>— Computer Monitor Maintenance 90</td>
<td>— Security Electronics</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>224 Consumertronics</td>
<td>68</td>
<td>— Securetek</td>
<td>93</td>
</tr>
<tr>
<td>228 Cool Amp Conducto Lube</td>
<td>75</td>
<td>— Sil Walker</td>
<td>66</td>
</tr>
<tr>
<td>— Crazy Liz’s</td>
<td>76</td>
<td>— Square 1 Electronics</td>
<td>76</td>
</tr>
<tr>
<td>234 Dalbani Electronics</td>
<td>74</td>
<td>— Tech-Specialties</td>
<td>92</td>
</tr>
<tr>
<td>235 Danbar Sales</td>
<td>68</td>
<td>— Techniks</td>
<td>93</td>
</tr>
<tr>
<td>— EDE - Spy Outlet</td>
<td>99</td>
<td>— Technological Arts</td>
<td>92</td>
</tr>
<tr>
<td>— Electronic Technology Today</td>
<td>6</td>
<td>— Test Equipment Depot</td>
<td>79</td>
</tr>
<tr>
<td>— Emac Inc</td>
<td>76</td>
<td>— Test Equipment Sales</td>
<td>80</td>
</tr>
<tr>
<td>— Fair Radio Sales</td>
<td>82</td>
<td>— Timeline</td>
<td>87</td>
</tr>
<tr>
<td>335 Foley-Belsaw</td>
<td>83</td>
<td>— U.S. Cyberlab</td>
<td>85</td>
</tr>
<tr>
<td>— General Device Instruments</td>
<td>86</td>
<td>— Vellemen</td>
<td>71</td>
</tr>
<tr>
<td>160 Global Specialties</td>
<td>9</td>
<td>— Video Media</td>
<td>93</td>
</tr>
<tr>
<td>— Grantham Col. of Engineering</td>
<td>4</td>
<td>— Visitec Inc</td>
<td>80</td>
</tr>
<tr>
<td>329 Graymark International</td>
<td>77</td>
<td>— Weeder Technologies</td>
<td>93</td>
</tr>
<tr>
<td>— Great Southern Security</td>
<td>94</td>
<td>— World Star Technologies</td>
<td>92</td>
</tr>
<tr>
<td>— Home Automation</td>
<td>86</td>
<td>— Worldwye</td>
<td>92</td>
</tr>
<tr>
<td>331 Howard Electronics</td>
<td>89</td>
<td>— Wondeparent</td>
<td>85</td>
</tr>
<tr>
<td>— IEC</td>
<td>91</td>
<td>— Wright's</td>
<td>86</td>
</tr>
<tr>
<td>— Information Unlimited</td>
<td>78</td>
<td>— Velleman</td>
<td>71</td>
</tr>
<tr>
<td>— Intec Automation</td>
<td>93</td>
<td>— Video Media</td>
<td>93</td>
</tr>
<tr>
<td>138 Interactive Image Technologies CV4</td>
<td>— Visitec Inc</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>— Intronics, Inc</td>
<td>84</td>
<td>— Weeder Technologies</td>
<td>93</td>
</tr>
<tr>
<td>319 IVEX Design</td>
<td>85</td>
<td>— World Star Technologies</td>
<td>92</td>
</tr>
<tr>
<td>— J&M Microtek, Inc</td>
<td>92</td>
<td>— Worldwye</td>
<td>92</td>
</tr>
</tbody>
</table>

ADVERTISING SALES OFFICES

Gernsback Publications, Inc.
500 Bi-County Blvd.
Farmingdale, NY 11735-3931
Tel. 516-293-3000
Fax: 516-293-3115

Larry Stockler
Publisher (ext. 201)
e-mail: advertising@gernsback.com

Adria Coren
Vice-President (ext. 208)

Ken Coren
Vice-President (ext. 209)

Christina Estrada
Assistant to the Publisher (ext. 209)

Marie Falcon
Advertising Director (ext. 206)

Adria Coren
Credit Manager (ext. 208)

For Advertising ONLY

EAST/SOUTHEAST

Megan Mitchell
9072 Lawton Pine Avenue
Las Vegas, NV 89129-7044
Tel. 702-240-0184
Fax: 702-838-6924
e-mail: mmitchell@gernsback.com

MIDWEST/Texas/Arkansas/Oklahoma

Ralph Bergen
One Northfield Plaza, Suite 300
Northfield, IL 60093-1214
Tel. 847-559-0555
Fax: 847-559-0552
e-mail: bergenr@aol.com

PACIFIC COAST

Anita Bartman
Hutch Looney & Associates, Inc.
6310 San Vicente Blvd., Suite 360
Los Angeles, CA 90048-5426
Tel. 323-931-3444 (ext. 227)
Fax: 323-931-7309
e-mail: anita@hlooney.com

Electronic Shopper
Joe Stone
National Representative
P.O. Box 169
Idyllwild, CA 92549-0169
Tel. 909-659-9743
Fax: 909-659-2469
e-mail: joe@greencafe.com

Megan Mitchell
National Representative
9072 Lawton Pine Avenue
Las Vegas, NV 89129-7044
Tel. 702-240-0184
Fax: 702-838-6924
e-mail: mmitchell@gernsback.com

Customer Service
1-800-999-7139
7:00 AM - 6:00 PM M-F MST
As Low As $2.99
Order #29-2615
Order #29-2620

Nickel-Metal Hydride Cells
Get NIMH performance in a standard "AA" or "AAA" cell. Performance is 50% over that of Ni-Cad batteries of the same size. Sold individually.

<table>
<thead>
<tr>
<th>Order #</th>
<th>Size</th>
<th>(1-9)</th>
<th>(10-49)</th>
<th>(50 up)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29-2615</td>
<td>"AAA"</td>
<td>$3.59</td>
<td>$3.29</td>
<td>$2.99</td>
</tr>
<tr>
<td>29-2620</td>
<td>"AA"</td>
<td>4.19</td>
<td>3.89</td>
<td>3.59</td>
</tr>
</tbody>
</table>

Color PC Board Camera
Ideal for any observation, multimedia or security application. Provides NTSC composite video output. Features automatic white balance, 330 lines of horizontal resolution and AGC. Requires 12VDC, 240mA. Regular price $199.00.

Order #33-1480

RF Modulator
Outstanding price on this popular audio/video/surveillance accessory. Accepts standard A/V signal and places it on channel three or four. RCA type inputs, "F" type output. Requires 117VAC. Regular price $19.95.

Order #21-147

Hi-Fi Stereo Headphones
Professional-quality headphones feature 40mm super thin diaphragm drive units. Frequency response: 20Hz–20KHz. 9' straight cord has gold plated 3.5mm plug with "F" adaptor. Suggested list: $12.95

Order #35-445

MCM ELECTRONICS®
650 CONGRESS PARK DR.
CENTERVILLE, OH 45459
A PREMIER FARNELL Company
SOURCE CODE: ENS56

CIRCLE 327 ON FREE INFORMATION CARD

www.americanradiohistory.com
THE WORLD'S MOST POPULAR DESIGN TOOL CHOSEN BY OVER 100,000 USERS!

Electronics Workbench®
Personal Edition

TRUE MIXED ANALOG/DIGITAL FULLY INTERACTIVE SIMULATION
PRO SCHEMATIC EDITOR TO VIRTUAL INSTRUMENTS
ON-SCREEN GRAPHS OVER 4,000 MODELS
6 POWERFUL ANALYSES
FREE TECHNICAL SUPPORT

$299

Full-featured schematic capture and SPICE circuit simulation!
The world's most popular circuit design tool that sets the standard for powerful, insightful SPICE simulation. Create professional looking schematics and then with the flick of a switch, display simulated waveforms live on a suite of virtual instruments. Includes 15 powerful analyses and a library of over 4,000 robust component models.

Power-packed PCB layout with autorouting and real-time DRC!
EWB Layout is a powerful board layout package for producing high-quality, multi-layer printed circuit boards. Offering tight integration with our schematic capture program, EWB Layout is the best way to quickly produce well-designed boards.

CALL FOR INFORMATION AND PRICING ON OUR PROFESSIONAL EDITION.
800.263.5552

For a free demo, visit our website at www.electronicsworkbench.com

BUY BOTH AND SAVE! $598 $548

30-DAY MONEY-BACK GUARANTEE

Fax: 416-977-1818
E-mail: ewb@interactiv.com

For a free demo, visit our website at www.electronicsworkbench.com