EXPERIMENTING WITH RAIL GUNS

Get accurate signals any time you need them when you build this

Precision Pulse Generator

Check the status of your household power lines, sockets, extension cords and more with an Electrostatic Voltage Probe

Alternate Energy Sources For Your Home
Will residential fuel cells and microturbines eliminate the need for traditional power distribution?

Give your hands a break with a Solid-State Soldering-Gun Switch

\[\text{www.americanradiohistory.com}\]
CircuitMaker Version 6 and TraxMaker Version 3 give you the features of professional, high-end software at a fraction of the cost. Plus, with exceptional ease-of-use you'll spend less time learning to use the software and more time designing. Both applications are compatible with your existing software, and feature outstanding technical support. Call now for your free functional demo.

CircuitMaker 6 is a powerful schematic design and simulation program featuring:

- Professional schematic features including printout borders, title block and barred pin names
- Symbol editor and Macro feature for custom devices
- Fast, accurate SPICE3J5/XSPICE-based simulation
- Complete array of analysis types, including Fourier, AC, DC, Parameter sweep, Transient and more
- Virtual instruments including a digital oscilloscope, multimeter, Bode plotter, curve tracer and more
- Extensive library of over 4,000 models
- Tight integration with TraxMaker® for quick PCB layout
- Output PCB netlists in Protel®, Tango® and TraxMaker® formats for use in a variety of PCB layout programs
- Windows 3.1, 95 and NT

TraxMaker 3 is a powerful printed circuit board layout program featuring:

- Over 2,000 component footprints in a fully-documented, indexed library. Documentation shows footprints actual size
- Built-in autorouter and Design Rules Check
- Supports up to 6 signal layers plus power and ground planes, silk screen overlays and solder and paste masks
- Board sizes up to 32" x 32", with no pin limitations
- Intelligent manual routing with unrout capabilities
- Import any PCB netlist in CircuitMaker®, Protel® or Tango® format
- Output RS274X Gerber files, Excellon N/C drill files and Bill of Materials
- Print to any Windows-compatible printer or plotter
- Windows 3.1, 95 and NT

For free demo software, or to order, call 1-800-419-4242

©1998 MicroCode Engineering, Inc. All rights reserved. CircuitMaker, TraxMaker, SimCode and MicroCode are registered trademarks of MicroCode Engineering, Inc. All other brand and product names are trademarks or registered trademarks of their respective companies.
CONTENTS
DECEMBER 1998

ON THE COVER

31 A MICROCONTROLLER-BASED PRECISION PULSE GENERATOR

If you do any amount of benchtop design or troubleshooting, you know how important it is to have a reliable, accurate source of test signals at your disposal. It would also be handy to have one with as wide a range as possible. This month's cover story is just such a unit. And, as a bonus, it is inexpensive and easy to build. The secret to that is a PIC microprocessor, and a careful balance of hardware and software. The result is a compact unit that can produce pulses as short as 100 nanoseconds, and is accurate to nearly 100 ppm. — Tom Napier

TECHNOLOGY

13 Prototype

New advances in optical computing, monitoring the environment, a new home-network standard, and more.

43 Designing Integrated Circuits

The trail an integrated circuit takes from concept to finished product is far from simple. — Steven Steckler

47 Alternate Energy Sources for Your Home

Learn about fixed, variable, and passive designs, and how you can build and use them. — Bill Siuru

As a service to readers, ELECTRONICS NOW publishes available plans or information relating to newsworthy products, techniques, and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, ELECTRONICS NOW disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

Since some of the equipment and circuitry in ELECTRONICS NOW may relate to or be covered by U.S. patents, ELECTRONICS NOW disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

POSTMASTER: Please send address changes to ELECTRONICS NOW, Subscription Dept., Box 55115, Boulder, CO 80328-5115.

A stamped self-address envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.
40 **Solid-State Soldering Gun Switch**

Give your aching hands a rest when you replace your gun's stiff switch with a modern tactile sensor.

— Dean F. Poeth, II

53 **Electrostatic Voltage Probe**

Use it to see if sockets, extension cords, or anything else that carries an AC voltage is hot.

— David H. Cowling

DEPARTMENTS

10 **Computer Connections**

Going mobile with the Palm Pilot.

— Jeff Holtzman

12 **Equipment Report**

Checkpoint Laser Tools SA-S Pro audio laser level.

19 **Service Clinic**

Servicing Monitors.

— Sam Goldwasser

57 **Tech Musings**

Experimenting with rail guns, and more.

— Don Lancaster

AND MORE

4 **Editorial**

27 **New Literature**

6 **Q&A**

100 **Advertising Index**

18 **Letters**

100 **Advertising Sales Office**

25 **New Products**

Electronics Now®

Hugo Gernsback (1884-1967) founder

Larry Steckler, EHF, CET, Editor-in-chief and publisher

Adria Coren, Vice-President

Ken Coren, Vice-President

Editorial Department

Carl Laron, editor

Joseph J. Suda, technical editor

Evelyn Rose, assistant editor

Michael A. Covington, N4TM contributing editor

Sam Goldwasser, service editor

Jeffrey K. Holtzman, computer editor

Franklin J. Miller, audio editor

Don Lancaster, contributing editor

Jannine Asitabile, editorial assistant

Art Department

Andre Duzant, art director

Russell C. Trueelson, illustrator

Production Department

Ruby M. Yee, production director

Kathryn R. Campbell, production assistant

Ken Coren, desktop production director

Melissa Giordano, desktop production

Circulation Department

Theresa Lombardo, circulation manager

Gina Gallo, circulation assistant

Reprint Department

Christina M. Estrada, reprint bookstore

Typography by Mates Graphics

Advertising Sales Offices listed on page 100.

Electronics Now Executive and Administrative Offices

1-516-293-3000.

Subscriber Customer Service:

1-800-999-7139.

7:00 AM - 6:00 PM Monday - Friday MST

Visit us on the Internet at:

www.gernsback.com

Audit Bureau of Circulations Member
Affordable Hi-Tech Training!

Announcing New Micro Courses from the CIE Bookstore.

Easy at-home learning.
Cleveland Institute of Electronics has created a collection of micro courses that focus on our most popular subjects.

Offered through our bookstore, every micro course leads to a Certificate of Completion once finished. Each course may contain up to 39 lessons with exams and many have lab exercises, training videos or software to supplement your studies. Experience a step-by-step program designed specifically for the independent study student.

Enroll now and receive student privileges that include Instructor Assistance*, Priority Grading and Student Resources. These privileges will allow you to access our faculty and staff if you ever need assistance with your course work and insure that your submitted exams will be graded and sent back to you within 24 hours.

Programmable Controllers Micro Course
This course starts by explaining how a Programmable Controller (PLC) functions in an automated system. Learn about the parts of a PLC which enable it to perform its function. Look at a typical application and learn how to develop a written program for it.

1-PC01...

$86

(This micro course would make a great addition to the videos listed below. 01-567PLC)

8-Part PLC Video Training Set
Contains 4 hours of video lessons and a 146 page study guide. These easy-to-follow video lessons will make learning this vital information fast & easy. This 8-part training course is designed to take 32 hours.

However, you can study at your own pace & review each lesson as many times as you need! Video set does not include certificate of completion.

1-567PLC $180.00

Subjects Covered In the Video Training Set:
- How process control works
- PLC advantages
- PLC disadvantages
- Identifying PLC sections
- Move functions
- How to read flow charts
- Troubleshooting techniques
- Identify logic faults
- PLC servo control
- Scanning sequence
- Timer instructions
- Counter instructions
- Output instructions
- Identify input faults
- Identify output faults
- Plus much more!

Fiber Optics Course
Apply what you have learned in this course to install, diagnose and repair complex fiber-optic communications systems and take your place in the forefront of a fascinating and challenging new technology.

CIE Lesson & Exam Material Covers:
- Troubleshooting Fiber Optics
- Characteristics of Fiber Optics
- Fiber-Optic Communications
- Modulators
- Practical Lasers
- Modulating the Laser Beam
- Masters
- Laser Applications
- Maintenance of Lasers & Laser Systems

Video & Workbook Material:
- Understanding Fiber Optics

AC/DC Basic Electronics with Lab
39 lessons with lab. All this knowledge & support will put you on the road to understanding many areas of electronics.

03-INTRO...

$195

CIE Soldering Course with Lab
3 lessons with lab, soldering iron & video tape.

01-SD01...

$85

Television Diagnosis & Repair Course
12 lessons, 5 videos & technician repair software.

01-TV01...

$345

Computer Programming in C
10 lessons, text, study guide & software package

04-CET352...

$275

Database Management
6 lessons, dBASE III software (student version)

01-DB01...

$195

Computer Aided Circuit Design & Drafting with Lab
16 lab assignments, Micro-Cap III (student version) 04-CET351...

$195

Introduction to Computers
8 lessons on the basics, video.

01-IN01...

$195

Automotive Electricity & Electronics Course
5 lessons, 150 piece Auto Electrical Tool Kit

01-AU01...

$195

Oscilloscope Fundamentals
Learn fundamental principles common to all oscilloscopes. 1 lesson, video and workbook.

01-SCP01...

$95

Microprocessor Theory & Applications
Learn operation & architecture of a microprocessor. Program in machine and assembly language. 17 lessons, lab & video.

03-MICRO...

$475

FCC Exam Review Course
25 lessons to prepare you for general-class license. FCC ID software.

01-FCC01...

$295

CET Exam Review Course
1 lesson to prepare you for Associate-Level CET test. Answer practice test questions that will cover all areas of the test.

01-CT01...

$85

*Some courses include non-CIE material (videos) that will supplement your studies but will not be included under Instructor Assistance.

Start your training today!

Call: 1-800-321-2155
or fax: 1-440-951-2186

Send check, money order or credit card information to:
CIE 1776 E. 17th Street
Cleveland, OH 44114 or call 1-800-321-2155.

Name
Street
City
State Zip
Phone Number
Enter Micro Course Number and Price.

Order Form

Ohio Residents Add 7% Tax

Revision: 1/207

Name:

Address:

City:

State:

Zip:

Phone:

Course Number:

Price:

Signature:

Date:

Credit Card Information:

Card Type:

VISA

MasterCard

Discover

Exp. Date:

Account Number:

Handwriting:

Foreign shipping costs will be higher. Call for rates.

Call 1-800-531-2155 or fax 1-440-951-2186 to place an order. CIE: 1776 E. 17th Street, Cleveland, Ohio 44114.

www.cie-wo.edu

December 1996, Electronics Now
EDITORIAL

A New Year's Resolution

It's hard to believe that another year is almost gone. I don’t know how you feel about that, but I definitely have mixed feelings.

One is good riddance. In a lot of ways, 1998 was a real stinker. Lousy weather, Y2K jitters, lousy politics, lousy behavior by our politicians, lousy media coverage of our politicians and their behavior, lousy ... well, you get the idea.

The thing is, I’m afraid that 1999 will be worse. For one thing, though it is NOT the true millennium (that will occur on Jan. 1, 2001), the coming of the year 2000 is sure to bring all of the wackos out of the woodwork. Even so-called normal people (who, me?) are likely to be a little disquieted should things get a bit weird out there. The whole thing is silly of course, but people will be people.

Speaking of silly, barring a miracle, the soap opera in Washington is sure to drag on. And, of course, I could complain about the weather, but why bother?

That’s not to say that there are not real problems with the coming of 2000. The chief one, and the one that’s been getting a LOT of press, is the so-called Y2K “bug.” Of course, it’s not really a bug—if anything, it is a problem that has cropped up because too many systems have worked satisfactorily for too long. Anyway, companies and governments that have lived by the “if it ain't broke don’t fix it” philosophy will be scrambling like mad to update computers and computer-based systems that, in many cases, simply were not designed to work as long as they have. Those that aren’t scrambling either had the foresight to look after things before true panic set in, or are resigned to picking up the pieces that will come crashing around their ears when the fateful day comes.

How about you? Are you “Y2K compliant?” Are you sure?

Well, if I haven’t completely depressed you by now, let’s close with a positive thought: It's a great time to have a hobby like electronics to take your mind off the troubles around you, and it's a great time to have a magazine like Electronics Now to help you get the most out of that hobby. And here's a New Year's resolution for 1999: You'll never see the names “Bill” and “Monica” on our pages.

Merry Christmas and Happy New Year!

Carl Laron
Editor
Get ready for smiles on Christmas morning. Our '98 models are big on stunts, tricks and speed. Bedlam, with its side-slip drive, spins on a dime and even scoots sideways. Intruder, our tough off-roader, handles the hardest bumps and bounces childhood can deliver. Road Raptor II dazzles with unbelievable spins and wheelies. For all-out speed, nothing beats Flashtron II, our fastest RC car. Test drive America's most exciting vehicles at your nearby RadioShack. You might even put one on top of your list—after all, why should kids have all the fun?
Spam I Am—Not!

Q You authored an article on Internet ethics in the September, 1997 issue of Electronics Now, so I am turning to you for advice: I want to make sure that if I open a business as an Internet bulk e-mailer, I'm not violating any laws. Can you help?—Name withheld, CA

A By bulk e-mailing do you mean "spamming," i.e., sending people advertising that they didn't request? If so, please don't, for two reasons: there's no money in it, and it's universally hated.

If spamming were a legitimate way to advertise, major corporations would be using it. They aren't. The spam we receive is almost invariably from people selling get-rich-quick schemes, pornography, or other dubious products, and 99% of it comes from forged (faked) e-mail addresses—which convinces us right away that the senders are not trustworthy. We see no evidence that any of these people are making money.

More importantly, the Internet community objects very strongly to spam because the costs are paid by the recipients, not the sender. Despite the name, e-mail is more like a collect phone call than a piece of ordinary mail. Spamming may be technically legal, but that doesn't make it popular. Do you really want a million people to consider you a pest? That would ruin your chances of future business success.

By the time you read this, Congress will probably have passed legislation to restrict spam in some way. But Congress is not all you have to fear. Lawyers in several state governments, federal agencies, and private organizations are looking at the spam problem from the standpoint of existing laws. Some common spamming tactics, such as forging e-mail addresses and "stealth mailing" (relaying through other people's computers without their consent), appear to violate existing laws and it's just a matter of time until spammers find themselves on the losing end of expensive lawsuits. What's more, the ads transmitted as spam are often deceptive, and the Federal Trade Commission is conducting a crackdown. See http://www.ftc.gov for more information.

All Kinds Of Capacitors

Q There are lots of kinds of capacitors (Mylar, silver mica, monolithic, etc.); how can I recognize them by looking at them, and what are the different types good for? On an electrolytic capacitor, does 16 VDC mean the same as 16 VDC? What are low-ESR capacitors, and if one is specified, can I use a regular capacitor?—R.A., Toronto, Ontario, Canada

A As you surmised, no capacitor is perfect, but different kinds have different imperfections. The most important of these are voltage limits, leakage (self-discharge), series resistance (like a resistor in series with the capacitor), and change of capacitance with temperature.

Capacitors are named for the insulating material used between their thin conductive layers. Figure 1 shows some common varieties, those are, from left to right, 330-pF silver mica, 150-pF polystyrene (shiny), 22-pF and 0.4-µF disc ceramic, 0.1-µF and 0.33-µF polyester (Mylar is a Du Pont's brand of polyester), 22-µF tantalum electrolytic, and 4.7- and 47-µF aluminum electrolytics. You can't always identify capacitors at sight; nowadays most of them look like plastic blobs or boxes regardless of internal composition. In older equipment you will find tubular paper capacitors (with a wax coating) and flat mica capacitors, often marked with six circles.

Capacitor values are sometimes marked directly in pF or µF, and sometimes indicated with a three digit code consisting of two digits and the number of zeroes to be added; thus 151 means 150 (15 and 1 zero), and 334 means 330,000 (33 and 4 zeroes). When the three-digit code is used, the value is always in pF (where 1 µF = 1,000,000 pF, so a 1-µF capacitor would be marked 105). In European schematics, you'll also see nanofarads (nF), where 1 nF = 1000 pF.
HOW TO GET INFORMATION ABOUT ELECTRONICS

On the Internet: See our Web site at http://www.gernsback.com for information and links related to our magazines (Electronics Now and Popular Electronics) and other useful sites.

To discuss electronics with your fellow enthusiasts, visit the newsgroups sci.electronics.repair, sci.electronics.components, sci.electronics.design, and rec.radio.amateur.homebrew. "For sale" messages are permitted only in rec.radio.swap and misc.industry.electronics.marketreplace.

Many electronic component manufacturers have Web pages; see the directory at http://www.axios.com/Chipdir/, or try addresses such as http://www.t1.com and http://www.motorola.com (substituting any company’s name or abbreviation as appropriate). Many IC data sheets can be viewed online. Extensive information about how to repair consumer electronic devices and computers can be found at www.repairfaq.org.

Books: Several good introductory electronics books are available at RadioShack, including one on building power supplies.

An excellent general electronics textbook is The Art of Electronics, by Paul H. Horowitz and Winfield Hill, available from the publisher (Cambridge University Press, 1-800-672-0235) or on special order through any bookstore. Its 1125 pages are full of information on how to build working circuits, with a minimum of mathematics.

Also indispensable is The ARRL Handbook for Radio Amateurs, comprising 1000 pages of theory, radio circuits, and ready-to-build projects, available from the American Radio Relay League, Newington, CT 06111, and from ham-radio equipment dealers.

Copies of past articles: Copies of past articles in Electronics Now and Popular Electronics (post 1993 only) are available from our Ciagk, Inc., Reprint Department, PO Box 4099, Farmingdale, NY 11735; Tel: 516-293-3751.

Electronics Now and many other magazines are indexed in the Reader’s Guide to Periodical Literature, available at your public library. Copies of articles in other magazines can be obtained through your public library’s interlibrary loan service; expect to pay about 30 cents a page.

Service manuals: Manuals for radios, TVS, VCRs, audio equipment, and some computers are available from Howard W. Sams & Co., Indianapolis, IN 46214 (1-800-428-7267). The free Sams catalog also lists addresses of manufacturers and parts dealers. Even if an item isn’t listed in the catalog, it pays to call Sams; they may have a schematic on file which they can copy for you.

Manuals for older test equipment and ham radio gear are available from Hi Manuals, PO Box 802, Council Bluffs, IA 51502, and Manuals Plus, PO Box 549, Tooele, UT 84074.

Replacement semiconductors: Replacement transistors, ICs, and other semiconductors, marketed by Philips ECG, NTE, and Thomson (SK), are available through most parts dealers (including RadioShack on special order). The ECG, NTE, and SK lines contain a few hundred parts that substitute for many thousands of others; a directory (supplied as a large book and on diskette) tells you which one to use. NTE numbers usually match ECG; SK numbers are different.

Remember that the “2S” in a Japanese type number is usually omitted; a transistor marked D945 is actually a 2SD945.

Hamfests (swap meets) and local organizations: These can be located by writing to the American Radio Relay League, Newington, CT 06111; http://www.arrl.org. A hamfest is an excellent place to pick up used test equipment, older parts, and other items at bargain prices, as well as to meet your fellow electronics enthusiasts—both amateur and professional.

Millifarads (mF) are never used, but µF and µF were formerly abbreviated mF and mmF respectively. A letter indicates tolerance; J is 5% and K is 10%. The three-digit code is also used on resistors and inductors, with values in ohms and microhenries respectively.

The use of different kinds of capacitors could fill a book. In the middle-value range (say 500 µF to 0.5 µF), polyester capacitors usually perform best, and polystyrene is better yet, but ceramic discs are cheaper and almost always acceptable. Below 500 µF, ceramic-disk, mica, or polystyrene capacitors are usually used, and some of them are marked with specific temperature characteristics, such as N750 (negative 750 parts per million per degree C) or NPO (negative-positive zero, i.e., as stable as possible).

Electrolytics are far worse; they have lots of leakage and series resistance, and they deteriorate with age, but their one redeeming virtue is that large values are practical. Polyester or ceramic disk capacitors larger than 0.5 µF are too bulky to use in modern miniature equipment, and above 3 µF or so they don’t exist at all, but you can get electrolytics as large as several farads. So the 4700-µF filter capacitor in a power supply is likely to be electrolytic, and the 1-µF coupling capacitor in an audio amplifier is likely to be one. Tantalum electrolytics are more compact than conventional aluminum types.

As the name suggests, electrolytics rely on an action similar to electroplating to keep the insulating layer intact. That means they are polarity-sensitive; if you apply voltage backward, they suffer damage and can even explode. (Make sure the positive terminal is always positive.) Also, if you use too low a voltage—like 1 volt on a 35-volt electrolytic capacitor—will the capacitor on the shelf unused for several years, it eventually deteriorates. That’s why DC working voltage (WVDC) is so important. And, yes, WVDC is the same thing as VDC. Don’t run too close to the limit; we usually specify 16-volt capacitors for 5-volt circuits and 35-volt capacitors for 12-volt circuits.

If a project requires a particular kind of capacitor, the parts list will say so; otherwise, any capacitor with the correct capacitance and an adequate voltage rating will do. If a low-ESR capacitor is specified for a project, that’s what you should use; in a pinch you can sometimes substitute a conventional electrolytic with a higher capacitance. You can always substitute low-ESR capacitors for regular ones.

Pushbutton Volume Control (Again)

Q I’m looking for a circuit for a volume control where the volume is raised and lowered by pushing buttons. Can someone help me with this?—R. A., Toronto, Ontario, Canada

A On pushbutton volume controls, see this column in the October, 1997 issue of Electronics Now. Since then, digital control of audio volume has gotten even easier because Philips has introduced a new amplifier chip, the TDAS8551, with pushbutton volume control built in. A circuit based on Philips’ published data is shown in Fig. 7.
PUSHBUTTON VOLUME CONTROL is now easier than ever to achieve thanks to a new Philips amplifier. This circuit is based on data from Philips.

2; we haven't yet had a chance to actually try the chip out, but it sounds like a real winner for hobbyists and experimenters. The advantage of pushbuttons, of course, is that the audio signal doesn't actually go through them, so if their contacts get dirty, the sound quality isn't affected. Also, they're cheaper than potentiometers, and smaller.

FM Preamplifier

Q I would like to adapt a preamplifier kit designed for use on the 2-meter amateur band (140 MHz) for use as an extreme deep fringe FM antenna amplifier. Can this be done with the Ramsey PR-10?—S. J., Palmetto, PA

A Indeed it can! We obtained a sample kit from Ramsey Electronics (793 Canning Parkway, Victor, NY 14564), assembled it (which took only 15 minutes), made sure it worked on 140 MHz, and then went to work on the modifications. The circuit is shown in Fig. 3. All we had to do was change C2 to 22 pF, and we had a deep-fringe FM preamplifier.

"Deep-fringe" is important here—we're assuming you are not near any strong FM stations. If you are, they're likely to overload this or any other antenna preamplifier.

We suggest you either build the preamp inside your FM receiver or put it in a shielded metal enclosure. Use BNC connectors, F connectors, or phono jacks for the input and output.

Note that the transistor used in this kit, a 2SC2498, is a special high-frequency type with an unusual pinout (base, emitter, and collector, in that order from right to left as viewed from the front). Suitable substitutes are ECG10 and SK9139.

FIG. 3—HERE'S THE CIRCUIT for the "modified" Ramsey PR-10 kit. To convert it to a deep fringe preamp for FM radio, C2 was changed from 8.2 pF to 22 pF.

Flashing Lights

Q I will be extremely delighted if you will publish a circuit that can alternately flash two bulbs (12 to 24 watts) from a 12-volt auto battery.—F. R., Dhahran, Saudi Arabia

A Try the circuit in Figure 4—a MOSFET version of a classic astable multivibrator circuit. It does not require large electrolytic capacitors—hence it should hold up a lot better under extremes of temperature than circuits that do. With the component values shown, the bulbs flash quite rapidly; for slower flashing, you can increase the resistors to 10 megohms or use larger capacitors. If you do end up using electrolytics (necessary for values larger than about 0.5 pF), observe the polarity indicated in the diagram.

FIG. 4—THIS VERY RELIABLE light flasher uses two MOSFETs and no electrolytic capacitors. Each bulb can draw up to 4 amps (48 watts). Use a heat sink if Q1 and/or Q2 get hot.

Hit It Harder

Q My son and I are both into the martial arts. We practice on a heavy punching bag and would like to know which of us can hit it harder. Is there a sensor we could mount in it to give an electronic readout of the force?—B. G., Bird, Ontario, Canada

A Maybe, but this sounds like something that would be easier to do mechanically. Could you simply measure how far the bag swings in response to the punch?
Pinball Parts Found

In the latest installment in our continuing saga of questions about pinball-machine parts, we've learned that The Pinball Resource, 8 Commerce St., Poughkeepsie, NY 12602; Tel: 914-473-7114; e-mail: PBResource@idsi.net, supplies parts and manuals for Premier/Gottlieb, Williams, Bally/Midway, Data East, and Sega machines. They even manufacture reproductions of parts no longer available.

Writing to Q&A:

As always, we welcome your questions. The most interesting ones are answered in print. Please be sure to include plenty of background information (we'll shorten your letter for publication) and give your full name and address (we'll only print your initials). Please write to: Q&A, Electronics Now Magazine, 500 Bi-County Blvd., Farmingdale, NY 11735. If you are asking about a circuit, please include a complete diagram. Due to the volume of mail, we regret that we cannot give personal replies.

YOU CAN WIND YOUR OWN COILS?

There's no trick to it except knowing what you are doing. In a unique, 106-page book you can become expert in winding RF, IF, audio and power coils, chokes and transformers. Practically every type of coil is discussed and necessary calculations are given with the mathematical data simplified for use by anyone. Get your copy today!

Mail coupon to:
Electronics Technology Today, Inc.
P.O. Box 240
Massapequa Park, NY 11762-0240

Please send me my copy of Coil Design and Construction Manual(160). I enclose a check or money order for $8.95 to cover the book's cost and shipping-and-handling expenses. NY state residents must add local sales tax.
Name __________________________ Phone ________________________
Address __
City __________________ State ______ Zip ________________________

Enclosed is $56 for each Student version of The Parts Gallery and Electronic Circuits & Components on a single CD ROM, shipping included inside the U.S. Shipping costs to Canada an additional $3.00. Overseas orders please contact CLAGGK, Inc. for shipping costs.
I am ordering (_____) copies at $56 each. NY State residents must include sales tax.

[] I have enclosed my check for $____________________________
[] Please charge my credit card for __________________________
 [] Visa [] MasterCard [] Discover Expiration Date: __/____
 Card Number __________________________ Signature ______________

(Name on order and signature must be same as on Credit Card.)
WHILE PLANNING A RECENT FAMILY VACATION TO A REMOTE AREA, I PROMISED MY WIFE I WOULDN'T BRING MY LAPTOP. I DIDN'T SAY ANYTHING ABOUT MY PILOT, HOWEVER. I DIDN'T WANT TO DO ANY REAL WORK, BUT I DID WANT to keep in e-mail contact. No problem, right? Pilot + Pilot modem + adapter + cell phone = communications—right? Well, it's not that easy, not by a long shot. It's not so cheap, either. As it turned out, it would have been easier simply to have brought a laptop. But I wanted to push this experiment as far as it could go to see where the weak links are.

Figure 1 shows the setup. The Pilot Modem snaps on the bottom of the Pilot. A standard phone cable connects the modem to a $150 adapter made by Motorola that is supposed to allow you to connect any standard analog telephone device to a cell phone. The output of the adapter is a jack into which you plug a special cable with an RJ-45 network connector on one end, and a Motorola cell phone plug on the other. Adapter cables are available for other models.

A few notes about several devices in the chain. The Pilot Modem lists for about $129, and its maximum connect speed is 14.4 kbps. Like the Pilot itself, it runs off two AA batteries. Unlike the Pilot, there is no battery gauge, so judging remaining power is difficult to impossible. Newer Duracells and Energizers with built-in power gauges alleviate the problem somewhat, but pulling out the batteries to see how much life they have left is mighty inconvenient. It's also frustrating, given that the Pilot itself has such a nice user interface for power. Oh, and if the modem seems overpriced, it is. But the size and shape are just right.

The adapter is officially known as The Portable Cellular Connection Interface. It allows you to use most standard analog devices (desk phones, answering machines, fax machines, PC with modem, amplified headsets, and telemetry monitors such as EKG) with a cell phone. In addition to the in and out jacks, it has a power jack, a power switch, and a small LED. Power is supplied by a rechargeable 7.2 volt NiCd battery. In an emergency you can use a 9-volt battery. According to the 10-page "Installation and User Instructions," it takes 7 hours to recharge the battery. The NiCd provides about two hours of "talk time," and a 9-volt battery provides about four hours. The LED flashes when the NiCd needs recharging. The unit also comes with a belt-clip, so conceivably you could receive faxes while on safari. Note: The manual says to turn the cell phone on last, but I had better luck turning on the phone, adapter, and Pilot in that order.

The cell phone is a MicroTac 650. It's nothing special, although I did supplement its battery pack with a much more robust one from MCM Electronics.

The Pilot is a standard Palm Pilot Professional model, which comes with a built-in TCP/IP stack and a barebones e-mail application. I also tested two third-party e-mail apps: Hand Stamp Pro and MultiMail Pro. If I had to choose one, I'd go with MultiMail Pro, mostly as the lesser of multiple evils.

Getting Connected

Before we left, I connected everything and ensured that I could connect to my local ISP. No sweat in our small university town about 40 miles from a major metropolitan area. My ISP has a local access number, plus an 800 number that costs $0.10/hour above any other charges. I ended up using both. I often got more reliable results dialing my local number long distance than the toll-free 800 number.

After arriving at our cabin and getting set up, I reconnected everything and began a very frustrating session of trying to establish a reliable connection.

There are three aspects of the configuration: modem, network, and applications (the e-mail apps). Setting up the modem is simple, at least if you're using a modem on the list. Select the modem, speed, speaker volume, and flow control. Depending on the modem you select, the Pilot itself then fills in a modem initialization string. If you edit that string, the Pilot creates a new entry called Custom.

Network setup is more complex. First you select or create a service. Built-in services include CompuServe, Earthlink, UUNet, and several others. Then you enter your login user name and password, and the dial-up telephone number. A Details button takes you to a subsidiary screen where you specify the primary and secondary DNS settings, IP address, connection type (typically PPP), and an idle timeout. You can also enter a simple login script. Typically, you would clone the settings you use in your desktop PC here. For my testing, I created two identical network setups: one with the 800 access number, and one with the local access number (preceded by the area code).
Another problem which has its title (which is versatile and POP3, IMAP4 protocol. That's important because you can specify the POP3 port number, and whether to leave mail on the server. Why would you want to do that? Good question, and one that highlights the core difference between the POP and IMAP ways of doing things.

With POP, the basic assumption is that the account on the server is a very temporary storage bin. Under normal circumstances, you download your messages via your e-mail client, which then takes responsibility for management, distribution, storage, deletion, etc. Normally, as soon as they are downloaded, messages are deleted, although most e-mail clients allow you to specify a delay (e.g., delete messages older than n days).

With IMAP, the client becomes dumb, and the server takes on the responsibility for message management. The advantage is that you can log into your e-mail account from any machine anywhere and be assured that everything you see is up to date. With POP, access from multiple machines is almost guaranteed to cause synchronization problems.

In my case, I'm currently using Eudora Pro 3.x as my main desktop client. All my e-mail is organized and searchable through Eudora, and it must stay that way. (Eudora has its own problems, but that's a different story.) If I didn't care about maintaining my primary message store in Eudora, I could configure the Pilot to just read and delete messages. That's the simplest solution, but it's unacceptable. On the other hand, by telling MultiMail Pro not to delete messages, I end up with duplicates on both machines. Purging them from the Pilot is not a problem. The really annoying thing is having to review all those messages a second time on the PC after returning from vacation.

We really need to put POP3 out to pasture and move on to IMAP4. Tell your ISP! Tell your grandmother! Tell anyone else who will listen!

Another problem is that responses generated on the Pilot don't get into the desktop system. As I said, it's a nightmare of synchronization.

Yet another problem is that the first time you access a POP3 account from a "virgin" machine (such as the Pilot), all messages on the server are downloaded. Doing so can take quite a bit of time and

(Continued on page 29)
Most people probably set up a pair of stereo speakers where they look right and then completely forget about their placement. While that's adequate for some listeners, professional audio-system installers and audio enthusiasts have higher demands and need to have their speakers placed more precisely.

Audio professionals have known for years that the best way to align a sound system, especially for large-scale productions, is to use a laser level. Simple in theory, those high-tech tools look similar to regular levels (the carpenter's tool with the bubble in it), but have a laser diode built in. Laser light is coherent, basically meaning that a laser beam can travel great distances without spreading out. The laser diode inside a laser level is aligned so that the beam comes out straight and true. If held level, the light coming out of a laser level can help one draw level lines, line up exact heights at great distances, and, as it turns out, align speakers.

Speaker positioning is a critical element in having good sound come from any audio system. It is particularly important that speakers are properly positioned according to listener seating in multi-speaker home-theater setups. Setting up speakers in a small room can usually be done without special tools, and listeners often have little choice where they sit anyway. But it's much harder to line up speakers "by eye" in a large auditorium, and professional installers have to do it on a regular basis. That's why a laser level can be so useful for audio professionals.

The SA-S Pro reviewed here is the professional version of a laser level customized for easier use with audio systems. It can be used as a laser level for countless other projects as well.

SA-S Pro

The base model SA-S tool from Checkpoint Laser Tools (4025 Spencer Street, Suite 304, Torrance, CA 90503; Tel: 310-793-5500; Web: www.checkpoint3d.com) sells for $159.95. It's a basic laser level made out of anodized aluminum, with a special precision base on one end that looks like the end of a doctor's stethoscope. Whatever surface the level is held against, the laser will project perpendicularly away from it. You simply hold the level against the face of a speaker cabinet, and the red dot shows where the speaker is pointed.

The base is also a threaded switch that turns on the laser when the switch is screwed tighter into the level. Unscrewing the switch reveals two AAA batteries.

The SA-S Pro (model P-770), which sells for $189.95 and is the unit we reviewed, adds a lot more functionality to the base model. SA-S Pro comes with the stethoscope-like base/switch plus another base/switch that has a built-in bulb's-eye bubble level. When the bulb's-eye level is centered, the laser in the unit points straight down.

The Pro version also has a conventional bubble level built into its body. Combined with the bulb's-eye bubble, the tool can be positioned precisely in any number of settings. The Pro version also includes a padded carrying case for the level.

Using the level is simple. The sides of a speaker cabinet are usually at right angles with the face of the cabinet where the speakers are mounted. Holding the SA-S Pro against the side of a speaker and centering the bubble level will project the laser exactly where the speaker is pointing.

Accessories

Of course there are options for the SA-S Pro that add greater functionality to the tool. An optional switch for the tool has a precision magnetic base. To use it, you must also buy a precision base plate for each speaker. The base plates mount with a wood screw onto the face of a speaker cabinet, behind the cloth grilles. Special precision spacers are available if necessary.

With the magnetic base, it's a simple matter to stick the level on each speaker for quick alignment. It's also an easy way to check the sturdiness of a speaker case or mount by seeing how much the dot "dances" when the speaker reproduces sound. Traveling audio-support personnel who are always setting up and tearing down stages will love these. The magnetic base/switch costs $28.95 and base plates cost $16.95 each. Spacers, actually called stackers, cost $12.95 for a pack of three. Some high-end speakers actually come from the factory with SA-S base plates installed.

Another useful accessory costs nearly as much as the level itself, but it is the perfect companion to the level no matter where it's used. Its miniature tripod-like stand has a precision mount on top for the level. It also has a built-in bulb's-eye level and height-adjustable legs. The legs have removable pointed brass tips and rubber feet for better footing on various surfaces. It's a simple matter to make the base perfectly level on any surface. The bottom plate of the stand is threaded.

(Continued on page 62)
The future for optical computers looks bright, thanks to a process discovered at Purdue University to stabilize the surface of porous silicon, a light-emitting material that offers great promise for combining light and electronics.

Porous silicon is identical in makeup to the silicon used in many current technological applications, except its surface contains tiny openings or pores. The pores in porous silicon contain microscopic silicon structures that emit light when ultraviolet light is applied to them. It is made from bulk silicon which has been partially dissolved by electrochemical treatment in solutions containing hydrofluoric acid. The resulting porosity can be on a scale of less than 2 nanometers, between 2 and 50 nm, or greater than 50 nm. These nanostructures within the silicon, which are made without the use of lithography, form something called “quantum wires” (a nanostructure proportioned like a wire so that electron behavior is strongly constrained by quantum mechanical effects in two dimensions) having high luminescent efficiency that does not occur in untreated bulk silicon.

Porous silicon was discovered 40 years ago, when it was noticed that silicon could not always be smoothly polished during manufacturing. It wasn't until 1990 that this "rough" or porous silicon was found to have photoluminescent properties. Two years later, scientists discovered that it also emits light when electrical current is applied—a finding that opened the door to coupling light and electronics in computers and other devices.

Applications

"Because most of our current technology is based on silicon, it may be relatively easy to develop the optical applications and combine them with current technologies, since the manufacturing processes are already in place," says principal researcher Jillian Buriak, Purdue professor of chemistry. For example, porous silicon could serve as a flat, millimeter-thick display area for computer screens, replacing large, bulky monitors that depend on cathode-ray tubes.

The properties of porous silicon also make it an ideal material to develop computers based on light signals instead of electrical signals. Those types of computers would be faster, since beams of light can transmit information much more...
quickly than electrons making their way through a solid material. Using light to transmit data would also eliminate heat buildup in electronic components, allowing engineers to design smaller devices by stacking multiple layers of chips made of porous silicon. Optical chips would also be immune to electrical noise. The Purdue development may also lead to fine-tuned sensors that can be used to perform real-time measurements in manufacturing and medicine.

Though the properties of porous silicon promise powerful new technologies, until now the untreated material was too fragile to support these applications. Oxygen and water molecules in the air create a glass-like coating that interrupts the photoluminescence process. Within a matter of weeks, the material rusts, or oxidizes, Buriak says. In this case, however, instead of leaving a rough, brownish coating, the oxidation process produces a smoother, glass-like surface that limits the function of the material.

"A lot of reactions involve chemical bonds similar to the ones that develop on the surface of porous silicon," says Buriak. "So I listed these reactions and came up with one that I thought had the best chance of working without damaging the surface." Buriak, along with undergraduate researcher Matthew Allen, came up with a clean, room temperature, one-hour reaction that allows them to stabilize the surface.

Buriak's process involves coating the porous surface of the silicon with Lewis acid, a solution that produces a greasy protective coating on the surface while still allowing the material to maintain its light properties.

"This is the most stable porous silicon to date," says Buriak. "Using our treatment, we can produce an incredibly stable surface that should stand up to the rigor of use. The porous silicon functionalization allows incorporation of just about any chemical group on the surface, attached through stable silicon-carbon bonds."

This is important for a couple of reasons. "It dramatically stabilizes the surface. Normally, porous silicon dissolves in boiling water through rapid oxidation," says Buriak. "If we derivatize our surfaces with hydrophobic groups, they are inert under these conditions, even at an elevated pH (pH 10). Since about any functional group can be incorporated, we are studying the effects of these groups on the electronics of the silicon nanocrystalsites embedded in the porous silicon."

It is known that functionalization can affect the electronics, and hence the photoluminescence, of the porous silicon. Buriak's method provides the first rational approach to doing this.

Many researchers are interested in using porous silicon for sensor applications. "We can now make surfaces selective by incorporating binding sites, for instance, to recognize specific analytes," she says.

Details of the discovery were announced earlier this year in the Journal of the American Chemical Society. Another paper is pending, concerning in-depth photoluminescence studies. "I can tell you now that surface functionalization has dramatic effects on light-emitting properties and we are now trying to use this method to tune the electronics, although this may take six months to a year to perfect," she says.

—By Doug Page

Environmental Monitoring System

A revolutionary environmental monitoring and analysis system that promises to reduce the time and costs involved in analyzing contaminants was designed by a team of researchers that includes Georgia Institute of Technology engineers. They predict the system—called E-SMART (Environmental Systems Management Analysis and Reporting netWork)—will dramatically improve the efficiency and effectiveness of environmental monitoring.

Consisting of data management hardware and software and integrated optic chemical sensors, the system operates in real time and measures very small amounts of contaminants in the parts-per-billion range. In addition, researchers said it will reduce health and safety risks and help ensure environmental compliance.

"Right now the only way technicians have for field analysis is to go out and take samples, bring them back to the laboratory and perform wet chemistry tests," said Nile Hartman, a principal research engineer at the Georgia Tech Research Institute (GTRI). "It's expensive—about $200 a sample plus the technician's time. So instead we have developed a sensor that operates in situ (at the site of contamination) and continuously monitors the site. So you have huge savings in time and cost."

At the heart of the project are smart sensors that detect a variety of chemical contaminants, including heavy metals, solvents, and petroleum oil, and lubricants. The integrated optic interferometric sensors were developed over the past decade and patented in 1997 by Hartman and the Georgia Tech Research

RESEARCHER JEFF MOORE HOLDS environmental monitors that contain integrated optic interferometric sensors developed at Georgia Tech.
Prototype

Corporation. The sensor was licensed commercially by the Atlanta-based Photonic Sensor Systems Inc.

Laser-based technology originally developed for optical communications allows the multichannel microsensor fitted with the proper chemical coatings to detect multiple contaminants in soil, groundwater, and air. The speed of light increases or decreases when passing through materials of differing optical properties, Hartman explained. Detection becomes possible by measuring a contaminant’s influence on the optical properties of the sensor. Then researchers observe the effects on these properties through changes in the transmitted laser light.

An E-SMART field test will probably be conducted at a U.S. Air Force base where cleaning agents used to degrease metal aircraft parts have seeped into soil and groundwater. Researchers will install sensors in monitoring wells, streams, and in cone potentiometers—rods driven 200 to 300 feet into the ground. The sensors will be designed to detect benzene, toluene, ethyl benzene, and xylene (BTEX compounds). With the contaminant type and concentration data collected by the sensors, E-SMART will map the contaminant plume at the site. Site managers can use this easily interpreted analysis to take appropriate corrective action, if needed.

When it becomes commercially available, the E-SMART system—and even the sensor as a stand-alone environmental monitor—is expected to have numerous applications in the private sector. Manufacturing facilities could use the sensor to monitor output; monitoring personnel could check their exposure to dangerous chemicals; and water-treatment plant managers could use sensors to ensure that the water is properly cleaned. Food safety and medical testing are other potential applications.

Breaking the Mold

Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University in Auburn, AL and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called cast-alloying. Cast alloy parts are formed by mixing and pouring melted metals into a mold.

The first commercial use of the new computer information is being made by Howmet Industries of Whitehall, MI to more precisely design and cast aircraft turbine blades. In a similar activity, Ford Motor Company’s casting plant in Cleveland, OH is using the information developed by the new computer models to improve the casting process of automobile and light truck engine blocks.

Cast metal parts are used in 90 percent of all durable goods such as washing machines, refrigerators, stoves, lawn mowers, cars, boats, and aircraft. Sales of cast parts in the U.S. alone total $25 to $30 billion a year, according to the American Foundrymen’s Society in Des Plaines, IL.

High-temperature metal alloy parts for the aerospace and auto industry can make aircraft and vehicles stronger, lighter, and more efficient, but casting typically requires three to four years to develop an effective process. “We started with experiments on the ground,” Dr. Tony Overfelt, director of the Solidification Design Center at Auburn University said. “Then went aboard a NASA KC-135 aircraft flying an arc pattern in low gravity to refine our research. Our goal is to continue to produce accurate measurements for all the alloys used by the casting industry. This information can be used by American manufacturers to standardize metal-mixing ‘recipes’ and to compete more effectively in the worldwide market.”

Auburn University is one of NASA’s 10 Commercial Space Centers. These centers serve as a focal point for NASA partnerships with industry and universities, encouraging unique space-related research opportunities to develop new products and services. Also participating in the Auburn University-led casting research consortium are Anter Corp. in Pittsburgh, PA; Thermophysical Properties Research Laboratory Inc. in West Lafayette, IN; PCC Airfoils Inc. of Beechwood, OH; and the American Foundrymen’s Society, Inc.

Electric Vehicles Make Progress

Electric vehicles will have more pickup, run longer distances, and consume less energy with the aid of new technology being developed by Jian H. Zhao, an associate professor in the department of electrical and computer engineering at Rutgers’ College of Engineering. A new semiconductor switching device, crafted from a revolutionary material called silicon carbide (SiC), will be used to process the electricity and transfer energy from an electric vehicle’s battery to its power train.
The power train controls all of the vehicle's electrical devices from power windows to the motor.

Zhao is leading the SiC research effort for the Electric Vehicle Consortium (Electricore) to develop advanced technology and materials for hybrid and all-electric vehicles. Authorized under the recent Transportation Equity Act for the 21St Century to receive $50 million a year over six years (a total of $300 million), Electricore is a nonprofit association of private sector companies, universities, and organizations. Members of the consortium are partners in the development of advanced electric vehicle technologies and related infrastructure for commercial and military applications.

According to Zhao, SiC, which outperforms silicon semiconductors in power density, energy efficiency, and durability, is expected to become the industry standard for electric vehicles. SiC is a synthetically produced semiconductor that occurs naturally only as a mineral in meteorites.

"The SiC device promises to increase power density by at least 100 times compared to a similarly sized silicon device. At the same time, it promises to reduce power consumption by 100 times," explained Zhao. Testing has proven the SiC device capable of supporting two megawatts of power per square centimeter, and switching (turning on and off) currents up to 5000 amps per square centimeter. In addition, it can operate at much higher temperatures, up to 600 degrees Celsius versus 125 degrees Celsius—the point at which silicon devices malfunction.

"Since SiC quickly dissipates heat and can sustain much higher temperatures, the whole size and weight of the power train can be reduced," added Zhao. "There is a global race to develop SiC power devices, and countries like Sweden, Japan, and Germany are all heavily funding their own research efforts. All the major automobile manufacturers want to be the first to use it in their cars."

Although electric vehicles are the focus of the consortium, SiC technology has applications for numerous high-power-usage industries. These devices can significantly reduce or eliminate problems with power overloads, outages, brownouts, and delays in relay switching.

Home-Networking Standard

An alliance of the leading computing and communications companies has been established to help deliver easy-to-use, affordable, high-speed home networking solutions over existing telephone wires. The group, called the Home Phonedine Networking Alliance (HomePNA) includes founding members 3Com, AMD, AT&T Wireless, Compaq, Epigram, Hewlett-Packard, IBM, Intel, Lucent Technologies, Rockwell Semiconductor Systems and TUT Systems. HomePNA's immediate mission is to accelerate the development and market-place introduction of a home networking specification.

"In the business world, the real power of the PC revolution was unleashed when PCs were networked together. The goal of HomePNA is to extend that revolution into the home," said Rod Schrock, Vice President and General Manager, Consumer Products Group, Compaq Computer Corporation. "But since most households don't have a system administrator, a successful home networking specification has to be simple, foolproof, and inexpensive."

More than 15 million homes in the U.S. have two or more PCs, and half of these access the Internet regularly. Not only is the number of home PCs expected to double over the next two years, but analysts project that the purchase of information-appliance products other than PCs will soar as well. The need to share Internet access, digital information, and computing resources among PCs and other information appliances will spark consumer demand for a home-networking solution.

Among the advantages of home phoneline-based networks are that these networks use existing telephone wiring to connect computers and devices without interrupting phone service; they will work with existing Internet access technologies, and they enable sharing Internet access, data, applications, and peripherals.

HomePNA will develop specifications for creation of industry-wide standards and will promote this technology as an open reference specification for all vendors to implement. They will work closely with IEEE and other industry standard committees for submission and adoption of the specifications as the industry standard. The group will be providing field certification and interoperability test suites. They will also serve as a forum for technological and consumer issues.

The alliance had adopted innovative and proven networking technology from TUT Systems that allows home networks to operate over common telephone wires at 1Mbit/s. Future specifications for even higher speed home phoneline networks are already being developed. Additional information is available at www.homepna.org.
Plug a Friend into Electronics Now and Save $41.89*

This Christmas give an electrifying gift ... plug a friend into Electronics Now and brighten the whole new year! Whether electronics is your friend's livelihood or hobby, your gift will illuminate the whole spectrum of electronics throughout the coming year and provide a monthly reminder of your friendship.

Electronics Now will keep your friend informed and up-to-date with new ideas and innovations in all areas of electronics technology ... computers, video, radio, stereo, solid-state devices, satellite TV, medical electronics, communications, robotics, and much, much more.

We'll provide great plans and printed circuit patterns for great electronic projects. In just the last few years, Electronics Now has presented amateur TV equipment, robots, computer peripherals, microcontroller programmers, test equipment, audio amplifiers, telephony projects, relay circuits, and much more.

PLUS ... equipment troubleshooting techniques ... circuit design ... reports on new technology and products ... equipment test reports ... in-depth coverage on computers, video, audio, vintage radio ... and lots more exciting features and articles.

SAVE $41.89* ... OR EVEN $83.78* ... For each gift of Electronics Now you give this Christmas, you save a full $41.89* off the newsstand price. And as a gift donor, you're entitled to start or extend your own subscription at the same Special Holiday Gift Rate—you save an additional $41.89*!

No need to send money ... if you prefer, we'll hold the bill till January, 1999. But you must rush the attached Gift Certificate to us to allow time to process your order and send a handsome gift announcement card, signed with your name, in time for Christmas.

So do it now ... take just a moment to fill in the names of a friend or two and mail the Gift Certificate to us in its attached, postage-paid reply envelope. That's all it takes to plug your friends into a whole year of exciting projects and new ideas in Electronics Now!

*Basic sub rate — 1 yr/$24.99 2 yrs/$48.99
Values Reversed

It has come to our attention that there was a slight mix-up in the “Add Daytime Running Lights to Your Car” article in the October issue of Electronics Now. The values for R4 and R5 were reversed in both the schematic diagram and the Parts List. The value for R4 should be 10,000 ohms and the value for R5 should be 4700 ohms—Editor

What’s My Line?

In preparing the artwork for the “Using Constant-Current Sources” article in the October issue, an error crept in. In particular, in Figs. 1 and 2 there is an extra line connecting the positive and negative sides of the circuits. As this line creates a short, it obviously does not belong and should be removed. We are sorry for any confusion that this error has caused—Editor

NOPPP On the Web

In regard to my article “Burn PIC Microcontrollers With a ‘No Parts’ PIC Programmer,” which appeared in the September issue, I am happy to announce that NOPPP now has its own Web page. The address is http://www.mindspring.com/~covington/noppp/index.html

So far, I’ve posted the schematic, the NOPPPZIP file, some answers to frequently asked questions, and links to PIC-related sites. If you are interested in my project, or in programming PICs in general, please be sure to check it out.

MICHAEL A. COVINGTON

More What Do You Want

I like your magazine. I don’t know what I would change to make it better. I know you must balance the content to appeal to a broad range of readers, and I don’t feel I should complain if some of the material doesn’t interest me (that’s fair).

Most of my professional career, I have been a technician of one kind or another, most often an electronics technician. For the last 15 years, I’ve been in operations, at a console, flying geosynchronous satellites. But, I still design and fabricate some occasional equipment for use at my job. I identify as an electronics professional.

I’m 56 years old (retired once and back at another job). I still try to fix everything I own, electronic or mechanical. But I don’t play with electronics like I used to… I read your magazine mostly for the entertainment value. When I say entertainment value, I mean intellectual stimulation.

It does help me to keep current with new concepts and consumer products. And I do read the articles that remind me of the basics, or sometimes bring me a clearer understanding than I had before.

I sure like Don Lancaster. I use your advertising to make many of my purchases, almost all the companies that I buy from advertise in Electronics Now.

The last magazine that I had a powerful fondness for was Elector, the American edition, which is no longer published. I am currently interested in home-security-related subjects, video, sensors and their installation, PIR, etc., anything Don Lancaster has to say, and the Service Clinic. But I’d be glad to see whatever you are going to plug into the next issue. There is a definite need for a magazine like yours, without it, there would be a definite hole in the magazine industry.

ERIC SCHAEFER
via e-mail
Servicing Monitors

With this article we begin a series on servicing CRT-based monitors. Mostly, this refers to computer monitors but the information applies to studio video (RGB and NTSC/PAL/SECAM) and CCTV types as well.

Monitor technology has advanced significantly in the last few years. The good news is that newer models are cheaper, higher in performance, easier to use, and smarter than older ones. The bad news is that with many functions squeezed into integrated circuits and with schematics harder to obtain, repair of more esoteric problems can be a real nightmare. However, there are many, many common faults that can be dealt with using minimal test equipment and common tools.

Monitors, Monitors, and More Monitors

In the early days of small computers, a 110-baud teletype with a personal paper-tape reader was the “preferred” input/output device (meaning that this was a great improvement over punched cards and having to deal with the boxos in the computer room!). The earliest true personal computers didn’t come with a display—you connected them to the family TV. You and your kids shared the single TV, and the Flintstones often won out. The Commodore 64 would never have been as successful as it was if an expensive monitor had been a requirement rather than an option.

However, as computer performance improved, it quickly became clear that a dedicated display was essential. Even for simple text, a TV can only display 40 characters across the screen with any degree of clarity. When the IBM PC was introduced, it came with a nice 80 × 25 green monochrome text display. It was bright, crisp, and stable. Mono graphics (MGA or MDA) was added at 720 × 350, CGA at a range of resolutions from 160 × 200 to 640 × 200 at 2 to 16 colors, and EGA extended things up to a spectacular resolution of 640 × 350. This was really fine until the introduction of Windows (well, at least once Windows stayed up long enough for you to care).

All of those displays used digital video—TTL signals that were coded for a specific discrete number of possible colors and intensities. Both the video adapter and the monitor were limited to 2, 4, 16, or a whopping 64 colors depending on the graphics standard. The video signals were logic bits—0s and 1s.

With the introduction of the VGA standard, personal computer graphics became “real.” VGA and its successors—PGA, XGA, and all of the SVGA (non) standards use analog video—each of the R, G, and B signals is a continuous voltage that can represent a continuous range of intensities for each color. In principle, an analog monitor is capable of an unlimited number of possible colors and intensities. (In practice, unavoidable noise and limitations of the CRT restricts the actual number to an order of 64–256 distinguishable intensities for each channel.) Note that analog video was only new to the PC world. TVs and other video equipment, workstations, and image-analysis systems had used analog signals for many years prior to the PC’s “discovery” of that approach. In all fairness, both the display adapter and monitor are more expensive, so it is not surprising that early PCs did not use analog video.

Most of the information in this series of articles applies to color computer video monitors and TV studio monitors as well as the display portions of television sets. Black and white, gray scale, and monochrome monitors use a subset of the circuitry (and generally at lower power levels) in color monitors so much of it applies to those as well.

For most descriptions of symptoms, testing, diagnosis, and repair, an auto-scan PC SVGA monitor is assumed. For a fixed frequency workstation monitor, studio video monitor, or closed circuit TV monitor, only a subset of the possible faults and procedures will apply.

Note: We use the term “auto-scan” to describe a monitor that accepts a wide (and possibly continuous) range of scan rates. Usually, that refers mostly to the horizontal frequency, as the vertical refresh rate is quite flexible on many monitors of all types. Fixed-scan or fixed-frequency monitors are designed to work with a single scan rate (though a 5% or so variation may actually be acceptable). Multi-scan monitors sync at two or more distinct scan rates. While not very common anymore, multi-scan monitors may still be found in some specific applications.

Monitor Fundamentals

Monitors designed for PCs, workstations, and studio video have many characteristics in common. Modern computer monitors share many similarities with TVs, but the auto-scan and high scan-rate deflection circuitry and more
sophisticated power supplies complicates their servicing.

Currently, most computer monitors are still based on the Cathode Ray Tube (CRT) as the display device. However, handheld equipment, laptop computers, and the screens inside video projectors now use flat panel technology, mostly Liquid Crystal Displays—LCDs. LCD desktop displays have also recently begun to appear. Liquid crystal displays are a lot less bulky than CRTs, use less power, and have better geometry—but suffer from certain flaws.

First, the picture quality in terms of gray scale and color is generally inferior to a decent analog monitor. The number of distinct shades of gray or distinct colors is a lot more limited. They are generally not as responsive as CRTs when it comes to real-time video, which is becoming increasingly important with multimedia computers. Brightness is generally not as good as a decent CRT display. And last but not least, the cost is still much, much higher due both to the increased complexity of flat panel technology and lower production volumes (though this is certainly increasing dramatically). It is really hard to beat the simplicity of the shadow mask CRT. For example, a decent quality active-matrix color LCD panel may add $1000 to the cost of a notebook computer compared to $200 for a VGA monitor. More of these panels go into the dumpster than make it to production due to manufacturing imperfections.

However, a variety of technologies are currently competing for use in the flat-panel displays of the future. Among those are advanced LCD, plasma-discharge, and field-emission displays. Only time will tell which, if any, survives to become “the” picture-on-the-wall or notepad display—at reasonable cost. The DMD (Digital Multiple Mirror) approach from Texas Instruments is another interesting technology worth watching (no pun intended) especially for large screen displays.

Monitor Characteristics

The following describe the capabilities that characterize a display:

1. Resolution—the number of resolvable pixels on each line and the number of scanning lines. Bandwidth of the video source, cable, and monitor video amplifiers as well as CRT focus spot size are all critical. However, maximum resolution on a color CRT is limited by the dot/slot/line pitch of the CRT shadow slot or aperture grille.

2. Refresh rate—the number of complete images “painted” on the screen each second. Non-interlaced or progressive scanning posts the entire frame during each sweep from top to bottom. Interlaced scanning posts 1/2 of the frame called a field—first the even field and then the odd field. That interleaving reduces the apparent flicker for a given display bandwidth when displaying smooth imagery, such as for TV. It is usually not acceptable for computer graphics, however, as thin horizontal lines tend to flicker at 1/2 the vertical scan rate. The refresh rate is the predominant factor that affects the flicker of the display, though the persistence of the CRT phosphors are also a consideration. Long-persistence phosphors decrease flicker at the expense of smearing when the picture changes or moves. Vertical scan rate is equal to the refresh rate for non-interlaced monitors but is the twice the refresh rate for interlaced monitors (1 frame equals 2 fields). Non-interlaced vertical refresh rates of 70–75 Hz are considered desirable for computer displays. Television uses 25 or 30 Hz (frame rate) interlaced scanning in most countries.

3. Horizontal-scan rate—the frequency at which the electron beam(s) move across the screen. The horizontal-scan rate is often the limiting factor in supporting high refresh-rate, high-resolution displays. It is what may cause failure if scan-rate speed limits are exceeded due to the component stress levels in high-performance deflection systems.

4. Color or monochrome—a color monitor has a CRT with three electron guns each associated with a primary color—red, green, or blue. Nearly all visible colors can be created from a mix of primaries with suitable spectral characteristics using this additive color system.

A monochrome monitor has a CRT with a single electron gun. However, the actual color of the display might be white, amber, green, or whatever single color is desired as determined by the phosphor of the CRT selected.

5. Digital or analog signal—a digital input may only allow a discrete number of states depending on how many bits are provided. A single bit input can only produce two levels—usually black or white (or amber, green, etc.). Four bits can display up to 16 colors (with a color monitor) or 16 shades of gray (with a monochrome monitor). Analog inputs allow for a theoretically unlimited number of possible gray levels or colors. However, physical limitations of the display, unavoidable noise, and other characteristics of the CRT—and ultimately, limitations in the psychovisual eye/brain system—will limit this to a practical maximum of 64–256 discernible levels for a gray-scale display or for each color channel.

Types of Monitors

Monitors can be classified into three general categories:

1. Studio video monitors—fixed scanning rate for the TV standards in the country in which they are used. They feature high quality, often high cost, utilitarian case (read: ugly), and an underscore option. Small closed-circuit TV monitors fall into the class. Input is usually composite video (i.e., NTSC or PAL), although RGB types are available.

2. Fixed frequency RGB—high-resolution, fixed scan-rate units that are high quality, high cost, and offer a very stable display. Inputs are analog RGB using either separate BNC connectors or a 13W3 (Sun) connector. These often have multiple sync options. The BNC variety permit multiple monitors to be driven off of the same source by daisy-chaining. These monitors are generally used under-scanned for computer workstation (e.g., X-windows) applications so that the entire frame buffer is visible. There are also fixed-frequency monochrome monitors that may be digital or analog input using BNC, 13W3, or a special connector.

3. Multi scan or auto scan—these monitors support multiple resolutions and scan rates or multiple ranges of resolutions and scan rates. The quality and cost of these monitors ranges all over the
map. While cost is not a strict measure of picture quality and reliability, there is a strong correlation. Input is most often analog RGB, but some older monitors of this type (e.g., Mitsubishi AUM1381) support a variety of digital (TTL) modes as well. A full complement of user controls permits adjustment of brightness, contrast, position, size, etc. to taste. Circuitry in the monitor identifies the video scan rate automatically and sets up the appropriate circuitry. With more sophisticated (and expensive) designs, the monitor automatically sets the appropriate parameters for user preferences from memory as well. The DB15 high density VGA connector is most common here, though BNCs may be used or may be present as an auxiliary (and better quality) input.

Why Auto Scan?

Thank IBM for this one. Since the PC has evolved over a period of 15 years, display adapters have changed and improved a number of times. With an open system, vendors with more vision (and willing to take more risks) than IBM were continuously coming up with improved higher resolution display adapters. With workstations and the Apple Macintosh, the primary vendor can control most aspects of the hardware and software of the computer system. Not so with PCs. New improved hardware adapters that were not following any standards for the high-resolution modes (but attempted to be backward compatible with the original VGA as well as EGA and CGA) were being introduced regularly. Vast numbers of programs were written that were designed to directly control the CGA, EGA, and VGA hardware. Adapter cards could be designed to emulate those older modes on a fixed-frequency high-resolution monitor (and those exist to permit high-quality fixed scan-rate workstation monitors to be used on PCs). However, there would be (and are) much more expensive than basic display adapters that simply switch scan rates based on mode. Thus, auto-scan monitors evolved to accommodate the multiple resolutions that different programs required.

Ultimately, the fixed scan-rate monitor may reappear for PCs. Consider one simple fact: It is becoming cheaper to design and manufacture complex digital-processing hardware than to produce the reliable high-quality analog and power electronics needed for an auto-scan monitor. Th at is being done in the specialty market now. Eventually, the development of accelerated chipsets for graphics-mode emulation may be forced by the increasing popularity of flat panel displays—which are basically similar to fixed scan rate monitors in terms of their interfacing requirements.

Analog vs. Digital Monitors

There are two aspects of monitor design that can be described in terms of analog or digital characteristics:

1. The video inputs—early PC monitors, video display terminal (VDT) monitors, and mono workstation monitors use digital input signals that are usually TTL, but some very high-resolution monitors may use ECL instead.

2. The monitor control and user interface—originally, monitors all used knobs (sometimes quite a number of them) to control all functions like brightness, contrast, position, size, linearity, pincushion, convergence, etc. However, as the costs of digital circuitry came down—and the need to remember settings for multiple scan rates and resolutions arose—digital (microprocessor) control became an attractive alternative in terms of design, manufacturing costs, and user convenience. Now, most better quality monitors use digital controls—buttons and menus—for almost all adjustments except possibly brightness and contrast where knobs are still more convenient.

Since monitors with digital-signal inputs are almost extinct today except for specialized applications, it is usually safe to assume that "digital" monitor refers to the user interface and microprocessor control.

Interlacing

Whether a monitor runs interlaced or non-interlaced is almost always strictly a function of the video-source timing. The vertical sync pulse is offset an amount equal to 1/2 the line time on alternate fields (vertical scans—two fields make up a frame when interlaced scanning is used).

Generally, a monitor that runs at a given resolution non-interlaced can run interlaced at a resolution with the same number of pixels per line but twice the number of lines vertically at roughly the same horizontal and vertical scan rates and video bandwidth (but half the frame rate). Alternatively, it might be possible to increase the resolution in both directions while keeping the horizontal scan rate the same, thus permitting a monitor to display the next larger size format. However, in this case, the video bandwidth will increase. Whether the image is usable at the higher resolution of course depends on many other factors (in addition to flicker) including the dot pitch of the CRT, video bandwidth of the video card and monitor video amplifiers, and cable quality and termination.

Monitor Performance

The ultimate perceived quality of your display is influenced by many aspects of the total video source/computer-cable-monitor system. Among them are:

1. Resolution of the video source—for a computer display, this is determined by the number of pixels on each visible scan line and the number of visible scan lines on the entire picture.

2. The pitch of the shadow mask or aperture grille of the CRT—the smallest color element on the face of the CRT is determined by the spacing of the groups of R, G, and B colors phosphors. The actual conversion from dot or line pitch to resolution differs slightly among dot or slot mask and aperture grille CRTs, but in general, the finer, the better—and more expensive. Typical television CRTs are rather coarse—0.75 mm might be a reasonable specification for a 20 inch set. High-resolution computer monitors may have dot pitches as small as 0.22 mm for a similar size screen. A rough indication of the maximum possible resolution of the CRT can be found by determining how many complete phosphor dot groups can fit across the visible part of the screen. Running at too high a resolution for a given CRT may result in Moiré—an interference pattern that will manifest itself as contour lines in smooth bright areas of the picture. However, many factors influence to what extent that may be a problem.

3. Bandwidth of the video source or display card—use of high-performance video amplifiers or digital to analog converters.

4. Signal quality of the video source or display card—properly designed circuitry with adequate power supply filtering and high quality components.

5. Cables—high-quality cables with correct termination should be used. Also, cables should be as short as possible, and extensions or switch boxes should not be used unless they are designed specifically for high-bandwidth video.

6. Sharpness of focus—even if the
CRT dot pitch is very fine, a fuzzy scanning beam will result in a poor-quality picture.

7. Stability of the monitor electronics—well-regulated power supplies and low-noise shielded electronics contribute to a rock-solid image.

8. Anti-glare treatment of screen and ambient lighting conditions—no matter how good the monitor's electronics are, the display can still be washed out and difficult or tiring to view if there is annoying glare or reflections. The lighting and location are probably more important than how the screen itself is designed to minimize glare.

9. Electromagnetic interference—proximity to sources of magnetic fields and power-line noise can degrade the performance of any monitor, no matter how well shielded it is.

Performance Testing

Before we go further, here's a warning: No monitor is perfect. Running comprehensive tests on your monitor or one you are considering purchasing might make you aware of deficiencies you never realized were even possible. You might never be happy with any monitor for the rest of your life!

Also note that the intent of these tests is not to evaluate or calibrate a monitor for photometric accuracy. Rather they are for functional testing of the monitor's performance.

Obviously, the ideal situation is to be able to perform these tests before purchase. With a small customer-oriented store, that might be possible. However, the best that can be done when ordering by mail is to examine a similar model in a store for gross characteristics and then do a thorough test when your monitor arrives. The following should be evaluated:

- Screen size and general appearance
- Brightness and screen uniformity, purity and color saturation
- Stability
- Convergence
- Edge geometry
- Linearity
- Tilt
- Size and position control range
- Ghosting or trailing streaks
- Sharpness
- Moire
- Scan rate switching
- Acoustic noise

A document at my Web site (www.repairfaq.org) "Performance Testing of Computer and Video Monitors" provides detailed procedures for the evaluation of each of these criteria.

CAUTION: Since there is no risk-free way of evaluating the actual scan rate limits of a monitor, this is not an objective of those tests. It is assumed that the specifications of both the video source/card

FIG. 1—HERE'S A BLOCK DIAGRAM for a typical SVGA monitor. While details will vary, most of the circuitry here will be found in almost every unit.
and the monitor are known and that supported scan rates are not exceeded. Some monitors will operate perfectly happily at well beyond the specified range, will shut down without damage, or will display an error message. Others will simply blow up instantly and require expensive repairs.

Monitor Repair

WARNING: The inside of a TV or monitor is no place for the careless or naive. If you are not sure of yourself or your knowledge, stay away. Unlike PC system boards where any disasters are likely to only affect your pocketbook, monitors can be very dangerous. Read, understand, and follow the set of safety guidelines that will be provided next month whenever working on TVs, monitors, or other similar high-voltage equipment.

If you do go inside, remember that line voltage (on large capacitors) and high voltage (on the CRT) could be present for a long time after the plug is pulled. There is the added danger of CRT implosion caused by carelessly dropped tools, and there are often sharp sheet-metal shields that could injure you if you should have a reflex reaction upon touching something you should not touch.

Having said that, a basic knowledge of how a monitor works and what can go wrong can be of great value even if you do not attempt the repair yourself. It will enable you to intelligently deal with the service technician. You will be more likely to be able to recognize if you are being taken for a ride by a dishonest or just plain incompetent repair center. For example, a faulty picture tube CANNOT be the cause of a color monitor only displaying in black-and-white (this is probably a software or compatibility problem). The majority of consumers—and computer professionals—might not know even this simple fact.

This series will provide you with the knowledge to deal with a large percentage of the problems you are likely to encounter with your monitors. It will enable you to diagnose problems and in many cases, correct them as well. With minor exceptions, specific manufacturers and models will not be covered as there are so many variations that such a treatment would require a huge and very detailed text. Rather, the most common problems will be addressed and enough basic principles of operation will be provided to enable you to narrow the problem down and likely determine a course of action for repair. In many cases, you will be able to do what is required for a fraction of the cost that would be charged by a repair center.

Should you still not be able to find a solution, you will have learned a great deal and be able to ask appropriate questions and supply relevant information if, for example, you decide to post your problem to the sci.electronics.repair newsgroup on the Internet. It will also be easier to do further research using a repair text such as the ones listed at the end of this month's column. In any case, you will have the satisfaction of knowing you did as much as you could before taking it in for professional repair.

Most Common Problems

The following probably account for 95% or more of the common monitor ailments:

- Intermittent changes in color, brightness, size, or position—bad connections inside the monitor or at the cable connection to the computer or video source.
- Ghosts, shadows, or streaks adjacent to vertical edges in the picture—problems with input-signal termination including use of cable extensions, excessively long cables, cheap or improperly made video cables, improper daisy-chaining of monitors, or problems in the video source or monitor circuitry.
- Color blottes or other color or distortion problems—these are caused by magnetization of the CRT. Locate and eliminate sources of magnetic fields if relevant and degauss the CRT.
- Wiggling, rippling, or other effects—electromagnetic Interference (EMI) is the culprit here. Nearby equipment (including and especially other monitors), power lines, or electrical wiring behind walls, may produce electromagnetic fields strong enough to cause noticeable distortion. Relocate the monitor or offending equipment. Shielding is difficult and expensive.
- Noise bars and similar effects—these are caused by noisy AC power reaching your monitor through the power cord. It is produced by such things as equipment using electric motors (e.g., vacuum cleaners), lamp dimmers or motor-speed controls (shop tools), fluorescent lamps, and other high power devices. The source is likely local—in your house—but could be several miles away. The effects could be barely visible as a couple of jiggling scan lines or be broad bars of salt and pepper noise, snow, or distorted video. Plugging the monitor into another outlet or the use of a line filter could help. If possible, replace or repair the offending device.
- Monitor not locking on one or more video scan ranges—settings of the video adapter are incorrect. Use software setup program to set these. This could also be a fault in the video source or monitor dealing with the sync signals.
- Adjustments needed for background brightness or focus—as a CRT ages, its brightness is reduced. However, note that other components may affect focus. Fortunately, these can often be fixed using easy internal (or sometimes external) adjustments.
- Dead monitor due to power supply problems—very often the causes are simple such as bad connections, blown fuse or other component.

Repair or Replace

If you need to send or take the monitor to a service center, the repair could easily exceed half the cost of a new monitor. Service centers may charge up to $50 or more for providing an initial estimate of repair costs, but that will usually be credited toward the total cost of the repair.

Some places offer attractive flat rates for repairs involving anything but the CRT, yoke, and flyback. Such offers are attractive if the repair center is reputable. However, if by mail, you will be stuck with a tough decision if they find that one of those expensive components is actually bad.

Monitors become obsolete at a somewhat slower rate than most other electronic equipment. Therefore, unless you need the higher resolution and scan rates that newer monitors provide, repairing an older one may make sense as long as the CRT is in good condition (adequate brightness, no burn marks, good focus). However, if a monitor fails, it might just be a good excuse to upgrade.

If you can do the repairs yourself, the equation changes dramatically as your parts costs will be $2 to $4 of what a professional will charge and, of course, your time is free. The educational aspects may also be appealing. You will learn a lot in the process. Thus, it may make sense to repair that old clunker for your 2nd PC (or your 3rd or your 4th or . . .).

Monitors 101

Now that the preliminaries are out of the way, it is time to get to work. We'll begin by looking at the subsystems of a
monitor. It will be helpful to refer to Fig. 1, which is a block diagram of a typical unit, as we proceed.

A computer or video monitor includes the following functional blocks:

1. Low voltage power supply: Most of the lower voltages used in the monitor may be derived from the horizontal deflection circuits (which we will look at next), a separate switching power supply, or a combination of the two. A rectifier/filter-capacitor/regulator circuit fed from the AC line provides the ac to the switching power supply or horizontal-deflection system. Auto-scan monitors may have multiple outputs from the low voltage power supply that are selectively switched or enabled depending on the scan rate. The degauss circuit operates off of the line whenever power is turned on (after having been off for a few minutes) to demagnetize the CRT. Better monitors will have a degauss button that activates the circuitry as well since even rotating the monitor on its tilt-swivel base could make degaussing necessary.

2. Horizontal deflection: These circuits provide the waveforms needed to sweep the electron beam in the CRT across and back at anywhere from 15 kHz to over 100 kHz depending on scan rate and resolution. The horizontal sync pulse from the sync separator or the horizontal sync input locks the horizontal deflection to the video signal. Auto-scan monitors have sophisticated circuitry to permit the scanning range of horizontal deflection to be automatically varied over a wide range.

3. Vertical deflection: These circuits provide the waveforms needed to sweep the electron beam in the CRT from top to bottom and back at anywhere from 50 to 120 or more times per second. The vertical sync pulse from the sync separator or vertical sync input locks the vertical deflection to the video signal. Auto-scan monitors have additional circuitry to lock to a wide range of vertical scan rates.

4. CRT high voltage “flyback” power supply: A modern color CRT requires up to 30 kV for a crisp bright picture. Rather than having a totally separate power supply, most monitors derive the high voltage (as well as many other voltages) from the horizontal deflection using a special transformer called a “flyback” or “Line Output Transformer” (LOPT) for those of you on the other side of the pond. Some high-performance monitors use a separate high-voltage board or module that is a self-contained high-frequency inverter.

5. Video amplifiers: These buffer the low-level inputs from the computer or video source. On monitors with TTL inputs (MGA, CGA, and EGA), a resistor network also combines the intensity and color signals in a kind of poor man’s D/A. Analog video amplifiers will usually also include DC restore (black-level retention, back-porch clamping) circuitry to stabilize the black level on AC-coupled video systems.

6. Video drivers (RGB): These are almost always located on a little circuit board plugged directly onto the neck of the CRT. They boost the output of the video amplifiers to the hundred volts or so needed to drive the cathodes (usually) of the CRT.

7. Sync processor: This accepts separate, composite, or “sync-on-green” signals to control the timing of the horizontal and vertical deflection systems. Where input is composite rather than separate H and V sync signals (as is used with VGA/SVGA), this circuit extracts the individual sync signals. For workstation monitors, which often have the sync combined with the green video signals, it needs to separate that as well. The output of the sync processor is horizontal and vertical sync pulses used to control the deflection circuits.

8. System control: Most higher-quality monitors use a microcontroller to perform all user interface and control functions from the front panel (and sometimes even from a remote control). So called “digital monitors”—meaning digital controls not digital inputs—use buttons for everything except possibly user brightness and contrast. Settings for horizontal and vertical size and position, pincushion, and color balance for each scan rate may be stored in non-volatile memory. The microprocessor also analyzes the input video timing and selects the appropriate scan range and components for the detected resolution. While these circuits rarely fail, if they do, debugging can be quite a treat.

Most problems occur in the horizontal deflection and power supply sections. Those run at relatively high power levels and some components run hot. This results in both wear and tear on the components as well as increased likelihood of bad connections developing from repeated thermal cycles. The high voltage section is prone to breakdown and arcing as a result of hairline cracks, humidity, dirt, etc.

The video circuitry is generally quite reliable. However, it seems that even after 15+ years, manufacturers still cannot turn out circuit boards that are free of bad solder connections or that do not develop them with time and use.

For More Information

For an on-line introduction to TV and monitor technology, check out the Philips/Magnavox Electronics Reference Web site (www.philipsmagnavox.com/product/pe33.html). There you will find links to a number of articles on the basic principles of operation of CD players, laserdisc and optical drives, TVs, VCRs, camcorders, loudspeakers, satellite receivers, and other consumer A/V equipment. Specifically, see the article on the TV-set operating principles since a monitor is a high quality subset of a television receiver. (We will deal with TV sets in a future Service Clinic series.)

A number of organizations have compiled databases covering thousands of common problems with VCRs, TVs, computer monitors, and other electronics equipment. Most charge for their information but a few, accessible via the Internet, are either free or have a very minimal monthly or per-case fee. In other cases, a limited but still useful subset of the for-free database is freely available.

A tech-tips database is a collection of problems and solutions accumulated by the organization providing the information or other sources based on actual repair experiences and case histories. Since the identical failures often occur at some point in a large percentage of a given model or product line, checking out a tech-tips database might quickly identify your problem and solution.

In that case, you can greatly simplify your troubleshooting or at least confirm a diagnosis before ordering parts. My only reservation with respect to tech-tips databases in general—this has nothing to do with any one in particular—is that symptoms can sometimes be deceiving and a solution that works in one instance might not apply to your specific problem. Therefore, an understanding of the hows and whys of the equipment along with some good old-fashioned testing is highly desirable to minimize the risk of replacing parts that turn out not to be bad.

The other disadvantage—at least from one point of view—is that you do not learn much by just following a procedure developed by others. There is no explanation of how the original diagnosis (Continued on page 62)
AC Power Line Analyzer

DEIGNED TO MEET THE MOST demanding test and measurement applications, the Model 1521 True RMS AC Power Line Analyzer provides all the necessary information about any electrical load that is connected to the AC line. It is ideal for use by appliance manufacturers and R & D facilities where all the AC parameters must be gathered and evaluated to meet published specifications and any applicable regulatory commission standards.

This analyzer features accurate true RMS measurements of voltage up to 130 VAC, current up to 10 amps, power up to 1300 watts, volt-amps to 1300VA, power factor, and line frequency up to 65 Hz. It comes standard with an RS-232 interface for data logging. Through this feature, the user can control the instrument through a PC.

This unit also features a unique user-settable scan mode, which enables continuous monitoring of all parameters sequentially, including the power factor. To provide for maximum usability, any parameter can also be selected manually for separate measurement.

User operation is very simple. The load that is to be monitored is connected to the 'Line Output' Socket provided on the front panel. The 1521 is then connected to the AC line. All the parameters are then displayed on an easy-to-read green 7-segment LED display with over-range indicator.

The 1521 measures 9.5 x 2.6 x 9.8 inches and weighs approximately 7 pounds. The suggested list price of the unit is $595.

GLOBAL SPECIALTIES
70 Fulton Terrace
New Haven, CT 06512
Tel: 800-572-1028
Fax: 203-468-0060
Web: www.globalspecialties.com

CIRCLE 20 ON FREE INFORMATION CARD

Data Interface Adapters

USING PCs, THESE DATA INTERFACE adapters log data from global positioning systems, depth sounders, radar, and other marine navigational devices. The plug-in connectors convert NMEA (National Marine Electronics Assn.) standard data signals so they can communicate with any RS-232, RS-422, or RS-485 device such as a PC.

There are two adapter models to fit either the older NMEA or the latest NMEA specifications. Version 1.x, the original standard, is an unbalanced signal, similar to RS-232, but with higher current-handling capabilities and optical isolation on the receive line. The newer standard, version 2.0 and above, uses an RS-422 transmitter combined with an optically isolated receiver.

Model 183COR converts the earlier NMEA0183 version 1.x data signal to EIA RS-232, RS-422, or RS-485 signals. Model 183V2C is for NMEA0183 version 2.x. It converts one data signal in each direction between NMEA0183 and EIA RS-232. Either converter costs $99.95.

B&B ELECTRONICS
707 Dayton Road
P.O. Box 1040
Ottawa, IL 61350
Tel: 815-433-5100
Fax: 815-434-7094
Web: www.bbelec.com

CIRCLE 21 ON FREE INFORMATION CARD

AC Ammeter

IDEAL FOR THE ELECTRICAL contractor, the handyman, building-maintenance departments, HVAC/R service personnel, and light commercial and residential electrical applications, the miniature AD15 DMM can take measurements in even the tightest spaces. Its size (2.1 by 6.1 by 0.8 inches) and digital display make it a useful tool for field work.

Two measuring ranges of 20A AC and 200A AC make the AD15 perfect for most commonly measured currents. In addition, the low 20A range results in better resolution on measurements down to one amp.

Features of the AD15 include a Data Hold function for measuring in difficult-to-read areas and slip-proof grip on the sides. The ammeter comes with batteries installed and a wrist strap. It retails for $49.95.
Internet Fax Machine

THE PANAFAX UF-770i VIRTUALLY eliminates long-distance charges for organizations that send frequent global and/or long-distance faxes. It sends and receives documents, pictures, photos, handwritten messages, and e-mail over the Internet by the simple push of a one-touch key. Instead of entering a telephone number, the user dials in an e-mail address on the keypad. People working away from the office can retrieve faxes when they get their e-mail.

First a document is scanned in and the image is compressed. The Internet Fax wraps the compressed image data with TIFF (Tagged Image File Format) headers and tags and then encodes the TIFF file in base64. The data is then attached to a MIME file (Multipurpose Internet Mail Extension) and passed through a pre-determined mail server with SMPT (Simple Mail Transfer Protocol). A heavy-duty, hardware-based unit, the Internet Fax (16.9 by 18 by 11 inches) automatically prints e-mail messages it receives, making it an all-in-one communications center.

Panasonic offers free software utilities to send and receive Internet faxes. A TIFF viewer and Internet fax converter is available from Panasonic's Web site. The TIFF viewer allows quick and easy viewing of Internet faxes received in a PC's e-mail in-box, and the TIFF converter lets the user create Internet fax files.

The Panafax UF-770i offers high-quality, plain paper printing in letter, legal, and A4 formats. Other features include a 50-page automatic document feeder; and an all-in-one, high-yield print cartridge. Up to 24 department codes are provided. The unit also automatically reports low toner status and certain mechanical failures.

Current users of the Panafax UF-770 can upgrade their unit to include all the functions of the UF-770i. The UF-770i Internet Fax has a suggested retail price of $3295.

PANASONIC OFFICE PRODUCTS COMPANY
2 Panasonic Way
Secaucus, NJ 07094
Tel: 800-742-8086 or 201-348-7000
Web: www.panasonic.com/internetfax.com

Ethernet Surge Protection

AS ETHERNET LOCAL AREA NETWORKS (LANs) proliferate at an explosive rate, many of these LANs have a large number of lines that terminate at a computer room/closet with large capacity switches/hubs. Often, these lines need surge protection due to the environment in which their associated workstations are found. For example, LANs are now serving more industrial users and therefore harsh environments are common.

The 10Base-T surge protection system from Telebyte Technology provides individual port protection for up to 75 Ethernet ports. This system is composed of the Model 3310 Card Cage and the Model 3311 Multi-Port Protection Card. The 10Base-T signals for each Ethernet port are applied to standard RJ-45 connectors. Each signal in each port incorporates protection with response times measured in picoseconds. The output port is also provided in an RJ-45 connector. This circuitry is all mounted on the Model 3311 Protection Card.

The Model 3311 offers 15 protected ports on a single printed circuit, which is one of five cards in a rack-mounted enclosure—the Model 3310 Card Cage—yielding an overall capacity of 75 ports in a single card cage. This 5.25-inch high housing is designed for standard 19-inch equipment racks.

Each card provides two, high-capacity, ground pins that are accommodated in ground bars located in the card cage. There are ground connections on each bar. The Card Cage includes a hinge and locking screws so that an installer and maintenance personnel have access to the rear of the cage. The Card Cage is locked in position using two captive thumbscrews. Individual cards are locked in position via a captive retaining rod.

The Model 3310 Card Cage sells for $483 and the Model 3311 Protection Cards sell for $317 each.

TELEBYTE TECHNOLOGY, INC.
270 Pulaski Road
Greenlawn, NY 11740
Tel: 800-835-3298
Fax: 516-385-8184
e-mail: sale@telebyte.com
Web: www.telebyteusa.com
NEW LITERATURE
USE THE FREE INFORMATION CARD FOR FAST RESPONSE

1998 General Catalog
Contact East, Inc.
335 Willow Street
N. Andover, MA 01845
Tel: 800-225-5370 or 978-682-2000
Fax: 800-743-8141 or 978-688-7829
Web: www.contacteast.com
Free

Aimed at engineers, technicians, hobbyists, and general users, this 292-page catalog is filled with new tools and test instruments. Featured are quality products for testing, repairing, and assembling electrical and electronic equipment. Each product is accompanied by a full-color illustration.

Among the manufacturers represented are Fluke, Tektronix, Weller, Hewlett-Packard, Metcal, OK, Pace, Milwaukee, Makita, Xcelite, Locite, Leatherman, and 3M. New product highlights include Tektronix' TX-DMM Series of True RMS DMMs with built-in RS-232 interface, Weller's electronically-controlled Silver Series soldering stations, and Erem "2200 Series" ergonomic cutters and pliers.

Also featured is a full selection of DMMs and oscilloscopes, power supplies, solder/desoldering equipment, heat guns, precision and hard-to-find hand tools, cordless power tools, measuring instruments, ESD protection products, adhesives, custom-made tool kits, magnification and lighting devices, storage and handling containers, and workbenches and chairs.

The Stomp Box Cookbook
by Nicholas Bostcorelli
Guitar Project Books
200 Union Blvd., #425
Denver, CO 80228
$22.95 plus $3 shipping

Written for a skilled audience, this 144-page book guides readers to building advanced effects for electric guitar and bass. It contains no beginner-level projects, and assumes the reader to have access to standard electronic test gear. While the projects demand skill to build, anyone interested in how stomp boxes work will find a wealth of detail in this collection.

The projects take their respective functions far beyond basic databook circuits, and they include several effects unavailable commercially. Projects include five unique distortion boxes, a tremolo tremolo, and a dual-mode sustain box for guitar and bass. There is also a studio-quality compressor, a full-featured noise gate, a true parametric equalizer, and an advanced envelope follower. A functional duplicate of the Ampeg SVT tone block (with inductor), a stereo tremolo pan box, a transformer isolation box, and six more designs complete the 20 projects in the book.

Each project includes a circuit description, schematic, royalty-free printed circuit layout, clear wiring diagram, and large prototype photo. Many feature oscilloscope photographs that dramatize how the boxes work.

The author has also presented a wide-ranging tutorial of stomp-box "ingredients" to help ambitious builders cook up new effects. Fleshed out with more than 200 photos and diagrams, the book explores tone shaping, hum, noise, distortion, and compression in depth.

1999 Answers Catalog
RadioShack
1500 One Tandy Center
Ft. Worth, TX 76102
Tel: 800-THE-SHACK
Web: www.radioshack.com
Free

The latest RadioShack catalog contains a large assortment of telephony products, such as corded and cordless phones, answering machines, caller-ID units, and cellular phones. In addition, the color-coded divisions in the over 300-page catalog include a wide variety of products for home and office electronic needs: communications, audio, video, calculators, and computer equipment; as well as tools for the do-it-yourselfer, security devices, power controllers, adapters, clocks and weather meters, and automotive instruments. There are also electronic toys and games, and products for people with special needs.

Among the highlights is the extensive line-up of telecommunications products and services offered by the Sprint Store at RadioShack. Featured among the Sprint products is the latest in wireless technology, the 900-MHz digital spread spectrum cordless phone.

This year RadioShack is introducing Compaq Creative Learning Centers, featuring Compaq PCs especially designed for children in grades K-12. Among the Compaq products are the 2500, 5000, and 5600 series computers, and the 1200 series notebook computer. Information on choosing the best monitor and printer for your needs is included.
Get Real: A Philosophical Adventure in Virtual Reality
by Philip Zhai
4720 Boston Way
Lanham, MA 20706
Tel: 800-462-6420
$24.95

Is virtual reality merely a video game tool? Or is it an immaterial world beckoning people to a better world inside computers? The author tackles these questions with keen logical analysis. He concludes by advocating a position that transcends these two opposing views of virtual reality. Zhai argues that the combination of three technologies: digital simulation, sensory immersion, and functional teleoperation, amounts to a re-creation of the empirically perceived universe. His analysis of the nature and significance of this re-creation is thought provoking and original.

1998-1999 Catalog
Jensen Tools, Inc.
7815 S. 46th Street
Phoenix, AZ 85044-5399
Tel: 800-426-1194 or 602-968-6231
Fax: 800-366-9662 or 602-438-1690
Web: www.jensentools.com

Free
Over 5000 products for the worldwide electronic/electrical industries are offered in this over 300-page full-color catalog. New products, such as mini-tool kits, shears and crimp tools, test signal generators, true RMS multimeters, power analyzer, cable testers, and EPROM programmers are featured.

Iterative Methods for Diffractive Optical Elements Computation
by Victor Soifer, Victor Kotlyar, and Leonid Duskolovich
Taylor & Francis
1900 Frost Road, Suite 101
Bristol, PA 19007
Tel: 215-785-5800
$110

This book is devoted to methods of computer-aided design of non-conventional optics. This class of optics has been given many names: computer optics, diffractive optics, planar optics, or micro-optics. Their general purpose is to perform highly efficient transformations of laser beams. The design algorithms for such optics feature an iterative character which allows a trade-off between two competing parameters: high-energy efficiency and a high degree of accuracy of light field transformation.

The Future of Emulation
Hewlett-Packard Company
P.O. Box 2197
Colorado Springs, CO 80901-2197
Tel: 800-453-4844
Web: www.hp.com/info/ULPSolutions

Free
Is your emulator keeping up with the speed and complexity of your latest embedded-system designs? Tired of replacing your emulator every time you choose a new processor? This booklet gives you a new approach to emulation that's ready to tackle your toughest design challenges.

By combining on-chip simulation with powerful state and timing analysis, HP emulation solutions solve the problems of traditional emulation while meeting the new challenges of today's complex processors. Developed in conjunction with leading processor and tool vendors, these modular systems are easy to scale and reconfigure from user to user and project to project.

HP emulation solutions make it easy to analyze everything from source code to analog I/O signals. The HP 16600A and 16700A Series lets developers see every aspect of the problem at hand, even with complex system-integration problems. In addition to run control, real-time trace, and other features, this emulation solution series offers insight into hardware/software interaction, software performance, and other system-wide behavior that extends beyond the processor.

Electronic Parts and Accessories Catalog
Parts Express
P.O. Box 636
Springboro, OH 45066
Tel: 800-338-0531
Fax: 513-743-1677
e-mail: sale@parts-express.com
Web: www.parts-express.com

Free
Geared toward the consumer-electronics industry and the technical hobbyist, this 266-page catalog features full lines of electronic parts and accessories. It includes an impressive selec-
tion of products, including alarm systems for home and automotive applications; speaker design software; CATV and VCR repair parts; home-theater and home-automation systems; telephone and cellular phone products and accessories; computer accessories; stage lighting; professional sound equipment, and raw loudspeaker drivers. Semiconductors, tools and technician aids, test equipment, chemicals, wire connectors, instructional books and videos are just some of the other items offered.

Among the exciting new products featured are affordable LCD video/TV screens for the mobile market, high-tech home A/V distribution systems, “no-hands” digital multimeters, miniature board cameras, optical A/V cables, as well as material for the renewed interest in tube technology. Throughout the catalog, there are tech tips that provide helpful information on applications, design ideas, and repair tips.

PIC'n Up The Pace: An Applications Guide to Using PIC16/17 Microcontrollers
by David Benson
Square 1 Electronics
P.O. Box 501
Kelseyville, CA 95451
Tel: 707-279-8881
Web: www.sq-1.com
$34.95

This book gives the reader the tools to design and build intermediate-level microcontroller-based instrumentation and systems. It covers Microchip Technology’s PIC16/17 microcontrollers and describes serial communication as a means of transferring data between two PIC16/17s or between PIC16/17s and peripheral chips. Using the 93C46 serial EEPROM is explained in detail as an example.

Since we live in an analog world, A/D and D/A conversion are discussed, with several methods illustrated for each. Conditioning signals from sensors with an analog-voltage output is described. There are chapters on math routines, binary-to-decimal conversion and vice versa, alphanumeric LCD interfacing, and scanning keypads.

Projects that can be built by the reader are presented, including single wire communication with a PIC16/17-controlled LCD module, and a digital thermometer that incorporates many elements of PIC microcontroller design. Other topics covered are PIC16C84/PIC16F84 data EEPROM memory, program memory paging, and locating tables in program memory.

COMPUTER CONNECTIONS

continued from page 11

space on the target machine. It’s frustrating because you’ve almost certainly seen and dealt with all those messages a long time ago.

Staying Connected

The POP3 vs. IMAP4 issue was not the biggest problem I had. The real problem was achieving a reliable connection! I spent lots of time and energy tweaking various delays and other settings in MultiMail Pro. Eventually, I found that the only way I could get it to operate reliably was to drop the transmission rate to 4800 bps. I thought that the 14.4 kbps rate of the Pilot Modem was bad, but this was ridiculous. And I doubt I achieved anywhere near 4800 bps in actual throughput. It felt more like a 300 bps modem from fifteen years ago. I thought the low throughput might have something to do with the “out-back” area we were in. I thought that perhaps the terrain or distance from a large city were factors. But after returning home, I achieved similar results. Just for the heck of it, I even tried connecting up during the long drive home. No dice.

Evaluation

The whole experience was a roller coaster. In a way, it’s amazing that it works at all. Wireless e-mail, out in the middle of nowhere? On the other hand, configuration was so touchy, and performance so poor, that the overall experience ended up being pretty disappointing. I met my goal of staying in touch, and I learned a lot about how poorly current-day technology supports truly mobile e-mail access. I’ll continue using the setup, but I’m eagerly awaiting the next generation.

I know what I want. Hardware: something the size of the Pilot with everything built in, so it wouldn’t require a cell phone, an adapter, cables, batteries, and AC adapters. Software: IMAP4 support, and a fast, responsive application. MultiMail Pro worked OK, but with a large number of messages, things slow down tremendously. The app should support more than four e-mail accounts too. Between my wife and me, we use more than that. The app should also have a search function.

Incidentally, I couldn’t have done this at all without a TRG memory board. The company sells memory upgrade boards for all Pilot models. The top-of-the-line unit holds 8 MB of DRAM. My model contains 3 MB of SRAM and 2 MB of flash. Most third party apps run fine from flash. I chose the SRAM board because it provides lower power consumption. Highly recommended.

Bookshelf

Jan Axelson has done it again. Her prior effort, Parallel Port Complete, is an excellent introduction to using a parallel port for general purpose PC-hosted I/O. Along comes Serial Port Complete, which provides a very readable, in-depth discussion of serial I/O, and this time not just from a PC perspective. For example, Jan also discusses serial programming using microcontrollers. In addition, roughly a third of the book covers RS-422 and RS-485, providing an excellent tutorial on the subject, and includes cables, connectors, line length limits, effects of cable impedance, network topologies, network programming, and quite a bit more. As usual, Jan goes light on theory and heavy on practice. Even if you’ve never seen a 485 network before, there is enough info here for you to implement your own. So dust that smart-home project off the back burner and get cookin’!

In the meantime, stay in touch via e-mail at jeff@ingeninc.com
RETAILERS THAT SELL OUR MAGAZINE EVERY MONTH

California
California Electronics
221 N. Johnson Ave.
El Cajon, CA 92020
Ford Electronics
8431 Commonwealth Ave
Buena Park, CA 90621
All Electronics
14928 Oxnard Street
Van Nuys, CA 91411
Gateway Electronics of CA
9222 Chesapeake Drive
San Diego, CA 92123
Mac's Electronics
191 South "E" Street
San Bernardino, CA 92401
Electronics Warehouse
2691 Main Street
Riverside, CA 92501
Orvac Electronics
1645 E Orangethorpe Ave.
Fullerton, CA 92631
Sav-On Electronics
13225 Harbor Blvd.
Garden Grove, CA 92643
JK Electronics
6395 Westminster Blvd.
Westminster, CA 92683
Kandarian Electronics
1101 19th Street
Bakersfield, CA 93301
Whitcomm Electronics
105 W. Dakota #106
Clovis, CA 93612
Minuteman Electronics
3711 Post St., Suite 1
Fremont, CA 94536

HCS Electronics
6819 S. Redwood Drive
Cotati, CA 94931
Halted Specialties Co.
3500 Ryder Street
Santa Clara, CA 95051
Metro Electronics
1831 J Street
Sacramento, CA 95814
HSC Electronics
4837 Amber Lane
Sacramento, CA 95841
Gateway Electronics
2525 Federal Blvd.
Denver, CO 80211
Centennial Electronics
2324 E. Bijou
Colorado Sp., CO 80909
Cables & Connectors
2198 Berlin Turnpike
Newington, CT 06111
Electro-Service Prod.
437 Washington Avenue
North Haven, CT 06473
P. Benavides Corp.
3900 NW 79 Ave. Suite 600
Miami, FL 33166
Normans Electronics Inc.
3653 Clairmont Road
Chamblee, GA 30341

Illinois
Tri State Elec
200 W. Northwest Hwy.
Mt. Prospect, IL 60056
Maryland
Mark Elec. Supply Inc.
5015 Herzel Place
Beltsville, MD 20705
Amateur Radio Center
1117 West 36th Street
Baltimore, MD 21211
Massachusetts
U-Do-It Electronics
40 Franklin Street
Needham, MA 02194
Michigan
Purchase Radio Supply
327 East Hoover Avenue
Ann Arbor, MI 48104
Norwest Electronics
33760 Plymouth Rd.
Livonia, MI 48150
The Elec. Connection
37387 Ford Road
Westland, MI 48185
Elec. Parts Specialists
711 Kelso Street
Flint, MI 48506
Acme Electronics
224 Washington Avenue N.
Minneapolis, MN 55401
Missouri
Gateway Electronics of MO
8123-25 Page Blvd.
St. Louis, MO 63130

New Jersey
Lashen Electronics Inc.
21 Broadway
Denville, NJ 07834

New York
LNL Distributing Corp.
235 Robbins Lane
Syosset, NY 11791
Unicorn Electronics
Valley Plaza
Johnson City, NY 13790
Philcap Electronic Suppliers
275 E. Market Street
Akron, OH 44308
Norvac Electronics
7940 SW Nimbus Avenue
Beaverton, OR 97005
Tanner Electronics
1301 W Beltine
Carrollton, TX 75006
Mouser Electronics
958 N. Main Street
Mansfield, TX 76063
Electronic Parts Outlet
3753 B Fondren
Houston, TX 77063
Computers Electronics Etc.
110 E. Medical Center Blvd.
Webster, TX 77598

If you'd like to sell our magazine in your store, please circle 210 on free information card or contact Gina Gallo at (516) 293-3000 ext 223

www.americanradiohistory.com
A MICROCONTROLLER-BASED
PRECISION PULSE GENERATOR

Whether you’re developing analog or
digital circuits, one of the hardest pieces of test
equipment anyone can have is a pulse generator.
After all, without some source of signals, most
circuits just sit there doing nothing. If you’re like most
experimenters, you probably find it a little tiring
having to hook a timer into a circuit in
order to test a new idea.
As an added drawback, those types of pulse-generator
circuits have limits as to their available range and
accuracy.
Wouldn’t it be nice to have a pulse generator that is inexpensive,
accurate, and has a wide range? The Precision Pulse
Generator described here is just such a unit.
Since it is built around a microcontroller chip, no calibration is needed
for pinpoint accuracy when dialing
in a particular pulse width or repetition
rate. The tradeoff for that ease-of-use feature is that the settings
can only be changed in finite steps.
However, those steps are small enough so that the unit will be useful
on any technician’s workbench.

Microcontroller-Based Pulse Generators. In selecting a microcontroller
that could do the job of generating accurate and repeatable pulse
widths, the PIC 16C55 from Microchip Technologies has several
advantages in its favor. At the top of
the list is that they are easy to program; the best chip in the world is
worthless to the do-it-yourselfer if it
can only be programmed with ex-
pensive equipment. Another advantage is speed: Most of the various
families of Microchip devices can
run at speeds up to 20 MHz.
However, the most important feature is that each instruction, other
than a jump command, has the
same execution time. For those who
have spent years working with microprocessors such as the Intel
8085 (whose instructions can vary
from 1.3 to 5.2 microseconds), it’s a
pleasant change to find a chip that
can generate accurately-timed
events just 200 nanoseconds apart.
That 200-nanosecond figure is
based on a 20-MHz clock frequency;
the instruction rate of a PIC chip
is one quarter of that. The main
question that then needs to be
asked is if a PIC chip could generate
an uninterrupted stream of pulses
with an arbitrary length and period
while still monitoring the
front panel controls for any changes. Unfortunately, the short answer is
no—unless you want to accept certain restrictions on the pulse period.
However, with many months of tinkering with the
programming code, it is possible to build a
useful bench-top pulse generator with not much
more than a Microchip
PIC16C55 microcontroller,
a crystal oscillator, and
four thumb-wheel switch-
es. Specifications for the
unit are shown in the sidebar.
The Precision Pulse Generator has
both normal and inverted TTL-level
outputs. The output’s rise and fall
times are less than 10 nanoseconds.
The timing of the pulse lengths and
periods is as good as the accuracy of the microcontroller’s clock. A pair
of two-digit thumb-wheel switches
is used to set the pulse period and the
pulse length. A six-position rotary
switch selects the range. On the five
slower ranges, the pulse period can
be set from 1 to 99 units; on the
fastest range, the period is settable
from 5 to 99 units. The length of a
unit, depending on the range
selected, varies from 1 microsecond
to 100 milliseconds.
The pulse length can be set over
the range of 0.1 to 9.9 units. On any
range, each step of the pulse-length
switch is one tenth of the period
switch step. For example, on range 1
the minimum off time is 2.1 micro-
seconds if the period is less than 10 micro-
seconds. Above 10 microseconds, it
is 4.1 microseconds. At the lower
ranges, the minimum off time is 0.1
unit. Those are the limits on the pulse
length as discussed above; a front-
panel LED warns if any particular
switch settings exceed those limits.

Here’s a benchtop pulse generator with
crystal-controlled timing.
What’s more, it’s built around a
PIC microcontroller!

TOM NAPIER
Although it might seem that the pulse widths must be less than a tenth of the pulse period, each range is ten times slower than the one above but the switch settings have a 100-to-1 range. The result is that many periods can be set equally on either of two ranges depending on the pulse length that you want. For example, if you wanted a period of 50 microseconds, you could set a period of 50 on range 1 (which is one-microsecond units) or a period of 5 on range 2 (which is ten-microsecond units). In the first case, the longest pulse length that you can set is 9.9 microseconds with one-microsecond changes in the period. In the second case, the pulses can be up to 49 microseconds long but the period could only be set in 10-microsecond steps. Because of the limitations, you can't have a pulse with a period of 49 microseconds and a length of 48 microseconds.

A Finer Step. As you can see, it is not too hard to make a PIC-based pulse generator that sets the pulse length in 1-microsecond steps. Naturally, any piece of test equipment will always leave someone asking if the limits can be increased; can the unit be made "better"—and that includes the author!

A desirable minimum-pulse length of 0.1 microseconds is a bit difficult to do if the fastest PIC controller has a 0.2-microsecond instruction cycle. In this case, the problem is solved with the addition of some circuitry. That circuit can be seen in the schematic diagram, which is shown in Fig. 1. The circuit consists of IC5 and IC6.

Fig. 1. The Precision Pulse Generator is built around a PIC 16C55 microcontroller. Although it might seem to be impossible, pulses as short as 100 nanoseconds can be generated thanks to a careful balance of hardware and software.
Study at Home

We live in a constantly changing world, where exciting new technological advancements are made everyday. At the Cleveland Institute of Electronics we make it simple to train, earn a degree and prosper in the workforce. Over 150,000 students in the United States and 70 foreign countries got their start in electronics through CIE. And they received their education at their own pace in the comfort and convenience of their homes. At CIE you’ll receive a first class education by a faculty and staff devoted to your career advancement. All of CIE course and degree programs are taught through a patented, proven learning process. To discover all the benefits and programs/degrees available from CIE send for your free course catalog today.

Work Where You Want

And once you complete your education at CIE, you can just about write your own ticket to where you want to work and in what specialized field... MIS, broadcasting, industrial, automotive, management... The opportunities seem limitless in today’s high-tech world.

The Cleveland Institute of Electronics has been approved for use of Veterans Affairs Benefits and DANTES Tuition Reimbursement.

Tuition assistance from the Veterans Administration or the DANTES Program is available to veterans and service members in the Armed Forces.

YES! I am interested. Please send me a catalog.

Name:
Address:
City: State: Zip:
Phone Number:

FREE CATALOG

1776 E. 17th Street
Cleveland, Ohio 44114-3679

Visit Our Web-Site

www.cie-wc.edu

A school of thousands. A class of one. Since 1934.
The trick is to add 0.1 microseconds to the pulse length whenever the fastest range is selected and the least-significant length switch is showing an odd number. The amazing part of the solution is that it works even when the switch reads 0.1 and the PIC is not generating a normal output pulse—after all, 0+0.1=0.1!

Range Switching. The timing for the Precision Pulse Generator is set by XTAL1, a 20-MHz crystal clock. When the two highest ranges are selected, the PIC (IC4) runs from the 20-MHz clock. The clock frequency is sent to IC4 through S6-a. The clock frequency is also divided by IC2 and IC3. Their outputs are also selected by S6-a. At the lowest range setting, the clock frequency is only 2 kHz, making responses to any switch changes a bit sluggish! By using that arrangement, the same software can be used for the different ranges.

The highest range is a bit different. The PIC chip must be told to use a different software program in order to create the extra short pulses with IC5 and IC6. That command is supplied by S6-b. When S6-b grounds pin 21 of IC4, the program knows to use the fine-range technique discussed above.

The clock signals are all sent to the range switch through a length of ribbon cable, and the selected one is returned to IC4. Although that arrangement is not an example of good engineering practice, it does work. Keeping the clock signals on the PC board would have required additional circuitry to switch the various signals, complicating the design. The ribbon cable carries the clock signals on alternating wires, with the unused wires in between grounded. That tends to shield the signals from each other, minimizing cross-talk. A 47-ohm source-termination resistor (R10) is connected to the output of XTAL1 so that the 20-MHz signal is somewhat cleaner when it finally reaches IC4 after its trip to the switch and back.

Hardware, Software, and “Firmware.” The 16C55 microcontroller has two eight-bit ports and one four-bit port. The two eight-bit ports are directly connected to S2-S5, with R3 and R4 acting as pull-up resistors so that there is always a valid logic level on IC4's input pins. The software looks at the thumb-wheel switches twice per pulse. The time needed to read and process that information is the reason that the minimum pulse period is five microseconds.

The lowest bit of S5 is not connected to the same input port as the rest of the pulse-length input since it controls the hardware "add-0.1-microsecond" function. Switch S6-b is connected in its place. However, since that bit is needed on the higher ranges, it is hooked up through the controller's four-bit port. It might seem to be an odd arrangement, but it is an example of the balance needed between the hardware and the software in order to get the necessary processing speed.

The software generates the pulses in two stages—the length of "on" time and the length of "off" time. When calculating the length of "off" time needed, the amount of processing time before starting another pulse cycle is taken into consideration. If the amount of "off" time is less than the cycle time, IC4 will light up LED2 to let the operator know that the switch settings are "improper;" that is, the Precision Pulse Generator cannot create the pulse widths and repetition rates that have been set on the front-panel controls.

Pulse Processing. It would be expected that only one pin of IC4 would be needed for the actual output pulse. Since we have additional circuitry that can stretch the output pulse by 0.1 microsecond, two outputs are used. The main pulse output is a positive-going pulse with a 0.2-microsecond resolution. The secondary output is a 0.2-microsecond negative pulse that immediately follows the main pulse with a 0.1-microsecond delay. That pulse drives the lengthening circuit when the units-digit length switch is set to an odd number. Since the secondary pulse is needed only at the fastest range, it is only generated when it is needed.

The lengthening circuit is built around IC6 to generate a pulse that is either the same length as IC4's output pulse or is exactly 0.1 microseconds longer than IC4's output. To do that, a 0.1-microsecond pulse that starts just as the main pulse stops is needed; that is the reason for the secondary output.

Pulse Outputs. In order to provide the most accurate possible timing,
the final pulse from IC5 is resynchronized to the main clock. Two flip-flops in IC5 are tied together in parallel to drive the output load. An added advantage is that the output is available in both inverted and non-inverted form. The HCT-series of chips was selected because their outputs have a fast rise and fall time without excessive overshoot. The AC- and ACT-series are still faster parts, but they tend to have a lot of overshoot on their outputs, and they are somewhat difficult to find in the various "hobbyist-friendly" component distributors.

The outputs are wired to BNC sockets J7 and J8 through R6-R9. The resistors serve three purposes. One is to protect IC5 from momentary short circuits to ground or +5 volts. Another is to share the load current equally between the flip-flops. The third is to provide source termination.

Connecting the output of the Precision Pulse Generator with an unterminated 50-ohm cable will give a reasonably clean TTL-level signal. Using 50-ohm terminators on the cable will speed up the signal edges but leave the pulse voltage level at about two volts—too low to drive a TTL input. The ideal termination would be a 68-ohm resistor tied to ground and a 180-ohm resistor tied to a +5-volt source. That will result in a fast signal capable of meeting the input requirements of TTL.

The normal output-current range of IC5 will not drive a 50-ohm load without risking damage to the IC itself. However, that risk only occurs if the output is shorted to ground or +5 volts. If you are concerned about that situation, you can substitute a 74AC175 for IC5; that family of devices has a higher output-current rating.

Clock Timing. The clock that drives IC5 has to arrive when the flip-flops all have valid inputs. Unfortunately, the designers of the microcontroller didn't specify its clock-to-output delay when it is used with an external clock. After testing the performance of several chips, the author found that the delay from the negative-going clock edge to an output change is about 25 nanoseconds. That is just half the clock period on the fastest two ranges. In that case, the output change occurs at the same time as the positive-going edge of the clock—exactly the worst place for it to be if we want to drive a flip-flop. The cure for that situation is to invert the clock before sending it to the flip-flops. It was at first tempting to use IC4's OSC2 pin as an inverted clock, but that output was designed with a linear output for driving a crystal, which makes it a poor logic signal. Luckily, IC6 has an unused section. By connecting the clock to its enable pin, we not only get an inverted output but we get a little extra delay. That matches the pulse delay through the other half of the chip and makes latching the pulses into the flip-flops just a little bit more reliable.

Power. The Precision Pulse Generator uses only a single 5-volt supply. With a current draw of only 20 mA, it could run on batteries. However, a 9-volt AC or DC wall adapter is connected to J1 as a power source. Even if a DC supply is used, D1 and C1 still provide polarity-reversal protection and additional smoothing. The input voltage is regulated by IC1. The low current demands mean a heatsink is not required for IC1, but a small one can be used just to be on the safe side.

The unit is turned on and off by S1. LED1 indicates whether the Precision Pulse Generator is in the on or off state.

Construction. The Precision Pulse Generator is simple enough to be built on a piece of perfboard using standard construction techniques. Since some portions of the circuit have high-frequency signals with fast rise and fall times, the wiring should be kept as short and as direct as possible. The layout used on the author's prototype is shown in Fig. 2. Note that you cannot see the bypass capacitors C3-C8. Those components are underneath the integrated circuits in order to save space on the board. In fact, the capacitors are built into the IC sockets themselves. Although such sockets save both construction time and space, they are a bit on the expensive side. Using standard sockets and ceramic-disc capacitors will work just as well. After the board is built, do not plug in any chips until after it is tested; set the board aside for now.

Microcontroller IC4 needs to be programmed before being used. A pre-programmed part is available from the source given in the Parts List or you can program a blank part yourself. If you want to program your own part, the compiled code is available for download at the Gernsback FTP site (ftp.gernsback.com/pub/EN/pulsegen.cod).

As with any piece of test gear, the layout of the front panel makes the difference between a unit that is easy to use and one that gets relegated to the top shelf. Details on the author's panel design and layout can be seen in Fig. 3. Most cabinets of the type used here have...
aluminum front panels. If you are like that, be careful when cutting out the rectangular hole needed for the thumb-wheel switches; haste in cutting might result in bending the panel, making the finished product somewhat unsightly.

Once all of the holes in the front panel are cut and drilled, the panel should be labeled. Again, any method that you are comfortable with will work well. The author used a sheet of peel-off self-stick label material and a laser printer. A disadvantage to that method is that the label will become dirty very fast. Spraying a coating of fixative will keep the label looking clean and neat. If you do spray your label, do not use acrylic lacquer—it will soak into the paper and destroy the label's glue. Experiment on some scrap before making the final label.

The interior layout of the Precision Pulse Generator is shown in Fig. 4. The connection from J4 to the thumb-wheel switches is most neatly done with a short length of ribbon cable. A socket-plug arrangement can be made from two pieces of strip socket as mentioned in the Parts List. As an alternative, a direct solder connection can be used in place of the socket. However, having a connector makes it possible to take the unit apart should any repairs be needed in the future.

Thump-wheel switches might look rather old-fashioned in these days of keypads and liquid-crystal displays, but they have the advantage of combining the functions of input, storage and display. The microcontroller doesn't need to store the switch settings; it reads the switches twice per pulse period and uses the result immediately in its calculations. A display is not needed, either: the pulse length and period can be read directly from the switches. The downside is that thumb-wheel switches retail for around $10 a digit. The complete switch assembly, with end pieces and a blank section in the middle will set you back about $50. However, the cost compares reasonably with that of a keypad and LCD display, even if we had the extra processing power to use them.

The switches used here are ten-position Binary-Coded Decimal (BCD) types. It is worth checking the various surplus-dealer catalogues for switches that can be dismantled and reassembled for use in the Precision Pulse Generator.

The thumb-wheel switch assembly consists of seven components stacked together: an end plate, two digit switches, a blank section, two more digits, and a second end plate. The individual pieces have little plastic pins that align them; the stack is held together by two long screws and nuts. If you are a perfectionist, drill a dimple in the face of S5 and fill it with a drop of white paint.

Fig. 4. The inside of the Precision Pulse Generator is neatly laid out thanks to the use of ribbon cable.
to make a decimal point.

There are two types of mounting arrangements for thumb-wheel switches: those that drop in from the front and snap in place, and those that are bolted in place from behind. The snap-in design is easier to mount as well as covering any imperfections in the panel hole, but the wiring must be threaded through the hole when installing or removing them. The rear-mounted type is more difficult to line up with the front-panel hole, but you don’t have to worry about damaging the wires if they should catch on the edges of the panel hole.

Each switch segment on the thumb-wheel switches has five contacts on a little printed circuit board marked "C," "1," "2," "4," and "8." It is easier to solder the ribbon cable to the switch segments before they are assembled into a block. One wire goes to each BCD pin of each switch. A piece of bus wire is threaded through all four common connections after the switch is assembled. That way, only one common wire is needed to connect to the PC board.

In a similar fashion, a length of ribbon cable is used to make the connections from J5 to S6. While you can make your own cable assembly, the Parts List suggests a pre-assembled unit that can be used to save time and effort. Only about six inches of cable will be needed to reach S6; the remainder of the cable can be used to wire up the rest of the unit.

Any two-pole six-way switch can be used for S6. A word of caution on the rotary switches from RadioShack: those units have a 6-mm shaft, making a sloppy fit to their ¼-inch standard knobs unless you either wrap some electrical tape around the shaft or use a metric knob.

Testing. Using an ohmmeter, check for shorts between the power and ground pins of any chip socket. If there are none, it should be safe to connect the 9-volt supply. Check that there is about 12 volts across C1 and very close to five volts across C2. If those tests fail or if IC1 is getting hot, you might have wired D1 backwards.

If all is well at this point, check for 5 volts between pins 8 and 16 on the IC sockets, between pins 7 and 14 of the socket for XTAL1, and pins 4 and 2 on the socket for IC4. Disconnect the power and install XTAL1, IC2, and IC3. With power applied, check pin 4 of IC2 with an oscilloscope: there should be a 20-MHz signal. It should be square but it probably looks more like a sine wave. Pin 3 should have a 2-MHz signal, and pin 13 should have a 200-kHz signal. Moving on to IC3, its pin 3 should show 20 kHz and its pin 13 should show 2 kHz.

When S6 is connected, pin 27 of the socket for IC4 should have a signal that changes between 20 MHz, 2 MHz, 2 MHz, 200 kHz, 20 kHz and 2 kHz as S6 is turned clockwise through its range. Connect S2-S5 and check that the proper voltage levels are reaching the appropriate pins on IC4’s socket using either an oscilloscope or a voltmeter.

If everything has tested OK up to this point, you can now plug in IC4. Be careful that none of its pins are bent under during installation. Set S6 to position 2, set the period to 10, and the length to 2.0. Pin 6 of IC4 should show a pulse that is positive for 20 microseconds and zero for 80 microseconds. When you change the settings on S2-S5, the pulse length and period should change correspondingly. If you set a period that is less than or equal to the length, LED2 should light. That test can be repeated for the other low ranges. It should show the correct pulse lengths and periods on all of them.

Switch the unit to the highest range. Set up a period of 10 microseconds and a length of 2.0 microseconds. Pin 6 of IC4 should show a 2.0-microsecond positive pulse and pin 7 should show a 0.2-microsecond negative pulse immediately following it. When you change the lower digit of the length switch (S5), the pulse length should only step on every second position. The negative pulse on pin 7 should always be present even when the length is set to 0.0. Check pin 9 of the IC6: the output pulse should be negative-going with a step that changes with every digit change.

If you connect an oscilloscope to either J7 or J8, you should see that the output pulses match the front-panel settings. Check also that all of the illegal settings, light LED2. If everything checks out, the Precision Pulse Generator is ready to use. Happy pulsing.

Precision Pulse Generator Specifications

| Pulse output level: TTL and complementary TTL unterminated |
| 2 volts with 50-ohm termination |
| Rise/fall times: Less than 10 nanoseconds |
| Timing precision: 100 ppm ±2 nanoseconds |

<table>
<thead>
<tr>
<th>Pulse period</th>
<th>Pulse length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range 1</td>
<td>5-99 microseconds</td>
</tr>
<tr>
<td>Range 2</td>
<td>10-990 microseconds</td>
</tr>
<tr>
<td>Range 3</td>
<td>0.1-5.9 milliseconds</td>
</tr>
<tr>
<td>Range 4</td>
<td>1-99 milliseconds</td>
</tr>
<tr>
<td>Range 5</td>
<td>10-990 milliseconds</td>
</tr>
<tr>
<td>Range 6</td>
<td>0.1-5.9 seconds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range 1: Pulse period</th>
<th>Pulse length</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 microseconds</td>
<td>0.1-2.9 microseconds</td>
</tr>
<tr>
<td>6 microseconds</td>
<td>0.1-3.9 microseconds</td>
</tr>
<tr>
<td>7 microseconds</td>
<td>0.1-4.9 microseconds</td>
</tr>
<tr>
<td>8 microseconds</td>
<td>0.1-5.9 microseconds</td>
</tr>
<tr>
<td>9 microseconds</td>
<td>0.1-6.9 microseconds</td>
</tr>
<tr>
<td>10 microseconds</td>
<td>0.1-7.9 microseconds</td>
</tr>
<tr>
<td>11 microseconds</td>
<td>0.1-8.9 microseconds</td>
</tr>
<tr>
<td>12 microseconds</td>
<td>0.1-9.9 microseconds</td>
</tr>
<tr>
<td>13 microseconds and above</td>
<td>0.1-9.9 microseconds</td>
</tr>
</tbody>
</table>

A square wave output can be set for all periods.
SOLID-STATE SOLDERING GUN SWITCH

DEAN F. POETH II

The switch on a large soldering gun can require a lot of force to operate. Some soldering gun switches require over four pounds of force before they will close! That much effort can result in a cramped trigger finger very fast!

Here's an idea: why not save your hand by replacing that heavy switch with a space-age tactile sensor. The Solid-State Soldering Gun Switch described here needs no force at all to operate and, because it is solid-state, it is more reliable than its mechanical counterpart. The modification costs only a few dollars, and is a simple one-evening project.

How it Works. An electronic circuit replaces the gun's mechanical power switch with a sensor. That lets the hand activate the gun while exerting effectively zero force with the trigger finger.

The sensor on the soldering gun detects the voltages present in every human body. Those voltages are called common-mode noise, since in medical-diagnosis equipment they interfere with the desired signal (for example, an EKG recording) and are "common" to all electrodes.

Those voltages exist because the human body is a large conductor, and therefore is both inductively and capacitively coupled to the surrounding electromagnetic environment (such as house wiring, fluorescent lights, electronic equipment, etc.). That coupling results in voltages being induced into the body. The effect can be demonstrated by touching the center contact on the input of an old audio amplifier. Various sounds will be heard through the speakers when that connection is touched, including a loud 60-Hz hum and (frequently) one or more local radio stations.

Circuit Description. The schematic diagram of the Solid-State Soldering Gun Switch is shown in Fig. 1. The common-mode-noise signal is picked up by a metal contact that is located at the top of the soldering gun's handgrip. That voltage is coupled by R1 into a Darlington-pair amplifier made up of Q1 and Q2. That circuit has a high input impedance with very high gain. The type of transistor chosen for Q2 has a low conduction resistance. Having a low resistance helps the amplifier deliver as much current as possible to drive the input of IC1 while having an extremely low input current. The input of IC2 is connected internally to an infrared light-emitting diode. The current through that LED is limited to about 8 milliamps by R2. Voltage variations in the common-mode-noise signal are filtered by C1.

The output of IC1 is in the form of a light-activated Triac. The output of IC1 triggers TR1, with a return path for the signal provided by R3. When TR1 is turned on, AC line current flows through the soldering gun's transformer. That transformer normally has two secondaries: one for the soldering-gun tip and one for a small spotlight. A metal-oxide varistor (MOV1) protects TR1 from any transient damage.

Two fuses are used in the circuit. A 2-amp slow-blow fuse protects the main power circuit and a 315-milliamp fast-acting fuse is used to protect the sensor circuit. Both fuses are mounted in the gun's handle.

Power for the tactile circuit is obtained from a wall-mounted DC adapter that is also used as an isolation transformer. That adapter provides 8.3 volts DC at 10 milliamps for the sensor.
Construction. Adding the Solid-State Soldering Gun Switch to a soldering gun is very simple. The circuit is simple enough to be built on a small piece of perfboard using standard construction techniques. In fact, the entire circuit can easily fit into the soldering gun's handle, taking up no more space than the original mechanical switch that it will be replacing.

Begin by opening up the soldering gun and removing the power switch. Cut a piece of perfboard that will fit into the empty space in the gun's handle. Mount the components to the board and make the connections between the various parts. Once the circuit is built and mounted in the handle, check your work to make sure that all of the connections are correct and that there are no short circuits. Do not leave out F1 and F2—safety first! An example of the circuit fitted into a handle is shown in Fig. 2.

The sensor is simply a small brass nail that has been mounted in a small block of rigid packing foam that has been cut to fit the gun's switch opening. Once the block of foam has been cut to shape, press the nail through the foam to make a small hole. Remove the nail and solder a short length of insulated wire onto the pointed end. Once the connection has cooled, thread the wire through the hole in the foam. Place a small drop of epoxy adhesive onto the nail shank and glue it into position. Make sure that there is no epoxy on the head of the nail. Solder the other end of the wire to R1.

When you have finished mounting the electronics in the gun handle, wrap the power cord and the cord from the wall adapter with spiral cable wrap. That will prevent the two cords from tangling and will give the project a neat appearance. A completed unit ready to be closed up and tested is shown in Fig. 3.

Testing. Again, visually inspect your work for any cold-solder joints or short circuits. Check IC to make sure that the sensor circuit is electrically isolated from the AC power line. If it is not isolated, there is the danger of a shock hazard!

Check the soldering gun's transformer for leakage by placing an ohmmeter on its highest resistance.
You can Build Gadgets! Here are 3 reasons why!

- **BP345—GETTING STARTED IN PRACTICAL ELECTRONICS...$8.95**
 If you are looking into launching an exciting hobby activity, this text provides minimum essentials for the builder and 30 easy-to-build fun projects every experiment should toy with. Printed-circuit board designs are included to give your project a professional appearance.

- **BP349—PRACTICAL OPTOELECTRONIC PROJECTS...$8.95**
 If you shun opto-electronic projects for lack of knowledge, this is the book for you. A bit of introductory theory comes first and then a number of practical projects which utilize a range of opto devices, from a filament bulb to modern infrared sensors and emitters—all are easy to build.

- **BP363—PRACTICAL ELECTRONIC MUSIC PROJECTS...$8.95**
 The text contains a goodly number of practical music projects most often requested by musicians. All the projects are relatively low-in-cost to build and all use standard, readily available components that you can buy. The project categories are guitar, general music and MIDI.

Mail to:
Electronic Technology Today, Inc.
P.O. Box 240
Massapequa Park, NY 11762-0240
Shipping Charges in USA & Canada
$0.51 to $10.00...$3.00 $10.01 to $40.00...$6.00
$41.01 to $80.00...$7.00 $81.01 to $120.00...$8.00
Sorry, no orders accepted outside of USA and Canada. All payments must be in U.S. funds only.

- Number of books ordered:
- Total price of books:
- Shipping (see chart): $3.00
- Subtotal: $0.00
- Sales Tax (NYS only): $0.00
- Total enclosed: $0.00

Name
Address
City State ZIP
Please allow 6-8 weeks for delivery.

Fig. 3. The completed Solid-State Soldering Gun opened for inspection. The circuit board is cut to fit into the space left by the mechanical switch.

scale between the wall plug contacts and the output connector contacts. The ohmmeter should show infinite resistance (open circuit). Of course, if you have access to a "hi-pot" tester (a high-voltage device used to test for circuit isolation at very high voltages), use that device to do the isolation test. Next, check between the solder-gun plug contacts and various points in the tactile sensor circuit. Again, the ohmmeter should show infinite resistance.

To test the gun, first plug in the wall transformer with the soldering gun's power cord unplugged. Check for about 8.3 volts DC between TP1 and TP2. Next, monitor the current being drawn by the tactile sensor circuit by inserting an ammeter in series with positive lead from the wall transformer. Without touching the sensor, the current should be zero. Touch the sensor, and the current should rise to about 6-8 mA. If the circuit passes these tests, plug in the soldering gun power cord and touch the sensor. The soldering gun's spotlight should come on and the tip should get hot.

Once the gun passes these tests, unplug the gun and pack the circuit carefully into the soldering gun handle. Glue anything that could move into position using epoxy.

Operation. The sensor on the Solid-State Soldering Gun Switch senses the common-mode voltages in the operator's hand. That requires contact with a relatively large conductor to provide the needed coupling to the local electromagnetic environment. Because of that, small objects such as a screwdriver will not activate the gun unless there is an electrical path to the person holding the tool. Similarly, you cannot activate the gun's sensor while wearing gloves.

Treat the unit with the same respect and caution as any soldering gun. Of course, unplug the Solid-State Soldering Gun when not in use to prevent a fire or burn hazard.

PARTS LIST FOR THE SOLID-STATE SOLDERING GUN SWITCH

SEMI ConDUCtoRs

- 1C1—MOC3010 optocoupler, Triac output
- TR1—Triac, 400-volt, 6-amp
- Q1—MPS2222A NPN silicon transistor
- Q2—2N3053 NPN silicon transistor

REsistorS

(All resistors are 1/4-watt, 5% units.)

- R1—33,000-ohms
- R2, R3—220-ohms

ADDITIONAL PARTS AND MATERIALS

- C1—47-µF, 16-WVDC, electrolytic capacitor
- F1—Fuse, 315-mA, fast-acting
- F2—Fuse, 2-amp, slow-blow
- MOV1—SNRA130K10 metal-oxide varistor
- 8.3-volt DC, 10-mA wall adapter, brass nail, foam, cable wrap, fuse holders, hardware, wire, etc.
It almost goes without saying that if an item is electronic in nature, it uses integrated circuits. But have you ever stopped to think how those ubiquitous ICs are designed and made? What steps are needed between the original concept and the finished device? How do IC makers pack hundreds, thousands, or even millions of transistors and other components on a tiny wafer? Those questions and others will be answered in this article.

Planning, Planning, Planning. As in any major project, the planning stage is vital. Each application is unique and has its own special considerations. Everyone involved in the project must agree on what the goals are. The very first step, therefore, is to write a specification and create a project time-line.

A target specification is written at the outset for two reasons. First, the customer must know exactly what the circuit is going to do. If it's a chip going into a TV receiver, for example, it is essential to know whether or not it includes specific functions such as audio demodulation, auto-tint, or IF amplification. It is essential that the customer and the designers agree on the powersupply voltages, the operating-temperature range, and the output signal levels. In that way, the engineering-integration team can get on with their board and final product design at the same time that the often-lengthy development of the IC itself takes place.

At the same time that product design goals are being finalized, the choice of design tools must be made. Because of their high cost, that is an important issue that must be resolved early!

When we speak of design tools, for the most part we are referring to software. The present level of complexity of integrated-circuit development precludes the ability to breadboard any significant piece of the final design. There might be one or two critical systems or systems using new algorithms that need to be verified by breadboarding, but that's usually as far as it goes. Instead, computer design tools are used for the bulk of the task.

In selecting the tools, there are large number of factors that must be considered. For example, the design team might have already invested a large sum of money in software tools. Also, changing software usually entails a significant investment in training. On the other hand, the customer might express a strong preference in using particular software tools, perhaps due to a need to integrate the product into their existing systems and methodology.

The other important consideration in selecting software tools is the foundry where the chip itself will be made. Some foundries are fairly inflexible about the tool set. Some even specify the tools to be used, provide some supervisory software for the design flow, or insist that the designers purchase the foundry's own proprietary tools.

One more item remains under the category of preliminaries—the choice of the process and foundry itself. Mixed-signal devices often require mixed processes. There are still a few foundries that specialize in bipolar or BiCMOS processes that offer good analog performance, and the majority of existing television chips use either of those processes. However, a few design companies are now trying to apply pure CMOS technology to television receiver chips (with mixed suc-

Head, Analog Systems, Sarnoff Corporation
System Design. The typical design process is illustrated in the flow chart shown in Fig. 1. After the specifications, time-line, and tool choices have been completed, and all the parties have signed off on them, it is time for the work to begin in earnest. It should go without saying that the system-design phase, which usually begins on paper or in the mind of the project leader, is critical to the overall success of the design. That's because the decisions that are made during that phase will directly impact the performance of the final product. This is a highly creative stage where the concepts eventually take form as a block diagram. Brainstorming by the design group is often instrumental in solving a myriad of conflicting requirements.

In general, system design centers around exactly what device partitioning needs to be done to implement the details described in the device specifications. The system design for a TV integrated circuit, for example, will probably include one or more phase-locked loops. The performance of those loops may be directly specified in the system specifications or may indirectly affect the specification. It is important that the PLL has a pull-in range, noise bandwidth, and output duty cycle that is consistent with the overall requirements.

During the system-design stage, one of two paths are usually followed: Depending on the complexity and uniqueness of the system design, either a system simulation is carried out using the appropriate software tool, or the circuit design is started immediately.

System simulations can be done using a variety of tools, among them MATLAB, SPW, TESLA, and VHDL or VHDL-A. MATLAB is a mathematics-intensive tool that is excellent at modeling complex functions. SPW and TESLA are block-diagram oriented tools that permit moving blocks around on the screen, wiring them together, and simulating their operation. Typical blocks included in those tools are various filters, integrators, multiplexers, signal sources, and measurement instruments. Those simulators do not worry about the transistors that will eventually appear at the lowest level, but instead provide software implementation of system functionality. They generally have the ability to add some of the real-world anomalies of noise and non-linearities. With some innovation, the simulators can be connected to displays or other electronic or mechanical devices to produce emulations of how the final product will work.

Let's look at one of the above-named simulators in a little more detail. Figure 2 shows a demo screen view of the TESLA simulator. TESLA uses the ORCAD schematic-capture tool. Netlists describing the connectivity of a system can also be entered manually, but that is a very time-consuming and highly error-prone process. Figure 3 shows the results of a simulation; it is a frequency-spectrum plot of one of the nodes of the block diagram in Fig. 2.

TESLA works at a very high level of abstraction, and the circuit blocks are described by equations or graphical functions. That approach allows optimizing such things as AGC time constants and AGC amplifier gains before a single transistor has been wired.

There are some important reasons to take that approach. First, that type of simulation runs much faster than a transistor-level simulator, and it is practical to do many iterative "what-if" types of analyses. Second, it doesn't make sense to spend a lot of time optimizing circuit-level designs before the system configuration has been finalized. Another reason for the power of that approach is that a system simulation produces a standard of comparison that makes it easier to tell if the final circuit has achieved optimum performance.

Another technique in wide use is applying the VHDL or VHDL-A languages to create circuit simulations. In that approach, the operation of each system block is described by programming statements. That gives an enormous amount of flexibility and provides the ability to mix system-level and lower abstractions together.

A complete system can be put together using this approach, and then one-by-one, the VHDL blocks can be replaced by transistor-level circuit blocks. In fact, the circuit blocks can be inserted and removed one-at-a-time until all cir-
circuits have been checked in the total system while keeping the sys-
tem-simulation time to a minimum.

There are some graphical block-diagram system tools that simplify
that approach by automatically producing VHDL code for blocks
supplied in a component library. The advantage to those is that the
majority of the work can be done quickly, and fine-tuning of the sys-
tem can later be done by working directly on the code. Incidentally,
"VHDL" is one of the buzz-words that IC designers are almost always
asked about on job interviews.

Circuit Design At Last. Now, three months or more into the project, it is
time to begin the actual transistor-
level sub-circuit design. Each individ-
ual amplifier, PLL, and clamp circuit is
implemented in the most area- and
power-efficient method that gives
adequate performance. One inter-
esting thing about integrated-circuit
design is that transistors are used
much more freely than resistors
would be in a discrete design. In an
integrated circuit, it is very important
to eliminate coupling capacitors
since only small ones can be imple-
mented on-chip. If larger ones are
required, then they will have to be
provided externally and precious
package pins will have to be pro-
vided for them. It is easy to see, then,
that the number of pins initially allo-
cated at the beginning of the pro-
ject can be rapidly consumed. An
inside joke among IC designers is
that you always need one more pin
to complete the circuit than is avail-
able in the package.

IC-design techniques rely heav-
ily on resistor and capacitance
matching. The gain of an amplifier
usually depends on resistor ratios
rather than the absolute value of
any one resistor. Fortunately, that is
an area in which ICs excel. Since
resistors and capacitors are fabri-
cated very close together with
identical processing, they tend to
match very closely. In particularly
sensitive applications, they can be
oriented in the same direction on
the chip and even interdigitated so
they practically occupy the Identical
space on the chip.

It is at this point in the develop-
ment that circuit simulators, mostly
based on SPICE, are used heavily.
Even if the design is mostly digital, a
SPICE-level analog simulator is need-
ed to verify the operation of the in-
dividual logic circuits.

A view of the PSPICE schematic
capture tool is shown in Fig. 4. This
tool uses a library of components
such as bipolar and MOS transis-
tors, resistors, capacitors, inductors,
etc. Pull-down menus and shortcut
keys are used to place, rotate, and
flip the components. A wiring tool is
used to connect single wires or mul-
tiple-wire buses to the terminals on
the devices.

After the components are insert-
ed and wired, an electrical-rule
check determines whether all de-
vice pins have been used and veri-
fies that the circuit does not contain
such anomalies as short circuits
between the power supply and
ground. A netlist describing the elec-
trical interconnection of the com-
ponents is then compiled.

To test circuit performance, simu-
lated waveforms are applied to the
input pins, and outputs are con-
ected to software probes. Figure 5
is a typical PSPICE output wave-
form. PSPICE can perform single
simulations or Monte Carlo simula-
tions in which the values of compo-
nents are varied according to
specified tolerances. In the latter
case, a family of plots are pro-
duced that are useful for centering
component values or predicting
yield. In addition, simulations might
be done over the range of expect-
ed process variations.

When satisfactory sub-block per-
formance has been achieved, it is
then necessary to do a series of sim-
ulations over the operating-temper-
ature range. That process must be
repeated for each circuit sub-block
and, if possible, for the entire circuit.
Note that for large analog circuits, a
total circuit simulation is often impos-
sible and detailed interface simula-
tions are often done instead. That
task requires careful attention to
detail to assure that each circuit
properly drives the succeeding one.
DC and AC interface levels, and
drive and loading impedances
must be compatible.

It goes without saying that the
detailed circuit design is the most
intense and time-consuming part of
the design process. During this
phase it could be discovered that it
is extremely difficult to implement
particular system concepts with
low-level circuitry. It then would be
necessary to "go back to the draw-
ing board" and return to the system-
design and simulation phase.
Floor Planning and Layout. As the sub-circuits are designed, the physical dimensions of the layout microblocks can be estimated. This is a convenient time to construct a floor plan showing the relative positions of the various sub-circuits, the positions of the IC-package pins, and a first look at the position of external components associated with the IC.

At this stage, decisions must be made about keeping sensitive circuitry apart, reducing the common impedance of power-supply metalization, and eliminating parasitic devices. Parasitic devices are not only stray capacitors and inductors, but also unwanted active transistors that are formed unintentionally among the various circuit diffusions. With experience, those devices are predictable and are controlled by inserting structures that block their gain.

Assembly and Verification. The next step is assembling the chip. That entails connecting together the previously designed microblocks according to the chip plan. It might be necessary to insert "design-for-test" circuit blocks at this stage so that key internal functions that normally are isolated from the package pins can be accessed.

When the chip assembly is completed, an LVS, or Layout Versus Schematic check is executed. This is a very sophisticated check in which each device on the layout is cross-checked with each device on the schematic. The result of a successful run, indicating a perfect one-to-one correspondence between schematic and layout, is shown in Fig. 6.

Unfortunately, things don't always go as well. Fig. 7 shows the result of a discrepancy reported in the LVS run. Although this screen shows just the layout, the errors can be highlighted simultaneously on both the layout and schematic, making identification and correction relatively simple.

Usually the first LVS run produces a rather long error report that requires some time-consuming detective work to unravel. LPE, or Layout Parameter Extraction, is then used to extract parasitic capacitance and resistance that are then inserted into the schematic to allow for more accurate circuit simulations.

Test Strategy. There are two or more types of tests that need to be planned for. First, wafer tests will take place before the individual die is sliced and separated from the wafer. A wafer probe will come down on the pads of each of the circuits as the wafer is mechanically stepped in two dimensions. Basic DC tests are used to eliminate the grossly (Continued on page 50)
The deregulation of America's utility companies could someday change the way they supply electric power to their customers. That's because deregulation will require utilities to become more competitive by being more innovative and serving the special needs of "niche" markets. For example, technology could allow utilities to reduce their reliance on large, centrally located power plants and massive distribution systems that can be disrupted by weather and other events. In their place, utilities could install single user power sources. While the traditional approach to single-user energy sources usually involves wind, solar, and geothermal power, new approaches such as residential fuel cells and "microturbines" could be the long-term answer.

Residential Fuel Cells.

Residential fuel cells operating on natural gas, propane, and gasoline to produce electricity electrochemically could generate electricity for 20 to 30% less cost compared to more traditional methods of delivering power to homes. By using a reformer, hydrogen needed for the electrochemical reaction in a fuel cell could be extracted from carbon-based fuels. Someday, hydrogen itself could even be delivered and stored in homes. Using pure hydrogen is even more efficient and produces negligible pollutants. Ambient air is used for the oxygen needed in the electrochemical process.

The main byproducts of the fuel cell are heat and water. Instead of merely being released into the atmosphere, a significant amount of that heat can be captured and used for home and water heating. The water could be used for household water needs. Compared to traditional fossil-fueled power plants, less than half the amount of carbon dioxide, a greenhouse gas, would be produced by fuel cells operating on natural gas or propane. Fuel cells operating on pure hydrogen would produce no carbon dioxide. By producing electricity through a electrochemical process rather than combustion, there are little or no other pollutants such as nitrogen and sulfur oxides.

Fuel cells can efficiently supply the power demands of the typical home, even during peak energy-demand hours, without connection to a utility's electrical distribution system. Because they do not need to be connected to power lines, power outages would be a thing of the past. Self-sustaining fuel cells have no moving parts. Corrosion-resistant alloys and state-of-the-art polymers make them essentially maintenance-free.

It is estimated that as many as 26-million U.S. households could benefit from fuel-cell power generation. Electric and natural-gas utilities in the U.S. and abroad have already expressed strong interest in residential fuel cells.

So, with all these apparent benefits, why are fuel cells still not in widespread use? It's because until recently fuel cells were prohibitively expensive. However, technological advances coupled with a reduction in the cost of materials have helped reduce those costs substantially. There's also an "economy of scale" factor at work as fuel cells are being actively developed for other applications, most importantly for automobiles and buses.

One company developing affordable fuel-cell systems for both home and automotive applications is Plug Power LLC. Plug Power is a joint venture between the Edison Develop-

Two new techniques for "on-site" power generation that could someday mean cheaper, less polluting, and more reliable electric power for everyone.

BILL SIURU
ment Corporation and Mechanical Technology Inc., a long-standing developer of automotive fuel-cell technologies. Plug Power fuel cells use the newer polymer electrolyte membrane (PEM) fuel-cell technology, which has advanced rapidly in the last couple of years.

In a program sponsored by the U.S. Department of Energy’s Los Alamos National Laboratory and Arthur D. Little, Plug Power was the first to successfully demonstrate direct conversion of gasoline into electricity with its fuel cell. The demonstration completed in October 1997 was a very important breakthrough for fuel-cell applications because it postpones the need to develop a new fueling infrastructure. Eventually, most fuel cells would probably operate directly on hydrogen for maximum efficiency and environmental reasons. However, being able to operate on gasoline, as well as other hydrocarbon fuels, means fuel cells could be put into widespread use without having to wait for the infrastructure for transporting and distributing hydrogen to be developed and installed.

After the development and testing phase is complete, Plug Power plans to begin distributing their residential fuel cell system throughout the U.S. and also in global markets. Commercial production is planned for the year 2000.

The American Power Corporation (APC) and the Electric Power Research Institute (EPRI) are also working on home- and small business-sized fuel cells. American Power is already offering fuel cells ranging in size from 1 kW up to several megawatts for niche markets such as "premium" power for telecommunications and remote power applications. Like Plug Power, APC is using the more advanced PEM fuel cell technology in its Residential Power Generator (RPG).

APC and EPRI, together with participating utilities, plan to test a minimum of 25 small, 0–10 kW "alpha series" fuel-cell systems for the residential and commercial markets this year. The tests are aimed at assessing their technical and economic potential for serving residential and commercial users with power requirements in the 1–50 kW range. A typical residence uses 1–2 kW-per-hour over a 24-hour period. These fuel cell systems produce a maximum 3 kW base power. Batteries provide backup for short period peak loads of up to 10 kW. The batteries are recharged by the fuel cell during off-peak demand periods. APC estimates the RPG could cost around $5,000 when it is produced in moderate quantities.

APC is also working with a large German gas company on adapting its RPG for the European market where hydronic heating systems are very popular. In those systems, hot water produced by a central boiler is circulated through either wall

THIS RESIDENTIAL POWER GENERATOR (RPG) from American Power Corporation is about the size of the traditional furnace it could replace. Besides space and water heating, it could produce all the electricity most homes use.

INSIDE THE AMERICAN POWER CORPORATION RPG. On the left is the reformer that extracts hydrogen from natural gas or other hydrocarbon fuels. Fuel cells, batteries, inverter, heat exchanger, compressor and electronic controls are located on the right-hand side.
er efficiency of fuel cells should be especially attractive to Europeans who pay significantly more for their electricity. If RPGs catch on in Europe, they could help reduce costs for the North American market by amortizing development costs and through larger production volumes.

Microturbines. Portable gasoline- or diesel-powered generators are commonly used to supply power to remote locations, for backup emergency service, at construction sites, and so forth. While portable generators are usually not considered competition for utility power plants, miniature turbo-generators, or microturbines—small, lightweight, self-contained power supplies—could mean competition, or more realistically, a practical alternative for utilities to economically generate power for special situations. By hooking up several units in a microgrid, they could be used to economically supply power for short-duration, peak loads. For example, many microturbines hooked together could quickly supply electricity to a new neighborhood before permanent power-transmission lines are installed. They could also be used to permanently supply neighborhoods that would otherwise be very expensive to wire due to distances or geography. By placing units near the end users, high-cost transmission and distribution upgrades can be avoided. Because output power can be easily tailored, microturbines could be used to supply specialized power for individual customers such as high-tech industries that need higher quality power.

Miniature turbogenerators are spin-offs of the auxiliary power units (APU) found in most airliners and many military aircraft. One example is the Capstone MicroTurbine, consisting of a gas turbine and electric generator integrated into a single compact unit. The MicroTurbine runs on natural gas, gasoline, or diesel fuel. Power output is from 24–30 kW and can be set up to supply 120-, 220-, or 480-volt AC power at 50, 60, or 1600 Hz, or DC power. Humming at 65 dB at 30 feet without any sound insulation, it is much quieter than a diesel-powered generator.

The single-stage turbine operates at a relatively low—at least for gas turbines—1625 degrees F turbine-inlet temperature allowing use of cast steel alloys rather than more costly exotic metals and ceramics. The single-stage centrifugal compressor is made of cast aluminum and the outer housing uses stainless steel. The generator has copper

![The Capstone MicroTurbine™](image)

The Capstone MicroTurbine™ can run on natural gas, gasoline, or diesel fuel and produces between 24 and 30 kW of electric power.

FOR MORE INFORMATION

AmilidSignal Power Systems
2525 W. 190th Street
Torrance, CA 90504-6098
Web: www.americanradiohistory.com

American Power Corporation
268 Summer Street
Boston, MA 02210
Web: www.americanpower.com

Capstone Turbine Corp.
6025 Yorlanda Ave.
Tarzana, CA 91356
Web: www.capstoneturbine.com

Plug Power L.L.C.
968 Albany-Shaker Road
Latham, NY 12110
Web: www.plugpower.com
INTEGRATED CIRCUITS
(continued from page 46)

inoperative devices, and those are marked with ink. Since the bonding, packaging, and final device testing may cost more than the chip itself, it is prudent not to assemble chips that are nonfunctional. As the project nears production, a personality board might be built that allows detailed functional tests to be made on the wafer itself. Once again, the idea is to reduce final cost.

After the wafer is scribed and diced, the pellets are mounted in packages ready for further evaluation. Prototypes are often mounted in ceramic packages without their lids in place so that mechanical inspection and mechanical probing can be used to isolate problems. In addition, there are some laser drilling and deposition instruments that can actually make repairs to the circuit to verify proposed changes before they are made.

Fabrication. It is finally time to see the realization of our efforts. The twenty or so masks that will be used in the fabrication process are now produced. Those masks are photographic films that contain the physical definitions of the various device layers and diffusions. Depending on priority, samples are fabricated in a couple of days to a couple of months, with six weeks being about typical.

Once the samples are finished, functional tests are performed. If the devices have sufficient functionality, they will be tested in a prototype of the final product. It may be necessary to add some external components to make up for any non-working portions of the sample’s circuitry.

As Fig. 1 shows, the evaluation/fabrication cycle is an iterative one. There are some chips that are fully functional the first time around, but that is generally not the case except in fairly straightforward digital devices. That’s why a project plan invariably includes at least two cuts.

If serious problems are encountered at this stage, the cost can be enormous. The cost of an additional fabrication cycle outside the plan might be over $100,000. The cost of lost production and missed market-

...
Check For Live AC Wires With This ELECTROSTATIC VOLTAGE PROBE

Determine if terminals, sockets, or extension cords are hot without connecting a voltmeter.

How many times have you wanted to know if a wall socket, lamp, or some other electrical device that you are getting ready to repair is still electrically "hot"? You may have pulled the circuit breaker, but unless you actually check the socket or lamp with a voltmeter, you don't know for sure.

The Electrostatic Voltage Probe presented here will give you a warning if voltage is present. What's more, it doesn't need to be connected to the circuit. You only need to hold the test probe next to the terminal or wire under question and a warning will be given if the circuit is energized.

How It Works. The Electrostatic Voltage Probe makes use of the phenomenon known as stray capacitance. That occurs when any two conductors come close to each other without actually touching. In effect, a capacitor is formed with the two conductors becoming the plates, and whatever separates them serving as the dielectric.

One feature of capacitors is their ability to "conduct" alternating current while blocking any DC voltage. That feature is taken advantage of by the Electrostatic Voltage Probe to sense the presence of AC current in a wire. The small AC signal that is coupled to the Electrostatic Voltage Probe is amplified, triggering an alarm buzzer as well as an LED. The effect is to give both a visual and an audible warning. The circuit is sensitive enough to spot the "hot" terminals in a junction box. It can also tell when an extension cord is connected to a live wall socket. In that case, it is only necessary to hold the probe alongside the cord. Additionally, by plugging a wire into a wall socket, the Electrostatic Voltage Probe can tell the difference between the hot and neutral wires.

Circuit Description. Refer to the schematic diagram shown in Fig. 1 during the following description. The probe plate is connected to Q2, a very high-impedance amplifier, through C1. Although C1 is not needed for proper operation of the circuit, it is a necessary part from a safety standpoint. Should any lethal voltages accidentally be connected to the probe, they will be blocked by C1.

Once the input signal is amplified by Q2, it passes through a negative-voltage clamp formed by C2 and D1. The clamp output is rectified by D2 so that only negative voltages will affect Q2. That transistor is normally turned on by R4 but when the clamp is active, Q2 turns off.

When Q2 turns off, pin 4 (the reset line) of IC1 is released. A positive voltage is applied by R5, allowing IC1 to begin oscillating. The output of IC1 (pin 3) drives both a piezoelectric buzzer and an LED. The current through LED1 is limited by R8. The frequency that IC1 oscillates at is set by R6, R7, and C5.

Part Substitutions. One nice feature of the Electrostatic Voltage Probe's design is that all of the parts are easy to find—possibly being no farther than your "junk" box. If that will be your main source of components, here are some points to keep in mind concerning substitutions:

The field-effect transistor used for Q2 is listed as a 2N3819 type. How-
ever, any good N-channel JFET, such as a 2N5458 or 2N5459, will work equally well. Likewise, there are lots of acceptable substitutes for Q1. For example, while a 2N2222 is recommended, any good NPN-type audio or switching transistor such as a 2N3904 will work fine.

The piezoelectric buzzer is also non-critical. Note however that some devices have their own built-in drive electronics. Those units will not work well with the Electrostatic Voltage Probe since IC1 is already driving the buzzer.

The value of C1 is not critical. Any value from 100 pF to 0.01 µF will work well. The only requirement for C1 is that its working voltage should be a minimum of 500 volts. That is for protection in case the probe head comes in direct contact with a bare wire that is carrying high voltage. The rest of the components are generic; values that are close to the listed ones will work fine.

The author's prototype used a molded plastic case with an aluminum lid. Any type of case will do, although cases made only of metal should be avoided for safety reasons. The size of the case should be as small as possible yet still have room for the PC board, a battery, a switch, and a buzzer.

Building the Electrostatic Voltage Probe. Although the Electrostatic Voltage Probe is a very simple circuit, do not try to build it on a perf-board. Potentially lethal voltages could be present at the probe tip should something go wrong such as touching the probe tip to a bare wire that is carrying house current. A foil pattern has been included here—it is a single-sided design that does not need any jumper wires. As an added feature, the surface plate for the probe is a part of the pattern.

Traditionally, construction of any electronic project starts with soldering the components to the PC board. Although that approach can be taken with the Electrostatic Voltage Probe, it is a better idea to start by preparing the case first. That way, you will be sure that the PC board will fit in the case without having to cut or file any excess material from the board after the components have been soldered in place.

The layout of the author's prototype is shown in Fig. 2. Assuming you want to follow that, begin by cutting a slot in one side of the case. It should be the width of the PC board—the probe will slide into it. Test-fit the blank PC board in the case. If needed, trim the PC board to fit. Once the PC board fits in the case with the lid closed, set the PC board aside.

Drill a hole for an angle bracket that will hold the back end of the PC board in place. A small hole (or a series of small holes) should also be drilled where BZ1 will be mounted; they will act like a speaker grille. A hole for S1 should be drilled near BZ1.

Suitable holes for LED1 should be drilled in the case lid. If you wish, you can use a panel-mount clip for LED1. An alternative method that was used in the author's prototype is to use a short length of terminal strip. The LED is soldered to the terminals, and insulated wires are used to connect LED1 to the PC board. You can vary the positioning of the various parts depending on personal taste and size of the selected case. An important consideration for placement of S1 and LED1 is that of safety. Although it might feel more comfortable, do not place S1 near the probe. That will keep your hands as far away from any wires under test as possible. You should also be able to easily see LED1 while holding the unit.

Glue BZ1 in place inside the case, making sure that it is centered over the hole that was drilled for it. If you are using the buzzer suggested in the Parts List, it will have three wires—red, black, and blue. The blue wire is meant for feedback in a single-transistor oscillator, and is not

Fig. 1. The Electrostatic Voltage Probe is a simple circuit that is designed to detect AC signals through the phenomenon of stray capacitance. The probe plate forms one side of a capacitor. AC signals are amplified, rectified, and used to trigger a 555 timer that drives a buzzer and an LED.

Fig. 2. Here is the author's prototype unit with the cover removed. Note how the PC board is mounted in the case along with the additional components. A piece of scrap plastic is wedged between the battery and the PC board so that the battery's metal case won't short out the circuit. A piece of heat-shrink tubing over the probe will help prevent accidental shocks if the probe touches a bare live wire.
needed here; cut it off at the body of BZ1. Mount LED1 to the case lid by whatever method you've selected. If you are going to use a terminal strip, be sure to solder the cathode of LED1 to the terminal that goes to the case lid. Solder three-inch lengths of insulated wire to the LED connections.

Solder the red lead from a 9-volt battery connector to one terminal of S1; a two-inch length of wire goes to the other terminal. Mount S1 in the case. The case is now ready for the PC board; set it aside.

The PC board is assembled according to the parts-placement diagram shown in Fig. 3. Keep the leads fairly short and mount the component bodies as close to the board as possible. Before soldering any polarized components such as the semiconductors, C2, C3, and C4, double-check their orientation. Resistors R6, R7, and R8 are mounted vertically in order to fit the available space. When mounting the transistors, shape the leads to fit the hole pattern in the board before soldering them. Any stress on the leads could cause the component to crack and fall when heated during the soldering process. To help position IC1 correctly, there is a “dot” in the foil pattern next to pin 1.

With the PC board completed, check your workmanship for any bad solder joints, wrong values, or reversed polarities.

Final Assembly and Testing. Test-fit the PC board in the case to check that the components do not get in the way of BZ1, S1, LED1, or B1. Connect the wires from those components to the PC board using Fig. 3 as a guide. When connecting BZ1, the black lead goes to the common ground along with the negative terminal of B1 and the cathode of LED1.

Connect a 9-volt battery to the Electrostatic Voltage Probe. When S1 is pressed, LED1 should flash briefly while BZ1 sounds as C4 charges up. If that happens, the circuit is probably working correctly. The final test is to bring an extension cord that is plugged into a wall socket near the probe while S1 is being held closed. The cord should be placed against the flat side of the probe; pointing the probe tip at a wire will do nothing. See Fig. 4 for the proper way to hold and use the Electrostatic Voltage Probe. The LED should light and the buzzer should beep steadily. Remove the extension cord; both LED1 and BZ1 should go out.

Fig. 3. All of the components for the Electrostatic Voltage Probe fit neatly on a small single-sided PC board. Several resistors are mounted vertically to save space. Note the large foil pad next to C1. That pad is the probe—neatly designed into the board layout!

Troubleshooting. It is hoped that your Electrostatic Voltage Probe worked perfectly the first time you tried using it; if so, you can skip this section. In case things haven’t gone as planned, refer to the schematic diagram in Fig. 1 and the parts-placement diagram in Fig. 3 as we look at some spots that might cause problems.

Difficulties with the Electrostatic Voltage Probe will probably fit into one of two categories. The first category is when LED1 and BZ1 are on continuously whether there is an AC

PARTS LIST FOR THE ELECTROSTATIC VOLTAGE PROBE

SEMI ConDUCTORS

IC1—LM555 timer, integrated circuit
Q1—MPS2222 NPN silicon transistor
Q2—2N3819 N-channel junction-type field-effect transistor
D1, D2—1N914 silicon diode
LED1—Light-emitting diode, red

RESISTORS

(All resistors are 1/4-watt, 5% units.)
R1—16-megohm
R2—2200-ohm
R3—1000-ohm
R4—180,000-ohm
R5—9,000-ohm
R6—4700-ohm
R7—47,000-ohm
R8—150-ohm

CAPACITORS

C1—0.001-µF, 500-VWDC, ceramic disc
C2, C4, C6—4.7-µF, 35-WVDC, electrolytic
C3—100-µF, 35-WVDC, electrolytic
C5—0.01-µF, ceramic-disc

ADDITIONAL PARTS AND MATERIALS

B1—9-volt battery
BZ1—Piezo-electric buzzer
S1—Single-pole, single-throw, momentary-contact switch, normally-open
Case, 9-volt battery connector, heatshrink tubing, wire, hardware, etc.
Here's the foil pattern for the Electrostatic Voltage Probe. Not only is the design an easy-to-fabricate single-sided layout. It is also compact and doesn't require any jumper wires!

Fig. 4. Here is how to use the Electrostatic Voltage Probe when checking an AC line cord. If the cord is hot, then the Electrostatic Voltage Probe will emit a warning tone and the red LED will glow. The unit is sensitive enough to let you find which side of the line cord is the "hot" side.

power cord nearby or not. If that occurs, make sure that a fluorescent desk lamp that might be near (perhaps lighting your bench) is not causing the problem. If that doesn't clear the problem, then the problem will be caused by Q1 not saturating and pulling the reset pin (pin 4) of IC1 low. Using a voltmeter, check that the base of Q1 is at least 0.7 volts above ground. The collector of Q1 should be almost at ground potential. If both the base and collector are high, replace Q1.

If the base is high and collector is low, look for a bad solder joint at pin 4 of IC1. If the base is low (less than 0.7 volts to ground), C4 might be either bad or installed backwards. If it was installed backwards, it might already be ruined.

Capacitor C6 is needed to prevent any noise that might be induced onto the 9-volt bus from retriggering IC1. If an oscilloscope shows noise being picked up that is greater than about one volt in amplitude on pin 4 of IC1, replace C6.

The second category is the exact opposite: LED1 won't light and B21 will not beep when the probe is exposed to a 120-volt AC field. There are several causes for that condition, including:

- IC1 is defective
- Q1 is shorted between collector-emitter or collector-base
- D1 or D2 are either bad or installed backwards
- C2 is either bad or installed backwards
- Q2 is either bad or installed incorrectly
- C3 is either open or installed backwards

We'll start with IC1. First, we'll check that the voltages are as they should be. With the probe lying close to a live extension cord, pin 4 should be above 8 volts. If it is, check all of the connections and solder joints near IC1; replace IC1 if needed. If the voltage on pin 4 is low, check Q1. The base of Q1 should be near ground potential. If it is being exposed to a very strong AC field, it might even be at a negative voltage with respect to ground. If the base is less than 0.5 volts and pin 4 of IC1 is still low, replace Q1. If Q1 has 0.7 volts or higher on its base, then check D1 and D2. They might be either bad (open or shorted) or be installed backwards. The same effect can be caused by C2 either being open or installed backwards. If the circuit checks good all the way back to Q2, check to make sure that Q2 is biased correctly. The DC voltage on the source of Q2 should be at about 3.2 volts, and the drain should be at about 6.8 volts. If those values (within 0.5 volts) are off, Q2 might be installed incorrectly. Compare the pinouts of Q2 to the schematic and the parts-placement diagram. Some manufacturers package field-effect transistors differently. The devices will still work; you just have to be careful to correctly identify the drain, gate, and source leads!

If Q2 is soldered in correctly, it should be replaced. Also check to see if source-bypass capacitor C3 is bad. Finally, measure the value of R1. Substituting a 1-megohm resistor for the 10-megohm unit specified will also cause this same problem.

With the AC Electrostatic Voltage Probe, accidentally working on a live wire will become a memory. But remember, safety should always come first!
Experimenting With Rail Guns, and More

This month I thought we just might take a look into two wildly different topics. Each with its own set of problems and unique opportunities.

Rail Guns

Michael Faraday once ran a rather profound experiment. It went something like what is shown in Fig. 1. He took a block of wood and milled two long parallel slots in it. Those slots were then filled with mercury. Mercury is one of those very rare liquids that conducts electricity fairly well. It is also dense enough to let you float most metals. Mercury is also a deadly cumulative poison; so do not try this experiment on your own.

He then took a "U" shaped wire and bent it so it would float in the mercury pools as shown. When a DC current was applied, the wire quickly moved away from the terminals. Thus proving one of the two fundamental two motor laws:

\[f = Bli \]

Or that the force acting on any conductor will be proportional to the magnetic field strength multiplied by the length of the conductor at right angles to it times the current through the wire. We saw a lot of details on this back in November, 1997. That article is also available as MUSE117.PDF on my www.tinaja.com Web site.

When your circuit is closed, a current loop is formed by the battery, the mercury channels, and the wire float. That single-turn current loop sets up a magnetic field. Thus, the interaction from the above equation creates a force on the loop.

A rail gun is simply any modern rerun of that experiment. Figure 2 shows us several possibilities.

The conductive carrier or projectile in a sabot is sent down the rails when a high current is discharged into the rails from a bank of capacitors. The usual object of the game is to get the carrier to quickly leave the rails.

The term sabot literally means a "shoe." Especially a wooden Dutch one. And sabotage might come about whenever you throw the shoes into machinery. In military parlance, a sabot is any expendable carrier for a projectile. In the case of a rail gun, the sabot should end up both highly conductive and a good lubricant.

In nuclear-fusion lab experiments, a rail gun can cleanly and directly shove a solid hydrogen pellet exactly where it is required. As a terrestrial weapon, a rail gun would have no theoretical limit on muzzle velocity. There would often be no observable muzzle flash as well.

As a launch vehicle, the rail gun spreads the acceleration out over much longer periods of time, thus being much more gentle on human riders and cargo. It also gives you a way to launch to orbit without fuel. Out in space, a rail gun gives us a fuel-free means of accelerating a second stage or a smaller vehicle.

And, of course, as a science-fair project a rail gun can be a sure-fire winner since it could literally blast past all of your competition. As you can see, there are lots of benefits here.

Limitations

The only tiny little problem is that nobody has figured out how to build a really good rail gun. The currents involved are extreme, and approach tens to hundreds of millions of amps. There is often a fundamental conflict between electrical and mechanical friction. You want to minimize both. While graphite is an obvious choice, its conductivity is only moderate at best. Rail-to-projectile welding can be a serious problem; if the projectile leaves your rails for even an instant, extreme voltages result, which causes arcs and welding.

Longer rail guns work best under vacuum to minimize frictional air losses. A major but subtle problem is what takes place when the projectile leaves the rail ends. If there is still current, you get a destructive arc. If you shut the current off too soon, you end up with a dynamic brake.

Usually, multiple hits from many capacitor banks are needed. Properly profiling and switching the currents is not trivial. Speed sensing feedback is a must. Finally, rail-gun efficiency is ridiculously low, and is made even worse by the extremely high energy levels involved.

Special capacitors are required. They must have an ultra-low ESR, or equivalent series resistance. They also have to provide extreme levels of energy storage and be capable of being rapidly discharged. Note that most conventional capacitors will violently explode when subjected to rail-gun conditions.
As far as I know, all rail guns to date are still in the lab. Any practical applications remain elusive, and are likely to stay that way.

Yes, you can build your home rail gun. But most efforts so far barely manage to get the projectile to leave the rail ends. This is not a technology that scales down well because of the extreme currents involved, and some serious electrical safety issues might keep you from making a science fair project out of this.

Still, if you want to pursue this, there are two fine Web sites to get you going. Those are "Bill Beatty's Science Hobbyist" at www.eskimo.com/~billb and "The Rail Gun Page" you will find at www.hmc.edu/~jengel/rail.html.

I've gathered together a few more railgun Web-site resources for you as this month's resource sidebar, but watch out for false hits on rail guns if you decide to surf out on your own. There's a lot of sci-fi dreck and pseudoscience garbage on this topic. I sure got sucked in on the "weapons list" showing barely believable rail guns as installed on a recently deployed UN tactical aircraft, only to find out later that it was really just an RPG role-playing game. I also learned that Railgun's last album is one of their best.

Industrial Strength Servos

The air conditioning people have been keeping a big bunch of "secret" rotary actuators all to themselves. One in particular seems to have some heavy tail-twisting capabilities that can be applied anywhere. But before we get into that, let's review:

Say you want to precisely control the position or speed of a shaft. Your choices are to use an open loop with a stepper, or a closed loop with a servo.

Servos are short for servomechanism. In a servo, position is continually sensed and used as correctional feedback. Servos are usually more complex but more accurate than steppers---generally, it is easier to accurately measure something than it is to precisely move somewhere under variable load.

You might be familiar with the small servos used in model airplanes. Those accept a duty cycle modulated rectilinear wave and output a mechanical position. A low duty cycle twists it left, a mid duty cycle of 50% centers it, and a high duty cycle twists it right.

Combining these servos with PICs and the Basic Stamp or other micros leads to all sorts of interesting new options. Go to www.parallaxinc.com, www.micromint.com, and www.see.com for lots of applications information.

But what if you need some serious tail-twisting? Honeywell has a Modutrol IV air conditioning servo that just might work well for you. Some details on this beast appear in Figs. 3 and 4.
A typical Modutrol sits in a zinc diecast box about 4 by 6 by 7 inches. There is a half-inch shaft coming out both ends of the box.

Most Modutrols accept the usual "furnace control" 24-volt AC as the line-power input. Some include an internal transformer for direct 110-volt operation.

There are three input control lines that you can connect to a 1K volume control or some ratio-metric voltage source. When you adjust the volume control, the shaft position precisely follows. Typical Modutrols offer 35 inch-pounds of torque, and twist 90 degrees in thirty seconds. A pair of programmable limit switches may be optionally provided.

The usual application is to open or close a damper in an A/C duct, providing just enough cooling to meet the room's needs. But the torque is more than enough to open or close nearly any reasonable sized valve. And there should be all sorts of new mid-sized robotics uses for these units.

The Modutrol IV has an internal potentiometer that senses the current shaft position, which is compared against the input control voltage with a comparator. If low, an AC back-gear motor is powered in a clockwise direction. If high, the same motor is powered counterclockwise. A modest amount of hysteresis is added to the comparator. That prevents continuous "hunting" for small input changes. The hysteresis will also dramatically reduce power consumption, because with it, the motor starts and then stops only on significant input changes.

The entire motor and gear train is apparently sealed in oil for long life and maintenance-free operation. The power when actually operating is 27 watts or so. Standby power is quite low. A humongous gear ratio lets a small high-speed motor generate a lot of low-speed torque. The other end of the shaft also comes out of the case, but Honeywell recommends using that end only for an indicator or a pointer or for some other light load. Both ends of the shaft have two flats and a grooved ring on them.

Yeah, the thirty seconds pin to pin is kind of slow. And they prefer a 25-per cent duty cycle under heavy load. But try, oh my, the tail twisting that's available here makes that worth dealing with. You should be able to come up with all sorts of new shop or farm remote-control uses for one or more of these, and there's all sorts of heavy-duty robotics applications possible.

No, these Modutrols are not cheap. Their wholesale price through Grainger is several hundred dollars, but lower-cost competitors surely must exist, as must a used and auction market. And these sure are a superb starting point for serious robotics.

I do have a few surplus Modutrols at www.tinaja.com/~bargte01.html if you want to play with them. Let me have your thoughts on what you can do with a powerful and convenient rotary actuator. Or tell me about any other higher power actuators that you may have run across.

![Diagram](image-url)

FIG. 2—A RAIL GUN is simply the Faraday f-Bi experiment in disguise. Discharging the capacitors accelerates the carrier.

SOME RAIL-GUN WEB SITES

- http://112.9.7.21/70/en/annrep94-95/rail.html
- http://es.epa.gov/techinfo/facts/railgun.html
- http://httpbsd.uchicago.edu/~c-henkle/btech2/0966.html
- http://iml.umkc.edu/physics/sps/railgun/railgun.html
- http://madsci.wustl.edu/posts/archives/dec96/851510255.Eg.r.html
- http://me.udel.edu/~morrison/rail.html
- http://weber.u.washington.edu/~buckwadi/ram/ram.html
- http://www.access1.net/nintech/research.html
- http://www.esecs.kumamoto-u.ac.jp/eecs/labs/akiyama-lab/subjects/railgun
- http://www.engr.uiuc.edu/Publications/summary97/ece/FUSION.html
- http://www.iap.com/jbarber.html
- http://www.isd.net/anowicki/SPBI1112.HTM
- http://www.mhi.co.jp/tech/htm/e633213a.htm
- http://www.sover.net/~geoff/t/collguns.html
- http://www.st. nasa.gov/thesaurus/R/word12648.html
- http://www.uiuc.edu/colleges/eng/summary/ece/FUSION.html
- http://www.utexas.edu/research/cen/2rdrd02/02.html
- http://www.west.net/~steamer/massdriv.htm
- http://www3.hmc.edu/~jen gel/rail.html
Whither Windows 98?
I just lost several days and some monumental frustration in trying to upgrade an older cheap computer to Windows 98. It finally worked, but not without some rather rude surprises along the way.

First, note that Windows 98 is an evolutionary not revolutionary improvement. For most people, there's no urgent need to do an immediate upgrade. Win 98 is somewhat faster and somewhat more stable than its predecessor. It eventually will let you use multiple monitors and far better USB Universal Serial Bus printers and such. But before you make the switch, make absolutely sure you have got everything currently and freshly backed up.

My klutzy old Packard Bell was picking up a few bad habits (such as a memory leak, difficult restarts, and excessive clacking), so I thought an upgrade would miraculously repair things. The Win 98 upgrade promptly caused a fatal exception blowup and trashed all my IDE drivers. This left me without a CD-ROM drive, a 120-Meg floppy, and even the A: drive. The latter of which was removed when the big floppy was installed.

A call to Packard Bell (their 900-line support has worked well for me) suggested a new BIOS patch upgrade—Agoura 1.20 in this case. I got their patch using another computer and then reinstalled the original A: drive. This cured the fatal exception, but not the trashed IDE drivers. It used to be you could reset blown drivers by changing a NoIDE flag with Resedit, but that flag is apparently gone.

After that, I tried reinstalling Win 95. That was a huge time mistake that really caused problems. I then used 125 floppy disks to back up every file I could. Besides my work files, that included fonts, Netscape Mail, the internal tax files, sig files, other apps, and more.

Next, I tried completely cleaning the Windows folder and did a Win95 reinstall. This did not work because the registry was apparently blown at this point. So (gulp) I re-initiated the C: hard drive and reinstalled Win 98. I then reinstalled Win 98. Everything worked just fine.

Well, sort of: I still can not get Netscape's "You Have Mail" flag to work. And Wordpad is ridiculously slow—far slower than it used to be. A hint or two would certainly be welcome.

The bottom line: The best way to upgrade to Windows 98 is to avoid doing it at all on an older or flaky computer. If you must, the route of a full save, an online compatibility check, a hard disk re-initiation, and full reinstallation is probably the fastest, safest, and cheapest way to go.

New Tech Lit
The July 17, 1998 issue of Science magazine on page 329 asks us "How good is the error correction on the DNA code?" Incredibly so, it seems. For DNA cleanly heat out millions of other trial codes. It was not even close. Very intriguing research here. There is still a buck to be made by publishing a complete DNA pocket card.

Microchip Technology is now offering their latest Technical Library on PIC Microcontrollers on CD ROM. Alternates to the PIC appear in a similar CD ROM from Atmel. A third CD ROM from TelCom Semiconductor covers charge pumps, fan controllers, temperature sensors, and MOSFET drivers. Lots more PIC support is found at www.tinaa.com/pic01.html

From Unitrode there's a new UCC3926 integrated current sensor. This has a 20-amp rating and includes an internal shunt resistor.

New VersaPad combination touch pads and signature grabbers are now offered by the Interlink Electronics folks,
FIG. 3—THE MODUTROL IV is a servo normally used in air conditioning. On a control voltage input, the shaft goes to selected position at high torque. The 90-degree peg-to-peg time is 30 seconds.

![Diagram of MODUTROL IV](image)

as are several new development kits.

Details on micromachined spray techniques are in a new app note from Spray Chip Systems. And FlexiForce now offers a new system of ultra-thin force-sensing transducers.

Several different epoxy samples are available from Tra-Con. Reid Tool Supply has their interesting catalog full of all sorts of tools and mechanical items.

Three trade journals for this month include Forming & Fabricating and Stamping Journal on sheet-metal work, and BookTech for book-publishing insiders. The latter title is adding Book-on-demand publishing information in it. More on BOD is found at www.tinaja.com/bod01.html

FactsFinder is a free GPS navigation house organ from Trimble.

Parallel Port Complete seems to be a definitive book on dealing with PC parallel-printer ports. More details on that Jan Axelson book from Lakeview Research is at www.tinaja.com/amlink01.html

A new extended tutorial on buying military-surplus electronics can be found at www.tinaja.com/glib/resbn81.pdf Examples of the kinds of goodies you can get from Uncle can be found at www.tinaja.com/barg01.html Secret test-equipment manual sources at available at www.tinaja.com/glib/resbn80.pdf

Military surplus can now be bought direct over the web, and often for less than a penny on the dollar. You can now pay by VISA, and sometimes the feds will even deliver. You can also find out who paid how much for what.

Again that's all done online. But you do have to know what you are getting and definitely must have a plan for pickup, use, and storage. With a little care, though, astounding bargains abound.

I also have got a nearly new and complete printed circuit plate-through lab by Kepro available at one quarter the new cost. E-mail don@tinaja.com or see www.tinaja.com/bargte01.html for details.

For all the fundamentals of digital-integrated circuits, check out my CMOS and TTL cookbooks, either by themselves or as part of my Lancaster Classics Library. Details per my nearby Synergistics ad. Instant book access is available at www.tinaja.com/amlink01.html

As usual, most of those mentioned items are in our Names & Numbers or Railgun-Websites sidebars. Always look here first before calling our free US technical helpline. Let's hear from you.

FIG. 4—INSIDE THE MODUTROL is a classic servo that has dead-band hysteresis. High torque results from a small motor and a very large gear reduction train. The mechanism is sealed in oil.
with holes for tripod mounting. The stand costs $149.95.

While not everybody needs a laser tool to align their speakers, audio professionals have long found laser levels to be useful. And this is the "laser" level for audio professionals who have had to do it with a carpenter's laser level all these years. But even the high-tech home-audio enthusiast might be able to justify the cost of this tool given its usefulness around the home. There are plenty of people out there doing all sorts of handyman projects where a laser level would surely come in handy. And when it comes to aligning their speakers, those people will know that their speakers have been aligned with laser precision. All it takes is the SA-S Pro Sound Alignment System from Checkpoint Laser Tools. For more information on the SA-S Pro or the base model SA-S, contact the manufacturer directly at the address given earlier in this article, or circle 15 on the Free Information Card.

SERVICE CLINIC

was determined or what may have caused the failure in the first place. Nor is there likely to be any list of other components that may have been affected by overstress and therefore might fail in the future. Replacing Q701 and C725 might get your equipment going again, but that will not help you to repair a different model in the future.

Having said that, here are three tech-tips sites for computer monitors, TVs, and VCRs:

- http://www.anatekcorp.com/techforum.htm (Free)
- http://elmswood.guernsey.net/ (Free, somewhat limited)

The following is just for monitors. Some portions are free, but others require a $5 charge. However, that might include a personal reply from a technician experienced with your monitor, so it could be well worth it:

- http://www.netis.com/members/

http://www.members.tripod.com/~ADCC/ (Home page)
http://members.tripod.com/~ADCC/tips.htm (Tech-tips of the month)

The Resolve Monitor Tech-Tips database is a diskette that is priced out of the reach of most hobbyists. However, a reduced shareware version can be downloaded from a number of web sites. Go to http://www.filez.com/ and look for res16sw.zip.

MULTIMEDIA on the PC!

What is Multimedia? What can it do for you? It can do lots of nice things! This 184-page book helps you create your own multimedia presentation. Multimedia applications by people like you can revolutionize educational and business applications as well as bring more FUN, FUN, FUN into your leisure computer activities.

Mail coupon to:
Electronics Technology Today, Inc.
P.O. Box 240
Massapequa Park, NY 11762-0240

Please send me my copy of Multimedia on the PC (PCP120). I enclose a check or money order for $18.95 to cover the book's cost and shipping-and-handling expenses. NY state resident must add local sales tax.

Name
Address
City State Zip

All orders must be paid in U.S. funds only. Sorry, no orders accepted outside of USA and Canada. Please allow 6-8 weeks for delivery.

VCR CROSS REFERENCE

This 172-page reference contains both model and part-number cross-references updated as of Feb, 1997. VCR's are made in a few factories from which hundreds of different brand names and model numbers identify cosmetically-changed identical and near-identical manufactured units. Interchangeable parts are very common. An exact replacement part may be available only a few minutes away from you even though the manufacturer supplier is out-of-stock. You may be able to cannibalize scrap units at no cost!

The ISCET VCR Cross Reference is pre-punched for standard loose-leaf binding...$38.00 plus $4.00 for shipping for each Reference.

Cllaggk Inc.
VCR CROSS REFERENCE OFFER
P.O. Box 4099
Farmimgdale, New York 11735-0793

Name _________________________
Business _______________________
Address _________________________
City ____________________________ State ______ Zip ______
Phone __________________________

Enclose $38.00 for the Eighth Edition of the ISCET VCR Cross Reference and $4.00 for shipping for each Reference in the United States. All other countries add $5.00 (surface mail).

The total amount of my order is $ _______________________
Check enclosed—do not send cash or please charge my credit card. ☐ Visa ☐ MasterCard Exp. Date __/__/____
Card No. ________________________
Signature _______________________

New York State residents must add applicable local sales tax to total. US funds only. Use US bank check or International Money Order.

CB02
TeleEye AE-50, Your “Non-Stop” Watchdog, the Remote Surveillance System.

TeleEye AE with a built-in modem, Infrared remote control, Remote controllable I/O port, Timing device for status readout. Everything you need for video conferencing but also protection for your property. The only multipurpose Video phone/security product of its kind, that offers video-conferencing with 4 selectively Video inputs, and Surveillance connectors. The TeleEye AE-50 is a multipurpose video communication platform. It can not only communicate with any H.324 base POTS videophone but also perform as a non-stop watchdog for your precious property.

I/O - Can be utilized to turn on a light or alarm.

Wireless Cameras

Wireless Camera Package Deals, include: one camera, one receiver and power supplies. (Receiver holds up to 4 cameras)

Wireless 4-Channel A/V Black/White & Color Cameras

Built-in Mic (on all models)
Cameras are shipped with 4.3mm lens (Camera shown with optional lens)

GFS-1001 (900MHz)
GFS-2002 (1.2GHz)

GF-1001 $149.95 Gives any camera the ability to be wireless, Transmits to 1000 feet.

Polaris Product Catalogs

Polaris Industries
http://www.polarisusa.com
800-752-3571

Polaris Industries 470 Armour Dr. Atlanta GA 30324 Tech Info: 404.872.0722 FAX: 404.872.1038

Prices Good Thru 12/31/98, Not responsible for misprints or typos.

Worlds Smallest Video Camera

No Bigger than the size of a Quarter!

with CMOS Technology.

CM-550U $69.95
Pinhole Camera Available:
CM-550P $69.95

240 Line Horizontal Resolution
Size: 1.12”(L) .5”(W)

Micro Video Cameras

Micro Audio Receiver

MIC-300 -$39.95

Outdoor Models Available

LP-8501 LipStick Camera
$99.95

Video Conferencing

TeleEye has everything you need to do Color Video Conferencing. It comes with a built-in high quality digital camera, a high speed modem and state-of-the-art Audio/Video hardware.

Remote View Window
Up to 15 frames per second or VHS-quality resolution.

On-Screen Menus
Easy Control using your phone keypad.

$499.95
Stand Alone System
No PC Needed.

MB-9000C Color Camera
$79.95

MB-6501a with Built-In Audio $85.95

CIRCLE 220 ON FREE INFORMATION CARD
ElitePremier

Elite 800

Features of Elite Premiere
- Volume Control
- Audio/Video Out
- Slim Line Remote
- 800 MHz / 125 Channel
- Parental Control
- Unlimited Favorite Channels
- STD/HRC/IRC Switchable
- Automatic Fine Tuning

Stargate Infinity 3000A

- Upgradeable Micro Card
- 125 Channel / 800 MHz
- Volume Control
- Audio/Video Outputs
- Sleep Timer
- Unlimited Favorite Channels
- Dynamic Memory Recall

Viewer's Choice Electronics

5337 South Campbell Avenue, Suite A2, Springfield MO 65810

800-228-7404 FAX 417-887-2883

www.viewerchoice.com

CIRCLE 259 ON FREE INFORMATION CARD

PicCC Compiler $49

- Supports PIC16C55x, PIC16C87x, PIC16C88x, PIC16C95x
- Source level debugger
- Integrated Development Environment
- Reads .hex and .bin files
- Generates .srec file

PicCSX Compiler $59

- Supports PIC16C55x, PIC16C87x, PIC16C88x, PIC16C95x
- Source level debugger
- Integrated Development Environment
- Reads .hex and .bin files
- Generates .srec file

PicCDbg Debugger $79

- Source level debugger
- Integrated Development Environment
- Reads .hex and .bin files
- Generates .srec file

Zagros Robotics

ROBOTS

SONAR

OPTICS

Artificial Intelligence

PO Box 460342
St. Louis, MO 63146-7342
(314)768-1328

info@zagrosrobotics.com
www.zagrosrobotics.com

Keep Your C-Band System Running Strong!

Free Buyer's Guide

BEST VALUES ON...

- Receivers, including 4DTV
- Dish Movers, LNBS, all kinds
- Tune-up Kits, Tools & Parts
- Skypecast Programming
- Toll Free Technical Help

Fax: 218-739-4879
Toll: 218-739-5331

800-543-3025
www.skyvision.com

www.americanradiohistory.com
1.32 DIAMETER X 0.16”

AVX/Kyocera # KBT-33RBC-2CN Metal encased piezoelectric acoustic generator. High durability. Small, thin shape. Designed for telephone use. Inside the metal case is a 1.28” diameter piezo element with 5.5” leads attached. If you’re looking for a plain element with leads, the case can be pried apart fairly easily.

CAT# PE-39

“White” LED

1100 mcd white led. T 1 3/4 (5mm) diameter. Jumbo LED emits a bright white light. 3.6-4 Volt @ 20 ma. 45° viewing angle when lit.

CAT# LED-48 $4.75 each

Great Price! “EAR BUD” STEREO EARPHONES

Miniature "in-ear" earphones for use with portable CD, radio and tape players. Gold-plated 3.5 mm stereo phone plug. 32 ohm impedance. Large Quantity Available

CAT# HP-6 $85.00 each

LOW PRICE! AA NICKEL-CADMIUM RECHARGEABLE BATTERY

Motorola 0.56” dia. X 1.97” long

CAT# NCB-AA

$1.25 each

10 for $11.00

100 for $100.00

104 KEY WINDOWS 95 KEYBOARD

Windows 95 compatible, light touch membrane keypad. Spill resistant. Five foot cord with small din connector - fits most late-model machines. LED indicators for Numbers, Caps and Scroll Lock. Very sharp looking keyboard with charcoal background and dark rose colored keys.

CAT# KBD-4 $7.00 each

10 for $60.00

UV Blacklight

New black-light lamps designed by Avon Cosmetics to highlight dry skin. They have a built-in timer that shuts off the lamp after approximately one minute. Ideal for lighting fluorescence in black-light posters, gem-stones, hand stamps and U.S currency. 5” lamp, F4T5BLB, is housed in a lightweight plastic case, 7” x 3.25” x 2.3” high. Powered by a 12 Vdc, 500 ma transformer (included). Individually boxed.

CAT# UVL-5 $10.00 each

F4T5-BLB. Replacement lamp for fixture above. CAT# BLB-5 $3.00 ea.

ORDER TOLL FREE 1-800-826-5432

MAIL ORDERS TO:
ALL ELECTRONICS CORP.
P.O. BOX 567
VAN NUYS, CA 91408-0567

NO MINIMUM ORDER • All Orders Can Be Charged to Visa, Mastercard, American Express or Discover • Checks and Money Orders Accepted by Mail • Orders Delivered in the State of California must include California State Sales Tax • NO C.O.D • Shipping and Handling $5.00 for the 48 Continental United States - ALL OTHERS including Alaska, Hawaii, P.R. and Canada Must Pay Full Shipping • Quantities Limited • Prices Subject to change without notice.

MANUFACTURERS - We Purchase EXCESS INVENTORIES... Call, Write, E-MAIL or Fax YOUR LIST.

QUALITY PARTS — FAST SHIPPING — DISCOUNT PRICING

CALL, WRITE, FAX or E-MAIL For A Free 96 Page CATALOG.
Outside the U.S.A. send $3.00 postage.
Bel MERIT DX Series DMMs have best values for performance, features and dependability with 3 year warranty.

DX460L, full function in a single meter
- Wide LCR Range
- Inductance, up to 20H
- Capacitance, up to 2000μF
- Resistance, up to 20MΩ
- Logic, TTL & CMOS
- Auto Frequency, Up to 20MHz
- Diode Test, Continuity Beeper
- Data Hold, Peak Hold
- Input Warning Beeper
- Auto Power Off

Lots More Test Instruments

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DX350</th>
<th>DX355</th>
<th>DX360T</th>
<th>DX400</th>
<th>DX405</th>
<th>DX421</th>
<th>DX451</th>
<th>DX460L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Ranging/Bargraph</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC/DC Voltage (750V/1100V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC/DC Current (10A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance (20MΩ)</td>
<td>200Ω</td>
<td></td>
<td></td>
<td></td>
<td>500Ω</td>
<td>500Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Beep/Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature w/Probe, Type K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIP settings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance (20pF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200pF</td>
</tr>
<tr>
<td>Frequency (20MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic (TTL & CMOS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inductance (20H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto Power-Off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Warning Beeper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Hold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Hold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protective Holster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRICE</td>
<td>49.95</td>
<td>74.95</td>
<td>64.95</td>
<td>64.95</td>
<td>69.95</td>
<td>74.95</td>
<td>84.95</td>
<td>99.95</td>
</tr>
</tbody>
</table>

* See your local distributors or Call for Catalog

1-800-532-3221
949-766-4802 • FAX 949-766-5800
P.O. Box 744, Lake Forest, CA 92630

CIRCLE 283 ON FREE INFORMATION CARD

MEMBRANE
SWITCHES

Stock Layouts!
Eliminates tooling cost...
From 2 to 128 keys

- Industrial/Commercial/Prototyping
- Popular types are available as complete kits, with bezel, connector & overlay!
 - 4 key DSK-4 kit $9.60
 - 12 key DSK-12 kit $13.87
 - many more layouts...

Optional Stainless Steel “Clickdomes”.

Sil-Walker
(805) 491-0654
FAX (805) 491-2212
P.O. Box 3220
Camarillo, CA 93011-3220
silwr@vcnet.com
www.vcnet.com/silwr/

MASTERCARD/VISA

PC Boards
Under $100

1. Download our FREE layout software
2. Design your 2 sided plated-through PCB
3. Send us your layout over the Internet
4. In 2-3 business days, UPS delivers your boards, typically under $100

www.cable4less.com

Cable TV
Z. Products
1-800-660-4180
Visa MC Amex Discover C.O.D.

www.expresspcb.com

3 Axis Motion Control System
Complete, ready to run
$ 255.50 + 12.00 S/H
Build or adapt CNC mills, CNC routers, Robots, Etc.
Includes: 3 Stepping motors (70 oz-in, 200 steps/rev),
External board (connects to parallel port of a PC),
Power supply, Cables, Manual and the MAXNC drive software,
with linear, circular and helical interpolation, acceleration
deceleration, full contouring, 'G' code programming,
screen plot, code generation from CAD (CAM), and more.

For more information, phone or write to:
MAXNC
6730 West Chicago
Suite 2 & 3
Chandler, AZ 85226
Ph (602) 940-9414
Fax (602) 940-2384

www.americanradiohistory.com
Roger's Systems Specialist

Best Prices!

800-366-0579

We Have Great Connections

Computer - Communication
Network - Audio - Video

Best Service!

Call today for a FREE full-product catalog.

Helping Hands
Holds projects in place for easy soldering. Comes with attached magnifying lens.

Order On-line!
www.rogerssystems.com

Best Service!

Order On-line!
www.rogerssystems.com

CD Jewel Case
Replacement for original case. Durable plastic.

#TM-CD-1....3/$1.00 each

Microphone
Stick on monitor or clip on shirt, 6 ft. cord, condenser mic.

#TM-MIC-2....$1.00 each

Mouse Pad
Sponge rubber backing to prevent sliding, many colors available, call for details.

#TM-PAD......$1.00 each

Network Cable Tester
Test the correct pin configuration of 10Base-T/ 10Base-2 Thin Ethernet cable, RJ45/RJ11 modular cables 356A, TIA-568A/568B

Easy to verify cable continuity, open, short and miss-wire

#TM-147.....$7.50 each

Specifications
Serial and PS/2 Mouse emulation and keyboard emulation for automatic PC boot up

Supports SVGA, VGA and Multisync monitors

Built-in buzzer for switching confirmation

Keyboard LED status recorded and restored while switching among computers

Auto Scan for monitoring PC periodically

Provides PC/AT keyboard ports

Built-in PS/2 mouse and serial mouse ports

Built-in PS/2 keyboard ports

#DS-104-KMM......$299.00 ea

Specifications

USB Cable
Male to male "A" to "A", shielded, 6 ft.

#CC-USB-6......$5.00 each

USB Ports
USB(2)
to 10 pin motherboard w/ bracket

#TM-USB-9.......$7.00 each

Computer Toolkit

Ideal for standard user maintenance repairs and general servicing of computers peripherals, includes: 14 in. nut driver, 1/8 in. slotted screwdriver, 1/16 in. slotted screwdriver, IC extractor for 8.40 pin ICS assembly tweezers, heat sink clamp, tri claw part holder, spare parts tube: diameter 3/4 in., length 6 ft. durable black vinyl padded case with individuals straps for all tools listed above.

#TM-TK1....$10.00 each

USB Port

#TM-USB-9.......$7.00 each

Dec 20#67

www.americanradiohistory.com
AM Band Radio Transmitter

Ramsey AM radio transmitters operate in the standard AM broadcast band and are easily set to any channel in your area. Our AM-25 "pro" version, fully synthesized transmitter features a PLL controlled frequency control, while being jumper setable for higher power output where needed. The single-cell level AM-1 uses a tunable transis- tor oscillator and runs the maximum 100 milliwatts of power. No FCC license is required, expected range is up to 1/4 mile depending on antennas and conditions. Transmitters accept standard two-level inputs from tape decks, CD players or mixers, and run on 12 volts DC. The Pro AM-25 comes complete with AC power adapter, matching case and bottom loaded wire antenna. We offer a level AM-1 with a tunable matching case and knob set for this unit. Our "pro" version AM-25 has Level AM-1 added and a matching case.

AM-25, Professional AM Transmitter KIt $129.95
AM-1, Entry level AM Radio Transmitter Kit $29.95
CAM, Matching Case Set for AM-1 $14.95

RF Power Booster

Add some serious muscle to your signal, boost power up to 9 watts over a frequency range of 100 KHz to over 100 MHz. Use as a lab amp for signal generators, plus many foreign users employ the LP-1 to boost the power of their FM Stereo Transmitter Kit. Includes AC12-5, CFM, LPA-15(C), FM-3001, High Power Video Transmitter Cube $229.95

We also offer a high power export version of the FM-100 that's fully assembled with one watt of RF power, for miles of program coverage. The export version can only be shipped outside the USA, or within the US if accompanied by a signed statement that the unit will be exported.

FM-100, Professional FM Stereo Transmitter Kit $299.95
FM-100WT, Fully Wired High Power FM Transmitter $429.95

Super Pro FM Stereo Radio Transmitter

A truly professional frequency synthesized FM Stereo Transmitter station in one easy to use, handsome cabinet. Most radio stations require a whole equipment rack to hold all the features which have been packed into the FM-100. Set frequency easily with the Up/Down/Drop buttons and the Big LED digital display. Plus there's input low pass filtering that gives great sound no matter what the source (no more squalls or swishing sounds from cheap CD player inputs!) Peak limiters for maximum 'punch' in your audio - without over modulation, LED bargraph meters for easy setting of audio levels, and a built-in mixer with mike and line level inputs. Churches, drive-ins, schools and colleges find the FM-100 to be the answer to their transmitting needs, you will too. No one offers these features at this price! Kit includes cabinet, whip antenna and 120 VAC supply.

We also offer a high power export version of the FM-100 that's fully assembled with one watt of RF power, for miles of program coverage. The export version can only be shipped outside the USA, or within the US if accompanied by a signed statement that the unit will be exported.

FM-100, Professional FM Stereo Transmitter Kit $299.95
FM-100WT, Fully Wired High Power FM Transmitter $429.95

CD Video Cameras

If you're looking for a good quality CCD board camera, stop right here! Our cameras use top quality Japanese Class 'C' CCD sensors, CMOS ICs, not off-the- shelf arrays that are found on many other cameras. You see, the Japanese suppliers grade the CCDs at manufacture and some manufacturers end up with the off-grade chips due to either cost constraints or lack of buying 'bout. Also, a new strain of CMOS single chip cameras are entering the market, those units have about 1/2 the resolution and over 30% noise, the current that these cameras do - don't foil us! Our cameras have nice clean fields and excellent light sensitivity, you'll really see the difference, and the black & white models are superior IR (Intra-Red). Sensit. Our IR-1 illuminator kit is invisible to the human eye, but lights the scene like a flashlight all night long. Another plus is Auto White Balance, Auto Gain, Back Light Compensation and DSI. Available with Wide-angle (60°) or super thin Pin-hole style lenses. They run on 9 VDC and produce standard 1 volt p-p video. Add one of our transmitter units for wireless transmission to any TV set, or add a IR-1 interface board for audio pick-up and super easy direct wire hook-up connection to any Video monitor, VCR or TV with video/audio input jacks. Cameras fully assembled, including pre-wired connector.

CCDW-2, B&W CCD Camera, wide-angle lens $99.95
CCDPH-2, B&W CCD Camera, slim pin-hole lens $99.95
CCD-2, Color CCD Camera, wide-angle lens $149.95
IR-1, IR Illuminator Kit for B&W cameras $24.95
IB-1, Interface Board Kit $24.95

We came across these nice binoculars in importers close-out deal. Not some cheap in-line lens job, these binoculars have roof prisms, a super nice rubber amored housing over light weight aluminum. 10 x 25 power with fully coated optics includes lens cleaner cloth, neck lanyard and nice carry case. For extra demanding use in bright sun, choose the EX model with ruby coated Objective lens. First quality at a closeout price! We've seen the exact same units with the 'Bushnell' name on them being sold for $30 more!

BNO-1, Binoculars and case $29.95
BNO-1EX, Ruby Coated Lens Binoculars and case $32.95

Binocular Special

From Teledyne Binoculars. We offer these units at a closeout price. They are fully assembled, including case and knob set. They feature a full 5-15 power range, 1/2 inch objective and eyepiece lenses, fully coated optics and a comfortable gold, silver, Rogaine, Viagra? You'll be pleased, return it if not pleased, return in original form for refund. Add $6.95 for shipping, handling and insurance. Orders under $50, add $3.00, NY residents add 7% sales tax. Sorry, no CODs, foreign orders, add 20% for surface mail or use credit card and supply shipping method.

Call for our Free Catalog!
See our complete catalog and order on-line with our www.ramseyelectronics.com

Treasure Finder Kit

Search for buried treasure at the beach, backyard or park. This professional quality kit can detect metal at a depth of up to 6 inches. Easy to use, just listen for the change in tone as you sweep your probe over the surface - the larger the tone change - the larger the object. Has built-in speaker or earphone connection, runs on standard 9 volt battery. Complete kit includes handsome case, rugged PVC handle assembly that 'breaks down' for easy transport and shielded flat cord. Easy one evening assembly. This nifty kit will literally pay for itself! That guy in the picture looks like he found something - what do you think it is - gold, silver, Rogaine, Viagra? You'll be pleased, return it if not pleased, return in original form for refund. Add $6.95 for shipping, handling and insurance. Orders under $50, add $3.00, NY residents add 7% sales tax. Sorry, no CODs, foreign orders, add 20% for surface mail or use credit card and supply shipping method.

www.americanradiohistory.com
MCM ELECTRONICS®

The Source For All Of Your Electronics Needs

When ordering, please provide this code: SOURCE CODE: ENS53

For over 20 years, MCM has been the leading supplier to the electronics service industry. Huge inventory, rapid delivery and competitve prices have made MCM the choice for:
- Hobbyists
- Technicians
- Educators
- Installers

Discover the MCM difference, call today for your free catalog.

8" Dual Voice Coil Sub Woofer

Ideal for incorporating into home or auto sound subwoofer applications. Poly treated paper cone and rubber surround combine with a 20 oz. magnet and 1½" voice coil for 60W/100W RMS peak capacity, 24Hz-4KHz response. Each coil 8ohm. Regular price $18.50

VOX Relay Module

Pre-assembled module senses signal at its line level input and switches a SPDT 5A relay. Ideal for automating recording, surveillance or stereo equipment. Requires 12VDC, 50mA. Measures only 2.95" x 1.57" x 1.18". Regular price $17.95

Color CCD Board Camera

Features automatic gain control, automatic white balance and 330 lines of horizontal resolution. Output is 75mV. NTSC standard base video. Requires 12VDC, 240mA. Regular price $89.00.

DC to AC Inverter

Provides 110 volts AC from your cigarette lighter for on-the-road power. Ideal for small electronic devices including lights, laptop computers, and small televisions. Provides 140W continuous output, 250W surge. Regular price $69.95.

ATC Lead Wire Fuse

Finally there is a fast, easy and low cost way to tap an automotive fuse box. Simply replace the existing fuse with a Lead Wire Fuse of the same value, and you have a 6" pigtail, ready for connection. Five per package.

FREE Catalog!

1-800-543-4330

www.mcmelectronics.com

Hours: M-F 7 a.m.-9 p.m., Sat. 9 a.m.-6 p.m., EST.

Prices Effective Nov. 5 through Dec. 31, 1989

CATV Converter with A/V Outputs

Features full 155 channel compatibility, multi-function IR remote, base band audio/video out, plus channel 3 output. Regular price $89.50.

FREE INFORMATION

For over 20 years, MCM has been the leading supplier to the electronics service industry. Huge inventory, rapid delivery and competitive prices have made MCM the choice for:
- Hobbyists
- Service Technicians
- Educators
- Installers

Discover the MCM difference, call today for your free catalog.

Order #55-1435

8" Dual Voice Coil Sub Woofer

Regular price $18.50

Order #22-4825

VOX Relay Module

Regular price $17.95

Order #62-3015

Color CCD Board Camera

Regular price $89.00

Order #22-1875

Security Bit Kit

Regular price $15.39

Order #32-2070

CATV Converter with A/V Outputs

Regular price $89.50

Order #72-6451

DC to AC Inverter

Regular price $69.95

Order #22-1875

Security Bit Kit

Regular price $6.50

1-800-543-4330

www.mcmelectronics.com

Hours: M-F 7 a.m.-9 p.m., Sat. 9 a.m.-6 p.m., EST.

FREE Catalog!

MCM ELECTRONICS®

650 CONGRESS PARK DR.

CENTERVILLE, OH 45459

A PREMIER FARNELL Company

SOURCE CODE: ENS53

FREE INFORMATION
CALL TOLL FREE
(800) 292-7711 orders only
Se Habla Espanol

C&S SALES
EXCELLENCE IN SERVICE

DDT-700 Digital / Analog Trainer
Elencos newest advanced designed Digital / Analog Trainer is specially designed for school projects. It is built on a single PC board for maximum reliability. It includes 5 built-in power supplies, a function generator with continuously sine, triangular and square waveform and a 1500 tie point backboard area. Tools and meter shown optional. (Mounted in a professional tool case made of reinforced metal).

XX-700 Assembled and Tested $189.95
XX-700 - SEMI KIT w/ Fully Assembled PC Board $174.95
XX-700K - Kit $159.95

Digital Multimeter
Model MM-1740 $39.95
Free Holster
11 functions
- Freq to 20MHz
- Cap to 20p-F
- AC/DC Voltage
- AC/DC Current
- Buzzer
- Diode Test
- Transistor Test
- Meets UL-1244 safety specs

Digital LCR Meter
Model LCR-1810 $99.95
- Capacitance 1pF to 20MF
- Inductance 1uH to 20H
- Resistance 01 to 2000M
- Temperature -20C to 750C
- DC Volts 0 - 20V
- Frequency up to 15kHz
- Diode/Audible Continuity Test
- Signal Output Function
- 3 1/2 Digit Display

Power Supply Kit Model XP-720K $54.95
3 fully reg. DC supplies
1.5VDC - 15VDC @ 1A
-1.5VDC to -15VDC
5VDC @ 3A
Plus
8.5VAC @ 1A and 12.6VAC C.T. @ 1A
Available assembled Model XP-720K $84.95

Model CM-1555 $48.95
- Capacitors from 1pF to 20MN + F
- 3 1/2 Digit LCD
- Zero adjust
- Special insertion pack
- 1/2% basic accuracy
- Till stand

Model SG-9300
- 10Hz - 1MHz
- Low Distortion
- Sin/Square wave
- Built-in 150MHz Frequency Counter
Model SG-9500 RF Generator with Counter $225
- 100KHz - 150MHz
- Internal AM Mod of 1kHz
- RF Output 100MV - 35MHz
- Audio Output 1kHz @ 1V rms

Digital Capacitance Meter Model SFL-01 $39.95
- Aligns Satellite Dishes
- Range 950-2050MHz
- Compact Size
- Self Power Check

Model AM/FM-108K Transistor Radio Kit with training course $29.95
- No Soldering Required

Micro Screwdriver
Retaining Ring Remover
2mm Eccentric Screwdriver
Inclined Base

Retaining Ring Remover
2mm Eccentric Screwdriver
Inclined Base

Digital Audio Generator with built-in Counter $175
- 10Hz - 1MHz
- Low Distortion
- Sin/Square wave
- Built-in 150MHz Frequency Counter

Sweep Function Generator with built-in Frequency counter $225
- Range: 0.3Hz - 2MHz
- Sine, Square, Triangle, Pulse, Ramp
- Ext. counter 1Hz - 10MHz

Remote control with Counter $175
- 100KHz - 150MHz
- Internal AM Mod of 1kHz
- RF Output 100MV - 35MHz
- Audio Output 1kHz @ 1V rms

15 DAY MONEY BACK GUARANTEE
FULL FACTORY WARRANTY
PRICES SUBJECT TO CHANGE WITHOUT NOTICE

WE WILL NOT BE UNDERSOLD
C&S SALES, INC.
150 W. CARPENTER AVENUE
WHEELING, IL 60090
FAX: (847) 541-9904 (847) 541-0710
http://www.elenco.com/c_s_sales/

CIRCLE 322 ON FREE INFORMATION CARD

Look for other monthly specials on our website

SOLDERING REQUIRED

Modern Printed Circuit Board Assembly

PRESMA C-1046
300 PAPER BOUND SHEETS
100 SHEET BINDER
$12.95

15pc. VCR Service Tool Kit Model TK-1400 Special $24.95
- Inclined Base Screwdriver
- Eccentric Screwdriver
- 2mm & 3mm Fine Adjust Screwdriver
- VHS VCR Head Puller
- Retaining Ring Remover
- 3 Reversible Screwdrivers
- Spring Hold Tool
- Micro Screwdriver
- Hex Wrench Set

Tektronix DMMs
For high performance digital multimeters that are accurate, reliable, and rugged, the DMM900 series extends the Tektronix line of already affordable DMMs. Twice the accuracy. Up to 10 times the resolution. And a full range of capabilities that span voltage, current, dual numeric display, 3 year warranty, and autoranging capability. All backed by the reliability of the Tektronix brand.

Model M-6100
The M-6100 is Elencos most sophisticated meter with almost every possible feature available. The M-6100 even has a computer interface for viewing and storing data on a personal computer. It comes complete with software, RS-232 cable, test leads and manual.

Model XP-581
4 Fully Regulated DC Power Supplies in One Unit
4 DC voltages: 3 fixed - +5v @ 3A, +12v @ 1A, -12v @ 1A
1 Variable - 2.5 - 20V @ 2A

Model GF-8026
Sweep Function Generator with built-in Frequency counter

Model SG-9200
Analog No counter $119.95

Model SG-9300
10Hz - 1MHz
Low Distortion
Sin/Square wave
Built-in 150MHz Frequency Counter

Model SG-9500
RF Generator with Counter
- 100KHz - 150MHz
- Internal AM Mod of 1kHz
- RF Output 100MV - 35MHz
- Audio Output 1kHz @ 1V rms

Model SFL-01
- Aligns Satellite Dishes
- Range 950-2050MHz
- Compact Size
- Self Power Check

Model AM/FM-108K Transistor Radio Kit with training course $29.95
- No Soldering Required

Model SF-01 SATELLITE FINDER
- Aligns Satellite Dishes
- Range 950-2050MHz
- Compact Size
- Self Power Check

Model AK-540 35mm Camera Kit
Learn all about photography
- No Soldering Required

Model AK-870 RADIO CONTROL CAR KIT
- 7 functions
- Remote control included
- No Soldering Required

Model AK-700 Phone kit with training course 4 Flashing neon lights
- See thru case
- No Soldering Required

Model SG-9500 RF Generator with Counter $225
- 100KHz - 150MHz
- Internal AM Mod of 1kHz
- RF Output 100MV - 35MHz
- Audio Output 1kHz @ 1V rms

Model SG-9200 Analog No counter $119.95

Model SG-9300
10Hz - 1MHz
Low Distortion
Sin/Square wave
Built-in 150MHz Frequency Counter

Model SG-9500 RF Generator with Counter $225
- 100KHz - 150MHz
- Internal AM Mod of 1kHz
- RF Output 100MV - 35MHz
- Audio Output 1kHz @ 1V rms

Model SG-9200 Analog No counter $119.95

UPs Shipping: 48 States 5%
OTHERS CALL FOR DETAILS
IL Residents add 8.25% Sales Tax

Electronics Now, December 1999

www.americanradiohistory.com
Quality Scopes by Elenco
Lowest Prices of the Year!

Includes Free Dust Cover and Probes

60MHz
DS-603 $995
- Analog / Digital Storage
- 20MS/s Sampling Rate
- RS232 Output
- 20 and 400KHz resolution bandwidth

40MHz
S-1345 $569
- Analog with Delayed Sweep
- Component Tester

40MHz
S-1360 $749
- Analog with Delayed Sweep
- Component Tester

100MHz
S-1390 $895
- Analog w/ delayed sweep
- Dual Time Base
- TV Sync

B&K Precision Multimeter Specials

F-73II
List $129

F-75II
List $149

F-79II
List $199

F-87
List $335

B&K Precision Multimeter Specials

- 50,000 count
- 0.02% 500MHz
- 0.02% Ranges
- Auto Range
- True RMS, AC, or 4C-DC
- 100kHz AC response
- Frequency, Duty Cycle, pulse width
- 8.25% Sales Tax

Features:
- One instrument with four test and measuring systems:
 - 1.3GHz Frequency Counter
 - 2MHz Sweep Function Generator
 - Digital Multimeter
 - Digital Power Supply

Guaranteed Lowest Prices

C & S SALES, INC.
150 W. CARPENTER AVENUE
WHEELING, IL 60090
FAX: (847) 541-9904
http://www.campenhoc.com/c_s_sales/

CALL OR WRITE FOR OUR
NEW FREE 64 PAGE
CATALOG!
(800) 445-3201

Same Day Shipping

Fluke Scopemeters

123 . NEW . $950
92B . $1,145
92B . $1,165
92B . NEW . $2,095
102B . $2,495

ALL FLUKE
PRODUCTS
ON SALE

B & K PRECISION
SCOPES

20MHz DUAL-TRACE
Model 2120B - 2 Year Warranty
Special $375
Model 2125A with delayed sweep
$539.95

- 100MHz to 1000MHz
- Dynamic Range 80dB(113dB with attenuation)
- 20dB maximum Input
- 10.5 and 200KHz resolution bandwidth
- 150KHz/hour stability
- Built-in tracking generator(Model 2620A)

500MHz Series
- BK2615A $1250
- BK2620A $1675

1.05GHz Series
- BK2625A $1925
- BK2630A $2595

PORTABLE SEMICONDUCTOR TESTER
B & K 510
$199.00

- In or out-of-order circuit tests for transistor, FETs, SCRs and diodes.

20MHz Sweep / Function Generator with Freq Counter
B & K 4040
- 0.2Hz to 20MHz
- AM & FM modulation
- Burst Operation
- External Frequency counter to 30MHz
- Linear and Log sweep
10MHz B & K 4017 $300
50MHz B & K 4011 $798

GUARANTEED LOWEST PRICES

C & S SALES, INC.
150 W. CARPENTER AVENUE
WHEELING, IL 60090
FAX: (847) 541-9904
http://www.campenhoc.com/c_s_sales/

15 DAY MONEY BACK
GUARANTEE
FULL FACTORY WARRANTY
PRICES SUBJECT TO CHANGE WITHOUT NOTICE

CIRCLE 322 ON FREE INFORMATION CARD

December 1978 Electronics Now
EARN MORE MONEY!

Be an FCC LICENSED ELECTRONIC TECHNICIAN!

Learn at home in spare time. No previous experience needed!

No costly school. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radio-telephone License." This valuable license is your professional "ticket" to thousands of exciting jobs in Communications, Radio-TV, Microwave, Maritime, Radar, Avionics and more...even start your own business! You don't need a college degree to qualify, but you do need an FCC License.

No Need to Quit Your Job or Go To School! This proven course is easy, fast and low cost! GUARANTEED PASS—You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

Or, Call 1-800-932-4268 Ext. 210

COMMAND PRODUCTIONS
FCC LICENSE TRAINING, Dept. 210
P.O. Box 2824, San Francisco, CA 94126

Please rush FREE details immediately!

NAME
ADDRESS
CITY
STATE
ZIP

Free FCC cost! This proven no need but you and more...even TV, exciting jobs for The Original FCC license. Or, GUARANTEED facts now. Rush FREE call to the school. No need an FCC license or money refunded. Or, start your own business! You don't need a college degree to qualify, but you do need an FCC License.

Examples include:

- Measuring Temperature
- Using a Photocell to Detect Light Levels
- Making a Waveform Generator
- Constructing a Capacitance Meter
- Motor Speed Control Using Back EMF
- Interfacing and Controlling Stepper Motors
- Scanning Keypads and Writing to LCD/LED Displays
- Bus Interfacing an 8255 PPI
- Using the Primer as an EPROM Programmer
- DTMF Autodialer & Remote Controller (New!)

The PRIMER is only $19.95 in kit form. The PRIMER Assembled & Tested is $169.95. This trainer can be used stand alone via the keypad and display or connected to a PC with the optional upgrade ($49.95). The Upgrade includes: an RS232 serial port & cable, 32K of battery backed RAM, & Assembler/Terminial software. Please add $5.00 for shipping within the U.S. Picture shows with upgrade option and optional heavy-duty keypad ($29.95) installed. Satisfaction guaranteed.

RADIATION® ALERT
Quality At Your Fingertips

The easy to build Monitor 4 kit is a cost effective way for you to survey for radiation.

BUILD OR BUY YOUR OWN GEIGER COUNTER

The finished kit is a sturdy general purpose Geiger counter capable of detecting alpha, beta, gamma, and x-rays. Kit price $160.00.

S.E. International, Inc.
P.O. Box 39
Summertown, TN 38483-0039
Tel: 800-293-5769 Fax: 931-964-3564
E-mail: seintc@usit.net Website: seintc.com
If you haven't received a copy of our current 268 page catalog ... have one added to your order or please give us a call and we will send one out to you immediately.

MOTOROLA

KSN1165A High Power Bullet Tweeter
- Power handling: 200 watts RMS/400 watts max
- Frequency response: 1,800-30,000 Hz
- SPL: 92 dB
- Manufacturer model number: KSN1165A
- Dimensions: A: 4-1/4", B: 4-1/4", C: 3-1/2"

#270-014 $12.95 (1-3) $11.50 (UP)

Dayton Loudspeaker Co.®

5-1/4" Treated Paper Cone Tweeter
- Magnet structure is fully shielded to permit audio/video use
- Power handling: 30 watts RMS/45 watts max
- Voice coil diameter: 1-1/8"
- Voice coil inductance: 33 mH
- Impedance: 8 ohms
- DC resistance: 5.0 ohms
- Frequency response: 45-6,000 Hz
- Motor weight: 9.5 oz.
- Fs: 43.4 Hz
- SPL: 86 dB/1W/1m
- Vas: 0.61 ft³
- Qms: 0.46
- Qts: 0.61
- Qes: 0.33
- Wmax: 80 watts
- Nominal power: 10 watts
- Sensitivity: 94 dB 1W/1m

#295-300 $13.50 (1-3) $12.15 (UP)

ESOTEC Cast Frame Woofers

Dynaudio® AUTHENTIC TECHNOLOGY

CALL TOLL FREE 1-800-338-0531

ESOTEC Cast Frame Woofers

#500-042 $16.95 (UP)

FLUKE®

70 Series III Analog/Digital Multimeters

Part #	**Model**	**Price**
392-042 | 77-III | $174.75
392-025 | 70-II | $60.95
392-032 | 73-III | $125.95
392-036 | 75-II | $154.80
392-038 | 26-II | $213.50
392-046 | 79-II | $193.80

Advanced Speaker Designs For The Hobbyist And Technician

CALL TOLL FREE 1-800-338-0531

Product Line:

- **NEW PRO SERIES**
- **LARGEST SELECTION OF SPEAKER DRIVERS IN THE COUNTRY!**
- **Call Toll Free** 1-800-338-0531
- **Key Code: EENMEM**
Téléx Inc. model SG-100

DC to 20 MHz linear and log sweeps

Pulse Generator

Int/Ext AM, SSB, Dualtone Gen.

Noise

International Tracking

Established in 197". Tells you how to protect yourself. More!

INTERNET CONC & SCAMS: Internet cons, scams, related frauds to take in $15Billion annually! Most are done anonymously with impunity. Details how they're done, how to ID them, how to protect yourself. More $25.

THE COOKIE TERMINATOR:

When online, many websites track your every move! Browse any website, and the site's cookie can follow you anywhere and everywhere. Includes computer fax machines, and tips and tricks. Includes hacker attacks on internet predators and scammers and spammers. When you're finished, the cookie is destroyed. More $29.

The J.G. Manual: External magnetic ways are used in this book to show how they work and their anatomy. Describes SPM, PDF, and other magnetic devices and their uses, advantages, and disadvantages. More $29.

SPM THE VIDEO: As viewed on "60 MINUTES"! New 6th Edition! Plans for devices that can slow down (even stop) watt-hour meters. Devices plug into outlet and normal loads in other outlets. Discusses meter creep, overload, pole meters, etc. $29.

S/P M FILES: External magnetic ways (applied to meter) to slow down and stop power meters while drawing full loads. A must have for all $29.

METERS:

How they work and many of the defenses! $29.

Voice Mail Hacking:

VMS are hacked to penetrate PBXs to make outgoing calls, print VMS usage, secretly read/crack delete messages, or damage the VMS (or PBX) itself. Step-by-step on how it's done, countermeasures. $29.

The Hacker Files:

3 HD PC disks filled with choice raw, colorful and highly informative hacker, hacker text files covering many topics! $39.

Beyond Van Eck Phreaking:

Plans for remote eavesdropping of TV video signals. Range up to 1 KM. Describes how van Eck systems work, and are also used in surveillance of computer systems. S29 The Van Eck Demo Tape is $29. Both for only $69.

The DIRTY-2 Dozen:

24 Hot Hack/Phreak Disks! See CATALOG!

TOP SECRET

2430 Juan Tabo, NE, #259, ABQ, NM 87112
P.O. Box 246297, ABQ, NM 87192
Fax: 505-292-4078
Orders only: Voice: 505-237-0734

Full Catalog: www.tsc-globaLcom/Consumer.html
Advertisement: tsc-globaLcom

CONSUMERTRONICS

Any waveform you want!

Starting at $795

Quantify 1
Money back guarantee

Tellex Inc.

2455 Old Middlefield Way S Tel (650) 938-0240
Mountain View, CA 94043 Fax (650) 938-0241
Http://www.tellex.com

Circle 311 on free information card

Hacking the Internet

The latest tools and methods being used on the Net to pirate software (ware) and the newest hacking websites. Includes examples, countermeasures, password defeats, UNIX, Symantec, brute force tech, lots of tips. More $29.

INTERNET TRACKING & TRACING

Scanners, spammers, stalkers, infect, and others hide behind the Internet's anonymity to commit serious offenses. Learn from master hackers best methods to track & trace IDs and origins, and to protect your own privacy. More $29.

INTERNET CONS & SCAMS: Internet cons, scams, related frauds to take in $15Billion annually! Most are done anonymously with impunity. Details how they're done, how to ID them, how to protect yourself. More $25.

PEGGER (BEEPER) MANUAL: How Pagers work, different types and uses, tips, ads, advantages over and uses with cellphones, and tips and tricks. How Pagers are hacked/countermeasures. And plans for a Personal Pocket Paging System (emitter and receiver). More $25.

Both for only $69!

PHONE CALLER ID & ANI:

How they work and dozens of ways of defeating Caller ID, ANI, "69," "57," Call Blocking, "67," etc. Describes ESS, CNA, CMA, ENS, Divers, Centers - very $29

HACKING FAX MACHINES:

Delves into all known methods of hacking faxes and countermeasures. Includes computer fax modem, times, intervals, interception, protocols, parameters, compression, encryption, and fax surveillance-type mods. More $29.

As advertised on "60 MINUTES!" New 6th Edition! Plans for devices that can slow down (even stop) watt-hour meters - while loads draw full power! Devices plug into outlet and normal loads in other outlets. Discusses meter creep, overload, pole meters, etc. $29.

Creative \ Card Scams - $29

Cons & Scams - $29

Social Engineering - $29

Phreaking - $29

A manual to avoid ID theft and the hassle of dealing with phreakers, hackers, and phreaker text files covering many topics! $39.

HIGH VOLTAGE:

Secrets to pirate software (warez) and gain access to In-...

In the world of high voltage, you need to know exactly how much voltage a credit card or check reader can handle. This manual has many tips and tricks for working with...

High Voltage Devices - $29

Mind Control - $29

Under Attack - $29

Radioactive Man - $19

Secrets of Solderless BBS - $24

Secret & Alternate IDs - $15

Cryptanalysis Techniques - $25

Government Land Grab - $15

Rocket's Red Glare - $29

Survival Guns & Ammo - $19

The Ultimate Driver - $19

www.americanradiohistory.com

CIRCLE 226 ON FREE INFORMATION CARD
Digital Power Meter

Measures Watts & Watt-hours (kW-hr)

Simple to use. Plug the Power Meter into any AC outlet, and plug the appliance to be measured into the Power Meter. That's it!

Model 4-1850:
- Measure REAL ("true") power 1 to 1850 Watts
- Measure Power used, 1 Watt-hour to 9999 kilo-Watt-hr
- Measure power cost ($), just enter cost per kilo-Watt-hr

Performs the same functions as instruments costing $500-$1000! No other instrument on the market even comes close for this price!!

Model 4-1850 Only $149.95 Delivered!
Model 20-1850 Only $249.95

Custom applications available • Dealer inquiries welcome

Brand Electronics,
421 Hilton Rd.
Whitefield, ME 04353
For Information only, call 1-207-549-3401
http://www.mint.net/-ebrandl/

CONTROL RELAYS • LIGHTS • MOTORS

MEASURE TEMPERATURE • PRESSURE • LIGHT LEVELS • HUMIDITY

INPUT SWITCH POSITIONS • THERMOSTATS • LIQUID LEVELS

MODEL 30 $79
- Plug into PC Bus
- 24 Lines Digital I/O
- 8 Channels
- 8 BIT A/D In
- 12 Bit Counter
- Up to 166 MHz/sec

MODEL 45 $189
- RS-222 Interface
- 8 Digital/10
- 8 Analog Inputs
- 2 Analog Outputs
- 2 Counters 16 Bit

MODEL 100 $279
- 12 Bit 16/8 Bit A/D
- 4 Analog Outputs
- 3 Timer Counters
- 24 Digital I/O

MODEL 150-02 $179
- RS-222 Interface
- Time to Amps
- 12 Bit A/D
- OPPO-Isolated
- Complete Shink

MODEL 40 $109
- RS-222 Interface
- 28 Lines Digital I/O
- 6 Analog Inputs

MODEL 70 $239
- RS-222 Interface
- 18 Bit A/D
- 8 Analog Inputs
- Up to 60 MHz/sec

Prairie Digital, Inc.
PHONE 608-643-8599 • FAX 608-643-6754
920 SEVENTEENTH STREET • PRAIRIE DU SAC, WISCONSIN 53578

CIRCLE 215 ON FREE INFORMATION CARD
TIMELINE INC.
Over 12 years and 30,000 customers and still growing

Minimum Order: $70.00. Minimum shipping and handling charge $5.00. We accept cash, checks, MasterCard, VISA, and Discover. We do not ship COD.

INACR 850-700 Series Electronic Component
Fixed portable 500anp
IRA41S/S70R 850-700 Series
DIGITAL SCOPE PROBE 850-700 Series
W 20MHz/HIGH ELECTRICAL

Includes:
640x400 Toshiba $15.00
240x128 (backlit) Optrex $20.00
640x480 (backlit) Panasonic $20.00
256x128 Epson $20.00

Quality lightweight
Variable power control
Open-frame construction
Standard 12 VDC, 1.4 A

Magnetic card reader $25.00
Includes 20 character dot matrix display with full alphanumeric capability + keypad with full alphanumeric entry and separate 7.5 VDC/0.5 Amp power supply + standard telephone interface extension cord + lithium battery and flat cable speaker.

HP barcode wand (HBCS 2300) $25.00

Solaris breadboard
830 tie points. MB102PLT model features 3 binding posts and aluminum backplate.
Part No: 1-9 10+
MB102 5.95 5.00
MB102PLT 8.95 8.00

Helping resistant kit
1/4W 5% film. 5 pieces each of 73 values. 365 pieces total.

Motion detector
$2 ea. - $10 For $15

Desoldering iron
3-Wire High Performance
$25.00

Desoldering iron stand
W/Sponge
$3.50

Desoldering pump
W/Tip
$6.00

Turn pot 7 Seg. Display
$69 ea.

ELECTRONIX EXPRESS

CIRCLE 275 ON FREE INFORMATION CARD

WELLER SOLDERING STATION - MODEL WC1 100
- Variable power control (5 to 40 watts)
- Replaceable heating element
- Quality light-weight pencil iron

$36.95

Dual-trace oscilloscope
W/high resolution, blue cat, input probes, power cord 2 year warranty
Goldstar 5020
20MHz
$349.00

Scope probe 60 MHz
$12.95

Switches
8 POS DIP
Mini Toggle SPDT $60 ea.
$50 ea.

High Quality Tools
With Cushion Grips and Return Spring Needle Nose Wire Stripper Diagonal Cutter

$95 ea.

Power supplies
0-30 VDC, 0-30 Amp. Built-in current limiting, constant voltage and current operation.

10PSGP4303A Analog Display $165.00
10PSGP4303D Digital Display 189.00

More Low-priced
Items in Our

FREE CATALOG

216-Page Catalog

Electronix Express
5410 25th Street W. St. Petersburg, FL 33714

(813) 873-6900 Ext. 275

(305) 484-2000 Ext. 275

In NJ: 732-381-8020
Fax: 732-381-1572

365 Blair Road Avenel, NJ 07001-2293
800-972-2225

www.americanradiohistory.com
SECRETS!

Unusual, detailed how-to books, manuals, references, old & new, for experimenters and mad scientists on high voltage, crystal sets, early radio and television, vacuum tube gear, Tesla, plastics, chemistry, hydrogen fuel, lasers, booze, solar cells, embalming, telegraphy, more! Highest quality how-to! Guaranteed! Big illustrated catalog! fax:815/935-5477 Write! • http://www.lindsayybks.com

Lindsay's Technical Books
PO Box 538-EBG, Bradley, IL 60915

Plant Trees for America

Check Web! -- www.m2l.com

EZ-EP DEVICE PROGRAMMER - $169.95

- **Fast** - Programs 27C010 in 23 seconds
- **Portable** - Connects to PC Parallel Port
- **Versatile** - Programs 2716-080 plus EE and Flash (28F,29C) to 32 pins

Inexpensive - Best for less than $200

- Correct implementation of manufacturer algorithms for fast, reliable programming.
- Easy to use menu based software has binary editor, read, verify, copy, etc. Free updates via bbs or web page.
- Full over current detection on all device power supplies protects against bad chips and reverse insertion.
- Broad support for additional devices using adapters listed below.

Available Adapters

<table>
<thead>
<tr>
<th>Adapter Code</th>
<th>Name description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP-PIC121256x</td>
<td>PIC121256x</td>
<td>$36.95</td>
</tr>
<tr>
<td>EP-PIC1717C4x</td>
<td>PIC1717C4x</td>
<td>$46.95</td>
</tr>
<tr>
<td>EP-5357917C51</td>
<td>PIC5357917C51</td>
<td>$39.95</td>
</tr>
<tr>
<td>EP-11E8BHC11EUA</td>
<td>8BHC11EUA</td>
<td>$69.95</td>
</tr>
<tr>
<td>EP-11D8BHC11103</td>
<td>8BHC11103</td>
<td>$29.95</td>
</tr>
<tr>
<td>EP-11E8BHC11EUA</td>
<td>8BHC11EUA</td>
<td>$39.95</td>
</tr>
<tr>
<td>EP-11D8BHC11103</td>
<td>8BHC11103</td>
<td>$59.95</td>
</tr>
<tr>
<td>EP-PIC6456-26</td>
<td>PIC6456-26</td>
<td>$59.95</td>
</tr>
<tr>
<td>EP-PIC54-14X5B</td>
<td>PIC54-14X5B</td>
<td>$49.95</td>
</tr>
<tr>
<td>EP-PIC121256x</td>
<td>PIC121256x</td>
<td>$36.95</td>
</tr>
<tr>
<td>EP-PIC1717C4x</td>
<td>PIC1717C4x</td>
<td>$46.95</td>
</tr>
<tr>
<td>EP-5357917C51</td>
<td>PIC5357917C51</td>
<td>$39.95</td>
</tr>
<tr>
<td>EP-11E8BHC11EUA</td>
<td>8BHC11EUA</td>
<td>$69.95</td>
</tr>
<tr>
<td>EP-11D8BHC11103</td>
<td>8BHC11103</td>
<td>$29.95</td>
</tr>
<tr>
<td>EP-PIC6456-26</td>
<td>PIC6456-26</td>
<td>$59.95</td>
</tr>
<tr>
<td>EP-PIC54-14X5B</td>
<td>PIC54-14X5B</td>
<td>$49.95</td>
</tr>
<tr>
<td>EP-PIC121256x</td>
<td>PIC121256x</td>
<td>$36.95</td>
</tr>
<tr>
<td>EP-PIC1717C4x</td>
<td>PIC1717C4x</td>
<td>$46.95</td>
</tr>
<tr>
<td>EP-5357917C51</td>
<td>PIC5357917C51</td>
<td>$39.95</td>
</tr>
<tr>
<td>EP-11E8BHC11EUA</td>
<td>8BHC11EUA</td>
<td>$69.95</td>
</tr>
<tr>
<td>EP-11D8BHC11103</td>
<td>8BHC11103</td>
<td>$29.95</td>
</tr>
<tr>
<td>EP-PIC6456-26</td>
<td>PIC6456-26</td>
<td>$59.95</td>
</tr>
<tr>
<td>EP-PIC54-14X5B</td>
<td>PIC54-14X5B</td>
<td>$49.95</td>
</tr>
<tr>
<td>EP-PIC121256x</td>
<td>PIC121256x</td>
<td>$36.95</td>
</tr>
<tr>
<td>EP-PIC1717C4x</td>
<td>PIC1717C4x</td>
<td>$46.95</td>
</tr>
<tr>
<td>EP-5357917C51</td>
<td>PIC5357917C51</td>
<td>$39.95</td>
</tr>
<tr>
<td>EP-11E8BHC11EUA</td>
<td>8BHC11EUA</td>
<td>$69.95</td>
</tr>
<tr>
<td>EP-11D8BHC11103</td>
<td>8BHC11103</td>
<td>$29.95</td>
</tr>
<tr>
<td>EP-PIC6456-26</td>
<td>PIC6456-26</td>
<td>$59.95</td>
</tr>
<tr>
<td>EP-PIC54-14X5B</td>
<td>PIC54-14X5B</td>
<td>$49.95</td>
</tr>
</tbody>
</table>

EZ-EP

M2L ELECTRONICS
Los Angeles, California

M2L Electronics
970254-4966 Fax: 970254-4777
361 S Camino Del Rio Suite #119, Durango, CO 81301. Co orders add 7% sales tax http://www.m2l.com

Whaddya Say To A Guy Who’s Had The Same Job For 50 Years, Has Never Called In Sick Or Showed Up Late, Never Taken A Vacation Or A Holiday, Never Asked For A Raise Or Griped About His Bonus And, Believe It Or Not, Has No Plans For Retirement?

Thanks.

Remember - only you can prevent forest fires.
More Vacuum

Lane Norman - Norman's Electronics Inc. Atlanta GA 404-451-5057
A cost effective solution to desoldering equipment at less than half the price of most equipment. It's performance is ASTOUNDING.

Quicker Vacuum

George McKeezie - MCK Electronics, Inc. - Nisswa MN - 218-963-6400
A marvelous instrument, a real time saver and has a tremendous vacuum for its size. The size and portability is also a great advantage.

Don Cressin - Certified Electronics Service - Ellicott City MD 301-461-8008
We have obtained excellent results with the SC7000Z including repairing high density UV-tuners. It is one of the best purchases we have made.

Randy Whitehead - Service West - Salt Lake City UT 801-262-4069
My Techs thought it would be a waste. I bought one anyway after a demo. My Techs then fought over it. Now we have three. It is the best desoldering tool we have ever used.

Check us out on the WEB http://www.heinc.com
Order from web site for 5% discount

Jew Specifications

- Voltage - AC100V,120V,230V,50/60Hz
- Power Consumption - 120W
- Pump - Diaphragm Type
- Motor Output - 12W
- Vacuum Attained - 450mmHg
- Temperature Range - 300°C - 500°C (572°F - 932°F)
- Air Flow Rate - 15 Liter/Minute (Open)
- Heater - 100W (Ceramic)
- Control System - Feed Back Zero Cross-over Type
- Net Weight - 420Grams
- Max. Temp. of Hot Blow - 400°C
- The Most Cost Effective Desoldering Tool in the World.

Visa - M/C - Discover - American Express - Terms to Qualifying Companies
30 Day Money Back Total Satisfaction Guarantee - One Year Parts and Labor Warranty

Howard Electronic Instruments, Inc
Toll Free U.S. and Canada 1-800-394-1984
Web Site www.heinc.com
E-Mail sales@heinc.com
International (316) 744-1993
or Fax (316) 744-1994

CIRCLE 331 ON FREE INFORMATION CARD
PIC’n Books

LEARN ABOUT PIC16/17 MICROCONTROLLERS

EASY PIC’n
Beginner
- Programming techniques
- Instruction set
- Addressing modes
- Bit manipulation
- Subroutines
- Sequencing
- Lookup tables
- Interrupts
- Using a text editor - source code
- Using an assembler
- Timing and counting
- Interfacing - I/O conversion
- Lots of examples
$29.95

PIC’n Up The Pace
Intermediate
- Serial communication
- PIC16 to peripheral chips
- PIC16 to PIC16
- Serial EEPROMS
- LCD interface
- Scanning keypads
- D/A conversion
- Sensors - analog voltage output
- A/D conversion
- Math routines
- Decoal interface
- PIC16F84 EEPROM data memory
- Lots of circuits and code
$34.95

$+ 4 s/h in US for one book, $ 5 both books.

PIC is a trademark of Microchip Technology Inc.

SQUARE 1 ELECTRONICS
P.O. Box 501, Kelseyville, CA 95451
Voice (707) 279-8881 FAX (707) 279-8883
Web Site: http://www.sq-1.com
E-Mail sqone@pacific.net

RF Data Modules

AM Transmitter
- Sub Miniature module
- SAW Controlled
- No adjustable components
- Low current - 2.5mA
- Supply 2.5-12Vdc
- 418MHz or 433MHz
- Range up to 300ft
- CMOS/TTL data input
- AM-1xx-xxx $ 12.60

AM Receiver
- Compact Hybrid Module
- Very stable
- CMOS/TTL output
- Patented Laser Trimming
- 5Vdc, 0.8mA (HRR6)
- 2kHz data rate
- Sensitivity -105dBm
- 38 x 12 x 2 mm
- AM-HRR6-xxx $ 16.33

FM Transceiver
- Only 23 x 33 x 11mm
- Up to 46,000bps data rate
- Up to 450ft. range
- 5V operation
- 418MHz or 433MHz FM
- 5V CMOS logic interface
- Fast 1mS enable
- Power saving feature
- Carrier Detect output
- BII-xxx-F $87.36

RS232 Transceiver
- 3wire RS232 interface
- 19.2kbaud half duplex
- 418MHz or 433MHz FM
- 7.5-15Vdc, 20mA
- TX/RX Status LED’s
- Up to 400ft. range
- 1/4 wave ant. on board
- User data packetizing
- 58 x 40 x 15mm
- CYPHERNET $139.30

AM Transmitter
- Range up to 250ft.
- SAW controlled stability
- Wide supply range 2-14V
- CMOS/TTL input
- Low current. 4mA typ.
- Up to 4kHz data rate
- AM-RTS-xxx $12.10

DIGITAL STORAGE

OSCILLOSCOPES

WITH SPECTRUM ANALYZER,
DVM, FREQ. COUNTER,
AND DATA LOGGER.

from
$189.

PORTABLE MODULES CONVERT PCs INTO
MULTIPURPOSE TEST AND MEASURING INSTRUMENTS.

Why lug a scope around? Toss one of our modules into your laptop case or tool kit. For a multi-purpose test device, plug to a PC parallel port and use the PC screen. Continuous, delayed, or triggered sweeps can be frozen on the screen, printed out, or saved to disk. Frequency Spectrums DC to 25 MHz.

Allison now provides PICO TECHNOLOGY Ltd portable test equipment, including high-speed scopes, and multi channel data loggers. Pico and O- Scope modules accept standard probes and work with 286 or faster PC's.

FEATURES:
- PORTABLE UNITS TO 25 MHz
- USES PRINTER PORT
- USES STD. PROBES

OPTIONS:
- PROBE SETS
- AUTOMOTIVE PROBES
- BATTERY PACKS
- SOFT & HARD CASES

O-Scope Made in U.S.A.
Pico Made in U.K.
Same Day Shipping
Includes Cable, Software & Manuals

O-Scope I (DC-50KHz, single trace) $189.
O-Scope II (DC-500KHz, dual trace) $349.
PICO (ADC 200/20) (DC-10MHz, dual trace) CALL
PICO (ADC 200/50) (DC-25MHz, dual trace) CALL
PICO pc based data loggers from $99.

SEND CREDIT CARD INFO. M.O., or CHECK OR CALL
1-800-980-9806

Allison Technology Corporation
2006 FINNEY-VALLET, ROSENBERG, TX 77471
PHONE: 281-239-8500 FAX: 281-239-8006
http://www.atcweb.com

DIGITAL TECHNOLOGIES

MANUFACTURER’S FREE CATALOG

call: (416)236 3856
fax: (416)236 8866
www.abacom-tech.com
MasterCard / Visa

ABACOM

TECHNOLOGIES

www.americanradiohistory.com
ATTENTION DEALERS: WHOLESALE ONLY!

BEST PRICES!
FAST SERVICE
SAME DAY SHIPPING

EXCLUSIVE:

2 PIECE SETUPS: $85.00
10 lot 1 Year Warranty
Latest Technology Universal Combo's - Ask For Details
CALL US LAST! LOWEST PRICES GUARANTEED!

TOLL FREE: 800-375-3682
FAX: 516-246-5634

New and Pre-Owned
Test Equipment

Goldstar

Spectrum Analyzer
B+K Precision
Model 2625
• 150kHz - 1050MHz
• 80dB Dynamic Range
• AM/FM demod included

Model OS-9100P $899.00
Full 100 MHz Bandwidth!
• Dual-Channel, High Sensitivity
• TV Synchronization Trigger
• Calibrated Delayed Sweep
• Includes Two Probes, 2 Year Warranty

Pre-Owned Oscilloscope Specials
Tektronix 2213 60 MHz $549.00
Tektronix 2215 60 MHz $649.00
Tektronix 465 100 MHz $599.00
Tektronix 465B 100 MHz $729.00
Tektronix 475 200 MHz $829.00
Tektronix 475A 250 MHz $1,199.00

• Professionally Refurbished
• Aligned & Calibrated to Original Specifications
• The Industry Standard of Oscilloscopes
• 1 Year Warranty - The Longest Available!!!

See us on the Web!
www.fotronic.com

Test Equipment Depot
A FOTRONIC CORPORATION COMPANY
99 Washington St., Melrose, MA 02176
(781) 665-1400 • FAX (781) 665-0780
email: afoti@fotronic.com

TOLL FREE 1-800-99-METER

CIRCLE 333 ON FREE INFORMATION CARD
LASER WINDOW BOUNCE OPTICAL RECEIVER
Operates With Our Laser Pointers
And HeNe Gas Systems
High Sensitivity Optical Receiver
with built in speech filter and low
noise light biased pre-amplifier.
Include cushioned headsets with
separate volume controls and all
instructions to demonstrate and
utilize this remarkable property of
laser light.
LLR3 Plans...$10.00 LLR3K Kit/Plans...$69.50
LLR30 Ready to Use...$99.50
EXT10 Optional Range Extension Lens...$39.50

ULTRA BRIGHT LASERS
1 Year Warranty
Batteries Included
All Metal Enclosure
Uses Scattered and
Direct Reflections
LAPN65 Versatile...15mw equv 2000 ft....$29.95
LAPN65F Focused Model of Above.....$34.95
LAPN63 Brightest....30mw equv 3000 ft....$49.95
LAPN63F Focused Model of Above.....$74.95
CREATE YOUR OWN LIGHT SHOW!!
LAPN65PT Laser Multi Pattern Generator...$29.95
LAPN65M Mini Key Chain All Metal.....$39.95
LAPN67...5mw @ 670nm LOWEST COST...$19.95

WIRELESS LAB KITS
ALL PARTS TO BUILD & EXCITING
TRANSMITTER PROJECTS
1. Super Sensitive Ultra Clear
1 Mile + Voice Transmitter
2.1 Mile + Telephone Transmitter
3. The Powerful Telephone Transmitter
Never Needs Batteries!
4. Tracking/Receiving Beacon "Tracking" Transmitter
5. Transmitter/Receiver Kit with Audio Controls
6. Short Range TV/FM/Amplifier
6.8 Above Kit Plus FREE Info Data Pack on
MEGA-NETS Televised and Tuning Wireless Devices
COMBOX Parts and Plans for above.!! $59.50
COMBOX Plans for all the above.!! $100.00

KINETIC ELECTRIC GUN
POWERS A FUTURISTIC
WEAPON!
500 Joules Energy Stamps
Condition Current Changing
Triggered Spark Switch
Ballistic Velocities
Handheld Batteries Operated
Labeled & Dangerous product
EGUN1 Plans with Parts List......$20.00
All Parts are Individually Available

3 MI FM BROADCAST
TELEPHONE TRANSMITTER
Tunable On FM Broadcast. Excellent Telephone
Project. Only Transmits When Phone is Used
VWPM7K Kit/Plans$39.50
BEEP1K Beeper Aler Kit...$19.95

HIGH POWER STUNGUNS
STUN100 1000V StunGun...$29.50
STUN200 2000V StunGun...$49.50
STUN300 3000V StunGun...$69.50

ION RAY GUN
PROJECTS ENERGY!
Start Wars Technology Demonstrates
Weapons Potentials!! See lions in Motion!
IOG2/19 Plans$10.00
IOG2/9 Kit/Plans$99.50
HIGHER POWERED DEVICE
IOG2/9K Kit/Plans$149.50

ATTENTION!
HIGHT VOLTAGE EXPERIMENTS
Battery Powered Mini Steel
Modules for research in:
HOVERCRAFT, ION GUNS
FORCE FIELD, SHOCKERS etc
MINIMAX1 4KV@10ma$19.50

GRAVITY GENERATOR
Demonstrates unique phenome
nons of electrical reactions that produce the
effect of "anti-gravity". You
build and levitate a small
mock space ship from simple
materials. Excellent scienti
fying method of
fascinating method of
idification.

SHOCK FORCE FIELD/VEHICLE
OBJECT ELECTRIFIER
Hand Shock Balls, Wheels, Escalator
Stair Step Back for those Wheezers
SHK1K Kit of Pwr Modulu.s...$19.50

BASIC ELECTRICAL
SUPPLY &
WAREHOUSING
CORPORATION
P.O. Box 8180 • Bartlett, IL 60103 • 800-577-8775

www.americanradiohistory.com
CABLE TV EQUIPMENT
Converters, Test Cubes & Chips
1 Year Warranty
30 Day Money Back Guarantee

"ABSOLUTE LOWEST WHOLESALE & RETAIL PRICES"
CABLE U.S.A.
1-888-388-CUBE

BUY BONDS

DATA ACQUISITION & CONTROL
AFFORDABLE PLUG-IN BOARDS FOR PC's ISA BUS

- ANA100 Analog I/O $9
 - 8 Channel/ 8-bit
 - 0 to 5 Volt Input
 - 14 TTL I/O lines
 - Analog Output
 - 400KHz Sampling

- ANA150 Analog/Counter $9
 - 8 Channel/ 8-bit
 - 0 to 5 Volt Input
 - 3 16-bit Counters
 - 400KHz Sampling

- ANA200 Analog I/O $79
 - 1 Channel/ 12-bit
 - 0 to 5 Volt Input
 - Optional Bi-Polar
 - 100KHz / 300KHz Sampling rate
 - 24 TTL I/O lines

- ANA201 Analog $119
 - 8 Channel/ 12-bit
 - 0 to 5 Volt Input
 - Programmable Channel gain
 - 100KHz Sampling rate

- DIG100 Digital I/O $9
 - 82C55
 - 24 or 48 TTL I/O lines
 - Selectable Base Address

- DIG200 Counter I/O $79
 - 3 16-bit Counters
 - 8 TTL Input lines
 - 8 TTL Output lines
 - Selectable Clock Frequency Input

- ANA200 Analog I/O $79
 - 1 Channel/ 12-bit
 - 0 to 5 Volt Input
 - Optional Bi-Polar
 - 100KHz / 300KHz Sampling rate
 - 24 TTL I/O lines

On-Line Product Catalog at Our Web Site
http://www.Bsof.com
E-Mail: Sales@Bsof.com

BSOFT Software, Inc.
444 COLTON ROAD * COLUMBUS, OH 43207
PHONE 614-491-0832 * FAX 614-497-9971

Test Equipment Sales
Ask about our line of new products including
HP, LeCroy, Instek, Tektronix, Fluke and more!

Here is a sample of our used equipment inventory

- HP 8165A 50MHz PROG.SIG.SOURCE....$1195
- HP 3325A-002 GENERATOR W/OPT....$1595
- WAV 801 50 MHz PULSE GENERATOR....$650
- BAL 6127B SCOPE CALIBRATOR$1995
- TEK SG503 LEVELED SINE GENERATOR...$595
- TEK 2235 100 MHz 2 CH. SCOPE$895
- SOR DCS55-55 PROG. DC PS$1195
- DIO 1020L PROGRAMMER M/F$595
- MINOLTA CA100 COLOR ANALYZER ...$1795
- HP6205B DC POWER SUPPLY$195
- TEK 2465A 350MHz 4 ch. SCOPE$3495
- TEK 2465B 400MHz 4 CH. SCOPE$6395
- BMI 2400 POWER ANALYZER$895
- RODL M30 30A GROUND TESTER$1395
- TEK PS503A TRIPLE OUTPUT SUPPLY ...$195
- TEK DC504A COUNTER P/I$225

CHECK OUT OUR NEW ARRIVALS AND MONTHLY SPECIALS AT WWW.TESALES.COM

CALL 800 684-4651 OR FAX (603) 425-2945
LOCATED IN TAX FREE NEW HAMPSHIRE

CIRCLE 217 ON FREE INFORMATION CARD

We Can Think Of 9 Good Reasons To Immunize On Time.

Measles
Mumps
Diphtheria
Tetanus
Hepatitis B
Rubella
Spiral Meningitis
Pertussis
Polo

But You Only Need One.

Immunize On Time.
Your Baby’s Counting On You.
Call 1-800-232-2522

www.americanradiohistory.com
Use ELECTRONICS NOW Classifieds
READ BY ELECTRONIC BUYERS AND SELLERS AND TRADERS

INSTRUCTIONS FOR PLACING YOUR AD!

HOW TO WRITE YOUR AD
TYPE or PRINT your classified ad copy CLEARLY (not in all capitals) using the form below. If you wish to place more than one ad, use a separate insert for each additional one (a photo copy of this form will work well). Place a category number in the space at the top of the order form (special categories are available). If you do not specify a category, we will place your ad under miscellaneous or whatever section we deem most appropriate.

We cannot bill for classified ads. PAYMENT IN FULL MUST ACCOMPANY YOUR ORDER. We do permit repeat ads or multiple ads in the same issue, but in all cases, full payment must accompany your order.

WHAT WE DO
The first word and company name of each ad are set in bold caps at no extra charge. No special positioning, centering, dots, extra space, etc. can be accommodated.

RATES
Our classified ad rate is $2.50 per word. Minimum charge is $37.50 per ad per insertion (15 words). Any words that you want set in bold are each .40 extra. Indicate bold words by underlining. Words normally written in all caps and accepted abbreviations are not charged anything additional. State abbreviations must be post office 2-letter abbreviations. A phone number is one word.

If you use a Box number you must include your permanent address and phone number for our files. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED.

For firms or individuals offering Commercial products or Services. Minimum 15 Words. 5% discount for same ad in 6 issues within one year; 10% discount for same ad in 12 issues. Boldface (not available as all caps), add .40 per word additional. Entire ad in boldface, add 20%. Tint screen behind entire ad, add 25%. Tint screen plus all boldface ad, add 45%. Expanded type ad, add $4.00 per word.

General Information: A copy of your ad must be in our hands by the 13th of the fourth month preceding the date of issue (i.e. Sept issue copy must be received by May 13th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding work day. Send for the classified brochure.

DEADLINES
Ads not received by our closing date will run in the next issue. For example, ads received by November 13 will appear in the March issue that is on sale January 17. ELECTRONICS NOW is published monthly. No cancellations permitted after the closing date. No copy changes can be made after we have typeset your ad. NO REFUNDS, advertising credit only. No phone orders.

CONTENT
All classified advertising in ELECTRONICS NOW is limited to electronics items only. All ads are subject to the publishers’ approval. WE RESERVE THE RIGHT TO REJECT OR EDIT ALL ADS.

AD RATES: $2.50 per word, Minimum $37.50

Send your ad payments to:
ELECTRONICS NOW 500 Bi-County Blvd, Farmingdale, NY 11735-3931

CATEGORIES

CLASSIFIED AD COPY ORDER FORM

Place this ad in Category # __________ Special Category $30.00 Additional __________

1 - $37.50 2 - $37.50 3 - $37.50 4 - $37.50
5 - $37.50 6 - $37.50 7 - $37.50 8 - $37.50
9 - $37.50 10 - $37.50 11 - $37.50 12 - $37.50
13 - $37.50 14 - $37.50 15 - $37.50 16 - $40.00
17 - $42.50 18 - $45.00 19 - $47.50 20 - $50.00
21 - $52.50 22 - $55.00 23 - $57.50 24 - $60.00
25 - $62.50 26 - $65.00 27 - $67.50 28 - $70.00

Total classified ad payment $ __________ enclosed

[] Check [] Mastercard [] Visa [] Discover

Carol # __________ Expiration Date __________

Signature __________

Name __________ Phone __________

Address __________ City State Zip __________

www.americanradiohistory.com
SCIENCE FAIR ELECTRONICS
One of the largest electronic kit selection.
Address: 9740 CAMPO RD. #209
SPRING VALLEY, CA 91977
PHONE: (619) 686-0078
TOLL FREE 1-800-475-0349
FAX: (619) 686-0054

We Carry Electronic Kits, Robots,
Motors, Tools, Test Equipment,
batteries, etc.

To receive a FREE CATALOG fax or mail your address with phone number
to the address above and you will
automatically become a member with
no extra charge.

FRIENDLY LITTLE
MICRO CONTROLLER
$149 (single)

...packs a MEAN punch
a.k.a. "Stardom Stack"

- 39 I/O + 8 A/D (10 bit)
- 128K RAM + 128K Flash
- LCD/Keypad Interface
- Fast 16 bit Motorola CPU
- Affordable C Compiler
- Comprehensive s/w Library

Intec Automation Inc. • 203-721-5150
www.203micro.com

www.jm-micro.com
PIC In-Circuit Emulator
for the PIC16Cxx from $295
PIC Programmer $155
80C552 (8051) Development
Training System $235
68HC11 SBC $120
ROM-16 EPROM Emulator
from $195

Universal Microprocessor
Simulator/Debugger (including
Assembler, and Disassembler)
$100 each CPU

J&M Microtek, Inc.
83 Seaman Rd, W Orange, NJ 07052
Tel: (973)323-1892 FAX:(973)736-4567

Notch Filters
Test Chips

Brochure $1.00

Filter Kit
1 to 2 $9 each
2 to 5 $9 each
5 to 10 $8 each
10 to 20 $7 each
25 or more $5 each

Adult Wholesale
Video's
$379.00
Free Shipping

Video Media
P.O. Box 93/6025
Margate, Fl 33093-6025
(954)-752-9202

SURVEILLANCE
FREE CATALOG

Color Camera $149
2.4 Gif Video $129
Over 150 Items!

Night Vision $169
IR Flashlight $35
Nanny Cam $149

FULL ONLINE CATALOG
www.mscelectronics.com

MSC Electronics
PO BOX 461 Jessup, MD 20794
(301) 497-1600
FAX (301) 497-1925

LASER MODULE

AUTO POWER CONTROL
COAXIALL LASER
COMPACT SIZE
100,000 hr lifetime
No Electronics Required

Visible Laser: 635-670 nm
TTL Modulated Laser Modules
Line Generator Laser Modules
Infrared Laser Modules: 780-830 nm

LASER POINTER

FOCUS ADJUSTABLE
ELABORATE DESIGN
SOLID METAL BODY

$19.95 (US)

Ask for free catalog

www.workolatex.com
email: info@workolatex.com

1 MB cache, AMD 300

System featuring:
Mini Tower, VIA chipsets, 100 MHz processor,
USB ports, 64 MB PC 100 compatible
memory, 8.4 GB IBM UDMA33 hard drive,
2X CD-ROM optical drive, 8 MB video
and ATI chipsets, 1.44 floppy, 3.5 inch Flopper,
diamond PCI faxmodem, 3D sound card,\nfull size speakers, 17" digital monitor.

Windows 98 on CD
$1179

tech-specialties, Inc.
(800)864-5391, fax: (713)307-0314
email:sales@ts.nu, web: www.ts.nu

Detailed Quote on other configurations (P1)
200-400, single/dual CPU or LC, cost, 233
MHz, 32 MB - $570 w. monitor) by email, fax or phone.
Ask for our Free Shipping option!

Illustrated 32-page Catalog with latest parts,
many more system options, benchmark
comparisons and technical tips, free!

www.americanradiohistory.com
TV
cable
CONVERTERS &
EQUIPMENT
NYE Electronics

(800)739-2253

Visit our web site!
www.mouser.com
FREE catalog is available on the internet, CD-ROM, or in paper!

800-992-9943
817-483-6828 Fax: 817-483-6899
catalog@mouser.com
958 North Main St., Mansfield, TX 76063

CIRCLE 318 ON FREE INFORMATION CARD

Hi-Tech Surveillance
Pinhole Cameras, Recording Devices, Bug Detectors, Lasers, Lockpicks, Pen Knives, Tracking Devices, Wireless Mics, Books/Videos, plus much more!!!
FOR CATALOG - SEND $5.00 TO:
Spy Way
P.O. Box 61805, Jax, Fl 32236

Unbeatable PRICES!
CABLE TV
DESCRAMBLERS
CONVERTERS • FILTERS
VIDEO STABILIZERS
FREE FREE FREE
30 Day Trial Product Catalog 1 Year Warranty
100% MONEY BACK GUARANTEE

Let us point you in the right direction ...

Arrow
Technologies
Omaha, Nebraska
TOLL FREE
888-554-ARROW
888-554-2776

Battery Analyzer
PC-Controlled Battery Analyzer
 Cycle, Charge & Test with your PC.
 Print reports, plot graphs, expandable...

LaMantia Products Ltd.
LaMantia@compuserve.com

Hi-Tech Surveillance
Pinhole Cameras, Recording Devices, Bug Detectors, Lasers, Lockpicks, Pen Knives, Tracking Devices, Wireless Mics, Books/Videos, plus much more!!!

UL Listed! The TPI 133 is Safe, Versatile and Affordable!

Battery Analyzer
PC-Controlled Battery Analyzer
 Cycle, Charge & Test with your PC.
 Print reports, plot graphs, expandable...

LaMantia Products Ltd.
LaMantia@compuserve.com

Hand-held Oscilloscope
with True RMS DMM
capabilities for just
$349.95!

The TPI 440 offers two
instruments in one!

• View industrial signals such as motor control, UPS, switching power supplies, and PLC controls with 1 MHz bandwidth.
• Capture noise spikes, glitches and those evasive interments with 25 Megasamples per second sampling rate.
• Automatically determines correct vertical and horizontal settings to provide optimum waveform viewing.
• Don't miss a beat — the LCD display is continually updated to provide a live presentation of measurement information.
• Easy setup with Help Text. With the push of a button the 440 will help you setup the instrument for a function.
• Full autoranging DMM capabilities with built-in True RMS, 4000 count DMM.

UL Listed! The TPI 133 is Safe, Versatile and Affordable!

• Safe! UL Listed. Meets CE and IEC 1010 Safety Standards.
• Measures AC/DC Volts, AC/DC Amps, Diodes, Resistance and Continuity.
• Easy-to-read, 2000 count LCD, and Data Hold.
• 3 Year Limited Warranty.

TPI 133 just $49.95!
A Trained Computer Repairman Charges $100 An Hour and More... You Can Get That Training!

Foley-Belsaw's Totally New Computer Repair Course gives you the skills to start earning top pay FAST!!!!!!

No Experience Necessary!
Get “hands-on” training in the exciting field of computer repair.

Fully illustrated, easy to understand course gives you everything you need to succeed.

The key to your success lies in providing a service that is in great demand. Even if you have no experience, you can become an expert in a few short months. Foley-Belsaw’s computer repair course is broken into small, easy to manage lessons. Each lesson is designed with your success in mind. After you complete the course, you’ll have the expert knowledge to earn up to $100 an hour, or more!

Latest technologies and insider knowledge available only to Foley-Belsaw students!

Get the “hands-on” experience you need in Computer Repair. Foley-Belsaw's CD-Rom Learning Assistant guides you through each lesson and is always right at your fingertips. The Test Preparation Tutor makes preparing for your A+ Certification as easy as turning on your computer. Foley-Belsaw's inside knowledge gives you the practical experience to become a computer repair professional. Get started today!

World leader in training since 1926, provides at-home, “hands-on” training in high-demand fields.

You get these Foley-Belsaw Exclusives! At no extra cost!

- A+ Certification Test Preparation Tutor
- Foley-Belsaw CD-ROM Learning Assistant
- Business Start-up Resource

SPECIAL BONUS
Inquire now and your course will come with a complete video archive library of early printer and computer repair techniques... at no additional cost.

Train At Home!
There's not a more complete—or affordable—PC Repair course that will have you trained and job ready in such a short time.

Take the first step to top pay. Call for a FREE Opportunity Kit today! 1-800-487-2100

or complete this coupon and mail to Foley-Belsaw Institute, 6301 Equitable Road, Kansas City, MO 64120-1395

☐ Yes! Send me one of the following Free Opportunity Kits:
☐ Computer Repair, Maintenance, Upgrade, Dept. 64766
☐ Personal Computer Specialist, Dept. 38403
☐ Professional Computer Programming, Dept. 35582
☐ Professional Saw and Tool Sharpening, Dept. 21969
☐ VCR/DVD Service and Repair Dept. 92564
☐ Small Engine Service and Repair, Dept. 53037
☐ TV/Satellite Dish Service and Repair, Dept. 31635
☐ Professional Gunsmithing, Dept. 92671
☐ Home Inspection, Dept. 76087
☐ Networking Specialist, Dept. 39390
☐ Locksmithing, Dept. 13163
☐ Upholstery, Dept. 81573
☐ Woodworking, Dept. 43901
☐ Upholstery, Dept. 81573
☐ Vinyl Repair, Dept. 71504
☐ Electrician, 95443

Name
Street
City, State Zip
Phone ()

CIRCLE 335 ON FREE INFORMATION CARD www.americanradiohistory.com
Pioneer Hill Software
24460 Mason Rd.
Poulsbo, WA 98370
a subsidiary of Sound Technologies, Inc.

Sales: (360) 697-3472
Fax: (360) 697-7717
e-mail: pioneer@telebyte.com

PHS

Features
- 20 kHz real-time bandwidth
- Fast 32 bit executable
- Dual channel analysis
- High Resolution FFT
- Octave Analysis
- Distortion measurements
- Signal Generation
- Triggering, Decimation
- Transfer Functions, Coherence
- Time Series, Spectrum Phase, and 3-D Surface plots
- Real-Time Recording and Post-Processing modes

Applications
- Distortion Analysis
- Frequency Response Testing
- Acoustic Research

System Requirements
- 486 CPU or greater
- 8 MB RAM minimum
- Win. 95, NT, or Win. 3.1 + Win.32s
- Mouse and Math coprocessor

Turn Your Multimedia PC into a Powerful Real-Time Audio Spectrum Analyzer

Priced from $495
(U.S. sales only – not for export/resale)

DOWNLOAD FREE 30 DAY TRIAL!
www.spectraplus.com

Spectra Plus
FFT Spectral Analysis System

Filter Wiz v2.0
ACTIVE FILTER design software for Windows. Provides mastery of lowpass, highpass, bandpass and bandstop filters. Enhance critical signal components while controlling noise and other interference. Meets the needs of both novice and professional designer. Standard (LE) version $89, PRO version $199.

Download: http://www.schematica.com
sales@schematica.com FAX: 205-842-2644

Known for helping Boys & Girls Clubs of America.

BOYS & GIRLS CLUBS OF AMERICA

The Positive Place For Kids

CAD FILES TO CASH PILES
IMAGINE THE POSSIBILITIES!
ROUTE, MILL, DRILL, CARVE,
ENGRAVE, PAINT, ETC. . . .
IN WOOD, PLASTIC, VINYL,
PC BOARD, & LIGHT METALS.

THE ROBOPRO X50
CNC ROBOTIC MACHINING SYSTEM
YOUR WISH IS ITS COMMAND!

Visit us at
www.uscyberlab.com

U. S. CYBERLAB, INC., 14786 SLATE GAP RD., WEST FORK, AR 72774
VOICE (501) 839-8293 / 24 HR. FAX BACK (501) 839-8293

PROGRAMMERS OVER 50 MODELS
ADVANCE DEC TOOLS NEEDED DATA (JOICE TECHNOLOGY INC.
SYSTEM DESIGN CHROMA MODULAR CIRCUIT TECHNOLOGY XELTEK

CALL ADVANCE DEC TOOLS
599 EETOOLS SIMMAX
25x ICE TECH MCT-COV
25x EETOOLS ALLMAX
409 EETOOLS MEGAMAX
509 EETOOLS MEGAMAX
209 EETOOLS MEGAMAX
429 XELTEK SUPERPRO I
249 XELTEK SUPERPRO I P
245 XELTEK SUPERPRO L
165 XELTEK ROMMASTER II
179 XELTEK ORBIT-32
739 STAG ORBIT-32

General Device Instruments
Sales 916-393-1555 Fax 916-393-4949 BBS 983-1234
Web www.generaldevice.com E-Mail lcydevic@best.com

ELECTRONIC SHOPPER

STARTING AT $895.00

NEW MODELS

3 AXIS UNITS FROM
12" X 12" TO 60" X 60"
MACHINING AREAS

PROTOTYPING, PORTING, PROGRAMMING, PROTOTYPING, AND MORE!!!
Electronic CAD for Windows

Professional Windows EDA tools at an affordable price with powerful features to make designing faster. WinBoard PCB layout delivers sophisticated interactive routing for complex designs, plus it has the tools needed for high-speed circuits, analog, RF and SMT designs.

WinDraft® Schematics
- Use True-Type fonts. Quickly copy and paste into other applications.
- Supports hierarchical designs, electrical rules checking, Annotation & Bill of Materials.
- Thousands of library parts and symbol editor included.

WinBoard™ PCB layout
- Supports 16 layers, multiple copper pours, and advanced features for RF designs.
- SMD & through hole library with on-line graphical editor.
- CAM outputs include BOM, in-circuit test, NC Drill, Gerber, Pick & Place, & Advanced Design Rule Checking (DRC).

With our unique pin capacity versions you only pay for what you need. You choose the base configuration to suit your needs today, and expand that configuration to handle increased pin capacity as your design requirements change.

WinDraft 2.0 Available Now

Use Your PC to Monitor and Control Your Environment

PC Host Adapter
Analog
- RS232 to 1-Wire® protocol host adapter interface. Converts standard PC serial port to a 1-Wire® network. All interface components are contained inside the DB9 shroud. The H43 supports all Point Six products.
- No external power required.
- Includes OneSix™ DDE Server Software.
- Connects to 9 pin RS232 port on the PC.
- 2300 Network and 200 1-Wire™ devices.
- Weight 0.5 lb.
- One-year warranty.

OneSix™ DDE Server
- A software server driver for Windows® 95, 3.1 and 3.11 that allows easy interface of 1-Wire™ devices and Point Six products to applications via DDE links. This eliminates the need for low level device communication programming.
- Searches network, adds and auto configures all devices found.
- Copy and paste links to OneSix® products like EasyPoint®, WirePoint®, and many other DDE capable applications.
- Works with In际lll interfacing software such as Wonderware®, LabView® and TestPoint®.
- Includes complete help.
- One-year warranty.

1-Wire™ Probes
- Our probe designs are based on 1-Wire® protocol devices. All probes are multi-drop and supported by OneSix™ DDE Server Software.
- Copy and Paste Links.
- Built-in multi-drop controller. All Data is CRC16 error checked.
- Unique device addressing.
- Calibration data stored in Internal ROM memory.
- No external power required.
- Standard Temperature Range -30 to +185°F
- Requires Host Adapter or existing network.
- Weight 0.4 lb.
- One-year warranty.

Very Low Cost Per Point Temperature Monitoring

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>H43</td>
<td>Host Adapter</td>
<td>$69.95</td>
</tr>
<tr>
<td>ONE6X</td>
<td>DDE Server Software</td>
<td>$69.95</td>
</tr>
<tr>
<td>105</td>
<td>Single Channel Digital 0-5V Solid State Relay</td>
<td>$149.95</td>
</tr>
<tr>
<td>S00C</td>
<td>Standard Temperature Probe</td>
<td>$16.25</td>
</tr>
<tr>
<td>F01</td>
<td>Pressure Probe 0-50 PSI absolute</td>
<td>$59.95</td>
</tr>
<tr>
<td>P01</td>
<td>Humidity Probe 0-100% Rh</td>
<td>$59.95</td>
</tr>
<tr>
<td>HP001</td>
<td>Current Probe 0-100Amp</td>
<td>$175.00</td>
</tr>
<tr>
<td>DT001</td>
<td>Digital Thermometer Chip</td>
<td>$9.95</td>
</tr>
</tbody>
</table>

Example: 25 Digital Thermometer Chips, 1000ft Cat5 Cable, H43 Host Adapter, OneSix™ DDE Server Software Driver, and Windows® Monitoring Application for less than $10 per point.

Point Six, Inc. To Place An Order Contact Us At 138 E. Reynolds Road Lexington, KY 40517 Phone: 606-271-1744 FAX: 606-271-4695 E-Mail: sales@pointsix.com

CIRCLE 319 ON FREE INFORMATION CARD

World Wide Web: http://www.ivex.com

Information and free evaluation version is available on the Ivex WW Web, FTP and BBS.

Tel: (503) 531-3555 Fax: (503) 629-4907 BBS: (503) 645-0576

Ivex Design International. 15232 NW Greenbrier Parkway. Beaverton, Oregon 97006. USA.

ADV1_1

December 1996. Electronics Now

Point Six, Inc. To Place An Order Contact Us At 138 E. Reynolds Road Lexington, KY 40517 Phone: 606-271-1744 FAX: 606-271-4695 E-Mail: sales@pointsix.com

www.americanradiohistory.com
386 MINI-PC $83
1K PRICE
EVAL $295
8088 $27

includes:
- 5 Serial, 3 Parallel (32bit max)
- Up to 8 meg ROM (27C080)
- 32k RAM exp. to 64Mbyte
- Battery backed RTC Clock
- LCD and Keyboard ports
- IRQ x5, DMA x2, TIMER x4
- On-board LED display
- Industry Standard PC Bus

Perfect when a full-size PC is too large, expensive, or power hungry. A fully functional single board computer, needs only program and power source. Runs DOS / WINDOWS. Use Turbo C, BASIC, MASM. All utilities to do this included.

A to D D to A CONVERTERS

For PC or SBC 8,12,16 bit resolution up to 24 channels starting at $21 OEM (1k) eval kit $75

$95 UNIVERSAL PROGRAMMER

FLASH, EEPROM, VRAM, EPROM up to 8 meg (27C64-808). Adapters for micros, PLCC, etc. Parallel port version for notebook. FAST AND EASY TO USE.

LOW COST... LOW POWER...
QTY 1K PRICE $1.99
LOW RISC!
EVAL KIT 7.00

LOWER COST, FASTER, EASIER TO PROGRAM SINGLE CHIP COMPUTER

COMPARE:
16C54 - MV1200
OEM (1k) PRICE $2.57 $1.99
RS22 PROGRAM DOWNLOAD NO YES
SINGLE CHIP OPERATION NO YES
BUILT-IN BASIC NO YES
EEPROM DATA MEMORY NONE 64
PROGRAM MEMORY 768 OTP 1K FLASH
MATH REGISTERS 1 32
MAX INSTRUCTIONS / SEC 5M
MAX COUNTER RITS 16 18
INPUT / OUTPUT BITS 12 15
A TO D COMPARATOR NO YES
HARDWARE INTERRUPTS NONE 3

- LONG WORD INSTRUCTION - FRIENDLY SYMMETRIC ARCHITECTURE -

PC SOLID STATE DISK $21
OEM (1k) eval kit 75.00

No More Hangups...

PC WATCHDOG!
Reboots PC OEM $21 EVAL $75

VGA LCD
640x480 controller for PC or SBC
$27 oem $95 eval combo LCD-CRT version available

visit our web site: www.star.net/people/~mvs

MVS, BOX 850
MERRIMACK, NH 03054
(508) 792-9507

MVS

Syr Limited Warranty
Free Shipping
Hrs: Mon-Fri 10-5 EST

CIRCLE 324 FOR FREE INFORMATION CARD

EPROM+
The Professionals Choice!

A rugged deviced programming system for bench and field

Uses parallel printer port!

Supports all standard parts!

Excellent, easy-to-use software!

FIRST GENERATION EPROMS 27UL, TMS2716, 23XX
SECOND GENERATION EPROMS (24 32 32 PIN) 2766, 2766E, 2766F (16 MEG)
FLASH EPROMS (32 32 PIN) 27C, 32C, 15C, FAMILEYS PLUS BOOT BLOCK DEVICES
EEPROMS/NVRAM (24 32 32 PIN) 24C01, 28C01, 24C02, 28C02, TX121018, EB501, PLUS DALLAS 12XX
SERIAL EPROMS*(14 PIN) 71XK, 27XK, 25XX, 33XX, 53XX, 55XX, 58XX, 80XX, 93XX, 95XX-ERI100
BIPOLAR EPROMS (24 32 PIN) 55XXX AND 93XXX FAMILIES
MICROCONTROLLERS* (ALL FAMILIES) 87X, 89X, 87CXXX, 97CXXX, 96CXXX, 95CXXX
195XX, 905XXX, 965XXX, 87TH, 8711, PIC12CXXX, 16CXXX, 17CAX PLUS FLASH AND 16000
- READ, PROGRAM, COPY, COMPARE, FILE LOAD/SAVE (PLUS MUCH MORE!)
- FULL SCREEN EDITOR / WIDGETS / SIMULATION / SIM MODES
- RUNS UNDER DOS, WIN3.1/95/98 AT ALL CPU SPEEDS
- SUPPORTS INTEL 68K, 5-MEG AND DINARY FILES
- MADE IN USA - 50 DAY MONEY BACK GUARANTEE

SYSTEM INCLUDES: PROGRAMMING UNIT, PRINTER
PORT CABLE, POWER PACK, SOFTWARE & MANUAL
PAINTS / MASTERCARD / AMEX

ANDROMEDA RESEARCH, P.O. BOX 222, MILFORD, OH 45150
(513) 831-9708 FAX (513) 831-7562 website - www.aetis.com

Learn MICROCONTROLLERS EMBEDDED SYSTEMS and PROGRAMMING...

...with the AES learning system/ embedded control system. Extensive manuals guide you through your development project. All programming and hardware details explained.

Complete schematics. Learn to program the LCD, keypad digital, analog, and serial I/O for your applications.

THREE MODELS AVAILABLE. Choose from an Intel 8051, Intel 8088, or Motorola 68HC11 based system. All models come with:

- 32K Byte ROM, 32K Byte RAM - 2 by 16 Liquid Crystal Display - 4 by 5 Keypad - Digital, Analog, and Serial I/O - Interupts, timer/pieces, chip-select - 26 pin expansion connector - Built-in Logic Probe - Power Supply (can also be battery operated) - Powerful ROM MONITOR to help you program - Connect to your PC for programming or data logging (cabled included) - Assembly, BASIC, and C programming (varies with model) - Program disks with Cross Assembler and many, well documented, program examples - User's Manuals: cover all details (over 500 pages) - Completely assembled and ready to use - Source code for all drivers and MONITOR - Optional Text Book

Everything you need. From $279
Call for Free Info Pack, or see
Money Back Guarantee
WEB at http://www.aesmicro.com
714-550-8094, FAX 714-550-9941

AES 575 ANTON BLVD., SUITE 100, COSTA MESA, CA 92626, USA

Call 1-800-730-3232

Help protect our nation's soil and water. Call for your free action packet.

1-800-THE-SOIL
WE OWE IT TO OUR CHILDREN

United States Department of Agriculture
Soil Conservation Service

www.americanradiohistory.com
Hybrid IC Technology is the Key to the High Quality and High Reliability at Low Cost!

- **FIX SYNCHRONIZATION** detects the trigger level automatically for the acquisition of stationary waveforms without complicated sync level adjustments.
- **VERT MODE TRIGGERING** enables the acquisition of stationary waveforms for both CH1 and CH2 even when the input signals to the two channels have different frequencies.
- **HIGH WITHSTAND INPUT** voltage of 400V (800Vp-p).
- **RELAY ATTENUATORS** are provided for reliable logic switchover.
- **SCALE ILLUMINATION** (CS-4135 only)
- **DIMENSIONS** (WxHxD): 300(343) x 140(150) x 415(430)mm () including protrusion.
 WEIGHT: approx. 7.2kg (CS-4135) approx. 7kg (CS-4125)

KENWOOD

...from the company you've been listening to for years...

2-Channel, 20-MHz

CS-4125

Regular $595

Sale $389

2-Channel, 40-MHz Oscilloscope

CS-4135

Regular $855

Sale $685

Call for your free 84 page test instrument catalog today!!!

8931 Brookville Road * Silver Spring, Maryland * 20910

* Phone 800-638-2020 * Fax 800-545-0058 * www.prodintl.com
TRAIN IT TO DO JUST ABOUT ANYTHING.

$69.95
The Robotic Arm Trainer Kit
Available July, 1998

GRAB, RELEASE, LIFT, LOWER, ROTATE, OR PIVOT 350°! Our new Robotic Arm Trainer does that and much
clear, while teaching basic robotic sensing and
and simultaneously, testing motor
The Trainer is commanded via a five switch, wired
educators, hobbyists or students will be delighted in observing
the dynamics of gear mechanisms
and PC/Compatibles interface. You can also expect other
OIW features: quality, affordability and attention to
detail. Call today to order this or any of our full line of
specialized robotic kits.

Visit our homepage @ http://www.owirobot.com
E-mail: owi@ix.netcom.com

Five axes of motion
Base to rotate left and right
Shoulder moving range
Elbow moving range
Wrist rotate CW & CCW
Gripper open & close

Product Dimensions
Maximum length outwards
Maximum heights upwards
Maximum lifting capacity
Control Box
Power Source

Five switch controller
4 each "D" batteries
(not included)

EK ELEK
1160 Mahale Place, Suite B
Rancho Dominguez, CA 90220-5443
(310) 638-7970 • FAX: (310) 638-8347

CIRCLE 317 ON FREE INFORMATION CARD

ABC ELECTRONICS 315 7TH AVE N. MPLS. MN. 55401
(612)332-2378 FAX (612)332-8481 E-MAIL SURP@VISI.COM
WE BUY TEST EQUIPMENT AND COMPONENTS.
VISIT US ON THE WEB AT ABCTEST.COM

HP 8901A MODULATION ANALYZER	$2100.00
HP 8653A WaTCH PROD. SIGNAL SOURCE	$1700.00
HP 436A RF POWER METER NO CABLE OR SENSOR	$700.00
HP 8559A/B 853A 0.1-2GHZ SPEC/TRU Spec. Analyzer	$3500.00
HP 1740A 100MHZ OSCILLOSCOPE	$275.00
HP 8350B SWEEP OSCILLATOR MAINFRANIE	$2900.00
HP E6167A 0.6VF VAC CAPACITOR READOUT	$275.00
HP 3325A SYNTHESIZER/FUNCTION GENERATOR	$1100.00
HP 3324A OPT.01 HIGH STABILITY TIME BASE	$1350.00
HP 6054A 0-60V 10A DIGITAL DISPLAY	$900.00
HP 3355A 300MHZ COUNTER	$800.00
HP 1438A SWITCH/CONTROLLER	$550.00
HP 2810A QUARTZ THERMOMETER	$300.00
HP 4148B FOCO AMP METRC DC VOLTAGE SOURCE	$2500.00
HP 54201A 10MHZ DIGITAL OSCILLOSCOPE	$1500.00
HP 811A PULSE GENERATOR	$250.00
HP 3455A DMAM	$250.00
HP 3497A DATA ACQUISITION CONTROL UNIT	$600.00
HP 86203A RF PLUG IN 2.1GHZ	$1200.00
HP 86001A RF PLUG IN 1MHZ TO 2GHZ	$1700.00
HP 86032B AMM MODULATION PLUG IN	$400.00
HP 161D LOGIC ANALYZER	$750.00
HP 8640B OPT 010.0IAM PM SIGNAL CIEN	$1400.00

TEK 2455A 3MHZ 4CH OSCILLOSCOPE $3500.00
TEK 465 100MHZ 4CH OSCILLOSCOPE $1700.00
TEK 567 CURVE TRACER $250.00
TEK DC5000 DIGI-SCOPE CAL. GEN. $200.00
TEK PS50 0 POWER SUPPLY $450.00
TEK TM5000 POWER FRAME $225.00
TEK A132 40MHZ 2CH AMP. $750.00
TEK A134 300MHZ 4CH AMP. $1000.00
TEK 11A71 1GHZ AMP. $400.00
TEK A132A 40MHZ 2CH AMP. $750.00
TEK A134A 300MHZ 4CH AMP. $1000.00
TEK 11A71 1GHZ AMP. $400.00
TEK 11A70A 50MHZ 2CH O-SCOPE FRAME $750.00
TEK 11A01 100MHZ 2CH O-SCOPE FRAME $750.00
TEK TM50 0 POWER FRAME $1000.00
TEK TM50 0 POWER FRAME $1250.00
TEK TM50 0 POWER FRAME $1500.00
TEK TM50 0 POWER FRAME $2000.00
TEK TM50 0 POWER FRAME $2500.00

Thanks to you, all sorts of everyday products are
being made from the paper,
plastic, metal and glass that
you've been recycling.
But to keep recycling
working to help protect the
environment, you need to
buy these products.

BUY RECYCLED.

AND SAVE:

So look for products
from recycled material.
and buy them. It would mean the
world to all of us.

For a free brochure write
Buy Recycled, Environmental
Defense Fund, 257 Park Ave
South, New York, NY 10010.
or call 1-800-CALL-EDF.

To learn how to talk with your kids
about tough issues, like sex,
AIDS/HIV and violence, call
1-800-CHILD-44
and get your free guidebook.

www.americanradiohistory.com
Digital Voltmeter & Analog Analyzer

Specifications:
- **Model:** SG-416AD
- **Power Supply:** +5VDC/100mA
- **Input Impedance:** 1MΩ/10V
- **Resolution:** 100Hz
- **Accuracy:** ±5% (5x10⁻⁰⁷)

Applications:
- RF measurements
- Low-level signal generation
- Oscilloscope
- Logic analyzer

Features:
- **RF Signal Generator:**
 - Output frequency range: 0.1Hz to 20MHz
 - Output power: 5mV to 5Vpp
- **Oscilloscope:**
 - Bandwidth: 20MHz
 - Sampling rate: 1GS/s
- **Logic Analyzer:**
 - Logic levels: TTL, CMOS
 - Resolution: 10-bit

Accessories:
- **Power Supply:** SG-41603
- **Cables:** SG-41602
- **BNC Adapters:** SG-41604

Order Information:
- Online: www.americanradiohistory.com
- Phone: (919) 870-1955
- Fax: (919) 870-5720

WOW FLUTTER METER

Specifications:
- **Model:** WF-3103A
- **Frequency Range:** 10kHz to 500kHz
- **Accuracy:** ±0.5% of full scale

Applications:
- FM and AM audio measurement
- Telecommunication systems

Features:
- **Frequency Response:** 10kHz to 500kHz
- **Phase Accuracy:** ±0.5º
- **Sweep Accuracy:** ±0.5% of full scale

Accessories:
- **Power Supply:** WF-4103A
- **Cables:** WF-4102A

Order Information:
- Online: www.americanradiohistory.com
- Phone: (919) 870-1955
- Fax: (919) 870-5720

SEC Sun Equipment Corporation

P. O. Box 79703, Raleigh, NC 27614
E-mail: sunqualpc@isps.net

To request FREE Catalog, please call, fax, write, or e-mail us.

**Quality Test Equipment for Cost-Minded* **

LODESTAR

Lodestar Electronics Corp. Since 1979

One Year Warranty. 15 Day Money Back Guarantee. OEM WELCOME.

School purchase order accepted. Bids accepted.

SALES REPS/DISTRIBUTORS/DEM WANTED.

Discover, AmEx

1-800-870-1955 (919) 870-1955 Fax: (919) 870-5720
Have you ever given a gift so wonderful, someone carries it with them the rest of their life?

Please give blood. There's a life to be saved right now.

Call 1-800 GIVE LIFE
DIY Audio Electronic Kits Lab Equipment Kits
Audio Enclosures & more!

ORDER
1-800-521-MARK
1-800-423-FIVE

$115.00

Kits:

Kit $12.99 6.99

SM-48 4% Digital LED Panel Meter

This precision digital meter is a stand-alone meter that can be used with a computer. It has a 0.5% digit LED display. The temperature range is 0°C to +70°C. The kit includes BCD code, Busy and strobe panel reading. The kit is easily assembled and set up.

Kit $39.00 20.00

LG-1924 30W Amplifier

Power Output: 30 watts RMS into 8 ohms. Frequency Response: 20 Hz to 20 kHz. THD: < 0.01%. Tone Control: Bass ±12 dB, Treble ±6 dB. Sensitivity: Phonos. This amplifier is for use with high-quality audio equipment.

Kit $89.00 49.99

MT-90A Compact Meter Kit

This kit includes a compact meter that is designed for use with high-quality audio equipment. It has a built-in LED display and is easy to use. The kit includes a power supply and instructions for assembly.

Kit $18.75

72W Amplifier

Power Output: 72 watts RMS into 8 ohms. Frequency Response: 50 Hz to 15,000 Hz. THD: < 0.05%. Tone Control: Bass ±12 dB, Treble ±6 dB. Sensitivity: Phonos. This amplifier is for use with high-quality audio equipment.

Kit $89.00 76.33 Amb. $114.80

TR-503 200W Amplifier

Power Output: 200 watts RMS into 8 ohms. Frequency Response: 20 Hz to 20 kHz. THD: < 0.01%. Bass ±12 dB, Treble ±6 dB. Sensitivity: Phonos. This amplifier is for use with high-quality audio equipment.

Kit $18.75

TA-83 1/4-Watt Stereo Amplifier

Power Output: 1/4 watt into 8 ohms. Frequency Response: 20 Hz to 20 kHz. THD: < 0.01%. Bass ±12 dB, Treble ±6 dB. Sensitivity: Phonos. This amplifier is for use with high-quality audio equipment.

Kit $39.99

MG-9081 1/4-Watt Stereo Amplifier

Power Output: 1/4 watt into 8 ohms. Frequency Response: 20 Hz to 20 kHz. THD: < 0.01%. Bass ±12 dB, Treble ±6 dB. Sensitivity: Phonos. This amplifier is for use with high-quality audio equipment.

Kit $14.75 9.99

ML-30 DC Amplifier

Power Output: 30 watts RMS into 8 ohms. Frequency Response: 20 Hz to 20 kHz. THD: < 0.01%. Bass ±12 dB, Treble ±6 dB. Sensitivity: Phonos. This amplifier is for use with high-quality audio equipment.

Kit $18.00 13.75

AF-2 200W Amplifier

Power Output: 200 watts RMS into 8 ohms. Frequency Response: 20 Hz to 20 kHz. THD: < 0.01%. Bass ±12 dB, Treble ±6 dB. Sensitivity: Phonos. This amplifier is for use with high-quality audio equipment.

Kit $89.00 49.99

85W Amplifier

Power Output: 85 watts RMS into 8 ohms. Frequency Response: 20 Hz to 20 kHz. THD: < 0.01%. Bass ±12 dB, Treble ±6 dB. Sensitivity: Phonos. This amplifier is for use with high-quality audio equipment.

Kit $18.00 13.75

AM-992 1/4-watt AM/FM Radio Kit

This kit includes a 1/4-watt AM/FM radio that is designed for use with high-quality audio equipment. It has a built-in LED display and is easy to use. The kit includes a power supply and instructions for assembly.

Kit $14.75 9.99

ML-29 1/4-Watt Stereo Amplifier

Power Output: 1/4 watt into 8 ohms. Frequency Response: 20 Hz to 20 kHz. THD: < 0.01%. Bass ±12 dB, Treble ±6 dB. Sensitivity: Phonos. This amplifier is for use with high-quality audio equipment.

Kit $18.00 13.75

MT-90A Compact Meter Kit

This kit includes a compact meter that is designed for use with high-quality audio equipment. It has a built-in LED display and is easy to use. The kit includes a power supply and instructions for assembly.

Kit $18.75

TA-83 1/4-Watt Stereo Amplifier

Power Output: 1/4 watt into 8 ohms. Frequency Response: 20 Hz to 20 kHz. THD: < 0.01%. Bass ±12 dB, Treble ±6 dB. Sensitivity: Phonos. This amplifier is for use with high-quality audio equipment.

Kit $39.99

MG-9081 1/4-Watt Stereo Amplifier

Power Output: 1/4 watt into 8 ohms. Frequency Response: 20 Hz to 20 kHz. THD: < 0.01%. Bass ±12 dB, Treble ±6 dB. Sensitivity: Phonos. This amplifier is for use with high-quality audio equipment.
WWW.WEB-TRONICS.COM

- Comprehensive Web Site
- Easy to Navigate/Easy to Locate Product
- Place Orders Online, Call Us, or FAX Us
- Special Promotions ONLY Available at www.web-tronics.com

SINCE 1971

<table>
<thead>
<tr>
<th>Accessories & Cables</th>
<th>AC Power Cords</th>
<th>Batteries</th>
<th>Bench Power Supplies</th>
<th>Breadboards & Prototyping Boards</th>
<th>Cable Ties & Wiring Accessories</th>
<th>Capacitors</th>
<th>Computer Cases</th>
<th>CD ROM Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chokes & Coils</td>
<td>CMOS Devices</td>
<td>Connectors</td>
<td>CPUs</td>
<td>Crystals & Oscillators</td>
<td>Data Acquisition & Control</td>
<td>Digital Multimeters</td>
<td>Diodes</td>
<td>DIY Electronic Kits</td>
</tr>
<tr>
<td>Educational Fiber Optics</td>
<td>Educational Laser Products</td>
<td>EEPROM Programmers & Erasers</td>
<td>Electronic Chemicals</td>
<td>Enclosures</td>
<td>Excess & Surplus Inventory</td>
<td>Fans</td>
<td>Floppy Drives</td>
<td>Frequency Counters</td>
</tr>
<tr>
<td>Logic Probes</td>
<td>Memory</td>
<td>Modems</td>
<td>Monitors</td>
<td>Motherboards</td>
<td>Motion Control</td>
<td>Network & Ethernet Supplies</td>
<td>Oscilloscopes</td>
<td>Panel Meters</td>
</tr>
<tr>
<td>Personal Computing Systems</td>
<td>Portable Computers</td>
<td>Potentiometers</td>
<td>Power Supplies</td>
<td>Printed Circuit Board Supplies</td>
<td>Programmable Devices</td>
<td>Rectifiers</td>
<td>Resistors</td>
<td>Speakers & Microphones</td>
</tr>
<tr>
<td>Printers</td>
<td>School Sorting Service</td>
<td>Security & Observation Equipment</td>
<td>Small Board Cameras</td>
<td>Software Driver Library</td>
<td>Soldier Equipment & Supplies</td>
<td>Sound Cards</td>
<td></td>
<td>Voltage Regulators</td>
</tr>
<tr>
<td>Specials & Promotions</td>
<td>Special Function I.C.s</td>
<td>Switches</td>
<td>Test Leads & Cable Assemblies</td>
<td>Transformers</td>
<td>Transistors</td>
<td>TTL Logic</td>
<td>Video Cards</td>
<td></td>
</tr>
</tbody>
</table>
Your #1 Resource for Electronic Equipment & Supplies
- Updates & New Items Constantly!
- Special PROMO Items at Unbelievable Prices!

- Our Full Sized, Full Featured DMM
 ONLY $19.00
 www.web-tronics.com
 for Details and Specifications

- IDE Hard Drive Slide Racks
 ONLY $14.95
 www.web-tronics.com
 for Details and Specifications

- CCD Board Cameras!
 B&W with Infra-Red
 ONLY $59.00
 www.web-tronics.com
 for Details and Specifications

- Full Line of MG Chemicals
 www.web-tronics.com
 for Details and Specifications

- Rack Mount Industrial PC Products
 At Low Prices!
 www.web-tronics.com
 for Details and Specifications

- Positive PCB Photofabrication Kit
 ONLY $27.95
 www.web-tronics.com
 for Details and Specifications

- Low Cost Digital Panel Meters
 AS LOW AS $5.25
 www.web-tronics.com
 for Details and Specifications

- NuDAQ Data Acquisition & Control Boards
 Great Selection & Prices!
 www.web-tronics.com
 for Details and Specifications

- D.I.Y. Educational Electronic Kits
 FM Transmitter Kit
 ONLY $9.95
 www.web-tronics.com

- True RMS DMM
 ONLY $69.00
 www.web-tronics.com
 for Details and Specifications

- High Quality Motherboards, Memory, Hard Drives & Personal Computers
 Prices Updated Weekly at
 www.web-tronics.com

THOUSANDS OF PRODUCTS!
$1,000,000. INVENTORY!
SERVING OUR CUSTOMERS SINCE 1971.

CIRCUIT SPECIALISTS, INC.
800-811-5203 (Toll Free)
602-464-2485
602-464-5824 (FAX)

WE ACCEPT:
CLASSIFIED

NEW! Cell phone E.S.N. readers $250 each, cell phone programmers $175 each, cell phones $25 each, DSS satellite dish card readers and programmers $125 each, credit card readers $250 each, Cable TV notch filters $5 cents each, converter boxes $50 each, magnetic strip card readers for ATM machines, bank cards, drivers license, and all types of data acquisitions all under $200 each. You pay these super low prices when you deal directly with the manufacturers. When you order "Direct Connection" a 150 page directory published by Ed Treki Publications, you will receive the largest collection of names, addresses, and phone numbers of all the leading American and International manufacturers of these products never before available. Stop paying second, third and fourth-hand prices and deal directly with the source!!! Order your copy of "Direct Connection" today for only $59.95 plus $5 shipping. All orders are sent C.O.D. Please call Ed Treki Publications 24 hour order hot line 916-544-9229.

Cable boxes all models, all channels, lowest prices in the United States. Open seven days a week till midnight, Pacific time. Call (877)789-7337 toll-free.

Free Cable TV t-shirt with the purchase of a radio frequency test cube, converter or video stabilizer. You will love any price!! Cable USA, Inc. 1-888-385-CUBE.

NEW! Jerrold and Pioneer wireless test units $125 each, also 75DB notch filters $19.95 each, quantity pricing available, please call KEN ERNY ELECTRONICS, 24 hour order and information hotline 516-385-3536.

ALL CABLE TV CONVERTERS & ACCESSORIES. LOWEST PRICES, 30 DAY TRIAL, 1 YEAR WARRANTY. 1-800-538-CABLE(2225).

For all your cable needs, Quantity Discounts, low, low price. 30 day money back guaranteed. Call now 888-898-3284, Sklyab Sales Inc.

CB-SCANNERS

CB Radio Modifications! Frequencies, kits, high performance accessories, books, plans, repairs, amps, 10-Meter conversions. The best since 1976! Catalog $3.00. CBCI, Box 1898EN, Monterey, CA 93942.

CB Trick Books, three books 1, 2 and 3. Each book $19.95 each. Repairs, tune-ups, and amplifiers. Send money order to Medicine Man CB, P.O. Box 37, Clarksville, AR 72830.

EDUCATION

PLANS-KITS-SCHEMATICS

ELECTRONIC PROJECT KITS: 49 McMichael St, Kingston, ON. K7M 1W8. $3.00 catalog. www.qkits.com. QUALITY KITS.

CATALOG: Broadcasting/micro transmitters, amplifiers, antennas. Start your own radio station books, Audio, TV, Ham, CB, Surveillance. Science projects and more! Call PAN-COM Intl, PO Box 130-12, Paradise, CA 95967.

AWESOME KITS: Voice Changers, Levitators, Lasers, Gas Sensors and more! Catalog $1.00. LNS Technologies, PO Box 67243, Scotts Valley, CA 95067 www.cnnet.com/-LNS/TECH.

98
TIPS FOR MAIL ORDER PURCHASE

It is impossible for us to verify the claims of advertisers, including but not limited to product availability, credibility, reliability and existence of warranties. The following information is provided as a service for your protection. It is not intended to constitute legal advice and readers are advised to obtain independent advice on how to best protect their own interests based upon their individual circumstances and jurisdictions.

1. Confirm price and merchandise information with the seller, including brand, model, color or finish, accessories and rebates included in the price.

2. Understand the seller’s return and/or refund policy, including the allowable return period, who pays the postage for returned merchandise and whether there is any “restocking” or “return” charge.

3. Understand the product’s warranty. Is there a manufacturer’s warranty, and if so, is it for a U.S. or foreign manufacturer? Note that many manufacturers assert that, even if the product comes with a U.S. manufacturer’s warranty, if you purchase from an unauthorized dealer, you are not covered by the manufacturer’s warranty. If in doubt, contact the manufacturer directly. In addition to, or instead of the manufacturer’s warranty, the seller may offer its own warranty. In either case, what is covered by warranty, how long is the warranty period, where will the product be serviced, is there a charge for service, what do you have to do to obtain service and will the product be repaired or replaced? You may want to receive a copy of the written warranty before placing your order.

4. Keep a copy of all transactions, including but not limited to cancelled check, receipt and note of the order including merchandise ordered, price, order date, expected delivery date and salesperson’s name.

5. If the merchandise is not shipped within the promised time, or if no time was promised, within 30 days of receipt of the order, you generally have the right to cancel the order and get a refund.

6. Merchandise substitution without your express prior consent is generally not allowed.

7. If you have a problem with your order or the merchandise, write a letter to the seller with all the pertinent information and keep a copy.

8. If you are unable to obtain satisfaction from the seller, contact the consumer protection agency in the seller’s state and your local post office.

If after following the guidelines, you experience a problem with a mail order advertiser that you are unable to resolve, please let us know. Write to Advertising Department, Gernsback Publications Inc., 500B Bi-County Blvd., Farmingdale, NY 11735.

Be sure to include copies of all correspondence.
ADVERTISING INDEX

Electronics Now does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacom Technology</td>
<td>79</td>
<td>Lindsay Publications</td>
<td>77</td>
</tr>
<tr>
<td>ABC Electronics</td>
<td>92</td>
<td>Lynxmotion</td>
<td>83</td>
</tr>
<tr>
<td>AES</td>
<td>90</td>
<td>M2E Electronics</td>
<td>77</td>
</tr>
<tr>
<td>All Electronics</td>
<td>65</td>
<td>Mark V Electronics</td>
<td>95</td>
</tr>
<tr>
<td>Allison Technology</td>
<td>79</td>
<td>MCM Electronics</td>
<td>69</td>
</tr>
<tr>
<td>American Innovations</td>
<td>77</td>
<td>Merrimack Valley Systems</td>
<td>90</td>
</tr>
<tr>
<td>Andromeda Research</td>
<td>90</td>
<td>Micro Test</td>
<td>94</td>
</tr>
<tr>
<td>Arrow Technologies</td>
<td>80, 86</td>
<td>MicroCode Engineering</td>
<td>CV2</td>
</tr>
<tr>
<td>Basic Electrical Supply</td>
<td>81</td>
<td>MicroEngineering Labs</td>
<td>94</td>
</tr>
<tr>
<td>Bel-Merit</td>
<td>66</td>
<td>Modern Electronics</td>
<td>94</td>
</tr>
<tr>
<td>Brand Electronics</td>
<td>75</td>
<td>Mouser Electronics</td>
<td>86</td>
</tr>
<tr>
<td>Bsoft Software, Inc.</td>
<td>82</td>
<td>MSC Electronics</td>
<td>85</td>
</tr>
<tr>
<td>C&S Sales, Inc.</td>
<td>70</td>
<td>Netcom</td>
<td>75</td>
</tr>
<tr>
<td>Cable USA</td>
<td>82</td>
<td>NRI Schools</td>
<td>51</td>
</tr>
<tr>
<td>Circuit Specialists</td>
<td>96</td>
<td>NYE Electronics</td>
<td>86</td>
</tr>
<tr>
<td>CLAGKK, Inc.</td>
<td>9, 62</td>
<td>OWI</td>
<td>92</td>
</tr>
<tr>
<td>Cleveland Inst. of Electronics</td>
<td>3, 35</td>
<td>Parts Express Inc.</td>
<td>73</td>
</tr>
<tr>
<td>Command Productions</td>
<td>72</td>
<td>Pioneer Hill Software</td>
<td>88</td>
</tr>
<tr>
<td>Conitec</td>
<td>99</td>
<td>Point Six</td>
<td>89</td>
</tr>
<tr>
<td>Consumertronics</td>
<td>74</td>
<td>Polaris Industries</td>
<td>63</td>
</tr>
<tr>
<td>Crazy Liz's</td>
<td>94</td>
<td>Prairie Digital</td>
<td>75</td>
</tr>
<tr>
<td>EDE - Spy Outlet</td>
<td>99</td>
<td>Print (Puce)</td>
<td>91</td>
</tr>
<tr>
<td>Electronic Express</td>
<td>76</td>
<td>Radio Shack</td>
<td>5</td>
</tr>
<tr>
<td>Electronic Tech. Today</td>
<td>9, 42</td>
<td>Ramsey Electronics</td>
<td>68</td>
</tr>
<tr>
<td>Emac Inc.</td>
<td>72</td>
<td>Roger's Systems Specialist</td>
<td>67</td>
</tr>
<tr>
<td>Engineering Express</td>
<td>66</td>
<td>Science Fair Electronics</td>
<td>85</td>
</tr>
<tr>
<td>Foley-Belsaw</td>
<td>87</td>
<td>SE International</td>
<td>72</td>
</tr>
<tr>
<td>General Device Instruments</td>
<td>88</td>
<td>Sil Walker</td>
<td>66</td>
</tr>
<tr>
<td>Grantham Col. of Engineering</td>
<td>4</td>
<td>Square 1 Electronics</td>
<td>79</td>
</tr>
<tr>
<td>Home Automation</td>
<td>83</td>
<td>Sun Equipment</td>
<td>93</td>
</tr>
<tr>
<td>Howard Electronics</td>
<td>98</td>
<td>Tech-Specialties</td>
<td>85</td>
</tr>
<tr>
<td>Howard Electronics</td>
<td>78</td>
<td>Techniks</td>
<td>85</td>
</tr>
<tr>
<td>IEC</td>
<td>83</td>
<td>Technological Arts</td>
<td>85</td>
</tr>
<tr>
<td>Information Unlimited</td>
<td>81</td>
<td>Test Equipment Depot</td>
<td>80</td>
</tr>
<tr>
<td>Intec Automation</td>
<td>85</td>
<td>Test Equipment Sales</td>
<td>82</td>
</tr>
<tr>
<td>Interactive Image Technologies</td>
<td>CV4</td>
<td>Timeline</td>
<td>76</td>
</tr>
<tr>
<td>Intersoft</td>
<td>83</td>
<td>U.S. Cyberlab</td>
<td>88</td>
</tr>
<tr>
<td>J&M Microtek, Inc.</td>
<td>85</td>
<td>Video Media</td>
<td>85</td>
</tr>
<tr>
<td>J-Tron Inc.</td>
<td>86</td>
<td>Viewers Choice Electronics</td>
<td>64</td>
</tr>
<tr>
<td>Jameco</td>
<td>CV3</td>
<td>World Star Technologies</td>
<td>85</td>
</tr>
<tr>
<td>James Electronics</td>
<td>80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADVERTISING SALES OFFICES

- **Gernsback Publications, Inc.**
 500 Bi-County Blvd.
 Farmingdale, NY 11735-3931
 1-(516) 293-3000
 Fax 1-(516) 293-3115
 Larry Steckler
 publisher (ext. 201)
e-mail advertising@gernsback.com

- **Adria Coren**
 vice-president (ext. 208)

- **Ken Coren**
 vice-president (ext. 267)

- **Christina Estrada**
 assistant to the publisher (ext. 209)

- **Marie Falcon**
 advertising director (ext. 206)

- **Adria Coren**
 credit manager (ext. 208)

For Advertising ONLY

EAST/SOUTHEAST

- **Meghan Mitchell**
 9072 Lawton Pine Avenue
 Las Vegas, NV 89129
 Phone 702-240-0184
 Fax 702-838-6924
 Lorri88@aol.com

MIDWEST/Texas/Arkansas/Oklahoma

- **Ralph Bergen**
 Midwest Advertising
 One Northfield Plaza, Suite 300
 Northfield, IL 60093-1214
 1-847-559-0555
 Fax 1-847-559-0562
 bergen@jal.com

PACIFIC COAST

- **Anita Bartman**
 Pacific Advertising
 Hutch Looney & Associates, Inc.
 6310 San Vicente Blvd., Suite 360
 Los Angeles, CA 90048-5426
 1-323-931-3444 (ext. 227)
 Fax 1-323-931-7309
 janice@hlooney.com

Electronic Shopper

- **Joe Shere**
 National Representative
 P.O. Box 169
 Idyllwild, CA 92549-0169
 1-909-659-9743
 Fax 1-909-659-2469
 Jshere@gernsback.com

- **Megan Mitchell**
 National Representative
 9072 Lawton Pine Avenue
 Las Vegas, NV 89129
 Phone 702-240-0184
 Fax 702-838-6924
 Lorri88@aol.com

Customer Service

- 1-800-999-7139
 7:00 AM - 6:00 PM M-F MST

ADVERTISING INDEX

- **Jameco**
 CV3

- **James Electronics**
 80

ADVERTISING SALES OFFICES

- **Gernsback Publications, Inc.**
 500 Bi-County Blvd.
 Farmingdale, NY 11735-3931
 1-(516) 293-3000
 Fax 1-(516) 293-3115
 Larry Steckler
 publisher (ext. 201)
e-mail advertising@gernsback.com

- **Adria Coren**
 vice-president (ext. 208)

- **Ken Coren**
 vice-president (ext. 267)

- **Christina Estrada**
 assistant to the publisher (ext. 209)

- **Marie Falcon**
 advertising director (ext. 206)

- **Adria Coren**
 credit manager (ext. 208)

For Advertising ONLY

EAST/SOUTHEAST

- **Megan Mitchell**
 9072 Lawton Pine Avenue
 Las Vegas, NV 89129
 Phone 702-240-0184
 Fax 702-838-6924
 Lorri88@aol.com

MIDWEST/Texas/Arkansas/Oklahoma

- **Ralph Bergen**
 Midwest Advertising
 One Northfield Plaza, Suite 300
 Northfield, IL 60093-1214
 1-847-559-0555
 Fax 1-847-559-0562
 bergen@jal.com

PACIFIC COAST

- **Anita Bartman**
 Pacific Advertising
 Hutch Looney & Associates, Inc.
 6310 San Vicente Blvd., Suite 360
 Los Angeles, CA 90048-5426
 1-323-931-3444 (ext. 227)
 Fax 1-323-931-7309
 janice@hlooney.com

Electronic Shopper

- **Joe Shere**
 National Representative
 P.O. Box 169
 Idyllwild, CA 92549-0169
 1-909-659-9743
 Fax 1-909-659-2469
 Jshere@gernsback.com

Customer Service

- 1-800-999-7139
 7:00 AM - 6:00 PM M-F MST
JAMECO
MONDO • TRONICS
Muscle Wires
These unique nikel-titanium alloy Muscle Wires* actually shorten in length when electrically powered, and can lift thousands of times their own weight.
- Length: 1 meter
- Recovery weight: 141882 - 3 grams
 141321 - 150 grams
 141874 - 330 grams

Part No.
141321
141874

Electric Wires
Get the facts behind the unusual properties of Muscle Wires.
- Includes (1) each
 Flexion 500LT
 100LT and 150LT and Project Book
- Includes crimpers and instructions

Part No.
141348

Space Wings Kit
Sleek silvery mylar wings flap silently using only five centimeters of Muscle Wire**. "No, it really doesn’t fly.”
- Assembly requires soldering iron, solder, screwdriver, wire cutters and two AA batteries (not included)

Part No.
141013

Xcelite Tools
7 Pce. Prec. Screwdriver Set
- 4 flat points
- 0.031” x 5.44L
- 0.031” x 6.0L
- 0.013” x 7.65L
- 0.013” x 2.75L
- 3 Phillips No. 1, 18” flat x 7.25L
- 00, 0.013” x 5.75L

Part No.
146632

Pliers
USA-made alloy steel
Spring returns
Weight: 0.2 lbs.

Part No.
146720

Shear Cutter/Plier Tool Set
- Improved handle grip for control and comfort
- Non-glare black finish
- Weight: 0.5 lbs.

Part No.
150205

Tech Spray Workshop Products
- EPA SNAP approved
- No CFCs or HCFCs
- Safe on plastics

Part No.
139900

Nitrol Live Wire
Ni-Wire for use with hot and cool water.
- Set of three packages
- Weight: 0.05 lbs.

Part No.
141891

Jameco Special Values
Win 95 104-Key Keyboard
- For PS/2 systems
- Weight: 1.5 lbs.
- Size: 18.3” L x 5.6” W x 1.5” H
- Color: Black

Part No.
154721

DEC Writer 95 Printer
- Windows® 95 Compatibility
- Impact dot matrix with 24 wire print head
- Epson and IBM emulation character set
- 13 fonts built-in
- Includes sheet feeder, manual and drivers
- Weight: 14.0 lbs.
- Size: 19.9” W x 16” D x 3.4” H

Part No.
151618

BOCA ISA 33.6 Kbps Internal Data/Fax Modem
- Rockwell chipset
- Can create voice and mailbox options with Quicklink III software
- One-year warranty

Part No.
155117

PCI Enhanced IDE HD CD-ROM Controller Card
- 80C186 and 8016 chipsets, BOOS bus
- Supports up to 4 IDE HDD/CD-ROM drives, 46B max drive
- Supports enhanced IDE mode 3, 4 and 5

Part No.
153872

Surge Master II
- Solid state phone/fax modern protection
- 8 outlet

Part No.
147002

Power Authority II
- Master power switch and 5 auxiliary switches for each outlet

Part No.
147011

JAMECO
Electronic Components
Order Toll Free 24 Hours
7-Days a Week!
@ 1998 Jameco 10/98

1356 Shoreway Road
Belmont, CA 94002-1410
FAX: 1-800-237-5948 (Domestic)
FAX: 650-952-2503 (International)
E-mail: info@jameco.com
www.jameco.com

Call 1-800-831-4242 day or night!

Mail or Fax This Request for Our Free 984 Jameco Catalog!
Name:
Company:
Address:
City:
State/Zip:
Phone:

www.americanradiohistory.com
THE WORLD'S MOST POPULAR DESIGN TOOL CHosen BY OVER 100,000 USERS!

Electronics Workbench
Personal Edition

Full-featured schematic capture and SPICE circuit simulation!

The world's most popular circuit design tool that sets the standard for powerful, insightful SPICE simulation. Create professional looking schematics and then with the flick of a switch, display simulated waveforms live on a suite of virtual instruments. Includes 15 powerful analyses and a library of over 4,000 robust component models.

$299

Power-packed PCB layout with autorouting and real-time DRC!

EWB Layout is a powerful board layout package for producing high-quality, multi-layer printed circuit boards. Offering tight integration with our schematic capture program, EWB Layout is the best way to quickly produce well-designed boards.

$299

CALL FOR INFORMATION AND PRICING ON OUR PROFESSIONAL EDITION.

800.263.5552

For a free demo, visit our website at www.electronicsworkbench.com

BUY BOTH AND SAVE! $599

30-DAY MONEY-BACK GUARANTEE

Fax: 416-977-1818
E-mail: ewb@interactiv.com

CIRCLE 138 ON FREE INFORMATION CARD

www.americanradiohistory.com