THE NEW AGE OF SATELLITE TV

A look at the new digital small-dish satellite system

Build a Solid-State Disk Drive for your computer

Build the Audio Wizard Function Generator for testing and troubleshooting audio equipment

Build a PC-Based RF Signal Generator for your test bench

Transistor-Based Audio Power Amplifier circuit cook book

SPECIAL INSERT: UNDERSTANDING VIDEO SIGNALS!
The Fluke 79:
More Of A Good Thing

More high-performance features. More advanced measurement capabilities. More of the vital information you need to troubleshoot even the toughest problems — with both analog and digital displays.

Meet the latest, greatest member of our best selling 70 Series II family — the new Fluke 79 digital multimeter.

It picks up where the original family left off. In fact, it's a quantum leap forward — in performance, value and affordability.

Easy to operate, too — with one hand.

And thanks to the Fluke 79's proprietary new integrated circuit technology, that's only the beginning. When it comes to zeroing in on tough electrical problems, the Fluke 79 leaves the competition behind.

Hz

Frequency: The Fluke 79's built-in frequency counter lets you measure from below 1 Hz to over 20 kHz. And while you view frequency on the digital display, the analog bar graph shows you AC voltage. So you can see if potentially hazardous voltage is present.

Fast 63-segment analog bar graph: The Fluke 79's bargraph moves as fast as the eye can see, updating at a rate 40 times per second to simulate the functionality of an analog needle. You get the high speed and high resolution you need to detect peaking, nulling and trending.

Capacitance: No need to carry a separate dedicated capacitance tester; the Fluke 79 measures capacitance from 10 pf to 9999 μF.

FLUKE

CIRCLE 121 ON FREE INFORMATION CARD

www.americanradiohistory.com
Mini-Spur 1.0
.turns your PC into a Spectrum Analyzer

Spot Spurious Signals Easily... choose the best mixer for your design problems

$49.95

Introducing Mini-Spur**, the software simulation program for analysis of system spurious responses. Using actual data on Mini-Circuits mixers, spurious signal levels are calculated and then displayed.

Operation is simple. The user defines the input frequency and power level, the program then graphically displays the various outputs including all the spurs (up to 10xLO ± 10xRF) falling within the user-defined IF filter bandwidth. As the user tunes the frequency, the output spectrum scrolls across the screen just like that of a sophisticated spectrum analyzer.

Required hardware; IBM AT or compatible with 640k memory, and EGA or VGA display. Optional, dot matrix, laser printer or plotter.

So maximize design efficiency... use Mini-Spur** only from Mini-Circuits.

CIRCLE 184 ON FREE INFORMATION CARD
Notice any difference between these two DC power sources?

B&K-PRECISION power supplies cost less than other power supplies you may be used to buying, but to your circuits they look identical. Your circuit will see only the same pure, clean DC power that comes from the high-priced lines. You'll see the savings.

B&K-PRECISION builds DC power supplies for most bench applications requiring up to 10 amps. All are fully regulated with excellent ripple and noise characteristics. Some models feature digital metering, multiple outputs, tracking and constant current operation.

Start saving cash on your next power supply purchase. Compare features, performance and price and you'll choose B&K-PRECISION. For a free Power Supply Selection Guide or immediate delivery, contact your local distributor or B&K-PRECISION.

Front row left to right: Model 1660 Triple Output $649, Model 1610 0-30VDC, 1A $229, Model 1630 0-30V, 3A $315, Model 1635 0-30V, 3A $380.
Back row top: Model 1651 Triple Output $429;
NEW Model 1686 3-15V, 12A $199.
BUILD THIS

41 BUILD THE AUDIO WIZARD TEST GENERATOR
Find a spot on your workbench for this function generator so you can test audio equipment.
John Wannamaker

49 SOLID-STATE DISK DRIVE
Add a bootable RAM drive to your PC.
Mark Hatten

62 PC-BASED RF SIGNAL GENERATOR
Build our 2-GHZ RF signal generator.
Dan Doberstein

75 CATCH AN APRIL FOOL!
The electronic Screamer will catch him red-handed.
Klaus Spies

TECHNOLOGY

33 THE NEW AGE OF SATELLITE TV
The DSS Digital Satellite System could change the way you view TV.
Brian C. Fenton

65 POWER AMPLIFIERS
Put audio power amplifiers to work in your circuit designs.
Ray Marston

77 NATIONAL ELECTRONICS TECHNICIANS DAY
ISCET certification could boost your career!

DEPARTMENTS

8 VIDEO NEWS
What's new in this fast-changing field.
David Lachenbruch

16 EQUIPMENT REPORTS
Elenco Model SM200 Decision Maker Kit.

24 DRAWING BOARD
Why build a tachometer?
Robert Grossblatt

85 HARDWARE HACKER
The fundamentals of SCSI communication, and more.
Don Lancaster

96 AUDIO UPDATE
Collecting old audio test equipment.
Larry Klein

98 COMPUTER CONNECTIONS
1993 in review.
Jeff Holtzman

AND MORE

106 Advertising Sales Offices
106 Advertising Index
101 Buyer's Mart
12 Letters
26 New Lit
20 New Products
10 Q&A
6 What's News
Nothing on TV? Not for long! Thomson Consumer Electronics' Digital Satellite System could bring to the masses the picture and sound quality that previously could be achieved only by installing an 8- to 12-foot dish antenna. DSS requires only an 18-inch dish and a set-top integrated receiver/decoder. Two high-powered satellites will deliver up to 150 channels of programming, including such services as HBO, Cinemax, CNN, ESPN, and the Disney Channel, as well as pay-per-view movies and live sports and concert events. To find out how DSS could change the way you view TV, turn to page 33.

COMING NEXT MONTH

THE MAY ISSUE GOES ON SALE APRIL 5.

DESIGNING WITH PROGRAMMABLE LOGIC
A look at the advantages of PLD's.

BUILD A LOW-COST PLD PROGRAMMER
Get started using programmable devices today!

BUILD AN AM POWER LOOP ANTENNA
Pull in stations you never dreamed possible.

As a service to readers, ELECTRONICS NOW publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, ELECTRONICS NOW disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

Since some of the equipment and circuitry described in ELECTRONICS NOW may relate to or be covered by U.S. patents, ELECTRONICS NOW disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

POSTMASTER: Please send address changes to ELECTRONICS NOW, Subscription Dept., Box 55115, Boulder, CO 80321-5115.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.
Setting New Standards

IN THE WORLD OF

Communications, Test & Surveillance

Further • Better • Faster

Model 3000A $329.
World's most highly advanced handheld counter:
- Digital Filter: Reduces false counts
- No loss of sensitivity
- Digital Auto Capture - auto hold & store; works even near strong RF fields
- Stores and recalls frequencies
- 5-6 hour battery operation
- Fast - 250 million counts per second for high resolution - 250 MHz direct count
- 10 Hz to 3 GHz
- Ultra sensitive Bargraph w/ 16 segment display
- Multi-Function Counter with Frequency, Period, Ratio and Time Interval
- Optional + 2 PPM TCXO - $100.

Model M1 $229.
Full Range Pocket Sized Counter
- Digital Filter
- Digital Auto Capture - Auto Hold
- Stores &Recalls Frequencies
- 4-5 hr battery operation
- 10 Hz to 2.8 GHz
- 10 digit LCD with EL backlight

Model 8040 $679.
Multi-Function Bench/Portable Counter
Measures Frequency, Period, Ratio, Time Interval and Average.
- Digital filtering to eliminate false counts
- Auto Capture/Auto Hold
- 16 Segment Signal Strength Bargraph
- Dual 50 Ohm and 1 Meg Ohm input amplifiers with AC/DC Coupling,
 ± Polarity, Triggers Level Adj., Low Pass Filter and Attenuator
- 0.5 PPM & 0-50°C Oversized Time Base Option
- Internal/External Clock Input
- RS-232 Serial Computer Interface

800 327 5912
(305) 771-2050 • FAX (305) 771-2059 • 5821 NE 14th Ave. Ft. Lauderdale FL 33334
CIRCLE 181 ON FREE INFORMATION CARD

www.americanradiohistory.com
Bipolar lithium battery doubles laptop computer operating time

The first practical bipolar lithium-ion battery suitable for powering laptop computers and other portable electronic products has been announced by Yardney Technical Products Inc., Pawcatuck, CT. Yardney says its electrochemical system offers better performance and longer life than conventional nickel-cadmium and monopolar lithium rechargeable batteries.

The company reports that its bipolar lithium-ion battery will power a typical laptop computer for six-to-eight hours per charge. This compares with the three-to-four hour limit expected of nickel-cadmium batteries.

The Yardney battery has a microporous separator between thin positive and negative electrodes in a multicell assembly that the company says provides short current paths through the stack rather than across the surface of each electrode. This, it claims, minimizes resistance losses along or across electrodes. Self-heating, a response that can limit useful life in monopolar lithium-ion cells is said to be reduced.

NESDA Challenges U.S. Copyright Act

The National Electronics Service Dealers Association (NESDA) has come to the aid of Peak Computer Corporation in its legal battle with MAI Systems Inc.

NESDA and its associated organizations filed a friend-of-the-court brief in Washington DC last November on behalf of Peak which has been sued by MAI Systems for alleged violations of the U.S. Copyright Act.

MAI says the software which operates its computers is licensed only to the owners of those computers, and only licensed owners should be allowed to turn them on.

Its suit charges that Peak and other service companies are breaking the law by turning on the computers for service.

Two lower courts agreed with MAI that by turning on a computer a "copy" of the operating program is made in the computer's RAM. This, MAI says, violates Sec. 117 of the U.S. Copyright Act.

NESDA believes that if the ruling is allowed to stand, manufacturers of such products as appliances, audio and video equipment, and heating and air-conditioning controls could claim a similar exclusive right to their "intellectual property." According to NESDA Executive Director Clyde Nabors, "NESDA has no choice but to oppose" the lower court's ruling, which he views as "another of a long string of thinly-veiled attempts by some manufacturers to eliminate competition from independent service organizations."

The NESDA brief challenges the ruling on several points of law. In its brief, NESDA referenced a previous Supreme Court ruling that concluded that a market for the service of a product exists after the sale of the product. In effect, the Court said that even if a manufacturer does not monopolize the sale of its product, it can still be claimed by illegally trying to monopolize the service of those products.

The NESDA brief, entitled the "Service Industry Signal," is being filed by attorney Ron Katz of the San Francisco office of Coudert Brothers, a New York law firm. To recover the cost of the brief as well as the cost of future "signals" from the service industry, NESDA has requested contributions to the "S.I.S." legal defense fund from concerned service dealers and technicians. The contributions are to be sent to the SIS Fund, c/o NESDA, 2708 West Berry Street, Fort Worth, TX 76109.

Optical filter speeds natural-gas detection

The Gas Research Institute is supporting the development of a natural-gas pipeline monitoring system by Westinghouse Electric Corporation. The work being done at the Westinghouse Science & Technology Center in Pittsburgh. A survey vehicle was fitted with a gas detection system based on an electro-optic crystal filter. The system promises reliable leak detection at speeds five to ten times faster than are possible from existing leak-detection vehicles.

Existing systems are based on a flame-ionization detector that responds to combustible gas in air samples continuously drawn into the vehicle through ground-level in-
Select any 5 books for only $4.95 (values to $119.75)

When you join the Electronics Book Club®

As a member of the Electronics Book Club...

you'll enjoy receiving Club bulletins every 3-4 weeks containing exciting offers on the latest books in the field at savings of up to 50% off regular publishers' prices. If you want the Main Selection do nothing and it will be shipped automatically. If you want another book, or no book at all, simply return the reply form to us by the date specified. You'll always have at least 10 days to decide. And you'll be eligible for FREE BOOKS through our Bonus Book Program. Your only obligation is to purchase 3 more books during the next 12 months, after which you may cancel your membership at any time.

Publishers' prices shown. All books are softcover unless otherwise noted. If you select a book that counts as 2 choices, write the book number in one box and XX in the next. If you select a book that counts as 3 choices, write the book number in one box and XXX in the next 2 boxes. A shipping/handling charge & sales tax will be added to all orders.

If coupon is missing, write to:
Electronics Book Club, Blue Ridge Summit, PA 17294-0810

Your most complete and comprehensive source for the finest electronics books

Electronics Book Club® Blue Ridge Summit, PA 17294-0810

YES! Please send me the books listed below, billing me for just $4.95 plus shipping/handling & tax. Enroll me as a member of the Electronics Book Club according to the terms outlined in this ad. If not satisfied, I may return the books within 10 days without obligation and have my membership cancelled.

If you select a book that counts as 2 choices, write the book number in one box and XX in the next. If you select a book that counts as 3 choices, write the book number in one box and XXX in the next 2 boxes.

Name
Address
City/State
Zip
Phone

Valid for new members only, subject to acceptance by EBC. Canada must remit in U.S. funds drawn on U.S. banks. Applicants outside the U.S. and Canada will receive special ordering instructions. All books are softcover unless otherwise noted.

Publishers' prices shown. A shipping/handling charge & sales tax will be added to all orders.

April 1994 Electronics Now
Some of these receivers due to the receiver.

Transmission will emanate from the same satellite. Both use the same eo-on-demand movies. DirecTV part of packages, channels when start, using offered CIRCUIT priced subscription program sold for edges of receivers high-expected to offer their electronic brain in Commercial Free keeps track of commercial clues—periods when sound and video are cut off momentarily. It puts invisible and inaudible signals on the tape to denote these clues. When the program has been recorded, the device inspects that program map and notes where clusters of regular short intervals are located. On playback, it instructs the recorder when to go into fast-forward, skipping through the commercials. The screen turns a blank blue during those intervals, which reduces the time watching commercials from minutes to mere seconds of fast-forwarding.

Index Plus. Another VCR gadget—this one developed by Gemstar Development, which invented the VCR Plus video-programming system—promises to help you keep track of your tapes. Gemstar currently is showing VCR manufacturers its "Index Plus," which uses program identification material transmitted by TV stations and cable networks under the recently authorized extended data service (EDS) rules. The EDS rules set aside the second field of Line 21 of the vertical blanking interval for various services, including extended closed captions.

Index Plus captures the program identification signals transmitted by the stations during home taping and, upon demand, can display a list of programs stored on the cassette that is in the recorder. Using a remote control, the viewer can select the desired program and the VCR will fast forward or reverse to that program—no counter or time numbers are required. In addition, the system remembers all the programs recorded using the EDS signal and can display a list of them, identifying which cassette—by index number—contains each listed program.

Video-game war. Almost every week seems to bring a new entry in the TV-based interactive market, still keyed mainly to games. Last year, Nintendo's supremacy was challenged by Sega, which made a significant dent in the cartridge-based game field. Both companies have CD-based games as well. Atari recently introduced the Jaguar cartridge game. More elaborate CD-based systems for games as well as educational and other entertainment uses include CD-I by Philips, which is expected to gain new adherence this year, and 3DO, currently being marketed by Panasonic but with AT&T and Sanyo expected to offer their own versions soon. JVC has introduced a player called "X'Eye," which is compatible with Sega's cartridge and CD-based systems. Other video-game systems are yet to be developed, along with interactive long-distance game systems, to be offered to customers by both cable-TV and telephone companies.

Videogame violence worries Congressmen, who have held hearings on the subject and have urged the industry to set up a voluntary ratings system. At least three groups are proposing different systems, and there was frantic activity at the recent Consumer Electronics Show in Las Vegas to develop a self-rating protocol before the government steps in and legislates a rating system.
"Not only does the Kelvin 94 boast a lot of features... the features go the extra distance."

"If we had to run into a burning building to do some emergency trouble-shooting and could carry in only one piece of equipment, the Kelvin 94 would be it!"

Popular Electronics - Reviewed - May 1993

KELVIN 94 The Ultimate Meter

LCR Hz dBm True RMS Logic Probe

The only meter with 0.1% Accuracy on DC Voltages, built-in True RMS, Freq Counter to 20MHz, 10 Hz CR Inductance, Test Res: 10 ohm, DC & AC Voltages Res: 0.11mV, Ohm Meter: 0.1 ohms

TRUE RMS PLUS

Model 94 #990111 $199.95

*See Standard Features Listed Below

ENGINE ANALYZER PLUS

Model 95 #990112 $199.95

A Must For Auto Mechanics

* Standard Features - Models 94 & 95
DC VOLT Meters, DC CURRENT, OHM METER, DATA HOLD, RELATIVE MODE, PICKUP CLIP, TEST LEADS & DELUXE CARRYING CASE

KELVIN 100 Basic

(800) 645-9212 Stock No. 990067 $19.95

- AC & DC VOLTAGES
- DC CURRENT
- RESISTANCE
- CONTINUITY TEST-Buzzer
- 3 1/2 Digit LCD
- LOW BATTERY INDICATOR
- DIODE TEST • BATTERY TEST

KELVIN 250 LE

(800) 756-1750 Stock No. 990126 $59.95

- ACCURACY: 0.5%
- Zero Adjust
- Safety Test Leads

KELVIN 300 LE

(800) 756-1750 Stock No. 990125 $49.95

- A.CV & DCV
- DC CURRENT
- RESISTANCE
- CONTINUITY TEST
- DIODE TEST
- 3 1/2 Digit LCD
- 10M ohm INPUT IMPEDANCE

PRE - EUT, PRS

KELVIN CATALOG *3

MIC & VISA .20 Minimum Order

Established 1945

KELVIN

10 HUB DRIVE, MELVILLE, NY 11747

RE-ENGINEERED & DESIGNED FOR 1994

150 LE - Student
200 LE - Technician
400 LE - Engineer

Standard Features -
- AC & DC VOLTAGES
- DC CURRENT
- RESISTANCE
- CONTINUITY TEST-Buzzer
- DIODE TEST
- 3 1/2 Digit LCD
- 10M ohm INPUT IMPEDANCE
- BATTERY TEST
- TRANSISTOR DC CURRENT 10 Amp
- FREQ COUNTER up to 20MHz
- TRANSISTOR CAPACITANCE from 1pF to 20uF
- AC/DC CURRENT 10 Amp
- INDUCTANCE Resolution Hz
- FREQ COUNTER up to 20MHz
- CAPACITANCE from 1pF to 20uF
- AC/DC CURRENT Duty % 20 Amp
- ZERO ADJUST
- SAFETY TEST LEADS
- TEST SETKit for Plug-In Components

2 Year Warranty

*(Parts & Labor)

COMPONENTS

WHOLESALE PRICES!

Stock No. TYPE YOUR COST
- 600020 1000 MP-TIMER $8.90 ea
- 600025 556 DUAL TIMER $9.90 ea
- 600039 LM566 PPL .60 ea
- 600018 741C OP-AMP .50 ea
- 600026 1458 OP-AMP .40 ea
- 630104 2N2222A .20 ea
- 630383 PN2222A .18 ea
- 600023 7650 Voltage Reg .36 ea
- SILICON CONTROLLED RECTIFIER
- Similar to GE C1069C(4) .40 amp, 100V/600V
- 680009 TRISTATER - 100 ohm .05 ea
- 110097 11.35 ea .10 ea 10 ea
- 110097 11.35 ea .10 ea 10 ea

PROJECT PARTS

Stock No. Speaker
- 2" 8 Ohm 1Watt Stock No. 280009 $5.90 ea

PARTS

Stock No. Buzzer
- 3 Volt Stock No. 680089 1.59 ea

Stock No. Soldering IRON
- w/Stand Stock No. 990098 $3.95 ea

Stock No. LED
- T1-3/4 Stock No. 260128 1.25 ea

Stock No. XENON STROBE TUBE
- 630050 $4.95 ea

Stock No. TRIGGER COIL
- for SpectrumScope Tube Stock No. 320007 1.15 ea

Stock No. INFRALED LED
- IR Pair, IR Infared transmitter Stock No. 260061 .35 ea

Stock No. BREADBOARDS
- $1.95 ea

Stock No. NEON LAMP
- NE: 2 LED Stock No. 260003 .15 ea

Stock No. PHOTO CELL
- $1.20 ea

Stock No. WIRE JUMPER KIT
- stock No. 270021 .49 ea

Stock No. MINIATURE TOGGLE SWITCH
- $1.79 ea 50 ea
MEMORY CONFUSION

I've been using an IBM-compatible computer for several years and I'm constantly confused about which memory is which. Some programs are designed to use extended memory, some use expanded memory, and recent versions of DOS use high memory. I'd like a clear explanation of exactly what these different memory types are and which is the best to use.—F. Rische, Affneg, NY

The answer to that question can cover a lot of pages, and the fact that you can even ask the question is a result of some very bad decisions on the part of the early DOS designers. It was decided by somebody that 640 kilobytes was the maximum amount of memory that would ever be needed by DOS applications. Whoever made that decision more than ten years ago is responsible for today's problem of fitting size-ten programs in a size-five operating system.

Take a look at the memory map of a typical DOS system in Fig. 1. The map differs for the different microprocessors (8088, 80286, 80386, etc.), but the essential parts are the same. The first 640 kilobytes (640K) of memory is called conventional memory. It has to hold, starting from address 0000, data necessary for both the hardware (the interrupt table) and DOS (device drivers, BIOS or data, and DOS itself). The remaining area up to 640K can be used for programs, TSR (terminate and stay resident) programs, and data.

The memory area from 640K to 1 megabyte is the high RAM area for the storage of such data as the video BIOS, I/O BIOS, and system BIOS data. The exact address ranges assigned in this area depend on the details of each computer.

Memory above 1 megabyte is referred to as extended memory. The first 64K of this area (1024K to 1088K) is called the high memory. This is where recent versions of MS-DOS have allowed you to relocate most of the DOS code and TSRs such as mouse drivers. This software bandage has eased up the usual memory squeeze, but it's far from an ideal solution. Extended memory is just the linear address range from 1 megabyte to the end of the memory installed in your computer.

The last type of memory, expanded memory, really has nothing to do with DOS because it's not part of the microprocessor's memory map. If you have 1 megabyte of expanded memory, DOS has no direct access to it. To use expanded memory, your computer needs expanded-memory management software that reserves a range of memory in the microprocessor's address map and then swaps pages of expanded memory in and out of that area. Data in expanded memory is therefore available only a page at a time as it's copied to an area in the main memory map. The first heavy-duty user (and the originator) of expanded memory was Lotus. Even ten years ago, the typical business spreadsheet could easily outgrow the available 640K of memory.

By the way, there's nothing new about expanded memory. Apple was using the same technique for years in the Apple II series to swap two sets of 16K storage for the top of the 6502's memory map.

The answer to which type of memory is best depends on the software. Newer software such as Windows and OS/2 are operating systems that can use all memory in a linear fashion. In other words, you can keep loading data into memory until you run out of installed memory. This is also how the Macintosh operating system works. Programs that run under DOS, however, are always going to be at the mercy of DOS's limitations. Some software publishers produce DOS products that can use extended or expanded memory, but they will always be limited, one way or another, by the ten-year-old 640K barrier.

The real solution to this limit would be a total rewriting of DOS to eliminate the 640K barrier. You can wait for it if you want, but I don't think it will ever happen. One of the most unshakable tenets of Microsoft is the issue of backward compatibility, and producing a DOS that could treat memory as an unrestricted linear array and still handle earlier programs would be a mammoth undertaking.

ELUSIVE READINGS

I'm having a problem at my workbench that I hope you can help me with. The readings I get on my voltmeter and oscilloscope seem to vary from day to day. What makes this so unusual is that the varying readings are coming at the same time as the varying readings are coming at the same time. Do you have any idea what could be causing this problem?—D. Hutch, Gale, CA

I'll begin by giving you the benefit of the doubt regarding the
FIG. 2—GROUND LOOPS are caused by improper grounding. Ground-loop voltages can interfere with test measurements because the voltages in a ground loop can be larger than the signals you’re trying to measure.

FIG. 3—TO PREVENT GROUND LOOPS, use two wire plugs to provide the line power to the test instruments and a separate wire to bring the input grounds of the instruments to a common ground.

quality of your test instruments and the extent of your expertise. Even though there are several possible reasons for your problem, my best guess is that you’re falling victim to one of the oldest, and most overlooked sources of bench problems I can think of—bad grounding in the AC line that supplies power to the bench.

You went into great detail about your bench setup but didn’t say a lot about the way you supply power to the test instruments. If you look at Fig. 2, you’ll see the two main ways that ground loops get into an electrical system and, possibly, mess up measurements. Remember that while the voltages in a ground loop are small in comparison to the line voltage, the signals you’re trying to measure are often smaller than the ground-loop voltages that interfere with them.

I can’t tell you how many times I’ve seen test benches that were set up with meticulous care but with no thought whatsoever put into the distribution of line power. For best results, you should wind up with something that resembles Fig. 3. You’ll notice that two-wire plugs are used to provide the line power to the instruments and that a separate wire is used to bring the input grounds of the instruments to a common ground point which is, in turn, connected to a solid earth ground.

IMPEDANCE MATCHING
I do a lot of home audio recording using microphones, and was recently given several old, but still usable low-impedance mikes. However, all my equipment has inputs designed for high-impedance mikes. As a result of this mismatch, I get extremely low recording levels and a lot of hum. Is there any simple circuit I could build to make these mikes work with my equipment?—M. Bith, Phoenix, AZ

The easiest way to do what you have in mind is to use a transformer to step up the voltage from the low-impedance mikes. However, there are certain disadvantages to using transformers. It’s much easier for you to build an impedance-matching circuit for each of the mike inputs you’ll be using.

The schematic in Fig. 4 is a small one-transistor amplifier that will provide more than enough gain to solve your problem. The component values aren’t critical and as long as you stay within twenty percent or so of the values shown in the schematic, the circuit will operate properly. The layout of the circuit isn’t critical either, and it draws so little power that a 9-volt battery will last as long as its rated shelf life.

![Be an FCC LICENSED ELECTRONIC TECHNICIAN!](image-url)
PC ANTENNA CONTROL

The article, "PC-Based Universal Remote Control," by Jon Beck (Electronics Now, June 1993), and the improvement suggested by R.S. Fleishmann II in the December 1993 Letters column, prompted me to build the circuit for my Houston Tracker V satellite system. I wanted to focus my satellite dish on a different satellite to record a program in the middle of the night. Although later model satellite receivers have that capability, mine does not; computer control appeared to be the answer.

Unfortunately, the circuit with the five 4051 digitally-controlled analog switches would not work. Apparently the impedance of the row/column contacts on the Tracker V remote is extremely high (although the slightest contamination of its contacts prevents it from operating). By connecting the 4051s (in an off state) in either Bek's or Fleishmann's circuit puts the remote in a transmit condition. Regardless of what I tried, neither circuit would work.

That annoyed me, so I became determined to solve the problem. I found that stock optoisolators worked well. That discovery inspired me to design the simple and totally reliable circuit shown in Fig. 1. It has the additional advantage of providing total electrical isolation between the computer and the remote control.

The circuit has one 74LS541 octal bus/line driver and two quad optoisolators with darlington output (NEC or equivalent). The circuit can control a 16-function (4 x 4 matrix) keypad. It is driven by the parallel port of an IBM PC or compatible with a short GWBASIC program. Figure 2 is a sample program that drives the antenna for two moves which can be expanded for more moves.

Although the circuit draws less than 10 milliamperes when in standard, I am developing another circuit with a CMOS driver to permit the control to be packaged as a battery-powered portable unit.

ROBERT M. HARKEY, W4CUG
Charlotte, NC

- FIG. 1—REMOTE CONTROL FOR SATELLITE TRACKER includes a 74LS541 and two quad optoisolators with darlington output.
- FIG. 2—SAMPLE PROGRAM IN GWBASIC for driving satellite antenna under PC control.
PROTECTING VINTAGE TUBES
The article entitled "Vintage Radio" by Marty Knight (Electronics Now, January 1994) contains an incomplete instruction that, if followed, could cause the destruction of valuable tubes. I refer to the statement "Replace the line cord with a cloth-covered cord from your hardware or lighting store."

Before the development of high-voltage filament tubes such as the 3525 and the 50L6, most tubes had 6- or 12-volt filaments. In the typical AC/DC radio made in the late 1930's and early 1940's, the voltage drop across those series-connected filaments was only about 60 volts. It was necessary to add extra resistance to the line cord to allow the set to be powered from the 120-volt AC line.

The earlier sets had a ballast tube that looked like a conventional metal tube; it was plugged into a tube socket. The ballast tube contained a wirewound resistor with a high-watt rating that became very hot (almost red hot!) during normal operation. To keep a heat source of that kind out of the cabinet—especially after plastic enclosures became popular—the resistor line cord was developed. It was commonly used in the late 1930's and early 1940's.

The resistor line cord was a three-wire cord with two stranded copper conductors and a third resistance wire which was connected in series with the filament string. It looked like a conventional cloth-covered line cord, although it was a little thicker because of an asbestos layer under the cloth cover. Heat was dissipated over the length of the cord.

You could identify a resistor cord because it had three wires coming out of one end and was terminated by a two-prong, AC-line plug on the other end. When it was powering a working radio, the cord became warm to the touch. The host radio had a printed notice stating that the cord should never be shortened either pasted on its back or on a tag fastened to the cord. Those cords are long gone; I doubt if any are available except on old radios.

During World War II when materials were scarce, some do-it-yourself articles advised substituting a 120-volt incandescent lamp bulb as a dropping resistor. The power dissipated depended on the tubes in the radio. I recall one construction article for a combined radio/night light with the lamp acting as the dropping resistor.

A discrete resistor with a high-watt rating in series with the line cord was another alternative—if it were mounted so that it would not be a fire threat or burn anyone by accident.

My point is that a conventional two-wire, cloth-covered lamp cord is not a satisfactory replacement for a resistor line cord. Its use could result in putting twice the rated voltage across your tube filaments—making your tubes very unhappy in their old age.

NORM HOSLER, W2SFV
Lake Ariel, FL

AUDIO SCRAMBLING SYSTEM
In reading "Audio Scrambling System" by William Sheets and Rudolf Graf (Electronics Now, December 1993), I was amused by

Electronics Workbench®

Analog Module includes:
- complete control over all component values
- ideal and real-world models for all active components
- resistors, capacitors, inductors, transformers, relays, diodes, Zener diodes, LEDs, BJT’s, opamps, bulbs, fuses, JFETs and MOSFETs
- manual, time-varying, voltage-controlled and current-controlled switches
- independent voltage-controlled and current-controlled sources
- multimeters
- function generator (1 Hz to 1 GHz)
- dual trace oscilloscope (1 Hz to 1 GHz)
- Wave plotter (1 mV to 10 GHz)
- SPICE simulation of transient and steady-state response

Digital Module includes:
- fast simulation of ideal components
- AND, OR, XOR, NOT, NAND and NOR gates
- RS, JK and D flipflops
- LED probes, hallswitches, switches and segment displays
- word generator (16 eight-bit word)
- logic analyzer (eight-channel)
- logic converter (defaults among gates, truth table and boolean representations)

New Features in Version 3
- new components include JFETs, MOSFETs, controlled sources, manual, time-varying and controlled switches
- real-world models for opamps, JFETs, BJTs, VHDs, and diodes
- MDOS version now supports up to 16 MHz of RAM for simulation of bigger circuits
- new "Microsoft" Windows™ and Macintosh™ versions available
- support now available on CompuServe®

Complement Your Test Bench
Here's why Electronics Workbench belongs on your test bench: Wires route themselves. Connections are always perfect. And the simulated components and test instruments work just like the real thing. The instruments are indestructible and the parts bin holds an unlimited supply of each component. The result, thousands of electronics professionals and hobbyists save precious time and money. Over 90% would recommend it to their friends and colleagues. Electronics Workbench: the ideal, affordable tool to design and verify your analog and digital circuits before you breadboard. And now the best is even better—Electronics Workbench Version 3.0 is here. It simulates more and bigger circuits, and sets the standard for ease of use. We guarantee it!

Call: 800 263-5552

Electronics Workbench
The electronics lab in a computer®

April 1994, Electronics Now

CIRCLE 178 ON FREE INFORMATION CARD
Introducing TekMeter™
The easy-to-use combination DMM and autoranging scope.

If you’re like most people in the electrical and electronic service business, when you’ve got a job to do, you need to get it done fast, with a minimum of hassle. And preferably without juggling a bunch of tools on site.

To answer these concerns, Tektronix created TekMeter. Designed with input from customers, TekMeter is the only test and measurement tool that integrates true RMS multimeter and autoranging oscilloscope capabilities in one powerful yet lightweight package.

Best of all, you don’t have to learn scope skills. TekMeter has a familiar DMM-like interface for every function. You just hook up the probes and toggle between DMM and waveform. At the

Check out the entire TekTools™ line for all your measurement needs.
I of the trades.

push of a button, you’ll see exactly what you’re measuring.

Easy to afford, too.

At only 2.2 pounds, TekMeter won't weigh heavily on your belt, and it won't do much damage to your wallet, either. Starting at $859*, the TekMeter packages a remarkable set of capabilities that will enhance your productivity and will be easy to justify.

Put one in your hands today.

Of course, the best way to take full measure of TekMeter is to try it for yourself. For the name of your nearest authorized Tektronix distributor, call 1-800-426-2200, ext. 800 and put one to the test.

Once you’ve seen everything TekMeter can do — and how easily it does it — we think you’ll agree it's the one tool you won't want to trade for anything else.
The typical electronics hobbyist today builds circuits with leaded components—the kind with leads attached that pass through holes drilled in a PC board. Surface-mount components, by contrast, seem to be dreaded by hobbyists because their small size makes them difficult to work with, particularly for those with less-than-perfect vision. Surface-mount components are rarely specified in this magazine's construction projects because the authors who design the projects usually don't like to work with the tiny components either. They also want to keep the projects as easy to build as possible because cost-effective mass production is usually not a concern.

Nevertheless, surface-mount technology (SMT) is here to stay, headed our way (toward hobbyists, that is), and will probably replace conventional through-hole, leaded-component technology altogether in the years to come.

Surface-mount components typically cost less than leaded components, and PC boards are usually cheaper when holes don't have to be drilled in them. Board space is saved when surface-mount components are used. That trims the cost of PC boards (smaller boards cost less to produce) as well as the cost of cases to package them in.

Surface-mount components have made miniature products producible as well as practical. Tiny gadgets such as cellular telephones and pocket pagers couldn't be made as small if it weren't for SMT.

While miniaturization is primarily a concern for the consumer and military electronics industry, the hobbyist is likely to see more and more surface-mount projects in the future. Although surface-mount components aren't often specified in these pages, they do show up. Take, for example, the TG2000 sweep generator in this issue. That project makes extensive use of SMT, but considering the kit's cost, it's a project that should be attempted only if the builder has prior SMT assembly experience.

Give SMT a try

If you've never worked with SMT components, then you ought to try it at least once. With patience, it's not that difficult, and a project such as the SM-200K Decision Maker kit from Elenco Electronics, Inc. (150 W. Carpenter Ave., Wheeling, IL 60090, 708-541-3800) actually makes it fun.

The Decision Maker is a neat little circuit that randomly lights one of six LEDs when a button is pushed. The LEDs are laid out in a hexagonal pattern that "spins" like a roulette wheel for a few seconds before settling on one LED. An accompanying pulsating beep is heard while the display spins. A red plastic lens labeled with six "answers" (Ask Again, Maybe, Always, No Way, Forget It, and Positively) fits over the finished board. The idea here is that you ask it a question, press the button, and it gives you an answer. It's similar to a Magic 8-Ball, only more fun to play. The kit includes a PC board, SMT components, the plastic lens, some solder, an instruction manual—and even a 9-volt battery.

Although the circuit is composed entirely of surface-mount components, it is a simple project to build; only two ICs and a handful (actually a pinch) of passive components are used. However, the kit includes a wide variety of different kinds of surface-mount components, making it a good first-time SMT project.

Soldering surface-mount components is actually very easy if the right techniques are used, although it is a bit tedious. The main problem is holding the components in place while soldering, because there are no leads to do it for you. One technique suggested in the manual worked quite well: Parts are first held down on the board with bits of masking tape with at least one terminal and solder pad exposed. After that pad is soldered, the tape can be removed and the part will stay put while you solder the rest of the pins or pads. We found it to be very important to use a clean, sharp-tipped soldering-iron at all times. The pencil tip we used worked well as long as we minimized the solder used. Even a small blob of solder on the iron's tip will easily "jump" to the adjacent pins on an SMT IC. We found holding the part with tweezers while soldering to be more difficult.

The main reason for building this kit is to gain experience with SMT components. The PC board has a small practice area and a few extra SMT components are included for those who want to practice the soldering technique before starting work on the actual circuit. We tested-soldered one component in this area before starting on the working section. It's a good idea to use this section at least once, if only to make sure your soldering iron temp-

Continued on page 83
NRI knows: The best way to learn to service today's computers is to actually build a state-of-the-art computer from the keyboard up.

TRAIN WITH THE LEADER — NRI

The Department of Labor forecasts over 220,000 jobs for computer service technicians by the year 2005 — a full 38% increase over today's level. With NRI's easy, effective training, you can cash in on this wide-open opportunity and become a high-paid computer service technician.

NRI is the best way to prepare for a profitable new career, even a business of your own. A leader in at-home training for 80 years, NRI knows how to help you break into this high-demand field — regardless of your background in electronics! That's because you start with the basis, moving on step-by-step to master advanced computer concepts — all the while reinforcing theory with hands-on training that ensures success.

LEARN BY DOING

NRI's highly acclaimed learn-by-doing approach gives you a complete understanding of the intricate electronics behind the 1 meg RAM, 32-bit CPU computer included in your course. You perform hands-on electronics experiments with your NRI Discovery Lab and digital multimeter, then build and test the powerful 486sx/25 MHz computer you train with and keep. You install the floppy drive and, to give you maximum storage capacity, the 200 meg hard disk drive. And you go on to interface the Super VGA color monitor now included in your course. You even learn to recognize and service virtually any computer problem with the extraordinary R.A.C.E.R. plug-in card and QuickTech diagnostic software.

STUDY AT YOUR OWN PACE

With NRI, you study in the privacy and convenience of your own home — with your personal instructor and NRI's team of technical professionals behind you every step of the way. You learn at your own pace — no classroom pressures, no night school, no point in quitting your present job until you're ready to make your move!

Everything you need, for your training and your future, is included in the course...from the NRI Discovery Lab you use to build up and test prototype circuits to the mini-tower 486sx IBM-compatible computer with color monitor, 200 meg hard drive, 3.5" floppy drive, DOS, QBasic, and Microsoft Works, with its many utilities.

What's more, NRI's expanded and updated lessons give you a thorough understanding of computer operation, troubleshooting, and servicing. Your broad-based knowledge will come from detailed, easy-to-understand explanations of everything from batch file applications to recovering lost data to printer servicing. You'll be on top of the latest trends and techniques, and by practicing what you read, you'll quickly acquire lasting, real-world knowledge that you can put to use right away!

It's a fact: Only NRI gives you such thorough, effective training in computer servicing because only NRI has you assemble and test one yourself!

LEARN MORE ABOUT NRI TODAY

Send today for NRI's free, full-color catalog that describes every aspect of NRI's innovative computer training, as well as hands-on training in other growing high-tech career fields. If coupon is missing write to: NRI Schools, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM is a registered trademark of International Business Machines Corp. R.A.C.E.R. and QuickTech are registered trademarks of Ultra-X, Inc. Intel Inside is a trademark of the Intel Corp.

SEND CARD TODAY FOR FREE NRI CATALOG

NRI Schools
4401 Connecticut Avenue, NW, Washington, DC 20008

- Check one FREE catalog only
- MICROCOMPUTER SERVICING
- TV/Video/Audio Servicing
- Telecommunications
- Industrial Electronics & Robotics
- Security Electronics
- Electronic Music Technology
- Basic Electronics
- Computer Programming
- Programming in C++ with Windows
- Desktop Publishing & Design
- Word Processing Home Business
- Bookkeeping & Accounting
- Home Inspection
- Building Construction
- Small Engine Repair
- Automotive Servicing

Name (please print)
Age

City/State/Zip Accredited Member, National Home Study Council

3-0494

April 1994, Electronics Now

www.americanradiohistory.com
TRIPLE-OUTPUT DC POWER SUPPLY. A new 35-watt triple DC power supply from Hewlett-Packard has three different outputs. The outputs of the HP E3630A are 0 to 6 volts with a 2.5-ampere maximum current, 0 to 25 volts, and 0 to -25 0.5-ampere maximum current.

Separate digital meters on the HP E3630A permit simultaneous monitoring of voltage and current of any of its outputs. The 0.01% load and line regulation assure steady outputs despite changes in power line voltage and load. It offers auto-tracking so that one voltage control adjusts the +20-volt and -20-volt outputs simultaneously. The outputs, which track each other to within 1%, are protected against overload and short-circuit damage.

The HP E3630A with an AC power cord, operating manual, and 3-year limited warranty is priced at $500.

WIDEBAND MIXER. A new surface-mount, wideband 5 to 2500-MHz mixer is available from Mini-Circuits. The SMS-25 MH is packaged in an a ceramic case that measures 0.25 x 0.31 x 0.2 inch. The stated typical VSWR ratings are: LO: 1.60:1, RF 1.6:1, and IF1:10:1. The mixer has been built to pass MIL-M-28837 shock and vibration tests. All connection pads on the mixer have solder over a nickel-barrier.

The RMS-25MH is priced at $7.95 each in 10 to 49 quantities.

Mini-Circuits
P. O. Box 350166
Brooklyn, NY 11235-0003
Phone: 718-934-4500
Fax: 718-332-4661

SURROUND-SOUND MONITOR. A multi-channel audio monitor from Leader Instruments displays the surround-sound images in several formats. The Model 5836A, accepts up to five channels for left/center/right/surround and left/center/right/left-surround/right-surround systems. In addition, an X-Y (Lissajous) phase display can be selected between any pair of channels.

On-screen displays include level readouts in the X-Y mode and electronically-generated grati- cules for both X-Y and surround-sound imaging. Inputs accept both balanced and unbalanced feeds. They also accept a digital-serial feed that complies with the AES/EBU format. A "spot killer" reduces beam current in the absence of a CRT protection signal. The monitor, which fits in a standard half-rack adapter, can be remotely controlled.

The Model 5836A is priced at $6995.

Leader Instruments
380 Oser Avenue
Hauppauge, NY 11788
Phone: 516-231-6900 (in NY) or 800-645-5104

LINEAR OPTOCOUPLER DRIVER. The UC39431 and UC39432 precision adjustable shunt regulators from Unitrode can function as optocoupler drivers in switching power supplies and as complete front ends for power supplies. Both of these ICs will replace common-emitter transistor amplifiers to provide linear control of an optocoupler's LED current. This results in greater accuracy than could be obtained from a nonlinear amplifier output.

The UC39431 includes a linear transconductance amplifier, stable voltage reference, and three precise, low-temperature coefficient resistors that can be connected to provide one of six regulated output voltages. The UC39432 is similar to the UC39431, but it does not have internal resistors. Its construction permits access to the error amplifier inputs and voltage reference. The gain of the linear transconductance amplifier is programmed by an external resistor to improve stability in closed-loop, optocoupler-feedback circuits.

The shunt regulators also have applications in voltage-to-current converters, flyback converters, magnetic-amplifier controllers, and analog voltage sensors.

The UC39431BN and
IDE disk drives. It is compatible with Novell NetWare disk mirroring, Windows NT RAID 0, 1, and 5, and Windows FastDisk and MS-DOS driver support.

The CSA-6210 is compatible with an IBM PC or compatible computers with VESA VL-bus slots. It includes CMD's IDE Software Toolkit which permits custom tailoring. Its specifications include sustained transfer rates up to 8.2 megabytes per second, with peak transfer rates up to 8.33 megabytes per second.

The CSA-6210 disk controller, owner's manual, and IDE Software Toolkit is priced at $69.

CMD Technology Inc.
1 Vanderbilt
Irvine, CA 92718
Phone: 714-454-0800
Toll Free: 800-426-3832

Electrical contact cleaner. Electrical contact cleaner in an aerosol can from Caig Laboratories is free of carrier solvents that could contaminate the environment. ProGold G100 spray cleans and lubricates gold plated, base-metal plated, and other contact surfaces of edge connectors, battery terminals, plugs, relays, sockets, and switches. The manufacturer recommends it for abrasion reduction, and elimination of arcing, tarnishing, and contamination from airborne particles. A 2-ounce aerosol can of G100 ProGold is priced at $24.95.

Caig Laboratories, Inc.
16744 West Bernadino Drive
San Diego, CA 92127
Phone: 629-451-1799
Fax: 619-451-2799

High-voltage probes. Three high-voltage probes from ITT Pomona are in...
MICROWAVE MULTIFUNCTION COUNTER. The Model 1856A microwave multifunction counter from B + K Precision has a bandwidth of 5 Hz to 2.4 GHz. It includes a crystal oscillator timebase with 0.5-parts per million stability from 18 to 28°C and 1 part per million from 0 to 50°C. Rated sensitivity is 50-millivolts at 2.4 GHz. An 8-digit LED display has kHz/microsecond, gate, and overlow indicators.

The 1856A is suitable for making accurate and repeatable measurements of radio-transmitter output frequencies up to 2.4 GHz. B + K Precision says it provides measurement accuracy that exceeds FCC standards. Its upper range permits it to measure transmitter output for worldwide Personal Communications Services (PCS).

The Model 1856A microwave multifunction counter is priced at $499.

B + K Precision
6470 West Cortland Street
Chicago, IL 60635
Phone: 312-889-1448
Fax: 312-804-9425

HIGH-SPEED GANG PROGRAMMER. The AR-9808 EPROM gang programmer from American Reliance can program up to eight EPROM memories simultaneously. It has nine 32-pin zero insertion force (ZIF) sockets. The master EPROM is located in the first socket.

Only one keystroke per-

mits the AR-9808 to program up to eight slave 8-megabit EPROMs or 2-megabit flash EEPROMs from the master memory. The ZIF test sockets can be removed and replaced. The address, data, control, supply, and programming voltage lines to each socket are electrically isolated to prevent defective memories from affecting the programming of the other memories.

The programmer also includes detection circuitry that verifies correct memory insertion in the sockets. It can be controlled remotely from its parallel port with an IBM PC or compatible computer under an optional software package. The AR-9808 EPROM programmer is priced at $1495.

American Reliance Inc.
11801 Goldring Road
Arcadia, CA 91006
Phone: 800-654-9838 or 818-303-6688
Fax: 818-358-3838

EPROM EMULATOR. The new ROMY-16 EPROM from J&M Microtek emulates 2716 to 27010 EPROMs or 6116 to 628128 SRAMs for 8- and 16-bit microcontroller systems. This emulator permits a code program to be downloaded and tested with the results seen immediately. The memories need not be removed from the host system.

To emulate an EPROM, a PC can read and write data to it while the host CPU reads from the ROMY-16. To emulate an SRAM, both the PC and the host CPU can read and write data to the ROMY-16’s memory. The type and size of the memory device can be varied without circuit board changes.

For 16-bit microcontrollers, the emulator can emulate two EPROMs that share the same address line but have separate data lines. When emulating 8-bit microcontrollers, the memory with the lower byte value primarily emulates the target ROM or RAM.

To debug microcontrollers, the ROMY-16 has a built-in, high-speed communication protocol port that can be turned on and off and located at any memory page. The user’s program can send a message to the PC by down-

loading a simple communication routine into the emulator. An optional program (UMPS V2.1) allows on-board debugging.

ROMY-16 EPROM emulators range in price from $195 through $245, UMPS V2.1 is priced at $100 each CPU. Add $7 S&H.

J&M Microtek, Inc.
83 Seaman Road
West Orange, NJ 07052
Phone: 201-325-1892
Fax: 201-736-4567

BENCHTOP DIGITAL MULTIMETERS. Goldstar Precision is offering two new microprocessor-controlled...
benchtop digital multimeters that have 4½-digit, 19999-count displays, 0.1% DC accuracy, and 20-megohm resistance ranges.

Both Models DM-342B and DM-343B can measure frequencies to 200 kHz and they can perform fast continuity tests with a beeper. Their functions include data hold and the ability to check semiconductor diodes, batteries, and transistor Hfe. In addition, the Model DM-343B can make true RMS measurements and measure decibels. It can also display minimum and maximum readings and has a compare mode; RS-232C or GPIB interfaces are optional accessories.

The Model DM-342B is priced at $199.95, and the DM-343B is $279.95.

Goldstar Precision Co. Ltd.
13013 East 166th Street
Cerritos, CA 90701
Phone: 310-404-0101
Fax: 310-921-6227

DIGITAL-TO-ANALOG CONVERTER. This 16-bit DAC IC from Analog Devices can drive either 4 to 20 or 0 to 20 milliamperes current loops. The AD420 can be a single IC interface between a microprocessor and a standard current loop. Its output voltage is 0 to 5 volts, 0 to 10 volts, or ±10 volts.

The AD420 requires a 12- to 36-volt supply; loop compliance is from zero to the supply voltage minus 2.5 volts.

The AD420 is priced at $10 in quantities of 1000.

Analog Devices Inc.
181 Ballardvale Street
Wilmington, MA 01887
Phone: 617/937-1428
Fax: 617/821-4273

EIGHT-PORT VIDEO SPLITTER. The VOPEX-8M video splitter from Network Technologies Inc. allows one Macintosh to drive up to eight monitors displaying the same image.

The VOPEX-8M is in a 8 × 6.3 × 2.5-inch plastic case and it is powered by 120- or 230-volts AC.

The VOPEX-8M with a 3-foot interface cable is priced at $865.

Network Technologies Inc.
1275 Danner Drive
Aurora, OH 44202
Phone: 216-562-7070
Fax: 216-562-1999

COUNTER INTELLIGENCE

YOUR BEST CHOICE IS ELEMENTARY.

B+K Precision introduces five new AC or Battery Powered Frequency Counters, with bandwidths ranging from 100MHz to 2.4GHz, time base stabilities from 2 to 0.5 parts per million, and introductory prices from $209 to $499.

Model 1803C offers outstanding value for a 100MHz counter and is ideal for a wide range of applications. Model 1806 adds period and totalize functions for low frequency applications, while Model 1807 has 1.3GHz bandwidth and an ultra-stable 0.5PPM TCXO time base with an optional accessory antenna. It is ideal for adjusting RF transmitters to FCC Standards. Model 1856A measures up to 2.4GHz for personal communications service applications.

Get the performance and features you need and pay no more than you have to, thanks to the intelligent new frequency counters available from B+K Precision!
Advances in technology can be good and bad. They're good because they can lead to the development of really neat gadgets that can make our lives easier, and the gadgets continue to get better and cheaper with each passing day. However, technological advances can be bad if, while making something easier, they also eliminate the need for us to think.

Once upon a time a four-function calculator cost over a hundred bucks. Today, just about the only place you can find such a simple calculator is as a giveaway item with a six pack of soda. It's good that they're so cheap, but it's bad also because basic arithmetic skills aren't emphasized in schools as much these days. It seems that not as many twelve-year olds today can do long division as well as they could 15 years ago, and I've yet to meet anyone under thirty years old who knows how to derive a square root on paper.

We are rapidly becoming a civilization that is incapable of functioning without a pair of AA batteries—and, as we all know, they're not included! But it's time to put away my soapbox and get back to the business at hand.

Designing a tachometer

You can probably go to any auto-parts store and buy a tachometer for under $50. It will come with a black box, three wires, and an incredibly spiffy looking display that's guaranteed to dress up the appearance of your dashboard. This basic no-brainer can be installed in the time it takes for a commercial break during your favorite TV show. Given all this, why would you ever think about building your own? The parts and time required to build it are going to cost more than a store-bought unit, to say nothing of your aggravation in getting the thing to work.

Fortunately, there are still enough of us around who have enough curiosity to want to know how things work, and a sufficiently large enough ego to know for sure that we're capable of doing whatever we put our minds to.

Tachometers are usually included only on higher-end model cars or as part of an outrageously priced accessory package. Luckily for the more stubborn people, tachometers are not very difficult to build. There are lots of designs around (there are even several "tachs on a chip"), but the basic approach to building them is usually the same. In line with my well-established procedure, I'll be using common ICs and standard value components.

The fundamental components of a tachometer are shown in Fig. 1. The critical elements of the design are the timebase and the counting circuitry. If the circuit can't keep accurate time, the values that it feeds to the display are not going to be very useful. Fortunately, achieving timebase accuracy is simple and achieving reliability in a pulse-counting circuit is simply a matter of careful design.

Notice that there's a separate section that conditions the signal which is fed to the tachometer circuit. Whenever you want to do something with a car's ignition system, you have to pay extra special attention to be sure that the signal you get is the signal you want. However noisy a car's electrical system might be, the ignition system is the noisiest of all. Remember that the pulses being fed from the coil are in the kilovolt range. Moreover, they're not clean square waves. If you put them on an oscilloscope you'll probably see a waveform like the illustration shown in Fig. 2.

The circuit shown in Fig. 3 is a good starting point for a signal-conditioning circuit. Notice that the signal is picked off the distributor points and not one of the spark-plug wires. The signal frequency at the distributor points is always greater than at any one of the plugs. (For example, it's four times greater for a four-cylinder engine.) And even though tachometers are really just counters that can measure very low frequencies, the higher the input frequency, the easier it is to get accurate readings.

The circuitry shown in Fig. 3 is nothing more than a series of re-
sisters and capacitors that are designed to "swallow up" any higher-order harmonics, cut the amount of power presented to the tachometer input, and isolate the tachometer from the ignition system. The values shown for the components are middle-of-the-road numbers that should work well for just about any car on the road—there isn't much difference between cars in this part of the ignition system. You might have to adjust the components slightly for your car, but you'll only have to make minor changes in the resistor values.

If you have any doubts, make the numbers higher rather than lower. The values of the capacitors can be changed slightly without their having much effect on the circuit. It's really just a question of parts you happen to have lying around.

By the time the raw pulse gets through the RC circuits, it's at a safe power level, and the majority of the signal's initial harmonics and rippling "aftershocks" have been removed. The Zener diode guarantees that the voltage level won't be high enough to fry IC1-a's inputs. The final clean up of the pulses is done by the two 4093 Schmitt triggers (IC1-a and -b) that are set up as simple inverters. By the time an input pulse gets through those, it's a TTL-compatible pulse with a frequency of one count per point pulse.

Put this part of the circuit together and hook it up to the coil wire on your car's distributor. The ideal way to see if everything is okay is to use an oscilloscope and look at the pulses produced by IC1-b. If you don't have a scope, you can probably work out some circuit with an LED and a timing light; have the LED light when there's no pulse, and shine the timing light on the LED. If everything is working, you should never see the LED light while the timing light is on. This method is not exact, and it depends on the timing light you use. If anyone out there can think of a neat way to verify this part of the circuit, I'm open to ideas. Let me know if you think of something and I'll spread it around to everyone.

Designing the counter circuit isn't as straightforward as you might imagine because the number of pulses per engine revolution depends on how many cylinders your car's engine has.

Let's assume that an engine has only one cylinder. If it's a four-stroke engine, the plug will fire only once for every two revolutions of the engine. A two-stroke engine fires once per revolution, but unless you have an old dirt bike or an ancient SAAB, you can forget about two-stroke engines altogether.

About the only place you'll see two-stroke engines these days is in chain saws and outboard engines, and there's a very good reason for it. There will be a special mention here for anyone who knows what that reason is.

The rules for multi-cylinder four-stroke engines is just a simple extension of the single-cylinder example. A single-cylinder engine fires each time the crankshaft rotates twice (every 720°). A two-cylinder engine fires once every 360° of rotation, a four-cylinder fires every 180 degrees, a six-cylinder every 120 degrees, and so on.

When you design the counting and timing circuitry for the tachometer, it must be configured to match the number of cylinders in a given engine because you will be relying on the number of pulses coming from the coil to reveal engine rpm. When we get together next time, we'll work out the details of these two circuits.

Earn Your B.S. Degree in ELECTRONICS or COMPUTERS

By Studying at Home

Grantham College of Engineering, now in our 43rd year, is highly experienced in "distance education"—teaching by correspondence—through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in BASIC, PASCAL and C Languages—as well as Assembly Language, MS DOS, CADD, Robotics, and much more.

Our Electronics B.S. Degree Program includes courses in Solid-State Circuit Analysis and Design, Control Systems, Analog/Digital Communications, Microwave Engr, and much more.

An important part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways—to learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

- Accredited by the Accrediting Commission of the National Home Study Council

GRANTHAM College of Engineering
Grantham College Road
Slidell, LA 70460
This book provides a map and traveler's guide to the Internet. It explains procedures for entering the system to newcomers and it gives experienced users key information about the concept of the Internet and its facilities.

This book views the region south of San Francisco, popularly known as "Silicon Valley" as if it were a place apart—a separate island or country where the denizens have their own language, rituals and style. It should prove to be useful whether you travel there on business or arrive there simply as a curious tourist in this fabled "cradle of high tech."
The book serves as a guide to the Valley's largest companies and venture capital firms. The author has first hand knowledge of the area; she was living there back when its principal products grew on trees in the 1950s. Ms. Weimers writes a feature column about Silicon Valley for the San Jose Mercury News, a nearby city not considered to be in the Silicon Valley.
She addresses both the "ancient" history and current events—personal and economic—and names names of local personalities. The book contains detailed information on lodging, dining, sightsee-

Desktop Publishing with WordPerfect 6 for Windows; by Richard Mansfield. Ventana Press, P. O. Box 2468, Chapel Hill, NC 27515; Phone: 919-942-0220; Fax: 919-942-1140; $24.95.
This book concentrates on desktop publishing with WordPerfect 6 for Windows. It will be helpful in the design of logos and the layout of brochures, newsletters; and display advertising. The illustrated text gives beginners as well as intermediate users step-by-step instructions in applying the graphics tools and techniques with the
Introducing a New Era In Technical Training.

World College, an affiliate of the Cleveland Institute of Electronics, was created to provide a four year, independent study, technical degree program to individuals seeking a higher education. The Bachelor of Electronics Engineering Technology Degree, offered by World College, prepares students for high-paying careers in electronics, telecommunications, electrical power, computer and control systems. World College’s curriculum is taught in an effective, time-proven, independent study environment. With World College’s flexible study schedule, students have the opportunity to work or spend time with their family without having to worry about rigid scheduling residential colleges offer.

A Quality Education with a Flexible Schedule.

In a world heavily dependent on electronic equipment, people who understand electronics will have no problem putting their knowledge to work... in high-paying careers. The staff and faculty of World College have invested over ten years developing, what we believe to be, the finest independent-study, baccalaureate degree program available. World College’s mission is to instill in each student the knowledge, education, and training that employers are seeking for the many technical positions available today. It’s a program created to provide the best education and training possible with a flexible schedule to match your busy lifestyle.

World College is currently seeking approval to confer the Bachelor Degree from the Virginia Council of Higher Education.

Earn A Bachelor of Electronic Engineering Technology Degree from

WORLD COLLEGE
Bringing Technology Home!

Lake Shores Plaza
5193 Shore Drive, Suite 113
Virginia Beach, VA 23455-2500

Send For Your Free Course Catalog.

Take the first step towards a new start in life. Send for World College’s Free Independent Course Catalog today and discover how easy and affordable it is to get started on your Bachelor Degree.

World College is affiliated with

Complete the Entire Degree Program Under One Roof. Yours!

Only World College offers an independent study, four year technical degree which can be completed through one school. All lab equipment*, parts, and software are included in your tuition and the program’s 300-plus laboratory experiments can be completed in your own home.

You Pay Only For Time Actually Used.

World College not only provides a means to earn a Bachelor Degree while fulfilling current obligations, but there are no restrictions on how fast you can complete the program. At World College, you pay tuition only for the actual upper-level semesters it takes to graduate. The quicker you complete the program, the less you pay in tuition. It’s an effective way to keep you motivated in order to complete the course and move on to a better paying position as quickly as possible.

Currently not available in Ohio.
* Student must have access to a personal computer system.

□ YES! Please send me World College’s Free Course Catalog detailing the full curriculum.

Name: ____________________________
Address: __________________________
Apt: __________________________
City: __________________________
State: ______ Zip: __________
Phone: (_____) ______
Age: __________

Return to: World College
Lake Shores Plaza
5193 Shore Drive, Suite 113
Virginia Beach, VA 23455-2500

WAE08

www.americanradiohistory.com
Why Take Chances?
Discover how easy it is to pass the exams. Study with the most current materials available. Our Homestudy Guides, Audio, Video or PC “Q&A” pools make it fast, easy and inexpensive. No college or experience needed. The new commercial FCC exams have been revised, covering updated Aviation, Marine, Radar, Commercial FCC exams. Guides, Audio, Video materials available. Our exams.

Wiring Control Products Catalog. J&J Electronics, Inc., 6 Faraday, Irvine, CA 92718; Phone: 714-455-4460 or 800-735-4553; Fax: 714-455-4474.

This 172-page catalog describes J&J Electronics' wiring control product line. It includes information on more than 2300 parts divided into nine separate product sections. These include solderless crimp terminals, connectors and lugs, cable ties and accessories, wire and cable holding devices, heat-shrink tubing, and circuit board hardware.

Full-Line Catalog No. 24, Leader Instruments Corporation, 380 Oser Avenue, Hauppauge, NY 11788; Phone: 1-800-645-5104, in NY, 516-231-6900; free.

This 120-page, color catalog presents complete descriptions and technical specifications for 81 of Leader's electronic test instruments. Included are 10 new products. The instruments described include general-purpose analog and digital test instruments, digital storage oscilloscopes and many units of specialized test instruments and equipment.

The Virtual Reality Primer, by L. Casey Larijani. McGraw-Hill Inc., 1221 Avenue of the Americas, New York, NY 10020; Phone: 1-800-2-MCGRAW; $24.95, paperback, $40 hardcover.

This book explains virtual reality, a complex computer-based technology. It is believed to have many commercial applications beyond entertainment. Ms. Larijani explains how virtual reality works and where it's going. She also speculates on its future impact.

er also offers meters and bridges, frequency counters, and benchtop power supplies.
Countersurveillance

Never before has so much professional information on the art of detecting and eliminating electronic snooping devices—and how to defend against experienced information thieves—been placed in one VHS video. If you are a Fortune 500 CEO, an executive in any hi-tech industry, or a novice seeking entry into an honorable, rewarding field of work in countersurveillance, you must view this video presentation again and again.

Wake up! You may be the victim of stolen words—precious ideas that would have made you very wealthy! Yes, professionals, even rank amateurs, may be listening to your most private conversations.

Wake up! If you are not the victim, then you are surrounded by countless victims who need your help if you know how to discover telephone taps, locate bugs, or “sweep” a room clean.

There is a thriving professional service steeped in high-tech techniques that you can become a part of! But first, you must know and understand Countersurveillance Technology. Your very first insight into this highly rewarding field is made possible by a video VHS presentation that you cannot view on broadcast television, satellite, or cable. It presents an informative program prepared by professionals in the field who know their industry, its techniques, kinks and loopholes. Men who can tell you more in 45 minutes in a straightforward, exclusive talk than was ever attempted before.

Fooling Information Thieves

Discover the targets professional snoopers seek out! The prey are stock brokers, arbitrage firms, manufacturers, high-tech companies, any competitive industry, or even small businesses in the same community. The valuable information they filch may be marketing strategies, customer lists, product formulas, manufacturing techniques, even advertising plans. Information thieves covesdrop on court decisions, bidding information, financial data. The list is unlimited in the mind of man—especially if he is a thief!

You know that the Russians secretly installed countless microphones in the concrete work of the American Embassy building in Moscow. They converted

The professional discussions seen on the TV screen in your home reveals how to detect and disable wiretaps, midget radio-frequency transmitters, and other bugs, plus when to use disinformation to confuse the unwanted listener, and the technique of voice scrambling telephone communications. In fact, do you know how to look for a bug, where to look for a bug, and what to do when you find it?

Bugs of a very small size are easy to build and they can be placed quickly in a matter of seconds, in any object or room. Today you may have used a telephone handset that was bugged. It probably contained three bugs. One was a phonny bug to fool you into believing you found a bug and secured the telephone. The second bug placates the investigator when he finds the real thing! And the third bug is found only by the professional, who continued to search just in case there were more bugs.

The professional is not without his tools. Special equipment has been designed so that the professional can sweep a room so that he can detect voice-activated (VOX) and remote-activated bugs. Some of this equipment can be operated by novices, others require a trained countersurveillance professional.

The professionals viewed on your television screen reveal information on the latest technological advances like laser-beam snoopers that are installed hundreds of feet away from the room they snoop on. The professionals disclose that computers yield information too easily.

This advertisement was not written by a countersurveillance professional, but by a beginner whose only experience came from viewing the video tape in the privacy of his home. After you review the video carefully and understand its contents, you have taken the first important step in either acquiring professional help with your surveillance problems, or you may very well consider a career as a countersurveillance professional.

The Dollars You Save

To obtain the information contained in the video VHS cassette, you would attend a professional seminar costing $350-750 and possibly pay hundreds of dollars more if you had to travel to a distant city to attend. Now, for only $49.95 (plus $4.00 P&H) you can view Countersurveillance Techniques at home and take refresher views often. To obtain your copy, complete the coupon or call.
You'll find out what is needed to create a virtual world—hardware and software, networking capabilities, and audio/video equipment. The book contains objective reviews of representative VR products and it reports on the latest developments, participants in the field, and investors. As a bonus you'll receive a useful glossary of 200 virtual reality terms.

Solders & Chemicals Guide. Multicore Solders, Inc., 1751 Jay Ell Drive, Richardson, TX 75081; Phone: 214-238-1224; Fax: 214-437-0288; free.

This six-page brochure is a quick reference guide to Multicore Solders' complete product line. The company's products include cored wire solder, flux, wave and static bath solders, solder creams, surface-mount device adhesives, and cleaning liquids. Prototype-production equipment and process-control instruments are also included in this file.

Have you ever considered becoming an electronics technician? If you are thinking about a career in electronics, this book will answer a lot of questions you might have. The topics covered in this book include the author's views on where the electronics industry is headed, and a discussion of the differences in training and duties of degree electronic engineers, electronics technicians, and technical support personnel.

You'll get answers to questions on the formal training needed and its cost today. You'll also get some good advice on what is really important in electronics courses, and how to succeed as a student. The author comments on the range of duties available to technicians and expected earnings.

This lively book discussed the benefits as well as the drawbacks, and it quotes working electronics technicians about their work. You'll learn about the tradeoffs of becoming an independent technician and owning your own service company as opposed to climbing the corporate ladder. And you'll get the lowdown on factory vs. field work.
Experience The New Technology Behind Today's Advanced Computer Systems With...

McGraw-Hill's Computer Electronics Series

NEW! Now you have a fast, easy, low-cost way to meet the challenges of today's computer electronics. McGraw-Hill's unique new learning series is as innovative as the technology it explains, as fascinating as the experiments you perform.

From circuit theory to the Pentium chip, you master one subject at a time with the McGraw-Hill Computer Electronics Series. Twelve unique modules, sent to you one every 4-6 weeks, give you a thorough understanding of such subjects as digital logic, microcomputer operation, data storage devices, data communications, PC servicing, local area networks, and more.

Each module goes right to the heart of the matter. You waste no time on extraneous material or dry history. Instead, you get a fast, efficient, and lively learning experience...a nontraditional approach to the most modern of subject matter.

Unique interactive instruction

Your learning experience is reinforced through the integration of vividly illustrated text with actual electronic experiments. In fact, by the time you complete your sixth module, you will have assembled the McGraw-Hill Prototyping Design Lab, a breadboarding lab you'll use long after you complete the series for building up and testing prototype circuits. Your modules also feature indexed binders to preserve your text, backup materials, and notes for convenient referral.

Your adventure begins with Module 1

With your very first module, you'll begin to understand the technology behind today's most advanced computer systems.

You'll be introduced to basic electronics principles and discover the role of key electronic components, including resistors, capacitors, and transistors.

Each module adds more to your expanding knowledge of computer electronics

Step by step, each module builds your knowledge and confidence. In all, 12 modules take you quickly from the basics to today's sophisticated computer concepts:

- Electronic Circuits and Components
- Semiconductors and Linear Applications
- Digital Logic Fundamentals
- Flip-Flops, Counters, and Registers
- Microcomputer Fundamentals
- Mass Data Storage Systems
- Data Communications
- Graphics Display Systems
- Embedded Microprocessor Controllers
- Print Technologies
- PC Servicing
- Local Area Networks

For anyone interested in computer electronics

McGraw-Hill's Computer Electronics Series is designed for anyone from hobbyists to professional. It's for you if you're finding that computers are playing an increasingly important role in your work...if you're a teacher or trainer who wants an update in contemporary computer circuits...or if you're simply fascinated by today's computer technology and want to know more about it. It's even for electronics engineers or computer technicians who want to refresh their skills.

In short, McGraw-Hill's Computer Electronics Series is an ideal way to understand the technology at work in today's computers...and it's the quickest, most convenient, and probably the least expensive way to do it. And the only one that gives you hands-on experience.

15-day no-risk trial

We invite you to prove to yourself that McGraw-Hill's Computer Electronics Series is all we say it is...without risk and without committing yourself in any way. Order today, and we'll send you your first module — Electronic Circuits and Components — for a free, 15-day examination. If you're not absolutely certain that this is an enjoyable as well as highly effective way to learn, simply return the module to us.

If you wish to continue, we'll ship the remaining modules automatically, about once a month, on the same Free Examination basis.

Order your first module today! And let McGraw-Hill guide you into the fascinating world of Computer Electronics.

FREE 15-DAY TRIAL! SEND TODAY!

CALL 1-800-882-6383

Computer Electronics Series
McGraw-Hill Continuing Education Center
4401 Connecticut Avenue, NW, Washington, DC 20008

YES! I'm interested in learning computer electronics and would like to examine the first module in the series. If I decide to keep it, I will pay just $24.95 plus $2.25 shipping and handling. I will then receive future modules automatically, one every 4 to 6 weeks, at the same low price and on the same 15-day Free Examination basis. There is no minimum number of modules I must buy, and I may cancel at any time simply by notifying you.

Name __________________________
Address __________________________
City/State/Zip __________________________
Telephone (__________)

[Signature]

[Date] 2001-0494

All orders subject to approval and payable in U.S. funds only. Available in U.S. and Canada only.

www.americanradiohistory.com
What Do These Prestigious Companies Have In Common?

Leadership in electronics is not just a matter of designing products better and manufacturing them better, but also of marketing them better. And the sponsors of this message understand that better service to customers requires effectively involving distributors as part of their marketing teams.

Distributor involvement means lower prices, quicker deliveries, better service over-all. The Buyer wins ... the Seller wins.

Distributors help achieve marketing leadership. So does the manufacturer's involvement in the Components Group of the Electronic Industries Association. EIA fosters better industry relations, coherent industry standards, and the sharing of ideas, which helps one another and serves customers better.

In choosing your component supplier, look for the marks of leadership —

availability through distribution membership in the E.I.A.
A new, high-power direct-broadcast satellite promises to change the way America looks at TV.

BRIAN C. FENTON

BEGINNING THIS APRIL, CONSUMERS IN THE U.S. will have another option for receiving television programming. A new direct-broadcast satellite, now in geosynchronous orbit, will begin beaming programming to satellite dishes only 18 inches in diameter. The digital signals will be decoded by an integrated receiver/descrambler which will reproduce them with "near-laserdisc quality." The programming, which will be available from two suppliers, will consist of up to 150 channels of cable networks, movies, sports, and pay-per-view events. Audio programming with "compact-disc quality" will also be available.

Direct satellite broadcasting to small-dish antennas has been attempted several times since the FCC set aside a portion of the Ku band for high-power broadcasts in 1982. Although other proposed systems have never gotten off the ground, the Digital Satellite System or DSS already has. The first satellite of the two-satellite system was launched in December; the second is scheduled for launch in June.

A number of companies have joined forces—and invested over one billion dollars—to make the new satellite system a reality. Among the main players, Thomson Consumer Electronics is building the receivers and marketing them under its RCA brand name which it purchased from General Electric. Thomson is also developing the digital compression technology Hughes Space and Communications Company built and launched the first satellite and is building a second one. Di-
DIRECTV'S PROGRAMMING WILL BE UPLINKED to the satellite from this facility, shown here under construction, in Castle Rock, Colorado.

recTv, Inc., a unit of GM Hughes Electronics, is one program distributor. United States Satellite Broadcasting or USSB, a subsidiary of Hubbard Broadcasting, Inc., is the second.

What can I watch?

DirecTV owns eleven of the sixteen transponders on the first DBS satellite and all sixteen transponders on the second satellite. USSB owns the other five transponders.

DirecTV will distribute many major cable services including CNN, the Discovery Channel, the Disney Channel, Encore, and six new Encore channels scheduled to begin operation this year. Other programming that can be purchased from DirecTV includes the Sci-Fi Channel, the Weather Channel, ESPN, and four channels from Turner Broadcasting.

Two pricing packages have been announced. All of DirecTV's basic services will be available as a package for $21.95 per month. A premium package, that would include the Encore channels and any other premium service that sign on with DirecTV, will cost $29.95 per month. (The company is actively trying to reach a distribution agreement with HBO and Viacom, which have signed an exclusive agreement with USSB.)

DirecTV also plans to offer pay-per-view movies and sporting events. It has reached agreements with several leading studios including Paramount Pictures, Columbia Pictures, TriStar Pictures, and Universal. Because of its channel capacity, DirecTV will be able to show popular movies on multiple channels, with starting times every half hour. Movies will be priced from $0.99 to $8.99.

Sporting events will also be offered, and they are expected to cost $4 to $6 on a per-game basis. Other pricing plans would allow subscribers to purchase season subscriptions for a team for about $10 or $12 per month. DirecTV also hopes to offer season subscriptions for an entire league. With as many as 30 channels set aside for sporting events, DirecTV is planning to offer "any game from any league on a pay-per-view basis," according to a company spokesman.

USSB will offer at least 22 channels of programming. Initially, its lineup will contain 14 premium channels (including multiplexed and time-shifted HBO, Cinemax, Showtime, and The Movie-Channel) and six basic-cable services. USSB will also provide two free, advertiser-supported services that will be available without restriction to everyone with a DSS home receiving system, whether or not they subscribe to any USSB service. According to USSB, the channels will include news, entertainment, public-service, and children's programming. They won't, however, be available when the service is initially launched.
Just like these Fully Trained Electronics Professionals

Thanks to CIE I have tripled my previous salary, and I am now in a challenging and rewarding new field where only the sky is the limit.
Daniel Wade Reynolds
Industrial Electrician
Oneida Foods

CIE was recommended to me by my boss. It was appealing since I could study at my own pace at home and during business travel.
Dan Parks
Marketing Manager /Consumer Products
Analog Devices, Inc.

I loved the flexibility CIE offered. It was the only way I could continue both school and my demanding job.
Brett A. Hanks
Director of Engineering
Petroleum Helicopters, Inc.

I liked the way the school was set up with laboratory assignments to enforce conceptual learning. The thing which impressed me the most about CIE's curriculum is the way they show application for all the theory that is presented.
Daniel N. Pastern
Missile Electro-Mechanical Technician
U.S. Air Force

Completing the course gave me the ability to efficiently troubleshoot modern microprocessor-based audio and video systems and enjoy a sense of job security.
Tony Reynolds
Service Manager / Technician
Threshold Audio & Video

Graduate with an Associate Degree from CIE!

CIE is the best educational value you can receive if you want to learn about electronics, and earn a good income with that knowledge. CIE's reputation as the world leader in home study electronics is based solely on the success of our graduates. And we've earned our reputation with an unconditional commitment to provide our students with the very best electronics training.

Just ask any of the 150,000-plus graduates of the Cleveland Institute of Electronics who are working in high-paying positions with aerospace, computer, medical, automotive and communications firms throughout the world. They'll tell you success didn't come easy... but it did come... thanks to their CIE training. And today, a career in electronics offers more rewards than ever before.

CIE'S COMMITTED TO BEING THE BEST... IN ONE AREA... ELECTRONICS.

CIE isn't another be-everything-to-everyone school. CIE teaches only one subject and we believe we're the best at what we do. Also, CIE is accredited by the National Home Study Council. And with more than 1,000 graduates each year, we're the largest home study school specializing exclusively in electronics. CIE has been training career-minded students for nearly sixty years and we're the best at our subject... ELECTRONICS... IT'S THE ONLY SUBJECT WE TEACH!

CIE PROVIDES A LEARNING METHOD SO GOOD IT'S PATENTED.
CIE's AUTO-PRO-GRAMMED® lessons are a proven learning method for building valuable electronics career skills. Each lesson is designed to take you step-by-step and principle-by-principle. And while all of CIE's lessons are designed for independent study, CIE's instructors are personally available to assist you with just a toll free call. The result is practical training... the kind of experience you can put to work in today's marketplace.

LEARN BY DOING... WITH STATE-OF-THE-ART EQUIPMENT AND TRAINING.
CIE pioneered the first Electronics Laboratory

Send for CIE's FREE Course Catalog and See How We Can Help Your Career Too!
USSB PROGRAMMING

Premium Services
- Cinemax East
- Cinemax West
- Cinemax 2
- Flix
- HBO East
- HBO West
- HBO2 East
- HBO2 West
- HBO3
- The Movie Channel East
- The Movie Channel West
- Showtime East
- Showtime West
- Showtime 2

Basic Services
- All News Channel
- Comedy Central
- Lifetime
- MTV
- Nickelodeon
- VH-1

The price for monthly programming from USSB begins at $7.95 for a package of six basic services: MTV, VH1, Nickelodeon, Comedy Central, Lifetime, and the All News Channel. For $23.95, a “Showtime Plus” package includes all basic services plus Showtime East and West, Showtime 2, The Movie Channel East and West, and Flix. An “HBO Plus” package, which includes the East and West feeds of HBO and HBO2, HBO3, Cinemax East and West, Cinemax 2, and the basic services will cost $24.95. All of the programming distributed by USSB is available at a monthly cost of $34.95 under the name “USSB Premium Plus.”

The agreements between USSB and HBO, and USSB and Viacom (Showtime and The Movie Channel) grants USSB the exclusive right to distribute the premium channels from the new DBS satellite. As a result, any consumer who wants, for example, both HBO and ESPN will have to order the services through both DirecTV and USSB.

According to Stanley E. Hubbard, USSB President and COO, the exclusive deals are an important way to distinguish between the two program providers. “Every DSS home will be able to have simple, and seamless access to all the programming on the system, whether it’s through DirecTV or USSB. So as far as we’re concerned it’s a non-issue,” Hubbard went on to say that if every cable system had two service providers, “I don’t think that the Cable Act of 1992 ever would have been necessary.”

If a consumer chooses to buy programming from both DirecTV and USSB, he will receive two bills. USSB doesn’t see that as a drawback, because the bills will also distinguish between the two program providers. USSB also believes that it is important to send a bill that doesn’t vary from month to month. According to Hubbard, USSB is “among the believers that DirecTV’s pay-per-view offerings are going to be extremely successful and [therefore] there will be some wild swings from month to month. We’re frankly afraid to share the bill with them because of that.”

The DSS receiver

A DSS receiver is required for viewing any of the programming offered by DirecTV and USSB. Thomson Consumer Electronics developed the set-top integrated receiver/decoder (IRD) for its RCA DSS Digital Satellite System. Low-volume production of the receiver began last December in Thom-
son's facility in Juarez, Mexico. A second high-speed assembly line will be completed by the middle of the summer, and will give Thomson the capacity to build about one hundred thousand receivers and digital cable boxes per month.

RCA has the exclusive rights to build and market the DSS receivers for eighteen months, or until one million units have been sold. After that, other manufacturers will offer DSS receivers. Sony is the first licensee of the DSS technology.

The digital receiver contains four new custom ICs, including the world's first high-volume decoder for the MPEG-2 compression system developed by the Moving Picture Experts Group.

Initially, two DSS models will be available. The basic model is priced at $699, and includes the IRD, an 18 x 20-inch parabolic dish/antenna, and a universal infrared remote control. Mounted at the focal point of the dish is a low-noise block down-converter (LNB) that receives the signals broadcast from the satellite in the 12.2-12.7 GHZ band; it down converts them to a frequency of 950-1450 MHz. The output of the LNB is fed to the set-top IRD, which decodes the transmission and feeds it to a TV or monitor. Video, S-video, and RF (Channel 3 or 4) outputs are provided.

An upgraded system, priced at $899, will include an LNB with two outputs so that a second IRD can be connected to the system. (A second receiver is required for recording one channel while the viewer is watching a second.) The upgraded receiver will also have two sets of video and two sets of stereo audio outputs. A more capable universal remote control, which can operate a VCR, cable box, laserdisc player, and a TV, will also be included in the step-up system.

Both IRDs include a 15-pin D-style connector on their rear panels for a high-speed data port. A second, 9-pin, low-speed serial data port is offered on the upgrade receiver. At this time, no data services have been announced.

The DSS receiver contains built-in switching so that a TV antenna or cable can be connected up to the system. Current FCC regulations do not permit network signals to be sent via DSS to areas where they can be received easily over the air.

The rear panel of the receiver also contains a modular phone jack. The phone connection is required so that monthly usage—especially pay-per-view events—can be reported to programming providers. It can also ensure that the box hasn't been stolen or moved from its assigned address, which is important for regional program distribution.

The DSS user interface is an on-screen point-and-shoot menu. Thomson officials demonstrated a menu system that could be configured to show programming by category (sports, movies, and comedies, for example) or by time and programming service. The system also allowed the review of current billing information.

The receiver also has other programmable features. Favorite-channel scan lists can be created for up to three users—mom, dad, and kids, perhaps. The receiver also allows "pay per locks and limits" to be set. Parents could, for example, program per-event spending limits or rating ceilings to prevent their children from accessing undesirable programs. The entire system can also be locked unless the proper four-digit code is entered.

The front of the receiver has a slot for "smart card" insertion. The smart card contains subscription and decoding information and records program purchases. The conditional-access encryption method was developed by News Datacom.

Although the small dish helps make a DSS system far easier to install than a conventional satellite system, Thomson recommends that it be installed by
professionals. (This expense is not included in the purchase price.) Nevertheless, the company will provide a do-it-yourself kit containing all necessary cables and hardware for $69.95. A VHS video tape showing how to install the system is included.

Along with developing the receiver system, Thomson is also developing the digital compression hardware. Initially, programming from the satellite will be compressed in the MPEG-1 format. That format is the same one being used to put video on CD-ROM and CD-I discs. Thomson had hoped to have encoders for the improved MPEG-2 format ready for its product launch. Thomson executives say that assignment has proven to be more difficult than originally projected and—as of today—the company is behind schedule. When Thomson completes its developments of MPEG-2 encoders, broadcasts will shift to that compression scheme. All DSS receivers contain MPEG-2 decoders.

RCA executives like to point out their ability to shift from MPEG-1 to MPEG-2 as an example of the forward-compatibility of the DSS system. According to James E. Meyer, an RCA senior vice president, “It has the capability for receiving 16 x 9 wide-screen-format TV signals as well as HDTV broadcasts once that revolutionary technology is in place.... There will be no cries of ‘interim technology’ with the introduction of RCA DSS.”

The Hughes satellite
The first DBS satellite, called DBS1, was launched in December 1993 from Kourou, French Guiana aboard an Ariane rocket. A second satellite, also a Hughes model HS-601, is scheduled for launch in June. It will be co-located with the first satellite in geosynchronous orbit at 101° west longitude. That location is one of only eight orbital slots, spaced 5° apart, that are available for DBS in North America. The satellite’s high power and wide spacing make small diameter antenna reception possible. The 101° west slot is the prime orbital position available because it is centered over the U.S.

Each satellite has sixteen high-power (120-watt) transponders. By comparison, C-band satellites that distribute conventional satellite TV to antenna dishes that are typically seven to ten feet in diameter have an average power of 16 watts per transponder.

Each transponder on analog satellites can distribute several audio signals and one, or sometimes two, video signals per transponder. The 32 transponders on the two DBS satellites can distribute about 150 channels of programming, thanks to digital “compression” or bitrate reduction. An exact number of channels can’t be given because not all programming will be compressed the same way. The compression ratio for, say, a live sporting event would be much lower than for an old black-and-white movie. The frame rate of the source material—and the desired quality of the output—also affect the compression ratio that can be achieved. Hughes estimates that each transponder can broadcast up to four live video signals or up to eight movies simultaneously.

The amplifiers, according to Hughes, will amplify either analog or digital signals, and will be capable of transmitting HDTV signals and compact disc-quality audio. The uplink signals will be sent from the DirecTV Castle Rock Broadcast Center in Colorado. The facility will be capable of transmitting up to 216 simultaneous broadcast channels to the two satellites.

The satellites have an expected operational lifetime of about twelve years. Although the electronics on board will probably still be operating after that time, the spacecraft will run out of fuel. Geostationary orbiting satellites require propellants to ensure their precise positioning because the gravitational effects of the sun and moon can move them.

Will the service sell?
All of the companies involved in the DSS project are optimistic about its chance for success. The first target will be the ten million rural homes that

Continued on page 82
Build a professional looking function generator for your electronics workbench.

BUILD THE AUDIO WIZARD TEST GENERATOR

John Wannamaker

Every test bench needs a function generator—without one, the bench is incomplete. This article describes the construction of the Audio Wizard, an inexpensive function generator that's loaded with features. It's perfect for filling that vacancy on your test bench.

Audio Wizard has a front panel not much larger than a dollar bill, and a small size to match. It has features usually found on many expensive units, yet the parts to build it should cost no more than $175.00—and that's only if you have to purchase all the parts. A good spare parts collection might already contain most of the parts needed.

The Audio Wizard can produce sine, triangle, and square waves in two ranges at frequencies from 1 hertz to 20 kilohertz, as well as bursts of both sine and square waves. Ramp and pulse outputs are available in two ranges with widths adjustable from 1 millisecond to 4 seconds. The unit has an internal sweep generator of sine, triangle, or square waves from 1 hertz to 1 kilohertz and from 20 hertz to 20 kilohertz. The built-in frequency counter for monitoring output frequency can also monitor an external input and act as an events counter. X-Y outputs can be applied to your oscilloscope with a stop-sweep feature for a frequency readout at any point of interest during the sweep.

Circuitry

The frequency counter is a SUB CUB II unit manufactured by Red Lion Controls (20 Willow Springs Circle, York, PA 17402), and it's available from Digi-Key. The counter module, shown in Fig. 1 as MOD1, has a 0.35-inch high, six-digit liquid-crystal display. Pulses at 1-second intervals are derived from the AC power line which has a typical accuracy of 99.99 percent. Transistor Q9 and a 4518 dual synchronous counter, IC7, square and then count the 60-hertz line frequency to produce 1 pulse per second that triggers a 50-microsecond one-shot multivibrator, IC8-a, which produces negative-going pulses to update the counter unit. Those pulses also trigger a 5-microsecond one-shot multivibrator (IC8-b) which resets the synchronous counter.

Op-amp IC9 and associated components condition any signal present at the external input jack J5. The maximum frequency input at J5 is 500 kHz. A 50-millivolt peak-to-peak signal is sufficient up to 100 kHz.

In the events mode, when rotary switch S1-c is in mid position, the counter is held in a constant update condition and no reset pulse can be generated. Any input pulse of 0.5 volt or more with a width of 0.5 millisecond will advance the readout one count.

In Fig. 2, an XR 2206 function-generator chip made by EXAR (IC1) provides a triangular output at pin 2 when S1-a is open. With S1-a positioned so that potentiometer R1 is in the circuit, both R1 and R2 can be adjusted for a sinewave output with 0.5 % or less harmonic distortion.

While IC1 can also produce a square wave, that waveform can create glitches at the peaks of triangle and sine waves. To eliminate that possibility, op-amp IC3-a is configured as a comparator to square triangle and sine waves. Circuit values limit the rise and fall times to eliminate unwanted glitches.

Pin 7 of IC1, the frequency-control input, is at a DC reference level of about 3 volts. The voltage is buffered by IC2-a and applied across 10-turn frequency-adjust potentiometer R20. SWEEP switch S2 selects either the wiper of R20 or the internal ramp voltage to be isolated by IC2-b and applied back to pin 7 of IC1 through a network consisting of current-limiting resistor R23, diodes D3 through D7, and R16.
The adjustable gain of op-amp IC4-a is provided by dB switch S3 and resistors R31-R33. All output adjustment levels of R24 are considered to be 0 dB. The two spring-return positions of S3 give either a 2 dB gain or a 3 dB loss. When 0 dB and -3 dB levels are set to appropriate oscilloscope graticules lines, many other points to -10 dB can be extrapolated as can be seen in Fig. 3. DC offset is applied to the non-inverting input of IC4-b to avoid affecting signal level and be totally independent of level control R24 and dB switch S3.

Capacitors C3 and C4 determine the frequency limits of the high range: about 20 Hz to 20 kHz. When S1-b connects C5 and C6 in parallel with C3 and C4, those components determine the low-frequency range limits of 1 Hz to 1 kHz.

Bursts of both sine and square waves are created when a positive pulse is applied to the anodes of D1 and D2. That prevents IC1 from oscillating without affecting the DC level at pin 2 about which the waveform varies.

Figure 4 contains a dual CMOS version of the familiar 555 timer (IC5). Each timer’s output triggers the other’s input. After transistor Q2 gives IC5-a a kick start on initial power-up, the circuit continues to oscillate (one timer is on while the other is off). Timing capacitors C20 and C21 charge through constant-current source Q1. The linear voltage rise across the capacitors is isolated by IC6-a, a very high input impedance op-amp.

The sweep voltage to IC1 is the linear charge across C20 and C21, so the sweep, or charging action, can be stopped when spring-loaded switch S5 is moved to the HOLD position. This also stops waveworm ramp formation. Ideally, the voltage on the capacitors would not change at that time. However, capacitor leakage will affect the charge.

Fortunately, the change is slow enough to be able to get a frequency readout accurate within 0.2% if the second update after pressing HOLD is applied. The hold feature will be especially useful with a very slow sweep and with X-Y oscilloscope operation where the ramp output will be the sweep for the oscilloscope. Frequencies at or near the beginning and end of sweep can be determined. The HOLD switch can be jogged so that the sweep moves across the CRT in many small steps. Either the low- or high-frequency range can be swept, and the waveform can be sine, triangle, or square.

The pulse current is amplified as the outputs of IC5-a and IC5-b alternately turn on Q4 and Q3. If resistor R45 is replaced with a short circuit (a length of wire), the J3 output can drive 10 TTL loads. Rise and fall times are about 300 nanoseconds. The same WIDTH switch (S4) affects both ramp and pulse operation; ramp width controls the burst time and pulse width controls the dead time.

Construction

For those who wish to make their own PC board, foil patterns are included in this arti-
cle. However, a ready-to-use PC board and silkscreened front panel are available from the source given in the Parts List. Following the parts-placement diagram in Fig. 5, solder all components and DIP sockets on the board. Double check your work before continuing.

If you plan to buy the silkscreened front panel, it must be used with the same enclosure as the prototype. Complete instructions for fitting the controls on the front panel and for fitting the board in the specified enclosure are included with the front panel order. If you intend to use a different enclosure and front panel, it's up to you to decide on an appropriate layout, although you might want to make it similar to the prototype.

Regardless of the enclosure and front panel you use, mount all controls on the front panel and wire them to the board as shown in Fig. 5. Clip off the orientation tab from each potentiometer so that it fits flat against the inside of the front panel. The shafts of most of the potentiometers specified have the correct length. However, you must cut the plastic shaft of R20 to the same length as the other shafts before mounting it.

Place the completed front panel face down and the completed PC board componentside up so that its front edge is at least 3/8 inch from the bottom of the front panel. Maintain that spacing as you wire from panel to board with different colored wire. The SUB CUB counter unit mounts on a small PC board. Solder connections to that board before snapping it on the counter module. You can make your own mounting board with the foil pattern provided here. Prepare the SUB CUB mounting board by soldering 2.2-megohm resistor R69 in place as shown. Solder one end of five 4-inch flexible wires to the counter mounting board and the other ends to the main board as shown in Fig. 5. Do not snap the module into its mounting board until all wiring is complete.

Mount transformer T1 on the inside of the rear panel. Drill ventilation holes and a hole for the power cord. Slide the rear panel into the slots on the enclosure's bottom shell. If you're using the recommended enclosure, mount it to the molding stubs with No. 4 × 3/8 sheet-metal screws in two places. When the transformer and PC

FIG. 2—AN XR 2206 FUNCTION-GENERATOR CHIP provides a triangle output at pin 2 when S1-a is open.
board are in place, cut the transformer leads long enough to reach the board. Enlarge any PC-board holes as required to accept the transformer and power cord wires.

When all wiring is complete, snap the SUB CUB unit onto its mounting board. Insert two 2-56 x 3/4 machine screws in the holes on each side of the display cutout. Hold them in place with nuts. Slide the SUB CUB mounting board over the screws so that the counter fits flat against the inside of the panel. If there is any mechanical interference from the nuts, cut away some plastic on each side of the SUB CUB unit. Add two more nuts to hold the counter in place. Notice that the tilt handle on the prototype is not made for the enclosure; it must be purchased separately and adapted to fit. Figure 6 shows the inside of the prototype unit.

Checkout

Do not insert any ICs into their sockets until instructed to do so.

Insert the 0.315-ampere fuse (F1). Preadjust on-board trimmers R1 and R2 to mid position and all other trimmers fully counterclockwise.

Adjust an oscilloscope for 2 milliseconds/division, 2 volts/division, and a DC input. Con-

FIG. 3—WHEN THE 0 dB AND -3 dB LEVELS are set to appropriate oscilloscope graticule lines, many other points to -40 dB can be extrapolated.

Audio Wizard Foil Pattern.
nect the test probe to pin 3 of 7812 regulator IC11; the metal tab of this regulator is a convenient ground point. (Note that the tab of IC10 is not at ground potential!)

Set automatic triggering for the oscilloscope and move the trace to the bottom graticule line. Turn RAMP LEVEL control clockwise; this also turns on the power. Plug the line cord into an AC outlet. The oscilloscope should indicate +12 volts from IC11 with no visible ripple.

Next check the voltage at pin 3 of IC12 (the 7805) and pin 3 of IC10 (7912); these should read +5 and -12 volts, respectively, with no visible ripple. If all voltages are correct, leave power on for 30 seconds and carefully check each regulator tab for overheating. A warm tab is acceptable, but none of them should be hot to the touch. If they are, it indicates a probable short that must be cleared.

Unplug the power cord and wait 20 seconds for all voltages to decay. Insert IC7, IC8, and IC9 in their sockets. Set S1 to the 1 kHz sinewave position. Reapply power and check each IC for heat emission over the next 10 seconds. No device should get hot, an indication that one might have been inserted backwards. The frequency display should show a single "0."

Unplug the power cord again. Connect one lead of a non-polarized capacitor (any value from 0.01 to 0.1 µF) to the anode of D15. Connect the other lead to the junction of diodes, D12 and D13, and restore power. Within 3 seconds, the display should show steady reading of 120 Hz (100 Hz for 50-Hz line).

If you have any problem with the readout, the suggestions will help. The collector of Q5 should show a 60-Hz square wave varying from 0 to near +5 volts. Pin 1 of IC7 should have a +5-volt pulse occurring once every 100 milliseconds. Pin 6 should have a pulse occurring once per second.

Put the function/range switch in the burst position. The display should show a continuous fast count upwards, and it should count to well above 1000 within 90 seconds. By selecting any other position than burst, the display should again be 120 Hz. Remove the temporary capacitor connecting D15 to D12 and D13.

Turn off power and, after the voltages decay, insert IC1–IC4 into their sockets. Set the SINE/TRIANGLE OFFSET to mid position, SINE/TRIANGLE/SQUARE FREQUENCY fully counterclockwise and then turn clockwise. SQUARE LEVEL and SINE/TRIANGLE LEVEL to mid position, FUNCTION/ RANGE to 20 kHz sinewave, and SWEEP to off.

Set the oscilloscope for an AC input, position the trace on the middle graticule line, and set 0.5 volt/division and 0.1 millisecond/division, and reapply power. The oscilloscope should display about 4 cycles of a sine-like waveform of more than 1 volt p-p. Trigger the oscilloscope as necessary. The frequency readout should indicate about 4000 Hz.

If a problem exists, check the following points: Pin 7 of IC1 and pin 1 of IC2 should be at approximately +3 volts DC. The counterclockwise terminal of the frequency control potentiometer (R20) should be approximately 2.85 volts DC. The wiper terminal of R20 and pin 5 of IC2 should be about 2.5 volts DC, and both should vary smoothly from near 0 volt with

![Diagram](image-url)

FIG. 4—A DUAL CMOS TIMER'S (IC5) output triggers another timer's input. Once Q2 starts IC5-a on initial power-up, the circuit continues to oscillate.
FIG. 5—PARTS-PLACEMENT DIAGRAM. Install all ICs in DIP sockets.
PARTS LIST

All resistors are 1/4-watt, 5%, unless otherwise noted.
R1—500 ohms, single-turn trimpot, 1/8 or 1/4 inch square
R2—50,000 ohms, single-turn trimpot, 1/8 or 1/4 inch
R3—15,000 ohms
R4, R48—6800 ohms
R5, R12, R26, R27, R50—4700 ohms
R6, R7, R18, R21, R37, R38, R43, R51, R54—2700 ohms
R8—3470 ohm
R9, R17, R61, R63—1 megohm
R10, R22, R23, R44—1000 ohms
R11—56 ohms
R13, R42, R46, R65—3300 ohms
R14, R24, R41—5000 ohms, 16mm panel-mount potentiometer
R15, R62—220 ohms
R16—470 ohm
R19—500 ohms, 3/4-inch square upright multturn trimmer
R20—5000 ohms, 10-turn precision potentiometer
R27—560 ohms
R28, R30, R36, R52, R66—47,000 ohms
R29—10,000 ohms, 16mm panel-mount potentiometer
R31—10,000 ohms, 1/8 watt, 1% R32—11,300 ohms, 1/4 watt, 1% R33—4120 ohms, 1/8 watt, 1% R34—470 ohms, 1/4 watt R35, R40—100,000 ohms, 16mm panel-mount potentiometer R39—680 ohms, 1/4 watt R47—5000 ohms, 3/4-inch square upright multturn trimmer R49—5000 ohms, 16mm panel-mount potentiometer with switch (S6) R53—50,000 ohms, 3/4-inch square upright multturn trimmer R57, R59, R67—100,000 ohms R60—22,000 ohms R64, R69—2.2M, 1/8 watt

Capacitors
C1, C2, C11, C12—10 µF, 25 volts, electrolytic
C3—0.033 µF, 50 volts, metal film
C4—0.01 µF, 50 volts, metal film
C5, C8, C17, C27—0.47 µF, 50 volts, metal film
C6—0.33 µF, 50 volts, metal film
C7—1000 µF, 16 volts, electrolytic
C9, C10, C14, C15, C18, C19, C40—0.011 µF, 50 volts, polyester
C13, C32—4.7 µF, 25 volts, non-polarized electrolytic
C16, C28, C39—47 µF, 16 volts, electrolytic
C20, C21, C34—0.1 µF, 50 volts, metal film
C22—C26—1 µF, 50 volts, metal film
C29—33 pF, 100 volts, ceramic disc
C30—0.0047 µF, 50 volts, polyester
C31—470 pF, 100 volts, ceramic disc
C33—220 pF, 100 volts, ceramic disc
C35—C37—1000 µF, 25 volts, electrolytic

Semiconductors
IC1—XR2206 function generator (Exar)
IC2, IC3, IC6—CA3240E dual op-amp (Harris)
IC4—LF353 dual op-amp (National)
IC5—ICM7551PD dual CMOS timer (Harris)
IC7—4508 dual CMOS counter
IC8—4538 dual CMOS monostable
IC9—CA3130 CMOS op-amp (Harris)
IC10—7912—12-volt regulator
IC11—7912 +12-volt regulator
IC12—7805 +5-volt regulator
D1-D13, D18—1N914 diode
D14-D17—1N4001 diode
Q1—2N2907A PNP transistor
Q2-Q5—2N4401 NPN transistor

Other components
J1—J4—BNC panel jack with ground tab
J5—3.5mm jack with N.C. switch
S1—4-pole, 5-position rotary switch (2 decks)
S2—SPDT miniature toggle switch
S3—SPDT miniature monostable toggle switch with center-off
S4—DPDT miniature toggle switch
S5—SPDT miniature toggle switch, one side monostable
S6—SPST switch (part of potentiometer R49)
T1—power transformer, 120-volt primary, 24-volt center-tapped secondary, 300 milliamps
F1—TR5 subminiature fuse, 0.315-amps
MOD1—SUB CUB II display counter (Red Lion Controls, 20 Willow Springs Circle, York, PA 17402)

Miscellaneous: TR5 fuse socket, polarized power cord, knobs for 1/4-inch shaft (0.6-inch maximum diameter), enclosure (PAC TEC #CM6-300K, black), tilt handle (Hammond Mfg., for box # 546-1598C), multicolored ribbon cable, 5-8-pin IC sockets, 114-pin IC socket, 316-pin IC sockets, PC board, solder, etc.

Note: The following items are available from John Wannamaker, Rt. 4, Box 550, Orangeburg, SC 29115:
- PC board, silkscreened front panel, and packet of construction drawings (panel may be available for only one year following publication)—$34.00 ppd. USA, money orders only (Canadian customers, $35.00 ppd., postal money orders only)
- Construction drawing packet—$4.00 ppd. USA, money orders only (Canadian customers, $4.50 ppd, postal money orders only)
- SC residents must add 5% tax. Allow 4 weeks for delivery.

R20 turned to its maximum clockwise position to 2.85 volts DC at the maximum counterclockwise position. Return R20 to a setting of 1 turn clockwise after performing this last check. Pin 2 of IC7 should now show a sinewave of more than 2-volt p-p that varies around a DC level of +6 volts.

With a sinewave output at jack J1, alternately adjust R1 and R2 for the best sinewave shape—equal areas and amplitudes above and below the zero line. The sine/triangle level control should vary the output from 0 to 3-volts p-p.

Adjust sine/triangle/square frequency control fully clockwise. The frequency should drop to about 2000 Hz. Adjust R19 clockwise until the frequency is 20 Hz. The frequency can drop to 0 if R19 adjusted too far.

Rotate the function/range switch to 20 kHz triangle. Maximum output at J1 should be about 6-volts p-p. The waveform will not have ideally sharp transitions at its peaks. Switch to the 1-kHz ranges for triangle and then sine waves. Both shapes should be clear except
for a slight curvature of the triangle wave.

Adjust for a 5 kHz sinewave at J1. Switch the oscilloscope to DC input at 2 volts/division, and position the trace across the middle graticule line. Adjust sine/triangle level fully clockwise and trigger the oscilloscope to verify that it moves the sinewave up and down 2 volts. With the sine/triangle offset, position the trace so that the sinewave varies equally above and below the middle graticule line. Position the knob on the offset control shaft so that it points to the mid-position marking when there is no offset.

Adjust the oscilloscope for 0.2 volts/division, 2 milliseconds/division, and AC input. With the generator at 5 kHz, adjust sine/triangle level and the oscilloscope's vertical positioning control for a peak-to-peak sinewave that covers exactly 7.9 vertical graticule spaces. Flip S3 to -3 dB and hold it there; the sinewave should now cover 5.6 graticule spaces. Readjust the 0 dB level to cover 6.2 spaces. Flip S3 to the +2 dB position and hold it there. The peak-to-peak amplitude should increase to cover 7.8 spaces. The output of J2 should be a square wave, adjustable via the square level control from +1 to near +10 volts.

IC5 can stop oscillation due to an irregularity in the potentiometer when varying ramp time or pulse time, or when the burst mode is selected. You can restore oscillation by turning the power off for 10 seconds before turning it on again.

Unplug power and wait for the voltages to decay. Insert IC5 and IC6 in their sockets. Adjust ramp time, pulse time, ramp level, and pulse level to mid range. Set the width switch to "narrow" and sweep to "off." Set the oscilloscope for 2 volts/division, 20 milliseconds/division, and a DC input. Position the trace for 0 volts on the bottom line, and set triggering for negative edge.

Observe the pulse at J3; at least two pulses of about 5 volts should be seen. Trigger the oscilloscope as required. Vary the pulse level control to see that the amplitude varies from 0 to +10 volts. Vary the ramp time control to see that it controls the time between pulses. The pulse time should control pulse duration.

Adjust ramp time and pulse time to their maximum counterclockwise position. Change the oscilloscope to 0.5 milliseconds/division and adjust triggering for a steady display of 5 or more pulses. Adjust R47 so that the time between pulses is 1 millisecond.

Adjust ramp level to the maximum clockwise position. Change the oscilloscope input to 0.5 volts/division. Observe the ramp output at J4; several ramps should be seen, each lasting 1 millisecond. The pulse time should control the time between ramps. While observing the ramp, adjust R47 so that the ramp's peak amplitude is 3 volts.

The proper ramp amplitude varies depending on the characteristics of the XR2206 chip selected, and R47 should be adjusted as follows: Set the sine/triangle/square frequency control for 20 Hz on the 20-kHz range. Measure the DC voltage at pin 7 of IC2 and then readjust R47 for a ramp peak that equals the pin-7 voltage.

Adjust ramp time and pulse time for a ramp that lasts 10 milliseconds and for a time period between ramps of 10 milliseconds. Readjust the oscilloscope for 5 milliseconds/division. Adjust sine/triangle/square frequency to 285 Hz. Select the burst position of the function/range switch. Observe the output at J1; the oscilloscope should display burst groups with three cycles in each group. If the oscilloscope does not trigger correctly on the bursts, trigger it externally with the pulse output.

Set the function/range switch to the 1-kHz sinewave position. Adjust the output to any convenient level. Set the sweep switch to "on." You should observe the sinewave sweeping from about 1 kHz at the far left to 10 Hz or less at the right. The ramp time control affects the length of the sweep. It is best to trigger the oscilloscope with the pulse. A slight lowering of the ramp level control will raise the lowest frequency at the right of the trace. If the burst mode is selected while the sweep switch is "on," the sweep will automatically be on the 20-kHz range, and the sweep will be from near 20 kHz at the left to 20 Hz at the right.

The best arrangement for using the hold switch is to set the oscilloscope in the XY mode with the generator's ramp providing sweep for the oscilloscope. Not all oscilloscopes achieve XY operation in the same way. Refer to your oscilloscope's manual to determine how your model does this.

Select "wide width" and adjust ramp time fully clockwise; this should give a sweep of about 4 seconds. Once you have XY operation, press hold several times during the sweep. The trace should stop and you can get a frequency readout of that point. Try both the 20-kHz and 1-kHz ranges. Whenever you set sweep, the square wave is also being swept. A digital oscilloscope does not have XY capability in its memory mode. The best arrangement in using one is to adjust the oscilloscope's internal sweep to match that of the generator.

This completes the checkout procedure. Your function generator should now be ready to give you faithful service and it will be a valuable addition to your workbench.
This article is a sequel that details the construction of a PC expansion card called the SRAM Drive II. In case you missed it, the original (Radio-Electronics, July and August 1990) provided an innovative circuit that allowed you to use a static RAM (SRAM) like an EPROM. You could write a program and copy it to a battery-backed SRAM, where it would remain even when the computer was turned off. With the appropriate code in the SRAM, you could even "hook" special software into the BIOS (basic input output system) during boot. The original design provided a password-protection feature that prevented the PC from booting unless the correct password was entered.

SRAM II extends the idea. It uses the SRAM-based boot-ROM concept, but this time a disk emulator is hooked into the PC's BIOS. In general, the SRAM drive functions like any other PC-based disk drive. It does, however, have a few special features. For one, it's battery-backed, so its contents won't disappear when power goes off. Second, it can be made bootable!

SRAM II is designed to be the heart of an embedded system. Accordingly, it has enough semiconductor storage to hold a good-sized application: a maximum of 1.8 megabytes, supplied by fourteen 128K × 8 SRAMs.

The boot ROM can hold as much as 16 kilobytes of code, stored in either a common EPROM (27128 or 27256) or in a 43256 SRAM fitted in a special battery-backed "Smart Socket," made by Dallas Semiconductor. With the SRAM configuration being battery-backed, it is possible to enable and disable operation—and even change boot software—on the fly!

Partial and complete kits, as well as bare boards, are available. See the Parts List for pricing and other information concerning the kits.

How it works

The circuit consists of the following major components:
- PC-bus signal buffering
- I/O port decoding
- Upper memory segment-decoding unit
- Two 8255 peripheral interface controllers (PICs)
- An array of static memory.

The SRAM II buffers the PC address-bus signals with IC5, IC8, and half of IC4, as shown in Fig. 1. The circuit also buffers the data bus and several control signals, as shown in Fig. 2. Control signals include I/O Read (IOR), I/O Write (IOW), Reset (RST), and DMA enable (AEN). Note that Memory Read (MEMR) is buffered (by IC10-c), but Memory Write (MEMW) is not. This setup is not good practice, but it does not compromise signal quality here. (Cautious readers might want to buffer MEMW using some of the spare gates shown in Fig. 5.)—Editor)

The real heart of the circuit appears in Fig. 3. The gates, decoders, and DIP switches there
allow you to set board operation so it occurs at addresses that do not conflict with other equipment you might have installed in your PC.

I/O port decoding is accomplished by IC6, IC7, IC9, and IC10. Pin 3 of IC9-a is normally low, but whenever there is an I/O read or write, it goes high. If, in addition, AEN is low (there is no DMA activity), then IC9-b is high. In this case, both inputs to IC10-a are high, so its output also goes high.

Now look at IC7, a 4-bit comparator whose A = B output goes high when all four input bits, A0–A3, are equal to all four corresponding input bits, b0–b3. In practice, this means that the CPU address lines A5–A8 must be equal to the values set by the DIP switch S3. In addition, the PC bus address line A9 must be high.

The net effect of that circuitry is to define the base I/O port at which the SRAM circuitry will be decoded. The base address, as set by address line A9, is 512; depending on which switch positions of S3 are set, that values increase by 32 (512, 544, ... 992), as shown in Table 1. In conjunction with 1-of-8 decoder IC6, DIP switch S1 furthers narrows the decoded address to an eight-byte segment within the 32-byte block, as shown in detail in Table 2.

Now return to the decoding. When the address-bus value equals the value set by the DIP switches, and when either I/O Read or I/O Write goes active, and AEN is inactive, IC9-c goes low, IC10-b goes low, and that in turn enables data-bus transceiver IC3 (shown in Fig. 2). Transfer direction (into or out of the CPU) is determined by the state of IC3 pin 1, which is in turn driven by IC10-d (refer to Fig. 3 now), which is normally thought of as an AND gate. However, in this case, IC10-d functions as a 2-input negative or gate—when either input goes low, the output goes low. In other words, when the CPU
FIG. 3—ADDRESS AND I/O PORT DECODING occurs here. The DIP switches permit the selection of a base I/O address, an offset I/O address, and a memory-segment address to which the boot SRAM can be addressed. Logically, S1 is a 2P4T switch that provides the two chip selects that drive the 8255s shown in Fig. 4.

TABLE 2—S1 DETERMINES 8-BYTE OFFSET

<table>
<thead>
<tr>
<th>On Positions</th>
<th>Standard Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+2</td>
<td>3+4</td>
</tr>
<tr>
<td>512</td>
<td>520</td>
</tr>
<tr>
<td>544</td>
<td>552</td>
</tr>
<tr>
<td>576</td>
<td>584</td>
</tr>
<tr>
<td>608</td>
<td>616</td>
</tr>
<tr>
<td>640</td>
<td>648</td>
</tr>
<tr>
<td>672</td>
<td>680</td>
</tr>
<tr>
<td>704</td>
<td>712</td>
</tr>
<tr>
<td>736</td>
<td>744</td>
</tr>
<tr>
<td>786*</td>
<td>776</td>
</tr>
<tr>
<td>800</td>
<td>808</td>
</tr>
<tr>
<td>832</td>
<td>840</td>
</tr>
<tr>
<td>864</td>
<td>872</td>
</tr>
<tr>
<td>896</td>
<td>904</td>
</tr>
<tr>
<td>928</td>
<td>936</td>
</tr>
<tr>
<td>960</td>
<td>968</td>
</tr>
<tr>
<td>992</td>
<td>1000</td>
</tr>
</tbody>
</table>

reads either memory or an I/O port, and the proper decoding occurs as discussed earlier, the CPU can read whatever is on the SRAM II's data bus.

The other input to IC10-b comes from IC11-d, which is in turn driven by IC14-a. Its inputs come from two sources: high-order address decoder IC12 (by way of DIP switch S2), and the output of IC14-b. That gate goes high whenever there is either a read from or a write to system memory. Therefore, by tracing from IC14-b to IC14-a to IC11-d to IC10-b, you can see that data-bus transceiver IC3 can be enabled in a second way—when there is a system memory access.

I/O port decoding is done in two steps. DIP switch S3 sets a base address, and DIP switch S1 sets an 8-byte offset. Although S1 consists of eight individual
Only ICS gives you the fastest, most powerful computer...

Get into a money in personal

The U.S. Dept. of Labor states that many highly-qualified computer repair technicians are earning over $30,000 a year. And the PC repair field is targeted for higher-than-average growth throughout this decade and beyond!

Train at home to enter one of the fastest-growing, highest-paying computer careers!

Only ICS, the world's leader in home study, gives you hands-on training with a high-performance 486DLC IBM-compatible computer with Cyrix microprocessor, color monitor and internal modem so you master the latest techniques and innovations in PC servicing and repair. You get the same high-quality training taught at vocational and trade schools but without spending years attending classes. You can complete your training in just months...you'll even be able to start making money doing repair jobs before you finish your course.

Our computer specialists have spared no effort in ensuring that this is the finest PC repair course available through home study.

Compare ICS training—you get better equipment/lower tuition!

Don't be confused by other schools that try to duplicate ICS training. Check the facts by sending for our free information package. With our course you receive all the professional equipment shown above...you learn every facet of PC trouble-shooting and repair...and you receive an accredited ICS Career Diploma that identifies you as a qualified PC Service Technician. Employers know ICS because of the over 10 million men and women who have trained with us. All this—better equipment, better instruction—for less tuition than other home-study PC repair courses!

You receive a 486DLC IBM-compatible personal computer system!

This is the new, faster, 486 technology you've heard about—it's all you'll need to learn PC servicing and repair. Step by step you're taught how to troubleshoot, repair/replace all of the major components of this amazing system.

ICS hands-on training is the key to your successful future in PC repair!

ICS knows the only way to learn PC repair is by actually getting inside the computer. That's why we've included a top-quality PC tool kit and diagnostic equipment. You receive practical, real-world computer servicing experience on your 486DLC computer using the professional tools and diagnostic hardware and software that's included with your course. Everything is explained in step-by-step detail...from the basics of computer maintenance to advanced microcomputer technology. No other school gives you PC repair training this thorough, this complete.
making career computer repair

State of the Art, Powerful 486DLC Technology
- Cyrix's 486DLC/33MHz microprocessor greatly outdistances Intel's 486SX/25 in benchmark testing
- Cyrix's FaxMath CX83D87™ performance-leading coprocessor for true 486 speed.
- Plus an 80 MB IDE Hard Disk Drive and 1MB of expandable RAM!
- 2400 baud internal modem
- 1Kb internal cache plus a high-speed 64Kb external cache
- access to ICS Online with numerous exciting services to choose from
- 256+ color capacity SVGA high-resolution monitor

Digita! Volt-Ohm Milliammeter
Provides voltage, current, and resistance measurements, and checks for circuit malfunctions.

Professional Diagnostic Card and Diagnostic Software
Enables you to locate and repair almost any computer problem.

Learn to service and repair every type of personal computer!
ICS makes you competent with the latest technology in personal computers, so you'll be able to handle any computer servicing job that comes your way. You'll learn how to set up and configure PC systems...how to replace central processing unit (CPU) components, hard drives, floppy drives, keyboards, monitors and printers...how to detect and deal with computer viruses...how to upgrade PCs by installing modems, graphics cards, coprocessors, additional memory and much more.

The only home-study PC Repair Course that includes a 486DLC/33MHz computer, professional tools & test equipment, Microsoft® DOS™ 6.0 and Windows™, and the exclusive ICS On-Line PC Network!
This latest version of DOS has several innovative new features including the data compression system, which allows you to double the storage capacity of your hard drive, and an antivirus program that can detect and remove over 800 different computer viruses. You also receive Microsoft Windows, the applications management software that makes working with any application a quick and easy task. And as part of your complete PC repair training ICS gives you FREE SOFTWARE so you can access ICS ONLINE—your electronic campus—via the America Online PC network. With ICS Online, you have the option of "talking" with your instructors and your fellow students...exchanging ideas, performing job searches, discussing PC repair techniques and much more—all without leaving your PC! No other home-study school offers you this kind of "up-close and personal" interaction—because no other home-study school has an on-line computer network.

Your career in PC repair begins with the big, full-color FREE information package we send you. Get all the facts you need on our revolutionary PC repair course. Send for free information that describes how ICS training can start you toward a high-paying career as a PC Service Technician.

Mail the postage-paid card at left today. If card is missing, mail coupon below.

OR CALL TOLL FREE:
1-800-596-5505 Ext. 2814
Call Anytime—24 hours a day, 7 days a week.

ICS School of Computer Training,
SINCE 1890 Dept. PDE534S, 925 Oak Street, Scranton, PA 18515
YES! Please send me free facts that tell how I can train at home to learn PC repair. I understand there is no obligation and no salesman will visit me.

Name ___________________________________ Age __________
Address ___________________________________ Apt. # _______
City/State ____________________________ Zip __________
Phone ________________________

www.americanradiohistory.com
SPST switches, in logical terms it functions as a 2P4T switch; every other output is wired in parallel, so you can enable only two positions of S1 at once (1+2, 3+4, 5+6, or 7+8). The selected output pair provides two chip-select signals that enable the 8255 PICs, as shown in Fig. 4.

But first finish the address decoding in Fig. 3. Another 1-of-8 decoder, IC12, works with S2 to decode a 16K block of high-address space, ranging from C8000 to EC000. Jumper JU4 selects either a low or a high start address (C000:0000 or E000:0000, respectively), and DIP switch S2 selects the desired 16K segment. Thus, when the system accesses the decoded address, IC13—the boot ROM/SRAM—is enabled by the signal that is labeled CE.

On board memory addressing

You might have wondered how 1.8 megabytes of memory was squeezed into a DOS PC. EMS? No. XMS? Try again. Custom bank-switched memory? That's it!

Now look at Fig. 4. The two 8255s provide the complete interface to the memory array, including data bus, address bus, and control signals. Thus, accessing a given memory location amounts to writing the correct bits to the correct registers in the PICs.

The PICs are standard devices, installed in IBM’s original PC and many PCs since then. Each PIC has four addresses: one for a control register and three for three 8-bit I/O ports (A, B, and C). The I/O port identification is simple, as shown in Table 3.

While still looking at Fig. 4, note that IC15 serves as an intelligent power controller. It controls the write enable line (as delivered by IC2) into the memory array. Whenever IC15 senses that power is dropping, it ensures that WE remains high until power switches over. That way, SRAM data cannot be inadvertently corrupted. Pull-up resistors (R8–R22) at each CS input provide just enough current to keep RAM data intact. Battery voltage should be 2.0–4.0 volts. Use a 3.6-volt lithium battery or a pair of AA alkaline cells.

Figure 5 shows the remaining components of the circuit. Boot

![Figure 4: Two 8255A Drive Address and Data Buses and Control Lines](image)

TABLE 3—PIC PORT USAGE

<table>
<thead>
<tr>
<th>PIC</th>
<th>Port</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Memory bank chip selects 1–8</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Memory bank chip selects 9–14, 1 unused bit, and the memory bank read/write line.</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Memory bank data bus 0–7</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Memory bank address bus 0–7</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Memory bank address bus 8–15</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Memory bank address bus 8–15, and memory bank output enable and write enable lines.</td>
</tr>
</tbody>
</table>
PARTS LIST

Resistors
R1–R7—4700 ohms, 1/4 watt, 5%
R8–R22—22,000 ohms, 1/4 watt, 5%

Capacitors
C1–C27—0.01 μF, mini DIP

Semiconductors
IC1, IC2—6255-A peripheral interface controller (Intel)
IC3—74LS245 octal bus transceiver
IC4, IC5, IC8—74LS244 octal bus buffer
IC6, IC12—74LS138 1-of-8 decoder
IC7—74LS85 4-bit comparator
IC9—74LS00 quad NAND gate
IC10—74LS06 quad AND gate
IC11—74LS40 hex inverter
IC13—43256 static RAM, 100 ns
IC14—74LS28 quad NOR gate
IC15—DS1210 intelligent power controller (Dallas Semiconductor)

IC16—29—static RAM, 128K x 8

Other components
S1, S2—8 position SPST DIP switch
S3—4 position SPST DIP switch
JU1, JU4, JU5, JU6—2-pin, 0.1-inch header (with jumpers)
JU2, JU3—used
B1—3.6-volt lithium battery (>0.5 mAh)

IC13 socket—DS1213C Smart Socket (Dallas Semiconductor)

Miscellaneous: PC board, mounting bracket, IC sockets, solder, wire, etc.

Note: The following items are available from Hatronics, 145 Lincoln Street, Montclair, NJ 07042. (201) 783-7264:
• Bare PC board—$52
• Kit of parts with OK—$120
• Kit with IC13 EPROM—$135
• Kit with IC13 SRAM—$140
• Kit with IC13 EPROM and 1.8 MB SRAM—$410
• Kit with IC13 SRAM and 1.8 MB SRAM—$425
• Additional programmed EPROMs—$5

Specify port address of boot module. All orders add $6 S/H.
NJ residents add sales tax. Check, money order, COD, AMEX accepted.

Software is stored in IC13. Three jumpers control its operation: JU1 provides an overall enable/disable function for IC13; JU5 enables and disables writing to an SRAM in the IC13 Smart Socket; and JU6 allows you to select between SRAM and EPROM operation. Table 4 summarizes the functions of all jumpers.

<table>
<thead>
<tr>
<th>Jumper</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JU1</td>
<td>On</td>
<td>Enable SMRAM II Discharge SMRAM II</td>
</tr>
<tr>
<td>JU2</td>
<td>On</td>
<td>Not used</td>
</tr>
<tr>
<td>JU3</td>
<td>Off</td>
<td>Not used</td>
</tr>
<tr>
<td>JU4</td>
<td>Lower</td>
<td>C8000–DC000</td>
</tr>
<tr>
<td></td>
<td>Upper</td>
<td>E0000–EC000</td>
</tr>
<tr>
<td>JU5</td>
<td>On</td>
<td>Enable write to IC13 Discharge write to IC13</td>
</tr>
<tr>
<td>JU6</td>
<td>Off</td>
<td>IC13 = SMRAM IC13 = EPROM</td>
</tr>
</tbody>
</table>

FIG. 5—MOUNT THE BOOT SRAM (IC13) in a Dallas Semiconductor Smart Socket, which has a built-in backup battery. The power supply has several 1N4148s that isolate the SRAM array back-up battery.

TABLE 4—JUMPER SETTINGS

Assembly and setup
Enough theory. Let's build something! First gather up all the tools you'll need, including a medium-power (35-watt) soldering pencil and some small-gauge solder. A Princess iron works well because of its small tip. Use thin diameter solder because thick solder can cause unwanted bridges.

The circuit is moderately complex, so a PC board is recommended for this project. Foil patterns are too large to print here, but they can be obtained by sending a self-addressed, stamped, business-size (No. 10) envelope to Electronics Now, SRAM PC Board, 500-B Bi-County Blvd., Farmingdale, NY 11735; you can also purchase an etched and drilled board from the author, as noted in the Parts List. The board components are not hard to assemble; the work can be completed in a few hours, depending on your experience. But haste makes waste, so don't rush!

Sockets are not mandatory, but they are recommended, par-
FIG. 6—MOUNT ALL COMPONENTS as shown here.

particularly for the memory and LSI devices (IC1, IC2, IC13, IC15, and IC16–IC29). Refer to Fig. 6 as a guide for installing all components. Note: Before installing sockets for IC1 and IC2, mount and solder decoupling capacitors C15 and C16. If the sockets don't provide adequate clearance, mount the capacitors on the solder side of the board. After mounting all parts, check your work carefully. Some traces are very close together. Figure 7 shows the completed prototype.

To configure the board, you must define two things: the upper address segment where the boot ROM/SRAM will reside, and the base address of the eight I/O ports that control the board. Be sure the segment address does not conflict with any video card, network adapter, disk controller, or other device. Also, be sure that the I/O ports don't conflict either. Then refer to Tables 1, 2, and 4 to set the desired addresses. Last, install the board in your system.

Initializing the board

Create a directory on your hard disk and copy all the software from the distribution diskette to it. Software is also available from the Electronics Now BBS (516-293-2283, 9600, V32, V42bis) as a file called SRAM.ZIP. At a minimum, the following programs should be present:

128KZERO.EXE, ENABLE.COM, DISABLE.COM, 128SRAM1.SYS, and FLOPYIMG.EXE.

First initialize the board. To run this program type:

128KZERO xxx yy zz [y]

where xxx is the base port address, yy is the SRAM to start with, and zz is the number of SRAMs to initialize. The final parameter is optional. Normally the program asks for confirmation before clearing memory. But if you include a "y" at the end of the command line, the program will not request confirmation. The offset and number parameters allow you to specify individual SRAMs to erase; for now, erase everything. Following are several examples and explanations:

128KZERO 77614
Initialize the board at I/O port 776. Require confirmation before proceeding.

128KZERO 51251
Initialize a board at I/O port 512, starting and ending at SRAM 5. Require confirmation.

128KZERO 76872 y
Initialize a board at port 768, starting with SRAM 7, and advancing to SRAM 8. Do not require confirmation.

Incidentally, for purposes of the software drivers, whenever you must specify an offset or SRAM number, IC16 corresponds to SRAM 1, IC17 to SRAM 2, and so on, until IC29, which corresponds to SRAM 14.

Creating a RAM drive

To address the SRAM ICs on the board as a disk drive, add a device driver to your CON%FGSYS file. The driver requires five parameters, each
TABLE 5—S3 DEVICE DRIVER PARAMETERS

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Description</th>
<th>Note</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>Base I/O port</td>
<td>Three-digit decimal</td>
<td>/768</td>
</tr>
<tr>
<td>#</td>
<td>Number of SRAMs installed</td>
<td>Two-digit decimal</td>
<td>#05</td>
</tr>
<tr>
<td>$</td>
<td>Number of directory entries</td>
<td>Three-digit decimal,</td>
<td>$016</td>
</tr>
<tr>
<td></td>
<td>must be power of 2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Sectors per cluster</td>
<td>One-digit decimal,</td>
<td>%2</td>
</tr>
<tr>
<td>@</td>
<td>Number of sectors for FAT</td>
<td>One-digit decimal,</td>
<td>@6</td>
</tr>
<tr>
<td></td>
<td>must be power of 2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&</td>
<td>SRAM offset</td>
<td>Two-digit decimal,</td>
<td>&04</td>
</tr>
<tr>
<td></td>
<td>Number of SRAMs to skip before</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>starting a drive.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

prefix by a special character. Table 5 describes the parameters; Listing 1 shows a sample CONFIG.SYS. Note that the sample defines two drives, each 256K in size. The first drive skips the first SRAMs, which account for 384K bytes of memory. That area might, for example, be used to emulate a 360K boot diskette.

Creating a boot drive
To create a boot “drive” on the SRAM II, you must do three things: 1) Create a boot floppy disk that contains the precise configuration you want. 2) Create an image of that floppy disk in the first three SRAM ICs (IC16–IC18). 3) Install a driver in the BIOS. The driver reads the SRAM II emulated disk rather than the A drive when booting (and subsequently). The software installation diskette includes several different BIOS drivers. The drivers are named xxxBOOT.DRV, where xxx corresponds to the three-digit decimal address where the board is installed.

To create a bootable SRAM drive, first create (and debug, if necessary) a boot floppy disk that works exactly the way you want. Be sure to include the five SRAM II utility programs listed earlier. Then create the boot image on SRAM II with the utility FLOPYIMG, as follows:

```
FLOPYIMG xxx y
```

where xxx is the port address of the card, and y is a single digit corresponding to the floppy to use (0=A, 1=B). The program will then transfer sector by sector, the contents of the specified floppy disk to the board.

Now load a driver into the boot ROM, with the utility INSTROM.

```
INSTROM xxxBOOT.DRV yyyy
```

where xxx is the port address and yyyy is the memory address when IC13 is decoded by S2 and jumper JU4.

Now you should be able to boot from SRAM II. Reset or power-cycle your computer and allow it to boot normally. You should see a brief sign-on message; then the system should boot from the SRAM drive. When boot is complete, you should have a 360K A drive. If you loaded 128SRAM1.SYS to define any SRAM drives, it should appear when starting at drive C.

ENABLE.COM and DISABLE.COM are included in the floppy boot image so that SRAM II can be disabled. By typing the desired command with IC13’s segment address, you can enable or disable the board. For example, if your board was installed at D0000, you could disable it by typing:

```
DISABLE D000
```

You could subsequently re-enable the board by typing:

```
ENABLE D000
```

Troubleshooting
If you can’t get your computer to boot or to recognize SRAM II, first check the board construction.

If it passes inspection, check all jumper and switch settings. If these check out as well, the problem might be in the SRAMs or the boot SRAM. If there is a fault in the SRAMs, the clear utility (128KZERO) might tell you it verifies all reads to memory.

To verify that the boot SRAM contains what it should where it should, use DOS’s DEBUG program to dump the first few bytes. For example, if your board is located at C8000, start DEBUG. When the prompt appears, enter the following:

```
D C8000:0
```

You should see a display like that shown in Listing 2. If not, your segment-decoding circuitry might not be working.

If all the hardware checks out, you could have a software problem. Create a boot floppy with no CONFIG.SYS or AUTOEXEC.BAT and install it in the SRAM. If this configuration will boot, you might have a path or command-line error.
Electronic Paperbacks at Special Prices

- **BP249—MORE ADVANCED LANGUAGE TERMINOLOGY**: $6.95. This book is a comprehensive guide to the terminology of computer languages. It covers a wide range of topics, from basic syntax to advanced concepts.

- **BP250—UNDERSTANDING ELECTRONICS**: $6.95. This book provides a basic understanding of electronics, including circuits, amplifiers, and diodes.

- **BP251—INTRODUCTION TO ELECTRICITY**: $6.95. A beginner's guide to the basics of electricity, including Ohm's law, electrical circuits, and basic components.

- **BP252—ADVANCED ELECTRONICS**: $6.95. This book delves deeper into electronics, covering topics such as digital electronics, microprocessors, and computer interfacing.

- **BP253—POWER ELECTRONICS**: $6.95. Focuses on the theory and application of power electronics, including power supplies and inverters.

- **BP254—MAGNETIC MATERIALS**: $6.95. Discusses the properties and applications of magnetic materials, including ferromagnetics and ferrites.

- **BP255—ELECTRONICS**: $6.95. A comprehensive guide to electronics, covering both theoretical and practical aspects.

- **BP256—SIGNAL PROCESSING**: $6.95. Focuses on the analysis and processing of signals, including Fourier transforms and digital signal processing.

- **BP257—ADVANCED ELECTRONICS**: $6.95. Covers advanced topics in electronics, such as analog-to-digital conversion and digital signal processing.

- **BP258—MICROWAVE ELECTRONICS**: $6.95. Focuses on the design and application of microwave electronics.

- **BP259—ANTENNAS**: $6.95. Discusses the theory and design of antennas, including antennas for wireless communications.

- **BP260—INSTRUMENTATION**: $6.95. Focuses on the design and use of instruments for measuring physical quantities.

- **BP261—COMPUTER SYSTEMS**: $6.95. Covers the architecture and design of computer systems, including microprocessors and operating systems.

- **BP262—SOFTWARE ENGINEERING**: $6.95. Discusses the principles and practices of software engineering, including software design and development.

- **BP263—DATA COMMUNICATIONS**: $6.95. Focuses on the design and use of data communication systems, including networking and communication protocols.

- **BP264—NETWORKS**: $6.95. Discusses the design and operation of computer networks, including the Internet and other networks.

- **BP265—SECURITY**: $6.95. Focuses on the principles and practices of information security, including cryptography and network security.

- **BP266—SOFTWARE ISSUES**: $6.95. Discusses the ethical and legal issues surrounding software development and distribution.

- **BP267—APPLICATIONS**: $6.95. Focuses on the application of electronics in various fields, including medical electronics and consumer electronics.

- **BP268—ADVANCED TOPICS**: $6.95. Covers advanced topics in electronics, including novel materials and emerging technologies.

- **BP269—ADVANCED ELECTRONICS**: $6.95. A comprehensive guide to advanced electronics, covering topics such as nanoelectronics and quantum computing.

- **BP270—ADVANCED ELECTRONICS**: $6.95. Another advanced book on electronics, covering topics such as high-speed electronics and power electronics.

- **BP271—ADVANCED ELECTRONICS**: $6.95. A third advanced book on electronics, covering topics such as bioelectronics and sensor systems.

- **BP272—ADVANCED ELECTRONICS**: $6.95. A fourth advanced book on electronics, covering topics such as photonic devices and quantum electronics.

- **BP273—ADVANCED ELECTRONICS**: $6.95. A fifth advanced book on electronics, covering topics such as quantum computing and artificial intelligence.

- **BP274—ADVANCED ELECTRONICS**: $6.95. A sixth advanced book on electronics, covering topics such as nanotechnology and materials science.

- **BP275—ADVANCED ELECTRONICS**: $6.95. A seventh advanced book on electronics, covering topics such as renewable energy and sustainable systems.

- **BP276—ADVANCED ELECTRONICS**: $6.95. An eighth advanced book on electronics, covering topics such as robotics and automation.

- **BP277—ADVANCED ELECTRONICS**: $6.95. A ninth advanced book on electronics, covering topics such as nanoelectronics and quantum computing.

- **BP278—ADVANCED ELECTRONICS**: $6.95. A tenth advanced book on electronics, covering topics such as bioelectronics and sensor systems.

- **BP279—ADVANCED ELECTRONICS**: $6.95. An eleventh advanced book on electronics, covering topics such as photonic devices and quantum electronics.

- **BP280—ADVANCED ELECTRONICS**: $6.95. A twelfth advanced book on electronics, covering topics such as quantum computing and artificial intelligence.

- **BP281—ADVANCED ELECTRONICS**: $6.95. A thirteenth advanced book on electronics, covering topics such as nanotechnology and materials science.

- **BP282—ADVANCED ELECTRONICS**: $6.95. A fourteenth advanced book on electronics, covering topics such as renewable energy and sustainable systems.

- **BP283—ADVANCED ELECTRONICS**: $6.95. A fifteenth advanced book on electronics, covering topics such as robotics and automation.

- **BP284—ADVANCED ELECTRONICS**: $6.95. A sixteenth advanced book on electronics, covering topics such as nanoelectronics and quantum computing.

- **BP285—ADVANCED ELECTRONICS**: $6.95. A seventeenth advanced book on electronics, covering topics such as bioelectronics and sensor systems.

- **BP286—ADVANCED ELECTRONICS**: $6.95. An eighteenth advanced book on electronics, covering topics such as photonic devices and quantum electronics.

- **BP287—ADVANCED ELECTRONICS**: $6.95. A nineteenth advanced book on electronics, covering topics such as quantum computing and artificial intelligence.

- **BP288—ADVANCED ELECTRONICS**: $6.95. A twentieth advanced book on electronics, covering topics such as nanotechnology and materials science.

- **BP289—ADVANCED ELECTRONICS**: $6.95. A twenty-first advanced book on electronics, covering topics such as renewable energy and sustainable systems.

- **BP290—ADVANCED ELECTRONICS**: $6.95. A twenty-second advanced book on electronics, covering topics such as robotics and automation.

- **BP291—ADVANCED ELECTRONICS**: $6.95. A twenty-third advanced book on electronics, covering topics such as nanoelectronics and quantum computing.

- **BP292—ADVANCED ELECTRONICS**: $6.95. A twenty-fourth advanced book on electronics, covering topics such as bioelectronics and sensor systems.

- **BP293—ADVANCED ELECTRONICS**: $6.95. A twenty-fifth advanced book on electronics, covering topics such as photonic devices and quantum electronics.

- **BP294—ADVANCED ELECTRONICS**: $6.95. A twenty-sixth advanced book on electronics, covering topics such as quantum computing and artificial intelligence.

- **BP295—ADVANCED ELECTRONICS**: $6.95. A twenty-seventh advanced book on electronics, covering topics such as nanotechnology and materials science.

- **BP296—ADVANCED ELECTRONICS**: $6.95. A twenty-eighth advanced book on electronics, covering topics such as renewable energy and sustainable systems.

- **BP297—ADVANCED ELECTRONICS**: $6.95. A twenty-ninth advanced book on electronics, covering topics such as robotics and automation.

- **BP298—ADVANCED ELECTRONICS**: $6.95. A thirtieth advanced book on electronics, covering topics such as nanoelectronics and quantum computing.

- **BP299—ADVANCED ELECTRONICS**: $6.95. A thirty-first advanced book on electronics, covering topics such as bioelectronics and sensor systems.

- **BP300—ADVANCED ELECTRONICS**: $6.95. A thirty-second advanced book on electronics, covering topics such as photonic devices and quantum electronics.

- **BP301—ADVANCED ELECTRONICS**: $6.95. A thirty-third advanced book on electronics, covering topics such as quantum computing and artificial intelligence.

- **BP302—ADVANCED ELECTRONICS**: $6.95. A thirty-fourth advanced book on electronics, covering topics such as nanotechnology and materials science.

- **BP303—ADVANCED ELECTRONICS**: $6.95. A thirty-fifth advanced book on electronics, covering topics such as renewable energy and sustainable systems.

- **BP304—ADVANCED ELECTRONICS**: $6.95. A thirty-sixth advanced book on electronics, covering topics such as robotics and automation.

- **BP305—ADVANCED ELECTRONICS**: $6.95. A thirty-seventh advanced book on electronics, covering topics such as nanoelectronics and quantum computing.

- **BP306—ADVANCED ELECTRONICS**: $6.95. A thirty-eighth advanced book on electronics, covering topics such as bioelectronics and sensor systems.

- **BP307—ADVANCED ELECTRONICS**: $6.95. A thirty-ninth advanced book on electronics, covering topics such as photonic devices and quantum electronics.

- **BP308—ADVANCED ELECTRONICS**: $6.95. A fortieth advanced book on electronics, covering topics such as quantum computing and artificial intelligence.

- **BP309—ADVANCED ELECTRONICS**: $6.95. A forty-first advanced book on electronics, covering topics such as nanotechnology and materials science.

- **BP310—ADVANCED ELECTRONICS**: $6.95. A forty-second advanced book on electronics, covering topics such as renewable energy and sustainable systems.

- **BP311—ADVANCED ELECTRONICS**: $6.95. A forty-third advanced book on electronics, covering topics such as robotics and automation.

- **BP312—ADVANCED ELECTRONICS**: $6.95. A forty-fourth advanced book on electronics, covering topics such as nanoelectronics and quantum computing.

- **BP313—ADVANCED ELECTRONICS**: $6.95. A forty-fifth advanced book on electronics, covering topics such as bioelectronics and sensor systems.

- **BP314—ADVANCED ELECTRONICS**: $6.95. A forty-sixth advanced book on electronics, covering topics such as photonic devices and quantum electronics.

- **BP315—ADVANCED ELECTRONICS**: $6.95. A forty-seventh advanced book on electronics, covering topics such as quantum computing and artificial intelligence.

- **BP316—ADVANCED ELECTRONICS**: $6.95. A forty-eighth advanced book on electronics, covering topics such as nanotechnology and materials science.

- **BP317—ADVANCED ELECTRONICS**: $6.95. A forty-ninth advanced book on electronics, covering topics such as renewable energy and sustainable systems.

- **BP318—ADVANCED ELECTRONICS**: $6.95. A fiftieth advanced book on electronics, covering topics such as robotics and automation.
Let's build a 2-GHz RF signal generator.

PC-BASED RF SIGNAL GENERATOR

DAN DOBERSTEIN
until final check out is done.

A double-sided bottom shield is mounted to the TG2000 board with seven 4-40 bolts and a nut and a washer as a standoff (see Fig. 3). Do not install this shield until the complete instrument operation has been verified.

If you are using the Anadigics VCO, you must hand wind and mount micro-coil L2 (it consists of 3 turns of No. 28 wire wound on a No. 60 drill bit). Tin the coil leads with solder. The enamel on the wire must be scraped away to tin the leads. After mounting L2, adjust the spacing of the coil to a width of about one wire diameter.

Two power options are available for the TG2000. Installing MMIC amplifier Q24 will boost maximum power output to above +7dBm. Normally this amplifier is omitted and a chip capacitor is jumpered across the location where it would go. The other option is a reduced power pick off at J3. By user selection of chip resistors that are mounted on the bottom side of the board, an attenuated signal is available at J3. For tracking-generator purposes, the attenuated signal is handy when a -50 to -20 dBm signal is needed. The higher output power produced by installing Q24 allows direct driving of diode mixers.

First power up

After all the components are mounted and the power buses are rechecked for shorts. The TG2000 is ready to be powered up. First check the voltage levels of all the supplies, including the -1- and 28-volt supplies. Then check the PLL operation. Execute the TG2000.EXE program and set the generator to produce a single frequency of 1200 MHz. The voltage on pin 1 of IC1-a should be about 2 volts. If the voltage is "railed" at either -1 or +28 volts, there is a problem in the PLL/VCO/prescaler system. If it is around 2 volts, try a frequency of 1900 MHz. It should be 18 to 20 volts. If these two frequencies work, chances are good that your PLL is operational and L2 can be tuned.

Command the TG2000 to a frequency of 1024 MHz. With the surface-mount shield in place and pressed lightly down, measure the VCO control voltage at pin 1 of IC1-a; it should be between 0.25 and 0.5 volts. If not, compress or expand L2 until the control voltage falls in that range. Now set the frequency to 2048 MHz. The control voltage should be between 21.5 and 25 volts; if not, adjust L2 again. The latter adjustment is much more sensitive because tuning diode characteristics flatten out at the high end of their range. Always make measurements with the shield in place. After you are satisfied, bolt down the surface-mount cover.

Troubleshooting

Many errors can cause the PLL loop to "open."

FIG. 1—THROUGH-HOLE PARTS-PLACEMENT. NOTE THAT ONE MMIC and a few discrete components mount on the bottom side of the board. The MMIC's input pin is marked with a small arrow above identification letters.
FIG. 2—SURFACE-MOUNT PARTS-PLACEMENT DIAGRAM. The surface-mount components present a considerable challenge for the kit builder.

TG2000 SURFACE-MOUNT PARTS

All resistors are in an 0805 package.
R24, R29, R21-R223, R225, R227, R230-R236, R254, R257, R259, R262, R264, R266, R268, R2-R2300 ohms
R83, R215-R218, R228, R258, R274, R276-430 ohms
R270, R271, R273, R275, R277-R293, R296-298, R304-R306, R309—Not used
R201-R203, R209, R299, R300, R307, R310-510 ohms
R204, R205, R208-1000 ohms
R206-5600 ohms
R207-7400 ohms
R210-R214, R248, R264, R308-36 ohms
R220-18 ohms
R229, R247, R249, R252, R262, R267, R301, R303-68 ohms
R250, R252-22,000 ohms or 27,000 ohms
R255, R260, R265, R293, R294, R295, R302-110 ohms
R266-150 ohms

The following resistors are replaced by 0805-package capacitors:
R200, R209, R224, R225, R253, R256, R262, R269, R272—Any value between 2000 pF and 0.01 µF
R219-68 pF
R296-2.2 pF

For optional hybrid VCO:
R263—not used R277, R279-68 ohms
R278-150 ohms

All capacitors are 0805 package
C200, C235-6.8 pF
C201, C202, C223, C256, C257, C265, C261-C287, C289-C298, C300-C302, C307, C308, C310—not used
C215-4.7 pF
C249-1 pF
C257—Replace with micro coil identical to L2
C304, C305-3 pF
The following capacitors are mounted on top of resistors:
CP1—4.7 pF, mounted on top of R303
CP2—6.8 pF, mounted on top of R301
CP3—3 pF, mounted on top of R210
The following capacitors are replaced by resistors:
C242-18 ohms

For optional hybrid VCO:
C281, C282-2000 pF to 0.01 µF
Diodes
D10, D11—Toshiba 1SV186
D12—Siemens BAR60 pin diode array
Inductors
L1-6 turns of No. 28 wire wound on a No. 50 drill bit, close wound
L2-3 turns of No. 28 wire wound on a No. 60 drill bit, deform to tune specs
L3-6 to 10 turns of No. 28 wire wound on a No. 40 drill bit, close wound
Integrated circuits
IC13—ADC20010 GaAs Mixer/VCO MMIC
IC14, IC16—NEC 584G divide-by-two prescaler
IC15—Fujitsu MB1501 1.1 GHz PLL
IC22, IC23—NEC 587G divide by 2/4/8 prescaler
MMIC amplifiers
Q20, Q21, Q24 (optional), Q31—MAR2 or MSA-0286 MMIC amplifier
Q22, Q27, Q29—MAR1 or MSA-0186 MMIC amplifier
Q28-INA-03184 MMIC amplifier
Q24, Q30—not used (jumper with 2000 pF to 0.01 µF)

This will show up as a VCO control voltage (pin 1 of IC1-a) railed at −1 or +28 volts. Use the BLINK diagnostic to verify this. All data lines are monitored during computer control. Use an oscilloscope to verify that the 4-MHz oscillator is operating and that its output is present at the MB1501. Verify that the MB1501 is receiving the reference oscillator and the VCO prescaled frequency by monitoring pins 13 and 14, which have the divided reference and VCO sample frequency on them respectively.

The divided reference should be at 125 kHz and the divided VCO sample should be at 125 kHz if the PLL is locked. Assuming the PLL isn't locked, the pin-14 frequency can vary widely. Assuming the MB1501 received the correct values of N and A, the VCO output pin will be close (within a factor of two) to 125 kHz.

If the frequency at pin 13 is not 125 kHz and the 4-MHz oscillator is present at pin 1, this indicates that the MB1501 reference divider is either not working or was not loaded properly. Component failure is very rare—check data lines using BLINK.EXE.

To verify the proper operation of the VCO and the divide-by-two prescaler, set the frequency to 1200 MHz, and open the loop up at R14. With a DC power supply, drive R14 to control the VCO frequency while watching the pulses at pin 14; the pulses should track changes in the control voltage.

This technique allows you to verify correct operation of the VCO, prescaler IC16, and the MB1501 N and A dividers using a low-frequency oscilloscope. In addition, the control voltage at pin 1 of IC1-a will toggle between −1 and +28 volts as the VCO frequency passes through the actual frequency commanded via the N- and A-register values.

Interface and DAC problems
The best way to test for interface problems is to use the BLINK diagnostic. This routine toggles all data lines at a 1-Hz rate, allowing signal tracing with a voltmeter. Verify the toggling at the pin of each chip serviced by the interface. If there's
no toggling on any lines. Check your software setup.

The DAC RAMP test must be done with an oscilloscope because the ramp rate is too fast to be tracked with a voltmeter. With a scope and DAC RAMP running, you should see a ramp starting at 0 volts and ending at 10 volts. If you don’t see a clean ramp waveform, check all the data lines and voltages.

Individual band problems

The bands past 30 MHz are impossible to check with a low-performance oscilloscope. However, because the band from 4 to 8 MHz needs every divider preceding it to work, the divider chain operation can be verified with a low-bandwidth oscilloscope. Set the generator to sweep from 4 to 8 MHz (either linear or log) and observe the output with a suitable oscilloscope. The waveform envelope should be smooth with no sudden jumps in the output except at the sweep restart. Sudden amplitude changes could indicate a divider error in the chain.

Check the voltage at each MMIC amplifier. For any given band, only one RF path should be energized and the other MMICs should be turned off. If you suspect that a MMIC is faulty, check the installation polarity first. All the MMICs have a bias resistor connected in series to +12 volts. When they are “on” you should see about a 7- to 8-volt drop across this resistor, which results in about a 4.5-volt DC bias on the output pin of the MMIC. The input pin should have a DC level of about 1.5 volts. If any of these voltages differ significantly way off, look for short or open circuits, or a faulty MMIC.

Another way to check out all the bands is with a frequency counter. By sweeping the entire bandwidth of the instrument at a slow rate, the counter will provide an indication of a problem. Many low-performance counters can cover the entire band of the signal generator. Unfortunately, because of the high harmonic content of the divider chain, the counter can lock onto a harmonic of the output frequency. With the right amount of attenuation, however, this problem can usually be circumvented.
AN AUDIO POWER AMPLIFIER CAN boost weak signals from a tuner, CD player, or tape deck to fill a room with sound. This article focuses on the operating principles and circuitry of low-frequency power amplifiers based on the bipolar junction transistor (BJT). Recent articles in this series have discussed multivibrators, oscillators, audio preamplifiers, and tone-control circuits, all based on the BJT.

Power amplifier basics

A transistorized audio power amplifier converts the medium-level, medium-impedance AC output voltage of a preamplifier into a high-level, amplified signal that can drive a low-impedance audio transducer such as a speaker. A properly designed power amplifier will do this with minimal signal distortion.

Audio can be amplified with one or more power transistors in either of three configurations: Class A, Class B, and Class AB. Figure 1-a shows a single BJT Class A amplifier in a common-emitter configuration with a speaker as its collector load. A Class A amplifier can be identified by the way its input base is biased.

Fig. 1-a shows that BJT Q1’s collector current has a quiescent value that is about halfway between the zero bias and cutoff positions. (The quiescent value is that value of transistor bias at which the negative- and positive-going AC input signals are zero.) This bias permits the positive and negative swings of the output collector AC current to reach their highest values without distortion. If the AC and DC impedances of the speaker load are equal, the collector voltage will assume a quiescent value that is about half the supply voltage.

The Class A circuit amplifies audio output with minimum distortion, but transistor Q1 consumes current continuously—even in the quiescent state—giving it low efficiency. Amplifier efficiency is defined as the ratio of AC power input to the load divided by the DC power consumed by the circuit. At maximum output power, the efficiency of a typical Class A amplifier is only 40%, about 10% less than its theoretical 50% maximum. However, its efficiency falls to about 4% at one-tenth of its maximum output power level.

A typical Class B amplifier is shown in Fig. 2-a. It has a pair of BJTs, Q1 and Q2, operating 180° out-of-phase driving a common output load, in this example another speaker. In this topology, the BJTs operated as common-emitter amplifiers drive the speaker through push-pull transformer T2. A phase-splitting transformer, T1, provides the input drives for Q1 and Q2 180° out-of-phase.

The outstanding characteristic of any Class B amplifier is that both transistors are biased off under quiescent conditions because they are operated without base bias. As a result, the amplifier draws almost no quiescent current. This gives it an efficiency that approaches 79% under all operating conditions. In Fig. 2-b, neither Q1 nor Q2 conducts until the input drive signal exceeds the base-emitter zero-crossing voltage of the transistor. This occurs at about 600 millivolts for typical
characteristics of both Q1 and Q2 must be closely matched. The amplification of each transistor will be unequal if they are not, and it will be impossible to minimize output distortion. Figure 3a shows a dynamic transfer characteristic for a Class AB power amplifier.

The Class AB amplifier shown in Fig. 4 avoids both transformers and the need to match transistors. A complementary pair of transistors (Q1 an NPN and Q2 a PNP) is connected as an emitter follower. Powered by a split (dual) supply, the circuit's two emitter followers are biased through R1 and R2 so that their outputs are at zero volts; no current flows in the speaker under quiescent conditions.

Nevertheless, a slight forward bias can be applied with trimmer potentiometer R3 so that Q1 and Q2 pass modest quiescent currents to prevent crossover distortion. Identical input signals are applied through C1 and C2 to the bases of the emitter followers, which avoid a split-phase drive.

When an input signal is applied to the Fig. 4 circuit, the positive swing drives PNP Q2 off while driving NPN Q1 on. Transistor Q1 acts as a current source with a very low output (emitter) impedance; it feeds a faithful unity-gain copy of the input voltage signal to the speaker. The transistor characteristics have little or no effect on this response.

Similarly, negative swings of the input signal drive Q1 off and Q2 on. Because Q2 is a PNP BJT, it becomes a current sink with minimal input (emitter) impedance. It also produces a faithful unity-gain copy of the voltage signal to the speaker, again with Q2's characteristics having little or no effect on the circuit's response.

As a result, the Fig. 4 circuit does not require that Q1 be matched to Q2, and neither input nor output transformers are required. Modification of this circuit, as shown in Figs. 5-a and b, work from single-ended power supplies. In Fig. 5-a, one side of the speaker is connected to the amplifier through high-value blocking capacitor C3, and the other end is connected to ground; in Fig. 5-b, one side is connected to C3 and the other side is connected to the positive supply. All three circuits are popular in modern high-fidelity audio...
power amplifiers based on integrated circuitry.

Class AB variations

The circuit in Fig. 4-a is a unity-voltage gain amplifier so one obvious improvement is to add a voltage-amplifying driver stage, as shown in Fig. 6. Transistor Q1, configured as a common-emitter amplifier, drives two emitter followers, Q2 and Q3, through its collector load resistor R1.

Note that Q1’s base bias is derived from the circuit’s output through resistors R2 and R3. This configuration provides DC feedback to stabilize the circuit’s operating points and AC feedback to minimize signal distortion.

The Fig. 6 circuit illustrates how a form of auto-bias can be applied to Q2 and Q3 through the silicon diodes D1 and D2. If the simple voltage-divider biasing method in Fig. 4 is used in the Fig. 6 circuit, its quiescent current will increase as ambient temperature rises and decrease as it falls. (This is caused by the thermal characteristics of a transistor’s base-emitter junctions.)

The biasing in Fig. 6 is derived from the forward voltage drop of series diodes D1 and D2 whose thermal characteristics are closely matched to those of the base-emitter junctions of Q2 and Q3. Consequently, this circuit offers excellent thermal compensation.

Practical amplifiers include a pre-set trimmer potentiometer in series with D1 and D2. This component makes it possible to adjust bias voltage over a limited range. Low-value resistors R4 and R5 in series with the emitters of Q2 and Q3 provide some negative DC feedback.

The impedance of the Fig. 4 circuit equals the product of the speaker load impedance and the current gain of either Q1 or Q2. The circuit can be improved by replacing transistors Q1 and Q2 with Darlington pairs which will significantly increase the circuit’s input impedance and increase the amplifier’s collector load capacity.

Figures 7 to 9 show three different ways of modifying the Fig. 6 circuit by replacing individual transistors with Darlington pairs. For example, in Fig. 7, transistors Q2 and Q3 form a Darlington NPN pair, and Q4 and Q5 form a Darlington PNP pair. There are four base-emitter junctions between the bases of Q2 and Q4, and the output circuit is biased with a string of four silicon diodes, D1 to D4, in series to compensate for the Darlington pairs.

In Fig. 8, Q2 and Q3 are a Darlington NPN pair, but Q4 and Q5 are a complementary pair of common-emitter amplifiers. They operate with 100% negative feedback, and provide unity-voltage gain and very high input impedance. This quasi-complementary output stage is probably the most popular Class AB power amplifier topology today. Notice the three silicon biasing diodes, D1, D2, and D3.

Finally, in Fig. 9, both pairs Q2 and Q3 and Q4 and Q5 are complementary pairs of unity-gain, common-emitter amplifiers with 100% negative feedback. Because the pairs produce outputs that are mirror images of each other, the circuit has a complementary output stage. Notice that this circuit...
Bootstrapping (VBE).

Therefore, the power amplifier input impedance must be even greater. That can usually be done by replacing Q2 and Q3 with high-gain transistor pairs, as was done in Figs. 7 to 9.

The second reason is that Q1 in Fig. 6 must be biased so that its collector assumes a quiescent half-supply voltage value to provide maximum output signal swings; this condition is set by the Q1's collector current and resistor R1's value.

The true value of R1 is predetermined by biasing requirements. To achieve high voltage gain, a way must be found to make the AC impedance of R1 much greater than its DC value. This is accomplished with the bootstrapping technique shown in Figs. 12 and 13.

In Fig. 12, Q1's collector load consists of R1 and R2 in series. The circuit's output signal, which also appears across SPKR1, is fed back to the R1-R2 junction through C2. This output signal is a near unity-voltage-gain copy of the signal appearing on Q1's collector.

If resistor R1 has a value of 1 kilohm, the Q2-Q3 stage provides a voltage gain of 0.9. As a result, an undefined signal voltage appears at the low end of resistor R2, and 0.9 times that undefined voltage appears at the top of R2. In other words, only one tenth of the unknown signal voltage is developed across R2. Therefore, it passes possible to maximize voltage gain. However, there are several reasons why this does not work.

First, the effective or AC value of R1 equals the actual R1 value shunted by the input impedance of the Q2-Q3 power amplifier stage. Therefore, if R1 has a high value, the power amplifier input impedance must be even greater. That can usually be done by replacing Q2 and Q3 with high-gain transistor pairs, as was done in Figs. 7 to 9.

The second reason is that Q1 in Fig. 6 must be biased so that its collector assumes a quiescent half-supply voltage value to provide maximum output signal swings; this condition is set by the Q1's collector current and resistor R1's value.

The true value of R1 is predetermined by biasing requirements. To achieve high voltage gain, a way must be found to make the AC impedance of R1 much greater than its DC value. This is accomplished with the bootstrapping technique shown in Figs. 12 and 13.

In Fig. 12, Q1's collector load consists of R1 and R2 in series. The circuit's output signal, which also appears across SPKR1, is fed back to the R1-R2 junction through C2. This output signal is a near unity-voltage-gain copy of the signal appearing on Q1's collector.

If resistor R1 has a value of 1 kilohm, the Q2-Q3 stage provides a voltage gain of 0.9. As a result, an undefined signal voltage appears at the low end of resistor R2, and 0.9 times that undefined voltage appears at the top of R2. In other words, only one tenth of the unknown signal voltage is developed across R2. Therefore, it passes

has only two silicon biasing diodes, D1 and D2.

Amplified diodes

The circuits in Figs. 6 to 9 include strings of two to four silicon biasing diodes. Each of those strings can be replaced by a single transistor and two resistors configured as an amplified diode, as shown in Fig. 10.

The output voltage of the circuit, \(V_{OUT} \), can be calculated from the formula:

\[
V_{OUT} = V_{BE} \times R1 + R2/R2
\]

If resistor R1 is replaced by a short circuit, the circuit's output will be equal to the base-emitter junction "diode" voltage of Q1 (\(V_{BE} \)). The circuit will then have the thermal characteristics of a discrete diode.

If resistor R1 equals R2, the circuit will act like two series-connected diodes, and if R1 equals three times R2, the circuit will act like four series-connected diodes, and so on. Therefore, the circuit in Fig. 10 can be made to simulate any desired whole or fractional number of series-connected diodes, depending on how the R1/R2 ratios are adjusted.

Figure 11 shows how the circuit in Fig. 10 can be modified to act as a fully adjustable "amplified diode," with an output variable from 1 to 5.7 times the base-emitter junction voltage (\(V_{BE} \)).

Bootstrapping

The main purpose of the Q1 driver stage in Fig. 6, the basic complementary amplifier, is to give the amplifier significant voltage gain. At any given value of Q1 collector current, this voltage gain is directly proportional to the effective Q1 collector load value. It follows that the value of resistor R1 should be as large as

FIG. 8—POWER AMPLIFIER with partial complementary output stages.

FIG. 9—POWER AMPLIFIER with complementary output stages.

FIG. 10—FIXED-GAIN AMPLIFIED diode circuit.

FIG. 11—ADJUSTABLE AMPLIFIED diode circuit.

FIG. 12—POWER AMPLIFIER with a bootstrapped driver stage.
FIG. 13—ALTERNATIVE POWER amplifier with a bootstrapped driver stage.

FIG. 14—DRIVER STAGE with decoupled parallel DC feedback.

FIG. 15—DRIVER STAGE with series DC feedback.

FIG. 16—DRIVER STAGE with a long-tailed pair input.

FIG. 17—SCHEMATIC FOR THE LM38 POWER AMPLIFIER IC from National Semiconductor. It has a 2-watt output rating.

only one-tenth of the signal current that would be expected from a 1-kilohm resistor. This means that the AC signal impedance value of R2 is ten times greater (10 kilohms) than its DC value, and the signal voltage gain is increased correspondingly. In practical circuits, "bootstrapping" permits the effective voltage gain and collector load impedance of Q1 to be increased by a factor of about twenty.

Fig. 13 is the schematic for an alternative version of Fig. 12 without one resistor and one capacitor. In this circuit, SPKR1 is part of Q1's collector load, and it is bootstrapped through capacitor C2.

As an alternative to bootstrapping, the load resistor can be replaced with a simple transistor constant-current generator. This design is found in many integrated circuit audio power amplifiers.

Alternative drivers
Returning once again to Fig. 6, notice that parallel DC and AC voltage from the R1-R2 divider network is fed back to the Q1 driver stage. This is a simple and stable circuit, but its gain and input impedance are low. Moreover, it will work only over a limited power supply voltage range.

Figure 14 is a variation of the Fig. 6 circuit intended to function as a driver stage. Current feedback through resistors R1 and R2 allows the circuit to work over a wide supply voltage range. The feedback resistors can be AC decoupled (as shown) through C2 to increase the gain and input impedance, but at the expense of increased signal distortion. Transistor Q1 can be replaced with a Darlington pair if very high input impedance is desired.

Another alternative driver stage, Fig. 15, depends on series DC and AC feedback to give it more gain and higher input impedance than can be obtained from the Fig. 6 circuit. In this circuit, PNP transistor Q1 is directly coupled to NPN transistor Q2.

Finally, Fig. 16 is the schematic for a driver circuit specifically intended for use in amplifiers with dual or split power supplies that have direct-coupled input and output stages referenced to ground. The input stage of this driver stage is a long-tailed pair. Both the input and output will be centered on DC ground if the values of resistors R1 and R4 are equal. This circuit is found in many integrated circuit power amplifiers.

An IC power amplifier
Improvements in the power-handling capabilities of monolithic integrated circuits have permitted power amplifiers to be integrated on a single silicon substrate or chip. The techniques for designing integrated
The LM380 is a linear power amplifier that is similar to those for discrete device circuits. It turns out that the similarities between discrete and IC power amplifier design are closer than for most other linear circuits.

Figure 17 is a simplified circuit diagram for the LM380, an IC power amplifier, drawn in the manufacturer's data book style. The LM380 was developed by National Semiconductor Corporation for consumer applications. It features an internally fixed gain of 50 (34 dB) and an output that automatically centers itself at one-half of the supply voltage.

An unusual input stage permits inputs to be referenced to the ground or AC coupled, as required. The output stage of the LM380 is protected with both short-circuit current limiting and thermal-shutdown circuitry.

The LM380 has two input terminals. Both Q1 and Q2 are connected as PNP emitter followers that drive the Q3 and Q4 differential amplifier transistor pairs. The PNP inputs reference the input to ground, thus permitting direct coupling of the input transducer.

The output is biased to half the supply voltage by resistor ratio R1/R2 (resistor R1 is formed by two 25-kilohm resistors and R2 has a value of 25 kilohms). Negative DC feedback, through resistor R2, balances the differential stage with the output at half supply, because R1 = 2R2.

The output of the differential amplifier stage is direct coupled into the base of Q12, which is a common-emitter, voltage-gain amplifier with a constant current source load provided by Q11. Internal compensation is provided by the pole-splitting capacitor C. Pole-splitting compensation permits wide power bandwidth (100 kHz at 2 watts, 8 ohms).

The collector signal of Q12 is fed to output pin 8 of the IC through the combination of emitter-coupled Q7 and the quasi-complementary pair of emitter followers Q8 and Q9. The short-circuit current is typically 1.3 amperes.

CIRCUIT 166 ON FREE INFORMATION CARD

CABLE TV 50dB NOTCH FILTERS for interference removal or channel censuring. Filter are user-adjustable to desired channel # or frequency. Eight Models available, each for certain channels: 2 & 3, 4 to 6; 7 to 13; 14 to 17; 18 to 22; 23 to 25; 26 to 30; 31 to 36; 45 to 99 plus 0 & 1. Just $30 each or 3 for $75, includes shipping. ONE MONTH MONEY BACK, fast delivery. Visa, MC, check or M.O. (C.O.D. is $5 extra) Huge discounts for higher quantities. STAR CIRCUITS, P.O. Box 94917, Las Vegas, NV 89193. Call 24 hours 1-800-535-7827.

CIRCUIT 110 ON FREE INFORMATION CARD
Be a computer programmer!

Only NRI gives you hands-on training with the latest programming tools:

- A 486sx computer with Super VGA color monitor,
- 200 meg hard drive
- Windows
- Visual Basic
- Power C
- QBasic
- DOS
- And much more!

Only NRI at-home training gives you real-world programming skills in three in-demand languages: QBasic, C, and Visual Basic, today's hot new language designed for writing popular Windows applications. Best of all, you get hands-on training with a powerful Intel-based 486sx computer system, complete with Super VGA color monitor, 200 meg hard drive, Windows, and professional programming software you keep!

NRI, the leader in at-home computer training, shows you how to take advantage of today's newest programming opportunities

Get in on the ground floor of computer programming one of today's fastest-growing career fields. The Bureau of Labor Statistics forecasts that job opportunities for programmers will increase much faster than average over the next 10 years, with as many as 400,000 new jobs opening up by 2005.

And the fastest-growing segment of programming jobs will be PC programming, fueled by the phenomenal popularity of Windows, the efficient power of C, and the ascent of exciting new languages like QBasic and Visual Basic.

Now, with NRI at-home training, you can get the new skills you need to build a top-paying career — even a full- or part-time business of your own — in this high-growth, high-opportunity field.

Get hands-on experience with today's programming tools:
(a powerful 486sx computer,
Super VGA color monitor,
200 meg hard drive,
Windows,
Visual Basic, and more — all yours to keep!

Right from the start, NRI's unique Discovery Learning Method gets you actively involved in the challenge of real-world programming. Step by step, you learn to create the kinds of full-featured, powerful programs today's employers and clients demand...including programs designed for use in a Windows environment!

Only NRI gives you first-hand programming experience with a state-of-the-art Intel-based 486sx computer system, complete with Super VGA color monitor, 200 meg hard disk drive, a full megabyte of RAM, 1.44 meg 3.5" floppy drive, mouse, and more — all yours to train with and keep!

Plus you explore the extraordinary capabilities of three in-demand programming languages. You learn to design, code, run, debug, and document programs in QBasic, C, and Visual Basic. Best of all, since Visual Basic is specifically designed for creating Windows applications, you learn to generate fully functioning Windows programs, complete with text boxes, command buttons, and other sophisticated graphical interface elements.

No previous experience necessary

Train with NRI, and immediately start getting the money-making job skills you need to be a computer programmer — no matter what your previous background.

NRI's step-by-step lessons and hands-on programming projects help you first master the design concepts used every day by successful PC programmers. Then, with the support of your experienced NRI instructor, you quickly move on to learn programming in three of today's hottest languages.

By the time you complete your course, you have a clear understanding of programming methods, languages, and techniques...and you're ready to handle any programming task with confidence.

Send today for your FREE catalog

See how NRI at-home training gives you the programming know-how, the computer, and the software you need to get started in this top-paying field. Send today for your FREE catalog!

If the coupon is missing, write to us at the NRI School of Computer Programming, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM PC/AT is a registered trademark of the IBM Corporation. Windows, QBasic, and Visual Basic are trademarks of Microsoft Corporation. Intel Inside logo is a registered trademark of Intel Inc.

FREE CATALOG! CALL 1-800-321-4634

NRI Schools
McGraw-Hill Continuing Education Center
4401 Connecticut Avenue, NW, Washington, DC 20008

Check one FREE catalog only

- COMPUTER PROGRAMMING
- PC Applications Specialist
- Programming in C++ with Windows

For career courses approved under GI Bill, check for details

Other Computer Career Courses
- Microcomputer Servicing
- Desktop Publishing
- Bookkeeping and Accounting
- Multimedia Specialist

Name

City/State/Zip

Age

Address

5445-0494

www.americanradiohistory.com
GET THE LATEST ADVANCES IN ELECTRONICS

WITH A SUBSCRIPTION TO

Electronics NOW

Electronics NOW gives you exciting articles like:

- Buyer's Guide to Digital Oscilloscopes
- Build A Scanner Converter
- Single-Chip Voice Recorder
- Build A MIDI Interface for your PC
- Troubleshoot Microprocessor Circuits
- Build A High-Power Amplifier for your Car
- Add Music On Hold to your Phone
- All About Binaural Recording
- VGA-to-NTSC Converter

ENJOY THE WORLD OF ELECTRONICS EACH MONTH!

Subscribe to the best electronics magazine—the one that brings you the latest high-tech construction projects, feature articles on new technology, practical troubleshooting techniques, circuit design fundamentals, and much more.

Electronics Now looks to the future and shows you what new video, audio and computer products are on the horizon. What's more you'll find helpful, monthly departments such as Video News, Equipment Reports, Hardware Hacker, Audio Update, Drawing Board, Computer Connections, New Products, and more. All designed to give you instruction, tips, and fun.

FOR FASTER SERVICE CALL TODAY

1-800-999-7139

DON'T DELAY SUBSCRIBE TODAY!

Just fill out the order card in this magazine and mail it in today.
Sometimes the simplest electronic projects are the most fun.

KLAAUS SPIES

ELECTRONIC PROJECTS DON'T ALWAYS have to be serious. While most projects turn out to be a useful item when they are completed, they might be attractive only to those who find them useful. However, it's the simple novelty items that are often the most popular. That's because simple projects are usually very inexpensive to build, yet they can offer valuable insight into how circuits work. And unlike a device that's useful only to a few people, everyone likes a good gag now and then.

When something is marked with a message such as "Do Not Open Until Christmas," or something similar, the first thing most people want to do is open it—or at least investigate it, immediately. Taking advantage of that trait in human nature, the author invented the Screamer, a nondescript black box that sits on a coffee table waiting for the first "victim" to come along and pick it up. When the victim does pick it up, the Screamer emits an ear-piercing noise that only people "in the know" can turn off.

Circuitry

Figure 1 is the schematic for the Screamer circuit. When the box is tipped, mercury-switch S1 triggers silicon-controlled rectifier SCR1, that acts as a latch which turns on buzzer BZ1 and keeps it turned on. The SCR can be reset only when power is removed from it. Reed switch S2 resets the SCR. The reed switch is a normally open type, so the only way it can reset the SCR is by having it short the power going to the SCR.

The reed switch is mounted inside the black box against one side, so it cannot be seen from the outside. To close the reed switch, a magnet must be placed against the outside of the case adjacent to the switch. For best results you should use a plastic case. That way the magnet doesn’t have to be very strong, and there will be no chance of magnetizing the case which could prevent the Screamer from working. Note that resistor R2 limits current to protect the reed switch and the 9-volt battery.

Continued on page 82
ELENCO OSCILLOSCOPES

STANDARD SERIES
- S-1325 25MHz $349
- S-1340 40MHz $495
- S-1365 60MHz $849

DELUXE SERIES
- S-1330 25MHz $449
- S-1345 40MHz $575
- S-1360 60MHz $775

Features:
- High Luminance 6° CRT
- TV Sync
- X-Y Operation
- Complete Schematic
- Voltage, Time, Frequency displayed on CRT thru the use of cursors (S-1365 only)
- Plus much, much more

Digital Capacitance Meter
- CM-1550B by Elenco
 - 58.95
- 5 Ranges
- 1pF to 20,000pF
- .5% basic accuracy

Digital LCR Meter
- LC-1801 by Elenco
 - $125
- Measures
 - Coils 1uH-200uH
 - Caps 1pF-100pF
 - Res 0.1-20M

Digital Multimeter
- DVM-538
 - $39.95
- 11 Functions with Case
- Case

FLUKE MULTIMETERS

B&K OSCILLOSCOPES

B&K 390
- $139
- 3-3/4 Digit DMM
- Sargent
- 9 Functions
 - Including Temp, Freq, Rubber Boot

FLUKE MULTIMETERS

B&K 3011B
- $219.95
- Digital Multimeter Kit
 - Includes
 - Capacitance, Transistor/Diode Testing
 - 20 Amp AC/DC

C&S SALES INC.

24 HOUR GUARANTEED LOWEST PRICES

UPS SHIPPING & CALL TOLL FREE

FULL FACTORY WARRANTY

WRITE FOR FREE CATALOG

15 DAY MONEY BACK GUARANTEE

1-800-445-3201 (Con.)

ELLENCO • HITTACHI • B&K PRODUCTS

ELENCO • HITTACHI • B&K PRODUCTS
International Electronics Technician's Day is the right time to join the ranks of the Certified Service Professionals

Electronics is expanding into all walks of human activity at a near explosive rate—nobody is immune to its influence. You need only look at the latest innovations in banking, business, communications, entertainment, finance, industry, medicine, military systems, and transportation. Leading the way are products and systems that include microprocessors or microcontrollers.

The personal computer has recently become a consumer "appliance," and increasingly powerful versions of the PC have been shrunk to notebook size. Planning is underway for the so-called electronic highway that will connect you to a vast national network and give you the benefits of interactive communications: You'll be entertained, or be able to make calls, go shopping, do your banking, and even attend classes without leaving the comfort of home.

"Intelligent" processors are now embedded in many of the products your encounter and use in everyday life—autos, cameras, dishwashers, refrigerators, telephones, and TVs—to mention but a few.

The worldwide demand for electronics products and the rising complexity of products and systems has increased the demand for professionals trained in developing, integrating, maintaining and repairing this vast plethora of high-tech hardware.

Expert electronics technicians participate in the development, prototyping, and testing of new products. They also integrate and maintain all kinds of electronics systems and networks. And they are the people you call when today's generally reliable electronics products malfunction or fail. Their years of professional training and experience permit them to make needed repairs in a timely and economical manner.

In recognition of the skilled electronics technicians of the world, the International Society of Certified Electronics Technicians (ISCET) has proclaimed April 5, 1994 as International Electronics Technicians Day. That date assumes special
meaning this year because, for the first time, IS CET examiners have been granted the privilege of administering commercial license examinations for the Federal Communications Commission (FCC). This will make it more convenient for candidates to take these exams because many more test locations will be available.

The administration of FCC examinations supplements IS CET's long-held role as examiners for its Certified Electronics Technician (CET) and Certified Appliance Technician (CAT) programs.

"IS CET's ability to certify commercial radio operators for the FCC is an important step forward for IS CET," declared IS CET Chairman Larry Stecker CET/EHF. "IS CET's professional certification of electronics technicians has been recognized internationally for more than 28 years; possession of IS CET certification indicates that the holder has met the highest professional performance standards," he added.

"By actively participating in FCC testing and including it in its activities, IS CET has once again demonstrated its leadership role and responsibility in the electronics industry," Mr. Stecker asserted.

National Testing Day

In addition to its designation as International Electronics Technicians Day, April 5, 1994, has also been designated as International Testing Day for the certification of electronics and appliance technicians. A large number of volunteer IS CET test administrators will encourage non-certified technicians to demonstrate their technical expertise on "T-Day." They are urged to take one or more of the many different professional exams being offered by IS CET.

So far, more than 150 IS CET Certification Test Administrators have volunteered to serve on Electronics Technicians Day. They will offer CET, CAT, and FCC testing from April 2 through April 9. A complete list of test sites (including Electronics Now's editorial offices in Farmingdale, NY) are presented above.

FCC exams

The two FCC examinations now available through IS CET are Element 1, Basic Radio Law and Operating practice and Element 3, Electronic Fundamentals and Techniques Re
IS CET CERTIFIED ADMINISTRATORS FOR CET EXAM

Dr. Joel Goldberg, CET
Macomb Comm Collg
14500 12 Mile Rd
Warren, MI 48093
(313) 445-7343
(313) 445-7455

Eugene Ranta, CET, CA
5820 Timothy
Pasadena, CA 91106
(626) 764-9253

R. J. Hendrickson, CET, CA
Duluth Tech Inst
2601 Trinity Rd
Duluth, MN 55811
(218) 775-2601, Ext. 342

Annabel L. Gooch
Dave's HVT
905 N Wade St
Mexico, MO 65265
(314) 581-5684

Marion B. Denny, CET, CA
1909 6th St
Cinnaminson, NJ 08077
(856) 845-8453

W. Glen Small, CET
764 Coal Pitt Rd
Caniffa, NV 89028-9718
(775) 671-2562

Earl Foderick, CET
SE Community College
Rt 2 Box 41
Mifflin, NE 68315
(402) 761-2311, Ext. 266

Fred H. Freeman, Jr.
Reynolds Electr & Eng Co
2952 Miracle Ave
Las Vegas, NV 89102
(702) 295-1915

Joseph T. Szymanski, CET
J T S Electronics
412 Pemona Rd
Cincinnati, OH 45225
(513) 829-9969

Charles (Bill) Smith
Brett Int'l Coll JC
409 Wyoming Ave
Avondale, OH 45110
(609) 546-5450
1-800-336-7956

Larry Steckler, ENR/CET
Genback Publications
500 B Bi-County Blvd
Farmington, NY 14055
(516) 293-3000

Hubert West, CET
20 Schuyler St
Lake George, NY 12845
(518) 668-9085

Joseph P. Passeart, CET
Pyramid Electronics Ltd
353 E 76th St
New York, NY 10021
(212) 268-6500

Gary L. Mornay, CET
American Embassy
PSC-108 Box 36
APO AE 09842
807-0615-H

Joseph Passeart, CET
Pyramid Electronics Ltd.
353 E 76th St
New York, NY 10021
(212) 268-6500

Sammy C. Thornton, CET
Vax Tech Comm Collg
9101 Fayetville Rd
Raleigh, NC 27603
(919) 562-3519

Cecil F. Edwards, CET
126 Chestnut Forest Dr
Fairview, NC 28730
(704) 628-9096, Ext. 2014

David J. Garwacki, CET
Sales & Service
4846 Ola Glen Dr
Toledo, OH 43613-3048
(419) 475-9271

Rod Schillingman, CET
PVS Electronics Inc
2887 Silver Dr
Columbus, OH 43211
(614) 478-8200
(614) 471-9100

J. S. Gliszewsky, CET
East Ok Coty V Tech
4601 N Choctaw Rd
Choctaw, OK 73020
(405) 390-5951

Noah Harman, III, CET, CA
Tulsic Tech Ctr
(918) 428-2251

Curtis E. Knight, CET
Central TV
203 East Idaho Ave
Orem, UT 84094
(503) 889-2159

Vern Hartshorn, CET
Mt Hood Comm Collg
2600 SE Stark St
Gresham, OR 97030
(503) 667-1171

Larry Broscharr, CET
1424 NE Knox St
Portland, OR 97230
(503) 251-6713
(503) 253-9017

James C. Shambow, CET
6035 NE 78th Cir # 100
Portland, OR 97218
(503) 255-6500

Thomas G. Vassiliu, CET
Radiation Education Center
W Chestnut Pk & Main Rd
Broomall, PA 19008
(215) 353-7630

Gene Hodgesoff, CET/CA
Mountaintop, PA 15867-9059
(724) 866-5656

John F. Grzeszk, CET, CA
27 Lighthouse St
Erie, PA 16507-1937
(412) 856-9157
(412) 259-1196

William F. Mergut
co Electronics inst
19 Jamaica Way
Middletown, CT 06457-4913
(203) 349-0100, Ext. 300

Thomas Plant, CET
ETG of Rhode Island
29 Daan St
Pawtucket, RI 02861
(401) 725-8719

Don Mulhauser, CET
Sencore Inc.
3200 Sencore Dr
Sioux Falls, SD 57107
(605) 339-1000, Ext. 300

Bill Warren, CET
Warren's Audio Video Svcs
2540 Sutherland Ave
Knoxville, TN 37919
(865) 546-1121

Herman P. Henry
Pigeon, MN 55811
(507) 362-8368

Joseph Bennet, CET
820 Lockhead Dr
San Antonio, TX 78247
(210) 496-1134

John L. Copeland, CET, CA
TX State Tech Collg
3801 Campus Dr Bldg 16-1
Waco, TX 76705
(254) 867-4803

Robert L. Schenker, CET
1710 Lamer Ave
Memphis, TN 38118
(901) 362-9264

Russ Hutcheson, CET
781 Iron Worxers Rd
Clarksville, TN 37042-9119
(615) 362-9440

Henry W. Corrie
1460 C.R. 3413
Chandler, TX 75738
(903) 852-4140

James Harris, CET
3512 Chisholm Trail
Kilson, TX 75453-3172
(817) 288-2826
(817) 669-7376

Arthur J. Ruppers, CET
3018 St Andrews
Grapevine, TX 76028
(817) 853-9157
(817) 259-1196

Tom C. Underwood, CET
Sony Service Company
3201 Premier Rd # 14
Irving, TX 75063
(214) 560-5270
(214) 357-0644

Leonard M. Cowherd, CET
Piedmont Tech Ed Ctr
PO Box 999
Culpeper, VA 22701
(703) 825-0476

James R. Williams
Warrington Trade Ctr
PO Box 700-Bldg B-1
Warrington, VA 22166
(703) 349-3588
(703) 349-4309

In the beginning
IS CET was founded in 1970 by a committee of Certified Elec-
tronics Technicians. Their main purpose was to foster re-
spect and recognition for their profession. By maintaining the
rigorous standards of its certifi-
cation program, IS CET can identify and recognize highly skilled and knowl-
dedgeable technicians. Membership is open only to those technicians who have passed the Journeyman CET exam, the CAT exam, or the Associate CET exam.

In addition to receiving reg-
ular newsletters and maga-
zines, members are informed about IS CET-sponsored con-
ventions and technical-training seminars. Members also receive frequent updates on new technologies, an annual directory of industry information, and

www.americanradiohistory.com
many other technical benefits available only members. At the annual National Professional Electronics Convention (NPEC), technicians receive the latest in advanced-technology training from knowledgeable, expert instructors.

The members are also invited to attend the annual ISCET convention and membership meetings. During NPEC, some members are selected to participate in ISCET's Product Serviceability Program.

ISCET's main function is the direction and administration of the CET program, developed to measure the theoretical knowledge and technical proficiency of practicing technicians. Responsible industry executives recognize a technician with CET certification as one who possesses professional training, experience, and competence in his specialty area.

Since its creation in 1965 by the National Electronic Association, the CET program has been widely recognized by technicians, Government agencies, manufacturers, and consumers. Many electronics companies encourage their technicians to qualify for ISCET certification—and some even require it! More than 35,000 technicians have proven their ability by earning the coveted ISCET certification.

The CET exam

To become fully certified by ISCET, a technician must have at least four years of formal electronics training and experience. In addition, he or she must pass both a 75-question Associate and a 75-question Journeyman test. The passing grade for each of the multiple-choice exams is 75%.

The Associate examination covers basic electronics fundamentals, and each Journeyman option covers a specialized field of electronics technology.

An electronics technician or student with less than four years of experience may apply for Associate-level certification. The basic subjects on which the candidate will be examined include: Electronics Math, DC and AC Circuits, Transistors and Semiconductors, Electronic Components, Instruments, Tests and Measurements, and Troubleshooting.

The Associate exam is usually more challenging for the technician candidate than the specialty exam because it requires a broad knowledge of electronics plus the ability to analyze and troubleshoot circuit problems. Of the technicians who take this exam, about one-third pass on their first try.

Individual Journeyman exams focus on many different electronic specialties. The present set includes:

- Audio—The questions cover amplifiers and sound quality, system integration, speaker installation, servicing audio products, and troubleshooting audio systems. The exam includes questions on both digital and analog audio.
- Communications—The questions address communications circuits and transmission systems, AM and FM transmitters and their adjustment, receiver adjustment, and the servicing and troubleshooting of systems.
- Computers—The questions cover binary mathematics, logic gates, the basics of digital electronics and computers, local, area network organization, input and output peripherals, memory, elementary programming, and the troubleshooting of computer systems.
- Consumer—The questions cover both digital and analog circuits in consumer electronics products. There are, for example, specific questions on the troubleshooting and servicing of televisions and VCRs, and the operation of applicable service test instruments.
- Industrial—The questions cover DC and AC power supplies, transducers, sensors, switches, differential amplifiers, logic circuits, analog and digital circuity, microprocessors and computer systems, and circuit analysis and troubleshooting of industrial electronic systems.
- Medical—The questions cover the principles of electrical safety, basic circuity, the operation of electronic test instruments, telemetry, and the calibration of typical biomedical instrumentation.
- Radar—The questions cover both pulse and continuous-wave radar operation, radar transmitters and receivers, CRT display systems, radar power supplies, antennas, and the principles of transmission lines.
- Video—The questions cover the basics of video, knowledge of NTSC standards, test signal generation, the principals of video tape recording, VCR tape-drive mechanisms, camcorders, TV cameras and monitors, and the microprocessor as it applies to video.

The CAT exam

CAT testing is only one year old. "It opens up a whole new field for the trained and certified technicians," says Mr. Steckler. "Have you closely examined modern appliances lately?" he asks. "Whether it's a microwave oven, washing machine, dishwasher, or air conditioner, it's
likely to include electronic circuits—perhaps even a microcontroller," he commented.

"The appliance service technicians who service this equipment must learn about electronics as well as learning how to make the electrical and mechanical repairs they have traditionally made," Mr. Steckler said.

The new Certified Appliance Technician examination is independent of the CET Associate or Journeymen certifications. However, four years of practical, hands-on experience are also required, just as they are for the Journeyman CET option. The successful CAT receives a certificate that can be proudly displayed on the wall of his or her service center.

The CET examination consists of 100 multiple-choice questions on such subjects as electrical circuits and components, basic electronics, and the operating principles and repair practices for appliances such as refrigerators, ranges, ovens, diswashers, and trash compactors. Appliance technicians who pass the CAT are eligible to join ISCET.

Exam fees

The fee for the CET exam is $25. This includes both the Associate exam and one Journeymen option. However, if the Journeymen option is taken separately from the Associate exam, the fee for each exam is $25. Also, the fee for each additional Journeymen option is $25. The fee for the 100-question CAT exam is also $25. If a candidate fails any of these exams, the first retake is free, following a 60-day waiting period.

There are different examination fees for the FCC exams, but the minimum fee is $25 for one session. The fee for Element 1 is $25, and the fee for Element 3 is $30. However, if the two examinations for the General Radio-telephone Operator's License are taken in a single session, the fee is only $35.

There will be other combinations of elements and fees for the examinations that are not yet available. A complete list of those fees is available from the ISCET office, at the address given at the end of this column. Unfortunately, there is no provision for free retakes of the FCC exams.

Preparing for an exam

The best way to prepare for any of these exams is to study the available background subject material. ISCET offers excellent, inexpensive study materials that will help all candidates prepare for each of its exams. If you are at the entry level, the Study Guide for the Associate CET Test will give you an excellent review for this first test. The 96-page booklet is priced at $10. In addition, ISCET offers practice tests for most of the Journeyman options as well as excellent review texts on each of those options.

The FCC examinations are assembled from questions in the published question pool. By making the complete question pool available, the FCC has defined the limits of the basic knowledge that it expects each successful candidate to have. The availability of the pool also assures all persons taking the test that there will be no nasty surprises. ISCET is offering copies of the question pools for Element 1 and Element 3 for $10 plus S2 for shipping and handling costs. In addition, self-test computer software packages are available. Not surprisingly, being well prepared for all examinations will make the difference between passing and failing!

If, after reading this, you decide that you would like to take the CET, CAT, or any of the FCC exams, contact one of ISCET's volunteer test administrators listed in this article for details. As stated earlier, the exams are scheduled for the week of April 2 through April 9, 1994. For additional information, or to obtain an order form listing all of the available guidance and help materials, contact ISCET directly at 2708 West Berry St., Fort Worth, TX 76109; Tel. 817-921-9101, FAX 817-921-3741.

LETTERS

continued from page 13

the R4-C12 network at pin 15 of IC4, a 74HC161 (async 4-bit binary counter, async reset). Other readers might be less amused, however, because that network represents an attempt to patch a fundamental shortcoming. I should know—I learned about it the hard way!

Pin 15 on the 74HC161 is an asynchronous output, which means that it takes more time than the other (synchronous) outputs to reach the specified logic state after clocking. It's not possible to cascade 74CH161s as shown without getting nasty glitches in the output.

The size of the glitches will depend on the manufacturer of the IC in each socket, and it's unlikely that the R4-C12 network could effectively suppress the glitches in every circuit.

Because this circuit will fail to work correctly if a glitch sneaks through, your readers should know that IC selection might be required. I controlled the problem in my company's Voice Scrambler kits with clock delay and careful IC selection. Eventually we developed a fully synchronous, digital subsystem for full-duplex scramblers as a single device. It has the added benefit of scramble/clear mode switching on a single pin. We at Decade Engineering will provide further details on this device (SCRAM3), if requested. We will also sell and ship small quantities of the device to individual purchasers.

MICHAEL A. HARDWICK
DECADE ENGINEERING
2305 5th St. NE
Salem, OR 97303-6832

We wear these, and I figure we can run the house on static electricity.
have no access to cable TV. Although the service doesn't offer any truly new programming to consumers, Thomson is confident that it can also attract some of the 20 to 30 million homes that have access to cable but don't subscribe. Of course, there is also a potentially huge market of subscribers who, for one reason or another, are simply dissatisfied with their cable companies.

The expected break-even point for both Hughes and USSB, the two companies that invested in the satellite, is only about 3% of all households or 3 million subscribers. A DirecTV spokesman, stressing the system's value, flexibility, and performance, said, "We'd be very happy with 10% penetration over the next half dozen years. We think we're going to get that if our market research is anywhere near correct."

Thomson stresses that even those homeowners who don't subscribe to cable—although they have access to it—do rent video tapes, often on a daily basis. Pay-per-view programming, of course, eliminates the need to travel to a video rental store.

The DSS system claims quality advantages over conventional TV program distribution. At a demonstration attended by Electronics Now, the picture—sent digitally via a traditional satellite and decoded by a DSS receiver—approached laserdisc quality. Only large-dish satellite systems and videodiscs can offer similar quality. DSS also has a larger channel capacity than any existing cable system, and the pricing packages announced so far are less expensive than similar cable packages.

Some analysts point out that DSS could be superseded by the so-called information superhighway and its interactive systems. DSS is, however, here now. The consumers' appetite for programming has been proven by cable (66% penetration) and by video rentals (about $3.8 billion industry in 1992). Whether consumers want to interact with their TVs is still open to debate.

Another possible shortcoming for the system is that a consumer who wants to receive digital satellite programming must invest at least $700. However, project spokespersons point out that $700 is a small fraction of the cost of a new, large-screen TV—which requires the highest quality signals.

At this time, only one thing is certain. Consumers now have an additional source for video entertainment.

Satellite TV

continued from page 40

Construction

First select the components you will use. Any buzzer that can be driven from a 9-volt battery will work. Be sure the buzzer is capable of making a sound loud enough to be startling. The buzzer must be small enough to fit inside the case you selected along with the 9-volt battery.

Mount the mercury switch in a slightly tilted position so that when the box is lying flat on a table (waiting for a hapless victim), it is not enabled. The mercury switch can be fastened in place with a hot-melt glue gun. Glue the reed switch to an inside surface of the case so that the field of a magnet placed on the outside of the case will close it. The reset magnet, if small enough, can be fastened to the palm side of a low-priced ring to make it as inconspicuous as possible. Figure 2 shows the inside of the author's prototype.
EQUIPMENT REPORTS
continued from page 16

perature is satisfactory.
Chip capacitors and resistors are tiny rectangular components about 2 millimeters long with a tinned metal surface on each end. The chip rests on the board and the metalized ends are soldered to matching foil pads below them. The chip capacitors (two in all) are too small to have value labels. They are individually packaged and labeled and must be identified from the package. However, the chip-resistor values are actually easier to read than on their color-coded cousins, at least for people who can read the small numbers written on them. Interpreting color-coding takes more time than reading numbers. The first two numbers on a chip resistor indicate the first and second digits in its value, and the third number indicates the number of zeros that follow. So to find all the 470-ohm resistors, all you have to do is pick out all the chips labeled ‘471.’ Handling chip components is another story, however—tweezers are required, and if you sneeze, you could easily loose them to the carpet.

SMT transistors, diodes, and LEDs all have three pins, whether they’re needed or not. They’re about the same size as chip resistors with two leads on one long side and one on the other. They’re also no more difficult to handle than the resistors and capacitors. Chip ICs, on the other hand, are very difficult to solder. The leads are spaced less than a millimeter apart, and it’s very easy to create solder bridges between them.

The finished board must be test-

WITH CAREFUL HANDS and the right tools, soldering SMT components is easy.

ed before attaching the red plastic lens. All this involves is shorting two PC pads with the switch contact. The switch is just a curved piece of metal that rests on an outer trace while it spans an inner trace. Finger pressure snaps the center of the metal span down onto the center trace, completing the circuit. If the soldering work was done correctly and a battery is snapped into the connector, the Decision Maker should come to life. The lens is mounted over the board with thick double-sided foam tape; a plastic spacer is positioned between it and the switch. Squeezing the unit turns it on.

The SM-200K Decision Maker kit will give you valuable SMT experience and it is a great toy either for the builder or some kid he knows. The experience gained from the kit is worth more than its $21.50 price.

SURVEILLANCE & SECURITY

FM TRANSMITTERS
MINIATURE (KITS)
- 3-VOLT FM XMTR, up to 300 ft. indoors, 1500 ft. outdoors
- PHONE XMTR, range to 500 ft., uses phone-line power
- Sound-Activated XMTR, range to 500 ft.
- 2-STAGE XMTR, 9-Volt, very powerful

All above require simple soldering at 2 to 4 places. Broadcast on std FM band. Assemble in less than 5 minutes. Any of the above $29.95**

TELE CALL FORWARDER. Transfers incoming calls to any number you select. $99.00*

CALLER ID. Registers incoming number and stores to 50 numbers. $99.00*

TEL REGISTER WITH PRINTER. Records dialed number, duration, and prints record. 16-digit display with security lock control. Stores up to 40 calls. $129.00*

12-HOUR LONG-PLAY RECORDER. Modified Panasonic. Records 6 hrs. on each side of 120 tape (supplied). Compatible with VOX and Tel Rec Adapter. $118.00*

VOX VOICE-ACTIVATED SWITCH. Makes recorder self-activating with voices or other sounds. Great for radios and scanners. Provisions for external mike and/or patch cord. $28.50**

TELEPHONE RECORDING ADAPTER. Records incoming and outgoing calls. Use of handset controls recorder and records both sides of conversation. $28.50*

TELEPHONE SCRUBLERS. Over 51,000 separate codes; impossible to break code. Assures utmost privacy. $295.00*

VOICE CHANGER. Changes man’s voice to lady’s and vice versa. 4 separate settings. Ideal for disguising voice. $29.95*

RF BUG DETECTORS, AND MUCH MORE

FREE CATALOG:
TOLL FREE 1-800-926-2488
For Shipping and Handling add $5.00 and $2.00 per item. Colo. residents add sales tax. Mail Order: VISA, M/C, C.O.D. o.k. Inquire for dealer prices.

A.M.C. SALES, INC.
193 Vaquero Drive
Boulder, CO 80303
Tel: (303) 499-5405
Fax: (303) 494-4924

CIRCLE 108 ON FREE INFORMATION CARD

April 1994. Electronics Now
Radio Shack opens in Moscow

Russians can now buy consumer electronics products and components in a Radio Shack store recently opened in Moscow. Shopping there will be a new experience for most Russian electronics hobbyists because the new store is set up the same way as American stores.

The new Radio Shack has fully stocked racks of merchandise in the middle of the store that permit customers to pick up and examine the goods before they buy them—a simple enough concept, at least in the United States.

This setup contrasts sharply with that of most Russian retail stores: usually only a limited supply of goods is displayed on shelves or in glass cases. Customers must first wait in line to select what they want—often without being able to touch or examine the goods; then they must wait in another line to pay for the goods and get a receipt that permits them to claim their purchases from another area.

The Radio Shack store in Moscow, which opened last December, is the result of a franchise agreement between Tandy Corporation (Fort Worth, TX) and the Florida-based Trident Group, which supplies such things as computers and accessories in 30 cities of the former Soviet Union.

Radio Shack's store, located on Moscow's Lensinsky Prospect, carries a full line of consumer-electronic products, most of which are also shipped from Ft. Worth. The store is staffed by Russians and managed by Trident A/O, the Russian branch of The Trident Group. Ashley Worth, Trident Group vice president, said the Moscow store is the first of several Radio Shack stores to be opened in Russia in the future.
I finally got a closer look at a new book by Stan Griffiths entitled Oscilloscopes: Selecting and Restoring a Classic. It is a well written guidebook that lists all the older tube-type Tektronix scopes, their current prices, hidden gotchas, and overall desirability. It's a "must have" at $19.95.

Because used Tektronix scopes can be purchased for as little as $50, there is no reason why every hardware hacker shouldn't own at least two. Safest bets of the golden oldies: a plain 515A or a fancy 545B with a CA plug-in.

Fundamentals of SCSI
There is a lot of hacker interest in SCSI devices these days, so I guess it's time for a review. SCSI stands for a Small Computer System Interface, and it's detailed in document ANSI X3.131-1986, available from the American National Standards Institute. I'll concentrate on the specification for single-ended devices here.

SCSI allows up to eight devices to send 8-bit parallel data to each other on an asynchronous information swap. Although any number of the devices could be hosts, the usual setup is to have only one host that is served by up to seven peripheral devices. For example, the host computer might use an internal hard disk, an external hard disk, a CD ROM drive, and a laser printer.

Figure 1 shows how a SCSI bus is usually arranged: up to eight devices are connected together with 50-wire cables. All of the devices are Daisy chained together. Note that only the "open" Daisy chain arrangement is permitted.

Cable length can be up to a maximum of 20 feet, but all devices must be plugged into the same grounded AC outlet. Data rates to 4 megabytes per second are permitted. Because the data is in parallel, that rate is equal to a serial data rate of about 40 megabaud. Thus SCSI is potentially much faster than most of the popular computer networking schemes.

It's very difficult to move high-speed data around. Therefore, to prevent any noise or line reflections, all SCSI cables must be shielded and properly terminated. For short internal runs, conventional ribbon cable, with every second wire grounded, is acceptable. For longer external runs, special shielded SCSI cables are required. One good source for these is Redmond Cable.

Each end of the SCSI cable must be properly terminated to minimize standing waves and reflections. The rules are: Always terminate both ends of a SCSI cable string. Never leave any extra terminators in the middle of any SCSI string.

Figure 2 shows two methods for terminating a SCSI line. The intended cable impedance is 132 ohms, but 100-ohm cables will usually work satisfactorily. For a passive termination, insert a 220-ohm resistor to +5 volts DC, and a 330-ohm resistor to ground. Do that for each data and control line.

But note that one side effect is that each of the 18 lines has the equivalent of two 550-ohm resistors going from +5 volts to ground. Each continuously draws about 45 milliwatts for a total of nearly 2 watts, making it unsuitable for low-power applications.

Active termination is more common these days. In active termination, each line is terminated with a single 132-ohm resistor that is returned to a regulated 3-volt source. Because all SCSI lines are either three-state or open-collector, and because most of them do nothing most of the time, an active termination uses less power.

Several clever new dynamic switching schemes play intentional tricks with terminations to reduce further the power and improve data integrity.

Pin connections for a SCSI connector are shown in Fig. 3. Originally these were obtained with an unshielded dual-row header for internal use, or a special shielded and locking external connector. The internal connector is a plain 2 x 25-pin arrangement with the pins on the usual 100-mil centers.

Because the external connectors are so bulky, there are some last-day variations. One is based on the plain DB-25 connector. I believe this alternative is incredibly dumb because of the possibilities for causing damage by confusing them with serial communication ports. Apple has switched to a small 30-pin rectangular connector, which is used on its LaserWriter Pro 630 and newer Macintosh computers.

You'll find four kinds of connector lines. First, there are a lot of ground connections. These greatly simplify the shielding, especially on ribbon cables. Second, there is a TERMPWR lead that sends a protected +5 volts for termination power. Diodes normally prevent several devices from fighting each other on TERMPWR. Third, there are eight data lines.
that are either three-state or have open-collector drivers. These include BUS for any bus access, SEL to select the device, C/D that determines whether the information being sent is control or data, or MSG when a message is being delivered.

The REQ line requests access, and ACK grants it. ATN is a start up call, and RST clears previous actions.

These lines are all detailed in the SCSI specification. They interact with each other to request, verify, and then send data between devices. The devices all take turns, with only one allowed bus access at any given time.

There is a carefully defined command order. Most of the time, the SCSI bus should just sit there and do nothing. The action always starts with arbitration and selection cycles. Then a string of command bytes is sent that sets up the size and action of a read or a write. Next are the data bytes, which are usually transferred in blocks, often of 1024 bytes. The access ends with the status and completion bus phases.

Each SCSI device has a unique ID number 0–7 associated to it. These match a high state on the equivalent data line. The ID numbers appear on the bus during arbitration or selection.

A very important rule: Each SCSI device must have a unique ID. Device no. 0 has highest priority. The convention is to give the main host an ID of 0 and the internal hard drive an ID of 7. Printers, CD readers, or other peripheral devices might be given mid-range values. Most of the SCSI peripherals have switches or jumpers that let you pick any ID you want. On the other hand, it can be extremely difficult to set a non-zero host ID.

Once again, no duplicate IDs are allowed, and the lowest ID always gets first recognition.

The SCSI specification describes in detail the actions that must take place during each data transfer stage.

Multiple-host SCSI?

There are many unexplored new SCSI hacking possibilities. One is to devise a simple and cheap manual A-B switch for SCSI. Believe it or not, commercial units sell for as much as $2200.

Hint: The key chips you'll need are available from Pioneer, especially the PIC3383. I will have more on this in a future column.

There is another opportunity in building an even simpler SCSI ID changer. It should permit any SCSI device to look like number 6 from one end and number 7 from the other. Or number 0 versus number 1. This could be a key component
workaround if two systems insist on keeping their hosts as number 0.

Yet another project is to build a plain SCSI data input that looks like a computer’s parallel data port. This lets you send low-level commands to outside devices from inside the SCSI environment. The real value here, of course, is that this lets you use PostScript on any homebrew CAD/CAM, PC drill, Santa Claus machine, or whatever.

Figure 4 shows how shared SCSI communication works. Here, a host and a PostScript printer can share one drive. Such tasks as Book-on-demand publishing run much faster, as most communication times are eliminated. And the little remaining communication that’s still needed occurs at serial-equivalent speeds as high as 40 megabaud. But you do have to get clever.

The SCSI specification permits multiple hosts so that more than one computer can share a hard drive or other peripheral. You could even have eight hosts with exciting possibilities. But there are also some nasty catches.

Very bad things will happen if someone loads a file, somebody else changes it, and the first person then resaves the old file. These problems generally call for adjudication.
Get 3 Books for only $9.95
when you join the Electronics Engineers’ Book Club®

020984H-XXX $110.50
The collective expertise of more than 100 contributors has been assembled to make this book the most current and comprehensive electrical reference available today. 2,208 pp., 1,102 illus. Counts as 3

037603H-XX $59.50
This book gives you a collection of over 700 of the latest completely used integrated and discrete-component circuits and authoritative testing and troubleshooting methods on each type of circuit. 664 pp., 703 illus. Counts as 2

028735XH-XX $94.50
Put more than 1,100 specific calculation procedures for solving on-the-job engineering problems at your fingertips. Each procedure provides the exact, numbered steps you should follow for a quick, accurate solution. 1,486 pp., 1,292 illus. Counts as 2

031716H $50.00
Cover the basics of all the important video technologies in this one comprehensive volume. You'll find valuable information on the production, recording, editing, transmission, distribution, and display of video signals. 300 pp., 120 illus.

040769H $60.50
Select the right switches for any application—and reduce costs while enhancing performance. You can minimize the time you spend in technology trade-offs, selection and specification of a product, and switch source searches. 512 pp., 158 illus.

1938H-XX $60.00
For quick-reference and on-the-job use, this sourcebook puts over 1,300 state-of-the-art designs at your fingertips. From a (alarm circuits) to Z (zero crossing detector circuits) this compendium excels in content, scope, and design. 768 pp. Counts as 2

3897H $26.95
This book covers almost every imaginable type of filter circuit, ranging from simple passive filter networks to sophisticated digital filters. Use it to explore low-pass, high-pass, band-pass, and band-reject—and specialized filter types. 320 pp., 178 illus.

045682H $49.50
Taking into account all the provisions of the National Electrical Code® that impact on electrical construction calculations, this handbook focuses on the relationship between calculations and profitability, as well as system adequacy and reliability. 320 pp., 80 illus.
Electronics Engineers Book

Box

If you want the book(s) indicated below for just $9.95 plus shipping/handling & applicable sales tax. Enroll me as a member of the Electronics Engineers Book Club according to the terms outlined in this ad. If not satisfied, I may return the book(s) within 10 days without obligation and my membership will be cancelled.

If you select a book that counts as 2 choices, write the book number in one box and XX in the next.
If you select a Counts as 3 choice, write the book number in one box and XXX in the next 2 boxes.

Name

Address

City/State

Zip

Phone

Offer valid for new members only, subject to acceptance by EEBC. Canada must remit in U.S. funds drawn on U.S. banks. Applicants outside the U.S. and Canada will receive special ordering instructions. A shipping/handling charge & sales tax will be added to all orders.

DR6494C

www.americanradiohistory.com
Most SCSI systems start out with a bus arbitration phase that prevents outright conflicts between two hosts which try to grab market share at the same time. From the start be sure that both of the hosts include the SCSI bus arbitration timing cycle.

It does not specify the arrangement or the partitioning of the data tracks. This means that all the host SCSI devices normally must share the same operating system.

A third problem is that most SCSI hosts assume that they are the only hosts. Instead of checking the catalog and directory tracks of the drive for each access, they simply keep a copy of these tracks in their host memories. Now, if another host rewrites the files, the first host will certainly become confused because its internal disk directory copy will now be totally wrong.

One way to get around this is to make sure that you always mount and unmount drives so that any one of the drives is “known” by only one host at any time. As an example, PostScript has its devmount and devismount procedures.

There is another route that I’ve been using to let both an Apple Ile and a Macintosh write to the internal hard disk on my LaserWriter. You could even use this technique to let an IBM and Macintosh share a common hard disk.

Pick your “main” operating system. In the case of any PostScript printer, this would be the internal PostScript firmware. So, immediately after you initialize your disk, you should very carefully define several dummy files of fixed size and position. You can then let your “alien” host use only its low-level SCSI read and write track and sector commands to “force feed” data into the file.

This gets complicated very fast, but it definitely works. Let me know your thoughts on new hacker SCSI applications.

Cogeneration resources

Cogeneration is the production of electricity as a by-product of another activity. If the other activity accepts most of the cost, the cost

<table>
<thead>
<tr>
<th>COGENERATION RESOURCES</th>
<th>Home Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Energy</td>
<td>Box 520</td>
</tr>
<tr>
<td>205 S Beverly Drive Ste 208</td>
<td>Ashland, OR 97520</td>
</tr>
<tr>
<td>310) 273-3486</td>
<td>(916) 475-3179</td>
</tr>
<tr>
<td>Alternative Energy Digests</td>
<td>Independent Energy</td>
</tr>
<tr>
<td>800 Garden Street Ste D</td>
<td>620 Central Avenue N</td>
</tr>
<tr>
<td>Santa Barbara, CA 93101</td>
<td>Milaca, MN 56353</td>
</tr>
<tr>
<td>(805) 965-5010</td>
<td>(612) 983-6892</td>
</tr>
<tr>
<td>Cogen & Competitive Power</td>
<td>Independent Power Report</td>
</tr>
<tr>
<td>700 Indian Trail</td>
<td>1221 Ave of the Americas, 36 Fl</td>
</tr>
<tr>
<td>Lilburn, GA 30027</td>
<td>New York, NY 10020</td>
</tr>
<tr>
<td>(404) 925-9388</td>
<td>(212) 512-6410</td>
</tr>
<tr>
<td>Cogen & Resource Recovery</td>
<td>Micro Cogeneneration</td>
</tr>
<tr>
<td>747 Leigh Mill Road</td>
<td>3309 1/2 Lynn Avenue</td>
</tr>
<tr>
<td>Great Falls, VA 22066</td>
<td>Billings, MT 59102</td>
</tr>
<tr>
<td>(703) 759-5060</td>
<td>Renewable Energy</td>
</tr>
<tr>
<td>Dialog</td>
<td>660 White Plains Road</td>
</tr>
<tr>
<td>3460 Hillview Avenue</td>
<td>Tarrytown, NY 10591</td>
</tr>
<tr>
<td>Palo Alto, CA 94304</td>
<td>(914) 524-9200</td>
</tr>
<tr>
<td>(415) 858-2700</td>
<td>Renewable Energy News Digest</td>
</tr>
<tr>
<td>Energy Conservation Digest</td>
<td>14 S Church Street</td>
</tr>
<tr>
<td>Box 20754</td>
<td>Schenectady, NY 12305</td>
</tr>
<tr>
<td>Seattle, WA 98102</td>
<td>(518) 372-1799</td>
</tr>
<tr>
<td>(202) 763-2929</td>
<td>Saving Energy</td>
</tr>
<tr>
<td>EPRI</td>
<td>5411 117th Avenue SE</td>
</tr>
<tr>
<td>PO Box 10412</td>
<td>Bellevue, WA 98006</td>
</tr>
<tr>
<td>Palo Alto, CA 94303</td>
<td>(206) 643-4248</td>
</tr>
<tr>
<td>(415) 855-2000</td>
<td>World Cogeneneration</td>
</tr>
<tr>
<td>Home Energy</td>
<td>84-54 118th Street</td>
</tr>
<tr>
<td>2124 Kittredge St, #95</td>
<td>Kew Gardens, NY 11415</td>
</tr>
<tr>
<td>Berkeley, CA 94704</td>
<td>(718) 847-0230</td>
</tr>
</tbody>
</table>
of electricity can end up surprisingly low.

For example, if chemical plants or hospitals need a lot of steam they might as well generate most or all of their own electricity while they are at it. Or, if you have a solar water-heating panel, it makes economic sense to use the waste energy for space heating.

A new Micro-Cogeneration book from Kirk Mcloren of Independent Power includes some economic analysis to arrive at an astounding conclusion: With cogeneration, it can be far cheaper to generate electricity than to buy it from the power company—especially if you are half a mile from any power line, have a reasonable home and lifestyle, use a diesel generator, and don’t pay road tax on the diesel fuel. It’s even better if you can obtain the free (but slightly contaminated) diesel fuel that is sometimes available at local airports.

The analysis includes the utility’s line-extension costs and the required minimum-purchase guarantees. It also includes making your generator more efficient by using the waste energy for heating.

For this month’s resource sidebar, I thought I’d gather together important places you can go for more information on cogeneration, both for homebrew and industrial-strength needs.

In addition to Kirk’s book, be sure to check out Home Power magazine. Lots of technical papers and videos are available through EPRI. And, of course, for the latest in any technical field, you can use the Dialog Information Service, available either by way of GENie or your local library.

World Cogeneration is a free trade journal for commercial and industrial applications of cogeneration. Most of the other resources listed are trade journals or scholarly publications.

"Sumphun' Else" contest

One thing I like to do is take some product and see just how it can be misapplied for wildly different purposes. An outfit called Aman offers a mini-wire channel product by the roll. It costs about a dollar a foot and is intended to protect communication, alarm, and low-voltage wiring.

The channel is made from an attractive white vinyl and consists of a bottom half that folds up into a "U" shape, and a snap-on cap. The size is either a ¾-inch square or a ½- ×...
Does your VCR have a "Head Cold?"

Probably not! However, through constant playing and using of degrading dry or wet cleaners, the output of your video tapes has slowly diminished to an unacceptable level and the VCR plays as if it has a head cold! The culprit is most likely clogged and dirty video and/or audio heads.

The 3M Black Watch™ Head Cleaner Videocassette uses a patented magnetic tape-based cleaning formation to remove head clogging debris. No foreign substances such as cloth, plastics or messy liquids and no harsh abrasive materials are present. The cleaner's usable life is 400 cleanings or more!

It's easy to use. Place the 3M Black Watch™ Head Cleaner Videocassette in the VCR and press the Play button. A pre-recorded message appears clearly on your screen and an audible tone is heard, telling you that the cleaning process is now completed. No guess work, you never ever clean!

3M Black Watch™ Head Cleaner Videocassette (VHS, VHS).......

Once your VCR's head cold is cured, and the unit plays like new, consider using the finest videocassette you can buy—the 3M Black Watch™ T120 Hi Pro VHS 4410 Videocassette. The 4410 is the highest performing videocassette available today for use with all standard format VHS recording hardware.

Here's what you hear and see....A sharp, clear picture—brightest colors—freedom from streaks, flashes and snow—outstanding high-fidelity audio reproduction—optimum camcorder performance—maintains recording integrity. 3M Black Watch™ video tape is 100% laser inspected to guarantee surface smoothness and drop-out free performance.

3M Black Watch™ T120 Hi Pro VHS 4410 Videocassette (VHS).......

1-inch rectangle. It's even predrilled.

Now for the neat part: If you cut this material up into smaller pieces, you end up with very nice 30-cent cases for handheld projects. Perhaps a laser pointer, remote control, logic probe, bug detector, dog trainer, or signal injector. Free samples are offered by the manufacturer.

Have you taken a close look at toilet-refilling technology lately? A new version uses a snap-action differential water-pressure sensor. It cheaply and reliably replaces older float-type switches.

Well, what we really have here is a differential pressure sensor that can respond to a pressure difference of a fraction of an inch of water. Last time I checked, that's a sensitivity around 0.01 pounds per square inch.

There simply has to be unthought-of hacker and robotics uses for these sensors, especially for liquids other than water—possibly even for air or other gases. Your first hack here might be to couple it to an electrical switch or sensor.

So, for our contest this month, just tell me about any product that can be applied to make something totally different than its intended use. We'll call this a sumphun' else contest.

There will be a bunch of the usual Incredible Secret Money Machine II books going to the dozen best entries. An all-expense-paid (FOB Thatcher, AZ) tinaja quest for two will go to the very best of all.

As always, send all your written entries to me here at Synergetics and not to Electronics Now editorial.

Federal auctions

Ever since the days of the mythical $25 Jeep, there's been lots of hacker enthusiasm over buying government surplus—particularly older military or defense electronics.

To get on military surplus bidding lists, contact the Defense Logistics Supply Agency. You then pick your areas of interest and they will mail you auction notices. If you do not actually bid, you will have to renew every few months.

General government auctions are handled separately. Many are held through the regional General Ser-
There are also auctions from other US government agencies, such as the DEA or the Post Office. You contact them directly for more information. As a reminder, there is a main US government information number up at (800) 359-3997.

There are now two magazines that list upcoming auctions. These can simplify your search for what is being auctioned. One of these is the Federal Auction Locator, while a second is Auction Magazine.

If you are just interested in plain old commercial surplus grunge, refer to the inside secret news magazine that the retail surplus dealers and the distress merchandisers all subscribe to. It is the ASD/AMD Trade News. These folks also put on mammoth and incredibly bizarre trade shows.

By the way, those WW II military surplus Jeeps were always cut in half before delivery. Except for being a tad oversized, they can make dandy bookends. But be sure to check your local zoning regulations first.

New tech lit
A possible major advance towards room-temperature superconductivity appeared in the December 17, 1993 issue of Science, pages 1850–1852. It appears a lot more credible than the previous false starts. Temperatures of 250 Kelvins are being banded about—a balmy Minnesota winter day.

Softwars is a new book by Anthony Clapes that’s published by Quorum Books. It is a fairly thorough rundown on the ongoing legal battles over software protection and intellectual property rights. While the author does hide his IBM lawyer bias fairly well, his blatant misuse of the term “hacker” is unconscionable. Still a good read, though.

Virtual Reality World is a brand new Meckler Publishing newsletter. For something totally different, the Nomadness Report is published by Steve Roberts who is really big on his bicycle telecomputing, high-tech ocean kayaks, and Internet surfing. I’ve posted on-line samples of his reports to GENie PSRT.

EtchTalk is a useful free company newsletter about glass etching from Armour Products. Interesting casting materials and technical information are available from Castcraft. Comus appears to be a good source for tilt switches and motion detectors. Information on mechanical cables for robotics and related products is offered by CMA.

Maxim has announced its new MAX038 function-generator chip that generates high-frequency triangular, sine, and square waveforms. This one looks like it is going to turn into one rather hot hacker chip. Response is beyond 20 MHz. I expect kits will be offered shortly.

If you are interested in any self-publishing, be sure to check out my Book-on-demand Resource Kit, per my nearby Synergetics ad.

I’ve also got a brand new catalog with a much larger insider secrets section. You can write, call, or E-mail me at [SYNERGETICS] on GENie or SYNERGETICS at GENIE.GEIS.COM on the Internet for your free copy. Or download it directly as SYNCAT1.PS from GENie PSRT.

As usual, most of the stuff mentioned appears in either our Names & Numbers or Cogeneration sidebars. Be sure to check those lists before calling our no-charge voice helpline.

I hope this information is useful to you. Please feel free to use it as you see fit.
I've been wondering about my preoccupation with old equipment. I have a small accumulation of "antique" test instruments and technical books, and only self-restraint (and my wife) keeps me from adding tons of old audio components to my collection of obsolete electronics. I have no illusions about the measurement qualities of the test equipment, although the readings from my model 433 Weston AC voltmeter (circa the late 1930s) that I bought in a thrift shop for $5 are a close match to what I get from a Fluke 8050A. Yard sales and thrift shops are the main sources of the material that feeds my habit; I'm actually afraid to attend ham swap meets for fear I'll run amuck and end up pleading with strangers to "Please stop me before I buy any more."

I remember an Altec Lansing speaker system (circa 1955) that I picked up at auction for $25 in the early 60's. It had a 604C coaxial driver installed, and the speaker and cabinet combination originally sold for more than $300—a lot of bucks in 1955! The speaker worked but sounded terrible. Retuning, bracing, and damping the 10-cubic foot cabinet helped some, but aside from efficiency, it was no match in sound quality for my far smaller AR-3 system. As a result, my garage-sale speaker purchases have been limited to smallish, high-quality units that usually end up in the systems of friends and relatives.

A year ago, when browsing through a thrift shop, I came across a sample of the very first cassette recorder ever made—the Norelco Model 150. Of course, I had to buy it. Ditto for a Pilotuner dating back to the early 50's, a copy of my very first FM tuner. Then there's the Brook all-triode preamp, the Browning FM tuner, the Rek-O-Kut turntable with Audax tone arm and turnover cartridge, and more. Given all that as a background, I was very pleased to get a review copy of the Audio Engineering Society's videotape entitled "An Afternoon with Jack Mullin."

The Mullin Collection

Jack Mullin could accurately be called one of the pioneers in audio/video recording history. Not only that, but he also established a museum whose displays significantly predate his own audio involvement. For example, his museum houses a working replica of Edison's 1877 prototype cylinder phonograph. We are able to hear it, as well as many of the other machines in Mullin's collection, on the VHS tape.

Edison's commercial cylinder machines and Berliner's 1895 flat disc players—and subsequent models—all sounded quite tinny despite numerous advertisements to the contrary. Things didn't change significantly until about 1925, when Bell Telephone Laboratories and Western Electric got into the act.

Although the playback machines continued to be all acoustic for several years, the recording process became all-electric, or in modern parlance, electronic. Mullin shows the condenser microphone, amplifier, and electrical cutter developed by Bell Labs and photographs of the "before" and "after" differences in a recording session. During the days of acoustic recording, the musicians were forced to crowd around the mouth of a large horn that terminated in a diaphragm driving a cutting stylus. In addition, some of the instruments played by the musicians had to be modified for greater acoustic output. Violins, for example, had a horn attached to beef up their output—which wreaked havoc on their tonal quality.

The new companion playback machines designed by Bell Labs and manufactured by RCA bore the Orthophonic label, as did the electrical recording process. The playback machines were still acoustic, but had a redesigned playback head with a specially designed aluminum diaphragm instead of a conventional mica diaphragm. The output of the tone arm was coupled to an exponential horn. The net result was a frequency range and a fidelity previously undreamed of. Mullin demonstrates a recording made by the acoustic process segue into the same piece recorded electrically. The improvement was astonishing!

Mullin is of the opinion that Bell's phonograph developments were deliberate steps in the direction of their real goal: talking pictures. We are shown a beautifully preserved (or restored) Vitaphone recording lathe made by Western Electric (Bell Labs' manufacturing facility) about 1926. Since the existing 12-inch, 78-rpm discs could provide no more than 4½ minutes per side, a 16-inch 33⅓-rpm with inside-out recording was developed for "talkie" use.

Radio killed the record

By the late 1920's, phonograph sales had gone into a steep decline because of radio, which basically played the discs for you for free. Of course, there were live broadcasts aplenty, but the phonograph remained a fine backup source for the stations. The Vitaphone system designed for talking pictures was enlisted to provide transcription recordings for broadcast use. By slightly crowding the grooves, fifteen minutes of recording time became available. Right through World War II, the electrical transcription disc was the main means for preparing programs in advance of broadcast and for supplying Armed Forces Radio with a variety of entertainment material.

During World War II, one of Jack Mullin's Signal Corps assignments was to analyze German electronics as he encountered it in the newly occupied territories. Through a series of adventures that he recounts...
on the videotape, he found several samples of the Magnetophon tape recorder in a Frankfurt, Germany, broadcast station along with about 50 reels of tape. It far surpassed any acoustic storage medium that Mullin had heard up to that time. Mullin subsequently dismantled a pair of Magnetophons and mailed them home as "spoils of war." Ultimately, Mullin rebuilt the machine with U.S. electronics, added high-frequency preemphasis to extend the response out to 15 kHz, and demonstrated it at various technical and engineering meetings.

One day a visitor mentioned that Bing Crosby might be interested in Mullin's machine because Crosby was prerecording his radio programs and the quality was not very good. It seems that in 1946 Bing Crosby was under contract to Philco to produce a weekly radio show. Crosby did not want to do the show live so he tried to maintain spontaneity by the use of edited transcription discs, a difficult, noisy, and low-fidelity process. The Crosby group tried sound recording on film, but the process was too clumsy to be useful. Wire recording was available—it had been developed by Armour Research during the war—but the fidelity was not adequate even for the AM broadcasts of the day. Jack Mullin to the rescue.

Mullin demonstrated his machine to Crosby and was subsequently hired to record and edit the Crosby show, he used the same tapes he had brought from Germany because there were no others.

During the same period, Mullin demonstrated the machine to a gentleman by the name of Alex Poniatoff, who owned a small manufacturing company called Ampex. In April 1948 Ampex introduced its classic Model 200 machine that became the standard broadcast and studio tape recorder of the time.

Meanwhile, Crosby Enterprises was paying Mullin and his group to develop a videotape machine. Mullin recounts how his group finally achieved some limited success and called a press conference to announce and demonstrate their new technology. As Mullin describes the demonstration, the viewers saw a gray blob moving diagonally upward across the video screen, which they were told was a plane taking off. The audience was mildly impressed, but in 1955 when Ampex demonstrated a video recorder with a high quality picture, Mullin decided it was time to get out of the video business. I've given you only some of the highlights of Jack Mullin's presentation. If you would like a copy of the VHS videotape, it is available for $29.95 postpaid from the Audio Engineering Society, 60 East 42nd Street, Room 2520EN, New York, NY 10165-2520.

TACTICAL ELECTRONICS

MoonLight Viewer®
Our Lowest Cost!
See in the dark using moonlight or bright sunlight! Use our CWL10 laser illuminator for seeing in total darkness. SD90 Ready to Use, with camera adapter $395.00 CWL10 IR Laser Illuminator $99.50

3 Mile FM Wireless Microphone
Subminaturized! Crystal clear, ultra-sensitive. Transmits voices & sounds to FM radio. Excellent for security, monitoring of children, etc. Be the local DJ, or go "under cover" with our FM radio sunglasses.
FMV1 Plans $7.00 FMV1K Kit Plans $39.50 SUGL10 Sunglasses with built-in FM radio $29.50

Telephone Transmitter - 3 Miles
Automatically transmits 2 sides of a phone conversation to an FM radio. Tunable. Undetectable on phone. Easy to build! Up to 3 mi range. Only transmits during phone use.
VWP11 Plans $7.00 VWP10K Kip Plans $39.50

Extended (X4) Play Telephone Recording System
Complete with X4 extended play recorder. Automatically records both sides of phone conversation.
TAP10X Ready to Use System $129.50

Tel Line Grabber/ Room Monitor
New! The Ultimate in Security & Safety! Call your home or office phone, push a secret phone tone to access either a. On-premise sounds and voices, or b. existing telephone conversation with break-in capability. Check local laws.
TELEGRA8 Plans $10.00 TELEGRA8K Kip Plans $39.50

INFORMATION UNLIMITED

Add $5 PAH - MC, Visa Welcome
Dept EN-15 • Box 716
Aberdeen, NH 03031-0716
Tel 603-673-4730 Fax 603-672-5406

www.americanradiohistory.com
The most innovative product of 1993, so Apple is to be congratulated. I hope that the company’s new less-visionary and more bottom-line oriented CEO, Michael Spindler, continues to push the stylus-technology envelope. It might take two or three generations to get it right, but that’s almost always true in the computer industry. Apple has guaranteed itself a place in history by introducing the graphical user interface (GUI) to the general public a decade ago. In 1984, with a computer it called the Macintosh. Newton guarantees the company another spot in the history books.

Tandy also introduced a stylus computer called Zoomer. Less innovative but perhaps more practical than Newton. Zoomer is basically an MS-DOS based machine that has been adapted for pen-based input.

There were many incremental improvements in larger, keyboard-based computers in 1993. It is now possible to purchase battery-powered portable PCs at reasonable prices with bright color screens and as much CPU power, RAM, and hard-disk storage as the average or even above-average desktop PC. IBM’s ThinkPad 750 is the king of the hill in this category. The only “gotcha” is that you must be willing to settle for VGA resolution—640 dots x 480 lines—which can be difficult to read if you’re used to anything higher.

Other portable computer-related trends include docking stations and increased connectivity options. A docking station provides a simple means of attaching and detaching a computer from a variety of peripherals without having to plug-in individual cables. Docking stations have been around since the mid 1980s, but only in the past year have they become truly useful and reasonably priced. If you want one computer to serve both at home and on the go, a docking station can give you a larger keyboard and monitor, as well as preattached network, printer, and modem connections. Connectivity options include built-in Ethernet modules, better PCMCIA-card compatibility (watch for PCMCIA slots in desktop machines in ’94), a low-priced RF-based hardware/software scheme from Traveling Software, and similar technologies based on the infrared communications system used for years by Hewlett-Packard calculators and peripherals.

Operating systems
The big news in operating systems wasn’t very big. MS-DOS 6.0 was released amidst controversy, Windows NT amidst yawns, and OS/2 2.1 amidst accolades.

DOS 6 differs from its predecessor in two major respects: it comes with a disk-compression package called DoubleSpace, and it includes a memory-optimization utility called MemMaker. DoubleSpace caused the controversy. One major trade publication published reports of numerous instances of disk corruption that it claimed could be traced to DoubleSpace. Later that publication recanted, admitting “pilot error” in its testing methodology. It turned out that the test engineers had rebooted machines immediately after making changes to system files, and DOS 6’s disk-caching program allowed the reboot to occur before writing all changes to disk.

Microsoft subsequently introduced DOS 6.2 which adopts a more conservative caching scheme as the default. In addition it ensures that the cache is flushed before the prompt is displayed. In between IBM introduced its own version, DOS 6.1. The software package included a coupon for a third-party disk-compression program. All in all, there was no compelling reason to upgrade from DOS 5. Rumor has it that MS-DOS 7 will at long last
shed the FAT file structure and allow multitasking. Look for it sometime this year or early next year.

Disk compression also found its way into the courts, primarily as a result of a suit brought by Stac Electronics against Microsoft, which, of course, promptly countersued. Neither case has come anywhere near litigation, but Stac has already suffered heavily.

Six months after its introduction, Windows NT proved to be something of a yawner. It gets good reports as a network server, but not as a network client or a stand-alone machine. Most applications developers seem focused on supporting and improving existing Windows 3.1 applications. They want to upgrade them to support version 2.0 of the object linking and embedding (OLE) specification. Some are also bypassing NT altogether and waiting for Windows 4, aka "Chicago," due out in mid to late '94.

OLE 2 is something worth watching very closely. A few applications now support it, including Microsoft's Word for Windows version 6.0, and ShapeWare's Visio 2.0. Conceptually, OLE 2 is fantastic; in practice, however, it requires a lot of RAM to work. Even on an 8-megabyte machine, there is still a lot of disk swapping, and that means %S...%L...%O...%W operation. OLE was in danger of failing to achieve the broadest possible industry support, but Microsoft recently joined the leading industry consortium, the Object Management Group (OMG). It is concerned with inter-application and cross-platform object sharing.

1993 also saw the release of several competing Windows-on-Unix technologies. None is likely to achieve technical success, not to mention business success. The technology that probably has the most chance of even moderate success is Wabi, which was developed by SunSelect, a software subsidiary of Sun Microsystems, and Unix Systems Laboratories, the former AT&T entity now owned by Novell.

Wabi is a "super" emulation technology that allows Windows programs to run on RISC/Unix workstations. The "super" part comes in because Wabi does not emulate Windows, DOS, and ultimately an 80x86 CPU, as do most emulators. Rather, it translates MS-Windows calls into equivalent X-Windows calls (or sequences thereof, as necessary). This gives Wabi tremendous potential speed compared with traditional emulation technologies. The bad news is that numerous so-called "certified" applications—including Word for Windows, Excel, and other Microsoft applications—have uncovered bugs in Wabi. No doubt those bugs can be fixed, but by then it's likely that technology will have marched on.

Regardless, with OS/2 2.1 IBM has a window of business opportunity, and users have an opportunity to experiment with a 32-bit operating system and an advanced user-interface paradigm, yet retain the ability to run existing applications.

CPUs and RAM

In 1993 Intel released the evolutionary successor to the 486, the Pentium. There's good news and bad news. The good news is that Pentium is fast. The bad news is that systems based on it are not generally available, especially the 66-MHz speed champions (60-MHz units are easier to find). This has been good for buyers with 486 machines; their prices continue to drop steadily. Intel has announced an OverDrive processor that will allow selected 486 motherboards to run crippled Pentiums; they should be available by mid 1994.

American Micro Devices (AMD), Cyrix, and Texas Instruments are selling 486 clones. As a result Intel is losing market share because it can't move customers up to Pentium systems fast enough. And all four companies have ensured steady work for their lawyers, for years to come. Intel and AMD are suing each other, TI and Cyrix are suing each other. And there are lots of other suits draining the semiconductor industry of valuable resources.

If Windows NT is the software industry's attempt to bring Unix to the desktop, the PowerPC is the hardware equivalent. POWER is IBM's acronym for Performance Optimization With Enhanced RISC; POWER refers to the RISC processors that form the heart of the company's RS/6000 workstation line. Part of IBM's historic 1991 accord with Apple andMotorola called for joint development of a more integrated POWER chip set—one that could form the basis of a mass-producible, inexpensive computer. This effort came to fruition in fall of 1993 with IBM's release of several RS/6000 workstations. Apple appears committed to phasing 680x0 microprocessors out of its Macintosh line in favor of PowerPC microprocessors. More-
over, IBM will also introduce a line of "PCs" based on the PowerPC. An organization, called PowerOpen, has formed to help promote hardware and software standards to ensure compatibility.

The good thing about the PowerPC architecture is its performance/price ratio, which is much higher than that of the Intel line. PowerPC is likely to make a smooth transition in the Macintosh market, because it can run existing Macintosh applications as-is. This is not true for DOS/Windows applications which will require sophisticated emulation. Again, the problem with emulators is that they can be bug-filled and they lack performance, and they typically lag major operating system releases.

However, PowerPC might not have to suffer the indignities over compatibility that OS/2 has been fighting all these years. Microsoft appears to be evolving all its major application programming interfaces (APIs) to the cross-platform model first exhibited by NT, which can already run on Intel, DEC, and MIPS platforms. I believe that Cairo, which is currently being billed as the successor to NT, will also be the successor to Windows 4. If my theory is correct, Cairo will run on multiple platforms, including Intel, PowerPC, DEC Alpha, MIPS R4400, Sun SPARC, HP PA, and perhaps others. Equally important, it will support the entire DOS/Windows API, along with the Unix-based NT API. It will, in short, run anything on anything. Maybe. We'll see. But that's the only realistic hope that PowerPC has to achieve anything other than a small fraction of the market.

An explosion in early July at the Sumitomo Chemical plant in Japan halted production of epoxy cresol resin, the key ingredient used to manufacture plastic IC packages. That plant met more than 50% of the worldwide demand for that resin. Consequently, IC prices, particularly DRAMs, increased, sometimes by a factor of three. Well before the end of the year, however, the situation was back under control, and prices returned to preexplosion levels. At this point, it is possible, at the retail level, to buy 16 megabytes of DRAM in 4-megabyte modules for less than $600, which is an incredible price for anyone who has followed the computer industry for more than a few years.

Other '93 highlights

Networking costs dropped radically, and performance prepared to surge ahead. IEEE 802.3 (Ethernet) network interface card (NIC) prices dropped to the $100 level, and several competing standards were proposed to increase Ethernet's basic 10 megabit per second (Mbps) data rate to 100 Mbps.

Borland is in deep trouble. The company has been pilloried for failing to deliver a Windows version of dBASE. Compared with multi-product rivals Microsoft and Lotus, Borland looks increasingly thin. Throughout the eighties, the company invented and reinvented itself every few years, first around Turbo Pascal, then around SideKick, later around Paradox and the C compilers. It's time that it does it again.

Retail software prices caved in during 1993, with the result that buyers now have to pay extra for support. On the other hand, look for much better built-in support, now that CD-ROM drives and sound cards are becoming so widespread.

Multimedia has been a pet topic of mine for years. 1993 saw a dramatic rise of general interest in the topic. More and more games, application programs, and even operating systems are now available on CD. Those versions typically carry extras ranging from clip art and fonts and on-line help to demo versions of other applications. The trend will continue in 1994.
BUYER'S MART

FOR SALE
TUBES; "oldest", "latest", Parts and schematics. SASE for lists. STEINMETZ, 7519 Maplewood Ave. RE, Hammond, IN 46324.
TUBES, new, up to 90% off, SASE, KIRBY, 296 West Carmel Drive, Carmel, IN 46032.

RECEIVING TUBES OVER 3000 TYPES IN STOCK! Also hard-to-find transformers, capacitors and parts for tube equipment. Send $2.00 for our 32 page catalog.

ANTIQUE ELECTRONIC SUPPLY
6221 S. Maple Ave. Tempe, Ariz 85283-0602-820-5411

CABLE TV descramblers. All major brands. Have make and model of the type used in your area when inquiring. (800) 327-3407. K.D. VIDEO, PO Box 29538, Mpls., MN 55429.

THE CASE Against the Patents. Thoroughly tested and proven alternatives that work in the real world. 32-PAGE GETS GREASY PRESS, Box 892-C, Thatcher, Ariz 85552. (602) 428-4073. Visa/MC.

CABLE TV descramblers. Nobody beats our price! Quantity discounts. 24 hour shipping. All brands. Call V.C.I. (1) 800 677-0321.

CABLE descramblers. test turn-on kits, bullet stoppers, we have the lowest prices in the industry. Call everyone else, then call us for the best price. We will buy or repair your cable equipment. No Florida sales. (305) 425-0751.

MULTI-VISION ELECTRONICS
Converters & Descramblers
• Jerrold #SA
• Tocom #Oak
• Zenith #More

Why tolerate unbearable, monthly cable fees when you can buy for less at Multi-Vision?
1-800-835-2330

SECRET cable descramblers! Build your own descrambler for less than $12.00 in seven easy steps! Radio Shack part-by-part guide. 17 descrambling methods that cost nothing to try, included. Send $10.00 to: INFORMATION DEPART, Dept. 4, PO Box 669, Seattle, WA 77586. For COD (713) 922-3512 any time!

COLOR schematic designer V3.0 for color computer $3.00. 5000 US. RADICAL ELECTRONICS, Box 1350, Saskatoon, SK Canada S7K-3N9.

RS232 based data acquisition card for IBM or MAC, 8 digital I/O 2, 8 bit analog inputs program using BASIC, C, Hypercard etc. $99.00 U.S. Free into ONTRAK CONTROL SYSTEMS, 422 Arley Street, Sudbury, Ontario, Canada P3C 1E7. (705) 671-2652.

Quality Microwave TV Antennas
WIRELESS CABLE - IFTS - MMOS - Amateur TV antennas, 18 to 27 MHz • 55-Channel Dish System $199.95 • 36-Channel Dish System $149.95 • 20-Channel Dish System $124.95 • General Commercial Antennas not shown and not used • Your Antennas, Components, Custom Tuning Available, 67-240-4390 to order! PHILIPS-TECH ELECTRONICS, P.O. Box 85533 - Scottsdale, AZ 85252.

CABLE descrambling New secret manual. Build your own descramblers for cable and subscription TV. Instructions, schematics for SSAV!, gated sync, circuit, 50 and 60 MHz, (or wine UHF) (Adult) $12.95, $2.00 postage. CABLETRONICS, Box 30502R, Bethesda, MD 20824.

FREE CATALOG
FAMOUS "FIRESTIK" BRAND CB ANTENNAS AND ACCESSORIES. QUALITY PRODUCTS FOR THE SERIOUS CB'er SINCE 1982
FIRESTIK ANTENNA COMPANY 295 WEST ADAMS PHOENIX, ARIZONA 85034

CABLE TV converters, Jerrold, Zenith, Pioneer, Oak, Scientific Atlanta, and many more. 12 years experience gives us the advantage. Visa/MC Amex COD ADVANTAGE ELECTRONICS, INC., (1) 909-922-2116 1125 Riverwood Dr., Burnsville, MN 55337.

TEST equipment pre-owned now at affordable prices. Signal generators from $50.00, oscilloscopes from $50.00. Other equipment including manuals available. Send $2.00 U.S. for catalog refunded on first order. J.B. ELECTRONICS, 3446 Dempster, Skokie, IL 60076. (708) 982-1973.

CABLE test-chips as low as $9.95, for testing cable boxes in full service mode. Jerrold: Starcom VI & VII; Pioneer, clears E2 thru E5; Pioneer cubes: BA-5000 thru BA-3700; Tocom S503-S507: Scientific Atlanta: 8500 thru 8600; Zenith: all but P21; remotes $10.00. N.E. ENGINEERING, 1 (600) 926-4030, fax (617) 716-2920.

CB RADIO OWNERS!
We specialize in a wide variety of technical information, parts and services for CB radios. 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Thousands of satisfied customers since 1978! Catalog $2.

CVC INTERNATIONAL
P.O. BOX 515004, PHOENIX, AZ 85346

300 Experimenters Circuits - Complete in 6 practical books using diodes, relays, FETS, LEDs, IC 555, and IC 0319 for building blocks. Only $33.00 plus $3.50 for shipping. USA and Canada only. Us funds. ETT, INC., PO Box 240, Massapequa Park, NY 11762-0240.

CABLE Converters, accessories below wholesale! Immediate delivery from giant stock! COD orders only. 1 (800) 995-1745.

Look to the Future With Your Own Cable Converter & Descrambler! 1-800-222-7204

FREE CATALOG!
NU-TEK ELECTRONICS
ADDITIONAL BD
Cedar Park, TX 78613
ALL MAJOR BRANDS

CABLE doctor. Stop the bullet and ID signals in cable lines. Send $29.00 to: R.R. ENTERPRISES, PO Box 3532, Easton, PA 18043.

RESTRICTED information: surveillance & schematics, clocks, cable, hacking, more. Details: Mentor, Box 1549-B, Aubry, NY 07172.

WANTED
INVENTORS: We submit ideas to industry. Find out what we can do for you. 1 (800) 288-IDEA.

INVENTORS!
INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORP. for free information. Serving inventors since 1975. 1 (800) 338-5656.

APRIL 1989 Electronics Now

ANTIQUE RADIO CLASSIFIED
6-Month Trial: $15.95. 1-Yr: $29.95 ($45.95-1st Class). A.R.C., P.O. Box 802-L11, Carlisle, MA 01741

www.americanradiohistory.com
CABLE BOX
WHOLESAVERS, INC.

BEST BOXES—BEST PRICES
Immediate Shipping—COD's
Satisfaction Guaranteed
FREE Catalog—Call Now
800-841-7835

CABLE TV
DESCRAMBLERS

Laser & Pants
Scientific Atlanta
Pioneer

The Newest & the Latest
DMTB-A - all Jerrald Impulse &
Starcom series
SA3-DFA - all Scientific Atlantas
including 8536, 8536+, 8530, Drop-field
PN-3A - all Pioneer systems
ALSQ
FT38, SA3, TZPC145G
FAST SHIPMENTS
30 Day Money Back Guarantee
FREE CATALOG & INFORMATION
1-800-772-6244

SINGERS!

FASCINATING electronic devices! Voice Dis
guise! Vocal truth indicator! Lasers! Transmitters! Detectors! Free energy! High voltage! More! Kits/Assembled! Catalog $4.00 (refundable).
QUANTUM RESEARCH, 17919-77th Ave.,
Sarasota, CA 92167.
FREE catalogs are cool — Uhh, uh. Yeah, yeah — cool! GALLIMORE ELECTRONICS, Box 70150-H, San Diego, CA 92167.

ACE cable equipment and personal security
PRODUCTS. We are one of the first in the business
and have the newest and latest. For immediate
COD shipping call 1 (800) 234-0726.

PATENTING
INVENTOES: THE CONCEPT NETWORK repre
sents people who want to patent and market their new product ideas. Schematics or prototype preferred but not required. Free information kit. Call 1 (800) 835-2246 ext 87.

MONEYMAKING OPPORTUNITIES

SHOMES EMPLOYMENT INFORMATION $15/SASE: Box
2682-PF, Amar, TX 76002.

VACATIONS
$50.00 A DAY VACATION! Rental Savings Big & Great Vacation Hotel Specials! 6 Days 5 Nights Waikiki, Hawaii; 5 Days 4 Nights Las Vegas; Freeport, Bahamas; Cancun, Mex
ico, As Low As $25.00 Plus Discount Airfares, Cruises And Much Much More! Call Now 1-800-886-8720.

BEST BY MAIL
Rates: Write National, Box 5, Sarasota, FL 34230

CABLE TV TURN-ON CHIPS
SUPER Cable TV "Test Chips", Provides full
service activation. Excellent Instructions & illus
trations. Jerrold: Starcom & Scientific Atlantas
Atlanta: 8500 thru 8600 Tocoma: 5503-
VIP, 5507. Zenith: ST-1000 thru ST-5000. Call
now!! MASTER COMPONENTS. 1 (800)
533-0570.

CABLE/SATELLITE
UNDETECTABLE cable/satellite descrambler
will work on all systems guaranteed! Send
SASE info. $94.95/kit, $14.95/plans. MYSTICAL
ELECTRONICS, PO Box 481, Cooper Station,
New York, NY 10276.

FLORIDA SALES!
Starcom series
Pioneer systems
Jerrold
Scientific Atlantas

FREE Data Sheet. All Product 100% Guaranteed. We accept VISA, MC, Pre-Paid Orders, Company PO with prior approval. Price does not include shipping and insurance. Order Now For Immediate Shipment!

MEMBRANE SWITCH KITS!
These highly durable water resistant flat-panel keyboards can be assembled in minutes with YOUR legend! Available in 4, 12, 16, 24 & 40 Key models. Steel "clickdomes" optional. Connector and bezel included.

800-841-7835

HOT KITS!!
Telephone Dialer
Multistation Thermostat
For More Information CALL 1-800-772-3945
GENOA Group

FASCINATING kits! Lasers, voice changers, gas
sensors, and more! Send $1.00 for catalog.
LNS TECHNOLOGIES, 20993 Foothill Blvd. Suite
3078, Hayward, CA 94541-1511.

ALL-in-one catalog. AM/FM/ham/spy, transmit
ters/amps, voice-disguisers, descramblers, audio/TV/science projects. Start your own li
censed/unlicensed radio station, books/plans/kits for import and export. 60 mouth-watering pages for $1.00. PAN-COM INTERNATIONAL, PO Box
130-F4, Paradise, CA 95967.
Jameco
Solderless
Breadboards

Our long-lasting breadboards
feature screen printed color
coordinates and are suitable for many
kinds of prototyping and circuit design.
Larger models feature heavy-duty
aluminum backing with voltage and
grounding posts.

- One-year warranty.

Terminal Bus Contact

Part No.	Shrink Style	Price	Price
20343 | 0 | 200 .. 200 | .. 200
20600 | 1 | 200 .. 4.95
20669 | 10 | 630 .. 5.25
20722 | 1 | 630 .. 6.5
20757 | 2 | 1,360 .. 11.95
20773 | 2 | 1,660 .. 16.95
20790 | 5 | 3,290 .. 22.95
20814 | 4 | 3,220 .. 30.95

6 Outlet Wall Plug-In

- Electrical rating: 15 Amp, 120VAC, 60Hz
- EMI/RFI noise rejection: up to 15dB

Part No.	Product No. 1	Product No. 1	Product No. 1
99291 | EP6 5.95 | EP6 4.95

7 Outlet Power Strip with 4 ft. Cord

Part No.	Product No. 1	Product No. 1	Product No. 1
98749 | L1R9222 9.95 | L1R9222 4.95

Linear Series Devices

Part No.	Product No. 51262
23851 | L00002CN 7.95
33216 | TL74CN 49
24811 | LM232CPE 2.75
23863 | LM232CN 1.49
23771 | LM362Z 1.09
23835 | LM338K 4.39
23851 | LM339N 4.39
23966 | LM358N 5.95
24722 | 555 3.45
24539 | LM741CN 3.95
23157 | LM1488N 49
23181 | LM1489N 49
23237 | LM1871N 1.95
23478 | LM1872N 2.95
34278 | ULN2003A 49
34972 | XR2206 3.75
34315 | ULN2003A 99
23376 | LM3941T 2.95
51262 | 7805T 49
51334 | 7812T 49
50964 | 7817D 1.95

Capacitors

Monolithic, Silver Mica, Radial and Axial Electrolytic Capacitors also available

Part No.	Ceramic Disc (±20%)	Price
15405 | 22µF 50V 1.10
15341 | 100µF 50V 1.10
15190 | 0.01µF 50V 1.10
15229 | 0.01µF 50V 1.10
15253 | 0.047µF 50V 1.10
15270 | 1µF 50V 1.10

Mylar (±10%) Capacitor

Part No.	Capacitance	Voltage	Price
26884 | 0.01µF | 100V 5.11
26921 | 0.033µF | 100V 10.15
26956 | 1µF | 100V 1.10
26972 | 22µF | 100V 27
26999 | 47µF | 100V 35
27001 | 1µF | 100V 5.19

Dipped Tantalum (±10%) Capacitor

Part No.	Capacitance	Voltage	Price
33486 | 1µF | 35V 6.19
33662 | 1µF | 35V 7.23
33734 | 2µF | 35V 27
33806 | 4.7µF | 35V 39
33869 | 10µF | 35V 85
33882 | 47µF | 25V 24.9

Power Supplies

- Data sheet included

Part No.	+5VDC (Amp)	+12VDC (Amp)	-5VDC (Amp)	-12VDC (Amp)
101362 | 17.2 | 2 | 0 | ..
77651 | 28 | 2 | 1 | ..
96665 | 26 | 4.3 | 0.5 | 1
28935 | 30 | 6 | 0 | ..
103510 | 31 | 3 | 1 | ..
28927 | 41.6 | 3.7 | 1.5 | ..
28998 | 41.9 | 4.8 | 1 | ..
61313 | 42.5 | 2.5 | 2 | ..
210958 | 42.5 | 2.5 | 2 | ..
103544 | 42.6 | 3 | 2 | ..
101732 | 42.6 | 3 | 2 | ..
103544 | 42.6 | 3 | 2 | ..
103543 | 41.5 | 4 | 3 | ..
84041 | 45 | 3 | 2 | ..
28871 | 50.5 | 6 | 0.5 | 0.5
51652 | 53 | 7 | 2 | ..
17056 | 54 | 5 | 1 | 1
101397 | 61 | 7 | 1 | 1.5
20943 | 98 | 1 | 2 | ..
101371 | 66 | 6 | 5 | 2.5
101813 | 71 | 1 | 1 | 1.5
96706 | 74 | 7 | 1 | 1.5
101389 | 84 | 1 | 3 | ..
56594 | 130 | 5 | 4 | ..
103501 | 137.5 | 15 | 4.5 | ..
56795 | 102 | 28 | 4 | ..
93315 | 194 | 28 | 4 | ..

Carbon Film 1/4 Watt 5% Resistor Assortments

Part No.	Description	Price
10719 | 5 each 70 values (every other value from R10 ohm-R5.6 meg) (350 pcs.) | .. 9.95
10663 | 100 each (27 values) R10 thru R101M (2,700 pcs.) | .. 9.95

SIPP to SIMM Module Converter

- Use SIPP's in place of SIMM's
- Upgrade from a SIPP Motherboard to a new SIMM Motherboard with/without new RAM
- Fits into standard 30 pin SIMM socket
- Double sided board for reliable operation
- Size: 1.6 maximum height x 3.5 wide (with 3 chip SIPP installed)

Part No.	Product No. 1	Product No. 1	Product No. 1
93363 | JE430 $9.95 | JE430 9.95

Jameco
Electronic Components

Computer Products

Call 1-800-833-4242 to order today!

Since 1973

1035 Shoreway Road
Belmont, CA 94002-4100
FAX: 1-800-V23-65848 (Domestic)
FAX: 415-552-5250 (International)

Call for our new 1994 Catalog today

CIRCLE 114 ON FREE INFORMATION CARD

April 1994, Electronics Now
CIGAR LIGHTER SOCKET

Cigar lighter socket on 24" length of black 18/2 zip cord ideal for attaching battery chargers, cellular phones, lap top computers and other appliances to other power supplies, or use as auxiliary socket in the car.

CAT# CLS-2

$1.25 each

9 DIGIT LED DISPLAY

National Semiconductor # WLS2294V-0 (NSA1198)
Nine red LED characters, each is 3 mm high. Mounted on a module 2” X 0.73” X 0.23”.

Common cathode, includes hook-up diagram.

CAT# TDY-9

$1.25 each

5 WAY MULTI-POINT TEST LEADS

High quality, flexible, cloth covered red and black test leads with telecommunication industry standard 5 way multipoint test clips on one end and spade lug on the other end. 5 ways to connect clips: 1) U-shaped nose for qc terminals; 2) Notched jaw for gripping screws, wires or terminals; 3) Spurred teeth for threaded or wire terminals; 4) Cluster of small needles for piercing small gauge wires; 5) Large piercing needle for piercing larger wires.

$3.50 per set

11 Vdc, 500 ma. WALL TRANSFORMER

SUPER SPECIAL!

We have lots of these brand new Wall transformers rated 11 Vdc @ 500 ma, but they were fine at 12 volts. With no load they put out 16.2 Vdc. 2.1mm id power plug center positive. White case – U.L listed

CAT# DCTX-115

$2.00 each

$175.00

ORDER TOLL FREE

1-800-826-5432

CHARGE ORDERS TO VISA, MasterCard or Discover

MAIL OR CALL TODAY FOR A FREE PRICE LIST

MAIL ORDERS TO: ALL ELECTRONICS CORPORATION
P.O. Box 567
Van Nuys, California 91408

FAX (818) 781-2653

CALL OR WRITE FOR A FREE CATALOG

64 PAGE

CIRCLE 107 ON FREE INFORMATION CARD

SPECIAL!

Includes hook-up diagram.

CAT# TDY-9

For catalog send $2.00 postage.

FREE CATALOG

1-800-338-0531

Phone: (513) 222-0173

FAX: (513) 222-4644

Parts Express Int'l Inc.
340 East First St.
Dayton, 45402

FREE DIGITAL LED DISPLAY

EDUCATION & INSTRUCTION

$18.50

Electronic engineering, 8 volumes complete. $109.95. No prior knowledge required. Free brochure. BANNER TECHNICAL BOOKS, 1203 Grant Avenue, Rockford, IL 61103.

$18.50

ELECTRICITY/ELECTRONICS training series used by U.S. military, 23 volumes, other courses available. Free info: FEDERAL TECHNICAL PUBLISHERS, Box 1061 N. Glen Lake, MN 55345.

$18.50

BE A TV/VCR Repair Specialist

Now you can train for a money-making career as a TV/VCR Repair Specialist. No previous experience necessary. No need to quit your job or school. Everything is explained in easy-to-understand language with plenty of drawings, diagrams and photos. We show you how to troubleshoot and repair video cassette recorders and TV sets. Send for free facts about the exciting opportunities in TV/VCR Repair and find out how you can start making money in this great career.

MAIL COUPON TODAY OR CALL TOLL FREE:

1-800-992-8765 Ext. 3582

CALL ANYTIME—24 hours a day, 7 days a week

BUSINESS OPPORTUNITIES

MAKE $75,000.00 to $250,000.00 yearly. Learn IBM monitors repairs. (solutions most brands). New home based business program. Software available. Information: USA Canada $3.00 cash (no checks), dealers wanted worldwide ($35.00 US funds), RANDALL DISTRIBUTION, PO Box 2168 R, Van Nuys, CA 91404 USA

EASY work! Excellent pay! Assemble products at home. Call toll free 1-800-467-5566 Ext. 5192

START your own technical venture! Don Lancaster's newly updated Incredible Secret Money Machine II tells how. We now have autographed copies of the Guru's underground classic for $18.50. SYNERGETICS PRESS, Box 809-C, Thatcher, AZ 85552. (602) 428-4073. Visa/AMEX.

CABLE TV DESCRAMBLERS

1-800-233-9388

FREE CATALOG

GUARANTEED BEST PRICES - IMMEDIATE SHIPPING

APPLE ELECTRONICS

309 Sheridan St. Suite 257
Hollywood, California 90028

PUBLISHERS, SATELLITE DESCRAMBLERS

Our Best Yet! 1994 EDITION

Our Best Yet! 1994 EDITION

PAY TV AND SATELLITE DESCRAMBLING

1-800-800-1199

FREE CATALOG

GUARANTEED BEST PRICES - IMMEDIATE SHIPPING

APPLE ELECTRONICS

309 Sheridan St. Suite 257
Hollywood, California 90028

PUBLISHERS, SATELLITE DESCRAMBLERS

Our Best Yet! 1994 EDITION

SATELLITE TV

FREE catalog — Lowest prices worldwide. Satisfaction guaranteed on every item — Systems, upgrades, parts, all major brands factory fresh and warranted. SKYVISION, 1012 Frontier, Ferndale, MI 49632. (1-800) 334-6453. Outside USA (218) 739-5231.

VIDEODYCIPHER II descrambling manual. Schematics, video and audio. Explains DES, Eeprom, CloneMaster, Parallel, Cable, HBO, Cinema, Showtime, Adult, etc. $16.95, $2.00 postage. Schematics of VIDEODYCIPHER II Plus, $20.00. Schematics for Videocipher II copy $15.00. Software to copy and alter Eeprom codes, $25.00. VCHR Plus Eeprom, binary and source code, $30.00. CABLETRONICS, Box 30502R, Bethesda, MD 20802.

"NEW & IMPROVED" Cable TV

Universal Descramble Kit $69.00

Works with all systems

Call Toll Free 1-800-886-8699

www.americanradiohistory.com
Invest a stamp

Save a bundle

For the price of a stamp, you can get the latest edition of the federal government’s free Consumer Information Catalog listing more than 200 free or low-cost government publications on topics such as federal benefits, jobs, health, housing, education, cars, and much more. Our booklets will help you save money, make money, and spend it a little more wisely.

So stamp out ignorance, and write today for the latest free Catalog. Send your name and address to:

Consumer Information Center
Department SB
Pueblo, Colorado 81009

A public service of this publication and the Consumer Information Center of the U.S. General Services Administration.

MCM ELECTRONICS CONQUERS YOUR GIANT PARTS PROBLEMS.

Not having the right part when you need it can often turn into a giant problem. But with a selection of over 20,000 electronic parts and assemblies ready to ship within 24 hours, MCM can cut your parts problems down to size, just like David brought down Goliath. For VCR parts, TV components, connectors, semiconductors, test equipment, tools, chemicals and more, you’ll find an enormous selection, including many top name brands and hard-to-find items. And if you’re ever faced with a big technical problem, call our Toll-Free Technical Assistance Line at 1-800-824-TECH(8324).

FOR A FREE CATALOG, CALL TOLL-FREE 1-800-543-4330
FAX 1-513-434-6959

Get fast delivery from our Distribution Facilities in Dayton, OH and Reno, NV!

MCM ELECTRONICS
850 CONGRESS PARK DR.
CENTERVILLE, OH 45459-4072
A PREMIER Company

CIRCLE 87 ON FREE INFORMATION CARD
ADVERTISING INDEX

Electronics Now does not assume responsibility for errors that may appear in the index below.

Free Information Number Page
108 AMC Sales ..83
109 All Electronics104
109 Amazing Concepts97
77, 187 B & K Precision2, 23
109 C & S Sales ..67
109 CIE ..37
109 CLAGGK Inc. Video Offer29
182 Cable Warehouse93
110 Chensko Products70
107 Command Productions11
58 Cooks ...30
107 Copyright Clearance Ctr., Inc.30
127 Deco Industries70
127 Elec. Industry Association 32
125 Electronic Goldmine106
125 Electronic Tech Today60, 82
127 Electronic Books Club7
121 Electronics Engineers B.C.88
121 Fluke CorporationCV2
121 Grantham College25
86 Heathkit ..95
176 Howard W. Sams & Co.21
176 ICS Computer Training52, 95
176 ISCET ...93
176 Interactive Image Tech13
176 Jameco ...103
176 Kelvin ...9
176 Kepco Inc. ..70
186 McGraw Hill CES31
87 MCM Electronics105
93 Mark V Electronics106
183, 184 Mini-Circuits ...1
183, 184 Microwave ...4
117 Mouser ...87
181 NRI Schools ..19
56 Parts Express4
181 Optoelectronics5
181 Optoelectronics5
185 Superior Electronics Supply102
192 Tektronix ..14
189 The School of VCR Repair87
105 WPT Publications28
189 Wintek ...100
177 World College27
177 Xandi Electronics70
191 Zentek Corp. ..102

Gernsback Publications, Inc., 500-B Bi-County Blvd., Farmingdale, NY 11735
1-(516) 293-3000
Larry Steckler, EHF/CET
President
Christina Estrada
assistant to the President
For Advertising ONLY
516-293-3000
Fax 1-516-293-3115
Larry Steckler
publisher
Arline Fishman
advertising director
Denise Mullcn
advertising assistant
Kelly Willis
credit manager
Subscriber Customer Service
1-800-288-0652
Order Entry for New Subscribers
1-800-999-7139
7:00 AM - 6:00 PM M-F MST

ADVERTISING SALES OFFICES

EAST/SOUTHEAST
Stanley Levitan
Eastern Advertising
1 Overlook Ave., Great Neck, NY 11021
1-516-487-9357
Fax 1-516-487-8402

MIDWEST/Texas/Arkansas/Oklahoma
Ralph Bergen
Midwest Advertising
One Northfield Plaza, Suite 300
Northfield, IL 60093-1214
1-708-446-1444
Fax 1-708-559-0562

PACIFIC COAST
Blake Murphy
Pacific Advertising
Pattis/3M
1800 North Highland Avenue
Suite 717
Hollywood, CA 90028
1-213-462-2700
Fax 1-213-463-0544

Electronic Shopper
Joe Lesh
National Representative
P.O. Box 169
Idyllwild, CA 92549
1-909-659-9743
Fax 1-909-659-2469
Enter A World Of Excitement with a Subscription to Popular Electronics

Get the latest electronic technology and information monthly!

Now you can subscribe to the magazine that plucks you into the exciting world of electronics. With every issue of Popular Electronics you'll find a wide variety of electronics projects you can build and enjoy.

Popular Electronics brings you informative new product and literature listings, feature articles on test equipment and tools—all designed to keep you tuned in to the latest developments in electronics. So if you love to build fascinating electronics, just fill out the subscription form below to subscribe to Popular Electronics...It's a power-house of fun for the electronics enthusiast.

EXCITING MONTHLY FEATURES LIKE:

- CONSTRUCTION—Building projects from crystal sets to electronic roulette
- FEATURES—Educational training on digital electronics, Ohm's Law, Antennas, Communications, Antique Radio, Simplified Theory
- HANDS-ON-REPORTS—User test comments on new and unusual consumer products
- SPECIAL COLUMNS—Think Tank, Circuit Circus, Computer Bits, DX Listening, Antique Radio, Amateur, Scanner Scene

PLUS: ALL OUR GREAT DEPARTMENTS!

You'll get 12 exciting and informative issues of Popular Electronics for only $18.95. That's a savings of $23.05 off the regular single copy price. Subscribe to Popular Electronics today! Just fill out the subscription form below.

THE FIRST SMART VEHICLES ARE HERE

Popular Electronics

BUILD A DIGITAL BAROMETER

Be your own weatherman with this easy-to-build forecasting aid

BUILD AN ANEMOMETER

Add this simple-but-accurate wind-speed measuring device to your weather-forecasting arsenal

BUILD A RELATIVE-HUMIDITY GAUGE

Check the humidity at a glance with this digital instrument

COLLISION AND OBSTACLE WARNING SYSTEM FOR YOUR ROBIX ROBOTICS CONSTRUCTION SET

Grease your ROBIX: the first smart vehicles are here

FOR FASTER SERVICE CALL TODAY

1-800-827-0383
(7:30AM-8:30PM)
EASTERN STANDARD TIME

Popular Electronics SUBSCRIPTION ORDER FORM

YES! I want to subscribe to Popular Electronics for 1 Full year (12 Issues) for only $18.95. That's a savings of $23.05 off the newsstand price.

- Payment Enclosed
- Bill me later

- Please charge my: [] Visa [] Mastercard

Acct. # [] [] [] [] [] [] [] []

Signature [] Exp. Date

Allow 6 to 8 weeks for delivery of first issue. U.S. Funds only.

In Canada add 10% postage. In Canada, 5% GST is included. In all other countries add 15% postage.

www.americanradiohistory.com
DC-2000 MHz

AMPLIFIERS

In plastic and ceramic packages, for low-cost solutions to dozens of application requirements, select Mini-Circuits' flatpack or surface-mount wideband monolithic amplifiers. For example, cascade three MAR-2 monolithic amplifiers and end up with a 25dB gain, 0.3 to 2000MHz amplifier for less than $4.50. Design values and circuit board layout available on request.

It's just as easy to create an amplifier that meets other specific needs, whether it be low noise, high gain, or medium power. Select from Mini-Circuits' wide assortment of models (see Chart), sketch a simple interconnect layout, and the design is done. Each model is characterized with S parameter data included in our 740-page RF/IF Designers' Handbook.

All Mini-Circuits' amplifiers feature tight unit-to-unit repeatability, high reliability, a one-year guarantee, tape and reel packaging, off-the-shelf availability, with prices starting at 99 cents. Mini-Circuits' monolithic amplifiers...for innovative do-it-yourself problem solvers.

Models above shown actual size

DC-2000 MHz

AMPLIFIERS

In plastic and ceramic packages, for low-cost solutions to dozens of application requirements, select Mini-Circuits' flatpack or surface-mount wideband monolithic amplifiers. For example, cascade three MAR-2 monolithic amplifiers and end up with a 25dB gain, 0.3 to 2000MHz amplifier for less than $4.50. Design values and circuit board layout available on request.

It's just as easy to create an amplifier that meets other specific needs, whether it be low noise, high gain, or medium power. Select from Mini-Circuits' wide assortment of models (see Chart), sketch a simple interconnect layout, and the design is done. Each model is characterized with S parameter data included in our 740-page RF/IF Designers' Handbook.

All Mini-Circuits' amplifiers feature tight unit-to-unit repeatability, high reliability, a one-year guarantee, tape and reel packaging, off-the-shelf availability, with prices starting at 99 cents. Mini-Circuits' monolithic amplifiers...for innovative do-it-yourself problem solvers.

Models above shown actual size

DC-2000 MHz

AMPLIFIERS

In plastic and ceramic packages, for low-cost solutions to dozens of application requirements, select Mini-Circuits' flatpack or surface-mount wideband monolithic amplifiers. For example, cascade three MAR-2 monolithic amplifiers and end up with a 25dB gain, 0.3 to 2000MHz amplifier for less than $4.50. Design values and circuit board layout available on request.

It's just as easy to create an amplifier that meets other specific needs, whether it be low noise, high gain, or medium power. Select from Mini-Circuits' wide assortment of models (see Chart), sketch a simple interconnect layout, and the design is done. Each model is characterized with S parameter data included in our 740-page RF/IF Designers' Handbook.

All Mini-Circuits' amplifiers feature tight unit-to-unit repeatability, high reliability, a one-year guarantee, tape and reel packaging, off-the-shelf availability, with prices starting at 99 cents. Mini-Circuits' monolithic amplifiers...for innovative do-it-yourself problem solvers.

Models above shown actual size

DC-2000 MHz

AMPLIFIERS

In plastic and ceramic packages, for low-cost solutions to dozens of application requirements, select Mini-Circuits' flatpack or surface-mount wideband monolithic amplifiers. For example, cascade three MAR-2 monolithic amplifiers and end up with a 25dB gain, 0.3 to 2000MHz amplifier for less than $4.50. Design values and circuit board layout available on request.

It's just as easy to create an amplifier that meets other specific needs, whether it be low noise, high gain, or medium power. Select from Mini-Circuits' wide assortment of models (see Chart), sketch a simple interconnect layout, and the design is done. Each model is characterized with S parameter data included in our 740-page RF/IF Designers' Handbook.

All Mini-Circuits' amplifiers feature tight unit-to-unit repeatability, high reliability, a one-year guarantee, tape and reel packaging, off-the-shelf availability, with prices starting at 99 cents. Mini-Circuits' monolithic amplifiers...for innovative do-it-yourself problem solvers.

Models above shown actual size

DC-2000 MHz

AMPLIFIERS

In plastic and ceramic packages, for low-cost solutions to dozens of application requirements, select Mini-Circuits' flatpack or surface-mount wideband monolithic amplifiers. For example, cascade three MAR-2 monolithic amplifiers and end up with a 25dB gain, 0.3 to 2000MHz amplifier for less than $4.50. Design values and circuit board layout available on request.

It's just as easy to create an amplifier that meets other specific needs, whether it be low noise, high gain, or medium power. Select from Mini-Circuits' wide assortment of models (see Chart), sketch a simple interconnect layout, and the design is done. Each model is characterized with S parameter data included in our 740-page RF/IF Designers' Handbook.

All Mini-Circuits' amplifiers feature tight unit-to-unit repeatability, high reliability, a one-year guarantee, tape and reel packaging, off-the-shelf availability, with prices starting at 99 cents. Mini-Circuits' monolithic amplifiers...for innovative do-it-yourself problem solvers.

Models above shown actual size

DC-2000 MHz

AMPLIFIERS

In plastic and ceramic packages, for low-cost solutions to dozens of application requirements, select Mini-Circuits' flatpack or surface-mount wideband monolithic amplifiers. For example, cascade three MAR-2 monolithic amplifiers and end up with a 25dB gain, 0.3 to 2000MHz amplifier for less than $4.50. Design values and circuit board layout available on request.

It's just as easy to create an amplifier that meets other specific needs, whether it be low noise, high gain, or medium power. Select from Mini-Circuits' wide assortment of models (see Chart), sketch a simple interconnect layout, and the design is done. Each model is characterized with S parameter data included in our 740-page RF/IF Designers' Handbook.

All Mini-Circuits' amplifiers feature tight unit-to-unit repeatability, high reliability, a one-year guarantee, tape and reel packaging, off-the-shelf availability, with prices starting at 99 cents. Mini-Circuits' monolithic amplifiers...for innovative do-it-yourself problem solvers.

Models above shown actual size

DC-2000 MHz

AMPLIFIERS

In plastic and ceramic packages, for low-cost solutions to dozens of application requirements, select Mini-Circuits' flatpack or surface-mount wideband monolithic amplifiers. For example, cascade three MAR-2 monolithic amplifiers and end up with a 25dB gain, 0.3 to 2000MHz amplifier for less than $4.50. Design values and circuit board layout available on request.

It's just as easy to create an amplifier that meets other specific needs, whether it be low noise, high gain, or medium power. Select from Mini-Circuits' wide assortment of models (see Chart), sketch a simple interconnect layout, and the design is done. Each model is characterized with S parameter data included in our 740-page RF/IF Designers' Handbook.

All Mini-Circuits' amplifiers feature tight unit-to-unit repeatability, high reliability, a one-year guarantee, tape and reel packaging, off-the-shelf availability, with prices starting at 99 cents. Mini-Circuits' monolithic amplifiers...for innovative do-it-yourself problem solvers.

Models above shown actual size